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Preface

Econometrics originated as a branch of the classical discipline of mathemat-
ical statistics. At the same time it has its foundation in economics where it
began as a subject of quantitative economics. While the history of the quanti-
tative analysis of both microeconomic and macroeconomic behavior is long,
the formal of the sub-discipline of econometrics per se came with the estab-
lishment of the Econometric Society in 1932, at a time when many of the
most significant advances in modern statistical inference were made by Jerzy
Neyman, Egon Pearson, Sir Ronald Fisher, and their contemporaries. All of
this led to dramatic and swift developments in the theoretical foundations
of econometrics, followed by commensurate changes that took place in the
application of econometric methods over the ensuing decades. From time to
time these developments have been documented in various ways, includ-
ing various “handbooks.” Among the other handbooks that have been pro-
duced, The Handbook of Applied Economic Statistics (1998), edited by Aman
Ullah and David. E. A. Giles, and The Handbook of Applied Econometrics and
Statistical Inference (2002), edited by Aman Ullah, Alan T. K. Wan, and Anoop
Chaturvedi (both published by Marcel Dekker), took as their general theme
the over-arching importance of the interface between modern econometrics
and mathematical statistics.

However, the data that are encountered in economics often have unusual
properties and characteristics. These data can be in the form of micro (cross-
section), macro (time-series), and panel data (time-series of cross-sections).
While cross-section data are more prevalent in the applied areas of micro-
economics, such as development and labor economics, time-series data are
common in finance and macroeconomics. Panel data have been used exten-
sively in recent years for policy analysis in connection with microeconomic,
macroeconomic and financial issues. Associated with each of these types of
data are various challenging problems relating to model specification, estima-
tion, and testing. These include, for example, issues relating to simultaneity
and endogeneity, weak instruments, average treatment, censoring, functional
form, nonstationarity, volatility and correlations, cointegration, varying co-
efficients, and spatial data correlations, among others. All these complex-
ities have led to several developments in the econometrics methods and
applications to deal with the special models arising. In fact many advances
have taken place in financial econometrics using time series, in labor eco-
nomics using cross section, and in policy evaluations using panel data. In the
face of all these developments in the economics and financial econometrics,
the motivation behind this Handbook is to take stock of the subject matter of
empirical economics and finance, and where this research field is likely to
head in the near future. Given this objective, various econometricians who

ix
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x Preface

are acknowledged international experts in their particular fields were com-
missioned to guide us about the fast, recent growing research in economics
and finance. The contributions in this Handbook should prove to be useful
for researchers, teachers, and graduate students in economics, finance, soci-
ology, psychology, political science, econometrics, statistics, engineering, and
the medical sciences.

The Handbook contains sixteen chapters that can be divided broadly into
the following three parts:

1. Micro (Cross-Section) Models
2. Macro and Financial (Time-Series) Models
3. Panel Data Models

Part I of the Handbook consists of chapters dealing with the statistical issues
in the analysis of econometric models analysis with the cross-sectional data
often arising in microeconomics. The chapter by Cameron and Miller reviews
methods to control for regression model error that is correlated within groups
or clusters, but is uncorrelated across groups or clusters. The importance of
this stems from the fact that failure to control for such clustering can lead to
an understatement of standard errors, and hence an overstatement of statisti-
cal significance, as emphasized most notably in empirical studies by Moulton
and others. These may lead to misleading conclusions in empirical and policy
work. Cameron and Miller emphasize OLS estimation with statistical infer-
ence based on minimal assumptions regarding the error correlation process,
but they also review more efficient feasible GLS estimation, and the adaptation
to nonlinear and instrumental variables estimators. Trivedi and Munkin have
prepared a chapter on the regression analysis of empirical economic models
where the outcome variable is in the form of non-negative count data. Count
regressions have been extensively used for analyzing event count data that
are common in fertility analysis, health care utilization, accident modeling,
insurance, and recreational demand studies, for example. Several special fea-
tures of count regression models are intimately connected to discreteness and
nonlinearity, as in the case of binary outcome models such as the logit and pro-
bit models. The present survey goes significantly beyond the previous such
surveys, and it concentrates on newer developments, covering both the prob-
ability models and the methods of estimating the parameters of these models.
It also discusses noteworthy applications or extensions of older topics. An-
other chapter is by Fagan and Gençay dealing with textual data econometrics.
Most of the empirical work in economics and finance is undertaken using cat-
egorical or numerical data, although nearly all of the information available to
decision-makers is communicated in a linguistic format, either through spo-
ken or written language. While the quantitative tools for analyzing numerical
and categorical data are very well developed, tools for the quantitative anal-
ysis of textual data are quite new and in an early stage of development. Of
course, the problems involved in the analysis of textual data are much greater
than those associated with other forms of data. Recently, however, research
has shown that even at a coarse level of sophistication, automated textual
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Preface xi

processing can extract useful knowledge from very large textual databases.
This chapter aims to introduce the reader to this new field of textual econo-
metrics, describe the current state-of-the-art, and point interested researchers
toward useful public resources.

In the chapter by Golan and Greene an information theoretic estimator is de-
veloped for the mixed discrete choice model used in applied microeconomics.
They consider an extension of the multinomial model, where parameters
are commonly assumed to be a function of the individual’s socio-economic
characteristics and of an additive term that is multivariate distributed (not
necessarily normal) and correlated. This raises a complex problem of deter-
mining large number of parameters, and the current solutions are all based
on simulated methods. A complementary approach for handling an under-
determined estimation problem is to use an information theoretic estimator,
in which (and unlike the class of simulated estimators) the underdetermined
problem is converted into a constrained optimization problem where all of the
available information enters as constraints and the objective functional is an
entropy measure. A friendly guide for applying it is presented. The chapter by
Racine looks into the issues that arise when we are dealing with data on eco-
nomic variables that have nonlinear relationship of some unknown form. Such
models are called nonparametric. Within this class of models his contribution
emphasizes the case where the regression variables include both continuous
and discrete (categorical) data (nominal or ordinal). Recent work that ex-
plores the relationship between Bayesian and nonparametric kernel methods
is also emphasized. The last two chapters in Part I are devoted to exploring
some theoretical contributions. Grendár and Judge introduce fundamental
large deviations theory, a subfield of probability theory, where the typical
concern is about the asymptotic (large sample) behavior, on a logarithmic
scale, of a probability of a given event. The results discussed have impli-
cations for the so-called maximum entropy methods, and for the sampling
distributions for both nonparametric maximum likelihood and empirical like-
lihood methods. Finally, Antoine and Renault consider a general framework
where weaker patterns of identification may arise in a model. Typically, the
data generating process is allowed to depend on the sample size. However,
contrary to what is usually done in the literature on weak identification, they
suggest not to give up the goal of efficient statistical inference: even fragile
information should be processed optimally for the purpose of both efficient
estimation and powerful testing. These insights provide a new focus that is
especially needed in the studies on weak instruments.

Part II of the Handbook contains chapters on time series models extensively
used in empirical macroeconomics and finance. The chapter by Fukač and
Pagan looks at the development of macro-econometric models over the past
sixty years, especially those that have been used for analyzing policy options.
They classify them in four generations of models, giving extremely useful
details and insights of each generation of models with their designs, the way
in which parameters were quantified, and how they were evaluated. Abadir
and Talmain explore an issue existing in many macroeconomic and aggregate
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xii Preface

financial time-series. Specifically, the data follow a nonlinear long-memory
process that requires new econometric tools to analyze them. This is because
linear ARIMA modeling, often used in standard empirical work, is not consis-
tent with the real world macroeconomic and financial data sets. In view of this
Abadir and Talmain have explored econometric aspects of nonlinear model-
ing guided by economic theory. The chapter by Ludvigson and Ng develops
the relationship between bond excess premiums and the macroeconomy by
considering factors augmented panel regression of 131 months. Macroeco-
nomic factors are found to have statistically significant predictive power for
excess bond returns. Also, they show that forecasts of excess bond returns (or
bond risk premia) are countercyclical. This implies that investors are compen-
sated for risks associated with recessions. In another chapter Pesaran explores
the predictability of asset returns and the empirical and theoretical basis of
the efficient market hypothesis (EMH). He first overviews the statistical prop-
erties of asset returns at different frequencies and considers the evidence on
return predictability, risk aversion and market efficiency. The chapter then
focuses on the theoretical foundation of the EMH, and shows that market
efficiency could coexist with heterogeneous beliefs and individual irrational-
ity provided that individual errors are cross-sectionally weakly dependent,
but at times of market euphoria or gloom these individual errors are likely to
become cross-sectionally strongly dependent, so that the collective outcome
could display significant departures from market efficiency. In deviation with
the above chapters in this part, which deal with the often used classical point
data estimation, Arroyo, González-Rivera and Maté review the statistical lit-
erature on the regression analysis and forecasting with the interval-valued
and histogram-valued data sets that are increasingly becoming available in
economics and finance. Measures of dissimilarities are presented which help
us to evaluate forecast errors from different methods. They also provide ap-
plications relating to forecasting the daily interval low/high prices of the
S&P500 index, and the weekly cross-sectional histogram of the returns to the
constituents of the S&P500 index.

Part III of the Handbook contains chapters on the types of panel data and spa-
tial models which are increasingly becoming important in analyzing complex
economic behavior and policy evaluations. While there has been an extensive
growth of the literature in this area in recent years, at least two issues have
remained underdeveloped. One of them relates to the econometric issues
that arise when analyzing panel models that contain time-series dynamics
through the presence of lagged dependent variables. Hsiao, in his chapter,
reviews the literature on dynamic panel data models in the presence of unob-
served heterogeneity across individuals and over time, from three perspec-
tives: fixed vs. random effects specification; additive vs. multiplicative effects;
and the maximum likelihood vs. methods of moments approach. On the other
hand, Su and Ullah, in their chapter, explore the often ignored issue of the
nonlinear functional form of panel data models by adopting both nonpara-
metric and semiparametric approaches. In their review they focus on the
recent developments in the econometrics of conventional panel data models
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with a one-way error component structure; partially linear panel data mod-
els; varying coefficient panel data models; nonparametric panel data models
with multi-factor error structure; and nonseparable nonparametric panel data
models. Within the framework of panel data or purely cross-sectional data
sets we also have the issues that arise when the dependence across cross-
sectional units is related to location and distance, as is often found in studies
in regional, urban, and agricultural economics. The chapter by Baltagi deals
with this area of study and it introduces spatial error component regression
models, and the associated methods of estimation and testing. He also dis-
cusses some of the issues related to prediction using such models, and studies
the performance of various panel unit root tests when spatial correlation is
present. Finally, the chapter by Lee and Yu studies the maximum likelihood
estimation of spatial dynamic panel data where both the cross-section and
time-series observations are large. A new estimation method, based on a par-
ticular data transformation approach, is proposed which may eliminate time
dummy effects and unstable or explosive components. A bias correction pro-
cedure for these estimators is also suggested.

In summary, this Handbook brings together both review material and new
methodological and applied results which are extremely important to the cur-
rent and future frontiers in empirical economics and finance. The emphasis
is on the inferential issues that arise in the analysis of cross-sectional, time-
series, and panel data–based empirical models in economics and finance and
in related disciplines. In view of this, the contents and scope of the Handbook
should have wide appeal. We are very pleased with the final outcome and we
owe a great debt to the authors of the various chapters for their marvelous
support and cooperation in the preparation of this volume. We are also most
grateful to Damaris Carlos and Yun Wang, University of California, Riverside,
for the efficient assistance that they provided. Finally, we thank the fine edi-
torial and production staff at Taylor & Francis, especially David Grubbs and
Suzanne Lassandro, for their extreme patience, guidance, and expertise.

Aman Ullah

David E. A. Giles
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1.1 Introduction

In this survey we consider regression analysis when observations are grouped
in clusters, with independence across clusters but correlation within clusters.
We consider this in settings where estimators retain their consistency, but sta-
tistical inference based on the usual cross-section assumption of independent
observations is no longer appropriate.

Statistical inference must control for clustering, as failure to do so can lead
to massively underestimated standard errors and consequent over-rejection
using standard hypothesis tests. Moulton (1986, 1990) demonstrated that this
problem arises in a much wider range of settings than had been appreciated
by microeconometricians. More recently Bertrand, Duflo, and Mullainathan
(2004) and Kézdi (2004) emphasized that with state-year panel or repeated
cross-section data, clustering can be present even after including state and
year effects and valid inference requires controlling for clustering within state.
Wooldridge (2003, 2006) provides surveys and a lengthy exposition is given
in Chapter 8 of Angrist and Pischke (2009).

A common solution is to use “cluster-robust”standard errors that rely on
weak assumptions – errors are independent but not identically distributed
across clusters and can have quite general patterns of within-cluster correla-
tion and heteroskedasticity – provided the number of clusters is large. This
correction generalizes that of White (1980) for independent heteroskedastic er-
rors. Additionally, more efficient estimation may be possible using alternative
estimators, such as feasible Generalized Least Squares (GLS), that explicitly
model the error correlation.

The loss of estimator precision due to clustering is presented in Section 1.2,
while cluster-robust inference is presented in Section 1.3. The complications
of inference, given only a few clusters, and inference when there is clustering
in more than one direction, are considered in Sections 1.4 and 1.5. Section 1.6
presents more efficient feasible GLS estimation when structure is placed on
the within-cluster error correlation. In Section 1.7 we consider adaptation to
nonlinear and instrumental variables estimators. An empirical example in
Section 1.8 illustrates many of the methods discussed in this survey.

1.2 Clustering and Its Consequences

Clustering leads to less efficient estimation than if data are independent, and
default Ordinary Least Squares (OLS) standard errors need to be adjusted.
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1.2.1 Clustered Errors

The linear model with (one-way) clustering is

yig = x′
ig� + uig, (1.1)

where i denotes the ith of N individuals in the sample, g denotes the gth of
G clusters, E[uig | xig] = 0, and error independence across clusters is assumed
so that for i �= j

E[uigu jg′ | xig, x jg′ ] = 0, unless g = g′. (1.2)

Errors for individuals belonging to the same group may be correlated, with
quite general heteroskedasticity and correlation. Grouping observations by
cluster the model can be written as yg = Xg� + ug , where yg and ug are
Ng × 1 vectors, Xg is an Ng × K matrix, and there are Ng observations in
cluster g. Further stacking over clusters yields y = X� + u, where y and u are
N × 1 vectors, X is an N × K matrix, and N = ∑

g Ng . The OLS estimator is
�̂ = (X′X)−1 X′y. Given error independence across clusters, this estimator has
asymptotic variance matrix

V[̂�] = (
E[X′X]

)−1

(
G∑

g=1

E[X′
gugu′

gXg]

) (
E[X′X]

)−1 , (1.3)

rather than the default OLS variance �2
u

(
E[X′X]

)−1, where �2
u = V[uig].

1.2.2 Equicorrelated Errors

One way that within-cluster correlation can arise is in the random effects
model where the error uig = �g + εig , where �g is a cluster-specific error or
common shock that is i.i.d. (0, �2

�), and εig is an idiosyncratic error that is i.i.d.
(0, �2

ε). Then Var[uig] = �2
� + �2

ε and Cov[uig, u jg] = �2
� for i �= j . It follows

that the intraclass correlation of the error �u = Cor[uig, u jg] = �2
�/(�2

� + �2
ε).

The correlation is constant across all pairs of errors in a given cluster. This cor-
relation pattern is suitable when observations can be viewed as exchangeable,
with ordering not mattering. Leading examples are individuals or households
within a village or other geographic unit (such as state), individuals within a
household, and students within a school.

If the primary source of clustering is due to such equicorrelated group-
level common shocks, a useful approximation is that for the j th regressor the
default OLS variance estimate based on s2(X′X)−1, where s is the standard
error of the regression, should be inflated by

� j � 1 + �xj �u(N̄g − 1), (1.4)

where �xj is a measure of the within-cluster correlation of xj , �u is the within-
cluster error correlation, and N̄g is the average cluster size. This result for
equicorrelated errors is exact if clusters are of equal size; see Kloek (1981) for
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the special case �xj = 1, and Scott and Holt (1982) and Greenwald (1983) for
the general result. The efficiency loss, relative to independent observations, is
increasing in the within-cluster correlation of both the error and the regressor
and in the number of observations in each cluster. For clusters of unequal size
replace (N̄g − 1) in formula 1.4 by ((V[Ng]/N̄g) + N̄g − 1); see Moulton (1986,
p. 387).

To understand the loss of estimator precision given clustering, consider the
sample mean when observations are correlated. In this case the entire sample
is viewed as a single cluster. Then

V[ȳ] = N−2

{
N∑

i=1

V[yi ] +
∑

i

∑
j �=i

Cov[yi , yj ]

}
. (1.5)

Given equicorrelated errors with Cov[yig, yjg] = ��2 for i �= j , V[ȳ] =
N−2{N�2 + N(N − 1)��2} = N−1�2{1 + �(N − 1)} compared to N−1�2 in
the i.i.d. case. At the extreme V[ȳ] = �2 as � → 1 and there is no benefit at all
to increasing the sample size beyond N = 1.

Similar results are obtained when we generalize to several clusters of equal
size (balanced clusters) with regressors that are invariant within cluster, so
yig = x′

g� + uig , where i denotes the ith of N individuals in the sample and g
denotes the gth of G clusters, and there are N∗ = N/G observations in each
cluster. Then OLS estimation of yig on xg is equivalent to OLS estimation in
the model ȳg = x′

g� + ūg , where ȳg and ūg are the within-cluster averages
of the dependent variable and error. If ūg is independent and homoskedastic
with variance �2

ūg
then V[̂�] = �2

ūg
(
∑G

g=1 xgx′
g)−1, where the formula for �2

ūg

varies with the within-cluster correlation of uig . For equicorrelated errors
�2

ūg
= N−1

∗ [1 + �u(N∗ − 1)]�2
u compared to N−1

∗ �2
u with independent errors, so

the true variance of the OLS estimator is (1 + �u(N∗ − 1)) times the default, as
given in formula 1.4 with �xj = 1.

In an influential paper Moulton (1990) pointed out that in many settings the
adjustment factor � j can be large even if �u is small. He considered a log earn-
ings regression using March CPS data (N = 18, 946), regressors aggregated
at the state level (G = 49), and errors correlated within state (̂�u = 0.032).
The average group size was 18, 946/49 = 387, �xj = 1 for a state-level re-
gressor, so � j � 1 + 1 × 0.032 × 386 = 13.3. The weak correlation of errors
within state was still enough to lead to cluster-corrected standard errors being√

13.3 = 3.7 times larger than the (incorrect) default standard errors, and in
this example many researchers would not appreciate the need to make this
correction.

1.2.3 Panel Data

A second way that clustering can arise is in panel data. We assume that obser-
vations are independent across individuals in the panel, but the observations
for any given individual are correlated over time. Then each individual is
viewed as a cluster. The usual notation is to denote the data as yit, where
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i denotes the individual and t the time period. But in our framework (for-
mula 1.1) the data are denoted yig , where i is the within-cluster subscript
(for panel data the time period) and g is the cluster unit (for panel data the
individual).

The assumption of equicorrelated errors is unlikely to be suitable for panel
data. Instead we expect that the within-cluster (individual) correlation de-
creases as the time separation increases.

For example, we might consider an AR(1) model with uit = �ui,t−1 + εi t,
where 0 < � < 1 and εi t is i.i.d. (0, �2

ε). In terms of the notation in formula 1.1,
uig = �ui−1,g + εig . Then the within-cluster error correlation Cor[uig, u jg] =
�|i− j |, and the consequences of clustering are less extreme than in the case of
equicorrelated errors.

To see this, consider the variance of the sample mean ȳ when Cov[yi , yj ] =
�|i− j |�2. Then formula 1.5 yields V[ȳ] = N−1[1 + 2N−1 ∑N−1

s=1 s�s]�2
u. For ex-

ample, if � = 0.5 and N = 10, then V[ȳ] = 0.26�2 compared to 0.55�2

for equicorrelation, using V[ȳ] = N−1�2{1 + �(N − 1)}, and 0.1�2 when
there is no correlation (� = 0.0). More generally with several clusters of
equal size and regressors invariant within cluster, OLS estimation of yig on
xg is equivalent to OLS estimation of ȳg on xg (see Subsection 1.2.2), and
with an AR(1) error V[̂�] = N−1

∗ [1 + 2N∗
∑N∗−1

s=1 s�s]�2
u(

∑
g xgx′

g)−1, less than
N−1

∗ [1 + �u(N∗ − 1)]�2
u(

∑
g xgx′

g)−1 with an equicorrelated error.
For panel data in practice, while within-cluster correlations for errors are

not constant, they do not dampen as quickly as those for an AR(1) model. The
variance inflation formula 1.4 can still provide a reasonable guide in panels
that are short and have high within-cluster serial correlations of the regressor
and of the error.

1.3 Cluster-Robust Inference for OLS

The most common approach in applied econometrics is to continue with
OLS, and then obtain correct standard errors that correct for within-cluster
correlation.

1.3.1 Cluster-Robust Inference

Cluster-robust estimates for the variance matrix of an estimate are sandwich
estimates that are cluster adaptations of methods proposed originally for in-
dependent observations by White (1980) for OLS with heteroskedastic errors,
and by Huber (1967) and White (1982) for the maximum likelihood estimator.

The cluster-robust estimate of the variance matrix of the OLS estimator,
defined in formula 1.3, is the sandwich estimate

V̂[̂�] = (X′X)−1B̂(X′X)−1, (1.6)
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where

B̂ =
(

G∑
g=1

X′
gûgû ′

gXg

)
, (1.7)

and ûg = yg −Xg�̂. This provides a consistent estimate of the variance matrix
if G−1 ∑G

g=1 X′
gûgû ′

gXg − G−1 ∑G
g=1E[X′

gugu′
gXg]

p→ 0 as G → ∞.
The estimate of White (1980) for independent heteroskedastic errors is the

special case of formula 1.7, where each cluster has only one observation
(so G = N and Ng = 1 for all g). It relies on the same intuition that
G−1 ∑G

g=1E[X′
gugu′

gXg] is a finite-dimensional (K × K ) matrix of averages
that can be consistently estimated as G → ∞.

White (1984, pp. 134–142) presented formal theorems that justify use of
formula 1.7 for OLS with a multivariate dependent variable, a result directly
applicable to balanced clusters. Liang and Zeger (1986) proposed this method
for estimation for a range of models much wider than OLS; see Sections 1.6
and 1.7 of their paper for a range of extensions to formula 1.7. Arellano (1987)
considered the fixed effects estimator in linear panel models, and Rogers
(1993) popularized this method in applied econometrics by incorporating it
in Stata. Note that formula 1.7 does not require specification of a model for
E[ugu′

g].
Finite-sample modifications of formula 1.7 are typically used, since without

modification the cluster-robust standard errors are biased downwards. Stata
uses

√
cûg in formula 1.7 rather than ûg , with

c = G
G − 1

N − 1
N − K

� G
G − 1

. (1.8)

Some other packages such as SAS use c = G/(G − 1). This simpler correction
is also used by Stata for extensions to nonlinear models. Cameron, Gelbach,
and Miller (2008) review various finite-sample corrections that have been
proposed in the literature, for both standard errors and for inference using
resultant Wald statistics; see also Section 1.6.

The rank of V̂[̂�] in formula 1.7 can be shown to be at most G, so at most G
restrictions on the parameters can be tested if cluster-robust standard errors
are used. In particular, in models with cluster-specific effects it may not be
possible to perform a test of overall significance of the regression, even though
it is possible to perform tests on smaller subsets of the regressors.

1.3.2 Specifying the Clusters

It is not always obvious how to define the clusters.
As already noted in Subsection 1.2.2, Moulton (1986, 1990) pointed out for

statistical inference on an aggregate-level regressor it may be necessary to
cluster at that level. For example, with individual cross-sectional data and a
regressor defined at the state level one should cluster at the state level if regres-
sion model errors are even very mildly correlated at the state level. In other
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cases the key regressor may be correlated within group, though not perfectly
so, such as individuals within household. Other reasons for clustering include
discrete regressors and a clustered sample design.

In some applications there can be nested levels of clustering. For example,
for a household-based survey there may be error correlation for individuals
within the same household, and for individuals in the same state. In that case
cluster-robust standard errors are computed at the most aggregated level of
clustering, in this example at the state level. Pepper (2002) provides a detailed
example.

Bertrand, Duflo, and Mullainathan (2004) noted that with panel data or
repeated cross-section data, and regressors clustered at the state level, many
researchers either failed to account for clustering or mistakenly clustered at
the state-year level rather than the state level. Let yist denote the value of the
dependent variable for the ith individual in the sth state in the tth year, and
let xst denote a state-level policy variable that in practice will be quite highly
correlated over time in a given state. The authors considered the difference-
in-differences (DiD) model yist = �s +�t +�xst +z′

ist�+uit, though their result
is relevant even for OLS regression of yist on xst alone. The same point applies
if data were more simply observed at only the state-year level (i.e., yst rather
than yist).

In general DiD models using state-year data will have high within-cluster
correlation of the key policy regressor. Furthermore there may be relatively
few clusters; a complication considered in Section 1.4.

1.3.3 Cluster-Specific Fixed Effects

A standard estimation method for clustered data is to additionally incorporate
cluster-specific fixed effects as regressors, estimating the model

yig = �g + x′
ig� + uig. (1.9)

This is similar to the equicorrelated error model, except that �g is treated as
a (nuisance) parameter to be estimated. Given Ng finite and G → ∞ the pa-
rameters �g , g = 1, . . . , G, cannot be consistently estimated. The parameters
� can still be consistently estimated, with the important caveat that the coeffi-
cients of cluster-invariant regressors (xg rather than xig) are not identified. (In
microeconometrics applications, fixed effects are typically included to enable
consistent estimation of a cluster-varying regressor while controlling for a
limited form of endogeneity – the regressor xig may be correlated with the
cluster-invariant component �g of the error term �g + uig).

Initial applications obtained default standard errors that assume uig in
formula 1.9 is i.i.d. (0, �2

u), assuming that cluster-specific fixed effects are
sufficient to mop up any within-cluster error correlation. More recently it
has become more common to control for possible within-cluster correlation
of uig by using formula 1.7, as suggested by Arellano (1987). Kézdi (2004)
demonstrated that cluster-robust estimates can perform well in typical-sized
panels, despite the need to first estimate the fixed effects, even when Ng is
large relative to G.
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It is well-known that there are several alternative ways to obtain the OLS
estimator of � in formula 1.9. Less well-known is that these different ways can
lead to different cluster-robust estimates of V[̂�]. We thank Arindrajit Dube
and Jason Lindo for bringing this issue to our attention.

The two main estimation methods we consider are the least squares dummy
variables (LSDV) estimator, which obtains the OLS estimator from regres-
sion of yig on xig and a set of dummy variables for each cluster, and the
mean-differenced estimator, which is the OLS estimator from regression of
(yig − ȳg) on (xig − x̄g).

These two methods lead to the same cluster-robust standard errors if we ap-
ply formula 1.7 to the respective regressions, or if we multiply this estimate by
G/(G −1). Differences arise, however, if we multiply by the small-sample cor-
rection c given in formula 1.8. Let K denote the number of regressors including
the intercept. Then the LSDV model views the total set of regressors to be G
cluster dummies and (K − 1) other regressors, while the mean-differenced
model considers there to be only (K − 1) regressors (this model is estimated
without an intercept). Then

Model Finite Sample Adjustment Balanced Case

LSDV c = G
G−1

N−1
N−G−(k−1) c � G

G−1 × N∗
N∗−1

Mean-differenced model c = G
G−1

N−1
N−(k−1) c � G

G−1 .

In the balanced case N = N∗G, leading to the approximation given above if
additionally K is small relative to N.

The difference can be very large for small N∗. Thus if N∗ = 2 (or N∗ = 3)
then the cluster-robust variance matrix obtained using LSDV is essentially
2 times (or 3/2 times) that obtained from estimating the mean-differenced
model, and it is the mean-differenced model that gives the correct finite-
sample correction.

Note that if instead the error uig is assumed to be i.i.d. (0, �2
u), so that

default standard errors are used, then it is well-known that the appropriate
small-sample correction is (N − 1)/N − G − (K − 1), i.e., we use s2(X′X)−1,
where s2 = (N − G − (K − 1))−1 ∑

ig û2
ig . In that case LSDV does give the

correct adjustment, and estimation of the mean-differenced model will give
the wrong finite-sample correction.

An alternative variance estimator after estimation of formula 1.9 is a
heteroskedastic-robust estimator, which permits the error uig in formula 1.9
to be heteroskedastic but uncorrelated across both i and g. Stock and Watson
(2008) show that applying the method of White (1980) after mean-differenced
estimation of formula 1.9 leads, surprisingly, to inconsistent estimates of V[̂�]
if the number of observations Ng in each cluster is small (though it is correct
if Ng = 2). The bias comes from estimating the cluster-specific means rather
than being able to use the true cluster-means. They derive a bias-corrected
formula for heteroskedastic-robust standard errors. Alternatively, and more
simply, the cluster-robust estimator gives a consistent estimate of V[̂�] even
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if the errors are only heteroskedastic, though this estimator is more variable
than the bias-corrected estimator proposed by Stock and Watson.

1.3.4 Many Observations per Cluster

The preceding analysis assumes the number of observations within each clus-
ter is fixed, while the number of clusters goes to infinity.

This assumption may not be appropriate for clustering in long panels,
where the number of time periods goes to infinity. Hansen (2007a) derived
asymptotic results for the standard one-way cluster-robust variance matrix
estimator for panel data under various assumptions. We consider a balanced
panel of N individuals over T periods, so there are NT observations in N
clusters with T observations per cluster. When N → ∞ with T fixed (a short
panel), as we have assumed above, the rate of convergence for the OLS
estimator �̂ is

√
N. When both N → ∞ and T → ∞ (a long panel with

N∗ → ∞), the rate of convergence of �̂ is
√

N if there is no mixing (his The-
orem 2) and

√
NT if there is mixing (his Theorem 3). By mixing we mean

that the correlation becomes damped as observations become further apart
in time.

As illustrated in Subsection 1.2.3, if the within-cluster error correlation of
the error diminishes as errors are further apart in time, then the data has
greater informational content. This is reflected in the rate of convergence
increasing from

√
N (determined by the number of cross-sections) to

√
NT

(determined by the total size of the panel). The latter rate is the rate we expect
if errors were independent within cluster.

While the rates of convergence differ in the two cases, Hansen (2007a)
obtains the same asymptotic variance for the OLS estimator, so formula 1.7
remains valid.

1.3.5 Survey Design with Clustering and Stratification

Clustering routinely arises in complex survey data. Rather than randomly
draw individuals from the population, the survey may be restricted to a ran-
domly selected subset of primary sampling units (such as a geographic area)
followed by selection of people within that geographic area. A common ap-
proach in microeconometrics is to control for the resultant clustering by com-
puting cluster-robust standard errors that control for clustering at the level of
the primary sampling unit, or at a more aggregated level such as state.

The survey methods literature uses methods to control for clustering that
predate the references in this paper. The loss of estimator precision due to
clustering is called the design effect: “The design effect or Deff is the ratio of
the actual variance of a sample to the variance of a simple random sample
of the same number of elements”(Kish 1965, p. 258). Kish and Frankel (1974)
give the variance inflation formula 1.4 assuming equicorrelated errors in the
non-regression case of estimation of the mean. Pfeffermann and Nathan (1981)
consider the more general regression case.
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The survey methods literature additionally controls for another feature of
survey data – stratification. More precise statistical inference is possible after
stratification. For the linear regression model, survey methods that do so are
well-established and are incorporated in specialized software as well as in
some broad-based packages such as Stata.

Bhattacharya (2005) provides a comprehensive treatment in a GMM frame-
work. He finds that accounting for stratification tends to reduce estimated
standard errors, and that this effect can be meaningfully large. In his empirical
examples, the stratification effect is largest when estimating (unconditional)
means and Lorenz shares, and much smaller when estimating conditional
means via regression.

The current common approach of microeconometrics studies is to ignore
the (beneficial) effects of stratification. In so doing there will be some over-
estimation of estimator standard errors.

1.4 Inference with Few Clusters

Cluster-robust inference asymptotics are based on G → ∞. Often, however,
cluster-robust inference is desired but there are only a few clusters. For ex-
ample, clustering may be at the regional level but there are few regions (e.g.,
Canada has only 10 provinces). Then several different finite-sample adjust-
ments have been proposed.

1.4.1 Finite-Sample Adjusted Standard Errors

Finite-sample adjustments replace ûg in formula 1.7 with a modified residual
ũg . The simplest is ũg = √

G/(G − 1)ûg , or the modification of this given in
formula 1.8. Kauermann and Carroll (2001) and Bell and McCaffrey (2002)
use ũ∗

g = [INg − Hgg]−1/2ûg , where Hgg = Xg(X′X)−1X′
g . This transformed

residual leads to E[V̂[̂�]] = V[̂�] in the special case that �g = E[ugu′
g] =

�2I. Bell and McCaffrey (2002) also consider use of ũ+
g = √

G/(G − 1)[INg −
Hgg]−1ûg , which can be shown to equal the (clustered) jackknife estimate of the
variance of the OLS estimator. These adjustments are analogs of the HC2 and
HC3 measures of MacKinnon and White (1985) proposed for heteroskedastic-
robust standard errors in the nonclustered case.

Angrist and Lavy (2009) found that using ũ+
g rather than ũg increased

cluster-robust standard errors by 10–50% in an application with G = 30
to 40.

Kauermann and Carroll (2001), Bell and McCaffrey (2002), Mancl and
DeRouen (2001), and McCaffrey, Bell, and Botts (2001) also consider the case
where �g �= �2I is of known functional form, and present extension to gen-
eralized linear models.
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1.4.2 Finite-Sample Wald Tests

For a two-sided test of H0 : � j = �0
j against Ha : � j �= �0

j , where � j is a
scalar component of �, the standard procedure is to use Wald test statistic
w = (�̂ j − �0

j )/s�̂ j , where s�̂ j is the square root of the appropriate diagonal
entry in V̂[̂�]. This “t”test statistic is asymptotically normal under H0 as G →
∞, and we reject H0 at significance level 0.05 if |w| > 1.960.

With few clusters, however, the asymptotic normal distribution can provide
a poor approximation, even if an unbiased variance matrix estimator is used
in calculating s�̂ j . The situation is a little unusual. In a pure time series or pure
cross-section setting with few observations, say N = 10, � j is likely to be very
imprecisely estimated so that statistical inference is not worth pursuing. By
contrast, in a clustered setting we may have N sufficiently large that � j is
reasonably precisely estimated, but G is so small that the asymptotic normal
approximation is a very poor one.

We present two possible approaches: basing inference on the T distribution
with degrees of freedom determined by the cluster, and using a cluster boot-
strap with asymptotic refinement. Note that feasible GLS based on a correctly
specified model of the clustering, see Section 1.6, will not suffer from this
problem.

1.4.3 T Distribution for Inference

The simplest small-sample correction for the Wald statistic is to use a T distri-
bution, rather than the standard normal. As we outline below in some cases
the TG−L distribution might be used, where L is the number of regressors that
are invariant within cluster. Some packages for some commands do use the
T distribution. For example, Stata uses G − 1 degrees of freedom for t-tests
and F -tests based on cluster-robust standard errors.

Such adjustments can make quite a difference. For example, with G = 10 for
a two-sided test at level 0.05 the critical value for T9 is 2.262 rather than 1.960,
and if w = 1.960 the p-value based on T9 is 0.082 rather than 0.05. In Monte
Carlo simulations by Cameron, Gelbach, and Miller (2008) this technique
works reasonably well. At the minimum one should use the T distribution
with G − 1 degrees of freedom, say, rather than the standard normal.

Donald and Lang (2007) provide a rationale for using the TG−L distribution.
If clusters are balanced and all regressors are invariant within cluster then the
OLS estimator in the model yig = x′

g� + uig is equivalent to OLS estimation
in the grouped model ȳg = x′

g� + ūg . If ūg is i.i.d. normally distributed then
the Wald statistic is TG−L distributed, where V̂[̂�] = s2(X′X)−1 and s2 = (G −
L)−1 ∑

g
̂̄ug

2. Note that ūg is i.i.d. normal in the random effects model if the
error components are i.i.d. normal.

Donald and Lang (2007) extend this approach to additionally include re-
gressors zig that vary within clusters, and allow for unbalanced clusters. They
assume a random effects model with normal i.i.d. errors. Then feasible GLS



 

P1: Gopal Joshi

November 3, 2010 16:30 C7035 C7035˙C001

12 Handbook of Empirical Economics and Finance

estimation of � in the model

yig = x′
g� + z′

ig� + �s + εis (1.10)

is equivalent to the following two-step procedure. First do OLS estimation
in the model yig = �g + z′

ig� + εig , where �g is treated as a cluster-specific
fixed effect. Then do feasible GLS (FGLS) of ȳg − z̄′

g�̂ on xg . Donald and Lang
(2007) give various conditions under which the resulting Wald statistic based
on �̂ j is TG−L distributed. These conditions require that if zig is a regressor
then z̄g in the limit is constant over g, unless Ng → ∞. Usually L = 2, as the
only regressors that do not vary within clusters are an intercept and a scalar
regressor xg .

Wooldridge (2006) presents an expansive exposition of the Donald and
Lang approach. Additionally, Wooldridge proposes an alternative approach
based on minimum distance estimation. He assumes that �g in yig = �g+z′

ig�+
εig can be adequately explained by xg and at the second step uses minimum
chi-square methods to estimate � in �̂g = �+x′

g�. This provides estimates of �
that are asymptotically normal as Ng → ∞ (rather than G → ∞). Wooldridge
argues that this leads to less conservative statistical inference. The 	2 statistic
from the minimum distance method can be used as a test of the assumption
that the �g do not depend in part on cluster-specific random effects. If this test
fails, the researcher can then use the Donald and Lang approach, and use a T
distribution for inference.

Bester, Conley, and Hansen (2009) give conditions under which the t-test
statistic based on formula 1.7 is

√
G/(G − 1) times TG−1 distributed. Thus

using ũg = √
G/(G − 1)ûg yields a TG−1 distributed statistic. Their result is one

that assumes G is fixed while Ng → ∞; the within group correlation satisfies
a mixing condition, as is the case for time series and spatial correlation; and
homogeneity assumptions are satisfied including equality of plim 1

Ng
X′

gXg for
all g.

An alternate approach for correct inference with few clusters is presented by
Ibragimov and Muller (2010). Their method is best suited for settings where
model identification, and central limit theorems, can be applied separately
to observations in each cluster. They propose separate estimation of the key
parameter within each group. Each group’s estimate is then a draw from a
normal distribution with mean around the truth, though perhaps with sep-
arate variance for each group. The separate estimates are averaged, divided
by the sample standard deviation of these estimates, and the test statistic is
compared against critical values from a T distribution. This approach has the
strength of offering correct inference even with few clusters. A limitation is
that it requires identification using only within-group variation, so that the
group estimates are independent of one another. For example, if state-year
data yst are used and the state is the cluster unit, then the regressors cannot
use any regressor zt such as a time dummy that varies over time but not
states.
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1.4.4 Cluster Bootstrap with Asymptotic Refinement

A cluster bootstrap with asymptotic refinement can lead to improved finite-
sample inference.

For inference based on G → ∞, a two-sided Wald test of nominal size �
can be shown to have true size �+ O(G−1) when the usual asymptotic normal
approximation is used. If instead an appropriate bootstrap with asymptotic re-
finement is used, the true size is �+O(G−3/2). This is closer to the desired � for
large G, and hopefully also for small G. For a one-sided test or a nonsymmetric
two-sided test the rates are instead, respectively, �+O(G−1/2) and �+O(G−1).

Such asymptotic refinement can be achieved by bootstrapping a statistic
that is asymptotically pivotal, meaning the asymptotic distribution does not
depend on any unknown parameters. For this reason the Wald t-statistic w
is bootstrapped, rather than the estimator �̂ j whose distribution depends on
V[̂� j ] which needs to be estimated. The pairs cluster bootstrap procedure
does B iterations where at the bth iteration: (1) form G clusters {(y∗

1, X∗
1), . . . ,

(y∗
G, X∗

G)} by resampling with replacement G times from the original sample
of clusters; (2) do OLS estimation with this resample and calculate the Wald
test statistic w∗

b = (�̂
∗
j,b − �̂ j )/s∗

�̂ j,b
where s�̂

∗
j,b

is the cluster-robust standard

error of �̂
∗
j,b , and �̂ j is the OLS estimate of � j from the original sample. Then

reject H0 at level � if and only if the original sample Wald statistic w is such that
w < w∗

[�/2] or w > w∗
[1−�/2], where w∗

[q ] denotes the q th quantile of w∗
1 , . . . , w∗

B .
Cameron, Gelbach, and Miller (2008) provide an extensive discussion of

this and related bootstraps. If there are regressors that contain few values
(such as dummy variables), and if there are few clusters, then it is better to
use an alternative design-based bootstrap that additionally conditions on the
regressors, such as a cluster Wild bootstrap. Even then bootstrap methods,
unlike the method of Donald and Lang, will not be appropriate when there
are very few groups, such as G = 2.

1.4.5 Few Treated Groups

Even when G is sufficiently large, problems arise if most of the variation in the
regressor is concentrated in just a few clusters. This occurs if the key regressor
is a cluster-specific binary treatment dummy and there are few treated groups.

Conley and Taber (2010) examine a differences-in-differences (DiD) model
in which there are few treated groups and an increasing number of control
groups. If there are group-time random effects, then the DiD model is incon-
sistent because the treated groups random effects are not averaged away. If
the random effects are normally distributed, then the model of Donald and
Lang (2007) applies and inference can use a T distribution based on the num-
ber of treated groups. If the group-time shocks are not random, then the T
distribution may be a poor approximation. Conley and Taber (2010) then pro-
pose a novel method that uses the distribution of the untreated groups to
perform inference on the treatment parameter.
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1.5 Multi-Way Clustering

Regression model errors can be clustered in more than one way. For example,
they might be correlated across time within a state, and across states within
a time period. When the groups are nested (e.g., households within states),
one clusters on the more aggregate group; see Subsection 1.3.2. But when
they are non-nested, traditional cluster inference can only deal with one of
the dimensions.

In some applications it is possible to include sufficient regressors to elim-
inate error correlation in all but one dimension, and then do cluster-robust
inference for that remaining dimension. A leading example is that in a state-
year panel of individuals (with dependent variable yist) there may be clus-
tering both within years and within states. If the within-year clustering is
due to shocks that are the same across all individuals in a given year, then
including year fixed effects as regressors will absorb within-year clustering
and inference then need only control for clustering on state.

When this is not possible, the one-way cluster robust variance can be ex-
tended to multi-way clustering.

1.5.1 Multi-Way Cluster-Robust Inference

The cluster-robust estimate of V[̂�] defined in formulas 1.6 and 1.7 can be gen-
eralized to clustering in multiple dimensions. Regular one-way clustering is
based on the assumption that E[ui u j | xi , x j ] = 0, unless observations i and j
are in the same cluster. Then formula 1.7 sets B̂ = ∑N

i=1
∑N

j=1 xi x′
j ûi û j 1[i, j in

same cluster], where ûi = yi − x′
i �̂ and the indicator function 1[A] equals 1 if

event A occurs and 0 otherwise. In multi-way clustering, the key assumption
is that E[ui u j |xi , x j ] = 0, unless observations i and j share any cluster dimen-
sion. Then the multi-way cluster robust estimate of V[̂�] replaces formula 1.7
with B̂ = ∑N

i=1
∑N

j=1 xi x′
j ûi û j 1[i, j share any cluster].

For two-way clustering this robust variance estimator is easy to implement
given software that computes the usual one-way cluster-robust estimate. We
obtain three different cluster-robust “variance” matrices for the estimator by
one-way clustering in, respectively, the first dimension, the second dimen-
sion, and by the intersection of the first and second dimensions. Then add the
first two variance matrices and, to account for double counting, subtract the
third. Thus,

V̂two-way[̂�] = V̂1[̂�] + V̂2[̂�] − V̂1∩2[̂�], (1.11)

where the three component variance estimates are computed using formu-
las 1.6 and 1.7 for the three different ways of clustering. Similar methods for
additional dimensions, such as three-way clustering, are detailed in Cameron,
Gelbach, and Miller (2010).
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This method relies on asymptotics that are in the number of clusters of
the dimension with the fewest number. This method is thus most appro-
priate when each dimension has many clusters. Theory for two-way cluster
robust estimates of the variance matrix is presented in Cameron, Gelbach, and
Miller (2006, 2010), Miglioretti and Heagerty (2006), and Thompson (2006).
Early empirical applications that independently proposed this method in-
clude Acemoglu and Pischke (2003) and Fafchamps and Gubert (2007).

1.5.2 Spatial Correlation

The multi-way robust clustering estimator is closely related to the field of time-
series and spatial heteroskedasticity and autocorrelation variance estimation.

In general B̂ in formula 1.7 has the form
∑

i
∑

j w(i, j)xi x′
j ûi û j . For multi-

way clustering the weight w(i, j) = 1 for observations who share a cluster, and
w(i, j) = 0 otherwise. In White and Domowitz (1984), the weight w(i, j) = 1
for observations “close” in time to one another, and w(i, j) = 0 for other
observations. Conley (1999) considers the case where observations have spa-
tial locations, and has weights w(i, j) decaying to 0 as the distance between
observations grows.

A distinguishing feature between these papers and multi-way clustering is
that White and Domowitz (1984) and Conley (1999) use mixing conditions (to
ensure decay of dependence) as observations grow apart in time or distance.
These conditions are not applicable to clustering due to common shocks. In-
stead the multi-way robust estimator relies on independence of observations
that do not share any clusters in common.

There are several variations to the cluster-robust and spatial or time-series
HAC estimators, some of which can be thought of as hybrids of these
concepts.

The spatial estimator of Driscoll and Kraay (1998) treats each time period as
a cluster, additionally allows observations in different time periods to be cor-
related for a finite time difference, and assumes T → ∞. The Driscoll–Kraay
estimator can be thought of as using weight w(i, j) = 1 − D(i, j)/(Dmax + 1),
where D(i, j) is the time distance between observations i and j , and Dmax is
the maximum time separation allowed to have correlation.

An estimator proposed by Thompson (2006) allows for across-cluster (in
his example firm) correlation for observations close in time in addition to
within-cluster correlation at any time separation. The Thompson estimator
can be thought of as using w(i, j) = 1[i, j share a firm, or D(i, j) ≤ Dmax]. It
seems that other variations are likely possible.

Foote (2007) contrasts the two-way cluster-robust and these other vari-
ance matrix estimators in the context of a macroeconomics example. Petersen
(2009) contrasts various methods for panel data on financial firms, where
there is concern about both within firm correlation (over time) and across
firm correlation due to common shocks.
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1.6 Feasible GLS

When clustering is present and a correct model for the error correlation is
specified, the feasible GLS estimator is more efficient than OLS. Furthermore,
in many situations one can obtain a cluster-robust version of the standard
errors for the FGLS estimator, to guard against misspecification of model
for the error correlation. Many applied studies nonetheless use the OLS
estimator, despite the potential expense of efficiency loss in estimation.

1.6.1 FGLS and Cluster-Robust Inference

Suppose we specify a model for �g = E[ugu′
g|Xg], such as within-cluster

equicorrelation. Then the GLS estimator is (X′�−1X)−1X′�−1y, where � =
Diag[�g]. Given a consistent estimate �̂ of �, the feasible GLS estimator of
� is

�̂FGLS =
(

G∑
g=1

X′
g�̂

−1
g Xg

)−1 G∑
g=1

X′
g�̂

−1
g yg. (1.12)

The default estimate of the variance matrix of the FGLS estimator,
(
X′�̂−1X

)−1
,

is correct under the restrictive assumption that E[ugu′
g|Xg] = �g .

The cluster-robust estimate of the asymptotic variance matrix of the FGLS
estimator is

V̂[̂�FGLS] = (
X′�̂−1X

)−1

(
G∑

g=1

X′
g�̂

−1
g ûgû′

g�̂
−1
g Xg

) (
X′�̂−1X

)−1
, (1.13)

where ûg = yg − Xg�̂FGLS. This estimator requires that ug and uh are uncorre-
lated, for g �= h, but permits E[ugu′

g|Xg] �= �g . In that case the FGLS estimator
is no longer guaranteed to be more efficient than the OLS estimator, but it
would be a poor choice of model for �g that led to FGLS being less efficient.

Not all econometrics packages compute this cluster-robust estimate. In that
case one can use a pairs cluster bootstrap (without asymptotic refinement).
Specifically B times form G clusters {(y∗

1, X∗
1), . . . , (y∗

G, X∗
G)} by resampling

with replacement G times from the original sample of clusters, each time
compute the FGLS estimator, and then compute the variance of the B FGLS
estimates �̂1, . . . , �̂B as V̂boot[̂�] = (B − 1)−1 ∑B

b=1(�̂b − �̂)(�̂b − �̂)′. Care is
needed, however, if the model includes cluster-specific fixed effects; see, for
example, Cameron and Trivedi (2009, p. 421).

1.6.2 Efficiency Gains of Feasible GLS

Given a correct model for the within-cluster correlation of the error, such as
equicorrelation, the feasible GLS estimator is more efficient than OLS. The
efficiency gains of FGLS need not necessarily be great. For example, if the
within-cluster correlation of all regressors is unity (so xig = xg) and ūg defined
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in Subsection 1.2.3 is homoskedastic, then FGLS is equivalent to OLS so there
is no gain to FGLS.

For equicorrelated errors and general X, Scott and Holt (1982) provide an
upper bound to the maximum proportionate efficiency loss of OLS compared
to the variance of the FGLS estimator of 1/[1 + 4(1−�u)[1+(Nmax−1)�u

(Nmax×�u)2 ], Nmax =
max{N1, . . . , NG}. This upper bound is increasing in the error correlation �u

and the maximum cluster size Nmax. For low �u the maximal efficiency gain
can be low. For example, Scott and Holt (1982) note that for �u = .05 and
Nmax = 20 there is at most a 12% efficiency loss of OLS compared to FGLS.
But for �u = 0.2 and Nmax = 50 the efficiency loss could be as much as 74%,
though this depends on the nature of X.

1.6.3 Random Effects Model

The one-way random effects (RE) model is given by formula 1.1 with uig =
�g+εig , where �g and εig are i.i.d. error components; see Subsection 1.2.2. Some
algebra shows that the FGLS estimator in formula 1.12 can be computed by
OLS estimation of (yig −̂ 
g ȳi ) on (xig −̂ 
g x̄i ), wherê 
g = 1− �̂ε/

√
�̂2

ε + Ng�̂2
�.

Applying the cluster-robust variance matrix formula 1.7 for OLS in this trans-
formed model yields formula 1.13 for the FGLS estimator.

The RE model can be extended to multi-way clustering, though FGLS es-
timation is then more complicated. In the two-way case, yigh = x′

igh� + �g +
�h + εigh . For example, Moulton (1986) considered clustering due to grouping
of regressors (schooling, age, and weeks worked) in a log earnings regression.
In his model he allowed for a common random shock for each year of school-
ing, for each year of age, and for each number of weeks worked. Davis (2002)
modeled film attendance data clustered by film, theater, and time. Cameron
and Golotvina (2005) modeled trade between country pairs. These multi-way
papers compute the variance matrix assuming � is correctly specified.

1.6.4 Hierarchical Linear Models

The one-way random effects model can be viewed as permitting the inter-
cept to vary randomly across clusters. The hierarchical linear model (HLM)
additionally permits the slope coefficients to vary. Specifically

yig = x′
ig�g + uig, (1.14)

where the first component of xig is an intercept. A concrete example is to
consider data on students within schools. Then yig is an outcome measure
such as test score for the ith student in the gth school. In a two-level model
the kth component of �g is modeled as �kg = w′

kg�k + vkg , where wkg is a
vector of school characteristics. Then stacking over all K components of � we
have

�g = Wg� + v j , (1.15)

where Wg = Diag[wkg] and usually the first component of wkg is an intercept.
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The random effects model is the special case �g = (�1g, �2g), where �1g =
1×�1 +v1g and �kg = �k +0 for k > 1, so v1g is the random effects model’s �g .
The HLM model additionally allows for random slopes �2g that may or may
not vary with level-two observables wkg . Further levels are possible, such as
schools nested in school districts.

The HLM model can be re-expressed as a mixed linear model, since substi-
tuting formula 1.15 into formula 1.14 yields

yig = (x′
igWg)� + x′

igvg + uig. (1.16)

The goal is to estimate the regression parameter � and the variances and
covariances of the errors uig and vg . Estimation is by maximum likelihood
assuming the errors vg and uig are normally distributed. Note that the pooled
OLS estimator of � is consistent but is less efficient.

HLM programs assume that formula 1.15 correctly specifies the within-
cluster correlation. One can instead robustify the standard errors by using
formulas analogous to formula 1.13, or by the cluster bootstrap.

1.6.5 Serially Correlated Errors Models for Panel Data

If Ng is small, the clusters are balanced, and it is assumed that �g is the same
for all g, say �g = �, then the FGLS estimator in formula 1.12 can be used
without need to specify a model for �. Instead we can let �̂ have i j th entry
G−1 ∑G

g=1 ûigû jg , where ûig are the residuals from initial OLS estimation.
This procedure was proposed for short panels by Kiefer (1980). It is appro-

priate in this context under the assumption that variances and autocovari-
ances of the errors are constant across individuals. While this assumption is
restrictive, it is less restrictive than, for example, the AR(1) error assumption
given in Subsection 1.2.3.

In practice two complications can arise with panel data. First, there are
T(T − 1)/2 off-diagonal elements to estimate and this number can be large
relative to the number of observations NT . Second, if an individual-specific
fixed effects panel model is estimated, then the fixed effects lead to an inciden-
tal parameters bias in estimating the off-diagonal covariances. This is the case
for differences-in-differences models, yet FGLS estimation is desirable as it is
more efficient than OLS. Hausman and Kuersteiner (2008) present fixes for
both complications, including adjustment to Wald test critical values by using
a higher-order Edgeworth expansion that takes account of the uncertainty in
estimating the within-state covariance of the errors.

A more commonly used model specifies an AR(p) model for the errors.
This has the advantage over the preceding method of having many fewer
parameters to estimate in �, though it is a more restrictive model. Of course,
one can robustify using formula 1.13. If fixed effects are present, however,
then there is again a bias (of order N−1

g ) in estimation of the AR(p) coefficients
due to the presence of fixed effects. Hansen (2007b) obtains bias-corrected
estimates of the AR(p) coefficients and uses these in FGLS estimation.
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Other models for the errors have also been proposed. For example, if clus-
ters are large, we can allow correlation parameters to vary across clusters.

1.7 Nonlinear and Instrumental Variables Estimators

Relatively few econometrics papers consider extension of the complications
discussed in this paper to nonlinear models; a notable exception is Wooldridge
(2006).

1.7.1 Population-Averaged Models

The simplest approach to clustering in nonlinear models is to estimate the
same model as would be estimated in the absence of clustering, but then base
inference on cluster-robust standard errors that control for any clustering.
This approach requires the assumption that the estimator remains consistent
in the presence of clustering.

For commonly used estimators that rely on correct specification of the con-
ditional mean, such as logit, probit, and Poisson, one continues to assume
that E[yig | xig] is correctly specified. The model is estimated ignoring any
clustering, but then sandwich standard errors that control for clustering are
computed. This pooled approach is called a population-averaged approach
because rather than introduce a cluster effect �g and model E[yig|xig, �g], see
Subsection 1.7.2, we directly model E[yig | xig] = E�g [ E[yig | xig, �g]] so that �g

has been averaged out.
This essentially extends pooled OLS to, for example, pooled probit. Effi-

ciency gains analogous to feasible GLS are possible for nonlinear models if one
additionally specifies a reasonable model for the within-cluster correlation.

The generalized estimating equations (GEE) approach, due to Liang and
Zeger (1986), introduces within-cluster correlation into the class of general-
ized linear models (GLM). A conditional mean function is specified, with
E[yig | xig] = m(x′

ig�), so that for the gth cluster

E[yg|Xg] = mg(�), (1.17)

where mg(�) = [m(x′
1g�), . . . , m(x′

Ng g�)]′ and Xg = [x1g, . . . , xNg g]′. A model
for the variances and covariances is also specified. First given the variance
model V[yig | xig] = �h(m(x′

ig�) where � is an additional scale parameter to
estimate, we form Hg(�) = Diag[�h(m(x′

ig�)], a diagonal matrix with the
variances as entries. Second, a correlation matrix R(�) is specified with i j th
entry Cor[yig, yjg | Xg], where � are additional parameters to estimate. Then
the within-cluster covariance matrix is

�g = V[yg | Xg] = Hg(�)1/2R(�)Hg(�)1/2. (1.18)
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R(�) = I if there is no within-cluster correlation, and R(�) = R(�) has diagonal
entries 1 and off diagonal entries � in the case of equicorrelation. The resulting
GEE estimator �̂GEE solves

G∑
g=1

∂m′
g(�)

∂�
�̂−1

g (yg − mg(�)) = 0, (1.19)

where �̂g equals �g in formula 1.18 with R(�) replaced by R(�̂) where �̂ is
consistent for �. The cluster-robust estimate of the asymptotic variance matrix
of the GEE estimator is

V̂[̂�GEE] = (
D̂′�̂−1D̂

)−1

(
G∑

g=1

D′
g�̂

−1
g ûgû′

g�̂
−1
g Dg

) (
D′�̂−1D

)−1
, (1.20)

where D̂g = ∂m′
g(�)/∂�|̂

�
, D̂ = [D̂1, . . . , D̂G]′, ûg = yg − mg(�̂), and now

�̂g = Hg(�̂)1/2R(�̂)Hg(�̂)1/2. The asymptotic theory requires that G → ∞.
The result formula 1.20 is a direct analog of the cluster-robust estimate of

the variance matrix for FGLS. Consistency of the GEE estimator requires that
formula 1.17 holds, i.e., correct specification of the conditional mean (even
in the presence of clustering). The variance matrix defined in formula 1.18
permits heteroskedasticity and correlation. It is called a “working” variance
matrix as subsequent inference based on formula 1.20 is robust to misspeci-
fication of formula 1.18. If formula 1.18 is assumed to be correctly specified
then the asymptotic variance matrix is more simply (D̂′�̂−1D̂)−1.

For likelihood-based models outside the GLM class, a common procedure is
to perform ML estimation under the assumption of independence over i and g,
and then obtain cluster-robust standard errors that control for within-cluster
correlation. Let f (yig | xig, �) denote the density, sig(�) = ∂ ln f (yig | xig, �)/∂�,
and sg(�) = ∑

i sig(�). Then the MLE of � solves
∑

g
∑

i sig(�) = ∑
g sg(�) = 0.

A cluster-robust estimate of the variance matrix is

V̂[̂�ML] =
(∑

g

∂sg(�)′/∂�
∣∣̂
�

)−1 (∑
g

sg (̂�)sg (̂�)′
) (∑

g

∂sg(�)/∂�′∣∣̂
�

)−1

.

(1.21)
This method generally requires that f (yig | xig, �) is correctly specified even
in the presence of clustering.

In the case of a (mis)specified density that is in the linear exponential fam-
ily, as in GLM estimation, the MLE retains its consistency under the weaker
assumption that the conditional mean E[yig | xig, �] is correctly specified. In
that case the GEE estimator defined in formula 1.19 additionally permits in-
corporation of a model for the correlation induced by the clustering.

1.7.2 Cluster-Specific Effects Models

An alternative approach to controlling for clustering is to introduce a group-
specific effect.
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For conditional mean models the population-averaged assumption that
E[yig | xig] = m(x′

ig�) is replaced by

E[yig | xig, �g] = g(x′
ig� + �g), (1.22)

where �g is not observed. The presence of �g will induce correlation between
yig and yjg , i �= j . Similarly, for parametric models the density specified for
a single observation is f (yig | xig, �, �g) rather than the population-averaged
f (yig | xig, �).

In a fixed effects model the �g are parameters to be estimated. If asymp-
totics are that Ng is fixed while G → ∞ then there is an incidental parameters
problem, as there are Ng parameters �1, . . . , �G to estimate and G → ∞. In
general, this contaminates estimation of � so that �̂ is a inconsistent. Notable
exceptions where it is still possible to consistently estimate � are the linear
regression model, the logit model, the Poisson model, and a nonlinear regres-
sion model with additive error (so formula 1.22 is replaced by E[yig | xig, �g] =
g(x′

ig�)+�g). For these models, aside from the logit, one can additionally com-
pute cluster-robust standard errors after fixed effects estimation.

We focus on the more commonly used random effects model that specifies
�g to have density h(�g | 
) and consider estimation of likelihood-based mod-
els. Conditional on �g , the joint density for the gth cluster is f (y1g, . . . , | xNg g, �,

�g) = ∏Ng

i=1 f (yig | xig, �, �g). We then integrate out �g to obtain the likelihood
function

L(�, 
 | y, X) =
G∏

g=1

{∫ (
Ng∏

i=1

f (yig | xig, �, �g)

)
dh(�g | 
)

}
. (1.23)

In some special nonlinear models, such as a Poisson model with �g being
gamma distributed, it is possible to obtain a closed-form solution for the
integral. More generally this is not the case, but numerical methods work
well as formula 1.23 is just a one-dimensional integral. The usual assumption
is that �g is distributed as N [0, �2

�]. The MLE is very fragile and failure of any
assumption in a nonlinear model leads to inconsistent estimation of �.

The population-averaged and random effects models differ for nonlinear
models, so that � is not comparable across the models. But the resulting av-
erage marginal effects, that integrate out �g in the case of a random effects
model, may be similar. A leading example is the probit model. Then
E[yig | xig, �g] = �(x′

ig�+�g), where �(·) is the standard normal c.d.f. Letting
f (�g) denote the N [0, �2

�] density for �g , we obtain E[yig | xig] = ∫
�(x′

ig� +
�g) f (�g)d�g = �(x′

ig�/
√

1 + �2
�); see Wooldridge (2002, p. 470). This dif-

fers from E[yig | xig] = �(x′
ig�) for the pooled or population-averaged probit

model. The difference is the scale factor
√

1 + �2
�. However, the marginal ef-

fects are similarly rescaled, since ∂ Pr[yig = 1 | xig]/∂xig = �(x′
ig�/

√
1 + �2

�) ×
�/

√
1 + �2

�, so in this case PA probit and random effects probit will yield sim-
ilar estimates of the average marginal effects; see Wooldridge (2002, 2006).
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1.7.3 Instrumental Variables

The cluster-robust formula is easily adapted to instrumental variables esti-
mation. It is assumed that there exist instruments zig such that uig = yig −x′

ig�
satisfies E[uig|zig] = 0. If there is within-cluster correlation we assume that
this condition still holds, but now Cov[uig, u jg | zig, z jg] �= 0.

Shore-Sheppard (1996) examines the impact of equicorrelated instruments
and group-specific shocks to the errors. Her model is similar to that of
Moulton, applied to an IV setting. She shows that IV estimation that does
not model the correlation will understate the standard errors, and proposes
either cluster-robust standard errors or FGLS.

Hoxby and Paserman (1998) examine the validity of overidentification
(OID) tests with equicorrelated instruments. They show that not accounting
for within-group correlation can lead to mistaken OID tests, and they give
a cluster-robust OID test statistic. This is the GMM criterion function with a
weighting matrix based on cluster summation.

A recent series of developments in applied econometrics deals with the
complication of weak instruments that lead to poor finite-sample perfor-
mance of inference based on asymptotic theory, even when sample sizes are
quite large; see for example the survey by Andrews and Stock (2007), and
Cameron and Trivedi (2005, 2009). The literature considers only the nonclus-
tered case, but the problem is clearly relevant also for cluster-robust inference.
Most papers consider only i.i.d. errors. An exception is Chernozhukov and
Hansen (2008) who suggest a method based on testing the significance of the
instruments in the reduced form that is heteroskedastic-robust. Their tests
are directly amenable to adjustments that allow for clustering; see Finlay and
Magnusson (2009).

1.7.4 GMM

Finally we consider generalized methods of moments (GMM) estimation.
Suppose that we combine moment conditions for the gth cluster, so

E[hg(wg, �)] = 0, where wg denotes all variables in the cluster. Then the GMM
estimator �̂GMM with weighting matrix W minimizes (

∑
g hg)′W(

∑
g hg),

where hg = hg(wg, �). Using standard results in, for example, Cameron and
Trivedi (2005, p. 175) or Wooldridge (2002, p. 423), the variance matrix esti-
mate is

V̂[̂�GMM] = (Â′WÂ)−1Â′WB̂WÂ(Â′WÂ)−1

where Â = ∑
g ∂hg/∂�′ |̂� and a cluster-robust variance matrix estimate uses

B̂ = ∑
g ĥgĥ′

g . This assumes independence across clusters and G → ∞. Bhat-
tacharya (2005) considers stratification in addition to clustering for the GMM
estimator.

Again a key assumption is that the estimator remains consistent even in the
presence of clustering. For GMM this means that we need to assume that the
moment condition holds true even when there is within-cluster correlation.
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The reasonableness of this assumption will vary with the particular model
and application at hand.

1.8 Empirical Example

To illustrate some empirical issues related to clustering, we present an ap-
plication based on a simplified version of the model in Hersch (1998), who
examined the relationship between wages and job injury rates. We thank
Joni Hersch for sharing her data with us. Job injury rates are observed only
at occupation levels and industry levels, inducing clustering at these levels.
In this application we have individual-level data from the Current Popu-
lation Survey on 5960 male workers working in 362 occupations and 211
industries. For most of our analysis we focus on the occupation injury rate
coefficient. Hersch (1998) investigates the surprising negative sign of this
coefficient.

In column 1 of Table 1.1, we present results from linear regression of log
wages on occupation and industry injury rates, potential experience and its
square, years of schooling, and indicator variables for union, nonwhite, and
three regions. The first three rows show that standard errors of the OLS es-
timate increase as we move from default (row 1) to White heteroskedastic-
robust (row 2) to cluster-robust with clustering on occupation (row 3). A
priori heteroskedastic-robust standard errors may be larger or smaller than
the default. The clustered standard errors are expected to be larger. Using
formula 1.4 suggests inflation factor

√
1 + 1 × 0.169 × (5960/362 − 1) = 1.90,

as the within-cluster correlation of model residuals is 0.169, compared to
an actual inflation of 0.516/0.188 = 2.74. The adjustment mentioned after
formula 1.4 for unequal group size, which here is substantial, yields a larger
inflation factor of 3.77.

Column 2 of Table 1.1 illustrates analysis with few clusters, when analy-
sis is restricted to the 1594 individuals who work in the 10 most common
occupations in the dataset. From rows 1 to 3 the standard errors increase,
due to fewer observations, and the variance inflation factor is larger due to a
larger average group size, as suggested by formula 1.4. Our concern is that
with G = 10 the usual asymptotic theory requires some adjustment. The
Wald two-sided test statistic for a zero coefficient on occupation injury rate
is −2.751/0.994 = 2.77. Rows 4–6 of column 2 report the associated p-value
computed in three ways. First, p = 0.006 using standard normal critical val-
ues (or the T with N − K = 1584 degrees of freedom). Second, p = 0.022
using a T distribution based on G − 1 = 9 degrees of freedom. Third, when
we perform a pairs cluster percentile-T bootstrap, the p-value increases to
0.110. These changes illustrate the importance of adjusting for few clusters in
conducting inference. The large increase in p-value with the bootstrap may
in part be because the first two p-values are based on cluster-robust standard
errors with finite-sample bias; see Subsection 1.4.1. This may also explain why
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TABLE 1.1

Occupation Injury Rate and Log Wages: Impacts of Varying Ways of Dealing
with Clustering

1 2 3
Main 10 Largest Main

Sample Occupations Sample
Linear Linear Probit

OLS (or Probit) coefficient on Occupation
Injury Rate

−2.158 −2.751 −6.978

1 Default (iid) std. error 0.188 0.308 0.626
2 White-robust std. error 0.243 0.320 1.008
3 Cluster-robust std. error (Clustering on

Occupation)
0.516 0.994 1.454

4 P-value based on (3) and Standard
Normal

0.006

5 P-value based on (3) and T(10-1) 0.022
6 P-value based on Percentile-T Pairs Boot-

strap (999 replications)
0.110

7 Two-way (Occupation and Industry) ro-
bust std. error

0.515 0.990 1.516

Random effects Coefficient on Occupa-
tion Injury Rate

−1.652 −2.669 −5.789

8 Default std. error 0.357 1.429 1.106
9 White-robust std. error 0.579 2.058
10 Cluster-robust std. error (Clustering on

Occupation)
0.536 2.148

Number of observations (N) 5960 1594 5960
Number of Clusters (G) 362 10 362
Within-Cluster correlation of errors (rho) 0.207 0.211

Note: Coefficients and standard errors multiplied by 100. Regression covariates include Occupa-
tion Injury rate, Industry Injury rate, Potential experience, Potential experience squared,
Years of schooling, and indicator variables for union, nonwhite, and three regions. Data
from Current Population Survey, as described in Hersch (1998). Std. errs. in rows 9 and 10
are from bootstraps with 400 replications. Probit outcome is wages >= $12/hour.

the random effect (RE) model standard errors in rows 8–10 of column 2 exceed
the OLS cluster-robust standard error in row 3 of column 2.

We next consider multi-way clustering. Since both occupation-level and
industry-level regressors are included, we should compute two-way cluster-
robust standard errors. Comparing row 7 of column 1 to row 3, the standard
error of the occupation injury rate coefficient changes little from 0.516 to
0.515. But there is a big impact for the coefficient of the industry injury rate.
In results, not reported in the table, the standard error of the industry injury
rate coefficient increases from 0.563 when we cluster on only occupation to
1.015 when we cluster on both occupation and industry.

If the clustering within occupations is due to common occupation-specific
shocks, then a RE model may provide more efficient parameter estimates.
From row 8 of column 1 the default RE standard error is 0.357, but if we
cluster on occupation this increases to 0.536 (row 10). For these data there is
apparently no gain compared to OLS (see row 3).
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Finally we consider a nonlinear example, probit regression with the same
data and regressors, except the dependent variable is now a binary outcome
equal to one if the hourly wage exceeds 12 dollars. The results given in column
3 are qualitatively similar to those in column 1. Cluster-robust standard errors
are 2–3 times larger, and two-way cluster robust are slightly larger still. The
parameters � of the random effects probit model are rescalings of those of
the standard probit model, as explained in Subsection 1.7.2. The RE probit
coefficient of −5.789 becomes −5.119 upon rescaling, as �̂g has estimated
variance 0.279. This is smaller than the standard probit coefficient, though
this difference may just reflect noise in estimation.

1.9 Conclusion

Cluster-robust inference is possible in a wide range of settings. The basic
methods were proposed in the 1980s, but are still not yet fully incorporated
into applied econometrics, especially for estimators other than OLS. Useful
references on cluster-robust inference for the practitioner include the surveys
by Wooldridge (2003, 2006), the texts by Wooldridge (2002), Cameron and
Trivedi (2005) and Angrist and Pischke (2009) and, for implementation in
Stata, Nichols and Schaffer (2007) and Cameron and Trivedi (2009).
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2.1 Introduction

The generalized method of moments (GMM) provides a computationally
convenient method for inference on the structural parameters of economic
models. The method has been applied in many areas of economics but it
was in empirical finance that the power of the method was first illustrated.
Hansen (1982) introduced GMM and presented its fundamental statistical
theory. Hansen and Hodrick (1980) and Hansen and Singleton (1982) showed
the potential of the GMM approach to testing economic theories through their
empirical analyzes of, respectively, foreign exchange markets and asset pric-
ing. In such contexts, the cornerstone of GMM inference is a set of conditional
moment restrictions. More generally, GMM is well suited for the test of an
economic theory every time the theory can be encapsulated in the postulated
unpredictability of some error term u(Yt, �) given as a known function of p

29
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unknown parameters � ∈ �⊆R
p and a vector of observed random variables

Yt. Then, the testability of the theory of interest is akin to the testability of a
set of conditional moment restrictions,

Et[u(Yt+1, �)] = 0, (2.1)

where the operator Et[.] denotes the conditional expectation given available
information at time t. Moreover, under the null hypothesis that the theory
summarized by the restrictions (Equation 2.1) is true, these restrictions are
supposed to uniquely identify the true unknown value �0 of the parameters.
Then, GMM considers a set of H instruments zt assumed to belong to the
available information at time t and to summarize the testable implications of
Equation 2.1 by the implied unconditional moment restrictions:

E[�t(�)] = 0 where �t(�) = zt ⊗ u(Yt+1, �). (2.2)

The recent literature on weak instruments (see the seminal work by Stock
and Wright 2000) has stressed that the standard asymptotic theory of GMM
inference may be misleading because of the insufficient correlation between
some instruments zt and some components of the local explanatory variables
of [∂u(Yt+1, �)/∂�]. In this case, some of the moment conditions (Equation 2.2)
are not only zero at �0 but rather flat and close to zero in a neighborhood
of �0.

Many asset pricing applications of GMM focus on the study of a pricing
kernel as provided by some financial theory. This pricing kernel is typically
either a linear function of the parameters of interest, as in linear-beta pricing
models, or a log-linear one as in most of the equilibrium based pricing models
where parameters of interest are preference parameters. In all these examples,
the weak instruments’ problem simply relates to some lack of predictability
of some asset returns from some lagged variables.

Since the seminal work of Stock and Wright (2000), it is common to capture
the impact of the weakness of instruments by a drifting data generating pro-
cess (hereafter DGP) such that the informational content of estimating equa-
tions �T (�) = E[�t(�)] about structural parameters of interest is impaired by
the fact that �T (�) becomes zero for all � when the sample size goes to infinity.
The initial goal of this so-called “weak instruments asymptotics” approach
was to devise inference procedures robust to weak identification in the worst
case scenario, as made formal by Stock and Wright (2000):

�T (�) = �1T (�)√
T

+ �2(�1) with � = [�′
1 �′

2]′ and �2(�1) = 0 ⇔ �1 = �0
1.

(2.3)

The rationale for Equation 2.3 is the following. While some components �1
of � would be identified in a standard way if the other components �2 were
known, the latter ones are so weakly identified that for sample sizes typically
available in practice, no significant increase of accuracy of estimators can
be noticed when the sample size increases: the typical root-T consistency is
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completely erased by the DGP drifting at the same rate through the term
�1T (�)/

√
T . It is then clear that this drifting rate is a worst case scenario,

sensible when robustness to weak identification is the main concern, as it is
the case for popular micro-econometric applications: for instance the study
of Angrist and Krueger (1991) on returns to education.

The purpose of this chapter is somewhat different: taking for granted that
some instruments may be poor, we nevertheless do not give up the efficiency
goal of statistical inference. Even fragile information must be processed op-
timally, for the purpose of both efficient estimation and powerful testing.
This point of view leads us to a couple of modifications with respect to the
traditional weak instruments asymptotics.

First, we consider that the worst case scenario is a possibility but not the
general rule. Typically, we revisit the drifting DGP (Equation 2.3) with a more
general framework like:

�T (�) = �1T (�)
T�

+ �2(�1) with 0 ≤ � ≤ 1/2.

The case � = 1/2 has been the main focus of interest of the weak instruments
literature so far because it accommodates the observed lack of consistency
of some GMM estimators (typically estimators of �2 in the framework of
Equation 2.3) and the implied lack of asymptotic normality of the consistent
estimators (estimators of �1 in the framework of Equation 2.3). We rather set
the focus on an intermediate case, 0 < � < 1/2, which has been dubbed
nearly weak identification by Hahn and Kuersteiner (2002) in the linear case
and Caner (2010) for nonlinear GMM. Standard (strong) identification would
take � = 0. Note also that nearly weak identification is implicitly studied by
several authors who introduce infinitely many instruments: the large number
of instruments partially compensates for the genuine weakness of each of
them individually (see Han and Phillips 2006; Hansen, Hausman, and Newey
2008; Newey and Windmeijer 2009).

However, following our former work in Antoine and Renault (2009, 2010a),
our main contribution is above all to consider that several patterns of iden-
tification may show up simultaneously. This point of view appears espe-
cially relevant for the asset pricing applications described above. Nobody
would pretend that the constant instrument is weak. Therefore, the moment
condition, E[u(Yt+1, �)] = 0, should not display any drifting feature (as it
actually corresponds to � = 0). Even more interestingly, Epstein and Zin
(1991) stress that the pricing equation for the market return is poorly infor-
mative about the difference between the risk aversion coefficient and the in-
verse of the elasticity of substitution. Individual asset returns should be more
informative.

This paves the way for two additional extensions in the framework
(Equation 2.3). First, one may consider, depending on the moment conditions,
different values of the parameter � of drifting DGP. Large values of � would be
assigned to components [zit ×u j (Yt+1, �)] for which either the pricing of asset
j or the lagged value of return i are especially poorly informative. Second,
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there is no such thing as a parameter �2 always poorly identified or parameter
�1 which would be strongly identified if the other parameters �2 were known.
Instead, one must define directions in the parameter space (like the difference
between risk aversion and inverse of elasticity of substitution) that may be
poorly identified by some particular moment restrictions.

This heterogeneity of identification patterns clearly paves the way for the
device of optimal strategies for inferential use of fragile (or poor) information.
In this chapter, we focus on a case where asymptotic efficiency of estimators
is well-defined through the variance of asymptotically normal distributions.
The price to pay for this maintained tool is to assume that the set of mo-
ment conditions that are not genuinely weak (� < 1/2) is sufficient to identify
the true unknown value �0 of the parameters. In this case, normality must
be reconsidered at heterogeneous rates smaller than the standard root-T in
different directions of the parameter space (depending on the strength of
identification about these directions). At least, non-normal asymptotic distri-
butions introduced by situations of partial identification as in Phillips (1989)
and Choi and Phillips (1992) are avoided in our setting. It seems to us that,
by considering the large sample sizes typically available in financial econo-
metrics, working with the maintained assumption of asymptotic normality
of estimators is reasonable; hence, the study of efficiency put forward in this
chapter. However, there is no doubt that some instruments are poorer and
that some directions of the parameter space are less strongly identified. Last
but not least: even though we are less obsessed by robustness to weak iden-
tification in the worst case scenario, we do not want to require from the
practitioner a prior knowledge of the identification schemes. Efficient infer-
ence procedures must be feasible without requiring any prior knowledge
neither of the different rates � of nearly weak identification, nor of the het-
erogeneity of identification patterns in different directions in the parameter
space.

To delimit the focus of this chapter, we put an emphasis on efficient in-
ference. There are actually already a number of surveys that cover the ear-
lier literature on inference robust to weak instruments. For example, Stock,
Wright, and Yogo (2002) set the emphasis on procedures available for de-
tecting and handling weak instruments in the linear instrumental variables
model. More recently, Andrews and Stock (2007) wrote an excellent review,
discussing many issues involved in testing and building confidence sets
robust to the weak instrumental variables problem. Smith (2007) revisited
this review, with a special focus on empirical likelihood-based approaches.
This chapter is organized as follows. Section 2.2 introduces framework and
identification procedure with poor instruments; the consistency of all GMM
estimators is deduced from an empirical process approach. Section 2.3 is
concerned with asymptotic theory and inference. Section 2.4 compares our
approach to others: we specifically discuss the linear instrumental variables
regression model, the (non)equivalence between efficient two-step GMM and
continuously updated GMM and the GMM-score test of Kleibergen (2005).
Section 2.5 concludes. All the proofs are gathered in the appendix.
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2.2 Identification with Poor Instruments

2.2.1 Framework

We consider the true unknown value �0 of the parameter � ∈ � ⊂ R
p de-

fined as the solution of the moment conditions E[�t(�)] = 0 for some known
function �t(.) of size K . Since the seminal work of Stock and Wright (2000),
the weakness of the moment conditions (or instrumental variables) is usually
captured through a drifting DGP such that the informational content of the
estimating equations shrinks toward zero (for all �) while the sample size T
grows to infinity.

More precisely, the population moment conditions obtained from a set of
poor instruments are modeled as a function �T (�) that depends on the sam-
ple size T and becomes zero when it goes to infinity. The statistical infor-
mation about the estimating equations �T (�) is given by the sample mean
�̄T (�) = (1/T)

∑T
t=1 �t(�) and the asymptotic behavior of the empirical pro-

cess
√

T[�̄T (�) − �T (�)].

Assumption 2.1 (Functional CLT)
(i) There exists a sequence of deterministic functions �T such that the empirical process√

T
[
�̄T (�) − �T (�)

]
, for � ∈ �, weakly converges (for the sup-norm on �) toward

a Gaussian process on � with mean zero and covariance S(�).
(ii) There exists a sequence AT of deterministic nonsingular matrices of size K and
a bounded deterministic function c such that

lim
T→∞

sup
�∈�

‖c(�) − AT �T (�)‖ = 0.

The rate of convergence of coefficients of the matrix AT toward infinity char-
acterizes the degree of global identification weakness. Note that we may not
be able to replace �T (�) by the function A−1

T c(�) in the convergence of the
empirical process since

√
T

[
�T (�) − A−1

T c(�)
] =

(
AT√

T

)−1

[AT �T (�) − c(�)],

may not converge toward zero. While genuine weak identification like Stock
and Wright (2000) means that AT = √

T I dK (with I dK identity matrix of
size K ), we rather consider nearly weak identification where some rows of
the matrix AT may go to infinity strictly slower than

√
T . Standard GMM

asymptotic theory based on strong identification would assume AT = I dK

and �T (�) = c(�) for all T . In this case, it would be sufficient to assume
asymptotic normality of

√
T�̄T (�0) at the true value �0 of the parameters

(while �T (�0) = c(�0) = 0). By contrast, as already pointed out by Stock and
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Wright (2000), the asymptotic theory with (nearly) weak identification is more
involved since it assumes a functional central limit theorem uniform on �.
However, this uniformity is not required in the linear case,1 as now illustrated.

Example 2.1 (Linear IV regression)
We consider a structural linear equation: yt = x′

t� + ut for t = 1, · · · , T, where
the p explanatory variables xt may be endogenous. The true unknown value �0

of the structural parameters is defined through K ≥ p instrumental variables zt

uncorrelated with (yt − x′
t�

0). In other words, the estimating equations for standard
IV estimation are

�̄T (�̂T ) = 1
T

Z′(y − X�̂T ) = 0, (2.4)

where X (respectively Z) is the (T, p) (respectively (T, K )) matrix which contains
the available observations of the p explanatory variables (respectively the K instru-
mental variables) and �̂T denotes the standard IV estimator of �. Inference with poor
instruments typically means that the required rank condition is not fulfilled, even
asymptotically:

Plim

[
Z′ X
T

]
may not be of full rank.

Weak identification means that only Plim[ Z′ X√
T

] has full rank, while intermediate
cases with nearly weak identification have been studied by Hahn and Kuersteiner
(2002). The following assumption conveniently nests all the above cases.

Assumption L1 There exists a sequence AT of deterministic nonsingular matrices
of size K such that Plim[AT

Z′ X
T ] = � is full column rank.

While standard strong identification asymptotics assume that the largest absolute
value of all coefficients of the matrix AT , ‖AT‖, is of order O(1), weak identification
means that ‖AT‖ grows at rate

√
T. The following assumption focuses on nearly weak

identification, which ensures consistent IV estimation under standard regularity
conditions as explained below.

Assumption L2 The largest absolute value of all coefficients of the matrix AT is
o(

√
T).

To deduce the consistency of the estimator �̂T , we rewrite Equation (2.4) as follows
and pre-multiply it by AT :

Z′ X
T

(�̂T − �0) + Z′u
T

= 0 ⇒ AT
Z′ X
T

(�̂T − �0) + AT
Z′u
T

= 0. (2.5)

After assuming a central limit theorem for (Z′u/
√

T) and after considering (for
simplicity) that the unknown parameter vector � evolves in a bounded subset of R

p,

1 Note also that uniformity is not required in the linear-in-variable case.
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we get

�(�̂T − �0) = o P (1).

Then, the consistency of �̂T directly follows from the full column rank assumption
on �. Note that uniformity with respect to � does not play any role in the required
central limit theorem since we have

√
T[�̄T (�) − �T (�)] = Z′u√

T
+

√
T

[
Z′ X
T

− E[ztx′
t]
]

(�0 − �)

with

�T (�) = E[ztx′
t](�

0 − �).

Linearity of the moment conditions with respect to unknown parameters allows us
to factorize them out and uniformity is not an issue.

It is worth noting that in the linear example, the central limit theorem has been
used to prove consistency of the IV estimator and not to derive its asymptotic
normal distribution. This nonstandard proof of consistency will be gener-
alized for the nonlinear case in the next subsection, precisely thanks to the
uniformity of the central limit theorem over the parameter space. As far as
asymptotic normality of the estimator is concerned, the key issue is to take
advantage of the asymptotic normality of

√
T�̄T (�0) at the true value �0 of the

parameters (while �T (�0) = c(�0) = 0). The linear example again shows that,
in general, doing so involves additional assumptions about the structure of
the matrix AT . More precisely, we want to stress that when several degrees
of identification (weak, nearly weak, strong) are considered simultaneously,
the above assumptions are not sufficient to derive a meaningful asymptotic
distributional theory. In our setting, it means that the matrix AT is not simply
a scalar matrix �T A with the scalar sequence �T possibly going to infinity but
not faster than

√
T . This setting is in contrast with most of the literature on

weak instruments (see Kleibergen 2005; Caner 2010 among others).

Example 2.1 (Linear IV regression – continued)
To derive the asymptotic distribution of the estimator �̂T , pre-multiplying the esti-
mating equations by the matrix AT may not work. However, for any sequence of
deterministic nonsingular matrices ÃT of size p, we have

Z′ X
T

(�̂T − �0) + Z′u
T

= 0 ⇒ Z′ X
T

ÃT
√

T Ã−1
T (�̂T − �0) = − Z′u√

T
. (2.6)

If [ Z′ X
T ÃT ] converges toward a well-defined matrix with full column rank, a central

limit theorem for (Z′u/
√

T) ensures the asymptotic normality of
√

T Ã−1
T (�̂T − �0).

In general, this condition cannot be deduced from Assumption L1 unless the matrix
AT appropriately commutes with [ Z′ X

T ]. Clearly, this is not an issue if AT is simply a
scalar matrix �T I dK . In case of nearly weak identification (�T = o(

√
T)), it delivers
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asymptotic normality of the estimator at slow rate
√

T/�T while, in case of genuine
weak identification (�T = √

T), consistency is not ensured and asymptotic Cauchy
distributions show up.

In the general case, the key issue is to justify the existence of a sequence of deter-
ministic nonsingular matrices ÃT of size p such that [ Z′ X

T ÃT ] converges toward a
well-defined matrix with full column rank. In the just-identified case (K = p), it
follows directly from Assumption L1 with ÃT = �−1 AT :

Plim

[
Z′ X
T

�−1 AT

]
= Plim

[
Z′ X
T

(
AT

Z′ X
T

)−1

AT

]
= I dp.

In the overidentified case (K > p), it is rather the structure of the matrix AT (and
not only its norm, or largest coefficient) that is relevant. Of course, by Equation 2.5,
we know that

Z′ X
T

√
T

(
�̂T − �0) = − Z′u√

T

is asymptotically normal. However, in case of lack of strong identification, (Z′ X/T)
is not asymptotically full rank and some linear combinations of

√
T(�̂T − �0) may

blow up. To provide a meaningful asymptotic theory for the IV estimator �̂T , the
following condition is required. In the general case, we explain why such a sequence
ÃT always exists and how to construct it (see Theorem 2.3).

Assumption L3 There exists a sequence ÃT of deterministic nonsingular matrices
of size p such that Plim[ Z′ X

T ÃT ] is full column rank.

It is then straightforward to deduce that
√

T Ã−1
T (�̂T − �0) is asymptotically normal.

Hansen, Hausman, and Newey (2008) provide a set of assumptions to derive similar
results in the case of many weak instruments asymptotics. In their setting, consid-
ering a number of instruments growing to infinity can be seen as a way to ensure
Assumption L2, even though weak identification (or ‖AT‖ of order

√
T) is assumed

for any given finite set of instruments.

The above example shows that, in case of (nearly) weak identification,
a relevant asymptotic distributional theory is not directly about the com-
mon sequence

√
T(�̂T − �0) but rather about a well-suited reparametrization

Ã−1
T

√
T(�̂T −�0). Moreover, lack of strong identification means that the matrix

of reparametrization ÃT also involves a rescaling (going to infinity with the
sample size) in order to characterize slower rates of convergence. For sake
of structural interpretation, it is worth disentangling the two issues: first, the
rotation in the parameter space, which is assumed well-defined at the limit
(when T → ∞); second, the rescaling. The convenient mathematical tool is
the singular value decomposition of the matrix AT (see Horn and Johnson
1985, pp.414–416, 425). We know that the nonsingular matrix AT can always
be written as: AT = MT�T N′

T with MT , NT , and �T three square matrices of
size K , MT , and NT orthogonal and �T diagonal with nonzero entries. In our
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context of rates of convergence, we want to see the singular values of the ma-
trix AT (that is the diagonal coefficients of �T ) as positive and, without loss
of generality, ranked in increasing order. If we consider Assumption 2.1(ii)
again, N′

T can intuitively be seen as selecting appropriate linear combinations
of the moment conditions and �T as rescaling appropriately these combina-
tions. On the other hand, MT is related to selecting linear combinations of the
deterministic vector c.

Without loss of generality, we always consider the singular value decompo-
sition AT = MT�T N′

T such that the diagonal matrix sequence �T has positive
diagonal coefficients bounded away from zero and the two sequences of or-
thogonal matrices MT and NT have well-defined limits2 when T → ∞, M
and N, respectively, both orthogonal matrices.

2.2.2 Consistency

In this subsection, we set up a framework where consistency of a GMM esti-
mator is warranted in spite of lack of strong identification. The key is to ensure
that a sufficient subset of the moment conditions is not impaired by genuine
weak identification: in other words, the corresponding rates of convergence
of the singular values of AT are slower than

√
T . As explained above, specific

rates of convergence are actually assigned to appropriate linear combinations
of the moment conditions:

d(�) = M−1c(�) = lim
T

[
�T N′

T �T (�)
]
.

Our maintained identification assumption follows:

Assumption 2.2 (Identification)
(i) The sequence of nonsingular matrices AT writes AT = MT�T N′

T with lim
T

[MT ] =
M, lim

T
[NT ] = N, M, and N orthogonal matrices.

(ii) The sequence of matrices �T is partitioned as �T = [ �̃T 0
0 �̆T

], such that �̃T and

�̆T are two diagonal matrices, respectively, of size K̃ and (K − K̃ ), with3 ‖�̃T‖ =
o(

√
T), ‖�̆T‖ = O(

√
T) and �̆−1

T = o(‖�̃T‖−1).
(iii) The vector d of moment conditions, with d(�) = M−1c(�) = limT [�T N′

T �T (�)],
is partitioned accordingly as d = [ d̃ ′ d̆ ′ ]′ such that �0 is a well-separated zero of the
vectorial function d̃ of size K̃ ≤ p:

∀� > 0 inf
‖�−�0‖>�

‖d̃(�)‖ > 0.

(iv) The first K̃ elements of NT �T (�0) are identically equal to zero for any T.

2 It is well known that the group of real orthogonal matrices is compact (see Horn and Johnson
1985, p. 71). Hence, one can always define M and N for convergent subsequences, respectively
MTn and NTl . To simplify the notations, we only refer to sequences and not subsequences.

3 ‖M‖ denotes the largest element (in absolute value) of any matrix M.
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As announced, the above identification assumption ensures that the first K̃
moment conditions are only possibly nearly weak (and not genuinely weak),
‖�̃T‖ = o(

√
T), and sufficient to identify the true unknown value �0:

d̃(�) = 0 ⇔ � = �0.

The additional moment restrictions, as long as they are strictly weaker
(�̆−1

T = o(‖�̃T‖−1), may be arbitrarily weak and even misspecified, since we
do not assume d̆(�0) = 0. It is worth noting that the above identification
concept is nonstandard, since all singular values of the matrix AT may go to
infinity. In such a case, we have

Plim
[
�̄T (�)

] = 0 ∀ � ∈ �. (2.7)

This explains why the following consistency result of a GMM estimator cannot
be proved in a standard way. The key argument is actually tightly related to
the uniform functional central limit theorem of Assumption 2.1.

Theorem 2.1 (Consistency of �̂T )
We define a GMM-estimator:

�̂T = arg min
�∈�

[
�̄

′
T (�)�T �̄T (�)

]
(2.8)

with �T a sequence of symmetric positive definite random matrices of size K which
converges in probability toward a positive definite matrix �.

Under the Assumptions 2.1 and 2.2, any GMM estimator like Equation 2.8 is
weakly consistent.

We now explain why the consistency result cannot be deduced from a stan-
dard argument based on a simple rescaling of the moment conditions to avoid
asymptotic degeneracy of Equation 2.7. The GMM estimator (Equation 2.8)
can be rewritten as

�̂T = arg min
�∈�

{
[�T N′

T �̄T (�)]′WT [�T N′
T �̄T (�)]

}
with a weighting matrix sequence, WT = �−1

T N′
T�T NT�−1

T , and rescaled mo-
ment conditions [�T N′

T �̄T (�)] such that

Plim[�T N′
T �̄T (�)] = lim

T
[�T N′

T �T (�)] = d(�) �= 0 for � �= �0.

However, when all singular values of AT go to infinity, the weighting matrix
sequence WT is such that

Plim [WT ] = lim
T

[
�−1

T N′�N�−1
T

] = 0.

In addition, the limit of the GMM estimator in Theorem 2.1 is solely deter-
mined by the strongest moment conditions that identify �0. There is actually
no need to assume that the last (K − K̃ ) coefficients in [�T N′

T �T (�0)], or even
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their limits d̆(�0), are equal to zero. In other words, the additional estimating
equations d̆(�) = 0 may be biased and this has no consequence on the limit
value of the GMM estimator insofar as the additional moment restrictions
are strictly weaker than the initial ones, �̆−1

T = o(‖�̃T‖−1). They may even be
genuinely weak with ‖�̆T‖ = √

T . This result has important consequences
on the power of the overidentification test defined in the next section.

2.3 Asymptotic Distribution and Inference

2.3.1 Efficient Estimation

In our setting, rates of convergence slower than square-root T are produced
because some coefficients of AT may go to infinity while the asymptotically
identifying equations are given by �T (�)

a∼ A−1
T c(�). Since we do not want to

introduce other causes for slower rates of convergence (like singularity of the
Jacobian matrix of the moment conditions, as done in Sargan 1983), first-order
local identification is maintained.

Assumption 2.3 (Local identification)

(i) � → c(�), � → d(�) and � → �T (�) are continuously differentiable on the
interior of �.

(ii) �0 belongs to the interior of �.

(iii) The ( K̃ , p)-matrix [∂ d̃(�0)/∂�′] has full column rank p.

(iv) �T N′
T [∂�T (�)/∂�′] converges uniformly on the interior of � toward

M−1[∂c(�)/∂�′] = ∂d(�)/∂�′.
(v) The last (K − K̃ ) elements of NT �T (�0) are either identically equal to zero

for any T, or genuinely weak with the corresponding element of �̆T equal
to

√
T.

Assumption 2.3(iv) states that rates of convergence are maintained after
differentiation with respect to the parameters. Contrary to the linear case,
this does not follow automatically in the general case. Then, we are able to
show that the structural parameters are identified at the slowest rate avail-
able from the set of identifying equations. Assumption 2.3(v) ensures that the
additional moment restrictions (the ones not required for identification) are
either well-specified or genuinely weak: this ensures that these conditions
do not deteriorate the rate of convergence of the GMM estimator (see Theo-
rem 2.2). Intuitively, a GMM estimator is always a linear combination of the
moment conditions. Hence, if some moments are misspecified and do not dis-
appear as fast as

√
T , they can only deteriorate the rate of convergence of the

estimator.
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Theorem 2.2 (Rate of convergence)
Under Assumptions 2.1 to 2.3, any GMM estimator �̂T like Equation 2.8 is such that

‖�̂T − �0‖ = Op(‖�̃T‖/
√

T).

The above result is quite poor, since it assigns the slowest possible rate to
all components of the structural parameters. We now show how to identify
faster directions in the parameter space. The first step consists in defining a
matrix ÃT similar to the one introduced in the linear example. The following
result justifies its existence: in the appendix, we also explain in details how
to construct it.

Theorem 2.3 Under Assumptions 2.1 to 2.3, there exists a sequence ÃT of deter-
ministic nonsingular matrices of size p such that the smallest eigenvalue of Ã′

T ÃT is
bounded away from zero and

lim
T

[
�−1

T M−1 ∂c(�0)
∂�′ ÃT

]
exists and is full column rank with ‖ÃT‖ = O(‖�̃T‖).

Following the approach put forward in the linear example, Theorem 2.3 is
used to derive the asymptotic theory of the estimator �̂T . Since,

∂�̄T (�0)
∂�′

√
T(�̂T − �0) = ∂�̄T (�0)

∂�′ ÃT
√

T Ã−1
T (�̂T − �0),

a meaningful asymptotic distributional theory is not directly about the com-
mon sequence

√
T(�̂T − �0), but rather about a well-suited reparametrization

Ã−1
T

√
T(�̂T − �0). Similar to the structure of AT , ÃT involves a reparametriza-

tion and a rescaling. In others words, specific rates of convergence are actually
assigned to appropriate linear combinations of the structural parameters.

Assumption 2.4 (Regularity)

(i)
√

T
[
∂�̄T (�0)

∂�′ − A−1
T

∂c(�0)
∂�′

]
= OP (1)

(i i)
√

T
∂

∂�

[
∂�̄T (�)

∂�′

]
k.

− ∂

∂�

[
A−1

T
∂c(�)
∂�′

]
k.

= OP (1) and
∂

∂�

[
∂c(�)
∂�′

]
k.

= OP (1)

for any 1 ≤ k ≤ K , uniformly on the interior of � with [M]k. the kth row the
matrix M.

With additional regularity Assumption 2.4(i), Corollary 2.1 extends
Theorem 2.3 to rather consider the empirical counterparts of the moment
conditions: it is the nonlinear analog of Assumption L3.
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Corollary 2.1 (Nonlinear extension of L3)
Under Assumptions 2.1–2.3 and 2.4(i), we have

�(�0) ≡ Plim

[
∂�̄T (�0)

∂�′ ÃT

]
exists and is full column rank.

In order to derive a standard asymptotic theory for the GMM estimator �̂T ,
we need to impose an assumption on the homogeneity of identification.

Assumption 2.5 (Homogenous identification)
√

T
�̃T

= o

( √
T

‖�̃T‖

)2

where ‖M‖ M denote respectively the largest and the smallest absolute values of all
nonzero coefficients of the matrix M.

Intuitively, assumption 2.5 ensures that second-order terms in Taylor expan-
sions remain negligible in front of the first-order central limit theorem terms.
Note that a sufficient condition for homogenous identification is dubbed
nearly-strong and writes: ‖�̃T‖2 = o(

√
T). It corresponds to the above ho-

mogenous identification condition when some moment conditions are strong,
that is �̃T = 1. Then we want to ensure that the slowest possible rate of conver-
gence of parameter estimators is strictly faster than T1/4. This nearly-strong
condition is actually quite standard in semiparametric econometrics to con-
trol for the impact of infinite dimensional nuisance parameters (see Andrews’
(1994) MINPIN estimators and Newey’s (1994) linearization assumption).

The asymptotic distribution of the rescaled estimated parameters√
T Ã−1

T (�̂T − �0) can now be characterized by seemingly standard GMM
formulas:

Theorem 2.4 (Asymptotic distribution of �̂T )
Under Assumptions 2.1–2.5, any GMM estimator �̂T like Equation 2.8 is such that√

T Ã−1
T (�̂T − �0) is asymptotically normal with mean zero and variance �(�0)

given by

�(�0) = [
�′(�0)��(�0)

]−1
�′(�0)�S(�0)��(�0)

[
�′(�0)��(�0)

]−1
,

where S(�0) is the asymptotic variance of
√

T�̄T (�0).

Theorem 2.4 paves the way for a concept of efficient estimation in presence
of poor instruments. By a common argument, the unique limit weighting
matrix � minimizing the above covariance matrix is clearly � = [S(�0)]−1.

Theorem 2.5 (Efficient GMM estimator)
Under Assumptions 2.1–2.5, any GMM estimator �̂T like Equation 2.8 with a
weighting matrix �T = S−1

T , where ST denotes a consistent estimator of S(�0),
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is such that
√

T Ã−1
T (�̂T − �0) is asymptotically normal with mean zero and variance

[�′(�0)S−1(�0)�(�0)]−1.

In our framework, the terminology “efficient GMM” and “standard formu-
las” for asymptotic covariance matrices must be carefully qualified. On the
one hand, it is true that for all practical purposes, Theorem 2.5 states that, for
T large enough,

√
T Ã−1

T (�̂T − �0) can be seen as a Gaussian vector with mean
zero and variance consistently estimated by

Ã−1
T

[
∂�̄

′
T (�̂T )
∂�

S−1
T

∂�̄T (�̂T )
∂�′

]−1

Ã−1′
T , (2.9)

since �(�0) = Plim[ ∂�̄T (�0)
∂�′ ÃT ]. However, it is incorrect to deduce from Equa-

tion (2.9) that, after simplifications on both sides by Ã−1
T ,

√
T(�̂T − �0) can be

seen (for T large enough) as a Gaussian vector with mean zero and variance
consistently estimated by[

∂�̄
′
T (�̂T )
∂�

S−1
T

∂�̄T (�̂T )
∂�′

]−1

. (2.10)

This is wrong since the matrix [ ∂�̄
′
T (�̂T )
∂�

S−1
T

∂�̄T (�̂T )
∂�′ ] is asymptotically singular.

In this sense, a truly standard GMM theory does not apply and at least some
components of

√
T(�̂T −�0) must blow up. Quite surprisingly, it turns out that

the spurious feeling that Equation 2.10 estimates the asymptotic variance (as
usual) is tremendously useful for inference as explained in Subsection 2.3.2.
Intuitively, it explains why standard inference procedures work, albeit for
nonstandard reasons. As a consequence, for all practical purposes related to
inference about the structural parameters �, the knowledge of the matrices
AT and ÃT is not required.

However, the fact that the correct understanding of the “efficient GMM”
covariance matrix as estimated by Equation 2.9 involves the sequence of ma-
trices ÃT is important for two reasons.

First, it is worth reminding that the construction of the matrix ÃT only in-
volves the first K̃ components of the rescaled estimating equations [N′

T �T (�)].
This is implicit in the rate of convergence of ‖ÃT‖ put forward in Theorem 2.3
and quite clear in its proof. In other words, when the total number of moment
conditions K is strictly larger than K̃ , the last (K − K̃ ) rows of the matrix
�(�0) = Plim[ ∂�̄T (�0)

∂�′ ÃT ] are equal to zero. Irrespective of the weighting ma-
trix’s choice for GMM estimation, the associated estimator does not depend
asymptotically on these last moment conditions. Therefore, there is an obvious
waste of information: the so-called efficient GMM estimator of Theorem 2.5
does not make use of all the available information. Moment conditions based
on poorer instruments (redundant for the purpose of identification) should
actually be used for improved accuracy of the estimator, as explicitly shown
in Antoine and Renault (2010a).
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Second, the interpretation of the matrix ÃT in terms of reparametrization
is underpinned by the proof of Theorem 2.3 which shows that

ÃT = [ �1T R1
... �2T R2

... · · · ... �LT RL ] = R�T with R = [ R1
... R2

... · · · ... RL ].

R is a nonsingular matrix of size p with each submatrix Ri of size ( p, si ); �T is
a diagonal matrix with L diagonal blocks equal to �iT I dsi . It is worth reinter-
preting Theorem 2.5 in terms of the asymptotic distribution of the estimator
of a new parameter vector4:

� = R−1� = [�′
1 �′

2 · · · �′
L ]′.

Theorem 2.5 states that (R−1�̂T ) is a consistent asymptotically normal esti-
mator of the true unknown value �0 = R−1�0, while each subvector �i of size
si is attached to a specific (slower) rate of convergence

√
T/�iT . It is clear in the

appendix that this reparametrization is performed according to the directions
which span the range of the Jacobian matrix of the rescaled “efficient” mo-
ment conditions d̃(�), that is according to the columns of the matrix R. Even
though the knowledge of the matrix R (and corresponding rates �iT ) is imma-
terial for the practical implementation of inference procedures on structural
parameters (as shown in Section 2.3.2), it may matter for a fair assessment of
the accuracy of this inference. As an illustration, Subsection 2.4.3 studies the
power of score-type tests against sequences of local alternatives in different
directions.

In the context of the consumption-based capital asset pricing model
(CCAPM) discussed in Stock and Wright (2000) and Antoine and Renault
(2009), there are two structural parameters: �1, the subjective discount factor
and �2, the coefficient of relative risk aversion of a representative investor.
Antoine and Renault (2009) provide compelling evidence that a first param-
eter �1, estimated at fast rate

√
T , is very close to �1 (the estimation results

show that �1 = 0.999�1 − 0.007�2), while any other direction in the param-
eter space, like for instance the risk aversion parameter �2, is estimated at a
much slower rate. In other words, all parameters are consistently estimated
as shown in Stock and Wright’s (2000) empirical results (and contrary to their
theoretical framework), but the directions with

√
T-consistent estimation are

now inferred from data instead of being considered as a prior specification.
The practical way to consistently estimate the matrix R from the sample

counterpart of the Jacobian matrix of the moment conditions is extensively
discussed in Antoine and Renault (2010a). Of course, since this Jacobian ma-
trix involves in general the unknown structural parameters �, there is little
hope to consistently estimate R at a rate faster than the slowest one, namely√

T/‖�̃T‖. Interestingly enough, this slower rate does not impair the faster
rates involved in Theorem 2.5. When R is replaced by its consistent estimator

4 Note that the structural parameter � is such that � = ∑L
i=1 Ri �i .
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R̂, in the context of Theorem 2.5,

√
T�−1

T

(
R̂−1�̂T − R̂−1�0)

is still asymptotically normal with mean zero and variance [�′(�0)S−1(�0) ×
�(�0)]−1. The key intuition comes from the following decomposition:

R̂−1�̂T − R̂−1�0 = R−1(�̂T − �0) + ( R̂−1 − R−1)(�̂T − �0).

The potentially slow rates of convergence in the second term of the right-hand
side do not deteriorate the fast rates in the relevant directions of R−1(�̂T −�0):
these slow rates show up as T/‖�̃T‖2 at worst, which is still faster than the
fastest rate

√
T/�1T by our nearly strong identification Assumption 2.5.

2.3.2 Inference

As discussed in the previous section, inference procedures are actually more
involved than one may believe at first sight from the apparent similarity with
standard GMM formulas. Nonetheless, the seemingly standard “efficient”
asymptotic distribution theory of Theorem 2.5 paves the way for two usual
results: the overidentification test and the Wald test.

Theorem 2.6 (J test)
Let S−1

T be a consistent estimator of lim
T

[Var(
√

T�̄T (�0))]−1.

Under Assumptions 2.1–2.5, for any GMM estimator like Equation (2.8), we have

T�̄
′
T (�̂T )S−1

T �̄T (�̂T )
d→ �2(K − p).

As already announced, Theorem 2.1 has important consequences for the
practice of GMM inference. We expect the above overidentification test to
have little power to detect the misspecification of moment conditions when
this misspecification corresponds to a subset of moment conditions of het-
erogeneous strengths. The proofs of Theorems 2.1 and 2.3 actually show
that

T�̄T (�̂T )S−1
T �̄T (�̂T ) = OP

(
T

‖�̆T‖2

)
.

In other words, the standard J-test statistic for overidentification will not
diverge as fast as the standard rate T of divergence and will even not diverge
at all if the misspecified moment restrictions are genuinely weak (‖�̆T‖ =√

T).
Second, we are interested in testing the null hypothesis, H0 : g(�) = 0,

where the function g : � → R
q is continuously differentiable on the interior

of �. We focus on Wald testing since it avoids estimation under the null which
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may affect the reparametrization5 previously defined. The following example
illustrates how the standard delta-theorem is affected in our framework.

Example 2.2
Consider the null hypothesis H0 : g(�) = 0 with g a vector of size q such that[

∂g j (�0)
∂�

]
/∈ col

[
∂ d̃ ′

1(�0)
∂�

]
∀ j = 1, · · · , q

and a diagonal matrix �T ,

�T =
[

�1T I dK1 O
O �2T I dK−K1

]
with �1T = o(�2T ), �2T → ∞, and �2T = o(

√
T).

Applying the standard argument to derive the Wald test, we have that, under the
null, [√

T
�2T

g(�̂T )

]
a∼

[
∂g(�0)

∂�′

√
T

�2T
(�̂T − �0)

]
.

In other words, for T large enough,
[√

T
�2T

g(�̂T )
]

can be seen as a normal random
variable with mean 0 and variance

∂g(�0)
∂�′

[
∂�̄

′
T (�0)
∂�

[S(�0)]−1 ∂�̄T (�0)
∂�′

]−1
∂g′(�0)

∂�
.

Suppose now that there exists a nonzero vector � such that[
∂g′(�0)

∂�
�

]
∈ col

[
∂ d̃ ′

1(�0)
∂�

]
.

Then, under the null,
[√

T
�1T

�′g(�̂T )
]

is asymptotically normal and thus

√
T

�2T
�′g(�̂T ) = �1T

�2T

√
T

�1T
�′g(�̂T )

P→ 0.

This means that even when a full rank assumption is maintained for the constraints to

be tested,
[√

T
�2T

g(�̂T )
]

does not behave asymptotically like a normal with a nonsingular
variance matrix. This explains why deriving the asymptotic distributional theory for
the Wald test statistic is nonstandard.

Surprisingly enough, the above asymptotic singularity issue is immaterial
and the standard Wald-type inference holds without additional regularity

5 Typically, with additional information, the linear combinations of � estimated respectively at
specific rates of convergence may be defined differently. Caner (2010) derives the standard
asymptotic equivalence results for the trinity of tests because he only considers testing when
all parameters converge at the same nearly weak rate.
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assumption as stated in Theorem 2.7. The intuition is the following. Consider
a fictitious situation where the range of [∂ d̃ ′

1(�0)/∂�] is known. Then, one can
always define a nonsingular matrix H of size q and the associated vector h,
h(�) = Hg(�), in order to avoid the asymptotic singularity issue portrayed
in Example 2.2. More precisely, with a (simplified) matrix AT as in the above
example, we consider

for j = 1, · · · , q1 :
[
∂h j (�0)/∂�

] ∈ col
[
∂ d̃ ′

1(�0)/∂�
]
;

for j = q1 + 1, · · · , q :
[
∂h j (�0)/∂�

]
/∈ col

[
∂ d̃ ′

1(�0)/∂�
]

and no linear combinations of
[
∂h j (�0)/∂�

]
does.

Note that the new restrictions h(�) = 0 should be interpreted as a nonlinear
transformations of the initial ones g(�) = 0 (since the matrix H depends on
�). It turns out that, for all practical purposes, by treating H as known, the
Wald-type test statistics written with h(.) or g(.) are numerically equal; see
the proof of Theorem 2.7 in the appendix.

Theorem 2.7 (Wald test)
Under Assumptions 2.1–2.5, the Wald test statistic 	T , for testing H0 : g(�) = 0
with g twice continuously differentiable,

	T = Tg′(�̂T )

∂g(�̂T )
∂�′

[
∂�̄

′
T (�̂T )
∂�

S−1
T

∂�̄T (�̂T )
∂�′

]−1
∂g′(�̂T )

∂�


−1

g(�̂T )

is asymptotically distributed as a chi-square with q degrees of freedom under the null.

In our framework, the standard result holds with respect to the size of the
Wald test. Of course, the power of the test heavily depends on the strength
of identification of the various constraints to test as extensively discussed in
Antoine and Renault (2010a). See also the discussion in Subsection 2.4.3.

2.4 Comparisons with Other Approaches

2.4.1 Linear IV Model

Following the discussion in Examples 2.1 and 2.1, several matrices �T may
be considered in the linear model with poor instruments. We now show that
this choice is not innocuous.

(i) Staiger and Stock (1997) consider a framework with the same gen-
uine weak identification pattern for all the parameters: �T = C/

√
T .

To maintain Assumption L2, we can consider it as the limit case of:
�T = C/T�, for 0 < � < 1/2 and C full column rank. Then
AT = T� I dK fulfills Assumption L1. Similarly, ÃT = T� I dp fulfills
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Assumption L3. Note that in this simple example, ‖AT‖ and ‖ÃT‖
grow at the same rate, which corresponds to the unique degree of
nearly weak identification.

(ii) Stock and Wright (2000) reinterpret the above framework to accom-
modate simultaneously strong and weak identification patterns. This
distinction is done at the parameter level and the structural param-
eter � is (a priori) partitioned: � = [�′

1

... �′
2]′ with �1 of dimension p1

strongly identified and �2 of dimension p2 = p − p1 weakly iden-
tified. Following their approach, while maintaining Assumption L2,
we consider the matrix

�T =
[


11 
12/T�


21 
22/T�

]
= �D−1

T ,

with 0 < � < 1/2 while � = 1/2 in Stock and Wright (2000); � =[

11 
12

21 
22

]
and DT a ( p, p)-diagonal matrix (with 1 as the first p1 co-

efficients and T� as the remaining ones). ÃT = DT directly fulfills
Assumption L3. Note that the degree of identification of each param-
eter has to be known (assumed) a priori in Stock and Wright’s (2000)
specification.

(iii) Antoine and Renault (2009) choose to distinguish between strong and
nearly weak identification at the instrument level (see in particular
their Subsection 2.3.2). They suppose that the set of K instruments
can be partitioned between K1 strong ones and (K − K1) nearly weak
ones, so that

�T =
[


11 
12


21/T� 
22/T�

]
= �−1

T �,

with �T a (K, K )-diagonal matrix (with 1 as the first K1 coefficients
and T� as the K2 remaining ones). The limit case with � = 1/2 is the
framework of Hahn, Ham, and Moon (2009).

Interestingly enough, the above approaches (ii) and (iii) lead to the
same concentration matrix, a well-known measure of the strength
of the instruments. As a consequence, one concludes that both ap-
proaches capture similar patterns of weak identification. In Exam-
ples 2.1 and 2.1, the concentration matrix and its determinant are
respectively equal to

� = �
−1/2′
V �′

T Z′ Z�T�
1/2
V

and

det(�) = 1
T2�

det(Z′ Z) det(�−1
V ) det(�)2

with �V ≡ Var[V]. With standard weak asymptotics (T� = √
T),

the concentration matrix has a finite limit (see also Andrews and
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Stock 2007). Nearly weak asymptotics allow an infinite limit for the
determinant of the concentration matrix, but at a rate smaller than
det[Z′ Z] = O(T). In this respect, there is no difference between the
two approaches, only the rate of convergence to zero of respectively
a row or a column of the matrix �T matters.

(iv) Phillips (1989) introduces partial identification where �T matrices
that may not be of full rank are considered. Generalization to asymp-
totic rank condition failures (at rate T�) comes at the price of having
to specify which row (or column) asymptotically goes to zero. At
least, Antoine and Renault’s (2009) approach (iii) works with “es-
timable functions” of the structural parameters, or functions that can
be identified and square-root T consistently estimated. By contrast,
the approach (ii) implies directly a partition of the structural param-
eters between strongly and weakly identified ones.

(v) Antoine and Renault (2010a) generalize the above approach (iii) to
accommodate matrices of reduced form like �T = �−1

T � with �T a
(K, K )-diagonal matrix such that ‖�T‖ = o(

√
T). Then AT = �T E−1

zz
fulfills Assumption L1. By contrast with the former examples, the
case where instruments may not be mutually orthogonal and may
display different levels of strength leads to a nondiagonal matrix AT .
However, in this case, it is easy to imagine a standardization of in-
struments such that AT eventually becomes diagonal (i.e., AT = �T ).
Then, a sequence of matrices ÃT fulfilling Assumption L3 can be built
according to the general result provided in Theorem 2.3. The detailed
construction provided in the appendix shows that we can actually
choose ÃT = R�̃T with R nonsingular ( p, p)-matrix whose columns
provide a basis for the orthogonal of the null space of � while �̃T

is a diagonal ( p, p)-matrix such that ‖�̃T‖ ≤ ‖�T‖. In other words,
all parameters are estimated with a rate of convergence at least equal
to

√
T/‖�̃T‖ irrespective of the slowest rate

√
T/‖�T‖. The key is

that some instruments (among the weakest) may be irrelevant, de-
pending on the range of �′. This analysis actually provides primitive
conditions for the high-level Assumption 2 in Hansen, Hausman, and
Newey (2008) where they assume that ϒ = �′

T zt (where zt denotes
the tth observation of the K instruments) can be rewriten as ϒ = ST z̃T

for some p-dimensional vector z̃T . This transformation exactly corre-
sponds to our transformation of AT into ÃT which is made explicit in
the above detailed discussion. As also done in Antoine and Renault
(2009, 2010a), Hansen, Hausman, and Newey (2008) take advantage
of the matrix ST to characterize how some linear combinations of the
parameters may be identified at different rates.

2.4.2 Continuously Updated GMM

We now show that the nearly strong identification Assumption 2.5 is exactly
needed to ensure that any direction in the parameter space is equivalently
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estimated by efficient two-step GMM and continuously updated GMM. This
will also explain the equivalence between GMM score test and Kleibergen’s
modified score test discussed in the next section. Hansen, Heaton, and Yaron
(1996) define the continuously updated GMM estimator �̂

CU
T as follow:

Definition 2.1 Let ST (�) be a family of nonsingular random matrices such that6

(i) ST (�0) is a (unfeasible) consistent estimator of S ≡ lim
T

[Var(
√

T�̄T (�0))].

(ii) ‖S−1
T (�0)‖ = OP (1).

(iii) sup
�∈�

‖ST (�)‖ = OP (1).

(iv) sup
‖�−�0‖<�T

‖S−1
T (�) − S−1‖ = o p(1) for some real sequence �T .

The continuously updated GMM estimator �̂
CU
T of �0 is then defined as

�̂
CU
T = arg min

�∈�

[
�̄

′
T (�)S−1

T (�)�̄T (�)
]
. (2.11)

PROPOSITION 2.1 (Equivalence between CU-GMM and efficient 2S-GMM)
Under Assumptions 2.1–2.5, any direction in the parameter space is equivalently
estimated by efficient two-step GMM and continuously updated GMM. That is,

√
T Ã−1

T

(
�̂

CU
T − �̂T

) = o p(1).

In the special case where the same degree of global identification weakness �T is
assumed for all coefficients of ÃT , CU-GMM and efficient 2S-GMM are equivalent
without the homogenous identification Assumption 2.5 (insofar as �T = o(

√
T)).

Several comments are in order.
First, since nondegenerate asymptotic normality is obtained for√
T Ã−1

T (�̂T − �0) (and not for
√

T(�̂T − �0)), the relevant (nontrivial) equiv-
alence result between two-step efficient GMM and continuously updated
GMM relates to the suitably rescaled difference

√
T Ã−1

T (�̂T − �̂
CU
T ).

Second, the case with nearly weak (and not homogenous) identification
(‖�̃T‖2/

√
T = o(1)) breaks down the standard theory of efficient GMM: the

proof shows that there is no reason to believe that continuously updated
GMM may be an answer. Two-step GMM and continuously updated GMM,
albeit no longer equivalent, are both perturbed by higher-order terms with
ambiguous effects on asymptotic distributions. The intuition given by higher-
order asymptotics in standard identification settings cannot be extended to
the case of nearly weak identification. While the latter approach shows that
continuously updated GMM is, in general, higher-order efficient (see Newey

6 The following regularity assumptions are standard when defining the continuously updated
GMM estimator. See Pakes and Pollard (1989, pp. 1044–1046).
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and Smith 2004; Antoine, Bonnal, and Renault 2007), there is no clear ranking
of asymptotic performances under weak identification.

Third, it is important to keep in mind that all these difficulties are due
to the fact that we consider realistic circumstances where several degrees of
global identification weakness are simultaneously involved. Standard results
(equivalence, or rankings between different approaches) carry on when the
same rate �T is assumed for all coefficients of ÃT .

2.4.3 GMM Score-Type Testing

As already explained, when the same degree of global identification weak-
ness �T is assumed for all coefficients of the matrix �T , standard procedures
and results hold. One of the contribution of this paper is to characterize the
heterogeneity of the informational content of moment conditions along dif-
ferent directions in the parameter space. We now illustrate how the power
of tests is affected. More precisely, we are interested in testing the null hy-
pothesis: H0 : � = �0. To simplify the exposition, we focus here on a diagonal
matrix AT :

AT =
[

I dK1 O
O �T I dK−K1

]
with �T → ∞ and �T = o(

√
T).

Assumption 2.3 is modified accordingly:

(simplified) Assumptions 2.3

[
I dK1 O

O �T I dK−K1

]
∂�̄T (�0)

∂�′ =
[

I dK1 O

O �T I dK−K1

]  ∂�̄1T (�0)
∂�′

∂�̄2T (�0)
∂�′



→ ∂ d̃(�0)
∂�′ ≡

 ∂ d̃1(�0)
∂�′

∂ d̃2(�0)
∂�′


with the (K, p)-matrix [∂ d̃(�0)/∂�′] full column rank.

The following (simple) example illustrates our focus of interest.

Example 2.3
Consider the functions �1t and �2t defined as

�1t(�) = Y1t − g(�) and �2t(�) = −Zt ⊗ (Y2t − X2t�),

and associated moment conditions

E[Y1t] = g(�0) and E
[
Zt ⊗ (Y2t − X2t�

0)
] = 0.
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The instruments Zt introduced in �2t are only nearly weak instruments since

E[Zt ⊗ X2t] = 1
�T

∂ d̃2(�0)
∂�′ with �T

T→ ∞, and
�T√

T
T→ 0.

Then the associated Jacobian matrices are

Plim

[
∂�̄1T (�0)

∂�′

]
= ∂g(�0)

∂�′ = ∂ d̃1(�0)
∂�′

Plim

[
�T

∂�̄2T (�0)
∂�′

]
= Plim

[
�T

1
T

T∑
t=1

(Zt ⊗ X2t)

]

= lim
T

[�T E (Zt ⊗ X2t)] = ∂ d̃2(�0)
∂�′ ,

and we assume that
[ ∂ d̃ ′

1(�0)
∂�

...
∂ d̃ ′

2(�0)
∂�

]′ has full column rank.

The GMM score-type testing approach wonders whether the test value
�0 is close to fulfill the first-order conditions of the (efficient) two-step GMM
minimization, that is whether the score vector is close to zero. The score vector
is defined at the test value �0 as

VT (�0) = ∂�̄
′
T (�0)
∂�

S−1
T (�0)�̄T (�0).

The GMM score test statistic (Newey and West 1987) is then a suitable norm
of VT (�0):

	NW
T = TV′

T (�0)

[
∂�̄

′
T (�0)
∂�

S−1
T (�0)

∂�̄T (�0)
∂�′

]−1

VT (�0).

Kleibergen’s (2005) approach rather considers the first-order conditions of
the CU-GMM minimization. The corresponding score vector is defined at the
test value �0 as

VCU
T (�0) = ∂�CU′

T (�0)
∂�

S−1
T (�0)�̄T (�0),

where each row of
[ ∂�CU

T (�0)
∂�′

]
is the residual of the long-term affine regression

of
[

∂�̄T (�0)
∂�′

]
[i.] on �̄T (�0):[

∂�CU
T (�0)
∂�′

]′

[i.]
=

[
∂�̄T (�0)

∂�′

]′

[i.]

−Covas

(√
T

[
∂�̄T (�0)

∂�′

]′

[i.]
,
√

T�̄T (�0)

)
Varas

(√
T�̄T (�0)

)−1
�̄T (�0)

(2.12)
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where Varas(
√

T�̄T (�0)) = S0 is the long-term covariance matrix of the mo-
ment conditions �t(�0) and Covas

(√
T

[
∂�̄T (�0)

∂�

]′
[i.],

√
T�̄T (�0)

)
is the long-term

covariance between
[

∂�t(�0)
∂�

]
[i.] and �t(�0) (which is assumed well-defined).

This characterization of the score of continuously updated GMM in terms
of residual of an affine regression is extensively discussed in Antoine, Bonnal,
and Renault (2007) through their Euclidean empirical likelihood approach. It
explains the better finite sample performance of CU-GMM since the regres-
sion allows to remove the perverse correlation between the Jacobian matrix
and the moment conditions. In finite sample, this perverse correlation im-
plies that the first order conditions of standard (two-step) efficient GMM are
biased. As clearly explained by Kleibergen (2005), this perverse correlation
is even more detrimental with genuinely weak instruments since it does not
even vanish asymptotically. This is the reason why Kleibergen (2005) puts
forward a modified version of the Newey-West (1987) score test statistic:

	K
T = TVCU′

T (�0)
[
∂�CU′

T (�0)
∂�

S−1
T (�0)

∂�CU
T (�0)
∂�′

]−1

VCU
T (�0).

In contrast with Kleibergen (2005), we show that with nearly weak instru-
ments, the aforementioned correlation does not matter asymptotically and
that the standard GMM score test statistic 	NW

T works. It is actually asymptoti-
cally equivalent to the modified Kleibergen’s score test statistic under the null:

PROPOSITION 2.2 (Equivalence under the null)
Under the null H0 : � = �0, we have: Plim

[
	NW

T − 	K
T

] = 0. Both 	NW
T and 	K

T
converge in distribution toward a chi-square with p degrees of freedom.

The following example illustrates how a proper characterization of the het-
erogeneity of the informational content of moment conditions matters when
considering power of tests under sequences of local alternatives.

Example 2.3 (continued)
Consider a sequence of local alternatives defined by a given deterministic sequence
(
T )T≥0 in R

p, going to zero when T goes to infinity, and such that the true un-
known value �0 is defined as: �T = �0 + 
T . For T large enough, g(�T ) can be
seen as g(�0) + [∂g(�0)/∂�′]
T . Therefore, the strongly identified moment restric-
tions E[Y1t − g(�T )] = 0 are informative with respect to the violation of the null
(�T �= �0) if and only if: [∂g(�0)/∂�′]
T �= 0.

As a consequence, we expect GMM-based tests of H0 : � = �0 to have power
against sequences of local alternatives converging at standard rate

√
T, �T = �0 +


/
√

T, if and only if [∂g(�0)/∂�′]
 �= 0, or, when 
 does not belong to the null space
of [∂g(�0)/∂�′] = [∂ d̃1(�0)/∂�′]. By contrast, if [∂ d̃1(�0)/∂�′]
 = 0, violations of
the null can only be built from the other identifying conditions:

E[Zt ⊗ Yt] = ∂ d̃2(�0)
∂�′

�T

�T
.



 

P1: Gopal Joshi

November 12, 2010 17:2 C7035 C7035˙C002

Efficient Inference with Poor Instruments: A General Framework 53

We show that the sequences of local alternatives relevant to characterize nontrivial
power are necessarily such that �T = �0 + �T


√
T

.
In other words, the degree of weakness of the moment conditions �T downplays the

standard rate [
/
√

T] of sequences of local alternatives against which the tests have
nontrivial local power. Under such a sequence of local alternatives,

E [Zt ⊗ Yt] = ∂ d̃2(�0)
∂�′

[
�0

�T
+ 
√

T

]
differs from its value under the null by the standard scale 1/

√
T.

PROPOSITION 2.3 (Local power of GMM score tests)
(i) With a (drifted) true unknown value, �T = �0 + 
/

√
T, for some 
 ∈ R

p, we
have Plim[	NW

T − 	K
T ] = 0, and both 	NW

T and 	K
T converge in distribution toward

a noncentral chi-square with p degrees of freedom and noncentrality parameter

� =
(


′ ∂ d̃ ′
1(�0)
∂�

... 0
)

[S(�0)]−1

(
∂ d̃1(�0)

∂�′ 


0

)
.

(ii) In case of nearly strong identification (�2
T = o(

√
T)), with a (drifted) true un-

known value �T = �0 + 
/�T , for some 
 ∈ R
p such that ∂ d̃1(�0)

∂�′ 
 = 0, we have
Plim[	NW

T − 	K
T ] = 0, and both 	NW

T and 	K
T converge in distribution toward a

noncentral chi-square with p degrees of freedom and noncentrality parameter

� =
(

0
... 
′ ∂ d̃ ′

2(�0)
∂�

)
[S(�0)]−1

(
0

∂ d̃2(�0)
∂�′ 


)
.

Two additional conclusions follow from Proposition 2.3:

(i) First, if ∂ d̃1(�0)
∂�′ 
 �= 0, the two GMM score tests behave more or less as

usual against sequences of local alternatives in the direction 
. They
are asymptotically equivalent and both consistent against sequences
converging slower than

√
T . They both follow asymptotically a non-

central chi-square against sequences with the usual rate
√

T .

(ii) Second, if ∂ d̃1(�0)
∂�′ 
 = 0, the two GMM score tests have no power

against sequences of local alternatives �T = �0 + 
/
√

T . They may
have power against sequences �T = �0 + 
�T/

√
T (or slower); their

behavior is pretty much the standard one, but only in the homogenous
identification case where �2

T = o(
√

T).

We now explain why nonstandard asymptotic behavior of both score tests
may arise when we consider sequences of local alternatives in the weak direc-
tions (�T = �0 + 
�T/

√
T with ∂ d̃1(�0)

∂�′ 
 = 0) with severe nearly weak identifi-
cation issues. Recall that the genuine weak identification usually considered
in the literature (�T = √

T) is a limit case, since we always maintain the nearly
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weak identification condition �T = o(
√

T). Under such a sequence of local
alternatives, while

√
T�̄T (�T ) is asymptotically normal with zero mean, the

key to get a standard noncentral chi-square for the asymptotic distribution of
a score test statistic is to ensure that

√
T�̄T (�0) is asymptotically normal with

nonzero mean if and only if 
 is not zero. This result should follow from the
Taylor approximation around �0 with �∗

T between �0 and �T :

√
T�̄T (�T ) ≈

√
T�̄T (�0) +

√
T

∂�̄T (�∗
T )

∂�′ (�T − �0) ≈
√

T�̄T (�0) +
(

0

∂ d̃2(�0)
∂�′ 


)
.

This approximation is justified by (simplified) Assumption 2.3 as long as

∂ d̃1(�0)
∂�′ 
 = 0 ⇒ Plim

[
�T

∂�̄1T (�∗
T )

∂�′ 


]
= 0. (2.13)

This is not an issue if, as in Kleibergen (2005), the same degree of global
identification weakness7 is assumed for all coefficients of the matrix AT . In
other words, we can easily state that in the interesting case with mixture of
strong and nearly weak identification (or nonempty subsets of components
�1 and �2), Equation 2.13 should follow from

∂ d̃1(�0)
∂�′ 
 = 0 ⇒ Plim

[
�T

∂�̄1T (�T )
∂�′ 


]
= 0. (2.14)

Fragile identification may be wasted by Kleibergen’s modification precisely
because it comes with another piece of information which is stronger. To see
this, the key is the aforementioned lack of logical implication from Equa-
tion 2.14 to Equation 2.13. As a result, the modified score statistic and the
original one may have quite different asymptotic behaviors. It is quite ev-
ident from Equation 2.12 that, when

√
T�̄T (�0) is not OP (1), the modified

score statistic may have an arbitrarily nasty asymptotic behavior. However,
it is worth noting that if we maintain Assumption 2.1 of a functional central
limit theorem,

√
T�̄T (�0) −

√
T�T (�0) = OP (1),

a sufficient condition to ensure that Kleibergen’s modified test statistic is
well-behaved under the sequence of local alternatives �T = �0 + 
 �T√

T
is

√
T�T

(
�T − 


�T√
T

)
= O(1).

The proof of Theorem 2.2 in the appendix allows us to think that this condition
is plausible, since it precisely states that the rate of convergence of any GMM

7 Smith (2007) already pointed out that the standard equivalence between tests holds when only
one rate of convergence is considered.
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estimator �̂T (‖�̂T − �T‖ = OP (�T/
√

T)) precisely comes from the fact (see
Lemma 2.1 in the appendix) that:

√
T�T (�̂T ) = OP (1).

To put it differently, Kleibergen’s modified score test is well-behaved under a
given sequence of local alternatives insofar as this sequence behaves as well
as any GMM estimator. Such a result is not surprising. The novel feature
introduced by nearly weak instruments asymptotics is that the rate of se-
quences of local alternatives must be assessed not only in the parameter space
(‖�T − �0‖ = O(�T/

√
T)) but also in the moments space (

√
T�T (�0) = O(1)).

2.5 Conclusion

To conclude, we have proposed a general framework where weaker patterns
of identification may arise without giving up the efficiency goal of statistical
inference. We actually believe that even fragile information should be pro-
cessed optimally for the purpose of both efficient estimation and powerful
testing.

Our main contribution has been to consider that several patterns of identifi-
cation may arise simultaneously. This heterogeneity of identification schemes
paved the way for the device of optimal strategies for inferential use of infor-
mation of poor quality. More precisely, we focus on a case where asymptotic
efficiency of estimators is well-defined through the variance of asymptotically
normal distributions. The price to pay for this maintained tool was to assume
that the set of moment conditions that are not genuinely weak was sufficient
to identify the true unknown value of the parameters. In this case, normality
was characterized at heterogeneous rates smaller than the standard root-T
in different directions of the parameter space. Finally, we were able to show
that in such a case standard efficient estimation procedures still hold and
are even feasible without requiring the prior knowledge of the identification
schemes.

As emphasized in the survey of Andrews and Stock (2007), there are three
main topics related to inference with weak identification: hypothesis tests
and confidence intervals that are robust to weak instruments; point estima-
tion; and pretesting for weak instruments. Andrews and Stock (2007) have
focused on the first topic “for which a solution is closer at hand than it is for
estimation.” Our paper focuses on point estimation as well as power. This
can only be done because we consider that the worst case scenario of genuine
weak identification is not always warranted. As far as testing for strong/weak
identification is concerned, the framework put forward in the present chapter
allows us in a companion paper (Antoine and Renault 2010b) to add to the
available literature that includes Hahn and Hausman (2002) and Hahn, Ham,
and Moon (2009) among others.
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Appendix

Notations

• For any vector v with element (vi )1≤i≤H , we define: ‖v‖2 = ∑H
i=1 v2

i .

• For any matrix M with elements mi j that is not a vector, we define:
‖M‖ = maxi, j |mi j |.

• I dl denotes the identity matrix of size l.

• [M]k. denotes the kth row of the matrix M.

• col[M] denotes the subspace generated by the columns of the matrix
M.

• col[M]⊥ denotes the subspace orthogonal to the one generated by
col[M].

We start with a preliminary result useful for the proofs of consistency and
rates of convergence.

Lemma 2.1 (i) Under Assumptions 2.1 and 2.2,

‖�̃T (�̃T )‖ = OP

(
1√
T

)
with �̃T (�) = [I dK̃

... OK̃ , K−K̃ ]N′
T �T (�)

where �̃T is the GMM-estimator deduced from the partial set of moment conditions
as follows:

�̃T = arg min
�∈�

Q̃T (�) = arg min
�∈�

[
�̃

′
T (�)�̃T �̃T (�)

]
with

�̃T (�) = [I dK̃
... OK̃ , K−K̃ ]N′

T �̄T (�)

where �̃T is a sequence of symmetric positive definite random matrices of size K̃
converging toward a positive definite matrix �̃.
(ii) Under Assumptions 2.1, 2.2, and 2.3(v),

‖�T (�̂T )‖ = OP

(
1√
T

)
,

where �̂T is the GMM-estimator defined in (2.8).

Proof of Lemma 2.1 First, we prove (ii); second, we show how (i) directly
follows.

From Assumption 2.1(i), the objective function is written as follows:

T QT (�) ≡ T�′
T (�)�T �T (�) = [


T (�) +
√

T�T (�)
]′
�T

[

T (�) +

√
T�T (�)

]
,
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where the empirical process (
T (�))�∈�, is asymptotically Gaussian. Since �̂T

is the minimizer of QT , we have

QT (�̂T ) ≤ QT (�0) ⇔ T�′
T (�̂T )�T �T (�̂T ) + 2

√
T�′

T (�̂T )�T
T (�̂T )
+
 ′

T (�̂T )�T
T (�̂T )

≤ T�′
T (�0)�T �T (�0) + 2

√
T�′

T (�0)�T
T (�0)
+
 ′

T (�0)�T
T (�0). (2.15)

Following the notations introduced in Assumption 2.2, we define: NT �T (�) =
[�̃T (�)′ �̆T (�)′]′.

From Assumption 2.2(iv), we have: �̃T (�0) = 0 for any T . From Assump-
tions 2.2(ii) and (iii), we have: ‖�̆T �̆T (�)‖ = OP (1). Following Assump-
tion 2.3(v), we distinguish two cases8:
(a) the additional restrictions are well-specified, �̆T (�0) = 0, and we have

(2.15) ⇒ T�′
T (�̂T )�T �T (�̂T ) + 2

√
T�′

T (�̂T )�T
T (�̂T ) + hT ≤ 0, (2.16)

with hT = 
 ′
T (�̂T )�T
T (�̂T ) − 
 ′

T (�0)�T
T (�0).
(b) the additional restrictions are not well-specified, but genuinely weak,
�̆T = √

T I dK−K̃ which implies ‖√T �̆T (�)‖ = OP (1), and we have

(2.15) ⇒ T�′
T (�̂T )�T �T (�̂T ) + 2

√
T�′

T (�̂T )�T
T (�̂T ) + hT + �T ≤ 0, (2.17)

with �T = OP (1).
Hence, we can always write:

T�′
T (�̂T )�T �T (�̂T ) + 2

√
T�′

T (�̂T )�T
T (�̂T ) + hT + �T ≤ 0, (2.18)

with hT defined above and �T = OP (1): actually, �T = 0 in case (a) and �T = �T

in case (b).
Then, after defining �T as the smallest eigenvalue of �T , it follows that

T�T‖�T (�̂T )‖2 − 2
√

T‖�T (�̂T )‖ × ‖�T
T (�̂T )‖ + hT + �T ≤ 0.

In other words, xT ≡ ‖√T�T (�̂T )‖ solves the inequality:

x2
T − 2‖�T
T (�̂T )‖

�T
xT + hT + �T

�T
≤ 0.

Therefore, we must have �T ≥ 0

with �T = ‖�T
T (�̂T )‖2

�2
T

− hT + �T

�T
,

8 Note that a combination of these two cases also works similarly: by combination, we have in
mind that some components of �̆T (�0) are well-specified whereas some others are not well-
specified but genuinely weak.
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and
‖�T
T (�̂T )‖

�T
−

√
�T ≤ xT ≤ ‖�T
T (�̂T )‖

�T
+

√
�T .

We want to show that xT = OP (1), that is

‖�T
T (�̂T )‖
�T

= OP (1) and �T = OP (1),

which amounts to show that

‖�T
T (�̂T )‖
�T

= OP (1) and
‖�T
T (�0)‖

�T
= OP (1).

Denote by det(M) the determinant of any square matrix M. Since det(�T )
P→

det(�) > 0, no subsequence of �T can converge in probability toward zero and
thus we can assume (for T sufficiently large) that �T remains lower bounded
away from zero with asymptotic probability one. Therefore, we just have to
show that

‖�T
T (�̂T )‖ = OP (1) and ‖�T
T (�0)‖ = OP (1).

Denote by tr(M) the trace of any square matrix M. Since tr(�T )
P→ tr(�)

and the sequence tr(�T ) is upper bounded in probability, so are all the
eigenvalues of �T . Therefore the required boundedness in probability fol-
lows from the functional CLT in Assumption 2.1(i) which ensures

sup
�∈�

‖
T (�)‖ = OP (1).

This completes the proof of (ii).
(i) easily follows after realizing that Assumption 2.3(v) is irrelevant since
dealing with the additional moment restrictions and that an inequality similar
to (2.18) can be obtained as follows:

Q̃T (�̃T ) ≤ Q̃T (�0) ⇔ T �̃′
T (�̃T )�̃T �̃T (�̃T ) + 2

√
T �̃′

T (�̃T )�̃T 
̃T (�̃T ) + h̃T ≤ 0,

with h̃T = 
̃ ′
T (�̃T )�̃T 
̃T (�̃T ) − 
̃ ′

T (�0)�̃T 
̃T (�0).

Proof of Theorem 2.1 (Consistency)
Consider the GMM-estimators �̂T defined in (2.8) and �̃T deduced from the
partial set of moment conditions as follows:

�̃T = arg min
�∈�

Q̃T (�) = arg min
�∈�

[
�̃

′
T (�)�̃T �̃T (�)

]
with

�̃T (�) = [I dK̃
... OK̃ , K−K̃ ]N′

T �̄T (�),

where �̃T is a sequence of symmetric positive definite random matrices of size
K̃ converging toward a positive definite matrix �̃. The proof of consistency
of �̂T is divided into two steps: (1) we show that �̃T is a consistent estimator
of �0; (2) we show that Plim[�̂T ] = Plim[�̃T ].
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(1) The weak consistency of �̃T follows from a contradiction argument.
If �̃T were not consistent, there would exist some positive � such that

P
[‖�̃T − �0‖ > �

]
does not converge to zero. Then we can define a subsequence (�̃Tn )n∈N
such that, for some positive �:

P
[‖�̃Tn − �0‖ > �

] ≥ � for n ∈ N

From Assumption 2.2(ii), we have

� ≡ inf
‖�−�0‖>�

‖d̃(�)‖ > 0.

Note that since c is bounded and the orthogonal matrix MT is norm-
preserving, [�̃T

... OK̃ , K−K̃ ]N′
T �T (�) converges to d̃(�) uniformly on �

by Assumption 2.1. Then, by Assumption 2.2(ii), we have

inf
‖�−�0‖>�

‖[�̃T
... OK̃ , K−K̃ ]N′

T �T (�)‖ ≥ �

2
for all T sufficiently large.

That is, for all T sufficiently large, we have

inf
‖�−�0‖>�

‖�̃T �̃T (�)‖ ≥ �

2
where �̃T (�) = [I dK̃

... OK̃ , K−K̃ ]N′
T �T (�).

Since ‖�̃T‖/√T = o(1) by Assumption 2.2(ii) and
√

T �̃(�̃T ) = OP (1)
by Lemma 2.1, we get a contradiction when considering a subse-
quence Tn. We conclude that �̃T is a consistent estimator of �0.

(2) We now show that �0 = Plim[�̂T ], by showing that it is true for any
subsequence. If we could find a subsequence which does not con-
verge toward �0, we could find a sub-subsequence with a limit in
probability �1 �= �0 (by assumption � is compact). To avoid cum-
bersome notations with sub-subsequences, it is sufficient to show
that: Plim[�̂T ] = �1 ⇒ �1 = �0. Consider the criterion function:
QT (�) = �̄

′
T (�)�T �̄T (�). We show that

(i) QT (�̃T ) = OP (1/‖�̆T‖2)

(ii) �1 �= �0 ⇒ ‖�̆T‖2 QT (�̂T )
T→ ∞.

This would lead to a contradiction with the definition of GMM es-
timators: QT (�̂T ) ≤ QT (�̃T ).To show (i) and (ii), we assume without
loss of generality that the weighting matrices �T , �̃T , � and �̃ are
all identity matrices; otherwise, this property would come with a
convenient rescaling of the moment conditions.
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T QT (�) = T�̄
′
T (�)�̄T (�)

= ‖
√

T[I dK̃
... OK̃ , K−K̃ ]�̄T (�)‖2 + ‖

√
T[OK−K̃ , K̃

... I dK−K̃ ]�̄T (�)‖2

= ‖
√

T[I dK̃
... OK̃ , K−K̃ ]�̄T (�)‖2 + ‖[OK−K̃ , K̃

... I dK−K̃ ](
(�) −
√

T�T (�))‖2

From Lemma 2.1: ‖√T[I dK̃
... OK̃ , K−K̃ ]�̄T (�̃T )‖ = OP (1).

From Assumption 2.2(ii): [OK−K̃ , K̃
... �̆T ]N′

T �T (�) → d̆(�) uniformly.
Thus: QT (�) = OP (1/(‖�̆T‖2)).

‖�̆T‖2 QT (�̂T )

≥
∥∥∥∥‖�̆T‖√

T
[I dK̃

... OK̃ , K−K̃ ]
(�̂T ) + ‖�̆T‖[I dK̃
... OK̃ , K−K̃ ]�T (�̂T )

∥∥∥∥2

≥
[
‖�̆T‖‖[I dK̃

... OK̃ , K−K̃ ]�T (�̂T )‖ − ‖�̆T‖√
T

‖[I dK̃
... OK̃ , K−K̃ ]
(�̂T )‖

]2

From Assumption 2.2(ii): ‖�̆T ‖√
T

‖[I dK̃
... OK̃ , K−K̃ ]
(�̂T )‖ = OP

(‖
(�̂T )‖) =
OP (1), while

‖�̆T‖‖[I dK̃
... OK̃ , K−K̃ ]�T (�̂T )‖ ≥ ‖�̆T‖‖[�̃T

... OK̃ , K−K̃ ]�T (�̂T )‖
‖�̃T‖ ,

with ‖[�̃T
... OK̃ , K−K̃ ]N′

T �T (�̂T )‖ → ‖d̃(�1)‖ �= 0. Thus,

‖�̆T‖‖[�̃T
... OK̃ , K−K̃ ]�T (�̂T )‖
‖�̃T‖ → +∞,

and we get the announced result.

Proof of Theorem 2.2 (Rate of convergence)
From Lemma 2.1, ‖�T (�̂T )‖ = OP (1/

√
T). We know that NT is bounded.

Hence, we have: ‖N′
T �T (�̂T )‖ = OP (1/

√
T). Recall also that from Assump-

tion 2.2(iii), the first K̃ elements of NT �T (�0) are identically zero. The mean-
value theorem, for some �̃T between �̂T and �0 (component by component),
yields to ∥∥∥∥[�̃T 0]N′

T
∂�T (�̃T )

∂�′
(
�̂T − �0)∥∥∥∥ = OP

(‖�̃T‖√
T

)
.
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Note that (by a common abuse of notation) we omit to stress that �̃T actually
depends on the component of �T . Define now zT as follows:

zT ≡ ∂ d̃(�0)
∂�′ (�̂T − �0). (2.19)

Since [∂ d̃(�0)/∂�′] is full column rank by Assumption 2.3(iii), we have

(
�̂T − �0) =

[
∂ d̃ ′(�0)

∂�

∂ d̃(�0)
∂�′

]−1
∂ d̃ ′(�0)

∂�
zT .

Hence, we only need to prove that ‖zT‖ = OP (‖�̃T‖/√T). By definition of
zT , we have

zT =
[
∂ d̃(�0)

∂�′ − [�̃T 0]N′
T
∂�T (�̃T )

∂�′

] (
�̂T − �0) + wT with

‖wT‖ = OP

(‖�̃T‖√
T

)
. (2.20)

However, since �̃T
P→ �0 and [�̃T 0]N′

T [∂�T (�)/∂�′] converges uniformly on
the interior of � toward [∂ d̃(�)/∂�′] by Assumption 2.3(iv), we have[

∂ d̃(�0)
∂�′ − [�̃T 0]N′

T
∂�T (�̃T )

∂�′

] (
�̂T − �0),

=
[
∂ d̃(�0)

∂�′ − [�̃T 0]N′
T
∂�T (�̃T )

∂�′

] [
∂ d̃ ′(�0)

∂�

∂ d̃(�0)
∂�′

]−1
∂ d̃ ′(�0)

∂�
zT ,

= DT zT ,

for some matrix DT such that ‖DT‖ P→ 0. Therefore: ‖zT‖ ≤ �T ‖zT‖ +
‖wT‖ with �T → 0. Hence, ‖zT‖ = OP (‖�̃T‖/√T) and we get: ‖�̂T − �0‖ =
OP (‖�̃T‖/√T).

Proof of Theorem 2.3
Without loss of generality, we write the diagonal matrix �T as:

�T =



�1T I dK1

. . .

�LT I dKL

�L+1,T I dKL+1

. . .

�L,T I dKL


=


�̃T O

O �̆T


with L ≤ K ,

∑L
l=1 Kl = K and �lT = o(�l+1,T ). For convenience, we also

rewrite the ( p, K )-matrix
[

∂c′(�0)
∂�

M−1′] by stacking horizontally L blocks of
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size ( p, Kl) denoted Jl , (l = 1, · · · , L) as follows:

∂c ′(�0)
∂�

M−1′ = (
J1 · · · J L J L+1 · · · J L

) =
(

∂ d̃ ′(�0)
∂�′

∂ d̆ ′(�0)
∂�′

)
,

with J ′
1 ≡



[
M−1 ∂c(�0)

∂�′

]
[1.]

...[
M−1 ∂c(�0)

∂�′

]
[K1]

 and J ′
l ≡



[
M−1 ∂c(�0)

∂�′

]
[K1+···+Kl−1+1.]

...[
M−1 ∂c(�0)

∂�′

]
[K1+···+Kl .]


for l = 2, · · · , L.

Recall also that by Assumption 2.3(iii), the columns of ∂ d̃ ′(�0)
∂�

span the whole
space R

p. We now introduce the square matrix of size p, R = [R1 R2 · · · RL ]
which spans R

p. The idea is that each ( p, sl)-block Rl defined through col[Jl]
collects the directions associated with the specific rate �lT , l = 1, · · · , L and∑L

l=1 sl = p. Then, the matrix ÃT is built as

ÃT =
[

�1T R1
... �2T R2

... · · · ... �LT RL

]
.

By convention, �lT = o(�l+1,T ) for any 1 ≤ l ≤ L − 1. We now explain how
to construct the matrix R. The idea is to separate the parameter space into L
subspaces. More specifically:

• RL is defined such that J ′
i RL = 0 for 1 ≤ i < L and rk[RL ] = rk[J L ].

In other words, RL spans col[J1 J2 · · · J L−1]⊥.

• RL−1 is defined such that J ′
i RL−1 = 0 for 1 ≤ i < L−1 andrk[RL−1 RL ] =

rk[J L−1 J L ].

• And so on, until R2 is defined such that J ′
1 R2 = 0 andrk[R2 · · · RL ] =

rk[J2 · · · J L ].

• Finally, R1 is defined such that R = [R1 R2 · · · RL ] is full rank.

We now check that limT [�−1
T M−1 ∂c(�0)

∂�′ ÃT ] exists and is full column rank. First,
recall that we have

lim
T

(
�−1

T M−1 ∂c(�0)
∂�′ ÃT

)
= lim

T

([
�̃−1

T 0

0 �̆−1
T

] [
∂ d̃(�0)

∂�′

∂ d̆(�0)
∂�′

]
ÃT

)

= lim
T

 �̃−1
T

∂ d̃(�0)
∂�′ ÃT

0

 ,

since �̆−1
T = o(‖�̃−1

T ‖) and ‖ÃT‖ = O(�̃T ).
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We now show that [�̃−1
T

∂ d̃(�0)
∂�′ ÃT ] converges to a block diagonal matrix of

rank p.

�̃−1
T

∂ d̃(�0)
∂�′ ÃT =


�−1

1T I dK1

. . .

�−1
LT I dKL


×

[
�1T

∂ d̃(�0)
∂�′ R1

... �2T
∂ d̃(�0)

∂�′ R2
... · · · ... �LT

∂ d̃(�0)
∂�′ RL

]
.

• The L diagonal blocks are equal to J ′
l Rl ; these (Kl, sl)-blocks are full

column rank sl by construction of the matrices Rl with
∑L

l=1 sl = p.

• The lower triangular blocks converge to zero since � jT = o(�lT ) for
any 1 ≤ j < l ≤ L .

• The upper triangular blocks converge to zero by construction of the
matrices Rl since J ′

l Ri = 0 for any 1 ≤ l < i ≤ L .

Proof of Corollary 2.1 (Extended Theorem 2.3)
From Assumption 2.4(i):

∂�̄T (�0)
∂�′ − A−1

T
∂c(�0)

∂�′ = OP

(
1√
T

)

⇔ ∂�̄T (�0)
∂�′ − N−1

T �−1
T M−1

T
∂c(�0)

∂�′ = OP

(
1√
T

)

⇒ ∂�̄T (�0)
∂�′ ÃT − N−1

T �−1
T M−1

T
∂c(�0)

∂�′ ÃT = OP

(‖�̃T‖√
T

)

⇒ ∂�̄T (�0)
∂�′ ÃT − N−1 H = OP

(‖�̃T‖√
T

)
,

with H full column rank matrix from Theorem 2.3.

Proof of Theorem 2.4 (Asymptotic distribution)
Mean-value expansion of the moment conditions around �0 for �̃T between
�̂T and �0,

�̄T (�̂T ) = �̄T (�0) + ∂�̄T (�̃T )
∂�′ (�̂T − �0), (2.21)
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combined with the first-order conditions,

∂�̄
′
T (�̂T )
∂�

�T �̄T (�̂T ) = 0

yields to

∂�̄
′
T (�̂T )
∂�

�T �̄T (�0) + ∂�̄
′
T (�̂T )
∂�

�T
∂�̄T (�̃T )

∂�′ (�̂T − �0) = 0

⇔ Ã′
T
∂�̄

′
T (�̂T )
∂�

�T
√

T�̄T (�0)

+ Ã′
T
∂�̄

′
T (�̂T )
∂�

�T
∂�̄T (�̃T )

∂�′ ÃT Ã−1
T (�̂T − �0) = 0

⇔ Ã−1
T

√
T(�̂T − �0) = −

[
Ã′

T
∂�̄

′
T (�̂T )
∂�

�T
∂�̄T (�̃T )

∂�′ ÃT

]−1

×Ã′
T
∂�̄

′
T (�̂T )
∂�

�T
√

T�̄T (�0)

⇒ Ã−1
T

√
T(�̂T − �0) = OP (1). (2.22)

We then get the expected result after justifying the invertibility of
[
Ã′

T
∂�̄

′
T (�̂T )
∂�

�T
∂�̄T (�̃T )

∂�′ ÃT
]

for T large enough.

Lemma 2.2 (Extension of Corollary 2.1)
Under Assumptions 2.1–2.5, for any consistent estimator �T s.t. ‖�T − �0‖ =
OP (‖�̃T‖/√T),

Plim

[
∂�̄T (�T )

∂�′ ÃT

]
exists and is full column rank.

Proof Mean-value expansion of the kth row of ∂[�̄T (�T )/∂�′] around �0 for
�̃T between �̂T and �0:

[
∂�̄T (�T )

∂�′ ÃT

]
k.

=
[
∂�̄T (�0)

∂�′ ÃT

]
k.

+ (�T − �0)′ ∂

∂�

[
∂�̄T (�̃T )

∂�′ ÃT

]
k.

,

⇔
[
∂�̄T (�T )

∂�′ ÃT

]
k.

−
[
∂�̄T (�0)

∂�′ ÃT

]
k.

=
√

T
‖�̃T‖ (�T − �0)

×‖�̃T‖√
T

∂

∂�

[
∂�̄T (�̃T )

∂�′ ÃT

]
k.

.



 

P1: Gopal Joshi

November 12, 2010 17:2 C7035 C7035˙C002

Efficient Inference with Poor Instruments: A General Framework 65

From Assumption 2.4(ii), the Hessian term is such that

∂

∂�

[
∂�̄T (�̃T )

∂�′

]
k.

= ∂

∂�

[
A−1

T
∂c(�̃T )

∂�′

]
k.

+ OP

(
1√
T

)

= ∂

∂�

[
N−1

T �−1
T M−1

T
∂c(�̃T )

∂�′

]
k.

+ OP

(
1√
T

)

= OP

(
1

�lT

)
+ OP

(
1√
T

)
from Assumption 2.4(ii)

= OP

(
1

�lT

)
, (2.23)

for any k such that K1 + · · · + Kl−1 < k ≤ K1 + · · · + Kl and l = 1, · · · , L .
Recall that ÃT = [�1T R1

... · · · ...�LT RL ]. To get the final result, we distinguish
two cases to show that the RHS of the following equation is o p(1).([

∂�̄T (�T )
∂�′

]
k.

−
[
∂�̄T (�0)

∂�′

]
k.

)
�iT Ri

=
√

T
‖�̃T‖ (�T − �0) × ‖�̃T‖√

T

∂

∂�

[
∂�̄T (�̃T )

∂�′

]
k.

�iT Ri .

• For 1 ≤ i ≤ l, �iT = o(�lT ) and the result directly follows from
equation (2.23).

• For i > l, �lT = o(�iT ) and the result follows from nearly-strong
identification Assumption 2.5.

Note that when the same degree of global identification weakness is as-
sumed, the asymptotic theory is available under Assumptions 2.1–2.4, since
Lemma 2.2 holds without the nearly-strong identification Assumption 2.5.

Proof of Theorem 2.6 (J test)
Plugging (2.22) into (2.21), we get

√
T�̄T (�̂T ) =

√
T�̄T (�0) − ∂�̄T (�̃T )

∂�′ ÃT

[
Ã′

T
∂�̄

′
T (�̂T )
∂�

�T
∂�̄T (�̃T )

∂�′ ÃT

]−1

Ã′
T
∂�̄

′
T (�̂T )
∂�

�T
√

T�̄T (�0)

⇒ T QT (�̂T ) =
[√

T�̄T (�0)
]′

�
′1/2
T [I dK − PX] �

1/2
T

[√
T�̄T (�0)

]
+ o P (1),

with �T = �
′1/2
T �

1/2
T and PX = X(X′ X)−1 X′ for X = �

1/2
T

∂�̄T (�̂T )
∂�′ ÃT .

Proof of Theorem 2.7 (Wald test)
To simplify the exposition, the proof is performed with �T as defined in
Example 2.2. In step 1, we define an algebraically equivalent formulation of
H0 : g(�) = 0 as H0 : h(�) = 0 such that its first components are identified at the
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fast rate �1T , while the remaining ones are identified at the slow rate �2T with-
out any linear combinations of the latter being identified at the fast rate. In step
2, we show that the Wald test statistic 	W

T (h) on H0 : h(�) = 0 asymptotically
converges to the proper chi-square distribution with q degrees of freedom and
that it is numerically equal to the Wald test statistic 	W

T (g) on H0 : g(�) = 0.

Step 1: The space of fast directions to be tested is

I 0(g) =
[

col
∂g′(�0)

∂�

]
∩

[
col

∂ d̃ ′
1(�0)
∂�

]
.

Denote n0(g) the dimension of I 0(g). Then, among the q restrictions to be
tested, n0(g) are identified at the fast rate and the (q − n0(g)) remaining ones
are identified at the slow rate.
Define q vectors of R

q denoted as � j ( j = 1, · · · , q ) such that
[
(∂g′(�0)/∂�)� j

]q1

j=1

is a basis of I 0(g) and
[
(∂g′(�0)/∂�)� j

]q
j=q1+1 is a basis of

[
I 0(g)

]⊥ ∩
[

col
(

∂g′(�0)
∂�

)]
.

We can then define a new formulation of the null hypothesis H0 : g(�) = 0
as, H0 : h(�) = 0 where h(�) = Hg(�) with H invertible matrix such that
H′ = [�1 · · · �q ]. The two formulations are algebraically equivalent since
h(�) = 0 ⇐⇒ g(�) = 0. Moreover,

Plim

[
D−1

T
∂h(�0)

∂�′ ÃT

]
= B0 with DT =

[
�1T I dn0(g) 0

0 �2T I dq−n0(g)

]
,

and B0 a full column rank (q , p)-matrix.
Step 2: we show that the two induced Wald test statistics 	W

T (g) and 	W
T (h) are

equal.

	W
T (g) = Tg′(�̂T )

∂g(�̂T )
∂�′

[
∂�̄

′
T (�̂T )
∂�

S−1
T

∂�̄T (�̂T )
∂�′

]−1
∂g′(�̂T )

∂�


−1

g(�̂T )

= T H′g′(�̂T )

H
∂g(�̂T )

∂�′

[
∂�̄

′
T (�̂T )
∂�

S−1
T

∂�̄T (�̂T )
∂�′

]−1
∂g′(�̂T )

∂�
H′


−1

Hg(�̂T )

= 	W
T (h).

Then, we show 	W
T (h) is asymptotically distributed as a chi-square with q

degrees of freedom. First, a preliminary result naturally extends the above
convergence toward B0 when �0 is replaced by a �2T -consistent estimator �∗

T :

Plim

[
D−1

T
∂h(�∗

T )
∂�′ ÃT

]
= B0.
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The proof is very similar to Lemma 2.2 and is not reproduced here. The Wald
test statistic 	W

T (h) now writes:

	W
T (h) =

[√
T D−1

T h(�̂T )
]′

D−1
T

∂h(�̂T )
∂�′ Ã−1

T

[
Ã′

T
∂�̄

′
T (�̂T )
∂�

S−1
T

∂�̄T (�̂T )
∂�′ ÃT

]−1

× ÃT
∂h′(�̂T )

∂�
D−1

T

}−1

×
[√

T D−1
T h(�̂T )

]
.

From Lemma 2.2,[
Ã′

T
∂�̄

′
T (�̂T )
∂�

S−1
T

∂�̄T (�̂T )
∂�′ ÃT

]
P→ � nonsingular matrix.

Now, from the mean-value theorem under H0 we deduce

√
T D−1

T h(�̂T ) =
√

T D−1
T

∂h(�∗
T )

∂�′ (�̂T − �0) =
[

D−1
T

∂h(�∗
T )

∂�′ ÃT

] √
T Ã−1

T (�̂T − �0)

with [
D−1

T
∂h(�∗

T )
∂�′ ÃT

]
P→ B0 and

√
T Ã−1

T

(
�̂T − �0) d→ N (0, �−1).

Finally we get

	W
T (h) = [√

T Ã−1
T (�̂T − �0)

]′ B ′
0(B0�B ′

0)−1 B0
[√

T Ã−1
T (�̂T − �0)

] + o P (1).

Following the proof of Theorem 2.6 we get the expected result.

Proof of Proposition 2.1 (Equivalence between CU-GMM and 2S-GMM)
FOC of the CU-GMM optimization problem can be written as follows (see
Antoine, Bonnal, and Renault 2007):

√
T

∂�̄
′
T (�̂

CU
T )

∂�
S−1

T (�̂
CU
T )

√
T�̄T (�̂

CU
T )

−P
√

T
∂�̄

′
T (�̂

CU
T )

∂�
S−1

T (�̂
CU
T )

√
T�̄T (�̂

CU
T ) = 0,

where P is the projection matrix onto the moment conditions. Recall that

P
√

T
∂�̄

( j)
T (�̂

CU
T )

∂�
= Cov

(
∂�̄

( j)
T (�̂

CU
T )

∂�
, �̄T (�̂

CU
T )

)
S−1

T (�̂
CU
T )

√
T�̄T (�̂

CU
T ).

With a slight abuse of notation, we define conveniently the matrix of size
( p, K 2) built by stacking horizontally the K matrices of size ( p, K ),
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Cov × (∂�̄ j,T (�̂
CU
T )/∂�, �̄T (�̂

CU
T )), as

Cov

(
∂�̄

′
T (�̂

CU
T )

∂�
, �̄T (�̂

CU
T )

)

≡
[

Cov

(
∂�̄

(1)
T (�̂

CU
T )

∂�
, �̄T (�̂

CU
T )

)
. . . Cov

(
∂�̄

( j)
T (�̂

CU
T )

∂�
, �̄T (�̂

CU
T )

)
. . .

× Cov

(
∂�̄

(K )
T (�̂

CU
T )

∂�
, �̄T (�̂

CU
T )

)]
.

Then, we can write:

P
√

T
∂�̄T (�̂

CU
T )

∂�
= Cov

(
∂�̄

′
T (�̂

CU
T )

∂�
, �̄T (�̂

CU
T )

)
×(

I dK ⊗ [S−1
T (�̂

CU
T )

√
T�̄T (�̂

CU
T )]

) ≡ HT ,

where HT = OP (1). Next, pre-multiply the above FOC by Ã′
T/

√
T to get

Ã′
T
∂�̄

′
T

(
�̂

CU
T

)
∂�

S−1
T

(
�̂

CU
T

)√
T�̄T

(
�̂

CU
T

) − Ã′
T√
T

HT S−1
T

(
�̂

CU
T

)√
T�̄T

(
�̂

CU
T

) = 0.

To get the equivalence between both estimators, we now show that the second
element of the LHS is equal to o P (1).

From Assumption 2.1, we have
√

T�̄T (�̂
CU
T ) = √

T�T (�̂
CU
T ) + 
T (�̂

CU
T ) with


T a Gaussian process. Hence, we have

Ã′
T√
T

HT S−1
T

(
�̂

CU
T

)√
T�̄T

(
�̂

CU
T

) = Ã′
T√
T

HT S−1
T

(
�̂

CU
T

)

T

(
�̂

CU
T

)
− Ã′

T√
T

HT S−1
T

(
�̂

CU
T

)√
T�T

(
�̂

CU
T

)
.

The first term of the RHS is obviously o p(1) since ‖ÃT‖ = o(
√

T). The same
remains to be shown for the second term,

Ã′
T√
T

HT
√

T S−1
T (�̂

CU
T )�T (�̂

CU
T ).

A result and proof similar to Lemma 2.1 for �̂
CU
T yield to: ‖√T�T (�̂

CU
T )‖ =

OP (1).
Also, we already know that HT = OP (1) and ‖ÃT‖ = o(

√
T). So, we com-

bine these results to get

Ã′
T√
T

HT
√

T S−1
T (�̂

CU
T )�T (�̂

CU
T ) = o p(1).
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We conclude that both estimators are always defined by the same set of
equations. To deduce that they are equivalent, we need Assumption 2.5 in
order to get the same asymptotic theory. When the same degree of global
identification weakness is assumed, the asymptotic theory holds without
Assumption 2.5.
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3.1 Introduction

There is much work in the social sciences on discrete choice models. Among
those, the multinomial logit is the most common model used for analyzing
survey data when the number of choices is greater than 2. In many cases, how-
ever, the underlying assumptions leading to the traditional maximum likeli-
hood estimator (MLE) for the logit model are inconsistent with the perceived
process that generated the observed data. One of these cases is the random
parameter (RP) logit model (also known as “mixed logit” – see Revelt and
Train 1998) that can be viewed as a variant of the multinomial choice model.
In this chapter we formulate an Information-Theoretic (IT) estimator for the
RP mixed logit model. Our estimator is easy to use and is computationally
much less demanding than its competitors — the simulated likelihood class
of estimators.

71



 

P1: BINAYA KUMAR DASH

November 12, 2010 17:4 C7035 C7035˙C003

72 Handbook of Empirical Economics and Finance

The objective of this work is to develop an estimation approach that is
not simulation based, does not build on an underlying normal structure and
is computationally efficient. This method is simple to use and apply and it
works well for all sample sizes, though it is especially useful for smaller or ill-
behaved data. The random parameters logit model is presented in Section 3.2.
We discuss the information theoretic model and the motivation for construct-
ing it in Section 3.3. In Section 3.4 we extend and generalize our basic model.
In Section 3.5 we provide the necessary statistics for diagnostics and inference.
We note, however, that the emphasis in this chapter is not on providing the
large sample properties of our estimator, but rather to present the reader with
convincing arguments that this model works well (relative to its competitors)
for finite data and to provide the user with the correct set of tools to apply it.
In Section 3.6 we provide simulated examples and contrast our IT estimator
with competing simulated methods. We conclude in Section 3.7.

3.2 The Random Parameters Logit

The RP model is somewhat similar to the random coefficients model for lin-
ear regressions. (See, for example, Bhat 1996; Jain, Vilcassim, and Chintagunta
1994; Revelt and Train 1998; Train, Revelt, and Ruud, 1996; and Berry,
Levinsohn, and Pakes 1995.) The core model formulation is a multinomial
logit model, for individuals i = 1, . . . , N in choice setting t. Let yit be the ob-
served choice (t = j) of individual i and neglecting for the moment the error
components aspect of the model, we begin with the basic form of the multino-
mial logit model, with alternative specific constants �ji and a K-dimensional
attributes vector xjit,

Prob(yit = j) = exp(�ji+�′
i xjit)∑J i

q=1 exp(�qi+�′
i xqit)

. (3.1)

The RP model emerges as the form of the individual specific parameter vector,
�i is developed. In the most familiar, simplest version of the model

�ki = �k + �kvki,

and

�ji = �j + � j vji,

where �k is the population mean, vki is the individual specific heterogeneity,
with mean zero and standard deviation one, and �k is the standard deviation
of the distribution of �ik’s around �k. The choice specific constants, �ji and the
elements of �i are distributed randomly across individuals with fixed means.
A refinement of the model is to allow the means of the parameter distribu-
tions to be heterogeneous with observed data, zi, (which does not include
a constant term). This would be a set of choice invariant characteristics that
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produce individual heterogeneity in the means of the randomly distributed
coefficients, so that

�ki = �k + �′
kzi + �kvki,

and likewise for the constants. The basic model for heterogeneity is not lim-
ited to the normal distribution. We consider several alternatives below. One
important variation is the lognormal model,

�ki = exp(�k + �′
kzi + �kvki).

The v’s are individual unobserved random disturbances, the source of the
heterogeneity. Thus, as stated above, in the population, if the random terms
are normally distributed, then

�ji or �ki ∼ Normal or Lognormal [� j or k + �′
j or kzi, �2

j or k].

Other distributions may be specified in a similar fashion.
For the full vector of K random coefficients in the model, we may write the

set of random parameters as

�i = � + ∆zi + Γvi . (3.2)

where Γ is a diagonal matrix which contains �k on its diagonal. For conve-
nience at this point, we will simply gather the parameters, choice specific or
not, under the subscript ‘k.’ (The notation is a bit more cumbersome for the
lognormally distributed parameters.)

We can go a step farther and allow the random parameters to be correlated.
All that is needed to obtain this additional generality is to allow Γ to be
a lower triangular matrix with nonzero elements below the main diagonal.
Then, the full covariance matrix of the random coefficients is Σ = ΓΓ′. The
standard case of uncorrelated coefficients has Γ = diag(�1, �2, . . . , �K). If the
coefficients are freely correlated, Γ is an unrestricted lower triangular matrix
and Σ will have nonzero off diagonal elements. It is convenient to aggregate
this one step farther. We may gather the entire parameter vector for the model
in this formulation simply by specifying that for the nonrandom parameters
in the model, the corresponding rows in ∆ and Γ are zero. We also define the
data and parameter vector so that any choice specific aspects are handled by
appropriate placements of zeros in the applicable parameter vector. This is
the approach we take in Section 3.3.

An additional extension of the model allows the distribution of the random
parameters to be heteroscedastic. As stated above, the variance of vik is taken
to be a constant. The model is made heteroscedastic by assuming, instead,
that

Var[vik] = �jk2[exp(�k ’hri)]2

where hri is a vector of covariates, and �k is the associated set of parameters. A
convenient way to parameterize this is to write the full model (Equation 3.2) as

�i = � + ∆zi + ΓΩi vi (3.3)
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where Ωi is a diagonal matrix of individual specific standard deviation terms:
�ik = exp(�′

k hri).
The list of variations above produces an extremely flexible, general model.

Typically, depending on the problem at hand, we use only some of these
variations, though in principle, all could appear in the model at once. The
probabilities defined above (Equation 3.1) are conditioned on the random
terms, vi. The unconditional probabilities are obtained by integrating vik out
of the conditional probabilities: Pj = Ev[P(j|vi)]. This is a multiple integral
which does not exist in closed form. Therefore, in these types of problems, the
integral is approximated by sampling R draws from the assumed populations
and averaging. The parameters are estimated by maximizing the simulated
log-likelihood,

log Ls =
N∑

i=1

log
1
R

R∑
r=1

Ti∏
t=1

J it∑
j=1

dijt
exp[� j i + �′

ir xjit]∑J it
q=1 exp[�qi + �′

ir xqit]
, (3.4)

with respect to (�, ∆, Γ,Ω), where
dijt = 1 if individual i makes choice j in period t, and zero otherwise,
R = the number of replications,
�ir = � + ∆zi + ΓΩivir = the r th draw on �i,
vir = the rth multivariate draw for individual i.

The heteroscedasticity is induced first by multiplying vir by Ωi, then the corre-
lation is induced by multiplying Ωivir by Γ. See Bhat (1996), Revelt and Train
(1998), Train (2003), Greene (2008), Hensher and Greene (2003), and Hensher,
Greene, and Rose (2006) for further formulations, discussions and examples.

3.3 The Basic Information Theoretic Model

Like the basic logit models, the basic mixed logit model discussed above
(Equation 3.1) is based on the utility functions of the individuals. However,
in the mixed logit (or RP) models in Equation 3.1, there are many more pa-
rameters to estimate than there are data points in the sample. In fact, the
construction of the simulated likelihood (Equation 3.4) is based on a set of
restricting assumptions. Without these assumptions (on the parameters and
on the underlying error structure), the number of unknowns is larger than the
number of data points regardless of the sample size leading to an underde-
termined problem. Rather than using a structural approach to overcome the
identification problem, we resort here to the basics of information theory (IT)
and the method of Maximum Entropy (ME) (see Shannon 1948; Jaynes 1957a,
1957b). Under that approach, we can maximize the total entropy of the system
subject to the observed data. All the observed and known information enters
as constraints within that optimization. Once the optimization is done, the
problem is converted to its concentrated form (profile likelihood), allowing
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us to identify the natural set of parameters of that model. We now formulate
our IT model.

The model we develop here is a direct extension of the IT, generalized
maximum entropy (GME) multinomial choice model of Golan, Judge, and
Miller (1996) and Golan, Judge, and Perloff (1996). To simplify notations, in the
formulation below we include all unknown signal parameters (the constants
and choice specific covariates) within � so that the covariates X also include
the choice specific constants. Specifically, and as we discussed in Section 3.2,
we gather the entire parameter vector for the model by specifying that for
the nonrandom parameters in the model, the corresponding rows in ∆ and
Γ are zero. Further, we also define the data and parameter vector so that any
choice specific aspects are handled by appropriate placements of zeros in the
applicable parameter vector. This is the approach we take below.

Instead of considering a specific (and usually unknown) F (·), or a like-
lihood function, we express the observed data and their relationship to the
unobserved probabilities, P , as

yij = F (x′
j i � j ) + εij = pij + εij, i = 1, . . . , N, j = 1, . . . , J,

where pij are the unknown multinomial probabilities and εij are additive noise
components for each individual. Since the observed Y’s are either zero or one,
the noise components are naturally contained in [−1, 1] for each individual.
Rather than choosing a specific F (·), we connect the observables and unob-
servables via the cross moments:∑

i

yijxijk =
∑

i

xijk pij +
∑

i

xijkεij (3.5)

where there are (N × ( J − 1)) unknown probabilities, but only (K × J ) data
points or moments. We call these moments “stochastic moments” as the
last term is different from the traditional (pure) moment representation of∑

i yijxijk = ∑
i xijk pij.

Next, we reformulate the model to be consistent with the mixed logit data
generation process. Let each pij be expressed as the expected value of an M-
dimensional discrete random variable s (or an equally spaced support) with
underlying probabilities �ij. Thus, pij ≡ ∑M

m sm�ijm, sm ∈ [0, 1] and m = 1,
2, . . . , M with M ≥ 2 and where

∑M
m �ijm = 1. (We consider an exten-

sion to a continuous version of the model in Section 3.4.) To formulate this
model within the IT-GME approach, we need to attach each one of the un-
observed disturbances εij to a proper probability distribution. To do so, let
εij be the expected value of an H-dimensional support space (random vari-
able) u with corresponding H-dimensional vector of weights, w. Specifically,
let u = (−1/

√
N, . . . , 0, . . . 1/

√
N)′, so εij ≡ ∑H

h=1 uhwijh (or εi = E[ui ]) with∑
h wijh = 1 for each εij.
Thus, the H-dimensional vector of weights (proper probabilities) w con-

verts the errors from the [−1, 1] space into a set of N × H proper probability



 

P1: BINAYA KUMAR DASH

November 12, 2010 17:4 C7035 C7035˙C003

76 Handbook of Empirical Economics and Finance

distributions within u. We now reformulate Equation 3.5 as∑
i

yijxijk =
∑

i

xijk pij +
∑

i

xijkεij =
∑
i,m

xijksm�ijm +
∑
i,h

xijkuhwijh. (3.6)

As we discussed previously, rather than using a simulated likelihood ap-
proach, our objective is to estimate, with minimal assumptions, the two sets of
unknown � and w simultaneously. Since the problem is inherently underde-
termined, we resort to the Maximum Entropy method (Jaynes 1957a, 1957b,
1978; Golan, Judge, and Miller, 1996; Golan, Judge, and Perloff, 1996). Under
that approach, one uses an information criterion, called entropy (Shannon
1948), to choose one of the infinitely many probability distributions consis-
tent with the observed data (Equation 3.6). Let H(�, w) be the joint entropies
of � and w, defined below. (See Golan, 2008, for a recent review and for-
mulations of that class of estimators.) Then, the full set of unknown {�, w}
is estimated by maximizing H(�, w) subject to the observed stochastic mo-
ments (Equation 3.6) and the requirement that {�}, {w} and {P} are proper
probabilities. Specifically,

Max
�,w

H(�,w) = −
∑
ijm

�ijmlog�ijm −
∑
ijh

wijhlogwijh

 (3.7)

subject to ∑
i

yijxijk =
∑

i

xijk pij +
∑

i

xijkεij

=
∑
i,m

xijksm�ijm +
∑
i,h

xijkuhwijh (3.8)

∑
m

�ijm = 1,
∑

h

wijh = 1 (3.9a)∑
j,m

sm�ijm = 1 (3.9b)

with s ∈ [0, 1] and u ∈ (−1, 1).
Forming the Lagrangean and solving yields the IT estimators for �

�̂ijm = exp
[
sm

( − ∑
k �̂kjxijk − �̂i

)]∑M
m=1 exp

[
sm

( − ∑
k �̂kjxijk − �̂i

)] ≡ exp
[
sm

( − ∑
k �̂kjxijk − �̂i

)]
�ij

(̂
�, �̂

) ,

(3.10)
and for w

ŵijh = exp
(−uh

∑
k xijk�̂jk

)∑
h exp

(−uh
∑

k xijk�̂jk
) ≡ exp

(−uh
∑

k xijk�̂jk
)

�ij(�̂)
(3.11)

where � is the set of K × ( J −1) Lagrange multiplier (estimated coefficients)
associated with (Equation 3.8) and � is the N-dimensional vector of Lagrange
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multipliers associated with Equation 3.9a). Finally, p̂ij = ∑
m sm�̂ijm and ε̂ij =∑

h uhŵijh. These �’s are the �’s and �’s defined and discussed in Section 3.1:
�′ = (�′, �’). We now can construct the concentrated entropy (profile likeli-
hood) model which is just the dual version of the above constrained optimiza-
tion model. This allows us to concentrate the model on the lower dimensional,
real parameters of interest (� and �). That is, we move from the {P, W} space
to the {�, �} space.

The concentrated entropy (likelihood) model is

Min
�,�

−
∑

ijk

yijxijk�kj +
∑

i

�i +
∑

ij

ln�ij (�, �) +
∑

ij

ln�ij (�)

. (3.12)

Solving with respect to � and �, we use Equation 3.10 and Equation 3.11 to
get �̂ and ŵ that are then transformed to p̂ and ε̂.

Returning to the mixed logit (Mlogit) model discussed earlier, the set of
parameters � and � are the parameters in the individual utility functions
(Equation 3.2 or 3.3) and represent both the population means and the ran-
dom (individual) parameters. But unlike the simulated likelihood approach,
no simulations are done here. Under this general criterion function, the objec-
tive is to minimize the joint entropy distance between the data and the state
of complete ignorance (the uniform distribution or the uninformed empirical
distribution). It is a dual-loss criterion that assigns equal weights to prediction
(P) and precision (W). It is a shrinkage estimator that simultaneously shrinks
the data and the noise to the center of their pre-specified supports. Further,
looking at the basic primal (constrained) model, it is clear that the estimated
parameters reflect not only the unknown parameters of the distribution, but
also the amount of information in each one of the stochastic moments (Equa-
tion 3.8). Thus, �kj reflects the informational contribution of moment kj. It is
the reduction in entropy (increase in information) as a result of incorporating
that moment in the estimation. The �’s reflect the individual effects.

As common to these class of models, the analyst is not (usually) interested
in the parameters, but rather in the marginal effects. In the model developed
here, the marginal effects (for the continuous covariates) are

∂pij

∂xijk
=

∑
m

sm
∂�ijm

∂xijk

with

∂�ijm

∂xijk
= �ijm

(
sm�kj −

∑
m

�ijmsm�kj

)

and finally

∂pij

∂xijk
=

∑
m

sm

[
�ijm

(
sm�kj −

∑
m

�ijmsm�kj

)]
.
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3.4 Extensions and Discussion

So far in our basic model (Equation 3.12) we used discrete probability distribu-
tions (or similarly discrete spaces) and uniform (uninformed) priors. We now
extend our basic model to allow for continuous spaces and for nonuniform
priors. We concentrate here on the noise distributions.

3.4.1 Triangular Priors

Under the model formulated above, we maximize the joint entropies subject
to our constraints. This model can be reconstructed as a minimization of
the entropy distance between the (yet) unknown posteriors and some priors
(subject to the same constraints). This class of methods is also known as “cross
entropy” models (e.g., Kullback 1959; Golan, Judge, and Miller, 1996). Let, w0

ijh
be a set of prior (proper) probability distributions on u. The normalization
factors (partition functions) for the errors are now

�ij =
∑

h

w0
ijh exp

(
uh

∑
k

xijk�jk

)
and the concentrated IT criterion (Equation 3.12) becomes

Max
�,�

∑
ijk

yijxijk�kj −
∑

i

�i −
∑

ij

ln�ij (�, �) −
∑

ij

ln�ij (�)

.

The estimated w’s are:

w̃ijh =
w0

ijh exp
(
uh

∑
k xijk�̃jk

)∑
h w0

ijh exp
(
uh

∑
k xijk�̃jk

) ≡
w0

ijh exp
(
uh

∑
k xijk�̃jk

)
�ij( �̃)

and ε̃ij = ∑
h uhw̃ijh. If the priors are all uniform (w0

ijh = 1/H for all i and j) this
estimator is similar to Equation 3.12. In our model, the most reasonable prior is
the triangular prior with higher weights on the center (zero) of the support u.
For example, if H = 3 one can specify w0

ij1 = 0.25, w0
ij2 = 0.5 and w0

ij3 = 0.25
or for H = 5, w0 = (0.05, 0.1, 0.7, 0.1, 0.05)′ or any other triangular prior the
user believes to be consistent with the data generating process. Note that like
the uniform prior, the a priori mean (for each εij) is zero. Similarly, if such
information exists, one can incorporate the priors for the signal. However,
unlike the noise priors just formulated, we cannot provide here a natural
source for such priors.

3.4.2 Bernoulli

A special case of our basic model is the Bernoulli priors. Assuming equal
weights on the two support bounds, and letting 	ij = ∑

k xijk�jk and u1 is the



 

P1: BINAYA KUMAR DASH

November 12, 2010 17:4 C7035 C7035˙C003

An Information Theoretic Estimator for the Mixed Discrete Choice Model 79

support bound such that u ∈ [−u1, u1], then the errors’ partition function is

� (�) =
∏

ij

1
2

(
e
∑

k xijk�jku1 + e− ∑
k xijk�jku1

)
=

∏
ij

1
2

(
e	iju1 + e−	iju1

) =
∏

ij

cosh(	iju1).

Then Equation 3.12 becomes

Max
�,�

∑
ijk

yijxijk�kj −
∑

i

�i −
∑

ij

ln�ij (�, �) −
∑

ij

ln�ij (�)


where ∑

ij

ln�ij (�) =
∑

ij

ln
[

1
2

(
e	iju1 + e−	iju1

)] =
∑

ij

ln cosh(	iju1).

Next, consider the case of Bernoulli model for the signal �. Recall that
sm ∈ [0, 1] and let the priors weights be q1 and q2 on zero (s1) and one (s2),
respectively. The signal partition function is

� (�,�) =
∏

ij

(
q1es1(

∑
k xijk�jk+�i ) + q2es2(

∑
k xijk�jk+�i )

)
=

∏
ij

(
q1 + q2e

∑
k xijk�jk+�i

)
=

∏
ij

(
q1 + q2e	ij+�i

)
and Equation 3.12 is now

Max
�,�

∑
ijk

yijxijk�kj −
∑

i

�i −
∑

ij

ln�ij (�, �) −
∑

ij

ln�ij (�)


where ∑

ij

ln�ij (�, �) =
∑

ij

ln
[
q1 + q2e	ij+�i

]
.

Traditionally, one would expect to set uniform priors (q1 = q2 = 0.5).

3.4.3 Continuous Uniform

Using the same notations as above and recalling that u ∈ [−u1, u1], the errors’
partition functions for continuous uniform priors are

�ij(�) = e	iju1 − e−	iju1

2u1	ij
= sinh(u1	ij)

u1	ij
.
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The right-hand side term of Equation 3.12 becomes∑
ij

ln�ij (�) =
∑

ij

[
ln

(
1
2

(
e	iju1 + e−	iju1

)) − ln
(
	iju1

)]
=

∑
ij

[
ln

(
sinh

(
	iju1

)) − ln
(
	iju1

)]
.

Similarly, and in general notations, for any uniform prior [a, b], the signal
partition function for each i and j is

�ij(�,�) = ea (−	ij−�i ) − eb(−	ij−�i )

(b − a )	ij
.

This reduces to

�ij(�,�) = 1 − e−	ij−�i

	ij

for the base case [a, b] = [0, 1] which is the natural support for the signal in
our model. The basic model is then

Min
�,�

∑
ijk

yijxijk�kj −
∑

i

�i −
∑

ij

[
ln

(
1 − e−	ij−�i

) − ln
(
	ij

)]

−
∑

ij

[
ln

(
sinh

(
	iju1

)) − ln
(
2	iju1

)]
= Min

�,�

∑
ijk

yijxijk�kj −
∑

i

�i −
∑

ij

ln�ij (�,�) −
∑

ij

ln�ij (�)

 .

Finally, the estimator for P (the individuals’ choices) is

�pij= 1
(b − a )

{
aea(−�	ij−�� i ) − beb(−�	ij−�� i )

�	ij
+ ea(−�	ij−�

�i i ) − eb(−�	ij−�� i )
�	2

ij

}

for any [a, b] and

�pij= −e−�	ij−�� i

�	ij
+ 1 − e−�	ij−�� i

�	2
ij

for our problem of [a, b] = [0, 1].
In this section we provided further detailed derivations and background

for our proposed IT estimator. We concentrated here on prior distributions
that seem to be consistent with the data generating process. Nonetheless,
in some very special cases, the researcher may be interested in specifying
other structures that we did not discuss here. Examples include normally
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distributed errors or possibly truncated normal with truncation points at −1
and 1. These imply normally distributed wi s within their supports. Though,
mathematically, we can provide these derivations, we do not do it here as it
does not seem to be in full agreement with our proposed model.

3.5 Inference and Diagnostics

In this section we provide some basic statistics that allow the user to evaluate
the results. We do not develop here large sample properties of our estimator.
There are two basic reasons for that. First, and most important, using the
error supports v as formulated above, it is trivial to show that this model
converges to the ML Logit. (See Golan, Judge, and Perloff, 1996, for the proof
of the simpler IT-GME model.) Therefore, basic statistics developed for the ML
logit are easily modified for our model. The second reason is simply that our
objective here is to provide the user with the necessary tools for diagnostics
and inference when analyzing finite samples.

Following Golan, Judge, and Miller (1996) and Golan (2008) we start by
defining the information measures, or normalized entropies

S1(�̂) ≡
− ∑

ijm �̂ijmln�̂ijm

(N × J ) ln(M)

and

S2(�̂ij) ≡ − ∑
m �̂ijmln�̂ijm

ln(M)
,

where both sets of measures are between zero and one, with one reflecting
uniformity (complete ignorance: � = 0) of the estimates, and zero reflecting
perfect knowledge. The first measure reflects the (signal) information in the
whole system, while the second one reflects the information in each i and j.
Similar information measures of the form I (�̂) = 1− Sj (�̂) are also used (e.g.,
Soofi, 1994).

Following the traditional derivation of the (empirical) likelihood ratio test
(within the likelihood literature), the empirical likelihood literature (Owen
1988, 1990, 2001; Qin and Lawless 1994), and the IT literature, we can construct
an entropy ratio test. (For additional background on IT see also Mittelhammer,
Judge, and Miller, 2000.) Let �� be the unconstrained entropy model Equa-
tion 3.12, and �� be the constrained one where, say 	′ = (�′, �′) = 0, or simi-
larly � = � = 0 (in Section 3.2). Then, the entropy ratio statistic is 2(�� − ��).
The value of the unconstrained problem �� is just the value of Max{H(�, w)},
or similarly the maximal value of Equation 3.12, while �� = (N × J )ln(M) for
uniform �’s. Thus, the entropy-ratio statistic is just

W(IT) = 2(�� − ��) = 2(N × J )ln(M)[1 − S1(�̂)].
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Under the null hypothesis, W(IT) converges in distribution to 
2
(n) where “n”

reflects the number constraints (or hypotheses). Finally, we can derive the
Pseudo-R2 (McFadden 1974) which gives the proportion of variation in the
data that is explained by the model (a measure of model fit):

Pseudo-R2 ≡ 1 − ��

��
= 1 − S1(�̂).

To make it somewhat clearer, the relationship of the entropy criterion and
the 
2 statistic can be easily shown. Consider, for example the cross entropy
criterion discussed in Section 3.4. This criterion reflects the entropy distance
between two proper distributions such as a prior and post-data (posterior)
distributions. Let I (�||�0) be the entropy distance between some distribution
� and its prior �0. Now, with a slight abuse of notations, to simplify the
explanation, let {�} be of dimension M. Let the null hypothesis be H0 : � = �0.
Then,


2
(M−1) =

∑
m

1
�0

m
(�m − �0

m)2.

Looking at the entropy distance (cross entropy) measureI
(
�||�0

)
and formu-

lating a second order approximation yields

I (�||�0) ≡
∑

m

�mlog(�m/�0
m) ∼= 1

2

∑
m

1
�0

m
(�m − �0

m)2

which is just the entropy (log-likelihood) ratio statistic of this estimator. Since
2 times the log-likelihood ratio statistic corresponds approximately to 
2,
the relationship is clear. Finally, though we used here a certain prior �0, the
derivation holds for all priors, including the uniform (uninformed) priors
(e.g., �m = 1/M) used in Section 3.3.

In conclusion, we stress the following: Under our IT-GME approach, one
investigates how “far” the data pull the estimates away from a state of com-
plete ignorance (uniform distribution). Thus, a high value of 
2 implies the
data tell us something about the estimates, or similarly, there is valuable infor-
mation in the data. If, however, one introduces some priors (Section 3.4), the
question becomes how far the data take us from our initial (a priori) beliefs —
the priors. A high value of 
2 implies that our prior beliefs are rejected by
the data. For more discussion and background on goodness of fit statistics for
multinomial type problems see Greene (2008). Further discussion of diagnos-
tics and testing for ME-ML model (under zero moment conditions) appears
in Soofi (1994). He provides measures related to the normalized entropy mea-
sures discussed above and provides a detailed formulation of decomposition
of these information concepts. For detailed derivations of statistics for a whole
class of IT models, including discrete choice models, see Golan (2008) as well
as Good (1963). All of these statistics can be used in the model developed
here.
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3.6 Simulated Examples

Sections 3.3 and 3.4 have developed our proposed IT model and some ex-
tensions. We also discussed some of the motivations for using our proposed
model, namely that it is semiparametric, and that it is not dependent on sim-
ulated likelihood approaches. It remains to investigate and contrast the IT
model with its competitors. We provide a number of simulated examples for
different sample sizes and different level of randomness. Among the appeals
of the Mixed Logit, (RP) models is its ability to predict the individual choices.
The results below include the in-sample and out-of-sample prediction tables
for the IT models as well.

The out-of-sample predictions for the simulated logit is trivial and is eas-
ily done using NLOGIT (discussed below). For the IT estimator, the out-of-
sample prediction involves estimating the �’s as well. Using the first sample
and the estimated �’s from the IT model (as the dependent variables), we
run a Least Squares model and then use these estimates to predict the out-of-
sample �’s. We then use these predicted �’s and the estimated �’s from the
first sample to predict out-of-sample.

3.6.1 The Data Generating Process

The simulated model is a five-choice setting with three independent variables.
The utility functions are based on random parameters on the attributes, and
five nonrandom choice specific intercepts (the last of which is constrained to
equal zero). The random errors in the utility functions (for each individual)
are iid extreme value in accordance with the multinomial logit specification.
Specifically, x1 is a randomly assigned discrete (integer) uniform in [1, 5], x2
is from the uniform (0, 1) population and x3 is normal (0, 1). The values for
the �’s are: �1i = 0.3 + 0.2u1, �2i = −0.3 + 0.1u2, and �3i = 0.0 + 0.4u3, where
u1, u2 and u3 are iid normal (0, 1). The values for the choice specific intercept
(�) are 0.4, 0.6, −0.5, 0.7 and 0.0 respectively for choices j = 1, . . . , 5. In the
second set of experiments, �’s are also random. Specifically, �ij = � j + 0.5uij,
where u j is iid normal(0,1) and j = 1, 2, . . . , 5.

3.6.2 The Simulated Results

Using the software NLOGIT (Nlogit) for the MLogit model, we created 100
samples for the simulated log-likelihood model. We used GAMS for the IT-
GME models – the estimator in NLOGIT was developed during this writing.
For a fair comparison of the two different estimators, we use the correct model
for the simulated likelihood (Case A) and a model where all parameters are
taken to be random (Case B). In both cases we used the correct likelihood.
For the IT estimator, we take all parameters to be random and there is no
need for incorporating distributional assumptions. This means that if the IT
dominates when it’s not the correct model, it is more robust for the underlying
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TABLE 3.1

In and Out-of-Sample Predictions for Simulated Experiments. All Values Are the
Percent of Correctly Predicted

N = 100 N = 200 N = 500 N = 1000 N = 1500 N = 3000
In/Out In/Out In/Out In/Out In/Out In

Case 1: Random �
MLogit - A 29/28 34/38.5 34.4/33.6 35.5/33.3 34.6/34.0 33.8
MLogit - B 29/28 32.5/28.5 31.4/26.8 29.9/28.9 28.5/29 29.4
IT-GME* 41/23 35/34 33.6/35.6 36.4/34.6 34.4/33.9 34.8
Case 2: Random � and �
MLogit 31/22 31/27 34.2/26.8 32/28.9 30.3/31.9 31
IT-GME* 45/29 40.5/29.5 38.4/32.4 37/34.2 37.1/34.9 36.3

Note: A: The correct model.
B: The incorrect model (both � and � random).

*All IT-GME models are for both � and � random.

structure of the parameters. The results are presented in Table 3.1. We note
a number of observations regarding these experiments. First, the IT-GME
model converges far faster than the simulated likelihood approach–since no
simulation is needed, all expressions are in closed form. Second, in the first
set of experiments (only the �’s are random) and using the correct simulated
likelihood model (Case 1A), both models provide very similar (on average)
predictions, though the IT model is slightly superior. In the more realistic case,
when the user does not know the exact model and uses RP for all parameters
(Case 1B), the IT method is always superior. Third, for the more complicated
data (generated with RP for both �’s and �’s) – Case 2 – the IT estimator
dominates for all sample sizes.

In summary, though the IT estimator seems to dominate for all samples
and structures presented, it is clear that its relative advantage increases as the
sample size decreases and as the complexity (number of random parameters)
increases. From the analyst’s point of view, it seems that for data with many
choices and with much uncertainty about the underlying structure of the
model, the IT is an attractive method to use. For the less complicated models
and relatively large data sets, the simulated likelihood methods are proper
(but are computationally more demanding and are based on a stricter set of
assumptions).

3.7 Concluding Remarks

In this chapter we formulate and discuss an IT estimator for the mixed discrete
choice model. This model is semiparametric and performs well relative to the
class of simulated likelihood methods. Further, the IT estimator is computa-
tionally more efficient and is easy to use. This chapter is written in a way that
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makes it possible for the potential user to easily use this estimator. A detailed
formulation of different potential priors and frameworks, consistent with the
way we visualize the data generating process, is provided as well. We also
provide the concentrated model that can be easily coded in some software.
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4.1 Introduction

Count data regression is now a well-established tool in econometrics. If the
outcome variable is measured as a nonnegative count, y, y ∈ N0 = {0, 1, 2, . . . },
and the object of interest is the marginal impact of a change in the variable
x on the regression function E[y|x], then a count regression is a relevant tool
of analysis. Because the response variable is discrete, its distribution places
probability mass at nonnegative integer values only. Fully parametric formu-
lations of count models accommodate this property of the distribution. Some
semiparametric regression models only accommodate y ≥ 0, but not discrete-
ness. Given the discrete nature of the outcome variable, a linear regression is
usually not the most efficient method of analyzing such data. The standard
count model is a nonlinear regression.

Several special features of count regression models are intimately con-
nected to discreteness and nonlinearity. As in the case of binary outcome
models like the logit and probit, the use of count data regression models
is very widespread in empirical economics and other social sciences. Count
regressions have been extensively used for analyzing event count data that
are common in fertility analysis, health care utilization, accident modeling,
insurance, recreational demand studies, analysis of patent data.

Cameron and Trivedi (1998), henceforth referred to as CT (1998), and
Winkelmann (2005) provided monograph length surveys of econometric count
data methods. More recently, Greene (2007b) has also provided a selective sur-
vey of newer developments. The present survey also concentrates on newer
developments, covering both the probability models and the methods of es-
timating the parameters of these models, as well as noteworthy applications
or extensions of older topics. We cover specification and estimation issues at
greater length than testing.

Given the length restrictions that apply to this article, we will cover cross-
section and panel count regression but not time series count data models.
The reader interested in time series of counts is referred to two recent survey
papers; see Jung, Kukuk, and Liesenfeld (2006), and Davis, Dunsmuir, and
Streett (2003). A related topic covers hidden Markov models (multivariate
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time series models for discrete data) that have been found very useful in
modeling discrete time series data; see MacDonald and Zucchini (1997). This
topic is also not covered even though it has connections with several themes
that we do cover.

The natural stochastic model for counts is derived from the Poisson point
process for the occurrence of the event of interest, which leads to Poisson
distribution for the number of occurrences of the event, with probability mass
function

Pr[Y = y] = e−��y

y!
, y = 0, 1, 2, . . . , (4.1)

where � is the intensity or rate parameter. The first two moments of this
distribution, denoted P[�], are E[Y] = �, and V[Y] = �, demonstrating
the well-known equidispersion property of the Poisson distribution. The
Poisson regression follows from the parameterization � = �(x), where x is a
K -dimensional vector of exogenous regressors. The usual specification of the
conditional mean is

E[y|x] = exp(x′�). (4.2)

Standard estimation methods are fully parametric Poisson maximum like-
lihood, or “semiparametric” methods such as nonlinear least squares, or
moment-based estimation, based on the moment condition E[y−exp(x′�)|x] =
0, possibly further augmented by the equidispersion restriction used to gen-
erate a weight function.

Even when the analysis is restricted to cross-section data with strictly ex-
ogenous regressors, the basic Poisson regression comes up short in empirical
work in several respects. The mean-variance equality restriction is inconsis-
tent with the presence of significant unobserved heterogeneity in cross-section
data. This feature manifests itself in many different ways. For example, Pois-
son model often under-predicts the probability of zero counts, in a data situa-
tion often referred to as the excess zeros problem. A closely related deficiency of
the Poisson is that in contrast to the equidispersion property, data more usu-
ally tend to be overdispersed, i.e., (conditional) variance usually exceeds the
(conditional) mean. Overdispersion can result from many different sources
(see CT, 1998, 97–106). Overdispersion can also lead to the problem of excess
zeros (or zero inflation) in which there is a much larger probability mass at the
zero value than is consistent with the Poisson distribution. The literature on
new functional forms to handle overdispersion is already large and continues
to grow. Despite the existence of a plethora of models for overdispersed data,
a small class of models, including especially the negative binomial regression
(NBR), the two-part model (TPM), and the zero-inflated Poisson (ZIP) and
zero-inflated negative binomial (ZINB), has come to dominate the applied
literature. In what follows we refer to this as the set of basic or benchmark
parametric count regression models, previously comprehensively surveyed
in CT (1998, 2005).
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Beyond the cross-section count regression econometricians are also inter-
ested in applying count models to time series, panel data, as well as multi-
variate models. These types of data generally involve patterns of dependence
more general than those for cross-section analysis. For example, serial de-
pendence of outcomes is likely in time series and panel data, and a variety
of dependence structures can arise for multivariate count data. Such data
provide considerable opportunity for developing new models and methods.

Many of the newer developments surveyed here arise from relaxing the
strong assumptions underlying the benchmark models. These new develop-
ments include the following:

• A richer class of models of unobserved heterogeneity some of which
permit nonseparable heterogeneity

• A richer parameterization of regression functions

• Relaxing the assumption of conditional independence of yi |xi (i =
1, . . . , N)

• Relaxing the assumption that the regressors xi are exogenous

• Allowing for self-selection in the samples

• Extending the standard count regression to the multivariate case

• Using simulation-based estimation to handle the additional compli-
cations due to more flexible functional form assumptions

The remainder of the chapter is arranged as follows. Section 4.2 concen-
trates on extensions of the standard model involving newer functional forms.
Section 4.3 deals with issues of cross-sectional dependence in count data.
Section 4.4 deals with the twin interconnected issues of count models with
endogenous regressors and/or self-selection. Sections 4.4 and 4.5 cover panel
data and multivariate count models, respectively. The final Section 4.6 covers
computational matters.

4.2 Beyond the Benchmark Models

One classic and long-established extension of the Poisson regression is the
negative binomial (NB) regression. The NB distribution can be derived as a
Poisson-Gamma mixture. Given the Poisson distribution f (y|x, �) =
exp(−��)(��)y/y! with the mean E[y|x, �] = �(x)�, � > 0, where the ran-
dom variable �, representing multiplicative unobserved heterogeneity, a la-
tent variable, has Gamma density g(�) = ��−1 exp(−�)/�(�), with E[�] = 1,
and variance �(� > 0). The resulting mixture distribution is the NB:

f (y|�(x)) =
∞∫

0

f (y|�(x), �)g(�)d� = �(x)y�(y + �)
y!�(�)

(
1

�(x) + �

)y+�

, (4.3)



 

P1: BINAYA KUMAR DASH

September 30, 2010 12:38 C7035 C7035˙C004

Recent Developments in Cross Section and Panel Count Models 91

which has mean �(x) and variance �(x)[1 + ��(x)] > E[y|x], thus accommo-
dating the commonly observed overdispersion. The gamma heterogeneity
assumption is very convenient, but the same approach can be used with other
mixing distributions.

This leading example imposes a particular mathematical structure on the
model. Specifically, the latent variable reflecting unobserved heterogeneity is
separable from the main object of identification, the conditional mean. This is
a feature of many established mixture models. Modern approaches, however,
deal with more flexible models where the latent variables are nonseparable. In
such models unobserved heterogeneity impacts the entire disribution of the
outcome of interest. Quantile regression and finite mixtures are two examples
of such nonseparable models.

There are a number of distinctive ways of allowing for unobserved het-
erogeneity. It may be treated as an additive or a multiplicative random effect
(uncorrelated with included regressors) or a fixed effect (potentially corre-
lated with included regressors). Within the class of random effects models,
heterogeneity distributions may be treated as continuous or discrete. Exam-
ples include a random intercept in cross-section and panel count models,
fixed effects in panel models of counts. Second, both intercept and slope pa-
rameters may be specified to vary randomly and parametrically, as in finite
mixture count models. Third, heterogeneity may be modeled in terms of both
observed and unobserved variables using mixed models, hierarchical mod-
els and/or models of clustering. The approach one adopts and the manner in
which it is combined with other assumptions has important implications for
computation. The second and third approaches are reflected in many recent
developments.

4.2.1 Parametric Mixtures

The family of random effects count models is extensive. In Table 4.1 we show
some leading examples that have featured in empirical work. By far the most
popular is the negative binomial specification with either a linear variance
function (NB1) or a quadratic variance function (NB2). Both these functional
forms capture extra-Poisson probability mass at zero and in the right tail, as
would other mixtures, e.g., Poisson lognormal. But the continuing popularity
of the NB family rests on computational convenience, even though (as we
discuss later in this chapter) computational advances have made other models
empirically accessible. When the right tail of the distribution is particularly
heavy, the Poisson-inverse Gaussian mixture (P-IG) with a cubic variance
function is attractive, but again this consideration must be balanced against
additional computational complexity (see Guo and Trivedi 2002).

The foregoing models are examples of continuous mixture models based on
a continuous distribution of heterogeneity. Mixture models that also allow for
finite probability point mass, such as the hurdle (“two part”) model and zero
inflated models shown in Table 4.1, that appeared in the literature more than a
decade ago (see Gurmu and Trivedi 1996) have an important advantage – they



 

P1: BINAYA KUMAR DASH

September 30, 2010 12:38 C7035 C7035˙C004

92 Handbook of Empirical Economics and Finance

TA
B

LE
4.

1

Se
le

ct
ed

M
ix

tu
re

M
od

el
s

D
is

tr
ib

u
ti

on
f(

y)
=

P
r[

Y
=

y]
M

ea
n

;V
ar

ia
n

ce
1

Po
is

so
n

e−
�

�
y /

y!
�

(x
);

�
(x

)

2
N

B
1

A
s

in
N

B
2

be
lo

w
w

it
h

�
−1

re
pl

ac
ed

by
�

−1
�

�
(x

);
(1

+
�

)
�

(x
)

3
N

B
2

�
(�

−1
+

y)
�

(�
−1

)�
(y

+
1)

( �
−1

�
−1

+
�

)1 �
(

�

�
+

�
−1

) y
�

(x
);

(1
+

�
�

(x
))

�
(x

)

4
P-

IG
Pr

(Y
=

0)
×

�
k

�
(k

+
1)

(1
+

2�
)−

k/
2

�
(x

)
;�

(x
)+

�
(x

)3
/
�

k
≥

1
×

∑ k−
1

i=
0

�
(k

+
i)

�
(k

−
i)

�
(i

+
1)

((
�

2�
(x

)

) i (1
+

2�
)−

i/
2 ,

w
he

re
Pr

(Y
=

0)
=

ex
p

[ � �

( 1
−

√ 1
+

2�
)] ,(

�
=

�
2 /

�)

5
H

ur
d

le

⎧ ⎨ ⎩
f 1

(0
)

if
y

=
0,

1
−

f 1
(0

)
1

−
f 2

(0
)

f 2
(y

)
if

y
≥

1.
Pr

[y
>

0|x
]E

y>
0[

y|y
>

0,
x]

;

Pr
[y

>
0|x

]V
y>

0[
y|y

>
0,

x]

+
Pr

[y
=

0|x
]E

y>
0[

y|y
>

0|x
]

6
Z

er
o-

in
fl

at
ed

{ f 1
(0

)+
(1

−
f 1

(0
))

f 2
(0

)
if

y
=

0,

(1
−

f 1
(0

))
f 2

(y
)

if
y

≥
1.

(1
−

f 1
(0

))
(�

(x
)+

f 1
(0

)�
2 (x

))

7
Fi

ni
te

m
ix

tu
re

∑ m j=
1

�
j

f j
(y

|	
j)

�
2 i=

1�
i�

i(
x)

;�
2 i=

1�
i[

�
i(

x)
+

�
2 i(

x)
]

8
PP

p
h 2

(y
|�

,a
)
=

e−
�

�
y

y!
(1

+
a 1

y
+

a 2
y2 )2

�
2(

a,
�

)
w

he
re

�
2(

a,
�

)
=

1
+

2a
1m

1
+

( a2 1
+

2a
2) m

2
+

2a
1a

2m
3
+

a2 2
m

4
C

om
pl

ic
at

ed



 

P1: BINAYA KUMAR DASH

September 30, 2010 12:38 C7035 C7035˙C004

Recent Developments in Cross Section and Panel Count Models 93

relax the restrictions on both the conditional mean and variance functions.
There are numerous ways of attaining such an objective using latent variables,
latent classes, and a combination of these. This point is well established in the
literature on generalized linear models. Skrondal and Rabe-Hesketh (2004) is
a recent survey.

4.2.1.1 Hurdle and Zero-Inflated Models

Hurdle and zero-inflated models are motivated by the presence of “excess
zeros” in the data. The hurdle model or two-part model (TPM) relaxes the as-
sumption that the zeros and the positives come from the same data-generating
process. Suppressing regressors for notational simplicity, the zeros are deter-
mined by the density f1(·), so that Pr[y = 0] = f1(0) and Pr[y > 0] = 1− f1(0).
The positive counts are generated by the truncated density f2(y|y > 0) =
f2(y)/(1 − f2(0)), that is multiplied by Pr[y > 0] to ensure a proper distribu-
tion. Thus, f (y) = f1(0) if y = 0 and f (y) = [1 − f1(0)] f2(y)/[1 − f2(0)] if
y ≥ 1. This generates the standard model only if f1(·) = f2(·).

Like the hurdle model, zero-inflated model supplements a count density
f2(·) with a binary process with density f1(·). If the binary process takes
value 0, with probability f1(0), then y = 0. If the binary process takes value
1, with probability f1(1), then y takes count values 0, 1, 2, . . . from the count
density f2(·). This lets zero counts occur in two ways: either as a realization
of the binary process or a count process. The zero-inflated model has density
f (y) = f1(0) + [1 − f1(0)] f2(0) if y = 0, and f (y) = [1 − f1(0)] f2(y) if y ≥ 1.

As in the case of the hurdle model the probability f1(0) may be parameterized
through a binomial model like the logit or probit, and the set of variables in
the f1(·) density may differ from those in the f2(·) density.

4.2.1.1.1 Model Comparison in Hurdle and ZIP Models Zero-inflated variants
of the Poisson (ZIP) and the negative binomial (ZINB) are especially popu-
lar. For the empirical researcher this generates an embarrassment of riches.
The challenge comes from having to evaluate the goodness of fit of these
models and selecting the “best” model according to some criterion, such as
the AIC or BIC. It is especially helpful to have software that can simultane-
ously display the relevant information for making an informed choice. Care
must be exercised in model selection because even when the models under
comparison have similar overall fit, e.g., log-likelihood, they may have sub-
stantially different implications regarding the marginal effect parameters, i.e.,
∂E[y|x]/∂xj . A practitioner needs suitable software for model interpretation
and comparison.

A starting point in model selection is provided by a comparison of fitted
probabilities of different models and the empirical frequency distribution of
counts. Lack of fit at specific frequencies may be noticeable even in an infor-
mal comparison. Implementing a formal goodness-of-fit model comparison
is easier when the rival models are nested, in which case we can apply a likeli-
hood ratio test. However, some empirically interesting pairs of models are not
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nested, e.g., Poisson and ZIP, and negative binomial and ZINB. In these cases
the so-called Vuong test (Vuong 1989), essentially a generalization of the like-
lihood ratio test, may be used to test the null hypothesis of equality of two dis-
tributions, say f and g. For example, consider the log of the ratio of fitted prob-
abilities of Poisson and ZIP models, denoted ri = ln{P̂rP (yi |xi )/P̂rZI P (yi |xi )}.
Let r = N−1 ∑

ri and sr denotes the standard deviation of ri ; then the test
statistic Tvuong = r/(sr/

√
N) has asymptotic standard normal distribution. So

the test can be based on the critical values of the standard normal. A large
value of Tvuong in this case implies a departure from the null in the direction
of Poisson, and a large negative value in the direction of ZIP. For other em-
pirically interesting model pairs, e.g., ZIP and ZINB, the same approach can
be applied, although it is less common for standard software to make these
statistics available also. In such cases model selection information criteria
such as the AIC and BIC are commonly used.

Two recent software developments have been very helpful in this regard.
First, these models are easily estimated and compared in many widely used
microeconometrics packages such as Stata and Limdep; see, for example, CT
(2009) and Long and Freese (2006) for coverage of options available in Stata.
For example, Stata provides goodness-of-fit and model comparison statis-
tics in a convenient tabular form for the Poisson, NB2, ZIP, and ZINB. Using
packaged commands it has become easy to compare the fitted and empirical
frequency distribution of counts in a variety of parametric models. Second,
mere examination of estimated coefficients and their statistical significance
provides an incomplete picture of the properties of the model. In empiri-
cal work, a key parameter of interest is the average marginal effect (AME),
N−1 ∑N

i=1 ∂E[yi |xi ]/∂xj,i , or the marginal effect evaluated at a “representa-
tive” value of x (MER). Again, software developments have made estimation
of these parameters very accessible.

4.2.1.2 Finite Mixture Specification

An idea that is not “recent” in principle, but has found much traction in re-
cent empirical work of discrete or mixtures of count distributions. Unlike the
NB model, which has a continuous mixture representation, the finite mixture
approach instead assumes a discrete representation of unobserved hetero-
geneity. It encompasses both intercept and slope heterogeneity and hence
the full distribution of outcomes. This generates a class of flexible parametric
models called finite mixture models (FMM) – a subclass of latent class models;
see Deb (2007), CT (2005, Chapter 20.4.3).

A FMM specifies that the density of y is a linear combination of m different
densities, where the j th density is f j (y|� j ), j = 1, 2, . . . , m. An m-component
finite mixture is defined by

f (y|�, �) =
∑m

j=1
� j f j (y|� j ), 0 < � j < 1,

∑m

j=1
� j = 1. (4.4)

A simple example is a two-component (m = 2) Poisson mixture ofP[�1] and
P[�2]. This may reflect the possibility that the sampled population contains
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two “types” of cases, whose y outcomes are characterized by distributions
f1(y|�1) and f2(y|�2) that are assumed to have different moments. The mixing
fraction �1 is in general an unknown parameter. In a more general formulation
it too can be parameterized in terms of observed variable(s) z.

The FMM specification is attractive for empirical work in cross-section anal-
ysis because it is flexible. Mixture components may come from different para-
metric families, although commonly they are specified to come from the same
family. The mixture components permit differences in conditional moments
of the components, and hence in the marginal effects. In an actual empirical
setting, the latent classes often have a convenient interpretation in terms of
the differences between the underlying subpopulations.

Application of FMM to panel data is straightforward if the panel data can
be treated as pooled cross section. However, when the T-dimension of a panel
is high in the relevant sense, a model with fixed mixing probabilities may be
tenuous as transitions between latent classes may occur over time. Endoge-
nous switching models allow the transition probability between latent classes
to be correlated with outcomes and hidden Markov models allow the transi-
tion probabilities to depend upon past states; see Fruhwirth-Schnatter (2006)
and MacDonald and Zucchini (1997).

There are a number of applications of the FMM framework for cross-section
data. Deb and Trivedi (1997) use Medical Expenditure Panel Survey data to
study the demand for care by the elderly using models of two- and three-
component mixtures of several count distributions. Deb and Trivedi (2002) re-
examine the Rand Health Insurance Experiment (RHIE) pooled cross-section
data and show that FMM fit the data better than the hurdle (two-part) model.
Of course, this conclusion, though not surprising, is specific to their data set.
Lourenco and Ferreira (2005) apply the finite mixture model to model doc-
tor visits to public health centers in Portugal using truncated-at-zero sam-
ples. Bohning and Kuhnert (2006) study the relationship between mixtures of
truncated count distributions and truncated mixture distributions and give
conditions for their equivalence.

Despite its attractions, the FMM class has potential limitations. First, max-
imum likelihood (ML) estimation is not straightforward because, in general,
the log-likelihood function may have multiple maxima. The difficulties are
greater if the mixture components are not well separated. Choosing a suitable
optimization algorithm is important. Second, it is easy to overparameterize
mixture models. When the number of components is small, say 2, and the
means of the component distribution are far apart, discrimination between
the components is easier. However, as additional components are added, there
is a tendency to “split the difference” and unambiguous identification of all
components becomes difficult because of the increasing overlap in the distri-
butions. In particular, the presence of outliers may give rise to components
that account for a small proportion (small values of � j ) of the observations.
That is, identification of individual components may be fragile. CT (2009,
Chapter 17) give examples using Stata’s FMM estimation (Deb, 2007) com-
mand and suggest practical ways of detecting estimation problems.
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Recent biometric literature offers promise of more robust estimation of finite
mixtures via alternative to maximum likelihood. Lu, Hui, and Lee (2003),
following Karlis and Xekalaki (1998), use minimum Hellinger distance esti-
mation (MHDE) for finite mixtures of Poisson regressions; Xiang et al. (2008)
use MHDE for estimating a k-component Poisson regression with random
effects. The attraction of MHDE relative to MLE is that it is expected to be
more robust to the presence of outliers and when mixture components are
not well separated, and/or when the model fit is poor.

4.2.1.3 Hierarchical Models

While cross-section and panel data are by far the most common in empirical
econometrics, sometimes other data structures are also available. For example,
sample survey data may be collected using a multi-level design; an example
is state-level data further broken down by counties, or province-level data
clustered by communes (see Chang and Trivedi [2003]). When multi-level
covariate information is available, hierarchical modeling becomes feasible.
Such models have been widely applied to the generalized linear mixed model
(GLMM) class of which Poisson regression is a member. For example, Wang,
Yau, and Lee (2002) consider a hierarchical Poisson mixture regression to
account for the inherent correlation of outcomes of patients clustered within
hospitals. In their set-up data are in m clusters, with each cluster having nj ( j =
1, . . . , m) observations, let n = ∑

nj . For example, the following Poisson-
lognormal mixture can be interpreted as a one-level hierarchical model.

yi j ∼ P(�i j ), i = 1, . . . , n j ; j = 1, . . . , m

log �i j = x′
i j � + εi j , εi j ∼ N (0, 
2). (4.5)

An example of a two-level model, also known as a hierarchical Poisson mix-
ture, that incorporates covariate information at both levels is as follows:

yi j ∼ P(�i j ), i = 1, . . . , n j ; j = 1, . . . , m (4.6)
log �i j = x′

i j � j + εi j , εi j ∼ N
(
0, 
2

ε
)

�k j = w′
k j �+ vkj ; vkj ∼ N

(
0, 
2

v

)
, k = 1, . . . K ; j = 1, . . . ., m. (4.7)

In this case coefficients vary by clusters, and cluster-specific variables wk j

enter at the second level to determine the first-level parameters � j , whose
elements are �k j . The parameter vector �, also called hyperparameter, is the
target of statistical inference. Both classical (Wang, Yau, and Lee 2002) and
Bayesian analyses can be applied.

4.2.2 Quantile Regression for Counts

Quantile regression (QR) is usually applied to continuous response data; see
Koenker (2005) for a thorough treatment of properties of QR. QR is con-
sistent under weak stochastic assumptions and is equivariant to monotone
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transformations. A major attraction of QR is that it potentially allows for re-
sponse heterogeneity at different conditional quantiles of the variables of in-
terest. If the method could be extended to counts, then one could go beyond
the standard and somewhat restrictive models of unobserved heterogene-
ity based on strong distributional assumptions. Also QR facilitates a richer
interpretation of the data because it permits the study of the impact of re-
gressors on both the location and scale parameters of the model, while at
the same time avoiding strong distributional assumptions about data. More-
over, advances made in quantile regression such as handling endogenous
regressors can be exploited for count data. The problem, however, is that
the quantiles of discrete variables are not unique since the c.d.f. is discon-
tinuous with discrete jumps between flat sections. By convention the lower
boundary of the interval defines the quantile in such a case. However, recent
theoretical advances have extended QR to a special case of count regression;
see Machado and Santos Silva (2005), Miranda (2006, 2008), Winkelmann
(2006).

The key step in the quantile count regression (QCR) model of Machado and
Santos Silva (2005) involves replacing the discrete count outcome y with a con-
tinuous variable z = h(y), where h(·) is a smooth continuous transformation.
The standard linear QR methods are then applied to z. The particular continu-
ation transformation used is z = y+u, where u ∼ U[0, 1] is a pseudo-random
draw from the uniform distribution on (0, 1). This step is called “jittering”
the count. Point and interval estimates are then retransformed to the original
y-scale using functions that preserve the quantile properties.

Let Qq (y|x) and Qq (z|x) denote the q th quantiles of the conditional distribu-
tions of y and z, respectively. The conditional quantile for Qq (z|x) is specified
to be

Qq (z|x) = q + exp(x′�q ). (4.8)

The additional term q appears in the equation because Qq (z|x) is bounded
from below by q , due to the jittering operation.

To be able to estimate a quantile model in the usual linear form x′�, a log
transformation is applied so that ln(z − q ) is modelled, with the adjustment
that if z − q < 0 then we use ln(ε) where ε is a small positive number. The
transformation is justified by the equivariance property of the quantiles and
the property that quantiles above the censoring point are not affected by
censoring from below. Post-estimation transformation of the z-quantiles back
to y-quantiles uses the ceiling function, with

Qq (y|x) = �Qq (z|x) − 1	, (4.9)

where the symbol �r	 in the right-hand side of Equation 4.9 denotes the small-
est integer greater than or equal to r .

To reduce the effect of noise due to jittering, the model is estimated mul-
tiple times using independent draws from U(0, 1) distribution, and the mul-
tiple estimated coefficients and confidence interval endpoints are averaged.
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Hence the estimates of the quantiles of y counts are based on Q̂q (y|x) =
�Qq (z|x) − 1	 = �q + exp(x′�̂q ) − 1	, where �̂ denotes the average over the
jittered replications.

Miranda (2008) applies the QCR to analysis of Mexican fertility data.
Miranda (2006) describes Stata’s add-on qcount command for implement-
ing QCR. CT (2009, Chapter 7.5) discuss an empirical illustration in detail,
with special focus on marginal effects. The specific issue of how to choose
the quantiles is discussed by Winkelmann (2006), the usual practice being to
select a few values such as q equal to 25, .50, and .75. This practice has to be
modified to take account of the zeros problem because it is not unusual to
have (say) 35% zeros in a sample, in which case q must be greater than .35.

4.3 Adjusting for Cross-Sectional Dependence

The assumption of cross-sectionally independent observations was common
in the econometric count data literature during and before the 1990s. Recent
theoretical and empirical work pays greater attention to the possibility of
cross-sectional dependence. Two sources of dependence in cross-sectional
data are stratified survey sampling design and, in geographical data, depen-
dence due spatially correlated unobserved variables.

Contrary to a common assumption in cross-section regression, count data
used in empirical studies are more likely to come from complex surveys de-
rived from stratified sampling. Data from the stratified random survey sam-
ples, also known as complex surveys, are usually dependent. This may be due
to use of survey design involving interviews with multiple households in the
same street or block that may be regarded as natural clusters, where by cluster
is meant a set whose elements are subject to common shocks. Such a sam-
pling scheme is likely to generate correlation within cluster due to variation
induced by common unobserved cluster-specific factors. Cross-sectional de-
pendence between outcomes invalidates the use of variance formulae based
on assumption of simple random samples.

Cross-sectional dependence also arises when the count outcomes have a
spatial dimension, as when the data are drawn from geographical regions. In
such cases the outcomes of units that are spatially contiguous may display
dependence that must be controlled for in regression analysis.

There are two broad approaches for controlling for dependence within
cluster, the key distinction being between random and fixed cluster effects
analogous to panel data analysis.

4.3.1 Random Effects Cluster Poisson Regression

To clarify this point additional notation is required. Consider a sample with
total N observations, which are distributed in C clusters with each cluster
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having Nc(c = 1, . . . , C) observations and
∑C

c=1 Nc = N. If the number of
observations per cluster varies, the data correspond to an unbalanced panel.
Intra-cluster correlation refers to correlation between yi,c and yj,c , i 
= j ,
c = 1, . . . , C. A common assumption is of nonzero intra-cluster correlation
and zero between-cluster correlation, i.e., corr [yi,c , yj,c′ , i 
= j , c 
= c′] = 0.
Additional complications arise according to the assumptions regarding Nc

and C, i.e., whether there are many small clusters or few large clusters. The
notation for handling clusters is similar to that for panel data, and a number
of important results we cover also parallel similar ones in the panel data
literature.

For specificity, we consider the Poisson regression for clustered data. A pop-
ular assumption states that the cluster-specific effects enter the model through
the intercept term alone. The clustered count data, denoted yi j , i = 1, . . . , C,
j = 1, . . . , Nj , are Poisson distributed with E[yi j |xi j , �i ] = exp(�i + � + x′

i j �),
where xi j are linearly independent covariates; the term �i is the deviation
of cluster-specific intercept from the population-averaged fixed intercept �.

This model is referred to as cluster-specific intercept Poisson regression. A
number of results are available corresponding to different assumptions about
�i . Demidenko (2007) presents several results for the case in which �i (i =
1, . . . , C) are i.i.d., C approaches ∞, and Nc < ∞. In the econometrics liter-
ature this corresponds to the cluster-specific random effects (CSRE) Poisson
regression.

1. Under the assumptions stated above, the standard M-estimators for
the Poisson regression applied to pooled clustered data are consistent
but not efficient.

2. In the case where C is relatively small, e.g., C < min Ni , a separate
dummy variable corresponding to each cluster-specific intercept can
be introduced in the conditional mean function and standard maxi-
mum likelihood procedure can be applied to the resulting model.

3. Under a specific assumption about the conditional covariance struc-
ture for the data, a generalized estimating equations (GEE), or (in
econometrics terminology) nonlinear generalized least squares, pro-
cedure may be applied for efficiency gain over the simple Poisson.
This requires a working matrix as an estimator of the unknown true
variance matrix. Under the assumption that the cluster-random ef-
fects are equicorrelated, the working matrix can be parameterized in
terms of a single correlation parameter.

4. Under a strong parametric assumption about the distribution of �i ,
maximum likelihood can be applied. Computationally this is more
demanding and may require simulation-based estimation.

5. Under somewhat special assumptions in which all clusters have the
same number of observations, and the covariates are identical across
clusters the methods mentioned above are all equivalent.
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4.3.2 Cluster-Robust Variance Estimation

An approach that does not require a distributional assumption for the random
component is to simply use robust variance estimation, i.e., “cluster robust”
standard errors obtained by adapting the so-called Eicker–White robust vari-
ance estimator to handle clustered data. Specifically, if fi (i = 1, . . . , n) denotes
the density for the ith observation, 	 denotes the vector of unknown param-
eters, then the cluster-robust variance estimator evaluated at the maximum
likelihood estimate 	̂ML E is given by

VC =
[

C∑
j=1

Nj∑
i=1

∂2 ln fi j

∂	∂	′

]−1 [
C∑

j=1

Nj∑
i=1

Nj∑
k=1

∂ ln fi j

∂	

∂ ln fk j

∂	′

]

×
[

C∑
j=1

Nj∑
i=1

∂2 ln fi j

∂	∂	′

]−1
∣∣∣∣∣∣̂
	ML E

. (4.10)

If, instead of ML estimation, another consistent M-estimator is used, e.g.,
that defined by the nonlinear estimating equations

∑C
c=1

∑Nc
j=1 h(yjc , x jc , 	) =

0, the above formula is adjusted by replacing the score function ∂ ln fi j/∂	 by
hi, j (̂	); see CT (2005, Chapter 24.5.6). Observe how within each cluster we do
not use the likelihood score for each observation as in the case of indepen-
dent observations; instead we replace it by the sum of likelihood scores over
all cluster elements. The usual regularity conditions for the validity of the
“sandwich” variance formula are required.

4.3.3 Cluster-Specific Fixed Effects

The Poisson fixed effects cluster model specifies

yi j ∼ P[�i j ], i = 1, . . . , C, j = 1, . . . , Ni , (4.11)
�i j = �i exp(x′

i j �),

where xi j excludes an intercept and any cluster-invariant regressors. The dif-
ference from the standard Poisson model is that the usual conditional mean
exp(x′

i j �) is scaled multiplicatively by the cluster-specific fixed effect (FE) �i .
Because of its similarity to the panel Poisson model, we defer a longer treat-
ment of estimation to Section 4.5, but simply note that one can use either the
conditional maximum likelihood approach in which inference is carried out
conditionally on sufficient statistics for the fixed effects (i.e., the parameters
�i are eliminated), or we can introduce cluster-specific dummy variables and
apply the standard ML estimation.

4.3.4 Spatial Dependence

We now consider models in which outcomes are counts with a spatial distri-
bution; hence it becomes necessary to adjust for spatial correlation between
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neighboring counts. Such spatial dependence is characterized by some un-
derlying data generating process. Griffith and Haining (2006) survey the
early literature on spatial Poisson regression and a number of its modern
extensions.

Besag (1974) defined a general class of “auto-models” suitable for differ-
ent types of spatially correlated data. In the special case, dubbed the “auto-
Poisson” model, P[Y(i) = y(i)|{Y( j)}, j ∈ N(i)] denotes the conditional
probability that the random variable Y(i), defined at location i , realizes value
y(i), given the values of Y at the sites in the neighborhood of i , denoted N(i).
If the {Y(i)} have an auto-Poisson distribution with intensity parameter �(i),
then

P[Y(i) = y(i)|{Y( j)}, j ∈ N(i)] = e−�(i)�(i)y(i)

y(i)!

log �(i) = �(i) +
∑

j∈N(i)

�(i, j)y( j)) (4.12)

where the parameter �(i) is an area-specific effect, and �(i, j) = �( j, i). The
standard set-up specified �(i, j) = �w(i, j), where � is a spatial autoregressive
parameter, and w(i, j) (= 0 or 1) represents the neighborhood structure. Let
N(i) denote the set of neighbors of area i ; then w(i, j) = 1 if i and j are
neighbors [ j ∈ N(i)], and otherwise w(i, j) = 0. In addition, w(i, i) = 0
must be assumed. The difficulty with this auto-Poisson model is under the
restriction

∑
i P[Y(i) = y(i)|{Y( j)}, j ∈ N(i)] = 1, implies � ≤ 0, which

implies dependence property with negative spatial correlation. The spatial
count literature has evolved in different directions to overcome this difficulty;
see Kaiser and Cressie (1997) and Griffith and Haining (2006). One line of
development uses spatial weighting dependent on assumptions about the
spatial dependence structure.

A different approach for modeling either positive or negative spatial au-
tocorrelation in a Poisson model is based on a mixture specification. The
conditional mean function is defined as

ln[�(i)] = �(i) + S(i) (4.13)

where S(i) is a random effect defined by a conditional autoregressive model
with a general covariance structure. For example, an N-dimensional multi-
variate normal specification with covariance matrix 
2(IN − �W)−1, where
W = [w(i, j)] is the spatial weighting matrix, can capture negative or pos-
itive dependence between outcomes through the spatial autoregressive pa-
rameter �. The resulting model is essentially a Poisson mixture model with a
particular dependence structure. Estimation of this mixture specification by
maximum likelihood would typically require simulation because its likeli-
hood will not be expressed in a closed form. Griffith and Haining (2006) sug-
gest Bayesian Markov chain Monte Carlo (MCMC); the use of this method
is illustrated in Subsection 4.6.3. They compare the performance of several
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alternative estimators for the Poisson regression applied to georeferenced
data.

Spatial dependence modeled using a mixture specification induces overdis-
persion. If the conditional mean is correctly specified, the resulting model can
be consistently estimated using the Poisson model under pseudo-likelihood.
Robust variance estimator should be used to adjust for the effects of overdis-
persion. However, an advantage of estimating the full specification is that one
obtains information about the structure of spatial dependence.

4.4 Endogeneity and Self-Selection

Endogenous regressors, both categorical and continuous, arise naturally in
many count regression models. A well-known example from health eco-
nomics involves models of counts of health services, e.g., doctor visits, with
one of the regressors being the health insurance status of the individual. As-
sumption that choice of health insurance and the count outcome equation
are conditionally uncorrelated is unrealistic when data are observational and
insurance status is not exogenously assigned, rather it is self-selected. The
case of endogenous dummy variables occurs commonly in empirical work
and thus will get special attention in this section.

Important earlier analyses of count models with endogenous regressors in-
clude Mullahy (1997) and Windmeier and Santos Silva (1997) who proposed
moment-based estimators within a GMM framework, and Terza (1998) who
provided a full-information parametric analysis as well as a “semiparamet-
ric” sequential two-step estimator. They are motivated by a desire for more
robust estimators. Discreteness of count outcomes, and often also that of the
endogenous regressor, is typically ignored.

4.4.1 Moment-Based Estimation

Consider the exponential mean model E[yi |xi ] = exp(x′
i �), where at least one

component of x is endogenous. To introduce endogeneity into this model
the first step is to introduce another source of randomness in the specifica-
tion. This is done using unobserved heterogeneity, either additively or mul-
tiplicatively. For example, Mullahy specified the moment as E[yi |xi , �i ] =
exp(x′

i �)�i , where E[�i ] = 1, with (xi , �i ) being jointly dependent. Instead
of introducing further parametric assumptions about the dependence struc-
ture of (xi , �i ), the GMM approach postulates the availability of a vector of
instruments, z, dim(z) ≥ dim(x), that satisfy the moment condition

E[yi exp(−x′
i �) − vi |zi ] = 0. (4.14)

By assumption, z is orthogonal to �i , and may have common elements with
x, but has some distinct elements that are excluded from x. The instruments
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are assumed to be valid and relevant, in the sense that there is nontrivial
correlation between z and x. Note that this moment condition is different
from that for the case in which �i enters the conditional mean additively –
IVs that are orthogonal under multiplicative error are not so in general under
additive errors.

A specific feature of the count model is discreteness and heteroskedastic-
ity. GMM estimation of this model usually ignores the first feature; however,
two-step efficient GMM estimators can accommodate heteroskedasticity. This
topic has been surveyed in CT (2005) who also provide a discussion of the
practical aspects of implementing efficient GMM estimation, but this discus-
sion is broader in scope and not just for count regressions.

4.4.2 Control Function Approach

Since endogenous regressors cause significant complication in estimation of
nonlinear models, one strategy is to first test for the presence of endogenous
regressors, and then to use a suitable new estimator only if the null hypoth-
esis of zero correlation between the regressors and the equation error is re-
jected. When the estimator is defined by a moment condition, the equation
error is also implicitly defined by it. The error term, say u, is explicitly de-
fined in linear two-stage least squares. There, and in the related literature on
Durbin–Wu–Hausman tests of endogeneity (see Davidson and MacKinnon
2004, Chapter 8.7), the following test procedure is recommended. Suppose
the regression of interest with dependent variable y1 has a scalar right-hand
side variables y2 and exogenous variables X. Let W = [Z X] denote the set of
instrumental variables. Let PW y2 be the linear projection of y2 on W. Then a
test of endogeneity of y2 is a test of H0 : � = 0 in the OLS regression y1 = X�1+
y2�2+ PW y2� + u. Because of the least squares identity y2 ≡ PW y2 + v̂2, this
procedure is equivalent to testing H0 : �∗ = 0 in the regression

y1 = X�1 + (�2 + �∗)y2 − �∗̂v + u,

in which the right-hand side is augmented by the reduced form residual v̂.
If the null hypothesis is rejected, this OLS regression is equivalent to the
standard two-stage least squares. In essence, adding the variable v̂2 controls
for the endogeneity of y2; once it is included the standard OLS estimator yields
consistent point estimates. Hence we refer to this approach as the control
function approach.

An interesting question is whether this approach can be extended to stan-
dard count regression models. Differences from the two-stage least squares
case are due to the exponential conditional mean function and multiplicative
error term. Terza (1998) considered a bivariate model in which the counted
variable y depends on exogenous variables x and an endogenous treatment
dummy variable d(≡ y2). He provided both maximum likelihood and a two-
step (“semiparametric”) estimator for this model. His two-step estimator can
be interpreted as a control function estimator.
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Hardin, Schmiediche, and Carroll (2003) propose a method for estimating
the Poisson regression with endogenous regressors that can also be inter-
preted as a control function type approach. Their method is intended to apply
to models in the linear exponential family, Poisson regression being a special
case. A linear-reduced form regression is estimated for the endogenous vari-
able. As in two-stage least squares, valid instruments, x2, are assumed to be
available. The linear-reduced form regression, estimated by OLS, generates
predicted values for the endogenous variable y2, denoted ŷ2. The original
Poisson regression is estimated after replacing the endogenous variable by
its predicted value. The variances are obtained using a bootstrap to allow for
the fact that ŷ2 is a generated regressor subject to sampling variability.

Formally, the Poisson regression is estimated given the conditional mean
function

E(y|̂y2, x1) = � = exp(�1 ŷ2 + x′
1�2), (4.15)

where ŷ2 = x′
1�̂1 + x′

2�̂2. This approach does not combine testing for endo-
geneity with estimation; it instead estimates the model assuming endogeneity.
Despite its similarity with moment-based methods, the basis of the moment
condition being used is not clear.

Finally we consider another somewhat ad hoc fitted-value method that
resembles two-stage least squares that has been used in the context of Poisson
regression with one endogenous dummy variable. This set-up is common in
empirical work. Consider the overdispersed Poisson model,

yi ∼ P[�i �i ], i = 1, . . . , N

E[yi |�i , �i ] = �i �i

= exp(x′
i � + �di + εi ), (4.16)

where �i = exp(εi ), di is the endogenous dummy variable, εi is unobserved
heterogeneity uncorrelated with x′

i .

Suppose zi be a set of valid instruments, dim(zi ) > dim(xi ). Assume E[yi −
�i |zi ] = 0, but E[yi − �i |xi ] 
= 0. Consider the following two-step estimator:
(1) generate a fitted value d̂i (zi ) from a “reduced form” of di , using instruments
zi ; (2) replace di by d̂i (zi ) and estimate the new Poisson regression by MLE.
Though appealing in its logic, it is not clear that the two-step estimator is
consistent. Let di = d̂i (zi ) + �̂i , where d̂i (zi ) is a predicted (“fitted”) value of
di from linear regression on zi . Hence,

E(yi |̂di , �̂i ) = exp(x′
i � + �̂di (zi ) + εi + �̂�i )

= exp(x′
i � + �̂di (zi )) exp(εi + �̂�i ). (4.17)

Consistency requires E[exp(εi + �̂�i )|xi , d̂i ] = 0, but it is not obvious that
this condition can be satisfied regardless of the functional form used to gen-
erate d̂i (zi ).
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4.4.3 Latent Factor Models

An alternative to the above moment-based approaches is a pseudo-FIML ap-
proach of Deb and Trivedi (2006a) who consider models with count outcome
and endogenous treatment dummies. The model is used to study the impact
of health insurance status on utilization of care. Endogeneity in these mod-
els arises from the presence of common latent factors that impact both the
choice of treatments a (interpreted as treatment variables) and the intensity
of utilization (interpreted as an outcome variable). The specification is con-
sistent with selection on unobserved (latent) heterogeneity. In this model the
endogenous variables in the count outcome equations are categorical, but the
approach can be extended to the case of continuous variables.

The model includes a set of J dichotomous treatment variables that corre-
spond to insurance plan dummies. These are endogenously determined by
mixed multinomial logit structure (MMNL)

Pr(di |zi , li ) = exp(z′
i � j + � j li j )

1 + ∑J
k=1 exp(z′

i �k + �klik)
. (4.18)

where d j is observed treatment dummies, di = [di1, di2, . . . , di J ], j = 0, 1,
2, . . . , J , zi is exogenous covariates, li = [li1, li2, . . . , li J ], and li j are latent or
unobserved factors.

The expected outcome equation for the counted outcomes is

E(yi |di , xi , li ) = exp
(

x′
i � +

∑J

j=1
� j di j +

∑J

j=1

 j li j

)
, (4.19)

where xi is a set of exogenous covariates. When the factor loading parameter

 j > 0, treatment and outcome are positively correlated through unobserved
characteristics, i.e., there is positive selection. Deb and Trivedi (2006a) assume
that the distribution of yi is negative binomial

f (yi |di , xi , li ) = �(yi + �)
�(�)�(yi + 1)

(
�

�i + �

)� (
�i

�i + �

)yi

, (4.20)

where �i = E(yi |di , xi , li ) = exp(x′
i � + d′

i � + l′i 
) and � ≡ 1/� (� > 0) is the
overdispersion parameter.

The parameters in the MMNL are only identified up to a scale. Hence a scale
normalization for the latent factors is required; accordingly, they set � j = 1 for
each j . Although the model is identified through nonlinearity when zi = xi ,
they include some variables in zi that are not included xi .

Joint distribution of treatment and outcome variables is

Pr(yi , di |xi , zi , li ) = f (yi |di , xi , li ) × Pr(di |zi , li )
= f (x′

i � + d′
i � + l′i 
)

×g(z′
i �1 + �1li1, . . . , z′

i �J + �J li J ). (4.21)

This model does not have a closed-form log-likelihood, but it can be esti-
mated by numerical integration and simulation-based methods (Gourieroux
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and Monfort 1997). Specifically, as li j are unknown, it is assumed that the li j

are i.i.d. draws from (standard normal) distribution and one can numerically
integrate over them.

Pr(yi , di |xi , zi ) =
∫ [

f (x′
i � + d′

i � + l′i 
)

×g(z′
i �1 + �1li1, . . . , z′

i �J + �J li J )
]

h(li )dli

≈ 1
S

S∑
s=1

[
f (x′

i � + d′
i � + l̃′is
)

×g(z′
i �1 + �1l̃i1s , . . . , z′

i �J + �J l̃i J s)
]

, (4.22)

where l̃is is the sth draw (from a total of S draws) of a pseudo-random number
from the density h. Maximizing simulated log-likelihood is equivalent to
maximizing the log-likelihood for S sufficiently large.

ln l(yi , di |xi , zi ) ≈
N∑

i=1

ln

(
1
S

S∑
s=1

[
f (x′

i � + d′
i � + l̃′is
)

×g(z′
i �1 + �1l̃i1s , . . . , z′

i �J + �J l̃i J s)
] )

. (4.23)

For identification the scale of each choice equation should be normalized,
and the covariances between choice equation errors be fixed. A natural set
of normalization restrictions given by � jk = 0 ∀ j 
= k, i.e., each choice is
affected by a unique latent factor, and � j j = 1 ∀ j , which normalizes the scale
of each choice equation. This leads to an element in the covariance matrix
being restricted to zero; see Deb and Trivedi (2006a) for details.

Under the unrealistic assumption of correct specification of the model, this
approach will generate consistent, asymptotically normal, and efficient esti-
mates. But the restrictions on preferences implied by the MMNL of choice
are quite strong and not necessarily appropriate for all data sets. Estimation
requires computer intensive simulation based methods that are discussed in
Section 4.6.

4.4.4 Endogeneity in Two-Part Models

In considering endogeneity and self-selection in two-part models, we gain
clarity by distinguishing carefully between several variants current in the
literature. The baseline TPM model is that stated in Section 4.2; the first part
is a model of dichotomous outcome whether the count is zero or positive,
and the second part is a truncated count model, often the Poisson or NB, for
positive counts. In this benchmark model the two parts are independent and
all regressors are assumed to be strictly exogenous.

We now consider some extensions of the baseline. The first variant that we
consider, referred to as TPM-S, arises when the independence assumption for
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the two parts is dropped. Instead assume that there is a bivariate distribution
of random variables (�1 �2), representing correlated unobserved factors that
affect both the probability of the dichotomous outcome and the conditional
count outcome. The two-parts are connected via unobserved heterogeneity.
The resulting model is the count data analog of the classic Gronau-Heckman
selection model applied to female labor force participation. It is also a spe-
cial case of the model given in the previous section and can be formally
derived by specializing Equations 4.18 to 4.20 to the case of one dichoto-
mous variable and one truncated count distribution. Notice that in this vari-
ant the dichotomous endogenous variable will not appear as a regressor in
the outcome equation. In practical application of the TPM-S model one is
required to choose an appropriate distribution of unobserved heterogeneity.
Greene (2007b) gives specific examples and relevant algebraic details. Follow-
ing Terza (1998) he also provides the count data analog of Heckman two-step
estimator.

A second variant of the two-part model is an extension of the TPM-S model
described above as it also allows for dependence between the two parts of
TPM and further allows for the presence of endogenous regressors in both
parts. Hence we call this the TPM-ES model. If dependence between en-
dogenous regressors and the outcome variable is introduced thorough latent
factors as in Subsection 4.4.3, then such a model can be regarded a hybrid
based on TPM-ES model and the latent factor model. Identification of such a
model will require restrictions on the joint covariance matrix of errors, while
simulation-based estimation appears to be a promising alternative.

The third and last variant of the TPM is a special case. It is obtained under
the assumption that conditional on the inclusion of common endogenous re-
gressor(s) in the two parts, plus the exogenous variables, the two parts are
independent. We call this specification the TPM-E model. This assumption is
not easy to justify, especially if endogeneity is introduced via dependent latent
factors. However, if this assumption is accepted, estimation using moment-
based IV estimation of each equation is feasible. Estimation of a class of binary
outcome models with endogenous regressors is well established in the liter-
ature and has been incorporated in several software packages such as Stata.
Both two-step sequential and ML estimators have been developed for the case
of a continuous endogenous regressor; see Newey (1987). The estimator also
assumes multivariate normality and homoscedasticity, and hence cannot be
used for the case of an endogenous discrete regressor. Within the GMM frame-
work the second part of the model will be based on the truncated moment
condition

E[yi exp(−x′
i �) − 1|zi , yi > 0] = 0. (4.24)

The restriction yi > 0 is rarely exploited either in choosing the instruments or
in estimation. Hence most of the discussion given in Subsection 4.4.1 remains
relevant.
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4.4.5 Bayesian Approaches to Endogeneity and Self-Selection

Modern Bayesian inference is attractive whenever the models are parametric
and important features of models involve latent variables that can be simu-
lated. There are two recent Bayesian analyses of endogeneity in count models
that illustrate key features of such analyses; see Munkin and Trivedi (2003)
and Deb, Munkin, and Trivedi (2006a). We sketch the structure of the model
developed in the latter.

Deb, Munkin, and Trivedi (2006a) develop a Bayesian treatment of a more
general potential outcome model to handle endogeneity of treatment in a
count-data framework. For greater generality the entire outcome response
function is allowed to differ between the treated and the nontreated groups.
This extends the more usual selection model in which the treatment effect only
enters through the intercept, as in Munkin and Trivedi (2003). This more gen-
eral formulation uses the potential outcome model in which causal inference
about the impact of treatment is based on a comparison of observed outcomes
with constructed counterfactual outcomes. The specific variant of the poten-
tial outcome model used is often referred to as the “Roy model,” which has
been applied in many previous empirical studies of distribution of earnings,
occupational choice, and so forth. The study extends the framework of the
“Roy model” to nonnegative and integer-valued outcome variables and ap-
plies Bayesian estimation to obtain the full posterior distribution of a variety
of treatment effects.

Define latent variable Z to measure the difference between the utility gen-
erated by two choices that reflect the benefits and the costs associated with
them. Assume that Z is linear in the set of explanatory variables W

Z = W� + u, (4.25)

such that d = 1 if and only if Z ≥ 0, and d = 0 if and only if Z < 0.

Assume that individuals choose between two regimes in which two dif-
ferent levels of utility are generated. As before latent variable Z, defined
by Equation 4.25 where u ∼ N (0, 1), measures the difference between the
utility. In Munkin and Trivedi (2003) d = 1 means having private insurance
(the treated state) and d = 0 means not having it (the untreated state). Two
potential utilization variables Y1, Y2 are distributed as Poisson with means
exp(�1), exp(�2), respectively. Variables �1, �2 are linear in the set of ex-
planatory variables X and u such as

�1 = X�1 + u�1 + ε1, (4.26)
�2 = X�2 + u�2 + ε2, (4.27)

where Cov(u, ε1|X) = 0, Cov(u, ε2|X) = 0, and ε = (ε1, ε2) ∼ N (0, �), � =
diag(
1, 
2). The observability condition for Y is Y = Y1 if d = 1 and Y = Y2 if
d = 0. The counted variable Y, representing utilization of medical services, is
Poisson distributed with two different conditional means depending on the
insurance status. Thus, there are two regimes generating count variables Y1,
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Y2, but only one value is observed. Observe the restriction 
12 = 0|X,u. This
is imposed since the covariance parameter is unidentified in this model.

The standard Tanner–Wong data augmentation approach can be adapted
to include latent variables �1i , �2i , Zi in the parameter set making it a part of
the posterior. Then the Bayesian MCMC approach can be used to obtain the
posterior distribution of all parameters. A test to check the null hypothesis of
no endogeneity is also feasible. Denote by M1 the specification of the model
that leaves parameters �1 and �2 unconstrained, and by M0 the model that
puts �1 = �2 = 0 constraint. Then a test of no endogeneity can be imple-
mented using the Bayes factor B0,1 = m(y|M0)/m(y|M1), where m(y|M) is the
marginal likelihood of the model specification M.

In the case when the proportions of zero observations are so large that
even extensions of the Poisson model that allow for overdispersion, such as
negative binomial and the Poisson-lognormal models, do not provide an ad-
equate fit, the ordered probit (OP) modeling approach might be an option.
Munkin and Trivedi (2008) extend the OP model to allow for endogeneity of
a set of categorical dummy covariates (e.g., types of health insurance plans),
defined by a multinomial probit model (MNP). Let di = (d1i , d2i , . . . , dJ −1i )
be binary random variables for individual i (i = 1, . . . , N) choosing category
j ( j = 1, . . . , J ) (category J is the baseline) such that d ji = 1 if alternative j is
chosen and d ji = 0 otherwise. The MNP model is defined using the multino-
mial latent variable structure which represents gains in utility received from
the choices, relative to the utility received from choosing alternative J . Let
the ( J − 1) × 1 random vector Zi be defined as

Zi = Wi � + εi ,

where Wi is a matrix of exogenous regressors, such that

d ji =
J∏

l=1

I[0,+∞)
(
Zji − Zli

)
, j = 1, . . . , J ,

where ZJ i = 0 and I[0,+∞) is the indicator function for the set [0, +∞). The
distribution of the error term εi is ( J − 1)-variate normal N (0, �). For identi-
fication it is customary to restrict the leading diagonal element of � to unity.

To model the ordered dependent variable it is assumed that there is another
latent variable Y∗

i that depends on the outcomes of di such that

Y∗
i = Xi � + di � + ui ,

where Xi is a vector of exogenous regressors, and � is a ( J − 1) × 1 parameter
vector. Define Yi as

Yi =
M∑

m=1

mI[�m−1,�m)
(
Y∗

i

)
,

where �0, �1, . . . ,�M are threshold parameters and m = 1, . . . , M. For identi-
fication, it is standard to set �0 = −∞ and �M = ∞ and additionally restrict
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�1 = 0. The choice of insurance is potentially endogenous to utilization and
this endogeneity is modeled through correlation between ui and εi , assuming
that they are jointly normally distributed with variance of ui restricted for
identification since Y∗

i is latent; see Deb, Munkin, and Trivedi (2006b).
Munkin and Trivedi (2009) extend the Ordered Probit model with Endoge-

nous Selection to allow for a covariate such as income to enter the insurance
equation nonparametrically. The insurance equation is specified as

Zi = f (si ) + Wi � + εi , (4.28)

where Wi is a vector of regressors, � is a conformable vector of parame-
ters, and the distribution of the error term εi is N (0, 1). Function f (.) is
unknown and si is income of individual i . The data are sorted by values
of s so that s1 is the lowest level of income and sN is the largest. The main
assumption made on function f (si ) is that it is smooth such that it is differ-
entiable and its slope changes slowly with si such that, for a given constant
C , | f (si ) − f (si−1)| ≤ C |si − si−1| — a condition which covers a wide range of
functions.

Economic theory predicts that risk-averse individuals prefer to purchase in-
surance against catastrophic or simply costly evens because they value elimi-
nating risk more than money at sufficiently high wealth levels. This is modeled
by assuming that a risk-averse individual’s utility is a monotonically increas-
ing function of wealth with diminishing marginal returns. This is certainly
true for general medical insurance when liabilities could easily exceed any
reasonable levels. However, in the context of dental insurance the potential
losses have reasonable bounds. Munkin and Trivedi (2009) find strong evi-
dence of diminishing marginal returns of income on dental insurance status
and even a nonmonotonic pattern.

4.5 Panel Data

We begin with a model for scalar dependent variable yit with regressors xi t,
where i denotes the individual and t denotes time. We will restrict our cov-
erage to the case of t small, usually referred to as “short panel,” which is also
of most interest in microeconometrics. Assuming multiplicative individual
scale effects applied to exponential function

E[yit|�i , xi t] = �i exp(x′
i t�), (4.29)

As xi t includes an intercept, �i may be interpreted as a deviation from 1
because E(�i |x) = 1.

In the standard case in econometrics the time interval is fixed and the data
are equi-spaced through time. However, the panel framework can also cover
the case where the data are simply repeated events and not necessarily equi-
spaced through time. An example of such data is the number of epileptic
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seizures during a two-week period preceding each of four consecutive clinical
visits; see Diggle et al. (2002).

4.5.1 Pooled or Population-Averaged (PA) Models

Pooling occurs when the observations yit|�i , xi t are treated as independent,
after assuming �i = �. Consequently cross-section observations can be
“stacked” and cross-section estimation methods can then be applied.

The assumption that data are poolable is strong. For parametric models it
is assumed that the marginal density for a single (i, t) pair,

f (yit|xi t) = f (� + x′
i t�, �), (4.30)

is correctly specified, regardless of the (unspecified) form of the joint density

f (yit, . . . , yiT |xi1, . . . , xiT , �, �).

The pooled model, also called the population-averaged (PA) model, is easily
estimated. A panel-robust or cluster-robust (with clustering on i) estimator
of the covariance matrix can then be applied to correct standard errors for
any dependence over time for given individual. This approach is the analog
of pooled OLS for linear models.

The pooled model for the exponential conditional mean specifies E[yit|xi t] =
exp(� + x′

i t�). Potential efficiency gains can be realized by taking into ac-
count dependence over time. In the statistics literature such an estimator is
constructed for the class of generalized linear models (GLM) that includes
the Poisson regression. Essentially this requires that estimation be based
on weighted first-order moment conditions to account for correlation over
t, given i , while consistency is ensured provided the conditional mean is
correctly specified as E[yit|xi t] = exp(� + x′

i t�) ≡ g(xi t , �). The efficient
GMM estimator, known in the statistics literature as the population-averaged
model, or generalized estimating equations (GEE) estimator (see Diggle et al.
[2002]), is based on the conditional moment restrictions, stacked over all T
observations,

E[yi − gi (�)|Xi ] = 0, (4.31)

where gi (�) = [g(xi1, �), . . . ,g(xiT , �)]′ and Xi = [xi1, . . . , xiT ]′. The optimally
weighted unconditional moment condition is

E
[
∂g′

i (�)
∂�

{V[yi |Xi ]}−1(yi − gi (�))
]

= 0. (4.32)

Given �i a working variance matrix for V[yi |Xi ], the moment condition
becomes

N∑
i=1

∂g′
i (�)
∂�

�−1
i (yi − gi (�)) = 0. (4.33)
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The asymptotic variance matrix, which can be derived using standard GEE/
GMM theory (see CT, 2005, Chapter 23.2), is robust to misspecification of
�i . For the case of strictly exogenous regressors the GEE methodology is not
strictly speaking “recent,” although it is more readily implementable nowa-
days because of software developments.

While the foregoing analysis applies to the case of additive errors, there are
multiplicative versions of moment conditions (as detailed in Subsection 4.4.1)
that will lead to different estimators. Finally, in the case of endogenous re-
gressors, the choice of the optimal GMM estimator is more complicated as
it depends upon the choice of optimal instruments; if zi defines a vector of
valid instruments, then so does any function h(zi ).

Given its strong restrictions, the GEE approach connects straightforwardly
with the GMM/IV approach used for handling endogenous regressors. To
cover the case of endogenous regressors we simply rewrite the previous mo-
ment condition as E[yi − gi (�)|Zi ] = 0, where Zi = [zi1, . . . , ziT ]′ are appro-
priate instruments.

Because of the greater potential for having omitted factors in panel models
of observational data, fixed and random effect panel count models have rela-
tively greater credibility than the above PA model. The strong restrictions of
the pooled panel model are relaxed in different ways by random and fixed
effects models. The recent developments have impacted the random effects
panel models more than the fixed effect models, in part because computa-
tional advances have made them more accessible.

4.5.2 Random-Effects Models

A random-effects (RE) model treats the individual-specific effect �i as an un-
observed random variable with specified mixing distribution g(�i |�), similar
to that considered for cross-section models of Section 4.2. Then �i is eliminated
by integrating over this distribution. Specifically the unconditional density
for the ith observation is

f (yit, . . . , yiTi |xi1, . . . , xiTi , �, �, �)

=
∫ [

Ti∏
t=1

f (yit|xi t , �i , �, �)

]
g(�i |�)d�i . (4.34)

For some combinations of { f (·), g(·)} this integral usually has analytical solu-
tion. However, if randomness is restricted to the intercept only, then numerical
integration is also feasible as only univariate integration is required. The RE
approach, when extended to both intercept and slope parameters, becomes
computationally more demanding.

As in the cross-section case, the negative binomial panel model can be de-
rived under two assumptions: first, yi j has Poisson distribution conditional on
�i , and second, �i are i.i.d. gamma distributed with mean � and variance ��2.

Then, unconditionally yi j ∼ NB(�i , �i + ��2
i ). Although this model is easy

to estimate using standard software packages, it has the obvious limitation
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that it requires a strong distributional assumption for the random intercept
and it is only useful if the regressors in the mean function �i = exp(x′

i �) do
not vary over time. The second assumption is frequently violated.

Morton (1987) relaxed both assumptions of the preceding paragraph and
proposed a GEE-type estimator for the following exponential mean with
multiplicative heterogeneity model: E[yit|xi t , �i ] = exp(x′

i t�)�i ; Var[yit|�i ] =
�E[yit|xi t , �i ] ; E[�i ] = 1 and Var[�i ] = �. These assumptions imply E[yit|xi t] =
exp(x′

i t�) and Var[yit] = ��i t + ��2
i t. A GEE-type estimator based on Equa-

tion 4.33 is straight-forward to construct; see Diggle et al. (2002).
Another example is Breslow and Clayton (1993) who consider the

specification

ln{E[yit|xi t , zit]} = x′
i t� + �1t + �2tzit,

where the intercept and slope coefficients (�1t , �2t) are assumed to be bivariate
normal distributed. Whereas regular numerical integration estimation for this
can be unstable, adaptive quadrature methods have been found to be more
robust; see Rabe-Hesketh, Skrondal, and Pickles (2002).

A number of authors have suggested a further extension of the RE models
mentioned above; see Chib, Greenberg, and Winkelmann (1998). The assump-
tions of this model are: 1. yit|xi t , bi ∼ P(�i t); �i t = E[yit|x′

i t� + w′
i tbi ]; and

bi ∼ N [b∗, �b] where (x′
i t) and (w′

i t) are vectors of regressors with no com-
mon elements and only the latter have random coefficients. This model has
an interesting feature that the contribution of random effect is not constant for
a given i. However, it is fully parametric and maximum likelihood is compu-
tationally demanding. Chib, Greenberg, and Winkelmann (1998) use Markov
chain Monte Carlo to obtain the posterior distribution of the parameters.

A potential limitation of the foregoing RE panel models is that they may
not generate sufficient flexibility in the specification of the conditional mean
function. Such flexibility can be obtained using a finite mixture or latent class
specification of random effects and the mixing can be with respect to the inter-
cept only, or all the parameters of the model. Specifically, consider the model

f (yit|�, �) =
m∑

j=1

� j (zit|�) f j (yit|xi t , � j ), 0 < � j (·) < 1,
m∑

j=1

� j (·) = 1

(4.35)

where for generality the mixing probabilities are parameterized as functions
of observable variables zit and parameters �, and the j-component conditional
densities may be any convenient parametric distributions, e.g., the Poisson or
negative binomial, each with its own conditional mean function and (if rele-
vant) a variance parameter. In this case individual effects are approximated
using a distribution with finite number of discrete mass points that can be
interpreted as the number of “types.” Such a specification offers considerable
flexibility, albeit at the cost of potential over-parametrization. Such a model
is a straightforward extension of the finite mixture cross-section model. Bago
d’Uva (2005) uses the finite mixture of the pooled negative binomial in her
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study of primary care using the British Household Panel Survey; Bago d’Uva
(2006) exploits the panel structure of the Rand Health Insurance Experiment
data to estimate a latent class hurdle panel model of doctor visits.

The RE model has different conditional mean from that for pooled and
population-averaged models, unless the random individual effects are addi-
tive or multiplicative. So, unlike the linear case, pooled estimation in nonlin-
ear models leads to inconsistent parameter estimates if instead the assumed
random-effects model is appropriate, and vice-versa.

4.5.3 Fixed-Effects Models

Given the conditional mean specification

E[yit|�i , xi t] = �i exp(x′
i t�) = �i �i t , (4.36)

a fixed-effects (FE) model treats �i as an unobserved random variable that
may be correlated with the regressors xi t. It is known that maximum likeli-
hood or moment-based estimation of both the population-averaged Poisson
model and the RE Poisson model will not identify the � if the FE specifica-
tion is correct. Econometricians often favor the fixed effects specification over
the RE model. If the FE model is appropriate then a fixed-effects estimator
should be used, but it may not be available if the problem of incidental pa-
rameters cannot be solved. Therefore, we examine this issue in the following
section.

4.5.3.1 Maximum Likelihood Estimation

Whether, given short panels, joint estimation of the fixed effects � = (�1, . . . ,
�N) and � is feasible is the first important issue. Under the assumption of strict
exogeneity of xi t , the basic result that there is no incidental parameter prob-
lem for the Poisson panel regression is now established and well understood
(CT 1998; Lancaster 2000; Windmeijer 2008). Consequently, corresponding to
the fixed effects, one can introduce N dummy variables in the Poisson condi-
tional mean function and estimate (�, �) by maximum likelihood. This will
increase the dimensionality of the estimation problem. Alternatively, the con-
ditional likelihood principle may be used to eliminate � and to condense the
log-likelihood in terms of � only. However, maximizing the condensed likeli-
hood will yield estimates identical to those from the full likelihood. Table 4.2
displays the first order condition for FE Poisson MLE of �, which can be
compared with the pooled Poisson first-order condition to see how the fixed
effects change the estimator. The difference is that �i t in the pooled model is
replaced by �i t ȳi/��i in the FE Poisson MLE. The multiplicative factor ȳi/��i is
simply the ML estimator of �i ; this means the first-order condition is based
on the likelihood concentrated with respect to �i .

The result about the incidental parameter problem for the Poisson FE model
does not extend to the fixed effects NB2 model (whose variance function is
quadratic in the conditional mean) if the fixed effects parameters enter multi-
plicatively through the conditional mean specification. This fact is confusing
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TABLE 4.2

Selected Moment Conditions for Panel Count Models
Moment or Model Estimating Equations or

Model Specification Moment Condition

Pooled Poisson E[yit |xi t] = exp(x′
i t�),

∑N
i=1

∑T
t=1 xi t (yit − �i t) = 0

where �i t = exp(x′
i t�)

Pop. averaged �ts = Cor[(yit − exp(x′
i t�))

(yis − exp(x′
is�))].

Poisson RE E[yit |�i , xi t] = �i exp(x′
i t�),

∑N
i=1

∑T
t=1 xi t

(
yit − �i t

ȳi + �/T
��i + �/T

)
= 0

��i = T−1 ∑
t exp(x′

i t�); � = Var(�i )

Poisson FE E[yit |�i , xi t] = �i exp(x′
i t�)

∑N
i=1

∑T
t=1 xi t

(
yit − �i t

ȳi

��i

)
= 0,

GMM (Windmeijer) yit = exp(x′
i t� + �i )uit ,

∑N
i=1

∑T
t=1

[
yit

�i t−1

�i t
− yit−1|xt−1

i

]
= 0

Strict exog E[xi tuit+ j ] = 0, j ≥ 0

Predetermined reg. E[xi tuit−s ] 
= 0, s ≥ 1

GMM (Wooldridge) E
[

yit

�i t
− yit−1

�i t−1
|xt−1

i )
]

= 0
∑N

i=1
∑T

t=1

[
yit

�i t
− yit−1

�i t−1
|xt−1

i )
]

= 0

GMM (Chamberlain) E
[
yit

�i t−1

�i t
− yit−1 |xt−1

i )
]
= 0

∑N
i=1

∑T
t=1

[
yit

�i t−1

�i t
− yit−1 |xt−1

i )
]

= 0

GMM/endog E
[

yit

�i t
− yit−1

�i t−1
|xt−2

i )
]

= 0
∑N

i=1
∑T

t=1

[
yit

�i t−1

�i t
− yit−1|xt−2

i

]
= 0

Dynamic feedabck yit = 	yit−1 + exp(x′
i t� + �i ) E

[
(yit − 	yit−1)

�i t−1

�i t
−

+uit , − (yit−1 − 	yit−2)|yit−2, xt−1
i

]
= 0

for many practitioners who observe the availability of the fixed effects NB
option in several commercial computer packages. Greene (2007b) provides
a good exposition of this issue. He points out that the option in the pack-
ages is that of Hausman, Hall, and Griliches (1984) who specified a vari-
ant of the “fixed effects negative binomial” (FENB) distribution in which
the variance function is linear in the conditional mean; that is, Var[yit|xi t] =
(1+�i )E[yit|xi t], so the variance is a scale factor multiplied by the conditional
mean, and the fixed effects parameters enter the model through the scaling
factor. This is the NB model with linear variance (or NB1), not that with a
quadratic variance (or NB2 formulation). As fixed effects come through the
variance function, not the conditional mean, this is clearly a different formu-
lation from the Poisson fixed effects model. Given that the two formulations
are not nested, it is not clear how one should compare FE Poisson and this
particular variant of the FENB. Greene (2007b) discusses related issues in the
context of an empirical example.
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4.5.3.2 Moment Function Estimation

Modern literature considers and sometimes favors the use of moment-based
estimators that may be potentially more robust than the MLE. The starting
point here is a moment condition model. Following Chamberlain (1992), and
mimicing the differencing transformations used to eliminate nuisance param-
eters in linear models, there has been an attempt to obtain moment condition
models based on quasi-differencing transformations that eliminate fixed ef-
fects; see Wooldridge (1999, 2002). This step is then followed by application of
one of the several available variants of the GMM estimation, such as two-step
GMM or continuously updated GMM. Windmeier (2008) provides a good
survey of the approach for the Poisson panel model.

Windmeier (2008) considers the following alternative formulations:

yit = exp(x′
i t� + �i )uit, (4.37)

yit = exp(x′
i t� + �i ) + uit, (4.38)

where, in the first case E(uit) = 1, the xi t are predetermined with respect to
uit, and uit are serially uncorrelated and independent of �i . The table lists the
implied restriction. A quasi-differencing transformation eliminates the fixed
effects and generates moment conditions whose form depend on whether we
start with Equation 4.37 or 4.38. Several variants are shown in Table 4.2 and
they can be used in GMM estimation. Of course, these moment conditions only
provide a starting point and important issues remain about the performance
of alternative variants or the best variants to use. Windmeier (2008) discusses
the issues and provides a Monte Carlo evaluation.

It is conceivable that a fixed effects–type formulation may adequately ac-
count for overdispersion of counts. But there are other complications that gen-
erate overdispersion in other ways, e.g., excess zeros and fat tails. At present
little is known about the performance of moment-based estimators when the
d.g.p. deviates significantly from the Poisson-type behavior. Moment-based
models do not exploit the integer-valued aspect of the dependent variable.
Whether this results in significant efficiency loss — and if so, when — is a
topic that deserves future investigation.

4.5.4 Conditionally Correlated Random Effects

The standard random effect panel model assumes that �i and xi t are uncor-
related. Instead we can relax this and assume that they are conditionally cor-
related. This idea, originally developed in the context of a linear panel model
by Mundlak (1978) and Chamberlain (1982), can be interpreted as interme-
diate between fixed and random effects. That is, if the correlation between
�i and the regressors can be controlled by adding some suitable “sufficient”
statistic for the regressors, then the remaining unobserved heterogeneity can
be treated as random and uncorrelated with the regressors. While in princi-
ple we may introduce a subset of regressors, in practice it is more parsimo-
nious to introduce time-averaged values of time-varying regressors. This is
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the conditionally correlated random (CCR) effects model. This formulation
allows for correlation by assuming a relationship of the form

�i = x′
i 
 + εi , (4.39)

where x denotes the time-average of the time-varying exogenous variables
and εi may be interpreted as unobserved heterogeneity uncorrelated with the
regressors. Substituting this into the above formulation essentially introduces
no additional problems except that the averages change when new data are
added. To use the standard RE framework, however, we need to make an
assumption about the distribution of εt and this will usually lead to an integral
that would need evaluating. Estimation and inference in the pooled Poisson
or NLS model can proceed as before. This formulation can also be used when
dynamics are present in the model.

Because the CCR formulation is intermediate between the FE and RE
models, it may serve as a useful substitute for not being able to deal with
FE in some specifications. For example, a panel version of the hurdle model
with FE is rarely used as the fixed effects cannot be easily eliminated. In such
a case the CCR specification is feasible.

4.5.5 Dynamic Panels

As in the case of linear models, inclusion of lagged values is appropriate in
some empirical models. An example is the use of past research and devel-
opment expenditure when modeling the number of patents, see Hausman,
Hall, and Griliches (1984). When lagged exogenous variables are used, no
new modeling issues arise from their presence. However, to model lagged
dependence more flexibly and more parsimoniously, the use of lagged de-
pendent variables yt− j ( j ≥ 1) as regressors is attractive, but it introduces
additional complications that have been studied in the literature on autore-
gressive models of counts (see CT [1998], Chapters 7.4 and 7.5). Introducing
autoregressive dependence through the exponential mean specification leads
to a specification of the type

E[yit|xi t , yit−1, �i ] = exp(�yit−1 + x′
i t� + �i ), (4.40)

where �i is the individual-specific effect. If the �i are uncorrelated with the
regressors, and further if parametric assumptions are to be avoided, then this
model can be estimated using either the nonlinear least squares or pooled
Poisson MLE. In either case it is desirable to use the robust variance formula.

The estimation of a dynamic panel model requires additional assump-
tions about the relationship between the initial observations (“initial con-
ditions”) y0 and the �i . For example, using the CCR model we could write
�i = y′

0� + x′
i 
 + εi where y0 is an initial condition. Then maximum likeli-

hood estimation could proceed by treating the initial condition as given. The
alternative of taking the initial condition as random, specifying a distribu-
tion for it, and then integrating out the condition is an approach that has
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been suggested for other dynamic panel models, and it is computationally
more demanding; see Stewart (2007). Under the assumption that the initial
conditions are nonrandom, the standard random effects conditional maxi-
mum likelihood approach identifies the parameters of interest. For a class of
nonlinear dynamic panel models, including the Poisson model, Wooldridge
(2005) analyzes this model which conditions the joint distribution on the ini-
tial conditions.

The inclusion of lagged yit inside the exponential mean function introduces
potentially sharp discontinuities that may result in a poor fit to the data. It is
not the case that this will always happen, but it might when the range of counts
is very wide. Crepon and Duguet (1997) proposed using a better starting point
in a dynamic fixed effects panel model; they specified the model as

yit = h(yit−1, 	) exp(x′
i t� + �i ) + uit (4.41)

where the function h(yit−1, 	) parametrizes the dependence on lagged val-
ues of yit. Crepon and Duguet (1997) suggested switching functions to allow
lagged zero values to have a different effect from positive values. Blundell,
Griffith, and Windmeijer (2002) proposed a linear feedback model with mul-
tiplicative fixed effect �i ,

yit = 	yit−1 + exp(x′
i t� + �i ) + uit, (4.42)

but where the lagged value enters linearly. This formulation avoids awkward
discontinuities and is related to the integer valued autoregressive (INAR)
models. A quasi-differencing transformation can be applied to generate a
suitable estimating equation. Table 4.2 shows the estimating equation ob-
tained using a Chamberlain-type quasi-differencing transformation. Consis-
tent GMM estimation here depends upon the assumption that regressors are
predetermined. Combining this with the CCR assumption about �i is straight
forward.

Currently the published literature does not provide detailed information on
the performance of the available estimators for dynamic panels. Their devel-
opment is in early stages and, not surprisingly, we are unaware of commercial
software to handle such models.

4.6 Multivariate Models

Multivariate count regression models, especially its bivariate variant, are of
empirical interest in many contexts. In the simplest case one may be inter-
ested in the dependence structure between counts y1, . . . , ym, conditional on
vectors of exogenous variables x1, . . . , xm, m ≥ 2. For example, y1 denotes the
number of prescribed and y2 the number of nonprescribed medications taken
by individuals over a fixed period.
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4.6.1 Moment-Based Models

The simplest and attractive semiparametric approach here follows Delgado
(1992); it simply extends the seemingly unrelated regressions (SUR) for linear
models to the case of multivariate exponential regression. For example, in
the bivariate case we specify E[y1|x1] = exp(x′

1�1) and E[y2|x2] = exp(x′
2�2),

assume additive errors and then apply nonlinear least squares, but estimate
variances using the heteroscedasticity-robust variance estimator supported
by many software packages. This is simply nonlinear SUR and is easily ex-
tended to several equations. It is an attractive approach when all conditional
means have exponential mean specifications and the joint distribution is not
desired. It also permits a very flexible covariance structure and its asymp-
totic theory is well established. Tests of cross-equation restrictions are easy to
implement.

An extension of the model would include a specification for variances and
covariance. For example, we could specify V[y j |x j ] = � j exp(x′

j � j ), j = 1, 2,
and Cov[y1, y2|x1, x1] = � × exp(x′

1�1)1/2 exp(x′
1�2)1/2. This specification is

similar to univariate Poisson quasi-likelihood except improved efficiency is
possible using a generalized estimating equations estimator.

4.6.2 Likelihood-Based Models

At issue is the joint distribution of (y1, y2|x1, x2). A different data situation is
one in which y1 and y2 are paired observations that are jointly distributed,
whose marginal distributions f1(y1|x1) and f2(y2|x2) are parametrically spec-
ified, but our interest is in some function of y1 and y2. They could be data on
twins, spouses, or paired organs (kidneys, lungs, eyes), and the interest lies
in studying and modeling the difference. When the bivariate distribution of
(y1, y2) is known, standard methods can be used to derive the distribution of
any continuous function of the variables, say H(y1, y2).

A problem arises, however, when an analytical expression for the joint dis-
tribution is either not available at all or is available in an explicit form only
under some restrictive assumptions. This situation arises in case of multivari-
ate Poisson and negative binomial distributions that are only appropriate for
positive dependence between counts, thus lacking generality. Unrestricted
multivariate distributions of discrete outcomes often do not have closed
form expressions, see Marshall and Olkin (1990), CT (1998), and Munkin and
Trivedi (1999). The first issue to consider is how to generate flexible specifi-
cations of multivariate count models. The second issue concerns estimation
and inference.

4.6.2.1 Latent Factor Models

One fruitful way to generate flexible dependence structures between counts
is to begin by specifying latent factor models. Munkin and Trivedi (1999)
generate a more flexible dependence structure using a correlated unobserved
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heterogeneity model. Suppose y1 and y2 are, respectively, P(�1|�1) and
P(�2|�2)

E[yj |x j ,� j ] = � j = exp(�0 j + 
 j � j + x′
j � j ), j = 1, 2 (4.43)

where �1 and �2 represent correlated latent factors or unobserved heterogene-
ity and (
1, 
2) are factor loadings. Dependence is induced if �1 and �2 are
correlated. Assume (�1, �2) to be bivariate normal distributed with correlation
�, 0 ≤ � ≤ 1. Integrating out (�1, �2), we obtain the joint distribution

f (y1, y2|x1, x2, �1, �2) =
∫

f1(y1|x1, �1) f2(y2|x2, �2)g(�1, �2)d�1d�2, (4.44)

where the right-hand side can be replaced by simulation-based numerical
approximation

1
S

S∑
s=1

f1
(
y1|x1, �(s)

1

)
f2

(
y2|x2, �(s)

2

)
, (4.45)

The method of simulation-based maximum likelihood (SMLE) estimates the
unknown parameters using the likelihood based on such an approximation.
As shown in Munkin and Trivedi (1999), while SMLE of (�01, �1, �02, �2,
1, 
2)
is feasible it is not computationally straightforward. Recently two alterna-
tives to SMLE have emerged. The first uses Bayesian Monte Carlo Markov
Chain (MCMC) approach to estimation; see Chib and Winkelmann (2001).
MCMC estimation is illustrated in Subsection 4.6.3. The second uses copulas
to generate a joint distribution whose parameters can be estimated without
simulation.

4.6.2.2 Copulas

Copula-based joint estimation is based on Sklar’s theorem which provides
a method of generating joint distributions by combining marginal distri-
butions using a copula. Given a continuous m-variate distribution function
F (y1, . . . , ym) with univariate marginal distributions F1(y1), . . . , Fm(ym) and
inverse (quantile) functions F −1

1 , . . . , F −1
m , then y1 = F −1

1 (u1) ∼ F1, . . . , ym =
F −1

m (um) ∼ Fm, where u1, . . . , um are uniformly distributed variates. By Sklar’s
theorem, an m-copula is an m-dimensional distribution function with all m
univariate margins being U(0, 1), i.e.,

F (y1, . . . , ym)= F (F −1
1 (u1), . . . , F −1

m (um)) = C(u1, . . . , um; 	), (4.46)

is the unique copula associated with the distribution function. Here C(·) is a
given functional form of a joint distribution function and 	 is a dependence
parameter. Zero dependence implies that the joint distribution is the product
of marginals. A leading example is a Gaussian copula based on any relevant
marginal such as the Poisson.
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Sklar’s theorem implies that copulas provide a “recipe” to derive joint dis-
tributions when only marginal distributions are given. The approach is attrac-
tive because copulas (1) provide a fairly general approach to joint modeling of
count data; (2) neatly separate the inference about marginal distribution from
inference on dependence; (3) represent a method for deriving joint distribu-
tions given the fixed marginals such as Poisson and negative binomial; (4) in
a bivariate case copulas can be used to define nonparametric measures of de-
pendence that can capture asymmetric (tail) dependence as well as correlation
or linear association; (4) are easier to estimate than multivariate latent factor
models with unobserved heterogeneity. However, copulas and latent factor
models are closely related; see Trivedi and Zimmer (2007) and Zimmer and
Trivedi (2006).

The steps involved in copula modeling is specification of marginal distri-
butions and a copula. There are many possible choices of copula functional
forms, see Nelsen (2006). The resulting model can be estimated by a variety
of methods such as joint maximum likelihood of all parameters, or two-step
estimation in which marginal models are estimated first and 	 is estimated at
the second step. For details see Trivedi and Zimmer (2007).

An example of copula estimation is Cameron et al. (2004) who use the copula
framework to analyze the empirical distribution of two counted measures, y1
denoting self-reported doctor visits, and y2 denoting independent report of
doctor visits. They derive the distribution of y1 − y2, by first obtaining the
joint distribution f [y1, y2]. Zimmer and Trivedi (2006) use a trivariate copula
framework to develop a joint distribution of two counted outcomes and one
binary treatment variable.

There is growing interest in Bayesian analysis of copulas. A recent exam-
ple is Pitt, Chan, and Kohn (2006), who use a Gaussian copula to model the
joint distribution of six count measures of health care. Using a multivariate
density of the Gaussian copula Pitt, Chan, and Kohn develop a MCMC algo-
rithm for estimating the posterior distribution for discrete marginals, which is
then applied to the case where marginal densities are zero-inflated geometric
distributions.

4.7 Simulation-Based Estimation

Simulation-based estimation methods, both classical and Bayesian, deal with
distributions that do not have closed form solutions. Such distributions are
usually generated when general assumptions are made on unobservable vari-
ables that need to be integrated out. The classical estimation methods in-
clude both parametric and semiparametric approaches. Hinde (1982) and
Gouriéroux and Monfort (1991) discuss a parametric Simulated Maximum
Likelihood (SML) approach to estimation of mixed-Poisson regression
models. Application to some random effects panel count models has been
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implemented by Crepon and Duguet (1997). Delgado (1992) treats a multivari-
ate count model as a multivariate nonlinear model and suggests a semipara-
metric generalized least squares estimator. Gurmu and Elder (2007) develop a
flexible semiparametric specification using generalized Laguerre polynomi-
als, and propose a semiparametric estimation method without distributional
specification of the unobservable heterogeneity. Another approach (Cameron
and Johansson 1997) is based on series expansion methods putting forward
a squared polynomial series expansion.

Bayesian estimation of both univariate and multivariate Poisson models
is a straightforward Gibbs sampler in the case when regressors do not enter
the mean parameters of the Poisson distribution. However, since an objec-
tive of economists is to calculate various marginal and treatment effects, such
covariates must be introduced. This leads to a necessity to use Metropolis-
Hastings steps in the MCMC algorithms. In the era when high speed com-
puters were not available Bayesian estimation of various models relied on
deriving a closed form posterior distributions whenever possible. When such
closed forms do not exist as in the case of the Poisson model, the posterior can
be numerically approximated (El-Sayyad 1973). However, since an inexpen-
sive computer power became available a path of utilizing MCMC methods
has been taken. Chib, Greenberg, and Winkelmann (1998) propose algorithms
based on MCMC methods to deal with panel count data models with ran-
dom effects. Chib and Winkelmann (2001) develop an MCMC algorithm of a
multivariate correlated count data model. Munkin and Trivedi (2003) extend
a count data model to account for a binary endogenous treatment variable.
Deb, Munkin, and Trivedi (2006a) introduce a Roy-type count model with the
proposed algorithm being more efficient (with respect to computational time
and convergence) than the existing MCMC algorithms dealing with Poisson-
lognormal densities.

4.7.1 The Poisson-Lognormal Model

Whereas the Poisson-gamma mixture model, i.e., the NB distribution, has
proved very popular in application, different distributional assumptions on
unobserved heterogeneity might be more consistent with real data. One such
example is the Poisson lognormal model.

The Poisson lognormal model is a continuous mixture in which the marginal
count distribution is still assumed to be Poisson and the distribution of the
multiplicative unobserved heterogeneity term � is lognormal. Let us repa-
rameterize � such that � = exp(ε), where ε ∼ N

(
0, 
2

)
, and let the mean

of the marginal Poisson distribution be a function of a vector of exogenous
variables X.

The count variables y is distributed as Poisson with mean exp(�), where �
is linear in X and ε

� = X� + ε, (4.47)
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where Cov(ε|X) = 0. Then conditionally on unobserved heterogeneity term
ε, the marginal count distribution is defined as

f (y|X, �, ε) = exp
[− exp (X� + ε)

]
exp [y (X� + ε)]

y!
. (4.48)

The unconditional density f (y|X, �, 
) does not have a closed form since the
integral

∞∫
−∞

f (y|X, �, ε) f (ε|
) dε (4.49)

cannot be solved. Since in many applications the lognormal distribution is
a more appealing assumption on unobserved heterogeneity than gamma, a
reliable estimation method of such a model is needed. Estimation by Gaussian
quadrature is very feasible; Winkelmann (2004) provides a good illustration.

4.7.2 SML Estimation

Assume that we have N independent observations. An SML estimator of
	 = (�,
) is defined as

	̂SN = arg max
	

N∑
i=1

log

{
1
S

S∑
s=1

f (yi |Xi , �, εs
i )

}
, (4.50)

where εs
i (s = 1, . . . , S) are drawn from density f (ε|
). In our case this density

depends on unknown parameter 
. Instead of introducing an importance
sampling function we reparameterize the model such that � = X�+
u,where
u ∼ N (0, 1) . Then

f (y|X, �,
) =
∞∫

−∞

exp([− exp(X� + 
u)] exp[y(X� + 
u)]
y!

× 1√
2�

exp
(

−u2

2

)
du. (4.51)

In this example the standard normal density of u is a natural candidate for
the importance sampling function. Then the SML estimates maximize

N∑
i=1

log

{
1
S

S∑
s=1

exp(
[− exp

(
Xi � + 
us

i

)]
exp

[
yi

(
Xi � + 
us

i

)]
y!

}
, j = 1, 2

(4.52)
where us

i are drawn from N [0, 1] .

Since log is an increasing function, the sum over i and log do not commute.
Then if S is fixed and N tends to infinity 	̂SN is not consistent. If both S and
N tend to infinity then the SML estimator is consistent.
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4.7.3 MCMC Estimation

Next we discuss the choice of the priors and outline the MCMC algorithm.
For each observation i derive the joint density of the observable data and
latent variables. We adopt the Tanner–Wong data augmentation approach
and include latent variables �i (i = 1, . . . , N) in the parameter set making it
a part of the posterior. Conditional on �i the full conditional density of � is a
tractable normal distribution.

Denote �i = (Xi , �, 
). Then the joint density of the observable data and
latent variables for observation i is

f (yi , �i |�i ) = exp[yi �i − exp(�i )]
yi !

1√
2�
2

exp[−0.5
−2(�i − Xi �)2]. (4.53)

The posterior density kernel is the product of f (yi , �i |�i ) for all N observa-
tions and the prior densities of the parameters.

We choose a normal prior for parameter �, center it at zero and choose
relatively large variance

� ∼ N (0k , 10Ik) . (4.54)

The priors for the variance parameter is


−2 ∼ G
(

n
2

,
( c

2

)−1
)

where n = 5 and c = 10.

First, we block the parameters as �i , �, 
−2. The steps of the MCMC algorithm
are the following:

1. The full conditional density for �i is proportional to

p(�i |�i ) = exp[yi �i − exp(�i )]
yi !

exp[−0.5
−2(�i − Xi �)2]. (4.55)

Sample �i using the Metropolis–Hasting algorithm with normal dis-
tribution centered at the modal value of the full conditional density
for the proposal density. Let

�̂i = arg max log p (�i |�i ) (4.56)

and V�̂i = −(H�̂i )
−1 be the negative inverse of the Hessian of log

p(�i |�i ) evaluated at the mode �̂i . Choose the proposal distribution
q (�i ) = �(�i |�̂i , V�̂i ). When a proposal value �∗

i is drawn, the chain
moves to the proposal value with probability

�(�i , �∗
i ) = min

{
p(�∗

i |�i )q (�i )
p(�i |�i )q (�∗

i )
, 1

}
. (4.57)

If the proposal value is rejected, the next state of the chain is at the
current value �i .
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2. Specify prior distributions � ∼ N
[
�, H−1

�

]
. The the conditional dis-

tribution of � is � ∼ N [��, H
−1
� ] where

H� = H� +
N∑

i=1

X′
i 


−2Xi (4.58)

�� = H
−1
�

[
H�� +

N∑
i=1

X′
i 


−2�i

]
. (4.59)

3. Finally, specify the prior 
−2 ∼ G(n/2, (c/2)−1). Then the full condi-
tional of 
−2 is

G

⎛⎝n + N
2

,

[
c
2

+
N∑

i=1

(�i − Xi �)2

2

]−1
⎞⎠ . (4.60)

This concludes the MCMC algorithm.

4.7.4 A Numerical Example

To examine properties of our SML estimator and MCMC algorithm and their
performance, we generate several artificial data sets. In this section we re-
port our experience based on one specific data generating process (d.g.p.).
We generate 1000 observations using the following structure with assigned
parameter values: Xi = (1, xi ) and xi ∼ N (0, 1); � = (2, 1), 
 = 1. Such pa-
rameter values generate a count variable with mean of 19. The priors for pa-
rameters are selected to be uninformative but still proper, i.e., � ∼ N (0, 10I2)
and 
−1 ∼ G

( n
2 ,

( c
2

)−1) with n = 5 and c = 10.

Table 4.3 gives SML estimates and the posterior means and standard de-
viations for the parameters based on 10,000 replications preceded by 1000
replications of the burn-in phase. It also gives the true values of the parame-
ters in the d.g.p. As can be seen from the table the true values of the parameters
fall close to the centers of the estimated confidence intervals. However, if the
true values of � is selected such that the mean of the count variable is in-
creased to 50, the estimates of the SML estimator display a considerable bias
when the number of simulations is limited to S = 500.

TABLE 4.3

MCMC Estimation for Generated Data
Parameter True Value of d.g.p. MCMC SML

�0 (Constant) 2 1.984 1.970
0.038 0.036

�1 (x) 1 0.990 0.915
0.039 0.027


 1 1.128 1.019
0.064 0.026
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4.7.5 Simulation-Based Estimation of Latent Factor Model

We now consider some issues in the estimation of the latent factor model
of Subsection 4.6.1. The literature indicates that S should increase faster
than

√
N, but this does not give explicit guidance in choosing S. In prac-

tice some tests of convergence should be applied to ensure that S was set
sufficiently high. Using a small number of draws (often 50–100) works well
for models such as the mixed multinomial logit, multinomial probit, etc. How-
ever, more draws are required for models with endogenous regressors. Thus
computation can be quite burdensome if the standard methods are used.
For the model described in Subsection 4.4.3, Deb and Trivedi (2006b) find
the standard simulation methods to be quite slow. They adapt a simulation
acceleration technique that uses quasi-random draws based on Halton se-
quences (Bhat 2001; Train 2002). This method, instead of using S pseudo-
random points, makes draws based on a nonrandom selection of points
within the domain of integration. Under suitable regularity conditions, the
integration error using pseudo-random sequences is in the order of N−1

as compared to pseudo-random sequences where the convergence rate is
N−1/2 (Bhat 2001). For variance estimation, they use the robust Huber–White
formula.

4.8 Software Matters

In the past decade the scope of applying count data models has been greatly
enhanced by availability of good software and fast computers. Leading mi-
croeconometric software packages such as Limdep, SAS, Stata, and TSP pro-
vide a good coverage of the basic count model estimation for single equation
and Poisson-type panel data models. See Greene (2007a) for details of Limdep,
and Stata documentation for coverage of Stata’s official commands; also see
Kitazawa (2000) and Romeu (2004). The present authors are especially fa-
miliar with Stata official estimation commands. The Poisson, ZIP, NB, and
ZINB are covered in the Stata reference manuals. Stata commands support
calculation of marginal effects for most models. Researchers should also be
aware that there are other add-on Stata commands that can be downloaded
from Statistical Software Components Internet site at Boston College Depart-
ment of Economics. These include commands for estimating hurdle and finite
mixture models due to Deb (2007), goodness-of-fit and model evaluation com-
mands due to Long and Freese (2006), quantile count regression commands
due to Miranda (2006), and commands due to Deb and Trivedi (2006b) for
simulation-based estimation of multinomial latent factor model discussed in
Subsection 4.4.3. Stata 11, released in late 2009, facilitates implementing GMM
estimation of cross-section and panel data models based on the exponential
mean specification.
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4.8.1 Issues with Bayesian Estimation

The main computational difficulty with the simulated maximum likelihood
approach is the fact that when the number of simulations is small the param-
eters estimates are biased. This is true for even simple one equation models.
When the model becomes multivariate and multidimensional a much larger
number of simulations is required for consistent estimation. Sometimes it can
be very time consuming with the computational time increasing exponentially
with the number of parameters. In Bayesian Markov chain Monte Carlo the
computational time increases proportionally to the dimension of the model.
Besides, the approach does not suffer from the bias problem of the SML. How-
ever, there are computational problems with the Markov chain Monte Carlo
methods as well. Such problems arise when the produced Markov chains
display a high level of serial correlation leading to the posterior distribution
being saturated in a closed neighborhood with the Markov chain not visiting
the entire support of the posterior distribution. When the serial correlation is
high but reasonably smaller, the solution is to use a relatively larger number
of replications for a precise estimation of the posterior. However, when the
serial correlations are close to one such a problem must have a model specific
solution.

Bayesian model specification requires a choice of priors which can result
in a completely different posterior. When improper priors are selected this
can lead to improper posterior. In general, Bayesian modeling does not re-
strict itself to only customized models and new programs must be written
for various model specifications. Many programs for the well-developed ex-
isting models are written in MATLAB. Koop, Porier, and Tobias (2007) give
an excellent overview of different methods and models and provide a rich
library of programs. This book can serve as a good MATLAB reference for
researchers dealing with Bayesian modeling and estimation.
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5.1 Introduction

If we are not to get lost in the overwhelming, bewildering mass of statistical
data that are now becoming available, we need the guidance and help of a
powerful theoretical framework. (Frisch 1933)

This quote from Ragnar Frisch’s Editor’s Note in the first issue of Economet-
rica in 1933 has never seemed more timely. The phrase “data rich, information
poor” is often used to characterize the current state of our digitized world.
Over recent decades, data storage and availability has been growing at an
exponential rate, and currently, data sets on the order of terabytes are not
uncommon. While a portion of this new data is in the form of numerical or
categorical data in well-structured databases, the vast majority is in the form
of unstructured textual data. These news stories, government reports, blog
entries, e-mails, Web pages, and the like are the medium of information flow
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throughout the world. It is this unstructured data that most decision-makers
turn to for information.

In the context of numerical and categorical data, Frisch’s desire for pow-
erful tools for data analysis has, to a great extant, been satiated. The field of
econometrics has expanded at a rate that has well matched the increasing
availability of numerical data. However, in the context of the vast amount
of textual data that has become available, econometrics has barely scratched
the surface of its potential. Of course, the problems involved in the analy-
sis of textual data are much greater than those of other forms of data. The
complexity and nuances of language, as well as its very-high-dimensional
character, have made it an illusive target for quantitative analysis. Never-
theless, decision-making is at the core of economic behavior, and given the
importance of textual data in the decision-making process, there is a clear
need for more powerful econometric tools and techniques that will permit
the important features of this data to be included in our economic and finan-
cial models.

While textual econometrics is still early in its development, some important
progress has been made that has empirically demonstrated the importance
textual data. Research has shown that even at a coarse level of sophistica-
tion, automated textual processing can extract useful knowledge from large
collections of textual documents. Most of this new work has taken one of
two approaches: either the textual data have been greatly simplified into a
small number of dimensions so that traditional econometric techniques can
be brought to bear, or new techniques have been adopted that are better able
to deal with the complexity and high-dimensional character of the data. Both
approaches have proven useful and will be discussed in this chapter.

This early work is important for two reasons: First, it has shown that textual
data is an economically significant source of information and is not beyond
quantitative analysis. Second, while the techniques employed in these stud-
ies can capture only a fraction of the linguistic sophistication contained in
the documents, they do offer good baselines against which we can compare
future work. The development of linguistically sophisticated techniques is
a multidisciplinary endeavor pursued by researchers in linguistics, natural
language processing, text mining, and other areas. New techniques are con-
stantly being developed, and their application in econometrics will need to
be tested to determine whether an increase in complexity is made worthwhile
by an increased ability to quantify the information embedded in textual data.

The aim of this chapter is to introduce the reader to this new field of textual
econometrics. It proceeds as follows: Section 5.2 provides a review of some
recent applications of textual analysis in the economics and finance litera-
ture, Section 5.3 describes some special properties of textual data, Section 5.4
identifies various sources of textual data, Sections 5.5 through 5.7 describe
the important tasks of preprocessing, creating feature vectors, and reducing
dimensionality. Section 5.8 considers the application of automated document
classification. Section 5.9 directs readers to popular software that can process
textual data, and Section 5.10 concludes. Throughout the chapter, references
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are given for further reading and public resources that will be useful for the
interested researcher.

5.2 Textual Analysis in Economics and Finance

Since the introduction of event studies into economics (Fama et al. 1969),
researchers have been investigating the economic impact of media releases on
markets (Chan 2003; Mitchell and Mulherin 1994; Niederhoffer 1971). While
manual classification of stories as positive or negative was used in many such
studies, very little of the actual information content could be extracted for use
in statistical analysis. To a large degree, it was often the fact that there was
new information, not the information itself, that was being analyzed.

The mere fact that communication is occurring, either to or between market
participants, can be useful in understanding markets. For example, Coval and
Shumway (2001) look at the volume of noise in a Chicago Board of Trade
futures pit and found that following a rise in the sound levels, prices become
more volatile, depth declines, and information asymmetry increases. In the
written domain, Wysocki (1999) examines the relationship between posting
volume on Internet stock message boards and stock market activity, finding
that market characteristics determine posting levels and at the same time,
posting levels predict future volume and returns.

Using more linguistic content, Antweiler and Frank (2004) investigate
whether there is any predictive information in Internet stock message boards.
Having manually classified a training set of 1000 messages as either BUY,
SELL, or HOLD, they use the Naive Bayes classification algorithm to clas-
sify a larger set of 1.5 million messages from Yahoo!Finance and Raging Bull.
The classifier accepts the document as a “bag of words” without retaining
any linguistic structure, and uses simple word frequencies to decide on an
appropriate indicator. By aggregating these indicators within each period,
they construct a bullishness sentiment indicator that has predictive power
for market volatility, but not for returns.

While Antweiler and Frank (2004) use all of the words (but not their lin-
guistic relationships) of their documents, they ultimately reduce the dimen-
sionality of textual data significantly by identifying the tone or sentiment of
documents. Similarly, Tetlock, Saar-Tsechansky, and Macskassy (2008) create
a measure of news sentiment by identifying the fraction of negative words
in over 350,000 firm-specific news stories from the Wall Street Journal and
the Dow Jones News Service.1 Using the traditional regression methodology,
they find that the information captured by this simple variable has predictive
power for earnings and equity returns.

These two papers represent the two approaches to textual data: either it has
been greatly simplified into a small number of dimensions so that traditional

1 Their source for the news stories was the Factiva database (www.factiva.com).
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econometric techniques can be brought to bear, or new techniques have been
adopted that are better able to deal with the complexity and high-dimensional
character of the data.

Bhattacharya et al. (2008) manually read and classified 171,488 news stories
written during the Internet IPO frenzy to test whether the media “hyped”
Internet stocks by giving them more positive news relative to a group of
non-Internet IPOs during the same period. They find that there was indeed
significant media hype, but after controlling for other return-related factors,
find that the aggregated news affect from a given day would last only two
days and explained only a small portion of the difference between Internet
and non-Internet IPO returns.

Tetlock (2007) looks for interactions between the content of a popular Wall
Street Journal column and the stock market over a 16-year period. After reduc-
ing the dimensionality of the textual data through dictionary classifications
and principal component analysis, he uses a vector autoregressive methodol-
ogy to identify the relationship between media pessimism and market returns
and volumes. Findings indicate that the WSJ column does impact returns and
volume, and that his textual variable depends on prior market activity.

Like Antweiler and Frank (2004), Das and Chen (2007) study the impact of
stock message boards on market characteristics. Rather than using a single
classification algorithm to label messages as BUY, SELL, or HOLD, they em-
ploy five different classification algorithms which get to vote for the final label.
These classifiers use different data sets, extracted using various grammatical
parsing and statistical techniques, to decide on a label. Within the forecast-
ing literature, combining forecasts has been found to improve forecasting
performance (Armstrong 2001; Bates and Granger 1969), and compared to
the Bayes text classifier, the combined algorithms have better classification
accuracy.

Financial economics is not the only field doing textual econometrics, and
in fact only a minority of the work to date has been published in economic
or finance journals. The majority of the work has been done in the area of
Knowledge Discovery in Databases (KDD). KDD is a multidisciplinary field
(drawing primarily on developments of computing sciences) whose goal is
to extract nontrivial, implicit, previously unknown, and potentially useful
information from databases. A critical step in the KDD process often uses
data mining2 techniques to extract hidden patterns from data. In fact KDD
and data mining are already used in many economic applications including
marketing, fraud detection, and credit scoring, just to name a few.

Economic and financial data are popular for KDD research because of their
abundance and the complex relationships within large economic datasets. A
large portion of this research focuses on stock market forecasting since the
difficulty of this task is well established. Consequently, techniques that work
in this area are likely to represent true innovations. Examples of this work

2 While the phrase “data mining” has negative associations of “data snooping” within the field
of econometrics, the term also refers to a respected, well-developed field of computing science.
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include that by Mittermayer (2004), Fung, Yu, and Lu (2005), Kroha, Baeza-
Yates, and Krellner (2006), Rachlin et al. (2007), and Schumaker and Chen
(2009). Often, this research is more data-driven than work in economics with,
for example, features chosen for their predictive ability (e.g., associations
with trending prices) rather than their linguistic properties (e.g., negative
affectivity). This may be an important difference since, for example, markets
can fall on “good news” if the news was not as “good” as expected.

Beyond market forecasting, there has been a small amount of research on
the impact of textual data on macroeconomic conditions (Gao and Beling
2003) and in the area of labor laws (Ticom and de Lima 2007). However, there
are many other areas of economics and finance where the effects of textual
information may prove illuminating. Such areas include corporate finance,
bankruptcy and default, public policy, consumer behavior, among others.

5.3 Properties of Textual Data

Many researchers and philosophers have argued that human language and
human intelligence are intimately linked (Dennett 1994). In fact, one of the
long-standing proposals for testing genuine artificial intelligence is whether
a computer could engage a human in conversation with sufficient ability that
the human cannot tell, from language use alone, whether they are conversing
with a human or not (Turing 1950). While this level of automated linguistic
ability is still a distant goal, many less ambitious tasks have been automated
through the exploitation of structural and statistical regularities of language
(Jurafsky and Martin 2000). Clearly, the research outlined in the previous sec-
tion was not based on a deep level of automated understanding of language,
and yet many of the results are interesting and useful. On the one hand, this
indicates that there is still much to be gained from further advances in lan-
guage sciences and textual econometrics. However, it is necessary to be aware
of the challenges that textual data presents.

The primary function of language is to encode information that other lan-
guage users can extract. This is achieved through the sequential ordering of
linguistic primitives, either simple sounds (phonemes) in spoken language or
written symbols. In the written domain, these symbols are combined to form
words, and these words combine to form phrases and sentences, which com-
bine to form larger linguistic entities. The word is the smallest meaningful
unit, and much of the current textual econometric research deals with lan-
guage at the level of words, ignoring the important structural relationships
between words.

While words are the smallest syntactic unit, we are ultimately interested in
the intended meaning of the word. However, there is a many-to-many rela-
tionship between words and meanings. The fact that a word can have more
than one meaning (or sense, as they are sometimes called) is referred to as poly-
semy. On average, English words have 1.4 meanings, with some words having
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more than 70 (Fellbaum 1998). In addition to multiple meanings, words can
also have multiple linguistic functions, or part-of-speech (PoS). Thus, using
words as independent variables rather than their intended sense is akin to
introducing measurement error into a model.

On the other side of the word-meaning relationship, a sense/meaning can
often be expressed with more than one word. Two words sharing a common
meaning are called synonyms, and in the English language, an average of
1.75 words express a single meaning (Fellbaum 1998). This phenomenon is
intensified by the fact that most of us are taught not to be repetitive in our
writing style, and at the same time when writing about a given topic, a small
set of senses will be used multiple times. This means that synonyms can
exhibit strong correlations, and lead to problems akin to multicollinearity.

Moving up to the level of sentences creates another layer of language-to-
meaning difficulties. Ambiguity is one such difficulty. For example, consider
the sentence “Jill saw Jack with binoculars.” Does Jill or Jack have the binoc-
ulars? The prepositional phrase “with binoculars” is not unambiguously at-
tached to either Jill of Jack. The use of metaphors and sarcasm, which are not
meant to be taken literally, is also difficult to account for. Another, though
not so pressing, difficulty is the fact that languages evolve over time, and
grammar rules are not always strictly obeyed. Overcoming these difficulties
is actively being pursued by language researchers, and there have been many
developments including part-of-speech identification, grammatical parsing,
word-sense disambiguation, automated translation, and others.

Such difficulties have led researchers to work with textual data at the word
level. This approach, sometimes called the “bag-of-words” approach, treats
documents as unordered sets of words and ignores the sequential and gram-
matical structure. The assumption that word occurrences are independent
features of a document is clearly false and results in the loss of the vast ma-
jority of the information contained in the document. However, this assump-
tion has been defended on pragmatic grounds. As Fung, Yu, and Lu (2005)
state,

Research shows that this assumption will not harm the system performance.
Indeed, maintaining the dependency of features is not only extremely diffi-
cult, but also may easily degrade the system performance. (page 6)

Antweiler and Frank (2004) use the same defense:

As an empirical matter it has been found that a surprisingly small amount is
gained at substantial cost by attempting to exploit grammatical structure in
the algorithms. (page 1264)

Simple word choice can be a useful predictor of a document’s tone and the
author’s sentiment. That is, words alone can capture some of the emotive
content of the text. Words also permit researchers to capture documents on a
given subject. However, much is lost, and as advances are made in the lan-
guage sciences, we should encourage the use of new, performance-enhancing
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techniques. Some of these advances are discussed in later sections of this
chapter.

Given the importance of words in current textual econometrics, it is im-
portant to consider some of their stylized facts. To begin, the distribution of
words in a natural language can be approximated by a Zipfian (a.k.a. Yale)
distribution (Zipf 1932). This characterization of language is usually referred
to as Ziph’s law or the rank-size law and it states that the frequency ( f ) of a
word is inversely proportional to its statistical rank (r ). Thus, within a large
corpus (i.e., a large collection of texts) there is a constant k such that

f · r = k (5.1)

Graphically, Ziph’s law predicts that a scatter plot of log( f ) against log(r )
will form a straight line with a slope of −1. A consequence of this property is
that in a natural language, there are a few very frequent words, a relatively
small group of medium frequency words, and a very large number of rarely
occurring words. For example, in the Brown Corpus, consisting of over one
million words, half of the word volume consists of repeated uses of only 135
words.

Zipf’s law has many implications for the statistical properties of textual
data. For example, observational data on word occurrence will be very sparse,
with only a few words having many examples. This can impact classification
and prediction problems since even in large collections of documents, there
can be words that occur in only a single document. Thus, classification al-
gorithms must be robust to overfitting since, otherwise, training documents
will be classified according to their unique words.

While Zipf’s law is fairly accurate over most corpora, Mandelbrot (1954)
noted that the fit is poor for both very-high- and very-low-frequency words,
and proposed the following alternative characterization of the frequency-rank
relationship:

f = P(r + �)−B (5.2)

where P , �, and B are parameters describing the use of words in the text.
Both Mandelbrot’s and Zipf’s characterization of the distribution of words
is consistent with Ziph’s argument that language properties develop as an
efficient compromise that minimizes the efforts of listeners (who prefer large
vocabularies to reduce ambiguity) and speakers (who prefer smaller vocabu-
laries to reduce effort). In a similar argument, Zipf proposes that the number
of meanings (m) of a word is related to its frequency by

m ∝
√

f (5.3)

or, given Zipf’s law,

m ∝ 1√
r
. (5.4)
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An important partitioning of a lexicon (i.e., a dictionary or collection of
words) is between “content” words and “function” words. Function words
are (usually little) words that have important grammatical roles, including
determiners (e.g., the, a, that, my, . . . ), prepositions (e.g., of, at, in, . . . ), and
others. There are relatively few of these words (around 300 in English), but
they occur very frequently. Content words, on the other hand, constitute the
vast majority of words in a language. They are the nouns (e.g., Jim, house,
question, . . . ), adjectives (e.g., happy, old, slow, . . . ), and full verbs (e.g.,
run, grow, save, . . . ), and others that present the informational content of
texts. As expected these types of words have very different distributional
properties.

While function words appear to occur fairly uniformly throughout docu-
ments, content words appear to cluster. Zipf (1932) noted this phenomenon
by examining the distance (D) between occurrences of a given word, and then
calculating the frequency (F ) of these distances. He found that the number
of observations of a given distance between word occurrences was inversely
related to the magnitude of the distance. That is,

F ∝ 1
Dp

(5.5)

for values of p around 1.2. This implies that most content words occur near
other occurrences of the same word. Thus, content words have persistence
over time.

Several models have been proposed to model word distributions. Zipf’s
observation about the persistence of content words makes the Poisson dis-
tribution a poor choice because of its assumption of independence between
word occurrences. Better models include mixture models of multiple Poissons
and the K mixture model proposed by Katz (1996). For an expanded discus-
sion of word distribution models, and other statistical properties of natural
languages, interested readers should read the text by Manning and Schutze
(1999).

5.4 Textual Data Sources

The first step in any textual analysis project is the collection of the relevant
data. Textual econometrics will rarely, if ever, exclusively use textual data, but
will combine textual data with other more traditional data types. The specific
source for textual data will vary with the project, but there are many resources
that researchers in the area should be aware of.

News sources are of particular importance for textual econometrics since
markets, as information aggregators, will move when new and relevant in-
formation is released. A widely used, though fairly old, set of news stories is
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called Reuters Corpus Volume 1, or RCV1. It has been documented by Lewis
et al. (2004) and can be obtained from the National Institute of Standards
and Technology.3 RCV1 contains about 810, 000 Reuters English language
news stories from 1996-08-20 to 1997-08-19. A multilingual version, RCV2,
is also available. Another source for collected textual data sets, or corpora
as they are often called, is the Linguistic Data Consortium.4 These sources
contain relatively old material because of copyright issues, and researchers
will likely want to purchase or collect more recent data. A commercial source
of textual data that has been used in econometric research is the Dow Jones
Factive5 group, which collects news from over 25, 000 sources including the
Wall Street Journal, the Financial Times, as well as the Dow Jones, Reuters,
and Associated Press news services. There are other news-source databases
to which many academic institutions subscribe such as LexisNexis,6 Busi-
ness Source Complete,7 the Canadian Business & Current Affairs Database,8

among others. However, these databases are aimed at specific topic searches,
and not large scale downloads. Many database providers may seize access
to the data when it detects such unusual activity, so it is advisable to get the
vendor’s permission before downloading large quantities of data.

Collecting your own data is also a viable option through the use of public
Internet resources. Many Web sites, blogs, and message boards have archives
that may be downloaded manually or using a special type of software known
as Web crawlers (also called Web robots, Web spiders, . . . ). Many open source
Web crawlers9 are available with an array of document collection properties,
but the essence of each is that it browses the Internet in a structured way
while creating copies of the visited Web pages and storing them for future
processing. The starting URL(s) is specified and the crawler travels through
other Web pages through the hyperlinks contained in previously visited pages
according to a specified set of rules. There are many variants of Web crawlers
that researchers may find useful including focused and topical crawlers that
attempt to only visit Web pages on a given topic.

There are many other sources of textual data that are publicly available
including academic literature, firm press releases and shareholder reports,
analyst reports, political speeches, and government/institutional reports.

3 trec.nist.gov/data/reuters/reuters.html
4 www.ldc.upenn.edu
5 www.factiva.com
6 www.lexisnexis.com
7 www.ebscohost.com/titleLists/bt-complete.htm
8 www.proquest.com/en-US/catalogs/databases/detail/cbca.shtml
9 One such Web crawler is the DataparkSearch Engine, available at www.
dataparksearch.org, which will search and extract documents from within a Web
site or group of Web sites.
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5.5 Document Preprocessing

The technology that permits the quantification of textual data has been largely
developed within the field of natural language processing (NLP) (Charniak
1996; Jurafsky and Martin 2000; Manning and Schutze 1999). Many tasks that
seem trivial to a language using human are in fact frustratingly difficult to
program a computer to do. The level of NLP pre-processing can vary widely
depending on the particular research domain and goals. Various levels of
preprocessing are described below:

• Document format standardization: The current standard for document
formatting is the XML (Extensible Markup Language)10 format. An
advantage of XML is that it permits the placement of delimiting tags
around various parts of a document such as <DOC> · · · </DOC>

which indicates where a document begins and ends. Other tags indi-
cate document components, such as titles and section headings, that
may be of special importance. In cases where document components
are easily identified, plain text files are easiest to work with.

• Tokenization: This process is breaking stream of characters into groups
called tokens. The order of the original sequence is maintained, and
only white-space is removed. For example, the stream “You are read-
ing this sentence.” would be transformed into the following sequence
of tokens: [You][are][reading][this][sentence[.] Some multi-word ex-
pressions, such as “data set,” may be treated as single tokens. These
word groups include collocations, fixed expressions, and idioms.

• Misspelling correction: Commonly misspelt words may be automati-
cally replaced to improve task performance. However, unsupervised
replacement of all unfamiliar words (i.e., those not in a specified dic-
tionary) can reduce performance (Malouf and Mullen 2008).

• Sentence boundary detection: If the intended linguistic features involve
more than token occurrences, then the next step is to identify where
sentences begin and end. There are some hand-crafted algorithms
for sentences boundary detection that exploit language regularities
which can achieve greater than 90% accuracy. Given sufficient train-
ing data, classification learning algorithms can achieve more than
98% accuracy (Weiss et al. 2005).

• Part-of-speech (PoS) tagging: Each token has a linguistic function (called
its part-of-speech) that can be identified (or “tagged”). This will be
useful if you are only interested in certain types of tokens, such as
adjectives or nouns, or if you wish to do further NLP processing. The
number of classes of PoS objects varies considerably depending on
the level of detail. As an example, the CLAWS PoS Tagger11 takes the
sentence, “You are reading this sentence.” and outputs “[You_PNP]

10 www.w3.org/XML
11 ucrel.lancs.ac.uk/claws



 

P1: BINAYA KUMAR DASH

November 1, 2010 14:12 C7035 C7035˙C005

An Introduction to Textual Econometrics 143

[are_VBB] [reading_VVG] [this_DT0] [sentence_NN1]
[._PUN]” where PNP indicates a personal pronoun, VBB indicates
the “base forms” of the verb “BE,” VVG identifies the -ing form of
a lexical verb, DT0 indicates a general determiner, NN1 indicates a
singular noun, and PUN indicates punctuation. Another well known
and publicly available PoS tagger is the Brill tagger.12

• Phrase identification: Also known as “text-chunking,” identifies im-
portant word sequences. Primarily these sequences are noun phrases
(e.g., “the economic crisis”), verb phrases (e.g., “has worsened”), or
prepositional phrases (e.g., “because of”). Phrases can be used as fea-
tures, and also they can be used in parsing and named entity recog-
nition.

• Named entities: Identifying proper noun phrases (named entities) such
as people, organizations, and locations, is important in many textual
processing applications. This is a subtask of phrase recognition, but
as 90% of new lexemes encountered NLP systems are proper nouns
(do Prado and Ferneda 2008), there is considerable focus on identi-
fying and classifying them.

• Parsing: Parsing is the process of linking words within a sentence by
grammatical relationships. For example, the Stanford Parser13 identi-
fies the following relationships in the sentence, “You are reading this
sentence.”

1. nsubj(reading-3, You-1) – “You” is a nominal subject of a clause
of which “reading” is the governor.

2. aux(reading-3, are-2) – “are” is an auxiliary of a clause whose
main verb is “reading”.

3. det(sentence-5, this-4) – “this” is the determiner of a noun phrase
whose head is “sentence”.

4. dobj(reading-3, sentence-5) – “sentence” is the direct object of a
verb phrase whose main verb is “reading”.

The output of a parser is often in the form of a tree representing the
dependency between the parts of the sentence. Parsing permits us to
automatically associate descriptions and actions to named entities.
Without parsing, textual data such as “So XYZ’s earnings were not
bad this year.” and “Not so! XYZ’s earnings were bad this year.”
would likely be treated the same despite their very different meaning.

• Normalization/lemmatization/stemming: Performance may be improved
by aggregating different types of tokens. For example we may want to
treat the words “book” and “books” as instances of the same thing,
and so we may transform both into a single standard form. There
are many types and degrees of such standardization. Inflectional

12 www.tech.plym.ac.uk/soc/staff/guidbugm/software/RULE_BASED_TAGGER_
V.1.14.tar.Z

13 http://nlp.stanford.edu/software/lex-parser.shtml
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stemming involves aggregating across grammatical variation from
factors such as tense and plurality. Lemmatization replaces words
with their primitive form. “Stemming to a Root” removes all prefixes
and suffixes from a word. This last form of stemming is very strong
and since it often removes important information, it should not often
be used. While such normalization can be done immediately after
tokenization, if further NLP processing such as parsing is intended,
it should be postponed until later.

• Synonyms and coreferences: Collapsing synonyms and coreferences in-
volves aggregating all synonyms to their common sense (meaning).
An important tool in dealing with synonyms is WordNet,14 which or-
ganizes English nouns, verbs, adjectives, and adverbs into synonym
sets.

5.6 Quantifying Textual Information

With documents in a standardized format, the most critical question of quanti-
tative textual analysis must be considered: How do we transform textual data
into numerical data? The general strategy is to define a feature vector for each
document, where each vector element is associated with a linguistic feature
(such as a word, type of word, phrase, relationship, etc.) and the numerical
entry in this vector element measures the extant to which the feature is present
in the document. The choice of the type of features is critical and may depend
on the intended task, the properties of the textual data, or the level of linguistic
sophistication required. The number of features generated from textual data
can easily reach into the tens and even hundreds of thousands. Consequently,
combinations of dimensionality reduction and appropriate classification and
prediction methods are also needed. The following list indicates some of the
possible choices of types of features:

• Word occurrence: For this type of feature, the feature vector will have
a length that is the size of the dictionary. That is, for every distinct
word in the training data (or corpus), there is a corresponding feature
element. The feature vector for a given document will have a 1 in the
nth element if the document contains the nth word in the dictionary,
otherwise it contains a 0.

• Word frequencies: Rather than just having a 1 or 0 in each entry, this
feature type uses some measure of the frequency of words in the
document to weight the entry. There are several potential frequency
measures that can be used. The simplest method is just the num-
ber of times each word occurs in the document; however, there are

14 wordnet.princeton.edu
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more effective measures. There are two primitives that are used in
the construction of term weighting measures: term frequency (t fi, j :
the number of occurrences of word wi in document d j ) and document
frequency (d fi : the number of documents in the collection in which
wi occurs). A common weighting scheme based on these primitives
is called the inverse document frequency (idf)

idf i, j =
{

(1 + log(tf i, j )) log N
d fi

if tf i, j ≥ 1

0 if tf i, j = 0
(5.6)

where N is the number of documents. The idea of this type of weight-
ing scheme is that words that occur frequently are informative, but
words that occur in many documents are less informative. There are
several other weighting schemes based on this idea that use different
functions for term frequency, document frequency, and normaliza-
tion. Both word-occurrence and word-frequency type features are of-
ten referred to as the bag-of-words representation since all structural
properties of the textual data are lost.

• n-Grams/multi-word features: An n-gram is a sequence of n words.
Thus, the word-occurrence and word-frequency type features are ex-
amples of 1-gram, or unigram, features. We could extend these types
of features to include pairs of words that occur together to generate
2-gram, or bigram, features. Tan, Wang, and Lee (2002) show that
bigrams plus unigrams improve performance in a Web page classifi-
cation task compared to unigrams alone.

• Word+PoS features: Occurrence or frequency features could also be
generated for words paired with their parts of speech.

• Parsed features: Word n-grams together with their parsed dependen-
cies would provide considerable linguistic sophistication to the fea-
ture vectors. Such vectors would very large, with lengths on the order
of hundreds of thousands.

5.7 Dimensionality Reduction

With such large feature vectors, dimensionality reduction (also called feature
selection) can improve classification performance as well as increase com-
putational speed. An introduction to feature selection in high-dimensional
settings is given by Guyon and Elisseeff (2003), and experimental results for
various feature selection strategies is given by Yang and Pedersen (1997) and
Formen (2003).

The idea behind dimensionality reduction is that not all features are
equally informative, so we would like to score each potential feature by some
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“informativeness” metric, and then select only the best k features. Yang and
Pedersen (1997) have shown that in some cases removal of up to 98% of
the features can improve classification performance. Before reviewing some
scoring procedures, it is useful to review some of the informal filters that are
often applied.

In bag-of-words feature sets, words can be aggregated into broad categories
to capture more general features rather than specific meanings. For example,
Tetlock (2007) classifies all words in his documents as belonging to one of 77
categories using the Harvard-IV-4 dictionary. He then further reduces the di-
mensionality down to one feature using principal component analysis (PCA)
to extract the single factor that captures the maximum variation in the dictio-
nary categories. In Tetlock, Saar-Tsechansky, and Macskassy (2008), only one
of the 77 categories is used to measure the negative sentiment of a document,
thereby again reducing the dimensionality to one.

A common feature filter is to eliminate rare words on the grounds that they
will not help with classification. In many cases, up to half of the distinct words
in a collection will occur only once. Removing these features will greatly
improve the processing speed as well as reduce potential for over-fitting.

Similarly, removing the most common words will not likely harm clas-
sification performance since these function words (such as “the”, “a”, and
“of”) are purely grammatical rather than informative. A frequency threshold
can be used to identify these words, or a “stopword” list may be provided.
Also, as mentioned earlier, collapsing synonyms and coreferences, as well
as lemmatization and stemming can aggregate words into broader classes
thereby reducing dimensionality and potentially improving classification and
prediction performance.

There are many formal feature selection metrics that can be used to rank
potential features. According to Formen (2003), the Bi-Normal Separation
metric outperforms other more common metrics. Other metrics include In-
formation Gain, Mutual Information, Chi-Square, Odds Ratio, and others.
Formal descriptions of these metrics can be found in Formen (2003) and Yang
and Pedersen (1997).

5.8 Classification Problems

The growth of unsolicited and unwanted e-mails that are sent out in a bulk or
automatic fashion, also known as spam, has posed a great threat to Internet
communications. Today, estimates put the volume of spam in the range of
88%–92% of all e-mails (MAAWG 2010). In order to maintain the useability of
e-mail communications, spam detection systems were developed to classify e-
mails as spam or not. This is one of the most successful examples of automated
textual classification, but similar technology can be applied to a wide array
of classification and prediction problems.
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5.8.1 Classification

Textual classification (also known as categorization or supervised learning)
is the task of assigning documents D = {d1, . . . , d|D|} to predefined15 classes
C = {c1, . . . , c|C|}. Thus, a classifier is a function

F : D × C → {T, F } (5.7)

where F(di , c j ) = T if and only if document di belongs to class c j . Under this
general specification, a document may simultaneously belong to multiple
classes, as may be appropriate when, for example, an e-mail is not spam,
about a particular project, and from a particular sender. Such a problem is
usually broken down into |C| simpler binary classification problems. That is,
for each class ci ∈ C, we define a binary classifier

Fi : D → {T, F } (5.8)

where Fi (d j ) = T if and only if document d j belongs to class ci . When exactly
one class can be assigned to each document, as in the case of BUY, SELL, and
HOLD recommendations, the classifier will be of the form

F : D → C (5.9)

As before, depending on the classification algorithm chosen, this type of prob-
lem may be reduced to a set of binary classifiers with rules for dealing with
multiple class assignments.

If F is the correct or authoritative classifier, then we wish to approximate
this function with F̂ . Approximating classifiers has been extensively studied
in the field of machine learning (Mitchell 1997). The specific classification
scheme of F̂ is determined by a set of training documents for which the correct
classifications are known. These training documents can be classified by a
domain expert according to their linguistic properties, or they can be classified
according to some specific data that is aligned with the text document. Fung,
Yu, and Lu (2005) uses this latter approach and aligns news stories in a time
series with stock market performance.

5.8.2 Classifier Evaluation

A classifier can be evaluated across many dimensions. Its ability to correctly
classify documents is of paramount importance; however, its speed and scal-
ability in both the training and classification phases are also important. Ad-
ditionally, a good classifier should be relatively easy to use and understand.
The focus in this section, however, is limited to the evaluation of a classifier’s
primary task.

Recall that the classifierF mapsD×C into the {T, F } such thatF(di , c j ) = T
if and only if document di belongs to class c j . In this case, we call di a positive

15 When the classes are not known in advance, then the task is referred to as clustering.
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example of class c j . When F(di , c j ) = F then document di is not a member
of the class c j and so we call di a negative example of c j . To capture the
correctness of classifications from a trained classifier F̂ , we introduce the
following four basic evaluation functions:

TPF̂ (di , c j ) =
{

1 if F̂(di , c j ) = T and F(di , c j ) = T

0 otherwise
(5.10)

TNF̂ (di , c j ) =
{

1 if F̂(di , c j ) = F and F(di , c j ) = F

0 otherwise
(5.11)

FPF̂ (di , c j ) =
{

1 if F̂(di , c j ) = T and F(di , c j ) = F

0 otherwise
(5.12)

FNF̂ (di , c j ) =
{

1 if F̂(di , c j ) = F and F(di , c j ) = T
0 otherwise

(5.13)

Thus, every classification by F̂ will either be a true positive (TP), a true
negative (TN), a false positive (FP), or a false negative (FN). The TPs and
TNs indicate correct classifications, and the FPs and FNs indicate incorrect
classifications.

A simple, and sometimes overused, performance measure of classifiers is
accuracy (A) measured as the proportion of correct classifications.

A =
∑|D|

i=1
∑|C|

j=1

(
TPF̂ (di , c j ) + TNF̂ (di , c j )

)∑|D|
i=1

∑|C|
j=1

(
TPF̂ (di , c j ) + TNF̂ (di , c j ) + FPF̂ (di , c j ) + FNF̂ (di , c j )

)
(5.14)

The converse of accuracy is the error rate (E) measured as

E = 1 − A (5.15)

Accuracy, and error, are often useful performance measures, but they do not
always capture the intended notion of correctness. For example, when trying
to classify rare events, positive and negative examples will be strongly imbal-
anced with far more negative than positive examples. In this case, a universal
rejector (i.e., F̂(di , c j ) = F , ∀di , c j ) will have a high accuracy while being of
no practical use.

To address such concerns, two other performance measures have become
popular: precision and recall. Precision, with respect to a class c j , is the
proportion of documents assigned to class c j that actually belong to that
class.

PF̂ (c j ) =
∑|D|

i=1 TPF̂ (di , c j )∑|D|
i=1

(
TPF̂ (di , c j ) + FPF̂ (di , c j )

) (5.16)
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So, given a particular class, precision is the ratio of correct positive classifi-
cations to the total number of positive classifications. Precision can be aggre-
gated across classes in two ways. First, microaveraged precision averages the
precision of F̂ for each class, weighted by the number of positive documents.

PMicro
F̂ =

∑|C|
j=1

∑|D|
i=1 TPF̂ (di , c j )∑|C|

j=1
∑|D|

i=1

(
TPF̂ (di , c j ) + FPF̂ (di , c j )

) (5.17)

Alternatively, macroaveraged precision averages the precision for each class
with equal weights.

PMacro
F̂ =

∑|C|
j=1 PF̂ (c j )

|C| (5.18)

The second performance measure is recall. Recall, for a given class c j , is the
proportion of documents that truly belong to c j that are classified as belonging
to that class by F̂ .

RF̂ (c j ) =
∑|D|

i=1 TPF̂ (di , c j )∑|D|
i=1

(
TPF̂ (di , c j ) + FNF̂ (di , c j )

) (5.19)

So, given a particular class, precision is the ratio of the number of correct
positive classifications by the total number of truly positive class documents.
As with precisions, we can use microaveraging to define a measure of recall
across all classes.

RMicro
F̂ =

∑|C|
j=1

∑|D|
i=1 TPF̂ (di , c j )∑|C|

j=1
∑|D|

i=1

(
TPF̂ (di , c j ) + FNF̂ (di , c j )

) (5.20)

Alternatively, we may define a macroaverage measure of recall.

RMacro
F̂ =

∑|C|
j=1 RF̂ (c j )

|C| (5.21)

Most classifiers can be set up to tradeoff precision for recall, or vice versa.
Consequently, it is useful to present a combined measure of performance, the
F1 score, which is the harmonic mean of precision and recall:

F1 = 2 × P × R
P + R

(5.22)

where P and R are either micro- or macroaveraged.

5.8.3 Classification Algorithms

There is a multitude of classification algorithms to choose from including
decision trees, Bayesian classifiers, Bayesian belief networks, rule-based clas-
sifiers, backpropagation, genetic algorithms, k-nearest neighbor classifiers,
and others. Detailed treatments of these methods can be found in many text-
books including the one by Han and Kamber (2006). For text classification,
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however, support vector machines (SVMs) deserve special mention since they
consistently rank as or among the best classification methods (Joachims 1998)
and can handle very-high-dimensional data.

A complete description of SVMs is given by Burges (1998) and Vapnik
(1998), and there are many public resources16 available to those who wish to
learn about and use these classifiers. Thorsten Joachims has created a popular
implementation of the SVM algorithm called SVMlight,17 which is publicly
available. The basic SMV is a binary classifier that finds a hyperplane with the
maximum margin between positive and negative training documents. There
are now SMVs for multi-class classification as well as for regression. SMVs
have three unique features:

1. Not all training documents are used to train the SVM. Instead, only
documents near the classification boarder are used to train the SMV.

2. Not all features from the training documents are used, so excessive
feature reduction is not needed.

3. SMVs can construct irregular boarders between positive and negative
training documents.

Another classification technique that is worthy of mention is the use of en-
semble methods that combine several different classification methods. Two
examples of ensemble methods are bagging (i.e., bootstrap aggregation) and
boosting (a series of classifications that weight previously misclassified train-
ing examples more heavily). Han and Kamber (2006) describe implemen-
tations of these techniques, and Das and Chen (2007) employ an ensemble
voting method.

As a final note, regression techniques are also available for textual data
represented as a feature vector. Traditional regression methods can be used
when the number of features has been greatly reduced as in Tetlock (2007).
For larger feature vectors, support vector regressions (SVRs) can be used.

5.9 Software

There are many software packages available to facilitate textual econometric
research. In addition to those listed throughout this chapter, some popular
statistical packages have textual analysis modules:

• SAS text miner18: This package provides tools for transforming tex-
tual data into a usable a format, as well as for classifying documents,
finding relationships and associations between documents, and clus-
tering documents into categories.

16 www.support-vector-machines.org
17 svmlight.joachims.org
18 www.sas.com/technologies/analytics/datamining/textminer
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• SPSS text mining for clementine19: This package uses NLP techniques
to extract key concepts, sentiments, and relationships from textual
data. Feature vectors can be created and used in SPSS for predictive
modeling.

There are many other packages available. One package that is very com-
prehensive, freely available, and well documented is the Natural Language
Toolkit20 for the Python programming language. It contains open source
Python modules, linguistic data, and documentation for many of the tasks
described in this chapter. In addition to the documentation available, a book
has been written by Bird, Klein, and Loper (2009) as a guide to the toolkit.
Other programming resources are described by Bilisoly (2008), Konchandy
(2006), and Chakrabarti (2003).

5.10 Conclusion

The aim of this chapter has been to introduce econometricians to tools and
techniques that allow textual data to be analyzed in a quantitative and sta-
tistical manner. This new area of textual econometrics is in its early stages of
development and draws heavily from the fields of natural language process-
ing and text mining (Feldman and Sanger 2007; Weiss et al. 2005). Early work
in the field has proven that useful information is embedded in textual data
that can be extracted using these techniques. As these tools improve and the
areas of application expand, textual econometrics is a field bound to expand.
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6.1 Estimation and Inference Base

Econometricians rarely have at their disposal enough information to formu-
late a model in terms of a parametric family of distributions. Consequently,
traditional methods of parametric estimation and inference that are based
either on a likelihood or on a posterior distribution are prone to committing
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specification errors that lead to problems of inference. On the other hand,
economic data are partial and incomplete and usually there is seldom a large
enough data sample to rely on purely nonparametric methods.

Looking for a compromise, econometricians have turned to a traditional
method of estimation and inference known as the method of moments (MM);
cf., e.g., Mittelhammer, Judge, and Miller (2000). This formulation permits
a researcher to specify only some moment properties/features of the data-
sampling distribution F , with probability density function (pdf) r (x), of a
random variable X ∈ Rd . This is accomplished through estimating functions
u(X; �) ∈ RJ of parameter � ∈ � ⊆ Rk (see Godambe and Kale 1991). The
estimating functions are used to form a set �(�) = ⋃

�∈� �(�) of parametrized
pdf’s �(x; �), defined through unbiased estimating equations (EE)

�(�) =
{

�(x; �) :
∫

�(x; �)u(x; �) = 0
}

.

When J = k, there is usually a unique solution � of the “just determined”
set of EEs. Given a sample Xn

1 = X1, . . . , Xn, the solution can be estimated
by solving an empirical counterpart of the EEs: 1

n

∑n
i=1 u(xi ; �̂ MM) = 0. The

resulting estimator �̂ MM is known as the method of moments estimator. Asymp-
totic distributional properties of the estimator are well known (Mittelhammer,
Judge, and Miller 2000) and provide a basis for inference.

In econometric modeling, it often happens that there are more EEs than un-
known parameters; J > k. A considerable amount of work has been devoted
to extending the method of moments for this overdetermined case. As a result
the Generalized Method of Moments (Hansen 1982) evolved (see also Hall
2005).

More recently (cf. Bickel et al. 1993; Mittelhammer, Judge, and Miller 2000;
Owen 2001; among others), a new basis has emerged for regularizing the
overdetermined EEs. This approach is based on minimization of a discrep-
ancy, or divergence measure of a pdf � with respect to the true sampling
distribution pdf r :

�(� ‖ r ) =
∫

�

(
�(x)
r (x)

)
r (x)dx,

where � is a convex function. If � is assumed to belong to model set �(�)
then the minimization problem

�̂(�̂) = arg inf
�∈�

inf
�(x; �)∈�(�)

�(� ‖ r )

can be equivalently expressed in the convex dual form. Thanks to the convex
duality, the optimal �̂ can be obtained as

�̂ = arg inf
�∈�

sup
�∈R,�∈RJ

� − E[�∗(� + �′u(x; �))], (6.1)

where �∗ is the convex conjugate of �. In order to make Equation 6.1 op-
erational, it is necessary to connect it with the sample data X n

1 . Indeed, in
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Equation 6.1 the expectation is taken with respect to the true sampling distri-
bution r . It is natural to replace the expectation by its sample-based estimate,
and this leads to the empirical minimum divergence (EMD) estimator:

�̂ EMD = arg inf
�∈�

sup
�∈R,�∈RJ

� − 1
n

n∑
i=1

[�∗(� + �′u(xi ; �))]. (6.2)

Kitamura (2006) notes that the estimator (Equation 6.2) is the generalized
minimum contrast estimator considered by Bickel et al. (1993).

There are two possible ways of using the parametric model �(�), specified
by EE.

1. One option is to use the EEs to define a feasible set of possible
parametrized sampling distributions q (x; �). In order to distinguish this
way, the model set will be denoted �(�). The objective of information re-
covery is to select a representative sampling distribution from �(�). This
modeling strategy and associated problem will be referred to as a sampling
distribution (SD) problem.

2. Alternatively EEs can be used to form a set into which a parametriz-
ed empirical distribution should, in a researcher’s view, belong. The
sample Xn

1 is used to estimate the sampling distribution r . In this case the
model �(�) will be denoted �(�). The objective of information recovery
is the selection of a representative parametrized empirical distribution from
�(�). This modeling strategy and associated problem will be referred to as an
empirical distribution (ED) problem.

There are two choices of � that are popular: (1) �(x) = − log(x) which leads1

to the L-divergence (Grendár and Judge 2009a) L(� ‖ r ) = − ∫
r log � of pdf

� with respect to r , and (2) �(x) = x log(x) which leads to the I -divergence
I (� ‖ r ) = ∫

� log �
r , which is also known as the Kullback Leibler divergence or

the negative of relative entropy (Cover and Thomas 1991; Csiszár 1998). They
both are members of the Cressie–Read (cf. Cressie and Read 1984; Cressie and
Read 1988) (CR) parametric family of discrepancy measures

�(� ‖ r; �) = 1
�(� + 1)

∫ ((
�(x)
r (x)

)�

− 1
)

�(x)dx.

In the former case, the resulting EMD estimator is known as the empirical
likelihood (EL) estimator (Mittelhammer, Judge, and Miller 2000; Owen 2001;
Qin and Lawless 1994):

�̂ EL = arg inf
�∈�

sup
�∈RJ

1
n

n∑
i=1

log
(
1 − �′u(xi ; �)

)
. (6.3)

1 From the point of view of optimization of �(� ‖ r ) wrt �.
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In the latter case the empirical maximum maximum entropy (EMME) or
the maximum entropy empirical likelihood results (Back and Brown 1990;
Imbens, Spady, and Johnson 1998; Kitamura and Stutzer 1997; Mittelhammer,
Judge, and Miller 2000; Owen 2001):

�̂ EMME = arg sup
�∈�

inf
�∈RJ

1
n

n∑
i=1

exp(−�′u(xi ; �)).

Asymptotic distributional properties of both estimators are known (cf.,
e.g., Mittelhammer, Judge, and Miller 2000; Owen 2001) and an inferential
basis follows. Other members of the CR class of discrepancies appear in the
literature; cf., e.g., Schennach (2007). It is also possible to select an optimal
EMD estimator from the CR class, where optimality may be suitably defined
by minimum mean squared error criterion or some other loss function (Judge
and Mittelhammer 2004; Mittelhammer and Judge 2005). A survey of the
known small and large sample properties of EMD estimators can be found in,
e.g., Schennach (2007) and Grendár and Judge (2008); see also Owen (2001)
and Mittelhammer, Judge, and Miller (2000).

In practice, an econometrician usually does not have enough information to
guarantee that the model set (either �, or �) contains the true data-sampling
distribution r . Given that most econometric-statistical models are misspec-
ified, it is of basic interest to know which of the methods of information
recovery is consistent in the misspecified case. This is the place where the
large deviations (LD) theory (cf., e.g., Dembo and Zeitouni 1998; Cover and
Thomas 1991) is of great use, as it permits us to find out, in both the ED and
SD settings, the methods that are consistent under misspecification. This way
LD provides a guidance in information recovery, as it shows which methods
are ruled out and in what sense.

6.1.1 Purpose-Objectives of This Chapter

In the context of the above estimation and inference base this chapter provides
a nontechnical2 introduction to LD theory with a focus on the implications
of some of the key LD theorems for information recovery in Econometrics
and Statistics. LD theory is a subfield of probability theory where, informally,
the typical concern is about the asymptotic behavior, on a logarithmic scale,
of the probability of a given event. In more technical words, LD theory studies
the exponential decay of the probability of an event. For example, consider the
event that an empirical measure belongs to a specified set. The rate of expo-
nential decay of the probability of this event is determined by an extremal
value of a certain quantity, called the rate function, over the set; cf. the Sanov
theorem (ST), Subsection 6.2.1. This permits one to estimate the probability of
this event with precision of the first order in the exponent. Even more impor-
tantly, ST leads to the conditional law of large numbers (CLLN), which says,

2 Theorems are stated without proof, but references to the literature where the proofs can be
found are provided. Theorems are intentionally not stated at greatest possible generality.
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given that the event has occurred, only empirical measures arbitrarily close
to those that minimize the rate function, can occur as the sample size goes to
infinity.

Although LD theory also studies other types of events, we concentrate on
ST as a means for establishing CLLN. CLLN has profound implications for
the relative entropy maximization (REM/MaxEnt) – since, in the i.i.d. case,
the rate function is just the Kullback Leibler information divergence. These
implications carry over in a parametric context to EEs, where they provide a
probabilistic justification (cf. Kitamura and Stutzer 2002) to empirical Max-
MaxEnt estimation method (or exponential tilt estimator).

The lack of a comparable probabilistic justification for the empirical like-
lihood approach has motivated a study of LD theorems for data-sampling
distributions: Bayesian Sanov theorem (BST) and its corollary: Bayesian law
of large numbers (BLLN). The other objective of this chapter is to expose,
in general, the relatively new LD theorems for sampling distributions (also
known as Bayesian LD theorems) and their implications. Bayesian LLN pro-
vides a probabilistic justification to the maximum nonparametric likelihood
(MNPL) method, which carries over in a parametric context, where it justifies
the estimation method known as empirical likelihood (EL). The BLLN also
shows that from an estimation point of view MNPL as well as EL can be seen
as asymptotic instances of Bayesian maximum a posteriori probability (MAP)
method, in nonparametric and parametric context, respectively.

6.1.2 Organization of the Chapter

The chapter is divided into two large sections (Sections 6.2 and 6.4), which are
connected by an Intermezzo (Section 6.3). Section 6.2 is devoted to explain-
ing key LD theorems for empirical measures, culminating with CLLN and its
implications for ED selection problems. In particular, in Subsection 6.2.1, the
Sanov theorem is stated, explained, and illustrated with an example. Then
we demonstrate that the law of large numbers (LLN) is a direct consequence
of ST that implies how the simplest problem of selection of ED should be
solved. This is intended to facilitate understanding of how the CLLN provides
a probabilistic justification to relative entropy maximization and maximum
probability methods, in context of the general ED problem. Next we step by
step extend the ED problem into parametric and then to empirical parametric
ED problems. CLLN is used to determine regularization methods. Not sur-
prisingly, the methods are MaxMaxEnt, empirical MaxMaxEnt (also known
as maximum entropy empirical likelihood or exponential tilt), respectively.
Finally, the continuous case of the empirical parametric ED problem is ad-
dressed. Intermezzo (Section 6.3) summarizes implications of CLLN for the
parametric ED selection problems and prepares a transition to the opposite SD
selection problems. Next, Section 6.4 presents several LD theorems for sam-
pling distributions (including the Bayesian Sanov theorem and the Bayesian
law of large numbers), and discusses implications of BLLN for the SD prob-
lem in its basic as well as in its parametric forms. A summary is followed by
some literature notes.
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6.2 Large Deviations for Empirical Distributions

In order to discuss the ST CLLN, it is necessary to introduce some basic
terminology; cf. Csiszár (1998).

Let P(X ) be a set of all probability mass functions on the finite, m-element
setX = {x1, x2, . . . , xm}. The support of p ∈ P(X ) is a set S( p) = {x : p(x) > 0}.

Let x1, x2, . . . , xn be a random sample from a pmf q ∈ P(X ). Let �n denote
the empirical measure induced by a random sample of length n. Formally,
the empirical measure �n = [n1, n2, . . . , nm]/n, where ni is the number of
occurrences of ith element of X in the random sample. When there is a need
to stress the size n of the random sample that induces the empirical measure,
we will speak about the n-empirical measure. Finally, note that there are
�(�n) = n!(

∏m
i=1 ni !)−1 different random samples of length n that induce the

same empirical measure �n.
As previously mentioned, we are interested in the event that the random

sample drawn from a fixed pmf q induces the empirical measure �n from a
set � ⊆ P(X ). The probability of this event is therefore

�(�n ∈ �; q ) =
∑
�n∈�

�(�n; q ),

where

�(�n; q ) = �(�n)
m∏

i=1

q ni
i .

The Large Deviations (LD) rate function of probability of this event is
the information divergence. The information divergence (I -divergence, ±-
relative entropy, Kullback Leibler distance, etc.) I ( p ‖ q ) of p ∈ P(X ) with
respect to q ∈ P(X ) is

I ( p ‖ q ) =
m∑

i=1

pi log
pi

qi
,

where 0 log 0 = 0 and log b/0 = +∞, by convention. The information projec-
tion p̂ of q on � is

p̂ = arg inf
p∈�

I ( p ‖ q ).

The I -divergence at an I -projection of q on � is denoted I (� ‖ q ). Finally,
recall that I ( p ‖ q ) ≥ 0, where I ( p ‖ q ) = 0 iff p = q .

Topological qualifiers, e.g. openness, will be used with respect to the topol-
ogy induced on P(X ) by the standard topology on Rm.
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6.2.1 Sanov Theorem

The Sanov theorem, which is the basic LD result on the asymptotic behavior
of the probability that an n-empirical measure from a specified set � occurs,
may be stated as:

Sanov Theorem Let � be an open set and let S(q ) = X . Then

lim
n→∞

1
n

log �(�n ∈ �; q ) = −I (�‖q ).

Phrased informally, ST tells us that the rate of the exponential convergence
of the probability �(�n ∈ �; q ) toward zero, is determined by the information
divergence at (any of) the I -projection(s) of q on �. The other probability
mass functions (pmf’s) do not influence the rate of convergence. Obviously,
the greater the value I (�‖q ), the faster the convergence of probability �(�n ∈
�; q ) to zero, as n → ∞. The Sanov theorem thus permits us to speak about
and measure how rare a set � is with respect to a sampling distribution.

We use Example 6.1 to illustrate ST.

Example 6.1
Let X = [1, 2, 3, 4]. Let q be the uniform pmf. Let � = {p :

∑4
i=1 pi xi = 3.0}. The

Table 6.1 illustrates the convergence of the normalized log-probability 1
n log �(�n ∈

�; q ) to −I (�‖q ), as n → ∞.
The probability that a 1000-empirical measure with a mean of 3.0 was drawn from q

is �(�1000 ∈ �; q ) = 4.1433e−47. An approximate estimate of the probability can be
obtained by means of ST, as �(�1000 ∈ �; q ) ≈ exp(−1000 I (�‖q )) = 3.4121e−45.
Note that the approximation is comparable to the exact probability.

6.2.2 Law of Large Numbers

Since the probability �(�n ∈ A; q ) goes to zero for any A ⊂ P(X ) such that
I ( A‖ q ) > 0, the use of ST leads to the following law of large numbers (LLN):

Law of Large Numbers Let B( p̂, 	) be the closed 	-ball defined by the total
variation metric and centered at the I -projection p̂ ≡ q of q on P(X ). Then,

lim
n→∞ �(�n ∈ B( p̂, 	); q ) = 1.

TABLE 6.1

Convergence of the Normalized Log-
Probability to the Negative of Mini-
mum Value of the I -Divergence

n 1/n log �(�n ∈ Π; q)
10 −0.3152913

100 −0.1350160
1000 −0.1068000

−I (�‖q ) −0.1023890
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Thus, the information divergence that, through its infimal value, gave the
rate of exponential decay also provides, through the “point” of its infimum,
the pmf around which n-empirical measures concentrate. This LLN may be
interpreted as saying that, asymptotically, the only possible empirical mea-
sures are those that are arbitrary close to the I -projection p̂ of q on P(X ), i.e.,
in this case, to the data-sampling distribution q .

Next, we consider the example showing how LLN implies that the simplest
problem of selection of ED has to be solved using the REM/MaxEnt method.
The ED problem concerns selection of empirical measure from �, when the
information-quadruple (X , q , n, �) and nothing else is available. The next
Example illustrates the ED problem, which is simplest in the sense that � is
identical with the entire P(X ).

Example 6.2
Let X = {1, 2, 3, 4} and let q = [0.1, 0.4, 0.2, 0.3]. Let a random sample of size
n = 109 be drawn from q. The sample is not available to us. We are told only that
the sample mean is somewhere in the interval [1, 4]; i.e., � = {p :

∑
pi xi ∈ [1, 4]}.

Given the information-quadruple (X , q , n, �) we are asked to select an n-empirical
measure from �.

Since any 109-empirical measure fits the given interval of mean values,
there are N = (n+m−1

m−1

)
empirical measures from which we are asked to make

a choice. The problem that Example 6.2 asks us to solve is in the form of an
under-determined, ill-posed inverse problem.

The information that the unknown n-empirical measure was drawn from q
is crucial for comprehending that the ill-posed problem has a simple solution
implied by LLN. Though there are N n-empirical measures in �, LLN implies
that only those n-empirical measures that are close to the I -projection p̂ ≡ q
of the sampling distribution q on P(X ), i.e., close to q , are possible. Hence,
LLN regularizes the ill-posed inverse problem. Since the relative entropy
maximization method (REM/MaxEnt) selects just the I -projection, REM must
be used to solve this problem.

Let us conclude by noting that a consistency requirement would imply that
the same method should also be used for “small” n. Thus, if the sample size
were n = 10 instead of 109, as in Example 6.2, consistency would imply that
one should select the I -projection of q on the set P10(X ) of all possible 10-
empirical measures. Less stringently viewed, LLN implies that any method
that asymptotically becomes identical to REM can be used for solving this
instance of the ED problem.

6.2.3 CLLN, Maximum Entropy, and Maximum Probability

To demonstrate that LLN is a special case of the CLLNs, it is instructive to
express the claim of LLN in the following form:

lim
n→∞ �(�n ∈ B( p̂, 	) | �n ∈ P(X ); q ) = 1.

Compare this to the result of CLLN:



 

P1: GOPAL JOSHI

November 12, 2010 17:7 C7035 C7035˙C006

Large Deviations Theory and Econometric Information Recovery 163

Conditional Law of Large Numbers Let � be a convex, closed set that does
not contain q . Let B( p̂, 	) be a closed 	-ball defined by the total variation metric and
centered at the I -projection p̂ of q on �. Then,

lim
n→∞ �(�n ∈ B( p̂, 	) | �n ∈ �; q ) = 1.

Thus, one can see that CLLN generalizes LLN. Interpretation of CLLN is
similar to that of LLN except that the conditioning set � is no longer the entire
P(X ) but a convex, closed subset that does not contain q ; hence the model �

is misspecified. In other words, given the conditioning set �, CLLN demon-
strates that empirical measures asymptotically conditionally concentrate on
the I -projection of q on �, provided that the set satisfies certain technical
requirements.

CLLN follows directly from the Sanov theorem. The conditional probability
in question is

�(�n ∈ B( p, 	) | �n ∈ �; q ) = �(�n ∈ B( p, 	); q )
�(�n ∈ �; q )

.

Hence, by ST, if B( p, 	) is such that p̂ /∈ B( p, 	) then

1
n

log �(�n ∈ B( p, 	) | �n ∈ �; q ) → − ( I (B( p, 	) ‖ q ) − I (� ‖ q ) )︸ ︷︷ ︸
> 0

and consequently �(�n ∈ B( p, 	) | �n ∈ �; q ) → 0. Since, by assumption, there
is a unique I -projection of q on �, the conditional probability concentrates
on it.

In Subsection 6.2.2, LLN was invoked to solve Example 6.2, a simple in-
stance of the ED problem. The following extension of Example 6.2 provides
a more general instance of the problem in the sense that � is now a subset of
P(X ).

Example 6.3
Let X = {1, 2, 3, 4} and let q = [0.1, 0.4, 0.2, 0.3]. Let a random sample of size
n = 109 be drawn from q. The sample is not available to us. What we are told, only,
is that the sample mean is 3.0. Note that it is different from the expected value of X
under the pmf q , 2.7; i.e., the model is misspecified. Hence, the feasible set to which
n-types belong is � = {p :

∑4
i=1 pi xi = 3.0}. Given the information-quadruple

(X , q , n, �), how should one go about selecting an n-empirical measure from �?

The same discussion as that following Example 6.2 applies to this example
except that now it is CLLN instead of LLN that regularizes the ill-posed ED
problem.

Example 6.3 (cont’d)
CLLN dictates that one selects an empirical measure close to the I -projection p̂ =
[0.057, 0.310, 0.209, 0.424] of q on �, which is now different from q. The
I -projection can be obtained in the standard way of solving the constrained relative
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entropy maximization task (cf., e.g., Golan, Judge, and Miller 1996): p̂ = arg
maxp∈� − ∑

pi log pi
qi

, where � = {p :
∑4

i=1 pi xi = 3.0,
∑4

i=1 pi = 1}.

The following is an example of the ED problem with an economic relevance.

Example 6.4
(Cox, Daniell, and Nicole 1998) studied the UK National Lottery, where every week,
6 numbers from 49 are drawn, at random. The Lottery makes available the following
information about a draw: the winning ticket s, the total number n of sold tickets,
number of winners nr in each category (i.e., matched r-tuple), r = 3, 4, 5, 6. The info
is available for W weeks. The authors assume that the distribution q (t) of tickets is
uniform.

Given the above information, the objective is to select a representative empirical
distribution of tickets. This is an instance of the problem of ED selection, where the
feasible set of empirical pmf’s is formed by the available information as follows: for
each draw (week) w, winning ticket s and category r = 3, 4, 5,

nr (w) =
∑

t


r (t, s)n(t),

where n(t) is the unknown number of people who bought the ticket t and 
r (t, s) = 1,
if t and s have common just r numbers, 0 otherwise. There are 3W constraints.

The authors used information from W = 113 weeks and regularized the �-problem
by relative entropy maximization method. In the Table 1.1 (of Cox, Daniell, and Nicole
1998) one can find, for instance, that ticket with numbers 26 34 44 46 47 49 has
estimated n(t) = 0.41 while the ticket 7 17 23 32 40 42 has estimated n(t) = 45.62;
on an appropriate scale.

This work triggered a new economic interest in lotteries; cf., for instance, Farrell
et al. (2000).

In conclusion, LD theory for empirical distributions, through the CLLNs
provides a probabilistic justification for using REM to solve the ED selection
problem. Alternatively, any method of solving the ED problem that asymp-
totically does not behave like REM, violates CLLN. For instance, using the
maximum Tsallis entropy method (maxTent) to solve the �-problem would go
against CLLN. However, using the Maximum Probability method (MaxProb)
(Boltzmann 1877; Vincze 1972; Grendár and Grendár 2001; Niven 2007) satis-
fies CLLN since it asymptotically turns into REM (cf. Grendár and Grendár
2001, 2004). The MaxProb method suggests that one may solve the ED prob-
lem by selecting the �-projection of q on �, i.e., the n-empirical measure

�n
MaxProb = arg sup

�n∈�

�(�n; q ).

It is worth noting that the convergence of the most probable empirical mea-
sure(s), obtained with MaxProb, to the distribution that maximizes relative
entropy, obtained with REM/MaxEnt, provides another, deeper reading of
CLLN, namely that the empirical measures conditionally concentrate on the
asymptotically most probable empirical measure.
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Finally, a word of caution: The information-divergence minimization
method (REM/MaxEnt) is also used to regularize problems like spectrum
estimation or recovering of X-ray attenuation functions or optical images (cf.
Jones and Byrne 1990), that cannot be cast into the form of the �-problem. In
such cases, the LD justification used for REM cannot be invoked, and one has
to rely on other arguments; cf. Jones and Byrne (1990) and Csiszár (1996).

6.2.4 Parametric ED Problem and Maximum Maximum Entropy Method

The feasible set � of the ED problem can be, in general, defined by means
of J moment-consistency constraints � = {p :

∑m
i=1 pi u j (xi ) = a j , j = 1,

2, . . . , J }, where u j (·) is a real-valued function of X called the u-moment and
a ∈ RJ is given. In this case, the I -projection of q on � is easy to find, as it
belongs to the exponential family of distributions

E(X, �, u) = k(�)q (X) exp

(
−

J∑
j=1

� j u j (X)

)
,

where k(�) = (
∑m

i=1 q (xi ) exp(− ∑J
j=1 � j u j (xi )))−1 is the normalizing con-

stant. Example 6.3 presents a simple � with a single u-moment of the form
u(X) = X.

The u-moment function u(X) can be viewed as a special case of a general,
parametric u(X, �)-moment function, where � is a parameter, � ∈ � ⊆ Rk . The
parametric u-moments define the parametric feasible set �(�) = ⋃

�∈� �(�),
where

�(�) =
{

p(·; �) :
m∑

i=1

p(xi ; �)u j (xi , �) = 0, j = 1, 2, . . . , J

}
. (6.4)

Example 6.5 illustrates the extension of the ED problem to the parametric
ED problem.

Example 6.5
Let X = {1, 2, 3, 4} and let q = [0.1, 0.4, 0.2, 0.3]. Let a random sample of size
n = 109 be drawn from q. The sample is unavailable to us. What we are told,
only, is that the sample mean is in the interval [3.0, 4.0]. Here, u(X, �) = X − �,
where � ∈ [3.0, 4.0]; so that �(�) = {p(·; �) :

∑
p(xi ; �)(xi − �) = 0} and

� ∈ � = [3.0, 4.0]. Note that the interval does not contain the expected value of X
with respect to q , Eq X = 2.7; i.e., the model �(�) is misspecified. The objective is
to select a parametrized n-empirical measure �n(�) from �(�), given the available
information.

Let us link the parametric �-problem to the estimating equations (EE) ap-
proach to estimation. The general, parametric u(X, �)-moment function is,
in this context, commonly known as an estimating function. Unbiased esti-
mating functions are the most commonly considered estimating functions in
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Econometrics. Thus, the parametric ED problem becomes a problem of esti-
mating the unknown value of �. In other words, given a scheme for selecting
p̂(·; �̂), we are more interested in �̂ than in the corresponding p̂(·; �̂). It is clear
that the selected �̂ will depend on q .

LD theory provides a clue as to how one should solve the parametric ED
problem. If �(�) is a convex, closed set that does not contain q (i.e., the model
is misspecified), CLLN can be invoked to claim that such a parametric �-
problem should be solved by selecting the I -projection p̂(·; �̂) of the sampling
distribution q on �(�), i.e.,

p̂(·; �) = arg inf
p(·;�)∈�(�)

I ( p(·; �) ‖ q )

with � = �̂MME, where

�̂MME = arg inf
�∈�

I ( p̂(·; �) ‖ q ).

Because of the double maximization of the entropy, we will call the method
associated with this prescription Maximum Maximum Entropy method (Max-
MaxEnt). If �(�) is defined by the (Equation 6.4) the estimator �̂MME can be
expressed as

�̂MME = arg sup
�∈�

inf
�∈RJ

log
m∑

i=1

q (xi ; �) exp
(−�′u(xi ; �)

)
.

Example 6.5 (cont’d)
Note that MaxMaxEnt when applied to Example 6.5 selects the same pmf as did
MaxEnt in Example 6.3. Indeed, since the information divergence is a convex function
in the first argument, the minimum of the information divergence over � ∈ [3.0, 4.0]
is attained for � = 3.0. Phrased in EE terms, the MaxMaxEnt estimator of the
unknown true value of �, based on the available information is �̂ MME = 3.0.

6.2.5 Empirical ED Problem

The setting of the �-problem is idealized. In practice, the data-sampling dis-
tribution q is rarely known. Let us continue assuming that the other compo-
nents of the information-quadruple that constitute the ED problem, i.e., �, n
(the size of the sample that is unavailable to us) and X , are known to us. To
make the setup and problem more realistic, imagine that we draw a random
sample XN

1 = X1, X2, . . . , XN of size N from the true data-sampling distri-
bution q . Let the sample induce the N-empirical measure �N. When q in the
information-quadruple is replaced by �N, we speak about the empirical ED
problem. CLLN implies that the empirical ED problem should be solved by
any method whose choice becomes asymptotically (i.e., as n → ∞) identical
with the I -projection of �N on �.



 

P1: GOPAL JOSHI

November 12, 2010 17:7 C7035 C7035˙C006

Large Deviations Theory and Econometric Information Recovery 167

6.2.6 Empirical Parametric ED Problem and Empirical MaxMaxEnt

The discussion of Subsection 6.2.5 extends directly to the empirical parametric
ED problem, which CLLN implies should be solved by selecting

p̂(·; �) = arg inf
p(·;�)∈�(�)

I ( p(·; �) ‖ �N)

with � = �̂EMME, where

�̂EMME = arg inf
�∈�

I ( p̂(·; �) ‖ �N).

The estimator �̂EMME is known in Econometrics under various names such
as maximum entropy empirical likelihood and exponential tilt. We call it the
empirical MaxMaxEnt estimator (EMME). Note that thanks to the convex
duality, the estimator �̂EMME can equivalently be obtained as

�̂EMME = arg sup
�∈�

inf
�∈RJ

log
m∑

i=1

�N(xi ; �) exp
(−�′u(xi ; �)

)
. (6.5)

Example 6.6 illustrates the extension of the parametric ED problem (cf.
Example 6.5) to the empirical parametric ED problem.

Example 6.6
Let X = {1, 2, 3, 4}. Let a random sample of size N = 100 from data-sampling
distribution q induces N-type �N = [7 42 24 27]/100. Let in addition a random
sample of size n = 109 be drawn from q, but it remains unavailable to us. We are
told only that the sample mean is in the interval [3.0, 4.0]. Thus �(�) = {p(·; �) :∑4

i=1 p(xi ; �)(xi − �) = 0} and � ∈ � = [3.0, 4.0]. The objective is to select an
n-empirical measure from �(�), given the available information.

CLLN dictates that we solve the problem by EMME. Since n is very large, we can
without much harm ignore rational nature of n-types (i.e., �n(·; �) ∈ Qm) and seek
the solution among pmf’s p(·; �) ∈ Rm. CLLN suggests the selection of p̂(�̂ EMME).
Since the average

∑4
i=1 �N

i xi = 2.71, is outside of the interval [3.0, 4.0], convexity
of the information divergence implies that �̂ EMME = 3.0, i.e., the lower bound of the
interval.

Kitamura and Stutzer (2002) were the first to recognize that LD theory,
through CLLN, can provide justification for the use of the EMME estimator.
The CLLNs demonstrate that selection of I -projection is a consistent method,
which in the case of a parametric, possibly misspecified model �(�), estab-
lishes consistency under misspecification of the EMME estimator.

Let us note that ST and CLLN have been extended also to the case of contin-
uous random variables; cf. Csiszár (1984); this extension is outside the scope
of this chapter. However, we note that the theorems, as well as Gibbs con-
ditioning principle (cf. Dembo and Zeitouni 1998) and Notes on literature),
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when applied to the parametric setting, single out

�̂EMME = arg sup
�∈�

inf
�∈RJ

1
N

N∑
l=1

exp
(−�′u(xl; �)

)
(6.6)

as an estimator that is consistent under misspecification. The estimator is the
continuous-case form of Empirical MaxMaxEnt estimator. Note that the above
definition (Equation 6.6) of the EMME reduces to Equation 6.5, when X is a
discrete random variable. In conclusion it is worth stressing that in ED-setting
the EMD estimators from the CR class (cf. Section 6.1) other than EMME are
not consistent, if the model is not correctly specified.

A setup considered by Qin and Lawless (1994) (see also Grendár and Judge
2009b) serves for a simple illustration of the empirical parametric ED problem
for a continuous random variable.

Example 6.7
Let there be a random sample from a (unknown to us) distribution fX(x) on X = R.
We assume that the data were sampled from a distribution that belongs to the following
class of distributions (Qin and Lawless 1994): �(�) = {p(x; �) :

∫
R p(x; �)(x −

�) dx = 0,
∫
R p(x; �)(x2 − (2�2 + 1)) dx = 0, p(x; �) ∈ P(R)}, and � ∈ � = R.

However, the true sampling distribution need not belong to the model �(�). The
objective is to select a p(�) from �(�). The large deviations theorems mentioned
above single out p̂(�̂ EMME), which can be obtained by means of the nested optimization
(Equation 6.6).

For further discussions and application of EMME to asset pricing estima-
tion, see Kitamura and Stutzer (2002).

6.3 Intermezzo

Since we are about to leave the area of LD for empirical measures for the, in a
sense, opposite area of LD for data-sampling distributions, let us pause and
recapitulate the important points of the above discussions.

The Sanov theorem, which is the basic result of LD for empirical measures,
states that the rate of exponential convergence of probability �(�n ∈ �; q ) is
determined by the infimal value of information divergence (Kullback-Leibler
divergence) I ( p ‖ q ) over p ∈ �. Though seemingly a very technical result,
ST has fundamental consequences, as it directly leads to the law of large
numbers and, more importantly, to its extension, the CLLNs (also known as
the conditional limit theorem). Phrased in the form implied by Sanov theo-
rem, LLN says that the empirical measure asymptotically concentrates on the
I -projection p̂ ≡ q of the data-sampling q on � ≡ P(X ). When applying LLN,
the feasible set of empirical measures � is the entire P(X ). It is of interest to
know the point of concentration of empirical measures when � is a subset
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of P(X ). Provided that � is a convex, closed subset of P(X ), this guarantees
that the I -projection is unique. Consequently, CLLN shows that the empirical
measure asymptotically conditionally concentrates around the I -projection
p̂ of the data-sampling distribution of q on �. Thus, the CLLNs regularizes
the ill-posed problem of ED selection. In other words, it provides a firm probabilis-
tic justification for the application of the relative entropy maximization method in
solving the ED problem. We have gradually considered more complex forms of
the problem, recalled the associated conditional laws of large numbers, and
showed how CLLN also provides a probabilistic justification for the empirical
MaxMaxEnt method (EMME). It is also worth recalling that any method that
fails to behave like EMME asymptotically would violate CLLN if it were used
to obtain a solution to the empirical parametric ED problem.

6.4 Large Deviations for Sampling Distributions

Now, we turn to a corpus of “opposite” LD theorems that involves LD theo-
rems for data-sampling distributions, which assume a Bayesian setting. First,
the Bayesian Sanov theorem (BST) will be presented. We will then demon-
strate how this leads to the Bayesian law of large numbers (BLLN). These LD
theorems for sampling distributions will be linked to the problem of selecting
a sampling distribution (SD problem, for short). We then demonstrate that if
the sample size n is sufficiently large the problem should be solved with the
maximum nonparametric likelihood (MNPL) method. As with the problem
of empirical distribution (ED) selection, requiring consistency implies that
the SD problem should be solved with a method that asymptotically behaves
like MNPL. The Bayesian LLN implies that, for finite n, there are at least two
such methods, MNPL itself and maximum a posteriori probability. Next, it
will be demonstrated that the Bayesian LLN leads to solving the parametric
SD problem with the empirical likelihood method when n is sufficiently large.

6.4.1 Bayesian Sanov Theorem

In a Bayesian context assume that we put a strictly positive prior probabil-
ity mass function �(q ) on a countable3 set � ⊂ P(X ) of probability mass
functions (sampling distributions) q . Let r be the “true” data-sampling distri-
bution, and let Xn

1 denote a random sample of size n drawn from r . Provided
that r ∈ �, the posterior distribution

�(q ∈ Q | Xn
1 = xn

1 ; r ) =
∑

Q �(q )
∏n

i=1 q (xi )∑
� �(q )

∏n
i=1 q (xi )

3 We restrict presentation to this case, in order to not obscure it by technicalities; cf. Grendár and
Judge (2009a) for Bayesian LD theorems in a more general case and more complete discussions.
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is expected to concentrate in a neighborhood of the true data-sampling distri-
bution r as n grows to infinity. Bayesian nonparametric consistency consid-
erations focus on exploration of conditions under which it indeed happens;
for entries into the literature we recommend Ghosh and Ramamoorthi (2003);
Ghosal, Ghosh, and Ramamoorthi (1999); Walker (2004); and Walker, Lijoi,
and Prünster (2004), among others. Ghosal, Ghosh, and Ramamoorthi (1999)
define consistency of a sequence of posteriors with respect to a metric or dis-
crepancy measure d as follows: The sequence {�(· | Xn

1 ; r ), n ≥ 1} is said to
be d-consistent at r , if there exists a �0 ⊂ R∞ with r (�0) = 1 such that for
� ∈ �0, for every neighborhood U of r , �(U | Xn; r ) → 1 as n goes to infinity. If
a posterior is d-consistent for any r ∈ �, then it is said to be d-consistent. Weak
consistency and Hellinger consistency are usually studied in the literature.

Large deviations techniques can be used to study Bayesian nonparamet-
ric consistency. The Bayesian Sanov theorem identifies the rate function of
the exponential decay. This in turn identifies the sampling distributions on
which the posterior concentrates, as those distributions that minimize the
rate function. In the i.i.d. case the rate function can be expressed in terms of
the L-divergence. The L-divergence (Grendár and Judge 2009a) L(q ‖ p) of
q ∈ P(X ) with respect to p ∈ P(X ) is defined as

L(q ‖ p) = −
m∑

i=1

pi log qi .

The L-projection q̂ of p on A⊆ P(X ) is

q̂ = arg inf
q∈A

L(q ‖ p).

The value of L-divergence at an L-projection of p on A is denoted by L( A‖ p).
Finally, let us stress that in the discussion that follows, r need not be from �;
i.e., we are interested in Bayesian nonparametric consistency under misspec-
ification.

In this context the Bayesian Sanov theorem (BST) provides the rate of the
exponential decay of the posterior probability.

Bayesian Sanov Theorem Let Q ⊂ �. As n → ∞,

1
n

log �(q ∈ Q | xn
1 ; r ) → −{L(Q ‖ r ) − L(� ‖ r )}, a.s. r∞.

In effect BST demonstrates that the posterior probability �(q ∈ Q | xn
1 ; r )

decays exponentially fast (almost surely), with the decay rate specified by the
difference in the two extremal L-divergences.

6.4.2 BLLNs, Maximum Nonparametric Likelihood, and Bayesian
Maximum Probability

The Bayesian law of large numbers (BLLN) is a direct consequence of BST.
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Bayesian Law of Large Numbers Let � ⊆ P(X ) be a convex, closed set. Let
B(q̂ , 	) be a closed 	-ball defined by the total variation metric and centered at the
L-projection q̂ of r on �. Then, for 	 > 0,

lim
n→∞ �(q ∈ B(q̂ , 	) | q ∈ �, xn

1 ; r ) = 1, a.s. r∞.

Thus, there is asymptotically a posteriori (a.s. r∞) zero probability of a data-
sampling distribution other than those arbitrarily close to the L-projection q̂
of r on �.

BLLN is Bayesian counterpart of the CLLNs. When � = P(X ) the BLLN
reduces to a special case, which is a counterpart of the law of large numbers.
In this special case the L-projection q̂ of the true data-sampling r on P(X )
is just the data-sampling distribution r . Hence the BLLN can be in this case
interpreted as indicating that, asymptotically, a posteriori the only possible
data-sampling distributions are those that are arbitrary close to the “true”
data-sampling distribution r .

The following example illustrates how BLLN, in the case where � ≡ P(X ),
implies that the simplest problem of selecting of sampling distribution, has to
be solved with the maximum nonparametric likelihood method. The SD prob-
lem is framed by the information-quadruple (X , �n, �, �(q )). The objective is
to select a sampling distribution from �.

Example 6.8
Let X = {1, 2, 3, 4}, and let r = [0.1, 0.4, 0.2, 0.3] be unknown to us. Let a random
sample of size n = 109 be drawn from r, and let �n be the empirical measure that
the sample induced. We assume that the mean of the true data-sampling distribution
r is somewhere in the interval [1, 4]. Thus, r can be any pmf from P(X ). Given
the information X , �n, � ≡ P(X ) and our prior �(·), the objective is to select a
data-sampling distribution from �.

The problem presented in Example 6.8 is clearly an underdetermined, ill-
posed inverse problem. Fortunately, BLLN regularizes it in the same way LLN
did for the simplest empirical distribution selection problem, cf. Example 6.2
(Subsection 6.2.2). BLLN says that, given the sample, asymptotically a poste-
riori the only possible data-sampling distribution is the L-projection q̂ ≡ r of
r on � ≡ P(X ). Clearly, the true data-sampling distribution r is not known
to us. Yet, for sufficiently large n, the sample-induced empirical measure �n

is close to r . Hence, recalling BLLN, it is the L-projection of �n on � what we
should select. Observe that this L-projection is just the probability distribution
that maximizes

∑m
i=1 �n

i log qi , the nonparametric likelihood.
We suggest the consistency requirement relative to potential methods for

solving the SD problem. Namely, any method used to solve the problem
should be such that it asymptotically conforms to the method implied by
the Bayesian law of large numbers. We know that one such method is the
maximum nonparametric likelihood. Another method that satisfies the con-
sistency requirement and is more sound than MNPL, in the case of finite n, is
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the method of maximum a posteriori probability (MAP), which selects

q̂MAP = arg sup
q∈�

�(q | �n; r ).

MAP, unlike MNPL, takes into account the prior distribution �(q ). It can be
shown (cf. Grendár and Judge 2009a) that under the conditions for BLLN,
MAP and MNPL asymptotically coincide and satisfy BLLN.

Although MNPL and MAP can legitimately be viewed as two different
methods (and hence one should choose between them when n is finite), we
prefer to view MNPL as an asymptotic instance of MAP (also known as
Bayesian MaxProb), much like the view in (Grendár and Grendár 2001) that
REM/MaxEnt is an asymptotic instance of the maximum probability method.

As CLLN regularizes ED problems, so does the Bayesian LLN for SD prob-
lems such as the one in Example 6.9.

Example 6.9
Let X = {1, 2, 3, 4}, and let r = [0.1, 0.4, 0.2, 0.3] be unknown to us. Let a
random sample of size n = 109 be drawn from r, and let �n = [0.7, 0.42, 0.24,
0.27] be the empirical measure that the sample induced. We assume that the mean of
the true data-sampling distribution r is 3.0; i.e., � = {q :

∑4
i=1 qi xi = 3.0}. Note

that the assumed value is different from the expected value of X under r , 2.7. Given
the information X , �n, � and our prior �(·), the objective is to select a data-sampling
distribution from �.

The BLLN prescribes the selection of a data-sampling distribution close to
the L-projection p̂ of the true data-sampling distribution r on �. Note that
the L-projection of r on �, defined by linear moment consistency constraints
� = {q :

∑
q (xi )u j (xi ) = a j , j = 1, 2, . . . , J }, where u j is a real-valued

function and a j ∈ R, belongs to the �-family of distributions (cf. Grendár
and Judge 2009a),

�(r, u, �, a ) =
q : q (x) = r (x)

[
1 −

J∑
j=1

� j (u j (x) − a j )

]−1

, x ∈ X

 .

Since r is unknown to us, it is reasonable to replace r with the empirical mea-
sure �n induced by the sample Xn

1 . Consequently, the BLLN instructs us to
select the L-projection of �n on �, i.e., the data-sampling distribution that
maximizes nonparametric likelihood. When n is finite, it is the maximum a
posteriori probability data-sampling distribution(s) that should be selected.
Thus, given certain technical conditions, BLLN provides a strong probabilis-
tic justification for using the maximum a posteriori probability method and
its asymptotic instance, the maximum nonparametric likelihood method, to
solve the problem of selecting an SD.
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Example 6.9 (cont’d)
Since n is sufficiently large, MNPL and MAP will produce a similar result. The L-
projection q̂ of �n on � belongs to the � family of distributions. The correct values �̂
of the parameters � can be found by means of the convex dual problem (cf., e.g., Owen
2001):

�̂ = arg inf
�∈RJ

−
∑

i

�n
i log

(
1 −

∑
j

� j (u j (xi ) − a j )

)
.

For the setting of Example 6.9, the L-projection q̂ of �n on � can be found to be
[0.043, 0.316, 0.240, 0.401].

6.4.3 Parametric SD Problem and Empirical Likelihood

Note that the SD problem is naturally in an empirical form. As such, there is
only one step from the SD problem to the parametric SD problem, and this
step means replacing � with a parametric set �(�), where � ∈ � ⊆ Rk . The
most common such set �(�), considered in Econometrics, is that defined by
unbiased EEs, i.e., �(�) = ⋃

�∈� �(�), where

�(�) =
{

q (x; �) :
m∑

i=1

q (xi ; �)u j (xi ; �) = 0, j = 1, 2, . . . , J

}
.

The objective in solving the parametric SD problem is to select a representa-
tive sampling distribution(s) when only the information (X , �n, �(�), �(q ))
is given. Provided that �(�) is a convex, closed set and that n is sufficiently
large, BLLN implies that the parametric �-problem should be solved with
the maximum nonparametric likelihood method, i.e., by selecting

q̂ (·; �) = arg inf
q (·;�)∈�(�)

L(q (·; �) ‖ �n),

with � = �̂, where

�̂EL = arg inf
�∈�

L(q̂ (·; �) ‖ �n).

The resulting estimator �̂EL is known in the literature as the empirical likeli-
hood (EL) estimator.

If n is finite/small, BLLN implies that the problem should be regular-
ized with MAP method/estimator. It is worth highlighting that in the semi-
parametric EE setting, the prior �(q ) is put over �(�), and the prior in turn
induces a prior �(�) over the parameter space �; cf. Florens and Rolin (1994).

BST and BLLN are also available for the case of continuous random vari-
ables; cf. (Grendár and Judge 2009a). In the case of EEs for continuous random
variables, BLLN provides a consistency-under-misspecification argument for
the continuous-form of EL estimator (see Equation (6.3)). BLLN also supports
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the Bayesian MAP estimator

q̂ MAP(x; �̂ MAP) = arg sup
q (x;�)∈�(�)

sup
�∈�

�(q (x; �) | xn
1 ).

Since EL and the MAP estimators are consistent under misspecification, this
provides a basis for the EL as well for the Bayesian MAP estimation methods.
In conclusion it is worth stressing that in SD setting the other EMD estimators
from the CR class (cf. Section 6.1) are not consistent, if the model is not correctly
specified. The same holds, in general, for the posterior mean.

Example 6.10
As an illustration of application of EL in finance, consider a problem of estimation
of the parameters of interest in rate diffusion models. In Lafférs (2009), parameters
of Cox, Ingersoll, and Ross (1985) model, for an Euro overnight index average data,
were estimated by empirical likelihood method, with the following set of estimating
functions, for time t (Zhou 2001):

rt+1 − E(rt+1 | rt),

rt[rt+1 − E(rt+1 | rt)],

V(rt+1 | rt) − [rt+1 − E(rt+1 | rt)]2,

rt{V(rt+1 | rt) − [rt+1 − E(rt+1 | rt)]2}.

There, rt denotes the interest rate at time t, V denotes the variance. In Lafférs (2009)
also a Monte Carlo study of small sample properties of EL estimator was conducted;
cf. also Zhou (2001).

6.5 Summary

The Empirical Minimum Divergence (EMD) approach to estimation and in-
ference, described in Section 6.1, is an attractive alternative to the generalized
method of Moments. EMD comprises two components: a parametric model,
which is usually specified by means of EEs, and a divergence (discrepancy)
measure of a pdf with respect to the true sampling distribution. The diver-
gence is minimized among parametrized pdf’s from the model set, and this
way a pdf is selected. The selected parametrized pdf depends on the true, yet
unknown in practice, sampling distribution. Since the assumed discrepancy
measures are convex and the model set is a convex set, the optimization prob-
lem has its convex dual equivalent formulation; cf. Equation 6.1. The convex
dual problem (Equation 6.1) can be tied to the data by replacing the expecta-
tion by its empirical analogue; cf. (Equation 6.2). This way the data are taken
into account and the EMD estimator results.
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A researcher can choose between two possible ways of using the parametric
model, defined by EEs. One option is to use the EEs to define a feasible set
�(�) of possible parametrized sampling distributions. Then the objective
of EMD procedure is to select a parametrized sampling distribution (SD)
from the model set �(�), given the data. This modeling strategy and the
objective deserve a name, and we call it the parametric SD problem. The other
option is to let the EEs define a feasible set �(�) of possible parametrized
empirical distributions and use the observed, data-based empirical pmf in
place of a sampling distribution. If this option is followed, then, given the
data, the objective of the EMD procedure is to select a parametrized empirical
distribution from the model set �(�), given the data; we call it the parametric
empirical ED problem. The empirical attribute stems for the fact that the data
are used to estimate the sampling distribution.

In addition to the possibility of choosing between the two strategies, a
researcher who follows the EMD approach to estimation and inference can
select a particular divergence measure. Usually, divergence measures from
Cressie–Read (CR) family are used in the literature. Prominent members of
the CR-based class of EMD estimators are: maximum empirical likelihood es-
timator (MELE), empirical maximum maximum entropy estimator (EMME),
and Euclidean empirical likelihood (EEL) estimator. Properties of EMD esti-
mators have been studied in numerous works. Of course, one is not limited
to the “named” members of CR family. Indeed, in the literature an option
of letting the data select “the best” member of the family, with respect to a
particular loss function, has been explored.

Consistency is perhaps the least debated property of estimation methods.
EMD estimators are consistent, provided that the model is well-specified;
i.e., the feasible set (being it � or �) contains the true data-sampling dis-
tribution r . However, models are rarely well-specified. It is thus of interest
to know which of the EMD methods of information recovery is consistent
under misspecification. And here the large deviations (LD) theory enters the
scene. LD theory helps to both define consistency under misspecification and
to identify methods with this property. Large deviations are rather a tech-
nical subfield of the probability theory. Our objective has been to provide
a nontechnical introduction to the basic theorems of LD, and step-by-step
show the meaning of the theorems for consistency-under-misspecification
requirement.

Since there are two modeling strategies, there are also two sets of LD the-
orems. LD theorems for empirical measures are at the base of classic (ortho-
dox) LD theory. The theorems suggest that the relative entropy maximization
method (REM, aka MaxEnt) possesses consistency-under-misspecification in
the nonparametric form of the ED problem. The consistency extends also to
the empirical parametric ED problem, where it is the empirical maximum
maximum entropy method that has the desired property. LD theorems for
sampling distributions are rather recent. They provide a consistency-under-
misspecification argument in favor of the Bayesian maximum a posteriori
probability, maximum nonparametric likelihood, and empirical likelihood
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methods in nonparametric and semiparametric form of the SD problem,
respectively.

6.6 Notes on Literature

1. The LD theorems for empirical measures discussed here can be found in
any standard book on LD theory. We recommend Dembo and Zeitouni
(1998), Ellis 2005, Csiszár (1998), and Csiszár and Shields (2004) for
readers interested in LD theory and closely related method of types,
which is more elucidating. An accessible presentation of ST and CLLN
can be found in Cover and Thomas (1991). Proofs of the theorems cited
here can be found in any of these sources. A physics-oriented introduc-
tion to LD can be found in Aman and Atmanspacher (1999) and Ellis
(1999).

2. Sanov theorem (ST) was considered for the first time in Sanov (1957),
extended by Bahadur and Zabell (1979). Groeneboom, Oosterhoff, and
Ruymgaart (1979) and Csiszár (1984) proved ST for continuous random
variables; cf. Csiszár (2006) for a lucid proof of continuous ST. Csiszár,
Cover, and Choi (1987) proved ST for Markov chains. Grendár and
Niven (2006) established ST for the Pólya urn sampling. The first form
of CLLNs known to us is that of Bártfai (1972). For developments of
CLLN see Vincze (1972), Vasicek (1980), van Campenhout and Cover
(1981), Csiszár (1984,1985,1986), Brown and Smith (1986), Harremoës
(2007), among others.

3. Gibbs conditioning principle (GCP) (cf. Csiszár 1984; Lanford 1973),
and (see also Csiszár 1998; Dembo and Zeitouni 1998), which was not
discussed in this chapter, is a stronger LD result than CLLN. GCP reads:

Gibbs conditioning principle: Let X be a finite set. Let � be a closed,
convex set. Let n → ∞. Then, for a fixed t,

lim
n→∞ �(X1 = x1, . . . , Xt = xt | �n ∈ �; q ) =

t∏
l=1

p̂xl .

Informally, GCP says that, if the sampling distribution q is confined
to produce sequences which lead to types in a set �, then elements of
any such sequence of fixed length t will behave asymptotically condi-
tionally as if they were drawn identically and independently from the
I -projection p̂ of q on � — provided that the last is unique. There is no
direct counterpart of GCP in the Bayesian �-problem setting. In order
to keep symmetry of the exposition, we decided to not discuss GCP in
detail.

4. Jaynes’ views of maximum entropy method can be found in Jaynes
(1989). In particular, the entropy concentration theorem (cf. Jaynes 1989)
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is worth mentioning. It says, using our notation, that, as n → ∞,
2n�H(�n) ∼ 
2

m−J −1 and H( p) = −∑
pi log pi is the Shannon entropy.

For a mathematical treatment of the maximum entropy method see
Csiszár (1996, 1998). Various uses of MaxEnt are discussed in Solana-
Ortega and Solana (2005). For a generalization of MaxEnt which is of
direct relevance to Econometrics, see Golan, Judge, and Miller (1996),
and also Golan (2008).

Maximization of the Tsallis entropy (MaxTent) leads to the same so-
lution as maximization of Rényi entropy. Bercher proposed a few argu-
ments in support of MaxTent; cf. Bercher (2008) for a survey.

For developments of the maximum probability method cf. Boltzmann
(1877), Vincze (1972), Vincze (1997), Grendár and Grendár (2001),
Grendár and Grendár (2004), Grendár and Niven (2006), Niven (2007).
For the asymptotic connection between MaxProb and MaxEnt see
Grendár and Grendár (2001, 2004).

5. While the LD theorems for empirical measures have already found their
way into textbooks, discussions of LD for data-sampling distributions
are rather recent. To the best of our knowledge, the first Bayesian poste-
rior convergence via LD was established by Ben-Tal, Brown, and Smith
(1987). In fact, their Theorem 1 covers a more general case where it is
assumed that there is a set of empirical measures rather than a single
such a measure �n. The authors extended and discussed their results in
Ben-Tal, Brown, and Smith (1988). For some reasons, these works re-
mained overlooked. More recently, ST for data-sampling distributions
was established in an interesting work by Ganesh and O’Connell (1999).
The authors established BST for finite X and well-specified model. In
Grendár and Judge (2009a), Bayesian ST and the Bayesian LLN were
developed for X = R and a possibly misspecified model.

6. Relevance of LD for empirical measures for empirical estimator choice
was recognized by Kitamura and Stutzer (1997), where LD justification
of empirical MaxMaxEnt was discussed.

7. Finding empirical likelihood or empirical MaxMaxEnt estimators is a
demanding numeric problem; cf., e.g., Mittelhammer and Judge (2001).
In Brown and Chen (1998) an approximation to EL via the Euclidean
likelihood was suggested, which makes the computations easier. Chen,
Variyath, and Abraham (2008) proposed the Adjusted EL which miti-
gates a part of the numerical problem of EL. Recently, it was recognized
that empirical likelihood and related methods are susceptible to the
empty set problem that requires a revision of the available empirical
evidence on EL-like methods; cf. Grendár and Judge (2009b).

8. Properties of estimators from EMD class were studied in numerous
works; cf. Back and Brown (1990), Baggerly (1998), Baggerly (1999),
Bickel et al. (1993), Chen et al. (2008), Corcoran (2000), DiCiccio, Hall,
and Romano (1991), DiCiccio, Hall, and Romano (1990), Grendár and
Judge (2009a), Imbens (1993), Imbens, Spady, and Johnson (1998),
Jing and Wood (1996), Judge and Mittelhammer (2004), Judge and
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Mittelhammer (2007), Kitamura and Stutzer (1997), Kitamura and
Stutzer (2002), Lazar (2003), Mittelhammer and Judge (2001),
Mittelhammer and Judge (2005), Mittelhammer, Judge, and Schoen-
berg (2005), Newey and Smith (2004), Owen (1991), Qin and Lawless
(1994), Schennach (2005), Schennach (2004), Schennach (2007), Grendár
and Judge (2009a), Grendár and Judge (2009b), among others.
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7.1 Introduction

Nonparametric kernel methods have become an integral part of the applied
econometrician’s toolkit. Their appeal, for applied researchers at least, lies
in their ability to reveal structure in data that might be missed by classical
parametric methods. Basic kernel methods are now found in virtually all
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popular statistical and econometric software programs. Such programs con-
tain routines for the estimation of an unknown density function defined over a
real-valued continuous random variable, or for the estimation of an unknown
bivariate regression model defined over a real-valued continuous regressor.
For example, the R platform for statistical computing and graphics (R De-
velopment Core Team 2008) includes the function density that computes
a univariate kernel density estimate supporting a variety of kernel functions
and bandwidth methods, while thelocpoly function in the R “KernSmooth”
package (Wand and Ripley 2008) can be used to estimate a bivariate regres-
sion function and its derivatives using a local polynomial kernel estimator
with a fast binned bandwidth selector.

Those familiar with traditional nonparametric kernel smoothing methods
such as that embodied in density or locpoly will appreciate that these
methods presume that the underlying data are real-valued and continuous in
nature, which is frequently not the case as one often encounters categorical
along with continuous data types in applied settings. A popular traditional
method for handling the presence of both continuous and categorical data
is called the “frequency” approach. For this approach the data are first bro-
ken up into subsets (“cells”) corresponding to the values assumed by the
categorical variables, and then one applies, say, density or locpoly to the
continuous data remaining in each cell. Unfortunately, nonparametric fre-
quency approaches are widely acknowledged to be unsatisfactory because
they often lead to substantial efficiency losses arising from the use of sample
splitting, particularly when the number of cells is large.

Recent developments in kernel smoothing offer applied econometricians
a range of kernel-based methods for categorical data only (i.e., unordered
and ordered factors), or for a mix of continuous and categorical data. These
methods have the potential to recover the efficiency losses associated with
nonparametric frequency approaches since they do not rely on sample split-
ting. Instead, they smooth the categorical variables in an appropriate man-
ner; see Li and Racine (2007) and the references therein for an in-depth
treatment of these methods, and see also the references listed in the
bibliography.

In this chapter we shall consider a range of kernel methods appropriate
for the mix of categorical and continuous data one often encounters in ap-
plied settings. Though implementations of hybrid methods that admit the
mix of categorical and continuous data types are quite limited, there ex-
ists an R package titled “np” (Hayfield and Racine 2008) that implements
a variety of hybrid kernel methods, and we shall use this package to illus-
trate a few of the methods that are discussed in the following sections. Since
many readers will no doubt be familiar with the classical approaches em-
bodied in the functions density or locpoly or their peers, we shall begin
with some recent developments in the kernel smoothing of categorical data
only.
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7.2 Kernel Smoothing of Categorical Data

The kernel smoothing of categorical data would appear to date from the sem-
inal work of Aitchison and Aitken (1976) who proposed a novel method for
kernel estimation of a probability function defined over multivariate binary
data types. The wonderful monograph by Simonoff (1996) also contains chap-
ters on the kernel smoothing of categorical data types such as sparse contin-
gency tables and so forth. Econometricians are more likely than not interested
in estimation of conditional objects, so we shall introduce the kernel smooth-
ing of categorical objects via the estimation of a probability function and then
immediately proceed to the estimation of a conditional mean. The estimation
of a conditional mean with categorical covariates offers a unique springboard
for presenting recent developments that link kernel smoothing to Bayesian
methods. This exciting development offers a deeper understanding of kernel
methods while also delivering novel methods for bandwidth selection and
provides bounds ensuring that kernel smoothing will dominate frequency
methods on mean square error (MSE) grounds.

7.2.1 Kernel Smoothing of Univariate Categorical Probabilities

Suppose we were interested in estimating a univariate probability function
where the data are categorical in nature. The nonparametric nonsmooth ap-
proach would construct a frequency estimate, while the nonparametric smooth
approach would construct a kernel estimate. For those unfamiliar with the
term “frequency” estimate, we mean simply the estimator of a probability
computed via the sample frequency of occurrence. For example, if a random
variable is the result of a Bernoulli trial (i.e., zero or one with fixed probability
from trial to trial) then the frequency estimate of the probability of a zero (one)
is simply the number of zeros (ones) divided by the number of trials.

First, consider the estimation of a probability function defined for Xi ∈ S =
{0, 1, . . . , c − 1}. The nonsmooth “frequency” (nonkernel) estimator of p(x) is
given by

p̃(x) = 1
n

n∑
i=1

1(Xi , x),

where 1( A) is an indicator function taking on the value 1 if A is true, zero
otherwise. It is straightforward to show that

E p̃(x) = p(x),

Var p̃(x) = p(x)(1 − p(x))
n

,
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hence,

MSE( p̃(x)) = n−1 p(x)(1 − p(x)) = O(n−1),

which implies that

p̃(x) − p(x) = Op
(
n−1/2) .

Now, consider the kernel estimator of p(x),

p̂(x) = 1
n

n∑
i=1

l(Xi , x, �), (7.1)

where l(·) is a kernel function defined by, say,

l(Xi , x, �) =
{

1 − � if Xi = x

�/(c − 1) otherwise,
(7.2)

and where � ∈ [0, (c −1)/c] is a “smoothing parameter” or “bandwidth.” The
requirement that � lie in [0, (c −1)/c] ensures that p̃(x) is a proper probability
estimate lying in [0, 1]. It is easy to show that

E p̂(x) = p(x) + �

{
1 − cp(x)

c − 1

}
,

Var p̂(x) = p(x)(1 − p(x))
n

(
1 − �

c
(c − 1)

)2

.

(7.3)

This estimator was proposed by Aitchison and Aitken (1976) for discriminant
analysis with multivariate binary data; see also Simonoff (1996).

The above expressions indicate that the kernel smoothed estimator may
possess some finite-sample bias; however, its finite-sample variance is less
than its frequency counterpart. This suggests that the kernel estimator can
dominate the frequency estimator on MSE grounds, which turns out to be
the case; see Ouyang, Li, and Racine (2006) for extensive simulations. Results
similar to those outlined in Subsection 7.3.1 for categorical Bayesian methods
could be extended to this setting, though we do not attempt this here for the
sake of brevity.

Note that when � = 0 this estimator collapses to the frequency estimator
p̃(x), while when � hits its upper bound, (c −1)/c, this estimator is the rectan-
gular (i.e., discrete uniform) estimator which yields equal probabilities across
all outcomes.

Using a bandwidth that balances bias and variance such as that proposed
by Ouyang, Li, and Racine (2006), it can be shown that

p̂(x) − p(x) = Op
(
n−1/2) .
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It can also be shown that
√

n( p̂(x) − p(x)) → N{0, p(x)(1 − p(x))} in distribution. (7.4)

See Ouyang, Li, and Racine (2006) for details. For the sake of brevity we shall
gloss over bandwidth selection methods, and direct the interested reader
to Ouyang, Li, and Racine (2006) and Li and Racine (2007) for a detailed
description of data-driven bandwidth selection methods for this object.

We have considered the univariate estimator by way of introduction. A
multivariate version follows trivially by replacing the univariate kernel func-
tion with a multivariate product kernel function. We would let X now denote
an r -dimensional discrete random vector taking values on S, the support of
X. We use xs and Xs

i to denote the sth component of x and Xi (i = 1, . . . , n),
respectively. The product kernel function is then given by

L�(Xi , x) =
r∏

s=1

l(Xs
i , xs , �s) =

r∏
s=1

{�s/(cs − 1)}Ixs
i �=xs (1 − �s) Ixs

i =xs , (7.5)

where Ixs
i �=xs = I (Xs

i �= xs), and Ixs
i =xs = I (Xs

i = xs). The kernel estimator
is identical to that in Equation 7.1 except that we replace l(Xi , x, �) with
L�(Xi , x). All results (rate of convergence, asymptotic normality, etc.) remain
unchanged.

7.2.1.1 A Simulated Example

In the following R code chunk we simulate n = 250 draws from five trials of
a Bernoulli process having probability of success 1/2 from trial to trial, hence
x ∈ {0, . . . , 5} and c = 6.

R> library(”np”)

Nonparametric Kernel Methods for Mixed Datatypes
(version 0.30-7)

R> library(xtable)
R> set.seed(12345)
R> n <- 250
R> x <- sort(rbinom(n,5,.5))
R> ## Compute the non-smoothed (frequency) probability

estimates
R> ptilde <- table(x)/n
R> ## Compute the smoothed probability estimates
R> phat <- unique(fitted(npudens(˜factor(x))))

It can be seen that the nonsmooth frequency and the smooth kernel
estimates are quite close for this example as expected, while the kernel
estimators shrink slightly toward the uniform probability estimate
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TABLE 7.1

Nonparametric Frequency ( p̃(x), Nonsmooth) and
Nonparametric Smoothed ( p̂(x)) Probability Esti-
mates.
x p̃(x) p̂(x)
0 0.024 0.029
1 0.132 0.133
2 0.272 0.268
3 0.360 0.353
4 0.168 0.168
5 0.044 0.049

p = 1/c = 1/6 = 0.1667. We shall discuss the relationship between the kernel
estimator and Bayesian methods in Subsection 7.3.1.

7.2.2 Kernel Smoothing of Bivariate Categorical Conditional Means

Now suppose by way of example that we observe {Yi , Xi } pairs generated by
y = g(x) + �, where g(x) is defined by

Yi = Xi + �i (7.6)

where Xi ∈ S = {0, 1, . . . , c − 1} and �i ∼ N(0, 1) represent i.i.d. draws.
The nonsmooth “frequency” (nonkernel) estimator of g(x) (which is also

the least squares estimator) is given by

g̃(x) =
∑n

i=1 Yi 1(Xi , x)∑n
i=1 1(Xi , x)

,

which simply returns the sample mean of those Yi for which Xi = x ∈ S =
{0, 1, . . . , c − 1}. It can be shown that

g̃(x) − g(x) = Op
(
n−1/2) .

Now, consider the kernel estimator of g(x),

ĝ(x) =
∑n

i=1 Yil(Xi , x, �)∑n
i=1 l(Xi , x, �)

, (7.7)

where l(·) is, say, the kernel function defined in Equation 7.2.
Note that when � = 0 this estimator collapses to the frequency estima-

tor g̃(x), while when � hits its upper bound, (c − 1)/c, this estimator yields
equal fitted values across all x ∈ S = {0, 1, . . . , c − 1}, namely, the overall
(unconditional) mean of Yi .

Using a bandwidth that balances bias and variance, it can be shown that

ĝ(x) − g(x) = Op
(
n−1/2) ,
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TABLE 7.2

Nonparametric Frequency (g̃(x), Nonsmooth) and
Nonparametric Smoothed (ĝ(x)) Regression Esti-
mates
x g̃(x) ĝ(x)
0 −0.587 −0.484
1 0.860 0.871
2 2.092 2.094
3 3.055 3.054
4 4.072 4.066
5 5.574 5.524

and that

√
n (ĝ(x) − g(x)) /

√
�̂(x) → N(0, 1) in distribution,

where �̂(x) = �̂2(x)/ p̂(x), and where �̂2(x) = n−1 ∑
i [Yi − ĝ(Xi )]2l(Xi , x, �̂)/

p̂(x) is a consistent estimator of �2(x) = E(u2
i | Xi = x). See Ouyang, Li, and

Racine (2008) for details.

7.2.2.1 A Simulated Example

In the following R code chunk we simulate n = 250 draws for x from five
trials of a Bernoulli process having probability of success 1/2 from trial to trial,
hence x ∈ {0, . . . , 5} and c = 6, then simulate y = x + � where � ∼ N(0, 1).

R> set.seed(12345)
R> n <- 250
R> x <- sort(rbinom(n,5,.5))
R> y <- x + rnorm(n)
R> ## Regression on dummy variables (same as unconditio-

nal group means)
R> gtilde <- unique(predict(model.par <- lm(y˜factor(x))

))
R> ## Nonparametric regression on a factor (shrink

towards overall mean)
R> ghat <- unique(predict(model.np <- npreg(y˜factor(x))

))

We have considered the univariate estimator by way of introduction. A
multivariate version follows trivially by replacing the univariate kernel func-
tion with a multivariate product kernel function defined in Equation 7.5. The
kernel estimator is identical to that in Equation 7.7 except that we replace
l(Xi , x, �) with L�(Xi , x). All results (rate of convergence, asymptotic nor-
mality, etc.) remain unchanged.
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7.3 Categorical Kernel Methods and Bayes Estimators

Kiefer and Racine (2009) have recently investigated the relationship between
nonparametric categorical kernel methods and hierarchical Bayes models
of the type considered by Lindley and Smith (1972). By exploiting certain
similarities among the approaches, they gain a deeper understanding of the
nature of kernel-based methods and leverage some theoretical apparatus
developed for hierarchical Bayes models which is immediately relevant for
kernel-based techniques. We outline their approach below as it provides addi-
tional insight and also delivers a new approach toward bandwidth selection
for categorical kernel methods.

7.3.1 Kiefer and Racine’s (2009) Analysis

In order to facilitate a direct comparison with Kiefer and Racine’s (2009)
notation, we now let the sample realizations {Xi , Yi } be written instead as
{Xji , Yji }, j = 1, . . . , ni , i = 1, . . . , c. We let yi be the frequency estimator of
�i defined as

yi = 1
ni

c∑
k=1

nk∑
j=1

Yjk1(Xjk = i), (7.8)

i.e., the sample mean of Y when X = i (a “cell” mean). Let yī be defined
as

yī = 1
(n − ni )

c∑
k=1

nk∑
j=1

Yjk1(Xjk �= i),

i.e., the sample mean of Y over all values of X other than X = i (ī is taken to
be the complement of i), while the frequency estimator of E(Y) (the “overall”
mean) is

y. = 1
n

c∑
k=1

nk∑
j=1

Yjk = ni yi + (n − ni )yī

n
.

Adopting Kiefer and Racine’s (2009) notation, the kernel estimator of �i could
be written as

yi,� = ĝ(i) = n−1 ∑c
k=1

∑nk
j=1 Yjk L(Xjk, i, �)

pi,�
.

In order to facilitate a comparison of the Bayesian approach of Lindley and
Smith (1972) and the kernel approach, we wish to express yi,� as a weighted
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average of yi and y.. The kernel estimator yi,� can be rewritten as follows,

yi,� = n−1 ∑c
k=1

∑nk
j=1 Yjk L(Xjk, i, �)

pi,�

= n−1 (ni yi (1 − �) + (n − ni )yī �/(c − 1))
n−1 (ni (1 − �) + (n − ni )�/(c − 1))

= ni yi (1 − �) + (ny. − ni yi ) �/(c − 1)
ni (1 − �) + (n − ni )�/(c − 1)

=
[

ni/n (1 − �c/(c − 1))
ni/n (1 − �c/(c − 1)) + �/(c − 1)

]
yi

+
[

�/(c − 1)
ni/n (1 − �c/(c − 1)) + �/(c − 1)

]
y.

= (1 − �i )yi + �i y.,

where the third equality follows from Equation 7.8 by noting that

ny. − ni yi = (n − ni )yī ,

where

1 − �i =
[

ni/n (1 − �c/(c − 1))
ni/n (1 − �c/(c − 1)) + �/(c − 1)

]
and

�i =
[

�/(c − 1)
ni/n (1 − �c/(c − 1)) + �/(c − 1)

]
,

and where � ∈ [0, (c − 1)/c] implies that �i ∈ [0, 1].
When � = 0 (i.e., �i = 0∀i), yi,� = yi (the frequency estimator), while when

� = (c − 1)/c (i.e., (1 − �c/(c − 1)) = 0 or �i = 1∀i), yi,� = y., i = 1, . . . , c (the
global mean). Note that this is exactly the same result using the notation in
Equation 7.7.

Kiefer and Racine (2009) consider hierarchical models of the form

yji = �i + � j i , j = 1, . . . , ni , i = 1, . . . , c,

where ni is the number of observations drawn from group i , and where there
exist c groups.

For the ith group,⎛⎜⎝ y1i
...

yni i

⎞⎟⎠ = �ni �i + �i , i = 1, . . . , c,
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where �ni is a vector of ones of length ni , �i = (�1i , . . . , �ni i )
′, and, for the

sample, y = A� + � where y is the n-vector of observations, A is the (n × c)
design matrix, and � = (�1, . . . , �c)′, the vector of group means. The goal is
to understand the connection between hierarchical Bayes models and kernel
estimators of multivariate means.

Kiefer and Racine (2009) consider a three-stage hierarchical Bayes model.
The first stage is given by

y ∼ ( A1�1, C1).

As a function of �1 and C1 for given y, this first stage specification can be re-
garded as the likelihood function for the normally distributed case, otherwise
as a quasi likelihood based on two moments (Heyde 1997). We return to A1
below.

The second stage,

�1 ∼ ( A2�2, C2),

can be regarded as a prior distribution for �1 given A2�2 and C2 in the nor-
mal case (where it is conjugate) or as an approximation to the prior if not
normal, or from a frequency viewpoint as a second stage in the data gener-
ating process (DGP). The first stage “parameters” are themselves generated
by a random process in this view. This interpretation focuses attention on the
hyperparameters �2 (and C2) rather than �1, which strictly speaking is not a
parameter in the frequency sense.

The third stage,

�2 ∼ ( A3�3, C3),

can again be regarded as a prior on the second stage parameter �2, or as an
additional stage in the DGP.

Interest lies in estimating the c × 1 vector of means �1. Following Lind-
ley and Smith (1972) we are thinking of normal distributions at each stage.
For our purposes we can also regard the stages as approximate distributions
characterized by two moments noting the calculations are exact only for the
normal. The point of the stages is that the dimension of the conditioning
parameter is reduced at each step. We are using the Bayesian hierarchical
setup to obtain insight into the kernel estimator. Lindley and Smith (1972)
suggest specifications proportional to identity matrices and inverted gamma
densities for the factors of proportion (and related generalizations). They
suggest using modal estimators in the expressions for the posterior means of
interest.
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For the problem at hand, we try to stick with the notation of Lindley and
Smith as closely as possible. The first stage is

A1 = {a ji } with a ji ∈ {0, 1},
c∑

i=1

aki = 1,
n∑

k=1

aki = ni ,

�1 = � =

⎡⎢⎢⎢⎣
�1

...

�c

⎤⎥⎥⎥⎦ ,

C1 = �2 In.

A1 is the n × c design matrix with A′
1 A1 the c × c diagonal matrix with ni ,

the number of observations in the ith group, as the ith diagonal element, � is
a c × 1 vector of (population) group means, �2 is the within-group variance
(i.e., Var(yi j )), and In is the n × n identity matrix. Next, the second stage will
become

A2 = �c ,

�2 = �.,

C2 = �2 Ic ,

where �. is the (population) “overall mean,” and �2 = Var(�i ). Note that
A2�2 = ��. is simply a c × 1 vector with elements being the overall mean �. to
which the Bayes (and kernel) estimators can shrink. Finally, we let the scalar

C−1
3 → 0

so that the prior on �. is improper. Note that the impropriety is confined to
one dimension. The frequency analysis corresponds to an improper prior on
the c-vector �1, so that we expect inadmissibility of the frequency estimator
through a Stein effect if c > 2. By adding a third stage, we reduce the improper
prior to one dimension. The results are seen below.

The three stage Bayes estimate is (Lindley and Smith 1972, p. 7, Eq. 16)

�∗
1 = D0d0

where

D−1
0 =

(
A′

1C−1
1 A1 + C−1

2 − C−1
2 A2

(
A′

2C−1
2 A2

)−1
A′

2C−1
2

)
d0 = (

A′
1C−1

1 y
)
.
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�∗
1 is the posterior mean and is an optimal estimator under quadratic loss.

Writing

� = A′
1C−1

1 A1 = 1
�2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

n1 0 0 . . .

0 n2 0 . . .

...
. . .

... 0 0 nc

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

we see that

D−1
0 = (

� + �−2 Ic − �−2�(�′−2�)−1�′−2)
= (

� + �−2 Ic − �−2��′/c
)

,

d0 = A′
1C−1

1 y

=

⎛⎜⎜⎜⎝
y1n1
�2

...

yc nc
�2

⎞⎟⎟⎟⎠ .

Recall that yi is the mean for group i . Thus the vector of posterior means
satisfies

(
� + �−2 Ic − �−2�(�′�)−1�′

)
�∗

1 = d0

or, element-wise

(�−2nj + �−2)�∗
1 j − �−2�∗

1. = �−2nj yj ,

where �∗
1. = ∑c

j=1 �∗
1 j/c. Thus

�∗
1 j = (�−2nj yj + �−2�∗

1.)/(�−2nj + �−2)

and the Bayes estimator for the j th mean is a weighted average of the group
mean and the overall posterior mean. This, in general, cannot be expressed
as a weighted average of the group mean and the overall mean.

We consider the “balanced case” (ni equal for all i) in what follows. Let
ni = n∗ for all i . The kernel estimator of the ith component of � can be
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written as

yi,� =
[

n∗ (1 − �c/(c − 1))
n∗ (1 − �c/(c − 1)) + n�/(c − 1)

]
yi

+
[

n∗�/(c − 1)
n∗ (1 − �c/(c − 1)) + n∗�/(c − 1)

]
y.

=
[

n∗

n∗ + n∗/((c − 1)/� − c)

]
yi +

[
n∗/((c − 1)/� − c)

n∗ + n∗/((c − 1)/� − c)

]
y.,

(7.9)

where � is a smoothing parameter to be set by the researcher.
Further, the Bayes estimator of the ith component of � is given by (in the

balanced case)

�∗
i =

[
n∗

n∗ + 	−1

]
yi +

[
	−1

n∗ + 	−1

]
y.

= vyi + (1 − v)y

(7.10)

where v = n∗/(n∗ + 	−1) is the common value of the vi term from above. The
correspondence between the two methods is given by

n∗/((c − 1)/� − c) = 	−1,

hence

	 = 1
n∗ ((c − 1)/� − c).

Alternatively, � can be expressed as

� = (c − 1)/(c + n∗	). (7.11)

This gives some intuition for the choice of the smoothing parameter � if one
chooses not to adopt the Bayesian approach explicitly. � should be larger as
the groups are thought to be more homogeneous (smaller 	 or �2) and smaller
as the groups are thought to be less similar.

Next, we turn to another frequency property, that of MSE. It is known
that the MSE of the Bayes/kernel estimator (identical in the balanced case)
improves over that of the frequency estimator yi if and only if (Lindley and
Smith 1972, p. 3, Eq. 2)

�̂2 ≤ 2�2 + �2,

where

�̂2 =
∑

i

(yi − y.)2

c − 1
. (7.12)
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This allows us to obtain an upper bound for � that will ensure (in probability)
that MSE(yi,�) ≤ MSE(yi ). Substituting, we have

�̂2 ≤ 2
�2

n
((c − 1)/� − c) + �2,

which is equivalent to

n(�̂2 − �2)
2�2 + c ≤ c − 1

�
,

which implies that

� ≤ 2�2(c − 1)
n(�̂2 − �2) + 2c�2 . (7.13)

The only unknown in this formula is �2, which can be estimated directly from
the data via

�̂2 =
∑c

i=1
∑n∗

j=1(yi j − yi )2

n − c
. (7.14)

It is widely known that the smoothing parameter must obey � → 0 as
n → ∞ for consistent estimation while, as noted earlier, � is restricted to
lie in [0, (c − 1)/c] (see Equation 7.2). Note that Equation 7.13 tells us that
an oversmoothed kernel estimator can be consistent but can be beaten by the
frequency estimator on MSE grounds (i.e., when � is overly large).

The results obtained above yield a number of implications for applied ker-
nel estimation with categorical data. The first is that they provide bounds for
bandwidth selection that are previously unknown in the literature. The sec-
ond is that they deliver a simple plug-in method of bandwidth selection with
an empirical Bayes flavor (Efron and Morris 1973) that possesses appealing
finite-sample properties and, in addition, is computationally trivial. Recall
that [0, (c − 1)/c] is the range of � when using the kernel function defined in
Equation 7.2. We now incorporate the result summarized in Equation 7.13 to
obtain tighter bounds on �.

Note that when �̂2 = �2, Equation 7.13 equals (c − 1)/c, the upper bound
possible for �, hence the bound is nonbinding in this case. It is also nonbinding
when �̂2 ≤ �2. However, when �̂2 > �2, then in order to outperform the
frequency estimator on MSE grounds, the kernel estimator must obey � <

(c−1)/c with the upper bound now given by Equation 7.13. On MSE grounds,
the range of � is no longer [0, (c − 1)/c], rather it is[

0, min
{

c − 1
c

,
2�2(c − 1)

n(�̂2 − �2) + 2c�2

}]
. (7.15)

In other words, Equation 7.13 tells us that when the idiosyncratic variation
(i.e., �2 = Var(yi j )) is greater than the intergroup variation (i.e., �̂2 = Var(yi )),
there exists a � in the feasible range (i.e., [0, (c−1)/c]) that will outperform the
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frequency estimator on MSE grounds (e.g., that given by Equation 7.11). On
the other hand, when the idiosyncratic variation is less than the intergroup
variation, imposing this (reduced) bound on � (rather than (c − 1)/c) avoids
situations where the frequency estimator may outperform the smoothed es-
timator. Note that Equation 7.11 always satisfies the bound.

Equation 7.11 suggests a computationally trivial formula for a plug-in band-
width selector for the kernel estimator of a multivariate mean that might serve
as an alternative to that proposed in Ouyang, Li, and Racine (2008).

7.3.1.1 A Simulated Example

Next we simulate y = �, where � ∼ N(0, 1), and use leave-one-out cross-
validation to select the unknown bandwidth.

R> set.seed(12345)
R> n <- 250
R> x <- sort(rbinom(n,5,.5))
R> y <- rnorm(n)
R> ## Regression on dummy variables (same as unconditio-

nal group means)
R> gtilde <- unique(predict(model.par <- lm(y˜factor(x))

))
R> ## Nonparametric regression on a factor (shrink towa-

rds overall mean)
R> ghat <- unique(predict(model.np <- npreg(y˜factor(x))

))

Note that, for this example, the unconditional mean of y is y. = 0.05. It can
be seen from the above example that the kernel estimator correctly shrinks the
nonparametric frequency estimator towards the overall mean in accordance
with the findings of Kiefer and Racine (2009).

We now discuss recent developments in the kernel estimation of objects
involving the mix of categorical and continuous data types often found in
applied settings.

TABLE 7.3

Nonparametric Frequency (g̃(x), Nonsmooth)
and Nonparametric Smoothed (ĝ(x)) Regres-
sion Estimates.
x g̃(x) ĝ(x)
0 −0.587 0.050
1 −0.140 0.050
2 0.092 0.050
3 0.055 0.050
4 0.072 0.050
5 0.574 0.050
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7.4 Kernel Methods with Mixed Data Types

So far we have presumed that the categorical variable is of the “unordered”
(“nominal” data type). We shall now distinguish between categorical (dis-
crete) data types and real-valued (continuous) data types. Also, for categor-
ical data types we could have unordered or ordered (“ordinal” data type)
variables. For an ordered discrete variable x̃d , we could use Wang and van
Ryzin (1981) kernel given by

l̃
(
X̃d

i , x̃d , �
) =

⎧⎨⎩
1 − �, if X̃d

i = x̃d ,

(1 − �)
2

� | X̃d
i −x̃d | , if X̃d

i �= x̃d .

We shall now refer to the unordered kernel defined in Equation 7.2 as l̄(·) so
as to keep each kernel type separate notationally speaking. We shall denote
the traditional kernels for continuous data types such as the Epanechnikov
of Gaussian kernels by W(·).

A generalized product kernel for one continuous, one unordered, and one
ordered variable would be defined as follows,

K (·) = W(·) × l̄(·) × l̃(·). (7.16)

Using such product kernels, we can modify any existing kernel-based method
to handle the presence of categorical variables, thereby extending the reach
of kernel methods. We define K
(Xi , x) to be this product, where 
 = (h, �)
is the vector of bandwidths for the continuous and categorical variables.

7.4.1 Kernel Estimation of a Joint Density Defined over Categorical
and Continuous Data

Estimating a joint probability/density function defined over mixed data fol-
lows naturally using these generalized product kernels. For example, for one
unordered discrete variable x̄d and one continuous variable xc , our kernel
estimator of the PDF would be

f̂ (x̄d , xc) = 1
nhxc

n∑
i=1

l̄( X̄d
i , x̄d )W

(
Xc

i − xc

hxc

)
.

This extends naturally to handle a mix of ordered, unordered, and continuous
data (i.e., both quantitative and qualitative data). This estimator is particularly
well suited to “sparse data” settings. Li and Racine (2003) demonstrate that
√

nh p
(

f̂ (z) − f (z) − ĥ2B1(z) − �̂B2(z)
) → N(0, V(z)) in distribution, (7.17)

where B1(z) = (1/2)tr{∇2 f (z)}[∫ W(v)v2dv], B2(z) = ∑
x′∈D,dx,x′ =1[ f (x′, y) −

f (x, y)], and V(z) = f (z)[
∫

W2(v)dv].
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FIGURE 7.1
Nonparametric kernel estimate of a joint density defined over one continuous and one discrete
variable.

7.4.1.1 An Application

We consider Wooldridge’s (2002) “wage1” dataset having n = 526 observa-
tions, and model the joint density of two variables, one continuous (“lwage”)
and one discrete (“numdep”). “lwage” is the logarithm of average hourly
earnings for an individual. “numdep” the number of dependents (0, 1, . . . ).
We use likelihood cross-validation to obtain the bandwidths, and the resulting
estimate is presented in Figure 7.1.

Note that this is indeed a case of “sparse” data for some cells (see Table 7.4),
and the traditional approach would require estimation of a nonparametric
univariate density function based upon only two observations for the last cell
(c = 6).

TABLE 7.4

Summary of the Num-
ber of Dependents in the
Wooldridge (2002) “wage1”
Dataset (“numdep”)

numdep
0 252
1 105
2 99
3 45
4 16
5 7
6 2
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7.4.2 Kernel Estimation of a Conditional PDF

Let f (·) and �(·) denote the joint and marginal densities of (X, Y) and X,
respectively, where we allow Y and X to consist of continuous, unordered,
and ordered variables. For what follows we shall refer to Y as a dependent
variable (i.e., Y is explained), and to X as covariates (i.e., X is the explanatory
variable). We use f̂ and �̂ to denote kernel estimators thereof, and we estimate
the conditional density g(y | x) = f (x, y)/�(x) by

ĝ(y | x) = f̂ (x, y)
�̂(x)

. (7.18)

The kernel estimators of the joint and marginal densities f (x, y) and �(x) are
described in the previous sections; see Hall, Racine, and Li (2004) for details on
the theoretical underpinnings of a data-driven method of bandwidth selection
for this method.

7.4.2.1 The Presence of Irrelevant Covariates

Hall, Racine, and Li (2004) proposed the estimator defined in Equation 7.18,
but choosing appropriate smoothing parameters in this setting can be tricky,
not least because plug-in rules take a particularly complex form in the case of
mixed data. One difficulty is that there exists no general formula for the op-
timal smoothing parameters. A much bigger issue is that it can be difficult to
determine which components of X are relevant to the problem of conditional
inference. For example, if the j th component of X is independent of Y then that
component is irrelevant to estimating the density of Y given X, and ideally
should be dropped before conducting inference. Hall, Racine, and Li (2004)
show that a version of least-squares cross-validation overcomes these difficul-
ties. It automatically determines which components are relevant and which
are not, through assigning large smoothing parameters to the latter and con-
sequently shrinking them toward the uniform distribution on the respective
marginals. This effectively removes irrelevant components from contention,
by suppressing their contribution to estimator variance; they already have
very small bias, a consequence of their independence of Y. Cross-validation
also gives us important information about which components are relevant; the
relevant components are precisely those that cross-validation has chosen to
smooth in a traditional way, by assigning them smoothing parameters of con-
ventional size. Cross-validation produces asymptotically optimal smoothing
for relevant components, while eliminating irrelevant components by over-
smoothing.

Hall, Racine, and Li (2004) demonstrate that, for irrelevant conditioning
variables in X, their bandwidths in fact ought to behave exactly the oppo-
site, namely, h → ∞ as n → ∞ for optimal smoothing. The same has been
demonstrated for regression as well; see Hall, Li, and Racine (2007) for further
details. Note that this result is closely related to the Bayesian results described
in detail in Section 7.3.
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7.4.3 Kernel Estimation of a Conditional CDF

Li and Racine (2008) propose a nonparametric conditional CDF kernel estima-
tor that admits a mix of discrete and categorical data along with an associated
nonparametric conditional quantile estimator. Bandwidth selection for ker-
nel quantile regression remains an open topic of research, and they employ a
modification of the conditional PDF-based bandwidth selector proposed by
Hall, Racine, and Li (2004).

We use F (y | x) to denote the conditional CDF of Y given X = x, while f (x)
is the marginal density of X. We can estimate F (y | x) by

F̂ (y | x) =
n−1 ∑n

i=1 G
(

y−Yi
h0

)
K
(Xi , x)

f̂ (x)
, (7.19)

where G(·) is a kernel CDF chosen by the researcher, say, the standard normal
CDF, h0 is the smoothing parameter associated with Y, and K
(Xi , x) is a
product kernel such as that defined in Equation 7.16 where each univariate
continuous kernel has been divided by its respective bandwidth for notational
simplicity.

Li and Racine (2008) demonstrate that

(nh1 . . . hq )1/2

[
F̃ (y | x) − F (y | x) −

q∑
s=1

h2
s B1s(y | x) −

r∑
s=1

�s B2s(y | x)

]
→N(0, V(y | x)) in distribution, (7.20)

where V(y | x) = 	q F (y | x)[1− F (y | x)]/�(x), B1s(y | x) = (1/2)	2[2Fs(y | x)×
�s(x)+�(x)Fss(y | x)]/�(x), B2s(y | x) = �(x)−1 ∑

zd∈D Is(zd , xd )[F (y | xc, zd )×
�(xc, zd ) − F (y | x)�(x)]/�(x), 	 = ∫

W(v)2dv, 	2 = ∫
W(v)v2dv, and D is the

support of Xd .

7.4.4 Kernel Estimation of a Conditional Quantile

Estimating regression functions is a popular activity for practitioners. Some-
times, however, the regression function is not representative of the impact of
the covariates on the dependent variable. For example, when the dependent
variable is left (or right) censored, the relationship given by the regression
function is distorted. In such cases, conditional quantiles above (or below)
the censoring point are robust to the presence of censoring. Furthermore, the
conditional quantile function provides a more comprehensive picture of the
conditional distribution of a dependent variable than the conditional mean
function.

Once we can estimate conditional CDFs, estimating conditional quantiles
follows naturally. That is, having estimated the conditional CDF we simply
invert it at the desired quantile as described below. A conditional �th quantile
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of a conditional distribution function F (· | x) is defined by (� ∈ (0, 1))

q�(x) = inf{y : F (y | x) ≥ �} = F −1(� | x).

Or equivalently, F (q�(x) | x) = �. We can directly estimate the conditional
quantile function q�(x) by inverting the estimated conditional CDF func-
tion, i.e.,

q̂�(x) = inf{y : F̂ (y | x) ≥ �} ≡ F̂ −1(� | x).

Li and Racine (2008) demonstrate that

(nh1 . . . hq )1/2[q̂�(x) − q�(x) − Bn,�(x)] → N(0, V�(x)) in distribution, (7.21)

where V�(x) = �(1 − �)	q /[ f 2(q�(x) | x)�(x)] ≡ V(q�(x) | x)/ f 2(q�(x) | x)
(since � = F (q�(x) | x)).

7.4.5 Binary Choice and Count Data Models

Another application of kernel estimates of PDFs with mixed data involves the
estimation of conditional mode models. By way of example, consider some
discrete outcome, say Y ∈ S = {0, 1, . . . , c − 1}, which might denote by way
of example the number of successful patent applications by firms. We define
the conditional mode of y | x by

m(x) = max
y

g(y | x). (7.22)

In order to estimate a conditional mode m(x), we need to model the con-
ditional density. Let us call m̂(x) the estimated conditional mode, which is
given by

m̂(x) = max
y

ĝ(y | x), (7.23)

where ĝ(y | x) is the kernel estimator of g(y | x) defined in Equation 7.18.

7.4.6 Kernel Estimation of Regression Functions

The local constant (Nadaraya 1965; Watson 1964) and local polynomial (Fan
1992) estimators are perhaps the most well-known of all kernel methods.
Racine and Li (2004) and Li and Racine (2004) propose local constant and
local polynomial estimators of regression functions defined over categorical
and continuous data types. To extend these popular estimators so that they can
handle both categorical and continuous regressors requires little more than
replacing the traditional kernel function with the generalized kernel given in
Equation 7.16. That is, the local constant estimator defined in Equation 7.7
would then be

ĝ(x) =
∑n

i=1 Yi K
(Xi , x)∑n
i=1 K
(Xi , x)

. (7.24)
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Racine and Li (2004) demonstrate that√
nĥ p

(
ĝ(x) − g(x) − B̂(ĥ, �̂)

)
/

√
�̂(x) → N(0, 1) in distribution. (7.25)

See Racine and Li (2004) for further details.

7.5 Summary

We survey recent developments in the kernel estimation of objects defined
over categorical and continuous data types. We focus on theoretical underpin-
nings, and focus first on kernel methods for categorical data only. We pay close
attention to recent theoretical work that draws links between kernel methods
and Bayesian methods and also highlight the behavior of kernel methods in
the presence of irrelevant covariates. Each of these developments leads to ker-
nel estimators that diverge from more traditional kernel methods in a number
of ways, and sets the stage for mixed data kernel methods which we briefly
discuss. We hope that readers are encouraged to pursue these methods, and
draw the readers attention to an R package titled “np” (Hayfield and Racine
2008) that implements a range of the approaches discussed above. A number
of relevant examples can also be found in Hayfield and Racine (2008), and we
direct the interested reader to the applications contained therein.
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8.1 Introduction

Time series models have provided econometricians with a rich toolbox from
which to choose. Linear ARIMA models have been very influential and have
enhanced our understanding of many empirical features of economics and
finance. As with any scientific endeavor, data have emerged that show the
need for refinements and improvements over existing models.

Nonlinear models have gained popularity in recent times, but which one
do we choose from? Once we move away from linear models, there is a huge
variety on offer. Surely, economic theory should provide the guiding light,
insofar as economics and finance are the subject in question. Abadir and
Talmain (2002) provided one possible answer. This chapter is mainly a sum-
mary of the econometric aspects of the line of research started by that paper.

The main result of that literature is that macroeconomic and aggregate
financial series follow a nonlinear long-memory process that requires new
econometric tools. It also shows that integrated series (which are a special
case of the new process) are not the norm in our subject, and proposes a new
approach to econometric modeling.

205



 

P1: GOPAL JOSHI

November 12, 2010 17:8 C7035 C7035˙C008

206 Handbook of Empirical Economics and Finance

8.2 The Economic Origins of the Nonlinear Long-Memory

Abadir and Talmain (AT) started with a micro-founded macro model. It was
a standard real business cycle (RBC) model, except that it allowed for hetero-
geneity: the “representative firm” assumption was dropped. They worked
out the intertemporal general equilibrium solution for the economy, and the
result was an explicit dynamic equation for GDP and all the variables that
move along with it.

It was well known, long before AT, that heterogeneity and aggregation led
to long-memory; e.g., see Robinson (1978) and Granger (1980) for a start of the
literature on linear aggregation of ARIMA models, and Granger and Joyeux
(1980) and Hosking (1981) for the introduction of long-memory models.1

But in economics, there is an inherent nonlinearity which makes linear ag-
gregation results incomplete. Let us illustrate the nonlinearity in the sim-
plest possible aggregation context; see AT for the more general CES-type
aggregation.

Decompose GDP, denoted by Y, into the outputs Y(1), Y(2), . . . of firms
(alternatively, sectors) in the economy as

Y := Y(1) + Y(2) + · · · = ey(1) + ey(2) + · · · ,

where we write the expression in terms of y(i) := log Y(i) (i = 1, 2, . . . ) to
consider percentage changes in Y(i) (and to make sure that models to be
chosen for y(i) keep Y(i) > 0, but this can be achieved by other methods too).
With probability 1,

ey(1) + ey(2) + · · · �= ey(1)+y(2)+···,

where the right-hand side is what linear aggregation entails. The right-hand
side is the aggregation considered in the literature, typically with y(i) ∼
ARIMA( pi , di , qi ), but it is not what is needed in macroeconomics. AT (espe-
cially p. 765) show that important features are missed by linearization when
aggregating dynamic series.

One implication of the nonlinear aggregation is that the auto-correlation
function (ACF) �� of the logarithm of GDP and other variables moving with
it take the common form

�� := cov(yt, yt−�)√
var(yt)var(yt−�)

= 1 − a [1 − cos (��)]
1 + b�c

, (8.1)

1 A time series is said to have long memory if its autocorrelations dampen very slowly, more
so than the exponential decay rate of stationary autoregressive models but faster than the
permanent memory of unit roots. Unlike the latter, long-memory series revert to their (possibly
trending) means.
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FIGURE 8.1
ACF of the log of U.S. real GDP per capita over 1929–2004.

where the subscript of y denotes the time period and a, b, c, � depend on the
parameters of the underlying economy but differ across variables.2 Abadir,
Caggiano, and Talmain (2006) tried this on all the available macroeconomic
and aggregate financial data, about twice as many as (and including the ones)
in Nelson and Plosser (1982). The result was an overwhelming rejection of
AR-type models and the shape they imply for ACFs, as opposed to the one
implied by Equation 8.1. For example, for the ACF of the log of U.S. real
GDP per capita over 1929–2004, Figure 8.1 presents the fit of the best AR( p)
model (it turns out that p = 2 with one root of almost 1) by the undecorated
solid line, compared to the fit of Equation 8.1 by nonlinear LS. Linear models,
like ARIMA, are simply incapable of allowing for sharp turning points that
we can see in the decay of memory. The empirical ACFs found that there is
typically an initial period where persistence is high, almost like a unit-root
with a virtually flat ACF, then a sudden loss of memory. We can illustrate this
also in the time domain in Figure 8.2, where we see that the log of real GDP
per capita is evolving around a linear time trend, well within small variance
bands that don’t expand over time (unlike unit-root processes whose variance
expands linearly to infinity as time passes).

ACFs of this shape have important implications for macroeconomic poli-
cymakers, as Abadir, Caggiano, and Talmain (2006) show. For example, if an
economy is starting to slow down, such ACFs predict that it will produce a
long sequence of small signs of a slowdown followed by an abrupt decline.
When only the small signs have appeared, no-one fitting a linear (e.g., AR)

2 The restrictions b, c, � > 0 apply, but the restriction on a cannot be expressed explicitly.
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Time series of the log of U.S. real GDP per capita over 1929–2004.

model would be able to guess the substantial turning point that is about to
occur. Another implication is that any stimulus that is applied to the economy
should be timed to start well before the abrupt decline of the economy has
taken place, and will take a long time to have an impact (and will eventually
wear off unlike in unit root models). Consequently, a gradualist macroeco-
nomic policy will not yield the desired results because it will be a case of
too little and too late. In other words, a gradualist approach can be compati-
ble with linear models but will be disastrous in the context of the ACFs that
arise from macroeconomic data and that are compatible with the nonlinear
dynamics generated by the general-equilibrium model of AT.

The ACF shape has important implications for econometric methods also.
The long-memory cycles it generates require the consideration of singulari-
ties at frequencies other than 0 in spectral analysis. In fact, if a is close to 1
in the ACF (Equation 8.1), Fourier inversion produces a spectrum f (�) that
is approximately proportional to |� − �|c−1; that is, at frequency �, there is a
singularity when c ∈ (0, 1). For I(d) series having d ∈ (0, 1

2 ), the spectrum has
a singularity at the origin that is proportional to |�|−2d , giving the correspon-
dence c = 1 − 2d in the special case of � = 0. This correspondence holds also
in the tails of the ACFs of the two processes when � = 0.

I(d) models are a special case of the new process. We therefore need to go
beyond I(d) models and consider the estimation of spectral densities near sin-
gularities that are not necessarily located at the origin, as a counterpart (when
a ≈ 1) to the ACF-domain estimation mentioned earlier. Giraitis, Hidalgo,
and Robinson (2001) and Hidalgo (2005) give a frequency-domain method of
estimating � and d , when d ∈ (0, 1

2 ).
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For a ≈ 1, we introduce the following definition.

Definition 8.1 A process is said to be of cyclical long-memory, respectively with
parameters � ∈ [0, �] and d ∈ (0, 1

2 ), if it has a spectrum f (�) that is proportional
to |� − �|−2d as � → � and is bounded elsewhere. Such a process is denoted by
CM(�, d), with the special case CM(0, d) = I(d).

It is no wonder that a statistical model with cycles arises from a real busi-
ness cycle model. Note that integrated processes cannot generate cycles that
have long memory because their spectrum is bounded at � �= 0. They can
only generate short transient cycles that are not sufficiently long for macroe-
conomics.

When a is not close to 1 in the ACF (Equation 8.1), the result of the Fourier
inversion is approximately a linear combination of one I(d) and one CM(�, d)
when � �= 0. Here, too, the approximation arises from the inversion focusing
more on the tail of the ACF and neglecting to some extent the initial concave
part of the ACF in Equation 8.1.

But if the individual series are not of the integrated type, can we talk of co-
integrated series? It is an approximation that many not be adequate enough.
What about the modification of co-integration modeling for variables that
have this new type of dynamics? Abadir and Talmain (2008) propose a solu-
tion. We summarize it in the next section, and present an additional definition
to complement Definition 8.1.

8.3 Modeling Co-Movements for Series with Nonlinear
Long-Memory

This section contains three parts. We start with the specification, estimation,
and inference in a model where the residual’s dynamics are allowed to have
the ACF in Equation 8.1. We then explore some empirical implications of
such a model. Finally, we introduce a special case of the model that implies
an extension of co-integration to allow for co-movements of CM processes.

8.3.1 Econometric Model

Suppose we have a sample of t = 1, . . . , T observations. To simplify the
exposition, consider the model

z = X� + u, (8.2)

where z is T × 1 and � is k × 1. The matrix X can contain lagged depen-
dent variables, so that we cover autoregressive distributed-lag models (e.g.,
used in co-integration analysis) as one of the special cases. The vector u con-
tains the residual dynamics of the adjustment of z toward its fundamental
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value X�. By definition, u is centered around zero and is mean-reverting,
otherwise z will not revert to its fundamental value. We write u ∼ D(0, Σ),
where Σ is the T × T autocovariance matrix of the u’s. The autocorrelation
matrix of u is denoted by R, and Abadir and Talmain (2008) use Equation 8.1
to parameterize the typical i j th element �|i− j | of R. There are two implica-
tions to ut being mean-reverting (which is a testable assumption). First, Σ is
proportional to R. Second, the ML estimator of � and the ACF parameters
in u is consistent. The asymptotic distribution will depend on the properties
of the variables, but if the estimated residuals are found to satisfy c > 1

2
(implying square-summability of ��), then standard t, F, LR tests are justi-
fied asymptotically.3 This condition on c is sufficient but not necessary, and
we have found it to hold in practice when dealing with macro and financial
series.

The quasi maximum likelihood (QML) procedure of Abadir and Talmain
(2008) estimates jointly the parameters � and the ACF parameters in �� of
u. They remove the sample mean of each variable in Equation 8.2 to avoid
multicollinearity in practice, with the constant term in X redefined accord-
ingly. They also assume that X is weakly exogenous (see Engle, Hendry, and
Richard 1983) for the parameters of Equation 8.2.

For any given R, define

�̂R := (
X′R−1X

)−1
X′R−1z (8.3)

as a function of R. Denoting the determinant of a matrix M by |M|, Abadir
and Talmain (2008) show that the QML estimator (QMLE) of R is obtained by
maximizing the concentrated log-likelihood

− log
∣∣∣(z − X�̂R

)′
R−1 (

z − X�̂R
)

R
∣∣∣ (8.4)

with respect to the parameters of the ACF: the optimization of the joint like-
lihood (for Σ and �) now depends on only four parameters that are given in
Equation 8.1 and that determine the whole autocorrelation matrix R. Once
the optimal value R̂ of R is obtained, the QMLE of � is �̂ ≡ �̂R̂.

8.3.2 Empirical Implications

One is often interested in detecting the presence of co-movements between
series. This may be for the purpose of empirically validating theoretical work,
producing predictions, or determining optimal policies. In practice, one is of-
ten frustrated by the results produced by co-integration analysis. The theory
of purchasing power parity (PPP) is typically tested using co-integration.

3 This is a case where the results of Tsay and Chung (2000) on the divergent behavior of
t-statistics do not apply, since the condition on c corresponds to the case of the series hav-
ing d < 1

4 .
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Generally, the findings are that PPP does not hold in the short run and
deviations from PPP are cycling around the theoretical value at very low
frequency, implying that the estimated reversion to PPP is, if at all, unrealis-
tically slow.

Even when the series have less memory, dynamic modeling of co-
movements can spring surprises. According to the uncovered interest par-
ity (UIP) theory, no contemporaneous variable should be able to predict the
future excess returns in investing in a foreign asset. However, researchers
have consistently found a strong negative relation between future excess re-
turns and the forward premium on a currency. With the usual interpretation
of the forward rate as a predictor of the future spot exchange rate, this would
imply the irrational result that a currency is expected to depreciate in periods
when assets denominated in this currency actually do produce systematic
excess returns!

These “anomalies” or “paradoxes” are what one would find if the true
nature of the relation between the variables is of the type in Equation 8.2,
but the possibility of unconventional dynamics for u has been neglected.
Co-integration would try to force a noncyclical zero-frequency pattern on
this residual term which, in reality, is slowly cycling. By allowing for the
possibility of long-memory cycles, the methodology described above brings
to light the true nature of the residuals and, thus, of the true relation between
the co-moving variables. The “long-run” relation between economic variables
often involves long cycles of adjustment.

8.3.3 Special Case: co-CM

The model in Equation 8.2 avoids the question of the individual �, d in each
of the series contained in z, X. It just states that the dynamics of adjustment
to the fundamental value (through changes in u) is of the general AT type. A
way in which this can arise is through the following special CM case of the
AT process, where we use a bivariate context to simplify the illustration and
to show how it generalizes the notion of co-integration.

Definition 8.2 Two processes are said to be linearly co-CM if they are both CM(�, d)
and there exists a linear combination that is CM(�, s) with s < d.

This follows by the same spectral methods used in Granger (1981, Section 4).
The definition can be extended to allow for nonlinear co-CM, for example,
if zt = g(xt) + ut with g a nonlinear function. For the effect on the ACF
(hence on �, d) of parametric nonlinear transformations, see Abadir and
Talmain (2005).

In Equation 8.2, it was not assumed that s < d. In fact, in the UIP application
in Abadir and Talmain (2008), we had the ACF equivalent of s = d because
it was a trivial co-CM case where the right-hand side variable had a zero
coefficient and zt = ut.
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8.4 Further Developments

Work is currently being carried out on a number of developments of these
models and the tools required to estimate them and test hypotheses about
their parameters. The topic is less than a decade old, at the time of writing
this chapter, but we hope to have demonstrated its potential importance.

A simple time-domain parameterization of the CM(�, d) process has been
developed in preliminary work by Abadir, Distaso, and Giraitis. The frequency-
domain estimation of this process is also being considered, generalizing the
FELW estimator of Abadir, Distaso, and Giraitis (2007) to the case where � is
not necessarily zero.
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9.1 Introduction

Since the basic ideas of structural macroeconometric modeling were laid out
by the Cowles Commission, there has been substantial effort invested in turn-
ing their vision into a practical and relevant tool. Research and development
has proceeded across a broad front but basically can be characterized as re-
sponses to four issues.
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1. The design of models to be used in a policy environment.
2. Estimation of the parameters in these models.
3. Match of these models to the data, i.e., how to evaluate their ability to

adequately represent the outcomes from an actual economy.
4. Prediction and policy analysis with the models.

Econometric texts and articles typically deal with the last three topics while
the first tends to be neglected. Consequently this chapter will focus on how
the design of models in policy use has evolved over the past 60 years. In
concentrating on the models that have been adopted in institutions concerned
with policy making, we have not dealt with models either developed in the
private sector or by individuals, e.g., the model set out initially by Fair (1974)
which has gone through several generations of change. Moreover, although
our primary focus is on model design, it is impossible to ignore questions of
estimation and data matching, as often these are driven by the design of the
models, so that we will need to spend some time on the second and third of
the issues.

Model design has evolved in a number of ways. At a primal level it is due
to the fact that the academic miniature model upon which they are based,
and which aims to capture the essential forces at work in the economy, has
changed over time. We can distinguish five of these miniature models:

1. Ramsey model – Ramsey (1928)
2. IS-LM, Aggregate Demand-Supply (AD-AS) models – Hicks (1937).
3. Solow-Swan Model – Solow (1956), Swan (1956)
4. Stochastic Ramsey Model (Real Business Cycle Model/Dynamic

Stochastic General Equilibrium -DSGE- models) – King Plosser, and
Rebelo (1988)

5. New Keynesian model – Clarida, Gali, and Gertler (1999)

Essentially, these models were meant to provide a high-level interpretation
of macroeconomic outcomes. Mostly they were too simple for detailed policy
work and so needed to be adapted for use. Although providing some broad
intellectual foundations they need to be augmented for practical application.
The adaptions have led to four generations of models distinguished later
which loosely relate to the miniature models given above.

Coexisting with these interpretative models have been summative models that
aim to fit a given set of data very closely and which employ various statis-
tical approaches to do this, e.g., vector autoregressions (VARs). Mostly these
models are used for forecasting. Sometimes the summative and interpreta-
tive models have been identical, but increasingly there has been a divorce
between them, resulting in a multiplicity of models in any policy institution
today. To some extent this reflects developments in computer hardware and
software since the cost of maintaining a variety of models has shrunk quite
dramatically in the past few decades. The greater range of models also means
that how we are to judge or evaluate a given model will differ depending
upon what it seeks to achieve. Consequently, this often accounts for why
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proponents of a particular representative of each of the classes are reluctant
to evaluate their models with criteria that might be appropriate for another
of the classes.

The four generations of models we will distinguish in the succeeding sec-
tions are often represented as being vastly different. Sometimes the differences
that are stressed are superficial, reflecting characteristics such as size and un-
derlying motivation. It would be unfortunate if this attitude prevailed as it
obscures the fact that each generation has drawn features from previous gen-
erations as well as adding new ones. Evolution rather than revolution is a
better description of the process describing the move from one generation to
another. To see this it will help to structure the discussion according to how
each generation has dealt with five fundamental questions:

1. How should the dynamics evident in the macroeconomy be incorpo-
rated into models? Specifically, are these to be external (imposed) or
internal (model consistent)?

2. How does one incorporate expectations and what horizon do they refer
to?

3. Do stocks and flows need to be integrated? If so, is this best done by hav-
ing an equilibrium viewpoint in which all economic variables gravitate
to a steady-state point or growth path?

4. Are we to use theoretical ideas in a loose or tight way?
5. How are nominal rather than real quantities to be determined?

The sections that follow outline the essential characteristics of each of the
four generations of models distinguished in this chapter by focusing on the
questions just raised. This enables one to see more clearly what is common
and what is different between them.

9.2 First Generation (1G) Models

These are the models of the 1950s and 1960s. If one had to associate a single
name with them it would be Klein. If one had to associate a single institution
it would be the University of Pennsylvania. A very large number of modelers
in many countries went to the latter and were supervised by the former.

The miniature model that underlies representatives of this generation was
effectively that associated with the IS/LM framework. Accordingly, the mod-
eling perspective was largely about the determination of demand. Adaption
of the miniature model to policy use involved disaggregation of the compo-
nents of the national income identity. Such a disaggregation inevitably led to
these models becoming large.

Dynamics in the models were of two types. One alternative was to allow
for a dynamic relation between yt and xt by making yt a function of {xt− j }p

j=0.

If p was large, as might be the case for the effect of output (xt) upon in-
vestment (yt), then some restrictions were imposed upon the shape of the
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lagged effects of a change in xt upon yt. A popular version of this was termed
“Almon lags”– Almon (1965). But mostly dynamics were imposed using a dif-
ferent strategy — that associated with the partial adjustment model (PAM).
With real variables in logs (some nominal variables such as interest rates,
however, were left in levels form) this had the structure1

�zt = �(z∗
t − zt−1), (9.1)

where z∗
t was some target for zt which was made observable by relating it to a

function of xt. The specification of the function linking z∗
t and xt was generally

loosely derived from theoretical ideas. As an example, targeted consumption
c∗

t was related to income (yt) and other things expected to influence consump-
tion, such as interest rates (rt). Thus,

c∗
t = ayt + brt. (9.2)

In these models there was often an awareness of the importance of expecta-
tions in macroeconomics, reflecting their long history in macroeconomic dis-
cussion. To model these expectations, one assumed they could be measured
as a combination of the past history of a small set of variables (generally)
present in the model, with the weights attached to those variables being es-
timated directly using the observations on the variables expectations were
being formed about.

Because the supply side in these models was mostly ignored, there was not
a great deal of attention paid to stocks and flows. Wallis (1995), in an excellent
review of these and the 2G models discussed later, notes that there was an
implicit assumption underlying them that variables evolved deterministically
over longer periods of time, although there was not any discussion about
whether such paths were consistent and their relative magnitudes did not
seem to play a major role in model construction and design.

To build a link between the real and nominal sides of the economy modelers
generally viewed prices as a mark up over (mostly) wages, and the markup
was often influenced by business conditions. A dynamic account of wages was
provided by the Phillips curve. Later versions just assumed that the Phillips
curve applied to inflation itself and so had the form

�t = �1�t−1 + �ut + εt , (9.3)

where �t was price inflation and ut was the unemployment rate. There was
a lot of debate about whether there was a trade-off between inflation and
unemployment, i.e., was � �= 0, �1 < 1? Sometimes one saw this relation
augmented as

�t = �1�t−1 + �(ut − u) + �2( pt−1 − ulct−1) + εt , (9.4)

1 In many of the early models variables were expressed in terms of their levels and it was only
later that log quantities were used more extensively.
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where pt was the log of the price level and ulct was unit labor cost. Without
some modification like this there was no guarantee that the level of prices
and wages would remain related.

Estimation of these models was mostly done with single equation methods
and so evaluation largely involved applying a range of specification tests to
the individual equations. These equations could be represented as

yt = �1 yt−1 + �2zt + �3zt−1 + εt , (9.5)

where zt might be endogenous variables and εt was an “error term.” Tests
therefore considered the residuals ε̂t as a way of gaining information about
specification problems with this equation. Although useful, this evaluation
process did not tell one much about the fit of the complete model, which
was a key item of interest if the model is to be used for forecasting. For
that it needs to be recognized that zt is not given but also needs to be solved
for. System and single equation performance might therefore be very
different.

Once a complete system was found one could find a numerical value for
what one would expect zt to be from the model (given some exogenous vari-
ables) either analytically or by simulation methods (when the system was
nonlinear). The software developed to do so was an important innovation
of this generation of models. Chris Higgins, one of Klein’s students, and
later Secretary of the Australian Treasury, felt that any assurance on system
performance required that modelers should “simulate early and simulate
often.” For that, computer power and good software were needed. It was
also clear that, in multistep forecasts, you had to allow for the fact that both
yt−1 and zt−1 needed to be generated by the model. Hence dynamic simula-
tion methods arose, although it is unclear if these provided any useful ex-
tra information about model specification over that available from the static
simulations, since the residuals from dynamic simulations are just transfor-
mations of the ε̂t.2 Perhaps the major information gained from a dynamic
simulation of the effects following from a change in an exogenous variable
was what happened as the policy horizon grew. If the change was transi-
tory, i.e., lasted for only a single period, then one would expect the effects
to die out. In contrast, if it was permanent, one would expect stabilization
of the system at some new level. It was easy to check that this held if one
only has a single equation, e.g., in the PAM scheme 0 < � < 1 was needed.

Thus each of the individual equations could be checked for stability. But
this did not guarantee system stability because, inter alia, zt might depend
upon yt−1, thereby making the stability condition much more complex. An
advantage of a dynamic simulation was that it could provide the requisite
information regarding the presence or absence of stability relatively cheaply
and easily.

2 Wallis (1995) has a good discussion of these issues.
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9.3 Second Generation (2G) Models

These began to emerge in the early 1970s and stayed around for 10–20 years.
Partly stimulated by inflation, and partly by the oil price shocks of the early
1970s, the miniature model that became their centerpiece was the AD/AS
model — which recognized the need for a supply side in the model. When
adapted for use this involved introducing a production function to place a
constraint on aggregate supply, particularly over longer horizons. A leading
light in the development of these models for policy use was John Helliwell
with his RDX2 model of the Canadian economy (Helliwell et al. 1971), but oth-
ers emerged such as the Fed-MIT-Penn (FMP) model (Brayton and Mauskopf
1985) which was also called MPS, see Gramlich (2004).

These models retained much of the structure of the previous generation
in that demand was captured by disaggregated equations stemming from
the national income identity. Now these were supplemented with equations
which introduced much stronger supply side features. There was also some
movement toward deriving the relationships as the consequence of optimiza-
tion problems solved by agents — in particular the consumption decision and
the choice of factors of production were often described in this way. Thus for
consumption an intertemporal dimension was introduced through the use
of life-cycle ideas. These implied that consumption depended on financial
wealth (yt) and current labor income (wt), i.e., c∗

t = awt + byt. Dynamics were
again introduced through a distributed lag on the static relationships deter-
mining the desired levels z∗

t . The advance on previous work was the use of
an error correction mechanism (ECM),

�zt = ��z∗
t + �(zt−1 − z∗

t−1). (9.6)

As Wallis (1995) observes the ECM originated in Phillips’ control work of
the 1950s and was applied by Sargan (1964) when modeling inflation, but its
widespread use began with Davidson et al. (1978).

Now, with the introduction of a production function, and a household’s
decisions coming loosely from a life cycle perspective, the presence of house-
hold wealth and the capital stock meant that there were dynamics present
in the model which stemmed from depreciation and savings. Consequently,
dynamic stability of the complete system became a pressing issue. Gramlich
(1974) comments on his work with the MPS model that “. . . the aspect of the
model that still recalls frustration was that whenever we ran dynamic full-
model simulations, the simulations would blow up.”Once again one needed
to keep an eye on system performance when modifying the individual equa-
tions. It might be a necessary condition that the individual equations of the
system were satisfactory, but it was not a sufficient one.

Like the previous generation of models there was considerable diversity
within this class and it grew larger over time. Often this diversity was the
result of a slow absorption into practical models of new features that were
becoming important in academic research. For example, since many of these
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models had an array of financial assets — certainly a long and a short rate–
rational (or model consistent) expectations were increasingly introduced into
the financial markets represented in them. By the end of the era of 2G models,
this development was widely accepted. But, when determining real quanti-
ties, expectations were still mainly formulated in an ad hoc way. One reason
for this was the size of the models. The UK models were almost certainly
the most advanced in making expectations model-consistent. By 1985 this
work had produced a number of models, such as the London Business School
and National Institute models, which had implemented solutions; see the re-
view in Wallis and Whitley (1991). A significant factor in this movement was
the influence of the Macro-Economic Modelling Bureau at the University of
Warwick (see Wallis 1995).

Dynamics in prices were again operationalized through the Phillips curve,
but with some modifications. Now either a wage or price Phillips curve had
the form

�t = �1�t−1 + �(ut − u) + εt , (9.7)

where u was the nonaccelerating inflation rate of unemployment (NAIRU),
and, often, �1 = 1. The NAIRU was a prescribed value and it became the object
of attention. Naturally questions arose of whether one could get convergence
back to it once a policy changed. In models with rational expectations dynamic
stability questions such as these assume great importance. If expectations
are to be model consistent, then one needed the model to converge to some
quantity. Of course one might circumvent this process by simply making the
model converge to some prespecified terminal conditions, but that did not
seem entirely satisfactory. By the mid 1980s, however, it appeared that many of
the models had been designed (at least in the UK) to exhibit dynamic stability,
and would converge to a steady state (or an equilibrium deterministic path).

9.4 Third Generation (3G) Models

9.4.1 Structure and Features

Third generation (3G) models reversed what had been the common approach
to model design by first constructing a steady-state model (more often a
steady-state deterministic growth path, or balanced growth path) and then
later asking if extra dynamics needed to be grafted on to it in order to broadly
represent the data. Since one of the problems with 2G models was getting
stocks to change in such a way as to eventually exhibit constant ratios to
flows, it was much more likely that there would be stock-flow consistency
if decisions about expenditure items came from well-defined optimization
choices for households and firms, and if rules were implemented to describe
the policy decisions of monetary and fiscal authorities. In relation to the latter
external debt was taken to be a fixed proportion of GDP and fiscal policy
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was varied to attain this. Monetary authorities needed to respond vigorously
enough to expected inflation — ultimately more than one-to-one to move-
ments in inflation.

There are many versions of 3G models, with an early one being an Aus-
tralian model by Murphy (1988) and a multi-country model (MSG) by
McKibbin and Sachs (McKibbin 1988; McKibbin and Sachs 1989). Murphy’s
model was more fully described in Powell and Murphy (1995). 3G models be-
came dominant in the 1990s, being used at the Reserve Bank of New Zealand
(FPS, Black et al. 1997), the Federal Reserve (FRB-US, Brayton and Tinsley
1996) and, more recently, the Bank of Japan Model (JEM, Fujiwara et al. 2004).
Probably the most influential of these was QPM (quarterly projection model)
built at the Bank of Canada in the early to mid-1990s, and described in a series
of papers (e.g., Black et al., 1994; Coletti et al., 1996). Its steady-state model
(QPS) was basically an adaption of the Ramsey model for policy use. To this
point in time the latter miniature model had played a major role in theoreti-
cal economics but a rather more limited one in applied macroeconomics. An
important variation on Ramsey was the use of an overlapping generations
perspective that modified the discount rate by the probability of dying, as
advocated in Blanchard (1985) and Yaari (1965).

As a simple example of the change in emphasis between 2G and 3G mod-
els, take the determination of equilibrium consumption. It was still the case
that consumption ultimately depends on financial wealth and labor income,
but now the coefficients attached to these were explicitly recognized to be
functions of a deeper set of parameters — the steady-state real rate of return,
utility function parameters and the discount factor. Because these parameters
also affect other decisions made by agents, one cannot easily vary any given
relationship, such as between consumption and wealth, without being forced
to account for the impact on other variables of such a decision.

Thus a steady-state model was at the core of 3G models. How was it
to be used? In a strict steady-state (SSS) dynamics have ceased and val-
ues of the variables consistent with these equations will be constant (more
generally one could allow for a constant steady-state growth path, but we
will leave this qualification for later sections). But the model generating the
steady state has embedded in it intrinsic dynamics that describe the transi-
tion from one steady-state position to another. These dynamics come from
the fact that the capital stock depreciates and assets accumulate. Conse-
quently, solving the model produces a transitional steady-state solution for
the model variables, i.e., these variables will vary over time due to the fact
that movements from one point to another are not instantaneous. In addition
to this feature, in 3G models some variables were taken to be exogenous,
i.e., treated as determined outside the model economy. Since it is unlikely
that these will be at their steady-state values over any period of time, the
endogenous variable solutions using either the pure or transitional steady-
state model will need to reflect the time variation of those exogenous vari-
ables. One might refer to the latter values as the short-run steady-state (SRSS)
solutions.
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In adapting the steady-state model for use, it was necessary to recognize
that the intrinsic dynamics were rarely sufficient to track the movements of
variables in actual economies. Thus it became necessary to augment the in-
trinsic dynamics. Generally this involved a second stage optimization. The
model with the augmented dynamics constituted QPM. The intrinsic dynam-
ics in QPS might therefore be called the first-stage dynamics, while the extra
dynamics introduced into QPM could be labeled the second-stage dynamics.
To implement this second stage, one might have simply specified an ECM
relating zt to the SRSS values z∗

t and, in some 3G models, this was how it was
done, e.g., Murphy (1988). But in QPM the extra dynamics were introduced
in a quasi-theoretical way by choosing zt to minimize the objective function

1
2

∞∑
j=0

� j Et{(zt+ j − z∗
t+ j )

2 + �(�zt+ j − E(�zt+ j ))2}, (9.8)

where Et(.) is the expected value conditional upon the information available
at t. Setting E(�zt+ j ) = 0 would produce an optimal rule for determining zt

(the Euler equation) of

(1 + � + ��)zt + ��Etzt+1 − z∗
t = 0 (9.9)

and an ultimate solution for zt of the form

zt = �zt−1 + �

(1 − �)
Et

∞∑
j=0

(��) j z∗
t+ j , (9.10)

where � depends on � and �. Thus zt can be constructed by weighting to-
gether past and future expected values of zt and z∗

t . Because expectations in
3G models were effectively of the perfect foresight variety, model-consistent
expectations would mean that Etz∗

t+ j = z∗
t+ j . But, in the practice, the expec-

tations were taken to be modeled as a function of the steady-state model
solution, a finite number of lagged values of zt, and the solution for z∗

t+ j from
QPM itself. The weights attached to these components were prescribed by
the modelers.

Nickell (1985) and Rotemberg (1982) noted that the quadratic optimization
scheme described above would result in an ECM connecting zt and z∗

t , when
z∗

t was a scalar and followed an autoregressive process. Hence, effectively
QPM was imposing a set of ECM equations that determined the outcomes for
zt by reference to the short-run steady-state values z∗

t .
As in 2G models nominal quantities were handled by making prices a

markup on marginal costs and then structuring the relation to handle dy-
namics and expectations. As marginal costs were primarily wages, a Cobb–
Douglas production function and perfect competition meant that the wage
share in GDP (or real unit labor costs) was a constant in equilibrium. With
these ideas, and expectations handled as described above, one might think of
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the 3G Phillips curve as effectively having the form

�t = �1 Et�t−1 + (1 − �1)Et�t+1 + ��mct + �( pt−1 − mct−1), (9.11)

where mct was the log of nominal marginal cost and mct−1 − pt−1 was lagged
real unit labor costs. Thus inflation was determined from past inflation, future
expectations of inflation, current growth in nominal costs and the
extent to which real unit labor costs were not constant.

9.4.2 Estimation and Evaluation

There was little formal estimation of the parameters of these models. Ratios
such as consumption to income were often the main source of information
used in setting values. When it was necessary to specify parameters deter-
mining dynamic responses there seems to have been significant interaction
between modelers, policy advisers, and policy makers over whether the out-
comes from the model with particular parameter values accorded with their
views. Sometimes this involved studying the speed of adjustment after a
shock while at other times estimates of quantities such as the sacrifice ratio
would help in deciding on the balance between future and backward look-
ing expectations (�1 in the Phillips curve). Consequently, data did play some
role in quantifying parameters, for example in QPM, but it was only used
informally via the experience that had accumulated of the Canadian econ-
omy. Conceptually, one might think of this process as involving the use of
a criterion function to match data (generally filtered) with simulated output
from the models. The criterion function could then also be used to discrimi-
nate between different sets of parameter values. The exception to this strategy
was when standard estimation methods were applied to the ECMs used in
quantifying the second stage dynamics.

Evaluation of these models was rarely done. Indeed there was even an
hostility toward data (see Colletti et al. 1996, p. 14), where they say about
modeling in the Bank of Canada:

There had been a systematic tendency to overfitting equations and too lit-
tle attention paid to capturing the underlying economics. It was concluded
that the model should focus on capturing the fundamental economics nec-
essary to describe how the macro economy functions and, in particular, how
policy works, and that it should be calibrated to reflect staff judgement on
appropriate properties rather than estimated by econometric techniques.

Leaving this debate aside, given the way the models were used it would
have been very difficult to perform a satisfactory evaluation of them. The
reason was the method of producing a series on the short-run steady-state
path z∗

t . The description given above was in fact too simplified. An impli-
cation of that account was that the steady-state solutions for the logs of the
endogenous variables would be constructed from the exogenous variables by
using a set of weights that are functions of the model parameters and that the
latter would be assumed to be invariant over time. Such a scenario would
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generally imply constancy in a number of ratios. For example, the investment
to capital stock ratio would be a constant since, in steady state, it equals a
parameter — the depreciation rate of capital. But, after examining the data,
it was evident that these ratios were rarely constant, and often wandered far
away from any fixed point. So, although one did need to assume some fixed
values for the steady-state ratios (equivalently the model parameters), it also
became necessary to make some allowance for the substantial time variation
seen in ratios over any given data period. Failure to do so would constitute a
gross mismatch of the data and model predictions. Consequently, a two-part
strategy evolved to deal with this problem. It firstly involved smoothing the
observed ratios with some filter to produce an adjusted ratio that changed
slowly. Secondly, this adjusted ratio was forced to converge to whatever long-
run ratio was prespecified in the steady-state model. Essentially this strategy
meant that the steady-state model parameters were allowed to vary smoothly
over time with the restriction that they converged to a set of final steady-state
choices.3

Cast in terms of our discussion above, the time variation in z∗
t comes not

only from exogenous variables, transition paths, etc., but can also occur due
to time-varying model parameters. Without this latter source of variation a
comparison on how well z∗

t (the model SRSS) tracks zt (the data) would seem
a useful diagnostic for how well the two paths match, but, if one can vary
the parameters of the model in a complex way so as to get a better fit to
the data, such a comparative exercise becomes meaningless. Thus one cannot
satisfactorily evaluate the success of the static model constructed in the first
stage of a 3G modeling exercise.4

Turning to the second stage of 3G model construction, if a series on z∗
t

was available one might think about checking the dynamic representation
chosen in that stage. But here resort was often made to polynomial adjustment
schemes that introduced much higher order lags than the first order of the
stylized ECM connecting zt and z∗

t described above. In doing that one could
almost be certain of getting a good fit to any historical series on zt. For 3G
models therefore the only satisfactory evaluation method probably resided
in whether their clients were happy with the information provided.

In the description above attention was centered upon the “gap” between
zt and z∗

t and it therefore became natural to convert all the variables in the
model to “gap” format, particularly when the model was used in forecasting
mode. This enabled one to improve forecasting performance by augmenting
the equations for zt with variables that were zero in the steady state. Hence,

3 Some parameters were held constant since not all ratios exhibited a substantial degree of time
variation.

4 In more technical terms, if there is such great variation in the time history of the ratio that it
needs to be described as an I (1) process, then the methods used were essentially eliminating
a unit root in the observed ratio through a filtering operation such as the Hodrick–Prescott
filter. Of course if the model predicts that the ratio is I (0), and the data that it is I (1), it might
be thought that some modification of the steady-state model is needed. Simply ignoring the
mismatch by eliminating the I (1) behavior via filtering seems unsatisfactory.
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in the case where zt was the log of the price level, one could add on an output
gap to the equation that came from the second stage optimization. Over time
this emphasis on “gaps” gave rise to the miniature models known as New
Keynesian, and today these small models are often used for policy analysis
and some forecasting, e.g., Berg, Karam, and Laxton (2006). In some ways the
philosophy underlying 3G models had much in common with that stream of
computable general equilibrium (CGE) modeling stemming from Johansen
(1960). In that literature models were log-linearized around some “steady-
state” values and the computation of these steady states (often termed the
benchmark data set) involved substantial manipulation of data on input-
output tables, etc. Of course the CGE models were not in “real time” and
so transition paths were essentially irrelevant. It was simply assumed that
enough time had elapsed for a new steady state to be attained once a policy
change was made.

Another feature of 3G models was that shocks became the focus of atten-
tion. In the academic literature shocks had become a dominant feature of
models and, with the advent of policy rules, one could no longer think about
changing variables such as government expenditure or the money supply,
since these were now endogenous variables. Only exogenous shocks to them
might be varied. However, although the language was stochastic, often the
solution methods were essentially deterministic, and so there was no “clean”
incorporation of shocks into the models.

An issue that arose when these models were applied to a small-open econ-
omy with the rest of the world being treated as exogenous was what modi-
fication needed to be made to ensure that agents did not borrow indefinitely
at the fixed external rate of interest; see Schmidt-Grohe and Uribe (2003) for
a discussion of strategies for dealing with this issue. In practice, two of these
adjustments tended to be used to design models that ruled out such behavior.
In the first, the infinitely lived consumer of the Ramsey model was replaced
by agents with finite lives. This formulation could be shown to be equivalent
to a model with a representative consumer whose discount rate depended
on the probability of death as in Blanchard (1985) and Yaari (1965). A second
approach was to have the risk premium attached to foreign debt rising with
the level of foreign borrowing, so that eventually agents would not wish to
borrow from foreign sources to finance consumption. The ratio of foreign debt
to GDP therefore became a crucial element in the latter models and decision
rules had to be constructed to ensure that this prescribed ratio was achieved
in steady state.

9.5 Fourth Generation (4G) Models

A fourth generation of models has arisen in the early 2000s. Representa-
tives are TOTEM (Bank of Canada, Murchinson and Rennison 2006); MAS
(the Modelling and Simulation model of the Bank of Chile, Medina and
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Soto 2006); GEM (the Global Economic Model of the IMF, Laxton and Pesenti
2003); BEQM (Bank of England Quarterly Model, Harrison et al. 2005); NEMO
(Norwegian Economic Model at the Bank of Norway (Brubakk et al. 2006);
The New Area Wide Model at the European Central Bank, Kai, Coenen, and
Warne 2008); the RAMSES model at the Riksbank (Adolfson et al. 2007);
AINO at the Bank of Finland (Kilponnen and Ripatti 2005); SIGMA (Erceg,
Guerrieri, and Gust 2006) at the U.S. Federal Reserve; and KITT (Kiwi infla-
tion targeting technology) at the Reserve Bank of New Zealand (Beneš et al.
2009).

9.5.1 Extensions of 3G Model Features

In some ways these new models represent a completion of the program for
adapting the Ramsey model for macroeconometric use. As with 3G models
they are designed to have an underlying steady-state representation. But other
features of their design are different to what was standard with 3G models.
Four of these are of particular importance.

Firstly, shocks are now becoming explicitly part of the model rather than
being appended at the end of the modeling process. A shock is what remains
unpredictable relative to an information set specified within the model, and
so it is necessary to be explicit about what this information is. In addition,
how persistent the shocks are becomes important to describing the complete
dynamics of the model, and this makes it necessary to decide on the degree
of persistence. Given that shocks are unobservable (they are essentially de-
fined by the model itself) this inevitably points to the need to quantify the
parameters of the model from data.

Secondly, there is now no second-stage process to introduce dynamics.
Instead, the adjustment cost terms used to rationalize slow adjustment in 3G
models now appear directly in the primary objective functions that lead to
the agent’s decision rules, i.e., the short- and long-run responses are found
simultaneously rather than sequentially. Of course the logic of the two-stage
process used in 3G models was a recognition that adjustment costs (and the
parameters associated with them) do not affect the steady-state solutions,
and it was only the transition paths between steady states that depended on
those parameters. In fact, recognition of this feature was the motivation for
adapting 3G models to an existing forecasting environment by treating the
construction of dynamics in two steps.

Thirdly, the structural equations of the model are now kept in Euler equa-
tion form rather than using a partially solved out version as was characteristic
of 3G models. Thus the optimal intertemporal rule describing consumption
decisions appears in most 4G models as

Ct = �Et(Ct+1 Rt+1), (9.12)

which contrasts with the 3G model approach that combines this relation with
the wealth accumulation identity to express consumption as a function of
financial wealth and labor income. One reason for doing so is that it is easier
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to modify the model design through its Euler equations. An example is the
extra dynamics introduced into consumption decisions by the use of habit
persistence. This can take a number of forms, but often results in the addition
of Ct−1 to the equation to give

Ct = �Et
(
Ch

t−1C1−h
t+1 Rt+1

)
. (9.13)

Finally, because shocks were an integral part of some of these models, solu-
tion methods needed to be shaped to account for them. Indeed, with this focus
on shocks one had to be careful when referring to “forward” and “backward”
expectations; all expectations are now formed using information available at
time t, and so technically all depend on past observations (unless there are
exogenous variables in the system). Thus the important feature becomes the
relative weights to be attached to the available information at time t when
forming expectations at different periods. A second consequence of the shift
to a “shocks” perspective is that the distinction between “parameters” and
“shocks” becomes blurry. Thus a depreciation rate might now be regarded
as a random variable that evolves stochastically over time with an expected
value equal to whatever specified value for it appears in the steady-state
model. Thus this provides a formal way of allowing the model parameters to
change, something that was only done in an ad hoc way in 3G models.

9.5.2 New Features of 4G Models

The modifications above are essentially adjustments to the basic strategies
employed in the design of 3G models and are intended to produce a more
precise and satisfactory statement of the design criteria. But there are also
additions. Four can be mentioned.

1. Although the models are ultimately about aggregates the theoretical
structure is now often based on studying the actions of heterogeneous
units and providing an account of how these are to be aggregated. This
heterogeneity is used in many contexts. Thus analysis often begins with
different types of labor services, many intermediate goods being pro-
duced and used to make a final good, many types of imported goods,
firms being differentiated in their price setting policies, etc. The question
is then how one performs an aggregation of the micro decisions. The so-
lution is an extensive use of methods popular in CGE modeling. These
involve the presence of an “aggregator.” This intermediary uses CES
functions as a way of combining together the many separate items into
a composite commodity. Thus aggregate output in a two sector model,
Yt, would be the following combination of the sectoral outputs Yit

Yt = [
Y−	

1t + Y−	
2t

]−1/	, 	 = 1 − �

�
. (9.14)
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A continuum of micro-units over (0, 1) is generally used in place of a
finite number as above, and, in such a case, Yt would be represented as

Yt =
[∫ 1

0
Y

�−1
�

i t di
] �

�−1

. (9.15)

Profit maximization by the sectoral producers means that the amount
of the sectoral output produced would depend on Yt and the relative
price Pit

Pt
, with the functional form being

Yit = Yt

(
Pit

Pt

)−�

. (9.16)

As well, the aggregate price level relates to the sectoral ones as

P1−�
t =

∫ 1

0
( Pit)1−�di. (9.17)

Models are then built for Pit and Yit and aggregated with these functions.
The method is well known from Dixit and Stiglitz (1977). Because of the
use of CES functions any underlying heterogeneity has an impact only
through the presence of parameters that describe the nature of the het-
erogeneity, i.e., the distribution of the micro decisions (say on Pit). Basing
the model design on a microeconomic structure can potentially expand
the range of information available for parameter estimation through the
use of studies of microeconomic decision making.

2. In the case of firms following different pricing strategies the aggregation
scheme just described forms the basis of the Calvo pricing model. In this
some firms can optimally reset their prices each period and others need
to follow a simple rule of thumb. Consequently, the heterogeneity in
decisions about Pit can be summarized by a single parameter — the
fraction of firms (
) who are able to optimally adjust their price at each
point in time. The aggregate Phillips curve can then be shown to have
the form

�t − �� = 1
1 + �

(�t−1 − ��) + (1 − 
)(1 − �
)

(1 + �)

(rmct − rmc) +
�

1 + �
Et(�t+1 − ��) + εt , (9.18)

where rmct is real marginal cost (or unit labor costs with a Cobb–Douglas
production function) and �� is a target rate of inflation. An appealing
argument for building the curve up from a micro-unit level was that
it allowed for monopolistic and monopsonistic behavior at that level
rather than the competitive markets of the 3G models. Thus the rather
awkward assumption used in QPM that there was a mark-up of prices
over marginal costs in the short run, but that it went to zero in steady
state (owing to the competitive markets assumption), can be dispelled.
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It should be observed though that, although widespread, it is not always
the case that the Calvo pricing structure is used in 4G models. Sometimes
the approach used by Rotemberg (1982) is adopted. But the nature of
the resulting Phillips curve is similar.

3. The steady state used in 3G models saw real variables such as output,
capital, etc. as either a constant or following a deterministic growth
path. This reflected the fact that labor augmenting technical change was
taken as growing at a constant rate, basically following Solow (1956) and
Swan (1956). Although initially in 4G models technology was treated
as stationary, many models now allow the technical change to have a
stochastic permanent component as well as a deterministic one. Thus
the “steady-state” solution evolves stochastically over time. With some
variables now having permanent components questions arise over how
one should treat this fact when operationalizing the model, and we
return to that later in the section.

4. Now that the models are treated as stochastically focused, when log-
linearized they can be represented as structural equations of the form5

B0zM
t = B1zM

t−1 + C EtzM
t+1 + F εt , (9.19)

where zM
t and εt are the model variables and shocks, respectively. The

solution to Equation 9.19 when εt has no serial correlation is6

zM
t = AzM

t−1 + Gεt. (9.20)

Because it is possible that some of the model variables are not observed,
it is useful to connect those variables that are observable, zD

t , to the
model variables via an observation equation

zD
t = HzM

t + �t , (9.21)

where �t is what needs to be added on to the model solution to replicate
the data. Here �t will be termed the “tracking shocks.”Altug (1989) pio-
neered this approach assuming that the �t were i.i.d. and uncorrelated
with model shocks. Ireland (2004) has a generalization of this where �t

can be serially correlated. Sometimes the �t are referred to as “errors in
variables,” but many of the variables modeled, such as interest rates and
exchange rates, are very accurately measured, and any mismatch is due
to difficulties with the model rather than measurement issues. Equa-
tions 9.20 and 9.21 constitute a State Space Form (SSF) and is pivotal to
estimation methods for those models in which not all model variables
are observable, i.e., when the dimension of zD

t is less than zM
t .

5 Of course the system may have higher order lags. Any exogenous variables are placed in zt
and assumed to evolve as a VAR.

6 If the shocks εt follow a VAR(1) process then the solution to the system is a VAR(2), as shown
in Kapetanios, Pagan, and Scott (2007). Note that, while A is a function solely of B0, B1, C, G
will depend on these parameters plus any parameters describing the persistence in the shocks
εt ; see Binder and Pesaran (1995). This demarcation can be a very useful result.
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9.5.3 Quantifying the Parameters of 4G Models

There is no one method of estimating the parameters that appear in 4G mod-
els. In some cases the approach used is the same as in 3G models. Broadly, this
involved first estimating any parameters that appear in the steady state with
observable ratios of variables, i.e., a method of moments estimator was im-
plicitly being utilized. Secondly, parameters associated with the transitional
paths were generally quantified by utilizing opinions about desirable model
performance. Increasingly the latter strategy has been replaced by variants of
maximum likelihood estimation.

9.5.3.1 Identification of the Parameters

The equations to be estimated are in Equation 9.19. A first complication in
estimating this system comes from the presence of Etzt+1.

7 Now it is clear
from Equation 9.20 that Etzt+1 = Azt and so Equation 9.19 becomes

�zt = B1zt−1 + Gεt , (9.22)

where � = (B0 − C A), which is a standard set of simultaneous equations.
One could therefore ask whether �, B1, and G are identifiable. But, since it is
the parameters � that appear in the 4G model which are ultimately of interest,
i.e., those in B0, B1, and C, looking at identification of �, B1, and G would
just be a stepping stone toward examining whether � is identified. In both
instances one has to distinguish between whether there are different values of
the parameters in a given model which would reproduce the second moments
of the zt (assuming it is stationary) and whether there is just one model that
is consistent with those second moments. These are different questions. As
Preston (1978) emphasized, the first is a question of structural identification,
and so the conditions are effectively those of the Cowles Commission, as
generalized by Rothenberg (1971). In contrast, the second depends upon what
transformations are allowed in forming new models. If one can reallocate the
dynamics across the equations of a given model to form a new model then
they are like those in Hannan (1971). Even if the existing dynamics are to be
retained, i.e., B0, B1, and C are fixed it may still be possible to recombine the
shocks εt to 
t = Uεt , where U is nonsingular, so that G in Equation 9.22
becomes GU−1. This results in a different set of impulse responses to the new
shocks 
t , even though the second moments for zt are identical to the model
with the εt shocks. Such a recombination strategy is employed in the VAR sign
restrictions literature to give new shocks which obey certain restrictions — in
particular U is chosen there so that the shocks remain mutually uncorrelated.
Now the new shocks essentially mean a new model has been found but it is one
that is observationally equivalent to the old one (since the second moments
of zt are the same). This distinction between these two identification ideas is
still not well understood. Many demonstrations of identification problems,

7 We will ignore the distinction between observable and unobservable variables and drop the
“M” for the moment.
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such as Canova and Sala (2009), are concerned with structural identification,
but recent work by Komunjer and Ng (2009) has been more about model
identification. Whether there is a unique model might be of interest but, for
estimation purposes, it is structural identification that is paramount.

In most situations B0, B1, and C are relatively sparse and so standard si-
multaneous equation identification conditions can be applied to identify �,
B1, and G, since there will be enough instruments to apply to each of the
structural equations. Of course it may be that the instruments are weak and,
in a finite sample, there is effectively a lack of identification. Indeed, many of
the examples of identification difficulties that pertain to the structural equa-
tions of 4G models, such as the New Keynesian Phillips curve, do seem to be
concerned with the presence of weak instruments – Mavroeidis (2004), and
Nason and Smith (2005).

Often it is useful to ask whether �,B1, and G can be identified before pro-
ceeding to query the identification status of �. Since these parameters de-
termine the impulse responses to shocks that might be sufficient for much
policy analysis. However, it may be that, even when � and B1 are identified,
the mapping between these and the 4G model parameters, �, might not be
one to one, i.e., � is not identified. If policy experiments involved changing
the steady-state solutions then we will mostly want to identify � rather than
the impulse responses. Some of the experiments done to look at identification
failures are examples of not being able to uniquely recover � from {�,B1,G}.
Generally, therefore one can think that there are two aspects to identification.
One involves the ability to identify {�,B1,G} from the data and the other is
whether the model allows one to recover � from these matrices. This distinc-
tion has been promoted in Iskrev (2007, 2009).

It should be noted that structural identification of 4G models is largely
based on exclusion restrictions as proposed by the Cowles Commission. In
most instances these models are therefore strongly overidentified. Even if
they are not, there is a separate set of exclusion restrictions that need to be
taken into account, namely, those that come from the standard assumption in
these models that the shocks εt are contemporaneously uncorrelated. Those
restrictions produce extra instruments that can be used for estimation that
were not present in the analysis provided by the Cowles researchers, since
they took the errors in their structural equations to be correlated.

9.5.3.2 Maximum Likelihood and Bayesian Estimation of Parameters

In studying identification issues Amay be taken as known but, in estimation,
a decision has to be made whether it should be found from a regression on
Equation 9.20 (Â) or forced to be consistent with the 4G model, in which case
Adepends on values of the structural parameters �. In the former case one can
utilize limited information methods of estimation, allowing each structural
equation to be estimated separately. For the latter a complete systems estima-
tor is needed. Which one is to be used depends on the degree of robustness
for the parameter estimates that one wants. Using Equation 9.20 to form an
estimate of A (and hence measuring expectations) will be much more robust
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to system mis-specification, i.e., Âwill be a consistent estimator of Aprovided
the system generating the data can be represented by a VAR of the selected
order, and it does not depend upon knowing the structural specification that
generated the data. However, a more efficient estimator of A is available by
utilizing the mapping between A and �. As has been known for a long time,
such efficiency can come at the expense of bias and inconsistency of estima-
tors, unless the complete system is an adequate representation of the data. As
Johansen (2005) has pointed out, this is a price of MLE, and it should not be
assumed that the 4G model has the property of being a correct specification.

Making A depend upon � has led to full information (FI) maximum likeli-
hood (FIML) becoming a standard way of estimating smaller 4G models (those
that are generally referred to as DSGE models). This contrasts with the earlier
generations of models where limited information (LI) estimation methods
prevailed, i.e., the equations (or subsets of them) were estimated separately,
and the influence of the complete model was minimal. It is interesting to
note that the wheel has almost come full circle as the recommendation by the
Cowles Commission was to use FIML, but they were frustrated by the fact
that computers were not powerful enough at that time for such an estimator
to be effectively employed.

In practice the FIML estimator has increasingly been replaced by a Bayesian
full information (BFI) estimator. In this estimates of � comparable to FIML
can be found by maximizing a criterion function L(�) + ln p(�), where p(�)
is the prior on � and L(�) is the log-likelihood. The resulting estimate of � is
often referred to as the mode of the posterior. It is clear that the FIML and
the Bayesian FI mode (BFI) will converge as the sample size grows and the
prior information becomes dominated. Hence any difficulties arising with
FIML involving misspecification of the system cannot be avoided by using a
Bayesian estimator. This seems to be widely misunderstood as one often sees
comments that Bayesian methods do not require correct specification of the
model.

An advantage of the Bayesian method is that there is often information
about the range of possible values for �, either from constraints such as the
need to have a steady-state or from past knowledge that has accumulated
among researchers. Imposing this information upon the MLE is rarely easy.
It can be done by penalty functions, but often these make estimation quite
difficult. Adding on ln p(�) to the log-likelihood generally means that the
function being maximized is quite smooth in �, and so estimation becomes
much easier. We think that this advantage has been borne out in practice;
the number of parameters being estimated in 4G models, like that of Smets
and Wouters (2003) and the new area wide model, is quite large, and one
suspects that ML estimation would be quite difficult. There is, however, a
cost to Bayesian methods. Although sometimes it is portrayed as a way of
“filling in the potholes” of the likelihood surface — for example, in Fernández-
Villaverde (2009) — often it is more like a “highway redesign.” Unlike penalty
functions the use of a prior can severely change the shape of the function being
optimized. In particular, if L(�) is flat in � then the choice of prior will become
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very important in determining the estimated parameter values, and so one
needs to have methods for detecting that.

To illustrate that Bayesian methods can easily hide the fact that the data
has little to say about the estimation of certain parameters, take the exchange
rate equation in the model of Lubik and Schorfheide (2007)

�et − �t = −(1 − �)�qt − �∗
t , (9.23)

where et is the log of the exchange rate, qt is the observable (exogenous)
terms of trade and �∗

t is the (unobservable) foreign inflation rate. The latter
are assumed to be generated as AR(1) processes with parameters 	q and 	�∗ ,
respectively, and uncorrelated shocks (as befits the exogeneity assumption in
force for �qt). Under these assumptions Equation 9.23 is actually a regres-
sion equation, with �et − �t as dependent variable, �qt as the regressor and
with first order serially correlated errors. Hence the FIML and LIML estima-
tors should be close. However, there will be a difference between a Bayesian
estimator based on limited and full information when there are informative
priors about the other parameters of the system.

Table 9.1 gives the LIML estimates of the parameters of Equation 9.23 us-
ing UK data from Lubik and Schorfheide. Also reported are the BFI estimator,
which estimates the complete system (this involves imposing a zero correla-
tion between all shocks of the system), and a LI Bayesian (BLI) estimator
that imposes only a zero correlation between �qt and �∗

t . Two BLI estima-
tors are given depending on whether the prior is assumed to be Beta(a1, a2)
or N(a1, a2). The BFI estimator is performed with Beta priors (for parame-
ters appearing in the remainder of the system priors are those in LubiK and
Schorfheide). For the estimation of � the Beta prior has a1 = .2, a2 = .05,
while for 	�∗ , a1 = .8, a2 = .5. The normal priors set {a1 = 0, a2 = .05} and
{a1 = .8, a2 = .5}, respectively.

Now it is clear how important the prior is in changing the results. The �
prior used for 	�∗ is fairly close to what is traditionally used in estimating
4G models. With just the BFI results you would never discover that the value
most consistent with the data is negative. As the BLI estimates show this is not
a question of using a more efficient estimator. To get the Bayesian estimator to
reveal the lack of information about � in the data it is necessary to choose the
prior so as to encompass a wide range of values for the parameter, but often
one sees a very restricted parameter range specified so as to get “sensible
values,”mostly ruling out certain signs for the estimates. However, a “wrong

TABLE 9.1

FIML and Bayesian Estimates of the Parameters of Equation 9.23
� ��∗

Mean Est. 95% Range Mean Est. 95% Range
FIML/LIML −0.11 −0.56–0.34 0.07 −0.13–0.32
BFI-Beta 0.19 0.12–0.27 0.39 0.39–0.67
BLI-Beta 0.19 0.06–0.31 0.44 0.29–0.59
BLI-normal 0.01 −0.07–0.08 0.08 −0.15–0.31



 

P1: GOPAL JOSHI

November 12, 2010 17:9 C7035 C7035˙C009

Structural Macroeconometric Modeling in a Policy Environment 235

–0.2 –0.1 0 0.1 0.2 0.3 0.4
–60

–55

–50

–45

α

Cr
ite

rio
n 

Fu
nc

tio
n 

Va
lu

e

Criterion function without the effect of prior information
Criterion function with a prior: Beta(0.2,0.05)
Criterion function with a prior: Normal(0.2,0.05)

FIGURE 9.1
Log-likelihood and Bayesian mode criterion for �.

sign” can be very informative. In times past it was often taken to suggest that
there are specification problems with the equation. In the case of �, a negative
value is certainly unattractive, since it is meant to be an import share, but the
proper way to interpret the MLE estimate is really that one can not estimate
the parameter with any precision, rather than it is negative. What is disturbing
about this example is that one does not get any such feeling from the Bayesian
estimates, unless one allows for the possibility that the coefficient can easily
be negative, as with the last prior. A different way of seeing how the prior
has reshaped the surface is in Figure 9.1, which shows how the log-likelihood
and the criterion generating the Bayesian modal estimate change with two
priors. Notice how the prior can lead to the conclusion that this is a parameter
whose value can be determined very precisely.

Although there is nothing surprising in these outcomes, the point is that the
Bayesian estimates suggest the opposite, i.e., there seems to be a good deal of
information in the sample, as shown by the fact that the mean of the prior for
	�∗ is not contained in the 90% confidence interval for either of the Bayesian
estimators. Thus a commonly suggested criterion that there are issues if the
posterior and prior distributions coincide would not flag any warnings here. It
leads one to ask why one would not just compare the Bayesian modal estimate
and its implied ranges for the parameter value to those coming from the MLE
as a check on undue influence from the prior? Oddly enough, this information
is rarely supplied by those estimating 4G models with Bayesian methods.
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It has been observed above that not all the model variables may be observed.
This has the effect of potentially making the solved solution in the observed
variables a VARMA rather than a VAR process.8 This has to be allowed for
when forming the likelihood. It is here that expressing the model and obser-
vation information in a state space form is very useful, since the likelihood
can be computed recursively (at least when the shocks are normal) using the
information provided by the Kalman filter. Most computer programs esti-
mating 4G models use this method, e.g., the DYNARE program. Assuming
that the process is a VAR in the observables can lead to quite large biases in
the estimates of impulse responses unless there are enough observations to
estimate a high order VAR (as that can approximate a VARMA process). For
example, Kapetanios, Pagan, and Scott (2007) found that, for a model which
was a smaller version of the 4G model BEQM, one needed a VAR(50) to re-
cover the true impulse responses. Otherwise the biases were large when the
sample size was that commonly available, around 200 observations, and the
VAR order was chosen with standard statistical order selection methods such
as BIC and AIC. Of course a VAR(50) is not something that is estimable in
sample sizes like 200.

But there are limits to this strategy. One cannot have too many unobserved
variables. Strong assumptions may need to be made about variances in order
to achieve identification of these parameters if there is a big discrepancy,
something that does not seem to be appreciated by many of those applying
the methods. For example, it is not enough to follow Smets and Wouters
(2003, p. 1140) who say “Identification is achieved by assuming that four of
the ten shocks follow a white noise process. This allows us to distinguish
those shocks from the persistent ‘technology and preference’ shocks and the
inflation objective shock.”

To see the problem that arises with having an excess of unobservables
consider the simplest case where there is one observed variable yt but two
unobserved components y1t and y2t. One of these components (y1t) follows an
AR(1) with parameter 	1 and innovation variance �2

1, and the other is white
noise (	2 = 0) with variance �2

2. Then we would have

(1 − 	1L)yt = (1 − 	1L)y1t + (1 − 	1L)y2t , (9.24)

and it is clear that, as �2
2

�2
1

becomes large, it becomes impossible to identify 	1. In
this case the likelihood is flat in 	1, and any prior placed on 	1 will effectively
determine the value of 	1 that results. To avoid this situation a prior would
need to be placed on the relative variance and not just the values of 	1 and
	2, as Smets and Wouters argue. To illustrate this we simulated some data
from the setup above and then estimated 	1 with a Beta prior centered at

8 There is a large literature on this and related issues now, e.g., Fernandez-Villaverde et al.
(2007). Simple conditions under which this occurs are set out in Fukač and Pagan (2007). Thus
in the basic Real Business Cycle model in King, Plosser, and Rebelo (1988), variables such
as consumption can be eliminated and the model will remain a VAR, but the capital stock
cannot be.
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TABLE 9.2

An Example of a Too-Many-Unobservables Model Estimation (Estimates of 	1
and 90% Confidence Interval)

True �2
2/�2

1

Prior 1 2 5
	1 = 0.85 0.67 0.71 0.80

[0.49–0.84] [0.53–0.89] [0.64–0.94]
	1 = 0.50 0.46 0.48 0.49

[0.32–0.60] [0.31–0.62] [0.35–0.65]
	1 = 0.30 0.28 0.28 0.29

[0.12–0.41] [0.13–0.46] [0.12–0.44]

Note: We use a Beta prior on 	1, with a standard error 0.1. The true value is 	1 = 0.3. For �1
and �2 we use an inverse gamma with a mean 1 and standard error 4 as a prior.

different values. The true value of 	1 is .3 and Table 9.2 shows the posterior

mode for different values of �2
2

�2
1
. It is clear that recovering the true value of 	1

is extremely difficult if the type of prior used in many 4G models is adopted.

9.5.4 Handling Permanent Components

Increasingly it has been recognized that there are likely to be permanent com-
ponents in the data and these must be introduced into the model design in
some way. Most commonly this is done by making the log of the level of
technology, At, an integrated process. Then to keep ratios such as the real
capital-output and consumption-output constant in equilibrium, it follows
that the permanent components of capital, output, and consumption, must
be identical. Obviously the fact that ratios are to be taken as constant in equi-
librium implies co-integration between the logs of the variables making up
the ratio, and the co-integration vectors have the specific form of (1 −1). To
see the implication of such co-integration assume that production is done via
a Cobb–Douglas production function of the form Yt = K �

t ( At Ht Pt)1−�, where
Ht is hours worked and Pt is the potential work force. In most models Pt is
taken to grow exogenously and it is Ht that fluctuates with the latter being
regarded as a stationary process with some average (steady-state) value of
H∗. Potential output is then naturally defined as the permanent component
of Yt, YP

t . Under the restriction mentioned above that YP
t = AP

t = K P
t ,

YP
t = ( AP

t )�( AP
t H∗ Pt)1−� = AP

t (H∗ Pt)1−�. (9.25)

Taking logs and defining an output gap as the transitory component

ln Yt − ln YP
t = ln At − ln AP

t + (1 − �) ln(Ht/H∗), (9.26)

shows that the output gap depends upon the transitory component of tech-
nology, as well as the deviations of hours from its steady-state value H∗. In
the special case when ln At is a pure random walk, the transitory component
of ln At is zero. This special case is used quite extensively.
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Models exist in the literature where there is more than one permanent
component. The presence of more than one generally arises from noticing that
the ratios of certain variables cannot be reasonably treated as a constant in the
long run. In some instances this lack of stability is due to changes in relative
prices. In these cases it is often the nominal rather than the real ratios that
appear to be relatively constant, suggesting that the case be handled within a
4G model by employing a second unobservable permanent component that
drives the relative prices. An example of a 4G model which incorporates such
an adjustment is the KITT model (Beneš et al. 2009).

How does one handle permanent components in the solution and estima-
tion of 4G models? Two strategies are available. One involves formulating
the optimization problems used to get the Euler equations of the 4G mod-
els in such a way that any I (1) variable appears as a ratio to its permanent
component. In this variant, the utility function would be expressed in terms
of Ct

C p
t
. An example of where this was done is Del Negro and Schorfheide

(2008). The second strategy has been to reexpress the Euler equations derived
from functions of the levels of the variables in terms of such ratios, e.g., the
consumption Euler equation in Equation 9.13 would become

Ct

C P
t

= Et

(
Ct−1

C P
t−1

)h (
Ct+1

C P
t+1

)1−h

Rt+1
(C P

t−1)h(C P
t+1)(1−h)

C P
t

 . (9.27)

After log linearization this is


t = h
t−1 + Et
{
(1 − h)
t+1 + Rt+1 + (1 − h)�c P

t+1

} − h�c P
t , (9.28)

where 
t = ln Ct − ln C P
t . An assumption now needs to be made concerning

how �at = �c P
t is to be generated. In the special case where �at = � ln At =

εa
t and εa

t is white noise, Et�c P
t+1 = Et�a P

t+1 = Et εa
t+1 = 0.

Which of these two strategies is best is a question that has not been examined
much. Certainly they lead to different specifications for the Euler equations
of any model. The presence of permanent components in technology makes
it highly unlikely that any 4G model can be represented as a VAR and so
estimation using the on-model approach is best done within the framework
of an SSF. This simply involves specifying �
t = �ct −�c p

t as an observation
equation, with �c P

t being latent and �ct being observed.
Notice that what the above strategy does is to replace any I (1) series with

their transitory components or “gaps.” Essentially it is performing a mul-
tivariate Beveridge–Nelson decomposition of the I (1) variables into their
permanent and transitory components. However, often one sees a second
strategy, which involves an “off-model” approach wherein permanent com-
ponents are removed from variables by a filter that is not model consistent. By
far the most popular would be the Hodrick–Prescott (HP) filter. Econometri-
cally using off-model filters is a bad idea. To see this consider the consequences
of working with HP filtered data. To assess these we note that the HP filter is
a two-sided filter which, when applied to a variable yt, produces a transitory
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component of �
j=T
j=−T � j�yt− j .

9 Now, if this component is used as a regressor,
the fact that it involves �yt+ j at time t means that one would get inconsistent
estimators of the parameters attached to the gaps. Moreover, the correlation
of the regressor with �yt+ j is likely to contaminate estimators of other pa-
rameters. Even if one used a one-sided version of this filter it is well known –
(see Harvey and Jaeger [1993] and Kaiser and Maravell [2002]) that the filter
is designed to extract a permanent component from a series that is I (2), not
one that is I (1), and hence it is not model consistent unless ln At is I (2); see
Fukač and Pagan (2010) for more details. Few 4G modelers are prepared to
make that assumption.

9.5.5 Evaluation Issues

Evaluation really has two dimensions to it. One concentrates on the operating
characteristics of the model and whether these are “sensible.” The other is
more about the ability of the model to match the data along a variety of
dimensions. The two themes are not really independent but it is useful to
make the distinction. Thus it might be that while a model could produce
reasonable impulse responses, it may not produce a close match to the data,
and conversely.

9.5.5.1 Operating Characteristics

Standard questions that are often asked about the operating characteristics of
the model are whether the impulse responses to selected shocks are reasonable
and what the relative importance of various shocks are to the explanation of
(say) output growth. Although the latter is often answered by recourse to
variance decompositions, perhaps a better question to ask is how important
the assumptions made about the dynamics of shocks are to the solutions, as
it seems crucial to know how much of the operating characteristics and fit to
data comes from the economics and how much from exogenous assumptions.
This concern stems back at least to Cogley and Nason (1993) who argued that
standard RBC models produced weak dynamics if shocks were not highly
serially correlated. It would seem important that one investigate this question
by examining the impact of setting the serial correlation in the shocks to zero.

The appropriate strategy for assessing operating characteristics depends on
whether the model parameters have been formally or informally quantified.
If done informally researchers such as Amano et al. (2002) and Canova (1994)
have asked the question of whether there is a set of such parameters that
would be capable of generating some of the outcomes seen in the data, e.g.,

9 Simulating data from yt when it is a pure random walk, and then regressing the measured HP
transitory component (� = 1600) on to �yt± j , j = 0, . . . , 10, gives an R2 of .98 and �0 = .47, � j
( j = 1., , 10) = {.42, .37, .32, .27, .23, .18, .15, .15, .11, .09, .06}. It is also the case that � j = w| j |−1,
j = −1, . . . , −10. When future values of �yt were dropped from the regression the R2 dropped
to .5, emphasising the importance of future values of �yt in the determination of the HP
transitory component.
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ratios � such as (say) the consumption-income ratio. This ratio is a function
of the model parameters �. The existing value used for � in the model, �∗, is
then taken as one element in a set and a search is conducted over the set to
see what sort of variation would occur in the resulting value of �. If it is hard
to reproduce the observed value of � in the data, �̂, then the model might be
regarded as suspect. In this approach possible values of model parameters
are selected to trace out a range of values of �. An efficient way of doing this
search is a pseudo-Bayesian one in which trial values of � are selected from a
multivariate density constructed to be consistent with the potential range of
values of �. This enables the corresponding density for � to be determined.
If the observed value �̂ lies too far in the tails of the resulting density of �,
one would regard the model as inadequately explaining whatever feature is
summarized by �. A second approach treats the parameter values entered
into the model, �∗, as constant and asks whether the estimate �̂ is close to the
value �∗ = �(�∗) implied by the model. This is simply an encompassing test
of the hypothesis that � = �∗.

9.5.5.2 Matching Data

Since 4G models are structural models there are many tests that could be
carried out regarding their implied co-integrating and co-trending vectors,
adequacy of the individual equations, etc. Moreover many of the old tech-
niques used in 1G and 2G models, such as an examination of the tracking
performance of the model, might be applied. But there are some issues which
are specific to 4G models that need to be addressed in designing such tests.

In the first and second generation of models a primary way of assessing
their quality was via historical simulation of them under a given path for
any exogenous variables. It would seem important that we see such model
tracking exercises for 4G models, as the plots of the paths are often very
revealing about model performance, far more than might be gleaned from
any examination of just a few serial correlation coefficients and bivariate
correlations, which has been the standard way of looking at 4G model output
to date. It is not that one should avoid computing moments for comparison,
but it seems to have been overdone in comparison to tests that focus more
on the uses of these models such as forecasting (which is effectively what the
tracking exercise is about).

Now a problem arises in doing such exercises for 4G models. If the model’s
shocks are taken to be an integral part of it then there is no way to assess the
model’s tracking ability, since the shocks always adjust to produce a perfect
match to the data. Put another way, there is no such thing as a residual in 4G
models. The only exception to that is when we explicitly allow for tracking
shocks, as described earlier, and this technology has sometimes been used
to examine the fit. The main difficulty in doing so is the assumption used in
setting up the SSF that the tracking shocks and model shocks are uncorrelated
(since one cannot generally estimate such a parameter from the likelihood).
Some relaxation of this assumption is needed, i.e., an auxiliary criterion needs
to be supplied that can be used to set a value for the correlation. Watson (1993)
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suggested that one find the correlation that minimized the gap between the
spectra of the model and the data, as that produces the tracking outcome most
favorable to the 4G model. Oddly enough Watson’s approach does not seem
to have been used much, although it is obviously a very appealing way of
getting some feel for how well a 4G model is performing.

Rather than focus on tracking one might ask whether the dynamics are
adequately captured by the model. One way to examine this is to compare
the VAR implied by the model with that in the data. Canova, Finn, and Pagan
(1994) proposed this. In small models this seems to be a reasonable idea
but, in large models, it is unlikely to be very useful, as there are just too
many coefficients to fit in the VAR. Consequently, the test is likely to lack
power. Focusing on a subset of the VAR coefficients might be instructive.
Thus Fukač and Pagan (2010) suggest a comparison of Etzt+1 generated from
the model with that from a VAR. As there are only a few expectations in
most 4G models this is likely to result in a more powerful test and has the
added advantage of possessing some economic meaning. They found that the
inflation expectations generated by the Lubik and Schorfheide (2007) model
failed to match those from a VAR fitted to UK data.

A different way of performing “parameter reduction” that has become pop-
ular is due to Del Negro et al. (2007) — the so-called DSGE-VAR approach.
To explain this in a simple way consider the AR(1) equation

zt = 	zt−1 + et, (9.29)

where et has variance of unity. Now suppose that a 4G model implies that
	 = 	0, and that the variance of the shock is correctly maintained to be unity.
Then we might think about estimating 	 using a prior N(	0, 1

�T ), where T is
the sample size. As � increases we will end up with the prior concentrating
upon 	0 while, as it tends to zero, the prior becomes very diffuse. In terms of
the criterion used to get a Bayesian modal estimate this would mean that the
likelihood will be a function of 	 but the other component of the criterion —
the log of the prior — would depend on �. Hence we could choose different �
and see which produces the highest value of the criterion (or even the highest
value of the density of zt when 	 is replaced by its various model estimates as
� varies). For a scalar case this is not very interesting as we would presumably
choose the � that reproduces the OLS estimate of 	 (at least in large samples)
but in a multivariate case this is not so. Basically the method works by re-
ducing the VAR parameters down to a scalar measure, just as in computing
expectations. As � varies one is effectively conducting a sensitivity analysis.

9.6 Conclusion

The chapter has looked at the development of macroeconometric models
over the past sixty years. In particular the models that have been used for
analysing policy options. We argue that there have been four generations of
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these. Each generation has evolved new features that have been partly drawn
from the developing academic literature and partly from the perceived weak-
nesses in the previous generation. Overall, the evolution has been governed
by a desire to answer a set of basic questions and sometimes by what can be
achieved using new computational methods. We have spent a considerable
amount of time on the final generation of models, exploring some of the prob-
lems that have arisen in how these models are implemented and quantified.
It is unlikely that there will be just four generations of models. Those who
work with them know that they constantly need to be thinking about the
next generation in order to respond to developments in the macroeconomy,
to new ideas about the interaction of agents within the economy, and to new
data sources and methods of analyzing them.
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Fukač, M., and A. R. Pagan. 2010. Limited Information Estimation and Evaluation of
DSGE Models. Journal of Applied Econometrics 25:55–70.

Gramlich, E. M. 2004. Remarks. Paper presented to the Conference on Models
and Monetary Policy, Federal Reserve Bank Board of Governors. http://
www.federalreserve.gov/boarddocs/speeches/2004/20040326/default.htm

Hannan, E. J. 1971. The Identification Problem for Multiple Equation Systems with
Moving Average Errors. Econometrica 39:751–765.



 

P1: GOPAL JOSHI

November 12, 2010 17:9 C7035 C7035˙C009

244 Handbook of Empirical Economics and Finance

Harrison, R., K. Nikolov, M. Quinn, G. Ramsay, A. Scott, and R. Thomas. 2005.
The Bank of England Quarterly Model. London: Bank of England. http://
www.bankofengland.co.uk/publications/beqm/.

Harvey, A. C., and A. Jaeger. 1993. De-Trending, Stylized Facts and the Business Cycle.
Journal of Applied Econometrics 8:231–247.

Helliwell, J. F., G. R. Sparks, F. W. Gorbet, H. T. Shapiro, I. A. Stewart, and D. R.
Stephenson. 1971. The Structure of RDX2 Bank of Canada Staff Study No. 7
Bank of Canada, Ottawa.

Hicks, J. R. 1937. Mr. Keynes and the “Classics”, A Suggested Interpretation. Econo-
metrica 5:147–159.

Ireland, P. 2004. A Method for Taking Models to the Data. Journal of Economic Dynamics
and Control 28:1205–1226.

Iskrev, N. 2007. Evaluating the Information Matrix in Linearized DSGE Models. Eco-
nomics Letters 99:607–610.

Iskrev, N. 2009. Local Identification in DSGE Models. Banco de Portugal Working Paper
No. 7 Banco de Portugal, Lisbon.

Johansen, L. 1960. A Multi-Sectoral Study of Economic Growth. 2nd ed. Amsterdam:
North-Holland.

Johansen, S. 2005. What Is the Price of Maximum Likelihood. Paper presented to the
Model Evaluation Conference, Oslo, May 2005.

Kai, Ch., G. Coenen, and A. Warne. 2008. The New Area-Wide Model of the Euro Area:
A Micro-Founded Open-Economy Model for Forecasting and Policy Analysis.
ECB Working Paper No. 944.

Kaiser, R., and A. Maravall. 2002. A Complete Model-Based Interpretation of the
Hodrick-Prescott Filter: Spuriousness Reconsidered. Working Paper 0208, Banco
de España, Madrid.

Kapetanios,G., A. R. Pagan, and A. Scott. 2007. Making a Match: Combining Theory
and Evidence in Policy-Oriented Macroeconomic Modeling, Journal of Economet-
rics 136:505–594.

Kilponen, J., and A. Ripatti. 2005. Labour and Product Market Competition in a Small
Open Economy – Simulation Results Using a DGE Model of the Finnish Economy.
Working Paper No. 5, Bank of Finland, Helsinki.

King, R. G., C. I. Plosser, and S. T. Rebelo. 1988. Production, Growth, and Business
Cycles: I. The Basic Neoclassical Model., Journal of Monetary Economics 21:195–
232.

Komunjer, I., and S. Ng. 2009. Dynamic Identification of DSGE Models. Columbia
University. www.columbia.edu/sn2294/papers/kn_spectral.pdf (accessed 16
March 2010).

Laxton, D. and P. Pesenti. 2003. Monetary Policy Rules for Small, Open, Emerging
Economies. Journal of Monetary Economics 50:1109–1146.

Lubik, T. A. and F. Schorfheide. 2007. Do Central Banks Respond to Exchange Rate
Movements: A Structural Investigation. Journal of Monetary Economics 54:1069–
1087.

Mavroeidis, S. 2004. Weak Identification of Forward-Looking Models in Monetary
Economics. Oxford Bulletin of Economics and Statistics 66:609–635.

McKibbin W. J. 1988. Policy Analysis with the MSG2 Model. Australian Economic Papers,
supplement, pp. 126–150.

McKibbin, W. J., and J. D. Sachs 1989. The McKibbin-Sachs Global Model: Theory and
Specification. NBER Working Paper 3100.



 

P1: GOPAL JOSHI

November 12, 2010 17:9 C7035 C7035˙C009

Structural Macroeconometric Modeling in a Policy Environment 245

Medina, J. P., and C. Soto. 2006. Model for Analysis and Simulations: A
Small Open Economy DSGE for Chile. Paper presented at the Central
Bank of Chile Workshop on Macroeconomic Modeling in Central Banks.
http://www.bcentral.cl/conferencias-seminarios/otras-conferencias/pdf/
modelling2006/soto_medina.pdf.

Murchison S., and A. Rennison. 2006. ToTEM: The Bank of Canada’s New Quarterly
Projection Model. Bank of Canada Technical Report No. 97.

Murphy, C. W. 1988. An Overview of the Murphy Model. In Macroeconomic Modelling
in Australia, Australian Economic Papers. M. E. Burns and C.W. Murphy (eds), pp.
61–8.

Nason, J. M. and G. W. Smith. 2005. Identifying the New Keynesian Phillips Curve.
Working Paper 2005-1, Federal Reserve Bank of Atlanta.

Nickell, S. 1985. Error Correction, Partial Adjustment and All That. Oxford Bulletin of
Economics and Statistics 47:119–130.

Powell, A. A. and C. W. Murphy. 1995. Inside a Modern Macroeconometric Model. Lecture
Notes on Economics and Mathematical Systems 428, Berlin: Springer.

Preston, A. J. 1978. Concepts of Structure and Model Identifiability for Econometric
Systems. In Stability and Inflation. A. R. Bergstrom et al. (eds). Chichester: Wiley
pp. 275–297.

Ramsey, F. P. 1928. A Mathematical Theory of Saving. Economic Journal 38:543–559.
Rotemberg, J. J. 1982. Monopolistic Price Adjustment and Aggregate Output. Review

of Economic Theory 114:198–203.
Rothenberg, T. 1971. Identification in Parametric Models. Econometrica 39:577–591.
Sargan, J. D. 1964. Wages and Prices in the United Kingdom: A Study in Econometric

Methodology. In Econometric Analysis for National Economic Planning. P. E. Hart,
G. Mills, and J. K. Whitaker (eds). London: Butterworth. pp. 22–54.

Schmitt-Grohe, S., and M. Uribe 2003. Closing Small Open Economy Models. Journal
of International Economics 61:163–185.

Schorfheide, F. 2000. Loss Function-Based Evaluation of DSGE Models. Journal of Ap-
plied Econometrics 15:645–670.

Smets, F., and R. Wouters. 2003. An Estimated Dynamic Stochastic General Equilibrium
Model of the Euro Area. Journal of the European Economic Association 1:1123–1175.

Solow, R. M. 1956. A Contribution to the Theory of Economic Growth. Quarterly Journal
of Economics 70:65–94.

Swan, T. W. 1956. Economic Growth and Capital Accumulation. Economic Record
32:334–361.

Wallis, K. 1988. Some Recent Developments in Macroeconometric Modelling in the
United Kingdom. Australian Economic Papers 27:7–25.

Wallis, K. F. 1995. Large Scale Macroeconometric Modelling. In Handbook of Applied
Econometrics, Volume 1: Macroeconomics. M. H. Pesaran and M. R. Wickens
(eds). Oxford: Blackwell.

Wallis, K. F. and J. D. Whitley. 1991. Macro Models and Macro Policy in the 1980s.
Oxford Review of Economic Policy 7:118–127.

Watson, M. W. 1993. Measures of Fit for Calibrated Models. Journal of Political Economy
101:1011–1041.

Yaari, M. E. 1965. Uncertainty Lifetime, Life Insurance and the Theory of Consumer.
Review of Economic Studies 32:137–1350.



 

P1: GOPAL JOSHI

November 12, 2010 17:9 C7035 C7035˙C009



 

P1: GOPAL JOSHI

November 3, 2010 17:15 C7035 C7035˙C010

10
Forecasting with Interval and Histogram
Data: Some Financial Applications

Javier Arroyo, Gloria González-Rivera, and Carlos Maté
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10.1 Introduction

In economics we customarily deal with classical data sets. When we collect
information on a set of variables of interest, either in a cross-sectional or/and
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time series framework, our sample information is a collection of data points
{yi }, i = 1. . . n or {yt}, t = 1. . . T where yi or yt ∈ R takes a single value in R.
In many instances, the single value is the result of an aggregation procedure,
spatial or temporal, over information collected at a very disaggregated level.
Some pertinent examples follow.

In financial markets the price of an asset (stocks, bonds, exchange rates,
etc.) is observed at a very high frequency, i.e., tick by tick; however, there
is a huge number of studies where the analysis is performed at the daily
frequency using the closing price, or even at lower frequencies such as weekly
or monthly. It may be claimed that tick-by-tick pricing will generate a huge
amount of data from which it will be difficult to discriminate information
from noise, but on the other extreme, by analyzing just closing prices we
will be discarding valuable intraday information. We can think of alternative
ways of collecting information, for instance, we can gather the maximum and
minimum prices in a day so that the information to be analyzed will come in
an interval format; or the daily interquartile prices such that the interval will
run from the price at the 25% quartile to the price at the 75% quartile; or we can
construct daily histograms with all the intraday prices. In these cases the data
point is no longer a single value but a collection of values represented by the
daily low/high interval, or the interquartile interval, or the daily histogram.
The intervals or the histograms, when indexed by time, will constitute an
interval time series or a histogram time series.

Another instance refers to the information collected by national statistical
institutes in relation to income and population dynamics. Census surveys pro-
vide socioeconomic information on all individuals in a nation that is customar-
ily disseminated in an aggregated format, for instance a time series of average
income per capita. The objective of these national surveys is not to follow the
dynamics of single individuals, which most likely will be different from one
period to the next, but the dynamics of a collective. However, summarizing
national information by averages, though informative, is a poor approach
that throws away the internal variation provided by the disaggregated infor-
mation about the single units. Once more, disseminating the data in a richer
format such as intervals or histograms will provide a more complete picture
of income and population dynamics. There are many other areas such as mar-
keting, environmental sciences, quality control, medical sciences, etc. in which
the information is rich enough to make the object of analysis not the single-
valued variable but the interval-valued or the histogram-valued variable.

Interval- and histogram-valued data can be classified as symbolic data sets
as opposed to classical data sets. Symbolic data is a proposal to deal with
the massive information contained in nowadays super large data sets found
across many disciplines. While the analysis of these data sets requires some
summary procedure to bring them to a manageable size, the objective is to
retain as much of their original knowledge as possible. An extensive review of
this new field, which started in the late 1980s and early 1990s, is provided by
Billard and Diday (2003, 2006), who define the complexity of symbolic data,
review the current methods of analysis and state the challenges that lie ahead.



 

P1: GOPAL JOSHI

November 3, 2010 17:15 C7035 C7035˙C010

Forecasting with Interval and Histogram Data 249

Economics and business are disciplines in which data sets are becoming
consistently larger due to sophisticated information systems that collect and
store huge amount of data. However, the development of new methodologies
to deal with the characteristics of large data sets is moving at a slower pace.
A case on time is the aforementioned high-frequency financial data and the
challenges brought by it such as irregularly spaced observations with strong
intraday patterns and a complex dependence structure. There are other ex-
amples in the economics literature that emphasize the richness of the data,
though eventually the analysis is performed within the boundaries of classi-
cal inferential methods. For instance, the article by Zellner and Tobias (2000)
provides the time series of the median and interquartile range of the indus-
trial production growth rates of 18 countries but eventually the authors focus
on the single-valued time series of the median growth rates. The article by
González-Rivera, Lee, and Mishra (2008) presents a stylized time series of
cross-sectional returns of the constituents of the SP500 index grouped in his-
tograms (see Figure 10.1). However, the authors focus on the dependence
structure of the single-valued time series of the time-varying cross-sectional
ranks (VCR). Both of these instances could be viewed from the perspective of
symbolic data: in Zellner and Tobias (2000) the data is an interval-valued time
series and in González-Rivera, Lee, and Mishra (2008) is a histogram-valued
time series.

There is an emergent literature in economics and statistics dealing with
interval-valued data in a regression framework. Manski and Tamer (2002)
examined a regression model where some regressors are interval-valued, like
interval wealth and income, and some others are point-valued. Lima Neto

t1

Jump in
ranking

No jump in
ranking

t2 t3 t4

FIGURE 10.1
Stylized time series of the histograms of the cross-sectional returns of the constituents of the
SP500 index. (From González-Rivera, G., T.-H. Lee, and S. Mishra. 2008. Jumps in cross-sectional
rank and expected returns: a mixture model. Journal of Applied Econometrics 23:585–606.)
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and de Carvalho (2010) proposed a constrained linear regression model for
interval-valued data. Maia, de Carvalho, and Ludermir (2008) implemented
ARIMA and neural networks models to forecast the center and radii of inter-
vals. Han et al. (2008) analyzed the sterling-dollar exchange rate time series
based on an interval linear model. Cheung, Cheung, and Wan (2009) analyzed
the range of daily stock prices by proposing a VECM for the daily interval
of high and low prices. García-Ascanio and Maté (2010) forecast monthly
electricity demand with hourly interval data. A different approach to re-
gression that treats intervals as convex compact random sets is proposed in
González-Rodríguez et al. (2007) and Blanco et al. (2008). Regression models
with histogram-valued data are almost nonexistent so that they offer wide
opportunities for further research.

This chapter focuses on the forecasting of interval and histogram-valued
data. The surveys and review articles by Diday and his coauthors focus on
descriptive and multivariate methods of analysis adapted from the classical
statistical methodology. To our knowledge, the development of forecasting
methods for interval and histogram-valued data is in its infancy so that this
chapter is a contribution to that end. We start with a preliminary section
defining the structure of the data and basic descriptive statistics. There are
two main sections, one for interval data and another for histogram data. In the
first, we review how classical regression methods can be adapted to analyze
intervals. The main insight is that the interval can be defined by its center and
radius or by its minimum and maximum, so that we construct two time series
to which classical methods can be applied. In this vein, we build a system,
either VAR or VEC models, from which an interval forecast will be obtained.
In a different approach based on the arithmetic of intervals and on notions
of distances between intervals, we adapt classical filtering techniques like
the exponential smoothing and nonparametric techniques like the k-Nearest
Neighbors (k-NN) algorithm to produce the interval forecast. In the second
main section, we deal with histogram-valued data. In this case the object of
analysis is considerably more difficult to analyze and we focus exclusively
on the adaptation of smoothing techniques and the k-NN. To construct a
histogram forecast, we will not base our operations on the arithmetic of his-
tograms but on the key idea of the “barycentric” histogram as the “average”
measure. We should stress that no attempt has been made, either with a time
series of intervals or histogram, to uncover the data generating mechanism
but rather to forecast the future under the premise that it should not be very
far from some average (weighted or unweighted) of the past.

10.2 Interval Data

In this section, we will define interval data and the interval random variable.
As a foundation for the forthcoming analysis, we succinctly introduce the
algebra of intervals. We will focus on the empirical first and second moments
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of the interval random variable. The main objective of this section is to discuss
(1) regression analysis with interval data, and (2) the forecasting problem.
A financial application will showcase the contribution of (1) and (2) to the
modeling of economic and financial data. While we will not discuss the nature
of interval data, we acknowledge that there are many reasons why interval
data may arise. Among others, interval data are generated when the data
collection process genuinely produces intervals, or when there are not exact
numerical values to quantify a variable, or when there is uncertainty of any
kind in the values of the variable, or when variability of a variable is the focus
of analysis, or when the measurement tools produce measurement errors.
Regardless of the origin, the researcher will be facing data that come with an
interval format and this is the primary object of analysis.

10.2.1 Preliminaries

We start with the basic notion of an interval following Kulpa (2006). Let
(E, ≤) be a partially ordered set. An interval is generally defined as follows:

Definition 10.1 An interval [a ] over the base set (E, ≤) is an ordered pair [a ] =
[aL , aU], where aL , aU ∈ E are the endpoints or bounds of the interval such that
aL ≤ aU.

The interval is called degenerate when aL = aU , in which case the interval
reduces to a point. An interval is the set of elements bounded by the endpoints,
these included, namely, [a ] = {e ∈ E | aL ≤ e ≤ aU}. When the base set E is
the set of real numbers R, the intervals are subsets of the real line R.

An equivalent representation of an interval is given by the center (midpoint)
and radius (half range) of the interval, namely, [a ] = 〈aC , a R〉, where aC =
(aL + aU)/2 and a R = (aU − aL )/2.

10.2.1.1 Basic Interval Arithmetic

In order to proceed with our analysis we need an algebra to operate with
intervals. Basic interval arithmetic (Moore 1966; Moore, Kearfott, and Cloud
2009) is based on the following principle: let [a ] and [b] be two intervals and �
be an arithmetic operator, then [a ]�[b] is the smallest interval which contains
a�b, ∀a ∈ [a ] and ∀b ∈ [b]. Interval addition, subtraction, multiplication and
division are particular cases of this principle and are defined by

[a ] + [b] = [aL + bL , aU + bU] (10.1)

[a ] − [b] = [aL − bU, aU − bL ] (10.2)

[a ] · [b] = [min{aL · bL , aL · bU, aU · bL , aU · bU}, (10.3)

max{aL · bL , aL · bU, aU · bL , aU · bU}]
[a ]/[b] = [a ] · (1/[b]), with 1/[b] = [1/bU, 1/bL ]. (10.4)
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It is worth noting that interval arithmetic subsumes the classical one, in the
sense that, if the operands are degenerate intervals, the result of interval
operations will be equal to the result obtained by the single number arithmetic.
In interval arithmetic, addition and multiplication satisfy the associative and
commutative properties. The distributive property does not always hold, but
the subdistributive property is satisfied, which is defined as

[a ]([b] + [c]) ⊆ [a ][b] + [a ][c]. (10.5)

If [a ] is a degenerate interval, then this property becomes the distributive
property. The interval arithmetic is key for the development of regression
techniques and for the adaptation of forecasting methods to interval data.

10.2.1.2 Interval Random Variable

We proceed with the definition of an interval random variable. Let (�, F , P)
be a probability space, where � is the set of elementary events, F is the �-
field of events and P : F → [0, 1] the �-additive probability measure; and
define a partition of � into sets A(x) such AX(x) = {� ∈ �|X(�) = x}, where
x ∈ [xL , xU], then:

Definition 10.2 A mapping X : F → [xL , xU] ⊂ R, such that for all x ∈ [xL , xU]
there is a set AX(x) ∈ F , is called an interval random variable.

10.2.1.3 Descriptive Statistics

The descriptive statistics of an interval random variable are proposed by
Bertrand and Goupil (2000). For an interval random variable X, suppose that
we have a sample of m individuals (i = 1, 2, . . . , m) and for each i, an interval
data point [x]i ≡ [xLi , xUi ]. A key assumption for the forthcoming descriptive
statistics is that the values in a given interval, i.e., xLi ≤ x ≤ xUi , are uniformly
distributed within the interval. Furthermore, we assume that each individual
has the same probability 1/m of being observed. Then, the empirical density
function fX(x) is a mixture of m uniform distributions

fX(x) = 1
m

∑
i :x∈[x]i

I (x ∈ [x]i )
‖ [x]i‖ = 1

m

∑
i :x∈[x]i

1
xUi − xLi

x ∈ R, (10.6)

where I (x ∈ [x]i ) is an indicator function that takes the value 1 when x ∈ [x]i

and zero otherwise; and ‖ [x]i ‖ is the length of the interval [x]i .
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Based on the density function (Equation 10.6), the sample mean is obtained
by solving the following integral

X̄ =
∫ ∞

−∞
x f (x)dx = 1

m

∑
i :x∈[x]i

1
xUi − xLi

∫ xUi

xLi

xdx

= 1
2m

∑
i

(xUi + xLi ) = 1
m

∑
i

xCi ,

(10.7)

concluding that the sample mean of an interval random variable is the average
of the centers of the intervals in the sample. Analogously, the sample variance
is calculated by solving the integral

S2
X =

∫ ∞

−∞
(x − X̄)2 f (x)dx =

(∫ ∞

−∞
x2 f (x)dx

)
− X̄2, (10.8)

which can be rewritten in terms of the interval bounds as

S2
X = 1

3m

∑
i

(x2
Ui + xUi xLi + x2

Li ) − 1
4m2

[∑
i

(xUi + xLi )

]2

. (10.9)

The sample variance combines the variability of the centers as well as the
variability within each interval. When the interval is degenerate, both sam-
ple moments, the mean and the variance, collapse to the sample mean and
variance of the classical data.

10.2.2 The Regression Problem

Now suppose that we have two interval random variables Y and X for which
we collect a sample of intervals ([x]i , [y]i ) for i = 1, 2, . . . , m. The interval
data point i is a rectangle centered in the centers of [x]i and [y]i and whose
sides are equal to the length of the respective intervals. A graphical represen-
tation of this data is provided in Figures 10.2 to 10.4. In this section, we review
the analysis of a regression model with interval data. The classical regression
model can be adapted to interval data by focusing on the centers of the in-
terval, or on the maximum and minimum of the interval, or on the center
and radius of the interval. The advantage of this approach is that statistical
inference is readily available.

The simplest approach to estimate a regression model with interval data is
provided by Billard and Diday (2000). It consists of fitting a regression line to
the centers of the intervals, yCi = �′xCi + εCi , so that the objective function to
minimize is

min
�̂

∑
i

ε̂2
Ci =

∑
i

(yCi − �̂
′
xCi )2, (10.10)
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FIGURE 10.2
Fitting of a regression line to the centers of the intervals (From Billard, L., and E. Diday. 2000.
Regression analysis for interval-valued data. In Data Analysis, Classification and Related Methods:
Proceedings of the 7th Conference of the IFCS, IFCS 2002. Berlin: Springer. pp. 369–374.) The estimated
rectangles according to the regression line are represented by a dashed line.
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FIGURE 10.3
Regression line according to Brito (2007). The estimated rectangles from the regression line are
represented by a dashed line.
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FIGURE 10.4
Regression lines fitted to the minima and maxima of the intervals (Billard, L., and E. Diday.
2002. Symbolic regression analysis. In Classification, Clustering and Data Analysis: Proceedings of
the 8th Conference of the IFCS, IFCS 2002. Berlin: Springer. pp. 281–288.) The estimated rectangles
according to the regression lines are represented by a dashed line.

the solution to this problem is the classical least squares estimator
�̂ = (X′

C XC )−1 X′
C YC and standard statistical inference will apply under the

standard assumptions about the error term of the regression. Though this
model will provide information about the average centrality of the intervals,
it disregards the range of the intervals that is an important feature of interval
data.

There are several proposals aimed to incorporate the length of the interval
into the analysis. Brito (2007) proposes to minimize the following objective
function

min
�̂

∑
i

(
ε̂2

Li + ε̂2
Ui

) =
∑

i

(
yLi − �̂

′
xLi

)2 +
∑

i

(
yUi − �̂

′
xUi

)2, (10.11)

which is equivalent to run two constrained (same regression coefficients)
regressions on the lower bounds yLi = �′xLi + εLi and the upper bounds
yUi = �′xUi + εUi of the intervals. For the case of one regressor model, the
OLS estimators have the following expression

�̂1 = S̃XY

S̃2
X

=
1

2m

∑
i

[
(xLi − X̄)(yLi − Ȳ) + (xUi − X̄)(yUi − Ȳ)

]
1

2m

∑
i

[
(xLi − X̄)2 + (xUi − X̄)2

] (10.12)

�̂0 = Ȳ − �̂1 X̄
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where X̄ and Ȳ are given in Equation 10.7. Brito (2007) calls the numerator S̃XY

the co-dispersion measure and the denominator S̃2
X the dispersion measure,

which is different from Equation 10.9. This regression line passes through the
average center ( X̄, Ȳ), but the slope is guided by the range of the intervals,
whose effect is summarized by the sum of the covariance between the lower
bounds of [x]i and [y]i and the covariance between the upper bounds of [x]i

and [y]i . In other words, the researcher collects a sample of points as (xLi , yLi )
and (xUi , yUi ) and fits a unique regression line to the full sample. Equivalently,
we can understand Brito’s proposal as a constrained system of equations[

YL

YU

]
2m×1

=
[

XL

XU

]
2m×k

�
k×1

+
[

εL

εU

]
2m×1

, (10.13)

for which the OLS estimator is

�̂OL S = [
X′

L XL + X′
U XU

]−1 [
X′

LYL + X′
UYU

]
. (10.14)

However, the vector ε is likely to be heteroscedastic, i.e., �2
L 
= �2

U

� =
(

�2
L �LU

�LU �2
U

)
⊗ I, (10.15)

where Im×m is the identity matrix. In this case, the GLS estimator �̂GL S =
[X′�−1 X]−1[X′�−1Y] would be more efficient than the OLS. A feasible GLS
estimator will depend on the proposed model of heteroscedasticity. In the
simplest heteroscedastic case, where �2

L 
= �2
U, the estimated �̂ will be ob-

tained by replacing the population moments �2
L , �2

U and �LU with their sample
counterparts.

An alternative proposal by Billard and Diday (2000, 2002) is to estimate two
different regression lines, one for the minima and another for the maxima of
the intervals with no restrictions across lines as in

yLi = �′
L xLi + εLi

(10.16)
yUi = �′

U xUi + εUi .

The estimation of the model proceeds by minimizing the following objective
function

min
�̂L ,�̂U

∑
i

(
ε̂2

Li + ε̂2
Ui

)
, (10.17)

which is equivalent to perform two separate minimizations, min�̂L

∑
i ε̂2

Li and
min�̂U

∑
i ε̂2

Ui because of the absence of cross-equation restrictions. This ap-
proach can also be written as a system of seemingly unrelated regression



 

P1: GOPAL JOSHI

November 3, 2010 17:15 C7035 C7035˙C010

Forecasting with Interval and Histogram Data 257

equations (SURE) [
YL

YU

]
2m×1

=
[

XL 0

0 XU

]
2m×2k

[
�L

�U

]
2k×1

+
[

εL

εU

]
2m×1

(10.18)

that is estimated by GLS, i.e., �̂GL S = [X′�−1 X]−1[X′�−1Y]. If � = I the
GLS estimator reduces to the OLS estimator. However, given that yLi ≤ yUi

and xLi ≤ xUi , it is very likely that εLi and εUi will be correlated and � 
= I,
thus the GLS estimator will be more efficient than the OLS. The feasible GLS
will be constructed as in the previous approach. In practice, since there are
not restrictions in the system, we could have some observations for which
the estimated dependent variable is such that ŷLi > ŷUi , which obviously
contradicts the logic of interval data.

The last approach based on classical regression techniques is proposed by
Lima Neto and de Carvalho (2008). It consists on running two independent
regression models for the center and the radius (or range) of the intervals.
Recall that xCi = (xLi + xUi )/2 and xRi = (xUi − xLi )/2. The model is

yCi = �′
C xCi + εCi

(10.19)
yRi = �′

RxRi + εRi

and the objective function to minimize is

min
�̂C ,�̂R

∑
i

(
ε̂2

Ci + ε̂2
Ri

)
, (10.20)

which, in the absence of cross-equation restrictions and with spherical dis-
turbances, is equivalent to perform two separate minimizations, min�̂C

∑
i ε̂2

Ci

and min�̂R

∑
i ε̂2

Ri . The corresponding estimator is the classical OLS but the
properties of the error term may dictate the choice of a GLS estimator, within
a SURE system, as more appropriate than the OLS estimator. Other esti-
mators as MLE or QMLE can also be implemented. However, the radius,
being strictly positive, will not be normally distributed and a MLE estimator
based on multivariate normality of the vector (εCi , εRi )′ will be at least highly
inefficient.

Figures 10.2 to 10.4 describe the graphical differences among the three re-
gression lines proposed by Billard and Diday (2000, 2002) and Brito (2007).
The proposal by Lima Neto and de Carvalho (2008) cannot be graphed in the
same set of coordinates (X, Y).

10.2.3 The Prediction Problem

In this section, we define an interval-valued time series (ITS), we propose
an approach to measure dissimilarities between intervals in ITS, and we
implement forecasting methods for ITS based on smoothing filters and



 

P1: GOPAL JOSHI

November 3, 2010 17:15 C7035 C7035˙C010

258 Handbook of Empirical Economics and Finance

nonparametric estimators like the k-NN. Neither of these two approaches
aims to specify a model for an ITS that approximates a hidden data-generating
mechanism, but rather they should be viewed as automatic procedures to ex-
tract information from a noisy signal from which eventually we can extrapo-
late a future value.

Definition 10.3 An interval-valued stochastic process is a collection of interval
random variables that are indexed by time, i.e., {Xt} for t ∈ T ⊂ R, with each Xt

following Definition 10.2.

An interval-valued time series is a realization of an interval-valued stochas-
tic process and it will be equivalently denoted as {[x]t} = {[xLt, xUt]} =
{〈xCt, xRt〉} for t = 1, 2, . . . , T.

10.2.3.1 Accuracy of the Forecast

It is customary in classical time series to assess the forecast as a function of the
difference between the realized value and the forecast value. In ITS, one may
be tempted to calculate the difference [x]t+1 − [x̂]t+1 but, because the interval
difference bounds all the possible results when considering single real num-
bers in the two operands, see property (Equation 10.2), the resulting interval
will have an excessive width and thus, it will not be deemed appropriate to
measure the accuracy of a forecast (Arroyo, Espı́nola, and Maté 2010). The
following example will clarify this point.

Suppose that [x]t+1 = [x̂]t+1 = [aL , aU], aL < aU . Since the realized value is
identical to the forecast, the forecast error must be zero [x]t+1 − [x̂]t+1 = [0, 0].
If this difference is the interval difference (Equation 10.2), then it must be the
case that [A] = [a, a ] with a ∈ R, which is a contradiction with our assumption
aL < aU . If [aL , aU] is a nondegenerate interval, the result of the difference
is an interval with the center in zero and with a length twice the length of
the interval [aL , aU], e.g., if [aL , aU] = [1, 2], [x]t − [x̂]t = [−1, 1]. Given
these shortcomings, Arroyo and Maté (2006) propose the use of distances to
quantify the dissimilarity (the forecast error) between the realized and the
forecast intervals. The properties of distances, i.e., nonnegativity, symmetry,
and triangle inequality, make them a suitable tool for this purpose. A distance,
proposed by González et al. (2004), is defined as

DK ([x], [y]) = 1√
2

√
(xL − yL )2 + (xU − yU)2 =

√
(xC − yC )2 + (xR − yR)2,

(10.21)

which can be understood as an Euclidean-like distance considering the de-
scription of the intervals by their minimum and their maximum or, alterna-
tively, by their center and by their radii. There is a large number of distances
proposed in the literature, each with its advantages and disadvantages so that
their use will depend on the needs of the researcher. In the forthcoming sec-
tions we will implement the Euclidean-type distance because of its intuitive
and mathematical appeal.
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Now, the assessment of a forecast will proceed by the choice of a distance
measure and a loss function. Given a realized and a forecast ITS, {[x]t} and
{[x̂]t} with t = 1, . . . , T , Arroyo, Espı́nola, and Maté (2010) propose the Mean
Distance Error to quantify the accuracy of the forecast

MDEq ({[x]t}, {[x̂]t}) =
(∑T

t=1(Dq ([x]t , [x̂]t))
T

) 1
q

, (10.22)

where D is a distance such as DK in Equation 10.21, and q is the order of
the distance, such that for q = 1 the mean distance error is similar in spirit
to the mean absolute error (MAE) loss function, and for q = 2 to the root
mean squared error (RMSE) loss function. Other loss functions, statistical
or economic/business based, can also be chosen to evaluate a forecast. The
important point is that the quantification of the error should be based on a
distance measure.

10.2.3.2 Smoothing Methods

Smoothing is a filtering technique that consists on averaging values of a time
series, and by doing that, removing noise. These methods are easy to imple-
ment and they constitute a benchmark to evaluate the forecasting ability of
more sophisticated methods (Gardner 2006). With the help of the arithmetic
of intervals, it is relatively easy to adapt these smoothing procedures to ITS
(Arroyo, Espı́nola, and Maté 2010). We begin with exponential smoothing
though there is an even simpler smoothing procedure provided by just a
moving average of order q .

10.2.3.2.1 Exponential Smoothing Given an ITS {[xt]} for t = 1, 2, . . . , T, the
forecast for the t + 1 period of a simple exponential smoothing in recursive
form is written as

[x̂]t+1 = �[x]t + (1 − �)[x̂]t , (10.23)

where � ∈ [0, 1]. This representation weights the most recent observation and
its forecast. In classic time series, the simple exponential smoothing can be
equivalently represented in error correction form. However, with ITS both
representations are not equivalent due to the properties of the interval arith-
metic. To understand this difference, let us write the error correction repre-
sentation

[x̂]t+1 = [x̂]t + �[e]t , (10.24)

where [e]t would be the interval error in t, [e]t = [x]t − [x̂]t. Due to the
subdistributive property (Equation 10.5) of interval arithmetic, the relation
between both expressions is the following

�[x]t + (1 − �)[x̂]t ⊆ �[x]t − �[x̂]t + [x̂]t = [x̂]t + �([x]t − [x̂]t), (10.25)
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which means that the recursive form yields tighter intervals than the error cor-
rection form. Due to this fact, the error correction form should not be consid-
ered in ITS forecasting. In addition, the error correction representation is not
equivalent to the ITS moving average with exponentially decreasing weights,
while the recursive form is. By backward substitution in Equation 10.23, and
for t large, the simple exponential smoothing becomes

[x̂]t+1 �
t∑

j=1

�(1 − �) j−1[x]t−( j−1) , (10.26)

which is a moving average with exponentially decreasing weights.
Since the interval arithmetic subsumes the classical arithmetic, the smooth-

ing methods for ITS subsume those for classic time series, so that if the
intervals in the ITS are degenerated then the smoothing results will be iden-
tical to those obtained with the classical smoothing methods. When using
Equation 10.23, all the components of the interval — center, radius, mini-
mum, and maximum — are equally smoothed, i.e.,

x̂�,t+1 = �x�,t + (1 − �)x̂�,t where � ∈ {L, U, C, R}, (10.27)

which means that, in a smoothed ITS, both the position and the width of
the intervals will show less variability than in the original ITS, and that the
smoothing factor will be the same for all components of the interval.

Additional smoothing procedures, like exponential smoothing with trend,
or damped trend, or seasonality, can be adapted to ITS following the same
principles presented in this section.

10.2.3.3 k-NN Method

The k-Nearest Neighbors (k-NN) method is a classic pattern recognition pro-
cedure that can be used for time series forecasting (Yakowitz 1987). The k-NN
forecasting method in classic time series consists of two steps: identification
of the k sequences in the time series that are more similar to the current one,
and computation of the forecast as the weighted or unweighted average of
the k-closest sequences determined in the previous step.

The adaptation of the k-NN method to forecast ITS consists of the following
steps:

1. The ITS, {[x]t} with t = 1, . . . , T , is organized as a series of d-dimensional
interval-valued vectors

[x]d
t = ([x]t , [x]t−1, . . . , [x]t−(d−1))′, (10.28)

where d ∈ N is the number of lags.
2. We compute the dissimilarity between the most recent interval-valued

vector [x]d
T = ([x]T , [x]T−1, . . . , [x]T−d+1)′ and the rest of the vectors in

{[x]d
t }. We use a distance measure to assess the dissimilarity between
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vectors, i.e.,

Dt
(
[x]d

T , [x]d
t

) =
(∑d

i=1

(
Dq ([x]T−i+1, [x]t−i+1)

)
d

) 1
q

, (10.29)

where D([x]T−i+1, [x]t−i+1) is a distance such as the kernel-based dis-
tance shown in Equation 10.21, q is the order of the measure that has
the same effect that in the error measure shown in Equation 10.22.

3. Once the dissimilarity measures are computed for each [x]d
t , t = T −

1, T −2, . . . , d , we select the k closest vectors to [x]d
T . These are denoted

by [x]d
T1

, [x]d
T2

, . . . , [x]d
Tk

.
4. Given the k closest vectors, their subsequent values, [x]T1+1, [x]T2+1. . . ,

[x]Tk+1, are averaged to obtain the final forecast

[x̂]T+1 =
k∑

p=1

�p · [x]Tp+1, (10.30)

where [x]Tp+1 is the consecutive interval of the sequence [x]d
Tp

, and �p is

the weight assigned to the neighbor p, with �p ≥ 0 and
∑k

p=1 �p = 1.
Equation 10.30 is computed according to the rules of interval arithmetic.
The weights are assumed to be equal for all the neighbors �p = 1/k∀p,
or inversely proportional to the distance between the last sequence [x]d

T
and the considered sequence [x]d

Tp

�p = �p∑k
l=1 �l

, (10.31)

with �p = (DTp ([x]d
T , [x]d

Tp
) + �)−1 for p = 1, . . . , k. The constant � =

10−8 prevents the weight to explode when the distance between two
sequences is zero.

The optimal values k̂ and d̂, which minimize the mean distance error
(Equation 10.22) in the estimation period, are obtained by conducting a two-
dimensional grid search.

10.2.4 Interval-Valued Dispersion: Low/High SP500 Prices

In this section, we apply the aforementioned interval regression and predic-
tion methods to the daily interval time series of low/high prices of the SP500
index. We will denote the interval as [pL,t, pU,t]. There is strand in the finan-
cial literature — Parkinson (1980), Garman and Klass (1980), Ball and Torous
(1984), Rogers and Satchell (1991), Yang and Zhang (2000), and Alizadeh,
Brandt, and Diebold (2002) among others — that deals with functions of the
range of the interval, pU − pL , in order to provide an estimator of the volatility
� of asset returns. In this chapter we do not pursue this route. The object of
analysis is the interval [pL,t, pU,t] itself and our goal is the construction of the
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one-step-ahead forecast [ p̂L ,t+1, p̂U,t+1]. Obviously such a forecast can be an
input to produce a forecast �̂t+1 of volatility. One of the advantage of forecast-
ing the low/high interval versus forecasting volatility is that the prediction
error of the interval is based on observables as opposed to the prediction error
for the volatility forecast for which “observed” volatility may be a problem.

The sample period goes from January 3, 2000 to September 30, 2008. We
consider two sets of predictions:

1. Low volatility prediction set (year 2006): estimation period that goes
from January 3, 2000 to December 30, 2005 (1508 trading days) and
prediction period that goes from January 3, 2006 to December 29, 2006
(251 trading days).

2. High volatility prediction set (year 2008): estimation period that goes
from January 2, 2002 to December 31, 2007 (1510 trading days) and
prediction period that goes from January 2, 2008 to September 30, 2008
(189 trading days).

A plot of the first ITS [pL,t, pU,t] is presented in Figure 10.5.
Following the classical regression approach to ITS, we are interested in the

properties and time series regression models of the components of the inter-
val, i.e., pL , pU, pC , and pR. We present the most significant and unrestricted
time series models for [pL,t, pU,t] and 〈pC,t, pR,t〉 in the spirit of the regression
proposals of Billard and Diday (2000, 2002) and Lima Neto and de Carvalho
(2008) reviewed in the previous sections. To save space we omit the univari-
ate modeling of the components of the interval but these results are available
upon request. However, we need to report that for pL and pU , we cannot
reject a unit root, which is expected because these are price levels of the
SP500, and that pC has also a unit root because it is the sum of two unit root
processes. In addition, pL and pU are cointegrated of order one with coin-
tegrating vector (1, −1), which implies that pR is a stationary process given
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FIGURE 10.5
ITS of the weekly low/high from January 2000 to December 2006.
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that pR = ( pU − pL )/2. Following standard model selection criteria and time
series specification tools, the best model for 〈�pC,t, pR,t〉 is a VAR(3) and for
[pL,t, pU,t] a VEC(3). The estimation results are presented in Tables A.1 and
A.2 in the appendix.

In Table A.1, the estimation results for 〈�pC,t, pR,t〉 in both periods are very
similar. The radius pR,t exhibits high autoregressive dependence and it is
negatively correlated with the previous change in the center of the interval
�pC,t−1 so that positive surprises in the center tend to narrow down the inter-
val. On the other hand �pC,t has little linear dependence and it is not affected
by the dynamics of the radius. There is Granger causality from the center
to the radius, but not vice versa. The radius equation enjoys a relative high
adjusted R-squared of about 40% while the center is basically not linearly
predictable. In general terms, there is a strong similarity between the model-
ing of 〈�pC,t, pR,t〉 and the most classical modeling of volatility with ARCH
models for financial returns. The processes pR,t and the conditional variance
of an asymmetric ARCH model, i.e., �2

t | t−1 = �0 +�1ε2
t−1+ �2εt−1 +��2

t−1 | t−2,
share the autoregressive nature and the well-documented negative correla-
tion of past innovations and volatility. The unresponsiveness of the center to
the information in the dynamics of the radius is also similar to the findings
in ARCH-in-mean processes where it is difficult to find significant effects of
volatility on the return process.

In Table A.2, we report the estimation results for [pL,t, pU,t] for both periods
2000–2005 and 2002–2007. In general, there is much less linear dependence in
the short-run dynamics of [pL,t, pU,t], which is expected as we are modeling
financial prices. There is Granger-causality running both ways, from �pL

to �pU and vice versa. Overall, the 2002-2007 period seems to be noisier
(R-squared of 14%) than the 2000–2005 (R-squared of 20%–16%).

Based on the estimation results of the VAR(3) and VEC(3) models, we pro-
ceed to construct the one-step-ahead forecast of the interval [ p̂L ,t+1 | t , p̂U,t+1 | t].
We also implement the exponential smoothing methods and the k-NN method
for ITS proposed in the above sections and compare their respective fore-
casts. For the smoothing procedure, the estimated value of � is �̂ = 0.04 in
the estimation period 2000–2005 and �̂ = 0.03 in 2002–2007. We have im-
plemented the k-NN with equal weights and with inversely proportional
as in Equation 10.31. In the period 2000–2005, the numbers of neighbors is
k̂ = 23 (equal weights) and k̂ = 24 (proportional weights); in 2002–2007
k̂ = 18 for the k-NN with equal weights and k̂ = 24 for proportional weights.
In both estimation periods, the length of the vector is d̂ = 2 for the k-NN
with equal weights and d̂ = 3 for the proportional weights. The estima-
tion of �, k, and d has been performed by minimizing the mean distance
MDE (Equation 10.22) with q = 2. In both methods, smoothing and k-NN,
the centers of the intervals have been first-differenced to proceed with the
estimation and forecasting. However, in the following comparisons, the es-
timated differenced centers are transformed back to present the estimates
and forecasts in levels. In Table 10.1 we show the performance of the five
models measured by the MDE (q = 2) in the estimation and prediction
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TABLE 10.1

Performance of the Forecasting Methods: MDE (q = 2)
Period 2000–2006 Period 2002–2008

Estimation Prediction Estimation Prediction
Models 2000–2005 2006 2002–2007 2008
VAR(3) 9.359 6.611 7.614 15.744
VEC(3) 9.313 6.631 7.594 15.766
k-NN (eq.weights) 9.419 6.429 7.625 15.865
k-NN (prop.weights) 9.437 6.303 7.617 16.095
Smoothing 9.833 6.698 7.926 16.274
Naive 10.171 7.056 8.231 16.549

periods. We have also added a “naive” model that does not entail any es-
timation and whose forecast is the observation in the previous period, i.e.,
[ p̂L ,t+1 | t , p̂U,t+1 | t] = [pL,t, pU,t].

For both low- and high-volatility periods the performance ranking of the
six models is very similar. The worst performer is the naive model followed by
the smoothing model. In 2006, the k-NN procedures are superior to the VAR(3)
and VEC(3) models, but in 2008 the VAR and VEC systems perform slightly
better than the k-NNs. The high-volatility year 2008 is clearly more difficult
to forecast, the MDE in 2008 is twice as much as the MDE in the estimation
period 2002–2007. On the contrary, in the low volatility year 2006, the MDE
in the prediction period is about 30% lower than the MDE in the estimation
period 2000–2005. A statistical comparison of the MDEs of the five models in
relation to the naive model is provided by the Diebold and Mariano test of
unconditional predictability (Diebold and Mariano 1995). The null hypothesis
to test is the equality of the MDEs, i.e., H0 : E(D2

(naive) −D2
(other)) = 0 versus H1 :

E(D2
(naive) − D2

(other)) > 0. If the null hypothesis is rejected the other model is
superior to the naive model. The results of this test are presented in Table 10.2.

In 2006 all the five models are statistically superior to the benchmark naive
model. In 2008 the smoothing procedure and the k-NN with proportional
weights are statistically equivalent to the naive model while the remaining
three models outperform the naive.

TABLE 10.2

Results of the Diebold and Mariano Test
T-Test for

H0 : E(D2
(naive) − D2

(other)) = 0

Models 2006 2008

VAR(3) 2.86 2.67
VEC(3) 2.26 2.46
k-NN(eq.weights) 3.55 2.43
k-NN(prop.weights) 4.17 1.79
Smoothing 5.05 1.15



 

P1: GOPAL JOSHI

November 3, 2010 17:15 C7035 C7035˙C010

Forecasting with Interval and Histogram Data 265

We also perform a complementary assessment of the forecasting ability of
the five models by running some regressions of the Mincer–Zarnowitz type.
In the prediction periods, for the minimum pL and the maximum pU, we
run separate regressions of the realized observations on the predicted ob-
servations as in pL,t = c + � p̂L ,t + εt and pU,t = c + � p̂U,t + υt. Under a
quadratic loss function, we should expect an unbiased forecast, i.e., � = 1
and c = 0. However, the processes pL,t and p̂L ,t are I (1) and, as expected,
cointegrated, so that these regressions should be performed with care. The
point of interest is then to test for a cointegration vector of (1, −1). To test this
hypothesis using an OLS estimator with the standard asymptotic distribu-
tion, we need to consider that in the I (1) process p̂L ,t , i.e., p̂L ,t = p̂L ,t−1 + �t,
the innovations εt and �t are not independent; in fact because p̂L ,t is a forecast
of pL,t the correlation 	(�t+i , εt) 
= 0 for i > 0. To remove this correlation,
the cointegrating regression will be augmented with some terms to finally
estimate a regression as pL,t = c + � p̂L ,t + ∑

i 
i� p̂L ,t+i + et (the same ar-
gument applies to pU,t). The hypothesis of interest is H0 : � = 1 versus
H1 : � 
= 1. A t-statistic for this hypothesis will be asymptotically standard
normal distributed. We may also need to correct the t-test if there is some
serial correlation in et. In Table 10.3 we present the testing results.

We reject the null for the smoothing method for both prediction periods
and for both pL,t and pU,t processes. Overall the prediction is similar for 2006
and 2008. The VEC(3) and the k-NN methods deliver better forecasts across
the four instances considered. For those models in which we fail to reject
H0 : � = 1, we also calculate the unconditional average difference between
the realized and the predicted values, i.e, p̄ = ∑

t( pt − p̂t)/T. The magnitude
of this average is in the single digits, so that for all purposes, it is insignificant
given that the level of the index is in the thousands. In Figure 10.6 we show
the k-NN (equal weights)-based forecast of the interval low/high of the SP500
index for November and December 2006.

TABLE 10.3

Results of the t-Test for Cointegrating Vector (1, −1)
Asymptotic (Corrected) t-Test

H0 : � = 1 versus H1 : � � = 1
pt = c + �p̂t +

∑
i 
iΔp̂t+i + et

2006 2008

min: pL,t max: pU,t min: pL,t max: pU,t

VAR(3) 3.744∗ −1.472 3.024∗ −2.712∗
VEC(3) 1.300 0.742 2.906∗ −2.106
k-NN (eq.weights) 0.639 −4.191∗ 1.005 −2.270
k-NN (prop.weights) 3.151∗ −2.726∗ 1.772 −1.731
Smoothing −3.542∗ −2.544∗ 2.739∗ −3.449∗

∗Rejection of the null hypothesis at the 1% significance level.
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FIGURE 10.6
k-NN based forecast (black) of the low/high prices of the SP500; realized ITS (grey).

10.3 Histogram Data

In this section, our premise is that the data is presented to the researcher as
a frequency distribution, which may be the result of an aggregation proce-
dure, or the description of a population or any other grouped collective. We
start by describing histogram data and some univariate descriptive statis-
tics. Our main objective is to present the prediction problem by defining a
histogram time series (HTS) and implementing smoothing techniques and
nonparametric methods like the k-NN algorithm. As we have seen in the sec-
tion on interval data, these two methods require the calculation of suitable
averages. To this end, instead of relying on the arithmetic of histograms, we
introduce the barycentric histogram that is an average of a set of histograms.
The choice of appropriate distance measures is key to the calculation of the
barycenter, and eventually of the forecast of a HTS.

10.3.1 Preliminaries

Given a variable of interest X, we collect information on a group of individuals
or units that belong to a set S. For every element i ∈ S, we observe a datum
such as

hXi = {([x]i1, �i1), . . . , ([x]ini , �ini )}, for i ∈ S, (10.32)

where �i j , j = 1, . . . , ni is a frequency that satisfies �i j ≥ 0 and
∑ni

j=1 �i j =
1; and [x]i j ⊆ R, ∀i, j , is an interval (also known as bin) defined as [x]i j ≡
[xLi j , xUi j ) with −∞ < xLi j ≤ xUi j < ∞ and xUi j−1 ≤ xLi j ∀i, j , for j ≥ 2. The
datum hXi is a histogram and the data set will be a collection of histograms
{hXi , i = 1, . . . , m}.



 

P1: GOPAL JOSHI

November 3, 2010 17:15 C7035 C7035˙C010

Forecasting with Interval and Histogram Data 267

As in the case of interval data, we could summarize the histogram data set
by its empirical density function from which the sample mean and the sample
variance can be calculated (Billard and Diday 2006). The sample mean is

X̄ = 1
2m

m∑
i=1

ni∑
j=1

(xUi j + xLi j )�i j , (10.33)

which is the average of the weighted centers for each interval; and the sample
variance is

S2
X = 1

3m

m∑
i=1

ni∑
j=1

(
x2

Ui j + xUi j xLi j + x2
Li j

)
�i j − 1

4m2

[
m∑

i=1

ni∑
j=1

(xUi j + xLi j )�i j

]2

,

which combines the variability of the centers as well as the intra-interval
variability. Note that the main difference between these sample statistics and
those in Equations 10.7 and 10.9 for interval data is the weight provided by
the frequency �i, j associated with each interval [x]i, j .

Next, we proceed with the definition of a histogram random variable. Let
(�, F , P) be a probability space, where � is the set of elementary events, F is
the �-field of events and P : F → [0, 1] the �-additive probability measure;
and define a partition of � into sets AX(x) such that AX(x) = {� ∈ �|X(�) =
x}, where x ∈ {hXi , i = 1, . . . , m}.

Definition 10.4 A mapping hX : F → {hXi }, such that, for all x ∈ {hXi , i =
1. . . .m} there is a set AX(x) ∈ F , is called a histogram random variable.

Then, the definition of stochastic process follows as:

Definition 10.5 A histogram-valued stochastic process is a collection of histogram
random variables that are indexed by time, i.e., {hXt } for t ∈ T ⊂ R, with each h Xt

following Definition 10.4.

A histogram-valued time series is a realization of a histogram-valued
stochastic process and it will be equivalently denoted as {hXt } ≡ {hXt , t =
1, 2, . . . , T}.

10.3.2 The Prediction Problem

In this section, we propose a dissimilarity measure for HTS based on a dis-
tance. We present two distance measures that will play a key role in the esti-
mation and prediction stages. They will also be instrumental to the definition
of a barycentric histogram, which will be used as the average of a set of
histograms. Finally, we will present the implementation of the prediction
methods.
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10.3.2.1 Accuracy of the Forecast

Suppose that we construct a forecast for {hXt }, which we denote as {ĥXt }. It is
sensible to define the forecast error as the difference hXt − ĥXt . However, the
difference operator based on histogram arithmetic (Colombo and Jaarsma
1980) does not provide information on how dissimilar the histograms hXt

and ĥXt are. In order to avoid this problem, Arroyo and Maté (2009) pro-
pose the mean distance error (MDE), which in its most general form is de-
fined as

MDEq ({hXt }, {ĥXt }) =
(∑T

t=1 Dq (hXt , ĥXt )
T

) 1
q

, (10.34)

where D(hXt , ĥXt ) is a distance measure such as the Wasserstein or the Mallows
distance to be defined shortly and q is the order of the measure, such that for
q = 1 the resulting accuracy measure is similar to the MAE and for q = 2 to
the RMSE.

Consider two density functions, f (x) and g (x) , with their correspond-
ing cumulative distribution functions (CDF), F (x) and G(x), the Wasserstein
distance between f (x) and g (x) is defined as

DW( f, g) =
∫ 1

0
|F −1(t) − G−1(t)|dt, (10.35)

and the Mallows as

DM( f, g) =
√∫ 1

0
(F −1(t) − G−1(t))2dt, (10.36)

where F −1(t) and G−1(t) with t ∈ [0, 1] are the inverse CDFs of f (x) and g(x),
respectively. The dissimilarity between two functions is essentially measured
by how far apart their t-quantiles are, i.e., F −1(t) − G−1(t). In the case of
Wasserstein, the distance is defined in the L1 norm and in the Mallows in
the L2 norm. When considering Equation 10.34, D(h Xt , ĥXt ) will be calculated
by implementing the Wasserstein or Mallows distance. By using the defini-
tion of the CDF of a histogram in Billard and Diday (2006), the Wasserstein
and Mallows distances between two histograms hX and hY can be written
analytically as functions of the centers and radii of the histogram bins, i.e.,

DW(hX, hY) =
n∑

j=1

� j |xC j − yC j | (10.37)

D2
M(hX, hY) =

n∑
j=1

� j

[
(xC j − yC j )2 + 1

3
(xRj − yRj )2

]
. (10.38)
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10.3.2.2 The Barycentric Histogram

Given a set of K histograms hXk with k = 1, . . . , K , the barycentric histogram
hXB is the histogram that minimizes the distances between itself and all the
K histograms in the set. The optimization problem is

min
hXB

K∑
k=1

[
Dr (hXk , hXB )

]1/r , (10.39)

where D(hXk , hXB ) is a distance measure. The concept is introduced by Ir-
pino and Verde (2006) to define the prototype of a cluster of histogram data.
As Verde and Irpino (2007) show, the choice of the distance determine the
properties of the barycenter.

When the chosen distance is Mallows, for r = 2, the optimal barycentric
histogram h∗

XB
has the following center/radius characteristics. Once the k

histograms are rewritten in terms of n∗ bins, for each bin j = 1, . . . , n∗, the
barycentric center x∗

C j is the mean of the centers of the corresponding bin in
each histogram and the barycentric radius x∗

Rj is the mean of the radii of the
corresponding bin in each of the K histograms,

x∗
C j =

∑K
k=1 xCkj

K
(10.40)

x∗
Rj =

∑K
k=1 xRkj

K
. (10.41)

When the distance is Wasserstein, for r = 1 and for each bin j = 1, . . . , n∗,
the barycentric center x∗

C j is the median of the centers of the corresponding
bin in each of the K histograms,

x∗
C j = median(xCkj ) for k = 1, . . . , K (10.42)

and the radius x∗
Rj is the corresponding radius of the bin where the median x∗

C j
falls among the K histograms. For more details on the optimization problem,
please see Arroyo and Maté (2009).

10.3.2.3 Exponential Smoothing

The exponential smoothing method can be adapted to histogram time series
by replacing averages with the barycentric histogram, as it was shown in
Arroyo and Maté (2008).

Let {hXt } t = 1, . . . , T be a histogram time series, the exponentially smoothed
forecast is given by the following equation

ĥXt+1 = �hXt + (1 − �)ĥ Xt , (10.43)

where � ∈ [0, 1]. Since the right-hand side is a weighted average of his-
tograms, we can use the barycenter approach so that the forecast is the solution
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to the following optimization exercise

ĥXt+1 ≡ arg minĥXt+1

(
�D2(ĥXt+1 , hXt ) + (1 − �)D2(ĥXt+1 , ĥXt )

)1/2
, (10.44)

where D(·, ·) is the Mallows distance. The use of the Wasserstein distance is
not suitable in this case because of the properties of the median, which will
ignore the weighting scheme (with the exception of � = 0.5) so intrinsically
essential to the smoothing technique. For further developments of this issue
see Arroyo, González-Rivera, Maté and Muñoz-San Roque (2010).

For t large, the recursive form (Equation 10.43) can be easily rewritten as a
moving average

ĥXt+1 �
t∑

j=1

�(1 − �) j−1hXt−( j−1) , (10.45)

which in turn can also be expressed as the following optimizations problem

ĥ Xt+1 ≡ arg minĥXt+1

[
t∑

j=1

�(1 − �) j−1 D2(ĥXt+1 , hXt−( j−1) )

]1/2

, (10.46)

with D(·, ·) as the Mallows distance. The Equations 10.44 and 10.46 are equiv-
alent.

Figure 10.7 shows an example of the exponential smoothing using Equa-
tion 10.44 for the histograms hXt = {([19, 20), 0.1), ([20, 21), 0.2), ([21, 22], 0.7)}
and ĥXt = {([0, 3), 0.35), ([3, 6), 0.3), ([6, 9], 0.35)} with � = 0.9 and � = 0.1.
In both cases, the resulting histogram averages the location, the support, and
the shape of both histograms hXt and ĥXt in a suitable way.
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FIGURE 10.7
Exponential smoothing of histograms using the recursive formulation with � = 0.9 (left) and
� = 0.1 (right). In each part of the figure, the barycenter is the dash-lined histogram.
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10.3.2.4 k-NN Method

The adaptation of the k-NN method to forecast HTS was proposed by Arroyo
and Maté (2009). The method consists of similar steps to those described in
the interval section:

1. The HTS, {hXt }with t = 1, . . . , T , is organized as a series of d-dimensional
histogram-valued vectors {hd

Xt
} where

hd
Xt

= (hXt , hXt−1 , . . . , hXt−(d−1) )
′, (10.47)

where d ∈ N is the number of lags and t = d, . . . , T .
2. We compute the dissimilarity between the most recent histogram-valued

vector hd
XT

= (hXT , hXT−1 , . . . , hXT−(d−1) )
′ and the rest of the vectors in {hd

Xt
}

by implementing the following distance measure

Dt(hd
XT

, hd
Xt

) =
(∑d

i=1

(
Dq (hXT−i+1 , hXt−i+1 )

)
d

) 1
q

, (10.48)

where Dq (hXT−i+1 , hXt−i+1 ) is the Mallows or the Wasserstein distance of
order q .

3. Once the dissimilarity measures are computed for each hd
Xt

, t = T −
1, T − 2, . . . , d , we select the k closest vectors to hd

XT
. These are denoted

by hd
XT1

, hd
XT2

, . . . , hd
XTk

.
4. Given the k closest vectors, their subsequent values, hXT1+1 , hXT2+1 , . . . ,

hXTk +1 , are averaged by means of the barycenter approach to obtain the
final forecast ĥXT+1 as in

ĥXT+1 ≡ arg minĥXT+1

[
k∑

p=1

�p Dr (ĥXT+1 , hXTp+1 )

]1/r

, (10.49)

where D(ĥXT+1 , hXTp+1 ) is the Mallows distance with r = 2 or the Wasser-
stein distance with r = 1, h XTp+1 is the consecutive histogram in the
sequence hd

XTp
, and �p is the weight assigned to the neighbor p, with

�p ≥ 0 and
∑k

p=1 �p = 1. As in the case of the interval-valued data, the
weights may be assumed to be equal for all the neighbors �p = 1/k ∀p,
or inversely proportional to the distance between the last sequence hd

XT

and the considered sequence hd
XTp

.

The optimal values, k̂ and d̂, which minimize the mean distance error
(Equation 10.34) in the estimation period, are obtained by conducting a two-
dimensional grid search.
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10.3.3 Histogram Forecast for SP500 Returns

In this section, we implement the exponential smoothing and the k-NN meth-
ods to forecast the one-step-ahead histogram of the returns to the constituents
of the SP500 index. We collect the weekly returns of the 500 firms in the index
from 2002 to 2005. We divide the sample into an estimation period of 156
weeks running from January 2002 to December 2004, and a prediction period
of 52 weeks that goes from January 2005 to December 2005. The histogram
data set consists of 208 weekly equiprobable histograms. Each histogram has
four bins, each one containing 25% of the firms’ returns.

For the smoothing procedure, the estimated value of � is �̂ = 0.13. We have
implemented the k-NN with equal weights and with inversely proportional
as in Equation 10.31 using the Mallows and Wasserstein distances. With the
Mallows distance, the estimated numbers of neighbors is k̂ = 11 and the
length of the vector is d̂ = 9 for both weighting schemes. With the Wasserstein
distance, k̂ = 12, d̂ = 9 (equal weights), and k̂ = 17, d̂ = 8 (proportional
weights). The estimation of �, k, and d has been performed by minimizing
the Mallows MDE with q = 1, except for the Wasserstein-based k-NN which
used the Wasserstein MDE with q = 1. In Table 10.4, we show the performance
of the five models measured by the Mallows-based MDE (q = 1) in the
estimation and prediction periods. We have also added a “naive” model that
does not entail any estimation and for which the one-step-ahead forecast is
the observation in the previous period, i.e., ĥXt+1 | t = hXt .

In the estimation and prediction period, the naive model is clearly out-
performed by the rest of the five models. In the estimation period, the five
models exhibit similar performance with a MDE of 4.9 approximately. In the
prediction period, the exponential smoothing and the Wasserstein-based k-
NN seem to be superior to the Mallows-based k-NN. We should note that
the MDEs in the prediction period are about 11% lower than the MDEs in the
estimation period.

For the prediction year 2005, we provide a statistical comparison of the
MDEs of the five models in relation to the naive model by implementing
the Diebold and Mariano test of unconditional predictability (Diebold and
Mariano 1995). The null hypothesis to test is the equality of the MDEs, i.e.,
H0 : E(D(naive) − D(other)) = 0 versus H1 : E(D(naive) − D(other)) > 0. If the null

TABLE 10.4

Performance of the Forecasting Methods: MDE
(q = 1)

Estimation Prediction
Models 2002–2004 2005
Mall. k-NN (eq.weights) 4.988 4.481
Mall. k-NN (prop.weights) 4.981 4.475
Wass. k-NN (eq.weights) 4.888 4.33
Wass. k-NN (prop.weights) 4.882 4.269
Exp. Smoothing 4.976 4.344
Naive 6.567 5.609
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TABLE 10.5

Results of the Diebold and Mariano Test
t-Test for

H0 : E(D(naive) − D(other)) = 0

Models 2005 Prediction Year
Mall. k-NN(eq.weights) 2.32
Mall. k-NN(prop.weights) 2.69
Wass. k-NN(eq.weights) 2.29
Wass. k-NN(prop.weights) 2.29
Exp. smoothing 3.08

hypothesis is rejected, the “other” model is superior to the naive model. The
results of this test are presented in Table 10.5.

In 2005, all the five models are statistically superior to the benchmark naive
model, though the rejection of the null is stronger for the exponential smooth-
ing and the Mallows-based k-NN models with proportional weights.

In Figure 10.8, we present the 2005 one-step-ahead histogram forecast ob-
tained with the exponential smoothing procedure and we compare it to the
realized value. For each time period, we draw two histograms: the realized
histogram (the right one) and the forecast histogram (the left one). Overall the
forecast follows very closely the realized value except for those observations
that have extreme returns. The fit can be further appreciated when we zoom
in the central 50% mass of the histograms (Figure 10.9).
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FIGURE 10.8
2005 realized histograms (the right ones) and exponential smoothed one-step-ahead histogram
forecasts (the left ones) for the HTS of SP500 returns. Weekly data.
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FIGURE 10.9
Zoom of Figure 10.8 from September to December 2005.

10.4 Summary and Conclusions

Large databases prompt the need for new methods of processing informa-
tion. In this article we have introduced the analysis of interval-valued and
histogram-valued data sets as an alternative to classical single-valued data
sets and we have shown the promise of this approach to deal with economic
and financial data.

With interval data, most of the current efforts have been directed to the
adaptation of classical regression models as the interval is decomposed into
two single-valued variables, either the center/radius or the min/max. The ad-
vantage of this decomposition is that classical inferential methods are avail-
able. Methodologies that analyze the interval per se fall into the realm of
random sets theory and though there is some important research on regres-
sion analysis with random sets, inferential procedures are almost nonexis-
tent. Being our current focus is the prediction problem, we have explored two
different venues to produce a forecast with interval time series (ITS). First,
we have implemented the classical regression approach to the analysis of
ITS, and secondly we have proposed the adaptation to ITS of filtering tech-
niques, such as smoothing, and nonparametric methods, such as the k-NN,
to ITS. The latter venue requires the use of interval arithmetic to construct
the appropriate averages and the introduction of distance measures to as-
sess the dissimilarity between intervals and to quantify the prediction error.
We have implemented these ideas with the SP500 index. We modeled the
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center/radius time series and the low/high time series of what we called
interval-valued dispersion of the SP500 index and compared their one-step-
ahead forecasts to those of a smoothing procedure and k-NN methods. A VEC
model for the low/high series and the k-NN methods have the best forecasting
performance.

With histogram data, the analysis becomes more complex. Regression anal-
ysis with histograms is in its infancy and the venues for further develop-
ments are large. We have focused exclusively in the prediction problem with
smoothing methods and nonparametric methods. A key concept for the im-
plementation of these two procedures is the introduction of the barycentric
histogram that is a device that works as an average (weighted or unweighted)
of a set of histograms. As with ITS, the introduction of the appropriate dis-
tances to judge dissimilarities among histograms and to assess forecast errors
are fundamental ingredients in the analysis. The collection over time of cross-
sectional returns of the firms in the SP500 index provides a nice histogram time
series (HTS), on which we have implemented the aforementioned methods to
eventually produce the one-step-ahead histogram forecast. Simple smoothing
techniques seem to work remarkably well.

There are still many unexplored areas in ITS and HTS. A very important
question is the search for a model. This will require the understanding of the
notion of dependence in ITS and HTS. A first step in this direction is pro-
vided by González-Rivera and Arroyo (2010) who construct autocorrelation
functions for HTS and ITS. From an econometric point of view, model build-
ing requires further research on identification, estimation, testing, and model
selection procedures. Economic and financial questions will benefit greatly
from this new approach to the analysis of large data sets.

10.5 Acknowledgment

We thank the referees and the editors for useful and constructive comments.
Arroyo acknowledges support from the Spanish Council for Science and Inno-
vation (grant TIN2008-06464-C03-01) and from the Programa de Creación y Con-
solidación de Grupos de Investigación UCM-Banco Santander. González-Rivera ac-
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Estimation Results for ITS SP500 Index
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TABLE A.1

Estimation of the VAR(3) Model for the Differenced Center and Radius
Time Series

Estimation Sample 2000–2005 Estimation Sample 2002–2007

VAR D(Cen) Rad VAR D(Cen) Rad

D(Cen(−1)) 0.33218 −0.09764 D(Cen(−1)) 0.279225 −0.074092
0.0262 0.00997 0.02619 0.00978

[ 12.6803] [−9.79410] [10.6611] [−7.57934]

D(Cen(−2)) −0.181348 −0.001809 D(Cen(−2)) −0.092471 −0.010534
0.02742 0.01043 0.02713 0.01012

[−6.61378] [−0.17332] [−3.40879] [−1.04037]

D(Cen(−3)) 0.050564 0.00429 D(Cen(−3)) 0.006178 −0.013364
0.02616 0.00996 0.02629 0.00981

[ 1.93281] [ 0.43091] [ 0.23500] [−1.36214]

Rad(−1) 0.066659 0.150616 Rad(−1) −0.00284 0.152907
0.06593 0.02509 0.06731 0.02512

[ 1.01103] [ 6.00287] [−0.04219] [ 6.08652]

Rad(-2) −0.049629 0.313259 Rad(-2) 0.046537 0.27345
0.06319 0.02405 0.0649 0.02422

[−0.78541] [ 13.0270] [0.71705] [11.2886]

Rad(-3) 0.129442 0.285272 Rad(-3) −0.01386 0.276629
0.0648 0.02466 0.06635 0.02477

[1.99747] [11.5678] [−0.20888] [11.1699]

C −1.319847 2.088036 C −0.045805 2.074405
0.60607 0.23064 0.5355 0.19987

[−2.17772] [9.05315] [−0.08554] [10.3788]

TABLE A.2

Estimation of the VEC(3) Model for Low/High Time Series
Estimation Sample 2000–2005 Estimation Sample 2002–2007

Error Correction: D(Low) D(High) Error Correction: D(Low) D(High)

CointEq1 −0.438646 0.007023 CointEq1 −0.124897 0.121926
0.05364 0.04758 0.04103 0.03692

[−8.17770] [0.14761] [−3.04419] [3.30283]

D(Low(-1)) 0.112549 0.515586 D(Low(-1)) −0.165406 0.425054
0.05429 0.04816 0.0489 0.044

[2.07293] [10.7050] [−3.38238] [9.66024]

D(Low(-2)) −0.093605 0.193326 D(Low(-2)) −0.314249 0.130253
0.0505 0.0448 0.04863 0.04375

[−1.85344] [4.31532] [−6.46233] [2.97698]

D(Low(-3)) 0.026446 0.112943 D(Low(-3)) −0.15041 0.061275
0.0396 0.03512 0.0399 0.0359

[0.66790] [3.21547] [−3.76992] [1.70691]
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TABLE A.2 (Continued)

Estimation of the VEC(3) Model for Low/High Time Series
Estimation Sample 2000–2005 Estimation Sample 2002–2007

Error Correction: D(Low) D(High) Error Correction: D(Low) D(High)

D(High(-1)) 0.313542 −0.287591 D(High(-1)) 0.524179 −0.221533
0.05905 0.05238 0.05188 0.04668

[5.30959] [−5.49018] [10.1046] [−4.74625]

D(High(-2)) −0.073453 −0.382411 D(High(-2)) 0.248088 −0.239401
0.05604 0.04971 0.05323 0.04789

[−1.31078] [−7.69307] [4.66085] [−4.99871]

D(High(-3)) 0.04646 −0.065429 D(High(-3)) 0.182654 −0.073329
0.04356 0.03864 0.04262 0.03835

[1.06663] [−1.69337] [4.28593] [−1.91234]

C −0.064365 −0.118124 Cointegrating Eq: CointEq1
0.28906 0.25642 Low(-1) 1

[−0.22267] [−0.46068] High(-1) −1.002284

Cointegrating Eq: Co-intEq1 0.00318
Low(-1) 1 [−315.618]
High(-1) −1.001255 C 16.82467

0.00268 3.81466
[−373.870] [ 4.41053]

@TREND(1) −0.012818
0.00105

[−12.1737]

C 27.97538
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11.1 Introduction

Economists have long been fascinated by the nature and sources of variations
in the stock market. By the early 1970s a consensus had emerged among
financial economists suggesting that stock prices could be well approximated
by a random walk model and that changes in stock returns were basically
unpredictable. Fama (1970) provides an early, definitive statement of this
position. Historically, the “random walk” theory of stock prices was preceded
by theories relating movements in the financial markets to the business cycle.
A prominent example is the interest shown by Keynes in the variation in stock
returns over the business cycle.

The efficient market hypothesis (EMH) evolved in the 1960s from the ran-
dom walk theory of asset prices advanced by Samuelson (1965). Samuelson
showed that in an informationally efficient market price changes must be un-
forecastable. Kendall (1953), Cowles (1960), Osborne (1959), Osborne (1962),
and many others had already provided statistical evidence on the random
nature of equity price changes. Samuelson’s contribution was, however, in-
strumental in providing academic respectability for the hypothesis, despite
the fact that the random walk model had been around for many years; having
been originally discovered by Louis Bachelier, a French statistician, back in
1900.

Although a number of studies found some statistical evidence against the
random walk hypothesis, these were dismissed as economically unimportant
(could not generate profitable trading rules in the presence of transaction
costs) and statistically suspect (could be due to data mining). For example,
Fama (1965), concluded that “. . . there is no evidence of important dependence
from either an investment or a statistical point of view.” Despite its apparent
empirical success, the random walk model was still a statistical statement and
not a coherent theory of asset prices. For example, it need not hold in markets
populated by risk averse traders, even under market efficiency.

There now exist many different versions of the EMH, and one of the aims
of this chapter is to provide a simple framework where alternative versions of
the EMH can be articulated and discussed. We begin with an overview of the
statistical properties of asset returns at different frequencies (daily, weekly,
and monthly), and consider the evidence on return predictability, risk aver-
sion, and market efficiency. We then focus on the theoretical foundation of
the EMH, and show that market efficiency could coexist with heterogeneous
beliefs and individual “irrationality,” so long as individual errors are cross
sectionally weakly dependent in the sense defined by Chudik, Pesaran, and
Tosetti (2010). But at times of market euphoria or gloom these individual
errors are likely to become cross sectionally strongly dependent and the col-
lective outcome could display significant departures from market efficiency.
Market efficiency could be the norm, but most likely it will be punctuated by
episodes of bubbles and crashes. To test for such episodes we argue in favour
of compiling survey data on individual expectations of price changes that
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are combined with information on whether such expectations are compati-
ble with market equilibrium. A trader who believes that asset prices are too
high (low) might still expect further price rises (falls). Periods of bubbles and
crashes could result if there are sufficiently large numbers of such traders that
are prepared to act on the basis of their beliefs. The chapter also considers if
periods of market inefficiency can be exploited for profit. We conclude with
some general statements on new research directions.

We begin with some basic concepts and set out how returns are computed
over different horizons and assets, and discuss some of the known stylized
facts about returns by means of simple statistical models.

11.2 Prices and Returns

11.2.1 Single Period Returns

Let Pt be the price of a security at date t. The absolute price change over the
period t − 1 to t is given by Pt − Pt−1, the relative price change by

Rt = ( Pt − Pt−1)/Pt−1

the gross return (excluding dividends) on security by

1 + Rt = Pt/Pt−1

and the log price change by

rt = � ln( Pt) = ln(1 + Rt)

It is easily seen that for small relative price changes the log-price change and the
relative price change are almost identical.

In the case of daily observations when dividends are negligible, 100 · Rt

measures the percent return on the security, and 100 · rt is the continuously
compounded return. Rt is also known as discretely compounded return. The
continuously compounded return, rt, is particularly convenient in the case
of temporal aggregation (multi-period returns; see Subsection 11.2.2), while
the discretely compounded returns are convenient for use in cross-sectional
aggregation, namely, aggregation of returns across different instruments in
a portfolio. For example, for a portfolio composed of N instruments with
weights wi,t−1, (

∑N
i=1 wi,t−1 = 1, wi,t−1 ≥ 0) we have

Rpt =
N∑

i=1

wi,t−1 Rit, (percent return)

rpt = ln

(
N∑

i=1

wi.t−1erit

)
, (continuously compounded)

Often rpt is approximated by
∑N

i=1 wi,t−1rit.
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When dividends are paid out we have

Rt = ( Pt − Pt−1)/Pt−1 + Dt/Pt−1

≈ � ln( Pt) + Dt/Pt−1

where Dt is the dividend paid out during the holding period.

11.2.2 Multi-Period Returns

Single-period price changes (returns) can be used to compute multi-period
price changes or returns. Denote the return over the most recent h periods by
Rt(h) then (abstracting from dividends)

Rt(h) = Pt − Pt−h

Pt−h

or

1 + Rt(h) = Pt/Pt−h

and

rt(h) = ln( Pt/Pt−h) = rt + rt−1 + · · · + rt−h+1

where rt−i , i = 0, 1, 2, . . . , h − 1 are the single-period returns. For example,
weekly returns are defined by rt(5) = rt +rt−1+· · ·+rt−4. Similarly, since there
are 25 business days in one month, then the 1-month return can be computed
as the sum of the last 25 1-day returns, or rt(25).

11.2.3 Overlapping Returns

Note that multi-period returns have overlapping daily observations. In the
case of weekly returns, rt(5) and rt−1(5) have the four daily returns, rt−1 +
rt−2+rt−3+rt−4 in common. As a result the multi-period returns will be serially
correlated even if the underlying daily returns are not serially correlated. One
way of avoiding the overlap problem would be to sample the multi-period
returns h periods apart. But this is likely to be inefficient as it does not make
use of all available observations. A more appropriate strategy would be to
use the overlapping returns but allow for the fact that this will induce serial
correlations. For further details see Pesaran, Pick, and Timmermann (2010).

11.3 Statistical Models of Returns

A simple model of returns (or log-price changes) is given by

rt+1 = � ln( Pt+1) = pt+1 − pt

= �t + �tεt+1, t = 1, 2, . . . , T (11.1)



 

P1: BINAYA KUMAR DASH

November 1, 2010 14:37 C7035 C7035˙C011

Predictability of Asset Returns and the Efficient Market Hypothesis 285

where �t and �2
t are the conditional mean and the conditional variance of

returns (with respect to the information set �t available at time t) and εt+1
represents the unpredictable component of return. Two popular distributions
for εt+1 are

εt+1 | �t ∼ IID Z

εt+1 | �t ∼
(√

v−2
v

)
IID Tv

where Z ∼ N(0, 1) stands for a standard normal distribution, and Tv stands
for Student’s t with v degrees of freedom. Unlike the normal distribution that
has moments of all orders, Tv only has moments of order v − 1 and smaller.
For the Student’s t to have a variance, for example, we need v > 2.

Since rt+1 = ln(1 + Rt+1), where Rt+1 = ( Pt+1 − Pt)/Pt, it then follows
that under εt+1 | �t ∼ IID Z , the price level, Pt+1 conditional on �t will be
lognormally distributed. Note that �t = ( Pt, Pt−1, . . . ) and �t = (rt, rt−1, . . . )
convey the same information and are equivalent. Hence, Pt+1 = Pt exp(rt+1),
and we have1

E( Pt+1 |�t ) = Pt E(exp (rt+1) | �t)

= Pt exp
(

�t + 1
2

�2
t

)
.

Similarly,

Var( Pt+1 |�t ) = P2
t exp(2�t + �2

t )
[
exp(�2

t ) − 1
]
.

In practice, it is much more convenient to work with log returns, rt+1, rather
than asset prices.

The probability density functions of Z and Tv are given by

f (Z) = (2�)−1/2 exp
[−Z2

2

]
, − ∞ < Z < ∞ (11.2)

and

f (Tv) = 1√
vB(v/2, 1/2)

[
1 + T 2

v

v

]−(v+1)/2

(11.3)

where −∞ < Tv < ∞, and B(v/2, 1/2) is the beta function defined by

B(�, �) = �(�)�(�)
�(� + �)

, �(�) =
∫ ∞

0
u�−1e−udu.

1 Using properties of the moment generating function of normal variates, if x ∼ N(�x, �2
x) then,

E[exp(x)] = exp(�x + .5�2
x).
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It is easily seen that

E (Tv) = 0, and Var (Tv) = v
v − 2

.

A large part of financial econometrics is concerned with alternative ways of
modeling the conditional mean (mean returns), �t, the conditional variance
(asset return volatility), �t, and the cumulative probability distribution of the
errors, εt+1. A number of issues need to be addressed in order to choose an
adequate model. In particular:

• Is the distribution of returns normal?
• Is the distribution of returns constant over time?
• Are returns statistically independent over time?
• Are squares or absolute values of returns independently distributed

over time?
• What are the cross correlation of returns on different instruments?

The above modeling issues can be readily extended to the case where we
are concerned with a vector of asset returns, rt = (r1t , r2t , . . . rmt)′. In this case
we also need to model the pair-wise conditional correlations of asset returns,
namely,

Corr(rit, r jt | �t) = Cov(rit, r jt | �t)√
Var(rit | �t) Var(r jt | �t)

.

Typically the conditional variances and correlations are modeled using expo-
nential smoothing procedures or the multivariate generalized autoregressive
conditional heteroscedastic models developed in the econometric literature.

11.3.1 Percentiles, Critical Values, and Value at Risk

Suppose a random variable r (say daily returns on an instrument) has the
probability density function f (r ). Then the pth percentile of the distribution
of r , denoted by C p, is defined as that value of return such that p percent of
the returns fall below it. Mathematically we have

p = Pr(r < Cp) =
C p∫

−∞
f (r )dr.

In the literature on risk management C p is used to compute “value at risk” or
VaR for short. For p = 1% , C p associated with the one-sided critical value of
the normal distribution is given by −2.33�, where � is the standard deviation
of returns.

In hypothesis testing C p is known as the critical value of the test associated
with a (one-sided) test of size p. In the case of two-sided tests of size p, the
associated critical value is computed as C p/2.
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11.3.2 Measures of Departure from Normality

The normal probability density function for rt+1 conditional on the informa-
tion at time t, �t, is given by

f (rt+1) = (2��2
t )−1/2 exp

[
− 1

2�2
t

(rt+1 − �t)2
]

with �t = E(rt+1 | �t) and �2
t = E

[
(rt+1 − �t)2 | �t

]
being the conditional

mean and variance. If the return process is stationary, unconditionally we also
have � = E(rt+1), and �2 = E[(rt+1 − �t)2].

Skewness and tail-fatness measures are defined by

Skewness =
√

b1 = m3/m3/2
2

Kurtosis = b2 = m4/m2
2

where

m j =
∑T

t=1(rt − r̄ ) j

T
, j = 2, 3, 4.

For a normal distribution
√

b1 ≈ 0, and b2 ≈ 3. In particular

�̂ = r̄ =
T∑

t=1

rt/T, �̂ =
√∑T

t=1(rt − r̄ )2

T − 1

The Jarque–Bera’s (1980) test statistic for departure from normality is given
by

J B = T
{

1
6

b1 + 1
24

(b2 − 3)2
}

.

Under the joint null hypothesis that b1 = 0 and b2 = 3, the J B statistic is
asymptotically distributed (as T → ∞) as a chi-squared with 2 degrees of
freedom, �2

2. Therefore, a value of J B in excess of 5.99 will be statistically
significant at the 95 percent confidence level, and the null hypothesis of nor-
mality will be rejected.

11.4 Empirical Evidence: Statistical Properties of Returns

Table 11.1 gives a number of statistics for daily returns (×100) on four main
equity index futures, namely, S&P 500 (SP), FTSE 100 (FTSE), German DAX
(DAX), and Nikkei 225 (NK), over the period January 3, 2000 to August 31,
2009 (for a total of 2519 observations).

The kurtosis coefficients are particularly large for all the four equity futures
and exceed the benchmark value of 3 for the normal distribution. There is



 

P1: BINAYA KUMAR DASH

November 1, 2010 14:37 C7035 C7035˙C011

288 Handbook of Empirical Economics and Finance

TABLE 11.1

Descriptive Statistics for Daily Returns on SP 500,
FTSE 100, German DAX, and Nikkei 225
Variables SP FTSE DAX NK
Maximum 14.11 10.05 12.83 20.70
Minimum −9.88 −9.24 −8.89 −13.07
Mean (r̄ ) −0.01 −0.01 −0.01 −0.01
S. D. (�̂) 1.39 1.33 1.65 1.68
Skewness (

√
b1) 0.35 0.06 0.24 0.16

Kurtosis (b2) 14.30 9.70 8.50 17.80
JB statistic 13453.6 4713.1 3199.2 23000.8

some evidence of positive skewness, but it is of second order importance as
compared to the magnitude of excess kurtosis coefficient given by, b2 − 3.
The large values of excess kurtosis are reflected in the huge values of the JB
statistics reported in Equation 11.1. Also under the assumption that returns are
normally distributed, we would have expected the maximum and minimum
of daily returns to fall (with 99% confidence) in the region of ±2.33 × S. D.,
which is ±3.24 for SP500, as compared to the observed values of −9.88 and
14.11. See also Figure 11.1.

The departure from normality is particularly pronounced over the past
decade where markets have been subject to two important episodes of finan-
cial crises: the collapse of markets in 2000 after the dot-com bubble and the
stock market crash of 2008 after the 2007 credit crunch. (see Figure 11.2).

0.0

0.1
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0.3

0.4

0.5

0.6

–10–9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Histogram and Normal Curve for Daily Returns on SP500

Sample from January 3, 2000 to August 31, 2009

FIGURE 11.1
Histogram and Normal curve for daily returns on SP500 (over the period January 3, 2009 to
August 31, 2009).
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FIGURE 11.2
Daily returns on SP500 (over the period January 3, 2000 to August 31, 2009).

However, the evidence of departure from normality can be seen in daily
returns even before 2000. For example, over the period January 3, 1994 to
December 31, 1999 (1565 daily observations) kurtosis coefficient of returns on
SP500 was 9.5 which is still well above the benchmark value of 3. The recent
financial crisis has accentuated the situation but can not be viewed as the
cause of the observed excess kurtosis of equity returns.

Similar results are also obtained if we consider weekly returns. The kurtosis
coefficients estimated using weekly returns over the period January 2000 to
the end of August 2009 (504 weeks) were 12.4, 15.07, 8.9, and 15.2 for SP500,
FTSE, DAX, and Nikkei, respectively. These are somewhat lower than the
estimates obtained using daily observations for SP500 and Nikkei, but are
quite a bit higher for FTSE. For DAX daily and weekly observations yield a
very similar estimate of the kurtosis coefficient.

For currencies the kurtosis coefficient of returns (measured in terms of U.S.
dollar) varies from 4.5 for euro to 13.8 for the Australian dollar. The esti-
mates computed using daily observations over the period January 3, 2000, to
August 31, 2009 are summarized in Table 11.2. The currencies considered are
the British pound (GBP), euro (EU), Japanese yen (JPY), Swiss franc (CHF),
Canadian dollar (CAD), and Australian dollar (AD), all measured in terms of
U.S. dollar.

The returns on government bonds are generally less fat-tailed than the re-
turns on equities and currencies. But their distribution still shows a significant
degree of departure from normality.

Table 11.3 reports descriptive statistics on daily returns on the main four
government bond futures: U.S. T-Note 10Y (BU), Europe Euro Bund 10Y (BE),
Japan Government Bond 10Y (BJ), and UK Long Gilts 8.75-13Y (BG) over the
period 03 Jan., 00 to 31 Aug., 09.
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TABLE 11.2

Descriptive Statistics for Daily Returns on British Pound, Euro,
Japanese Yen, Swiss Franc, Canadian Dollar, and Australian Dollar
Variables JPY EU GBP CHF CAD AD
Maximum 4.53 3.17 3.41 4.58 5.25 6.21
Minimum −3.93 −3.01 −5.04 −3.03 −3.71 −9.50
Mean (r̄ ) −0.006 0.016 0.007 0.012 0.013 0.022
S. D. (�̂) −0.65 0.65 0.60 0.70 0.59 0.90
Skewness (

√
b1) −0.28 0.01 −0.35 0.12 0.09 −0.76

Kurtosis (b2) 5.99 4.50 7.20 4.90 9.10 13.80

It is clear that for all the three asset classes there are significant departures
from normality which needs to be taken into account when analyzing financial
time series.

11.4.1 Other Stylized Facts about Asset Returns

Asset returns are typically uncorrelated over time, are difficult to predict, and,
as we have seen, tend to have distributions that are fat-tailed. In contrast the
absolute or squares of asset returns (that measure risk), namely |rt| or r2

t , are
serially correlated and tend to be predictable. It is interesting to note that rt

can be written as

rt = sign(rt) |rt|

where sign(rt) = +1 if rt > 0 and sign(rt) = −1 if rt ≤ 0. Since |rt| is pre-
dictable, it is, therefore, the nonpredictability of sign(rt), or the direction of
the market, which lies behind the difficulty of predicting returns.

The extent to which returns are predictable depends on the forecast horizon,
the degree of market volatility, and the state of the business cycle. Predictabil-
ity tends to rise during crisis periods. Similar considerations also apply to the
degree of fat-tailedness of the underlying distribution and the cross correla-
tions of asset returns. The return distributions become less fat-tailed as the
horizon is increased, and cross correlations of asset returns become more pre-
dictable with the horizon. Cross correlation of returns also tends to increase

TABLE 11.3

Descriptive Statistics for Daily Returns on U.S. T-Note 10Y,
Europe Euro Bund 10Y, Japan Government Bond 10Y, and
UK Long Gilts 8.75-13Y
Variables BU BE BG BJ
Maximum 3.63 1.48 2.43 1.53
Minimum −2.40 −1.54 −1.85 −1.41
Mean (r̄ ) 0.00 0.01 0.01 0.01
S. D. (�̂) 0.43 0.32 0.35 0.24
Skewness (

√
b1) −0.004 −0.18 0.02 −0.18

Kurtosis (b2) 6.67 4.49 6.02 6.38
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with market volatility. The analysis of time variations in the cross correlation
of asset returns is beyond the scope of this chapter. However, the interested
reader might wish to consult Pesaran and Pesaran (2010) where multivariate
conditional volatility models are fitted to weekly returns on equities, bonds,
and currencies.

In the case of daily returns, equity returns tend to be negatively serially cor-
related. During normal times they are small and only marginally significant
statistically, but become relatively large and attain a high level of statisti-
cal significance during crisis periods. These properties are illustrated in the
following empirical application.

The first and second order serial correlation coefficients of daily returns on
SP500 over the period January 3, 2000 to August 31, 2007, are −0.015 (0.0224)
and −0.0458 (0.0224), respectively, but increase to −0.068 (0.0199) and −0.092
(0.0200) once the sample is extended to the end of August 2009 which covers
the 2008 global financial crisis.2 Similar patterns are also observed for other
equity indices. For currencies the evidence is more mixed. In the case of major
currencies such as euro and yen, there is little evidence of serial correlation in
returns and this outcome does not seem much affected by whether one con-
siders normal or crisis periods. For other currencies there is some evidence of
negative serial correlation, particularly at times of crisis. For example, over the
period January 3, 2000 to August 31, 2009 the first-order serial correlation of
daily returns on Australian dollar amounts to −0.056 (0.0199), but becomes
statistically insignificant if we exclude the crisis period. There is also very
little evidence of serial correlation in daily returns on the four major govern-
ment bonds that we have been considering. This outcome does not depend on
whether the crisis period is included in the sample. Irrespective of whether
the underlying returns are serially correlated, their absolute values (or their
squares) are highly serially correlated, often over many periods. For example,
over the January 3, 2000 to August 31, 2009 period the first and second order
serial correlation coefficients of absolute return on SP500 are 0.2644 (0.0199),
0.3644 (0.0204); for euro they are 0.0483 (0.0199) and 0.1125 (0.0200); and for
U.S. 10Y bond they are 0.0991 (0.0199) and 0.1317 (0.0201). The serial cor-
relation in absolute returns tends to decay very slowly and continues to be
statistically significant event after 120 trading days. See Figure 11.3.

It is also interesting to note that there is little correlation between rt and |rt|.
Based on the full sample ending in August 2009, this correlation is −0.0003
for SP500, 0.025 for euro, and 0.009 for the U.S. 10Y bond.

11.4.2 Monthly Stock Market Returns

Many of the regularities and patterns documented for returns using daily
or weekly observations can also be seen in monthly observations, once a
sufficiently long period is considered. For the U.S. stock market long historical
monthly data on prices and dividends are compiled by Shiller and can be

2 The figures in parentheses are standard errors.
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FIGURE 11.3
Autocorrelation function of the absolute values of SP500 (over the period January 3, 2009 to
August 31, 2009)

downloaded from his homepage.3 An earlier version of this data set has been
analyzed in Shiller (2005). Monthly returns on SP500 (inclusive of dividends)
is computed as

RSPt = 100
(

SPt − SPt−1 + SPDIVt

SPt−1

)
where SPt is the monthly spot price index of SP500 and SPDIVt denotes the
associated dividends on the SP500 index. Over the period 1871m1 to 2009m9
(a total of 1664 monthly observations) the coefficient of skewness and kur-
tosis of RSP amounted to 1.07% and 23.5%, respectively. The excess kurtosis
coefficient of 20.5 is much higher than the figure of 11.3 obtained for the daily
observations on SP over the period January 3, 2000 to August 31, 2009. Also
as before the skewness coefficient is relatively small. However, the monthly
returns show a much higher degree of serial correlation and a lower degree of
volatility as compared to daily or weekly returns. The correlation coefficients
of RSP are 0.346 (0.0245) and 0.077 (0.027), and the serial correlation coeffi-
cients continue to be statistically significant up to the lag order of 12 months.
Also, the pattern of serial correlations in absolute monthly returns, |RSPt|, is
not that different from that of the serial correlation in RSPt , which suggests
a lower degree of return volatility (as compared to the volatility of daily or
weekly returns) once the effects of mean returns are taken into account.

3 See http://www.econ.yale.edu/˜shiller/data.htm.
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Similar, but less pronounced, results are obtained if we exclude the 1929
stock market crash and focus on the post World War II period. The coeffi-
cients of skewness and kurtosis of monthly returns over the period 1948m1
to 2009m9 (741 observations) are −0.49 and 5.2, respectively. The first- and
second-order serial correlation coefficients of returns are 0.361 (0.0367) and
0.165 (0.041), respectively. The main difference between these subsample es-
timates and those obtained for the full sample is the much lower estimate
for the kurtosis coefficient. But even the lower post-1948 estimates suggest a
significant degree of fat-tailedness in the monthly returns.

11.5 Stock Return Regressions

Consider the linear excess return regression

Rt+1 − r f
t = a + b1x1t + b2x2t + · · · + bk xkt + εt+1 (11.4)

where Rt+1 is the one-period holding return on an stock index, such as FTSE
or Dow Jones, defined by

Rt+1 = ( Pt+1 + Dt+1 − Pt)/Pt. (11.5)

Pt is the stock price at the end of the period and Dt+1 is the dividend paid
out over the period t to t + 1, and xit , i = 1, 2, . . . , k are the factors/variables
thought to be important in predicting stock returns. Finally, r f

t is the return
on the government bond with one-period to maturity (the period to maturity
of the bond should be exactly the same as the holding period of the stock).
Rt+1 −r f

t is known as the excess return (return on stocks in excess of the return
on the safe asset). Note also that r f

t would be known to the investor/trader
at the end of period t, before the price of stocks, Pt+1, is revealed at the end
of period t + 1.

Examples of possible stock market predictors are past changes in macroe-
conomic variables such as interest rates, inflation, dividend yield (Dt/Pt−1),
price earnings ratio, output growth, and term premium (the difference in
yield of a high-grade and a low-grade bond such as AAA rated minus BAA
rated bonds).

For individual stocks the relevant stock market regression is the capital
asset pricing model (CAPM), augmented with potential predictors:

Ri,t+1 = ai + b1i x1t + b2i x2t + · · · + bki xkt + �i Rt+1 + εi,t+1 (11.6)

where Ri,t+1 is the holding period return on asset i (shares of firm i), defined
similarly as Rt+1. The asset-specific regressions (Equation 11.6) could also
include firm specific predictors, such as Rit or its higher order lags, book-
to-market value or size of firm i . Under market efficiency, as characterized
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by CAPM,

ai = 0, b1i = b2i = · · · · = bki = 0

and only the “betas,” �i , will be significantly different from zero. Under
CAPM, the value of �i captures the risk of holding the share i with respect to
the market.

11.6 Market Efficiency and Stock Market Predictability

It is often argued that if stock markets are efficient then it should not be
possible to predict stock returns, namely, that none of the variables in the stock
market regression (Equation 11.4) should be statistically significant. Some
writers have even gone so far as to equate stock market efficiency with the non-
predictability property. But this line of argument is not satisfactory and does
not help in furthering our understanding of how markets operate. The concept
of market efficiency needs to be defined separately from predictability. In fact,
it is easily seen that stock market returns will be nonpredictable only if market
efficiency is combined with risk neutrality.

11.6.1 Risk Neutral Investors

Suppose there exists a risk free asset such as a government bond with a known
payout. In such a case an investor with an initial capital of $At is faced with
two options:

Option 1: Hold the risk-free asset and receive

$
(
1 + r f

t
)

At

at the end of the next period.
Option 2: Switch to stocks by purchasing At/Pt shares, hold them for one

period and expect to receive

$ ( At/Pt) ( Pt+1 + Dt+1)

at the end of period t + 1.
A risk-neutral investor will be indifferent between the certainty of $(1 +

r f
t ) At, and his/her expectations of the uncertain payout of option 2. Namely,

for such a risk neutral investor(
1 + r f

t
)

At = E [( At/Pt) ( Pt+1 + Dt+1) |�t ] (11.7)

where �t is the investor’s information at the end of period t. This relationship
is called the “arbitrage condition.” Using Equation 11.5 we now have

Pt+1 + Dt+1 = Pt(1 + Rt+1)
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and the above arbitrage condition can be simplified to

E [(1 + Rt+1) |�t ] = (
1 + r f

t
)

or

E
(
Rt+1 − r f

t |�t
) = 0. (11.8)

This result establishes that if the investor forms his/her expectations of future
stock (index) returns taking account of all market information efficiently, then
the excess return, Rt+1 −r f

t , should not be predictable using any of the market
information that is available at the end of period t. Notice that r f

t is known
at time t and is therefore included in �t. Hence, under the joint hypothesis of
market efficiency and risk neutrality we must also have E (Rt+1 |�t ) = r f

t .
The above set up can also be used to derive conditions under which asset

prices can be characterized as a random walk model. Suppose, the risk free
rate, r f

t , in addition to being known at time t, is also constant over time and
given by r f . Then using Equation 11.7 we can also write

Pt =
(

1
1 + r

)
E [( Pt+1 + Dt+1) |�t ]

or

Pt =
(

1
1 + r f

)
[E ( Pt+1 |�t ) + E (Dt+1 |�t )] .

Under the rational expectations hypothesis and assuming that the “transver-
sality condition”

lim
j→∞

(
1

1 + r f

) j

E
(
Pt+ j |�t

) = 0

holds we have the familiar result

Pt =
∞∑
j=1

(
1

1 + r f

) j

E
(
Dt+ j |�t

)
(11.9)

that equates the level of stock price to the present discounted stream of the
dividends expected to occur to the asset over the infinite future. The transver-
sality condition rules out rational speculative bubbles and is satisfied if the
asset prices are not expected to rise faster than the exponential decay rate
determined by the discount factor, 0 < 1/(1 + r f ) < 1. It is now easily seen
that if Dt follows a random walk so will Pt. For example, suppose

Dt = Dt−1 + εt (11.10)

where εt is a white noise process. Then

E
(
Dt+ j |�t

) = Dt
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and

Pt = Dt

r f
(11.11)

Therefore, we also have

Pt = Pt−1 + ut (11.12)

where ut = εt/r f .
The random walk property holds even if r f = 0, since in such a case it would

be reasonable to expect no dividends are also paid out, namely Dt = 0. In this
case the arbitrage condition becomes

E ( Pt+1 |�t ) = Pt (11.13)

which is satisfied by the random walk model but is in fact more general
than the random walk model. An asset price that satisfies Equation 11.13 is
a martingale process. Random walk processes with zero drift are martingale
processes but not all martingale processes are random walks. For example,
the price process

Pt+1 = Pt + �
{
(�Pt+1)2 − E

[
(�Pt+1)2 |�t

]} + εt

where εt is a white noise process, is a martingale process with respect to the
information set �t, but it is clearly not a random walk process, unless � = 0.

Other modifications of the random walk theory is obtained if it is assumed
that dividends follow a geometric random walk which is more realistic than
the linear dividend model assumed in Equation 11.10. In this case

Dt+1 = Dt exp(�d + �d	t+1) (11.14)

where �d and �d are the mean and standard deviation of the growth rate of
the dividends. If it is further assumed that 	t+1 |�t is N(0, 1), we have

E
(
Dt+ j |�t

) = Dt exp
(

j�d + 1
2

j�2
d

)
Using this result in Equation 11.9 now yields [ assuming that (1 + r f )−1 exp
(�d + 1

2 �2
d ) < 1]

Pt = Dt



(11.15)

where


 = (1 + r f ) exp
(

−�d − 1
2

�2
d

)
− 1
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The condition (1 + r f )−1 exp
(
�d + 1

2 �2
d

)
< 1 ensures that the infinite sum in

Equation 11.9 is convergent and 
 > 0 . Under this set up ln( Pt) = ln(Dt) −
ln(
), and

ln( Pt) = ln( Pt−1) + �d + �d	t (11.16)

which establishes that in this case it is log prices that follow the random walk
model. This is a special case of the statistical model of return, (Equation 11.1),
discussed in Section 11.3, where �t = �d , and �t = �d .

There are, however, three different types of empirical evidence that shed
doubt on the empirical validity of the present value model under risk neu-
trality.

1. The model predicts a constant price-dividend ratio for a large class of
the dividend processes. Two prominent examples, the linear and the ge-
ometric random walk models, (Equations 11.10 and 11.14) are discussed
earlier. For more general dividend processes the price-dividend ratio,

t = Pt/Dt, could be time-varying, but it must be mean-reverting, in
the sense that shocks to prices and dividends must eventually cancel
out. In reality, the price-dividend ratio varies considerably over time,
shows a high degree of persistence, and in general it is not possible to
reject the hypothesis that the processes for 
t or ln(
t) contain a unit
root. For the Shiller data discussed in Subsection 11.4.2 the autocor-
relation coefficient of the log dividend to price ratio computed over
the period 1871m1 to 2009m9 is 0.994 (0.024) and falls very gradu-
ally as its order is increased and amounts to 0.879 (0.111) at the lag
order 12.

2. We have already established that under risk neutrality excess returns
must not be predictable. See Equation 11.8. Yet there is ample evidence
of excess return predictability at least in periods of high market volatility.
For example, it is possible to explain 15% of the variations in monthly
excess returns on SP500 over the period 1872m2 to 2009m9 by running
a linear regression of the excess return on a constant and its 12 lagged
values — namely, by a univariate AR(12) process. This figure rises to
19% if we exclude the 1929 stock market crash and focus on the post-1948
period. See also the references cited in Subsection 11.7.1.

3. To derive the geometric random walk model of asset prices
(Equation 11.16) from the present value model under risk neutrality, we
have assumed that innovations to the dividend process are normally
distributed. This implies that innovations to asset returns must also be
normally distributed. But the empirical evidence discussed in Section
11.4 clearly shows that innovations to asset returns tend to be fat-tailed,
and often significantly depart from normality. This anomaly between the
theory and the evidence is also difficult to reconcile. Under the present
value model prices will have fat-tailed innovations only if the divi-
dends that drive asset prices are also fat-tailed. But under the geometric
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random walk model for dividends (Equation 11.14), E
(
Dt+ j |�t

)
need

not exist if the dividend innovations, 	t, are fat-tailed. One important
example arises when 	t has the Student t distribution as defined by
Equation 11.3. For the derivation of the present value expression in this
case we need E(exp(�d	t+ j )), which is the moment generating func-
tion of 	t+ j evaluated at �d . But the Student t distribution does not
have a moment generating function, and hence the present value for-
mula cannot be computed when innovations to the dividends are t
distributed.

11.6.2 Risk Averse Investors

In addition to the above documented empirical shortcomings, it is also impor-
tant to note that risk neutrality is a behavioral assumption and need not hold
even if all market information is processed efficiently by all the market partici-
pants. A more reasonable way to proceed is to allow some or all of the investors
to be risk averse. In this more general case the certain pay out, (1+r f

t ) At, and
the expectations of the uncertain pay out, E [( At/Pt) ( Pt+1 + Dt+1) |�t ], will
not be the same and differ by a (possibly) time-varying risk premium which
could also vary with the level of the initial capital, At. More specifically, we
have

E [( At/Pt) ( Pt+1 + Dt+1) |�t ] = (
1 + r f

t
)

At + �t At

where �t is the premium per $ of invested capital required (expected) by the
investor. It is now easily seen that

E
(
Rt+1 − r f

t |�t
) = �t

and it is no longer necessarily true that under market efficiency excess returns
are nonpredictable. The extent to which excess returns can be predicted will
depend on the existence of a historically stable relationship between the risk
premium, �t , and the macro and business cycle indicators such as changes in
interest rates, dividends, and various business cycle indicators.

In the context of the consumption capital asset pricing model �t is deter-
mined by the ex ante correlation of excess returns and changes in the marginal
utility of consumption. In the case of a representative consumer with the sin-
gle period utility function, u(ct), the first-order intertemporal optimization
condition (the Euler equation) is given by

E
[(

Rt+1 − r f
t
)u′(ct+1)

u′(ct)
|�t

]
= 0 (11.17)
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where ct denotes the consumer’s real consumption in period t. Using the
above condition it is now easily seen that4

�t = −
Cov

[
Rt+1, u′(ct+1)

u′(ct)
|�t

]
E

[
u′(ct+1)
u′(ct)

|�t

] = −Cov [Rt+1, u′(ct+1) |�t ]
E [u′(ct+1) |�t ]

For a power utility function, u(ct) = (c1−�
t − 1)/(1 − �), and u′(ct+1)/u′(ct) =

exp(−�� ln(ct+1)), where � > 0 is the coefficient of relative risk aversion. In
this case �t is given by

�t = − Cov
[
Rt+1, exp(−�� ln(ct+1)) |�t

]
E

[
exp(−�� ln(ct+1)) |�t

] . (11.18)

This result shows that the risk premium depends on the covariance of asset
returns with the marginal utility of consumption. The premium demanded
by the investor to hold the stock is higher if the return on the asset co-varies
positively with consumption. The extent of this co-variation depends on the
magnitude of the risk aversion coefficient �. For plausible values of � (in
the range 1–3) and historically observed values of the consumption growth,
we would expect �t to be relatively small, below 1% per annum. However,
using annual observations over relatively long periods one obtains a much
larger estimate for �t. This was first pointed out by Mehra and Prescott (1985)
who found that in the 90 years from 1889 to 1978 the average estimate of �t

in fact amounted to 6.18% per annum, which could only be reconciled with
the theory if one was prepared to consider an implausibly large value for
the relative risk aversion coefficient (in the regions of 30 or 40). The large
discrepancy between the historical estimate of �t based on Rt+1 − r f

t , and
the theory-consistent estimate of �t based on Equation 11.18, is known as the
“equity premium puzzle.” There have been many attempts in the literature to
resolve the puzzle by modifications to the utility function, attitudes toward
risk, allowing for the possibility of rare events, and the heterogeneity in asset
holdings and preferences across consumers. For reviews see Kocherlakota
(2003) and Mehra and Prescott (2003).

But even if the mean discrepancy between E(Rt+1 − r f
t |�t) and �t as given

by Equation 11.18 is resolved, the differences in the higher moments of histor-
ically and theory-based risk premia are likely to be important empirical issues
of concern. It seems difficult to reconcile the high volatility of excess returns
with the low volatility of consumption growth that are observed historically.

4 Let Xt+1 = Rt+1 − r f
t and Yt+1 = u′(ct+1)/u′(ct), and write the Euler equation (Equation 11.17)

as

E [Xt+1Yt+1 |�t ] = 0 = Cov[Xt+1Yt+1|�t] + E [Xt+1 |�t ] E [Yt+1 |�t ] .

Then the required results follow immediately, also noting that r f
t is known at time t and hence

has a zero correlation with u′(ct+1)/u′(ct).
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11.7 Return Predictability and Alternative Versions
of the Efficient Market Hypothesis

In his 1970 review, Fama distinguishes between three different forms of the
EMH:

1. The weak form asserts that all price information is fully reflected in asset
prices, in the sense that current price changes cannot be predicted from
past prices. This weak form was also introduced in an unpublished
paper by Roberts (1967).

2. The semi-strong form that requires asset price changes to fully reflect all
publicly available information and not only past prices.

3. The strong form that postulates that prices fully reflect information even
if some investor or group of investors have monopolistic access to some
information.

Fama regarded the strong form version of the EMH as a benchmark against
which the other forms of market efficiencies are to be judged. With respect
to the weak form version he concludes that the test results strongly support
the hypothesis, and considered the various departures documented as eco-
nomically unimportant. He reached a similar conclusion with respect to the
semi-strong version of the hypothesis although, as he noted, the empirical
evidence available at the time was rather limited and far less comprehensive
as compared to the evidence on the weak version.

The three forms of the EMH present different degrees whereby public and
private information are revealed in transaction prices. It is difficult to reconcile
all three versions to the mainstream asset pricing theory, and as we shall
see below a closer connection is needed between market efficiency and the
specification of the model economy that underlies it.

11.7.1 Dynamic Stochastic Equilibrium Formulations
and the Joint Hypothesis Problem

Evidence on the semi-strong form of the EMH was revisited by Fama in a
second review of the Efficient Capital Markets published in 1991. By then it
was clear that the distinction between the weak and the semi-strong forms of
the EMH was redundant. The random walk model could not be maintained
either, in view of more recent studies, in particular that of Lo and MacKinlay
(1988).

A large number of studies in the finance literature had confirmed that stock
returns over different horizons (days, weeks, and months) can be predicted
to some degree by means of interest rates, dividend yields and a variety of
macroeconomic variables exhibiting clear business cycle variations. A number
of studies also showed that returns tend to be more predictable the longer the
forecast horizon. While the vast majority of these studies had looked at the US
stock market, an emerging literature has also considered the UK stock market.
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US studies include Balvers, Cosimano, and MacDonald (1990), Breen, Glosten,
and Jagannathan (1989), Campbell (1987), Fama and French (1989), and subse-
quently by Ferson and Harvey (1993), Kandel and Stambaugh (1996), Pesaran
and Timmermann (1994), and Pesaran and Timmermann (1995). See Granger
(1992) for a survey of the methods and results in the literature. UK studies af-
ter 1991 included Clare, Thomas, and Wickens (1994), Clare, Psaradakis, and
Thomas (1995), Black and Fraser (1995), and Pesaran and Timmermann (2000).

Theoretical advances over Samuelson’s seminal paper by Leroy (1973), Ru-
binstein (1976), and Lucas (1978) also made it clear that in the case of risk
averse investors tests of predictability of excess returns could not on their
own confirm or falsify the EMH. The neoclassical theory cast the EMH in the
context of dynamic stochastic (general) equilibrium models and showed that
excess returns weighted by marginal utility could be predictable. Only un-
der risk neutrality, where marginal utility was constant, did the equilibrium
condition imply the nonpredictability of excess returns.

As Fama (1991) noted in his second review, the test of the EMH involved
a joint hypothesis — market efficiency and the underlying equilibrium as-
set pricing model. He concluded that “Thus, market efficiency per se is not
testable” (see p. 1575). This did not, however, mean that market efficiency
was not a useful concept. Almost all areas of empirical economics are subject
to the joint hypotheses problem.

11.7.2 Information and Processing Costs and the EMH

The EMH, in the sense of asset “prices fully reflect all available information”
was also criticized by Grossman and Stiglitz (1980) who pointed out that
there must be “sufficient profit opportunities, i.e. inefficiencies, to compensate
investors for the cost of trading and information-gathering.”

Only in the extreme and unrealistic case where all information and trading
costs are zero would one expect prices to fully reflect all available information.
But if information is in fact costless it would be known even before market
prices are established.

As Fama recognized a weaker and economically more sensible version of
the efficiency hypothesis would be needed, namely, “prices reflect informa-
tion to the point where the marginal benefits of acting on information (the
profits to be made) do not exceed the marginal costs.” This in turn makes the
task of testing the market efficiency even more complicated and would require
equilibrium asset pricing models that allowed for information and trading
costs in markets with many different traders and with nonconvergent beliefs.

In view of these difficulties some advocates of the EMH have opted for a
trade-based notion, and define markets as efficient if it would not be pos-
sible for the investors “. . . to earn above-average returns without accepting
above-average risks” (Malkiel 2003, see p. 60). This notion can take account
of information and transaction costs and does not involve testing joint hy-
potheses. But this is far removed from the basic idea of markets as efficient
allocators of capital investment across countries, industries, and firms.
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Beating the market as a test of market efficiency also poses new challenges.
Whilst it is certainly possible to construct trading strategies (inclusive of trans-
action costs) with Sharpe ratios that exceed those of the market portfolios ex
post, such evidence is unlikely to be convincing to the advocates of the EMH.
It could be argued that they are carried out with the benefit of hindsight,
and are unlikely to be repeated in real time. In this connections the following
considerations would need to be born in mind:

1. Data mining/data snooping (Pesaran and Timmermann 2005).
2. Structural change and model instability (choice of observation window).
3. The positive relationship that seems to exist between transaction costs

and predictability.
4. Market volatility and learning.
5. The “Beat the market” test is not that helpful either in shedding light

on the nature and the extent of market inefficiencies. A more structural
approach would be desirable.

11.8 Theoretical Foundations of the EMH

At the core of the EMH lies the following three basic premises:

1. Investor rationality: It is assumed that investors are rational, in the sense
that they correctly update their beliefs when new information is avail-
able.

2. Arbitrage: Individual investment decisions satisfy the arbitrage condi-
tion, and trade decisions are made guided by the calculus of the subjec-
tive expected utility theory à la Savage.

3. Collective rationality: Differences in beliefs across investors cancel out in
the market.

To illustrate how these premises interact, suppose that at the start of period
(day, week, month) t there are Nt traders (investors) that are involved in acts
of arbitrage between a stock and a safe (risk-free) asset. Denote the one-period
holding returns on these two assets by Rt+1 and r f

t , respectively. Following
a similar line of argument as in Subsection 11.6.2, the arbitrage condition for
trader i is given by

Ê i
(
Rt+1 − r f

t |�i t
) = �i t + �i t

where Ê i
(
Rt+1−r f

t |�i t
)

is his/her subjective expectations of the excess return,
Rt+1 − r f

t taken with respect to the information set

�i t = �i t ∪ �t
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where �t is the component of the information that is publicly available, �i t > 0
represents trader’s risk premium, and �i t > 0 is her/his information and
trading costs per unit of funds invested. In the absence of information and
trading costs, �i t can be characterized in terms of the trader’s utility function,
ui (cit), where ct is his/her real consumption expenditure during the period t
to t + 1, and is given by

�i t = Ê i
(
Rt+1 − r f

t |�i t
) = −Ĉovi (mi,t+1, Rt+1|�i t)

Ê i (mi,t+1|�i t)

where Ĉovi (. |�i t ) is the subjective covariance operator condition on the
trader’s information set, �i t, mi,t+1 = �i u′

i (ci,t+1)/u′
i (cit), which is known

as the “stochastic discount factor,” u′
i (.) is the first derivative of the utility

function, and �i is his/her discount factor.
The expected returns could differ across traders due to the differences in

their perceived conditional probability distribution function of Rt+1 − r f
t , the

differences in their information sets, �i t, the differences in their risk prefer-
ences, and/or endowments. Under the rational expectations hypothesis

Ê i
(
Rt+1 − r f

t |�i t
) = E

(
Rt+1 − r f

t |�i t
)

where E
(
Rt+1 − r f

t |�i t
)

is the “true” or “objective” conditional expectation.
Furthermore, in this case

E
[
Ê i

(
Rt+1 − r f

t |�i t
) |�t

] = E
[
E

(
Rt+1 − r f

t |�i t
) ∣∣�t

]
and since �t ⊂ �i t we have

E
[
Ê i

(
Rt+1 − r f

t |�i t
) |�t

] = E
(
Rt+1 − r f

t

∣∣�t
)

Therefore, under the REH, taking expectations of the individual arbitrage
conditions with respect to the public information set yields

E
(
Rt+1 − r f

t |�t
) = E (�i t + �i t |�t )

which also implies that E (�i t + �i t |�t ) must be the same across all i , or

E
(
Rt+1 − r f

t |�t
) = E (�i t + �i t |�t ) = 
t , for all i

where 
t is an average market measure of the combined risk premia and
transaction costs. The REH combined with perfect arbitrage ensures that dif-
ferent traders have the same expectations of �i t + �i t. Rationality and market
discipline override individual differences in tastes, information processing
abilities, and other transaction related costs and renders the familiar repre-
sentative agent arbitrage condition:

E
(
Rt+1 − r f

t |�t
) = 
t. (11.19)
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This is clearly compatible with trader-specific �i t and �i t, so long as

�i t = �t + εi t , E (εi t |�t ) = 0
�i t = �t + υi t , E (υi t |�t ) = 0

where εi t and υi t are distributed with mean zero independently of �t, and �t

and �t are known functions of the publicly available information.
Under this setting the extent to which excess returns can be predicted will

depend on the existence of a historically stable relationship between the risk
premium, �t , and the macro and business cycle indicators such as changes in
interest rates, dividends, and various other indicators.

The rational expectations hypothesis is rather extreme, and is unlikely to
hold at all times in all markets. Even if one assumes that in financial markets
learning takes place reasonably fast, there will still be periods of turmoil where
market participants will be searching in the dark, trying and experimenting
with different models of Rt+1 − r f

t often with marked departures from the
common rational outcomes, given by E(Rt+1 − r f

t |�t).
Herding and correlated behavior across some of the traders could also lead

to further departures from the equilibrium RE solution. In fact the objective
probability distribution of Rt+1 − r f

t might itself be affected by market trans-
actions based on subjective estimates Ê i

(
Rt+1 − r f

t |�i t
)
.

Market inefficiencies provide further sources of stock market predictability
by introducing a wedge between a “correct” ex ante measure E(Rt+1 − r f

t |�t),
and its average estimate by market participants, which we write as

Nt∑
i=1

wit Ê i
(
Rt+1 − r f

t |�i t
)

where wit is the market share of the ith trader.
Let


̄wt =
Nt∑

i=1

wit Ê i
(
Rt+1 − r f

t |�i t
) − E

(
Rt+1 − r f

t |�t
)

and note that it can also be written as (since
Nt∑

i=1
wit = 1)


̄wt =
Nt∑

i=1

wit
i t (11.20)

where


i t = Ê i
(
Rt+1 − r f

t |�i t
) − E

(
Rt+1 − r f

t |�t
)
. (11.21)


i t measures the degree to which individual expectations differ from the cor-
rect (but unobservable) expectations, E(Rt+1 − r f

t |�t). A nonzero 
i t could
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arise from individual irrationality, but not necessarily so. Rational individu-
als faced with an uncertain environment, costly information and limitations
on computing power could rationally arrive at their expectations of future
price changes that with hindsight differ from the correct ones.5 A nonzero 
i t

could also arise due to disparity of information across traders (including in-
formation asymmetries), and heterogeneous priors due to model uncertainty
or irrationality. Nevertheless, despite such individual deviations, 
̄wt which
measures the extent of market or collective inefficiency, could be quite negli-
gible. When Nt is sufficiently large, individual “irrationality” can cancel out at
the level of the market, so long as 
i t, i = 1, 2, . . . , Nt are not cross sectionally
strongly dependent, and no single trader dominates the market, in the sense
that wit = O(N−1

t ) at any time.6 Under these conditions at each point in time,
t, the average expected excess returns across the individual traders converges
in quadratic means to the expected excess return of a representative trader,
namely, we have

Nt∑
i=1

wit Ê i
(
Rt+1 − r f

t |�i t
) q .m.→ E

(
Rt+1 − r f

t |�t
)
, as Nt → ∞.

In such periods the representative agent paradigm would be applicable and
predictability of excess return will be governed solely by changes in business
cycle conditions and other publicly available information.7

However, in periods where traders’ individual expectations become
strongly correlated (say, as the result of herding or common over-reactions to
distressing news) 
̄wt need not be negligible even in thick markets with many
traders; and market inefficiencies and profitable opportunities could prevail.
Markets could also display inefficiencies without exploitable profitable op-
portunities if 
̄wt is nonzero but there is no stable predictable relationship
between 
̄wt and business cycle or other variables that are observed publicly.

The evolution and composition of 
̄wt can also help in shedding light on
possible bubbles or crashes developing in asset markets. Bubbles tend to
develop in the aftermath of technological innovations that are commonly
acknowledged to be important, but with uncertain outcomes. The emerg-
ing common beliefs about the potential advantages of the new technology
and the difficulties individual agents face in learning how to respond to the
new investment opportunities can further increase the gap between average
market expectations of excess returns and the associated objective rational

5 This is in line with the premise of the recent paper by Angeletos, Lorenzoni, and Pavan (2010)
who maintain the axiom of rationality, but allow for dispersed information and the possibility
of information spillovers in the financial markets to explain market inefficiencies.

6 Concepts of weak and strong cross-section dependence are defined and discussed in Chudik,
Pesaran, and Tosetti (2010).

7 The heterogeneity of expectations across traders can also help in explaining large trading vol-
ume observed in the financial markets; a feature that has proved difficult to explain in rep-
resentative agent asset pricing models. But see Scheinkman and Xiong (2003) who relate the
occurrence of bubbles and crashes to changes in trading volume.
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expectations outcome. Similar circumstances can also prevail during a crash
phase of the bubble when traders tend to move in tandem trying to reduce
their risk exposures all at the same time. Therefore, one would expect that
during bubbles and crashes the individual errors, 
i t, to become more corre-
lated, such that the average errors, 
̄wt, are no longer negligible. In contrast, at
times of market calm the individual errors are likely to be weakly correlated,
with the representative agent rational expectations model being a reasonable
approximation.

More formally note that since r f
t and Pt are known at time t, then


i t = Ê i

(
Pt+1 + Dt+1

Pt
|�i t

)
− E

(
Pt+1 + Dt+1

Pt
|�t

)
.

Also, to simplify the exposition, assume that the length of the period t is
sufficiently small so that dividends are of secondary importance and


i t ≈ Ê i (� ln( Pt+1) |�i t ) − ft,

where ft = E (� ln( Pt+1) |�t ) is the unobserved price change expectations.
Individual deviations, 
i t, could then become strongly correlated if individual
expectations Ê i (� ln( Pt+1) |�i t ) differ systematically from ft. For example,
suppose that

Ê i (� ln( Pt+1) |�i t ) = �i t� ln( Pt),

but ft = 0, namely, in the absence of heterogeneous expectations � ln( Pt+1)
would have been unpredictable with a zero mean. Then it is easily seen that

̄wt = �̄wt� ln( Pt), where �̄wt = �

Nt
i=1wit�i t. It is clear that 
̄wt need not converge

to zero if in period t the majority of market participants believe future price
changes are positively related to past price changes, so that limNt→∞ �̄wt > 0.
In this simple example price bubbles or crashes occur when �̄wt becomes
positive over a relatively long period.

It should be clear from the above discussion that testing for price bub-
bles requires disaggregated time series information on individual beliefs and
unobserved price change expectations, ft. Analysis of aggregate time series
observations can provide historical information about price reversals and
some of their proximate causes. But such information is unlikely to provide
conclusive evidence of bubble formation and its subsequent collapse. Survey
data on traders’ individual beliefs combined with suitable market proxies for
ft are likely to be more effective in empirical analysis of price bubbles.

An individual investor could be asked to respond to the following two
questions regarding the current and future price of a given asset:

1. Do you believe the current price is (a) just right (in the sense that the
price is in line with market fundamentals), (b) is above the fundamental
price, or (c) is below the fundamental price?

2. Do you expect the market price next period to (a) stay about the level it
is currently, (b) fall, or (c) rise?
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In cases where the market is equilibrating we would expect a close associa-
tion between the proportion of respondents who select 1a and 2a, 1b and 2b,
and 1c and 2c. But in periods of bubbles (crashes) one would expect a large
proportion of respondents who select 1b (1c) to also select 2c (2b).

In situations where the equilibrating process is well established and com-
monly understood, the second question is redundant. For example, if an in-
dividual states that the room temperature is too high, it will be understood
that he/she would prefer less heating. The same is not applicable to finan-
cial markets and hence responses to both questions are needed for a bet-
ter understanding of the operations of the markets and their evolution over
time.

11.9 Exploiting Profitable Opportunities in Practice

In financial markets the EMH is respected but not worshipped. It is recog-
nized that markets are likely to be efficient most of the time but not all the
time. Inefficiencies could arise particularly during periods of important insti-
tutional and technological changes. It is not possible to know when and where
market inefficiencies arise in advance — but it is believed that they will arise
from time to time. Market traders love volatility as it signals news and change
with profit possibilities to exploit. Identification of exploitable predictability
tend to be fully diversified across markets for bonds, equities, and foreign
exchange. Misalignments across markets for different assets and in different
countries often present the most important opportunities. Examples include
statistical arbitrage and global macro arbitrage trading rules.

Predictability and market liquidity are often closely correlated; less liquid
markets are likely to be more predictable. Market predictability and liquid-
ity need to be jointly considered in developing profitable trading strategies.
Return forecasting models used in practice tend to be recursive and adaptive
along the lines developed in Pesaran and Timmermann (1995) and recently
reviewed in Pesaran and Timmermann (2005). The recursive modeling (RM)
approach is also in line with the more recent developments in behavioral
finance. The RM approach aims at minimizing the effect of hindsight and
data snooping (a problem that afflicts all ex post return regressions), and is
explicitly designed to take account of the potential instability of the return re-
gressions over time. For example, Pesaran and Timmermann (1995) find that
the switching trading rule manages to beat the market only during periods of
high volatility where learning might be incomplete and markets inefficient.

Pesaran and Timmermann (2005) provide a review of the recursive model-
ing approach, its use in derivation of trading rules, and discuss a number of
practical issues in their implementation such as the choice of the universe of
factors over which to search, choice of the estimation window, how to take
account of measurement and model uncertainty, how to cross validate the
RM, and how and when to introduce model innovations.
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The RM approach still faces many challenges ahead. As Pesaran and Tim-
mermann (2005) conclude:

Automated systems reduce, but do not eliminate, the need for discretion in
real time decision making. There are many ways that automated systems can
be designed and implemented. The space of models over which to search is
huge and is likely to expand over time. Different approximation techniques
such as genetic algorithms, simulated annealing and MCMC algorithms can
be used. There are also many theoretically valid model selection or model av-
eraging procedures. The challenge facing real time econometrics is to provide
insight into many of these choices that researchers face in the development
of automated systems.

Return forecasts need to be incorporated in sound risk management sys-
tems. For this purpose point forecasts are not sufficient and joint probability
forecast densities of a large number of interrelated asset returns will be re-
quired. Transaction and slippage costs need to be allowed for in the deriva-
tion of trade rules. Slippage arises when long (short) orders, optimally de-
rived based on currently observed prices, are placed in rising (falling) mar-
kets. Slippage can be substantial, and is in addition to the usual transactions
costs.

Familiar risk measures such as the Sharpe ratio and the VaR are routinely
used to monitor and valuate the potential of trading systems. But due to cash
constraint (for margin calls, etc.) it is large drawdowns that are most feared.
Prominent recent examples are the downfall of long-term capital which expe-
rienced substantial drawdowns in 1998 following the Russian financial crisis,
and the collapse of Lehman Brothers during the global financial crisis of 2008.

Successful traders might not be (and usually are not) better in forecasting
returns than many others in the market. What they have is a sense of “big”
opportunities when they are confident of making a “kill.”

11.10 New Research Directions

We have identified two important sources of return predictability and possi-
ble profitable opportunities. One relates to the familiar business cycle effects
and involves modeling 
t, defined by Equation 11.19, in terms of the publicly
available information, �t−1. The second relates to the average deviations of
individual traders’ expectations from the “correct” unknown expectations, as
measured by 
̄wt and defined by Equation 11.20. As noted earlier this compo-
nent could vary considerably over time and need not be related to business
cycle factors. It tends to be large during periods of financial crisis when the
correlation of mispricing across traders rises, and negligible during periods
of market calm when correlations are low. Over the past three decades much
of the research in finance and macroeconomics has focused on modeling of

t, and by comparison little attention has been paid to 
̄wt. This is clearly an
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important area for future research. Our discussions also point to a number of
related areas for further research. There are clearly

• Limits to rational expectations (for an early treatment see (Pesaran
1987), also see the recent paper on “Survey Expectations” by Pesaran
and Weale (2006).

• Limits to arbitrage due to liquidity requirements and institutional
constraints.

• Herding and correlated behavior with noise traders entering markets
during bull periods and deserting during bear periods.

Behavioral finance, complexity theory, and the adaptive markets hypothe-
sis recently advocated by Lo (2004) all try, in one way or another, to address
the above sources of the departures from the EMH. Some of the recent devel-
opments in behavioral finance are reviewed in Baberis and Thaler (2003).

Farmer and Lo (1999) focus on the recent research that views the financial
markets from a biological perspective and, specifically, within an evolutionary
framework in which markets, instruments, institutions, and investors interact
and evolve dynamically according to the “law” of economic selection. Under
this view, financial agents compete and adapt, but they do not necessarily do
so in an optimal fashion.

Special care should also be exercised in evaluation of return predictability
and trading rules. To minimize the effects of hindsight in such an analysis, re-
cursive modeling techniques discussed in Pesaran and Timmermann (1995),
Pesaran and Timmermann (2000), and Pesaran and Timmermann (2005) seem
much more appropriate than the return regressions on a fixed set of regres-
sors/factors that are estimated ex post on historical data.
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12.1 Introduction

The expectations theory of the term structure posits that variables in the infor-
mation set at time t should have no predictive power for excess bond returns.
Consider the predictive regression

rt+h = a + b ′ Zt + eth

where rt+h is excess returns for holding period h, and Zt is a set of predictors.
Conventional tests often reject the null hypothesis that the parameter vector
b is zero. Some suggest that over-rejections may arise if r is stationary and the

313
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variables Z are highly persistent, making inference highly distorted in finite
samples. For this reason, researchers often use finite sample corrections or
the bootstrap to conduct inference. However, it is often the case that robust
inference still points to a rejection of the null hypothesis.

For a long time, the Zs found to have predictive power are often finan-
cial variables such as default premium, term premium, dividend price ratio,
and measures of stock market variability and liquidity. Cochrane and Piazzesi
(2005) find that a linear combination of five forward spreads explains between
30% and 35% of the variation in next year’s excess returns on bonds with ma-
turities ranging from 2 to 5 years. Yet theory suggests that predictive power for
excess bond returns should come from macroeconomic variables. Campbell
(1999) and Wachter (2006) suggest that bond and equity risk premia should
covary with a slow-moving habit driven by shocks to aggregate consump-
tion. Brandt and Wang (2003) argue that risk premia are driven by shocks to
inflation as well as aggregate consumption; notably, both are macroeconomic
shocks.

In an effort to reconcile theory and evidence, recent work has sought to es-
tablish and better understand the relation between excess returns and macroe-
conomic variables. Piazzesi and Swanson (2004) find that the growth of non-
farm payroll employment is a strong predictor of excess returns on federal
funds futures contracts. Ang and Piazzesi (2003) use a no-arbitrage factor
model of the term structure of interest rates that also allows for time-varying
risk premia and finds that the pricing kernel is driven by a few observed
macroeconomic variables and unobserved yield factors. Kozicki and Tinsley
(2005) use affine models to link the term structure to perceptions of monetary
policy. Duffie (2008) finds that an “expectations” factor unrelated to the level
and the slope has strong predictive power for short-term interest rates and
excess returns, and that this expectations factor has a strong inverse relation
with industrial production. Notably, these studies have focused on the rela-
tion between expected excess bond returns, risk premia, and a few selected
macroeconomic variables. The evidence falls short of documenting a direct
relation between expected excess bond returns (bond risk premia) and the
macroeconomy.

In Ludvigson and Ng (2007), we used a new approach. We used a small
number of estimated (static) factors instead of a handful of observed predic-
tors in the predictive regressions, where the factors are estimated from a large
panel of macroeconomic data using the method of asymptotic principal com-
ponents (PCA). Such a predictive regression is a special case of what is known
as a “factor augmented regression” (FAR).1 The factors enable us to substan-
tially reduce the dimension of the predictor set while still being able to use
the information underlying the variables in the panel. Furthermore, our latent
factors are estimated without imposing a no-arbitrage condition or any para-
metric structure. Thus, our testing framework is nonstructural, both from an
economic and a statistical point of view. We find that latent factors associated

1 See Bai and Ng (2008) for a survey on this literature.
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with real economic activity have significant predictive power for excess bond
returns even in the presence of financial predictors such as forward rates and
yield spreads. Furthermore, we find that bond returns and yield risk premia
are more countercyclical when these risk premia are constructed to exploit
information in the factors.

This chapter investigates the robustness of our earlier findings with special
attention paid to how the factors are estimated. We first reestimate the FAR
on a panel of 131 series over a longer sample. As in our previous work,
these (static) factors, denoted f̂ t, are estimated by PCA. We then consider
an alternative set of factor estimates, denoted ĝt, that differ from the PCA
estimates in two important ways. First, we use a priori information to organize
the 131 series into 8 blocks. Second, we estimate a dynamic factor model for
each of the eight blocks using a Bayesian procedure.

Compared with our previous work, we now use information in the large
macroeconomic panel in a different way, and we estimate dynamic factors
using a Bayesian method. It is thus useful to explain the motivation for doing
so. The factors estimated from large panels of data are often criticized for
being difficult to interpret, and organizing the data in blocks (such as output
and price) provides a natural way to name the factors estimated from a block
of data. At this point, we could have used PCA to estimate one static factor
for each block. We could also have estimated dynamic factors using dynamic
principal components, which is frequency-domain based. Whichever princi-
pal components estimator we choose, the estimates will not be precise as the
number of series in each block is no longer 131 but a much smaller number.
Bayesian estimation is more appropriate for the newly organized panels of
data and Bayesian estimation yields a direct assessment of sampling variabil-
ity. Using an estimator that is not principal components based also allows us
to more thoroughly assess whether the FAR estimates are sensitive to how
the factors are estimated. This issue, to our knowledge, has not been investi-
gated in the literature. Notably, the factors that explain most of the variation
in the large macroeconomic panel of data need not be the same as the factors
most important for predicting excess bond returns. Thus for each of the two
sets of factor estimates, namely, f̂ t and ĝt, we consider a systematic search of
the relevant predictors, including an out-of-sample criterion to guard against
overfitting the predictive regression with too many factors. We also assess the
stability of the relation between excess bond returns and the factors over the
sample.

An appeal of FAR is that when N and T are large and
√

T/N tends to zero,
the estimated factors in the FAR can be treated as though they are the true but
latent factors. There is no need to account for sampling error incurred when
the factors are estimated. Numerous papers have studied the properties of the
(static and dynamic)principal components estimators in a forecasting context.2

To date, little is known about the properties of the FAR estimates when
√

T/N
is not negligible. We show that principal components estimation may induce a

2 See, for example, Boivin and Ng (2005).



 

P1: NARESH CHANDRA

November 3, 2010 16:42 C7035 C7035˙C012

316 Handbook of Empirical Economics and Finance

bias in the parameter estimates of the predictive regression and suggest how a
bias correction can be constructed. For our application, this bias is very small.

Our main finding is that macro factors have strong predictive power for
excess bond returns and that this result holds up regardless of which method
is used to estimate the factors. The reason is that both methods are capa-
ble of isolating the factor for real activity, which contributes significantly to
variations in excess bond returns. However, the prior information that per-
mits us to easily give names to the factors also constrains how information
in the large panel is used. Thus, as far as predictability is concerned, the
factors estimated from the large panel tend to be better predictors than the
factors estimated from the eight blocks of data, for the same total number of
series used in estimation. Recursive estimation of the predictive regressions
finds that the macroeconomic factors are statistically significant throughout
the entire sample, even though the degree of predictability varies over the
45 years considered. While the estimated bond and yield risk premia without
the macro factors are acyclical, these premia are countercyclical when the es-
timated factors are used to forecast excess returns. This implies that investors
must be compensated for risks associated with recessions.

Our empirical work is based on a macroeconomic panel that extends the
one used in Stock and Watson (2005), which has since been used in a number
of factor analyses.3 The original data set consists of monthly observations for
132 macroeconomic time series from 1959:1 to 2003:12. We extend their data
to 2007:12 and our panel consists of 131 series. Our empirical work uses data
from 1964:1 to 2007:12.

12.2 Predictive Regressions

For t = 1, . . . T , let r x(n)
t+1 denote the continuously compounded (log) excess

return on an n-year discount bond in period t + 1. Excess returns are defined
as r x(n)

t+1 ≡ r (n)
t+1 − y(1)

t , where r (n)
t+1 is the log holding period return from buying

an n-year bond at time t and selling it as an n − 1 year bond at time t + 1, and
y(1)

t is the log yield on the one-year bond. That is, if p(n)
t is log price of n-year

discount bond at time t, then the log yield is y(n)
t ≡ −(1/n) p(n)

t .
A standard approach to assessing whether excess bond returns are pre-

dictable is to select a set of K predetermined conditioning variables at time t,
given by the K × 1 vector Zt, and then estimate

r x(n)
t+1 = �′ Zt + �t+1 (12.1)

by least squares. For example, Zt could include the individual forward rates
studied in Fama and Bliss (1987), the single forward factor studied in Cochrane
and Piazzesi (2005), or other predictor variables based on a few macroeco-
nomic series. Such a procedure may be restrictive when the number of eligible

3 See, for example, Bai and Ng (2006b) and DeMol, Giannone, and Reichlin (2006).
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predictors is quite large. In particular, suppose we observe a T × N panel of
macroeconomic data with elements xt = (x1t , x2t , . . . xNt)′, t = 1, ..., T , where
the cross-sectional dimension, N, is large, and possibly larger than the number
of time periods, T . The set of eligible predictors consists of the union of xt and
Zt. With standard econometric tools, it is not obvious how a researcher could
use the information contained in the panel because unless we have a way of
ordering the importance of the N series in forming conditional expectations
(as in an autoregression), there are potentially 2N possible combinations to
consider. The regression

r x(n)
t+1 = �′xt + �′ Zt + �t+1 (12.2)

quickly runs into degrees-of-freedom problems as the dimension of xt in-
creases, and estimation is not even feasible when N + K > T .

The approach we consider is to posit that xit has a factor structure so that
if these factors were observed, we would have replaced Equation 12.2 by the
following (infeasible) “factor augmented regression”

r x(n)
t+1 = �′Ft + �′ Zt + �t+1, (12.3)

where Ft is a set of k factors whose dimension is much smaller than that of
xt but has good predictive power for r x(n)

t+1. Equation 12.1 is nested within the
factor-augmented regression, making Equation 12.3 a convenient framework
to assess the importance of xit via Ft, even in the presence of Zt. The Zt that we
will use as benchmark is the forward rate factor used in Cochrane and Piazzesi
(2005). This variable, hereafter referred to as CP, is a simple average of the
one-year yield and four forward rates. These authors find that the predictive
power of forward rates, yield spreads, and yield factors are subsumed in C Pt.
To implement the regression given by Equation 12.3, we need to resolve two
problems. First, Ft is latent and we must estimate it from data. Second, we need
to isolate those factors with predictive power for our variable of interest, r x(n)

t+1.

12.3 Estimation of Latent Factors

The first problem is dealt with by replacing Ft with an estimated value F̂t that
is close to Ft in some well-defined sense, and this involves making precise
a model from which Ft can be estimated. We will estimate two factor mod-
els, one static and one dynamic, using data retrieved from the Global Insight
database and the Conference Board. The data are collected to incorporate as
many series as that used in Stock and Watson (2005). However, one series
(ao048) is no longer available on a monthly basis after 2003. Accordingly,
our new data set consists of 131 series from 1959:1 to 2007:12, though our
empirical analysis starts in 1964:1 because of availability of the bond yield
data. As in the original Stock and Watson data, some series need to be trans-
formed to be stationary. In general, real variables are expressed in growth
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rates, first differences are used for nominal interest rates, and second log dif-
ferences are used for prices. The data description is given in appendix. This
data can be downloaded from our Web site http://www.econ.nyu.edu/user/
ludvigsons/Data&ReplicationFiles.zip.

12.3.1 Static Factors

Let N be the number of cross-section units and T be the number of time series
observations. For i = 1, . . . N, t = 1, . . . T , a static factor model is defined as

xit = �′
i ft + eit. (12.4)

In factor analysis, eit is referred to as the idiosyncratic error and �i are the factor
loadings. This is a vector of weights that unit i put on the corresponding r
(static) common factors ft. In finance, xit is the return for asset i in period t,
ft is a vector of systematic risk, �i is the exposure to the risk factors, and eit is
the idiosyncratic returns. Although the model specifies a static relationship
between xit and ft, ft itself can be a dynamic vector process that evolves
according to

A(L) ft = ut,

where A(L) is a polynomial (possibly of infinite order) in the lag operator.
The idiosyncratic error eit can also be a dynamic process, and eit can also be
cross-sectionally correlated.

We estimate ft using the method of asymptotic principal components (PCA)
originally developed by Connor and Korajzcyk (1986) for a small T large N
environment. Letting ”hats“ denote estimated values, the T × r matrix f̂ is√

T times the r eigenvectors corresponding to the r largest eigenvalues of the
T × T matrix xx′/(T N) in decreasing order with f̂ ′ f̂ = Ir . The normalization
is necessary as the matrix of factor loadings � and f are not separately iden-
tifiable. The normalization also yields �̂ = x′ f̂ /T . Intuitively, for each t, f̂ t is
a linear combinations of each element of the N × 1 vector xt = (x1t , ..., xNt)′,
where the linear combination is chosen optimally to minimize the sum of
squared residuals xt − � ft. Bai and Ng (2002) and Stock and Watson (2002a)
showed that the space spanned by ft can be consistently estimated by f̂ t

defined as above when N, T → ∞. The number of static factors in xt can be
determined by the panel information criteria developed in Bai and Ng (2002).
For the panel of 131 series under investigation, the I C2 criterion finds eight
factors over the full sample of 576 observations (with the maximum number
of factors set to 20).

A common criticism of the method of principal components estimator is
that the factors can be difficult to interpret. Our interpretation of the factors is
based on the marginal R2s, obtained by regressing each of the 131 series on the
eight factors, one at a time. Because the factors are mutually uncorrelated, the
marginal R2 is also the explanatory power of the factor in question holding
other factors fixed. Extending the sample to include three more years of data



 

P1: NARESH CHANDRA

November 3, 2010 16:42 C7035 C7035˙C012

A Factor Analysis of Bond Risk Premia 319

did not change our interpretation of the factors. Figures 12.1 through 12.8
show the marginal R-square statistics from regressing the series number given
on the x-axis onto the estimated factor named in the heading. As in Ludvigson
and Ng (2007), f̂ 1 is a real activity factor that loads heavily on employment and
output data. The second factor loads heavily on interest rate spreads, while the
third and fourth factors load on prices. Factor 5 loads on interest rates (much
more strongly than the interest rate spreads). Factor 6 loads predominantly
on the housing variables while factor 7 loads on measures of the money
supply. Factor 8 loads on variables relating to the stock market. Thus, loosely
speaking, factors 5–8 are more strongly related to money, credit, and finance.

While knowing that there are eight factors in the macroeconomic panel is
useful information in its own right, of interest here are not the N variables
xt = (x1t , . . . , xNt)′, but the scalar variable r x(n)

t+1 which is not in xt. Factors that
are pervasive for the large panel of data need not be important for predicting
r x(n)

t+1. For this reason, we make a distinction between Ft ⊂ ft and ft. The
predictive regression of interest is

r x(n)
t+1 = �′

F F̂ t + �′
F Zt + �t+1, (12.5)

which has a vector of generated regressors, F̂ t.
Consistency of �̂F follows from the fact that the difference between f̂ t and

the space spanned by ft vanishes at rate min[N, T], a result established in Bai
and Ng (2002).4 Bai and Ng (2006a) showed that if

√
T/N → 0 as N, T → ∞,

the sampling uncertainty from first-step estimation is negligible. The practical
implication is that standard errors can be computed for the estimates of �F

as though the true Ft were used in the regression. This is in contrast to the
case when F̂t is estimated from a first-step regression with a finite number
of predictors. As shown in Pagan (1984), the standard errors for �̂F in such a
case are incorrect unless they are adjusted for the estimation error incurred
in the first step of Ft.

12.3.2 Dynamic Factors

An advantage of the method of principal components is that it can handle
a large panel of data at little computation cost, one reason being that little
structure is imposed on the estimation. To be convinced that factor augmented
regressions are useful in analyzing economic issues of interest, we need to
show that estimates of the FAR are robust to the choice of the estimator and to
the specification of the factor model. To this end, we consider an alternative
way of estimating the factors with two fundamental differences.

4 It is useful to remark that the convergence rate established in Stock and Watson (2002a) is too
slow to permit consistent estimation of the parameters in Equation 12.5.
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First, we use prior information to organize the data into eight blocks. These
are (1) output, (2) labor market, (3) housing sector, (4) orders and inventories,
(5) money and credit, (6) bond and forex, (7) prices, and (8) stock market.
The largest block is the labor market which has 30 series, while the smallest
group is the stock market block, which only has four series. The advantage
of estimating the factors (which will now be denoted gt) from blocks of data
is that the factor estimates are easy to interpret.

Second, we estimate a dynamic factor model specified as

xit = �′
i (L)gt + exit, (12.6)

where �i (L) = (1 − �i1L − . . . − �is Ls) is a vector of dynamic factor loadings
of order s and gt is a vector of q “dynamic factors” evolving as

�g(L)gt = �gt,

where �g(L) is a polynomial in L of order pG , �gt are i.i.d. errors. Furthermore,
the idiosyncratic component exit is an autoregressive process of order pX so
that

�x(L)exit = �xit.

This is the factor framework used in Stock and Watson (1989) to estimate the
coincident indicator with N = 4 variables. Here, our N can be as large as 30.

The dimension of gt, (which also equals the dimension of �t), is referred to
as the number of dynamic factors. The main distinction between the static and
the dynamic model is best understood using a simple example. The model
xit = �i0gt + �i1gt−1 + eit is the same as xit = �i1 f1t + �i2 f2t with f1t = gt and
f2t = gt−1. Here, the number of factors in the static model is two but there is
only one factor in the dynamic model. Essentially, the static model does not
take into account that ft and ft−1 are dynamically linked. Forni et al. (2005)
showed that when N and T are both large, the space spanned by gt can also be
consistently estimated using the method of dynamic principal components
originally developed in Brillinger (1981). Boivin and Ng (2005) find that static
and dynamic principal components have similar forecast precision, but that
static principal components are much easier to compute. It is an open question
whether to use the static or the dynamic factors in predictive regressions
though the majority of factor augmented regressions use the static factor
estimates. Our results will shed some light on this issue.

We estimate a dynamic factor model for each of the eight blocks. Given
the definition of the blocks, it is natural to refer to g1t as an output factor, g7t

as a price factor, and so on. However, as some blocks have a small number
of series, the (static or dynamic) principal components estimator which as-
sumes that N and T are both large will give imprecise estimates. We therefore
use the Bayesian method of Monte Carlo Markov Chain (MCMC). MCMC
samples a chain that has the posterior density of the parameters as its station-
ary distribution. The posterior mean computed from draws of the chain are
then unbiased for gt. For factor models, Kose, Otrok, and Whiteman (2003)
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use an algorithm that involves inversion of N matrices that are of dimen-
sion T × T , which can be computationally demanding. The algorithms used
in Aguilar and West (2000), Geweke and Zhou (1996), and Lopes and West
(2004) are extensions of the MCMC method developed in Carter and Kohn
(1994) and Fruhwirth-Schnatter (1994). Our method is similar and follows
the implementation in Kim and Nelson (2000) of the Stock–Watson coinci-
dent indicator closely. Specifically, we first put the dynamic factor model into
a state-space framework. We assume pX = pG = 1 and sg = 2 for every block.
For i = 1, . . . Nb (the number of series in block b), let xibt be the observation
for unit i of block b at time t. Given that pX = 1, the measurement equation is

(1 − �biL)xbit = (1 − �biL)(�bi0 + �bi1L + �bi2L2)gbt + �Xbit

or more compactly,

x∗
bit = �∗

i (L)gbt + �Xbit.

Given that pG = 1, the transition equation is

gbt = �gb gbt−1 + �gbt.

We assume �Xbit ∼ N(0, �2
Xbi) and �gb ∼ N(0, �2

gb). We use principal compo-
nents to initialize gbt. The parameters �b = (�b1,. . . ,�b, Nb), �Xb = �Xb1,. . . ,
�Xb, Nb are initialized to zero. Furthermore, �Xb = (�Xb1,. . . ,�Xb, Nb ), �gb , and
�2

gb are initialized to random draws from the uniform distribution. For b =
1,. . . ,8 blocks, Gibbs sampling can now be implemented by successive itera-
tion of the following steps:

1. Draw gb = (gb1, . . . gbT )′ conditional on �b , �Xb, �Xb and the T × Nb data
matrix xb .

2. Draw �gb and �2
gb conditional on gb .

3. For each i = 1, . . . Nb , draw �bi, �Xbi and �2
Xbi conditional on gb and xb .

We assume normal priors for �bi = (�i0, �i1, �i2), �Xbi and �gb . Given con-
jugacy, �bi, �Xbi, �gb , are simply draws from the normal distributions whose
posterior means and variances are straightforward to compute. Similarly, �2

gb

and �2
Xbi are draws from the inverse chi-square distribution. Because the model

is linear and Gaussian, we can run the Kalman filter forward to obtain the con-
ditional mean gbT |T and conditional variance PbT |T . We then draw gbT from its
conditional distribution, which is normal, and proceed backwards to gener-
ate draws gbt|T for t = T − 1, . . . , 1 using the Kalman filter. For identification,
the loading on the first series in each block is set to 1. We take 12,000 draws
and discard the first 2000. The posterior means are computed from every 10th
draw after the burn-in period. The ĝts used in subsequent analysis are the
means of these 1000 draws.

As in the case of static factors, not every gbt need to have predictive power
for excess bond returns. Let Gt ⊂ gt = (g1t , . . . g8t) be those that do. The analog
to Equation 12.5 using dynamic factors is

r x(n)
t+1 = �′

G Ĝt + �′
G Zt + �t+1, (12.7)
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TABLE 12.1

First Order Autocorrelation Coefficients

f̂ t t ĝt t

1 0.767 20.589 −0.361 −6.298
2 0.748 18.085 0.823 22.157
3 −0.239 −2.852 0.877 32.267
4 0.456 7.594 0.660 14.385
5 0.362 6.819 −0.344 −1.635
6 0.422 4.232 0.448 4.552
7 −0.112 −0.672 0.050 0.609
8 0.225 4.526 0.157 2.794

We have now obtained two sets of factor estimates using two distinct method-
ologies. We can turn to an assessment of whether the estimates of the predic-
tive regression are sensitive to how the factors are estimated.

12.3.3 Comparison of f̂t and ĝt

Table 12.1 reports the first order autocorrelation coefficients for ft and gt.
Both sets of factors exhibit persistence, with f̂ 1t being the most correlated
of the eight f̂ t, and ĝ3t being the most serially correlated amongst the ĝt.
Table 12.2 reports the contemporaneous correlations between f̂ and ĝ. The
real activity factor f̂ 1 is highly correlated with the ĝt estimated from output,
labor, and manufacturing blocks. f̂ 2, f̂ 4, and f̂ 5 are correlated with many of
the ĝ, but the correlations with the bond/exchange rate seem strongest. f̂ 3
is predominantly a price factor, while f̂ 8 is a stock market factor. f̂ 7 is most
correlated with ĝ5, which is a money market factor. f̂ 8 is highly correlated
with ĝ8, which is estimated from stock market data.

The contemporaneous correlations reported in Table 12.2 do not give a full
picture of the correlation between f̂ t and ĝt for two reasons. First, the ĝt are not
mutually uncorrelated, and second, they do not account for correlations that
might occur at lags. To provide a sense of the dynamic correlation between f̂

TABLE 12.2

Correlation between f̂ t and gt

ĝ1 ĝ2 ĝ3 ĝ4 ĝ5 ĝ6 ĝ7 ĝ8
Output Labor Housing Mfg. Money Finance Prices Stocks

f̂ 1 0.601 0.903 0.551 0.766 −0.067 0.489 0.126 −0.092
f̂ 2 0.181 −0.120 0.376 0.269 0.095 −0.462 −0.227 0.449
f̂ 3 0.037 0.027 −0.150 −0.010 −0.148 0.144 −0.800 −0.067
f̂ 4 −0.303 0.118 0.253 −0.128 0.185 −0.417 −0.194 0.092
f̂ 5 0.306 0.179 −0.365 0.026 0.046 −0.474 −0.009 0.183
f̂ 6 0.103 −0.140 0.321 0.179 −0.398 0.008 0.050 0.177
f̂ 7 0.064 −0.023 0.125 0.004 0.743 0.088 −0.078 0.100
f̂ 8 −0.241 0.073 −0.023 0.111 −0.057 0.119 −0.052 0.689
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TABLE 12.3

Long Run Correlation between f̂ t and ĝt

ĝ1 ĝ2 ĝ3 ĝ4 ĝ5 ĝ6 ĝ7 ĝ8
Output Labor Housing Mfg. Money Finance Prices Stocks R2

f̂ 1 0.447 0.536 0.215 0.066 −0.008 0.140 −0.002 −0.038 0.953
f̂ 2 0.548 −0.466 0.296 0.299 0.031 −0.536 −0.135 0.266 0.689
f̂ 3 0.100 0.026 −0.152 −0.036 −0.007 0.211 −0.390 −0.026 0.935
f̂ 4 −0.925 0.699 0.491 −0.242 0.004 −0.444 −0.077 −0.064 0.723
f̂ 5 0.682 0.417 −0.624 −0.135 −0.000 −0.488 0.018 0.146 0.790
f̂ 6 0.070 −0.357 0.467 −0.098 −0.294 0.144 0.061 0.100 0.490
f̂ 7 0.226 −0.252 0.136 −0.095 0.540 0.325 −0.080 0.180 0.692
f̂ 8 −0.986 0.447 −0.224 0.167 0.025 0.313 −0.049 0.905 0.797

Reported are estimates of Ar.0, obtained from the regression: f̂ r t = Ar.0 ĝt + ∑p−1
i=1 Ar.i �gt−i + et

with p = 4.

and ĝt, we first standardize f̂ t and ĝt to have unit variance. We then consider
the regression

f̂ r t = a + Ar.0ĝt +
p−1∑
i=1

Ar.i�ĝt−i + eit,

where for r = 1, . . . , 8 and i = 0, . . . , p − 1, Ar.i is a 8 × 1 vector of coefficients
summarizing the dynamic relation between f̂ r t and lags of ĝt. The coefficient
vector Ar.0 summarizes the long-run relation between ĝt and f̂ t. Table 12.3
reports results for p = 4, along with the R2 of the regression. Except for f̂ 6,
the current value and lags of ĝt explain the principal components quite well.
While it is clear that f̂ 1 is a real activity factor, the remaining f̂ s tend to load
on variables from different categories. Tables 12.2 and 12.3 reveal that ĝt and
f̂ t reduce the dimensionality of information in the panel of data in different
ways. Evidently, the f̂ ts are weighted averages of the ĝts and their lags. This
can be important in understanding the results to follow.

12.4 Predictive Regressions

Let Ĥt ⊂ ĥt, where ĥt is either f̂ t or ĝt. Our predictive regression can generi-
cally be written as

r x(n)
t+1 = �′ Ĥt + �′C Pt + �t+1. (12.8)

Equation 12.8 allows us to assess whether Ĥt has predictive power for
excess bond returns, conditional on the information in C Pt. In order to assess
whether macro factors Ĥt have unconditional predictive power for future
returns, we also consider the restricted regression

r x(n)
t+1 = �′ Ĥt + �t+1. (12.9)
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Since F̂ t and Ĝt are both linear combinations of xt = (x1t , . . . xNt)′, say
Ft = q ′

F xt and Gt = q ′
G xt, we can also write Equation 12.8 as

r x(n)
t+1 = �∗′xt + �′C Pt + �t+1

where �∗′ = �′
F q ′

F or �′
Gq ′

G . The conventional regression Equation 12.1 puts
a weight of zero on all but a handful of xit. When Ĥt = F̂t, qF is related to
the k eigenvectors of xx′/(NT) that will not, in general, be numerically equal
to zero. When Ĥt = Ĝt, qG and thus �∗ will have many zeros since each
column of Ĝt is estimated using a subset of xt. Viewed in this light, a factor
augmented regression with PCA down-weights unimportant regressors. A
FAR estimated using blocks of data sets put some but not all coefficients on
xt equal to zero. A conventional regression is most restrictive as it constrains
almost the entire �∗ vector to zero.

As discussed earlier, factors that are pervasive in the panel of data xit need
not have predictive power for r x(n)

t+1, which is our variable of interest. In Lud-
vigson and Ng (2007), Ĥt = F̂ t was determined using a method similar to that
used in Stock and Watson (2002b). We form different subsets of f̂ t, and/or
functions of f̂ t (such as f̂ 2

1t). For each candidate set of factors, F̂t, we regress
r x(n)

t+1 on F̂t and C Pt and evaluate the corresponding in-sample BIC and R̄2.
The in-sample BIC for a model with k regressors is defined as

BICin(k) = �̂2
k + k

log T
T

,

where �̂2
k is the variance of the regression estimated over the entire sample. To

limit the number of specifications we search over, we first evaluate r univariate
regressions of returns on each of the r factors. Then, for only those factors
found to be significant in the r univariate regressions, we evaluate whether
the squared and the cubed terms help reduce the BIC criterion further. We
do not consider other polynomial terms, or polynomial terms of factors not
important in the regressions on linear terms.

In this chapter, we again use the BIC to find the preferred set of factors,
but we perform a systematic and therefore much larger search. Instead of
relying on results from preliminary univariate regressions to guide us to the
final model, we directly search over a large number of models with different
numbers of regressors. We want to allow excess bond returns to be possibly
nonlinear in the eight factors and hence include the squared terms as candi-
date regressors. If we additionally include all the cubic terms, and given that
we have eight factors and CP to consider, we would have over thirteen mil-
lion (227) potential models. As a compromise, we limit our candidate regressor
set to eighteen variables: ( f̂ 1t , . . . , f8t; f̂ 2

1t , . . . , f 2
8t; f̂ 3

1t , C Pt). We also restrict
the maximum number of predictors to eight. This leads to an evaluation of
106,762 models.5

5 This is obtained by considering C18, j for j = 1, . . . , 8, where Cn,k denotes choosing k out of n
potential predictors.
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The purpose of this extensive search is to assess the potential impact on
the forecasting analysis of fishing over large numbers of possible predictor
factors. As we show, the factors chosen by the larger, more systematic, search
are the same as those chosen by the limited search procedure used in Lud-
vigson and Ng (2007). This suggests that data mining does not in practice
unduly influence the findings in this application, since we find that the same
few key factors always emerge as important predictor variables regardless of
how extensive the search is.

It is well known that variables found to have predictive power in-sample
do not necessarily have predictability out of sample. As discussed in Hansen
(2008), in-sample overfitting generally leads to a poor out-of-sample fit. One
is less likely to produce spurious results based on an out-of-sample crite-
rion because a complex (large) model is less likely to be chosen in an out-
of-sample comparison with simple models when both models nests the true
model. Thus, when a complex model is found to outperform a simple model
out of sample, it is stronger evidence in favor of the complex model. To this
end, we also find the best among 106,762 models as the minimizer of the
out-of-sample BIC. Specifically, we split the sample at t = T/2. Each model
is estimated using the first T/2 observations. For t = T/2 + 1, . . . , T , the
values of predictors in the second half of the sample are multiplied into the
parameters estimated using the first half of the sample to obtain the fit, de-
noted r̂ xt+12. Let ẽt = r xt+12 − r̂ xt+12 and �̃2

k = 1
T/2

∑T
t=T/2+1 ẽ2

t be the out-of-
sample error variance corresponding to model j . The out-of-sample BIC is
defined as

BICout( j) = log �̃2
j + dim j log(T/2)

T/2
,

where dim j is the size of model j . By using an out-of-sample BIC selection
criterion, we guard against the possibility of spurious overfitting. Regressors
with good predictive power only over a subsample will not likely be chosen.
As the predictor set may differ depending on whether the CP factor is in-
cluded (i.e., whether we consider Equations 12.8 and 12.9), the two variable
selection procedures are repeated with CP excluded from the potential pre-
dictor set. Using the predictors selected by the in- and the out-of-sample BIC,
we reestimate the predictive regression over the entire sample. In the next
section, we show that the predictors found by this elaborate search are the
same handful of predictors found in Ludvigson and Ng (2007) and that these
handful of macroeconomic factors have robust significant predictive power
for excess bond returns beyond the CP factor.

We also consider as predictor a linear combination of ĥt along the lines of
Cochrane and Piazzesi (2005). This variable, denoted Ĥ8t is defined as �̂′ĥ+

t
where �̂ is obtained from the following regression:

1
4

5∑
n=2

r xn
t+1 = �0 + �′ĥ+

t , (12.10)
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with ĥ+
t = (ĥ1t , . . . , ĥ8t , ĥ3

1t). The estimates are as follows:

ht = f̂ t ht = ĝt

�̂ t�̂ �̂ t�̂

h1 −1.681 −4.983 0.053 0.343
h2 0.863 3.009 −1.343 −2.593
h3 −0.018 −0.203 −0.699 −1.891
h4 −0.626 −2.167 0.628 1.351
h5 −0.264 −1.463 −0.001 −0.012
h6 −0.720 −2.437 −0.149 −0.691
h7 −0.426 −2.140 −0.018 −0.210
h8 0.665 3.890 −0.418 −2.122
h3

1 0.115 3.767 0.049 1.733
cons 0.900 2.131 0.764 1.518

R̄2 0.261 0.104

Notice that we could also have replaced ĥt in the above regression with Ĥt,
where Ĥt comprises predictors selected by either the in- or the out-of-sample
BIC. However, Ĥ8t is a factor-based predictor that is arguable less vulnerable
to the effects of data mining because it is simply a linear combination of all
the estimated factors.

Tables 12.4 to 12.7 report results for maturities of 2, 3, 4, and 5 years. The
first four columns of each table are based on the static factors (i.e., Ĥt = F̂ t),
while columns 5 to 8 are based on the dynamic factors (i.e., Ĥt = Ĝt). Of
these, columns 1, 2, 5, and 6 include the CP variable, while columns 3, 4, 7,
and 8 do not include the CP. Columns 9 and 10 report results using F̂ 8 with
and without CP and columns 11 and 12 do the same with Ĝ8 in place. Our
benchmark is a regression that has the CP variable as the sole predictor. This
is reported in last column, i.e., column 13.

12.4.1 Two-Year Returns

As can be seen from Table 12.4, the CP alone explains 0.309 of the variance
in the 2-year excess bound returns. The variable F̂ 8 alone explains 0.279 (col-
umn 10), while Ĝ8 alone explains only 0.153 of the variation (column 12).
Adding F̂ 8 to the regression with the CP factor (column 9) increases R̄2 to
0.419, and adding Ĝ8 (column 11) to CP yields an R̄2 of 0.401. The macroeco-
nomic factors thus have nontrivial predictive power above and beyond the
CP factor.

We next turn to regressions when both the factors and CP are included. In
Ludvigson and Ng (2007), the static factors f̂ 1t , f̂ 2t , f̂ 3t , f̂ 4t , f̂ 8t, and CP are
found to have the best predictive power for excess returns. The in-sample
BIC still finds the same predictors to be important, but adds f̂ 6t and f̂ 2

5t to
the predictor list. It is, however, noteworthy that some variables selected by
the BIC have individual t statistics that are not significant. The resulting model
has an R̄2 of 0.460 (column 1). The out-of-sample BIC selects smaller models
and finds f̂ 1, f̂ 8, f̂ 2

5, f̂ 3
1, and the CP to be important regressors (column 2).
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t
+

�
′ C

P t
+

� t
+1

Ĥ
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Ĥ

2 2
-

-
-

-
-

−0
.1

00
-

-
-

-
-

-
-

ts
ta

t
-

-
-

-
-

−2
.1

47
-

-
-

-
-

-
-

Ĥ
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Ĥ

=
Ĝ
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Ĥ

6
−0

.6
68

-
−0

.8
89

−0
.8

89
-

-
−0

.6
05

-
-

-
-

-
-

ts
ta

t
−2

.1
60

-
−2

.5
22

−2
.4

49
-

-
−2

.3
33

-
-

-
-

-
-

Ĥ
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Ĥ

2 6
-

-
-

-
−0

.2
31

−0
.2

27
−0

.2
19

−0
.1

89
-

-
-

-
-

ts
ta

t
-

-
-

-
−6

.9
23

−9
.8

11
−4

.3
75

−3
.2

48
-

-
-

-
-

Ĥ
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Ĥ

3 1
0.

13
1

0.
08

1
0.

14
2

0.
14

8
0.

03
7

-
0.

03
6

-
-

-
-

-
-

ts
ta

t
3.

43
6

1.
48

3
3.

93
8

3.
60

2
1.

96
4

-
1.

59
9

-
-

-
-

-
-

C
P

1.
11

5
1.

15
8

-
-

1.
23

8
1.

21
9

-
-

0.
95

5
-

1.
15

0
-

1.
23

5
ts

ta
t

6.
07

7
7.

02
8

-
-

7.
82

1
8.

19
7

-
-

4.
76

5
-

6.
41

7
-

8.
22

4
Ĥ
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Among the dynamic factors, ĝ2 (labor market), ĝ8 (stock market), ĝ2
6 (bonds

and foreign exchange) along with CP are selected by both BIC procedures
as predictors (columns 5 and 6). Interestingly, the output factor ĝ1 is not sig-
nificant when the CP is included. The out-of-sample BIC has an R̄2 of 0.407,
showing that there is a substantial amount of variation in the 2-year excess
bond returns that can be predicted by macroeconomic factors. The in-sample
BIC additionally selects ĝ3t, ĝ6t and some higher-order terms with an R̄2 of
0.477. Thus, predictive regressions using f̂ t and ĝt both find a factor relating
to real activity ( f̂ 1t or ĝ1t) and one relating to the stock market ( f̂ 8t or ĝ18) to
have significant predictive power for 2-year excess bond returns.

Results when the regressions do not include the CP variable are in columns
3, 4, 7, and 8. Evidently, f̂ 2 is now important according to both the in- and
out-of-sample BIC, showing that the main effect of CP is to render f̂ 2 redun-
dant. Furthermore, the out-of-sample BIC now selects a model that is only
marginally more parsimonious than that selected by the in-sample BIC. The
regressions with F̂ alone have an R̄2 of 0.283 and 0.258, respectively, slightly
less than what is obtained with CP as the only regressor.

Regressions based on the dynamic factors are qualitatively similar. The
factors ĝ1, ĝ3, and ĝ4, found not to be important when CP is included are now
selected as relevant predictors when CP is dropped. Without CP, the dynamic
factors selected by the in-sample BIC explain 0.2 of the 1-year-ahead variation
in excess bond returns, while the more parsimonious model selected by the
out-of-sample BIC has an R̄2 of 0.192. These numbers are lower than what we
obtain in columns (3) and (4) using F̂ t as predictors.

It is important to stress that we consider the two sets of factor estimates
not to perform a horse race of whether the PCA or the Bayesian estimator
is better. The purpose instead is to show that macroeconomic factors have
predictive power for excess bond returns irrespective of the way we estimate
the factors. Although the precise degree of predictability depends on how the
factors are estimated, a clear picture emerges. At least 20% of the variation in
excess bound returns can be predicted by macroeconomic factors even in the
presence of the CP factor.

12.4.2 Longer Maturity Returns and Overview

Tables 12.5 to 12.7 report results for returns with maturity of 3, 4, and 5 years.
Most of the static factors found to be useful in predicting r x(2)

t+1 by the in-sample
BIC remain useful in predicting the longer maturity returns. These predictors
include f̂ 1t , f̂ 4t , f̂ 6t , f̂ 7t , f̂ 8t , f̂ 3

1t, and CP. Of these, f̂ 1t , f̂ 8t , and CP are also
selected by the out-of-sample BIC procedure. The nonlinear term f̂ 3

1t is an
important predictor in equations for all maturity returns except the 5 years.
The factors add at least 10 basis points to the R̄2 with CP as the sole predictor.

The dynamic factors found important in explaining 2-year excess return
are generally also relevant in regressions for longer maturity excess returns.
The in-sample BIC finds ĝ2t , ĝ3t , ĝ8t , ĝ2

4t , ĝ2
6t along with the CP to be important
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FIGURE 12.9

Adjusted R-squares, with CP. Fin and Gin are the R̄2 from rolling estimation of Equation 12.8,
with predictors selected by the in-sample BIC. Fout and Gout use predictors selected by the
out-of-sample BIC. F8 and G8 use a linear combination of eight factors as predictors, where the
weights are based on Equation 12.10.

in regressions of all maturities. The output factor is again not significant in
regressions with 3- and 4-year maturities. It is marginally significant in the
5-year maturity, but has the wrong sign. While ĝ8 was relevant in the 2-year
regression, it is not an important predictor in the regressions for longer ma-
turity returns. The out-of-sample BIC finds dynamic factors from the labor
market (ĝ2t), the bond and foreign exchange markets (ĝ6t). Together, these
factors have incremental predictive power for excess bond returns over CP,
improving the R̄2 by slightly less than 10 basis points.

The relevance of macroeconomic variables in explaining excess bond re-
turns is reinforced by the results in columns 10 and 12, which show that a
simple linear combination of the eight factors still adds substantial predictive
power beyond the CP factor. This result is robust across all four maturities
considered, noting that the coefficient estimate on Ĥ8 increases with the hold-
ing period without changing the statistical significance of the coefficient.

To see if the predictability varies over the sample, we also consider rolling
regressions. Starting with the first regression that spans the sample 1964:1
to 1974:12, we add 12 monthly observations each time and record the R̄2.
Figure 12.9 shows the R̄2 for regressions with CP included. Apart from a
notable drop around the 1983 recession, R̄2 is fairly constant. Figure 12.10
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FIGURE 12.10
Adjusted R-squares, without CP. Fin and Gin are the R̄2 from rolling estimation of (8), with
predictors selected by the in-sample BIC. Fout and Gout use predictors selected by the out-of-
sample BIC. F8 and G8 use a linear combination of eight factors as predictors, where the weights
are based on (10).

depicts the R̄2 for regressions without CP. Notice that the R̄2 that corresponds
to F̂ 8t tends to be 15 basis points higher than Ĝ8t. As noted earlier, each of
the eight f̂ t is itself a combination of the current and lags of the eight ĝt.
This underscores the point that imposing a structure on the data to facilitate
interpretation of the factors comes at the cost of not letting the data find the
best predictive combination possible.

The results reveal that the estimated factors consistently have stronger pre-
dictive power for one- and multi-year ahead excess bond returns. The most
parsimonious specification has just two variables — Ĥ8 and C Pt — explain-
ing over 40% of the variation in r xn

t+1 of every maturity. A closer look reveals
that the real activity factor f̂ 1t is the strongest factor predictor, both numeri-
cally and statistically. As ĝ1t tends not to be selected as predictor, this suggests
that the part of f̂ 1t that has predictive power for excess bond returns is de-
rived from real activity other than output. However, the dynamic factors ĝ2t

(labor market) and ĝ3t (housing) have strong predictive power. Indeed, f̂ 1t

is highly correlated with ĝ2t and the coefficients for these predictors tend to
be negative. This means that excess bond returns of every maturity are coun-
tercyclical, especially with the labor market. This result is in accord with the
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models of Campbell (1999) and Wachter (2006), which posit that forecasts of
excess returns should be countercyclical because risk aversion is low in good
times and high in recessions. We will subsequently show that yield risk pre-
mia, which are based on forecasts of excess returns, are also countercyclical.

12.5 Inference Issues

The results thus far assume that N and T are large and that
√

T/N tends to
zero. In this section, we first consider the implication for factor augmented
regressions when

√
T/N may not be small as is assumed. We then examine

the finite sample inference issues.

12.5.1 Asymptotic Bias

If excess bond returns truly depend on macroeconomic factors, then consis-
tent estimates of the factors should be better predictors than the observed
variables because these are contaminated measures of real activity.6 An ap-
pealing feature of PCA is that if

√
T/N → 0 as N, T → ∞, then F̂t can be

treated in the predictive regression as though it were Ft. To see why this is
the case, consider again the infeasible predictive regression, dropping the
observed predictors Wt for simplicity. We have

r xn
t+1 = �+′

F Ft + �t+1

= �′
F F̂t + �′

F (HFt − F̂t) + �t+1,

where �F = �H−1, and H is a r × r matrix defined in Bai and Ng (2006a). Let
SF̂ F̂ = T−1 ∑T

t=1 F̂t F̂ ′
t . Then

√
T(�̂F − �F ) = Ŝ−1

F̂ F̂

(
1√
T

T∑
t=1

F̂t�t+1

)
+ S−1

F̂ F̂

(
1√
T

T∑
t=1

F̂t(HFt − F̂t)
)

�F .

(12.11)
But T−1 F̂ ′(F H′− F̂ ) = Op(min[N, T]−1), a result that follows from Bai (2003).
Thus if

√
T/N → 0, the second term is negligible. It follows that

√
T(�̂F − �F )

d−→N(0, Avar(�̂F )),

where

Avar(�̂F ) = plim S−1
F̂ F̂

Âvar(gt)S−1
F̂ F̂

,

Âvar(gt) is an estimate of the asymptotic variance of gt+1 = �̂t+1 F̂t.

6 Moench (2008) finds that factors estimated from a large panel of macroeconomic data explain
the short rate better than output and inflation.
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Consider now the case when
√

T is comparable to N. Although the first
term on the right-hand side of Equation 12.11 is mean zero, the second term
is a Op(1) random variable that may not be mean zero. This generates a bias
in the asymptotic distribution for �̂F .

PROPOSITION 12.1 Suppose assumptions A–E of Bai and Ng (2006a) hold and
let F̂ t ⊂ f̂ t , where f̂ t are the principal component estimates of ft, xit = �′

it ft + eit.
Let �̂F be obtained from least squares estimation of the FAR yt+h = �′

F F̂ t + et+h.
An estimate of the bias in �̂F is

B̂1 ≈ −S−1
F̂ F̂

(
1

NT

T∑
t=1

̂Avart( F̂ t)
)

�̂F ,

where Avart(Ft) = V−1�tV−1, V is a r × r diagonal matrix of the eigenvalues of
(N · T)−1xx′, and �t = lim

N→∞
N−1 ∑N

i=1
∑N

j=1 E(�i �
′
j eite jt). Let �̂B

F = �̂F − B̂1 be

the biased corrected estimate. Then
√

T(�̂B
F − �F )

d−→N
(

0, Avar(�̂F )
)

.

The asymptotic variance for the bias corrected estimator is the same as �̂F .
Proposition 1 makes use of the fact that

1
T

T∑
t=1

F̂ t(HFt − F̂ t)′ = 1
T

T∑
t=1

( F̂ t − HFt)(HFt − F̂ t)′ + HFt(HFt − F̂ t)

= −E
[

1
T

T∑
t=1

( F̂ t − HFt)(HFt − F̂ t)′
]

+ o p(1)

= − 1
NT

T∑
t=1

Avar( F̂ t) + o p(1).

The estimation of Avart( F̂ t) was discussed in Bai and Ng (2006a). If E(e2
it) = �2

for all i and t, Avart(Ft) is the same for all t. Although �t will depend on t if eit

is heteroskedastic, a consistent estimate of �t can be obtained for each t when
the errors are not cross-sectionally correlated, i.e., E(eite jt) = 0. Alternatively,
if E(eite jt) = �i j �= 0 for some or all t, panel data permit an estimate of
Avar( F̂ t) that does not depend on t even when the eit are cross-sectionally
correlated. This estimator of �t, referred to as CS-HAC in Bai and Ng (2006a),
will be used later.

As this result on bias is new, we consider a small Monte Carlo experiment
to gauge the magnitude of the bias as N and T changes. We consider a model
with r = 1 and 2 factors. We assume �i ∼ N(0, 1) and Ft ∼ N(0, 1). These are
only simulated once. Samples of xit = �i Ft +eit and yt = �′Ft +�t are obtained
by simulating eit ∼ �N(0, 1) and �t ∼ N(0, 1) for i = 1, . . . N, t = 1, . . . T . We
let � = 1 when r = 1 and � = (1, 2) when r = 2. We consider three values of �.
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The smaller � is, the more informative are the data for the factors. The results
are as follows:

Estimated Bias for �̂1

DGP: yt = F ′
t � + �t , xit = �i Ft + eit

� = 1 � = 4

r = 1 T = 50 100 200 500 50 100 200 500

N = 50 −0.025 −0.020 −0.022 −0.019 −0.171 −0.156 −0.210 −0.242
100 −0.009 −0.009 −0.009 −0.012 −0.107 −0.107 −0.115 −0.138
200 −0.004 −0.004 −0.005 −0.004 −0.058 −0.058 −0.068 −0.071
500 −0.002 −0.002 −0.002 −0.002 −0.024 −0.030 −0.031 −0.034

r = 2
50 0.014 −0.035 0.026 0.017 0.002 −0.244 −0.077 −0.124

100 −0.020 0.003 −0.018 −0.020 0.116 −0.170 −0.056 −0.158
200 −0.010 0.001 0.007 −0.009 −0.104 −0.036 0.077 −0.092
500 −0.005 0.002 −0.004 0.001 −0.047 −0.043 0.028 0.031

As the true value of � is one, the entries can also be interpreted as percent
bias. For large N and T , the bias is quite small and ignoring the sampling
error in F̂t should be inconsequential. Bias is smaller when T/N = c than
when N/T = c for the same c > 1, confirming that the factors are more
precisely estimated when there are more cross-section units to wash out the
idiosyncratic noise. However, when � is large and the data are uninformative
about the factors, the bias can be well over 10% and as large as 20%. In such
cases, the bias is also increasing in the number of estimated factors.

12.5.2 Bias When the Predictors Are Functions of f̂t

Our predictive regression has two additional complications. First, some of
our predictors are powers of the estimated factors. Second, F̂ 8t is a linear
combination of a subset of f̂ t and f̂ 3

1t, which is a nonlinear function of f̂ 1t. To
see how to handle the first problem, consider the case of the scalar predictor,
m̂t = m( f̂ 1t) and let mt = m(H f1t) where m takes its argument to the power
b. The factor augmented regression becomes

yt = �′
F m̂t + �′

F (mt − m̂t) + �t ,

where �F = �H−b . The required bias correction is now of the form

B2 = S−1
m̂m̂′

(
1
T

T∑
t=1

m̂
(

mt − m̂t

)′
�F

)
.

But since m is continuous in f̂ 1t,

m( f̂ 1t) = m( ft) + m f̂ 1,t( f̂ 1t − H f1t),
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where m f̂ ,t = ∂m̂t

∂ f̂ 1t
| f̂ 1t=H f1t

. We have

m̂t − mt = b(H f1t)b−1( f̂ 1t − H f1t) = Op(min[N, T]−1).

Given the foregoing result, it is then straightforward to show that

T−1
T∑

t=1

m̂t(mt − m̂t)′ =
[

T−1
T∑

t=1

m f̂ 1,tAvar( f̂ 1t)m′
f̂ 1,t

]
+ o p(1).

Extending the argument to the case when mt is a vector leads to the bias
correction

B̂2 = −S−1
m̂m̂′

(
T−1

T∑
t=1

mF̂ ,tAvar( F̂1t)m′
F̂ ,t

)
�F .

Finally, consider the predictive regression

yt = �′
F M̂t + �t ,

where M̂t = �̂0 + �̂′m̂t. The bias can be estimated by

B̂3 = �̂′ B̂2�̂.

In our application, �̂ is obtained from estimation of Equation 12.10.
While in theory, these bias corrections are required only when

√
T/N does

not tend to zero, in finite samples, the bias correction might be desirable even
when

√
T/N is small. We calculate the biased corrected estimates for two

specifications of the predictive regressions. The first is when the predictors
are selected by the in-sample BIC (column 1 of Tables 12.4 to 12.7). As this
tends to lead to a larger model, the bias is likely more important. The second
is when F̂ 8t is used as predictor (column 9 of Tables 12.4 to 12.7), which is the
most parsimonious of our specifications. Note that the observed predictor CP
is not associated with first-step estimation error. As such, this predictor does
not contribute to bias.

Reported in Table 12.8 are results using the CS-HAC, which allows the id-
iosyncratic errors to be cross-sectionally correlated. Results when the errors
are heteroskedastic but cross-sectionally uncorrelated are similar. The results
indicate that the bias is quite small. For the present application, the effect
of the bias correction is to increase the absolute magnitude of the coeffi-
cient estimates in the predictive regressions. The t-statistics (not reported)
are correspondingly larger. The finding that the macroeconomic factors have
predictive power for excess bond returns is not sensitive to the assumption
underlying the asymptotically validity of the FAR estimates.

12.5.3 Bootstrap Inference

According to asymptotic theory, heteroskedasticity and autocorrelation con-
sistent standard errors that are asymptotically N(0, 1) can be used to obtain
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TABLE 12.8

Biased Corrected Estimates: r x(n)
t+1 = a + �′ F̂t + �′C Pt + �t+1

F̂ n = 2 n = 3 n = 4 n = 5

Ĥ1 −0.761 - −1.232 - −1.521 - −1.653 -
�̃ −0.785 - −1.277 - −1.576 - −1.724 -
bias 0.024 - 0.045 - 0.054 - 0.072 -

Ĥ2 - - −0.028 - - - - -
�̃ - - −0.059 - - - - -
bias - - 0.032 - - - - -

Ĥ4 −0.291 - −0.423 - −0.436 - −0.516 -
�̃ −0.307 - −0.454 - −0.472 - −0.564 -
bias 0.016 - 0.031 - 0.036 - 0.048 -

Ĥ6 −0.151 - −0.433 - −0.668 - −0.856 -
�̃ −0.168 - −0.468 - −0.710 - −0.912 -
bias 0.018 - 0.035 - 0.042 - 0.055 -

Ĥ7 −0.128 - −0.338 - −0.534 - −0.686 -
�̃ −0.145 - −0.372 - −0.573 - −0.737 -
bias 0.017 - 0.034 - 0.039 - 0.051 -

Ĥ8 0.240 - 0.389 - 0.578 - 0.702 -
�̃ 0.225 - 0.355 - 0.542 - 0.654 -
bias 0.016 - 0.033 - 0.036 - 0.048 -

Ĥ2
3 - - 0.111 - 0.177 - 0.204 -

�̃ - - 0.114 - 0.181 - 0.209 -
bias - - −0.004 - −0.004 - −0.006 -

Ĥ2
5 −0.080 - - - - - - -

�̃ −0.078 - - - - - - -
bias −0.003 - - - - - - -

Ĥ3
1 0.044 - 0.095 - 0.131 - 0.150 -

�̃ 0.045 - 0.096 - 0.133 - 0.153 -
bias −0.001 - −0.002 - −0.002 - −0.003 -

CP 0.385 0.336 0.760 0.644 1.115 0.955 1.316 1.115
�̃ 0.381 0.343 0.760 0.660 1.108 0.980 1.306 1.147
bias 0.004 −0.007 – −0.016 0.007 −0.026 0.010 −0.032

Ĥ8 - 0.332 - 0.588 - 0.777 - 0.938
�̃ - 0.342 - 0.607 - 0.802 - 0.972
bias - −0.010 - −0.019 - −0.025 - −0.035

Note: The bias unadjusted estimates are reported in columns 1 and 9 of Tables 12.4 to 12.7,
respectively.
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Ĥ

7
−0

.1
28

−0
.0

04
(−

0.
28

5
0.

02
7)

(−
0.

25
8

−0
.0

10
)

(−
0.

00
8

0.
01

1)
(−

0.
00

7
0.

00
9)

Ĥ
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Ĥ

2 3
0.

20
4

0.
00

0
(−

0.
05

9
0.

49
1)

(−
0.

01
7

0.
41

9)
(0

.0
00

0.
00

2)
(0

.0
01

0.
00

2)
Ĥ
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robust t-statistics for the in-sample regressions. Moreover, provided
√

T/N
goes to zero as the sample increases, the F̂t can be treated as observed regres-
sors, and the usual t-statistics are valid (Bai and Ng 2006a). To guard against
inadequacy of the asymptotic approximation in finite samples, we consider
bootstrap inference in this section.

To proceed with a bootstrap analysis, we need to generate bootstrap sam-
ples of r x(n)

t+1, and thus the exogenous predictors Zt (here just C Pt), as well
as of the estimated factors F̂t. Bootstrap samples of r x(n)

t+1 are obtained in two
ways: first by imposing the null hypothesis of no predictability, and second,
under the alternative that excess returns are forecastable by the factors and
conditioning variables studied above. The use of monthly bond price data to
construct continuously compounded annual returns induces an MA(12) error
structure in the annual log returns. Thus, under the null hypothesis that the
expectations hypothesis is true, annual compound returns are forecastable
up to an MA(12) error structure, but are not forecastable by other predictor
variables or additional moving average terms.

Bootstrap sampling that captures the serial dependence of the data is
straightforward when, as in this case, there is a parametric model for the
dependence under the null hypothesis. In this event, the bootstrap may be
accomplished by drawing random samples from the empirical distribution of
the residuals of a

√
T consistent, asymptotically normal estimator of the para-

metric model, in our application a twelfth-order moving average process. We
use this approach to form bootstrap samples of excess returns under the null.
Under the alternative, excess returns still have the MA(12) error structure in-
duced by the use of overlapping data, but estimated factors F̂t are presumed
to contain additional predictive power for excess returns above and beyond
that implied by the moving average error structure.

To create bootstrapped samples of the factors, we re-sample the T × N
panel of data, xit. For each i , we assume that the idiosyncratic errors eit and
the errors ut in the factor process are AR(1) processes. Least squares esti-
mation of êit = 	i êi t−1 + vit yields the estimates 	̂i and v̂it, t = 2, . . . , T ,
recalling that êit = xit − �̂′

i f̂ t. These errors are then re-centered. To gener-
ate a new panel of data, for each i , v̂it is re-sampled (while preserving the
cross-section correlation structure) to yield bootstrap samples of êit. In turn,
bootstrap values of xit are constructed by adding the bootstrap estimates of
the idiosyncratic errors, êit, to �̂′

i F̂t. Applying the method of principal com-
ponents to the bootstrapped data yields a new set of estimated factors. To-
gether with bootstrap samples of C Pt created under the assumption that it
is an AR(1), we have a complete set of bootstrap regressors in the predictive
regression.

Each regression using the bootstrapped data gives new estimates of the re-
gression coefficients. This is repeated B times. Bootstrap confidence intervals
for the parameter estimates and R̄2 statistics are calculated from B = 10, 000
replications. We compute 90th and 95th percentiles of �̂F and �̂F , as well as the
bootstrap estimate of the bias. This also allows us to compare the adequacy
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of our calculations for asymptotic bias considered in the previous subsection.
The exercise is repeated for 2-, 3-, 4-, and 5-year excess bond returns.

To conserve space, the results in Table 12.9 are reported only for the largest
model (corresponding to column 1 of Tables 12.4 to 12.7). The results based
on bootstrap inference are consistent with asymptotic inference. In particular,
the magnitude of predictability found in the historical data is too large to be
accounted for by sampling error of the size we currently have. The coefficients
on the predictors and factors are statistically different from zero at the 95%
level and are well outside the 95% confidence interval under the null of no
predictability. The bootstrap estimate of the bias on coefficients associated
with the estimated factors are small, and the R̄2 are similar in magnitude to
what was reported in Tables 12.4 to 12.7.

12.5.4 Posterior Inference

In Tables 12.4 to 12.7, we have used the posterior mean of Gt in the predictive
regression computed from 1000 draws (taken from a total of 25,000 draws)
from the posterior distribution of Gt. The �̂ do not reflect sampling uncertainty
about Gt. To have a complete account of sampling variability, we estimate the
predictive regressions for each of the 1000 draws of Gt. This gives us the
posterior distribution for � as well as the corresponding t-statistic.

Reported in Table 12.10 are the posterior mean of �G along with the 5%
and 95% percentage points of the t-statistic. The point estimates reported in
Tables 12.4 to 12.7 are very close to the posterior means. Sampling variability
from having to estimate the dynamic factors has little effect on the estimates
of the factor augmented regressions.

So far we find that macroeconomic factors have nontrivial predictive power
for bond excess returns and that the sampling error induced by F̂ t or Ĝt in
the predictive regressions are numerically small. Multiple factors contribute
to the predictability of excess returns, so it is not possible to infer the cyclical-
ity of return risk premia by observing the signs of the individual coefficients
on factors in forecasting regressions of excess returns. But Tables 12.4 to 12.7
provide a summary measure of how the factors are related to future excess
returns by showing that excess bond returns are high when the linear combi-
nations of all factors, F̂ 8t and Ĝ8t, are high. Figures 12.11 and 12.12 show that
F̂ 8t and Ĝ8t are in turn high when real activity (as measured by industrial
production growth) is low. The results therefore imply that excess returns are
forecast to be high when economic activity is slow or contracting. That is,
return risk premia are countercyclical. This is confirmed by the top panels of
Figures 12.13 and 12.14, which plot return risk premia along with industrial
production growth. The bottom panels of these figures show that the factors
contribute significantly to the countercyclicality of risk-premia. Indeed, when
factors are excluded (but C Pt is included), risk-premia are a-cyclical. Of eco-
nomic interest is whether yield risk-premia are also countercyclical. We now
turn to such an analysis.
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TABLE 12.10

Posterior Mean: r x(n)
t+1 = a + �′Ĝt + �′C Pt + �t+1

F̂ n = 2 n = 3 n = 4 n = 5

Ĥ1 - - - - - - 0.288 -
t.05 - - - - - - 1.275 -
t.95 - - - - - - 1.912 -

Ĥ2 −0.506 - −0.801 - −0.976 - −1.159 -
t.05 −3.676 - −3.239 - −3.140 - −3.099 -
t.95 −2.942 - −2.622 - −2.477 - −2.397 -

Ĥ3 −0.456 - −0.746 - −0.959 - −1.074 -
t.05 −5.335 - −4.749 - −4.616 - −3.302 -
t.95 −4.050 - −3.637 - −3.482 - −3.374 -

Ĥ6 0.139 - - - - - - -
t.05 1.819 - - - - - - -
t.95 1.712 - - - - - - -

Ĥ8 −0.139 - −0.309 - −0.473 - −0.561 -
t.05 −1.872 - −2.366 - −2.622 - −2.523 -
t.95 −1.332 - −1.732 - −1.994 - −1.863 -

Ĥ2
4 −0.070 - −0.183 - −0.253 - −0.348 -

t.05 −2.395 - −2.982 - −2.920 - −3.713 -
t.95 −2.787 - −3.319 - −3.089 - −3.681 -

Ĥ2
6 −0.086 - −0.154 - −0.235 - −0.274 -

t.05 −5.427 - −6.109 - −6.109 - −5.559 -
t.95 −6.629 - −7.223 - −6.838 - −6.138 -

Ĥ2
7 - - 0.087 - 0.146 - 0.178 -

t.05 - - 2.408 - 2.866 - 2.852 -
t.95 - - 2.404 - 3.006 - 2.914 -

Ĥ3
1 0.019 - 0.032 - 0.037 - - -

t.05 2.092 - 2.090 - 1.836 - - -
t.95 2.346 - 2.357 - 2.095 - - -

CP 0.452 0.416 0.845 0.790 1.236 1.155 1.456 1.365
t.05 7.200 6.334 7.285 6.300 7.568 6.348 7.012 5.900
t.95 7.566 6.919 7.641 6.770 7.926 6.760 7.331 6.262

Ĥ8 - 0.428 - 0.712 - 0.867 - 0.959
t.05 - 3.330 - 3.096 - 2.888 - 2.610
t.95 - 4.316 - 4.033 - 3.803 - 3.489

R̄2
0.95 0.471 0.399 0.469 0.403 0.489 0.415 0.448 0.377

R̄2
0.05 0.469 0.397 0.467 0.401 0.488 0.413 0.446 0.375

Note: Reported are the mean estimates when a predictive regression is run
for each draw of Gt . Estimates when the regressors are the posterior
mean of the Gt are reported in columns 5 and 10 of Tables 12.4 to 12.7,
respectively.
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FIGURE 12.11
F8 and IP Growth

12.6 Countercyclical Yield Risk Premia

The yield risk premium or term premium should not be confused with the term
spread, which is simply the difference in yields between the n-period bond
and the one-period bond. Instead, the yield risk premium is a component of
the the n-period yield:

y(n)
t = 1

n
Et

(
y(1)

t + y(1)
t+1 + · · · + y(1)

t+n−1

)
︸ ︷︷ ︸

expectations component

+ �
(n)
t︸︷︷︸

yield risk premium

. (12.12)

Under the expectations hypothesis, the yield risk premium, �
(n)
t , is assumed

constant.
It is straightforward to show that the yield risk premium is identically equal

to the average of expected future return risk premia of declining maturity:

�
(n)
t = 1

n

[
Et

(
r x(n)

t+1

) + Et
(
r x(n−1)

t+2

) + · · · + Et
(
r x(2)

t+n−1

)]
. (12.13)
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G8 and IP Growth.

To form an estimate of the risk premium component in yields, �
(n)
t , we need

estimates of the multistep ahead forecasts that appear on the right-hand side
of Equation 12.13. Denote estimated variables with “hats.” Then

�̂
(n)
t = 1

n

[
Êt

(
r x(n)

t+1

) + Êt
(
r x(n−1)

t+2

) + · · · + Êt
(
r x(2)

t+n−1

)]
, (12.14)

where Êt(·) denotes an estimate of the conditional expectation Et(·) formed
by a linear projection. As estimates of the conditional expectations are simply
linear forecasts of excess returns, multiple steps ahead our earlier results for
the FAR have direct implications for risk premia in yields.

To generate multistep ahead forecasts we estimate a monthly pth-order
vector autoregression (VAR). The idea behind the VAR is that multistep
ahead forecasts may be obtained by iterating one-step ahead linear projec-
tions from the VAR. The VAR vector contains observations on excess returns,
the Cochrane–Piazzesi factor, C Pt and Ĥt, where Ĥt are the estimated factors
(or a linear combination of them). Let

ZU
t ≡ [

r x(5)
t , r x(4)

t , ..., r x(2)
t , C Pt, Ĥ8t

]′
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Return Risk Premia Including F and IP Growth − 5 yr bond
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FIGURE 12.13
Return Risk Premia.

where Ĥ8 is either F̂ 8 or Ĝ8. For comparison, we will also form bond forecasts
with a restricted VAR that excludes the estimated factors, but still includes
C Pt as a predictor variable:

ZR
t ≡ [

r x(5)
t , r x(4)

t , ..., r x(2)
t , C Pt

]′
.
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Return Risk Premia Including G and IP Growth − 5 yr bond
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FIGURE 12.14
Return Risk Premia.

We use a monthly VAR with p = 12 lags, where, for notational convenience,
we write the VAR in terms of mean deviations7:

Zt+1/12 − � = Φ1 (Zt − �) +Φ2(Zt−1/12 − �) +· · ·+Φp(Zt−11/12 − �) +εt+1/12.

(12.15)

7 This is only for notational convenience. The estimation will include the means.
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Let k denote the number of variables in Zt. Then Equation 12.15 can be
expressed as a V AR(1):

�t+1/12 = A�t + vt+1/12, (12.16)

where,

�t+1/12
(kp×1)

≡

⎡⎢⎢⎢⎢⎢⎢⎣
Zt − �

Zt−1/12 − �
·
·
·

Zt−11/12 − �

⎤⎥⎥⎥⎥⎥⎥⎦ vt
(kp×1)

≡

⎡⎢⎢⎢⎢⎢⎢⎣
εt+1/12

0
·
·
·
0

⎤⎥⎥⎥⎥⎥⎥⎦

A
(kp×kp)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ1 Φ2 Φ3 · · Φp−1 Φp

In 0 0 · · 0 0
0 In 0 · · 0 0
· · · · · · ·
· · · · · · ·
· · · · · · ·
0 0 0 · · In 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Multistep ahead forecasts are straightforward to compute using the first-order
VAR:

Et�t+ j/12 = A j �t.

When j = 12, the monthly VAR produces forecasts of 1-year ahead variables,
Et�t+1 = A12�t; when j = 24, it computes 2-year ahead forecasts, and so on.
Define a vector e j that picks out the j th element of �t, i.e., e1′�t ≡ r x(5)

t . In the
notation above, we have e1(kp×1) = [1, 0, 0, . . . , 0]′, e2(kp×1) = [0, 1, 0, . . . , 0]′,
analogously for e3 and e4. Thus, given estimates of the VAR parameters A,
we may form estimates of the conditional expectations on the right-hand side
of Equation 12.14 using the VAR forecasts of return risk premia. For example,
the estimate of the expectation of the 5-year bond, 1 year ahead, is given
by Êt(r x(5)

t+1) = e1′A12�t; the estimate of the expectation of the 4-year bond,
2 years ahead, is given by Êt(r x(4)

t+2) = e2′A24�t, and so on.
Letting Ĥt = F̂ 5t where F̂ 5t is a linear combination of f̂ 1t , f̂ 3

1t , f̂ 3t , f̂ 4t, and
f̂ 8t. we showed in Ludvigson and Ng (2007) that both yield and return risk
premia are more countercyclical and reach greater values in recessions than
in the absence of Ĥt. Here, we verify that this result holds up for different
choices of Ĥt. To this end, we let Ĥt be the static and dynamic factors selected
by the out-of-sample BIC. These two predictor sets embody information in
fewer factors than the ones implied by the in-sample BIC, Ĥ8, or F 5t used
in Ludvigson and Ng (2007). The point is to show that a few macroeconomic
factors are enough to generate an important difference in the properties of risk
premia. Specifically, without F̂ t in ZU

t , the correlation between the estimated
return risk premium and IP growth is −0.014. With F̂ t in ZU

t , the correlation
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is −0.223. These correlations are −0.045 and −0.376 for yield risk premia. With
Ĝt in ZU

t , the correlation of IP growth with return and yield risk premium are
−0.218 and −0.286, respectively. Return and yield risk premia are thus more
countercyclical when the factors are used to forecast excess returns.

Figure 12.15 shows the 12-month moving average of risk-premium compo-
nent of the 5-year bond yield. As we can see, yield risk premia were particu-
larly high in the 1982–1983 recession, as well as shortly after the 2001 recession.
Figure 12.16 shows the yield risk premia estimated with and without using
F̂t to forecast excess returns, while Figure 12.17 shows a similar picture with
and without Ĝt. The difference between the risk premia estimated with and
without the factors is largest around recessions. For example, the yield risk
premium on the 5-year bond estimated using the information contained in F̂ t

or Ĝt was over 2% in the 2001 recession, but it was slightly below 1% without
Ĝt. The return risk premia (not reported) show a similar pattern.

When the economy is contracting, the countercyclical nature of the risk
factors contributes to a steepening of the yield curve even as future short-term
rates fall. Conversely, when the economy is expanding, the factors contribute
to a flattening of the yield curve even as expectations of future short-term
rates rise. This implies that information in the factors is ignored. Too much
variation in the long-term yields is attributed to the expectations component
in recessions. Information in the macro factors are thus important in accurate
decomposition of risk premia, especially in recessions.
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FIGURE 12.15
Yield Risk Premium with and without factors −5 yr bond.
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12.7 Conclusion

There is a good deal of evidence that excess bond returns are predictable by
financial variables. Yet, macroeconomic theory postulates that it is real vari-
ables relating to macroeconomic activity that should forecast bond returns.
This chapter presents robust evidence in support of the theory. Macroeco-
nomic factors, especially the real activity factor, has strong predictive power
for excess bond returns even in the presence of financial predictors. Our analy-
sis consists of estimating two sets of factors and a comprehensive specification
search. We also account for sampling uncertainty that might arise from es-
timation of the factors. While the estimated risk premia without using the
macro factors to forecast excess returns are acyclical, both bond returns and
yield risk premia are countercyclical when the factors are used. The evidence
indicate that investors seek compensation for macroeconomic risks associated
with recessions.
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Data Appendix

This appendix lists the short name of each series, its mnemonic (the series label
used in the source database), the transformation applied to the series, and a
brief data description. All series are from the Global Insights Basic Economics
Database, unless the source is listed (in parentheses) as TCB (The Conference
Board’s Indicators Database) or AC (author’s calculation based on Global
Insights or TCB data). In the transformation column, ln denotes logarithm, �
ln and �2 ln denote the first and second difference of the logarithm, lv denotes
the level of the series, and � lv denotes the first difference of the series. The
data are available from 1959:01 to 1997:12.
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Group 1: Output and Income

No. Gp Short Name Mnemonic Tran Descripton

1 1 PI ypr �ln Personal Income (AR, Bil. Chain 2000 $)
(TCB)

6 1 IP: total ips10 �ln Industrial Production Index–Total Index
7 1 IP: products ips11 �ln Industrial Production Index–Products,

Total
8 1 IP: final prod ips299 �ln Industrial Production Index–Final

Products
9 1 IP: cons gds ips12 �ln Industrial Production Index–Consumer

Goods
10 1 IP: cons dble ips13 �ln Industrial Production Index–Durable

Consumer Goods
11 1 IP: cons nondble ips18 �ln Industrial Production

Index–Nondurable Consumer Goods
12 1 IP: bus eqpt ips25 �ln Industrial Production Index–Business

Equipment
13 1 IP: matls ips32 �ln Industrial Production Index–Materials
14 1 IP: dble matls ips34 �ln Industrial Production Index–Durable

Goods Materials
15 1 IP: nondble matls ips38 �ln Industrial Production

Index–Nondurable Goods Materials
16 1 IP: mfg ips43 �ln Industrial Production

Index–Manufacturing (Sic)
17 1 IP: res util ips307 �ln Industrial Production Index–Residential

Utilities
18 1 IP: fuels ips306 �ln Industrial Production Index–Fuels
19 1 NAPM prodn pmp lv Napm Production Index (Percent)
20 1 Cap util utl11 �lv Capacity Utilization (SIC-Mfg) (TCB)

Group 2: Labor Market

No. Gp Short Name Mnemonic Tran Descripton

21 2 Help wanted indx lhel �lv Index Of Help-Wanted Advertising In
Newspapers (1967=100;Sa)

22 2 Help wanted/emp lhelx �lv Employment: Ratio; Help-Wanted
Ads:No. Unemployed Clf

23 2 Emp CPS total lhem �ln Civilian Labor Force: Employed, Total
(Thous.,Sa)

24 2 Emp CPS nonag lhnag �ln Civilian Labor Force: Employed,
Nonagric.Industries (Thous.,Sa)

25 2 U: all lhur �lv Unemployment Rate: All Workers,
16 Years &

26 2 U: mean duration lhu680 �lv Unemploy.By Duration:
Average(Mean)Duration In Weeks (Sa)

27 2 U < 5 wks lhu5 �ln Unemploy.By Duration: Persons
Unempl.Less Than 5 Wks (Thous.,Sa)
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No. Gp Short Name Mnemonic Tran Descripton

28 2 U 5–14 wks lhu14 �ln Unemploy.By Duration: Persons
Unempl.5 To 14 Wks (Thous.,Sa)

29 2 U 15 + wks lhu15 �ln Unemploy.By Duration: Persons
Unempl.15 Wks + (Thous.,Sa)

30 2 U 15–26 wks lhu26 �ln Unemploy.By Duration: Persons
Unempl.15 To 26 Wks (Thous.,Sa)

31 2 U 27+ wks lhu27 �ln Unemploy.By Duration: Persons
Unempl.27 Wks + (Thous,Sa)

32 2 UI claims claimuii �ln Average Weekly Initial Claims,
Unemploy. Insurance (Thous.) (TCB)

33 2 Emp: total ces002 �ln Employees On Nonfarm Payrolls: Total
Private

34 2 Emp: gds prod ces003 �ln Employees On Nonfarm
Payrolls–Goods-Producing

35 2 Emp: mining ces006 �ln Employees On Nonfarm
Payrolls–Mining

36 2 Emp: const ces011 �ln Employees On Nonfarm
Payrolls–Construction

37 2 Emp: mfg ces015 �ln Employees On Nonfarm
Payrolls–Manufacturing

38 2 Emp: dble gds ces017 �ln Employees On Nonfarm
Payrolls–Durable Goods

39 2 Emp: nondbles ces033 �ln Employees On Nonfarm
Payrolls–Nondurable Goods

40 2 Emp: services ces046 �ln Employees On Nonfarm
Payrolls–Service-Providing

41 2 Emp: TTU ces048 �ln Employees On Nonfarm Payrolls–Trade,
Transportation, And Utilities

42 2 Emp: wholesale ces049 �ln Employees On Nonfarm
Payrolls–Wholesale Trade.

43 2 Emp: retail ces053 �ln Employees On Nonfarm Payrolls–Retail
Trade

44 2 Emp: FIRE ces088 �ln Employees On Nonfarm
Payrolls–Financial Activities

45 2 Emp: Govt ces140 �ln Employees On Nonfarm
Payrolls–Government

(46) 2 Emp-hrs nonag a0m048 �ln Employee Hours In Nonag.
Establishments (AR, Bil. Hours) (TCB)

47 2 Avg hrs ces151 lv Avg Weekly Hrs of Prod or Nonsup
Workers On Private Nonfarm
Payrolls–Goods-Producing

48 2 Overtime: mfg ces155 �lv Avg Weekly Hrs of Prod or Nonsup
Workers On Private Nonfarm
Payrolls–Mfg Overtime Hours

49 2 Avg hrs: mfg aom001 lv Average Weekly Hours, Mfg. (Hours)
(TCB)

50 2 NAPM empl pmemp lv Napm Employment Index (Percent)
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No. Gp Short Name Mnemonic Tran Descripton

129 2 AHE: goods ces275 �2ln Avg Hourly Earnings of Prod or Nonsup
Workers On Private Nonfarm
Payrolls–Goods-Producing

130 2 AHE: const ces277 �2ln Avg Hourly Earnings of Prod or Nonsup
Workers On Private Nonfarm
Payrolls–Construction

131 2 AHE: mfg ces278 �2ln Avg Hourly Earnings of Prod or Nonsup
Workers On Private Nonfarm
Payrolls–Manufacturing

Group 3: Housing

No. Gp Short Name Mnemonic Tran Descripton

51 3 Starts: nonfarm hsfr ln Housing Starts:Nonfarm(1947–58);Total
Farm & Nonfarm(1959–)(Thous.,Saar)

52 3 Starts: NE hsne ln Housing Starts:Northeast (Thous.U.)S.A.
53 3 Starts: MW hsmw ln Housing Starts:Midwest(Thous.U.)S.A.
54 3 Starts: South hssou ln Housing Starts:South (Thous.U.)S.A.
55 3 Starts: West hswst ln Housing Starts:West (Thous.U.)S.A.
56 3 BP: total hsbr ln Housing Authorized: Total New Priv

Housing Units (Thous.,Saar)
57 3 BP: NE hsbne* ln Houses Authorized By Build.

Permits:Northeast(Thou.U.)S.A
58 3 BP: MW hsbmw* ln Houses Authorized By Build.

Permits:Midwest(Thou.U.)S.A.
59 3 BP: South hsbsou* ln Houses Authorized By Build.

Permits:South(Thou.U.)S.A.
60 3 BP: West hsbwst* ln Houses Authorized By Build.

Permits:West(Thou.U.)S.A.

Group 4: Consumption, Orders and Inventories

61 4 PMI pmi lv Purchasing Managers’ Index (Sa)
62 4 NAPM new ordrs pmno lv Napm New Orders Index (Percent)
63 4 NAPM vendor del pmdel lv Napm Vendor Deliveries Index (Percent)
64 4 NAPM Invent pmnv lv Napm Inventories Index (Percent)
65 4 Orders: cons gds a1m008 �ln Mfrs’ New Orders, Consumer Goods

And Materials (Mil. $) (TCB)
66 4 Orders: dble gds a0m007 �ln Mfrs’ New Orders, Durable Goods

Industries (Bil. Chain 2000 $ ) (TCB)
67 4 Orders: cap gds a0m027 �ln Mfrs’ New Orders, Nondefense Capital

Goods (Mil. Chain 1982 $) (TCB)
68 4 Unf orders: dble a1m092 �ln Mfrs’ Unfilled Orders, Durable Goods

Indus. (Bil. Chain 2000 $) (TCB)
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69 4 M&T invent a0m070 �ln Manufacturing And Trade Inventories
(Bil. Chain 2000 $) (TCB)

70 4 M&T invent/sales a0m077 �lv Ratio, Mfg. And Trade Inventories
To Sales (Based On Chain 2000 $)
(TCB)

3 4 Consumption cons-r �ln Real Personal Consumption
Expenditures (AC) (Bill $)
pi031/gmdc

4 4 M&T sales mtq �ln Manufacturing And Trade Sales
(Mil. Chain 1996 $) (TCB)

5 4 Retail sales a0m059 �ln Sales Of Retail Stores (Mil. Chain 2000 $)
(TCB)

132 4 Consumer expect hhsntn �lv U. Of Mich. Index Of Consumer
Expectations(Bcd-83)

Group 5: Money and Credit

No. Gp Short Name Mnemonic Tran Descripton

71 5 M1 fm1 �2ln Money Stock: M1(Curr,Trav.Cks,Dem
Dep,Other Ck’able Dep)(Bil$,Sa)

72 5 M2 fm2 �2ln Money Stock:M2(M1+O’nite
Rps,Euro$,G/P&B/D &
Mmmfs&Sav& Sm Time Dep(Bil$,Sa)

73 5 Currency fmscu �2ln Money Stock: Currency held by the
public (Bil$,Sa)

74 5 M2 (real) fm2-r �ln Money Supply: Real M2,
fm2/gmdc (AC)

75 5 MB fmfba �2ln Monetary Base, Adj For Reserve
Requirement Changes(Mil$,Sa)

76 5 Reserves tot fmrra �2ln Depository Inst Reserves:Total, Adj For
Reserve Req Chgs(Mil$,Sa)

77 5 Reserves nonbor fmrnba �2ln Depository Inst
Reserves:Nonborrowed,Adj Res Req
Chgs(Mil$,Sa)

78 5 C&I loans fclnbw �2ln Commercial & Industrial Loans
Outstanding + NonFin Comm. Paper
(Mil$, SA) (Bci)

79 5 C&I loans fclbmc lv Wkly Rp Lg Com’l Banks:Net Change
Com’l & Indus Loans(Bil$,Saar)

80 5 Cons credit ccinrv �2ln Consumer Credit
Outstanding–Nonrevolving(G19)

81 5 Inst cred/PI ccipy �lv Ratio, Consumer Installment Credit
To Personal Income (Pct.) (TCB)
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Group 6: Bond and Exchange Rates

86 6 Fed Funds fyff �lv Interest Rate: Federal Funds (Effective) (% Per
Annum,Nsa)

87 6 Comm paper cp90 �lv Commercial Paper Rate
88 6 3 mo T-bill fygm3 �lv Interest Rate: U.S.Treasury Bills, Sec

Mkt,3-Mo.(% Per Ann,Nsa)
89 6 6 mo T-bill fygm6 �lv Interest Rate: U.S.Treasury Bills, Sec

Mkt,6-Mo.(% Per Ann,Nsa)
90 6 1 yr T-bond fygt1 �lv Interest Rate: U.S.Treasury Const

Maturities,1-Yr.(% Per Ann,Nsa)
91 6 5 yr T-bond fygt5 �lv Interest Rate: U.S.Treasury Const

Maturities,5-Yr.(% Per Ann,Nsa)
92 6 10 yr T-bond fygt10 �lv Interest Rate: U.S.Treasury Const

Maturities,10-Yr.(% Per Ann,Nsa)
93 6 Aaa bond fyaaac �lv Bond Yield: Moody’s Aaa Corporate (% Per

Annum)
94 6 Baa bond fybaac �lv Bond Yield: Moody’s Baa Corporate (% Per

Annum)
95 6 CP-FF spread scp90F lv cp90-fyff (AC)
96 6 3 mo-FF spread sfygm3 lv fygm3-fyff (AC)
97 6 6 mo-FF spread sfygm6 lv fygm6-fyff (AC)
98 6 1 yr-FF spread sfygt1 lv fygt1-fyff (AC)
99 6 5 yr-FF spread sfygt5 lv fygt5-fyff (AC)
100 6 10 yr-FF spread sfygt10 lv fygt10-fyff (AC)
101 6 Aaa-FF spread sfyaaac lv fyaaac-fyff (AC)
102 6 Baa-FF spread sfybaac lv fybaac-fyff (AC)
103 6 Ex rate: avg exrus �ln United States;Effective Exchange

Rate(Merm)(Index No.)
104 6 Ex rate: Switz exrsw �ln Foreign Exchange Rate: Switzerland (Swiss

Franc Per U.S.$)
105 6 Ex rate: Japan exrjan �ln Foreign Exchange Rate: Japan (Yen Per U.S.$)
106 6 Ex rate: UK exruk �ln Foreign Exchange Rate: United Kingdom

(Cents Per Pound)
107 6 EX rate: Canada exrcan �ln Foreign Exchange Rate: Canada (Canadian

$ Per U.S.$)

Group 7: Prices

108 7 PPI: fin gds pwfsa �2ln Producer Price Index: Finished
Goods (82=100,Sa)

109 7 PPI: cons gds pwfcsa �2ln Producer Price Index: Finished
Consumer Goods (82=100,Sa)

110 7 PPI: int materials pwimsa �2ln Producer Price Index:Intermed
Mat.Supplies &
Components(82=100,Sa)

111 7 PPI: crude matls pwcmsa �2ln Producer Price Index: Crude
Materials (82=100,Sa)

112 7 Spot market price psccom �2ln Spot market price index: bls & crb: all
commodities(1967=100)
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113 7 PPI: nonferrous materials pw102 �2ln Producer Price Index: Nonferrous
Materials (1982=100, Nsa)

114 7 NAPM com price pmcp lv Napm Commodity Prices Index
(Percent)

115 7 CPI-U: all punew �2ln Cpi-U: All Items (82–84=100,Sa)
116 7 CPI-U: apparel pu83 �2ln Cpi-U: Apparel & Upkeep

(82–84=100,Sa)
117 7 CPI-U: transp pu84 �2ln Cpi-U: Transportation

(82–84=100,Sa)
118 7 CPI-U: medical pu85 �2ln Cpi-U: Medical Care (82–84=100,Sa)
119 7 CPI-U: comm. puc �2ln Cpi-U: Commodities (82–84=100,Sa)
120 7 CPI-U: dbles pucd �2ln Cpi-U: Durables (82–84=100,Sa)
121 7 CPI-U: services pus �2ln Cpi-U: Services (82–84=100,Sa)
122 7 CPI-U: ex food puxf �2ln Cpi-U: All Items Less Food

(82–84=100,Sa)
123 7 CPI-U: ex shelter puxhs �2ln Cpi-U: All Items Less Shelter

(82–84=100,Sa)
124 7 CPI-U: ex med puxm �2ln Cpi-U: All Items Less Midical Care

(82–84=100,Sa)
125 7 PCE defl gmdc �2ln Pce, Impl Pr Defl:Pce (2000=100)

(AC) (BEA)
126 7 PCE defl: dlbes gmdcd �2ln Pce, Impl Pr Defl:Pce; Durables

(2000=100) (AC) (BEA)
127 7 PCE defl: nondble gmdcn �2ln Pce, Impl Pr Defl:Pce; Nondurables

(2000=100) (AC) (BEA)
128 7 PCE defl: service gmdcs �2ln Pce, Impl Pr Defl:Pce; Services

(2000=100) (AC) (BEA)

Group 8: Stock Market

No. Gp Short Name Mnemonic Tran Descripton

82 8 S&P 500 fspcom �ln S&P’s Common Stock Price Index:
Composite (1941–43=10)

83 8 S&P: indust fspin �ln S&P’s Common Stock Price Index: &
Industrials (1941–43=10)

84 8 S&P div yield fsdxp �lv S&P’s Composite Common Stock:
Dividend Yield (% Per Annum)

85 8 S&P PE ratio fspxe �ln S&P’s Composite Common Stock:
&Price-Earnings Ratio (%,Nsa)
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13.1 Introduction

Panel data, by blending inter-individual differences and intra-individual dy-
namics, have greater capacity for capturing the complexity of human behav-
ior than data sets with only a temporal or a cross-sectional dimension (e.g.,
Hsiao 2003, 2007). However, typical panels focus on individual outcomes.
Factors affecting individual outcomes are numerous. It is rare that the con-
ditional density of the outcomes, yit, conditional on certain variables, x˜i t, is
independently, identically distributed across individual i and over time, t.
To capture the effects of those omitted factors, empirical researchers often
assume that, in addition to the effects of observed x˜i t, there exist unobserved

373
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individual-specific effects �i and time-specific effects �t. These unobserved
individual-specific and/or time-specific effects, �i and �t, are supposed to
capture the impacts of those omitted variables that vary across individuals
but stay constant over time and the impact of those variables that vary over
time but are the same for all individuals at a given time. They can be either
treated as fixed constants or random variables, respectively called fixed ef-
fects (FE) or random effects (RE) model. The advantage of the FE modeling is
that there is no need to postulate the relationship between the unobserved ef-
fects and the conditioning variables. The disadvantage is that it introduces the
classical “incidental parameter” problems if either the time series dimension
T or cross-sectional dimension, N, is finite (e.g., Neyman and Scott 1948). The
advantage of the random effects modeling is that the number of unknown
parameters stay constant as N and/or T increases. The disadvantage is that
the relationships between the effects and the observed conditional variables
have to be postulated, say, the conditional distribution of the effects given the
observed factors (e.g., Hsiao 2007).

The unobserved heterogeneity across individuals and over time that are
not captured by the included conditional variables could either be mod-
eled additively or multiplicatively. Furthermore, many people believe that
“all interesting economic behavior is inherently dynamic, dynamic mod-
els are the only relevant models” (e.g., Nerlove 2002). However, the esti-
mation of dynamic models with specific effects is a great deal more dif-
ficult than the estimation of nondynamic models because the estimation
of structural parameters (those parameters that are the same across i and
over t) is not independent of the estimation of incidental parameters. For
dynamic models there is also an issue of how to model “initial obser-
vations.”

We set up the basic models in Section 13.2. Since for models involving
incidental parameters the conditions for law of large numbers and central
limit theorems to hold are violated, estimators based on the likelihood prin-
ciple or methods of moments are no longer consistent. Section 13.3 shows the
inconsistency of the maximum likelihood estimator (MLE) or covariance esti-
mator (CV) of structural parameters in the presence of incidental parameters.
Section 13.4 discusses the issues of initial values.

A general principle to obtain consistent estimators for structural param-
eters for models involving incidental parameters is to transform the orig-
inal models into models that no longer involve incidental parameters; in
Sections 13.5 and 13.6 we illustrate the implementation of this principle for
the likelihood and method of moments approach by considering a simple dy-
namic panel data model with additive individual-specific effects. Section 13.7
discusses the estimation of dynamic models with both individual- and time-
specific additive effects. Section 13.8 discusses the estimation with multi-
plicative individual- and time-specific effects. Section 13.9 proposes a test
of additive versus multiplicative effects. Concluding remarks are in
Section 13.10.
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13.2 The Basic Models

We consider a dynamic model of the form1

yit = �yi,t−1 + �˜′x˜i t + vit, |�| < 1, i = 1, . . . , N, t = 1, . . . , T, (13.1)

and the initial values yio are observable. For ease of exposition, we assume
x˜i t is a K × 1 vector of strictly exogenous variables and the error term either
takes the form

vit = �i + �t + �i t (13.2)

or

vit = �i �t + �i t , (13.3)

where �i t is independently, identically distributed with mean 0 and variance
�2

� , and the individual- and time-specific effects �i and �t can be either fixed
or random. When �i and �t are fixed constants, we impose the normaliza-
tion condition

∑N
i=1 �i = 0,

∑T
t=1 �t = 0 and assume lim 1

N

∑N
i=1 �2

i and lim
1
T

∑T
t=1 �2

t are finite positive constants. When �i and �t are random, we assume
that

E�i = E�t = E�i t = 0,

E�i x˜i t = E�tx˜is = Ex˜i t�i t = 0˜,

E�i �t = E�t�is = E�i �i t = 0,

E�i � j =
{

�2
�, if i = j,

0, otherwise.
(13.4)

E�t�s =
{

�2
�, if t = s,

0, otherwise.

E�i t� js =
{

�2
� , if i = j and t = s,

0, otherwise.

The presence of unknown �i introduces serial correlation that does not die out
as T increases. The presence of �t introduces correlation across individuals
that does not die out as N increases.

1 When T is finite, there is no need to restrict |�| < 1 to obtain the asymptotic normality results.
However, for ease of exposition we shall assume |�| < 1.
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13.3 The Maximum Likelihood Estimator (MLE) (or Covariance
Estimators (CV)) in the Presence of Incidental Parameters

Under the assumption that �i t is independent normal and fixed yi0 the MLE
of the FE model Equation 13.1 and Equation 13.2 is equal to(

�̂

�̂˜
)

=
[

N∑
i=1

T∑
t=1

(
y∗2

i,t−1, y∗
i,t−1x˜∗′

i t

x˜∗
i t y∗

i,t−1, x˜∗
i tx˜∗′

i t

)]−1 [
N∑

i=1

T∑
t=1

(
y∗

i,t−1

x˜∗
i t

)
y∗

i t

]
, (13.5)

�̂i = ȳi − �̂ȳi,−1 − �̂˜′
x̄˜i , i = 1, . . . , N, (13.6)

�̂t = ȳt − �̂ȳt−1 − �̂˜′
x̄t˜, t = 1, . . . , T, (13.7)

where y∗
i t = (yit − ȳi − ȳt + ȳ), ȳi = 1

T

∑T
t=1 yit, ȳt = 1

N

∑N
i=1 yit, ȳ = 1

NT

∑N
i=1∑T

t=1 yit, and similarly for ȳt−1, ȳi,−1, x̄˜i
, x̄˜t

, x˜∗
i t , v∗

i t, v̄i , v̄t, and v̄. The FE MLE
of (�, �˜) is also called the covariance estimator because it is equivalent to first
applying covariance transformation to sweep out �i and �t,

y∗
i t = �y∗

i,t−1 + �˜′x˜∗
i t + v∗

i t , (13.8)

then apply the least squares estimator to Equation 13.8. When T is finite, there
are only finite number of yit that contain information about �i and �i increases
with N, the MLE is inconsistent no matter how large N is because �i becomes
incidental parameter. To illustrate this, there is no loss of generality to just
consider the simple case of �˜ = 0, so Equation 13.1 becomes

yit = �yi,t−1 + vit. (13.9)

The MLE of � under the assumption that yi0 are fixed is equal to

�̂cv =
∑N

i=1
∑T

t=1 y∗
i,t−1 y∗

i t∑N
i=1

∑T
t=1 y∗2

i,t−1

(13.10)

The probability limit of �̂cv is equal to (Hahn and Moon 2006; Hsiao and
Tahmiscioglu 2008)

plimN→∞(�̂cv − �) = − 1 + �

T − 1

(
1 − 1

T
1 − �T

1 − �

)
{

1 − 2�

(1 − �)(T − 1)

[
1 − 1 − �T

T(1 − �)

]}−1

. (13.11)

This estimator is biased to the order of (1/T) and the bias is identical indepen-
dent of whether �i and �t are fixed or random and is identical to the case when
�t are 0 for all t. (e.g., Anderson and Hsiao 1981, 1982; Hahn and Kuersteiner
2002; Hahn and Moon 2006; Hsiao and Tahmiscioglu 2008). When T −→ ∞,
the MLE of the FE model is consistent. However, if both N and T go to infinity
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and lim
( N

T

) = c > 0, Hahn and Moon (2006) have shown that
√

NT(�̂cv − �)
is asymptotically normally distributed with mean −√

c(1 + �) and variance
1 − �2. In other words, the usual t-statistic based on �̂cv could be subject to
severe size distortion.

13.4 Issues of Initial Observations

One way to get around incidental parameters problem is to assume �i and �t

random and satisfying Equation 13.4, then the system

y˜i = y˜i,−1� + Xi �˜+ v˜i , i = 1, . . . , N, (13.12)

where y˜′
i = (yi1, . . . , yiT ), y˜′

i,−1 = (yi0, . . . , yi,T−1), v˜′
i = (vi1, . . . , viT ) and Xi is

the T × K matrix of (x˜′
i t), has

Ev˜i = 0˜,

Ev˜i v˜′
i = �2

� IT + �2
�e˜T e˜′

T + �2
� IT ,

Ev˜i v˜′
j = �2

� IT (13.13)

where IT is T rowed identity matrix and e˜T is a T ×1 vector of 1’s. If (�i t , �i , �t)
are normally distributed, and yi0 are fixed constants, the likelihood function is

2�− NT
2 |�|− 1

2 exp
{
−1

2
(y˜− y˜−1� − X�˜)′�−1(y˜− y˜−1� − X�˜)

}
(13.14)

where y˜ = (y˜′
1, . . . , y˜′

N)′, y˜−1 = (y˜′
1,−1, . . . , y˜′

N,−1)′, X = (X′
1, . . . , X′

N)′,

� = �2
� INT + �2

� IN ⊗ e˜T e˜′
T + �2

�e˜Ne˜′
N ⊗ IT (13.15)

and ⊗ denotes the kroecker product. The likelihood function no longer in-
volves incidental parameters and the MLE is consistent and asymptotically
normally distributed either N or T or both tend to infity. Given �2

� , �2
� and �2

�,
the MLE is identical to the generalized least squares estimator (GLS)(

�̃

�̃˜
)

=
[(

y˜′
−1

X′

)
�−1(y˜−1, X)

]−1 [(
y˜′

−1

X′

)
�−1 y˜

]
. (13.16)

However, most panels contain only finite T time series observations. The
starting dates of data collection need not correspond to the starting dates of the
data generating process. There is no reason to believe that the data generating
process of yi0 to be different from the data generating process of yit. If yi0 and
yit are generated from the same process, then Eyi0vit = Eyi0�i = 0 implied
by fixed yi0 assumption cannot hold.
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For ease of notation, we shall assume in this section that �t ≡ 0 ∀t. Con-
tinuous substitution of Equation 13.1 yields

yit = �˜′
t−1∑
j=0

x˜i,t− j �
j + �t yi0 + 1 − �t

1 − �
�i +

t−1∑
j=0

�i,t− j �
j , (13.17)

and

yi0 = 	i0 + vi0, (13.18)

where 	i0 = �˜′ ∑m
j=0 x˜i,− j �

j , vi0 = 1−�m

1−�
�i +

∑m
j=0 �i,− j �

j , assuming the process
started at period −m. Then

Evi0vit = 1 − �m

1 − �
�2

� = c∗ 
= 0. (13.19)

Therefore, conditional on yi0 (or vi0),

y˜i = y˜i,−1� + x′
i �˜+ e˜T (yi0 − 	i0)c∗ + v˜∗

i , i = 1, . . . , N, (13.20)

where v˜∗
i = v˜i − e˜T (yi0 − 	i0)c∗. When T is large, the correlation between yit

and yi0 will approach zero as can be seen from Equation 13.17. When |�| < 1,
asymptotically there is no difference between Equations 13.12 and 13.20, thus
between treating yi0 fixed or yi0 random. However, in finite T , yi,t−1 and yi0
are correlated from Equation 13.17. Regressing yit on yi,t−1 and x˜i t is subject
to omitted variable ((yi0 − 	i0)) bias no matter how large N is.

To obtain consistent estimators of � and �˜, one should either apply GLS to
Equation 13.20 (namely, the conditional system Equation 13.20 conditional on
yi0), or to complete the system by maximizing the joint likelihood function of
(yi0, yi1, . . . , yiT ),

yi0 = 	i0 + vi0,

y˜i = y˜i,−1� + X�˜+ v˜i , i = 1, . . . , N. (13.21)

However, 	i0 depends on x˜i,− j which are unobservable. Treating 	i0 as un-
known parameters again will subject the system Equation 13.21 to incidental
parameters when T is finite and N is large.

To get around the incidental parameters issues, Bhargava and Sargan (1983)
show that if x˜i t is generated by a homogeneous process

x˜i t = a˜+
∑
j=0

B j 
˜i,t− j ,
∑

|B j | < ∞, (13.22)

where 
i,t− j are i.i.d. random variables with mean zero and constant variance
�
, then2

E(	˜i0 | x˜i ) = �˜′x˜i , i = 1, . . . , N, (13.23)

2 For ease of notation, we have merged the intercept term into x˜i .
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where x˜i = (x˜′
i1, . . . , x˜′

iT ). Substituting Equation 13.23 into Equation 13.21
yields

yi0 = �˜′x˜i + v∗
i0,

y˜i = y˜i,−1� + Xi �˜+ v˜i , i = 1, . . . , N. (13.24)

System Equation 13.24 no longer involves incidental parameters. Therefore,
the MLE or GLS of Equation 13.24,3

�̂˜=
(

N∑
i=1

X̃′
i Ṽ

−1 X̃i

)−1 (
N∑

i=1

X̃′
i Ṽ

−1 ỹ˜i

)
, (13.25)

is consistent and asymptotically normally distributed either N or T or both
tend to infinity with covariance matrix

Cov (�̂˜GLS) =
(

N∑
i=1

X̃′
i Ṽ

−1 X̃i

)−1

(13.26)

where �̂˜= (�˜′, �, �˜′), ỹ˜′
i
= (yi0, y˜′

i ), and

X̃i =

⎛⎜⎜⎜⎜⎜⎜⎝
x˜′

i 0 0˜′

0˜ yi0 x˜′
i1

0˜ yi1 x˜′
i2

. . . . . . .

. . . yi,T−1 x˜′
iT

⎞⎟⎟⎟⎟⎟⎟⎠ . (13.27)

13.5 Method of Moments Estimator for Dynamic Models
with Individual-Specific Effects Only

We illustrate the basic idea of generalized methods of moments and the like-
lihood principle for dynamic model with individual-specific effects only (i.e.,
�t ≡ 0, ∀t) in this section and the next, then discuss the estimator of models
involving both additive �i and �t in Section 13.7.

Taking the first difference of Equation 13.1 under the assumption of �t = 0
yields

�yit = ��yi,t−1 + �˜′�x˜i t + ��i t ,

i = 1, . . . , N,

t = 2, . . . , T, (13.28)

3 Alternatively, one may apply the conditional MLE or GLS to Equation 13.20 (e.g., Blundell and
Bond 1998).
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where � = (1 − L), L denotes the lag operator so �yit = yit − yi,t−1. Equa-
tion 13.28 no longer involves �i . However, E(�yi,t−1��i t) 
= 0. Regressing
�yit on (�yi,t−1, �x˜′

i t) yields inconsistent estimators for � and �˜. On the other
hand, E(yi,t−2��i t) = 0. Therefore, yi,t−2 can be used as instrument for �yi,t−1.
However, yi,t−2 is not the only instrument for �yi,t−1. As noted by Amemiya
and MaCurdy (1986), Ahn and Schmidt (1995), Arellano and Bond (1991),
Arellano and Bover (1995), Breusch, Mizon, and Schmidt (1989), etc. that all
yi,t−2− j , j = 0, 1, . . . , t −2, and all x˜i t satisfy the condition E(yi,t−2− j��i t) = 0,
E(x˜i��˜i t) = 0˜. Let q˜i t = (yi0, yi1, . . . , yi,t−2, x˜′

i )
′, we have the moment condi-

tions

E(q˜i t��˜i t) = 0, t = 2, . . . , T. (13.29)

Stacking the (T − 1) first difference equation of Equation 13.28 in matrix
form, we have

�y˜i = �y˜i,−1� + �Xi �˜+ ��˜i , i = 1, . . . , N, (13.30)

where�y˜i , �y˜i,−1 and��˜i are (T−1)×1 vectors of (�yi2, . . . , �yiT )′, (�yi1, . . . ,
�yi,T−1)′ and (��i2, . . . , ��iT )′, respectively, and �Xi is the (T −1)×K stacked
matrix (�x˜i2, . . . , �x˜iT )′. Let

Wi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q˜i2 0˜ · · · 0˜
0˜ q˜i3 · · · 0˜

... ·
· · · · ·

0˜ · 0˜′ q˜iT

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(13.31)

be the (T − 1)[(T − 1)K + T
2 ] × (T − 1) block diagonal matrix. Then, we have

the orthogonality conditions,

EWi��˜i = 0˜. (13.32)

Under the assumption that (y˜′
i , x˜′

i ) are independently, identically distributed
across i , we may approximate the population moments (Equation 13.32) by
the sample moments 1

N

∑N
i=1 Wi (�y˜i − �y˜i,−1� − �xi �˜). Since there are in

general more moments conditions than the number of unknowns, an effi-
cient moment estimator is to apply the generalized lease squares principle to
Equation 13.32 [Generalized methods of moments (GMM)],

Min
�, �˜

(
1
N

N∑
i=1

��˜′
i Wi

)
�−1

(
1
N

N∑
i=1

Wi��˜i

)
, (13.33)
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where � = E[ 1
N2

∑N
i=1 Wi��˜i��˜′

i Wi ]. Under the assumption that �˜i is i.i.d., �

may be approximated by �2
�

N2

∑N
i=1 Wi AW′

i , where

A =
(T − 1) × (T − 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · · 0
−1 2 −1 · · · · 0
0 −1 2 · · · · ·
· · · · · · · ·
· · · · · · · −1
0 · · · · · −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (13.34)

Thus, the Arellano and Bover (1995) GMM estimator takes the form

	̂˜GMM =
(

�̂

�̂˜
)

GMM

=
⎧⎨⎩

[
N∑

i=1

(
�y˜′

i,−1

�X′
i

)
W′

i

] [
N∑

i=1

Wi AW′
i

]−1

[
N∑

i=1

Wi (�y˜i,−1, �Xi )

]}−1

·
{[

N∑
i=1

(
�y˜′

i,−1

�X′
i

)
W′

i

]
[

N∑
i=1

Wi AW′
i

]−1 [
N∑

i=1

Wi�y˜i

]⎫⎬⎭ , (13.35)

with asymptotic covariance matrix

Cov (	̂˜GMM) =
⎧⎨⎩
[

N∑
i=1

(
�y˜′

i,−1

�X′
i

)
W′

i

] [
N∑

i=1

Wi AW′
i

]−1 [
N∑

i=1

Wi (�y˜i , �Xi )

]⎫⎬⎭
−1

.

(13.36)

Remark 13.1 The GMM estimator is consistent and asymptotically normally
distributed whether �i is treated as a fixed constant or a random variable be-
cause the first difference of Equation 13.1 eliminates �i from the transformed
model (Equation 13.28). However, GMM cannot estimate the coefficients of
time-invariant variables, say gender, because first differencing also eliminates
such variables in Equation 13.28 but the likelihood approach can if �i is indeed
random and uncorrelated with x˜i .

Remark 13.2 When �i is random and satisfies Equation 13.3, the likelihood
approach uses the level equation (Equation 13.1) while the GMM approach
uses the first difference equation (Equation 13.28). In general, the variation
across individuals is much larger than the variation over time of an individual.
Moreover, the likelihood approach uses T equations of (Equation 13.1) but the
GMM uses (T − 1) equations of (Equation 13.28). Therefore, the likelihood
approach is more efficient than the GMM approach (for detail, see Hsiao,
Pesaran, and Tahmiscioglu 2002).
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Remark 13.3 In implementing the likelihood approach we invoke the nor-
mality assumption. However, Equation 13.25 remains consistent and asymp-
totically normally distributed even vit is not normally distributed. One may
view estimators of the type of Equation 13.25 as a quasi-MLE (QMLE).

Remark 13.4 Although we make no assumption about the initial value dis-
tribution of yi0 in implementing the GMM approach, the assumption that
(y˜′

i , x˜′
i ) are i.i.d. across i actually implies Equation 13.22 which is invoked to

get around the incidental parameters problem in the likelihood approach. In
other words, the conditions for implementing the likelihood approach are no
more restrictive than the GMM approach. Moreover, as shown by Hayakawa
(2009), the efficiency of GMM actually depends on the distribution of yi0
and �2

�.

Remark 13.5 The likelihood approach uses the moment conditions

E
[
X̃′

i V
−1

(v∗
i0

v˜i

)] = 0˜, which stay fixed as N and T increases. The number of

moment conditions for GMM increases at order T2 as T increases. In finite
sample, the procedure of equating sample moments to population moments
can lead to severe bias in GMM as demonstrated in a Monte Carlo by Ziliak
(1997). Moreover, if � is close to one, the correlations between �yit and yi,t− j

for j ≥ 2 could be weak and lead to weak instrumental variables problem as
demonstrated in the Monte Carlos by Binder, Hsiao, and Pesaran (2005) and
Hsiao, Pesaran, and Tahmiscioglu (2002).

Remark 13.6 The moment conditions, Equation 13.31 assumes x˜i t are strictly
exogenous. However, there could be feedback relations between yit and x˜i,t+ j

as in Cheng and Kwan (2000). If x˜i t is only weakly exogenous, it does not af-
fect the likelihood approach. But for GMM, instead of defining q˜i t as (yit, . . . ,

yi,t−2, x˜i ), we have to redefine q˜i t as (yit, . . . , yi,t−2, x˜′
i t , . . . , x˜′

i1)′, then Equa-

tion 13.29 still holds and GMM can be applied with the redefined q˜i t.

13.6 Likelihood Approach for the Dynamic Fixed
Individual-Specific Effects Model

When �i is treated as fixed constants, we can estimate � and �˜ by the GMM
method discussed in Section 13.5. A similar likelihood approach can also be
implemented on the system (Equation 13.28), which no longer contains the
fixed �i . However, just like the RE case, there is the problem of initial values if
T is finite. If the data generating process of �yi1 is no different from the data
generating process of �yit, then

�yi1 = 	i1 + vi1, (13.37)
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where 	i1 = �˜′ ∑m−1
j=0 �x˜i,1− j �

j , vi1 = ∑m−1
j=0 ��i,1− j �

j , if the process started at
period −m. Since �x˜i,1− j are unknown, so are 	i1. Treating 	i1 as an unknown
parameter again introduces incidental parameters. To get around this issue,
the expected value of 	i1 conditional on �x˜i has to be a function of constant
parameters,

E(	i1 | �x˜i ) = �˜′�x˜i , i = 1, . . . , N, (13.38)

where �x˜′
i = (�x˜′

i2, . . . , �x˜′
iT ). Hsiao, Pesaran, and Tahmiscioglu (2002) have

shown that if x˜i t is generated by

x˜i t = �˜i + g˜+
∞∑
j=0

B j 
˜i,t− j ,
∑

|B j | < ∞, (13.39)

then Equation 13.38 holds.
Given Equation 13.38, we may write the system of T equations in the form,

�yi1 = �˜′�x˜i + v∗
i1,

�y˜i = �y˜i,−1� + �Xi �˜+ ��˜i , i = 1, . . . , N, (13.40)

where v∗
i1 = vi1 + (	i1 − E	i1). By construction, E(v∗

i1 | �x˜i ) = 0, Ev∗2
i1 =

�2
v∗ , E(v∗

i1��i2) = −�2
� , and E(v∗

i1��i t) = 0, for t = 3, . . . , T . Let the (T × 1)
vector ��˜∗′

i = (v∗
i1, ��˜′

i ). The covariance matrix of ��˜∗
i is

E��˜∗
i ��˜∗′

i = �2
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

h −1 0 · · · · · · ·
−1 2 −1 · · · · ·
0 −1 2 · · · · ·
· · · · · · · ·
· · · · · · · ·
0 · · · · · −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= �∗, (13.41)

where h = �2
v∗

�2
�

. Assuming ��˜∗
i is independently normally distributed with

covariance matrix �∗, then the likelihood function of �y˜∗
i = (�yi1, �y˜′

i )
′,

i = 1, . . . , N, is in the form

(2�)− NT
2 |�∗|− N

2 exp

{
−1

2

N∑
i=1

��˜∗′
i �∗−1��˜∗

i

}
, (13.42)

where ��˜∗′
i = [�yi1 − �˜′�x˜i , �yi2 − �yi1� − �x˜′

i2�˜, . . . , �yiT − �yi,T−1� −
�x˜′

iT �˜]. The likelihood function (Equation 13.42) is a function of fixed number
of parameters, hence, the MLE is consistent and asymptotically normally
distributed either N or T or both tend to infinity. Therefore, standard t or F
tests can be applied.4

4 For further discussion of hypothese testing involving dynamic panel data models, see Harris,
Matyas, and Sevestre (2008, Section 8.6).
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Conditional on h, the MLE of �˜= (�˜′, �, �˜′)′ is identical to the GLS,

�̂˜GLS =
(

N∑
i=1

�X̃′
i�

∗−1�X̃i

)−1 (
N∑

i=1

�X̃′
i�

∗−1�y˜i

)
, (13.43)

where

�X̃i =
(

�x˜′
i 0 0˜′

0˜ �y˜i−1 �Xi

)
. (13.44)

When h is unknown, one can use a two-step procedure. In the first step, we
regress �yi1 on �x˜i to obtain �̂2

v∗ and apply GMM to obtain �̂2
� . In the second

step, we substitute estimated ĥ for h in Equation 13.43. However, the feasible
GLS is not as efficient as GLS (for detail, see Hsiao, Pesaran, and Tahmiscoglu
2002).

13.7 Models with Both Individual- and Time-Specific
Additive Effects

When time-specific effects also appear in vit as in Equation 13.2, the estimators
ignoring the presence of �t like those discussed in Sections 13.13 to 13.6 are
no longer consistent when T is finite. For notational ease and without loss of
generality, we illustrate the fundamental issues of dynamic model with both
individual- and time-specific additive effects model by restricting �˜ = 0˜ in
Equation 13.1, thus the model becomes

yit = �yi,t−1 + vit, (13.45)

vit = �i + �t + �i t , i = 1, . . . , N, t = 1, . . . , T, yi0 observable. (13.46)

The panel data estimators discussed in Sections 13.5 and 13.6 assume no
presence of �t (i.e., �t = 0∀t). When �t are indeed present, those estimators
are not consistent if T is finite when N → ∞. For instance, the consistency
of GMM (Equation 13.33) is based on the assumption that 1

N

∑N
i=1 yi,t− j�vit

converges to the population moments (Equation 13.32). However, if �t are
also present as in Equation 13.46, this condition is likely to be violated. To see
this, taking first difference of Equation 13.45 yields

�yit = ��yi,t−1 + �vit

= ��yi,t−1 + ��t + ��i t , (13.47)

i = 1, . . . , N,

t = 2, . . . , T.



 

P1: BINAYA KUMAR DASH

November 3, 2010 16:25 C7035 C7035˙C013

Dynamic Panel Data Models 385

Although

E(yi,t− j�vit) = 0 for j = 2, . . . , t, (13.48)

the sample moment, as N −→ ∞,

1
N

N∑
i=1

yi,t− j�vit = 1
N

N∑
i=1

yi,t− j��t + 1
N

N∑
i=1

yi,t− j��i t (13.49)

converges to ȳt− j��t, which in general is not equal to zero, in particular, if yit

has mean different from zero,5 where ȳt = 1
N

∑N
i=1 yit.

To obtain consistent estimators of �, we need to take explicit account of
the presence of �t in addition to �i . If �i and �t are random and satisfy
Equation 13.4, because Eyi0vit 
= 0, we either have to write Equation 13.45
conditional on yi0 or to complete the system (Equation 13.45) by deriving the
marginal distribution of yi0. By continuous substitutions, we have

yi0 = 1 − �m

1 − �
�i +

m−1∑
j=0

�− j �
j +

m−1∑
j=0

�i,− j �
j

= vi0, (13.50)

assuming the process started at period −m.
Under Equation 13.4, Eyi0 = Evi0 = 0, Var (yi0) = �2

0, E(vi0vit) = 1−�m

1−�
�2

� =
c, Evitv jt = d . Stacking the T + 1 time series observations for the ith indi-
vidual into a vector, y˜i = (yi0, . . . , yiT )′ and y˜i,−1 = (0, yi0, . . . , yi,T−1)′, v˜i =
(vi0, . . . , viT )′. Let y˜ = (y˜′

1, . . . , y˜′
N)′, y˜−1 = (y˜′

1,−1, . . . , y˜′
N,−1), v˜ = (v˜′

1, . . . , v˜′
N)′,

then

y˜ = y˜−1� + v˜, (13.51)

Ev˜ = 0˜,

Ev˜v˜′ = �2
� IN ⊗

(
� 0˜′

0˜ IT

)
+ �2

� IN ⊗
(

0 c∗e˜′
T

c∗e˜T e˜T e˜′
T

)

+ �2
�e˜Ne˜N ⊗

(
d∗ 0˜′

0˜ IT

)
, (13.52)

� = �2
0 − d
�2

�

, d∗ = d
�2

�

, c∗ = c
�2

�

, (13.53)

where ⊗ denotes the kronecker product. The system (Equation 13.51) has a
fixed number of unknowns (�, �2

� , �2
�, �2

�, �2
0, c, d) as N and T increase. There-

fore, the MLE (or quasi-MLE or GLS) of Equation 13.51 is consistent and
asymptotically normally distributed.

5 For instance, if yit is also a function of exogenous variables as Equation 13.1.
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When �i and �t are fixed constants, we note that first differencing only
eliminates �i from the specification. The time-specific effects, ��t, remain
at Equation 13.47. To further eliminate ��t, we note that the cross-sectional
mean �yt = 1

N

∑N
i=1 �yit is equal to

�yt = ��yt−1 + ��t + ��t , (13.54)

where ��t = 1
N

∑N
i=1 ��i t. Taking deviation of Equation 13.47 from Equa-

tion 13.54 yields

�y∗
i t = ��y∗

i,t−1 + ��∗
i t ,

i = 1, . . . , N,

t = 2, . . . , T, (13.55)

where�y∗
i t = (�yit−�yt) and ��∗

i t = (��i t−��t). The system (Equation 13.55)
no longer involves �i and �t.

Since

E[yi,t− j��∗
i t] = 0 for

j = 2, . . . , t,

t = 2, . . . , T,
(13.56)

the 1
2 T(T − 1) orthogonality conditions can be represented as

E(Wi��̃˜∗
i ) = 0˜, (13.57)

where ��̃˜∗
i = (��∗

i2, . . . , ��∗
iT )′,

Wi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

q˜i2 0˜ · · · 0˜
0˜ q˜i3

· · . . .

...
...

0˜ 0˜ q˜iT

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, i = 1, . . . , N,

and q˜i t = (yi0, yi1, . . . , yi,t−2)′, t = 2, 3, . . . , T . Following Arellano and Bond

(1991), we can propose a generalized method of moments (GMM) estimator,6

�̃GMM =
{[

1
N

N∑
i=1

�ỹ˜∗′

i,−1
W′

i

]
�̂−1

[
1
N

N∑
i=1

Wi�ỹ˜∗
i,−1

]}−1

{[
1
N

N∑
i=1

�ỹ˜∗′

i,−1
W˜ ′

i

]
�̂−1

[
1
N

N∑
i=1

Wi�ỹ˜∗
i

]}
, (13.58)

6 For ease of exposition, we have only considered the GMM that makes use of orthogonality
conditions. For additional moments conditions such as homoscedasticity or initial observations
see, e.g., Ahn and Schmidt (1995), Blundell and Bond (1998).
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where �ỹ˜∗
i

= (�y∗
i2, . . . , �y∗

iT )′, �ỹ˜∗
i−1

= (�y∗
i1, . . . , �y∗

i,T−1)′, and

�̂ = 1
N2

[
N∑

i=1

Wi ˆ̃�˜∗
i

] [
N∑

i=1

Wi ˆ̃�˜∗
i

]′
(13.59)

and � ˆ̃�˜∗
i = �ỹ˜∗

i
−�ỹ˜∗

i,−1
�̃, and �̃ denotes some initial consistent estimator of �,

say a simple instrumental variable estimator.
The asymptotic covariance matrix of �̃GMM can be approximated by

asy. cov (�̃GMM) =
{[

N∑
i=1

�ỹ˜∗′

i,−1
Wi

]
�̂−1

[
N∑

i=1

Wi�ỹ˜∗
i,−1

]}−1

. (13.60)

To implement the likelihood approach, we need to complete the system
(Equation 13.55) by deriving the marginal distribution of �y∗

i1 through con-
tinuous substitution,

�y∗
i1 =

m−1∑
j=0

��∗
i,1− j �

j

= ��̃∗
i1, i = 1, . . . , N. (13.61)

Let �y˜∗
i = (�y∗

i1, . . . , �y∗
iT ), �y˜∗

i = (0, . . . , �y∗
i,T−1), ��̃˜∗′

i = (��̃∗
i1, . . . , ��∗

iT ),
the system

�y˜∗
i = �y˜∗

i,−1� + ��̃˜∗
i , (13.62)

does not involve �i and �t. The MLE conditional on � = Var (�y∗
i1)

�2
�

is identical
to the GLS

�̂GLS =
[

N∑
i=1

�y˜∗′
i,−1 Ã−1�y˜∗

i,−1

]−1 [
N∑

i=1

�y˜∗′
i,−1 Ã−1�y˜∗

i

]
. (13.63)

where

Ã =

⎡⎢⎢⎢⎢⎢⎢⎣
� −1 0 0 · · · 0 0
−1 2 −1 0 · · · · ·
0 −1 2 −1 · · · · ·
· · · · · 2 −1
0 · · · −1 2

⎤⎥⎥⎥⎥⎥⎥⎦ . (13.64)

The GLS is consistent and asymptotically normally distributed with covari-
ance matrix equal to

Var(�̂GLS) = �2
�

[
N∑

i=1

�y˜∗′
i,−1 Ã−1�y˜∗

i,−1

]−1

. (13.65)
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Remark 13.7 The GLS with ��˜ present is basically of the same form as
the GLS without the time-specific effects (i.e., ��˜ = 0˜) (Hsiao, Pesaran, and
Tahmiscioglu 2002), (Equation 13.25). However, there is an important dif-
ference between the two. The estimator (Equation 13.63) uses �y∗

i,t−1 as the
regressor for the equation �y∗

i t (Equation 13.62), not uses �yi,t−1 as the regres-
sor for the equation �yit (Equation 13.47). If there are indeed common shocks
that affect all the cross-sectional units, then the estimator Equation 13.25
is inconsistent while Equation 13.63 is consistent (for detail, see Hsiao and
Tahmiscioglu 2008). Note also that even though when there are no time-
specific effects, Equation 13.63 remains consistent, although it will not be
as efficient as Equation 13.25.

Remark 13.8 The estimator (Equation 13.63) and the estimator Equation 13.58
remain consistent and asymptotically normally distributed when the effects
are random because the transformation (Equation 13.54) effectively removes
the individual- and time-specific effects from the specification. However, if
the effects are indeed random,then the MLE or GLS of Equation 13.51 is more
efficient.

Remark 13.9 The GLS (Equation 13.63) assumes known �. If � is unknown,
one may substitute it by a consistent estimator �̂, then apply the feasible
GLS. However, there is an important difference between the GLS and the
feasible GLS in a dynamic setting. The feasible GLS is not asymptotically
equivalent to the GLS when T is finite. However, if both N and T → ∞ and
lim ( N

T ) = c > 0, then the FGLS will be asymptotically equivalent to the GLS.
(Hsiao and Tahmiscioglu 2008).

Remark 13.10 The MLE or GLS of Equation 13.63 can also be derived by
treating ��t as fixed parameters in the system (Equation 13.47). Through
continuous substitution, we have

�yi1 = �∗
1 + ��̃i1, (13.66)

where �∗
1 = ∑m

j=0 � j��1− j and ��̃i1 = ∑m
j=0 � j��i,1− j . Let �y˜′

i = (�yi1, . . . ,
�yiT ), �y˜′

i,−1 = (0, �yi1, . . . , �yi,T−1), ��˜′
i = (��̃i1, . . . , ��iT ), and ��˜′ =

(�∗
1, ��2, . . . , ��T ), we may write

�y˜ =
NT × 1

⎛⎜⎜⎝
�y˜1

...

�y˜N

⎞⎟⎟⎠ =

⎛⎜⎜⎝
�y˜1,−1

...

�y˜N,−1

⎞⎟⎟⎠ � + (e˜N ⊗ IT )��˜+

⎛⎜⎜⎝
��˜1

...

��˜N

⎞⎟⎟⎠
= �y˜−1� + (e˜N ⊗ IT )��˜+ ��˜, (13.67)

If �i t is i.i.d. normal with mean 0 and variance �2
� , then ��˜′

i is independently
normally distributed across i with mean 0˜ and covariance matrix �2

� Ã, and
� = Var (��̃i1)

�2
�

.
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The log-likelihood function of �y˜ takes the form

log L = − NT
2

log �2
� − N

2
log |Ã| − 1

2�2
�

[�y˜− �y˜−1� − (eN ⊗ IT )��˜]′

( IN ⊗ Ã−1)[�y˜− �y˜−1� − (e˜N ⊗ IT )��˜]. (13.68)

Taking partial derivative of Equation 13.68 with respect to ��˜and solving for
��˜ yields

��̂˜ = (N−1e˜′
N ⊗ IT )(�y˜− �y˜−1�). (13.69)

Substituting Equation 13.69 into Equation 13.68 yields the concentrated log-
likelihood function.

log Lc = − NT
2

log �2
� − N

2
log |Ã|

− 1
2�2

�

(�y˜∗ − �y˜∗
−1�)′( IN ⊗ Ã−1)(�y˜∗ − �y∗

−1�). (13.70)

Maximizing Equation 13.69 conditional on � yields Equation 13.63.

Remark 13.11 When � approaches to 1 and �2
� is large relative to �2

� , the
GMM estimator of the form (Equation 13.68) suffers from the weak instru-
mental variables issues and performs poorly (e.g., Binder, Hsiao, and Pesaran
2005). On the other hand, the performance of the likelihood or GLS estimator
(Equation 13.63) is not affected by these problems.

Remark 13.12 Hahn and Moon (2006) propose a bias corrected estimator as

�̃b = �̃∗
cv + 1

T
(1 + �̃∗

cv). (13.71)

They show that when N/T → c, as both N and T tend to infinity where
0 < c < ∞,

√
NT(�̃b − �) �⇒ N(0, 1 − �2). (13.72)

The limited Monte Carlo studies conducted by Hsiao and Tahmiscioglu
(2008) to investigate the finite sample properties of the feasible GLS (FGLS),
GMM, bias corrected (BC) estimator of Hahn and Moon (2006) have shown
that in terms of bias and root mean square errors, FGLS dominates. However,
the BC rapidly improves as T increase. In terms of the closeness of actual
size to the nominal size, again FGLS dominates and rapidly approaches the
nominal size when N or T increases. The GMM also has actual sizes close
to nominal sizes except for the cases when � is close to unity (here � = 0.8).
The BC has significant size distortion, presumably because of the correction
of bias being based on �̂∗

cv and the use of asymptotic covariance matrix which
is significantly downward biased in finite sample.
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Remark 13.13 Hsiao and Tahmiscioglu (2008) also compared the FGLS and
GMM with and without the correction of time-specific effects in the presence
of both individual- and time-specific effects or in the presence of individual-
specific effects only. It is interesting to note that when both individual- and
time-specific effects are present, the biases and root mean squares errors are
large for estimators assuming no time-specific effects. On the other hand, even
in the case of no time-specific effects in the true data generating process, there
is hardly any efficiency loss for the FGLS or GMM that makes the correction
of presumed presence of time-specific effects. Therefore, if an investigator is
not sure if the assumption of cross-sectional independence is valid or not, it
might be advisable to use estimators that take account both individual- and
time-specific effects.

13.8 Estimation of Multiplicative Models

In this section we consider the estimation of Equation 13.1, where vit is as-
sumed to be of the form

vit = �i �t + �i t. (13.73)

When �i is independently distributed across i with mean 0 and variance �2
�

and �t is independently distributed over t with mean 0 and variance �2
�, Evit =

0, Ev2
i t = �2

� + �2
��2

� = �2
v, and Evitvis = 0 for t 
= s, Evitv js = 0 for i 
= j . In

other words, Equation 13.1 has error terms that are uncorrelated over time
and across individuals, with constant variance �2

v. Hence the least squares
estimator is consistent and asymptotically normally distributed either N or
T or both tend to infinity.

When �i and �t are treated as fixed constants, the MLE are inconsistent if
T is finite for the same basic reason as the additive model (Equation 13.2).
Ahn, Lee, and Schmidt (2001), Bai (2007), Kiefer (1980), etc., have proposed a
nonlinear GMM and iterative LS estimators for the static model with multi-
plicative effects. Their nonlinear GMM approach can be similarly generalized
to obtain a consistent estimator of � (e.g., Hsiao 2008).

Let 	t = �t/�t−1, then

(yit − 	t yi,t−1) = �(yi,t−1 − 	t yi,t−2) + (�i t − 	t�i,t−1), t = 2, . . . , T. (13.74)

It follows that

E[yi,t− j (�i t − 	t�i,t−1)] = 0, for j = 2, . . . , t. (13.75)
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Let

Wi =
T(T − 1)

2
× (T − 1)

⎡⎢⎢⎢⎢⎢⎢⎣

q˜i2 0˜ · · 0˜
0˜ q˜i3 · · 0˜
0˜ 0˜ · · ·
· · · · ·
0˜ · · · q˜iT

⎤⎥⎥⎥⎥⎥⎥⎦ ,

� =
(T − 1) × (T − 1)

⎡⎢⎢⎢⎣
	2 0 · · 0
0 	3 · · ·
· · · · ·
· · · · 	T

⎤⎥⎥⎥⎦ ,

q˜′
i t = (yi0, . . . , yi,t−2), t = 2, . . . , T,

�˜i = (�i2, . . . , �iT )′, �˜i,−1 = (�i1, . . . , �i,T−1)′.

Then a GMM estimator of � and � can be obtained from the moment condi-
tions

E[Wi (�˜i − ��˜i,−1)] = 0˜. (13.76)

The nonlinear GMM estimators of � and � amount to applying nonlinear
three-stage least squares to the system

y˜i = [�IT−1 + �]y˜i,−1 − ��y˜i,−2 + �˜i − ��˜i,−1, i = 1, . . . , N, (13.77)

using Wi as instruments, where y˜i = (yi2, . . . , yiT )′, y˜i,−1 = (yi1, . . . , yi,T−1)′,
and y˜i,−2 = (yi0, . . . , yi,T−2)′.

The nonlinear GMM estimators of � and 	t are consistent and asymptotically
normally distributed as N → ∞. From the 	t, we can solve for �t through the
normalization rule �1 = 1 or

∑T
t=1 �2

t = 1. From � and �t, we obtain

�̂i = 1
T∑

t=1
�̂2

t

[
T∑

t=1

�̂t yit − �̂
T∑

t=1

�̂t yi,t−1

]
, i = 1, . . . , N. (13.78)

The estimator (Equation 13.78) is consistent if T → ∞.
The implementation of nonlinear GMM is quite complicated, Pesaran (2006,

2007) notes that

ȳt = �ȳt−1 + �̄�t + �̄t , (13.79)

where

ȳt = 1
N

N∑
i=1

yit, �̄ = 1
N

N∑
i=1

�i , �̄t = 1
N

N∑
i=1

�i t.
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When N → ∞, �̄t −→ 0. Assuming �̄ 
= 0, substituting �t = �̄−1( ȳt − �ȳt−1)
into Equation 13.45 yields,

yit = �yi,t−1 + �1i ȳt + �2i ȳt−1 + �i t (13.80)

Therefore, Pesaran (2006, 2007) suggests estimating the cross-sectional mean
augment regression (Equation 13.80) and shows that as both N and T → ∞,
the least squares estimator of Equation 13.80 yields consistent and asymptot-
ically normally distributed �̂.

13.9 Test of Additive versus Multiplicative Model

Multiplicative model implies departure from additivity in their effects on
outcomes. It is shown by Bai (2007) that the additive model is embedded
into the model of multiple common factors with heterogeneous response by
letting

�˜i =
[

�i

1

]
, �˜t =

[
1
�t

]
,

then Equation 13.2 becomes

vit = �˜′
i �˜t + �i t. (13.81)

When N −→ ∞, one may solve �˜t from Equation 13.79 that yields

�̂˜t
= (�̄˜�̄˜′)−�̄˜(υt − �ȳt−1), (13.82)

where (�̄˜�̄˜′)− denotes the generalized inverse of (�̄˜�̄˜′). Substituting Equa-
tion 13.82 into Equation 13.45 again yields Equation 13.80. Therefore, the
Pesaran cross-sectional mean augmented regression of Equation 13.80 is con-
sistent whether the unobserved heterogeneity is additive or multiplicative,
but Equation 13.80 is inefficient if the unobserved heterogeneities are additive
compared to Equation 13.58 or Equation 13.63. However, if the underlying
model is multiplicative, Equation 13.80 is consistent, but not Equation 13.58 or
Equation 13.63. Therefore, a Hausman type specification test can be proposed
to test the null:

H0: Equation 13.2 holds
versus

H1: Equation 13.2 does not hold
by considering the test statistic

�̂A − �̂m√
Var (�̂m) − Var(�̂A)

∼ N(0, 1), (13.83)
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where �̂A denotes the efficient estimator of Equation 13.1 under the additive
assumption (Equation 13.2) and �̂m is the estimator (Equation 13.1) under the
multiplicative assumption (Equation 13.73).

13.10 Concluding Remarks

In this chapter we review three fundamental issues of modeling dynamic
panel data in the presence of unobserved heterogeneity across individuals and
over time—the fixed effects of modeling unobserved individual- and time-
specific heterogeneity versus random effects; additive versus multiplicative
effects and the likelihood versus methods of moments approach.

We have not discussed issues of modeling multivariate dynamic panel mod-
els (e.g., Binder, Hsiao, and Pesaran (2005), panel unit root tests (e.g., Breitung
and Pesaran 2008; Moon and Perron 2004; Phillips and Sul 2003); parameter
heterogeneity (e.g., Hsiao and Pesaran 2008), etc. However, in principle, those
issues can also be put in these perspectives.

The advantage of the fixed effects specification is that there is no need to
specify the relations between the unobserved effects and observed condi-
tional (or explanatory) variables. The disadvantages are that (1) unless both
cross-sectional dimension and time dimension of panels are large, the fixed ef-
fects specification introduces incidental parameters issues on the individual-
specific effects, �i , if the time dimension is fixed and on the time-specific ef-
fects, �t if the cross-sectional dimension is small; (2) the impact of
time-invariant but individual-specific variables such as gender or socio-
demographic background variables with the presence of additive individual-
specific effects and the impact of time-specific but individual invariant such
as price and some macro-variables with the presence of additive time-specific
effects are unidentified; and (3) the fixed effects inference only makes use of
within-group variation. The between group information is ignored.

The advantages of random-effects specification are (1) there are no inciden-
tal parameter issues; (2) the impacts of observed individual-specific but time-
invariant and individual-invariant but time-varying variables can be iden-
tified; (3) both the within-group and between group information are used
for inference. Since the between group variation in general is much larger
than the within group variation, the RE specification can lead to much more
efficient use of sample information. The disadvantage is that the relationship
between the unobserved effects and observed conditional variables need to
be specified. In short, the advantages of random effects specification are the
disadvantage of fixed effects specification and the advantages of fixed effects
specification are the disadvantages of random effects specification.

Statistical inference procedures for additive effects models are simpler than
the multiplicative effects models. However, if the data generating process calls
for a multiplicative effects specification, statistical inference procedures based
on additive effects specification will be misleading. On the other hand, if the
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effects are additive, statistical procedures based on multiplicative effects will
also be misleading. In this chapter, we have proposed a testing procedure for
additive versus multiplicative effects.

Inference procedures based on the likelihood and moments approaches are
reviewed. The likelihood approach uses a fixed number of moment condi-
tions. The moment conditions used in the moments approach increase at the
order of square of time series dimension of the panel. In finite sample the mo-
ments approach is likely to generate larger bias than the likelihood approach
as shown in the Monte Carlo by Binder, Hsiao and Pesaran (2005), Hsiao and
Tahmiscioglu (2008), Hsiao, Pesaran, and Tahmiscioglu (2002), Ziliak (1997),
etc. Moreover, if the observed outcomes in the time dimension is persistent
(when the coefficient of lagged variables, �, is close to one) or if the variance
of individual-specific effects is large relative to overall variance, the moments
approach either breaks down or suffers from the weak instrumental variables
issue, but the performance of the likelihood approach is not affected.
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14.1 Introduction

In recent decades, there is growing literature on the estimation of dynamic
panel data models (see Phillips and Moon 1999; Hahn and Kuersteiner 2002;
Alvarez and Arellano 2003; Hahn and Newey 2004, etc.). For the panel data
with spatial interactions, Kapoor, Kelejian, and Prucha (2007) extend the
asymptotic analysis of the method of moments estimators to a spatial panel
model with error components, where T is finite. Baltagi, Song, Jung, and
Koh (2007) consider the testing of spatial and serial dependence in an ex-
tended model, where serial correlation on each spatial unit over time and
spatial dependence across spatial units are allowed in the disturbances. Su
and Yang (2007) study the dynamic panel data with spatial error and random

397
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effects. These panel models specify the spatial correlation by including spa-
tially correlated disturbances but do not incorporate a spatial autoregres-
sive term in the regression equation. With large n and moderate or large T ,
Korniotis (2005) studies a time-space recursive model where only an individ-
ual time lag and a spatial time lag are present but not a contemporaneous
spatial lag. A general model could be the spatial dynamic panel data (SDPD)
where a contemporaneous spatial lag is also included. Yu, de Jong, and Lee
(2007, 2008) and Yu and Lee (2010) study, respectively, the spatial cointegra-
tion, stable, and unit root SDPD models, where the individual time lag, spatial
time lag and contemporaneous spatial lag are all included.

When the SDPD model has time dummy effects, we might need to trans-
form the data to reduce the possible bias caused by the estimation of time
effects (see Lee and Yu, 2010a), especially, when n is proportional to T , or n
is small relative to T . Yu, de Jong, and Lee (2007) have a different bias cor-
rection procedures from that of the stable case in Yu, de Jong, and Lee (2008).
In this chapter, we propose a data transformation approach based on a spa-
tial difference operator, which can eliminate the time dummy effects as well
as possible unstable and/or explosive components. After the data transfor-
mation, we can estimate the model by the method of maximum likelihood
(ML) or quasi-maximum likelihood (QML) similar to Yu, de Jong, and Lee
(2008), where there are neither time dummy effects, nor unstable and explo-
sive components. We derive the asymptotics for the ML estimator (MLE) and
QML estimator (QMLE). We propose a bias correction procedure that can be
applied to different types of DGPs.

This chapter is organized as follows. In Section 14.2, the model is presented.
We show that the stochastic process can be decomposed into stable, unstable
or explosive, and time components. A spatial difference operator motivated
by the spatial co-integration can provide a unified data transformation to
eliminate the time component and the possible unstable or explosive compo-
nents. We explain our method of estimation, which is a concentrated QML.
Section 14.3 establishes the consistency and asymptotic distribution of the
QMLE of the unified transformation approach. A bias correction procedure
is also proposed. A Monte Carlo study is conducted in Section 14.4 to inves-
tigate finite sample performance of the estimators under different DGPs, and
also the power of hypothesis testing of spatial co-integration using this uni-
fied approach. Section 14.5 concludes the chapter. Some useful lemmas and
proofs are collected in the appendices.

14.2 The Model

14.2.1 The DGP

Consider the general SDPD model:

Ynt = �0WnYnt +�0Yn,t−1+�0WnYn,t−1+Xnt�0+cn0+�t0ln+Vnt, t = 1, 2, ..., T ,
(14.1)



 

P1: NARESH CHANDRA

November 12, 2010 18:3 C7035 C7035˙C014

A Unified Estimation Approach for Spatial Dynamic Panel Data Models 399

where Ynt = (y1t , y2t , ..., ynt)′ and Vnt = (v1t , v2t , ..., vnt)′ are n × 1 column vec-
tors, and vit is i.i.d. across i and t with zero mean and variance �2

0. Wn is an n×n
nonstochastic spatial weights matrix, Xnt is an n × k matrix of nonstochastic
regressors, cn0 is an n × 1 column vector of individual fixed effects, �t0 is a
scalar of time effect, and ln is an n × 1 column vector of ones.1 Therefore, the
total number of parameters in this model is equal to the sum of the number
of individuals n and the number of time periods T , plus the dimension of the
common parameters (�, �, �′, �, �2)′ which is k + 4. In practice, Wn is usually
row-normalized with zero diagonals. A row-normalized Wn has the property
Wnln = ln. The row-normalization of Wn ensures that all the weights are be-
tween 0 and 1 and weighting operations can be interpreted as an average
of the neighboring values. In this chapter, the row-normalization feature is
imposed for our estimation approach.

Define Sn(�) = In − �Wn and Sn ≡ Sn(�0) = In − �0Wn. Then, presuming
that Sn is invertible and denoting An = S−1

n (�0 In + �0Wn), Equation 14.1 can
be rewritten as

Ynt = AnYn,t−1 + S−1
n Xnt�0 + S−1

n cn0 + �t0S−1
n ln + S−1

n Vnt. (14.2)

In the SDPD model, when all the eigenvalues of An are smaller than 1, we have
the stable case. When some eigenvalues of An are equal to 1 but not all being 1,
we have the spatial co-integration case. When some of them are greater than
1, we have the explosive case. Let ϖn = diag{ϖn1, ϖn2, ..., ϖnn} be the n × n
diagonal eigenvalues matrix of Wn such that Wn = Rnϖn R−1

n , where Rn is the
corresponding eigenvector matrix. As An = S−1

n (�0 In+�0Wn), the eigenvalues
matrix of An is Dn = ( In − �0ϖn)−1(�0 In + �0ϖn) such that An = Rn Dn R−1

n .
When Wn is row-normalized, all the eigenvalues are less than or equal to 1 in
the absolute value, where it has definitely some eigenvalues being 1. Let mn

be the number of unit eigenvalues of Wn and let the first mn eigenvalues of Wn

be the unity. Hence, Dn can be decomposed into two parts, one corresponding
to the unit eigenvalues of Wn, and the other corresponding to the eigenvalues
of Wn which are smaller than 1. Define Jn = diag{1′

mn
, 0, · · · , 0} with 1mn

being an mn × 1 vector of ones and D̃n = diag{0, · · · , 0, dn,mn+1, · · · , dnn},
where |dni | < 1, for i = mn + 1, · · · , n, are assumed.2As Jn · D̃n = 0, we
have Ah

n = ( �0+�0
1−�0

)h Rn Jn R−1
n + Bh

n where Bh
n = Rn D̃h

n R−1
n for any h = 1, 2, · · · .

Hence, depending on the value of �0+�0
1−�0

, we have three cases. As |�0| < 1,
which will be maintained under the Assumption 1 and 3 (see Section 14.3),
we have the stable case when �0 + �0 + �0 < 1; the spatial co-integration case
when �0 +�0 +�0 = 1 but �0 �= 1; and the explosive case when �0 +�0 +�0 > 1.

For the stable case, the rates of convergence of QMLEs are
√

nT , as shown in
Yu, de Jong, and Lee (2008). For the spatial co-integration case where Ynt and

1 Due to the presence of fixed individual and time effects, the Xnt will not include time invariant
or individual invariant regressors.

2 We note that dni = (�0 + �0ϖni )/(1 − �0ϖni ). Hence, if �0 + �0 + �0 < 1, we have dni < 1 as
|ϖni | ≤ 1. Some additional conditions are needed to ensure that dni > −1. See Appendix A.1.
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WnYnt are spatially co-integrated, Yu, de Jong, and Lee (2007) show that the
QMLEs for such a model are

√
nT consistent and asymptotically normal, but,

the presence of the unstable components will make the estimators’ asymptotic
variance matrix singular. Consequently, a linear combination of the spatial
and dynamic effects estimates can converge at a higher rate.3 In addition to
the above stable case and the spatial co-integration case, we may also have an
explosive case in the event that some eigenvalues of An are greater than unity
in the absolute value.4 In this chapter, we propose a unified transformation
approach that can be used to estimate all three cases, namely, stable, spatial
co-integrated, and explosive cases.

In earlier studies of the SDPD model, Yu, de Jong, and Lee (2007, 2008)
consider the QMLE of the model with only the individual fixed effects. Sub-
sequently, Lee and Yu (2010a) study the SDPD model with additional time
effect when the process is stable. They propose a data transformation based
on the deviation from cross-sectional mean, In − 1

nlnl ′n, to eliminate the time ef-
fects. That approach may be applied to study the unstable SDPD models with
time effects but might not be able to eliminate unstable or explosive compo-
nents. In this chapter, we report the use of a spatial difference operator, In−Wn,
which may not only eliminate the time dummy effects, but also the possible
unstable or explosive components, generated from the spatial co-integration
or explosive roots. This implies that the spatial difference transformation can
be applied to DGPs with stability, spatial co-integration, or explosive roots.
The asymptotics of the resulting estimates can then be easily established for
these DGPs. Thus, the transformation In − Wn provides a unified estimation
procedure for SDPD models.5

Denote Wu
n = Rn Jn R−1

n . Then, for t ≥ 0, Ynt can be decomposed into a sum
of a possible stable part, a possible unstable or explosive part, and a time
effect part (see Appendix A.2 for proof)

Ynt = Yu
nt + Ys

nt + Y�
nt, (14.3)

3 When �0 + �0 + �0 = 1 and �0 = 1, the asymptotic properties of estimators are considered in
Yu and Lee (2010). The QML estimate of the dynamic coefficient is

√
nT3 consistent and the

estimates of other parameters are
√

nT consistent, and they are all asymptotically normal. Also,
the sum of the contemporaneous and dynamic spatial effects will converge at

√
nT3 rate.

4 For the autoregressive AR(1) process in time series, asymptotic properties of the ordinary least
square estimator have been investigated in White (1958, 1959), Anderson (1959), Nielsen (2001,
2005) and Phillips and Magdalinos (2007). For the SDPD due to its complexity, properties of a
possible QMLE have not been investigated.

5 We note that the spatial difference operator can be applied to cross-sectional units. However, its
function is different from the time difference operator for a time series. The spatial difference
operator does not eliminate pure time series unit root or explosive roots. Thus, the unified
approach cannot be applied to the pure unit root SDPD models in Yu and Lee (2010).
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where

Ys
nt =

∞∑
h=0

Bh
n S−1

n (cn0 + Xn,t−h�0 + Vn,t−h),

Yu
nt = Wu

n

{(
�0 + �0

1 − �0

)t+1

Yn,−1

+ 1
(1 − �0)

[
t∑

h=0

(
�0 + �0

1 − �0

)h

(cn0 + Xn,t−h�0 + Vn,t−h)

]}
,

Y�
nt = 1

(1 − �0)
ln

t∑
h=0

�t−h,0(
�0 + �0

1 − �0
)h .

The Yu
nt can be an unstable component when �0+�0

1−�0
= 1, which occurs when

�0 + �0 + �0 = 1 and �0 �= 1. When �0 + �0 + �0 > 1, it implies �0+�0
1−�0

> 1 and,
hence, Yu

nt can be explosive. The Y�
nt can be rather complicated as it depends

on what exactly the time dummies represent. The Ynt can be explosive when
�t0 represents some explosive functions of t, even when �0+�0

1−�0
were smaller

than 1. Without a specific time structure for �t0, it is desirable to eliminate
this component for the estimation. The Ys

nt can be a stable component unless
�0 + �0 + �0 is much larger than 1. If the sum �0 + �0 + �0 were too big, some
of the eigenvalues dni in Ys

nt might become larger than 1.

14.2.2 Data Transformation

Both the deviation from the cross-sectional mean In − 1
nlnl ′n and the spatial

difference operator In − Wn can eliminate the Y�
nt component in Ynt. The trans-

formation In − Wn can be motivated via a feature of spatial co-integration
below. Because ( In − Wn)ln = 0, ( In − Wn)Y�

nt = 0. The ( In − Wn)Ynt does not
involve time dummies. In addition, because Wu

n = Rn Jn R−1
n , it follows that

( In − Wn)Wu
n = Rn( In − Dn) Jn R−1

n = 0, and ( In − Wn)Yu
nt = 0. Therefore,

( In − Wn)Ynt = ( In − Wn)Ys
nt. That is, the transformation In − Wn can eliminate

not only time dummies but also the unstable component. Therefore, after the
( In − Wn) transformation, we will end up with the following equation:

( In − Wn)Ynt = �0Wn( In − Wn)Ynt + �0( In − Wn)Yn,t−1 + �0Wn( In − Wn)Yn,t−1

+( In − Wn)Xnt�0 + ( In − Wn)cn0 + ( In − Wn)Vnt. (14.4)

The variance of ( In − Wn)Vnt is �2
0�n, where �n = ( In − Wn)( In − Wn)′. This

transformed equation has less degrees of freedom than n. Denote the degree
of freedom of Equation 14.4 as n∗. Then, n∗ is the rank of the variance matrix
of ( In − Wn)Vnt, which is the number of nonzero eigenvalues of �n. Hence,
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n∗ = n − mn is also the number of non-unit eigenvalues6 of Wn. Thus, the
transformed variables do not have time effects and are all stable even when
�0 + �0 + �0 is equal to or greater than 1.

Let [Fn, Hn] be the orthonormal matrix of eigenvectors and �n be the diago-
nal matrix of nonzero eigenvalues of �n such that �n Fn = Fn�n and �n Hn = 0.
That is, the columns of Fn consist of eigenvectors of nonzero eigenvalues and
those of Hn are for zero-eigenvalues of �n. The Fn is an n × n∗ matrix and �n

is an n∗ × n∗ diagonal matrix. Denote W∗
n = �

−1/2
n F ′

nWn Fn�
1/2
n which is an

n∗ × n∗ matrix. As is derived in Appendix A.3, we have

Y∗
nt = �0W∗

n Y∗
nt + �0Y∗

n,t−1 + �0W∗
n Y∗

n,t−1 + X∗
nt�0 + c∗

n0 + V∗
nt, (14.5)

where Y∗
nt = �

−1/2
n F ′

n( In − Wn)Ynt and other variables are defined accordingly.
Note that this transformed Y∗

nt is an n∗ dimensional vector. Thus, at each t,
after the removal of the time dummy variables as well as the unstable or
explosive components in Ynt, the remaining observations at period t have
only n∗ degrees of freedom. While the sum of the coefficients �0 + �0 + �0 of
this transformed equation can be equal to or greater than 1, the eigenvalues of
W∗

n are exactly those eigenvalues of Wn not equal to the unity (see Appendix
A.4) but less than 1 in the absolute value. It follows that the eigenvalues of
A∗

n = ( In∗ −�0W∗
n )−1(�0 In∗ +�0W∗

n ) are all less than 1 in the absolute values even
when �0 + �0 + �0 = 1 with |�0| < 1 and |�0| < 1. For the explosive case with
�0 + �0 + �0 > 1, the eigenvalue of A∗

n can be less than 1 only if �0+�0
1−�0

< 1
ϖmax 1

,
where ϖmax 1 is the maximum positive eigenvalue of Wn less than the unity
(see Appendix A.1). Hence, the transformed model (Equation 14.5) is a stable
one as long as �0 + �0 + �0 is not much bigger than 1.7

The transformation In − Wn for the case with �0 + �0 + �0 = 1 but �0 �= 1
has an interpretation as a spatial co-integrating matrix for elements of Ynt.
Denote time difference as �Ynt = Ynt − Yn,t−1. The reduced form Equation
14.2) implies that �Ynt = ( An − In)Yn,t−1 + S−1

n (Xnt�0 + cn0 + Vnt + �t0ln). For
the case �0+�0+�0 = 1 with �0 �= 1, An− In = ( In−�0Wn)−1(�0 In+�0Wn)− In =
(1−�0)( In−�0Wn)−1(Wn− In). Hence, we have a vector error correction model
(VECM) representation of Equation 14.2 as

�Ynt = (1 − �0)( In − �0Wn)−1(Wn − In)Yn,t−1 + S−1
n (Xnt�0 + cn0 + Vnt + �t0ln).

The matrix In − Wn = Rn( In − ϖn)R−1
n has its rank equal to the number of

eigenvalues of Wn different from 1. With the VECM representation, one may

6 This is so, because (1) the set Kn of eigenvectors corresponding to the zero eigenvalues of
( In − Wn)( In − Wn)′ is the same as that of ( In − Wn)′; (2) the dimension of Kn is the number of
unit eigenvalues of W′

n; (3) Wn = Rnϖn R−1
n if and only if W′

n = R−1′
n ϖn R′

n, i.e., the eigenvalues
of Wn and W′

n are the same.
7 Similar to Yu, de Jong, and Lee (2007) for the spatial co-integration case, we assume that the

eigenvalues of Wn with their absolute values less than 1 are bounded away from 1 for all n.
Appendix A.1 provides sufficient conditions on the parameters of the model, which can imply
this regularity condition.
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regard In − Wn as a co-integrating matrix with the co-integration rank as the
number of non-unit eigenvalues of Wn. Hence, this transformation method
has exploited the spatial co-integration of Ynt’s for the estimation.

14.2.3 The Log-Likelihood Function

Suppose that Vnt is normally distributed as N(0, �2
0 In), the transformed V∗

nt
in Equation 14.5 will be N(0, �2

0 In∗ ). Denote � = (�, �, �′)′, � = (�′, �)′ and
S∗

n(�) = In∗ − �W∗
n . The log-likelihood function for Y∗

nt in Equation 14.5 is

ln Ln,T (�, c∗
n) = −n∗T

2
ln 2	 − n∗T

2
ln �2 + T ln |S∗

n(�)|

− 1
2�2

T∑
t=1

V∗′
nt (�, c∗

n)V∗
nt(�, c∗

n), (14.6)

where V∗
nt(�, c∗

n) = S∗
n(�)Y∗

nt − Z∗
nt� − c∗

n, Z∗
nt = (Y∗

n,t−1, W∗
n Y∗

n,t−1, X∗
nt). In or-

der to use Equation 14.6 for an effective estimation, the determinant and
inverse of S∗

n(�) are needed. As is derived in Appendix A.4, using S∗
n(�) =

�
−1/2
n F ′

nSn(�)Fn�
1/2
n , we have

|S∗
n(�)| = 1

(1 − �)n−n∗ |Sn(�)|, and S∗−1
n (�) = �−1/2

n F ′
nS−1

n (�)Fn�
1/2
n . (14.7)

Hence, the computation of the determinant of S∗
n(�) is not more complicated

than Sn(�). Also,

V∗
nt(�, c∗

n) = S∗
n(�)Y∗

nt − Z∗
nt� − c∗

n

= �−1/2
n F ′

nSn(�)Fn F ′
n( In − Wn)Ynt − �−1/2

n F ′
n( In − Wn)Znt�

− �−1/2
n F ′

n( In − Wn)cn

= �−1/2
n F ′

n( In − Wn)[Sn(�)Ynt − Znt� − cn]

= �−1/2
n F ′

n( In − Wn)Vnt(�, cn),

by using Fn F ′
n+Hn H′

n = In and H′
n( In−Wn) = 0, where Znt = (Yn,t−1, WnYn,t−1,

Xnt) and Vnt(�, cn) = Sn(�)Ynt − Znt� − cn. Hence,

V∗′
nt (�, c∗

n)V∗
nt(�, c∗

n) = V′
nt(�, cn)( In − Wn)′�+

n ( In − Wn)Vnt(�, cn), (14.8)

where �+
n = Fn�

−1
n F ′

n is the generalized inverse of �n = ( In − Wn)( In − Wn)′.
By using Equation 14.7 and 14.8, the log-likelihood function (Equation 14.6)
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for Y∗
nt can be expressed in terms of Ynt as

ln Ln,T (�, cn) = −n∗T
2

ln(2	�2) − (n − n∗)T ln(1 − �) + T ln |Sn(�)|

− 1
2�2

T∑
t=1

(Sn(�)Ynt − Znt� − cn)′( In − Wn)′
�+

n ( In − Wn)

× (Sn(�)Ynt − Znt� − cn). (14.9)

Hence, after the transformation, the QML method is to estimate the SDPD
model with only individual effects with n∗ cross-section units and T time
periods, where Equation 14.6 is the objective function. Alternatively, one may
maximize Equation 14.9 expressed in terms of the original variables. How-
ever, although the components of Vnt are i.i.d. in the model, the elements of
V∗

nt might not be independent (they are uncorrelated). The asymptotic anal-
ysis in Yu, de Jong, and Lee (2008) may not be directly carried over to the
transformed model with the disturbances V∗

nt.
8 As Equation 14.6 is equivalent

to Equation 14.9, we can analyze the asymptotic distribution of the estimator
via Equation 14.9.

Using first order conditions, we concentrate out cn in Equation 14.9 to obtain
the concentrated likelihood function in terms of �. For an n × 1 vector at
period t, ϒnt, we define the deviation from time means as ϒ̃nt = ϒnt −ϒ̄nT and
≈
ϒn,t−1 = ϒn,t−1−ϒ̄nT,−1, where ϒ̄nT = 1

T

∑T
t=1 ϒnt and ϒ̄nT,−1 = 1

T

∑T
t=1 ϒn,t−1.

The concentrated log-likelihood is

ln Ln,T (�) = −n∗T
2

ln 2	 − n∗T
2

ln �2 − (n − n∗)T ln(1 − �) + T ln |In − �Wn|

− 1
2�2

T∑
t=1

Ṽ′
nt(�)( In − Wn)′�+

n ( In − Wn)Ṽnt(�), (14.10)

where Ṽnt(�) = Sn(�)Ỹnt − Z̃nt� and ( In − Wn)Ṽnt(�) = ( In − Wn)[Sn(�)Ỹnt −
Z̃nt� − �̃tln] because ( In − Wn)ln = 0. At �0, Ṽnt = SnỸnt − Z̃nt�0. For Equation
14.10, its first- and second-order derivatives are Equation A.16 and A.17 in
Appendix C.2.

14.3 Asymptotic Properties of QMLE

For our analysis of the asymptotic properties of estimators, we make the
following assumptions. Denote J ∗

n = ( In − Wn)′�+
n ( In − Wn). We note that J ∗

n
is an orthonormal projector with rank n∗ (see Appendix A.5).

8 One could not treat the components of V∗
nt as if they were independent when the distur-

bances are not normally distributed. Furthermore, it is not clear whether W∗
n and A∗

n =
( In∗ − �0W∗

n )−1(�0 In∗ + �0W∗
n ) would be uniformly bounded in both row and column sums

even though Wn and An are.
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Assumption 1 Wn is a row-normalized nonstochastic spatial weights matrix
with zero diagonals.

Assumption 2 The disturbances {vit}, i = 1, 2, ..., n and t = 1, 2, ..., T, are
i.i.d. across i and t with zero mean, variance �2

0 and E |vit|4+
 < ∞ for some

 > 0.

Assumption 3 Sn(�) is invertible for all � ∈ �. Furthermore, � is compact
and the true parameter �0 is in the interior of �.

Assumption 4 The elements of Xnt are nonstochastic and bounded, uniformly
in n and t, and the limit of 1

nT

∑T
t=1 X̃′

nt J ∗
n X̃nt exists and is nonsingular.

Assumption 5 Wn is uniformly bounded in row and column sums in the
absolute value (for short, UB).9 Also S−1

n (�) is UB, uniformly in � ∈ �.

Assumption 6
∑∞

h=1 abs(Bh
n ) is UB, where [abs(Bn)]i j = |Bn,i j |.

Assumption 7 n∗ is a nondecreasing function of T and T goes to infinity.

Assumption 1 is a standard normalization assumption in spatial economet-
rics. In many empirical applications, the rows of Wn sum to 1, which ensures
that all the weights are between 0 and 1. Assumption 2 provides regularity as-
sumptions for vit. Assumption 3 guarantees that Equation 14.2 is valid. When
exogenous variables Xnt are included in the model, it is convenient to assume
that their elements are uniformly bounded10 as in Assumption 4. Assumption
5 is originated by Kelejian and Prucha (1998, 2001) and is also used in Lee
(2004, 2007). The uniform boundedness of Wn and S−1

n (�) is a condition that
limits the spatial correlation to a manageable degree. Assumption 6 is the ab-
solute summability condition and row/column sum boundedness condition,
which will play an important role for asymptotic properties of QML estima-
tor. In order to justify the absolute summability of Bn, a sufficient condition
is ‖Bn‖ < 1 for any matrix norm (see Horn and Johnson (1985), Corollary
5.6.16) that satisfies ‖Bn‖ = ‖abs(Bn)‖. When ‖Bn‖ < 1,

∑∞
h=0 Bh

n exists and
can be defined as ( In − Bn)−1. Assumption 7 allows two cases: (1) n∗ → ∞
as T → ∞; (2) n∗ can remain finite as T → ∞. Because (2) is similar to a
vector autoregressive (VAR) model, our main interest is in (1). If Assumption
7 holds, then we say that n∗, T → ∞ simultaneously. These assumptions are
similar to those in Yu, de Jong, and Lee (2008).

14.3.1 Consistency

For the log-likelihood function Equation 14.10 divided by the effective sam-
ple size n∗T , we have the corresponding Qn,T (�) = E maxcn

1
n∗T ln Ln,T (�, cn).

9 We say a (sequence of n × n) matrix Pn is uniformly bounded in row and column sums if
supn≥1 ‖Pn‖∞ < ∞ and supn≥1 ‖Pn‖1 < ∞, where ‖Pn‖∞ ≡ sup1≤i≤n

∑n
j=1 |pi j,n| is the row

sum norm and ‖Pn‖1 = sup1≤ j≤n
∑n

i=1 |pi j,n | is the column sum norm.
10 If Xnt is allowed to be stochastic, appropriate moment conditions can be imposed instead.
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Hence,11

Qn,T (�) = 1
n∗T

E ln Ln,T (�)

= −1
2

ln 2	 − 1
2

ln �2 − n − n∗

n∗ ln(1 − �) + 1
n∗ ln |Sn(�)| (14.11)

− 1
2�2

1
n∗T

E

(
T∑

t=1

Ṽ′
nt(�) J ∗

n Ṽnt(�)

)
.

It is shown in Appendix D.2 that, under Assumptions 1–7, 1
n∗T ln Ln,T (�) −

Qn,T (�)
p→ 0 uniformly in � ∈ � and Qn,T (�) is uniformly equicontinuous

for � ∈ �. For the identification, denote the information matrix ��0,nT =
−E( 1

n∗T
∂2 ln Ln,T (�0)

∂�∂�′ ). If ��0,nT is nonsingular and −E( 1
n∗T

∂2 ln Ln,T (�)
∂�∂�′ ) has full rank

for � in some neighborhood N(�0) of �0, the parameters are locally identified
(see Rothenberg 1971). DenoteHnT = 1

n∗T

∑T
t=1( Z̃nt, Gn Z̃nt�0)′ J ∗

n ( Z̃nt, Gn Z̃nt�0)
and G∗

n = W∗
n S∗−1

n . Using Lemma 15 in Yu, de Jong, and Lee (2008),

��0,nT = 1
�2

0

(
EHnT 0(k+3)×1

01×(k+3) 0

)

+


0(k+2)×(k+2) 0(k+2)×1 0(k+2)×1

01×(k+2)
1
n∗

[
tr (G∗′

n G∗
n) + tr (G∗

n
2)

] 1
�2

0n∗ tr (G∗
n)

01×(k+2)
1

�2
0n∗ tr (G∗

n) 1
2�4

0

 (14.12)

+O
(

1
T

)
,

which is nonsingular if EHnT is nonsingular or 1
n∗ [tr (G∗′

n G∗
n)+tr (G∗

n
2)− 2tr2(G∗

n)
n∗ ]

is positive (see Appendix D.1). Also, its rank does not change in a small
neighborhood of �0 (see Equation 14.49).

When limT→∞ EHnT is nonsingular, the parameters are identified.

Theorem 14.1 Under Assumptions 1–7, if limT→∞ EHnT is nonsingular, �0 is
identified and �̂nT

p→ �0.

Proof See Appendix D.2.

When limT→∞ EHnT is singular, identification can still be obtained from the

following theorem. Denote �2
n(�) = �2

0
n∗ tr (S′−1

n S′
n(�) J ∗

n Sn(�)S−1
n ).

11 Because Wn = Rnϖn R−1
n , |Sn(�)| = |In − �ϖn| = (1 − �)mn

∏n
j=mn+1(1 − �ϖnj ). Therefore,

1
n∗ ln |Sn(�)| − n−n∗

n∗ ln(1 − �) = 1
n∗

∑n
j=mn+1(1 − �ϖnj ) shows that the division by n∗ is proper.
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Theorem 14.2 Under Assumptions 1–7, if limn∗→∞( 1
n∗ ln |�2

0S∗−1′
n S∗−1

n |− 1
n∗ ln |×

�2
n(�)S∗′−1

n (�)S∗−1
n (�)|) �= 0 for � �= �0, then �0 is identified12 and �̂nT

p→ �0.

Proof See Appendix D.3.

14.3.2 Asymptotic Distribution

As Znt = (Yn,t−1, WnYn,t−1, Xnt), we can decompose ( In − Wn) Z̃nt such that

( In − Wn) Z̃nt = ( In − Wn) Z̃(c)
nt − (( In − Wn)ŪnT,−1, ( In − Wn)WnŪnT,−1, 0n×k),

(14.13)

where Z̃(c)
nt = ((

≈
X n,t−1 + Un,t−1), (Wn

≈
X n,t−1 + WnUn,t−1), X̃nt) with

≈
X n,t−1 =

Xn,t−1 − X̄nT,−1, Xnt ≡ ∑∞
h=0 Bh

n S−1
n Xn,t−h and Unt ≡ ∑∞

h=0 Bh
n S−1

n Vn,t−h . Hence,
( In − Wn) Z̃nt has two components: one is ( In − Wn) Z̃(c)

nt , which is uncorrelated
with Vnt; the remaining one can be correlated with Vnt when t ≤ T − 1. Here,
after the data transformation by In−Wn, the unstable or explosive components
and time component in Z̃nt are all eliminated. Therefore, from Equation 14.45,
the score can be decomposed into two parts such that

1√
n∗T

∂ ln Ln,T (�0)
∂�

= 1√
n∗T

∂ ln L (c)
n,T (�0)
∂�

− �nT , (14.14)

where

1√
n∗T

∂ ln L (c)
n,T (�0)
∂�

=



1
�2

0

1√
n∗T

T∑
t=1

Z̃(c)′
nt J ∗

n Vnt

1
�2

0

1√
n∗T

T∑
t=1

(Gn Z̃(c)
nt �0)′ J ∗

n Vnt + 1
�2

0

1√
n∗T

T∑
t=1

(V′
ntG

′
n J ∗

n Vnt − �2
0trG∗

n)

1
2�4

0

1√
n∗T

T∑
t=1

(V′
nt J ∗

n Vnt − n∗�2
0)


,

(14.15)

12 For our asymptotic analysis, finite n∗ is allowed as long as T is tending to infinity, even
though that is not an interesting case for SAR models. When n∗ is finite, the condition is
1

n∗ ln |�2
0 S∗−1′

n S∗−1
n | − 1

n∗ ln |�2
n(�)S∗′−1

n (�)S∗−1
n (�)| �= 0 for � �= �0.
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and

�nT =
√

n∗

T



1
�2

0

T
n∗ ( J ∗

n ŪnT,−1, J ∗
n WnŪnT,−1, 0)′V̄nT

1
�2

0

T
n∗ ( J ∗

n Gn(ŪnT,−1, WnŪnT,−1, 0)�0)′V̄nT + 1
�2

0

T
n∗ V̄′

nT G ′
n J ∗

n V̄nT

1
2�4

0

T
n∗ V̄′

nT J ∗
n V̄nT


.

(14.16)

Similarly to Yu, de Jong, and Lee (2008), the variance matrix of 1√
n∗T

∂ ln L (c)
n,T (�0)
∂�

is equal to

E

(
1√
n∗T

∂ ln L (c)
n,T (�0)
∂�

· 1√
n∗T

∂ ln L (c)
n,T (�0)

∂�′

)
= ��0,nT + ��0,n + O(T−1),

(14.17)
where ��0,nT is in Equation 14.12 and

��0,n = �4 − 3�4
0

�4
0


0(k+2)×(k+2) 0(k+2)×1 0(k+2)×1

01×(k+2)
1
n∗

n∑
i=1

(G∗
n

2)i i
1

2�2
0n∗ tr (G∗

n)

01×(k+2)
1

2�2
0n∗ tr (G∗

n)
1

4�4
0


is a symmetric matrix with �4 being the fourth moment of vit. When Vnt

is normally distributed, ��0,n = 0 because �4 − 3�4
0 = 0. Denote ��0 =

limT→∞ ��0,nT and ��0 = limT→∞ ��0,n. The asymptotic distribution of
1√
n∗T

∂ ln L (c)
n,T (�0)
∂�

can be derived from the central limit theorem for martingale
difference arrays (Lemma 14.3). For the term �nT , from Equation 14.36 in

Lemma 14.1 and Equation 14.38 in Lemma 14.2, �nT =
√

n∗
T a�0,n + O(

√
n∗
T3 ) +

Op( 1√
T

) where

a�0,n =



1
n∗ tr

((
J ∗

n

∞∑
h=0

Bh
n

)
S−1

n

)
1
n∗ tr

(
Wn

(
J ∗

n

∞∑
h=0

Bh
n

)
S−1

n

)
0k×1

1
n∗ �0tr (Gn

(
J ∗

n

∞∑
h=0

Bh
n

)
S−1

n ) + 1
n∗ �0tr (GnWn

(
J ∗

n

∞∑
h=0

Bh
n

)
S−1

n ) + 1
n∗ trG∗

n

1
2�2

0


(14.18)
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is O(1). It is shown in Appendix D.4 that, under Assumptions 1–7, 1√
n∗T

∂ ln Ln,T (�0)
∂�

+ �nT
d→ N(0, ��0 + ��0 ).

To get the asymptotic distribution of the estimates, we need the following
additional assumption.

Assumption 8. limT→∞ EHnT is nonsingular or limn→∞ 1
n∗ [tr (G∗′

n G∗
n)+tr (G∗

n
2)

− 2tr2(G∗
n)

n∗ ] > 0.

Assumption 8 is a condition for the nonsingularity of the limit of the
information matrix ��0 . When limT→∞ EHnT is singular,13 as long as we
have limn→∞ 1

n∗ [tr (G∗′
n G∗

n) + tr ((G∗
n)2) − 2tr2(G∗

n)
n∗ ] > 0, the information ma-

trix ��0 is still nonsingular (see Appendix D.1). Hence, for the second order
derivatives of the log-likelihood function, under Assumption 1–8, we have

1
n∗T

∂2 ln Ln,T (�)
∂�∂�′ − 1

n∗T
∂2 ln Ln,T (�0)

∂�∂�′ = ‖�−�0‖ · Op(1), and 1
n∗T

∂2 ln Ln,T (�0)
∂�∂�′ − ∂2 Qn,T (�0)

∂�∂�′ =
Op( 1√

n∗T
) from Appendix C.3. Thus, we have the following theorem for the

asymptotic distribution of �̂nT .

Theorem 14.3 Under Assumptions 1–8,

√
n∗T(�̂nT − �0) +

√
n∗

T
b�0,nT + Op

(
max

(√
n∗

T3 ,

√
1
T

))
d→ N(0, �−1

�0
(��0 + ��0 )�−1

�0
), (14.19)

where b�0,nT = �−1
�0,nT a�0,n is O(1).

When n∗
T → 0,

√
n∗T(�̂nT − �0)

d→ N(0, �−1
�0

(��0 + ��0 )�−1
�0

).

When n∗
T → c < ∞,

√
n∗T(�̂nT − �0) + √

cb�0,nT
d→ N(0, �−1

�0
(��0 + ��0 )�−1

�0
).

When n∗
T → ∞, T(�̂nT − �0) + b�0,nT

p→ 0.

Proof See Appendix D.4.

14.3.3 Bias Correction

From Equation (14.19), the QML estimator has the leading bias − 1
T b�0,nT where

b�0,nT = �−1
�0,nT · a�0,n and the confidence interval will not be centered when

n∗
T → c < ∞. Furthermore, when T is relatively smaller than n∗, the presence
of b�0,nT causes �̂nT to have a degenerate distribution. An analytical bias re-
duction procedure can be used to correct this bias of the estimate. Define the

13 The limT→∞ EHnT can be singular if, for example, �0 = 0.
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bias corrected estimator as

�̂
1
nT = �̂nT − B̂nT

T
, (14.20)

where, from Theorem 14.3, B̂nT = [−�−1
�,nT · a�,n]|�=�̂nT

. We show that when

n∗/T3 → 0, �̂
1
nT is

√
n∗T consistent and asymptotically centered normal even

when n∗/T → ∞.
For the asymptotic properties of the bias corrected estimator, we need the

following additional assumption.

Assumption 9.
∑∞

h=0 Bh
n (�) and

∑∞
h=1 h Bh−1

n (�) are uniformly bounded in ei-
ther row sum or column sums, uniformly in a neighborhood of �0.

Assumption 9 can be justified through Lemma 14.5 in Appendix B. Our
result for the bias corrected estimator is as follows.

Theorem 14.4 If n∗
T3 → 0, under Assumptions 1–9,

√
n∗T(�̂

1
nT−�0)

d→ N(0, �−1
�0

+
�−1

�0
��0�

−1
�0

).

Proof See Appendix D.5.

Hence, if T grows faster than n∗1/3, the analytical bias adjusted estima-
tor is asymptotically normal and centered properly around �0. For the case
n
T → c, �̂

1
nT has removed the asymptotic bias b�0,nT . Note that n

T → c implies

T/n∗1/3 → ∞. For the case n∗
T → ∞, as long as T/n∗1/3 → ∞, �̂

1
nT is

√
n∗T

consistent, which is also an improvement upon the T consistency of �̂nT . Thus,
�̂

1
nT might have better performance, especially when n∗ is much larger than T .

14.3.4 Testing

For the unified transformation approach with a bias correction, we have√
n∗T(�̂

1
nT − �0)

d→ N(0, �−1
�0

+ �−1
�0

��0�
−1
�0

). Hence, we can use the bias cor-

rected estimate �̂
1
nT for the statistical inference of �0 + �0 + �0. Let �

�̂
1
nT ,nT

and �
�̂

1
nT ,n

be consistent estimates for ��0,nT and ��0,n. We can construct
t-statistic to test the null of spatial co-integration, i.e., �0 +�0 +�0 = 1. Denote
r = (1, 1, 01×kx , 1, 0)′. With � = (�, �, �′, �, �2), we are testing r ′�̂

1
nT = 1. The

test statistic is

t =
√

n∗T · (r ′�̂
1
nT − 1)√

r ′(�−1
�̂

1
nT ,nT

+ �−1
�̂

1
nT ,nT

�
�̂

1
nT ,n

�−1
�̂

1
nT ,nT

)r

d→ N(0, 1), (14.21)

because
√

n∗T · (r ′�̂
1
nT − 1)

d→ N(0, r ′(�−1
�0

+ �−1
�0

��0�
−1
�0

)r ) and �−1
�̂

1
nT ,nT

+
�−1

�̂
1
nT ,nT

�
�̂

1
nT ,n

�−1
�̂

1
nT ,nT

p→ �−1
�0

+�−1
�0

��0�
−1
�0

. We present a simulation in the next
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section to investigate the finite sample performance of the test statistic in
terms of its significance level and power, under one-sided or two-sided tests.

14.4 Monte Carlo Results

We conduct a Monte Carlo experiment to evaluate the performance of the
bias corrected MLE of this unified approach and compare them with other
estimation methods under different DGPs:

A : Ynt = �0WnYnt + �0Yn,t−1 + �0WnYn,t−1 + Xnt�0 + cn0

+ Vnt, �0 + �0 + �0 < 1,
(14.22)

B : Ynt = �0WnYnt + �0Yn,t−1 + �0WnYn,t−1 + Xnt�0 + cn0 + �t0ln

+ Vnt, �0 + �0 + �0 < 1,
(14.23)

C : Ynt = �0WnYnt + �0Yn,t−1 + �0WnYn,t−1 + Xnt�0 + cn0

+ Vnt, �0 + �0 + �0 = 1, �0 �= 1,
(14.24)

D : Ynt = �0WnYnt + �0Yn,t−1 + �0WnYn,t−1 + Xnt�0 + cn0 + �t0ln

+ Vnt, �0 + �0 + �0 = 1, �0 �= 1.
(14.25)

The DGPs A and B are stable SDPD models with or without time dummy
effects. The C and D are spatial co-integrated SDPD models with or without
time dummy effects. We will also consider subsequently DGPs with explosive
roots in E and F. We generate samples using �0 = (0.2, 0.2, 1, 0.2, 1)′ for the
stable cases and �0 = (0.4, 0.2, 1, 0.4, 1)′ for the spatial co-integration cases
where �0 = (�0, �0, �′

0, �0, �2
0)′, and Xnt, cn0, �T0 = (�1, �2, · · · , �T )′ and Vnt

are generated from independent normal distributions.14 The spatial weights
matrix we use is a block diagonal matrix formed by a row-normalized queen
matrix.15 We use T = 10, 50, and n = 18, 54.

For each set of generated sample observations, we use two methods: one
is the corresponding estimation method without any transformation when
the model does not have time dummies, or using the deviation from group
mean transformation when the model includes time dummies, and the other
is the unified transformation method. We obtain the MLE �̂nT , construct the
bias corrected estimator �̂

1
nT and evaluate the bias �̂

1
nT − �0. We do this 1000

14 We generated the data with 20 + T periods and then take the last T periods as our sample.
And the initial value is generated as N(0, In) in the simulation.

15 We choose the spatial weights matrix such that it contains unit eigenvalues. We use the block
diagonal matrix where each block uses the same weights matrix. By increasing the number
of blocks, the number of unit eigenvalues of the block diagonal matrix will also increase, but
the percentage remains a constant. In our simulation, when n = 18, n∗ = 16; when n = 54,
n∗ = 48.
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times. We also compare the empirical standard deviation (SD) and the em-
pirical mean square error (RMSE) of these 1000 estimators. Also, a coverage
probability (CP) is reported.16 With different values of n and T , finite sample
properties of the bias corrected estimators17 are summarized in Tables 14.1
and 14.2. Table 14.1 presents the results for the stable SDPD models; and Table
14.2 is for the spatial co-integration cases.

Because the unified transformation method will lose more degrees of free-
dom than the other methods, we expect less precision for the estimates from
the unified transformation approach than the others. For our MC design with
blocks of the queen matrix, the use of the unified transformation will result
in more loss of degrees of freedom than that of the deviation from the group
mean transformation for the models with time effects. It is of interest to see
that the estimators by the unified transformation method perform well, and
they are a little bit worse than the corresponding estimators in the loss of
precision. All the estimates have small biases. The CPs are adequate except
for some cases with small T = 10.

The unified transformation method would be of more interest for the ex-
plosive roots case. We conduct a simulation to check the performance of the
unified estimator when the DGP is explosive:

E : Ynt = �0WnYnt + �0Yn,t−1 + �0WnYn,t−1 + Xnt�0 + cn0

+ Vnt, �0 + �0 + �0 > 1,
(14.26)

F : Ynt = �0WnYnt + �0Yn,t−1 + �0WnYn,t−1 + Xnt�0 + cn0 + �t0ln

+ Vnt, �0 + �0 + �0 > 1,
(14.27)

where �0 = (0.4, 0.4, 1, 0.4, 1)′. Finite sample properties of both estimators are
summarized in Table 14.3 for the bias corrected estimators. We can see that
even though we have explosive roots in the DGP, the unified approach can
still yield estimators with good finite sample performances, i.e., the biases
are small and the CPs are adequate. However, if we use the QMLE without
any transformation when the model does not have time dummies, or use the
deviation from group mean transformation when the model includes time
dummies, the estimates’ Biases, SD, and RMSE become very large and the
CPs are nearly zero when T is large.

Finally, we present the simulation result of the size and power of the hy-
pothesis testing of spatial co-integration, i.e., H0 : �0 + �0 + �0 = 1. We run
1000 repetitions to calculate the power for n = 54 and T = 10 or 50, where
the power is obtained with a 1% or 5% significance levels. We first use the

16 The coverage probability is obtained by using the estimated analytical standard errors of the
estimators in each repitition.

17 For the estimators before bias correction, they have a larger bias than the corresponding bias
corrected estimators. As the comparison between the unified transformation estimators and
the corresponding estimators are similar to the counterpart of bias corrected estimators, we
do not report the tables of results to save space.
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TABLE 14.1

Performance of Estimators When the DGP Is Stable
T n Estimator � � � � �2

No Time Dummy in the DGP (Equation 14.22):
(1) 10 54 A Bias −0.0010 −0.0015 0.0016 −0.0086 −0.0288

SD 0.0320 0.0659 0.0451 0.0517 0.0592
RMSE 0.0439 0.0926 0.0619 0.0721 0.0860

CP 0.9400 0.9040 0.9290 0.9410 0.8500
10 54 Unified Bias −0.0010 −0.0002 0.0001 −0.0108 −0.0305

SD 0.0375 0.1409 0.0494 0.1139 0.0674
RMSE 0.0515 0.1908 0.0676 0.1535 0.0981

CP 0.9250 0.9360 0.9300 0.9780 0.8470
(2) 50 18 A Bias −0.0007 −0.0011 −0.0009 −0.0025 −0.0043

SD 0.0235 0.0476 0.0337 0.0393 0.0470
RMSE 0.0317 0.0652 0.0458 0.0536 0.0647

CP 0.9570 0.9410 0.9480 0.9510 0.9230
50 18 Unified Bias −0.0006 0.0004 −0.0025 −0.0077 −0.0062

SD 0.0274 0.1034 0.0370 0.0873 0.0534
RMSE 0.0371 0.1414 0.0505 0.1176 0.0736

CP 0.9450 0.9400 0.9440 0.9470 0.9250
(3) 50 54 A Bias −0.0002 −0.0009 0.0000 −0.0007 −0.0015

SD 0.0136 0.0275 0.0195 0.0227 0.0272
RMSE 0.0182 0.0370 0.0259 0.0311 0.0377

CP 0.9570 0.9500 0.9620 0.9320 0.9320
50 54 Unified Bias 0.0002 0.0018 0.0001 −0.0015 −0.0017

SD 0.0158 0.0596 0.0214 0.0504 0.0309
RMSE 0.0211 0.0800 0.0284 0.0684 0.0424

CP 0.9480 0.9520 0.9600 0.9420 0.9320

Time Dummy in the DGP (Equation 14.23):
(1) 10 54 B Bias −0.0036 −0.0000 0.0016 −0.0066 −0.0283

SD 0.0323 0.0700 0.0455 0.0550 0.0597
RMSE 0.0452 0.0987 0.0632 0.0769 0.0871

CP 0.9190 0.9160 0.9260 0.9280 0.8620
10 54 Unified Bias −0.0043 −0.0010 0.0008 −0.0086 −0.0312

SD 0.0375 0.1405 0.0495 0.1140 0.0673
RMSE 0.0519 0.1950 0.0690 0.1532 0.0968

CP 0.9270 0.9170 0.9200 0.9760 0.8600
(2) 50 18 B Bias −0.0009 −0.0025 −0.0024 −0.0013 −0.0046

SD 0.0242 0.0595 0.0347 0.0498 0.0484
RMSE 0.0330 0.0804 0.0477 0.0683 0.0662

CP 0.9510 0.9460 0.9430 0.9310 0.9380
50 18 Unified Bias 0.0005 0.0074 −0.0030 −0.0023 −0.0253

SD 0.0273 0.1033 0.0370 0.0873 0.0523
RMSE 0.0375 0.1411 0.0507 0.1178 0.0732

CP 0.9440 0.9420 0.9410 0.9480 0.9330
(3) 50 54 B Bias 0.0002 −0.0008 0.0002 0.0007 −0.0015

SD 0.0136 0.0290 0.0196 0.0241 0.0269
RMSE 0.0185 0.0395 0.0268 0.0334 0.0373

CP 0.9470 0.9410 0.9360 0.9270 0.9400
50 54 Unified Bias 0.0004 0.0003 −0.0001 −0.0033 −0.0031

SD 0.0158 0.0596 0.0214 0.0504 0.0309
RMSE 0.0215 0.0811 0.0291 0.0693 0.0421

CP 0.9500 0.9410 0.9430 0.9430 0.9400

Note: �0= (0.2, 0.2, 1, 0.2, 1)′
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TABLE 14.2

Performance of Estimators When the DGP Is Spatial Co-integrated
T n Estimator � � � � �2

No Time Dummy in the DGP (Equation 14.24):
(1) 10 54 C Bias 0.0065 0.0518 0.0073 0.0007 −0.0330

SD 0.0314 0.0531 0.0452 0.0405 0.0594
RMSE 0.0447 0.0899 0.0626 0.0589 0.0876

CP 0.9090 0.7640 0.9190 0.9160 0.8330
10 54 Unified Bias −0.0023 0.0023 −0.0005 −0.0173 −0.0354

SD 0.0354 0.1353 0.0490 0.1113 0.0659
RMSE 0.0494 0.1843 0.0674 0.1560 0.0982

CP 0.9180 0.9300 0.9240 0.9230 0.8350
(2) 50 18 C Bias 0.0001 0.0046 −0.0006 −0.0046 −0.0039

SD 0.0224 0.0365 0.0338 0.0314 0.0473
RMSE 0.0303 0.0495 0.0460 0.0425 0.0651

CP 0.9550 0.9450 0.9470 0.9530 0.9280
50 18 Unified Bias −0.0013 −0.0005 −0.0024 −0.0078 −0.0062

SD 0.0249 0.0969 0.0367 0.0851 0.0525
RMSE 0.0337 0.1306 0.0501 0.1171 0.0725

CP 0.9460 0.9470 0.9420 0.9520 0.9280
(3) 50 54 C Bias 0.0003 0.0033 0.0003 −0.0035 −0.0010

SD 0.0129 0.0210 0.0195 0.0181 0.0274
RMSE 0.0175 0.0287 0.0260 0.0250 0.0380

CP 0.9510 0.9380 0.9620 0.9360 0.9340
50 54 Unified Bias −0.0002 0.0002 0.0002 −0.0002 −0.0016

SD 0.0143 0.0558 0.0212 0.0491 0.0304
RMSE 0.0193 0.0757 0.0282 0.0675 0.0418

CP 0.9470 0.9490 0.9600 0.9430 0.9310

Time Dummy in the DGP (Equation 14.25):
(1) 10 54 D Bias 0.0030 0.0483 0.0059 0.0006 −0.0323

SD 0.0316 0.0557 0.0456 0.0435 0.0597
RMSE 0.0450 0.0917 0.0638 0.0631 0.0882

CP 0.8550 0.6790 0.8880 0.8600 0.8500
10 54 Unified Bias −0.0054 0.0020 −0.0000 −0.0160 −0.0364

SD 0.0354 0.1349 0.0490 0.1114 0.0658
RMSE 0.0501 0.1871 0.0686 0.1559 0.0969

CP 0.9160 0.9110 0.9240 0.9220 0.8510
(2) 50 18 D Bias −0.0004 0.0017 −0.0024 −0.0039 −0.0050

SD 0.0226 0.0441 0.0347 0.0404 0.0483
RMSE 0.0308 0.0594 0.0477 0.0560 0.0661

CP 0.9560 0.9480 0.9400 0.9310 0.9340
50 18 Unified Bias −0.0007 0.0032 −0.0029 −0.0024 −0.0059

SD 0.0248 0.0967 0.0367 0.0851 0.0525
RMSE 0.0339 0.1323 0.0503 0.1171 0.0721

CP 0.9530 0.9450 0.9410 0.9500 0.9290
(3) 50 54 D Bias 0.0004 0.0015 0.0003 −0.0017 −0.0014

SD 0.0130 0.0219 0.0197 0.0193 0.0276
RMSE 0.0175 0.0297 0.0269 0.0266 0.0375

CP 0.9360 0.8810 0.9240 0.9180 0.9430
50 54 Unified Bias −0.0001 −0.0004 −0.0000 −0.0027 −0.0030

SD 0.0143 0.0557 0.0212 0.0491 0.0304
RMSE 0.0195 0.0758 0.0288 0.0685 0.0415

CP 0.9420 0.9430 0.9370 0.9350 0.9400

Note: �0= (0.4, 0.2, 1, 0.4, 1)′
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TABLE 14.3

Performance of Estimators When the DGP Is Explosive
T n Estimator � � � � �2

No Time Dummy in the DGP (Equation 14.26):
(1) 10 54 A Bias 0.0053 0.0395 0.0049 −0.0336 −0.0241

SD 0.0336 0.0584 0.0465 0.0422 0.0626
RMSE 0.0340 0.0705 0.0467 0.0540 0.0670

CP 0.9200 0.8890 0.9270 0.8630 0.9230
10 54 Unified Bias −0.0018 0.0031 −0.0007 −0.0196 −0.0360

SD 0.0379 0.1382 0.0504 0.1201 0.0716
RMSE 0.0380 0.1382 0.0504 0.1217 0.0801

CP 0.9170 0.9310 0.9270 0.9100 0.8070
(2) 50 18 A Bias ****** ****** 2.4973 −0.0624 ******

SD ****** ****** 264.78 0.2958 ******
RMSE ****** ****** 264.79 0.3023 ******

CP 0.0150 0.0090 0.0140 0.0130 0.0110
50 18 Unified Bias −0.0013 −0.0013 −0.0025 −0.0088 −0.0065

SD 0.0246 0.0931 0.0373 0.0878 0.0543
RMSE 0.0246 0.0931 0.0374 0.0882 0.0547

CP 0.9480 0.9440 0.9420 0.9260 0.9050
(3) 50 54 A Bias ****** ****** −4.1263 −0.0668 ******

SD ****** ****** 724.64 0.3096 ******
RMSE ****** ****** 724.66 0.3167 ******

CP 0.0010 0.0000 0.0000 0.0010 0.0000
50 54 Unified Bias −0.0004 −0.0006 0.0002 −0.0005 −0.0016

SD 0.0139 0.0557 0.0203 0.0510 0.0315
RMSE 0.0139 0.0557 0.0203 0.0510 0.0315

CP 0.9450 0.9380 0.9600 0.9250 0.9130

Time dummy in the DGP (Equation 14.27):
(1) 10 54 B Bias 0.0021 0.0386 0.0037 −0.0305 −0.0257

SD 0.0346 0.0635 0.0482 0.0462 0.0639
RMSE 0.0347 0.0743 0.0483 0.0554 0.0689

CP 0.9190 0.8870 0.9240 0.8880 0.9100
10 54 Unified Bias −0.0049 0.0029 −0.0003 −0.0191 −0.0371

SD 0.0390 0.1435 0.0529 0.1200 0.0688
RMSE 0.0394 0.1435 0.0529 0.1216 0.0782

CP 0.9120 0.9060 0.9230 0.9090 0.8090
(2) 50 18 B Bias ****** ****** −4.0205 −0.0478 ******

SD ****** ****** 105.34 0.2891 ******
RMSE ****** ****** 105.41 0.2931 ******

CP 0.1030 0.0640 0.0960 0.0790 0.0660
50 18 Unified Bias −0.0011 0.0014 −0.0030 −0.0033 −0.0061

SD 0.0248 0.0972 0.0378 0.0885 0.0536
RMSE 0.0248 0.0972 0.0379 0.0885 0.0540

CP 0.9520 0.9390 0.9430 0.9260 0.9110
(3) 50 54 B Bias ****** ****** −35.49 −0.0596 ******

SD ****** ****** 835.56 0.3128 ******
RMSE ****** ****** 836.31 0.3184 ******

CP 0.0020 0.0000 0.0010 0.0040 0.0000
50 54 Unified Bias −0.0001 −0.0009 −0.0001 −0.0030 −0.0031

SD 0.0143 0.0553 0.0215 0.0521 0.0308
RMSE 0.0143 0.0553 0.0215 0.0522 0.0310

CP 0.9410 0.9370 0.9380 0.9220 0.9270

Note: 1. �0= (0.4, 0.4, 1, 0.4, 1)′.
2. ****** denotes an explosive number, which is of the order 1011 for the column of �2, and

105 for other columns.
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Note: 1. -.-.-. denotes the power curve for T = 10, and —— denotes the power curve for T = 50.

2. The first row is for the two-sided tests and the second row is for the one-sided tests.

FIGURE 14.1
Power curves under the unified approach for H0 : �0 + �0 + �0 = 1.

unified approach to get the power curves. The results are in Figure 14.1. For
the two-sided tests, the sum �0 + �0 + �0 under the alternative hypothesis
ranges from 0.65 to 1.35 with a 0.7

200 increment; for the one-sided test with
H1 : �0 + �0 + �0 < 1, the sum �0 + �0 + �0 ranges from 0.65 to 1.0 with a 0.35

200
increment. From Figure 14.2, we can see that the empirical sizes18 are close to
the theoretical ones and the tests are more powerful when T = 50 than those
for the small T = 10. The power seems reasonable for the large T = 50. We run
additional simulations where we use the corresponding estimation method
without any transformation. Figure 14.2 is the counterparts19 of Table 14.1.

18 For the empirical size, the T = 10 case has 2.4%, 2.2%, 9.1%, and 8.8% from the first row to
the second row, and the T = 50 case has 1.6%, 1.7%, 6.5%, and 5.8%. As the significance level
are 1%, 1%, 5%, and 5% correspondingly, a larger T will yield empirical sizes closer to the
theoretical values.

19 For the first row in Table 14.2, when the sum �0 + �0 + �0 is much larger than 1 (i.e., the
process is explosive), the estimates might not be available due to overflow without the unified
transformation. Hence, for the two-sided power curves, we allow the sum only up to 1.3.
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Note: 1. -.-.-. denotes the power curve for T = 10, and —— denotes the power curve for T = 50.

2. The first row is for the two-sided tests and the second row is for the one-sided tests.

FIGURE 14.2
Power curves under Yu, de Jong, and Lee (2007) for H0 : �0 + �0 + �0 = 1.

We can see that, when �0 + �0 + �0 < 1, the test is more powerful by using the
corresponding method without any transformation; when �0 + �0 + �0 > 1,
the power curves are irregular and we need to rely on the unified approach
for the inferences.20

14.5 Conclusion

This chapter establishes asymptotic properties of QMLEs for SDPD models
with both time and individual fixed effects when both the number of individ-
uals n and the number of time periods T can be large. Instead of using different

20 For the empirical size, the T = 10 case has 34.8%, 0.3%, 44.9%, and 1.5% from the first row to
the second row in Table 14.2, and the T = 50 case has 1.1%, 0.8%, 4%, and 4%. Hence, when T
is small, the empirical sizes could be far away from the theoretical values.
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estimation methods depending on whether the DGP has time effects or not
and whether the DGP is stable or not, we propose a data transformation ap-
proach to eliminate both the time effects and the possible unstable or explosive
effects. The transformation is motivated by the possible co-integration rela-
tionship in the SDPD model, which is implied by the unit eigenvalues in the
spatial weights matrix Wn. Unlike the co-integration in the multi-variate time
series, the co-integrating vector is known and does not need to be estimated.
With the proposed data transformation, the possible unstable or explosive
components and time effects can be eliminated.

The transformation uses the co-integrating matrix. The effective sample size
n∗ after transformation corresponds to the co-integration rank, which is the
number of eigenvalues not equal to the unity. This transformation is of partic-
ular value when the process may contain explosive roots, as usual estimation
methods can be poorly performed under such a situation. For the unified ap-
proach, when T is relatively larger than n∗, the estimators are

√
n∗T consistent

and asymptotically centered normal; when n∗ is asymptotically proportional
to T , the estimators are

√
n∗T consistent and asymptotically normal, but the

limit distribution is not centered around 0; when T is relatively smaller than
n∗, the estimators are consistent with rate T and have a degenerate limit dis-
tribution. We also propose a bias correction for our estimators. We show that
when T grows faster than n∗1/3, the correction will asymptotically eliminate
the bias and yield a centered confidence interval. Monte Carlo experiments
have demonstrated a desirable finite sample performance of the estimator. A
test statistic for testing possible spatial co-integration is also considered. In
Lee and Yu (2010b), this unified estimation approach is applied to study the
market integration in Keller and Shiue (2007) with the SDPD model and test
for the spatial co-integration.

Appendices

A Some Notes

A.1 The Eigenvalues of An: Three Cases of the DGP

From Subsection 14.2.1, the eigenvalues matrix of An can be decomposed as
Dn = �0+�0

1−�0
Jn + D̃n, where Jn = diag{1mn , 0, · · · , 0} and D̃n = diag{0, · · · , 0,

dn,mn+1, · · · , dnn} with |dni | < 1. Hence, Ah
n = ( �0+�0

1−�0
)h Rn Jn R−1

n + Bh
n with Bh

n =
Rn D̃h

n R−1
n . As dni = �0+�0�ni

1−�0�ni
, the derivative of dni = �0+�0�ni

1−�0�ni
as a function of �ni

is
∂( �0+�0�ni

1−�0�ni
)

∂�ni
= �0+�0�0

(1−�0�ni )2 . Thus, dni is a monotonic function of �ni . Our setting as-
sumes that |dni | < 1 whenever dni �= 1. This requirement can be satisfied with
appropriate restriction on the parameter space of �0, �0 and �0 as shown below.

The case with �0 + �0�0 = 0 implies that dni is a constant function of �ni .
As |�0| < 1 (implied by Assumptions 1 and 3), the derivative is zero if and
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only if �0 + �0�0 = 0, i.e., �0 = −�0�0. In this situation, dni = �0+�0�ni
1−�0�ni

= �0,
and all |dni | < 1 if |�0| < 1.21 The dni is a strictly increasing function of �ni if
and only if �0 + �0�0 > 0; otherwise it is a strictly decreasing function of �ni

when �0 + �0�0 < 0. Let �0 + �0 + �0 = 1 + a , where a is a constant. We have
the stable case when �0 + �0 + �0 < 1; the spatial cointegration case when
�0 + �0 + �0 = 1 but �0 �= 1; and the explosive case when �0 + �0 + �0 > 1. The
condition �0 + �0�0 > 0 (< 0) is equivalent to (1 − �0)(1 − �0) > −a (< −a )
because (1 − �0)(1 − �0) = �0 + �0�0 − a .

Assume that dni is an increasing function of �ni . As Wn is row-normalized,
−1 ≤ �ni ≤ 1 for all i . With the relation dni = �0+�0�ni

1−�0�ni
on [−1, 1], dni = �0−�0

1+�0

at �ni = −1, and dni = �0+�0
1−�0

at �ni = 1. Hence, the smallest eigenvalue of An

will be greater than or equal to �0−�0
1+�0

, and the largest eigenvalue will occur at
�ni = 1. Hence, the possible range of dni with �ni in [−1, 1] is [ �0−�0

1+�0
, �0+�0

1−�0
].

The smallest eigenvalue of An will be greater than −1 if

�0 − �0

1 + �0
> −1 ⇔ 1 + �0 + �0 > �0 ⇔ 1 − �0 > −a

2
.

Also, whenever �ni < 1−�0
�0+�0

, the corresponding dni < 1. This is so, because the
critical value �∗ such that �0+�0�∗

1−�0�∗ = 1 is at �∗ = 1−�0
�0+�0

= 1 − a
(�0+�0) .

In summary, for any eigenvalue �ni of Wn (with |�ni | ≤ 1), the correspond-
ing eigenvalue of An is dni = �0+�0�ni

1−�0�ni
. Under the situation (1−�0)(1−�0) > −a ,

we have dni < 1 if �ni < 1 − a
�0+�0

; and dni > −1 if 1 − �0 > − a
2 .

Hence, we have the following sufficient conditions for three cases in our
studies. Assume that |�0| < 1 and (1 − �0)(1 − �0) > −a .

1. Stable case: a < 0. If �0 + �0 > 0, all dni ≤ 1 (because �ni < 1 − a
�0+�0

); if
1 − �0 > − a

2 , −1 < dni .
2. Spatial co-integration case: a = 0. When �ni = 1, dni = 1; when �ni < 1

and 1 − �0 > 0, then |dni | < 1.
3. Explosive case: a > 0. When �ni = 1, dni > 1; when �ni < 1 − a

�0+�0
=

1−�0
�0+�0

, |dni | < 1; furthermore, with 1 − �0 > − a
2 , |dni | < 1.

A.2 Decomposition

From Equation 14.2, by iterative substitution, we have

Ynt = At+1
n Yn,−1 +

t∑
h=0

Ah
nS−1

n (cn0 + Xn,t−h�0 + Vn,t−h + �t−h,0ln).

21 For this special case, the model becomes Ynt = �0Yn,t−1 + S−1
n (Xnt�0 +cn0 +�t0ln +Vnt). Hence,

this case is Ynt = �0Yn,t−1 + S−1
n Xnt�0+ �t0

1−�0
ln + 
nt , where 
nt = �0Wn
nt + cn0 + Vnt has the

panel disturbance structure in Kapoor, Kelejian, and Prucha (2007). This model is close to the
one considered in Su and Yang (2007) except for the resulting regressor term.
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As S−1
n ln = 1

1−�0
ln and An = S−1

n (�0 In + �0Wn) = (�0 In + �0Wn)S−1
n , using

Wnln = ln, we have Ah
nS−1

n ln = 1
1−�0

( �0+�0
1−�0

)hln. By Ah
n = ( �0+�0

1−�0
)h Rn Jn R−1

n + Bh
n

and Rn Jn R−1
n S−1

n = S−1
n Rn Jn R−1

n = 1
1−�0

Rn Jn R−1
n (see Proposition B.4 in Yu, de

Jong, and Lee 2007), the above equation can be written as

Ynt = At+1
n Yn,−1 +

t∑
h=0

Bh
n S−1

n (cn0 + Xn,t−h�0 + Vn,t−h) + 1
1 − �0

t∑
h=0

(
�0 + �0

1 − �0

)h

× �t−h,0ln + 1
1 − �0

t∑
h=0

(
�0 + �0

1 − �0

)h

Rn Jn R−1
n (cn0 + Xn,t−h�0 + Vn,t−h).

For At+1
n Yn,−1, we have At+1

n Yn,−1 = ( �0+�0
1−�0

)t+1 Rn Jn R−1
n Yn,−1 + Bt+1

n Yn,−1, where

Bt+1
n Yn,−1 =

∞∑
h=t+1

Bh
n S−1

n (cn0 + Xn,t−h�0 + Vn,t−h) + 1
1 − �0

∞∑
h=t+1

�t−h,0 Bh
nln,

using Bn An = B2
n and BnS−1

n = S−1
n Bn. The item with Bh

nln is zero. Because Rn

is the eigenvectors matrix of Wn and its first column is ln, we have R−1
n ln = en1

which is the first unit vector. As D̃nen1 = 0, it follows that Bnln = 0. Hence,
we can decompose Ynt as Ynt = Yu

nt + Ys
nt + Y�

nt, which is Equation 14.3.
The Ys

nt represents a stable component as the eigenvalues of Bn can be
less than unity in absolute value for many parameter values (see
Appendix A.1). The Y�

nt captures the component due to time dummies. As
| �0+�0

1−�0
| < 1 if and only if −1 < �0 + �0 + �0 < 1 because �0 < 1, Yu

nt is also
stable when �0 + �0 + �0 < 1. But when �0 + �0 + �0 = 1 (> 1), then �0+�0

1−�0
= 1

(> 1) and Yu
nt may represent the unstable or explosive components.

A.3 Data Transformation

We can transform Equation 14.1 by In − Wn into Equation 14.4, where the
remaining ( In − Wn)cn0 can be regarded as the individual effects. A spe-
cial feature of the transformed Equation 14.4 is that the variance matrix of
( In − Wn)Vnt is equal to �2

0�n ≡ �2
0( In − Wn)( In − Wn)′, which is singular.

Hence, there is a linear dependence among the elements of ( In − Wn)Vnt. An
effective estimation method shall eliminate the linear dependence. This can
be done with the eigenvalues and eigenvectors decomposition (see, e.g., Theil
1971, Chapter 6).

Let [Fn, Hn] be the orthonormal matrix of eigenvectors and �n be the diago-
nal matrix of nonzero eigenvalues of �n such that �n Fn = Fn�n and �n Hn = 0.
That is, the columns of Fn consist of eigenvectors of nonzero eigenvalues and
those of Hn are for zero-eigenvalues of �n. Let n∗ be the number of nonzero
eigenvalues. The Fn is an n × n∗ matrix and �n is an n∗ × n∗ diagonal matrix.
Thus,

�n Fn = Fn�n, F ′
n Fn = In∗ , �n Hn = 0, H′

n Hn = In−n∗ ,

F ′
n Hn = 0, Fn F ′

n + Hn H′
n = In, Fn�n F ′

n = �n.

(14.28)
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Because �n Hn = 0, it implies that ( In − Wn)′ Hn = 0. In turn, Wn( In − Wn) =
Wn(Fn F ′

n+Hn H′
n)( In−Wn) = Wn Fn F ′

n( In−Wn). Denote W∗
n = �

−1/2
n F ′

nWn Fn�
1/2
n

which is a n∗ × n∗ matrix. This matrix can be regarded as a spatial weights
matrix for the following transformed equation:

Y∗
nt = �0W∗

n Y∗
nt + �0Y∗

n,t−1 + �0W∗
n Y∗

n,t−1 + X∗
nt�0 + c∗

n0 + V∗
nt, (14.29)

where Y∗
nt = �

−1/2
n F ′

n( In − Wn)Ynt and other variables are defined correspond-
ingly. Note that this transformed Y∗

nt is an n∗ dimensional vector. Hence, after
the transformation, the observations at time period t have only n∗ degrees
of freedom. Equation 14.29 shall provide the structural parameters for esti-
mation. This equation is in the format of a typical SAR model in panel data,
where the number of observations is n∗T .

A.4 Determinant and Inverse of S ∗
n (�) ≡ In∗ − �W ∗

n

We note that S∗
n = �

−1/2
n F ′

nSn Fn�
1/2
n . Let � be a scalar. Because ( In−Wn)·Hn = 0,

[Fn, Hn]′(�In − Wn)[Fn, Hn]

=
(

�In∗ − F ′
nWn Fn −F ′

nWn Hn

−H′
nWn Fn �In−n∗ − H′

nWn Hn

)
=

(
�In∗ − F ′

nWn Fn −F ′
nWn Hn

0 (� − 1) In−n∗

)
.

Hence, |�In −Wn| = (�−1)n−n∗ |�In∗ − F ′
nWn Fn|. Because |�In∗ −W∗

n | = |�In∗ −
�

−1/2
n F ′

nWn Fn�
1/2
n | = |�In∗ − F ′

nWn Fn|, |�In − Wn| = (� − 1)n−n∗ |�In∗ − W∗
n |.

As Wn has (n − n∗) unit eigenvalues, the eigenvalues of W∗
n are exactly the

remaining eigenvalues of Wn, which are less than unity in the absolute value.
Furthermore,

|S∗
n(�)| = 1

(1 − �)n−n∗ |Sn(�)|. (14.30)

Thus, the tractability in computing the determinant of S∗
n(�) is exactly that of

Sn(�). When Wn is constructed as a weights matrix that is row-normalized from
an original symmetric matrix, Ord (1975) has suggested a computationally
tractable method for the evaluation of |Sn(�)| at various � for the ML method.
This is useful for evaluating the determinant of S∗

n(�) even though the row
sums of W∗

n may not even be unity.
Furthermore, a SAR model is an equilibrium model in the sense that the

observed outcomes are determined by the equation. That is, the matrix S∗
n(�)

shall be invertible. For the transformed equation (Equation 14.29), S∗
n(�) is

invertible as long as the original matrices Sn(�) in Equation 14.1 is invertible.
We can see that

S∗−1
n (�) = �−1/2

n F ′
nS−1

n (�)Fn�
1/2
n , (14.31)
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because

S∗
n(�) · �−1/2

n F ′
nS−1

n (�)Fn�
1/2
n = �−1/2

n F ′
nSn(�)Fn F ′

nS−1
n (�)Fn�

1/2
n

= �−1/2
n F ′

nSn(�)( In − Hn H′
n)S−1

n (�)Fn�
1/2
n

= In∗ − �−1/2
n F ′

nSn(�)Hn H′
nS−1

n (�)Fn�
1/2
n = In∗ ,

as H′
nWn = H′

n, H′
nS−1

n (�) = 1
1−�

H′
n and H′

n Fn = 0.

A.5 About tr(G∗
n(�))

We have G∗
n(�) = �

−1/2
n F ′

nGn(�)Fn�
1/2
n . This is so because, from Equation 14.31,

G∗
n(�) = W∗

n S−1∗
n (�) = �−1/2

n F ′
nWn Fn F ′

nS−1
n (�)Fn�

1/2
n

= �−1/2
n F ′

nWn( In − Hn H′
n)S−1

n (�)Fn�
1/2
n

= �−1/2
n F ′

nWnS−1
n (�)Fn�

1/2
n − �−1/2

n F ′
nWn Hn H′

nS−1
n (�)Fn�

1/2
n

= �−1/2
n F ′

nWnS−1
n (�)Fn�

1/2
n = �−1/2

n F ′
nGn(�)Fn�

1/2
n ,

because H′
nS−1

n (�)Fn = 1
1−�

H′
n Fn = 0. Hence,

tr (G∗
n(�)) = tr (F ′

nGn(�)Fn) = tr [Gn(�)( In − Hn H′
n)] = tr (Gn(�)) − n − n∗

1 − �
,

(14.32)

where the last equality holds because H′
nWn = H′

n and H′
nS−1

n (�) = 1
1−�

H′
n

implies that

tr (Gn(�)Hn H′
n) = tr (H′

nGn(�)Hn) = tr (H′
nWnS−1

n (�)Hn) = 1
1 − �

tr (H′
n Hn)

= n − n∗

1 − �
.

As G∗2
n (�) = �

−1/2
n F ′

nGn(�)Fn F ′
nGn(�)Fn�

1/2
n , we have

tr (G∗2
n (�)) = tr (F ′

nGn(�)Fn F ′
nGn(�)Fn) = tr (Gn(�)Fn F ′

nGn(�)Fn F ′
n)

= tr (Gn(�)( In − Hn H′
n)Gn(�)( In − Hn H′

n)).

Using H′
nGn(�) = 1

(1−�) H′
n and H′

n Hn = In−n∗ , we have [Gn(�)( In − Hn H′
n)]2 =

[Gn(�)]2[In − Hn H′
n] and

tr (G∗2
n (�)) = tr (G2

n(�)) − n − n∗

(1 − �)2 , (14.33)

because H′
nG2

n(�)Hn = 1
(1−�)2 H′

n Hn = 1
(1−�)2 In−n∗ . In terms of the eigenval-

ues of Wn, as Wn = RnϖR−1
n , tr (G∗

n(�)) = ∑n
j=mn+1

ϖnj

1−�ϖnj
and tr (G∗2

n (�)) =∑n
j=mn+1

ϖ2
nj

(1−�ϖnj )2 .
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Also, as J ∗
n = ( In − Wn)′�+

n ( In − Wn) and ( In − Wn)Gn(�) = Gn(�)( In − Wn),
Equation 14.32 implies that

tr ( J ∗
n Gn(�)) = tr (Gn(�)( In − Wn)( In − Wn)′Fn�

−1
n F ′

n)

= tr (Gn(�)Fn F ′
n) = tr (Gn(�)( In − Hn H′

n))

= tr (G∗
n(�)). (14.34)

For J ∗
n , we have tr ( J ∗

n ) = tr (( In−Wn)′Fn�
−1
n F ′

n( In−Wn)) = tr (�−1
n �n) = n∗ by

using Equation 14.28. The J ∗
n is an orthogonal projector. This is so, because

J ∗
n is symmetric and J ∗

n J ∗
n = ( In − Wn)′�+

n ( In − Wn) · ( In − Wn)′�+
n ( In − Wn) =

( In − Wn)′�+
n �n�

+
n ( In − Wn) = ( In − Wn)′�+

n ( In − Wn) = J ∗
n .

B Lemmas for Some Statistics in the Model

The following lemmas can be found in Yu, de Jong, and Lee (2008). These
lemmas provide orders for relevant terms in the score and the Hessian matrix
of the log-likelihood function. They include also a CLT for linear and quadratic
forms of disturbances. Denote Unt = ∑∞

h=1 Pnh Vn,t+1−h , where {Pnh}∞h=1 is a
sequence of n × n nonstochastic square matrices.

Assumption A1 The disturbances {vit}, i = 1, 2, ..., n and t = 1, 2, ..., T, are
i.i.d. across i and t with zero mean, variance �2

0 and E|vit|4+
 < ∞ for some

 > 0.
Assumption A2

∑∞
h=1 abs( Pnh) is UB.

Assumption A3 The elements of n × 1 vector Dnt are nonstochastic and
bounded, uniformly in n and t.
Assumption A4 n is a nondecreasing function of T and T goes to infinity.

Lemma 14.1 Under Assumptions A1 and A4, for an n × n nonstochastic matrix
Bn, uniformly bounded in row and column sums,

1
nT

T∑
t=1

V′
ntBnVnt − E(

1
nT

T∑
t=1

V′
ntBnVnt) = Op

(
1√
nT

)
, (14.35)

1
n

V̄′
nTBnV̄nT − E(

1
n

V̄′
nTBnV̄nT ) = Op

(
1√
nT2

)
, (14.36)

and

1
nT

T∑
t=1

Ṽ′
ntBnṼnt − E(

1
nT

T∑
t=1

Ṽ′
ntBnṼnt) = Op

(
1√
nT

)
, (14.37)

where E( 1
nT

∑T
t=1 V′

ntBnVnt) = O(1), E( 1
n V̄′

nTBnV̄nT ) = O(T−1) and E( 1
nT

∑T
t=1

Ṽ′
ntBnṼnt) = O(1).
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Lemma 14.2 Under Assumptions A1, A2, and A4,

√
T
n

(Ū′
nT,−1V̄nT − E(Ū′

nT,−1V̄nT )) = Op

(
1√
T

)
, (14.38)

where
√

T
n E(Ū′

nT,−1V̄nT ) = √ n
T

1
n �2

0tr
(∑∞

h=1 Pnh
) + O

(√ n
T3

)
.

For the lemma that follows, we will consider the following form:

QnT =
T∑

t=1

(U′
n,t−1Vnt + D′

ntVnt + V′
ntBnVnt − �2

0tr (Bn)) =
T∑

t=1

n∑
i=1

znt,i ,

where Bn is a n × n nonstochastic symmetric matrix which is UB, and znt,i =
(ui,t−1 + dnti )vit + bn,ii (v2

i t − �2
0) + 2(

∑i−1
j=1 bn,i j v jt)vit, where bn,i j is the (i, j)

element ofBn and dnti is the ith element of Dnt. Then, for the mean and variance
of QnT , �QnT = 0 and

�2
QnT

= T�4
0tr

( ∞∑
h=1

P ′
nh Pnh

)
+ �2

0

T∑
t=1

D′
nt Dnt

+T

((
�4 − 3�4

0

) n∑
i=1

b2
n,ii + 2�4

0tr (B2
n)

)
+ 2�3

T∑
t=1

n∑
i=1

dnti bn,ii ,

where �s = Evs
it for s = 3, 4.

Lemma 14.3 Under Assumptions A1, A2, A3, A4, and that Bn is UB, if the

sequence 1
nT �2

QnT
is bounded away from zero, then, QnT

�QnT

d→ N(0, 1).

Denote Znt = (Yn,t−1, WnYn,t−1, Xnt), we are going to provide some lemmas
related to ( In − Wn) Z̃nt, ( In − Wn) Z̄nT and Ṽnt, V̄nT of the model Equation 14.1.

Lemma 14.4 Under Assumptions 1–7, for an n × n nonstochastic UB matrix Bn,

1
nT

T∑
t=1

Z̃′
nt( In − Wn)′Bn( In − Wn) Z̃nt − E

1
nT

T∑
t=1

Z̃′
nt( In − Wn)′Bn( In − Wn) Z̃nt

= Op

(
1√
nT

)
, (14.39)
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and

1
nT

T∑
t=1

Z̃′
nt( In − Wn)′Bn( In − Wn)Ṽnt − E

1
nT

T∑
t=1

Z̃′
nt( In − Wn)′Bn( In − Wn)Ṽnt

= Op

(
1√
nT

)
, (14.40)

where E 1
nT

∑T
t=1 Z̃′

nt( In − Wn)′Bn( In − Wn) Z̃nt is O(1) and E 1
nT

∑T
t=1 Z̃′

nt( In −
Wn)′Bn( In − Wn)Ṽnt is O

( 1
T

)
.

Lemma 14.5 If ‖Bn(�0))‖∞ < 1 (resp: ‖Bn(�0))‖1 < 1), then the row sum (resp:
column sum) of

∑∞
h=0 Bh

n (�) and
∑∞

h=1 h Bh−1
n (�) are bounded uniformly in n and

in a neighborhood of �0.

C Concentrated QML of the Transformation Approach

C.1 Reduced Form of Equation 14.1

From Equation 14.1, we have Ynt = S−1
n (Znt�0 + cn0 + �tln + Vnt) and WnYnt =

Gn Znt�0 + Gncn0 + �tGnln + GnVnt. By using S−1
n = In + �0Gn, Ynt = Znt�0 +

�0Gn Znt�0 +S−1
n cn0 +�t S−1

n ln+S−1
n Vnt. With S−1

n ln = 1
1−�0

ln and ( In−Wn)ln = 0,

Ỹnt = Z̃nt�0 + �0Gn Z̃nt�0 + �̃t

1 − �0
ln + S−1

n Ṽnt,

and

( In−Wn)Ỹnt = ( In−Wn) Z̃nt�0+�0( In−Wn)Gn Z̃nt�0+( In−Wn)S−1
n Ṽnt. (14.41)

Similarly, as WnỸnt = Gn Z̃nt�0 + �̃tGnln + GnṼnt,

( In − Wn)WnỸnt = ( In − Wn)Gn Z̃nt�0 + ( In − Wn)GnṼnt, (14.42)

because ( In − Wn)Gnln = 1
1−�0

( In − Wn)ln = 0.
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C.2 FOC and SOC of the Concentrated Log-Likelihood

Denote J ∗
n = ( In − Wn)′�+

n ( In − Wn) and G∗
n = W∗

n S∗−1
n . By using trGn(�) −

tr (G∗
n(�)) = n−n∗

1−�
and tr (G2

n(�)) − tr (G∗2
n (�)) = n−n∗

(1−�)2 (see Appendix A.5), the
first-order derivatives of Equation 14.10 are

∂ ln Ln,T (�)
∂�

=



1
�2

T∑
t=1

( J ∗
n Z̃nt)′Ṽnt(�)

1
�2

T∑
t=1

(( J ∗
n WnỸnt)′Ṽnt(�)) − TtrG∗

n(�)

1
2�4

T∑
t=1

(Ṽ′
nt(�) JnṼnt(�) − n∗�2)


, (14.43)

and the second order derivatives are

∂2 ln Ln,T (�)
∂�∂�′

= −



1
�2

T∑
t=1

Z̃′
nt J ∗

n Z̃nt
1

�2

T∑
t=1

Z̃′
nt J ∗

n WnỸnt
1

�4

T∑
t=1

Z̃′
nt J ∗

n Ṽnt(�)

∗ 1
�2

T∑
t=1

(
(WnỸnt)′ J ∗

n WnỸnt) + Ttr ((G∗
n(�))2) 1

�4

T∑
t=1

(WnỸnt)′ J ∗
n Ṽnt(�)

∗ ∗ − n∗T
2�4 + 1

�6

T∑
t=1

Ṽ′
nt(�) J ∗

n Ṽnt(�)

 .

(14.44)

At �0,

1√
n∗T

∂ ln Ln,T (�0)
∂�

=



1
�2

0

1√
n∗T

T∑
t=1

Z̃′
nt J ∗

n Ṽnt

1
�2

0

1√
n∗T

T∑
t=1

(Gn Z̃nt�0)′ J ∗
n Ṽnt + 1

�2
0

1√
n∗T

T∑
t=1

(Ṽ′
ntG

′
n J ∗

n Ṽnt − �2
0trG∗

n)

1
2�4

0

1√
n∗T

T∑
t=1

(Ṽ′
nt J ∗

n Ṽnt − n∗�2
0)


,

(14.45)
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which is a linear and quadratic form of Ṽnt. For the information matrix,

��0,nT = 1
�2

0

(
EHnT 0(k+3)×1

01×(k+3) 0

)

+


0(k+2)×(k+2) 0(k+2)×1 0(k+2)×1

01×(k+2)
1
n∗

[
tr (G ′

n J ∗
n Gn) + tr ((G∗

n)2)
] 1

�2
0n∗ tr ( J ∗

n Gn)

01×(k+2)
1

�2
0n∗ tr ( J ∗

n Gn)
1

2�4
0



−


0(k+2)×(k+2) ∗ ∗

1
�2

0n∗ E(GnV̄nT )′ J ∗
n Z̄nT

2
�2

0n∗ E[(Gn Z̄nT �0)′ J ∗
n GnV̄nT ] + 1

n∗T
tr (G ′

n J ∗
n Gn) ∗

1
�4

0n∗ E( Z̄′
nT J ∗

n V̄nT )′ 1
�4

0n∗ E[(Gn Z̄nT �0)′ J ∗
n V̄nT ]′ + 1

�2
0n∗T

tr ( J ∗
n Gn)

1
T

1
�4

0

 .

C.3 About − 1
n∗T

∂2 ln L nT (�)
∂�∂�′

Denote ‖� − �0‖ as the Euclidean norm of � − �0, and �1 as a neighborhood
of �0, then, we have

1
n∗T

∂2 ln LnT (�)
∂�∂�′ − 1

n∗T
∂2 ln LnT (�0)

∂�∂�′ = ‖� − �0‖ · Op(1), (14.46)

1
n∗T

∂2 ln LnT (�0)
∂�∂�′ + ��0,nT = Op

(
1√
n∗T

)
, (14.47)

sup
�∈�

∣∣∣∣ 1
n∗T

∂2 ln LnT (�)
∂�∂�′ − 1

n∗T
E

∂2 ln LnT (�)
∂�∂�′

∣∣∣∣
i j

= Op

(
1√
n∗T

)
, (14.48)

and

sup
�∈�1

∣∣∣∣ 1
n∗T

E
∂2 ln LnT (�)

∂�∂�′ + ��0,nT

∣∣∣∣
i j

= sup
�∈�1

‖� − �0‖ · O(1) (14.49)

for all i, j = 1, 2, · · · , k + 4. These are Equation A.11 to Equation A.14 in Yu,
de Jong, and Lee (2008).

D Proofs for Claims and Theorems

D.1 Proof of nonsingularity of the information matrix

The result can be proved by using an argument by contradiction. For ��0 ≡
limT→∞ ��0,nT , where ��0,nT is Equation 14.12, we shall prove that ��0 � = 0
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implies � = 0, where � = (�′
1, �2, �3)′, �2, �3 are scalars and �1 is (k + 2) × 1

vector. If this is true, then, columns of ��0 would be linear independent so that
��0 would be nonsingular. Denote H� = plimT→∞

1
n∗T

∑T
t=1 Z̃′

nt J ∗
n Z̃nt, H�� =

plimT→∞
1

n∗T

∑T
t=1 Z̃′

nt J ∗
n Gn Z̃nt�0, H�� = H′

�� and H� = plimT→∞
1

n∗T

∑T
t=1

(Gn Z̃nt�0)′ J ∗
n Gn Z̃nt�0. Then

��0 = 1
�2

0


H� H�� 0(k+2)×1

H�� EH� + limn→∞
�2

0

n∗
[
tr (G ′

n J ∗
n Gn) + tr ((G∗

n)2)
]

limn→∞
1
n∗ tr ( J ∗

n Gn)

01×(k+2) limn→∞
1
n∗ tr ( J ∗

n Gn)
1

2�2
0

 .

Hence, ��0 � = 0 implies

H� × �1 + H�� × �2 = 0,

1
�2

0

H�� × �1 +
(

1
�2

0

H� + limn→∞
1
n∗

[
tr (G ′

n J ∗
n Gn) + tr ((G∗

n)2)
])

× �2 + limn→∞ 1
�2

0n∗ tr ( J ∗
n Gn) × �3 = 0,

limn→∞
1
n∗ tr ( J ∗

n Gn) × �2 + 1
2�2

0

× �3 = 0.

From the first equation, �1 = −(H�)−1H�� × �2; from the third equation,

�3 = −2 limn→∞
�2

0
n∗ tr ( J ∗

n Gn) × �2. By eliminating �1 and �3, the remaining
equation becomes{(

1
�2

0

(
H� − H��H−1

� H��

))

+ lim
n→∞

1
n∗

[
tr (G ′

n J ∗
n Gn) + tr ((G∗

n)2) − 2
tr2( J ∗

n Gn)
n∗

]}
× �2 = 0.

Using Equation 14.34 and that J ∗
n is idempotent, denote Cn = G∗

n − tr (G∗
n)

n∗ , we
have

tr (G ′
n J ∗

n Gn) + tr ((G∗
n)2) − 2

tr2( J ∗
n Gn)

n∗ = tr (G∗′
n G∗

n) + tr ((G∗
n)2) − 2

tr2(G∗
n)

n∗

= 1
2

tr (C ′
n + Cn)(C ′

n + Cn)′,

which is nonnegative. Hence, if the limit of EHnT is nonsingular or the limit
of 1

n∗ (tr (G∗′
n G∗

n) + tr ((G∗
n)2) − 2 tr2(G∗

n)
n∗ ) is nonzero, we have �2 = 0 and hence

� = 0. This proves the nonsingularity of ��0 . �



 

P1: NARESH CHANDRA

November 12, 2010 18:3 C7035 C7035˙C014

A Unified Estimation Approach for Spatial Dynamic Panel Data Models 429

D.2 Proof of Theorem 14.1

To prove 1
n∗T ln Ln,T (�) − Qn,T (�)

p→ 0 uniformly in � in any compact parameter
space �:

From Ṽnt(�) ≡ Sn(�)Ỹnt − Z̃nt�− �̃tln and Ṽnt = SnỸnt − Z̃nt�0 − �̃t0ln, using
J ∗

n ln = 0, we have J ∗
n Ṽnt(�) = J ∗

n Ṽnt − (� − �0) J ∗
n WnỸnt − J ∗

n Z̃nt(� − �0). As �

is compact and �2 is bounded away from zero in �, by Lemma 14.1 and 14.4,

1
n∗T

ln Ln,T (�) − Qn,T (�)

= − 1
2�2

(
1

n∗T

T∑
t=1

Ṽ′
nt(�) J ∗

n Ṽnt(�) − 1
n∗T

E
T∑

t=1

Ṽ′
nt(�) J ∗

n Ṽnt(�)

)
p→ 0

uniformly in � in �.
To prove Qn,T (�) is uniformly equicontinuous in � in any compact parameter
space �:

For Qn,T (�) in Equation 14.11, as J ∗
n Ṽnt(�) = J ∗

n [Sn(�)Ỹnt − Z̃nt�] and Ỹnt =
S−1

n Z̃nt�0 + S−1
n Ṽnt + �̃t0

1−�0
ln,

J ∗
n Ṽnt(�) = J ∗

n [Sn(�)S−1
n Z̃nt�0 − Z̃nt� + Sn(�)S−1

n Ṽnt]

because J ∗
n ln = 0. Hence,

E
1

n∗T

T∑
t=1

Ṽ′
nt(�) J ∗

n Ṽnt(�) = 1
n∗T

E
T∑

t=1

(Sn(�)S−1
n Z̃nt�0 − Z̃nt�)′ J ∗

n (Sn(�)

× S−1
n Z̃nt�0 − Z̃nt�) + 1

n∗
T − 1

T
�2

0tr

× (S−1′
n S′

n(�) J ∗
n Sn(�)S−1

n ) + 2
n∗T

E
T∑

t=1

× (Sn(�)S−1
n Z̃nt�0 − Z̃nt�)′ J ∗

n Sn(�)S−1
n Ṽnt. (14.50)

With these terms, similar to Lee and Yu (2010a), it can be shown that Qn,T (�)
is uniformly equicontinuous in � in any compact parameter space �.
To prove the identification:

As tr J ∗
n = n∗, E

∑T
t=1 Ṽ′

nt J ∗
n Ṽnt = n∗(T − 1)�2

0 from Lemma 14.1. Hence,
1

n∗T E ln Ln,T (�)− 1
n∗T E ln Ln,T (�0) = − 1

2 (ln �2−ln �2
0)+ 1

n∗ ln |Sn(�)|− 1
n∗ ln |Sn|−

n−n∗
n∗ (ln(1 − �) − ln(1 − �0)) − ( 1

2�2
1

n∗T

∑T
t=1 EṼ′

nt(�) J ∗
n Ṽnt(�) − T−1

2T ). By us-
ing Sn(�)S−1

n = In + (�0 − �)Gn, from Equation 14.50, 1
n∗T E ln Ln,T (�) − 1

n∗T
E ln Ln,T (�0) = T1,n(�, �2) − 1

2�2 T2,n,T (�, �) + O(T−1), where

T1,n(�, �2) = −1
2

(ln �2 − ln �2
0) + 1

n∗ ln |Sn(�)| − 1
n∗ ln |Sn| − n − n∗

n∗

× (ln(1 − �) − ln(1 − �0)) − 1
2�2 (�2

n(�) − �2),
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and

T2,n,T (�, �) = 1
n∗T

T∑
t=1

E{[Z̃nt(�0 − �) + (�0 − �)Gn Z̃nt�0]′ J ∗
n

× [Z̃nt(�0 − �) + (�0 − �)Gn Z̃nt�0]},

where �2
n(�) = �2

0
n∗ tr (S−1′

n S′
n(�) J ∗

n Sn(�)S−1
n ). Consider the pure spatial process

Ynt = �0WnYnt+�tln+Vnt for a single period t. With similar data transformation
as in Equation 14.5, the log-likelihood function of this process is

ln L p,n(�, �2) = −n∗

2
ln 2	 − n∗

2
ln �2 − (n − n∗) ln(1 − �) + ln |Sn(�)|

− 1
2�2 V′

nt(�) J ∗
n V′

nt(�), (14.51)

where Vnt(�) = Sn(�)Ynt. Let Ep(·) be the expectation operator for Ynt based
on this pure spatial autoregressive process. It follows that

Ep(
1
n∗ ln L p,n(�, �2)) − Ep(

1
n∗ ln L p,n(�0, �2

0))

= −1
2

(ln �2 − ln �2
0) + 1

n∗ ln |Sn(�)| − 1
n∗ ln |Sn| − n − n∗

n∗ (ln(1 − �)

− ln(1 − �0)) − 1
2�2 (�2

n(�) − �2),

which equals to T1,n(�, �2). By the information inequality, ln L p,n(�, �2) −
ln L p,n(�0, �2

0) ≤ 0. Thus, T1,n(�, �2) ≤ 0 for any (�, �2).
For T2,n,T (�, �), it is a quadratic function of � and �. Under the assumed

condition that limT→∞ EHnT is nonsingular, limT→∞ T2,n,T (�, �) > 0 when-
ever (�, �) �= (�0, �0). So, (�, �) is globally identified. Given �0, �2

0 is also the
unique maximizer of T1,n(�0, �2) for any given n∗. In the event that n∗ → ∞,
�2

0 is the unique maximizer of limT→∞ T1,n(�0, �2). Hence, (�, �, �2) is globally
identified.

By combining the results above together, the consistency follows. �

D.3 Proof of Theorem 14.2

When the limit of EHnT is singular, �0 and �0 cannot be identified from
T2,n,T (�, �) in Appendix D.2. Identification requires that the limit of T1,n(�, �2)
is strictly less than zero whenever (�, �2) �= (�0, �2

0). Thus, the identification
will just be from the likelihood function Equation 14.51. By concentrating out
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�2 in Equation 14.51, we have the concentrated log-likelihood function

ln L p,n(�) = −n∗

2
(ln(2	) + 1) − n∗

2
ln �̂2

nt(�) − (n − n∗) ln(1 − �) + ln |Sn(�)|

= −n∗

2
(ln(2	) + 1) − n∗

2
ln �̂2

nt(�) + ln |S∗
n(�)|

from Equation 14.30, where �̂2
nt(�) = 1

n∗ V′
nt(�) J ∗

n Vnt(�). Also, we have the cor-
responding Qn(�) = max�2 E(ln L p,n(�, �2)) = − n∗

2 (ln(2	) +1) − n∗
2 ln �2

n(�) +
ln |S∗

n(�)|. Identification of �0 requires that limn→∞ 1
n∗ [Qn(�) − Qn(�0)] �= 0

whenever � �= �0, which is equivalent to

1
n∗ ln

∣∣�2
0S∗′−1

n S∗−1
n

∣∣ − 1
n∗ ln

∣∣�2
n(�)S∗′−1

n (�)S∗−1
n (�)

∣∣ �= 0 for � �= �0.

After �0 is identified, �2
0 is then identified. Also, given �0, �0 can then be

identified from limT→∞ T2,n,T (�, �). Combined with uniform convergence and
equicontinuity, the consistency follows. �

D.4 Proof of Theorem 14.3

From Equation 14.13,

J ∗
n Z̃nt = J ∗

n Z̃(c)
nt − ( J ∗

n ŪnT,−1, J ∗
n WnŪnT,−1, 0n×k), (14.52)

where J ∗
n Z̃(c)

nt is uncorrelated with Vnt and the remaining term is correlated
with Vnt when t ≤ T − 1. For the score decomposition 1√

n∗T
∂ ln Ln,T (�0)

∂�
=

1√
n∗T

∂ ln L (c)
n,T (�0)
∂�

− �nT in Equation 14.14, the first term is a linear and quadratic
form of Vnt, and the asymptotic distribution can be derived from the CLT for
martingale difference arrays (Lemma 14.3). Hence,

1√
n∗T

∂ ln Ln,T (�0)
∂�

+ �nT
d→ N(0, ��0 + ��0 ).

For �nT , from Equation 14.36 in Lemma 14.1 and Equation 14.38 in Lemma

14.2, we have �nT =
√

n∗
T a�0,n + O(

√
n∗
T3 ) + Op( 1√

T
) where a�0,n specified in

Equation 14.18 is O(1).
The Taylor expansion gives

√
n∗T(�̂nT − �0) = (− 1

n∗T
∂2 ln Ln,T (�̄nT )

∂�∂�′ )−1 1√
n∗T

×
∂ ln Ln,T (�0)

∂�
, where �̄nT lies between �0 and �̂nT . Similar to Lee and Yu (2010a), we

have �̂nT − �0 = Op(max( 1√
n∗T

, 1
T )). Using the fact that (− 1

n∗T
∂2 ln Ln,T (�̄nT )

∂�∂�′ )−1 =
�−1

�0,nT + Op(max( 1√
n∗T

, 1
T )), given that ��0,nT is nonsingular and its inverse is
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of order O(1), we have

√
n∗T(�̂nT − �0) =

(
− 1

n∗T
∂2 ln Ln,T (�̄nT )

∂�∂�′

)
·
(

1√
n∗T

∂ ln L (c)
n,T (�0)
∂�

− �nT

)

= �−1
�0,nT · 1√

n∗T

∂ ln L (c)
n,T (�0)
∂�

+ Op

(
max

(
1√
n∗T

,
1
T

))

· 1√
n∗T

∂ ln L (c)
n,T (�0)
∂�

− �−1
�0,nT · �nT

−Op

(
max

(
1√
n∗T

,
1
T

))
· �nT ,

which implies that

√
n∗T(�̂nT − �0) + �−1

�0,nT · �nT + Op

(
max

(
1√
n∗T

,
1
T

))
· �nT

= (�−1
�0,nT + o p(1)) · 1√

n∗T

∂ ln L (c)
n,T (�0)
∂�

. (14.53)

As ��0 = limT→∞ ��0,nT exists, then using �nT =
√

n∗
T a�0,n+O(

√
n∗
T3 )+Op( 1√

T
)

with a�0,n = O(1) and 1√
n∗T

∂ ln L (c)
n,T (�0)
∂�

d→ N(0, ��0 + ��0 ), the result in the
theorem follows. �

D.5 Proof for Theorem 14.4

Theorem 14.3 states that
√

n∗T(�̂nT − �0) +
√

n∗
T b�0,nT + Op(max(

√
n∗
T3 , 1√

T
))

d→
N(0, �−1

�0
(��0 + ��0 )�−1

�0
). As the bias corrected estimator is �̂

1
nT = �̂nT +

1
T (− 1

n∗T E ∂2 ln LnT (�̂nT )
∂�∂�′ )−1 ·an(�̂nT ) where an(�) = a�,n, we have

√
n∗T(�̂

1
nT −�0)

d→
N(0, �−1

�0
(��0 + ��0 )�−1

�0
) if√

n∗

T

(
− 1

n∗T
E

∂2 ln LnT (�̂nT )
∂�∂�′

)−1

an(�̂nT ) − �−1
�0,nT an(�0)

 p→ 0 (14.54)

and n∗
T3 → 0. Similar to Lee and Yu (2010a), Equation 14.54 can be proved

under the assumed regularity conditions. �
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15.1 Introduction

Economists are interested in spill-over effects and externalities. Spatial models
allow simple econometric methods for modeling these spill-over effects. For
example, you spend more money on police in one neighborhood, you may
increase the crime in an adjacent neighborhood. This externality is dependent
on contiguity of the neighborhoods, their common borders, or the distance
between these neighborhoods. The same idea can be applied for the analysis of
welfare or trade. If California is generous in providing welfare to its residents,
this may attract welfare recipients from adjacent states. Gravity models of
trade use distance, common border, common language, culture and history,
common colonizer, common currency, to see if these things enhance trade.
These may be interpreted as distances that are economic, historic, or cultural
in nature. In sum, these metrics can be used in a spatial economic model to
explain crime or trade or dependency on welfare.

Spatial models deal with correlation across spatial units usually in a cross-
section setting; see Anselin (1988, 2001) and Anselin and Bera (1998) for a
nice introduction to this literature. Panel data models allow the researcher
to control for heterogeneity across these units; see Baltagi (2008a). Spatial
panel models can control for both heterogeneity and spatial correlation; see
for example Baltagi, Song, and Koh (2003) for a joint test of spatial correlation

435



 

P1: GOPAL JOSHI

November 3, 2010 17:3 C7035 C7035˙C015

436 Handbook of Empirical Economics and Finance

and heterogeneity using panel data. Recent spatial panel data applications
in economics include household level survey data from villages observed
over time to study nutrition (see Case 1991); per capita expenditures on po-
lice to study their effect on reducing crime across counties (see Kelejian and
Robinson 1992); the productivity of public capital like roads and highways in
the private sector across U.S. states (see Holtz-Eakin 1994); hedonic housing
equations using residential sales (see Bell and Bockstael 2000); unemployment
clustering with respect to different social and economic metrics (see Conley
and Topa 2002); spatial price competition in the wholesale gasoline markets
(see Pinkse, Slade, and Brett 2002); and foreign direct investment (see Baltagi,
Egger and Pfaffermayr 2007).

Usually one does not worry about cross-section correlation in randomly
drawn samples at the individual level. However, when one starts looking at a
cross-section of countries, regions, states, counties, etc., these aggregate units
are likely to exhibit cross-sectional correlation that have to be dealt with. There
is an extensive literature using spatial statistics that deals with this type of cor-
relation. Spatial dependence models may use a metric of economic distance
which provides cross-sectional data with a structure similar to that provided
by the time index in time series. With the increasing availability of micro
as well as macro level panel data, spatial panel data models are becoming
increasingly attractive in empirical economic research. The recent literature
on spatial panel data models with error components adopts two alternative
spatial autoregressive error processes. One specification assumes that only
the remainder error term is spatially correlated but the individual effects are
not (Anselin 1988; Baltagi, Song, and Koh 2003; Anselin, Le Gallo, and Jayet
2008; we refer to this as the Anselin model). The other specification assumes
that both the individual and remainder error components follow the same
spatial error process (see Kapoor, Kelejian, and Prucha 2007; we refer to this
as the KKP model). Maximum likelihood (ML) estimation, even in its sim-
plest form entails substantial computational problems when the number of
cross-sectional units N is large. Kelejian and Prucha (1999) suggested a gener-
alized moments (GM) estimation method which is computationally feasible
even when N is large. Kapoor, Kelejian, and Prucha (2007) generalized this
GM procedure from cross-section to panel data and derived its large sam-
ple properties when T is fixed and N → ∞. Baltagi, Egger, and Pfaffermayr
(2008a) introduced a generalized spatial panel data model which nests these
two alternative processes in a more general model. They derive LM tests of the
generalized model against its restricted alternatives and study their size and
power performance against LR tests. In a companion paper, Baltagi, Egger,
and Pfaffermayr (2008b) compare the performance of ML estimates of these
models under misspecification and suggest a pretest estimator based on the
LM tests derived by Baltagi, Egger, and Pfaffermayr (2008a). They show that
misspecified MLE can cause substantial loss in MSE where as the pretest es-
timator performs well, ranking a close second to the true MLE. Monte Carlo
experiments are performed to shed some light on the performance of say the
Anselin MLE when the true specification is that of KKP, and vice versa. Also, to
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see how robust is the MLE of the general spatial panel model to overspecifi-
cation, i.e., if the true model is KKP or Anselin. Conversely, how the Anselin
and KKP maximum likelihood estimates are affected by underspecification of
the general model. Since the researcher does not know the true model, the
Monte Carlo experiments show that the pretest estimator is a viable second
best alternative to the true MLE in practice.

The outline of this chapter is as follows: Section 15.2 introduces the spatial
error component regression model and the associated methods of estimation
in these models including maximum likelihood and generalized method of
moments. Section 15.3 introduces an encompassing spatial error component
model and the associated tests for the restricted models. Section 15.4 discusses
prediction in the context of spatial panel models, while Section 15.5 studies the
performance of various panel unit root tests when spatial correlation across
the panel is present. Section 15.6 gives some recent developments in this area
and further thoughts for future research.

15.2 Spatial Error Component Regression Model

One can model the spatial correlation as well as the heterogeneity across
countries using a spatial error component regression model:

yti = X′
ti � + uti , i = 1, . . . , N; t = 1, . . . , T, (15.1)

where yti is the observation on the ith country for the tth time period, Xti

denotes the (k × 1) vector of observations on the nonstochastic regressors
and uti is the regression disturbance. In vector form, the disturbance vector is
assumed to have random country effects as well as spatially autocorrelated
remainder disturbances, see Anselin (1988):

ut = � + �t (15.2)

with

�t = �W�t + �t (15.3)

where �′ = (�1, . . . , �N) denote the vector of random country effects which
are assumed to be IIN(0, �2

�). � is the scalar spatial autoregressive coefficient
with | � |< 1. W is a known (N × N) spatial weight matrix whose diagonal
elements are zero.1 W also satisfies the condition that ( IN−�W) is nonsingular.

1 In the simplest case, the weights matrix is binary, with wi j = 1 when i and j are neighbors
and wi j = 0 when they are not. By convention, diagonal elements are null: wii = 0 and the
weights are usually standardized such that the elements of each row sum to 1. Alternatively,
W could be based on physical distances such as port to port or capital to capital, or commuting
distances; see Anselin (1988) for more details on the properties of this W matrix.
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�′
t = (�t1, . . . , �tN), where �ti is assumed to be IIN(0, �2

�) and also independent
of �i . One can rewrite �t as

�t = ( IN − �W)−1�t = B−1�t (15.4)

where B = IN − �W and IN is an identity matrix of dimension N. The model
can be rewritten in matrix notation as

y = X� + u (15.5)

where y is now of dimension (NT × 1), X is (NT × k), � is (k × 1) and u is
(NT ×1). X is assumed to be of full column rank and its elements are assumed
to be bounded in absolute value. The error can be written in vector form as

u = (�T ⊗ IN)� + ( IT ⊗ B−1)� (15.6)

where �′ = (�′
1, . . . , �′

T ). Under these assumptions, the variance–covariance
matrix for u is given by

� = �2
�( J T ⊗IN)+�2

�( IT ⊗(B ′ B)−1), and J T is 	(T×T) matrix of ones. (15.7)

This matrix can be rewritten as

� = �2
�

[
J̄ T ⊗ (T
IN + (B ′ B)−1) + ET ⊗ (B ′ B)−1

]
= �2

�� (15.8)

where 
 = �2
�/�2

�, J̄ T = J T/T and ET = IT − J̄ T . Using results in Wansbeek
and Kapteyn (1983), �−1 is given by

�−1 = J̄ T ⊗ (T
IN + (B ′ B)−1)−1 + ET ⊗ B ′ B. (15.9)

Also, |�| = |T
IN +(B ′ B)−1| · |(B ′ B)−1|T−1. Under the assumption of normal-
ity, the log-likelihood function for this model was derived by Anselin (1988,
p. 154) as

L = − NT
2

ln 2��2
� − 1

2
ln |�| − 1

2�2
�

u′�−1u

= − NT
2

ln 2��2
� − 1

2
ln[|T
IN + (B ′ B)−1|] + (T − 1)

2
ln |B ′ B|

− 1
2�2

�

u′�−1u (15.10)

with u = y − X�. For a derivation of the first-order conditions of MLE as
well as the LM test for � = 0 for this model; see Anselin (1988). As an exten-
sion to this work, Baltagi, Song, and Koh (2003) derived the joint LM test for
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spatial error correlation as well as random country effects. Additionally, they
derived conditional LM tests, which test for random country effects given
the presence of spatial error correlation. Also, spatial error correlation given
the presence of random country effects. These conditional LM tests are an
alternative to the one directional LM tests that test for random country effects
ignoring the presence of spatial error correlation or the one directional LM
tests for spatial error correlation ignoring the presence of random country
effects. Extensive Monte Carlo experiments are conducted to study the per-
formance of these LM tests as well as the corresponding Likelihood Ratio
tests. Baltagi, Song, Jung and Koh (2007) generalize the Baltagi, Song, and
Koh (2003) paper by allowing for serial correlation over time for each spa-
tial unit and spatial dependence across these units at a particular point in
time. In addition, the model allows for heterogeneity across the spatial units
through random effects. Testing for any one of these symptoms ignoring the
other two is shown to lead to misleading results. Baltagi, Song, and Kwon
(2009) extend these LM statistics to a panel data regression model with het-
eroskedastic as well as spatially correlated disturbances. A joint LM test for
homoskedasticity and no spatial correlation is derived. In addition, a con-
ditional LM test for no spatial correlation given heteroskedasticity, as well
as a conditional LM test for homoskedasticity given spatial correlation, are
also derived. These LM tests are compared with marginal LM tests that ig-
nore heteroskedasticity in testing for spatial correlation, or spatial correla-
tion in testing for homoskedasticity. Monte Carlo results show that these LM
tests as well as their LR counterparts, perform well even for small N and T.
However, misleading inference can occur when using marginal rather than
joint or conditional LM tests when spatial correlation or heteroskedasticity is
present.

Baltagi and Liu (2008) derive a joint LM test which simultaneously tests
for the absence of spatial lag dependence and random individual effects in a
panel data regression model. This is an extension of the above model to allow
for spatial lag dependence in the dependent variable, i.e.,

yt = �Wyt + Xt� + ut, i = 1, . . . , N; t = 1, . . . , T

where y′
t = (yt1, . . . , ytN) is a vector of observations on the dependent vari-

ables for N regions or households at time t = 1, . . . , T. � is a scalar spatial au-
toregressive coefficient and W is a known N× N spatial weight matrix whose
diagonal elements are zero. W also satisfies the condition that ( IN − �W) is
nonsingular for all |�| < 1. Xt is an N×k matrix of observations on k explana-
tory variables at time t. u′

t = (ut1, . . . , utN) is a vector of disturbances following
an error component model as described in Equation 15.2. It turns out that this
LM statistic is the sum of two standard LM statistics. The first one tests for
the absence of spatial lag dependence ignoring the random individual effects,
and the second one tests for the absence of random individual effects ignoring
the spatial lag dependence. Baltagi and Liu (2008) derive two conditional LM
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tests. The first one tests for the absence of random individual effects allowing
for the possible presence of spatial lag dependence. The second one tests for
the absence of spatial lag dependence allowing for the possible presence of
random individual effects.

As an alternative to the MLE, generalized method of moments have been
proposed for spatial cross-section models by Conley (1999) and Kelejian and
Prucha (1999) and an application of the latter method to housing data is
given in Bell and Bockstael (2000). Frees (1995) derives a distribution-free test
for spatial correlation in panels. This is based on Spearman-rank correlation
across pairs of cross-section disturbances. Driscoll and Kraay (1998) show
through Monte Carlo simulations that the presence of even modest spatial
dependence can impart large bias to OLS standard errors when N is large.
They present conditions under which a simple modification of the standard
nonparametric time series covariance matrix estimator yields estimates of the
standard errors that are robust to general forms of spatial and temporal de-
pendence as T → ∞. However, if T is small, they conclude that the problem of
consistent nonparametric covariance matrix estimation is much less tractable.
Parametric corrections for spatial correlation are possible only if one places
strong restrictions on their form, i.e., knowing W. For typical micropanels
with N much larger than T , estimating this correlation is impossible with-
out imposing restrictions, since the number of spatial correlations increases
at the rate N2, while the number of observations grow at rate N. Even for
macropanels where N = 100 countries observed over T = 20 to 30 years, N
is still larger than T and prior restrictions on the form of spatial correlation
are still needed.

ML estimation, even in its simplest form entails substantial computational
problems when the number of cross-sectional units N is large. Kelejian and
Prucha (1999) suggested a generalized moments (GM) estimation method
which is computationally feasible even when N is large. Kapoor, Kelejian,
and Prucha (2007) generalized this GM procedure from cross-section to panel
data and derived its large sample properties when T is fixed and N → ∞.

The basic regression model is the same as above; however, the disturbance
term u follows the first order spatial autoregressive process

u = �( IT ⊗ W)u + � (15.11)

with

� = (�T ⊗ IN)� + � (15.12)

where �, � and W were defined earlier. This is different from the Anselin
(1988) specification described above since it also allows the individual country
effects � to be spatially correlated.

Defining ū = ( IT ⊗W)u, ū = ( IT ⊗W)ū and �̄ = ( IT ⊗W)�, Kapoor, Kelejian,
and Prucha (2007) suggest a GM estimator based on the following six moment
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conditions

E[�′ Q�/N(T − 1)] = �2
�

E[�̄′ Q�̄/N(T − 1)] = �2
� tr(W′W)/N

E[�̄′ Q�/N(T − 1)] = 0 (15.13)

E(�′ P�/N) = T�2
� + �2

� = �2
1

E(�̄′ P �̄/N) = �2
1 tr(W′W)/N

E(�̄′ P�/N) = 0

where, � = u − �ū and �̄ = ū − �ū, substituting these expressions in the six
moment conditions we obtain a system of six equations involving the second
moments of u, ū and ū. Under the random effects specification considered, the
OLS estimator of � is consistent. Using �̂OL S one gets a consistent estimator
of the disturbances û = y − X�̂OL S. The GM estimator of �2

1, �2
� and � is the

solution of the sample counterpart of these six equations.
Kapoor, Kelejian, and Prucha (2007) suggest three GM estimators. The first

involves only the first three moments which do not involve �2
1 and yield esti-

mates of � and �2
�. The fourth moment condition is then used to solve for �2

1
given estimates of � and �2

�. Kapoor, Kelejian, and Prucha (2007) give the con-
ditions needed for the consistency of this estimator as N → ∞. The second
GM estimator is based upon weighing the moment equations by the inverse
of a properly normalized variance–covariance matrix of the sample moments
evaluated at the true parameter values. A simple version of this weighting
matrix is derived under normality of the disturbances. The third GM estima-
tor is motivated by computational considerations and replaces a component
of the weighting matrix for the second GM estimator by an identity matrix.
They perform Monte Carlo experiments comparing MLE and these three GM
estimation methods. They find that, on average, the RMSE of ML and their
weighted GM estimators are quite similar. However, the first unweighted
GM estimator has a RMSE that is 17%–14% larger than that of the weighted
GM estimators. For an application of this GM estimator to Foreign Direct In-
vestment (FDI), see Baltagi, Egger, and Pfaffermayr (2007) and to the spatial
competition in excise taxation among U.S. states, see Egger, Pfaffermayr, and
Winner (2005). Fingleton (2008) extends the GM estimator of Kapoor, Kele-
jian, and Prucha (2007) to the spatial moving average panel data model. The
generalized moments estimator has the advantage that is computationally
less demanding than MLE, especially as N gets large.

15.3 A Generalized Spatial Error Component Model

More recently, Baltagi, Egger, and Pfaffermayr (2008a) suggest a general-
ized spatial panel model which encompasses the Anselin (1988) and Kapoor,
Kelejian, and Prucha (2007) models and allows for spatial correlation in the
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individual and remainder error components that may have different spatial
autoregressive parameters. They derive the maximum likelihood estimator
(MLE) for this more general spatial panel model when the individual effects
are assumed to be random. This in turn allows the researcher to test whether
this generalized model reduces to (1) the Anselin model, (2) the Kapoor,
Kelejian, and Prucha model, or (3) a simple random effects model that ig-
nores the spatial correlation in the residuals. Baltagi, Egger, and Pfaffermayr
(2008a) derive the corresponding LM and LR tests for these three hypotheses
and compare their size and power performance using Monte Carlo experi-
ments.

In fact, Baltagi, Egger, and Pfaffermayr (2008a) consider the following gen-
eralized spatial error components model:

y = X� + u

u = Z�u1 + u2

u1 = �1WNu1 + � (15.14)

u2 = �2Wu2 + �.

This is a balanced panel, which consists of n = NT observations, where
N is the number of unique cross-sectional units, while T is the number of
time periods. The (n × 1) vector y denotes the dependent variable, X is an
(n × K ) matrix of nonstochastic exogenous variables. � is the corresponding
(K × 1) parameter vector. Z� = �T ⊗ IN denotes the design matrix for the
(N × 1) vector of random individual effects u1. �T is a (T × 1) vector of ones
and IN is an identity matrix of dimension N. The vector of individual effects
� is assumed to be i.i.d. N(0, �2

�IN), while the (n × 1) vector of remainder
disturbances � is assumed to be i.i.d. N(0, �2

�In). Furthermore, the elements
of � and � are assumed to be independent of each other. Both u1 and u2 are
spatially correlated involving the same spatial weight matrix WN for each
time period, but with different spatial autocorrelation parameters �1 and �2,
respectively. WN exhibits zero diagonal elements, the remaining entries are
usually assumed to decline with distance. The eigenvalues of WN are bounded
and smaller than 1 in absolute value. The latter assumption holds for the
row normalized WN. It also holds for the maximum-row normalized spatial
weights matrices. This assumption also implies that all row and column sums
of WN are uniformly bounded in absolute value. In addition, we assume that
|�r | < 1 for r = 1, 2. The data are ordered such that i = 1, . . . , N is the fast
index and t = 1, . . . , T is the slow one. The spatial weights matrix for the panel
is then given by W = IT ⊗ WN, which is block diagonal and of dimension
(n × n).

This model encompasses both the KKP model, which assumes that �1 = �2,
and the Anselin model, which maintains that �1 = 0. The familiar random
effects (RE) panel data model without any spatial correlation is represented
by �1 = �2 = 0 (see Baltagi 2008a).
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In order to derive the (n×n) variance–covariance of the generalized model,
we define A = (IN − �1WN) and B = (IN − �2WN). This allows us to write

u1 = A−1� ∼ N
(
0, �2

�(A′A)−1) (15.15)

u2 = (IT ⊗ B−1)� ∼ N(0, �2
�

(
IT ⊗ (B′B)−1)

)
. (15.16)

and

�u = E(uu′) = E[(Z�u1 + u2)(Z�u1 + u2)′]

= JT ⊗ [T�2
�(A′A)−1 + �2

�(B′B)−1] + �2
�(ET ⊗ (B′B)−1) = �2

��u. (15.17)

This uses the fact that E[u1u′
2] = 0 since � and � are independent by assump-

tion. Note that Z�Z′
� = JT ⊗ IN, where JT again denotes a (T × T) matrix

of ones. We define ET = IT − JT , where JT = JT/T is the averaging matrix
over T . The inverse of �u can then be obtained from the inverse of smaller
dimension (N × N) matrices as follows:

�−1
u = JT ⊗ [T�2

�(A′A)−1 + �2
�(B′B)−1]−1 + 1

�2
�

(ET ⊗ (B′B)) (15.18)

= 1
�2

�

[
JT ⊗ [

T�2
�

�2
�

(A′A)−1 + (B′B)−1]−1 + (ET ⊗ (B′B))
]

= 1
�2

�

�−1
u

Furthermore, det[�u] = det[T�2
�(A′A)−1 + �2

�(B′B)−1] det[�2
�(B′B)−1]T−1. As-

suming normality of the disturbances the log-likelihood function of the un-
restricted model is given by

L
(
�, �2

�, �2
�, �1, �2

) = − NT
2

ln 2� − 1
2

ln det
[
T�2

�(A′A)−1 + �2
�(B′B)−1]

−T − 1
2

ln det
(
�2

�(B′B)−1) − 1
2

u′�−1
u u, (15.19)

where u = y − X�. For the special case of �1 = 0, this implies that A = IN

and the restricted log-likelihood function reduces to the one considered by
Anselin (1988, p. 154):

LA
(
�, �2

�, �2
�, �2

) = − NT
2

ln 2��2
� − 1

2
ln det [T�2

�IN + �2
�(B′B)−1]−1

+T − 1
2

ln det(B′B) − 1
2

u′�−1
u,Au (15.20)

�−1
u,A = 1

�2
�

[
JT ⊗

(
T�2

�

�2
�

IN + (B′B)−1
)−1

]
+ 1

�2
�

[
ET ⊗ (B′B)

]
.
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For the alternative case with �1 = �2 = � �= 0, A = B and we obtain the
log-likelihood representation of the KKP estimator:

LKKP
(
�, �2

�, �2
�, �

) = − NT
2

ln 2��2
� − N

2
ln

(
�2

1

�2
�

)
+T

2
ln det(B′B) − 1

2
u′�−1

u,KKPu

�−1
u,KKP = 1

T�2
� + �2

�

[JT ⊗ (B′B)] + 1
�2

�

[ET ⊗ (B′B)]. (15.21)

Finally, with �1 = �2 = 0, the log-likelihood reduces to the one representing
the familiar RE model without any spatial autocorrelation:

LRE
(
�, �2

�, �2
�

) = − NT
2

ln 2��2
� − N

2
ln

�2
1

�2
�

− 1
2

u′�−1
u,REu

�−1
u,RE = 1

T�2
� + �2

�

(JT ⊗ IN) + 1
�2

�

(ET ⊗ IN). (15.22)

The pretest estimator is based on a sequence of LM tests derived by Baltagi,
Egger, and Pfaffermayr (2008b). Specifically, the following hypotheses were
considered:

H A
0 : �1 = �2 = 0 vs. H A

1 : at least one of the �1 or �2 �= 0
H B

0 : �1 = �2 vs. HB
1 : �1 �= �2

HC
0 : �1 = 0 vs. HC

1 : �1 �= 0 (15.23)

First, we test H A
0 ; �1 = �2 = 0, to see whether there is no spatial correlation in

the error term. If H A
0 is not rejected, the pretest estimator reverts to the random

effects MLE. In case H A
0 is rejected, we test HB

0 ; �1 = �2. If H B
0 is not rejected,

the pretest estimator reverts to the KKP MLE. Otherwise, �1 �= 0 or �2 �= 0
and �1 �= �2. Next, we test HC

0 ; �1 = 0. In case HC
0 is not rejected, the pretest

estimator reverts to the Anselin MLE. If HC
0 is rejected, the pretest estimator

reverts to the MLE of the general model considered by Baltagi, Egger, and
Pfaffermayr (2008b). In other words,

�̂pretest = �̂RE,MLE if H A
0 is not rejected

= �̂KKP,MLE if H A
0 is rejected, and HB

0 is not rejected
= �̂Anselin,MLE if H A

0 and HB
0 are rejected, and HC

0 is not rejected
= �̂General,MLE if H A

0 and HB
0 and HC

0 are rejected. (15.24)

It has to be emphasized that the pretest estimator becomes the MLE of the
general model when all three hypotheses are rejected. Also, it is the MLE of
the RE model when H A

0 is not rejected. Hence changing the sequence of tests
for HB

0 and HC
0 will not affect the number of times the pretest estimator reverts

to the MLE of the RE or General model. This affects only the number of times
the pretest estimator reverts to the Anselin or KKP ML estimators. In using
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the same data set to select the estimator to use based on a series of tests makes
the statistical properties of the resulting pretest estimator difficult to derive.2

LM tests for these hypotheses were derived by Baltagi, Egger, and
Pfaffermayr (2008a) under the assumption of normality. For H A

0 the LM-test
statistic is given by

L MA = 1
2b Ã�4

1

G2
A + 1

2b A(T − 1)�̃4
�

M2
A, (15.25)

where �̃2
1 = T �̃2

� + �̃2
�, b A = tr [(W′

N + WN)2], G A = ũ′{JT ⊗ (W′
N + WN)}̃u,

and MA = ũ′{ET ⊗ (W′
N + WN)}̃u. Here, ũ = y − X�̃mle,re denotes the vector

of restricted ML residuals under H A
0 . Baltagi, Egger, and Pfaffermayr (2008a)

show that under H A
0 , the L MA statistic is asymptotically distributed as 
2

2.
For HB

0 , the LM-test statistic is given by

L MB = 1
2bB��4

1

G2
B + 1

2bB�
4
�(T − 1)

M2
B, (15.26)

with G B = u′(JT ⊗ F)u − ��2
1tr [D], MB = u′(ET⊗F)u − ��2

�(T − 1)tr [D], D =
(W′

NA+A
′
WN)(A

′
A)−1 and F = W′

NA+A
′
WN. Also, bB = tr [D2]−(tr [D])2/N,

��2
1 = u′{JT ⊗(A

′
A)}u

N and ��2
� = u′{ET ⊗(A

′
A)}u

N(T−1) . Here, u = y − X�̃mle,KKP denotes the
vector of restricted ML residuals under H B

0 . The L MB statistic is asymptoti-
cally distributed as 
2

1 under HB
0 .

Finally, to test HC
0 , we let C1 = [T �̂2

�IN + �̂2
�(B̂′B̂)−1]−1, and C2 = (W′

N +
WN). The corresponding LM test for HC

0 , which has no simple closed form
representation is given by

L MC = d̂2
�1

J −1
33 , (15.27)

where

d̂�1 = ∂L
∂�1

∣∣∣∣
H B

0

= −1
2

T �̂2
�tr [C1C2] + 1

2
�̂2

�û′{JT ⊗ C1C2C1}̂u,

û = y − X�̂mle,Anselin denotes the vector of restricted ML residuals under
HC

0 , i.e., the Anselin model, and J −1
33 is the (3,3) element of the inverse of the

information matrix described in Baltagi, Egger, and Pfaffermayr (2008a).
Given that the researcher does not know the true model, Baltagi, Egger,

and Pfaffermayr (2008b) recommend the pretest estimator which performed
well in Monte Carlo experiments no matter what the true underlying model.
In fact this pretest estimator was a close second in MSE performance to the
true MLE. Additionally, the Monte Carlo experiments shed some light on
the performance of the Anselin MLE when the true model is KKP, and vice
versa. Ignoring spatial correlation in panel data and performing RE MLE
leads to considerable loss in MSE efficiency. When the true model is a general
spatial panel model with �1 �= �2 �= 0, both KKP and Anselin MLE impose

2 Pretest estimators in econometrics are surveyed in Giles and Giles (1993).
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wrong restrictions on the � parameters, which in turn, introduce bias and
lead to bad MSE performance of the resulting MLEs. Fortunately, this does
not translate fully into bad MSE performance for the regression coefficients.
The pretest estimator of the regression coefficients always performs better
than the misspecified MLE and is recommended in practice.

15.4 Forecasts Using Panel Data with Spatial Error Correlation

The literature on forecasting is rich with time series applications, but this is
not the case for spatial panel data applications. Exceptions are Baltagi and Li
(2004, 2006) with applications to forecasting sales of cigarette and liquor per
capita for U.S. states over time. In order to explain how spatial autocorrela-
tion may arise in the demand for cigarettes, we note that cigarette prices vary
among states primarily due to variation in state taxes on cigarettes. Border
effect purchases not included in the cigarette demand equation can cause spa-
tial autocorrelation among the disturbances. In forecasting sales of cigarettes,
the spatial autocorrelation due to neighboring states and the individual het-
erogeneity across states is taken explicitly into account. Baltagi and Li (2004)
derive the best linear unbiased predictor for the random error component
model with spatial correlation using a simple demand equation for cigarettes
based on a panel of 46 states over the period 1963–1992. They compare the
performance of several predictors of the states demand for cigarettes for 1
year and 5 years ahead. The estimators whose predictions are compared in-
clude OLS, fixed effects ignoring spatial correlation, fixed effects with spatial
correlation, random effects GLS estimator ignoring spatial correlation and
random effects estimator accounting for the spatial correlation. Based on the
RMSE criteria, the fixed effects and the random effects spatial estimators gave
the best out of sample forecast performance.

Best linear unbiased prediction (BLUP) in panel data using an error com-
ponent model have been surveyed in Baltagi (2008b). However, these panel
forecasting applications do not deal with spatial dependence across the panel
units. Following Baltagi and Li (2004), Baltagi, Bresson, and Pirotte (2010)
compare various forecasts using panel data with spatial error correlation.
This is done using a Monte Carlo setup rather than empirical applications.
The true data generating process is assumed to be a simple error component
regression model with spatial remainder disturbances of the autoregressive
or moving average type. The best linear unbiased predictor is compared with
other forecasts ignoring spatial correlation, or ignoring heterogeneity due to
the individual effects. The paper checks the performance of these forecasts
under misspecification of the spatial error process, different spatial weight
matrices, and various sample sizes.

Goldberger (1962) has shown that, for a given �, the best linear unbiased
predictor (BLUP) for the ith individual at a future period T + � is given by:

ŷi,T+� = Xi,T+��̂GL S + �′�−1ûGLS (15.28)
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where � = E[ui,T+�u] is the covariance between the future disturbance ui,T+�

and the sample disturbances u. �̂GLS is the GLS estimator of � based on � and
ûGLS denotes the corresponding GLS residual vector. For the error component
without spatial autocorrelation (� = 0), this BLUP reduces to

ŷi,T+� = Xi,T+��̂GLS + �2
�

�2
1

(
�′T ⊗ l ′i

)
ûGLS (15.29)

where �2
1 = T�2

� +�2
v and li is the ith column of IN. The typical element of the

last term of Equation 15.29 is (T�)ui.,GLS, where ui.,GLS = ∑T
t=1 ûti,GLS/T and

� = �2
�/�2

v; see Baltagi (2008b). Therefore, the BLUP of yi,T+� for the RE model
modifies the usual GLS forecasts by adding a fraction of the mean of the GLS
residuals corresponding to the ith individual. In order to make this forecast
operational, �̂GLS is replaced by its feasible GLS estimate and the variance
components are replaced by their feasible estimates.

Baltagi and Li (2004, 2006) derived the BLUP correction term when both
error components and spatial autocorrelation are present and �t follows a SAR
process. So, the predictor for the SAR is given by:

ŷi,T+� = Xi,T+��̂MLE + �
(
�′T ⊗ l ′i C

−1
1

)
ûMLE

= Xi,T+��̂MLE + T�
N∑

j=1

c1, j u j.,MLE (15.30)

where c1 j is the j th element of the ith row of C−1
1 with C1 = [T�IN + (B ′ B)−1]

and u j.,MLE = ∑T
t=1 ût j,MLE/T . In other words, the BLUP of yi,T+� adds to

Xi,T+��̂MLE a weighted average of the MLE residuals for the N individuals
averaged over time. The weights depend upon the spatial matrix WN and the
spatial autoregressive coefficient �. To make these predictors operational, we
replace � and � by their estimates from the RE-spatial MLE with SAR. When
there are no random individual effects, so that �2

� = 0, then � = 0 and the
BLUP prediction terms drop out completely from Equation 15.30. In these
cases, � reduces to �2

v[IT ⊗ (B ′ B)−1] for SAR, and the corresponding MLE for
these models yield the pooled spatial MLE with SAR remainder disturbances.
This result can be extended to the spatial moving average model (SMA); see
Baltagi, Bresson, and Pirotte (2010).

For the Kapoor, Kelejian, and Prucha (2007) model, the BLUP of yi,T+� for
the SAR-RE also modifies the usual GLS forecasts by adding a fraction of
the mean of the GLS residuals corresponding to the ith individual. More
specifically, the predictor is given by

ŷi,T+� = Xi,T+��̂FGLS +
(

�2
�

�2
1

)
bi

(
�′T ⊗ BN

)
ûFGLS

= Xi,T+��̂FGLS +
(

�2
�

�2
1

)(�′T ⊗ l ′i

)
ûFGLS (15.31)
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where bi is the ith row of the matrix B−1
N . This holds because bi (�′T ⊗BN) = (1⊗

bi )(�′T ⊗ BN) = (�′T ⊗l ′i ), where l ′i is the ith row of IN as defined above. B−1
N BN =

IN and therefore bi BN = l ′i . This proof applies to both the Kapoor, Kelejian,
and Prucha (2007) SAR-RE specification and the Fingleton (2008) SMA-RE
specification. Therefore, the BLUP of yi,T+� for the SAR-RE and the SMA-
RE, like the usual RE model with no spatial effects, modifies the usual GLS
forecasts by adding a fraction of the mean of the GLS residuals corresponding
to the ith individual. While the predictor formula is the same, the MLEs for
these specifications yield different estimates which in turn yield different
residuals and hence different forecasts.

The results of the Monte Carlo study by Baltagi, Bresson, and Pirotte (2010)
find that when the true DGP is RE with a SAR or SMA remainder disturbances,
estimators that ignore heterogeneity/spatial correlation perform badly in
RMSE forecasts. Accounting for heterogeneity improves the forecast perfor-
mance by a big margin and accounting for spatial correlation improves the
forecast but by a smaller margin. Ignoring both leads to the worst forecasting
performance. Heterogeneous estimators based on averaging perform worse
than homogeneous estimators in forecasting performance. This performance
improves with a larger sample size and seems robust to the type of spatial
error structure imposed on the remainder disturbances. These Monte Carlo
experiments confirm earlier empirical studies that report similar findings.

15.5 Panel Unit Root Tests and Spatial Dependence

Baltagi, Bresson, and Pirotte (2007) studied the performance of panel unit
root tests when spatial effects are present that account for cross-section cor-
relation. Monte Carlo simulations show that there can be considerable size
distortions in panel unit root tests when the true specification exhibits spatial
error correlation.

Panel data unit root tests have been proposed as alternative more powerful
tests than those based on individual time series unit roots tests; see Baltagi
(2008a) and Breitung and Pesaran (2008) for some recent reviews of this liter-
ature. One of the advantages of panel unit root tests is that their asymptotic
distribution is standard normal. This is in contrast to individual time series
unit roots which have nonstandard asymptotic distributions. But these tests
are not without their critics. The first generation panel unit root tests assumed
cross-section independence. These tests include the one proposed by Levin,
Lin, and Chu (2002), hereafter denoted by LLC, where the null hypothesis is
that each individual time series contains a unit root against the alternative that
each time series is stationary. As Maddala (1999) pointed out, the null may be
fine for testing convergence in growth among countries, but the alternative
restricts every country to converge at the same rate. Im, Pesaran, and Shin
(2003), hereafter denoted by IPS, allow for heterogeneous panels and propose
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panel unit root tests which are based on the average of the individual ADF
unit root tests computed from each time series. The null hypothesis is that
each individual time series contains a unit root while the alternative allows
for some but not all of the individual series to have unit roots. One major
criticism of both the LLC and IPS tests is that they require cross-sectional
independence. This is a restrictive assumption given the cross-section corre-
lation and spillovers across countries, states, and regions.

Maddala and Wu (1999) and Choi (2001) proposed combining the p-values
from the individual unit root ADF tests applied to each time series. Once
again, these tests follow a standard normal limiting distribution. They have
the advantage that N, the number of cross sections, can be finite or infinite; the
time series can be of different length; and the alternative allows some groups
to have unit roots while others may not.

Recent studies that try to account for cross-sectional dependence in panel
unit root testing include the following: Chang (2002) who explored the non-
linear IV methodology to solve the inferential difficulties in the panel unit
root testing which arise from the intrinsic heterogeneities and dependencies
of panel models. Chang (2002) suggests an average of individual nonlinear
IV t-ratio statistics of the autoregressive coefficient obtained from using an
integrable transformation of the lagged level as instrument. These methods
assume cross-sectional correlation in the innovation terms driving the autore-
gressive processes. Choi (2002), on the other hand, generalizes the three unit
root tests (inverse chi-square, inverse normal and logit) to the case where the
cross-sectional correlation is modeled by error component models. The tests
are formulated by combining p-values from the ADF test applied to each in-
dividual time series whose stochastic trend components and cross-sectional
correlations are eliminated using GLS-demeaning and GLS-detrending. Choi
(2002) shows that the combination tests have a standard normal limiting dis-
tributions under the sequential asymptotics T → ∞ and N → ∞.

To avoid the restrictive nature of cross-section demeaning procedure, Bai
and Ng (2004), and Phillips and Sul (2003), among others, propose dynamic
factor models by allowing the common factors to have differential effects
on cross-section units. Phillips and Sul’s model is a one-factor model where
the factor is independently distributed across time. They propose a moment-
based method to eliminate the common factor which is different from prin-
cipal components. More specifically, in the context of a residual one-factor
model, Phillips and Sul (2003) provide an orthogonalization procedure which
in effect asymptotically eliminates the common factors before preceding to
the application of standard unit root tests. Pesaran (2007) suggests a simple
way of getting rid of cross-sectional dependence that does not require the
estimation of factor loading. His method is based on augmenting the usual
ADF regression with the lagged cross-sectional mean and its first-difference
to capture the cross-sectional dependence that arises through a single factor
model.

Baltagi, Bresson, and Pirotte (2007) run Monte Carlo simulations to com-
pare the empirical size of panel unit root tests with and without spatial error
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dependence. The structure of the dependence is based on some commonly
used spatial error processes: the spatial autoregressive (SAR) and the spatial
moving average (SMA) error process and the spatial error components model
(SEC). For each experiment, they perform nine panel unit root test statistics:
the Levin, Lin, and Chu test (2002), the Breitung (2000) test, the Im, Pesaran,
and Shin test (2003), the Maddala and Wu test (1999), the Choi tests (2001,
2002) with and without cross-sectional correlation, the Chang IV test (2002),
the Phillips and Sul test (2003), and the Pesaran test (2007). The experiments
include a case of no spatial correlation as well as four types of spatial corre-
lation (SAR, SMA, SEC1, and SEC3), with two values of the parameters indi-
cating weak versus strong spatial dependence. They also consider 10 weight
matrices, differing in their degree of sparseness, four pairs of (N, T) and two
models including individual effects and individual deterministic trends. Even
with this modest design, the total number of experiments considered is 1600.
They find that ignoring spatial dependence when present can seriously bias
the size of panel unit root tests.

15.6 Extensions

Elhorst (2003) considers the ML estimation of a fixed and random effects panel
data model extended either to include spatial error autocorrelation or a spa-
tially lagged dependent variable. This is also extended to the case of random
coefficients model. In another paper, Elhorst (2005) considers the estimation
of a fixed effects dynamic panel data model extended either to include spa-
tial error autocorrelation or a spatially lagged dependent variable. The latter
models are first differenced to eliminate the fixed effects and then the uncondi-
tional likelihood function is derived taking into account the density function
of the first-differenced observations on each spatial unit. Lee and Yu (2010)
consider the estimation of a SAR panel model with fixed effects and SAR dis-
turbances. If T is finite but N is large, they show that direct ML estimation of
all the parameters including the fixed effects will yield consistent estimators
except for the variance of disturbances. Using a transformation that elimi-
nates the individual fixed effects, they provide consistent estimates for all the
parameters including the variance of disturbances. The transformation ap-
proach is shown to be a conditional likelihood approach if the disturbances
are normally distributed. Next, they extend their results to the SAR model
with both individual and time-fixed effects. In this case, the transformation
approach yields consistent estimators of all the parameters when either N or
T are large. For the direct approach, consistency of the variance parameter
requires both N and T to be large and consistency of other parameters re-
quires N to be large. Monte Carlo results are provided illustrating the finite
sample properties of the various estimators with N and/or T being small or
moderately large.
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Yu, de Jong, and Lee (2007, 2008) study the asymptotic properties of quasi-
maximum likelihood estimators for spatial dynamic panel data with fixed
effects when both the number of individuals N and the number of time
periods T are large. They cover both the stationary and nonstationary cases.
When the roots in the DGP are not all unitary, the estimators’ rates of con-
vergence will be the same as the stationary case, and the estimators can be
asymptotically normal. In fact, for the distribution of the common parameters,
when T is asymptotically large relative to N, the estimators are

√
NT con-

sistent and asymptotically normal, with the limiting distribution centered
around 0. When N is asymptotically proportional to T , the estimators are√

NT consistent and asymptotically normal, but the limiting distribution is
not centered around 0. When N is large relative to T , the estimators are con-
sistent with rate T , and have a degenerate limiting distribution. Compared
to the stationary case, the estimators’ rate of convergence will be the same,
but the asymptotic variance matrix will be driven by the nonstationary com-
ponent and it is singular. Consequently, a linear combination of the spatial
and dynamic effects can converge at a higher rate. They also propose a bias
correction which performs well when T grows faster than N1/3.

Pesaran and Tosetti (2008) study large panel data sets where even after con-
ditioning on common observed effects the cross-section units might remain
dependently distributed. This could be due to unobserved common factors
and/or spatial effects. They introduce the concepts of time-specific weak and
strong cross-section dependence and show that the commonly used spatial
models are examples of weak cross-section dependence. Pesaran’s (2006) com-
mon correlated effects (CCE) estimator of panel data model with a multifactor
error structure continues to provide consistent estimates of the slope coeffi-
cient, even in the presence of spatial error processes.

This chapter highlights some of the recent research in spatial panels. Due to
space limitations, several applications and related extensions have not been
discussed. Hopefully, this will entice the reader to read more papers on this
subject and spur some needed research in this area.

15.7 Acknowledgment

A preliminary version of this chapter was presented as a keynote speech at
the 13th African Econometric Society meeting held at the University of Pre-
toria, South Africa, July 9–11, 2008. Also as the keynote address for the 10th
Econometrics and Statistics Symposium held at Ataturk University, Turkey,
May 27–29, 2009, and in a session in honor of Cheng Hsiao at the 15th Interna-
tional Conference on Panel Data at the University of Bonn, Germany, July 3–5,
2009. I would like to thank my coauthors Georges Bresson, Alain Pirotte, Dong
Li, Seuck Heun Song, Peter Egger, Michael Pfaffermayer, Byoung Cheol Jung,
Jae Hyeok Kwon, and Won Koh for allowing me to draw freely on our work.



 

P1: GOPAL JOSHI

November 3, 2010 17:3 C7035 C7035˙C015

452 Handbook of Empirical Economics and Finance

References

Anselin, L. 1988. Spatial Econometrics: Methods and Models. Dordrecht: Kluwer Aca-
demic Publishers.

Anselin, L. 2001. Spatial econometrics. In B. Baltagi, (ed.). A Companion to Theoretical
Econometrics. pp. 310–330. Oxford, U.K.: Blackwell.

Anselin, L., and A. K. Bera. 1998. Spatial dependence in linear regression models with
an introduction to spatial econometrics. In: A. Ullah, D.E.A. Giles (eds). Handbook
of Applied Economic Statistics. New York: Marcel Dekker.

Anselin, L., J. Le Gallo, and H. Jayet. 2008. Spatial panel econometrics. In L. Mátyás
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16.1 Introduction

There exists enormous literature on the development of panel data models in
the last five decades or so. The readers are referred to Arellano (2003), Hsiao
(2003), and Baltagi (2008) for an overview of this literature. Nevertheless,
these books only focus on the study of parametric panel data models which
can be misspecified. Estimators from misspecified models are often inconsis-
tent, invalidating the subsequent statistical inference. For this reason, we also
observe a rapid growth of the literature on nonparametric (NP) and semi-
parametric (SP) panel data models in the last 15 years. For an early review
on this latter literature, the readers are referred to Ullah and Roy (1998). See
also Ai and Li (2008) whose survey focuses on partially linear and limited
dependent NP and SP panel data models.

In this chapter, we review the recent literature on nonparametric and semi-
parametric panel data models. Given the space limitation, it is impossible to
survey all the important developments in this literature. We choose to focus
on the following areas:

• Nonparametric panel data models with random effects
• Nonparametric panel data models with fixed effects
• Partially linear panel data models
• Varying coefficient panel data models
• Nonparametric panel data models with cross-section dependence
• Nonseparable nonparametric panel data models

The first two areas are limited to the conventional nonparametric panel
data models with one-way error component structure:

yit = m(xit) + εi t , i = 1, . . . , n, t = 1, . . . T, (16.1)

where xit is a p × 1 random vector, m(·) is unknown smooth function, εi t is
the disturbance term that exists the one-way error component structure:

εi t = �i + uit. (16.2)
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Here, �i represents the cross-sectional heterogeneity parameters, and uit is the
idiosyncratic error term. As in the parametric framework, �i can be treated
as either random or fixed so that we will have random effects or fixed effects
nonparametric panel data models.

Given the notorious “curse of dimensionality” problem in the nonparamet-
ric literature, applications of Equation 16.1 may be limited in practice. This
motivates the fast developments of two classes of semiparametric panel data
models, namely, partially linear panel data models and varying coefficient
panel data models. In Section 16.4, we study the estimation of the following
partially linear panel data models

yit = x′
i t�0 + m(zit) + �i + uit, i = 1, . . . , n, t = 1, . . . , T, (16.3)

where xit and zit are of dimensions p × 1 and q × 1, respectively, �0 is a
p × 1 vector of unknown parameters, m(·) is an unknown smooth function,
�i and uit are as defined above. In Section 16.5, we study the estimation of the
following varying coefficient panel data models

yit = x′
i tm(zit) + �i + uit =

p∑
d=1

xit,dmd (zit) + �i + uit (16.4)

where the covariate zit is a q × 1 vector, xit = (xit,1, . . . , xit, p)′, and m(·) =
(m1(·), . . . , mp(·))′ has p unknown smooth functions.

The literature on the estimation of parametric panel data models with cross-
section dependence has been growing rapidly in the last decade. See Pesaran
(2006) and Bai (2009) and the references therein. In Section 16.6 we consider
the estimation of mi in

yit = mi (xit) + �′
1i f1t + �′

2i f2t + εi t , i = 1, . . . , n, t = 1, . . . , T, (16.5)

where mi (·) is an unknown smooth function from, f1t is a q1 × 1 vector of
observed common factors, f2t is a q2 × 1 vector of unobserved common fac-
tors, �1i and �2i are factor loadings, εi t is the usual idiosyncratic disturbance.
Since �′

2i f2t + εi t is treated as the error term, we say it exhibits multifactor
error structure. Specification tests can be conducted to test the homogeneous
relationship (mi does not depend on i) and the existence of cross-section de-
pendence.

All previous works assume that the unobserved heterogeneity and idiosyn-
cratic error term enter the nonparametric panel data model additively. In
Section 16.7, we focus on the estimation of the following two models

yit = m(xit, �i ) + uit (16.6)

and

yit = m(xit, �i , uit) (16.7)

where both m(·, ·) and m(·, ·, ·) are unknown functions, and �i and uit are as de-
fined above. Clearly, Equation 16.6 is a partially separable model because the
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idiosyncratic disturbance enters the model additively; Equation 16.7 is fully
nonseparable. We also remark that specification testing can be developed to
test the monotonicity of the response variable in the individual heterogeneity
parameter.

Throughout the chapter, we restrict our attention to the balanced panel.
We use i = 1, . . . , n to denote an individual and t = 1, . . . , T to denote time,
but keep in mind that in some applications, the index t may not really mean
time. For example, i may denote a family and t a specific child in the family.
Unless otherwise stated, all asymptotic theories are established by passing n
to infinity. T may also pass to infinity in some scenarios, say, in some dynamic
panel data models or the panel data models with cross-section dependence.
For a natural number a, we use Ia to denote an a × a identity matrix and la an
a ×1 vector of ones. ⊗ and � denote the Kronecker and Hadarmard products,
respectively.

16.2 Nonparametric Panel Data Models with Random Effects

In this section, we consider nonparametric panel data models with random
effects:

yit = m(xit) + �i + uit, i = 1, . . . , n, t = 1, . . . , T, (16.8)

where xit is p × 1 vector of exogenous variables, �i is independently and
identically distributed (i.i.d.) (0, �2

�), u jt is i.i.d. (0, �2
u), and �i and u jt are

uncorrelated for all i, j = 1, . . . , n and t = 1, . . . , T. We remark that some of
these assumptions can be relaxed and specification testing is also possible.

Let εi t = �i + uit, εi = (εi1, . . . , εiT )′ and εi = (ε1, . . . , εn)′. Then � ≡
E(εi ε′

i ) = �2
u IT + �2

�lT l ′T and � ≡ E(εε′) = In ⊗ �. We first discuss local
linear least squares (LLLS) estimator of m and its first-order derivatives by
ignoring the information contained in the variance–covariance matrix � and
then proceed to the more efficient estimation of m and its derivatives by
exploring the information on �.

16.2.1 Local Linear Least Squares Estimator

A local linear approximation of the model (Equation 16.8) can be written as

yit ≈ m(x) + (xit − x)′�(x) + �i + uit

= xit(x)�(x) + �i + uit

where xit is “close” to x, xit(x) = (1(xit − x)′)′, �(x) = ∂m(x)/∂x, and �(x) =
(m(x) �(x)′)′. In a vector form, we can write

Y ≈ X(x)�(x) + ε (16.9)
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where Y = (y11, . . . , y1T , . . . , yn1, . . . , ynT )′, and X(x) = ((x11(x), . . . ,
x1T (x), . . . , xn1(x), . . . , xnT (x))′.

Let Kh(x) = h−p K (x/h), where K is a kernel function and h ≡ h(n) is a
bandwidth parameter. Then the LLLS estimator of �(x) is obtained by choos-
ing � to minimize

(Y − X(x)�)′K(x)(Y − X(x)�), (16.10)

where K(x) = diag(Kh(x11 − x), . . . , Kh(x1T − x), . . . , Kh(xn1 − x), . . . ,
Kh(xnT − x)) is an nT ×nT diagonal matrix. The solution to this minimization
problem is given by

�̂(x) = [X(x)′K(x)X(x)]−1X(x)′K(x)Y. (16.11)

Denote the first component of �̂(x) as m̂(x) which estimates m(x). It is straight-
forward to study the asymptotic properties of �̂(x) and m̂(x); see, e.g., see Li
and Racine (2007).

16.2.2 More Efficient Estimation

Clearly, the estimator in Equation 16.11 ignores the information on �. To
incorporate this, we can define a weighted LLLS estimator of �(x) by choosing
� to minimize

[Y − X(x)�)]′W(x)[Y − X(x)�)]

which gives

�̂W(x) = [X(x)′W(x)X(x)]−1X(x)′W(x)Y (16.12)

where W(x) is a kernel-based weight matrix; see Henderson and Ullah (2005).
Lin and Carroll (2000) have considered W(x) = K(x)1/2�−1K(x)1/2 and W(x) =
�−1K(x), and Ullah and Roy (1998) have suggested W(x) = �− 1

2 K(x)�− 1
2 .

When � is a diagonal matrix, these choices of W(x) are the same.
For an operational estimate, we need to estimate �. For this purpose, define

�̂2
1 = T

n

n∑
i=1

ε̂
2
i , �̂2

u = 1
n(T − 1)

n∑
i=1

T∑
t=1

(ε̂i t − ε̂i )2 (16.13)

where ε̂i = T−1 ∑T
t=1 ε̂i t and ε̂i t = yit −m̂(xit) is the LLLS residual. Noting that

�̂2
1 and �̂2

u estimate �2
1 = T�2

� + �2
u and �2

u, respectively, we can estimate �2
�

by �̂2
� = 1

T (�̂2
1 − �̂2

u). With these estimates, one can obtain an estimate �̂ of �

with �2
� and �2

u replaced by �̂2
� and �̂2

u, respectively. The operational estimator
of �(x) is given by

�̂Ŵ(x) = [X(x)′Ŵ(x)X(x)]−1X(x)′Ŵ(x)Y (16.14)

where Ŵ(x) is W(x) with � replaced by �̂. However, Lin and Carroll (2000)
demonstrate that one cannot achieve asymptotic improvement over the LLLS



 

P1: BINAYA KUMAR DASH

November 1, 2010 17:9 C7035 C7035˙C016

460 Handbook of Empirical Economics and Finance

estimator by such weighted LLLS estimation. Henderson and Ullah (2008)
also find similar observations in their Monte Carlo study by comparing these
weighted estimators. They also show that the following two-step estimator of
Reckstuhl, Welsh, and Carroll (2000) is more efficient than the above weighted
estimators as well as the conventional LLLS estimator.

This two-step estimator of Ruckstuhl, Welsh, and Carroll (2000) is devel-
oped as follows. Let us write Equation 16.8 in vector form:

Y = m(X) + ε, (16.15)

where X = (x11, . . . , x1T , . . . , xn1, . . . , xnT )′, m(X) = (m(x11), . . . , m(x1T ), . . . ,
m(xn1), . . . , m(xnT ))′, ε = � ⊗ lT + U, U = (u11, . . . , u1T , . . . , un1, . . . , unT )′.
Multiplying both sides of Equation 16.15 by �− 1

2 yields

�− 1
2 Y = �− 1

2 m(X) + �− 1
2 ε

= �− 1
2 m(X) − m(X) + m(X) + �− 1

2 ε

or

Y∗ = m(X) + �− 1
2 ε (16.16)

where Y∗ = �− 1
2 Y + ( I − �− 1

2 )m(X) is the transformed variable and �− 1
2 ε

has an identity variance–covariance matrix. However, Y∗ is not observed. So,
a feasible estimator based on this transformed model can be obtained via a
two-step procedure. In the first step we can run the LLLS regression Y on X to
obtain the estimate m̂(x) of m(x) at each data point and the residuals, based on
which we can obtain consistent estimate �̂ of � as discussed above. This gives
Ŷ∗ = �̂− 1

2 Y+ ( I −�̂− 1
2 )m̂(X), where m̂(X) = (m̂(x11), . . . , m̂(x1T ), . . . , m̂(xn1),

. . . , m̂(xnT ))′. In the second step, we run the LLLS regression of Ŷ∗ on X.
Such two-step estimation performs better than the weighted LLLS estimator
(Henderson and Ullah 2008). The asymptotic property of this type of two-step
estimators is established in Su and Ullah (2007). See also Martins-Filho and
Yao (2009) and Su, Ullah, and Wang (2010) for related research along this line.

16.3 Nonparametric Panel Data Model with Fixed Effects

In this section, we consider the following nonparametric panel data model
with fixed effects

yit = m(xit) + �i + uit, i = 1, . . . , n, t = 1, . . . , T, (16.17)

where the covariate (regressor) xit is of dimension p × 1, m(·) is an unknown
smooth function, �i ’s are fixed effects heterogeneity parameters, and uit is
i.i.d. with zero mean, finite variance �2

u and independent of xjt for all i, j ,
and t. We assume

∑n
i=1 �i = 0 (so that �1 = −∑n

i=2 �i ) for the purpose of
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identification. Also, for the sake of simplicity, xit is strictly exogenous. We are
interested in consistent estimation of m(·) and its first-order derivative.

Following the notation in the previous section, we can approximate the
model in Equation 16.17 as follows

Y ≈ X(x)�(x) + D� + U (16.18)

where � = (�2, . . . , �n)′, D = ( In ⊗ lT )dn, dn = [−ln−1 In−1]′, and other no-
tations are as defined above. Note that � contains heterogeneity parameters
that may be correlated with the idiosyncratic error term uit and the regressor
xit as well. So the LLLS estimator is generally inconsistent in this case.

16.3.1 Profile Least Squares Estimators

We argue that �(x) in Equation 16.18 can be estimated by using the idea of
profile least squares. There are two alternative approaches here. In the first
approach, one can profile out the individual effects parameter � and consider
the concentrated least squares for �(x). In the second approach, one profiles
out the nonparametric component �(x) and consider the concentrated least
squares for �. We discuss the first approach, followed by the second approach.

For the moment, we pretend � is known and then we can estimate �(x) in
Equation 16.18 by choosing � to minimize the following criterion function

[Y − X(x)� − D�]′K(x)[Y − X(x)� − D�]. (16.19)

We denote the solution to the above minimization problem as ��(x), which is
the LLLS estimator of �(x) by regressing yit − �i on xit. It is easy to verify that

��(x) = S(x)(Y − D�) (16.20)

where

S(x) = [X(x)′K(x)X(x)]−1X(x)′K(x) (16.21)

is a ( p + 1) × nT matrix. In particular, the LLLS estimator of m(x) is given by

m�(x) = e ′
1��(x) = e ′

1S(x)(Y − D�) = s(x)′(Y − D�) (16.22)

where e1 = (1, 0, . . . , 0)′ is a ( p + 1) × 1 vector, and s(x)′ = e ′
1S(x).

However, ��(x) is not operational since it depends on the unknown param-
eter �. This motivates us to profile out the nonparametric component m(x) in
Equation 16.17. Note that Equation 16.17 can be written as

Y = m(X) + D� + U (16.23)

To profile out m(X) in the above regression, we consider choosing � to mini-
mize the following criterion function

[Y − D� − m�(X)]′[Y − D� − m�(X)] = (Y∗ − D∗�)′(Y∗ − D∗�), (16.24)
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where

m�(X) = [m�(x11) · · · m�(x1T ), . . . , m�(xn1) · · · m�(xnT )] = S(Y − D�),

Y∗ = ( InT − S)Y,

D∗ = ( InT − S)D,

S = (s11, . . . , s1T , . . . , sn1, . . . , snT )′ is an nT ×nT matrix, and sit = s(xit). Then
the solution to the above minimization problem is given by

�̂ = (D∗ D∗)−1 D∗Y∗ = (D′ QD)−1 D′ QY, (16.25)

where Q = ( InT − S)′( InT − S). The estimator for �1 is �̂1 = − ∑n
i=2 �̂i , where

�̂ = (�̂2, . . . , �̂n)′.
The profile least squares estimator for �(x) and m(x) are given respectively

by

�̂(x) = ��̂(x) = S(x)(Y − D�̂) = S(x)MY (16.26)

and

m̂(x) = m�̂(x) = s(x)(Y − D�̂) = s(x)MY (16.27)

where M = INT − D(D′ QD)−1 D′ Q is an nT × nT matrix such that MD = 0.
The asymptotic properties of �̂(x) have been studied in Su and Ullah (2006)
in the framework of partially linear panel data models.

An alternative way to obtain the estimates of � and �(x) is to profile out �
first by choosing � to minimize the following criterion function:

[Y − X(x)�(x) − D�]′K(x)[Y − X(x)�(x) − D�]. (16.28)

The solution to this minimization problem is given by

�̃(x) = [D′K(x)D]−1 D′K(x)[Y − X(x)�(x)]. (16.29)

In the second stage, we substitute �̃(x) in Equation 16.28 to obtain the follow-
ing concentrated weighted least squares objective function

[Y − X(x)�(x)]′K∗(x)[Y − X(x)�(x)] (16.30)

where K∗(x) = M(x)K(x)M(x) and M(x) = InT − D(D′K(x)D)−1 D′K (x) is
such that M(x)D = 0. Choosing �(x) to minimize Equation 16.30 yields the
solution

�̃(x) = [X(x)′K∗(x)X(x)]−1X(x)′K∗(x)Y.

See Sun, Carroll, and Li (2009) for this estimator in a more general framework
and its asymptomatic properties. An operational estimator of �(x) is obtained
by substituting �(x) with �̂(x) in Equation 16.29. This approach, however, does
not provide an estimator of �.
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16.3.2 Measure of Goodness-of-Fit

Now we present the measure of goodness-of-fit in the fixed effects model
which can be similarly defined in other types of models. Let m̂(X) = (m̂(x11),
. . . , m̂(x1T ), . . . , m̂(xn1), . . . , m̂(xnT ))′, and Û = Y − m̂(X) − D�̂. Noting that
m̂(X) = SMY and �̂ = (D′ QD)−1 D′ QY, we have

Y = m̂(X) + D�̂ + Û

= SMY + D(D′ QD)−1 D′ QY + Û

= SMY + ( InT − M)Y + Û = Ŷ + Û,

where Ŷ = [InT + (S − InT )M]Y is the stack of the fitted values, and thus
Û = ( InT − S)MY. Under the assumption that uit is i.i.d. across both i and t,
we can estimate its variance �2

u by

�̂2
u = Û ′Û

tr (N)
= Y′NY

tr (N)

where N = M′ QM. Conditional on X, we have

E
(
�̂2

u|X
) = �2

u + 1
tr (N)

m(X)′Nm(X). (16.31)

Thus, �̂2
u is unbiased only if Nm(X) = 0. In general, we can establish only the

consistency of �̂2
u for �2

u.

A global goodness-of-fit measure can be defined as

R2 = Ŷ′Ŷ
Y′Y

, (16.32)

or obtained by calculating the square of correlation between Y and Ŷ. How-
ever, this may not have the same interpretation as in the case of linear regres-
sion model because Y′Y = Ŷ′Ŷ + Û ′Û + 2Û ′Ŷ but Û ′Ŷ is not guaranteed to be
zero.

In view of the above problem, we propose an alternative way to construct
a goodness-of-fit measure as follows. First, we define a local R2 and then the
global R2. We write from Equation 16.18

Y = X(x)�̂(x) + D�̂ + Ûx
(16.33)

= Z(x)�̂(x) + Ûx,

where Z(x) = [X(x)D], �̂(x) = [�̂
′
(x)�̂′]′, and Ûx ≡ Y − Z(x)�̂(x). Then

(Y − LY)′K(x)(Y − LY) = [Z(x)�̂(x) − LY]′K(x)[Z(x)�̂(x) − LY]
+ Û ′

xK(x)Ûx (16.34)

where L = lnTl ′nT/(nT), K(x) is a diagonal matrix with typical elements
Kh(xit − x)/(nT f̂ (x)) for i = 1, . . . , n, and t = 1, . . . , T, f̂ (x) = (nT)−1
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∑n
i=1

∑T
t=1 Kh(xit − x). Observe that �̂(x) can be written as

�̂(x) = A(x)Y, A(x) =
(

S(x)M

(DQD)−1 D′ Q

)
. (16.35)

Thus we can write Equation 16.34 as

Y′N1(x)Y = Y′N2(x)Y + Y′N3(x)Y (16.36)

where N1(x) = ( InT − L)′K (x)( InT − L), N2(x) = [InT − Z(x) A(x) − L]′K(x)
[InT − Z(x) A(x) − L], N3 = [InT − Z(x) A(x)]′ K(x)[InT − Z(x) A(x)], and
N2(x)N3(x) = 0. It follows that

TSS(x) = SSR(x) + RSS(x) (16.37)

where TSS(x) = Y′N1(x)Y, SSR(x) = Y′N2(x)Y, and RSS(x) = Y′N3(x)Y.

Thus Equation 16.37 represents a local analysis of variance (ANOVA) so
that we can define a local R2 as

R2(x) = SSR(x)
TSS(x)

= 1 − RSS(x)
TSS(x)

(16.38)

where 0 ≤ R2 ≤ 1 by construction. Further, a global R2 can be defined as

R2 = SSR
TSS

= 1 − RSS
TSS

(16.39)

where SSR = ∫
x SSR(x) f̂ (x)dx, TSS = ∫

x TSS(x) f̂ (x)dx and RSS =∫
x RSS(x) f̂ (x)dx. It is worth pointing out that TSS = ∑n

i=1
∑T

t=1(yit − ȳ)2

where ȳ = (nT)−1 ∑n
i=1

∑T
t=1 yit.

16.3.3 Differencing Method

Let �yit = yit − yi,t−1. �uit is similarly defined. As in the usual differencing
method, we can consider subtracting the model in Equation 16.17 for time
t from that for time t − 1 so that

�yit = m(xit) − m(xi,t−1) + �uit (16.40)

or subtracting the equation for time t from that for time 1 so that

yit − yi1 = m(xit) − m(xi1) + uit − ui1. (16.41)

Another method, which is conventional, removes the fixed effects by deduct-
ing each equation from the cross-time average. This gives

yit − 1
T

T∑
t=1

yit = m(xit) − 1
T

T∑
s=1

m(xis) + uit − 1
T

T∑
s=1

uis (16.42)
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or

y∗
i t =

T∑
s=1

dtsm(xis) + u∗
i t (16.43)

where dts = − 1
T if s 	= t and 1 − 1

T otherwise, and
∑T

s=1 dts = 0 for all t,
y∗

i t = yit − T−1 ∑T
t=1 yit, and u∗

i t = uit − T−1 ∑T
t=1 uit.

For each i , the right-hand sides of Equations 16.40 to 16.42 contain linear
combination of m(xis), s = 1, . . . , T. We discuss the estimation correspond-
ing to each of these differencing methods. To proceed, it is worth mentioning
that some components of the function m(·) may not be fully identified via
differencing methods. For example, if m(xit) = a +m1(xit), then the difference
will wipe out a and hence we can only estimate m(xit) under some identi-
fication restriction. Similar issues arise when we consider the case of vary-
ing functional coefficient models later on if differencing methods are called
upon.

For the first differencing (FD) model in Equation 16.40, Li and Stengos
(1996) suggest estimation of m(xit, xi,t−1) = m(xit) − m(xi,t−1) by doing a lo-
cal linear regression of �yit on xit and xi,t−1. Then we can obtain estimates
of m(x) by the method of estimating nonparametric additive models, e.g.,
by the marginal integration method of Linton and Nielson (1995) or by the
backfitting method. For example, after we obtain estimates m̂(x, xi,t−1) of
m(x, xi,t−1) for i = 1, . . . , n, and t = 2, . . . , T, we can estimate m(x) by
m̂(x) = (n(T −1))−1 ∑n

i=1
∑T

t=2 m̂(x, xi,t−1), apart from the concerns discussed
above for the differencing method. (See Hu, Wang and Carroll (2004) for a
comparison of the two methods.) We also note that this method suffers from
the “curse of dimensionality” problem in calculating m̂(x, xi,t−1) because it
involves estimating a 2p-dimensional nonparametric object. In view of this,
Baltagi and Li (2002) obtain consistent estimators of m(x) by considering the
first differencing method and using series approximation for the nonpara-
metric component.

Based on the differencing model in Equation 16.41, Henderson, Carroll,
and Li (2008) propose an iterative kernel estimator of m(x) and establish the
asymptotic normality for their estimator. But this estimator is also subject to
the comments on differencing given above. Since this method is elaborated
in detail in Li and Racine (2007), we skip it for brevity.

Now we consider eliminating the fixed effects via the sample average over
time. Following Equation 16.42, we write

yit − ȳi = m(xit) − m̄i + uit − ūi

where yi = T−1 ∑T
t=1 yit, ui = T−1 ∑T

t=1 uit, and m̄i = T−1 ∑T
t=1 m(xit). Then

writing m(xit) ≈ m(x) + (xit − x)′�(x) with �(x) = ∂m(x)/∂x, we get

yit − yi ≈ (xit − xi )′�(x) + uit − ūi ,



 

P1: BINAYA KUMAR DASH

November 1, 2010 17:9 C7035 C7035˙C016

466 Handbook of Empirical Economics and Finance

where xi = T−1 ∑T
t=1 xit. The local linear within-group estimator of �(x) then

follows as

�̂W(x) =
(

n∑
i=1

T∑
t=1

(xit − xi )(xit − xi )′Kh(xit − x)

)−1

n∑
i=1

T∑
t=1

(xit − xi )(yit − ȳi )Kh(xit − x).

Similarly, if we use the first differencing method, then the local linear estimator
of �(x) for some fixed element x in {xit, i = 1, . . . , n; t = 1, . . . , T} is given by

�̂D(x) =
(

n∑
i=1

T∑
t=1


xit
x′
i t Kh(xit − x)

)−1 n∑
i=1

T∑
t=1


xit
yit Kh(xit − x).

Lee and Mukherjee (2008) study the asymptotic properties of the above two
estimators. For the case where xit is a scalar random variable (i.e., p = 1),
they show that under some standard assumptions,

E[�̂W(x) − �(x)|X] = m(2)(x)[�1(x)�2(x) + �3(x)]
2
[
�2

1(x) + �2(x)
] + Op(h2)

and

E[�̂D(x) − �(x)|X] = m(2)(x)�3(x)
2�2(x)

+ Op(h2),

where � j (x) = E(xit − x) j < ∞ for j = 1, 2, 3, and m(2)(x) = ∂2m(x)/∂x2.

It is clear from the above expressions that both the conventional within-
group estimator and first-difference estimator are inconsistent because as
n −→ ∞ and h −→ 0 we have a nondegenerating bias. This bias, how-
ever, is zero when the true regression function m(x) is linear in x or xit is
symmetric around the point of evaluation x such that � j (x) = 0 for j = 1
and 3. As Lee and Mukherjee (2008) observed, the nonvanishing biases arise
because the difference equations are not locally weighted by the differenced
variables whereas the original model is a local approximation around the
point x of the original variable xit. In other words, the differenced equa-
tions are initially localized around a value of xit without considering the
rest of values xis , s 	= t. But |xis − x| cannot be small enough uniformly
over all i and s 	= t such that maxi,s |xis − x| < Ch for some C < ∞, so
that the differenced remainder terms cannot be tending to zero. Here the
remainder term is R̄it = (T − 1)−1 ∑T

s=1,s 	=t Ris(x) when x = xit, where
Ris(x) = 1

2 m(2)(x∗
is)(xis − x)2 and x∗

is lies between xis and x. Obviously, the
biases do not vanish even when T −→ ∞. Again, this is due to the local
approximation of m(x) at given xit as indicated in the kernel weight function
Kh(xit − x), but the local estimator involves the average of (xis − x) for all i
and s 	= t.
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We notice that the estimator �̂W(x), based on conventional within average
differencing, was introduced in Ullah and Roy (1998), whereas the estimator
�̂D(x) is based on the first differencing method in Li and Stengos (1996) and
Mundra (2005). In views of this, Mukherjee (2002) and Mukherjee and Ullah
(2003) (also Henderson and Ullah 2005, p. 406) proposed elimination of the
fixed effects by taking the within differencing in using local weighted average
at x.

Define the locally weighted averages as

xi (x) =
∑T

s=1,s 	=t xis Kh(xis − x)∑T
s=1,s 	=t Kh(xis − x)

, and ȳi (x) =
∑T

s=1,s 	=t yis Kh(xis − x)∑T
s=1,s 	=t Kh(xis − x)

.

The local-within leave-one-out estimator of �(x) for x = xit is given by

�̃(x) =
[

n∑
i=1

T∑
s=1,s 	=t

x∗
is(x)x∗

is(x)′Kh(xis − x)

]−1 n∑
i=1

T∑
s=1,s 	=t

x∗
is(x)y∗

is(x)Kh(xis − x),

where x∗
is(x) = xis − xi (x) and y∗

is(x) = yis − ȳi (x). Clearly, this estimator is
the solution to the problem

min
�

n∑
i=1

T∑
s=1,s 	=t

[y∗
is(x) − x∗

i t(x)′�]2 Kh(xis − x)

For p = 1, Lee and Mukherjee (2008) provide the following results under
the standard regularity assumptions: (1) uit is i.i.d. with mean 0 and variance
�2 and it is independent of �i and xit for all i and t, (2) �i is i.i.d., (3) xit is i.i.d.
with probability density function (p.d.f.) f (x) whose support is bounded,
and for the interior point x, it is twice differentiable with bounded second-
order derivative, (4) m(x) is twice differentiable with bounded second-order
derivative, (5) K is compactly supported, bounded, and symmetric second-
order kernel, and (6) h −→ 0 as nh −→ 0, Th −→ 0 and nTh3 −→ 0 as
n, T −→ ∞. Under these assumptions,

E[�̃(x) − �(x)|X] = h2

2

(
m(2)(x) f (1)(x)

f (x)

) (
�4 − �2

2

�2

)
+ O(h2)

Var(�̃(x)|X) = 1
nTh3

(
�2

f (x)

)
	2

�2
2

+ Op

(
1

nTh3

)
where f (1)(x) = ∂ f (x)/∂x, 	2 = ∫

x2 K (x)2dx, and �l = ∫
xl K (x)dx for

l = 2, 4. Further, using the above results one can show that the optimal
bandwidth in minimizing MSE(�̃(x)) is proportional to (nT)−1/7. If m(x)
is three times differentiable then in the bias of �̃(x) we add an additional
term h2m(3)(x)�4/(6�2), where m(3)(x) = ∂3m(x)/∂x3. These results show that
for the local weighted average differencing the orders of magnitudes of bias
and variance are the same as those of the local linear derivative estimator.
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See Pagan and Ullah (1999) and Li and Racine (2007). However, the magni-
tude of bias differs with −h2m(2)(x) f (1)(x)�2/(2 f (x)) which arises due to the
local weighted average differencing, but the magnitude of variance remains
the same.

A similar idea can be applied to the case of time differenced model. Lee
and Mukherjee (2008) suggest estimating �(x) by

�̂(x) = min
�

n∑
i=1

T∑
t=1

(
yit − �
xit)2 Kh(xit − x, xi,t−1 − x).

But this method does not go through when the model has time-heterogeneity.
Finally, although the estimator of m(x) is not directly obtained from the

objective function, an estimator of m(x) could be written as

m̃(x) = 1
n

n∑
i=1

m̃i (x)

where m̃i (x) = ȳi (x) − �̃(x)x̄i (x). See Lee and Mukherjee (2008) for an alterna-
tive proposal. The properties of m̃i (x) are not yet known, also the asymptotic
normality of �̃(x).

16.3.4 Series Estimation

The above estimation procedures are invalid if xit contains lagged dependent
variables. Lee (2008) considers series estimation of the following nonpara-
metric dynamic panel data model:

yit = m(yi,t−1) + �i + uit, (16.44)

where �i can be eliminated via first differencing or within-group difference.
Let m∗(yi,t−1) = m(yi,t−1) − T−1 ∑T

s=1 m(yi,s−1) and similarly define y∗
i t and

u∗
i t. Then we have the within-group transformation of the above model as

follows:

y∗
i t = m∗(yi,t−1) + u∗

i t. (16.45)

Lee’s (2008) series estimator of m is based on the above within-group transfor-
mation. Under the assumption that limn,T→∞ n/T = � ∈ (0, ∞), he finds that
the series estimator is asymptotically biased and proposes a bias-corrected
series estimator. Asymptotic normality is also established.

16.3.5 A Nonparametric Hausman Test

To test the random effects against the fixed effects specification in the model
yit = m(xit) + �i + uit, we can specify the null and alternative hypotheses as

H0 : E(�i |xi1, . . . , xiT ) = 0 a.s. versus H1 : the negation of H0,
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where a.s. is an abbreviation for almost surely. If we maintain the assumption
that E(uit|xi1, . . . , xiT ) = 0, the null hypothesis can also be written as

H0 : E(εi t|xi1, . . . , xiT ) = 0 a.s.

where εi t = �i +uit. Then one can propose a test based on the sample analogue
of

J = E{εi t E(εi t|xit) f (xit)}
where f (·) is the p.d.f. of xit because J = 0 under H0 and J = E{[E(εi t|xit)]2

f (xit)} > 0 under H1. A feasible test statistic is given by

Jn = 1
nT

n∑
i=1

T∑
t=1

ε̂i t Ê−i t(ε̂i t|xit) f̂ −i t(xit)

where ε̂i t is the residual from the random effects regression, f̂ −i t(xit) and
Ê−i t(ε̂i t|xit) are leave-one-out kernel estimates of f (xit) and E(εi t|xit), respec-
tively, by using observations on {xit, ε̂i t}. This test statistic is considered in
Henderson, Carroll, and Li (2008). But they do not provide a formal asymp-
totic distributional analysis. Instead, they propose a bootstrap method to ob-
tain the critical values and demonstrate through simulations that Jn works
reasonably well in finite samples.

16.4 Partially Linear Panel Data Models

In this section, we review the literature on partially linear panel data models.
We focus on the following model

yit = x′
i t�0 + m(zit) + �i + uit, i = 1, . . . , n, t = 1, . . . , T, (16.46)

where xit and zit are of dimensions p × 1 and q × 1, respectively, �0 is a
p × 1 vector of unknown parameters, m(·) is an unknown smooth function,
�i is random or fixed effects, and uit is the idiosyncratic disturbance. We will
first discuss the estimation of Equation 16.46 when �i represents the random
effects and then the fixed effects model. We also comment on extensions and
specification tests.

16.4.1 Partially Linear Panel Data Models with Random Effects

Let εi t = �i + uit. We can rewrite Equation 16.46 as

yit = x′
i t�0 + m(zit) + εi t. (16.47)

In the literature, it is frequently assumed that

E(εi t|zit) = 0. (16.48)
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Note that this assumption does not rule out the dependence between xit and
εi t. As a matter of fact, some or all the components of xit may be correlated with
the error εi t. Li and Stengos (1996) discuss the estimation of Equation 16.46
for the case of random effects model.

Under the assumption in Equation 16.48, we can take conditional expecta-
tion of Equation 16.46 given zit on both sides to yield

E(yit|zit) = E(xit|zit)′�0 + m(zit). (16.49)

Subtracting Equation 16.49 from Equation 16.46, we have

Yit = X′
i t�0 + εi t. (16.50)

Let Yit = yit − E(yit|zit) and Xit = xit − E(xit|zit). So Equation 16.50 is a linear
panel data model with dependent variable Yit and independent variable Xit. If
(Yit, Xit) were observable, we can estimate �0 by the parametric methods. For
simplicity, we assume that there exists an instrumental variable (IV) wit ∈ R

p,
such that

E(εi t|wit, zit) = 0 and E(x′
i twit) 	= 0. (16.51)

We then can estimate �0 by the IV method1:

�̃ = (W′ X)−1W′Y = �0 + (W′ X)−1W′ε, (16.52)

where Wit = wit − E(wit|zit), Y = (Y11, . . . , Y1T , . . . , Yn1, . . . , YnT )′, X, W,
and ε are similarly defined. Under Equation 16.51, we have E(εi t|Wit) = 0,
so the IV estimator �̃ is consistent. Nevertheless, it is infeasible since the
conditional expectations E(yit|zit), E(xit|zit), and E(wit|zit) are unknown to
us. As before, these conditional expectations can be consistently estimated
using nonparametric methods. To avoid random denominator problem, we
choose to use the marginal p.d.f. f (·) of zit as the weighting function as in Li
and Stengos (1996).

Multiplying Equation 16.50 by fit = f (zit), we have

Yit fit = (Xit fit)′�0 + εi t fit. (16.53)

Now one can estimate the unknown finite dimensional parameter �0 by re-
gressing Yit fit on Xit fit using Wit fit as an IV. The infeasible IV estimator is
obtain

�̃ f =
(

n∑
i=1

T∑
t=1

Wit X′
i t f 2

i t

)−1 n∑
i=1

T∑
t=1

WitYit f 2
i t. (16.54)

It is easy to show that �̃ f is asymptotically normally distributed, i.e.,

√
n(�̃ f − �0)

d→ N
(
0, �−1

f � f �
−1
f

)
, (16.55)

1 If the dimension of wit is l ≥ p, the IV estimator of �0 is given by �̃1 = (X′W(W′W)W′ X)−1

X′W(W′W)W′Y.
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where � f = T−1 ∑T
t=1 E[Wit X′

i t f 2
i t], and � f = T−2 ∑T

t=1
∑T

s=1 E(uituis WitW′
i t

f 2
i t f 2

is).
To proceed, we estimate fit by f̂ (zit) = (nT)−1 ∑n

j=1
∑T

s=1 Kit, js and
E(yit|zit) by ŷit = (nT)−1 ∑n

j=1
∑T

s=1 yjs Kit, js/ f̂ (zit), where Kit, js = Kh(zit −
z js). The estimators x̂it and ŵit of E(xit|zit) and E(wit|zit) are similarly defined.
A feasible estimator of �0 can be obtained by replacing Yit, Xit, Zit, and fit

with yit − ŷit , xit − x̂it , wit − ŵit, and f̂ (zit). This leads to the following feasible
density-weighed estimator of �0:

�̂ f =
(

n∑
i=1

T∑
t=1

(wit − ŵit)(xit − x̂it)′ f̂ (zit)2

)−1 n∑
i=1

T∑
t=1

(wit−ŵit)(yit−ŷit) f̂ (zit)2.

(16.56)
Under some regularity conditions, Li and Stengos (1996) have established the
asymptotic normality of �̂ f :

√
n(�̂ f − �0)

d→ N
(
0, �−1

f � f �
−1
f

)
.

For statistical inference on �0, we need to estimate the asymptotic variance-
covariance of �̂ f consistently, which is straightforward.

After obtaining a
√

n-consistent estimator �̂ f of �0, we can estimate m(z)
consistently by m̂(z) = (nT)−1 ∑n

j=1
∑T

s=1(yjs − x′
js �̂ f )Kh̃(z js − z)/ f̃ (z),where

the bandwidth h̃ is typically different from h, and f̃ (z) = (nT)−1 ∑n
j=1

∑T
s=1

Kh̃(z js − z). Since the nonparametric kernel estimator has a slower con-
vergence rate than the parametric

√
n-rate, it is easy to show m̂(z) has the

same asymptotic distribution as m̃(z) = (nT)−1 ∑n
j=1

∑T
s=1(yjs − x′

js�0)Kh(z js

−z)/ f̃ (z).
It is worth mentioning the above method works in a variety of applications.

In particular, it allows xit to contain lagged dependent variable. Nevertheless,
the above IV estimator of �0 is generally inefficient. When the error follows a
one-way error component structure in the partially linear panel data model, Li
and Ullah (1998) propose a feasible semiparametric generalized least squares
(GLS) type estimator for estimating �0 and show that is asymptotically more
efficient than the semiparametric ordinary least squares (OLS) type estimator.
They also discuss the case for which the regressor of the parametric compo-
nent is correlated with the error, and propose an IV GLS-type semiparametric
estimator. They show that their estimator for the finite dimensional parameter
is efficient. For brevity, we refer the reader directly to their paper. Also, see
the paper by Baltagi and Li (2002) which proposed new IV estimators having
substantial efficiency gains over the one suggested by Li and Stengos (1996)
and Li and Ullah (1998).

16.4.2 Partially Linear Panel Data Models with Fixed Effects

We now discuss the estimation of Equation 16.46 when �i represents the
fixed effect. For the identification purpose, we can impose

∑n
i=1 �i = 0. For
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simplicity, we assume that zit is strictly exogenous but allow xit to be corre-
lated with the error term uit. We are interested in consistent estimation of �0
and m(·). As usual, we focus on the case where n is approaching infinity and
T is fixed.

In principle, we can apply Li and Stengos (1996) or the method introduced
in the previous section to estimate the fixed effect model. From Equation 16.46,
we can take the first difference as in the linear panel data model to obtain

yit − yi,t−1 = (xit − xi,t−1)′�0 + [m(zit) − m(zi,t−1)] + (uit − ui,t−1), (16.57)

or

Yit = X′
i t�0 + M(zit, zi,t−1) + Uit, (16.58)

where Yit = yit − yi,t−1, Xit = xit − xi,t−1, Uit = uit −ui,t−1, and M(zit, zi,t−1) =
m(zit)−m(zi,t−1). Equation 16.58 is basically the same as Equation 16.47 except
that we know that Uit has a moving average structure. Nevertheless, this ap-
proach has several drawbacks. First, in order to eliminate M(zit, zi,t−1), they
suggest estimating E(Yit|zit, zi,t−1) and E(Xit|zit, zi,t−1) by the nonparamet-
ric kernel method. This suffers from the “curse of dimensionality” because
it ignores the additive structure of Equation 16.57 and requires the kernel
function to be defined on R

2q instead of R
q . Secondly, although they pro-

pose a method to estimate the finite dimensional parameter �0 and their
method can estimate M(zit, zi,t−1), they did not suggest how to estimate the
original unknown function m(zit). For this reason, Baltagi and Li (2002) con-
sider series estimation of the model that imposes the additive structure of
M(zit, zi,t−1) = m(zit) − m(zi,t−1).

In matrix form, Equation 16.58 can be rewritten as

Y = X�0 + M + U (16.59)

where Y is an nT × 1 vector with typical element Yit, and X, M, and U are
similarly defined. Let Z denote an nT ×q matrix with typical row given by zit.

A function 
(zit, zi,t−1) is said to be an additive class of functions M if

(zit, zi,t−1) = m(zit) − m(zi,t−1), m(·) is twice differentiable in the interior of
its support Z , which is a compact subset of R

q and E[m2(zit)] < ∞. We will
use series pL (z) of L × 1 dimension to approximate m(z), where L = L(n).
The approximation function pL (z) has the following properties: (a) pL (z, z̃) ≡
pL (z) − pL (z̃) ∈ M; (b) as L grows, there is a linear combination of pL (z, z̃)
that can approximate any function in M arbitrarily well in the sense of mean
squared error. Therefore, pL (z) approximates m(z) and pL (z, z̃) ≡ pL (z) −
pL (z̃) approximates M(z, z̃) = m(z) − m(z̃):

pL (zit, zi,t−1) =

⎛⎜⎜⎜⎜⎝
p1(zit) − p1(zi,t−1)
p2(zit) − p2(zi,t−1)

...

pL (zit) − pL (zi,t−1)

⎞⎟⎟⎟⎟⎠ . (16.60)
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For notational simplicity, define pL
it = pL (zit, zi,t−1) and P = ( pL

11, pL
12, . . . ,

pL
1T , . . . , pL

n1, pL
n2, . . . , pL

nT )′. Clearly, P is a nT × L matrix.
For any scalar or vector function g(z), denote EM(g(z)) the projection onto

the additive function space M (under the L2 norm). That is, EM(g(z)) is
an element that belongs to M and it is the closest function to g(z) in the
L2 norm for all the functions in L2 in M. Define �(z) = E(X|Z = z) and
h(z) = EM(�(z)).

Let P̄ = P( P ′ P)− P ′, where (·)− denotes any symmetric generalized
inverse. Let Ã = P̄ A = P�A, where �A = ( P ′ P)− P ′ A. Premultiplying
Equation 16.59 by P yields

Ỹ = X̃�0 + M̃ + Ṽ. (16.61)

Subtracting Equation 16.61 from Equation 16.59 by P leads to

Y − Ỹ = (X − X̃)�0 + (M − M̃) + (V − Ṽ). (16.62)

We estimate �0 by the least squares regression of Y − Ỹ on (X − X̃):

�̂ = [(X − X̃)′(X − X̃)]−1(X − X̃)′(Y − Ỹ). (16.63)

Upon obtaining �̂, we can estimate m(z) by

m̂(z) = pL (z)′�̂ (16.64)

where �̂ = ( P ′ P)− P ′(Y − X�̂).
Let �i t = Xit − h(zit), where h(zit) = EM(�(zit)). Let � = T−1 ∑T

t=1 E(�i t�
′
i t)

and � = T−1 ∑T
t=1 E(�2(Xit, Zit)�i t�

′
i t) where �2(Xit, Zit) = E[V2

i t |Xit, Zit].
Baltagi and Li (2002) prove the following asymptotic normality of �̂:

√
n(�̂ − �0)

d→ N(�−1��−1).

Baltagi and Li (2002) also establish the consistency rate of m̂(z) but not the
asymptotic normality.

If xit contains the lagged dependent variable, then the above estimation
procedure has to be modified. For example, consider the following partially
linear dynamic panel data model

yit = �0,1 yi,t−1 + �′
0,2x(2)

i t + m(zit) + uit, i = 1, . . . , n, t = 1, . . . , T, (16.65)

where x(2)
i t is xit excluding its first element yi,t−1. Assume the existence of an

IV wit ∈ R
l with l ≥ p such that

E(Uit|wit, zit) = 0, and Cov(wit, Xit) 	= 0. (16.66)

We can estimate �0 = (�0,1, �′
0,2)′ by the IV method for the case l = p:

�̂I V = [(W − W̃)′(X − X̃)]−(W − W̃)′(Y − Ỹ), (16.67)
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and estimate m(z) by

m̂I V(z) = pL (z)′�̂I V (16.68)

where �̂I V = ( P ′ P)− P ′(Y − X�̂I V). The asymptotic normality of �̂I V is estab-
lished in Baltagi and Li (2002). See also Baltagi and Li (2000). Obviously, in
the case where all elements in Xit are exogenous, we can simply set wit = Xit,
and the results will be the same as discussed above.

When zit = yi,t−1, Equation 16.46 becomes the partially linear dynamic
model studied by Lee (2008). He establishes the asymptotic normality of a
bias-corrected series estimator of �0.

16.4.3 Extensions

Traditionally, the dependent variable in a partially linear model is a continu-
ous random variable. This may not be the case in applications. Lin and Carroll
(2001a, 2001b) consider a generalized partially linear panel data model using
generalized estimating equations. Given the covariates xit and zit, they as-
sume that the mean �i t of the dependent variable yit satisfies

g(�i t) = x′
i t�0 + m(zit), (16.69)

where zit may be time dependent or not, and g is some known link function.
They develop kernel estimating equations for the nonparametric component
m(·) and profile estimating equations for the parametric component �0.

If the dimension q of zit is large, the estimation of the parametric and
nonparametric components in Equation 16.46 becomes difficult. In this case,
we can consider the following additive partially linear panel data models

yit = x′
i t�0 + m1(zit,1) + · · · + mq (zit,q ) + �i + uit, i = 1, . . . , n, t = 1, . . . , T,

(16.70)

where �0, xit, �i , and uit are defined as above, ml(·), l = 1, . . . , q , are unknown
smooth functions. Obviously the individual functions ml(·), l = 1, . . . , q , are
not identified without further conditions. In the literature on kernel estima-
tion, one may assume that E[ml(zit,l)] = 0 whereas in the literature on series
estimation, it seems convenient to assume that ml(0) = 0 for l = 2, . . . , q .

Li (2000) considers the series estimation of the above model in the cross-
section framework. It seems straightforward to extend his method to the
panel framework.

16.4.4 Specification Tests

Various specification tests can be conducted for partially linear models. These
include tests for correct specification of functional forms, tests for random
effects versus fixed effects, tests for individual effects, tests for serial corre-
lation, and tests for heteroskedasticity in the disturbance terms, etc. Despite
the importance of specification testing in panel data models, only few papers
consider this.
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Henderson, Carroll, and Li (2008) consider testing the functional form by
considering the following possible specifications

yit = x′
i t�0 + z′

i t�0 + εi t , (16.71)
yit = x′

i t�0 + m(zit) + εi t , (16.72)
yit = g(xit, zit) + εi t , (16.73)

where the definitions of parameters and functions are self-evident. The three
pairs of null and alternative hypotheses are

Ha
0 : Equation 16.71 versus Ha

1 : Equation 16.72,

Hb
0 : Equation 16.71 versus Hb

1 : Equation 16.73,

Hc
0 : Equation 16.72 versus Hc

1 : Equation 16.73,

where for example, “Ha
0 : Equation 16.71” means the model in Equation 16.71

is the true model under the first null hypothesis Ha
0 . For each case, they esti-

mate the models under the null and alternative and compared the squared dis-
tance between the estimated models. For example, to test Ha

0 : Equation 16.71
versus Ha

1 : Equation 16.72, they estimate both Equations 16.71 and 16.72 and
base their test statistic on

J a
n = 1

nT

n∑
i=1

T∑
t=1

[x′
i t�̃ + z′

i t�̃ − x′
i t�̂ − m̂(zit)]2

where �̃ and �̃ are estimates of �0 and �0 under Ha
0 , �̂ and m̂(zit) are estimates

of �0 and m(zit) under Ha
1 . Without deriving the asymptotic distribution for

such a test statistic, they propose a bootstrap method to obtain the critical
values and demonstrate through simulations that the proposed tests work
fairly well in finite samples.

Li and Hsiao (1998) consider testing serial correlation in a partially linear
panel data models that could allow lagged dependent variables as explana-
tory variables. They consider the following model

yit = x′
i t�0 + m(zit) + uit. (16.74)

where variables are defined as above and uit satisfies E(uit|xit, zit) = 0 a.s.
The null hypothesis is

H0 : uit is a martingale difference sequence (m.d.s.).

Clearly, under the above null hypothesis, uit cannot contain the individual
effects. Based on the residuals from the above partially linear model, they
propose three test statistics that test zero first-order serial correlation, higher-
order serial correlations, and individual effects, respectively. These test statis-
tics have either asymptotic normal or chi-square distribution under the null
hypothesis of an m.d.s. error process.
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16.5 Varying Coefficient Panel Data Models

In this section, we review the literature on varying coefficient models. We
consider the following model

yit = x′
i tm(zit) + �i + uit

=
p∑

d=1

xit,dmd (zit) + �i + uit (16.75)

where the covariate zit is a q×1 vector, xit = (xit,1, . . . , xit, p)′, m(·) = (m1(·), . . . ,
mp(·))′ has p unknown smooth functions, and uit is i.i.d. with zero mean and
finite variance �2

u. We make explicit assumptions on the dependence of �i

and uit on the covariates xit and zit only when needed. The model in Equa-
tion 16.75 is useful where the response parameter (slope coefficient) depends
on the variable zit. For example, in a wage equation, yit denotes the logarithm
of wage, xit denotes the years of schooling (education), and the rate of return
to education may depend on the individual characteristic zit. In a special case
where p = 1, xit = 1 for all i and t, and �i can be correlated with xit and
uit, model Equation 16.75 reduces to the conventional fixed effects panel data
models considered by Su and Ullah (2006) and Henderson, Carroll, and Li
(2008).

Note that the model in Equation 16.75 includes the partially linear model
as special cases: x′

i tm(zit) = m1(zit) + x̃′
i t�0, where xit = (1, x̃′

i t)
′, and m(zit) =

(m1(zit), �′
0)′ for some real-valued function m1 and ( p − 1) × 1 vector �0. The

latter model was considered by Li and Hsiao (1998) and Kniesner and Li (2002)
who assumes that E(uit|zit, xit) = 0. Li and Stengos (1996) and Baltagi and Li
(2002) considered the same model but allowed E(uit|xit) 	= 0. See Section 16.4.

16.5.1 Profile Least Squares Method

We first consider the estimation of m in Equation 16.75 when �i is treated as
fixed effects which can be correlated with either xit or uit.

For any given z and d ∈ {1, 2, . . . , p}, it follows from a first order Taylor
expansion that

md (zit) ≈ md (z) + (zit − z)′�d (z)

= zit(z)′�d (z)

where zit(z) = (1 (zit − z)′)′, �d (z) = (md (z) �d (z)′)′, and �d (z) = ∂md (z)/∂z.
Then following the LLLS estimation procedure in Section 16.2, we can write
the estimate of �(z) = (m1(z), . . . , mp(z), �1(z)′, . . . , �p(z)′)′ as

��(z) = min
�

(Y∗ − X̃�)′K(z)(Y∗ − X̃�)

where Y∗ = Y− D�, X̃ = (X11, . . . , X1T , . . . , Xn1, . . . , XnT )′ is an nT × p(q +1)
matrix with Xit = Xit(z) = (X′

i t , X′
i t ⊗ (zit − z)′)′, and K(z) = diag
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(Kh(z11 − z), . . . , Kh(z1T − z), . . . , Kh(zn1 − z), . . . , Kh(znT − z)) is an nT × nT
diagonal matrix. So, given �, the LLLS estimator of �(z) is simply

�̂�(z) = [X̃′K(z) X̃]−1 X̃′K(z)Y∗.

In particular, the estimator of m(z) = (m1(z), . . . , mp(z))′ is given by

m̂�(z) = e�̂�(z) = s(z)(Y − D�)

where e = ( Ip, 0p×pq ) is a p × p(q + 1) selection matrix with 0p×pq denoting
a p × pq matrix of zeros, and s(z) = eS(z) = e( X̃′K(z) X̃)−1 X̃′K(z) is a p × nT
matrix.

Let Z = (z11, . . . , z1T , . . . , zn1, . . . , znT )′. We can write m(xit, zit) ≡ x′
i tm(zit),

i = 1, . . . , n, t = 1, . . . , T , in vector form as

m(X, Z) =
p∑

d=1

xd � md (z)

where xd = (x11,d, . . . , x1T,d , . . . , xn1,d, . . . , xnT,d )′, md (Z) = (md (z11) , . . . ,
md (z1T ), . . . , md (zn1) , . . . , md (znT ))′ for d = 1, . . . , p, and � is the Hadarmard
product. Thus

m̂�(X, Z) =
p∑

d=1

xd � m̂�,d (Z) =
p∑

d=1

xd � (Sd (z)(Y − D�))

where m̂�,d (z) = (m̂�,d (z11), . . . , m̂�,d (z1T ), . . . , m̂�,d (zn1), . . . , m̂�,d (znT ))′,
m̂�,d (z) is the dth element of m̂�(z): m̂�,d (z) = e ′

dm̂�(z) = e ′
ds(z)(Y − D�)

with ed being a p × 1 vector with 1 in the dth element and 0 elsewhere, and
Sd (Z)′ = (s(z11)′ed , . . . , s(z1T )′ed , . . . , s(zn1)′, . . . , s(znT )′ed ). Noting that

m̂�(X, Z) =
(

p∑
d=1

(xd ⊗ l ′nT ) � Sd (Z)

)
(Y − D�),

the estimate of � is given by

�̂ = (D′ Q1 D)−1 D′ Q1Y

where Q1 = ( InT − ∑p
d=1(xd ⊗ l ′nT ) � Sd (Z))′( InT − ∑p

d=1(xd ⊗ l ′nT ) � Sd (Z)).
Further, the estimator for �(z) and m(z) follows by �̂�̂(z) and m̂�̂(z), respec-
tively.

Sun, Carroll, and Li (2009) suggest an alternative profile least squares es-
timator for the above model by profiling out the nonparametric component
m. They also propose a test for testing a random effects model against a fixed
effects alternative model. Notice that if the vector zit contains both the discrete
and continuous variables, then Su, Chen, and Ullah (2009) can be extended
to this panel framework.
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16.5.2 Differencing Method

As in Section 16.3, we can consider subtracting the model (Equation 16.75)
for time t from that of time t − 1 so that

�yit = x′
i tm(zit) − x′

i,t−1m(zi,t−1) + �uit (16.76)

or subtracting the equation from time t from that for time 1 so that

yit − yi1 = x′
i tm(zit) − x′

i1m(zi1) + uit − ui1. (16.77)

Alternatively, the within-group differencing method yields

yit − 1
T

T∑
t=1

yit = x′
i tm(zit) − 1

T

T∑
t=1

x′
i tm(zit) + uit − 1

T

T∑
t=1

uit (16.78)

or

y∗
i t =

T∑
s=1

dts x′
ism(xis) + u∗

i t (16.79)

where dts = − 1
T if s 	= t and 1 − 1

T otherwise, and
∑T

s=1 dts = 0 for all t,
y∗

i t = yit − 1
T

∑T
t=1 yit, and u∗

i t = uit − 1
T

∑T
t=1 uit.

For each i , the right-hand side of Equations 16.76 to 16.78 contains linear
combination of x′

i tm(zit) for different t. If there is an intercept term in xit and
m1(zit) is the first element of m(zit), then the difference of the first element
of x′

i tm(zit) = ∑p
d=1 xit,dmd (zit) gives m1(zit) − m1(zi,t−1). This is an additive

function with the same functional form (strong assumption) at different times.
The kernel estimation requires some backfitting algorithms or marginal inte-
gration method to recover the unknown function, which causes computation
burden as well as complications in asymptotic analyses. Further, we have
to be aware of the issues raised in Section 16.3.3, and use locally weighted
averages in Equation 16.78.

For this reason, Sun, Carroll, and Li (2009) focus on the profile estimation of
m. But we believe that the asymptotic analyses based on differencing methods
in the conventional fixed effects panel data models can be extended to this
model.

16.5.3 Nonparametric GMM Estimation

In the above model E(uit|zit) = 0 and E(uit|xit) = 0. However, in various
economic models E(uit|xit) 	= 0, for example, when xit is correlated with
uit (endogeneity), xit has measurement errors, and xit has lagged dependent
variable. The result for the case of E(uit|zit) 	= 0 has not been developed yet.

The IV estimation of the general model m(xit, zit) = x′
i tm(zit) has been

considered by Das (2005), Cai et al. (2006), and Cai and Xiong (2006) for
discrete and continuous variables in the cross-sectional setup. In addition,
with no endogeneity, this model is covered in González, Teräsvirta, and van
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Dijk (2005) and the threshold nondynamic model in Hansen (1999). Here
we present the nonparametric GMM estimation of Cai and Li (2008) for this
model.

Cai and Li (2008) consider the model

yit = x′
i tm(zit) + εi t (16.80)

where εi t plays the role of �i + uit in Equation 16.75, E(εi t|zit) = 0, and
E(εi t|xit) 	= 0. Note that E(yit|xit, zit) 	= x′

i tm(zit) because E(εi t|xit) 	= 0. Let
wit be the l × 1 instrument variables such that

E(εi t|vit) = 0, (16.81)

where vit = (w′
i t , z′

i t)
′. Multiplying both sides of Equation 16.81 by 
(vit) =

E(xit|vit) and taking expectations, conditional on zit = z, we have

E[
(vit)yit|zit] = E[
(vit)x′
i t|zit = z]m(z) = E[
(vit)
(vit)′|zit = z]m(z).

This gives m(z) = {E[
(vit)
(vit)′|zit = z]}−1 E[
(vit)yit|zit = z] under the
assumption of positive definiteness of E[
(vit)
(vit)′|zit = z]. This assump-
tion guarantees that m(·) is identified locally. To obtain the estimator of m(·),
one can consider a two stage nonparametric procedure. At the first stage

̂(vit) is obtained by a nonparametric estimation of xit on vit. Then at the
second stage, one estimate m(·) based on the varying coefficient model: yit ≈

̂(vit)′m(zit)+εi t. The asymptotic property of such a two-stage nonparametric
estimator is, however, quite complicated.

In viewing this, Cai and Li (2008) propose a one-step nonparametric GMM
(NPGMM) estimation of m(z). According to this, an m1 × 1 vector function
g(vit) is chosen such that

E[g(vit)εi t|vit] = E[g(vit){yit − x′
i tm(zit)}|vit] = 0. (16.82)

Let us write the sample GMM orthogonality conditions based on the local
linear approximation of m(zit) in a neighborhood of z as

n∑
i=1

T∑
t=1

g(vit)(yit − V′
i t�)Kh(zit − z) = 0, (16.83)

where

Vit =
(

xit

xit ⊗ (zit − z)

)

is an m2×1 vector with m2 = p(q +1), � = �(z) is an m2×1 vector of parameters
whose true value corresponds to (m(z)′, ∂m1(z)/∂z′, . . . , ∂mp(z)/∂z′)′. When
m1 ≥ m2, the solution to � is given by

�̂(z) = ( P ′ P)−1 P ′ Q
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where

P = 1
nT

n∑
i=1

T∑
t=1

g(vit)V′
i t Kh(zit − z), and Q = 1

nT

n∑
i=1

T∑
t=1

g(vit)Kh(zit − z)yit.

This gives the NPGMM estimate of m(z) and its first-order derivatives ∂m j (z)/
∂z for j = 1, . . . , p. This is one-stage estimator which is simpler compared to
the two-stage NP estimator described above and studied in Cai et al. (2006)
in the cross-sectional setup. Note that the two-stage estimation involves an
NP regression of higher dimensions, and requires two smoothing parameters
compared to one-step NP estimation which only needs one smoothing com-
ponent. If the dimension of wit is higher than that of zit, one expects that the
one-step estimator has much better finite sample performance than that for
the two-stage estimator. When there is no endogenous variables (wit = xit)
then one can choose g(vit) = Vit . In this case the GMM conditions become

n∑
i=1

T∑
t=1

Vit Kh(zit − z)(yit − V′
i t�) = 0,

which is the normal equation of the following LLLS problem of the varying
coefficient model:

min
�

n∑
i=1

T∑
t=1

(yit − V′
i t�)2 Kh(zit − z)

and it gives the ordinary LLLS estimator studied above.
For the choice of g(vit) one solution is to consider the p(q + 1) × 1 vector

g(vit) =
(

wit

wit ⊗ (zit − z)/h

)
In this case m1 = l(q +1) ≥ m2 implies l ≥ p. Although it is simple, it may not
be optimal. The optimality could be developed by using results analogous to
those in Newey (1990) and Ai and Chen (2003).

Under the usual assumptions such as that h −→ 0 and nhq −→ ∞ as
n −→ ∞, K is a symmetric, nonnegative, and bounded second-order kernel,
and that E[g(vit)g(vit)′|zit = z] is positive definite, Cai and Li (2008) showed
that, for fixed T,

√
nThq

[
H(�̂ − �) − h2

2

(
Bm(z)
0pq×1

)
+ o p(h2)

]
d−→ N

(
0p(q+1)×1,

�

f (z)

)
,

where H = diag( Ip, h Iq p) is an m2 × m2 matrix, Bm(z) = ∫
A(u, z)K (u)du is a

p × 1 vector, A(u, z) = (u′m(2)
1 (z)u, . . . , u′m(2)

p (z)u)′, m(2)
j (z) = d2m j (z)/dzdz′,

� = �(z) = E(witx′
i t|zit = z), and � = diag{v0�m, �m ⊗ [�−1

2 (K ) �2(K 2)
�−1

2 (K )]} with �m = (�′�)−1�′�1�(�′�)−1, �1 = �1(z) =Var(witεi t|zit = z),
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�2(K ) = ∫
uu′K (u)du, and v0 = ∫

K 2(u)du. If T −→ ∞, then

√
nThq

[
m̂(z) − m(z) − h2

2
Bm(z) + o p(h2)

]
d−→ N

(
0p×1,

v0�m

f (z)

)
,

where m̂(z) as the first p elements �̂(z) is the estimator of m(z). For details in
proofs and the assumptions, see Cai and Li (2008). It is clear from the above
results that m̂(z) has the same leading bias and variance for both finite and
large T cases. Therefore the asymptotic MSE (T is fixed or large) is the same
and the optimal h is proportional to (nT)−1/( p+4). However, when T is large
and n is small, some modification in the results may be needed.

Finally, when wit = xit, we have

√
nThq

[
m̂(z) − m(z) − h2

2
Bm(z) + Op(h2)

]
d−→ N(0p×1, v0 f −1(z)�∗

m(z))

where �∗
m(z) = [E(xitx′

i t|zit = z)]−1 E[�2(vit)xitx′
i t|zit = z][E(xitx′

i t|zit = z)]−1

and �2(vit) = Var(εi t|vit).
The efficiency property of Cai et al.’s (2006) two-stage estimator compared

to the single-stage estimator is not fully known. For special cases of asymptotic
efficiency, see Cai and Li (2008, p. 1333).

The above estimation procedure is valid when εi t is serially correlated
and/or xit contains lagged dependent variables. But as remarked earlier, it is
unclear how to estimate the model if zit contains the lagged dependent vari-
able. We conjecture that it may be easier to establish the asymptotic theory
for estimators based on series method rather than the kernel method.

In a recent paper Tran and Tsionas (2010) considered a two-step NP GMM
estimation with a general wighting matrix , and where n is large but T is
fixed. They claim that their two-step estimation may lead to potential gain in
asymptotic efficiency. They also analyze the finite sample efficiency of their
estimator and provide an empirical application.

In addition, Cai and Xiong (2006) have considered the following varying
coefficient IV model

Y = m(x, z1) + u

= m1(z11)′z12 + m2(z11)′x1 + �′
1z13 + �′

2x2 + u

where x = (x′
1, x′

2)′ is a vector of endogenous variables, z1 = (z′
11, z′

12, z′
13)′

is a vector of exogenous variables, z = (z′
1, z′

2) with z2 being a vector of IVs,
and E(u|z) = 0. If there is no endogenous variable, this model becomes the
partially varying coefficient model studied by Ahmad, Leelahanon, and Li
(2005) and that of the model in Cai et al. (2006) if the parametric part is absent.
And if x is a discrete endogenous variable, then the model is as studied by Das
(2005), as a special case. The estimation of the above model and its asymptotic
properties are developed in Cai and Xiong (2006) in the cross-sectional setup,
which can be potentially extended to the panel data framework.
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16.5.4 Testing Random Effects versus Fixed Effects

Based on their profile least squares estimates, Sun, Carroll, and Li (2009)
propose a test of random effects against fixed effects in model Equation 16.75.
The null hypothesis is

H0 : E(�i |xi1, . . . , xiT , zi1, . . . , ziT ) = 0 a.s.

and the alternative hypothesis H1 is the negation of H0. Their test statistic is
based on the weighted squared difference between the random effects and
fixed effects estimators, where the weights are used to get around the random
denominator issue in the kernel literature. They show that their test statistic
is asymptotically normally distributed under the null and diverges to infinity
under the fixed alternative.

16.6 Nonparametric Panel Data Models
with Cross-Section Dependence

In this section, we consider a semiparametric panel data model with cross-
section dependence:

yit = mi (xit) + �′
1i f1t + eit, i = 1, . . . , n, t = 1, . . . , T (16.84)

where xit is a p × 1 vector of observed individual-specific regressors, mi (·) is
an unknown smooth function form, f1t is a q1 ×1 vector of observed common
factors, and �1i , i = 1, . . . , n, are factor loadings. Here we assume that f1t

includes the intercept term and impose the condition E[mi (xit)] = 0 in order
to identify mi (·). The error term eit in Equation 16.84 follows the multi-factor
structure

eit = �′
2i f2t + εi t , (16.85)

where f2t is a q2 × 1 vector of unobserved common factors, εi t is the idiosyn-
cratic error assumed to be independently distributed of (xit, f1t , f2t), and �2i ,
i = 1, . . . , n, are factor loadings. We are interested in the estimation of mi (·)
in the presence of multifactor error structure.

Like Pesaran (2006), the unobserved factor f2t could be correlated with
(xit, f1t). To allow for such a possibility, we adopt the following fairly general
model for the individual-specific regressors,

xit = �′
1i f1t + �′

2i f2t + vit, (16.86)

where �1i and �2i are q1 × p and q2 × p factor loading matrices, and vit is a
p × 1 vector of individual-specific components of xit.

The model specified in Equations 16.84 to 16.86 is fairly general and includes
a variety of panel data models as special cases. First, Pesaran’s (2006) model
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corresponds to the case where mi (x) = �′
i x for some d × 1 vector �i so that

model (Equation 16.84) becomes yit = �′
i xit + �′

1i f1t + eit. Second, it includes
the conventional fixed or random effects models and the models of Bai (2009)
in particular. Third, it includes the usual nonparametric panel data model
yit = m(xit) + �i +υt + εi t , where the individual effects �i and the time effects
υt enter the model additively. Huang (2006) studies the kernel estimation of
Equation 16.84 when the unobserved factor f2t in Equation 16.85 is a scalar
random variable.

16.6.1 Common Correlated Effect (CCE) Estimator

Let xt ≡ n−1 ∑n
i=1 xit and yt ≡ n−1 ∑n

i=1 yit. Then Equations 16.84 to 16.86
imply that (

xt

yt

)
=

(
�

′
1

�� ′
1

)
f1t +

(
�

′
2

��′
2

)
f2t +

(
vt

mt + εt

)
, (16.87)

where �1, �2, ��1, ��2, vt, and εt are sample averages of �1i , �1i , �1i , �2i , vit,
and εi t over i, respectively, and mt = n−1 ∑n

i=1 mi (xit). Let �
∗
2 ≡ (�2, ��2).

Premultiplying both sides of Equation 16.87 by �
∗
2 and solving for f2t yields

f2t = (�
∗
2�

∗′
2 )−1�2

((
xt

yt

)
−

(
�

′
1

�� ′
1

)
f1t −

(
vt

gt + εt

))
(16.88)

provided that

rank(�
∗
2) = q2 ≤ p + 1 for sufficiently large n. (16.89)

As n → ∞, vt
p→ 0, εt

p→ 0 and mt
p→ 0 for each t under weak conditions. It

follows

f2t − (�
∗
2�

∗′
2 )−1�

∗
2

((
xt

yt

)
−

(
�

′
1

�� ′
1

)
f1t

)
p→ 0 as n → ∞. (16.90)

The last line suggests that we can use ht ≡ ( f ′
1t , x′

t , yt)′ as observable proxies
for f2t and consider the following semiparametric regression:

yit ≈ mi (xit) + ϑ ′
i ht + eit. (16.91)

Clearly, Equation 16.91 is an additive semiparametric model and series method
has its advantage over the kernel method. For this reason, Su and Jin (2010)
propose to estimate mi (·) by sieve method.

To proceed, let {pl(x), l = 1, 2, . . . } denote a sequence of known basis
functions that can approximate any square-integrable function of x very well.
Let L ≡ L(T) be some integer such that L → ∞ as T → ∞. Let pL (x) =
( p1(x), p2(x), . . . , pL (x))′, pit = pL (xit), and pi = ( pi1, pi2, . . . , piT )′. Under
fairly weak conditions, we can approximate mi (x) in Equation 16.91 very well
by �′

mi
pL (x) for some L × 1 vector �mi .
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To estimate �mi , we run the regression of yit on pL (xit) and ht ≡ ( f ′
1t , x′

t , yt)′

yit = �′
mi

pL (xit) + ϑ ′
i ht + uit (16.92)

where uit is the new error term. Let yi = (yi1, yi2, . . . , yiT )′, h = (h1, h2, . . . ,
hT )′, and ui = (ui1, ui2, . . . , uiT )′. We can rewrite Equation 16.92 in vector
form

yi = pi �mi + hϑi + ui . (16.93)

By the formula for partitioned regression, the estimator of �mi in Equation 16.92
or 16.93 is given by

�̂mi = ( p′
i bh pi )− p′

i bh yi , (16.94)

where bh ≡ IT − h(h′h)−h, and (·)− denotes any symmetric generalized in-
verse. The estimator of mi (x) is then given by

m̂i (x) = pL (x)′�̂mi . (16.95)

Su and Jin (2010) establish the consistency and asymptotic normality of m̂i (x)
by passing T → ∞.

16.6.2 Estimating the Homogenous Relationship

In practice, one may also be interested in estimating a restricted submodel of
Equation 16.84:

yit = m(xit) + �′
1i f1t + eit. (16.96)

That is, mi (x) = m(x) for all i in model Equation 16.84. In the case where
�1i = 0, Equation 16.96 can be regarded as a nonparametric extension of Bai’s
(2009) linear panel data model with multi-factor error structure or a simple
extension of Huang’s (2006) nonparametric panel data from his single-factor
error structure to multiple-factor error structure.

If model Equation 16.96 is assumed to be correctly specified in conjunction
with Equations 16.85 and 16.86, we can estimate m(·) by

m̂(x) = pL (x)′�̃m. (16.97)

where �̃m = (
∑n

i=1 p′
i bh pi )− ∑n

i=1 p′
i bh yi and L is now allowed to depend on

both n and T. The asymptotic normality of m̂(x) is also studied in Su and Jin
(2010) by passing both n and T to infinity.

Clearly, besides the multifactor error structure, the key assumption that
underlines the asymptotic analysis of Su and Jin (2010) is Equation 16.86 that
specifies the relationship between the individual-specific regressor and the
factors. The violation of such an assumption may invalidate their analysis.
Therefore it is desirable to propose an alternative estimator without impos-
ing such an assumption. By combining the series method with the principal
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component analysis, Su and Zhang (2010a) consider the estimation of ho-
mogenous relationship (m) in a simpler model

yit = m(xit) + �′
i ft + εi t

where ft is a q × 1 vector of unobservable factors and �i ’s are factor loadings,
m, εi t , and xit are as defined above. If m(xit) = x′

i t�0 for a p × 1 vector �0, the
model reduces to that of Bai (2009).

16.6.3 Specification Tests

Various specification tests can be conducted for the model in Equation 16.84.
This includes tests for homogenous relationship (mi = m for all i) and tests
for cross section independence or uncorrelatedness.

Jin and Su (2010) propose a nonparametric test for poolability in Equa-
tion 16.84. The null hypothesis is

H0 : mi (x) = m j (x) a.e. on the joint support of mi and m j and for all i,

j = 1, . . . , n, (16.98)

where a.e. is the abbreviation for almost everywhere. They propose a test
statistic based on series estimation and the measure

� =
n−1∑
i=1

n∑
j=i+1

∫
(mi (x) − m j (x))2w(x)dx, (16.99)

where w(x) is a nonnegative weight function, and establish the asymptotic
normality of their test under the null and a sequence of local alternatives.
This extends and complements the work of Baltagi, Hidalgo, and Li (1996)
who propose a kernel-based test for poolability in conventional panel data
models.

Chen, Gao, and Li (2009) propose a kernel-based test for cross section un-
correlatedness in

yit = mi (xit) + uit, i = 1, . . . , n, t = 1, . . . , T, (16.100)

where the error term satisfies E(uit) = 0. They test whether E(uitu jt) = 0 for
all t ≥ 1 and i 	= j by allowing both n and T to pass to the infinity. If n is fixed,
then their test complements the test of conditional uncorrelatedness in Su and
Ullah (2009). Su and Zhang (2010b) propose a test of cross section independence
for the model in Equation 16.100. It is based on the comparison of the joint
densities and the product of marginal densities and thus has extra power in
detecting deviations from cross-section independence when compared with
the test of Chen, Gao, and Li (2009).
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16.7 Nonseparable Nonparametric Panel Data Models

In this section, we review papers on nonseparable nonparametric panel data
models. We focus on two types of models. The first type is the partially sep-
arable nonparametric panel data model

yit = m(xit, �i ) + uit, i = 1, . . . , n, t = 1, . . . , T, (16.101)

where xit is a p×1 vector of explanatory variables, the scalar �i is a parameter
that represents unobserved individual heterogeneity, uit is a scalar idiosyn-
cratic error term, and m is an unknown smooth function. The second type is
the fully nonseparable nonparametric panel data models

yit = m(xit, �i , uit), i = 1, . . . , n, t = 1, . . . , T, (16.102)

where xit, �i , and uit are defined as above, and the structural function m(x, �, u)
is unknown.

16.7.1 Partially Separable Nonparametric Panel Data Models

Evdokimov (2009) studies the identification and estimation of the structural
function m(x, �) in Equation 16.101. For simplicity, we focus on the case where
T = 2. Let f A|B(·|b) and �A|B(·|b) denote the conditional p.d.f. and conditional
characteristic function (c.h.f.) of A given B = b, respectively. Let xi,(−t) =
xi\xi,t and ui,(−t) = ui\ui,t, where xi = (xi1, xi2) and ui = (ui1, ui2).

We first assume that (i) {xi , �i , ui } is an i.i.d. random sample;
(i i) fuit |xit ,�i ,xi,(−t) ,ui,(−t) (ut|x, �, x(−t) , u(−t)) = fuit |xit (ut|x); (i i i) E(uit|xit) = 0
a.s.; (iv) �uit |xit (u|x) does not vanish for all u ∈ R, x on the support X of xit,
and t ∈ {1, 2}, (v) E[|m(xit, �i )|xi ] and E[|uit||xit] are bounded a.s. for each
t; (vi) the joint p.d.f. fxi1,xi2 (·, ·) of xi1 and xi2 satisfies fxi1,xi2 (x, x) > 0 for all
x ∈ X ; (vii) m(x, �) is increasing in � for all x; (viii) �i and xi = (xi1, xi2)
are independent, and (i x) �i has a uniform distribution on [0, 1]. Under these
conditions, Evdokimov (2009) shows that

1. Under Assumptions (i)-(iv), the conditional distributions of m(x, �i ),
ui1 and ui2 given xi1 = xi2 = x is identified for all x ∈ X .

2. Under (i i) and (iv), the c.h.f. of m(x, �i ) given xit = x is identified as
�m(x,�i )|xit (s|x) = �yit |xit (s|x)/�uit |xit (s|x).

3. By the equivalence of c.h.f. and conditional cumulative distribution
function (c.d.f.), this implies that the conditional c.d.f. Fm(x,�i )|xit (·|x) of
m(x, �i ) given xit = x is identified by

Fm(x,�i )|xit (w|x) = 1
2

− lim
A→∞

∫ A

−A

e−isw

2
is
�m(x,�i )|xit (s|x)ds

for all (w, x) ∈ R × X

at the continuity of the c.d.f. in w, where i =√−1.
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4. m(x, �) is then identified by m(x, �) = F −1
m(x,�i )|xit

(�|x) for all x ∈ X and
� ∈ (0, 1), where F −1

m(x,�i )|xit
(·|x) is the inverse function of Fm(x,�i )|xit (·|x).

The key in the proof of the above identification results lie in the first step.
Consider the special case when ui1 and ui2 are identically and symmetrically
distributed, conditional on xi1 = xi2 = x. Then the c.h.f. of yi2 − yi1 given
xi1 = xi2 = x equals

�yi2−yi1 (s|xi1 = xi2 = x) = E[exp(is(yi2 − yi1))|xi1 = xi2 = x]
= E[exp(is(ui2 − ui1))|xi1 = xi2 = x]
= �U(s|x)�U(−s|x) = �U(s|x)2

where �U(s|x) denotes the c.h.f. of Uit given xit = x. Consequently, �U(s|x) is
identified because �yi2−yi1 (s|xi1 = xi2 = x) can be identified from the observed
data.

When Assumption (viii) is violated, Evdokimov (2009) shows that the
structural equation in a correlated random effects model can also be iden-
tified. The key assumption in this case is the normalization condition: there
exists x̄ ∈ X such that m(x̄, �) = � for all �. Similar conditions are imposed in
early literature on nonseparable nonparametric models; see Matzkin (2003)
and Altonji and Matzkin (2005).

Based on the identification results, Evdokimov (2009) considers consistent
estimation of the structural function m(x, �) which boils down to the esti-
mation of c.d.f. and conditional quantile functions. Nevertheless, he needs
to estimate �m(x,�i )|xit (s|x) by a conditional deconvolution approach which
yields extremely slow convergence rates. In particular, if the idiosyncratic
error term is normally distributed, the conditional deconvolution estimator
converges to its truth at the logarithm rate. Besides, no distributional theory
has yet been established so far for such an estimator, and no dynamic lagged
dependent variable is allowed to be a regressor in the structural equation.

16.7.2 Fully Nonseparable Nonparametric Panel Data Models

For the fully nonseparable nonparametric panel data model in Equation 16.102,
Altonji and Matzkin (2005), Bester and Hansen (2007), and Hoderlein and
White (2009) study conditions for identification and estimation of the struc-
tural functional itself or the local average derivatives. Here we focus on the
two estimators of Altonji and Matzkin (2005) and remark on other estimators.

Both estimators of Altonji and Matzkin (2005) involve nonseparable unob-
servable terms and endogenous regressors, and both are based on a condi-
tional density restriction

f (�, u|x′, z′) = f (�, u|x′′, z′′) (16.103)

for specific values (x′, z′) and (x′′, z′′) of the vector of conditioning vari-
ables (xit, zit). Here f (·, ·|x, z) denotes the conditional p.d.f. of (�i , uit) given
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(xit, zit) = (x, z). Similarly, f (·, ·|x) denotes the conditional p.d.f. of (�i , uit)
given xit = x.

16.7.2.1 Local Average Response (LAR) Estimator

The local average response (LAR) estimator is based on the identification of
average marginal effects by assuming the existence of a control variable (CV)
zit that is sufficient for xit in the distribution of unobservables.

Let εi t = (�i , uit). Then Equation 16.102 can be written as yit = m(xit, εi t).
When m(x, ε) is differentiable in x, 2 we can define the local average response
(LAR) �(x) as

�(x) =
∫

mx(x, ε) f (ε|x)dε (16.104)

where here and below the use of function arguments as subscripts to functions
denotes partial derivatives. Under the conditional independence assumption
that

f (ε|x, z) = f (ε|z), (16.105)

�(x) can be identified as follows

�(x) =
∫

mx(x, ε) f (ε|x, z) f (z|x)dzdε

=
∫

E[mx(x, εi t)|x, z] f (z|x)dz

=
∫

Ex[yit|x, z] f (z|x)dz, (16.106)

where f (z|x) denotes the conditional p.d.f. of zit given xit. Equation 16.106
forms the basis of Altonji and Matzkin’s LAR estimator.

Let Êx[yit|x, z] and f̂ (z|x) denote kernel estimators of Ex[yit|x, z] and f (z|x),
respectively. In principle, one could estimate �(x) by

�̂(x) =
∫

Êx[yit|x, z] f̂ (z|x)dz.

But this estimator is not easy to analyze because it involves a random denom-
inator problem. Noting that

�(x) =
∫

Ex[yit|x, z] f (z|x)dz

=
∫

yfx(y, x)dy
f (x)

−
∫

fx(x, z)
∫

yf (y, x, z)dy
f (x, z) f (x)

dz,

2 The LAR �(x) can also be defined if m is not differentiable as in the binary response case. See
Altonji and Matzkin (2005).



 

P1: BINAYA KUMAR DASH

November 1, 2010 17:9 C7035 C7035˙C016

Nonparametric and Semiparametric Panel Econometric Models 489

where f (x), f (x, z), f (y, x, z) denote the p.d.f.’s of xit, (xit, zit), and (yit, xit,
zit), respectively, we can estimate �(x) by

�̂(x) =
∫

y f̂ x(y, x)dy

f̂ (x)
−

∫
�( f̂ (x, z), b) f̂ x(x, z)

∫
y f̂ (y, x, z)dy

f̂ (x)
dz

where f̂ (x), f̂ (x, z), f̂ x(x, z), f̂ (y, x, z) are kernel estimates of f (x), f (x, z),
fx(x, z), and f (y, x, z), respectively, and � is a trimming function defined by

�(s, b) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/s if s ≥ 2b[

49(s − b)3

b4 − 76(s − b)4

b5 + 31(s − b)5

b6

]
/8 if b ≤ s < 2b

0 if s < b

.

Altonji and Matzkin (2005) establish the asymptotic normality of �̂(x) first for
the case of T = 1. If T > 1, then one can proceed by first observing an estima-
tor of �(x) for each t = 1, . . . , T, and averaging the T estimators to obtain the
final estimator of �(x). It is well known from standard asymptotic analysis
in the kernel literature, these T estimators are asymptotically independent
because the covariance between each two of them is of smaller magnitude
than the individual variances.

When the dimensional of xit is high, the rate of convergence of �̂(x) can be
undesirably slow. As an alternative, one can consider some weighted average
measure of the nonparametric LAR estimator to increase the precision of the
estimator. For example, one can consider estimating

�� =
∫

�(x)w(x)dx (16.107)

for some prescribed weight function w. As usual, the estimator of �� will have
the regular

√
n-rate of convergence.

Clearly, the key assumption underlying the above analysis is the conditional
independence assumption in Equation 16.105. This requires Equation 16.103
holds for all values of (�, u), (x, x′), and (z′, z′′) such that z′ = z′′. The LAR
estimator is based upon the (derivative of) conditional expectation E(y|x, z).
Because of (16.105), holding z constant also holds the distribution of the un-
observable term (ε) constant. Then one can undo the effect of conditioning on
z by integrating Ex(y|x, z) over an estimate of the distribution of z given x.

Bester and Hansen (2007) consider identification and estimation of average
marginal effects in a correlated random coefficients models. Instead of assum-
ing the existence of the known CV vector zit, they assume the existence of a
set of sufficient statistics for xit in the distribution of individual heterogeneity,
which is not known but takes on some index form. To be concrete, Bester and
Hansen assume that

F (�i |xi ) = F (�i |h1(xi,1), . . . , h p(xi, p)) (16.108)
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for some unknown real-valued functions hs(xi,s), s = 1, . . . , p, where for
example, F (�i |xi ) denotes the conditional c.d.f. of �i given xi = (xi1, . . . , xiT )′,
a T × p matrix, and xi,s denotes the sth column in xi . This assumption is
neither more or less general than the conditional independence assumption
Equation 16.105 of Altonji and Matzkin (2005): the set of sufficient statistics
is unknown but restricted so that there is one sufficient statistic for each
covariate in xit for the restriction in Equation 16.108; the CV zit has to be
unknown but may include interactions of covariates in Equation 16.105. In
addition, neither Bester and Hansen’s (2007) nor Altonji and Matzkin’s (2005)
LAR approach identifies the structural function itself.

16.7.2.2 Structural Function and Distribution (SFD) Estimator

To define the structural function and distribution (SFD) estimator, we impose
the following assumptions: (i) There exists a real valued function g(ε) such
that yit = m(xit, eit)3 for eit = g(εi t); (i i) m(x, e) is strictly increasing in e for
all x; (i i i) there exists some value x̄ of x, m(x̄, e) = e for all e; (iv) for any
value x̃ of x there exist values z̃ and z̃′ of z such that f (e|x̃, z̃) = f (e|x̄, z̃′),
where f (e|x, z) denotes the conditional p.d.f. of eit given (xit, zit); (v) for all
(x, z), f (e|x, z) is strictly positive everywhere.

Clearly, (i) indicates that the effect of the vector εi t can be aggregated by
a scalar-valued unobservable random term eit = g(εi t). (i i) assumes mono-
tonicity in the unobservable and (i i i) is a normalization restriction. (iv) can be
satisfied under some exchangeability conditions. (v) and (i i) guarantee that
the conditional c.d.f. F (·|x, z) of yit given (xit, zit) = (x, z) is strictly increasing
so that m(x, e) can be identified via

m(x, e) = F −1(F (e|x̄, z′)|x, z). (16.109)

To see this, noticing that for any value x there exist values z and z′ such that
for any value e, we have

P(eit ≤ e|x, z) = P(eit ≤ e|x̄, z′) [by (iv)]
�⇒

P(m(x, eit) ≤ m(x, e)|x, z) = P(m(x̄, eit) ≤ m(x̄, e)|x̄, z′) [by (i i)] or
P(yit ≤ m(x, e)|x, z) = P(yit ≤ m(x̄, e)|x̄, z′) or

F (m(x, e)|x, z) = F (m(x̄, e)|x̄, z′).

The last line implies Equation 16.109 by (i i) and (v). Let Feit |xit (·|x) and
Fyit |xit (·|x) denote the conditional c.d.f. of eit and yit given xit = x, respec-
tively. Then under (i i), Feit |xit is identified via

Feit |xit (e|x) = Fyit |xit (m(x, e)|x). (16.110)

3 We keep using the notation m in m(x, e) but keep in mind that this is different from the original
structrual function m(x, �, u).
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Given the above identification results, we can obtain estimators of m(x, e)
and Feit |xit (e|x) straightforwardly via the kernel method. Both estimators in-
volve the kernel estimates of F (·|x, z) and its inverse function (conditional
quantile function) F −1(·|x, z). The latter also involves the estimation of
Fyit |xit (·|x). Altonji and Matzkin (2005) formally establish the asymptotic nor-
mality of either estimator.

It is worth mentioning that neither the LAR nor the SFD estimator deals
with dynamics in the model. The LAR estimator can be used to estimate the
marginal effects of xit on yit in a censored regression model but neither can be
used to study the effects on a latent dependent variable. The SFD estimator
estimates some structural function but it is different from the original one.

16.7.2.3 Nonparametric Identification and Estimation
without Monotonicity

Hoderlein and White (2009) consider the general class of nonseparable panel
models of the form

yit = m(xit, zit, �i , uit), i = 1, . . . , n, t = 1, . . . , T, (16.111)

where zit is a q × 1 vector of observed variables, xit, �i , and uit are defined
as before. Their interest centers on the effect of xit on yit by controlling the
influence of all other variables, whether observed like zit or unobserved like
�i and uit.

Without assuming that m(x, z, �, u) is monotonic in � or u, the structural
function m itself and its derivatives are not identified, but certain of its con-
ditional expectations and their derivatives are. Like early estimators in the
nonseparable panel literature, Hoderlein and White’s estimator does not al-
low for lagged dependent variables either. In addition, they can only identify
effects for the subpopulation for which xi1 − xi2 = 0 and zi1 − zi2 = 0 in the
case of T = 2.

16.7.3 Testing of Monotonicity in Nonseparable Nonparametric Panel
Data Models

Despite the wide use of monotonicity of the structural function in individ-
ual heterogeneity (e.g., Matzkin 2003; Altonji and Matzkin 2005; Imbens and
Newey 2009; Evdokimov 2009; among others), Hoderlein and Mammen (2007,
2009) argue that such an assumption may not be fully justified in economics,
say, when the individual effects represent the unobserved heterogeneity in
preferences or technologies. Moreover, as Hoderlein, Su, and White (2010)
demonstrate, some key identification results fail when monotonicity is vio-
lated. This motivates them to consider tests of monotonicity in nonseparable
nonparametric panel data models. Under some strict exogeneity conditions,
they propose two tests for monotonicity of unobservables in panel nonsep-
arable nonparametric panel data models. The first works under some ideal
situation where the unobservables vary across i but not t dimension (t may
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not be time index). The second works in large dimensional panel where both n
and T approach ∞ and both time-invariant and time-varying unobservables
are present.

Consider first the case where the unobservables vary across individuals but
not “time”:

yit = m(xit, �i ), i = 1, . . . , n, t = 1, . . . , T,

where �i is i.i.d. uniformly distributed on [0, 1], and (xit, �i ) is identically
distributed across i. Under the null hypothesis that m(x, ·) is strictly increasing
for any x, we have

�i = Ft(yit|xit) a.s. for all (i, t)

where Ft(·|x) is the conditional c.d.f. of yit given xit = x. If we further assume
that �i is independent of xit (xit is exogenous), then we can show that this
conditional c.d.f. is time-invariant, that is, Ft should not depend on t and can
be abbreviated as F . Thus, we can write the null hypothesis as

H0 : F (yit | xit) = F (yis | xis) a.s. for all (t, s). (16.112)

Significantly, exogeneity and the time invariance of �i jointly ensure that Ft

is time invariant. When exogeneity or monotonicity fails, we generally have
the alternative

H1 : P[Ft(yit | xit) = Fs(yis | xis)] < 1 for some t 	= s.

Let F̂t be suitable estimator of Ft. We can consider the following test statistic

Dn ≡
T−1∑
t=1

T∑
s=t+1

n∑
i=1

( F̂t(yit | xit) − F̂s(yis | xis))2.

Hoderlein, Su, and White (2010) obtain the estimate F̂t(y|x) by the local poly-
nomial method and demonstrate after correct centering, h p/2 Dn is asymptot-
ically normality distributed under the null and diverges to infinity under the
alternative, where h is the bandwidth parameter used in the local polynomial
estimation.

Now consider the nonseparable structure of the form

yit = m(xit, �i , uit), i = 1, . . . , n, t = 1, . . . , T,

�i is i.i.d. uniformly distributed on [0, 1], and (xit, �i , uit) is i.i.d. across i, and
identically distributed across t. Define some nonnegative weight functions
w�(x) on the support of xit, � = 1, . . . , T . Assuming that (xit, uit) ⊥ �i , we
have

Ỹ�,i = E[yitw�(xit)|�i ] =
∫

m(x, �i , u)w�(x)d F (x, u) ≡ m̄�(�i ),
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where F (x, u) denotes the c.d.f. of (xit, uit). Clearly, m̄�(·) is also monotonic un-
der the null hypothesis that m(x, ·, u) is monotone for all (x, u). Furthermore,
�i can be identified as

�i = m̄−1
� (Ỹ�,i ) = F̃�(Ỹ�,i )

where F̃� is the c.d.f. of Ỹ�,i . As a result, we can test the monotonicity by testing
the following null hypothesis

H̃0 : F̃�(Ỹ�,i ) = F̃ς (Ỹς,i ) a.s. for all (�, ς ). (16.113)

The test statistic is

D̂nT ≡
T −1∑
�=1

T∑
ς=�+1

n∑
i=1

( F̂n,T,�(ȲT,�,i ) − F̂n,T,ς (ȲT,ς,i ))2.

where for � = 1, . . . , T , F̂n,T,�(y) = n−1 ∑n
i=1 1{ȲT,�,i ≤ y}, ȲT,�,i = T−1 ∑T

t=1
yitw�(xit) is a consistent estimate of Ỹ�i under weak conditions, and 1{·} is the
usual indicator function. Under some regularity conditions, Hoderlein, Su,
and White (2010) show that limit distribution of D̂nT is given by weighted
chi-squares under the null.

16.8 Concluding Remarks

In this chapter, we survey some of the recent developments on NP and SP
panel data models. Due to space limitation, we omit some of the important
areas in this literature. This includes NP and SP limited dependent variable
models (see Ai and Li 2008), and NP and SP panel models with spatial de-
pendence. It is worth mentioning that the latter area is underdeveloped in
econometrics. Other areas that seem promising to us include NP or SP panel
data models that impose some curvature restrictions (e.g., monotonicity, con-
cavity, homogeneity) or require less restrictions (e.g., exogeneity, separability,
monotonicity). In the nonseparable nonparametric models, no estimator has
been proposed to deal with dynamic panel data models. Obviously, this is an
interesting yet challenging research topic.
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