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Preface

FG provides a forum for the presentation of new and original research on formal
grammar, mathematical linguistics and the application of formal and mathemat-
ical methods to the study of natural language. Themes of interest include, but
are not limited to:

– Formal and computational phonology, morphology, syntax, semantics and
pragmatics

– Model-theoretic and proof-theoretic methods in linguistics
– Logical aspects of linguistic structure
– Constraint-based and resource-sensitive approaches to grammar
– Learnability of formal grammar
– Integration of stochastic and symbolic models of grammar
– Foundational, methodological and architectural issues in grammar and lin-

guistics
– Mathematical foundations of statistical approaches to linguistic analysis

Previous Formal Grammar meetings were held in Barcelona (1995), Prague
(1996), Aix-en-Provence (1997), Saarbrücken (1998), Utrecht (1999), Helsinki
(2001), Trento (2002), Vienna (2003), Nancy (2004), Edinburgh (2005), Malaga
(2006), Dublin (2007), Hamburg (2008), Bordeaux (2009), Copenhagen (2010),
Ljubljana (2011), Opole (2012), and Düsseldorf (2013).

The present volume collects the papers from the 19th Conference on Formal
Grammar celebrated in Tübingen in 2014. The conference comprised 10 con-
tributed papers selected from 19 high quality submissions, and two invited con-
tributions, by Thomas Icard and Christian Retoré.

We thank for their support the local organisers of ESSLLI 2014, with which
the conference was colocated.

May 2014 Glyn Morrill
Reinhard Muskens

Rainer Osswald
Frank Richter
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Higher-Order Syllogistics

Thomas F. Icard, III

Department of Philosophy
Stanford University, California

Abstract. We propose a distinction between bottom-up and top-down
systems of natural logic, with the classical syllogism epitomizing the
first and the Monotonicity Calculus the second. We furthermore suggest
it useful to view top-down systems as higher-order generalizations of
broadly syllogistic systems. We illustrate this view by proving a result of
independent interest: we axiomatize the first-order/single-type fragment
of a higher-order calculus for reasoning about inclusion and exclusion
(MacCartney and Manning, 2009; Icard, 2012). We show this logic is
equivalent to a syllogistic logic with All and nominal complementation,
in fact a fragment of a system recently studied (Moss, 2010b).

Keywords: syllogistics, natural logic, exclusion, surface reasoning.

1 Motivation

Systems of syllogistic logic long held the distinction of being the centerpiece
of the study of logic and language, so much so that Kant famously declared
that the subject seemed “to all appearances to be finished and complete” (1997,
Bxviii-xix). With the development of relational logic in the late 19th century and
quantification theory in the early 20th century, spurred mostly by problems in
foundations of mathematics, logical interest in the traditional systems waned.
Recently, however, work on syllogistic1 logics and extensions thereof has seen
something of a renaissance, due in large part to concern with computational
issues. It has been shown that restricting one’s logical language to match some
controlled fragment of natural language can result in tractable, even polynomial
time, satisfiability testing (McAllester and Givan, 1992); indeed, the traditional
syllogism provides one such example (Pratt-Hartmann, 2004). Much recent work
has explored the space of logical systems and their decision problems, which
result from restricting the syntax of first or even higher-order logic in some lin-
guistically motivated way (see, e.g., Moss 2010a for a comprehensive overview).

This research program has sometimes gone under the heading of ‘natural
logic’, since it concerns logical systems inspired by natural language. There is a
second tradition within so called natural logic, related but distinct, which allows
the syntax of the language to be arbitrary—e.g., admitting all expressions of
some (syntactically parsed, recursively defined) natural language—but restricts
1 In this paper, I will be using the terms ‘syllogism’ and ‘syllogistic’ loosely, following

the recent literature (see, e.g., Pratt-Hartmann and Moss 2009; Moss 2010a, etc.).

G. Morrill et al. (Eds.): Formal Grammar 2014, LNCS 8612, pp. 1–14, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



2 T.F. Icard, III

what semantic features of expressions are inferentially visible. The classic ex-
ample of such a system is the Monotonicity Calculus of van Benthem (1991)
and Sánchez-Valencia (1991), which defines proof systems based on monotonic-
ity and antitonicity of functions over expressions parsed, e.g., in some version of
categorial grammar (see van Benthem 2008 or Icard and Moss 2014 for recent
overviews). This tradition has also generated a long line of interesting logical
work, expanding and extending the original calculus (e.g., Dowty 1994; Bernardi
2002; MacCartney and Manning 2009, among many others), and has found its
way into computational applications (MacCartney and Manning, 2007).

While this difference in approach—bottom-up controlled syntax vs. top-down
controlled semantics—is significant, I want to demonstrate in this note that,
from a certain formal point of view, at least some top-down systems such as the
Monotonicity Calculus should be seen as generalizations of bottom-up syllogis-
tic fragments. Specifically, in many cases of interest, the higher-order systems
can be seen as lifting the syllogistic systems from reasoning within a single
type (e.g., the type e → t of predicates) to reasoning with arbitrary types, as
well as reasoning between types. In the next section §2, I will illustrate this
simple idea with the Monotonicity Calculus on the one hand, and a syllogis-
tic system involving only the quantifier All on the other. Next, in §3 I will
use the idea to distill a very simple axiomatization of the first-order (single-
type) fragment of a higher-order calculus for reasoning about exclusion relations
(MacCartney and Manning, 2009; Icard, 2012), a result of independent interest.
In §4 I will explain what we can learn from this about the full higher-order Exclu-
sion Calculus and questions about its axiomatization. Finally, §5 will conclude
with some speculative remarks and pointers to further questions.

2 Monotonicity and the All Fragment

The Monotonicity Calculus captures monotonicity reasoning at arbitrary types
in the function hierarchy. Here we follow the presentation in Icard and Moss
(2013, 2014). Starting with basic types e and t, we add new function types σ +→ τ ,
σ

−→ τ , and σ
·→ τ , corresponding to monotone, antitione, and non-monotone

functions, respectively. Type domains are preordered sets Dτ = (Dτ ,≤τ ), an-
tecedently given for basic types, and obtained by taking all functions preordered
pointwise for functional types. That is, D

σ
m→τ

= (D
σ

m→τ
,≤

σ
m→τ

), where f ≤
σ

m→τ
g

iff f(a) ≤τ g(a) for all a ∈ Dσ. If m = · , then D
σ

m→τ
is the set of all functions

from Dσ to Dτ ; if m = +, it is the set of monotone functions; if m = −, it is
the set of antitone functions. Given a set of typed constants, we can define a set
of typed terms by allowing any type-compatible function application. One can
then reason about inequalities s � t between terms s and t of compatible type.

A system of type domains {Dτ}τ , together with an interpretation function
[[·]] sending terms to elements of the appropriate type domain, provides a model
M = 〈{Dτ}τ , [[·]]〉 of such a typed language, whereby M � s � t, iff [[s]] ≤τ [[t]].
There thus arises an obvious question of completeness for any given class of
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models, and proof system for deriving inequality statements. The question is
answered for several cases in Icard and Moss (2013), where the main two rules of
inference, relating terms of different types, are those found already in early work
on the Monotonicity Calculus (van Benthem, 1991; Sánchez-Valencia, 1991):2

u � v(Monotone)
t↑(u) � t↑(v)

u � v(Antitone)
t↓(v) � t↓(u)

with t↑ of monotone functional type and t↓ antitone. Together with a rule cap-
turing the pointwise order on functions, and rules for partial order (see Fig. 1
below), this system is complete with respect to the general class of applicative
(or Henkin) models. Adding two further rules gives completeness with respect
to the class of standard structures in which each domain comes with upper and
lower bounds for all pairs of elements (called weakly complete in Icard and Moss
2013), a property which standard boolean domains certainly satisfy.

When applied to natural language, the Monotonicity Calculus captures en-
tailments between sentences that might otherwise be difficult to translate ac-
curately into a logical form. To take an example inspired by a comment in
Geurts and van der Slik (2005), while first-order renderings of so called donkey-
sentences are notoriously controversial, the following entailment is patent:

Everyone who knows a foreign language speaks it at home
Everyone who knows a foreign language speaks it at home or at work

For examples like this, the top-down inference strategy characteristic of the
Monotonicity Calculus is particularly appropriate. If we replace Everyone with
the non-first-order-definable Most people, the advantage is even more pronounced.

A natural question, even if it admits an obvious answer in this case, is what
fragment of first-order logic this kind of reasoning captures, for example, if we
restrict the language to only variables of type e→ t and relations between them.
Let us explicitly introduce a language of variables and All statements:

Var ::= X | Y | Z | . . . Lall ::= Var ⇒ Var

Thus, instead of writing All X are Y , as is typical in work on syllogistics, we
will simply write X ⇒ Y . We can again interpret such statements in preorders
D = 〈D,≤D〉 together with an interpretation function [[·]] mapping each variable
to an element of D, so that 〈D, [[·]]〉 � X ⇒ Y , just in case [[X]] ≤D [[Y ]].

In what might be the simplest of all completeness proofs, Moss (2010a) shows
that this language can be axiomatized over the class of boolean lattices by the
two basic rules of calculus C0 in Figure 1.3 These are essentially just the two
axioms for preorders. That is, the logic of All by itself, as a relation between
sets or predicates, coincides with the logic of preorders.
2 Usually these rules are stated for arbitrary complex terms t with u some subterm
occurrence of t, shown to be in monotone (or antitone) position. The two versions
are equivalent in the presence of the other rules (Icard and Moss, 2013, 2014).

3 Strictly speaking, the proof shows completeness with respect to set-based semantics,
with ⇒ interpreted in terms of subset. But of course, since every powerset algebra
can be viewed as a boolean lattice, the result as stated is an obvious consequence.
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(I)
X ⇒ X

X ⇒ Y Y ⇒ Z(II)
X ⇒ Z

Fig. 1. Calculus C0: The Logic of All (from Moss 2010a)

This logic also coincides with that of the Monotonicity Calculus when restrict-
ing to a single type. After all, the type domain for each type is just a preorder
(or perhaps a boolean lattice, in which case Moss’ result applies). It is in this
sense that the All fragment can be said to coincide with the single-type fragment
of the Monotonicity Calculus. The main two inter-type rules—one for functions
preserving the order from type to type (Monotone), the other for functions re-
versing the order (Antitione)—give a very natural extension of the All fragment
to the higher-order setting. If all we have is a preorder, preserving and reversing
the order arguably exhaust the reasonable properties of such functions.

From one point of view, the rules of C0 capture everything there is to know
about All. By results of van Benthem (1984) and Westerståhl (1984), if Q is a
standard quantifier (i.e., conservative, quantitative, having extension, and show-
ing variety), and satisfies the rules of C0, then Q must be the quantifier All.

But from another point of view, C0 falls short of what we can use the Mono-
tonicity Calculus to tell us about All ; we are not even using the monotonicity
rules when working within a single type. As a fragment of the traditional syllo-
gism, this essentially just gives us the Barbara rule. As a fragment of first-order
logic, C0 is also quite poor. If P1, P2, . . . are a collection of one-place predi-
cates, we essentially have just one axiom—∀x(Pix ⊃ Pix)—and one rule—from
∀x(Pix ⊃ Pjx) and ∀x(Pjx ⊃ Pkx), infer ∀x(Pix ⊃ Pkx).

We can invoke the full Monotonicity Calculus and add typed constants:

all : p −→ (p
+→ t) some : p +→ (p

+→ t) no : p
−→ (p

−→ t) ,

where p ≡ (e→ t), in order to obtain a slightly more powerful logical fragment.
We can now derive many more of the traditional syllogisms, e.g., Darii :

No(Z, Y ) All(X,Z)
No(X,Y )

≡ X ⇒ Z
no(Z, Y )⇒ no(X,Y )

provided that we translate ⇒ (when between predicates) and the constant all
both in terms of the universal quantifier. As van Eijck (2005) has demonstrated,
every valid syllogism can be derived with exactly one instance of a monotonic-
ity/antitonicity rule, and at most one application of symmetry or existential
import. Still, as a fragment of first-order logic, the resulting system is rather
small. Monotonicity of all, e.g., gives us distribution: from ∀x(Pix ⊃ Pjx), in-
fer ∀x(Pix) ⊃ ∀x(Pjx), with the same result for some. One attraction of the
Monotonicity Calculus is that it can be seamlessly extended with higher-order
expressions, e.g., with a constant most or any other monotonic/antitonic expres-
sion, which elude both first-order logic and the traditional syllogism.4 There is no
4 Though see Endrullis and Moss (2014) for an elegant syllogistic system with Most.
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reason not to add such expressions. As far as the inference system is concerned,
these are all just more function constants with monotonicity-marked types.

To summarize this warm-up discussion, the simple syllogistic system charac-
terizing All by itself coincides with the Monotonicity Calculus when restricted
to a single type, in fact any single type with a preordered domain. The full
version of the calculus with higher-order types puts these systems together and
relates them via the monotonicity rules, which is perhaps the most natural such
extension in the setting of preorders. It is in this sense that it is a generalization
of the All fragment. Finally, once we have the full system, we can go back and
add constants for quantifiers, in effect adding further rules of inference. Once we
do that, however, there is no reason to stop at first-order-definable expressions.

3 Exclusion and All with Complements

MacCartney and Manning (2009) introduced an informal extension of the Mono-
tonicity Calculus, to deal with relations not only of inclusion, but also exclusion.
Here we follow Icard (2012), which showed how to formalize the system as a
genuine extension of the Monotonicity Calculus. Let us begin with an exclusion
language for a single type, before moving to the full higher-order language in the
next section. Here we will present our main result.

For a given set Var of variables (or constants; it does not matter here), we
add to � several further relations.5 Call the language L1x:

L1x ::= Var � Var | Var � Var | Var � Var | Var � Var

L1x is naturally interpreted in bounded distributive lattices. For a structureM =
〈D, [[·]]〉, where D = (D,≤D) comes with ∧ and ∨ operations, a 0 element, and a
1 element, and [[·]] : Var→ D interprets the variables, our truth clauses will be:

M � X � Y iff [[X]] ∧ [[Y ]] = [[X]];

M � X � Y iff [[X]] ∨ [[Y ]] = [[X]];

M � X � Y iff [[X]] ∧ [[Y ]] = 0;

M � X � Y iff [[X]] ∨ [[Y ]] = 1;

Just as the Monotonicity Calculus on a single type corresponds to the All syl-
logistic fragment, it turns out L1x corresponds to a natural syllogistic fragment,
adding only nominal complementation to the All fragment. Following Moss

5 We are ignoring here the three additional relations from Icard (2012) and
MacCartney and Manning (2009): #, ≡, and �. Any reasoning system for these
four connectives can easily be extended to incorporate the rest.

Note that for truth-value types, � is the relation of contrary, and � is that of
subcontrary. Thus, with all of these relations together, we can express the traditional
square of opposition. Also, it is worth pointing out that the quantified sentences stand
in these relations only if we assume non-vacuity of all predicates.
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(2010b) (see also Pratt-Hartmann and Moss 2009), who considered a slightly
richer language with Some as well, we extend the All language as follows:

CVar ::= Var | Var′ L1
all,′ ::= CVar ⇒ CVar

Here X ′ is intuitively the complement of X . We do not allow variables of the
form X ′′. A bijective translation between L1x and L1

all,′ can be given as follows:6

X � Y ≡ X ⇒ Y

X � Y ≡ X ′ ⇒ Y ′

X � Y ≡ X ⇒ Y ′

X � Y ≡ X ′ ⇒ Y

Fig. 2. Correspondence between L1
x and L1

all,′

If S is an L1
all,′-sentence, let S∗ be the translation of S into L1x. These two

languages are not mere notational variants. As described above, algebraically,
L1x-expressions are naturally interpreted in bounded distributive lattices. The
existence of complements is not necessary. L1

all,′-expressions, on the other hand,
are naturally interpreted in orthoposets (see Moss 2010b and the Appendix),
which have complements but need not in general be lattices. Both of these gen-
eralize boolean lattices, and in fact, in boolean lattices, their interpretations
coincide. In this case we interpret X ′ as the boolean complement of X .

Lemma 1. Suppose D = (D,≤D) is a boolean lattice and [[·]] : Var→ D. Then
〈D, [[·]]〉 � S, iff 〈D, [[·]]〉 � S∗.

Proof. Simply check all four cases. For example,

〈D, [[·]]〉 � X ′ ⇒ Y �� [[X ′]] ≤D [[Y ]]

�� [[X]]′ ≤D [[Y ]]

�� [[X]] ∨ [[Y ]] = 1

�� 〈D, [[·]]〉 � X � Y

�� 〈D, [[·]]〉 � (X ′ ⇒ Y )∗ .

The other cases are just as easy.

Lemma 1 will allow us to transfer a completeness theorem for L1
all,′ directly

to L1x. Our axiomatization of L1
all,′ with respect to boolean domains follows a

recent result from Moss (2010b), which in our setting can be quite simplified.
The rules of the logic C1 are given in Figure 3, where A,B,C range over CVar
expressions X,X ′, Y, Y ′, . . . ; and if A = X ′, then A′ = X .
6 In fact, relating exclusion to complement was already suggested by van Benthem

(2008) and Moss (p.c., 2010).
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(I)
A ⇒ A

A ⇒ B B ⇒ C(II)
A ⇒ C

A ⇒ A′
(III)

A ⇒ B
A ⇒ B′

(IV)
B ⇒ A′

Fig. 3. Calculus C1: The logic of All with nominal complementation

If Γ is a set of statements in L1
all,′ , and S is a statement in L1

all,′ , then let us
write Γ �c S if there is a finite tree with S as the root and each node either an
element of Γ or the result of an application of one of the rules in Figure 3 from
its parents. Call the resulting complement calculus C1.

Theorem 1 (Completeness of C1). Γ �c S if and only if Γ � S.

For a proof, mostly following but also simplifying Moss (2010b) (because this
is a smaller language), see the technical Appendix.

This simple axiomatization belies the amount of information it captures about
exclusion reasoning. First, notice that there are two instances of (I), capturing
the reflexivity of � and �. Two instances of (IV) capture the fact that � and
� are inverses; the other two instances derive the symmetry of � and �. For
example, one instance of (IV) gives:

X ⇒ Y ′

Y ⇒ X ′ ≡ X � Y
Y � X

Rule (III) captures the interaction between between � and �, and that between
� and �. For example, we have as an instance of (III):

X ′ ⇒ X
X ′ ⇒ Y ′ ≡ X � X

X � Y

Most strikingly, there are eight instances of (II), reproduced here in Fig. 4:

X � Y Y � Z

X � Z

X � Y Y � Z

X � Z

X � Y Y � Z

X � Z

X � Y Y � Z

X � Z

X � Y Y � Z

X � Z

X � Y Y � Z

X � Z

X � Y Y � Z

X � Z

X � Y Y � Z

X � Z

Fig. 4. The eight instances of rule (II) translated into L1
x
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Indeed, these rules subsume all of the rules proposed in Icard (2012) that
concern a single type.7 Lemma 1 and Theorem 1 in fact show:

Corollary 1. The translation of the calculus C1 gives a sound and complete
proof system for L1x with respect to boolean lattices, and also with respect to
bounded distributive lattices.

Proof. Theorem 1 and Lemma 1 show these rules are sound and complete with
respect to boolean domains. Since the rules are sound in general bounded dis-
tributive lattices as well (see Icard 2012), the second result also follows.

Satisfyingly, the translation in Fig. 2 allows us to express eighteen rules (none
of which seem to be redundant) in terms of four simple schemata. This also
makes apparent that the single-type fragment of the Exclusion Calculus can be
seen as extending that of the Monotonicity Calculus by just two further rules,
(III) and (IV), in a language with an added complement operator.

4 Projecting Exclusion and Complements

As with the Monotonicity Calculus, most of the interest in the Exclusion Calculus
comes from the higher-order setting. Instead of considering the full functional
hierarchy, in this section we examine only a small extension of the language
L1
all,′ , with variables Var = {X,Y, Z, . . .} interpretated in a boolean lattice D =

(D,≤D), as before, and a set of function symbols Φ = {φ, ψ, . . . } interpreted as
functions from D to some other boolean lattice E = (E,≤E). Our simple second-
level ‘syllogistic’ language L2

all,′ will be generated by the following grammar:

Φexp ::= Φ(Var) | Φ(Var)′ L2
all,′ ::= L1

all,′ | Φexp ⇒ Φexp

That is, we can make statements about pairs of (possibly complemented) vari-
ables, or about pairs of functions applied to variables (possibly complemented).

By analogy with the Monotonicity Calculus, and following Icard (2012), func-
tions in Φ are marked as being from one of six semantically distinguished classes:
(merely) monotone, (merely) antitione, and four more refining these two classes.8

1. A function f : D→ E is (completely) additive if for all a, b ∈ D, f(a∨ b) =
f(a) ∨ f(b), and moreover f(1D) = 1E.

2. A function f : D → E is (completely) multiplicative if for all a, b ∈ D,
f(a ∧ b) = f(a) ∧ f(b), and moreover f(0D) = 0E .

7 Notice also that five instances of (II) correspond to the five valid syllogisms using
only the a and e forms: Barbara, Cesare, Celarent, Camestres, Calemes.

8 As claimed in Icard (2012), the connection between these classes of functions—in par-
ticular the anti-additive, and the anti-additive, anti-multiplicative (sometimes called
anti-morphic) functions—raises the interest of this logical system from the point of
view of grammar. These classes are correlated with the distribution of negative po-
larity items (Zwarts, 1981). Thus, a combined system for parsing and inference, in
the style of Dowty (1994) or Bernardi (2002), for example, would be attractive here.
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3. A function f : D → E is (completely) anti-additive if for all a, b ∈ D,
f(a ∨ b) = f(a) ∧ f(b), and moreover f(1D) = 0E .

4. A function f : D→ E is (completely) anti-multiplicative if for all a, b ∈ D,
f(a ∧ b) = f(a) ∨ f(b), and moreover f(0D) = 1E .

Also as with the Monotonicity Calculus, these semantic classes are manifested
in valid rules, giving rise to a full-fledged Exclusion Calculus. In the following
Fig. 5, φ↑ is monotone, φ+ is additive, φ× is multiplicative, φ↓ is antitone, φ+
is anti-additive, and φ× is anti-multiplicative.

X ⇒ Y
φ↑(X) ⇒ φ↑(Y )

X ′ ⇒ Y ′

φ↑(X)′ ⇒ φ↑(Y )′

X ′ ⇒ Y

φ+(X)′ ⇒ φ+(Y )

X ⇒ Y ′

φ×(X) ⇒ φ×(Y )′

X ⇒ Y

φ↓(X)′ ⇒ φ↓(Y )′
X ′ ⇒ Y ′

φ↓(X) ⇒ φ↓(Y )

X ′ ⇒ Y

φ+(X) ⇒ φ+(Y )′
X ⇒ Y ′

φ×(X)′ ⇒ φ×(Y )

Fig. 5. Calculus C2: Projecting exclusion relations from one type to another

Let us call C2 the calculus that results from adding the rules above to those
from C1, with appropriate restrictions given by formula types. It seems very likely
that the methods described in the Appendix can be combined with those used
in Icard and Moss (2013) to prove the following:

Conjecture: C2 is complete for L2
all,′ w.r.t. bounded distributive lattices.

These eight rule schemata summarize the twenty-four informative entries in
the so called projection table (Icard 2012, see also MacCartney and Manning
2009), characterizing how functions ‘project’ the different relations from one
type to another. The translation into this ‘syllogistic’ language now allows sum-
marizing forty-two axioms in terms of only twelve perspicuous schemata. In
particular, the rules above in Fig. 5 make transparent why we have chosen the
function classes as we have: each one reflects a distinct pattern of projection,
and together they represent all possible projection patterns.

As in the case of monotonicity, we can still go beyond what we have primitively
in the calculus, adding constants for quantifiers all, some, no, etc., together with
their marked types. Modulo the above conjecture, completeness for this fragment
would be obtained by adding the specific rules from Fig. 5 appropriate for these
constants; after all, their projectivity behavior is all that the inferential calculus
can see. But, again, there is no reason to stop at first-order-definable quantifiers.
For instance, if we let most be interpreted as a function from a boolean ‘powerset’
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domain ℘(E) to the truth value domain �, such that [[most]](S) = 1 iff |S|
|E| > θ

for some determined threshold θ ∈ [0.5, 1), then it is easy to check that most is
multiplicative. An instance of the multiplicative rule above in Fig. 5 in this case
would give:

aardvark⇒ wombat′

most(aardvark)⇒ most(wombat)′
≡ aardvark � wombat

most(aardvark) � most(wombat)

This captures good arguments like the following: Nothing is both an aardvark
and a wombat; if most of my friends are aardvarks, this precludes the possibility
that most of my friends are wombats. And so on.

It is also natural to consider extending this translation to the full higher-order
setting of the Exclusion Calculus. It is expected that the same methods applied
to the Monotonicity Calculus in Icard and Moss (2013) should be applicable in
this case, with similar completeness results for special cases of model classes.
What we have seen here is that the question of completeness for this richer
system, which at first appears daunting, can be reduced to the question for a
‘higher-order’ version of the All fragment with complementation.

5 A Broader View

The two cases we have examined in this note hardly scratch the surface of what
can be explored once we view top-down natural logical systems as higher-order
versions of bottom-up natural logics. Starting with All, arguably the simplest
syllogistic fragment, if we generalize this in a natural way to the higher-order
setting, the Monotonicity Calculus is the result. Adding to All a complement
operator and generalizing again in a natural way gives us the Exclusion Calculus.
These are of course very basic syllogistic fragments. A natural question now is
whether there are attractive higher-order versions of more complex syllogistic
fragments. To take just one example, Pratt-Hartmann and Moss (2009) consider
extensions of the full syllogism (with and without complements) to languages
with relational statements, capturing arguments like:

All wombats are marsupials
All who respect a wombat respect a marsupial

which go beyond the traditional syllogistic. Arguments like this can be formalized
in the Monotonicity Calculus, provided we take as a backdrop the full boolean
λ-calculus (van Benthem, 1991), and mark ∃/some as being monotone:

wombat � marsupial
λx.∃

(
λy.respect(x, y) ∧ wombat(y)

)
� λx.∃

(
λy.respect(x, y) ∧marsupial(y)

)
But perhaps there is a simple extension of the system described in §2 that does
not make use of λ-abstraction, for instance adding primitive predicate types
∀(m, r) and ∃(m, r) as in Pratt-Hartmann and Moss (2009).
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Another obvious question is why it seems more natural in top-down systems
to adopt a main connective corresponding to All.9 To be sure, the � relation we
have considered here just is the All relation between type e→ t objects. Between
truth-values it is entailment, and for other, higher types it is a more abstract
‘inclusion’ relation. In fact, it is one of the fundamental insights of early work in
logical semantics and natural logic that these relations make sense all the way up
the (boolean) type hierarchy (Keenan and Faltz, 1984; van Benthem, 1991). But
of course, to match the traditional syllogism more closely, we might also consider
a primitive relation between terms corresponding to Some. A connective �—
with t � s meaning [[t]] ∧ [[s]] �= 0—would make sense between terms of any type
associated with a lower semi-lattice domain, thus certainly any boolean domain.
Such a connective would not be unnatural; it would give us conjunction for truth-
value-type expressions, and assertions of non-empty intersection for properties,
for example. Moreover, it is clear that the projectivity behavior of functional
expressions would be quite different from anything we have seen. For instance,
single-argument ∃/some would exhibit the following pattern, distinguishing it
from other additive quantifiers like ∃≥n/at-least-n:

X � Y
F � some(X)

for arbitrary F of type t. It would be worthwhile exploring what the resulting
system in the style of the Monotonicity or Exclusion Calculus would look like,
since this would give a higher-order analogue of the full classical syllogism.

In the background here, of course, are also questions of complexity.
While the complexity landscape is well studied for bottom-up natural logics
(McAllester and Givan, 1992; Pratt-Hartmann, 2004; Moss, 2010a), including
where the boundary lies between decidability and undecidability, these questions
are relatively unexplored for top-down natural logics. How much more complex
is a higher-order system than its ‘flat’ syllogistic fragment? Is there some useful
correspondence between the complexity hierarchy of systems on the two sides?

From a modern point of view, traditional bottom-up syllogistic logics can be
seen as capturing a limited range of inferences by restricting the language on
which inference is based. This typically gives rise to an abstract structure: in
the case of the All fragment, a preorder; for All with complements, an algebraic
structure with complements. Where this structure makes sense and promises to
be useful in more general types, and especially where there is interaction between
the structures of different types, it is reasonable to look at higher-order versions
of these systems. I have explained how we can view both the Monotonicity
Calculus and the Exclusion Calculus through this lens, in such a way as to
facilitate new results of independent interest. I submit that there is much more
to be explored and gained in this connection.

9 Incidentally, van Eijck (1985) has proven every valid syllogism can be obtained by
a simple transformation of Barbara, thus showing All is in some sense all one needs
for the classical syllogism, provided we add enough other machinery.
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Appendix

In this Appendix we sketch the proof of the following theorem.

Theorem 1 (Completeness of C1). Γ �c S if and only if Γ � S.

The soundness direction is by induction on length of proofs. Note, however,
that there are many cases to check for each rule schema, since A,B,C can be
a variable or a complemented variable in each case. In all, there are eighteen
distinct rule instances to verify.

We prove completeness of C1 via a kind of canonical model construction.
The proof here is a variant on one from Moss (2010b) for a richer language
including the quantifier Some as well. The proof in our case is simpler, but does
not obviously follow from Moss’ result, so we give it here. The strategy closely
follows Moss’ exposition otherwise. First note the following fact about C1:

{A⇒ B,A⇒ B′} �c A⇒ A′ (1)

The proof is simple:

A⇒ B
A⇒ B′

(IV)
B ⇒ A′

(II)
A⇒ A′

As it happens, the standard canonical term model built from the syntax of L1
all,′

is not in general a boolean lattice. But it can be represented as one, in an
appropriate sense for completeness. In that direction, following Moss (2010b),
we define a new type of algebraic structure, familiar also from quantum logic:

Definition 1. An orthoposet is an ordered structure P = (P,≤P , 0P ,
′):

1. (P,≤P ) is a partial order ;
2. 0 ≤P p for all p ∈ P ;
3. The operation ′ defines a function from P to P , such that:

(a) p ≤P q iff q′ ≤P p′,
(b) p′′ = p, and
(c) if p ≤P q and p ≤P q′, then p = 0.

The following lemma shows that every orthoposet can be represented by a
boolean lattice in an appropriate sense (see Moss 2010b for a proof and a number
of citations to other proofs):

Lemma 2. For any orthoposet P, there is a boolean lattice D and a map μ :
P→ D such that μ(p′) = μ(p)′, and p ≤P q iff μ(p) ≤D μ(q).

Proof (Sketch). Given P , define a point S ⊆ P to be an ≤P -upward closed set
containing exactly one of p or p′ for each p ∈ P . Let S be the set of all points,
and define D = (℘(S),⊆). This defines an orthoposet, and in fact a boolean
lattice. The map is defined: μ(p) = {S ∈ S : p ∈ S}. Checking that μ has the
requisite properties is then routine.
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We now proceed to define a kind of ‘canonical orthoposet’ V from Γ , which
via Lemma 2 we will map to a canonical boolean model.

We first define the set V of points. For each A ∈ CVar, let

[A] = {B : Γ �c A⇒ B and Γ �c B ⇒ A} .

If there is some A such that Γ �c A ⇒ A′, then let 0 = [A] and 1 = [A′].
Otherwise, add new elements 0 and 1. Let

V = {[A] : A ∈ CVal} ∪ {0, 1} .

Define a relation ≤V such that [A] ≤V [B] iff Γ �c A ⇒ B, and 0 ≤V v ≤V 1
for all v ∈ V . Note that if Γ �c A⇒ A′, then by rule (III), Γ �c A⇒ B for any
B; hence [A] ≤V v for any v. The relation ≤V is thus well-defined.

Define [A]′ to be [X ′] if A = X , and [A′] = [X ] if A = X ′. Stipulate that
0′ = 1 and 1′ = 0. Again, if Γ �c A ⇒ A′, then since Γ �c A ⇒ B for any B,
also Γ �c B′ ⇒ A for any B, by rule (IV). Hence, ′ is well defined.

Name this structure V = (V,≤V , 0,
′ ). We claim V is an orthoposet:

1. That ≤V is a partial order follows from rules (I) and (II) ;
2. We already verified that 0 ≤V [B] for any B ;
3. For the operation ′, we have:

[A] ≤V [B]′ �� Γ �c A⇒ B′

(IV)
�� Γ �c B ⇒ A′

�� [B] ≤V [A]′

which verifies property (a) of Def. 1. Property (b) follows by definition, and
property (c) follows by Eq. (1) above:

[A] ≤V [B] and [A] ≤V [B]′ � Γ �c A⇒ B and Γ �c A⇒ B′

(1)
� Γ �c A⇒ A′

� [A] = 0 .

By Lemma 2, there is some boolean lattice D and map μ : V→ D, s.t.

Γ �c A⇒ B �� [A] ≤V [B]

�� μ([A]) ≤D μ([B]) .

Defining [[·]]D : L1
all,′ → D so that [[X]]D = μ([X ]) and [[X ′]]D = μ([X ])′,

(D, [[·]]) � A⇒ B �� Γ �c A⇒ B ,

for all A and B, from which completeness follows.
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Abstract. The semantics of determiner phrases, be they definite de-
scriptions, indefinite descriptions or quantified noun phrases, is often as-
sumed to be a fully solved question: common nouns are properties, and
determiners are generalised quantifiers that apply to two predicates: the
property corresponding to the common noun and the one corresponding
to the verb phrase.

We first present a criticism of this standard view. Firstly, the semantics
of determiners does not follow the syntactical structure of the sentence.
Secondly the standard interpretation of the indefinite article cannot ac-
count for nominal sentences. Thirdly, the standard viewmisses the linguis-
tic asymmetry between the two properties of a generalised quantifier.

In the sequel, we propose a treatment of determiners and quantifiers
as Hilbert terms in a richly typed system that we initially developed for
lexical semantics, using amany sorted logic for semantical representations.
We present this semantical framework called the Montagovian generative
lexicon and show how these terms better match the syntactical structure
and avoid the aforementioned problems of the standard approach.

Hilbert terms are rather different from choice functions in that there
is one polymorphic operator and not one operator per formula. They
also open an intriguing connection between the logic for meaning as-
sembly, the typed lambda calculus handling compositionality and the
many-sorted logic for semantical representations. Furthermore epsilon
terms naturally introduce type-judgements and confirm the claim that
type judgments are a form of presupposition.

1 Presentation

Determiners and quantifiers are an important ingredient of (computational) se-
mantics, at least of the part of semantics known as formal semantics or com-
positional semantics, that is concerned with what is asserted, especially by a
sentence: such a semantical analysis tells “who does what” in a sentence.

Researchers in formal linguistics, must be aware that semantics also includes
other aspects like lexical semantics, distributional semantics, vectors of words
for which there exist far more efficient natural language processing tools. These
aspects of semantics rather concern what a text speaks about.

G. Morrill et al. (Eds.): Formal Grammar 2014, LNCS 8612, pp. 15–33, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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Of course both aspect are needed to understand the meaning, both for our
human use of language and for the design of applications in natural language
processing, like question answering by web searching. For instance, if one wants
to know which guitar(s) played a rock star during a concert, the negation makes
it difficult to extract the wanted information:

(1) a. Question: Which guitars did he play at the concert.

b. Funny he didn’t play a Fender at that concert at least for one song.
(web)

The standard treatment of determiners and quantifiers is to view them as
generalised quantifiers, i.e. as functions of two predicates. In this paper we ar-
gue that although such an account “works” it is not really satisfactory mainly
because it does not provide determiners with a proper logical form that can be
interpreted on its own (as in the nominal phrase 2, or when we just hear the
indefinite noun phrase of example 3) that would follow syntax (in example 4
generalised quantifiers require a predicate “Keith sang ” which does not corre-
spond to any constituent)— furthermore in the case of indefinite determiners it
introduces a misleading symmetry between topic (theme) and comment (rheme)
as example 5 shows: these sentences do not speak about the same group.

(2) Cars, cars, cars....1

(3) a. Some philosophy students ....

b. We already have some image(s) in mind.

c. Some philosophy students are ”free spirits” who travel, read, and
seek to live a non-traditional life.

(4) Keith sang a song I never heard of.

(5) a. Some professors are smokers.

b. Some smokers are professors.

2 The Standard Logical Form of Determiners

The idea of Montague semantics is to map sentences to formulae of higher order
logic (their logical forms) in a way which implements the Fregean principle of
compositionality: typed functions (lambda terms) associated with words in the
lexicon are composed according to the syntax. The glue logic is simply typed
lambda calculus, over two types, e for entities or individuals and t for proposi-
tions (that may there after be endowed with a truth value).

These typed lambda terms use two kinds of constants: connectives and quan-
tifiers on the one hand and individual constants and n-ary predicates for the
precise language to be described — for instance a binary predicate like delighted
has the type e→ e→ t.

A small example goes as follows. Assume the syntax says that the structure
of the sentence ”Keith sang a song.” is

1 Unless otherwise stated examples are from the Web.
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Constant Type

∃ (e → t) → t
∀ (e → t) → t

Constant Type

not t → t
and t → (t → t)
or t → (t → t)

implies t → (t → t)

Constant Type

played , sang e → (e → t)
song (e → t)
Keith e

Fig. 1. Logical constants and language constants

(a (song))(λy Keith sang y)

where the function is always the term on the left. On the semantical side, this
means that “sang” is applied first to the property of “being a song” and to the
property “was sung by Keith”. If the semantical terms are as in the lexicon in
Figure 2, placing the semantical terms in place of the words yields a large λ-term
that can be reduced:((

λP e→t λQe→t (∃(e→t)→t (λze(&(P z)(Q z))))

(λue.song(u))
)
(λye(sange→t Keith)y)

)
↓ β

λP e→t λQe→t (∃(e→t)→t (λZe(&((λue.song(u)) z)
((λye(sange→t Keith) y) z))))

↓ β(
∃(e→t)→t (λye(&(songe→t y)((sange→(e→t) Keith) y)))

)
This λ-term of type t that can be called the logical form of the sentence,

represents the following formula of predicate calculus (admittedly more pleasant
to read):

∃y. (song(y) & sang(Keith, y))

Fig. 2. A simple semantical lexicon

word semantical type u∗

semantics : λ-term of type u∗

xv the variable or constant x is of type v

a (e → t) → ((e → t) → t)

λP e→t λQe→t (∃(e→t)→t (λze(&t→(t→t)(P z)(Q z))))

song e → t
λxe(songe→t x)

sang e → (e → t)

λye λxe ((sange→(e→t) x) y)

Keith e
Keith
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This algorithm actually works because of the following result:
There is a one to one correspondence between:

– the first order formulae over a first (respectively higher order) order language
L

– the closed normal lambda terms of type t with constants that correspond to
connectives, quantifiers and to the constants, functions and predicates in L.

The computation of the semantics of a sentence boils down to complete the
following steps (see e.g. [22, Chapter 3]):

1. Parse the sentence, and turn the syntactic structure into a (linear) lambda
term of type t (at least a functor argument structure, that is a binary tree
with words as leafs and internal nodes specifying which subtree applies to the
other one). This step is much easier when syntax is handled with categorial
grammars.

2. Insert at each word’s place the corresponding semantical lambda term pro-
vided by the lexicon.

3. Beta reduce this lambda term, the normal form being a logical formula, the
semantical representation of the sentence.

2.1 Some Syntactical Inadequacies of the Standard Semantics of
Determiners

As noted in the introduction, the standard approach to determiners that we
just recalled, is not fully satisfactory, and there are at least three reasons to be
disappointed by the standard semantical analysis.

A first point is that when one hears a determiner phrase, he does not need
a complete sentence nor the main clause predicate to interpret the determiner
phrase. This is easily observed from introspection: the simple utterance of a
determiner phrase already suggests some interpretations, and possible referents,
and references as individuals (sets of individuals, generic individual). It can also
be observed in corpora: novels do include sentences without verbs. This can be
observed in examples 2, 3 above or in the following examples: when one reads
“some students”, he has an idea, an image in mind, as well as when he reads
“What a thrill” or “an onion”.

(6) Some students do not participate in group experiments or projects.

(7) What a thrill — My thumb instead of an onion. (Sylvia Plath)

A second point is that this formalisation misses the asymmetry between the
noun and the main clause predicate in existential statements. This asymmetry
is the asymmetry between theme (or topic) and rheme (or comment) vanishes
because both are assumed to be predicates and the indefinite determiner simply
asserts that something has both properties, and this “and” is commutative. Even
when both statements are felicitous, their meanings do differ: the sentence and
its mirror image do not speak about the same class of objects. In the first case 8
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one sentence can be said when speaking about universities or education and the
next one when speaking about a company. This difference is even more striking
in the example 8c: sentences like the first one can be read and heard (our example
is from Internet) while the second one or similar sentences cannot be found on
the Internet: the reason is probably that “crooks” do not really constitute a class
one wants to speak about.

(8) a. Some students are employees.

b. Some employees are students.

c. i. Some politicians are crooks.

ii. Some crooks are politicians. (no such examples on Internet)

A third drawback is that the semantical or logical structure of the sentence
does not match the syntactical structure (basically the parse tree) of the sen-
tence. In the example we gave, this is patent: no constituent, no phrase does
correspond to λx.(sang(Keith))xe. This is related to the fact that the deter-
miner or quantifier does not apply to a single predicate to form some term that
can be interpreted.

(9) a. Keith played some Beatles songs.

b. syntax (Keith (played (some (Beatles songs))))

c. semantics: (some (Beatles songs)) (λxe. Keith played x)

2.2 Quantification and Lexical Semantics Require a Many Sorted
Logic

Let us point out that this Fregean view with a single sort prevents a proper
treatment of quantification. Frege managed to express universal quantifiers (de-
terminers like “each” or “every”) and existential quantifiers like “a” or “some”
restricted to a sort, set or type A by using the following equivalences:

(10) a. ∀x ∈M P (x) ≡ ∀x (M(x)⇒ P (x))

b. ∃x ∈M P (x) ≡ ∃x (M(x)&P (x))

This treatment does not apply to other quantifiers like percentage or vague
quantifiers:

(11) a. for a third of the x ∈M P (x) �≡ ∀x (M(x)⇒ P (x))

b. for fewx ∈M P (x) ¬ ≡ ∃x (M(x)&P (x))

Furthermore, as said in the first point of the previous subsection, we would
like to have a logical form or a reference for determiner phrases, even though the
main predicate is still to come.

(12) a. The Brits

b. The Brits love Australia, more than any other country except their
own, according to an online survey for London’s Daily Telegraph.
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(13) a. Most students.

b. Most students will still be paying back loans from their university
days in their 40s and 50s.

This question is related to lexical semantics: what classes are natural, what
sorts do we quantify over, what can possibly be the comparison classes that
have not been uttered, what are the sorts of complement a verb admit, what
verbs can apply to a given sort of objects or of subjects? Our treatment of
determiner phrases takes place in a framework that we initially designed for
lexical semantics. But let us first speak about an alternative view of determiners
and quantifiers.

3 Hilbert Operators, Quantifiers, and Determiners

After the quantifier the one and unique individual such that P . . . introduced
by Russell for definite descriptions, Hilbert (with Ackerman and Bernays) inten-
sively used generic elements for quantification, the study of which culminated
in the second volume of Grundlagen der Mathematik [11]. It should be stressed
that these operators are introduced and described here with natural language
examples, which is not so common in Hilbert’s writings. We shall first present
the ε operator which recently lead to important work in linguistics in particular
with von Heusinger’s work. [5,9,10]

3.1 An Ancestor to Hilbert Operators: Russell’s Iota for Definite
Descriptions

The first step due to Russell was to denote by ιx. F the unique individual
enjoying the property F in a definite description like the first sentence below
and to remain undetermined when existence and uniqueness do not hold. [28]

(14) The present president of France was born in Rouen.

(existence and uniqueness hold)

(15) The present king of France was born in Pau.

(existence fails)

(16) The present minister was born in Barcelona.

(uniqueness fails)

Of course this operator is not handy from a logical or formal point of view
since the negation of “there exists a unique x such that P (x)” is “either no x
or more than two x enjoys ¬P”: its negation is clearly inelegant and indeed
there are no well behaved deduction rules for such an operator. However, as
observed by von Heusinger the uniqueness even when using the definite article is
not really mandatory: it should refer to a salient element in the speaker’s view,
and in many examples the definite description is neither unique nor objectively
salient, we shall come back to this point at the end of the present paper.



Typed Hilbert Epsilon Operators and the Semantics of Determiner Phrases 21

3.2 Hilbert Epsilon and Tau

From this idea, Hilbert introduced an individual existential term defined from
a formula: given a formula F (x) with a free variable x one defines the term
εx. F in which the occurrences of x in F are bound (this is the original notation,
nowadays this term is often written as εx. F ). Whenever some element, say a,
enjoys F , then the epsilon term εx. F enjoys F .

Dually, Hilbert introduced a universal generic element τx. F , which corre-
sponds to the generic elements used in mathematical proofs: to establish that a
property P holds for every integer, the proof usually starts with “Let n be an
integer, . . . ” where n has no other property than being an integer. Consquently
when this generic integer has the property, so does any integer. The τ -term
τx. F is the dual of the ε-term εx. F : τx. F enjoys the property F when every
individual does.

More formally, given a first language L (constants, variables, function sym-
bols, relation symbols, the later two with an arity) here is a precise definition
of the epsilon terms and formulae. Terms and formulae are defined by mutual
recursion:

– Any constant in L is a term.
– Any variable in L is a term.
– f(t1, . . . , tp) is a term provided each ti is a term and f is a function symbol

of arity p
– εxA is a term if A is a formula and x a variable and any free occurrence of
x in A is bound by εx

– τxA is a term if A is a formula and x a variable and any free occurrence of
x in A is bound by τx

– s = t is a formula whenever s and t are terms.
– R(t1, . . . , tn) is a formula provided each ti is a term and R is a relation

symbol of arity n
– A&B, A ∨B, A⇒ B are formulae if A and B are formulae
– ¬A is formula if A is a formula.

As the example below shows, a formula of first order logic can be recursively
translated into a formula of the epsilon calculus, without surprise. Admittedly
the epsilon translation of a usual formula may look quite complicated — at least
we are not used to them:2

(17) a. ∀x ∃y P (x, y)

b. = ∃y P (τxP (x, y), y)

c. = P (τxP (x, εyP (τxP (x, y), y)), εyP (τxP (x, y), y))

The deduction rules for τ and ε are the usual rules for quantification:

2 We shall not use such formulae as semantical representations: indeed, they are even
further away from the syntactical structure than usual first order formulae.
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– From A(x) with x generic in the proof (no free occurrence of x in any hy-
pothesis), infer A(τx. A(x))

– From B(c) infer B(εx. B(x)).

The other rules can be found by duality:

– From A(x) with x generic in the proof (no free occurrence of x in any hy-
pothesis), infer A(εx. ¬A(x))

– From B(c) infer B(τx. ¬B(x))

Hence we have:

F (τx. F (x)) ≡ ∀x.F (x)

F (εx. F (x)) ≡ ∃x. F (x)

τx.A(x) = εx.¬A(x)

Because of the latest equation due to the classical negation (∀x. P (x) ≡
¬∃x. ¬P (x)), only one of these two operators τ and ε is needed: commonly
people choose the ε operator.

This logic is known as the epsilon calculus.
Hilbert turned these symbols into a mathematically satisfying theory, since

it allows to fully describe quantification with simple rules. The first and second
epsilon theorem basically say that this is an alternative formulation of first order
logic.

First Epsilon Theorem. When inferring a formula C without the ε symbol
nor quantifiers from formulae Γ not involving the ε symbol nor quantifiers
the derivation can be done within quantifier free predicate calculus.

Second Epsilon Theorem. When inferring a formula C without the ε symbol
from formulae Γ not involving the ε symbol, the derivation can be done
within usual predicate calculus.

In this way, Hilbert provided the first correct proof of Herbrand’s theorem
(much before mistakes where found and solved by Goldfarb) and a way to prove
the consistence of Peano’s arithmetic at the same time as Gentzen did.

Later on Asser [2] and Leisenring [13] have been working on epsilon calculus in
particular for having models and completeness, and for cut-elimination. Never-
theless, as one reads on Zentralblatt math these results are misleading as well as
the posterior corrections — see in particular [4,19] and the related reviews. Only
the proof theoretical aspects of the epsilon calculus seem to have been further
investigated with some success in particular by Moser and Zach [23] and Mints
[20].3

3 While correcting these lines before printing, we just learnt that this great logician
Grigori (Grisha) Mints passed away; sincere condolences to his family, friends and
to the logic community.



Typed Hilbert Epsilon Operators and the Semantics of Determiner Phrases 23

3.3 Hilbert’s Operators in Natural Language

In Hilbert’s book the operators ε and τ are explained with natural language
examples, but a very important and obvious linguistic property is not properly
stated: the εxF has the type (both in the intuitive and in the formal sense) of a
noun phrase, and is meant to be the argument of a predicate (for instance the
subject of a verb), thus being a suppositio in the medieval sense. [14,12]

Nowadays there has been a renewed interest in the epsilon formulation of
quantification, in particular by von Heusinger. He uses a variant of the epsilon for
definite descriptions, leaving out the uniqueness of the iota operator of Russell,
one reason being that the context often determines a unique object, the most
salient one. We call it a “variant” because it is not clear whether one still has the
equivalence with ordinary existential quantification: von Heusinger constructs an
epsilon term whenever there is an expression like a man or the man but it is not
clear how one asserts that man(εx. man(x)). The distinction between ε and η is
that the former selects the most salient possible referent, while the later selects
a new one.

3.4 Hilbert’s Operators, Beyond Usual Logic

The study of epsilon operators focused on usual logic, typically first order clas-
sical logic within this extended language. Epsilon and the epsilon substitution
method were part of Hilbert’s program to provide finistic consistency proofs for
arithmetic (and even analysis, using second order epsilon). Hence, although by
that time people were probably aware that it goes beyond usual first order, none
spoke about this extension.

Here is an extremely simple example of a formula of the epsilon calculus
without an equivalent in first order logic, that von Heusinger and us use for
natural language semantics as explained below:

F = P (εxQ(x))

This formula, according to the aforementioned epsilon rules, entails G =
P (εxP (x)) (i.e. ∃x. P (x)), but it does not entails H = Q(εxQ(x)) (i.e. ∃x. Q(x)).
Of course, if one further assumes H , then the formulae F and H entail, accord-
ing to epsilon rules, the P&Q(εx. P&Q) that is ∃x. P&Q(x) = ∃x.P (x)&Q(x).
But there is no first order formula equivalent to this simple epsilon formula F .

4 Determiners in the Montagovian Generative Lexicon

The standard view in Montague semantics is in perfect accordance with Frege’s
view of entities: a single universe gathers all entities. Hence a definite or indefinite
determiner picks one element from this single sorted universe and a quantifier
ranges over this single universe. As said in subsections 2.2 and 2.1, this view of
quantification does not really match our linguistic competence nor our cognitive
abilities.
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This question is related to another part of semantics, namely lexical semantics.
If one wants to integrate some lexical issues in a compositional framework, one
needs sorts or many base types for entities, in order to specify what should be
the nature of the arguments of a given word. This question is related to the type
of the semantical constants: what should be the domain of a predicate, what
are the relations between these logical constants? Observe, for instance that in
Montague semantics a verb phrase and a common noun have the very same
type e→ t, that events are standard entities, and that there is no way to have
privileged relation between predicates and arguments: for instance a “book” can
be “enjoyed, disliked, read, written, printed, bound, burnt, lost,...”

As the two questions are linked, we here present a compositional framework
for semantics that accounts for both lexical issues and for the present question
of determiners and quantifiers.

4.1 The Montagovian Generative Lexicon

As observed above, it would be more accurate to have many individual base
types rather than just e. Thus, the application of a predicate to an argument
may only happen when it makes sense. Some sentences should be ruled out
like “The chair barks.” or “Their five is running.”, and this is quite easy when
there are several types for individuals: the lexicon can specify “barks” and “is
running” only apply to individuals of type “animal”. Nevertheless, such a type
system needs to incorporate some flexibility. Indeed, in the context of a football
match, the second sentence makes sense: “their five” can be the player wearing
the 5 shirt and who, being “human”, is an “animal” that can “run”.

Our system is called the Montagovian Generative Lexicon or ΛTyn. Its lambda
terms extend the simply typed ones of Montague semantics above. Indeed, we
use second order lambda terms from Girard’s system F (1971) [8].

The types of ΛTynare defined as follows:

– Constants types ei and t, as well as type variables α, β, . . . are types.
– Πα. T is a type whenever T is a type and α a type variable . The type

variable may or may not occur in the type T .
– T1 → T2 is a type whenever T1 and T2 are types.

The terms of ΛTyn, are defined as follows:

– A variable of type T i.e. x : T or xT is a term, and there are countably many
variables of each type.

– In each type, there can be a countable set of constants of this type, and a
constant of type T is a term of type T . Such constants are needed for logical
operations and for the logical language (predicates, individuals, etc.).

– (f t) is a term of type U whenever t is a term of type T and f a term of
type T → U .

– λxT . τ is a term of type T → U whenever x is variable of type T , and t a
term of type U .
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– t{U} is a term of type T [U/α] whenever τ is a term of type Πα. T , and U
is a type.

– Λα.t is a term of type Πα.T whenever α is a type variable, and t : T a
term without any free occurrence of the type variable α in the type of a free
variable of t.

The later restriction is the usual one on the proof rule for quantification in
propositional logic: one should not conclude that F [p] holds for any proposition
p when assuming G[p] — i.e. having a free hypothesis of type G[p].

The reduction of the terms in system F or its specialised version ΛTyn is
defined by the two following reduction schemes that resemble each other:

– (λx.τ)u reduces to τ [u/x] (usual β reduction).
– (Λα.τ){U} reduces to τ [U/α] (remember that α and U are types).

As [7,8] showed reduction is strongly normalising and confluent every term
of every type admits a unique normal form which is reached no matter how one
proceeds. This has a good consequence for us, see e.g. [22, Chapter 3]:

ΛTyn terms as formulae of a many-sorted logic If the predicates,
the constants and the logical connectives and quantifiers are the ones
from a many sorted logic of order n (possibly n = ω) then the closed
normal terms of ΛTyn of type t unambiguously correspond to many sorted
formulae of order n.

Polymorphism allows a factored treatment of phenomena that treat uniformly
families of types and terms. An interesting example is the polymorphic conjunc-
tion for copredication: whenever an object x of type ξ can be viewed both:

– as an object of type α (via a term f0 : ξ → α) to which a property Pα→t

applies
– and as an object of type β to which a property Qβ→t applies (via a term
g0 : ξ → β),

the fact that x enjoys P&Q can be expressed by the unique polymorphic term
(see explanation in figure 3):

(18) &Π = ΛαΛβλPα→tλQβ→tΛξλxξλf ξ→αλgξ→β .
(&t→t→t (P (f x))(Q (g x)))

The lexicon provides each word with:

– A main λ-term of ΛTyn, the “usual one” specifying the argument structure
of the word.

– A finite number of λ-terms of ΛTyn (possibly none) that implement meaning
transfers. Each meaning transfer is declared in the lexicon to be flexible (f)
or rigid (r).

Let us see how such a lexicon works. When a predication requires a type ψ
(e.g. Place) while its argument is of type σ (e.g. Town) the optional terms in the
lexicon can be used to “convert” a Town into a Place.
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Fig. 3. Polymorphic and: P (f(x))&Q(g(x)) [x:ξ, f :ξ → α, g:ξ → β]

(19) a. Liverpool is spread out.

b. This sentence leads to a type mismatch spread outPl→t(lplT )), since
“spread out” applies to “places” (type Pl) and not to “towns” as
“Liverpool”. This type conflict is solved using the optional term
tT→Pl
3 provided by the entry for “Liverpool”, which turns a town
(T ) into a place (Pl) spread outPl→t(tT→Pl

3 lplT )) — a single op-
tional term is used, the (f)/ (r)difference is useless.

(20) a. Liverpool is spread out and voted (last Sunday).

b. In this example, the fact that “Liverpool” is “spread out” is derived
as previously, and the fact “Liverpool” “voted” is obtained from the
transformation of the town into people, which can vote. The two can
be conjoined by the polymorphic “and” defined above in 18 (&Π)
because these transformations are flexible: one can use both of them.
We can make this precise using only the rules of our typed calculus.
The syntax yields the predicate (&Π(is spread out)Pl→t(voted)P→t)

Fig. 4. A sample lexicon

word principal λ-term optional λ-terms rigid/flexible

Liverpool lplT IdT : T → T (f)
t1 : T → F (r)
t2 : T → P (f)
t3 : T → P l (f)

spread out spread out : P l → t

voted voted : P → t

won won : F → t

where the base types are defined as follows: T town
P people
P l place
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and consequently the type variables should be instantiated by α :=
Pl and β := P and the exact term is

&Π{Pl}{P}(is spread out)Pl→t(voted)P→t

which reduces to:

Λξλxξ λf ξ→αλgξ→β(&t→t)→t (is spread out (f x))(voted (g x))).

Syntax also says this term is applied to “Liverpool”. which forces the
instantiation ξ := T and the term corresponding to the sentence is
after some reduction steps,
λfT→PlλgT→P (& (is spread out (f lplT ))(voted (g lplT )))). For-
tunately the optional λ-terms t2 : T → P and t3 : T → Pl are
provided by the lexicon, and they can both be used, since none of
them is rigid. Thus we obtain, as expected
(& (is spread outPl→t (tT→Pl

3 lplT ))(votedPl→t (tT→P
2 lplT )))

(21) a. # Liverpool voted and won (last Sunday).

b. This third and last example is rejected as expected. Indeed, the trans-
formation of the town into a football club prevents any other trans-
formation (even the identity) to be used with the polymorphic “and”
(&Π) defined above in 18. We obtain the same term as above, with
won instead of is spread out:
λfT→PlλgT→P (& (won (f lplT ))(voted (g lplT )))) and the lexicon
provides the two morphisms that would solve the type conflict, but
one of them is rigid, i.e. we can solely use this one. Consequently no
semantics can be derived from this sentence, which is semantically
invalid.

The difference between our system and those of [15,1] does not come down
to the type systems, which are quite similar, but in the architecture which is,
in our case, rather word driven than type driven. The optional morphisms are
anchored in the words, and do not derive from the types. This is supported in
our opinion by the fact that some words with the very same ontological type
(like French nouns “classe” and “promotion”, that are groups of students in
the context of teaching) may undergo different coercions (only the first one can
mean a classroom). This rather lexicalist view goes well with the present work
that proposes to have specific entries for deverbals, that are derived from the
verb entry but not automatically.

This system has been implemented as an extension to the Grail parser [21],
with λ-DRT instead of formulae as λ-terms. It works fine once the semantical
lexicon has been typeset.4

We already explored some of the compositional properties (quantifiers, plurals
and generic elements,....) of our Montagovian generative lexicon as well as some
of the lexical issues (meaning transfers, copredication, fictive motion, deverbals,
... ) [3,27,25,26,17,24].

4 Syntactical categories are learnt from annotated corpora, but semantical typed λ-
terms cannot yet be learnt, as discussed in the conclusion.
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4.2 Determiners as Typed Epsilon Operators

As we saw there are many base types that are sorts of the many sorted logic and
even more complex types over which one may quantify, a fairly natural semantics
for determiners is to pick one element in its sort.

For instance, consider the indefinite determiner “a”. It should be seen as
an operator acting on a noun phrase without determiners that outputs some
individual. In order to make things correct and precise, consider the noun phrase,
“a cat” where “a” acts upon “cats”, and think about the possible types of “a”,
which clearly it depend on what “cat” is. Is cat a type or a property satisfied by
“cats” among a larger class or type?

1. If “cat” is a type the constant for “a” should be of type Πα. α.
2. If “cat” is a property, say of a larger type “animal”, then this constant

should take a property of animals of type animal→ t and yield a cat. Now
assume that the property is a more complex property P “cat which lives
nearby”, what should “a” do? It should apply to a property of animals like
P and yields an entity x that enjoys P . Because x enjoys P its type should
be “animal”. In this case the type of the constant corresponding to P should
be Πα. (α → t) → α, hence the type does not guarantee by itself that x
enjoys P and consequently a presupposition P (a cat) has to be added.

We deliberately chose to use option 2 and only this one. Firstly, we cannot
avoid this case, because not every property that a determiner may apply to can
be assumed to be a type, there would be too many of them. Secondly, the first
option can be encoded within the second option. Indeed if there is a type cat one
can consider a predicate “being a cat”. Indeed, unsurprisingly, the semantics of
predicates and the one of quantifiers and determiners are closely related.

Usually, a determiner or a quantifier applies to one (“everyone”) or two (“a”)
predicates and yields a proposition. A Hilbert operator combines with one pred-
icate and yields a term, an entity. In a many sorted and typed system like ΛTyn
what is the type of a predicate? The standard type for a predicate is e → t,
but given the many sorts ei we could have predicates that apply to other entity
type than e. Is “cat” a property of individuals of type “animal” if such a type
exists or is it a property that may apply to any entity, and which is constantly
false outside of the type “animal”? If the domain of a predicate is ei and not e
(the type of all entities), a predicate P ei→t canonically extends to a predicate

P
e→t

by saying it never holds outside of ei. Conversely a property like cat whose
domain is some ei (e.g “animal”) can be restricted to any subtype of ei, but in
case the subtype of ei does not include all “cats” there dis no way to recover
the initial predicate “cat” that applies to animals.

Now that we have a proper representation of a predicate in the type system,
one may wonder how a type can be reflected as a predicate. For instance what
should be the type of a predicate associated with a type, like “being a cat” if
“cat” is a type. Natural domains for the such a predicate could be “animals”,
“mammals”, “felines”,. . . As it is difficult to chose, let us decide that the domain
of a given predicate associated with a type always is the largest, the collection of
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all possible entities e which can be restricted as indicated above. Hence “being
of type α” that we write α̂ is of type e→ t

So far we have not said what are the base type which intervenes in represent-
ing predicates and quantifiers. We need several of them, to express selectional
restrictions . Asher [1] uses a dozen of ontological types (events, physical ob-
jects, human beings, information, etc.) Luo [16] suggests using a flat ontology
with common nouns (there are thousands of them) as base types. With Mery we
suggested to consider classifiers (100–200) as in languages that have classifiers
(sign language, Chinese, Japanese) [18].

As said above the lexicon associate the constant ε of type Πα. (α → t)→ α
to the indefinite article — that is an Hilbert/von Heusinger ε adapted to the
typed case. Hence the indefinite article is a polymorphic ε that specialises to a
type/sort {ei} and applies to a predicate P of type ei → t yielding an entity of
type ei. Let us consider an extremely simple example: (ani stands for the type
of animals):

(22) a. A cat sleeps (under your car).

b. term for “a”: ε : Πα. ((α→ t)→ α)

c. term for “sleep”: (λx. sleepsani→t(x))

d. term for “cat”: (λx. catani→t(x))

e. syntax: ((a→ cat)← sleeps)

f. semantics: sleeps(a cat)

g. (λx. sleepsani→t(x))(εΠα. ((α→t)→α)catani→t)

h. (λx. sleeps(x))(εΠα. ((α→t)→α){ani}catani→t)

i. sleepsani→t(εΠα. ((α→t)→α){ani}catani→t) : t Logical Form

j. cat(εΠα. ((α→t)→α){ani}catani→t) : t Presupposition

In order to apply “a” to “cat” a predicate of type ani → t the ε must be
specialised to α = ani. The verb “sleeps” can apply to result of “a cat” which is
of type ani, and the final term (22h) is of type t as expected — as explained in
section provided there actually exists a cat this epsilon formula with out any first
order equivalent (see subsection 3.4) can be understood as ∃x : ani sleep(x).
Our analysis ought to be completed: nothing tells us that cat(εcat) (∃x. cat(x)),
i.e. that a “cat” actually exists ... and this needs to be added as a presupposition.
In fact, such a presupposition is added as soon as a determiner or an existential
quantifier appears: when an utterance “a cat” appears, the existence of the
corresponding entity ought to be asserted.

We use the word “presupposition” with the same sense as Asher [1] when he
calls “presupposition” a selectional restriction: a verb like “sleeps” presupposes
that its subject is an “animal”. This really is some sort of presupposition, indeed
it is quite difficult to deny a type judgement, both formally and linguistically:

– Formally: To refute (a:A) is not easy. Indeed the complement of a type is
not a type, i.e. the negation of a:A is not a:¬A — as opposed to Ã(x) whose
negation is easily formulated as ¬Ã(x)
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– Linguistically: If one says “Rex is sleeping in the garden.” the reply: — “No,
Rex is not an animal”, that refutes a typing judgment (Rex:ani) is difficult
to utter out of the blue and needs to be better introduced and justified. On
the other hand it is easy to utter an answer that refutes the proposition: —
“No, Rex is not sleeping, he just left.”

4.3 A Rather Satisfying Account of Determiners

We started with three objections to the standard account of determiners in
Montague semantics. We proposed a model that avoids those three problems:

1. Epsilon are individuals that can be interpreted as such (even though their
interpretation does not ensure completeness of the epsilon calculus).

2. With epsilon terms, the syntactical structure and the structure of the logical
form match.

3. For an indefinite determiner phrase, which corresponds to an existential
statement, there is not anymore an irrelevant symmetry between the noun
(topic, theme) and the verb phrase (comment, rheme).

As in von Heusinger’s work, one can give a similar account of definite descrip-
tions, the main difference being at the interpretation level: the definite descrip-
tion should be interpreted as the most salient entity in the context. This entity
is usually introduced by an indefinite description, that is another epsilon term
defined from the same property (from the same logical formulae). The difference
between a definite description and an indefinite determiner phrase is that the
former one refers to an existing discourse referent while the later one introduces
a new discourse referent.

This also provides a natural account of Evan’s E-type pronoun [6]: the seman-
tics of the pronoun “he” in the example below can be copied from its antecedent
to obtain the semantics of these two sentences.

(23) A man entered the conference hall. The man sat nearby the window.

(24) A man1 entered the conference hall and sat nearby the window. A man2
(�= man1) told him that he just missed two slides.

(25) A man entered the conference hall. He sat nearby the window.

Universal quantification can be treated just like indefinite determiners. A
universally quantified NP corresponds to the term τx.P (x) = εx.¬(P (x)) (c.f.
section 3). The τ -terms are actually much easier to interpret than the ε-terms:
it’s a generic entity with respect to property P . Furthermore one can introduce
operators for generalised and vague quantifiers like “most”, “few”, “a third of ”
etc.

The approach to existential quantification is rather similar to choice functions
that have been used in formal semantics, especially in Steedman recent book
[29], who also enjoy the three properties above. There are nevertheless some
differences:
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– The syntax, the definition of epsilon terms, is simple. I think different choice
functions are needed for all the formulae, while a single epsilon is enough
(and possibly already too much).

– Universal quantification can be treated un just the same way with τx.P (x) =
εx.¬(P (x)) and even generalised and vague quantifiers can be treated that
way.

Of course the challenging difficulty of epsilon is to find the proper notion of
model which would give a completeness theorem for all the formulae including
the one that do not have a first order equivalent.

5 Conclusion

This work is an investigation of the outcomes of the Montagovian generative lex-
icon, which was designed for lexical semantics, in formal semantics. The many
sorted compositional framework seems to be a rich setting to explore some new
direction like a typed and richer view of epsilon terms as the semantics of deter-
miner phrases.

We did not elaborate on scope issues: using freely the epsilon and tau operators
is a form of underspecification. It involves formulae that are not part of first order
logic, like: R(εxP (x), τzQ(z)).

As we showed here, this refinement of Montague semantics draws intriguing
connections between type theory — say a judgement a : A — and many sorted
logic — a formula Ã(a): we hope to understand better those issues in future
work.

As far as quantification is concerned, we would like to better understand
formulae of the epsilon calculus that do not have any equivalent in usual logic
and any proper notion of model, complete if possible, would help a lot.

We presently are doing psycholinguistic experiments to see how do we natu-
rally interpret determiner phrases, by confronting sentence to pictures in which
they can be true or not, measuring reaction time and recording eye tracking.
This will possibly confirm or refute the soundness of some cognitive arguments.

The possibly to model with Hilbert operators generalised quantifiers like “a
third of ” and vague quantifiers like “many” if of course very appealing, and
we already made some advances in this direction. [25] Nevertheless we should
not be too ambitious: basic epsilon terms already goes beyond usual first order
logic, and although they do have deduction rules they lack proper models. So the
situation is probably much more complicated with Hilbert terms for generalised
quantifiers, which do not even have proper deductions rules. Hence such terms are
a natural and appealing but mathematically difficult approach to quantification
related to the semantics of determiner phrases.

Acknowledgements. Thanks to the anonymous colleagues who provided some
comments on this paper and to Michele Abrusci, Nicholas Asher, Francis Cor-
blin, Ulrich Kohlenbach, Zhaohui Luo, Richard Moot, Fabio Pasquali for helpful
discussions.
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Abstract. The behaviour of adverbs and adjectives has qualities of both
ordinary selection and something else, something unique to modifiers.
This makes them difficult to model. Modifiers are generally optional and
transparent to selection while arguments are required and driven by se-
lection. Cinque [4] proposes that adverbs, functional heads, and descrip-
tive adjectives are underlyingly uniformly ordered across languages and
models them by ordinary Merge or selection. Such a model captures only
the ordering restrictions on these morphemes; it fails to capture their op-
tionality and transparency to selection. I propose a model of adjunction
with a separate Adjoin function that allows the derivation to keep track
of both the true head of the phrase and the place in the Cinque hierar-
chy of the modifier, preventing inverted modifier orders in the absence
of Move.

Keywords: adjoin, minimalist grammars, adjectives, adverbs, functional
projections, ordering, optionality.

1 Introduction

Adjuncts are optional, meaning the sentence is grammatical without them. For
example, in (1-a), red is optional. They are transparent to selection in that the
selector seems to select for the features of the head, not those of the intervening
adjunct. For example, in (1-b), the gender of boek ‘book’ is neuter. The interven-
ing adjective does not have gender agreement, so het selects boek for its gender,
regardless of the intervening adjunct.

(1) a. The (red) rose Optionality
b. Het

the.neu
mooi-e
beautiful-det

boek
book

‘The beautiful book’ (Dutch) Transparency

Many languages have a default order for adjuncts, with unmarked intonation
and without special scopal meaning. For example, English has ordered adjectives.

� Many thanks to Ed Stabler, my dissertation committee chair, as well as to the rest of
my committee (Ed Keenan, Martin Monti, and Carson Schutze). Thank you also to
Thomas Graf for our MG discussions, UCLA syntax/semantics seminar, audiences
at MoL13 and NWLC 2013, and of course to three very helpful anonymous reviewers.

G. Morrill et al. (Eds.): Formal Grammar 2014, LNCS 8612, pp. 34–51, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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(2) a. Wear the enormous ugly green hat
Wear the hat that is enormous, ugly, and green

b. #Wear the ugly enormous green hat
Of your enormous green hats, wear the ugly one.

This paper proposes a minimalist model of ordered adjuncts, using a new
function adjoin that has access to sets of adjuncts for each category and hierarchy
levels of adjuncts.

2 Minimalist Grammars

I formulate my model as a variant of Minimalist Grammars (MGs), which are
Stabler’s [14] formalisation of Chomsky’s [3] notion of feature-driven derivations
using the functions Merge and Move. MGs are mildly context-sensitive, putting
them in the right general class for human language grammars. They are also
simple and intuitive to work with.

At the heart of MGs is a function that takes two structures and puts them
together. I will give derived structures as strings as Keenan & Stabler’s [10]
grammar would generate them.1

Definition 1. A Minimalist Grammar is a five-tuple G = 〈Σ, sel, lic,
Lex ,M〉. Σ is the alphabet. sel∪lic are the base features. Let F={+f,−f,=X, X|f ∈
lic, X ∈ sel} be the features. Lex ⊆ Σ×F ∗, andM is the set of operations Merge
and Move. The language LG is the closure of Lex under M . A set C ⊆ F of
designated features can be added; these are the types of complete sentences.

Minimalist Grammars are feature-driven, meaning features of lexical items
determine which operations can occur and when. There are two finite sets of fea-
tures, selectional features sel which drive the operation Merge and licensing
features lic which drive Move. Merge puts two derived structures together;
Move operates on the already built structure. Each feature has a positive and
negative version. Positive sel and lic features are =X and +f respectively, and
negatives are X and -f. Intuitively, negative sel features are the categories of
lexical items. Merge and Move are defined over expressions: sequences of pairs
〈derived structure, feature stack〉. The first pair can be thought of as the “main”
structure being built; the remaining are waiting to move.

1 Keenan & Stabler’s grammar also incorporates an additional element: lexical items
are triples of string, features, and lexical status, which allows derivation of Spec-
Head-Complement order. I will leave this out for simplicity, as it is not really relevant
here, as our interest is in spec/adjunct placement, which will always be on the left.
For convenience of English reading, I will give sentences in head-spec-complement
order, but the formal definition I give here always puts the selected on the left and
the selector on the right.
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An MG essentially works as follows: Merge takes two expressions and com-
bines them into one if the first structure displays =X and the second X for some
X ∈ sel. The X features are deleted, after which the second structure may still
have features remaining, meaning the second structure is going to move. It is
stored separately by the derivation until the matching positive licensing feature
comes up later in the derivation, when the moving structure is combined again;
this is Move. Move also carries the requirement that for each f∈lic there be
at most one structure waiting to move. This is the shortest move constraint
(SMC).2

Definition 2 (Merge). For α, β sequences of negative lic features, s, t derived
structures, mvrss,t expressions:

3

Merge(s : =Xα ::mvrss, t : Xβ::mvrst) =

{
ts : α :: mvrss ·mvrst if β = ε

(s : α) :: (t : β) :: mvrss ·mvrst if β 	= ε

Definition 3 (Move). For α, β, γ sequences of negative lic features, s, t derived
structures, mvrs an expression, suppose ∃!〈t, β〉 ∈ mvrs such that β = -fγ. Then:

Move(s :+fα ::mvrs) =

{
ts : α :: mvrs if γ = ε

s : α :: t : γ :: mvrs) if γ �= ε

In this article I will make use of derivation trees, which are trees describing
the derivation. They may also be annotated: in addition to the name of func-
tion, I (redundantly) include for clarity the derived expressions in the form of
strings and features. For example, figure 1 shows derivation trees (annotated and
unannotated) of the wolf with feature D.

Merge
the wolf:D

the:=ND wolf:N

Merge

the:=ND wolf:N

Fig. 1. Annotated and unannotated derivation trees

2 The SMC is based on economy arguments in the linguistic literature [3], but it is also
crucial for a type of finiteness: the valid derivation trees of an MG form a regular
tree language [11]. The number of possible movers must be finite for the automaton
to be finite-state. The SMC could also be modified to allow up to a particular (finite)
number of movers for each f∈lic.

3 :: adds an element to a list; · appends two lists.
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Move
Who left :C

Merge
left :+whC,who:-wh

ε::=V+whC Merge
left :V,who:-wh

left ::=DV who::D-wh

Fig. 2. Example: Who left?

3 Cartography

Despite their optionality, linguists, most famously Cinque [4], argue that certain
adjuncts have a default order that is consistent across languages. The phenomena
this model is designed to account for are modifiers and other apparently optional
projections such as the following.

(3) a. The small ancient triangular green Irish pagan metal artifact was lost.
b. *The metal green small artifact was lost. Adjectives
c. Frankly, John probably once usually arrived early.
d. *Usually, John early frankly once arrived probably. Adverbs
e. [Il

[the
premio
prize

Nobel]top,
Nobel]top,

[a
[to

chi]wh

whom]wh

lo
it

daranno?
give.fut

The Nobel Prize, to whom will they give it? Left periphery
f. [DP

[DP

zhe
this

[NumP

[NumP

yi
one

[ClP

[ClP

zhi
CL

[NP

[NP

bi]]]
pen]]]

‘this pen’ Functional projections

These three phenomena all display optionality, transparency to selection, and
strict ordering. By transparency I mean that despite the intervening modifiers,
properties of the selected head are relevant to selection. For example, in a classi-
fier language, the correct classifier selects the noun even if adjectives intervene.

The hypothesis that despite their optionality these projections are strictly
ordered is part of syntactic cartography [12]. Cinque [4], [5] in particular proposes
a universal hierarchy of functional heads that select adverbs in their specifiers,
yielding an order on both the heads and the adverbs. He proposes a parallel
hierarchy of adjectives modifying nouns. These hierarchies are very deep. The
adverbs and functional heads incorporate 30 heads and 30 adverbs.

Cinque argues that the surprising universality of adverb order calls for expla-
nation. For example, Italian, English, Bosnian/Serbo-Croatian, Mandarin Chi-
nese, and more show strong preferences for frankly to precede unfortunately.
These arguments continue for a great deal more adverbs.4

4 Data from [4].
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(4) Italian

a. Francamente
Frankly

ho
have

purtroppo
unfortunately

una
a

pessima
bad

opinione
opinion

di
of

voi.
you

’Frankly I unfortunately have a very bad opinion of you.’
b. *Purtroppo

Unfortuately
ho
have

francamente
frankly

una
a

pessima
bad

opinione
opinion

di
of

voi.
you

(5) English

a. Frankly, I unfortuately have a very bad opinion of you
b. ?Unfortunately I frankly have a very bad opinion of you

(6) Bosnian/Serbo-Croatian

a. lskreno,
Frankly,

ja
I

naialost
unfortunately

imam
have

jako
very

lose
bad

misljenje
opinion

o
of

vama
you.

Frankly, I unfortunately have a very bad opinion of you.’
b. *Naialost,

unfortunately
ja
I

iskreno
frankly

imam
have

jako
very

lose
bad

misljenje
opinion

o
of

varna.
you.

(7) Mandarin Chinese

a. laoshi-shuo
Frankly,

wo
I

buxing
unfortunately

dui
to

tamen
them

you
have

pian-jian.
prejudice

’Honestly I unfortunately have prejudice against them.’
b. *buxing

unfortunately
wo
I

laoshi-shuo
Frankly

dui
to

tamen
them

you
have

pian-jian.
prejudice

Supposing these hierarchies are indeed universal, the grammar should account
for it.

4 Desiderata

In addition to these three main properties, an account of adjuncts should ideally
also account for the following: selectability of adjunct categories, adjuncts of
adjuncts, unordered adjuncts, so-called obligatory adjuncts, and adjunct islands.

(8) Mary is tall tall is selected by is

(9) The surprisingly short basketball player surprisingly modifies short

(10) a. The alliance officer shot Kaeli in the cargo hold with a gun.
b. The alliance officer shot Kaeli with a gun in the cargo hold. English

PP adjuncts are unordered

(11) a. He makes a good father good is an adjunct but is not optional
b. *He makes a father
c. She worded the letter carelessly.
d. ...and Marc did so carefully. carefully is an adjunct
e. *She worded the letter. yet it is not optional

(12) a. He left [because she arrived]adjunct.
b. *Who did he leave because arrived? (some) adjuncts are islands
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c. He thinks [she arrived]object.
d. Who does he think arrived? Embedded object CPs are not islands;

islandhood is a property of adjuncts, not embedded clauses in general.

In sum, an account of adjuncts in minimalist grammars should ideally have
the following properties:

1. Optionality: sentences should be grammatical with or without adjuncts
2. Transparency to selection: If a phrase P is normally selected by head Q,

when P has adjuncts Q should still select P.
3. Order: there should be a mechanism for forcing an order on adjuncts
4. Selectability (8)

(a) Efficiency: All adjectives are possible arguments of the same predicates,
so there should be a way to select for any adjective, rather than cross-
listing the selector for each adjective category.

5. Adjuncts of adjuncts (9)
(a) Efficiency: Similarly to selection, there should be a way to say that, say,

an adverbs can adjoin to all adjective, rather than having a homophonous
form of the adverb for each adjective category.

6. Unordered (10)
7. Obligatory adjuncts (11)
8. Islands (12)

5 Previous Approaches to Adjunction

This section provides a brief overview of three approaches to adjunction. The
first two are from a categorial grammar perspective and account for the option-
ality and, more or less, transparency to selection; however, they are designed
to model unordered adjuncts. The last is an MG formalisation of the carto-
graphic approach. Since the cartographic approach takes adjuncts to be regular
selectors, unsurprisingly they account for order, but not easily for optionality or
transparency to selection.

5.1 Traditional MG/CG Solution

To account for the optionality and transparency, a common solution is for a
modifier to combine with its modified phrase, and give the result the same cat-
egory as the original phrase. Traditionally in MGs, an X-modifier has features
=XX: it selects an X and the resulting structure has category feature X. Similarly,
in categorial grammars, an X-modifier has category X/X or X\X. As such, the
properties of traditional MG and CG models of adjunction are the same.5

5 This is not the only possible solution using the MG architecture, but rather the
traditional solution. Section 5.2 gives a model within MGs that accounts for order.

An anonymous reviewer suggested a different solution, with a set of silent, mean-
ingless heads that turn categories into selectors of their adjuncts, for example ε::=N
=Adj =N. Such a solution does much better on desiderata 4 and 5 than the one given
here, but shares with the cartographic solution given in section 5.2 the problem of
linguistic undesirability of silent, meaningless elements.
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Merge
the big bad wolf:D

the::=ND Merge
big bad wolf:N

big::=NN Merge
bad wolf:N

bad::=NN wolf::N

Merge
*the bad big wolf:D

the::=ND Merge
*bad big wolf:N

bad::=NN Merge
big wolf:N

big::=NN wolf::N

Fig. 3. Traditional MG approach

1. Optionality: 	the original category is kept
2. Transparency to selection: Sort of: in Fig. 3, the selects N, but the N it

checks is the one introduced by bad, not the one on wolf.
3. Order: No, the original category is kept so any adjunct may adjoin at any

time.
4. Selectability Adjuncts need two versions, one for being adjuncts and the

other for being selected. For example, bad ::=NN cannot be selected by any-
thing until it has itself selected an N.
turn an =NN into an N by being selected; however, such a solution predicts the
general existence of silent Ns, and zero-derivation of adjectives from nouns;
indeed, silent, meaningless versions of any modifiable category and zero-
derivation of any modifiable category to its modifiers’ categories.

Merge

is::=AV bad::A

Merge

bad::=NN wolf::N

Merge

extremely::=AA bad::A

(a) Efficiency: No. Adjuncts have two versions, or else we permit new silent
categories and zero-derivation.

5. Adjuncts of adjuncts Since adjunction is selection in this model, we have
the same problem, but with the same solution: the feature for selection is
also the feature for being adjoined to.
(a) Efficiency: The homophony for selection covers adjunction too.

6. Unordered 	 All adjuncts are unordered in this model
7. Obligatory adjuncts: No, there is no way to distinguish between an phrase

with an adjunct and one without.
8. Islands Not without additional constraints. See Graf [8] for an account that

will work with the present approach.

Frey & Gärtner. Frey & Gärtner [7] propose an improved version of the cate-
gorial grammar approach, one which keeps the modified element the head, giving
true transparency to selection. They do this by asymmetric feature checking. To
the basic MG formalism a third polarity is added for sel, ≈X. This polarity drives
the added function Adjoin. Adjoin behaves just like Merge except that instead
of cancelling both ≈X and X, it cancels only ≈X, leaving the original X in tact.
This allows the phrase to be selected or adjoined to again by anything that selects
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or adjoins to X. This model accounts for optionality and true transparency, but
it is not designed to capture ordered adjuncts. Also, since adjuncts don’t have
categories of their own (just ≈X), it is not clear how to model selection of and
adjunction to adjuncts.6

5.2 Selectional Approach

A third approach is to treat adjuncts just like any other selector. This is the
approach implicitly taken by syntactic cartography in mainstream linguistics.7

Such an approach accounts straightforwardly for order, but not for optionality
or transparency; this is unsurprising since the phenomena I am modelling share
only ordering restrictions with ordinary selection.

The idea is to take the full hierarchy of modifiers and functional heads, and
have each select the one below it; for example, big selects bad but not vice versa,
and bad selects wolf. However, here we are left with the question of what to do
when bad is not present, and the phrase is just the big wolf. big does not select
wolf. I will briefly outline one solution, in which the full structure is always
present.

We give each modifier and functional head a silent, meaningless version that
serves only to tie the higher modifier to the lower, like syntactic glue. For exam-
ple, we add to the lexicon a silent, meaningless “size” modifier that goes where
big and small and other LIs of category S go.
the::=S D ε::=S D wolf::N
big::=G S ε::=G S bad::=N G ε::=N G

This solution doubles substantial portions of the lexicon. Doubling is not com-
putationally significant, but it does indicate a missing generalisation: somehow,
it just happens that each of these modifiers has a silent, meaningless doppel-
ganger. Relatedly, the ordering facts are epiphenomenal. There is no universal
principle predicting the fairly robust cross-linguistic regularity. Moreover, nor-
mally when something silent is in the derivation, we want to say it is contributing
something semantically. Here these morphemes are nothing more than a trick to
hold the syntax together.

1. Optionality: 	Choose the right version of an LI. Note this is inefficient.
2. Transparency to selection: No, selection is of the adjunct, not the head.

For example, in the lexicon above, the selects the (possibly empty) adjunct
with features =G S, not the noun.

3. Order: 	This is Merge, so order is determined by the particular lexical
items’ feature stacks

6 This is not to say that it cannot be done. [7] has examples with selectional features
=≈X, though there is little discussion.

7 It is not clear whether we should take mainstream syntax approaches to mean that
there are always-present, silent, meaningless, functional heads. Another interpre-
tation of their models is that each functional head on the hierarchy has a set of
homophones, one for each level down in the hierarchy.
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4. Selectability 	This is ordinary Merge, so selection proceeds as usual.

(a) Efficiency: 	No homophony added for selection

5. Adjuncts of adjuncts Adjuncts of adjuncts are simply selectors of ad-
juncts.

(a) Efficiency: 	No homophony added for adjuncts of adjuncts

6. Unordered Very difficult, but possible with enough homophony.
7. Obligatory adjuncts: No, the same thing that allows optionality of ad-

juncts prevents us from requiring that an adjunct be present.
8. Islands: No, not without additional constraints. Again, see [8] for con-

straints that may work here.

6 Proposal

I propose a solution, which I will call Minimalist Grammars with Adjunction
(MGAs),8 which accounts for ordering by indexing phrases according to the
hierarchy level of the last adjunct adjoined to them.

A given adjunct phrase P needs four pieces of information: P ’s category, what
P is an adjunct of, what level adjunct P is, and what level the last adjunct that
adjoin to P was. We need to know what a category is an adjunct of because that
will determine whether, say, an adjective can adjoin to a noun phrase. I include
in the grammar a set of adjuncts for each category. The hierarchy level of the
adjunct is needed for when it acts as an adjunct. If the phrase it is adjoining to
already has a adjunct, we need to check that the new adjunct is higher in the
hierarchy. For this purpose, every phrase carries with it an additional number,
indexing the level of its last adjunct. The two numbers are kept separate so that
adjuncts can have adjuncts, as in bright blue. Bright blue has an adjunct bright,
which may affect what further adjuncts can adjoin to it, but which does not
affect what the phrase bright blue can adjoin to.

To track hierarchy level, each category feature is expanded into a triple con-
sisting of the category feature, the level of the hierarchy of adjuncts the head
is at, and the level of hierarchy the whole phrase is at. Hierarchy levels are en-
coded as natural numbers,9 and ≤ is the usual order on N.10 These numbers are
lexically specified; for example wolf ::[N,0,0] would be in the lexicon.

By splitting the category into its category and its level as adjunct, we can
allow all, say, adjectives, to have the same category. This extends the efficiency
gains in [6] to selection of adjuncts and adjuncts of adjuncts.

When adjunct [Y,n,m] adjoins to something of category [X,i,j], the result-
ing phrase is of category [X,i,m], i, j, n, m ∈ N. The second number is what

8 My earlier paper [6] used this name as well; this model is designed to improve on it.
9 This is a similar approach to that taken by Adger [1], who proposes a second version
of Merge that models the functional heads in a hierarchy. Our approaches differ in
that in MGAs the original category is kept under Adjoin. A general discussion of
the use of explicit hierarchy in grammars can be found in [2].

10 N is simply acting as an index set, and that the maximal depth of hierarchies in a
language bounds the actual index set for the grammar.
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[ X,i , n ]

[ X,i ,j] [Y, n ,m]

[ N,0 , 5 ]

[ N,0 ,0] [A, 5 ,0]

Fig. 4. Adjoin. The category feature of the new phrase is the first two elements of the
adjoined-to phrase followed by the second element of the adjunct.

tracks the level of the hierarchy the phrase is at; it is the only thing that can
change.

6.1 Example

Before I give the full formal definition I will present an example. Suppose we
have a grammar in which the adjunct sets are defined as follows:

Ad(N)={Adj, P, C}, Ad(Adj)={Adv, Int}, Ad(Adv)={Int}, Ad(V)={Adv,T}
We can derive Apparently, John very often sang as in figure 5. very adjoins

to often since often is at level 0 and very is at level 3, and 3 ≥ 0. The whole
phrase adjoins to sang since it’s at level 18 and sang is at 0. T Merges to the
VP, yielding a phrase at level 25. Apparently is at level 26, so it can adjoin.

To get order, we require that the first number of the adjunct be at least as
high as the second number of the adjoined-to phrase. For example, in Figure 6,
the derivation of the big bad wolf works because Adj∈Ad(N), and 6 > 4 > 0. The
derivation of the bad big wolf fails because the category of big wolf is [N,0,6].
bad ::[Adj,4,0] can’t adjoin to it because bad is a level-4 adjunct, but big wolf
is already at level 6, and 4 < 6.

6.2 Definition

Merge must be trivially redefined for categories as triples. Merge only cares
about category, so it looks to match the positive selectional feature with the first
element of the triple. (Move is unchanged.)

Definition 4 (Merge). For α, β ∈ F ∗; s, t strings:

Merge(〈s, =Xα〉 ::mvrss, 〈t, [X, i, j]β〉::mvrst) =

⎧
⎨

⎩

〈st, α〉 ::mvrss ·mvrst if β = ε

〈s, α〉 :: 〈t, β〉 :: mvrss ·mvrst if β �= ε

Adjoin applies when the category of the adjunct is an adjunct of the category
it is adjoining to, and if the adjunct is a k-level adjunct then the level of the
phrase it is adjoining to is no higher than k. Move works as expected: the
adjunct has negative licensing features left after it has had its category feature
checked by Adjoin, it is added to the list of movers.
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Adjoin
Apparently, John very often sang:[T,25,26]

Move
John very often sang:[T,25,25]

Merge
very often sang:+nom[T,25,25]

John:-nom

ε:=V+nom[T,25,25] Adjoin
very often sang:[V,0,18]; John:-nom

Merge
sang:[V,0,0]; John:-nom

sang:=D[V,0,0] John:[D,0,0]-nom

Adjoin
very often:[Adv,18,3]

often:[Adv,18,0] very:[Int,3,0]

apparently:[Adv,26,0]

Fig. 5. Adjunct of adjunct; functional head merge; adjunction after functional head
merge

Adjoin
big bad wolf:[N,0,6]

Adjoin
bad wolf:[N,0,4]

wolf:[N,0,0] bad:[Adj,4,0]

big:[Adj,6,0]

Adjoin
(since 4 < 6)

Adjoin
big wolf:[N,0,6]

wolf:[N,0,0] big:[Adj,6,0]

bad:[Adj,4,0]

Fig. 6. Adjunct ordering: valid and invalid derivations

Definition 5 (Adjoin). Let s, t ∈ Σ be strings, Y,X∈sel be categories, i, j, n,m
∈ N, mvrs ∈ (Σ∗ × F )∗ be a mover list, and α, β ∈ F ∗.

Adjoin(〈s, [X, i, j]α :: mvrs〉, 〈t, [Y, n, m]β〉)

=

{
〈ts, [X, i, n]α〉 :: mvrs if n ≥ j & Y ∈ Ad(X) & β = ε

〈s, [X, i, n]〉 :: 〈t, β〉 :: mvrs if n ≥ j & Y ∈ Ad(X) & β �= ε

Notice that for Merge, there may be a mover list with both arguments (moverss
andmoverst). Island constraints for adjoin are implemented by simply leaving out
the mover list that would come with the adjunct. Adjoin is not defined when the
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adjunct has a mover.11 This is not necessarily as stipulative as it sounds: [8] puts
forth that for adjuncts to be truly optional they cannot have movers, or else the
derivation tree without the adjunct would have an unchecked positive licensing
feature. My definition of Adjoin is simply a way of conforming to this constraint.

Definition 6 (MGA). A Minimalist Grammar with Adjunction is a six-
tuple
G = 〈Σ, sel, lic,Ad,Lex ,M〉. Σ is the alphabet. sel∪lic are the base features.

Let F = {+f,−f,=X, [X, n, m]|f ∈ lic; X, Y ∈ sel; m, nN}. Ad : sel → P(sel) maps
categories to their adjuncts. Lex ⊆fin Σ × F ∗, and M is the set of operations
Merge, Move, and Adjoin. The language LG is the closure of Lex under M .
A set C ⊆ sel of designated features can be added; {[c, i, j]|c ∈ C; i, j ∈ N} are
the types of complete sentences.

6.3 Adverbs and Functional Heads

Contra Cinque [4], I model adverbs as separate from functional heads. Adverbs
and adjectives differ from functional heads in two ways. First, they are not
themselves adjoined to, while adverbs and adjectives are (very blue). Second,
functional heads are sometimes required and sometimes optional. For example,
English requires T, but not, perhaps, Modepistemic in every sentence. To model this,
I give adjectives and adverbs category triples with their second number set to 0.
This allows adjuncts to adjoin to them, starting at the bottom of that hierarchy.
Functional heads, on the other hand, will start with their second number equal
to their first number. This means that when they Merge, the resulting phrase is
at the right level in the hierarchy, preventing low adjuncts from adjoining after
the merger of a high functional head.12

For example, in Figure 5, very adjoins to often, which is possible since the
second number of often is 0. Later, functional head T Merges to the VP. Its
second number is 25. This is important because we want to say that apparently
can only adjoin here because its first number is 26, which is higher than 25. A
low adverb such as again::[Adv,3,0] cannot adjoin to T.

6.4 Properties

Let us consider the desiderata laid out in section 4.
11 This is possible only because Adjoin and Merge are separate operations, as they are

in [7]. A close look at the definitions of Merge and Adjoin reveals that there is nothing
formally stopping Adjoin from being a case of Merge, one defined when both phrases
display a category feature. I have chosen to keep them as separate operations so that
Adjoin may have different properties from Merge, such as island effects, and to main-
tain a certain type of locality for Merge, discussed in section 7.

12 There is nothing in this formalism that prevents adjunction to a functional head. If
the function Ad assigns adjuncts to a functional head, then it has adjuncts. They
just behave a little oddly: e.g. [F,3,3] requires adjuncts above level 3. Note also a
shortcoming in the present model: while Merge of a high functional head will prevent
later adjunction of a low adverb, nothing prevents a low functional head that selects,
say, V, from merging after the adjunction of a high adverb.
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1. Optionality: 	the original category is kept as the first element of the cat-
egory triple

2. Transparency to selection: 	the original category is kept
3. Order: 	The third element of the category is the level of the last adjunct

adjoined. The Adjoin rule requires that the adjunct be higher in the order
than that third element of the category triple.

4. Selectability 	Adjuncts have regular categories.

Merge
is bad:[V,0,0]

is::=Adj[V,0,0] bad::[Adj,4,0]

(a) Efficiency: 	Many adjuncts have the same category, so they have the
same adjuncts. For example, Ad(Adj) = {Adv,Int}

5. Adjuncts of adjuncts 	Adjunct categories are ordinary categories so they
can have adjuncts too (Figure 5).

(a) Efficiency:	Many adjuncts have the same category, so they are selected
by the same LI. For example, in the derivation of is bad above, is selects
anything of category Adj.

6. Unordered 	See section 6.5 below.
7. Obligatory adjuncts: Maybe. See Section 6.6
8. Islands 	Since Adjoin is a separate operation, it can be defined so that

there is no case for adjuncts with movers.

6.5 Unordered Adjuncts

As it stands, adjuncts such as PPs can be modelled as adjuncts, but they must
all adjoin at the same level of the hierarchy, or else be cross-classified for each
level of the hierarchy you want them to adjoin at. The former allows them to
be freely ordered with respect to each other; the latter gives them freedom with
respect to all adjuncts.

An expansion of this model13 could add a non-number to the set of possible
indicies, call it ∅, and Adjoin could be defined to disregard the hierarchy and
asymmetrically check the features for ∅-indexed adjuncts. Any distinct index also
opens the door to adjoining on a different side of the head than other adjuncts;
the definition I will give here models Engish PPs, which are post-head, unlike
adjectives and many adverbs.

In definition 7, the first and third cases are for adjuncts with number indicies,
and the second and fourth are for adjuncts with ∅ indicies.

Definition 7 (Adjoin 2). Let s, t ∈ Σ be strings, Y,X∈sel be categories, i, j, n,
m ∈ N, mvrs ∈ (Σ∗ × F )∗ be a mover list, and α, β ∈ F ∗.

13 I thank an anonymous reviewer for this suggestion.
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Adjoin
rain in Spain on the plain

[N,0,0]

Adjoin
rain in Spain

[N,0,0]

rain
[N,0,0]

in Spain
[P,∅,0]

on the plain
[P,∅,0]

Adjoin
rain on the plain in Spain

[N,0,0]

Adjoin
rain in Spain

[N,0,0]

rain
[N,0,0]

on the plain
[P,∅,0]

in Spain
[P,∅,0]

Fig. 7. Unordered English PPs

Adjoin(〈s, [X, i, j]α〉, 〈t, [Y, m, n]β〉 :: mvrs)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈ts, [X, i, m]α〉 :: mvrs if m ≥ j & Y ∈ Ad(X) & β = ε

〈st, [X, i, j]α〉 :: mvrs if m = ∅ & Y ∈ Ad(X) & β = ε

〈s, [X, i, m]α〉 :: 〈t, β〉 :: mvrs if m ≥ j & Y ∈ Ad(X) & β �= ε

〈s, [X, i, j]α〉 :: 〈t, β〉 :: mvrs if m = ∅ & Y ∈ Ad(X) & β �= ε

6.6 Obligatory Adjuncts

Recall that some elements which really seem to be adjuncts are not optional,
for example He makes a *(good) father. In MGAs there is a featural difference
between nouns that have been modified and nouns that have not. For example,
father is of category [N,0,0] and good father has category [N,0,4]. Merge is
defined to ignore everything but the first element, N. However, the architecture
is available to let Merge look at the whole category triple, by way of a positive
selectional feature of the form =[N, ,1], which selects anything of category
[N,i,j] with j ≥ 1.

Definition 8 (Merge 2). For α, β sequences of negative lic feature;, s, t strings;
X∈ sel; i, j, m ∈ N; C = X or C = [X, , m] & j ≥ m:

Merge(〈s, =Cα〉 ::mvrss, 〈t, [X, i, j]β〉::mvrst) =

⎧
⎨

⎩

〈ts, α〉 ::mvrss ·mvrst if β = ε

〈s, α〉 :: 〈t, β〉 :: mvrss ·mvrst if β �= ε

However, such an expansion of the definition of Merge is not of immediate
help in all cases. In the case of He makes a good father, the NP good father is
selected by D before the resulting DP is selected by makes, which is the verb
that cares about whether the noun is modified. One solution is to cross-list a
with a new determiner category only for modified NPs, and let makes select that
category, as in Figure 8.

Obligatory adjuncts are not the only reason to suspect that the tighter rela-
tionship is between the verb and the noun, not the verb and the determiner; i.e.
that V should perhaps select N, not D. For one, it is well known that in terms
of semantics, verbs select nouns. For example, The man slept makes sense, but
The table slept does not, because men are the kinds of things that sleep and
tables are not. Both DPs are headed by the, which does not carry the animacy
information that the noun does. Another piece of evidence comes from noun
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Merge
makes a good father

makes::=DM V Merge
a good father:[DM,0,0]

a::=[N, ,1] DM Adjoin
good father:[N,0,4]

good::[A,4,0] father::[N,0,0]

Fig. 8. Determiners of modified NPs could have their own category DM

incorporation. When a head is incorporated into a verb, normally it is the head
that the noun selects that is incorporated, as in (13).

(13) a. He [stabbed me [PP in [DP the [N back]]]]
b. back-stabbing
c. *back-in, *back-the, *back-the-stabbing, *back-in-the-stabbing

[13] proposes that verbs select NPs, and the NPs move to their Ds, which are
functional heads on the spine.

For example we might have something like the partial derivation in Fig 9.

Move
a good father:[D,0,0]; makes:-v

Merge
a:+d [D,0,0]:good father:-d; makes:-v

a:=V +d [D,0,0] Merge
makes:[V,0,0] -v; good father:-d

makes:=[N, ,1] [V,0,0] -v Adjoin
good father:[N,0,4]-d

father:[N,0,0]-d good:[A,4,0]

Fig. 9. Directly selecting N; moving NP up to functional projection D
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7 Formal Properties

MGAs are clearly not strongly equivalent to traditional MGs, if we take strong
equivalence to mean that the set of derivations trees are the same. This is of
course is impossible since MGAs have an extra function, Adjoin. MGAs are, on
the other hand, weakly equivalent to MGs, meaning that for every MGA, an
MG can be defined that generates the same strings, and vice versa.

Lemma 1. L(MG) ⊆ L(MGA)

Proof. MGAs also include Merge and Move, and place no additional restrictions
on their action. Any MGA language could have Adjoin stripped away and what
remained would be an MG.

Lemma 2. L(MGA) ⊆ L(MG)

Proof. MGs are weakly (and indeed strongly) equivalent to Multiple Context
Free Grammars (MCFGs) so it suffices to show that L(MGA) ⊆ L(MCFG).

We translate an MGA into an MCFG is the normal way, following [9]: the
nonterminals of the MCFG are sequences of feature sequences from the MGA.
This translation is based on the basic grammar given in Definition 6, but it is
easy to see how it could be expanded to include the extentions suggested in later
sections.

Given MGA G = 〈Σ,F = sel ∪ lic, Lex,M, S,Ad, define an MCFG
MCFG(G) = 〈Σ,N, P, S〉 defining the language
N = {〈δ0, δ1, ..., δj〉|0 ≤ j ≤ |lic|, all δi ∈suffix(Lex)}
Let h =Max({i|∃X ∈ sel : i = |Ad(X)}
The rules P are defined as follows, ∀α, β, δ0, ..., δi, γ0, ..., γj ∈ suffix(Lex).

s0, ..., si, t0, ..., tj are variables over strings.

Lexical rules: α(s) ∀〈s, α〉 ∈ Lex
Merge-and-stay rules: Here is the first case of the Merge rule for MGAs.

Merge(〈s, =Xα〉 ::mvrss, 〈t, [X, m, n]〉::mvrst) = 〈st, α〉 :: mvrss ·mvrst

It becomes a set of MCFG rules as follows. In the rule set below, s = s0, t =
t0,the tree parts of mvrss and mvrst are s1, ..., si and t1, ..., tj respectively,
and their features become δ1, ..., δi and γ1, ...γj . One rule is made for each
index less than the maximum possible index h for the grammar. (Any rule
indicies that fall outside the set of indicies for that particular category simply
go unused in practice.)
Here is the description of the MCFG rules corresponding to this Merge rule:

〈α, δ1, ..., δi, γ1, ...γj〉(s0t0, s1, ..., si, t1, ..., tj)
:- 〈= Xα, δ1, ..., δi〉(s0, ..., si) 〈[X, m, n], γ1, ...γj〉(t0, ..., tj)

∀X ∈ sel, ∀n, m ≤ h

The rest of the MCFG rules are formed similarly.
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Merge-and-move rules: ∀X ∈ sel, ∀n, m ≤ h
〈α, β, δ1, ..., δi, γ1, ...γj〉(s0, t0, s1, ..., si, t1, ..., tj)
:- 〈= Xα, δ1, ..., δi〉(s0, ..., si) 〈[X, m, n]β, γ1, ...γj〉(t0, ..., tj)

Adjoin-and-stay rules: ∀X, Y ∈ sel s.t. Y ∈ Ad(X), ∀k, l, n, m ≤ h s.t. n ≥ k

〈[X, m, n], δ1, ..., δi, γ1, ...γj〉(s0t0, s1, ..., si, t1, ..., tj)
:- 〈[X, m, k], δ1, ..., δi〉(s0, ..., si) 〈[Y, n, l], γ1, ...γj〉(t0, ..., tj)

Adjoin-and-move rules: ∀X, Y ∈ sel s.t. Y ∈ Ad(X), ∀k, l, n, m ≤ h s.t. n ≥ k

〈[X, m, n], β, δ1, ..., δi, γ1, ...γj〉(s0, t0, s1, ..., si, t1, ..., tj)
:- 〈[X, m, k], δ1, ..., δi〉(s0, ..., si) 〈[Y, n, l]β, γ1, ...γj〉(t0, ..., tj)

Move-and-stop rules: ∀f ∈ lic
〈α, δ1, ..., δi−1, δi+1, ..., δj〉(sis0, s1, ..., si−1, si+1, ..., sj)
:- 〈+fα, δ1, ..., δi−1,−f, δi+1, ..., δj〉(s0, ..., sj)

Move-and-keep-moving rules: ∀f ∈ lic
〈α, δ1, ..., δi−1, β, δi+1, ..., δj〉(s0, ..., sj)
:- 〈+fα, δ1, ..., δi−1,−fβ, δi+1, ..., δj〉(s0, ..., sj)

These rule sets are finite since MGAs never add anything to feature sequences,
but only either remove features or change just the indicies of [X,i,j] features.
As such, the suffixes α, β, δ, γ are limited in number. Since any given grammar
has a maximal hierarchy depth h, the indicies k,l,m,n in the rules are defined
to be limited by h.

Theorem 1 (Weak equivalence of MGAs and MGs). For any MGA G =
〈Σ, sel, lic,Ad,Lex , {Merge, Move, Adjoin}〉, there is a weakly equivalent
MG G′ = 〈Σ, selMG, lic,LexMG, {Merge, Move}〉.

Proof. By lemmas 1 and 2
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Abstract. Three closely related proposals for adding (cyclic) adjunc-
tion to Minimalist grammars are given model-theoretic definitions and
investigated with respect to their linguistic and formal properties. While
they differ with respect to their linguistic adequacy, they behave largely
the same on a computational level. Weak generative capacity is not af-
fected, and while subregular complexity varies betweeen the three pro-
posals, it does not exceed the complexity imposed by Move. The closure
of Minimalist derivation tree languages under intersection with regular
tree languages, however, is lost.

Keywords: Minimalist grammars, adjunction, derivation trees, subreg-
ular tree languages, closure properties.

Introduction

The distinction between arguments and adjuncts is recognized by a variety of
linguistic formalisms. Although a number of empirical properties have been iden-
tified — for instance, adjuncts can be freely iterated and dropped from sentences
— there is little consensus as to how adjuncts should be implemented. In the case
of Minimalist grammars (MGs; [12]), a formalization of contemporary Chom-
skyan syntax, at least three different mechanisms have been proposed: adjunc-
tion as category-preserving selection, adjunction as asymmetric feature checking
[3], and adjunction without feature checking [2].

This paper evaluates these three proposals with respect to their formal proper-
ties and linguistic adequacy. Building on [5, 6], I give a model-theoretic definition
of each system in terms of constraints on Minimalist derivation trees and a map-
ping from these derivations to derived trees. The linguistic adequacy of these
proposals is then evaluated with respect to a number of fundamental properties
of adjuncts such as optionality and iterability, extending previous observations
by Fowlie [2]. On the formal side, I compare Graf’s results on subregular com-
plexity of the derivation tree languages of standard MGs [5] to that of MGs with
adjunction.

As summarized in Tab. 1 and 2 at the end of the paper, only the imple-
mentation without feature checking satisfies all linguistic criteria, but it is also
the most complex, which is reflected by its higher subregular complexity. Fur-
thermore, the closure under intersection with regular tree languages enjoyed by
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standard MGs [4, 9] is lost with all three variants of adjunction. Intuitively, this
is due to the optionality and iterability of adjuncts, which each implementation
needs to capture.

I proceed as follows: Section 1.1 recapitulates the constraint-based definition
of MGs in [5], while Sec. 1.2 lists some formal properties of standard MGs.
Sections 2.1–2.3 then look at each implementation of adjunction in greater detail.
Even though the discussion is not particularly technical, the reader is expected to
already be familiar with MGs and their constraint-based definition. All relevant
details can be found in [4–6].

1 Minimalist Grammars

1.1 Definition in Terms of Derivation Tree Languages

I follow [5, 6] in defining MGs in terms of their Minimalist derivation tree lan-
guages (MDTLs) and a mapping from derivation trees to derived trees. This
perspective will make it a lot easier later on to add adjunction operations to
MGs and reason about their generative capacity, “derivational” complexity, and
linguistic adequacy.

The definition of MDTLs is rather intuitive. Each lexical item (LI) is trans-
lated into a tree that corresponds to the contiguous subpart of the derivation
that the LI controls via its positive polarity features. These trees are called slices.
An MDTL is the largest set of trees that can be assembled from a finite number
of slices without violating any constraints imposed by the MG feature calculus.
As we will see in the next section, adding adjunction amounts to the introduction
of new slices and modifying the constraints that regulate their distribution.

We start by defining features in a modular way.

Definition 1. Let Base be a non-empty, finite set of feature names. Fur-
thermore, Op := {merge,move} and Polarity := {+,−} are the sets of
operations and polarities, respectively. A feature system is a non-empty set
Feat ⊆ Base×Op× Polarity.

Negative Merge features are called category features (denoted f), positive Merge
feature selector features (= f), negative Move features licensee features (−f),
and positive Move features licensor features (+f). In the following, ν(f), ω(f)
and π(f) denote the name, operation, and polarity of f , respectively.

Definition 2. Given a string alphabet Σ and feature system Feat, a (Σ,Feat)-
lexicon is a finite subset of Σ×{::}×{f | π(f) = +}∗×{f | ω(f) = merge, π(f) =
−}× {f | ω(f) = move, π(f) = −}∗.

The ordering restriction on features is actually a corollary of the Minimalist
feature calculus (see [4, 9]) and thus usually omitted. In anticipation of the
modifications brought about by adjunction in the next section, though, I opt for
explicitness over succinctness.

Next LIs are converted into slices in a top-down fashion:
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Definition 3. Let Lex be a (Σ,Feat)-lexicon and Lex	 := {σ :: f1 · · · fn� | σ ::
f1 · · · fn ∈ Lex}. Then the slice lexicon of Lex is slice(Lex ) := {ζ(l) | l ∈ Lex 	},
where ζ is given by

ζ(σ :: f1 · · · fi � fi+1 · · · fn) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ :: f1 · · · fn
if f1 · · · fi = ε

ζ(σ :: f1 · · · fi−1 � fi · · · fn)
if π(fi) = −

move(ζ(σ :: f1 · · · fi−1 � fi · · · fn))
if τ(fi) = move and π(fi) = +

merge(
, ζ(σ :: f1 · · · fi−1 � fi · · · fn))
if τ(fi) = merge and π(fi) = +

This definition uses the functional representation of trees, i.e. f(t1, . . . , tn) de-
notes the tree whose root is labeled f and whose i-th daughter is the root of
tree ti, 1 ≤ i ≤ n. The symbol 
 indicates a possible tree substitution site: For
node u of tree s, s[u← t] is the result of substituting t for the subtree in s that
is rooted in u. This is also called a concatentation of s and t. For slices s and t,
s[u← t] is defined iff u is labeled 
.

Given a slice lexicon slice(Lex ), the free slice language FSL(slice(Lex )) is the
smallest set that contains every tree t that is the result of concatenating finitely
many s ∈ slice(Lex). The set of well-formed derivations is the largest subset of
the free slice language whose trees obey certain tree-geometric conditions. These
conditions correspond to constraints imposed by the Minimalist feature calculus.

An interior node m of ζ(l) is associated to feature fi on l iff m is the root
of ζ(σ :: f1 · · · fi � fi+1 · · · fn). Two features f and g match iff they have iden-
tical names and operations but opposite feature polarities. An interior node m
matches a feature g iff the feature m is associated to matches g. Finally, the slice
root of LI l := σ :: f1 · · · fn is the unique node of ζ(l) reflexively dominating
every node in ζ(l).

Merge For every t ∈ FSL(slice(Lex )) and node m of t, if m is associated to
selector feature = f , then its left daughter is the slice root of an LI with
category feature f .

More succinctly, the selector features of an LI must be checked by an LI with a
matching category feature.

Final Let F ⊆ Base be a distinguished set of final categories. For every t ∈
FSL(slice(Lex )) and LI l, if the slice root of l is also the root of t, then the
category feature c of l is a final category, i.e. ν(c) ∈ F .

The conditions on move are only of ancillary importance to this paper. Con-
sequently, I content myself with the bare definitions and do not further explore
the reasoning behind them; the interested reader is referred to [5]. For every
t ∈ FSL(slice(Lex )) and LI l in t with string −f1 · · · − fn of licensee features,
n ≥ 0, the occurrences of l in t are defined as follows:
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– occ0(l) is the mother of the slice root of l in t (if it exists).
– occi(l) is the unique node m of t labeled move such that m matches −fi,

properly dominates occi−1, and there is no node n in t that matches −fi,
properly dominates occi−1, and is properly dominated by m.

Intuitively, node m is an occurrence of LI l iff it denotes an operation that checks
one of l’s negative polarity features.

For t and l as before, and every node m of t:

Move There exist distinct nodes m1, . . . ,mn such that mi (and no other node
of t) is the ith occurrence of l, 1 ≤ i ≤ n.

SMC If m is labeled move, there is exactly one LI for which m is an occurrence.

With these four constraints we can finally define MDTLs: Given an MG G
with lexicon Lex , the MDTL of G is the largest L ⊆ FSL(Lex ) such that every
tree in L satisfies the four constraints above. Equivalently, each constraint can be
taken to be the largest set of trees that satisfy the respective constraint, so that
G’s MDTL is the intersection of G’s free slice language and the tree languages
defined by Final, Merge, Move and SMC. Since all these tree languages are
regular, it follows that MDTLs are too.

As mentioned at the beginning of this section, MDTLs must be mapped to
derived tree languages. With the exception of move, this mapping is rather
simple. The following is an informal description of the standard translation from
derivation trees to multi-dominance trees (directed acyclic graphs), where the
phrasal root of an LI is the same as its slice root:

1. Linearize. Switch the order of siblings l and n if l is an LI whose mother
belongs to the slice of l.

2. Project. If n is a Merge node whose left daughter is an LI with at least one
selector feature, relabel it <. All other interior nodes are labeled >.

3. Add Branches. For every LI l, add branches from the phrasal root of l to
each occi(l), i ≥ 1.

4. Delete Features. Relabel every LI σ :: f1f2 · · · fn by σ.

These steps can be carried out by a tree-to-graph transduction Φgr that is de-
finable in monadic second-order logic (MSO). The mapping Φtr from derivations
to derived trees with traces is also MSO-definable. See [6, 11] for details.

Definition 4. A Minimalist Grammar is a 5-tuple G := 〈Σ,Feat ,Lex ,F ,R〉
such that

– Lex is a (Σ,Feat)-lexicon, and
– F ⊆ Base is the set of final features, and
– R is the set of regular tree languages Final, Merge, Move, SMC.

The MDTL of G is FSL(slice(Lex ))∩
⋂

R∈RR. The tree language L(G) generated
by G is the image of its MDTL under the MSO transduction Φtr of [6]. Its string
language is the string yield of L(G).
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1.2 Formal Properties of MGs

MGs are weakly equivalent to MCFGs [10]. That MGs are at most as powerful as
MCFGs actually follows from the fact that their string languages are the string
yield of the image of regular tree languages under an MSO-definable transduction
[11]. For the purpose of adding adjunction, this means that weak generative
capacity is preserved as long as MDTLs are still regular and the mapping to
derived trees is MSO-definable.

In [5], it is shown that MDTLs are actually subregular. They are definable in
first-order logic with proper dominance (abbreviated FO[<]), and homogeneous.

Definition 5 (Homogeneity). For s1, s2, t1, t2 arbitrary trees and L a regular
tree language, L is homogeneous iff t[u ← a(t1, t2)] ∈ L, t[u ← a(s1, t2)] ∈ L,
and t[u← a(t1, s2)] ∈ L jointly imply t[u← a(s1, s2)] ∈ L.
For MGs without movement (i.e. no LI with licensee features occurs in a well-
formed derivation), the MDTLs are also definable in first-order logic with im-
mediate dominance (FO[S]), closed under k-guarded vertical swap, and strictly
local.
Definition 6 (Vertical swap). Let t be the concatenation of trees t1, t2, t3, t4,
t5 such that for 1 < i ≤ 5, the root of ti is immediately dominated by some node
ni−1 of ti−1. The vertical swap of t between t2 and t4 is the result of switching
t2 and t4 in t such that the roots of t2, t3, t4, t5 are immediately dominated by
n3, n4, n1, and n2, respectively. The vertical swap is k-guarded iff it holds that
t2 and t4 are identical up to depth k, and so are t3 and t5.

Definition 7 (Strictly local). Given a tree t over alphabet Σ, its k-augment is
the result of adding nodes n1, . . . , nk above the root and below each leaf such that
ni immediately dominates ni+1, 1 ≤ i < k and each ni has the distinguished label
� /∈ Σ. A k-factor of t is a subtree of t that has been truncated at depth k. That
is to say, if s is a subtree of t with m nodes n1, . . . nm that are labeled l1, . . . , lm,
respectively, and properly dominated by k−1 nodes, then s[n1 ← l1] · · · [nm ← lm]
is a k-factor of t. The set of k-factors of t is denoted Fk(t). A regular tree
language L over alphabet Σ is strictly local iff there is some k ∈ N and finite
set S of trees over Σ ∪ {�} with depth at most k such that t ∈ L iff Fk(t

′) ⊆ S,
where t′ is the k-augment of t.

These properties are interesting because they tell us something about the com-
plexity of the constraints imposed by the feature calculus. Closure under k-
guarded vertical swaps implies local threshold testability, while homogeneity is
equivalent to recognizability by a particular kind of deterministic top-down tree
automaton. Strict locality tells us that no dependency is unbounded.

2 Three Models of Adjunction

2.1 Category Preserving Selection

The simplest model of adjunction is naturally one that does not require any
modifications to the formalism. Taking inspiration from Categorial Grammar,
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adjuncts can be implemented as LIs whose category feature has the same fea-
ture name as their selector feature. For example, the VP-adjunct quickly would
correspond to quickly :: =V V. Such cases of selection are category preserving.
This model was first discussed in [2], but it has been part of the general “MG
folklore” for a long time.

Linguistic Properties. Despite its simplicity, this account captures several
properties of adjuncts. Since an LI can only be selected once all its positive
polarity features have been checked — which corresponds to projection in the
derived tree — category preserving LIs may only select LIs that have already
projected their full structure. Consequently, adjuncts are correctly predicted to
adjoin only to maximal projections.

The category preserving nature of adjuncts in this model also entails that
adjuncts are optional with respect to Merge. If an LI can select an adjunct a,
then it can also directly select the LI l that a adjoins to as both have the same
category feature. Category preservation also implies that multiple adjuncts can
adjoin one after another, that is to say, adjuncts are iterable.1

Certain important aspects of adjuncts are missed, though. First of all, nothing
in this system rules out the existence of adjuncts that adjoin to multiple phrases
at the same time. Consider an entry with two identical selector features, e.g.
quickly :: =V =V V. This LI could be used to generate a structure where two
VPs are simultaneously modified by a single adverb occurring between them,
yet no such structures are attested.

Another problem is posed by ordering effects. These can of course be handled
via subcategorization in the familiar fashion: if adjunct a cannot precede adjunct
b, then a does not select b, nor are there LIs c1, . . . , cn such that a selects c1, ci
selects ci+1 (1 ≤ i < n), and cn selects b (cf. [2]). However, since these categories
must be pair-wise distinct, the LIs are not category-preserving. Hence they are
not necessarily optional or iterable. As was already pointed out by Fowlie [2],
these properties can be enforced globally in the lexicon, but the cost is lexical
redundancy that hides the important generalizations.

Movement is also challenging. Since the adjunct selects the phrase it suppos-
edly adjoins to, it is not included in the phrase projected by the latter. So if the
adjoinee undergoes movement, the adjunct is left behind, just like a complement
DP that undergoes movement leaves behind the VP containing it. This can be

1 Notice that these properties break down as soon as movement is involved — removal
of an adjunct that contains a licensee feature might render the derivation ill-formed,
and having multiple instances of such an adjunct may trigger SMC violations. How-
ever, if movement out of adjuncts is prohibited by something like the Adjunct Island
Constraint, for which there is a lot of empirical support, then problems arise only
where the adjunct itself undergoes movement. Displacement of adjuncts, though,
might not involve movement at all and may simply be an instance of a phrase or
LI being base-generated in a different position than where it is interpreted. For this
reason — and because all conceivable accounts of adjunction have similar problems
reconciling movement with optionality [7] — I will ignore movement dependencies
in the remainder of this paper as far as optionality and iterability are concerned.
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fixed by i) instantiating the licensee features on lexical heads (suggested by an
anonymous reviewer), or ii) adding a limited form of pied-piping to the mapping
from derivation trees to derived trees such that if l undergoes movement, the
movement branches connect the occurrences of l to the slice root of the highest
adjunct of l, rather than the slice root of l itself.

The first solution quickly leads to massive redundancy in the lexicon and once
again misses generalizations. Suppose our grammar contains the LIs l1 := s ::
c − f and l2 := t :: c. If licensee features are instantiated on empty heads instead,
the lexicon would contain the LIs l′1 := s :: c, l′2 := t :: c, and f := ε :: = c c − f.
So if l1 moves together with an adjunct a, this corresponds to l1 being selected
by a, which in turn is selected by the actual mover f . But keep in mind that
l2 should not be allowed to move, so the corresponding l′2 must not be selected
by f . This can only be guaranteed by changing the category of l′2 to, say, c′.
However, every LI except f that selects an LI of category c must still be able to
select l′2, so for each one of them we have to create a new variant whose selector
feature is =c′ instead of =c. Not only does this unnecessarily increase the size
of the lexicon, the fact that l1 and l2 have the same adjuncts is purely accidental
in this revised grammar.

The second option avoids the lexical blow-up by enabling the transduction
to pied-pipe adjuncts. But since adjuncts differ from non-adjuncts only in that
they are category preserving, this may cause problems when non-adjuncts are
also category preserving — for instance in the analysis of serial verb constructions
in [1], where each verb except the most deeply embedded one has the feature
component =V V. This actually highlights a more fundamental problem of this
approach: adjuncts do not form a natural class since arguments may have the
same feature make-up.

The inability to consistently distinguish arguments from adjuncts can also be
seen in the case of recursive adjunction, i.e. adjunction to an adjunct. Without
tricks, category-preserving selection cannot handle such configurations. Suppose
that b adjoins to a, which is an XP-adjunct and therefore has category feature
X. In order to adjoin to a, LI b must have selector feature =X, and by category
preservation it also has category X. But then b is an XP-adjunct just like a. So
a phrase like very red car only has a structure where very modifies car rather
than red.

As pointed out by an anonymous reviewer, this can be handled via empty
heads, but the proposed solution serves only to highlight the fact that arguments
cannot be separated from adjuncts in this system. Suppose that very :: adv and
red :: a are selected by the empty head ε :: = a =adv a, and this complex phrase
is then combined with car :: n by the empty head ε :: = n =a n. Then we obtain
the structure [[very [ε red]] [ε car]], which is reasonably close to the intended
[[very red] car]. But now consider cases where the adjunct follows the noun,
e.g. my cousin twice removed. Here the empty head should be ε :: = a =n n.
This very feature template also arises in the standard DP-analysis of English
possessor phrases such as John’s car, where the possessive marker is given by
’s :: = n =d d. Yet this structure is not assumed to involve adjuncts of any kind.
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We see, then, that adjuncts cannot be reliable identified with a specific type of
feature component.

Formal Properties. While modeling adjunction as category preserving selec-
tion has some important drawbacks from a linguistic perspective, it has the
advantage of being compatible with the standard MG formalism. Consequently,
all formal properties of MDTLs are unaffected. Only closure under intersection
with regular tree languages can be lost under very specific assumptions. The
proofs in [4, 9] rely on the ability to subscript category and selector features
with specific states of a tree automaton. In many cases, an LI will have different
state-suffixes on its selector and category features. As a result an LI may no
longer be category preserving after its features have been suffixed with states.
Hence, if suffixation must respect category preservation, then the class of MDTLs
is no longer closed under intersection with regular tree languages. Or the other
way round: the property of being an adjunct is not preserved under intersection
with regular tree languages.

Example 1. Consider the regular tree language that includes a tree t iff t contains
at most three LIs whose phonetic exponent is quickly. If the LI l for quickly
must be category preserving, then irrespective of how its features are altered,
one instance of l can always be selected by another one. Hence if the MDTL
contains a tree with at least one instance of quickly, it also contains trees with
more than three of them.

2.2 Asymmetric Feature Checking

A very different implementation of adjunction was presented by Frey and Gärt-
ner [3]. Adjuncts are now formalized as LIs whose category feature c has been
replaced by an adjunction feature ≈ a. An LI l with feature ≈ a can adjoin to any
LI l′ of category a. Crucially, the adjunction operation is asymmetric in that it
only checks the adjunction feature of l, whereas the category feature on l persists,
thereby allowing for multiple LIs to adjoin to it. This partial feature persistence
of adjunction sets it apart from Merge, which always checks the relevant features
of both the selector and the selectee. In addition, it is the phrase being adjoined
to that projects, rather than the adjunct itself. An example derivation with the
corresponding derived tree is given in Fig. 1.2

Definition. Only a few things have to be altered in our definition of MDTLs to
incoporate Frey and Gärtner’s version of adjunction. First, adjunction features
must be added to the feature system and restricted to be in complementary
distribution with category features. To this end, Def. 1 is revised such that
Op := {merge,move, adjoin}, and the defintion of LI is altered accordingly:

2 A related system is developed by Hunter in [8], who uses the same feature checking
mechanism but a different type of Minimalist derivations. As far as I can tell, my
observations about Frey and Gärtner’s system apply to Hunter’s, too.
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Fig. 1. Left: derivation tree with adjunction as asymmetric feature checking; Right:
corresponding derived tree

Definition 8. Given a string alphabet Σ and feature system Feat, a (Σ,Feat)-
lexicon is a finite subset of Σ × {::} × {f | π(f) = +}∗ × {f | ω(f) ∈
{merge, adjoin} , π(f) = −} × {f | ω(f) = move, π(f) = −}∗.

The only change from Def. 2 is that the unique category feature may be replaced
by an adjunction feature of negative polarity.

The next step is to assign adjuncts an interpretation in terms of derivation
trees. That is to say, both the translation from LIs to slices and the well-
formedness conditions on MDTLs need to be amended. Def. 3 is extended to
cover one more case: merge(
, ζ(σ :: f1 · · · fi−1 � fi · · · fn)) if τ(fi) = adjoin .
Note that even though adjuncts do not project in the derived tree, in the deriva-
tion tree the adjunction step belongs to the slice of the LI with the adjunction
feature. So from a derivational perspective adjunction looks very similar to Merge
(we do not even introduce a new label to distinguish the two).

A simple modification of the constraint Merge suffices to regulate the distri-
bution of adjuncts.

Merge For every t ∈ FSL(slice(Lex )) and node m of t, if m is associated to
selector feature = f or adjunction feature ≈ f , then its left daughter is the
slice root of an LI with category feature f or adjunction feature ≈ f .

The only difference to the original definition is the presence of the two disjuncts
“or adjunction feature ≈ f ”. The first disjunct allows Merge to be triggered by
adjunction features, too. The second one allows for configurations where a phrase
has multiple adjuncts, as in Fig. 1. In this case, only the Merge node of the lowest
adjunct is the mother of the slice root of an LI with category feature f . For a
higher adjunct a, however, the slice root belongs to an LI b with an adjunction
feature ≈ f . As long as the two adjunction features are the same, though, it
follows by induction that there is some LI further down that both a and b adjoin
to.

This completely characterizes the adjunction operation on a derivational level,
so it only remains for us to modify the mapping from derivations to derived trees.
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Two steps must be altered. Linearize now distinguishes two cases where siblings
are switched around:

Linearize Switch the order of siblings l and n if
– l is an LI whose mother belongs to the slice of l, or
– the mother of l is a Merge node associated to an adjunction feature.

In the definition of Add branches, the phrasal root of LI l is now defined as
either the slice root of the highest adjunct of l or the slice root of l if the former
does not exist. Without this change, our model-theoretic definition would differ
from Frey and Gärtner’s in that adjuncts would be stranded if the phrase they
adjoin to undergoes movement (a problem already encountered with the category
preservation model).

The change to how phrasal roots are determined also solves a minor problem
in the definition of Final, which is no longer adequate because the slice root of
the head of a tree may no longer be the root of the tree. However, its phrasal
root still is, so it suffices to replace “slice root” by “phrasal root” in Final.

Formal Properties. Considering how little needs to be changed in the def-
initions, it is hardly surprising that most formal properties of MGs also hold
after the introduction of a dedicated adjunction mechanism. The revised version
of Merge only adds a few disjunctions, wherefore it is still MSO-definable and
defines a regular tree language. The new clause in Linearize is also easily ex-
pressed in MSO, as is the new definition of phrasal root (cf. Sec. 2.2 of [6]). So
both MDTLs and their mapping to derived trees are still MSO-definable, which
entails that this variant of MGs generates at most MCFLs, and consequently
adjunction has no effect on weak generative capacity.

Even the subregular complexity of MDTLs is unaffected. For MGs without
Move, they are still strictly local since the domain for Merge comprises only
two slices. This also implies that adding adjunction to MGs with movement does
not negatively affect their definability in FO[<]. Finally, they are homogeneous
and therefore can be recognized by lrDTDAs.

Lemma 1. Let G be an MG with adjunction as asymmetric feature checking.
Then G’s MDTL is homogeneous.

Proof. Recall that a tree language L is homogeneous iff t[u← a(t1, t2)] ∈ L and
t[u ← a(s1, t2)] ∈ L and t[u ← a(t1, s2)] ∈ L jointly imply t[u ← a(s1, s2)] ∈ L.
We are only interested in subtrees whose root a is a Merge node associated to
an adjunction feature. All other cases are already covered by the homogeneity
proof for standard MDTLs in [5].

Let t[≈ f ] and t[= f ] denote that the head of t has ≈ f and = f as its first
feature, respectively, whereas t[f ] indicates that there is an LI l in t whose first
unchecked feature is f and every Merge node properly dominating the slice root
of l is the slice root of an LI with feature ≈ f . Then t[u← a(t1, t2)] ∈ L only if
ti[f ] and tj [≈ f ] for i �= j ∈ {1, 2}. Assume w.l.o.g. that i = 1 and j = 2. Then
it must also be the case that s1[f ], and s2[≈ f ] or s2[= f ], so that a(s1, s2) is
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well-formed with respect to Merge. Furthermore, we know that s1 and t1 on the
one hand and s2 and t2 on the other have the same unchecked licensee features
since substituting one for the other preserves well-formedness. It follows that
t[u← a(s1, s2)] ∈ L.

As in the case of category-preserving selection, the status of closure under reg-
ular intersection is not entirely straight-forward. Simply applying the suffixation
strategy of [4, 9] is insufficient. Once again this is illustrated by the regular tree
language in example 1, which contains only trees with at most three occurrences
of quickly. If one instance of quickly can adjoin to a given LI l, then arbitrarily
many instances of it may adjoin to l. Hence there can be no MG G whose MDTL
contains trees with up to three occurrences of a, but not more than that.

It is possible, however, to switch from asymmetric feature checking to stan-
dard symmetric Merge using category-preserving selection without changing the
shape of the derivation tree — both are just instances of Merge. To the ex-
tent that this is a licit step, closure under regular intersection would once again
hold if adjunct status need not be preserved. But even though the derivation
trees would be identical, the derived structures are not: an adjunct in Frey and
Gärtner’s system does not project, whereas a category-preserving head does.
And since we already saw in the discussion of the category-preservation account
that not every instance of category-preserving selection constitutes adjunction, a
derivation with adjunction cannot be uniquely recovered from an isomorphic one
with selection. This illustrates once again that closure under regular intersection
can be obtained only if LIs may lose their adjunct-status.

Linguistic Properties. Just like the category preservation approach, the im-
plementation of adjunction as asymmetric feature checking captures several core
properties of adjuncts. Since category features are unaffected by adjunction, ad-
juncts are correctly predicted to be optional and iterable (modulo movement de-
pendencies). In addition, adjunction features behave similar to selector features
in that they are checked by category features. An LI therefore can be adjoined
to only after it has discharged all its positive polarity features, i.e. projected a
full phrase in the derived tree, which rules out X′-adjuncts.

In contrast to the category preservation approach, Frey and Gärtner’s im-
plementation also behaves correctly with respect to Move — an adjunct moves
together with the phrase it is adjoined to. Admittedly this has to be explicitly
stipulated in the definition of phrasal root, but the clear division between ad-
junction and selection in the feature system means that this modification does
not bring about any unexpected side-effects. Another welcome property is that
thanks to the limit to one adjunction feature, adjoining to multiple phrases at
once is impossible.

But Frey and Gärtner’s approach is not without shortcomings, either. Since
adjunction features replace category features, adjuncts lack category features
and thus cannot be adjoined to. So just like the category preservation imple-
mentation, asymmetric feature checking cannot assign the correct structure to
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very red car. Even empty heads only solve the problem if one treats the adjuncts
as arguments of an unpronounced adjunct, which defeats the purpose of having
an explicit argument-adjunct distinction in the system.

Ordering effects are also unaccounted for. Since adjunction to an LI l with
category feature f can be triggered only by the feature ≈ f , all adjuncts of l have
said category feature. From this it follows immediately that these adjuncts may
adjoin in any given order and Merge will still be satisfied. Fowlie [2] sketches
a workaround based on a Cinque-style hierarchy of empty heads, each of which
serves as an adjunction site for adjuncts of a particular type. Still, the order is
enforced by selection rather than the adjunction mechanism itself, which reintro-
duces many problems of treating adjunction as selection, for instance regarding
phrasal projection and the interaction with movement.

2.3 Adjunction Hierarchies

A third approach has been recently proposed by Fowlie in [2]. Fowlie’s primary
interest is to reconcile optionality with ordering effects. Technically this is an
easy task if one uses standard selection: if LI l has selector feature =c, and LIs
of category c may be adjoined to by adjuncts a1, . . . an as long as each ai is
structurally lower than aj , 1 ≤ i < j ≤ n, then we have n additional versions of
l where =c has been replaced by =x, where x is the category feature of some ai,
1 ≤ i ≤ n. But this solution comes at the price of a significantly larger lexicon.

Fowlie proposes to put a partial order R on the set of categories instead.
Moreover, there are no adjunction features; adjunction of a to l has no effect on
the feature make-up of either LI and may take place as long as

– for ca and cl the category features of a and l, respectively, and α : Base→
℘(Base) a map from categories to sets of categories that may adjoin to them,
it must hold that ca ∈ α(cl), and

– ca �R cl, and
– for every LI b of category cb that adjoined to l before a, ca �R cb.

Notice that x �R y is compatible with y �R x and y R x. This is used by Fowlie
to make a distinction between order-insensitive and order-sensitive adjuncts,
respectively, with the former being linearized to the right of the adjoinee and
the latter to the left (the split is motivated by empirical observations). For the
sake of simplicity I ignore this distinction in what is to follow.

Definition. While a literal implementation of the formalism in [2] is tedious
because of the way non-local information is passed around via feature pairs, this
mechanism can safely be ignored for a model-theoretic definition. As a matter
of fact, this is preferable from a formal perspective since local book-keeping of
non-local information could obscure the subregular complexity of adjunction in
derivation trees. Without Fowlie’s feature pairs, the feature system is exactly
the one of standard MGs. Consequently, all modifications take place on the level
of derivation trees and the mapping to derived trees.
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For derivation trees, a viable strategy is to insert Adjoin nodes at arbitrary
points and then filter out the illicit derivations created this way. Technically,
this is achieved by a minimal change in the definition for slice lexicons such
that slice(Lex ) := {ζ(l) | l ∈ Lex ∗}∪{adjoin(
1,
2)}. As a result, the free slice
language not only contains combinations of lexical slices, but also trees where
binary branching adjoin nodes occur in random positions (but not within lexical
slices).

For movement, the presence of adjunction nodes causes no problems because
the constraints Move and SMC are non-local. But Merge was stated under
the assumption that the left daughter is the slice root of an LI with the matching
category feature. Adjunction destroys this local relation. In the system of Frey
and Gärtner, this could still be worked around due to the feature-driven nature of
adjunction. An LI with feature ≈ f could only adjoin to LIs of category f . But
this isn’t necessarily the case in this system, where α−1 — which determines
for every category the categories it may adjoin to — is not guaranteed to be
a function. Prepositional phrases, for example, can adjoin to both nouns and
verbs. So if a Merge node is associated to feature =N and its left daughter
is a node indicating adjunction of a PP, it is still unclear whether a matching
feature N can be found further down the tree. But suppose that we always
interpret adjoin nodes in a fashion such that the adjoinee is found along the left
branch and the adjunct along the right branch. Suppose m left-dominates n iff
m properly dominates n and there is no z such that z is properly dominated by
m, reflexively dominates n, and has a left sibling. Then the following definition
will do the trick:

Merge For every t ∈ FSL(slice(Lex )) and node m of t, if m is associated to
selector feature = f , then the highest node that is left-dominated by m and
not labeled adjoin is the slice root of an LI with category feature f .

This takes care of Merge nodes, but it still remains for us to regulate the
distribution of adjoin nodes. The first step is to determine the arguments of
each adjunction step, i.e. the adjoining phrase and the phrase being adjoined to.
If adjuncts cannot be adjoined to, this is very easy. For then the right daughter
is the slice root of the adjunct, and the slice root of the phrase being adjoined to
is the highest Merge node that is left-dominated by the adjoin node (once again
left-dominance is used to account for the fact that there may be other adjoin
nodes along the path). Somewhat surprisingly, though, allowing adjuncts to be
adjoined to is an easy process once left-dominance has been defined.

First, an adjunction node m is an adjunction occurrence of LI l in derivation
tree t iff m is the lowest node in t that properly dominates the slice root of l
but does not left-dominate the slice root of l. Second, an adjunction node m is
associated to category feature c iff m is an adjunction occurrence of LI l with
category feature c.

Adjoin For every t ∈ FSL(slice(Lex )) and node m of t, if m is associated to
category feature cm, then
– the highest Merge node in t left-dominated by m is the slice root of an

LI l with category feature cl, and
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– cm ∈ α(cl), and
– for every node n that is properly dominated by m, reflexively dominates
l, and is associated to category feature cn, it holds that cm �R cn.

As with Frey and Gärtner’s system, we also have to make changes to the
mapping from derivations to derived trees.

Linearize Switch the order of siblings l and n if
– l is an LI whose mother belongs to the slice of l, or
– the mother of l is an adjunction node.

The phrasal root of an LI l (referenced in Add Branches is now the highest
adjunction node n such that n properly dominates the slice root of l and no
Merge properly dominated by n properly dominates the slice root of l. Once
again Final is easily adapted to the new system by replacing “slice root” by
“phrasal root”.

Figure 2 gives an example of what derivations with multiple adjunctions look
like in this system, and what kind of structures they yield.

Merge

ε :: =T CMerge

Merge

ε :: =V TAdjoin

quickly :: AdvAdjoin

Adjoin

right :: AdvMerge

before :: =D Pdawn :: D

left :: V

Alucard :: D

1

12

2

3

3

<

>

<

>

>

left>

<

dawnbefore

right

quickly

ε

Alucard

ε

Fig. 2. Left:derivation tree with recursive adjunction, suffixes indicate adjunction oc-
currences; Right: corresponding derived tree

Formal Properties. As with the previous model the changes in the definitions
are innocuous enough to see that the formal properties of MDTLs are mostly
unaffected. The major change is the introduction of left-dominance, which can
easily be defined in first-order logic with proper dominance. The function α and
the relationR are both finite by virtue of Minimalist lexicons being finite, so they,
too, are first-order definable. From all this it follows that both the MDTLs and
their mapping to derived trees are MSO-definable and weak generative capacity
is not increased.

The definability of MDTLs in FO[<] is not endangered either, because the
non-local dependencies established by adjunction are no more complex than
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those regulating Move. For MGs without movement, however, adjunction does
increase subregular complexity significantly. First of all, the dependence on left-
dominance, an unbounded relation, means that MDTLs are no longer strictly
local. This can only be avoided by banning adjunction to adjuncts, which al-
lows for an unbounded number of adjoin nodes to occur between an LI and its
adjunction occurrence. But even then α and R have to be chosen very care-
fully to ensure that MDTLs are strictly local: the category of a phrase must be
predictable from the categories of its adjuncts, which is not the case for nat-
ural language (very, for example, is freely iterable and may be an adjunct of
adjectives or adverbs).

Without strong restrictions on α and R, MDTLs are not even homogeneous
or closed under k-guarded vertical swap.

Lemma 2. The MDTLs of MGs with hierarchical adjunction are not closed
under k-guarded vertical swap.

Proof. Consider a grammar containing (at least) the following items:

b :: b a :: = b a b :: = b b

Furthermore, F := {a, b}, α(a) = α(b) = {b}, and b �R b. Let d be the derivation
tree merge(merge(b :: b, b :: = b b), a :: = b a), and let dn be the derivation
where n instances of b :: b adjoin to each LI in d. Then for every k ∈ N

there is some n such that dn can be factored into t1, t2, t3, t4, t5, where every
subtree consists of adjunction nodes and instances of b :: b, and t2 contains
a :: = b b and the corresponding Merge node at some depth f > k, t3 contains
b :: = b b and the corresponding Merge node at some depth g > k, and t4
contains the original b :: b at some depth h > k. Removing the adjuncts from the
k-guarded vertical swap of dn between t2 and t4 yields the ill-formed derivation
tree merge(merge(b :: b, a :: = b a), b :: = b b), whence the k-guarded vertical
swap is not contained in the grammar’s MDTL.

Lemma 3. The MDTLs of MGs with hierarchical adjunction are not homoge-
neous.

Proof. Consider the following grammar:

a :: a b :: b c :: c d :: d

Suppose F := {a, b}, α(a) := {c, d} and α(b) := {c}. Now let a = adjoin,
t1 := a :: a, t2 := c :: c, s1 := b :: b, and s2 := d :: d. Then a(t1, t2), a(t1, s2),
and a(s1, t2) are all well-formed derivations, but a(s1, s2) is not.

Closure under intersection with regular tree languages is also lost. Admittedly
our standard example — the regular language of trees that contain at most three
instances of quickly — can be accommodated in this system (use three different
categories ci for quickly, such that 1 ≤ i ≤ 3 and cj may adjoin to ci iff j > i). But
we still run into problems with its dual, the regular language of trees that contain
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at least three instances of quickly. Since adjuncts are completely decoupled from
the feature checking mechanism, they are not required in order for a derivation
to be well-formed, wherefore the presence of even one instance of quickly cannot
be enforced.

Linguistic Properties. The hierarchical approach improves significantly on
both previous proposals, to the extent where it passes all criteria discussed in this
paper: optionality, iterability, recursive adjunction, correct behavior with respect
to Move, the ability to capture ordering effects, and the prohibition against X′-
level adjunction. It should be noted, though, that some properties do not fall
out naturally under the model-theoretic perspective and are simply a matter of
how we phrase our definitions. The interaction with Move, for example, depends
purely on the how phrasal root is defined, and hence could easily be altered. It
would also be a rather easy technical exercise to allow for X′-level adjunction.
In addition, some properties depend on the choice of R. If R is reflexive, for
instance, then adjuncts cannot be iterated because the condition cm �R cn in
Adjoin would be trivially violated. Optionality, however, is a robust property
of this system thanks to the decoupling of adjunction and feature checking.

Conclusion

An overview of the formal and linguistic properties of the three models of ad-
junction are given in Tab. 1 and 2. The emerging picture is that all accounts
capture the most basic properties of adjuncts — optionality, iterability, the lack
of X′ adjuncts — but diverge once one considers other aspects such as adjunction
to adjuncts, the interaction with Move, and ordering effects. Only Fowlie’s hier-
archical approach performs well across the board, but does so at the expense of
increasing the subregular complexity of MDTLs, even with respect to standard
MGs. Loss of homogeneity and closure under k-guarded vertical swap, however,
are unavoidable in any implementation of adjunction where adjuncts are iter-
able and can adjoin to phrases with different categories, both of which seem to
be empirical necessities. Similarly, closure under intersection with regular tree
languages is incompatible with the optionality of adjuncts.

Table 1. Linguistic properties of adjunction implementations

Cat. Preserv. Asymm. Checking Hierarchical
no X′ adjuncts 	 	 	

optional 	 	 	
iterable 	 	 	

recursive ∼ ∼ 	
no double adjunction 	 	

ordering effects 	 ∼ 	
correct projection 	 	
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Table 2. Formal properties of adjunction implementations (without Move)

Cat. Preserv. Asymm. Checking Hierarchical Move
strictly local 	 	
vertical swap 	 	
homogeneous 	 	 	

FO[S] 	 	
FO[<] 	 	 	 	
reg ∩ 	

preserves gen. capacity 	 	 	 NA
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Abstract. We present a Lexicalized Tree Adjoining Grammar with lex-
ical meaning specifications in Frame Semantics for the analysis of com-
plex situations. Frame Semantics is extended by a notion of quantifier
frames, which provide the basis for a translation function from frames to
underspecified type-logical representations. An analysis of repetitive and
restitutive readings of achievements with the adverb again demonstrates
the interaction of all components of the new semantic architecture.

Keywords: frame semantics, quantifier scope, event semantics, Tree
Adjoining Grammar, underspecification, syntax-semantics interface.

1 Introduction

The goal of this paper is to develop an architecturally and conceptually clear
grammar architecture that unifies lexical meaning specifications in Frame Se-
mantics and a truth-conditional sentential semantics with generalized quantifiers
and other operators favored by many formal semanticists. To obtain a framework
with computational properties that are amenable to implementation, Frame Se-
mantics and formal semantics are combined in a Tree Adjoining Grammar, and
the type-logical logical representations of semantics are phrased as underspeci-
fied representations with dominance constraints.

The framework of Frame Semantics, nowadays most prominently known from
the Berkeley FrameNet project [2], takes a lexicographically oriented approach
to the investigation of meaning. It perceives word meanings as expressible by
schematic representations of conceptual structures that stand in a web of mu-
tual relationships, not unlike the (multiple) inheritance hierarchies of feature
logical grammars. The lexical cognitive structures encode the speakers’ knowl-
edge of situations or states; moreover, they record the relationships between
word senses and morphosyntactic realization patterns. With the increasing in-
clusion of grammatical constructions, frame semantic descriptions have decidedly
moved beyond their lexical roots. Inspired by work from cognitive psychology
(Barsalou, [3]), Löbner [4] takes the empirical scope of frames even further and
hypothesizes that in fact the entire human cognitive system employs frames as
an all-comprising single data format.

To test the viability of this research program for linguistics, a number
of recent investigations have used frame semantic insights in the formulation
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of a syntax-semantics interface that combines the rich conceptual structures of
frames with techniques of formal semantics: [5] conclude from their analysis of
FrameNet that the systematicity and consistency of FrameNet’s relations and
its predictions concerning linking generalizations could benefit from frame repre-
sentations whose structure reflects the internal stucture of events. They aim at a
decompositional Frame Semantics that analyzes the structure of situations and
events along the lines of a denotationally interpretable decompositional lexical
semantics [6]. The idea of a denotational semantics for frames in terms of an
intensional logic to analyze causation, situations, aktionsarten and result states
is then taken up by [7] in a fragment of Lexicalized Tree Adjoining Grammar
(LTAG) that captures the behavior of lexically and syntactically complex direct
motion expressions, and of the dative alternation in English. The proposal com-
bines LTAG with representations of lexical and constructional meaning, given in
the form of frames that are taken to be representations of mental concepts. [7]
define frames as feature structures, and the structure of their frames is sugges-
tive about possible ways to obtain an event-logical characterization of the truth
conditions of a sentence from its frame. However, the relation to truth condi-
tions needs further clarification. Moreover, a considerable gap remains between
this analysis and full-fledged Montagovian semantics: So far, frames do not fore-
see quantificational operators, which precludes the treatment of such standard
constructs as negation or nominal phrases as generalized quantifiers.

Thus at the current stage, Frame Semantics is of limited interest to semanti-
cists working on sentential semantics. Our main goal in this paper is to bridge
this gap and connect the vision of a rich Frame Semantics embedded in a general
theory of human cognition to the achievements of model-theoretic semantics. Af-
ter outlining current assumptions about embedding Frame Semantics into LTAG
(Section 2), we extend Barsalou frames by quantifier frames in Section 3. Intu-
itively, a quantifier frame embodies the idea of a concept of a quantifier, or
the cognitive correlate of a quantifier. With a quantifier frame, we are able to
specify frames for sentences with quantificational NPs. In order to determine
the truth value of such sentences in a given model, a translation of frames into
underspecified semantic representations is given, which receives its usual inter-
pretation. The following sections demonstrate how the new architecture works:
Section 4 discusses a case of a quantifier ambiguity with nested quantifiers and
confirms that the syntax-semantics interface of simpler architectures without
Frame Semantics can be preserved. Section 5 is dedicated to an analysis of scope
ambiguities observed with repetitive and restitutive readings with the adverb
again in which the lexical semantic analysis of causes and states in frames inter-
acts in interesting ways with the quantificational properties of again. We obtain
an architecture that is suitable for syntactic parsing with underspecified seman-
tic representations with quantificational operators that benefits from lexical and
constructional meaning analyses and linking in Frame Semantics.
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NP

John VP

Adv VP∗

always

S

NP VP

V NP

eats

NP

pizza

derived tree:
S

NP VP

John Adv VP

always V NP

eats pizza

Fig. 1. A sample LTAG derivation

2 LTAG and Frames Semantics

A Lexicalized Tree Adjoining Grammar (LTAG [8, 9]) consists of a finite set of
elementary trees. Starting from these trees, larger trees can be derived via the
tree composition operations substitution (replacing a leaf with a new tree) and
adjunction (replacing an internal node with a new tree). In Fig. 1 the trees for
John and pizza substitute into the subject and the object slot of the tree for
eats, and the tree of always adjoins to the VP node. An adjoining tree has a
unique non-terminal leaf that is its foot node (marked with an asterisk). When
adjoining such a tree to some node v, in the resulting tree, the subtree with root
v from the old tree ends up below the foot node.

In order to capture syntactic generalizations, the non-terminal node labels in
elementary trees are usually enriched with feature structures [10]. Each node
has a top and a bottom feature structure (except substitution nodes, which have
only a top). Nodes in the same elementary tree can share features. Substitutions
and adjunctions trigger the following unifications: In a substitution operation,
the top of the root of the new tree unifies with the top of the substitution node.
In an adjunction operation, the top of the root of the adjoining tree unifies with
the top of the adjunction site and the bottom of the foot of the adjoining tree
unifies with the bottom of the adjunction site. Furthermore, in the final derived
tree, top and bottom must unify in all nodes.

Our architecture for the interface between TAG syntax and frame semantics
follows ideas by [7], which in turn builds on previous approaches which link
a semantic representation to an entire elementary tree and model composition
by unifications triggered by substitution and adjunction [11–13]. One of the
innovations of [7] is that their semantic representations are frames, expressed
as typed feature structures as shown in Fig. 2. The feature I on the nodes is a
syntax-semantics interface feature which stands for “individual”. The assignment
of semantic roles to syntactic arguments is handled by these interface features.
In Fig. 2, the syntactic unifications 1 � 3 and 2 � 4 identify the semantic frames
of the argument NPs with the semantic roles of the verbal frame.

Following [14], the frames in [7] are formalized as multi-rooted typed feature
structures with multiple base labels. In other words, some of the nodes are labelled
with base labels 0 , 1 , . . ., which give access to these nodes.1 Furthermore, there is

1 Note that when using an elementary tree with its frame in a derivation, we always use
a copy with fresh base labels.
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⎤
⎥⎦

NP
[i= 4 ]
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4

[
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]

Fig. 2. Syntactic and semantic composition for John eats pizza

no explicit type hierarchy. Instead, nodes in the frames can have several types;
dependencies between types such as subtype relations and type incompatibilities
are formulated in constraints in the feature logic.

Concerning complexity, some restrictions on possible frame constraints are
required in order to keep the system tractable. The frames that are linked to
elementary trees are described within the metagrammar. Here, the possible con-
straints must be restricted in such a way that the existence of finite minimal
models is guaranteed. To this end, we need for instance to avoid constraint loops
(see also [15]). During parsing, we have to build larger frames via unifications
triggered by substitution and adjunction. In order to keep this tractable, [7] as-
sume that the constraints under consideration do not introduce new nodes to
the structure. Then the complexity of unification is close to linear [14].

The extended domain of locality of LTAG, in combination with the rich fac-
torization possibilities provided in the metagrammar through descriptions of
elementary trees, permits a clean separation between lexical and constructional
meaning contribution (cf. [7]).

3 Frames for Quantificational NPs

3.1 Quantifier Frames

Within a frame, some of the properties of a mental concept are captured by the
type and others by attributes. We assume that the relation between the two
arguments of binary quantifiers is captured in their frame type. This leads to
the types every,most, two, etc. But what are the attributes that characterize a
quantifier concept? We propose that the mental concept of a quantifier (in con-
text) must minimally delimit the candidate concepts of its arguments, i.e. the
concepts that occupy the restrictor and nuclear scope of the logical counterpart
of a given quantifier concept. For this purpose, a quantifier frame contains the
attribute RESTR for the maximal type of objects that the natural language quan-
tifier in question lives on (in terms of logic: the restricting predicate), and the
attributes MAXS and MINS that, in logical terms, characterize the scope window
of the quantifier: The logical counterpart of the quantifier frame will scope at
least over everything below the MINS value and at most over everything below
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the MAXS value. The embedding of the quantifier frame in a predicate frame
expresses the semantic role of the syntactic constituent.

(1) Most dogs sleep.

0

[
sleeping

sleeper 1

]
� 1

⎡
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most

restr 2

maxs 3

mins 0

⎤
⎥⎥⎥⎦ � 2

[
dog

]
= 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sleeping

sleeper 1

⎡
⎢⎢⎢⎢⎣
most

restr 2

[
dog

]
maxs 3

mins 0

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Graph corresponding to the AVM:

0

sleeping

1

most

2

dog

3

SLEEPER

RESTR

MAXS

MINS

Fig. 3. Frame analysis of (1)

The cyclic structure of the frame in Fig. 3, resulting from the analysis of (1),
reflects the two ways a quantifier contributes to meaning in Frame Semantics: On
the one hand it (minimally) embeds some event, on the other hand it functions
as an argument participant in this event and is therefore embedded in the event
frame. Note that the quantifier frame does not fix the scope of the quantifier,
it only records its minimal scope. In the case of (1), the minimal scope is also
the actual scope. But in examples with several quantificational operators, the
overall frame in effect resembles an underspecified representation of several scope
orderings known from underspecified semantics.

(2) Every boy loves two girls.

In the frame in Fig. 4 of the logically ambiguous sentence (2) we also see
that the semantic roles of the participants of the event are not necessarily
unique: the frame labeled 1 is not only the LOVER but also the EMOTER and
the EXPERIENCER, depending on how abstract a characterization of the event is
adopted. This is in line with the semantic role hierarchy proposed in [16].

3.2 Truth Conditions and Underspecification

The frames in Fig. 3 and 4 do not immediately encode truth conditions that come
with a model-theoretic interpretation. They are mental representations of the
concepts expressed by (1) and (2). However, we can extract a predicate-logical
formula with holes, labels and dominance constraints from these frames that
tells us what properties the world must have in a situation where the concepts
represented by the frames get instantiated. The predicate logical formulas with
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emoter 1

experiencer 1

⎡
⎢⎢⎢⎢⎢⎣

every

restr 4

[
boy

]
maxs 5

mins 0

⎤
⎥⎥⎥⎥⎥⎦

loved 3

target 3

⎡
⎢⎢⎢⎢⎢⎣

two

restr 6

[
girl

]
maxs 5

mins 0

⎤
⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 4. Frame for (2)

h0

l1 : most(x1, h1,1, h1,2)

l2 : dog(x1) l0 : sleeping(x1)

Disambiguation:
h0 → l1, h1,1 → l2, h1,2 → l0

h0

l1 : every(x1, h1,1, h1,2) l3 : two(x3, h3,1, h3,2)

l4 : boy(x1) l6 : girl(x3)

l0 : loving(x1, x3)

Disambiguations:
1. h0 → l1, h1,1 → l4, h1,2 → l3, h3,1 → l6, h3,2 → l0
2. h0 → l3, h1,1 → l4, h1,2 → l0, h3,1 → l6, h3,2 → l1

Fig. 5. Dominance constraints for (1) and (2)

holes and dominance constraints (in the sense of Hole Semantics [17]) for (1)
and (2) are shown in Fig. 5.2

Only a part of the frame is relevant for the truth conditions. For instance,
the fact that the first argument of loving in Fig. 4 is characterized not only
as EXPERIENCER but also via the more specific roles of EMOTER and LOVER is
without counterpart in the predicate-logical formula. Furthermore, frames con-
tain not only knowledge originating from the frames paired with elementary
trees (i.e., lexical and constructional meaning) but also world knowledge. The
concept of a dog in the frame in Fig. 3 comprises much more than the type
dog because it comes with an entire bundle of attributes characterizing entities

2 Related ideas about semantic underspecification have been framed in Underspeci-
fied Discourse Representation Theory (UDRT, [18]), the Constraint Language for
Lambda Structures (CLLS, [19]) and Minimal Recursion Semantics (MRS, [20]).
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of type dog. Since these are not relevant for our paper, they are left aside. For
extracting truth conditions, only meaning contributed by elementary trees is
relevant and, furthermore, only nodes with base labels or attributes relating
base labeled nodes play a role.

This leaves the task to specify how to read off underspecified predicate-logical
formulas for frames of type generalized-quantifier (with subtypes every, two,
etc.), eventuality (with subtypes event and state) and entity (subtypes dog, boy,
etc.):

• Frames of type eventuality with argument roles 〈arg1〉, 〈arg2〉, . . . (e.g., expe-
riencer and THEME):

i

⎡
⎢⎢⎢⎣
pred

〈arg1〉 j

〈arg2〉 k

. . .

⎤
⎥⎥⎥⎦

� li : pred(xj , xk, . . .)

where pred is a subtype of eventuality.

• Frames of type generalized-quantifier and of type entity:3

i

⎡
⎢⎢⎢⎢⎣
quant

restr j

[
pred

]
maxs k

mins l

⎤
⎥⎥⎥⎥⎦

� li : quant(xi, hi,1, hi,2),
lj : pred(xi),
hk �

∗ h2, hi,1 �
∗ lj , hi,2 �

∗ ll

where quant is a subtype of generalized-quantifier and pred is a subtype of
entity. quant and pred are the predicate logical constants corresponding to
quant and pred respectively.

We assume the predicate-logical formulas to be typed. However, the types are
of course not the types from our frames and there is no one-to-one correspondence
between the types of frames and the type system of the predicate logic. Assuming
that our variables x1, x2, . . . are of type e in our predicate logic and holes and
labels are of type t (or 〈s, t〉 if we use propositions), all other types in the formulas
we extract from the frames can be inferred.

Why do we pair syntactic trees with frames, generate a frame for a sentence
during parsing and extract a predicate logical formula only later in a subsequent
step? First of all, this architecture has advantages in terms of complexity and
tractability. If we make sure that we use only feature constraints of a certain
restricted type (see [7] for details), then we know that the frame unification that
constitutes our semantic composition is almost linear in the size of the frames. At
the same time, frame unification already acts as a filter since certain analyses will
be excluded because of incompatibilities in the frames. Another important aspect
of frames is that in addition to lexical and constructional meaning contributed
by the building blocks of the sentence they also include world knowledge. We
think it useful to be able to access this during syntactic-semantic composition
and not only at some later point of interpreting a sentence in a given discourse

3 The symbol �∗ for the dominance relation is borrowed from the notation of domi-
nance constraints in [21, 22].
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model. Finally, following [4, 5] we believe that the mental concept expressed by
a sentence exists independently of the actual situation in which the sentence is
supposed to hold. This mental concept is represented by the frame.

3.3 The Syntax-Semantics Interface

In the previous sections, we presented the frames that we obtain from parsing and
the way they (indirectly) characterize truth conditions. Concerning the syntax-
semantics interface in LTAG, the analyses from [13] can be transferred to the
LTAG frame semantics architecture. Fig. 6 shows the LTAG analysis of (1).
The interface feature PRED serves to pass the embedded predication frame (here
of type dog) to the restriction (feature RESTR) of the quantifier. The interface
features MINS and MAXS enable passing the scope window from the verb tree to
the quantifier tree. The syntax-triggered unifications are exactly the ones from
Fig. 3.

NP
[i= 0 ,maxs= 5 ,mins= 6 ]

Det NP∗
[pred= 2 ]

most

0

⎡
⎢⎢⎢⎣
most

restr 2

maxs 5

mins 6

⎤
⎥⎥⎥⎦

NP
[pred= 10 ]

N

dogs

10

[
dog

]

S

NP[i= 7 ,maxs= 8 ,mins= 9 ] VP

V

sleep

9

[
sleeping

sleeper 7

]

Fig. 6. Analysis for (1)

If there is more than one quantificational NP, all NPs find the same MAXS and
MINS values at the substitution nodes, which entails the same scoping possibilities
for all of them.

4 Quantifiers in Complex NPs

The feasibility of the quantifier frames in our grammar architecture depends on
whether they provide enough structure to derive the correct truth conditions
for all and only the intended interactions between the corresponding logical
operators. To ascertain that this is the case we analyze a construction (see (3))
with complex NPs with two quantifiers where the embedded quantifier can scope
over the embedding one (an order sometimes called inverse linking) but a third
quantifier cannot scope in between the first two (cf. [23–26]). We will show that
our Frame Semantics of quantifiers is capable of reproducing the exact same
readings as the ones predicted by the analysis of [13].

(3) Two policemen spy on someone from every city.
∗every > two > some
∗some > two > every
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The from-PP in (3) expresses the origin of a person or an object. We assume
that from every city is an adjunct that adds a frame attribute ORIGIN whose
value is contributed by the NP of the PP. Furthermore, it passes the label of the
quantifier to which it adjoins (here 5 ) as the new MAXS value to any embedded
NP. The MINS of the embedded NP (here 9 ) is the frame label to which the
ORIGIN feature is added. The derivation is given in Fig. 7 and the resulting
frame is shown in Fig. 8.

S

NP VP

Det NP V PP

two N spy P NP[i= 2 ,maxs= 3 ,mins= 0 ]

pol. on

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

spying

spy 1

⎡
⎢⎢⎢⎢⎢⎣

two

restr
[
pol.

]
maxs 3

mins 0

⎤
⎥⎥⎥⎥⎥⎦

spied 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

NP
[i= 5 ,maxs= 6 ,mins= 7 ]

[pred= 8 ]

someone

5

⎡
⎢⎢⎢⎢⎣
some

restr 8

[
person

]
maxs 6

mins 7

⎤
⎥⎥⎥⎥⎦

NP
[pred= 9 ,i= 20 ]

NP∗
[pred= 9 ,i= 20 ]

PP

P NP[i= 10 ,maxs= 20 ,mins= 9 ]

from

9

[
origin 10

]

16

⎡
⎢⎢⎢⎣
every

restr 17

maxs 18

mins 19

⎤
⎥⎥⎥⎦

NP
[i= 16 ,maxs= 18 ,mins= 19 ]

Det NP∗
[pred= 17 ]

every

NP
[pred= 15 ]

N

city

15

[
city

]

Resulting unifications (i.e., base label identifications):
2 = 5 = 20 = 18 I feature on object NP (= some frame) fills the argument of spy

and becomes the MAXS of the embedded NP
0 = 7 MINS passing from spy to someone
3 = 6 MAXS passing from spy to someone
8 = 9 = 19 PRED feature: RESTR of some becomes the MINS of from and gets

passed to every
15 = 17 PRED feature: RESTR of every becomes the city frame
10 = 16 I feature: every frame fills the ORIGIN attribute

Fig. 7. Analysis for (3)

For interpretation, the frame in Fig. 8 must again be transformed into an un-
derspecified predicate logical representation. The only addition compared to the
preceding section is that the attribute ORIGIN is translated to a binary predicate
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0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

spying

spy 1

⎡
⎢⎢⎢⎢⎢⎣

two

restr 21

[
policeman

]
maxs 3

mins 0

⎤
⎥⎥⎥⎥⎥⎦

spied 5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

some

restr 8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

person

origin 10

⎡
⎢⎢⎢⎢⎢⎣

every

restr 17

[
city

]
maxs 5

mins 8

⎤
⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

maxs 3

mins 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 8. Frame for (3)

origin whose arguments are the two variables coming with the two nodes that
it connects in the frame.

• Frames of type generalized-quantifier and of type entity:

i

⎡
⎢⎢⎣
quant

restr j

[
pred

attr k

]
⎤
⎥⎥⎦

� lj : attr(xi, xk)

where quant is a subtype of generalized-quantifier and pred is a subtype of
entity.

The origin-formula has the same label as the one coming from the node that
the attribute modifies. In other words, we have now two expressions with the
same label, l8 : person(x5) and l8 : origin(x5, x10). They are put together in
a conjunction l8 : person(x5) ∧ origin(x5, x10), in the spirit of flat semantics
approaches such as Minimal Recursion Semantics (MRS, [27]). The resulting
dominance constraints are depicted in Fig. 9.

The dominance constraints in Fig. 9 are resolved to exactly the desired read-
ings. Note that it is crucial for disambiguation that the resulting structures
are trees. In particular, since they are trees, nothing can be dominated by the
restriction and the scope of a quantifier at the same time. In our example, if
some outscopes every, then we necessarily obtain that every is dominated
by the restriction h5,1. On the other hand, if some outscopes two, then the
latter necessarily is part of the scope h5,2. Consequently, if some has wide
scope, there is no scope relation between the other two quantifiers and the or-
der some > two > every is correctly excluded. The other impossible read-
ing, every > two > some, is excluded because the constraints state that if
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h0

l5 : some(x5, h5,1, h5,2) l1 : two(x1, h1,1, h1,2)

l10 : every(x10, h10,1, h10,2) l21 : pol.(x1)

l17 : city(x10) l8 : person(x5) ∧ origin(x5, x10) l0 : spying(x1, x5)

Resulting readings after disambiguation:
1. some(x5, every(x10, city(x10),person(x5) ∧ origin(x5, x10)),

two(x1,pol.(x1), spying(x1, x5)))
2. two(x1,pol.(x1), some(x5, every(x10, city(x10),person(x5) ∧ origin(x5, x10)),

spying(x1, x5)))
3. every(x10, city(x10), some(x5,person(x5) ∧ origin(x5, x10),

two(x1,pol.(x1), spying(x1, x5))))
4. two(x1,pol.(x1), every(x10, city(x10), some(x5,person(x5) ∧ origin(x5, x10),

spying(x1, x5))))

Fig. 9. Dominance constraints obtained from Fig. 8 and resulting readings

every scopes over some, then its scope argument must be the some formula
(h10,2 → l5) itself, and no other quantifier may intervene.

5 Adverbs and Scope Ambiguities: The Case of “Again”

5.1 Repetitive and Restitutive Readings

After showing how to reconstruct operator scope ambiguities from quantifier
frames, we will now turn to a phenomenon where the interaction of operator
scope with the rich structure of semantic frames offers a natural basis for an
interesting new analysis. When the adverb again adjoins to accomplishments like
open the door or directed motion constructions like walk to the hall we observe
an ambiguity between a repetitive reading (4-a) and a restitutive reading (4-b)
[28].

(4) Bilbo opened the door again. (ex. from [28])

a. Bilbo opened the door, and that had happened before.
b. Bilbo opened the door, and the door had been open before.

(5) Bilbo walked to the hall again. (ex. from [28])

a. Bilbo walked to the hall and that had happened before.
b. Bilbo walked to the hall and he had been there before.

(4) actually has a third reading that is weaker than (4-a) but stronger than (4-b),
namely that Bilbo opened the door and the door had been opened before. This
means it was not necessarily Bilbo who opened the door before but it is at least
the second time that the state of the door changes from closed to open.
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In our event decomposition we follow [6, 29, 16], transferring the semi-formal
semantic representations used in Role and Reference Grammar (RRG) to se-
mantic frames along the lines of [7, 5]. (6) gives the RRG-style decompositional
semantics of the verbs open and walk-to. The first is analyzed as a causation
while the latter is an active accomplishment. (6-a) can be paraphrased as “x
performs an activity that causes y to enter a state of being open”. (6-b) signifies
that “x performs some walking activity and x enters the state of being at y”.
In both decompositions, the coming about of the effected state and this state
itself are present. This structure can be exploited to account for the restitutive
readings of (4) and (5). Fig. 10 shows the translation of (6) to frames.

(6) a. [do(x, ∅)] CAUSE [INGR open(y)] (causation)
b. do(x,walk(x)) & INGR be− at(y, x) (active accomplishment)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

causation

cause

[
activity

actor 1

]

effect

⎡
⎢⎢⎢⎢⎣
ingr-of-state

theme 2

result

[
state∧open
patient 2

]
⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

walking∧ingr-of-state
actor 1

goal 2

result 3

⎡
⎢⎣
be-at

patient 1

location 2

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 10. Frames for open and walk-to

According to the event decomposition in Fig. 10 the frame of open comprises
three (sub-)frames for eventualities (states or events) that again can apply to, a
causation frame, an ingr-of-state frame and the frame of the open state. Thus,
the structure of the frame provides the basis for the observed ambiguity. In the
walk-to frame, we only have two such nodes, the motion frame and the be-at
frame, and there are only two readings. One of the advantages of frames is that
the difference in decomposition is made explicit and the different eventualities
become accessible for adverbial modification. The embedding structure explains
why the restitutive reading is weaker than the intermediate reading which, in
turn, is weaker than the repetitive reading.

For the semantics of again, we follow [28, 30] in assuming that the ambiguity
between the repetitive and the restitutive reading is not due to a lexial ambigu-
ity of again; again always indicates repetition. However, unlike these approaches
we assume that the ambiguity is not a syntactic ambiguity. Instead, we derive a
single syntactic tree paired with a single frame for examples such as (4) and (5).
As in the quantifier scope analyses proposed in the preceding sections, the frame
does not fix the ultimate scope of again. It states that the adverb minimally
modifies the embedded state∧open or be-at frame, respectively. Our analysis of
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(4) is shown in Fig. 11. The adverb contributes a frame of type repetition. Its
minimal frame argument (the MINS value) is determined by the interface feature
MINS on the VP node. This MINS value is different from the one provided for
the quantifier frames at NP nodes, since the latter concern the entire event. The
minimal argument of again is the resulting open state that is embedded under
the effected change of state. Similarly, in the case of (5), where we do not have
a causation but a walking event that is an ingr-of-state, the minimal argument
provided in the construction tree is the resulting state of being at the goal of
the walking.4

S

NP
[i= 2 ,mins= 0 ]

VP
[e= 0 ,mins= 5 ]

V NP
[i= 3 ,mins= 0 ]

opened

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

causation

cause 1

[
activity

actor 2

]

effect 4

⎡
⎢⎢⎢⎢⎣
ingr-of-state

theme 3

result 5

[
state∧open
patient 3

]
⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

VP

VP∗
[mins= 6 ,maxs= 7 ]

Adv

again

8

⎡
⎢⎣repetitionmaxs 7

mins 6

⎤
⎥⎦

Fig. 11. Analysis of (4)

As a result of the derivation in Fig. 11, we obtain the frame and the dominance
constraints in Fig. 12. Note that the frame does not have a unique root. Both
the causation node and the repetition node lack incoming edges. This is different
from the earlier examples where the quantifier was embedded under the event
since it contributed a participant to the event.

To obtain the dominance constraints from the frames, we assume the following
additional rules:

4 Other authors (and an anonymous reviewer) note that only few adverbs seem to have
access to sublexical modification of result states (for an overview and discussion, see
[28]). For example, (i) cannot mean that Bilbo opened the door once and then it
always stayed open.

(i) Bilbo always opened the door.

Appropriate restrictions can be stated in our framework, but we do not want to
commit to a particular formulation here. For other relevant examples of sublexical
modification such as the ambiguous noun phrase a beautiful dancer (a dancer who
dances beautifully vs. a beautiful-looking dancer), see [31].
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Frame:

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

causation

cause 1

[
activity

actor 2

]

effect 4

⎡
⎢⎢⎢⎢⎣
ingr-state

theme 3

result 5

[
state∧open
patient 3

]
⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8

⎡
⎢⎣repetitionmaxs 7

mins 5

⎤
⎥⎦

Dominance constraints:
h7

l0 : causation(h1h2)

l8 : rep.(h8,1) l1 : act.(x2)

l4 : ingr-state(x3, h5)

l5 : open(x3)

Disambiguations (minimal models of the dominance constraints):
1. repetition(causation(activity(x2), ingr-state(x3,open(x3))))
2. causation(activity(x2), repetition(ingr-state(x3,open(x3))))
3. causation(activity(x2), ingr-state(x3, repetition(open(x3))))

Fig. 12. Frame and dominance constraints for (4)

• Frames of type event-quantification:

i

⎡
⎢⎣event-quantmaxs j

mins k

⎤
⎥⎦ � li : event-quant(hi),

hj �
∗ hi, hi �

∗ lk

where event-quant is a subtype of event-quantification (for instance repetition.

• Frames of type eventuality with entity-valued argument roles 〈arg1〉, 〈arg2〉,
. . . (e.g., EXPERIENCER and THEME) and eventuality-valued argument roles
〈event1〉, 〈event2〉, . . . (e.g., CAUSE and EFFECT):

i

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pred

〈arg1〉 j

〈arg2〉 k

. . .

〈event1〉 l

〈event2〉 m

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� li : pred(xj , xk, . . . , hl, hm, . . .)
hl �

∗ ll, hm �∗ lm

where pred is a subtype of eventuality.

5.2 Interaction with Quantificational NPs

By adding a quantifier to (4)/(5), we can provoke an additional semantic ambi-
guity due to an interaction with the adverb again as demonstrated in (7) and (8),
with the new NP quantifier in object position and in subject position, respec-
tively. In both cases, a reading where again outscopes the quantifier is possible:
In (7), this reading signifies that it happened again that Bilbo opened more than
half of the doors, but he did not necessarily open the same as before. In (8), wide



Quantifiers in Frame Semantics 83

scope of again signifies that it was again the case that there were two dwarfs
(not necessarily the same as before) that walked to the hall.

(7) Bilbo opened more than half of the doors again.

(8) Two dwarfs walked to the hall again.

Let us consider the analysis of (8). The adjoining again picks the label of the
result state as its minimal argument frame while the minimal argument of the
quantifier two dwarfs is the label of the entire walking frame. As basis for this,
the elementary construction of a directed motion with a goal PP provides the
two different labels as MINS values at the VP node and the NP/PP nodes, re-
spectively. We obtain the frame and the dominance constraints in Fig. 13.5

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

walking∧ingr-of-state

actor 1

⎡
⎢⎢⎢⎢⎣
two

restr 4 dwarf

maxs 7

mins 0

⎤
⎥⎥⎥⎥⎦

goal 2 the hall

result 5

⎡
⎢⎣
be-at

patient 1

location 2

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

8

⎡
⎢⎣repetitionmaxs 7

mins 5

⎤
⎥⎦

h0

l1 : two(x1, h1,1, h1,2) l8 : repetition(h8)

l4dwarf(x1) l0 : walking(x1, the hall, h4)

l5 : be-at(x1, the hall)

Fig. 13. Frame for (8)

The analysis of again proposed in this section has demonstrated that a com-
bination of the detailed event decomposition of frames and the techniques of
dominance constraints in underspecified scope representations paves the way to
an elegant account of challenging scope phenomena. Our framework provides
an analysis that avoids either lexical ambiguity or structural ambiguity, one of
which was necessary in the two earlier types of accounts [32, 30, 28].

6 Conclusion

We added quantifier frames to Frame Semantics and defined a translation from
frames to underspecified semantic representations that lead to resolved repre-

5 The analysis of the definite article is left aside in this paper.
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sentations with a conventional interpretation in models. With its integration in
LTAG a new architecture emerged in which a Frame Semantics with fine-grained
lexical decompositions of situations as frames supports a well-defined logical se-
mantics with quantificational and intensional operators.

We distinguished a level of representationwith frames as feature structures from
a derived level of interpreted logical representations. Frames are taken to be cog-
nitive representations of concepts, world knowledge and situational knowledge.
When frame semantics represents a dog, it aims at the concept of a dog and an
agent’s knowledge of dogs including the range of their size or that they are carni-
vores etc. Type logical semantics on the other hand provides a predicate denoting
the set of dogs in amodel. Separating frames and logical semantics is therefore cru-
cial to do justice to the fundamentally different nature of the two. As lexical repre-
sentations, frames are supposed to reflect how speakers decompose and represent
the meaning of lexical units. The syntax-semantics interface connects syntactic
units to frames, which are in turn systematically related to the interpreted logical
representations. In the grammatical system, frames are prominently responsible
for the assignment of semantic roles. We showed that their structure is sufficiently
rich to define a translation function to underspecified logical representations that
explicate the possible scope relations between the quantifiers associated with the
fillers of semantic roles or adverbial modifiers.

In future research it would be interesting to investigate in more detail how the
comprehensive knowledge resources that cognitive scientists assume for frames
are related to linguistic representations, and what their role is in reasoning.
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Equivalent to Simple Context-Free Tree
Grammars
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Abstract. I define a generalization of linear indexed grammars that is
equivalent to simple context-free tree grammars in the same way that
linear indexed grammars are equivalent to tree-adjoining grammars.

1 Introduction

The equivalence in string generating power of tree-adjoining grammars, head
grammars, and linear indexed grammars is one of the most celebrated results
in the mathematics of grammar formalisms for natural language [11,27].1 The
title of Joshi et al.’s paper [11], “The convergence of mildly context-sensitive
grammar formalisms”, referred to this equivalence, but was somewhat misleading
in that the relevant class of string languages—tree-adjoining languages—was
properly included in a larger class, the class of multiple context-free languages,
which has widely been regarded as a formal counterpart of the informal notion
of mild context-sensitivity. In fact, this latter class has also been found to be
characterized by a wide array of different formalisms [30,3,31,22,20,21,8,6,24].

Elsewhere [12], I have argued that a class of string languages that falls in be-
tween these two classes, namely, the class equivalently captured by well-nested
multiple context-free grammars [13],2 coupled-context-free grammars [10], non-
duplicating macro grammars [25], simple (i.e., linear and non-deleting) context-
free tree grammars [16], and second-order abstract categorial grammars of lex-
icon complexity 3 (see [14]), may be more attractive than the broader class
as a formalization of mild context-sensitivity. I will not repeat the arguments
here,3 but one counterargument might be that this intermediate class (the class

1 I exclude combinatory categorial grammars, another formalism that was shown to
be equivalent, from the discussion here, for two reasons. First, the equivalence was
proved with respect to a certain restricted version of combinatory categorial gram-
mars, and is not known to hold for more general combinatory grammars that are
actually used in practice [26]. Second, the definition of that version of combinatory
categorial grammar is mathematically not as natural as the other three formalisms.

2 The same formalism is called well-nested linear context-free rewriting systems by
some people [5].

3 Simple context-free tree grammars are also of interest because of their capacity to
lexicalize tree-adjoining grammars preserving the set of derived trees [19].

G. Morrill et al. (Eds.): Formal Grammar 2014, LNCS 8612, pp. 86–103, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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of well-nested multiple context-free languages) does not look as robust as the
other two. The formalisms that capture it are all basically similar—they either
define local sets of derivation trees that are evaluated bottom-up using “linear”
functions (MCFGs and second-order ACGs) or present the same mechanism in a
top-down rewriting perspective (coupled-context-free grammars, non-duplicating
macro grammars, and simple context-free tree grammars). In contrast, at the
level of tree-adjoining languages, linear indexed grammars have non-local (and
non-regular) sets of derivation trees, and at the level of multiple context-free
languages, deterministic tree-walking transducers [31] map trees to strings in a
decidedly non-compositional way.

In this paper, I respond to this qualm by defining a natural generalization
of linear indexed grammars, which generates the class of well-nested multiple
context-free languages. This generalization, which I call arboreal indexed gram-
mars, uses a “stack” attached to nonterminal symbols that stores tuples of trees,
and is equivalent to simple context-free tree grammars in exactly the same way
that linear indexed grammars are equivalent to tree-adjoining grammars (or
more precisely, monadic simple context-free tree grammars [17]), in the follow-
ing sense:

– For any simple context-free tree grammar, there is an arboreal indexed gram-
mar such that the derived trees of the former may be obtained from the
derivation trees of the latter by relabeling of nodes and deletion of some
unary-branching nodes.

– For any arboreal indexed grammar, there is a simple context-free tree gram-
mar whose derived trees are precisely the result of stripping the derivation
trees of the arboreal indexed grammar of the “stack” part of their node
labels.

The formalism of arboreal indexed grammar is closely related to the notion
of Dyck tree language I introduced in [15]. This paper does not use this notion,
however, and is completely self-contained.

Arboreal indexed grammars may be useful for devising new parsing algorithms
for well-nested multiple context-free languages.

2 Indexed Grammars and Context-Free Tree Grammars

2.1 Indexed Grammars

An indexed grammar [1,9] is like a context-free grammar except that each oc-
currence of a nonterminal in a derivation tree has a string of indices attached to
it, which acts as a pushdown stack. The stack is passed from a node to each of
its nonterminal children, except that the production applied at that node may
either push a symbol onto the stack or pop its topmost symbol.

A formal definition goes as follows. When B is a nonterminal and χ is a string
of indices, we write B[χ] for Bχ; thus, B[] is just B. An indexed grammar is a
quintuple G = (N,Σ, I, P, S), where
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Table 1. Standard interpretation of indexed grammar productions (χ ∈ I∗)

(TERM) (DIST) (PUSH) (POP)

A[] → a A[] → B1[] . . . Bn[] A[] → B[l] A[l] → B[]

A[χ]

a

A[χ]

B1[χ] . . . Bn[χ]

A[χ]

B[lχ]

A[lχ]

B[χ]

1. N and Σ are finite sets of nonterminals and terminals, respectively,

2. I is a finite set of indices,

3. S ∈ N , and

4. P is a finite set of productions, each having one of the following forms:4

A[]→ a, (TERM)

A[]→ B1[] . . . Bn[], (DIST)

A[]→ B[l], (PUSH)

A[l]→ B[], (POP)

where a ∈ Σ ∪ {ε}, n ≥ 1, A,B,B1, . . . , Bn ∈ N , and l ∈ I.

A derivation tree of G is a finite labeled tree τ with node labels from NI∗ ∪
Σ ∪ {ε} such that

– each leaf node of τ is labeled by some a ∈ Σ ∪ {ε}, and
– each internal node of τ is sanctioned by one of the productions of G,

where a node is said to be sanctioned by a production if it and its children are
labeled as depicted in Table 1. For example, for a node to be sanctioned by a
(TERM) production A[] → a, it must be labeled by A[χ] for some χ ∈ I∗, and
its only child must be labeled by a. An internal node of a derivation tree is called
a (TERM) node, (DIST) node, (PUSH) node, or (POP) node, depending on the
type of production sanctioning it.

When a derivation tree has root label A[χ], we call it a derivation tree from
A[χ]. A complete derivation tree is a derivation tree from S[]. The language of
G is defined by

L(G) = {y(τ) | τ is a complete derivation tree of G },

where y(τ) denotes the yield of τ , the left-to-right concatenation of the labels
of its leaf nodes.

4 This is actually a normal form for indexed grammars which is more general than the
normal form (“reduced form”) given by Aho [1].
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Note that in a derivation tree from A[], each (POP) node must match exactly
one (PUSH) node; a (PUSH) node may have zero, one, or more (POP) nodes
matching it.5

2.2 Context-Free Tree Grammars

A ranked alphabet is a union Δ =
⋃

n∈N
Δ(n) of disjoint finite sets of symbols. If

f ∈ Δ(n), then n is the rank of f .
Let Σ be an (unranked) alphabet and Δ be a ranked alphabet. We define the

set TΣ,Δ of trees over Σ,Δ as follows:

1. If f ∈ Σ ∪Δ(0), then f ∈ TΣ,Δ.
2. If f ∈ Σ ∪Δ(n) and t1, . . . , tn ∈ TΣ,Δ (n ≥ 1), then f(t1, . . . , tn) ∈ TΣ,Δ.

The notation TΣ denotes the set of unranked trees over Σ; thus TΣ = TΣ,∅.
We set aside special symbols x1, x2, . . . called the variables. The set consisting

of the first n variables x1, . . . , xn is denoted Xn. The set TΣ,Δ(Xn) is defined to
be TΣ,Δ∪Xn , whereΔ∪Xn is the ranked alphabet where symbols inXn have rank
0. If t[x1, . . . , xn] ∈ TΣ,Δ(Xn) and t1, . . . , tn ∈ TΣ,Δ, then t[t1, . . . , tn] denotes
the result of substituting ti for each occurrence of xi in t (i = 1, . . . , n). Note
that if xi does not occur in t[x1, . . . , xn], then ti is deleted in t[t1, . . . , tn], and
if xi occurs more than once in t[x1, . . . , xn], then ti is duplicated in t[t1, . . . , tn].
A tree t[x1, . . . , xn] ∈ TΣ,Δ(Xn) is called an n-context if each xi occurs exactly
once in it. If t[x1, . . . , xn] is an n-context, then each ti is neither deleted nor
duplicated in t[t1, . . . , tn].

We deviate from the standard practice and define context-free tree grammars
using unranked alphabets of terminals. (This makes it easier to relate them to
indexed grammars, but is not essential.) A context-free tree grammar [23,2] is a
quadruple G = (N,Σ, P, S), where

1. N =
⋃

n∈N
N (n) is a finite ranked alphabet of nonterminals,

2. Σ is a finite unranked alphabet of terminals,
3. S is a nonterminal of rank 0, and
4. P is a finite set of productions of the form

A(x1, . . . , xn)→ t[x1, . . . , xn],

where A ∈ N (n) and t[x1, . . . , xn] ∈ TΣ,N (Xn).

We say that G is of rank m if the rank of nonterminals of G does not exceed m.
The one-step rewriting relation ⇒G on TΣ,N is defined as follows: u1 ⇒G u2

if there is a 1-context u[x1] ∈ TΣ,N [X1], a nonterminal A ∈ N (n), a pro-
duction A(x1, . . . , xn) → t[x1, . . . , xn], and trees t1, . . . , tn ∈ TΣ,N such that

5 I leave to the reader a formal definition of the intuitively clear notion of a (POP)
node matching a (PUSH) node.
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u1 = u[A(t1, . . . , tn)] and u2 = u[t[t1, . . . , tn]]. The language of a context-free
tree grammar G is6

L(G) = { t ∈ TΣ | S ⇒∗
G t }.

We call elements of L(G) derived trees of G.
We assume that when Σ contains a special symbol ε, it is always used to

label a leaf node and is interpreted as the empty string. The string language of
a context-free tree grammar G is defined to be

{y(t) | t ∈ L(G) }.

Example 1. Here is a very simple example of a context-free tree grammar. Let
G = (N,Σ, P, S), where

N = N (0) ∪N (1) = {S,C} ∪ {A,B},
Σ = {a, f, g},

and P consists of the following productions:

S → A(a),

A(x1)→ A(g(C, x1)),

A(x1)→ B(x1),

C → a,

B(x1)→ x1,

B(x1)→ B(f(a, x1, x1)).

Some elements of L(G) are:

a,

g(a, a),

g(a, g(a, a)),

f(a, a, a),

f(a, g(a, a), g(a, a)),

f(a, g(a, g(a, a)), g(a, g(a, a))),

f(a, f(a, a, a), f(a, a, a)),

f(a, f(a, g(a, a), g(a, a)), f(a, g(a, a), g(a, a))),

f(a, f(a, g(a, g(a, a)), g(a, g(a, a))), f(a, g(a, g(a, a)), g(a, g(a, a)))).

A context-free tree grammar is simple if for each production A(x1, . . . , xn)→
t[x1, . . . , xn], the right-hand side t[x1, . . . , xn] is an n-context. Monadic simple
context-free tree grammars, i.e., simple context-free tree grammars of rank 1,
are, inessential details aside, the same as tree-adjoining grammars [17].

6 This is the OI, as opposed to IO, interpretation of the grammar [2].
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2.3 From Context-Free Tree Grammars to Indexed Grammars

In this section, we review Guessarian’s [7] method (in slightly adapted form) of
converting a context-free tree grammar G to an indexed grammar Ind(G) that
generates the same string language.

We refer to a node of a tree by a “Dewey decimal notation” [18] or “Gorn
address”, which is a string of positive integers separated by dots “.”. If t is a
tree, define the domain of t, dom(t), by

dom(a) = {ε},
dom(f(t1, . . . , tn)) = {ε} ∪ { i.p | 1 ≤ i ≤ n, p ∈ dom(ti) }.

If p ∈ dom(t), the label of the node at p, written lab(t, p) is defined by

lab(a, ε) = a, lab(f(t1, . . . , tn), ε) = f,

lab(f(t1, . . . , tn), i.p) = lab(ti, p).

Let G = (N,Σ, P, S) be a context-free tree grammar. Let ti be the right-hand
side tree of the ith production in P . Let

N ′ = {S′} ∪ { (i, p) | 1 ≤ i ≤ |P | and p ∈ dom(ti) },
I = { (i, p) ∈ N ′ | lab(ti, p) ∈ N }.

Define the indexed grammar Ind(G) = (N ′, Σ, I, P ′, S′), where P ′ consists of
the following productions:

– If the left-hand side of the ith production is S, then P ′ contains the produc-
tion

S′[]→ (i, ε)[]. (DIST1)

– If lab(ti, p) ∈ Σ and n = max{ j | p.j ∈ dom(ti) }, then P ′ contains the
production

(i, p)[]→ (i, p.1)[] . . . (i, p.n)[]. (DIST2)

– If p is a leaf of ti and lab(ti, p) = a ∈ Σ, then P ′ contains the production

(i, p)[]→ a. (TERM)

– If lab(ti, p) = A ∈ N and the left-hand side nonterminal of the jth produc-
tion is A, then P ′ contains the production

(i, p)[]→ (j, ε)[(i, p)]. (PUSH)

and the production
(j, q)[(i, p)]→ (i, p.k)[] (POP)

for each q ∈ dom(tj) such that lab(tj , q) = xk.

If τ is a derivation tree of Ind(G), then let h(τ) be the result of removing
all unary-branching nodes sanctioned by (TERM), (DIST1), (PUSH), or (POP)
productions, and then changing the label of each remaining internal node from
(i, p)[χ] to lab(ti, p). Clearly, y(τ) = y(h(τ)). We can prove the following:
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Proposition 2. If τ is a complete derivation tree of Ind(G), then h(τ) is a
derived tree of G. Conversely, if t is a derived tree of G, then there exists a
complete derivation tree τ of Ind(G) such that t = h(τ).

Corollary 3. For every context-free tree grammar G, {y(t) | t ∈ L(G) } =
L(Ind(G)).

We need two new notions to prove this proposition.7 For an indexed grammar,
a derivation tree fragment is defined like a derivation tree except that labels
of the form A[χ] are allowed on leaf nodes. For a context-free tree grammar
G = (N,Σ, P, S), we extend the rewriting relation ⇒∗

G to TN∪Σ(Xn) in an
obvious way.

Example 4. The result of applying the method to the context-free tree grammar
G of Example 1 is the following indexed grammar Ind(G):

S′[]→ (1, ε)[]

(1, ε)[]→ (i, ε)[(1, ε)] (i = 2, 3)

(1, 1)[]→ a,

(2, ε)[]→ (i, ε)[(2, ε)] (i = 2, 3)

(2, 1)[]→ (2, 1.1)[] (2, 1.2)[]

(2, 1.1)[]→ (4, ε)[(2, 1.1)]

(2, 1.2)[(i, ε)]→ (i, 1)[] (i = 1, 2)

(3, ε)[]→ (i, ε)[(3, ε)] (i = 5, 6)

(3, 1)[(i, ε)]→ (i, 1)[] (i = 1, 2)

(4, ε)[]→ a

(5, ε)[(i, ε)]→ (i, 1)[] (i = 3, 6)

(6, ε)[]→ (i, ε)[(6, ε)] (i = 3, 6)

(6, 1)[]→ (6, 1.1)[] (6, 1.2)[] (6, 1.3)[]

(6, 1.1)[]→ a

(6, 1.2)[(i, ε)]→ (i, 1)[] (i = 3, 6)

(6, 1.3)[(i, ε)]→ (i, 1)[] (i = 3, 6)

Fig. 1 shows two derivation trees of Ind(G) corresponding to the derived trees
g(a, a) and f(a, g(a, a), g(a, a)) of G.

3 Linear Indexed Grammars and an Alternative
Conception of Indexed Grammars

3.1 Linear Indexed Grammars

Gazdar [4] introduced linear indexed grammars,8 which are a variant of indexed
grammars where the stack attached to an internal node is passed to exactly

7 Due to space limitations, I had to leave out all proofs.
8 “Linear indexed grammar” seems to be a coinage of Vijay-Shanker [29].
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S′[]

(1, ε)[]

(2, ε)[(1, ε)]

(3, ε)[(2, ε)(1, ε)]

(5, ε)[(3, ε)(2, ε)(1, ε)]

(3, 1)[(2, ε)(1, ε)]

(2, 1)[(1, ε)]

(2, 1.1)[(1, ε)]

(4, ε)[(2, 1.1)(1, ε)]

a

(2, 1.2)[(1, ε)]

(1, 1)[]

a

S′[]

(1, ε)[]

(2, ε)[(1, ε)]

(3, ε)[(2, ε)(1, ε)]

(6, ε)[(3, ε)(2, ε)(1, ε)]

(5, ε)[(6, ε)(3, ε)(2, ε)(1, ε)]

(6, 1)[(3, ε)(2, ε)(1, ε)]

(6, 1.1)[(3, ε)(2, ε)(1, ε)]

a

(6, 1.2)[(3, ε)(2, ε)(1, ε)]

(3, 1)[(2, ε)(1, ε)]

(2, 1)[(1, ε)]

(2, 1.1)[(1, ε)]

(4, ε)[(2, 1.1)(1, ε)]

a

(2, 1.2)[(1, ε)]

(1, 1)[]

a

(6, 1.3)[(3, ε)(2, ε)(1, ε)]

(3, 1)[(2, ε)(1, ε)]

(2, 1)[(1, ε)]

(2, 1.1)[(1, ε)]

(4, ε)[(2, 1.1)(1, ε)]

a

(2, 1.2)[(1, ε)]

(1, 1)[]

a

Fig. 1. Derivation trees of an indexed grammar obtained from a context-free tree gram-
mar
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Table 2. Interpretation of linear indexed grammar productions (χ ∈ I∗)

(TERM) (DIST′) (PUSH) (POP)

A[] → a A[◦◦] → B1[] . . . Bi−1[]Bi[◦◦]Bi+1[] . . . Bn[] A[◦◦] → B[l◦◦] A[l◦◦] → B[◦◦]

A[]

a

A[χ]

B1[] . . . Bi−1[] Bi[χ] Bi+1[] . . . Bn[]

A[χ]

B[lχ]

A[lχ]

B[χ]

one of its children, except when the stack is empty, in which case it may be a
(TERM) node. A linear indexed grammar is a quintuple G = (N,Σ, I, P, S) just
like an indexed grammar except that each production takes one of the following
forms:9

A[]→ a, (TERM)

A[◦◦]→ B1[] . . . Bi−1[]Bi[◦◦]Bi+1[] . . . Bn[], (DIST′)

A[◦◦]→ B[l◦◦], (PUSH)

A[l◦◦]→ B[◦◦], (POP)

where A,B,B1, . . . , Bn ∈ N,n ≥ 1, l ∈ I, a ∈ Σ ∪ {ε}. The expression ◦◦ serves
as a variable ranging over the strings of indices and serves to indicate which of
the children of a node the stack gets passed to. In linear indexed grammars, an
occurrence of “[]” in a production indicates empty stack, rather than a variable
stack, as in the case of indexed grammars. Thus, a (TERM) production can
only sanction a node with empty stack, and all but one of the children of a
node sanctioned by a (DIST′) production must have empty stack. The (PUSH)
and (POP) productions are interpreted exactly like the productions of indexed
grammars of the same name, except for the notation. See Table 2.

The definition of the language generated by a grammar is as before:

L(G) = {y(τ) | τ is a complete derivation tree of G }.

3.2 A Bottom-Up Conception of Indexed Grammar Derivation
Trees

Because of the difference in how the stack works in linear indexed grammars,
a derivation tree of a linear indexed grammar is often not a possible derivation
tree of an indexed grammar. However, there is an alternative view of indexed
grammars that brings the two formalisms closer together.

Note that the labels of nodes in a derivation tree of a linear indexed gram-
mar may be determined both top-down and bottom-up; once you know which

9 Again, this is a normal form for linear indexed grammars, which we adopt here for
convenience. Note that some authors, e.g., [27], place the top of the stack at the
right end, contrary to the original convention of Aho [1].
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Table 3. Bottom-up interpretation of indexed grammar productions (χ, χ1, . . . , χn ∈
I∗). In (DIST), χ1, . . . , χn must be pairwise compatible, and i = argmaxj |χj |.

(TERM) (DIST) (PUSH) (POP)

A[] → a A[] → B1[] . . . Bn[] A[] → B[l] A[l] → B[]

A[]

a

A[χi]

B1[χ1] . . . Bn[χn]

A[χ]

B[lχ]

or A[]

B[]

A[lχ]

B[χ]

production an internal node is sanctioned by, knowing its label uniquely deter-
mines its children’s labels, and vice versa. Derivation trees of indexed grammars
are deterministic only in the top-down direction, because when an internal node
is sanctioned by a (TERM) production, the label of its unique child does not
determine the stack portion of its label.

We can, however, adopt an alternative interpretation of indexed grammar pro-
ductions and construct derivation trees bottom-up. With this alternative con-
ception, (TERM) productions of an indexed grammar are interpreted in exactly
the same way as in linear indexed grammars: they sanction a node only when
its stack is empty. (POP) productions are interpreted in the same way as before,
but (DIST) and (PUSH) productions are reinterpreted, as indicated in Table 3
(we call two strings compatible if one of them is a prefix of the other). Note that
there are two ways in which a node may be sanctioned by a (PUSH) production;
the second case is for a (PUSH) node with no matching (POP) node.

Example 5. Fig. 2 shows the same derivation trees in Fig. 1 relabeled in the new
bottom-up way.

Indexed grammar derivation trees in the new sense correspond one-to-one
with derivation trees in the original sense. The derivation trees under the two
conceptions differ only in the stack portion of the labels of internal nodes, and
they give rise to the same notion of the generated language. Let us adopt this
new, bottom-up conception from now on, since it allows us to view derivation
trees of linear indexed grammars as derivation trees of indexed grammars of a
special kind.

Let G be a linear indexed grammar, and let G′ be the indexed grammar that
is the result of erasing all occurrences of ◦◦ from productions of G. Then every
derivation tree of G (from A[] for some nonterminal A) is a derivation tree of G′

in which each (PUSH) node has exactly one matching (POP) node.

3.3 Monadic Indexed Grammars

Suppose we apply the method of Guessarian [7] reviewed in Section 2.3 to a
monadic simple context-free tree grammar G. The resulting indexed grammar
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S′[]

(1, ε)[]

(2, ε)[(1, ε)]

(3, ε)[(2, ε)(1, ε)]

(5, ε)[(3, ε)(2, ε)(1, ε)]

(3, 1)[(2, ε)(1, ε)]

(2, 1)[(1, ε)]

(2, 1.1)[]

(4, ε)[]

a

(2, 1.2)[(1, ε)]

(1, 1)[]

a

S′[]

(1, ε)[]

(2, ε)[(1, ε)]

(3, ε)[(2, ε)(1, ε)]

(6, ε)[(3, ε)(2, ε)(1, ε)]

(5, ε)[(6, ε)(3, ε)(2, ε)(1, ε)]

(6, 1)[(3, ε)(2, ε)(1, ε)]

(6, 1.1)[]

a

(6, 1.2)[(3, ε)(2, ε)(1, ε)]

(3, 1)[(2, ε)(1, ε)]

(2, 1)[(1, ε)]

(2, 1.1)[]

(4, ε)[]

a

(2, 1.2)[(1, ε)]

(1, 1)[]

a

(6, 1.3)[(3, ε)(2, ε)(1, ε)]

(3, 1)[(2, ε)(1, ε)]

(2, 1)[(1, ε)]

(2, 1.1)[]

(4, ε)[]

a

(2, 1.2)[(1, ε)]

(1, 1)[]

a

Fig. 2. Derivation trees of an indexed grammar under the bottom-up conception
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Ind(G) is very close to a linear indexed grammar. (For example, the grammar
consisting of the first five productions of the grammar in Example 1 is a monadic
simple context-free tree grammar, and the productions of the corresponding in-
dexed grammar are the first 11 lines of the grammar in Example 4, with i �= 6.)
In any complete derivation tree of Ind(G), every (PUSH) node has at most one
matching (POP) node. More precisely, a (PUSH) node has no matching (POP)
node when the (PUSH) production sanctioning it is related to a nonterminal of
G of rank 0; it has exactly one matching (POP) node when the production is
related to a nonterminal of rank 1. Actually, it is easy to modify Guessarian’s
method and convert a monadic simple context-free tree grammar into a linear in-
dexed grammar, instead of an indexed grammar.10 However, the kind of indexed
grammar that Ind(G) exemplifies is interesting in its own right.

Let us call a derivation tree of an indexed grammar monadic if every (PUSH)
node in it has at most one matching (POP) node. If G is an indexed grammar,
let us write D(G) for the set of complete derivation trees of G and D1(G) for
the set of monadic complete derivation trees of G. Define

L1(G) = {y(τ) | τ ∈ D1(G) }.

(Recall L(G) = {y(τ) | τ ∈ D(G) }.) We can prove the following:

Proposition 6. For every indexed grammar G, there is a linear indexed gram-
mar G′ such that L1(G) = L(G′).

Proposition 7. For every linear indexed grammar G, there is an indexed gram-
mar G′ such that L(G) = L1(G

′) = L(G′).

Consider an indexed grammar G together with D1(G) and L1(G). This can
be thought of as another variant of indexed grammar where (DIST) production
A[]→ B1[] . . . Bn[] sanctions a node only if all but one of its children has empty
stack. Let us call an indexed grammar with this interpretation a monadic indexed
grammar. (See Table 4.) The indexed grammar obtained from a monadic simple
context-free tree grammar by Guessarian’s method can be regarded equivalently
as a monadic indexed grammar. As Propositions 6 and 7 show, monadic indexed
grammars are equivalent to linear indexed grammars, and the derivation trees
of the two formalisms are also almost identical.

Vijay-Shanker and Weir [27] give a method of converting a linear indexed
grammar to an equivalent head grammar. Combined with a conversion from
head grammars to tree-adjoining grammars, it gives a method of converting a
linear indexed grammar into a tree-adjoining grammar that generates the same
string language. This result can be strengthened. For a (linear/monadic/general)
indexed grammar G, let us call the result τ̂ of erasing all indices from a (com-
plete) derivation tree τ of G a stripped (complete) derivation tree. We can easily
turn Vijay-Shanker and Weir’s method into one that establishes the following:

10 A variant of this modification is given by Vijay-Shanker and Weir [28] for tree-
adjoining grammars.
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Table 4. Interpretation of monadic indexed grammar productions (χ ∈ I∗, 1 ≤ i ≤ n)

(TERM) (DIST) (PUSH) (POP)

A[] → a A[] → B1[] . . . Bn[] A[] → B[l] A[l] → B[]

A[]

a

A[χ]

B1[] . . . Bi−1[] Bi[χ] Bi+1[] . . . Bn[]

A[χ]

B[lχ]

or A[]

B[]

A[lχ]

B[χ]

Proposition 8. For every linear or monadic indexed grammar G, there is a
monadic simple context-free tree grammar G′ that generates the set of all stripped
complete derivation trees of G.

I use monadic indexed grammars, rather than linear indexed grammars, as
the point of departure for my generalization of linear indexed grammars. This is
not strictly necessary, but will greatly simplify the definition of the generalized
formalism.

4 Arboreal Indexed Grammars

Given Proposition 8, an obvious variant of indexed grammars corresponding to
simple context-free tree grammars of rank m suggests itself: indexed grammars
interpreted in such a way that all (PUSH) nodes must have at most m matching
(POP) nodes.

4.1 From m-adic Indexed Grammars to Simple Context-Free Tree
Grammars of Rank m

Let us call a derivation tree fragment of an indexed grammar m-adic if each
(PUSH) node in it has at most m matching (POP) nodes. Write Dm(G) for
the set of m-adic complete derivation trees of an indexed grammar G, and let
Lm(G) = {y(τ) | τ ∈ Dm(G) }. It is easy to check the following:

Proposition 9. If G is a simple context-free tree grammar of rank m, then
D(Ind(G)) = Dm(Ind(G)), and consequently, L(Ind(G)) = Lm(Ind(G)).

I now present a generalization of the construction underlying Proposition 8.
Consider an indexed grammar G. A path in a derivation tree fragment of G is a
sequence of nodes, always passing from a parent node to one of its children. We
say that a path ρ is clean if every (PUSH) node on ρ is matched by a (POP)
node on ρ.

Lemma 10. If a (POP) node matches a (PUSH) node in a derivation tree frag-
ment, the path from the child of the (PUSH) node to the (POP) node is a clean
path.
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Lemma 11. Let τ be a derivation tree fragment from A[] such that y(τ) =
w0B1[]w1 . . . Bn[]wn for some w0, . . . , wn ∈ Σ∗ and for every i = 1, . . . , n, the
path ρi from the root to the leaf node labeled by Bi[] is a clean path. Let τ ′ be the
result of changing the label of each node on ρ1, . . . , ρn from C[χ] to C[χl]. Then
τ ′ is a derivation tree fragment from A[l] with y(τ ′) = w0 B1[l]w1 . . . Bn[l]wn.

Let m ≥ 1. Given an indexed grammar G = (N,Σ, I, P, S), define a simple
context-free tree grammar CFTm

sp(G) = (N ′, Σ′, P ′, 〈S〉) where

N ′(k) =

{
{ 〈AB1 . . . Bk〉 | A,B1, . . . , Bk ∈ N } if k ≤ m,

∅ otherwise,

Σ′ = Σ ∪ {ε} ∪N,

and P ′ consists of the following productions:

(A) If A[]→ a is a (TERM) production in P , P ′ contains the production

〈A〉 → A(a).

(B) For each nonterminal A ∈ N , P ′ contains the production

〈AA〉(x1)→ x1.

(C) For each nonterminal 〈AB1 . . . Bk〉 ∈ N ′, if A[] → C1[] . . . Cn[] is a (DIST)
production in P and 0 ≤ k1 ≤ · · · ≤ kn = k, then P ′ contains the production

〈AB1 . . . Bk〉(x1, . . . , xk)→
A(〈C1B1 . . . Bk1〉(x1, . . . , xk1), . . . , 〈CnBkn−1+1 . . . Bkn〉(xkn−1+1, . . . , xkn)).

(D) For each nonterminal 〈AB1 . . . Bk〉 ∈ N ′, if A[] → C[l] is a (PUSH) pro-
duction in P , D1[l] → E1[], . . . , Dn[l] → En[] are (POP) productions in P
(0 ≤ n ≤ m), and 0 ≤ k1 ≤ · · · ≤ kn = k, then P ′ contains the production

〈AB1 . . . Bk〉(x1, . . . , xk)→
A(〈CD1 . . . Dn〉(D1(〈E1B1 . . . Bk1〉(x1, . . . , xk1)),

. . . ,
Dn(〈EnBkn−1+1 . . . Bkn〉(xkn−1+1, . . . , xkn)))).

(When n = 0, this production is 〈A〉 → A(〈C〉).)

Lemma 12. Let 〈AB1 . . . Bk〉 be a nonterminal of CFTm
sp(G). For every

t[x1, . . . , xk] ∈ TΣ∪{ε}∪N [Xk], the following are equivalent:

(i) 〈AB1 . . . Bk〉(x1, . . . , xk)⇒∗
CFTm

sp(G) t[x1, . . . , xk].

(ii) There is an m-adic derivation tree fragment τ of G such that
– t[B1, . . . , Bk] = τ̂ ,
– the root of τ is labeled by A[],
– y(τ) = w0B1[]w1 . . . Bk[]wk for some w0, w1, . . . , wk ∈ Σ∗, and
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– for each i = 1, . . . , k, the path from the root of τ to the leaf node labeled
by Bi[] is a clean path.

Theorem 13. For every indexed grammar G, L(CFTm
sp(G)) = { τ̂ | τ ∈

Dm(G) }.

Let us call indexed grammars with the restriction to m-adic complete deriva-
tion trees m-adic indexed grammars. Proposition 9 and Theorem 13 establish
the equivalence between m-adic indexed grammars and simple context-free tree
grammars of rank m.

4.2 Storing Tuples of Trees in the Stack

Our job is not done yet. The notion of an m-adic indexed grammar has not been
defined in terms of how the productions are interpreted. In the case of monadic
indexed grammars, the restriction on the way a (DIST) production may sanction
a node carved out precisely the set of monadic derivation trees. We cannot obtain
the m-adic derivation trees in a similar way, for m ≥ 2.

In order to express the restriction to m-adic derivation trees, we have to
somehow record at each node the number of (POP) nodes below the node that
are to match a given (PUSH) node above the node. This means that a (PUSH)
production should push k copies of the same index (k ≤ m) onto the stack,
and a (DIST) production should distribute different copies of the same index to
(possibly) different children.

Such stack actions cannot be realized with strings of indices acting as push-
down storage. The most natural solution is to store a tuple of trees, rather than
a string, in the stack. We only need to store a tuple of trees s1, . . . , sk with very
special properties. First, all the nodes of s1, . . . , sk of the same level (i.e., at
the same distance from the root) must have the same label. Second, for m-adic
indexed grammars, the number of nodes of s1, . . . , sk of the same level may not
exceed m. (This implies that the trees are at most m-branching; it does not
imply that the number of leaves is bounded.) The number of components of the
tuple may vary from node to node, but of course cannot exceed m. Let us call
such a tuple of trees m-limited.

We consider trees in which each leaf node has a label from Σ ∪ {ε} and each
internal node has a label of the form A[s1, . . . , sk], where s1, . . . , sk is an m-
limited tuple of trees over I. Such trees may be sanctioned by productions of
an indexed grammar as indicated in Table 5, in which case we call them m-adic
arboreal derivation trees.

If s1, . . . , sk is an m-limited tuple of trees over I, all the paths in s1, . . . , sk
starting from the root and ending in some leaf node give mutually compatible
strings of indices. Let s1, . . . , sk be the string given by a maximal path. If υ is
an m-adic arboreal derivation tree of an indexed grammar G, let υ be the result
of changing each label C[s1, . . . , sk] in υ to C[s1, . . . , sk]. Then υ is always an
ordinary derivation tree. It is easy to see the following:
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Table 5. Interpretation of m-adic arboreal indexed grammar productions. Here, σ and
σi range over (m-limited) tuples of trees over I . When σ is empty, l(σ) stands for l.
The concatenation of tuples σ1, . . . , σn is written as σ1 . . . σn.

(TERM) (DIST) (PUSH) (POP)

A[] → a A[] → B1[] . . . Bn[] A[] → B[l] A[l] → B[]

A[]

a

A[σ1 . . . σn]

B1[σ1] . . . Bn[σn]

A[σ1 . . . σk]

B[l(σ1), . . . , l(σk)]

(k ≤ m) A[l(σ)]

B[σ]

S′[]

(1, ε)[]

(2, ε)[1ε, 1ε]

(3, ε)[2ε(1ε), 2ε(1ε)]

(6, ε)[3ε(2ε(1ε)), 3ε(2ε(1ε))]

(5, ε)[6ε(3ε(2ε(1ε)), 3ε(2ε(1ε)))]

(6, 1)[3ε(2ε(1ε)), 3ε(2ε(1ε))]

(6, 1.1)[]

a

(6, 1.2)[3ε(2ε(1ε))]

(3, 1)[2ε(1ε)]

(2, 1)[1ε]

(2, 1.1)[]

(4, ε)[]

a

(2, 1.2)[1ε]

(1, 1)[]

a

(6, 1.3)[3ε(2ε(1ε))]

(3, 1)[2ε(1ε)]

(2, 1)[1ε]

(2, 1.1)[]

(4, ε)[]

a

(2, 1.2)[1ε]

(1, 1)[]

a

Fig. 3. An example of a 2-adic arboreal derivation tree

Lemma 14. Let G be an indexed grammar. An (ordinary) derivation tree τ of
G is m-adic if and only if there is an m-adic arboreal derivation tree υ of G
such that τ = υ.

Example 15. The second derivation tree in Fig. 2 was 2-adic. The 2-adic arboreal
derivation tree corresponding to it is shown in Fig. 3, where we abbreviate indices
(i, p) by ip.

We call an indexed grammar together with the interpretation of productions
given in Table 5 an m-adic arboreal indexed grammar. We have established the
following:
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Theorem 16. (i) For every m-adic arboreal indexed grammar G, there is a
simple context-free tree grammar G′ of rank m such that the derived trees of
G′ are precisely the stripped complete derivation trees of G.

(ii) For every simple context-free tree grammar G′ of rank m, there is an m-adic
arboreal indexed grammar G such that the derived trees of G′ are obtained
from the stripped complete derivation trees of G by deleting some unary-
branching nodes.

Corollary 17. Simple context-free tree grammars of rank m and m-adic arbo-
real indexed grammars are equivalent in string-generating power.
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Abstract. We propose a unified analysis of ‘respective’ readings of plu-
ral and conjoined expressions and the internal readings of symmetrical
predicates such as same and different. The two problems have both been
recognized as significant challenges in the literature of syntax and seman-
tics, but so far there is no analysis which captures their close parallel via
some uniform mechanism. In fact, the representative compositional anal-
yses of the two phenomena in the current literature (Gawron and Kehler
(2004) (G&K) on ‘respective’ readings and Barker (2007) on symmetri-
cal predicates) look superficially quite different from each other, where
one (Barker) employs a movement-like nonlocal mechanism for mediat-
ing the dependency between the relevant terms whereas the other (G&K)
achieves a similar effect via a chain of local composition operations.

In this paper, we first point out the parallels and interactions between
the two phenomena that motivate a unified analysis. We then briefly re-
view G&K’s and Barker’s analyses and show that the G&K-style analysis
can be modelled by the Barker-style analysis once we formulate the rel-
evant rules within an explicit syntax-semantics interface couched in a
variant of Type-Logical Categorial Grammar called Hybrid TLCG. Af-
ter clarifying the hitherto unnoticed formal relations between the Barker-
style nonlocal modelling and the G&K-style local modelling by focusing
on the analysis of ‘respective’ readings, we present our unified analysis
of ‘respective’ readings and symmetrical predicates and show how their
parallel behaviors and interactions can be systematically accounted for.

Keywords: ‘respective’ reading, symmetrical predicate, categorial gram-
mar, Hybrid Type-Logical Categorial Grammar, coordination, parasitic
scope.

1 Introduction

The so-called ‘respective’ readings of plural and conjoined expressions and the
internal readings of symmetrical predicates such as same and different as in (1)
have posed difficult challenges to theories of the syntax-semantics interface.

(1) a. John and Bill married Mary and Sue, (respectively).
(= ‘John married Mary and Bill married Sue.’)

b. John and Bill bought the same book.
(= ‘There is a single identical book which both John and Bill bought.’)

G. Morrill et al. (Eds.): Formal Grammar 2014, LNCS 8612, pp. 104–120, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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These phenomena interact with coordination, including the ‘noncanonical’ types
of coordination (both Right-Node Raising and Dependent Cluster Coordination):

(2) a. John read, and Bill reviewed, Barriers and LGB, (respectively).

b. John introduced the same girl to Chris on Thursday and (to) Peter
on Friday.

Moreover, these expressions can themselves be iterated and interact with one
another to induce multiple dependencies:

(3) a. John and Bill introduced Mary and Sue to Chris and Pat (respec-
tively).

b. John and Bill gave the same book to the same man.

c. John and Bill gave the same book to Mary and Sue (respectively).

Any adequate analysis of these phenomena needs to account for these em-
pirical facts. In particular, the parallel between the phenomena in the multiple
dependency cases in (3), especially, the interdependency between ‘respective’ and
symmetrical predicates in (3c), raises the interesting possibility that the same
(or a similar) mechanism is at the core of the semantics of these two phenomena.

The present paper has two inter-related goals, one empirical and the other
theoretical. The empirical goal is to develop an explicit analysis of ‘respective’
and symmetrical predicates that systematically accounts for the empirical facts
just reviewed above. In particular, we argue that the core mechanism underly-
ing both ‘respective’ and symmetrical predicates is a pairwise predication that
establishes a one-to-one correspondence between elements of two ordered sets
of denotata each associated with plural, conjoined or symmetrical terms (i.e.
expressions like the same man). Formally, we treat such ‘ordered sets’ by means
of tuples, enriching the semantic ontology slightly by introducing product-type
elements for semantic objects of any arbitrary type. This enables us to formu-
late a unified analysis of these phenomena that immediately accounts for the
complex yet systematic empirical facts noted above.

The theoretical goal of the paper is to explicitly establish a (hidden) con-
nection between two representative compositional analyses of these phenomena
proposed by previous authors: Gawron and Kehler (2004) (G&K) on ‘respective’
readings and Barker (2007) on symmetrical predicates. G&K’s analysis builds on
the idea of recursively assigning a tuple-like object as the denotation of phrase
containing a plural or a conjoined term at each step of local semantic compo-
sition, so that the ordering inherent in the original conjoined or plural term is
retained in the larger structure which undergoes pairwise predication. By con-
trast, Barker (2007) proposes to analyze the semantics of symmetrical predicates
in terms of a nonlocal, movement-like process of ‘parasitic scope’ whereby the
symmetrical term (the same book) and the plural NP (John and Bill) that is
related to it are scoped out of their local positions and are treated essentially as
an interdependent complex quantifier.

While the strictly local approach by G&K and the nonlocal approach by
Barker look superficially quite different, the effects of the two types of operations
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(or series of operations) that they respectively invoke are rather similar: they
both allow one to establish some correspondence between the internal structures
of two terms that do not necessarily appear adjacent to each other in the surface
form of the sentence. The main difference is how this correspondence is estab-
lished: G&K opt for a series of local composition operations (somewhat reminis-
cent of the way long-distance dependencies are handled in lexicalist frameworks
such as CCG and G/HPSG), whereas Barker does it by a single step of nonlocal
mechanism (in a way analogous to a movement-based analysis of long-distance
dependencies). But then, is it just an accident that G&K and Barker proposed
their respective solutions for the phenomena they were dealing with, or do we
need both types of approach, but for different phenomena, or can we unify the
two approaches somehow?

We attempt to shed some light on these questions by simulating G&K’s
and Barker’s approaches in Hybrid Type-Logical Categorial Grammar (Hybrid
TLCG), a variant of categorial grammar that is notable for its flexible and
systematic syntax-semantics interface (Kubota and Levine, 2012, 2013; Kubota,
to appear). A comparison of the two approaches in this setting reveals that the
G&K-style local modelling of ‘respective’ predication can be modelled by the
Barker-style approach once we recognize one independently needed mechanism
for dealing with (non-‘respective’) distributive predication. We take this result
to be highly illuminating, as it once again shows that the logic-based setup of
TLCG enables us to gain a deeper insight into the underlying connections be-
tween two related empirical phenomena and two apparently different but deeply
related approaches to each, which, without such a perspective, may have gone
unnoticed.

2 Modelling ‘Respectively’ Readings Locally and
Nonlocally

We start by briefly reviewing the key components of G&K’s and Barker’s analy-
ses. In order to facilitate the comparison (both to each other and to the unified
analysis that we present below), we replace sums in their analyses that model
complex structured objects with the notion of tuples (which has inherent order-
ing of elements), but nothing essential in their respective analyses are lost by
this adjustment.

2.1 Local Modelling of ‘Respective’ Readings by Gawron and Kehler
(2004)

G&K propose to analyze ‘respective’ readings of sentences like the following via
a recursive application of ‘respective’ and distributive operators:

(4) John and Bill married Mary and Sue, (respectively).

Since they assume a simple phrase structure grammar for syntax, we model it
via a simple AB grammar, with the following two rules of /E and \E alone:
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(5) a. Forward Slash Elimination

a; F ; A/B b; G; B
/E

a ◦ b; F(G); A

b. Backward Slash Elimination

b; G; B a; F ; B\A
\E

b ◦ a; F(G); A

As noted above, we replace their sum-based treatment with a tuple-based
treatment, where the two NPs John and Bill and Mary and Sue both denote
tuples (or pairs) of individuals 〈j,b〉 and 〈m, s〉.1

The core (empty) semantic operators that G&K exploit are the following
dist(ributive) and resp(ective) operators:

(6) ε; λPλg.
∏n

i P (πi(g)); X/X

(7) ε; λFλx.
∏n

i πi(F )(πi(x)); X/X

There is in addition the following ‘boolean reduction’ operator which takes a
tuple of propositions and returns their boolean conjunction at the S level:

(8) ε; λp.
∧

i πi(p); S|S

We can analyze (4) as follows:

(9)

ε;
λp.

∧
i πi(p);

S|S

john ◦
and ◦
bill;
〈j,b〉;
NP

ε;
λFλx.∏n

i πi(F )(πi(x));
X/X

ε;
λPλg.∏n

i P (πi(g));
X/X

married;
marry;
(NP\S)/NP

married;
λg.

∏n
i marry(πi(g));

(NP\S)/NP

mary ◦
and ◦
sue;
〈m, s〉;
NP

married ◦mary ◦ and ◦ sue;∏n
i marry(πi(〈m, s〉)); NP\S

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
married ◦mary ◦ and ◦ sue;
〈marry(m),marry(s)〉; NP\S

married ◦mary ◦ and ◦ sue;
λx.

∏n
i πi(〈marry(m),marry(s)〉)(πi(x));NP\S

john ◦ and ◦ bill ◦married ◦mary ◦ and ◦ sue;∏n
i πi(〈marry(m),marry(s)〉)(πi(〈j,b〉)); S

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
john ◦ and ◦ bill ◦married ◦mary ◦ and ◦ sue;
〈marry(m)(j),marry(s)(b)〉; S

john ◦ and ◦ bill ◦married ◦mary ◦ and ◦ sue;
marry(m)(j) ∧marry(s)(b); S

The derivation in (11) for (10) illustrates a more complex case involving a
recursive application of the ‘respective’ operator (here, dist and resp abbreviate
the semantic translations of the two operators in (6) and (7)).

1 This also removes G&K’s ontological commitment of taking propositions rather than
worlds as primitives (which is necessary for them since sums of two extensionally
identical properties in the Montagovian setup collapse to a single property). While
such a position is not necessarily implausible, we do not think that the semantics of
respective readings should be taken to form a basis for this ontological choice.
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(10) John andMary drove to Berkeley and Santa Cruz on Monday and Tuesday.

(11)

john ◦
and ◦
mary;
〈j,m〉;
NP

ε;
resp;
X/X

ε;
dist;
X/X

drove;
drive;
VP/PP

drove;
λg.

∏n
i

drive(πi(g));
VP/PP

to ◦
bkl ◦
and ◦
sc;
〈b, s〉;
PP

drove ◦ to ◦ bkl ◦ and ◦ sc;
〈drive(b),drive(s)〉; VP

ε;
resp;
X/X

ε;
dist;
X/X

on;
on;
(VP\VP)/NP

on;
λg.

∏n
i on(πi(g));

(VP\VP)/NP

mon ◦
and ◦
tue;
〈m, t〉;
NP

on ◦mon ◦ and ◦ tue;
〈on(m),on(t)〉; VP\VP

on ◦mon ◦ and ◦ tue;
λg.

∏n
i πi(〈on(m),on(t)〉)(πi(g));

VP\VP

drove ◦ to ◦ bkl ◦ and ◦ sc ◦ on ◦mon ◦ and ◦ tue;
〈on(m)(drive(b)),on(t)(drive(s))〉; VP

drove ◦ to ◦ bkl ◦ and ◦ sc ◦ on ◦mon ◦ and ◦ tue;
λx.

∏n
i πi(〈on(m)(drive(b)),on(t)(drive(s))〉)(πi(x));VP

john ◦ and ◦mary ◦ drove ◦ to ◦ bkl ◦ and ◦ sc ◦ on ◦mon ◦ and ◦ tue;∏n
i πi(〈on(m)(drive(b)),on(t)(drive(s))〉)(πi(〈j,m〉)); S

Note that at each step where a functor takes a product-type term as an
argument, the dist operator is first applied to the functor so that the functor is
distributively applied to each member of the tuple and the result is ‘summed up’
as a tuple (rather than conjoined by a generalized conjunction operator as in the
standard definition of the distributive operator in the plurality literature). Thus,
the larger constituent inherits the ordering of elements in its subconstituent.

Another notable property of G&K’s analysis is that after the application of
the resp operator, the larger constituent still denotes a tuple (of two properties of
type e→ t, in the case of (11)), rather than boolean conjunction. This is crucial
for making the recursive application of the resp operator straightforward. Since
the tuple structure is preserved after the application of the first resp operator,
the result can simply be taken up by another resp operator which relates it to
another tuple in a ‘respective’ manner.

Although G&K does not discuss this point explicitly, in order to generalize
this analysis to cases like the following in which the tuple structure is percolated
from the functor rather than the argument, one either needs to assume that
type-raising is generally available in the grammar so that the functor-argument
relation of any arbitrary pair of functor and argument types can be flipped, or
else needs to introduce another version of the dist operator, call it dist’, which
distributes a single argument meaning to a tuple of functor meanings.2

(12) a. John and Bill read and reviewed the book, respectively.

2 G&K speculate on a possibility of unifying their dist and resp operators toward
the end of their paper; if this unification is successfully done, both the argument-
distributing dist operator in (6) above and the functor-distributing dist’ operator
under discussion here might be thought of as special cases of a single unified ‘predi-
cation’ operator. But this part of their proposal remains somewhat obscure and not
worked out in full detail.
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b. John and Bill sent the bomb and the letter to the president yesterday,
respectively.

Essentially, at the expense of applying either the dist or resp operator at each
step of local composition, G&K does away with hypothetical reasoning entirely
and their fragment can be modelled by a simple AB grammar.

2.2 Nonlocal Modeling of ‘Respective’ Readings Building on Barker
(2007)

In contrast to G&K, Barker (2007) extensively relies on hypothetical reasoning
for characterizing the semantics of symmetrical predicates. In order to facilitate
a comparison with G&K’s analysis, we first discuss an extension of Barker’s
approach to ‘respective’ readings (it should be noted that Barker himself confines
his analysis to the case of symmetrical predicates, mostly focusing on the analysis
of same), and come back to the case of symmetrical predicates in the next section.

The key idea behind Barker’s proposal is that the interdependency between
the relevant two complex terms (i.e. the two plural or conjoined terms in the case
of ‘respective’ readings) can be straightforwardly mediated by abstracting over
the positions in the sentence that such terms occupy and then directly giving the
relevant terms (and the abstracted proposition) as arguments to the operator
that mediates their interdependency.

For modelling this ‘covert’ movement treatment of ‘respective’/symmetrical
predicates, we introduce here a new connective |, called ‘vertical slash’, together
with the Elimination and Introduction rules for it formulated in (21) (just like /,
wewrite the argument to the right for this slash; thus, inA|B,B is the argument).3

(13) a. Vertical Slash Introduction
...

...
...

...

[ϕ; x; A]n

...
...

...
...

...
...

b; F ; B
|In

λϕ.b; λx.F ; B|A

b.Vertical Slash Elimination

a; F ; A|B b; G; B
|E

a(b); F(G); A

These rules are essentially the same as the rules for the linear implication connec-
tive (�) posited in the family of ‘Linear Categorial Grammars’ (Oehrle, 1994;
de Groote, 2001; Muskens, 2003; Mihaliček and Pollard, 2012).

3 These rules introduce functional prosodic objects. One might wonder how the gram-
mar (or the prosodic calculus that is part of it) is constrained in such a way that it
does not admit of uninterpretable prosodic objects such as john ◦ λϕ.ϕ (i.e., ‘concate-
nation’ of a string and a function from strings to strings). In fact, Hybrid TLCG does
not admit of any such ill-formed prosodic objects. Such an expression would be ob-
tained only by applying a functor that has a syntactic type of the form X/(Y|Z) to
its argument Y|Z, but a syntactic type of the form X/(Y|Z), with the vertical slash
‘under’ a directional slash, are explicitly excluded from the grammar. For the details
of the syntax-prosody mapping which ensures this, see Kubota and Levine (2014).
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With this vertical slash, extending Barker’s ‘parasitic scope’ analysis to ‘re-
spective’ readings is in fact mostly straightforward, with one extra complication
discussed below. Assuming (as above) that plural and conjoined terms denote
tuples (of the relevant type of semantic objects), we just need the following three-
place ‘respective’ operator which semantically takes a relation (denoted by the
sentence containing the two ‘gap’ positions for the two product-type terms) and
two tuples as arguments and returns a tuple as an output (this is so that, as
above, multiple ‘respective’ readings can be handled by recursive application of
this operator).

(14) λσ0λϕ1λϕ2.σ0(ϕ1)(ϕ2); resp3; (Z|X|Y)|(Z|X|Y)

As can be seen in (14), the resp operator is a (polymorphic) identity function
both syntactically and prosodically. The semantics is unpacked in (15).

(15) resp3 = λRλT×λU×.
∏

iR(πi(T×))(πi(U×))

Semantically, this operator relates the elements of the two tuples in a pairwise
manner with respect to the relation in question. Note that this three place resp3
operator is distinct from the two place resp operator posited in G&K’s approach
though their semantic effects are similar. We come back to the relationship be-
tween these two operators immediately below (see (19)).

The analysis of the simple ‘respective’ sentence is then straightforward:

(16)

λϕ1.ϕ1;
λp.

∧
i πi(p);

S|S

mary ◦ and ◦
sue;
〈m, s〉;
NP

john ◦ and ◦
bill;
〈j,b〉;
NP

λσ0λϕ1λϕ2.
σ0(ϕ1)(ϕ2);

resp3;
(Z|X|Y)|(Z|X|Y)

married;
marry; (NP\S)/NP

...
...

λϕ3λϕ4.
ϕ4 ◦married ◦ ϕ3;
marry; (S|NP)|NP

λϕ1λϕ2.ϕ2 ◦married ◦ ϕ1;
resp3(marry); S|NP|NP

λϕ2.ϕ2 ◦married ◦ john ◦ and ◦ bill;
resp3(marry)(〈j,b〉); S|NP

mary ◦ and ◦ sue ◦married ◦ john ◦ and ◦ bill;
resp3(marry)(〈j,b〉)(〈m, s〉); S
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
mary ◦ and ◦ sue ◦married ◦ john ◦ and ◦ bill;
〈marry(j)(m),marry(b)(s)〉; S

mary ◦ and ◦ sue ◦married ◦ john ◦ and ◦ bill;
marry(j)(m) ∧marry(b)(s); S

Just as in G&K’s analysis, multiple ‘respective’ readings in examples like the
following are obtained via recursive application of the resp operator:

(17) Tolstoy and Dostoevsky sent Anna Karenina and the Idiot to Dickens and
Thackeray (respectively).

The analysis is in fact straightforward. After two of the tuple-denoting terms
are related to each other with respect to the predicate denoted by the verb, the
resultant S|NP expression is a tuple of two properties.
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(18) =⇒

Di ◦ and ◦ Th;
〈di, th〉; NP

AK ◦ and ◦ Id;
〈ak, id〉; NP

λσ0λϕ1λϕ2.σ0(ϕ1)(ϕ2);
resp3;
(Z|X|Y)|(Z|X|Y)

...
...

λϕ1λϕ2λϕ3.
ϕ3 ◦ sent ◦ϕ1 ◦ to ◦ϕ2;
send; S|NP|NP|NP

λϕ1λϕ2λϕ3.ϕ3 ◦ sent ◦ϕ1 ◦ to ◦ϕ2;
resp3(send); S|NP|NP|NP

λϕ2λϕ3.ϕ3 ◦ sent ◦ AK ◦ and ◦ Id ◦ to ◦ ϕ2;
resp3(send)(〈ak, id〉); S|NP|NP

λϕ3.ϕ3 ◦ sent ◦ AK ◦ and ◦ Id ◦ to ◦ Di ◦ and ◦ Th;
resp3(send)(〈ak, id〉)(〈di, th〉); S|NP
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
λϕ3.ϕ3 ◦ sent ◦ AK ◦ and ◦ Id ◦ to ◦ Di ◦ and ◦ Th;
〈send(ak)(di), send(id)(th)〉; S|NP

And the remaining conjoined term 〈To,Do〉 is related to this product-type prop-
erty in the following way:

(19)

λρλσλϕ.ρ(σ)(ϕ);
λRλT×λU×.

∏
i R(πi(T×))(πi(U×));

(Z|X|Y)|(Z|X|Y)

[σ; f ; S|NP]1 [ϕ;x; NP]2
|E

σ(ϕ); f(x); S
|I2

λϕ.σ(ϕ); λx.f(x); S|NP
|I1

λσλϕ.σ(ϕ); λfλx.f(x); (S|NP)|(S|NP)
|E

λσ1λϕ1.σ1(ϕ1); λP×λX×.
∏

i πi(P×)(πi(X×)); (S|NP)|(S|NP)

To ◦ and ◦ Do;
〈to,do〉;
NP

...
...

λσ2λϕ2.σ2(ϕ2);
λP×λX×.∏

i πi(P×)(πi(X×));
(S|NP)|(S|NP)

...
...

λϕ3.ϕ3 ◦ sent ◦ AK ◦ and ◦ Id ◦
to ◦ Di ◦ and ◦ Th;
〈send(ak)(di), send(id)(th)〉; S|NP

|E
λϕ2.ϕ2 ◦ sent ◦ AK ◦ and ◦ Id ◦ to ◦ Di ◦ and ◦ Th;
λY×.

∏
i πi(〈send(ak)(di), send(id)(th)〉)(πi(Y×)); S|NP

|E
To ◦ and ◦ Do ◦ sent ◦ AK ◦ and ◦ Id ◦ to ◦ Di ◦ and ◦ Th;∏

i πi(〈send(ak)(di), send(i)(th)〉)(πi(〈to,do〉)); S
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To ◦ and ◦ Do ◦ sent ◦ AK ◦ and ◦ Id ◦ to ◦ Di ◦ and ◦ Th;
〈send(ak)(di)(to), send(id)(th)(do)〉; S

The first chunk of derivation in (19) (where X is instantiated as NP, Y as S|NP,
and Z as S), the point of which may not be immediately clear, can be thought
of as a way of deriving the two-place resp operator (identical to the one that
G&K posit) from the lexically specified three-place resp3 operator introduced
above. As in G&K’s analysis discussed above, the two place resp operator di-
rectly relates the product-type property (of type S|NP) derived in (18) with the
product-type NP occupying the subject position via function application of the
corresponding elements.

3 Comparison of Local Modelling and Nonlocal
Modelling

We now show that the G&K-style ‘local’ modelling of ‘respective’ predication can
be simulated by the Barker-style ‘nonlocal’ approach. Consider first a case which
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contains only two product-type terms to be related in a ‘respective’ manner. The
structure of the derivation for a sentence containing two product-type terms in
the G&K-style analysis can be schematically shown in (20), where i, j, n,m ≥
0, n ≥ i,m ≥ j and l ≥ 2 and for any k, γk or δk is some linguistic sign.4 Note
here that both Ψ and Φ, which are meanings of expressions that contain exactly
one tuple-denoting (lexical) term inside themselves, denote tuples, and they are
then related by the two-place resp operator with each other.

(20)

ε;
resp;
Z/Z

γ1 . . .γi

...
...
...

a;
〈a1, . . . , al〉;
A

...
...

γi+1 . . . γn

...
...
...

c;
Ψ ; X/Y

c; resp(Ψ); X/Y

δ1 . . . δj

...
...
...

b;
〈b1, . . . , bl〉;
B

...
...

δj+1 . . . δm

...
...
...

d;
Φ; Y

c ◦ d; resp(Ψ)(Φ); X

We derive two auxiliary rules in G&K’s system to facilitate the comparison
to the Barker-style analysis.5

(21) a. Rule 1

a; f ; A/B b; 〈a1 . . . al〉; B
a ◦ b; 〈f(a1) . . . f(al)〉; A

b. Rule 2
a; 〈f1 . . . fn〉; A/B b; a; B

a ◦ b; 〈f1(a) . . . fn(a)〉; A

Rule 1 is obtained by applying the dist operator (6) to the functor f and then
applying it to its tuple argument. Rule 2 is obtained by applying the dist’ opera-
tor discussed above (see the discussion pertaining to (12)) to the argument a and
applying it to the tuple functor. (We remain agnostic about how dist’ is obtained
in G&K’s setup.) These two rules are introduced here just for expository ease.
We show below how they can be derived from the more general resp3 operator
in the present setup with the use of hypothetical reasoning by introducing one
auxiliary rule converting an atomic object to an n-tuple of identical objects.

By assumption, among the signs γ1 . . .γn, δ1 . . . δn, and a and b constituting
the leaves of (20), only a and b have product-type meanings. Thus, at each step
of local composition inside c and d, either the functor or the argument (but not
both) has a product-type meaning. From this it further follows that each local
step of composition inside c and d instantiates either Rule 1 or Rule 2.

Now, consider a structure in which we replace the two product-type terms in
(20) by the variables x and y, both fresh in Ψ and Φ.

4 We assume here that the lefthand substructure is the functor. The same result
obtains for a structure where the righthand substructure is the functor, by merely
replacing the linear order between c and d in (20).

5 Here we are inspired by Bekki’s (2006) reformulation of G&K’s analysis in terms of
product-types.
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(22) γ1 . . .γi

...
...
...

ϕ1; x; A

...
...

γi+1 . . .γn

...
...
...

c′;
Γ ; X/Y

δ1 . . . δj

...
...
...

ϕ2; y; B

...
...

δi+1 . . . δm

...
...
...

d′;
Δ; Y

c′ ◦ d′; Γ (Δ); X

The relation between the internal structures of (22) and (20) is such that each
step of function application in (22) is replaced by an application of either Rule
1 or Rule 2 in (20). Thus, by induction,6

(23) Ψ = 〈Γ [x/a1], . . . , Γ [x/al]〉

(where Γ [x/ak] is a term identical to Γ except that all occurrences of x in Γ are
replaced by ak). Similarly,

(24) Φ = 〈Δ[y/b1], . . . , Δ[y/bl]〉

Thus,

(25) resp(Φ)(Ψ)
= resp(〈Γ [x/a1], . . . , Γ [x/al]〉)(〈Δ[y/b1], . . . , Δ[y/bl]〉)
= 〈Γ [x/a1](Δ[y/b1]), . . . , Γ [x/al](Δ[y/bl])〉

This is exactly the same interpretation that we obtain in the following Barker-
style analysis of the same string of words:

(26)

γ1. . .γi

...
...
...

[
ϕ1;
x;
A

]1

...
...

γi+1. . .γn

...
...
...

c′;
Γ ;X/Y

δ1. . . δj

...
...
...

[
ϕ2;
y;
B

]2

...
...

δj+1. . . δm

...
...
...

d′;
Δ; Y

c′ ◦ d′; Γ (Δ); X
|I2

λϕ2.c
′ ◦ d′; λy.Γ (Δ); X|B

|I1
λϕ1λϕ2.c

′ ◦ d′; λxλy.Γ (Δ); X|B|A

...
...

λϕ1λϕ2.c
′ ◦ d′; λxλy.Γ (Δ); X|B|A

λϕ.ϕ;
resp3;
(Z|X|Y)|(Z|X|Y)

λϕ1λϕ2.c
′ ◦ d′; resp3(λxλy.Γ (Δ)); X|B|A

a;
〈a1, ..., al〉;
A

λϕ2.c ◦ d′; resp3(λxλy.Γ (Δ))(〈a1, ..., al〉); X|B

b;
〈b1, ..., bl〉;
B

c ◦ d; resp3(λxλy.Γ (Δ))(〈a1, ..., al〉)(〈b1, ..., bl〉); X

The final translation we obtain in this derivation is

(27) resp3(λxλy.Γ (Δ))(〈a1 , . . . , al〉)(〈b1, . . . , bl〉)
6 See Appendix for a formal proof.



114 Y. Kubota and R. Levine

Since | is linear, x is fresh inΔ and y in Γ . Thus, for any k, λxλy.[Γ (Δ)](ak)(bk) =
Γ [x/ak](Δ[y/bk]). From this it follows that

(28) resp3(λxλy.Γ (Δ))(〈a1 , . . . , al〉)(〈b1, . . . , bl〉)
= 〈Γ [x/a1](Δ[y/b1]), . . . , Γ [x/al](Δ[y/bl])〉

For cases containing more than two respective terms, the correspondence be-
tween the G&K-style analysis and the Barker style analysis can be established
recursively by taking the whole structure (20)/(26) to instantiate either a or b
and relating it to the next ‘adjacent’ product-type term one by one.

It now remains to show how Rule 1 and Rule 2 can be derived in the Barker-
style setup. For this, we need a mechanism that derives the two dist operators
in the G&K setup from the three-place resp operator posited in the Barker
system in (15). Following Bekki (2006), we assume that the following ‘product
duplicator’ is responsible for this operation, which takes some term x and returns
an n-tuple consisting of x: 〈x, . . . , x〉:

(29) λϕ.ϕ; λx.
∏n

i x; X|X

With this operator and the three-place resp operator in (15), Rule 1 and Rule 2
can be derived as follows:

(30)

λϕ.ϕ;
λx.

∏l
i x;

X|X
a;
f ; A/B

a; 〈f, . . . , f〉; A/B

b;
〈a1, ..., al〉;
B

λσ0λϕ1λϕ2.
σ0(ϕ1)(ϕ2);
resp3;
(Z|X|Y)|(Z|X|Y)

[ϕ1;
f ; A/B

]1 [ϕ2;
x; B

]2
ϕ1 ◦ ϕ2; f(x); A

|I1
λϕ1.ϕ1 ◦ϕ2;
λf.f(x); A|(A/B)

|I2
λϕ2λϕ1.ϕ1 ◦ϕ2;
λxλf.f(x);A|(A/B)|B

λϕ1λϕ2.ϕ2 ◦ϕ1; resp3(λxλf.f(x)); A|(A/B)|B
λϕ2.ϕ2 ◦ b; resp3(λxλf.f(x))(〈a1, ..., al〉); A|(A/B)

a ◦ b; resp3(λxλf.f(x))(〈a1, ..., al〉)(〈f, ..., f〉); A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a ◦ b; 〈f(a1), ..., f(al)〉; A

(31)

a;
〈f1, ..., fl〉;
A/B

λϕ.ϕ;
λx.

∏l
i x;

X|X
b;
a; B

b; 〈a, ..., a〉; B

...
...

λϕ1λϕ2.ϕ2 ◦ ϕ1;
resp3(λxλf.f(x));A|(A/B)|B

λϕ2.ϕ2 ◦ b; resp3(λxλf.f(x))(〈a, ..., a〉); A|(A/B)

a ◦ b; resp3(λxλf.f(x))(〈a, ..., a〉)(〈f1, ..., fl〉); A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a ◦ b; 〈f1(a), ..., fl(a)〉; A

4 Extension of the Analysis

In this section, we extend the above analysis in two ways. We first show that,
by enriching the calculus with rules for hypothetical reasoning for directional
slashes / and \, the interaction between ‘respective’ readings and nonconstituent
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coordination exemplified by the data such as (2) straightforwardly falls out. We
then extend the tuple-based analysis to symmetrical predicates and show that
this analysis immediately extends to multiple dependencies among symmetrical
and ‘respective’ predicates observed in (3).

For the analysis of NCC, we add the following Introduction rules for direc-
tional slashes / and \:

(32) a. Forward Slash
Introduction
...

...
...

...

[ϕ; x; A]n

...
...

...
...

...
...

b ◦ϕ; F ; B
/In

b; λx.F ; B/A

b. Backward Slash
Introduction
...

...
...

...

[ϕ; x; A]n

...
...

...
...

...
...

ϕ ◦ b; F ; B
\In

b; λx.F ; A\B

In TLCG, dependent cluster coordination is analyzed by directly analyzing
the apparent nonconstituents that are coordinated in examples like (33) to be a
(higher-order) derived constituent, via hypothetical reasoning.

(33) I lent Syntactic Structures and Barriers to Robin on Thursday and to
Mary on Friday, respectively.

Specifically, by hypothesizing the verb and the direct object and withdrawing
them after a whole VP is formed, the string to Robin on Thursday can be
analyzed as a constituent of type NP\(VP/PP/NP)\VP:

(34) [ϕ1;P ; VP/PP/NP]1 [ϕ2;x; NP]2
/E

ϕ1 ◦ϕ2; P (x); VP/PP
to ◦ robin;
r; PP

/E
ϕ1 ◦ϕ2 ◦ to ◦ robin; P (x)(r); VP

on ◦ thursday;
onTh; VP\VP

\E
ϕ1 ◦ ϕ2 ◦ to ◦ robin ◦ on ◦ thursday; onTh(P (x)(r)); VP

\I1
ϕ2 ◦ to ◦ robin ◦ on ◦ thursday; λP.onTh(P (x)(r)); (VP/PP/NP)\VP

\I2
to ◦ robin ◦ on ◦ thursday; λxλP.onTh(P (x)(r)); NP\(VP/PP/NP)\VP

We then derive a sentence containing gap positions corresponding to this
derived constituent and the object NP, that is, an expression that has the syn-
tactic type S|(NP\(VP/PP/NP)\VP)|NP, to be given as an argument to the
three-place resp3 operator introduced above. Since the relevant steps are the
same as in the previous examples, we omit the details and just reproduce the
derived sign:

(35) λϕ1λϕ2.I ◦ lent ◦ϕ1 ◦ϕ2;
λxλf.f(x)(lend)(I); S|(NP\(VP/PP/NP)\VP)|NP

The rest of the derivation just involves giving this relation and the two product-
type arguments of types NP and NP\(VP/PP/NP)\VP respectively as argu-
ments to the resp3 operator. The final translation obtained:
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(36) onTh(lend(s)(r))(I) ∧ onFr(lend(b)(l))(I)

corresponds exactly to the relevant reading of the sentence.
We now turn to an extension of the analysis to symmetrical predicates. The

key intuition behind our proposal here is that the NP containing same, different,
etc. (we call such NPs ‘symmetrical terms’ below) in examples like (37) denotes
a tuple (linked to the other tuple denoted by the plural John and Bill in the
same way as in the ‘respective’ readings above) but that it imposes a specifial
condition on each member of the tuple.

(37) John and Bill read the same book.

Specifically, to assign the right meaning to (37), John and Bill need to be each
paired with an identical book, and in the case of different, they need to be paired
with distinct books. To capture this additional constraint on the tuples denoted
by symmetrical terms, we assign to them GQ-type meanings of type S|(S|NP),
where the abstracted NP in their arguments are product-type expressions:7

(38) a. λϕ0λσ0.σ0(the ◦ same ◦ϕ0);
λPλQ.∃X×∀i P (πi(X×)) ∧ ∀i∀j[πi(X×) = πj(X×)] ∧Q(X×);
S|(S|NP)|N

b. λϕ0λσ0.σ0(different ◦ϕ0);
λPλQ.∃X×∀i P (πi(X×)) ∧ ∀i∀j[i �= j → πi(X×) �= πj(X×)] ∧Q(X×);
S|(S|NP)|N

7 So far as we can tell, the lexical meanings given in (38) capture the truth conditions
for the internal readings of same and different correctly. A reviewer raises a concern
that (38a) may be too weak as the meaning of same since the existentially bound
X× would merely be ‘a common subset of the books read by John and by [Bill], while
the actual sets of read books may still differ’. We do not agree with this reviewer. We
believe that (37) is true and felicitous as long as one can identify (at least) one book
commonly read by John and Bill. They may have read other books in addition, but
that doesn’t make (37) false or infelicitous. Such an implication, if felt to be present,
is presumably a conversational implicature since it’s clearly cancellable:

(i) John and Bill read the same book, although they both read several different
books in addition.

Likewise, the same reviewer says that in (38b), as it stand, ‘it suffices if X× is taken,
say, as a pair of different books read by both, all other books still being the same’,
on the basis of which s/he claims that the truth conditions need to be strengthed
in such a way that X× satisfies some maximality condition. Here again, we disagree.
The following (ii) shows that the maximality implication excluding the existence of
common books read by the two (if present at all) is not part of the entailment of
the sentence.

(ii) John and Bill read different books, although they read the same books too.
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For both the same N and different Ns, the relevant tuple (which enters into
the ‘respective’ relation with another tuple via the resp3 operator) consists of
objects that satisfy the description provided by the N. The difference is that in
the case of same, the elements of the tuple are all constrained to be identical,
whereas in the case of different, they are constrained to differ from one another.

The analysis for (37) now goes as follows:

(39)

λϕ0λσ0.
σ0(the ◦
same ◦ϕ0);

same;
S|(S|NP)|N

book;
book;
N

λσ0.σ0(the ◦
same ◦ book);

same(book);
S|(S|NP)

λϕ1.ϕ1;
λp.

∧
i

πi(p);
S|S

john ◦
and ◦
bill;
〈j,b〉;
NP

[
ϕ;
X×;
NP

]1

λσ0λϕ1λϕ2.
σ0(ϕ1)(ϕ2);
resp3;
(Z|X|Y)|(Z|X|Y)

...
...

λϕ3λϕ4.
ϕ4 ◦ read ◦
ϕ3;
read;
S|NP|NP

λϕ1λϕ2.ϕ2 ◦ read ◦ϕ1;
resp3(read);
S|NP|NP

λϕ2.ϕ2 ◦ read ◦ϕ;
resp3(read)(X×);
S|NP

john ◦ and ◦ bill ◦ read ◦ϕ;
resp3(read)(X×)(〈j,b〉); S

john ◦ and ◦ bill ◦ read ◦ ϕ;∧
i πi(resp3(read)(X×)(〈j,b〉)); S

|I1
λϕ.john ◦ and ◦ bill ◦ read ◦ ϕ;
λX×.

∧
i πi(resp3(read)(X×)(〈j,b〉)); S|NP

john ◦ and ◦ bill ◦ read ◦ the ◦ same ◦ book;
same(book)(λX×.

∧
i πi(resp3(read)(X×)(〈j,b〉))); S

The derivation proceeds by first positing a product-type variable X×, which
is related to the other product-type term denoted by John and Bill via the
resp operator. Then, after the boolean reduction operator reduces the pair of
propositions to their conjunction, the variable X× is abstracted over to yield a
property of product-type objects (of syntactic type S|NP). Since the same book
is a GQ over product-type terms, it takes this property as an argument to return
a proposition.

The final translation is unpacked in (40):

(40) same(book)(λX×.
∧

i πi(resp3(read)(X×)(〈j,b〉)))
= ∃X×∀ibook(πi(X×))∧∀i∀j[πi(X×) = πj(X×)]∧

∧
i πi(resp3(read)(X×)(〈j,b〉))

= ∃X×∀ibook(πi(X×)) ∧ ∀i∀j[πi(X×) = πj(X×)] ∧ read(π1(X×))(j)∧
read(π2(X×))(b)

Since, by definition, π1(X×) = π2(X×), this correctly ensures that the book that
John read and the one that Bill read are identical.

Importantly, since the same ‘respective’ operator is at the core of the anal-
ysis as in the case of ‘respective’ readings, this analysis immediately predicts
that symmetrical predicates can enter into multiple dependencies both among
themselves and with respect to ‘respective’ predication, as exemplified by the
data in (3). Since the relevant derivations can be reconstructed easily by taking
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(18)–(19) as a model, we omit the details and reproduce here only the derived
meanings for (3b) and (3c) in (41) and (42), respectively.

(41) same(book)(λX×.give(m)(π1(X×))(j) ∧ give(s)(π2(X×))(b))

= ∃X×∀ibook(πi(X×)) ∧ ∀i∀j[πi(X×) = πj(X×)] ∧ give(m)(π1(X×))(j) ∧
give(s)(π2(X×))(b)

(42) same(book)(λX×.same(man)(λY×.give(π1(Y×))(π1(X×))(j)
∧give(π2(Y×))(π2(X×))(b)))

= ∃X×∀ibook(πi(X×)) ∧ ∀i∀j[πi(X×) = πj(X×)] ∧ ∃Y×∀iman(πi(Y×)) ∧
∀i∀j[πi(Y×) = πj(Y×)] ∧ give(π1(Y×))(π1(X×))(j) ∧ give(π2(Y×))(π2(X×))(b)

5 Conclusion

In this paper, we have proposed a unified analysis of ‘respective’ readings and
symmetrical predicates, building on the previous accounts of the two phenom-
ena by Gawron and Kehler (2004) and Barker (2007). While these two previous
proposals look apparently quite different from each other, in that one involves
a nonlocal mechanism for obtaining the right meaning of the sentence whereas
the other involves a chain of local operations, we showed that the underlying
mechanisms that they rely on are not so different from each other, and that, by
recasting the two analyses in a general calculus of the syntax-semantics inter-
face, one (G&K) can essentially be seen as a ‘lexicalized’ version of the other
(Barker), in the sense that it involves only local composition rules but these local
composition rules themselves can be derived from the general rules for ‘pairwise’
predication posited in the latter. We argued that this enables us to unify the
analyses of ‘respective’ readings and symmetrical predicates, and that such a
unified analysis is empirically desirable; it immediately accounts for the close
parallels and interactions between ‘respective’ and symmetrical predication via
a single uniform mechanism of pairwise predication that is at the core of the
semantics of both phenomena. We have demonstrated this point by working out
an explicit analysis that captures these parallels and interactions between the
two phenomena systematically.

We would like to comment on one technical (and conceptual) point (albeit
briefly) before concluding the paper. As noted by two reviewers, the present sys-
tem relies heavily on empty operators manipulating tuple-denoting objects to
yield ‘respective’ readings and these operators do not affect the syntactic types
of the expressions that they apply to. So, for example, a perfectly well-formed
syntactic derivation may nonetheless yield an incongruent semantic translation
because there is a type mismatch in the semantics. One could alternatively explic-
itly distinguish tuple-denoting expressions from expressions denoting non-tuple
objects by enriching the syntactic typing system with product connectives (so
that, for example, John and Bill denoting the tuple 〈j,b〉 has syntactic type
NP×NP rather than NP). This will enable us to retain the straightforward func-
tional mapping from syntactic types to semantic types standard in the categorial
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grammar syntax-semantics interface.8 Moreover, such an approach may enable
us to do away with the empty operators that we posit as lexical assumptions in
the current system by letting the deductive rules for the product types do the
work that these operators undertake in the current fragment. Thus, this seems to
be a promising possibility to explore, which may elucidate the ‘logic’ underlying
‘respective’ and symmetrical predication even more. We do not see any obstacle
in principle for refining the analysis presented above along these lines, and would
like to explore this possibility in a future study.
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Appendix

Lemma: For any arbitrary complex structure S licensed by the G&K fragment
with semantic translation Γ and which contains exactly one occurrence of a term
t whose semantic translation is x, we obtain a structure S′ by replacing t in S
with a term whose translation is 〈a1, . . . , al〉. Then for the semantic translation
of S′ Ψ , the following holds:

(�) Ψ = 〈Γ [x/a1], . . . , Γ [x/al]〉
Proof: The proof is by induction.

Base Case: Since Γ = x and Ψ = 〈a1, . . . , al〉, it trivially follows that (�) holds.

Inductive Step: We have two cases to consider: (i) S consists of a function f
and a structure T (with translation Ω, which is an argument of f) that satisfies
(�); (ii) S consists of a structure T (with translation Ω) that satisfies (�) and a
term c that is an argument of Ω. We consider (i) first.

(i)

ϕ2; f ; X/Y

...
...
...

...
...
...

ϕ0; x; A

...
...

...
...
...

...
...
...

ϕ1;
Ω; Y

ϕ2 ◦ ϕ1; f(Ω); X

Since T satisfies (�), there is a structure T ′ in which x in T is replaced by
〈a1, ..., al〉 such that the following holds between Ω and Ω′, the translations of
T and T ′: Ω′ = 〈Ω[x/a1], ..., Ω[x/an]〉.

We are interested in the translation Γ ′ of a structure S′, which can be obtained
by replacing t with a term whose translation is 〈a1, ..., al〉. By replacing T in S
with T ′, we obtain just such a structure:

(i’)

ϕ2; f ; X/Y

...
...
...

...
...
...

ϕ′
0; 〈a1, ..., al〉; A

...
...

...
...
...

...
...
...

ϕ′
1;

Ω′; Y
Rule 1

ϕ2 ◦ϕ′
1; Γ

′; X

Thus,
Γ ′ = 〈f(Ω[x/a1]), ..., f(Ω[x/an])〉 (via Rule 1)

= 〈(f(Ω))[x/a1], ..., (f(Ω))[x/an]〉 (since x is fresh in f)
= 〈Γ [x/a1], ..., Γ [x/an]〉 (since Γ = f(Ω))

Case (ii) can be proven similarly to case (i).
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Abstract. A. Clark[2] has shown that the class of languages which have
a context-free grammar whose nonterminals can be defined by a finite
set of contexts can be identified in the limit, given an enumeration of the
language and a test for membership. We show by example that Clark’s
algorithm may converge to a grammar that does not define the input
language. We review the theoretical background, provide a non-obvious
modification of the algorithm and prove its correctness.

1 Introduction

An important goal of structural linguistics was to analyse and describe a lan-
guage in terms of distributions. Given an alphabet Σ, the distribution of a word
v ∈ Σ∗ with respect to a language L ⊆ Σ∗ is the set

D(v) = {(u,w) ∈ Σ∗ ×Σ∗ | uvw ∈ L}

of all contexts where v appears in L. Having the same distribution with respect
to L is a congruence relation ≡L on Σ∗, the syntactic congruence. It partitions
Σ∗ into disjoint distribution classes [v] := {v′ ∈ Σ∗ | v ≡L v′}. By the My-
hill/Nerode theorem (c.f.[6]), ≡L has finitely many distribution classes if and
only if L is a regular language.

When the monoid operations of (Σ∗, ·, ε) are lifted to word sets by A · B :=
{a · b | a ∈ A, b ∈ B} and 1 = {ε}, one obtains a monoid (P(Σ∗), ·, 1), which
is partially ordered by ⊆. The operation (u,w) � v := uvw of filling a context
(u,w) with a word v is lifted to context sets C and word sets A by

C �A := {(u,w)� v | (u,w) ∈ C, v ∈ A}.

With respect to L, each set of contexts C has a largest set of fillers, C = {v ∈
Σ∗ | C � {v} ⊆ L}, and each set A of words has a largest set of contexts,
A� = {(u,w) ∈ Σ∗×Σ∗ | {(u,w)}�A ⊆ L}.Notice that D(v) = {v}� =: v� and

{v}� = {u | v� ⊆ u�} ⊇ {u | v� = u�} = [v].

G. Morrill et al. (Eds.): Formal Grammar 2014, LNCS 8612, pp. 121–137, 2014.
c© Springer-Verlag Berlin Heidelberg 2014
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The maps A �→ A� and C �→ C� are closure operators. Via a Galois-
connection between sets of words and sets of contexts, the partial orders of
closed sets of words and closed sets of contexts are anti-isomorphic. Clark[2]
defines a (syntactic) concept of L to be a pair 〈A,C〉 such that A� = C and
C = A. As here each component is closed and determines the other one, one
can use the component which is the better representation for a given purpose.

Note that L is itself a concept, namely L = {(ε, ε)}, and can be represented
by a finite set of contexts. Suppose L has a context-free grammar G (in Chomsky
normal form, CNF) whose nonterminals N are concepts of L, i.e. N = N� when
N is identified with {w ∈ Σ∗ | N ⇒∗

G w}. A branching rule (N → AB) of G
then corresponds to N ⊇ AB, which is equivalent to N ⊇ (AB)�. If N,A,B
are represented by context sets C,D,E, this means C ⊇ (DE)�.

A. Clark[2] developed an algorithm to identify in the limit a CNF-grammar
for L from membership queries and an enumeration of L, provided L has a
CNF-grammar whose nonterminals can be defined by finite sets of contexts. The
basic idea is to extract from a finite subset E ⊆ L a finite set F of contexts
and a finite set K of subwords of L and relativize the operations ·� and · of
taking all contexts resp. fillers with respect to L to ·F : P(Σ∗) → P(F ) and
·K : P(F ) → P(K) by AF := A� ∩ F and CK := C ∩K. Then there are only
finitely many relativized concepts of L, the pairs 〈A,C〉 ∈ P(K)× P(F ) where
A = CK and C = AF ; using relativized closed sets C = CKF of contexts to
represent them, Clark builds a CNF-grammar G(K,L, F ) by taking as branching
rules those triples (C → DE) where CK ⊇ (DKEK)FK . It is claimed that as K
and F increase, the grammars G(K,L, F ) converge to a grammar for L.

But there is a technical problem: Clark’s criterion for C,D,E to form a gram-
mar rule is right when working with infinite filler sets, i.e. C ⊇ (DE)�, since
·� is a closure operator on P(Σ∗) and hence DE ⊆ (DE)�. But the crite-
rion is not correct with finite filler sets, i.e. CK ⊇ (DKEK)FK is not equivalent
to CK ⊇ DKEK : although ·FK is a closure operator on P(K), it is generally
not the case that DKEK ⊆ (DKEK)FK , as the left hand side need not be a
subset of K. We give an example where Clark’s algorithm does not converge to
a grammar of the intended language.

Clark’s algorithm can be fixed by three modifications: (i) the criterion for
when three concepts C,D,E constitute a grammar rule has to be changed from
CK ⊇ (DKEK)FK to C ⊆ (DKEK)F . Since this works directly with context
sets, it emphasizes the importance of the Galois correspondence between word
sets and context sets. (ii) the criterion in the learning algorithm that makes the
hypothesis grammar shrink is weakened; the effect is that the learner cannot
converge to a grammar that defines a strict superset of the intended language.
(iii) since for our modified definition, L(G(K,L, F )) is neither antitone in K
nor monotone in F (as pointed out by R.Yoshinaka), we need a different line of
reasoning to show the convergence of the grammar inference process.

We prove that the modified algorithm indeed identifies in the limit the class
of context free languages with the finite context property. If we admit only
concepts whose context sets are closures of bounded context sets, the algorithm
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has polynomial update time. Ryo Yoshinaka [8] has a different modification of
Clark’s algorithm where nonterminals need not be closed sets. This makes the
reasoning simpler, but results in a larger grammar.

2 Correspondence between Word and Context Sets

Let Σ be a finite alphabet and L ⊆ Σ∗ a set of words. An L-context of A ⊆ Σ∗

is a word pair or context (u,w) such that uAw ⊆ L. The largest set of L-contexts
of A ⊆ Σ∗ is

A� := {(u,w) | {(u,w)} �A ⊆ L} = {(u,w) | uAw ⊆ L}. (1)

An L-filler of a set C ⊆ Σ∗ × Σ∗ of word pairs is a word w ∈ Σ∗ such that
uwv ∈ L for each (u, v) ∈ C. Let C � A := {uvw | (u,w) ∈ C, v ∈ A}. The
largest set of L-fillers of C ⊆ Σ∗ ×Σ∗ is

C := {v | C � {v} ⊆ L}. (2)

If C �= ∅, C ⊆ Sub(L), where Sub(L) := {v ∈ Σ∗ | ∃u,w ∈ Σ∗ uvw ∈ L} is the
set of all subwords of L. The following equivalence (3) is easy to check:

Proposition 1. The functions ·� : (P(Σ∗),⊇) � (P(Σ∗ × Σ∗),⊆) : · form a
Galois-connection, i.e., for all A ∈ P(Σ∗) and C ∈ P(Σ∗ ×Σ∗) we have

C ⊇ A ⇐⇒ C ⊆ A�. (3)

In particular, we have:

(i) ·� and · are antitone: A� ⊇ B� for all word sets A ⊆ B and C ⊇ D for
all context sets C ⊆ D.

(ii) A�� = A� and C� = C for all word sets A and context sets C.
(iii) ·� is a closure operator on (P(Σ∗),⊆) and ·� is a closure operator on

(P(Σ∗ ×Σ∗),⊆).
(iv) ·� : ({C | C ⊆ Σ∗ × Σ∗},⊇) � ({A� | A ⊆ Σ∗},⊆) : · form an order

isomorphism between the closed word sets and the closed context sets.

Claims (i)-(iv) are standard consequences of a Galois-connection. Since A ⊆ L
gives (ε, ε) ∈ A� , hence A� ⊆ {(ε, ε)} = L, we have

A ⊆ L ⇐⇒ A� ⊆ L. (4)

In particular, L itself is closed: L� = L.

Proposition 2. For all A,B ⊆ Σ∗, (A�B�)� = (AB)�.

Proof. Since ·� is a closure operator on P(Σ∗), it is sufficient to show that
A�B� ⊆ (AB)�. Let a ∈ A�, b ∈ B�, hence A� ⊆ a� and B� ⊆ b�. Moreover,
let (u,w) ∈ (AB)�, so uABw ⊆ L. Since {u}×Bw ⊆ A� ⊆ a� we have uaBw ⊆
L, so (ua,w) ∈ B� ⊆ b�, and uabw ∈ L. Thus, ab ∈ (AB)�.

For the residuation A/B := {v ∈ Σ∗ | {v}B ⊆ A} of word sets A,B, we have:

Proposition 3. For all A,B ⊆ Σ∗, (A/B)� ⊆ A�/B. If A = A�, then
(A/B)� = A/B.
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2.1 The Residuated Lattice B(L) of All Concepts of L

A syntactic concept of L is a pair 〈A,C〉 of a word set A and context set C such
that A� = C and C = A. Note that here A = A� and C = C� are closed sets,
and by the order isomorphism of Proposition 1 (iv) and (ii), one can represent
a concept 〈A,C〉 by its closed word set A� or by its closed context set C�.

Theorem 1. (Clark[1]) The set B(L) of all concepts of L forms a monoidal,
residuated and complete lattice,

B(L) := (B(L), ◦, 11, \, /,∨,∧,!,⊥,≤)
where the operations are, in terms of closed word sets, given by

A ◦B := (A ·B)�,
11 := {ε}�,

B\A := {v ∈ Σ∗ | B · {v} ⊆ A},
A/B := {v ∈ Σ∗ | {v} · B ⊆ A},

A ∨B := (A ∪B)�,
A ∧B := A ∩B,
! := Σ∗,
⊥ := ∅�,

A ≤ B :⇐⇒ A ⊆ B.

Proof. (Sketch) Monoid properties for ◦ and 11 follow from Proposition 2:

(A ◦B) ◦ C = ((AB)�C)� = ((AB)�C�)� = (ABC)� ,

A ◦ 11 = (A · {ε}�)� = (A · {ε})� = A.

By proposition 3, we know that A/B is closed when A is. Since the residual laws
hold in P(Σ∗) they hold in B(L), because for concepts A,B,C,

A ◦B ⊆ C ⇐⇒ (A ·B)� ⊆ C ⇐⇒ A · B ⊆ C. (5)

(See also Jipsen e.a.[4], Lemma 7.1.)

The residuations make the syntactic concept lattices complete for the full
Lambek calculus, see [7]. Clark emphasizes the lattice structure “as a good
search space” for grammatical inference. To learn CFGs, it is sufficient that
(B(L),∨,⊥, ◦, 11) is a complete idempotent semiring, in which context-free gram-
mars can be interpreted.

Proposition 4. The syntactic concepts of L form a complete idempotent semir-
ing

B(L) = (B(L),+B(L), 0B(L), ·B(L), 1B(L)) := (B(L),∨,⊥, ◦, 11),
and the mapping h : P(Σ∗)→ B(L) given by h(A) := 〈A�, A�〉, is a continuous
semiring-homomorphism.

A context-free grammar G with constants from Σ is a system of polynomial
equations Xi = pi(X1, . . . , Xn). Its least solution in P(Σ∗), the tuple of lan-
guages L(G,A) for nonterminals A, is componentwise mapped by h to its least
solution in B(L), the tuple of closed sets L(G,A)�. For the main component,
we have h(L) = h(L(G,S)) = L(G,S)� = L� = L.

Remark 1. Since the Kleene-closure A∗ is the least solution of AX + 1 ≤ X in
P(Σ∗) and h preserves least fixed-points, the semiring of syntactic concepts of
L can be expanded to a Kleene algebra (B(L),∨,⊥, ◦, 11,⊗), using 〈A,C〉⊗ :=
〈(A∗)�, ((C)∗)�〉.



Learning Context Free Grammars with the Finite Context Property 125

2.2 The Lattice B(L, F ) of Concepts of L Relative to F

We restrict ourselves to context-free grammars in weak Chomsky Normal Form
(CNF), where rules may have the forms (C → ε), (C → a), (C → DE), where ε
is the empty word, a is a terminal and C,D,E are nonterminals of the grammar.
A motivating idea of Clark was that a finite set V of concepts in the monoidal
lattice B(L) gives rise to a grammar G(L, V ) that defines a sublanguage of L.

Proposition 5. (c.f. Lemma 1 in [2]) Let L ⊆ Σ∗ and V ⊆ B(L) be a finite
set of concepts, here viewed as context sets C ⊆ Σ∗ × Σ∗ that are closed, i.e.
C = C�. Let G(L, V ) = (Σ, V, P, S) be the grammar with

S := {(ε, ε)}�,
P := {(C → w) | w ∈ Σ ∪ {ε}, C ∈ V,w ∈ C}
∪ {(C → DE) | C,D,E ∈ V, (DE)� ⊆ C}.

Then L(G(L, V )) ⊆ L.

Proof. By induction, one shows that if C ⇒∗ w, then w ∈ C, and L = S.

In suitable cases, each concept C = C� of V may be generated by a finite
subset Cf ⊆ C (c.f. the diagnostic contexts in 3.4 of Harris[3]), i.e. C = C�

f ,
and then V is determined by a collection of subsets of a finite set F ⊆ Σ∗ ×Σ∗

of contexts. In particular, when L does have a grammar G whose nonterminals
A define word sets L(G,A) that are the filler sets C

A of a finite set CA ⊆ F of
contexts, we can hope to find such a grammar G from a finite fragment E ⊆ L
that provides each context (u, v) of F through some word uwv ∈ E.

The idea now is to construct from a finite set F of contexts a finite “approx-
imation” B(L, F ) of B(L) and define a variant G(L, F ) of G(L, V ) such that
L(G(L, F )) ⊆ L. In suitable cases, G(L, F ) defines L.

Proposition 6. For sets F ⊆ Σ∗ × Σ∗ of contexts and A ⊆ Σ∗ of words, let
AF := A� ∩ F . The mappings ·F : (P(Σ∗),⊇) � (P(F ),⊆) : · form a Galois-
connection, i.e. for all A ∈ P(Σ∗) and C ∈ P(F ) we have

C ⊇ A ⇐⇒ C ⊆ AF .

In particular, properties (i) – (iv) of proposition 1 hold with ·F instead of ·�.

A concept of L relative to F is a pair 〈A,C〉 of P(Σ∗) × P(F ) such that
AF = C and C = A. In this case, A = C = AF is closed with respect to ·F

and C = AF = CF is closed with respect to ·F .

Proposition 7. Let F ⊆ Σ∗ × Σ∗. The set of all concepts of L relative to F
forms a complete lattice B(L, F ) = (B(L, F ),∨,∧,!,⊥,≤), where

! := 〈Σ∗, Σ∗F 〉 ⊥ := 〈F , F 〉
〈A1, C1〉 ∨ 〈A2, C2〉 := 〈(A1 ∪ A2)

F, C1 ∩ C2〉
〈A1, C1〉 ∧ 〈A2, C2〉 := 〈A1 ∩ A2, (C1 ∪ C2)

F 〉
〈A1, C1〉 ≤ 〈A2, C2〉 :⇐⇒ A1 ⊆ A2 ∧ C1 ⊇ C2.
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(Notice that ∅F = F and ∅ = Σ∗.) Define an operation ◦ : B(L, F )×B(L, F )→
B(L, F ) by

〈A1, C1〉 ◦ 〈A2, C2〉 := 〈(A1A2)
F, (C

1C

2 )

F 〉.
Indeed, (A1A2)

FF = (A1A2)
F = (C

1C

2 )

F and (C
1C


2 )

F = (A1A2)
F. More-

over, ◦ is monotone with respect to ≤. However, proposition 2 does not ex-
tend from ·� to ·F, and ◦ is not a monoid operation on B(L, F ); nor is
11 = 〈{ε}F, {ε}F 〉 neutral with respect to ◦.

Let PF(Σ∗) be the set of ·F-closed word sets and PF (F ) the set of ·F -
closed sets of contexts from F . We sometimes use the component functions ◦F

on PF(Σ∗) and ◦F on PF (F ) of ◦, defined by

A1 ◦F A2 := (A1A2)
F and C1 ◦F C2 := (C

1C

2 )

F .

If F is finite, a concept 〈A,C〉 of L relative to F has a finite representation by
its closed context set C.

Lemma 1. If F ⊆ Σ∗×Σ∗ is finite and (ε, ε) ∈ F , then L(G(L, F )) ⊆ L, where
G(L, F ) is the CNF-grammar (V,Σ, P, S) with

V := {C | ∅ �= C ⊆ F, CF = C},
S := {(ε, ε)}F ,
P := {(C → w) | C ∈ V,w ∈ Σ ∪ {ε}, C ⊆ wF },
∪ {(C → DE) | C,D,E ∈ V, C ⊆ (DE)F }.

Proof. As for proposition 5, we show by induction on the length of derivations
that if C ⇒∗ w, then w ∈ C. The claim follows from S = {(ε, ε)}F =
{(ε, ε)} = L. For a derivation C ⇒ DE ⇒∗ uE ⇒∗ uv with u, v ∈ Σ∗, we have,
by induction,

uv ∈ DE ⊆ (DE)F ⊆ C,

using that ·F is a closure operator on P(Σ∗), that C ⊆ (DE)F , and that ·
is antitone.

If G1 = (V1, Σ, P1, S1) and G2 = (V2, Σ, P2, S2) are CNF-grammars over Σ,
the mapping ·̃ : V1 → V2 induces a grammar homomorphism from G1 to G2, if
S̃1 = S2 and (C̃ → a), (C̃ → D̃Ẽ) ∈ P2 for all rules (C → a), (C → DE) ∈ P1.
In this case, clearly L(G1) ⊆ L(G2).

We remark that the mapping C �→ C� induces a grammar isomorphism
from G(L, F ) to G(L, V ), where V = {C� | C ∈ VF }, and VF is the set of
nonterminals of G(L, F ). Moreover, if (ε, ε) ∈ F1 ⊆ F2, then C �→ CF2 induces
a grammar homomorphism fromG(L, F1) toG(L, F2). It follows that L(G(L, F ))
is monotone in F , but we will not exploit this.

2.3 Grammars with the Finite Context Property

A context-free grammar G has the finite context property (FCP), if the ·�-
closure of the word set L(G,A) := {v ∈ Σ∗ | A ⇒∗

G v} of every nonterminal A
of G can be defined by a finite non-empty1 set CA ⊆ Σ∗ ×Σ∗ of contexts, i.e.

1 Non-emptyness of CA is not demanded in [2], [8], but is needed for E ⊆ L in lemma
3. The stronger condition L(G,A) = C�

A is used in [2], [5].
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L(G,A)� = C
A.

The grammar has the finite context property with respect to the context set F ,
if all the above CA are subsets of F . Clearly, this is monotone in F , and we can
replace the CA ⊆ F by their closures CF

A , because CF
A = C

A,

Lemma 2. If L has a CNF-grammar G with the FCP with respect to the finite
set F of contexts, then G(L, F ) contains a homomorphic image of G and L =
L(G(L, F )).

Proof. Suppose G = (V,Σ, P, S), and for each A ∈ V , suppose L(G,A)� = C
A

for some ∅ �= CA ⊆ F . We can assume that CA ∈ PF (F ). Let G(L, F ) =
(V (L, F ), Σ, P (L, F ), S(L, F )). Under A �→ CA, each rule of G is mapped to
a rule of G(L, F ). If (A → BD) ∈ P , then L(G,B)L(G,D) ⊆ L(G,A), hence
C

BC

D ⊆ C

A using proposition 2, hence CA = CF
A ⊆ (C

BC

D)F , and therefore

(CA → CBCD) ∈ P (L, F ). If (A→ a) ∈ P for a ∈ Σ ∪ {ε}, then a ∈ L(G,A) ⊆
C

A, so CA = CF
A ⊆ aF , hence (CA → a) ∈ P (L, F ). Moreover, S is mapped

to S(L, F ) = {(ε, ε)}F : since L = L� = L(G,S)� = C
S = {(ε, ε)}, we

have CS = CF
S = {(ε, ε)}F = S(L, F ). Thus A �→ CA induces a grammar

homomorphism from G to G(L, F ). It follows that L = L(G) ⊆ L(G(L, F )). By
lemma 1, L(G(L, F )) ⊆ L.

The set of contexts derived from v ∈ L resp. E ⊆ Σ∗ is

Con(v) := {(u,w) ∈ Σ∗ ×Σ∗ | ∃ṽ ∈ Σ∗ v = uṽw},
Con(E) :=

⋃
{Con(v) | v ∈ E}.

Lemma 3. Suppose G = (V,Σ, P, S) is a CNF-grammar without unnecessary
nonterminals, and L = L(G) �= ∅. If G has the FCP, there are finite sets E ⊆ L
and F ⊆ Con(E) such that G has the FCP with respect to F .

Proof. For each nonterminal A of G, there is a finite set of contexts CA �= ∅ such
that L(G,A)� = C

A. Let F =
⋃
{CA | A ∈ V } be the union of all CA. Since

each A ∈ V is necessary, C
A �= ∅, so there is vA ∈ Σ∗ such that vA ∈ C

A. Then
CA ⊆ Con(CA � vA), and CA � vA ⊆ L is finite. It follows that F ⊆ Con(E) for
E =

⋃
{CA � vA | A ∈ V } ⊆ L.

It follows that if L has a grammar with the FCP, then in order to find one,
we can search finite subsets E of L and consider G(L, F ) with F = Con(E). We
know that L(G(L, F )) is a subset of L, and equals L when F is large. However,
to construct G(L, F ) we must avoid computing infinite filler sets C in order to
find the closed sets C = CF . We need a truely finite representation of G(L, F ).

3 Lattices B(K,L, F ) of Relativized Concepts of L

Let K ⊆ Σ∗ and F ⊆ Σ∗ ×Σ∗ be word- and context sets. Put

AF := A� ∩ F, CK := C ∩K, AFK := (AF )K , CKF := (CK)F .

Then AF and CK are monotone in F and K, but antitone in A und C.
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Proposition 8. The mappings ·F : (P(K),⊇) � (P(F ),⊆) : ·K form a Galois-
connection, i.e. for all A ∈ P(K) and C ∈ P(F ) we have

CK ⊇ A ⇐⇒ C ⊆ AF .

In particular,

(i) ·F and ·K are antitone: AF ⊇ BF for all A ⊆ B ⊆ K and CK ⊇ DK for all
C ⊆ D ⊆ F ,

(ii) AFKF = AF and CKFK = CK for all A ⊆ K and C ⊆ F .
(iii) ·FK resp. ·KF is a closure operator on (P(K),⊆) resp. (P(F ),⊆).
(iv) ·F : ({CK | C ⊆ F},⊇) � ({AF | A ⊆ K},⊆) : ·K form an order iso-

morphism.

We call a pair 〈A,C〉 such that AF = C and CK = A a relativized concept of L.
Let B(K,L, F ) be the set of all relativized concepts of L. The components of a
relativized concept 〈A,C〉 are closed with respect to ·FK and ·KF , respectively,
as A = AFK and C = CKF , and via (ii) and (iv) one can represent a relativized
concept of L by its closed word set or its closed context set. Writing

PFK(K) := {A ⊆ K | A = AFK} and PKF (F ) := {C ⊆ F | C = CKF }

for the set of closed members of P(K) and P(F ), respectively, (iv) gives an order
isomorphism

·F : (PFK(K),⊇) � (PKF (F ),⊆) : ·K .

Proposition 9. Let K ⊆ Σ∗ and F ⊆ Σ∗ × Σ∗. The set of all relativized
concepts of L forms a complete lattice B(K,L, F ) = (B(K,L, F ),∨,∧,!,⊥,≤)
with the following operations:

! := 〈K,KF 〉 ⊥ := 〈∅FK , F 〉
〈A1, C1〉 ∨ 〈A2, C2〉 := 〈(A1 ∪ A2)

FK , C1 ∩ C2〉
〈A1, C1〉 ∧ 〈A2, C2〉 := 〈A1 ∩ A2, (C1 ∪C2)

KF 〉
〈A1, C1〉 ≤ 〈A2, C2〉 :⇐⇒ A1 ⊆ A2 ∧ C1 ⊇ C2.

When K = Σ∗, we have CK = C for all C ⊆ F , and B(Σ∗, L, F ) = B(L, F ).
When F is finite, we want to use B(L, F ) as a finite “approximation” of the
generally infinite B(L), and when K is also finite, B(K,L, F ) is a finite, effective
approximation of B(L, F ). To relativize to B(K,L, F ) the monoid operation ◦
of B(L) with its component functions ◦� and ◦�,

〈A1, C1〉 ◦ 〈A2, C2〉 = 〈A1 ◦� A2, C1 ◦� C2〉 := 〈(A1A2)
�, (C

1C

2 )

�〉,

Clark [1] (Def. 7) defines a partial operation ◦ on B(K,L, F ) by

〈A1, C1〉 ◦ 〈A2, C2〉 := 〈A1 ◦FK A2, C1 ◦KF C2〉 := 〈(A1A2)
FK , (CK

1 C
K
2 )F 〉,

which need not be a monoid operation. (Proposition 2 for ·� does not extend to
all ·FK .) It is only a partial operation on B(K,L, F ), because although (A1A2)

FK
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is closed in P(K) and the ·K-image of (CK
1 C

K
2 )F , the latter need not belong to

PKF (F ): CK
1 C

K
2 need not be a subset of K, whence its ·F -image need not be

·KF -closed in P(F ).
Moreover, the embedding 〈A,C〉 �→ 〈C, C〉 from B(K,L, F ) to B(L, F ) need

not preserve ◦. However, if K is large enough, everything is fine:

Lemma 4. (cf. Clark[1], Lemma 6): For any L ⊆ Σ∗ and finite F ⊆ Σ∗ ×Σ∗,
there is a finite K ⊆ Σ∗ such that

(B(K,L, F ),∨,∧,⊥,!,≤, ◦) # (B(L, F ),∨,∧,!,⊥,≤, ◦).

We detail the four line proof sketch from [1] for later reference.

Proof. First note that if C ⊆ F is closed in PKF (F ), it is closed in PF (F ) as
well: if C = CKF , then since C ⊇ CK gives CF ⊆ CKF = C, so C = CF

as ·F is a closure operator on P(F ). Therefore 〈A,C〉 �→ 〈AF, C〉 = 〈C, C〉
embeds B(K,L, F ) into B(L, F ).

To make this embedding be onto B(L, F ), we have to choose K sufficiently
large. Recall that CKF is antitone in K, and CF ⊆ CKF for any C ⊆ F and
any K. If CKF �⊆ CF , there is (u, v) ∈ CKF \CF , and hence some w ∈ C\CK

such that uwv �⊆ L, hence (u, v) /∈ C(K∪{w})F . By adding at most |CKF \ CF |
many elements from C to K we obtain K ′ ⊇ K such that CF = CK′F ⊆ CKF .
Since P(F ) is finite, there is thus a finite set K ⊆ Σ∗ such that

CKF = CF , for all C ⊆ F. (6)

It follows that �→: (B(K,L, F ),∨,∧,⊥,!,≤) # (B(L, F ),∨,∧,⊥,!,≤), and
that AFKF = AFF = AF for any A ⊆ Σ∗ (not just for A ⊆ K). In particular,
◦ is total on B(K,L, F ), as for each 〈A1, C1〉, 〈A2, C2〉 ∈ B(K,L, F ) we get

〈A1, C1〉 ◦ 〈A2, C2〉 = 〈(A1A2)
FK , (CK

1 CK
2 )F 〉 = 〈(A1A2)

FK , (CK
1 CK

2 )FKF 〉.

Moreover, by similar means we can achieve that

(CK
1 C

K
2 )F = (C

1C

2 )

F , for all C1, C2 ⊆ F, (7)

so that �→ preserves ◦ since for each 〈A1, C1〉, 〈A2, C2〉 ∈ B(K,L, F ), we get

〈A1, C1〉 ◦B(K,L,F ) 〈A2, C2〉 = 〈(A1A2)
FK , (CK

1 CK
2 )F 〉

�→ 〈(C
1C


2 )

F, (C
1C


2 )

F 〉 = 〈C
1 , C1〉 ◦B(L,F ) 〈C

2 , C2〉.

To see (7), notice that (CK
1 CK

2 )F ⊇ (C
1C


2 )

F for any K, and if we have �= here,
there are u ∈ C

1 \ CK
1 and v ∈ C

2 \ CK
2 . Adding these to K lets (CK

1 CK
2 )F

shrink stricty. By adding at most |(CK
1 CK

2 )F \ (C
1C


2 )

F | many elements from
C

1 ∪C
2 to K we obtain K ′ ⊇ K such that (CK′

1 CK′
2 )F = (C

1C

2 )

F . Since P(F )
is finite, we can do this for all C1, C2 ⊆ F , and achieve (7).

The monotonicity properties ensure that (6) and (7) and hence B(K,L, F ) #
B(L, F ) are preserved under extensions of K.
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Corollary 1. For any finite F where ∅ is not ·F -closed, there is a finite K ⊆
Sub(L) such that

(B(K,L, F ),∨,∧,⊥,!,≤, ◦) # (B(L, F ),∨,∧,!,⊥,≤, ◦).

Proof. For ∅ �= C ⊆ F we have C ⊆ Sub(L). To achieve CF = CKF and
(CK

1 C
K
2 )F = (C

1C

2 )

F , only elements from C and C
i are added to K in the

above proof, so we can do with some K ⊆ Sub(L), provided ∅ �= ∅F .
If ∅ is ·F -closed, as it often happens, there may be no finite K ⊆ Sub(L) with

∅KF = ∅F = ∅. For example, when K ⊆ Sub(L) = L �= Σ∗ and F = {(ε, ε)},
then ∅F = (Σ∗)F = ∅, but ∅KF = KF = F . Also, when K ⊆ Sub(L), it may
be impossible that ◦KF is total on PKF (F ), i.e. there may be C1, C2 ∈ PKF (F )
such that C1 ◦KF C2 = (CK

1 CK
2 )F = ∅ �= ∅KF .

3.1 Clark’s Learning Algorithm

For finite sets K ⊆ Σ∗ and F ⊆ Σ∗ × Σ∗ with (ε, ε) ∈ F , Clark relativized
G(L, V ) to a grammar G(K,L, F ) = (V,Σ, P, S) where2

V := {C | C ⊆ F,C = CKF },
S := {(ε, ε)}KF ,

P := {(C → w) | C ∈ V,w ∈ Σ ∪ {ε}, w ∈ CK}
∪ {(C → DE) | C,D,E ∈ V, (DKEK)FK ⊆ CK}.

He then shows (Lemma 2,3,4 in [2]) that L(G(K,L, F )) depends monotonically
on F and antitonically on K ⊇ Σ ∪ {ε}. Theorem 1 in [2] claims that the
following algorithm identifies L in the limit, i.e. that for any oracles T and χL,
〈Gn | n ∈ N〉 gets constant at some Gn such that L(Gn) = L.

Why should 〈Gn | n ∈ N〉 converge to a grammar for L? Call a finite set F of
contexts adequate for L if L ⊆ L(G(K,L, F )) for every finite Σ∪{ε} ⊆ K ⊆ Σ∗.
By lemma 3, there is some F such that L ⊆ L(G(L, F )). Then any Fn ⊇ F is
adequate for L, since G(L, F ) = G(Σ∗, L, F ), and L(G(K,L, F )) is monotone
in F and antitone in K ⊆ Σ∗. So one would first like to show:

〈Fn | n ∈ N〉 gets constant in some Fn that is adequate for L,

so that L ⊆ L(G(Km, L, Fn)) for all m, and then show:

〈Kn | n ∈ N〉 gets constant in some Km such that L = L(G(Km, L, Fn)). (8)

To achieve (8), Lemma 5 in [2] claims:

For any L and F , there is K ⊆ Σ∗ such that L(G(K,L, F )) ⊆ L. (9)

The proof sketched in [2] only works for the infinite set K = Σ∗, but the claim
is needed with finite K ⊆ Sub(L) in the grammar inference algorithm. However,
this strengthening of (9) is wrong:

2 We omit a size bound f on a generating subset for the CKF in the definition of V ,
which only serves to bound |G(K,L, F )| by a polynomial in |K| and |F |.
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Table 1. Clark’s grammar inference algorithm

Let Σ be a finite alphabet and L ⊆ Σ∗, a language with a CNF-grammar with
the finite context property, be given by oracles χL : Σ∗ → B and T : N → Σ∗ for
recognition and enumeration of L.

Produce a sequence 〈Gn | n ∈ N〉 of CNF-grammars, where wn = T (n):

E0 := ∅,
K0 := Σ ∪ {ε},
F0 := {(ε, ε)},
G0 := G(K0, L, F0).

En+1 := En ∪ {wn},

Kn+1 :=

⎧⎪⎨
⎪⎩
Sub(En+1), if En+1 	⊆ L(Gn), or

G(Sub(En+1), L, Fn) 	� Gn

Kn, else

Fn+1 :=

{
Con(En+1), if En+1 	⊆ L(Gn),

Fn, else

Gn+1 := G(Kn+1, L, Fn+1).

Example 1. There is a language L ⊆ Σ∗ and a finite set of contexts F with

L(G(K,L, F )) �⊆ L, for all finite K such that Σ ∪ {ε} ⊆ K ⊆ Sub(L).

Let Σ = {a}, F = {(ε, ε)}, L = {ε, a}. The only finite set K with Sub(L) ⊇ K ⊇
Σ ∪ {ε} is K = L.

(i) The set V of closed elements of P(F ) contains F , since F ⊆ FKF is maximal
in P(F ). Since FK = {k ∈ K | εkε ∈ L} = K ∩ L = L and a ∈ L, (F → a)
is a non-branching rule of G(K,L, F ).

(ii) To see that (F → FF ) is a branching rule of G(K,L, F ), notice that since
LL �⊆ L, we have (FKFK)F = (LL)F = ∅, so (FKFK)FK = ∅K = K =
L = FK .

Since F is the start symbol of G(K,L, F ), it follows that aa ∈ L(G(K,L, F ))\L.
This grammar, extended by the rule F → ε, is G0, so L ⊂ L(G0) and K1 = K0,
F1 = F0, and G1 = G(K1, L, F1) = G0. By induction, 〈Gn | n ∈ N〉 gets constant
in G0, a grammar that does not define L.

3.2 Correcting Clark’s Algorithm

Example 1 shows that Clark’s condition (DKEK)FK ⊆ CK in branching rules
of G(K,L, F ) is too permissive. For concepts C,D,E, being a branching rule
(C → DE) of G(L, V ) amounts to any of the equivalent conditions DE ⊆
C, (DE)� ⊆ C or C ⊆ (DE)�. These are no longer equivalent in the
relativized situation; for concepts C,D,E relativized to K,F we only have

DKEK ⊆ CK =⇒ C ⊆ (DKEK)F =⇒ (DKEK)FK ⊆ CK .
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Though ·FK is a closure operation on P(K), we may haveDKEK �⊆ (DKEK)FK

when DKEK �⊆ K. We modify the definition of G(K,L, F ) by replacing the con-
dition (DKEK)FK ⊆ CK by the stronger condition3 C ⊆ (DKEK)F . Moreover,
we exclude the empty context set from the nonterminals.

Definition 1. Let K,L ⊆ Σ∗ be arbitrary sets of words, and F ⊆ Σ∗ × Σ∗ a
finite set of contexts such that (ε, ε) ∈ F . Then G(K,L, F ) is the binary grammar
(V,Σ, P, S) where

V := {C | ∅ �= C ⊆ F, CKF = C}
S := {(ε, ε)}KF ,

P := {(C → w) | C ∈ V,w ∈ Σ ∪ {ε}, C ⊆ wF }
∪ {(C → DE) | C,D,E ∈ V, C ⊆ (DKEK)F }.

Note that for C = CKF , the condition C ⊆ wF is equivalent to w ∈ CK . When
K and F are finite, we can determine V , S and P from a decision algorithm
for membership in L. To determine V , we need to know (F � K) ∩ L, and to
determine P , we need to know (F �KK) ∩ L.

Our conditions C ⊆ wF for non-branching rules (C → w) and C ⊆ (DKEK)F

for branching rules (C → DE) of G(K,L, F ) are monotone in F and antitone in
K. Yet, as pointed out by R. Yoshinaka4, L(G(K,L, F )) is neither monotone in F
nor antitone in K. The reason is that for F1 ⊆ F2, say, the set V1 of nonterminals
of G(K,L, F1) is not a subset of the set V2 of nonterminals of G(K,L, F2), and
the embedding ·̃ : V1 → V2 given by C̃ := CKF2 gives C ⊆ C̃ and hence can
lead from C ⊆ (DKEK)F1 to C̃ �⊆ (D̃KẼK)F2 and does not induce a grammar
homomorphism.

Before presenting a correction of Clark’s algorithm, let us recapitulate his idea.
A finite amount of positive information E ⊆ L about L gives a finite set F =
Con(E) of contexts and, through B(L, F ), a grammar G(L, F ) of a sublanguage
of L. If F is big enough, G(L, F ) defines L. Each F and each finite K ⊆ Σ∗

provide, through the finite B(K,L, F ), a grammar G(K,L, F ) whose language
is monotone in F and antitone in K. If F is big enough, L ⊆ L(G(K,L, F )),
and if K is big enough, one has B(L, F ) # B(K,L, F ), in which case G(K,L, F )
is G(L, F ) and defines L. Thus, when E �⊆ L(G(K,L,Con(E))), one needs to
increase E, and otherwise one should keep F = Con(E) fixed and increase K to
make it big enough.

Since the input to the inference process consists of positive information about
L only, we cannot use lemma 4 directly to get B(K,L, F ) # B(L, F ), but need
a refinement with K ⊆ Sub(L) instead of K ⊆ Σ∗. (We get no clue on which
K �⊆ Sub(L) would satisfy ∅ = ∅F = ∅KF , so we exclude ∅ resp. ! from
the nonterminals.) Moreover, it will in general be impossible to define L with
G(K,L, F ) where K = Sub(E) and F = Con(E) for some finite E ⊆ L; we

3 It excludes (F → FF ) in example 1, where F 	⊆ (FKFK)F = ∅. The weaker C ⊆
(DKEK)FKF is equivalent to Clark’s (DKEK)FK ⊆ CK .

4 Personal communication, February 2013.
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may need a finite K with Sub(E) ⊂ K ⊆ Sub(L). So we have to switch between
increasing F on the one hand and increasing K while keeping F fixed on the
other. Finally, of course we cannot explicitly test whether F is big enough so that
L = L(G(L, F )), or whetherK gives B(K,L, F ) # B(L, F ). We need computable
substitutes for such tests.

We say that 〈PKF (F ), ◦KF 〉 and 〈PF (F ), ◦F 〉 almost agree, in symbols:
〈PKF (F ), ◦KF 〉 ≡ 〈PF (F ), ◦F 〉, if for all non-empty C,C1, C2 ⊆ F ,

CKF = CF and C1 ◦KF C2 = C1 ◦F C2.

Like (6) and (7) in the proof of lemma 4, this property is monotone in K; but
now we only consider non-empty subsets of F .

Lemma 5. Let F ⊆ Σ∗ ×Σ∗ and K ⊆ Sub(L) be finite, and (ε, ε) ∈ F .

(i) There is a finite K ⊆ K̃ ⊆ Sub(L) with 〈PK̃F (F ), ◦K̃F 〉 ≡ 〈PF (F ), ◦F 〉.
(ii) If 〈PKF (F ), ◦KF 〉 ≡ 〈PF (F ), ◦F 〉, then G(K,L, F ) = G(L, F ).

Proof. (i) We need to satisfy the restrictions of (6) and (7) to non-empty sets
C,C1, C2 ⊆ F . As the proof of lemma 4 shows, we have to extend K by elements
of C, C

1 , C

2 , and these are subsets of Sub(L) when C,C1, C2 are non-empty.

(ii) Since 〈PKF (F ), ◦KF 〉 and 〈PF (F ), ◦F 〉 almost agree, G(K,L, F ) and
G(L, F ) have the same nonterminals, start symbols, and non-branching rules
and branching rules.

Although 〈PF (F ),⊇, ◦F 〉 is a finite structure, we generally cannot compute
it, given an oracle for membership in L, because possibly infinite word sets C

are involved. So we cannot test whether 〈PKF (F ), ◦KF 〉 almost agrees with
〈PF (F ), ◦F 〉. Nor can we test whether G(K,L, F ) equals G(L, F ). But we can
test the following weaker property, which however is not monotone in K.

We say ◦KF is almost total on PKF (F ), if for all non-empty C1, C2 ∈ PKF (F ),
C1 ◦KF C2 belongs to PKF (F ) ∪ {∅}. Using an oracle for membership in L one
can check whether ◦KF is almost total.

Proposition 10. The following conditions are equivalent:

(i) For all non-empty C ⊆ F , CKF = CF .
(ii) PKF (F ) \ {∅} = PF (F ) \ {∅}.

The easy proof is left to the reader.

Proposition 11. Let F ⊆ Σ∗ × Σ∗ and K ⊆ Σ∗. If 〈PKF (F ), ◦KF 〉 and
〈PF (F ), ◦F 〉 almost agree, then ◦KF is almost total on PKF (F ).

Proof. Suppose C1, C2 ∈ PKF (F ) are nonempty, and (C1 ◦KF C2) �= ∅. Then

C1 ◦KF C2 = C1 ◦�F C2 = (C�
1C

�
2 )

F = (C�
1C

�
2 )

F�F = (C�
1C

�
2 )

FKF = (C1 ◦KF C2)
KF ,

and so (C1 ◦KF C2) ∈ PKF (F ).
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Lemma 6. Suppose F ⊆ Σ∗ × Σ∗ is finite with (ε, ε) ∈ F and L ⊆ Σ∗ has a
CNF-grammar G with the FCP with respect to F . If Σ ∪{ε} ⊆ K ⊆ Σ∗ is finite
and ◦KF is almost total on PKF (F ), then L ⊆ L(G(K,L, F )).

Proof. By assumption, for each nonterminal A of G there is a finite set ∅ �=
CA ⊆ F with L(G,A)� = C

A. We show that A �→ CKF
A induces a grammar

homomorphism from G to G(K,L, F ). For each nonterminal A of G, ∅ �= CKF
A

is ·KF -closed, hence a nonterminal of G(K,L, F ). Let (A→ DE) be a rule of G,
so C

A ⊇ C
DC


E , using proposition 2. Then

∅ �= CA ⊆ CF
A ⊆ (C

DC

E)

F ⊆ (CK
DC

K
E )F = (CKFK

D CKFK
E )F = CKF

D ◦KF CKF
E .

By monotonicity of ·KF and since ◦KF is almost total on PKF (F ), we get

CKF
A ⊆ (CKF

D ◦KF CKF
E )KF ⊆ CKF

D ◦KF CKF
E ,

and so (CKF
A → CKF

D CKF
E ) is a rule of G(K,L, F ). Likewise, let (A → a) be

a rule of G. Then a ∈ L(G,A) ∩ K ⊆ C
A ∩ K = CK

A , so CKF
A ⊆ aF , and

(CKF
A → a) is a rule of G(K,L, F ). Hence, if A⇒∗

G w, then CKF
A ⇒∗

G(K,L,F ) w.

We may assume that CS = {(ε, ε)}, as C
S = L = {(ε, ε)} = {(ε, ε)}F since

(ε, ε) ∈ F . Then CKF
S = {(ε, ε)}KF is the start symbol of G(K,L, F ), and we

have L = L(G) ⊆ L(G(K,L, F )).

The idea for the corrected grammar inference is as follows. Start with F =
{(ε, ε)} and consume increasing finite subsets E of L until K = Sub(E) makes
◦KF almost total. We find such a K by lemma 5 and proposition 11. If then
E �⊆ L(G(K,L, F )), we know by lemma 6 that L does not have a grammar with
the FCP with respect to F (i.e. “F is not adequate for L”). So we update F to
Con(E) and repeat this process, until we have K ⊆ Sub(L) where ◦KF is almost
total and E ⊆ L(G(K,L, F )). Then we keep F fixed and increase E and K until
◦KF is almost total, and check if E ⊆ L(G(K,L, F )). If we no more run into
the case E �⊆ L(G(K,L, F )) where F is increased, we exhaust the finite subsets
K of Sub(L) and hence reach G(K,L, F ) = G(L, F ) by lemma 5; since this is
monotone in K, the grammar G(L, F ) is the limit grammar. Then on the one
hand, E ⊆ L(G(K,L, F )) = G(L, F ) for all finite E ⊆ L, hence L ⊆ L(G(L, F )),
and on the other hand L(G(L, F )) ⊆ L.

Since L has a grammar with the FCP, after finitely many updates of F =
Con(E) it has a grammar with the FCP with respect to F . Then by lemma 6,
L ⊆ L(G(K,L, F )) for all K where ◦KF is almost total, and so we do not run
into the case E �⊆ L(G(K,L, F )) any more.

Theorem 2. If ∅ �= L ⊆ Σ∗ has a CNF-grammar with the finite context prop-
erty, then the algorithm of table 2 identifies L in the limit, i.e. for the sequence
〈Gn | n ∈ N〉 of grammars produced for any membership oracle and enumeration
of L, there is m such that L(Gm) = L and Gn = Gm for all n ≥ m.

Proof. Let G be a grammar for L with the FCP. We may assume that G has
no unneccesary symbols. By lemma 3, G has the FCP with respect to some
F ⊆ Con(E) for some finite E ⊆ L.
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Table 2. Grammar inference algorithm

Let Σ be a finite alphabet and ∅ 	= L ⊆ Σ∗, a language with a CNF-grammar with
the finite context property, be given by oracles χL : Σ∗ → B and T : N → Σ∗ for
recognition and enumeration of L.

Produce a sequence 〈Gn | n ∈ N〉 of CNF-grammars, where wn = T (n):

E0 := ∅,
K0 := Σ ∪ {ε},
F0 := {(ε, ε)},
G0 := G(K0, L, F0).

En+1 := En ∪ {wn},
Kn+1 := Sub(En+1) ∪K0,

Gn+1 :=

⎧⎪⎨
⎪⎩
G(Kn+1, L, Fn) if ◦Kn+1Fn is

almost total,

Gn, else,

Fn+1 :=

⎧⎪⎨
⎪⎩
Con(En+1) if En+1 	⊆ L(Gn+1) and

◦Kn+1Fn is almost total,

Fn, else.

Claim 1 The sequence 〈Fn | n ∈ N〉 gets constant at a finite Fñ ⊆ Con(L).
Proof of Claim 1 : By induction, Fn ⊆ Fn+1 ⊆ Con(En+1) for all n. Assume

that 〈Fn | n ∈ N〉 does not get constant. Then neither do 〈En | n ∈ N〉 nor 〈Kn |
n ∈ N〉, and there are infinitely many n such that Fn ⊂ Fn+1 = Con(En+1). Let n
be one of those. Then ◦Kn+1Fn is almost total and hence Gn+1 = G(Kn+1, L, Fn).
We may assume that F ⊆ Fn+1, so G has the FCP with respect to Fn+1.

Since 〈Fn | n ∈ N〉 does not get constant, there is a least m ≥ n+1 such that
◦Km+1Fm is almost total, and then

Gm+1 = G(Km+1, L, Fm) = G(Km+1, L, Fn+1).

By lemma 6, L ⊆ L(G(Km+1, L, Fn+1)) = L(Gm+1), so Em+1 ⊆ L(Gm+1) and
Fm+1 = Fm = Fn+1. Let m̃ be the least k ≥ m+ 1 such that ◦Kk+1Fk is almost
total. Then Gm̃ = Gm+1, Fm̃ = Fm+1 = Fn+1 and

Gm̃+1 = G(Km̃+1, L, Fm̃) = G(Km̃+1, L, Fn+1).

Since ◦Km̃+1Fm̃ is almost total, we also have Em̃+1 ⊆ L ⊆ L(Gm̃+1), again by
lemma 6, so Fm̃+1 = Fm̃ = Fn+1. By induction, Fm̃+1 = Fn+1 for all m̃ ≥ n+ 1
where ◦Km̃+1Fm̃ is almost total, hence for all m̃ ≥ n + 1. This contradicts the
assumption that 〈Fn | n ∈ N〉 does not get constant.

Claim 2 : If 〈Fn | n ∈ N〉 converges to Fñ, then 〈Gn | n ∈ N〉 converges to
G(L, Fñ) and L = L(G(L, Fñ)).

Proof of Claim 2 : Suppose 〈Fn | n ∈ N〉 converges to Fñ. By lemma 5 there
is some finite K ⊆ Sub(L) such that

〈PKFñ(Fñ), ◦KFñ〉 ≡ 〈PFñ(Fñ), ◦Fñ〉. (10)
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Since (10) is monotone in K and 〈Kn | n ∈ N〉 is non-decreasing and majorizes
all finite subsets of Sub(L), there is m0 ≥ ñ such that for all m ≥ m0,

〈PKm+1Fñ(Fñ), ◦Km+1Fñ〉 ≡ 〈PFñ(Fñ), ◦Fñ〉.

By lemma 11, ◦Km+1Fñ = ◦Km+1Fm is almost total for m ≥ m0. Therefore
Gm+1 = G(Km+1, L, Fñ) for all m ≥ m0, and G(Km+1, L, Fñ) = G(L, Fñ) by
lemma 5. So 〈Gn | n ∈ N〉 gets constant in G(L, Fñ).

We have L(G(L, Fñ)) ⊆ L by lemma 1. Suppose L �⊆ L(G(L, Fñ)), and pick
w ∈ L \ L(G(L, Fñ)). Since 〈En | n ∈ N〉 majorizes every finite subset of L, for
some m ≥ m0 we have E ∪ {w} ⊆ Em+1 �⊆ L(G(L, Fñ)) = L(G(Km+1, L, Fm).
Then Fñ = Fm+1 = Con(Em+1) ⊇ Con(E) ⊇ F . So the given G has the FCP
with respect to Fñ. Then L ⊆ L(G(Km+1, L, Fm)) = L(G(L, Fñ)) by lemma 6,
in contradiction to the assumption.

The proof does not rely on whether L(G(K,L, F )) is monotone in F or anti-
tone in K. Due to space limitations, we do not demonstrate that a grammar for
the Dyck language of well-bracketed strings is correctly inferred.

To obtain polynomial update complexity, we need to limit the number of
concepts. A grammar has the f -finite context property (f -FCP), if for each of its
nonterminals A there is a set CA of contexts such that A� = C

A and |CA| ≤ f ,
where f ≥ 1. Restrict the algorithm of table 2 to languages having a grammar
with the f -FCP, and to build the hypotheses Gn, use grammars Gf (K,L, F )
defined like G(K,L, F ), but whose nonterminals are non-empty elements from
PKF
f (F ) := {CKF | C ⊆ F, |C| ≤ f}. Then the algorithm has polynomial update

time, i.e. the number of steps to generate the hypothesis grammarGn is bounded
by a polynomial in |En| and max{|w| | w ∈ En}.

First observe that the number of steps to compute Gf (K,L, F ) fromK and F
is bounded by a polynomial in |K| and |F |. Clearly, PKF

f (F ) is of size O(|F |f )
and its elements can be represented in a trie of bitvectors of length |F |. For
each C ⊆ F with |C| ≤ f we need O(f |K||F |) membership queries to determine
CKF and |F | steps to insert it into the trie. Likewise, for C1, C2 ∈ PKF

f (F )

we can compute C1 ◦KF C2 and check if it belongs to PKF
f (F ) in O(|K|2|F |)

steps. Therefore, we can compute (PKF
f (F ), ◦KF ) and check if ◦KF is almost

total on PKF
f (F ) in O(|K|2|F |2f+1) steps. If ◦KF is almost total, we can read

off Gf (K,L, F ) from (PKF
f (F ), ◦KF ) in O(|V |3|F |) = O(|F |3f+1) steps.

Next, let e = |En+1| and m be the maximal length of words in En+1. Then
Sub(En+1) and Con(En+1) are determined in O(em2) steps, so Kn+1 and Fn ⊆
Con(En) are of size O(em2), and Gn+1 = Gf (Kn+1, L, Fn) is polynomial in e
and m. Finally, to determine Fn+1, we must check whether En+1 �⊆ L(Gn+1),
which can be done in time polynomial in e and m using a CYK-recognizer ([6]).

4 Conclusion

We have pointed out that Clark’s grammar inference algorithm may converge
to a grammar for a superset of the intended language. We modified Clark’s
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grammars G(K,L, F ), replaced major parts of the reasoning for the inference
process, and provided proofs of the correctness of the algorithm. We have thus
shown that one can learn a grammar for L, if L does have a CNF grammar
with the finite context property, and can do so in the framework of relativized
syntactic concepts of L. Some experts seemed to think this was impossible5, as
[2] and [8] rely heavily on the (anti)monotonicity of L(G(K,L, F )) in (K)F .

Yoshinaka’s[8] “dual” approach uses grammars H(K,L, F ) that differ from
our G(K,L, F ) by admitting arbitrary C ⊆ F as nonterminals in order to make
L(H(K,L, F )) monotone in F and antitone in K. This simplifies the reasoning,
but leads to a limit grammar with many “copies” of the same rule.

If we consider syntactic concepts of L as the only linguistically relevant notions
to be used in describing L, we would like to do syntactic analysis in terms
of “concept arithmetic”, i.e. using B(L) rather than P(Σ∗). It remains to be
developed what this amounts to, in particular when L is not context-free.

Acknowledgement. I wish to thank A.Clark for email discussions and
W. Buszkowski and R. Yoshinaka for pointing out mistakes in a draft version
and for a hint to Jipsen e.a.[4].
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Abstract. We present a compositional, dynamic categorial grammar
for discourse analysis that captures the core insights of dynamic se-
mantics: indefinites do not quantify but introduce discourse referents;
definites are anaphoric to previously-mentioned discourse referents; dis-
course referents have their ‘lifespan’ limited by certain operators. The
categorial grammar formalism we propose is strongly lexicalist and de-
rives linguistic signs with a syntactic division of labor separating surface
form from the underlying combinatorics. We argue that this formalism
compares favorably with earlier efforts on several counts. It does not
require any complicated or idiosyncratic machinery such as specialized
assignments, states, or continuations, and encodes the requirement that
a certain discourse referent be present in the discourse context using de-
pendent types, rather than e.g. partial functions. The dynamic semantics
itself is a straightforward extension of an underlying static semantics that
is fully (hyper)intensional, avoiding many unsavory problems associated
with standard possible worlds approaches.

Keywords: categorial grammar, dynamic semantics, compositionality,
dependent type theory, hyperintensionality.

1 Introduction

In dynamic semantics, the interpretation of sentences both depends upon and
acts upon the utterance context. When the classic dynamic semantic frameworks
of discourse representation theory (DRT, [15]) and file change semantics (FCS,
[13]) were first introduced, they attracted a lot of attention because they provided
analyses of phenomena (such as donkey anaphora, cross-sentential anaphora,
presupposition satisfaction, and the novelty condition on indefinites) that the
then-predominant semantic framework of Montague semantics (MS, [24]) could
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not account for. However, in formal terms, classic dynamic semantics compared
unfavorably with MS, which provided an explicit (albeit awkward) compositional
interface to syntax and whose semantic theory was expressed in a higher-order
language essentially equivalent to the classical simple theory of types ([3,6,14]).
Neither DRT nor FCS was compositional; the theoretical content of FCS was
expressed (not always as precisely as might have been hoped for) only in the
metalanguage, and DRT struck many as excessively syntactic and procedural.

Early attempts at logical formalization of dynamic semantics such as dynamic
predicate logic (DMG, [8]) and dynamic Montague grammar (DPL, [9]) ad-
dressed the compositionality issue, but suffered from idiosyncratic, inelegant han-
dling of variables (failure of alphabetic variance, destructive assignments, scope
extension of existential quantifiers, etc.). Muskens [25] seems to have been the
first to demonstrate that the fundamental insights of dynamic semantics could
be captured in a compositional way without going beyond the expressive limits
of classical type theory. But his approach incorporated some nonstandard—and
unnecessary—features, such as an additional basic type for states and an explicit
encoding of DRT accessibility conditions. More recent type-theoretic embodi-
ments of dynamic semantics [1,4,11], including our earlier efforts [19,20,22,23]
are free of these particular defects, but room for improvement remains.

In this paper, we propose a new framework for compositional type-theoretic
dynamic semantics which improves on previous proposals in the following re-
spects: (1) It comes equipped with a straightforward interface to a linear-logic-
based categorial grammar (LCG) along the general lines of [10,26,27], etc. (2)
Although grammars and the derivations they generate make no reference to pos-
sible worlds (or extensions of meanings at them), the underlying semantic theory
is fully (hyper)intensional from the get-go, so that it can be straightforwardly
extended to handle propositional attitudes, evidentiality [17], supplements [21],
interrogatives [31], etc. (3) Since it permits, but does not require, the modeling
of (static) propositions as sets of possible worlds, one can choose between the fa-
miliarity of (intensional) MS and a weaker, hyperintensional, static underpinning
[28,29,30] that avoids MS’s notorious foundational problems (e.g. the granular-
ity problem). (4) It straightforwardly models contexts as functions from tuples
of entities (‘discourse referents’, abbreviated ‘DRs’ ) to propositions (‘common
ground’, abbreviated ‘CG’), and updates as functions from contexts to contexts,
as in FCS, obviating the need for states [25] or continuations [11]. (5) Follow-
ing the original insights of both DRT and FCS, the semantics of indefinites
(‘dynamic existential quantification’) is not defined in terms of static existential
quantification, so there is no need for any notion of scope extension. (6) Updates
are explicitly bifurcated into the ‘carryover’ from the input context and the new
content proffered by the current utterance, thereby providing a hook for an en-
visioned extension covering utterance acceptance and rejection. (7) There is no
requirement that common grounds remain consistent; instead, and more realis-
tically, perceived inconsistency could be grounds for rejecting proffered content.
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2 Syntactic Framework

In place of Montague’s categorial grammar, we use a linear-logic-based form of
categorial grammar (hereafter, LCG) broadly similar to de Groote’s ACG [10]
or Muskens’s λ-grammar [26]. An LCG generates tripartite signs, such as:

� pedro ; NP ; p : e

� donkey ; N ; donkey : p1

The three components of a sign are called, respectively, the phenogrammatical
component (pheno for short), the tectogrammatical component (tecto for
short), and the semantic component (semantics for short). (The semantic
types will be explained in due course.) In the tecto, there is only one connective
� (linear implication) instead of directional slashes / and \.

The pheno component of a sign need not be a string (basic type s), but can
be a (possibly higher order) function over strings that tells how a functor is to
be ordered with respect to its arguments:

� λs.s · brays ; NP � S ; bray : p1

� λst.s · beats · t ; NP � NP � S ; beat : p2

� λsf .f (every · s) ; N � (NP � S) � S ; every : dt

Here s, t : s and f : s → s. The higher-order pheno theory axiomatizes strings
to form a monoid with identity e : s (null string) and associative operation
· : s→ s→ s (concatenation, written infix). All other pheno constants employed,
representing word phonologies, are of type s, including e (null string).

Besides lexical entries, which serve as nonlogical axioms, there is a schema of
logical axioms

p : P ;A ; z : B � p : P ; A ; z : B ,

instances of which correspond to traces in mainstream generative grammar
(MGG), or to Montague’s ‘syntactic variables’. That is: a trace is a hypothetical
sign, with variables for pheno and semantics. Here the type metavariables P ,
A, and B range, respectively, over pheno types (s and implicative types over
s), tecto types (basic tecto types such as N, NP and S, and linear implicative
types over them), and sense types (to be defined in due course).

For example, an NP trace looks like this:

t : s ; NP ; x : e � t : s ; NP ; x : e

As in the implicative fragment of intuitionistic linear propositional logic, the
only tectogrammatical rules are modus ponens:

Γ � f : A→ D ;B � E ; g : C → F Δ � a : A ; B ; c : C

Γ,Δ � f a : D ;E ; g c : F
,

and hypothetical proof :

Γ, p : P ; A ; z : B � a : C ;D ; b : E

Γ � λp.a : P → C ; A� D ; λz .b : B → E
,
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which are, roughly, LCG’s counterparts of MGG’s Merge and (the trace-binding
aspect of) Move. These correspond, respectively, to application and abstraction
in the pheno and semantic components.

Finally, the LCG counterparts of Montague’s analysis trees are (pheno- and
semantics-labeled) sequent-style linear-logic proof trees whose leaves are axioms
(i.e. either lexical entries or traces). The following three proofs use only modus
ponens:

 λs.s · brayed ; NP � S ; bray  chiqita ; NP ; c

 chiqita · brayed ; S ; bray c

 λst.s · beats · t ; NP � NP � S ; beat  pedro ; NP ; p

 λt.pedro · beats · t ; NP � S ; beat p  chiqita ; NP ; c

 pedro · beats · chiquita ; S ; beat p c

 λsf .f (every · s) ; Det ; every  donkey ; N ; donkey

 λf .f every · donkey ; QP ; every donkey  λs.s · brays ; NP � S ; bray

 every · donkey · brays ; S ; every donkey bray

In the last of these, QP abbreviates (NP � S) � S, and Det abbreviates N �
QP. And the following proof uses a trace and an instance of hypothetical proof
to ‘lower’ every donkey into the object position. Here we abbreviate subtrees by
numerical labels:

(1)
� λsf .f (every · s) ; Det ; every � donkey ; N ; donkey

� λf .f every · donkey ; QP ; every donkey

(2)
 λst.s · beats · t ; NP � NP � S ; beat  pedro ; NP ; p

 λt.pedro · beats · t ; NP � S ; beat p s ; NP ; x  s ; NP ; x

s ; NP ; x  pedro · beats · s ; S ; beat p x

 λs.pedro · beats · s ; NP � S ; λx.beat p x

(1) (2)

� pedro · beats · every · donkey ; S ; every donkey (λx.beat p x)

This technology, due to Oehrle [27], plays the same role in LCG that quantifier
lowering does in Montague grammar.

3 The Underlying Logic and Notational Conventions

Our semantic theory is couched in a classical higher order logic (HOL) with en-
tities (e), propositions (p, cf. [32]), and natural numbers (n) as basic types, in
addition to truth values (t) courtesy of the logic itself. Unlike MS, where propo-
sitions are sets of worlds and so the boolean structure on them is parasitic on
that of the truth values, we axiomatize (in the following section) that proposi-
tions (in the sense of static declarative sentence meanings) form a preboolean
algebra relative to (propositional) entailment. Besides the usual cartesian type
constructors→ (exponential), × (product), and T (unit type), we also make use
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of dependent products (Πn:n.A) and sums (Σn:n.A) that depend on a natural
number.

We adopt the following notational conventions. For any type A, the n-fold
cartesian product is written An; hence A0 = T, A1 = A, and An+1 = An × A
(n > 0). Implication associates to the right, so A → B → C abbreviates A →
(B → C), and similarly for the linear implication � used in the tectogrammar.
Outermost parentheses of terms are often deleted. Application associates to the
left, so f b a abbreviates (f b) a. For terms whose type is a cartesian power An

(n > 0), we often write the vector notation x in place of (x0, . . . , xn−1). The first
occurrence of a ‘vector’ variable x is often mnemonically superscripted with its
number of components, thus xn. Abstraction on product types is written either
λx.a or λx0,...,xn−1.a, while abstraction on multiple variables without commas
abbreviates successive abstraction, e.g. λxy.a abbreviates λx.λy.a. If x : A, N :
B, and M : (A→ B)→ C, we abbreviate M λx.N to Mx.N .

4 The Underlying Static Semantic Theory

4.1 Static Semantic Types

The underlying static semantic theory is agnostic hyperintensional seman-
tics (AHS, [28,30]), a possible worlds semantics with fine-grained meanings.
‘Agnostic’ here means that the theory is indifferent as to whether propositions
are sets of worlds (as in MS) or worlds are (in one-to-one correspondence with)
maximal consistent sets of propositions (as in the ‘first-wave’ possible-worlds
theories of Wittgenstein and C.I. Lewis), though the latter is by far our personal
preference. (In fact, AHS is logically weaker than Montague semantics (MS):
adding one axiom turns it into MS.)

We assume the basic types e (entities), p ((static) propositions), andw (worlds).
(The type w is never mentioned in the grammar or in analyses of expressions; it
only comes up when using the semantic theory to reason about extensions.) It’s
also convenient to define (for n ≥ 0) the types of n-ary static properties by:

p0 =def p

pn+1 =def e→ pn

For example, the types for static generalized quantifiers (over entities) and static
generalized determiners (over entities) are, respectively, of types:

q =def p1 → p

dt =def p1 → p1 → p

4.2 Static Semantic Constants

Side-by-side with the usual truth-value connectives and quantifiers of the un-
derlying HOL (true, false, ∧, ∨, →, ¬, ∃, and ∀), there are the propositional
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connectives truth, falsity, and, or, implies, and not, and the propositional quanti-
fiers existsA, and forallA. The latter are polymorphic over sense types (see follow-
ing subsection) A. Some determiner meanings can be defined in terms of these
(omitting the type subscripts):

every =def λPQ.forallx.(P x) implies (Q x)

a =def λPQ.existsx.(P x) and (Q x)

These connectives and quantifiers are subject to meaning postulates that relate
them to their truth-value counterparts in the expected way (see [28] or [30] for
details). As a consequence, AHS is finer-grained than MS: senses which agree in
extension at every world need not be identical. For example, not all inconsistent
CGs are interchangeable, even though they all entail every proposition. What
matters from the dynamic perspective is whether a discourse participants (DPs)
can detect that a CG would be rendered inconsistent by conjoining to it the
proffered content of the current utterance (which would constitute grounds for
declining to admit it to the CG).

4.3 Static Meanings and Their Extensions

Types to which static meanings can belong are called sense types. These are
T, e, p, and function types formed from these. Each sense type A has a corre-
sponding extension type Ext(A) defined as follows:

Ext(T) = T

Ext(e) = e

Ext(p) = t (following Frege [5])

Ext(A→ B) = A→ Ext(B)

For each sense type A, A→ p is called the type of A-properties, and A→ t is
called the type of A-sets. If w is a world and a : A a sense, then the extension
of a at w is written a@ w. (So @ is really a family of constants @A : A→ w →
Ext(A), written infix.) Following, roughly, Kripke [18], we assume every entity
is its own extension at every world:

� ∀x:e.∀w:w.x@ w = x

For any proposition p, p@ w is called, following [5], the truth value of p at w.
The extensions of senses with a functional type A→ B are given by

� ∀f :A→B.∀w:w.f @ w = λx.(f x) @ w .

In particular,

� ∀P :p1 .∀w:w.P @ w = λx.(P x) @ w .

For example, if w is a world, then the extension at w of the donkey property is
the set of all entities a such that the proposition that a is a donkey is true at w.
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5 Hyperintensional Dynamic Semantics

5.1 Contexts

To model contexts, we begin with our counterparts to FCS’s assignments, namely
tuples of entities. The linear positions in these tuples play the ‘addressing’ role
played by DRs (in DRT) or file cards (in FCS). What about contexts? On the
Stalnaker/Lewis conception, this is supposed to be the set of propositions in the
CG, or else a single proposition which is the conjunction of those. We modify
that view to treat the CG not as a proposition (type p), but rather as a function
from tuples of entities to propositions (type en → p), where n is the number
of ‘live’ DRs.1. The philosophy behind this typing is that the DPs don’t really
have a proposition in common, since in general the identity of the DRs that the
discourse is about (typically, introduced into the discourse by uses of indefinite
NPs) are not known. Rather, what they have in common is only a function
from n-tuples of entities to propositions, which would give rise to a proposition
in the obvious way if only the identities of the entities were known. To put it
another way: the DRs are ‘identified’ only in terms of what the CG says about
them. To give a highly simplified example, suppose (counterfactually!) that there
are actual ‘out-of-the-blue’ utterances where the input CG is empty.2 Then the
output context from an out-of-the-blue utterance of a farmer beat a donkey will
be

λx,y.(farmer x) and (donkey y) and (beat x y) ,

or, using the equivalent vector notation,

λx2 .(farmer x0) and (donkey x1) and (beat x0 x1) .

Note that this is just an uncurried binary static property. In particular there is no
existential quantification. This reflects the fundamental insight of many versions
of dynamic semantics that indefinites (and also definites) are not quantificational
in nature. (However, as we will see, they have the same dynamic semantic type
as ‘truly quantificational’ NPs.) Intuitively, the context corresponds not to an
existential proposition, but to mutual acceptance that whichever farmer it is
that we’re talking about beats whichever donkey it is that we’re talking about.
(We could turn this uncurried property into a proposition by applying the static
existential quantifier existse×e to it, and then define the context to be ‘true’ in
any world where that proposition is true.)

Based on these considerations, we now define the type of n-ary contexts cn
to be simply p if n = 0 and en → p if n > 0; and the type c of contexts is
defined to be the dependent sum of all these:

c =def Σn:n.cn

1 However, we continue to use the type p for CGs where n = 0, in preference to the
mathematically more elegant but notationally awkward T → p.

2 Technically, this is modeled by truth, the designated top element in the preboolean
algebra of static propositions.
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Also, we define the arity of an n-ary context c, written |c|, to be n. (So, since
technically, since a member of an n-indexed sum is an ordered pair of a natural
number n and a member of the n-th cofactor, the arity of a context is just its first
component.) Intuitively, |c| is the number of DRs that c is about. For example,
|c| = 2 if c is the context λx,y.(farmer x) and (donkey y) and (beat x y) discussed
above. As we’ll see, the DRs are potential targets of subsequent anaphora.

In particular, a nullary context (same as a static proposition) is, intuitively,
a context where the DPs have nothing in common to talk about. A special case
of a nullary context is the null context

t =def truth ,

also known as out of the blue, where truth : p is some obvious necessary truth.
This models the content where the DPs have no DRs to talk about given in ad-
vance, and not even anything they have agreed to take for granted. Realistically,
discourse is never completely out of the blue; even the driver and the hitchhiker
can agree that the driver picked the hitchhiker up, and have some DRs to talk
about (the weather, them Bucks, the car, the boring scenery, etc.).

When we consider anaphora, it will be important to have a handle on how
many DRs the context knows about, because we will analyze anaphoric expres-
sions (e.g. definite pronouns) as essentially n-ways ambiguous, where n is the
arity of the utterance context. For any natural number n, an anaphoric refer-
ence to the n-th DR will only interpretable in a context whose arity is greater
than n. The type of such entities, called c>n, is defined as the dependent sum

c>n =def c≥n+1 ,

where

c≥m =def Σn:n.cm+n .

5.2 Toward Dynamic Senses

To dynamicize LCG, we have to replace the static senses with dynamic ones.
For example, as we’ll see, the dynamic counterpart of type e is the type n of
natural numbers (thought of as DRs). And the dynamic counterpart of type p
will be the type u of updates, which correspond roughly to FCS’s context change
potentials (CCPs). To a first approximation, updates are functions from contexts
to contexts (type c → c), but there is a catch: if an update makes anaphoric
reference to something in the context, then it is only defined on contexts that
contain a suitable antecedent to which the anaphoric reference can be resolved.
We’ll use dependent typing to give u a more subtle definition than c → c that
solves this problem (and which does not require partial functions, which our type
theory does not countenance).

Again, to a first approximation, dynamic counterparts of other sense types are
obtained in the expected way from these basic dynamic types. For example, the
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dynamic counterpart of e→ p (properties of entities) is (to a first approximation)
the type n → u of dynamic properties ; and the dynamic counterpart of (e →
p) → p (GQs) is (to a first approximation) the type (n → u) → u of dynamic
generalized quantifiers (DGQs).

5.3 Contents vs. Updates

In discourse, when an utterance is accepted, the update carries over the common
ground of the input context, while conjoining to it new content contributed by
the utterance. To capture this fundamental intuition, we distinguish between two
different things of the same type: updates, which correspond to FCS’s CCPs, and
contents, the meaning contribution of the new utterance (here, we consider only
assertions). For any content k which is accepted by the DPs, the induced update
is obtained by applying to it a certain function called cc (mnemonic for ‘context
change’). As we’ll see, cc applies first to a content k and then to an input context
c to produce the new context cc k c for the next utterance. Thus the update
cc k is itself a function which converts an input context into a new context into
which the newly accepted content k has been incorporated.

So, naively, it looks as though the type u for both contents and updates
should be c → c, and the type for cc should be (c → c) → (c → c). But there
is a subtlety: different contents (and the updates they induce upon acceptance)
have different degrees : the number of new DRs that are introduced. As we’ll see,

|cc k| = |cc k c| = |c|+ |k| ,

so the arity of the output context is the arity of the input context plus the degree
of the utterance content. (Like the arity of a context, the degree of a content k
is written |k|.)

Now, for any natural number n, the type of n-degree updates is that of a func-
tion that maps a context c to a new context whose degree is |c|+n. Accordingly,
we define the type of n-degree updates to be the dependent product

un =def Πc:c.c|c|+n .

Then the type u of updates is the dependent sum of the un as n ranges over
all natural numbers:

u =def Σn:n.un = Σn:n.Πc:c.c|c|+n

The types of contents are defined similarly, as kn =def un and k =def u. With
these type definitions in place, we can now define the context change function
as follows:

cc =def λk:k.λc:c.λx|c|,y|k| .(c x) and (k c x,y)

That is: cc takes as arguments a content k with degree n = |k| and a context c
with arity m = |c| and returns a new context λxm,yn .(c x) and (k c x,y). This
new context is a function that maps any m+ n entities to a (static) proposition
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which is itself the conjunction of two propositions: (1) (c x), the ‘carryover’,
which is what the input context had already established about the first m DRs;
and (2) (k c x,y), the new contribution, which is what the current utterance’s
content says about all the DRs (the m original ones plus the n new ones that
it introduces) in that context. For example, the content of it’s raining is the
0-degree content

rain =def λc:c.λx|c| .rain .

So the associated update is

� cc rain = λc:c.λx|c| .(c x) and (rain c x) = λc:c.λx|c| .(c x) and rain .

5.4 From Linear Categorial Grammar to Dynamic Categorial
Grammar

Almost all the work involved in dynamicizing an LCG consists of replacing word
meanings with their dynamic counterparts, since the logical rules and axioms
(traces) of LCG carry over to DyCG unchanged. We will turn to that task
presently. However, we also need one new, nonlogical, grammar rule, continue,
whose purpose is to continue a discourse (tecto type D) by the addition of the
next accepted utterance:

� s ; D ; u � t ; S ; k

� s · t ; D ; λc:c.cc k (u c)

Note that the sequent contexts are empty: binding of traces, and therefore ‘wh-
movement’ and ‘quantifying in’ are impossible across root clause boundaries.

And finally, we need an axiom for the null discourse, to ground the recursive
construction of discourses:

� e ; D ; λc:c.c

Note that using the null discourse as the first premise in the continue rule yields
the derived rule

� s ; S ; k

� s ; D ; cc k
,

which says that any sentence can be ‘promoted’ to a single-sentence discourse.

5.5 The Dynamic Connectives

The content negation not A fundamental insight of dynamic semantics is that
an indefinite inside the scope of negation cannot antecede definite anaphora in
the subsequent discourse, but a definite in the scope of negation can be anteceded
by an indefinite in prior discourse:

(3) a. Pedro has a donkeyi. Iti

{
is
isn’t

}
friendly.

b. Pedro doesn’t have a donkeyi. # Iti

{
is
isn’t

}
friendly.
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Such facts are accounted for by the following definition for the content nega-
tion not : k→ k0:

not =def λk:k.λc:c.λx|c| .not existsy|k| .k c x,y

This has the effect that DRs introduced within the scope of content negation
are existentially bound within the scope of (static) propositional negation, and
therefore inaccessible as antecedents for subsequent definite anaphora.

The effect of double content negation on any content k is to existentially bind
any new DRs that it introduces:

� not (not k) ≡ λc:c.λx|c| .existsy|k| .k c x,y

From this it follows that a content of degree 0 (i.e. one which introduces no new
DRs) is equivalent to its own double negation. In particular, since the content
negation of any content is itself of degree 0, content negation is equivalent to
triple content negation.

The content conjunction and Another fundamental insight of dynamic semantics
is that sentential conjunction is not commutative:

(4) a. A farmer walked in and he sat down. (Who is he?)

b. He sat down and a farmer walked in. (Who is he?)

We capture this insight with the following definition of content conjunction,
of type Πh:k.Πk:k.Πc:c.c|c|+|h|+|k|:

and =def λh:k.λk:k.λc:c.λx|c|,y|h|,z|k| .(h c x,y) and (k (cc h c) x,y, z)

Crucially, the input context (cc h c) for the second conjunct is created by ap-
plying the update induced by the first conjunct to its input context c. It is not
hard to show that the update induced by conjoined declarative utterances is the
same as the function composition of the updates induced by the conjuncts:

� ∀hk.(cc (h and k)) = λc:c.cc k (cc h c)

The content disjunction or As in other versions of dynamic semantics, we define
content disjunction by DeMorgan duality:

or =def λh:k.λk:k.not ((not h) and (not k))

This predicts that indefinites within either disjunct can’t antecede subsequent
definite anaphora:

(5) a. Either a donkey brayed or someone is making barnyard noises. # It’s
friendly.

b. Either someone is making barnyard noises, or a donkey brayed. # It’s
friendly.

c. # Either a donkey brayed, or it’s friendly.
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The content implication implies Our definition of content implication is mod-
eled on a valid but nonstandard equivalence for static propositional implication:

implies =def λpq.(not p) or (p and q)

implies =def λhk.(not h) or (h and k)

This predicts that indefinites in either the antecedent or the consequent of the
conditional cannot antecede definite anaphora in a subsequent sentence, but an
indefinite in the antecedent can antecede definite anaphora in the consequent:

(6) a. If a donkey brayed, it’s hungry. # We better feed it.

b. If Pedro is a farmer, he has a donkey. # He better feed it.

An additional virtue of this definition of content implication is that it gives rise
to so-called weak readings of conditional sentences:

(7) a. If you have a donkey, I’ll buy it.

b. If you have a donkey, I’ll buy a donkey you have. (weak)

c. If you have a donkey, I’ll buy every donkey you have. (strong).

There are known pragmatic strengthening strategies for inferring strong under-
standings from weak meanings, but if a strong semantics is used (say, based on a
different static equivalence � (p implies q) ≡ (not (p and (not q))), then it is hard
to explain where weak readings come from.

5.6 Dynamic Generalized Quantifiers (DGQs)

Three kinds of noun phrase We turn next to the dynamic meanings of indefi-
nite referring expressions (e.g. a donkey), definite referring expressions (e.g. it,
the donkey), and ‘truly quantificational’ NPs (e.g. every donkey, no donkey).
Although these will all be of the same type q (DGQs), they differ radically in
their discourse behavior. A use of an indefinite in an utterance introduces a new
DR into its output context, while a definite ‘picks up’ or ‘continues’ an already
existing DR:

(8) A donkeyi brayed. Iti was hungry.

But a use of a truly quantificational NP renders any DRs introduced within
either its restriction or its scope inaccessible to the subsequent discourse:

(9) a.

{
Every
No

}
farmer that owned a donkeyi was unhappy. # Iti was lazy.

b.

{
Every
No

}
farmer owned a donkeyi. # Iti was lazy.

However, an indefinite introduced in the restriction of a truly quantificational
NP is accessible from its scope:

(10)

{
Every
No

}
farmer that owns a donkeyi beats iti.
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Dynamic properties In static semantics, a GQ is a property of properties of
entities (type p1 → p). Since, in dynamic semantics, n and u are the respective
counterparts of static sense types e and p, it seems reasonable to assume that
the type for the dynamic counterparts of properties of, and GQs over, entities
would be, respectively, n → k and (n → k) → k. However, some delicacy is
called for, because we have to ensure that in applying a dynamic property to
a DR, the resulting content is one which is defined on contexts which ‘know
about’ the DR in question. Additionally, we have to take into consideration that
a given dynamic property (e.g. farmer that owns a donkey) may itself introduce
new DRs. Accordingly, we define (for each i) the type d1,i of unary dynamic
properties of degree i as

d1,i =def Πn:n.Πc:c>n .c|c|+i ,

and the type of unary dynamic properties as the dependent sum

d1 =def Σi:n.Πn:n.Πc:c>n .c|c|+i .

In due course, we will define dynamic counterparts dn for all the static types pn.

Dynamic counterparts of static properties In dynamic semantics, the static-
property senses of common nouns, predicative adjectives, and intransitive verbs
have to be replaced by their dynamic counterparts, which are unary dynamic
properties (of degree 0, since they introduce no DRs). This change is effected by
the unary dynamicization function dyn1 : p1 → d1,0 defined as follows:

dyn1 =def λP :p1 .λn:n.λc:c>n .λx|c| .P xn

For example, the dynamic meaning of the common noun donkey is:

donkey =def (dyn1 donkey) = λn:n.λc:c>n .λx|c| .donkey xn

This maps a DR n and a context c which knows about n to a content which
asserts that (whichever entity corresponds to) n is a donkey. More generally,
for each n : n, there is a type dn of n-ary dynamic relations, the dynamic
counterparts of the static types pn. As in the unary case, each of these is a
dependent sum

dn = Σi:n.dn,i ,

where i ranges over the degree (number of newly introduced DRs) of the relation.
For example, for n = 2:

d2,i =def Πm:n.Πn:n.Πc:c>(max m n)
.c|c|+i

A special case of this is:

d2,0 =def Πm:n.Πn:n.Πc:c>(max m n)
.c|c|
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Also as in the unary case, for each n : n, there is a function dynn : pn → dn that
maps each static relation to its dynamic counterpart. For n < 3, these are:

dyn0 =def λp:p.λc:c.λx|c| .p

dyn1 =def λP :p1 .λn:n.λc:c>n .λx|c| .P xn

dyn2 =def λR:p2 .λm:n.λn:n.λc:c>(max m n)
.λx|c| .R xm xn

For example:

rain = λc:c.λx|c| .rain

donkey = λn:n.λc:c>n .λx|c| .donkey xn

own = λm:n.λn:n.λc:c>(max m n)
.λx|c| .own xm xn

Indefinites To give a dynamic meaning for indefinites, we start with the context
extension function (·)+ of type Πc:c.c|c|+1, defined as follows:

(·)+ =def λc:c.λx|c|,y.c x

This just adds a new DR to any context. In terms of this, we now define
the dynamic ‘existential’ quantifier exists to be the following function of type
Πn:n.ΠD:d1,n .kn+1 (i.e. it maps a dynamic property to a content of degree one
greater than that of the dynamic property):

exists =def λD:d1 .λc:c.D |c| c+

Then the dynamic meaning of the indefinite determiner is defined by analogy
with its static counterpart:

a =def λPQ.existsx.(P x) and (Q x)

a =def λDE .existsn.(D n) and (E n)

For example, the (degree 1) content of a donkey brays is

� a donkey bray = λc:c.λx|c|,y.(donkey y) and (bray y) .

The fact that the variable y corresponding to the DR for the donkey is only
λ-bound (not exists-bound) has as a consequence that this DR will be accessible
to subsequent definite anaphora.

Definite anaphora To keep within space bounds, we provide here a simplified,
Montague-like, treatment of anaphora in terms of lexical ambiguity as to which
DR is the antecedent; [20] and [21] describe a mechanism (improving on the sel
function of [11]) for selecting the (presupposed) DR that satisfies the definite
expression’s descriptive content. For example, the dynamic meaning of the n-th
definite pronoun it is

itn =def λD:d1 .λc:c>n .D n c

= λD:d1 .λc:c>n .λx|c| .D n c x .

Unlike an indefinite, which introduces a new DR, the definite simply resumes an
old one.
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A ‘truly quantificational’ DGQ Again by analogy with the static case, we define
the dynamic universal quantifier forall as follows:

forall =def λP .not (existsx.(not (P x)))

forall =def λD.not (existsn.(not (D n)))

Then, again analogizing to the static case, we define the dynamic universal de-
terminer every:

every =def λPQ.forallx.(P x) implies (Q x)

every =def λDE .foralln.(D n) implies (E n)

This in turn can be shown to be equivalent to

λDE .not (existsn.((not (not(D n))) and (not ((D n) and (E n)))))

For example, a simple universal sentence like Every donkey brays ends up with
the content every donkey bray, which can be shown to be equivalent to

λc:c.λx|c| .not existsy.(donkey y) and (not (bray y)) .

As desired, the fact that the variable y corresponding to the DR for the donkey
is exists-bound (within the scope of negation) has as a consequence that this DR
is inaccessible to subsequent definite anaphora.

Donkey anaphora We conclude with a DyCG derivation for the classic universal
donkey sentence Every farmer that owns a donkey beats it. Because we based our
semantics for every on the ‘weak’ dynamic implication implies, our analysis
produces the weak reading (that every farmer that owns a donkey beats a donkey
that s/he owns), which again is a desirable state of affairs (cf. [2,16]). The lexical
entries employed are:

� λsf .f (every · s) ; N � (NP � S) � S ; every

� farmer ; N ; farmer

� λsf .s · that · (f e) ; N � (NP � S) � N ; that

� λst.s · owns · t ; NP � NP � S ; own

� λsf .f (a · s) ; N � (NP � S) � S ; a

� donkey ; N ; donkey

� λst.s · beats · t ; NP � NP � S ; beat

� λf .f it ; (NP � S) � S ; itn

And the endsequent of the derivation is

� every · farmer · that · owns · a · donkey · beats · it ; S ;
every (farmer that λm.(a donkey)n.(own m n)) λm.it

i.(beat m) .
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In a given context, this will produce the (weak) donkey-anaphora reading pro-
vided i is selected to be whichever natural number corresponds to the DR intro-
duced by a donkey. As mentioned above, [20] gives a more realistic treatment
for the definite pronoun it as selecting the most salient, informationally unique
discourse referent with the property of being nonhuman.

6 Conclusion

This dynamic semantics is not only fully compositional and expressed in pure
(dependent) type theory, it also captures all of the central insights of the dynamic
tradition, with indefinites introducing discourse referents, definites selecting their
antecedents from the input context, and ‘accessibility constraints’ captured by
existentially binding variables in the scope of negation and operators defined
in terms of it. No idiosyncratic machinery is required, and we overcome the
problem in which discourse contexts must have a certain arity by a mild use of
dependent types, rather than extending the type theory with partial functions.
As we have shown, this theory can be seen as a straightforward extension of the
underlying static semantics, achieved by adding a type of discourse contexts and
replacing entities with natural number indices into the list of discourse referents
the incoming context ‘knows about.’ Since the underlying static semantics is
hyperintensional, we avoid certain foundational problems with possible worlds
approaches while allowing the grammar to focus on the dynamic senses of ex-
pressions, rather than bothering with worlds and extensions at them.
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Abstract. The paper provides linguistic observations as a motivation
for a formal study of an analysis by reduction. It concentrates on a study
of the whole mechanism through a class of restarting automata with
meta-instructions using pebbles, with delete and shift operations (DS-
automata). Four types of (in)finite sets defined by these automata are
considered as linguistically relevant: basic languages on word forms mark-
ed with grammatical categories, proper languages on unmarked word
forms, categorial languages on grammatical categories, and sets of re-
ductions (reduction languages). The equivalence of proper languages is
considered for a weak equivalence of DS-automata, and the equivalence
of reduction languages for a strong equivalence of DS-automata.

The complexity of a language is naturally measured by the number
of pebbles, the number of deletions, and the number of word order shifts
used in a single reduction step. We have obtained unbounded hierarchies
(scales) for all four types of classes of finite languages considered here,
as well as for Chomsky’s classes of infinite languages. The scales make it
possible to estimate relevant complexity issues of analysis by reduction
for natural languages.

1 Introduction

The method of analysis by reduction (AR) plays an important role in a lexicalized
syntax of natural languages. It consists in a stepwise simplification of a sentence,
which profits from the integration of the sentence syntactic structure and the
corresponding grammatical categories.

To model AR, various types of restarting automata can be found in litera-
ture [6, 7], which allow one to study dependencies in a natural language. Unfor-
tunately, these types of automata are not able to adequately cope with a word
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order freedom frequently present in Czech sentences. In this paper we present
a formal model of the analysis by reduction that is, in addition to a deletion,
enriched with a word order shift, an operation reflecting a word order freedom
of natural languages [4]. Section 2 provides a linguistic motivation and informal
description of the process.

The core sections 3 and 4 provide a formal study of the whole mechanism
through a refined class of restarting automata (DS-automata), and their descrip-
tional complexity based on the number of pebbles, on the number of deletions,
and on the number of word order shifts used within a single meta-instruction.
Using these measures, we are able to argue that natural languages (e.g. Czech)
can be described using rather simple reductions. Our paper refines the notion of
window size [5, 7] by the number of pebbles.

Four types of (in)finite sets defined by DS-automata are the most relevant:
basic languages on word forms marked with their linguistic categories, sets of
reductions on basic languages forming reduction languages, proper languages
on unmarked word forms, and categorial languages on pure categories. Inspired
by Chomsky [2], we consider the equivalence of proper languages as the weak
equivalence (close to the weak equivalence by formal automata and grammars),
and the equivalence of reduction languages as the linguistically finest strong
equivalence between DS-automata.

Formal parts of this article are based on the descriptional complexity of se-
lected classes of finite languages and traditional Chomsky classes of infinite lan-
guages. Note that the concentration on finite languages comes from the domain
of interest; we can to a certain extent claim that the core vocabulary of a nat-
ural language may be considered finite and that in a normal everyday use of a
language the comprehensible/understandable sentence may be considered finite
as well. We introduce the map- and mrp- properties of restarting automata, resp.
meta-instructions – these properties in some sense characterize the minimality
of reductions. If a correct sentence of a natural language undergoes the process
of analysis by reduction, we require that it remains correct in each step of the
reduction. The obtained results give the theoretical background for an incre-
mental transfer from finite (linguistic) observations (as in [4]) to adequate, fully
lexicalized, formal descriptions (models) of natural languages based on sentence
reductions that are applicable on infinite languages.

2 Analysis by Reduction

Analysis by reduction (AR) helps to identify syntactic structure and the corre-
sponding grammatical categories of the analyzed language. AR is based upon
a stepwise simplification of an analyzed sentence, see [4]. It defines possible se-
quences of reductions in the sentence – each step of AR consists in deleting at
least one word of the input sentence and thus its shortening. Here we allow that
a deletion of a word is accompanied by a shift of some word(s) to another word
order position(s) in the sentence.
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Let us stress the basic constraints imposed on each reduction step of AR:

(i) individual words (word forms), their morphological characteristics and/or
their syntactic categories must be preserved in the course of AR;

(ii) a grammatically correct sentence must remain correct after its simplifica-
tion;

(iii) shortening of any reduction would violate the correctness principle (ii);
(iv) a sentence which contains a correct sentence (or its permutation) as a sub-

sequence, must be further reduced;
(v) an application of the shift operation is limited only to cases when a shift

is enforced by the correctness principle (ii); i.e., a simple deletion would
result in an incorrect word order.

Note that the possible order of reductions reflects dependency relations between
individual sentence members, i.e., relations between governing and dependent
nodes, as it is described in [7].

Let us illustrate the basic principles of AR on the following example. The sen-
tence undergoing AR is represented as a string of word forms (words and punc-
tuation) enriched with their disambiguated lexical, morphological and syntactic
categories.1

Example 1.
(1) [Petr,Sb] [se,AuxT] [boj́ı,Pred] [o,AuxP] [otce,Obj] [.,AuxK]

‘Peter – REFL – worries – about – father – .’
‘Peter worries about his father.’

Petr.Sb se.AuxT bojí.Pred o.AuxP otce.Obj ..AuxK

Bojí.Pred se.AuxT ..AuxK

Petr.Sb se.AuxT bojí.Pred ..AuxK

* Se.AuxT bojí.Pred ..AuxK

* Se.AuxT bojí.Pred o.AuxP otce.Obj ..AuxK

Bojí.Pred se.AuxT o.AuxP otce.Obj ..AuxK

delete delete

shift delete

shiftdelete

Fig. 1. The schema of AR for sentence (1)

Our example sentence can be simplified in two ways:
(i) either by deletion of the prepositional group o otce ‘about father’ (according
to the correctness constraint on the simplified sentence, the pair of word forms
must be deleted in a single step, see the left branch of the scheme);

1 For the simplicity, only lexical categories (i.e., original word forms and punctua-
tion like full stop in the example) as they appear in the sentence and syntactic
categories (like predicate (Pred), subject (Sb), object (Obj), auxiliary words (AuxT,
AuxP, AuxK)) are displayed in the examples; see [7] for more detailed description.
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(ii) or by deleting the subject Petr (the right part of the scheme); however, the
simple simplification would result in the incorrect word order variant starting
with the clitic se (such position of a clitic is forbidden in Czech); thus the shift
operation is enforced →shift Boj́ı se o otce. ‘(he) worries about his father.’.
The reduction proceeds in a similar way in both branches of AR until the minimal
correct simplified sentence Boj́ı se. ‘(He) worries.’ is obtained. This sentence
cannot be further correctly reduced.

3 Restarting Automata with Delete and Shift Operation

In order to model the analysis by reduction with shifts, we introduce a restart-
ing automaton that uses a limited number of pebbles, and that performs sev-
eral deletions and shifts within one meta-instruction – a DS-automaton. The
DS-automaton is a refinement of the so called sRL-automaton in [7]; here, the
automaton is enriched with the shift operation, and with categorial and basic
alphabets.

DS-automata are suitable for modeling AR – these automata make it possible
to check the whole input sentence and mark selected words with pebbles prior
to any changes. It resembles a linguist who can read the whole sentence first,
and then reduce the sentence in a correct way. To enable simulation of various
orders of reductions, we choose a nondeterministic model of the automaton.
We distinguish three alphabets (or vocabularies): a proper alphabet Σp that is
used to model individual word forms, an alphabet Σc of categories and a basic
alphabet Γ . Since only symbols from the basic alphabet can appear on a tape
of a DS-automaton, Γ is also called a tape alphabet. (In what follows, λ denotes
an empty word, N+ and N denote the set of positive and the set of nonnegative
integers, respectively.)

More formally, a DS-automaton is a tupleM = (Σp, Σc, Γ, c, $, R,A, k), where
Σp, Σc, and Γ ⊆ Σp × Σc are finite alphabets, R and A are finite sets of
restarting and accepting meta-instructions, respectively, and k ∈ N is the number
of pebbles available. M works on a flexible tape (i.e., on a string of symbols
from Γ ) delimited by the left sentinel c and by the right sentinel $ (c, $ �∈ Γ ).
Its computation is controlled by finite sets of meta-instructions R and A, and it
makes use of k pebbles p1, · · · , pk.

A projection from Γ ∗ to Σ∗
p and Σ∗

c , respectively, is convenient – we define
two homomorphisms, a proper homomorphism hp : Γ → Σp and a categorial
homomorphism hc : Γ → Σc in the obvious way: hp([a, b]) = a, and hc([a, b]) = b
for each [a, b] ∈ Γ . For technical reasons, we define hp(c) = hc(c) = c.

Each computation of a DS-automaton consists of several phases called cycles,
and a last halting phase called a tail. In each cycle, the automaton performs
three passes through the tape with symbols from Γ . During the first pass, it
marks certain symbols of a processed sentence with pebbles according to some
meta-instruction I; then during the second pass, it performs the shift opera-
tions as described by the chosen meta-instruction I; and during the third pass,
it performs the delete operations as described by the meta-instruction I. The
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operations are applied only on symbols marked by pebbles. Moreover, we allow
the left sentinel to be pebbled as well since we sometimes need to shift some
symbols just behind it. However, although pebbled, c is treated differently from
other tape symbols; it can neither be deleted nor can it be shifted.

In each accepting tail, the automaton according to a meta-instruction Iacc
from A halts and accepts the analyzed sentence.

In accordance with the linguistic motivation, the meta-instructions check only
the categorial part of tape symbols from Γ .2

Restarting Meta-instructions. Each cycle of the DS-automaton M is con-
trolled by a single restarting meta-instruction I ∈ R of the form

I = (E0, a1, E1, . . . as, Es;Osh;Od; Restart) (1)

where:

– each Ei, 0 ≤ i ≤ s is a regular language over Σc ∪ {λ}, Ei is called the i-th
context of I;

– ai ∈ Σc ∪ {c} (for 1 ≤ i ≤ s ≤ k) indicates that each ai is marked with the
pebble pi;

– Osh = o1, · · · , opsh
, oj ∈ {sh[i, l] | 1 ≤ i, j ≤ s, i �= l}, is a sequence of

shifting operations performed in the second phase: if oj = sh[i, l] then it
shifts the tape symbol marked with pi to the position behind the symbol
with pl;

– Od = d1, · · · , dpd
, dj ∈ {dl[i] | 1 ≤ i ≤ s}, is a sequence of delete operations

performed in the third phase: if dj = dl[i] then it deletes the tape symbol
marked by pi;

– c is neither deleted nor shifted within I.

We require an ‘exclusivity’ of the shift operation: each symbol ai can be shifted
only once (as a maximum); moreover, if ai is shifted then it cannot be deleted
within the same meta-instruction. Formally, if Osh contains the shift operation
sh[i, l] for some i then no other sh[i, r] can be in Osh; moreover, Od cannot
contain the dl[i] operation.

Each computation of M on the input w ∈ Γ ∗ starts with the tape inscription
cw$. After a nondeterministic choice of a cycle C realizing the guessed restarting
meta-instruction I, M nondeterministically marks tape symbols b1, . . . , bs by
pebbles in accordance with I: it finds a factorization w = v0b1v1b2 . . . vs−1bsvs,
0 ≤ i ≤ s, 1 ≤ j ≤ s such that hc(vi) ∈ Ei, hc(bj) = aj in the first pass.
Then M applies the implied sequence of shifts Osh during the second pass, and
the implied sequence of deletions during the third pass. If the factorization is
not found within the first pass, the automaton gets stuck (and thus it rejects
w). Notice that due to regularity of individual Ei’s the instruction I can be
(nondeterministically) identified within one pass over cw$.

2 When considering only categorial symbols as a context we avoid both the problem of
data sparsity and the problem of a very large alphabet Σp (i.e., lexicon with hundred
of thousands word forms for a natural language).
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At the end of each cycle, the Restart operation removes all pebbles from the
new tape inscription w′ and places the head on the left sentinel. We write w �I
w′.

Remember that none of the sentinels can be deleted/shifted and that M is
required to execute at least one delete operation during each (restarting) cycle.

If no further cycle is performed, each accepting computation necessarily fin-
ishes in a tail performed according to one of the accepting meta-instructions.

Accepting Meta-instructions. Tails of accepting computations are described
by a set of accepting meta-instructions A, each of the form:

Iacc = (a1 . . . as,Accept), (2)

where ai are symbols from Σc.
The tail performed by the meta-instruction Iacc starts with the inscription on

the tape cz$; if hc(z) = a1 · · · as thenM accepts z (we write z �Iacc Accept), and
the whole computation as well. Otherwise, the computation halts with rejection.

We denote by u �M v the reduction of u into v performed during one cy-
cle of M (that begins with the tape inscription cu$ and ends with the tape
inscription cv$) and by �∗M the reflexive and transitive closure of �M . We say
that u1, u2, . . . , un,Accept is an accepting computation of M if u �M u1, u1 �M
u2, · · · , un−1 �M un, un �M Accept.

A string w ∈ Γ ∗ is accepted by M , if w �∗M u with (u,Accept) ∈ A. By L(M)
we denote the language of words accepted by M ; we say that M recognizes
(accepts) the basic (tape) language L(M). We say that L(M,p) = {hp(w) ∈ Σ∗

p |
w ∈ L(M)} is the proper language of M . Analogously, L(M, c) = {hc(w) ∈ Σ∗

p |
w ∈ L(M)} is called the categorial language of M .

Since the number of reductions performed within an accepting computation
is of (linguistic) interest, we denote by Ln(M) the language of all sentences
accepted by at most n cycles of M ; L0(M) is the set of sentences accepted
directly by accepting meta-instructions.

Further, we define the reduction language of M as RED(M) = {u→ v | u �M
v, u, v ∈ L(M)}, and REDn(M) = {u → v ∈ RED(M) | v ∈ Ln−1(M)}. Note
that Ln(M) and REDn(M) are finite for any n ∈ N.

The notations Ln(M,p) and Ln(M, c) denote the proper and categorial vari-
ants of Ln(M), respectively.

Backward Correctness Preserving Property (bcpp) Realize that each
meta-instruction I of the DS-automaton M is backward correctness preserving :(

v ∈ L(M) and u �I v
)
⇒ (u ∈ L(M))

We will see that this bcpp property plays a crucial role in the study of analysis
by reduction.

We naturally suppose that any restarting meta-instruction of M can be associ-
ated with some reduction from RED(M). Two conditions formulated below, the
map- and mrp- properties, reflect the linguists’ preference of reductions being as
simple as possible.
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Minimal Accepting Property (map-): If w ∈ L0(M) then neither proper
subsequence of w nor any permutation of such subsequence belongs to L0(M).

Minimal Reduction Property (mrp-): Let u �M v for a cycle C realiz-
ing the restarting meta-instruction controlled by the sequence of operations
O = o1, o2, · · · , op. Let ṽ be obtained from u by a (new) restarting meta-

instruction controlled by a proper subsequence Õ of O. Then ṽ /∈ L(M). The
property implies that a meta-instruction is in some sense minimal as none of
the deletions/shifts performed by u → v can be left out in order to obtain a
reducible or acceptable sentence.

If M fulfils the map- and mrp- conditions then RED(M) is said to create a
normalized reduction language of M , and that M is normalized. We will show
in Section 4 that every DS-automaton can be transformed to a normalized one
that recognizes the same proper language.

Example 2. The notions of restarting and accepting meta-instructions are illus-
trated on the analysis of our example sentence (1) from Section 2. The respective
DS-automatonMex is described by two restarting meta-instructions Ir1 and Ir2 ,
and one accepting meta-instruction Iacc. It formalizes both branches of AR of
the sentence [Petr,Sb] [se,AuxT] [boj́ı,Pred] [o,AuxP] [otce,Obj] [.,AuxK] ‘Peter
worries about his father.’, (see the scheme in Section 2).

Ir1 = (E1
0 , a

1
1, E

1
1 , a

1
2, E

1
2 , a

1
3, E

1
3 ; o

1
1, o

1
2;Restart), where o

1
1 = dl[2], o12 = dl[3],

E1
0 = {Sb AuxT, λ}, a11 = Pred, E1

1 = {λ,AuxT}, a12 = AuxP, E1
2 = {λ},

a13 = Obj, E1
3 = {AuxK};

Ir2 = (E2
0 , a

2
1, E

2
1 , a

2
2, E

2
2 , a

2
3, E

2
3 ; o

2
1; o

2
2;Restart), where o

2
1 = sh[2, 3]; o22 = dl[1],

E2
0 = {λ}, a21 = Sb, E2

1 = {λ}, a22 = AuxT, E2
2 = {λ}, a23 = Pred,

E2
3 = {AuxK,AuxP Obj AuxK};

Iacc = (Pred AuxT AuxK, Accept).
The computation corresponding to the left branch consists in two cycles. Within
the first cycle driven by the meta-instruction Ir1 , Mex puts pebbles p1, p2, and
p3 on the symbols containing the words [boj́ı,Pred] (with the left (tape) context
[Petr,Sb][se,AuxT] and empty right context), on [o,AuxP], and on [otce,Obj], re-
spectively; the operations dl[2] and dl[3] delete the words [o,AuxP] (marked with
the pebble p2) and [otce,Obj] (marked with the pebble p3), respectively. Then the
automaton restarts and removes the pebbles from the processed sentence. Sim-
ilarly in the second cycle realizing restarting meta-instruction Ir2 , Mex marks
the respective words and then in the second pass the operation sh[2, 3] shifts
the word [se,AuxT] with the pebble p2 to the right of the word [boj́ı,Pred] (with
the pebble p3); in the third pass, the operation dl[1] deletes the word [Petr,Sb]
(marked with p1). Finally, accepting instruction Iacc just accepts the remaining
words. Similarly for the right branch (starting with Ir2 and followed by Ir1 and
Iacc instructions).

For the sake of simplicity, let α0, α1, α2, and β1 be defined as follows:

α0= [boj́ı,Pred] [se,AuxT] [.,AuxK];
α1= [Petr,Sb] [se,AuxT] [boj́ı,Pred] [.,AuxK];
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β1= [boj́ı,Pred] [se,AuxT] [o,AuxP] [otce,Obj] [.,AuxK], and
α2= [Petr,Sb] [se,AuxT] [boj́ı,Pred] [o,AuxP] [otce,Obj] [.,AuxK].

Applying the relevant definitions we get:

L0(Mex) = {α0} as α0 �Iacc Accept;
L1(Mex) = {α0, α1, β1}, as α1 �Ir2 α0, and β1 �Ir1 α0;
L2(Mex) = {α0, α1, β1, α2} since α2 is the only word not in L1(Mex) for
which α2 �Mex α, α ∈ L1(M) (as α2 �Ir1 α1, or α2 �Ir2 β1);
L(Mex) = L2(Mex) as no α ∈ L2(Mex) and β /∈ L2(Mex) exist for which
β �Mex α holds.

The proper homomorphism of Mex removes linguistic categories Sb, AuxT, Pred,
AuxP, Obj, and AuxK; so the sentence [Petr,Sb] [se,AuxT] [boj́ı,Pred] [o,AuxP]
[otce,Obj] [.,AuxK] (from the basic language ofMex) is mapped onto the sentence
Petr se boj́ı o otce. ‘Peter worries about his father.’ (from the proper language
of Mex). Similarly, the string Sb AuxT Pred AuxP Obj AuxK is a sentence of the
categorial language of Mex.

4 Results

With respect to the linguistic motivation, we focus on the number of deletions
and/or shifts in individual restarting meta-instructions and we use particular
abbreviations for automata/languages with a restriction on these complexity
measures. In particular, prefix DS- is used to identify the delete-shift automata
without any restrictions, and D- is used for automata with deletions only. Fur-
ther, the prefix (k)- is used to indicate that at most k pebbles are available in one
meta-instruction. As a special case, (0)- means that the automaton contains only
accepting meta-instructions and thus it accepts in tail computations only. We use
the syllable d(i)- for automata with at most i deletions in one meta-instruction
and s(j)- for automata with at most j shifts in a single meta-instruction. The
requirements for normalized reduction languages are denoted by map-, and mrp-.

For each type X of restarting automata, we use L(X), LP(X), LC(X) to denote
the class of all basic, proper and categorial languages, recognizable by automata
of this type. Analogously, RED(X) denotes the class of all reduction languages
of these automata. Further, Ln(X), LPn(X), LCn(X) denote the classes of basic,
proper, and categorial languages defined by at most n reductions of X-automata;
REDn(X) denotes analogical notion for reduction languages. Proper inclusions
are denoted by ⊂.

FIN, REG, (D)CFL, and CSL are used for classes of finite, regular, (deter-
ministic) context-free, and context-sensitive languages, respectively, and FINR,
REGR, (D)CFR, and CSR for the classes of reduction languages defined by DS-
automata for which their basic languages are from FIN, REG, (D)CFL, and CSL,
respectively.

First part of our results is devoted to the map- and mrp- properties, their
influence on the delete and shift complexities and on the computational power.
Then we show delete, shift and pebble hierarchies.
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Let Mex be the automaton (implicitly) given in Example 2. Let us recall that
L(Mex) = L2(Mex). Analyzing its meta-instructions we see that automatonMex

is in fact map-mrp-s(1)-d(2)-DS-automaton implying L(Mex) = L2(Mex) ∈ FIN.
Relaxing the conditions map- and mrp-, the finite language L(Mex) can obviously
be recognized by accepting tails only. The situation changes when the automaton
recognizing L(Mex) is required to fulfil the condition map-. Then, not only that
it cannot accept this finite language by accepting tails only; it requires (at least)
two pebbles and two deletions in one restarting meta-instruction. Thus, it can
be used for separation.

Proposition 1. Let Mex be the automaton implicitly given in Example 2. Then

1. L(Mex) ∈ L2(map-d(2)-DS)� L(map-d(1)-DS),
2. RED(Mex) ∈ RED2(map-d(2)-DS)�RED((1)-DS),
3. L1(Mex) ∈ L1(map-s(1)-d(1)-DS)� L(map-(1)-DS),
4. L(Mex) ∈ L((0)-D).

Proof. Take the sentence [Petr,Sb] [se,AuxT] [boj́ı,Pred][.,AuxK] from L1(Mex).
The single reduction of the sentence follows the map-principle, as boj́ı se is a per-
mutation of a correct subsequence se boj́ı. The reduction consists of one delete
and one shift operations; they are unambiguously given by the backward cor-
rectness preserving property (bcpp). Two operations on two different positions
imply automaton with at least two pebbles, thus L1(Mex) /∈ L(map-(1)-DS), and
RED(Mex) /∈ RED((1)-DS). Similarly for assertions 3, and 4 is obvious. 


Consider shifts and deletions being the only operations allowed on (a set of)
words. Based on these operations, we can naturally define the partial order %L

on the set L of words. We say that u syntactically precedes v in L and write
u %L v iff:

1. u, v ∈ L, |u| > |v|;
2. v can be obtained from u by a sequence O of deletions and shifts applied on

u; u
O→ v;

3. the application of any proper subsequence O′ of O on u would end up with
a word outside L.

By %+
L we denote the transitive, nonreflexive closure of %L. Obviously, for a DS-

automaton M , u→ v ∈ RED(M) implies u %+
L(M) v and hp(u) %+

L(M,p) hp(v).

We define the set Lmin
�L

= {v ∈ L | ¬∃u ∈ L : v %L u} as the set of minimal
words in L. Then, for the map-DS-automaton M :

L0(M) = Lmin
�L(M)

.

For w ∈ L we denote by σ(w) any sequence σ(w) = w0, w1, . . . , wn such that
w = w0, wi−1 %L wi, 1 ≤ i ≤ n and wn ∈ Lmin

�L
. We call σ(w) the %L-sequence

of w. Realize that %L-sequence of w needs not be uniquely given by L,w.
Note that every pair u, v with u %L v implicitly defines one or more sequences

O of deletions and shifts that transforms u into v. For technical reasons, we will
only work with sequences of minimal length and will, for every pair u %L v,
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denote one of them as O(u, v). Since the number of deletions and shifts in O(u, v)
is determined unambiguously by the length of it, we denote by S(u %L v) the
number of shifts, and by D(u %L v) the number of deletions of O(u, v). Let us
stress that the minimal number of shifts and deletions needed to transform u
into v is a kind of edit-distance between words u, v. Not surprisingly, it will be
shown that these numbers are related to the numbers of deletions and shifts used
in meta-instructions of the corresponding DS-automaton. For that, we introduce
several delete and shift complexities.

By Dω(L) = max{D(u %L v);u, v ∈ L} we denote the delete upper bound of
L (or of %L). Analogously, Sω(L) = max{S(u %L v);u, v ∈ L} denotes the shift
upper bound of L.

For any word w and its %L-sequence σ(w) = w0, w1, . . . , wn we define
D(σ(w)) = maxi{D(wi−1 %L wi)} and the delete lower bound of w with respect
to L as D�(L,w) = minσ(w){D(σ(w))}. For shifts, S(σ(w)) and S�(L,w) are
defined analogously.

For L1 ⊆ L2 the delete and shift lower bounds of L1 with respect to L2 are de-
fined in the following way: D�(L1, L2) = maxw∈L1{D�(L2, w)} and S�(L1, L2) =
maxw∈L1{S�(L2, w)}.

We call the DS-automaton reduced if each of its meta-instruction uses exactly
as many pebbles as it is needed to realize the involved sequence of operations.

A close relation between the complexity of meta-instructions of map- and/or
mrp-DS-automata and the above defined upper and lower bounds is formulated
in the following Theorem 1.

Theorem 1. Let M be a reduced map-mrp-s(i)-d(j)-DS-automaton, and LM ∈
{L(M), L(M, c)}. Then the following holds:

1. u→ v ∈ RED(M) implies u %L(M) v;

2. S�(LM,LM) ≤ i ≤ Sω(LM), and D�(LM,LM) ≤ j ≤ Dω(LM);

3. (L ⊆ LM and r ≤ D�(L,LM)− 1) implies LM /∈ L(map-d(r)-DS);

4. (L ⊆ LM and r ≤ S�(L,LM)− 1) implies LM /∈ L(map-s(r)-DS).

Notice that without the mrp- condition the assertion 1. of Theorem 1 would not
hold.

Proof. Assertion 1. directly follows from the definition of the mrp- condition;
together with the map- property it implies the lower bounds in assertion 2. The
upper bounds in 2. follow from the definition of Dω and Sω. To get 3. and 4.,
realize that M is reduced map-DS-automaton and that u �M v implies u %+

M v.



As shown in Theorem 2, map-D-automata are powerful enough for catego-
rial recognition of deterministic CF-languages and proper recognition of all CF-
languages. As a corollary of Theorem 3 we even get that every CF-language is a
proper language of some map-mrp-DS-automaton.

Theorem 2. DCFL ⊂ LC(map-D), CFL ⊂ LP(map-D).
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Proof. To make use of two useful results from [6], we need to introduce an
extended class of D-automata. By Dreg, we denote a class of D-automata whose
accepting meta-instructions are of the form Ia = (Lr,Accept), where Lr is a
regular language. Ia accepts each v ∈ Lr.

1. Proof of DCFL ⊂ LC(map-D). The relevant assertion from Proposition 3.8.
in [6] can be reformulated as DCFL ⊂ LC(Dreg). To prove our proposition
it is therefore sufficient to transform the given Dreg-automaton to a map-D-
automaton. Thus, let M be a Dreg-automaton such that L(M, c) ∈ DCFL. Based
on the size of |L0(M, c)| we distinguish two cases:

(a) If L0(M, c) is a finite language then it is easy to check whether it fulfils the
condition map-. If not, then there obviously exists map-D-automaton A0 recog-
nizing exactly the language L0(M, c). The automaton A0 simulates the leftmost
branch of the syntactic precedence %L0(M,c). Then, it suffices to substitute orig-
inal accepting meta-instructions of M by all of A0’s restarting and accepting
meta-instructions.

(b) If L0(M, c) is not a finite language then L0(M, c) is still ∈ REG and
there is a deterministic finite automaton A recognizing L0(M, c). From A we
can construct deterministic D-automaton A0 whose restarting meta-instructions
always delete by the simulating of a rightmost cycle of A and accepting meta-
instructions accepts only cycle-free words. Here, by a cycle in a word w we mean
such subword u of w that – based on pumping lemma – could be iterated (within
the computation on w, the automaton starts reading u in the same state as it
leaves it). Replacing accepting meta-instructions ofM by all meta-instructions of
A0, we get a D-automaton that according to (a) can be modified to an equivalent
map-D-automaton recognizing L(M, c).

2. Proof of CFL ⊂ LP(map-D). It directly follows from Proposition 3.4. in [6]
that CFL ⊂ LP(Dreg) which – based upon the above given construction for
DCFL – implies CFL ⊂ LP(map-D) . 


Adopting the above given constructions we show in the next theorem that as
for the proper languages, the linguistic requirement of normalization preserves
the power of DS-automata.

Theorem 3. Let X ∈ {DS, D}. Then LP(X) = LP(map-mrp-X).

Proof. Let us prove the theorem by explaining how a DS-automaton for a proper
language can be transformed onto one with the map- and mrp- properties. We
will show the construction for D-automata first and secondly we will explain how
the construction can be adopted for automata with shifts. Note that based on
the proof of Theorem 2 we can suppose that the original D-automaton already
posseses the map- property.

Let us start with the proof of LP(D) = LP(map-mrp-D). It is obvious that
LP(map-mrp-D) ⊆ LP(D). To show the opposite inequality we start with a
map-D-automaton M = (Σp, Σc, Γ, c, $, R,A, k) and we construct a map-mrp-D-
automaton MD = (Σp, Σ

D
c , ΓD, c, $, RD, AD, kD) with an enriched set of cate-

gories ΣD
c and a new basic alphabet ΓD.
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Based on any individual accepting computation CA ofM on w, where hc(w) =
w1 . . . wn, each symbol wj can be unambiguously associated with either restart-
ing or accepting meta-instruction I(j) and with an index pj identifying either
the pebble that is within realization of the restarting meta-instruction I(j) put
on it or that identifies the position of wj within the accepting meta-instruction
I(j); if wj is deleted within CA then I(j) is that restarting meta-instruction
that has deleted it, otherwise I(j) is the accepting meta-instruction applied in
CA. To be able to insert this information into w we enrich the categorial al-
phabet Σc of M : ΣD

c = {[x, i, r] : x ∈ Σc, i ∈ {1, . . . |R ∪ A|}, r ≤ ", where
" = max{k,max{s; (a1, . . . as; Accept) ∈ A}}.

The order of meta-instructions in R ∪ A: If I = (E0, a1, E1, . . . as, Es;Osh;Op;
Restart) ∈ R is i-th in the ordering then put I(i) = (E0, [a1, i, 1], E1, . . . [as, i, s],
Es; Osh;Op Restart) into RD. Analogously, if Iacc = (a1, . . . as; Accept) is j-th
then put the accepting meta-instruction Iacc(j) = ([a1, j, 1], . . . [as, j, s]; Accept)
to AD.

Realize that the proper alphabet Σp has not been changed, thus L(M,p) =
L(M2, p):

– if u �MD v then there are x, y such that x �M y, and hp(x) = hp(u), hp(y) =
hp(v);

– ∀x, y ∈ L(M), x �M y there are x2, y2 ∈ L(MD) such that x2�MDy2, and
hp(x2) = hp(x), hp(y2) = hp(y)

Due to the index of the instruction and the position in that instruction asso-
ciated with individual symbols as described above, the obtained D-automaton
M2 fulfills both the mrp- and map- conditions.

To finish the proof of the theorem LP(DS) = LP(map-mrp-DS), we explain
how information about shifts can be handled using the idea of the above given
construction. Let M = (Σp, Σc, Γ, c, $, R,A, k) be the map-DS-automaton. We
will construct map-mrp-DS-automaton MDS = (Σp, Σ

DS
c , ΓDS , c, $, RDS, ADS ,

kDS) with an enriched set of categories ΣDS
c = {[x, i, r] : x ∈ Σc, i ∈ {1, . . . |R∪

A|}, r ≤ ", where " = max{k,max{s; (a1, . . . as; Accept) ∈ A}}.
Within a restarting meta-instruction I some pebbles are put on symbols that

are to be deleted and some of them on those moved by I. As described earlier,
the index r in the triple [x, i, r] is associated either with pebble put on the
original symbol x within the meta-instruction that deletes the symbol or with
the position of x in the accepting meta-instruction. Thus, to realize restarting
meta-instruction I that involves shifts, we will simply ignore the index in those
triples that are moved by I.

Fix any ordering of meta-instructions in R ∪ A. If Iacc = (a1, . . . as; Accept)
is j-th in that ordering then put accepting meta-instruction Iacc(j) = ([a1, j, 1],
. . . [as, j, s]; Accept) to ADS .

Let I = (E0, a1, E1, . . . as, Es;Osh;Od; Restart) ∈ R be a restarting meta-
instruction of M and Od = {dl[j1], . . . , dl[jd]} is the set of all delete operations
involved in I. If I is j-th in the ordering then add the set of restarting meta-
instructions I(j) = {(E0, [a1, i1, 1], E1, . . . [as, is, s], Es;Osh;Od; Restart) | ij =
j for j ∈ {j1, . . . , jd}} into RDS .
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Realize that the set of restarting meta-instructions of MDS is larger than
that of M if at least one of M ’s restarting meta-instructions involves shift.
However, fixing the accepting computation CA of M on w, the transformation of
w = w1 . . . wn ∈ Γ ∗ to W = W1 . . .Wn = [w1, i1, r1] . . . [wn, in, rn] ∈ Γ ∗

DS such
that hp(w) ∈ L(M,p) ⇐⇒ hp(W ) ∈ L(MDS , p) can be done by a deterministic
algorithm:

1. initialize W = w;
2. let I1, I2, . . . , It be a sequence of meta-instructions corresponding to CA,

I1, . . . , It−1 ∈ R, It ∈ A;
3. let It = (a1 . . . as; Accept) be jt-th in the ordering of R ∪ A, where a1 =

wi1 , . . . , as = wis ; set Wim to [wim , jt,m];
4. for q = t − 1 downto 1 let Iq = (E0, a1, E1, . . . as, Es;Osh;Od; Restart) be

jq-th in the ordering of R ∪ A, where a1 = wi1 , . . . , as = wis and p1, . . . , pd
are the pebbles put on those symbols deleted by Iq; set Wipi

to [wipi
, qt, pi].

Thanks to this deterministic process the indices i, r in triples [x, i, r] guarantee
both the map- and mrp- property of the constructed DS-automaton MDS. 


Corollary 1. CFL ⊂ LP(map-mrp-D)

It is easy to see that LC(X) is a subset of LP(X) for X ∈ {D,DS} and that
every computation of restarting automaton can directly be simulated in linear
space implying LC(X) ⊆ LP(X) ⊆ CSL. These inequalities are shown as valid
with the help of separation languages Le and La2b (see Proposition 2). The
lower bound parts of both Propositions are mainly based on counting argument
combined with consequences of pumping lemma for regular languages.

Proposition 2. Le = { a2
n | n ∈ N } ∈ CSL \ LP(DS),

La2b = { anbn | n ≥ 1 } ∪ { anbm | m > 2n > 0 } ∈ LP((3)-D) \ LC(DS)

Corollary 2. Let X ∈ {DS, D}. Then LC(X) ⊂ LP(X) ⊂ CSL.

In order to show the delete and shift hierarchies, we define two classes of sample
languages. Let j ∈ N+, i ∈ N, Σ = {P, b, s}, Δj = {c, a1, a2, . . . , aj}, Λ = {λ}:

LS(j, i) = { Psi{bj}+, {bj}+si, si}, Le(j) = { an1an2 · · · anj | n > 0 }.

The construction of relevant DS-automata and delete and shift complexities
of these languages are given in Lemma 1. It is easy to see that all above de-
fined classes of languages belong to CSL, languages LS(j, i) are infinite regular,
Le(2) ∈ CFL, and Le(j) ∈ CSL \ CFL for j ≥ 3.

Lemma 1. Let X = map-mrp, LX ∈ {LC,LP}, j ∈ N+, i ∈ N. Then:

(a) LS(j, i) ∈ LX (d(j)-s(i)-X-DS) (b) LS(j, i) ∈ LX ((max{j, i+2})-X-DS)
(c) Le(j) ∈ LX (d(j)-X-D) (d) Le(j) ∈ LX ((j)-X-D)
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Proof. The proof is done by an informal construction of DS-automata.
(a) We describe a d(j)-s(i)-map-mrp-DS-automatonMS(j, i) such that LS(j, i) =
L(MS(j, i), c) = L(MS(j, i), p), and it uses max{j, i+2} pebbles. MS(j, i) works
with the basic alphabet {[P,P], [b,b], [s,s]}, and categorial and proper alphabets
equal to {P, b, s}. The automaton MS(j, i) simulates the leftmost syntactic
precedence of any word of LS(j, i)); we have three possibilities for one cycle:

– the word [P, P ][s, s]i{[b, b]j}n is changed to {[b, b]j}n[s, s]i; for this, i + 2
pebbles are used to mark the symbol [P, P ], all symbols [s, s]i and the last
symbol [b, b] first; then [s, s]i are shifted after [b, b]’s and [P, P ] is deleted;

– the prefix [b, b]j is marked with pebbles and deleted;
– the word [s, s]i is accepted in a tail computation.

(b) Here we describe a d(j)-map-mrp-D-automaton Me(j) such that Le(j) =
L(Me(j), c) = L(Me(j), p), and it uses j pebbles. The automatonMe(j) it simu-
lates always the leftmost syntactic precedence for any word from Le(j); in one cy-
cle the automaton marks by pebbles and deletes one copy of [a1, a1], [a2, a2], . . . ,
[aj , aj ] in a word longer then j and accepts the word [a1, a1][a2, a2] . . . [aj, aj ] in
a tail computation.

It is not hard to see that the described automata fulfill the map- and mrp-
conditions. 

Now we are ready for our separation results; the very robust pebble hierarchy is
dealt with in the following part, shift and delete hierarchies are given afterwards.

Theorem 4. Let i > 0, X ∈ {DS, D}, Y ∈ {λ,map, map-mrp},
LX ∈ {L,LC,LP ,RED}. Then LX (Y-(i)-X) ⊂ LX (Y-(i+1)-X).

Proof. To prove the proposition, we consider the sequence of above defined
languages Le(j) = { an1an2 · · · anj | n > 0}, j > 1.

For the upper bound consider the automaton Me(j) from the proof of
Lemma 1b. Its categorial and proper languages are both equal to Le(j) and
the automaton uses exactly j deletions and pebbles in a cycle.

The lower bound parts are based on Theorem 1. For each DS-automaton
M recognizing Le(j), the set L0(M) is finite, thus RED(M) is nonempty; any
reduction from RED(M) is forced by some syntactic precedences from %Le(j).
Realize that if u %Le(j) v then |u| = |v| + j; v can be obtained from u by
j deletions for which M uses at least j pebbles. This way we get the desired
hierarchies for basic, categorial and reduction languages.

For proper languages hierarchy realize that for any DS-automaton M with
proper homomorphism hp, each relation u %L(M) v implies the existence of at

least one relation of the form hp(u) %+
L(M,p) hp(v); from this, D�(L(M), L(M))

≥ D�(L(M,p), L(M,p)) follows. This means that the pebble complexity of every
DS-automaton with the proper language Le(j) is at least D�(Le(j), Le(j)) and
thus at least j. 

The subsequent results show the existence of infinite pebble hierarchies even
on classes of finite sub-languages of DS-automata. Note that the hierarchies for
reduction languages are more robust than for the other types of languages; they



On Minimalism of Analysis by Reduction by Restarting Automata 169

hold also without the map- and mrp- conditions. The language Le(j) represents
a core of the corresponding proofs.

Theorem 5. Let n > 0, i > 0, X ∈ {D, DS}, Y ∈ {map, map-mrp},
LX ∈ {L,LC,LP ,RED}.
Then LX n(Y-(i)-X) ⊂ LXn(Y-(i+1)-X), and REDn((i)-X) ⊂ REDn((i+1)-X).

Theorem 6. For i > 2, j ≥ 0, Y ∈ {FIN, REG� FIN, CFL� REG, CSL� CFL},
X ∈ {map, map-mrp}, LX ∈ {L,LC,LP} we have the following proper inclu-
sions:

(a) Y ∩ LX (d(i)-s(j)-X-DS) ⊂ Y ∩ LX (d(i+1)-s(j)-X-DS),

(b) Y ∩ LX (d(i)-s(j)-X-DS) ⊂ Y ∩ LX (d(i)-s(j+1)-X-DS).

Proof. To separate LX (map-d(i)-s(j)-DS) from LX (map-d(i+1)-s(j)-DS) and
LX (map-d(i)-s(j+1)-DS) we use the languages LS(i, j), and their syntactic prece-
dences. The number of shift operations is forced by the map- property, otherwise
the language LS(i, j) could also be recognized with a D-automaton without shifts
simply by deleting the sufix [b, b]i from [P, P ][s, s]j{[b, b]i}n, for n > 1, instead.
The number of deletions in one restarting instruction is also determined by the
map- property that forces the instruction to delete [b, b]i from the proper prefix
of {[b, b]i}n[s, s]j . Since LS(i, j) is infinite regular, the proof for Y = REG� FIN
follows.

For remaining classes we use the languages obtained by a small modification
of LS(i, j): LFIN(i, j) = {Psjbi, bisj, sj}, LCFL�REG(i, j) = LS(i, j) ∪ Le(2), and
LCSL�CFL(i, j) = LS(i, j) ∪ Le(3). 


The automata from the previous theorem can be used to prove the similar
hierarchical results for reduction languages even with the absence of the map-
and mrp- conditions. Moreover, hierarchies similar to those in Theorems 5 and
6 hold also for finite languages defined by n reductions.

Conclusion and Perspectives

We have presented a class of restarting automata (DS-automata), which formal-
ize lexicalization in a similar way as categorial grammars (see e.g. [1, 2]). This
class of automata – similarly as categorial grammars – allows us to introduce (in
a natural way) basic languages (on word forms marked with categories), proper
languages (on unmarked word forms), and categorial languages (on grammatical
categories). Further, they allow to introduce reduction languages – this concept
is quite natural for DS-automata and the analysis by reduction.

We have introduced also the minimalist map- and mrp- properties, which were
used for the normalization of DS-automata; these properties ensure similar and
transparent hierarchies for classes of finite and infinite languages. Note that re-
laxation of these minimalist properties often leads to different results for classes
of finite and infinite languages. The normalized DS-automata formalize the no-
tion of analysis by reduction.
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Reduction languages allow for explicit description of the integration of in-
dividual (disambiguated) word forms into a sentence structure. While proper
languages play the role of input languages for weak equivalence of DS-automata
(and other types of automata or grammars), reduction languages serve for lin-
guistically more relevant strong equivalence of DS-automata.

Based on [4], we estimate that roughly seven deletions in one reduction step suf-
fice to analyze adequately any sentence (not containing coordination in its struc-
ture) from the Prague Dependency Treebank [3]. As for the shift complexity, we
have only been able to find reductions of Czech sentences with at most one shift
in a single reduction step. From this point of view, normalized reductions in nat-
ural languages are quite simple. The information stored in morphological lexicons
of individual natural languages is in fact modeled by the information contained in
the basic (tape) alphabet of DS-automata. On the other hand, meta-instructions
model syntactic potential of individual words (i.e., information stored in valency
lexicons and a grammar component of a natural language description).

We have already used the analysis by reduction for explaining the basics of
dependency syntax of Czech (see e.g. [7]). However, it can be used for explanation
of basic issues of lexicalized syntax based on (even discontinuous) constituents
as well – in such a case, individual (restarting) meta-instructions of a normalized
description correspond to individual types of constituents. The proposed type of
strong equivalence and three proposed types of very robust complexity measures
can serve for both types of syntactic methods.

Finally, we strongly believe that for linguistic applications, (relatively simple)
star-free languages are sufficient as contexts in meta-instructions since the main
information contained in a context is that the context cannot contain some
special subwords (or some simple symbols as, eg., punctuation symbols).
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Abstract. In 2013 Sorokin proved that the criterion of type conjoinabil-
ity in 1-discontinuous Lambek calculus is the equality of interpretations
in the free abelian group generated by primitive types. We extend the
method to obtain the analogous result in full discontinuous Lambek cal-
culus. It holds that the criterion is exactly the same as in 1-discontinuous
Lambek calculus.

1 Introduction

Lambek calculus was introduced by Joachim Lambek in 1958 in order to model
the syntactic structure of natural languages. In 1994 M. Pentus proved that
Lambek grammars generate exactly context-free languages ([8]). Since context-
free languages are well-known to be too weak for adequate representation of
natural languages, G. Morrill introduced a generalization of Lambek calculus,
the so-called discontinuous Lambek calculus ([5], [6]), which extends the stan-
dard Lambek calculus with discontinuous connectives. The calculus obtained has
enough power to simulate various discontinuous linguistic phenomena, as shown
in [6].

Let A and B be types of a particular categorial calculus. A type C is called a
join for A and B (in this calculus) if both the sequents A→ C and B → C are
derivable. In this case the types A and B are called conjoinable. The conjoin-
ability problem is very interesting from the algebraic point of view. For example,
two types are conjoinable in Lambek calculus iff they have the same interpre-
tation in the free group generated by the primitive types (this criterion was
proved in [7]). If we replace the free group by the free abelian group, then we ob-
tain the criterion of conjoinability in commutative Lambek calculus. It is worth
noting that the criterion of conjoinability in Lambek-Grishin calculus also uses
the interpretation in a free abelian group ([4]), though this calculus lacks com-
mutativity (and even associativity). The same conjoinability criterion holds for
1-discontinuous Lambek calculus ([9]), although this calculus is not commuta-
tive either. We generalise this result to obtain the criterion for full discontinuous
Lambek calculus.

It is worth noting that the character of conjoinability of the categorial calculus
has deep connection with generative power of this calculus. The calculi where
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conjoinability criteria use the free group interpretation, such as Lambek calculus
or pregroup calculus, usually generate the family of context-free languages ([8],
[1], [2]). Even the method of translating the categorial grammar to equivalent
context-free one is essentially the same for both calculi and uses the properties of
binary reductions in noncommutative free groups (see Lemma 8 in [8] and Lemma
3.7 in [1]). By contrast, there is no appropriate binary reduction in free abelian
groups so the method of Pentus cannot be used for the calculi with abelian
characterization of conjoinability. Therefore we lack the equivalence theorems for
such calculi as commutative Lambek calculus or discontinuous Lambek calculus.

The nature of this correspondence is uncovered if we note that the target type
of the grammar is in fact an “infinite join” for the sequences of types from the
lexicon. Hence the study of the conjonability relation for a particular calculus
might be helpful to characterize the generative power of this calculus. Therefore
we consider the conjoinability relation in discontinuous Lambek calculus in order
to come closer to the characterization of the family of languages it recognizes.

2 Discontinuous Lambek Calculus

Let Pr be a countable ranked set of primitive types and rk : Pr→ IN be a rank
function. Let I, J /∈ Pr be two distinguished constants, we refer to the elements
of the set Base = Pr ∪ {I, J} as basic types. Then the set Tp of discontinuous
types is the smallest ranked set satisfying the following conditions (s is a sort
function which extends the rank function to the set of types):

1. Pr ⊂ Tp, ∀A ∈ Pr s(A) = rk(A),
2. I ∈ Tp, s(I) = 0,
3. J ∈ Tp, s(J) = 1,
4. ∀A,B ∈ Tp ((s(A) ≥ s(B)) ⇒ (A/B), (B\A) ∈ Tp, s(A/B) = s(B\A) =

s(A)− s(B)),
5. ∀A,B ∈ Tp (A · B) ∈ Tp, s(A · B) = s(A) + s(B),
6. ∀A,B ∈ Tp((s(A) ≥ s(B)−1)⇒ (B ↓ A) ∈ Tp, s(B ↓ A) = s(A)−s(B)+1),
7. ∀A,B ∈ Tp ((s(A) ≥ s(B))⇒ (A ↑ B ∈ Tp), s(A ↑ B) = s(A)− s(B) + 1),
8. ∀A,B ∈ Tp ((s(A) ≥ 1)⇒ A�B ∈ Tp, s(A�B) = s(A) + s(B) − 1).

Let Σ be some alphabet, say, the alphabet of syntactic categories (for exam-
ple, s is a sentence category, np stands for noun phrases etc.). Then types are
interpreted as formal languages, which are subsets of the set Σ∗. The connective
· is interpreted as concatenation and \ and / are interpreted as its left and right
residuals: the type B/C means “something that becomes B after appending C
to the right”, and C\B means “something that becomes B after appending C
to the left”. I is the constant for the language containing only the empty word.

Let 1 be the separator, 1 /∈ Σ, let us consider the words over the extended
alphabet Σ1 = Σ∪{1}. Then the result of applying �j to the words w1, w2 ∈ Σ∗

equals the word obtained after replacing the j-th separator in w1 by w2, if w1

contains less than j separators, the result is undefined. The operations ↑j and
↓j are the analogues of / and \, respectively: B ↑j C means “something that
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becomes B after replacing its j-th separator by C” and C ↓j B is interpreted
as “something that yields B after replacing j-th separator in C by itself”. Note
that the sort of a type equals the number of separators in the words contained
in its interpretation.

This informal interpretation is reflected in the axiomatics of discontinuous
Lambek calculus. We give its Hilbert-style interpretation HDL, introduced in
[10], since it is more convenient for our purposes. The calculus HDL is equivalent
to the sequential Gentzen-style calculus DL studied in [5]. The sequents of the
calculus HDL have the form A → B where A,B ∈ Tp and s(A) = s(B). We
denote the derivability of the sequent A→ B by HDL � A→ B. The axiomatics
of HDL include the axioms A→ A, for A ∈ Tp, the rules for the connectives:

A→ C/B

A ·B → C
A · B → C
A→ C/B

B → A\C
A ·B → C

A · B → C
B → A\C

A→ C ↑j B
A�j B → C

A�j B → C

A→ C ↑j B
B → A ↓j C
A�j B → C

A�j B → C

B → A ↓j C ,

the identity axioms for constants:

A · I ↔ A↔ I ·A,
J �1 A↔ A↔ A�j J, if j ≤ s(A),

the mixed associativity axioms:

(A ·B) · C ↔ A · (B · C),
(A�i B)�j C ↔ (A�j C) �i+s(B)−1 B, if j < i,
(A�i B)�j C ↔ A�j (B �j−i+1 C), if i ≤ j < i+ s(B),
(A�i B)�j C ↔ (A�j+1−s(B) C)�i B, if i+ s(B) ≤ j,

the axioms of interactions between “continuous” and “discontinuous” connec-
tives:

A · B ↔ (A · J)�s(A)+1 B ↔ (J · B)�1 B

and the transitivity rule:

A→ B B → C
A→ C .

Example 1. Let s(A) = s(B) = 1, then the sequent (A ↑1 B) ↓1 A → A/(B\A)
is derivable in HDL.
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Proof.

B\A→ B\A
B · (B\A)→ A

(J · (B\A)) �1 B → A

(J · (B\A))→ A ↑1 B
(A ↑1 B) ↓1 A→ (A ↑1 B) ↓1 A
A ↑1 B → A ↑1 ((A ↑1 B) ↓1 A)

(J · (B\A))→ A ↑1 ((A ↑1 B) ↓1 A)
(J · (B\A))�1 ((A ↑1 B) ↓1 A)→ A

((A ↑1 B) ↓1 A) · (B\A)→ A

(A ↑1 B) ↓1 A→ A/(B\A)

The following lemma demonstrates the monotonicity properties of discontin-
uous Lambek calculus. Its proof immediately follows from the transitivity of the
derivability relation.

Lemma 1. Let A1, B1, A2, B2 ∈ Tp be such that all the types in the rules are
correctly defined. Then the following rules are admissible in the calculus HDL:

A1 → A2 B1 → B2

A1 · B1 → A2 ·B2

A1 → A2 B1 → B2

A1 �j B1 → A2 �j B2

A1 → A2 B1 → B2

A1/B2 → A2/B1

A1 → A2 B1 → B2

B2\A1 → B1\A2

A1 → A2 B1 → B2

A1 ↑j B2 → A2 ↑j B1

A1 → A2 B1 → B2

B2 ↓j A1 → B1 ↓j A2.

Let Tpk be the set of all types that do not contain subtypes of sort greater
than k (including the type itself). We denote by HDLk the calculus obtained if
only the types from Tpk are allowed. Such calculi naturally correspond to their
sequential counterparts DLk of the sequential fragment DL: DLk is a fragment
of the calculus DLk permitting only the subtypes and subconfigurations of sort
k or less. Any sequent provable in DL also has a proof in some of the calculi
DLk, we take as k the maximal sort of types and configurations involved in the
proof.

Additionally, DL possesses cut-elimination ([5]), so a usual backward proof
search is possible. It is not difficult to mention that if a DLk-sequent is derivable
in the full calculus DL, then the premises in the last rule of its derivation are
again DLk-sequents. So any DLk-sequent, derivable in the full calculus DL, is
derivable in the calculus DLk itself. Since the translation from HDL to DL given
in [10] maps HDLk-sequents to DLk-sequents and vice versa, we conclude that
if HDL � A→ B then it also holds that HDLl � A→ B where l is the smallest
number such that the types A and B both belong to Tpl.

3 Conjoinability in Discontinuous Lambek Calculus

In this section we define the conjoinability relation for discontinuous Lambek
calculus. This relation was first defined in [3] for the basic Lambek calculus L.
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In [7] M. Pentus proved that two types of the calculus L are conjoinable iff they
have the same interpretation in the free group generated by primitive types. The
main goal of our work is to obtain the conjoinability criterion for the calculus
HDL and its fragments HDLk.

Definition 1. The types A and B are said to be conjoinable if there exists a
type C such that the sequents A → C and B → C are both derivable. The type
C is called the join type.

Example 2. Let s(A) = s(B) = 1, then the types (A ↑1 B) ↓1 A and B are
conjoinable in HDLk for any k ≥ 1 with the join (A/(B\A)). The sequent (A ↑1
B) ↓1 B → A/(B\A) was proved in Example 1, the other sequent’s derivation is

B\A→ B\A
B · (B\A)→ A

B → A/(B\A)

We denote the conjoinability relation by ∼. If we need to explicitly specify
that the conjoinability in the calculus HDLk is considered, we use the notation
∼k. The following lemma uses the arguments from [3].

Lemma 2. The conjoinability relation is a congruence on types.

Proof. Let us at first prove that it is an equivalence relation. The reflexivity and
symmetry are obvious. Consider the transitivity, let the statements A1 ∼ B and
B ∼ A2 hold. Let C1 and C2 be the join types for these pairs. Then it is easy
to verify that the type (B/C1)\B/(C2\B) is the join type for both the types A1

and A2. The congruence property follows from the monotonicity properties of
discontinuous Lambek calculus. The lemma is proved.

The main goal of the present work is to prove the conjoinability criterion in
any of the calculi HDLk. As a consequence we obtain an analogous criterion for
the embracing calculi HDL. Let us fix some arbitrary positive k which will be
the same in the rest of the proof. Let Pr be the set of all primitive types and
Prk denote the set of primitive types whose sort does not exceed k. Let α be
an additional element such that α /∈ Pr. We denote by F the free abelian group
generated by the set Pr∪{α} and Fk stands for the free abelian group generated
by the set Prk ∪{α}. Let 1 be the neutral element of the group F defined; it can
be thought as the neutral element of any of the groups Fk as well.

For any type A ∈ Pr we define its interpretation �A� ∈ F . The interpretation
mapping is defined recursively in the following way:

1. �p� = p, for p ∈ Pr,
2. �I� = 1,
3. �J� = α,
4. �B\C� = �C/B� = �C��B�−1,
5. �B · C� = �B��C�,
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6. �C ↑i B� = �B ↓j C� = �C�α�B�−1 , for any indexes i, j such that these
types are correctly defined.

7. �B�iC� = �B�α−1�C� for any index i such that the type is correctly defined.

For any type A ∈ Tp and any basic type p we introduce two counters |A|+p
and |A|−p for the positive and negative occurrences of p in A. The counters are
defined recursively in the following way:

1. |p|+p = 1, |p|−p = 0, if p ∈ Base,
2. |q|+p = |q|−p = 0, if p, q ∈ Base, p �= q,
3. |A · B|+p = |A �j B|+p = |A|+p + |B|+p , |A · B|−p = |A �j B|−p = |A|−p + |B|−p

for any j such that the considered type is correct,
4. |A/B|+p = |B\A|+p = |A|+p + |B|−p , |A/B|−p = |B\A|−p = |A|−p + |B|+p ,
5. |A ↑i B|+p = |B ↓j A|+p = |A|+p + |B|−p , |A ↑i B|−p = |B ↓j A|−p = |A|−p + |B|+p

for any i, j such that the considered type are correct.

Example 3. Let p, q, r ∈ Pr2, s(p) = 0, s(q) = 1, s(r) = 2, A = r ↓2 (((p ·r)/q) ↑1
(r/(q · p))), B = (r ↓1 (J · p)) �2 (p/(J\q)). Then |A|+p = 2, |A|+q = 1, |A|+r =
1, |A|−p = 0, |A|−q = 1, |A|−r = 2, �A� = p2r−1α2; |B|+p = 2, |B|−q = |B|−r =

1, |B|+J = 2, |B|−J = 0, �B� = p2q−1r−1α2.

The notion of positive and negative occurrences and the corresponding counts
are extended to the connectives of the discontinuous Lambek calculus in the
natural way. The formal definition is below:

1. |p|+∗ = |p|−∗ = 0, if p ∈ Base, ∗ ∈ {·, /, \,�j, ↑j , ↓j},
2. |A ∗B|+∗ = |A|+∗ + |B|+∗ + 1, |A ∗B|+	 = |A|+	 + |B|+	 ,

if ∗ ∈ {·,�i}, � ∈ {·, /, \,�j, ↑j, ↓j}, � �= ∗,
3. |A ∗B|−	 = |A|−	 + |B|−	 , if ∗ ∈ {·,�i}, � ∈ {·, /, \,�j, ↑j , ↓j},
4. |A ∗B|+∗ = |A|+∗ + |B|−∗ + 1, |A ∗B|+	 = |A|+	 + |B|−	 ,

if ∗ ∈ {/, ↑i}, � ∈ {·, /, \,�j, ↑j, ↓j}, � �= ∗,
5. |A ∗B|−	 = |A|−	 + |B|+	 , if ∗ ∈ {/, ↑i}, � ∈ {·, /, \,�j, ↑j , ↓j},
6. |B ∗A|+∗ = |A|+∗ + |B|−∗ + 1, |B ∗A|+	 = |A|+	 + |B|−	 ,

if ∗ ∈ {\, ↓i}, � ∈ {·, /, \,�j, ↑j, ↓j}, � �= ∗,
7. |B ∗A|−	 = |A|−	 + |B|+	 , if ∗ ∈ {\, ↓i}, � ∈ {·, /, \,�j, ↑j , ↓j}.

The counters introduced allow us to express the interpretation of any type A
in the closed form. The following lemma is proved by induction on type structure.

Lemma 3. For any type A ∈ Tp its interpretation has the form

�A� = α(�A�J+�A�↑+�A�↓−�A��) ◦
∏

p∈Pr1

p�A�p

.

Lemma 4. The condition �A� = �B� is necessary for the sequent A→ B to be
derivable in HDL.

Proof. Induction on derivation length.
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Since HDLk is the fragment of HDL it follows that equality of interpretations
is also necessary for derivability in all the calculi HDLk. The following corollary
is apparent by the definition of conjoinability:

Corollary 1. The condition �A� ∼ �B� is necessary for the statements A ∼ B
and A ∼k B for any types A,B ∈ Tpk

Thus, the equality of interpretations is a necessary condition of conjoinability.
The remaining part of the paper is devoted to the proof of its sufficiency.

4 Proof of the Criterion

In this section we establish that the equality of interpretations in free abelian
group is the necessary condition for the types to be conjoinable and, hence,
the criterion of conjoinability. We prove the claim for the calculus HDLk for an
arbitrary natural k ≥ 1. Some of the technical steps are borrowed from the proof
of the corresponding conjoinability criterion in the calculus HDL1, given in [9].
However, we need to be especially careful with the types encountered in proofs
to stay always inside the set Tpk of correct types. To the rest of the paper we
fix some arbitrary k ≥ 1 and work with the calculus HDLk and the free abelian
group Fk defined in the previous section. We omit the subscript when writing
the conjoinability sign ∼k.

In the lemma below we list the sequents derivable in HDLk which we need
in the following. All the proofs immediately follow from the axioms or are the
axioms themselves (as in the last two parts).

Lemma 5. The following statements are derivable in the calculus HDLk. The
derivability of the sequent also means that the right part of it is in Tpk whenever
the left part is.

1. (A/B) ·B → A; B · (B\A)→ A,
2. A→ (A · B)/B; A→ B\(B · A),
3. A · (B/C)→ (A ·B)/C; (C\B) ·A→ C\(B · A),
4. B �j (B ↓j A)→ A for any j ≤ s(B);

(A ↑j B)�j B → A for any j ≤ s(A)− s(B) + 1,
5. A · J → (A · B) ↑s(A)+1 B; J · A→ (B · A) ↑1 B,
6. A ·B → (A · J)�s(A)+1 B; A · B → (J ·B)�1 A,
7. A · I → A; I · A→ A.

The next lemma gives the examples of the “neutral” types with respect to
concatenation.

Lemma 6. For any two types A,B ∈ Tpk the statements A · (B/B) ∼ A ·
(B\B) ∼ (B/B) ·A ∼ (B\B) · A ∼ A are valid.

Proof. The conjoinability of the types A and A·(B/B) follows from the derivabil-
ity of the sequents A→ (A·(B/B))/(B/B) and A·(B/B)→ (A·(B/B))/(B/B).
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The former sequent follows from the second statement of Lemma 5, the proof
of the latter is given below. Since s(B/B) = 0, the conditions A ∈ Tpk and
B ∈ Tpk imply that A · (B/B) ∈ Tpk. The conjoinability of the types A and
(B\B) · A is proved analogously. Since the sequents A → (A · (B\B))/(B\B)
and A · (B\B)→ (A · (B\B))/(B\B) also derivable, the types A and A · (B\B)
are conjoinable as well. The lemma is proved.

A→ A

(B/B) · (B/B)→ (B/B) · (B/B)

(B/B) · (B/B) · B → (B/B) ·B
B/B → B/B

(B/B) · B → B

(B/B) · (B/B) · B → B

(B/B) · (B/B)→ B/B

A · (B/B) · (B/B)→ A · (B/B)

A · (B/B)→ (A · (B/B))/(B/B)

For an arbitrary type A ∈ Tp we denote by Ai the type A · . . . · A︸ ︷︷ ︸
i times

. We also

set A0 = I for any type A.
The following lemma shows the “abelian” nature of concatenation in discon-

tinuous Lambek calculus. It also claims that the left and right division connec-
tives are “indistinguishable” with respect to conjoinability.

Lemma 7

1. For any type A ∈ Tpk such that s(A) = 0 it holds that A · J ∼ J ·A.
2. For any type A ∈ Tpk such that s(A) < k it holds that A · J ∼ J · A.
3. For any type A ∈ Tpk such that s(A) = 0 and arbitrary type B ∈ Tpk it

holds that A ·B ∼ B ·A.
4. For any types A,B ∈ Tpk such that A ·B ∈ Tpk it holds that A ·B ∼ B ·A.
5. For any types A,B ∈ Tpk such that A/B ∈ Tpk it holds that A/B ∼ B\A.
6. For any types A,B,C ∈ Tpk such that (A/B)/C ∈ Tpk it holds that

(A/B)/C ∼ (A/C)/B.

Proof

1. Since s(A) = 0 the statement 5 of Lemma 5 implies that A · J ∼ (A · A) ↑1
A ∼ J ·A, which is what was required. Note that s((A · A) ↑1 A) = 1 hence
it belongs to Tpk.

2. Applying statement 1 of Lemma 6 s(A) times, we obtain that (A/Js(A)) ·
Js(A) ∼ A, it follows that A ·J ∼ (A/Js(A)) ·Js(A) ·J = (A/Js(A)) ·J ·Js(A).
Since s(A/Js(A)) = 0 then (A/Js(A)) ·J ·Js(A) ∼ J ·(A/Js(A)) ·Js(A) ∼ J ·A.
Obviously, (A/Js(A)) · J · Js(A) ∈ Tpk, so we obtain the desired statement
combining these two chains of conjoinabilities.

3. Since s(A) = 0, then the statementsA·B ∼ (A·J)�1B and (J ·A)�1B ∼ B·A
follow from the statement 6 of Lemma 5. In the current lemma we have also
proved that A · J ∼ J · A which yields the desired statement by Lemma 2.
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4. We have already proved the statement for the case s(A) = 0 so we assume
that s(A) > 0. Then we write A · B ∼ (A/Js(A)) · Js(A) · B and obtain
by statements 2 and 3 of the current lemma that (A/Js(A)) · Js(A) · B ∼
(A/Js(A)) · B · Js(A) ∼ B · (A/Js(A)) · Js(A) ∼ B · A, which is what was
required.

5. The desired statement follows from the chain of conjoinabilities A/B ∼ (B ·
(B\A))/B ∼ ((B\A) ·B)/B ∼ (B\A) · (B/B) ∼ B\A. The first part follows
from the first statement of Lemma 5 and Lemma 2, the third statement
follows from statement 3 of Lemma 5, the second from statement 4 of the
current lemma, and the fourth part — from Lemma 6.

6. The condition (A/B)/C ∈ Tpk implies that s(C) ≤ s(A/B), then s(B) +
s(C) ≤ s(A) ≤ k, so we derive that C ·B ∈ Tpk. The statement (A/B)/C ∼
A/(C ·B) follows from the derivability of the sequent (A/B)/C → A/(C ·B).
Analogously we prove that (A/C)/B ∼ A/(B·C). From the second statement
of the current lemma and Lemma 2 it follows that A/(C · B) ∼ A/(B · C).
Combining these three statements we obtain the desired result.

The next lemma shows that the subscripts of the connectives �j , ↓j, ↑j are
meaningless for conjoinability.

Lemma 8

1. For any types A,B ∈ Tpk and any indexes i, j, such that the corresponding
types are defined and belong to Tpk it holds that A�i B ∼ A�j B.

2. For any types A,B ∈ Tpk and any indexes i, j, such that the corresponding
types are defined and belong to Tpk it holds that A ↑i B ∼ A ↑j B.

3. For any types A,B ∈ Tpk and any indexes i, j, such that the corresponding
types are defined and belong to Tpk it holds that B ↓i A ∼ B ↓j A.

Proof

1. Without loss of generality we assume that i < j ≤ s(A). Then A �i B ∼
(Jj · (Jj\A))�iB ∼ (Jj �iB) · (Jj\A) ∼ J i−1 ·B ·Jj−i · (Jj\A) ∼ Jj−1 ·B ·
(Jj\A) ∼ (Jj−1 · J · (Jj\A))�j B ∼ A�j B, which was required. The first
and the last conjoinabilities follow from statement 1, the second, the third
and the fifth — from statement 6 of Lemma 5, the fourth similarity follows
from Lemma 7.

2. From the first statement of the current lemma and Lemma 5 we deduce that
A ↑i B ∼ ((A ↑j B)�j B) ↑i B ∼ ((A ↑j B) �i B) ↑i B ∼ A ↑j B, which is
what was required.

3. By the same arguments as in the previous case we obtain that B ↓i A ∼
B ↓i (B �j (B ↓j A)) ∼ B ↓i (B �i (B ↓j A)) ∼ B ↓j A, which is what was
required. The lemma is proved.

The type A ∈ Tpk is continuous if it does not contain any discontinuous con-
nectives �j, ↓j, ↑j . The next lemma shows that for any type there is a conjoinable
continuous type, so we may restrict our attention to continuous types only.
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Lemma 9

1. For any types A,B ∈ Tpk such that A ↑j B ∈ Tpk it holds that A ↑j B ∼
(A/B) · J .

2. For any types A,B ∈ Tpk such that B ↓j A ∈ Tpk it holds that B ↓j A ∼
A/(B/J).

3. For any types A,B ∈ Tpk such that A �j B ∈ Tpk it holds that A �j B ∼
(A/J) ·B.

Proof

1. The condition A ↑j B ∈ Tpk implies that s(B) ≤ s(A) and s(A)−s(B)+1 ≤
k, consequently (A/B) · J ∈ Tpk. Since all correct types of the form A ↑j B
are conjoinable, it suffices to prove the statement for one value of j, let us
take j = s(A) − s(B) + 1 = s(A/B) + 1. Then the statement follows from
the derivability of the sequent (A/B) · J → A ↑(s(A/B)+1) B:

A/B → A/B

(A/B) · B → A

((A/B) · J)�s(A/B)+1 B → A

(A/B) · J → A ↑(s(A/B)+1) B

2. Since B ↓j A ∈ Tpk, then s(B) ≥ 1 and s(A) ≥ s(B) − 1, which implies
that A/(B/J) ∈ Tpk. As in the previous part of the lemma, it suffices to
prove the lemma for one particular j, let us prove it for j = 1. Then we
obtain that A/(B/J) ∼ A/(J\B) by part 5 of Lemma 7 and Lemma 2, also
B ∼ J · (J\B) by the first part of Lemma 5. Let us prove that the sequent
A/(J\B)→ (J · (J\B)) ↓1 A is derivable:

A/(J\B)→ A/(J\B)

(A/(J\B)) · (J\B)→ A

(J · (J\B))�1 (A/(J\B))→ A

A/(J\B)→ (J · (J\B)) ↓1 A

Since the sequent (J · (J\B)) ↓1 A→ B ↓1 A is also derivable, it yields the
required statement.

3. Since A�j B ∈ Tpk, then s(A) ≥ 1 and s(A)− 1+ S(B) ≤ k, which implies
that (A/J) · B ∈ Tpk. It suffices to prove the statement for j = s(A) =
s(A/J) + 1. But (A�(s(A/J)+1) B) ∼ ((A/J) · J)�(s(A/J)+1) B ∼ (A/J) ·B
by parts 1 and 6 of Lemma 5, which is what was required.

Corollary 2. For any type A ∈ Tpk there is a continuous A′ ∈ Tpk, which is
conjoinable with A.

Proof. Induction on the number of discontinuous connectives in A. In every step
we apply Lemma 9 to decrease the number of discontinuous connectives.
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Definition 2. A type A ∈ Tpk is called reduced if it has no occurrences of the
type I and contains the basic type J and primitive types qj of strictly positive
sort only in subtypes of the form qj/J

s(qj).

Note that by definition every continuous reduced type is zero-sorted.

Lemma 10. For any types A,B,C from Tpk and any positive numbers i, j,
such that the considered types are correct, the following statements hold:

1. (A · Ci) · (B · Cj) ∼ (A · B) · Ci+j ,
2. (A · Ci)/(B · Cj) ∼ (A/B) · Ci−j ,
3. (B · Cj)\(A · Ci) ∼ (B\A) · Ci−j .

Proof. The first statements easily follows from Lemma 7. The second statement
is justified by the chain (A ·Ci)/(B ·Cj) ∼ (Ci ·A)/(Cj ·B) ∼ ((Ci ·A)/B)/Cj =
(Ci · (A/B))/Cj ∼ (A/B) · (Ci/Cj) ∼ (A/B) · Ci−j · (Cj/Cj) ∼ (A/B) · Ci−j ,
which follows from Lemmas 7, 5 and 6. It is straightforward to verify that all the
types in this chain belong to Tpk. The third statement is proved analogously.

Lemma 11. For any type A ∈ Tpk there exists a continuous reduced type Â,

such that the types A and Â · Js(A) are conjoinable.

Proof. Induction on the type A. We set p̂ = p for a primitive type p of sort 0
and q̂ = q/Js for a primitive type q of sort s > 0, also Î = Ĵ = p0/p0, where p0
is a new primitive type of sort 0. Then the induction base follows from the part
1 of Lemma 5 and Lemma 6.

It suffices to prove the lemma for continuous types, so there are two cases to
consider: A = B · C and A = B/C (the case A = C\B follows trivially since

B/C ∼ C\B). Then we set B̂ � C = B̂ � Ĉ for any � ∈ {·, /} and apply Lemma
10. The Lemma is proved.

Example 4. Let s(p1) = s(p2) = 0, s(q1) = s(q2) = 1, s(r) = 2. Consider the
continuous type (q2/((q1/(p1 · J)) · p2))\r of sort 1: it is conjoinable with the
type (((q2/J)/(((q1/J)/(p1 · (p0/p0))) · p2)) r) · J , which has the required form.

Let us rename all the primitive types of sort i > 0 as qi,j , j ∈ IN. For any qi,j
we introduce a corresponding primitive type q′i,j of sort 0. We call a q-image of
the type A ∈ Tpk the type A′, which is the result of replacing all the subtypes
of the form qi,j/J

i by the primitive type q′i,j .

Example 5. Let A = (((p1/(q2,1/J
2))/(q1,1/J))/(q1,2/J))\p2, then its 0-image

equals A′ = (((p1/q
′
2,1)/q

′
1,1)/q

′
1,2)\p2.

Lemma 12. Let A′, B′ be 0-images of the continuous reduced types A,B. Then
the equality �A� = �B� implies that also �A′� = �B′�.

Proof. Note that A and B do not contain discontinuous connectives, hence by
Lemma 3 the equality �A� = �B� is valid iff the condition �A�p = �B�p holds
for all primitive types. The counters of zero-sorted primitive types are preserved
during the conversion of types to their q-images. If qi,j is a primitive type of sort
i > 0 then it holds that �A′�q′i,j = �A�qi,j = �B�qi,j = �B′�q′i,j . Also �A′�J =

�B′�J = 0 which implies that �A′� = �B′� by Lemma 3. The lemma is proved.
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Lemma 13. Let A′, B′ be 0-images of the reduced types A,B. Then the state-
ment A′ ∼ B′ implies that also A ∼ B.

Proof. Let the types A′ and B′ be conjoinable and C′ be their join. Let C be the
type obtained from C′ by substituting all occurrences of q′i,j by the corresponding

type q′i,j/J
i. If the derivation of the sequent A′ → C′ is subjected to the same

procedure, we obtain the derivation of the sequent A → C. The derivation of
the sequent B → C is analogous. The lemma is proved.

Let us prove the main theorem of the paper. The key construction is taken
from theorem 1 in [7]. Let Tp0∼ denote the set containing equivalence classes
of 0-images of continuous types with respect to ∼. We denote the equivalence
class of the element A (which is merely the set of types conjoinable with A) by
[A]. Let us impose the group structure on the set Tp0∼, setting [A]∼ ◦ [B]∼ =
[A·B]∼, [A]

−1
∼ = [A\A/A]∼, 1 = [p/p]∼, where p is an arbitrarily chosen primitive

type. The definition is correct since the conjoinability relation is a congruence
on types.

Lemma 14. The structure 〈Tp0∼, ◦,−1, 1〉 forms an abelian group.

Proof. The accociativity of the group operation ◦ follows from the accociativ-
ity of · connective. The equality [A]∼ ◦ [B]∼ = [B]∼ ◦ [A]∼ follows from the
conjoinability of the types A · B and B · A in HDLk, thus ◦ is commutative.
Also [A]∼ ◦ [A]−1

∼ = [A · (A\A/A)]∼ = [A/A]∼ = 1, where the last equation
follows from the conjoinability of the types A/A and p/p. Finally, the relation
A ∼ A · (p/p) is valid for any A, which means the equality [A]∼ = [A]∼ ◦ 1. So
all the condition of the abelian group definition are satisfied and the lemma is
proved.

Theorem 1. It holds that A ∼k B if and only if �A� = �B�.

Proof. The necessity of the condition �A� = �B� is proved in Corollary 1, we
are to prove the sufficiency, let �A� = �B�. Since the conjoinability relation is
transitive by Corollary 2 it suffices to prove the theorem for continuous types,
so we assume that A and B are continuous. Then by Lemma 11 there exist
continuous reduced types Â and B̂, such that in case s(A) = s(B) = 0 the

relations A ∼ Â and B ∼ B̂, and in the case s(A) = s(B) = l > 0 the relations

A ∼ Â·J l and B ∼ B̂ ·J l hold. Then from Corollary 1 we deduce that �Â� = �B̂�.

Since conjoinability is the congruence relation from the similarity Â ∼ B̂ follows
the similarity A ∼ B. Then its enough to prove the statement for continuous
reduced types A and B.

Let A′ and B′ be 0-images of the types A and B; then by Lemma 13 it suffices
to prove that A′ and B′ are conjoinable in HDLk. By Lemma 12 the equality
�A′� = �B′� holds so it suffices to prove the theorem for 0-images of reduced
continuous types. Note that all the primitive subtypes of these types have sort
0. Let us denote by G0 the free abelian group generated by zero-sorted primitive
types. The remaining part of the proof repeats the proof of theorem 1 in [7].
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Consider the mapping h : G0 → Tp0∼, defined as h(p) = [p]∼ and h(p−1) =
[p\p/p]∼, and extend it to homomorphism from G0 to Tp0∼. Let us prove the
equalities h(�E�) = [E]∼ and h(�E�−1) = [E\E/E]∼ by induction on the struc-
ture of 0-image E. The induction base follows from the definition of the mapping
h.

Let us prove the induction step; there are two cases according to the main con-
nective of the type E = C �D, where � ∈ {·, /}. In the case of the · connective it
holds that h(�C ·D�) = h(�C��D�) = [C]∼◦ [D]∼ = [C ·D]∼. Also h(�C ·D�−1) =
h([C]−1[D]−1) = [C\C/C]∼ ◦ [D\D/D]∼ ∼ [(C\C/C) · (D\D/D)]∼. Then by
the second part of Lemma 5 and Lemma 6 we obtain (C\C/C) · (D\D/D) ∼
C\((C/C) · (D\D/D)) ∼ C\(D\D/D) ∼ C\((D\D) · (C/C))/D ∼ C\(D\(D ·
C)/C)/D ∼ (D ·C)\(D ·C)/(D ·C). Hence, h(�C ·D�−1) = [(D ·C)\(D ·C)/(D ·
C)]∼ = [(C ·D)\(C ·D)/(C ·D)]∼, which is what was required.

Now consider the case E = C/D, then h(�C/D�) = h(�C��D�−1) =
[C]∼ ◦ [D\D/D]∼ = [C · (D\D/D)]∼ = [(C · (D\D))/D]∼ = [C/D]∼. Also
h(�C/D�−1) = h(�D��C�−1) = [D/C]∼. By Lemmas 5 and 6 it holds that
D/C ∼ D/((C/D) · D) ∼ (D/D)/(C/D) ∼ (C/D)\(C/D)/(C/D), which is
what was required.

Hence, the condition h(�E�) = [E]∼ is valid for any 0-image E. Then the
equality �A′� = �B′� implies that [A′]∼ = [B′]∼ which means that the types A′

and B′ are conjoinable. The theorem is proved.

We have proved that the equality �A� = �B� is the criterion of conjoinability
in the calculus HDLk. Let us prove that it also forms the criterion in the full cal-
culus HDL. By Lemma 4 the equality of interpretation is a necessary condition.
On the other hand the conjoinability of A and B in the fragment HDLk a for-
tiori subsumes their conjoinability in HDL. Summarizing, the following criterion
holds:

Theorem 2. It holds that A ∼ B if and only if �A� = �B�.

Corollary 3. The types A,B ∈ Tpk are conjoinable in the calculus HDLk ex-
actly when they are conjoinable in the calculus HDL.

5 Conclusion

We have proved that the conjoinability relation in discontinuous Lambek calculus
is characterized by equality of type interpretations in the free abelian group gen-
erated by primitive types. The structure of the proof might be useful to study
how this calculus allows to simulate commutative and partially commutative
language phenomena. Since the same criterion also holds for Lambek-Grishin
calculus, it is also interesting to study, which requirements should satisfy a mul-
timodal calculus to have an abelian characterization of conjoinability.
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Abstract. We present a measure on the structural complexity of finite
and infinite trees and provide some first result on its relation to context-
free grammars and context-free tree grammars. In particular this measure
establishes a relation between the complexity of a language as a set, and
the complexity of the objects it contains. We show its precise nature and
prove its decidability for the formalisms we consider.

1 Introduction

We introduce a measure on the complexity of trees, working equally well on finite
and infinite trees. This finitary Cantor-Bendixson rank is a slight adaptation
from the concept of Cantor-Bendixson rank (CB-rank), which is however only
meaningful on infinite trees. Our modification makes the concepts relevant to the
theory of formal languages and grammars, a field where it seems to be unknown
so far.

The finitary CB-rank (henceforth: FCB-rank) provides a measure of the com-
plexity of trees, as they are for example used as representatives of derivations
of sentences/words in formal language theory. Its main advantage is: it is based
on discrete structural properties and thus highly informative on the structure
of a tree; and at the same time, it is insensitive to things as unary branches,
binary versus ternary branching etc. Prima facie, the FCB-rank does not say
anything about the complexity of a certain grammar, only about certain objects
it generates. We can refer to the latter as syntagmatic complexity, as a property
of a single object of a language, to the former as paradigmatic complexity, as a
property of the set as an entire collection. There is usually no immediate rela-
tion between the two – simple languages as Σ∗ can be generated by complicated
grammars.1 Using the FCB-rank, we can establish this sort of relation: we will
assign an FCB-rank to context-free grammars, and show that this rank corre-
sponds exactly to the hierarchy of k-linear languages. Moreover, we show that
the rank of a grammar can be effectively computed.

As we said, we relate the theory of formal grammars/languages to the theory
of relations/structures. This means we can talk about trees regardless of their
mode of generation. So it does not matter whether we talk about generation
trees of context-free grammars or trees generated by regular tree grammars, tree

1 With the well-known consequence that the universality problem is undecidable for
CFG.
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adjoining grammars, context-free tree grammars etc. We show how the FCB-rank
can be computed for (simple) context-free tree grammars (CFTG). Whereas for
CFG, bounded FCB-rank coincides with an established class of grammars, for
CFTG this allows us to define new classes of tree- and string languages.

2 Definitions: Trees, Derivatives, Cantor-Bendixson Rank

We will present trees as structures in a well-known fashion; we take the concepts
of linear order, partial order for granted.2

Definition 1. A well-founded tree is a structure (T,�), where T is a set (the
set of nodes) and � ⊆ T × T is a partial order with a smallest element r and
with the property that for each t ∈ T , the set {s : s� t} is 1. finite and 2. linearly
ordered by �.

If s� t, we say s dominates t. We denote the non-reflexive restriction of � by
�, and the immediate dominance relation by �i, defined by x �i y :⇐⇒ x � y
and x � z � y → x = z or y = z. Note that a tree in this sense does not yet
have a precedence order on the nodes which are not ordered by dominance; what
we have specified is only the dominance order. We will throughout this paper
assume that trees are well-founded.

A path in a tree T (or T -path) is a set P ⊆ T which is linearly ordered by
� and convex.3 A complete T path is a path which is maximal wrt. inclusion,
that is, is not a proper subset of any other T -path. The depth of a tree depth(T )
is the length of its longest path, where by length of a path P - as paths are sets
- we mean its cardinality |P |. If P is a complete path in T with t ∈ P , t is
�-maximal in P , then we also say that |P | is the depth of t (depth(t)), with
T intended. By a chain we denote a tree (T,�) where T is linearly ordered by
�. A full n-ary tree is a tree in which every node has zero or n children. A
complete n-ary tree is a full n-ary tree, such that if there is a leaf t with
depth(t) = k, then for all t′ ∈ T , depth(t′) = k if and only if t′ is a leaf (this
covers the case where there are no leaves).

Definition 2. Let T = (T,�) be a tree. We define the restriction T  S of T
to S ⊆ T as (S,��S), where ��S := � ∩ (S × S).

We say that S = (S,�) is a subtree of T = (T,�), if S is a tree, and
S = T  S for some S ⊆ T . We slightly abuse notation and write S ⊆ T for the
subtree relation; similarly, if t ∈ T , we also write t ∈ T . 4

2 For a good general introduction into the theory of relations and structures, consider
[3].

3 A subset P of a partially ordered set (Q,≤) is convex, if from x, y ∈ P , x ≤ z ≤ y
it follows that z ∈ P .

4 Note that, if we think of trees as graphs, a subtree of T need not be a contigu-
ous subgraph of the graph of T . Our definition of subtree is, up to isomorphism,
equivalent to an order theoretic definition, which says: S ⊆ T if there is an order
embedding i : S → T . Then S is the isomorphic copy of a subtree of T .



The Cantor-Bendixson Analysis of Finite Trees 187

Definition 3. The core c(T ) of a tree T is the set of nodes which lie on two
distinct complete paths of the tree: c(T ) := {t ∈ T : there are complete T -
paths P1, P2 ⊆ T , t ∈ P1 ∩ P2, and P1 �= P2}. Define the derivative of a tree
as d(T ) = T  c(T ). Furthermore, for n ∈ N, dn(T ) = d(dn−1(T )), where
d0(T ) = T .

The derivative of a tree cuts away all nodes which lie only on a single complete
path. T∅ denotes the empty tree, i.e. the tree with empty domain.

Definition 4. For T a tree, the finitary CB-rank FCB(T ) is defined as the
least natural number n such that dn(T ) = T∅. We put FCB(T ) = ω, if there is
no n ∈ N such that dn(T ) = T∅.

Some observations: every finite tree has a finite FCB-rank, and every finite tree
will eventually converge to T∅. If S ⊆ T , then d(S) ⊆ d(T ), and so FCB(S) ≤
FCB(T ). Furthermore, if s, t ∈ T , s � t and t ∈ d(T ), then s ∈ d(T ). There
are infinite trees T for which FCB(T ) is finite. FCB(T ) can be infinite in two
distinct cases: either there is an n ∈ N such that dn(T ) = dn+1(T ) �= T∅; that
is, our derivatives reach a fixed point. The other possibility is that for all n ∈ N,
dn(T ) � dn+1(T ), which entails that for all n ∈ N, dn(T ) �= T∅. If FCB(T ) = n,
then for any m ≤ n, there is S ⊆ T with FCB(S) = m.

The Cantor-Bendixson rank is originally used with infinite trees, where the
core is defined as in definition 3 with the additional requirement that paths be
infinite (see for example [10],[12]); and CB(T ) is the least ordinal α such that
dα(T ) = dα+1(T ). Skipping the infinity condition makes this notion applicable
in the finite; the other modification allows us to avoid some unwanted conclusions
in the infinite.5 Note that however our concept works equally well with infinite
trees. Consider some examples:

1. For the countably infinite complete binary tree T , we have FCB(T ) = ω,
because d(T ) = T .

2. Let T be the finite or infinite derivation tree of a regular string grammar.
Then regardless of depth(T ), FCB(T ) = 2.

3. Let T be the complete, at least binary branching tree of depth k. Then
FCB(T ) = k.

4. Let T be a tree of the form T1[T2[T3[...]]], where Ti is the complete binary tree
of depth i, and the root of Ti+1 is immediately dominated by an arbitrary
leaf of Ti. Then we have for all n ∈ N, dn(T ) �= dn+1(T ), and so we have
FCB(T ) = ω.

5. If FCB(T ) is finite, then dFCB(T )(T ) = T∅.

The following lemma will help in understanding the concept, and in some
sense generalizes the above examples:

5 Under the definition of CB-rank, the countable infinite complete binary has CB-rank
0, contrary to finite trees. So in the infinite, we lose the property of monotonicity:
S ⊆ T 	⇒ FCB(S) ≤ FCB(T ).
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Lemma 5. For k ∈ N, FCB(T ) ≥ k, if and only if there is a complete binary
branching subtree of T with depth k.

Proof. If : Easy exercise.
Only if : by induction on the (inverse) derivation. Assume that FCB(T ) ≥ k.

We have T∅ ⊆ dk(T ) � dk−1(T ). So dk−1(T ) must contain a complete binary
tree of depth ≥ 1 (complete binary is trivially satisfied for depth 1, that is, the
singleton tree). Next we make the induction step: assume that for 1 ≤ i < k,
dk−i(T ) contains a full binary tree of depth i. As � is acyclic and we are in
the finite, we have a set L of leaves, which are maximal with respect to � in
dk−i(T ). As dk−i(T ) �= dk−(i+1)(T ), these nodes must have been in the core of
dk−(i+1)(T ). Consequently, for each l ∈ L, there must have been two nodes m,n,
such that l � m, l � n, and m,n are on distinct paths. Given these nodes, we
know that dk−(i+1)(T ) contains the full binary tree of depth i+ 1. 


Another observation we now can make is the following: if d(T ) = T , then
either T = T∅, or T is infinite, more precisely: every node in T dominates a
complete infinite binary subtree.

We will not ponder on questions of psycholinguistic nature, but for complete-
ness of exposition, we will very shortly illustrate what in our view are the major
advantages of the FCB-rank with respect to other current (linguistic) methods of
measuring the complexity of (finite) trees (see for example [5]). (1) FCB-rank has
values inN∪{ω}. (2) FCB-rank is computed locally from themost complex subtree
(recall Lemma 5). (3) Given the FCB-rank of a tree T , we can precisely say what
kind of subtrees donot occur in T , andwhich ones do, andwhich ones can; themea-
sure is very informative about structure. (4) TheFCB-rank ismonotonous over the
subtree relation: if S ⊆ T , then FCB(S) ≤ FCB(T ). This does not hold formany
othermeasures, as canbe easily shown. (5)FCB rank is insensitive tounary branch-
ing; moreover a tree of the form [[..][..][..]] 6 and a tree of the form [[..][[..][..]]] get
the same FCB rank. In our view, this point speaks in favor of FCB-rank, as these
are so to speak variants encoding the same dependencies.

3 Ordered Trees and Labelled Trees

The trees we presented in the previous section were unordered; there was no
precedence specified between elements not dominating each other. Trees gener-
ated by phrase structure grammars usually have a precedence order specified as
an intrinsic feature.

Definition 6. A well-founded ordered tree is a structure (T,�,�), where (T,�)
is a well-founded tree, �⊆ T × T is a partial order, for each t ∈ T , t � t′,
{s : t�i s} ∩ {s : s � t′} is finite, and where

1. for arbitrary elements s, t, we have s � t or t � s if and only if s � t and
t � s;

2. if s � t, then for all u, v, if s� u, t� v, then u � v.

6 For example linguists sometimes dislike such subtrees, for rather ideological reasons as
X-Bar theory or assumption of binary branching
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We write an ordered tree as (T ,�), but in the sequel also simply as T , as
long as misunderstandings can be excluded. The reason is that our definition
of a FCB-rank can be equally well applied to ordered trees as to trees. Define
d(T ,�) = (d(T ),��d(T )). We can easily check that the derivative of an ordered
tree (T ,�) is an ordered tree, and FCB(T ,�) = FCB(T ). So the order �, to
which we also refer as precedence, does not play any role for the derivative.

An (ordered) labelled tree is a structure (T , X1, ..., Xn), where T is an
(ordered) tree, and X1, ..., Xn ⊆ T , such that for i �= j, Xi ∩ Xj = ∅, and⋃

1≤i≤nXi = T .7 X1, ..., Xn are the labels of T . Given a labelled tree T =
(T,�, (�), X1, ..., Xn), U ⊆ T , we define T  U := (U,��U , (��U ), X1∩U, ..., Xn∩
U). This is again an (ordered) labelled tree, so labels have no influence on core,
derivatives etc., and so we can define the FCB-rank of labelled trees in the usual
fashion.

4 Context-Free Grammars and Derivation Trees

Context-free grammars are very well-known; so we just fix our conventions. A
context-free grammar (CFG) is a tuple (S,N , A,R) with S ∈ N (note the font
to avoid confusion), N the non-terminals, A the set of terminals, and R ⊆
N × (N ∪ A)∗ the set of production rules. To stick with conventional notation,
we write N → α, if (N,α) ∈ R; we assume lowercase Greek letters to be ranging
over (N ∪A)∗. The sets A,N , R are supposed to be finite. Derivability is defined
as follows: let �G⊆ (N ∪ A)∗ × (N ∪ A)∗ be defined by: if N → α ∈ R, then
for all β1, β2 ∈ (N ∪ A)∗, (β1Nβ2, β1αβ2) ∈�G, and nothing else. Let �∗G be
the reflexive and transitive closure of �G. We stick to common usage and write
α �∗G β instead of (α, β) ∈�∗G.

We now define how what is usually called the “derivation tree” of a CFG
relates to the relational notion of trees. Given a tree T , its elementary subtrees
are its subtrees S of depth 2, where for t the root of S, t′ �= t, t′ ∈ S if and only
if t �i t

′ in T . Given a CFG G = (S,N , A,R), we say a well-founded, ordered
labelled tree TL = (T,�,�, (N)N∈N , (a)a∈A) is a derivation tree of G, if for
r the unique �-minimal element of the tree, we have r ∈ S (henceforth, we
will stick to the convention that r denotes the root), and for each elementary
subtree T ⊆ TL, T = {s1, ..., si}, s1 � s2, ..., si and s2 ≺ ... ≺ si, we have
s1 ∈ X1, ..., si ∈ Xi only if there is a rule X1 → X2...Xi ∈ R. We denote the set
of derivation trees of a grammar G by D(G). If we omit the condition that r ∈ S,
we say the tree is G-conform (note that we omit the condition that leaves have
terminal labels; this will have some importance in the sequel). What is crucial
for connecting results from formal language theory to structure theory is the
connecting lemma, for which we omit the proof.

Lemma 7. (Connecting Lemma) Let G = (S,N , A,R) be a CFG, X0, ..., Xi ∈
N . We have T ∈ D(G) if and only if for all subtrees S ⊆ T the following

7 In words: every t ∈ T has exactly one label. One sometimes assumes (equivalently)
a labelling function; we choose another way to stay within the boundaries of strict
relation theory.
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holds: for all s, t1, ..., ti ∈ S, where s is the root of S and t1 ≺ ... ≺ ti, we have
s ∈ X0, t1 ∈ X1, ..., ti ∈ Xi if and only if X0 �∗G α1X1α2...αiXiαi+1.

The proof is by induction on the number of derivation steps. This notion thus
captures our intuition on derivation trees, except for one important detail: we
also allow for infinite derivation trees. This will be important for what is to
follow, because we are interested in grammars generating trees with unbounded
FCB-rank.8

5 Decidability Results

We now define what it means for a CFG to have a certain FCB-rank; given a set
M of ordinals, by the supremum M , in symbols sup(M), we denote the smallest
ordinal which is larger than (or equal to) all elements of M .

Definition 8. Given a CFG G, define the FCB rank of G by FCB(G) :=
sup{FCB(T ) : T ∈ D(G)}.

In our case, the supremum actually coincides with the maximum: if a CFG has
derivation trees of arbitrarily large FCB-rank, it has a derivation tree of infinite
rank (we prove this later on, lemma 11). Given a grammar G, its FCB-rank can
be finite or infinite, but it is well-defined in any case. The first main result shows
that we can effectively compute the FCB-rank of a CFG. But first we need to
introduce a construction which is essential for the proof of the theorem.

Let I be an arbitrary index set, {Ti : i ∈ I} be a set of pairwise disjoint
trees.9 By ⊗{Ti : i ∈ I} we denote the tree (

⋃
i∈I Ti∪{r},�), where r /∈

⋃
i∈I Ti

and for s �= r �= t, s � t if and only if s �Ti t for some i ∈ I, and r � s for all
s ∈ (

⋃
i∈I Ti ∪ {r}). By convention, we put ⊗∅ = ⊗{T∅} = ({r}, {〈r, r〉}), the

singleton tree. The proof of the first main theorem relies on the following simple,
beautiful property, which also illustrates the “structural locality” of the notion
of core and derivative.

Lemma 9. (Locality Lemma) Assume {Ti : i ∈ I} contains at least 2 non-empty
trees. Then d(⊗{Ti : i ∈ I}) = ⊗{d[{Ti : i ∈ I}]} := ⊗{{d(Ti) : i ∈ I}}

Proof. 1. d(⊗{Ti : i ∈ I}) ⊆ ⊗{d[{Ti : i ∈ I}]}. Assume t ∈ d(⊗{Ti : i ∈ I}).
Assume t ∈ Ti for some i ∈ I. Then there are two distinct paths P1, P2 starting in
t and each containing a leaf, where all elements in this paths are in Ti; therefore,
8 For the reader who distrusts in infinite trees (as does the author) I should add:
we could also restrict ourselves to finite trees, and then the statement: “there is a
T ∈ D(G) with infinite FCB-rank” translates: “there is no finite upper bound to the
FCB-rank of finite trees T ∈ D(G)”, and the two statements can be shown to be
equivalent. But the latter usually requires an additional step, so using infinite trees
is a matter of convenience.

9 We use this as a shorthand for: trees with disjoint domains. In the sequel, for this
and similar constructions we will always assume that trees are disjoint.
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t ∈ d(Ti), and so t ∈ ⊗{d[{Ti : i ∈ I}]}. Otherwise, assume we have t = r. Then
by definition, r ∈ ⊗{d[{Ti : i ∈ I}]}.

2. ⊗{d[{Ti : i ∈ I}]} ⊆ d(⊗{Ti : i ∈ I}). Assume t ∈ ⊗{d[{Ti : i ∈ I}]}. Then
either t ∈ c(Ti) for some i ∈ I, and so t ∈ c(⊗{Ti : i ∈ I}), because the core
is monotonous over the subtree relation. Or t = r. As {Ti : i ∈ I} contains two
non-empty trees, there are at least two complete paths in ⊗{Ti : i ∈ I}, and so
r ∈ d(⊗{Ti : i ∈ I}).

This shows equality of the domains; we skip the proof of equality of relations,
which follows in a straightforward fashion.10 


Corollary 10. Let {Ti : i ∈ I} be a set of trees. Put k = max{FCB(Ti) : i ∈ I}.

1. Assume there are Ti, Tj : i �= j, i, j ∈ I, such that FCB(Ti) = FCB(Tj) = k.
Then FCB(⊗{Ti : i ∈ I}) = k + 1.

2. Assume there are no Ti, Tj : i �= j, i, j ∈ I, such that FCB(Ti) = FCB(Tj) =
k. Then FCB(⊗{Ti : i ∈ I}) = k.

Proof. 1. Assume we have FCB(Ti) = FCB(Tj) = k. Then dk−1(Ti), dk−1(Tj)
are two non-empty chains. As they are disjoint, there are two complete paths
through r in dk−1(⊗{Ti : i ∈ I}) = ⊗(dk−1[{Ti : i ∈ I}]. Therefore, dk(⊗{Ti :
i ∈ I}) = ({r},��{r}), and so, FCB(⊗{Ti : i ∈ I}) = k + 1.

2. Assume there is only one T ∈ {Ti : i ∈ I} such that FCB(T ) = k, and
all other trees have strictly smaller FCB-rank. It follows that for s /∈ T ∪ {r},
we have s /∈ ⊗(dk−1[{Ti : i ∈ I}]) = dk−1(⊗{Ti : i ∈ I}). Moreover, dk−1(T )
is a chain; so dk−1(⊗{Ti : i ∈ I}) = ⊗{dk−1(T )}, which is also a chain; so
dk(⊗{Ti : i ∈ I}) = T∅. 


Lemma 11. (1) If for a CFG G = (S,N , A,R), we have FCB(G) = ω, then
there is T ∈ D(G) such that the complete infinite binary tree is a subtree of T ;
moreover, (2) there is a reachable N ∈ N such that N �∗G αNβNγ for some
α, β, γ ∈ (N ∪A)∗.

Proof. We first prove (2) by contradiction. Assume FCB(G) = ω. Then for any
k ∈ N, there is T ∈ D(G) with FCB(T ) ≥ k. Choose T with FCB(T ) ≥ |N |+1.
Then take the root r with label S. r dominates two subtrees S1,S ′1 of rank ≥ |N |
(see lemma 13). If nodes with label S occur in both S1,S2, then (2) follows; if not,
there is a subtree of rank ≥ |N |, in which only |N |− 1 labels occur (S does not).
Take its root t with label X . It dominates two subtrees S2,S ′2 of rank ≥ |N |− 1.
If X occurs in both S2,S ′2, then (2) follows; if not, there is a subtree of rank
≥ |N |−1, in which only |N |−2 labels occur (S, X do not). We iterate this, until
we are left with a subtree of rank ≥ 1, in which 0 labels occur - contradiction,
as our labelling is exhaustive. Thus there are t, t′, t′′ ∈ T with t, t′, t′′ ∈ X for
some label X , t� t′, t′′ and t′ ≺ t′′. By the connecting lemma, this holds if and
only if X �∗G αXβXγ.

10 Note that if {Ti : i ∈ I} does not contain two non-empty trees, the result does not
obtain: let C be a chain. d(⊗{C}) = T∅, and ⊗(d(C)) 	= T∅.
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Now (1) follows easily: by S �∗G αNβ, N �∗G αNβNγ and the connecting
lemma we construct a tree having the complete infinite binary tree as a subtree.
Take T , in which there are infinitely many distinct t, t′, t′′ ∈ T such that t, t′, t′′ ∈
N , and t� t′, t′′ and t′ ≺ t′′ (this exists by the connecting lemma). Then there
is a subtree S ⊆ T which consists only of the nodes s ∈ N ; this is a complete
infinite binary tree. 


Theorem 12. Given a context-free grammar G, there is an algorithm which
computes FCB(G).

Proof. Part 1: the algorithm
Assume without loss of generality that every non-terminal is reachable; all

those who are not can be thrown out anyway.
a) The infinite case: we check whether FCB(G) = ω.
It is well-known that we can compute for any N ∈ N the set der1G(N) :=

{M : N �∗G αMβ}.11 From this it follows that we can also compute der2G(N) :=
{(N1, N2) : N �∗G αN1βN2γ}; we quickly explain the proof: we transform a
grammar G to G′ by adding non-terminals in N ×N , and rules N → (N1, N2) if
N �G αN1βN2γ (NB: �G is not the reflexive and transitive!); furthermore,
if N1 �∗G αN3β, N2 �∗G α′N4β

′, then we add rules (N1, N2) → {(X,Y ) :
X ∈ {N1, N3}, Y ∈ {N2, N4}}. This procedure terminates, because the set of
possible pairs is finite, and we can compute der1G(N) for each N ∈ N ; the
only point where we introduce new pairs is for the immediate derivability �G,
which is trivially decidable. Call the resulting grammar G′. It can be shown that
(N1, N2) ∈ der2G(N) if and only if (N1, N2) ∈ der1G′(N). Now if in a grammar
G = (S,N , A,R) we have an N ∈ N , such that (N,N) ∈ der2G(N), then we put
FCB(G) = ω.

b) The finite case. If FCB(G) �= ω, proceed as follows:
1. Pick out all G-rules of the form N → αaβ where a ∈ A. If αβ �= ε, put

val(N) := 2, otherwise, val(N) := 1.
2. If there is a non-terminal N such that N →M ∈ R for some M such that

val(M) := n, val(N) ≤ n, we put val(N) := n.
3. If there is anN such thatN → αMβOγ ∈ R, wheremin{val(M), val(O)} ≥

n, and val(N) ≤ n, we put val(N) := n+ 1.
4. Iterate steps 2 and 3 until we cannot assign any higher value to any non-

terminal.
5. Put FCB(G) = val(S).
Importantly, this procedure will converge only if there is no N ∈ N such that

N �∗G αNβNγ; so we first have to check whether FCB(G) = ω.

Part 2: Correctness and completeness
a) The infinite case
Completeness : It follows from lemma 11 (2) that if FCB(G) = ω, we have

N ∈ N with N �∗G αNβNγ, which is our algorithm can decide.

11 For a more recent reference on decision problems of CFG, consider [8].
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Correctness : If for G = (S,N , A,R), N ∈ N , we have N �∗G αNβNγ, such
that our algorithm assigns the grammar the FCB-rank ω, then there is T ∈ D(G)
with FCB(T ) = ω; see the construction in proof of lemma 11 (1).

b) The finite case
Assume FCB(G) �= ω. Then we can establish by induction that we get the

correct rank: we assign the correct rank to the elementary trees which are con-
form to a grammar G (that is, 1 or 2). And if we assign the correct values to
the elementary trees, then we assign the correct values to larger G-conform trees
when we construct G-conform trees with the ⊗-method, as follows from corollary
10. Moreover, as the number of non-terminals is finite, the possible trees of rel-
evant (binary) structure become less and less, otherwise we have FCB(G) = ω;
so the procedure terminates. 


6 Expressive Power

The next question is: what is the class of languages for which there is a CFG
with bounded FCB-rank?12 Recall that a context-free grammar is linear, if
every rule in R has the form: N → αN ′β with α, β ∈ A∗. A language is linear
if it is generated by some linear CFG. Obviously, linear grammars are related
to bounded FCB-rank: L is linear if and only if there is a grammar G such
that L(G) = L and FCB(G) ≤ 2. This is fairly straightforward. But note that
there are grammars G with FCB(G) ≤ 2 which are not linear: we might have
a rule S → N1N2N3, where N1, N3 only generate unary branches. These can of
course be brought into linear form; but we have to be careful in distinguishing
properties of grammars and languages. For simplicity, we will mostly assume
that our CFGs do not have unary rules; call such grammars neat. Then we can
easily check that: G is linear if and only if G is neat and FCB(G) ≤ 2. We now
generalize this result. Let A be an alphabet. A (linear) substitution is a map
σ : A→ {La : a ∈ A}, where each La is a (linear) language; this map is extended
to strings and sets in the usual fashion, and can be applied to arbitrary languages
L ⊆ A∗ (we use square brackets f [−] to indicate the pointwise extension of a
function to subsets of the domain. In general, if the La : a ∈ A are all contained
in a class of languages C, then we say σ is a substitution into C. A linear
grammar substitution G = (S,N , A,R) by a set {Ga : a ∈ A} of linear
grammars is obtained by substituting all occurrences of a terminal a in R by
SGa , and then taking the union of the rules of {Ga : a ∈ A} with the modified
rules of G. Obviously, there is a close correspondence of linear substitutions
and linear grammar substitutions. As this is obvious and well-known, we will
be sometimes a bit sloppy when moving from grammars to languages and vice
versa, avoiding some tedious details.

12 In this section, we presuppose familiarity of the reader with standard techniques in
formal language theory. For those who want some background in this topic, we refer
to [1],[8].
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Call a language of the form σk−1[...σ1[L]], where L is linear and σ1, ..., σk−1

are linear substitutions, k-linear; we denote the class of k-linear languages by
k-LIN. The hierarchy of k-linear languages is well-known (see [1],p.209), and
it has been shown in [4] that these classes form a proper infinite hierarchy.13

Before we can present the main theorem connecting the FCB-rank with k-LIN,
we need to establish some additional results.

Given a tree T , t ∈ T a node, we define rank(t, T ) as follows: if there is n ∈ N

such that t /∈ dn(T ), then rank(t, T ) is the smallest n′ such that t /∈ dn
′
(T );

and ω otherwise. It is obvious that FCB(T ) ≥ k if and only if there is t ∈ T
such that rank(t, T ) = k, and for r the root of T , FCB(T ) = rank(r, T ). The
first simple lemma is the following:

Lemma 13. Given a tree T , we have FCB(T ) ≥ k+ l− 1, if and only if there
is a subtree S ⊆ T , such that 1. for all leaves s of S , we have rank(s, T ) = k,
and FCB(S) = l

Proof. If : As the rank of the leaves of S is k, we have S ⊆ dk−1(T ); as
FCB(S) = l, we have dl−1(dk−1(T )) �= T∅.

Only if : Assume FCB(T ) ≥ k + l − 1. Put S ′ = dk−1(T ). For all leaves s
of S ′, we have rank(s, T ) = k. Moreover, FCB(S) ≥ l, because FCB(T ) ≥
k + l − 1. We thus have to choose an appropriate subtree of S ⊆ S ′. By the
subtree properties, this tree exists. 


The next result concerns a property of substitutions. For two (linear) sub-
stitutions σ1, σ2, define σ1 ◦ σ2 by σ1 ◦ σ2(a) = σ1(σ2(a)). σ1 ◦ σ2 is again
a substitution (though not necessarily a linear one, if both σ1, σ2 are linear).
It is easy to see that for any language L, σ1[σ2[L]] = σ1 ◦ σ2[L], for if w ∈
σ1 ◦ σ2[L], then there is a1...ai ∈ L, and w ∈ σ1 ◦ σ2(a1)...σ1 ◦ σ2(ai); con-
sequently, w ∈ σ1(σ2(a1))...σ1(σ2(a)), and thus w ∈ σ1[σ2[L]]. Conversely, if
w ∈ σ1[σ2[L]], then there is a1...ai ∈ L, and w ∈ σ1(σ2(a1))...σ1(σ2(ai)). Con-
sequently, w ∈ σ1 ◦ σ2(a1)...σ1 ◦ σ2(ai), and w ∈ σ1 ◦ σ2(a1...an) ⊆ σ1 ◦ σ2[L].
From this, we immediately obtain the following:

Corollary 14. 1. σ1 ◦ (σ2 ◦ σ3)[L] = (σ1 ◦ σ2) ◦ σ3(L).
2. σ1[..[σk[L]]...] = σ1 ◦ ... ◦ σk[L].
3. If σ1 is a substitution into k-LIN, σ2 into l-LIN, then σ1◦σ2 is a substitution

into k + l-LIN.

1. and 2. are immediate, 3. follows the easily from 1. and 2. We are now ready
for the second main theorem.

Theorem 15. There is a CFG G with L(G) = L and FCB(G) ≤ k + 2, if and
only if L ∈ k-LIN.

13 Note that 2-LIN is already a superclass of the class of languages recognized by
k-turn pushdown automata, that is, by PDA which can change from pushing to
popping and vice versa at most k times (see [1] for reference). This is because each
such language is obtained by a linear substitution on a finite language, and every
finite language is linear.
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Proof. If : Induction. For k = 0 this means: if L is linear, then there is a G with
L(G) = L and FCB(G) ≤ 2. We leave this to the reader. Now assume (induction
hypothesis) that for some k, if L ∈ k-LIN, then there is a G with L(G) = L
and FCB(G) ≤ k + 2. Assume (induction step) L′ ∈ k + 1-LIN. Then there
is L ∈ k-LIN and a linear substitution σ such that L′ = σ[L]. Furthermore,
there is G with L(G) = L and FCB(G) ≤ k + 2. We can now effect a linear
grammar substitution of G simulating σ, thereby obtaining G′ with L(G′) = L′.
Now take an arbitrary T ∈ D(G′). It consists of a tree S in D(G), with (possibly
empty) linear grammar derivation trees departing from its leaves. If we now take
d(T ), all these linear trees become chains, and as they are attached to leaves of
S, we have FCB(d(T )) = FCB(S), and so FCB(T ) ≤ FCB(S) + 1, and so
FCB(G′) ≤ FCB(G) + 1.

Only if : Induction. The base case is simple: if FCB(G) ≤ 2, then G is lin-
ear (modulo unary branching, which can be eliminated anyway). Now assume
(induction hypothesis) that for all grammarsG with FCB(G) ≤ k+2, L(G) ∈ k-
LIN. Induction step: assume FCB(G) ≤ k+3. Then by lemma 13, for each tree
T ∈ D(G), we have a subtree S ⊆ T , with FCB(S) = 2, and for each leaf
s of S, we have rank(s, T ) ≤ k + 2. Now for each of these s, the non-terminal
corresponding to its label derives a set of trees of FCB-rank ≤ k+2, as otherwise
it contradicts, with lemma 13, our induction hypothesis. Moreover, by induction
hypothesis, the languages derivable from these non-terminals (for N , this is de-
fined as {w ∈ A∗ : N �∗G w}) are in k-LIN. Call the grammars which result
each from making one of these non-terminals the start-symbol of the grammar
GN : N ∈ N (however, that does not concern all non-terminals, only those which
are only labels of nodes of rank ≤ k+2!). This for the “outer trees”. The “inner
trees” S of FCB-rank 2 (modulo unary branching) are all linear grammar deriva-
tion trees, and if we consider the language formed by their leaves, we get a linear
language. We can now construct a grammar which generates exactly the “inner
trees” of FCB-rank 2 of the G-derivation trees, such that the leaves, instead
of being non-terminals, are terminals being in one-to-one correspondence with
non-terminals of G (we write aN : N ∈ N ). Call this grammar Gi; it is clear that
L(Gi) is linear. We can now obtain L(G) as follows: define σ by σ(aN ) = L(GN )
(on other letters, let it compute the identity). We now have σ[L(Gi)] = L(G),
and by construction and corollary 14, σ[L(Gi)] is a k + 1-linear language, so
L(G) ∈ k + 1-LIN. 


We have already mentioned the following result of [4]:

Theorem 16. (Greibach) For each k ∈ N, k-LIN � k + 1-LIN.

As an immediate consequence, it follows that:

Corollary 17. CFL �
⋃

k∈N
k-LIN; there are context-free languages L such

that L /∈ k-LIN for all k ∈ N.

Proof. Assume the contrary: for some k ∈ N, k-LIN ⊇ CFL. As for all n ∈ N,
n-LIN ⊆ CFL, that means that k-LIN ⊇ (k + 1)-LIN, contradiction. 
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So the classes of languages generated by CFG of FCB-rank k also form a
proper, infinite hierarchy; furthermore, there are CFLs for which no grammar of
bounded FCB rank exists:

Corollary 18. For every k ∈ N, there is a language L such that there is a CFG
G with FCB(G) = k+1 and L(G) = L, but no CFG G′ with FCB(G′) ≤ k and
L(G′) = L. Moreover, there is a CFL L, such that if L(G) = L, it follows that
FCB(G) = ω.

The typical candidate for CFLs which are not in k-LIN is the family of Dyk-
languages over alphabets of arbitrary cardinality. We do not have to explain
that inverse implications of the form: “if FCB(G) > k or FCB(G) = ω, then
L(G) is X” are not legitimate: as is well-known, it is undecidable whether a CFG
generates a regular or linear language. So knowing the FCB rank of a CFG does
not help us in establishing a lower bound of the complexity of its language, it
only might give an upper bound.

7 Beyond Context-Free Grammars

We have seen that a bounded FCB-rank for CFG corresponds to a well-established
class of languages. The interesting thing is that our treatment is by no means re-
stricted to CFG, as trees arise in many ways in formal language theory: in partic-
ular, we can look at formalisms beyond CFG. There are two primary ways to go:
firstly, there are formalisms which keep the rule format of context-free grammars,
while allowing operations on strings which are more complex than just concatena-
tion. The most prominent example for this are multiple context-free
grammars (MCFG,[11]). On the other side, there are formalisms extending rule-
schemes directly to trees, such as regular tree grammars (RTG), tree-adjoining
grammars (TAG), andmore generally, context-free tree grammars (CFTG) (see [9],
[2]). Regarding formalisms as MCFG, there is little of interest we can say: deriva-
tion trees are usually defined in exactly the same manner as in CFG. In this sense
all tree-based results for CFG transfer to MCFG. What changes of course are the
language-theoretic properties, but those are not the results we are interested in in
the first place. So wewill use the rest of this paper to showhow the FCB-rankworks
for tree grammars.

We have mentioned RTG, TAG and CFTG. For reasons of space, we will only
define and look at (a particular class of) CFTG, because the two former can
be seen as special cases of the latter, and so they are a fortiori covered by our
treatment.14 The foundation for tree grammars is the representation of finite,
ordered, labelled trees as terms. Let Σ be an alphabet. term(Σ) is defined as the
smallest set such that 1. if a ∈ Σ, then a ∈ term(Σ), and if t1, ..., ti ∈ term(Σ),
a ∈ Σ, then a(t1, ..., ti) ∈ term(Σ). Let X be a countable set of variables.
termX(Σ) is defined as follows: if a ∈ Σ, then a ∈ termX(Σ); if x ∈ X , then

14 More precisely, an RTG is a CFTG where all non-terminals have arity 0, and TAG
correspond to simple monadic CFTG, see definitions below.



The Cantor-Bendixson Analysis of Finite Trees 197

x ∈ termX(Σ); if t1, ..., ti ∈ termX(Σ), a ∈ Σ, then a(t1, ..., ti) ∈ termX(Σ).
We generally use t as meta-variable for terms. By t[x1, ..., xi] we intend a term,
such that the variables occurring therein are among {x1, ...xi}. It is easy to see
how to translate terms into finite, ordered, labelled trees (up to isomorphism).
A problem is that a term does not specify the names of nodes, yet we need some
address to identify nodes. We therefore assume that in trees corresponding to
terms, nodes are named as in a tree domain. A tree domain is a set T ⊆ N∗

(we think here of numbers as abstract entities, not in binary, ...,decimal etc.
representation), such that for n,m ∈ N, n,m ∈ N∗, if nm ∈ T , then n ∈ T ,
and if nnm ∈ T , m < n, then nm ∈ T . Given a tree domain, we define the
precedence order � as the (reflexive) lexicographic order lex, and � as the prefix
relation pref. Tree domains give us a “canonical” node labels for any (ordered)
tree, and so for t ∈ termX(Σ), we denote by t̂ its associated canonical tree.
In the sequel, we will sometimes mix notions of trees and notions of terms;
this will usually not lead to confusion and keep the treatment to a manageable
size. Contrary to subtrees, subterms are generally thought to be contingent: if
t = a ∈ Σ, then subterm(t) = {a}; if t = a(t1, . . . , ti), then subterm(t) =

{t} ∪
⋃i

j=1 subterm(ti). We write t[t1, . . . , ti] if t1, . . . , ti ∈ subterm(t). For

σ1, . . . , σi ∈ Σ, we write t〈σ1, ..., σi〉, if there are nodes t1, ..., ti in t̂ labelled
with σ1, ..., σi, respectively, and for no two distinct tn, tm ∈ {t1, ..., ti}, we have
tn�tm. Let t[x1, . . . , xi] ∈ termX(Σ) with x1, . . . , xi ∈ X . By t[t1/x1, . . . , ti/xi]
we denote the term which results by substituting t1 for x1, . . . , t1 for x1.

A CFTG is a tuple (S,N , Σ,R), where N and Σ are disjoint, finite sets (of
terminals and non-terminals), S ∈ N , and R ⊆ (termX(Σ∪N ))2, where all rules
in R have the form (N(x1, ..., xi), t[x1, ..., xi]), by which we hereby include the
possibility that x = 0, and thus N(x1, ..., xi) = N . In general, we assume that
non-terminals have a fixed arity, that is, they always occur with the same number
of variables/subterms inR. The derivability relation �G⊆ (termx(Σ∪N ))2, forG
a CFTG, is defined as follows. We have t[N(t1, ..., ti)] �G t[t′[t1/x1, ..., ti/xi]],
iff (N(x1, ..., xi), t

′[x1, ..., xi]) ∈ R; �∗G is the reflexive and transitive closure,
and L(G) = {t ∈ term(Σ) : S �∗G t}. We now define OI-derivations: We
write t[N(t1, ..., ti)] �GOI t[t′[t1/x1, ..., ti/xi]], if in t̂[N(t1, ..., ti)], there is
no node labelled by a non-terminal which dominates (a node labelled by) the
non-terminal we expand in the derivation. �∗GOI is the reflexive and transitive
closure of �GOI . For t ∈ termX(Σ), we have S �∗G t if and only if S �∗GOI t;
this is an important fact of which we will make use in the sequel.

A CFTG is said to be linear, if for (N(x1, ..., xi), t[x1, ..., xi]) ∈ R, each
x1, ..., xi occurs at most once in t[x1, ..., xi]; it is non-deleting, if each variable
occurs at least once; grammars which are both linear and non-deleting are said
to be simple. To simplify our treatment, we will assume that our grammars
are simple. Note that this restriction does not come without loss of generality
(see [6]). But it is also well-known that linear and non-deleting CFTG still have
considerable expressive power: for example, TAG are equivalent to CFTG which
are simple and allow at most one variable to occur on each side of a rule (modulo
some details, see [7]). Simple CFTG are particularly interesting, because the
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languages they generate are semilinear. Note that for t �∗G t′, we also allow
variables to occur in t, t′, but by definition of �∗G and assumption of non-deleting
rules, a variable x then occurs in t if and only if it occurs in t′. Furthermore,
we will assume (this time without loss of generality) that all nonterminals of our
CFTG are both reachable and groundable. FCB-rank of a CFTG is defined in
a straightforward fashion by FCB(G) := sup{FCB(t̂) : t ∈ L(G)}. Note that
we do not use derivation trees, but the trees generated by the grammar. As we
do not generate infinite trees, we cannot use maximum instead of supremum, so
we have to consider this in our constructions.

By yield : term(Σ) → Σ∗ we denote the function mapping trees to words by
forming the concatenation of their leaves; it is extended to sets in the canonical
fashion. The above mentioned correlation of TAG and simple, monadic CFTG
entails that we get a CFTG G with FCB(G) = 2, where yield(L(G)) is not
context-free. Consider the rules:

S→ e(a,N(e(b, c)), d); N(x)→ e(a,N(e(b, x, c)), d); N(x)→ e(x).

This yields {anbncndn : n ∈ N}; yet, all derived trees have rank 2.

8 FCB-Rank of CFTG

We will now show that it is decidable whether FCB(G) = ω for a simple CFTG
G. The procedure is more complicated than for CFG, so we will show its steps
separately. A particularly useful normal-form for CFTG would be one where all
trees on the right-hand side of rules have depth 2; this however is not avail-
able for the general case we consider. We will however assume without loss of
generality that CFTG-rules are in non-terminal normal form (NTNF): all
right-hand sides of rules have the form τ(t1, ..., ti), where τ ∈ N ∪ Σ, and
t1, .., ti ∈ termX(N ). We thus do not allow terminals on the right hand side,
except for the root of term-trees. It is easy to see that any CFTG can be brought
into nonterminal normal form without substantial modification. Recall that we
assume that all non-terminals are reachable and groundable.

Lemma 19. Let G be a simple CFTG. FCB(G) = ω, if and only if there is an
N ∈ N , such that N(x1, ..., xi) �∗G t〈N,N〉.

Proof. If : Assume we have such an N ∈ N . Then S �∗GOI t[N(t1, ..., ti)], where
the node labelled by N is not dominated by any nonterminal. As its position
will not change in the final derived tree, we can already give him its address
in the tree domain, say α. By assumption, N �∗GOI t〈N,N〉, where none of the
two nodes labelled N is dominated by any non-terminal; so having the address
α1, α2 in t〈N,N〉, we have t[N(t1, ..., ti)] �∗GOI t′〈N,N〉, where the two nodes
labelled N have address αα1, αα2. Iterating this argument, we can generate a
tree with an arbitrarily large finite complete binary subtree.

Only if : Assume there is no such N ∈ N . The argument we use is similar to
the CFG case, though slightly more delicate. If S derives a tree of arbitrarily
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large FCB-rank, then it follows that there must be N1, N2, such that S �∗G
t〈N1, N2〉, none of the two is dominated by another non-terminal, and both
N1, N2 derive trees of arbitrarily large FCB-rank (this uses OI-derivation and
NTNF); otherwise, we run into a contradiction.15 Now by assumption, only one
of N1, N2 can derive S; assume without loss of generality it is N1. For N2 it
also holds that there must be N21, N22, such that N2 �∗G t〈N21, N22〉, none of
the two is dominated by another non-terminal, and both N1, N2 derive trees of
arbitrarily large FCB-rank; none of them can derive S, and only one of them N2.
Pick the other one etc. Iterating this, we finish up with a non-terminal M , such
that M can derive trees of arbitrarily large FCB-rank, yet it cannot introduce
any non-terminals - contradiction. 


Lemma 20. For a CFTG G, N ∈ N , it is decidable whether N �∗G t〈N,N〉 for
some t.

Proof. We start by an algorithm checking whether N �∗G t〈M〉. That is easily
decidable: just check whether N �G t〈M〉; and next check for all N ′ : N �G
t〈N ′〉 (except N) whether N ′ �G t〈M〉 etc. The procedure for checking N �∗G
t〈N,N〉 is based on this: we check whether N �G t〈N,N〉, and then check for
all M,M ′ such that N �G t〈M,M ′〉 whether M,M ′ �∗G t〈N〉, M �∗G t〈N,N〉
or M ′ �∗G t〈N,N〉 and iterate this until we have checked immediate derivability
for all non-terminals. 


Corollary 21. Given a simple CFTG G, we can decide whether FCB(G) = ω
or FCB(G) < ω.

So we have decidability for the infinite case. How about the finite case? Here
are several problems to overcome; for reasons of space, we do not present the
algorithm we think does the job, but only put forward the following conjecture:

Conjecture 22. Given a simple CFT G, FCB(G) < ω, there is a terminating
algorithm which computes FCB(G).

The proof of this is based on n-cuts of trees: intuitively, an n-cut of a tree is a
subset of its domain, such that its �-predecessors form a subtree with FCB-rank
n (thus an n-cut must contain at least 2n−1 elements). We can use these n-cuts
to determine how CFTG-rules increase the rank of derived trees. Important
open questions are the following: what classes of (string) languages correspond
with CFTG with (a particular) bounded FCB-rank? It is clear that they are not
contained in the context-free languages; do they conversely contain the context-
free languages for a certain rank?

15 Actually, this uses still another fact: if we substitute trees of finite FCB-rank for the
nodes of a tree of finite FCB-rank, we get a tree of finite FCB-rank. This argument
is rather simple, though, and we do not have the space to introduce the relevant
notions.
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9 Conclusions

The main goal of this paper was to introduce the notion of finitary Cantor-
Bendixson rank of trees, and establish its major properties. The first main re-
sult was that the rank of a context-free grammar is decidable. This is surprising,
because many similar properties of CFGs are undecidable. The explanation is
that it is a property concerning the strong generative capacity of a CFG, rather
than the language generated. Our second main result was that there is a corre-
spondence of two proper infinite hierarchies, the hierarchy of k-linear languages,
and the class of grammars with FCB-rank k + 2. This is an interesting result,
because the former notion is languages-theoretic, whereas the latter comes from
relation-theory, and when applied to grammars, refers to their strong generative
capacity. We thus have an interesting relation between notions from very diverse
fields. The third main result concerned the decidability of the FCB-rank of sim-
ple context-free tree grammars. We have shown that it is decidable whether a
simple CFTG has infinite rank and put forward the conjecture that its precise
rank is computable; for reasons of space, we could not present the algorithm for
its computation and its correctness proof.

References

1. Berstel, J.: Transductions and Context-free Languages. Teubner, Stuttgart (1979)
2. Engelfriet, J., Schmidt, E.M.: Io and oi. i. J. Comput. Syst. Sci. 15(3), 328–353

(1977)
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