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Preface

Econometrics originated as a branch of the classical discipline of mathemat-
ical statistics. At the same time it has its foundation in economics where it
began as a subject of quantitative economics. While the history of the quanti-
tative analysis of both microeconomic and macroeconomic behavior is long,
the formal of the sub-discipline of econometrics per se came with the estab-
lishment of the Econometric Society in 1932, at a time when many of the
most significant advances in modern statistical inference were made by Jerzy
Neyman, Egon Pearson, Sir Ronald Fisher, and their contemporaries. All of
this led to dramatic and swift developments in the theoretical foundations
of econometrics, followed by commensurate changes that took place in the
application of econometric methods over the ensuing decades. From time to
time these developments have been documented in various ways, includ-
ing various “handbooks.” Among the other handbooks that have been pro-
duced, The Handbook of Applied Economic Statistics (1998), edited by Aman
Ullah and David. E. A. Giles, and The Handbook of Applied Econometrics and
Statistical Inference (2002), edited by Aman Ullah, Alan T. K. Wan, and Anoop
Chaturvedi (both published by Marcel Dekker), took as their general theme
the over-arching importance of the interface between modern econometrics
and mathematical statistics.

However, the data that are encountered in economics often have unusual
properties and characteristics. These data can be in the form of micro (cross-
section), macro (time-series), and panel data (time-series of cross-sections).
While cross-section data are more prevalent in the applied areas of micro-
economics, such as development and labor economics, time-series data are
common in finance and macroeconomics. Panel data have been used exten-
sively in recent years for policy analysis in connection with microeconomic,
macroeconomic and financial issues. Associated with each of these types of
data are various challenging problems relating to model specification, estima-
tion, and testing. These include, for example, issues relating to simultaneity
and endogeneity, weak instruments, average treatment, censoring, functional
form, nonstationarity, volatility and correlations, cointegration, varying co-
efficients, and spatial data correlations, among others. All these complex-
ities have led to several developments in the econometrics methods and
applications to deal with the special models arising. In fact many advances
have taken place in financial econometrics using time series, in labor eco-
nomics using cross section, and in policy evaluations using panel data. In the
face of all these developments in the economics and financial econometrics,
the motivation behind this Handbook is to take stock of the subject matter of
empirical economics and finance, and where this research field is likely to
head in the near future. Given this objective, various econometricians who

ix
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are acknowledged international experts in their particular fields were com-
missioned to guide us about the fast, recent growing research in economics
and finance. The contributions in this Handbook should prove to be useful
for researchers, teachers, and graduate students in economics, finance, soci-
ology, psychology, political science, econometrics, statistics, engineering, and
the medical sciences.

The Handbook contains sixteen chapters that can be divided broadly into
the following three parts:

1. Micro (Cross-Section) Models
2. Macro and Financial (Time-Series) Models
3. Panel Data Models

Part I of the Handbook consists of chapters dealing with the statistical issues
in the analysis of econometric models analysis with the cross-sectional data
often arising in microeconomics. The chapter by Cameron and Miller reviews
methods to control for regression model error that is correlated within groups
or clusters, but is uncorrelated across groups or clusters. The importance of
this stems from the fact that failure to control for such clustering can lead to
an understatement of standard errors, and hence an overstatement of statisti-
cal significance, as emphasized most notably in empirical studies by Moulton
and others. These may lead to misleading conclusions in empirical and policy
work. Cameron and Miller emphasize OLS estimation with statistical infer-
ence based on minimal assumptions regarding the error correlation process,
but they also review more efficient feasible GLS estimation, and the adaptation
tononlinear and instrumental variables estimators. Trivedi and Munkin have
prepared a chapter on the regression analysis of empirical economic models
where the outcome variable is in the form of non-negative count data. Count
regressions have been extensively used for analyzing event count data that
are common in fertility analysis, health care utilization, accident modeling,
insurance, and recreational demand studies, for example. Several special fea-
tures of count regression models are intimately connected to discreteness and
nonlinearity, as in the case of binary outcome models such as the logit and pro-
bit models. The present survey goes significantly beyond the previous such
surveys, and it concentrates on newer developments, covering both the prob-
ability models and the methods of estimating the parameters of these models.
It also discusses noteworthy applications or extensions of older topics. An-
other chapter is by Fagan and Gengay dealing with textual data econometrics.
Most of the empirical work in economics and finance is undertaken using cat-
egorical or numerical data, although nearly all of the information available to
decision-makers is communicated in a linguistic format, either through spo-
ken or written language. While the quantitative tools for analyzing numerical
and categorical data are very well developed, tools for the quantitative anal-
ysis of textual data are quite new and in an early stage of development. Of
course, the problems involved in the analysis of textual data are much greater
than those associated with other forms of data. Recently, however, research
has shown that even at a coarse level of sophistication, automated textual
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processing can extract useful knowledge from very large textual databases.
This chapter aims to introduce the reader to this new field of textual econo-
metrics, describe the current state-of-the-art, and point interested researchers
toward useful public resources.

In the chapter by Golan and Greene an information theoretic estimator is de-
veloped for the mixed discrete choice model used in applied microeconomics.
They consider an extension of the multinomial model, where parameters
are commonly assumed to be a function of the individual’s socio-economic
characteristics and of an additive term that is multivariate distributed (not
necessarily normal) and correlated. This raises a complex problem of deter-
mining large number of parameters, and the current solutions are all based
on simulated methods. A complementary approach for handling an under-
determined estimation problem is to use an information theoretic estimator,
in which (and unlike the class of simulated estimators) the underdetermined
problem is converted into a constrained optimization problem where all of the
available information enters as constraints and the objective functional is an
entropy measure. A friendly guide for applying it is presented. The chapter by
Racine looks into the issues that arise when we are dealing with data on eco-
nomic variables that have nonlinear relationship of some unknown form. Such
models are called nonparametric. Within this class of models his contribution
emphasizes the case where the regression variables include both continuous
and discrete (categorical) data (nominal or ordinal). Recent work that ex-
plores the relationship between Bayesian and nonparametric kernel methods
is also emphasized. The last two chapters in Part I are devoted to exploring
some theoretical contributions. Grendar and Judge introduce fundamental
large deviations theory, a subfield of probability theory, where the typical
concern is about the asymptotic (large sample) behavior, on a logarithmic
scale, of a probability of a given event. The results discussed have impli-
cations for the so-called maximum entropy methods, and for the sampling
distributions for both nonparametric maximum likelihood and empirical like-
lihood methods. Finally, Antoine and Renault consider a general framework
where weaker patterns of identification may arise in a model. Typically, the
data generating process is allowed to depend on the sample size. However,
contrary to what is usually done in the literature on weak identification, they
suggest not to give up the goal of efficient statistical inference: even fragile
information should be processed optimally for the purpose of both efficient
estimation and powerful testing. These insights provide a new focus that is
especially needed in the studies on weak instruments.

Part II of the Handbook contains chapters on time series models extensively
used in empirical macroeconomics and finance. The chapter by Fuka¢ and
Pagan looks at the development of macro-econometric models over the past
sixty years, especially those that have been used for analyzing policy options.
They classify them in four generations of models, giving extremely useful
details and insights of each generation of models with their designs, the way
in which parameters were quantified, and how they were evaluated. Abadir
and Talmain explore an issue existing in many macroeconomic and aggregate
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financial time-series. Specifically, the data follow a nonlinear long-memory
process that requires new econometric tools to analyze them. This is because
linear ARIMA modeling, often used in standard empirical work, is not consis-
tent with the real world macroeconomic and financial data sets. In view of this
Abadir and Talmain have explored econometric aspects of nonlinear model-
ing guided by economic theory. The chapter by Ludvigson and Ng develops
the relationship between bond excess premiums and the macroeconomy by
considering factors augmented panel regression of 131 months. Macroeco-
nomic factors are found to have statistically significant predictive power for
excess bond returns. Also, they show that forecasts of excess bond returns (or
bond risk premia) are countercyclical. This implies that investors are compen-
sated for risks associated with recessions. In another chapter Pesaran explores
the predictability of asset returns and the empirical and theoretical basis of
the efficient market hypothesis (EMH). He first overviews the statistical prop-
erties of asset returns at different frequencies and considers the evidence on
return predictability, risk aversion and market efficiency. The chapter then
focuses on the theoretical foundation of the EMH, and shows that market
efficiency could coexist with heterogeneous beliefs and individual irrational-
ity provided that individual errors are cross-sectionally weakly dependent,
but at times of market euphoria or gloom these individual errors are likely to
become cross-sectionally strongly dependent, so that the collective outcome
could display significant departures from market efficiency. In deviation with
the above chapters in this part, which deal with the often used classical point
data estimation, Arroyo, Gonzalez-Rivera and Maté review the statistical lit-
erature on the regression analysis and forecasting with the interval-valued
and histogram-valued data sets that are increasingly becoming available in
economics and finance. Measures of dissimilarities are presented which help
us to evaluate forecast errors from different methods. They also provide ap-
plications relating to forecasting the daily interval low/high prices of the
S&P500 index, and the weekly cross-sectional histogram of the returns to the
constituents of the S&P500 index.

Part I1I of the Handbook contains chapters on the types of panel data and spa-
tial models which are increasingly becoming important in analyzing complex
economic behavior and policy evaluations. While there has been an extensive
growth of the literature in this area in recent years, at least two issues have
remained underdeveloped. One of them relates to the econometric issues
that arise when analyzing panel models that contain time-series dynamics
through the presence of lagged dependent variables. Hsiao, in his chapter,
reviews the literature on dynamic panel data models in the presence of unob-
served heterogeneity across individuals and over time, from three perspec-
tives: fixed vs. random effects specification; additive vs. multiplicative effects;
and the maximum likelihood vs. methods of moments approach. On the other
hand, Su and Ullah, in their chapter, explore the often ignored issue of the
nonlinear functional form of panel data models by adopting both nonpara-
metric and semiparametric approaches. In their review they focus on the
recent developments in the econometrics of conventional panel data models
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with a one-way error component structure; partially linear panel data mod-
els; varying coefficient panel data models; nonparametric panel data models
with multi-factor error structure; and nonseparable nonparametric panel data
models. Within the framework of panel data or purely cross-sectional data
sets we also have the issues that arise when the dependence across cross-
sectional units is related to location and distance, as is often found in studies
in regional, urban, and agricultural economics. The chapter by Baltagi deals
with this area of study and it introduces spatial error component regression
models, and the associated methods of estimation and testing. He also dis-
cusses some of the issues related to prediction using such models, and studies
the performance of various panel unit root tests when spatial correlation is
present. Finally, the chapter by Lee and Yu studies the maximum likelihood
estimation of spatial dynamic panel data where both the cross-section and
time-series observations are large. A new estimation method, based on a par-
ticular data transformation approach, is proposed which may eliminate time
dummy effects and unstable or explosive components. A bias correction pro-
cedure for these estimators is also suggested.

In summary, this Handbook brings together both review material and new
methodological and applied results which are extremely important to the cur-
rent and future frontiers in empirical economics and finance. The emphasis
is on the inferential issues that arise in the analysis of cross-sectional, time-
series, and panel data-based empirical models in economics and finance and
in related disciplines. In view of this, the contents and scope of the Handbook
should have wide appeal. We are very pleased with the final outcome and we
owe a great debt to the authors of the various chapters for their marvelous
support and cooperation in the preparation of this volume. We are also most
grateful to Damaris Carlos and Yun Wang, University of California, Riverside,
for the efficient assistance that they provided. Finally, we thank the fine edi-
torial and production staff at Taylor & Francis, especially David Grubbs and
Suzanne Lassandro, for their extreme patience, guidance, and expertise.

Aman Ullah

David E. A. Giles
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1.1 Introduction

In this survey we consider regression analysis when observations are grouped
in clusters, with independence across clusters but correlation within clusters.
We consider this in settings where estimators retain their consistency, but sta-
tistical inference based on the usual cross-section assumption of independent
observations is no longer appropriate.

Statistical inference must control for clustering, as failure to do so can lead
to massively underestimated standard errors and consequent over-rejection
using standard hypothesis tests. Moulton (1986, 1990) demonstrated that this
problem arises in a much wider range of settings than had been appreciated
by microeconometricians. More recently Bertrand, Duflo, and Mullainathan
(2004) and Kézdi (2004) emphasized that with state-year panel or repeated
cross-section data, clustering can be present even after including state and
year effects and valid inference requires controlling for clustering within state.
Wooldridge (2003, 2006) provides surveys and a lengthy exposition is given
in Chapter 8 of Angrist and Pischke (2009).

A common solution is to use “cluster-robust”standard errors that rely on
weak assumptions — errors are independent but not identically distributed
across clusters and can have quite general patterns of within-cluster correla-
tion and heteroskedasticity — provided the number of clusters is large. This
correction generalizes that of White (1980) for independent heteroskedastic er-
rors. Additionally, more efficient estimation may be possible using alternative
estimators, such as feasible Generalized Least Squares (GLS), that explicitly
model the error correlation.

The loss of estimator precision due to clustering is presented in Section 1.2,
while cluster-robust inference is presented in Section 1.3. The complications
of inference, given only a few clusters, and inference when there is clustering
in more than one direction, are considered in Sections 1.4 and 1.5. Section 1.6
presents more efficient feasible GLS estimation when structure is placed on
the within-cluster error correlation. In Section 1.7 we consider adaptation to
nonlinear and instrumental variables estimators. An empirical example in
Section 1.8 illustrates many of the methods discussed in this survey.

1.2 Clustering and Its Consequences

Clustering leads to less efficient estimation than if data are independent, and
default Ordinary Least Squares (OLS) standard errors need to be adjusted.
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1.2.1 Clustered Errors

The linear model with (one-way) clustering is

where i denotes the ith of N individuals in the sample, g denotes the gth of
G clusters, E[ujq | xi¢] = 0, and error independence across clusters is assumed
so that fori # j

Eluigttjo | Xig, Xjg] = 0, unless g = g’ (1.2)

Errors for individuals belonging to the same group may be correlated, with
quite general heteroskedasticity and correlation. Grouping observations by
cluster the model can be written as y; = X;p + ug, where y, and u, are
N, x 1 vectors, X, is an N; x K matrix, and there are N, observations in
cluster g. Further stacking over clusters yields y = XB + u, where y and u are
N x 1 vectors, X is an N x K matrix, and N = Zg N,. The OLS estimator is
E = (X’X)~! X'y. Given error independence across clusters, this estimator has
asymptotic variance matrix

G
V[B] = (BX'X]) " < E[x;uguéxg]) (BIX'x]) ", (1.3)
=1

8

rather than the default OLS variance o2 (E[X’X])_l, where 02 = V[uj].

1.2.2 Equicorrelated Errors

One way that within-cluster correlation can arise is in the random effects
model where the error u;, = a, + €5, where oy is a cluster-specific error or
common shock thatisi.i.d. (0, 02), and &g is an idiosyncratic error thatisi.i.d.
(0, 02). Then Var[u;;] = 02 + o2 and Covlujg, uj,] = o2 fori # j. It follows
that the intraclass correlation of the error p, = Cor[u;g, 1] = a2 /(0% + a2).
The correlation is constant across all pairs of errors in a given cluster. This cor-
relation pattern is suitable when observations can be viewed as exchangeable,
with ordering not mattering. Leading examples are individuals or households
within a village or other geographic unit (such as state), individuals within a
household, and students within a school.

If the primary source of clustering is due to such equicorrelated group-
level common shocks, a useful approximation is that for the jth regressor the
default OLS variance estimate based on s?(X'X)~!, where s is the standard
error of the regression, should be inflated by

Ti~14 px,-pu(Ng -1, (1.4)

where p, ; is a measure of the within-cluster correlation of x;, p, is the within-
cluster error correlation, and N is the average cluster size. This result for
equicorrelated errors is exact if clusters are of equal size; see Kloek (1981) for
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the special case py; = 1, and Scott and Holt (1982) and Greenwald (1983) for
the general result. The efficiency loss, relative to independent observations, is
increasing in the within-cluster correlation of both the error and the regressor
and in the number of observations in each cluster. For clusters of unequal size
replace (N, — 1) in formula 1.4 by ((V[N;]/Ng) + N; — 1); see Moulton (1986,
p. 387).

To understand the loss of estimator precision given clustering, consider the
sample mean when observations are correlated. In this case the entire sample
is viewed as a single cluster. Then

=N ZV ]/,]+ZZCOV Yi, yil (1.5)

i jF#

Given equicorrelated errors with Cov[yi, yje] = po? for i # j, V[y] =
N=2{No? + N(N — 1)pc?} = N716?{1 + p(N — 1)} compared to N~'¢? in
the i.i.d. case. At the extreme V[§] = 02 as p — 1 and there is no benefit at all
to increasing the sample size beyond N = 1.

Similar results are obtained when we generalize to several clusters of equal
size (balanced clusters) with regressors that are invariant within cluster, so
Yig = xéB + ujg, where i denotes the ith of N individuals in the sample and ¢
denotes the gth of G clusters, and there are N, = N/G observations in each
cluster. Then OLS estimation of y;, on X, is equivalent to OLS estimation in
the model y, = x; + ilg, where J; and flg are the within-cluster averages
of the dependent Varlable and error. If ug is mdependent and homoskedastic
with variance of then V[B] = Uﬁg(zgz X,) "', where the formula for o7
varies with the within-cluster correlation of ulg For equicorrelated errors
o@ = N1+ pu(N; — 1)]o? compared to N 'o2 with independent errors, so
the true variance of the OLS estimator is (1 + pu(N —1)) times the default, as
given in formula 1.4 with p,, = 1.

In an influential paper Moulton (1990) pointed out that in many settings the
adjustment factor 7; can be large even if p, is small. He considered a log earn-
ings regression using March CPS data (N = 18, 946), regressors aggregated
at the state level (G = 49), and errors correlated within state (p, = 0.032).
The average group size was 18,946/49 = 387, p,;, = 1 for a state-level re-
gressor, so 7; ~ 1+ 1 x 0.032 x 386 = 13.3. The weak correlation of errors
within state was still enough to lead to cluster-corrected standard errors being
+/13.3 = 3.7 times larger than the (incorrect) default standard errors, and in
this example many researchers would not appreciate the need to make this
correction.

1.2.3 Panel Data

A second way that clustering can arise is in panel data. We assume that obser-
vations are independent across individuals in the panel, but the observations
for any given individual are correlated over time. Then each individual is
viewed as a cluster. The usual notation is to denote the data as y;;, where
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i denotes the individual and ¢ the time period. But in our framework (for-
mula 1.1) the data are denoted y;,, where i is the within-cluster subscript
(for panel data the time period) and g is the cluster unit (for panel data the
individual).

The assumption of equicorrelated errors is unlikely to be suitable for panel
data. Instead we expect that the within-cluster (individual) correlation de-
creases as the time separation increases.

For example, we might consider an AR(1) model with u;; = puj¢—1 + €,
where 0 < p < 1and g;; isi.i.d. (0, 02). In terms of the notation in formula 1.1,
Uig = pij-1,g + &g. Then the within-cluster error correlation Cor[uig, uje] =
pl'=/I, and the consequences of clustering are less extreme than in the case of
equicorrelated errors.

To see this, consider the variance of the sample mean when Cov[y,-, yil =
pl'~7l62. Then formula 1.5 yields V[§] = N~'[1 4+ 2N~' 3" " sp*]a2. For ex-
ample, if p = 0.5 and N = 10, then V[j§] = 0.260> compared to 0.5502
for equicorrelation, using V[§] = N~'o?{1 + p(N — 1)}, and 0.10> when
there is no correlation (p = 0.0). More generally with several clusters of
equal size and regressors invariant within cluster, OLS estimation of y;; on
X¢ is equivalent to OLS estimation of 7, on xg (see Subsection 1.2.2), and
with an AR(1) error V[B] = N ![1 + 2N, Y07 splo?( 3¢ XgX,) ™!, less than
N A pu(Ne = D]os(3, Xox,) ™! with an equicorrelated error.

For panel data in practice, while within-cluster correlations for errors are
not constant, they do not dampen as quickly as those for an AR(1) model. The
variance inflation formula 1.4 can still provide a reasonable guide in panels
that are short and have high within-cluster serial correlations of the regressor
and of the error.

1.3 Cluster-Robust Inference for OLS

The most common approach in applied econometrics is to continue with
OLS, and then obtain correct standard errors that correct for within-cluster
correlation.

1.3.1 Cluster-Robust Inference

Cluster-robust estimates for the variance matrix of an estimate are sandwich
estimates that are cluster adaptations of methods proposed originally for in-
dependent observations by White (1980) for OLS with heteroskedastic errors,
and by Huber (1967) and White (1982) for the maximum likelihood estimator.

The cluster-robust estimate of the variance matrix of the OLS estimator,
defined in formula 1.3, is the sandwich estimate

VBl = (XX)'B(X'X) ", (1.6)
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where
R G
B = (Z x’gﬁgﬁé’,xg), (1.7)
g=1

andu, =y, — XgE. This provides a consistent estimate of the variance matrix
if G71 Y0 XWX, — G Y E[XuguyX,] 5 0as G — oo

The estimate of White (1980) for independent heteroskedastic errors is the
special case of formula 1.7, where each cluster has only one observation
(so G = Nand N; = 1 for all g). It relies on the same intuition that
G! ZgG:lE[X’gugu’ng] is a finite-dimensional (K x K) matrix of averages
that can be consistently estimated as G — oo.

White (1984, pp. 134-142) presented formal theorems that justify use of
formula 1.7 for OLS with a multivariate dependent variable, a result directly
applicable to balanced clusters. Liang and Zeger (1986) proposed this method
for estimation for a range of models much wider than OLS; see Sections 1.6
and 1.7 of their paper for a range of extensions to formula 1.7. Arellano (1987)
considered the fixed effects estimator in linear panel models, and Rogers
(1993) popularized this method in applied econometrics by incorporating it
in Stata. Note that formula 1.7 does not require specification of a model for
E[ugué].

Finite-sample modifications of formula 1.7 are typically used, since without
modification the cluster-robust standard errors are biased downwards. Stata
uses /cl, in formula 1.7 rather than u,, with

G N-1 _ G
G-IN-K G-1'

c= (1.8)
Some other packages such as SAS use c = G/(G — 1). This simpler correction
is also used by Stata for extensions to nonlinear models. Cameron, Gelbach,
and Miller (2008) review various finite-sample corrections that have been
proposed in the literature, for both standard errors and for inference using
resultant Wald statistics; see also Section 1.6.

The rank of V[E] in formula 1.7 can be shown to be at most G, so at most G
restrictions on the parameters can be tested if cluster-robust standard errors
are used. In particular, in models with cluster-specific effects it may not be
possible to perform a test of overall significance of the regression, even though
it is possible to perform tests on smaller subsets of the regressors.

1.3.2 Specifying the Clusters

It is not always obvious how to define the clusters.

As already noted in Subsection 1.2.2, Moulton (1986, 1990) pointed out for
statistical inference on an aggregate-level regressor it may be necessary to
cluster at that level. For example, with individual cross-sectional data and a
regressor defined at the state level one should cluster at the state level if regres-
sion model errors are even very mildly correlated at the state level. In other
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cases the key regressor may be correlated within group, though not perfectly
s0, such as individuals within household. Other reasons for clustering include
discrete regressors and a clustered sample design.

In some applications there can be nested levels of clustering. For example,
for a household-based survey there may be error correlation for individuals
within the same household, and for individuals in the same state. In that case
cluster-robust standard errors are computed at the most aggregated level of
clustering, in this example at the state level. Pepper (2002) provides a detailed
example.

Bertrand, Duflo, and Mullainathan (2004) noted that with panel data or
repeated cross-section data, and regressors clustered at the state level, many
researchers either failed to account for clustering or mistakenly clustered at
the state-year level rather than the state level. Let y;5; denote the value of the
dependent variable for the ith individual in the sth state in the tth year, and
let x;; denote a state-level policy variable that in practice will be quite highly
correlated over time in a given state. The authors considered the difference-
in-differences (DiD) model y;s; = s +8; + Bxst + 2z, 'y + uir, though their result
is relevant even for OLS regression of y;s; on xs; alone. The same point applies
if data were more simply observed at only the state-year level (i.e., ys; rather
than ;).

In general DiD models using state-year data will have high within-cluster
correlation of the key policy regressor. Furthermore there may be relatively
few clusters; a complication considered in Section 1.4.

1.3.3 Cluster-Specific Fixed Effects

A standard estimation method for clustered data is to additionally incorporate
cluster-specific fixed effects as regressors, estimating the model

Yig = g + ngB + Uig. (1.9)

This is similar to the equicorrelated error model, except that o is treated as
a (nuisance) parameter to be estimated. Given N; finite and G — oo the pa-
rametersag, g =1,..., G, cannot be consistently estimated. The parameters
B can still be consistently estimated, with the important caveat that the coeftfi-
cients of cluster-invariant regressors (x, rather than x;) are not identified. (In
microeconometrics applications, fixed effects are typically included to enable
consistent estimation of a cluster-varying regressor while controlling for a
limited form of endogeneity — the regressor x;; may be correlated with the
cluster-invariant component o, of the error term ag + u;¢).

Initial applications obtained default standard errors that assume u;, in
formula 1.9 is i.i.d. (0, 02), assuming that cluster-specific fixed effects are
sufficient to mop up any within-cluster error correlation. More recently it
has become more common to control for possible within-cluster correlation
of uj; by using formula 1.7, as suggested by Arellano (1987). Kézdi (2004)
demonstrated that cluster-robust estimates can perform well in typical-sized
panels, despite the need to first estimate the fixed effects, even when N is
large relative to G.
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It is well-known that there are several alternative ways to obtain the OLS
estimator of § in formula 1.9. Less well-known is that these different ways can
lead to different cluster-robust estimates of V[B] We thank Arindrajit Dube
and Jason Lindo for bringing this issue to our attention.

The two main estimation methods we consider are the least squares dummy
variables (LSDV) estimator, which obtains the OLS estimator from regres-
sion of y;; on x;¢ and a set of dummy variables for each cluster, and the
mean-differenced estimator, which is the OLS estimator from regression of
(Vig — ¥g) on (Xig — Xq).

These two methods lead to the same cluster-robust standard errors if we ap-
ply formula 1.7 to the respective regressions, or if we multiply this estimate by
G/(G —1). Differences arise, however, if we multiply by the small-sample cor-
rection ¢ givenin formula 1.8. Let K denote the number of regressors including
the intercept. Then the LSDV model views the total set of regressors to be G
cluster dummies and (K — 1) other regressors, while the mean-differenced
model considers there to be only (K — 1) regressors (this model is estimated
without an intercept). Then

Model Finite Sample Adjustment = Balanced Case
G N-1 ~ G N,

LSDV C=GaANG-(kT =61 X N1

Mean-differenced model c= % N 1\2211) ¢~ %

In the balanced case N = N,G, leading to the approximation given above if
additionally K is small relative to N.

The difference can be very large for small N,. Thus if N, = 2 (or N, = 3)
then the cluster-robust variance matrix obtained using LSDV is essentially
2 times (or 3/2 times) that obtained from estimating the mean-differenced
model, and it is the mean-differenced model that gives the correct finite-
sample correction.

Note that if instead the error u;; is assumed to be i.i.d. (0, 0'3), so that
default standard errors are used, then it is well-known that the appropriate
small- sample correction is (N — 1)/N — G — (K — 1), i.e., we use s*(X'X) !,
where s? = (N- G — (K - 1)1y, uzq In that case LSDV does give the
correct adjustment, and estimation of “the mean-differenced model will give
the wrong finite-sample correction.

An alternative variance estimator after estimation of formula 1.9 is a
heteroskedastic-robust estimator, which permits the error u;, in formula 1.9
to be heteroskedastic but uncorrelated across both i and g. Stock and Watson
(2008) show that applying the method of White (1980) after mean-differenced
estimation of formula 1.9 leads, surprisingly, to inconsistent estimates of V[B]
if the number of observations N, in each cluster is small (though it is correct
if N, = 2). The bias comes from estimating the cluster-specific means rather
than being able to use the true cluster-means. They derive a bias-corrected
formula for heteroskedastic-robust standard errors. Alternatively, and more
simply, the cluster-robust estimator gives a consistent estimate of V[B] even
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if the errors are only heteroskedastic, though this estimator is more variable
than the bias-corrected estimator proposed by Stock and Watson.

1.3.4 Many Observations per Cluster

The preceding analysis assumes the number of observations within each clus-
ter is fixed, while the number of clusters goes to infinity.

This assumption may not be appropriate for clustering in long panels,
where the number of time periods goes to infinity. Hansen (2007a) derived
asymptotic results for the standard one-way cluster-robust variance matrix
estimator for panel data under various assumptions. We consider a balanced
panel of N individuals over T periods, so there are NT observations in N
clusters with T observations per cluster. When N — oo with T fixed (a short
panel), as we have assumed above, the rate of convergence for the OLS
estimator B is +/N. When both N — oo and T — oo (a long panel with
N, — 00), the rate of convergence of E is +/N if there is no mixing (his The-
orem 2) and +/NT if there is mixing (his Theorem 3). By mixing we mean
that the correlation becomes damped as observations become further apart
in time.

As illustrated in Subsection 1.2.3, if the within-cluster error correlation of
the error diminishes as errors are further apart in time, then the data has
greater informational content. This is reflected in the rate of convergence
increasing from +/N (determined by the number of cross-sections) to ~/NT
(determined by the total size of the panel). The latter rate is the rate we expect
if errors were independent within cluster.

While the rates of convergence differ in the two cases, Hansen (2007a)
obtains the same asymptotic variance for the OLS estimator, so formula 1.7
remains valid.

1.3.5 Survey Design with Clustering and Stratification

Clustering routinely arises in complex survey data. Rather than randomly
draw individuals from the population, the survey may be restricted to a ran-
domly selected subset of primary sampling units (such as a geographic area)
followed by selection of people within that geographic area. A common ap-
proach in microeconometrics is to control for the resultant clustering by com-
puting cluster-robust standard errors that control for clustering at the level of
the primary sampling unit, or at a more aggregated level such as state.

The survey methods literature uses methods to control for clustering that
predate the references in this paper. The loss of estimator precision due to
clustering is called the design effect: “The design effect or Deff is the ratio of
the actual variance of a sample to the variance of a simple random sample
of the same number of elements”(Kish 1965, p. 258). Kish and Frankel (1974)
give the variance inflation formula 1.4 assuming equicorrelated errors in the
non-regression case of estimation of the mean. Pfeffermann and Nathan (1981)
consider the more general regression case.
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The survey methods literature additionally controls for another feature of
survey data — stratification. More precise statistical inference is possible after
stratification. For the linear regression model, survey methods that do so are
well-established and are incorporated in specialized software as well as in
some broad-based packages such as Stata.

Bhattacharya (2005) provides a comprehensive treatment in a GMM frame-
work. He finds that accounting for stratification tends to reduce estimated
standard errors, and that this effect can be meaningfully large. In his empirical
examples, the stratification effect is largest when estimating (unconditional)
means and Lorenz shares, and much smaller when estimating conditional
means via regression.

The current common approach of microeconometrics studies is to ignore
the (beneficial) effects of stratification. In so doing there will be some over-
estimation of estimator standard errors.

1.4 Inference with Few Clusters

Cluster-robust inference asymptotics are based on G — oo. Often, however,
cluster-robust inference is desired but there are only a few clusters. For ex-
ample, clustering may be at the regional level but there are few regions (e.g.,
Canada has only 10 provinces). Then several different finite-sample adjust-
ments have been proposed.

1.4.1 Finite-Sample Adjusted Standard Errors

Finite-sample adjustments replace 4, in formula 1.7 with a modified residual
;. The simplest is U, = +/G/(G — 1)u,, or the modification of this given in
formula 1.8. Kauermann and Carroll (2001) and Bell and McCaffrey (2002)
use U = [Iy, — Hg/g\]_l/zﬁg, where Hgg = Xg(X'X)™'X;. This transformed
residual leads to E[V[E]] = V[E] in the special case that Q, = E[ugué] =
o’I. Bell and McCaffrey (2002) also consider use of Uy = /G/(G-Dlly, -
Hgg]‘lﬁg, which canbe shown to equal the (clustered) jackknife estimate of the
variance of the OLS estimator. These adjustments are analogs of the HC2 and
HC3 measures of MacKinnon and White (1985) proposed for heteroskedastic-
robust standard errors in the nonclustered case.

Angrist and Lavy (2009) found that using u} rather than u, increased
cluster-robust standard errors by 10-50% in an application with G = 30
to 40.

Kauermann and Carroll (2001), Bell and McCaffrey (2002), Mancl and
DeRouen (2001), and McCaffrey, Bell, and Botts (2001) also consider the case
where Q, # ¢ is of known functional form, and present extension to gen-
eralized linear models.
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1.4.2 Finite-Sample Wald Tests

For a two-sided test of Hy : B; = B against H, : B; # B] where B; is a
scalar component of B, the standard procedure is to use Wald test statistic
w=@; - i [3 )/sg;, where sg, is the square root of the appropriate diagonal

entry in VIBI. This “t"test statistic is asymptotically normal under Hyas G —
00, and we reject Hj at significance level 0.05 if |w| > 1.960.

With few clusters, however, the asymptotic normal distribution can provide
a poor approximation, even if an unbiased variance matrix estimator is used
in calculating sg, . The situation is a little unusual. In a pure time series or pure
cross-section setting with few observations, say N = 10, B is likely to be very
imprecisely estimated so that statistical inference is not worth pursuing. By
contrast, in a clustered setting we may have N sufficiently large that B; is
reasonably precisely estimated, but G is so small that the asymptotic normal
approximation is a very poor one.

We present two possible approaches: basing inference on the T distribution
with degrees of freedom determined by the cluster, and using a cluster boot-
strap with asymptotic refinement. Note that feasible GLS based on a correctly
specified model of the clustering, see Section 1.6, will not suffer from this
problem.

1.4.3 T Distribution for Inference

The simplest small-sample correction for the Wald statistic is to use a T distri-
bution, rather than the standard normal. As we outline below in some cases
the T, distribution might be used, where L is the number of regressors that
are invariant within cluster. Some packages for some commands do use the
T distribution. For example, Stata uses G — 1 degrees of freedom for ¢-tests
and F -tests based on cluster-robust standard errors.

Such adjustments can make quite a difference. For example, with G = 10 for
a two-sided test at level 0.05 the critical value for Ty is 2.262 rather than 1.960,
and if w = 1.960 the p-value based on Ty is 0.082 rather than 0.05. In Monte
Carlo simulations by Cameron, Gelbach, and Miller (2008) this technique
works reasonably well. At the minimum one should use the T distribution
with G — 1 degrees of freedom, say, rather than the standard normal.

Donald and Lang (2007) provide a rationale for using the T;_;, distribution.
If clusters are balanced and all regressors are invariant within cluster then the
OLS estimator in the model y, ¢ =X, B + ulg is equivalent to OLS estimation
in the grouped model 7, = x,B + ug If @1g is i.i.d. normally distributed then
the Wald statlstlc is Tg_1 d1str1buted where V[B] = s2(X'’X)~! and s2 = (G —

Zg ug . Note that i, is i.i.d. normal in the random effects model if the

error components are i.i.d. normal.

Donald and Lang (2007) extend this approach to additionally include re-
gressors z;, that vary within clusters, and allow for unbalanced clusters. They
assume a random effects model with normal i.i.d. errors. Then feasible GLS
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estimation of  in the model
Yig =X:qB+Z§gW’+0ts + € (110)

is equivalent to the following two-step procedure. First do OLS estimation
in the model y;; = 8, + zi,y + €, where 3, is treated as a cluster-specific
fixed effect. Then do feasible GLS (FGLS) of 7, — Z:g’y\ on x¢. Donald and Lang
(2007) give various conditions under which the resulting Wald statistic based
on B; is Tg_ distributed. These conditions require that if z;, is a regressor
then Z, in the limit is constant over g, unless N, — oo. Usually L = 2, as the
only regressors that do not vary within clusters are an intercept and a scalar
regressor Xg.

Wooldridge (2006) presents an expansive exposition of the Donald and
Lang approach. Additionally, Wooldridge proposes an alternative approach
based on minimum distance estimation. He assumes that 8, in y;; = 8+2, v+
gi¢ can be adequately explained by x, and at the second step uses minimum
chi-square methods to estimate 8 in3, = a+ xé, B. This provides estimates of B
that are asymptotically normal as N, — oo (rather than G — oc). Wooldridge
argues that this leads to less conservative statistical inference. The x* statistic
from the minimum distance method can be used as a test of the assumption
that the 8; do not depend in part on cluster-specific random effects. If this test
fails, the researcher can then use the Donald and Lang approach, and usea T
distribution for inference.

Bester, Conley, and Hansen (2009) give conditions under which the ¢-test
statistic based on formula 1.7 is «/G/(G — 1) times Tg_; distributed. Thus
usingu, = /G/(G — 1)U, yieldsa T distributed statistic. Their resultis one
that assumes G is fixed while N, — oo; the within group correlation satisfies
a mixing condition, as is the case for time series and spatial correlation; and
homogeneity assumptions are satisfied including equality of plim NigXéXg for
all g.

An alternate approach for correct inference with few clusters is presented by
Ibragimov and Muller (2010). Their method is best suited for settings where
model identification, and central limit theorems, can be applied separately
to observations in each cluster. They propose separate estimation of the key
parameter within each group. Each group’s estimate is then a draw from a
normal distribution with mean around the truth, though perhaps with sep-
arate variance for each group. The separate estimates are averaged, divided
by the sample standard deviation of these estimates, and the test statistic is
compared against critical values from a T distribution. This approach has the
strength of offering correct inference even with few clusters. A limitation is
that it requires identification using only within-group variation, so that the
group estimates are independent of one another. For example, if state-year
data v are used and the state is the cluster unit, then the regressors cannot
use any regressor z; such as a time dummy that varies over time but not
states.
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1.4.4 Cluster Bootstrap with Asymptotic Refinement

A cluster bootstrap with asymptotic refinement can lead to improved finite-
sample inference.

For inference based on G — o0, a two-sided Wald test of nominal size o
can be shown to have true size a + O(G ~!) when the usual asymptotic normal
approximationis used. If instead an appropriate bootstrap with asymptoticre-
finement is used, the true size is « + O(G ~%/?). This is closer to the desired « for
large G, and hopefully also for small G. For a one-sided test or anonsymmetric
two-sided test the rates are instead, respectively, a4+ O(G~1/?) and a+O(G™1).

Such asymptotic refinement can be achieved by bootstrapping a statistic
that is asymptotically pivotal, meaning the asymptotic distribution does not
depend on any unknown parameters. For this reason the Wald t-statistic w
is bootstrapped, rather than the estimator Bi j whose distribution depends on
V[p j]1 which needs to be estimated. The pairs cluster bootstrap procedure
does B iterations where at the bth iteration: (1) form G clusters {(y}, X}), ...,
(Y&, X§)} by resampling with replacement G times from the original sample
of clusters; (2) do OLS estimation with this resample and calculate the Wald

test statistic w} = (’[3\? b — ﬁj) /s/;\ , where sg, is the cluster-robust standard
} i :

error of E}k p, and B j is the OLS estimate of 3; from the original sample. Then
reject Hy atlevel o if and only if the original sample Wald statistic w is such that
W < Wy, o OF W > Wy, _ . ~, where wf . denotes the gth quantile of wy, ..., wj.

Cameron Gelbach, and Miller (2008) provide an extensive discussion of
this and related bootstraps. If there are regressors that contain few values
(such as dummy variables), and if there are few clusters, then it is better to
use an alternative design-based bootstrap that additionally conditions on the
regressors, such as a cluster Wild bootstrap. Even then bootstrap methods,
unlike the method of Donald and Lang, will not be appropriate when there
are very few groups, such as G = 2.

1.4.5 Few Treated Groups

Even when G is sufficiently large, problems arise if most of the variation in the
regressor is concentrated in just a few clusters. This occurs if the key regressor
is a cluster-specific binary treatment dummy and there are few treated groups.

Conley and Taber (2010) examine a differences-in-differences (DiD) model
in which there are few treated groups and an increasing number of control
groups. If there are group-time random effects, then the DiD model is incon-
sistent because the treated groups random effects are not averaged away. If
the random effects are normally distributed, then the model of Donald and
Lang (2007) applies and inference can use a T distribution based on the num-
ber of treated groups. If the group-time shocks are not random, then the T
distribution may be a poor approximation. Conley and Taber (2010) then pro-
pose a novel method that uses the distribution of the untreated groups to
perform inference on the treatment parameter.
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1.5 Multi-Way Clustering

Regression model errors can be clustered in more than one way. For example,
they might be correlated across time within a state, and across states within
a time period. When the groups are nested (e.g., households within states),
one clusters on the more aggregate group; see Subsection 1.3.2. But when
they are non-nested, traditional cluster inference can only deal with one of
the dimensions.

In some applications it is possible to include sufficient regressors to elim-
inate error correlation in all but one dimension, and then do cluster-robust
inference for that remaining dimension. A leading example is that in a state-
year panel of individuals (with dependent variable y;s;) there may be clus-
tering both within years and within states. If the within-year clustering is
due to shocks that are the same across all individuals in a given year, then
including year fixed effects as regressors will absorb within-year clustering
and inference then need only control for clustering on state.

When this is not possible, the one-way cluster robust variance can be ex-
tended to multi-way clustering.

1.5.1 Multi-Way Cluster-Robust Inference

The cluster-robust estimate of V[ﬁ] defined in formulas 1.6 and 1.7 can be gen-
eralized to clustering in multiple dimensions. Regular one-way clustering is
based on the assumption that E[u;u; | x;, x;] = 0, unless observations i and j

are in the same cluster. Then formula 1.7 sets B = SN jo1 XX, j in

same cluster], where #; = y; — X B and the indicator function 1[ A] equals 1 if
event Aoccurs and 0 otherwise. In multi-way clustermg, the key assumption
is that E[u;u;|x;, x;] = 0, unless observations i and j share any cluster dimen-
sion. Then the multl—way cluster robust estimate of V[B] replaces formula 1.7
with B = >N, Z 1 xiX;uii1[i, j share any cluster].

For two-way clustermg this robust variance estimator is easy to implement
given software that computes the usual one-way cluster-robust estimate. We
obtain three different cluster-robust “variance” matrices for the estimator by
one-way clustering in, respectively, the first dimension, the second dimen-
sion, and by the intersection of the first and second dimensions. Then add the
first two variance matrices and, to account for double counting, subtract the
third. Thus,

~

Viwoway[Bl = V1[B] + VaIB] — ViralBl, (1.11)

where the three component variance estimates are computed using formu-
las 1.6 and 1.7 for the three different ways of clustering. Similar methods for
additional dimensions, such as three-way clustering, are detailed in Cameron,
Gelbach, and Miller (2010).
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This method relies on asymptotics that are in the number of clusters of
the dimension with the fewest number. This method is thus most appro-
priate when each dimension has many clusters. Theory for two-way cluster
robust estimates of the variance matrix is presented in Cameron, Gelbach, and
Miller (2006, 2010), Miglioretti and Heagerty (2006), and Thompson (2006).
Early empirical applications that independently proposed this method in-
clude Acemoglu and Pischke (2003) and Fafchamps and Gubert (2007).

1.5.2 Spatial Correlation

The multi-way robust clustering estimator is closely related to the field of time-
series and spatial heteroskedasticity and autocorrelation variance estimation.

In general B in formula 1.7 has the form >, > jw(i, j)xi x/j’u\iﬁj. For multi-
way clustering the weightw(i, j) = 1for observations who share a cluster, and
w(i, j) = 0 otherwise. In White and Domowitz (1984), the weight w(i, j) =1
for observations “close” in time to one another, and w(i, j) = 0 for other
observations. Conley (1999) considers the case where observations have spa-
tial locations, and has weights w(i, j) decaying to 0 as the distance between
observations grows.

A distinguishing feature between these papers and multi-way clustering is
that White and Domowitz (1984) and Conley (1999) use mixing conditions (to
ensure decay of dependence) as observations grow apart in time or distance.
These conditions are not applicable to clustering due to common shocks. In-
stead the multi-way robust estimator relies on independence of observations
that do not share any clusters in common.

There are several variations to the cluster-robust and spatial or time-series
HAC estimators, some of which can be thought of as hybrids of these
concepts.

The spatial estimator of Driscoll and Kraay (1998) treats each time period as
a cluster, additionally allows observations in different time periods to be cor-
related for a finite time difference, and assumes T" — oo. The Driscoll-Kraay
estimator can be thought of as using weight w(i, j) =1 — D(i, j)/(Dmax + 1),
where D(i, j) is the time distance between observations i and j, and D,y is
the maximum time separation allowed to have correlation.

An estimator proposed by Thompson (2006) allows for across-cluster (in
his example firm) correlation for observations close in time in addition to
within-cluster correlation at any time separation. The Thompson estimator
can be thought of as using w(i, j) = 1[i, j share a firm, or D(i, j) < Dmax]. It
seems that other variations are likely possible.

Foote (2007) contrasts the two-way cluster-robust and these other vari-
ance matrix estimators in the context of a macroeconomics example. Petersen
(2009) contrasts various methods for panel data on financial firms, where
there is concern about both within firm correlation (over time) and across
firm correlation due to common shocks.
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1.6 Feasible GLS

When clustering is present and a correct model for the error correlation is
specified, the feasible GLS estimator is more efficient than OLS. Furthermore,
in many situations one can obtain a cluster-robust version of the standard
errors for the FGLS estimator, to guard against misspecification of model
for the error correlation. Many applied studies nonetheless use the OLS
estimator, despite the potential expense of efficiency loss in estimation.

1.6.1 FGLS and Cluster-Robust Inference

Suppose we specify a model for Q, = E[uguy|X,], such as within-cluster

equicorrelation. Then the GLS estimator is (X'$2 “1X)"1X'Q "y, where Q =
Diag[2]. Given a consistent estimate Q of Q, the feasible GLS estimator of

Bis

G -1¢
BraLs = <Z xjgszglxg> > Xy (1.12)
g=1 g=1
The default estimate of the variance matrix of the FGLS estimator, (X@*X) -
is correct under the restrictive assumption that E[ugu IXe] = €.

The cluster-robust estimate of the asymptotic variance matrix of the FGLS
estimator is

ViBrarsl = (X'Q7'X)~ <Z 0, QX ) xXe'x)",  (113)

where ﬁg =y, — XgEFGLS. This estimator requires that u, and u;, are uncorre-
lated, for g # h, but permits E[ugué [X¢] # €. In that case the FGLS estimator
is no longer guaranteed to be more efficient than the OLS estimator, but it
would be a poor choice of model for Q¢ that led to FGLS being less efficient.

Not all econometrics packages compute this cluster-robust estimate. In that
case one can use a pairs cluster bootstrap (without asymptotic refinement).
Specifically B times form G clusters {(y}, X}), ..., (y&, X¢)} by resampling
with replacement G times from the original sample of clusters, each time
compute the FGLS estimator, and then compute the variance of the B FGLS
estimates B, ..., By as Vooot[B] = 18 B — B)(Bs — B Careis
needed, however if the model 1ncludes cluster—spec1f1c fixed effects; see, for
example, Cameron and Trivedi (2009, p. 421).

1.6.2 Efficiency Gains of Feasible GLS

Given a correct model for the within-cluster correlation of the error, such as
equicorrelation, the feasible GLS estimator is more efficient than OLS. The
efficiency gains of FGLS need not necessarily be great. For example, if the
within-cluster correlation of all regressors is unity (so x;; = X,) and i1, defined
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in Subsection 1.2.3 is homoskedastic, then FGLS is equivalent to OLS so there
is no gain to FGLS.

For equicorrelated errors and general X, Scott and Holt (1982) provide an
upper bound to the maximum proportionate efficiency loss of OLS compared
to the variance of the FGLS estimator of 1/[1 + W], Nimax =
max{Nj, ..., Ng}. This upper bound is increasing in the error correlation p,
and the maximum cluster size Npax. For low p, the maximal efficiency gain
can be low. For example, Scott and Holt (1982) note that for p, = .05 and
Nmax = 20 there is at most a 12% efficiency loss of OLS compared to FGLS.
But for p, = 0.2 and Nyax = 50 the efficiency loss could be as much as 74%,
though this depends on the nature of X.

1.6.3 Random Effects Model

The one-way random effects (RE) model is given by formula 1.1 with u;, =
o +&;g, where ag and € arei.i.d. error components; see Subsection 1.2.2. Some
algebra shows that the FGLS estimator in formula 1.12 can be computed by
OLS estimation of (yig — Ag¥i) on (Xig — AgX;), Where Ny = 1—G¢//G2 + Nyo2.
Applying the cluster-robust variance matrix formula 1.7 for OLS in this trans-
formed model yields formula 1.13 for the FGLS estimator.

The RE model can be extended to multi-way clustering, though FGLS es-
timation is then more complicated. In the two-way case, yign = Xjg;B + ag +
Oy, + €ign. For example, Moulton (1986) considered clustering due to grouping
of regressors (schooling, age, and weeks worked) in a log earnings regression.
In his model he allowed for a common random shock for each year of school-
ing, for each year of age, and for each number of weeks worked. Davis (2002)
modeled film attendance data clustered by film, theater, and time. Cameron
and Golotvina (2005) modeled trade between country pairs. These multi-way
papers compute the variance matrix assuming €2 is correctly specified.

1.6.4 Hierarchical Linear Models

The one-way random effects model can be viewed as permitting the inter-
cept to vary randomly across clusters. The hierarchical linear model (HLM)
additionally permits the slope coefficients to vary. Specifically

Yig = XigBg + Uig, (1.14)

where the first component of x;; is an intercept. A concrete example is to
consider data on students within schools. Then y;, is an outcome measure
such as test score for the ith student in the gth school. In a two-level model
the kth component of B, is modeled as By, = w,’cgw/k + Ukg, Where wy, is a
vector of school characteristics. Then stacking over all K components of 3 we
have

Bg =Wevy+vj, (1.15)

where W, = Diag[wy,] and usually the first component of wy, is an intercept.
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The random effects model is the special case B, = (B1g, B2g), where B1; =
1 x y1+v1g and By = vk +0 fork > 1, s0 vy, is the random effects model’s .
The HLM model additionally allows for random slopes B, that may or may
not vary with level-two observables wy,. Further levels are possible, such as
schools nested in school districts.

The HLM model can be re-expressed as a mixed linear model, since substi-
tuting formula 1.15 into formula 1.14 yields

Yig = (X W)y + Xjo Vg + i (1.16)

The goal is to estimate the regression parameter vy and the variances and
covariances of the errors u;, and v,. Estimation is by maximum likelihood
assuming the errors v¢ and u;q are normally distributed. Note that the pooled
OLS estimator of +y is consistent but is less efficient.

HLM programs assume that formula 1.15 correctly specifies the within-
cluster correlation. One can instead robustify the standard errors by using
formulas analogous to formula 1.13, or by the cluster bootstrap.

1.6.5 Serially Correlated Errors Models for Panel Data

If N, is small, the clusters are balanced, and it is assumed that €2, is the same

for all g, say Q¢ = €, then the FGLS estimator in formula 1. 12 can be used

w1thout need to specify a model for . Instead we can let Q have ijth entry
-1 Z Y Ujg1l jo, where 1i;; are the residuals from initial OLS estimation.

This procedure was proposed for short panels by Kiefer (1980). It is appro-
priate in this context under the assumption that variances and autocovari-
ances of the errors are constant across individuals. While this assumption is
restrictive, it is less restrictive than, for example, the AR(1) error assumption
given in Subsection 1.2.3.

In practice two complications can arise with panel data. First, there are
T(T — 1)/2 off-diagonal elements to estimate and this number can be large
relative to the number of observations NT. Second, if an individual-specific
fixed effects panel model is estimated, then the fixed effects lead to an inciden-
tal parameters bias in estimating the off-diagonal covariances. This is the case
for differences-in-differences models, yet FGLS estimation is desirable as it is
more efficient than OLS. Hausman and Kuersteiner (2008) present fixes for
both complications, including adjustment to Wald test critical values by using
a higher-order Edgeworth expansion that takes account of the uncertainty in
estimating the within-state covariance of the errors.

A more commonly used model specifies an AR(p) model for the errors.
This has the advantage over the preceding method of having many fewer
parameters to estimate in €2, though it is a more restrictive model. Of course,
one can robustify using formula 1.13. If fixed effects are present, however,
then there is again a bias (of order N !) in estimation of the AR(p) coefficients
due to the presence of fixed effects. Hansen (2007b) obtains bias-corrected
estimates of the AR(p) coefficients and uses these in FGLS estimation.
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Other models for the errors have also been proposed. For example, if clus-
ters are large, we can allow correlation parameters to vary across clusters.

1.7 Nonlinear and Instrumental Variables Estimators

Relatively few econometrics papers consider extension of the complications
discussed in this paper to nonlinear models; a notable exception is Wooldridge
(20006).

1.7.1 Population-Averaged Models

The simplest approach to clustering in nonlinear models is to estimate the
same model as would be estimated in the absence of clustering, but then base
inference on cluster-robust standard errors that control for any clustering.
This approach requires the assumption that the estimator remains consistent
in the presence of clustering.

For commonly used estimators that rely on correct specification of the con-
ditional mean, such as logit, probit, and Poisson, one continues to assume
that E[y;, | xi¢] is correctly specified. The model is estimated ignoring any
clustering, but then sandwich standard errors that control for clustering are
computed. This pooled approach is called a population-averaged approach
because rather than introduce a cluster effect Qg and model E[yig [Xig, ag], see
Subsection 1.7.2, we directly model E[yiq | xig] = Eq [ E[yig | Xig, ctc]] so that ag
has been averaged out.

This essentially extends pooled OLS to, for example, pooled probit. Effi-
ciency gains analogous to feasible GLS are possible for nonlinear models if one
additionally specifies a reasonable model for the within-cluster correlation.

The generalized estimating equations (GEE) approach, due to Liang and
Zeger (1986), introduces within-cluster correlation into the class of general-
ized linear models (GLM). A conditional mean function is specified, with
Elyig I xig] = m(xi,B), so that for the gth cluster

ElygX;] = mg(B), (1.17)

where m(B) = [m(x’lgB), ceey m(x’NggB)]’ and Xg = [xig, ..., Xng]'- A model
for the variances and covariances is also specified. First given the variance
model V[y;¢ | xi¢] = cbh(m(x;gB) where ¢ is an additional scale parameter to
estimate, we form Hg(B) = Diag[d>h(m(x§g[3)], a diagonal matrix with the
variances as entries. Second, a correlation matrix R(a) is specified with ijth
entry Cor[vig, ¥js | X¢], where « are additional parameters to estimate. Then
the within-cluster covariance matrix is

Q = Viyg | X;] = He(B)/*R()Hy (B) 2. (1.18)
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R(a) = Iif thereis no within-cluster correlation, and R(a) = R(p) has diagonal
entries 1 and off diagonal entries p in the case of equicorrelation. The resulting
GEE estimator Bggg solves

a
> 0 - mu(B) =0, (1.19)
g=1

where ﬁg equals Q in formula 1.18 with R(«) replaced by R(a) where @ is
consistent for a.. The cluster-robust estimate of the asymptotic variance matrix
of the GEE estimator is

V[Bcee] = (D'Q'D)” (ZD TR 1D)(D@lD)‘l, (1.20)

where Dg = om/ (B)/BBl* [131, .. ﬁG] U, = yg — mg(ﬁ) and now
Q= Hg(B)l/ 2R(0L)H ® )1/ 2. The asymptotic theory requires that G — oc.

The result formula 1.20 is a direct analog of the cluster-robust estimate of
the variance matrix for FGLS. Consistency of the GEE estimator requires that
formula 1.17 holds, i.e., correct specification of the conditional mean (even
in the presence of clustering). The variance matrix defined in formula 1.18
permits heteroskedasticity and correlation. It is called a “working” variance
matrix as subsequent inference based on formula 1.20 is robust to misspeci-
fication of formula 1.18. If formula 1.18 is assumed to be correctly specified
then the asymptotic variance matrix is more simply (D'Q~'D)~".

For likelihood-based models outside the GLM class, a common procedure is
to perform ML estimation under the assumption of independence overi and g,
and then obtain cluster-robust standard errors that control for within-cluster
correlation. Let f(yig | Xig, 0) denote the density, s;,(0) = 9 In f(yig | xig, 0)/06,
and s¢(0) = ) _; si¢(0). Then the MLE of 6 solves Zg > isig(0) = Zg s¢(6) =0.
A cluster-robust estimate of the variance matrix is

1 1
V[ﬁML] = (Z 8Sg(6)’/8(')|,9\) (Z Sg@)sg@’) <Z 8sg(9)/ae/i’e\> )
8 8

* (1.21)
This method generally requires that f(yi, | Xi¢, 0) is correctly specified even
in the presence of clustering.

In the case of a (mis)specified density that is in the linear exponential fam-
ily, as in GLM estimation, the MLE retains its consistency under the weaker
assumption that the conditional mean E[y;, | x;¢, 0] is correctly specified. In
that case the GEE estimator defined in formula 1.19 additionally permits in-
corporation of a model for the correlation induced by the clustering.

1.7.2 Cluster-Specific Effects Models

An alternative approach to controlling for clustering is to introduce a group-
specific effect.
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For conditional mean models the population-averaged assumption that
Elyig | xig] = m(x;,B) is replaced by

Elyig | xig, aig] = g(xjgB + tg), (1.22)

where «, is not observed. The presence of o, will induce correlation between
Yig and yjg, i # j. Similarly, for parametric models the density specified for
a single observation is f(yig | Xig, B, a¢) rather than the population-averaged
£ (g 1 xig, B).

In a fixed effects model the o, are parameters to be estimated. If asymp-
totics are that N; is fixed while G — oo then there is an incidental parameters
problem, as there are N, parameters o, ..., ag to estimate and G — o0. In
general, this contaminates estimation of 8 so that B is a inconsistent. Notable
exceptions where it is still possible to consistently estimate 8 are the linear
regression model, the logit model, the Poisson model, and a nonlinear regres-
sion model with additive error (so formula 1.22 isreplaced by E[y;¢ | xig, ag] =
g(x; gB) +ag). For these models, aside from the logit, one can additionally com-
pute cluster-robust standard errors after fixed effects estimation.

We focus on the more commonly used random effects model that specifies
a, to have density hi(ag | n) and consider estimation of likelihood-based mod-
els. Conditional on ag, thejoint density for the gth clusteris f (v, ..., |x Negs B/

ag) = ]_[lli‘{1 f (Yig I Xig, B, ctg). We then integrate out o, to obtain the likelihood
function

G

N
LBy, X>=1‘[{ / (Hf(yigmg, B, ag>> dh(agm)}. (1.23)
i=1

g=1

In some special nonlinear models, such as a Poisson model with o, being
gamma distributed, it is possible to obtain a closed-form solution for the
integral. More generally this is not the case, but numerical methods work
well as formula 1.23 is just a one-dimensional integral. The usual assumption
is that o is distributed as N[0, 02]. The MLE is very fragile and failure of any
assumption in a nonlinear model leads to inconsistent estimation of {.

The population-averaged and random effects models differ for nonlinear
models, so that B is not comparable across the models. But the resulting av-
erage marginal effects, that integrate out o, in the case of a random effects
model, may be similar. A leading example is the probit model. Then
Elyig I Xig, ag] = dD(xl’»gB +ag), where ®(-) is the standard normal c.d.f. Letting
f(ag) denote the N0, 2] density for ag, we obtain E[y;, [ x;¢] = i dJ(xggB +
ag) fag)day, = <I>(x§gB/\/1 + 02); see Wooldridge (2002, p. 470). This dif-
fers from E[yig [ xi] = ®(x],B) for the pooled or population-averaged probit
model. The difference is the scale factor /1 + o2. However, the marginal ef-
fects are similarly rescaled, since 9 Pr[y;; = 1|x;¢]/0%;y = c’p(ngB/\/l +02) x
B/y/1+ 02, s0 in this case PA probit and random effects probit will yield sim-
ilar estimates of the average marginal effects; see Wooldridge (2002, 2006).
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1.7.3 Instrumental Variables

The cluster-robust formula is easily adapted to instrumental variables esti-
mation. It is assumed that there exist instruments z;; such that u;, = vie —X; o B
satisfies E[u;¢|zi] = 0. If there is within-cluster correlation we assume that
this condition still holds, but now Covl[u;g, ujq | 2ig, Zj¢] # 0.

Shore-Sheppard (1996) examines the impact of equicorrelated instruments
and group-specific shocks to the errors. Her model is similar to that of
Moulton, applied to an IV setting. She shows that IV estimation that does
not model the correlation will understate the standard errors, and proposes
either cluster-robust standard errors or FGLS.

Hoxby and Paserman (1998) examine the validity of overidentification
(OID) tests with equicorrelated instruments. They show that not accounting
for within-group correlation can lead to mistaken OID tests, and they give
a cluster-robust OID test statistic. This is the GMM criterion function with a
weighting matrix based on cluster summation.

A recent series of developments in applied econometrics deals with the
complication of weak instruments that lead to poor finite-sample perfor-
mance of inference based on asymptotic theory, even when sample sizes are
quite large; see for example the survey by Andrews and Stock (2007), and
Cameron and Trivedi (2005, 2009). The literature considers only the nonclus-
tered case, but the problem is clearly relevant also for cluster-robust inference.
Most papers consider only i.i.d. errors. An exception is Chernozhukov and
Hansen (2008) who suggest a method based on testing the significance of the
instruments in the reduced form that is heteroskedastic-robust. Their tests
are directly amenable to adjustments that allow for clustering; see Finlay and
Magnusson (2009).

1.7.4 GMM

Finally we consider generalized methods of moments (GMM) estimation.
Suppose that we combine moment conditions for the gth cluster, so
E[hg(wy, 6)] = 0, where w, denotes all variables in the cluster. Then the GMM
estimator Ocyy with weighting matrix W minimizes Z h )/W(Z h,),
where hy = hg(wy, 0). Using standard results in, for example, Cameron and
Trivedi (2005, p. 175) or Wooldridge (2002, p. 423), the variance matrix esti-
mate is

V[bovm] = (A'WA) 'A'WBWA(A'WA)

where A = Z oh, /30’5 and a cluster-robust variance matrix estimate uses

B=Y e h h.. This assumes independence across clusters and G — oo. Bhat-
tacharya (2005) considers stratification in addition to clustering for the GMM
estimator.

Again a key assumption is that the estimator remains consistent even in the
presence of clustering. For GMM this means that we need to assume that the
moment condition holds true even when there is within-cluster correlation.
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The reasonableness of this assumption will vary with the particular model
and application at hand.

1.8 Empirical Example

To illustrate some empirical issues related to clustering, we present an ap-
plication based on a simplified version of the model in Hersch (1998), who
examined the relationship between wages and job injury rates. We thank
Joni Hersch for sharing her data with us. Job injury rates are observed only
at occupation levels and industry levels, inducing clustering at these levels.
In this application we have individual-level data from the Current Popu-
lation Survey on 5960 male workers working in 362 occupations and 211
industries. For most of our analysis we focus on the occupation injury rate
coefficient. Hersch (1998) investigates the surprising negative sign of this
coefficient.

In column 1 of Table 1.1, we present results from linear regression of log
wages on occupation and industry injury rates, potential experience and its
square, years of schooling, and indicator variables for union, nonwhite, and
three regions. The first three rows show that standard errors of the OLS es-
timate increase as we move from default (row 1) to White heteroskedastic-
robust (row 2) to cluster-robust with clustering on occupation (row 3). A
priori heteroskedastic-robust standard errors may be larger or smaller than
the default. The clustered standard errors are expected to be larger. Using
formula 1.4 suggests inflation factor /1 + 1 x 0.169 x (5960/362 — 1) = 1.90,
as the within-cluster correlation of model residuals is 0.169, compared to
an actual inflation of 0.516/0.188 = 2.74. The adjustment mentioned after
formula 1.4 for unequal group size, which here is substantial, yields a larger
inflation factor of 3.77.

Column 2 of Table 1.1 illustrates analysis with few clusters, when analy-
sis is restricted to the 1594 individuals who work in the 10 most common
occupations in the dataset. From rows 1 to 3 the standard errors increase,
due to fewer observations, and the variance inflation factor is larger due to a
larger average group size, as suggested by formula 1.4. Our concern is that
with G = 10 the usual asymptotic theory requires some adjustment. The
Wald two-sided test statistic for a zero coefficient on occupation injury rate
is —2.751/0.994 = 2.77. Rows 4-6 of column 2 report the associated p-value
computed in three ways. First, p = 0.006 using standard normal critical val-
ues (or the T with N — K = 1584 degrees of freedom). Second, p = 0.022
using a T distribution based on G — 1 = 9 degrees of freedom. Third, when
we perform a pairs cluster percentile-T bootstrap, the p-value increases to
0.110. These changes illustrate the importance of adjusting for few clusters in
conducting inference. The large increase in p-value with the bootstrap may
in part be because the first two p-values are based on cluster-robust standard
errors with finite-sample bias; see Subsection 1.4.1. This may also explain why
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TABLE 1.1

Occupation Injury Rate and Log Wages: Impacts of Varying Ways of Dealing
with Clustering

1 2 3
Main 10 Largest Main
Sample Occupations Sample
Linear Linear Probit
OLS (or Probit) coefficient on Occupation —2.158 —2.751 —6.978
Injury Rate
1 Default (iid) std. error 0.188 0.308 0.626
2 White-robust std. error 0.243 0.320 1.008
3 Cluster-robust std. error (Clustering on 0.516 0.994 1.454
Occupation)
4 P-value based on (3) and Standard 0.006
Normal
5 P-value based on (3) and T(10-1) 0.022
6 P-value based on Percentile-T Pairs Boot- 0.110
strap (999 replications)
7 Two-way (Occupation and Industry) ro- 0.515 0.990 1.516
bust std. error
Random effects Coefficient on Occupa- —1.652 —2.669 —5.789
tion Injury Rate
8 Default std. error 0.357 1.429 1.106
9 White-robust std. error 0.579 2.058
10 Cluster-robust std. error (Clustering on 0.536 2.148
Occupation)
Number of observations (N) 5960 1594 5960
Number of Clusters (G) 362 10 362
Within-Cluster correlation of errors (rho) 0.207 0.211

Note: Coefficients and standard errors multiplied by 100. Regression covariates include Occupa-
tion Injury rate, Industry Injury rate, Potential experience, Potential experience squared,
Years of schooling, and indicator variables for union, nonwhite, and three regions. Data
from Current Population Survey, as described in Hersch (1998). Std. errs. in rows 9 and 10
are from bootstraps with 400 replications. Probit outcome is wages >= $12/hour.

the random effect (RE) model standard errors in rows 8-10 of column 2 exceed
the OLS cluster-robust standard error in row 3 of column 2.

We next consider multi-way clustering. Since both occupation-level and
industry-level regressors are included, we should compute two-way cluster-
robust standard errors. Comparing row 7 of column 1 to row 3, the standard
error of the occupation injury rate coefficient changes little from 0.516 to
0.515. But there is a big impact for the coefficient of the industry injury rate.
In results, not reported in the table, the standard error of the industry injury
rate coefficient increases from 0.563 when we cluster on only occupation to
1.015 when we cluster on both occupation and industry.

If the clustering within occupations is due to common occupation-specific
shocks, then a RE model may provide more efficient parameter estimates.
From row 8 of column 1 the default RE standard error is 0.357, but if we
cluster on occupation this increases to 0.536 (row 10). For these data there is
apparently no gain compared to OLS (see row 3).
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Finally we consider a nonlinear example, probit regression with the same
data and regressors, except the dependent variable is now a binary outcome
equal to one if the hourly wage exceeds 12 dollars. The results given in column
3 are qualitatively similar to those in column 1. Cluster-robust standard errors
are 2-3 times larger, and two-way cluster robust are slightly larger still. The
parameters B of the random effects probit model are rescalings of those of
the standard probit model, as explained in Subsection 1.7.2. The RE probit
coefficient of —5.789 becomes —5.119 upon rescaling, as @, has estimated
variance 0.279. This is smaller than the standard probit coefficient, though
this difference may just reflect noise in estimation.

1.9 Conclusion

Cluster-robust inference is possible in a wide range of settings. The basic
methods were proposed in the 1980s, but are still not yet fully incorporated
into applied econometrics, especially for estimators other than OLS. Useful
references on cluster-robust inference for the practitioner include the surveys
by Wooldridge (2003, 2006), the texts by Wooldridge (2002), Cameron and
Trivedi (2005) and Angrist and Pischke (2009) and, for implementation in
Stata, Nichols and Schaffer (2007) and Cameron and Trivedi (2009).
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2.1 Introduction

The generalized method of moments (GMM) provides a computationally
convenient method for inference on the structural parameters of economic
models. The method has been applied in many areas of economics but it
was in empirical finance that the power of the method was first illustrated.
Hansen (1982) introduced GMM and presented its fundamental statistical
theory. Hansen and Hodrick (1980) and Hansen and Singleton (1982) showed
the potential of the GMM approach to testing economic theories through their
empirical analyzes of, respectively, foreign exchange markets and asset pric-
ing. In such contexts, the cornerstone of GMM inference is a set of conditional
moment restrictions. More generally, GMM is well suited for the test of an
economic theory every time the theory can be encapsulated in the postulated
unpredictability of some error term u(Y;, 8) given as a known function of p

29
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unknown parameters § € ®cR? and a vector of observed random variables
Y;. Then, the testability of the theory of interest is akin to the testability of a
set of conditional moment restrictions,

Et[u(YtJrll e)] = 0/ (21)

where the operator E;[.] denotes the conditional expectation given available
information at time f. Moreover, under the null hypothesis that the theory
summarized by the restrictions (Equation 2.1) is true, these restrictions are
supposed to uniquely identify the true unknown value 6° of the parameters.
Then, GMM considers a set of H instruments z; assumed to belong to the
available information at time ¢ and to summarize the testable implications of
Equation 2.1 by the implied unconditional moment restrictions:

E[$1(6)] =0 where &:(0) =z ® u(Yi11, 6). (2.2)

The recent literature on weak instruments (see the seminal work by Stock
and Wright 2000) has stressed that the standard asymptotic theory of GMM
inference may be misleading because of the insufficient correlation between
some instruments z; and some components of the local explanatory variables
of [du(Yi+1, 0)/00]. In this case, some of the moment conditions (Equation 2.2)
are not only zero at 6° but rather flat and close to zero in a neighborhood
of 6°.

Many asset pricing applications of GMM focus on the study of a pricing
kernel as provided by some financial theory. This pricing kernel is typically
either a linear function of the parameters of interest, as in linear-beta pricing
models, or alog-linear one as in most of the equilibrium based pricing models
where parameters of interest are preference parameters. In all these examples,
the weak instruments’ problem simply relates to some lack of predictability
of some asset returns from some lagged variables.

Since the seminal work of Stock and Wright (2000), it is common to capture
the impact of the weakness of instruments by a drifting data generating pro-
cess (hereafter DGP) such that the informational content of estimating equa-
tions pr(08) = E[d¢(0)] about structural parameters of interest is impaired by
the fact that pr(8) becomes zero for all 8 when the sample size goes to infinity.
The initial goal of this so-called “weak instruments asymptotics” approach
was to devise inference procedures robust to weak identification in the worst
case scenario, as made formal by Stock and Wright (2000):

p17(0)
JT

pT(e) = + pz(el) with 0= [6’1 9’2]/ and p2(61) =0 & 06, = 9(1).

(2.3)

The rationale for Equation 2.3 is the following. While some components 6;
of 8 would be identified in a standard way if the other components 6, were
known, the latter ones are so weakly identified that for sample sizes typically
available in practice, no significant increase of accuracy of estimators can
be noticed when the sample size increases: the typical root-T consistency is
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completely erased by the DGP drifting at the same rate through the term
p17(0)/+/T. It is then clear that this drifting rate is a worst case scenario,
sensible when robustness to weak identification is the main concern, as it is
the case for popular micro-econometric applications: for instance the study
of Angrist and Krueger (1991) on returns to education.

The purpose of this chapter is somewhat different: taking for granted that
some instruments may be poor, we nevertheless do not give up the efficiency
goal of statistical inference. Even fragile information must be processed op-
timally, for the purpose of both efficient estimation and powerful testing.
This point of view leads us to a couple of modifications with respect to the
traditional weak instruments asymptotics.

First, we consider that the worst case scenario is a possibility but not the
general rule. Typically, we revisit the drifting DGP (Equation 2.3) with a more
general framework like:

pr(0) = p1;§\9)

+ p2(61) with 0 <\ <1/2.

The case A = 1/2 has been the main focus of interest of the weak instruments
literature so far because it accommodates the observed lack of consistency
of some GMM estimators (typically estimators of 8, in the framework of
Equation 2.3) and the implied lack of asymptotic normality of the consistent
estimators (estimators of 6; in the framework of Equation 2.3). We rather set
the focus on an intermediate case, 0 < A < 1/2, which has been dubbed
nearly weak identification by Hahn and Kuersteiner (2002) in the linear case
and Caner (2010) for nonlinear GMM. Standard (strong) identification would
take N = 0. Note also that nearly weak identification is implicitly studied by
several authors who introduce infinitely many instruments: the large number
of instruments partially compensates for the genuine weakness of each of
them individually (see Han and Phillips 2006; Hansen, Hausman, and Newey
2008; Newey and Windmeijer 2009).

However, following our former work in Antoine and Renault (2009, 2010a),
our main contribution is above all to consider that several patterns of iden-
tification may show up simultaneously. This point of view appears espe-
cially relevant for the asset pricing applications described above. Nobody
would pretend that the constant instrument is weak. Therefore, the moment
condition, E[u(Y;41, 0)] = 0, should not display any drifting feature (as it
actually corresponds to A = 0). Even more interestingly, Epstein and Zin
(1991) stress that the pricing equation for the market return is poorly infor-
mative about the difference between the risk aversion coefficient and the in-
verse of the elasticity of substitution. Individual asset returns should be more
informative.

This paves the way for two additional extensions in the framework
(Equation 2.3). First, one may consider, depending on the moment conditions,
different values of the parameter \ of drifting DGP. Large values of A would be
assigned to components [z;; x u;(Y;11, 0)] for which either the pricing of asset
j or the lagged value of return i are especially poorly informative. Second,
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there is no such thing as a parameter 6, always poorly identified or parameter
61 which would be strongly identified if the other parameters 6, were known.
Instead, one must define directions in the parameter space (like the difference
between risk aversion and inverse of elasticity of substitution) that may be
poorly identified by some particular moment restrictions.

This heterogeneity of identification patterns clearly paves the way for the
device of optimal strategies for inferential use of fragile (or poor) information.
In this chapter, we focus on a case where asymptotic efficiency of estimators
is well-defined through the variance of asymptotically normal distributions.
The price to pay for this maintained tool is to assume that the set of mo-
ment conditions that are not genuinely weak (A < 1/2) is sufficient to identify
the true unknown value 6° of the parameters. In this case, normality must
be reconsidered at heterogeneous rates smaller than the standard root-T in
different directions of the parameter space (depending on the strength of
identification about these directions). At least, non-normal asymptotic distri-
butions introduced by situations of partial identification as in Phillips (1989)
and Choi and Phillips (1992) are avoided in our setting. It seems to us that,
by considering the large sample sizes typically available in financial econo-
metrics, working with the maintained assumption of asymptotic normality
of estimators is reasonable; hence, the study of efficiency put forward in this
chapter. However, there is no doubt that some instruments are poorer and
that some directions of the parameter space are less strongly identified. Last
but not least: even though we are less obsessed by robustness to weak iden-
tification in the worst case scenario, we do not want to require from the
practitioner a prior knowledge of the identification schemes. Efficient infer-
ence procedures must be feasible without requiring any prior knowledge
neither of the different rates A of nearly weak identification, nor of the het-
erogeneity of identification patterns in different directions in the parameter
space.

To delimit the focus of this chapter, we put an emphasis on efficient in-
ference. There are actually already a number of surveys that cover the ear-
lier literature on inference robust to weak instruments. For example, Stock,
Wright, and Yogo (2002) set the emphasis on procedures available for de-
tecting and handling weak instruments in the linear instrumental variables
model. More recently, Andrews and Stock (2007) wrote an excellent review,
discussing many issues involved in testing and building confidence sets
robust to the weak instrumental variables problem. Smith (2007) revisited
this review, with a special focus on empirical likelihood-based approaches.
This chapter is organized as follows. Section 2.2 introduces framework and
identification procedure with poor instruments; the consistency of all GMM
estimators is deduced from an empirical process approach. Section 2.3 is
concerned with asymptotic theory and inference. Section 2.4 compares our
approach to others: we specifically discuss the linear instrumental variables
regression model, the (non)equivalence between efficient two-step GMM and
continuously updated GMM and the GMM-score test of Kleibergen (2005).
Section 2.5 concludes. All the proofs are gathered in the appendix.
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2.2 Identification with Poor Instruments
2.2.1 Framework

We consider the true unknown value 6° of the parameter 6 € ® C R’ de-
fined as the solution of the moment conditions E[d;(8)] = 0 for some known
function ¢;(.) of size K. Since the seminal work of Stock and Wright (2000),
the weakness of the moment conditions (or instrumental variables) is usually
captured through a drifting DGP such that the informational content of the
estimating equations shrinks toward zero (for all 8) while the sample size T
grows to infinity.

More precisely, the population moment conditions obtained from a set of
poor instruments are modeled as a function pr(6) that depends on the sam-
ple size T and becomes zero when it goes to infinity. The statistical infor-
mation about the estimating equations pr(6) is given by the sample mean
or(0) = (1/T) Zthl ¢¢(0) and the asymptotic behavior of the empirical pro-
cess VT[dr(0) — pr(6)].

Assumption 2.1 (Functional CLT)

(i) There exists a sequence of deterministic functions pr such that the empirical process
VT [4‘>T(e) — pT(B)], for & € ©, weakly converges (for the sup-norm on ®) toward
a Gaussian process on ® with mean zero and covariance S(0).

(ii) There exists a sequence Ar of deterministic nonsingular matrices of size K and
a bounded deterministic function ¢ such that

lim sup [lc(08) — Arpr(6)] = 0.

T= geo
The rate of convergence of coefficients of the matrix Ar toward infinity char-
acterizes the degree of global identification weakness. Note that we may not
be able to replace pr(6) by the function A}lc(e) in the convergence of the
empirical process since

-1 AT !
ﬁ[PT(e) — Ar'c(8)] = (ﬁ) [Arpr(0) —c(0)],

may not converge toward zero. While genuine weak identification like Stock
and Wright (2000) means that Ar = VTIdg (with Idg identity matrix of
size K), we rather consider nearly weak identification where some rows of
the matrix Ar may go to infinity strictly slower than +/T. Standard GMM
asymptotic theory based on strong identification would assume Ar = Idg
and p7(0) = ¢(0) for all T. In this case, it would be sufficient to assume
asymptotic normality of +/Tdr(6°) at the true value 6° of the parameters
(while pr(6°) = ¢(6°) = 0). By contrast, as already pointed out by Stock and
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Wright (2000), the asymptotic theory with (nearly) weak identification is more
involved since it assumes a functional central limit theorem uniform on G.
However, this uniformity is not required in the linear case,! as now illustrated.

Example 2.1 (Linear IV regression)

We consider a structural linear equation: yy = x;6 + u; fort = 1,---, T, where
the p explanatory variables x; may be endogenous. The true unknown value 6°
of the structural parameters is defined through K > p instrumental variables z
uncorrelated with (y; — x,0°). In other words, the estimating equations for standard
IV estimation are

br(br) = 7 2y — Xor) =0, 2.4

where X (respectively Z) is the (T, p) (respectively (T, K)) matrix which contains
the available observations of the p explanatory variables (respectively the K instru-
mental variables) and 87 denotes the standard IV estimator of 8. Inference with poor
instruments typically means that the required rank condition is not fulfilled, even
asymptotically:

/

Pl i m[ZX
T

] may not be of full rank.

Weak identification means that only Pl i rr[%] has full rank, while intermediate

cases with nearly weak identification have been studied by Hahn and Kuersteiner
(2002). The following assumption conveniently nests all the above cases.

Assumption L1 There exists a sequence At of deterministic nonsingular matrices
of size K such that Pl i m{ArZ2] = I is full column rank.

While standard strong identification asymptotics assume that the largest absolute
value of all coefficients of the matrix Ar, || Ar |, is of order O(1), weak identification
means that || Ar || grows at rate /T. The following assumption focuses on nearly weak
identification, which ensures consistent IV estimation under standard regularity
conditions as explained below.

Assumption L2 The largest absolute value of all coefficients of the matrix Ar is

o(v/T).

To deduce the consistency of the estimator 01, we rewrite Equation (2.4) as follows
and pre-multiply it by Ar:

Z'X Z'u Z'X

0 Z’u

(br —0°) + Ar T

—0. (2.5)

After assuming a central limit theorem for (Z'u/~/T) and after considering (for
simplicity) that the unknown parameter vector © evolves in a bounded subset of R?,

! Note also that uniformity is not required in the linear-in-variable case.
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we get
H(éT - 60) = Op(l).

Then, the consistency of Ot directly follows from the full column rank assumption
on T1. Note that uniformity with respect to 6 does not play any role in the required
central limit theorem since we have

JTBr(6) - pr(8)] = % VT [? _ E[ztxn] (6" — o)

with
pr(0) = E[z:x,](6° — 0).

Linearity of the moment conditions with respect to unknown parameters allows us
to factorize them out and uniformity is not an issue.

Itis worth noting that in the linear example, the central limit theorem has been
used to prove consistency of the IV estimator and not to derive its asymptotic
normal distribution. This nonstandard proof of consistency will be gener-
alized for the nonlinear case in the next subsection, precisely thanks to the
uniformity of the central limit theorem over the parameter space. As far as
asymptotic normality of the estimator is concerned, the key issue is to take
advantage of the asymptotic normality of v/Tdr(6°) at the true value 6° of the
parameters (while pr(6°) = ¢(6°) = 0). The linear example again shows that,
in general, doing so involves additional assumptions about the structure of
the matrix Ar. More precisely, we want to stress that when several degrees
of identification (weak, nearly weak, strong) are considered simultaneously,
the above assumptions are not sufficient to derive a meaningful asymptotic
distributional theory. In our setting, it means that the matrix Ar is not simply
a scalar matrix Ay A with the scalar sequence A possibly going to infinity but
not faster than +/T. This setting is in contrast with most of the literature on
weak instruments (see Kleibergen 2005; Caner 2010 among others).

Example 2.1 (Linear IV regression — continued)

To derive the asymptotic distribution of the estimator O, pre-multiplying the esti-
mating equations by the matrix Ar may not work. However, for any sequence of
deterministic nonsingular matrices Ar of size p, we have

Z'X Z'u 7'X - o Z'u
by — 00 =0 ArNT A7 by —00) = —=—.
T(T ) + T = T Ar 7 (7 ) It

If [%AT] converges toward a well-defined matrix with full column rank, a central
limit theorem for (Z'u/~/T) ensures the asymptotic normality of /T Az' (b1 — 7).
In general, this condition cannot be deduced from Assumption L1 unless the matrix
Ar appropriately commutes with [%]. Clearly, this is not an issue if Ar is simply a
scalar matrix Nt ldk . In case of nearly weak identification (N7 = o(ﬁ)), it delivers

(2.6)
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asymptotic normality of the estimator at slow rate /T /Nt while, in case of genuine
weak identification (\r = ~/T), consistency is not ensured and asymptotic Cauchy
distributions show up.

In the general case, the key issue is to justify the existence of a sequence of deter-
ministic nonsingular matrices Ar of size p such that [% Ar] converges toward a
well-defined matrix with full column rank. In the just-identified case (K = p), it
follows directly from Assumption L1 with Ay = T17! Ar:

7'X 7'X Z'xX\ !
Pliml=—m'A;|=Plim/ =—(Ar——) Ar|=1d,.
[T T} [T (T'T) T} ’

In the overidentified case (K > p), it is rather the structure of the matrix Ar (and
not only its norm, or largest coefficient) that is relevant. Of course, by Equation 2.5,
we know that

Z'u
JT

is asymptotically normal. However, in case of lack of strong identification, (Z' X/ T)
is not asymptotically full rank and some linear combinations of ~/T (87 — 0°) may
blow up. To provide a meaningful asymptotic theory for the IV estimator by, the
following condition is required. In the general case, we explain why such a sequence
Ar always exists and how to construct it (see Theorem 2.3).

ZX T (b1~ 0) =

Assumption L3 There exists a sequence Ar of deterministic nonsingular matrices
of size p such that Pl i m{£X Ar] is full column rank.

It is then straightforward to deduce that ~/T A7 (87 — 6°) is asymptotically normal.
Hansen, Hausman, and Newey (2008) provide a set of assumptions to derive similar
results in the case of many weak instruments asymptotics. In their setting, consid-
ering a number of instruments growing to infinity can be seen as a way to ensure
Assumption L2, even though weak identification (or || Ar|| of order ~/'T) is assumed
for any given finite set of instruments.

The above example shows that, in case of (nearly) weak identification,
a relevant asymptotic distributional theory is not directly about the com-
mon sequence +/T (87 — 6°) but rather about a well-suited reparametrization
fl}l VT (b7 —0°. Moreover, lack of strong identification means that the matrix
of reparametrization Ar also involves a rescaling (going to infinity with the
sample size) in order to characterize slower rates of convergence. For sake
of structural interpretation, it is worth disentangling the two issues: first, the
rotation in the parameter space, which is assumed well-defined at the limit
(when T — o0); second, the rescaling. The convenient mathematical tool is
the singular value decomposition of the matrix Ar (see Horn and Johnson
1985, pp.414-416, 425). We know that the nonsingular matrix Ar can always
be written as: Ar = Mr AN} with Mr, Nr, and At three square matrices of
size K, Mr, and Nr orthogonal and Ar diagonal with nonzero entries. In our
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context of rates of convergence, we want to see the singular values of the ma-
trix Ar (that is the diagonal coefficients of Ar) as positive and, without loss
of generality, ranked in increasing order. If we consider Assumption 2.1(ii)
again, N; can intuitively be seen as selecting appropriate linear combinations
of the moment conditions and Ar as rescaling appropriately these combina-
tions. On the other hand, Mr is related to selecting linear combinations of the
deterministic vector c.

Without loss of generality, we always consider the singular value decompo-
sition Ar = Mr At N} such that the diagonal matrix sequence At has positive
diagonal coefficients bounded away from zero and the two sequences of or-
thogonal matrices Mr and Nr have well-defined limits2 when T — oo, M
and N, respectively, both orthogonal matrices.

2.2.2 Consistency

In this subsection, we set up a framework where consistency of a GMM esti-
mator is warranted in spite of lack of strong identification. The key is to ensure
that a sufficient subset of the moment conditions is not impaired by genuine
weak identification: in other words, the corresponding rates of convergence
of the singular values of Ar are slower than +/T. As explained above, specific
rates of convergence are actually assigned to appropriate linear combinations
of the moment conditions:

d(8) = M1c(0) = lim [ArN7pr(0)].

Our maintained identification assumption follows:

Assumption 2.2 (Identification)
(i) The sequence of nonsingular matrices Ar writes Ay = Mr At Ny with liTm[MT] =

M, li%n[NT] = N, M, and N orthogonal matrices.

Ar
0
At are two diagonal matrices, respectively, of size K and (K — K), with® || Ar|| =

o(vT), | Ar]| = O(VT) and Ay' = o Ar ).

(iii) The vector d of moment conditions, withd(0) = M~'c(0) = limr[Ar Nypr(0)],
is partitioned accordingly as d = [d’ d') such that 0° is a well-separated zero of the

vectorial function d of size K < p:

(i) The sequence of matrices A is partitioned as At = | [8 1, such that At and
T

Ve >0 inf |d(8)] > 0.
16—6°(>€

(iv) The first K elements of Nrpr(6°) are identically equal to zero for any T.

2 Tt is well known that the group of real orthogonal matrices is compact (see Horn and Johnson
1985, p. 71). Hence, one can always define M and N for convergent subsequences, respectively
M, and Ny;. To simplify the notations, we only refer to sequences and not subsequences.

3 | M| denotes the largest element (in absolute value) of any matrix M.
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As announced, the above identification assumption ensures that the first K
moment conditions are only possibly nearly weak (and not genuinely weak),
IAr|l = o(+/T), and sufficient to identify the true unknown value 6°:

de)=0 < 6 =0

The additional moment restrictions, as long as they are strictly weaker
(A7! = o(|| A7~ !), may be arbitrarily weak and even misspecified, since we
do not assume d(6°) = 0. It is worth noting that the above identification
concept is nonstandard, since all singular values of the matrix Ar may go to
infinity. In such a case, we have

Plim[$r(6)]=0 V6eoO. (2.7)

This explains why the following consistency result of a GMM estimator cannot
be proved in a standard way. The key argument is actually tightly related to
the uniform functional central limit theorem of Assumption 2.1.

Theorem 2.1 (Consistency of fr)
We define a GMM-estimator:

Or = argmin [7(6)2r b (6)] (2.8)

with Qr a sequence of symmetric positive definite random matrices of size K which
converges in probability toward a positive definite matrix Q.

Under the Assumptions 2.1 and 2.2, any GMM estimator like Equation 2.8 is
weakly consistent.

We now explain why the consistency result cannot be deduced from a stan-
dard argument based on a simple rescaling of the moment conditions to avoid
asymptotic degeneracy of Equation 2.7. The GMM estimator (Equation 2.8)
can be rewritten as

6r = argmin {[ArN;dr(0)] Wr[ArN;$r(0)])

with a weighting matrix sequence, Wy = A7' N;-QrNrA7', and rescaled mo-
ment conditions [Ar N} dr(0)] such that
PLi m{A7 N1 (8)] = lim[Ar Nrpr(6)] = d(6) # 0 for 6 5 6°.
However, when all singular values of Ar go to infinity, the weighting matrix
sequence Wr is such that
PlLi m[Wr] = lim [A7'N'QNAT'] =0.
In addition, the limit of the GMM estimator in Theorem 2.1 is solely deter-

mined by the strongest moment conditions that identify 6°. There is actually
no need to assume that the last (K — K) coefficients in [A1 N}pr(6°)], or even
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their limits d(8°), are equal to zero. In other words, the additional estimating
equations d(0) = 0 may be biased and this has no consequence on the limit
value of the GMM estimator insofar as the additional moment restrictions
are strictly weaker than the initial ones, f\;l =o(JAr|™D). They may even be
genuinely weak with |Ar|| = +/T. This result has important consequences
on the power of the overidentification test defined in the next section.

2.3 Asymptotic Distribution and Inference
2.3.1 Efficient Estimation

In our setting, rates of convergence slower than square-root T are produced
because some coefficients of Ar may go to infinity while the asymptotically
identifying equations are given by pr(0) X Az'c(8). Since we do not want to
introduce other causes for slower rates of convergence (like singularity of the
Jacobian matrix of the moment conditions, as done in Sargan 1983), first-order
local identification is maintained.

Assumption 2.3 (Local identification)

(i) 6 — c(8),0 — d(0) and 6 — pr(0) are continuously differentiable on the
interior of ©.

(i) 0° belongs to the interior of ©.

(iii) The (K, p)-matrix [9d(6°)/30'] has full column rank p.

(iv) ATNp[dpr(0)/00'] converges uniformly on the interior of ® toward
M™1[0c(0)/06'] = 3d(6)/36.

(v) The last (K — K) elements of Nrpr(6°) are either identically equ@l to zero
for any T, or genuinely weak with the corresponding element of At equal

toﬁ.

Assumption 2.3(iv) states that rates of convergence are maintained after
differentiation with respect to the parameters. Contrary to the linear case,
this does not follow automatically in the general case. Then, we are able to
show that the structural parameters are identified at the slowest rate avail-
able from the set of identifying equations. Assumption 2.3(v) ensures that the
additional moment restrictions (the ones not required for identification) are
either well-specified or genuinely weak: this ensures that these conditions
do not deteriorate the rate of convergence of the GMM estimator (see Theo-
rem 2.2). Intuitively, a GMM estimator is always a linear combination of the
moment conditions. Hence, if some moments are misspecified and do not dis-
appear as fast as /T, they can only deteriorate the rate of convergence of the
estimator.
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Theorem 2.2 (Rate of convergence) X
Under Assumptions 2.1 to 2.3, any GMM estimator O like Equation 2.8 is such that

167 — 6%l = O, (I1A11l/v/T).

The above result is quite poor, since it assigns the slowest possible rate to
all components of the structural parameters. We now show how to identify
faster directions in the parameter space. The first step consists in defining a
matrix Ar similar to the one introduced in the linear example. The following
result justifies its existence: in the appendix, we also explain in details how
to construct it.

Theorem 2.3 Under Assumptions 2.1 to 2.3, there exists a sequence Ar of deter-
ministic nonsingular matrices of size p such that the smallest eigenvalue of Ay Ar is
bounded away from zero and

130(90)

li%n |:A;1M ™ AT1| exists and is full column rank with || Ar|| = O(||At]]).
Following the approach put forward in the linear example, Theorem 2.3 is

used to derive the asymptotic theory of the estimator f7. Since,

abr(6°) T (b7 — 69) 8<1>T(9 )

/A A (B —6°
Ty Ar /T A7 (Br )

a meaningful asymptotic distributional theory is not directly about the com-
mon sequence v/ T (dr — 6°), but rather about a well-suited reparametrization
AT'VT(Br — 0°). Similar to the structure of Ar, Ar involves a reparametriza-
tion and a rescaling. In others words, specific rates of convergence are actually
assigned to appropriate linear combinations of the structural parameters.

Assumption 2.4 (Regularity)

abr(6°) _10c(09)]
() VT[22 - an 20— ontt)
=3 [0dr(8) 0T qoc0)] o Tac(e)]
(i7) 'T%[ 30’ ]k__%[AT 20’ Li_op(l)and%[ae/ ]k__op(l)

forany 1 < k < K, uniformly on the interior of © with [M]x. the kth row the
matrix M.

With additional regularity Assumption 2.4(i), Corollary 2.1 extends
Theorem 2.3 to rather consider the empirical counterparts of the moment
conditions: it is the nonlinear analog of Assumption L3.
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Corollary 2.1 (Nonlinear extension of L3)
Under Assumptions 2.1-2.3 and 2.4(i), we have

T (a0
3¢8Te(,9 ) AT] exists and is full column rank.

re’) ="pli m[

In order to derive a standard asymptotic theory for the GMM estimator fr,
we need to impose an assumption on the homogeneity of identification.

Assumption 2.5 (Homogenous identification)
2
VT 0( VT )

Ar A7

where || M|| M denote respectively the largest and the smallest absolute values of all
nonzero coefficients of the matrix M.

Intuitively, assumption 2.5 ensures that second-order terms in Taylor expan-
sions remain negligible in front of the first-order central limit theorem terms.
Note that a sufficient condition for homogenous identification is dubbed
nearly-strong and writes: ||Ar|? = o(/T). Tt corresponds to the above ho-
mogenous identification condition when some moment conditions are strong,
thatis A; = 1. Then we want to ensure that the slowest possible rate of conver-
gence of parameter estimators is strictly faster than T'/4. This nearly-strong
condition is actually quite standard in semiparametric econometrics to con-
trol for the impact of infinite dimensional nuisance parameters (see Andrews’
(1994) MINPIN estimators and Newey’s (1994) linearization assumption).

The asymptotic distribution of the rescaled estimated parameters
VT A (Br — 0°) can now be characterized by seemingly standard GMM
formulas:

Theorem 2.4 (Asymptotic distribution of 01)

Under Assumptions 2.1-2.5, any GMM estimator O like Equation 2.8 is such that
VT A (67 — 0°) is asymptotically normal with mean zero and variance %(6°)
given by

£(6%) = [IM(67)Rr(6%)] ™ I'(8)2S(0°)Qr(6°) [I(0)Qre%) ],
where S(8°) is the asymptotic variance of /T &r(6°).
Theorem 2.4 paves the way for a concept of efficient estimation in presence

of poor instruments. By a common argument, the unique limit weighting
matrix © minimizing the above covariance matrix is clearly © = [S(6%)] .

Theorem 2.5 (Efficient GMM estimator)
Under Assumptions 2.1-2.5, any GMM estimator Ot like Equation 2.8 with a
weighting matrix Qr = Sp 1 where Sy denotes a consistent estimator of S(09),
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is such that /T A7 (8 — 0°) is asymptotically normal with mean zero and variance
[r'(6%)S~1(e9)r (6%~

In our framework, the terminology “efficient GMM” and “standard formu-
las” for asymptotic covariance matrices must be carefully qualified. On the
one hand, it is true that for all practical purposes, Theorem 2.5 states that, for
T large enough, /T A7! (87 — 6°) can be seen as a Gaussian vector with mean
zero and variance consistently estimated by

-7 A T A -1
A |:8¢T(9T) o 3¢T(9T)] AV, (2.9)

20 LV

since I'(6°) = Pl i n 22> B¢T(e ) Ar]. However, it is incorrect to deduce from Equa-
tion (2.9) that, after 51mp11f1cations on both sides by A~}1, VT (b7 —6°) can be
seen (for T large enough) as a Gaussian vector with mean zero and variance
consistently estimated by

(2.10)

3J>/T(éT)S_134_>T(§T) -
0 T oy

This is wrong since the matrix [dd’g(ee” St a‘i’T(eT)] is asymptotically singular.

In this sense, a truly standard GMM theory does not apply and at least some
components of v/T (87 —6°) must blow up. Quite surprisingly, it turns out that
the spurious feeling that Equation 2.10 estimates the asymptotic variance (as
usual) is tremendously useful for inference as explained in Subsection 2.3.2.
Intuitively, it explains why standard inference procedures work, albeit for
nonstandard reasons. As a consequence, for all practical purposes related to
inference about the structural parameters 6, the knowledge of the matrices
Ar and Ar is not required.

However, the fact that the correct understanding of the “efficient GMM”
covariance matrix as estimated by Equation 2.9 involves the sequence of ma-
trices Ar is important for two reasons.

First, it is worth reminding that the construction of the matrix Ar only in-
volves the first K components of the rescaled estimating equations [N pr(0)].
This is implicit in the rate of convergence of || Ar|| put forward in Theorem 2.3
and quite clear in its proof. In other words, when the total number of moment
conditions K is strictly larger than K, the last (K — K) rows of the matrix
r@©’ =Plin "‘bT(e 361 A;] are equal to zero. Irrespective of the weighting ma-
trix’s choice for GMM estimation, the associated estimator does not depend
asymptotically on these last moment conditions. Therefore, there is an obvious
waste of information: the so-called efficient GMM estimator of Theorem 2.5
does not make use of all the available information. Moment conditions based
on poorer instruments (redundant for the purpose of identification) should
actually be used for improved accuracy of the estimator, as explicitly shown
in Antoine and Renault (2010a).
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Second, the interpretation of the matrix Ar in terms of reparametrization
is underpinned by the proof of Theorem 2.3 which shows that

Ar =[MrRiiNrRy: - iNTRL ] = RArwithR=[R; i Ry -+ : R ].

Ris anonsingular matrix of size p with each submatrix R; of size (p, s;); At is
a diagonal matrix with L diagonal blocks equal to \;1d,. It is worth reinter-
preting Theorem 2.5 in terms of the asymptotic distribution of the estimator
of a new parameter vector?:

n=R"'0=[nn) - n].

Theorem 2.5 states that (R'0r) is a consistent asymptotically normal esti-
mator of the true unknown value n° = R=16%, while each subvector v; of size
s; is attached to a specific (slower) rate of convergence /T /\;7. Itis clear in the
appendix that this reparametrization is performed according to the directions
which span the range of the Jacobian matrix of the rescaled “efficient” mo-
ment conditions d(6), that is according to the columns of the matrix R. Even
though the knowledge of the matrix R (and corresponding rates \;7) is imma-
terial for the practical implementation of inference procedures on structural
parameters (as shown in Section 2.3.2), it may matter for a fair assessment of
the accuracy of this inference. As an illustration, Subsection 2.4.3 studies the
power of score-type tests against sequences of local alternatives in different
directions.

In the context of the consumption-based capital asset pricing model
(CCAPM) discussed in Stock and Wright (2000) and Antoine and Renault
(2009), there are two structural parameters: 61, the subjective discount factor
and 6, the coefficient of relative risk aversion of a representative investor.
Antoine and Renault (2009) provide compelling evidence that a first param-
eter v, estimated at fast rate /T, is very close to 6; (the estimation results
show that n; = 0.9996; — 0.0076,), while any other direction in the param-
eter space, like for instance the risk aversion parameter 6, is estimated at a
much slower rate. In other words, all parameters are consistently estimated
as shown in Stock and Wright’s (2000) empirical results (and contrary to their
theoretical framework), but the directions with /T-consistent estimation are
now inferred from data instead of being considered as a prior specification.

The practical way to consistently estimate the matrix R from the sample
counterpart of the Jacobian matrix of the moment conditions is extensively
discussed in Antoine and Renault (2010a). Of course, since this Jacobian ma-
trix involves in general the unknown structural parameters 6, there is little
hope to consistently estimate R at a rate faster than the slowest one, namely
VT/|IAt|. Interestingly enough, this slower rate does not impair the faster
rates involved in Theorem 2.5. When R is replaced by its consistent estimator

4 Note that the structural parameter 0 is such that § = Zle Rim;.
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R, in the context of Theorem 2.5,
JTAF (R 0y - R6°)

is still asymptotically normal with mean zero and variance [I(6%)S71(6%) x
I'(0°)]~!. The key intuition comes from the following decomposition:

R19r — R710° = R71(B7 — 0°) + (R~1 — R7Y) (B — 09).

The potentially slow rates of convergence in the second term of the right-hand
side do not deteriorate the fast rates in the relevant directions of R~ (67 — °):
these slow rates show up as T/||Ar||? at worst, which is still faster than the
fastest rate +/T /A1 by our nearly strong identification Assumption 2.5.

2.3.2 Inference

As discussed in the previous section, inference procedures are actually more
involved than one may believe at first sight from the apparent similarity with
standard GMM formulas. Nonetheless, the seemingly standard “efficient”
asymptotic distribution theory of Theorem 2.5 paves the way for two usual
results: the overidentification test and the Wald test.

Theorem 2.6 (] test)
Let S;! be a consistent estimator of li%n[Var (VTor(00)] .

Under Assumptions 2.1-2.5, for any GMM estimator like Equation (2.8), we have

T&:(07)S7 br(Br) > x3(K — p).

As already announced, Theorem 2.1 has important consequences for the
practice of GMM inference. We expect the above overidentification test to
have little power to detect the misspecification of moment conditions when
this misspecification corresponds to a subset of moment conditions of het-
erogeneous strengths. The proofs of Theorems 2.1 and 2.3 actually show
that

oA - A T
Tér(07)Sr ' dr(br) = O (—)
&r(07) Sy dbr(br) = Op e

In other words, the standard J-test statistic for overidentification will not
diverge as fast as the standard rate T of divergence and will even not diverge
at all if the misspecified moment restrictions are genuinely weak (|| Ar| =
V7).

Second, we are interested in testing the null hypothesis, Hy : g(0) = 0,
where the function g : ® — R is continuously differentiable on the interior
of ©. We focus on Wald testing since it avoids estimation under the null which
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may affect the reparametrization® previously defined. The following example
illustrates how the standard delta-theorem is affected in our framework.

Example 2.2
Consider the null hypothesis Hy : g(8) = 0 with g a vector of size q such that

agj(eo)} [ad;(eo)} L
[786 ¢ col 28 vVi=1, ,q

and a diagonal matrix A,

Ap = |:)\1T1d1<1 O

1) AzTIdK—K1i| with )\1'1" = 0()\2'1"), )\ZT — 00, andAZT = O(ﬁ)

Applying the standard arqument to derive the Wald test, we have that, under the
null,

VT o | 3g(0°) VT «

X (9 ~ | 22X (pr — 0 |

|:)\2Tg( T) 507 )\ZT( T )

In other words, for T large enough, [g g(@T)] can be seen as a normal random
variable with mean 0 and variance

93(6°) [acﬁ;(e%

(SN

00’ 00

2br(09) ] 8g/(60)
00’ 00

Suppose now that there exists a nonzero vector o such that

[ag/(eo)a] € col [353(60)]
20 20

Then, under the null, [ga’g(éﬂ] is asymptotically normal and thus

T , 4 A T -
£oUg(GT) = £oc/g(eT) £o.
Aot Aot M7
This means that even when a full rank assumption is maintained for the constraints to
be tested, [R/TT g(éT)] does not behave asymptotically like a normal with a nonsingular

variance matrix. This explains why deriving the asymptotic distributional theory for
the Wald test statistic is nonstandard.

Surprisingly enough, the above asymptotic singularity issue is immaterial
and the standard Wald-type inference holds without additional regularity

5 Typically, with additional information, the linear combinations of 6 estimate