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Introduction

The book. The majority of the basic algorithms of computations with matrices
are expressed via the entries of the matrices and are not taking into account the
individual properties or the specific structure of these matrices. This often results
in a unjustified high complexity of the algorithms.

For instance, the multiplication of two matrices of order 𝑁 via the entries
of the matrices requires in general 𝑁3 operations. For many classes of structured
matrices this complexity can be reduced by an appropriate presentation of the
factors and the product as well as the algorithm. For this purpose we have to
represent the matrices and the algorithm not in terms of the entries of the matrices,
but in terms of other parameters (generators) which are essentially involved in the
description of the structure of these matrices. For matrices of the form

𝐴 = {𝑎𝑖𝑘}𝑁𝑖,𝑘=1, 𝑎𝑖𝑘 = 𝑥
𝑇
𝑖 𝑦𝑘, 𝑖, 𝑘 = 1, 2, . . . , 𝑁

with 𝑥𝑖, 𝑦𝑘 ∈ ℂ𝑛, 𝑛 ≪ 𝑁 , which are often called separable matrices, the natural
parameters (generators) are the 𝑛-dimensional vectors 𝑥𝑖, 𝑦𝑘 (𝑖, 𝑘 = 1, . . . , 𝑁). The
computations for matrices of this form in terms of the natural parameters are of
a much lower complexity. So for the product of two such matrices, 𝐴 and

𝐵 = {𝑏𝑘𝑗}𝑁𝑘,𝑗=1, 𝑏𝑘𝑗 = 𝑣
𝑇
𝑘 𝑢𝑗, 𝑘, 𝑗 = 1, 2, . . . , 𝑁,

we get 𝐶 = 𝐴𝐵 = {𝑐𝑖𝑗}𝑁𝑖,𝑗=1 with

𝑐𝑖𝑗 =

𝑁∑
𝑘=1

𝑥𝑇𝑖 𝑦𝑘𝑣
𝑇
𝑘 𝑢𝑗 = 𝑥

𝑇
𝑖

(
𝑁∑
𝑘=1

𝑦𝑘𝑣
𝑇
𝑘

)
𝑢𝑗 .

Hence the product 𝐶 is a matrix with separable generators 𝑥𝑖 and

𝑤𝑗 =

(
𝑁∑
𝑘=1

𝑦𝑘𝑣
𝑇
𝑘

)
𝑢𝑗 .

To compute the sum 𝑎 =
∑𝑁
𝑘=1 𝑦𝑘𝑣

𝑇
𝑘 one requires𝑁𝑛2 operations and the products

𝑤𝑗 = 𝑎𝑢𝑗 (𝑗 = 1, . . . , 𝑁) cost 𝑁𝑛2 operations. Thus for the multiplication of two

xiii



xiv Introduction

matrices in separable form one needs only 2𝑛2𝑁 operations. If 𝑛 is fixed, the
complexity is asymptotically equal to 𝑂(𝑁). A similar situation appears also for
the inversion of matrices of this type.

This book contains a systematic theoretical and computational study of sev-
eral types of generalizations of separable matrices. It is related to semiseparable,
quasiseparable, band and companion representations of matrices. For them their
natural parameters, called generators, are analyzed and algorithms are expressed
in terms of generators. Connections between matrices and boundary value prob-
lems for discrete systems play an important role. The book is focused on algorithms
of multiplication, inversion and description of eigenstructure of matrices. A large
number of illustrations are provided in the text. The book consists of eight parts.

Description of parts. The first part is mainly of a theoretical character. Here we in-
troduce the notions of quasiseparable and semiseparable structure. These notions
are illustrated on some well-known examples of tridiagonal matrices, band matri-
ces, diagonal plus semiseparable matrices, scalar and block companion matrices.
We derive various properties of quasiseparable and semiseparable structure which
are used in the sequel. An essential part of the material concerns the minimal rank
completion problem.

The second part is devoted to completion to Green matrices and to unitary
matrices and also to the completion of mutually inverse matrices.

Discrete systems with boundary conditions allow to present a transparent
description of various algorithms which is started in the third part. We begin the
presentation of algorithms with multiplication by vectors and then with algorithms
which are based on some well-known inversion formulas via quasiseparable struc-
ture. An essential role in this part plays the interplay between the quasiseparable
structure and discrete-time varying linear systems with boundary conditions.

The fourth part contains factorization and inversion algorithms for matrices
via quasiseparable and semiseparable structure. We present the LDU factorization
and inversion algorithms for strongly regular matrices. Algorithms of this type are
extended to arbitrary matrices with quasiseparable representations of the first
order. In the last chapter algorithms for the QR factorization and the QR based
solver for linear algebraic systems are presented.

The second volume is divided into Parts V–VIII. The titles are as follows.
Part V: The eigenvalue structure of order one quasiseparable matrices; Part VI:
Divide and conquer method for eigenproblem; Part VII: Algorithms for QR itera-
tions and for reduction to Hessenberg form; Part VIII: QR iterations for companion
matrices.

To whom this book is addressed. The book belongs to the area of theoretical
and computational Linear Algebra. It is a self-contained monograph which has
the structure of a graduate text. The main material was developed the last 30–40
years and is presented here following the lines and principles of a course in Linear
Algebra. The book is based mostly on the relatively recent results obtained by
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the authors and their coauthors. All these features together with many significant
applications and accessible style will make it widely useful for engineers, scientists,
numerical analysts, computer scientists and mathematicians alike.
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Part I

Basics on Separable, Semi-
separable and Quasiseparable
Representations of Matrices



Introduction to Part I

In this part we introduce and study three types of representations of matrices: pure
separable, semi-separable and quasi-separable. Each representation is defined via
its generators and each representation has its order. For 𝑁 × 𝑁 matrices, using
these representations, we derive algorithms of linear 𝑂(𝑁) complexity for some
important procedures and operations. These fast algorithms are expressed in terms
of the representations or generators. Generators are in fact the parameters that
allow to reduce essentially the complexity of the main algorithms. Important topics
in this part are minimal rank completion of matrices and necessary preparations
for the next parts. In particular, here are introduced the classes of tridiagonal,
scalar and block companion, Green, band, Hessenberg and other matrices. This
part contains also a review of different factorizations and theorems of inversion of
matrices. For each class of representations of matrices we introduce the notion of
order 𝑟 of a representation. These orders play an essential role in the estimates for
complexity of the fast algorithms. More precisely, for an algorithm with complexity
𝑐 we obtain an estimate of the form 𝑐 ≤ 𝑤(𝑟)𝑁 , where 𝑤(𝑟) is a polynomial in 𝑟.



Chapter 1

Matrices with Separable
Representation and Low
Complexity Algorithms

One of the simplest representations of matrices used for a reduction of complexity
of algorithms is the separable representation. The term separable comes from the
fact that the (block) entries 𝐴𝑘𝑗 of such an 𝑁 ×𝑁 matrix 𝐴 can be presented in
a separated form

𝐴𝑘𝑗 = 𝑏𝑘 ⋅ 𝑐𝑗 , 𝑗, 𝑘 = 1, . . . , 𝑁,

where 𝑏𝑘 and 𝑐𝑗 are matrices of certain sizes. The latter matrices are now con-
sidered as the main parameters (they form the so-called separable generators).
Our aim is to represent the main operations, such as multiplication, inversion,
different factorizations and others, on separable represented matrices in terms of
their generators. In the cases when the generators have small sizes this leads to a
considerable reduction of the complexity of the algorithms. The notion of separa-
ble order that we introduce in this chapter is used essentially in estimates of the
complexity of the algorithms.

One of our main tools is to reduce operations on separable matrices to op-
erations on time-dependent linear systems with boundary conditions. The latter
systems represent certain recurrences which are often convenient in computations.
In the next chapters more complicated representations of matrices are considered,
namely the semiseparable and quasiseparable ones. The material of this chapter
serves as a model for the developments in the other ones.

This chapter consists of the following sections: The first section contains some
basic formulas of factorization of matrices, while basic formulas for LDU factor-
izations and inversion are presented in the sixth and in the seventh sections. The
second section contains the definitions of separable and diagonal plus separable
representations of matrices, with some examples. In the third it is studied the mul-
tiplication of a separable matrix with a vector. Systems with boundary conditions

Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1 3 
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory: 
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_1, © Springer Basel 2014



4 Chapter1. The Separable Case

and, associated to them, matrices in diagonal plus separable form are considered in
the forth section. In the fifth section are presented algorithms of multiplication of
matrices via generators, and in the last three sections inversion and factorization
methods are studied.

§1.1 Rank and related factorizations

Here we present some well-known facts on factorization of matrices in a form
convenient for the subsequent use.

Let 𝐴 be an 𝑚 × 𝑛 matrix of rank 𝑟. Let 𝑏1, 𝑏2, . . . , 𝑏𝑟 be 𝑚-dimensional
columns which are a basis of the column space Im(𝐴) of the matrix 𝐴. For every
column of the matrix 𝐴 one has

𝐴(:, 𝑗) =
𝑟∑

𝑘=1

𝑏𝑘𝛾𝑘𝑗 , 𝑗 = 1, . . . , 𝑛

for some complex numbers 𝛾𝑘𝑗 . Setting 𝐵 = [ 𝑏1 𝑏2 . . . 𝑏𝑟 ], Γ = (𝛾𝑘𝑗)
𝑟,𝑛
𝑘,𝑗=1

one gets

𝐴 = 𝐵 ⋅ Γ (1.1)

with matrices 𝐵,Γ of sizes𝑚×𝑟, 𝑟×𝑛 respectively. Moreover, using the inequalities

𝑟 = rank𝐴 ≤ rank𝐵 ≤ 𝑟, 𝑟 = rank𝐴 ≤ rankΓ ≤ 𝑟

one obtains

rank𝐴 = rank𝐵 = rankΓ = 𝑟. (1.2)

The factorization (1.1) with matrices 𝐵,Γ satisfying the condition (1.2) is called
the rank factorization of the matrix 𝐴.

Let 𝑉 be an 𝑟×𝑛 matrix with rank𝑉 = 𝑟 and let for 𝑖 = 1, . . . , 𝑟 the symbol
𝑙(𝑖) mean the first nonzero element in the 𝑖th row of 𝑉 . We say that the matrix
𝑉 is in the canonical form if the condition

𝑙(1) < 𝑙(2) < ⋅ ⋅ ⋅ < 𝑙(𝑟) (1.3)

holds. From (1.3) it follows that

𝑉 (𝑖+ 1 : 𝑟, 1 : 𝑙(𝑖+ 1)− 1) = 0, 𝑖 = 1, . . . , 𝑟 − 1. (1.4)

Applying some elementary transformations to the 𝑟×𝑛 matrix Γ in (1.1) one
can obtain the representation Γ = 𝑃 ⋅ 𝑉 with an invertible 𝑟 × 𝑟 matrix 𝑃 and a
matrix 𝑉 in the canonical form. Setting 𝐵1 = 𝐵𝑃 one gets instead of (1.1) the
factorization

𝐴 = 𝐵1 ⋅ 𝑉 (1.5)
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with matrices 𝐵1, 𝑉 of sizes 𝑚× 𝑟, 𝑟 × 𝑛 such that

rank𝐴 = rank𝐵1 = rank𝑉 = 𝑟, 𝑉 in the canonical form. (1.6)

The factorization (1.5) with matrices 𝐵1, 𝑉 satisfying the condition (1.6) is called
the rank canonical factorization of the matrix 𝐴.

Taking the basis 𝑏1, 𝑏2, . . . , 𝑏𝑟 in the column space Im(𝐴) to be orthonormal,
one obtains the factorization (1.1) with matrices 𝐵,Γ of sizes 𝑚 × 𝑟, 𝑟 × 𝑛 such
that

rank𝐴 = rank𝐵 = rankΓ = 𝑟, 𝐵∗𝐵 = 𝐼𝑟 . (1.7)

The factorization (1.1) with matrices 𝐵,Γ satisfying the condition (1.7) is called
the orthogonal rank factorization of the matrix 𝐴.

Applying unitary transformations to the 𝑟 × 𝑛 matrix Γ one obtains the
representation Γ = 𝑃 ⋅ 𝑅 with a unitary 𝑟 × 𝑟 matrix 𝑃 and an upper triangular
𝑟 × 𝑛 matrix 𝑅, i.e., satisfying the condition 𝑅𝑖𝑗 = 0, 𝑖 > 𝑗. Setting 𝑄 = 𝐵𝑃 one
gets instead of (1.1) the factorization

𝐴 = 𝑄 ⋅ 𝑅 (1.8)

with matrices 𝑄,𝑅 of sizes 𝑚× 𝑟, 𝑟 × 𝑛 such that

rank𝐴 = rank𝑄 = rank𝑅 = 𝑟, 𝑄∗𝑄 = 𝐼𝑟, 𝑅𝑖𝑗 = 0, 𝑖 > 𝑗. (1.9)

The factorization (1.8) with matrices 𝑄,𝑅 satisfying the condition (1.9) is called
the orthogonal rank upper triangular factorization of the matrix 𝐴.

Another form of orthogonal rank factorization is the singular value decompo-
sition (SVD), i.e., the factorization of an 𝑚× 𝑛 matrix 𝐴 of rank 𝑟 in the form

𝐴 = 𝑄 ⋅ Σ ⋅ 𝑈
with matrices 𝑄,𝑈 of sizes 𝑚× 𝑟, 𝑟 × 𝑛 such that

rank𝐴 = rank𝑄 = rank𝑈 = 𝑟, 𝑄∗𝑄 = 𝑈𝑈∗ = 𝐼𝑟

and the 𝑟×𝑟 diagonal matrix Σ has positive diagonal entries. The diagonal entries
of Σ are supposed to satisfy

Σ11 ≥ Σ22 ≥ ⋅ ⋅ ⋅ ≥ Σ𝑟𝑟

which is always true up to a change of rows and columns.

Rank factorization of a matrix is not unique. However there is a simple con-
nection between two different rank factorizations of the same matrix.

Lemma 1.1. Let 𝑃,𝑄 and 𝐵,Γ be two pairs of matrices of sizes 𝑚× 𝑟, 𝑟 × 𝑛 such
that

𝑃 ⋅𝑄 = 𝐵 ⋅ Γ, rank𝑃 = rank𝑄 = rank𝐵 = rankΓ = 𝑟.

Then there exists an invertible matrix 𝑆 of size 𝑟 × 𝑟 such that 𝑃 = 𝐵𝑆−1

and 𝑄 = 𝑆Γ.
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Proof. The matrix 𝑃 has a left inverse 𝑃 and the matrix 𝑄 has a right inverse �̃�.
Multiplying the equality

𝑃𝑄 = 𝐵Γ (1.10)

by 𝑃 on the left one obtains
𝑄 = (𝑃𝐵)Γ (1.11)

while multiplying (1.10) by �̃� on the right one gets

𝑃 = 𝐵(Γ�̃�). (1.12)

Furthermore, multiplying (1.12) by 𝑃 on the left we conclude that

(𝑃𝐵)(Γ�̃�) = 𝐼𝑟. (1.13)

Define the 𝑟 × 𝑟 matrix 𝑆 by 𝑆 = 𝑃𝐵. The equality (1.13) implies that 𝑆 is
invertible and 𝑆−1 = Γ�̃�. It now follows from (1.12), (1.11) that 𝑃 = 𝐵𝑆−1, 𝑄 =
𝑆Γ. □

§1.2 Definitions and first examples

Let 𝐴 = (𝐴𝑖𝑗)
𝑁
𝑖,𝑗=1 be an 𝑁 × 𝑁 block matrix with blocks of sizes 𝑚𝑖 × 𝑛𝑗 and

with rank 𝜌. Consider the rank factorization

𝐴 = 𝑃𝑄 (1.14)

with the matrices 𝑃,𝑄 of sizes
∑𝑁
𝑖=1𝑚𝑖 × 𝜌 and 𝜌 ×

∑𝑁
𝑗=1 𝑛𝑗 , respectively, such

that
rank𝐴 = rank𝑃 = rank𝑄 = 𝜌.

Based on factorizations of the form (1.14) we can define representations for any
block matrix.

Definiton 1.2. Let 𝐴 = (𝐴𝑖𝑗)
𝑁
𝑖,𝑗=1 be an 𝑁 × 𝑁 block matrix with blocks 𝐴𝑖,𝑗 ,

𝑖, 𝑗 = 1, 2, . . . , 𝑁 of size 𝑚𝑖 × 𝑛𝑗 represented in the form 𝐴 = 𝑃𝑄, where 𝑃 =
col(𝑝(𝑖))𝑁𝑖=1, 𝑄 = row(𝑞(𝑖))𝑁𝑖=1 are matrices with blocks 𝑝(𝑖), 𝑞(𝑖) (𝑖 = 1, . . . , 𝑁) of
sizes 𝑚𝑖× 𝑟 and 𝑟×𝑛𝑖 respectively. Then the representation 𝐴 = 𝑃𝑄, or which is
equivalent, the representation

𝐴𝑖𝑗 = 𝑝(𝑖)𝑞(𝑗), 𝑖, 𝑗 = 1, . . . , 𝑁 (1.15)

is called a separable representation of order 𝑟 of the matrix 𝐴. We also say that 𝐴
is represented in separable of order 𝑟 form.

The matrices 𝑝(𝑖), 𝑞(𝑖) (𝑖 = 1, . . . , 𝑁) are called the separable generators of
the matrix 𝐴. The matrices 𝑃 and 𝑄 are called the matrices of generators of 𝐴.

The number 𝑟 is called the order of these generators.

The rank 𝜌 of the matrix 𝐴 is called the separable order of 𝐴.
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Theorem 1.3. The separable order of a matrix is equal to the minimal order of its
separable generators.

The proof is obvious. □
Let 𝐴 be a matrix represented in separable of order 𝑟 form. The rank of 𝐴

is at most 𝑟. The 2𝑁 matrices which form the generators of the matrix 𝐴 have
in total less than 2𝑚𝑟𝑁 entries, where 𝑚 = max𝑁𝑖=1{𝑚𝑖, 𝑛𝑖}. Compared with the

number of entries of 𝐴 there are fewer entries whenever 𝑟 ≤ (
∑𝑁

𝑖=1𝑚𝑖)(
∑𝑁

𝑖=1 𝑛𝑖)
2 .

In fact 𝑟 is assumed to be much smaller, so that less data are needed to store and
work with the matrix 𝐴.

Example 1.4. Consider the 𝑁 ×𝑁 matrix

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 ⋅ ⋅ ⋅ 𝑁 − 1 𝑁
2 4 6 ⋅ ⋅ ⋅ 2(𝑁 − 1) 2𝑁
3 6 9 ⋅ ⋅ ⋅ 3(𝑁 − 1) 3𝑁
...

...
...

. . .
...

...
𝑁 − 1 2(𝑁 − 1) 3(𝑁 − 1) ⋅ ⋅ ⋅ (𝑁 − 1)2 (𝑁 − 1)𝑁
𝑁 2𝑁 3𝑁 ⋅ ⋅ ⋅ (𝑁 − 1)𝑁 𝑁2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The following separable generators of order one can be used for 𝐴:

𝑝(𝑖) = 𝑖, 𝑞(𝑖) = 𝑖, 𝑖 = 1, . . . , 𝑁. ♢

Next we consider perturbations of block matrices represented in separable of
order 𝑟 form by block diagonal matrices.

Definiton 1.5. Let 𝐴 = (𝐴𝑖𝑗)
𝑁
𝑖,𝑗=1 = 𝐷 + 𝐵 be an 𝑁 × 𝑁 block matrix with

blocks 𝐴𝑖,𝑗 , 𝑖, 𝑗 = 1, 2, . . . , 𝑁 of sizes 𝑚𝑖×𝑛𝑖, which is the sum of a block diagonal
matrix 𝐷 = diag(𝑑(𝑖))𝑁𝑖=1 with blocks 𝑑(𝑖) of sizes 𝑚𝑖×𝑛𝑖 and a matrix 𝐵 of rank
𝜌. The number 𝜌 is called the separable order of the matrix 𝐴. Assume that the
matrix 𝐵 is represented in separable of order 𝑟 form: 𝐵 = 𝑃𝑄 with the matrices
of generators 𝑃 = col(𝑝(𝑖))𝑁𝑖=1, 𝑄 = row(𝑞(𝑖))𝑁𝑖=1, which are matrices with blocks
𝑝(𝑖), 𝑞(𝑖) (𝑖 = 1, . . . , 𝑁) of sizes 𝑚𝑖 × 𝑟 and 𝑟 × 𝑛𝑖, respectively. Then 𝐴 is called
a matrix with diagonal plus separable of order 𝑟 representation.

The matrices 𝑝(𝑖), 𝑞(𝑖) (𝑖 = 1, . . . , 𝑁) are called the separable generators of
the matrix 𝐴. The matrices 𝑑(𝑖) (𝑖 = 1, . . . , 𝑁) are called the diagonal generators
of 𝐴.

The above definition means that the matrix 𝐴 = (𝐴𝑖𝑗)
𝑁
𝑖,𝑗=1 has the represen-

tation 𝐴𝑖𝑗 = 𝑝(𝑖)𝑞(𝑗) + 𝛿𝑖𝑗𝑑(𝑖), 1 ≤ 𝑖, 𝑗 ≤ 𝑁 , where 𝛿𝑖𝑗 is the Kronecker symbol.

Example 1.6. Consider the 3× 3 matrix

𝐴 =

⎛⎝ 1 −2 2
6 18 8
7 20 18

⎞⎠ .
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We have 𝐴 = 2𝐼 +𝐵, where

𝐵 =

⎛⎝ −1 −2 2
6 16 8
7 20 16

⎞⎠ .
The 3 × 3 matrix 𝐵 has a zero determinant, which means that it admits a sepa-
rable representation of an order less than 3 and because rank𝐵 ∕= 1, its minimal
separable order is greater than one. Indeed,

𝐵 =

⎛⎝ 1 −1
2 2
5 1

⎞⎠(
1 3 3
2 5 1

)
,

hence the matrix 𝐴 has the diagonal generators 𝑑(1) = 𝑑(2) = 𝑑(3) = 2 and the
separable of order 2 generators

𝑝(1) =
(
1 −1 )

, 𝑝(2) =
(
2 2

)
, 𝑝(3) =

(
5 1

)
and

𝑞(1) =

(
1
2

)
, 𝑞(2) =

(
3
5

)
, 𝑞(3) =

(
3
1

)
. ♢

§1.3 The algorithm of multiplication by a vector

Let 𝐴 = (𝐴𝑖𝑗)
𝑁
𝑖,𝑗=1 = 𝐷 + 𝑃𝑄 be an 𝑁 × 𝑁 block matrix with blocks 𝐴𝑖,𝑗 ,

𝑖, 𝑗 = 1, 2, . . . , 𝑁 of size𝑚𝑖×𝑛𝑖, in diagonal plus separable of order 𝑟 representation
with separable generators 𝑝(𝑖), 𝑞(𝑖) (𝑖 = 1, . . . , 𝑁) of order 𝑟. Let 𝑥 = col(𝑥(𝑖))𝑁𝑖=1

be a vector with column coordinates 𝑥(𝑖) of sizes 𝑛𝑖. The product 𝑦 = 𝐴𝑥 of the
matrix 𝐴 by the vector 𝑥 is a vector 𝑦 = col(𝑦(𝑖))𝑁𝑖=1 with column coordinates 𝑦(𝑖)
of sizes 𝑚𝑖. We consider various procedures to compute the components 𝑦(𝑖).

§1.3.1 Forward and backward computation of 𝒚

For 𝑦 one obtains

𝑦(𝑖) =
𝑁∑
𝑗=1

𝐴𝑖𝑗𝑥(𝑗) =
𝑁∑
𝑗=1

𝑝(𝑖)𝑞(𝑗)𝑥(𝑗) + 𝑑(𝑖)𝑥(𝑖) = 𝑝(𝑖)𝜒𝑁+1 + 𝑑(𝑖)𝑥(𝑖),

where

𝜒𝑖 =

𝑖−1∑
𝑗=1

𝑞(𝑗)𝑥(𝑗), 𝑖 = 1, . . . , 𝑁 + 1.
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One can see that the variable 𝜒𝑖 satisfies the following relations: 𝜒1 = 0 and for
𝑖 = 1, . . . , 𝑁

𝜒𝑖+1 =

𝑖∑
𝑗=1

𝑞(𝑗)𝑥(𝑗),

hence one obtains the recursion

𝜒𝑖+1 = 𝜒𝑖 + 𝑞(𝑖)𝑥(𝑖), 𝑖 = 1, . . . , 𝑁.

Alternatively, for 𝑦 one obtains

𝑦(𝑖) =

𝑁∑
𝑗=1

𝐴𝑖𝑗𝑥(𝑗) =

𝑁∑
𝑗=1

𝑝(𝑖)𝑞(𝑗)𝑥(𝑗) + 𝑑(𝑖)𝑥(𝑖) = 𝑝(𝑖)𝜂0 + 𝑑(𝑖)𝑥(𝑖),

where

𝜂𝑖 =

𝑁∑
𝑗=𝑖+1

𝑞(𝑗)𝑥(𝑗).

One has 𝜂𝑁 = 0 and it follows that 𝜂𝑖 satisfies the recurrence relations

𝜂𝑖−1 = 𝜂𝑖 + 𝑞(𝑖)𝑥(𝑖), 𝑖 = 𝑁, . . . , 1.

From these relations one obtains the following algorithms for computing the
product 𝑦 = 𝐴𝑥.

Algorithm 1.7. (Multiplication by a vector with forward computation of data)

1. Start with
𝜒1 = 0 (1.16)

and for 𝑖 = 2, . . . , 𝑁 + 1 compute recursively

𝜒𝑖 = 𝜒𝑖−1 + 𝑞(𝑖 − 1)𝑥(𝑖− 1). (1.17)

2. Compute for 𝑘 = 1, . . . , 𝑁 the components of the vector 𝑦:

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑁+1 + 𝑑(𝑘)𝑥(𝑘). (1.18)

Algorithm 1.8. (Multiplication by a vector with backward computation of data)

1. Start with
𝜂𝑁 = 0 (1.19)

and for 𝑖 = 𝑁 − 1, . . . , 0 compute recursively

𝜂𝑖 = 𝜂𝑖+1 + 𝑞(𝑖 + 1)𝑥(𝑖+ 1). (1.20)

2. Compute for 𝑘 = 𝑁, . . . , 1 the components of the vector 𝑦:

𝑦(𝑘) = 𝑝(𝑘)𝜂0 + 𝑑(𝑘)𝑥(𝑘). (1.21)
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The complexity of the arithmetic operations used in Algorithms 1.7 and 1.8
is as follows.

1. The formula (1.17): 𝑟 additions plus the matrix multiplication, which com-
prises 𝑟𝑛𝑖−1 multiplications and 𝑟(𝑛𝑖−1 − 1) additions.

2. The formula (1.18) or (1.21): 𝑚𝑘𝑟 +𝑚𝑘𝑛𝑘 multiplications and 𝑚𝑘(𝑟 − 1) +
𝑚𝑘 +𝑚𝑘(𝑛𝑘 − 1) additions.

3. The formula (1.20): 𝑟 additions plus the matrix multiplication, which com-
prises 𝑟𝑛𝑖+1 multiplications and 𝑟(𝑛𝑖+1 − 1) additions.

For instance, the matrix operation 𝑞(𝑖 − 1)𝑥(𝑖 − 1) in formula (1.17) is a
product of an 𝑟×𝑛𝑖−1 matrix 𝑞(𝑖− 1) by an 𝑛𝑖−1-dimensional vector 𝑥(𝑖− 1) and
hence it requires 𝑟𝑛𝑖−1 multiplications and 𝑟(𝑛𝑖−1 − 1) additions. Thus the total
complexity for computation of the value 𝜒𝑖 is 2𝑟𝑛𝑖−1 arithmetical operations. In
the same way one obtains complexities for the computation of the other variables
of the algorithm.

Hence, the total complexity of Algorithm 1.7 is estimated as

𝑐 < 2
𝑁∑
𝑘=1

(𝑟𝑛𝑘−1 +𝑚𝑘𝑟 +𝑚𝑘𝑛𝑘). (1.22)

Similarly the complexity of Algorithm 1.8 is estimated as

𝑐 < 2

𝑁∑
𝑘=1

(𝑟𝑛𝑘+1 +𝑚𝑘𝑟 +𝑚𝑘𝑛𝑘). (1.23)

Let the block sizes 𝑚𝑘, 𝑛𝑘 be bounded by the number 𝑚, i.e., 𝑚𝑘, 𝑛𝑘 ≤ 𝑚.
In this case inequality (1.22) or inequality (1.23) yield the estimate

𝑐 < (2𝑟 +𝑚)2𝑚𝑁.

Thus, for a matrix with diagonal plus separable representation the multiplication
by a vector costs 𝑂(𝑁) arithmetic operations in contrast with 𝑂(𝑁2) for a matrix
in general form. It is clear that in this form the best estimate is obtained when 𝑟
equals the separable order of the matrix.

§1.3.2 Forward-backward computation of 𝒚

Here we consider another procedure which will be extended later to various types
of representations. In this case the vector 𝑦 is found as 𝑦 = 𝑦𝐿 + 𝑦𝐷 + 𝑦𝑈 , where
𝑦𝐿 = 𝐴𝐿𝑥, 𝑦𝐷 = 𝐴𝐷𝑥, 𝑦𝑈 = 𝐴𝑈𝑥 and 𝐴𝐿, 𝐴𝐷, 𝐴𝑈 are correspondingly the
strictly lower triangular, the diagonal and the strictly upper triangular parts of
the matrix 𝐴.
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For 𝑦𝐿 one has 𝑦𝐿(1) = 0 and for 𝑖 ≥ 2 one obtains

𝑦𝐿(𝑖) =
𝑖−1∑
𝑗=1

𝐴𝑖𝑗𝑥(𝑗) =
𝑖−1∑
𝑗=1

𝑝(𝑖)𝑞(𝑗)𝑥(𝑗) = 𝑝(𝑖)𝜒𝑖

where

𝜒𝑖 =

𝑖−1∑
𝑗=1

𝑞(𝑗)𝑥(𝑗).

One can see that the variable 𝜒𝑖 satisfies the following relations: 𝜒1 = 0 and for
𝑖 = 1, . . . , 𝑁 − 1 one obtains the recursion

𝜒𝑖+1 = 𝜒𝑖 + 𝑞(𝑖)𝑥(𝑖).

For 𝑦𝑈 one has 𝑦𝑈 (𝑁) = 0 and for 𝑖 ≤ 𝑁 − 1 one obtains

𝑦𝑈 (𝑖) =

𝑁∑
𝑗=𝑖+1

𝐴𝑖𝑗𝑥(𝑗) =

𝑁∑
𝑗=𝑖+1

𝑝(𝑖)𝑞(𝑗)𝑥(𝑗) = 𝑝(𝑖)𝜂𝑖,

where

𝜂𝑖 =
𝑁∑

𝑗=𝑖+1

𝑞(𝑗)𝑥(𝑗).

One has 𝜂𝑁 = 0 and it follows that for 𝑖 = 𝑁, . . . , 2 the variable 𝜂𝑖 satisfies the
recurrence relation

𝜂𝑖−1 = 𝜂𝑖 + 𝑞(𝑖)𝑥(𝑖).

For 𝑦𝐷 it is obvious that 𝑦𝐷(𝑖) = 𝑝(𝑖)𝑞(𝑖)𝑥(𝑖) + 𝑑(𝑖)𝑥(𝑖), 𝑖 = 1, . . . , 𝑁 .

From these relations one obtains the following algorithm for computing the
product 𝑦 = 𝐴𝑥.

Algorithm 1.9. (Forward-backward multiplication by a vector)

1. Start with 𝑦𝐿(1) = 0, 𝜒1 = 0 and for 𝑖 = 2, . . . , 𝑁 compute recursively

𝜒𝑖 = 𝜒𝑖−1 + 𝑞(𝑖 − 1)𝑥(𝑖− 1), (1.24)

𝑦𝐿(𝑖) = 𝑝(𝑖)𝜒𝑖. (1.25)

2. Compute for 𝑖 = 1, . . . , 𝑁

𝑦𝐷(𝑖) = (𝑝(𝑖)𝑞(𝑖) + 𝑑(𝑖))𝑥(𝑖). (1.26)

3. Start with 𝑦𝑈 (𝑁) = 0, 𝜂𝑁 = 0 and for 𝑖 = 𝑁 − 1, . . . , 1 compute recursively

𝜂𝑖 = 𝜂𝑖+1 + 𝑞(𝑖 + 1)𝑥(𝑖+ 1), (1.27)

𝑦𝑈 (𝑖) = 𝑝(𝑖)𝜂𝑖. (1.28)

4. Compute the vector 𝑦
𝑦 = 𝑦𝐿 + 𝑦𝐷 + 𝑦𝑈 . (1.29)
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The complexity of the arithmetic operations used in Algorithm 1.9 is as
follows.

1. The formula (1.24): 𝑟 additions and a matrix vector multiplication which
comprises another 𝑟𝑛𝑖−1 multiplications and 𝑟(𝑛𝑖−1 − 1) additions.

2. The formula (1.25): 𝑚𝑖𝑟 multiplications and 𝑚𝑖(𝑟 − 1) additions.

3. The formula (1.26): 𝑚𝑖𝑟𝑛𝑖 multiplications and 𝑚𝑖(𝑟 − 1)𝑛𝑖 additions plus
𝑚𝑖𝑛𝑖 additions inside the brackets and then another 𝑚𝑖𝑛𝑖 multiplications
and 𝑚𝑖(𝑛𝑖 − 1) additions.

4. The formula (1.27): 𝑟 additions and a matrix vector multiplication which
comprises another 𝑟𝑛𝑖+1 multiplications and 𝑟(𝑛𝑖+1 − 1) additions.

5. The formula (1.28): 𝑚𝑖𝑟 multiplications and 𝑚𝑖(𝑟 − 1) additions.

6. The formula (1.29): 2𝑚𝑘 additions.

Hence the total complexity of Algorithm 1.9 is estimated as follows:

𝑐 < 2

𝑁∑
𝑘=1

[𝑚𝑘(2𝑟 + 𝑛𝑘 + 𝑟𝑛𝑘) + 𝑛𝑘−1𝑟 + 𝑟𝑛𝑘+1 +𝑚𝑘]. (1.30)

Let the block sizes 𝑚𝑘, 𝑛𝑘 be bounded by the number 𝑚, i.e., 𝑚𝑘, 𝑛𝑘 ≤ 𝑚.
In this case using the inequality (1.30) one obtains the estimate

𝑐 < (𝑟𝑚 + 4𝑟 +𝑚+ 1)2𝑚𝑁. (1.31)

Thus for a matrix with separable representation the forward multiplication by a
vector in Algorithm 1.7, the backward multiplication by a vector in Algorithm 1.8,
as well as the forward-backward multiplication by a vector in Algorithm 1.9 costs
𝑂(𝑁) arithmetic operations in contrast to 𝑂(𝑁2) for a matrix in general form. It
is clear that in the form (1.31) the best estimate is obtained when 𝑟 equals the
separable order of the matrix.

§1.4 Systems with homogeneous boundary
conditions associated with matrices in
diagonal plus separable form

Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be an 𝑁 × 𝑁 block matrix with diagonal plus separable
representation with block entries of sizes 𝑚𝑖 × 𝑛𝑗 , with separable generators
𝑝(𝑖) (𝑖 = 1, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁) of order 𝑟.

§1.4.1 Forward and backward systems

Consider in detail the arithmetic operations used in Algorithm 1.7. The formulas
(1.16), (1.17) and (1.18) together describe what is called a discrete-time forward
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system with homogeneous boundary conditions:⎧⎨⎩
𝜒𝑘+1 = 𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑁+1 + 𝑑(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁

𝜒1 = 0.

(1.32)

Consider in detail the arithmetic operations used in Algorithm 1.8. The for-
mulas (1.19), (1.20) and (1.21) together describe what is called a discrete-time
backward system with homogeneous boundary conditions:⎧⎨⎩

𝜂𝑘−1 = 𝜂𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 𝑁, . . . , 1

𝑦(𝑘) = 𝑝(𝑘)𝜂0 + 𝑑(𝑘)𝑥(𝑘), 𝑘 = 𝑁, . . . , 1

𝜂𝑁 = 0.

(1.33)

Here the vectors 𝑥(𝑘) (𝑘 = 1, . . . , 𝑁) are called the input, the vectors 𝑦(𝑘)
(𝑘 = 1, . . . , 𝑁) are called the output, and the vectors 𝜒𝑘 and 𝜂𝑘 of size 𝑟 are
called the state space variables of the respective systems. The transformation
from 𝑥 = (𝑥(𝑘))𝑁𝑘=1 to 𝑦 = (𝑦(𝑘))𝑁𝑘=1 is a linear transformation which maps the
input of the system into the output. This transformation is called the input-output
operator of the system.

Thus one obtains the following.

Theorem 1.10. Let 𝐴 be an 𝑁 × 𝑁 block matrix with diagonal plus separable of
order 𝑟 representation with separable generators 𝑝(𝑘), 𝑞(𝑘) (𝑘 = 1, . . . , 𝑁) and
diagonal generators 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁).

Then 𝐴 is the matrix of the input-output operator of the forward system (1.32)
and of the backward system (1.33) with coefficients equal to the corresponding
generators of the matrix 𝐴.

The inverse statement is also true.

Theorem 1.11. Let there be given a forward system (1.32) or a backward system
(1.33).

Then the matrix 𝐴 with separable of order 𝑟 generators 𝑝(𝑘), 𝑞(𝑘) (𝑘 =
1, . . . , 𝑁) and diagonal generators 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁) which are equal to the
corresponding coefficients of the system, is the matrix of the input-output operator
of the system (1.32), respectively (1.33).

Proof. Let 𝑥 be an input of the system. One can easily prove by induction that
the solution of the first equation in (1.32) is given by

𝜒𝑘 =

𝑘−1∑
𝑗=1

𝑞(𝑗)𝑥(𝑗), 𝑘 = 1, . . . , 𝑁 + 1. (1.34)
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Indeed, for 𝑘 = 1 the relation (1.34) follows directly from 𝜒1 = 0. Suppose that
(1.34) holds for some 𝑘, 𝑘 ≥ 1. Using the first equation from (1.32) one gets

𝜒𝑘+1 =

𝑘−1∑
𝑗=1

𝑞(𝑗)𝑥(𝑗) + 𝑞(𝑘)𝑥(𝑘) =

𝑘∑
𝑗=1

𝑞(𝑗)𝑥(𝑗).

Similarly, the solution of the first equation in the backward system (1.33) is
given by

𝜂𝑘 =

𝑁∑
𝑗=𝑘+1

𝑞(𝑗)𝑥(𝑗), 𝑘 = 𝑁, . . . , 0. (1.35)

Indeed, for 𝑘 = 𝑁 the relation (1.35) follows directly from 𝜂𝑁 = 0. Suppose that
(1.35) holds for some 𝑘, 𝑘 ≤ 𝑁 . Using the first equation from (1.33) one gets

𝜂𝑘−1 =

𝑁∑
𝑗=𝑘+1

𝑞(𝑗)𝑥(𝑗) + 𝑞(𝑘)𝑥(𝑘) =

𝑁∑
𝑗=𝑘

𝑞(𝑗)𝑥(𝑗).

Thus for the output 𝑦 one obtains in both cases

𝑦(𝑘) = 𝑝(𝑘)

𝑁∑
𝑗=1

𝑞(𝑗)𝑥(𝑗) + 𝑑(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁.

From here one obtains 𝑦 = 𝐴𝑥 with the matrix 𝐴 of the form 𝐴 = 𝐷 + 𝑃𝑄. □

Example 1.12. Consider the 𝑁×𝑁 matrix 𝐴 from Example 1.4 with the separable
generators 𝑝(𝑘) = 𝑞(𝑘) = 𝑘, 𝑘 = 1, . . . , 𝑁 and the diagonal generators 𝑑(𝑘) =
0, 𝑘 = 1, . . . , 𝑁 .

Then the forward system with homogenous boundary conditions (1.32) be-
comes ⎧⎨⎩

𝜒𝑘+1 = 𝜒𝑘 + 𝑘𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑁+1 + 𝑑(𝑘)𝑥(𝑘) = 𝑘𝜒𝑁+1, 𝑘 = 1, . . . , 𝑁,

𝜒1 = 0

(1.36)

and the backward system with homogeneous boundary conditions (1.33) becomes⎧⎨⎩
𝜂𝑘−1 = 𝜂𝑘 + 𝑘𝑥(𝑘), 𝑘 = 𝑁, . . . , 1,

𝑦(𝑘) = 𝑝(𝑘)𝜂0 + 𝑑(𝑘)𝑥(𝑘) = 𝑘𝜂0, 𝑘 = 1, . . . , 𝑁,

𝜂𝑁 = 0.

(1.37)

♢
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§1.4.2 Forward-backward descriptor systems

Consider in detail the arithmetic operations used in Algorithm 1.9. Using formulas
(1.25), (1.26), (1.28) one has

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑘 + 𝑝(𝑘)𝜂𝑘 + 𝑝(𝑘)𝑞(𝑘)𝑥(𝑘) + 𝑑(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁. (1.38)

Here the auxiliary variables 𝜒𝑘, 𝜂𝑘 are determined via the recurrence relations

𝜒1 = 0, 𝜒𝑖 = 𝜒𝑖−1 + 𝑞(𝑖− 1)𝑥(𝑖 − 1), 𝑖 = 2, . . . , 𝑁 ; (1.39)

𝜂𝑁 = 0, 𝜂𝑖 = 𝜂𝑖+1 + 𝑞(𝑖 + 1)𝑥(𝑖+ 1), 𝑖 = 𝑁 − 1, . . . , 1. (1.40)

One can rewrite relations (1.39), (1.40) in the form

𝜒1 = 0𝑟, 𝜒𝑘+1 = 𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁 − 1; (1.41)

𝜂𝑁 = 0𝑟, 𝜂𝑘−1 = 𝜂𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 𝑁, . . . , 2. (1.42)

The formulas (1.38), (1.41), (1.42) together are called the forward-backward de-
scriptor system with homogeneous boundary conditions:⎧⎨⎩

𝜒𝑘+1 = 𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁 − 1

𝜂𝑘−1 = 𝜂𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 𝑁, . . . , 2

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑘 + 𝑝(𝑘)𝜂𝑘 + (𝑝(𝑘)𝑞(𝑘) + 𝑑(𝑘))𝑥(𝑘), 𝑘 = 1, . . . , 𝑁

𝜒1 = 0, 𝜂𝑁 = 0.

(1.43)

Alternatively, consider the system (1.32). From the recursions

𝜒𝑘+1 = 𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁, 𝜒1 = 0, (1.44)

it follows that

𝜒𝑁+1 =

𝑁∑
𝑘=1

𝑞(𝑘)𝑥(𝑘).

Denote

𝜂𝑘 =
𝑁∑

𝑖=𝑘+1

𝑞(𝑖)𝑥(𝑖).

Then the following recursion takes place

𝜂𝑘−1 = 𝜂𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 𝑁, . . . , 2, 𝜂𝑁 = 0, (1.45)

while
𝜒𝑁+1 = 𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘) + 𝜂𝑘.

Inserting this relation in the second equation of the system (1.32) we get

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑘 + 𝑝(𝑘)𝜂𝑘 + (𝑝(𝑘)𝑞(𝑘) + 𝑑(𝑘))𝑥(𝑘), 𝑘 = 1, . . . , 𝑁. (1.46)

The equations (1.44)–(1.46) form again the system (1.43).
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In the system (1.43) as above the vectors 𝑥(𝑘) (𝑘 = 1, . . . , 𝑁) are called the
input, the vectors 𝑦(𝑘) (𝑘 = 1, . . . , 𝑁) are called the output, and the vectors 𝜒𝑘 and
𝜂𝑘 of size 𝑟 are called the state space variables of the system. The transformation
from 𝑥 = (𝑥(𝑘))𝑁𝑘=1 to 𝑦 = (𝑦(𝑘))𝑁𝑘=1 is a linear transformation which maps the
input of the system into the output. This transformation is called the input-output
operator of the system.

Thus one obtains the following.

Theorem 1.13. Let 𝐴 be an 𝑁 × 𝑁 block matrix with diagonal plus separable of
order 𝑟 representation, with separable generators 𝑝(𝑘), 𝑞(𝑘) (𝑘 = 1, . . . , 𝑁) and
diagonal generators 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁).

Then 𝐴 is the matrix of the input-output operator of the system (1.43) with
coefficients equal to the corresponding generators of 𝐴.

The inverse statement is also true.

Theorem 1.14. Let there be given a system (1.43). Then the matrix 𝐴 with sep-
arable of order 𝑟 generators 𝑝(𝑘), 𝑞(𝑘) (𝑘 = 1, . . . , 𝑁) and diagonal generators
𝑑(𝑘) (𝑘 = 1, . . . , 𝑁) which are equal to the corresponding coefficients of the sys-
tem, is the matrix of the input-output operator of the system (1.43).

Example 1.15. Consider the 𝑁 ×𝑁 matrix from Example 1.4 with the same sep-
arable generators 𝑝(𝑘) = 𝑞(𝑘) = 𝑘, 𝑘 = 1, . . . , 𝑁 and with the diagonal generators
𝑑(𝑘) = 0, 𝑘 = 1, . . . , 𝑁 . Then the descriptor system with boundary conditions
(1.43) becomes

𝜒𝑘+1 = 𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘) = 𝜒𝑘 + 𝑘𝑥(𝑘), 𝑘 = 1, . . . , 𝑁 − 1,

𝜂𝑘−1 = 𝜂𝑘 + 𝑞(𝑘)𝑥(𝑘) = 𝜂𝑘 + 𝑘𝑥(𝑘), 𝑘 = 𝑁, . . . , 2,

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑘 + 𝑝(𝑘)𝜂𝑘 + 𝑝(𝑘)𝑞(𝑘)𝑥(𝑘) = 𝑘𝜒𝑘 + 𝑘𝜂𝑘 + 𝑘
2𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝜒1 = 0, 𝜂𝑁 = 0. ♢

§1.5 Multiplication of matrices

In this section we consider products of matrices with separable or diagonal plus
separable representations. We derive formulas to compute generators of the prod-
uct.

§1.5.1 Product of matrices with separable representations

In this subsection it is shown that the product of two suitable matrices with given
separable representations of orders 𝑟 and 𝑠, respectively, is a matrix with separable
representation of the lesser order. Formulas for separable generators of the product
are derived.
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Theorem 1.16. Let 𝐴(1) and 𝐴(2) be two 𝑁 × 𝑁 block matrices of total scalar
sizes of (

∑𝑁
𝑖=1𝑚𝑖) × (

∑𝑁
𝑖=1 𝜈𝑖) and (

∑𝑁
𝑖=1 𝜈𝑖) × (

∑𝑁
𝑖=1 𝑛𝑖) respectively, repre-

sented in separable form of order 𝑟 and respectively 𝑠, with separable generators
𝑝(1)(𝑖), 𝑞(1)(𝑖), 𝑖 = 1, . . . , 𝑁 and 𝑝(2)(𝑖), 𝑞(2)(𝑖), 𝑖 = 1, . . . , 𝑁 which are matri-
ces of sizes 𝑚𝑖 × 𝑟, 𝑟 × 𝜈𝑖, 𝜈𝑖 × 𝑠 and 𝑠 × 𝑛𝑖 respectively. In matrix form, if
we consider the matrices 𝑃 (1) = col(𝑝(1)(𝑖))𝑁𝑖=1, 𝑄

(1) = row(𝑞(1)(𝑖))𝑁𝑖=1, 𝑃
(2) =

col(𝑝(2)(𝑖))𝑁𝑖=1, 𝑄
(2) = row(𝑞(2)(𝑖))𝑁𝑖=1, then 𝐴

(1) = 𝑃 (1)𝑄(1) and 𝐴(2) = 𝑃 (2)𝑄(2).

Denote by 𝑍 the 𝑟 × 𝑠 matrix

𝑍 = 𝑄(1)𝑃 (2) =

𝑁∑
𝑘=1

𝑞(1)(𝑘)𝑝(2)(𝑘).

Then the product block matrix 𝐴 = 𝐴(1)𝐴(2) admits the order 𝑠 separable
representation 𝐴 = 𝑃𝑄(2), where 𝑃 = 𝑃 (1)𝑍, with separable generators 𝑝(1)(𝑖)𝑍,
𝑞(2)(𝑖), 𝑖 = 1, . . . , 𝑁 of sizes 𝑚𝑖× 𝑠 and 𝑠×𝑛𝑖, respectively, as well as the order 𝑟
separable representation 𝐴 = 𝑃 (1)𝑄 where 𝑄 = 𝑍𝑄(2), with separable generators
𝑝(1)(𝑖), 𝑍𝑞(2)(𝑖), 𝑖 = 1, . . . , 𝑁 of sizes 𝑚𝑖 × 𝑟 and 𝑟 × 𝑛𝑖, respectively.
Proof. For any 𝑖, 𝑗 = 1, . . . , 𝑁

𝐴 = 𝐴(1)𝐴(2) = 𝑃 (1)𝑄(1)𝑃 (2)𝑄(2) = 𝑃 (1)𝑍𝑄(2) = (𝑃 (1)𝑍)𝑄(2) = 𝑃 (1)(𝑍𝑄(2)).

Therefore, the product block matrix 𝐴 = 𝐴(1)𝐴(2) admits the order 𝑠 separa-
ble representation 𝐴 = 𝑃𝑄(2), where 𝑃 = 𝑃 (1)𝑍, with separable generators
𝑝(1)(𝑖)𝑍, 𝑞(2)(𝑖), 𝑖 = 1, . . . , 𝑁 as well as the order 𝑟 separable representation
𝐴 = 𝑃 (1)𝑄, where 𝑄 = 𝑍𝑄(2), with separable generators 𝑝(1)(𝑖), 𝑍𝑞(2)(𝑖), 𝑖 =
1, . . . , 𝑁 . □

Let 𝑚 be the maximal block size of the matrices 𝐴(1), 𝐴(2), i.e.,

𝑚 = max
1≤𝑘≤𝑁

(𝑚𝑘, 𝜈𝑘, 𝑛𝑘).

The complexity of the arithmetic operations of the algorithm in Theorem 1.16 is
calculated as follows.

1. Computation of 𝑍:
∑𝑁

𝑘=1 𝑟𝜈𝑘𝑠 multiplications and
∑𝑁
𝑘=1 𝑟(𝜈𝑘−1)𝑠 additions,

thus less than 2𝑚𝑟𝑠𝑁 arithmetic operations.

2. Computation of 𝑃 = 𝑃 (1)𝑍:
∑𝑁

𝑖=1𝑚𝑖𝑟𝑠 multiplications and
∑𝑁

𝑖=1𝑚𝑖(𝑟− 1)𝑠
additions, thus less than 2𝑚𝑟𝑠𝑁 arithmetic operations.

3. Computation of 𝐴 = 𝑃𝑄(2):
∑𝑁
𝑗=1 𝑟𝑠𝑛𝑗 multiplications and

∑𝑁
𝑗=1 𝑟(𝑠− 1)𝑛𝑗

additions, thus less than 2𝑚𝑟𝑠𝑁 arithmetic operations.

Thus the total complexity of the algorithm for the multiplication of two block
matrices with separable representation is linear, namely

𝑐 < 6𝑚𝑟𝑠𝑁

arithmetic operations.
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§1.5.2 Product of matrices with diagonal plus
separable representations

In this subsection it is shown that the product of two suitable matrices with given
diagonal plus separable representations of orders 𝑟 and 𝑠, respectively, is a matrix
with diagonal plus separable representation of order at most 𝑟 + 𝑠. Formulas for
the separable and diagonal generators of the product are derived.

Theorem 1.17. Let 𝐴(1) and 𝐴(2) be two 𝑁 ×𝑁 block matrices of total scalar sizes
(
∑𝑁
𝑖=1𝑚𝑖)× (

∑𝑁
𝑖=1 𝜈𝑖) and (

∑𝑁
𝑖=1 𝜈𝑖)× (

∑𝑁
𝑖=1 𝑛𝑖), respectively, given in diagonal

plus separable form of orders 𝑟 and 𝑠, respectively, namely 𝐴(1) has the diago-
nal generators 𝑑(1)(𝑖), 𝑖 = 1, . . . , 𝑁 of size 𝑚𝑖 × 𝜈𝑖 and the separable generators
𝑝(1)(𝑖), 𝑞(1)(𝑖), 𝑖 = 1, . . . , 𝑁 of sizes 𝑚𝑖 × 𝑟 and 𝑟 × 𝜈𝑖, respectively, while 𝐴(2)

has the diagonal generators 𝑑(2)(𝑖), 𝑖 = 1, . . . , 𝑁 of size 𝜈𝑖 × 𝑛𝑖 and the separable
generators 𝑝(2)(𝑖), 𝑞(2)(𝑖), 𝑖 = 1, . . . , 𝑁 of sizes 𝜈𝑖 × 𝑠 and 𝑠 × 𝑛𝑖, respectively. In
matrix form, if we consider also the matrices

𝐷(1) = diag(𝑑(1)(𝑖))𝑁𝑖=1, 𝑃 (1) = col(𝑝(1)(𝑖))𝑁𝑖=1, 𝑄(1) = row(𝑞(1)(𝑖))𝑁𝑖=1

and

𝐷(2) = diag(𝑑(2)(𝑖))𝑁𝑖=1, 𝑃 (2) = col(𝑝(2)(𝑖))𝑁𝑖=1, 𝑄(2) = row(𝑞(2)(𝑖))𝑁𝑖=1,

then 𝐴(1) = 𝐷(1) + 𝑃 (1)𝑄(1) and 𝐴(2) = 𝐷(2) + 𝑃 (2)𝑄(2).

Denote by 𝑍 the 𝑟 × 𝑠 matrix

𝑍 = 𝑄(1)𝑃 (2) =

𝑁∑
𝑘=1

𝑞(1)(𝑘)𝑝(2)(𝑘). (1.47)

Then the product block matrix 𝐴 = 𝐴(1)𝐴(2) admits the order 𝑟 + 𝑠 diagonal
plus separable representation 𝐴 = 𝐷 + 𝑃𝑄 with the diagonal generators 𝑑(𝑖), 𝑖 =
1, . . . , 𝑁 of size 𝑚𝑖 × 𝑛𝑖 and the separable generators 𝑝(𝑖), 𝑞(𝑖), 𝑖 = 1, . . . , 𝑁 of
sizes 𝑚𝑖 × (𝑟+ 𝑠) and (𝑟+ 𝑠)× 𝑛𝑖, respectively. These generators are given by the
formulas

𝑑(𝑖) = 𝑑(1)(𝑖)𝑑(2)(𝑖), 𝑖 = 1, . . . , 𝑁, (1.48)

𝑝(𝑖) =
(
𝑝(1)(𝑖) 𝑑(1)(𝑖)𝑝(2)(𝑖)

)
, 𝑖 = 1, . . . , 𝑁, (1.49)

𝑞(𝑖) =

(
𝑞(1)(𝑖)𝑑(2)(𝑖) + 𝑍𝑞(2)(𝑖)

𝑞(2)(𝑖)

)
, 𝑖 = 1, . . . , 𝑁. (1.50)

Proof. We have

𝐴 = 𝐴(1)𝐴(2) = (𝐷(1) + 𝑃 (1)𝑄(1))(𝐷(2) + 𝑃 (2)𝑄(2)) = 𝐷 + 𝑃𝑄

with

𝐷 = 𝐷(1)𝐷(2), 𝑃 =
(
𝑃 (1) 𝐷(1)𝑃 (2)

)
, 𝑄 =

(
𝑄(1)𝐷(2) + 𝑍𝑄(2))

𝑄(2)

)
.

Here 𝑍 is the 𝑟 × 𝑠 matrix defined in (1.47).
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The formula 𝐷 = 𝐷(1)𝐷(2) means (1.48) for diagonal entries. For the com-
putation of 𝑝(𝑖), note that(

𝑃 (1) 𝐷(1)𝑃 (2)
)
= col

(
𝑝(1)(𝑖) 𝑑(1)(𝑖)𝑝(2)(𝑖)

)𝑁
𝑖=1
,

which implies (1.49). Finally, using the fact that

𝑄(1)𝐷(2) = row(𝑞(1)(𝑖)𝑑(2)(𝑖))𝑁𝑖=1, 𝑄(2) = row(𝑞(2)(𝑖))𝑁𝑖=1,

we obtain (1.50). □

Let 𝑚 be the maximal block size of the matrices 𝐴(1), 𝐴(2), i.e.,

𝑚 = max
1≤𝑘≤𝑁

(𝑚𝑘, 𝜈𝑘, 𝑛𝑘).

The complexity of the arithmetic operations of the algorithm in Theorem 1.17 is
calculated as follows.

1. The computation of 𝑍 = 𝑄(1)𝑃 (2) costs less than 𝑟𝑚𝑁𝑠 multiplications and
less than 𝑟(𝑚𝑁−1)𝑠 additions, thus less than 2𝑟𝑚𝑁𝑠 arithmetic operations.

2. Computation of all the formulas (1.48) costs
∑𝑁
𝑖=1𝑚𝑖𝜈𝑖𝑛𝑖 multiplications and∑𝑁

𝑖=1𝑚𝑖(𝜈𝑖 − 1)𝑛𝑖 additions, thus less than 2𝑚3𝑁 arithmetic operations.

3. Computation of all the formulas (1.49):
∑𝑁

𝑖=1𝑚𝑖𝜈𝑖𝑠 multiplications and∑𝑁
𝑖=1𝑚𝑖(𝜈𝑖 − 1)𝑠 additions, thus less than 2𝑚2𝑠𝑁 arithmetic operations.

4. Computation of all the formulas (1.50): the computation of 𝑞(1)(𝑖)𝑑(2)(𝑖) re-

quires for
∑𝑁

𝑖=1 𝑟𝜈𝑖𝑛𝑖 multiplications and
∑𝑁

𝑖=1 𝑟(𝜈𝑖−1)𝑛𝑖 additions, thus less
than 2𝑚2𝑟𝑁 arithmetic operations. The computation of all 𝑍𝑞(2)(𝑖) costs at
most 𝑟𝑠𝑁𝑚 multiplications and 𝑟(𝑠−1)𝑁𝑚 additions, thus less than 2𝑟𝑠𝑁𝑚
arithmetic operations.

Thus the total complexity of the algorithm for the multiplication of two block
matrices with diagonal plus separable representation is linear, namely

𝑐 < (2𝑚2 + 2𝑠𝑚+ 2𝑟𝑚+ 4𝑟𝑠)𝑚𝑁

arithmetic operations. For a scalar matrix there are 𝑐 = (2𝑟𝑠+𝑟+𝑠+1)𝑁 arithmetic
operations.

Example 1.18. Consider the 3 × 3 matrix 𝐴(1) which has a diagonal plus order 1
separable representation:

𝐴(1) =

⎛⎝ 1 3 −5
6 −15 30
3 −9 20

⎞⎠ = 𝐷 + 𝑃 (1)𝑄(1)

=

⎛⎝ 2 0 0
0 3 0
0 0 5

⎞⎠+

⎛⎝ −1
6
3

⎞⎠(
1 −3 5

)
.
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It follows from this computation that the diagonal generators are 𝑑(1) = 2, 𝑑(2) =
3, 𝑑(3) = 5 and the separable generators are 𝑝(1) = −1, 𝑝(2) = 6, 𝑝(3) = 3, 𝑞(1) =
1, 𝑞(2) = −3, 𝑞(3) = 5.

Multiply the matrix 𝐴(1) on the right by the matrix

𝐴(2) =

⎛⎝ 4 2 3
2 7 6
3 6 12

⎞⎠ = 3𝐼 +

⎛⎝ 1 2 3
2 4 6
3 6 9

⎞⎠ ,
which has the following separable generators

𝑝(2)(𝑖) = 𝑞(2)(𝑖) = 𝑖, 𝑖 = 1, 2, 3,

as Example 1.4 for 𝑁 = 3 shows, and diagonal generators 𝑑(2)(1) = 𝑑(2)(2) =
𝑑(2)(3) = 3.

Theorem 1.17 gives the following diagonal plus order 2 separable representa-
tion of the product matrix. Compute first according to (1.47)

𝑍 =
(
1 −3 5

)⎛⎝ 1
2
3

⎞⎠ = 10.

Compute 𝑑(𝑖), 𝑖 = 1, 2, 3 using (1.48)

𝑑(1) = 𝑑(1)(1)𝑑(2)(1) = 6, 𝑑(2) = 3 ⋅ 3 = 9, 𝑑(3) = 5 ⋅ 3 = 15.

Compute 𝑝(𝑖), 𝑖 = 1, 2, 3 using (1.49)

𝑝(1) =
(
𝑝(1)(1) 𝑑(1)(1)𝑝(2)(1)

)
=
( −1 2 ⋅ 1 )

,

𝑝(2) =
(
6 6

)
, 𝑝(3) =

(
3 15

)
.

Compute 𝑞(𝑖), 𝑖 = 1, 2, 3 using (1.50)

𝑞(1) =

(
𝑞(1)(1)𝑑(2)(1) + 𝑍𝑞(2)(1)

𝑞(2)(1)

)
=

(
1 ⋅ 3 + 10 ⋅ 1

1

)
=

(
13
1

)
,

𝑞(2) =

( −3 ⋅ 3 + 10 ⋅ 2
2

)
=

(
11
2

)
, 𝑞(3) =

(
5 ⋅ 3 + 10 ⋅ 3

3

)
=

(
45
3

)
.

As a check, compute the product matrix 𝐴 as 𝐴 = 𝐷 + 𝑃𝑄 where 𝐷 =
diag(𝑑(𝑖))3𝑖=1, 𝑃 = col(𝑝(𝑖))3𝑖=1, 𝑄 = row(𝑞(𝑖))3𝑖=1, namely

𝐴 =

⎛⎝ 6 0 0
0 9 0
0 0 15

⎞⎠+

⎛⎝ −1 2
6 6
3 15

⎞⎠(
13 11 45
1 2 3

)

=

⎛⎝ 6 0 0
0 9 0
0 0 15

⎞⎠+

⎛⎝ −11 −7 −39
84 78 288
54 63 180

⎞⎠
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and note that the result of the direct multiplication is the matrix

𝐴 = 𝐴(1)𝐴(2) =

⎛⎝ −5 −7 −39
84 87 288
54 63 195

⎞⎠ . ♢

§1.6 Schur factorization and inversion of block matrices

Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a block matrix with block entries of sizes𝑚𝑖×𝑚𝑗 which has

invertible principal leading submatrices {𝐴𝑖𝑗}𝑘𝑖,𝑗=1, 𝑘 = 1, 2, . . . , 𝑁 . Such a matrix
𝐴 is called strongly regular. Here we derive some general results concerning Schur
factorizations of strongly regular matrices. It will be proved that every strongly
regular matrix 𝐴 admits the LDU factorization

𝐴 = 𝐿𝐷𝑈, (1.51)

where 𝐿,𝑈,𝐷 are block matrices with the same sizes of blocks as 𝐴, 𝐿 and 𝑈 are
block lower and respectively upper triangular matrices with only identities on the
main diagonals and 𝐷 is a block diagonal matrix.

We start with a detailed study of factorizations of 2× 2 block matrices with
invertible principal submatrices. We also derive inversion formulas for such matri-
ces.

Theorem 1.19. Let 𝐴 be an (𝑚1+𝑚2)× (𝑚1+𝑚2) matrix partitioned in the form

𝐴 =

(
𝐴11 𝐴12

𝐴21 𝐴22

)
with matrices 𝐴11, 𝐴12, 𝐴21, 𝐴22 of sizes 𝑚1 ×𝑚1,𝑚1 × 𝑚2,𝑚2 ×𝑚1,𝑚2 ×𝑚2,
respectively.

Assume that the matrix 𝐴11 is invertible. Then the factorization

𝐴 =

(
𝐼𝑚1 0

𝐴21𝐴
−1
11 𝐼𝑚2

)(
𝐴11 0
0 Γ

)(
𝐼𝑚1 𝐴−1

11 𝐴12

0 𝐼𝑚2

)
, (1.52)

with Γ = 𝐴22 − 𝐴21𝐴
−1
11 𝐴12, holds. Moreover the formula

det𝐴 = det𝐴11 det Γ (1.53)

is valid. Furthermore the matrix 𝐴 is invertible if and only if the matrix Γ is
invertible and in this case the inversion formula

𝐴−1 =

(
𝐴−1

11 +𝐴−1
11 𝐴12Γ

−1𝐴21𝐴
−1
11 −𝐴−1

11 𝐴12Γ
−1

−Γ−1𝐴21𝐴
−1
11 Γ−1

)
(1.54)

holds.



22 Chapter1. The Separable Case

Assume that the matrix 𝐴22 is invertible. Then the factorization

𝐴 =

(
𝐼𝑚1 𝐴12𝐴

−1
22

0 𝐼𝑚2

)(
Θ 0
0 𝐴22

)(
𝐼𝑚1 0

𝐴−1
22 𝐴21 𝐼𝑚2

)
, (1.55)

with Θ = 𝐴11 −𝐴12𝐴
−1
22 𝐴21, holds. Moreover the formula

det𝐴 = det𝐴22 detΘ (1.56)

is valid. Furthermore the matrix 𝐴 is invertible if and only if the matrix Θ is
invertible and in this case the inversion formula

𝐴−1 =

(
Θ−1 −Θ−1𝐴12𝐴

−1
22

−𝐴−1
22 𝐴21Θ

−1 𝐴−1
22 +𝐴−1

22 𝐴21Θ
−1𝐴12𝐴

−1
22

)
(1.57)

holds.

Proof. Assume that the matrix 𝐴11 is invertible. Applying (block) Gauss elimi-
nation to the matrix 𝐴 we obtain the formula (1.52). The formula (1.53) follows
directly from (1.52). Moreover from (1.53) it follows that 𝐴 is invertible if and
only if Γ is invertible. If the last condition is valid, then the matrix 𝐴−1 may be
represented in the form

𝐴−1 =

(
𝐼𝑚1 −𝐴−1

11 𝐴12

0 𝐼𝑚2

)(
𝐴−1

11 0
0 Γ−1

)(
𝐼𝑚1 0

−𝐴21𝐴
−1
11 𝐼𝑚2

)
.

Multiplication of the factors yields (1.54).

Now assume that the matrix 𝐴22 is invertible. The formula (1.55) is obtained
by applying (1.52) to the matrix(

0 𝐼𝑚2

𝐼𝑚1 0

)
𝐴

(
0 𝐼𝑚1

𝐼𝑚2 0

)
=

(
𝐴22 𝐴21

𝐴12 𝐴11

)
.

The formula (1.56) follows directly from (1.55). Furthermore, from (1.55) it follows
that 𝐴 is invertible if and only if Θ is invertible and in this case the matrix 𝐴−1

may be represented in the form

𝐴−1 =

(
𝐼𝑚1 0

−𝐴−1
22 𝐴21 𝐼𝑚2

)(
Θ−1 0
0 𝐴−1

22

)(
𝐼𝑚1 −𝐴12𝐴

−1
22

0 𝐼𝑚2

)
.

Multiplication of the factors in the last equality yields (1.57). □

Now we consider the LDU factorization for an arbitrary matrix with invertible
principal leading submatrices.
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Theorem 1.20. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a block matrix with block entries of sizes

𝑚𝑖 ×𝑚𝑗 and with invertible principal leading submatrices 𝐴𝑘 = {𝐴𝑖𝑗}𝑘𝑖,𝑗=1, 𝑘 =
1, 2, . . . , 𝑁 .

Then 𝐴 admits a unique LDU factorization (1.51). Moreover the factors in
(1.51) may be determined as follows. Let the matrix 𝐴 be partitioned in the form

𝐴 =

(
𝐴𝑘−1 𝐵𝑘
𝐶𝑘 𝑀𝑘

)
, 𝑘 = 2, . . . , 𝑁 (1.58)

with the submatrices 𝐴𝑘 = 𝐴(1 : 𝑘, 1 : 𝑘) partitioned in the form

𝐴𝑘 =

(
𝐴𝑘−1 𝑏𝑘
𝑐𝑘 𝑑𝑘

)
, 𝑘 = 2, . . . , 𝑁. (1.59)

The matrix 𝐷 in (1.51) is a block diagonal matrix

𝐷 = diag{𝛾1, . . . , 𝛾𝑁},
with invertible diagonal blocks 𝛾𝑘 (𝑘 = 1, . . . , 𝑁) of sizes 𝑚𝑘 ×𝑚𝑘 obtained by the
formulas

𝛾1 = 𝑑1, 𝛾𝑘 = 𝑑𝑘 − 𝑐𝑘𝐴−1
𝑘−1𝑏𝑘, 𝑘 = 2, . . . , 𝑁. (1.60)

Furthermore, the matrices 𝐿,𝑈 in (1.51) are determined via the relations

𝐿(𝑘 : 𝑁, 𝑘) = Δ𝑘(:, 1)𝛾
−1
𝑘 , 𝑘 = 1, . . . , 𝑁 − 1 (1.61)

𝑈(𝑘, 𝑘 : 𝑁) = 𝛾−1
𝑘 Δ𝑘(1, :), 𝑘 = 1, . . . , 𝑁 − 1, (1.62)

where
Δ1 = 𝐴, Δ𝑘 =𝑀𝑘 − 𝐶𝑘𝐴−1

𝑘−1𝐵𝑘, 𝑘 = 2, . . . , 𝑁 − 1. (1.63)

Proof. The existence of the factorization (1.51) is established by induction on 𝑘.
For 𝑘 = 1 one obviously obtains 𝐴1 = 𝐿1𝐷1𝑈1 with 𝐿1 = 𝐼,𝐷1 = 𝐴1, 𝑈1 = 𝐼.
Suppose by induction that for some 𝑘 with 2 ≤ 𝑘 ≤ 𝑁 the factorization

𝐴𝑘−1 = 𝐿𝑘−1𝐷𝑘−1𝑈𝑘−1 (1.64)

holds, with block lower and upper triangular 𝐿𝑘−1 and 𝑈𝑘−1 having identities
on the main diagonals, and with block diagonal 𝐷𝑘−1. Consider the matrix 𝐴𝑘
partitioned in the form (1.59). Applying formula (1.52) one gets

𝐴𝑘 =

(
𝐼 0

𝑐𝑘𝐴
−1
𝑘−1 𝐼

)(
𝐴𝑘−1 0
0 𝑑𝑘 − 𝑐𝑘𝐴−1

𝑘−1𝑏𝑘

)(
𝐼 𝐴−1

𝑘−1𝑏𝑘
0 𝐼

)
. (1.65)

Furthermore, using (1.64) one obtains

𝐴𝑘 =

(
𝐿𝑘−1 0

𝑐𝑘𝐴
−1
𝑘−1𝐿𝑘−1 𝐼

)(
𝐷𝑘−1 0
0 𝑑𝑘 − 𝑐𝑘𝐴−1

𝑘−1𝑏𝑘

)(
𝑈𝑘−1 𝑈𝑘−1𝐴

−1
𝑘−1𝑏𝑘

0 𝐼

)
.
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Here the first and the last factors are (block) lower and upper triangular matrices
with identities on the main diagonals and the middle factor is a block diagonal
matrix. Thus one obtains the factorization of the form (1.51) for the matrix 𝐴𝑘.
Taking 𝑘 = 𝑁 one obtains the factorization (1.51) for the matrix 𝐴.

To prove the uniqueness, let

𝐴 = 𝐿1𝐷1𝑈1 = 𝐿2𝐷2𝑈2

be two LDU factorizations of the matrix 𝐴. All the matrices here are invertible.
Moreover, one has

𝐿−1
2 𝐿1 = (𝐷2𝑈2)(𝐷1𝑈1)

−1.

Since the matrix 𝐿−1
2 𝐿1 is lower triangular with only identities on the main di-

agonal and the matrix (𝐷2𝑈2)(𝐷1𝑈1)
−1 is upper triangular, one gets 𝐿−1

2 𝐿1 =
(𝐷2𝑈2)(𝐷1𝑈1)

−1 = 𝐼 and therefore 𝐿1 = 𝐿2 and 𝐷1𝑈1 = 𝐷2𝑈2. From the sec-
ond equality since 𝐷1, 𝐷2 are diagonal and 𝑈1, 𝑈2 are upper triangular with only
identities on the main diagonals one obtains 𝐷1 = 𝐷2, 𝑈1 = 𝑈2.

To derive the formulas for the factors, consider at the beginning the first
column of the matrix 𝐿, the first row of the matrix 𝑈 and the first diagonal entry
of the matrix 𝐷. From 𝐴 = 𝐿𝐷𝑈 one obviously gets

𝛾1 = 𝐴(1, 1) = 𝑑1, 𝐴(:, 1) = 𝐿(:, 1)𝛾1, 𝐴(1, :) = 𝛾1𝑈(1, :),

which means

𝐷(1, 1) = 𝛾1, 𝐿(:, 1) = 𝐴(:, 1)𝛾−1
1 , 𝑈(1, :) = 𝛾−1

1 𝐴(1, :). (1.66)

Next let 𝐴 be partitioned in the form (1.58). By the formula (1.52),

𝐴 =

(
𝐼 0

𝐶𝑘𝐴
−1
𝑘−1 𝐼

)(
𝐴𝑘−1 0
0 Δ𝑘

)(
𝐼 𝐴−1

𝑘−1𝐵𝑘
0 𝐼

)
, 𝑘 = 2, . . . , 𝑁. (1.67)

This implies in particular that

𝐴𝑘−1+𝑚 = 𝐴(1 : 𝑘 − 1 +𝑚, 1 : 𝑘 − 1 +𝑚)

=

(
𝐼𝑘−1 0

𝐶𝑘(1 : 𝑚, :)𝐴
−1
𝑘−1 𝐼𝑚

)(
𝐴𝑘−1 0
0 Δ𝑘(1 : 𝑚, 1 : 𝑚)

)(
𝐼 𝐴−1

𝑘−1𝐵𝑘(:, 1 : 𝑚)
0 𝐼𝑚

)
,

𝑚 = 1, . . . , 𝑁 − 𝑘 + 1, 𝑘 = 2, . . . , 𝑁. (1.68)

Every matrix 𝐴𝑘 is strongly regular and therefore admits the LDU factorization.
Moreover from (1.68) it follows that every matrix Δ𝑘 has the LDU factorization.
Let 𝐴𝑘−1 = 𝐿𝑘−1𝐷𝑘−1𝑈𝑘−1 and Δ𝑘 = 𝑋𝑘𝐷

′
𝑘𝑌𝑘 be the corresponding LDU factor-

izations. Substituting this in (1.67) one obtains the LDU factorization 𝐴 = 𝐿𝐷𝑈
with

𝐿 =

(
𝐿𝑘−1 0

𝐶𝑘𝐴
−1
𝑘−1𝐿𝑘−1 𝑋𝑘

)
, 𝐷 =

(
𝐷𝑘−1 0
0 𝐷′𝑘

)
, 𝑈 =

(
𝑈𝑘−1 𝑈𝑘−1𝐴

−1
𝑘−1𝐵𝑘

0 𝑌𝑘

)
.
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Using (1.68) with 𝑚 = 1 and the equalities 𝐶𝑘(1, :) = 𝑐𝑘, 𝐵𝑘(:, 1) = 𝑏𝑘 we have

𝐴𝑘 =

(
𝐼 0

𝑐𝑘𝐴
−1
𝑘−1 𝐼

)(
𝐴𝑘−1 0
0 Δ𝑘(1, 1)

)(
𝐼 𝐴−1

𝑘−1𝑏𝑘
0 𝐼

)
.

Comparing with (1.65), we get Δ𝑘(1, 1) = 𝛾𝑘. Now applying (1.66) to the matrix
Δ𝑘 we obtain

𝐷(𝑘, 𝑘) = 𝐷′𝑘(1, 1) = 𝛾𝑘, 𝐿(𝑘 : 𝑁, 𝑘) = 𝑋𝑘(:, 1) = Δ𝑘(:, 1)𝛾
−1
𝑘 ,

𝑈(𝑘, 𝑘 : 𝑁) = 𝑌𝑘(1, :) = 𝛾
−1
𝑘 Δ𝑘(1, :),

which completes the proof. □

If a square 𝑁 × 𝑁 matrix 𝐴 is symmetric (𝐴𝑖𝑗 = 𝐴𝑗𝑖, 𝑖, 𝑗,= 1, . . . , 𝑁) and
positive definite (namely the scalar product < 𝐴𝑥, 𝑥 >> 0 for any 𝑁 -dimensional
nonzero block vector 𝑥), then the matrix 𝐴 admits the Cholesky decomposition,
which is identical with the 𝐿𝐷𝑈 decomposition in which 𝑈 = 𝐿𝑇 and this 𝐴 =
𝐿𝐷𝐿𝑇 is obtained much faster.

§1.7 A general inversion formula

Here we present a well-known inversion formula with a complete proof.

Theorem 1.21. Let 𝐴 be an 𝑚×𝑚 invertible matrix and 𝐵 and 𝐶 be 𝑚× 𝑛 and
𝑛×𝑚 matrices.

The matrix 𝐴−𝐵𝐶 is invertible if and only if the matrix 𝑉 = 𝐼𝑛 −𝐶𝐴−1𝐵
is invertible. Moreover, if this is the case the inversion formula

(𝐴−𝐵𝐶)−1 = 𝐴−1 +𝐴−1𝐵𝑉 −1𝐶𝐴−1 (1.69)

holds.

Proof. We start with the case 𝐴 = 𝐼𝑚, i.e., with the proof that the matrix 𝐼𝑚−𝐵𝐶
is invertible if and only if the matrix 𝐼𝑛 −𝐶𝐵 is invertible and moreover if this is
the case the inversion formula

(𝐼𝑚 −𝐵𝐶)−1 = 𝐼 +𝐵(𝐼𝑛 − 𝐶𝐵)−1𝐶 (1.70)

holds.

Applying the formulas (1.55) and (1.52) to the matrix 𝑅 =

(
𝐼𝑚 𝐵
𝐶 𝐼𝑛

)
one

has (
𝐼𝑚 𝐵
0 𝐼𝑛

)(
𝐼𝑚 −𝐵𝐶 0

0 𝐼𝑛

)(
𝐼𝑚 0
𝐶 𝐼𝑛

)
=

(
𝐼𝑚 0
𝐶 𝐼𝑛

)(
𝐼𝑚 0
0 𝐼𝑛 − 𝐶𝐵

)(
𝐼𝑚 𝐵
0 𝐼𝑛

)
.

(1.71)
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Hence it follows that 𝐼𝑚 − 𝐵𝐶 is invertible if and only if 𝐼𝑛 − 𝐶𝐵 is invertible.
Moreover, using the fact that(

𝐼𝑚 𝐵
0 𝐼𝑛

)−1

=

(
𝐼𝑚 −𝐵
0 𝐼𝑛

)
,

(
𝐼𝑚 0
𝐶 𝐼𝑛

)−1

=

(
𝐼𝑚 0
−𝐶 𝐼𝑛

)
one obtains(
𝐼𝑚 −𝐵𝐶 0

0 𝐼𝑛

)
=

(
𝐼𝑚 −𝐵
0 𝐼𝑛

)(
𝐼𝑚 0
𝐶 𝐼𝑛

)(
𝐼𝑚 0
0 𝐼𝑛 − 𝐶𝐵

)(
𝐼𝑚 𝐵
0 𝐼𝑛

)(
𝐼𝑚 0
−𝐶 𝐼𝑛

)
.

Furthermore, assuming that the matrix 𝐼𝑚 − 𝐵𝐶 (or the matrix 𝐼𝑛 − 𝐶𝐵) is
invertible one obtains(

(𝐼𝑚 −𝐵𝐶)−1 0
0 𝐼𝑛

)
=

(
𝐼𝑚 0
𝐶 𝐼𝑛

)(
𝐼𝑚 −𝐵
0 𝐼𝑛

)(
𝐼𝑚 0
0 (𝐼𝑛 − 𝐶𝐵)−1

)(
𝐼𝑚 0
−𝐶 𝐼𝑛

)(
𝐼𝑚 𝐵
0 𝐼𝑛

)
.

Consequently,

(𝐼𝑚−𝐵𝐶)−1 =
(
𝐼𝑚 0

)( 𝐼𝑚 −𝐵
0 𝐼𝑛

)(
𝐼𝑚 0
0 (𝐼𝑛 − 𝐶𝐵)−1

)(
𝐼𝑚 0
−𝐶 𝐼𝑛

)(
𝐼𝑚
0

)
,

i.e.,

(𝐼𝑚−𝐵𝐶)−1 =
(
𝐼𝑚 −𝐵 )( 𝐼𝑚 0

0 (𝐼𝑛 − 𝐶𝐵)−1

)(
𝐼𝑚
−𝐶

)
= 𝐼𝑚+𝐵(𝐼𝑛−𝐶𝐵)−1𝐶,

which completes the proof of (1.70).

Now consider the case of an arbitrary 𝑚 ×𝑚 invertible matrix 𝐴. One has
𝐴 − 𝐵𝐶 = 𝐴(𝐼𝑚 − (𝐴−1𝐵)𝐶). Therefore the matrix 𝐴 − 𝐵𝐶 is invertible if and
only if the matrix 𝐼𝑚 − (𝐴−1𝐵)𝐶 is. But as it was shown above, the matrix
𝐼𝑚 − (𝐴−1𝐵)𝐶 is invertible if and only if the matrix 𝐼𝑛 − 𝐶𝐴−1𝐵 = 𝑉 is and
moreover, if this is the case, using the formula (1.70) one gets

(𝐼𝑚 −𝐴−1𝐵𝐶)−1 = 𝐼𝑚 +𝐴−1𝐵𝑉 −1𝐶,

which implies (1.69). □
Corollary 1.22. Let 𝐵 and 𝐶 be 𝑚× 𝑛 and 𝑛×𝑚 matrices. Then

det(𝐼𝑚 − 𝐵𝐶) = det(𝐼𝑛 − 𝐶𝐵). (1.72)

The proof follows directly from the formula (1.71).
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§1.8 Inversion of matrices with diagonal
plus separable representation

In this section it is shown that inverting a matrix in separable representation of
order 𝑟 amounts to inverting an 𝑟 × 𝑟 matrix.
Theorem 1.23. Let 𝐴 be an 𝑁 × 𝑁 block matrix with diagonal plus separable of
order 𝑟 representation and let the diagonal generators 𝑑(𝑖), 𝑖 = 1, . . . , 𝑁 of sizes
𝑚𝑖 × 𝑚𝑖 be invertible. Consider the diagonal matrix 𝐷 = diag(𝑑(𝑖))𝑁𝑖=1 and the
matrices 𝑃 = col(𝑝(𝑖))𝑁𝑖=1, 𝑄 = row(𝑞(𝑖))𝑁𝑖=1 which are formed with the separable
generators 𝑝(𝑖), 𝑞(𝑖) (𝑖 = 1, . . . , 𝑁) of sizes 𝑚𝑖 × 𝑟 and 𝑟 ×𝑚𝑖, respectively, such
that 𝐴 = 𝐷 + 𝑃𝑄. Define the 𝑟 × 𝑟 matrix 𝑉 = 𝐼𝑟 +𝑄𝐷

−1𝑃 . Then obviously

𝑉 = 𝐼𝑟 +
𝑁∑
𝑘=1

𝑞(𝑘)(𝑑(𝑘))−1𝑝(𝑘). (1.73)

The matrix 𝐴 = 𝐷 + 𝑃𝑄 is invertible if and only if the 𝑟 × 𝑟 matrix 𝑉 =
𝐼𝑟+𝑄𝐷

−1𝑃 is invertible. Moreover, if this is the case, then entries of the inverse
matrix 𝐴−1 are given by the formulas

𝐴−1(𝑖, 𝑗) = (𝑑(𝑖))−1𝛿𝑖𝑗 − (𝑑(𝑖))−1𝑝(𝑖)𝑉 −1𝑞(𝑗)(𝑑(𝑗))−1, 𝑖, 𝑗 = 1, . . . , 𝑁. (1.74)

Proof. Applying Theorem 1.21 we conclude that the matrix 𝐴 is invertible if and
only if the matrix 𝑉 is and if this is the case the inversion formula

𝐴−1 = 𝐷−1 −𝐷−1𝑃𝑉 −1𝑄𝐷−1

holds, i.e.,
𝐴× = 𝐷× + 𝑃×𝑄×,

with 𝐷× = 𝐷−1, 𝑃× = −𝐷−1𝑃, 𝑄× = 𝑉 −1𝑄𝐷−1. Here 𝐷× is a block di-

agonal matrix and 𝑃×, 𝑄× are matrices of sizes
(∑𝑁

𝑖=1𝑚𝑖

)
× 𝑟, 𝑟 ×

(∑𝑁
𝑖=1𝑚𝑖

)
,

respectively. Hence we have obtained a diagonal plus separable of order 𝑟 represen-
tation of the matrix 𝐴−1. Moreover, we have 𝐷× = diag(𝑑×(𝑖))𝑁𝑖=1 with 𝑑×(𝑖) =
(𝑑(𝑖))−1, 𝑖 = 1, . . . , 𝑁 , 𝑃× = col(𝑝×(𝑖))𝑁𝑖=1 with 𝑝×(𝑖) = −(𝑑(𝑖))−1𝑝(𝑖), 𝑖 =
1, . . . , 𝑁 and 𝑄× = row(𝑞×(𝑖))𝑁𝑖=1 with 𝑞×(𝑖) = 𝑉 −1𝑞(𝑖)(𝑑(𝑖))−1, 𝑖 = 1, . . . , 𝑁 .
This means that the matrices 𝑑×(𝑖) (𝑖 = 1, . . . , 𝑁) and 𝑝×(𝑖), 𝑞×(𝑖) (𝑖 = 1, . . . , 𝑁)
are the diagonal and separable generators of the matrix 𝐴−1. Hence the formula
(1.74) follows.

Another proof of the theorem can be obtained using the system (1.32)⎧⎨⎩
𝜒𝑘+1 = 𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑁+1 + 𝑑(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝜒1 = 0.
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Since the blocks 𝑑(𝑘), 𝑘 = 1, . . . , 𝑁 are invertible one obtains from the second
equation that

𝑥(𝑘) = 𝑑×(𝑘)𝑦(𝑘)− 𝑝×(𝑘)𝜒𝑁+1, 𝑘 = 1, . . . , 𝑁.

Substituting this in the first equation we get

𝜒𝑘+1 = 𝜒𝑘 + 𝑞(𝑘)(𝑑(𝑘))
−1𝑦(𝑘)− 𝑞(𝑘)(𝑑(𝑘))−1𝑝(𝑘)𝜒𝑁+1

for 𝑘 = 1, . . . , 𝑁. Hence, using also that 𝜒1 = 0 it follows that

𝜒𝑁+1 =

𝑁∑
𝑘=1

𝑞(𝑘)(𝑑(𝑘))−1𝑦(𝑘)−
(

𝑁∑
𝑘=1

𝑞(𝑘)(𝑑(𝑘))−1𝑝(𝑘)

)
𝜒𝑁+1,

which means that

𝑉 𝜒𝑁+1 =

𝑁∑
𝑘=1

𝑞(𝑘)(𝑑(𝑘))−1𝑦(𝑘), (1.75)

with 𝑉 given by (1.73). From (1.75) and the invertibility of 𝑉 we obtain

𝜒𝑁+1 =

𝑁∑
𝑘=1

𝑉 −1𝑞×(𝑘)𝑦(𝑘).

Define the state space variables 𝜒×𝑘 , 𝑘 = 1, . . . , 𝑁 + 1 via

𝜒×1 = 0, 𝜒×𝑘+1 = 𝜒
×
𝑘 + 𝑞×(𝑘)𝑦(𝑘), 𝑘 = 1, . . . , 𝑁.

It follows that 𝜒×𝑁+1 = 𝜒𝑁+1. Thus we obtain the system⎧⎨⎩
𝜒×𝑘+1 = 𝜒

×
𝑘 + 𝑞×(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁

𝑥(𝑘) = 𝑝×(𝑘)𝜒×𝑁+1 + 𝑑
×(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝜒×1 = 0.

(1.76)

By Theorem 1.11 we obtain that 𝐴−1 has the diagonal generators 𝑑×(𝑖), 𝑖 =
1, . . . , 𝑁 and the separable generators 𝑝×(𝑖), 𝑞×(𝑖), 𝑖 = 1, . . . , 𝑁 . □
Example 1.24. Consider the 𝑁 ×𝑁 matrix

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 2 3 ⋅ ⋅ ⋅ 𝑁 − 1 𝑁
2 8 6 ⋅ ⋅ ⋅ 2(𝑁 − 1) 2𝑁
3 6 18 ⋅ ⋅ ⋅ 3(𝑁 − 1) 3𝑁
...

...
...

. . .
...

...
𝑁 − 1 2(𝑁 − 1) 3(𝑁 − 1) ⋅ ⋅ ⋅ 2(𝑁 − 1)2 (𝑁 − 1)𝑁
𝑁 2𝑁 3𝑁 ⋅ ⋅ ⋅ (𝑁 − 1)𝑁 2𝑁2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
which resembles the matrix from Example 1.4, having the same separable gener-
ators 𝑝(𝑖) = 𝑞(𝑖) = 𝑖, 𝑖 = 1, . . . , 𝑁 , but it also has non zero diagonal generators

𝑑(𝑖) = 𝑖2, 𝑖 = 1, . . . , 𝑁.
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If we define the diagonal matrix 𝐷 = diag(𝑑(𝑖))𝑁𝑖=1 and the matrices

𝑃 = col(𝑝(𝑖))𝑁𝑖=1 and 𝑄 = row(𝑞(𝑖))𝑁𝑖=1

which are formed with the separable generators, then 𝐴 = 𝐷 + 𝑃𝑄.

Theorem 1.23 above can be used to invert the matrix 𝐴 as follows.

Define the 𝑟 × 𝑟 matrix 𝑉 = 𝐼𝑟 +𝑄𝐷
−1𝑃 , which for 𝑟 = 1 is a scalar. One

has, by (1.73),

𝑉 = 1 +

𝑁∑
𝑘=1

𝑞(𝑘)(𝑑(𝑘))−1𝑝(𝑘) = 1 +

𝑁∑
𝑘=1

𝑘 ⋅ 1

𝑘2
⋅ 𝑘 = 1 +𝑁.

The matrix 𝐴 = 𝐷 + 𝑃𝑄 is therefore invertible for any positive integer 𝑁 ,
since 𝑉 = 1 + 𝑁 ∕= 0. Moreover, the entries of the inverse matrix 𝐴−1 are given
by the formulas (1.74). Therefore, for any 𝑖, 𝑗 = 1, . . . , 𝑁 the corresponding entry
of 𝐴−1 is

𝐴−1(𝑖, 𝑗) = (𝑑(𝑖))−1𝛿𝑖𝑗 − (𝑑(𝑖))−1𝑝(𝑖)𝑉 −1𝑞(𝑗)(𝑑(𝑗))−1

=
1

𝑖2
⋅ 𝛿𝑖𝑗 − 1

𝑖2
⋅ 𝑖 ⋅ 1

𝑁 + 1
⋅ 𝑗 ⋅ 1

𝑗2

=
1

𝑖2
⋅ 𝛿𝑖𝑗 − 1

𝑖𝑗(𝑁 + 1)
= − 1

𝑁 + 1
⋅ (−𝑁)𝛿𝑖𝑗

𝑖𝑗
.

It follows that

𝐴−1 =
1

𝑁 + 1
⋅

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑁 − 1
2 − 1

3 ⋅ ⋅ ⋅ − 1
𝑁−1 − 1

𝑁

− 1
2

1
4𝑁 − 1

6 ⋅ ⋅ ⋅ − 1
2(𝑁−1) − 1

2𝑁

− 1
3 − 1

6
1
9𝑁 ⋅ ⋅ ⋅ − 1

3(𝑁−1) − 1
3𝑁

...
...

...
. . .

...
...

− 1
𝑁−1 − 1

2(𝑁−1) − 1
3(𝑁−1) ⋅ ⋅ ⋅ 1

(𝑁−1)2𝑁 − 1
(𝑁−1)𝑁

− 1
𝑁 − 1

2𝑁 − 1
3𝑁 ⋅ ⋅ ⋅ − 1

(𝑁−1)𝑁
1
𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
as one can also check directly . ♢

Based on the formulas (1.73), (1.74) one obtains the following fast algorithm
for the solution of the system of linear algebraic equations 𝐴𝑥 = 𝑦 with 𝑥 and 𝑦
partitioned in the form 𝑥 = col(𝑥(𝑖))𝑁𝑖=1, 𝑦 = col(𝑦(𝑖))𝑁𝑖=1, where 𝑥(𝑖) and 𝑦(𝑖) are
𝑚𝑖-dimensional columns.

Algorithm 1.25.

1) Compute

(𝑑(𝑘))−1, 𝑘 = 1, . . . , 𝑁
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2) Compute the 𝑟 × 𝑟 matrix

𝑉 = 𝐼𝑟 +
𝑁∑
𝑘=1

(𝑞(𝑘))(𝑑(𝑘))−1𝑝(𝑘).

3) Compute the 𝑟-dimensional column

𝑧 =

𝑁∑
𝑗=1

𝑞(𝑗)(𝑑(𝑗))−1𝑦(𝑗).

4) Solve the 𝑟 × 𝑟 linear system
𝑉 𝑤 = 𝑧.

5) Compute the vector 𝑥 = (𝑥(𝑖))𝑁𝑖=1:

𝑥(𝑖) = (𝑑(𝑖))−1(𝑦(𝑖) + 𝑝(𝑖)𝑤).

The complexity of the arithmetic operations used in Algorithm 1.25 is cal-
culated as follows.

1. Step 1:
∑𝑁
𝑘=1 𝜌(𝑚𝑘) arithmetic operations of addition or multiplication.

2. Step 2: consists in the addition of an 𝑟 × 𝑟 matrix to a sum of two matrix
multiplications which comprise each 𝑟𝑚2

𝑘 multiplications and 𝑟(𝑚𝑘 − 1)𝑚𝑘

additions, thus this step costs less than 𝑟2 +
∑𝑁
𝑘=1 4𝑟𝑚

2
𝑘 arithmetic opera-

tions.

3. Step 3: is a sum of matrix matrix multiplications which comprise each 𝑟𝑚2
𝑘

multiplications and 𝑟(𝑚𝑘−1)𝑚𝑘 additions and matrix vector multiplications
which comprise each 𝑟𝑚𝑘 multiplications and 𝑟(𝑚𝑘 − 1) additions, thus this

step costs less than
∑𝑁

𝑘=1 2𝑟𝑚𝑘(𝑚𝑘 + 1) arithmetic operations.

4. Step 4: 𝜌(𝑟) arithmetic operations.

5. Step 5: inside the brackets 𝑚𝑖 additions and a matrix vector multiplication
which costs 𝑚𝑖𝑟 multiplications and 𝑚𝑖(𝑟− 1) additions, plus 𝑚2

𝑖 multiplica-
tions and 𝑚𝑖(𝑚𝑖 − 1) additions outside the brackets, thus in total less than∑𝑁

𝑘=1 2𝑚𝑘(𝑟 +𝑚𝑘) arithmetic operations.

Here 𝜌(𝑚) is the complexity of the solution of an 𝑚 × 𝑚 system of linear
algebraic equations using a standard method.

Thus the total complexity of the algorithm is

𝑐 = 𝑟2 + 𝜌(𝑟) +
𝑁∑
𝑘=1

((3𝑟𝑚𝑘𝑟 + 2𝑟 +𝑚𝑘)2𝑚𝑘 + 𝜌(𝑚𝑘))

arithmetic operations. Setting 𝑚 = max1≤𝑘≤𝑁 (𝑚𝑘) one obtains the estimate

𝑐 ≤ (𝜌(𝑚) +𝑚(3𝑚𝑟 + 2𝑟 +𝑚))𝑁 + 𝑟2 + 𝜌(𝑟).
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§1.9 LDU factorization of matrices with
diagonal plus separable representation

Let 𝐴 be an 𝑁 ×𝑁 block matrix with block entries of sizes 𝑚𝑖×𝑚𝑗. By Theorem
1.20 if 𝐴 is a strongly regular matrix, then it admits the LDU factorization

𝐴 = 𝐿𝐷𝑈, (1.77)

where 𝐿,𝑈,𝐷 are block matrices with the same sizes of blocks as 𝐴, and 𝐿 and 𝑈
are block lower and upper triangular matrices with identities on the main diago-
nals, while 𝐷 is a block diagonal matrix. Next we derive a specification of Theorem
1.20 for matrices with diagonal plus separable representations.

Theorem 1.26. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be an 𝑁 × 𝑁 block matrix with block en-
tries of sizes 𝑚𝑖 × 𝑚𝑗 with invertible principal leading block submatrices 𝐴𝑘 =
{𝐴𝑖𝑗}𝑘𝑖,𝑗=1, 𝑘 = 1, . . . , 𝑁 . Assume that for 𝐴 it is given a diagonal plus separable
representation of order 𝑟, i.e., 𝐴 has the diagonal generators 𝑑0(𝑖), 𝑖 = 1, . . . , 𝑁 of
sizes 𝑚𝑖 ×𝑚𝑖 and the separable generators 𝑝(𝑖), 𝑞(𝑖), 𝑖 = 1, . . . , 𝑁 of sizes 𝑚𝑖 × 𝑟
and 𝑟 ×𝑚𝑖 respectively. In matrix form, 𝐴 = 𝐷0 + 𝑃𝑄 with 𝐷0 = diag(𝑑0(𝑖))

𝑁
𝑖=1,

𝑃 = col(𝑝(𝑖))𝑁𝑖=1 and 𝑄 = row(𝑞(𝑖))𝑁𝑖=1.

Then in the factorization (1.77) the matrix 𝐿 is the identity matrix plus the
strictly lower triangular part of a matrix 𝑃𝑄𝐿 in separable form of order 𝑟, namely
𝐿 has the lower separable generators 𝑝(𝑖), 𝑖 = 2, . . . , 𝑁 , which are the same as for
the matrix 𝐴, and 𝑞𝐿(𝑖), 𝑖 = 1, . . . , 𝑁 − 1 of size 𝑟×𝑚𝑖, while the matrix 𝑈 is the
identity matrix plus the strictly upper triangular part of a matrix 𝑃𝑈𝑄 in separable
form of order 𝑟, namely 𝑈 has the upper separable generators 𝑞(𝑖), 𝑖 = 2, . . . , 𝑁 ,
which are the same as for the matrix 𝐴, and 𝑝𝑈 (𝑖), 𝑖 = 1, . . . , 𝑁−1 of size 𝑚𝑖×𝑟.
Finally the matrix 𝐷 has the form

𝐷 = diag{𝛾1, . . . , 𝛾𝑁}
with blocks 𝛾𝑖, 𝑖 = 1, . . . , 𝑁 of sizes 𝑚𝑖 × 𝑚𝑖. Here 𝑃

𝑈 = col(𝑝𝑈 (𝑖))𝑁𝑖=1 and
𝑄𝐿 = row(𝑞𝐿(𝑖))𝑁𝑖=1. These ingredients are obtained as follows:

1. Compute

𝛾1 = 𝑑0(1) + 𝑝(1)𝑞(1), 𝑞𝐿(1) = 𝑞(1)𝛾−1
1 , 𝑝𝑈 (1) = 𝛾−1

1 𝑝(1), (1.78)

𝛼1 = 𝐼𝑟 − 𝑞𝐿(1)𝛾1𝑝𝑈 (1). (1.79)

2. For 𝑘 = 2, . . . , 𝑁 − 1, compute

𝛽𝑘 = 𝛼𝑘−1𝑞(𝑘), (1.80)

𝛾𝑘 = 𝑑0(𝑘) + 𝑝(𝑘)𝛽𝑘, (1.81)

𝑞𝐿(𝑘) = 𝛽𝑘𝛾
−1
𝑘 , (1.82)

𝑝𝑈 (𝑘) = 𝛾−1
𝑘 𝑝(𝑘)𝛼𝑘−1, (1.83)

𝛼𝑘 = 𝛼𝑘−1 − 𝑞𝐿(𝑘)𝛾𝑘𝑝𝑈 (𝑘). (1.84)
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3. Compute

𝛾𝑁 = 𝑑0(𝑁) + 𝑝(𝑁)𝛼𝑁−1𝑞(𝑁). (1.85)

Here 𝛼𝑘 (𝑘 = 1, . . . , 𝑁 − 1), 𝛽𝑘 (𝑘 = 2, . . . , 𝑁 − 1) are auxiliary variables
which are 𝑟 × 𝑟 and respectively 𝑟 ×𝑚𝑘 matrices.

Proof. One must check that

𝐷 = diag{𝛾1, . . . , 𝛾𝑁}

and moreover that the matrices 𝐿,𝑈 satisfy the relations

𝐿(𝑘 + 1 : 𝑁, 𝑘) = 𝑃𝑘+1𝑞
𝐿(𝑘), 𝑘 = 1, . . . , 𝑁 − 1, (1.86)

𝑈(𝑘, 𝑘 + 1 : 𝑁) = 𝑝𝑈 (𝑘)𝐻𝑘+1, 𝑘 = 1, . . . , 𝑁 − 1, (1.87)

with the matrices 𝑃𝑘, 𝐻𝑘 defined by

𝑃𝑘 = col(𝑝(𝑖))𝑁𝑖=𝑘, 𝐻𝑘 = row(𝑞(𝑖))𝑁𝑖=𝑘, 𝑘 = 1, . . . , 𝑁

and the elements 𝛾𝑘, 𝑞
𝐿(𝑘), 𝑝𝑈 (𝑘) determined in the statement of the theorem.

Denote also

𝐺𝑘 = col(𝑝(𝑖))𝑘𝑖=1, 𝑄𝑘 = row(𝑞(𝑖))𝑘𝑖=1, 𝑘 = 1, . . . , 𝑁

and introduce the matrices

𝛼𝑘 = 𝐼𝑟 −𝑄𝑘𝐴−1
𝑘 𝐺𝑘, 𝑘 = 1, . . . , 𝑁 − 1. (1.88)

In the formulas (1.58), (1.59) one gets

𝐵𝑘 = 𝐺𝑘−1𝐻𝑘, 𝐶𝑘 = 𝑃𝑘𝑄𝑘−1, 𝑏𝑘 = 𝐺𝑘−1ℎ(𝑘), 𝑐𝑘 = 𝑝(𝑘)𝑄𝑘−1.

Using the formulas (1.60) one gets

𝛾1 = 𝑑0(1) + 𝑝(1)𝑞(1), 𝛾𝑘 = 𝑑0(𝑘) + 𝑝(𝑘)𝛼𝑘−1𝑞(𝑘), 𝑘 = 2, . . . , 𝑁, (1.89)

which means that the formulas (1.78), (1.81), (1.85) for 𝛾𝑘 (𝑘 = 1, . . . , 𝑁) hold,
and moreover using (1.61)–(1.63) we obtain

𝐿(𝑘 : 𝑁, 𝑘) = Δ𝑘(:, 1)𝛾
−1
𝑘 , 𝑘 = 1, . . . , 𝑁, (1.90)

𝑈(𝑘, 𝑘 : 𝑁) = 𝛾−1
𝑘 Δ𝑘(1, :), 𝑘 = 1, . . . , 𝑁, (1.91)

where

Δ1 = 𝐴, Δ𝑘 =𝑀𝑘 + 𝑃𝑘𝛼𝑘−1𝐻𝑘 − 𝑃𝑘𝐻𝑘, 𝑘 = 2, . . . , 𝑁. (1.92)



§1.9. LDU factorization of matrices 33

Now we will prove the relations (1.86), (1.87). For 𝑘 = 1 one has 𝛾1 =
𝑑0(1) + 𝑝(1)𝑞(1) and one gets

Δ1(2 : 𝑁, 1) = 𝐴(2 : 𝑁, 1) = 𝑃2𝑞(1),

Δ1(1, 2 : 𝑁) = 𝐴(1, 2 : 𝑁) = 𝑝(1)𝐻2

and hence using (1.90), (1.91) one obtains

𝐿(2 : 𝑁, 1) = 𝑃2𝑞
𝐿(1), 𝑈(1, 2 : 𝑁) = 𝑝𝑈 (1)𝐻2

with the elements 𝑞𝐿(1), 𝑝𝑈 (1) defined in (1.78).

For 𝑘 > 1 one has the following. One obtains the representations

𝑀𝑘(:, 1) = 𝐴(𝑘 : 𝑁, 𝑘) =

(
𝑑0(𝑘) + 𝑝(𝑘)𝑞(𝑘)

𝑃𝑘+1𝑞(𝑘)

)
, 𝑘 = 2, . . . , 𝑁 − 1 (1.93)

and

𝑀𝑘(1, :) = 𝐴(𝑘, 𝑘 : 𝑁) =
(
𝑑0(𝑘) + 𝑝(𝑘)𝑞(𝑘) 𝑝(𝑘)𝐻𝑘+1

)
, 𝑘 = 2, . . . , 𝑁 − 1.

(1.94)
Taking the first columns in (1.92) and using (1.93) one obtains

Δ𝑘(:, 1) =

(
𝛾𝑘

𝑃𝑘+1𝛼𝑘−1𝑞(𝑘)

)
.

Similarly, taking the first rows in (1.92) and using (1.94) one obtains

Δ𝑘(1, :) =
(
𝛾𝑘 𝑝(𝑘)𝛼𝑘−1𝐻𝑘+1

)
.

Thus one obtains the relations

Δ𝑘(:, 1) =

(
𝛾𝑘

𝑃𝑘+1𝛼𝑘−1𝑞(𝑘)

)
=

(
𝛾𝑘

𝑃𝑘+1𝑞
′(𝑘)

)
, 𝑘 = 2, . . . , 𝑁

and

Δ𝑘(1, :) =
(
𝛾𝑘 𝑝(𝑘)𝛼𝑘−1𝐻𝑘+1

)
=
(
𝛾𝑘 𝑝′(𝑘)𝐻𝑘+1

)
, 𝑘 = 2, . . . , 𝑁,

with the elements 𝛾𝑘 from (1.81) and

𝑞′(𝑘) = 𝛼𝑘−1𝑞(𝑘), 𝑝′(𝑘) = 𝑝(𝑘)𝛼𝑘−1.

Furthermore, using (1.90), (1.91) and (1.80), (1.82), (1.83) one obtains (1.86) and
(1.87).

It remains to prove the relations (1.79), (1.84). The equality (1.79) follows
directly from the definition (1.88) and the relations

𝑄1 = 𝑞(1), 𝐺1 = 𝑝(1), 𝛾1 = 𝑑0(1) + 𝑝(1)𝑞(1).
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For 𝑘 > 1, applying the factorization (1.65) one obtains

𝐴𝑘 =

(
𝐼 0

𝑝(𝑘)𝑄𝑘−1𝐴
−1
𝑘−1 𝐼

)(
𝐴𝑘−1 0
0 𝛾𝑘

)(
𝐼 𝐴−1

𝑘−1𝐺𝑘−1𝑞(𝑘)
0 𝐼

)
,

which implies

𝐴−1
𝑘 =

(
𝐼 −𝐴−1

𝑘−1𝐺𝑘−1𝑞(𝑘)
0 𝐼

)(
𝐴−1
𝑘−1 0

0 𝛾−1
𝑘

)(
𝐼 0

−𝑝(𝑘)𝑄𝑘−1𝐴
−1
𝑘−1 𝐼

)
.

(1.95)
It follows that

𝑄𝑘

(
𝐼 −𝐴−1

𝑘−1𝐺𝑘−1𝑞(𝑘)
0 𝐼

)
=
(
𝑄𝑘−1 𝑞(𝑘)

)( 𝐼 −𝐴−1
𝑘−1𝐺𝑘−1𝑞(𝑘)

0 𝐼

)
=
(
𝑄𝑘−1 𝛼𝑘−1𝑞(𝑘)

)
=
(
𝑄𝑘−1 𝑞′(𝑘)

)
(1.96)

and (
𝐼 0

−𝑝(𝑘)𝑄𝑘−1𝐴
−1
𝑘−1 𝐼

)
𝐺𝑘 =

(
𝐼 0

−𝑝(𝑘)𝑄𝑘−1𝐴
−1
𝑘−1 𝐼

)(
𝐺𝑘−1

𝑝(𝑘)

)
=

(
𝐺𝑘−1

𝑝(𝑘)𝛼𝑘−1

)
=

(
𝐺𝑘−1

𝑝′(𝑘)

)
. (1.97)

Now from the definition (1.88) and the relations (1.95)–(1.97) one gets

𝛼𝑘 = 𝛼𝑘−1 − 𝑞′(𝑘)𝛾−1
𝑘 𝑝′(𝑘),

which completes the proof. □

In order to compute the complexity of the algorithm in Theorem 1.26, de-
note by 𝜌(𝑚𝑘) the complexity of inverting an 𝑚𝑘 × 𝑚𝑘 matrix and put 𝑚 =
max1≤𝑘≤𝑁 (𝑚𝑘).

The first computation in (1.78) is the multiplication of an 𝑚1 × 𝑟 matrix by
an 𝑟 ×𝑚1 matrix, which comprises 𝑟𝑚2

1 multiplications and (𝑟 − 1)𝑚2
1 additions,

therefore less than 2𝑟𝑚2
1 arithmetic operations. It then adds two 𝑚1 ×𝑚1 matri-

ces. The second computation in (1.78) costs less than 𝜌(𝑚1) + 2𝑟𝑚2
1 arithmetic

operations, while the last computation in (1.78) adds another 2𝑟𝑚2
1 arithmetic

operations. Computing (1.79) involves less than 𝑟2 + 2𝑟𝑚2
1 + 2𝑟𝑚2

1 arithmetic
operations.

For each 𝑘 = 2, . . . , 𝑁 − 1 Step 2 of the algorithm in the theorem requires
less than 2𝑟2𝑚𝑘 arithmetic operations for (1.80), less than 𝑚

2
𝑘 + 2𝑚2

𝑘𝑟 for (1.81),
less than 𝜌(𝑚𝑘) + 2𝑚2

𝑘𝑟 for (1.82), while (1.83) adds less than 2𝑚2
𝑘𝑟 + 2𝑚𝑘𝑟

2

arithmetic operations. Finally, (1.84) is analogous to (1.79), namely it costs less
than 𝑟2 + 4𝑟𝑚2

𝑘 arithmetic operations.

In Step 3 of the algorithm the computation of (1.85) is analogous to (1.80)
and (1.81), namely it costs less than 𝑚2

𝑁 +2𝑟𝑚2
𝑁 +2𝑟2𝑚𝑁 arithmetic operations.
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The total complexity of the algorithm in Theorem 1.26 is

𝑐 <

𝑁∑
𝑘=1

(𝑚𝑘(𝑚𝑘 + 6𝑟2 + 10𝑟𝑚𝑘) + 𝑟
2 + 𝜌(𝑚𝑘)),

therefore
𝑐 < (𝑚(𝑚+ 6𝑟2 + 10𝑟𝑚) + 𝑟2 + 𝜌(𝑚))𝑁.

It is easy to compute that for scalar matrices the algorithm costs less than (5𝑟2 +
5𝑟 + 3)𝑁 arithmetic operations.

Example 1.27. Consider the 3× 3 matrix 𝐴 from Example 1.6,

𝐴 = 2𝐼 + 𝑃𝑄 = 2𝐼 +

⎛⎝ 1 −1
2 2
5 1

⎞⎠(
1 3 3
2 5 1

)
.

Let us compute for 𝐴 the 𝐿𝐷𝑈 factorization using Theorem 1.26.

Compute in Step 1, by (1.78),

𝛾1 = 𝑑0(1) + 𝑝(1)𝑞(1) = 𝐴11 = 2 +
(
1 −1 )( 1

2

)
= 1,

𝑞𝐿(1) = 𝑞(1)𝛾−1
1 =

(
1
2

)
, 𝑝𝑈 (1) = 𝛾−1

1 𝑝(1) =
(
1 −1 )

.

By (1.79),

𝛼1 = 𝐼𝑟 − 𝑞𝐿(1)𝛾1𝑝𝑈 (1) =
(

1 0
0 1

)
−
( −1 1

−2 2

)
=

(
0 1
−2 3

)
.

Step 2. For 𝑘 = 2 compute, using (1.80),

𝛽𝑘 = 𝛽2 = 𝛼2−1𝑞(2) =

(
0 1
−2 3

)(
3
5

)
=

(
5
9

)
,

compute using (1.81)

𝛾2 = 𝑑0(2) + 𝑝(2)𝛽2 = 2 +
(
2 2

)( 5
9

)
= 30,

compute using (1.82)

𝑞𝐿(2) = 𝛽2𝛾
−1
2 =

(
5
9

)
1

30
=

(
1
6
3
10

)
,

compute using (1.83)

𝑝𝑈 (2) = 𝛾−1
2 𝑝(2)𝛼2−1 =

1

30

(
2 2

)( 0 1
−2 3

)
=
( − 2

15
4
15

)
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and by (1.84) compute

𝛼2 = 𝛼2−1 − 𝑞𝐿(2)𝛾2𝑝𝑈 (2)

=

(
0 1
−2 3

)
− (

1
6

3
10

) ⋅ 30 ⋅ ( − 2
15

4
15

)
=

(
2
3 − 1

3− 4
5

3
5

)
.

Finally, in Step 3 compute by (1.85)

𝛾𝑁 = 𝛾3 = 𝑑0(3) + 𝑝(3)𝛼3−1𝑞(3) = 2 +
(
5 1

)( 2
3 − 1

3− 4
5

3
5

)(
3
1

)
=

128

15
.

As a check that the generators obtained above give the 𝐿𝐷𝑈 decomposition
of 𝐴, the following 𝐿, 𝐷, 𝑈 matrices are computed using these generators:

𝐿 =

⎛⎝ 1 0 0
𝑝(2)𝑞𝐿(1) 1 0
𝑝(3)𝑞𝐿(1) 𝑝(3)𝑞𝐿(2) 1

⎞⎠ =

⎛⎝ 1 0 0
6 1 0
7 17

15 1

⎞⎠ ,
𝐷 =

⎛⎝ 𝛾1 0 0
0 𝛾2 0
0 0 𝛾3

⎞⎠ =

⎛⎝ 1 0 0
0 30 0
0 0 128

15

⎞⎠ ,
𝑈 =

⎛⎝ 1 𝑝𝑈 (1)𝑞(2) 𝑝𝑈 (1)𝑞(3)
0 1 𝑝𝑈 (2)𝑞(3)
0 0 1

⎞⎠ =

⎛⎝ 1 −2 2
0 1 − 2

15
0 0 1

⎞⎠ .
Then a direct multiplication gives

𝐷𝑈 =

⎛⎝ 1 −2 2
0 30 −4
0 0 128

15

⎞⎠ ,
and so 𝐿(𝐷𝑈) = 𝐴. ♢
Example 1.28. Consider the 𝑁 ×𝑁 matrix 𝐴 from Example 1.24 with the same
separable generators 𝑝(𝑖) = 𝑞(𝑖) = 𝑖, 𝑖 = 1, . . . , 𝑁 and diagonal generators

𝑑0(𝑖) = 𝑖
2, 𝑖 = 1, . . . , 𝑁.

Theorem 1.26 above can be used to compute separable generators for the
matrices in the 𝐿𝐷𝑈 decomposition of 𝐴.

1. Compute using (1.78)

𝛾1 = 𝑑0(1) + 𝑝(1)𝑞(1) = 12 + 1 ⋅ 1 = 2, 𝑞𝐿(1) = 𝑞(1)𝛾−1
1 =

1

2
,

𝑝𝑈 (1) = 𝛾−1
1 𝑝(1) =

1

2
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and using (1.79)

𝛼1 = 𝐼𝑟 − 𝑞𝐿(1)𝛾1𝑝𝑈 (1) = 1− 1

2
⋅ 2 ⋅ 1

2
=

1

2
.

2. One can prove by induction that for any 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝛼𝑘 =
1

𝑘 + 1
, 𝛾𝑘 = 𝑘(𝑘 + 1), 𝑞𝐿(𝑘) = 𝑝𝑈 (𝑘) =

1

𝑘(𝑘 + 1)
. (1.98)

Indeed, this has been proved for 𝑘 = 1. Suppose that it is true for a certain
𝑘 ≥ 1 and let us verify (1.98) for 𝑘 + 1. First, by (1.80),

𝛽𝑘+1 = 𝛼𝑘𝑞(𝑘 + 1) =
1

𝑘 + 1
⋅ (𝑘 + 1) = 1.

Then, using (1.81)

𝛾𝑘+1 = 𝑑0(𝑘 + 1) + 𝑝(𝑘 + 1)𝛽𝑘+1 = (𝑘 + 1)2 + (𝑘 + 1) ⋅ 1 = (𝑘 + 1)(𝑘 + 2),

using (1.82)

𝑞𝐿(𝑘 + 1) = 𝛽𝑘+1𝛾
−1
𝑘+1 =

1

(𝑘 + 1)(𝑘 + 2)
,

and using (1.83)

𝑝𝑈 (𝑘 + 1) = 𝛾−1
𝑘+1𝑝(𝑘 + 1)𝛼𝑘+1−1 =

1

(𝑘 + 1)(𝑘 + 2)
⋅ (𝑘 + 1) ⋅ 1

𝑘 + 1

=
1

(𝑘 + 1)(𝑘 + 2)
.

Finally, by (1.84)

𝛼𝑘+1 = 𝛼𝑘 − 𝑞𝐿(𝑘 + 1)𝛾𝑘+1𝑝
𝑈 (𝑘 + 1)

=
1

𝑘 + 1
− 1

(𝑘 + 1)(𝑘 + 2)
⋅ (𝑘 + 1)(𝑘 + 2) ⋅ 1

(𝑘 + 1)(𝑘 + 2)
=

1

𝑘 + 2
,

which completes the induction.

3. Compute using (1.85)

𝛾𝑁 = 𝑑0(𝑁) + 𝑝(𝑁)𝛼𝑁−1𝑞(𝑁) = 𝑁2 +𝑁 ⋅ 1

𝑁
⋅𝑁 = 𝑁2 +𝑁 = 𝑁(𝑁 + 1).

Therefore the generators of the lower triangular matrix 𝐿 are

𝑝(𝑖) = 𝑖, 𝑞𝐿(𝑗) =
1

𝑗(𝑗 + 1)
, 𝑖 = 2, . . . , 𝑁, 𝑗 = 1, . . . , 𝑁 − 1,
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the generators of the upper triangular matrix 𝑈 are

𝑝𝑈 (𝑖) =
1

𝑖(𝑖+ 1)
, 𝑞(𝑗) = 𝑗, 𝑖 = 1, . . . , 𝑁 − 1, 𝑗 = 2, . . . , 𝑁,

and the entries of the diagonal matrix 𝐷 are

𝛾𝑖 = 𝑖(𝑖+ 1), 𝑖 = 1, . . . , 𝑁. ♢

One can obtain LDU factorizations also for matrices in separable form which
are not strongly regular. In this case the matrix 𝐷 is not invertible.

Example 1.29. Consider the 𝑁 ×𝑁 block matrix 𝐴 in separable of order 𝑟 form
with the separable generators 𝑝(𝑖), 𝑞(𝑖), 𝑖 = 1, . . . , 𝑁 of sizes 𝑚𝑖 × 𝑟 and 𝑟 ×𝑚𝑖,
respectively, and suppose that

rank𝐴 = rank𝐴11 = 𝑟 = 𝑚1.

It follows that

𝐴 =

⎛⎜⎜⎜⎝
𝑝(1)𝑞(1) 𝑝(1)𝑞(2) ⋅ ⋅ ⋅ 𝑝(1)𝑞(𝑁)
𝑝(2)𝑞(1) 𝑝(2)𝑞(2) ⋅ ⋅ ⋅ 𝑝(2)𝑞(𝑁)

...
...

. . .
...

𝑝(𝑁)𝑞(1) 𝑝(𝑁)𝑞(2) ⋅ ⋅ ⋅ 𝑝(𝑁)𝑞(𝑁)

⎞⎟⎟⎟⎠
and that 𝑝(1) and 𝑞(1) are invertible matrices of sizes 𝑟 × 𝑟.

Applying the formula (1.52) with

𝐴11 = 𝑝(1)𝑞(1), 𝐴21 =

⎛⎜⎝ 𝑝(2)
...

𝑝(𝑁)

⎞⎟⎠ 𝑞(1), 𝐴12 = 𝑝(1)
(
𝑞(2) . . . 𝑞(𝑁)

)
,

𝐴22 =

⎛⎜⎝ 𝑝(2)𝑞(2) ⋅ ⋅ ⋅ 𝑝(2)𝑞(𝑁)
...

. . .
...

𝑝(𝑁)𝑞(2) ⋅ ⋅ ⋅ 𝑝(𝑁)𝑞(𝑁)

⎞⎟⎠
we get Γ = 0 and therefore we obtain the factorization 𝐴 = 𝐿𝐷𝑈 with

𝐿 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝐼𝑚1 0 0 ⋅ ⋅ ⋅ 0 0
𝑝(2)(𝑝(1))−1 𝐼𝑚2 0 ⋅ ⋅ ⋅ 0 0
𝑝(3)(𝑝(1))−1 0 𝐼𝑚3 ⋅ ⋅ ⋅ 0 0

...
...

...
. . .

...
...

𝑝(𝑁 − 1)(𝑝(1))−1 0 0 ⋅ ⋅ ⋅ 𝐼𝑚𝑁−1 0
𝑝(𝑁)(𝑝(1))−1 0 0 ⋅ ⋅ ⋅ 0 𝐼𝑚𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,
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𝑈 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝐼𝑚1 (𝑞(1))−1𝑞(2) (𝑞(1))−1𝑞(3) ⋅ ⋅ ⋅ (𝑞(1))−1𝑞(𝑁 − 1) (𝑞(1))−1𝑞(𝑁)
0 𝐼𝑚2 0 ⋅ ⋅ ⋅ 0 0
0 0 𝐼𝑚3 ⋅ ⋅ ⋅ 0 0
...

...
...

. . .
...

...
0 0 0 ⋅ ⋅ ⋅ 𝐼𝑚𝑁−1 0
0 0 0 ⋅ ⋅ ⋅ 0 𝐼𝑚𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

and
𝐷 = diag{𝑝(1)𝑞(1), 0, 0, . . . , 0}.

§1.10 Solution of linear systems in the presence of
the 𝑳𝑫𝑼 factorization of the matrix of

the system in diagonal plus separable form

Suppose that the conditions in the statement of Theorem 1.26 are fulfilled. Then
solving the system 𝐴𝑥 = 𝑦 with 𝐴 = 𝐿𝐷𝑈 , i.e., 𝐿𝐷𝑈𝑥 = 𝑦 amounts to solving
linear systems with two triangular matrices and a diagonal matrix in three steps:
solve 𝐿𝑧 = 𝑦, solve 𝐷𝑤 = 𝑧 and solve 𝑈𝑥 = 𝑤.

1. In the first step one has to solve the equation 𝐿𝑧 = 𝑦 with a lower 𝑁 ×𝑁
triangular block matrix 𝐿 = (𝐿𝑖𝑗)

𝑁
𝑖,𝑗=1 having only identities on the main diagonal,

i.e.,
𝑖−1∑
𝑗=1

𝐿𝑖𝑗𝑧(𝑗) + 𝑧(𝑖) = 𝑦(𝑖), 𝑖 = 1, . . . , 𝑁. (1.99)

In the presence of generators of order 𝑟 for the matrix 𝐿, namely 𝑝(𝑖), 𝑖 =
2, . . . , 𝑁 of size 𝑚𝑖 × 𝑟 which are the same as for the matrix 𝐴 and 𝑞𝐿(𝑖), 𝑖 =
1, . . . , 𝑁 − 1 of size 𝑟 ×𝑚𝑖, one has

𝐿𝑖𝑗 = 𝑝(𝑖)𝑞
𝐿(𝑗), 1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑁

hence the equation (1.99) becomes

𝑝(𝑖)

𝑖−1∑
𝑗=1

𝑞𝐿(𝑗)𝑧(𝑗) + 𝑧(𝑖) = 𝑦(𝑖), 𝑖 = 1, . . . , 𝑁. (1.100)

Denote

𝜒𝑖 =

𝑖−1∑
𝑗=1

𝑞𝐿(𝑗)𝑧(𝑗), 𝑖 = 1, . . . , 𝑁.

Then the variables 𝜒𝑖 satisfy the recurrence relation

𝜒𝑖+1 = 𝜒𝑖 + 𝑞
𝐿(𝑖)𝑧(𝑖), 𝑖 = 1, . . . , 𝑁 − 1 (1.101)
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and the initial condition

𝜒1 = 0. (1.102)

Equation (1.100) becomes

𝑝(𝑖)𝜒𝑖 + 𝑧(𝑖) = 𝑦(𝑖), 𝑖 = 1, . . . , 𝑁,

therefore together with (1.102), which gives 𝑧(1), one obtains

𝑧(1) = 𝑦(1), 𝑧(𝑖) = 𝑦(𝑖)− 𝑝(𝑖)𝜒𝑖, 𝑖 = 2, . . . , 𝑁. (1.103)

Adding the relations (1.102), (1.103) and (1.101), we get

𝑧(1) = 𝑦(1), 𝜒1 = 0

and

𝜒𝑖 = 𝜒𝑖−1 + 𝑞
𝐿(𝑖− 1)𝑧(𝑖− 1), 𝑧(𝑖) = 𝑦(𝑖)− 𝑝(𝑖)𝜒𝑖, 𝑖 = 2, . . . , 𝑁.

2. In the second step one has to solve the equation 𝐷𝑤 = 𝑧, where 𝐷 is
a diagonal matrix with invertible 𝑚𝑖 ×𝑚𝑖 blocks 𝛾𝑖, 𝑖 = 1, . . . , 𝑁 , on the main
diagonal. It follows that

𝛾𝑖𝑤(𝑖) = 𝑧(𝑖), 𝑖 = 1, . . . , 𝑁,

hence

𝑤(𝑖) = 𝛾−1
𝑖 𝑧(𝑖), 𝑖 = 1, . . . , 𝑁.

3. In the third step one has to solve the equation 𝑈𝑥 = 𝑤 with an upper
triangular 𝑁 ×𝑁 block matrix 𝑈 = (𝑈𝑖𝑗)

𝑁
𝑖,𝑗=1 having only identities on the main

diagonal. This amounts to

𝑁∑
𝑗=𝑖+1

𝑈𝑖𝑗𝑥(𝑗) + 𝑥(𝑖) = 𝑤(𝑖), 𝑖 = 1, . . . , 𝑁. (1.104)

When generators of order 𝑟 for the matrix 𝑈 are known, namely 𝑝𝑈 (𝑖), 𝑖 =
1, . . . , 𝑁−1 of size 𝑚𝑖× 𝑟 and 𝑞(𝑖), 𝑖 = 2, . . . , 𝑁 of size 𝑟×𝑚𝑖 which are the same
as for the matrix 𝐴, one has

𝑈𝑖𝑗 = 𝑝
𝑈 (𝑖)𝑞(𝑗), 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑁,

hence the equation (1.104) becomes

𝑝𝑈 (𝑖)

𝑁∑
𝑗=𝑖+1

𝑞(𝑗)𝑥(𝑗) + 𝑥(𝑖) = 𝑤(𝑖), 𝑖 = 1, . . . , 𝑁. (1.105)
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Denote

𝜂𝑖 =

𝑁∑
𝑗=𝑖+1

𝑞(𝑗)𝑥(𝑗), 𝑖 = 1, . . . , 𝑁.

Then the variables 𝜂𝑖 satisfy the recurrence relation

𝜂𝑖−1 = 𝜂𝑖 + 𝑞(𝑖)𝑥(𝑖), 𝑖 = 2, . . . , 𝑁 (1.106)

and the initial condition

𝜂𝑁 = 0. (1.107)

Equation (1.105) becomes

𝑝𝑈 (𝑖)𝜂𝑖 + 𝑥(𝑖) = 𝑤(𝑖), 𝑖 = 1, . . . , 𝑁,

therefore together with (1.107), which gives 𝑥(𝑁), one obtains

𝑥(𝑁) = 𝑤(𝑁), 𝑥(𝑖) = 𝑤(𝑖)− 𝑝𝑈 (𝑖)𝜂𝑖, 𝑖 = 𝑁 − 1, . . . , 1. (1.108)

Summing the relations (1.107), (1.108) and (1.106) it follows that

𝑥(𝑁) = 𝑤(𝑁), 𝜂𝑁 = 0

and

𝜂𝑖 = 𝜂𝑖+1 + 𝑞(𝑖 + 1)𝑥(𝑖+ 1), 𝑥(𝑖) = 𝑤(𝑖) − 𝑝𝑈 (𝑖)𝜂𝑖, 𝑖 = 𝑁 − 1, . . . , 1.

The above considerations lead to the following algorithm. Note that the sim-
pler Step 2 above can be performed inside Step 3 and together with it, and this is
how we are going to proceed.

Algorithm 1.30. Solution of linear systems using the LDU
factorization of a separable matrix

First compute with the 𝐿𝐷𝑈 algorithm from Theorem 1.26 above the lower
separable generators 𝑞𝐿(𝑗), 𝑗 = 1, . . . , 𝑁 − 1, of the lower triangular matrix 𝐿,
the upper separable generators 𝑝𝑈 (𝑖), 𝑖 = 1, . . . , 𝑁 − 1, of the upper triangular
matrix 𝑈 , and the entries of 𝛾𝑖, 𝑖 = 1, . . . , 𝑁 , of the diagonal matrix 𝐷.

1 Start with

𝜒1 = 0, 𝑧(1) = 𝑦(1)

and for 𝑖 = 2, . . . , 𝑁 compute recursively

𝜒𝑖 = 𝜒𝑖−1 + 𝑞
𝐿(𝑖 − 1)𝑧(𝑖− 1) (1.109)

and

𝑧(𝑖) = 𝑦(𝑖)− 𝑝(𝑖)𝜒𝑖. (1.110)
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2 Start with
𝜂𝑁 = 0, 𝑥(𝑁) = 𝛾−1

𝑁 𝑧(𝑁)

and for 𝑖 = 𝑁 − 1, . . . , 1 compute recursively

𝜂𝑖 = 𝜂𝑖+1 + 𝑞(𝑖+ 1)𝑥(𝑖 + 1) (1.111)

and
𝑥(𝑖) = 𝛾−1

𝑖 𝑧(𝑖)− 𝑝𝑈 (𝑖)𝜂𝑖. (1.112)

The complexity of this algorithm is linear in 𝑁 and therefore much lower
than that of the usual solution of a linear system with an arbitrary matrix. Indeed,
denote by 𝜐(𝑛) the complexity of inverting an 𝑛× 𝑛 matrix.

The computation of (1.109) and of (1.111) for each iteration costs each 𝑟
additions and a matrix vector multiplication which comprises 𝑟𝑚𝑖 multiplications
and 𝑟(𝑚𝑖 − 1) additions, thus in total 2𝑟𝑚𝑖 arithmetic operations.

The computation of (1.110) costs 𝑚𝑖 additions and a matrix vector multipli-
cation which comprises 𝑚𝑖𝑟 multiplications and 𝑚𝑖(𝑟− 1) additions, thus in total
2𝑚𝑖𝑟 arithmetic operations.

Finally, the computation of (1.112) costs 𝑚𝑖 additions between two matrix
vector products, the first of which comprises 𝜐(𝑚𝑖) arithmetic operations together
with (𝑚𝑖)

2 multiplications and𝑚𝑖(𝑚𝑖−1) additions, while the second product uses
𝑚𝑖𝑟 multiplications and 𝑚𝑖(𝑟 − 1) additions, thus in total less than 2𝑚𝑖(𝑚𝑖 + 𝑟)
arithmetic operations.

It follows that the total complexity is

𝑐 <

𝑁∑
𝑖=1

2𝑚𝑖(4𝑟 +𝑚𝑖),

so if we set 𝑚 = max1≤𝑖≤𝑁 𝑚𝑖, then

𝑐 < 2𝑚(4𝑟 +𝑚)𝑁.

Example 1.31. Let 𝑁 > 3 and consider the 𝑁 × 𝑁 matrix 𝐴 from Example
1.24, with the same separable generators and diagonal generators. In the present
example Algorithm 1.30 will be used to solve the linear system 𝐴𝑥 = 𝑦, where

𝑦 =
(
5 14 24 20 25 30 ⋅ ⋅ ⋅ 5𝑁

)𝑇
,

with 𝑦(1) = 5, 𝑦(2) = 14, 𝑦(3) = 24 and 𝑦(𝑖) = 5𝑖, 𝑖 = 4, . . . , 𝑁 .

In Example 1.28 the separable generators and diagonal entries of the matrices
in the 𝐿𝐷𝑈 factorization of 𝐴 are computed and it follows that the generators of
the lower triangular matrix 𝐿 are

𝑝(𝑖) = 𝑖, 𝑞𝐿(𝑗) =
1

𝑗(𝑗 + 1)
, 𝑖 = 2, . . . , 𝑁, 𝑗 = 1, . . . , 𝑁 − 1,
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the generators of the upper triangular matrix 𝑈 are

𝑝𝑈 (𝑖) =
1

𝑖(𝑖+ 1)
, 𝑞(𝑗) = 𝑗, 𝑖 = 1, . . . , 𝑁 − 1, 𝑗 = 2, . . . , 𝑁

and the entries of the diagonal matrix 𝐷 are

𝛾𝑖 = 𝑖(𝑖+ 1), 𝑖 = 1, . . . , 𝑁.

First perform Step 1 of the Algorithm 1.30. Set 𝜒1 = 0, 𝑧(1) = 𝑦(1) = 5 and
for 𝑖 = 2 compute (1.109)

𝜒2 = 𝜒𝑖 = 𝜒𝑖−1 + 𝑞
𝐿(𝑖− 1)𝑧(𝑖− 1) = 0 +

1

2
⋅ 5 = 5

2
,

and (1.110)

𝑧(2) = 𝑧(𝑖) = 𝑦(𝑖)− 𝑝(𝑖)𝜒𝑖 = 14− 2 ⋅ 5
2
= 9.

For 𝑖 = 3 compute (1.109)

𝜒3 = 𝜒𝑖 = 𝜒2 + 𝑞
𝐿(2)𝑧(2) =

5

2
+

1

6
⋅ 9 = 4,

and (1.110)
𝑧(3) = 𝑧(𝑖) = 𝑦(3)− 𝑝(3)𝜒3 = 24− 3 ⋅ 4 = 12.

For 𝑖 = 4 compute (1.109) and (1.110)

𝜒4 = 𝜒3 + 𝑞
𝐿(3)𝑧(3) = 4 +

1

12
⋅ 12 = 5, 𝑧(4) = 𝑦(4)− 𝑝(4)𝜒4 = 20− 4 ⋅ 5 = 0.

One can prove by induction that for 4 ≤ 𝑖 ≤ 𝑁 one has

𝜒𝑖 = 5, 𝑧(𝑖) = 0. (1.113)

Indeed, this is true for 𝑖 = 4. Suppose that (1.113) is true for a certain 𝑖. Then for
𝑖+ 1 (1.109) becomes

𝜒𝑖+1 = 𝜒𝑖 + 𝑞
𝐿(𝑖)𝑧(𝑖) = 5 +

1

𝑖(𝑖+ 1)
⋅ 0 = 5

again and (1.110) becomes

𝑧(𝑖+ 1) = 𝑦(𝑖+ 1)− 𝑝(𝑖+ 1)𝜒𝑖+1 = 5𝑘 − 𝑘 ⋅ 5 = 0,

which completes the induction. It follows that

𝑧 =
(
5 9 12 0 ⋅ ⋅ ⋅ 0

)𝑇
.
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Next perform Step 2 of the Algorithm 1.30. Set 𝜂𝑁 = 0, 𝑥(𝑁) = 𝛾−1
𝑁 𝑧(𝑁) = 0

and for 𝑖 = 𝑁 − 1 compute (1.111)

𝜂𝑁−1 = 𝜂𝑖 = 𝜂𝑖+1 + 𝑞(𝑖+ 1)𝑥(𝑖 + 1) = 0 +𝑁 ⋅ 0 = 0,

and (1.112)

𝑥(𝑁 − 1) = 𝑥(𝑖) = 𝛾−1
𝑖 𝑧(𝑖)− 𝑝𝑈 (𝑖)𝜂𝑖 = 1

(𝑁 − 1)𝑁
⋅ 0− 1

(𝑁 − 1)𝑁
⋅ 0 = 0.

Then compute the same formulas for 𝑖 = 𝑁 − 2, . . . , 5, 4. As long as 𝑥(𝑖 + 1) = 0
and 𝜂𝑖+1 = 0, formula (1.111) gives 𝜂𝑖 = 0. And as long as 𝜂𝑖 = 0 and also 𝑧(𝑖) = 0,
which is true for 𝑖 > 3, formula (1.112) gives 𝑥(𝑖) = 0 too.

It remains to compute 𝜂𝑖, 𝑥(𝑖) for 𝑖 = 3, 2, 1. For 𝑖 = 3, by (1.111) and (1.112),
one has that

𝜂3 = 𝜂4+𝑞(4)𝑥(4) = 0+4⋅0 = 0, 𝑥(3) = 𝛾−1
3 𝑧(3)−𝑝𝑈(3)𝜂3 = 1

3 ⋅ 4 ⋅12−
1

3 ⋅ 4 ⋅0 = 1.

For 𝑖 = 2, by (1.111) and (1.112), one has that

𝜂2 = 𝜂3+𝑞(3)𝑥(3) = 0+3⋅1 = 3, 𝑥(2) = 𝛾−1
2 𝑧(2)−𝑝𝑈 (2)𝜂2 = 1

2 ⋅ 3 ⋅9−
1

2 ⋅ 3 ⋅3 = 1.

Finally, for 𝑖 = 1, by (1.111) and (1.112), one has that

𝜂1 = 𝜂2 + 𝑞(2)𝑥(2) = 3+ 2 ⋅ 1 = 5, 𝑥(1) = 𝛾−1
1 𝑧(1)− 𝑝𝑈 (1)𝜂1 = 1

2
⋅ 5− 1

2
⋅ 5 = 0.

Therefore the solution of the system is

𝑥 =
(
0 1 1 0 ⋅ ⋅ ⋅ 0

)𝑇
. ♢

We also presented earlier Algorithm 1.25 for solving linear systems. The anal-
ysis of their complexity shows that the 𝐿𝐷𝑈 algorithm above is more expensive
then the other one. However, the stability of Algorithm 1.25 for large matrices is
problematic.

§1.11 Comments

This chapter contains mostly well-known results, but in this form they appear here
for the first time.



Chapter 2

The Minimal Rank
Completion Problem

Here we study the problem of completion of a partially specified matrix with a
given lower triangular part to a matrix with minimal rank. This chapter contains
a formula for the rank of a minimal completion and an algorithm to build such a
completion, first in the case of a 2× 2 block matrix, which is then of help for the
proof of the general case. For further purposes we also find a condition equivalent
with the uniqueness of the minimal completion. Examples which analyze scalar
and block matrices are given for all the procedures and for the use of the main
formulas.

§2.1 The definition. The case of a 2× 2 block matrix

Let

𝒜 =

⎛⎜⎜⎜⎝
𝐴11 ? . . . ?
𝐴21 𝐴22 . . . ?
...

...
. . .

...
𝐴𝑁1 𝐴𝑁2 . . . 𝐴𝑁𝑁

⎞⎟⎟⎟⎠
be a partially specified block matrix with elements of sizes𝑚𝑖×𝑛𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑁 ,

with a given lower triangular part 𝐴 = {𝐴𝑖𝑗}1≤𝑗≤𝑖≤𝑁 . The completion of 𝒜 (or

𝐴) to a matrix with the smallest possible rank is called a minimal rank completion
and its rank 𝑟𝐿 is called the minimal completion rank of 𝒜.

We start with the simplest case of a partially specified 2× 2 block matrix.

Lemma 2.1. Let

𝒜 =

(
𝐴11 ?
𝐴21 𝐴22

)
(2.1)

with the specified blocks 𝐴11, 𝐴21, 𝐴22 of sizes 𝑚1 × 𝑛1,𝑚2 × 𝑛1,𝑚2 × 𝑛2, respec-
tively.

45Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1  
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory: 
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_2, © Springer Basel 2014
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The minimal completion rank of 𝒜 is given by the formula

𝑟𝐿 = rank

(
𝐴11

𝐴21

)
+ rank

(
𝐴21 𝐴22

)− rank𝐴21. (2.2)

Moreover, a minimal rank completion 𝐴𝐿 of a partially specified matrix 𝒜 has
the form 𝐴𝐿 = 𝑃𝑄, where the matrices 𝑃,𝑄 of sizes (𝑚1+𝑚2)×𝑟𝐿, 𝑟𝐿×(𝑛1+𝑛2),
which satisfy the condition

rank𝐴𝐿 = rank𝑃 = rank𝑄 = 𝑟𝐿, (2.3)

can be obtained via the following algorithm.

Set

𝜌1 = rank

(
𝐴11

𝐴21

)
, 𝜌2 = rank

(
𝐴21 𝐴22

)
, 𝑠 = rank𝐴21. (2.4)

Applying the rank factorization to the matrix

(
𝐴11

𝐴21

)
determine the matri-

ces 𝑃1, 𝑞 of sizes (𝑚1 +𝑚2)× 𝜌1, 𝜌1 × 𝑛1, respectively, such that(
𝐴11

𝐴21

)
= 𝑃1 ⋅ 𝑞, rank𝑃1 = rank 𝑞 = 𝜌1. (2.5)

Determine the matrices 𝑝, 𝑃 ′ of sizes 𝑚1 × 𝜌1,𝑚2 × 𝜌1 from the partition

𝑃1 =

(
𝑝
𝑃 ′

)
. (2.6)

Applying the rank canonical factorization to the matrix
(
𝑃 ′ 𝐴22

)
of the

size 𝑚2 × (𝜌1 + 𝑛2), determine the matrix 𝑃 of size 𝑚2 × 𝜌2 and the matrix 𝑉 of
size 𝜌2 × (𝜌1 + 𝑛2) in the canonical form such that(

𝑃 ′ 𝐴22

)
= 𝑃𝑉, rank𝑃 = rank𝑉 = 𝜌2. (2.7)

Determine the matrices 𝑍, 𝑃 ′′ of sizes 𝑚2×𝑠,𝑚2×(𝜌2−𝑠) from the partition
𝑃 =

(
𝑍 𝑃 ′′

)
(2.8)

and the matrices 𝑎, 𝑣, 𝑞′′ of the sizes 𝑠× 𝜌1, 𝑠×𝑛2, (𝜌2 − 𝑠)×𝑛2 from the partition

𝑉 =

(
𝑎 𝑣

0(𝜌2−𝑠)×𝜌1 𝑞′′

)
. (2.9)

The matrix 𝑎 has a right inverse �̂�. Compute the matrix 𝑞′ = �̂�𝑣 and take 𝑦 to be
an arbitrary 𝑚1 × (𝜌2 − 𝑠) matrix.

Set

𝑃 =

(
𝑝 𝑦
𝑃 ′ 𝑃 ′′

)
, 𝑄 =

(
𝑞 𝑞′

0(𝜌2−𝑠)×𝑛1
𝑞′′

)
. (2.10)



§2.1. The definition. The case of a 2× 2 block matrix 47

Proof. Let 𝜌1, 𝜌2, 𝑠 be the numbers given by (2.4). Starting with the rank factor-

ization for the matrix

(
𝐴11

𝐴21

)
one determines the matrices 𝑃1, 𝑞 via (2.5). Next

one determines the matrices 𝑝, 𝑃 ′ from the partition (2.6). Using (2.5), (2.6) one
gets 𝐴21 = 𝑃

′𝑞 and since the matrix 𝑞 has full row rank one obtains

rank𝐴21 = rank𝑃 ′ = 𝑠. (2.11)

Moreover, one gets (
𝐴21 𝐴22

)
=
(
𝑃 ′ 𝐴22

)( 𝑞 0
0 𝐼

)
and therefore

rank
(
𝑃 ′ 𝐴22

)
= rank

(
𝐴21 𝐴22

)
= 𝜌2.

Applying the rank canonical factorization to the matrix
(
𝑃 ′ 𝐴22

)
one deter-

mines the matrix 𝑃 and the matrix 𝑉 in the canonical form such that (2.7) holds.
One needs to check that the representation (2.9) of the matrix 𝑉 is possible. Let
𝑙(𝑖), 𝑖 = 1, . . . , 𝜌2 be indices of the first nonzero entries in the rows of 𝑉 , we set
also 𝑙(𝜌2 + 1) = 𝜌1 + 𝑛2 + 1. One can easily derive that

𝑉 (:, 1 : 𝑗) =

(
𝑎𝑗

0(𝜌2−𝑘)×𝑗

)
, 𝑗 = 𝑙(𝑘), . . . , 𝑙(𝑘 + 1)− 1, 𝑘 = 1, . . . , 𝜌2, (2.12)

with 𝑘 × 𝑗 matrices 𝑎𝑗 with full row rank. Indeed, since 𝑗 ≤ 𝑙(𝑘 + 1) − 1, using
(1.4) we get

𝑉 (𝑘 + 1 : 𝜌2, 1 : 𝑙(𝑘 + 1)− 1) = 0.

Since 𝑗 ≥ 𝑙(𝑘), using the fact that 𝑉 is in the canonical form we conclude that the
matrix 𝑎𝑗 = 𝑉 (1 : 𝑗, 1 : 𝑙(𝑘 + 1) − 1) has full row rank. Now using (2.7) we have

𝑃 ′ = 𝑃𝑉 (:, 1 : 𝜌1) and using (2.12) with 𝑗 = 𝜌1 we obtain

𝑉 (:, 1 : 𝜌1) =

(
𝑎𝜌1

0(𝜌2−𝑘)×𝜌1

)
, (2.13)

where 𝑘 is a number such that 𝑙(𝑘) ≤ 𝜌1 ≤ 𝑙(𝑘+ 1)− 1 and the 𝑘 × 𝜌1 matrix 𝑎𝜌1
has full row rank 𝑘. Thus we get 𝑃 ′ = 𝑃 (:, 1 : 𝑘)𝑎𝜌1 . Here 𝑃 (:, 1 : 𝑘) is a matrix
with full column rank 𝑘 and since rank𝑃 ′ = 𝑠 we conclude that 𝑘 = 𝑠. Inserting
𝑘 = 𝑠 in (2.13) we obtain the partition (2.9).

Next one determines the matrices 𝑍, 𝑃 ′′ from the partition (2.8) and the
matrices 𝑎, 𝑣, 𝑞′′ from the partition (2.9). Furthermore, using (2.7), (2.8), (2.9)
one gets

𝑃 ′ = 𝑍𝑎, (2.14)

𝐴22 = 𝑍𝑣 + 𝑃
′′𝑞′′. (2.15)
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The matrix 𝑎 of size 𝑠× 𝜌1 has rank 𝑠 and therefore has a right inverse �̂�. Thus,
from (2.14) one obtains 𝑍 = 𝑃 ′�̂�. Substituting the last expression in (2.15) and
setting 𝑞′ = �̂�𝑣 one obtains

𝐴22 = 𝑃
′𝑞′ + 𝑃 ′′𝑞′′. (2.16)

Next one determines the matrices 𝑃,𝑄 via (2.10). Setting 𝐴𝐿 = 𝑃𝑄 and using
(2.5), (2.16) and (2.10) one obtains

𝐴𝐿 =

(
𝐴11 ∗
𝐴21 𝐴22

)
,

i.e., the matrix 𝐴𝐿 is a completion of 𝒜.
Now it will be proved that the number 𝑟𝐿 defined in (2.2) is the minimal

completion rank of 𝒜 and moreover (2.3) holds. Let

𝐴0 =

(
𝐴11 𝑋
𝐴21 𝐴22

)
,

with a matrix 𝑋 of the size 𝑚1 × 𝑛2, be a completion of 𝒜. Using the formulas
(2.5), (2.6), (2.16) one gets

𝐴0 =

(
𝑝𝑞 𝑋
𝑃 ′𝑞 𝑃 ′𝑞′ + 𝑃 ′′𝑞′′

)
. (2.17)

The matrix 𝑃1 of size (𝑚1 +𝑚2)× 𝜌1 has full column rank 𝜌1. Applying the
orthogonal rank factorization to 𝑃1 one determines the matrix 𝑃0 of size (𝑚1 +
𝑚2)× 𝜌1 and the invertible matrix 𝑅0 of size 𝜌1 × 𝜌1 such that the representation

𝑃1 = 𝑃0𝑅0, 𝑃 ∗0 𝑃0 = 𝐼𝜌1 (2.18)

holds. Next one determines the matrices 𝑝0, 𝑃
′
0 of sizes 𝑚1 × 𝜌1,𝑚2 × 𝜌1 from the

partition

𝑃0 =

(
𝑝0
𝑃 ′0

)
. (2.19)

Combining the relations (2.6), (2.18) and (2.19) one obtains

𝑝 = 𝑝0𝑅0, 𝑃 ′ = 𝑃 ′0𝑅0,

and moreover
𝑝∗0𝑝+ (𝑃 ′0)

∗𝑃 ′ = 𝑅0. (2.20)

Further, the matrix 𝑃 from (2.7) has full column rank. Applying the orthogonal
rank upper triangular factorization to 𝑃 one obtains the matrix 𝑃0 of size 𝑚2×𝜌2
with 𝑃 ∗0 𝑃0 = 𝐼𝜌2 and the upper triangular invertible matrix 𝑅 of size 𝜌2 × 𝜌2 such
that

𝑃 = 𝑃0𝑅. (2.21)
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We determine the matrices 𝑍0, 𝑃
′′
0 of sizes 𝑚2 × 𝑠,𝑚2× (𝜌2− 𝑠) and 𝑅11, 𝑅12, 𝑅22

of sizes 𝑠× 𝑠, 𝑠× (𝜌2 − 𝑠), (𝜌2 − 𝑠)× (𝜌2 − 𝑠) from the partitions

𝑃0 =
(
𝑍0 𝑃 ′′0

)
, 𝑅 =

(
𝑅11 𝑅12

0 𝑅22

)
. (2.22)

Note that here the matrix 𝑅22 is invertible. Using the relation 𝑃 ∗0 𝑃0 = 𝐼𝜌2 one
gets

𝑍∗0𝑍0 = 𝐼𝑠, (𝑃 ′′0 )
∗𝑃 ′′0 = 𝐼𝜌2−𝑠, (𝑃 ′′0 )

∗𝑍0 = 0(𝜌2−𝑠)×𝑠. (2.23)

Using (2.21), (2.22) and (2.8) one obtains

(
𝑍 𝑃 ′′

)
=
(
𝑍0 𝑃 ′′0

)( 𝑅11 𝑅12

0 𝑅22

)
,

whence
𝑍 = 𝑍0𝑅11, 𝑃 ′′ = 𝑍0𝑅12 + 𝑃

′′
0 𝑅22. (2.24)

Next, relations (2.14), (2.23), (2.24) yield

(𝑃 ′′0 )
∗𝑃 ′ = (𝑃 ′′0 )

∗𝑍𝑎 = (𝑃 ′′0 )
∗𝑍0𝑅11𝑎 = 0 (2.25)

and
(𝑃 ′′0 )

∗𝑃 ′′ = (𝑃 ′′0 )
∗𝑍0𝑅12 + (𝑃 ′′0 )

∗𝑃 ′′0 𝑅22 = 𝑅22. (2.26)

Now setting

𝑅 =

(
𝑅−1

0 𝑝∗0 𝑅−1
0 (𝑃 ′0)

∗

0 𝑅−1
22 (𝑃

′′
0 )
∗

)
and using relations (2.17), (2.20), (2.25), (2.26) one obtains

𝑅𝐴0 =

(
𝑞 ∗
0 𝑞′′

)
.

Note that since the matrix 𝑉 in (2.9) has full row rank one gets

rank 𝑞′′ = 𝜌2 − 𝑠. (2.27)

Thus one obtains

rank𝑅𝐴0 = rank 𝑞 + rank 𝑞′′ = 𝜌1 + 𝜌2 − 𝑠 = 𝑟𝐿
and thus we conclude that rank𝐴0 ≥ 𝑟𝐿. But as it was shown above, the product
𝐴𝐿 = 𝑃𝑄 of the matrices 𝑃,𝑄 of sizes (𝑚1+𝑚2)×𝑟𝐿, 𝑟𝐿×(𝑛1+𝑛2) is a completion
of 𝒜. Hence we conclude that

𝑟𝐿 ≤ rank𝐴𝐿 ≤ rank𝑃, rank𝑄 ≤ 𝑟𝐿.
Hence it follows that (2.3) holds, the number 𝑟𝐿 is the minimal completion rank
of 𝒜 and the matrix 𝐴𝐿 is a completion of 𝒜 of this rank. □
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Example 2.2. We consider the partially specified matrix

𝒜 =

⎛⎜⎜⎝
1 1 1 ? ?
1 1 2 ? ?
1 1 1 2 1
1 1 1 1 1

⎞⎟⎟⎠
of the form (2.1). One has

𝐴11 =

(
1 1 1
1 1 2

)
, 𝐴21 =

(
1 1 1
1 1 1

)
, 𝐴22 =

(
2 1
1 1

)
and therefore

𝜌1 = rank

(
𝐴11

𝐴21

)
= 2, 𝜌2 = rank

(
𝐴21 𝐴22

)
= 2, 𝑠 = rank𝐴21 = 1.

(2.28)
Hence, by formula (2.2), the minimal completion rank 𝑟𝐿 of 𝒜 equals 3.

Next we apply the algorithm from Lemma 2.1 to compute a minimal com-
pletion of 𝒜. Using (2.5) one gets

𝑃1 =

⎛⎜⎜⎝
1 1
1 2
1 1
1 1

⎞⎟⎟⎠ , 𝑞 =

(
1 1 0
0 0 1

)

and using (2.6) one obtains

𝑝 =

(
1 1
1 2

)
, 𝑃 ′ =

(
1 1
1 1

)
.

Next we apply the factorization (2.7) to the matrix(
𝑃 ′ 𝐴22

)
=

(
1 1 2 1
1 1 1 1

)
and determine the matrices

𝑃 =

(
1 2
1 1

)
, 𝑉 =

(
1 1 0 1
0 0 1 0

)
Using partitions (2.8), (2.9) one gets

𝑎 =
(
1 1

)
, 𝑣 =

(
0 1

)
, 𝑞′′ =

(
1 0

)
, 𝑃 ′′ =

(
2
1

)
We take the right inverse of 𝑎 in the form �̂� =

(
1
0

)
and obtain

𝑞′ = �̂�𝑣 =
(

1
0

)(
0 1

)
=

(
0 1
0 0

)
.
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Finally by the formulas (2.10) one determines the matrices

𝑃 =

⎛⎜⎜⎝
1 1 𝑦1
1 2 𝑦2
1 1 2
1 1 1

⎞⎟⎟⎠ , 𝑄 =

⎛⎝ 1 1 0 0 1
0 0 1 0 0
0 0 0 1 0

⎞⎠
with arbitrary numbers 𝑦1, 𝑦2 and obtain the minimal completion in the form

𝐴𝐿 = 𝑃𝑄 =

⎛⎜⎜⎝
1 1 1 𝑦1 1
1 1 2 𝑦2 1
1 1 1 2 1
1 1 1 1 1

⎞⎟⎟⎠ . (2.29)

Note that if we take the right inverse of 𝑎 in the form �̂� =

(
0
1

)
we obtain

𝑞′ = �̂�𝑣 =
(

0
1

)(
0 1

)
=

(
0 0
0 1

)
so that

𝑄 =

⎛⎝ 1 1 0 0 0
0 0 1 0 1
0 0 0 1 0

⎞⎠ , 𝐴𝐿 = 𝑃𝑄 =

⎛⎜⎜⎝
1 1 1 𝑦1 1
1 1 2 𝑦2 2
1 1 1 2 1
1 1 1 1 1

⎞⎟⎟⎠ ,
which is another minimal rank completion of 𝒜. ♢

§2.2 Solution of the general minimal rank

completion problem. Examples

Now we consider the minimal rank completion problem for an arbitrary partially
specified matrix with a given lower triangular part.

Theorem 2.3. Let 𝒜 be a partially specified block matrix with elements of sizes
𝑚𝑖 × 𝑛𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁 and a given lower triangular part 𝐴 = {𝐴𝑖𝑗}1≤𝑗≤𝑖≤𝑁 .

The minimal completion rank of 𝒜 is given by the formula

𝑟𝐿 =
𝑁∑
𝑘=1

rank𝐴(𝑘 : 𝑁, 1 : 𝑘)−
𝑁∑
𝑘=2

rank𝐴(𝑘 : 𝑁, 1 : 𝑘 − 1). (2.30)

Moreover, a minimal rank completion 𝐴𝐿 of 𝒜 has the form 𝐴𝐿 = 𝑃𝑄, where
the matrices 𝑃,𝑄 of sizes

∑𝑁
𝑖=1𝑚𝑖 × 𝑟𝐿, 𝑟𝐿 ×∑𝑁

𝑖=1 𝑛𝑖 which satisfy the condition

rank𝐴𝐿 = rank𝑃 = rank𝑄𝑟𝐿, (2.31)

may be obtained via the following algorithm.
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1. Set 𝐴(1) = 𝐴(:, 1), 𝜌1 = rank𝐴(1), 𝜂1 =
∑𝑁

𝑖=1𝑚𝑖.

Using the rank factorization of the matrix 𝐴(1) determine the matrices 𝑃1, 𝑄1

of sizes 𝜂1 × 𝜌1 and 𝜌1 × 𝑛1, respectively, such that
𝐴(1) = 𝑃1𝑄1, (2.32)

with
rank𝑃1 = rank𝑄1 = 𝜌1. (2.33)

Set 𝑟1 = 𝜌1.

2. For 𝑘 = 2, . . . , 𝑁 perform the following.

Set 𝜂𝑘 =
∑𝑁

𝑖=𝑘𝑚𝑖, 𝜆𝑘 =
∑𝑘−1

𝑖=1 𝑚𝑖, 𝜈𝑘 =
∑𝑘−1

𝑖=1 𝑛𝑖. Determine the matrices

𝑃𝑘−1, 𝑃
′
𝑘 of sizes 𝜆𝑘 × 𝑟𝑘−1, 𝜂𝑘 × 𝑟𝑘−1, respectively, from the partition

𝑃𝑘−1 =

(
𝑃𝑘−1

𝑃 ′𝑘

)
. (2.34)

Set

𝐴(𝑘) = 𝐴(𝑘 : 𝑁, 𝑘), 𝑠𝑘 = rank𝐴(𝑘 : 𝑁, 1 : 𝑘 − 1), 𝜌𝑘 = rank𝐴(𝑘 : 𝑁, 1 : 𝑘).

Using the rank canonical factorization of the matrix
(
𝑃 ′𝑘 𝐴(𝑘)

)
determine

the matrices 𝑃𝑘, 𝑉𝑘 of sizes 𝜂𝑘 × 𝜌𝑘, 𝜌𝑘 × (𝑟𝑘−1 + 𝑛𝑘), respectively, such that(
𝑃 ′𝑘 𝐴(𝑘)

)
= 𝑃𝑘𝑉𝑘, rank𝑃𝑘 = rank𝑉𝑘 = 𝜌𝑘. (2.35)

Determine the matrices 𝑍𝑘, 𝑃
′′
𝑘 of sizes 𝜂𝑘 × 𝑠𝑘, 𝜂𝑘 × (𝜌𝑘 − 𝑠𝑘) and the matrices

𝑎𝑘, 𝑣𝑘, 𝑞
′′
𝑘 of sizes 𝑠𝑘×𝑟𝑘−1, 𝑠𝑘×𝑛𝑘, (𝜌𝑘−𝑠𝑘)×𝑛𝑘, respectively, from the partitions

𝑃𝑘 =
[
𝑍𝑘 𝑃 ′′𝑘

]
, 𝑉𝑘 =

[
𝑎𝑘 𝑣𝑘

0(𝜌𝑘−𝑠𝑘)×𝑟𝑘−1
𝑞′′𝑘

]
. (2.36)

The matrix 𝑎𝑘 has a right inverse �̂�𝑘. Compute 𝑞
′
𝑘 = �̂�𝑘𝑣𝑘 and take 𝑦𝑘 to be

arbitrary 𝜆𝑘 × (𝜌𝑘 − 𝑠𝑘) matrix. Next, set

𝑃𝑘 =

(
𝑃𝑘−1 𝑦𝑘
𝑃 ′𝑘 𝑃 ′′𝑘

)
, 𝑄𝑘 =

(
𝑄𝑘−1 𝑞′𝑘

0(𝜌𝑘−𝑠𝑘)×𝜈𝑘 𝑞′′𝑘

)
, 𝑟𝑘 = 𝑟𝑘−1 + 𝜌𝑘 − 𝑠𝑘.

(2.37)

3. Set 𝑟𝐿 = 𝑟𝑁 , 𝑃 = 𝑃𝑁 , 𝑄 = 𝑄𝑁 .

Proof. We consider the sequence of block𝑁×𝑘 matrices 𝐴𝑘 = 𝑃𝑘𝑄𝑘, 𝑘 = 1, . . . , 𝑁
and the sequence of partially specified matrices

𝒜𝑘 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴11 ? . . . ?
𝐴21 𝐴22 . . . ?
...

...
. . .

...
𝐴𝑘1 𝐴𝑘2 . . . 𝐴𝑘𝑘
...

...
. . .

...
𝐴𝑁1 𝐴𝑁2 . . . 𝐴𝑁𝑘

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑘 = 1, . . . , 𝑁
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with the given parts 𝐴𝑘 = {𝐴𝑖𝑗 , 1 ≤ 𝑗 ≤ 𝑘, 𝑗 ≤ 𝑖 ≤ 𝑁}, 𝑘 = 1, . . . , 𝑁 . We prove
by induction that for any 𝑘 = 1, . . . , 𝑁 the matrix 𝐴𝑘 is a completion of 𝒜𝑘 with

rank𝐴𝑘 = rank𝑃𝑘 = rank𝑄𝑘 = 𝑟𝑘. (2.38)

For 𝑘 = 1 this follows from (2.32), (2.33). Let for some 𝑘 with 2 ≤ 𝑘 ≤ 𝑁 the
matrix 𝐴𝑘−1 = 𝑃𝑘−1𝑄𝑘−1 with rank𝐴𝑘−1 = rank𝑃𝑘−1 = rank𝑄𝑘−1 = 𝑟𝑘−1 be a
completion of 𝒜𝑘−1. Consider the partially specified matrix

𝒜𝑘 =

(
𝐴𝑘−1(1 : 𝑘 − 1, 1 : 𝑘 − 1) ?

𝐴𝑘−1(𝑘 : 𝑁, 1 : 𝑘 − 1) 𝐴(𝑘 : 𝑁, 𝑘)

)
.

One has

rank

(
𝐴𝑘−1(1 : 𝑘 − 1, 1 : 𝑘 − 1)
𝐴𝑘−1(𝑘 : 𝑁, 1 : 𝑘 − 1)

)
= rank𝐴𝑘−1 = 𝑟𝑘−1.

Next, the part 𝐴𝑘−1 contains the submatrix 𝐴(𝑘 : 𝑁, 1 : 𝑘 − 1) and since 𝐴𝑘−1 is
a completion of 𝒜𝑘−1 one gets 𝐴𝑘−1(𝑘 : 𝑁, 1 : 𝑘 − 1) = 𝐴(𝑘 : 𝑁, 1 : 𝑘 − 1). Thus
one has

rank
(
𝐴𝑘−1(𝑘 : 𝑁, 1 : 𝑘 − 1) 𝐴(𝑘 : 𝑁, 𝑘)

)
= rank𝐴(𝑘 : 𝑁, 1 : 𝑘) = 𝜌𝑘,

rank𝐴𝑘−1(𝑘 : 𝑁, 1 : 𝑘 − 1) = rank𝐴(𝑘 : 𝑁, 1 : 𝑘 − 1) = 𝑠𝑘.

Now applying the algorithm from Lemma 2.1 to the partially specified matrix 𝒜𝑘

one obtains the formulas (2.34)–(2.37) to compute the matrices 𝑃𝑘, 𝑄𝑘 satisfying
(2.38) such that 𝐴𝑘 = 𝑃𝑘𝑄𝑘 is a completion of 𝒜𝑘. Since 𝒜𝑘 contains the part
𝐴𝑘, the matrix 𝐴𝑘 is a completion of 𝒜𝑘.

For 𝑘 = 𝑁 we conclude that 𝐴𝐿 = 𝑃𝑁𝑄𝑁 = 𝑃𝑄 is a completion of 𝒜 and
the equality (2.31) holds.

It remains to show that the number 𝑟𝐿 defined in (2.30) is the minimal
completion rank of 𝒜. Let 𝐴0 be completion of 𝒜. Set

𝑡𝑘 = rank𝐴0(:, 1 : 𝑘), 𝑘 = 1, . . . , 𝑁,

𝜌𝑘 = rank𝐴0(𝑘 : 𝑁, 1 : 𝑘) = rank𝐴(𝑘 : 𝑁, 1 : 𝑘), 𝑘 = 1, . . . , 𝑁,

𝑠𝑘 = rank𝐴0(𝑘 : 𝑁, 1 : 𝑘 − 1) = rank𝐴(𝑘 : 𝑁, 1 : 𝑘 − 1), 𝑘 = 2, . . . , 𝑁.

One obviously has 𝑡1 = 𝜌1. Next, for 𝑘 = 2, . . . , 𝑁 we use the partitions

𝐴0(:, 1 : 𝑘) =

(
𝐴0(1 : 𝑘 − 1, 1 : 𝑘 − 1) 𝐴0(1 : 𝑘 − 1, 𝑘)
𝐴(𝑘 : 𝑁, 1 : 𝑘 − 1) 𝐴(𝑘 : 𝑁, 𝑘)

)
and applying the formula (2.2) from Lemma 2.1 we get

𝑡𝑘 ≥ 𝑡𝑘−1 + 𝜌𝑘 − 𝑠𝑘, 𝑘 = 2, . . . , 𝑁. (2.39)
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It is clear that 𝑡𝑁 = rank𝐴0 and from (2.39) it follows that

𝑡𝑁 ≥ 𝑡𝑁−1 + 𝜌𝑁 − 𝑠𝑁 ≥ 𝑡𝑁−2 + (𝜌𝑁−1 + 𝜌𝑁 )− (𝑠𝑁−1 + 𝑠𝑁 ) ≥ ⋅ ⋅ ⋅

≥ 𝑡1 +
𝑁∑
𝑘=2

𝜌𝑘 −
𝑁∑
𝑘=2

𝑠𝑘 = 𝑟𝐿. □

Example 2.4. Let 𝒜 be a partially specified matrix with scalar elements and given
lower triangular part

𝐴 = {𝐴𝑖𝑗}1≤𝑗≤𝑖≤4 =

⎛⎜⎜⎝
2 ∗ ∗ ∗
1 2 ∗ ∗
1 1 2 ∗
1 1 1 2

⎞⎟⎟⎠ .
The minimal completion rank of 𝒜 is given by the formula

𝑟𝐿 =
4∑
𝑘=1

rank𝐴(𝑘 : 4, 1 : 𝑘)−
4∑

𝑘=2

rank𝐴(𝑘 : 4, 1 : 𝑘 − 1)

= 1 + 2 + 2 + 1− (1 + 1 + 1) = 3.

A minimal rank completion 𝐴𝐿 of 𝒜 has the form 𝐴𝐿 = 𝑃𝑄, where the
matrices 𝑃,𝑄 of sizes

∑𝑁
𝑖=1𝑚𝑖 × 𝑟𝐿 = 4 × 3, 𝑟𝐿 ×∑𝑁

𝑖=1 𝑛𝑖 = 3 × 4 which satisfy
the condition

rank𝐴𝐿 = rank𝑃 = rank𝑄 = 3,

can be obtained via the following algorithm.

Step 1. Set 𝐴(1) = 𝐴(:, 1) =
(
2 1 1 1

)𝑇
, 𝜌1 = rank𝐴(1) = 1, 𝜂1 =∑𝑁

𝑖=1𝑚𝑖 = 4.

Determine the matrices 𝑃1, 𝑄1 of the sizes 𝜂1×𝜌1 = 4×1 and 𝜌1×𝑛1 = 1×1,
respectively, such that (2.32) and (2.33) hold. In this example 𝑃1 = 𝐴

(1), 𝑄1 = 1.

Set 𝑟1 = 𝜌1 = 1.

Step 2. For 𝑘 = 2 perform the following.

Set 𝜂2 =
∑4

𝑖=2𝑚𝑖 = 3, 𝜆2 =
∑2−1

𝑖=1 𝑚𝑖 = 1, 𝜈2 =
∑2−1
𝑖=1 𝑛𝑖 = 1. Determine

the matrices 𝑃2−1, 𝑃
′
2 of sizes 𝜆2 × 𝑟2−1 = 1 × 1, 𝜂2 × 𝑟2−1 = 3 × 1, respectively,

from the partition (2.34). In this example 𝑃1 = 2, 𝑃 ′2 =

⎛⎝ 1
1
1

⎞⎠ .
Set

𝐴(2) = 𝐴(2 : 4, 2) =

⎛⎝ 2
1
1

⎞⎠ , 𝑠2 = rank𝐴(2 : 4, 1 : 2− 1) = 1,

𝜌2 = rank𝐴(2 : 4, 1 : 2) = 2.
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Using the rank canonical factorization of the matrix
(
𝑃 ′2 𝐴(2)

)
=

⎛⎝ 1 2
1 1
1 1

⎞⎠
determine the matrices 𝑃2, 𝑉2 of the sizes 𝜂2×𝜌2 = 3× 2, 𝜌2× (𝑟2−1+𝑛2) = 2× 2,
respectively, such that (2.35) takes place. In this example

𝑃2 =

⎛⎝ 1 2
1 1
1 1

⎞⎠ , 𝑉2 =

(
1 0
0 1

)
.

Determine the matrices 𝑍2, 𝑃
′′
2 of sizes 𝜂2 × 𝑠2 = 3× 1, 𝜂2 × (𝜌2 − 𝑠2) = 3× 1

and the matrices 𝑎2, 𝑣2, 𝑞
′′
2 of the sizes 𝑠2 × 𝑟2−1, 𝑠2×𝑛2, (𝜌2 − 𝑠2)×𝑛2, thus all of

them 1×1, from the partitions (2.36). Namely, 𝑃 ′′2 =

⎛⎝ 2
1
1

⎞⎠, 𝑎2 = 𝑞
′′
2 = 1, 𝑣2 = 0.

The matrix 𝑎2 has a right inverse �̂�2 = 1. Compute 𝑞′2 = �̂�2𝑣2 = 0 and take
𝑦2 to be an arbitrary 𝜆2 × (𝜌2 − 𝑠2) = 1× 1 matrix, for instance 𝑦2 = 0.

Next, from (2.37):

𝑃2 =

(
𝑃1 𝑦2
𝑃 ′2 𝑃 ′′2

)
=

⎛⎜⎜⎝
2 0
1 2
1 1
1 1

⎞⎟⎟⎠ , 𝑄2 =

(
𝑄2−1 𝑞′2

0(𝜌2−𝑠2)×𝜈2 𝑞′′2

)
=

(
1 0
0 1

)
,

𝑟2 = 𝑟1 + 𝜌2 − 𝑠2 = 1 + 2− 1 = 2.

For 𝑘 = 3 perform again Step 2. Set 𝜂3 = 2, 𝜆3 = 2, 𝜈3 = 2. Determine the
matrices 𝑃3−1, 𝑃

′
3 of sizes 𝜆3 × 𝑟3−1 = 2× 2, 𝜂3 × 𝑟3−1 = 2× 2, respectively, from

the partition (2.34). It follows that 𝑃 ′3 =
(

1 1
1 1

)
.

Set

𝐴(3) = 𝐴(3 : 4, 3) =

(
2
1

)
, 𝑠3 = rank𝐴(3 : 4, 1 : 3− 1) = 1,

𝜌3 = rank𝐴(3 : 4, 1 : 3) = 2.

Using the rank canonical factorization of the matrix
(
𝑃 ′3 𝐴(3)

)
determine

the matrices 𝑃3, 𝑉3 of the sizes 2 × 2, 2 × 3, respectively, such that (2.35) takes
place. It follows that

𝑃3 =

(
1 1
1 0

)
, 𝑉3 =

(
1 1 1
0 0 1

)
.

Determine the matrices 𝑍3, 𝑃
′′
3 and the matrices 𝑎3, 𝑣3, 𝑞

′′
3 of proper sizes from

the partitions (2.36). It follows that 𝑃 ′′3 =

(
1
0

)
, 𝑎3 =

(
1 1

)
, 𝑞′′3 = 1, 𝑣3 = 1.
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The matrix 𝑎3 has a right inverse �̂�3 =

(
1
0

)
. Compute 𝑞′3 = �̂�3𝑣3 =

(
1
0

)
and take 𝑦3 to be an arbitrary 𝜆3 × (𝜌3 − 𝑠3) matrix, for instance 𝑦3 =

(
0
0

)
.

Next, from (2.37):

𝑃3 =

(
𝑃2 𝑦3
𝑃 ′3 𝑃 ′′3

)
=

⎛⎜⎜⎝
2 0 0
1 2 0
1 1 1
1 1 0

⎞⎟⎟⎠ ,
𝑄3 =

(
𝑄3−1 𝑞′3

0(𝜌3−𝑠3)×𝜈3 𝑞′′3

)
=

⎛⎝ 1 0 1
0 1 0
0 0 1

⎞⎠ , 𝑟3 = 3.

Finally, for 𝑘 = 4 perform again Step 2. Set 𝜂4 = 1, 𝜆4 = 3, 𝜈4 = 3.
Determine the matrix 𝑃 ′4 of size 𝜂4 × 𝑟4−1 = 1 × 3 from the partition (2.34). It
follows that 𝑃 ′4 =

(
1 1 0

)
.

Set

𝐴(4) = 𝐴(4 : 4, 4) = 2, 𝑠4 = rank𝐴(4 : 4, 1 : 3) = 1, 𝜌4 = rank𝐴(4 : 4, 1 : 4) = 1.

Determine the matrices 𝑃4, 𝑉4 of the sizes 1× 1, 1× 4, respectively, such that
(2.35) holds. It follows that

𝑃4 = 1, 𝑉4 =
(
1 1 0 2

)
.

Determine the matrices 𝑍4, 𝑃
′′
4 and the matrices 𝑎4, 𝑣4, 𝑞

′′
4 of proper sizes from

the partitions (2.36). It follows that 𝑃 ′′4 and 𝑞′′4 do not exist, 𝑎4 =
(
1 1 0

)
,

𝑣4 = 2.

The matrix 𝑎4 has a right inverse �̂�4 =

⎛⎝ 1
0
0

⎞⎠. Compute 𝑞′4 = �̂�4𝑣4 and take

𝑦4 to be an arbitrary 𝜆4 × (𝜌4 − 𝑠4) matrix. Since 𝜌4 = 𝑠4, the matrix 𝑦4 does not
exist.

Next, from (2.37),

𝑃4 =

(
𝑃3 𝑦4
𝑃 ′4 𝑃 ′′4

)
=

⎛⎜⎜⎝
2 0 0
1 2 0
1 1 1
1 1 0

⎞⎟⎟⎠ ,
𝑄4 =

(
𝑄3 𝑞′4

0(𝜌4−𝑠4)×𝜈4 𝑞′′4

)
=

⎛⎝ 1 0 1 2
0 1 0 0
0 0 1 0

⎞⎠ , 𝑟4 = 3.

Step 3. Set 𝑟𝐿 = 𝑟4 = 3, 𝑃 = 𝑃4, 𝑄 = 𝑄4.
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The minimal rank completion obtained here is

𝐴𝐿 = 𝑃𝑄 =

⎛⎜⎜⎝
2 0 2 4
1 2 1 2
1 1 2 2
1 1 1 2

⎞⎟⎟⎠ .
♢

Example 2.5. Let 𝒜 be a partially specified block matrix with scalar elements and
given lower triangular part

𝐴 = {𝐴𝑖𝑗}1≤𝑗≤𝑖≤6 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝛽 ∗ ∗ ∗ ∗ ∗
𝛾 𝛽 ∗ ∗ ∗ ∗
0 𝛾 𝛽 ∗ ∗ ∗
0 0 𝛾 𝛽 ∗ ∗
0 0 0 𝛾 𝛽 ∗
0 0 0 0 𝛾 𝛽

⎞⎟⎟⎟⎟⎟⎟⎠
with 𝛾 ∕= 0 and 𝛽 scalars. The given 6 × 6 part can be seen as the strictly lower
triangular part of a scalar 5-band Toeplitz Hermitian matrix of size 7× 7.

The minimal completion rank of 𝒜 is given by the formula

𝑟𝐿 =

6∑
𝑘=1

rank𝐴(𝑘 : 6, 1 : 𝑘)−
6∑

𝑘=2

rank𝐴(𝑘 : 6, 1 : 𝑘 − 1)

= (1 + 2 + 2 + 2 + 2 + 1)− (1 + 1 + 1 + 1 + 1) = 5.

Using algorithm from Theorem 2.3 one can determine a minimal rank completion
𝐴𝐿 of 𝒜 in the form 𝐴𝐿 = 𝑃𝑄, where the matrices 𝑃,𝑄 of sizes

∑6
𝑖=1𝑚𝑖 × 𝑟𝐿 =

6× 5, 𝑟𝐿 ×∑6
𝑖=1 𝑛𝑖 = 5× 6 are given by

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝛽 0 0 0 0
𝛾 𝛽 0 0 0
0 𝛾 𝛽 0 0
0 0 𝛾 𝛽 0
0 0 0 𝛾 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝑄 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0 0 0 1 𝛽
𝛾 0

0 0 0 0 𝛾 𝛽

⎞⎟⎟⎟⎟⎠ ,

and therefore

𝐴𝐿 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝛽 0 0 0 0 0
𝛾 𝛽 0 0 0 0
0 𝛾 𝛽 0 0 0

0 0 𝛾 𝛽 𝛽2

𝛾 0

0 0 0 𝛾 𝛽 0
0 0 0 0 𝛾 𝛽

⎞⎟⎟⎟⎟⎟⎟⎠ .
♢
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Example 2.6. Consider the 4× 4 partially specified matrix

𝒜 =

⎛⎜⎜⎝
1 ? ? ?
1 2 ? ?
1 1 1 ?
1 1 1 1

⎞⎟⎟⎠
with given lower triangular part 𝐴 = {𝐴𝑖𝑗}1≤𝑗≤𝑖≤4. Set

𝜌′𝑘 = rank𝐴(𝑘 : 4, 1 : 𝑘), 𝑘 = 1, 2, 3, 4; 𝑠′𝑘 = rank𝐴(𝑘 : 4, 1 : 𝑘 − 1), 𝑘 = 2, 3, 4.

One has
𝜌′𝑘 = 1, 𝑘 = 1, 3, 4, 𝜌′2 = 2, 𝑠′𝑘 = 1, 𝑘 = 2, 3, 4

and therefore, by Theorem 2.3, the minimal completion rank of 𝒜 equals two.
Moreover, by Theorem 2.3, a minimal rank completion of 𝒜 is given by 𝐴𝐿 = 𝑃𝑄,
with

𝑃 =

⎛⎜⎜⎝
1 0
1 2
1 1
1 1

⎞⎟⎟⎠ , 𝑄 =

(
1 0 1 1
0 1 0 0

)
,

i.e.,

𝐴𝐿 =

⎛⎜⎜⎝
1 0 1 1
1 2 1 1
1 1 1 1
1 1 1 1

⎞⎟⎟⎠ .
♢

In a similar way one can solve the minimal rank completion problem for a
partially specified block matrix

ℬ =

⎛⎜⎜⎜⎝
𝐵11 𝐵12 . . . 𝐵1𝑁

? 𝐵22 . . . 𝐵2𝑁

...
...

. . .
...

? ? . . . 𝐵𝑁𝑁

⎞⎟⎟⎟⎠
with given upper triangular part �̃� = {𝐵𝑖𝑗}1≤𝑖≤𝑗≤𝑁 . Applying formula (2.30) to
the matrix ℬ𝑡 one obtains the expression for the minimal completion rank of ℬ:

𝑟𝑈 =

𝑁∑
𝑘=1

rank �̃�(1 : 𝑘, 𝑘 : 𝑁)−
𝑁∑
𝑘=2

rank �̃�(1 : 𝑘 − 1, 𝑘 : 𝑁). (2.40)

Moreover applying to ℬ𝑡 the algorithm from Theorem 2.3 and taking transposed
matrices we may compute a minimal rank completion of the matrix ℬ.
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Example 2.7. Consider the 4× 4 partially specified matrix ℬ

ℬ =

⎛⎜⎜⎝
1 1 1 0
? 1 1 1
? ? 1 1
? ? ? 1

⎞⎟⎟⎠ .
with given upper triangular part �̃� = {𝐵𝑖𝑗}1≤𝑖≤𝑗≤4. Set

𝜌′′𝑘 = rank �̃�(1 : 𝑘, 𝑘 : 4), 𝑘 = 1, 2, 3, 4; 𝑠′′𝑘 = rank �̃�(1 : 𝑘 − 1, 𝑘 : 4), 𝑘 = 2, 3, 4.

One has

𝜌′′𝑘 = 1, 𝑘 = 1, 4, 𝜌′′𝑘 = 2, 𝑘 = 2, 3, 𝑠′′𝑘 = 1, 𝑘 = 2, 4, 𝑠′′3 = 2

and by formula (2.40) one obtains 𝑟𝑈 = 2. Next, by Theorem 2.3, a minimal rank
completion of ℬ𝑡 is given by 𝐻𝑡𝐺𝑡, with

𝐺 =

⎛⎜⎜⎝
1 0
0 1
0 1
0 1

⎞⎟⎟⎠ , 𝐻 =

(
1 1 1 0
0 1 1 1

)
.

From here one obtains the minimal rank completion 𝐵𝑈 of ℬ:

𝐵𝑈 = 𝐺𝐻 =

⎛⎜⎜⎝
1 1 1 0
0 1 1 1
0 1 1 1
0 1 1 1

⎞⎟⎟⎠ .
♢

Example 2.8. Consider the 4× 4 partially specified matrix ℬ

ℬ =

⎛⎜⎜⎝
2 1 1 1
? 2 1 1
? ? 2 1
? ? ? 2

⎞⎟⎟⎠ .
with given upper triangular part �̃� = {𝐵𝑖𝑗}1≤𝑖≤𝑗≤4. Set

𝜌′′𝑘 = rank �̃�(1 : 𝑘, 𝑘 : 4), 𝑘 = 1, 2, 3, 4; 𝑠′′𝑘 = rank �̃�(1 : 𝑘 − 1, 𝑘 : 4), 𝑘 = 2, 3, 4.

By formula (2.40), one obtains 𝑟𝑈 = 3. Next, by Theorem 2.3 and Example 2.4, a
minimal rank completion of ℬ𝑇 is given by 𝐻𝑇𝐺𝑇 , with

𝐺 =

⎛⎜⎜⎝
1 0 0
0 1 0
1 0 1
2 0 0

⎞⎟⎟⎠ , 𝐻 =

⎛⎝ 2 1 1 1
0 2 1 1
0 0 1 0

⎞⎠ .
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From here one obtains the minimal rank completion 𝐵𝑈 of ℬ:

𝐵𝑈 = 𝐺𝐻 =

⎛⎜⎜⎝
2 1 1 1
0 2 1 1
2 1 2 1
4 2 2 2

⎞⎟⎟⎠ .
♢

Example 2.9. Consider the 6× 6 partially specified matrix ℬ

ℬ =

⎛⎜⎜⎜⎜⎜⎜⎝
𝛽 𝛾 0 0 0 0
? 𝛽 𝛾 0 0 0
? ? 𝛽 𝛾 0 0
? ? ? 𝛽 𝛾 0
? ? ? ? 𝛽 𝛾
? ? ? ? ? 𝛽

⎞⎟⎟⎟⎟⎟⎟⎠ .

with given upper triangular part �̃� = {𝐵𝑖𝑗}1≤𝑖≤𝑗≤6. Here 𝛾 ∕= 0 and 𝛽 are scalars.
Set

𝜌′′𝑘 = rank �̃�(1 : 𝑘, 𝑘 : 6), 𝑘 = 1, . . . , 6; 𝑠′′𝑘 = rank �̃�(1 : 𝑘− 1, 𝑘 : 6), 𝑘 = 2, . . . , 6.

By formula (2.40), one obtains 𝑟𝑈 = 5. Next, by Theorem 2.3 and Example 2.5, a
minimal rank completion of ℬ𝑇 is given by 𝐻𝑇𝐺𝑇 , with

𝐺 =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

0 0 0 𝛽
𝛾 𝛾

0 0 0 0 𝛽

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝐻 =

⎛⎜⎜⎜⎜⎝
𝛽 𝛾 0 0 0 0
0 𝛽 𝛾 0 0 0
0 0 𝛽 𝛾 0 0
0 0 0 𝛽 𝛾 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎠ ,

namely 𝐺 = 𝑄𝑇 , 𝐻 = 𝑃𝑇 , where 𝑃 and 𝑄 have been computed in Example 2.5.

From here one obtains the minimal rank completion 𝐵𝑈 of ℬ:

𝐵𝑈 = 𝐺𝐻 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝛽 𝛾 0 0 0 0
0 𝛽 𝛾 0 0 0
0 0 𝛽 𝛾 0 0
0 0 0 𝛽 𝛾 0

0 0 0 𝛽2

𝛾 𝛽 𝛾

0 0 0 0 0 𝛽

⎞⎟⎟⎟⎟⎟⎟⎠ .
♢
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§2.3 Uniqueness of the minimal rank completion

Here we consider a condition for the uniqueness of a minimal rank completion. As
above we start with a partially specified 2× 2 block matrix.

Lemma 2.10. Let

𝒜 =

(
𝐴11 ?
𝐴21 𝐴22

)
(2.41)

with the specified blocks 𝐴11, 𝐴21, 𝐴22 of sizes 𝑚1 × 𝑛1,𝑚2 × 𝑛1,𝑚2 × 𝑛2, respec-
tively, such that 𝑚1, 𝑛2 > 0.

A minimal rank completion of 𝒜 is unique if and only if the condition

rank

(
𝐴11

𝐴21

)
= rank

(
𝐴21 𝐴22

)
= rank𝐴21 := 𝑠 (2.42)

holds. Moreover, if this is the case, the minimal completion rank 𝑟𝐿 of 𝒜 equals 𝑠.
Proof. To prove the sufficiency, let the condition (2.42) hold. Formula (2.2) implies
𝑟𝐿 = 𝑠. Let 𝐴𝐿, 𝐵𝐿 be two minimal rank completions of𝒜. We show that𝐴𝐿 = 𝐵𝐿.
Consider the rank factorizations

𝐴𝐿 = 𝑃 ⋅𝑄, 𝐵𝐿 = 𝐹 ⋅𝐺,
with the matrices 𝑃, 𝐹 of size (𝑚1 +𝑚2) × 𝑠 and the matrices 𝑄,𝐺 of size 𝑠 ×
(𝑛1 + 𝑛2) such that

rank𝑃 = rank𝑄 = rank𝐹 = rank𝐺 = 𝑠.

We use the partitions

𝑃 =

(
𝑝
𝑃 ′

)
, 𝑄 =

(
𝑞 𝑞′

)
, 𝐹 =

(
𝑓
𝐹 ′

)
, 𝐺 =

(
𝑔 𝑔′

)
with 𝑚1 × 𝑠 submatrices 𝑝, 𝑓 , 𝑚2 × 𝑠 submatrices 𝑃 ′, 𝐹 ′, 𝑠× 𝑛1 submatrices 𝑞, 𝑔
and 𝑠× 𝑛2 submatrices 𝑞′, 𝑔′. One has(

𝐴11

𝐴21

)
= 𝑃 ⋅ 𝑞 = 𝐹 ⋅ 𝑔.

By Lemma 1.1, there is an invertible matrix 𝑆 of size 𝑠× 𝑠 such that 𝑃 = 𝐹𝑆. In
particular, 𝑃 ′ = 𝐹 ′𝑆. Next one has(

𝐴21 𝐴22

)
= 𝑃 ′𝑄 = 𝐹 ′𝐺 = 𝑃 ′𝑆−1𝐺.

But also one has 𝐴21 = 𝑃
′𝑞 with the matrices 𝑃 ′, 𝑞 of sizes 𝑚2×𝑠, 𝑠×𝑛1 and since

rank𝐴21 = 𝑠 one gets rank𝑃 ′ = 𝑠. Hence the equality 𝑃 ′𝑄 = 𝑃 ′𝑆−1𝐺 implies
𝑄 = 𝑆−1𝐺. We conclude that

𝐴𝐿 = 𝑃𝑄 = 𝐹𝑆𝑆−1𝐺 = 𝐹𝐺 = 𝐵𝐿,

as claimed.
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To prove the necessity, suppose that the condition (2.42) does not hold. Set
𝑠 = rank𝐴21. Assume that

𝜌2 := rank
(
𝐴21 𝐴22

)
> 𝑠.

Applying the algorithm from Lemma 2.1 one obtains a minimal rank completion
of 𝒜 in the form

𝐴𝐿 =

(
𝑝 𝑦
𝑃 ′ 𝑃 ′′

)(
𝑞 𝑞′

0 𝑞′′

)
=

(
𝐴11 𝑝𝑞′ + 𝑦𝑞′′

𝐴21 𝐴22

)
, (2.43)

with an arbitrary 𝑚1× (𝜌2− 𝑠) matrix 𝑦. From (2.27) we see that the matrix 𝑞′′ is
not zero. Hence, we can take different matrices 𝑦 to obtain different matrices 𝑦𝑞′′.
Substituting this in (2.43), we obtain different minimal rank completions of 𝒜.

Assume now that 𝜌1 := rank

(
𝐴11

𝐴21

)
> 𝑠 = 𝜌2. Using the algorithm from

Lemma 2.1 with 𝜌2 − 𝑠 = 0 one obtains a minimal rank completion in the form

𝐴𝐿 =

(
𝑝
𝑃 ′

)(
𝑞 𝑞′

)
,

with

rank

(
𝑝
𝑃 ′

)
= rank

(
𝑞 𝑞′

)
= 𝜌1.

Here the matrix

(
𝑝
𝑃 ′

)
has full column rank 𝜌1. But using (2.11) we see that

rank𝑃 ′ = 𝑠 < 𝜌1 and therefore there is a nonzero 𝜌1 × 𝑛2 matrix 𝑄′ such that

𝑃 ′𝑄′ = 0. At the same time one has

(
𝑝
𝑃 ′

)
𝑄′ ∕= 0 and therefore 𝑝𝑄′ ∕= 0. Define

𝐴′𝐿 by

𝐴′𝐿 =

(
𝑝
𝑃 ′

)(
𝑞 𝑞′ +𝑄′

)
.

We see that

𝐴′𝐿 =

(
𝑝𝑞 𝑝𝑞′ + 𝑝𝑄′

𝑃 ′𝑞 𝑃 ′𝑞′

)
=

(
𝐴11 𝑝𝑞′ + 𝑝𝑄′

𝐴21 𝐴22

)
.

Hence, the matrix 𝐴′𝐿 is a minimal rank completion of 𝒜 that is different from
𝐴𝐿. □
Corollary 2.11. Let the partially specified matrix 𝒜 from (2.41) satisfy the condi-
tion

rank

(
𝐴11

𝐴21

)
= rank𝐴21.

Then there is a matrix 𝑆 such that 𝐴11 = 𝑆𝐴21 and furthermore the unspecified
entry in (2.41) can be chosen as 𝐴12 = 𝑆𝐴22 to obtain a minimal rank completion.
Moreover, if the condition (2.42) is valid, then the unique minimal rank completion
of (2.41) is given by the formula 𝐴12 = 𝑆𝐴22.
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Proof. Set

𝑠 := rank

(
𝐴11

𝐴21

)
= rank𝐴21

and consider the rank factorization(
𝐴11

𝐴21

)
=

(
𝑝
𝑃 ′

)
𝑞,

with matrices 𝑝, 𝑃 ′, 𝑞 of sizes 𝑚1 × 𝑠,𝑚2 × 𝑠, 𝑠× 𝑛1, respectively, such that

rank

(
𝑝
𝑃 ′

)
= rank 𝑞 = 𝑠.

We have 𝐴21 = 𝑃 ′𝑞 and since rank𝐴21 = 𝑠, the matrix 𝑃 ′ has full column rank
and therefore has a left inverse 𝑃 ′. Setting 𝑆 = 𝑝𝑃 ′ one gets

𝐴11 = 𝑝𝑞 = 𝑝𝑃
′𝑃 ′𝑞 = 𝑆𝑃 ′𝑞 = 𝑆𝐴21.

Hence taking 𝐴12 = 𝑆𝐴22 and 𝐴0 =

(
𝐴11 𝐴12

𝐴21 𝐴22

)
we get

𝐴0 =

(
𝑆𝐴21 𝑆𝐴22

𝐴21 𝐴22

)
=

(
𝑆
𝐼

)(
𝐴21 𝐴22

)
.

Consequently,
rank𝐴0 ≤ rank

(
𝐴21 𝐴22

) ≤ 𝑟𝐿,
where 𝑟𝐿 is the minimal completion rank of (2.41), which implies that 𝐴0 is a
minimal rank completion of (2.41). Moreover, if the condition (2.42) is satisfied,
then by Lemma 2.10 this minimal rank completion is unique. □

Example 2.12. Consider the partially specified matrix

𝒜 =

⎛⎜⎜⎝
1 1 1 ? ?
1 1 1 ? ?
1 1 2 1 1
1 1 1 1 1

⎞⎟⎟⎠
of the form (2.41). One has

𝐴11 =

(
1 1 1
1 1 1

)
, 𝐴21 =

(
1 1 2
1 1 1

)
, 𝐴22 =

(
1 1
1 1

)
and therefore

rank

(
𝐴11

𝐴21

)
= rank

(
𝐴21 𝐴22

)
= rank𝐴21 = 2.
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Hence the minimal rank completion of 𝒜 is unique. Moreover this completion is
the matrix ⎛⎜⎜⎝

1 1 1 1 1
1 1 1 1 1
1 1 2 1 1
1 1 1 1 1

⎞⎟⎟⎠ .
♢

Example 2.13. Consider the partially specified matrix

𝒜 =

⎛⎜⎜⎝
1 1 1 ? ?
1 1 2 ? ?
1 1 1 2 1
1 1 1 1 1

⎞⎟⎟⎠ .
from Example 2.2. From (2.28) we see that a minimal rank completion of 𝒜 is
not unique. Moreover, one can obtain different minimal rank completions of 𝒜
by taking different values of 𝑦1, 𝑦2 in the formula (2.29). Furthermore, another
minimal rank completion of 𝒜 is for instance the matrix⎛⎜⎜⎝

1 1 1 0 1
1 1 2 0 2
1 1 1 2 1
1 1 1 1 1

⎞⎟⎟⎠ .
♢

Now we derive a uniqueness criterion for the minimal rank completion of an
arbitrary partially specified block matrix with a given lower triangular part.

Theorem 2.14. Let 𝒜 be a partially specified block matrix with elements of sizes
𝑚𝑖 × 𝑛𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑁 with 𝑚1 > 0, 𝑛𝑁 > 0 and with a given lower triangular

part 𝐴 = {𝐴𝑖𝑗}1≤𝑗≤𝑖≤𝑁 .
Then the following are equivalent:

(i) the minimal rank completion of 𝒜 is unique;
(ii) rank𝐴(𝑘 : 𝑁, 1 : 𝑘) = rank𝐴(𝑘+1 : 𝑁, 𝑘 : 𝑁) = rank𝐴(𝑘+1 : 𝑁, 𝑘+1 : 𝑁),

𝑘 = 1, . . . , 𝑁 − 1;

(iii) the numbers rank𝐴(𝑖 : 𝑁, 1 : 𝑗), 1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑁 are all equal;
(iv) rank𝐴(𝑁, 1) = 𝑟𝐿, where 𝑟𝐿 is the minimal completion rank of 𝒜.
Proof. Clearly rank𝐴(𝑁, 1) ≤ rank𝐴(𝑖 : 𝑁, 1 : 𝑗) ≤ 𝑟𝐿, 1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑁 . So (iv)
implies (iii). The implication (iii)⇒(ii) is also trivial. Let us prove (ii)⇒(i) and
(ii)⇒(iv). Assume that (ii) holds. Using the formula (2.30) one gets

𝑟𝐿 = rank𝐴(1 : 𝑁, 1) = rank𝐴(𝑁, 1 : 𝑁).

Consider the partially specified matrix

𝒜0 =

[
𝐴(1 : 𝑁 − 1, 1) ?

𝐴(𝑁, 1) 𝐴(𝑁, 2 : 𝑁)

]
.
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Every completion of 𝒜 is a completion of 𝒜0. If rank𝐴(𝑁, 1) < 𝑟𝐿 then by (2.2)
the minimal completion rank of 𝒜0 is given by

rank𝐴(1 : 𝑁, 1) + rank𝐴(𝑁, 1 : 𝑁)− rank𝐴(𝑁, 1) > 𝑟𝐿

which is a contradiction. Thus one obtains (iv).

Furthermore,

𝑟𝐿 = rank𝐴(1 : 𝑁, 1) = rank𝐴(𝑁, 1 : 𝑁) = rank𝐴(𝑁, 1)

and therefore, by (2.2), the minimal completion rank of 𝒜0 equals 𝑟𝐿 and by
Lemma 2.10 the minimal rank completion of 𝒜0 is unique. Hence, if 𝒜 has two
different minimal rank completions one obtains two different minimal rank com-
pletions of 𝒜0, a contradiction. Thus, one has proved (i).

We finish by proving the implication (i)⇒(ii). Assume that (i) holds and let
𝐴𝐿 be the unique minimal rank completion of 𝒜. For each 𝑘 = 2, . . . , 𝑁 consider
the partially specified matrix

𝒜𝑘 =

[
𝐴𝐿(1 : 𝑘 − 1, 1 : 𝑘 − 1) ?
𝐴𝐿(𝑘 : 𝑁, 1 : 𝑘 − 1) 𝐴𝐿(𝑘 : 𝑁, 𝑘 : 𝑁)

]
=

[
𝐴𝐿(1 : 𝑘 − 1, 1 : 𝑘 − 1) ?

𝐴(𝑘 : 𝑁, 1 : 𝑘 − 1) 𝐴𝐿(𝑘 : 𝑁, 𝑘 : 𝑁)

]
.

Every completion of 𝒜𝑘 is a completion of 𝒜. Hence 𝒜𝑘 cannot have completions
of rank less than 𝑟𝐿. At the same time, the matrix 𝐴𝐿 is a completion of 𝒜𝑘 of
rank 𝑟𝐿. Hence, 𝑟𝐿 is the minimal completion rank of 𝒜𝑘. Moreover, 𝐴𝐿 is the
unique minimal rank completion of 𝒜𝑘, otherwise one obtains different minimal
rank completions of 𝒜. By Lemma 2.10,

rank

(
𝐴𝐿(1 : 𝑘 − 1, 1 : 𝑘 − 1)

𝐴(𝑘 : 𝑁, 1 : 𝑘 − 1)

)
= rank

(
𝐴(𝑘 : 𝑁, 1 : 𝑘 − 1) 𝐴𝐿(𝑘 : 𝑁, 𝑘 : 𝑁)

)
= rank𝐴(𝑘 : 𝑁, 1 : 𝑘 − 1) = 𝑟𝐿.

Now using the inequalities

𝑟𝐿 = rank𝐴(𝑘 : 𝑁, 1 : 𝑘 − 1) ≤ rank𝐴(𝑘 − 1 : 𝑁, 1 : 𝑘 − 1) ≤ rank𝐴𝐿 = 𝑟𝐿,

𝑟𝐿 = rank𝐴(𝑘 : 𝑁, 1 : 𝑘 − 1) ≤ rank𝐴(𝑘 : 𝑁, 1 : 𝑘) ≤ rank𝐴𝐿 = 𝑟𝐿

one obtains (ii). □
Example 2.15. The partially specified matrix

𝒜 =

⎛⎜⎜⎝
1 ? ? ?
1 2 ? ?
1 2 3 ?
1 2 3 4

⎞⎟⎟⎠
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has the unique minimal rank completion

𝐴𝐿 =

⎛⎜⎜⎝
1 2 3 4
1 2 3 4
1 2 3 4
1 2 3 4

⎞⎟⎟⎠ .
♢

§2.4 Comments

The material of this chapter is borrowed from the Ph.D. Thesis of H. Woerdeman
[48], but our proofs are different.



Chapter 3

Matrices in Diagonal Plus
Semiseparable Form

Here we consider diagonal plus semiseparable representations of matrices. This is
a direct generalization of diagonal plus separable representations studied in Chap-
ter 1. Note that every matrix may be represented in the diagonal plus semisepara-
ble form. The problem is to obtain such a representation with minimal orders. This
may be treated as the problem of completing strictly lower triangular and strictly
upper triangular parts of a matrix to matrices with minimal ranks, since it will be
proved that minimal orders of the generators are equal to the ranks of those min-
imal completions. Thus one can apply results of Chapter 2 to determine diagonal
plus semiseparable representation of a matrix. An algorithm for finding minimal
generators of a semiseparable representation of a given matrix is presented.

§3.1 Definitions

Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a matrix with block entries of sizes 𝑚𝑖 × 𝑛𝑗 . Denote by

𝐴𝐿 = {𝐴𝑖𝑗}1≤𝑗<𝑖≤𝑁 the strictly lower triangular part of 𝐴. We treat 𝐴𝐿 as a
given lower triangular part of a partially specified (𝑁 − 1)× (𝑁 − 1) block matrix

ℬ = {𝐵𝑖𝑗}𝑁,𝑁−1
𝑖=2,𝑗=1 with 𝐵𝑖𝑗 = 𝐴𝑖𝑗 for 1 ≤ 𝑗 < 𝑖 ≤ 𝑁 . The minimal completion

rank 𝑟𝐿 of 𝐴𝐿 is called the lower semiseparable order of the matrix 𝐴.

Similarly denote by 𝐴𝑈 = {𝐴𝑖𝑗}1≤𝑖<𝑗≤𝑁 the strictly upper triangular part

of 𝐴. We treat 𝐴𝑈 as a given upper triangular part of a partially specified (𝑁 −
1) × (𝑁 − 1) block matrix 𝒞 = {𝐶𝑖𝑗}𝑁−1,𝑁

𝑖=1,𝑗=2 with 𝐵𝑖𝑗 = 𝐴𝑖𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 .

The minimal completion rank 𝑟𝑈 of 𝐴𝑈 is called the upper semiseparable order of
the matrix 𝐴.

We say also that 𝐴 has semiseparable order (𝑟𝐿, 𝑟𝑈 ).

Let 𝑆 = {𝑆𝑖𝑗}𝑁𝑖,𝑗=1 be a matrix with block entries 𝑆𝑖𝑗 of sizes 𝑚𝑖 × 𝑛𝑗 and

 67Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1  
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory: 
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_3, © Springer Basel 2014
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with zero diagonal. Assume that the entries of 𝑆 are represented in the form

𝑆𝑖𝑗 =

⎧⎨⎩
𝑝(𝑖)𝑞(𝑗), 1 ≤ 𝑗 < 𝑖 ≤ 𝑁,
0, 1 ≤ 𝑖 = 𝑗 ≤ 𝑁,
𝑔(𝑖)ℎ(𝑗), 1 ≤ 𝑖 < 𝑗 ≤ 𝑁.

(3.1)

Here 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1) are matrices of sizes 𝑚𝑖 ×
𝑟𝐿, 𝑟𝐿 ×𝑛𝑗 , respectively, 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁) are matrices
of sizes 𝑚𝑖 × 𝑟𝑈 , 𝑟𝑈 × 𝑛𝑗 , respectively. The representation of the matrix 𝑆 in
the form (3.1) is called a semiseparable representation. The elements 𝑝(𝑖) (𝑖 =
2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1) and 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁)
are called semiseparable generators of the matrix 𝑆. The numbers 𝑟𝐿 and 𝑟𝑈 are
called the orders of these generators.

The representation (3.1) means that if we introduce the matrices

𝑃 = col(𝑝(𝑖))𝑁𝑖=2, 𝑄 = row(𝑞(𝑗))𝑁−1
𝑗=1

of sizes (
∑𝑁

𝑖=2𝑚𝑖)× 𝑟𝐿, 𝑟𝐿 × (
∑𝑁−1
𝑗=1 𝑛𝑗) and the matrices

𝐺 = col(𝑔(𝑖))𝑁−1
𝑖=1 , 𝐻 = row(ℎ(𝑗))𝑁𝑗=2

of sizes (
∑𝑁−1

𝑖=1 𝑚𝑖)×𝑟𝑈 , 𝑟𝑈 ×(
∑𝑁
𝑗=2 𝑛𝑗) and we define the (𝑁−1)×(𝑁−1) block

matrices 𝑆𝐿 = 𝑃𝑄 and 𝑆𝑈 = 𝐺𝐻 of ranks 𝑟𝐿 and 𝑟𝑈 at most, then the relations

trils(𝑆) = tril(𝑆𝐿), trius(𝑆) = triu(𝑆𝑈 ),

hold. Here tril(𝑋), triu(𝑋) denote the lower triangular and upper triangular parts
of a matrix 𝑋 and trils(𝑆), trius(𝑆) denote strictly lower triangular and strictly
upper triangular parts of the matrix 𝑆. In other words, the strictly lower triangular
and the strictly upper triangular parts of the matrix 𝑆 may be completed to some
matrices 𝑆𝐿 and 𝑆𝑈 with the ranks not greater than 𝑟𝐿 and 𝑟𝑈 , respectively.

Let 𝐴 be a matrix with block entries 𝐴𝑖𝑗 of sizes 𝑚𝑖 × 𝑛𝑗 represented as a
sum 𝐴 = 𝐷 + 𝑆 of a block diagonal matrix 𝐷 = diag(𝑑(𝑖))𝑁𝑖=1 with the entries
𝑑(𝑖) of sizes 𝑚𝑖 × 𝑛𝑖 and a matrix 𝑆 with semiseparable representation (3.1). The
entries of 𝐴 are specified as follows:

𝐴𝑖𝑗 =

⎧⎨⎩
𝑝(𝑖)𝑞(𝑗), 1 ≤ 𝑗 < 𝑖 ≤ 𝑁,
𝑑(𝑖), 1 ≤ 𝑖 = 𝑗 ≤ 𝑁,
𝑔(𝑖)ℎ(𝑗), 1 ≤ 𝑖 < 𝑗 ≤ 𝑁.

(3.2)

The representation of the matrix 𝐴 in the form (3.2) is called diagonal plus
semiseparable representation.

The elements 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1) and 𝑔(𝑖) (𝑖 =
1, . . . , 𝑁−1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁) are called lower and upper semiseparable gener-
ators of the matrix 𝐴. The most interesting case for us is when for a given matrix
𝐴 the orders 𝑟𝐿 and 𝑟𝑈 are minimal. Lower and upper semiseparable generators
of 𝐴 with minimal orders are called minimal semiseparable generators.
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§3.2 Semiseparable order and minimal
semiseparable generators

Here we derive a formula to compute the lower semiseparable order of a matrix.
We show that the lower semiseparable order is the minimal order of semiseparable
generators and we derive an algorithm to compute a set of such generators.

Theorem 3.1. Let 𝐴 be a matrix with block entries of sizes 𝑚𝑖×𝑛𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁 ,

with specified strictly lower triangular part 𝐴 = {𝐴𝑖𝑗}1≤𝑗<𝑖≤𝑁 .
Then the lower semiseparable order of 𝐴 is given by the formula

𝑟𝐿 =

𝑁−1∑
𝑘=1

rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘)−
𝑁−2∑
𝑘=1

rank𝐴(𝑘 + 2 : 𝑁, 1 : 𝑘). (3.3)

Proof. We treat the strictly lower triangular part 𝐴 = {𝐴𝑖𝑗}1≤𝑗<𝑖≤𝑁 of 𝐴 as a
given lower triangular part of a partially specified (𝑁 − 1)× (𝑁 − 1) block matrix

ℬ = {𝐵𝑖𝑗}𝑁,𝑁−1
𝑖=2,𝑗=1 with 𝐵𝑖𝑗 = 𝐴𝑖𝑗 for 1 ≤ 𝑗 < 𝑖 ≤ 𝑁 . By Theorem 2.3 the minimal

completion rank of 𝐴 is given by the formula (3.3). □
Theorem 3.2. Let 𝐴 be a matrix with block entries of sizes 𝑚𝑖×𝑛𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁 ,

with specified strictly lower triangular part 𝐴 = {𝐴𝑖𝑗}1≤𝑗<𝑖≤𝑁 .
Then the lower semiseparable order 𝑟𝐿 is the minimal order of lower semisep-

arable generators of the matrix 𝐴. Moreover, a set of lower semiseparable gener-
ators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1) of order 𝑟𝐿 may be obtained via
the following algorithm.

1.1. Set 𝐴(1) = 𝐴(2 : 𝑁, 1), rank𝐴(1) = 𝜌1, 𝜂2 =
∑𝑁

𝑖=2𝑚𝑖.

Using the rank factorization of the matrix 𝐴(1) determine the matrices 𝑃2, 𝑄1

of the sizes 𝜂2 × 𝜌1 and 𝜌1 × 𝑛1, respectively, such that
𝐴(1) = 𝑃2𝑄1,

with
rank𝑃2 = rank𝑄1 = 𝜌1.

Set 𝑟1 = 𝜌1.

1.2. For 𝑘 = 2, . . . , 𝑁 − 1 perform the following.

Set 𝜂𝑘+1 =
∑𝑁

𝑖=𝑘+1𝑚𝑖, 𝜆𝑘+1 =
∑𝑘

𝑖=2𝑚𝑖, 𝜈𝑘 =
∑𝑘−1

𝑖=1 𝑛𝑖. Determine the

matrices 𝑃𝑘, 𝑃
′
𝑘+1 of sizes 𝜆𝑘+1×𝑟𝑘−1, 𝜂𝑘+1×𝑟𝑘−1, respectively, from the partition

𝑃𝑘 =

(
𝑃𝑘
𝑃 ′𝑘+1

)
.

Set

𝐴(𝑘) = 𝐴(𝑘 + 1 : 𝑁, 𝑘), rank𝑃 ′𝑘+1 = 𝑠𝑘, rank
(
𝑃 ′𝑘+1 𝐴(𝑘)

)
= 𝜌𝑘.



70 Chapter 3. Matrices in Diagonal Plus Semiseparable Form

Using the rank canonical factorization of the matrix
(
𝑃 ′𝑘+1 𝐴(𝑘)

)
deter-

mine the matrices 𝑃𝑘+1, 𝑉𝑘 of the sizes 𝜂𝑘+1 × 𝜌𝑘, 𝜌𝑘 × (𝑟𝑘−1 + 𝑛𝑘), respectively,
such that (

𝑃 ′𝑘+1 𝐴(𝑘)
)
= 𝑃𝑘+1𝑉𝑘, rank𝑃𝑘+1 = rank𝑉𝑘 = 𝜌𝑘.

Determine the matrices 𝑍𝑘+1, 𝑃
′′
𝑘+1 of sizes 𝜂𝑘+1 × 𝑠𝑘, 𝜂𝑘+1 × (𝜌𝑘 − 𝑠𝑘) and the

matrices 𝑎𝑘, 𝑣𝑘, 𝑞
′′
𝑘 of the sizes 𝑠𝑘× 𝑟𝑘−1, 𝑠𝑘×𝑛𝑘, (𝜌𝑘−𝑠𝑘)×𝑛𝑘 from the partitions

𝑃𝑘+1 =
(
𝑍𝑘+1 𝑃 ′′𝑘+1

)
, 𝑉𝑘 =

(
𝑎𝑘 𝑣𝑘

0(𝜌𝑘−𝑠𝑘)×𝑟𝑘−1
𝑞′′𝑘

)
.

The matrix 𝑎𝑘 has a right inverse �̂�𝑘. Compute 𝑞
′
𝑘 = �̂�𝑘𝑣𝑘, take 𝑦𝑘 to be arbitrary

𝜆𝑘+1 × (𝜌𝑘 − 𝑠𝑘) matrix and set

𝑃𝑘+1 =

(
𝑃𝑘 𝑦𝑘
𝑃 ′𝑘+1 𝑃 ′′𝑘+1

)
, 𝑄𝑘 =

(
𝑄𝑘−1 𝑞′𝑘

0(𝜌𝑘−𝑠𝑘)×𝜈𝑘 𝑞′′𝑘

)
, 𝑟𝑘 = 𝑟𝑘−1 + 𝜌𝑘 − 𝑠𝑘.

1.3. Set 𝑟𝐿 = 𝑟𝑁−1, 𝑃 = 𝑃𝑁 , 𝑄 = 𝑄𝑁−1.

2. Determine the matrices 𝑝(𝑖), 𝑖 = 2, . . . , 𝑁 of sizes 𝑚𝑖×𝑟𝐿 and the matrices
𝑞(𝑗), 𝑗 = 1, . . . , 𝑁 − 1 of sizes 𝑟𝐿 × 𝑛𝑗 from the partitions

𝑃 = col(𝑝(𝑖))𝑁𝑖=2, 𝑄 = row(𝑞(𝑗))𝑁−1
𝑗=1 .

Proof. By Theorem 2.3, a completion 𝐴𝐿 of 𝐴 with the minimal rank 𝑟𝐿 has the
form 𝐴𝐿 = 𝑃𝑄, where the matrices 𝑃,𝑄 of sizes

∑𝑁
𝑖=2𝑚𝑖×𝑟𝐿, 𝑟𝐿×

∑𝑁−1
𝑖=1 𝑛𝑖 may

be obtained via Step 1 of the algorithm.

Since 𝐴𝐿 = 𝑃𝑄 is a completion of 𝐴, one obtains 𝐴𝑖𝑗 = (𝐴𝐿)𝑖,𝑗 = 𝑝(𝑖)𝑞(𝑗),
1 ≤ 𝑗 < 𝑖 ≤ 𝑁 , i.e., 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1) are lower
semiseparable generators of the matrix 𝐴.

To prove that the semiseparable order 𝑟𝐿 is the minimal order of lower
semiseparable generators, assume that 𝑝′(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞′(𝑗) (𝑗 = 1, . . . , 𝑁−1)
are lower semiseparable generators of𝐴 of some order 𝜏 ′𝐿. We set 𝑃 ′ = col(𝑝′(𝑖))𝑁𝑖=2,
𝑄′ = row(𝑞′(𝑗))𝑁−1

𝑗=1 and then 𝐴′𝐿 = 𝑃 ′𝑄′. The matrix 𝐴′𝐿 is a completion of 𝐴.
Moreover the rank 𝜌′𝐿 of 𝐴′𝐿 is not greater than 𝜏 ′𝐿 and since by Theorem 2.3
the number 𝑟𝐿 is the minimal completion rank of 𝐴, we conclude that 𝑟𝐿 ≤
𝜌′𝐿 ≤ 𝜏 ′𝐿. □

The same relations are valid for the upper semiseparable order and minimal
upper semiseparable generators of a matrix. More precisely, for a matrix 𝐴 with
a specified upper triangular part the upper semiseparable order is given by the
formula

𝑟𝑈 =

𝑁−1∑
𝑘=1

rank𝐴(1 : 𝑘, 𝑘 + 1 : 𝑁)−
𝑁−2∑
𝑘=1

rank𝐴(1 : 𝑘, 𝑘 + 2 : 𝑁).

Moreover, a set of minimal upper semiseparable generators may be obtained in
much the same way as in Theorem 3.2.
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Example 3.3. We consider the 5 × 5 matrix 𝐴 with the specified strictly lower
triangular part

𝐴 =

⎛⎜⎜⎜⎜⎝
? ? ? ? ?
1 ? ? ? ?
1 2 ? ? ?
1 1 1 ? ?
1 1 1 1 ?

⎞⎟⎟⎟⎟⎠ .
Using Example 2.6, one obtains a set of minimal lower semiseparable generators
of the matrix 𝐴:

𝑝(2) =
(
1 0

)
, 𝑝(3) =

(
1 2

)
, 𝑝(4) =

(
1 1

)
, 𝑝(5) =

(
1 1

)
,

𝑞(1) =

(
1
0

)
, 𝑞(2) =

(
0
1

)
, 𝑞(3) =

(
1
0

)
, 𝑞(4) =

(
1
0

)
.

Similarly, consider the 5 × 5 matrix 𝐵 with the specified strictly upper tri-
angular part

𝐵 =

⎛⎜⎜⎜⎜⎝
? 1 1 1 0
? ? 1 1 1
? ? ? 1 1
? ? ? ? 1
? ? ? ? ?

⎞⎟⎟⎟⎟⎠ .
Using Example 2.7, one obtains a set of minimal upper semiseparable generators
of the matrix 𝐵:

𝑔(1) =
(
1 0

)
, 𝑔(2) =

(
0 1

)
, 𝑔(3) =

(
0 1

)
, 𝑔(4) =

(
0 1

)
,

ℎ(2) =

(
1
0

)
, ℎ(3) =

(
1
1

)
, ℎ(4) =

(
1
1

)
, ℎ(5) =

(
0
1

)
. ♢

Example 3.4. Consider the 5× 5 matrix

𝐴 =

⎛⎜⎜⎜⎜⎝
𝑑 2 1 1 1
2 𝑑 2 1 1
1 2 𝑑 2 1
1 1 2 𝑑 2
1 1 1 2 𝑑

⎞⎟⎟⎟⎟⎠ .
Using Example 2.4, one obtains a set of minimal lower semiseparable generators
of the matrix 𝐴:

𝑝(2) =
(
2 0 0

)
, 𝑝(3) =

(
1 2 0

)
, 𝑝(4) =

(
1 1 1

)
, 𝑝(5) =

(
1 1 0

)
,

𝑞(1) =

⎛⎝ 1
0
0

⎞⎠ , 𝑞(2) =

⎛⎝ 0
1
0

⎞⎠ , 𝑞(3) =

⎛⎝ 1
0
1

⎞⎠ , 𝑞(4) =

⎛⎝ 2
0
0

⎞⎠ .
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Similarly, considering the 5 × 5 matrix 𝐵 with the specified strictly upper
triangular part from Example 2.8 one obtains a set of minimal upper semiseparable
generators:

𝑔(1) =
(
1 0 0

)
, 𝑔(2) =

(
0 1 0

)
, 𝑔(3) =

(
1 0 1

)
, 𝑔(4) =

(
2 0 0

)
,

ℎ(2) =

⎛⎝ 2
0
0

⎞⎠ , ℎ(3) =

⎛⎝ 1
2
0

⎞⎠ , ℎ(4) =

⎛⎝ 1
1
1

⎞⎠ , ℎ(5) =

⎛⎝ 1
1
0

⎞⎠ .
♢

Example 3.5. Consider the 7× 7 scalar Toeplitz Hermitian 5-band matrix

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛼 𝛽 𝛾 0 0 0 0
𝛽 𝛼 𝛽 𝛾 0 0 0
𝛾 𝛽 𝛼 𝛽 𝛾 0 0
0 𝛾 𝛽 𝛼 𝛽 𝛾 0
0 0 𝛾 𝛽 𝛼 𝛽 𝛾
0 0 0 𝛾 𝛽 𝛼 𝛽
0 0 0 0 𝛾 𝛽 𝛼

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where 𝛾 ∕= 0, 𝛼 and 𝛽 are scalars.

Using Example 2.5, one obtains a set of minimal lower semiseparable gener-
ators of the matrix 𝐴:

𝑝(2) =
(
𝛽 0 0 0 0

)
, 𝑝(3) =

(
𝛾 𝛽 0 0 0

)
, 𝑝(4) =

(
0 𝛾 𝛽 0 0

)
,

𝑝(5) =
(
0 0 𝛾 𝛽 0

)
, 𝑝(6) =

(
0 0 0 𝛾 0

)
, 𝑝(7) =

(
0 0 0 0 1

)
,

𝑞(1) =

⎛⎜⎜⎜⎜⎝
1
0
0
0
0

⎞⎟⎟⎟⎟⎠ , 𝑞(2) =
⎛⎜⎜⎜⎜⎝

0
1
0
0
0

⎞⎟⎟⎟⎟⎠ , 𝑞(3) =
⎛⎜⎜⎜⎜⎝

0
0
1
0
0

⎞⎟⎟⎟⎟⎠ ,

𝑞(4) =

⎛⎜⎜⎜⎜⎝
0
0
0
1
0

⎞⎟⎟⎟⎟⎠ , 𝑞(5) =
⎛⎜⎜⎜⎜⎝

0
0
0
𝛽
𝛾

𝛾

⎞⎟⎟⎟⎟⎠ , 𝑞(6) =
⎛⎜⎜⎜⎜⎝

0
0
0
0
𝛽

⎞⎟⎟⎟⎟⎠ .

Similarly, considering the 7×7 matrix 𝐵 with the specified strictly upper tri-
angular part from Example 2.9, one obtains a set of minimal upper semiseparable
generators

𝑔(1) =
(
1 0 0 0 0

)
, 𝑔(2) =

(
0 1 0 0 0

)
, 𝑔(3) =

(
0 0 1 0 0

)
,

𝑔(4) =
(
0 0 0 1 0

)
, 𝑔(5) =

(
0 0 0 𝛽

𝛾 𝛾
)
, 𝑔(6) =

(
0 0 0 0 𝛽

)
,
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ℎ(2) =

⎛⎜⎜⎜⎜⎝
𝛽
0
0
0
0

⎞⎟⎟⎟⎟⎠ , ℎ(3) =

⎛⎜⎜⎜⎜⎝
𝛾
𝛽
0
0
0

⎞⎟⎟⎟⎟⎠ , ℎ(4) =

⎛⎜⎜⎜⎜⎝
0
𝛾
𝛽
0
0

⎞⎟⎟⎟⎟⎠ ,

ℎ(5) =

⎛⎜⎜⎜⎜⎝
0
0
𝛾
𝛽
0

⎞⎟⎟⎟⎟⎠ , ℎ(6) =

⎛⎜⎜⎜⎜⎝
0
0
0
𝛾
0

⎞⎟⎟⎟⎟⎠ , ℎ(7) =

⎛⎜⎜⎜⎜⎝
0
0
0
0
1

⎞⎟⎟⎟⎟⎠ .
♢

Example 3.6. Consider the companion matrix

𝐶 =

⎛⎜⎜⎜⎜⎜⎝
0 0 . . . 0 −𝛼0

1 0 . . . 0 −𝛼1

...
. . .

. . .
...

...
0 . . . 1 0 −𝛼𝑁−2

0 0 . . . 1 −𝛼𝑁−1

⎞⎟⎟⎟⎟⎟⎠ .

Here one has 𝑟𝐿 = 𝑁 − 1, 𝑟𝑈 = 1 and minimal rank completions of the strictly
lower and strictly upper triangular parts are

𝐴𝐿 = 𝐼𝑁−1, 𝐴𝑈 =

⎛⎜⎜⎜⎝
0 . . . 0 −𝛼0

0 . . . 0 −𝛼1

...
. . .

...
...

0 . . . 0 −𝛼𝑁−2

⎞⎟⎟⎟⎠ .
Furthermore, lower and upper semiseparable generators of 𝐶 are

𝑝(𝑖) = 𝑒𝑖, 𝑖 = 2, . . . , 𝑁, 𝑞(𝑗) = 𝑒𝑡𝑗 , 𝑗 = 1, . . . , 𝑁 − 1,

𝑔(𝑖) = −𝛼𝑖−1, 𝑖 = 1, . . . , 𝑁 − 1, ℎ(𝑗) = 0, 𝑗 = 2, . . . , 𝑁 − 1, ℎ(𝑁) = 1.

Here 𝑒𝑖 is the 𝑖th column vector of the standard basis in ℂ𝑁−1. ♢

§3.3 Comments

For the first time semiseparable representations of matrices were used for sym-
metric matrices in the monograph by F.R. Gantmacher and M.G. Krein [36]. The
relationships between semiseparable representations and minimal rank comple-
tions are presented in detail for the first time in this chapter.



Chapter 4

Quasiseparable Representations:
The Basics

This chapter is of introductory character. Here for any block matrix the lower
and the upper rank numbers are defined as the ranks of the maximal (block)
submatrices entirely located in the strictly lower triangular part and respectively
in the strictly upper triangular part of the matrix. Using these ranks we define
the quasiseparable orders of a matrix. These notions are illustrated on various
examples. The chapter contains also the definition and examples of quasiseparable
representations of matrices and their basic properties. The connection of rank
numbers with the orders of quasiseparable representations is studied in detail in
the next section.

§4.1 The rank numbers and quasiseparable order.
Examples

§4.1.1 The definitions

Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a matrix with block entries. Consider the ranks of the
maximal submatrices of 𝐴 entirely located in the strictly lower triangular part
and in the strictly upper triangular part:

rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘) = 𝜌𝐿𝑘 , 𝑘 = 1, . . . , 𝑁 − 1 (4.1)

and

rank𝐴(1 : 𝑘, 𝑘 + 1 : 𝑁) = 𝜌𝑈𝑘 , 𝑘 = 1, . . . , 𝑁 − 1. (4.2)

The numbers 𝜌𝐿𝑘 (𝑘 = 1, . . . , 𝑁−1) are called the lower rank numbers of the matrix
𝐴. The numbers 𝜌𝑈𝑘 (𝑘 = 1, . . . , 𝑁 − 1) are called the upper rank numbers of the
matrix 𝐴.

 75Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1  
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory: 
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_4, © Springer Basel 2014
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Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a matrix with block entries with lower rank numbers

𝜌𝐿𝑘 (𝑘 = 1, . . . , 𝑁 − 1) and upper rank numbers 𝜌𝑈𝑘 (𝑘 = 1, . . . , 𝑁 − 1). Set

𝜌𝐿 = max
1≤𝑘≤𝑁−1

𝜌𝐿𝑘 , 𝜌𝑈 = max
1≤𝑘≤𝑁−1

𝜌𝑈𝑘 .

We say that the matrix 𝐴 has lower quasiseparable order 𝜌𝐿 and upper quasisep-
arable order 𝜌𝑈 . We say also that 𝐴 has quasiseparable order (𝜌𝐿, 𝜌𝑈 ).

§4.1.2 The companion matrix

For the monic polynomial 𝑝(𝑥) = 𝑥𝑁 +𝛼𝑁−1𝑥
𝑁−1+ ⋅ ⋅ ⋅+𝛼1𝑥+𝛼0, the companion

matrix of 𝑝(𝑥) is defined to be

𝐶 =

⎛⎜⎜⎜⎜⎜⎝
0 0 . . . 0 −𝛼0

1 0 . . . 0 −𝛼1

...
. . .

. . .
...

...
0 . . . 1 0 −𝛼𝑁−2

0 0 . . . 1 −𝛼𝑁−1

⎞⎟⎟⎟⎟⎟⎠ . (4.3)

The polynomial 𝑝(𝑥) is the characteristic polynomial for the matrix 𝐶.

The maximal submatrices of 𝐶 from the strictly lower triangular part are

𝐶(𝑘 + 1 : 𝑁, 1 : 𝑘) =

⎛⎜⎝ 0 . . . 1
...

. . .
...

0 . . . 0

⎞⎟⎠ , 𝑘 = 1, . . . , 𝑁 − 1

and therefore the lower rank numbers of the matrix 𝐶 are equal to one. Further,
the maximal submatrices of 𝐶 from the strictly upper triangular part are

𝐶(1 : 𝑘, 𝑘 + 1 : 𝑁) =

⎛⎜⎝ 0 . . . −𝛼0

...
. . .

...
0 . . . −𝛼𝑘−1

⎞⎟⎠ , 𝑘 = 1, . . . , 𝑁 − 1

and therefore the upper rank numbers of 𝐶 are not greater than one. Moreover, if
the coefficient 𝛼0 is not zero, then all upper rank numbers of the matrix 𝐶 equal
one.

The companion matrix 𝐶 defined in (4.3) has lower quasiseparable order
one and upper quasiseparable order at most one. If at least one of the numbers
𝛼𝑘, 𝑘 = 0, . . . , 𝑁 − 2 is not equal to zero, 𝐶 has quasiseparable order (1, 1).

§4.1.3 The block companion matrix

For the monic matrix polynomial 𝑝(𝑥) = 𝐼𝑥𝑁 + 𝛼𝑁−1𝑥
𝑁−1 + ⋅ ⋅ ⋅+ 𝛼1𝑥+ 𝛼0 with

𝑛 × 𝑛 matrix coefficients 𝛼𝑘 (𝑘 = 0, . . . , 𝑁 − 1), the block companion matrix of
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𝑝(𝑥) is defined similarly as above, i.e., via

𝐶′ =

⎛⎜⎜⎜⎜⎜⎝
0 0 . . . 0 −𝛼0

𝐼𝑛 0 . . . 0 −𝛼1

...
. . .

. . .
...

0 . . . 𝐼𝑛 0 −𝛼𝑁−2

0 0 . . . 𝐼𝑛 −𝛼𝑁−1

⎞⎟⎟⎟⎟⎟⎠ . (4.4)

The polynomial det[𝑝(𝑥)] of degree 𝑁𝑛 is the characteristic polynomial for the
matrix 𝐶′.

For 𝑘 = 1, . . . , 𝑁 − 1 one has

𝐶′(𝑘+1 : 𝑁, 1 : 𝑘) =

⎛⎜⎝ 0 . . . 𝐼𝑛
...

. . .
...

0 . . . 0

⎞⎟⎠ , 𝐶′(1 : 𝑘, 𝑘+1 : 𝑁) =

⎛⎜⎝ 0 . . . −𝛼0

...
. . .

...
0 . . . −𝛼𝑘−1

⎞⎟⎠ .
Therefore the lower rank numbers of 𝐶′ equal 𝑛 and the upper rank numbers are
not greater than 𝑛.

The block companion matrix 𝐶′ defined in (4.4) has lower quasiseparable
order 𝑛 and upper quasiseparable order 𝑛 at most.

§4.1.4 Tridiagonal matrices and band matrices

Consider a scalar matrix 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 with 𝐴𝑖𝑗 = 0 for ∣𝑖 − 𝑗∣ > 1. This is a
tridiagonal scalar matrix. For 𝑘 = 1, . . . , 𝑁 − 1 one has

𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘) =

⎛⎜⎝ 0 . . . 𝐴𝑘+1,𝑘

...
. . .

...
0 . . . 0

⎞⎟⎠ ,

𝐴(1 : 𝑘, 𝑘 + 1 : 𝑁) =

⎛⎜⎝ 0 . . . 0
...

. . .
...

𝐴𝑘,𝑘+1 . . . 0

⎞⎟⎠ .
(4.5)

Hence it follows that the lower and upper rank numbers of this matrix are not
greater than one. If 𝐴 is irreducible, i.e., all subdiagonal and superdiagonal entries
𝐴𝑘+1,𝑘, 𝐴𝑘,𝑘+1 are not equal to zero, all lower and upper rank numbers of 𝐴 are
equal to one.

Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a block tridiagonal matrix with block entries 𝐴𝑖𝑗 of
sizes 𝑚𝑖 × 𝑛𝑗 , i.e., 𝐴𝑖𝑗 = 0 for ∣𝑖 − 𝑗∣ > 1. In this case for 𝑘 = 1, . . . , 𝑁 − 1 the
relations (4.5) hold with block entries. Since the blocks 𝐴𝑘+1,𝑘 and 𝐴𝑘,𝑘+1 have
respective the sizes 𝑚𝑘+1 × 𝑛𝑘 and 𝑚𝑘 × 𝑛𝑘+1 one gets

𝜌𝐿𝑘 ≤ min{𝑚𝑘+1, 𝑛𝑘}, 𝜌𝑈𝑘 ≤ min{𝑚𝑘, 𝑛𝑘+1}, 𝑘 = 1, . . . , 𝑁 − 1.
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Consider a (𝑏𝐿, 𝑏𝑈 )-band scalar matrix 𝐵 = {𝐵𝑖𝑗}𝑁𝑖,𝑗=1, i.e., 𝐵𝑖𝑗 = 0 for
𝑖− 𝑗 > 𝑏𝐿, 𝑗 − 𝑖 > 𝑏𝑈 . One has

𝐵(𝑘 + 1 : 𝑁, 1 : 𝑘) =

⎛⎜⎝ 0 . . . 𝐵′𝑘
...

. . .
...

0 . . . 0

⎞⎟⎠ , 𝑘 = 1, . . . , 𝑁 − 1

with

𝐵′𝑘 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝐵𝑘+1,1 . . . 𝐵𝑘+1,𝑘

...
. . .

...
𝐵𝑏𝐿+1,1 . . . 𝐵𝑏𝐿+1,𝑘

...
. . .

...
0 . . . 𝐵𝑘+𝑏𝐿,𝑘

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝑘 = 1, . . . , 𝑏𝐿,

𝐵′𝑘 =

⎛⎜⎝ 𝐵𝑘+1,𝑘−𝑏𝐿+1 . . . 𝐵𝑘+1,𝑘

...
. . .

...
0 . . . 𝐵𝑘+𝑏𝐿,𝑘

⎞⎟⎠ , 𝑘 = 𝑏𝐿 + 1, . . . , 𝑁 − 𝑏𝐿 − 1,

𝐵′𝑘 =

⎛⎜⎝ 𝐵𝑘+1,𝑘−𝑏𝐿+1 . . . 𝐵𝑘+1,𝑘

...
. . .

...
0 . . . 𝐵𝑁,𝑘

⎞⎟⎠ , 𝑘 = 𝑁 − 𝑏𝐿, . . . , 𝑁 − 1.

Since the sizes of the scalar matrices 𝐵′𝑘 are not greater than 𝑏𝐿, the lower rank
numbers of the matrix 𝐵 are not greater than 𝑏𝐿. In the same way one obtains
that the upper rank numbers of 𝐵 are not greater than 𝑏𝑈 . Similar relations hold
for band matrices with block entries.

A tridiagonal scalar matrix 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 has quasiseparable order (1, 1) at
most. If for some 𝑖 and 𝑗 with (1 ≤ 𝑖, 𝑗 ≤ 𝑁−1) one has𝐴𝑖+1,𝑖 ∕= 0 𝐴𝑗,𝑗+1 ∕= 0, then
𝐴 has quasiseparable order (1, 1). A (𝑏𝐿, 𝑏𝑈 )-band scalar matrix 𝐵 = {𝐵𝑖𝑗}𝑁𝑖,𝑗=1

has quasiseparable order (𝑏𝐿, 𝑏𝑈 ) at most.

§4.1.5 Matrices with diagonal plus semiseparable representations

Let 𝐴 be a matrix with block entries 𝐴𝑖𝑗 of sizes 𝑚𝑖 × 𝑛𝑗 with the diagonal plus
semiseparable representation

𝐴𝑖𝑗 =

⎧⎨⎩
𝑝(𝑖)𝑞(𝑗), 1 ≤ 𝑗 < 𝑖 ≤ 𝑁,
𝑑(𝑖), 1 ≤ 𝑖 = 𝑗 ≤ 𝑁,
𝑔(𝑖)ℎ(𝑗), 1 ≤ 𝑖 < 𝑗 ≤ 𝑁.

(4.6)

Here 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁−1) are matrices of sizes𝑚𝑖×𝑟𝐿, 𝑟𝐿×
𝑛𝑗, respectively, and 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁) are matrices of
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sizes 𝑚𝑖 × 𝑟𝑈 , 𝑟𝑈 × 𝑛𝑗, respectively. The lower rank numbers of the matrix 𝐴 of
the form (4.6) are always not greater than 𝑟𝐿 and the upper rank numbers are
always not greater than 𝑟𝑈 . Indeed, one has

𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘) = 𝑃𝑘+1𝑄𝑘, 𝐴(1 : 𝑘, 𝑘 + 1 : 𝑁) = 𝐺𝑘𝐻𝑘+1, 𝑘 = 1, . . . , 𝑁 − 1

with 𝑃𝑘 = col(𝑝(𝑖))𝑁𝑖=𝑘, 𝑄𝑘 = row(𝑞(𝑖))𝑘𝑖=1, 𝐺𝑘 = col(𝑔(𝑖))𝑘𝑖=1, 𝐻𝑘 = row(ℎ(𝑖))𝑁𝑖=𝑘.
The matrices 𝑃𝑘+1 and 𝑄𝑘 have 𝑟𝐿 columns and rows, respectively, and so

𝜌𝐿𝑘 ≤ 𝑟𝐿, 𝑘 = 1, . . . , 𝑁 − 1.

Similarly, the matrices𝐺𝑘 and𝐻𝑘+1 have 𝑟𝑈 columns and rows respectively and so

𝜌𝑈𝑘 ≤ 𝑟𝑈 , 𝑘 = 1, . . . , 𝑁 − 1.

The matrix defined in (4.6) has quasiseparable order (𝑟𝐿, 𝑟𝑈 ) at most.

§4.2 Quasiseparable generators

Here we define the main representation of matrices used in this book.

Let {𝑎(𝑘)} be a family of matrices of sizes 𝑟𝑘 × 𝑟𝑘−1. For positive integers
𝑖, 𝑗, 𝑖 > 𝑗 define the operation 𝑎>𝑖𝑗 as follows: 𝑎>𝑖𝑗 = 𝑎(𝑖 − 1) ⋅ ⋅ ⋅ ⋅ ⋅ 𝑎(𝑗 + 1) for

𝑖 > 𝑗 + 1, 𝑎>𝑗+1,𝑗 = 𝐼𝑟𝑗 .

Let {𝑏(𝑘)} be a family of matrices of sizes 𝑟𝑘−1 × 𝑟𝑘. For positive integers
𝑖, 𝑗, 𝑗 > 𝑖 define the operation 𝑏<𝑖𝑗 as follows: 𝑏

<
𝑖𝑗 = 𝑏(𝑖+1)⋅ ⋅ ⋅ ⋅⋅𝑏(𝑗−1) for 𝑗 > 𝑖+1,

𝑏<𝑖,𝑖+1 = 𝐼𝑟𝑖 .

It is easy to see that

𝑎>𝑖𝑗 = 𝑎
>
𝑖𝑘𝑎

>
𝑘+1,𝑗 , 𝑖 > 𝑘 ≥ 𝑗 (4.7)

and

𝑏<𝑖𝑗 = 𝑏
<
𝑖,𝑘+1𝑏

<
𝑘,𝑗 , 𝑖 ≤ 𝑘 < 𝑗. (4.8)

Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a matrix with block entries 𝐴𝑖𝑗 of sizes 𝑚𝑖 × 𝑛𝑗 .
Assume that the entries of 𝐴 are represented in the form

𝐴𝑖𝑗 =

⎧⎨⎩
𝑝(𝑖)𝑎>𝑖𝑗𝑞(𝑗), 1 ≤ 𝑗 < 𝑖 ≤ 𝑁,
𝑑(𝑖), 1 ≤ 𝑖 = 𝑗 ≤ 𝑁,
𝑔(𝑖)𝑏<𝑖𝑗ℎ(𝑗), 1 ≤ 𝑖 < 𝑗 ≤ 𝑁.

(4.9)

Here 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1)
are matrices of sizes 𝑚𝑖 × 𝑟𝐿𝑖−1, 𝑟

𝐿
𝑗 × 𝑛𝑗, 𝑟

𝐿
𝑘 × 𝑟𝐿𝑘−1, respectively, 𝑔(𝑖) (𝑖 =

1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) are matrices of sizes
𝑚𝑖×𝑟𝑈𝑖 , 𝑟𝑈𝑗−1×𝑛𝑗 , 𝑟𝑈𝑘−1×𝑟𝑈𝑘 , respectively, 𝑑(𝑖) (𝑖 = 1, . . . , 𝑁) are𝑚𝑖×𝑛𝑖 matrices.
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The representation of a matrix 𝐴 in the form (4.9) is called a quasiseparable rep-
resentation. The elements 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 =
2, . . . , 𝑁 − 1); 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 −
1); 𝑑(𝑖) (𝑖 = 1, . . . , 𝑁) are called quasiseparable generators of the matrix 𝐴. The
numbers 𝑟𝐿𝑘 , 𝑟

𝑈
𝑘 (𝑘 = 1, . . . , 𝑁 − 1) are called the orders of these generators. The

elements 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) and
𝑔(𝑖) (𝑖 = 1, . . . , 𝑁−1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁−1) are called also
lower quasiseparable generators and upper quasiseparable generators of the matrix
𝐴. For scalar matrices the elements 𝑑(𝑖) are numbers and the generators 𝑝(𝑖), 𝑔(𝑖)
and 𝑞(𝑗), ℎ(𝑗) are rows and columns of the corresponding sizes.

Sometimes we define also lower and upper quasiseparable generators for the
indices 𝑘 = 0 and 𝑘 = 𝑁 . More precisely we define the numbers 𝑟𝐿0 , 𝑟

𝐿
𝑁 , 𝑟

𝑈
0 , 𝑟

𝑈
𝑁 to

be arbitrary nonnegative integers and 𝑝(1), 𝑞(𝑁), 𝑎(1), 𝑎(𝑁), 𝑔(𝑁), ℎ(1), 𝑏(1), 𝑏(𝑁)
to be arbitrary matrices of sizes𝑚1×𝑟𝐿0 , 𝑟𝐿𝑁×𝑛𝑁 , 𝑟𝐿1 ×𝑟𝐿0 , 𝑟𝐿𝑁×𝑟𝐿𝑁−1,𝑚𝑁×𝑟𝑈𝑁 , 𝑟𝑈0 ×
𝑛1, 𝑟

𝑈
0 × 𝑟𝑈1 , 𝑟𝑈𝑁−1 × 𝑟𝑈𝑁 . In this case we use the name quasiseparable generators

of orders 𝑟𝐿𝑘 , 𝑟
𝑈
𝑘 (𝑘 = 0, . . . , 𝑁) for the set 𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘); 𝑔(𝑘), ℎ(𝑘), 𝑏(𝑘); 𝑘 =

1, . . . , 𝑁 and the names lower quasiseparable generators and upper quasiseparable
generators for the sets 𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘), 𝑘 = 1, . . . , 𝑁 and 𝑔(𝑘), ℎ(𝑘), 𝑏(𝑘), 𝑘 =
1, . . . , 𝑁 , respectively.

In the examples above one has the following.

1. For the companion matrix 𝐶 defined in (4.3) quasiseparable generators may
be taken in the form

𝑝(𝑖) = 1, 𝑖 = 2, . . . , 𝑁, 𝑞(𝑗) = 1, 𝑗 = 1, . . . , 𝑁 − 1,

𝑎(𝑘) = 0, 𝑘 = 2, . . . , 𝑁 − 1, 𝑔(𝑖) = −𝛼𝑖−1, 𝑖 = 1, . . . , 𝑁 − 1,

ℎ(𝑗) = 0, 𝑗 = 2, . . . , 𝑁 − 1, ℎ(𝑁) = 1,

𝑏(𝑘) = 1, 𝑘 = 2, . . . , 𝑁 − 1,

𝑑(𝑖) = 0, 𝑖 = 1, . . . , 𝑁 − 1, 𝑑(𝑁) = −𝛼𝑁−1.

(4.10)

2. Similarly, for the block companion matrix 𝐶′ defined in (4.4) one can take

𝑝(𝑖) = 𝐼𝑛, 𝑖 = 2, . . . , 𝑁, 𝑞(𝑗) = 𝐼𝑛, 𝑗 = 1, . . . , 𝑁 − 1,

𝑎(𝑘) = 0, 𝑘 = 2, . . . , 𝑁 − 1, 𝑔(𝑖) = −𝛼𝑖−1, 𝑖 = 1, . . . , 𝑁 − 1,

ℎ(𝑗) = 0, 𝑗 = 2, . . . , 𝑁 − 1, ℎ(𝑁) = 𝐼𝑛,

𝑏(𝑘) = 𝐼𝑛 𝑘 = 2, . . . , 𝑁 − 1, 𝑑(𝑖) = 0, 𝑖 = 1, . . . , 𝑁 − 1, 𝑑(𝑁) = −𝛼𝑁−1.

3. For a scalar tridiagonal matrix 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 one has

𝑝(𝑖) = 1, 𝑖 = 2, . . . , 𝑁, 𝑞(𝑗) = 𝐴𝑗+1,𝑗 , 𝑗 = 1, . . . , 𝑁 − 1,

𝑎(𝑘) = 𝑏(𝑘) = 0, 𝑘 = 2, . . . , 𝑁 − 1,

𝑔(𝑖) = 𝐴𝑖,𝑖+1, 𝑖 = 1, . . . , 𝑁 − 1, ℎ(𝑗) = 1, 𝑗 = 2, . . . , 𝑁,

𝑑(𝑘) = 𝐴𝑘𝑘, 𝑘 = 1, . . . , 𝑁. (4.11)
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Similarly,b for a block tridiagonal matrix with entries 𝐴𝑖𝑗 of sizes 𝑚𝑖 × 𝑛𝑗
one has

𝑝(𝑖) = 𝐼𝑚𝑖 , 𝑖 = 2, . . . , 𝑁, 𝑞(𝑗) = 𝐴𝑗+1,𝑗 , 𝑗 = 1, . . . , 𝑁 − 1;

𝑎(𝑘) = 0𝑚𝑘+1×𝑚𝑘
, 𝑘 = 2, . . . , 𝑁 − 1 𝑏(𝑘) = 0𝑛𝑘×𝑛𝑘+1

, 𝑘 = 2, . . . , 𝑁 − 1;

𝑔(𝑖) = 𝐴𝑖,𝑖+1, 𝑖 = 1, . . . , 𝑁 − 1, ℎ(𝑗) = 𝐼𝑛𝑗 , 𝑗 = 2, . . . , 𝑁 ;

𝑑(𝑘) = 𝐴𝑘𝑘, 𝑘 = 1, . . . , 𝑁.

4. To determine quasiseparable generators of a (𝑏𝐿, 𝑏𝑈 )-band scalar matrix

𝐵 = {𝐵𝑖𝑗}𝑁𝑖,𝑗=1

we use the shift 𝑛× 𝑛 matrices

𝐽𝑛 =

⎛⎜⎜⎜⎝
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . . 1
0 0 0 . . . 0

⎞⎟⎟⎟⎠
and the 𝑛-dimensional rows 𝑒𝑛 =

(
1 0 . . . 0

)
. The lower and upper

quasiseparable generators of the matrix 𝐵 may be taken in the form

𝑝(𝑖) = 𝑒𝑏𝐿 , 𝑖 = 2, . . . , 𝑁, 𝑞(𝑗) =

⎛⎜⎝ 𝐵𝑗+1,𝑗

...
𝐵𝑗+𝑏𝐿,𝑗

⎞⎟⎠ , 𝑗 = 1, . . . , 𝑁 − 1;

𝑎(𝑘) = 𝐽𝑏𝐿 , 𝑘 = 2, . . . , 𝑁 − 1;

𝑔(𝑖) =
(
𝐵𝑖,𝑖+1 . . . 𝐵𝑖,𝑖+𝑏𝑈

)
, 𝑖 = 1, . . . , 𝑁 − 1, ℎ(𝑗) = 𝑒𝑇𝑏𝑈 , 𝑗 = 2, . . . , 𝑁 ;

𝑏(𝑘) = 𝐽𝑇𝑏𝑈 , 𝑘 = 2, . . . , 𝑁 − 1.

Here the entries 𝐵𝑖𝑗 for 𝑖 > 𝑁 or 𝑗 > 𝑁 are assumed to be zero.

f

5. Let 𝐴 be a matrix with the given diagonal plus semiseparable representation
(4.6), with lower and upper semiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁),
𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1) and 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁) of or-
ders 𝑟𝐿 and 𝑟𝑈 , respectively. For 𝐴 one gets the quasiseparable representation
with lower and upper quasiseparable generators by setting

𝑝(𝑖), 𝑖 = 2, . . . , 𝑁, 𝑞(𝑗), 𝑗 = 1, . . . , 𝑁 − 1, 𝑎(𝑘) = 𝐼𝑟𝐿 , 𝑘 = 2, . . . , 𝑁 − 1;

𝑔(𝑖), 𝑖 = 1, . . . , 𝑁 − 1, ℎ(𝑗), 𝑗 = 2, . . . , 𝑁, 𝑏(𝑘) = 𝐼𝑟𝑈 , 𝑘 = 2, . . . , 𝑁 − 1.
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§4.3 Minimal completion rank, rank numbers,
and quasiseparable order

In this section we compare the minimal completion rank and the rank numbers of
a matrix. For a matrix 𝐴 the minimal completion rank 𝑟𝐿 is greater than or equal
to the lower quasiseparable order 𝜌𝐿. The difference between these two numbers
may be essential, as one can see, for instance, for an irreducible tridiagonal matrix,
i.e., for a tridiagonal matrix with all the entries non-zeros on the subdiagonal and
the superdiagonal. Necessary and sufficient conditions for the equality of these two
numbers and for the equality of rank numbers and the minimal completion rank
are given as follows.

Theorem 4.1. For a matrix 𝐴 the inequality 𝑟𝐿 ≥ 𝜌𝐿 holds and 𝜌𝐿 = 𝑟𝐿 if and
only if

rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘) = rank𝐴(𝑘 + 2 : 𝑁, 1 : 𝑘), 𝑘 = 1, . . . , 𝑘0 − 1;

rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘 − 1) = rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘), 𝑘 = 𝑘0 + 1, . . . , 𝑁 − 1,
(4.12)

where 𝑘0, 1 ≤ 𝑘0 ≤ 𝑁−1 is such that 𝜌𝐿 = rank𝐴(𝑘0+1 : 𝑁, 1 : 𝑘0). Furthermore,
the rank numbers 𝜌𝐿𝑘 (𝑘 = 1, . . . , 𝑁 − 1) of 𝐴 are not greater than the minimal
completion rank 𝑟𝐿 and moreover

𝜌𝐿𝑘 = 𝑟𝐿, 𝑘 = 1, . . . , 𝑁 − 1 (4.13)

valid if and only if

𝜌𝐿𝑘 = rank𝐴(𝑁, 1), 𝑘 = 1, . . . , 𝑁 − 1. (4.14)

Proof. We write the equality (3.3) in the form

𝑟𝐿 = rank𝐴(𝑘0 + 1 : 𝑁, 1 : 𝑘0)

+

𝑘0−1∑
𝑘=1

[rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘)− rank𝐴(𝑘 + 2 : 𝑁, 1 : 𝑘)]

+

𝑁−1∑
𝑘=𝑘0+1

[rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘)− rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘 − 1)].

Since

rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘) ≥ rank𝐴(𝑘 + 2 : 𝑁, 1 : 𝑘),

rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘) ≥ rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘 − 1)

and 𝜌𝐿 = rank𝐴(𝑘0 + 1 : 𝑁, 1 : 𝑘0), we conclude that 𝑟𝐿 ≥ 𝜌𝐿 and moreover
𝑟𝐿 = 𝜌𝐿 if and only if the condition (4.12) holds.
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From the inequality 𝑟𝐿 ≥ 𝜌𝐿 and the fact that 𝜌𝐿 is the maximal lower rank
number of the matrix 𝐴 we conclude that

𝜌𝐿𝑘 ≤ 𝑟𝐿, 𝑘 = 1, . . . , 𝑁 − 1.

Let the condition (4.14) hold. Using the inequalities

rank𝐴(𝑁, 1) ≤ rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘 − 1)

≤ rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘) = 𝜌𝐿𝑘 , 𝑘 = 2, . . . , 𝑁 − 1,

we conclude that

rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘 − 1) = rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘), 𝑘 = 2, . . . , 𝑁 − 1.

Hence, using (3.3) one obtains 𝑟𝐿 = rank𝐴(2 : 𝑁, 1) = 𝜌𝐿1 and using (4.14) again
one obtains (4.13)

Assume that the condition (4.13) holds. Recall that the number 𝑟𝐿 is the
minimal completion rank of the strictly lower triangular part 𝐴 = {𝐴𝑖𝑗}1≤𝑗<𝑖≤𝑁
of the matrix 𝐴. Consider the partially specified matrix

𝒜0 =

(
𝐴(2 : 𝑁 − 1, 1) ?

𝐴(𝑁, 1) 𝐴(𝑁, 2 : 𝑁 − 1)

)
.

Let 𝑟0 be the minimal completion rank of 𝒜0. Since the given part of 𝒜0 is a
submatrix of 𝐴, one gets 𝑟0 ≤ 𝑟𝐿. Formula (2.2) yields

𝑟0 = rank𝐴(2 : 𝑁, 1) + rank𝐴(𝑁, 1 : 𝑁 − 1)− rank𝐴(𝑁, 1).

Now if rank𝐴(𝑁, 1) < 𝑟𝐿 one gets 𝑟0 > 𝑟𝐿, a contradiction. □

§4.4 The quasiseparable and semiseparable generators

Let 𝐴 be a matrix with lower semiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗)
(𝑗 = 1, . . . , 𝑁 − 1) of order 𝑟𝐿. As mentioned above, 𝐴 has lower quasiseparable
generators

𝑝(𝑖), 𝑖 = 2, . . . , 𝑁, 𝑞(𝑗), 𝑗 = 1, . . . , 𝑁 − 1, 𝑎(𝑘) = 𝐼𝑟𝐿 , 𝑘 = 2, . . . , 𝑁 − 1

of orders 𝑟𝐿𝑘 = 𝑟𝐿 (𝑘 = 1, . . . , 𝑁 − 1).

Under some conditions the converse statement holds.

Theorem 4.2. Let 𝐴 be a block matrix with lower quasiseparable generators 𝑝(𝑖)
(𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) such that the
orders of these generators are constant 𝑟𝐿𝑘 = 𝑟0 (𝑘 = 1, . . . , 𝑁 − 1) and the 𝑟0 × 𝑟0
matrices 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) are invertible.

Then the matrix 𝐴 has lower semiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁),
𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1) of order 𝑟0 which are given by the formulas

𝑝(𝑖) = 𝑝(𝑖)𝑎>𝑖1, 𝑖 = 2, . . . , 𝑁, 𝑞(𝑗) = (𝑎>𝑗+1,1)
−1𝑞(𝑗), 𝑗 = 1, . . . , 𝑁 − 1. (4.15)
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Proof. One has the quasiseparable representation

𝐴𝑖𝑗 = 𝑝(𝑖)𝑎
>
𝑖𝑗𝑞(𝑗), 1 ≤ 𝑗 < 𝑖 ≤ 𝑁.

For any 𝑖, 𝑗 with 1 ≤ 𝑗 < 𝑖 ≤ 𝑁 , using the formula 𝑎>𝑖1 = 𝑎>𝑖𝑗𝑎
>
𝑗+1,1 and the fact

that the matrix 𝑎>𝑗+1,1 is invertible one gets 𝑎>𝑖𝑗 = 𝑎
>
𝑖1(𝑎

>
𝑗+1,1)

−1 and therefore

𝐴𝑖𝑗 = (𝑝(𝑖)𝑎>𝑖1)((𝑎
>
𝑗+1,1)

−1𝑞(𝑗)). (4.16)

Define the matrices 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1) by (4.15). Every
matrix 𝑝(𝑖) has 𝑟0 columns and every matrix 𝑞(𝑗) has 𝑟0 rows. Moreover using
(4.16) one gets

𝐴𝑖𝑗 = 𝑝(𝑖)𝑞(𝑗), 1 ≤ 𝑗 < 𝑖 ≤ 𝑁
and therefore 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1) are lower semiseparable
generators of order 𝑟0 of the matrix 𝐴. □

In the same way one obtains the corresponding statement for upper genera-
tors.

Theorem 4.3. Let 𝐴 be a block matrix with lower quasiseparable generators 𝑔(𝑖)
(𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) such that the
orders of these generators are constant 𝑟𝑈𝑘 = 𝑟0 (𝑘 = 1, . . . , 𝑁 − 1) and the 𝑟0 × 𝑟0
matrices 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) are invertible.

Then the matrix 𝐴 has lower semiseparable generators 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁−1),
ℎ̃(𝑗) (𝑗 = 2, . . . , 𝑁) of order 𝑟0 which are given by the formulas

𝑔(𝑖) = 𝑔(𝑖)(𝑏<1,𝑖+1)
−1, 𝑖 = 1, . . . , 𝑁 − 1, ℎ̃(𝑗) = 𝑏<1𝑗ℎ(𝑗), 𝑗 = 2, . . . , 𝑁. (4.17)

§4.5 Comments

The rank numbers of a matrix have been defined and used in by M. Fiedler and
T.L. Markham in [30], [29], see also a note by E. Tyrtyshnikov [44]. The qua-
siseparable representations were used in the paper [38] and in the monograph by
P.M. Dewilde and A.J. van der Veen [15] in the study of discrete time-varying sys-
tems. The connection between quasiseparable and semiseparable representations
was discussed by R. Vandebril, M. Van Barel and N. Mastronardi in the note [45]
and in the book [46].

The material of this chapter is taken mainly from [20] and [27].



Chapter 5

Quasiseparable Generators

It is clear from the preceding chapter that any matrix has quasiseparable repre-
sentations. By padding given quasiseparable generators with zero matrices of large
sizes one can arrange that they have arbitrarily large orders. However, one is look-
ing for generators of minimal orders, because they will give better computational
complexity in applications.

This chapter defines minimality for quasiseparable generators in a natural
way. Algorithms to build them from a given triangular part or from a general
set of generators are given. A notion of similarity for two sets of generators of
the same matrix readily emerges and it turns out that all minimal generators are
similar. Also, notions of normality for sets of generators are defined and minimal
and general normal generators are computed.

Approximations of a given matrix by another matrix with predefined small
quasiseparable order conclude this chapter.

To be more precise, the first section has a preliminary character; in it, using
quasiseparable generators of a matrix we define some auxiliary matrices which are
employed in the sequel. In the second section it is shown that the minimal orders
of the quasiseparable generators coincide with the corresponding rank numbers of
the matrix. An algorithm to build a set of minimal lower quasiseparable generators
of a matrix with the strictly lower triangular part given is also presented. As a
corollary one obtains that the maximal orders of minimal quasiseparable genera-
tors coincide with the quasiseparable orders of a matrix. The third section contains
some examples of computing of quasiseparable generators. A special example of
the block companion matrix is considered in the fourth section. In Section 5 a crite-
rion for minimality of generators is proved and some examples show its usefulness.
In Section 6 we consider relations between different sets of generators of the same
matrix. Here we define a notion of similarity for candidate quasiseparable gener-
ator sets of the same matrix. It turns out that sets of matrices similar to a given
set of generators are also quasiseparable generators. Also, any two sets of minimal
quasiseparable generators of the same matrix are similar. A counterexample shows
that non-minimal generators are not always similar. The seventh section computes

85 Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1  
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a set of minimal generators from a set of given presumably non-minimal gener-
ators. In Section 8 we consider special quasiseparable generators satisfying some
orthonormality conditions. The last section gives the approximations of a matrix
by a quasiseparable matrix with orders not exceeding a specified maximum, or
with a matrix for which the middle (diagonal) factor in the SVD decomposition
has only entries which are larger than a specified tolerance.

§5.1 Auxiliary matrices and relations

In this section we derive some connections between a quasiseparable representation
of a matrix and the structure of its submatrices.

Let 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) be
matrices of sizes𝑚𝑖×𝑟𝐿𝑖−1, 𝑟

𝐿
𝑗 ×𝑛𝑗, 𝑟𝐿𝑘 ×𝑟𝐿𝑘−1, respectively. We define the matrices

𝑄𝑘 (𝑘 = 1, . . . , 𝑁 − 1) of sizes 𝑟𝐿𝑘 ×∑𝑘
𝑗=1 𝑛𝑗 and the matrices 𝑃𝑘 (𝑘 = 𝑁, . . . , 2)

of sizes
∑𝑁

𝑖=𝑘𝑚𝑖 × 𝑟𝐿𝑘−1 via the relations

𝑄𝑘 = row(𝑎>𝑘+1,𝑖𝑞(𝑖))
𝑘
𝑖=1, 𝑘 = 1, . . . , 𝑁 − 1; (5.1)

𝑃𝑘 = col(𝑝(𝑖)𝑎>𝑖,𝑘−1)
𝑁
𝑖=𝑘, 𝑘 = 𝑁, . . . , 2. (5.2)

One can check directly that the matrices 𝑃𝑘, 𝑄𝑘 satisfy the recursion relations

𝑄1 = 𝑞(1), 𝑄𝑘 =
(
𝑎(𝑘)𝑄𝑘−1 𝑞(𝑘)

)
, 𝑘 = 2, . . . , 𝑁 − 1; (5.3)

𝑃𝑁 = 𝑝(𝑁), 𝑃𝑘 =

(
𝑝(𝑘)

𝑃𝑘+1𝑎(𝑘)

)
, 𝑘 = 𝑁 − 1, . . . , 2. (5.4)

Similarly, let 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 =
2, . . . , 𝑁 − 1) be matrices of sizes 𝑚𝑖 × 𝑟𝑈𝑖 , 𝑟𝑈𝑗−1 ×𝑛𝑗 , 𝑟𝑈𝑘−1 × 𝑟𝑈𝑘 , respectively. We

define the matrices 𝐺𝑘 (𝑘 = 1, . . . , 𝑁 − 1) of sizes
∑𝑘

𝑗=1𝑚𝑗 × 𝑟𝑈𝑘 and the matrices

𝐻𝑘 (𝑘 = 𝑁, . . . , 2) of sizes 𝑟
𝑈
𝑘−1 ×

∑𝑁
𝑖=𝑘 𝑛𝑖 via the relations

𝐺𝑘 = col(𝑔(𝑖)𝑏<𝑖,𝑘+1)
𝑘
𝑖=1, 𝑘 = 1, . . . , 𝑁 − 1; (5.5)

𝐻𝑘 = row(𝑏<𝑘−1,𝑖ℎ(𝑖))
𝑁
𝑖=𝑘, 𝑘 = 𝑁, . . . , 2. (5.6)

One can check directly that the matrices 𝐺𝑘, 𝐻𝑘 satisfy the recursion relations

𝐺1 = 𝑔(1), 𝐺𝑘 =

(
𝐺𝑘−1𝑏(𝑘)
𝑔(𝑘)

)
, 𝑘 = 2, . . . , 𝑁 − 1; (5.7)

𝐻𝑁 = ℎ(𝑁), 𝐻𝑘 =
(
ℎ(𝑘) 𝑏(𝑘)𝐻𝑘+1

)
, 𝑘 = 𝑁 − 1, . . . , 2. (5.8)

The following relations for the corresponding submatrices of a quasiseparable
matrix follow directly from the definition (4.9).
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Lemma 5.1. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a matrix with lower quasiseparable gener-
ators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1)
of orders 𝑟𝐿𝑘 (𝑘 = 1, . . . , 𝑁 − 1). Using these generators define the matrices
𝑄𝑘 (𝑘 = 1, . . . , 𝑁 − 1), 𝑃𝑘 (𝑘 = 𝑁, . . . , 2) via the formulas (5.1), (5.2).

Then the equalities

𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘) = 𝑃𝑘+1𝑄𝑘, 𝑘 = 1, . . . , 𝑁 − 1, (5.9)

hold.

Proof. The first formula from (4.9) yields

𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘) =

⎛⎜⎝ 𝑝(𝑘 + 1)𝑎>𝑘+1,1𝑞(1) . . . 𝑝(𝑘 + 1)𝑎>𝑘+1,𝑘𝑞(𝑘)
...

. . .
...

𝑝(𝑁)𝑎>𝑁,1𝑞(1) . . . 𝑝(𝑁)𝑎>𝑁,𝑘𝑞(𝑘)

⎞⎟⎠ ,
𝑘 = 1, . . . , 𝑁 − 1.

Furthermore using the equalities (4.7) one obtains

𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘) =

⎛⎜⎜⎜⎝
𝑝(𝑘 + 1)

𝑝(𝑘 + 2)𝑎>𝑘+2,𝑘
...

𝑝(𝑁)𝑎>𝑁,𝑘

⎞⎟⎟⎟⎠
⋅ ( 𝑎>𝑘+1,1𝑞(1) . . . 𝑎>𝑘+1,𝑘−1𝑞(𝑘 − 1) 𝑞(𝑘)

)
= 𝑃𝑘+1𝑄𝑘. □

Corollary 5.2. Under the conditions of Lemma 5.1, the equalities

𝐴(𝑘 + 1 : 𝑁, 𝑘) = 𝑃𝑘+1𝑞(𝑘), 𝑘 = 1, . . . , 𝑁 − 1, (5.10)

and

𝐴(𝑘 + 1, 1 : 𝑘) = 𝑝(𝑘 + 1)𝑄𝑘, 𝑘 = 1, . . . , 𝑁 − 1, (5.11)

hold.

Proof. Using (5.3) we see that 𝑄𝑘(:, 𝑘) = 𝑞(𝑘) and therefore using (5.9) we obtain

𝐴(𝑘 + 1 : 𝑁, 𝑘) = 𝑃𝑘+1𝑞(𝑘), 𝑘 = 1, . . . , 𝑁 − 1.

Similarly using (5.9) and (5.4) one obtains (5.11). □

Conversely, it is easy to check that the relations (5.10) or (5.11) define a
quasiseparable representation of the strictly lower triangular part of a matrix.
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Lemma 5.3. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a block matrix. Consider the relations (5.10)
or the relations (5.11), where 𝑃𝑘 (𝑘 = 2, . . . , 𝑁) and 𝑄𝑘 (𝑘 = 1, . . . , 𝑁 − 1) are
matrices defined via the relations (5.2) and (5.1) with some matrices 𝑝(𝑖) (𝑖 =
2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1).

Then 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1)
are lower quasiseparable generators of the matrix 𝐴.

Proof. Let the equalities (5.10) hold. Using (5.2) one obtains

𝐴(𝑘 + 1 : 𝑁, 𝑘) = 𝑃𝑘+1𝑞(𝑘) = col(𝑝(𝑖)𝑎>𝑖,𝑘)
𝑁
𝑖=𝑘+1𝑞(𝑘), 𝑘 = 1, . . . , 𝑁 − 1

which implies the first formula from (4.9).

Now let the equalities (5.11) hold. Using (5.1) one obtains

𝐴(𝑘, 1 : 𝑘 − 1) = 𝑝(𝑘)𝑄𝑘−1 = 𝑝(𝑘)row(𝑎
>
𝑘𝑗𝑞(𝑗))

𝑘−1
𝑗=1 , 𝑘 = 2, . . . , 𝑁

from which the first formula from (4.9) follows. □

Similarly one can prove the following assertions concerning the strictly upper
triangular part of the matrix 𝐴.

Lemma 5.4. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a matrix with upper quasiseparable gener-
ators 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1)
of orders 𝑟𝑈𝑘 (𝑘 = 1, . . . , 𝑁 − 1). Using these generators define the matrices
𝐺𝑘 (𝑘 = 1, . . . , 𝑁 − 1), 𝐻𝑘 (𝑘 = 𝑁, . . . , 2) via (5.5), (5.6).

Then the equalities

𝐴(1 : 𝑘, 𝑘 + 1 : 𝑁) = 𝐺𝑘𝐻𝑘+1, 𝑘 = 1, . . . , 𝑁 − 1, (5.12)

hold.

Corollary 5.5. Under the conditions of Lemma 5.4, the equalities

𝐴(𝑘, 𝑘 + 1 : 𝑁) = 𝑔(𝑘)𝐻𝑘+1, 𝑘 = 1, . . . , 𝑁 − 1 (5.13)

and

𝐴(1 : 𝑘, 𝑘 + 1) = 𝐺𝑘ℎ(𝑘 + 1), 𝑘 = 1, . . . , 𝑁 − 1 (5.14)

hold.

Lemma 5.6. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a block matrix. Let the relations (5.13) or
the relations (5.14), where 𝐻𝑘 (𝑘 = 2, . . . , 𝑁) and 𝐺𝑘 (𝑘 = 1, . . . , 𝑁 − 1) are
matrices defined via the relations (5.6) and (5.5) with some matrices 𝑔(𝑖) (𝑖 =
1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1), hold.

Then 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1)
are upper quasiseparable generators of the matrix 𝐴.
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§5.2 Existence and minimality of
quasiseparable generators

Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a block matrix with lower quasiseparable generators 𝑝(𝑖)
(𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1). The matrices 𝑝′(𝑖)
(𝑖 = 2, . . . , 𝑁), 𝑞′(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎′(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) defined by

𝑝′(𝑖) =
(
𝑝(𝑖) 0

)
, 𝑞′(𝑗) =

(
𝑞(𝑗)
0

)
, 𝑎′(𝑘) =

(
𝑎(𝑘) 0
0 0

)
,

with zeros of the corresponding sizes, are also a set of lower quasiseparable gener-
ators of the same matrix 𝐴. Indeed one can check easily that

𝑝(𝑖)𝑎>𝑖𝑗𝑞(𝑗) = 𝑝
′(𝑖)(𝑎′)>𝑖𝑗𝑞

′(𝑗), 1 ≤ 𝑗 < 𝑖 ≤ 𝑁.
We see that the orders of quasiseparable generators of a matrix can be arbitrarily
large. We will be interested in generators of minimal orders.

Definiton 5.7. Let 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 =
2, . . . , 𝑁 − 1) be lower quasiseparable generators of a matrix 𝐴 with the orders
𝑟𝑘 (𝑘 = 1, . . . , 𝑁 − 1). These generators are called minimal if for any other set
of lower quasiseparable generators of 𝐴 with orders 𝑡𝑘 (𝑘 = 1, . . . , 𝑁 − 1) the
inequalities

𝑟𝑘 ≤ 𝑡𝑘, 𝑘 = 1, . . . , 𝑁 − 1

hold. The orders 𝑟𝑘 (𝑘 = 1, . . . , 𝑁 − 1) are called the minimal orders of lower
quasiseparable generators of the matrix 𝐴.

At first we show that the orders of quasiseparable generators are not smaller
than the corresponding rank numbers.

Lemma 5.8. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a block matrix with the lower rank numbers

𝜌𝐿𝑘 (𝑘 = 1, . . . , 𝑁 − 1) and let 𝑡𝑘 (𝑘 = 1, . . . , 𝑁 − 1) be the orders of some lower
quasiseparable generators of the matrix 𝐴.

Then
𝜌𝐿𝑘 ≤ 𝑡𝑘, 𝑘 = 1, . . . , 𝑁 − 1.

Proof. Assume that 𝑝′(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞′(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎′(𝑘) (𝑘 =
2, . . . , 𝑁 − 1) are lower quasiseparable generators of the matrix 𝐴 with the orders
𝑡𝑘 (𝑘 = 1, . . . , 𝑁−1). Define the matrices 𝑃 ′𝑘 (𝑘 = 2, . . . , 𝑁), 𝑄′𝑘 (𝑘 = 1, . . . , 𝑁−1)
by the formulas (5.1), (5.2). By Lemma 5.1,

𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘) = 𝑃 ′𝑘+1𝑄
′
𝑘, 𝑘 = 1, . . . , 𝑁 − 1.

Since the number of the columns of the matrix 𝑃 ′𝑘+1 and that of the rows in the
matrix 𝑄′𝑘 are both equal to 𝑡𝑘, one obtains

𝜌𝐿𝑘 = rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘) ≤ 𝑡𝑘, 𝑘 = 1, . . . , 𝑁 − 1. □
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Now we give an algorithm to compute a set of minimal quasiseparable gen-
erators of a matrix with a given strictly lower triangular part.

Theorem 5.9. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a block matrix with lower rank numbers

𝜌𝐿𝑘 (𝑘 = 1, . . . , 𝑁 − 1).

Then the matrix 𝐴 has lower quasiseparable generators with orders 𝜌𝐿𝑘 (𝑘 =
1, . . . , 𝑁 − 1). Moreover, a set 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘)
(𝑘 = 2, . . . , 𝑁 − 1) of lower quasiseparable generators of the matrix 𝐴 with these
orders is obtained by means of the following algorithm.

1. Set 𝐴(1) = 𝐴(2 : 𝑁, 1). Using rank factorization of the matrix 𝐴(1) determine

the matrices 𝑃2, 𝑞(1) of the sizes
(∑𝑁

𝑖=2𝑚𝑖

)
× 𝑟1, 𝑟1 × 𝑛1, respectively such that

𝐴(1) = 𝑃2𝑞(1) (5.15)

with

rank𝑃2 = rank 𝑞(1) = rank𝐴(1) = 𝑟1. (5.16)

2. For 𝑘 = 2, . . . , 𝑁 − 1 perform the following.

Set 𝐴(𝑘) = 𝐴(𝑘 + 1 : 𝑁, 𝑘).

Determine the matrices 𝑝(𝑘), 𝑃 ′′𝑘 of sizes 𝑚𝑘 × 𝑟𝑘−1,
(∑𝑁

𝑖=𝑘+1𝑚𝑖

)
× 𝑟𝑘−1,

respectively, from the partition

𝑃𝑘 =

(
𝑝(𝑘)
𝑃 ′′𝑘

)
. (5.17)

Using the rank factorization of the matrix
(
𝑃 ′′𝑘 𝐴(𝑘)

)
, determine the num-

ber 𝑟𝑘 and the matrices 𝑃𝑘+1, 𝑉𝑘 of sizes
(∑𝑁

𝑖=𝑘+1𝑚𝑖

)
× 𝑟𝑘, 𝑟𝑘 × (𝑟𝑘−1 + 𝑛𝑘),

respectively, such that (
𝑃 ′′𝑘 𝐴(𝑘)

)
= 𝑃𝑘+1𝑉𝑘, (5.18)

rank𝑃𝑘+1 = rank𝑉𝑘 = rank
(
𝑃 ′′𝑘 𝐴(𝑘)

)
= 𝑟𝑘. (5.19)

Determine the matrices 𝑎(𝑘), 𝑞(𝑘) of sizes 𝑟𝑘×𝑟𝑘−1, 𝑟𝑘×𝑛𝑘, respectively, from the
partition

𝑉𝑘 =
(
𝑎(𝑘) 𝑞(𝑘)

)
. (5.20)

3. Set

𝑝(𝑁) = 𝑃𝑁 . (5.21)

Proof. Consider the matrices 𝑃𝑘 (𝑘 = 2, . . . , 𝑁 − 1) defined in the algorithm.
Comparing the corresponding entries in (5.18) and (5.20) one gets

𝑃 ′′𝑘 = 𝑃𝑘+1𝑎(𝑘), 𝑘 = 2, . . . , 𝑁 − 1.
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Hence from the relations (5.21) and (5.17) it follows that the matrices 𝑃𝑘 (𝑘 =
2, . . . , 𝑁 − 1) satisfy the recursion (5.4). Furthermore, using (5.15), (5.18), (5.20)
one gets

𝐴(𝑘 + 1 : 𝑁, 𝑘) = 𝑃𝑘+1𝑞(𝑘), 𝑘 = 1, . . . , 𝑁 − 1.

Thus, by Lemma 5.3, 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 =
2, . . . , 𝑁 − 1) are lower quasiseparable generators of the matrix 𝐴.

Next we prove that the orders 𝑟𝑘 (𝑘 = 1, . . . , 𝑁 − 1) are equal to the cor-
responding rank numbers 𝜌𝐿𝑘 (𝑘 = 1, . . . , 𝑁 − 1). Define the matrices 𝑄𝑘 (𝑘 =
1, . . . , 𝑁 − 1) via the relations (5.3). By Lemma 5.1,

𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘) = 𝑃𝑘+1𝑄𝑘, 𝑘 = 1, . . . , 𝑁 − 1.

We should check that

rank𝑃𝑘+1 = rank𝑄𝑘 = 𝑟𝑘, 𝑘 = 1, . . . , 𝑁 − 1.

This means that the matrices 𝑃𝑘+1, 𝑄𝑘 have full column rank and row rank, re-
spectively, and therefore

𝜌𝐿𝑘 = 𝑟𝑘, 𝑘 = 1, . . . , 𝑁 − 1.

The relations (5.16), (5.19) imply that the conditions

rank𝑃𝑘+1 = 𝑟𝑘, 𝑘 = 1, . . . , 𝑁 − 1

hold. Next, using the relation (5.15) one gets rank(𝑞(1)) = 𝑟1. Assume that for
some 𝑘 with 𝑁 − 1 ≥ 𝑘 ≥ 2 the relation rank𝑄𝑘−1 = 𝑟𝑘−1 holds. Using (5.3) one
has

𝑄𝑘 =
(
𝑎(𝑘) 𝑞(𝑘)

)( 𝑄𝑘−1 0
0 𝐼

)
. (5.22)

The matrix

(
𝑄𝑘−1 0
0 𝐼

)
has full row rank. Moreover using (5.18) one gets

rank
(
𝑎(𝑘) 𝑞(𝑘)

)
= 𝑟𝑘

and furthermore, by using (5.22), one obtains

rank𝑄𝑘 = rank
(
𝑎(𝑘) 𝑞(𝑘)

)
= 𝑟𝑘. □

In order to compute the complexity of the algorithm from Theorem 5.9 one
has to compute only the number of operations in (5.15), (5.18). Every such fac-
torization costs 𝑂(𝑁) operations and hence the total complexity of the algorithm
is 𝑂(𝑁2).

Corollary 5.10. The lower rank numbers of a matrix are equal to the minimal
orders of its lower quasiseparable generators. Moreover, a set of minimal lower
generators can be obtained by means of the algorithm from Theorem 5.9.
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Corollary 5.11. Let 𝐴 be a matrix with quasiseparable order (𝜌𝐿, 𝜌𝑈 ).

The minimal orders 𝑟𝐿𝑘 (𝑘 = 1, . . . , 𝑁−1) and 𝑟𝑈𝑘 (𝑘 = 1, . . . , 𝑁−1) of lower
and upper quasiseparable generators of 𝐴 satisfy the relations

max
1≤𝑘≤𝑁−1

𝑟𝐿𝑘 = 𝜌𝐿, max
1≤𝑘≤𝑁−1

𝑟𝑈𝑘 = 𝜌𝑈 ,

i.e., the maximal orders of minimal quasiseparable generators of a matrix are equal
to its quasiseparable orders.

§5.3 Examples

Example 5.12. We compute lower quasiseparable generators for the 6 × 6 scalar
matrix

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎝
∗ ∗ ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗ ∗
1 2 ∗ ∗ ∗ ∗
1 1 1 ∗ ∗ ∗
1 1 1 2 ∗ ∗
1 1 1 1 1 ∗

⎞⎟⎟⎟⎟⎟⎟⎠ .

By formula (5.15), one obtains

𝑃2 =

⎛⎜⎜⎜⎜⎝
1
1
1
1
1

⎞⎟⎟⎟⎟⎠ , 𝑞(1) = 1, 𝑟1 = 1.

Next, for 𝑘 = 2 formula (5.17) yields 𝑝(2) = 1 and, moreover, using formula
(5.18) one gets

(
𝑃 ′′2 𝐴(2)

)
=

⎛⎜⎜⎝
1 2
1 1
1 1
1 1

⎞⎟⎟⎠ = 𝑃3𝑉2

with

𝑃3 =

⎛⎜⎜⎝
1 2
1 1
1 1
1 1

⎞⎟⎟⎠ , 𝑉2 =

(
1 0
0 1

)
, 𝑟2 = 2.

Using the partition (5.20) one obtains 𝑎(2) =

(
1
0

)
, 𝑞(2) =

(
0
1

)
.
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For 𝑘 = 3 formula (5.17) yields 𝑝(3) =
(
1 2

)
and, moreover, using formula

(5.18) one gets

(
𝑃 ′′3 𝐴(3)

)
=

⎛⎝ 1 1 1
1 1 1
1 1 1

⎞⎠ = 𝑃4𝑉3

with

𝑃4 =

⎛⎝ 1
1
1

⎞⎠ , 𝑉3 =
(
1 1 1

)
, 𝑟3 = 1.

Using the partition (5.20) one obtains 𝑎(3) =
(
1 1

)
, 𝑞(3) = 1.

For 𝑘 = 4 formula (5.17) yields 𝑝(4) = 1 and, moreover, using formula (5.18)
one gets (

𝑃 ′′4 𝐴(4)
)
=

(
1 2
1 1

)
= 𝑃5𝑉4

with

𝑃5 =

(
1 2
1 1

)
, 𝑉4 =

(
1 0
0 1

)
, 𝑟4 = 2.

Using the partition (5.20) one obtains 𝑎(4) =

(
1
0

)
, 𝑞(4) =

(
0
1

)
.

For 𝑘 = 5 formula (5.17) yields 𝑝(5) =
(
1 2

)
and, moreover, using formula

(5.18) one gets (
𝑃 ′′5 𝐴(5)

)
=
(
1 1 1

)
= 𝑃6𝑉5

with

𝑃6 = 1, 𝑉5 =
(
1 1 1

)
, 𝑟5 = 1.

Using the partition (5.20) one obtains 𝑎(5) =
(
1 1

)
, 𝑞(5) = 1.

Finally, by formula (5.21), one gets 𝑝(6) = 𝑃6 = 1.

Thus one obtains a set of minimal lower quasiseparable generators of the
matrix 𝐴:

𝑝(2) = 1, 𝑝(3) =
(
1 2

)
, 𝑝(4) = 1, 𝑝(5) =

(
1 2

)
, 𝑝(6) = 1,

𝑞(1) = 1, 𝑞(2) =

(
0
1

)
, 𝑞(3) = 1, 𝑞(4) =

(
0
1

)
, 𝑞(5) = 1,

𝑎(2) =

(
1
0

)
, 𝑎(3) =

(
1 1

)
, 𝑎(4) =

(
1
0

)
, 𝑎(5) =

(
1 1

)
. ♢
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Example 5.13. Consider the 𝑁 ×𝑁 matrix

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑑 1 2 3 ⋅ ⋅ ⋅ 𝑁 − 2 𝑁 − 1
1 𝑑 4 6 ⋅ ⋅ ⋅ 2(𝑁 − 2) 2(𝑁 − 1)
2 4 𝑑 9 ⋅ ⋅ ⋅ 3(𝑁 − 2) 3(𝑁 − 1)
3 6 9 𝑑 ⋅ ⋅ ⋅ 4(𝑁 − 2) 4(𝑁 − 1)
...

...
...

...
. . .

...
...

𝑁 − 2 2(𝑁 − 2) 3(𝑁 − 2) 4(𝑁 − 2) ⋅ ⋅ ⋅ 𝑑 (𝑁 − 1)2

𝑁 − 1 2(𝑁 − 1) 3(𝑁 − 1) 4(𝑁 − 1) ⋅ ⋅ ⋅ (𝑁 − 1)2 𝑑

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

A set 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1)
of lower quasiseparable generators of the matrix 𝐴 with order one is obtained via
the following algorithm.

Step 1. Set 𝐴(1) = 𝐴(2 : 𝑁, 1) =
(
1 2 3 ⋅ ⋅ ⋅ 𝑁 − 2 𝑁 − 1

)𝑇
. Using

rank factorization of the matrix 𝐴(1) determine the matrices 𝑃2, 𝑞(1) of the sizes(∑𝑁
𝑖=2𝑚𝑖

)
×𝑟1 = (𝑁−1)×1, 𝑟1×𝑛1 = 1×1, respectively, such that (5.15),(5.16)

hold. Indeed, take 𝑃2 = 𝐴
(1), 𝑞(1) = 1.

Step 2. For 𝑘 = 2, . . . , 𝑁 − 1 perform the following.

We have

𝐴(𝑘) = 𝐴(𝑘 + 1 : 𝑁, 𝑘) =
(
𝑘2 𝑘(𝑘 + 1) ⋅ ⋅ ⋅ 𝑘(𝑁 − 2) 𝑘(𝑁 − 1)

)𝑇
.

Determine the matrices 𝑝(𝑘), 𝑃 ′′𝑘 of sizes 1×1, (𝑁 −𝑘)×1, respectively, from
the partition (5.17), namely

𝑃𝑘 =

(
𝑝(𝑘)
𝑃 ′′𝑘

)
.

It follows that 𝑝(𝑘) = 𝑘 − 1, 𝑃 ′′𝑘 =
(
𝑘 𝑘 + 1 ⋅ ⋅ ⋅ 𝑁 − 2 𝑁 − 1

)𝑇
.

Using rank factorization of the matrix
(
𝑃 ′′𝑘 𝐴(𝑘)

)
determine the matrices

𝑃𝑘+1, 𝑉𝑘 such that (5.18) and (5.19) hold. For instance,

𝑃𝑘+1 =
(
𝑘 𝑘 + 1 ⋅ ⋅ ⋅ 𝑁 − 2 𝑁 − 1

)𝑇
, 𝑉𝑘 =

(
1 𝑘

)
, 𝑟𝑘 = 1.

Determine the matrices 𝑎(𝑘), 𝑞(𝑘) from the partition (5.20), namely

𝑉𝑘 =
(
𝑎(𝑘) 𝑞(𝑘)

)
.

This means that 𝑎(𝑘) = 1, 𝑞(𝑘) = 𝑘.

Finally, 𝑝(𝑁) = 𝑃𝑁 = 𝑁 − 1.

In this way, we obtained the following lower quasiseparable generators:

𝑝(𝑖) = 𝑖− 1, 𝑖 = 2, . . . , 𝑁, 𝑞(𝑗) = 𝑗, 𝑗 = 1, . . . , 𝑁 − 1,

𝑎(𝑘) = 1, 𝑘 = 2, . . . , 𝑁 − 1. ♢
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Example 5.14. Consider the 𝑁 ×𝑁 matrix

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 𝑎 𝑎2 ⋅ ⋅ ⋅ 𝑎𝑁−2 𝑎𝑁−1

𝑏 1 𝑎 ⋅ ⋅ ⋅ 𝑎𝑁−3 𝑎𝑁−2

𝑏2 𝑏 1 ⋅ ⋅ ⋅ 𝑎𝑁−4 𝑎𝑁−3

...
...

...
. . .

...
...

𝑏𝑁−2 𝑏𝑁−3 𝑏𝑁−4 ⋅ ⋅ ⋅ 1 𝑎
𝑏𝑁−1 𝑏𝑁−2 𝑏𝑁−3 ⋅ ⋅ ⋅ 𝑏 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The algorithm yields the quasiseparable generators

𝑝(𝑖) = 𝑏, 𝑖 = 2, . . . , 𝑁, 𝑞(𝑗) = 1, 𝑗 = 1, . . . , 𝑁 − 1,

𝑎(𝑘) = 𝑏, 𝑘 = 2, . . . , 𝑁 − 1, 𝑔(𝑖) = 1, 𝑖 = 1, . . . , 𝑁 − 1,

ℎ(𝑗) = 𝑎, 𝑗 = 2, . . . , 𝑁, 𝑏(𝑘) = 𝑎, 𝑘 = 2, . . . , 𝑁 − 1,

𝑑(𝑘) = 1, 𝑘 = 1, . . . , 𝑁. ♢

Example 5.15. Consider the 7×7 scalar Toeplitz Hermitian 5-band matrix 𝐴 from
Example 3.5, namely

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛼 𝛽 𝛾 0 0 0 0
𝛽 𝛼 𝛽 𝛾 0 0 0
𝛾 𝛽 𝛼 𝛽 𝛾 0 0
0 𝛾 𝛽 𝛼 𝛽 𝛾 0
0 0 𝛾 𝛽 𝛼 𝛽 𝛾
0 0 0 𝛾 𝛽 𝛼 𝛽
0 0 0 0 𝛾 𝛽 𝛼

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where 𝛾 ∕= 0. We use Theorem 5.9 to obtain quasiseparable generators for this
matrix.

The matrix 𝐴 has lower rank numbers 𝜌𝐿𝑘 (𝑘 = 1, . . . , 6) not exceeding 2.
Then 𝐴 has lower quasiseparable generators with orders 𝜌𝐿𝑘 (𝑘 = 1, . . . , 6). More-
over a set 𝑝(𝑖) (𝑖 = 2, . . . , 7), 𝑞(𝑗) (𝑗 = 1, . . . , 6), 𝑎(𝑘) (𝑘 = 2, . . . , 6) of lower
quasiseparable generators of 𝐴 with these orders are obtained by means of the
following algorithm.

Step 1. Set 𝐴(1) = 𝐴(2 : 7, 1) =
(
𝛽 𝛾 0 0 0 0

)𝑇
. Using rank factor-

ization of the matrix 𝐴(1) determine the matrices 𝑃2, 𝑞(1) of the sizes
(∑1

𝑖=2𝑚𝑖

)
×

𝑟1 = 6×1, 𝑟1×𝑛1 = 1×1, respectively, such that (5.15),(5.16) take place. Indeed,
take 𝑃2 = 𝐴

(1), 𝑞(1) = 1.

Step 2. For 𝑘 = 2, . . . , 6 perform the following:

Set 𝑘 = 2 and 𝐴(2) = 𝐴(2 + 1 : 7, 2) =
(
𝛽 𝛾 0 0 0

)𝑇
.

Determine the matrices 𝑝(𝑘), 𝑃 ′′𝑘 of sizes

𝑚2 × 𝑟2−1 = 1× 1,

(
7∑

𝑖=2+1

𝑚𝑖

)
× 𝑟2−1 = 5× 1,
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respectively, from the partition (5.17), namely

𝑃2 =

(
𝑝(2)
𝑃 ′′2

)
.

It follows that 𝑝(2) = 𝛽, 𝑃 ′′2 =
(
𝛾 0 0 0 0

)𝑇
.

Using rank factorization of the matrix
(
𝑃 ′′2 𝐴(2)

)
determine the matrices

𝑃2+1, 𝑉2 of sizes
(∑7

𝑖=2+1𝑚𝑖

)
× 𝑟2 = 5× 2, 𝑟2 × (𝑟2−1 +𝑛2) = 2× 2, respectively,

such that (5.18) and (5.19) hold. For instance,

𝑃2+1 =

⎛⎜⎜⎜⎜⎝
𝛾 𝛽
0 𝛾
0 0
0 0
0 0

⎞⎟⎟⎟⎟⎠ , 𝑉2 =

(
1 0
0 1

)
, 𝑟2 = 2.

Determine the matrices 𝑎(2), 𝑞(2) of sizes 𝑟2 × 𝑟2−1 = 2× 1, 𝑟2 × 𝑛2 = 2× 1,
respectively, from the partition (5.20), namely

𝑉2 =
(
𝑎(2) 𝑞(2)

)
.

This means that 𝑎(2) =

(
1
0

)
, 𝑞(2) =

(
0
1

)
.

Set 𝑘 = 3 and 𝐴(3) = 𝐴(3 + 1 : 7, 3) =
(
𝛽 𝛾 0 0

)𝑇
.

Determine the matrices 𝑝(3), 𝑃 ′′3 of sizes 1× 2, 4× 2, respectively, from the

partition (5.17). It follows that 𝑝(3) =
(
𝛾 𝛽

)
, 𝑃 ′′3 =

⎛⎜⎜⎝
0 𝛾
0 0
0 0
0 0

⎞⎟⎟⎠.

Using rank factorization of the matrix
(
𝑃 ′′3 𝐴(3)

)
determine the matrices

𝑃3+1, 𝑉3 of sizes 4 × 2, 2 × 3, respectively, such that (5.18) and (5.19) hold. For
instance,

𝑃3+1 =

⎛⎜⎜⎝
𝛾 𝛽
0 𝛾
0 0
0 0

⎞⎟⎟⎠ , 𝑉3 =

(
0 1 0
0 0 1

)
, 𝑟3 = 2.

Determine the matrices 𝑎(3), 𝑞(3) of sizes 2× 2, 2× 1, respectively, from the

partition (5.20). It follows that 𝑎(3) =

(
0 1
0 0

)
, 𝑞(3) =

(
0
1

)
.

Set 𝑘 = 4 and 𝐴(4) = 𝐴(4 + 1 : 7, 4) =

⎛⎝ 𝛽
𝛾
0

⎞⎠.
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Determine the matrices 𝑝(4), 𝑃 ′′4 of sizes 1× 2, 3× 2, respectively, from the

partition (5.17). It follows that 𝑝(4) =
(
𝛾 𝛽

)
, 𝑃 ′′4 =

⎛⎝ 0 𝛾
0 0
0 0

⎞⎠.

Using rank factorization of the matrix
(
𝑃 ′′4 𝐴(4)

)
determine the matrices

𝑃4+1, 𝑉4 of sizes 3 × 2, 2 × 3, respectively, such that (5.18) and (5.19) hold. For
instance

𝑃4+1 =

⎛⎝ 𝛾 𝛽
0 𝛾
0 0

⎞⎠ , 𝑉4 =

(
0 1 0
0 0 1

)
, 𝑟4 = 2.

Determine the matrices 𝑎(4), 𝑞(4) of sizes 2× 2, 2× 1, respectively, from the

partition (5.20). It follows that 𝑎(4) =

(
0 1
0 0

)
, 𝑞(4) =

(
0
1

)
.

Set 𝑘 = 5 and 𝐴(5) = 𝐴(5 + 1 : 7, 5) =

(
𝛽
𝛾

)
.

Determine the matrices 𝑝(5), 𝑃 ′′5 of sizes 1× 2, 2× 2, respectively, from the

partition (5.17). It follows that 𝑝(5) =
(
𝛾 𝛽

)
, 𝑃 ′′5 =

(
0 𝛾
0 0

)
.

Using rank factorization of the matrix
(
𝑃 ′′5 𝐴(5)

)
determine the matrices

𝑃5+1, 𝑉5 of sizes 2 × 2, 2 × 3, respectively, such that (5.18) and (5.19) hold. For
instance,

𝑃5+1 =

(
1 0
0 1

)
, 𝑉5 =

(
0 𝛾 𝛽
0 0 𝛾

)
, 𝑟5 = 2.

Determine the matrices 𝑎(5), 𝑞(5) of sizes 2× 2, 2× 1, respectively, from the

partition (5.20). It follows that 𝑎(5) =

(
0 𝛾
0 0

)
, 𝑞(5) =

(
𝛽
𝛾

)
.

Finally, set 𝑘 = 6 and 𝐴(6) = 𝐴(6 + 1 : 7, 6) = 𝛽. Determine the matrices
𝑝(6), 𝑃 ′′6 of sizes 1 × 2, 1 × 2, respectively, from the partition (5.17). It follows
that 𝑝(6) =

(
1 0

)
, 𝑃 ′′6 =

(
0 1

)
. Using rank factorization of the matrix(

𝑃 ′′6 𝐴(6)
)
determine the matrices 𝑃7, 𝑉6 of sizes 1×1, 1×3, respectively, such

that (5.18) and (5.19) hold. For instance,

𝑃7 = 1, 𝑉6 =
(
0 1 𝛽

)
, 𝑟6 = 1.

Determine the matrices 𝑎(6), 𝑞(6) of sizes 1× 2, 1× 1, respectively, from the
partition (5.20). It follows that 𝑎(6) =

(
0 1

)
, 𝑞(6) = 𝛽.

In Step 3 of the algorithm set 𝑝(7) = 𝑃7 = 1.

Summing up, the following lower quasiseparable generators have been ob-
tained:

𝑝(2) = 𝛽, 𝑝(3) = 𝑝(4) = 𝑝(5) =
(
𝛾 𝛽

)
, 𝑝(6) =

(
1 0

)
, 𝑝(7) = 1,

𝑞(1) = 1, 𝑞(2) = 𝑞(3) = 𝑞(4) =

(
0
1

)
, 𝑞(5) =

(
𝛽
𝛾

)
, 𝑞(6) = 𝛽,
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𝑎(2) =

(
1
0

)
, 𝑎(3) = 𝑎(4) =

(
0 1
0 0

)
, 𝑎(5) =

(
0 𝛾
0 0

)
, 𝑎(6) =

(
0 1

)
.

Since the matrix 𝐴 is Hermitian and for a symmetric matrix the generators
𝑔(𝑗) = 𝑞(𝑗)𝑇 , 𝑗 = 1, . . . , 𝑁 − 1, ℎ(𝑖) = 𝑝(𝑖)𝑇 , 𝑖 = 2, . . . , 𝑁 , 𝑏(𝑘) = 𝑎(𝑘)𝑇 , 𝑘 =
2, . . . , 𝑁 − 1, the following upper quasiseparable generators can been obtained:

ℎ(2) = 𝛽, ℎ(3) = ℎ(4) = ℎ(5) =

(
𝛾
𝛽

)
, ℎ(6) =

(
1
0

)
, ℎ(7) = 1,

𝑔(1) = 1, 𝑔(2) = 𝑔(3) = 𝑔(4) =
(
0 1

)
, 𝑔(5) =

(
𝛽 𝛾

)
, 𝑔(6) = 𝛽,

𝑏(2) =
(
1 0

)
, 𝑏(3) = 𝑏(4) =

(
0 0
1 0

)
, 𝑏(5) =

(
0 0
𝛾 0

)
, 𝑏(6) =

(
0
1

)
.

In order to describe completely the matrix 𝐴 note that the diagonal entries
are 𝑑(𝑘) = 𝛼, 𝑘 = 1, . . . , 𝑁

The order of the above quasiseparable generators is much lower than 5, which
is the order of the minimal semiseparable generators obtained for the same matrix
in Example 3.5 . ♢
Example 5.16. Consider the 5× 5 matrix

𝐴 =

⎛⎜⎜⎜⎜⎝
𝑑 2 1 1 1
2 𝑑 2 1 1
1 2 𝑑 2 1
1 1 2 𝑑 2
1 1 1 2 𝑑

⎞⎟⎟⎟⎟⎠ .

Then 𝐴(1) =

⎛⎜⎜⎝
2
1
1
1

⎞⎟⎟⎠, 𝑃2 =

⎛⎜⎜⎝
2
1
1
1

⎞⎟⎟⎠, 𝑞(1) = 1, 𝐴(2) = 𝐴(3 : 5, 2) =

⎛⎝ 2
1
1

⎞⎠,

𝑝(2) = 2, 𝑃 ′′2 =

⎛⎝ 1
1
1

⎞⎠ and the rank factorization gives 𝑃3 =

⎛⎝ 1 2
1 1
1 1

⎞⎠, 𝑉2 =(
1 0
0 1

)
and their rank is 𝑟2 = 2. Therefore 𝑎(2) =

(
1
0

)
, 𝑞(2) =

(
0
1

)
.

𝐴(3) = 𝐴(4 : 5, 3) =

(
2
1

)
, 𝑝(3) =

(
1 2

)
, 𝑃 ′′2 =

(
1 1
1 1

)
and the rank

factorization gives 𝑃4 =

(
1 1
1 0

)
, 𝑉3 =

(
1 1 1
0 0 1

)
and their rank is 𝑟3 = 2.

Therefore 𝑎(3) =

(
1 1
0 0

)
, 𝑞(3) =

(
1
1

)
.

𝐴(4) = 𝐴(5 : 5, 4) = 2, 𝑝(4) =
(
1 1

)
, 𝑃 ′′2 =

(
1 0

)
and the rank

factorization gives 𝑃5 = 1, 𝑉4 =
(
1 0 2

)
and their rank is 𝑟4 = 1. Therefore

𝑎(4) =
(
1 0

)
, 𝑞(4) = 2.
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Summing up, a set of lower quasiseparable generators of the matrix 𝐴 is

𝑝(2) = 2, 𝑝(3) =
(
1 2

)
, 𝑝(4) =

(
1 1

)
, 𝑝(5) = 1,

𝑞(1) = 1, 𝑞(2) =

(
0
1

)
, 𝑞(3) =

(
1
1

)
, 𝑞(4) = 2,

𝑎(2) =

(
1
0

)
, 𝑎(3) =

(
1 1
0 0

)
, 𝑎(4) =

(
1 0

)
.

Since the matrix 𝐴 is hermitian, a set of upper quasiseparable generators of
this matrix is

𝑔(1) = 1, 𝑔(2) =
(
0 1

)
, 𝑔(3) =

(
1 1

)
, 𝑔(4) = 2,

ℎ(2) = 2, ℎ(3) =

(
1
2

)
, ℎ(4) =

(
1
1

)
, ℎ(5) = 1,

𝑏(2) =
(
1 0

)
, 𝑏(3) =

(
1 0
1 0

)
, 𝑏(4) =

(
1
0

)
.

Notice that for a symmetric matrix the generators satisfy 𝑔(𝑗) = 𝑞(𝑗)𝑇 , 𝑗 =
1, . . . , 𝑁 − 1, ℎ(𝑖) = 𝑝(𝑖)𝑇 , 𝑖 = 2, . . . , 𝑁 , 𝑏(𝑘) = 𝑎(𝑘)𝑇 , 𝑘 = 2, . . . , 𝑁 − 1.

Note also that the semiseparable generators obtained for the same matrix
in Example 3.4 have a higher order than the quasiseparable generators obtained
here. ♢

§5.4 Quasiseparable generators of block companion

matrices viewed as scalar matrices

For the monic 𝑛× 𝑛 matrix polynomial of order 𝑁

𝑃 (𝑥) = 𝐼𝑁𝑥
𝑁 + 𝛼𝑁−1𝑥

𝑁−1 + ⋅ ⋅ ⋅+ 𝛼1𝑥+ 𝛼0

with coefficients 𝛼𝑘 (𝑘 = 0, . . . , 𝑁 − 1), the block companion 𝑁 × 𝑁 matrix
associated to it is

𝐶 ′ =

⎛⎜⎜⎜⎜⎜⎝
0 0 . . . 0 −𝛼0

𝐼𝑛 0 . . . 0 −𝛼1

...
. . .

. . .
...

0 . . . 𝐼𝑛 0 −𝛼𝑁−2

0 0 . . . 𝐼𝑛 −𝛼𝑁−1

⎞⎟⎟⎟⎟⎟⎠ . (5.23)

We will regard the matrix 𝐶′ = {𝐶′𝑖𝑗}𝑛𝑁𝑖,𝑗=1 as an 𝑛𝑁 × 𝑛𝑁 scalar matrix.
Consider the submatrices of the form 𝐶′(𝑘 + 1 : 𝑁𝑛, 1 : 𝑘). We have

𝐶′(𝑘 + 1 : 𝑁𝑛, 1 : 𝑘) =

⎛⎝ 0(𝑛−𝑘)×𝑘
𝐼𝑘

0(𝑛𝑁−𝑛−𝑘)×𝑘

⎞⎠ , 𝑘 = 1, . . . , 𝑛, (5.24)
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𝐶′(𝑘 + 1 : 𝑁𝑛, 1 : 𝑘) =

(
0𝑛×(𝑘−𝑛) 𝐼𝑛

0(𝑛𝑁−𝑛−𝑘)×(𝑘−𝑛) 0

)
, 𝑘 = 𝑛+ 1, . . . , 𝑛𝑁 − 𝑛,

(5.25)

𝐶′(𝑘 + 1 : 𝑁𝑛, 1 : 𝑘)

=
(
0(𝑛𝑁−𝑘)×(𝑘−𝑛) 𝐼𝑛𝑁−𝑘 −𝛼𝑁−1(𝑘 − 𝑛𝑁 + 𝑛+ 1 : 𝑛, 1 : 𝑘 − 𝑛𝑁 + 𝑛)

)
,

𝑘 = 𝑛𝑁 − 𝑛+ 1, . . . , 𝑛𝑁 − 1. (5.26)

By formula (4.1), 𝐶 ′ is a scalar matrix with lower rank numbers

𝜌𝐿𝑘 = 𝑘, 𝑘 = 1, . . . , 𝑛,

𝜌𝐿𝑘 = 𝑛, 𝑘 = 𝑛+ 1, . . . , 𝑛𝑁 − 𝑛,
𝜌𝐿𝑘 = 𝑛𝑁 − 𝑘, 𝑘 = 𝑛𝑁 − 𝑛+ 1, . . . , 𝑛𝑁 − 1.

By Theorem 5.9 the matrix 𝐶′ has lower quasiseparable generators with
orders 𝜌𝐿𝑘 (𝑘 = 1, . . . , 𝑛𝑁−1) and a set 𝑝(𝑖) (𝑖 = 2, . . . , 𝑛𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑛𝑁−
1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑛𝑁 − 1) of lower quasiseparable generators of 𝐶′ with these
orders are given via the algorithm in the theorem. Thus we obtain the following

1. Set 𝐶′(1) = 𝐶′(2 : 𝑛𝑁, 1) =
(
0 ⋅ ⋅ ⋅ 0 1 0 ⋅ ⋅ ⋅ 0

)𝑇
, which is an

(𝑛𝑁 −1)×1 matrix with 𝑛−1 zeroes before the 1. Using rank factorization of the
matrix 𝐶′(1) determine the matrices 𝑃2, 𝑞(1) of sizes (𝑛𝑁 −1)× 𝑟1 = (𝑛𝑁 −1)×1,
𝑟1 × 1 = 1× 1, respectively, such that (5.15), (5.16) take place. We get

𝑃2 = 𝐶
′(1), 𝑞(1) = 1. (5.27)

2. For 𝑘 = 2, . . . , 𝑛𝑁 − 1 perform the following.

For 𝑘 = 2, . . . , 𝑛 we get

𝑃𝑘 = 𝐶
′(𝑘 : 𝑁𝑛, 1 : 𝑘 − 1). (5.28)

Indeed, for 𝑘 = 2 the relation (5.28) follows from (5.27). Let for some 𝑘 with
2 ≤ 𝑘 ≤ 𝑛 the relation (5.28) hold. Using (5.17) we get

𝑝(𝑘) = 𝐶 ′(𝑘, 1 : 𝑘 − 1), 𝑃 ′′𝑘 = 𝐶′(𝑘 + 1 : 𝑁𝑛, 1 : 𝑘 − 1). (5.29)

Taking 𝐶′(𝑘) = 𝐶′(𝑘 + 1 : 𝑁𝑛, 𝑘) we get
(
𝑃 ′′𝑘 𝐶′(𝑘)

)
= 𝐶′(𝑘 + 1 : 𝑁𝑛, 1 : 𝑘)

and inserting (5.24) in (5.18), (5.19) we get

𝑃𝑘+1 = 𝐶
′(𝑘 + 1 : 𝑁𝑛, 1 : 𝑘), 𝑉𝑘 = 𝐼𝑘, (5.30)

which completes the proof of (5.28).

For 𝑘 = 𝑛+ 1, . . . , 𝑁𝑛− 𝑛 we get

𝑃𝑘 = 𝐶
′(𝑘 : 𝑁𝑛, 𝑘 − 𝑛 : 𝑘 − 1). (5.31)
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Indeed for 𝑘 = 𝑛 + 1 the relation (5.28) follows from (5.30). with 𝑘 = 𝑛. Let for
some 𝑘 with 𝑛 ≤ 𝑘 ≤ 𝑁𝑛− 𝑛− 1 the relation (5.31) hold. Using (5.17) we get

𝑝(𝑘) = 𝐶′(𝑘, 𝑘 − 𝑛 : 𝑘 − 1), 𝑃 ′′𝑘 = 𝐶′(𝑘 + 1 : 𝑁𝑛, 𝑘 − 𝑛 : 𝑘 − 1). (5.32)

Taking 𝐶 ′(𝑘) = 𝐶′(𝑘 + 1 : 𝑁𝑛, 𝑘) we get
(
𝑃 ′′𝑘 𝐶′(𝑘)

)
= 𝐶′(𝑘 + 1 : 𝑁𝑛, 1 : 𝑘),

and using (5.25) we get

(
𝑃 ′′𝑘 𝐶′(𝑘)

)
=

(
0𝑛×1 𝐼𝑛
0 0(𝑛𝑁−𝑛−𝑘)×𝑛

)
.

Hence, using the factorization (5.18), (5.19) we get

𝑃𝑘+1 = 𝐶
′(𝑘 + 1 : 𝑁𝑛, 𝑘 − 𝑛 : 𝑘) =

(
𝐼𝑛

0(𝑛𝑁−𝑛−𝑘)×𝑛

)
, 𝑉𝑘 =

(
0𝑛×1 𝐼𝑛

)
(5.33)

which completes the proof of (5.31).

For 𝑘 = 𝑁𝑛− 𝑛+ 1, . . . , 𝑁𝑛− 1 we get

𝑃𝑘 = 𝐼𝑁𝑛−𝑘+1 (5.34)

Indeed, for 𝑘 = 𝑁𝑛−𝑛+1 the relation (5.34) follows from (5.33) with 𝑘 = 𝑁𝑛−𝑛.
Let for some 𝑘 with 𝑁𝑛 − 𝑛 + 1 ≤ 𝑘 ≤ 𝑁𝑛 − 2 the relation (5.34) hold. Using
(5.17) we get

𝑝(𝑘) =
(
1 01×(𝑁𝑛−𝑘)

)
, 𝑃 ′′𝑘 =

(
0(𝑛𝑁−𝑘)×1 𝐼𝑛𝑁−𝑘

)
. (5.35)

Using (5.26) we have 𝐶′(𝑘) = 𝐿𝑘, where

𝐿𝑘 = −𝛼𝑁−1(𝑘 − 𝑛𝑁 + 𝑛+ 1 : 𝑛, 𝑘 − 𝑛𝑁 + 𝑛),

and therefore we get(
𝑃 ′′𝑘 𝐶′(𝑘)

)
=
(
0(𝑛𝑁−𝑘)×1 𝐼𝑛𝑁−𝑘 𝐿𝑘

)
.

Hence in the rank factorization (5.18) one can take

𝑃𝑘+1 = 𝐼𝑛𝑁−𝑘, 𝑉𝑘 =
(
0(𝑛𝑁−𝑘)×1 𝐼𝑛𝑁−𝑘 𝐿𝑘

)
. (5.36)

This in particular implies (5.34).

From this it follows that the quasiseparable generators 𝑝(𝑘), 𝑘 = 2, . . . , 𝑛𝑁
which are the first row of 𝑃𝑘 are vectors of length min(𝑘−1, 𝑛, 𝑛𝑁−𝑘+1) given by:

𝑝(𝑘) = 01×(𝑘−1), 𝑘 = 2, . . . , 𝑛,

𝑝(𝑘) =
(
1 01×(𝑛−1)

)
, 𝑘 = 𝑛+ 1, . . . , 𝑛𝑁 − 𝑛,

𝑝(𝑘) =
(
1 01×(𝑛𝑁−𝑘)

)
, 𝑘 = 𝑛𝑁 − 𝑛+ 1, . . . , 𝑛𝑁.

(5.37)
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It also follows that the quasiseparable generators 𝑞(𝑘), 𝑘 = 1, . . . , 𝑛𝑁 − 1,
which are the last column of 𝑉𝑘, are vectors of length min(𝑘, 𝑛, 𝑛𝑁 − 𝑘) given by:

𝑞(𝑘) =

(
0(𝑘−1)×1

1

)
, 𝑘 = 1, . . . , 𝑛, (5.38)

𝑞(𝑘) =

(
0(𝑛−1)×1

1

)
, 𝑘 = 𝑛+ 1, . . . , 𝑛𝑁 − 𝑛,

𝑞(𝑘) = −𝛼𝑁−1(𝑘 − 𝑛𝑁 + 𝑛+ 1 : 𝑛, 𝑘 − 𝑛𝑁 + 𝑛), 𝑘 = 𝑛𝑁 − 𝑛+ 1, . . . , 𝑛𝑁 − 1.

Further, the quasiseparable generators 𝑎(𝑘), 𝑘 = 2, . . . , 𝑛𝑁 − 1, which are
the all columns of 𝑉𝑘 except its last column, are matrices given by:

𝑎(𝑘) =

(
𝐼𝑘−1

01×(𝑘−1)

)
, 𝑘 = 2, . . . , 𝑛,

𝑎(𝑘) =

(
0(𝑛−1)×1 𝐼𝑛−1

0 01×(𝑛−1)

)
, 𝑘 = 𝑛+ 1, . . . , 𝑛𝑁 − 𝑛,

𝑎(𝑘) =
(
0(𝑛𝑁−𝑘)×1 𝐼𝑛𝑁−𝑘

)
, 𝑘 = 𝑛𝑁 − 𝑛+ 1, . . . , 𝑛𝑁 − 1.

(5.39)

In order to find upper quasiseparable generators for 𝐶 ′ just note that its
upper triangular part is the same as the upper triangular part of the separable
block matrix 𝐺𝐻 , where

𝐺 =
( −𝛼𝑇0 −𝛼𝑇1 ⋅ ⋅ ⋅ −𝛼𝑇𝑁−1

)𝑇
, 𝐻 =

(
0𝑛 ⋅ ⋅ ⋅ 0𝑛 𝐼𝑛

)
.

Therefore one can take as quasiseparable generators of the scalar matrix 𝐶′

the matrices 𝑏(𝑘) = 𝐼𝑛, 𝑘 = 2, . . . , 𝑛𝑁 − 1 and the following vectors of length 𝑛:

𝑔(𝑘) = −𝛼𝑠(𝑡, 1 : 𝑛),

where 𝑠 and 𝑡 are the quotient and the remainder of the integer division of 𝑘 by
𝑛, i.e., 𝑘 = 𝑠𝑛+ 𝑡, 0 ≤ 𝑡 < 𝑛− 1, and

ℎ(𝑘) = 0𝑛×1, 𝑘 = 1, . . . , 𝑛𝑁 − 𝑛

and

ℎ(𝑘) =

(
0(𝑘−𝑛𝑁+𝑛−1)×1

0(𝑛𝑁−𝑘)×1

)
, 𝑘 = 𝑛𝑁 − 𝑛+ 1, . . . , 𝑛𝑁.

§5.5 Minimality conditions

Now we proceed with a careful study of minimality conditions for quasiseparable
generators.
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Theorem 5.17. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a block matrix with the lower quasiseparable
generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of
the orders 𝑟𝑘 (𝑘 = 1, . . . , 𝑁 − 1). Define the matrices 𝑄𝑘 (𝑘 = 1, . . . , 𝑁 − 1), and
𝑃𝑘 (𝑘 = 2, . . . , 𝑁) by the formulas (5.1) and (5.2).

The quasiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 −
1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) are minimal if and only if the following relations hold:

rank𝑃𝑘+1 = rank𝑄𝑘 = 𝑟𝑘, 𝑘 = 1, . . . , 𝑁 − 1. (5.40)

Proof. Lemma 5.1 yields the representations (5.9), where the matrix 𝑃𝑘+1 has 𝑟𝑘
columns and the matrix 𝑄𝑘 has 𝑟𝑘 rows.

Assume that the quasiseparable generators 𝑝(𝑖), 𝑞(𝑗), 𝑎(𝑘) are minimal. Then,
by Corollary 5.10, the relations

rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘) = 𝑟𝑘, 𝑘 = 1, . . . , 𝑁 − 1 (5.41)

hold. Hence using the inequalities

rank𝑄𝑘 ≤ 𝑟𝑘, rank𝑃𝑘+1 ≤ 𝑟𝑘, rank𝐴(𝑘+1 : 𝑁, 1 : 𝑘) ≤ min(rank𝑃𝑘+1, rank𝑄𝑘)

one obtains (5.40).

Assume that the relations (5.40) hold, which means that the matrices 𝑃𝑘
have full column rank and the matrices 𝑄𝑘 full row rank. Then using (5.9) one
obtains (5.41) and therefore, by Corollary 5.10, the quasiseparable generators
𝑝(𝑖), 𝑞(𝑗), 𝑎(𝑘) are minimal. □

Next we present a minimality criterion for quasiseparable generators without
using the matrices 𝑃𝑘, 𝑄𝑘.

Theorem 5.18. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a block matrix with the lower quasiseparable
generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of
the orders 𝑟𝑘 (𝑘 = 1, . . . , 𝑁 − 1).

These generators are minimal if and only if the following relations hold:

rank(𝑞(1)) = 𝑟1; (5.42)

rank

(
𝑝(𝑘)
𝑎(𝑘)

)
= 𝑟𝑘−1, rank

(
𝑎(𝑘) 𝑞(𝑘)

)
= 𝑟𝑘, 𝑘 = 2, . . . , 𝑁 − 1; (5.43)

rank(𝑝(𝑁)) = 𝑟𝑁−1. (5.44)

Proof. By Theorem 5.17, the minimality of the quasiseparable generators 𝑝(𝑖),
𝑞(𝑗), 𝑎(𝑘) is equivalent to the relations (5.40).

Assume that the relations (5.40) hold. This already implies (5.42) by (5.3)
and (5.44) by (5.4). For 𝑘 = 2, . . . , 𝑁 − 1 using (5.3) and (5.4) one obtains the
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representations

𝑄𝑘 =
(
𝑎(𝑘) 𝑞(𝑘)

)( 𝑄𝑘−1 0
0 𝐼

)
, (5.45)

𝑃𝑘 =

(
𝐼 0
0 𝑃𝑘+1

)(
𝑝(𝑘)
𝑎(𝑘)

)
. (5.46)

The matrix
(
𝑎(𝑘) 𝑞(𝑘)

)
contains 𝑟𝑘 rows and the matrix

(
𝑝(𝑘)
𝑎(𝑘)

)
contains

𝑟𝑘−1 columns. Hence (5.45) and (5.46) imply

rank𝑄𝑘 ≤ rank
(
𝑎(𝑘) 𝑞(𝑘)

) ≤ 𝑟𝑘, rank𝑃𝑘 ≤ rank

(
𝑝(𝑘)
𝑎(𝑘)

)
≤ 𝑟𝑘−1.

From here using (5.40) one obtains (5.43).

Assume that the relations (5.42)–(5.44) hold. Let us prove by induction that
from the relations

rank(𝑞(1)) = 𝑟1, rank
(
𝑎(𝑘) 𝑞(𝑘)

)
= rk, k = 2, . . . ,N− 1

it follows that
rank𝑄𝑘 = 𝑟𝑘, 𝑘 = 1, . . . , 𝑁 − 1.

The case 𝑘 = 1 is clear. Assume that for some 𝑘, 2 ≤ 𝑘 ≤ 𝑁 − 1 one has

rank𝑄𝑘−1 = 𝑟𝑘−1. This means that the matrix

(
𝑄𝑘−1 0
0 𝐼

)
has full row rank.

Hence using (5.45) one obtains

rank𝑄𝑘 = rank
(
𝑎(𝑘) 𝑞(𝑘)

)
= 𝑟𝑘.

Similarly, using (5.46) one obtains the relations

rank𝑃𝑘 = 𝑟𝑘−1, 𝑘 = 2, . . . , 𝑁. □

It is also the case that upper quasiseparable generators 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 −
1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁−1) of the orders 𝜌𝑘 (𝑘 = 1, . . . , 𝑁−1)
of the matrix 𝐴 are minimal if and only if

rank(𝑔(1)) = 𝜌1; (5.47)

rank
(
𝑔(𝑘) 𝑏(𝑘)

)
= 𝜌𝑘, rank

(
𝑏(𝑘)
ℎ(𝑘)

)
= 𝜌𝑘−1, 𝑘 = 2, . . . , 𝑁 − 1; (5.48)

rank(ℎ(𝑁)) = 𝜌𝑁−1. (5.49)

Now we apply the minimality criterion obtained in Theorem 5.18 to some
examples.
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Example 5.19. Let 𝐴 be a matrix with block entries of sizes 𝑙 × 𝑙 and with
diagonal plus semiseparable representation with lower semiseparable generators
𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁−1) of order 𝑙. The corresponding lower qua-
siseparable generators of 𝐴 are 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁−1), 𝑎(𝑘) =
𝐼𝑙 (𝑘 = 2, . . . , 𝑁 − 1). One has(

𝑝(𝑘)
𝑎(𝑘)

)
=

(
𝑝(𝑘)
𝐼𝑙

)
,
(
𝑎(𝑘) 𝑞(𝑘)

)
=
(
𝐼𝑙 𝑞(𝑘)

)
, 𝑘 = 2, . . . , 𝑁 − 1,

and therefore the conditions (5.43) are valid automatically. Hence these generators
are minimal if and only if

rank(𝑞(1)) = rank(𝑝(𝑁)) = 𝑙.

For scalar matrices with quasiseparable generators of order one the minimal-
ity conditions of lower generators (5.42)–(5.44) have the form

∣𝑞(1)∣2 > 0; ∣𝑝(𝑘)∣2 + ∣𝑎(𝑘)∣2 > 0, ∣𝑞(𝑘)∣2 + ∣𝑎(𝑘)∣2 > 0,

𝑘 = 2, . . . , 𝑁 − 1; ∣𝑝(𝑁)∣2 > 0

and the minimality conditions (5.47)–(5.49) for upper generators are equivalent to

∣𝑔(1)∣2 > 0; ∣𝑔(𝑘)∣2 + ∣𝑏(𝑘)∣2 > 0, ∣ℎ(𝑘)∣2 + ∣𝑏(𝑘)∣2 > 0,

𝑘 = 2, . . . , 𝑁 − 1; ∣ℎ(𝑁)∣2 > 0. ♢

§5.6 Sets of generators. Minimality and similarity

As was mentioned above, quasiseparable generators of a matrix are not unique.
We consider here relations between different quasiseparable generators of a given
matrix.

Theorem 5.20. Let 𝐴 be a block matrix with lower quasiseparable generators 𝑝(𝑖)
(𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of orders 𝑟𝑘
(𝑘 = 1, . . . , 𝑁 − 1) and suppose that for the matrices 𝑆𝑘 (𝑘 = 1, . . . , 𝑁 − 1) of
sizes 𝑟𝑘 × 𝑟′𝑘 and matrices 𝑝′(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞′(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎′(𝑘)
(𝑘 = 2, . . . , 𝑁 − 1) of corresponding sizes the relations

𝑞(𝑘) = 𝑆𝑘𝑞
′(𝑘), 𝑘 = 1, . . . , 𝑁 − 1, (5.50)

𝑎(𝑘)𝑆𝑘−1 = 𝑆𝑘𝑎
′(𝑘), 𝑘 = 2, . . . , 𝑁 − 1, (5.51)

𝑝′(𝑘) = 𝑝(𝑘)𝑆𝑘−1, 𝑘 = 2, . . . , 𝑁 (5.52)

hold.

Then the elements 𝑝′(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞′(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎′(𝑘) (𝑘 =
2, . . . , 𝑁−1) are lower quasiseparable generators of the matrix 𝐴 of orders 𝑟′𝑘 (𝑘 =
1, . . . , 𝑁 − 1).
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Proof. For any 𝑗 = 1, . . . , 𝑁 − 1, using (5.50), (5.52) one has

𝑝(𝑗 + 1)𝑞(𝑗) = 𝑝(𝑗 + 1)𝑆𝑗𝑞
′(𝑗) = 𝑝′(𝑗 + 1)𝑞′(𝑗). (5.53)

Next for any 1 ≤ 𝑗 < 𝑖− 1 ≤ 𝑁 − 1, using (5.50), (5.51) one gets

𝑝(𝑖)𝑎(𝑖− 1) ⋅ ⋅ ⋅ ⋅ ⋅ 𝑎(𝑗 + 1)𝑞(𝑗) = 𝑝(𝑖)𝑎(𝑖− 1) ⋅ ⋅ ⋅ ⋅ ⋅ 𝑎(𝑗 + 1)𝑆𝑗𝑞
′(𝑗)

= 𝑝(𝑖)𝑎(𝑖− 1) ⋅ ⋅ ⋅ ⋅ ⋅ 𝑎(𝑗 + 2)𝑆𝑗+1𝑎
′(𝑗 + 1)𝑞′(𝑗)

= ⋅ ⋅ ⋅ = 𝑝(𝑖)𝑆𝑖−1𝑎
′(𝑖− 1)𝑎′(𝑖− 2) ⋅ ⋅ ⋅ ⋅ ⋅ 𝑎′(𝑗 + 1)𝑞′(𝑗)

and moreover using (5.52) one obtains

𝑝(𝑖)𝑎(𝑖− 1) ⋅ ⋅ ⋅ ⋅ ⋅ 𝑎(𝑗 + 1)𝑞(𝑗) = 𝑝′(𝑖)𝑎′(𝑖− 1) ⋅ ⋅ ⋅ ⋅ ⋅ 𝑎′(𝑗 + 1)𝑞′(𝑗). (5.54)

Thus from the relations (5.53), (5.54) one obtains

𝑝(𝑖)𝑎>𝑖𝑗𝑞(𝑗) = 𝑝
′(𝑖)(𝑎′)>𝑖𝑗𝑞

′(𝑗), 1 ≤ 𝑗 < 𝑖 ≤ 𝑁,

which implies that 𝑝′(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞′(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎′(𝑘) (𝑘 =
2, . . . , 𝑁 − 1) are lower quasiseparable generators of the same matrix 𝐴. □

We also use another version of Theorem 5.20, which is proved in a similar
way.

Theorem 5.21. Let 𝐴 be a block matrix with lower quasiseparable generators 𝑝(𝑖)
(𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of orders 𝑟𝑘
(𝑘 = 1, . . . , 𝑁 − 1) and let for matrices 𝑆𝑘 (𝑘 = 1, . . . , 𝑁 − 1) of sizes 𝑟′𝑘 × 𝑟𝑘 and
matrices 𝑝′(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞′(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎′(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of
corresponding sizes the relations

𝑆𝑘𝑞(𝑘) = 𝑞
′(𝑘), 𝑘 = 1, . . . , 𝑁 − 1, (5.55)

𝑎′(𝑘)𝑆𝑘−1 = 𝑆𝑘𝑎(𝑘), 𝑘 = 2, . . . , 𝑁 − 1, (5.56)

𝑝(𝑘) = 𝑝′(𝑘)𝑆𝑘−1, 𝑘 = 2, . . . , 𝑁 (5.57)

hold.

Then the elements 𝑝′(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞′(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎′(𝑘) (𝑘 =
2, . . . , 𝑁−1) are lower quasiseparable generators of the matrix 𝐴 of orders 𝑟′𝑘 (𝑘 =
1, . . . , 𝑁 − 1).

Theorem 5.21 admits the following generalization.

Theorem 5.22. Let 𝐴 be a block matrix with lower quasiseparable generators 𝑝(𝑖)
(𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of orders 𝑟𝑘
(𝑘 = 1, . . . , 𝑁 − 1). Using the generators 𝑞(𝑗), 𝑎(𝑘) define the matrices 𝑄𝑘 (𝑘 =
1, . . . , 𝑁 − 1) via relations (5.3). Let for matrices 𝑆𝑘 (𝑘 = 1, . . . , 𝑁 − 1) of sizes
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𝑟′𝑘 × 𝑟𝑘 and matrices 𝑝′(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞′(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎′(𝑘) (𝑘 =
2, . . . , 𝑁 − 1) of corresponding sizes the relations

𝑆𝑘𝑞(𝑘) = 𝑞
′(𝑘), 𝑘 = 1, . . . , 𝑁 − 1, (5.58)

𝑎′(𝑘)𝑆𝑘−1𝑄𝑘−1 = 𝑆𝑘𝑎(𝑘)𝑄𝑘−1, 𝑘 = 2, . . . , 𝑁 − 1, (5.59)

𝑝(𝑘)𝑄𝑘−1 = 𝑝
′(𝑘)𝑆𝑘−1𝑄𝑘−1, 𝑘 = 2, . . . , 𝑁 (5.60)

hold.

Then the elements 𝑝′(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞′(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎′(𝑘) (𝑘 =
2, . . . , 𝑁−1) are lower quasiseparable generators of the matrix 𝐴 of orders 𝑟′𝑘 (𝑘 =
1, . . . , 𝑁 − 1).

Proof. Using the equalities (5.11) we have

𝐴(𝑘 + 1, 1 : 𝑘) = 𝑝(𝑘 + 1)𝑄𝑘, 𝑘 = 1, . . . , 𝑁 − 1. (5.61)

Using the elements 𝑞′(𝑗), 𝑎′(𝑘), define the matrices 𝑄′𝑘 (𝑘 = 1, . . . , 𝑁 − 1) via
relations (5.3). One proves by induction that

𝑄′𝑘 = 𝑆𝑘𝑄𝑘, 𝑘 = 1, . . . , 𝑁 − 1.

Indeed for 𝑘 = 1 (5.58) yields

𝑄′1 = 𝑞
′(1) = 𝑆1𝑞(1) = 𝑆1𝑄1.

Let for some 𝑘 with 2 ≤ 𝑘 ≤ 𝑁 − 1 the equality 𝑄′𝑘−1 = 𝑆𝑘−1𝑄𝑘−1 hold. Using
(5.3) and(5.58),(5.59) we get

𝑄′𝑘 =
(
𝑎′(𝑘)𝑄′𝑘−1 𝑞′(𝑘)

)
=
(
𝑎′(𝑘)𝑆𝑘−1𝑄𝑘−1 𝑞′(𝑘)

)
=
(
𝑆𝑘𝑎(𝑘)𝑄𝑘−1 𝑆𝑘𝑞(𝑘)

)
= 𝑆𝑘𝑄𝑘.

Thus, (5.60) and (5.61) yield

𝐴(𝑘 + 1, 1 : 𝑘) = 𝑝(𝑘 + 1)𝑄𝑘 = 𝑝
′(𝑘 + 1)𝑆𝑘𝑄𝑘 = 𝑝

′(𝑘 + 1)𝑄′𝑘, 𝑘 = 1, . . . , 𝑁 − 1.

From here by Lemma 5.3 we conclude that 𝑝′(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞′(𝑗) (𝑗 =
1, . . . , 𝑁 − 1), 𝑎′(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) are lower quasiseparable generators of the
matrix 𝐴. It is clear that 𝑎′(𝑘) (𝑘 = 2, . . . , 𝑁−1) are matrices of sizes 𝑟′𝑘×𝑟′𝑘−1 and
hence the numbers 𝑟′𝑘 (𝑘 = 1, . . . , 𝑁 − 1) are the orders of these generators. □

Applying Theorem 5.22 to the transposed matrix 𝐴𝑇 we obtain the corre-
sponding result for upper quasiseparable generators.

Lemma 5.23. Let 𝐴 be a block matrix with upper quasiseparable generators

𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1)
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of orders 𝑟𝑘 (𝑘 = 1, . . . , 𝑁−1). Using the generators 𝑔(𝑘), 𝑏(𝑘) define the matrices
𝐺𝑘 (𝑘 = 1, . . . , 𝑁 − 1) via relations (5.7). Suppose that for matrices 𝑆𝑘 (𝑘 =
1, . . . , 𝑁 − 1) of sizes 𝑟𝑘 × 𝑟′𝑘 and matrices 𝑔′(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ′(𝑗) (𝑗 =
2, . . . , 𝑁), 𝑏′(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of corresponding sizes the relations

𝑔(𝑘)𝑆𝑘 = 𝑔
′(𝑘), 𝑘 = 1, . . . , 𝑁 − 1, (5.62)

𝐺𝑘−1𝑆𝑘−1𝑏
′(𝑘) = 𝐺𝑘−1𝑏(𝑘)𝑆𝑘, 𝑘 = 2, . . . , 𝑁 − 1, (5.63)

𝐺𝑘−1𝑆𝑘−1ℎ
′(𝑘) = 𝐺𝑘−1ℎ(𝑘), 𝑘 = 2, . . . , 𝑁 (5.64)

hold.

Then the elements 𝑔′(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ′(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏′(𝑘) (𝑘 =
2, . . . , 𝑁−1) are upper quasiseparable generators of the matrix 𝐴 of orders 𝑟′𝑘 (𝑘 =
1, . . . , 𝑁 − 1).

Next we introduce a notion of similarity for sets of quasiseparable generators
of a matrix.

Definiton 5.24. Let 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 =
2, . . . , 𝑁 − 1) be lower quasiseparable generators of a matrix 𝐴 and let 𝑝′(𝑖) (𝑖 =
2, . . . , 𝑁), 𝑞′(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎′(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) be also lower qua-
siseparable generators of 𝐴 of the same orders. These generators are called similar
if there exist invertible matrices 𝑆𝑘 (𝑘 = 1, . . . , 𝑁 − 1) such that the relations
(5.50)–(5.52) hold.

Next it will be proved that any two sets of minimal quasiseparable generators
of a matrix are similar.

Theorem 5.25. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a block matrix and let

𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1)

and

𝑝′(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞′(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎′(𝑘) (𝑘 = 2, . . . , 𝑁 − 1)

be two sets of lower quasiseparable generators of the matrix 𝐴 with the minimal
orders 𝑟𝑘 (𝑘 = 1, . . . , 𝑁 − 1).

Then the quasiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 −
1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) and 𝑝′(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞′(𝑗) (𝑗 = 1, . . . , 𝑁 −
1), 𝑎′(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) are similar.

Proof. Using 𝑝(𝑖), 𝑞(𝑗), 𝑎(𝑘) and 𝑝′(𝑖), 𝑞′(𝑗), 𝑎′(𝑘) define the matrices 𝑃𝑘+1, 𝑄𝑘 and
𝑃 ′𝑘+1, 𝑄

′
𝑘, (𝑘 = 1, . . . , 𝑁 − 1), respectively, via the formulas (5.1) and (5.2). The

matrices 𝑃𝑘+1, 𝑃
′
𝑘+1 contain 𝑟𝑘 columns, the matrices 𝑄𝑘, 𝑄

′
𝑘 contain 𝑟𝑘 rows.

Moreover, by Theorem 5.17, the ranks of these matrices are equal to 𝑟𝑘. Lemma
5.1 implies that

𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘) = 𝑃𝑘+1𝑄𝑘 = 𝑃
′
𝑘+1𝑄

′
𝑘, 𝑘 = 1, . . . , 𝑁 − 1.
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Hence, by Lemma 1.1, there exist invertible 𝑟𝑘× 𝑟𝑘 matrices 𝑆𝑘 (𝑘 = 1, . . . , 𝑁 −1)
such that

𝑄𝑘 = 𝑆𝑘𝑄
′
𝑘, 𝑘 = 1, . . . , 𝑁 − 1, (5.65)

and 𝑃𝑘+1 = 𝑃
′
𝑘+1𝑆

−1
𝑘 , 𝑘 = 1, . . . , 𝑁 − 1, which implies that

𝑃 ′𝑘 = 𝑃𝑘𝑆𝑘−1, 𝑘 = 2, . . . , 𝑁. (5.66)

Using (5.65) and (5.3) one gets

𝑞(1) = 𝑆1𝑞
′(1) (5.67)

and(
𝑎(𝑘)𝑄𝑘−1 𝑞(𝑘)

)
= 𝑆𝑘

(
𝑎′(𝑘)𝑄′𝑘−1 𝑞′(𝑘)

)
, 𝑘 = 2, . . . , 𝑁 − 1. (5.68)

Equating the corresponding entries in (5.68) one obtains

𝑞(𝑘) = 𝑆𝑘𝑞
′(𝑘), 𝑘 = 2, . . . , 𝑁 − 1 (5.69)

and

𝑎(𝑘)𝑄𝑘−1 = 𝑆𝑘𝑎
′(𝑘)𝑄′𝑘−1, 𝑘 = 2, . . . , 𝑁 − 1. (5.70)

The relations (5.67), (5.69) mean (5.50). Furthermore using (5.70) and (5.65) one
gets

𝑎(𝑘)𝑆𝑘−1𝑄
′
𝑘−1 = 𝑎(𝑘)𝑄𝑘−1 = 𝑆𝑘𝑎

′(𝑘)𝑄′𝑘−1, 𝑘 = 2, . . . , 𝑁 − 1.

From here since each matrix 𝑄′𝑘−1 has full row rank one gets

𝑎(𝑘)𝑆𝑘−1 = 𝑆𝑘𝑎
′(𝑘), 𝑘 = 2, . . . , 𝑁 − 1,

which is (5.51). Finally, using (5.66) and (5.4) one obtains

𝑝′(𝑁) = 𝑝(𝑁)𝑆𝑁−1,

(
𝑝(𝑘)
∗

)
𝑆𝑘−1 =

(
𝑝′(𝑘)
∗

)
, 𝑘 = 𝑁 − 1, . . . , 2,

whence

𝑝′(𝑁) = 𝑝(𝑁)𝑆𝑁−1, 𝑝′(𝑘) = 𝑝(𝑘)𝑆𝑘−1, 𝑘 = 𝑁 − 1, . . . , 2,

i.e., the relations (5.52) hold. □

The statement of Theorem 5.25 is not true without assuming the minimal-
ity of quasiseparable generators. For instance, taking the sets of quasiseparable
generators

𝑝(𝑖) =
(
1 0

)
, 𝑞(𝑗) =

(
1
0

)
, 𝑎(𝑘) =

(
1 0
0 1

)
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and

𝑝′(𝑖) =
(
1 0

)
, 𝑞′(𝑗) =

(
1
1

)
, 𝑎′(𝑘) =

(
1 0
0 0

)
one can easily check that

𝑝(𝑖)𝑎>𝑖𝑗𝑞(𝑗) = 𝑝
′(𝑖)(𝑎′)>𝑖𝑗𝑞

′(𝑗), 1 ≤ 𝑗 < 𝑖 ≤ 𝑁.

However, it is clear that in this example the equalities (5.51) with invertible ma-
trices 𝑆𝑘−1, 𝑆𝑘 are impossible.

§5.7 Reduction to minimal quasiseparable generators

At first we consider the case when the quasiseparable generators of a matrix,
not necessarily minimal, are given. Our goal is using the given quasiseparable
generators to compute other quasiseparable generators of the same matrix, but
with minimal orders.

Theorem 5.26. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a block matrix with block entries of sizes 𝑚𝑖×
𝑛𝑗 and lower quasiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁−1),
𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of orders 𝑙𝑘 (𝑘 = 1, . . . , 𝑁 − 1).

Then a set 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), �̃�(𝑘) (𝑘 = 2, . . . , 𝑁 −
1) of minimal lower quasiseparable generators of the matrix 𝐴 is determined from
the quasiseparable generators 𝑝(𝑖), 𝑞(𝑗), 𝑎(𝑘) via the following algorithm.

1.1. Using rank factorization of the matrix 𝑞(1) determine the matrices
𝐿1, 𝑞

′(1) of sizes 𝑙1 × 𝑟′1, 𝑟′1 × 𝑛1, respectively, such that

𝑞(1) = 𝐿1𝑞
′(1), (5.71)

rank𝐿1 = rank(𝑞′(1)) = rank(𝑞(1)) = 𝑟′1. (5.72)

1.2. For 𝑘 = 2, . . . , 𝑁 − 1 perform the following. Using rank factorization of the
matrix

(
𝑎(𝑘)𝐿𝑘−1 𝑞(𝑘)

)
determine the matrices 𝐿𝑘, 𝑉𝑘 of sizes 𝑙𝑘×𝑟′𝑘, 𝑟′𝑘×

(𝑟′𝑘−1 + 𝑛𝑘), respectively, such that(
𝑎(𝑘)𝐿𝑘−1 𝑞(𝑘)

)
= 𝐿𝑘𝑉𝑘, (5.73)

rank𝐿𝑘 = rank𝑉𝑘 = rank
(
𝑎(𝑘)𝐿𝑘−1 𝑞(𝑘)

)
= 𝑟′𝑘. (5.74)

Determine the matrices 𝑎′(𝑘), 𝑞′(𝑘) of sizes 𝑟′𝑘 × 𝑟′𝑘−1, 𝑟
′
𝑘 × 𝑛𝑘, respectively,

from the partition

𝑉𝑘 =
[
𝑎′(𝑘) 𝑞′(𝑘)

]
. (5.75)

1.3. For 𝑘 = 2, . . . , 𝑁 compute

𝑝′(𝑘) = 𝑝(𝑘)𝐿𝑘−1. (5.76)
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2.1. Using rank factorization of the matrix 𝑝′(𝑁) determine the matrices 𝑝(𝑁),
𝑆𝑁−1 of sizes 𝑚𝑁 × 𝑟𝑁−1, 𝑟𝑁−1 × 𝑟′𝑁−1, respectively, such that

𝑝′(𝑁) = 𝑝(𝑁)𝑆𝑁−1, (5.77)

rank(𝑝(𝑁)) = rank𝑆𝑁−1 = rank(𝑝′(𝑁)) = 𝑟𝑁−1. (5.78)

2.2. For 𝑘 = 𝑁 − 1, . . . , 2 perform the following. Using rank factorization of the

matrix

(
𝑝′(𝑘)
𝑆𝑘𝑎

′(𝑘)

)
determine the matrices 𝑈𝑘, 𝑆𝑘−1 of sizes (𝑚𝑘 + 𝑟𝑘) ×

𝑟𝑘−1, 𝑟𝑘−1 × 𝑟′𝑘−1, respectively, such that(
𝑝′(𝑘)
𝑆𝑘𝑎

′(𝑘)

)
= 𝑈𝑘𝑆𝑘−1, (5.79)

rank𝑈𝑘 = rank𝑆𝑘−1 = rank

(
𝑝′(𝑘)
𝑆𝑘𝑎

′(𝑘)

)
= 𝑟𝑘−1. (5.80)

Determine the matrices 𝑝(𝑘), �̃�(𝑘) of sizes 𝑚𝑘 × 𝑟𝑘−1, 𝑟𝑘 × 𝑟𝑘−1 respectively,
from the partition

𝑈𝑘 =

(
𝑝(𝑘)
�̃�(𝑘)

)
. (5.81)

2.3. For 𝑘 = 1, . . . , 𝑁 − 1 compute

𝑞(𝑘) = 𝑆𝑘𝑞
′(𝑘). (5.82)

Proof. Comparing the corresponding entries in (5.73), (5.75) one gets

𝑞(𝑘) = 𝐿𝑘𝑞
′(𝑘), 𝑎(𝑘)𝐿𝑘−1 = 𝐿𝑘𝑎

′(𝑘), 𝑘 = 2, . . . , 𝑁 − 1.

Together with the formulas (5.76), (5.71) this implies, by Theorem 5.20, that the
elements 𝑝′(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞′(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎′(𝑘) (𝑘 = 2, . . . , 𝑁 − 1)
are lower quasiseparable generators of the matrix 𝐴.

Similarly, comparing the corresponding entries in (5.79), (5.81) one obtains

�̃�(𝑘)𝑆𝑘−1 = 𝑆𝑘𝑎
′(𝑘), 𝑝′(𝑘) = 𝑝(𝑘)𝑆𝑘−1, 𝑘 = 2, . . . , 𝑁 − 1.

Together with the formulas (5.77), (5.82), by Theorem 5.21, we conclude that the
elements 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), �̃�(𝑘) (𝑘 = 2, . . . , 𝑁 − 1)
are lower quasiseparable generators of the same matrix 𝐴. Let us establish the
minimality of these generators. Using the relations (5.78), (5.80) and (5.81) we see
that

rank

(
𝑝(𝑘)
�̃�(𝑘)

)
= 𝑟𝑘−1, 𝑘 = 2, . . . , 𝑁 − 1; rank(𝑝(𝑁)) = 𝑟𝑁−1. (5.83)

It remains to check that
rank(𝑞(1)) = 𝑟1 (5.84)
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and
rank

(
�̃�(𝑘) 𝑞(𝑘)

)
= 𝑟𝑘, 𝑘 = 2, . . . , 𝑁 − 1. (5.85)

Using the relations (5.72), (5.74), (5.75) one has

rank(𝑞′(1)) = 𝑟′1, rank
[
𝑎′(𝑘) 𝑞′(𝑘)

]
= 𝑟′𝑘, 𝑘 = 2, . . . , 𝑁 − 1

and using (5.78), (5.80) one obtains

rank𝑆𝑘 = 𝑟𝑘, 𝑘 = 1, . . . , 𝑁 − 1.

This means that all the matrices 𝑞′(1),
(
𝑎′(𝑘) 𝑞′(𝑘)

)
, 𝑘 = 2, . . . , 𝑁 − 1; 𝑆𝑘,

𝑘 = 1, . . . , 𝑁 − 1 have full row rank. Now from the equality 𝑞(1) = 𝑆1𝑞
′(1) we see

that rank(𝑞(1)) = rank𝑆1 and hence (5.84) holds. For 𝑘 = 2, . . . , 𝑁 − 1 one has

the following. Since the matrix

(
𝑆𝑘−1 0
0 𝐼

)
has full row rank one obtains

rank
(
�̃�(𝑘) 𝑞(𝑘)

)
= rank

((
�̃�(𝑘) 𝑞(𝑘)

)( 𝑆𝑘−1 0
0 𝐼

))
= rank

(
�̃�(𝑘)𝑆𝑘−1 𝑞(𝑘)

)
.

(5.86)

Next, using the equalities �̃�(𝑘)𝑆𝑘−1 = 𝑆𝑘𝑎
′(𝑘), 𝑞(𝑘) = 𝑆𝑘𝑞′(𝑘) one gets(

�̃�(𝑘)𝑆𝑘−1 𝑞(𝑘)
)
= 𝑆𝑘

(
𝑎′(𝑘) 𝑞′(𝑘)

)
which implies

rank
[
�̃�(𝑘)𝑆𝑘−1 𝑞(𝑘)

]
= rank𝑆𝑘 = 𝑟𝑘. (5.87)

Combining (5.86) and (5.87) together one obtains (5.85). From the relations
(5.83)–(5.85) and Theorem 5.18 we conclude that 𝑝(𝑖), 𝑞(𝑗), �̃�(𝑘) are minimal lower
quasiseparable generators of the matrix 𝐴. □

§5.8 Normal quasiseparable generators

Now we consider a special case where quasiseparable generators satisfy certain
orthonormality conditions.

Definiton 5.27. The lower quasiseparable generators

𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1)

of orders 𝑟𝑘 (𝑘 = 1, . . . , 𝑁 − 1) of a block matrix are said to be in the left normal
form if the relations

𝑝∗(𝑁)𝑝(𝑁) = 𝐼𝑟𝑁−1 , 𝑎∗(𝑘)𝑎(𝑘) + 𝑝∗(𝑘)𝑝(𝑘) = 𝐼𝑟𝑘−1
, 𝑘 = 𝑁 − 1, . . . , 2 (5.88)

hold.
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The lower quasiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁−
1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of orders 𝑟𝑘 (𝑘 = 1, . . . , 𝑁 − 1) of a block matrix are
said to be in the right normal form if the relations

𝑞(1)𝑞∗(1) = 𝐼𝑟1 , 𝑎(𝑘)𝑎∗(𝑘) + 𝑞(𝑘)𝑞∗(𝑘) = 𝐼𝑟𝑘 , 𝑘 = 2, . . . , 𝑁 − 1 (5.89)

hold.

Let 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) be
lower quasiseparable generators of orders 𝑟𝑘 (𝑘 = 1, . . . , 𝑁 − 1) of a block matrix.
These generators determine the matrices 𝑄𝑘, 𝑘 = 1, . . . , 𝑁 − 1 and 𝑃𝑘, 𝑘 =
𝑁, . . . , 2 via the relations (5.1) and (5.2). The conditions (5.88) and (5.89) are
equivalent to orthonormality of the columns of the matrices 𝑃𝑘 and the rows of
the matrices 𝑄𝑘, respectively.

Lemma 5.28. Let 𝑄𝑘, 𝑘 = 1, . . . , 𝑁 − 1 be matrices of the form (5.1). Then the
relations

𝑄𝑘𝑄
∗
𝑘 = 𝐼𝑟𝑘 , 𝑘 = 1, . . . , 𝑁 − 1 (5.90)

and (5.89) are equivalent.

Let 𝑃𝑘, 𝑘 = 𝑁, . . . , 2 be matrices of the form (5.2). Then the relations

𝑃 ∗𝑘𝑃𝑘 = 𝐼𝑟𝑘−1
, 𝑘 = 2, . . . , 𝑁 (5.91)

and (5.88) are equivalent.

Proof. The recursions (5.3) imply

𝑞(1)𝑞∗(1) = 𝑄1𝑄
∗
1, 𝑄𝑘𝑄

∗
𝑘 = 𝑎(𝑘)𝑄𝑘−1𝑄

∗
𝑘−1𝑎

∗(𝑘) + 𝑞(𝑘)𝑞∗(𝑘), 𝑘 = 2, . . . , 𝑁 − 1.
(5.92)

Let the conditions (5.90) hold. Using (5.92) one obtains (5.89). Conversely, assum-
ing that (5.89) is valid and using (5.92) one obtains (5.90) by induction.

Next the recursions (5.4) imply

𝑃 ∗𝑁𝑃𝑁 = 𝑝∗(𝑁)𝑝(𝑁), 𝑃 ∗𝑘𝑃𝑘 = 𝑎
∗(𝑘)𝑃 ∗𝑘+1𝑃𝑘+1𝑎(𝑘)+𝑝

∗(𝑘)𝑝(𝑘), 𝑘 = 𝑁−1, . . . , 2.

Hence the equivalence of (5.91) and (5.88) follows. □

Given a set of lower quasiseparable generators of a matrix, one can obtain
another set of quasiseparable generators in the left normal form or in the right
normal form. For instance, quasiseparable generators in the left normal form are
obtained as follows.

Theorem 5.29. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a matrix with block entries 𝐴𝑖𝑗 of sizes 𝑚𝑖×
𝑛𝑗 and lower quasiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 −
1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of orders 𝑟𝑘 (𝑘 = 1, . . . , 𝑁 − 1).

Then a set 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), �̃�(𝑘) (𝑘 = 2, . . . , 𝑁 −
1) of lower quasiseparable generators of the matrix 𝐴 in the left normal form is
determined from the generators 𝑝(𝑖), 𝑞(𝑗), 𝑎(𝑘) via the following algorithm.
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1. Using orthogonal factorization of the matrix 𝑝(𝑁) determine the matrices
𝑝(𝑁), 𝑆𝑁−1 of sizes 𝑚𝑁 × 𝑟′𝑁−1, 𝑟

′
𝑁−1 × 𝑟𝑁−1, respectively, such that

𝑝(𝑁) = 𝑝(𝑁)𝑆𝑁−1, (5.93)

𝑝∗(𝑁)𝑝(𝑁) = 𝐼𝑟′𝑁−1
. (5.94)

2. For 𝑘 = 𝑁 − 1, . . . , 2 perform the following. Using orthogonal factorization

of the matrix

(
𝑝(𝑘)
𝑆𝑘𝑎(𝑘)

)
determine the matrices 𝑈𝑘, 𝑆𝑘−1 of sizes (𝑚𝑘 +

𝑟′𝑘)× 𝑟′𝑘−1, 𝑟
′
𝑘−1 × 𝑟𝑘−1, respectively, such that(

𝑝(𝑘)
𝑆𝑘𝑎(𝑘)

)
= 𝑈𝑘𝑆𝑘−1, (5.95)

𝑈∗𝑘𝑈𝑘 = 𝐼𝑟′𝑘−1
. (5.96)

Determine the matrices 𝑝(𝑘), �̃�(𝑘) of sizes 𝑚𝑘× 𝑟′𝑘−1, 𝑟
′
𝑘 × 𝑟′𝑘−1, respectively,

from the partition

𝑈𝑘 =

(
𝑝(𝑘)
�̃�(𝑘)

)
. (5.97)

3. For 𝑘 = 1, . . . , 𝑁 − 1 compute

𝑞(𝑘) = 𝑆𝑘𝑞(𝑘). (5.98)

Proof. Comparing the corresponding entries in (5.95), (5.97) one obtains

�̃�(𝑘)𝑆𝑘−1 = 𝑆𝑘𝑎(𝑘), 𝑝(𝑘) = 𝑝(𝑘)𝑆𝑘−1, 𝑘 = 2, . . . , 𝑁 − 1.

Together with the formulas (5.93), (5.98) this implies the relations (5.55)–(5.57).
Applying Theorem 5.21 we conclude that the elements 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗)
(𝑗 = 1, . . . , 𝑁 − 1), �̃�(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) are lower quasiseparable generators of
the matrix 𝐴. Moreover from the relations (5.94) and (5.96), (5.97) we see that
these generators are in the left normal form. □

Let 𝐴 be a block matrix with given entries in the strictly lower triangular
part. Using a specification of the algorithm from Theorem 5.9 one obtains a set of
minimal quasiseparable generators of 𝐴 in the left normal form.

Theorem 5.30. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a matrix with block entries 𝐴𝑖𝑗 of sizes
𝑚𝑖 × 𝑛𝑗.

The following algorithm yields a set 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . ,
𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of lower quasiseparable generators in the left
normal form of 𝐴.

1. Set 𝐴(1) = 𝐴(2 : 𝑁, 1). Using orthogonal factorization of the matrix 𝐴(1)

determine the matrices 𝑃2, 𝑞(1) of sizes
(∑𝑁

𝑖=2𝑚𝑖

)
× 𝑟1 and 𝑟1 ×𝑛1, respec-

tively, such that
𝐴(1) = 𝑃2𝑞(1), (5.99)
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with 𝑃2 satisfying the relations

𝑃 ∗2 𝑃2 = 𝐼𝑟1 , 𝑟1 = rank𝐴(1). (5.100)

2. For 𝑘 = 2, . . . , 𝑁 − 1 perform the following.
Set 𝐴(𝑘) = 𝐴(𝑘 + 1 : 𝑁, 𝑘).

Determine the matrices 𝑝(𝑘), 𝑃 ′′𝑘 of sizes 𝑚𝑘 × 𝑟𝑘−1,
(∑𝑁

𝑖=𝑘+1𝑚𝑖

)
× 𝑟𝑘−1,

respectively, from the partition

𝑃𝑘 =

(
𝑝(𝑘)
𝑃 ′′𝑘

)
. (5.101)

Using orthogonal factorization of the matrix
(
𝑃 ′′𝑘 𝐴(𝑘)

)
determine the

matrices 𝑃𝑘+1, 𝑉𝑘 of sizes
(∑𝑁

𝑖=𝑘+1𝑚𝑖

)
× 𝑟𝑘, 𝑟𝑘 × (𝑟𝑘−1 + 𝑛𝑘), respectively,

such that (
𝑃 ′′𝑘 𝐴(𝑘)

)
= 𝑃𝑘+1𝑉𝑘, (5.102)

with 𝑃𝑘+1 satisfying the relations

𝑃 ∗𝑘+1𝑃𝑘+1 = 𝐼𝑟𝑘 , 𝑟𝑘 = rank
(
𝑃 ′′𝑘 𝐴(𝑘)

)
. (5.103)

Determine the matrices 𝑎(𝑘), 𝑞(𝑘) of sizes 𝑟𝑘 × 𝑟𝑘−1, 𝑟𝑘 × 𝑛𝑘, respectively,
from the partition

𝑉𝑘 =
(
𝑎(𝑘) 𝑞(𝑘)

)
. (5.104)

3. Set
𝑝(𝑁) = 𝑃𝑁 . (5.105)

Proof. The orthogonal factorization is a particular case of the rank factorization.
Hence, by Theorem 5.9, the elements 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 −
1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) are minimal lower quasiseparable generators of the
matrix 𝐴. Moreover, using the relations (5.100), (5.103) and the second part of
Lemma 5.28 one concludes that these generators are in the left normal form. □

§5.9 Approximation by matrices with

quasiseparable representation

Next we consider approximation of a given matrix 𝐴 by a matrix 𝐴 with small
quasiseparable order. There are two ways to proceed. In the first, the maximal
order �̂� of quasiseparable generators of the approximation is given. In the second
one, the tolerance 𝜏 of the approximation is given and in this case the orders of
generators are not restricted. For a given block matrix 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 with block
entries 𝐴𝑖𝑗 of sizes 𝑚𝑖×𝑛𝑗 based on the algorithm from Theorem 5.30 one obtains
the following algorithm to compute lower quasiseparable generators of such an
approximation.
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Algorithm 5.31.

1. Set 𝐴(1) = 𝐴(2 : 𝑁, 1). Compute the SVD decomposition of the matrix 𝐴(1),

i.e., determine the matrices 𝑈1,Σ1, 𝑉1 of sizes
(∑𝑁

𝑖=2𝑚𝑖

)
×𝜌1, 𝜌1×𝜌1, 𝜌1×𝑛1,

respectively, such that

𝐴(1) = 𝑈1Σ1𝑉1,

where

rank𝐴(1) = rank𝑈1 = rankΣ1 = rank𝑉1 = 𝜌1, 𝑈∗1𝑈1 = 𝑉1𝑉
∗
1 = 𝐼𝜌1

and Σ1 is a diagonal matrix with positive diagonal entries. Set

𝑟1 = min{𝜌1, �̂�}

or take 𝑟1 to be equal to the number of diagonal entries of the matrix Σ1

greater than the tolerance 𝜏 .

Determine the matrices 𝑃2, 𝑞(1) via

𝑃2 = 𝑈1(:, 1 : 𝑟1), 𝑞(1) = Σ1(1 : 𝑟1, 1 : 𝑟1)𝑉1(1 : 𝑟1, :).

2. For 𝑘 = 2, . . . , 𝑁 − 1 perform the following.

Set 𝐴(𝑘) = 𝐴(𝑘 + 1 : 𝑁, 𝑘).

Determine the matrices 𝑝(𝑘), 𝑃 ′′𝑘 of sizes 𝑚𝑘 × 𝑟𝑘−1,
(∑𝑁

𝑖=𝑘+1𝑚𝑖

)
× 𝑟𝑘−1,

respectively, from the partition

𝑃𝑘 =

(
𝑝(𝑘)
𝑃 ′′𝑘

)
.

Compute the SVD decomposition of the matrix
(
𝑃 ′′𝑘 𝐴(𝑘)

)
, i.e., determine

the matrices 𝑈𝑘,Σ𝑘, 𝑉𝑘 of sizes
(∑𝑁

𝑖=𝑘+1𝑚𝑖

)
× 𝜌𝑘, 𝜌𝑘× 𝜌𝑘, 𝜌𝑘× (𝑛𝑘+ 𝑟𝑘−1),

respectively, such that (
𝑃 ′′𝑘 𝐴(𝑘)

)
= 𝑈𝑘Σ𝑘𝑉𝑘,

where

rank
(
𝑃 ′′𝑘 𝐴

(𝑘)
)
= rank𝑈𝑘 = rankΣ𝑘 = rank𝑉𝑘 = 𝜌𝑘, 𝑈

∗
𝑘𝑈𝑘 = 𝑉𝑘𝑉

∗
𝑘 = 𝐼𝜌𝑘

and Σ𝑘 is a diagonal matrix with positive diagonal entries. Set

𝑟𝑘 = min{𝜌𝑘, �̂�}

or take 𝑟𝑘 to be equal to the number of diagonal entries of the matrix Σ𝑘
greater than the tolerance 𝜏 .
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Determine the matrices 𝑃𝑘+1, 𝑎(𝑘), 𝑞(𝑘) via

𝑃𝑘+1 = 𝑈𝑘(:, 1 : 𝑟𝑘),

𝑎(𝑘) = Σ𝑘(1 : 𝑟𝑘, 1 : 𝑟𝑘)𝑉𝑘(1 : 𝑟𝑘, 1 : 𝑟𝑘−1),

𝑞(𝑘) = Σ𝑘(1 : 𝑟𝑘, 1 : 𝑟𝑘)𝑉𝑘(1 : 𝑟𝑘, 𝑟𝑘−1 + 1 : 𝑟𝑘−1 + 𝑛𝑘).

3. Set 𝑝(𝑁) = 𝑃𝑁 .

Note that this algorithm yields quasiseparable generators in the left normal
form.

§5.10 Comments

The auxiliary matrices from Section 1 have been defined and used in the paper
[38], the monograph [15] and the paper [20]. An algorithm to compute minimal
quasiseparable generators of a matrix has been suggested in [15]. Minimality and
similarity conditions for quasiseparable generators were studied in [38] and [15].
The method of reduction to minimal generators was suggested in [15]. The normal
quasiseparable generators were used in fact in the monographs [46, 47]. The idea
of the approximation method presented in Section 9 is taken from [15] and [6].

The material of this chapter is taken mainly from [27], where the minimality
Theorem 5.18 appeared for the first time.



Chapter 6

Rank Numbers of Pairs of Mutually
Inverse Matrices, Asplund Theorems

In this chapter we extend the notion of rank numbers introduced in Chapter 4 to
wider sets of submatrices. Lower rank numbers for a square matrix relative to the
diagonal 𝑖 − 𝑗 are introduced as the ranks of the maximal submatrices entirely
located under that diagonal, and the upper rank numbers relative to a diagonal
are defined correspondingly. If the given matrix is invertible, a strong link exists
between these numbers for the matrix and its inverse. In particular, the lower and
upper rank numbers relative to the main diagonal are the same for a matrix with
square blocks on the main diagonal and for its inverse matrix. This implies that
for such a square matrix the lower and upper quasiseparable orders coincide with
the ones of the inverse matrix.

A class of square block matrices𝐴 = {𝐴𝑖𝑗} with square blocks𝐴𝑖𝑖 on the main
diagonal, and whose inverses are band matrices is thoroughly studied. These are
the Green matrices. Namely, it turns out that the lower and upper rank numbers
relative to a diagonal are larger than a certain minimal value. A lower Green matrix
of order 𝑡 is a matrix whose lower rank numbers relative to the diagonal 𝑖− 𝑗 = 𝑡
are the minimal ones. An upper Green matrix of order 𝑡 is defined accordingly,
and a Green matrix of order 𝑡 is an upper and a lower Green matrix of order 𝑡.
The first Asplund theorem, which states that 𝐴 is a Green matrix of order 𝑡 if and
only if 𝐴−1 is a band matrix of order 𝑡, readily follows from the proved relation
between the rank numbers relative to a diagonal for the pair (𝐴,𝐴−1).

It is then proved that for a square invertible block matrix 𝐴 the sum of mini-
mal completion ranks for the lower triangular part of 𝐴 and plus the corresponding
sum for its inverse 𝐴−1 equals the size of the matrix. This implies the second As-
plund theorem. Another corollary of this result gives an equivalent criterion for
the equality between the orders of the minimal lower semiseparable generators of
𝐴 and 𝐴−1.

In this chapter we also consider rank-one perturbations of Green matrices and
an extension of the results obtained for the inverses of matrices on linear-fractional
transformations.

119 Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1  
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory: 
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_6, © Springer Basel 2014
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§6.1 Rank numbers of pairs of inverse matrices

Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a square matrix with block entries 𝐴𝑖𝑗 of sizes 𝑚𝑖 × 𝑛𝑗 ,
where

∑𝑁
𝑖=1𝑚𝑖 =

∑𝑁
𝑖=1 𝑛𝑖, and let 𝑡 be an integer such that ∣𝑡∣ < 𝑁 . Denote

𝑡0 = max{1,−𝑡}, 𝑡𝑁 = min{𝑁 − 𝑡− 1, 𝑁}. We will consider maximal submatrices
of the matrix 𝐴 with the indices of entries satisfying 𝑖− 𝑗 > 𝑡. These submatrices
are 𝐴(𝑘 + 𝑡+ 1 : 𝑁, 1 : 𝑘), 𝑘 = 𝑡0, . . . , 𝑡𝑁 . The ranks 𝑟

𝐿
𝑘,𝑡(𝐴) of these submatrices

are called the lower rank numbers of the matrix 𝐴 relative to the diagonal 𝑖−𝑗 = 𝑡,
i.e.,

𝑟𝐿𝑘,𝑡(𝐴) = rank𝐴(𝑘 + 𝑡+ 1 : 𝑁, 1 : 𝑘), 𝑘 = 𝑡0, . . . , 𝑡𝑁 .

Similarly we consider the maximal submatrices of 𝐴 with the indices of entries
satisfying 𝑗 − 𝑖 > 𝑡. These submatrices are 𝐴(1 : 𝑘, 𝑘 + 𝑡+ 1 : 𝑁), 𝑘 = 𝑡0, . . . , 𝑡𝑁 .
The ranks 𝑟𝑈𝑘,𝑡 of these submatrices are called the upper rank numbers of the matrix
𝐴 relative to the diagonal 𝑗 − 𝑖 = 𝑡, i.e.,

𝑟𝑈𝑘,𝑡(𝐴) = rank𝐴(1 : 𝑘, 𝑘 + 𝑡+ 1 : 𝑁), 𝑘 = 𝑡0, . . . , 𝑡𝑁 .

We define also 𝑟𝐿𝑘,𝑡(𝐴), 𝑟
𝑈
𝑘,𝑡(𝐴) for the values of 𝑘 less than 𝑡0 or greater than

𝑡𝑁 setting them to be zero.

We consider here relations between the rank numbers of a matrix and of its
inverse.

Theorem 6.1. Let 𝐴 be an invertible block matrix with entries of sizes 𝑚𝑖 ×
𝑛𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁 . Consider the matrix 𝐴−1 as a block matrix with sizes of
entries 𝑛𝑖 ×𝑚𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑁 .

The following relations hold:

𝑟𝐿𝑘,𝑡(𝐴) +

𝑁∑
𝑖=𝑘+1

𝑛𝑖 = 𝑟
𝐿
𝑘+𝑡,−𝑡(𝐴

−1) +

𝑁∑
𝑖=𝑘+𝑡+1

𝑚𝑖, 𝑘 = 𝑡0, . . . , 𝑡𝑁 , (6.1)

𝑟𝑈𝑘,𝑡(𝐴) +

𝑁∑
𝑖=𝑘+1

𝑚𝑖 = 𝑟
𝑈
𝑘+𝑡,−𝑡(𝐴

−1) +

𝑁∑
𝑖=𝑘+𝑡+1

𝑛𝑖, 𝑘 = 𝑡0, . . . , 𝑡𝑁 . (6.2)

Proof. Let 𝑄 be an 𝑁1 × 𝑁1 invertible matrix and 𝑙1, 𝑡1, 𝑙2, 𝑡2 be nonnegative
integers such that 𝑙1 + 𝑙2 = 𝑡1 + 𝑡2 = 𝑁1. We consider the partitions of the
matrices 𝑄, 𝑄−1

𝑄 =

(
𝑈 𝐵
𝐶 𝐷

)
, 𝑄−1 =

(
𝑈 ′ 𝐵′

𝐶′ 𝐷′

)
,

where 𝑈, 𝐵, 𝐶, 𝐷 are matrices of sizes 𝑙1× 𝑡1, 𝑙1× 𝑡2, 𝑙2× 𝑡1, 𝑙2× 𝑡2, respectively,
and 𝑈 ′, 𝐵′, 𝐶′, 𝐷′ are matrices of the corresponding sizes 𝑡1 × 𝑙1, 𝑡1 × 𝑙2, 𝑡2 ×
𝑙1, 𝑡2 × 𝑙2.
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We prove that the ranks of the matrices 𝐶 and 𝐶′ are connected via relations

rank𝐶 + 𝑡2 = rank𝐶′ + 𝑙2. (6.3)

One can check directly that(
𝐶 0
0 𝐼𝑡2

)
= 𝐸

(
𝐶′ 0
0 𝐼𝑙2

)
𝐹, (6.4)

where

𝐸 =

( −𝐷 𝐶𝐵′

𝐼𝑡2 𝐷′

)
, 𝐹 = 𝑄

are invertible matrices with inverses

𝐸−1 =

( −𝐷′ 𝐶′𝐵
𝐼𝑙2 𝐷

)
, 𝐹−1 = 𝑄−1.

Indeed, one has

𝐸

(
𝐶′ 0
0 𝐼

)
𝐹 =

( −𝐷 𝐶𝐵′

𝐼 𝐷′

)(
𝐶′ 0
0 𝐼

)
𝐹 =

( −𝐷𝐶′ 𝐶𝐵′
𝐶′ 𝐷′

)(
𝑈 𝐵
𝐶 𝐷

)
=

( −𝐷𝐶′𝑈 + 𝐶𝐵′𝐶 −𝐷𝐶 ′𝐵 + 𝐶𝐵′𝐷
𝐶′𝑈 +𝐷′𝐶 𝐶′𝐵 +𝐷′𝐷

)
.

It is clear that 𝐶′𝑈 +𝐷′𝐶 = 0, 𝐶′𝐵 +𝐷′𝐷 = 𝐼 and using the equalities 𝐶′𝑈 =
−𝐷′𝐶, 𝐷𝐷′ + 𝐶𝐵′ = 𝐼, 𝐶′𝐵 +𝐷′𝐷 = 𝐼 one obtains

−𝐷𝐶′𝑈 + 𝐶𝐵′𝐶 = 𝐷𝐷′𝐶 + 𝐶𝐵′𝐶 = 𝐶,

−𝐷𝐶′𝐵 + 𝐶𝐵′𝐷 = −𝐷(𝐼 −𝐷′𝐷) + (𝐼 −𝐷𝐷′)𝐷 = 0.

Similarly, one obtains

𝐸

( −𝐷′ 𝐶′𝐵
𝐼 𝐷

)
=

( −𝐷 𝐶𝐵′

𝐼 𝐷′

)( −𝐷′ 𝐶′𝐵
𝐼 𝐷

)
=

(
𝐷𝐷′ + 𝐶𝐵′ −𝐷𝐶′𝐵 + 𝐶𝐵′𝐷

0 𝐶′𝐵 +𝐷′𝐷

)
=

(
𝐼 0
0 𝐼

)
.

From (6.4) it follows that

rank

(
𝐶 0
0 𝐼𝑡2

)
= rank

(
𝐶′ 0
0 𝐼𝑙2

)
,

which implies (6.3).

Now we take 𝑄 = 𝐴, where 𝐴 is from the statement of the theorem. We set

𝑙2 =

𝑁∑
𝑖=𝑘+𝑡+1

𝑚𝑖, 𝑡2 =

𝑁∑
𝑖=𝑘+1

𝑛𝑖. (6.5)
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Then

𝐶 = 𝐴(𝑘 + 𝑡+ 1 : 𝑁, 1 : 𝑘),

𝐶′ = 𝐴−1(𝑘 + 1 : 𝑁, 1 : 𝑘 + 𝑡)

= 𝐴−1((𝑘 + 𝑡)− 𝑡+ 1 : 𝑁, 1 : 𝑘 + 𝑡)

and by the definition of the lower rank numbers relative to some diagonal one
obtains

rank𝐶 = 𝑟𝐿𝑘,𝑡(𝐴), rank𝐶 ′ = 𝑟𝐿𝑘+𝑡,−𝑡(𝐴
−1). (6.6)

Substituting the expressions (6.5), (6.6) in (6.3) one obtains (6.1).

The application of (6.1) to the transpose matrix 𝐴𝑇 yields (6.2). □

§6.2 Rank numbers relative to the main diagonal.
Quasiseparable orders

Here we consider relations for rank numbers of pairs of mutually inverse matrices
relative to the main diagonal, i.e., the case 𝑡 = 0.

Corollary 6.2. Let 𝐴 be an invertible block matrix with entries of sizes 𝑚𝑖 ×
𝑛𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁 . Consider the matrix 𝐴−1 as a block matrix with sizes of
entries 𝑛𝑖 ×𝑚𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑁 .

The following relations hold:

𝑟𝐿𝑘,0(𝐴) +

𝑁∑
𝑖=𝑘+1

𝑛𝑖 = 𝑟
𝐿
𝑘,0(𝐴

−1) +

𝑁∑
𝑖=𝑘+1

𝑚𝑖, 𝑘 = 1, . . . , 𝑁 − 1, (6.7)

𝑟𝑈𝑘,0(𝐴) +

𝑁∑
𝑖=𝑘+1

𝑚𝑖 = 𝑟
𝑈
𝑘,0(𝐴

−1) +

𝑁∑
𝑖=𝑘+1

𝑛𝑖, 𝑘 = 1, . . . , 𝑁 − 1. (6.8)

The proof is obtained directly from (6.1), (6.2) by setting 𝑡 = 0.

Now we consider the case of a block matrix with square entries on the main
diagonal. Concerning the rank numbers relative to the main diagonal one obtains
the following result.

Corollary 6.3. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be an invertible block matrix with entries of
sizes 𝑚𝑖 ×𝑚𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑁 .

Then rank numbers of 𝐴 relative to the main diagonal 𝑖 = 𝑗 coincide with
the corresponding rank numbers of 𝐴−1.

The proof is obtained directly from (6.7), (6.8) by setting 𝑚𝑖 = 𝑛𝑖.

Corollary 6.3 implies that for an invertible block matrix 𝐴 with square entries
on the main diagonal, the quasiseparable orders 𝑛𝐿, 𝑛𝑈 coincide with quasisepara-
ble orders of the inverse 𝐴−1. The same is true for the corresponding rank numbers
of 𝐴 and 𝐴−1.
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§6.3 Green and band matrices

Here we consider a class of matrices whose inverses, if they exist, are band matrices.

Consider first square scalar matrices 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1. Let 𝑡 be an integer such
that 𝑁 > 𝑡 > 0. The matrix 𝐴 is called an upper Green matrix of order 𝑡 if its
upper rank numbers relative to the diagonal 𝑗 − 𝑖 = −𝑡 are not greater than 𝑡:

𝑟𝑈𝑘,−𝑡(𝐴) = rank𝐴(1 : 𝑘, 𝑘 − 𝑡+ 1 : 𝑁) ≤ 𝑡, 𝑘 = 𝑡, 𝑡+ 1, . . . , 𝑁.

Notice that if 𝐴 is an invertible upper Green matrix of order 𝑡, then all its
upper rank numbers relative to the diagonal 𝑗 − 𝑖 = −𝑡 equal 𝑡. Indeed, assume
that for some 𝑘 ∈ {𝑡, . . . , 𝑁} we have 𝑟𝑈𝑘,−𝑡(𝐴) < 𝑡. We get

𝐴(1 : 𝑘, :) =
(
𝐴(1 : 𝑘, 1 : 𝑘 − 𝑡) 𝐴(1 : 𝑘, 𝑘 − 𝑡+ 1 : 𝑁)

)
.

Here 𝐴(1 : 𝑘, 1 : 𝑘 − 𝑡) is a 𝑘 × (𝑘 − 𝑡) matrix and rank𝐴(1 : 𝑘, 𝑘 − 𝑡+ 1 : 𝑁) < 𝑡.
Hence, rank𝐴(1 : 𝑘, :) < 𝑘 and therefore 𝐴 is a singular matrix.

A scalar matrix 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 is called an upper band matrix of order 𝑡 if
𝐴𝑖𝑗 = 0 for 𝑗 − 𝑖 > 𝑡.
Theorem 6.4 (The first Asplund theorem). An invertible matrix 𝐴 is an upper band
matrix of order 𝑡 if and only if its inverse is an upper Green matrix of order 𝑡.

The proof follows from the more general Theorem 6.6 obtained below for
block matrices.

Next we consider block matrices 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 with entries of sizes 𝑚𝑖 ×
𝑚𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁 .

Lemma 6.5. Let 𝐴 be an invertible matrix with block entries of sizes 𝑚𝑖×𝑚𝑗, 𝑖, 𝑗 =
1, . . . , 𝑁 . Then the rank numbers 𝑟𝐿𝑘,−𝑡(𝐴), 𝑟

𝑈
𝑘,−𝑡(𝐴) (𝑘 = 𝑡 + 1, . . . , 𝑁 − 1) of 𝐴

relative to the diagonals 𝑖−𝑗 = −𝑡, 𝑗− 𝑖 = −𝑡, respectively, satisfy the inequalities
𝑟𝐿𝑘,−𝑡(𝐴), 𝑟

𝑈
𝑘,−𝑡(𝐴) ≥ 𝛼𝑘, 𝑘 = 𝑡+ 1, . . . , 𝑁 − 1,

with

𝛼𝑘 =

𝑘∑
𝑖=𝑘−𝑡+1

𝑚𝑖, 𝑘 = 𝑡+ 1, . . . , 𝑁 − 1. (6.9)

Proof. Assume that for some 𝑘 with 𝑡+ 1 ≤ 𝑘 ≤ 𝑁 − 1 one has

𝑟𝑈𝑘,−𝑡(𝐴) = rank𝐴(1 : 𝑘, 𝑘 − 𝑡+ 1 : 𝑁) < 𝛼𝑘. (6.10)

The matrix 𝐴(1 : 𝑘, :) contains 𝑚1 + ⋅ ⋅ ⋅ + 𝑚𝑘 rows and is obtained from the
submatrix 𝐴(1 : 𝑘, 𝑘 − 𝑡 + 1 : 𝑁) by the addition of 𝑚1 + ⋅ ⋅ ⋅ + 𝑚𝑘−𝑡 columns.
From (6.10) it follows that the rank of 𝐴(1 : 𝑘, :) is less than the number of its
rows. This implies that the matrix 𝐴 is not invertible.

Using the inequalities 𝑟𝑈𝑘,−𝑡(𝐴) ≥ 𝛼𝑘 (𝑘 = 𝑡+1, . . . , 𝑁 − 1) for the transpose

matrix 𝐴𝑇 one obtains 𝑟𝐿𝑘,−𝑡(𝐴) ≥ 𝛼𝑘 (𝑘 = 𝑡+ 1, . . . , 𝑁 − 1). □
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We call the matrix 𝐴 a lower Green matrix of order 𝑡 if its lower rank numbers
relative to the diagonal 𝑖 − 𝑗 = −𝑡 satisfy the inequalities

𝑟𝐿𝑘,−𝑡(𝐴) ≤
𝑘∑

𝑖=𝑘−𝑡+1

𝑚𝑖, 𝑘 = 𝑡+ 1, . . . , 𝑁 − 1. (6.11)

By Lemma 6.5, an invertible lower Green matrix of order 𝑡 satisfies the equalities

𝑟𝐿𝑘,−𝑡(𝐴) =
𝑘∑

𝑖=𝑘−𝑡+1

𝑚𝑖, 𝑘 = 𝑡+ 1, . . . , 𝑁 − 1. (6.12)

The matrix 𝐴 is called an upper Green matrix of order 𝑡 if its upper rank numbers
relative to the diagonal 𝑗 − 𝑖 = −𝑡 satisfy the inequalities

𝑟𝑈𝑘,−𝑡(𝐴) ≤
𝑘∑

𝑖=𝑘−𝑡+1

𝑚𝑖, 𝑘 = 𝑡+ 1, . . . , 𝑁 − 1. (6.13)

By Lemma 6.5, an invertible upper Green matrix of order 𝑡 satisfies the equalities

𝑟𝑈𝑘,−𝑡(𝐴) =
𝑘∑

𝑖=𝑘−𝑡+1

𝑚𝑖, 𝑘 = 𝑡+ 1, . . . , 𝑁 − 1. (6.14)

The matrix 𝐴 is said to be a Green matrix of order 𝑡 if it is both an upper and a
lower Green matrix of order 𝑡.

Let 𝐴 be a Green matrix of order 𝑡. Set 𝑛0 = max𝑡+1≤𝑘≤𝑁−1 𝛼𝑘 with 𝛼𝑘
from (6.9). It is clear that 𝐴 has quasiseparable order (𝑛0, 𝑛0) at most. Indeed,
each submatrix of 𝐴 of the form 𝐴(1 : 𝑘, 𝑘 + 1 : 𝑁) (𝑘 = 1, . . . , 𝑁 − 1) is a part
of the submatrix Ω𝑘 = 𝐴(1 : 𝑘, 𝑘 − 𝑡+ 1 : 𝑁) for 𝑘 = 𝑡+ 1, . . . , 𝑁 − 1 and a part
of the submatrix Ω𝑡+1 = 𝐴(1 : 𝑡+ 1, 2 : 𝑁) for 𝑘 = 1, . . . , 𝑡. Since, by assumption,
rankΩ𝑘 = 𝛼𝑘, one obtains

rank𝐴(1 : 𝑘, 𝑘 + 1 : 𝑁) ≤ 𝑛0, 𝑘 = 1, . . . , 𝑁 − 1.

One can check similarly that

rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘) ≤ 𝑛0, 𝑘 = 1, . . . , 𝑁 − 1.

A matrix 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 is said to be a lower band matrix of order 𝑡 if
𝐴𝑖𝑗 = 0 for 𝑖− 𝑗 > 𝑡, an upper band matrix of order 𝑡 if 𝐴𝑖𝑗 = 0 for 𝑗 − 𝑖 > 𝑡, and
a band matrix of order 𝑡 if 𝐴𝑖𝑗 = 0 for ∣𝑖− 𝑗∣ > 𝑡.
Theorem 6.6. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be an invertible matrix with block entries of sizes
𝑚𝑖 ×𝑚𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁 and let 𝑡 > 0 be an integer.

Then 𝐴−1 = {𝐵𝑖𝑗}𝑁𝑖,𝑗=1 is a lower band matrix of order 𝑡 if and only if 𝐴 is
a lower Green matrix of order 𝑡.
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𝐴−1 is an upper band matrix of order 𝑡 if and only if 𝐴 is an upper Green
matrix of order 𝑡.

𝐴−1 is a band matrix of order 𝑡 if and only if 𝐴 is a Green matrix of order 𝑡.

Proof. Setting in (6.1) 𝑛𝑖 = 𝑚𝑖, changing 𝑡 to −𝑡 and taking into account that
𝑡 > 0, one obtains

𝑟𝐿𝑘,−𝑡(𝐴) = 𝑟
𝐿
𝑘−𝑡,𝑡(𝐴

−1) +
𝑘∑

𝑖=𝑘−𝑡+1

𝑚𝑖, 𝑘 = 𝑡+ 1, . . . , 𝑁 − 1.

Hence it follows that (6.12) holds if and only if

𝑟𝐿𝑘−𝑡,𝑡(𝐴
−1) = rank𝐴−1(𝑘 + 1 : 𝑁, 1 : 𝑘 − 𝑡) = 0, 𝑘 = 𝑡+ 1, . . . , 𝑁 − 1.

The last relations are valid if and only if 𝐵𝑖𝑗 = 0 for 𝑖− 𝑗 > 𝑡.
The application of (6.12) to the transposed matrix 𝐴𝑇 yields (6.14). □

Example 6.7. Consider the 7× 7 matrix

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 2 1 0 0 0 0
2 3 2 1 0 0 0
1 2 3 2 1 0 0
0 1 2 3 2 1 0
0 0 1 2 3 2 1
0 0 0 1 2 3 2
0 0 0 0 1 2 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

𝐴 is a band matrix of order 2, which means that its entries 𝐴𝑖𝑗 = 0, for any
∣𝑖− 𝑗∣ > 2.

Its inverse 𝐵 = 𝐴−1 must be a Green matrix of order 2. Indeed, we have

𝐵 = 𝐴−1 =
1

9
⋅

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

7 −6 0 4 −3 0 1
−6 12 −6 −3 6 −3 0
0 −6 12 −6 −3 6 −3
4 −3 −6 13 −6 −3 4

−3 6 −3 −6 12 −6 0
0 −3 6 −3 −6 12 −6
1 0 −3 4 0 −6 7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and one can check easily that

rank𝐵(1 : 7, 1 : 2) = rank𝐵(2 : 7, 1 : 3) = rank𝐵(3 : 7, 1 : 4)

= rank𝐵(4 : 7, 1 : 5) = rank𝐵(5 : 7, 1 : 6)

= rank𝐵(6 : 7, 1 : 7) = 2

(6.15)
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and

rank𝐵(1 : 2, 1 : 7) = rank𝐵(1 : 3, 2 : 7) = rank𝐵(1 : 4, 3 : 7)

= rank𝐵(1 : 5, 4 : 7) = rank𝐵(1 : 6, 5 : 7)

= rank𝐵(1 : 7, 6 : 7) = 2. ♢

§6.4 The inverses of diagonal plus Green of
order one matrices

Here we consider invertible block matrices of the form 𝐴 = 𝐷 +𝐺, where 𝐷 is a
block diagonal matrix and 𝐺 is a Green matrix of order one. We show that when
𝐷 is invertible the inverse matrix 𝐴−1 has the same form.

Theorem 6.8. Let 𝐴 be a block invertible matrix with entries of sizes 𝑚𝑖×𝑚𝑗, 𝑖, 𝑗 =
1, . . . , 𝑁 , represented in the form 𝐴 = 𝐷 + 𝐺, where 𝐷 = diag(𝐷(1), 𝐷(2), . . . ,
𝐷(𝑁)) is a block diagonal invertible matrix and 𝐺 is a block lower Green of order
one matrix.

Then the matrix 𝐴−1 admits the representation 𝐴−1 = 𝐷−1+𝐺×, where 𝐺×

is a block lower Green of order one matrix.

Proof. For 𝑘 = 2, . . . , 𝑁 − 1 we use the partitions of the matrix 𝐴 in the form

𝐴 =

⎛⎝ 𝐴(1 : 𝑘 − 1, 1 : 𝑘 − 1) 𝐴(1 : 𝑘 − 1, 𝑘) 𝐴(1 : 𝑘 − 1, 𝑘 + 1 : 𝑁)
𝐴(𝑘, 1 : 𝑘 − 1) 𝐴(𝑘, 𝑘) 𝐴(𝑘, 𝑘 + 1 : 𝑁)

𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘 − 1) 𝐴(𝑘 + 1 : 𝑁, 𝑘) 𝐴(𝑘 + 1 : 𝑁, 𝑘 + 1 : 𝑁)

⎞⎠ .
(6.16)

Since 𝐴−𝐷 is a Green of order one matrix, (6.9) yields

rank

(
𝐴(𝑘, 1 : 𝑘 − 1) 𝐴(𝑘, 𝑘)−𝐷(𝑘)

𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘 − 1) 𝐴(𝑘 + 1 : 𝑁, 𝑘)

)
≤ 𝑚𝑘.

Consequently,(
𝐴(𝑘, 1 : 𝑘 − 1) 𝐴(𝑘, 𝑘)−𝐷(𝑘)

𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘 − 1) 𝐴(𝑘 + 1 : 𝑁, 𝑘)

)
=

(
𝑝(𝑘)
𝑃𝑘+1

)(
𝑄𝑘−1 𝑞(𝑘)

)
(6.17)

with the matrices 𝑝(𝑘), 𝑃𝑘+1, 𝑄𝑘−1, 𝑞(𝑘) of sizes𝑚𝑘×𝑚𝑘,
(∑𝑁

𝑖=𝑘+1𝑚𝑖

)
×𝑚𝑘,𝑚𝑘×(∑𝑘−1

𝑖=1 𝑚𝑖

)
, 𝑚𝑘 ×𝑚𝑘, respectively.

One can determine the matrices 𝑃𝑘−1 and �̃�𝑘+1 of sizes
(∑𝑘−1

𝑖=1 𝑚𝑖

)
×𝑚𝑘

and 𝑚𝑘 ×
(∑𝑁

𝑖=𝑘+1𝑚𝑖

)
, respectively, such that the matrices

𝐵𝑘−1 = 𝐴(1 : 𝑘 − 1, 1 : 𝑘 − 1)− 𝑃𝑘−1𝑄𝑘−1 (6.18)
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and
𝐶𝑘+1 = 𝐴(𝑘 + 1 : 𝑁, 𝑘 + 1 : 𝑁)− 𝑃𝑘+1�̃�𝑘+1 (6.19)

are invertible. Indeed, introduce the notations

𝐴𝑘−1 = 𝐴(1 : 𝑘 − 1, 1 : 𝑘 − 1), 𝑃𝑘 =

(
𝑝(𝑘)
𝑃𝑘+1

)
, 𝜈𝑘 =

𝑘−1∑
𝑖=1

𝑚𝑖.

From (6.16) and (6.17) it follows that

𝐴(:, 1 : 𝑘 − 1) =

(
𝐼 0
0 𝑃𝑘

)(
𝐴𝑘−1

𝑄𝑘−1

)
.

Hence, since 𝐴 is invertible, we get rank

(
𝐴𝑘−1

𝑄𝑘−1

)
= 𝜈𝑘. Set 𝜌𝑘 = rank𝐴𝑘−1; it

is clear that 𝜌𝑘 ≤ 𝜈𝑘. One can determine an invertible 𝜈𝑘×𝜈𝑘 matrix 𝑅𝑘 such that

𝑅𝑘𝐴𝑘−1 =

(
𝐴′𝑘−1

0(𝜈𝑘−𝜌𝑘)×𝜈𝑘

)
, (6.20)

with a 𝜌𝑘×𝜈𝑘 matrix 𝐴′𝑘−1 such that rank𝐴
′
𝑘−1 = 𝜌𝑘. Let 𝑄

′
𝑘−1 be a (𝜈𝑘−𝜌𝑘)×𝜈𝑘

matrix composed of the rows of the matrix 𝑄𝑘−1 which completes the rows of the

matrix 𝐴′𝑘−1 to the row basis of the matrix

(
𝐴𝑘−1

𝑄𝑘−1

)
. One can choose a 𝜈𝑘×𝑚𝑘

matrix 𝑍𝑘 such that

𝑍𝑘𝑄𝑘−1 =

(
0𝜌𝑘×𝜈𝑘
𝑄′𝑘−1

)
. (6.21)

From (6.20) and (6.21) it follows that

𝑅𝑘𝐴𝑘−1 + 𝑍𝑘𝑄𝑘−1 =

(
𝐴′𝑘−1

𝑄′𝑘−1

)
. (6.22)

It is clear that the matrix

(
𝐴′𝑘−1

𝑄′𝑘−1

)
is invertible. Hence (6.22) implies (6.18)

with the invertible matrix

𝐵𝑘−1 = 𝑅
−1
𝑘

(
𝐴′𝑘−1

𝑄′𝑘−1

)
and 𝑃𝑘−1 = −𝑅−1

𝑘 𝑍𝑘. In a similar way one can obtain the equality (6.19) with an
invertible matrix 𝐶𝑘+1.

Next set

𝑃 =

⎛⎝ 𝑃𝑘−1

𝑝(𝑘)
𝑃𝑘+1

⎞⎠ , 𝑄 =
(
𝑄𝑘−1 𝑞(𝑘) �̃�𝑘+1

)
.
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Using the equalities (6.16) and (6.17) we get

𝐴− 𝑃𝑄 = 𝑆,

with the block upper triangular invertible matrix 𝑆 of the form

𝑆 =

⎛⎝ 𝐵𝑘−1 ∗ ∗
0 𝐷(𝑘) ∗
0 0 𝐶𝑘+1

⎞⎠ .
By Theorem 1.21,

𝐴−1 = 𝑆−1 −𝑊, (6.23)

with 𝑊 = 𝑆−1𝑃 (𝐼𝑚𝑘
+𝑄𝑆−1𝑃 )−1𝑄𝑆−1. It is clear that

𝑆−1 =

⎛⎝ 𝐵−1
𝑘−1 ∗ ∗
0 (𝐷(𝑘))−1 ∗
0 0 𝐶−1

𝑘+1

⎞⎠ (6.24)

and

rank𝑊 ≤ 𝑚𝑘. (6.25)

Consider the matrix 𝐺× = 𝐴−1 −𝐷−1. From (6.23) and (6.24) it follows that

𝐺×(𝑘 : 𝑁, 1 : 𝑘) = −𝑊 (𝑘 : 𝑁, 1 : 𝑘)

and hence, using (6.25), we conclude that

rank𝐺×(𝑘 : 𝑁, 1 : 𝑘) ≤ 𝑚𝑘, 𝑘 = 2, . . . , 𝑁 − 1.

This means that 𝐺× is a block lower Green of order one matrix. □

Corollary 6.9. Let 𝐴 be a block invertible matrix with entries of sizes 𝑚𝑖×𝑚𝑗, 𝑖, 𝑗 =
1, . . . , 𝑁 , represented in the form 𝐴 = 𝐷 + 𝐹 , where 𝐷 = diag(𝐷(1), 𝐷(2), . . . ,
𝐷(𝑁)) is a block diagonal matrix and 𝐹 is a block upper Green of order one matrix.

Then the matrix 𝐴−1 admits the representation 𝐴−1 = 𝐷−1+𝐹×, where 𝐹×

is a block upper Green of order one matrix.

The proof is obtained by applying Theorem 6.8 to the transposed matrix 𝐴𝑇 .

Combining Theorem 6.8 and Corollary 6.9 we obtain the corresponding result
for diagonal plus Green of order one matrices.

Theorem 6.10. Let 𝐴 be a block invertible matrix with entries of sizes 𝑚𝑖 ×𝑚𝑗,
𝑖, 𝑗 = 1, . . . , 𝑁 , represented in the form 𝐴 = 𝐷 +𝐺, where 𝐷 = diag(𝐷(1), 𝐷(2),
. . . , 𝐷(𝑁)) is a block diagonal matrix and 𝐺 is a block Green of order one matrix.

Then the matrix 𝐴−1 admits the representation 𝐴−1 = 𝐷−1+𝐺×, where 𝐺×

is a block Green of order one matrix.
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§6.5 Minimal completion ranks of pairs of mutually
inverse matrices. The inverse of an irreducible

band matrix

Here we apply Theorem 6.1 to obtain relations between minimal completion ranks
of pairs of mutually inverse matrices. As a corollary we obtain a version of the
second Asplund theorem.

Theorem 6.11. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be an invertible matrix with block entries 𝐴𝑖𝑗

of size 𝑚𝑖 × 𝑛𝑗. So
∑𝑁

𝑖=1𝑚𝑖 =
∑𝑁

𝑖=1 𝑛𝑖 =: 𝑁1. The inverse of 𝐴 is partitioned
according to the partitioning of 𝐴: 𝐴−1 := 𝐵 = {𝐵𝑖𝑗}𝑁𝑖,𝑗=1, where 𝐵𝑖𝑗 is of size
𝑛𝑖 ×𝑚𝑗. Put

𝒜 = {𝐴𝑖𝑗}1≤𝑗≤𝑖≤𝑁 , ℬ = {𝐵𝑖𝑗}1≤𝑗<𝑖≤𝑁 .
Then

𝑟𝐿(𝒜) + 𝑟𝐿(ℬ) = 𝑁1, (6.26)

where 𝑟𝐿(𝒜) and 𝑟𝐿(ℬ) are the minimal completion ranks of the parts 𝒜 and ℬ,
respectively.

Proof. Applying formula (2.30) to the matrix 𝐴 one gets

𝑟𝐿(𝒜) =
𝑁∑
𝑘=1

rank𝐴(𝑘 : 𝑁, 1 : 𝑘)−
𝑁−1∑
𝑘=1

rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘). (6.27)

Applying formula (3.3) to the matrix 𝐵 = 𝐴−1 one gets

𝑟𝐿(ℬ) =
𝑁−1∑
𝑘=1

rank𝐵(𝑘 + 1 : 𝑁, 1 : 𝑘)−
𝑁−1∑
𝑘=2

rank𝐵(𝑘 + 1 : 𝑁, 1 : 𝑘 − 1). (6.28)

Using formula (6.1) with 𝑡 = 0 and 𝑡 = −1 one obtains the equalities

rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘) +

𝑁∑
𝑖=𝑘+1

𝑛𝑖

= rank𝐵(𝑘 + 1 : 𝑁, 1 : 𝑘) +

𝑁∑
𝑖=𝑘+1

𝑚𝑖, 𝑘 = 1, . . . , 𝑁 − 1

(6.29)

and

rank𝐴(𝑘 : 𝑁, 1 : 𝑘) +

𝑁∑
𝑖=𝑘+1

𝑛𝑖

= rank𝐵(𝑘 + 1 : 𝑁, 1 : 𝑘 − 1) +

𝑁∑
𝑖=𝑘

𝑚𝑖, 𝑘 = 1, . . . , 𝑁.

(6.30)
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Now (6.29) and (6.30) yield the equalities

𝑁−1∑
𝑘=1

rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘) +
𝑁−1∑
𝑘=1

𝑁∑
𝑖=𝑘+1

𝑛𝑖

=

𝑁−1∑
𝑘=1

rank𝐵(𝑘 + 1 : 𝑁, 1 : 𝑘) +

𝑁−1∑
𝑘=1

𝑁∑
𝑖=𝑘+1

𝑚𝑖

(6.31)

and
𝑁∑
𝑘=1

rank𝐴(𝑘 : 𝑁, 1 : 𝑘) +

𝑁−1∑
𝑘=1

𝑁∑
𝑖=𝑘+1

𝑛𝑖

=

𝑁−1∑
𝑘=1

rank𝐵(𝑘 + 1 : 𝑁, 1 : 𝑘 − 1) +

𝑁∑
𝑘=1

𝑁∑
𝑖=𝑘

𝑚𝑖.

(6.32)

Subtracting (6.31) from (6.32) and using formulas (6.27), (6.28) one obtains

𝑟𝐿(𝒜) = −𝑟𝐿(ℬ) +
𝑁∑
𝑘=1

𝑚𝑘,

which implies (6.26). □
Example 6.12. Consider the 7× 7 matrix

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑑 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎
𝑎 𝑑 𝑎 𝑎 𝑎 𝑎 𝑎
𝑎 𝑎 𝑑 𝑎 𝑎 𝑎 𝑎
𝑎 𝑎 𝑎 𝑑 𝑎 𝑎 𝑎
𝑎 𝑎 𝑎 𝑎 𝑑 𝑎 𝑎
𝑎 𝑎 𝑎 𝑎 𝑎 𝑑 𝑎
𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝑑

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Applying the formula (2.30) to the lower triangular part 𝒜 = {𝐴𝑖𝑗}1≤𝑗≤𝑖≤7

we obtain the minimal completion rank 𝑟𝐿(𝒜) = 6. Theorem 6.11 means that
𝑟𝐿(𝒜) + 𝑟𝐿(ℬ) = 7, where ℬ = {𝐵𝑖𝑗}1≤𝑗<𝑖≤7 is the strictly lower triangular part
of the matrix 𝐵 = 𝐴−1. Notice that we have

𝐵 = 𝐴−1 =
1

(6𝑎+ 𝑑)(𝑎− 𝑑) ⋅

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛼 𝑎 𝑎 𝑎 𝑎 𝑎 𝑎
𝑎 𝛼 𝑎 𝑎 𝑎 𝑎 𝑎
𝑎 𝑎 𝛼 𝑎 𝑎 𝑎 𝑎
𝑎 𝑎 𝑎 𝛼 𝑎 𝑎 𝑎
𝑎 𝑎 𝑎 𝑎 𝛼 𝑎 𝑎
𝑎 𝑎 𝑎 𝑎 𝑎 𝛼 𝑎
𝑎 𝑎 𝑎 𝑎 𝑎 𝑎 𝛼

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where 𝛼 = −(5𝑎+ 𝑑) and it follows that the 7× 7 matrix of rank 1 which has all
its entries equal to 𝑎 is a minimal rank completion of ℬ. ♢
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As a corollary of Theorem 6.11 one obtains the following well-known result.

Theorem 6.13 (The second Asplund theorem). Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be an invertible
scalar matrix. Let 𝑡 ∈ {0, 1, . . . , 𝑁−1} and let 𝒜 denotes the lower triangular part
𝒜 = {𝐴𝑖𝑗}𝑗<𝑖+𝑡, 1≤𝑖,𝑗≤𝑁 of the matrix 𝐴.

Then 𝑟𝐿(𝒜) = 𝑡 if and only if 𝐴−1 is a lower band of order 𝑡 matrix with
nonzero elements on the diagonal 𝑖− 𝑗 = 𝑡.

The statement of the theorem follows from a more general Theorem 6.17,
which will be proved below.

Example 6.14. Consider the 7×7 matrix 𝐵 from Example 6.7. This is an invertible
matrix. We have (6.15) and also

rank𝐵(2 : 7, 1 : 2) = rank𝐵(3 : 7, 1 : 3) = rank𝐵(4 : 7, 1 : 4) = rank𝐵(5 : 7, 1 : 5)

= rank𝐵(6 : 7, 1 : 6) = 2.

We treat 𝐵 as a block (𝑁 − 𝑡 + 1) × (𝑁 − 𝑡 + 1) matrix with entries of sizes
𝑚𝑖×𝑛𝑗 , where 𝑚1 = ⋅ ⋅ ⋅ = 𝑚𝑡 = 1, 𝑚𝑁−𝑡+1 = 𝑡, 𝑛1 = 𝑡, 𝑛2 = ⋅ ⋅ ⋅ = 𝑛𝑁−𝑡+1 = 1.
ℬ = {𝐵𝑖𝑗}1≤𝑗<𝑖+2≤7 is the lower triangular part of 𝐵 relative to this partition.
By (2.30), we get 𝑟𝐿(ℬ) = 2. By the second Asplund theorem, the inverse 𝐵−1 is
a lower band of order 2 irreducible matrix. This is the matrix 𝐴 from the same
example. ♢

Using Theorem 6.13 one can show that there is a matrix 𝐴 with a given
minimal order of diagonal plus semiseparable representation whose inverse 𝐴−1

has a larger minimal order of diagonal plus semiseparable representation.

Theorem 6.15. Let 𝐴 be an invertible 𝑁 ×𝑁 scalar matrix whose part

𝒜 = {𝐴𝑖𝑗}𝑗<𝑖+𝑡, 1≤𝑖,𝑗≤𝑁
has the minimal completion rank 𝑡. Then the matrix 𝐴 admits a diagonal plus semi-
separable representation with lower semiseparable generators of order not greater
than 𝑡 and the order of lower semiseparable generators for the matrix 𝐴−1 is not
less than 𝑁 − 𝑡.
Proof. The strictly lower triangular part of the matrix 𝐴 is a part of 𝒜. Hence
the minimal completion rank of the strictly upper triangular part of 𝐴 is not
greater than 𝑡. Therefore, by Theorem 3.2, the matrix 𝐴 admits a diagonal plus
semiseparable representation with lower semiseparable generators of order not
greater than 𝑡.

Next, by Theorem 6.13, the inverse 𝐴−1 is a lower band of order 𝑡 matrix
with nonzero elements on the diagonal 𝑖 − 𝑗 = 𝑡. For any completion 𝐴1 of the
strictly lower triangular part of the matrix 𝐴−1, the submatrix 𝐴0 = 𝐴1(𝑡 + 1 :
𝑁, 1 : 𝑁 − 𝑡) is an upper triangular matrix with nonzero entries on the main
diagonal. The matrix 𝐴0 is invertible and therefore rank𝐴0 = 𝑁−𝑡, which implies
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rank𝐴1 ≥ 𝑁 − 𝑡. It follows that the minimal completion rank of the strictly lower
triangular part of the matrix 𝐴 is not less than 𝑁 − 𝑡. From here, by Theorem
3.2, the minimal order of the lower semiseparable generators of the matrix 𝐴−1 is
greater than or equal to 𝑁 − 𝑡. □

Example 6.16. This example illustrates Theorem 6.15 for a specific case of a 7× 7
matrix and 𝑡 = 2.

Consider the matrix 𝐵 which appeared in Example 6.7. This matrix has
𝑁 = 7 and it is invertible, since it has been found in that example as the inverse
of the matrix 𝐴 (up to the constant factor 1

9 , which now will be ignored). For 𝑡 = 2
it follows from Example 6.14 that the part

ℬ = {𝐵𝑖𝑗}𝑗<𝑖+𝑡, 1≤𝑖,𝑗≤7 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

7 −6 ∗ ∗ ∗ ∗ ∗
−6 12 −6 ∗ ∗ ∗ ∗
0 −6 12 −6 ∗ ∗ ∗
4 −3 −6 13 −6 ∗ ∗

−3 6 −3 −6 12 −6 ∗
0 −3 6 −3 −6 12 −6
1 0 −3 4 0 −6 7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
of 𝐵 has the minimal completion rank 𝑡. It follows from Theorem 6.15 that the
matrix 𝐵 admits a diagonal plus semiseparable representation with lower semisep-
arable generators of order not greater than 𝑡 = 2 and the order of lower semisepa-
rable generators for the matrix 𝐴 = 𝐵−1 is not less than 𝑁 − 𝑡 = 7− 2 = 5. Also,
applying the formula to the matrix 𝐴 in Example 6.7 we obtain that the lower
semiseparable order of this matrix equals 5. ♢

Now we present the proof of a generalization of Theorem 6.13.

Theorem 6.17. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be an invertible block matrix with 𝐴𝑖𝑗 of size
𝑚 ×𝑚 (𝑚 > 0). Let 𝑡 ∈ {0, 1, . . . , 𝑁 − 1} and let 𝒜 denote the lower triangular
part of 𝐴, 𝒜 = {𝐴𝑖𝑗}𝑗<𝑖+𝑡, 1≤𝑖,𝑗≤𝑁 .

Then 𝑟𝐿(𝒜) = 𝑡𝑚 if and only if 𝐴−1 is a lower band of order 𝑡 matrix with
invertible entries on the diagonal 𝑖− 𝑗 = 𝑡.

Proof. First, let 𝑡 = 0, i.e., 𝒜 = {𝐴𝑖𝑗}1≤𝑗<𝑖≤𝑁 is the strictly lower triangular part
of the matrix 𝐴. Then 𝑟𝐿(𝒜) = 0 if and only if 𝐴 is block upper triangular. But
since the blocks of 𝐴 are square, this holds if and only if 𝐴−1 is upper triangular,
and since 𝐴−1 is invertible its diagonal entries are invertible.

Next, let 𝑡 ∈ {1, . . . , 𝑁 − 1}. View 𝐴 as an (𝑁 − 𝑡+ 1)× (𝑁 − 𝑡 + 1) block
matrix where the first 𝑡 block columns of 𝐴 and its last 𝑡 block rows are taken
together. In 𝐴−1 this corresponds to taking together the first 𝑡 block rows and the
last 𝑡 block columns. Denote 𝐴−1 = {𝐵𝑖𝑗}𝑁𝑖,𝑗=1; in such partition the strictly lower
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triangular part of 𝐴−1 has the form

ℬ =

⎛⎜⎜⎜⎝
𝐵𝑡+1,1 ? . . . ?
𝐵𝑡+2,1 𝐵𝑡+2,2 . . . ?

...
...

. . .
...

𝐵𝑁1 𝐵𝑁2 . . . 𝐵𝑁,𝑁−𝑡

⎞⎟⎟⎟⎠ .
By Theorem 6.11, 𝑟𝐿(𝒜) = 𝑡𝑚 if and only if the part ℬ has the minimal completion
rank equal to 𝑁𝑚− 𝑡𝑚, which is precisely its order. This is equivalent to the fact
that the matrix

�̂� =

⎛⎜⎜⎜⎝
𝐵𝑡+1,1 𝐵𝑡+1,2 . . . 𝐵𝑡+1,𝑁−𝑡
𝐵𝑡+2,1 𝐵𝑡+2,2 . . . 𝐵𝑡+2,𝑁−𝑡

...
...

. . .
...

𝐵𝑁1 𝐵𝑁2 . . . 𝐵𝑁,𝑁−𝑡

⎞⎟⎟⎟⎠
is invertible and moreover, by Theorem 6.11, the minimal completion rank of
the strictly lower triangular part of the matrix �̂�−1 equals zero. Use now the
𝑡 = 0 case to see that this can happen if and only if 𝐵𝑖𝑗 = 0, 𝑗 < 𝑖 − 𝑡 and
𝐵𝑗+𝑡,𝑗 , 𝑗 = 1, . . . , 𝑁 − 𝑡 are invertible matrices. □

Another corollary of Theorem 6.11 concerns the situation when the minimal
completion rank of the strictly lower triangular part of a matrix coincides with
the minimal completion rank of the strictly lower triangular part of its inverse.

Corollary 6.18. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be an invertible block matrix with 𝐴𝑖𝑗 of size

𝑚𝑖 × 𝑛𝑗, so that
∑𝑁
𝑖=1𝑚𝑖 =

∑𝑁
𝑖=1 𝑛𝑖 =: 𝑁1. The inverse of 𝐴 is partitioned

according to the partitioning of 𝐴: 𝐴−1 := 𝐵 = {𝐵𝑖𝑗}𝑁𝑖,𝑗=1, where 𝐵𝑖𝑗 is of size
𝑛𝑖 ×𝑚𝑗. Put

𝒜0 = {𝐴𝑖𝑗}1≤𝑗<𝑖≤𝑁 , ℬ0 = {𝐵𝑖𝑗}1≤𝑗<𝑖≤𝑁 .
Then

𝑟𝐿(𝒜0) = 𝑟𝐿(ℬ0) (6.33)

if and only if∑𝑁

𝑘=1
rank𝐴(𝑘 : 𝑁, 1 : 𝑘)−

∑𝑁−1

𝑘=2
rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘 − 1) = 𝑁1. (6.34)

Proof. Using Theorem 6.11 we see that the condition (6.33) is equivalent to the
equality

𝑟𝐿(𝒜0) = 𝑁1 − 𝑟𝐿(𝒜), (6.35)

where 𝒜 = {𝐴𝑖𝑗}1≤𝑗≤𝑖≤𝑁 . Substituting in (6.35) the expression (6.27) and the
expression

𝑟𝐿(𝒜0) =
∑𝑁−1

𝑘=1
rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘)−

∑𝑁−1

𝑘=2
rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘 − 1)

one obtains (6.34). □
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This corollary yields a necessary and sufficient condition for equality of the
orders of minimal lower semiseparable generators of a matrix and of its inverse.

Example 6.19. Consider the 7× 7 matrix

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 2 3 7 1 1 1
2 5 3 1 1 1 1
3 3 6 1 1 1 1
7 1 1 7 1 1 1
1 1 1 1 8 1 1
1 1 1 1 1 9 1
1 1 1 1 1 1 10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For the matrix 𝐴 formula (6.34) is valid. Indeed,

7∑
𝑘=1

rank𝐴(𝑘 : 7, 1 : 𝑘)−
6∑

𝑘=2

rank𝐴(𝑘 + 1 : 7, 1 : 𝑘 − 1)

= (1 + 2 + 3 + 2 + 2 + 2 + 1)− (1 + 2 + 1 + 1 + 1) = 7. ♢

§6.6 Linear-fractional transformations of matrices

Here we extend some results obtained above in this chapter for the inverses to the
fractional transformations of matrices.

§6.6.1 The definition and the basic property

A linear-fractional transformation is a function Φ : ℂ → ℂ defined by

Φ(𝑧) =
𝛼𝑧 + 𝛽

𝛾𝑧 + 𝛿
(6.36)

with some complex numbers 𝛼, 𝛽, 𝛾, 𝛿 such that 𝛼𝛿 − 𝛽𝛾 ∕= 0. Let 𝐴 be a square
matrix such that the matrix 𝛾𝐴+ 𝛿𝐼 is invertible. Then the matrix Φ(𝐴) = (𝛼𝐴+
𝛽𝐼)(𝛾𝐴+𝛿𝐼)−1 is well defined. We obtain the following generalization of Corollary
6.3.

Theorem 6.20. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a block matrix with entries of sizes 𝑚𝑖 ×
𝑚𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁 and let Φ(𝑧) be a linear-fractional transformation of the form
(6.36). Assume that the matrix 𝛾𝐴+ 𝛿𝐼 is invertible.

Then the rank numbers of the matrix 𝐴 relative to the main diagonal 𝑖 = 𝑗
coincide with the corresponding rank numbers of the matrix Φ(𝐴).

Proof. Assume that 𝛾 ∕= 0 and set 𝑏 = 𝛿/𝛾. We obviously have

Φ(𝐴) =
1

𝛾

(
𝛼𝐼 + (𝛽 − 𝛼𝑏)(𝐴+ 𝑏𝐼)−1

)
. (6.37)
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Since 𝛼𝛿 − 𝛽𝛾 ∕= 0, we have that 𝛽 − 𝛼𝑏 ∕= 0. It is clear that the rank numbers
of the matrix Φ(𝐴) relative to the main diagonal coincide with the corresponding
rank numbers of the matrix (𝐴+ 𝑏𝐼)−1. By Corollary 6.3, these rank numbers are
equal to the ones of the matrix 𝐴 + 𝑏𝐼. The rank numbers of the latter matrix
relative to the main diagonal are the same as for 𝐴.

Now let 𝛾 = 0. Then 𝛼𝛿 − 𝛽𝛾 ∕= 0 implies 𝛿 ∕= 0, 𝛼 ∕= 0 and therefore

Φ(𝐴) =
1

𝛿
(𝛼𝐴+ 𝛽𝐼). (6.38)

In this case the statement of the theorem is trivial. □

§6.6.2 Linear-fractional transformations of Green
and band matrices

Here we extend the results of Section §6.3 on linear-fractional transforms of ma-
trices.

Theorem 6.21. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a block matrix with entries of sizes 𝑚𝑖 ×
𝑚𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁 and let 𝑡 > 0 be an integer. Let Φ(𝑧) be a fractional transfor-
mation of the form (6.36). Assume that 𝛾 ∕= 0 and the matrix 𝛾𝐴+𝛿𝐼 is invertible.
Set 𝑏 = 𝛿/𝛾.

Φ(𝐴) is a lower band matrix of order 𝑡 if and only if 𝐴 + 𝑏𝐼 is a lower Green
matrix of order 𝑡.

Φ(𝐴) is an upper band matrix of order 𝑡 if and only if 𝐴+ 𝑏𝐼 is an upper Green
matrix of order 𝑡.

Φ(𝐴) is a band matrix of order 𝑡 if and only if 𝐴 + 𝑏𝐼 is a Green matrix of
order 𝑡.

Proof. From the formula (6.37) it follows that the matrix Φ(𝐴) is a lower (upper)
band matrix of order 𝑡 if and only if the matrix (𝐴+𝑏𝐼)−1 is. By Theorem 6.6, the
latter holds if and only if 𝐴+ 𝑏𝐼 is a lower (upper) Green matrix of order 𝑡. □

§6.6.3 Unitary Hessenberg and Hermitian matrices

Consider now the linear-fractional transformation (6.36) with the coefficients 𝛼,
𝛽, 𝛾, 𝛿 satisfying the conditions

𝛾 = ∣𝛾∣𝑒𝑖𝜃𝛾 , 𝛿 = ∣𝛿∣𝑒𝑖𝜃𝛿 , 𝛾 ∕= 0. 𝛿 ∕= 0, 𝑒2𝑖(𝜃𝛾−𝜃𝛿) ∕= 1,

𝛼 = ∣𝛾∣𝑒𝑖𝜃, 𝛽 = ∣𝛿∣𝑒𝑖𝜃, 𝜃 = 𝜃 + 𝜃𝛾 − 𝜃𝛿.
(6.39)

It is well known that in this case the transformation Φ(𝑧) maps the real line onto
the unit circle without the point 𝑧 = 𝛼/𝛾. Assume that 𝐴 is a Hermitian matrix
such that the matrix 𝛾𝐴 + 𝛿𝐼 is invertible; then the matrix Φ(𝐴) is well defined
and Φ(𝐴) is unitary if and only if 𝐴 is a Hermitian matrix. As a direct consequence
of Theorem 6.21 we obtain the following statement.
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Theorem 6.22. Let 𝐴 be a scalar square matrix and let Φ(𝑧) be a linear-fractional
transformation of the form (6.36) satisfying the conditions (6.39). Assume that
the matrix 𝛾𝐴+ 𝛿𝐼 is invertible and set 𝑏 = 𝛿/𝛾.

Then Φ(𝐴) is a unitary upper Hessenberg matrix if and only if 𝐴 is Hermitian
and 𝐴+ 𝑏𝐼 is a lower Green of order one matrix.

Proof. The matrix 𝐴 is Hermitian if and only if Φ(𝐴) is a unitary matrix. By
Theorem 6.21 Φ(𝐴) is a lower band of order one, i.e., an upper Hessenberg matrix,
if and only if 𝐴+ 𝑏𝐼 is a lower Green of order one matrix. □

§6.6.4 Linear-fractional transformations of diagonal
plus Green of order one matrices

Here we derive a generalization of Theorem 6.8 on linear-fractional transformations
of matrices.

Theorem 6.23. Let 𝐴 be a block matrix with entries of sizes 𝑚𝑖×𝑚𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁
represented in the form 𝐴 = 𝐷 +𝐺, where 𝐷 = diag(𝐷(1), 𝐷(2), . . . , 𝐷(𝑁)) is a
block diagonal invertible matrix and 𝐺 is a block lower Green of order one matrix.
Let Φ(𝑧) be a fractional transformation of the form (6.36). Assume that 𝛾 ∕= 0 and
the matrices 𝛾𝐴+ 𝛿𝐼 and 𝛾𝐷 + 𝛿𝐼 are invertible.

Then the matrix Φ(𝐴) admits the representation

Φ(𝐴) = Φ(𝐷) +𝐺×, (6.40)

where 𝐺× is a block lower Green of order one matrix.

Proof. Assume that 𝛾 ∕= 0. Setting 𝑏 = 𝛿/𝛾 and using the formula (6.37) we get

Φ(𝐴) =
1

𝛾

(
𝛼𝐼 + (𝛽 − 𝛼𝑏)[(𝐷 + 𝑏𝐼) +𝐺]−1

)
.

Applying Theorem 6.8 to the matrix (𝐷 + 𝑏𝐼) +𝐺 we obtain

[(𝐷 + 𝑏𝐼) +𝐺]−1 = (𝐷 + 𝑏𝐼)−1 +𝐺0,

where 𝐺0 is a block lower Green of order one matrix. Hence, it follows that

Φ(𝐴) =
1

𝛾

(
𝛼𝐼 + (𝛽 − 𝛼𝑏)(𝐷 + 𝑏𝐼)−1

)
+

1

𝛾
(𝛽 − 𝛼𝑏)𝐺0. (6.41)

Notice that
1

𝛾

(
𝛼𝐼 + (𝛽 − 𝛼𝑏)(𝐷 + 𝑏𝐼)−1

)
= Φ(𝐷)

and 1
𝛾 (𝛽−𝛼𝑏)𝐺0 is a block lower Green of order one matrix. Hence, it follows that

(6.41) implies (6.40).
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Assume that 𝛾 = 0. Using (6.38) we get

Φ(𝐴) =
1

𝛿
(𝛼𝐷 + 𝛼𝐺+ 𝛽𝐼) =

1

𝛿
(𝛼𝐷 + 𝛽𝐼) +

𝛼

𝛿
𝐺 = Φ(𝐷) +𝐺×,

where 𝐺× = 𝛼
𝛿𝐺 is a block lower Green of order one matrix. □

§6.7 Comments

Symmetric Green matrices, named one-pair (or single-pair) matrices were con-
sidered in the monograph by F.R. Gantmacher and M.G. Krein [36]. The classi-
cal inversion theorems for Green and band matrices with elements from a non-
commutative field were obtained by E. Asplund in the paper [2].

Theorem 6.1 is based on the coupling relations obtained in [3]. The presen-
tation in the first three sections follows the paper [26]. Results similar to ones in
Section 4 are presented in the monograph by R. Vandebril, M. Van Barel, and N.
Mastronardi [46], but our proofs are different. The results of Section 5 were ob-
tained by H. Woerdeman in [48]. Section 6 is based on the paper by L. Gemignani
[33], but our presentation is different.



Chapter 7

Unitary Matrices with
Quasiseparable Representations

In this chapter we study in detail the quasiseparable representations of unitary
matrices. We show that for unitary matrices the quasiseparable representations
are closely connected with factorization representations of a matrix as a product
of elementary unitary matrices.

In the first section we present with the proof the well-known results on Givens
rotations and QR factorizations of matrices. In the second section we derive re-
lations between rank numbers of unitary matrices. In the third section we study
factorization representations of unitary matrices and their connections with qua-
siseparable representations. In the fourth section we consider a special case of
unitary Hessenberg matrices. In the last section we study special quasiseparable
representations of matrices for which computations may be performed with a lower
complexity.

§7.1 QR and related factorizations of matrices

Let 𝐴 be an 𝑚× 𝑛 matrix. Then 𝐴 may be represented in the form

𝐴 = 𝑄 ⋅ 𝑅 (7.1)

with an 𝑚×𝑚 unitary matrix 𝑄 and an 𝑚× 𝑛 matrix 𝑅 = (𝑅𝑖𝑗) such that

𝑅𝑖𝑗 = 0 for 𝑖 > 𝑗. (7.2)

The factorization (7.1) is called the 𝑄𝑅 factorization of the matrix 𝐴. To determine
the factors 𝑄 and 𝑅 one can proceed as follows.

For a two-dimensional complex vector 𝑥 =

(
𝑎
𝑏

)
there is a complex Givens

139 Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1  
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory: 
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_7, © Springer Basel 2014
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rotation matrix, i.e., a 2× 2 unitary matrix 𝐺, such that

𝐺𝑥 =

(
𝑟
0

)
with some complex number 𝑟. The matrix 𝐺 and the number 𝑟 may be determined
by the formulas

𝐺 =

(
𝑐 𝑠

−𝑠∗ 𝑐∗

)
, 𝑟 =

√
∣𝑎∣2 + ∣𝑏∣2,

where

𝑐 =
𝑎∗

𝑟
, 𝑠 =

𝑏∗

𝑟

for 𝑥 ∕= 0 and 𝑐 = 1, 𝑠 = 0 for 𝑥 = 0.

At first we determine a complex Givens rotation matrix 𝐺𝑚−1 from the
condition

𝐺𝑚−1𝐴(𝑚− 1 : 𝑚, 1) =

(
𝑟
0

)
.

Define the 𝑚×𝑚 unitary matrix �̃�𝑚−1 = 𝐼𝑚−2 ⊕𝐺𝑚−1. Then the matrix 𝐴1 =
�̃�𝑚−1𝐴 has a zero entry in the (𝑚, 1) position. Next we determine a complex
Givens rotation matrix 𝐺𝑚−2 from the condition

𝐺𝑚−2𝐴(𝑚− 2 : 𝑚− 1, 1) =

(
𝑟′

0

)
and we define the 𝑚×𝑚 unitary matrix �̃�𝑚−2 = 𝐼𝑚−3 ⊕𝐺𝑚−2 ⊕ 𝐼1. The matrix
𝐴2 = �̃�𝑚−2𝐴1 has zero entries in the (𝑚− 1, 1) and (𝑚, 1) positions. We proceed
in the same way with the first columns of the matrices 𝐴,𝐴1, 𝐴2, . . . , 𝐴𝑚−2 and
obtain the matrix

𝐴(1) := 𝐴𝑚−1 = �̃�1 ⋅ ⋅ ⋅ �̃�𝑚−1𝐴

with all the entries zero, except for the first one in the first column:

𝐴(1)(2 : 𝑚, 1) = 0.

Here 𝐺(1) = �̃�1 ⋅ ⋅ ⋅ �̃�𝑚−1 is an 𝑚×𝑚 unitary matrix.

Next we apply the same procedure to the second column of the matrix 𝐴(1).

We determine a complex Givens rotation matrix 𝐺
(1)
𝑚−1 from the condition

𝐺
(1)
𝑚−1𝐴

(1)(𝑚− 1 : 𝑚, 2) =

(
𝑟
0

)
.

and define the 𝑚×𝑚 unitary matrix �̃�
(1)
𝑚−1 = 𝐼𝑚−2 ⊕𝐺(1)

𝑚−1. The matrix 𝐴
(1)
1 =

�̃�
(1)
𝑚−1𝐴

(1) has all the entries zero, except for the first one in the first column, and
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also a zero entry in the (𝑚, 2) position. We continue in the same way and obtain
the matrix

𝐴(2) = 𝐺(2)𝐺(1)𝐴

with zero entries in the two first columns below the main diagonal. Here 𝐺(2)𝐺(1)

is an 𝑚×𝑚 unitary matrix.

We apply this procedure to the third column of the matrix 𝐴(2), and so on.
Finally we obtain an 𝑚 × 𝑚 unitary matrix 𝑄 such that the matrix 𝑅 = 𝑄∗𝐴
satisfies the condition (7.2).

Next we consider some factorizations related to the QR factorization. Let 𝐽
be the 𝑚×𝑚 permutation matrix

𝐽 =

⎛⎜⎝ 0 . . . 1
...

. . .
...

1 . . . 0

⎞⎟⎠ .
One can rewrite the equality (7.1) in the form

𝐴 = (𝑄𝐽)(𝐽𝑅).

Setting 𝑄𝐽 = 𝑄′, 𝐽𝑅 = 𝑅′ we obtain the representation of the matrix 𝐴 in the
form

𝐴 = 𝑄′ ⋅𝑅′, (7.3)

with a unitary 𝑚×𝑚 matrix 𝑄′ and an 𝑚× 𝑛 matrix 𝑅′ = (𝑅′𝑖𝑗) such that

𝑅′𝑖𝑗 = 0, for 𝑖+ 𝑗 < 𝑚+ 1. (7.4)

The factorization (7.4) is called the 𝑄𝑅′ factorization of the matrix 𝐴.

Applying (7.1) to transposed matrices we obtain the factorization

𝐴 = 𝐿𝑄, (7.5)

where 𝐿 = (𝐿𝑖𝑗) is an 𝑚 × 𝑛 matrix with 𝐿𝑖𝑗 = 0 for 𝑗 > 𝑖 and 𝑄 is a unitary
𝑛× 𝑛 matrix. The factorization (7.5) is called the 𝐿𝑄 factorization of the matrix
𝐴. Similarly applying (7.3) to transposed matrices we obtain the factorization

𝐴 = 𝐿′𝑄′, (7.6)

where 𝐿′ = (𝐿′𝑖𝑗) is an 𝑚 × 𝑛 matrix with 𝐿′𝑖𝑗 = 0 for 𝑗 + 𝑖 < 𝑛 + 1 and 𝑄 is a
unitary 𝑛×𝑛 matrix. The factorization (7.6) is called the 𝐿′𝑄 factorization of the
matrix 𝐴.

Assume that 𝑚 ≥ 𝑛 and consider the QR factorization (7.1) of the matrix
𝐴. The condition (7.2) means that the matrix 𝑅 in (7.1) has the form

𝑅 =

(
𝑋

0(𝑚−𝑛)×𝑛

)
,
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where 𝑋 is an 𝑛× 𝑛 upper triangular matrix. Setting 𝑉 = 𝑄(:, 1 : 𝑛) we get

𝐴 = 𝑉 ⋅𝑋. (7.7)

Here the 𝑚× 𝑛 matrix 𝑉 has orthonormal columns, i.e., 𝑉 ∗𝑉 = 𝐼𝑛, and 𝑋 is an
𝑛× 𝑛 upper triangular matrix. The factorization (7.7) is called the truncated 𝑄𝑅
factorization of the matrix 𝐴. In the same way one can obtain truncated forms for
other factorizations mentioned here.

§7.2 The rank numbers and quasiseparable generators

Here we present relations for lower and upper rank numbers of unitary matrices
relative to the main diagonal in a block representation.

Theorem 7.1. Let 𝑉 be a unitary block matrix with entries of sizes 𝑚𝑖×𝑛𝑗 , 𝑖, 𝑗 =
1, . . . , 𝑁 , with lower rank numbers 𝜌𝐿𝑘 (𝑘 = 1, . . . , 𝑁 − 1) and upper rank numbers
𝜌𝑈𝑘 (𝑘 = 1, . . . , 𝑁 − 1). The following relations hold:

𝜌𝐿𝑘 +

𝑁∑
𝑖=𝑘+1

𝑛𝑖 = 𝜌
𝑈
𝑘 +

𝑁∑
𝑖=𝑘+1

𝑚𝑖, 𝑘 = 1, . . . , 𝑁 − 1 (7.8)

or

rank𝑉 (𝑘 + 1 : 𝑁, 1 : 𝑘) +

𝑁∑
𝑖=𝑘+1

𝑛𝑖

= rank𝑉 (1 : 𝑘, 𝑘 + 1 : 𝑁) +

𝑁∑
𝑖=𝑘+1

𝑚𝑖, 𝑘 = 1, . . . , 𝑁 − 1.

(7.9)

Proof. We consider 𝑉 −1 = 𝑉 ∗ as a block matrix with entries of sizes 𝑛𝑖×𝑚𝑗 (𝑖, 𝑗 =
1, . . . , 𝑁). Using the formula (6.7) from Corollary 6.2 we get

𝑟𝐿𝑘,0(𝑉 ) +

𝑁∑
𝑖=𝑘+1

𝑛𝑖 = 𝑟
𝐿
𝑘,0(𝑉

∗) +
𝑁∑

𝑖=𝑘+1

𝑚𝑖, 𝑘 = 1, . . . , 𝑁 − 1.

But we have obviously 𝑟𝐿𝑘,0(𝑉
∗) = 𝑟𝑈𝑘,0(𝑉 ) (𝑘 = 1, . . . , 𝑁 − 1). Moreover, by the

definition of rank numbers we have 𝑟𝐿𝑘,0(𝑉 ) = 𝜌
𝐿
𝑘 , 𝑟

𝑈
𝑘,0(𝑉 ) = 𝜌

𝑈
𝑘 and therefore we

conclude that the relations (7.8) hold. □

From here one can easily derive a corollary concerning the orders of minimal
quasiseparable generators of unitary matrices.

Corollary 7.2. Let 𝑈 be a unitary block matrix with entries of sizes 𝑚𝑖×𝑛𝑗 , 𝑖, 𝑗 =
1, . . . , 𝑁 with lower rank numbers 𝑟𝑘 (𝑘 = 1, . . . , 𝑁−1). Then 𝑈 has minimal lower
quasiseparable generators of orders 𝑟𝑘 (𝑘 = 1, . . . , 𝑁 −1) and upper quasiseparable

generators of orders 𝑟𝑘 + 𝜇𝑘 (𝑘 = 1, . . . , 𝑁 − 1), where 𝜇𝑘 =
∑𝑁

𝑖=𝑘+1(𝑛𝑖 −𝑚𝑖).
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Proof. By Theorem 7.1, the upper rank numbers of 𝑈 equal 𝑟𝑘+𝜇𝑘 (𝑘 = 1, . . . , 𝑁−
1). By Theorem 5.9, the matrix 𝑈 has lower quasiseparable generators of orders
𝑟𝑘 (𝑘 = 1, . . . , 𝑁 − 1) and upper quasiseparable generators of orders 𝑟𝑘 + 𝜇𝑘 (𝑘 =
1, . . . , 𝑁 − 1). By Corollary 5.10, these generators are minimal. □

§7.3 Factorization representations

Here we derive factorization representations for matrices with quasiseparable struc-
ture.

§7.3.1 Block triangular matrices

We start with representations of block triangular matrices.

Lemma 7.3. Let 𝑊 be a block upper triangular unitary matrix with block entries
of sizes 𝜈𝑖 × 𝑛𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑁 . Set

𝑠0 = 0, 𝑠𝑘 =
𝑘∑
𝑖=1

(𝜈𝑖 − 𝑛𝑖), 𝑘 = 1, . . . , 𝑁 − 1. (7.10)

Then all the numbers 𝑠𝑘 are nonnegative. Moreover, the matrix 𝑊 admits
the factorization

𝑊 = �̃�1�̃�2 ⋅ ⋅ ⋅ �̃�𝑁 (7.11)

with

�̃�1 = diag{𝑊1, 𝐼𝜙1}; �̃�𝑘 = diag{𝐼𝜒𝑘
,𝑊𝑘, 𝐼𝜙𝑘

}, 𝑘 = 2, . . . , 𝑁 − 1;

�̃�𝑁 = diag{𝐼𝜒𝑁 ,𝑊𝑁},
(7.12)

where 𝑊𝑘 are unitary matrices of sizes (𝑠𝑘−1 + 𝜈𝑘)× (𝑠𝑘−1 + 𝜈𝑘) and

𝜒𝑘 =
𝑘−1∑
𝑖=1

𝑛𝑖, 𝜙𝑘 =
𝑁∑

𝑖=𝑘+1

𝜈𝑖.

Furthermore one can determine the matrices 𝑊𝑘 (𝑘 = 1, . . . , 𝑁) using the follow-
ing algorithm.

1. Set

�̂�1 =𝑊. (7.13)

2. For 𝑘 = 1, . . . , 𝑁 − 1 perform the following. Set

𝑤𝑘 = �̂�𝑘(1 : 𝑠𝑘−1 + 𝜈𝑘, 1 : 𝑛𝑘) (7.14)
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and determine the unitary (𝑠𝑘−1 + 𝜈𝑘) × (𝑠𝑘−1 + 𝜈𝑘) matrix 𝑊𝑘 from the
condition

𝑊 ∗
𝑘𝑤𝑘 =

(
𝐼𝑛𝑘

0𝑠𝑘×𝑛𝑘

)
. (7.15)

Compute the matrix

𝑍𝑘 =

(
𝑊 ∗
𝑘 0
0 𝐼𝜙𝑘

)
�̂�𝑘 (7.16)

and determine the 𝜒𝑘+1 × 𝜒𝑘+1 matrix �̂�𝑘+1 from the partition

𝑍𝑘 =

(
𝐼𝑛𝑘

0

0 �̂�𝑘+1

)
. (7.17)

3. Set
𝑊𝑁 = �̂�𝑁 . (7.18)

Proof. At first we show that the condition 𝑠𝑘 ≥ 0, 𝑘 = 1, . . . , 𝑁 −1 holds. Indeed,
consider the submatrix 𝑊 (:, 1 : 𝑘) composed of the first 𝑘 block columns of the

matrix𝑊 . We have𝑊 (:, 1 : 𝑘) =

(
Ω𝑘
0

)
, where Ω𝑘 is a matrix of size (

∑𝑘
𝑖=1 𝜈𝑖)×

(
∑𝑘
𝑖=1 𝑛𝑖). From the invertibility of𝑊 it follows that rank Ω𝑘 =

∑𝑘
𝑖=1 𝑛𝑖 and thus∑𝑘

𝑖=1 𝑛𝑖 ≤
∑𝑘
𝑖=1 𝜈𝑖, 1 ≤ 𝑘 ≤ 𝑁 − 1.

Next we prove by induction that

𝑊 = �̃�1�̃�2 ⋅ ⋅ ⋅ �̃�𝑘

(
𝐼𝜒𝑘+1

0

0 �̂�𝑘+1

)
, 𝑘 = 0, 1, . . . , 𝑁 − 1. (7.19)

Here �̂�𝑘 (𝑘 = 1, . . . , 𝑁 − 1) are block upper triangular unitary matrices with

entries of sizes 𝜈
(𝑘)
𝑖 × 𝑛𝑗 , 𝑖, 𝑗 = 𝑘, . . . , 𝑁 , where 𝜈

(𝑘)
𝑘 = 𝑠𝑘 + 𝑛𝑘, 𝜈

(𝑘)
𝑖 = 𝜈𝑖, 𝑖 =

𝑘 + 1, . . . , 𝑁 .

The relation (7.19) with 𝑘 = 0 follows from (7.13) and the definition of the
matrix 𝑊 . Let for some 𝑘 with 𝑘 = 1, . . . , 𝑁 − 1 the representation

𝑊 = �̃�1�̃�2 ⋅ ⋅ ⋅ �̃�𝑘−1

(
𝐼𝜒𝑘

0

0 �̂�𝑘

)
(7.20)

with the matrix �̂�𝑘 defined as above hold. The first block column of �̂�𝑘 has the
form

�̂�𝑘(:, 1) =

(
𝑤𝑘

0𝜙𝑘×𝑛𝑘

)
,

where 𝑤𝑘 is an (𝑠𝑘 + 𝑛𝑘) × 𝑛𝑘 matrix such that 𝑤∗𝑘𝑤𝑘 = 𝐼𝑛𝑘
. We take a unitary

(𝑠𝑘 + 𝑛𝑘)× (𝑠𝑘 + 𝑛𝑘) matrix 𝑊𝑘 such that (7.15) holds. Then(
𝑊 ∗
𝑘 0
0 𝐼𝜙𝑘

)
�̂�𝑘(:, 1) =

(
𝐼𝑛𝑘

0(𝑠𝑘+𝜙𝑘)×𝑛𝑘

)
.
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Define the matrix 𝑍𝑘 by (7.16). Since 𝑍𝑘 is unitary, the representation (7.17) holds.
From (7.16), (7.17) we get

�̂�𝑘 =

(
𝑊𝑘 0
0 𝐼𝜙𝑘

)(
𝐼𝑛𝑘

0

0 �̂�𝑘+1

)
. (7.21)

Here �̂�𝑘+1 is a unitary block upper triangular matrix with entries of sizes 𝜈
(𝑘+1)
𝑖 ×

𝑛𝑗, 𝑖, 𝑗 = 𝑘+1, . . . , 𝑁 , where 𝜈
(𝑘+1)
𝑖 = 𝜈𝑖, 𝑖 = 𝑘+2, . . . , 𝑁 and 𝜈

(𝑘+1)
𝑘+1 = 𝜈𝑘+1+𝑠𝑘 =

𝑛𝑘+1 + 𝑠𝑘+1. Inserting (7.21) in (7.20), we obtain (7.19).

Finally, using (7.19) with 𝑘 = 𝑁 − 1 and (7.18) we obtain the factorization
(7.11). □

The reverse statement is the following.

Lemma 7.4. Let 𝑊 be a block matrix with block entries of sizes 𝜈𝑖 × 𝑛𝑗 , 𝑖, 𝑗 =
1, . . . , 𝑁 which admits the factorization (7.11), (7.12) with some (𝑠𝑘−1 + 𝜈𝑘) ×
(𝑠𝑘−1 + 𝜈𝑘) matrices 𝑊𝑘 (𝑘 = 1, . . . , 𝑁), where the numbers 𝑠𝑘, 𝑘 = 0, . . . , 𝑁 − 1
are defined in (7.10).

Then 𝑊 is a block upper triangular matrix.

Proof. We prove the statement by induction on 𝑁 . For 𝑁 = 2 the matrix 𝑊 is a
2× 2 block matrix with entries of sizes 𝜈𝑖 × 𝑛𝑗 , 𝑖, 𝑗 = 1, 2 (𝜈1 + 𝜈2 = 𝑛1 + 𝑛2) and
we have

𝑊 = �̃�1�̃�2 =

(
𝑊1 0
0 𝐼𝜈2

)(
𝐼𝑛1 0
0 𝑊2

)
.

Hence it follows that the left bottom block of size 𝜈2 ×𝑛1 in the matrix 𝑊 equals
zero. Let for some 𝑁 ≥ 2 the (𝑁 − 1)× (𝑁 − 1) block matrix

𝑊 ′ =𝑊 ′
1 ⋅ ⋅ ⋅𝑊 ′

𝑁−1,

with

𝑊 ′
1 = diag{𝑊1, 𝐼𝜙′1}, 𝑊 ′

𝑘 = diag{𝐼𝜒𝑘
,𝑊𝑘, 𝐼𝜙′

𝑘
}, 𝑘 = 2, . . . , 𝑁 − 2,

𝑊 ′
𝑁−1 = diag{𝐼𝜒𝑁−1 ,𝑊𝑁−1},

where 𝑊𝑘 are matrices of sizes (𝑠𝑘−1 + 𝜈𝑘)× (𝑠𝑘−1 + 𝜈𝑘) and

𝜒𝑘 =

𝑘−1∑
𝑖=1

𝑛𝑖, 𝜙′𝑘 =
𝑁−1∑
𝑖=𝑘+1

𝜈𝑖,

be upper triangular. The matrix 𝑊 defined via (7.11), (7.12) may be written in
the form

𝑊 = �̃�1 ⋅ ⋅ ⋅ �̃�𝑁−1�̃�𝑁 =

(
𝑊 ′ 0
0 𝐼𝜈𝑁

)(
𝐼𝜒𝑁 0
0 𝑊𝑁

)
.
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Hence using the fact that 𝑊 ′ is upper triangular it follows that

𝑊 (𝑖 + 1 : 𝑁, 1 : 𝑖) =

(
𝑊 ′(𝑖+ 1 : 𝑁 − 1, 1 : 𝑖)

0

)
= 0, 𝑖 = 1, . . . , 𝑁 − 1,

which completes the proof of the lemma. □

§7.3.2 Factorization of general unitary matrices and
compression of generators

Here we consider block unitary matrices with given quasiseparable representa-
tions. For such matrices we derive a factorization representation as products of
elementary unitary matrices. Together with the factorization of a matrix we ob-
tain another set of its quasiseparable generators. In some cases these generators
have smaller orders than the original ones.

Theorem 7.5. Let 𝑈 = {𝑈𝑖𝑗}𝑁𝑖,𝑗=1 be a block unitary matrix with entries of sizes
𝑚𝑖 × 𝑛𝑗, lower quasiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 −
1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of orders 𝑟𝐿𝑘 (𝑘 = 1, . . . , 𝑁 − 1), upper quasiseparable
generators 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of
orders 𝑟𝑈𝑘 (𝑘 = 1, . . . , 𝑁 − 1) and diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁). Set

𝜌𝑁 = 0, 𝜌𝑘−1 = min{𝑚𝑘 + 𝜌𝑘, 𝑟
𝐿
𝑘−1},

𝜈𝑘 = 𝑚𝑘 + 𝜌𝑘 − 𝜌𝑘−1, 𝑘 = 𝑁, . . . , 2, 𝜈1 = 𝑚1 + 𝜌1,

𝑠𝑁 = 0, 𝑠𝑘−1 = 𝑛𝑘 + 𝑠𝑘 − 𝜈𝑘, 𝑘 = 𝑁, . . . , 2.

(7.22)

Then all the numbers 𝑠𝑘 are nonnegative and the matrix 𝑈 has upper qua-
siseparable generators of orders 𝑠𝑘 (𝑘 = 1, . . . , 𝑁 −1) and admits the factorization

𝑈 = 𝑉 ⋅ 𝐹, (7.23)

where 𝑉 is a block lower triangular unitary matrix with block entries of sizes
𝑚𝑖 × 𝜈𝑗 (𝑖, 𝑗 = 1, . . . , 𝑁) and 𝐹 is a block upper triangular unitary matrix with
block entries of sizes 𝜈𝑖 × 𝑛𝑗 (𝑖, 𝑗 = 1, . . . , 𝑁). Moreover, one can choose 𝑉 in the
form

𝑉 = 𝑉𝑁𝑉𝑁−1 ⋅ ⋅ ⋅𝑉2, (7.24)

with

𝑉𝑘 = diag{𝐼𝜂𝑘 , 𝑉𝑘, 𝐼𝜙𝑘
}, 𝑘 = 2, . . . , 𝑁 − 1, 𝑉𝑁 = diag{𝐼𝜂𝑁 , 𝑉𝑁}, (7.25)

where 𝜂𝑘 =
∑𝑘−1

𝑖=1 𝑚𝑖, 𝜙𝑘 =
∑𝑁

𝑖=𝑘+1 𝜈𝑖, the 𝑉𝑘 (𝑘 = 2, . . . , 𝑁) are (𝑚𝑘 + 𝜌𝑘) ×
(𝑚𝑘 + 𝜌𝑘) unitary matrices and the matrix 𝐹 has the form

𝐹 = 𝐹1𝐹2 ⋅ ⋅ ⋅𝐹𝑁 , (7.26)
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with

𝐹1 = diag{𝐹1, 𝐼𝜙1}, 𝐹𝑘 = diag{𝐼𝜒𝑘
, 𝐹𝑘, 𝐼𝜙𝑘

}, 𝑘 = 2, . . . , 𝑁 − 1,

𝐹𝑁 = diag{𝐼𝜒𝑁 , 𝐹𝑁},
(7.27)

where 𝜒𝑘 =
∑𝑘−1

𝑖=1 𝑛𝑖, and 𝐹𝑘 (𝑘 = 1, . . . , 𝑁) are (𝑠𝑘−1 + 𝜈𝑘)× (𝑠𝑘−1 + 𝜈𝑘) unitary
matrices.

Furthermore, a set of upper quasiseparable generators 𝑔𝑠(𝑖) (𝑖 = 1, . . . , 𝑁 −
1), ℎ𝑠(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏𝑠(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of orders 𝑠𝑘 (𝑘 = 1, . . . , 𝑁 − 1)
as well as the unitary matrices 𝑉𝑘 (𝑘 = 2, . . . , 𝑁), 𝐹𝑘 (𝑘 = 1, . . . , 𝑁) are obtained
using the following algorithm.

Set 𝑋𝑁+1, 𝑌𝑁+1, 𝑧𝑁+1 to be the empty 0×0 matrices and 𝑞(𝑁), 𝑎(𝑁), 𝑔(𝑁),
𝑏(𝑁), 𝑔𝑠(𝑁) to be empty matrices of sizes 0×𝑛𝑁 , 0×𝑟𝐿𝑁−1,𝑚𝑁×0, 𝑟𝑈𝑁−1×0,𝑚𝑁×0,
respectively.

For 𝑘 = 𝑁, . . . , 2 perform the following. Compute the QR factorization[
𝑝(𝑘)

𝑋𝑘+1𝑎(𝑘)

]
= 𝑉𝑘

(
𝑋𝑘

0𝜈𝑘×𝑟𝐿𝑘−1

)
, (7.28)

where 𝑉𝑘 is a unitary matrix of sizes (𝑚𝑘 + 𝜌𝑘) × (𝑚𝑘 + 𝜌𝑘), 𝑋𝑘 is a matrix of
sizes 𝜌𝑘−1 × 𝑟𝐿𝑘−1. Compute the (𝑚𝑘 + 𝜌𝑘)× (𝑛𝑘 + 𝑠𝑘) matrix

𝑍𝑘 = 𝑉
∗
𝑘

(
𝑑(𝑘) 𝑔𝑠(𝑘)

𝑋𝑘+1𝑞(𝑘) 𝑧𝑘+1

)
(7.29)

and determine the matrices ℎ′𝑘, ℎ
′′
𝑘 ,Δ𝑘,Θ𝑘 of sizes 𝜌𝑘−1×𝑛𝑘, 𝜌𝑘−1×𝑠𝑘, 𝜈𝑘×𝑛𝑘, 𝜈𝑘×

𝑠𝑘, respectively, from the partition

𝑍𝑘 =

[
ℎ′𝑘 ℎ′′𝑘
Δ𝑘 Θ𝑘

]
. (7.30)

The submatrix
(
Δ𝑘 Θ𝑘

)
has orthonormal rows and one can determine the

(𝑛𝑘 + 𝑠𝑘)× (𝑛𝑘 + 𝑠𝑘) unitary matrix 𝐹𝑘 from the condition(
Δ𝑘 Θ𝑘

)
𝐹 ∗𝑘 =

(
0𝜈𝑘×𝑠𝑘−1

𝐼𝜈𝑘
)
. (7.31)

Determine the matrices ℎ𝑠(𝑘), 𝑏𝑠(𝑘), 𝑑𝐹 (𝑘), 𝑔𝐹 (𝑘) of sizes 𝑠𝑘−1×𝑛𝑘, 𝑠𝑘−1×𝑠𝑘, 𝜈𝑘×
𝑛𝑘, 𝜈𝑘 × 𝑠𝑘, respectively, from the partition

𝐹𝑘 =

[
ℎ𝑠(𝑘) 𝑏𝑠(𝑘)
𝑑𝐹 (𝑘) 𝑔𝐹 (𝑘)

]
. (7.32)

Compute the matrices 𝑌𝑘 of the size 𝑟
𝑈
𝑘−1 × 𝑠𝑘−1 and 𝑧𝑘 of the size 𝜌𝑘−1 × 𝑠𝑘−1

by the formulas

𝑌𝑘 = ℎ(𝑘)ℎ
∗
𝑠(𝑘) + 𝑏(𝑘)𝑌𝑘+1𝑏

∗
𝑠(𝑘), 𝑧𝑘 = ℎ

′
𝑘ℎ
∗
𝑠(𝑘) + ℎ

′′
𝑘𝑏
∗
𝑠(𝑘). (7.33)
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Finally, compute
𝑔𝑠(𝑘 − 1) = 𝑔(𝑘 − 1)𝑌𝑘, (7.34)

and set

𝐹1 =

[
𝑑(1) 𝑔(1)𝑌2
𝑋2𝑞(1) 𝑧2

]
. (7.35)

Proof. Using the generators 𝑞(𝑘), 𝑎(𝑘) and 𝑔(𝑘), 𝑏(𝑘) define the matrices 𝑄𝑘, 𝑘 =
1, . . . , 𝑁 of sizes 𝑟𝐿𝑘 × 𝜒𝑘+1 via relations

𝑄1 = 𝑞(1), 𝑄𝑘 =
(
𝑎(𝑘)𝑄𝑘−1 𝑞(𝑘)

)
, 𝑘 = 2, . . . , 𝑁 (7.36)

and the matrices 𝐺𝑘, 𝑘 = 1, . . . , 𝑁 of sizes 𝜂𝑘+1 × 𝑟𝑈𝑘 via relations

𝐺1 = 𝑔(1), 𝐺𝑘 =

(
𝐺𝑘−1𝑏(𝑘)
𝑔(𝑘)

)
, 𝑘 = 2, . . . , 𝑁 (7.37)

(here we set 𝑟𝐿𝑁 = 𝑟𝑈𝑁 = 0). Using the equalities (5.11) and (5.14), we get

𝑈(𝑘, 1 : 𝑘 − 1) = 𝑝(𝑘)𝑄𝑘−1, 𝑘 = 2, . . . , 𝑁 (7.38)

and

𝑈(1 : 𝑘 − 1, 𝑘) = 𝐺𝑘−1ℎ(𝑘), 𝑘 = 2, . . . , 𝑁. (7.39)

We prove by induction that 𝑠𝑘 ≥ 0, 𝑘 = 𝑁, . . . , 1 and all the matrices

�̂�𝑘 =

(
𝑈(1 : 𝑘, 1 : 𝑘) 𝐺𝑘𝑌𝑘+1

𝑋𝑘+1𝑄𝑘 𝑧𝑘+1

)
, 𝑘 = 1, . . . , 𝑁 (7.40)

are unitary. We prove also that the matrices
(
Δ𝑘 Θ𝑘

)
, (𝑘 = 𝑁, . . . , 2) have

orthonormal rows and the relations

𝐺𝑘−1ℎ(𝑘) = 𝐺𝑘−1𝑌𝑘ℎ𝑠(𝑘), 𝑘 = 2, . . . , 𝑁 (7.41)

𝐺𝑘−1𝑏(𝑘)𝑌𝑘+1 = 𝐺𝑘−1𝑌𝑘𝑏𝑠(𝑘), 𝑘 = 2, . . . , 𝑁 (7.42)

hold.

For 𝑘 = 𝑁 the matrices𝐺𝑁𝑌𝑁+1, 𝑋𝑁+1𝑄𝑁 , 𝑧𝑁+1 are empty and hence �̂�𝑁 =
𝑈 is a unitary matrix. By definition, we have 𝑠𝑁 = 0. Let for some 𝑘 with 𝑁 ≥
𝑘 ≥ 2 the matrix �̂�𝑘 be unitary. Inserting (7.36), (7.37) and (7.38), (7.39) in (7.40)
we get

�̂�𝑘 =

⎛⎝ 𝑈(1 : 𝑘 − 1, 1 : 𝑘 − 1) 𝐺𝑘−1ℎ(𝑘) 𝐺𝑘−1𝑏(𝑘)𝑌𝑘+1

𝑝(𝑘)𝑄𝑘−1 𝑑(𝑘) 𝑔(𝑘)𝑌𝑘+1

𝑋𝑘+1𝑎(𝑘)𝑄𝑘−1 𝑋𝑘+1𝑞(𝑘) 𝑧𝑘+1

⎞⎠ .
Using (7.28), (7.29) and (7.30) we obtain(

𝐼𝜂𝑘 0
0 𝑉 ∗𝑘

)
�̂�𝑘 =

⎛⎝ 𝑈(1 : 𝑘 − 1, 1 : 𝑘 − 1) 𝐺𝑘−1ℎ(𝑘) 𝐺𝑘−1𝑏(𝑘)𝑌𝑘+1

𝑋𝑘𝑄𝑘−1 ℎ′𝑘 ℎ′′𝑘
0𝜈𝑘×𝜒𝑘

Δ𝑘 Θ𝑘

⎞⎠ . (7.43)

Here the matrix
(
Δ𝑘 Θ𝑘

)
has the size 𝜈𝑘 × (𝑠𝑘 + 𝑛𝑘).
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Since the matrix

(
𝐼 0
0 𝑉 ∗𝑘

)
�̂�𝑘 is unitary the inequality 𝑠𝑘−1 = 𝑠𝑘 + 𝑛𝑘 −

𝜈𝑘 ≥ 0 holds and the matrix
(
Δ𝑘 Θ𝑘

)
has orthonormal rows. Hence one can

determine a unitary (𝑛𝑘 + 𝑠𝑘)× (𝑛𝑘 + 𝑠𝑘) matrix 𝐹𝑘 such that (7.31) holds. Next,
using (7.32) we have(

ℎ(𝑘) 𝑏(𝑘)𝑌𝑘+1

ℎ′𝑘 ℎ′′𝑘

)
𝐹 ∗𝑘 =

(
𝑌𝑘 𝑤′𝑘
𝑧𝑘 𝑤′′𝑘

)
(7.44)

with the matrices 𝑌𝑘, 𝑧𝑘 of sizes 𝑟𝑈𝑘−1 × 𝑠𝑘−1, 𝜌𝑘−1 × 𝑠𝑘−1 determined via (7.33)

and some matrices 𝑤′𝑘, 𝑤
′′
𝑘 of sizes 𝑟𝑈𝑘−1 × 𝜈𝑘, 𝜌𝑘−1 × 𝜈𝑘. Thus using (7.43), (7.31)

and (7.44) we get

(
𝐼𝜂𝑘 0
0 𝑉 ∗𝑘

)
�̂�𝑘

(
𝐼𝜒𝑘

0
0 𝐹 ∗𝑘

)
=

⎛⎝ 𝑈(1 : 𝑘 − 1, 1 : 𝑘 − 1) 𝐺𝑘−1𝑌𝑘 𝐺𝑘−1𝑤
′
𝑘

𝑋𝑘𝑄𝑘−1 𝑧𝑘 𝑤′′𝑘
0𝜈𝑘×𝜒𝑘

0𝜈𝑘×𝑠𝑘−1
𝐼𝜈𝑘

⎞⎠ .
Since the matrix

(
𝐼 0
0 𝑉 ∗𝑘

)
�̂�𝑘

(
𝐼 0
0 𝐹 ∗𝑘

)
is unitary we conclude that 𝐺𝑘−1𝑤

′
𝑘 =

0, 𝑤′′𝑘 = 0 and therefore(
𝐼𝜂𝑘 0
0 𝑉 ∗𝑘

)
�̂�𝑘

(
𝐼𝜒𝑘

0
0 𝐹 ∗𝑘

)

=

⎛⎝ 𝑈(1 : 𝑘 − 1, 1 : 𝑘 − 1) 𝐺𝑘−1𝑌𝑘 0
𝑋𝑘𝑄𝑘−1 𝑧𝑘 0

0 0 𝐼𝜈𝑘

⎞⎠ =

(
�̂�𝑘−1 0
0 𝐼𝜈𝑘

)
.

(7.45)

Hence it follows that the matrix �̂�𝑘−1 is unitary. Moreover (7.44) implies that(
ℎ(𝑘) 𝑏(𝑘)𝑌𝑘+1

)
𝐹 ∗𝑘 =

(
𝑌𝑘 𝑤′𝑘

)
and using the fact that 𝐺𝑘−1𝑤

′
𝑘 = 0 we obtain(

𝐺𝑘−1ℎ(𝑘) 𝐺𝑘−1𝑏(𝑘)𝑌𝑘+1

)
=
(
𝐺𝑘−1𝑌𝑘 0

)
𝐹𝑘. (7.46)

From here using the partition (7.32) we obtain the equalities (7.41), (7.42).

Thus, by Lemma 5.23, we conclude that 𝑔𝑠(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ𝑠(𝑗) (𝑗 =
2, . . . , 𝑁), 𝑏𝑠(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) are upper quasiseparable generators of the
matrix 𝑈 .

Next, using (7.45) we get

�̂�𝑁 = 𝑈, �̂�𝑘 =

(
𝐼𝜂𝑘 0
0 𝑉𝑘

)(
�̂�𝑘−1 0
0 𝐼𝜈𝑘

)(
𝐼𝜒𝑘

0
0 𝐹𝑘

)
, 𝑘 = 𝑁, . . . , 2.

(7.47)
Comparing (7.40) with 𝑘 = 1 and (7.35) we have �̂�1 = 𝐹1. Combining this equality
with the relations (7.47) we obtain the factorization (7.23)–(7.27). □
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Corollary 7.6. Under the conditions of Theorem 7.5 the factorizations

(
𝐺𝑘−1 0
0 𝑉 ∗𝑘

)⎛⎝ ℎ(𝑘) 𝑏(𝑘)𝑌𝑘+1

𝑑(𝑘) 𝑔(𝑘)𝑌𝑘+1

𝑋𝑘+1𝑞(𝑘) 𝑧𝑘+1

⎞⎠ =

(
𝐺𝑘−1 0
0 𝐼𝜌𝑘−1+𝜈𝑘

)⎛⎝ 𝑌𝑘 0
𝑧𝑘 0
0 𝐼𝜈𝑘

⎞⎠𝐹𝑘,
𝑘 = 2, . . . , 𝑁 (7.48)

hold.

The proof follows directly from the equalities (7.46), (7.30), (7.31) and (7.33).

Next we show that if lower quasiseparable generators of a unitary matrix 𝑈
are minimal, then Theorem 7.5 may be used for compression of upper quasisepa-
rable generators of 𝑈 .

Corollary 7.7. Under the conditions of Theorem 7.5, assume that the lower qua-
siseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 =
2, . . . , 𝑁 − 1) are minimal.

Then the upper quasiseparable generators 𝑔𝑠(𝑖) (𝑖 = 1, . . . , 𝑁−1), ℎ𝑠(𝑗) (𝑗 =
2, . . . , 𝑁), 𝑏𝑠(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) obtained in the algorithm are minimal.

Proof. From (7.22) it follows that

𝑠𝑘 = 𝜌𝑘 +

𝑁∑
𝑖=𝑘+1

(𝑛𝑖 −𝑚𝑖), 𝑘 = 1, . . . , 𝑁 − 1

and moreover 𝜌𝑘 ≤ 𝑟𝐿𝑘 (𝑘 = 1, . . . , 𝑁 − 1). Hence we get

𝑠𝑘 ≤ 𝑟𝐿𝑘 +

𝑁∑
𝑖=𝑘+1

(𝑛𝑖 −𝑚𝑖), 𝑘 = 1, . . . , 𝑁 − 1. (7.49)

By Corollary 5.10, the orders 𝑟𝐿𝑘 (𝑘 = 1, . . . , 𝑁 − 1) of the generators 𝑝(𝑖) (𝑖 =
2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁−1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁−1) equal the corresponding
lower rank numbers of the matrix 𝑈 . Comparing (7.49) with the formula (7.8) we
obtain

𝑠𝑘 ≤ 𝜌𝑈𝑘 , 𝑘 = 1, . . . , 𝑁 − 1,

where 𝜌𝑈𝑘 (𝑘 = 1, . . . , 𝑁 − 1) are the upper rank numbers of the matrix 𝑈 . But
𝑠𝑘 (𝑘 = 1, . . . , 𝑁 − 1) are the orders of some upper quasiseparable generators of
the matrix 𝑈 and applying Corollary 5.10 again we conclude that these orders
are minimal. Hence the upper quasiseparable generators 𝑔𝑠(𝑖) (𝑖 = 1, . . . , 𝑁 −
1), ℎ𝑠(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏𝑠(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) are minimal. □
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§7.3.3 Generators via factorization

Next we prove the converse statement. For a unitary matrix given as a product of
elementary matrices we obtain a quasiseparable representation.

Theorem 7.8. Let 𝑈 be a block unitary matrix with entries of sizes 𝑚𝑖×𝑛𝑗 , 𝑖, 𝑗 =
1, . . . , 𝑁 represented as a product

𝑈 = 𝑉 ⋅ 𝐹, (7.50)

where 𝑉 is a block lower triangular unitary matrix with block entries of sizes
𝑚𝑖 × 𝜈𝑗 (𝑖, 𝑗 = 1, . . . , 𝑁) and 𝐹 is a block upper triangular unitary matrix with
block entries of sizes 𝜈𝑖 × 𝑛𝑗 (𝑖, 𝑗 = 1, . . . , 𝑁). Set 𝜌0 = 0, 𝑠0 = 0 and

𝜌𝑘 =

𝑘∑
𝑖=1

(𝜈𝑖 −𝑚𝑖), 𝑠𝑘 =

𝑘∑
𝑖=1

(𝜈𝑖 − 𝑛𝑖), 𝑘 = 1, . . . , 𝑁. (7.51)

By Lemma 7.3, applied to the transposed matrix 𝑉 𝑇 , the numbers 𝜌𝑘 are nonneg-
ative and the matrix 𝑉 admits the factorization

𝑉 = 𝑉𝑁𝑉𝑁−1 ⋅ ⋅ ⋅𝑉2𝑉1, (7.52)

with

𝑉1 = diag{𝑉1, 𝐼𝜙1}, 𝑉𝑘 = diag{𝐼𝜂𝑘 , 𝑉𝑘, 𝐼𝜙𝑘
}, 𝑘 = 2, . . . , 𝑁 − 1,

𝑉𝑁 = diag{𝐼𝜂𝑁 , 𝑉𝑁}, (7.53)

where 𝜂𝑘 =
∑𝑘−1
𝑖=1 𝑚𝑖, 𝜙𝑘 =

∑𝑁
𝑖=𝑘+1 𝜈𝑖 and 𝑉𝑘 (𝑘 = 2, . . . , 𝑁) are (𝑚𝑘+𝜌𝑘)×(𝑚𝑘+

𝜌𝑘) unitary matrices. By Lemma 7.3, applied to the matrix 𝐹 , all the numbers 𝑠𝑘
are nonnegative and one has the factorization

𝐹 = 𝐹1𝐹2 ⋅ ⋅ ⋅𝐹𝑁 , (7.54)

with

𝐹1 = diag{𝐹1, 𝐼𝜙1}, 𝐹𝑘 = diag{𝐼𝜒𝑘
, 𝐹𝑘, 𝐼𝜙𝑘

}, 𝑘 = 2, . . . , 𝑁 − 1,

𝐹𝑁 = diag{𝐼𝜒𝑁 , 𝐹𝑁}, (7.55)

where 𝜒𝑘 =
∑𝑘−1

𝑖=1 𝑛𝑖 and 𝐹𝑘 (𝑘 = 1, . . . , 𝑁) are (𝑛𝑘 + 𝑠𝑘) × (𝑛𝑘 + 𝑠𝑘) unitary
matrices.

Then the matrix 𝑈 has lower quasiseparable generators of orders 𝜌𝑘 (𝑘 =
1, . . . , 𝑁 − 1) and upper quasiseparable generators of orders 𝑠𝑘 (𝑘 = 1, . . . , 𝑁 − 1).
Moreover, a set of such quasiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 =
1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1); 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 =
2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1); 𝑑(𝑖) (𝑖 = 1, . . . , 𝑁) may be obtained as follows.
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Determine the generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 =
2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) from the partitions

𝑉𝑘 =

[
𝑝(𝑘) 𝑑𝑉 (𝑘)
𝑎(𝑘) 𝑞𝑉 (𝑘)

]
, 𝑘 = 2, . . . , 𝑁 − 1, (7.56)

𝑉𝑁 =
[
𝑝(𝑁) 𝑑𝑉 (𝑁)

]
, (7.57)

with the matrices 𝑝(𝑘), 𝑎(𝑘), 𝑑𝑉 (𝑘), 𝑞𝑉 (𝑘) of sizes 𝑚𝑘×𝜌𝑘−1, 𝜌𝑘×𝜌𝑘−1,𝑚𝑘×𝜈𝑘, 𝜌𝑘×
𝜈𝑘, respectively, and

𝐹𝑘 =

[
ℎ(𝑘) 𝑏(𝑘)
𝑑𝐹 (𝑘) 𝑔𝐹 (𝑘)

]
, 𝑘 = 2, . . . , 𝑁 − 1, (7.58)

𝐹𝑁 =

[
ℎ(𝑁)
𝑑𝐹 (𝑁)

]
, (7.59)

with the matrices ℎ(𝑘), 𝑏(𝑘), 𝑑𝐹 (𝑘), 𝑔𝐹 (𝑘) of sizes 𝑠𝑘−1×𝑛𝑘, 𝑠𝑘−1×𝑠𝑘, 𝜈𝑘×𝑛𝑘, 𝜈𝑘×
𝑠𝑘, respectively. Next compute the generators 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑔(𝑖) (𝑖 =
1, . . . , 𝑁 − 1), 𝑑(𝑖) (𝑖 = 1, . . . , 𝑁) via recursion relations as follows.

1. Compute the matrix

𝑊1 = 𝑉1𝐹1 (7.60)

and determine the matrices 𝑑(1), 𝑔(1), 𝑞(1), 𝛽1 of sizes 𝑚1×𝑛1,𝑚1× 𝑠1, 𝜌1×
𝑛1, 𝜌1 × 𝑠1 from the partition

𝑊1 =

[
𝑑(1) 𝑔(1)
𝑞(1) 𝛽1

]
. (7.61)

2. For 𝑘 = 2, . . . , 𝑁 − 1 compute the matrix

𝑊𝑘 = 𝑉𝑘

[
𝛽𝑘−1 0
0 𝐼𝜈𝑘

]
𝐹𝑘 (7.62)

and determine the matrices 𝑑(𝑘), 𝑔(𝑘), 𝑞(𝑘), 𝛽𝑘 of sizes 𝑚𝑘×𝑛𝑘,𝑚𝑘×𝑠𝑘, 𝜌𝑘×
𝑛𝑘, 𝜌𝑘 × 𝑠𝑘 from the partition

𝑊𝑘 =

[
𝑑(𝑘) 𝑔(𝑘)
𝑞(𝑘) 𝛽𝑘

]
, (7.63)

with the auxiliary variables 𝛽𝑘, which are 𝜌𝑘 × 𝑠𝑘 matrices.
3. Compute

𝑑(𝑁) = 𝑝(𝑁)𝛽𝑁−1ℎ(𝑁) + 𝑑𝑉 (𝑁)𝑑𝐹 (𝑁). (7.64)

Proof. By Lemma 5.3 and Lemma 5.6, one needs to check that the relations

𝑈(𝑘, 1 : 𝑘 − 1) = 𝑝(𝑘)𝑄𝑘−1, 𝑘 = 2, . . . , 𝑁, (7.65)
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with the matrices 𝑄𝑘 (𝑘 = 1, . . . , 𝑁 − 1) defined in (5.1) and

𝑈(1 : 𝑘 − 1, 𝑘) = 𝐺𝑘−1ℎ(𝑘), 𝑘 = 2, . . . , 𝑁, (7.66)

with the matrices 𝐺𝑘 (𝑘 = 1, . . . , 𝑁 − 1) defined in (5.5), and also

𝑈(𝑘, 𝑘) = 𝑑(𝑘), 𝑘 = 1, . . . , 𝑁 (7.67)

hold.

Define the matrices 𝐶𝑘 by

𝐶𝑘 = 𝑉𝑘 ⋅ ⋅ ⋅𝑉2𝑉1𝐹1 ⋅ ⋅ ⋅𝐹𝑘, 𝑘 = 1, . . . , 𝑁.

Using (7.52), (7.53) and (7.54), (7.55) we get

𝐶𝑘 =

(
𝐶𝑘 0
0 𝐼𝜙𝑘

)
, 𝑘 = 1, . . . , 𝑁, (7.68)

with matrices 𝐶𝑘 of sizes 𝜎𝑘 × 𝜎𝑘, where

𝜎𝑘 =

𝑘∑
𝑖=1

𝜈𝑖 = 𝜂𝑘+1 + 𝜌𝑘 = 𝜒𝑘+1 + 𝑠𝑘.

In particular, 𝜎0 = 0. Moreover, using (7.50), (7.52), (7.54) we have

𝑈 = (𝑉𝑁 ⋅ ⋅ ⋅𝑉𝑘+1)𝐶𝑘(𝐹𝑘+1 ⋅ ⋅ ⋅𝐹𝑁 ), 𝑘 = 1, . . . , 𝑁 − 1; 𝑈 = 𝐶𝑁 .

Furthermore from (7.53), (7.55) we get

𝑉𝑁 ⋅ ⋅ ⋅𝑉𝑘+1 =

(
𝐼𝜂𝑘+1

0
0 ∗

)
, 𝐹𝑘+1 ⋅ ⋅ ⋅𝐹𝑁 =

(
𝐼𝜒𝑘+1

0
0 ∗

)
and therefore

𝑈(1 : 𝑘, 1 : 𝑘) = 𝐶𝑘(1 : 𝜂𝑘+1, 1 : 𝜒𝑘+1), 𝑘 = 1, . . . , 𝑁. (7.69)

Here we treat 𝑈 as a block matrix with entries of sizes 𝑚𝑖×𝑛𝑗 and 𝐶𝑘 as a scalar
𝜎𝑘 × 𝜎𝑘 matrix.

Next we prove by induction that

𝐶𝑘 =

⎛⎝ 𝐶𝑘−1(1 : 𝜂𝑘, 1 : 𝜒𝑘) 𝐺𝑘−1ℎ(𝑘) 𝐺𝑘−1𝑏(𝑘)
𝑝(𝑘)𝑄𝑘−1 𝑑(𝑘) 𝑔(𝑘)
𝑎(𝑘)𝑄𝑘−1 𝑞(𝑘) 𝛽𝑘

⎞⎠ , 𝑘 = 1, . . . , 𝑁 − 1.

(7.70)

For 𝑘 = 1, using (7.60), (7.61) we get

𝐶1 = 𝑉1𝐹1 =

[
𝑑(1) 𝑔(1)
𝑞(1) 𝛽1

]
.
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Let for some 𝑘 with 1 ≤ 𝑘 ≤ 𝑁 − 2 the relation (7.70) hold. Using the equalities
(5.3) and (5.7) one can rewrite (7.70) in the form

𝐶𝑘 =

(
𝐶𝑘(1 : 𝜂𝑘+1, 1 : 𝜒𝑘+1) 𝐺𝑘

𝑄𝑘 𝛽𝑘

)
.

Using the fact that 𝐶𝑘+1 = 𝑉𝑘+1𝐶𝑘𝐹𝑘+1 and (7.68), (7.53) and (7.55) we obtain

𝐶𝑘+1 =

(
𝐼𝜂𝑘+1

0
0 𝑉𝑘+1

)⎛⎝ 𝐶𝑘(1 : 𝜂𝑘+1, 1 : 𝜒𝑘+1) 𝐺𝑘 0
𝑄𝑘 𝛽𝑘 0
0 0 𝐼𝜈𝑘+1

⎞⎠(
𝐼𝜒𝑘+1

0
0 𝐹𝑘+1

)
.

(7.71)
From here using the relations (7.56) and (7.58) we get

𝐶𝑘+1(𝜂𝑘+1 + 1 : 𝜂𝑘+2 + 𝜌𝑘+1, 1 : 𝜒𝑘+1) =𝑊𝑘+1 =

(
𝑝(𝑘 + 1)𝑄𝑘
𝑎(𝑘 + 1)𝑄𝑘

)
,

𝐶𝑘+1(1 : 𝜂𝑘+1, 𝜒𝑘+1 + 1 : 𝜒𝑘+2 + 𝑠𝑘+1) =
(
𝐺𝑘ℎ(𝑘 + 1) 𝐺𝑘𝑏(𝑘 + 1)

)
.

(7.72)

Next, using (7.62) and (7.63) we obtain

𝐶𝑘+1(𝜂𝑘+1 + 1 : 𝜂𝑘+2 + 𝜌𝑘+1, 𝜒𝑘+1 + 1 : 𝜒𝑘+2 + 𝑠𝑘+1)

= 𝑉𝑘+1

(
𝛽𝑘 0
0 𝐼𝜈𝑘+1

)
𝐹𝑘+1 =

(
𝑑(𝑘 + 1) 𝑔(𝑘 + 1)
𝑞(𝑘 + 1) 𝛽𝑘+1

)
.

(7.73)

Combining the equalities (7.71), (7.72), (7.73) we obtain

𝐶𝑘+1 =

⎛⎝ 𝐶𝑘(1 : 𝜂𝑘+1, 1 : 𝜒𝑘+1) 𝐺𝑘ℎ(𝑘 + 1) 𝐺𝑘𝑏(𝑘 + 1)
𝑝(𝑘 + 1)𝑄𝑘 𝑑(𝑘 + 1) 𝑔(𝑘 + 1)
𝑎(𝑘 + 1)𝑄𝑘 𝑞(𝑘 + 1) 𝛽𝑘

⎞⎠ ,
which completes the proof of (7.70).

Now combining the relations (7.69) and (7.70) we obtain the equalities (7.65),
(7.66) with 𝑘 = 2, . . . , 𝑁 − 1 and (7.67) with 𝑘 = 1, . . . , 𝑁 − 1.

Finally, in the same way as above we obtain the formula (7.71), but with
𝑘 = 𝑁 − 1:

𝐶𝑁 =

(
𝐼𝜂𝑁 0
0 𝑉𝑁

)⎛⎝ 𝐶𝑁−1(1 : 𝜂𝑁 , 1 : 𝜒𝑁 ) 𝐺𝑁−1 0
𝑄𝑁−1 𝛽𝑘 0
0 0 𝐼𝜈𝑁

⎞⎠(
𝐼𝜒𝑁 0
0 𝐹𝑁

)
.

From here using the relation 𝑈 = 𝐶𝑁 = 𝐶𝑁 and the partitions (7.57) and (7.59)
we obtain (7.65) and (7.66) with 𝑘 = 𝑁 . Using also the equality (7.64) we obtain
(7.67) with 𝑘 = 𝑁 . □

For the case of a block upper triangular matrix we obtain the following
statement.
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Corollary 7.9. Let 𝐹 be a unitary block upper triangular matrix with block entries
of sizes 𝑚𝑖 × 𝑛𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑁 . Set 𝑠0 = 0 and

𝑠𝑘 =

𝑘∑
𝑖=1

(𝑚𝑖 − 𝑛𝑖), 𝑘 = 1, . . . , 𝑁. (7.74)

By Lemma 7.3, the matrix 𝐹 admits the factorization (7.54), (7.55) with the
unitary matrices 𝐹1, 𝐹𝑘, 𝑘 = 2, . . . , 𝑁 − 1, 𝐹𝑁 of orders 𝑚1, 𝑛𝑘 + 𝑠𝑘, 𝑘 =
2, . . . , 𝑁 − 1, 𝑛𝑁 , respectively.

Then upper quasiseparable generators 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 =
2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) and diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁) of the
matrix 𝐹 are determined from the partitions

𝐹1 =
(
𝑑(1) 𝑔(1)

)
, (7.75)

𝐹𝑘 =

(
ℎ(𝑘) 𝑏(𝑘)
𝑑(𝑘) 𝑔(𝑘)

)
, 𝑘 = 2, . . . , 𝑁 − 1, (7.76)

𝐹𝑁 =

(
ℎ(𝑁)
𝑑(𝑁)

)
, (7.77)

with the matrices ℎ(𝑘), 𝑏(𝑘), 𝑑(𝑘), 𝑔(𝑘) of sizes 𝑠𝑘−1×𝑛𝑘, 𝑠𝑘−1×𝑠𝑘,𝑚𝑘×𝑛𝑘,𝑚𝑘×𝑠𝑘,
respectively.

Proof. We use Theorem 7.8 with 𝜈𝑖 = 𝑚𝑖 (𝑖 = 1, . . . , 𝑁) and 𝑉 = 𝐼. The numbers
𝜌𝑘 in (7.51) are all zero and the numbers 𝑠𝑘 are defined via (7.74). Hence, the
partition (7.61) takes the form (7.75). Moreover, from (7.62) and (7.58) it follows
that

𝑊𝑘 =
(
0 𝐼𝜈𝑘

)
𝐹𝑘 =

(
𝑑𝐹 (𝑘) 𝑔𝐹 (𝑘)

)
, 𝑘 = 2, . . . , 𝑁 − 1.

From here using (7.63) we get(
𝑑(𝑘) 𝑔(𝑘)

)
=
(
𝑑𝐹 (𝑘) 𝑔𝐹 (𝑘)

)
, 𝑘 = 2, . . . , 𝑁 − 1.

Inserting this in (7.58) we obtain (7.76). Finally, from (7.64) we get 𝑑(𝑁) = 𝑑𝐹 (𝑁)
and combining this with (7.59) we obtain (7.77). □

§7.4 Unitary Hessenberg matrices

Let 𝑈 = {𝑢𝑖𝑗}𝑁𝑖,𝑗=1 be an 𝑁 × 𝑁 scalar matrix. The matrix 𝑈 is called upper
Hessenberg if its entries below the first subdiagonal are zeros, i.e., 𝑢𝑖𝑗 = 0 for
𝑖 > 𝑗 + 1. We consider here the upper Hessenberg matrices that are also unitary.

One can show that using a similarity transformation with a diagonal unitary
matrix one can reduce an upper Hessenberg matrix to an upper Hessenberg one
with the real nonnegative subdiagonal entries. Indeed, if

𝑈(𝑖+ 1, 𝑖) = 𝜇𝑖𝑒
𝜑𝑖 , 𝑖 = 1, . . . , 𝑁 − 1,
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with 0 ≤ 𝜑𝑖 < 2𝜋 and 𝜇𝑖 ≥ 0, then setting 𝜓𝑖 =
∑𝑁−1

𝑗=𝑖 𝜑𝑗 , 𝑖 = 1, . . . , 𝑁−1, 𝜓𝑁 =

0 and taking 𝐷 = diag{𝑒𝜓𝑖, . . . , 𝑒𝜓𝑁} we obtain the upper Hessenberg matrix
𝑉 = 𝐷∗𝑈𝐷 with subdiagonal entries 𝜇𝑘 ≥ 0, 𝑘 = 1, . . . , 𝑁 − 1.

Theorem 7.10. Let 𝑈 be an 𝑁 ×𝑁 unitary upper Hessenberg matrix. The matrix
𝑈 admits the factorization

𝑈 = �̃�1�̃�2 ⋅ ⋅ ⋅ �̃�𝑁 , (7.78)

with

�̃�𝑘 = diag{𝐼𝑘−1, 𝑈𝑘, 𝐼𝑁−𝑘−1}, 𝑘 = 1, . . . , 𝑁 − 1, �̃�𝑁 = diag{𝐼𝑁−1, 𝜌𝑁}, (7.79)

where 𝑈𝑘 are 2× 2 unitary matrices and 𝜌𝑁 is a complex number with ∣𝜌𝑁 ∣ = 1.

Moreover, if the subdiagonal entries of the matrix 𝑈 are nonnegative the
matrices 𝑈𝑘, 𝑘 = 1, . . . , 𝑁 − 1, may be written in the form

𝑈𝑘 =

(
𝜌𝑘 𝜇𝑘
𝜇𝑘 −𝜌∗𝑘

)
, (7.80)

with 𝜇𝑘 ≥ 0, ∣𝜌𝑘∣2 + 𝜇2𝑘 = 1, and the matrix 𝑈 has the representation

𝑈 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝜌1𝜌∗0 −𝜌2𝜇1𝜌∗0 −𝜌3𝜇2𝜇1𝜌∗0 ⋅ ⋅ ⋅ −𝜌𝑁−1𝜇𝑁−2 . . . 𝜇1𝜌∗0 −𝜌𝑁𝜇𝑁−1 . . . 𝜇1𝜌∗0
𝜇1 −𝜌2𝜌∗1 −𝜌3𝜇2𝜌∗1 ⋅ ⋅ ⋅ −𝜌𝑁−1𝜇𝑁−2 . . . 𝜇2𝜌∗1 −𝜌𝑁𝜇𝑁−1 . . . 𝜇2𝜌∗1
0 𝜇2 −𝜌3𝜌∗2 ⋅ ⋅ ⋅ −𝜌𝑁−1𝜇𝑁−2 . . . 𝜇3𝜌∗2 −𝜌𝑁𝜇𝑁−1 . . . 𝜇3𝜌∗2
..
.

. . . 𝜇3

..

.
..
.

.

..
. . .

. . . −𝜌𝑁−1𝜌
∗
𝑁−2 −𝜌𝑁𝜇𝑁−1𝜌

∗
𝑁−2

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝜇𝑁−1 −𝜌𝑁𝜌∗𝑁−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(7.81)
where 𝜇𝑘 ≥ 0, ∣𝜌𝑘∣2 + 𝜇2𝑘 = 1 (𝑘 = 1, . . . , 𝑁 − 1), 𝜌0 = −1, ∣𝜌𝑁 ∣ = 1.

Proof. We treat 𝑈 as an (𝑁 + 1) × (𝑁 + 1) block matrix 𝑈 = {𝑢𝑖𝑗}𝑁𝑖,𝑗=0 with
entries of sizes 𝑚𝑖 × 𝑛𝑗 , where

𝑚0 = 𝑚1 = ⋅ ⋅ ⋅ = 𝑚𝑁−1 = 1, 𝑚𝑁 = 0, 𝑛0 = 0, 𝑛1 = 𝑛2 = ⋅ ⋅ ⋅ = 𝑛𝑁 = 1.
(7.82)

Relative to this partition 𝑈 is a block upper triangular unitary matrix. By Lemma
7.3, 𝑈 admits the factorization

𝑈 = �̃�0�̃�1 ⋅ ⋅ ⋅ �̃�𝑁−1�̃�𝑁 (7.83)

with the matrix �̃�0 = diag{𝑈0, 𝐼𝑁−1}, where 𝑈0 is a complex number with ∣𝑈0∣ =
1, and the matrices �̃�𝑘, 𝑘 = 1, . . . , 𝑁 , defined via (7.79) with 2×2 unitary matrices
𝑈𝑘, 𝑘 = 1, . . . , 𝑁 − 1, and a complex number 𝑈𝑁 = 𝜌𝑁 such that ∣𝜌𝑁 ∣ = 1.

Moreover, from the proof of Lemma 7.3 it follows that the number 𝑈0 and
the 2×2 unitary matrices �̃�𝑘, 𝑘 = 1, . . . , 𝑁−1 are determined from the conditions
(7.15). Since 𝑛0 = 0, the condition (7.15) for 𝑈0 has the form 𝑈0𝑤 = 𝑤′, where
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𝑤,𝑤′ are 1×0 empty matrices so that one can take 𝑈0 = 1, and therefore �̃�0 = 𝐼𝑁 .
Inserting �̃�0 = 𝐼 in (7.83) we obtain the factorization (7.78).

Next assume that the subdiagonal entries 𝜇𝑘, 𝑘 = 1, . . . , 𝑁 − 1 of the matrix
𝑈 are real and nonnegative. The formulas (7.15) mean that the 2 × 2 matrices
𝑈𝑘, 𝑘 = 1, . . . , 𝑁 − 1, are determined from the conditions

𝑈∗𝑘

(
𝜌𝑘
𝜇𝑘

)
=

(
1
0

)
, (7.84)

where 𝜇𝑘 ≥ 0, ∣𝜌𝑘∣2 + 𝜇2𝑘 = 1. One can easily check that the matrices 𝑈𝑘 defined
by (7.80) satisfy (7.84).

Thus, the matrix 𝑈 = {𝑢𝑖𝑗}𝑁𝑖,𝑗=0 with the sizes of the entries defined in (7.82)

is represented in the factorized form (7.83) with �̃�0 = diag{1, 𝐼𝑁−1}, the matrices
�̃�𝑘 as in (7.79) with the matrices 𝑈𝑘 of the form (7.80), and �̃�𝑁 = diag{𝐼𝑁−1, 𝜌𝑁}.
Set 𝜌0 = −1. By Corollary 7.9, upper quasiseparable generators and diagonal
entries of the matrix 𝑈 are given by

𝑔(𝑖) = −𝜌∗𝑖 , 𝑖 = 0, . . . , 𝑁 − 1; ℎ(𝑗) = 𝜌𝑗 , 𝑗 = 1, . . . , 𝑁 ;

𝑏(𝑘) = 𝜇𝑘, 𝑘 = 1, . . . , 𝑁 − 1

and 𝑑(𝑘) = 𝜇𝑘, 𝑘 = 1, . . . , 𝑁 − 1 (the entries 𝑑(0) and 𝑑(𝑁) are 1 × 0 and 0 × 1
empty matrices). Hence the representation (7.81) follows. □

§7.5 Efficient generators

Here we introduce a special type of quasiseparable generators. Using such genera-
tors in algorithms allows in some cases to reduce the complexity of computations.
We consider here for simplicity matrices with special partitions into blocks.

Definiton 7.11. Let 𝐴 be a block matrix with entries of sizes 𝑚𝑖 × 𝑚𝑗 , 𝑖, 𝑗 =
1, . . . , 𝑁 , where 𝑚1 = 𝑚2 = ⋅ ⋅ ⋅ = 𝑚𝑁−1 = 𝑚,𝑚𝑁 = 𝑟, with lower quasiseparable
generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1)
with orders equal to 𝑟. These lower quasiseparable generators are called efficient if
they are in the left normal form and the 𝑟× 𝑟 matrices 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) are
upper triangular and have upper quasiseparable generators with orders equal 𝑚.

We prove here that for any matrix with a special partition with given qua-
siseparable generators one can obtain a set of efficient quasiseparable generators.

Theorem 7.12. Let 𝐴 be a block matrix with entries of sizes 𝑚𝑖 × 𝑚𝑗 , 𝑖, 𝑗 =
1, . . . , 𝑁 , where 𝑚1 = 𝑚2 = ⋅ ⋅ ⋅ = 𝑚𝑁−1 = 𝑚,𝑚𝑁 = 𝑟 with lower quasiseparable
generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1)
with orders equal to 𝑟. A set of efficient lower quasiseparable generators 𝑝(𝑖) (𝑖 =
2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), �̃�(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of the matrix 𝐴 is
determined using the following algorithm.
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1.1. Compute the QR factorization

𝑝(𝑁) = 𝑝𝑉 (𝑁)𝑋𝑁 , (7.85)

where 𝑝𝑉 (𝑁) is a unitary matrix of size 𝑟 × 𝑟, 𝑋𝑁 is a matrix of size 𝑟 × 𝑟.
1.2. For 𝑘 = 𝑁 − 1, . . . , 2 perform the following. Compute the QR factorization[

𝑝(𝑘)
𝑋𝑘+1𝑎(𝑘)

]
= 𝑉𝑘

(
𝑋𝑘
0𝑚×𝑟

)
, (7.86)

where 𝑉𝑘 is a unitary matrix of size (𝑚+𝑟)× (𝑚+𝑟), 𝑋𝑘 is a matrix of size 𝑟×𝑟.
Determine the matrices 𝑝𝑉 (𝑘), 𝑎𝑉 (𝑘), 𝑑𝑉 (𝑘), 𝑞𝑉 (𝑘) of sizes 𝑚 × 𝑟, 𝑟 × 𝑟, 𝑚 ×
𝑚, 𝑟 ×𝑚 from the partition

𝑉𝑘 =

[
𝑝𝑉 (𝑘) 𝑑𝑉 (𝑘)
𝑎𝑉 (𝑘) 𝑞𝑉 (𝑘)

]
. (7.87)

1.3. For 𝑘 = 1, . . . , 𝑁 − 1 compute the matrices

𝑞′(𝑘) = 𝑋𝑘+1𝑞(𝑘) (7.88)

of sizes 𝑟 ×𝑚.
2.1. Set 𝑄1 = 𝐼𝑟 and for 𝑘 = 2, . . . , 𝑁 − 1 compute the QR factorizations

𝑎𝑉 (𝑘)𝑄𝑘−1 = 𝑄𝑘�̃�(𝑘), (7.89)

where 𝑄𝑘 is an 𝑟× 𝑟 unitary matrix and �̃�(𝑘) is an 𝑟× 𝑟 upper triangular matrix.
2.2. For 𝑘 = 1, . . . , 𝑁 − 1 compute the matrices

𝑞(𝑘) = 𝑄∗𝑘𝑞
′(𝑘), 𝑝(𝑘 + 1) = 𝑝𝑉 (𝑘 + 1)𝑄𝑘 (7.90)

of sizes 𝑟 ×𝑚 and 𝑚× 𝑟 respectively.
Moreover, for any 𝑘 with 2 ≤ 𝑘 ≤ 𝑁 − 1 the upper quasiseparable generators

𝑔
(𝑘)
𝛼 (𝑖) (𝑖 = 1, . . . , 𝑟 − 1), ℎ

(𝑘)
𝛼 (𝑗) (𝑗 = 2, . . . , 𝑟), 𝑎

(𝑘)
𝛼 (𝑡) (𝑡 = 2, . . . , 𝑟 − 1) and

diagonal entries 𝑑
(𝑘)
𝛼 (𝑡) (𝑡 = 1, . . . , 𝑟) of the matrix �̃�(𝑘) are determined using the

following algorithm.

1. Define the unitary matrix 𝑊 (𝑘) by

𝑊 (𝑘) =

(
𝐼𝑚 0𝑚×𝑟
0𝑟×𝑚 𝑄∗𝑘

)
𝑉𝑘

(
𝑄𝑘−1 0𝑟×𝑚
0𝑚×𝑟 𝐼𝑚

)
(7.91)

and set �̂�
(𝑘)
1 =𝑊 (𝑘).

2. For 𝑖 = 1, . . . , 𝑟 − 1 perform the following. Set

𝑤
(𝑘)
𝑖 = �̂�

(𝑘)
𝑖 (1 : 𝑚+ 1, 1) (7.92)



§7.5. Efficient generators 159

and determine the unitary (𝑚+ 1)× (𝑚+ 1) matrix 𝑊
(𝑘)
𝑖 from the condition

(𝑊
(𝑘)
𝑖 )∗𝑤(𝑘)

𝑖 =

(
1

0𝑚×1

)
. (7.93)

Compute the (𝑚+ 𝑟 + 1− 𝑖)× (𝑚+ 𝑟 + 1− 𝑖) matrix

𝑍
(𝑘)
𝑖 =

(
(𝑊

(𝑘)
𝑖 )∗ 0
0 𝐼𝑟−𝑖

)
�̂�

(𝑘)
𝑖 (7.94)

and determine the (𝑚+ 𝑟 − 𝑖)× (𝑚+ 𝑟 − 𝑖) matrix �̂� (𝑘)
𝑖+1 from the partition

𝑍
(𝑘)
𝑖 =

(
1 0

0 �̂�
(𝑘)
𝑖+1

)
. (7.95)

3. Set
𝑊 (𝑘)
𝑟 = �̂� (𝑘)

𝑟 (7.96)

which is an (𝑚+ 1)× (𝑚+ 1) sized matrix.

4. Determine the elements 𝑔
(𝑘)
𝛼 (𝑖) (𝑖 = 1, . . . , 𝑟 − 1), ℎ

(𝑘)
𝛼 (𝑗) (𝑗 = 2, . . . , 𝑟), 𝑎

(𝑘)
𝛼 (𝑡)

(𝑡 = 2, . . . , 𝑟 − 1) and 𝑑
(𝑘)
𝛼 (𝑡) (𝑡 = 1, . . . , 𝑟) from the partitions

𝑊
(𝑘)
1 (𝑚+ 1, :) =

(
𝑑
(𝑘)
𝛼 (1) 𝑔

(𝑘)
𝛼 (1)

)
, (7.97)

𝑊
(𝑘)
𝑖 =

(
ℎ
(𝑘)
𝛼 (𝑖) 𝑏

(𝑘)
𝛼 (𝑖)

𝑑
(𝑘)
𝛼 (𝑖) 𝑔

(𝑘)
𝛼 (𝑖)

)
, 𝑖 = 2, . . . , 𝑟 − 1, (7.98)

𝑊 (𝑘)
𝑟 (:, 1) =

(
ℎ
(𝑘)
𝛼 (𝑟)

𝑑
(𝑘)
𝛼 (𝑟)

)
, (7.99)

with the complex numbers 𝑑
(𝑘)
𝛼 (𝑖) and the matrices 𝑔

(𝑘)
𝛼 (𝑖), ℎ

(𝑘)
𝛼 (𝑖), 𝑏

(𝑘)
𝛼 (𝑖) of sizes

1×𝑚,𝑚× 1,𝑚×𝑚, respectively.
Proof. From the formulas (7.85)–(7.88) it follows that

𝑝(𝑘) = 𝑝𝑉 (𝑘)𝑋𝑘, 𝑘 = 2, . . . , 𝑁 ; 𝑋𝑘+1𝑎(𝑘) = 𝑎𝑉 (𝑘)𝑋𝑘, 𝑘 = 2, . . . , 𝑁 − 1;

𝑞′(𝑘) = 𝑋𝑘+1𝑞(𝑘), 𝑘 = 1, . . . , 𝑁 − 1,

with 𝑝∗𝑉 (𝑁)𝑝𝑉 (𝑁) = 𝐼𝑟 , 𝑎∗𝑉 (𝑘)𝑎𝑉 (𝑘) + 𝑝
∗
𝑉 (𝑘)𝑝𝑉 (𝑘) = 𝐼𝑟, 𝑘 = 𝑁 − 1, . . . , 2.

By Theorem 5.29, this means that 𝑝𝑉 (𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞′(𝑗) (𝑗 = 1, . . . , 𝑁 −
1), 𝑎𝑉 (𝑘) (𝑘 = 2, . . . , 𝑁 − 1) are lower quasiseparable generators of the matrix 𝐴
in the left normal form.

Next, formulas (7.89), (7.90) and Theorem 5.20 imply that 𝑝(𝑖) (𝑖 = 2, . . . ,
𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), �̃�(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) are lower quasiseparable
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generators of the matrix 𝐴. Consider the unitary matrices𝑊 (𝑘) from (7.91). Using
(7.87) we get

𝑊 (𝑘) =

[
𝑝𝑉 (𝑘)𝑄𝑘−1 𝑑𝑉 (𝑘)
𝑄∗𝑘𝑎𝑉 (𝑘)𝑄𝑘−1 𝑄∗𝑘𝑞𝑉 (𝑘)

]
, 𝑘 = 2, . . . , 𝑁 − 1.

Comparing this with (7.89), (7.90) we see that

𝑊 (𝑘) =

[
𝑝(𝑘) 𝑑𝑉 (𝑘)
�̃�(𝑘) 𝑄∗𝑘𝑞𝑉 (𝑘)

]
, 𝑘 = 2, . . . , 𝑁 − 1.

Hence, that the generators 𝑝(𝑖), 𝑞(𝑗), �̃�(𝑘) are in the left normal form.

Next, for any 𝑘 with 2 ≤ 𝑘 ≤ 𝑁−1, since the matrix �̃�(𝑘) is upper triangular,
the unitary (𝑚+ 𝑟)× (𝑚+ 𝑟) matrix 𝑊 (𝑘) may be treated as a block matrix with
entries of sizes 𝜈𝑖 × 𝜇𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑟, where

𝜈1 = 𝑚+ 1, 𝜈2 = ⋅ ⋅ ⋅ = 𝜈𝑟 = 1, 𝜇1 = ⋅ ⋅ ⋅ = 𝜇𝑟−1 = 1, 𝜇𝑟 = 𝑚+ 1.

By Lemma 7.3, 𝑊 (𝑘) admits the factorization

𝑊 (𝑘) = �̃�
(𝑘)
1 �̃�

(𝑘)
2 ⋅ ⋅ ⋅ �̃� (𝑘)

𝑟 ,

with

�̃�
(𝑘)
1 = diag{𝑊 (𝑘)

1 , 𝐼𝑟−1},
�̃�

(𝑘)
𝑖 = diag{𝐼𝑖−1,𝑊

(𝑘)
𝑖 , 𝐼𝑟−𝑖}, 𝑖 = 2, . . . , 𝑟 − 1,

�̃� (𝑘)
𝑟 = diag{𝐼𝑟−1,𝑊

(𝑘)
𝑟 },

where 𝑊
(𝑘)
𝑖 are unitary matrices of size (𝑚 + 1) × (𝑚 + 1) defined via the rela-

tions (7.91)–(7.96). By Corollary 7.9, upper quasiseparable generators 𝑔(𝑘)(𝑖) (𝑖 =
1, . . . , 𝑟 − 1), ℎ(𝑘)(𝑗) (𝑗 = 2, . . . , 𝑟), 𝑏(𝑘)(𝑡) (𝑡 = 2, . . . , 𝑟 − 1) and diagonal entries
𝑑(𝑘)(𝑡) (𝑡 = 1, . . . , 𝑟) of the matrix 𝑊 (𝑘) are determined from the partitions

𝑊
(𝑘)
1 =

(
𝑑(𝑘)(1) 𝑔(𝑘)(1)

)
,

with the elements 𝑑(𝑘)(1), 𝑔(𝑘)(1) of sizes (𝑚+ 1)× 1, (𝑚+ 1)×𝑚, respectively,

𝑊
(𝑘)
𝑖 =

(
ℎ(𝑘)(𝑖) 𝑏(𝑘)(𝑖)

𝑑(𝑘)(𝑖) 𝑔(𝑘)(𝑖)

)
, 𝑖 = 2, . . . , 𝑟 − 1,

with the complex numbers 𝑑(𝑘)(𝑖) and the matrices 𝑔(𝑘)(𝑖), ℎ(𝑘)(𝑖), 𝑏(𝑘)(𝑖) of sizes
1×𝑚,𝑚× 1,𝑚×𝑚 respectively,

𝑊 (𝑘)
𝑟 =

(
ℎ(𝑘)(𝑟)

𝑑(𝑘)(𝑟)

)
,

with the elements ℎ(𝑘)(𝑟), 𝑑(𝑘)(𝑟) of sizes 𝑚 × (𝑚 + 1), 1 × (𝑚 + 1), respectively.
Using the fact that �̃�(𝑘) = 𝑊 (𝑘)(𝑚 + 1 : 𝑚 + 𝑟, 1 : 𝑟) we obtain the formulas
(7.97)–(7.99) for the upper quasiseparable generators and diagonal entries of the
matrix �̃�(𝑘). □
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In order to compute the complexity of the algorithm in the previous theorem
we proceed as follows. We will not take into account operations of assignment,
scalar multiplications by 1 or additions by 0.

In formula (7.91), each of the two matrix multiplications builds an 𝑟×(𝑚+𝑟)
matrix where each entry is computed by means of 𝑟 arithmetical multiplications
and 𝑟 − 1 arithmetical additions, hence formula (7.91) uses less than 4𝑟2(𝑚 + 𝑟)
arithmetical operations.

Formula (7.93) requires 𝜌(𝑚+1) operations, where 𝜌(𝑘) is the cost of inverting
a 𝑘 × 𝑘 matrix by a standard method.

In formula (7.94), the matrix multiplication builds an (𝑚 + 1) × (𝑚 + 𝑟 +
1 − 𝑖) matrix where each entry is computed by means of 𝑚 + 1 arithmetical
multiplications and 𝑚 arithmetical additions, hence formula (7.94) uses less than
2(𝑚+ 1)2(𝑚+ 𝑟) arithmetical operations.

Finally, in formula (7.90) each of the two matrix multiplications builds an
𝑟 ×𝑚 matrix where each entry is computed by means of 𝑟 arithmetical multipli-
cations and 𝑟− 1 arithmetical additions, hence formula (7.90) uses less than 4𝑟2𝑚
arithmetical operations.

In total, Step 2.2 of the algorithm performs (7.90) 𝑁 − 1 times, while (7.91)–
(7.94) are computed 𝑁 − 2 times.

If we denote 𝑟𝑀 = max(𝑟,𝑚), then the total complexity 𝑐 of the algorithm
satisfies

𝑐 < (12𝑟𝑀 (𝑟𝑀 + 1)2 + 𝜌(𝑟𝑀 + 1))(𝑁 − 2) + 4(𝑟𝑀 )3(𝑁 − 1) < 80(𝑟𝑀 )3𝑁,

therefore the algorithm is of complexity 𝑂((𝑟𝑀 )3𝑁). For scalar matrices 𝑟𝑀 = 1
and there are no additions so that

𝑐 < 19𝑁 − 36.

§7.6 Comments

Factorization representations of unitary matrices were used in the monograph [15]
and the papers [23], [4]. The representations of unitary matrices via products
of Givens matrices were studied by S. Delvaux and M. Van Barel in [14]. The
representations of unitary Hessenberg matrices were studied intensively in the
literature, see for instance the papers by W.B. Gragg [32] and P.E. Gill, G.H.
Golub, W. Murray and M.A. Saunders [34]. Results close to the ones from Section
5 are presented in the paper by S. Delvaux and M. Van Barel [12].

The presentation of the material in such a form as in this chapter appears
for the first time.



Part II

Completion of Matrices
with Specified Bands



Introduction to Part II

This part is a natural extension of the previous one. It is also of matrix theoretical
character, mostly dedicated to completion problems for different classes of partially
specified matrices. The main material is contained in the first three chapters, which
deal with completion to Green matrices of matrices specified on a band. The
novelty is the approach in which the algorithms are described directly in terms
of the unspecified entries, without additional intermediate steps (compare with
[10, 11, 40]). The direct algorithm of completion to a Green matrix is presented in
Chapter 8. The properties of the completions are studied in detail in Chapter 9.
Chapter 10 contains applications of the completion method to some special types of
specified bands. Chapter 11 is dedicated to application for the completion problem
of mutually inverse matrices. Here is considered the problem when the original
matrix is specified in its lower (with the diagonal) triangular section and the
inverse matrix is specified in its strictly upper triangular section. In the final
chapter we consider the problem of completion of a partially specified matrix with
a given lower triangular part to a unitary matrix.

The material of this part, except for its last chapter, is not used in the sub-
sequent three parts. The last chapter is used in Part VII. More than that, Part II,
except for the last chapters, does not deal directly with semiseparable or quasisep-
arable representations of matrices. However matrices with small quasiseparable
orders appear in examples of Part II. The reader interested in a shortcut to al-
gorithms for semi- and quasi-separable representations may skip this part at the
first reading.



Chapter 8

Completion to Green Matrices

In this chapter the problem of completing a given band 𝐴 = {𝐴𝑖𝑗 , ∣𝑖−𝑗∣ ≤ 𝑛}𝑁𝑖,𝑗=1,

𝑛 ≥ 1 to a Green matrix of order 𝑛 is considered. The submatrices of the band 𝐴,

𝐵𝑘 = 𝐴(𝑘 − 𝑛+ 1 : 𝑘, 𝑘 − 𝑛+ 1 : 𝑘), 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1, (8.1)

play a key role.

If all the matrices 𝐵𝑘 are invertible then the completion exists and is unique.
If some of the matrices 𝐵𝑘 are not invertible then it may be that the completion
does not exist or is not unique.

The unique completion can be obtained by computing the principal leading
submatrices of the given matrix.

§8.1 Auxiliary relations

We start with the following auxiliary result.

Lemma 8.1. Let 𝑄 be a square matrix which has a partition

𝑄 =

⎛⎝ 𝐵′ 𝑋 Γ′

𝑌 𝐵 𝑍
Γ′′ 𝑈 𝐵′′

⎞⎠ ,
where 𝐵′, 𝐵,𝐵′′ are square matrices. Assume that the matrix 𝐵 is invertible.

Then:

1) The relations

rank

(
𝑋 Γ′

𝐵 𝑍

)
= rank𝐵, rank

(
𝑌 𝐵
Γ′′ 𝑈

)
= rank𝐵 (8.2)
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hold if and only if Γ′ = 𝑋𝐵−1𝑍, Γ′′ = 𝑈𝐵−1𝑌 . Moreover, in this case the follow-
ing factorizations hold:

𝑄 =

⎛⎝ 𝐼 𝑋𝐵−1 0
0 𝐼 0
0 0 𝐼

⎞⎠⎛⎝ 𝛿 0 0
0 𝐵 𝑍
0 𝑈 𝐵′′

⎞⎠⎛⎝ 𝐼 0 0
𝐵−1𝑌 𝐼 0
0 0 𝐼

⎞⎠ , (8.3)

where 𝛿 = 𝐵′ −𝑋𝐵−1𝑌 , and

𝑄 =

⎛⎝ 𝐼 0 0
0 𝐼 0
0 𝑈𝐵−1 𝐼

⎞⎠⎛⎝ 𝐵′ 𝑋 0
𝑌 𝐵 0
0 0 𝛾

⎞⎠⎛⎝ 𝐼 0 0
0 𝐼 𝐵−1𝑍
0 0 𝐼

⎞⎠ , (8.4)

where 𝛾 = 𝐵′′ − 𝑈𝐵−1𝑍.

2) Assume that the conditions (8.2) are valid. Then the following conditions are
equivalent:

1. the matrix 𝑄 is invertible;

2. the submatrix

(
𝐵′ 𝑋
𝑌 𝐵

)
and the element 𝛾 are invertible;

3. the submatrix

(
𝐵 𝑍
𝑈 𝐵′′

)
and the element 𝛿 are invertible.

If these conditions hold, set(
𝐵′ 𝑋
𝑌 𝐵

)−1

=

(
𝐵′11 𝐵′12
𝐵′21 𝐵′22

)
,

(
𝐵 𝑍
𝑈 𝐵′′

)−1

=

(
𝐵′′11 𝐵′′12
𝐵′′21 𝐵′′22

)
.

Then the inverse matrix 𝑄−1 is given by the formulas

𝑄−1 =

⎛⎝ 𝐵′11 𝐵′12 0
𝐵′21 𝐵′22 +𝐵−1𝑍𝛾−1𝑈𝐵−1 −𝐵−1𝑍𝛾−1

0 −𝛾−1𝑈𝐵−1 𝛾−1

⎞⎠ ; (8.5)

𝑄−1 =

⎛⎝ 𝛿−1 −𝛿−1𝑋𝐵−1 0
−𝐵−1𝑌 𝛿−1 𝐵′′11 +𝐵−1𝑌 𝛿−1𝑋𝐵−1 𝐵′′12

0 𝐵′′21 𝐵′′22

⎞⎠ . (8.6)

Proof. 1) Since the matrix 𝐵 invertible one obviously gets

rank

(
𝑋
𝐵

)
= rank

(
𝐵 𝑍

)
= rank𝐵.

Hence, by Lemma 2.10, the condition rank

(
𝑋 Γ′

𝐵 𝑍

)
= rank𝐵 is equivalent

to the fact that the matrix

(
𝑋 Γ′

𝐵 𝑍

)
is the unique minimal rank completion
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of the partially specified matrix

(
𝑋 ?
𝐵 𝑍

)
. By Corollary 2.11, the element Γ′

in such completion is determined by the formula Γ′ = 𝑆𝑍 with the matrix 𝑆
such that 𝑆𝐵 = 𝑋 , i.e., 𝑆 = 𝑋𝐵−1. Consequently, Γ′ = 𝑋𝐵−1𝑍. Applying the

same arguments to the matrix transpose to

(
𝑌 𝐵
Γ′′ 𝑈

)
one obtains the formula

Γ′′ = 𝑈𝐵−1𝑌 .

Using the equalities Γ′ = 𝑋𝐵−1𝑍, Γ′′ = 𝑈𝐵−1𝑌 one can directly check the
validity of the relations (8.3), (8.4).

2) From the formula (8.4) we conclude that the matrix 𝑄 is invertible if and

only if the submatrix

(
𝐵′ 𝑋
𝑌 𝐵

)
and the element 𝛾 are invertible, in which case

𝑄−1 =

⎛⎝ 𝐼 0 0
0 𝐼 −𝐵−1𝑍
0 0 𝐼

⎞⎠⎛⎝ 𝐵′11 𝐵′12 0
𝐵′21 𝐵′22 0
0 0 𝛾−1

⎞⎠⎛⎝ 𝐼 0 0
0 𝐼 0
0 −𝑈𝐵−1 𝐼

⎞⎠ .
Multiplying the factors in the right-hand side of this equality one obtains (8.5).

3) From the formula (8.3) we conclude that the matrix 𝑄 is invertible if and

only if the submatrix

(
𝐵 𝑍
𝑈 𝐵′′

)
and the element 𝛿 are invertible, in which case

𝑄−1 =

⎛⎝ 𝐼 0 0
−𝐵−1𝑌 𝐼 0

0 0 𝐼

⎞⎠⎛⎝ 𝛿−1 0 0
0 𝐵′′11 𝐵′′12
0 𝐵′′21 𝐵′′22

⎞⎠⎛⎝ 𝐼 −𝑋𝐵−1 0
0 𝐼 0
0 0 𝐼

⎞⎠ .
Multiplying the factors in the right-hand side of this equality one obtains (8.6).

□

§8.2 Completion formulas

In this section we derive explicit formulas for completion of a given band 𝐴 =
{𝐴𝑖𝑗 , ∣𝑖− 𝑗∣ ≤ 𝑛}, 𝑛 ≥ 1 to a Green matrix 𝐴 of order 𝑛.

Theorem 8.2. Let 𝒜 be a partially specified block matrix with block entries of sizes
𝑚𝑖 ×𝑚𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁 , with a given band 𝐴 = {𝐴𝑖𝑗 , ∣𝑖 − 𝑗∣ ≤ 𝑛}. Assume that
all the submatrices of the band 𝐴 of the form

𝐵𝑘 = 𝐴(𝑘 − 𝑛+ 1 : 𝑘, 𝑘 − 𝑛+ 1 : 𝑘), 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1 (8.7)

are invertible.

Then the band 𝐴 has a unique completion 𝐴 to a Green matrix of order 𝑛.
One obtains this completion by successive computations of its principal leading
submatrices

𝐴𝑘 := 𝐴(1 : 𝑘, 1 : 𝑘), 𝑘 = 𝑛+ 1, . . . , 𝑁

as follows.



168 Chapter 8. Completion to Green Matrices

In the first step set

𝐴𝑛+1 = 𝐴(1 : 𝑛+ 1, 1 : 𝑛+ 1). (8.8)

Let for some 𝑘 with 𝑛+ 1 ≤ 𝑘 ≤ 𝑁 − 1 the matrix 𝐴𝑘 be given. The matrix
𝐴𝑘+1 is obtained via the following operations. Start by partitioning 𝐴𝑘 in the form

𝐴𝑘 =

[
𝐵′𝑘 𝑋𝑘
𝑌𝑘 𝐵𝑘

]
(8.9)

with 𝐵𝑘 defined in (8.7). Next, compute the submatrix 𝐴𝑘+1 by the formula

𝐴𝑘+1 =

⎡⎣ 𝐵′𝑘 𝑋𝑘 𝐸𝑘
𝑌𝑘 𝐵𝑘 𝑍𝑘
𝐹𝑘 𝑈𝑘 𝑀𝑘

⎤⎦ , (8.10)

where 𝑀𝑘, 𝑍𝑘, 𝑈𝑘 are determined from the band via the equalities

𝑀𝑘 = 𝐴(𝑘+1, 𝑘+1), 𝑍𝑘 = 𝐴(𝑘−𝑛+1 : 𝑘, 𝑘+1), 𝑈𝑘 = 𝐴(𝑘+1, 𝑘−𝑛+1 : 𝑘)
(8.11)

and 𝐸𝑘, 𝐹𝑘 are computed by the formulas

𝐸𝑘 = 𝑋𝑘𝐵
−1
𝑘 𝑍𝑘, 𝐹𝑘 = 𝑈𝑘𝐵

−1
𝑘 𝑌𝑘. (8.12)

Finally, set

𝐴 = 𝐴𝑁 . (8.13)

Proof. We must prove that the matrix 𝐴 defined by the relations (8.7)–(8.13)
satisfies (6.11) and (6.13). Consider the submatrices of 𝐴 of the form

Ω𝑘 = 𝐴(1 : 𝑘, 𝑘−𝑛+1 : 𝑁), Ψ𝑘 = 𝐴(𝑘−𝑛+1 : 𝑁, 1 : 𝑘), 𝑘 = 𝑛+1, . . . , 𝑁−1.
(8.14)

By the definition of rank numbers,

𝑟𝑈𝑘,−𝑛(𝐴) = rankΩ𝑘, 𝑟𝐿𝑘,−𝑛(𝐴) = rankΨ𝑘, 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1,

and thus the conditions (6.11), (6.13) are equivalent to

rankΩ𝑘 ≤ 𝛼𝑘, rankΨ𝑘 ≤ 𝛼𝑘, 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1 (8.15)

with 𝛼𝑘 = 𝑚𝑘−𝑛+1 + ⋅ ⋅ ⋅ +𝑚𝑘. Comparing the definitions (8.10) and (8.14), we
see that

Ω𝑘 =

(
𝑋𝑘 𝐸𝑘 ∗
𝐵𝑘 𝑍𝑘 ∗

)
, Ψ𝑘 =

⎛⎝ 𝑌𝑘 𝐵𝑘
𝐹𝑘 𝑈𝑘
∗ ∗

⎞⎠ , 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1.



§8.2. Completion formulas 169

Here each 𝐵𝑘 is an invertible matrix of order 𝛼𝑘 and hence the conditions (8.15)
are equivalent to

rankΩ𝑘 = rankΨ𝑘 = 𝛼𝑘, 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1. (8.16)

Next, using (8.12) one gets(
𝐸𝑗
𝑍𝑗

)
=

(
𝑋𝑗
𝐵𝑗

)
𝐵−1
𝑗 𝑍𝑗 ,

(
𝐹𝑗 𝑈𝑗

)
= 𝑈𝑗𝐵

−1
𝑗

(
𝑌𝑗 𝐵𝑗

)
, 𝑗 = 𝑛+1, . . . , 𝑁−1.

These equalities imply that

𝐴(1 : 𝑗, 𝑗 + 1) = 𝐴(1 : 𝑗, 𝑗 − 𝑛+ 1 : 𝑗)(𝐵−1
𝑗 𝑍𝑗), 𝑗 = 𝑛+ 1, . . . , 𝑁 − 1 (8.17)

and

𝐴(𝑗 + 1, 1 : 𝑗) = (𝑈𝑗𝐵
−1
𝑗 )𝐴(𝑗 − 𝑛+ 1 : 𝑗, 1 : 𝑗), 𝑗 = 𝑛+ 1, . . . , 𝑁 − 1. (8.18)

Let 𝑛+ 1 ≤ 𝑘 ≤ 𝑗 ≤ 𝑁 − 1. Comparing the first 𝑘 rows in (8.17) one obtains

𝐴(1 : 𝑘, 𝑗+1) = 𝐴(1 : 𝑘, 𝑗−𝑛+1 : 𝑗)(𝐵−1
𝑗 𝑍𝑗), 𝑘 = 𝑛+1, . . . , 𝑁−1, 𝑘 ≤ 𝑗 ≤ 𝑁−1.

(8.19)
This means that every column of the matrix Ω𝑘, starting with the column with the
index 𝛼𝑘+1, is a linear combination of the previous columns of Ω𝑘. It follows that
all the columns of the matrix Ω𝑘 are linear combinations of its first 𝛼𝑘 columns,

i.e., the columns of the matrix

[
𝑋𝑘
𝐵𝑘

]
and consequently

rank

(
𝑋𝑘
𝐵𝑘

)
= rankΩ𝑘.

In a similar way one gets

rank
(
𝑌𝑘 𝐵𝑘

)
= rankΨ𝑘.

But since 𝐵𝑘 is an invertible matrix of order 𝛼𝑘,

rankΩ𝑘 = rankΨ𝑘 = rank𝐵𝑘 = 𝛼𝑘.

To prove the uniqueness, suppose 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 is a completion of 𝐴 satis-
fying (6.11), (6.13), which is equivalent to (8.15) with the matrices Ω𝑘,Ψ𝑘 defined
in (8.14). Since the matrices 𝐵𝑘 of the form (8.7) are invertible matrices of sizes
𝛼𝑘 × 𝛼𝑘, one gets

rankΩ𝑘 = rankΨ𝑘 = rank𝐵𝑘, 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1. (8.20)

Consider the submatrices

𝑊𝑘 = 𝐴(1 : 𝑘, 𝑘−𝑛+1 : 𝑘+1), 𝐶𝑘 = 𝐴(𝑘−𝑛+1 : 𝑘+1, 1 : 𝑘), 𝑘 = 𝑛+1, . . . , 𝑁−1
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Comparing with (8.10) one gets

𝑊𝑘 =

(
𝑋𝑘 𝐸𝑘
𝐵𝑘 𝑍𝑘

)
, 𝐶𝑘 =

(
𝑌𝑘 𝐵𝑘
𝐹𝑘 𝑈𝑘

)
.

Each 𝑊𝑘 contains 𝐵𝑘 and is contained in Ω𝑘 and each 𝐶𝑘 contains 𝐵𝑘 and is
contained in Ψ𝑘. Hence (8.20) implies

rank𝑊𝑘 = rank𝐶𝑘 = rank𝐵𝑘, 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1,

and using the first part of Lemma 8.1 we conclude that

𝐸𝑘 = 𝑋𝑘𝐵
−1
𝑘 𝑍𝑘, 𝐹𝑘 = 𝑈𝑘𝐵

−1
𝑘 𝑌𝑘, 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1.

This means that all the unspecified entries of 𝒜 are uniquely determined by for-
mulas (8.12). □

Example 8.3. This example uses Theorem 8.2 in order to find the Green completion
of order 1 of a given scalar band

𝐴 = {𝐴𝑖𝑗 , ∣𝑖− 𝑗∣ ≤ 1} =

⎛⎜⎜⎜⎜⎜⎜⎝
0 𝛽1 ? ? ? ?
𝛼1 1 𝛽2 ? ? ?
? 𝛼2 1 𝛽3 ? ?
? ? 𝛼3 1 𝛽4 ?
? ? ? 𝛼4 1 𝛽5
? ? ? ? 𝛼5 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

For this band 𝑛 = 1 and 𝑁 = 6 and all the submatrices of 𝐴 of the form (8.7) are
scalars, namely

𝐵𝑘 = 𝐴(𝑘 − 𝑛+ 1 : 𝑘, 𝑘 − 𝑛+ 1 : 𝑘) = 1, 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1

and are invertible. Then 𝐴 has a unique completion 𝐴 which is a Green matrix
of order 1. One obtains this completion by successive computation of its principal
leading submatrices

𝐴𝑘 := 𝐴(1 : 𝑘, 1 : 𝑘), 𝑘 = 2, . . . , 6

as follows.

In the first step, set as in (8.8)

𝐴2 = 𝐴𝑛+1 = 𝐴(1 : 𝑛+ 1, 1 : 𝑛+ 1) = 𝐴(1 : 2, 1 : 2) =

(
0 𝛽1
𝛼1 1

)
.

Let for 𝑘 = 2 with 2 = 𝑛+ 1 ≤ 𝑘 ≤ 𝑁 − 1 = 5 the matrix 𝐴𝑘 be given. The
matrix 𝐴3 = 𝐴𝑘+1 is obtained via the following operations. Start with partitioning
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𝐴2 in the form of (8.9), namely 𝐴𝑘 =

(
𝐵′𝑘 𝑋𝑘
𝑌𝑘 𝐵𝑘

)
, with 𝐵𝑘 = 𝐵2 = 1 defined

in (8.7). It follows that 𝐵′2 = 0, 𝑋2 = 𝛽1, 𝑌2 = 𝛼1.

Next compute the submatrix 𝐴𝑘+1 = 𝐴3 by (8.10), namely

𝐴𝑘+1 = 𝐴3 =

⎛⎝ 𝐵′𝑘 𝑋𝑘 𝐸𝑘
𝑌𝑘 𝐵𝑘 𝑍𝑘
𝐹𝑘 𝑈𝑘 𝑀𝑘

⎞⎠ ,
where 𝑀𝑘, 𝑈𝑘, 𝑍𝑘 are determined from the band via (8.11):

𝑀𝑘 =𝑀2 = 𝐴(𝑘 + 1, 𝑘 + 1) = 𝐴(3, 3) = 1,

𝑍𝑘 = 𝑍2 = 𝐴(𝑘 − 𝑛+ 1 : 𝑘, 𝑘 + 1) = 𝐴(2, 3) = 𝛽2,

𝑈𝑘 = 𝑈2 = 𝐴(𝑘 + 1, 𝑘 − 𝑛+ 1 : 𝑘) = 𝐴(3, 2) = 𝛼2

and 𝐸𝑘, 𝐹𝑘 are computed by (8.12):

𝐸2 = 𝐸𝑘 = 𝑋𝑘𝐵
−1
𝑘 𝑍𝑘 = 𝛽1𝛽2, 𝐹2 = 𝐹𝑘 = 𝑈𝑘𝐵

−1
𝑘 𝑌𝑘 = 𝛼2𝛼1.

It follows that

𝐴3 =

⎛⎝ 0 𝛽1 𝛽1𝛽2
𝛼1 1 𝛽2
𝛼2𝛼1 𝛼2 1

⎞⎠ .
We continue in the same way and obtain the completion

𝐴 = 𝐴6

=

⎛⎜⎜⎜⎜⎜⎜⎝
0 𝛽1 𝛽1𝛽2 𝛽1𝛽2𝛽3 𝛽1𝛽2𝛽3𝛽4 𝛽1𝛽2𝛽3𝛽4𝛽5
𝛼1 1 𝛽2 𝛽2𝛽3 𝛽2𝛽3𝛽4 𝛽2𝛽3𝛽4𝛽5
𝛼2𝛼1 𝛼2 1 𝛽3 𝛽3𝛽4 𝛽3𝛽4𝛽5
𝛼3𝛼2𝛼1 𝛼3𝛼2 𝛼3 1 𝛽4 𝛽4𝛽5
𝛼4𝛼3𝛼2𝛼1 𝛼4𝛼3𝛼2 𝛼4𝛼3 𝛼4 1 𝛽5
𝛼5𝛼4𝛼3𝛼2𝛼1 𝛼5𝛼4𝛼3𝛼2 𝛼5𝛼4𝛼3 𝛼5𝛼4 𝛼5 0

⎞⎟⎟⎟⎟⎟⎟⎠ .
♢

Example 8.4. This example uses Theorem 8.2 in order to find the Green completion
of order 2 of a scalar given band

𝐶 = {𝐶𝑖𝑗 , ∣𝑖− 𝑗∣ ≤ 2} =

⎛⎜⎜⎜⎜⎜⎜⎝
0 𝛽1 𝛽1𝛽2 ? ? ?
𝛼1 1 𝛽2 𝛽2𝛽3 ? ?
𝛼2𝛼1 𝛼2 1 𝛽3 𝛽3𝛽4 ?
? 𝛼3𝛼2 𝛼3 1 𝛽4 𝛽4𝛽5
? ? 𝛼4𝛼3 𝛼4 1 𝛽5
? ? ? 𝛼5𝛼4 𝛼5 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where 𝛼𝑘𝛽𝑘 ∕= 1, 𝑘 = 2, 3, 4 and 𝛼𝑘𝛽𝑘 ∕= 0, 𝑘 = 1, 5.
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For this band 𝑛 = 2 and 𝑁 = 6 and all the submatrices of 𝐶 of the form
(8.7), namely

𝐵𝑘 = 𝐶(𝑘 − 𝑛+ 1 : 𝑘, 𝑘 − 𝑛+ 1 : 𝑘) = 𝐶(𝑘 − 1 : 𝑘, 𝑘 − 1 : 𝑘)

=

(
𝛾𝑘 𝛽𝑘−1

𝛼𝑘−1 𝛿𝑘

)
, 𝑘 = 2, . . . , 6,

are invertible, where 𝛾𝑘 = 1, 𝑘 = 3, . . . , 6 and 𝛾2 = 0 while 𝛿𝑘 = 1, 𝑘 = 2, . . . , 5,
𝛿6 = 0. Then 𝐶 has a unique completion 𝐶 which is a Green matrix of order
2. One obtains this completion by successive computation of its principal leading
submatrices

𝐶𝑘 := 𝐶(1 : 𝑘, 1 : 𝑘), 𝑘 = 3, . . . , 6

as follows.

In the first step, set as in (8.8)

𝐶3 = 𝐶𝑛+1 = 𝐶(1 : 𝑛+ 1, 1 : 𝑛+ 1) = 𝐶(1 : 3, 1 : 3) =

⎛⎝ 0 𝛽1 𝛽1𝛽2
𝛼1 1 𝛽2
𝛼2𝛼1 𝛼2 1

⎞⎠ .
Note that this matrix is the same as the matrix 𝐴3 in Example 8.3.

Let for 𝑘 = 3 with 3 = 𝑛+ 1 ≤ 𝑘 ≤ 𝑁 − 1 = 5 the matrix 𝐶𝑘 be given. The
matrix 𝐶4 = 𝐶𝑘+1 is obtained via the following operations. Start with partitioning

𝐶3 in the form (8.9), namely 𝐶𝑘 =

(
𝐵′𝑘 𝑋𝑘
𝑌𝑘 𝐵𝑘

)
, with 𝐵𝑘 = 𝐵3 =

(
1 𝛽2
𝛼2 1

)
defined in (8.7). It follows that 𝐵−1

3 = 1
1−𝛼2𝛽2

(
1 −𝛽2

−𝛼2 1

)
and 𝐵′3 = 0, 𝑋3 =(

𝛽1 𝛽1𝛽2
)
, 𝑌3 =

(
𝛼1

𝛼2𝛼1

)
.

Next compute the submatrix 𝐶𝑘+1 = 𝐶4 by the formula (8.10), namely

𝐶𝑘+1 = 𝐶4 =

⎛⎝ 𝐵′𝑘 𝑋𝑘 𝐸𝑘
𝑌𝑘 𝐵𝑘 𝑍𝑘
𝐹𝑘 𝑈𝑘 𝑀𝑘

⎞⎠ ,
where 𝑀𝑘, 𝑈𝑘, 𝑍𝑘 are determined from the band via (8.11):

𝑀𝑘 =𝑀3 = 𝐶(𝑘 + 1, 𝑘 + 1) = 𝐶(4, 4) = 1,

𝑍𝑘 = 𝑍3 = 𝐶(𝑘 − 𝑛+ 1 : 𝑘, 𝑘 + 1) = 𝐶(2 : 3, 4) =

(
𝛽2𝛽3
𝛽3

)
,

𝑈𝑘 = 𝑈3 = 𝐶(𝑘 + 1, 𝑘 − 𝑛+ 1 : 𝑘) = 𝐶(4, 2 : 3) =
(
𝛼3𝛼2 𝛼3

)
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and 𝐸𝑘, 𝐹𝑘 are computed by (8.12):

𝐸3 = 𝐸𝑘 = 𝑋𝑘𝐵
−1
𝑘 𝑍𝑘 =

(
𝛽1 𝛽1𝛽2

) 1

1− 𝛼2𝛽2

(
1 −𝛽2

−𝛼2 1

)(
𝛽2𝛽3
𝛽3

)
=
(
𝛽1 𝛽1𝛽2

)( 0
𝛽3

)
= 𝛽1𝛽2𝛽3,

𝐹3 = 𝐹𝑘 = 𝑈𝑘𝐵
−1
𝑘 𝑌𝑘 =

(
𝛼3𝛼2 𝛼3

) 1

1− 𝛼2𝛽2

(
1 −𝛽2

−𝛼2 1

)(
𝛼1

𝛼2𝛼1

)
=
(
𝛼3𝛼2 𝛼3

)( 𝛼1

0

)
= 𝛼3𝛼2𝛼1.

It follows that

𝐶4 =

⎛⎜⎜⎝
0 𝛽1 𝛽1𝛽2 𝛽1𝛽2𝛽3
𝛼1 1 𝛽2 𝛽2𝛽3
𝛼2𝛼1 𝛼2 1 𝛽3
𝛼3𝛼2𝛼1 𝛼3𝛼2 𝛼3 1

⎞⎟⎟⎠ .
Continuing this way, we finally get

𝐶 = 𝐶6

=

⎛⎜⎜⎜⎜⎜⎜⎝
0 𝛽1 𝛽1𝛽2 𝛽1𝛽2𝛽3 𝛽1𝛽2𝛽3𝛽4 𝛽1𝛽2𝛽3𝛽4𝛽5
𝛼1 1 𝛽2 𝛽2𝛽3 𝛽2𝛽3𝛽4 𝛽2𝛽3𝛽4𝛽5
𝛼2𝛼1 𝛼2 1 𝛽3 𝛽3𝛽4 𝛽3𝛽4𝛽5
𝛼3𝛼2𝛼1 𝛼3𝛼2 𝛼3 1 𝛽4 𝛽4𝛽5
𝛼4𝛼3𝛼2𝛼1 𝛼4𝛼3𝛼2 𝛼4𝛼3 𝛼4 1 𝛽5
𝛼5𝛼4𝛼3𝛼2𝛼1 𝛼5𝛼4𝛼3𝛼2 𝛼5𝛼4𝛼3 𝛼5𝛼4 𝛼5 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Note that this matrix is the same as the matrix 𝐴 = 𝐴6 in Example 8.3. ♢
Example 8.5. This example uses Theorem 8.2 in order to find the Green completion
of order 2 of the given scalar band

𝐴 = {𝐴𝑖𝑗 , ∣𝑖− 𝑗∣ ≤ 2} =

⎛⎜⎜⎜⎜⎜⎜⎝
1 2 3 ? ? ?
6 1 2 3 ? ?
5 6 1 2 3 ?
? 5 6 1 2 3
? ? 5 6 1 2
? ? ? 5 6 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

For this band 𝑛 = 2 and 𝑁 = 6 and all the submatrices of 𝐴 of the form
(8.7), namely

𝐵𝑘 = 𝐴(𝑘 − 𝑛+ 1 : 𝑘, 𝑘 − 𝑛+ 1 : 𝑘) = 𝐴(𝑘 − 1 : 𝑘, 𝑘 − 1 : 𝑘) =

(
1 2
6 1

)
,
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are invertible. Then 𝐴 has a unique completion 𝐴 which is a Green matrix of
order 2. One obtains this completion by successive computation of its principal
leading submatrices

𝐴𝑘 := 𝐴(1 : 𝑘, 1 : 𝑘), 𝑘 = 3, . . . , 6,

as follows.

In the first step, set as in (8.8)

𝐴3 = 𝐴𝑛+1 = 𝐴(1 : 𝑛+ 1, 1 : 𝑛+ 1) = 𝐴(1 : 3, 1 : 3) =

⎛⎝ 1 2 3
6 1 2
5 6 1

⎞⎠ .
Let for 𝑘 = 3 with 3 = 𝑛+ 1 ≤ 𝑘 ≤ 𝑁 − 1 = 5 the matrix 𝐴𝑘 be given. The

matrix 𝐴4 = 𝐴𝑘+1 is obtained via the following operations. Start with partitioning

𝐴3 in the form (8.9), namely 𝐴𝑘 =

(
𝐵′𝑘 𝑋𝑘
𝑌𝑘 𝐵𝑘

)
, with 𝐵𝑘 = 𝐵3 =

(
1 2
6 1

)
. It

follows that 𝐵−1
3 = 1

11

( −1 2
6 −1

)
and 𝐵′3 = 1, 𝑋3 =

(
2 3

)
, 𝑌3 =

(
6
5

)
.

Next compute the submatrix 𝐴𝑘+1 = 𝐴4 by (8.10), namely

𝐴𝑘+1 = 𝐴4 =

⎛⎝ 𝐵′𝑘 𝑋𝑘 𝐸𝑘
𝑌𝑘 𝐵𝑘 𝑍𝑘
𝐹𝑘 𝑈𝑘 𝑀𝑘

⎞⎠ ,
where 𝑀𝑘, 𝑈𝑘, 𝑍𝑘 are determined from the band via (8.11):

𝑀𝑘 =𝑀3 = 𝐴(𝑘 + 1, 𝑘 + 1) = 𝐴(4, 4) = 1,

𝑍𝑘 = 𝑍3 = 𝐴(𝑘 − 𝑛+ 1 : 𝑘, 𝑘 + 1) = 𝐴(2 : 3, 4) =

(
3
2

)
,

𝑈𝑘 = 𝑈3 = 𝐴(𝑘 + 1, 𝑘 − 𝑛+ 1 : 𝑘) = 𝐴(4, 2 : 3) =
(
5 6

)
and 𝐸𝑘, 𝐹𝑘 are computed by (8.12):

𝐸3 = 𝐸𝑘 = 𝑋𝑘𝐵
−1
𝑘 𝑍𝑘 =

(
2 3

) 1

11

( −1 2
6 −1

)(
3
2

)
=
(
2 3

)( 1
11
16
11

)
=

50

11
,

𝐹3 = 𝐹𝑘 = 𝑈𝑘𝐵
−1
𝑘 𝑌𝑘 =

(
5 6

) 1

11

( −1 2
6 −1

)(
6
5

)
=
(
5 6

)( 4
11
31
11

)
=

206

11
.
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It follows that

𝐴4 =

⎛⎜⎜⎝
1 2 3 50

11
6 1 2 3
5 6 1 2
206
11 5 6 1

⎞⎟⎟⎠ .
In order to obtain for 𝑘 = 4 the matrix 𝐴5 = 𝐴𝑘+1 start with partition-

ing 𝐴4 in the form (8.9), with 𝐵𝑘 = 𝐵4 =

(
1 2
6 1

)
. It follows that 𝐵−1

4 =

1
11

( −1 2
6 −1

)
, while

𝐵′4 =
(

1 2
6 1

)
, 𝑋4 =

(
3 50

11
2 3

)
, and 𝑌4 =

(
5 6
206
11 5

)
.

Next compute 𝑀4, 𝑈4, 𝑍4 from the band via (8.11):

𝑀𝑘 =𝑀4 = 𝐴(𝑘 + 1, 𝑘 + 1) = 𝐴(5, 5) = 1,

𝑍𝑘 = 𝑍4 = 𝐴(𝑘 − 𝑛+ 1 : 𝑘, 𝑘 + 1) = 𝐴(3 : 4, 5) =

(
3
2

)
,

𝑈𝑘 = 𝑈4 = 𝐴(𝑘 + 1, 𝑘 − 𝑛+ 1 : 𝑘) = 𝐴(5, 3 : 4) =
(
5 6

)
and 𝐸𝑘, 𝐹𝑘 are computed by (8.12):

𝐸4 = 𝐸𝑘 = 𝑋𝑘𝐵
−1
𝑘 𝑍𝑘 =

(
3 50

11
2 3

)
1

11

( −1 2
6 −1

)(
3
2

)
=

(
3 50

11
2 3

)(
1
11
16
11

)
=

(
833
121
50
11

)
,

𝐹4 = 𝐹𝑘 = 𝑈𝑘𝐵
−1
𝑘 𝑌𝑘 =

(
5 6

) 1

11

( −1 2
6 −1

)(
5 6
206
11 5

)
=
(

31
11

4
11

)( 5 6
206
11 5

)
=
(

2529
121

206
11

)
.

It follows that

𝐴5 =

⎛⎜⎜⎜⎜⎝
1 2 3 50

11
833
121

6 1 2 3 50
11

5 6 1 2 3
206
11 5 6 1 2

2529
121

206
11 5 6 1

⎞⎟⎟⎟⎟⎠ .

Finally, in order to obtain for 𝑘 = 5 the matrix 𝐴6 = 𝐴𝑘+1 start with

partitioning 𝐴5 in the form (8.9), with 𝐵𝑘 = 𝐵5 =

(
1 2
6 1

)
defined in (8.7). It
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follows that 𝐵−1
5 = 1

11

( −1 2
6 −1

)
while

𝐵′5 = 𝐴3, 𝑋5 =

⎛⎝ 50
11

833
121

3 50
11

2 3

⎞⎠ , and 𝑌5 =

(
206
11 5 6

2529
121

206
11 5

)
.

Next compute 𝑀5, 𝑈5, 𝑍5 from the band via (8.11):

𝑀𝑘 =𝑀5 = 𝐴(𝑘 + 1, 𝑘 + 1) = 𝐴(6, 6) = 1,

𝑍𝑘 = 𝑍5 = 𝐴(𝑘 − 𝑛+ 1 : 𝑘, 𝑘 + 1) = 𝐴(4 : 5, 6) =

(
3
2

)
,

𝑈𝑘 = 𝑈5 = 𝐴(𝑘 + 1, 𝑘 − 𝑛+ 1 : 𝑘) = 𝐴(6, 4 : 5) =
(
5 6

)
and compute 𝐸𝑘, 𝐹𝑘 by (8.12):

𝐸5 = 𝐸𝑘 = 𝑋𝑘𝐵
−1
𝑘 𝑍𝑘 =

⎛⎝ 50
11

833
121

3 50
11

2 3

⎞⎠ 1

11

( −1 2
6 −1

)(
3
2

)

=

⎛⎝ 50
11

833
121

3 50
11

2 3

⎞⎠(
1
11
16
11

)
=

⎛⎝ 13878
1331
833
121
50
11

⎞⎠ ,
𝐹5 = 𝐹𝑘 = 𝑈𝑘𝐵

−1
𝑘 𝑌𝑘 =

(
5 6

) 1

11

( −1 2
6 −1

)(
206
11 5 6

2529
121

206
11 5

)
=
(

31
11

4
11

)( 206
11 5 6

2529
121

206
11 5

)
=
(

80362
1331

2529
121

206
11

)
.

It follows that

𝐴 = 𝐴6 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 2 3 50

11
833
121

13878
1331

6 1 2 3 50
11

833
121

5 6 1 2 3 50
11

206
11 5 6 1 2 3

2529
121

206
11 5 6 1 2

80362
1331

2529
121

206
11 5 6 1

⎞⎟⎟⎟⎟⎟⎟⎠ .
♢

One can give simple examples showing that if some of the matrices 𝐵𝑘 are
not invertible, then the desired completion does not exist or is not unique. Indeed
consider the partially specified matrix

𝐴 =

⎛⎝ 1 1 𝑥
1 0 1
𝑥 1 1

⎞⎠ ,
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where 𝑥 denotes an unspecified entry. In this case 𝑛 = 1 and a completion which
is a Green matrix of order one does not exist. Another example is

𝐴 =

⎛⎝ 1 0 𝑥
0 0 1
𝑥 1 1

⎞⎠ .
Here every choice of 𝑥 defines a completion which is a Green matrix of order one.

Remark. In the conditions of Theorem 8.2 consider the partially specified matrix
𝒜𝑡(𝒜∗) with a given band 𝐴𝑡(𝐴∗). One can check easily that the completion of
𝐴𝑡(𝐴∗) to a Green matrix of order 𝑛 coincides with the matrix 𝐴𝑡(𝐴∗).

§8.3 Comments

The material of the first section may be found in textbooks of linear algebra, for
instance the condition (8.2) is contained in the monograph by F.R. Gantmakher
[31]. The basic Theorem 8.2 was obtained in [26].



Chapter 9

Completion to Matrices with Band
Inverses and with Minimal Ranks

Here we study properties of the unique Green completion obtained in Theorem
8.2 of the previous Chapter 8. In the first section it is shown that this completion
is invertible if and only if all the matrices

𝐷𝑘 = 𝐴(𝑘 − 𝑛 : 𝑘, 𝑘 − 𝑛 : 𝑘), 𝑘 = 𝑛+ 1, . . . , 𝑁 (9.1)

are invertible. In this case all the principal leading submatrices

𝐴(𝑗,𝑘) = 𝐴(𝑗 : 𝑘, 𝑗 : 𝑘), 1 ≤ 𝑗 < 𝑗 + 𝑛 ≤ 𝑘 ≤ 𝑁
of the completion are also invertible.

In the second section we discuss the properties of the LDU factorization of
the completion. It is shown that 𝐿 and 𝑈 are lower and respectively upper Green
matrices of order 𝑛. Also, 𝐴−1 is a band matrix of order 𝑛 and in its corresponding
factorization 𝐿−1 is a lower band of order 𝑛, while 𝑈−1 is an upper band of order
𝑛 and moreover the elements of the matrices 𝐿,𝐷,𝑈 can be determined explicitly
with straightforward formulas.

In the third section we study some remarkable properties of the principal
submatrices of the completions to Green matrices. If all the matrices𝐵𝑘 of the form
(8.1) are invertible a permanence principle holds true: the Green completion of a
matrix 𝐴(𝑗,𝑘) coincides with the matrix of the form 𝐺(𝑗,𝑘) of the Green completion.
If also the matrices 𝐷𝑘 of the form (9.1) are invertible, then each element of the
inverse of the Green completion of the band coincides with the corresponding
element of the inverse of the Green completion of the matrix 𝐴(𝑗,𝑘). Moreover, if
𝐷𝑘 are invertible the band of order 𝑛+1 of the Green completion 𝐴 of order 𝑛 of
a band of order 𝑛 has a unique completion which is a Green matrix of order 𝑛+1,
and the latter coincides with 𝐴. See in this respect Examples 8.3 and 8.4.

In the fourth section we use the permanence principle for the inverse to a
Green matrix in order to obtain the inverse explicitly.

 179 Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1  
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory: 
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_9, © Springer Basel 2014
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In the last section we show that the completion obtained in Chapter 8 has
minimal rank if and only if all the matrices 𝐷𝑘 are of minimal rank.

§9.1 Completion to invertible matrices

At first we get necessary and sufficient conditions for the completion obtained in
Theorem 8.2 to be invertible. If these conditions hold we also obtain the invert-
ibility of the principal submatrices of the completion.

Theorem 9.1. Let 𝒜 be a partially specified block matrix with block entries of sizes
𝑚𝑖×𝑚𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑁 , with a given band 𝐴 = {𝐴𝑖𝑗 , ∣𝑖−𝑗∣ ≤ 𝑛}. Assume that all
the submatrices of the band 𝐴 of the form (8.7) are invertible. Then by Theorem
8.2, the band 𝐴 has a unique completion 𝐴 which is a Green matrix of order 𝑛.

The matrix 𝐴 is invertible if and only if all the submatrices of 𝐴 of the form

𝐷𝑘 = 𝐴(𝑘 − 𝑛 : 𝑘, 𝑘 − 𝑛 : 𝑘), 𝑘 = 𝑛+ 1, . . . , 𝑁 (9.2)

are invertible. Moreover, in this case all the submatrices of 𝐴 of the form

𝐴(𝑗,𝑘) = 𝐴(𝑗 : 𝑘, 𝑗 : 𝑘), 1 ≤ 𝑗, 𝑘 ≤ 𝑁, 𝑘 − 𝑗 ≥ 𝑛 (9.3)

are invertible.

Proof. Assume that the matrix 𝐴 from the statement of the theorem is invertible.
Let us prove that this implies invertibility of all the matrices 𝐴(𝑗,𝑘) of the form
(9.3). From this, setting 𝑗 = 𝑘 − 𝑛, we will obtain invertibility of all the matrices
𝐷𝑘 of the form (9.2).

We consider partitions of 𝐴 in the form

𝐴 =

⎛⎝ 𝐵′𝑘 𝑋𝑘 Γ′𝑘
𝑌𝑘 𝐵𝑘 𝑍𝑘
Γ′′𝑘 𝑈𝑘 𝐵′′𝑘

⎞⎠ , 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1, (9.4)

where the matrices 𝐵𝑘 are defined in (8.7). Here one has

(
𝐵′𝑘 𝑋𝑘
𝑌𝑘 𝐵𝑘

)
= 𝐴(1,𝑘).

Since 𝐴 is a Green matrix of order 𝑛 and the matrices 𝐵𝑘 are invertible, one
obtains

rank

(
𝑋𝑘 Γ′𝑘
𝐵𝑘 𝑍𝑘

)
= rank

(
𝑌𝑘 𝐵𝑘
Γ′′𝑘 𝑈𝑘

)
= rank𝐵𝑘, 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1.

From this using the second part of Lemma 8.1 we conclude that all the submatrices
𝐴(1,𝑘) with 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1 are invertible.

Next it will be proved that the remaining submatrices 𝐴(𝑗,𝑘) of the form (9.3)
are also invertible. For any 𝑘 ∈ {𝑛+2, . . . , 𝑁} and 𝑗 ∈ {2, . . . , 𝑘−𝑛} consider the



§9.1. Completion to invertible matrices 181

partition of the matrix 𝐴(1,𝑘) in the form

𝐴(1,𝑘) =

⎛⎝ 𝐵′𝑗0 𝑋𝑗0 Γ′𝑗0
𝑌𝑗0 𝐵𝑗0 𝑍𝑗0
Γ′′𝑗0 𝑈𝑗0 𝐵′′𝑗0

⎞⎠ , (9.5)

where 𝑗0 = 𝑗 + 𝑛 − 1 and 𝐵𝑗0 is defined by (8.7), i.e., 𝐵𝑗0 = 𝐴(𝑗 : 𝑗0, 𝑗 : 𝑗0).

One has

(
𝐵𝑗0 𝑍𝑗0
𝑈𝑗0 𝐵′′𝑗0

)
= 𝐴(𝑗,𝑘). It is easy to see that the invertible submatrix

𝐴(1,𝑘), 𝑘 ≥ 𝑛+ 2, of the Green matrix 𝐴 of order 𝑛 is also a Green matrix of the
same order. Indeed, one obviously has

rank𝐴(1,𝑘)(1 : 𝑗, 𝑗 − 𝑛+ 1 : 𝑘) = rank𝐴(1 : 𝑗, 𝑗 − 𝑛+ 1 : 𝑘)

≤ rank𝐴(1 : 𝑗, 𝑗 − 𝑛+ 1 : 𝑁)

=

𝑗∑
𝑖=𝑗−𝑛+1

𝑚𝑖 := 𝛼𝑗 , 𝑗 = 𝑛+ 1, . . . , 𝑘 − 1

and similarly

rank𝐴(1,𝑘)(𝑗 − 𝑛+ 1 : 𝑘, 1 : 𝑗) ≤ 𝛼𝑗 , 𝑗 = 𝑛+ 1, . . . , 𝑘 − 1.

Since the numbers 𝛼𝑗 are minimal rank numbers for invertible matrices 𝐴(1,𝑘) one
gets

rank𝐴(1,𝑘)(1 : 𝑗, 𝑗 − 𝑛+ 1 : 𝑘) = rank𝐴(1,𝑘)(𝑗 − 𝑛+ 1 : 𝑘, 1 : 𝑗) = 𝛼𝑗 ,

𝑗 = 𝑛+ 1, . . . , 𝑘 − 1.

Thus taking into account that the matrix 𝐵𝑗0 is invertible one obtains

rank

(
𝑋𝑗0 Γ′𝑗0
𝐵𝑗0 𝑍𝑗0

)
= rank

(
𝑌𝑗0 𝐵𝑗0
Γ′′𝑗0 𝑈𝑗0

)
= rank𝐵𝑗0 .

Hence, since the matrix 𝐴(1,𝑘) is invertible, by virtue of the second part of Lemma
8.1 it follows that the submatrix 𝐴(𝑗,𝑘) is invertible.

Assume that all the submatrices 𝐷𝑘 of the form (9.2) are invertible. It will
be proved by induction that this implies that all the submatrices of the matrix 𝐴
of the form 𝐴(1,𝑘) = 𝐴(1 : 𝑘, 1 : 𝑘), 𝑘 = 𝑛 + 1, . . . , 𝑁 are invertible. Taking here
𝑘 = 𝑁 we will obtain that the matrix 𝐴 = 𝐴(1,𝑁) is invertible. For 𝑘 = 𝑛+ 1 one
has 𝐴(1,𝑛+1) = 𝐷𝑛+1, which is invertible. Assume that for some 𝑘 ≥ 𝑛 + 1 the
matrix 𝐴(1,𝑘) is invertible. For the matrix 𝐴(1,𝑘+1) consider the partition

𝐴(1,𝑘+1) =

⎛⎝ 𝐵′𝑘 𝑋𝑘 Γ′𝑘
𝑌𝑘 𝐵𝑘 𝑍𝑘
Γ′′𝑘 𝑈𝑘 𝑀𝑘

⎞⎠ ,
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where the matrix 𝐵𝑘 is defined in (8.7) and 𝑀𝑘 = 𝐴(𝑘 + 1, 𝑘 + 1). Here one has(
𝐵′𝑘 𝑋𝑘
𝑌𝑘 𝐵𝑘

)
= 𝐴(1,𝑘),

(
𝐵𝑘 𝑍𝑘
𝑈𝑘 𝑀𝑘

)
= 𝐷𝑘+1.

Since the matrices 𝐵𝑘 and 𝐷𝑘+1 are invertible, the Schur complement 𝛾𝑘 =𝑀𝑘 −
𝑈𝑘𝐵

−1
𝑘 𝑍𝑘 is also invertible. The matrix 𝐴(1,𝑘) is invertible by the assumption.

Using again the second part of Lemma 8.1, we conclude that the matrix 𝐴(1,𝑘+1)

is invertible. □
Example 9.2. The present example is an illustration of Theorem 9.1. Consider
𝒜 in Example 8.3 which is a partially specified scalar matrix with a given band
𝐴 = {𝐴𝑖𝑗 , ∣𝑖− 𝑗∣ ≤ 𝑛}, where 𝑛 = 1. Then all the submatrices of the band 𝐴 of the
form (8.7) are scalars equal to 1 and thus invertible. Consider also the completion
𝐴 of 𝐴 to a Green matrix of order 1 in the same Example 8.3.

By Theorem 9.1, the matrix 𝐴 is invertible if and only if all the submatrices
of 𝐴 of the form (9.2), namely

𝐷2 =

(
0 𝛽1
𝛼1 1

)
, 𝐷𝑘 =

(
1 𝛽𝑘−1

𝛼𝑘−1 1

)
, 𝑘 = 3, 4, 5, 𝐷𝑘 =

(
1 𝛽5
𝛼5 0

)
,

are invertible. Moreover, in this case all the submatrices of 𝐴 of the form (9.3),
namely 𝐴(𝑗,𝑘) = 𝐴(𝑗 : 𝑘, 𝑗 : 𝑘), 1 ≤ 𝑗, 𝑘 ≤ 𝑁, 𝑘 − 𝑗 ≥ 𝑛 are invertible as well.

It is easy to see that all the matrices 𝐷𝑘 are invertible if and only if 𝛼𝑘𝛽𝑘 ∕=
1, 𝑘 = 3, 4, 5 and 𝛼𝑘𝛽𝑘 ∕= 0, 𝑘 = 2, 6. In the sequel it will be shown that all the
matrices 𝐴(𝑗 : 𝑘, 𝑗 : 𝑘), 1 ≤ 𝑗 < 𝑘 ≤ 6, are also invertible in this case. ♢

As a direct corollary of Theorem 6.6, Theorem 8.2 and Theorem 9.1 one
obtains the following result.

Theorem 9.3. Let 𝒜 be a partially specified block matrix with block entries of sizes
𝑚𝑖 ×𝑚𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁 , with a given band 𝐴 = {𝐴𝑖𝑗 , ∣𝑖 − 𝑗∣ ≤ 𝑛}. Assume that
all the submatrices of 𝐴 of the form (8.7), (9.2) are invertible and let 𝐴 be the
completion of 𝐴 to the Green matrix of order 𝑛.

Then the matrix 𝐴 is invertible and 𝐴−1 is a band matrix of order 𝑛.

§9.2 The LDU factorization

Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a block matrix with block entries of sizes 𝑚𝑖 × 𝑚𝑗 and

invertible principal leading submatrices {𝐴𝑖𝑗}𝑘𝑖,𝑗=1, 𝑘 = 1, 2, . . . , 𝑁 . By Theorem
1.20, 𝐴 admits the LDU factorization

𝐴 = 𝐿Δ𝑈, (9.6)

where 𝐿,𝑈,Δ are block matrices with the same sizes of blocks as 𝐴, while 𝐿
and 𝑈 are block lower and upper triangular matrices with identities on the main
diagonals and Δ is a block diagonal matrix.
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Now we proceed with LDU factorizations of Green matrices obtained via the
completion procedure.

Theorem 9.4. Let 𝒜 be a partially specified block matrix with block entries of sizes
𝑚𝑖 ×𝑚𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁 , with a given band 𝐴 = {𝐴𝑖𝑗 , ∣𝑖 − 𝑗∣ ≤ 𝑛}. Assume that
all the submatrices of the band 𝐴 of the form

𝐴(𝑘 − 𝑛+ 1 : 𝑘, 𝑘 − 𝑛+ 1 : 𝑘), 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1 (9.7)

are invertible. Then by Theorem 8.2, the band 𝐴 has a unique completion 𝐴 which
is a Green matrix of order 𝑛. Assume also that all the submatrices of the band 𝐴
of the form

𝐴(𝑘 − 𝑛 : 𝑘, 𝑘 − 𝑛 : 𝑘), 𝑘 = 𝑛+ 1, . . . , 𝑁, (9.8)

and
𝐴(1 : 𝑘, 1 : 𝑘), 𝑘 = 1, . . . , 𝑛, (9.9)

are invertible.

Then all the submatrices of 𝐴 of the form 𝐴(1 : 𝑘, 1 : 𝑘), 𝑘 = 1, . . . , 𝑁 , are
invertible and in the factorization (9.6) of 𝐴 the matrices 𝐿 and 𝑈 are, respectively,
a lower Green matrix of order 𝑛 and an upper Green matrix of order 𝑛. Moreover,
the matrix 𝐴−1 is a band matrix of order 𝑛 and in the corresponding factorization

𝐴−1 = 𝑈−1Δ−1𝐿−1 (9.10)

𝐿−1 is lower band of order 𝑛 block lower triangular matrix

𝐿−1(𝑖, 𝑗) =

⎧⎨⎩
𝐿𝑖𝑗 , 0 < 𝑖− 𝑗 ≤ 𝑛,
𝐼, 𝑖 = 𝑗,

0, 𝑖 < 𝑗, 𝑖 − 𝑗 > 𝑛,
(9.11)

𝑈−1 is upper band of order 𝑛 block upper triangular matrix

𝑈−1(𝑖, 𝑗) =

⎧⎨⎩
𝑈𝑖𝑗 , 0 < 𝑗 − 𝑖 ≤ 𝑛,
𝐼, 𝑖 = 𝑗,

0, 𝑖 > 𝑗, 𝑗 − 𝑖 > 𝑛
(9.12)

and
Δ−1 = diag(Δ1, . . . ,Δ𝑁 ) (9.13)

is a block diagonal matrix.

Furthermore, the elements 𝐿𝑖𝑗 , 𝑈𝑖𝑗 ,Δ𝑘 are determined explicitly via the for-
mulas

Δ1 =𝑀
−1
1 , Δ𝑘 = (𝑀𝑘 − 𝑉𝑘−1𝐵

−1
𝑘−1𝑍𝑘−1)

−1, 𝑘 = 2, . . . , 𝑁, (9.14)

𝐿𝑘 = −𝑉𝑘−1𝐵
−1
𝑘−1, 𝑘 = 2, . . . , 𝑁, (9.15)

𝑈𝑘 = −𝐵−1
𝑘−1𝑍𝑘−1, 𝑘 = 2, . . . , 𝑁, (9.16)
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where we denote

𝐿𝑘 =
(
𝐿𝑘1 . . . 𝐿𝑘,𝑘−1

)
, 𝑈𝑘 =

⎛⎜⎝ 𝑈1𝑘

...
𝑈𝑘−1,𝑘

⎞⎟⎠ , 𝑘 = 1, . . . , 𝑛,

𝐿𝑘 =
(
𝐿𝑘,𝑘−𝑛 . . . 𝐿𝑘,𝑘−1

)
, 𝑈𝑘 =

⎛⎜⎝ 𝑈𝑘−𝑛,𝑘
...

𝑈𝑘−1,𝑘

⎞⎟⎠ , 𝑘 = 𝑛+ 1, . . . , 𝑁

and also

𝐵𝑘 = 𝐴(1 : 𝑘, 1 : 𝑘), 𝑍𝑘 = 𝐴(1 : 𝑘, 𝑘 + 1), 𝑉𝑘 = 𝐴(𝑘 + 1, 1 : 𝑘), 𝑘 = 1, . . . , 𝑛,

𝐵𝑘 = 𝐴(𝑘 − 𝑛+ 1 : 𝑘, 𝑘 − 𝑛+ 1 : 𝑘), 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1,

𝑍𝑘 = 𝐴(𝑘 − 𝑛+ 1 : 𝑘, 𝑘 + 1), 𝑉𝑘 = 𝐴(𝑘 + 1, 𝑘 − 𝑛+ 1 : 𝑘), 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1,

𝑀𝑘 = 𝐴(𝑘, 𝑘), 𝑘 = 1, . . . , 𝑁.

Proof. The invertibility of the submatrices (9.7) ensures, by Theorem 8.2, that
there is a unique completion 𝐴 of 𝐴 to a Green matrix of order 𝑛. Also, from
Theorem 9.1, based on the invertibility of the submatrices (9.8) it follows that all
the submatrices of 𝐴 of the form 𝐴(1 : 𝑘, 1 : 𝑘), 𝑘 = 𝑛+ 1, . . . , 𝑁 , are invertible.
Together with the invertibility of the submatrices (9.9) one obtains the invertibility
of all the submatrices 𝐴(1 : 𝑘, 1 : 𝑘), 𝑘 = 1, . . . , 𝑁 and therefore, by Theorem 1.20,
the factorization (9.6) of the matrix 𝐴 exists.

Since Δ𝑈 is an upper triangular matrix one gets

𝐴(𝑘−𝑛+1 : 𝑁, 1 : 𝑘) = 𝐿(𝑘−𝑛+1 : 𝑁, 1 : 𝑘)(Δ𝑈)(1 : 𝑘, 1 : 𝑘), 𝑘 = 𝑛+1, . . . , 𝑁

and since every matrix (Δ𝑈)(1 : 𝑘, 1 : 𝑘) is invertible one obtains

rank𝐴(𝑘 − 𝑛+ 1 : 𝑁, 1 : 𝑘) = rank𝐿(𝑘 − 𝑛+ 1 : 𝑁, 1 : 𝑘), 𝑘 = 𝑛+ 1, . . . , 𝑁.

From here, since 𝐴 is a Green matrix of order 𝑛 we conclude that 𝐿 is a lower
Green matrix of the same order. In a similar way one shows that 𝑈 is an upper
Green matrix of order 𝑛.

By Theorem 9.3 the matrix 𝐴−1 is a band matrix of order 𝑛. It is clear that
𝐿−1 and 𝑈−1 are block lower and upper triangular matrices with identities on the
main diagonals. Moreover, by Theorem 6.6, 𝐿−1 and 𝑈−1 are lower and upper
band matrices of order 𝑛 and thus the representations (9.11), (9.12) are valid.

Now we derive the formulas (9.14)–(9.16). From (1.51) it follows directly that
𝐴(1, 1) = Δ(1, 1) and therefore

Δ1 =𝑀
−1
1 .
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Next we set

𝐷𝑘 = 𝐴(1 : 𝑘, 1 : 𝑘), 𝑘 = 2, . . . , 𝑛; 𝐷𝑘 = 𝐴(𝑘−𝑛 : 𝑘, 𝑘−𝑛 : 𝑘), 𝑘 = 𝑛+1, . . . , 𝑁.
(9.17)

One obviously has the partitions

𝐷𝑘 =

(
𝐵𝑘−1 𝑍𝑘−1

𝑉𝑘−1 𝑀𝑘

)
, 𝑘 = 2, . . . , 𝑁.

From here, using (1.54) one obtains the formulas for the inverse matrices

𝐷−1
𝑘 =

( ∗ −𝐵−1
𝑘−1𝑍𝑘−1Γ

−1
𝑘

−Γ−1
𝑘 𝑉𝑘−1𝐵

−1
𝑘−1 Γ−1

𝑘

)
, 𝑘 = 2, . . . , 𝑁, (9.18)

with Γ𝑘 =𝑀𝑘 − 𝑉𝑘−1𝐵
−1
𝑘−1𝑍𝑘−1.

From (9.10) one gets
Δ−1𝐿−1𝐴 = 𝑈.

Consider the elements in the lower band:

(Δ−1𝐿−1𝐴)(𝑘, 1 : 𝑘) = 𝑈(𝑘, 1 : 𝑘), 𝑘 = 2, . . . , 𝑛,

(Δ−1𝐿−1𝐴)(𝑘, 𝑘 − 𝑛 : 𝑘) = 𝑈(𝑘, 𝑘 − 𝑛 : 𝑘), 𝑘 = 𝑛+ 1, . . . , 𝑁.

Since Δ−1𝐿−1 is a lower triangular lower band of order 𝑛 matrix,

(Δ−1𝐿−1)(𝑘, 1 : 𝑘)𝐴(1 : 𝑘, 1 : 𝑘) = 𝑈(𝑘, 1 : 𝑘), 𝑘 = 2, . . . , 𝑛,

(Δ−1𝐿−1)(𝑘, 𝑛− 𝑘 : 𝑘)𝐴(𝑘 − 𝑛 : 𝑘, 𝑘 − 𝑛 : 𝑘) = 𝑈(𝑘, 𝑘 − 𝑛 : 𝑘), 𝑘 = 𝑛+ 1, . . . , 𝑁.

Using (9.11), (9.13), (9.17) and the fact that 𝑈 is upper triangular one gets

Δ𝑘

(
𝐿𝑘 𝐼

)
𝐷𝑘 =

(
0 𝐼

)
, 𝑘 = 2, . . . , 𝑁. (9.19)

In a similar way, since 𝐴𝑈−1Δ−1 = 𝐿 one gets

𝐷𝑘

(
𝑈𝑘
𝐼

)
Δ𝑘 =

(
0
𝐼

)
, 𝑘 = 2, . . . , 𝑁. (9.20)

Now from (9.19), (9.20) it follows that

Δ𝑘

(
𝐿𝑘 𝐼

)
=
(
0 𝐼

)
𝐷−1
𝑘 ,

(
𝑈𝑘
𝐼

)
Δ𝑘 = 𝐷

−1
𝑘

(
0
𝐼

)
, 𝑘 = 2, . . . , 𝑁,

and using (9.18) one gets(
Δ𝑘𝐿𝑘 Δ𝑘

)
=
( −Γ−1

𝑘 𝑉𝑘−1𝐵
−1
𝑘−1 Γ−1

𝑘

)
,

(
𝑈𝑘Δ𝑘

Δ𝑘

)
=

( −𝐵−1
𝑘−1𝑍𝑘−1Γ

−1
𝑘

Γ−1
𝑘

)
from which the formulas (9.14) with 𝑘 = 2, . . . , 𝑁 and the formulas (9.15), (9.16)
follow directly. □

Remark. Similar results are valid for the submatrices 𝐴(𝑘 : 𝑁, 𝑘 : 𝑁) and for
the UDL factorization of a matrix 𝐴 which is a completion of a given band to the
unique Green matrix.
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§9.3 The Permanence Principle

In this section we study some remarkable properties of the principal submatrices
of the completions to Green matrices.

In the sequel we use the following notations. For a matrix 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1,

the symbol 𝐴(𝑠,𝑡) (1 ≤ 𝑠 ≤ 𝑡 ≤ 𝑁) denotes the submatrix of 𝐴 of the form
𝐴(𝑠,𝑡) = 𝐴(𝑠 : 𝑡, 𝑠 : 𝑡) and for a band 𝐴 = {𝐴𝑖𝑗 , ∣𝑖 − 𝑗∣ ≤ 𝑛, 1 ≤ 𝑖, 𝑗 ≤ 𝑁} the

symbol 𝐴(𝑠,𝑡) denotes the band 𝐴(𝑠,𝑡) = {𝐴𝑖𝑗 , ∣𝑖− 𝑗∣ ≤ 𝑛, 𝑠 ≤ 𝑖, 𝑗 ≤ 𝑡}. For a band
𝐴 the symbol 𝐺(𝐴) denotes the completion of 𝐴 to a Green matrix of order 𝑛. We
use also the notation 𝐽𝑘,𝑙 for the set of indices {(𝑖, 𝑗) : 𝑘 ≤ 𝑖, 𝑗 ≤ 𝑙}.
Theorem 9.5 (The Permanence Principle). Let 𝒜 be a partially specified block
matrix with block entries of sizes 𝑚𝑖 × 𝑚𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑁 , with a given band

𝐴 = {𝐴𝑖𝑗 , ∣𝑖− 𝑗∣ ≤ 𝑛}. Assume that all the submatrices of the band 𝐴 of the form
(8.7) are invertible.

1) The following relations hold:

(𝐺(𝐴))(𝑠,𝑡) = 𝐺(𝐴(𝑠,𝑡)), 1 ≤ 𝑠, 𝑡 ≤ 𝑁, 𝑡− 𝑠 ≥ 𝑛+ 1. (9.21)

2) Assume additionally that all the submatrices of the band 𝐴 of the form (9.2)
are invertible. Then the following relations hold:

[𝐺(𝐴)]−1(𝑖, 𝑗) = [𝐺(𝐴(1,𝑡))]−1(𝑖, 𝑗), (9.22)

for 𝑛+ 1 ≤ 𝑡 ≤ 𝑁 − 1, (𝑖, 𝑗) ∈ 𝐽1,𝑡 ∖ 𝐽𝑡−𝑛+1,𝑡;

[𝐺(𝐴)]−1(𝑖, 𝑗) = [𝐺(𝐴(𝑠,𝑁))]−1(𝑖, 𝑗) (9.23)

for 2 ≤ 𝑠 ≤ 𝑁 − 𝑛, (𝑖, 𝑗) ∈ 𝐽𝑠,𝑁 ∖ 𝐽𝑠,𝑠+𝑛−1;

[𝐺(𝐴)]−1(𝑖, 𝑗) = [𝐺(𝐴(𝑠,𝑡))]−1(𝑖, 𝑗) (9.24)

for 1 < 𝑠 < 𝑡 < 𝑁, 𝑡− 𝑠 ≥ 𝑛, (𝑖, 𝑗) ∈ 𝐽𝑠,𝑡 ∖ (𝐽𝑠,𝑠+𝑛−1 ∪ 𝐽𝑡−𝑛+1,𝑡).

Proof. 1) By Theorem 8.2, the bands 𝐴, 𝐴(𝑠,𝑡) have completions which are Green
matrices of order 𝑛. Consider the matrix 𝐴 = 𝐺(𝐴). Its principal leading subma-
trices

𝐴(𝑠 : 𝑘, 𝑠 : 𝑘), 𝑘 = 𝑛+ 𝑠, . . . , 𝑡

are determined as follows. One obviously has

𝐴(𝑠 : 𝑛+ 𝑠, 𝑠 : 𝑛+ 𝑠) = 𝐴(𝑠 : 𝑛+ 𝑠, 𝑠 : 𝑛+ 𝑠). (9.25)

Next, comparing with (8.9), (8.10) one obtains the formulas

𝐴(𝑠 : 𝑘, 𝑠 : 𝑘) =

(
𝐵

(𝑠)
𝑘 𝑋

(𝑠)
𝑘

𝑌
(𝑠)
𝑘 𝐵𝑘

)
, 𝑘 = 𝑛+ 𝑠, . . . , 𝑡− 1 (9.26)
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and

𝐴(𝑠 : 𝑘 + 1, 𝑠 : 𝑘 + 1) =

⎛⎜⎝ 𝐵
(𝑠)
𝑘 𝑋

(𝑠)
𝑘 𝐸

(𝑠)
𝑘

𝑌
(𝑠)
𝑘 𝐵𝑘 𝑍𝑘

𝐹
(𝑠)
𝑘 𝑈𝑘 𝑀𝑘

⎞⎟⎠ , 𝑘 = 𝑛+ 𝑠, . . . , 𝑡− 1 (9.27)

with 𝐵𝑘 and 𝑀𝑘, 𝑈𝑘, 𝑍𝑘 defined in (8.7) and (8.11), and

𝑋
(𝑠)
𝑘 = 𝑋𝑘(𝑠 : 𝑘 − 𝑛, :), 𝑌

(𝑠)
𝑘 = 𝑌𝑘(:, 𝑠 : 𝑘 − 𝑛), (9.28)

𝐸
(𝑠)
𝑘 = 𝐸𝑘(𝑠 : 𝑘 − 𝑛, :), 𝐹

(𝑠)
𝑘 = 𝐹𝑘(:, 𝑠 : 𝑘 − 𝑛), (9.29)

where the matrices𝑋𝑘, 𝑌𝑘, 𝐸𝑘, 𝐹𝑘 are defined via the partitions (8.9), (8.10). More-
over, using (8.12) one gets

𝐸
(𝑠)
𝑘 = 𝑋

(𝑠)
𝑘 𝐵−1

𝑘 𝑍𝑘, 𝐹
(𝑠)
𝑘 = 𝑈𝑘𝐵

−1
𝑘 𝑌

(𝑠)
𝑘 . (9.30)

Consider the matrix �̂� = 𝐺(𝐴(𝑠,𝑡)) = {𝐺𝑖𝑗}𝑡𝑖,𝑗=𝑠. Using the formulas (8.8)–
(8.12) one obtains the following expressions for its principal leading submatrices

�̂�𝑘 = �̂�(𝑠 : 𝑘, 𝑠 : 𝑘), 𝑘 = 𝑛+ 𝑠, . . . , 𝑡.

One has
�̂�𝑛+𝑠 = �̂�(𝑠 : 𝑛+ 𝑠, 𝑠 : 𝑛+ 𝑠) = 𝐴(𝑠 : 𝑛+ 𝑠, 𝑠 : 𝑛+ 𝑠) (9.31)

and next for 𝑘 = 𝑛+ 𝑠, . . . , 𝑡− 1 for the given submatrix �̂�𝑘 we use the partition

�̂�𝑘 =

(
�̂�

(𝑠)
𝑘 �̂�

(𝑠)
𝑘

𝑌
(𝑠)
𝑘 𝐵𝑘

)
(9.32)

with 𝐵𝑘 defined in (8.7) and we compute the submatrix �̂�𝑘+1 by the recipe

�̂�𝑘+1 =

⎛⎜⎝ �̂�
(𝑠)
𝑘 �̂�

(𝑠)
𝑘 �̂�

(𝑠)
𝑘

𝑌
(𝑠)
𝑘 𝐵𝑘 𝑍𝑘

𝐹
(𝑠)
𝑘 𝑈𝑘 𝑀𝑘

⎞⎟⎠ , (9.33)

where𝑀𝑘, 𝑈𝑘, 𝑍𝑘 are defined in (8.11) and �̂�
(𝑠)
𝑘 , 𝐹

(𝑠)
𝑘 are computed by the recipes

�̂�
(𝑠)
𝑘 = �̂�

(𝑠)
𝑘 𝐵−1

𝑘 𝑍𝑘, 𝐹
(𝑠)
𝑘 = 𝑈𝑘𝐵

−1
𝑘 𝑌

(𝑠)
𝑘 . (9.34)

We used here that the specified entries of �̂� coincide with the corresponding entries
of 𝐴(𝑠,𝑡) and hence the matrices 𝐵𝑘,𝑀𝑘, 𝑈𝑘, 𝑍𝑘 in (9.26), (9.27) and in (9.32),
(9.33) respectively, are the same.

Now it is easy to prove by induction that

𝐴(𝑠 : 𝑘, 𝑠 : 𝑘) = �̂�(𝑠 : 𝑘, 𝑠 : 𝑘), 𝑘 = 𝑛+ 𝑠, . . . , 𝑡, (9.35)
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which implies (9.21). Indeed, comparing (9.25) and (9.31) one gets

𝐴(𝑠 : 𝑛+ 𝑠, 𝑠 : 𝑛+ 𝑠) = �̂�(𝑠 : 𝑛+ 𝑠, 𝑠 : 𝑛+ 𝑠).

Let (9.35) hold for some 𝑘 with 𝑛+ 𝑠 ≤ 𝑘 ≤ 𝑡 − 1 the equality. Using (9.26) and
(9.32) one gets

𝑋
(𝑠)
𝑘 = �̂�

(𝑠)
𝑘 , 𝑌

(𝑠)
𝑘 = 𝑌

(𝑠)
𝑘 .

The formulas (9.27) and (9.34) yield

𝐸
(𝑠)
𝑘 = �̂�

(𝑠)
𝑘 , 𝐹

(𝑠)
𝑘 = 𝐹

(𝑠)
𝑘

and thus comparing (9.30) and (9.33) one obtains

𝐴(𝑠 : 𝑘 + 1, 𝑠 : 𝑘 + 1) = �̂�(𝑠 : 𝑘 + 1, 𝑠 : 𝑘 + 1),

which completes the proof.

2) By Theorem 9.1, the matrix 𝐴 = 𝐺(𝐴) and its submatrices of the form
𝐴(𝑠,𝑡) = 𝐴(𝑠 : 𝑡, 𝑠 : 𝑡), 1 ≤ 𝑠, 𝑡 ≤ 𝑁, 𝑠− 𝑡 ≥ 𝑛, are invertible.

At first we consider partitions of the matrix 𝐴 = 𝐺(𝐴) in the form

𝐴 =

⎛⎝ 𝐵′𝑡 𝑋𝑡 Γ′𝑡
𝑌𝑡 𝐵𝑡 𝑍𝑡
Γ′′𝑡 𝑈𝑡 𝐵′′𝑡

⎞⎠ , 𝑡 = 𝑛+ 1, . . . , 𝑁 − 1, (9.36)

where the matrices 𝐵𝑡 are defined in (8.7). From here, taking into account (9.21)

one obtains

(
𝐵′𝑡 𝑋𝑡
𝑌𝑡 𝐵𝑡

)
= 𝐴(1,𝑡) = 𝐺(𝐴(1,𝑡)). Set

(𝐴(1,𝑡))−1 =

(
𝐵′𝑡 𝑋𝑡
𝑌𝑡 𝐵𝑡

)−1

=

(
(𝐵′𝑡)11 (𝐵′𝑡)12
(𝐵′𝑡)21 (𝐵′𝑡)22

)
.

Application of the formula (8.5) to the matrix 𝐴 partitioned in the form (9.36)
yields

𝐴−1 =

⎛⎝ (𝐵′𝑡)11 (𝐵′𝑡)12 0
(𝐵′𝑡)21 ∗ ∗

0 ∗ ∗

⎞⎠ .
It follows that the blocks (𝐵′𝑡)11, (𝐵

′
𝑡)12, (𝐵

′
𝑡)21 of the matrix (𝐴(1,𝑡))−1 coincide

with the corresponding blocks of the matrix 𝐴−1. This implies that the entries of
𝐴−1 with the indices (𝑖, 𝑗) ∈ 𝐽1,𝑡 ∖𝐽𝑡−𝑛+1,𝑡 coincide with the corresponding entries
of (𝐴(1,𝑡))−1, i.e., (9.22) holds.

Next we consider partitions of 𝐴 in the form

𝐴 =

⎛⎝ 𝐵′𝑠0 𝑋𝑠0 Γ′𝑠0
𝑌𝑠0 𝐵𝑠0 𝑍𝑠0
Γ′′𝑠0 𝑈𝑠0 𝐵′′𝑠0

⎞⎠ , 𝑠0 = 𝑠+ 𝑛− 1, 𝑠 = 2, . . . , 𝑁 − 𝑛, (9.37)
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where the matrices 𝐵𝑠0 are defined in (8.7). From here, taking into account (9.21)

one obtains

(
𝐵𝑠0 𝑍𝑠0
𝑈𝑠0 𝐵′′𝑠0

)
= 𝐴(𝑠,𝑁) = 𝐺(𝐴(𝑠,𝑁)). Set

(𝐴(𝑠,𝑁))−1 =

(
𝐵𝑠0 𝑍𝑠0
𝑈𝑠0 𝐵′′𝑠0

)−1

=

(
(𝐵′′𝑠0)11 (𝐵′′𝑠0 )12
(𝐵′′𝑠0)21 (𝐵′′𝑠0 )22

)
.

Application of the formula (8.6) to the matrix 𝐴 partitioned in the form (9.37)
yields

𝐴−1 =

⎛⎝ ∗ ∗ 0
∗ ∗ (𝐵′′𝑠0)12
0 (𝐵′′𝑠0)21 (𝐵′′𝑠0)22

⎞⎠ ,
It follows that the blocks (𝐵′′𝑠0 )12, (𝐵

′′
𝑠0 )21, (𝐵

′′
𝑠0 )22 of the matrix (𝐴(𝑠,𝑁))−1 co-

incide with the corresponding blocks of the matrix 𝐴−1. This implies that the
entries of 𝐴−1 with the indices (𝑖, 𝑗) ∈ 𝐽𝑠,𝑁 ∖𝐽𝑠,𝑠0 coincide with the corresponding
entries of (𝐴(𝑠,𝑁))−1, i.e., (9.23) holds.

Finally, for 1 < 𝑠 < 𝑡 < 𝑁, 𝑡− 𝑠 ≥ 𝑛 we consider the partition of the matrix
𝐴(𝑠,𝑁) in the form

𝐴(𝑠,𝑁) =

⎛⎝ 𝐵′𝑠𝑡 𝑋𝑠𝑡 Γ′𝑠𝑡
𝑌𝑠𝑡 𝐵𝑡 𝑍𝑠𝑡
Γ′′𝑠𝑡 𝑈𝑠𝑡 𝐵′′𝑠𝑡

⎞⎠ , (9.38)

where the matrices 𝐵𝑡 are defined in (8.7). From here, taking into account (9.21)

one obtains

(
𝐵′𝑠𝑡 𝑋𝑠𝑡
𝑌𝑠𝑡 𝐵𝑡

)
= 𝐴(𝑠,𝑡) = 𝐺(𝐴(𝑠,𝑡)). Set

(𝐴(𝑠,𝑡))−1 =

(
𝐵′𝑠𝑡 𝑋𝑠𝑡
𝑌𝑠,𝑡 𝐵𝑡

)−1

=

(
(𝐵′𝑠𝑡)11 (𝐵′𝑠𝑡)12
(𝐵′𝑠𝑡)21 (𝐵′𝑠𝑡)22

)
.

Application of the formula (8.5) to the matrix 𝐴(𝑠,𝑁) partitioned in the form (9.38)
yields

(𝐴(𝑠,𝑁))−1 =

⎛⎝ (𝐵′𝑠𝑡)11 (𝐵′𝑠𝑡)12 0
(𝐵′𝑠𝑡)21 ∗ ∗

0 ∗ ∗

⎞⎠ .
It follows that the blocks (𝐵′𝑠𝑡)11, (𝐵

′
𝑠𝑡)12, (𝐵

′
𝑠𝑡)21 of the matrix (𝐴(𝑠,𝑡))−1 co-

incide with the corresponding blocks of the matrix (𝐴(𝑠,𝑁))−1. This implies that
the entries of (𝐴(𝑠,𝑁))−1 with indices (𝑖, 𝑗) ∈ 𝐽𝑠,𝑡 ∖ 𝐽𝑡−𝑛+1,𝑡 coincide with the
corresponding entries of (𝐴(𝑠,𝑡))−1, i.e.,

[𝐺(𝐴(𝑠,𝑡))]−1(𝑖, 𝑗) = [𝐺(𝐴(𝑠,𝑁))]−1(𝑖, 𝑗), (𝑖, 𝑗) ∈ 𝐽𝑠,𝑡 ∖ 𝐽𝑡−𝑛+1,𝑡.

Comparison of this relation with (9.23) yields (9.24). □

Next we present another result which also has a character of a permanence
principle.
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Theorem 9.6. Let 𝐴 be a block matrix with entries of sizes 𝑚𝑖×𝑚𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁 .
Assume that 𝐴 is a Green matrix of order 𝑛 and that all the submatrices of 𝐴 of
the form (9.2) are invertible. Consider the band �̃� = {𝐴𝑖𝑗 , ∣𝑖− 𝑗∣ ≤ 𝑛+ 1} of 𝐴.

The band �̃� has a unique completion which is a Green matrix of order 𝑛+1,
moreover this completion coincides with the matrix 𝐴.

Proof. Since all the matrices (9.2) are invertible, by Theorem 8.2 the band �̃� has
a unique completion 𝐺 which is a Green matrix of order 𝑛+ 1. Let us show that
𝐴 is a Green matrix of order 𝑛 + 1. Then, by the uniqueness stated in Theorem
8.2, we will conclude that 𝐴 = 𝐺.

We must prove that

rank𝐴(1 : 𝑘, 𝑘 − 𝑛 : 𝑁) =

𝑘∑
𝑠=𝑘−𝑛

𝑚𝑠, 𝑘 = 𝑛+ 2, . . . , 𝑁 − 1, (9.39)

rank𝐴(𝑘 − 𝑛 : 𝑁, 1 : 𝑘) =
𝑘∑

𝑠=𝑘−𝑛
𝑚𝑠, 𝑘 = 𝑛+ 2, . . . , 𝑁 − 1. (9.40)

One has

𝐴(1 : 𝑘, 𝑘 − 𝑛 : 𝑁) =
(
𝐴(1 : 𝑘, 𝑘 − 𝑛) 𝐴(1 : 𝑘, 𝑘 − 𝑛+ 1 : 𝑁)

)
.

Here 𝐴(1 : 𝑘, 𝑘−𝑛) is a matrix of the size (𝑚1+ ⋅ ⋅ ⋅+𝑚𝑘)×𝑚𝑘−𝑛. It follows that

rank𝐴(1 : 𝑘, 𝑘−𝑛 : 𝑁) ≤ 𝑚𝑘−𝑛+rank𝐴(1 : 𝑘, 𝑘−𝑛+1 : 𝑁), 𝑘 = 𝑛+2, . . . , 𝑁−1.
(9.41)

Since 𝐴 is a Green matrix of order 𝑛,

rank𝐴(1 : 𝑘, 𝑘 − 𝑛+ 1 : 𝑁) =

𝑘∑
𝑠=𝑘−𝑛+1

𝑚𝑠, 𝑘 = 𝑛+ 2, . . . , 𝑁 − 1. (9.42)

From (9.41), (9.42) one obtains

rank𝐴(1 : 𝑘, 𝑘−𝑛 : 𝑁) ≤ 𝑚𝑘−𝑛+
𝑘∑

𝑠=𝑘−𝑛+1

𝑚𝑠 =

𝑘∑
𝑠=𝑘−𝑛

𝑚𝑠, 𝑘 = 𝑛+2, . . . , 𝑁−1.

(9.43)
On the other hand, the matrix 𝐴(1 : 𝑘, 𝑘 − 𝑛 : 𝑁) contains the submatrix

𝐴(𝑘 − 𝑛 : 𝑘, 𝑘 − 𝑛 : 𝑘) = 𝐷𝑘,
which is invertible and has order

∑𝑘
𝑠=𝑘−𝑛𝑚𝑠. Therefore,

rank𝐴(1 : 𝑘, 𝑘 − 𝑛 : 𝑁) ≥
𝑘∑

𝑠=𝑘−𝑛
𝑚𝑠, 𝑘 = 𝑛+ 2, . . . , 𝑁 − 1. (9.44)

Comparing (9.44) and (9.43) one obtains (9.39). The relation (9.40) is obtained
similarly. □
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Example 9.7. Examples 8.3 and 8.4 illustrate the last of the Permanence Principles.
Indeed, consider the band 𝐶 of order 2 from Example 8.4, which is a band of the
order 1 Green completion 𝐴 obtained in Example 8.3 for the band of order 1
denoted 𝐴 in that example. 𝐶 has a unique completion 𝐶 which is a Green matrix
of order 2 and it is obtained in Example 8.4 and this completion satisfies 𝐶 = 𝐴,
i.e., it is 𝐴 itself. ♢

§9.4 The inversion formula

Assume that the partially specified block matrix 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 with a given

band 𝐴 = {𝐴𝑖𝑗 , ∣𝑖 − 𝑗∣ ≤ 𝑛} satisfies the conditions of Theorem 9.3 and let 𝐴 be
completed in such a way that 𝐴 is a Green matrix of order 𝑛. By Theorem 9.3,
𝐴 is invertible and the matrix 𝐴−1 is a band of order 𝑛. In this section we derive
explicit formulas for the entries of 𝐴−1.

In this section we use the notation 𝑋(𝑖) for the 𝑖th entry of a block row or
of a block column.

Theorem 9.8. Let 𝒜 be a partially specified block matrix with block entries of sizes
𝑚𝑖 ×𝑚𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁 , with a given band 𝐴 = {𝐴𝑖𝑗 , ∣𝑖 − 𝑗∣ ≤ 𝑛}. Assume that
all the submatrices of 𝐴 of the form

𝐵𝑘 = 𝐴(𝑘 − 𝑛+ 1 : 𝑘, 𝑘 − 𝑛+ 1 : 𝑘), 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1

are invertible. By Theorem 8.2, the band 𝐴 has a unique completion 𝐴 which is a
Green matrix of order 𝑛. Assume that all the submatrices of 𝐴 of the form

𝐷𝑘 = 𝐴(𝑘 − 𝑛 : 𝑘, 𝑘 − 𝑛 : 𝑘), 𝑘 = 𝑛+ 1, . . . , 𝑁,

are invertible. For 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1 set

𝑋𝑘 = 𝐴(𝑘 − 𝑛, 𝑘 − 𝑛+ 1 : 𝑘), 𝑌𝑘 = 𝐴(𝑘 − 𝑛+ 1 : 𝑘, 𝑘 − 𝑛),
𝑉𝑘 = 𝐴(𝑘 − 𝑛, 𝑘 − 𝑛), 𝑍𝑘 = 𝐴(𝑘 − 𝑛+ 1 : 𝑘, 𝑘 + 1),

𝑈𝑘 = 𝐴(𝑘 + 1, 𝑘 − 𝑛+ 1 : 𝑘), 𝑀𝑘 = 𝐴(𝑘 + 1, 𝑘 + 1)

and for 𝑘 ≤ 𝑙 denote by 𝐽𝑘,𝑙 the set of indices {(𝑖, 𝑗) : 𝑘 ≤ 𝑖, 𝑗 ≤ 𝑙}.
Then the entries of the inverse matrix 𝐴−1 = {𝐴′𝑖𝑗}𝑁𝑖,𝑗=1 with the indices

∣𝑖− 𝑗∣ ≤ 𝑛 are given by the formulas:

𝐴′𝑘𝑘 = 𝛿
−1
𝑘+𝑛 +

𝑘−1∑
𝑠=1

Δ𝑠+𝑛(𝑘 − 𝑠)𝛿−1
𝑠+𝑛Φ𝑠+𝑛(𝑘 − 𝑠), (9.45)

𝐴′𝑖𝑘 = −Δ𝑘+𝑛(𝑖− 𝑘)𝛿−1
𝑘+𝑛 +

𝑘−1∑
𝑠=1

Δ𝑠+𝑛(𝑖− 𝑠)𝛿−1
𝑠+𝑛Φ𝑠+𝑛(𝑘 − 𝑠), (9.46)

𝐴′𝑘𝑖 = −𝛿−1
𝑘+𝑛Φ𝑘+𝑛(𝑖 − 𝑘) +

𝑘−1∑
𝑠=1

Δ𝑠+𝑛(𝑘 − 𝑠)𝛿−1
𝑠+𝑛Φ𝑠+𝑛(𝑖− 𝑠), (9.47)
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with
Δ𝑘 = 𝐵

−1
𝑘 𝑌𝑘, Φ𝑘 = 𝑋𝑘𝐵

−1
𝑘 , 𝛿𝑘 = 𝑉𝑘 −𝑋𝑘𝐵−1

𝑘 𝑌𝑘

for (𝑖, 𝑘), (𝑘, 𝑖) ∈ 𝐽1,𝑛+1, 𝑖 > 𝑘;

𝐴′𝑘𝑘 = 𝛾
−1
𝑘−1 +

𝑘+𝑛−1∑
𝑡=𝑘

Λ𝑡(𝑘 + 𝑛− 𝑡)𝛾−1
𝑡 𝑊𝑡(𝑘 + 𝑛− 𝑡), (9.48)

𝐴′𝑖𝑘 = −Λ𝑘−1(𝑘 − 𝑖)𝛾−1
𝑘−1 +

𝑖+𝑛−1∑
𝑡=𝑘

Λ𝑡(𝑖+ 𝑛− 𝑡)𝛾−1
𝑡 𝑊𝑡(𝑘 + 𝑛− 𝑡), (9.49)

𝐴′𝑘𝑖 = −𝛾−1
𝑘−1𝑊𝑘−1(𝑘 − 𝑖) +

𝑖+𝑛−1∑
𝑡=𝑘

Λ𝑡(𝑘 + 𝑛− 𝑡)𝛾−1
𝑡 𝑊𝑡(𝑖+ 𝑛− 𝑡), (9.50)

with
Λ𝑘 = 𝐵

−1
𝑘 𝑍𝑘, 𝑊𝑘 = 𝑈𝑘𝐵

−1
𝑘 , 𝛾𝑘 =𝑀𝑘 − 𝑈𝑘𝐵−1

𝑘 𝑍𝑘,

for (𝑖, 𝑘), (𝑘, 𝑖) ∈ 𝐽1,𝑁 ∖ (𝐽1,𝑛+1 ∪ 𝐽𝑁−𝑛,𝑁 ), 𝑖 = 𝑘 − 𝑛, . . . , 𝑘 − 1;

𝐴′𝑘𝑘 = 𝛾
−1
𝑘−1 +

𝑁−1∑
𝑡=𝑘

Λ𝑡(𝑘 + 𝑛− 𝑡)𝛾−1
𝑡 𝑊𝑡(𝑘 + 𝑛− 𝑡), (9.51)

𝐴′𝑖𝑘 = −Λ𝑘−1(𝑘 − 𝑖)𝛾−1
𝑘−1 +

𝑁−1∑
𝑡=𝑘

Λ𝑡(𝑖 + 𝑛− 𝑡)𝛾−1
𝑡 𝑊𝑡(𝑘 + 𝑛− 𝑡), (9.52)

𝐴′𝑘𝑖 = −𝛾−1
𝑘−1𝑊𝑘−1(𝑘 − 𝑖) +

𝑁−1∑
𝑡=𝑘

Λ𝑡(𝑘 + 𝑛− 𝑡)𝛾−1
𝑡 𝑊𝑡(𝑖+ 𝑛− 𝑡), (9.53)

for (𝑖, 𝑘), (𝑘, 𝑖) ∈ 𝐽𝑁−𝑛,𝑁 , 𝑖 < 𝑘.
Proof. To derive (9.45) we take an index 𝑘 from the range {1, . . . , 𝑛+1}. For any
(𝑖, 𝑘), (𝑘, 𝑖) ∈ 𝐽1,𝑛+1, 𝑖 > 𝑘 one has (𝑖, 𝑘), (𝑘, 𝑖) ∈ 𝐽1,𝑘+𝑛 ∖ 𝐽𝑘+1,𝑘+𝑛 and hence, by
Theorem 9.5, one can obtain the entries 𝐴′𝑘𝑖, 𝐴

′
𝑖𝑘 from the matrix (𝐴(1,𝑘+𝑛))−1 by

the formula (9.22), i.e.,

𝐴′𝑘𝑖 = (𝐴(1,𝑘+𝑛))−1(𝑘, 𝑖), 𝐴′𝑖𝑘 = (𝐴(1,𝑘+𝑛))−1(𝑖, 𝑘). (9.54)

We set 𝑘 + 𝑛 = 𝑡 and for 𝑠 = 1, . . . , 𝑘 consider the matrices 𝐴(𝑠,𝑡). For the case
𝑠 = 𝑘, i.e., for the matrix 𝐴(𝑘,𝑘+𝑛), we use the partition

𝐴(𝑘,𝑘+𝑛) =

(
𝑉𝑘+𝑛 𝑋𝑘+𝑛
𝑌𝑘+𝑛 𝐵𝑘+𝑛

)
.

Application of the inversion formula (1.57) yields

(𝐴(𝑘,𝑘+𝑛))−1 =

(
𝛿−1
𝑘+𝑛 −𝛿−1

𝑘+𝑛Φ𝑘+𝑛
−Δ𝑘+𝑛𝛿

−1
𝑘+𝑛 ∗

)
.
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Hence it follows that

(𝐴(𝑘,𝑘+𝑛))−1(𝑘, 𝑘) = 𝛿−1
𝑘+𝑛, 𝑘 = 1, . . . , 𝑛+ 1, (9.55)

(𝐴(𝑘,𝑘+𝑛))−1(𝑘, 𝑖) = −𝛿−1
𝑘+𝑛Φ𝑘+𝑛(𝑖 − 𝑘), 𝑘 = 1, . . . , 𝑛+ 1, 𝑖 = 𝑘 + 1, . . . , 𝑛+ 1,

(9.56)

(𝐴(𝑘,𝑘+𝑛))−1(𝑖, 𝑘) = −Δ𝑘+𝑛(𝑖− 𝑘)𝛿−1
𝑘+𝑛, 𝑘 = 1, . . . , 𝑛+ 1, 𝑖 = 𝑘 + 1, . . . , 𝑛+ 1.

(9.57)

Setting in (9.55)–(9.57) 𝑘 = 1 one obtains the relations (9.45)–(9.47) for the case
𝑘 = 1. Assume now that 𝑘 = 2, . . . , 𝑛 + 1, 2 < 𝑖 ≤ 𝑛 + 1, 𝑖 > 𝑘 and for 𝑠 =
1, . . . , 𝑘 − 1 consider the matrices 𝐴(𝑠,𝑡) partitioned in the form

𝐴(𝑠,𝑡) =

⎛⎝ 𝑉𝑠+𝑛 𝑋𝑠+𝑛 Γ′𝑠𝑡
𝑌𝑠+𝑛 𝐵𝑠+𝑛 𝑍𝑠𝑡
Γ′′𝑠𝑡 𝑈𝑠𝑡 𝐵′′𝑠𝑡

⎞⎠ , 𝑠 = 1, . . . , 𝑘 − 1,

where 𝑉𝑠+𝑛 = 𝐴(𝑠, 𝑠), 𝐵𝑠+𝑛 = 𝐴(𝑠+ 1 : 𝑠+ 𝑛, 𝑠+ 1 : 𝑠+ 𝑛), 𝐵′′𝑠𝑡 = 𝐴(𝑠+ 𝑛+ 1 :
𝑡, 𝑠+𝑛+1 : 𝑡). We have 𝑠+1 ≤ 𝑘 ≤ 𝑛+1 ≤ 𝑛+𝑠 and therefore in such a partition
the elements with the indices (𝑖, 𝑘), (𝑘, 𝑖) lie in the middle block in the positions

(𝑖− 𝑠, 𝑘− 𝑠), (𝑘− 𝑠, 𝑖− 𝑠), respectively. Note that
(
𝐵𝑠+𝑛 𝑍𝑠𝑡
𝑈𝑠𝑡 𝐵′′𝑠𝑡

)
= 𝐴(𝑠+1,𝑡) and

set

(𝐴(𝑠+1,𝑡))−1 =

(
𝐵𝑠+𝑛 𝑍𝑠𝑡
𝑈𝑠𝑡 𝐵′′𝑠𝑡

)−1

=

(
(𝐴′𝑠+1,𝑡)11 (𝐴′𝑠+1,𝑡)12
(𝐴′𝑠+1,𝑡)21 (𝐴′𝑠+1,𝑡)22

)
.

Application of the formula (8.6) yields

(𝐴(𝑠,𝑡))−1 =

⎛⎝ 0 0 0
0 (𝐴′𝑠+1,𝑡)11 (𝐴′𝑠+1,𝑡)12
0 (𝐴′𝑠+1,𝑡)21 (𝐴′𝑠+1,𝑡)22

⎞⎠+

⎛⎝ 𝛿−1
𝑠+𝑛 −𝛿−1

𝑠+𝑛Φ𝑠+𝑛 0
−Δ𝑠+𝑛𝛿

−1
𝑠+𝑛 Δ𝑠+𝑛𝛿

−1
𝑠+𝑛Φ𝑠+𝑛 0

0 0 0

⎞⎠ .
It follows that

(𝐴(𝑠,𝑡))−1(𝑖, 𝑘) = (𝐴(𝑠+1,𝑡))−1(𝑖, 𝑘) + Δ𝑠+𝑛(𝑖− 𝑠)𝛿−1
𝑠+𝑛Φ𝑠+𝑛(𝑘 − 𝑠),

𝑠 = 1, . . . , 𝑘 − 1, (9.58)

(𝐴(𝑠,𝑡))−1(𝑘, 𝑖) = (𝐴(𝑠+1,𝑡))−1(𝑘, 𝑖) + Δ𝑠+𝑛(𝑘 − 𝑠)𝛿−1
𝑠+𝑛Φ𝑠+𝑛(𝑖− 𝑠),

𝑠 = 1, . . . , 𝑘 − 1. (9.59)

Applying the relations (9.58), (9.59) for 𝑠 = 1, . . . , 𝑘 − 1 successively one obtains

(𝐴(1,𝑘+𝑛))−1(𝑖,𝑘)=(𝐴(𝑘,𝑘+𝑛))−1(𝑖,𝑘)+
𝑘−1∑
𝑠=1

Δ𝑠+𝑛(𝑖−𝑠)𝛿−1
𝑠+𝑛Φ𝑠+𝑛(𝑘−𝑠), (9.60)

(𝐴(1,𝑘+𝑛))−1(𝑘,𝑖)=(𝐴(𝑘,𝑘+𝑛))−1(𝑘,𝑖)+
𝑘−1∑
𝑠=1

Δ𝑠+𝑛(𝑘−𝑠)𝛿−1
𝑠+𝑛Φ𝑠+𝑛(𝑖−𝑠). (9.61)
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Now the relations (9.46), (9.47) follow directly from (9.60), (9.61) and (9.56),
(9.57). Setting in (9.60) or in (9.61) 𝑖 = 𝑘 and taking into account (9.55) one
obtains (9.45).

In order to derive (9.48)–(9.50) we take an index 𝑘 from the range {𝑛 +
2, . . . , 𝑁−𝑛−1}. For 𝑖 = 𝑘−𝑛, . . . , 𝑘 one has (𝑖, 𝑘), (𝑘, 𝑖) ∈ 𝐽𝑘−𝑛,𝑖+𝑛 ∖ (𝐽𝑘−𝑛,𝑘−1∪
𝐽𝑖+1,𝑖+𝑛) and hence, by Theorem 9.5, one can obtain the entries 𝐴′𝑘𝑖, 𝐴

′
𝑖𝑘 from the

matrix (𝐴(𝑘−𝑛,𝑖+𝑛))−1 by the formula (9.24), i.e.,

𝐴′𝑘𝑖 = (𝐴(𝑘−𝑛,𝑖+𝑛))−1(𝑘, 𝑖), 𝐴′𝑖𝑘 = (𝐴(𝑘−𝑛,𝑖+𝑛))−1(𝑖, 𝑘), 𝑖 = 𝑘 − 𝑛, . . . , 𝑘.
(9.62)

We set 𝑘−𝑛 = 𝑠 and for 𝑡 = 𝑘, . . . , 𝑖+𝑛 consider the matrices 𝐴(𝑠,𝑡). For the case
𝑡 = 𝑘, i.e., for the matrix 𝐴(𝑘−𝑛,𝑘) one has the partition

𝐴(𝑘−𝑛,𝑘) =
(
𝐵𝑘−1 𝑍𝑘−1

𝑈𝑘−1 𝑀𝑘−1

)
.

Application of the inversion formula (1.54) yields

(𝐴(𝑘−𝑛,𝑘))−1 =

( ∗ −Λ𝑘−1𝛾
−1
𝑘−1

−𝛾−1
𝑘−1𝑊𝑘−1 𝛾−1

𝑘−1

)
.

Therefore,

(𝐴(𝑘−𝑛,𝑘))−1(𝑘, 𝑘) = 𝛾−1
𝑘−1, (9.63)

(𝐴(𝑘−𝑛,𝑘))−1(𝑘, 𝑖) = −Λ𝑘−1(𝑘 − 𝑖)𝛾−1
𝑘−1, 𝑖 = 𝑘 − 𝑛, . . . , 𝑘 − 1, (9.64)

(𝐴(𝑘−𝑚,𝑘))−1(𝑖, 𝑘) = −𝛾−1
𝑘−1𝑊𝑘−1(𝑘 − 𝑖), 𝑖 = 𝑘 − 𝑛, . . . , 𝑘 − 1. (9.65)

Taking 𝑖 = 𝑘 − 𝑛 in (9.64), (9.65) one obtains the formulas (9.49), (9.50) for the
entries 𝐴′𝑘−𝑛,𝑘, 𝐴

′
𝑘,𝑘−𝑛 respectively. Assume that 𝑖 = 𝑘 − 𝑛 + 1, . . . , 𝑘 and for

𝑡 = 𝑘, . . . , 𝑖+ 𝑛− 1 consider the matrices 𝐴(𝑠,𝑡+1) partitioned in the form

𝐴(𝑠,𝑡+1) =

⎛⎝ 𝐵′𝑠𝑡 𝑋𝑠𝑡 Γ′𝑠𝑡
𝑌𝑠𝑡 𝐵𝑡 𝑍𝑡
Γ′′𝑠𝑡 𝑈𝑡 𝑀𝑡

⎞⎠ , 𝑡 = 𝑘, . . . , 𝑖+ 𝑛− 1,

where 𝐵′𝑠𝑡 = 𝐴(𝑘−𝑛 : 𝑡−𝑛, 𝑘−𝑛 : 𝑡−𝑛), 𝐵𝑡 = 𝐴(𝑡−𝑛+1 : 𝑡, 𝑡−𝑛+1 : 𝑡), 𝑀𝑡 =
𝐴(𝑡 + 1, 𝑡 + 1). In such a partition the elements with the indices (𝑖, 𝑘), (𝑘, 𝑖) lie
in the middle block in the positions (𝑖 − 𝑡 + 𝑛, 𝑘 − 𝑡 + 𝑛), (𝑘 − 𝑡 + 𝑛, 𝑖 − 𝑡 + 𝑛),
respectively. Note that

(
𝐵′𝑠𝑡 𝑋𝑠𝑡
𝑌𝑠𝑡 𝐵𝑡

)
= 𝐴(𝑠,𝑡) and set

(𝐴(𝑠,𝑡))−1 =

(
𝐵′𝑠𝑡 𝑋𝑠𝑡
𝑌𝑠,𝑡 𝐵𝑡

)−1

=

(
(𝐴′𝑠𝑡)11 (𝐴′𝑠𝑡)12
(𝐴′𝑠𝑡)21 (𝐴′𝑠𝑡)22

)
.



§9.4. The inversion formula 195

Application of the formula (8.5) yields

(𝐴(𝑠,𝑡+1))−1 =

⎛⎝ (𝐴′𝑠𝑡)11 (𝐴′𝑠𝑡)12 0
(𝐴′𝑠𝑡)21 (𝐴′𝑠𝑡)22 0

0 0 0

⎞⎠+

⎛⎝ 0 0 0
0 Λ𝑡𝛾

−1
𝑡 𝑊𝑡 −Λ𝑡𝛾−1

𝑡

0 −𝛾−1
𝑡 𝑊𝑡 𝛾−1

𝑡

⎞⎠ .
Hence it follows that

(𝐴(𝑠,𝑡+1))−1(𝑖, 𝑘) = (𝐴(𝑠,𝑡))−1(𝑖, 𝑘) + Λ𝑡(𝑖 + 𝑛− 𝑡)𝛾−1
𝑡 𝑊𝑡(𝑘 + 𝑛− 𝑡),

𝑡 = 𝑘, . . . , 𝑖+ 𝑛− 1,
(9.66)

(𝐴(𝑠,𝑡+1))−1(𝑘, 𝑖) = (𝐴(𝑠,𝑡))−1(𝑘, 𝑖) + Λ𝑡(𝑘 + 𝑛− 𝑡)𝛾−1
𝑡 𝑊𝑡(𝑖+ 𝑛− 𝑡),

𝑡 = 𝑘, . . . , 𝑖+ 𝑛− 1.
(9.67)

Applying the relations (9.66), (9.67) for 𝑡 = 𝑖+𝑛−1, . . . , 𝑘 successively one obtains

(𝐴(𝑘−𝑛,𝑘+𝑛))−1(𝑖, 𝑘) = (𝐴(𝑘−𝑛,𝑘))−1(𝑖, 𝑘) +

𝑖+𝑛−1∑
𝑡=𝑘

Λ𝑡(𝑖+ 𝑛− 𝑡)𝛾−1
𝑡 𝑊𝑡(𝑘 + 𝑛− 𝑡),

(9.68)

(𝐴(𝑘−𝑛,𝑘+𝑛))−1(𝑘, 𝑖) = (𝐴(𝑘−𝑛,𝑘))−1(𝑘, 𝑖) +

𝑖+𝑛−1∑
𝑡=𝑘

Λ𝑡(𝑘 + 𝑛− 𝑡)𝛾−1
𝑡 𝑊𝑡(𝑖+ 𝑛− 𝑡).

(9.69)

Now the relations (9.49), (9.50) for 𝑖 = 𝑘 − 𝑛 + 1, . . . , 𝑘 − 1 follow directly from
(9.68), (9.69) and (9.64), (9.65). Setting in (9.68) or in (9.69) 𝑖 = 𝑘 and taking
into account (9.63) one obtains (9.48).

To derive (9.51)–(9.53) we take an index 𝑘 from the range {𝑁 − 𝑛, . . . , 𝑁}.
For any (𝑖, 𝑘), (𝑘, 𝑖) ∈ 𝐽𝑁−𝑛,𝑁 , 𝑖 < 𝑘 one has (𝑖, 𝑘), (𝑘, 𝑖) ∈ 𝐽𝑘−𝑛,𝑁 ∖ 𝐽𝑘−𝑛,𝑘−1

and hence, by Theorem 9.5, one can obtain the entries 𝐴′𝑘𝑖, 𝐴
′
𝑖𝑘 from the matrix

(𝐴(𝑘−𝑛,𝑁))−1 by the formula (9.24), i.e.,

𝐴′𝑘𝑖 = (𝐴(𝑘−𝑛,𝑁))−1(𝑘, 𝑖), 𝐴′𝑖𝑘 = (𝐴(𝑘−𝑛,𝑁))−1(𝑖, 𝑘).

Next the relations (9.51)–(9.53) are obtained in the same way as (9.48)–(9.50). □

In the case when a specified band of a block matrix 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 is tridi-
agonal and hence the corresponding inverse is a tridiagonal matrix, the inversion
formulas may be simplified essentially.

Corollary 9.9. Let 𝒜 be a partially specified block matrix with block entries of sizes
𝑚𝑖 × 𝑚𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑁 , with a given band 𝐴 = {𝐴𝑖𝑗 , ∣𝑖 − 𝑗∣ ≤ 1}. Let all the
diagonal entries of 𝐴,

𝐵𝑘 = 𝐴𝑘𝑘, 𝑘 = 2, . . . , 𝑁 − 1
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be invertible matrices, by Theorem 8.2 the band 𝐴 has a unique completion 𝐴 which
is a Green matrix of order one. Assume also that all the submatrices of the band
𝐴 of the form

𝐷𝑘 = 𝐴(𝑘 − 1 : 𝑘, 𝑘 − 1 : 𝑘), 𝑘 = 2, . . . , 𝑁

are invertible. Set

𝑍𝑘 = 𝐴𝑘,𝑘+1, 𝑈𝑘 = 𝐴𝑘+1,𝑘, 𝑀𝑘 = 𝐴𝑘+1,𝑘+1, 𝑘 = 2, . . . , 𝑁 − 1,

Λ𝑘 = 𝐵
−1
𝑘 𝑍𝑘, 𝑊𝑘 = 𝑈𝑘𝐵

−1
𝑘 , 𝛾𝑘 =𝑀𝑘 − 𝑈𝑘𝐵−1

𝑘 𝑍𝑘, 𝑘 = 2, . . . , 𝑁 − 1,

Δ2 = 𝐵
−1
2 𝐴21, Φ2 = 𝐴12𝐵

−1
2 , 𝛿2 = 𝐴11 − 𝐴12𝐵

−1
2 𝐴21, 𝛿3 = 𝐴33 −𝐴23𝐵

−1
3 𝐴32.

Then the entries of the inverse matrix 𝐴−1 = {𝐴′𝑖𝑗}𝑁𝑖,𝑗=1 with the indices
∣𝑖− 𝑗∣ ≤ 1 are given by the formulas

𝐴′11 = 𝛿
−1
2 , 𝐴′22 = 𝛿

−1
3 +Δ2𝛿

−1
2 Φ2, 𝐴

′
21 = −Δ2𝛿

−1
2 , 𝐴′12 = −𝛿−1

2 Φ2;

𝐴′𝑘𝑘 = 𝛾
−1
𝑘−1 + Λ𝑘𝛾

−1
𝑘 𝑊𝑘, 𝑘 = 3, . . . , 𝑁 − 1;𝐴′𝑁𝑁 = 𝛾−1

𝑁−1;

𝐴′𝑘−1,𝑘 = −Λ𝑘−1𝛾
−1
𝑘−1, 𝐴

′
𝑘,𝑘−1 = −𝛾−1

𝑘−1𝑊𝑘−1, 𝑘 = 3, . . . , 𝑁.

Example 9.10. In this example the Corollary 9.9 will be used in order to find the
inverse matrix 𝐴−1 of the Green matrix of order one 𝐴 = 𝐴6 which has been
obtained in Example 8.3.

The band 𝐴 from which in Example 8.3 one computes the matrix 𝐴, namely

𝐴 = {𝐴𝑖𝑗 , ∣𝑖− 𝑗∣ ≤ 1} =

⎛⎜⎜⎜⎜⎜⎜⎝
0 𝛽1 ? ? ? ?
𝛼1 1 𝛽2 ? ? ?
? 𝛼2 1 𝛽3 ? ?
? ? 𝛼3 1 𝛽4 ?
? ? ? 𝛼4 1 𝛽5
? ? ? ? 𝛼5 0

⎞⎟⎟⎟⎟⎟⎟⎠
has all its submatrices of the form

𝐷𝑘 = 𝐴(𝑘 − 1 : 𝑘, 𝑘 − 1 : 𝑘), 𝑘 = 2, . . . , 6

invertible if and only if the entries of the given band 𝐴 satisfy

𝛼𝑘𝛽𝑘 ∕= 1, 𝑘 = 3, 4, 5, 𝛼𝑘𝛽𝑘 ∕= 0, 𝑘 = 2, 6, (9.70)

as it is easy to see and as it has been also shown in Example 8.4, where the above
submatrices have been denoted 𝐵𝑘, 𝑘 = 2, . . . , 6. Suppose in the sequel that the
conditions (9.70) are satisfied so that the submatrices 𝐷𝑘 are invertible.
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As Corollary 9.9 asks, set

𝐵𝑘 = 1, 𝑘 = 2, . . . , 5, 𝑍𝑘 = 𝐴𝑘,𝑘+1 = 𝛽𝑘, 𝑈𝑘 = 𝐴𝑘+1,𝑘 = 𝛼𝑘, 𝑘 = 2, . . . , 5,

𝑀𝑘 = 𝐴𝑘+1,𝑘+1 = 1, 𝑘 = 2, . . . , 4, 𝑀5 = 𝐴5+1,5+1 = 0,

Λ𝑘 = 𝐵
−1
𝑘 𝑍𝑘 = 𝛽𝑘, 𝑊𝑘 = 𝑈𝑘𝐵

−1
𝑘 = 𝛼𝑘, 𝑘 = 2, . . . , 5,

𝛾𝑘 =𝑀𝑘 − 𝑈𝑘𝐵−1
𝑘 𝑍𝑘 = 1− 𝛼𝑘𝛽𝑘, 𝑘 = 2, . . . , 5,

Δ2 = 𝐵
−1
2 𝐴21 = 𝛼1, Φ2 = 𝐴12𝐵

−1
2 = 𝛽1,

𝛿2 = 𝐴11 −𝐴12𝐵
−1
2 𝐴21 = 0− 𝛼1𝛽1, 𝛿3 = 𝐴33 −𝐴23𝐵

−1
3 𝐴32 = 1− 𝛼2𝛽2.

Then the entries of the inverse matrix 𝐴−1 = {𝐴′𝑖𝑗}𝑁𝑖,𝑗=1 with the indices
∣𝑖− 𝑗∣ ≤ 1 are given by the formulas

𝐴′22 = 𝛿
−1
3 +Δ2𝛿

−1
2 Φ2 =

𝛼2𝛽2
1− 𝛼2𝛽2

,

𝐴′21 = −Δ2𝛿
−1
2 =

1

𝛽1
, 𝐴′12 = −𝛿−1

2 Φ2 =
1

𝛼1
;

𝐴′𝑘−1,𝑘 = −Λ𝑘−1𝛾
−1
𝑘−1 = − 𝛽𝑘−1

1− 𝛼𝑘−1𝛽𝑘−1
, 𝑘 = 3, . . . , 6,

𝐴′𝑘,𝑘−1 = −𝛾−1
𝑘−1𝑊𝑘−1 = − 𝛼𝑘−1

1− 𝛼𝑘−1𝛽𝑘−1
, 𝑘 = 3, . . . , 6,

and the other diagonal entries are

𝐴′11 = 𝛿
−1
2 = − 1

𝛼1𝛽1
,

𝐴′𝑘𝑘 = 𝛾
−1
𝑘−1 + Λ𝑘𝛾

−1
𝑘 𝑊𝑘 =

1

1− 𝛼𝑘−1𝛽𝑘−1
+

𝛼𝑘𝛽𝑘
1− 𝛼𝑘𝛽𝑘 , 𝑘 = 3, . . . , 5,

𝐴′66 = 𝛾
−1
6−1 = − 1

𝛼5𝛽5
.

The inverse of a Green matrix of order one is a tridiagonal matrix, so that
all its nonzero entries have already been found. ♢

§9.5 Completion to matrices of minimal ranks

In this section we consider, as above, a partially specified block matrix𝒜 with block
entries of sizes 𝑚𝑖×𝑚𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑁 , with a given band 𝐴 = {𝐴𝑖𝑗 , ∣𝑖− 𝑗∣ ≤ 𝑛}.
We assume here that the sizes of the blocks satisfy the condition

𝑚𝑖 = 𝑚𝑛+𝑖, 𝑖 = 2, . . . , 𝑁 − 𝑛− 1. (9.71)

This implies that all the submatrices of the band 𝐴 of the form

𝐵𝑘 = 𝐴(𝑘 − 𝑛+ 1 : 𝑘, 𝑘 − 𝑛+ 1 : 𝑘), 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1 (9.72)
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have the same size 𝜈 × 𝜈, where 𝜈 =
∑𝑛+1
𝑗=2 𝑚𝑗 . Assume that all the matrices

𝐵𝑘 (𝑘 = 𝑛+ 1, . . . , 𝑁 − 1) of the form (9.72) are invertible. By Theorem 8.2, the
band 𝐴 has a unique completion 𝐴 which is a Green matrix of order 𝑛. It is clear
that rank𝐴 ≥ 𝜈. In this section we obtain necessary and sufficient conditions for
the completion 𝐴 to be of minimal rank 𝜈.

Theorem 9.11. Let 𝒜 be a partially specified block matrix with block entries of sizes
𝑚𝑖 ×𝑚𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑁 , with a given band 𝐴 = {𝐴𝑖𝑗 , ∣𝑖 − 𝑗∣ ≤ 𝑛} such that the
condition (9.71) holds. Set 𝜈 =

∑𝑛+1
𝑗=2 𝑚𝑗. Assume that all the submatrices of the

band 𝐴 of the form (9.72) are invertible. By Theorem 8.2, the band 𝐴 has a unique
completion 𝐴 which is a Green matrix of order 𝑛.

Then rank𝐴 = 𝜈 if and only if all the submatrices of 𝐴 of the form

𝐷𝑘 = 𝐴(𝑘 − 𝑛 : 𝑘, 𝑘 − 𝑛 : 𝑘), 𝑘 = 𝑛+ 1, . . . , 𝑁 (9.73)

satisfy the condition

rank𝐷𝑘 = 𝜈, 𝑘 = 𝑛+ 1, . . . , 𝑁. (9.74)

Proof. Assume that rank𝐴 = 𝜈. Since 𝐷𝑘 are submatrices of 𝐴, we get

rank𝐷𝑘 ≤ 𝜈, 𝑘 = 𝑛+ 1, . . . , 𝑁.

At the same time, for 𝑘 = 𝑛 + 1, . . . , 𝑁 − 1 each submatrix 𝐷𝑘 contains the
submatrix 𝐵𝑘 and the submatrix 𝐷𝑁 contains the submatrix 𝐵𝑁−1. Since the
𝜈 × 𝜈 matrices 𝐵𝑘 (𝑘 = 𝑛+ 1, . . . , 𝑁 − 1) are invertible, we get

rank𝐷𝑘 ≥ 𝜈, 𝑘 = 𝑛+ 1, . . . , 𝑁.

Hence the equalities (9.74) follow.

Assume that the equalities (9.74) hold. We prove by induction that all the
submatrices of 𝐴 of the form 𝐴(1,𝑘) = 𝐴(1 : 𝑘, 1 : 𝑘), 𝑘 = 𝑛+ 1, . . . , 𝑁 satisfy the
condition

rank𝐴(1,𝑘) = 𝜈, 𝑘 = 𝑛+ 1, . . . , 𝑁. (9.75)

Taking here 𝑘 = 𝑁 we will obtain rank𝐴 = rank𝐴(1,𝑁) = 𝜈.

For 𝑘 = 𝑛 + 1 we have 𝐴(1,𝑛+1) = 𝐷𝑛+1 and therefore rank𝐴(1,𝑛+1) =
rank𝐷𝑛+1. Assume by induction on 𝑘 that for some 𝑘 ≥ 𝑛 + 1 (9.75) holds. For
the matrix 𝐴(1,𝑘+1) consider the partition

𝐴(1,𝑘+1) =

⎛⎝ 𝐵′𝑘 𝑋𝑘 Γ′𝑘
𝑌𝑘 𝐵𝑘 𝑍𝑘
Γ′′𝑘 𝑈𝑘 𝑀𝑘

⎞⎠ , (9.76)

where the matrix 𝐵𝑘 is defined in (9.72) and 𝑀𝑘 = 𝐴(𝑘 + 1, 𝑘 + 1). Here one has(
𝐵′𝑘 𝑋𝑘
𝑌𝑘 𝐵𝑘

)
= 𝐴(1,𝑘), (9.77)(

𝐵𝑘 𝑍𝑘
𝑈𝑘 𝑀𝑘

)
= 𝐷𝑘+1. (9.78)
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Applying to the matrix 𝐷𝑘+1 partitioned in the form (9.78) the factorization
(1.52), we get

𝐷𝑘+1 =

(
𝐼 0

𝑈𝑘𝐵
−1
𝑘 𝐼

)(
𝐵𝑘 0
0 𝛾𝑘

)(
𝐼 𝐵−1

𝑘 𝑍𝑘
0 𝐼

)
with 𝛾𝑘 =𝑀𝑘 −𝑈𝑘𝐵−1

𝑘 𝑍𝑘. From here, since rank𝐵𝑘 = rank𝐷𝑘+1, we get 𝛾𝑘 = 0.
Now applying the factorization (8.4) to the matrix 𝐴(1,𝑘+1) partitioned in the form
(9.76) we get

𝐴(1,𝑘+1) =

⎛⎝ 𝐼 0 0
0 𝐼 0
0 𝑈𝑘𝐵

−1
𝑘 𝐼

⎞⎠⎛⎝ 𝐵′𝑘 𝑋𝑘 0
𝑌𝑘 𝐵𝑘 0
0 0 0

⎞⎠⎛⎝ 𝐼 0 0
0 𝐼 𝐵−1

𝑘 𝑍𝑘
0 0 𝐼

⎞⎠ .
From here, using (9.77) we conclude that rank𝐴(1,𝑘+1) = rank𝐴(1,𝑘) = 𝜈. □

With scalar matrices the condition (9.71) is satisfied automatically and we
obtain the following.

Corollary 9.12. Let 𝒜 be a partially specified scalar matrix with a given band
𝐴 = {𝐴𝑖𝑗 , ∣𝑖− 𝑗∣ ≤ 𝑛}. Assume that all the submatrices of 𝐴 of the form

𝐵𝑘 = 𝐴(𝑘 − 𝑛+ 1 : 𝑘, 𝑘 − 𝑛+ 1 : 𝑘), 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1,

which are matrices of the size 𝑛× 𝑛, are invertible. By Theorem 8.2, the band 𝐴
has a unique completion 𝐴 which is a Green matrix of order 𝑛.

Then the inequality rank𝐴 ≥ 𝑛 holds. Moreover, rank𝐴 = 𝑛 if and only if
the submatrices of 𝐴 of the form

𝐷𝑘 = 𝐴(𝑘 − 𝑛 : 𝑘, 𝑘 − 𝑛 : 𝑘), 𝑘 = 𝑛+ 1, . . . , 𝑁

satisfy the condition

rank𝐷𝑘 = 𝑛, 𝑘 = 𝑛+ 1, . . . , 𝑁.

§9.6 Comments

The material of this chapter is taken mostly from the paper [26]. The factorization
representation presented in the second section were obtained by H. Dym and
I. Gohberg in [10], see also the paper by I. Gohberg, M.A. Kaashoek and H.J.
Woerdeman [40]. The first part of Theorem 9.5 generalizes the corresponding result
by R.L. Ellis, I. Gohberg and I.D. Lay in [17] obtained for the positive definite case.
Theorem 10.3 was obtained in [10] using other methods. Theorem 9.11 appears
here for the first time.



Chapter 10

Completion of Special Types
of Matrices

Here we consider completions to Green matrices under some conditions on the
specified band. If all the submatrices 𝐵𝑘 of the form (8.1) are invertible, then the
unique completion to a Green matrix is a positive (definite) matrix if and only if
all the matrices 𝐷𝑘 of the form (9.1) are positive (definite). The positive definite
Green completion has the maximal determinant among all the positive definite
completions.

The theory takes a nice form in the case of a block Toeplitz band of order
𝑛. In this case it is sufficient to ask the invertibility of the principal leading 𝑛× 𝑛
submatrix. The unique completion to a Green matrix of order 𝑛 is readily seen to
be a Toeplitz matrix.

The example of a tridiagonal band with identities on the main diagonal is
treated in detail. Special attention is paid to the case when the tridiagonal band
is also Toeplitz.

In the last section we apply the results obtained in this part to special 2× 2
block matrices.

For instance, it turns out that such a matrix is positive definite if and only if
it is selfadjoint and its entries are strict contractions. The inversion formulas are
then applied to the case when the tridiagonal matrix is also Toeplitz.

§10.1 The positive case

In this section we consider the case where the completion of the given band 𝐴 =
{𝐴𝑖𝑗 , ∣𝑖 − 𝑗∣ ≤ 𝑛}, 𝑛 ≥ 1 of a block square matrix 𝒜 to a Green matrix will also
be a positive or a positive definite matrix. Here a 𝑘 × 𝑘 matrix 𝐴 is said to be
positive if ⟨𝐴𝑥, 𝑥⟩ ≥ 0 for any 𝑥 ∈ ℂ𝑘 and 𝐴 is said to be positive definite if there
exists 𝛿 > 0 such that ⟨𝐴𝑥, 𝑥⟩ ≥ 𝛿⟨𝑥, 𝑥⟩ for any 𝑥 ∈ ℂ𝑘. Here ⟨⋅, ⋅⟩ denotes a scalar
product in ℂ

𝑘.

201 Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1  
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Theorem 10.1. Let 𝒜 be a partially specified block matrix with block entries of sizes
𝑚𝑖 ×𝑚𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁 , with a given band 𝐴 = {𝐴𝑖𝑗 , ∣𝑖 − 𝑗∣ ≤ 𝑛}. Assume that
all the submatrices of the band 𝐴 of the form

𝐵𝑘 = 𝐴(𝑘 − 𝑛+ 1 : 𝑘, 𝑘 − 𝑛+ 1 : 𝑘), 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1 (10.1)

are invertible. Then:

1) 𝐴 has a unique completion which is a Green matrix of order 𝑛 and is a
positive matrix if and only if all the submatrices of the band 𝐴 of the form

𝐷𝑘 = 𝐴(𝑘 − 𝑛 : 𝑘, 𝑘 − 𝑛 : 𝑘), 𝑘 = 𝑛+ 1, . . . , 𝑁 (10.2)

are positive. In this case the desired completion is determined by successive
computation of its principal leading submatrices

𝐴𝑘 := 𝐴(1 : 𝑘, 1 : 𝑘), 𝑘 = 𝑛+ 1, . . . , 𝑁,

as follows.

In the first step we set

𝐴𝑛+1 = 𝐴(1 : 𝑛+ 1, 1 : 𝑛+ 1). (10.3)

Let for some 𝑘 with 𝑛+ 1 ≤ 𝑘 ≤ 𝑁 − 1 the matrix 𝐴𝑘 be given. The matrix
𝐴𝑘+1 is obtained via the following operations. We start by partitioning 𝐴𝑘 in
the form

𝐴𝑘 =

(
𝐵′𝑘 𝑋𝑘
𝑋∗𝑘 𝐵𝑘

)
, (10.4)

with 𝐵𝑘 defined in (10.1). Next we compute the submatrix 𝐴𝑘+1 by the recipe

𝐴𝑘+1 =

⎛⎝ 𝐵′𝑘 𝑋𝑘 𝐸𝑘
𝑋∗𝑘 𝐵𝑘 𝑍𝑘
𝐸∗𝑘 𝑍∗𝑘 𝑀𝑘

⎞⎠ , (10.5)

where 𝑀𝑘, 𝑍𝑘 are determined from the band by the recipes

𝑀𝑘 = 𝐴(𝑘 + 1, 𝑘 + 1), 𝑍𝑘 = 𝐴(𝑘 − 𝑛+ 1 : 𝑘, 𝑘 + 1), (10.6)

and 𝐸𝑘 are computed by the formula

𝐸𝑘 = 𝑋𝑘𝐵
−1
𝑘 𝑍𝑘. (10.7)

Finally, we set
𝐴 = 𝐴𝑁 . (10.8)

2) Under the conditions of part 1), the completion given by the formulas (10.3)–
(10.8) is the unique positive definite completion of 𝐴 such that the inverse
matrix 𝐴−1 is band of order 𝑛 if and only if all the submatrices 𝐷𝑘, 𝑘 =
𝑛+ 1, . . . , 𝑁 of the form (10.2) are positive definite.
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In the proof of the theorem we use the following auxiliary result.

Lemma 10.2. Let 𝑄 be a square matrix which has a partition

𝑄 =

⎛⎝ 𝐵′ 𝑋 Γ
𝑋∗ 𝐵 𝑍
Γ∗ 𝑍∗ 𝐵′′

⎞⎠ , (10.9)

where 𝐵′, 𝐵,𝐵′′ are square matrices. Assume that the matrix 𝐵 is invertible and

the matrices

(
𝐵′ 𝑋
𝑋∗ 𝐵

)
,

(
𝐵 𝑍
𝑍∗ 𝐵′′

)
are positive (positive definite).

If the condition

rank

(
𝑋 Γ
𝐵 𝑍

)
= rank𝐵 (10.10)

is satisfied then the matrix 𝑄 is positive (positive definite).

Proof. The matrix 𝑄 satisfies the conditions of Lemma 8.1. Application of the
equality (8.4) from this lemma yields the factorization

𝑄 =

⎛⎝ 𝐼 0 0
0 𝐼 0
0 𝑍∗𝐵−1 𝐼

⎞⎠⎛⎝ 𝐵′ 𝑋 0
𝑋∗ 𝐵 0
0 0 𝛾

⎞⎠⎛⎝ 𝐼 0 0
0 𝐼 𝐵−1𝑍
0 0 𝐼

⎞⎠ , (10.11)

where 𝛾 = 𝐵′′ − 𝑍∗𝐵−1𝑍. The matrix

(
𝐵′ 𝑋
𝑋∗ 𝐵

)
is positive (positive definite)

by the assumption of the lemma. Since the matrix

(
𝐵 𝑍
𝑍∗ 𝐵′′

)
is positive (posi-

tive definite) the Schur complement 𝛾 is also positive (positive definite). Thus the
equality (10.11) implies that 𝑄 is a positive (positive definite) matrix. □

Proof of the theorem. 1) By Theorem 8.2, the band 𝐴 has a unique completion
which is a Green matrix of order 𝑛. Application of the formulas (8.8)–(8.13) to
the selfadjoint case yields the formulas (10.3)–(10.8). It remains to prove that
this completion 𝐴 is a positive matrix if and only if all the submatrices 𝐷𝑘, 𝑘 =
𝑛+ 1, . . . , 𝑁 of the form (10.2) are positive. The necessity is obvious. To get the
sufficiency we shall prove by induction that all the submatrices of the matrix 𝐴
of the form 𝐴𝑘 = 𝐴(1 : 𝑘, 1 : 𝑘), 𝑘 = 𝑛 + 1, . . . , 𝑁 , are positive. Taking here
𝑘 = 𝑁 we will obtain that the matrix 𝐴 = 𝐴𝑁 is positive. For 𝑘 = 𝑛+ 1 one has
𝐴𝑛+1 = 𝐷𝑛+1, which is positive. Assume that for some 𝑘 ≥ 𝑛 + 1 the matrix 𝐴𝑘
is positive. For the matrix 𝐴𝑘+1 consider the partition (10.5), where the matrix
𝐵𝑘 is defined in (10.1) and 𝑀𝑘 = 𝐴(𝑘 + 1, 𝑘 + 1). Here one has(

𝐵′𝑘 𝑋𝑘
𝑋∗𝑘 𝐵𝑘

)
= 𝐴𝑘,

(
𝐵𝑘 𝑍𝑘
𝑍∗𝑘 𝑀𝑘

)
= 𝐷𝑘+1.
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The matrix 𝐴𝑘 is positive by assumption. The matrix 𝐷𝑘+1 is positive by the
statement of the theorem. Moreover since 𝐴𝑘+1 is a Green matrix of order 𝑛 and
the matrix 𝐵𝑘 is invertible, one has

rank

(
𝑋𝑘 𝐸𝑘
𝐵𝑘 𝑍𝑘

)
= rank𝐵𝑘.

Thus, by Lemma 10.2, we conclude that the matrix 𝐴𝑘+1 is positive.

2) By Theorem 9.1, the completion 𝐴, which is a Green matrix, is invertible
if and only if all the submatrices 𝐷𝑘, 𝑘 = 𝑛 + 1, . . . , 𝑁 of the form (10.2) are
invertible. Moreover, in this case the inverse matrix 𝐴−1 is band of order 𝑛. We
must prove that the obtained matrix 𝐴 is positive definite if and only if all the
submatrices 𝐷𝑘, 𝑘 = 𝑛 + 1, . . . , 𝑁 of the form (10.2) are positive definite. The
proof is the same as in part 1). □

Next we show that among positive definite completions of a specified band
the completion to a Green matrix is the unique completion with the maximal
determinant.

Theorem 10.3. Let 𝒜 be a partially specified block matrix with block entries of sizes
𝑚𝑖 ×𝑚𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁 , with a given band 𝐴 = {𝐴𝑖𝑗 , ∣𝑖 − 𝑗∣ ≤ 𝑛}. Assume that
𝐴 has a positive definite completion 𝐴 which is a Green matrix of order 𝑛. Let 𝐻
be any other positive definite completion of 𝐴. Then

det𝐴 ≥ det𝐻

with equality if and only if 𝐴 = 𝐻.

Proof. First we establish the following auxiliary result. Let 𝑄 be a positive definite
matrix partitioned in the form (10.9), where the element Γ is unspecified and must
be determined in such a way that det𝑄 will be maximal. It will be proved that
the last holds if and only if the condition (10.10) is satisfied.

Multiplying the matrix 𝑄 by the matrix

⎛⎝ 𝐼 −𝑋𝐵−1 0
0 𝐼 0
0 0 𝐼

⎞⎠ from the left

and by the matrix

⎛⎝ 𝐼 0 0
−𝐵−1𝑋∗ 𝐼 0

0 0 𝐼

⎞⎠ from the right, one obtains the matrix

𝑄1 =

⎛⎝ 𝛿 0 Ψ
0 𝐵 𝑍
Ψ∗ 𝑍∗ 𝐵′′

⎞⎠ ,
where 𝛿 = 𝐵′ − 𝑋𝐵−1𝑋∗, Ψ = Γ − 𝑋𝐵−1𝑍. It is clear that 𝑄1 and 𝛿 are
positive definite matrices and det𝑄 = det𝑄1. Next multiplying 𝑄1 by the matrix
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0 𝐼 0
0 −𝑍∗𝐵−1 𝐼

⎞⎠ from the left and by the matrix

⎛⎝ 𝐼 0 0
0 𝐼 −𝐵−1𝑍
0 0 𝐼

⎞⎠ from

the right one obtains the matrix

𝑄2 =

⎛⎝ 𝛿 0 Ψ
0 𝐵 0
Ψ∗ 0 𝛾

⎞⎠ ,
where 𝛾 = 𝐵′′ − 𝑍∗𝐵−1𝑍. It is clear that 𝑄2 is positive definite and det𝑄1 =

det𝑄2. Multiplying the matrix 𝑄2 by the matrix

⎛⎝ 𝐼 0 0
0 𝐼 0

−Ψ∗𝛿−1 0 𝐼

⎞⎠ from the

left and by the matrix

⎛⎝ 𝐼 0 −𝛿−1Ψ
0 𝐼 0
0 0 𝐼

⎞⎠ from the right one obtains the matrix

𝑄3 =

⎛⎝ 𝛿 0 0
0 𝐵 0
0 0 𝛾 −Ψ∗𝛿−1Ψ

⎞⎠ .
The matrix 𝑄3 is positive definite and moreover one has

det𝑄 = det𝑄3 = det 𝛿 ⋅ det𝐵 ⋅ det(𝛾 −Ψ∗𝛿−1Ψ).

The value det𝑄 will be maximal if and only if det(𝛾 −Ψ∗𝛿−1Ψ) will be maximal.
The matrix 𝛾 −Ψ∗𝛿−1Ψ is positive definite and we obviously have 𝛾 −Ψ∗𝛿−1Ψ ≤
𝛾. This implies that det(𝛾 − Ψ∗𝛿−1Ψ) ≤ det 𝛾 with equality if and only if 𝛾 −
Ψ∗𝛿−1Ψ = 𝛾, i.e., Ψ = Γ −𝑋𝐵−1𝑍 = 0, which by the first part of Lemma 8.1 is
equivalent to (10.10).

Assume now that 𝐴 is a completion of 𝐴 such that 𝐴 is a Green matrix of
order 𝑛. For any 𝑘 ∈ {𝑛+ 1, . . . , 𝑁 − 1} consider partition of 𝐴 in the form

𝐴 =

⎛⎝ 𝐵′𝑘 𝑋𝑘 Γ𝑘
𝑋∗𝑘 𝐵𝑘 𝑍𝑘
Γ∗𝑘 𝑍∗𝑘 𝐵′′𝑘

⎞⎠ ,
where the matrix 𝐵𝑘 is defined in (10.1). Since 𝐴 is a Green matrix of order 𝑛 one
has

rank

(
𝑋𝑘 Γ𝑘
𝐵𝑘 𝑍𝑘

)
= rank𝐵𝑘, 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1.

Let 𝐻 be any other positive definite completion of 𝐴. Since, by Theorem 8.2, the
completion of 𝐴 which is a Green matrix of order 𝑛 is unique, 𝐻 is not a Green
matrix. This implies that for some 𝑘0 ∈ {𝑛+ 1, . . . , 𝑁 − 1} the matrix 𝐻 may be
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partitioned in the form

𝐻 =

⎛⎝ 𝐵′𝑘0 𝑋𝑘0 Γ̂𝑘0
𝑋∗𝑘0 𝐵𝑘0 𝑍𝑘0
Γ̂∗𝑘0 𝑍∗𝑘0 𝐵′′𝑘0

⎞⎠
with

rank

(
𝑋𝑘0 Γ̂𝑘0
𝐵𝑘0 𝑍𝑘0

)
> rank𝐵𝑘0 .

It follows that det𝐴 > det𝐻 . □

§10.2 The Toeplitz case

Here we consider the special case of a Toeplitz band. We show that the completion
of this band to a Green matrix is a Toeplitz matrix.

Theorem 10.4. Let 𝒜 be a partially specified block matrix with block entries of size
𝑚×𝑚, with a given Toeplitz band 𝐴 = {𝐴𝑖−𝑗 , ∣𝑖−𝑗∣ ≤ 𝑛}. Assume that the matrix

𝐵 =

⎛⎜⎜⎜⎝
𝐴0 𝐴−1 . . . 𝐴−𝑛+1

𝐴1 𝐴0 . . . 𝐴−𝑛+2

...
...

. . .
...

𝐴𝑛−1 𝐴𝑛−2 . . . 𝐴0

⎞⎟⎟⎟⎠ (10.12)

is invertible.

Then 𝐴 has a unique completion which is a Green matrix of order 𝑛. More-
over, this completion is a block Toeplitz matrix 𝐴 = {𝐴𝑖−𝑗}𝑁𝑖,𝑗=1 with the unspeci-
fied entries determined successively by the relations

𝐺𝑠 =
(
𝐴−𝑠+𝑛 . . . 𝐴−𝑠+1

)
, 𝐴−𝑠 = 𝐺𝑠𝐸, 𝑠 = 𝑛+ 1, . . . , 𝑁 − 1, (10.13)

𝐻𝑠 =

⎛⎜⎝ 𝐴𝑠−𝑛
...

𝐴𝑠−1

⎞⎟⎠ , 𝐴𝑠 = 𝐹𝐻𝑠, 𝑠 = 𝑛+ 1, . . . , 𝑁 − 1, (10.14)

where

𝐸 = 𝐵−1

⎛⎜⎝ 𝐴−𝑛
...
𝐴−1

⎞⎟⎠ , 𝐹 =
(
𝐴𝑛 . . . 𝐴1

)
𝐵−1. (10.15)

Proof. Since the band 𝐴 is Toeplitz, all the submatrices of 𝐴 of the form (8.7)
are equal to the matrix 𝐵 defined by (10.12). By Theorem 8.2, the band 𝐴 has
a unique completion 𝐴 which is a Green matrix of order 𝑛 and moreover this
completion is determined by the relations (8.8)–(8.13). In the case considered we
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can rewrite the relations (8.11)–(8.12) as follows. Since 𝐴 is Toeplitz, the matrices
𝑍𝑘, 𝑈𝑘 from (8.11) have the form

𝑍𝑘 =

⎛⎜⎝ 𝐴−𝑛
...

𝐴−1

⎞⎟⎠ , 𝑈𝑘 =
(
𝐴𝑛 . . . 𝐴1

)
, 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1.

It follows that the matrices 𝐵−1
𝑘 𝑍𝑘, 𝑈𝑘𝐵

−1
𝑘 do not depend on 𝑘, more precisely

one has 𝐵−1
𝑘 𝑍𝑘 = 𝐸, 𝑈𝑘𝐵

−1
𝑘 = 𝐹 , where the matrices 𝐸 and 𝐹 are defined by

the relations (10.15). Next, one can write down the relations (8.12) in the form

𝐴(𝑖, 𝑘 + 1) = 𝐴(𝑖, 𝑘 − 𝑛+ 1 : 𝑘)𝐸, 𝐴(𝑘 + 1, 𝑖) = 𝐹𝐴(𝑘 − 𝑛+ 1 : 𝑘, 𝑖),

𝑖 = 1, . . . , 𝑘 − 𝑛, 𝑘 = 𝑛+ 1, . . . , 𝑁 − 1.

Changing the index 𝑘 by 𝑖+ 𝑠 one obtains

𝐴(𝑖, 𝑖+ 𝑠+ 1) = 𝐴(𝑖, 𝑖+ 𝑠− 𝑛+ 1 : 𝑖+ 𝑠)𝐸,

𝐴(𝑖 + 𝑠+ 1, 𝑖) = 𝐹𝐴(𝑖 + 𝑠− 𝑛+ 1 : 𝑖+ 𝑠, 𝑖),

𝑖 = 1, . . . , 𝑁 − 𝑠− 1, 𝑠 = 𝑛, . . . , 𝑁 − 2.

(10.16)

Let us prove by induction on 𝑠 that the elements 𝐴(𝑖, 𝑖+𝑠), 𝐴(𝑖+𝑠, 𝑖) do not
depend on 𝑖 and are determined by the relations

𝐴(𝑖, 𝑖+𝑠) = 𝐴−𝑠, 𝐴(𝑖+𝑠, 𝑖) = 𝐴𝑠, 𝑖 = 1, . . . , 𝑁−𝑠; 𝑠 = 1, . . . , 𝑁−1, (10.17)

where the blocks 𝐴−𝑠, 𝐴𝑠 are defined in (10.13), (10.14). For 𝑠 = 1, . . . , 𝑛 we have

𝐴(𝑖, 𝑖+ 𝑠) = 𝐴(𝑖, 𝑖+ 𝑠) = 𝐴−𝑠, 𝐴(𝑖+ 𝑠, 𝑖) = 𝐴(𝑖+ 𝑠, 𝑖) = 𝐴𝑠.

Assume that for some 𝑠 with 𝑠 ≥ 𝑛 the relations

𝐴(𝑖, 𝑖+ 𝜏) = 𝐴−𝜏 , 𝐴(𝑖 + 𝜏, 𝑖) = 𝐴𝜏 , 𝑖 = 1, . . . , 𝑁 − 𝜏, 𝜏 = 1, . . . , 𝑠

hold. This implies that

𝐴(𝑖, 𝑖+ 𝑠− 𝑛+ 1 : 𝑖+ 𝑠) =
(
𝐴−𝑠+𝑛−1 . . . 𝐴−𝑠

)
= 𝐺𝑠+1,

𝐴(𝑖+ 𝑠− 𝑛+ 1 : 𝑖+ 𝑠, 𝑖) =

⎛⎜⎝ 𝐴𝑠−𝑛+1

...
𝐴𝑠

⎞⎟⎠ = 𝐻𝑠+1.

Substituting these expressions in (10.16) one obtains

𝐴(𝑖, 𝑖+ 𝑠+ 1) = 𝐺𝑠+1𝐸 = 𝐴−𝑠−1, 𝐴(𝑖+ 𝑠+ 1, 𝑖) = 𝐹𝐻𝑠+1 = 𝐴𝑠+1. □

The Toeplitz case
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§10.3 Completion of specified tridiagonal parts
with identities on the main diagonal

§10.3.1 The general case

We consider here the case of a partially specified block matrix 𝒜 with block entries
of sizes𝑚𝑖×𝑚𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑁 , with a given tridiagonal part 𝐴 = {𝐴𝑖𝑗 , ∣𝑖−𝑗∣ ≤ 1}
such that

𝐴𝑖𝑖 = 𝐼, 𝑖 = 1, . . . , 𝑁 ; 𝐴𝑖,𝑖+1 = 𝑎𝑖, 𝐴𝑖+1,𝑖 = 𝑏𝑖 𝑖 = 1, . . . , 𝑁 − 1. (10.18)

For such a matrix the matrices 𝐵𝑘 from the condition (8.7) of Theorem 8.2 are
identities. By Theorem 8.2, 𝐴 has a unique completion 𝐴 that is a Green matrix of
order one. Moreover using the relations (8.8)–(8.13) with 𝑛 = 1 and the definition
(10.18) one gets

𝐴(1 : 2, 1 : 2) = 𝐴(1 : 2, 1 : 2), (10.19)

𝐴(1 : 𝑘, 1 : 𝑘) =

[
𝐵′𝑘 𝑋𝑘
𝑌𝑘 𝐼

]
,

𝐴(1 : 𝑘 + 1, 1 : 𝑘 + 1) =

⎡⎣ 𝐵′𝑘 𝑋𝑘 𝐸𝑘
𝑌𝑘 𝐼 𝑍𝑘
𝐹𝑘 𝑈𝑘 𝐼

⎤⎦ , (10.20)

𝑘 = 2, . . . , 𝑁 − 1

with
𝑍𝑘 = 𝑎𝑘, 𝑈𝑘 = 𝑏𝑘 (10.21)

and
𝐸𝑘 = 𝑋𝑘𝑍𝑘, 𝐹𝑘 = 𝑈𝑘𝑌𝑘. (10.22)

Comparing (10.19), (10.20) one obtains

𝐴(1 : 𝑘 − 1, 𝑘) = 𝑋𝑘, 𝐴(𝑘, 1 : 𝑘 − 1) = 𝑌𝑘, 𝑘 = 2, . . . , 𝑁 ;

𝐴(𝑘, 𝑘) = 𝐼, 𝑘 = 1, . . . , 𝑁,
(10.23)

with

𝑋2 = 𝑎1, 𝑌2 = 𝑏1; 𝑋𝑘+1 =

(
𝐸𝑘
𝑍𝑘

)
, 𝑌𝑘+1 =

(
𝐹𝑘 𝑈𝑘

)
, 𝑘 = 2, . . . , 𝑁 − 1.

(10.24)
Moreover, combining (10.21), (10.22) and (10.24) together one gets

𝑋2 = 𝑎1, 𝑌2 = 𝑏1; 𝑋𝑘+1 =

(
𝑋𝑘𝑎𝑘
𝑎𝑘

)
, 𝑌𝑘+1 =

(
𝑏𝑘𝑌𝑘 𝑏𝑘

)
,

𝑘 = 2, . . . , 𝑁 − 1.

(10.25)



§10.3. Completion of specified tridiagonal parts 209

Thus from (10.23), (10.25) using Lemma 5.6 and Lemma 5.3 we conclude that the
completion 𝐴 is given by the recipe

𝐴𝑖𝑗 =

⎧⎨⎩
𝑎𝑖𝑎𝑖+1 ⋅ ⋅ ⋅ 𝑎𝑗−1, 1 ≤ 𝑖 < 𝑗 ≤ 𝑁,
𝐼, 1 ≤ 𝑖 = 𝑗 ≤ 𝑁,
𝑏𝑖−1 ⋅ ⋅ ⋅ 𝑏𝑗+1𝑏𝑗, 1 ≤ 𝑗 < 𝑖 ≤ 𝑁.

(10.26)

Next, by Theorem 9.1, one obtains that the completion 𝐴 is invertible if and
only if all the matrices

𝐷𝑘 =

(
𝐼 𝑎𝑘−1

𝑏𝑘−1 𝐼

)
, 𝑘 = 2, . . . , 𝑁 (10.27)

are invertible, which in turn is equivalent to the invertibility of the matrices 𝐼−𝑎𝑘𝑏𝑘
and/or 𝐼 − 𝑏𝑘𝑎𝑘 (𝑘 = 1, . . . , 𝑁 − 1). If these conditions hold, we can compute the
inverse matrix 𝐴−1 = {𝐴′𝑖𝑗}𝑁𝑖,𝑗=1 using Corollary 9.9. One has 𝐵𝑘 = 𝐼, 𝑀𝑘 =
𝐼, 𝑍𝑘 = 𝑎𝑘, 𝑈𝑘 = 𝑏𝑘, Λ𝑘 = 𝑎𝑘, 𝑊𝑘 = 𝑏𝑘, 𝛾𝑘 = 𝐼 − 𝑏𝑘𝑎𝑘, Δ2 = 𝑏1, Φ2 = 𝑎1, 𝛿2 =
𝐼 − 𝑎1𝑏1, 𝛿3 = 𝐼 − 𝑎2𝑏2. Furthermore, one obtains

𝐴′11 = (𝐼 − 𝑎1𝑏1)−1,

𝐴′22 = (𝐼 − 𝑎2𝑏2)−1 + 𝑏1(𝐼 − 𝑎1𝑏1)−1𝑎1,

𝐴′21 = −𝑏1(𝐼 − 𝑎1𝑏1)−1,

𝐴′12 = −(𝐼 − 𝑎1𝑏1)−1𝑎1;

𝐴′𝑘−1,𝑘 = −𝑎𝑘−1(𝐼 − 𝑏𝑘−1𝑎𝑘−1)
−1 = −(𝐼 − 𝑎𝑘−1𝑏𝑘−1)

−1𝑎𝑘−1, 𝑘 = 3, . . . , 𝑁 ;

𝐴′𝑘,𝑘−1 = −(𝐼 − 𝑏𝑘−1𝑎𝑘−1)
−1𝑏𝑘−1 = −𝑏𝑘−1(𝐼 − 𝑎𝑘−1𝑏𝑘−1)

−1, 𝑘 = 3, . . . , 𝑁 ;

𝐴′𝑘𝑘 = (𝐼 − 𝑏𝑘−1𝑎𝑘−1)
−1 + 𝑎𝑘(𝐼 − 𝑏𝑘𝑎𝑘)−1𝑏𝑘

= (𝐼 − 𝑎𝑘𝑏𝑘)−1 + 𝑏𝑘−1(𝐼 − 𝑎𝑘−1𝑏𝑘−1)
−1𝑎𝑘−1, 𝑘 = 3, . . . , 𝑁 − 1;

𝐴′𝑁𝑁 = (𝐼 − 𝑏𝑁−1𝑎𝑁−1)
−1.

Thus one obtains the inversion formula

𝐴′11 = 𝑐1, 𝐴′𝑘𝑘 = 𝑏𝑘−1𝑐𝑘−1𝑎𝑘−1 + 𝑐𝑘, 𝑘 = 2, . . . , 𝑁 − 1, 𝐴′𝑁𝑁 = 𝑑;

𝐴′𝑘,𝑘+1 = −𝑐𝑘𝑎𝑘, 𝐴′𝑘+1,𝑘 = −𝑏𝑘𝑐𝑘, 𝑘 = 1, . . . , 𝑁 − 1,
(10.28)

where 𝑐𝑘 = (𝐼 − 𝑎𝑘𝑏𝑘)−1 (𝑘 = 1, . . . , 𝑁 − 1), 𝑑 = (𝐼 − 𝑏𝑁−1𝑎𝑁−1)
−1.

Next, by Theorem 10.1, the matrix 𝐴 is positive definite if and only if all
the matrices 𝐷𝑘, 𝑘 = 2, . . . , 𝑁 , are positive definite. This is equivalent to the
conditions that 𝑏𝑘 = 𝑎∗𝑘 and the matrices 𝐼 − 𝑎∗𝑘𝑎𝑘 are positive definite (𝑘 =
1, . . . , 𝑁 − 1). The last holds if and only if all the matrices 𝑎𝑘 (𝑘 = 1, . . . , 𝑁 − 1)
are strict contractions.
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§10.3.2 The Toeplitz case

Now we consider a particular case where a partially specified block matrix 𝒜 with
entries of sizes 𝑚×𝑚 has a given tridiagonal part 𝐴 = {𝐴𝑖𝑗 , ∣𝑖− 𝑗∣ ≤ 1} which is
Toeplitz with identities on the main diagonal, i.e.,

𝒜 =

⎛⎜⎜⎜⎜⎜⎝
𝐼 𝑎 ∗ . . . ∗
𝑏 𝐼 𝑎 . . . ∗
∗ 𝑏 𝐼 . . . ∗
...

...
...

. . .
...

∗ ∗ ∗ . . . 𝐼

⎞⎟⎟⎟⎟⎟⎠ .

Here 𝑎 and 𝑏 are some 𝑚 ×𝑚 matrices and the asterisks denote the unspecified
entries. It was proved above that 𝐴 has a unique completion which is a Green
matrix of order one. Moreover applying the formula (10.26) one obtains that this
completion is a Toeplitz matrix of the form

𝐴 =

⎛⎜⎜⎜⎜⎜⎝
𝐼 𝑎 𝑎2 . . . 𝑎𝑛−1

𝑏 𝐼 𝑎 . . . 𝑎𝑛−2

𝑏2 𝑏 𝐼 . . . 𝑎𝑛−3

...
...

...
. . .

...
𝑏𝑛−1 𝑏𝑛−2 𝑏𝑛−3 . . . 𝐼

⎞⎟⎟⎟⎟⎟⎠ .

This fact follows also from Theorem 10.4. Furthermore 𝐴 is invertible if and only
if the matrices 𝐼 − 𝑎𝑏 or 𝐼 − 𝑏𝑎 are invertible. Formula (10.28) yields the inverse

𝐴−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐 −𝑐𝑎 0 . . . 0 0 0
−𝑏𝑐 𝑏𝑐𝑎+ 𝑐 −𝑐𝑎 . . . 0 0 0
0 −𝑏𝑐 𝑏𝑐𝑎+ 𝑐 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 𝑏𝑐𝑎+ 𝑐 −𝑐𝑎 0
0 0 0 . . . −𝑏𝑐 𝑏𝑐𝑎+ 𝑐 −𝑐𝑎
0 0 0 . . . 0 −𝑏𝑐 𝑑

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (10.29)

where 𝑐 = (𝐼 − 𝑎𝑏)−1, 𝑑 = (𝐼 − 𝑏𝑎)−1.

By Theorem 10.1, the matrix 𝐴 is positive definite if and only if 𝑏 = 𝑎∗ and
∥𝑎∥ < 1.

Also, by Theorem 9.11, rank𝐴 = 𝑚 if and only if 𝑎𝑏 = 𝑏𝑎 = 𝐼.
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§10.4 Completion of special 2 × 2 block matrices

§10.4.1 Completion formulas

Let 𝑚 ≥ 0 be an integer and let 𝒜 be a partially specified matrix of the form

𝒜 =

(
𝐼 𝒢
ℋ 𝐼

)
,

where 𝒢 is a partially specified block square matrix with block entries of sizes
𝜈𝑖×𝜇𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑁 , with a given part �̃� = {𝑔𝑖𝑗 , 𝑗− 𝑖 ≤ 𝑚} and ℋ is a partially
specified block square matrix with block entries of sizes 𝜇𝑖 × 𝜈𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑁 ,

with a given part �̃� = {ℎ𝑖𝑗 , 𝑖− 𝑗 ≤ 𝑚}. This means that 𝒜 is a partially specified

block square matrix with a given band 𝐴 = {𝐴𝑖𝑗 , ∣𝑖− 𝑗∣ ≤ 𝑁 +𝑚}, with

𝐴(1 : 𝑁, 1 : 𝑁) = 𝐼, 𝐴(𝑁 + 1 : 2𝑁,𝑁 + 1 : 2𝑁) = 𝐼; (10.30)

𝐴𝑖,𝑗+𝑁 = 𝑔𝑖𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑁, 𝑗 − 𝑖 ≤ 𝑚;
𝐴𝑖+𝑁,𝑗 = ℎ𝑖𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑁, 𝑖− 𝑗 ≤ 𝑚. (10.31)

Lemma 10.5. Set

𝐺𝐵𝑘 = �̃�(𝑘+1 : 𝑁, 1 : 𝑘+𝑚), 𝐻𝐵
𝑘 = �̃�(1 : 𝑘+𝑚, 𝑘+1 : 𝑁), 𝑘 = 1, . . . , 𝑁−𝑚−1

and assume that all the matrices 𝐼 − 𝐺𝐵𝑘 𝐻
𝐵
𝑘 and/or 𝛾𝑘 = 𝐼 − 𝐻𝐵

𝑘 𝐺
𝐵
𝑘 (𝑘 =

1, . . . , 𝑁 −𝑚− 1) are invertible.

Then the band 𝐴 has a unique completion 𝐴 which is a Green matrix of order

𝑛 = 𝑁 +𝑚.

Moreover, this completion is obtained by successive computation of its principal
leading submatrices

𝐴𝑘+𝑛 := 𝐴(1 : 𝑘 + 𝑛, 1 : 𝑘 + 𝑛), 𝑘 = 1, . . . , 𝑁 −𝑚,
as follows.

In the first step we set

𝐴𝑛+1 =

(
𝐼𝑁 �̃�(1 : 𝑁, 1 : 𝑚+ 1)

�̃�(1 : 𝑚+ 1, 1 : 𝑁) 𝐼𝑚+1

)
. (10.32)

Let for some 𝑘 with 1 ≤ 𝑘 ≤ 𝑁−𝑚−1 the matrix 𝐴𝑘+𝑛 be given. The matrix
𝐴𝑘+𝑛+1 is obtained via the following operations. Start by partitioning 𝐴𝑘+𝑛 as

𝐴𝑘+𝑛 =

⎛⎝ 𝐼 0 𝑋 ′𝑘
0 𝐼 𝐺𝐵𝑘
𝑌 ′𝑘 𝐻𝐵

𝑘 𝐼

⎞⎠ . (10.33)
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Next, compute the submatrix 𝐴𝑘+𝑛+1 by the formula

𝐴𝑘+𝑛+1 =

⎛⎜⎜⎝
𝐼 0 𝑋 ′𝑘 𝐸′𝑘
0 𝐼 𝐺𝐵𝑘 𝑍 ′𝑘
𝑌 ′𝑘 𝐻𝐵

𝑘 𝐼 0
𝐹 ′𝑘 𝑈 ′𝑘 0 𝐼

⎞⎟⎟⎠ , (10.34)

where 𝑈 ′𝑘, 𝑍
′
𝑘 are determined from the specified parts �̃�, �̃� via the equalities

𝑍 ′𝑘 = �̃�(𝑘 + 1 : 𝑁, 𝑘 +𝑚+ 1), 𝑈 ′𝑘 = �̃�(𝑘 +𝑚+ 1, 𝑘 + 1 : 𝑁) (10.35)

and 𝐸′𝑘, 𝐹
′
𝑘 are computed by the formulas

𝐸′𝑘 = −𝑋 ′𝑘𝛾−1
𝑘 𝐻𝐵

𝑘 𝑍
′
𝑘, 𝐹 ′𝑘 = −𝑈 ′𝑘𝐺𝐵𝑘 𝛾−1

𝑘 𝑌 ′𝑘. (10.36)

Finally, set
𝐴 = 𝐴2𝑁 . (10.37)

Proof. In the case considered we represent the matrices from the condition (8.7)
of Theorem 8.2 in the form

𝐵𝑘+𝑛 = 𝐴(𝑘 + 1 : 𝑘 + 𝑛, 𝑘 + 1 : 𝑘 + 𝑛)

=

(
𝐴(𝑘 + 1 : 𝑁, 𝑘 + 1 : 𝑁) 𝐴(𝑘 + 1 : 𝑁,𝑁 + 1 : 𝑘 + 𝑛)

𝐴(𝑁 + 1 : 𝑘 + 𝑛, 𝑘 + 1 : 𝑁) 𝐴(𝑁 + 1 : 𝑘 + 𝑛,𝑁 + 1 : 𝑘 + 𝑛)

)
,

𝑘 = 1, . . . , 𝑁 −𝑚.
Using the definitions (10.30), (10.31) we get

𝐵𝑘+𝑛 =

(
𝐼 �̃�(𝑘 + 1 : 𝑁, 1 : 𝑘 +𝑚)

�̃�(1 : 𝑘 +𝑚, 𝑘 + 1 : 𝑁) 𝐼

)
,

that is

𝐵𝑘+𝑛 =

(
𝐼 𝐺𝐵𝑘
𝐻𝐵
𝑘 𝐼

)
, 𝑘 = 1, . . . , 𝑁 −𝑚− 1. (10.38)

From the condition of the lemma it follows that all the matrices (10.38) are invert-
ible and hence, by Theorem 8.2, the band 𝐴 has a unique completion 𝐴 which is
a Green matrix of order 𝑛 = 𝑁 +𝑚. Moreover, applying the formulas (8.8)–(8.13)
one obtains the following.

Applying (8.8) and using the corresponding partition we get

𝐴𝑛+1 = 𝐴(1 : 𝑁 +𝑚+ 1, 1 : 𝑁 +𝑚+ 1)

=

(
𝐴(1 : 𝑁, 1 : 𝑁) 𝐴(1 : 𝑁,𝑁 + 1 : 𝑁 +𝑚+ 1)

𝐴(𝑁 + 1 : 𝑁 +𝑚+ 1, 1 : 𝑁) 𝐴(𝑁 + 1 : 𝑁 +𝑚+ 1, 𝑁 + 1 : 𝑁 +𝑚+ 1)

)
and using (10.30), (10.31) we get (10.32).
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By (8.9),

𝐴𝑛+𝑘 =

(
𝐵′𝑛+𝑘 𝑋𝑘+𝑛
𝑌𝑘+𝑛 𝐵𝑘+𝑛

)
, 𝑘 = 1, . . . , 𝑁 −𝑚− 1, (10.39)

with
𝐵𝑘+𝑛 = 𝐴(𝑘 + 1 : 𝑘 +𝑚+𝑁, 𝑘 + 1 : 𝑘 +𝑚+𝑁).

Furthermore using (10.30), (10.31) one obtains

𝐵′𝑘+𝑛 = 𝐴(1 : 𝑘, 1 : 𝑘) = 𝐴(1 : 𝑘, 1 : 𝑘) = 𝐼, (10.40)

𝑋𝑘+𝑛 = 𝐴(1 : 𝑘, 𝑘 + 1 : 𝑘 +𝑁 +𝑚)

=
(
𝐴(1 : 𝑘, 𝑘 + 1 : 𝑁) 𝐴(1 : 𝑘,𝑁 + 1 : 𝑘 +𝑁 +𝑚)

)
=
(
0 𝐺(1 : 𝑘, 1 : 𝑘 +𝑚)

)
,

i.e.,
𝑋𝑘+𝑛 =

(
0 𝑋 ′𝑘

)
, (10.41)

with 𝑋 ′𝑘 = 𝐺(1 : 𝑘, 1 : 𝑘 +𝑚), and similarly

𝑌𝑘+𝑛 = 𝐴(𝑘 + 1 : 𝑘 +𝑁 +𝑚, 1 : 𝑘)

=

(
𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘)

𝐴(𝑁 + 1 : 𝑘 +𝑁 +𝑚, 1 : 𝑘)

)
=

(
0

𝐻(1 : 𝑘 +𝑚, 1 : 𝑘)

)
,

i.e.,

𝑌𝑘+𝑛 =

(
0
𝑌 ′𝑘

)
, (10.42)

with 𝑌 ′𝑘 = 𝐻(1 : 𝑘 + 𝑚, 1 : 𝑘). Combining (10.38)–(10.42) together one obtains
(10.33).

The application of (8.10), (8.11) yields

𝐴𝑘+𝑛+1 =

⎛⎝ 𝐵′𝑛+𝑘 𝑋𝑛+𝑘 𝐸𝑛+𝑘
𝑌𝑛+𝑘 𝐵𝑛+𝑘 𝑍𝑛+𝑘
𝐹𝑛+𝑘 𝑈𝑛+𝑘 𝑀𝑛+𝑘

⎞⎠ , 𝑘 = 1, . . . , 𝑁 −𝑚, (10.43)

with

𝑀𝑛+𝑘 = 𝐴(𝑘 +𝑁 +𝑚+ 1, 𝑘 +𝑁 +𝑚+ 1),

𝑍𝑘+𝑛 = 𝐴(𝑘 + 1 : 𝑘 +𝑚+𝑁, 𝑘 +𝑚+𝑁 + 1),

𝑈𝑘+𝑛 = 𝐴(𝑘 +𝑚+𝑁 + 1, 𝑘 + 1 : 𝑘 +𝑚+𝑁).

Using (10.30) one obtains

𝑀𝑛+𝑘 = 𝐴(𝑘 +𝑁 +𝑚+ 1, 𝑘 +𝑁 +𝑚+ 1) = 𝐼 (10.44)
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and using (10.30), (10.31) one gets

𝑍𝑘+𝑛 =

(
𝐴(𝑘 + 1 : 𝑁, 𝑘 +𝑁 +𝑚+ 1)

𝐴(𝑁 + 1 : 𝑘 +𝑁 +𝑚, 𝑘 +𝑁 +𝑚+ 1)

)
=

(
�̃�(𝑘 + 1 : 𝑁, 𝑘 +𝑚+ 1)

0

)
,

i.e.,

𝑍𝑘+𝑛 =

(
𝑍 ′𝑘
0

)
, (10.45)

and

𝑈𝑘+𝑛 =
(
𝐴(𝑘 +𝑁 +𝑚+ 1, 𝑘 + 1 : 𝑁) 𝐴(𝑘 +𝑁 +𝑚+ 1, 𝑁 + 1 : 𝑘 +𝑁 +𝑚)

)
=
(
�̃�(𝑘 +𝑚+ 1, 𝑘 + 1 : 𝑁) 0

)
,

i.e.,

𝑈𝑘+𝑛 =
(
𝑈 ′𝑘 0

)
, (10.46)

with 𝑍 ′𝑘, 𝑈
′
𝑘 defined in (10.35). Combining (10.33) and (10.43)–(10.46) one obtains

(10.34), (10.35).

Next, by virtue of (1.54) the inverses to the matrices (10.38) are given by
the formulas

𝐵−1
𝑘+𝑛 =

(
𝐼 +𝐺𝐵𝑘 𝛾

−1
𝑘 𝐻𝐵

𝑘 −𝐺𝐵𝑘 𝛾−1
𝑘

−𝛾−1
𝑘 𝐻𝐵

𝑘 𝛾−1
𝑘

)
, 𝑘 = 1, . . . , 𝑁 −𝑚− 1. (10.47)

From here, applying (8.12) with the matrices 𝑋𝑛+𝑘, 𝑌𝑛+𝑘, 𝑍𝑛+𝑘, 𝑈𝑛+𝑘 defined in
(10.41), (10.42), (10.45), (10.46) one obtains (10.36).

Finally, using the formula (10.37) we obtain the completion 𝐴. □

§10.4.2 Completion to invertible and positive matrices

Using Theorem 9.1 one can easily derive the necessary and sufficient conditions
for the completion obtained in Lemma 10.5 to be invertible. Indeed, in the case
considered 10.30), (10.31) show that the matrices (9.2) of Theorem 9.1 have the
form

𝐷𝑘+𝑛 =

(
𝐼 𝐺𝐷𝑘
𝐻𝐷
𝑘 𝐼

)
, 𝑘 = 1, . . . , 𝑁 −𝑚, (10.48)

with

𝐺𝐷𝑘 = �̃�(𝑘 : 𝑁, 1 : 𝑘 +𝑚), 𝐻𝐷
𝑘 = �̃�(1 : 𝑘 +𝑚, 𝑘 : 𝑁), 𝑘 = 1, . . . , 𝑁 −𝑚.

By Theorem 9.1, the completion 𝐴 defined in Lemma 10.5 is an invertible matrix if
and only if all the matrices (10.48) are invertible, i.e., if and only if all the matrices
𝐼 − 𝐺𝐷𝑘 𝐻𝐷

𝑘 and/or 𝐼 − 𝐻𝐷
𝑘 𝐺

𝐷
𝑘 (𝑘 = 1, . . . , 𝑁 −𝑚) are invertible. Moreover, by
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Theorem 9.3, the matrix 𝐴−1 = {𝐴′𝑖𝑗}2𝑁𝑖,𝑗=1 is a band matrix of order 𝑁+𝑚. Next,
using the formula (1.54) for the matrix

𝐴 =

(
𝐼 𝐺
𝐻 𝐼

)
one can write down the inversion formula

𝐴−1 =

(
𝐼 +𝐺𝛾−1𝐻 −𝐺𝛾−1

−𝛾−1𝐻 𝛾−1

)
,

where 𝛾 = 𝐼 − 𝐻𝐺. The condition 𝐴′𝑖𝑗 = 0 for ∣𝑖 − 𝑗∣ > 𝑁 +𝑚 means that the

completions 𝐺 and 𝐻 of the specified parts �̃� and �̃� given in Lemma 10.5 are
such that the matrices 𝐺𝛾−1 and 𝛾−1𝐻 have zero entries in the parts 𝑗 − 𝑖 >
𝑚, 𝑖− 𝑗 < 𝑚, respectively. In the case 𝑚 = 0 this means that the matrices 𝐺𝛾−1

and 𝛾−1𝐻 are lower and upper triangular.

Now we consider the case of a Hermitian partially specified matrix

𝐴 =

(
𝐼 𝐺
𝐺∗ 𝐼

)
,

where 𝐺 = {𝑔𝑖𝑗}𝑁𝑖,𝑗=1 is a partially specified block square matrix with block entries

of sizes 𝜈𝑖 × 𝜇𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑁 , with a specified part �̃� = {𝑔𝑖𝑗 , 𝑗 − 𝑖 ≤ 𝑚}. Set as
above

𝐺𝐵𝑘 = �̃�(𝑘 + 1 : 𝑁, 1 : 𝑘 +𝑚), 𝑘 = 1, . . . , 𝑁 −𝑚− 1;

𝐺𝐷𝑘 = �̃�(𝑘 : 𝑁, 1 : 𝑘 +𝑚), 𝑘 = 1, . . . , 𝑁 −𝑚.
Assume that all the matrices 𝐼−𝐺𝐵𝑘 (𝐺𝐵𝑘 )∗ or 𝛾𝑘 = 𝐼−(𝐺𝐵𝑘 )

∗(𝐺𝐵𝑘 ) (𝑘 = 1, . . . , 𝑁−
𝑚−1) are invertible. Then by Lemma 10.5 the band 𝐴 has a unique completion 𝐴
which is a Green matrix of order 𝑁 +𝑚. Moreover this completion is determined
by the formulas (10.32)–(10.37) with Hermitian matrices 𝐴𝑘. By the first part of
Theorem 10.1, this completion is a positive matrix if and only if all the matrices(

𝐼 𝐺𝐷𝑘
(𝐺𝐷𝑘 )

∗ 𝐼

)
, 𝑘 = 1, . . . , 𝑁 −𝑚,

are positive. This implies that 𝐴 is positive if and only if all the matrices 𝐼 −
(𝐺𝐷𝑘 )

∗(𝐺𝐷𝑘 ), 𝑘 = 1, . . . , 𝑁 −𝑚, are positive, i.e., if and only if all the matrices 𝐺𝐷𝑘
are contractions: ∥𝐺𝐷𝑘 ∥ ≤ 1. Similarly, from the second part of Theorem 10.1 we
conclude that the completion 𝐴 is positive definite if and only if all the matrices
𝐺𝐷𝑘 are strict contractions, i.e., ∥𝐺𝐷𝑘 ∥ < 1, 𝑘 = 1, . . . , 𝑁 −𝑚.

§10.4.3 Completion to matrices of minimal ranks

Let 𝒜 be a partially specified matrix of the form

𝒜 =

(
𝐼 𝒢
ℋ 𝐼

)
,



216 Chapter 10. Completion of Special Types of Matrices

where 𝒢 is a partially specified block square matrix with block entries of sizes
𝑚𝑖 ×𝑚𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁 , with a given part �̃� = {𝑔𝑖𝑗, 𝑗 ≤ 𝑖} and ℋ is a partially
specified block square matrix with block entries of sizes 𝑚𝑖 ×𝑚𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑁 ,

with a given part �̃� = {ℎ𝑖𝑗, 𝑖 ≤ 𝑗}. This means that 𝒜 is a partially specified

block square matrix with a given band 𝐴 = {𝐴𝑖𝑗 , ∣𝑖− 𝑗∣ ≤ 𝑁}, with

𝐴(1 : 𝑁, 1 : 𝑁) = 𝐼, 𝐴(𝑁 + 1 : 2𝑁,𝑁 + 1 : 2𝑁) = 𝐼;

𝐴𝑖,𝑗+𝑁 = 𝑔𝑖𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑁, 𝑗 ≤ 𝑖; 𝐴𝑖+𝑁,𝑗 = ℎ𝑖𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑁, 𝑖 ≤ 𝑗.

Set 𝜈 =
∑𝑁

𝑖=1𝑚𝑖 and assume that all the matrices 𝐼 − 𝐺𝐵𝑘 𝐻𝐵
𝑘 and/or 𝐼 −

𝐻𝐵
𝑘 𝐺

𝐵
𝑘 (𝑘 = 1, . . . , 𝑁 − 1), where

𝐺𝐵𝑘 = �̃�(𝑘 + 1 : 𝑁, 1 : 𝑘), 𝐻𝐵
𝑘 = �̃�(1 : 𝑘, 𝑘 + 1 : 𝑁), 𝑘 = 1, . . . , 𝑁 − 1,

are invertible. By Lemma 10.5, the band 𝐴 has a unique completion 𝐴 which is a
Green matrix of order 𝑁 .

Theorem 10.6. Let 𝒜 be a partially specified matrix of the form

𝒜 =

(
𝐼 𝒢
ℋ 𝐼

)
,

where 𝒢 is a partially specified block square matrix with block entries of sizes 𝑚𝑖×
𝑚𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁 , with a given part �̃� = {𝑔𝑖𝑗 , 𝑗 ≤ 𝑖} and ℋ is a partially
specified block square matrix with block entries of sizes 𝑚𝑖 ×𝑚𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑁 ,

with a given part �̃� = {ℎ𝑖𝑗 , 𝑖 ≤ 𝑗}. Set 𝜈 =
∑𝑁
𝑖=1𝑚𝑖. Assume that all the matrices

𝐼 −𝐺𝐵𝑘 𝐻𝐵
𝑘 and/or 𝐼 −𝐻𝐵

𝑘 𝐺
𝐵
𝑘 (𝑘 = 1, . . . , 𝑁 − 1), where

𝐺𝐵𝑘 = �̃�(𝑘 + 1 : 𝑁, 1 : 𝑘), 𝐻𝐵
𝑘 = �̃�(1 : 𝑘, 𝑘 + 1 : 𝑁), 𝑘 = 1, . . . , 𝑁 − 1,

are invertible. By Lemma 10.5, 𝒜 has a unique completion 𝐴 which is a Green
matrix of order 𝑁 . Set also

𝑔𝑘 = �̃�(𝑘 : 𝑁, 𝑘), ℎ𝑘 = �̃�(𝑘, 𝑘 : 𝑁), 𝑘 = 1, . . . , 𝑁.

Then rank𝐴 = 𝜈 if and only if

ℎ1𝑔1 = 𝐼𝑚1 (10.49)

and

ℎ𝑘(𝐼 −𝐺𝐵𝑘−1𝐻
𝐵
𝑘−1)

−1𝑔𝑘 = 𝐼𝑚𝑘
, 𝑘 = 2, . . . , 𝑁. (10.50)

Proof. By Theorem 9.11, rank𝐴 = 𝜈 if and only if

rank𝐷𝑘+𝑁 = 𝜈, 𝑘 = 1, . . . , 𝑁. (10.51)
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For 𝑘 = 1 we have the partition

𝐷𝑁+1 =

(
𝐼𝜈 𝑔1
ℎ1 𝐼

)
and therefore rank𝐷𝑁+1 = 𝜈 if and only if (10.49) holds.

For 𝑘 = 2, . . . , 𝑁 we use the partitions

𝐷𝑘+𝑁 =

(
𝐵𝑘+𝑁−1 𝑍𝑘+𝑁
𝑈𝑘+𝑁 𝐼

)
.

We have

𝐵𝑘+𝑁−1 =

(
𝐼 𝐺𝐵𝑘−1

𝐻𝐵
𝑘−1 𝐼

)
, 𝑘 = 2, . . . , 𝑁 − 1 (10.52)

and

𝑍𝑘+𝑁 =

(
𝑔𝑘
0

)
, 𝑈𝑘+𝑁 =

(
ℎ𝑘 0

)
, 𝑘 = 2, . . . , 𝑁. (10.53)

The conditions (10.51), i.e., rank𝐷𝑘+𝑁 = rank𝐵𝑘+𝑁−1 hold if and only if

𝐼 − 𝑈𝑘+𝑁𝐵−1
𝑘+𝑁−1𝑍𝑘+𝑁 = 0, 𝑘 = 2, . . . , 𝑁. (10.54)

Applying the inversion formula (1.57) to the matrix 𝐵𝑘+𝑁−1 partitioned in the
form (10.52) we get

𝐵−1
𝑘+𝑁−1 =

(
(𝐼 −𝐺𝐵𝑘−1𝐻

𝐵
𝑘−1)

−1 ∗
∗ ∗

)
. (10.55)

Using (10.55), (10.54) and (10.53) we obtain (10.50). □

§10.5 Comments

In the presentation of the results of this chapter we follow the paper [26]. The
formula (10.29) was obtained by I. Gohberg and G. Heinig in [35]. Theorem 10.6
appears here for the first time.



Chapter 11

Completion of Mutually
Inverse Matrices

In this chapter we consider the problem when the original matrix is specified in
its lower (with the diagonal) triangular section and the inverse one is specified in
its strictly upper triangular section.

§11.1 The statement and preliminaries

Let

𝒢 =

⎛⎜⎜⎜⎝
𝑔11 ? . . . ?
𝑔21 𝑔22 . . . ?
...

...
. . .

...
𝑔𝑁1 𝑔𝑁2 . . . 𝑔𝑁𝑁

⎞⎟⎟⎟⎠
be a partially specified block matrix with elements of sizes𝑚𝑖×𝑚𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁 ,

with a given lower triangular part �̃� = {𝑔𝑖𝑗}1≤𝑗≤𝑖≤𝑁 and let

ℋ =

⎛⎜⎜⎜⎝
? ℎ12 . . . ℎ1,𝑁
? ? . . . ℎ2,𝑁
...

...
. . .

...
? ? . . . ?

⎞⎟⎟⎟⎠
be a partially specified block matrix with elements of sizes𝑚𝑖×𝑚𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁 ,

with a given strictly upper triangular part �̃� = {ℎ𝑖𝑗}1≤𝑖<𝑗≤𝑁 . The problem is to
determine an invertible matrix 𝐺 with block entries of sizes 𝑚𝑖 × 𝑚𝑗 , 𝑖, 𝑗 =
1, . . . , 𝑁 , such that 𝐺 is a completion of 𝒢 and 𝐺−1 is a completion of ℋ. We
study this problem using the previous results on completion of partially specified
matrices of the form

𝒜 =

(
𝐼 𝒢
ℋ 𝐼

)
. (11.1)

219 Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1  
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory: 
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_11, © Springer Basel 2014
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We start with an auxiliary result concerning matrices of the form

𝐴 =

(
𝐼𝜈 𝐺
𝐻 𝐼𝜈

)
(11.2)

with some positive integer 𝜈.

Lemma 11.1. A matrix 𝐴 of the form (11.2) satisfies the condition rank𝐴 = 𝜈 if
and only if the matrices 𝐺 and 𝐻 are invertible and 𝐻 = 𝐺−1.

Proof. Indeed, the equality 𝐻𝐺 = 𝐼 implies

𝐴 =

(
𝐼𝜈
𝐻

)(
𝐼𝜈 𝐺

)
.

Consequently, rank𝐴 = 𝜈.

Now assume that rank𝐴 = 𝜈. Then

𝐴 =

(
𝑋1

𝑋2

)(
𝑌1 𝑌2

)
(11.3)

with 𝜈 × 𝜈 matrices 𝑋1, 𝑋2, 𝑌1, 𝑌2. Comparing (11.2) and (11.3) we get

𝑋1𝑌1 = 𝐼, 𝑋2𝑌2 = 𝐼, 𝐻 = 𝑋2𝑌1, 𝐺 = 𝑋1𝑌2.

It follows that the matrices 𝑋1 and 𝑋2 are invertible, with 𝑋
−1
1 = 𝑌1 and 𝑋

−1
2 =

𝑌2 and moreover 𝐻 = 𝑋2𝑋
−1
1 and 𝐺 = 𝑋1𝑋

−1
2 . These last equalities mean

𝐺𝐻 = 𝐻𝐺 = 𝐼. □
Corollary 11.2. A matrix 𝐴 of the form

𝐴 =

(
𝐼𝜈 𝐺
𝐺∗ 𝐼𝜈

)
satisfies the condition rank𝐴 = 𝜈 if and only if the matrix 𝐺 is unitary.

As it was mentioned above, in the solution of the completion problem for
the partially specified matrices of the form (11.1) a crucial role is played by the
submatrices

𝐺𝐵𝑘 = �̃�(𝑘 + 1 : 𝑁, 1 : 𝑘), 𝐻𝐵
𝑘 = �̃�(1 : 𝑘, 𝑘 + 1 : 𝑁), 𝑘 = 1, . . . , 𝑁 − 1

for which all the matrices 𝐼 − 𝐺𝐵𝑘 𝐻𝐵
𝑘 and/or 𝐼 − 𝐻𝐵

𝑘 𝐺
𝐵
𝑘 𝑘 = 1, . . . , 𝑁 − 1, are

invertible. We show that this condition means that the matrices 𝐺 and 𝐻 , which
are completions of 𝒢 and ℋ such that 𝐻 = 𝐺−1, are strongly regular matrices,
i.e., all the principal leading submatrices

𝐺𝑘 = 𝐺(1 : 𝑘, 1 : 𝑘), 𝐻𝑘 = 𝐻(1 : 𝑘, 1 : 𝑘), 𝑘 = 1, . . . , 𝑁,

are invertible.



§11.2. The basic theorem 221

Lemma 11.3. Let 𝐺 = {𝑔𝑖𝑗}𝑁𝑖=1 and 𝐻 = {ℎ𝑖𝑗}𝑁𝑖=1 be invertible block matrices with
entries of sizes 𝑚𝑖 ×𝑚𝑗 such that 𝐻 = 𝐺−1. Set

𝐺𝐵𝑘 = 𝐺(𝑘 + 1 : 𝑁, 1 : 𝑘), 𝐻𝐵
𝑘 = 𝐻(1 : 𝑘, 𝑘 + 1 : 𝑁), 𝑘 = 1, . . . , 𝑁 − 1.

All the matrices 𝐼−𝐺𝐵𝑘 𝐻𝐵
𝑘 and/or 𝐼−𝐻𝐵

𝑘 𝐺
𝐵
𝑘 (𝑘 = 1, . . . , 𝑁−1) are invertible

if and only if all the matrices

𝐺(1 : 𝑘, 1 : 𝑘), 𝐻(1 : 𝑘, 1 : 𝑘), 𝑘 = 1, . . . , 𝑁 − 1

and

𝐺(𝑘 : 𝑁, 𝑘 : 𝑁), 𝐻(𝑘 : 𝑁, 𝑘 : 𝑁), 𝑘 = 𝑁, . . . , 2

are invertible.

Proof. We obviously have

𝐻(1 : 𝑘, :)𝐺(:, 1 : 𝑘) = 𝐼, 𝐺(𝑘 : 𝑁, :)𝐻(:, 𝑘 : 𝑁) = 𝐼, 𝑘 = 1, . . . , 𝑁.

Using the partitions

𝐻(1 : 𝑘, :) =
(
𝐻(1 : 𝑘, 1 : 𝑘) 𝐻𝐵

𝑘

)
, 𝐺(:, 1 : 𝑘) =

(
𝐺(1 : 𝑘, 1 : 𝑘)

𝐺𝐵𝑘

)
,

𝑘 = 1, . . . , 𝑁 − 1

and

𝐺(𝑘 : 𝑁, :) =
(
𝐺𝐵𝑘−1 𝐺(𝑘 : 𝑁, 𝑘 : 𝑁)

)
,

𝐻(:, 𝑘 : 𝑁) =

(
𝐻𝐵
𝑘−1

𝐻(𝑘 : 𝑁, 𝑘 : 𝑁)

)
, 𝑘 = 𝑁, . . . , 2,

we get

𝐻(1 : 𝑘, 1 : 𝑘)𝐺(1 : 𝑘, 1 : 𝑘) = 𝐼 −𝐻𝐵
𝑘 𝐺

𝐵
𝑘 , 𝑘 = 1, . . . , 𝑁 − 1

and

𝐺(𝑘 : 𝑁, 𝑘 : 𝑁)𝐻(𝑘 : 𝑁, 𝑘 : 𝑁) = 𝐼 −𝐺𝐵𝑘−1𝐻
𝐵
𝑘−1, 𝑘 = 𝑁, . . . , 2.

Hence the statement of the lemma follows. □

§11.2 The basic theorem

Here under the assumption that all the matrices 𝐼−𝐺𝐵𝑘 𝐻𝐵
𝑘 and/or 𝐼−𝐻𝐵

𝑘 𝐺
𝐵
𝑘 , 𝑘 =

1, . . . , 𝑁 − 1, are invertible we obtain necessary and sufficient conditions for exis-
tence of a solution to the problem of determining an invertible matrix 𝐺 and the
matrix 𝐻 = 𝐺−1 such that 𝐺 is a completion of 𝒢 and 𝐻 is a completion of ℋ.
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Theorem 11.4. Let 𝒢 and ℋ be partially specified block matrices with entries of
sizes 𝑚𝑖 ×𝑚𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑁 such that 𝒢 has a given lower triangular part �̃� =

{𝑔𝑖𝑗}1≤𝑗≤𝑖≤𝑁 and ℋ has a given strictly upper triangular part �̃� = {ℎ𝑖𝑗}1≤𝑖<𝑗≤𝑁 .
Set

𝐺𝐵𝑘 = �̃�(𝑘 + 1 : 𝑁, 1 : 𝑘), 𝐻𝐵
𝑘 = �̃�(1 : 𝑘, 𝑘 + 1 : 𝑁), 𝑘 = 1, . . . , 𝑁 − 1 (11.4)

and assume that all the matrices 𝐼−𝐺𝐵𝑘 𝐻𝐵
𝑘 and/or 𝐼−𝐻𝐵

𝑘 𝐺
𝐵
𝑘 (𝑘 = 1, . . . , 𝑁 − 1)

are invertible.

For the complete statement of the theorem, set

𝑔(𝑘) = �̃�(𝑘, 𝑘), 𝑔𝑘 = �̃�(𝑘 : 𝑁, 𝑘), ℎ𝑘 = �̃�(𝑘, 𝑘 : 𝑁), 𝑘 = 1, . . . , 𝑁,

𝑔′𝑘 = �̃�(𝑘 + 1 : 𝑁, 𝑘), ℎ′𝑘 = �̃�(𝑘, 𝑘 + 1 : 𝑁), 𝑘 = 1, . . . , 𝑁 − 1,

𝐺′𝑘 = �̃�(𝑘, 1 : 𝑘 − 1), 𝐺′′𝑘 = �̃�(𝑘 + 1 : 𝑁, 1 : 𝑘 − 1), 𝑘 = 2, . . . , 𝑁 − 1

and
Δ𝑘 = (𝐼 −𝐻𝐵

𝑘−1𝐺
𝐵
𝑘−1)

−1𝐻𝐵
𝑘−1𝑔𝑘, 𝑘 = 2, . . . , 𝑁 − 1.

Then there exists an invertible matrix 𝐺 = {𝑔𝑖𝑗}𝑁𝑖,𝑗=1 such that 𝐺 is a com-

pletion of 𝒢 and 𝐻 = 𝐺−1 = {ℎ𝑖𝑗}𝑁𝑖,𝑗=1 is a completion of ℋ if and only if all the
matrices

𝑔(1), 𝑔(𝑘) +𝐺′𝑘Δ𝑘, 𝑘 = 2, . . . , 𝑁 − 1, 𝑔(𝑁) (11.5)

are invertible. Such a matrix 𝐺 is unique.

Furthermore, the matrices 𝐺 and 𝐻 are obtained as follows. At first we de-
termine the unspecified diagonal entries ℎ𝑖𝑖, 𝑖 = 1, . . . , 𝑁 , of ℋ by the formulas

ℎ11 =
(
𝐼𝑚1 −𝐻𝐵

1 𝐺
𝐵
1

)
(𝑔(1))

−1
, (11.6)

ℎ𝑘𝑘 = (𝐼𝑚𝑘
− ℎ′𝑘(𝑔′𝑘 +𝐺′′𝑘Δ𝑘)) (𝑔(𝑘) +𝐺

′
𝑘Δ𝑘)

−1
, 𝑘 = 2, . . . , 𝑁 − 1, (11.7)

ℎ𝑁𝑁 = (𝑔(𝑁))−1(𝐼𝑚𝑁 −𝐺𝐵𝑁−1𝐻
𝐵
𝑁−1). (11.8)

Next we determine the matrices 𝐺 and 𝐻 by successive computation of the
submatrices

�̂�𝑘 := 𝐺(1 : 𝑁, 1 : 𝑘), �̂�𝑘 := 𝐻(1 : 𝑘, 1 : 𝑁), 𝑘 = 1, . . . , 𝑁,

as follows. On the first step we set

�̂�1 = �̃�(1 : 𝑁, 1), �̂�1 =
(
ℎ11 �̃�(1, 2 : 𝑁)

)
. (11.9)

Let for some 𝑘 with 1 ≤ 𝑘 ≤ 𝑁 − 1 the matrices �̂�𝑘 and �̂�𝑘 be given. We start
with partitioning �̂�𝑘 and �̂�𝑘 in the form

�̂�𝑘 =

(
𝐺𝑘
𝐺𝐵𝑘

)
, �̂�𝑘 =

(
𝐻𝑘 𝐻𝐵

𝑘

)
, (11.10)
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with
𝐺𝑘 = 𝐺(1 : 𝑘, 1 : 𝑘), 𝐻𝑘 = 𝐻(1 : 𝑘, 1 : 𝑘) (11.11)

and 𝐺𝐵𝑘 , 𝐻
𝐵
𝑘 defined in (11.4). Next we compute the submatrices �̂�𝑘+1 and �̂�𝑘+1

by the formulas

�̂�𝑘+1 =

(
𝐺𝑘 𝐸′𝑘
𝐺𝐵𝑘 𝑔𝑘+1

)
, �̂�𝑘+1 =

(
𝐻𝑘 𝐻𝐵

𝑘

𝐹 ′𝑘 ℎ𝑘+1

)
, (11.12)

where ℎ𝑘+1, 𝐸
′
𝑘, 𝐹

′
𝑘 are computed by the formulas

ℎ𝑘+1 = 𝐻(𝑘 + 1, 𝑘 + 1 : 𝑁),

𝐸′𝑘 = −𝐺𝑘(𝐼 −𝐻𝐵
𝑘 𝐺

𝐵
𝑘 )
−1𝐻𝐵

𝑘 𝑔𝑘+1,

𝐹 ′𝑘 = −ℎ𝑘+1𝐺
𝐵
𝑘 (𝐼 −𝐻𝐵

𝑘 𝐺
𝐵
𝑘 )
−1𝐻𝑘.

(11.13)

Finally we get
𝐺 = �̂�𝑁 , 𝐻 = �̂�𝑁 . (11.14)

Proof. Assume that all the matrices of the form (11.5) are invertible. We show
that the formulas (11.6)–(11.8) yield the diagonal entries 𝐻𝑖𝑖, 𝑖 = 1, . . . , 𝑁 of ℋ
such that the conditions (10.49), (10.50) of Theorem 10.6 are satisfied.

Consider the condition (10.49). We use the partitions

ℎ1 := 𝐻(1, :) =
(
ℎ11 �̃�(1, 2 : 𝑁)

)
=
(
ℎ11 𝐻𝐵

1

)
and

𝑔1 = �̃�(1 : 𝑁, 1) =

(
𝑔(1)
𝐺𝐵1

)
and write the equality (10.49) in the form

ℎ11𝑔(1) +𝐻
𝐵
1 𝐺

𝐵
1 = 𝐼𝑚1 .

Hence it follows that the desired value of ℎ11 is given by the formula (11.6).

For 𝑘 = 2, . . . , 𝑁 − 1 we consider the condition (10.50) with the partitions

ℎ𝑘 =
(
ℎ𝑘𝑘 �̃�(𝑘, 𝑘 + 1 : 𝑁)

)
=
(
ℎ𝑘𝑘 ℎ′𝑘

)
and

𝑔𝑘 = �̃�(𝑘 : 𝑁, 𝑘) =

(
𝑔(𝑘)
𝑔′𝑘

)
,

𝐺𝐵𝑘−1 = �̃�(𝑘 : 𝑁, 1 : 𝑘 − 1) =

(
�̃�(𝑘, 1 : 𝑘 − 1)

�̃�(𝑘 + 1 : 𝑁, 1 : 𝑘 − 1)

)
=

(
𝐺′𝑘
𝐺′′𝑘

)
.

By (1.70), we get

(𝐼 −𝐺𝐵𝑘−1𝐻
𝐵
𝑘−1)

−1 = 𝐼 +𝐺𝐵𝑘−1(𝐼 −𝐻𝐵
𝑘−1𝐺

𝐵
𝑘−1)

−1𝐻𝐵
𝑘−1
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and therefore the condition (10.50) may be expressed in the form

ℎ𝑘(𝑔𝑘 +𝐺
𝐵
𝑘−1(𝐼 −𝐻𝐵

𝑘−1𝐺
𝐵
𝑘−1)

−1𝐻𝐵
𝑘−1𝑔𝑘) = 𝐼𝑚𝑘

,

i.e., (
ℎ𝑘𝑘 ℎ′𝑘

) [( 𝑔(𝑘)
𝑔′𝑘

)
+

(
𝐺′𝑘
𝐺′′𝑘

)
Δ𝑘

]
= 𝐼𝑚𝑘

.

Hence it follows that the desired value of ℎ𝑘𝑘 is given by the formula (11.7).

Finally, for 𝑘 = 𝑁 we use the formulas ℎ𝑁 = ℎ𝑁𝑁 and 𝑔𝑁 = 𝑔(𝑁) and
obtain the condition (10.50) in the form

ℎ𝑁𝑁 (𝐼 −𝐺𝐵𝑁−1𝐻
𝐵
𝑁−1)

−1𝑔(𝑁) = 𝐼𝑚𝑁 .

Hence it follows that the desired value of ℎ𝑁𝑁 is given by the formula (11.8).

Next set 𝜈 =
∑𝑁

𝑖=1𝑚𝑖 and consider the partially specified matrix

𝒜 =

(
𝐼𝜈 𝒢1

ℋ1 𝐼𝜈

)
, (11.15)

where 𝒢1 is a partially specified block square matrix with block entries of sizes
𝑚𝑖 ×𝑚𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑁 , with a given part �̃�1 = �̃� = {𝑔𝑖𝑗, 𝑗 ≤ 𝑖} and ℋ1 is a
partially specified block square matrix with block entries of sizes 𝑚𝑖 ×𝑚𝑗 , 𝑖, 𝑗 =

1, . . . , 𝑁 , with a given part �̃�1 = {ℎ𝑖𝑗 , 𝑖 ≤ 𝑗}. By Lemma 10.5, there is a unique
completion 𝐴 of 𝒜 such that 𝐴 is a Green matrix of order 𝑁 . Moreover, the matrix
𝐴 is obtained via the formulas (10.32)–(10.37). Notice that the computation of the
matrix 𝐴 via the formulas (10.32)–(10.37) means the computation of the matrices
𝐺 and 𝐻 which are the completions of 𝒢1 and ℋ1 via the formulas (11.9)–(11.14).
Next, by Theorem 10.6 the matrix

𝐴 =

(
𝐼𝜈 𝐺
𝐻 𝐼𝜈

)
(11.16)

is of rank 𝜈. By Lemma 11.1, this means that the matrices 𝐺 and 𝐻 are invertible
and 𝐻 = 𝐺−1.

Let 𝐺 be an invertible matrix such that 𝐺 is a completion of 𝒢 and 𝐻 =
𝐺−1 is a completion of ℋ. We prove that this implies that the matrices (11.5)
are invertible and that such matrix 𝐺 is unique. By Lemma 11.3, the matrices
𝑔(1) = 𝐺(1, 1) and 𝑔(𝑁) = 𝐺(𝑁,𝑁) are invertible. Also, by Lemma 11.3, the
matrices 𝐺𝑘, 𝑘 = 1, . . . , 𝑁 − 1 are invertible. The matrix 𝐺𝑁 = 𝐺 is invertible by
the assumption. For 𝑘 = 2, . . . , 𝑁 we use the partitions

𝐺𝑘 =

(
𝐺𝑘−1 𝐸′𝑘−1

𝐺′𝑘 𝑔(𝑘)

)
.

Since the matrices 𝐺𝑘−1 and 𝐺𝑘 are invertible, the Schur complements

Γ𝑘 = 𝑔(𝑘)−𝐺′𝑘𝐺−1
𝑘−1𝐸

′
𝑘−1, 𝑘 = 2, . . . , 𝑁, (11.17)
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are also invertible. Next consider the matrix 𝐴 of the form (11.16). By Lemma

11.1, rank𝐴 = 𝜈 =
∑𝑁
𝑖=1𝑚𝑖. It follows that

rank𝐴(1 : 𝑘, 𝑘 −𝑁 + 1 : 2𝑁) ≤ 𝜈, 𝑘 = 𝑁 + 1, . . . , 2𝑁 − 1,

rank𝐴(𝑘 −𝑁 + 1 : 2𝑁, 1 : 𝑘) ≤ 𝜈, 𝑘 = 𝑁 + 1, . . . , 2𝑁 − 1,

i.e., 𝐴 is a Green matrix of order 𝑁 . The matrix 𝐴 may be treated as a completion
of the partially specified matrix (11.15) with the partially specified parts 𝒢1 and
ℋ1 with the given parts �̃�1 = �̃� = {𝑔𝑖𝑗, 𝑗 ≤ 𝑖} and �̃�1 = {ℎ𝑖𝑗, 𝑖 ≤ 𝑗}. By Lemma

10.5, for the given parts �̃�1 and �̃�1 the completion 𝐴 which is a Green matrix of
order 𝑁 is unique. To get uniqueness of 𝐺 it remains to check that the specified
parts �̃�1 and �̃�1 are uniquely determined. Indeed the part �̃�1 = �̃� is given. The
entries of the upper triangular part �̃�1 coincide for 𝑖 < 𝑗 with the given entries ℎ𝑖𝑗
of the part �̃� . Since rank𝐴 = 𝜈, by Theorem 10.6 the conditions (10.49), (10.50)
hold. But as it was shown above the diagonal elements ℎ𝑖𝑖 (𝑖 = 1, . . . , 𝑁) of
�̃�1 are uniquely determined from these conditions by the formulas (11.6)–(11.8),
which completes the proof of the uniqueness. The matrix 𝐴 is a completion of
the partially specified matrix 𝒜 of the form (11.15) and hence, by Lemma 10.5,
the matrix 𝐴 satisfies the equalities (10.32)–(10.37) and therefore the matrix 𝐺
satisfies the equalities (11.9)–(11.14). Using the first equality in (11.13) we get

𝐸′𝑘−1 = −𝐺𝑘−1(𝐼 −𝐻𝐵
𝑘−1𝐺

𝐵
𝑘−1)

−1𝐻𝐵
𝑘−1𝑔𝑘, 𝑘 = 2, . . . , 𝑁. (11.18)

Inserting (11.18) in (11.17) we obtain

Γ𝑘 = 𝑔(𝑘) +𝐺
′
𝑘(𝐼 −𝐻𝐵

𝑘−1𝐺
𝐵
𝑘−1)

−1𝐻𝐵
𝑘−1𝑔𝑘, 𝑘 = 2, . . . , 𝑁 − 1,

and thus the matrices 𝑔(𝑘) +𝐺′𝑘Δ𝑘 (𝑘 = 2, . . . , 𝑁 − 1) are invertible. □

§11.3 The direct method

As it was proved above in Lemma 11.3, invertibility of the matrices 𝐼 − 𝐺𝐵𝑘 𝐻𝐵
𝑘

and/or 𝐼 −𝐻𝐵
𝑘 𝐺

𝐵
𝑘 𝑘 = 1, . . . , 𝑁 − 1 implies that the completions 𝐺 and 𝐻 = 𝐺−1

are strongly regular, i.e., all the principal leading submatrices

𝐺𝑘 = 𝐺(1 : 𝑘, 1 : 𝑘), 𝐻𝑘 = 𝐻(1 : 𝑘, 1 : 𝑘), 𝑘 = 1, . . . , 𝑁,

are invertible.

Here we derive some other formulas for the completions 𝐺 and 𝐻 using the
inverses of the matrices 𝐺𝑘 and 𝐻𝑘.

Theorem 11.5. Under the conditions of Theorem 11.4 the matrices 𝐺 and 𝐻 = 𝐺−1

may be obtained by successive computation of their principal leading submatrices

𝐺𝑘 = 𝐺(1 : 𝑘, 1 : 𝑘), 𝐻𝑘 = 𝐻(1 : 𝑘, 1 : 𝑘), 𝑘 = 1, . . . , 𝑁,

as follows. In the first step we set

𝐺1 = �̃�(1, 1) (11.19)



226 Chapter 11. Completion of Mutually Inverse Matrices

and compute
𝐻1 = (𝐼𝑚1 −𝐻𝐵

1 𝐺
𝐵
1 )(𝑔(1))

−1. (11.20)

Let for some 𝑘 with 2 ≤ 𝑘 ≤ 𝑁 the matrices 𝐺𝑘−1, 𝐻𝑘−1 be given. We
compute the submatrices 𝐺𝑘, 𝐻𝑘 by the formulas

𝐺𝑘 =

(
𝐺𝑘−1 𝐸𝑘
𝐺′𝑘 𝑔(𝑘)

)
(11.21)

and

𝐻𝑘 =

(
𝑊𝑘

𝐹𝑘

)
, (11.22)

with𝑊𝑘 =
(
𝐻𝑘−1 𝐻 ′𝑘

)
, where 𝐺′𝑘, 𝑔(𝑘), 𝐻

′
𝑘 are determined from the given parts

�̃� and �̃� by the recipes

𝐺′𝑘 = �̃�(𝑘, 1 : 𝑘 − 1), 𝑔(𝑘) = �̃�(𝑘, 𝑘), 𝐻 ′𝑘 = �̃�(1 : 𝑘 − 1, 𝑘)

and 𝐸𝑘 and 𝐹𝑘 are computed by the formulas

𝐸𝑘 = −𝐻−1
𝑘−1𝐻

𝐵
𝑘−1𝑔𝑘 (11.23)

and

𝐹𝑘 =
( −ℎ′𝑘𝐺′′𝑘 𝐼𝑚𝑘

− ℎ′𝑘𝑔′𝑘
)
𝐺−1
𝑘 . (11.24)

Finally we set
𝐺 = 𝐺𝑁 , 𝐻 = 𝐻𝑁 . (11.25)

Proof. By Lemma 11.3, the matrices 𝐺𝑘, 𝐻𝑘 (𝑘 = 1, . . . , 𝑁) are invertible.

The equality (11.19) is obvious. The equality (11.20) follows from (11.6).

For 𝑘 = 2, . . . , 𝑁 we proceed as follows. Using the equality

𝐻(1 : 𝑘 − 1, :)𝐺(:, 𝑘) = 0

with the partitions

𝐻(1 : 𝑘 − 1, :) =
(
𝐻𝑘−1 𝐻𝐵

𝑘−1

)
, 𝐺(:, 𝑘) =

(
𝐸𝑘
𝑔𝑘

)
we obtain

𝐻𝑘−1𝐸𝑘 +𝐻
𝐵
𝑘−1𝑔𝑘 = 0.

This yields (11.23). Moreover, we obtain the matrix 𝐺𝑘 by the formula (11.21).
Next we use the equality

𝐻(𝑘, :)𝐺(:, 1 : 𝑘) =
(
0 ⋅ ⋅ ⋅ 0 𝐼

)
with the partitions

𝐻(𝑘, :) =
(
𝐹𝑘 ℎ′𝑘

)
, 𝐺(:, 1 : 𝑘) =

(
𝐺𝑘
𝐺𝐵𝑘

)
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and obtain
𝐹𝑘𝐺𝑘 + ℎ

′
𝑘𝐺

𝐵
𝑘 =

(
0 ⋅ ⋅ ⋅ 0 𝐼

)
.

Hence it follows that

𝐹𝑘 =
[(

0 ⋅ ⋅ ⋅ 0 𝐼
)− ℎ′𝑘𝐺𝐵𝑘 ]𝐺−1

𝑘 .

From here using the partition

𝐺𝐵𝑘 =
(
𝐺′′𝑘 𝑔′𝑘

)
we obtain (11.24). Moreover, we obtain the matrix 𝐻𝑘 by the formula (11.22). □

§11.4 The factorization

As it was mentioned above, invertibility of the matrices 𝐼 − 𝐺𝐵𝑘 𝐻𝐵
𝑘 and/or 𝐼 −

𝐻𝐵
𝑘 𝐺

𝐵
𝑘 𝑘 = 1, . . . , 𝑁 − 1 implies that the completions 𝐺 and 𝐻 = 𝐺−1 are

strongly regular. By Theorem 1.20, the matrix 𝐺 admits the factorization 𝐺 =
𝐿𝑈1, where 𝐿 is a block lower triangular matrix (not necessarily with identities
on the main diagonal) and 𝑈1 is an upper triangular matrix with identities on
the main diagonal. The inverse 𝑈 = 𝑈−1

1 of 𝑈1 is also a block upper triangular
matrix with identities on the main diagonal. Next we derive simple formulas for
the factors 𝐿 and 𝑈 .

Theorem 11.6. Under the conditions of Theorem 11.4 the matrix 𝐺 admits the
factorization

𝐺 = 𝐿𝑈−1, (11.26)

where 𝐿 is a block lower triangular matrix and 𝑈 is an upper triangular matrix
with identities on the main diagonal. Moreover, the subcolumns of 𝐿 in the lower
triangular part and the subcolumns of 𝑈 in the strictly upper triangular part are
determined by the formulas

𝐿(1 : 𝑁, 1) = �̃�(1 : 𝑁, 1), (11.27)

𝐿(𝑘 : 𝑁, 𝑘) = (𝐼 −𝐺𝐵𝑘−1𝐻
𝐵
𝑘−1)

−1𝑔𝑘, 𝑘 = 2, . . . , 𝑁, (11.28)

and

𝑈(1 : 𝑘 − 1, 𝑘) = 𝐻𝐵
𝑘−1(𝐼 −𝐺𝐵𝑘−1𝐻

𝐵
𝑘−1)

−1𝑔𝑘, 𝑘 = 2, . . . , 𝑁, (11.29)

where 𝑔𝑘 = �̃�(𝑘 : 𝑁, 𝑘).

Proof. By Lemma 11.3, the matrices 𝐺(1 : 𝑘, 1 : 𝑘) (𝑘 = 1, . . . , 𝑁) are invertible.
By Theorem 1.20, the matrix 𝐺 admits the factorization 𝐺 = 𝐿𝑈1 with a block
lower triangular matrix 𝐿 and a block upper triangular matrix 𝑈1 with identities
on the main diagonal. Set 𝑈 = 𝑈−1

1 . Then 𝑈 is also a block upper triangular matrix
with identities on the main diagonal. Thus we obtain (11.26), which implies

𝐺𝑈 = 𝐿. (11.30)
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Moreover, for the matrix 𝐻 = 𝐺−1 we get 𝐻 = 𝑈𝐿−1, which implies

𝐻𝐿 = 𝑈. (11.31)

Comparing the first columns in (11.30) we obtain (11.27).

For 𝑘 = 2, . . . , 𝑁 we proceed as follows. Set

𝐿𝑘 = 𝐿(𝑘 : 𝑁, 𝑘), 𝑈𝑘 = 𝑈(1 : 𝑘 − 1, 𝑘), 𝑘 = 2, . . . , 𝑁.

Taking the 𝑘th columns and the rows from 𝑘 to 𝑁 in (11.30) and using the upper
triangular form of 𝑈 we get

𝐺(𝑘 : 𝑁, 1 : 𝑘)𝑈(1 : 𝑘, 𝑘) = 𝐿𝑘.

From here using the partitions

𝐺(𝑘 : 𝑁, 1 : 𝑘) =
(
𝐺𝐵𝑘−1 𝑔𝑘

)
, 𝑈(1 : 𝑘, 𝑘) =

(
𝑈𝑘
𝐼

)
we get 𝐺𝐵𝑘−1𝑈𝑘 + 𝑔𝑘 = 𝐿𝑘, or

𝐿𝑘 −𝐺𝐵𝑘−1𝑈𝑘 = 𝑔𝑘 (11.32)

Taking the 𝑘th columns and the rows from 1 to 𝑘 − 1 in (11.31) and using the
lower triangular form of the matrix 𝐿 we get

𝐻(1 : 𝑘 − 1, 𝑘 : 𝑁)𝐿(𝑘 : 𝑁, 𝑘) = 𝑈(1 : 𝑘 − 1, 𝑘),

i.e.,
−𝐻𝐵

𝑘−1𝐿𝑘 + 𝑈𝑘 = 0. (11.33)

Combining (11.32) and (11.33) together we obtain the equation(
𝐼 −𝐺𝐵𝑘−1

−𝐻𝐵
𝑘−1 𝐼

)(
𝐿𝑘
𝑈𝑘

)
=

[
𝑔𝑘
0

)
.

Applying the inversion formula (1.57) we get(
𝐿𝑘
𝑈𝑘

)
=

(
(𝐼 −𝐺𝐵𝑘−1𝐻

𝐵
𝑘−1)

−1 ∗
𝐻𝐵
𝑘−1(𝐼 −𝐺𝐵𝑘−1𝐻

𝐵
𝑘−1)

−1 ∗
)(

𝑔𝑘
0

)
.

Hence the equalities (11.28), (11.29) follow. □

§11.5 Comments

The material of the first three sections appears here for the first time. In the last
section we derived the factorization formulas obtained by H. Dym and I. Gohberg
in [11].



Chapter 12

Completion to Unitary Matrices

In this chapter we study the problem of completion of a partially specified matrix
with a given lower triangular part to a unitary matrix.

§12.1 Auxiliary relations

At first we consider some relations for block positive and positive definite matrices.
Recall that a 𝑘×𝑘 matrix𝐴 is said to be positive, and we write 𝐴 ≥ 0, if ⟨𝐴𝑥, 𝑥⟩ ≥ 0
for any 𝑥 ∈ ℂ𝑘 and 𝐴 is said to be positive definite if there exists 𝛿 > 0 such that
⟨𝐴𝑥, 𝑥⟩ ≥ 𝛿⟨𝑥, 𝑥⟩ for any 𝑥 ∈ ℂ𝑘.

Lemma 12.1. Let

𝐴0 =

(
𝐴 𝑍
𝑍∗ 𝐷

)
,

where 𝐴 is a square 𝑛× 𝑛 matrix and 𝐷 is a square 𝑚×𝑚 matrix.
Assume that the matrix 𝐴0 is positive.

Then the equation 𝐴𝐸 = 𝑍 has a solution 𝐸 and for any such 𝐸 the matrix
𝐷 − 𝑍∗𝐸 is positive. Moreover, the relation

dimKer𝐴0 = dimKer𝐴+ dimKer(𝐷 − 𝑍∗𝐸) (12.1)

holds.

Proof. Since 𝐴0 is positive, there exists an (𝑛+𝑚)× (𝑛+𝑚) matrix 𝐾 such that
𝐴0 = 𝐾

∗𝐾. Consider the partition of the matrix 𝐾 in the form 𝐾 =
(
𝐾1 𝐾2

)
with submatrices 𝐾1 and 𝐾2 of the sizes (𝑛+𝑚)× 𝑛 and (𝑛+𝑚)×𝑚. We have(

𝐴 𝑍
𝑍∗ 𝐷

)
=

(
𝐾∗1
𝐾∗2

)(
𝐾1 𝐾2

)
.

The matrix 𝐴0 is positive and, therefore, its principal leading submatrix 𝐴 is
Hermitian. Let us prove that 𝑍∗𝑥 = 0 for any 𝑥 ∈ Ker𝐴, which implies that the
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equation 𝐴𝐸 = 𝑍 has a solution. Indeed, for any 𝑥 ∈ Ker𝐴 we have 0 = 𝑥∗𝐴𝑥 =
𝑥∗𝐾∗1𝐾1𝑥 = ∥𝐾1𝑥∥2, and therefore 𝐾1𝑥 = 0. Hence 𝑍∗𝑥 = 𝐾∗2𝐾1𝑥 = 0.

Next let 𝐸 be a solution of the equation 𝐴𝐸 = 𝑍. We use the factorization(
𝐴 𝑍
𝑍∗ 𝐷

)
=

(
𝐼 0
𝐸∗ 𝐼

)(
𝐴 0
0 𝐷 − 𝑍∗𝐸

)(
𝐼 𝐸
0 𝐼

)
. (12.2)

Since the matrix 𝐴0 is positive this implies that the matrix

𝐴 =

(
𝐴 0
0 𝐷 − 𝑍∗𝐸

)
(12.3)

is positive and hence the matrix 𝐷 − 𝑍∗𝐸 is positive.

The relation (12.1) follows directly from (12.2). □

§12.2 An existence and uniqueness theorem

Let 𝒰 be a partially specified block matrix with a given lower triangular part
�̃� = {𝑢𝑖𝑗, 𝑖 ≥ 𝑗}. In this chapter we consider the problem of completing the lower

triangular part �̃� to a unitary matrix 𝑈 .

Theorem 12.2. Let 𝒰 be a partially specified block matrix with entries of sizes
𝑚𝑖 ×𝑚𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁 , with a given lower triangular part �̃� = {𝑢𝑖𝑗}1≤𝑗≤𝑖≤𝑁 .

The matrix 𝒰 has a unitary completion 𝑈 if and only if the submatrices
𝑈𝐷𝑘 = �̃�(𝑘 : 𝑁, 1 : 𝑘), 𝑘 = 1, . . . , 𝑁

satisfy the conditions

𝐼 − (𝑈𝐷𝑘 )∗𝑈𝐷𝑘 ≥ 0, dimKer(𝐼 − (𝑈𝐷𝑘 )∗𝑈𝐷𝑘 ) ≥ 𝑚𝑘, 𝑘 = 1, 2, . . . , 𝑁. (12.4)

Moreover, the unitary completion 𝑈 is obtained by successive computation of
the submatrices

�̂�𝑘 = 𝑈(1 : 𝑁, 1 : 𝑘), 𝑘 = 1, . . . , 𝑁,

as follows. In the first step we set

�̂�1 = �̃�(1 : 𝑁, 1). (12.5)

Let for some 𝑘 with 2 ≤ 𝑘 ≤ 𝑁 the matrix �̂�𝑘−1 be given. We start with partition-
ing �̂�𝑘−1 in the form

�̂�𝑘−1 =

(
𝑈𝑘−1

𝑈𝐵𝑘−1

)
, (12.6)

with

𝑈𝑘−1 = 𝑈(1 : 𝑘 − 1, 1 : 𝑘 − 1), 𝑈𝐵𝑘−1 = �̃�(𝑘 : 𝑁, 1 : 𝑘 − 1). (12.7)



§12.2. An existence and uniqueness theorem 231

Next the submatrix �̂�𝑘 is obtained by the formulas

�̂�𝑘 =

(
𝑈𝑘−1 Γ𝑘
𝑈𝐵𝑘−1 𝑍𝑘

)
, (12.8)

where 𝑍𝑘 is determined from the specified part �̃� by

𝑍𝑘 = �̃�(𝑘 : 𝑁, 𝑘) (12.9)

and Γ𝑘 is defined as

Γ𝑘 = Γ
(1)
𝑘 + Γ

(2)
𝑘 , 𝑘 = 2, . . . , 𝑁, (12.10)

where
Γ
(1)
𝑘 = 𝑈𝑘−1𝐸𝑘, (12.11)

the matrix 𝐸𝑘 being a solution of the equation

(𝐼 − (𝑈𝐵𝑘−1)
∗𝑈𝐵𝑘−1)𝐸𝑘 = −(𝑈𝐵𝑘−1)

∗𝑍𝑘, (12.12)

and the vector Γ
(2)
𝑘 is an arbitrary solution of the equation

𝑈∗𝑘−1Γ
(2)
𝑘 = 0 (12.13)

satisfying the condition

(Γ
(2)
𝑘 )∗Γ(2)

𝑘 = 𝐼 − 𝑍∗𝑘𝑍𝑘 − (Γ
(1)
𝑘 )∗Γ(1)

𝑘 . (12.14)

The element Γ
(1)
𝑘 is defined uniquely, i.e., it does not depend on the choice of the

solution 𝐸𝑘 of equation (12.12).

Finally, we get
𝑈 = �̂�𝑁 . (12.15)

Furthermore, if the condition (12.4) holds and additionally

∥𝑈𝐵𝑘 ∥ < 1, 𝑘 = 1, . . . , 𝑁 − 1, (12.16)

then the matrices 𝑈𝑘 (𝑘 = 1, . . . , 𝑁) are nonsingular, the unitary completion 𝑈 is
unique and the elements Γ𝑘 (𝑘 = 1, . . . , 𝑁) are determined by the formulas

Γ𝑘 = −𝑈𝑘−1(𝐼 − (𝑈𝐵𝑘−1)
∗𝑈𝐵𝑘−1)

−1(𝑈𝐵𝑘−1)
∗𝑍𝑘, 𝑘 = 2, . . . , 𝑁. (12.17)

Proof. First we prove the sufficiency. Assume that the condition of the theorem
holds. Determine the first block column 𝑈(:, 1) = �̂�1 of the matrix 𝑈 by the
formula (12.5). Using (12.4) with 𝑘 = 1 we get �̂�∗1 �̂�1 = 𝐼𝑚1 . Next, for 𝑘 = 2, . . . , 𝑁
we determine successively the submatrices �̂�𝑘 = 𝑈(:, 1 : 𝑘) in such a way that
the columns of �̂�𝑘 are orthonormal. Suppose that for some 𝑘, 2 ≤ 𝑘 ≤ 𝑁 , the
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submatrix �̂�𝑘−1, has been constructed. We show that one can determine the matrix

Γ𝑘 of the size 𝜈𝑘−1 ×𝑚𝑘, where 𝜈𝑘−1 =
∑𝑘−1
𝑖=1 𝑚𝑖, in such a way that the block

column 𝑈 ′𝑘 =
(

Γ𝑘
𝑍𝑘

)
is orthogonal to the columns of �̂�𝑘−1 and (𝑈 ′𝑘)

∗𝑈 ′𝑘 = 𝐼𝑚𝑘
.

Then we determine the submatrix �̂�𝑘 by the formulas (12.6)–(12.9). By using the
representation (12.6) we obtain that the block vector column Γ𝑘 is defined by the
relations

𝑈∗𝑘−1Γ𝑘 + (𝑈𝐵𝑘−1)
∗𝑍𝑘 = 0, (12.18)

Γ∗𝑘Γ𝑘 + 𝑍
∗
𝑘𝑍𝑘 = 𝐼𝑚𝑘

. (12.19)

We prove that the system of equations (12.18), (12.19) has a solution which is
given by the relations (12.10)–(12.14).

Since the columns of the matrix �̂�𝑘−1 are orthonormal, by using the repre-
sentation (12.6) we obtain the equality

𝑈∗𝑘−1𝑈𝑘−1 = 𝐼 − (𝑈𝐵𝑘−1)
∗𝑈𝐵𝑘−1. (12.20)

Further, from the representation

𝑈𝐷𝑘 =
(
𝑈𝐵𝑘−1 𝑍𝑘

)
it follows that

𝐼 − (𝑈𝐷𝑘 )∗𝑈𝐷𝑘 =

[
𝐼 − (𝑈𝐵𝑘−1)

∗𝑈𝐵𝑘−1 −(𝑈𝐵𝑘−1)
∗𝑍𝑘

−𝑍∗𝑘𝑈𝐵𝑘−1 𝐼 − 𝑍∗𝑘𝑍𝑘
]
. (12.21)

The first condition in (12.4) means that 𝐼 − (𝑈𝐷𝑘 )∗𝑈𝐷𝑘 is a positive matrix, so by
Lemma 12.1 for the matrix 𝐼 − (𝑈𝐷𝑘 )∗𝑈𝐷𝑘 we conclude that the equation (12.12)
has a solution 𝐸𝑘. Moreover, one can check easily that the formula (12.11) yields
a solution of the equation (12.18). Indeed, using (12.20) we obtain

𝑈∗𝑘−1Γ
(1)
𝑘 = 𝑈∗𝑘−1𝑈𝑘−1𝐸𝑘 = (𝐼 − (𝑈𝐵𝑘−1)

∗𝑈𝐵𝑘−1)𝐸𝑘 = −(𝑈𝐵𝑘−1)
∗𝑍𝑘.

Furthermore, the vector Γ
(1)
𝑘 does not depend on the choice of the solution 𝐸𝑘

of the equation (12.12). Indeed, for any 𝐸 such that (𝐼 − (𝑈𝐵𝑘−1)
∗𝑈𝐵𝑘−1)𝐸 = 0

by using (12.20) we obtain 𝑈∗𝑘−1𝑈𝑘−1𝐸 = 0 and therefore 𝑈𝑘−1𝐸 = 0. Thus the

equation (12.18) has a solution Γ
(1)
𝑘 and, moreover, any solution of (12.18) has the

form Γ𝑘 = Γ
(1)
𝑘 + Γ

(2)
𝑘 , where Γ

(2)
𝑘 is a solution of the equation 𝑈∗𝑘−1Γ

(2)
𝑘 = 0.

Notice that by virtue of (12.11) and (12.13) we have

(Γ
(1)
𝑘 )∗Γ(2)

𝑘 = 𝐸∗𝑈∗𝑘−1Γ
(2)
𝑘 = 0

and therefore
Γ∗𝑘Γ𝑘 = (Γ

(1)
𝑘 )∗Γ(1)

𝑘 + (Γ
(2)
𝑘 )∗Γ(2)

𝑘 .
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Hence, in order to satisfy the equation (12.19) we must determine the block column

vector Γ
(2)
𝑘 such that 𝑈∗𝑘−1Γ

(2)
𝑘 = 0 and (12.14) holds. Using (12.11) and (12.12)

one can write the right-hand part of the equality (12.14), Δ𝑘 := 𝐼𝑚𝑘
− 𝑍∗𝑘𝑍𝑘 −

(Γ
(1)
𝑘 )∗Γ(1)

𝑘 , in the form

Δ𝑘 = 𝐼𝑚𝑘
− 𝑍∗𝑘𝑍𝑘 − 𝐸∗𝑘𝑈∗𝑘−1𝑈𝑘−1𝐸𝑘

= 𝐼𝑚𝑘
− 𝑍∗𝑘𝑍𝑘 − [(𝐼 − (𝑈𝐵𝑘−1)

∗𝑈𝐵𝑘−1)𝐸𝑘]
∗𝐸𝑘 = 𝐼𝑚𝑘

− 𝑍∗𝑘𝑍𝑘 + 𝑍∗𝑘𝑈𝐵𝑘−1𝐸𝑘.

Applying Lemma 12.1 to the matrix 𝐼− (𝑈𝐷𝑘 )
∗𝑈𝐷𝑘 represented in the form (12.21)

we conclude that the matrix Δ𝑘 is positive. Set 𝜇𝑘 = rankΔ𝑘; clearly, 0 ≤ 𝜇𝑘 ≤
𝑚𝑘. If 𝜇𝑘 = 0 one can take Γ

(2)
𝑘 = 0. Assume that 0 < 𝜇𝑘 ≤ 𝑚𝑘. Using the

condition (12.4) and the formula (12.1) we get

dimKer(𝐼 − (𝑈𝐵𝑘−1)
∗𝑈𝐵𝑘−1) + dimKerΔ𝑘 ≥ 𝑚𝑘.

Since dimKerΔ𝑘 = 𝑚𝑘 − 𝜇𝑘, we get
dimKer(𝐼 − (𝑈𝐵𝑘−1)

∗𝑈𝐵𝑘−1) ≥ 𝜇𝑘.
But using (12.20) we get

dimKer(𝑈∗𝑘−1𝑈𝑘−1) = dimKer𝑈∗𝑘−1 ≥ 𝜇𝑘.
It follows that Ker𝑈∗𝑘−1 contains 𝜇𝑘 orthonormal vector columns, i.e., there exists
a 𝜈𝑘−1×𝜇𝑘 matrix Φ𝑘 such that 𝑈∗𝑘−1Φ𝑘 = 0 and Φ∗𝑘Φ𝑘 = 𝐼𝜇𝑘

. Since the 𝑚𝑘×𝑚𝑘

matrix Δ𝑘 is positive and has the rank 𝜇𝑘, there exists an 𝑚𝑘 × 𝜇𝑘 matrix Ψ𝑘
such that Δ𝑘 = Ψ𝑘Ψ

∗
𝑘. Set Γ

(2)
𝑘 = Φ𝑘Ψ

∗
𝑘. One can easily check that 𝑈∗𝑘−1Γ

(2)
𝑘 = 0

and
(Γ

(2)
𝑘 )∗Γ(2)

𝑘 = Ψ𝑘Φ
∗
𝑘Φ𝑘Ψ

∗
𝑘 = Ψ𝑘Ψ

∗
𝑘 = Δ𝑘.

Finally, in the case Ker𝑈∗𝑘−1 = {0}, equality (12.20) yields

Ker(𝐼 − (𝑈𝐵𝑘−1)
∗𝑈𝐵𝑘−1) = {0}.

Hence, by Lemma 12.1, using the second condition in (12.4) we obtain 𝐼−𝑍∗𝑘𝑍𝑘+
𝑍∗𝑘𝑈

𝐵
𝑘−1𝐸𝑘 = 0.

Now we prove the necessity. Let 𝑈 be a unitary completion of the lower
triangular part �̃� . For 𝑘 = 1 we have �̂�1 = �̃�(:, 1) = 𝑈(:, 1) and, hence, �̂�∗1 �̂�1 =
𝐼𝑚1 . For 𝑘 = 2, . . . , 𝑁 we use the representation

𝑈𝐷𝑘 =
(
𝑈𝐵𝑘−1 𝑍𝑘

)
and the partition (12.8). The orthonormality of the columns of the matrix �̂�𝑘 =
𝑈(:, 1 : 𝑘) implies that

𝑈∗𝑘−1Γ𝑘 + (𝑈𝐵𝑘−1)
∗𝑍𝑘 = 0,

Γ∗𝑘Γ𝑘 + 𝑍
∗
𝑘𝑍𝑘 = 𝐼, 𝑘 = 2, . . . , 𝑁.

𝑈∗𝑘−1𝑈𝑘−1 + (𝑈𝐵𝑘−1)
∗𝑈𝐵𝑘−1 = 𝐼.
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One can recast these equalities as

−(𝑈𝐵𝑘−1)
∗𝑍𝑘 = 𝑈∗𝑘−1Γ𝑘, −𝑍∗𝑘𝑈𝐵𝑘−1 = Γ∗𝑘𝑈𝑘−1,

𝐼 − (𝑈𝐵𝑘−1)
∗𝑈𝐵𝑘−1 = 𝑈

∗
𝑘−1𝑈𝑘−1, 𝐼 − 𝑍∗𝑘𝑍𝑘 = Γ∗𝑘Γ𝑘,

i.e.,

𝐼 − (𝑈𝐷𝑘 )∗𝑈𝐷𝑘 =

(
𝐼 − (𝑈𝐵𝑘−1)

∗𝑈𝐵𝑘−1 −(𝑈𝐵𝑘−1)
∗𝑍𝑘

−𝑍∗𝑘𝑈𝐵𝑘−1 𝐼 − 𝑍∗𝑘𝑍𝑘
)

=

(
𝑈∗𝑘−1

Γ∗𝑘

)(
𝑈𝑘−1 Γ𝑘

)
, 𝑘 = 2, . . . , 𝑁.

This implies 𝐼 − (𝑈𝐷𝑘 )∗𝑈𝐷𝑘 = 𝑀∗
𝑘𝑀𝑘, 𝑘 = 2, . . . , 𝑁, where 𝑀𝑘 =

(
𝑈𝑘−1 Γ𝑘

)
.

Hence, the matrices 𝐼− (𝑈𝐷𝑘 )∗𝑈𝐷𝑘 (𝑘 = 2, . . . , 𝑁) are positive. Moreover, since the
matrices 𝑀𝑘 have the sizes 𝜈𝑘−1 × (𝜈𝑘−1 +𝑚𝑘), we conclude that

dimKer(𝐼 − (𝑈𝐷𝑘 )∗𝑈𝐷𝑘 ) ≥ 𝑚𝑘, 𝑘 = 2, . . . , 𝑁.

Finally, we check that if the conditions (12.16) are satisfied, then the unitary
completion 𝑈 is unique and the formulas (12.17) hold. The conditions (12.16)
imply that the matrices 𝐼 − (𝑈𝐵𝑘−1)

∗𝑈𝐵𝑘−1, 𝑘 = 2, . . . , 𝑁 , are invertible. Moreover,
by using the formulas (12.10)–(12.13) we obtain that the unspecified entries of the
unitary completion are determined by the relations

Γ𝑘 = −𝑈𝑘−1(𝐼 − (𝑈𝐵𝑘−1)
∗𝑈𝐵𝑘−1)

−1(𝑈𝐵𝑘−1)
∗𝑍𝑘 + Γ

(2)
𝑘 , 𝑘 = 2, . . . , 𝑁,

where 𝑈∗𝑘−1Γ
(2)
𝑘 = 0. But the equality (12.20) implies that Ker𝑈∗𝑘−1 = {0} and,

therefore, Γ
(2)
𝑘 = 0. We conclude that the unitary completion 𝑈 is unique and the

relations (12.17) hold. □

Remark. By Lemma 11.3, the condition (12.16) means that the unitary completion
𝑈 is a strongly regular matrix.

Example 12.3. In this example necessary and sufficient conditions for the existence
of a unitary completion of a partially specified scalar matrix with a given diagonal
and subdiagonal part will be found using Theorem 12.2.

Let

𝒰 =

⎛⎜⎜⎜⎜⎝
𝑑1 ∗ ∗ ∗ ∗
𝑚1 𝑑2 ∗ ∗ ∗
0 𝑚2 𝑑3 ∗ ∗
0 0 𝑚3 𝑑4 ∗
0 0 0 𝑚4 𝑑5

⎞⎟⎟⎟⎟⎠ .
The partially specified matrix 𝒰 has a unitary completion 𝑈 if and only if

the submatrices
𝑈𝐷𝑘 = �̃�(𝑘 : 5, 1 : 𝑘), 𝑘 = 1, . . . , 5

satisfy the conditions (12.4). We will now check when these conditions hold.
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For 𝑘 = 1 we have

𝐼 − (𝑈𝐷𝑘 )∗𝑈𝐷𝑘 = 1− (
𝑑1 𝑚1 0 0 0

)
⎛⎜⎜⎜⎜⎝

𝑑1
𝑚1

0
0
0

⎞⎟⎟⎟⎟⎠ = 1− ∣𝑑1∣2 − ∣𝑚1∣2

and therefore (12.4) reads
∣𝑑1∣2 + ∣𝑚1∣2 = 1. (12.22)

For 𝑘 = 2 we have

𝐼 − (𝑈𝐷2 )∗𝑈𝐷2 =

(
1 0
0 1

)
−
(
𝑚1 0 0 0

𝑑2 𝑚2 0 0

)⎛⎜⎜⎝
𝑚1 𝑑2
0 𝑚2

0 0
0 0

⎞⎟⎟⎠
=

(
1− ∣𝑚1∣2 −𝑚1𝑑2
−𝑑2𝑚1 1− ∣𝑑2∣2 − ∣𝑚2∣2

)
.

For a 2 × 2 matrix the condition (12.4) means that the trace of a matrix is non-
negative and the determinant is zero. Hence we get

∣𝑚1∣2 + ∣𝑚2∣2 + ∣𝑑2∣2 ≤ 2, (1 − ∣𝑚1∣2)(1 − ∣𝑚2∣2 − ∣𝑑2∣2)− ∣𝑚1∣2∣𝑑2∣2 = 0,

i.e., the trace is positive if and only if ∣𝑚1∣2 ≤ 1 and ∣𝑑2∣2 + ∣𝑚2∣2 ≤ 1 both hold.
The first inequality follows readily from the equality which has been deduced for
the case 𝑘 = 1, while the second inequality is new. The kernel of the matrix that
we obtained is not null if and only if its determinant is zero, which means

(1 − ∣𝑚1∣2)(1 − ∣𝑚2∣2 − ∣𝑑2∣2)− ∣𝑚1∣2∣𝑑2∣2 = 0,

or

1− ∣𝑚1∣2 − ∣𝑚2∣2 + ∣𝑚1∣2∣𝑚2∣2 − ∣𝑑2∣2 = 0.

Therefore, the conditions (12.4) are satisfied for 𝑘 = 1 and 𝑘 = 2 if and only if

1 + ∣𝑚1∣2∣𝑚2∣2 = ∣𝑚1∣2 + ∣𝑚2∣2 + ∣𝑑2∣2 ≤ 2. (12.23)

For 𝑘 = 3 we have

𝐼 − (𝑈𝐷3 )∗𝑈𝐷3 =

⎛⎝ 1 0 0
0 1 0
0 0 1

⎞⎠−
⎛⎝ 0 0 0
𝑚2 0 0

𝑑3 𝑚3 0

⎞⎠⎛⎝ 0 𝑚2 𝑑3
0 0 𝑚3

0 0 0

⎞⎠
=

⎛⎝ 1 0 0
0 1− ∣𝑚2∣2 −𝑚2𝑑3
0 −𝑑3𝑚2 1− ∣𝑑3∣2 − ∣𝑚3∣2

⎞⎠ .
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In the same way as above we get

1 + ∣𝑚2∣2∣𝑚3∣2 = ∣𝑚2∣2 + ∣𝑚3∣2 + ∣𝑑3∣2 ≤ 2. (12.24)

For 𝑘 = 4 we have

𝐼 − (𝑈𝐷4 )∗𝑈𝐷4 =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠−

⎛⎜⎜⎝
0 0
0 0
𝑚3 0

𝑑4 𝑚4

⎞⎟⎟⎠(
0 0 𝑚3 𝑑4
0 0 0 𝑚4

)

=

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1− ∣𝑚3∣2 −𝑚3𝑑4
0 0 −𝑑4𝑚3 1− ∣𝑑4∣2 − ∣𝑚4∣2

⎞⎟⎟⎠
and obtain

1 + ∣𝑚3∣2∣𝑚4∣2 = ∣𝑚3∣2 + ∣𝑚4∣2 + ∣𝑑4∣2 ≤ 2. (12.25)

Finally, for 𝑘 = 5 we get

𝐼 − (𝑈𝐷5 )∗𝑈𝐷5 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠−

⎛⎜⎜⎜⎜⎝
0
0
0
𝑚4

𝑑5

⎞⎟⎟⎟⎟⎠(
0 0 0 𝑚4 𝑑5

)

=

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1− ∣𝑚4∣2 −𝑚4𝑑5
0 0 0 −𝑑5𝑚4 1− ∣𝑑5∣2

⎞⎟⎟⎟⎟⎠ .
Here we get

∣𝑚4∣2 + ∣𝑑5∣2 ≤ 2, (1 − ∣𝑚4∣2)(1 − ∣𝑑5∣2)− ∣𝑚4∣2∣𝑑5∣2 = 0,

which means
∣𝑚4∣2 + ∣𝑑5∣2 = 1. (12.26)

It follows that the partially specified matrix 𝒰 has a unitary completion 𝑈
if and only if 𝑚𝑖, 𝑖 = 1, . . . , 4 and 𝑑𝑖, 𝑖 = 1, . . . , 5 satisfy the conditions (12.22)–
(12.26).

Since the partially specified matrix 𝒰 is a Hessenberg matrix it follows that
its unitary completions are unitary Hessenberg matrices.

As a particular case of this example take

𝑚1 = 𝑚2 = 𝑚3 = 𝑚4 = 1, 𝑑1 = 𝑑2 = 𝑑3 = 𝑑4 = 𝑑5 = 0. (12.27)
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It is easy to check that these values satisfy all the conditions (12.22)–(12.26),
therefore unitary completions exist in this particular case. Moreover, any one of
them has the form (7.81), where 𝜌0 = −1, ∣𝜌5∣ = 1, and from (12.27) it follows
that

𝜇𝑘 = 1, 𝜌𝑘 = 0, 𝑘 = 1, . . . , 4,

therefore the unitary completion is⎛⎜⎜⎜⎜⎝
0 0 0 0 𝜌
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞⎟⎟⎟⎟⎠ ,

with ∣𝜌∣ = 1. ♢

§12.3 Unitary completion via quasiseparable
representation

Let 𝒰 be a partially specified block matrix with a lower triangular part �̃� with
given lower quasiseparable generators and diagonal entries. As above, we consider
the problem of completing �̃� to a unitary matrix. By Corollary 7.2, such a com-
pletion, if it exists, has upper quasiseparable generators with orders equal to the
corresponding rank numbers of the given lower part. The problem is to formulate
the conditions of Theorem 12.2 in terms of lower quasiseparable generators and
diagonal entries of �̃� and to compute a set of upper quasiseparable generators of
the completion.

§12.3.1 Existence theorem

Here we present a version of Theorem 12.2 for partially specified matrices with
the lower triangular part given in quasiseparable form.

Theorem 12.4. Let 𝒰 be a partially specified block matrix with entries of sizes 𝑚𝑖×
𝑚𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁 , with a lower triangular part �̃� given via lower quasiseparable
generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of
orders 𝑟𝑘 (𝑘 = 1, . . . , 𝑁 − 1) and diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁). Set

𝜌𝑁 = 0, 𝜌𝑘−1 = min{𝑚𝑘 + 𝜌𝑘, 𝑟𝑘−1}, 𝑘 = 𝑁, . . . , 2,

𝜏0 = 0, 𝜏𝑘 = min{𝑚𝑘 + 𝜏𝑘−1, 𝑟𝑘}, 𝑘 = 1, . . . , 𝑁 − 1.
(12.28)

Using the given lower generators 𝑝(𝑘), 𝑎(𝑘) determine via truncated QR or QR′

factorizations (see Section §7.1) matrices 𝑉𝑘, 𝑋𝑘, 𝑘 = 𝑁, . . . , 2 of sizes (𝑚𝑘+𝜌𝑘)×
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𝜌𝑘−1 and 𝜌𝑘−1 × 𝑟𝑘−1, respectively, such that 𝑉
∗
𝑘 𝑉𝑘 = 𝐼𝜌𝑘−1

and the relations

𝑝(𝑁) = 𝑉𝑁𝑋𝑁 ,

(
𝑝(𝑘)

𝑋𝑘+1𝑎(𝑘)

)
= 𝑉𝑘𝑋𝑘, 𝑘 = 𝑁 − 1, . . . , 2 (12.29)

hold. Using the given lower generators 𝑞(𝑘), 𝑎(𝑘) determine via truncated LQ or
L′Q factorizations (see Section §7.1) matrices 𝑌𝑘, 𝐹𝑘, 𝑘 = 1, . . . , 𝑁 − 1 of sizes
𝑟𝑘 × 𝜏𝑘 and 𝜏𝑘 × (𝜏𝑘−1+𝑚𝑘), respectively, such that 𝐹𝑘𝐹

∗
𝑘 = 𝐼𝜏𝑘 and the relations

𝑞(1) = 𝑌1𝐹1,
(
𝑎(𝑘)𝑌𝑘−1 𝑞(𝑘)

)
= 𝑌𝑘𝐹𝑘, 𝑘 = 2, . . . , 𝑁 − 1 (12.30)

hold.

Define the matrices 𝐴𝑘 (𝑘 = 1, . . . , 𝑁) by

𝐴1 =

(
𝑑(1)
𝑋2𝑞(1)

)
; (12.31)

𝐴𝑘 =

(
𝑝(𝑘)𝑌𝑘−1 𝑑(𝑘)

𝑋𝑘+1𝑎(𝑘)𝑌𝑘−1 𝑋𝑘+1𝑞(𝑘)

)
, 𝑘 = 2, . . . , 𝑁 − 1, (12.32)

𝐴𝑁 =
(
𝑝(𝑁)𝑌𝑁−1 𝑑(𝑁)

)
. (12.33)

The partially specified matrix 𝒰 has a unitary completion 𝑈 if and only if the
conditions

𝐼 −𝐴∗𝑘𝐴𝑘 ≥ 0, dimKer(𝐼 −𝐴∗𝑘𝐴𝑘) ≥ 𝑚𝑘, 𝑘 = 1, . . . , 𝑁, (12.34)

hold.

Furthermore, if the conditions (12.34) hold and additionally

∥𝑋𝑘+1𝑌𝑘∥ < 1, 𝑘 = 1, . . . , 𝑁 − 1, (12.35)

then the unitary completion 𝑈 is unique.

Moreover, if the conditions (12.34) and (12.35) hold, a set of upper qua-
siseparable generators 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 =
2, . . . , 𝑁 − 1) of the matrix 𝑈 is determined by the formulas

𝑔(1) = −𝑑(1)𝐹 ∗1 , 𝑔(𝑖) = − ( 𝑝(𝑖)𝑌𝑖−1 𝑑(𝑖)
)
𝐹 ∗𝑖 , 𝑖 = 2, . . . , 𝑁 − 1, (12.36)

ℎ(𝑗) = (𝐼 − 𝑌 ∗𝑗−1𝑋
∗
𝑗𝑋𝑗𝑌𝑗−1)

−1𝑌 ∗𝑗−1(𝑝
∗(𝑗)𝑑(𝑗) + 𝑎∗(𝑗)𝑋∗𝑗+1𝑋𝑗+1𝑞(𝑗)),

𝑗 = 2, . . . , 𝑁 − 1, (12.37)

ℎ(𝑁) = (𝐼 − 𝑌 ∗𝑁−1𝑋
∗
𝑁𝑋𝑁𝑌𝑁−1)

−1𝑌 ∗𝑁−1𝑝
∗(𝑁)𝑑(𝑁),

𝑏(𝑘) =
(
𝐼𝜏𝑘−1

−ℎ(𝑘) )𝐹 ∗𝑘 , 𝑘 = 2, . . . , 𝑁 − 1. (12.38)

Proof. Using the lower quasiseparable generators determine the matrices 𝑄𝑘 (𝑘 =
1, . . . , 𝑁 − 1) and 𝑃𝑘 (𝑘 = 𝑁, . . . , 2) via equalities (5.1) and (5.2). By Lemma 5.1,
we have

�̃�(𝑘 + 1 : 𝑁, 1 : 𝑘) = 𝑃𝑘+1𝑄𝑘, 𝑘 = 1, . . . , 𝑁 − 1. (12.39)
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Using also the equalities 𝑄1 = 𝑞(1), 𝑃𝑁 = 𝑝(𝑁) and the recursions (5.3), (5.4) we
get

�̃�(1 : 𝑁, 1) =

(
𝑑(1)
𝑃2𝑞(1)

)
, (12.40)

�̃�(𝑘 : 𝑁, 1 : 𝑘) =

(
𝑝(𝑘)𝑄𝑘−1 𝑑(𝑘)

𝑃𝑘+1𝑎(𝑘)𝑄𝑘−1 𝑃𝑘+1𝑞(𝑘)

)
, 𝑘 = 2, . . . , 𝑁 − 1, (12.41)

�̃�(𝑁, 1 : 𝑁) =
(
𝑝(𝑁)𝑄𝑁−1 𝑑(𝑁)

)
. (12.42)

Next using the matrices 𝑉𝑘 and 𝐹𝑘 we determine the matrices 𝑃
(𝑉 )
𝑘 and 𝑄

(𝐹 )
𝑘

by means of the recursion relations

𝑃
(𝑉 )
𝑁 = 𝑉𝑁 , 𝑃

(𝑉 )
𝑘 =

(
𝐼𝑚𝑘

0

0 𝑃
(𝑉 )
𝑘+1

)
𝑉𝑘, 𝑘 = 𝑁 − 1, . . . , 2 (12.43)

and

𝑄
(𝐹 )
1 = 𝐹1, 𝑄

(𝐹 )
𝑘 = 𝐹𝑘

(
𝑄

(𝐹 )
𝑘−1 0
0 𝐼𝑚𝑘

)
, 𝑘 = 2, . . . , 𝑁 − 1. (12.44)

Using the equalities 𝑉 ∗𝑘 𝑉𝑘 = 𝐼𝜌𝑘−1
and 𝐹𝑘𝐹

∗
𝑘 = 𝐼𝜏𝑘 one can easily check that

(𝑃
(𝑉 )
𝑘 )∗𝑃 (𝑉 )

𝑘 = 𝐼𝜌𝑘−1
, 𝑘 = 2, . . . , 𝑁 (12.45)

and

𝑄
(𝐹 )
𝑘 (𝑄

(𝐹 )
𝑘 )∗ = 𝐼𝜏𝑘 , 𝑘 = 1, . . . , 𝑁 − 1. (12.46)

We prove by induction that

𝑄𝑘 = 𝑌𝑘𝑄
(𝐹 )
𝑘 , 𝑘 = 1, . . . , 𝑁 − 1, (12.47)

and

𝑃𝑘 = 𝑃
(𝑉 )
𝑘 𝑋𝑘, 𝑘 = 𝑁, . . . , 2. (12.48)

Using the first equalities in (12.30) and (12.44) we have

𝑄1 = 𝑞(1) = 𝑌1𝐹1 = 𝑌1𝑄
(𝐹 )
1 .

Let for some 𝑘 with 2 ≤ 𝑘 ≤ 𝑁 − 2 the relation 𝑄𝑘−1 = 𝑌𝑘−1𝑄
(𝐹 )
𝑘−1 hold. Using

the recursion (5.3) we get

𝑄𝑘 =
(
𝑎(𝑘)𝑄𝑘−1 𝑞(𝑘)

)
=
(
𝑎(𝑘)𝑌𝑘−1𝑄

(𝐹 )
𝑘−1 𝑞(𝑘)

)
=
(
𝑎(𝑘)𝑌𝑘−1 𝑞(𝑘)

)( 𝑄
(𝐹 )
𝑘−1 0
0 𝐼𝑚𝑘

)
.

From here using the factorization (12.30) and the recursion (12.44) we obtain
(12.47).
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Using the first equalities in (12.29) and (12.43) we have

𝑃𝑁 = 𝑝(𝑁) = 𝑉𝑁𝑋𝑁 = 𝑃
(𝑉 )
𝑁 𝑋𝑁 .

Let for some 𝑘 with 𝑁 − 1 ≥ 𝑘 ≥ 3 the relation 𝑃𝑘+1 = 𝑃
(𝑉 )
𝑘+1𝑋𝑘+1 hold. Using

the recursion (5.4) we get

𝑃𝑘 =

(
𝑝(𝑘)

𝑃𝑘+1𝑎(𝑘)

)
=

(
𝑝(𝑘)

𝑃
(𝑉 )
𝑘+1𝑋𝑘+1𝑎(𝑘)

)
=

(
𝐼𝑚𝑘

0

0 𝑃
(𝑉 )
𝑘+1

)(
𝑝(𝑘)

𝑋𝑘+1𝑎(𝑘)

)
.

From here using the factorization (12.29) and the recursion (12.43) we obtain
(12.47).

Now combining the relations (12.40)–(12.42) and (12.47), (12.48) we obtain
the representations

�̃�(1 : 𝑁, 1) =

(
𝐼𝑚1 0

0 𝑃
(𝑉 )
2

)
𝐴1,

�̃�(𝑘 : 𝑁, 1 : 𝑘) =

(
𝐼𝑚𝑘

0

0 𝑃
(𝑉 )
𝑘+1

)
𝐴𝑘

(
𝑄

(𝐹 )
𝑘−1 0
0 𝐼𝑚𝑘

)
, 𝑘 = 2, . . . , 𝑁 − 1,

�̃�(𝑁, 1 : 𝑁) = 𝐴𝑁

(
𝑄

(𝐹 )
𝑁−1 0
0 𝐼𝑚𝑁

)
with the matrices𝐴𝑘, 𝑘 = 1, . . . , 𝑁 defined in (12.31)–(12.33). From here using the
equalities (12.45), (12.46) we conclude that the conditions (12.4) of Theorem 12.2
and the conditions (12.34) are equivalent. Hence, by Theorem 12.2, the partially
specified matrix 𝒰 has a unitary completion 𝑈 if and only if the conditions (12.34)
are satisfied.

Combining the relations (12.39) and (12.47), (12.48) we obtain the represen-
tations

�̃�(𝑘 + 1 : 𝑁, 1 : 𝑘) = 𝑃
(𝑉 )
𝑘+1𝑋𝑘+1𝑌𝑘𝑄

(𝐹 )
𝑘 , 𝑘 = 1, . . . , 𝑁 − 1. (12.49)

From here using the equalities (12.45), (12.46) we conclude that the conditions
(12.16) of Theorem 12.2 and the conditions (12.35) are equivalent. Hence, if (12.35)
holds, then by Theorem 12.2 the unitary completion 𝑈 is unique.

To compute upper quasiseparable generators of the matrix 𝑈 we apply the
formula (12.17). As in Theorem 12.4, we set

𝑈𝑘 = 𝑈(1 : 𝑘, 1 : 𝑘), 𝑘 = 1, . . . , 𝑁,

𝑈𝐵𝑘 = �̃�(𝑘 + 1 : 𝑁, 1 : 𝑘), 𝑘 = 1, . . . , 𝑁 − 1, 𝑍𝑘 = 𝑍(𝑘 : 𝑁, 𝑘), 𝑘 = 2, . . . , 𝑁.

Using (12.49) and (12.45) we have

(𝑈𝐵𝑘−1)
∗𝑈𝐵𝑘−1 = (𝑄

(𝐹 )
𝑘−1)

∗𝑌 ∗𝑘−1𝑋
∗
𝑘𝑋𝑘𝑌𝑘−1𝑄

(𝐹 )
𝑘−1, 𝑘 = 2, . . . , 𝑁.
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Next, the inversion formula (1.70) and the equalities (12.46) yield

(𝐼−(𝑈𝐵𝑘−1)
∗𝑈𝐵𝑘−1)

−1=𝐼+(𝑄
(𝐹 )
𝑘−1)

∗𝑌 ∗𝑘−1𝑋
∗
𝑘(𝐼−𝑋𝑘𝑌𝑘−1𝑌

∗
𝑘−1𝑋

∗
𝑘 )
−1𝑋𝑘𝑌𝑘−1𝑄

(𝐹 )
𝑘−1,

𝑘=2,...,𝑁,

and in conjunction with (12.49) and (12.46) we obtain

(𝐼 − (𝑈𝐵𝑘−1)
∗𝑈𝐵𝑘−1)

−1(𝑈𝐵𝑘−1)
∗

= (𝑄
(𝐹 )
𝑘−1)

∗[𝐼 + 𝑌 ∗𝑘−1𝑋
∗
𝑘 (𝐼 −𝑋𝑘𝑌𝑘−1𝑌

∗
𝑘−1𝑋

∗
𝑘 )
−1𝑋𝑘𝑌𝑘−1]𝑌

∗
𝑘−1𝑋

∗
𝑘(𝑃

(𝑉 )
𝑘 )∗,

𝑘 = 2, . . . , 𝑁.

Using the formula (1.70) we get

(𝐼 − (𝑈𝐵𝑘−1)
∗𝑈𝐵𝑘−1)

−1(𝑈𝐵𝑘−1)
∗ = (𝑄

(𝐹 )
𝑘−1)

∗(𝐼 − 𝑌 ∗𝑘−1𝑋
∗
𝑘𝑋𝑘𝑌𝑘−1)

−1𝑌 ∗𝑘−1𝑋
∗
𝑘(𝑃

(𝑉 )
𝑘 )∗,

𝑘 = 2, . . . , 𝑁.

Thus, using (12.17) we get

𝑈(1 : 𝑘 − 1, 𝑘) = 𝐺𝑘−1ℎ(𝑘), 𝑘 = 2, . . . , 𝑁, (12.50)

with
𝐺𝑘 = −𝑈𝑘(𝑄(𝐹 )

𝑘 )∗, 𝑘 = 1, . . . , 𝑁 − 1, (12.51)

and

ℎ(𝑘) = (𝐼 − 𝑌 ∗𝑘−1𝑋
∗
𝑘𝑋𝑘𝑌𝑘−1)

−1𝑌 ∗𝑘−1𝑋
∗
𝑘 (𝑃

(𝑉 )
𝑘 )∗𝑍𝑘, 𝑘 = 2, . . . , 𝑁. (12.52)

Let us check that the elements ℎ(𝑘) are determined by the formulas (12.37). Using
the formula (5.10) we have

𝑍𝑘 =

(
𝑑(𝑘)

𝑃𝑘+1𝑞(𝑘)

)
, 𝑘 = 2, . . . , 𝑁 − 1, 𝑍𝑁 = 𝑑(𝑁).

Using (12.48) we get

𝑍𝑘 =

(
𝐼𝑚𝑘

0

0 𝑃
(𝑉 )
𝑘+1

)(
𝑑(𝑘)

𝑋𝑘+1𝑞(𝑘)

)
, 𝑘 = 2, . . . , 𝑁 − 1, 𝑍𝑁 = 𝑑(𝑁),

whence, by (12.43) and (12.45),

(𝑃
(𝑉 )
𝑘 )∗𝑍𝑘 = 𝑉 ∗𝑘

(
𝑑(𝑘)

𝑋𝑘+1𝑞(𝑘)

)
, 𝑘 = 2, . . . , 𝑁 − 1, (𝑃

(𝑉 )
𝑁 )∗𝑍𝑁 = 𝑉 ∗𝑁𝑑(𝑁).

Next, using the factorizations (12.29) we obtain

𝑋∗𝑘(𝑃
(𝑉 )
𝑘 )∗𝑍𝑘 = 𝑋∗𝑘𝑉

∗
𝑘

(
𝑑(𝑘)

𝑋𝑘+1𝑞(𝑘)

)
= 𝑝∗(𝑘)𝑑(𝑘) + 𝑎∗(𝑘)𝑋∗𝑘+1𝑋𝑘+1𝑞(𝑘), (12.53)

𝑘 = 2, . . . , 𝑁 − 1,

𝑋∗𝑁 (𝑃
(𝑉 )
𝑁 )∗𝑍𝑁 = 𝑝∗(𝑁)𝑑(𝑁). (12.54)
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Inserting (12.53) and (12.54) in (12.52) we obtain the formulas (12.37) for the
elements ℎ(𝑗) (𝑗 = 2, . . . , 𝑁).

It remains to check that the matrices 𝐺𝑘 (𝑘 = 1, . . . , 𝑁−1) in (12.51) satisfy
the recursion relations

𝐺1 = 𝑔(1), 𝐺𝑘 =

(
𝐺𝑘−1𝑏(𝑘)
𝑔(𝑘)

)
, 𝑘 = 2, . . . , 𝑁 − 1, (12.55)

with the elements 𝑔(𝑘) (𝑘 = 1, . . . , 𝑁 − 1) and 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) defined
in (12.36) and (12.38). By Lemma 5.6, this together with (12.50) implies that
𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) are the upper
quasiseparable generators of the matrix 𝑈 . Using (12.44) with 𝑘 = 1 we have

𝐺1 = −𝑈(1, 1)(𝑄(𝐹 )
1 )∗ = −𝑑(1)𝐹 ∗1 .

For 𝑘 = 2, . . . , 𝑁 − 1 we use the formulas (12.50), (12.51) and (5.11) and obtain
the partitions

𝑈𝑘 =

(
𝑈𝑘−1 𝐺𝑘−1ℎ(𝑘)

𝑝(𝑘)𝑄𝑘−1 𝑑(𝑘)

)
.

Finally, using (12.44), (12.51), (12.47) and (12.46) we get

𝐺𝑘 =

(
𝐺𝑘−1 −𝐺𝑘−1ℎ(𝑘)

−𝑝(𝑘)𝑌𝑘−1 −𝑑(𝑘)
)
𝐹 ∗𝑘 =

(
𝐺𝑘−1𝑏(𝑘)
𝑔(𝑘)

)
. □

§12.3.2 Diagonal correction for scalar matrices

Here for scalar matrices we assume that the conditions (12.35) of Theorem 12.4
are valid and derive other necessary and sufficient conditions for the existence of
a unitary completion 𝑈 of the specified lower triangular part �̃� . We suppose that
the lower quasiseparable generators of �̃� are fixed and the conditions are imposed
on the diagonal entries.

Theorem 12.5. Let 𝒰 be a partially specified scalar matrix with a lower triangular
part �̃� given via lower quasiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 =
1, . . . , 𝑁−1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁−1) of orders 𝑟𝑘 (𝑘 = 1, . . . , 𝑁−1) and diagonal
entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁). Set

𝜌𝑁 = 0, 𝜌𝑘−1 = min{1 + 𝜌𝑘, 𝑟𝑘−1}, 𝑘 = 𝑁 − 1, . . . , 2,

𝜏0 = 0, 𝜏𝑘 = min{1 + 𝜏𝑘−1, 𝑟𝑘}, 𝑘 = 1, . . . , 𝑁 − 1.

Using these lower generators determine the matrices 𝑉𝑘, 𝑋𝑘, 𝑘 = 𝑁, . . . , 2, of sizes
(1+ 𝜌𝑘)× 𝜌𝑘−1 and 𝜌𝑘−1 × 𝑟𝑘−1 such that 𝑉

∗
𝑘 𝑉𝑘 = 𝐼𝜌𝑘−1

via truncated QR or QR′

factorizations (see Section §7.1)

𝑝(𝑁) = 𝑉𝑁𝑋𝑁 ,

(
𝑝(𝑘)

𝑋𝑘+1𝑎(𝑘)

)
= 𝑉𝑘𝑋𝑘, 𝑘 = 𝑁 − 1, . . . , 2 (12.56)
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and the matrices 𝑌𝑘, 𝐹𝑘 of sizes 𝑟𝑘×𝜏𝑘 and 𝜏𝑘×(𝜏𝑘−1+𝑚𝑘) such that 𝐹𝑘𝐹
∗
𝑘 = 𝐼𝜏𝑘

via LQ or L′Q factorizations (see Section §7.1)
𝑞(1) = 𝑌1𝐹1,

(
𝑎(𝑘)𝑌𝑘−1 𝑞(𝑘)

)
= 𝑌𝑘𝐹𝑘, 𝑘 = 2, . . . , 𝑁 − 1. (12.57)

Assume that the conditions

∥𝑋𝑘+1𝑌𝑘∥ < 1, 𝑘 = 1, . . . , 𝑁 − 1, (12.58)

hold.

The partially specified matrix 𝒰 has a unique unitary completion 𝑈 if and
only if the conditions

∣𝑑(𝑘) + 𝑎𝑘∣ = 𝑏𝑘, 𝑘 = 1, . . . , 𝑁, (12.59)

with

𝑎1 = 0, 𝑎𝑘 =
𝑔∗𝑘(𝐼 −Δ𝑘)

−1𝑓𝑘
1 + 𝑓∗𝑘 (𝐼 −Δ𝑘)−1𝑓𝑘

, 𝑘 = 2, . . . , 𝑁 − 1, 𝑎𝑁 = 0, (12.60)

𝑏21 = 1− ℎ∗1ℎ1,

𝑏2𝑘 =
1− 𝑔∗𝑘(𝐼 −Δ𝑘)

−1𝑔𝑘 − ℎ∗𝑘ℎ𝑘
1 + 𝑓∗𝑘 (𝐼 −Δ𝑘)−1𝑓𝑘

+
∣𝑔∗𝑘(𝐼 −Δ𝑘)

−1𝑓𝑘∣2
(1 + 𝑓∗𝑘 (𝐼 −Δ𝑘)−1𝑓𝑘)2

, 𝑘 = 2, . . . , 𝑁 − 1,

𝑏2𝑁 = 1− 𝑓∗𝑁𝑓𝑁 , (12.61)

where

𝑓𝑘 = 𝑌
∗
𝑘−1𝑝

∗(𝑘), 𝑘 = 2, . . . , 𝑁, ℎ𝑘 = 𝑋𝑘+1𝑞(𝑘), 𝑘 = 1, . . . , 𝑁 − 1,

𝑔𝑘 = 𝑌
∗
𝑘−1𝑎

∗(𝑘)𝑋∗𝑘+1ℎ𝑘, Δ𝑘 = 𝑌
∗
𝑘−1𝑋

∗
𝑘𝑋𝑘𝑌𝑘−1, 𝑘 = 2, . . . , 𝑁 − 1,

(12.62)

hold.

Proof. By Theorem 12.4, the partially specified matrix 𝒰 has a unitary comple-
tion if and only if the conditions (12.34) hold, and if this is the case the unitary
completion is unique. For a matrix with scalar entries the conditions (12.34) are
equivalent to the conditions

∥𝐴𝑘∥ = 1, 𝑘 = 1, . . . , 𝑁, (12.63)

where the matrices 𝐴𝑘 are defined in (12.31)–(12.33). Using (12.31) we obtain the
condition (12.63) with 𝑘 = 1 in the form

∣𝑑(1)∣2 = 1− ℎ∗1ℎ1.
Similarly, using (12.33) we obtain the condition (12.63) with 𝑘 = 𝑁 in the form

∣𝑑(𝑁)∣2 = 1− 𝑓∗𝑁𝑓𝑁 .



244 Chapter 12. Completion to Unitary Matrices

For 𝑘 = 2, . . . , 𝑁 −1 we use the fact that the condition (12.63) is equivalent to the
condition that the matrix 𝐼 − 𝐴∗𝑘𝐴𝑘 is positive and singular. Using the formula
(12.32) we get

𝐴∗𝑘𝐴𝑘 =
(
𝑌 ∗𝑘−1𝑝

∗(𝑘) 𝑌 ∗𝑘−1𝑎
∗(𝑘)𝑋∗𝑘+1

𝑑∗(𝑘) 𝑞∗(𝑘)𝑋∗𝑘+1

)(
𝑝(𝑘)𝑌𝑘−1 𝑑(𝑘)

𝑋𝑘+1𝑎(𝑘)𝑌𝑘−1 𝑋𝑘+1𝑞(𝑘)

)
.

By (12.56), we have

𝑝∗(𝑘)𝑝(𝑘) + 𝑎∗(𝑘)𝑋∗𝑘+1𝑋𝑘+1𝑎(𝑘) = 𝑋
∗
𝑘𝑋𝑘

and hence using the notations (12.62) we get

𝐼 −𝐴∗𝑘𝐴𝑘 =
(

𝐼 −Δ𝑘 −(𝑓𝑘𝑑(𝑘) + 𝑔𝑘)
−(𝑑∗(𝑘)𝑓∗𝑘 + 𝑔∗𝑘) 1− (∣𝑑(𝑘)∣2 + ℎ∗𝑘ℎ𝑘)

)
.

By the condition (12.58), the matrix Δ𝑘 is positive definite. Hence, using the
equality (12.1) from Lemma 12.1 we conclude that the matrix 𝐼−𝐴∗𝑘𝐴𝑘 is positive
and singular if and only if

(𝑑∗(𝑘)𝑓∗𝑘 + 𝑔
∗
𝑘)(𝐼 −Δ𝑘)

−1(𝑓𝑘𝑑(𝑘) + 𝑔𝑘) + ∣𝑑(𝑘)∣2 + ℎ∗𝑘ℎ𝑘 = 1. (12.64)

Setting

𝛼𝑘 = 𝑓
∗
𝑘 (𝐼 −Δ𝑘)

−1𝑓𝑘, 𝛽𝑘 = 𝑔
∗
𝑘(𝐼 −Δ𝑘)

−1𝑓𝑘, 𝛾𝑘 = 𝑔
∗
𝑘(𝐼 −Δ𝑘)

−1𝑔𝑘 + ℎ
∗
𝑘ℎ𝑘

we rewrite (12.64) in the form

(1 + 𝛼𝑘)∣𝑑(𝑘)∣2 + 2Re(𝑑(𝑘)𝛽𝑘) = 1− 𝛾𝑘,

which is equivalent to∣∣∣∣𝑑(𝑘) + ∣𝛽𝑘∣
1 + 𝛼𝑘

∣∣∣∣2 = 1− 𝛾𝑘
1 + 𝛼𝑘

+
∣𝛽𝑘∣2

(1 + 𝛼𝑘)2
.

This means (12.59) with the numbers 𝑎𝑘, 𝑏𝑘 as in (12.60), (12.5). □

§12.4 Comments

In this chapter we extended to block matrices the results obtained in [5] for matri-
ces with scalar entries. Under the conditions (12.4), (12.16) the formula for unitary
completion in the factorized form was obtained by H. Dym and I. Gohberg in [11].
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Quasiseparable Representations
of Matrices, Descriptor Systems
with Boundary Conditions
and First Applications



Introduction to Part III

In this part we study the interplay between the quasiseparable and semiseparable
representations of matrices and discrete time variant systems with boundary con-
ditions. This part contains the transformation of matrices into descriptor systems
with boundary conditions and the deduction from the latter of different fast al-
gorithms. Note that the mentioned transformation allows to represent semi- and
quasi-separable representations as a type of forwards and/or backwards recursion
relations. As applications we describe the first fast algorithms for inversion of
matrices and fast algorithms for multiplication of matrices. The main results are
expressed in terms of the appropriate generators.



Chapter 13

Quasiseparable Representations
and Descriptor Systems
with Boundary Conditions

In this chapter we show that the quasiseparable representation of a matrix is
closely connected with the treatment of this matrix as a matrix of the input-output
operator of a discrete-time varying linear system with boundary conditions.

§13.1 The algorithm of multiplication by a vector

Here we derive a fast linear complexity algorithm to compute a product of a matrix
in the quasiseparable form by a vector. In the subsequent section we show that
the relations used in this algorithm form a discrete time descriptor system with
homogeneous boundary conditions

Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a matrix of block entries of sizes 𝑚𝑖 × 𝑛𝑗 with qua-
siseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 =
2, . . . , 𝑁 − 1); 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 −
1); 𝑑(𝑖) (𝑖 = 1, . . . , 𝑁) of orders 𝑟𝐿𝑘 , 𝑟

𝑈
𝑘 (𝑘 = 1, . . . , 𝑁 − 1). This means that the

matrix 𝐴 has the quasiseparable representation

𝐴𝑖𝑗 =

⎧⎨⎩
𝑝(𝑖)𝑎>𝑖𝑗𝑞(𝑗), 1 ≤ 𝑗 < 𝑖 ≤ 𝑁,
𝑑(𝑖), 1 ≤ 𝑖 = 𝑗 ≤ 𝑁,
𝑔(𝑖)𝑏<𝑖𝑗ℎ(𝑗), < 𝑞𝑢𝑎𝑑1 ≤ 𝑖 < 𝑗 ≤ 𝑁.

(13.1)

The multiplication of this matrix by a vector may be performed as follows.
Let 𝑥 = col(𝑥(𝑖))𝑁𝑖=1 be a vector with column coordinates 𝑥(𝑖) of sizes 𝑛𝑖. The
product 𝑦 = 𝐴𝑥 is a vector 𝑦 = col(𝑦(𝑖))𝑁𝑖=1 with column coordinates 𝑦(𝑖) of sizes
𝑚𝑖. The vector 𝑦 is found as 𝑦 = 𝑦𝐿 + 𝑦𝐷 + 𝑦𝑈 , where 𝑦𝐿 = 𝐴𝐿𝑥, 𝑦𝐷 = 𝐴𝐷𝑥,
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𝑦𝑈 = 𝐴𝑈𝑥 and 𝐴𝐿, 𝐴𝐷, 𝐴𝑈 are correspondingly the strictly lower triangular, the
diagonal and the strictly upper triangular parts of the matrix 𝐴.

For 𝑦𝐿 one has 𝑦𝐿(1) = 0 and for 𝑖 ≥ 2, using the first branch of the relations
(13.1), one obtains

𝑦𝐿(𝑖) =

𝑖−1∑
𝑗=1

𝐴𝑖𝑗𝑥(𝑗) =

𝑖−1∑
𝑗=1

𝑝(𝑖)𝑎>𝑖𝑗𝑞(𝑗)𝑥(𝑗) = 𝑝(𝑖)𝜒𝑖,

where

𝜒𝑖 =

𝑖−1∑
𝑗=1

𝑎>𝑖,𝑗𝑞(𝑗)𝑥(𝑗).

One can see that the variable 𝜒𝑖 satisfies the following relations: 𝜒2 = 𝑞(1)𝑥(1)
and for 𝑖 = 2, . . . , 𝑁 − 1,

𝜒𝑖+1 =

𝑖∑
𝑗=1

𝑎>𝑖+1,𝑗𝑞(𝑗)𝑥(𝑗) =

𝑖−1∑
𝑗=1

𝑎>𝑖+1,𝑗𝑞(𝑗)𝑥(𝑗) + 𝑎
>
𝑖+1,𝑖𝑞(𝑖)𝑥(𝑖).

Using the equality (4.7) with 𝑖+1 instead of 𝑖 and 𝑘 = 𝑖−1 one gets 𝑎>𝑖+1,𝑗 = 𝑎(𝑖)𝑎
>
𝑖𝑗 .

Using also the fact that 𝑎>𝑖+1,𝑖 = 𝐼𝑟𝐿𝑖 one obtains the recursion

𝜒𝑖+1 = 𝑎(𝑖)

𝑖−1∑
𝑗=1

𝑎>𝑖𝑗𝑞(𝑗)𝑥(𝑗) + 𝑞(𝑖)𝑥(𝑖) = 𝑎(𝑖)𝜒𝑖 + 𝑞(𝑖)𝑥(𝑖).

For 𝑦𝑈 one has 𝑦𝑈 (𝑁) = 0 and for 𝑖 ≤ 𝑁 − 1, using the third branch of the
relations (13.1), one obtains

𝑦𝑈 (𝑖) =
𝑁∑

𝑗=𝑖+1

𝐴𝑖𝑗𝑥(𝑗) =
𝑁∑

𝑗=𝑖+1

𝑔(𝑖)𝑏<𝑖𝑗ℎ(𝑗)𝑥(𝑗) = 𝑔(𝑖)𝜂𝑖,

where

𝜂𝑖 =
𝑁∑

𝑗=𝑖+1

𝑏<𝑖,𝑗ℎ(𝑗)𝑥(𝑗).

One has 𝜂𝑁−1 = ℎ(𝑁)𝑥(𝑁) and from the equalities (4.8) and 𝑏<𝑖−1,𝑖 = 𝐼𝑟𝑈𝑖−1
it

follows that 𝜂𝑖 satisfies the recursion relations

𝜂𝑖−1 =

𝑁∑
𝑗=𝑖

𝑏<𝑖−1,𝑗ℎ(𝑗)𝑥(𝑗) = 𝑏(𝑖)

𝑁∑
𝑗=𝑖+1

𝑏<𝑖𝑗ℎ(𝑗)𝑥(𝑗)+𝑏
<
𝑖−1,𝑖ℎ(𝑖)𝑥(𝑖) = 𝑏(𝑖)𝜂𝑖+ℎ(𝑖)𝑥(𝑖).

For 𝑦𝐷 it is obvious that 𝑦𝐷(𝑖) = 𝑑(𝑖)𝑥(𝑖), 𝑖 = 1, . . . , 𝑁 .

From these relations one obtains the following algorithm for computing the
product 𝑦 = 𝐴𝑥.
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Algorithm 13.1. (Multiplication by a vector)

1. Start with 𝑦𝐿(1) = 0, 𝜒2 = 𝑞(1)𝑥(1), 𝑦𝐿(2) = 𝑝(2)𝜒2 and for 𝑖 = 3, . . . , 𝑁
compute recursively

𝜒𝑖 = 𝑎(𝑖 − 1)𝜒𝑖−1 + 𝑞(𝑖 − 1)𝑥(𝑖− 1), (13.2)

𝑦𝐿(𝑖) = 𝑝(𝑖)𝜒𝑖. (13.3)

2. Compute for 𝑖 = 1, . . . , 𝑁

𝑦𝐷(𝑖) = 𝑑(𝑖)𝑥(𝑖). (13.4)

3. Start with 𝑦𝑈 (𝑁) = 0, 𝜂𝑁−1 = ℎ(𝑁)𝑥(𝑁), 𝑦𝑈 (𝑁 − 1) = 𝑔(𝑁 − 1)𝜂𝑁−1 and
for 𝑖 = 𝑁 − 2, . . . , 1 compute recursively

𝜂𝑖 = 𝑏(𝑖+ 1)𝜂𝑖+1 + ℎ(𝑖 + 1)𝑥(𝑖+ 1), (13.5)

𝑦𝑈 (𝑖) = 𝑔(𝑖)𝜂𝑖. (13.6)

4. Compute the vector 𝑦

𝑦 = 𝑦𝐿 + 𝑦𝐷 + 𝑦𝑈 . (13.7)

This is a generalization of Algorithm 1.9.

The complexity of the operations used in Algorithm 13.1 is determined as
follows.

1. The formula (13.2): 𝑟𝐿𝑖−1𝑟
𝐿
𝑖−2 + 𝑟

𝐿
𝑖−1𝑛𝑖−1 multiplications and (𝑟𝐿𝑖−1 − 1)𝑟𝐿𝑖−2+

𝑟𝐿𝑖−1(𝑛𝑖−1 − 1) additions.

2. The formula (13.3): 𝑚𝑖𝑟
𝐿
𝑖−1 multiplications and 𝑚𝑖(𝑟

𝐿
𝑖−1 − 1) additions.

3. The formula (13.4): 𝑚𝑖𝑛𝑖 multiplications and 𝑚𝑖(𝑛𝑖 − 1) additions.

4. The formula (13.5): 𝑟𝑈𝑖 𝑟
𝑈
𝑖+1 + 𝑟𝑈𝑖 𝑛𝑖+1 multiplications and 𝑟𝑈𝑖 (𝑟

𝑈
𝑖+1 − 1) +

𝑟𝑈𝑖 (𝑛𝑖+1 − 1) additions.

5. The formula (13.6): 𝑚𝑖𝑟
𝑈
𝑖 multiplications and 𝑚𝑖(𝑟

𝑈
𝑖 − 1) additions.

Indeed, the operation 𝑎(𝑖−1)𝜒𝑖−1 is a product of an 𝑟
𝐿
𝑖−2×𝑟𝐿𝑖−1 matrix 𝑎(𝑖−1) by

an 𝑟𝐿𝑖−1-dimensional vector 𝜒𝑖−1 and hence it requires 𝑟
𝐿
𝑖−1𝑟

𝐿
𝑖−2 multiplications and

(𝑟𝐿𝑖−1−1)𝑟𝐿𝑖−2 additions. The operation 𝑞(𝑖−1)𝑥(𝑖−1) is a product of an 𝑟𝐿𝑖−1×𝑛𝑖−1

matrix 𝑞(𝑖 − 1) by an 𝑛𝑖−1-dimensional vector 𝑥(𝑖 − 1) and hence it requires
𝑟𝐿𝑖−1𝑛𝑖−1 multiplications and 𝑟

𝐿
𝑖−1(𝑛𝑖−1 − 1) additions. Thus, the total complexity

for computation of the value 𝜒𝑖 is less than 2(𝑟𝐿𝑖−1𝑟
𝐿
𝑖−2 + 𝑟

𝐿
𝑖−1𝑛𝑖−1) operations. In

the same way one obtains complexities for the computation of the other variables
of the algorithm. We conclude that the total complexity of Algorithm 13.1 is

𝑐 < 2

𝑁∑
𝑘=1

[𝑚𝑘(𝑟
𝐿
𝑘−1+ 𝑟

𝑈
𝑘 +𝑛𝑘)+𝑛𝑘−1𝑟

𝐿
𝑘−1+𝑛𝑘+1𝑟

𝑈
𝑘 + 𝑟𝐿𝑘−1𝑟

𝐿
𝑘−2+ 𝑟

𝑈
𝑘 𝑟

𝑈
𝑘+1]. (13.8)



250 Chapter13. Quasiseparable Form and Descriptor Systems

Let the sizes of blocks𝑚𝑘, 𝑛𝑘 and the orders of generators 𝑟
𝐿
𝑘 , 𝑟

𝑈
𝑘 be bounded

by the numbers 𝑚 and 𝑟, respectively, i.e., 𝑚𝑘, 𝑛𝑘 ≤ 𝑚, 𝑟𝐿𝑘 , 𝑟
𝑈
𝑘 ≤ 𝑟. In this case

(13.8) yields the estimate

𝑐 < 2𝑁(4𝑚𝑟 + 2𝑟2 +𝑚2).

Thus for a matrix with quasiseparable representation the multiplication by a vector
costs 𝑂(𝑁) operations in contrast to 𝑂(𝑁2) for a matrix in general form.

§13.2 Descriptor systems with homogeneous

boundary conditions

Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a matrix with quasiseparable generators

𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1)

𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁),

𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1); 𝑑(𝑖) (𝑖 = 1, . . . , 𝑁)

of orders 𝑟𝐿𝑘 , 𝑟
𝑈
𝑘 (𝑘 = 1, . . . , 𝑁−1). Let 𝑥, 𝑦 be vectors such that 𝑦 = 𝐴𝑥. Consider

in detail the operations used in Algorithm 13.1. Using formulas (13.3), (13.4),
(13.6) one has

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑘 + 𝑔(𝑘)𝜂𝑘 + 𝑑(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁. (13.9)

Here the auxiliary variables 𝜒𝑘, 𝜂𝑘 are determined via the recursion relations

𝜒1 = 0, 𝜒2 = 𝑞(1)𝑥(1), 𝜒𝑖 = 𝑎(𝑖− 1)𝜒𝑖−1 + 𝑞(𝑖− 1)𝑥(𝑖 − 1), 𝑖 = 3, . . . , 𝑁,
(13.10)

𝜂𝑁 = 0, 𝜂𝑁−1 = ℎ(𝑁)𝑥(𝑁), 𝜂𝑖 = 𝑏(𝑖+1)𝜂𝑖+1+ℎ(𝑖+1)𝑥(𝑖+1), 𝑖 = 𝑁−2, . . . , 1.
(13.11)

Take 𝑟𝐿0 , 𝑟
𝑈
𝑁 to be arbitrary nonnegative integers and 𝑝(1), 𝑔(𝑁), 𝑎(1), 𝑏(𝑁) to be

arbitrary matrices of sizes 𝑚1 × 𝑟𝐿0 ,𝑚𝑁 × 𝑟𝑈𝑁 , 𝑟𝐿1 × 𝑟𝐿0 , 𝑟𝑈𝑁−1 × 𝑟𝑈𝑁 , respectively.
One can rewrite relations (13.10), (13.11) in the form

𝜒1 = 0𝑟𝐿0 , 𝜒𝑘+1 = 𝑎(𝑘)𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁 − 1, (13.12)

𝜂𝑁 = 0𝑟𝑈𝑁 , 𝜂𝑘−1 = 𝑏(𝑘)𝜂𝑘 + ℎ(𝑘)𝑥(𝑘), 𝑘 = 𝑁, . . . , 2. (13.13)

Relations (13.9), (13.12), (13.13) together form what is called a discrete-time de-
scriptor system with homogeneous boundary conditions:⎧⎨⎩

𝜒𝑘+1 = 𝑎(𝑘)𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁 − 1,

𝜂𝑘−1 = 𝑏(𝑘)𝜂𝑘 + ℎ(𝑘)𝑥(𝑘), 𝑘 = 𝑁, . . . , 2,

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑘 + 𝑔(𝑘)𝜂𝑘 + 𝑑(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝜒1 = 0, 𝜂𝑁 = 0.

(13.14)
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Here the vectors 𝑥(𝑘) (𝑘 = 1, . . . , 𝑁) are called the input of the system, the
vectors 𝑦(𝑘) (𝑘 = 1, . . . , 𝑁) are called the output, the vectors 𝜒𝑘 and 𝜂𝑘 of sizes
𝑟𝐿𝑘−1 and 𝑟

𝑈
𝑘 are called the state space variables of the system. The mapping from

𝑥 = (𝑥(𝑘))𝑁𝑘=1 to 𝑦 = (𝑦(𝑘))𝑁𝑘=1 is a linear transformation which transforms the
input of the system into the output. This transformation is called the input-output
operator of the system

For convenience of notation, we define also the matrices 𝑞(𝑁), ℎ(1), 𝑎(𝑁), 𝑏(1)
as arbitrary 𝑟𝐿𝑁 ×𝑛𝑁 , 𝑟𝑈0 ×𝑛1, 𝑟𝐿𝑁 × 𝑟𝐿𝑁−1, 𝑟

𝑈
0 × 𝑟𝑈1 matrices respectively. Thus one

obtains the following.

Theorem 13.2. Let 𝐴 be a block matrix with quasiseparable generators

𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘); 𝑔(𝑘), ℎ(𝑘), 𝑏(𝑘); 𝑑(𝑘) 𝑘 = 1, . . . , 𝑁.

Then 𝐴 is a matrix of the input-output operator of the system (13.14) with
coefficients equal to the corresponding quasiseparable generators of 𝐴.

The inverse statement is also true.

Theorem 13.3. Suppose that a system (13.14) is given. Then the matrix 𝐴 with
quasiseparable generators 𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘); 𝑔(𝑘), ℎ(𝑘), 𝑏(𝑘); 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁)
which are equal to the corresponding coefficients of the system, is a matrix of the
input-output operator of the system (13.14).

Proof. Let 𝑥 be an input of the system. One can easily prove by induction that
the solution of the first equation in (13.14) is given by

𝜒𝑘 =

𝑘−1∑
𝑗=1

𝑎>𝑘𝑗𝑞(𝑗)𝑥(𝑗), 𝑘 = 1, . . . , 𝑁. (13.15)

Indeed, for 𝑘 = 1 the relation (13.15) follows directly from 𝜒1 = 0. Let for some
𝑘, 𝑘 ≥ 1, the relation (13.15) hold. Using the first equation from (13.14) and the
equalities 𝑎>𝑘+1,𝑘 = 𝐼𝑟𝐿𝑘 , 𝑎

>
𝑘+1,𝑗 = 𝑎(𝑘)𝑎

>
𝑘,𝑗 , one gets

𝜒𝑘+1 = 𝑎(𝑘)
𝑘−1∑
𝑗=1

𝑎>𝑘𝑗𝑞(𝑗)𝑥(𝑗) + 𝑞(𝑘)𝑥(𝑘)

=

𝑘−1∑
𝑗=1

𝑎>𝑘+1,𝑗𝑞(𝑗)𝑥(𝑗) + 𝑎
>
𝑘+1,𝑘𝑞(𝑘)𝑥(𝑘) =

𝑘∑
𝑗=1

𝑎>𝑘+1,𝑗𝑞(𝑗)𝑥(𝑗).

Similarly, the solution of the second equation in (13.14) is given by

𝜂𝑘 =

𝑁∑
𝑗=𝑘+1

𝑏<𝑘𝑗ℎ(𝑗)𝑥(𝑗), 𝑘 = 𝑁, . . . , 1. (13.16)
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Indeed, for 𝑘 = 𝑁 the relation (13.16) follows directly from 𝜂𝑁 = 0. Let for some
𝑘, 𝑘 ≤ 𝑁 the relation (13.16) hold. Using the second equation from (13.14) and
the equalities 𝑏<𝑘−1,𝑘 = 𝐼, 𝑏

<
𝑘−1,𝑗 = 𝑏(𝑘)𝑏

<
𝑘,𝑗 , one gets

𝜂𝑘−1 = 𝑏(𝑘)

𝑁∑
𝑗=𝑘+1

𝑏<𝑘𝑗ℎ(𝑗)𝑥(𝑗) + ℎ(𝑘)𝑥(𝑘)

=

𝑁∑
𝑗=𝑘+1

𝑏<𝑘−1,𝑗ℎ(𝑗)𝑥(𝑗) + 𝑏
<
𝑘−1,𝑘ℎ(𝑘)𝑥(𝑘) =

𝑁∑
𝑗=𝑘

𝑏<𝑘𝑗ℎ(𝑗)𝑥(𝑗).

Thus for the output 𝑦 one obtains

𝑦(𝑘) = 𝑝(𝑘)

𝑘−1∑
𝑗=1

𝑎>𝑘𝑗𝑞(𝑗)𝑥(𝑗) + 𝑑(𝑘)𝑥(𝑘) + 𝑔(𝑘)

𝑁∑
𝑗=𝑘+1

𝑏<𝑘𝑗ℎ(𝑗)𝑥(𝑗), 𝑘 = 1, . . . , 𝑁.

Therefore, one obtains 𝑦 = 𝐴𝑥, with the matrix 𝐴 given by (13.1). □
Remark 13.4. The system (13.14) may be transformed to the form⎧⎨⎩

𝐴𝑘𝑢𝑘+1 = 𝐵𝑘𝑢𝑘 + 𝐶𝑘𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑦(𝑘) = 𝐸𝑘𝑢𝑘 + 𝐹𝑘𝑢𝑘+1 + 𝑑(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑃𝑢1 = 0, 𝑄𝑢𝑁+1 = 0,

(13.17)

with

𝑧𝑘 = 𝜂𝑘−1, 𝑢𝑘 =

(
𝜒𝑘
𝑧𝑘

)
,

𝐴𝑘 =

(
𝐼 0
0 −𝑏(𝑘)

)
, 𝐵𝑘 =

(
𝑎(𝑘) 0
0 −𝐼

)
, 𝐶𝑘 =

(
𝑞(𝑘)
ℎ(𝑘)

)
,

𝐸𝑘 =
(
𝑝(𝑘) 0

)
, 𝐹𝑘 =

(
0 𝑔(𝑘)

)
,

𝑃 =

(
𝐼 0
0 0

)
, 𝑄 =

(
0 0
0 𝐼

)
.

(13.18)

Conversely, a system (13.17) with 𝐸𝑘, 𝐹𝑘, 𝑃,𝑄 as in (13.18) and

𝐴𝑘 =

(
�̃�(𝑘) 0

0 �̃�(𝑘)

)
, 𝐵𝑘 =

(
𝑐(𝑘) 0

0 𝑑(𝑘)

)
,

where �̃�(𝑘), 𝑑(𝑘) are invertible matrices, may be transformed to the form (13.14).
The form (13.17) of a descriptor system with boundary conditions is used often in
system theory.

Applying Theorem 13.2 and Theorem 13.3 to triangular matrices one obtains
the following statements.
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Corollary 13.5. A matrix 𝐴 is a lower triangular matrix with lower quasiseparable
generators 𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘) (𝑘 = 1, . . . , 𝑁) and diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁)
if and only if 𝐴 is a matrix of the input-output operator of the system⎧⎨⎩

𝜒𝑘+1 = 𝑎(𝑘)𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁 − 1,

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑘 + 𝑑(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝜒1 = 0.

Corollary 13.6. A matrix 𝐴 is an upper triangular matrix with upper quasiseparable
generators 𝑔(𝑘), ℎ(𝑘), 𝑏(𝑘) (𝑘 = 1, . . . , 𝑁) and diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁)
if and only if 𝐴 is a matrix of the input-output operator of the system⎧⎨⎩

𝜂𝑘−1 = 𝑏(𝑘)𝜂𝑘 + ℎ(𝑘)𝑥(𝑘), 𝑘 = 𝑁, . . . , 2

𝑦(𝑘) = 𝑔(𝑘)𝜂𝑘 + 𝑑(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁

𝜂𝑁 = 0.

§13.3 Examples

Example 13.7. Consider the 𝑁 ×𝑁 matrix from Example 5.13,

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑑 1 2 3 ⋅ ⋅ ⋅ 𝑁 − 2 𝑁 − 1
1 𝑑 4 6 ⋅ ⋅ ⋅ 2(𝑁 − 2) 2(𝑁 − 1)
2 4 𝑑 9 ⋅ ⋅ ⋅ 3(𝑁 − 2) 3(𝑁 − 1)
3 6 9 𝑑 ⋅ ⋅ ⋅ 4(𝑁 − 2) 4(𝑁 − 1)
...

...
...

...
. . .

...
...

𝑁 − 2 2(𝑁 − 2) 3(𝑁 − 2) 4(𝑁 − 2) ⋅ ⋅ ⋅ 𝑑 (𝑁 − 1)2

𝑁 − 1 2(𝑁 − 1) 3(𝑁 − 1) 4(𝑁 − 1) ⋅ ⋅ ⋅ (𝑁 − 1)2 𝑑

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The following lower quasiseparable generators, which have been obtained in
the same Example 5.13, and the following diagonal entries can be used:

𝑝(𝑖)= 𝑖−1, 𝑖=2,...,𝑁, 𝑞(𝑗)=𝑗, 𝑗=1,...,𝑁−1, 𝑎(𝑘)=1, 𝑘=2,...,𝑁−1,

ℎ(𝑖)= 𝑖−1, 𝑖=2,...,𝑁, 𝑔(𝑗)=𝑗, 𝑗=1,...,𝑁−1, 𝑏(𝑘)=1, 𝑘=2,...,𝑁−1,

𝑑(𝑘)=𝑑, 𝑘=1,...,𝑁.

Then the descriptor system with boundary conditions (13.14) becomes

𝜒𝑘+1=𝑎(𝑘)𝜒𝑘+𝑞(𝑘)𝑥(𝑘)=𝜒𝑘+𝑘𝑥(𝑘), 𝑘=1,...,𝑁−1,

𝜂𝑘−1=𝑏(𝑘)𝜂𝑘+ℎ(𝑘)𝑥(𝑘)=𝜂𝑘+(𝑘−1)𝑥(𝑘), 𝑘=𝑁,...,2,

𝑦(𝑘)=𝑝(𝑘)𝜒𝑘+𝑔(𝑘)𝜂𝑘+𝑑(𝑘)𝑥(𝑘)=(𝑘−1)𝜒𝑘+𝑘𝜂𝑘+𝑑𝑥(𝑘), 𝑘=1,...,𝑁,

𝜒1=0, 𝜂𝑁 =0. ♢
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Example 13.8. Consider the 𝑁 ×𝑁 matrix

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜇 ℎ ℎ ℎ ⋅ ⋅ ⋅ ℎ
𝑝 𝛼 0 0 ⋅ ⋅ ⋅ 0
𝑝 0 𝛼 0 ⋅ ⋅ ⋅ 0
𝑝 0 0 𝛼 ⋅ ⋅ ⋅ 0
...

...
...

...
. . .

...
𝑝 0 0 0 ⋅ ⋅ ⋅ 𝛼

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

For 𝐴 one can use the following quasiseparable generators

𝑝(𝑖) = 𝑝, 𝑖 = 2, . . . , 𝑁, 𝑞(1) = 1, 𝑞(𝑗) = 0, 𝑗 = 2, . . . , 𝑁 − 1,

𝑎(𝑘) = 1, 𝑘 = 2, . . . , 𝑁 − 1, 𝑔(1) = 1, 𝑔(𝑗) = 0, 𝑗 = 2, . . . , 𝑁 − 1,

ℎ(𝑖) = ℎ, 𝑖 = 2, . . . , 𝑁, 𝑏(𝑘) = 1, 𝑘 = 2, . . . , 𝑁 − 1,

𝑑(1) = 𝜇, 𝑑(𝑘) = 𝛼, 𝑘 = 2, . . . , 𝑁.

Then the descriptor system with boundary conditions (13.14) reads

𝜒1 = 0, 𝜂𝑁 = 0, 𝜒2 = 𝑎(1)𝜒1 + 𝑞(1)𝑥(1) = 𝑥(1),

𝜒𝑘+1 = 𝑎(𝑘)𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘) = 1 ⋅ 𝜒𝑘 + 0 ⋅ 𝑥(𝑘) = 𝑥(1), 𝑘 = 2, . . . , 𝑁 − 1,

𝜂𝑘−1 = 𝑏(𝑘)𝜂𝑘 + ℎ(𝑘)𝑥(𝑘) = 𝜂𝑘 + ℎ𝑥(𝑘), 𝑘 = 𝑁, . . . , 2,

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑘 + 𝑔(𝑘)𝜂𝑘 + 𝑑(𝑘)𝑥(𝑘) = 𝑝𝑥(1) + 𝜂𝑘 + 𝛼𝑥(𝑘), 𝑘 = 2, . . . , 𝑁,

𝑦(1) = 𝑝(1)𝜒1 + 𝑔(1)𝜂1 + 𝜇𝑥(1) = 𝜂1 + 𝜇𝑥(1). ♢

Example 13.9. Consider the 5× 5 matrix

𝐴 =

⎛⎜⎜⎜⎜⎝
𝑑 2 1 1 1
2 𝑑 2 1 1
1 2 𝑑 2 1
1 1 2 𝑑 2
1 1 1 2 𝑑

⎞⎟⎟⎟⎟⎠ .
from Example 5.16 and use the quasiseparable generators of order two obtained
there.

Then the first state space variable of the descriptor system with boundary
conditions (13.14) becomes

𝜒1 = 0, 𝜒2 = 𝑎(1)𝜒1 + 𝑞(1)𝑥(1) = 𝑥(1),

𝜒3 =

(
1
0

)
𝑥(1) +

(
0
1

)
𝑥(2) =

(
𝑥(1)
𝑥(2)

)
,

𝜒4 =

(
1 1
0 0

)(
𝑥(1)
𝑥(2)

)
+

(
1
1

)
𝑥(3) =

(
𝑥(1) + 𝑥(2) + 𝑥(3)

𝑥(3)

)
,

𝜒5 =
(
1 0

)( 𝑥(1) + 𝑥(2) + 𝑥(3)
𝑥(3)

)
+ 2𝑥(4) = 𝑥(1) + 𝑥(2) + 𝑥(3) + 2𝑥(4).
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The other state space variables of the system becomes

𝜂5 = 0, 𝜂4 = 𝑏(5)𝜂5 + ℎ(5)𝑥(5) = 𝑥(5),

𝜂3 =

(
1
0

)
𝑥(5) +

(
1
1

)
𝑥(4) =

(
𝑥(5) + 𝑥(4)

𝑥(4)

)
,

𝜂2 =

(
1 0
1 0

)(
𝑥(5) + 𝑥(4)

𝑥(4)

)
+

(
1
2

)
𝑥(3) =

(
𝑥(5) + 𝑥(4) + 𝑥(3)
𝑥(5) + 𝑥(4) + 2𝑥(3)

)
,

𝜂1 =
(
1 0

)( 𝑥(5) + 𝑥(4) + 𝑥(3)
𝑥(5) + 𝑥(4) + 2𝑥(3)

)
+ 2𝑥(2) = 𝑥(5) + 𝑥(4) + 𝑥(3) + 2𝑥(2).

From the form of the state space variables, it follows that the components of
the output vector can be obtained as

𝑦(1) = 𝑝(1)𝜒1 + 𝑔(1)𝜂1 + 𝑑(1)𝑥(1) = 𝜂1 + 𝑑𝑥(1)

= 𝑑𝑥(1) + 2𝑥(2) + 𝑥(3) + 𝑥(4) + 𝑥(5),

𝑦(2) = 𝑝(2)𝜒2 + 𝑔(2)𝜂2 + 𝑑(2)𝑥(2) = 2𝑥(1) + 𝑑𝑥(2)

+
(
1 0

)( 𝑥(5) + 𝑥(4) + 𝑥(3)
𝑥(5) + 𝑥(4) + 2𝑥(3)

)
= 2𝑥(1) + 𝑑𝑥(2) + 2𝑥(3) + 𝑥(4) + 𝑥(5),

𝑦(3) = 𝑝(3)𝜒3 + 𝑔(3)𝜂3 + 𝑑(3)𝑥(3)

=
(
1 2

)( 𝑥(1)
𝑥(2)

)(
1 1

)( 𝑥(5) + 𝑥(4)
𝑥(4)

)
+ 𝑑𝑥(3)

= 𝑥(1) + 2𝑥(2) + 𝑑𝑥(3) + 2𝑥(4) + 𝑥(5),

𝑦(4) = 𝑝(4)𝜒4 + 𝑔(4)𝜂4 + 𝑑(4)𝑥(4)

=
(
1 1

)( 𝑥(1) + 𝑥(2) + 𝑥(3)
𝑥(3)

)
+ 𝑑𝑥(4) + 2𝑥(5)

= 𝑥(1) + 𝑥(2) + 2𝑥(3) + 𝑑𝑥(4) + 2𝑥(5)

and

𝑦(5) = 𝑥(1) + 𝑥(2) + 𝑥(3) + 2𝑥(4) + 𝑑𝑥(5). ♢

§13.4 Inversion of triangular matrices

In the sequel in this chapter we apply the system approach to design of fast
algorithms. We start with the simplest case of inversion of triangular matrices.

Theorem 13.10. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be an invertible block lower triangular matrix
with entries of sizes 𝑚𝑖×𝑚𝑗, with lower quasiseparable generators 𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘)
(𝑘 = 1, . . . , 𝑁) of orders 𝑟𝐿𝑘 and diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁).

Then the inverse 𝐴−1 is a block lower triangular matrix with lower qua-
siseparable generators −(𝑑(𝑘))−1𝑝(𝑘), 𝑞(𝑘)(𝑑(𝑘))−1, 𝑎(𝑘)− 𝑞(𝑘)(𝑑(𝑘))−1𝑝(𝑘) (𝑘 =
1, . . . , 𝑁) of orders 𝑟𝐿𝑘 and diagonal entries 𝑑(𝑘)

−1 (𝑘 = 1, . . . , 𝑁).
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Moreover, the solution of the system of linear algebraic equations 𝐴𝑥 = 𝑦 is
obtained via the following algorithm:

Start with

𝑥(1) = (𝑑(1))−1𝑦(1), 𝜒2 = 𝑞(1)𝑥(1), (13.19)

then for 𝑘 = 2, . . . , 𝑁 − 1 compute recursively

𝑥(𝑘) = (𝑑(𝑘))−1(𝑦(𝑘)− 𝑝(𝑘)𝜒𝑘), (13.20)

𝜒𝑘+1 = 𝑎(𝑘)𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘), (13.21)

and finally compute

𝑥(𝑁) = (𝑑(𝑁))−1(𝑦(𝑁)− 𝑝(𝑁)𝜒𝑁 ). (13.22)

Proof. By Corollary 13.5 𝐴, is a matrix of the input-output operator of the system⎧⎨⎩
𝜒𝑘+1 = 𝑎(𝑘)𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁 − 1,

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑘 + 𝑑(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝜒1 = 0.

(13.23)

Switching the input and output one obtains the inverse system⎧⎨⎩
𝜒𝑘+1 = (𝑎(𝑘)− 𝑞(𝑘)(𝑑(𝑘))−1𝑝(𝑘))𝜒𝑘 + 𝑞(𝑘)(𝑑(𝑘))

−1𝑦(𝑘), 𝑘 = 1, . . . , 𝑁 − 1,

𝑥(𝑘) = −(𝑑(𝑘))−1𝑝(𝑘)𝜒𝑘 + (𝑑(𝑘))−1𝑦(𝑘), 𝑘 = 1, . . . , 𝑁,

𝜒1 = 0, (13.24)

which corresponds to the inverse matrix 𝐴−1. Applying Corollary 13.5 again, but
in the opposite direction, we conclude that the elements

−(𝑑(𝑘))−1𝑝(𝑘), 𝑞(𝑘)(𝑑(𝑘))−1, 𝑎(𝑘)− 𝑞(𝑘)(𝑑(𝑘))−1𝑝(𝑘) (𝑘 = 1, . . . , 𝑁)

and 𝑑(𝑘)−1 (𝑘 = 1, . . . , 𝑁) are lower quasiseparable generators and diagonal entries
of the lower triangular matrix 𝐴−1. It is clear that the orders of these lower
generators are the same as for the original matrix 𝐴.

Combining the first and the last equations in (13.23) and the second equation
in (13.24) one obtains the formulas (13.19)–(13.22). □

The complexity of the operations used in Theorem 13.10 to compute gen-
erators and diagonal entries of the inverse matrix is calculated as follows. The
computation of the values (𝑑(𝑘))−1 costs 𝜌(𝑚𝑘), where 𝜌(𝑚) denotes complex-
ity of inversion of an 𝑚 × 𝑚 matrix using a standard method. The compu-
tation of (𝑑(𝑘))−1𝑝(𝑘), 𝑞(𝑘)(𝑑(𝑘))−1, 𝑎(𝑘) − 𝑞(𝑘)((𝑑(𝑘))−1𝑝(𝑘)) costs respectively
𝑚2
𝑘𝑟
𝐿
𝑘−1, 𝑟

𝐿
𝑘𝑚

2
𝑘, 𝑟

𝐿
𝑘𝑚𝑘𝑟

𝐿
𝑘−1 arithmetic multiplications and𝑚𝑘(𝑚𝑘−1)𝑟𝐿𝑘−1, 𝑟

𝐿
𝑘 (𝑚𝑘−



§13.4. Inversion of triangular matrices 257

1)𝑚𝑘, 𝑟
𝐿
𝑘 (𝑚𝑘 − 1)𝑟𝐿𝑘−1 arithmetical additions. Thus the total complexity here is

given by the expression

𝑐 <

𝑁∑
𝑘=1

(𝜌(𝑚𝑘) + 2𝑚2
𝑘𝑟
𝐿
𝑘−1 + 2𝑟𝐿𝑘𝑚

2
𝑘 + 2𝑟𝐿𝑘𝑚𝑘𝑟

𝐿
𝑘−1)

and setting 𝑚 = max1≤𝑘≤𝑁 (𝑚𝑘), 𝑟 = max0≤𝑘≤𝑁 (𝑟𝐿𝑘 ) one obtains the estimate

𝑐 ≤ 𝑁(𝜌(𝑚) + 4𝑚2𝑟 + 2𝑚𝑟2). (13.25)

The complexity of the solution of the system 𝐴𝑥 = 𝑦 is determined by the
number of operations which are used in the formulas (13.20), (13.21) to compute
the values 𝑥𝑘, 𝜒𝑘. The computation by these formulas costs respectively less than
𝜌(𝑚𝑘) +𝑚

2
𝑘 +𝑚𝑘(𝑚𝑘 − 1) +𝑚𝑘 + 2𝑚𝑘𝑟

𝐿
𝑘−1 and 2𝑟𝐿𝑘 𝑟

𝐿
𝑘−1 + 2𝑟𝐿𝑘𝑚𝑘 arithmetical

operations, where 𝜌(𝑚) is the complexity of solving an 𝑚 × 𝑚 system of linear
algebraic equations using a standard method. Thus the total complexity here is

𝑐 <

𝑁∑
𝑘=1

(2𝑚𝑘𝑟
𝐿
𝑘−1 + 2𝑚2

𝑘 + 𝜌(𝑚𝑘) + 2𝑟𝐿𝑘 𝑟
𝐿
𝑘−1 + 2𝑟𝐿𝑘𝑚𝑘)

operations and the estimate is

𝑐 ≤ (4𝑚𝑟 + 2𝑚2 + 2𝑟2 + 𝜌(𝑚))𝑁. (13.26)

Note that this way we solve the system without computing the quasiseparable
generators of the inverse matrix.

Example 13.11. Consider the 𝑁 ×𝑁 matrix

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 ⋅ ⋅ ⋅ 0 0
1 1 0 ⋅ ⋅ ⋅ 0 0
1 1 1 ⋅ ⋅ ⋅ 0 0
...

...
...

. . .
...

...
1 1 1 ⋅ ⋅ ⋅ 1 0
1 1 1 ⋅ ⋅ ⋅ 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

For 𝐴 one can use the following lower quasiseparable generators of order 1

𝑝(𝑖) = 1, 𝑖 = 2, . . . , 𝑁, 𝑞(𝑗) = 1, 𝑗 = 1, . . . , 𝑁−1, 𝑎(𝑘) = 1, 𝑘 = 2, . . . , 𝑁−1,

and the diagonal entries 𝑑(𝑘) = 1, 𝑘 = 1, . . . , 𝑁 .

In this example we will apply Theorem 13.10 in order to find the inverse
matrix 𝐴−1 and the solution 𝑥 = (𝑥(𝑘))𝑘=1,𝑁 of the linear system 𝐴𝑥 = 𝑦 for a
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given vector 𝑦 = (𝑦(𝑘))𝑘=1,𝑁 . First, by this theorem the inverse 𝐴−1 is a block
lower triangular matrix with lower quasiseparable generators

𝑝′(𝑖) = −(𝑑(𝑖))−1𝑝(𝑖) = −1, 𝑖 = 2, . . . , 𝑁,

𝑞′(𝑗) = 𝑞(𝑗)(𝑑(𝑗))−1 = 1, 𝑗 = 1, . . . , 𝑁 − 1,

and

𝑎′(𝑘) = 𝑎(𝑘)− 𝑞(𝑘)(𝑑(𝑘))−1𝑝(𝑘)

= 1− 1 = 0, 𝑘 = 2, . . . , 𝑁

of orders 1, and diagonal entries 𝑑′(𝑘) = 𝑑(𝑘)−1 = 1 𝑘 = 1, . . . , 𝑁 . It follows that

𝐴−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 ⋅ ⋅ ⋅ 0 0
−1 1 0 ⋅ ⋅ ⋅ 0 0
0 −1 1 ⋅ ⋅ ⋅ 0 0
...

...
...

. . .
...

...
0 0 0 ⋅ ⋅ ⋅ 1 0
0 0 0 ⋅ ⋅ ⋅ −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Indeed, a direct computation also shows that the matrix 𝐴−1 above is the inverse
of the given matrix 𝐴.

Moreover, by Theorem 13.10 the solution of the system of linear algebraic
equations 𝐴𝑥 = 𝑦 is obtained via the following algorithm:

Start with (13.19) to compute

𝑥(1) = (𝑑(1))−1𝑦(1) = 𝑦(1), 𝜒2 = 𝑞(1)𝑥(1) = 𝑥(1),

then for 𝑘 = 2, . . . , 𝑁 − 1 compute recursively by (13.20)

𝑥(2) = 𝑥(𝑘) = (𝑑(𝑘))−1(𝑦(𝑘)− 𝑝(𝑘)𝜒𝑘) = 𝑦(2)− 𝑥(1),
and by (13.21)

𝜒3 = 𝜒𝑘+1 = 𝑎(𝑘)𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘) = 𝜒2 + 𝑥(2) = 𝑥(1) + 𝑥(2).

Suppose that for a certain 𝑘, 2 ≤ 𝑘 ≤ 𝑁 − 2 we have

𝑥(𝑘) = 𝑦(𝑘)− 𝑥(1)− 𝑥(2)− 𝑥(3)− ⋅ ⋅ ⋅ − 𝑥(𝑘 − 1)

and
𝜒𝑘+1 = 𝑥(1) + 𝑥(2) + 𝑥(3) + ⋅ ⋅ ⋅+ 𝑥(𝑘)

which are true for 𝑘 = 2. We will prove this for 𝑘 + 1. We have by (13.20)

𝑥(𝑘 + 1) = (𝑑(𝑘 + 1))−1(𝑦(𝑘 + 1)− 𝑝(𝑘 + 1)𝜒𝑘+1)

= 1 ⋅ 𝑦(𝑘 + 1)− 1 ⋅ (𝑥(1) + 𝑥(2) + 𝑥(3) + ⋅ ⋅ ⋅+ 𝑥(𝑘))
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and by (13.21)

𝜒𝑘+2 = 𝑎(𝑘+1)𝜒𝑘+1+𝑞(𝑘+1)𝑥(𝑘+1) = 1⋅(𝑥(1)+𝑥(2)+𝑥(3)+⋅ ⋅ ⋅+𝑥(𝑘))+1⋅𝑥(𝑘+1)
so that the induction on 𝑘 is completed.

Finally, perform the last step of the algorithm, i.e., compute by (13.22)

𝑥(𝑁) = (𝑑(𝑁))−1(𝑦(𝑁)−𝑝(𝑁)𝜒𝑁 ) = 𝑦(𝑁)−𝑥(1)−𝑥(2)−𝑥(3)−. . .−𝑥(𝑁−1). ♢

Example 13.12. Consider the 𝑁 ×𝑁 matrix

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 ⋅ ⋅ ⋅ 0 0
1 3 0 ⋅ ⋅ ⋅ 0 0
0 1 3 ⋅ ⋅ ⋅ 0 0
...

...
...

. . .
...

...
0 0 0 ⋅ ⋅ ⋅ 3 0
0 0 0 ⋅ ⋅ ⋅ 1 3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

For 𝐴 one can use the following lower quasiseparable generators of order 1

𝑝(𝑖) = 1, 𝑖 = 2, . . . , 𝑁, 𝑞(𝑗) = 1, 𝑗 = 1, . . . , 𝑁−1, 𝑎(𝑘) = 0, 𝑘 = 2, . . . , 𝑁−1,

and the diagonal entries 𝑑(𝑘) = 3, 𝑘 = 1, . . . , 𝑁 .

In this example we will apply Theorem 13.10 in order to find the inverse
matrix 𝐴−1 and the solution 𝑥 = (𝑥(𝑘))𝑘=1,𝑁 of the linear system 𝐴𝑥 = 𝑦 for a
given vector 𝑦 = (𝑦(𝑘))𝑘=1,𝑁 . First, by this theorem the inverse 𝐴−1 is a block
lower triangular matrix with lower quasiseparable generators

𝑝′(𝑖) = −(𝑑(𝑖))−1𝑝(𝑖) = −1

3
, 𝑖 = 2, . . . , 𝑁,

𝑞′(𝑗) = 𝑞(𝑗)(𝑑(𝑗))−1 =
1

3
, 𝑗 = 1, . . . , 𝑁 − 1,

and

𝑎′(𝑘) = 𝑎(𝑘)− 𝑞(𝑘)(𝑑(𝑘))−1𝑝(𝑘) = 0− 1

3
= −1

3
, 𝑘 = 2, . . . , 𝑁

of orders 1, and diagonal entries 𝑑′(𝑘) = 𝑑(𝑘)−1 = 1
3 𝑘 = 1, . . . , 𝑁 . It follows

that

𝐴−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3 0 0 ⋅ ⋅ ⋅ 0 0

− 1
9

1
3 0 ⋅ ⋅ ⋅ 0 0

1
27 − 1

9
1
3 ⋅ ⋅ ⋅ 0 0

...
...

...
. . .

...
...

(−1)𝑁−2

3𝑁−1

(−1)𝑁−3

3𝑁−2

(−1)𝑁−4

3𝑁−3 ⋅ ⋅ ⋅ 1
3 0

(−1)𝑁−1

3𝑁
(−1)𝑁−2

3𝑁−1

(−1)𝑁−3

3𝑁−2 ⋅ ⋅ ⋅ −1 1
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

♢



260 Chapter13. Quasiseparable Form and Descriptor Systems

In a similar way as in Theorem 13.10, but using Corollary 13.6. one obtains
the corresponding result for upper triangular matrices.

Theorem 13.13. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be an invertible block upper triangular matrix
with entries of sizes 𝑚𝑖×𝑚𝑗, with upper quasiseparable generators 𝑔(𝑘), ℎ(𝑘), 𝑏(𝑘)
(𝑘 = 1, . . . , 𝑁) of orders 𝑟𝑈𝑘 and diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁).

Then the inverse 𝐴−1 is a block upper triangular matrix with upper qua-
siseparable generators −(𝑑(𝑘))−1𝑔(𝑘), ℎ(𝑘)(𝑑(𝑘))−1, 𝑏(𝑘) − ℎ(𝑘)(𝑑(𝑘))−1𝑔(𝑘) (𝑘 =
1, . . . , 𝑁) of orders 𝑟𝑈𝑘 and diagonal entries 𝑑(𝑘)

−1 (𝑘 = 1, . . . , 𝑁).

Moreover, the solution of the system of linear algebraic equations 𝐴𝑥 = 𝑦 is
obtained via the following algorithm:

Start with

𝑥(𝑁) = (𝑑(𝑁))−1𝑦(𝑁), 𝜂𝑁−1 = ℎ(𝑁)𝑥(𝑁),

then for 𝑘 = 𝑁 − 1, . . . , 2 compute recursively

𝑥(𝑘) = (𝑑(𝑘))−1(𝑦(𝑘)− 𝑔(𝑘)𝜂𝑘),
𝜂𝑘−1 = 𝑏(𝑘)𝜂𝑘 + ℎ(𝑘)𝑥(𝑘)

and finally compute

𝑥(1) = (𝑑(1))−1(𝑦(1)− 𝑔(1)𝜂1).

One can easily check that the complexity of the algorithm from Theorem
13.13 satisfies the estimate (13.25).

§13.5 Comments

Systems of the form (13.14) and their input-output matrices were studied and
used by I. Gohberg, M.A. Kaashoek and L. Lerer in [38] and by P.M. Dewilde and
A.J. van der Veen in [15]. In the paper [22] systems with more general boundary
condition were considered.



Chapter 14

The First Inversion Algorithms

Here we consider inversion methods for some classes of matrices and representa-
tions. In the first section we apply the idea used in Section §13.4 for a general case
of matrices with quasiseparable representations with invertible diagonal entries.
In the second section we discuss an inversion method for matrices with lower qua-
siseparable and upper semisiseparable representations, under some restrictions on
generators. This method is based on the representation of the matrix as a sum
of an invertible lower triangular matrix and a matrix of a small rank. The same
results are obtained in the subsequent Chapter 16 via the system approach.

§14.1 Inversion of matrices in quasiseparable represen-

tation with invertible diagonal elements

Consider a matrix 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 with quasiseparable generators

𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1)

𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁),

𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1); 𝑑(𝑖) (𝑖 = 1, . . . , 𝑁)

of orders 𝑟𝐿𝑘 , 𝑟
𝑈
𝑘 (𝑘 = 1, . . . , 𝑁 − 1). Let 𝑥, 𝑦 be vectors such that 𝑦 = 𝐴𝑥.

Let 𝑟𝐿0 , 𝑟
𝑈
𝑁 be arbitrary nonnegative integers and 𝑝(1), 𝑔(𝑁), 𝑎(1), 𝑏(𝑁) be

arbitrary matrices of sizes 𝑚1 × 𝑟𝐿0 ,𝑚𝑁 × 𝑟𝑈𝑁 , 𝑟𝐿1 × 𝑟𝐿0 , 𝑟𝑈𝑁−1 × 𝑟𝑈𝑁 , respectively.
Consider also the discrete-time descriptor system with homogeneous bound-

ary conditions (13.14) for which 𝐴 is the matrix of the input-output operator.
Suppose also that all 𝑑(𝑘), 𝑘 = 1, . . . , 𝑁 are invertible.

In this case one can obtain the coordinates of the input variable 𝑥(𝑘), 𝑘 =
1, . . . , 𝑁 , as an expression in the coordinates of the output variable 𝑦(𝑘), 𝑘 =
1, . . . , 𝑁 , the state space variables 𝜒𝑘, 𝜂𝑘, 𝑘 = 1, . . . , 𝑁 and some of the quasisep-
arable generators of the matrix 𝐴. Indeed, multiplying

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑘 + 𝑔(𝑘)𝜂𝑘 + 𝑑(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁

261 Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1  
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory: 
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_14, © Springer Basel 2014
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on the left by (𝑑(𝑘))−1 one obtains

𝑥(𝑘) = −(𝑑(𝑘))−1𝑝(𝑘)𝜒𝑘−(𝑑(𝑘))−1𝑔(𝑘)𝜂𝑘+(𝑑(𝑘))−1𝑦(𝑘), 𝑘 = 1, . . . , 𝑁. (14.1)

Substituting these coordinates in the recursion relations

𝜒𝑘+1 = 𝑎(𝑘)𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁 − 1,

𝜂𝑘−1 = 𝑏(𝑘)𝜂𝑘 + ℎ(𝑘)𝑥(𝑘), 𝑘 = 𝑁, . . . , 2

of the state space variables, it follows that

𝜒𝑘+1 = (𝑎(𝑘)− 𝑞(𝑘)(𝑑(𝑘))−1𝑝(𝑘))𝜒𝑘 − 𝑞(𝑘)(𝑑(𝑘))−1𝑔(𝑘)𝜂𝑘 + 𝑞(𝑘)(𝑑(𝑘))
−1𝑦(𝑘),

𝑘 = 1, . . . , 𝑁 − 1, (14.2)

𝜂𝑘−1 = −ℎ(𝑘)(𝑑(𝑘))−1𝑝(𝑘)𝜒𝑘 + (𝑏(𝑘)− ℎ(𝑘)(𝑑(𝑘))−1𝑔(𝑘))𝜂𝑘 + ℎ(𝑘)(𝑑(𝑘))
−1𝑦(𝑘),

𝑘 = 𝑁, . . . , 2. (14.3)

In order to define completely the state space variables only their boundary values

𝜒1 = 0, 𝜂𝑁 = 0 (14.4)

are needed.

Denote by 𝑎×(𝑘), 𝑏×(𝑘), 𝑐×(𝑘), 𝑒×(𝑘), 𝑓×(𝑘), 𝑔×(𝑘), 𝑘 = 1, . . . , 𝑁 , the matri-
ces

𝑎×(𝑘) = 𝑎(𝑘)− 𝑞(𝑘)(𝑑(𝑘))−1𝑝(𝑘), 𝑘 = 1, . . . , 𝑁 − 1, (14.5)

𝑏×(𝑘) = 𝑏(𝑘)− ℎ(𝑘)(𝑑(𝑘))−1𝑔(𝑘), 𝑘 = 𝑁, . . . , 2, (14.6)

𝑐×(𝑘) = 𝑞(𝑘)(𝑑(𝑘))−1𝑔(𝑘), 𝑘 = 1, . . . , 𝑁 − 1, (14.7)

𝑒×(𝑘) = ℎ(𝑘)(𝑑(𝑘))−1𝑝(𝑘), 𝑘 = 𝑁, . . . , 2, (14.8)

𝑓×(𝑘) = ℎ(𝑘)(𝑑(𝑘))−1𝑦(𝑘), 𝑘 = 𝑁, . . . , 2, (14.9)

𝑔×(𝑘) = 𝑞(𝑘)(𝑑(𝑘))−1𝑦(𝑘), 𝑘 = 1, . . . , 𝑁 − 1. (14.10)

Then the system (§14.1)–(14.4) becomes⎧⎨⎩
𝜒𝑘+1 = 𝑎

×(𝑘)𝜒𝑘 − 𝑐×(𝑘)𝜂𝑘 + 𝑔×(𝑘), 𝑘 = 1, . . . , 𝑁 − 1,

𝜂𝑘−1 = −𝑒×(𝑘)𝜒𝑘 + 𝑏×(𝑘)𝜂𝑘 + 𝑓×(𝑘), 𝑘 = 𝑁, . . . , 2,

𝜒1 = 0, 𝜂𝑁 = 0.

(14.11)

If 𝑓×(𝑘), 𝑔×(𝑘) are taken as the right-hand side the system (14.11) becomes⎧⎨⎩
𝜒𝑘+1 − 𝑎×(𝑘)𝜒𝑘 + 𝑐×(𝑘)𝜂𝑘 = 𝑔×(𝑘), 𝑘 = 1, . . . , 𝑁 − 1,

𝜂𝑘−1 + 𝑒
×(𝑘)𝜒𝑘 − 𝑏×(𝑘)𝜂𝑘 = 𝑓×(𝑘), 𝑘 = 𝑁, . . . , 2,

𝜒1 = 0, 𝜂𝑁 = 0.



§14.1. Inversion when diagonal elements are invertible 263

It follows that the system (14.11) can be rewritten as the following system
of linear algebraic equations:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼 0 0 0 0 ⋅ ⋅ ⋅ 0 0
−𝑎×(1) 𝑐×(1) 𝐼 0 0 ⋅ ⋅ ⋅ 0 0

0 𝐼 𝑒×(2) −𝑏×(2) 0 ⋅ ⋅ ⋅ 0 0
0 0 −𝑎×(2) 𝑐×(2) 𝐼 ⋅ ⋅ ⋅ 0 0
0 0 0 𝐼 𝑒×(3) ⋅ ⋅ ⋅ 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 ⋅ ⋅ ⋅ 𝑒×(𝑁) −𝑏×(𝑁)
0 0 0 0 0 ⋅ ⋅ ⋅ 0 𝐼

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜒1
𝜂1
𝜒2
𝜂2
𝜒3
...
𝜒𝑁
𝜂𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
(
0 (𝑔×(1))𝑇 (𝑓×(2))𝑇 (𝑔×(2))𝑇 (𝑓×(3))𝑇 ⋅ ⋅ ⋅ (𝑓×(𝑁))𝑇 0

)𝑇
(14.12)

with a block tridiagonal matrix. Thus the inversion of the matrix 𝐴 has been
reduced to the inversion of a block tridiagonal matrix.

Also, let 𝑎(𝑁), 𝑏(1) be arbitrary matrices of sizes 𝑟𝐿𝑁 × 𝑟𝐿𝑁−1 and 𝑟𝑈0 × 𝑟𝑈1
respectively.

Theorem 14.1. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a block matrix with entries of sizes 𝑚𝑖 ×
𝑚𝑗, with lower quasiseparable generators 𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘) (𝑘 = 1, . . . , 𝑁) of orders
𝑟𝐿𝑘 , upper quasiseparable generators 𝑔(𝑘), ℎ(𝑘), 𝑏(𝑘) (𝑘 = 1, . . . , 𝑁) of orders 𝑟𝑈𝑘
and invertible diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁). Using these generators define
𝑎×(𝑘), 𝑏×(𝑘), 𝑐×(𝑘), 𝑒×(𝑘) via the relations (14.5)–(14.8).

The matrix 𝐴 is invertible if and only if the matrix in (14.12) is invertible.
Moreover, if the last condition holds, then for any block vector 𝑦 = (𝑦(𝑘))𝑁𝑘=1 the
solution 𝑥 = (𝑥(𝑘))𝑁𝑘=1 of the equation 𝐴𝑥 = 𝑦 is given by the relation (14.1).

Proof. Let the matrix in (14.12) be invertible. One must prove that 𝐴 is invertible
also. Suppose to this end that 𝐴𝑥 = 0, and let us show that 𝑥 = 0.

Substituting 𝑦(𝑘) = 0, 𝑘 = 1, . . . , 𝑁 in (14.1), (§14.1), (§14.1), (14.9) and
(14.10) one obtains

𝑥(𝑘) = −(𝑑(𝑘))−1𝑝(𝑘)𝜒𝑘 − (𝑑(𝑘))−1𝑔(𝑘)𝜂𝑘, 𝑘 = 1, . . . , 𝑁, (14.13)

with

𝑘+1 = (𝑎(𝑘)− 𝑞(𝑘)(𝑑(𝑘))−1𝑝(𝑘))𝜒𝑘 − 𝑞(𝑘)(𝑑(𝑘))−1𝑔(𝑘)𝜂𝑘, 𝑘 = 1, . . . , 𝑁 − 1,

𝜂𝑘−1 = −ℎ(𝑘)(𝑑(𝑘))−1𝑝(𝑘)𝜒𝑘 + (𝑏(𝑘)− ℎ(𝑘)(𝑑(𝑘))−1𝑔(𝑘))𝜂𝑘, 𝑘 = 𝑁, . . . , 2.

In the notations (14.5)–(14.8), it follows that 𝑥 is given using state space variables
𝜒𝑘, 𝜂𝑘 which satisfy (14.11) with 𝑓×(𝑘) = 0, 𝑔×(𝑘) = 0. This means that the state
space variables are a solution of the system (14.12) with the right-hand side equal
to zero. By the assumption, this means that the state space variables themselves
are zero, which by virtue of (14.13) yields 𝑥(𝑘) = 0, 𝑘 = 1, . . . , 𝑁 . Therefore, the
matrix 𝐴 is invertible.
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Conversely, suppose that the matrix 𝐴 is invertible. Let 𝜒𝑘, 𝜂𝑘 𝑘 = 1, . . . , 𝑁 ,
be the solution of the system (14.12) with the zero right-hand side. This means⎧⎨⎩

𝜒𝑘+1 = 𝑎
×(𝑘)𝜒𝑘 − 𝑐×(𝑘)𝜂𝑘, 𝑘 = 1, . . . , 𝑁 − 1,

𝜂𝑘−1 = −𝑒×(𝑘)𝜒𝑘 + 𝑏×(𝑘)𝜂𝑘, 𝑘 = 𝑁, . . . , 2,

𝜒1 = 0, 𝜂𝑁 = 0.

(14.14)

Using the relations (14.5)–(14.8) we get

𝜒𝑘+1 = 𝑎(𝑘)𝜒𝑘 + 𝑞(𝑘)(−(𝑑(𝑘))−1𝑝(𝑘)𝜒𝑘 − (𝑑(𝑘))−1𝑔(𝑘)𝜂𝑘),

𝑘 = 1, . . . , 𝑁 − 1, (14.15)

𝜂𝑘−1 = 𝑏(𝑘)𝜂𝑘 + ℎ(𝑘)(−(𝑑(𝑘))−1𝑝(𝑘)𝜒𝑘 − (𝑑(𝑘))−1𝑔(𝑘)𝜂𝑘),

𝑘 = 𝑁, . . . , 2. (14.16)

Set 𝑥(𝑘) = −(𝑑(𝑘))−1𝑝(𝑘)𝜒𝑘 − (𝑑(𝑘))−1𝑔(𝑘)𝜂𝑘, which is equivalent to

𝑝(𝑘)𝜒𝑘 + 𝑑(𝑘)𝑥(𝑘) + 𝑔(𝑘)𝜂𝑘 = 0, 𝑘 = 1, . . . , 𝑁. (14.17)

Combining relations (14.15)–(14.17) we get⎧⎨⎩
𝜒𝑘+1 = 𝑎(𝑘)𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁 − 1,

𝜂𝑘−1 = 𝑏(𝑘)𝜂𝑘 + ℎ(𝑘)𝑥(𝑘), 𝑘 = 𝑁, . . . , 2,

𝑝(𝑘)𝜒𝑘 + 𝑑(𝑘)𝑥(𝑘) + 𝑔(𝑘)𝜂𝑘 = 0, 𝑘 = 1, . . . , 𝑁,

𝜒1 = 0, 𝜂𝑁 = 0.

(14.18)

Comparing with (13.14) we conclude that 𝐴𝑥 = 0, where 𝑥 = (𝑥(𝑘))𝑁𝑘=1 .
Since the matrix 𝐴 is invertible, it follows that 𝑥 = 0. Inserting this in (14.18) we
get

𝜒1 = 0, 𝜒𝑘+1 = 𝑎(𝑘)𝜒𝑘, 𝑘 = 1, . . . , 𝑁 − 1,

𝜂𝑁 = 0, 𝜂𝑘−1 = 𝑏(𝑘)𝜂𝑘, 𝑘 = 𝑁, . . . , 2,

whence

𝜒𝑘 = 0, 𝜂𝑘 = 0, 𝑘 = 1, . . . , 𝑁.

Therefore, the matrix in (14.12) is invertible. □

There exist various fast methods for the solution of systems of the form
(14.12). We may consider the matrix in (14.12) as a band matrix with the band-
width 𝑟𝐿 + 𝑟𝑈 , where 𝑟𝐿 = max𝑁𝑘=1 𝑟

𝐿
𝑘 and 𝑟𝑈 = max𝑁𝑘=1 𝑟

𝑈
𝑘 and use a method

described for instance in [43], pp. 202–207. However, we can use the block tridiag-
onal form of the matrix and the identity entries in the lower subdiagonal in order
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to simplify the algorithm. Equation (14.12) is equivalent to the conditions (14.4)
and the equation⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑐×(1) 𝐼 0 0 ⋅ ⋅ ⋅ 0 0
𝐼 𝑒×(2) −𝑏×(2) 0 ⋅ ⋅ ⋅ 0 0
0 −𝑎×(2) 𝑐×(2) 𝐼 ⋅ ⋅ ⋅ 0 0
0 0 𝐼 𝑒×(3) ⋅ ⋅ ⋅ 0 0
...

...
...

...
. . .

...
...

0 0 0 0 ⋅ ⋅ ⋅ 𝐼 𝑒×(𝑁)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜂1
𝜒2
𝜂2
𝜒3
...
𝜒𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑔×(1)
𝑓×(2)
𝑔×(2)
𝑓×(3)

...
𝑓×(𝑁)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(14.19)

with the matrix obtained from the matrix in (14.12) by deleting the first and the
last columns and rows.

Proceed as in the method of Gaussian elimination. Consider the extended
matrix 𝐴 that corresponds to equation (14.19). In the first stage take the first
three rows of 𝐴,⎛⎝ 𝑐×(1) 𝐼 0 0 ⋅ ⋅ ⋅ 0 𝑔×(1)

𝐼 𝑒×(2) −𝑏×(2) 0 ⋅ ⋅ ⋅ 0 𝑓×(2)
0 −𝑎×(2) 𝑐×(2) 𝐼 ⋅ ⋅ ⋅ 0 𝑔×(2)

⎞⎠ ,
and perform the following transformations. Multiply the second row by 𝑐×(1),
subtract the result from the first one and interchange the resulting first two rows.
The result is the matrix⎛⎝ 𝐼 𝑒×(2) −𝑏×(2) 0 ⋅ ⋅ ⋅ 0 𝑓×(2)

0 𝐼 − 𝑐×(1)𝑒×(2) 𝑐×(1)𝑏×(2) 0 ⋅ ⋅ ⋅ 0 𝑔×(1)− 𝑐×(1)𝑓×(2)
0 −𝑎×(2) 𝑐×(2) 𝐼 ⋅ ⋅ ⋅ 0 𝑔×(2)

⎞⎠ .
Next applying Gaussian elimination with partial pivoting to the last two rows of
this matrix we transform it to the upper triangular form⎛⎝ 𝐼 𝑒×(2) −𝑏×(2) 0 0 ⋅ ⋅ ⋅ 0 𝑓×(2)

0 𝜆2 𝜌2 𝑤2 0 ⋅ ⋅ ⋅ 0 𝑔2
0 0 𝑐2 𝑣2 0 ⋅ ⋅ ⋅ 0 𝑔′2

⎞⎠ ,
with upper triangular 𝜆2, 𝑐2. Taking the last row from this matrix and the two
next rows from 𝐴 we obtain the matrix⎛⎝ 0 0 𝑐2 𝑣2 0 0 ⋅ ⋅ ⋅ 0 𝑔′2

0 0 𝐼 𝑒×(3) −𝑏×3 0 ⋅ ⋅ ⋅ 0 𝑓×(3)
0 0 0 −𝑎×(3) 𝑐×(3) 𝐼 ⋅ ⋅ ⋅ 0 𝑔×(3)

⎞⎠ .
For such a matrix we may proceed as above, and so on. At every step except the
last one we obtain a matrix of the form⎛⎝ 0 ⋅ ⋅ ⋅ 0 𝑐𝑘−1 𝑣𝑘−1 0 0 ⋅ ⋅ ⋅ 0 𝑔′𝑘−1

0 ⋅ ⋅ ⋅ 0 𝐼 𝑒×(𝑘) −𝑏×(𝑘) 0 ⋅ ⋅ ⋅ 0 𝑓×(𝑘)
0 ⋅ ⋅ ⋅ 0 0 −𝑎×(𝑘) 𝑐×(𝑘) 𝐼 ⋅ ⋅ ⋅ 0 𝑔×(𝑘)

⎞⎠ .
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Such a matrix is reduced to the form⎛⎝ 0 ⋅ ⋅ ⋅ 0 𝐼 𝑒×(𝑘) −𝑏×(𝑘) 0 0 ⋅ ⋅ ⋅ 0 𝑓×(𝑘)
0 ⋅ ⋅ ⋅ 0 0 𝜆𝑘 𝜌𝑘 𝑤𝑘 0 ⋅ ⋅ ⋅ 0 𝑔𝑘
0 ⋅ ⋅ ⋅ 0 0 0 𝑐𝑘 𝑣𝑘 0 ⋅ ⋅ ⋅ 0 𝑔′𝑘

⎞⎠
with upper triangular 𝜆𝑘, 𝑐𝑘.

In the last step we deal with the last two rows of the transformed matrix,
which are (

0 0 ⋅ ⋅ ⋅ 0 𝑐𝑁−1 𝑣𝑁−1 𝑔′𝑁−1

0 0 ⋅ ⋅ ⋅ 0 𝐼 𝑒×(𝑁) 𝑓×(𝑁)

)
.

Multiplying the second row by 𝑐𝑁−1, subtracting the result from the first row and
next changing the first and the second rows we obtain the matrix(

0 0 ⋅ ⋅ ⋅ 𝐼 𝑒×(𝑁) 𝑓×(𝑁)
0 0 ⋅ ⋅ ⋅ 0 𝜆𝑁 𝑔𝑁

)
,

where 𝜆𝑁 = 𝑣𝑁−1 − 𝑐𝑁−1𝑒
×(𝑁) and 𝑔𝑁 = 𝑔′𝑁−1 − 𝑐𝑁−1𝑓

×(𝑁).

Thus equation (14.19) is reduced to the form

⎛⎜⎜⎜⎜⎜⎝
𝐼 𝑒×(2) −𝑏×(2) 0 ⋅ ⋅ ⋅ 0 0
0 𝜆2 𝜌2 𝑤2 ⋅ ⋅ ⋅ 0 0
0 0 𝐼 𝑒×(3) ⋅ ⋅ ⋅ 0 0
...

...
...

...
. . .

...
...

0 0 0 0 ⋅ ⋅ ⋅ 0 𝜆𝑁

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜂1
𝜒2
𝜂2
𝜒3
...
𝜒𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓×(2)
𝑔2

𝑓×(3)
𝑔3
...

𝑓×(𝑁)
𝑔𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The last equation can be solved easily.

Thus we obtain the following algorithm.

Algorithm 14.2. Let 𝐴 be an invertible matrix with quasiseparable generators
𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘); 𝑔(𝑘), ℎ(𝑘), 𝑏(𝑘); 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁), such that the diagonal entries
𝑑(𝑘) (𝑘 = 1, . . . , 𝑁) are invertible.

Then the solution 𝑥 of the equation 𝐴𝑥 = 𝑦 is obtained as follows:

1. For 𝑘 = 1, . . . , 𝑁 perform the following operations: find the solutions 𝜓𝑘, 𝜙𝑘,
𝜇𝑘 of the equations

𝑑(𝑘)𝜓𝑘 = 𝑝(𝑘), 𝑑(𝑘)𝜙𝑘 = 𝑔(𝑘), 𝑑(𝑘)𝜇𝑘 = 𝑦(𝑘),

and compute

𝑎×(𝑘) = 𝑎(𝑘)− 𝑞(𝑘)𝜓𝑘, 𝑐×(𝑘) = 𝑞(𝑘)𝜙𝑘, 𝑔×(𝑘) = 𝑞(𝑘)𝜇𝑘,

𝑏×(𝑘) = 𝑏(𝑘)− ℎ(𝑘)𝜙𝑘, 𝑒×(𝑘) = ℎ(𝑘)𝜓𝑘, 𝑓×(𝑘) = ℎ(𝑘)𝜇𝑘.
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2. Solve the system (14.12) to obtain the values 𝜒𝑘, 𝜂𝑘, 𝑘 = 1, . . . , 𝑁 . as follows:

2.1.1. Set 𝜒1 = 0, 𝜂𝑁 = 0, 𝑣1 = 𝐼, 𝑔
′
1 = 𝑔

×(1), 𝑐1 = 𝑐×(1).
2.1.2. For 𝑘 = 2, . . . , 𝑁 − 1, perform the following: compute

𝑐′𝑘 = 𝑣𝑘−1 − 𝑐𝑘−1𝑒
×(𝑘), 𝑐′′𝑘 = 𝑐𝑘−1𝑏

×(𝑘), 𝑔′′𝑘 = 𝑔
′
𝑘−1 − 𝑐𝑘−1𝑓

×(𝑘),

using Gaussian elimination with partial pivoting transform the ma-
trix (

𝑐′𝑘 𝑐′′𝑘 0 𝑔′′𝑘
−𝑎×(𝑘) 𝑐×(𝑘) 𝐼 𝑔×(𝑘)

)
to the form (

𝜆𝑘 𝜌𝑘 𝑤𝑘 𝑔𝑘
0 𝑐𝑘 𝑣𝑘 𝑔′𝑘

)
.

2.1.3. Compute 𝜆𝑁 = 𝑣𝑁−1 − 𝑐𝑁−1𝑒
×(𝑁), 𝑔𝑁 = 𝑔′𝑁−1 − 𝑐𝑁−1𝑓

×(𝑁).

2.2.1. Find the solution 𝜒𝑁 of the equation 𝜆𝑁𝜒𝑁 = 𝑔𝑁 , compute 𝜂𝑁−1 =
𝑓×(𝑁)− 𝑒×(𝑁)𝜒𝑁 .

2.2.2. For 𝑘 = 𝑁 − 1, . . . , 2, find the solution 𝜒𝑘 of the equation 𝜆𝑘𝜒𝑘 =
𝑔𝑘−𝜌𝑘𝜂𝑘−𝑤𝑘𝜒𝑘+1 and compute 𝜂𝑘−1 = 𝑓

×(𝑘)−𝑒×(𝑘)𝜒𝑘+𝑏×(𝑘)𝜂𝑘.
3. For 𝑘 = 1, . . . , 𝑁 . find the components of the solution

𝑥(𝑘) = −𝜓𝑘𝜒𝑘 − 𝜙𝑘𝜂𝑘 + 𝜇𝑘.

4. Obtain the solution as 𝑥 = col(𝑥(𝑘))𝑁𝑘=1 .

Let us calculate the complexity of this algorithm. To this end we denote by

1. 𝜈(𝑚) the complexity of solving an equation 𝐴0𝑥 = 𝑦 with an unknown block
column vector 𝑥 of size 𝑚; if 𝑋 and 𝑌 are matrices with 𝑘 columns, then the
complexity of the equations 𝐴0𝑋 = 𝑌 is 𝑘𝜈(𝑚).

2. 𝜁(𝑚, 𝑘) the complexity of transforming an 𝑚 × 𝑘 submatrix to an upper
triangular form using Gaussian elimination.

3. 𝜐(𝑚) the complexity of the solution of a system of linear algebraic equations
with an 𝑚×𝑚 (upper) triangular matrix.

Denote also 𝑟 = max𝑁𝑘=0 𝑟
𝐿
𝑘 , 𝑠 = max𝑁𝑘=0 𝑟

𝑈
𝑘 , 𝑛 = max𝑁𝑘=0 𝑛𝑘. These will be

used mainly in upper estimates for the product of two matrices; for example, the
product of an 𝑟𝐿𝑘 × 𝑛𝑘 matrix and an 𝑛𝑘 × 𝑟𝑈𝑘−1 matrix costs exactly 𝑟𝐿𝑘 ⋅ 𝑛𝑘 ⋅ 𝑟𝑈𝑘−1

multiplications and 𝑟𝐿𝑘 ⋅ (𝑛𝑘 − 1) ⋅ 𝑟𝑈𝑘−1 additions, hence less that 2𝑟𝑛𝑠 operations.

Step 1 of the algorithm asks solving for each 𝑘 = 1, . . . , 𝑁 three systems,
with an 𝑛𝑘 × 𝑟𝐿𝑘−1, an 𝑛𝑘 × 𝑟𝑈𝑘 and an 𝑛𝑘 × 1 matrix, which means at most

𝑁𝜈(𝑛)(𝑟 + 𝑠+ 1) operations. For each 𝑘 ∕= 𝑁 , three multiplications of an 𝑟𝐿𝑘 × 𝑛𝑘
matrix with an 𝑛𝑘 × 𝑟𝐿𝑘−1, an 𝑛𝑘 × 𝑟𝑈𝑘 and an 𝑛𝑘 × 1 matrix are performed,

together with a subtraction of two 𝑟𝐿𝑘 × 𝑟𝐿𝑘−1 matrices, which cost in total less
than 𝑁(2𝑟2𝑛+2𝑟𝑛𝑠+ 2𝑟𝑛+ 𝑟2) operations. For each 𝑘 ∕= 1, three multiplications
of an 𝑟𝑈𝑘−1 × 𝑛𝑘 matrix with an 𝑛𝑘 × 𝑟𝑈𝑘 , an 𝑛𝑘 × 𝑟𝐿𝑘−1 and an 𝑛𝑘 × 1 matrix are
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performed, together with a subtraction of two 𝑟𝑈𝑘−1 × 𝑟𝑈𝑘 matrices, which cost in
total less than 𝑁(2𝑠2𝑛+ 2𝑟𝑛𝑠+ 2𝑠𝑛+ 𝑠2) operations.

In Step 2.1.2 of the algorithm, for each 𝑘 = 1, . . . , 𝑁 a submatrix of size
(𝑟𝐿𝑘−1 + 𝑟

𝐿
𝑘 )× (𝑟𝐿𝑘−1 + 𝑟

𝑈
𝑘 ) is brought to the upper triangular form, which costs at

most 𝑁𝜁(2𝑟, 𝑟 + 𝑠) operations.

The same step as well as Step 2.1.3 performs three matrix multiplications
with the 𝑟𝐿𝑘−1× 𝑟𝑈𝑘−1 matrix 𝑐𝑘−1, respectively 𝑐𝑁−1, with matrices of sizes 𝑟𝑈𝑘−1×
𝑟𝐿𝑘−1, 𝑟

𝑈
𝑘−1 × 𝑟𝑈𝑘 and 𝑟𝑈𝑘−1 × 1, together with two subtractions of 𝑟𝐿𝑘−1 × 𝑟𝐿𝑘−1 and

𝑟𝐿𝑘−1×1, so that the total cost of these steps is less than 𝑁(2𝑟𝑠(𝑟+𝑠+1)+𝑟2+𝑟).

Steps 2.2.1 and 2.2.2 find the unknown vectors 𝜒𝑘, 𝑘 = 2, . . . , 𝑁 , from equa-
tions with an upper triangular matrix, which costs (𝑁−1)𝜐(𝑟𝐿𝑘−1) operations, plus
four matrix multiplications with a vector and four subtractions. These have an ex-
tra cost of less than 2𝑟𝐿𝑘−1 ⋅𝑟𝑈𝑘 +2𝑟𝐿𝑘−1 ⋅𝑟𝐿𝑘 +2𝑟𝑈𝑘−1 ⋅𝑟𝐿𝑘−1+2𝑟𝑈𝑘−1 ⋅𝑟𝑈𝑘 +2𝑟𝐿𝑘−1+2𝑟𝑈𝑘−1.
In total, these two sub-steps cost less than 𝑁(𝜐(𝑟) + 4𝑟𝑠+ 2𝑟2 + 2𝑠2 + 2𝑟 + 2𝑠).

Finally, Step 3 asks for 2𝑁 multiplications and 2𝑁 additions and it costs less
than 𝑁(2𝑛𝑟 + 2𝑛𝑠+ 2𝑛) operations.

The total complexity of the algorithm is thus less than(
𝜈(𝑛)(𝑟 + 𝑠+ 1) + 2(𝑟 + 𝑠)2 + (𝑟 + 𝑠)𝑛+ 𝑟2 + 𝑠2 + 𝜁(2𝑟, 𝑟 + 𝑠) + 2𝑟𝑠(𝑟 + 𝑠+ 1)

+ 𝑟2 + 𝑟 + 𝜐(𝑟) + 4𝑟𝑠+ 2𝑟2 + 2𝑠2 + 2𝑟 + 2𝑠+ 2𝑛𝑟 + 2𝑛𝑠+ 2𝑛
)
𝑁.

Example 14.3. Consider the 𝑁 ×𝑁 matrix

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 𝑎 𝑎2 ⋅ ⋅ ⋅ 𝑎𝑁−2 𝑎𝑁−1

𝑏 1 𝑎 ⋅ ⋅ ⋅ 𝑎𝑁−3 𝑎𝑁−2

𝑏2 𝑏 1 ⋅ ⋅ ⋅ 𝑎𝑁−4 𝑎𝑁−3

...
...

...
. . .

...
...

𝑏𝑁−2 𝑏𝑁−3 𝑏𝑁−4 ⋅ ⋅ ⋅ 1 𝑎
𝑏𝑁−1 𝑏𝑁−2 𝑏𝑁−3 ⋅ ⋅ ⋅ 𝑏 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
which has been introduced in Example 5.14. The inverse of this scalar matrix will
be found again to be exactly as in (10.29) for the scalar case.

For 𝐴 a set of quasiseparable generators have been obtained in Example 5.14,
namely

𝑝(𝑖) = 𝑏, 𝑖 = 2, . . . , 𝑁, 𝑎(𝑘) = 𝑏, 𝑘 = 2, . . . , 𝑁 − 1,

ℎ(𝑖) = 𝑎, 𝑖 = 2, . . . , 𝑁, 𝑏(𝑘) = 𝑎, 𝑘 = 2, . . . , 𝑁 − 1,

𝑞(𝑗) = 1, 𝑔(𝑗) = 1, 𝑗 = 1, . . . , 𝑁 − 1, 𝑑(𝑘) = 1, 𝑘 = 1, . . . , 𝑁.

Consider the equation 𝐴𝑥 = 𝑦. Then the above algorithm will find 𝑥 for a
given 𝑦 in the following way.
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Define like in (14.5)–(14.10) for 𝑘 = 1, . . . , 𝑁 − 1

𝑎×(𝑘) = 𝑎(𝑘)− 𝑞(𝑘)(𝑑(𝑘))−1𝑝(𝑘) = 𝑏− 𝑏

1
= 0, 𝑐×(𝑘) = 𝑞(𝑘)(𝑑(𝑘))−1𝑔(𝑘) = 1,

𝑔×(𝑘) = 𝑞(𝑘)(𝑑(𝑘))−1𝑦(𝑘) = 𝑦(𝑘)

and for 𝑘 = 2, . . . , 𝑁

𝑏×(𝑘) = 𝑏(𝑘)− ℎ(𝑘)(𝑑(𝑘))−1𝑔(𝑘) = 𝑎− 𝑎

1
= 0, 𝑒×(𝑘) = ℎ(𝑘)(𝑑(𝑘))−1𝑝(𝑘) = 𝑎𝑏,

𝑓×(𝑘) = ℎ(𝑘)(𝑑(𝑘))−1𝑦(𝑘) = 𝑎𝑦(𝑘).

Solve the following linear system of 2𝑁 equations with 2𝑁 unknowns with a
tridiagonal matrix:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 ⋅ ⋅ ⋅ 0 0
0 1 1 0 0 ⋅ ⋅ ⋅ 0 0
0 1 𝑎𝑏 0 0 ⋅ ⋅ ⋅ 0 0
0 0 0 1 1 ⋅ ⋅ ⋅ 0 0
0 0 0 1 𝑎𝑏 ⋅ ⋅ ⋅ 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 ⋅ ⋅ ⋅ 𝑎𝑏 0
0 0 0 0 0 ⋅ ⋅ ⋅ 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜒1
𝜂1
𝜒2
𝜂2
𝜒3
...
𝜒𝑁
𝜂𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
𝑦(1)
𝑎𝑦(2)
𝑦(2)
𝑎𝑦(3)
𝑦(3)
...

𝑎𝑦(𝑁)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that this matrix is invertible under the additional assumption that 𝑎𝑏 ∕= 1.
From the theorem it follows that the matrix 𝐴 is also invertible if and only if this
condition takes place.

This ends the first step of Algorithm 14.2. In Step 2 solve the system (14.12)
to obtain the values 𝜒𝑘, 𝜂𝑘, 𝑘 = 1, . . . , 𝑁 as follows:

Perform Sub-step 2.1.1, i.e., set

𝜒1 = 0, 𝜂𝑁 = 0, 𝑣1 = 1, 𝑔′1 = 𝑔
×(1) = 𝑦(1), 𝑐1 = 𝑐×(1) = 1.

Perform Sub-step 2.1.2: first for 𝑘 = 2, i.e., compute

𝑐′𝑘 = 𝑣𝑘−1 − 𝑐𝑘−1𝑒
×(𝑘) = 1− 𝑎𝑏, 𝑐′′𝑘 = 𝑐𝑘−1𝑏

×(𝑘) = 1 ⋅ 0 = 0,

𝑔′′𝑘 = 𝑔
′
𝑘−1 − 𝑐𝑘−1𝑓

×(𝑘) = 𝑦(1)− 𝑎𝑦(2)
then form the matrix(

𝑐′𝑘 𝑐′′𝑘 0 𝑔′′𝑘
−𝑎×(𝑘) 𝑐×(𝑘) 𝐼 𝑔×(𝑘)

)
=

(
1− 𝑎𝑏 0 0 𝑦(1)− 𝑎𝑦(2)
0 1 1 𝑦(2)

)
.

No Gaussian elimination with partial pivoting is needed to transform the matrix
to the form (

𝜆𝑘 𝜌𝑘 𝑤𝑘 𝑔𝑘
0 𝑐𝑘 𝑣𝑘 𝑔′𝑘

)
.
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It follows that

𝜆2 = 1− 𝑎𝑏, 𝜌2 = 0, 𝑤2 = 0, 𝑔2 = 𝑦(1)− 𝑎𝑦(2),
𝑐2 = 1, 𝑣2 = 1, 𝑔′2 = 𝑦(2).

Perform again Sub-step 2.1.2, now in turn for 𝑘 = 3, . . . , 𝑁 − 1. Since 𝑎×(𝑘),
𝑏×(𝑘), 𝑐×(𝑘), 𝑒×(𝑘), 𝑓×(𝑘) and 𝑔×(𝑘) are constant, namely equal to 𝑎×(2), 𝑏×(2),
𝑐×(2), 𝑒×(2), 𝑓×(2) and 𝑔×(2), respectively, it follows that for any 𝑘 = 3, . . . , 𝑁−1
we have again

𝜆𝑘 = 1− 𝑎𝑏, 𝜌𝑘 = 0, 𝑤𝑘 = 0, 𝑔𝑘 = 𝑦(𝑘 − 1)− 𝑎𝑦(𝑘)
𝑐𝑘 = 1 𝑣𝑘 = 1, 𝑔′𝑘 = 𝑦(𝑘).

In Sub-step 2.1.3 compute

𝜆𝑁 = 𝑣𝑁−1−𝑐𝑁−1𝑒
×(𝑁) = 1−𝑎𝑏, 𝑔𝑁 = 𝑔′𝑁−1−𝑐𝑁−1𝑓

×(𝑁) = 𝑦(𝑁−1)−𝑎𝑦(𝑁).

Sub-step 2.1 is now complete.

In Sub-step 2.2.1 find the solution 𝜒𝑁 of the equation 𝜆𝑁𝜒𝑁 = 𝑔𝑁 , in our
case

𝜒𝑁 =
𝑎𝑦(𝑁)− 𝑦(𝑁 − 1)

𝑎𝑏− 1
,

and compute 𝜂𝑁−1 = 𝑓
×(𝑁)− 𝑒×(𝑁)𝜒𝑁 . In our case

𝜂𝑁−1 = 𝑎𝑦(𝑁)− 𝑎𝑏𝜒𝑁 = 𝑎𝑦(𝑁)− 𝑎𝑏

𝑎𝑏− 1
(𝑎𝑦(𝑁)− 𝑦(𝑁 − 1))

=
𝑎𝑏𝑦(𝑁 − 1)− 𝑎𝑦(𝑁)

𝑎𝑏− 1
.

Perform Sub-step 2.2.2 for 𝑘 = 𝑁 − 1, i.e., find the solution 𝜒𝑁−1 of the
equation 𝜆𝑁−1𝜒𝑁−1 = 𝑔𝑁−1−𝜌𝑁−1𝜂𝑁−1−𝑤𝑁−1𝜒𝑁 and compute 𝜂𝑁−2 = 𝑓

×(𝑁−
1)−𝑒×(𝑁−1)𝜒𝑁−1−𝑏×(𝑁−1)𝜂𝑁−1. In our case 𝜌𝑁−1 = 𝑤𝑁−1 = 𝑏

×(𝑁−1) = 0,
so that

𝜒𝑁−1 =
𝑎𝑦(𝑁 − 1)− 𝑦(𝑁 − 2)

𝑎𝑏− 1
, 𝜂𝑁−2 =

𝑎𝑏𝑦(𝑁 − 2)− 𝑎𝑦(𝑁 − 1)

𝑎𝑏− 1
. (14.20)

Perform again Sub-step 2.2.2 for 𝑘 = 𝑁−2, . . . , 2, i.e., find the solution 𝜒𝑘 of
the equation 𝜆𝑘𝜒𝑘 = 𝑔𝑘− 𝜌𝑘𝜂𝑘−𝑤𝑘𝜒𝑘+1 and compute 𝜂𝑘−1 = 𝑓

×(𝑘)− 𝑒×(𝑘)𝜒𝑘−
𝑏×(𝑘)𝜂𝑘. Since 𝜆𝑘, 𝜌𝑘, 𝑤𝑘, 𝑓×(𝑘), 𝑒×(𝑘), 𝑏×(𝑘) are constant upon 𝑘, which means
that they are equal to 𝜆𝑁−1, 𝜌𝑁−1, 𝑤𝑁−1, 𝑓

×(𝑁 − 1), 𝑒×(𝑁 − 1), 𝑏×(𝑁 − 1), re-
spectively, and 𝑔𝑘 = 𝑦(𝑘 − 1) − 𝑎𝑦(𝑘), 𝑘 = 𝑁 − 1, . . . , 2, it follows that, like in
(14.20),

𝜒𝑘 =
𝑎𝑦(𝑘)− 𝑦(𝑘 − 1)

𝑎𝑏− 1
, 𝜂𝑘−1 =

𝑎𝑏𝑦(𝑘 − 1)− 𝑎𝑦(𝑘)
𝑎𝑏− 1

.
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In the third step of Algorithm 14.2, using (14.1) one obtains the solution

𝑥(𝑘) = 𝑦(𝑘)− 𝜂𝑘 − 𝑏𝜒𝑘, 𝑘 = 1, . . . , 𝑁.

For 𝑘 = 2, . . . , 𝑁 − 1

𝑥(𝑘) =
(𝑎𝑏 − 1)𝑦(𝑘)− 𝑏𝑎𝑦(𝑘) + 𝑏𝑦(𝑘 − 1) + 𝑎𝑦(𝑘 + 1)− 𝑎𝑏𝑦(𝑘)

𝑎𝑏− 1

=
𝑏𝑦(𝑘 − 1)− (𝑎𝑏+ 1)𝑦(𝑘) + 𝑎𝑦(𝑘 + 1)

𝑎𝑏− 1
,

while

𝑥(1) = 𝑦(1)− 𝜂1 = (𝑎𝑏− 1)𝑦(1)− 𝑎𝑏𝑦(1) + 𝑎𝑦(2)
𝑎𝑏− 1

=
−𝑦(1) + 𝑎𝑦(2)

𝑎𝑏− 1

and

𝑥(𝑁) = 𝑦(𝑁)− 𝜒𝑁 =
(𝑎𝑏− 1)𝑦(𝑁)− 𝑏𝑎𝑦(𝑁) + 𝑏𝑦(𝑁 − 1)

𝑎𝑏− 1
=
𝑏𝑦(𝑁 − 1− 𝑦(𝑁))

𝑎𝑏− 1
.

Written in a compact manner, it follows that 𝑥 as a function of 𝑦 is as follows

⎛⎜⎜⎜⎜⎜⎝
𝑥(1)
𝑥(2)
𝑥(3)
...

𝑥(𝑁)

⎞⎟⎟⎟⎟⎟⎠ =
1

𝑎𝑏− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 𝑎 0 0 ⋅ ⋅ ⋅ 0 0 0
𝑏 −(𝑎𝑏+ 1) 𝑎 0 ⋅ ⋅ ⋅ 0 0 0
0 𝑏 −(𝑎𝑏+ 1) 𝑎 ⋅ ⋅ ⋅ 0 0 0
0 0 𝑏 −(𝑎𝑏+ 1) ⋅ ⋅ ⋅ 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 ⋅ ⋅ ⋅ 𝑏 −(𝑎𝑏+ 1) 𝑎
0 0 0 0 ⋅ ⋅ ⋅ 0 𝑏 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(
𝑦(1) 𝑦(2) 𝑦(3) ⋅ ⋅ ⋅ 𝑦(𝑁 − 1) 𝑦(𝑁)

)𝑇
.

Note that the matrix in the above equation is in fact the inverse of the original
matrix 𝐴. ♢

§14.2 The extension method for matrices with

quasiseparable/semiseparable representations

Here we consider matrices with given lower quasiseparable and upper semisepa-
rable generators. For such a matrix we use a representation as a sum of a lower
triangular matrix and a matrix of a small rank. Under the conditions on generators
such that the lower triangular part is invertible we obtain an explicit inversion for-
mula for the whole matrix. Based on this formula, using a well-known procedure
in numerical methods for differential equations, we obtain a stable algorithm for
solution of the corresponding system of linear algebraic equations.
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§14.2.1 The inversion formula

In this subsection for a matrix with quasiseparable/semiseparable representation
an explicit inversion formula is obtained under some restrictions on generators.

Theorem 14.4. Let 𝐴 be an invertible block matrix with block entries of sizes 𝑚𝑖×
𝑚𝑗, with lower quasiseparable generators 𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘) (𝑘 = 1, . . . , 𝑁) of orders
𝑟𝐿𝑘 (𝑘 = 0, . . . , 𝑁), upper semiseparable generators 𝑔(𝑘), ℎ(𝑘) (𝑘 = 1, . . . , 𝑁) of
order 𝑟𝑈 , and diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁). Assume that all the matrices

𝐷(𝑘) = 𝑑(𝑘)− 𝑔(𝑘)ℎ(𝑘), 𝑘 = 1, . . . , 𝑁, (14.21)

are invertible.

Introduce the matrices

𝐵(𝑘) =

[
𝑞(𝑘)
−ℎ(𝑘)

]
, 𝐶(𝑘) =

[
𝑝(𝑘) 𝑔(𝑘)

]
, 𝐸(𝑘) =

(
𝑎(𝑘) 0
0 𝐼𝑟𝑈

)
,

𝑘 = 1, . . . , 𝑁,

(14.22)

𝐾𝑗 =

(
0𝑟𝐿𝑗 ×𝑟𝑈
𝐼𝑟𝑈

)
, 𝑗 = 0, . . . , 𝑁, (14.23)

and define

𝑈(𝑘) = 𝐸(𝑘)−𝐵(𝑘)(𝐷(𝑘))−1𝐶(𝑘), 𝑈× = 𝐾𝑇
𝑁𝑈

>
𝑁+1,0𝐾0. (14.24)

Then the matrix 𝐴 is invertible if and only if the matrix 𝑈× is invertible,
and in this case the inverse matrix 𝐴−1 is given by the formula

𝐴−1 = 𝐿× + 𝑆×, (14.25)

where

𝐿×(𝑖, 𝑗) =

⎧⎨⎩
−(𝐷(𝑖))−1𝐶(𝑖)𝑈>𝑖,𝑗𝐵(𝑗)(𝐷(𝑗))

−1, 1 ≤ 𝑗 < 𝑖 ≤ 𝑁,
(𝐷(𝑖))−1, 𝑖 = 𝑗,

0, 𝑖 ≤ 𝑗,
(14.26)

𝑆×(𝑖, 𝑗) = (𝐷(𝑖))−1(𝐶(𝑖)𝑈>𝑖,0𝐾0)(𝑈
×)−1(𝐾𝑇

𝑁𝑈
>
𝑁+1,𝑗𝐵(𝑗))(𝐷(𝑗))

−1,

1 ≤ 𝑖, 𝑗 ≤ 𝑁.
(14.27)

Proof. We represent the matrix 𝐴 in the form

𝐴 = 𝐿+𝐺𝐻,

where 𝐺 = col(𝑔(𝑖))𝑁𝑖=1, 𝐻 = row(ℎ(𝑖))𝑁𝑖=1 and

𝐿(𝑖, 𝑗) =

⎧⎨⎩
0, 𝑖 < 𝑗,

𝐷(𝑖), 𝑖 = 𝑗,

𝑝(𝑖)𝑎>𝑖𝑗𝑞(𝑗)− 𝑔(𝑖)ℎ(𝑗), 1 ≤ 𝑗 < 𝑖 ≤ 𝑁.
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For the elements in the strictly lower triangular part of the matrix 𝐿 one obtains
the representation

𝐿(𝑖, 𝑗) =
(
𝑝(𝑖) 𝑔(𝑖)

)( 𝑎>𝑖𝑗 0

0 𝐼𝑟𝑈

)(
𝑞(𝑗)
−ℎ(𝑗)

)
, 1 ≤ 𝑗 < 𝑖 ≤ 𝑁,

i.e.,
𝐿(𝑖, 𝑗) = 𝐶(𝑖)𝐸>𝑖𝑗𝐵(𝑗), 1 ≤ 𝑗 < 𝑖 ≤ 𝑁,

with the matrices 𝐶(𝑖), 𝐵(𝑗), 𝐸(𝑘) defined in (14.22). Hence it follows that 𝐿 is
a block lower triangular matrix with lower quasiseparable generators 𝐶(𝑘), 𝐵(𝑘),
𝐸(𝑘) (𝑘 = 1, . . . , 𝑁) and diagonal entries 𝐷(𝑘) (𝑘 = 1, . . . , 𝑁). By the formula
(1.69),

𝐴−1 = 𝐿−1 − 𝐿−1𝐺(𝑈×)−1𝐻𝐿−1,

where
𝑈× = 𝐼𝑟𝑈 +𝐻𝐿−1𝐺.

Moreover, using (1.72) one gets

det(𝐿+𝐺𝐻) = det
(
𝐿
(
𝐼 + 𝐿−1𝐺𝐻

))
= det𝐿 ⋅ det (𝐼 +𝐻𝐿−1𝐺

)
which implies

det𝐴 =

(
𝑁∏
𝑖=1

det𝐷(𝑖)

)
det𝑈×. (14.28)

It follows that the matrix 𝐴 is invertible if and only if the matrix 𝑈× is invertible.

Applying Theorem 13.10 to the invertible matrix 𝐿 one obtains that 𝐿−1 is
a block lower triangular matrix with lower quasiseparable generators

−(𝐷(𝑘))−1𝐶(𝑘), 𝐵(𝑘)(𝐷(𝑘))−1 , 𝑈(𝑘) (𝑘 = 1, . . . , 𝑁)

and diagonal entries (𝐷(𝑘))−1 (𝑘 = 1, . . . , 𝑁). Hence the formula (14.26) follows.

To obtain the representation (14.24) for the matrix 𝑈× and the represen-
tations (14.27) for the matrix 𝑆× = −𝐿−1𝐺(𝑈×)−1𝐻𝐿−1 we proceed as follows.
One obviously has

𝐶(𝑖)𝐾𝑖−1 = 𝑔(𝑖), 𝐾
𝑇
𝑖 𝐵(𝑖) = −ℎ(𝑖), 𝑖 = 1, . . . , 𝑁. (14.29)

It will be proved that

𝐿−1𝐺 = col
(
(𝐷(𝑖))−1𝐶(𝑖)𝑈>𝑖,0𝐾0

)𝑁
𝑖=1
.

Indeed, using (14.26) and the first equalities from (14.29) one gets

(𝐿−1𝐺)(𝑖, :) = (𝐷(𝑖))−1𝑔(𝑖)−
𝑖−1∑
𝑚=1

(𝐷(𝑖))−1𝐶(𝑖)𝑈>𝑖𝑚𝐵(𝑚)(𝐷(𝑚))
−1𝑔(𝑚)

= (𝐷(𝑖))−1𝐶(𝑖)

[
𝐾𝑖−1 −

𝑖−1∑
𝑚=1

𝑈>𝑖𝑚𝐵(𝑚)(𝐷(𝑚))
−1𝐶(𝑚)𝐾𝑚−1

]
.



274 Chapter 14. The First Inversion Algorithms

Furthermore, using the equalities

𝐵(𝑚)(𝐷(𝑚))−1𝐶(𝑚) = 𝐸(𝑚)− 𝑈(𝑚) (14.30)

and 𝐸(𝑚)𝐾𝑚−1 = 𝐾𝑚, 𝑈
>
𝑖𝑚𝑈(𝑚) = 𝑈

>
𝑖,𝑚−1 one gets

(𝐿−1𝐺)(𝑖, :) = (𝐷(𝑖))−1𝐶(𝑖)

[
𝐾𝑖−1 −

𝑖−1∑
𝑚=1

𝑈>𝑖𝑚(𝐸(𝑚)− 𝑈(𝑚))𝐾𝑚−1

]

= (𝐷(𝑖))−1𝐶(𝑖)

[
𝐾𝑖−1 −

𝑖−1∑
𝑚=1

(𝑈>𝑖𝑚𝐾𝑚 − 𝑈>𝑖,𝑚−1𝐾𝑚−1)

]
= (𝐷(𝑖))−1𝐶(𝑖)𝑈>𝑖,0𝐾0.

In a similar way we prove that

−𝐻𝐿−1 = row
(
𝐾𝑇
𝑁𝑈

>
𝑁+1,𝑗𝐵(𝑗)(𝐷(𝑗))

−1
)𝑁
𝑗=1

.

Namely, using (14.26) and the last equality from (14.29) one gets

−(𝐻𝐿−1)(:, 𝑗) = −ℎ(𝑗)(𝐷(𝑗))−1 +

𝑁∑
𝑚=𝑗+1

ℎ(𝑚)(𝐷(𝑚))−1𝐶(𝑚)𝑈>𝑚𝑗𝐵(𝑗)(𝐷(𝑗))
−1

=

⎡⎣𝐾𝑇
𝑗 −

𝑁∑
𝑚=𝑗+1

𝐾𝑇
𝑚𝐵(𝑚)(𝐷(𝑚))

−1𝐶(𝑚)𝑈>𝑚𝑗

⎤⎦𝐵(𝑗)(𝐷(𝑗))−1.

Furthermore, using (14.30) and 𝑈(𝑚)𝑈>𝑚𝑗 = 𝑈
>
𝑚+1,𝑗, 𝐾

𝑇
𝑚𝐸(𝑚) = 𝐾

𝑇
𝑚−1 one gets

−(𝐻𝐿−1)(:, 𝑗) =

⎡⎣𝐾𝑇
𝑗 +

𝑁∑
𝑚=𝑗+1

(𝐾𝑇
𝑚−1𝑈

>
𝑚𝑗 −𝐾𝑇

𝑚𝑈
>
𝑚+1,𝑗)

⎤⎦𝐵(𝑗)(𝐷(𝑗))−1

= 𝐾𝑇
𝑁𝑈

>
𝑁+1,𝑗𝐵(𝑗)(𝐷(𝑗))

−1.

Finally,

𝑈× = 𝐼𝑟𝑈 +𝐻𝐿−1𝐺 = 𝐼𝑟𝑈 +
𝑁∑
𝑖=1

ℎ(𝑖)(𝐷(𝑖))−1𝐶(𝑖)𝑈>𝑖,0𝐾0

= 𝐼𝑟𝑈 −
𝑁∑
𝑖=1

𝐾𝑇
𝑖 𝐵(𝑖)(𝐷(𝑖))

−1𝐶(𝑖)𝑈>𝑖,0𝐾0 = 𝐼𝑟𝑈 −
𝑁∑
𝑖=1

𝐾𝑇
𝑖 (𝐸(𝑖)− 𝑈(𝑖))𝑈>𝑖,0𝐾0

= 𝐼𝑟𝑈 −
𝑁∑
𝑖=1

(𝐾𝑇
𝑖−1𝑈

>
𝑖,0 −𝐾𝑇

𝑖 𝑈
>
𝑖+1,0)𝐾0 = 𝐾

𝑇
𝑁𝑈

>
𝑁+1,0𝐾0,

which completes the proof. □



§14.2. Matrices with quasiseparable/semiseparable representations 275

In accordance with the formula (14.25), the solution of the system 𝐴𝑥 = 𝑦 is
given by the relation

𝑥(𝑖) = (𝐷(𝑖))−1𝑦(𝑖)− (𝐷(𝑖))−1𝐶(𝑖)𝑓𝑖 − (𝐷(𝑖))−1𝐶(𝑖)𝐺𝑖𝑐, 1 ≤ 𝑖 ≤ 𝑁, (14.31)

where

𝐺𝑖 = 𝑈
>
𝑖,0𝐾0, 𝑓𝑖 =

𝑖−1∑
𝑗=1

𝑈>𝑖𝑗𝐵(𝑗)(𝐷(𝑗))
−1𝑦(𝑗), 𝑐 = −(𝑈×)−1𝐾𝑇

𝑁𝑓𝑁+1.

One can define the elements 𝐺𝑖 and 𝑓𝑖 recursively:

𝐺1 = 𝐾0, 𝐺𝑖+1 = 𝑈(𝑖)𝐺𝑖, 1 ≤ 𝑖 ≤ 𝑁 ; (14.32)

𝑓1 = 0, 𝑓𝑖+1 = 𝑈(𝑖)𝑓𝑖 +𝐵(𝑖)(𝐷(𝑖))
−1𝑦(𝑖), 1 ≤ 𝑖 ≤ 𝑁 (14.33)

and rewrite (14.31) as

𝑥(𝑖) = (𝐷(𝑖))−1𝑦(𝑖)− (𝐷(𝑖))−1𝐶(𝑖)𝜒𝑖, (14.34)

where

𝜒𝑖 = 𝐺𝑖𝑐+ 𝑓𝑖, 1 ≤ 𝑖 ≤ 𝑁 + 1 (14.35)

and

𝑐 = −(𝐾𝑇
𝑁𝐺𝑁+1)

−1(𝐾𝑇
𝑁𝑓𝑁+1). (14.36)

§14.2.2 The orthogonalization procedure

The formulas (14.32)–(14.36) give an 𝑂(𝑁) algorithm for the solution of the linear
system 𝐴𝑥 = 𝑦. However, the direct computation of the solution by this algorithm
for large 𝑁 may lead to considerable errors. This occurs because of large entries in
the elements 𝐺𝑖, 𝑓𝑖 and the fact that the matrix 𝐺𝑖 becomes close to a matrix of
rank one, which leads to large errors in the inversion of the matrix 𝐾𝑇

𝑁𝐺𝑁+1. To
improve the performance of the algorithm we apply an orthogonalization procedure
which is well known from the shooting method used in the numerical analysis for
differential equations (see, for instance [1]). The idea we take from this method is
to use on every step, instead of (14.35), another representation

𝜒𝑖 = Ω𝑖𝑐𝑖 + 𝜙𝑖, 1 ≤ 𝑖 ≤ 𝑁 + 1, (14.37)

where Ω𝑖 are (𝑟𝐿𝑖−1 + 𝑟𝑈 ) × 𝑟𝑈 matrices with orthonormal columns and 𝜙𝑖 are
(𝑟𝐿𝑖−1 + 𝑟𝑈 )-dimensional vectors orthogonal to the columns of Ω𝑖.

In the first step one has 𝐺1 = 𝐾0, 𝑓1 = 0, and setting 𝑐1 = 𝑐 one gets 𝜒1 =
𝐺1𝑐1. Here 𝐺1 is a matrix with orthonormal columns and setting Ω1 = 𝐺1, 𝜙1 = 0
one obtains (14.37) with 𝑖 = 1.
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Let for some 𝑖 with 1 ≤ 𝑖 ≤ 𝑁 − 1 the equality (14.37) hold. Note that from
(14.32), (14.33) and (14.35) it follows that

𝜒𝑖+1 = 𝐺𝑖+1𝑐+ 𝑓𝑖 = 𝑈(𝑖)𝐺𝑖𝑐+ 𝑈(𝑖)𝑓𝑖 +𝐵(𝑖)(𝐷(𝑖))
−1𝑦(𝑖),

whence

𝜒𝑖+1 = 𝑈(𝑖)𝜒𝑖 +𝐵(𝑖)(𝐷(𝑖))
−1𝑦(𝑖).

Using (14.37) one gets

𝜒𝑖+1 = 𝑈(𝑖)Ω𝑖𝑐𝑖 + 𝑈(𝑖)𝜙𝑖 +𝐵(𝑖)(𝐷(𝑖))
−1𝑦(𝑖).

Next we compute the matrix 𝐺′𝑖+1 and the vector 𝑓 ′𝑖+1 by the formulas

𝐺′𝑖+1 = 𝑈(𝑖)Ω𝑖, 𝑓 ′𝑖+1 = 𝑈(𝑖)𝜙𝑖 +𝐵(𝑖)(𝐷(𝑖))
−1𝑦(𝑖)

and obtain

𝜒𝑖+1 = 𝐺
′
𝑖+1𝑐𝑖 + 𝑓

′
𝑖+1.

For the matrix 𝐺′𝑖+1 we compute the QR factorization 𝐺′𝑖+1 = Ω𝑖+1Λ𝑖+1 with
the matrix Ω𝑖+1 with orthonormal columns and the upper triangular matrix Λ𝑖+1.
Hence. one has

𝜒𝑖+1 = Ω𝑖+1Λ𝑖+1𝑐𝑖 + 𝑓
′
𝑖+1. (14.38)

Next we compute the vector

𝜙𝑖+1 = 𝑓
′
𝑖+1 − Ω𝑖+1Ω

∗
𝑖+1𝑓

′
𝑖+1. (14.39)

Using Ω∗𝑖+1Ω𝑖+1 = 𝐼 one gets Ω
∗
𝑖+1𝜙𝑖+1 = 0 which implies that 𝜙𝑖+1 is orthogonal

to the columns of Ω𝑖+1. Finally, substituting (14.39) in (14.38) one obtains

𝜒𝑖+1 = Ω𝑖+1𝑐𝑖+1 + 𝜙𝑖+1,

with

𝑐𝑖+1 = Λ𝑖+1𝑐𝑖 +Ω∗𝑖+1𝑓
′
𝑖+1.

Thus, under the assumption that all the matrices Λ𝑘 (𝑘 = 2, . . . , 𝑁 + 1)
are invertible (this holds for instance if all the matrices 𝑈(𝑘) (𝑘 = 1, . . . , 𝑁) are
invertible) one obtains the following algorithm.

Algorithm 14.5.

1. Starting with Ω1 = 𝐾0 =

(
0𝑟𝐿0 ×𝑟𝑈
𝐼𝑟𝑈

)
, 𝜙1 = 0(𝑟𝐿0 +𝑟𝑈 )×1 and for 𝑖 =

1, . . . , 𝑁 , perform the following operations:
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1.1. Compute

𝐵(𝑖) =

[
𝑞(𝑖)
−ℎ(𝑖)

]
, 𝐶𝑖 =

[
𝑝(𝑖) 𝑔(𝑖)

]
,

𝐷(𝑖) = 𝑑(𝑖)− 𝑔(𝑖)ℎ(𝑖), 𝐸(𝑖) =

(
𝑎(𝑖) 0
0 𝐼𝑟𝑈

)
,

�̃�𝑖 = 𝐵(𝑖)(𝐷(𝑖))
−1, 𝑈(𝑖) = 𝐸(𝑖)− �̃�𝑖𝐶(𝑖),

𝐺′𝑖+1 = 𝑈(𝑖)Ω𝑖, 𝑓 ′𝑖+1 = 𝑈(𝑖)𝜙𝑖 + �̃�𝑖𝑦(𝑖).

1.2. Using a standard orthogonalization procedure determine the matrix
Ω𝑖+1 with orthonormal columns and the upper triangular matrix Λ𝑖+1

such that 𝐺′𝑖+1 = Ω𝑖+1Λ𝑖+1.

1.3. Compute
𝜙𝑖+1 = 𝑓

′
𝑖+1 − Ω𝑖+1Ω

∗
𝑖+1𝑓

′
𝑖+1.

2. Compute
𝑐𝑁+1 = −[𝐾𝑇

𝑁Ω𝑁+1]
−1(𝐾𝑇

𝑁𝜙𝑁+1).

3. For 𝑖 = 𝑁, . . . , 1, compute

𝑐𝑖 = Λ−1
𝑖+1(𝑐𝑖+1 − Ω∗𝑖+1𝑓

′
𝑖+1),

𝜒𝑖 = Ω𝑖𝑐𝑖 + 𝜙𝑖,

𝑥(𝑖) = (𝐷(𝑖))−1𝑦(𝑖)− (𝐷(𝑖))−1𝐶(𝑖)𝜒𝑖.

Set 𝑚 = max1≤𝑘≤𝑁 (𝑚𝑘), 𝑟 = max{(max0≤𝑘≤𝑁−1 𝑟
𝐿
𝑘 ), 𝑟

𝑈 ). The complexity
of Algorithm 14.5 is estimated as follows.

1. The matrix 𝐷(𝑖): 𝑚2 arithmetical additions and a matrix multiplication
which costs 𝑚2𝑟 arithmetical multiplications and 𝑚2(𝑟− 1) arithmetical ad-
ditions.

2. The matrix �̃�𝑖: 𝑟𝜌(𝑚) arithmetical operations and a matrix multiplication
which costs 2𝑟𝑚2 arithmetical multiplications and 2𝑟(𝑚− 1)𝑚 arithmetical
additions.

3. The matrix 𝑈(𝑖): (2𝑟)2 arithmetical additions and a matrix multiplication
which costs (2𝑟)𝑚(2𝑟) arithmetical multiplications and (2𝑟)(𝑚−1)(2𝑟) arith-
metical additions.

4. The matrix 𝐺′𝑖+1: the multiplication of a 2𝑟× 2𝑟 matrix with a 2𝑟× 𝑟 matrix
thus less than 8𝑟3 arithmetical operations.

5. The computation of 𝑓 ′𝑖+1: two matrix vector multiplications and a vector
addition, thus less than 8𝑟2 + 4𝑟𝑚+ 2𝑟 arithmetical operations.

6. The product Ω∗𝑖+1𝑓
′
𝑖+1: less than 8𝑟2 operations.

7. Step 1.2: 𝜑(𝑟) operations.
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8. The vector 𝜙𝑖+1: less than 4𝑟2 + 2𝑟 operations.

9. The vector 𝑐𝑖: another 𝜚(𝑟) operations.

10. The vector 𝜒𝑖: less than 4𝑟2 operations

11. The vector 𝑥(𝑖): less than 2𝑚2 + 2𝑚2𝑟 operations.

Here 𝜑(𝑟) is the complexity of the QR factorization of a 2𝑟 × 𝑟 matrix, 𝜌(𝑟)
is the complexity of the solution of an 𝑟 × 𝑟 linear system by the standard Gauss
method, 𝜚(𝑟) is the complexity of the solution of an 𝑟× 𝑟 linear triangular system
by a standard method. Thus, the total complexity of the algorithm does not exceed(

6𝑚2𝑟 + 𝜌(𝑚) + 4𝑚2𝑟 + 8𝑟2𝑚+ 8𝑟3 + 20𝑟2 + 4𝑟 + 2𝑚2 + 𝜚(𝑟) + 𝜑(𝑟)
)
𝑁.

§14.3 Comments

The diagonal inversion method was suggested by I. Koltracht in [41] for matrices
with diagonal plus semiseparable representations. The extension of this method to
matrices with quasiseparable representations as well as the treatment via discrete
descriptor system appears here for the first time.

Theorem 14.4 in a more general setting was obtained by I. Gohberg and M.A.
Kaashoek in [37]. The presentation of the results in §14.2 follows the paper [22] in
which results of numerical tests are also presented.

The methods of these chapter were extended in [24], [25] to diagonal plus
semiseparable operator matrices; these papers contain also results of numerical
tests for block matrices and integral equations.



Chapter 15

Inversion of Matrices in Diagonal
Plus Semiseparable Form

Here we study in detail the inversion methods for matrices with diagonal plus
semiseparable representations. For scalar matrices we obtain an inversion algo-
rithm without any restrictions.

§15.1 The modified inversion formula

In this section we obtain a specification of the formula (14.25) for matrices with
diagonal plus semiseparable representation.

Theorem 15.1. Let 𝐴 be a scalar matrix with lower semiseparable generators
𝑝(𝑘), 𝑞(𝑘), (𝑘 = 1, . . . , 𝑁) of order 𝑟𝐿, upper semiseparable generators 𝑔(𝑘), ℎ(𝑘)
of order 𝑟𝑈 , and diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁). Assume that the matrices

𝛿𝑘 = 𝑑(𝑘)− 𝑔(𝑘)ℎ(𝑘), 𝑙𝑘 = 𝑑(𝑘)− 𝑝(𝑘)𝑞(𝑘), 𝑘 = 1, . . . , 𝑁 (15.1)

are invertible.

Introduce the matrices

𝐵(𝑘) =

(
𝑞(𝑘)
−ℎ(𝑘)

)
, 𝐶(𝑘) =

(
𝑝(𝑘) 𝑔(𝑘)

)
, 𝐾0 =

(
0𝑟𝐿×𝑟𝑈
𝐼𝑟𝑈

)
,

𝐸(𝑘) =
(
𝑔(𝑘) −𝑝(𝑘) ) , 𝐹 (𝑘) =

(
ℎ(𝑘)
𝑞(𝑘)

)
, 𝑀0 =

(
0𝑟𝑈×𝑟𝐿
𝐼𝑟𝐿

)
and define

𝑈(𝑘) = 𝐼𝑟𝐿+𝑟𝑈 −𝐵(𝑘)𝛿−1
𝑘 𝐶(𝑘), (15.2)

𝑈× = 𝐾𝑇
0 𝑈

>
𝑁+1,0𝐾0; (15.3)

𝑉 (𝑘) = 𝐼𝑟𝐿+𝑟𝑈 − 𝐹 (𝑘)𝑙−1
𝑘 𝑉 (𝑘), (15.4)

𝑉 × =𝑀𝑇
0 𝑉

<
0,𝑁+1𝑀0. (15.5)

279 Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1  
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory: 
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_15, © Springer Basel 2014
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Then the matrix 𝐴 is invertible if and only if the matrix 𝑈× and/or the
matrix 𝑉 × are invertible, and in this case the inverse matrix 𝐴−1 is given by the
formula

𝐴−1(𝑖, 𝑗) =

⎧⎨⎩
(𝛿𝑖)

−1(𝐶(𝑖)𝑈>𝑖,0𝐾0)(𝑈
×)−1(𝐾𝑇

0 𝑈
>
𝑁+1,𝑗𝐵(𝑗))(𝛿𝑗)

−1, 1 ≤ 𝑖 < 𝑗 ≤ 𝑁,
(𝛿𝑖)

−1 + (𝛿𝑖)
−1(𝐶(𝑖)𝑈>𝑖,0𝐾0)(𝑈

×)−1(𝐾𝑇
𝑁𝑈

>
𝑁+1,𝑖𝐵(𝑖))(𝛿𝑖)

−1, 𝑖 = 𝑗,

(𝑙𝑖)
−1(𝐸(𝑖)𝑉 <𝑖,𝑁+1𝑀0)(𝑉

×)−1(𝑀𝑇
0 𝑉

<
0,𝑗𝐹 (𝑗))(𝑙𝑗)

−1, 1 ≤ 𝑗 < 𝑖 ≤ 𝑁.
(15.6)

Remark. The formula (15.6) means that under the assumption that the matrices
(15.1) are invertible, the inverse matrix 𝐴−1 has semiseparable generators with
the same orders as the original matrix. More precisely the elements

(𝛿𝑘)
−1(𝐶(𝑘)𝑈>𝑘,0𝐾0)(𝑈

×)−1, (𝐾𝑇
0 𝑈

>
𝑁+1,𝑘𝐵(𝑘))(𝛿𝑘)

−1, 𝑘 = 1, . . . , 𝑁,

are upper semiseparable generators of order 𝑟𝑈 and the elements

(𝑙𝑘)
−1(𝐸(𝑘)𝑉 <𝑘,𝑁+1𝑀0)(𝑉

×)−1, (𝑀𝑇
0 𝑉

<
0,𝑘𝐹 (𝑘))(𝑙𝑘)

−1, 𝑘 = 1, . . . , 𝑁,

are lower semiseparable generators of order 𝑟𝐿 of 𝐴−1.

Proof of the theorem. By Theorem 14.4, the matrix 𝐴 is invertible if and only if
𝑈× is invertible. Moreover in this case the formulas from (15.6) with 𝑖 ≤ 𝑗 follow
directly from (14.25)–(14.27).

In order to obtain the last formula in (15.6) (with 𝑖 > 𝑗) consider the matrix
𝐴𝑇 . This matrix has lower semiseparable generators ℎ𝑇 (𝑘), 𝑔𝑇 (𝑘) of order 𝑟𝑈 , up-
per semiseparable generators 𝑞𝑇 (𝑘), 𝑝𝑇 (𝑘) of order 𝑟𝐿, and diagonal entries 𝑑

𝑇 (𝑘).
Set

𝐵′(𝑘) =
[
𝑔𝑇 (𝑘)
−𝑝𝑇 (𝑘)

]
, 𝐶 ′(𝑘) =

[
ℎ𝑇 (𝑘) 𝑞𝑇 (𝑘)

]
, 𝛿′𝑘 = 𝑑

𝑇 (𝑘)− 𝑞𝑇 (𝑘)𝑝𝑇 (𝑘),

and define

𝑈 ′(𝑘) = 𝐼𝑟𝐿+𝑟𝑈 −𝐵′(𝑘)(𝛿′𝑘)−1𝐶′(𝑘), �̃�× =𝑀𝑇
0 (𝑈

′)>𝑁+1,0𝑀0.

Using (14.28), we get

det𝐴𝑇 =

(
𝑁∏
𝑖=1

det 𝛿′𝑖

)
det �̃�×. (15.7)

Moreover, applying the first formula in (15.6) to the matrix 𝐴𝑇 we get

(𝐴𝑇 )−1(𝑖, 𝑗) = (𝛿′𝑖)
−1(𝐶′(𝑖)(𝑈 ′)>𝑖,0𝑀0)(�̃�

×)−1(𝑀𝑇
0 (𝑈

′)>𝑁+1,𝑗𝐵
′(𝑗))(𝛿′𝑗)

−1,

1 ≤ 𝑖 < 𝑗 ≤ 𝑁. (15.8)
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Using the transposed matrices in (15.7) and the equalities

(𝛿′𝑘)
𝑇 = 𝑙𝑘, (𝐵

′(𝑘))𝑇 = 𝐸(𝑘), (𝐶′(𝑘))𝑇 = 𝐹 (𝑘), (𝑈 ′(𝑘))𝑇 = 𝑉 (𝑘), (15.9)

we get

det𝐴 =

(
𝑁∏
𝑖=1

det 𝑙𝑖

)
det𝑉 ×. (15.10)

Therefore, the matrix 𝐴 is invertible if and only if the matrix 𝑉 × is invertible.
Taking the transposed matrices in (15.8) and using the equalities (15.9) we obtain
the last formula in (15.6). □

Example 15.2. Consider the 𝑁 ×𝑁 matrix

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 𝑎 𝑎 ⋅ ⋅ ⋅ 𝑎 𝑎
−𝑎 0 𝑎 ⋅ ⋅ ⋅ 𝑎 𝑎
−𝑎 −𝑎 0 ⋅ ⋅ ⋅ 𝑎 𝑎
...

...
...

. . .
...

...
−𝑎 −𝑎 −𝑎 ⋅ ⋅ ⋅ 0 𝑎
−𝑎 −𝑎 −𝑎 ⋅ ⋅ ⋅ −𝑎 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where 𝑎 ∕= 0 is a scalar.

For the matrix 𝐴 one can use the semiseparable generators

𝑝(𝑖) = 𝑎, 𝑖 = 2, . . . , 𝑁, 𝑞(𝑗) = −1, 𝑗 = 1, . . . , 𝑁 − 1, 𝑑(𝑘) = 0, 𝑘 = 1, . . . , 𝑁,

𝑔(𝑗) = 1, 𝑗 = 1, . . . , 𝑁 − 1, ℎ(𝑖) = 𝑎, 𝑖 = 2, . . . , 𝑁.

Let us use Theorem 15.1 to find the inverse matrix. First,

𝛿𝑘 = 𝑑(𝑘)− 𝑔(𝑘)ℎ(𝑘) = 0− 𝑎 = −𝑎, 𝑙𝑘 = 𝑑(𝑘)− 𝑝(𝑘)𝑞(𝑘) = 0− 𝑎(−1) = 𝑎.

Moreover 𝑟𝐿 = 𝑟𝑈 = 1. Introduce the matrices

𝐵(𝑘) =

(
𝑞(𝑘)
−ℎ(𝑘)

)
=

( −1
−𝑎

)
, 𝐶(𝑘) =

(
𝑝(𝑘) 𝑔(𝑘)

)
=
(
𝑎 1

)
, 𝐾0 =

(
0
1

)
,

𝐸(𝑘) =
(
1 −𝑎 ) , 𝑓(𝑘) =

(
𝑎
−1

)
, 𝑀0 =

(
0
1

)
,

and define

𝑈(𝑘) = 𝐼𝑟𝐿+𝑟𝑈 − 1

𝛿𝑘
𝐵(𝑘)𝐶(𝑘) =

(
1 0
0 1

)
− 1

−𝑎
( −1

−𝑎
)(

𝑎 1
)

=

(
1 0
0 1

)
−
(

1 1
𝑎

𝑎 1

)
= −

(
0 1

𝑎
𝑎 0

)
.
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Then the product 𝑈(𝑘)𝑈(𝑘 + 1) for two consecutive indices is equal to

(−1)2
(

0 1
𝑎

𝑎 0

)(
0 1

𝑎
𝑎 0

)
=

(
1 0
0 1

)
,

whence

𝑈>𝑁+1,0 = 𝑈(𝑁)𝑈(𝑁 − 1) ⋅ ⋅ ⋅ ⋅ ⋅ 𝑈(1) =

⎧⎨⎩
(

1 0
0 1

)
, 𝑁 = 2𝑟,

−
(

0 1
𝑎

𝑎 0

)
, 𝑁 = 2𝑟 − 1,

and so

𝑈× = 𝐾𝑇
0 𝑈

>
𝑁+1,0𝐾0 =

⎧⎨⎩
(
0 1

)( 1 0
0 1

)(
0
1

)
= 1, 𝑁 = 2𝑟,

− ( 0 1
)( 0 1

𝑎
𝑎 0

)(
0
1

)
= 0, 𝑁 = 2𝑟 − 1.

It follows that 𝐴 is invertible if and only if 𝑁 is even. The same result is
given by 𝑉 ×. Indeed, one has

𝑉 (𝑘) = 𝐼𝑟𝐿+𝑟𝑈 − 1

𝑙𝑘
𝐹 (𝑘)𝐸(𝑘) = 𝑈𝑇 (𝑘),

therefore
𝑉 <0,𝑁+1 = 𝑉 (1)𝑉 (2) ⋅ ⋅ ⋅ ⋅ ⋅ 𝑉 (𝑁) = (−1)𝑁𝑈>𝑁+1,0

and

𝑉 × =𝑀𝑇
0 𝑉

<
0,𝑁+1𝑀0 =

⎧⎨⎩
(
0 1

)( 1 0
0 1

)(
0
1

)
= 1, 𝑁 = 2𝑟,

(
0 1

)( 0 𝑎
1
𝑎 0

)(
0
1

)
= 0, 𝑁 = 2𝑟 − 1.

Suppose in the sequel that 𝑁 is even. Then 𝐴 is invertible according to
Theorem 15.1, and by the same theorem one can compute the inverse matrix 𝐴−1

as follows.

First compute

𝑈>𝑖,0 = 𝑈(𝑖 − 1)𝑈(𝑖− 2) ⋅ ⋅ ⋅ ⋅ ⋅ 𝑈(1) =

⎧⎨⎩
(

1 0
0 1

)
, 𝑖 = 2𝑚− 1,

−
(

0 1
𝑎

𝑎 0

)
, 𝑖 = 2𝑚,

and

𝑈>𝑁+1,𝑗 = 𝑈(𝑁)𝑈(𝑁 − 1) ⋅ ⋅ ⋅ ⋅ ⋅ 𝑈(𝑗 + 1) =

⎧⎨⎩
(

1 0
0 1

)
, 𝑗 = 2𝑛,

−
(

0 1
𝑎

𝑎 0

)
, 𝑗 = 2𝑛− 1,
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and using them compute

1

𝛿𝑖
(𝐶(𝑖)𝑈>𝑖,0𝐾0) =

⎧⎨⎩
− 1
𝑎

(
𝑎 1

)( 1 0
0 1

)(
0
1

)
= − 1

𝑎 , 𝑖 = 2𝑚− 1,

1
𝑎

(
𝑎 1

)( 0 1
𝑎

𝑎 0

)(
0
1

)
= 1

𝑎 , 𝑖 = 2𝑚,

and

(𝐾𝑇
0 𝑈

>
𝑁+1,𝑗𝐵(𝑗))

1

𝛿𝑗
=

⎧⎨⎩
(
0 1

)( 1 0
0 1

)( −1
−𝑎

)
(− 1

𝑎 ) = 1, 𝑗 = 2𝑛,

− ( 0 1
)( 0 1

𝑎
𝑎 0

)( −1
−𝑎

)
(− 1

𝑎 ) = −1, 𝑗 = 2𝑛− 1.

Then if 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 it follows that

𝐴−1(𝑖, 𝑗) =
1

𝛿𝑖
(𝐶(𝑖)𝑈>𝑖,0𝐾0)(𝑈

×)−1(𝐾𝑇
0 𝑈

>
𝑁+1,𝑗𝐵(𝑗))

1

𝛿𝑗
= (−1)𝑗−𝑖 1

𝑎
.

Also,

𝐴−1(𝑖, 𝑖) =
1

𝛿𝑖
+

1

𝛿𝑖
(𝐶(𝑖)𝑈>𝑖,0𝐾0)(𝑈

×)−1(𝐾𝑇
0 𝑈

>
𝑁+1,𝑖𝐵(𝑖))

1

𝛿𝑖
= −1

𝑎
+(−1)𝑖−𝑖 1

𝑎
= 0.

In order to compute the remaining entries of the inverse matrix, first compute

𝑉 <𝑖,𝑁+1 = 𝑉 (𝑖+ 1)𝑉 (𝑖+ 2) ⋅ ⋅ ⋅ ⋅ ⋅ 𝑉 (𝑁) =

⎧⎨⎩
(

1 0
0 1

)
, 𝑖 = 2𝑚,(

0 𝑎
1
𝑎 0

)
, 𝑖 = 2𝑚− 1,

and

𝑉 <0,𝑗 = 𝑉 (1)𝑉 (2) ⋅ ⋅ ⋅ ⋅ ⋅ 𝑉 (𝑗 − 1) =

⎧⎨⎩
(

1 0
0 1

)
, 𝑗 = 2𝑛− 1,(

0 𝑎
1
𝑎 0

)
, 𝑗 = 2𝑛,

and using them compute

1

𝑙𝑖
(𝐸(𝑖)𝑉 <𝑖,𝑁+1𝑀0) =

⎧⎨⎩
1
𝑎

(
1 −𝑎 )( 1 0

0 1

)(
0
1

)
= −1, 𝑖 = 2𝑚,

1
𝑎

(
1 −𝑎 )( 0 𝑎

1
𝑎 0

)(
0
1

)
= 1, 𝑖 = 2𝑚− 1,

and

(𝑀𝑇
0 𝑉

<
0,𝑗𝐹 (𝑗))

1

𝑙𝑗
=

⎧⎨⎩
(
0 1

)( 1 0
0 1

)(
𝑎
−1

)
1
𝑎 = − 1

𝑎 , 𝑗 = 2𝑛− 1,

(
0 1

)( 0 𝑎
1
𝑎 0

)(
𝑎
−1

)
1
𝑎 = 1

𝑎 , 𝑗 = 2𝑛.
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Then if 1 ≤ 𝑗 < 𝑖 ≤ 𝑁 it follows that

𝐴−1(𝑖, 𝑗) =
1

𝑙𝑖
(𝐸(𝑖)𝑉 <𝑖,𝑁+1𝑀0)(𝑉

×)−1(𝑀𝑇
0 𝑉

<
0,𝑗𝐹 (𝑗))

1

𝑙𝑗
= (−1)𝑖−𝑗+1 1

𝑎
.

Therefore, the inverse matrix is

𝐴−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1
𝑎

1
𝑎 − 1

𝑎 ⋅ ⋅ ⋅ 1
𝑎 − 1

𝑎
1
𝑎 0 − 1

𝑎
1
𝑎 ⋅ ⋅ ⋅ 1

𝑎
1
𝑎− 1

𝑎
1
𝑎 0 − 1

𝑎 ⋅ ⋅ ⋅ 1
𝑎 − 1

𝑎
1
𝑎 − 1

𝑎
1
𝑎 0 ⋅ ⋅ ⋅ 1

𝑎
1
𝑎

...
...

...
...

. . .
...

...
− 1
𝑎

1
𝑎 − 1

𝑎
1
𝑎 ⋅ ⋅ ⋅ 0 − 1

𝑎
1
𝑎 − 1

𝑎
1
𝑎 − 1

𝑎 ⋅ ⋅ ⋅ 1
𝑎 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

♢

§15.2 Scalar matrices with diagonal plus
semiseparable representation

The next aim is to derive from Theorem 15.1 an algorithm to compute quasisepa-
rable generators of the inverse to a matrix 𝐴 with given semiseparable generators,
in the case where some of the numbers 𝛿𝑘 or 𝑙𝑘 may be zeros.

First we present another version of Theorem 15.1 with some auxiliary matrices.

Lemma 15.3. Let the conditions of Theorem 15.1 hold. Let Δ𝑘,Ψ𝑘 (𝑘 = 1, . . . , 𝑁)
and Γ𝑘,Ω𝑘 (𝑘 = 1, . . . , 𝑁) be invertible matrices of orders 𝑟𝑈 and 𝑟𝐿, respectively.

Define the matrices 𝑍𝑘, 𝑆𝑘, 𝑋𝑘, 𝑌𝑘 of sizes (𝑟𝐿+𝑟𝑈 )×𝑟𝑈 , 𝑟𝑈×(𝑟𝐿+𝑟𝑈 ), 𝑟𝐿×
(𝑟𝐿 + 𝑟𝑈 ), (𝑟𝐿 + 𝑟𝑈 )× 𝑟𝐿 via the forward recursions
𝑍1 = 𝐾0, 𝑍𝑘+1 = 𝑍𝑘Δ𝑘 −𝐵(𝑘)

(
(𝛿𝑘)

−1𝐶(𝑘)𝑍𝑘Δ𝑘

)
, 𝑘 = 1, . . . , 𝑁, (15.11)

𝑋1 =𝑀
𝑇
0 , 𝑋𝑘+1 = Γ𝑘𝑋𝑘 −

(
Γ𝑘𝑋𝑘𝐹 (𝑘)(𝑙𝑘)

−1
)
𝐶(𝑘), 𝑘 = 1, . . . , 𝑁, (15.12)

and backward recursions

𝑆𝑁+1 = 𝐾
𝑇
0 , 𝑆𝑘 = Ψ𝑘𝑆𝑘+1 −

(
Ψ𝑘𝑆𝑘+1𝐵(𝑘)(𝛿𝑘)

−1
)
𝐶(𝑘), 𝑘 = 𝑁, . . . , 1, (15.13)

𝑌𝑁+1 =𝑀0, 𝑌𝑘 = 𝑌𝑘+1Ω𝑘 − 𝐹 (𝑘)
(
(𝑙𝑘)

−1𝐸(𝑘)𝑌𝑘+1Ω𝑘
)
, 𝑘 = 𝑁, . . . , 1. (15.14)

Then the elements of the inverse matrix 𝐴−1 can be expressed as

𝐴−1(𝑖, 𝑗) =
(
(𝛿𝑖)

−1𝐶(𝑖)𝑍𝑖Δ𝑖

)
(𝑆𝑖+1𝑍𝑖+1)

−1Ψ<𝑖𝑗
(
Ψ𝑗𝑆𝑗+1𝐵(𝑗)(𝛿𝑗)

−1
)
, 𝑖 < 𝑗

(15.15)

and

𝐴−1(𝑖, 𝑗) =
(
(𝑙𝑖)

−1𝐶(𝑖)𝑌𝑖+1Ω𝑖
)
(𝑋𝑖𝑌𝑖)

−1Γ>𝑖𝑗
(
Γ𝑗𝑋𝑗𝐹 (𝑗)(𝑙𝑗)

−1
)
, 𝑖 > 𝑗.

(15.16)
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Proof. First we consider the elements of (15.6) with 𝑖 < 𝑗. The expression 𝑈>𝑖,0𝐾0

may be written in the form

𝑈>𝑖,0𝐾0 = 𝑍𝑖Δ
−1
𝑖−1 ⋅ ⋅ ⋅Δ−1

1 , 𝑖 = 1, . . . , 𝑁 + 1. (15.17)

Indeed, for 𝑖 = 1 (15.17) is obvious. Assume that for some 𝑖 with 1 ≤ 𝑖 ≤ 𝑁
(15.17) has been proven. One has

𝑈>𝑖+1,0𝐾0 = 𝑈(𝑖)𝑈
>
𝑖,0𝐾0 = 𝑈(𝑖)𝑍𝑖Δ

−1
𝑖−1 ⋅ ⋅ ⋅Δ−1

1

and using (15.2) and (15.11) one gets

𝑈(𝑖)𝑍𝑖 =
(
𝐼 −𝐵(𝑖)(𝛿𝑖)−1𝐶(𝑖)

)
𝑍𝑖

=
(
𝑍𝑖Δ𝑖 −𝐵(𝑖)

(
(𝛿𝑖)

−1𝐶(𝑖)𝑍𝑖Δ𝑖

))
Δ−1
𝑖 = 𝑍𝑖+1Δ

−1
𝑖 ,

as needed.

Similarly, one gets

𝐾𝑇
0 𝑈

>
𝑁+1,𝑗 = Ψ−1

𝑁 ⋅ ⋅ ⋅Ψ−1
𝑗+1𝑆𝑗+1, 𝑗 = 𝑁, . . . , 0. (15.18)

Indeed, for 𝑗 = 𝑁 (15.18) is obvious. Assume that for some 𝑗 with 𝑁 ≥ 𝑗 ≥ 1
(15.18) has been proven. One has

𝐾𝑇
0 𝑈

>
𝑁+1,𝑗−1 = 𝐾

𝑇
0 𝑈

>
𝑁+1,𝑗𝑈(𝑗) = Ψ−1

𝑁 ⋅ ⋅ ⋅Ψ−1
𝑗+1𝑆𝑗+1𝑈(𝑗)

and using (15.2) and (15.13) one gets

𝑆𝑗+1𝑈(𝑗) = 𝑆𝑗+1

(
𝐼 −𝐵(𝑗)(𝛿𝑗)−1𝐶(𝑗)

)
= Ψ−1

𝑗

(
Ψ𝑗𝑆𝑗+1 −

(
Ψ𝑗𝑆𝑗+1𝐵(𝑗)(𝛿𝑗)

−1
)
𝐶(𝑗)

)
= Ψ−1

𝑗 𝑆𝑗 ,

as needed.

From (15.18), (15.17) and (15.3) one obtains for 𝑈× for any 𝑘 = 0, . . . , 𝑁 the
representations

𝑈× = 𝐾𝑇
0 𝑈

>
𝑁+1,𝑘𝑈

>
𝑘+1,0𝐾0 = Ψ−1

𝑁 ⋅ ⋅ ⋅Ψ−1
𝑘+1(𝑆𝑘+1𝑍𝑘+1)Δ

−1
𝑘 ⋅ ⋅ ⋅Δ−1

1 . (15.19)

Thus using the first expression in (15.6) and the representations (15.17),
(15.18) and (15.19) one gets

𝐴−1(𝑖, 𝑗) = (𝛿𝑖)
−1𝐶(𝑖)𝑍𝑖Δ

−1
𝑖−1 ⋅ ⋅ ⋅Δ−1

1 Δ1 ⋅ ⋅ ⋅Δ𝑖−1Δ𝑖(𝑆𝑖+1𝑍𝑖+1)
−1

×Ψ𝑖+1 ⋅ ⋅ ⋅Ψ𝑗−1Ψ𝑗Ψ𝑗+1 ⋅ ⋅ ⋅Ψ𝑁Ψ−1
𝑁 ⋅ ⋅ ⋅Ψ−1

𝑗+1𝑆𝑗+1𝐵(𝑗)(𝛿𝑗)
−1, 𝑖 < 𝑗

and hence the representation (15.15) follows.

A similar procedure is applied to the case 𝑖 > 𝑗. The expression𝑀𝑇
0 𝑉

<
0,𝑗 may

be written in the form

𝑀𝑇
0 𝑉

<
0,𝑗 = Γ−1

1 ⋅ ⋅ ⋅Γ−1
𝑗−1𝑋𝑗, 1 ≤ 𝑗 ≤ 𝑁 + 1. (15.20)
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Indeed, for 𝑗 = 1 (15.20) is obvious. Assume that for some 𝑗 with 1 ≤ 𝑗 ≤ 𝑁
(15.20) has been proven. One has

𝑀𝑇
0 𝑉

<
0,𝑗+1 =𝑀

𝑇
0 𝑉

<
0,𝑗𝑉 (𝑗) = Γ−1

1 ⋅ ⋅ ⋅Γ−1
𝑗−1𝑋𝑗𝑉 (𝑗)

and using (15.4) and (15.12) one gets

𝑋𝑗𝑉 (𝑗) = 𝑋𝑗
(
𝐼 − 𝐹 (𝑗)(𝑙𝑗)−1𝐸(𝑗)

)
= Γ−1

𝑗

(
Γ𝑗𝑋𝑗 −

(
Γ𝑗𝑋𝑗𝐹 (𝑗)(𝑙𝑗)

−1
)
𝐸(𝑗)

)
= Γ−1

𝑗 𝑋𝑗+1,

as needed.

Similarly, one gets

𝑉 <𝑖,𝑁+1𝑀0 = 𝑌𝑖+1Ω
−1
𝑖+1 ⋅ ⋅ ⋅Ω−1

𝑁 , 𝑖 = 𝑁, . . . , 0. (15.21)

Indeed, for 𝑖 = 𝑁 (15.21) is obvious. Assume that for some 𝑖 with 𝑁 > 𝑖 ≥ 1
(15.21) has been proven. One has

𝑉 <𝑖−1,𝑁+1𝑀0 = 𝑉 (𝑖)𝑉
<
𝑖,𝑁+1𝑀0 = 𝑉 (𝑖)𝑌𝑖+1Ω

−1
𝑖+1 ⋅ ⋅ ⋅Ω−1

𝑁

and using (15.4) and (15.14) one gets

𝑉 (𝑖)𝑌𝑖+1 =
(
𝐼 − 𝐹 (𝑖)(𝑙𝑖)−1𝐸(𝑖)

)
𝑌𝑖+1

=
(
𝑌𝑖+1Ω𝑖 − 𝐹 (𝑖)

(
(𝑙𝑖)

−1𝐸(𝑖)𝑌𝑖+1Ω𝑖
))
Ω−1
𝑖 = 𝑌𝑖Ω

−1
𝑖 ,

as needed.

From (15.21), (15.20) and (15.5) one obtains for 𝑉 × for any 𝑘 = 0, . . . , 𝑁
the representations

𝑉 × =𝑀𝑇
0 𝑉

<
0,𝑘𝑉

<
𝑘−1,𝑁+1𝑀0 = Γ−1

1 ⋅ ⋅ ⋅Γ−1
𝑖−1(𝑋𝑖𝑌𝑖)Ω

−1
𝑖 ⋅ ⋅ ⋅Ω−1

𝑁 . (15.22)

Thus using the last expression in (15.6) and the representations (15.20),
(15.21) and (15.22) one gets

𝐴−1(𝑖, 𝑗) = (𝑙𝑖)
−1𝐸(𝑖)𝑌𝑖+1Ω

−1
𝑖+1 ⋅ ⋅ ⋅Ω−1

𝑁 Ω𝑁 ⋅ ⋅ ⋅Ω𝑖+1Ω𝑖(𝑋𝑖𝑌𝑖)
−1

× Γ𝑖−1 ⋅ ⋅ ⋅Γ𝑗+1Γ𝑗 ⋅ ⋅ ⋅Γ1Γ
−1
1 ⋅ ⋅ ⋅Γ−1

𝑗−1𝑋(𝑗)𝐹 (𝑗)(𝑙𝑗)
−1

and hence the representation (15.16) follows. □

Now assume that 𝐴 is a scalar matrix. In this case the elements 𝛿𝑘, 𝑙𝑘 are
complex numbers. By making the concrete appropriate choice of the matrices
Δ𝑘,Ψ𝑘,Γ𝑘,Ω𝑘 we may eliminate singularities for the values 𝛿𝑘 = 0, 𝑙𝑘 = 0 in the
expressions

1

𝛿𝑘
𝐶(𝑘)𝑍𝑘Δ𝑘, Γ𝑘𝑋𝑘𝐹 (𝑘)

1

𝑙𝑘
, Ψ𝑘𝑆𝑘+1𝐵(𝑘)

1

𝛿𝑘
,

1

𝑙𝑘
𝐸(𝑘)𝑌𝑘+1Ω𝑘 (15.23)
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used in Lemma 15.3. Next, let us introduce the following notations. For a vector 𝑢,
𝑢𝑗0 means the coordinate of 𝑢 with the maximal absolute value and �̃� is a vector
with the same dimension as 𝑢 with 𝑢𝑗0 in the 𝑗0th position and zeros in the others.
Now for an 𝑛-dimensional column vector 𝑢 and a number 𝛿 we define the 𝑛 × 𝑛
matrix 𝑊 (𝑢, 𝛿) by

𝑊 (𝑢, 𝛿) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . − 𝑢1

𝑢𝑗0
. . . 0

0 1 . . . − 𝑢2

𝑢𝑗0
. . . 0

...
...

. . .
... . . .

...
0 0 . . . 𝛿 . . . 0
...

...
. . .

... . . .
...

0 0 . . . − 𝑢𝑛

𝑢𝑗0
. . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for 𝑢 ∕= 0, with 𝛿 in the (𝑗0, 𝑗0) position, and 𝑊 (𝑢, 𝛿) = diag{𝛿, 𝐼𝑛−1} for 𝑢 = 0.
One obviously has

det𝑊 (𝑢, 𝛿) = 𝛿 (15.24)

and furthermore

𝑊 (𝑢, 𝛿)𝑢 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . − 𝑢1

𝑢𝑗0
. . . 0

0 1 . . . − 𝑢2

𝑢𝑗0
. . . 0

...
...

. . .
... . . .

...
0 0 . . . 𝛿 . . . 0
...

...
. . .

... . . .
...

0 0 . . . − 𝑢𝑛

𝑢𝑗0
. . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢1
𝑢2
...
𝑢𝑗0
...
𝑢𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...

𝛿𝑢𝑗0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

whence
𝑊 (𝑢, 𝛿)𝑢 = 𝛿�̃�. (15.25)

Similarly, for an 𝑛-dimensional row 𝑣 one obtains

𝑣𝑊𝑇 (𝑣𝑇 , 𝛿) = 𝛿𝑣. (15.26)

Theorem 15.4. Let 𝐴 be a scalar matrix with lower semiseparable generators
𝑝(𝑘), 𝑞(𝑘) (𝑘 = 1, . . . , 𝑁) of order 𝑟𝐿, upper semiseparable generators 𝑔(𝑘), ℎ(𝑘) of
order 𝑟𝑈 , and diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁).

Introduce the matrices and the numbers

𝐵(𝑘) =

(
𝑞(𝑘)
−ℎ(𝑘)

)
, 𝐶(𝑘) =

(
𝑝(𝑘) 𝑔(𝑘)

)
, 𝐾0 =

(
0𝑟𝐿×𝑟𝑈
𝐼𝑟𝑈

)
,

𝐸(𝑘) =
(
𝑔(𝑘) −𝑝(𝑘) ) , 𝐹 (𝑘) =

(
ℎ(𝑘)
𝑞(𝑘)

)
, 𝑀0 =

(
0𝑟𝑈×𝑟𝐿
𝐼𝑟𝐿

)
,

𝛿𝑘 = 𝑑(𝑘)− 𝑔(𝑘)ℎ(𝑘), 𝑙𝑘 = 𝑑(𝑘)− 𝑝(𝑘)𝑞(𝑘), 1 ≤ 𝑘 ≤ 𝑁,
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and define forward recursively

𝑍1 = 𝐾0, 𝑣𝑘 = 𝐶(𝑘)𝑍𝑘, 𝑍𝑘+1 = 𝑍𝑘𝑊
𝑇 (𝑣𝑇𝑘 , 𝛿𝑘)−𝐵(𝑘)𝑣𝑘, 𝑘 = 1, . . . , 𝑁,

(15.27)

𝑋1 =𝑀
𝑇
0 , 𝑓𝑘 = 𝑋𝑘𝐹 (𝑘), 𝑋𝑘+1 =𝑊 (𝑓𝑘, 𝑙𝑘)𝑋𝑘 − 𝑓𝑘𝐸(𝑘), 𝑘 = 1, . . . , 𝑁

(15.28)

and backward recursively

𝑆𝑁+1 = 𝐾
𝑇
0 , 𝑢𝑘 = 𝑆𝑘+1𝐵(𝑘), 𝑆𝑘 =𝑊 (𝑢𝑘, 𝛿𝑘)𝑆𝑘+1 − �̃�𝑘𝐶(𝑘), 𝑘 = 𝑁, . . . , 1,

(15.29)

𝑌𝑁+1 =𝑀0, 𝑤𝑘 = 𝐸(𝑘)𝑌𝑘+1, 𝑌𝑘 = 𝑌𝑘+1𝑊
𝑇 (𝑤𝑇𝑘 , 𝑙𝑘)− 𝐹 (𝑘)�̃�𝑘, 𝑘 = 𝑁, . . . , 1.

(15.30)

Then

det(𝑆𝑘𝑍𝑘) = det(𝑋𝑘𝑌𝑘) = det𝐴 ∕= 0, 1 ≤ 𝑘 ≤ 𝑁 + 1, (15.31)

and the inverse matrix 𝐴−1 has the lower quasiseparable generators

�̃�𝑘(𝑋𝑘𝑌𝑘)
−1, 𝑓𝑘, 𝑊 (𝑓𝑘, 𝑙𝑘), 𝑘 = 1, . . . , 𝑁, (15.32)

with orders equal to 𝑟𝐿, upper quasiseparable generators

𝑣𝑘(𝑆𝑘+1𝑍𝑘+1)
−1, �̃�𝑘, 𝑊 (𝑢𝑘, 𝛿𝑘), 𝑘 = 1, . . . , 𝑁, (15.33)

with orders equal to 𝑟𝑈 , and diagonal entries

det(𝑆𝑘+1𝑍𝑘)

det𝐴
, 𝑘 = 1, . . . , 𝑁. (15.34)

Proof. In the expressions (15.23) we put

𝑣𝑘 = 𝐶(𝑘)𝑍𝑘, 𝑓𝑘 = 𝑋𝑘𝐹 (𝑘), 𝑢𝑘 = 𝑆𝑘+1𝐵(𝑘), 𝑤𝑘 = 𝐸(𝑘)𝑌𝑘+1. (15.35)

Next, we take

Δ𝑘 =𝑊
𝑇 (𝑣𝑇𝑘 , 𝛿𝑘), Γ𝑘 =𝑊 (𝑓𝑘, 𝑙𝑘), Ψ𝑘 =𝑊 (𝑢𝑘, 𝛿𝑘), Ω𝑘 =𝑊

𝑇 (𝑤𝑇𝑘 , 𝑙𝑘) (15.36)

and using (15.25) and (15.26) we obtain

1

𝛿𝑘
𝐶(𝑘)𝑍𝑘Δ𝑘 = 𝑣𝑘, Γ𝑘𝑋𝑘𝐹 (𝑘)

1

𝑙𝑘
= 𝑓𝑘,

Ψ𝑘𝑆𝑘+1𝐵(𝑘)
1

𝛿𝑘
= 𝑢𝑘,

1

𝑙𝑘
𝐸(𝑘)𝑌𝑘+1Ω𝑘 = �̃�𝑘.

(15.37)

Inserting this in the relations (15.11)–(15.14) we obtain the equalities (15.27)–
(15.30), which do not contain 𝛿𝑘, 𝑙𝑘 in the denominators.
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Next, substituting Δ𝑘 = 𝑊𝑇 (𝑣𝑇𝑘 , 𝛿𝑘), Ψ𝑘 = 𝑊 (𝑢𝑘, 𝛿𝑘) in (15.19) we obtain
for 𝑈× for 0 ≤ 𝑘 ≤ 𝑁 the representation

𝑈× =𝑊−1(𝑢𝑁 , 𝛿𝑁 ) ⋅ ⋅ ⋅𝑊−1(𝑢𝑘+1, 𝛿𝑘+1)(𝑆𝑘+1𝑍𝑘+1)[𝑊
𝑇 (𝑣𝑇𝑘 , 𝛿𝑘)]

−1

⋅ ⋅ ⋅ [𝑊𝑇 (𝑣𝑇1 , 𝛿1)]
−1.

(15.38)

Hence, using (14.28) and (15.24) we conclude that

det(𝑆𝑘𝑍𝑘) = det𝐴, 𝑘 = 1, . . . , 𝑁 + 1. (15.39)

Similarly, substituting Γ𝑘 = 𝑊 (𝑓𝑘, 𝑙𝑘), Ω𝑘 = 𝑊𝑇 (𝑤𝑇𝑘 , 𝑙𝑘) in (15.22) one
obtains for 𝑉 × for 𝑘 = 0, . . . , 𝑁 the representation

𝑉 × =𝑊−1(𝑓1, 𝑙1) ⋅ ⋅ ⋅𝑊−1(𝑓𝑘−1, 𝑙𝑘−1)(𝑋𝑘𝑌𝑘)[𝑊
𝑇 (𝑤𝑇𝑘 , 𝑙𝑘)]

−1 ⋅ ⋅ ⋅ [𝑊𝑇 (𝑤𝑇𝑁 , 𝑙𝑁 )]
−1.

(15.40)
Hence, using (15.10) and (15.24) we conclude that

det(𝑋𝑘𝑌𝑘) = det𝐴, 𝑘 = 1, . . . , 𝑁 + 1. (15.41)

Next, substituting (15.37) in (15.15) and (15.16) we obtain

𝐴−1(𝑖, 𝑗) = �̃�𝑖(𝑋𝑖𝑌𝑖)
−1Γ>𝑖𝑗𝑓𝑗 , 𝑖 > 𝑗,

with Γ𝑘 =𝑊 (𝑓𝑘, 𝑙𝑘), and

𝐴−1(𝑖, 𝑗) = 𝑣𝑖(𝑆𝑖+1𝑍𝑖+1)
−1Ψ<𝑖𝑗 �̃�𝑗, 𝑖 < 𝑗,

with Ψ𝑘 = 𝑊 (𝑢𝑘, 𝛿𝑘). It follows that the elements defined in (15.32) and (15.33)
are lower and upper quasiseparable generators of the matrix 𝐴−1.

To get the representations of the diagonal entries of the matrix 𝐴−1 we use
the formula

𝐴−1(𝑖, 𝑖) = det𝐴′𝑖𝑖/ det𝐴, (15.42)

where 𝐴′𝑖𝑖 is the matrix obtained from 𝐴 by removing its 𝑖th row and 𝑖th column.
Then applying (15.39) to the matrix 𝐴′𝑖𝑖 we obtain

𝐴−1(𝑖, 𝑖) = det(𝑆𝑖+1𝑍𝑖)/det𝐴. □

Numerical experiments showed that direct computations by the formulas
(15.27)–(15.34) for large 𝑁 lead to overflow. This occurs because of large entries
of the matrices 𝑍𝑘, 𝑆𝑘, 𝑋𝑘, 𝑌𝑘. This effect may be overcome by an appropriate
scaling. For an (𝑚+ 𝑛)× 𝑛 matrix 𝐹 = row(𝐹 (𝑖))𝑛𝑖=1 and an 𝑛× (𝑚+ 𝑛) matrix
𝐹 = col(𝐹 (𝑖))𝑛𝑖=1, the scaling matrix of size 𝑛× 𝑛 is defined by

𝛽(𝐹 ) = diag{1/∥𝑊 (𝑖)∥}𝑛𝑖=1.

Here ∥ ⋅ ∥ is the Euclidean norm of the vector. In the numerical tests we tried such
scaling successfully. Other variants of scaling may be used.
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One can use instead of (15.27)–(15.30) other relations containing scaling
matrices 𝛽(⋅). Set forward recursively

𝑍1 = 𝐾0, 𝑣𝑘 = 𝐶(𝑘)𝑍𝑘𝛽(𝑍𝑘), 𝑍𝑘+1 = 𝑍𝑘𝛽(𝑍𝑘)𝑊
𝑇 (𝑣𝑇𝑘 , 𝛿𝑘)−𝐵(𝑘)𝑣𝑘,

𝑘 = 1, . . . , 𝑁,

𝑋1 =𝑀
𝑇
0 , 𝑓𝑘 = 𝛽(𝑋𝑘)𝑋𝑘𝐹 (𝑘), 𝑋𝑘+1 =𝑊 (𝑓𝑘, 𝑙𝑘)𝛽(𝑋𝑘)𝑋𝑘 − 𝑓𝑘𝐸(𝑘),

𝑘 = 1, . . . , 𝑁

and backward recursively

𝑆𝑁+1 = 𝐾
𝑇
0 , 𝑢𝑘 = 𝛽(𝑆𝑘+1)𝑆𝑘+1𝐵(𝑘), 𝑆𝑘 =𝑊 (𝑢𝑘, 𝛿𝑘)𝛽(𝑆𝑘+1)𝑆𝑘+1 − �̃�𝑘𝐶(𝑘),

𝑘 = 𝑁, . . . , 1,

𝑌𝑁+1 =𝑀0, 𝑤𝑘 = 𝐸(𝑘)𝑌𝑘+1𝛽(𝑌𝑘+1), 𝑌𝑘 = 𝑌𝑘+1𝛽(𝑌𝑘+1)𝑊
𝑇 (𝑤𝑇𝑘 , 𝑙𝑘)− 𝐹 (𝑘)𝑤𝑘,

𝑘 = 𝑁, . . . , 1.

This means that instead of (15.35) we use the relations

𝑣𝑘 = 𝐶(𝑘)𝑍𝑘𝛽(𝑍𝑘), 𝑓𝑘 = 𝛽(𝑋𝑘)𝑋𝑘𝐹 (𝑘),

𝑢𝑘 = 𝛽(𝑆𝑘+1)𝑆𝑘+1𝐵(𝑘), 𝑤𝑘 = 𝐸(𝑘)𝑌𝑘+1𝛽(𝑌𝑘+1).
(15.43)

and instead of (15.36) we take

Δ𝑘 = 𝛽(𝑍𝑘)𝑊
𝑇 (𝑣𝑇𝑘 , 𝛿𝑘), Γ𝑘 =𝑊 (𝑓𝑘, 𝑙𝑘)𝛽(𝑋𝑘),

Ψ𝑘 =𝑊 (𝑢𝑘, 𝛿𝑘)𝛽(𝑆𝑘+1), Ω𝑘 = 𝛽(𝑌𝑘+1)𝑊
𝑇 (𝑤𝑇𝑘 , 𝑙𝑘).

(15.44)

In the same way as in the proof of Theorem 15.4, we use Lemma 15.3 and
conclude that the elements

𝑝(1)(𝑘) = �̃�𝑘(𝑋𝑘𝑌𝑘)
−1, 𝑞(1)(𝑘) = 𝑓𝑘, 𝑎(1)(𝑘) =𝑊 (𝑓𝑘, 𝑙𝑘)𝛽(𝑆𝑘+1),

𝑘 = 1, . . . , 𝑁,

and

𝑔(1)(𝑘) = 𝑣𝑘(𝑆𝑘+1𝑍𝑘+1)
−1, ℎ(1)(𝑘) = 𝑢𝑘, 𝑏(1)(𝑘) =𝑊 (𝑢𝑘, 𝛿𝑘)𝛽(𝑋𝑘),

𝑘 = 1, . . . , 𝑁,

are lower and upper quasiseparable generators of the matrix 𝐴−1.

To obtain representations for diagonal entries we proceed as follows. Similarly
to (15.38)

𝑈× = 𝛽−1(𝑆𝑁+1)𝑊
−1(𝑢𝑁 , 𝛿𝑁 ) ⋅ ⋅ ⋅𝛽−1(𝑆𝑘+1)𝑊

−1(𝑢𝑘, 𝛿𝑘)(𝑆𝑘𝑍𝑘)

× [𝑊𝑇 (𝑣𝑇𝑘−1, 𝛿𝑘−1)]
−1𝛽−1(𝑍𝑘−1) ⋅ ⋅ ⋅ [𝑊𝑇 (𝑣𝑇1 , 𝛿1)]

−1𝛽−1(𝑍1).

Using (14.28) and (15.24), this yields

det(𝑆𝑘𝑍𝑘) = det𝛽(𝑆𝑁+1) ⋅ ⋅ ⋅ det𝛽(𝑆𝑘+1) det𝐴det𝛽(𝑍𝑘−1) ⋅ ⋅ ⋅ det𝛽(𝑍1).
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Applying this formula to the matrix 𝐴′𝑘𝑘 obtained from 𝐴 by removing its 𝑘th row
and 𝑘th column one gets

det(𝑆𝑘+1𝑍𝑘) = det𝛽(𝑆𝑁+1) ⋅ ⋅ ⋅ det𝛽(𝑆𝑘+2) det𝐴
′
𝑘𝑘 det𝛽(𝑍𝑘−1) . . . det𝛽(𝑍1).

Thus, using (15.42) one obtains the representations of diagonal entries of the
matrix 𝐴−1:

𝑑(1)(𝑘) = det𝛽(𝑆𝑘+1) det(𝑆𝑘+1𝑍𝑘)/ det(𝑆𝑘𝑍𝑘), 𝑘 = 1, . . . , 𝑁.

Therefore, to compute quasiseparable generators of the matrix 𝐴−1 one can
use the following algorithm.

Algorithm 15.5. 1. Compute for 𝑖 = 1, . . . , 𝑁

𝐵(𝑖) =

(
𝑞(𝑖)
−ℎ(𝑖)

)
, 𝐶(𝑖) =

(
𝑝(𝑖) 𝑔(𝑖)

)
, 𝛿𝑖 = 𝑑(𝑖)− 𝑔(𝑖)ℎ(𝑖),

𝑙𝑖 = 𝑑(𝑖)− 𝑝(𝑖)𝑞(𝑖), 𝐸(𝑘) =
(
𝑔(𝑘) −𝑝(𝑘) ) , 𝐹 (𝑘) =

(
ℎ(𝑘)
𝑞(𝑘)

)
.

2. Start with 𝑆𝑁+1 =
(
0𝑟𝑈×𝑟𝐿 𝐼𝑟𝑈

)
, and for 𝑖 = 𝑁, . . . , 1 perform the following

operations:

determine the scaling matrix 𝛽(𝑆𝑖+1) and compute

𝑆0
𝑖+1 = 𝛽(𝑆𝑖+1)𝑆𝑖+1, 𝑢𝑖 = 𝑆

0
𝑖+1𝐵(𝑖),

determine the column vector �̃�𝑖 and the matrix 𝑊 (𝑢𝑖, 𝛿𝑖), compute

𝑆𝑖 =𝑊 (𝑢𝑖, 𝛿𝑖)𝑆
0
𝑖+1 − �̃�𝑖𝐶(𝑖), ℎ(1)(𝑖) = 𝑢𝑖, 𝑏(1)(𝑖) =𝑊 (𝑢𝑖, 𝛿𝑖)𝛽(𝑆𝑖+1).

3. Start with 𝑍1 =

(
0𝑟𝐿×𝑟𝑈
𝐼𝑟𝑈

)
and for 𝑖 = 1, . . . , 𝑁 perform the following oper-

ations:

determine the scaling matrix 𝛽(𝑍𝑖) and compute

𝑍0
𝑖 = 𝑍𝑖𝛽(𝑍𝑖), 𝑣𝑖 = 𝐶(𝑖)𝑍

0
𝑖 ,

determine the row vector 𝑣𝑖 and the matrix 𝑊 (𝑣𝑇𝑖 , 𝛿𝑖), compute

𝑍𝑖+1 = 𝑍
0
𝑖𝑊

𝑇 (𝑣𝑇𝑖 , 𝛿𝑖)−𝐵(𝑖)𝑣𝑖, 𝑔(1)(𝑖) = 𝑣𝑖(𝑆𝑖+1𝑍𝑖+1)
−1.

4. Start with 𝑋1 =
(
0𝑟𝐿×𝑟𝑈 𝐼𝑟𝐿

)
and for 𝑖 = 1, . . . , 𝑁 perform the following

operations:

determine the scaling matrix 𝛽(𝑋𝑖) and compute

𝑋0
𝑖 = 𝛽(𝑋𝑖)𝑋𝑖, 𝑓𝑖 = 𝑋

0
𝑖 𝐹 (𝑖),
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determine the column vector 𝑓𝑖 and the matrix 𝑊 (𝑓𝑖, 𝑙𝑖), compute

𝑋𝑖+1 =𝑊 (𝑓𝑖, 𝑙𝑖)𝑋
0
𝑖 − 𝑓𝑖𝐸(𝑖), 𝑞(1)(𝑖) = 𝑓𝑖, 𝑎(1)(𝑖) =𝑊 (𝑓𝑖, 𝑙𝑖)𝛽(𝑋𝑖).

5. Start with 𝑌𝑁+1 =

(
0𝑟𝑈×𝑟𝐿
𝐼𝑟𝐿

)
and for 𝑖 = 𝑁, . . . , 1 perform the following

operations:

determine the scaling matrix 𝛽(𝑌𝑖+1) and compute

𝑌 0
𝑖+1 = 𝑌𝑖+1𝛽(𝑌𝑖+1), 𝑤𝑖 = 𝐸(𝑖)𝑌

0
𝑖+1,

determine the row vector 𝑤𝑖 and the matrix 𝑊 (𝑤𝑇𝑖 , 𝑙𝑖), compute

𝑌𝑖 = 𝑌
0
𝑖+1𝑊

𝑇 (𝑤𝑇𝑖 , 𝑙𝑖)− 𝐹 (𝑖)�̃�𝑖, 𝑝(1)(𝑖) = �̃�𝑖(𝑋𝑖𝑌𝑖)
−1.

6. Compute for 𝑖 = 1, . . . , 𝑁

𝑑(1)(𝑖) = det𝛽(𝑆𝑖+1) det(𝑆𝑖+1𝑍𝑖)/ det(𝑆𝑖𝑍𝑖).

Set 𝑟 = max{𝑟𝐿, 𝑟𝑈}. Then the complexity of Algorithm 15.5 is estimated as
follows.

1. The numbers 𝛿𝑖, 𝑙𝑖: 2𝑟 operations of arithmetical multiplication and 2𝑟 oper-
ations of arithmetical additions.

2. The matrix 𝑆0
𝑖+1: 𝜃(𝑟) operations.

3. The vector 𝑢𝑖: 2𝑟
2 operations of arithmetical multiplication and 𝑟(2𝑟 − 1)

operations of arithmetical additions.

4. The matrix 𝑊 (𝑢𝑖, 𝛿𝑖): 𝑟 − 1 operations.

5. The matrix 𝑆𝑖: less than 4𝑟3 + 2𝑟2 operations of arithmetical multiplication
and arithmetical additions.

6. The matrix 𝑏(1)(𝑖): less than 2𝑟3 operations.

7. The matrix 𝑍0
𝑖 : 𝜃(𝑟) operations.

8. The vector 𝑣𝑖: less than 4𝑟2 operations.

9. The matrix 𝑊 (𝑣𝑇𝑖 , 𝛿𝑖): 𝑟 − 1 operations.

10. The matrix 𝑍𝑖+1: less than 4𝑟3 + 2𝑟2 operations.

11. The product 𝑆𝑖+1𝑍𝑖+1: less than 4𝑟3 operations.

12. The vector 𝑔(1)(𝑖): 𝜌(𝑟) operations.

13. The matrix 𝑋0
𝑖 : 𝜃(𝑟) operations.

14. The vector 𝑓𝑖: less than 4𝑟2 operations.

15. The matrix 𝑊 (𝑓𝑖, 𝑙𝑖): 𝑟 − 1 operations.

16. The matrix 𝑋𝑖+1: less than 4𝑟3 + 2𝑟 operations.

17. The matrix 𝑎(1)(𝑖): less than 2𝑟3 operations.
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18. The matrix 𝑌 0
𝑖+1: 𝜃(𝑟) operations.

19. The vector 𝑤𝑖: less than 4𝑟2 operations.

20. The matrix 𝑊 (𝑤𝑇𝑖 , 𝑙𝑖): 𝑟 − 1 operations.

21. The matrix 𝑌𝑖: less than 4𝑟3 + 2𝑟2 operations.

22. The product 𝑋𝑖𝑌𝑖: less than 4𝑟3 operations.

23. The vector 𝑝(1)(𝑖): 𝜌(𝑟) operations.

24. The product 𝑆𝑖+1𝑍𝑖: less than 4𝑟3 operations.

25. The number 𝑑(1)(𝑖): 3𝜁(𝑟) operations.

Here 𝜌(𝑛) is the complexity of solving of an 𝑛 × 𝑛 linear system by the
standard Gauss method, 𝜁(𝑛) is the complexity of computing an 𝑛×𝑛 determinant,
𝜃(𝑛) is the complexity of the scaling operation 𝛽(𝐹1)𝐹1 or 𝐹2𝛽(𝐹2) for an 𝑛× 2𝑛
matrix 𝐹1 or a 2𝑛 × 𝑛 matrix 𝐹2, respectively. Thus the total complexity of the
algorithm does not exceed

(2𝜌(𝑟) + 3𝜁(𝑟) + 28𝑟3 + 4𝜃(𝑟) + 16𝑟2 + 10𝑟 − 4)𝑁.

This number may be reduced by using special forms of the matrices 𝑊 and 𝛽.

§15.3 Comments

The results of this chapter were obtained in the papers [18], [19], which contain
also results of numerical tests. In the case of diagonal plus semiseparable of order
one representations the algorithm may be simplified essentially (see [18]).



Chapter 16

Quasiseparable/Semiseparable
Representations and
One-direction Systems

Here we consider matrices with the lower quasiseparable and upper semisepara-
ble representations discussed in Section §14.2. We show that such representations
correspond to discrete systems without backward recursions, i.e., to one-direction
systems. We study such systems in detail and derive inversion algorithms for ma-
trices of their input-output operators.

§16.1 Systems with diagonal main coefficients
and homogeneous boundary conditions

Here we consider systems which correspond to matrices with a given quasisep-
arable representation for the strictly lower triangular part and a semiseparable
representation for the strictly upper triangular part.

Theorem 16.1. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a matrix with block entries of sizes 𝑚𝑖 ×
𝑛𝑗, with lower quasiseparable generators 𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘) (𝑘 = 1, . . . , 𝑁) of or-
ders 𝑟𝐿𝑘 (𝑘 = 0, . . . , 𝑁), upper semiseparable generators 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 −
1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁) of order 𝑟𝑈 , and diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁).
Define 𝑔(𝑁), ℎ(1) to be arbitrary matrices of sizes 𝑚𝑁 × 𝑟𝑈 , 𝑟𝑈 × 𝑛1 respectively.

Set

𝐸(𝑘) =

(
𝑎(𝑘) 0
0 𝐼𝑟𝑈

)
, 𝐵(𝑘) =

(
𝑞(𝑘)
−ℎ(𝑘)

)
, 𝐶(𝑘) =

(
𝑝(𝑘) 𝑔(𝑘)

)
,

𝐷(𝑘) = 𝑑(𝑘)− 𝑔(𝑘)ℎ(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑀1 =

(
𝐼𝑟𝐿0 0

0 0𝑟𝑈×𝑟𝑈

)
, 𝑀2 =

(
0𝑟𝐿0 ×𝑟𝐿𝑁 0

0 𝐼𝑟𝑈

)
.

(16.1)
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Then 𝐴 is a matrix of the input-output operator of the discrete system⎧⎨⎩
𝑓𝑘+1 = 𝐸(𝑘)𝑓𝑘 +𝐵(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑦(𝑘) = 𝐶(𝑘)𝑓𝑘 +𝐷(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑀1𝑓1 +𝑀2𝑓𝑁+1 = 0,

(16.2)

with the input 𝑥 = (𝑥(𝑘))𝑁𝑘=1, the output 𝑦 = (𝑦(𝑘))𝑁𝑘=1 and the state space vari-
ables 𝑓𝑘 (𝑘 = 1, . . . , 𝑁 + 1).

Proof. The matrix 𝐴 has quasiseparable generators 𝑝(𝑖), 𝑞(𝑗), 𝑎(𝑘); 𝑔(𝑖), ℎ(𝑗),
𝑏(𝑘) = 𝐼; 𝑑(𝑘). By Theorem 13.2, 𝐴 is a matrix of the input-output operator of
the system (13.14) with 𝑏(𝑘) = 𝐼𝑟𝑈 :⎧⎨⎩

𝜒𝑘+1 = 𝑎(𝑘)𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁 − 1,

𝜂𝑘−1 = 𝜂𝑘 + ℎ(𝑘)𝑥(𝑘), 𝑘 = 𝑁, . . . , 2,

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑘 + 𝑔(𝑘)𝜂𝑘 + 𝑑(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁.

𝜒1 = 0, 𝜂𝑁 = 0.

(16.3)

The second recursion in (16.3) may be written in the form

𝜂𝑘 = 𝜂𝑘−1 − ℎ(𝑘)𝑥(𝑘), 𝑘 = 2, . . . , 𝑁. (16.4)

We introduce another state space variable 𝑧𝑘 = 𝜂𝑘−1, 𝑘 = 2, . . . , 𝑁+1, and obtain

𝑧𝑘+1 = 𝑧𝑘 − ℎ(𝑘)𝑥(𝑘), 𝑘 = 2, . . . , 𝑁. (16.5)

Next we set
𝑧1 = 𝑧2 + ℎ(1)𝑥(1). (16.6)

Combining (16.5) and (16.6), one gets

𝑧𝑘+1 = 𝑧𝑘 − ℎ(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁. (16.7)

Moreover using 𝑧𝑘+1 = 𝜂𝑘 (𝑘 = 1, . . . , 𝑁) one has

𝜂𝑘 = 𝑧𝑘 − ℎ(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁.

Substituting these expressions into the last equations in (16.3) one obtains

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑘 + 𝑔(𝑘)(𝑧𝑘 − ℎ(𝑘)𝑥(𝑘)) + 𝑑(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

whence
𝑦(𝑘) = 𝑝(𝑘)𝜒𝑘 + 𝑔(𝑘)𝑧𝑘 +𝐷(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁, (16.8)

with the matrices𝐷(𝑘) defined in (16.1). Next we set 𝜒𝑁+1 = 𝑎(𝑁)𝜒𝑁+𝑞(𝑁)𝑥(𝑁),
which together with the first equations from (16.3) yields

𝜒𝑘+1 = 𝑎(𝑘)𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁. (16.9)



§16.1. Systems with diagonal main coefficients 297

Finally, using the boundary conditions from (16.3) and 𝜂𝑁 = 𝑧𝑁+1 one gets

𝜒1 = 0, 𝑧𝑁+1 = 0. (16.10)

Thus combining (16.9), (16.7), (16.8) and (16.10) one obtains the system⎧⎨⎩
𝜒𝑘+1 = 𝑎(𝑘)𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑧𝑘+1 = 𝑧𝑘 − ℎ(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑘 + 𝑔(𝑘)𝑧𝑘 +𝐷(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝜒1 = 0, 𝑧𝑁+1 = 0.

If we now introduce the state space variable 𝑓𝑘 =

(
𝜒𝑘
𝑧𝑘

)
(𝑘 = 1, . . . , 𝑁 + 1)

and use the matrices 𝐸(𝑘), 𝐵(𝑘), 𝐶(𝑘) (𝑘 = 1, . . . , 𝑁) and 𝑀1,𝑀2 from (16.1), we
obtain the system (16.2). □
Corollary 16.2. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a matrix with block entries of sizes 𝑚𝑖×𝑛𝑗,
with lower semiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1)
of order 𝑟𝐿, upper semiseparable generators 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 =
2, . . . , 𝑁) of order 𝑟𝑈 , and diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁). Define 𝑝(1), 𝑞(𝑁),
𝑔(𝑁), ℎ(1) to be arbitrary matrices of sizes 𝑚1 × 𝑟𝐿, 𝑟𝐿 × 𝑛𝑁 ,𝑚𝑁 × 𝑟𝑈 , 𝑟𝑈 × 𝑛1,
respectively.

Set

𝐵(𝑘) =

(
𝑞(𝑘)
−ℎ(𝑘)

)
, 𝐶(𝑘) =

(
𝑝(𝑘) 𝑔(𝑘)

)
,

𝐷(𝑘) = 𝑑(𝑘)− 𝑔(𝑘)ℎ(𝑘), 𝑘 = 1, . . . , 𝑁 ;

𝑀1 =

(
𝐼𝑟𝐿 0
0 0𝑟𝑈×𝑟𝑈

)
, 𝑀2 =

(
0𝑟𝐿×𝑟𝐿 0

0 𝐼𝑟𝑈

)
.

(16.11)

Then 𝐴 is a matrix of the input-output operator of the discrete system⎧⎨⎩
𝑓𝑘+1 = 𝑓𝑘 +𝐵(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑦(𝑘) = 𝐶(𝑘)𝑓𝑘 +𝐷(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑀1𝑓1 +𝑀2𝑓𝑁+1 = 0,

(16.12)

with the input 𝑥 = (𝑥(𝑘))𝑁𝑘=1, the output 𝑦 = (𝑦(𝑘))𝑁𝑘=1, and the state space
variables 𝑓𝑘 (𝑘 = 1, . . . , 𝑁 + 1).

The proof follows directly from Theorem 16.1 by setting 𝑟𝐿𝑘 = 𝑟𝐿, 𝑘 =
0, . . . , 𝑁 and 𝑎(𝑘) = 𝐼𝑟𝐿 , 𝑘 = 1, . . . , 𝑁 .

The converse of the statement in Theorem 16.1 reads

Theorem 16.3. Let there be given a system (16.2) with the input vectors 𝑥(𝑘), 𝑘 =
1, . . . , 𝑁 , of sizes 𝑛𝑘, output vectors 𝑦(𝑘), 𝑘 = 1, . . . , 𝑁 , of sizes 𝑚𝑘, and the state
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space variables 𝑓𝑘, 𝑘 = 1, . . . , 𝑁 +1, of sizes 𝑟𝐿𝑘−1 + 𝑟𝑈 , 𝑘 = 1, . . . , 𝑁 +1. Let the
matrices 𝐸(𝑘) in (16.2) have the form

𝐸(𝑘) =

(
𝑎(𝑘) 0
0 𝑏(𝑘)

)
, 𝑘 = 1, . . . , 𝑁 (16.13)

with matrices 𝑎(𝑘) of sizes 𝑟𝐿𝑘 × 𝑟𝐿𝑘−1 and invertible matrices 𝑏(𝑘) of size 𝑟𝑈 × 𝑟𝑈 ,
and let the matrices 𝑀1,𝑀2 have the form

𝑀1 =

(
𝐼𝑟𝐿1 0

0 0𝑟𝑈×𝑟𝑈

)
, 𝑀2 =

(
0𝑟𝐿1 ×𝑟𝐿𝑁 0

0 𝐼𝑟𝑈

)
. (16.14)

For the matrices 𝐵(𝑘), 𝐶(𝑘) of sizes (𝑟𝐿𝑘 + 𝑟𝑈 ) × 𝑛𝑘,𝑚𝑘 × (𝑟𝐿𝑘−1 + 𝑟𝑈 ) define the
partitions

𝐵(𝑘) =

(
𝑞(𝑘)
ℎ(𝑘)

)
, 𝐶(𝑘) =

(
𝑝(𝑘) 𝑔(𝑘)

)
(16.15)

with matrices 𝑞(𝑘), ℎ(𝑘), 𝑝(𝑘), 𝑔(𝑘) of sizes 𝑟𝐿𝑘 × 𝑛𝑘, 𝑟𝑈 × 𝑛𝑘,𝑚𝑘 × 𝑟𝐿𝑘−1,𝑚𝑘 × 𝑟𝑈 ,
respectively.

Then the matrix 𝐴 with lower quasiseparable generators 𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘) (𝑘 =
1, . . . , 𝑁) with orders 𝑟𝐿𝑘 (𝑘 = 0, . . . , 𝑁), upper semiseparable generators

𝑔(1) = 𝑔(1)(𝑏(1))−1, 𝑔(𝑖) = 𝑔(𝑖)𝑏>𝑖1, 𝑖 = 2, . . . , 𝑁 − 1,

ℎ̃(𝑗) = −(𝑏>𝑗+1,1)
−1ℎ(𝑗), 𝑗 = 2, . . . , 𝑁,

(16.16)

of order 𝑟𝑈 , and diagonal entries

𝑑(𝑘) = 𝐷(𝑘)− 𝑔(𝑘)(𝑏(𝑘))−1ℎ(𝑘), 𝑘 = 1, . . . , 𝑁, (16.17)

is a matrix of the input-output operator of the system (16.2).

Proof. Set 𝑓𝑘 =

(
𝜒𝑘
𝑧𝑘

)
(𝑘 = 1, . . . , 𝑁+1) with the vector columns 𝜒𝑘, 𝑧𝑘 of sizes

𝑟𝐿𝑘−1, 𝑟𝑈 , respectively. Using the equalities (16.13), (16.14), (16.15) we present the
system (16.2) in the form⎧⎨⎩

𝜒𝑘+1 = 𝑎(𝑘)𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑧𝑘+1 = 𝑏(𝑘)𝑧𝑘 + ℎ(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑘 + 𝑔(𝑘)𝑧𝑘 +𝐷(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝜒1 = 0, 𝑧𝑁+1 = 0.

(16.18)

From the first equations of this system one gets

𝜒𝑘+1 = 𝑎(𝑘)𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁 − 1. (16.19)
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Using the second equation of the system one gets

𝑧𝑘 = (𝑏(𝑘))−1𝑧𝑘+1 − (𝑏(𝑘))−1ℎ(𝑘)𝑥(𝑘), 𝑘 = 𝑁, . . . , 1. (16.20)

We introduce the variables 𝜂𝑘 = 𝑧𝑘+1, 𝑘 = 1, . . . , 𝑁 . Using (16.20) one gets

𝜂𝑘−1 = (𝑏(𝑘))−1𝜂𝑘 − (𝑏(𝑘))−1ℎ(𝑘)𝑥(𝑘), 𝑘 = 𝑁, . . . , 1. (16.21)

Moreover, (16.20) implies

𝑧𝑘 = (𝑏(𝑘))−1𝜂𝑘 − (𝑏(𝑘))−1ℎ(𝑘)𝑥(𝑘), 𝑘 = 𝑁, . . . , 1.

Substituting these expressions in the third equations from (16.18) one gets

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑘 + 𝑔(𝑘)(𝑏(𝑘))
−1𝜂𝑘 + (𝐷(𝑘)− 𝑔(𝑘)(𝑏(𝑘))−1ℎ(𝑘))𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

whence

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑘 + 𝑔(𝑘)(𝑏(𝑘))
−1𝜂𝑘 + 𝑑(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁, (16.22)

with 𝑑(𝑘) defined in (16.17). Using the equality 𝜂𝑁 = 𝑧𝑁+1 and the boundary
conditions from (16.18) one obtains

𝜒1 = 0, 𝜂𝑁 = 0. (16.23)

Combining (16.19), (16.21), (16.22) and (16.23) one obtains the following system
equivalent to (16.18):⎧⎨⎩

𝜒𝑘+1 = 𝑎(𝑘)𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁 − 1,

𝜂𝑘−1 = (𝑏(𝑘))−1𝜂𝑘 − (𝑏(𝑘))−1ℎ(𝑘)𝑥(𝑘), 𝑘 = 𝑁, . . . , 2,

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑘 + 𝑔(𝑘)(𝑏(𝑘))
−1𝜂𝑘 + 𝑑(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝜒1 = 0, 𝜂𝑁 = 0.

(16.24)

By Theorem 13.3, the matrix 𝐴 with quasiseparable generators 𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘);
𝑔(𝑘)(𝑏(𝑘))−1,−(𝑏(𝑘))−1ℎ(𝑘), (𝑏(𝑘))−1; 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁) is a matrix of the input-
output operator of the system (16.24).

It remains to check that the matrices 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ̃(𝑗) (𝑗 =
2, . . . , 𝑁) defined in (16.16) are upper semiseparable generators of the matrix
𝐴. Set �̃�(𝑘) = (𝑏(𝑘))−1, 𝑘 = 1, . . . , 𝑁 . As it was shown above, the elements
𝑔(𝑖)�̃�(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), −�̃�(𝑗)ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), �̃�(𝑘) (𝑘 = 2, . . . , 𝑁 − 1)
are upper quasiseparable generators of 𝐴. Since the matrices �̃�(𝑘) are invertible,
Theorem 4.3 yields the upper quasiseparable generators of the matrix 𝐴

𝑔(𝑖) = 𝑔(𝑖)�̃�(𝑖)(�̃�<1,𝑖+1)
−1, 𝑖 = 1, . . . , 𝑁 − 1, ℎ̃(𝑗) = −�̃�<1𝑗 �̃�(𝑗)ℎ(𝑗), 𝑗 = 2, . . . , 𝑁.

Using the equalities

�̃�<1𝑗 �̃�(𝑗) = �̃�
<
1,𝑗+1, �̃�<1,𝑗+1 = (𝑏>𝑗+1,1)

−1

one obtains ℎ̃(𝑗) = −(𝑏>𝑗+1,1)
−1ℎ(𝑗), 𝑗 = 2, . . . , 𝑁 . Using the equality �̃�<1,2 = 𝐼 one

gets 𝑔(1) = 𝑔(1)(𝑏(1))−1.
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Finally using the equalities

�̃�(𝑖)(�̃�<1,𝑖+1)
−1 = (𝑏(𝑖))−1𝑏>𝑖+1,1 = 𝑏

>
𝑖,1, 𝑖 = 2, . . . , 𝑁,

one gets 𝑔(𝑖) = 𝑔(𝑖)𝑏>𝑖1, 𝑖 = 2, . . . , 𝑁 − 1. □
Corollary 16.4. Let there be given a system (16.2) with the input vectors 𝑥(𝑘), 𝑘 =
1, . . . , 𝑁 , of sizes 𝑛𝑘, the output vectors 𝑦(𝑘), 𝑘 = 1, . . . , 𝑁 , of sizes 𝑚𝑘, and the
state space variables 𝑓𝑘, 𝑘 = 1, . . . , 𝑁 + 1, of sizes 𝑟𝐿 + 𝑟𝑈 . For the matrices
𝐵(𝑘), 𝐶(𝑘) of sizes (𝑟𝐿 + 𝑟𝑈 )× 𝑛𝑘,𝑚𝑘 × (𝑟𝐿 + 𝑟𝑈 ) define the partitions

𝐵(𝑘) =

(
𝑞(𝑘)
ℎ(𝑘)

)
, 𝐶(𝑘) =

(
𝑝(𝑘) 𝑔(𝑘)

)
,

with matrices 𝑞(𝑘), ℎ(𝑘), 𝑝(𝑘), 𝑔(𝑘) of sizes 𝑟𝐿 × 𝑛𝑘, 𝑟𝑈 × 𝑛𝑘,𝑚𝑘 × 𝑟𝐿,𝑚𝑘 × 𝑟𝑈 ,
respectively.

Then the matrix 𝐴 with lower semiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁),
𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1) of order 𝑟𝐿, upper semiseparable generators 𝑔(𝑖) (𝑖 =
1, . . . , 𝑁 − 1), −ℎ(𝑗) (𝑗 = 2, . . . , 𝑁) of order 𝑟𝑈 , and diagonal entries

𝑑(𝑘) = 𝐷(𝑘)− 𝑔(𝑘)ℎ(𝑘), 𝑘 = 1, . . . , 𝑁,

is a matrix of the input-output operator of the system (16.12).

The proof follows directly from Theorem 16.3 by setting 𝑟𝐿𝑘 = 𝑟𝐿, 𝑘 =
0, . . . , 𝑁 and 𝐸(𝑘) = 𝐼𝑟𝐿+𝑟𝑈 , 𝑘 = 1, . . . , 𝑁 .

An analog of Theorem 16.1 for matrices with given lower semiseparable and
upper quasiseparable generators is the following.

Theorem 16.5. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a matrix with block entries of sizes 𝑚𝑖×𝑛𝑗,
with lower semiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1) of
order 𝑟𝐿, upper quasiseparable generators 𝑔(𝑘), ℎ(𝑘), 𝑏(𝑘) (𝑘 = 1, . . . , 𝑁) of orders
𝑟𝑈𝑘 (𝑘 = 0, . . . , 𝑁), and diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁). Define 𝑝(1), 𝑞(𝑁) to
be arbitrary matrices of sizes 𝑚1 × 𝑟𝐿, 𝑟𝐿 × 𝑛𝑁 , respectively.

Set

𝐸(𝑘) =

(
𝐼𝑟𝐿 0
0 𝑏(𝑘)

)
, 𝐵(𝑘) =

( −𝑞(𝑘)
ℎ(𝑘)

)
, 𝐶(𝑘) =

(
𝑝(𝑘) 𝑔(𝑘)

)
,

𝐷(𝑘) = 𝑑(𝑘)− 𝑝(𝑘)𝑞(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑀1 =

(
𝐼𝑟𝐿 0
0 0𝑟𝑈𝑁−1×𝑟𝑈0

)
, 𝑀2 =

(
0𝑟𝐿×𝑟𝐿 0

0 𝐼𝑟𝑈𝑁−1

)
.

Then 𝐴 is a matrix of the input-output operator of the discrete system⎧⎨⎩
𝑓𝑘−1 = 𝐸(𝑘)𝑓𝑘 +𝐵(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑦(𝑘) = 𝐶(𝑘)𝑓𝑘 +𝐷(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑀1𝑓0 +𝑀2𝑓𝑁 = 0,
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with the input 𝑥 = (𝑥(𝑘))𝑁𝑘=1, the output 𝑦 = (𝑦(𝑘))𝑁𝑘=1, and the state space
variables 𝑓𝑘 (𝑘 = 0, . . . , 𝑁).

§16.2 The general one-direction systems

Here we consider discrete systems with boundary conditions which are a gener-
alization of the systems considered in Section §16.1. More precisely we consider
systems of the form⎧⎨⎩

𝑓𝑘+1 = 𝐸(𝑘)𝑓𝑘 +𝐵(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑦(𝑘) = 𝐶(𝑘)𝑓𝑘 +𝐷(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑀1𝑓1 +𝑀2𝑓𝑁+1 = 0.

(16.25)

Here the input of the system are the 𝑛𝑘-dimensional vectors 𝑥(𝑘) (𝑘 = 1, . . . , 𝑁),
the output are the 𝑚𝑘-dimensional vectors 𝑦(𝑘) (𝑘 = 1, . . . , 𝑁), the state space
variables are the 𝑟𝑘-dimensional vectors 𝑓𝑘 (𝑘 = 1, . . . , 𝑁 + 1). The coefficients
of the system are the matrices 𝐸(𝑘), 𝐵(𝑘), 𝐶(𝑘), 𝐷(𝑘) (𝑘 = 1, . . . , 𝑁) of sizes
𝑟𝑘+1 × 𝑟𝑘, 𝑟𝑘+1 × 𝑛𝑘,𝑚𝑘 × 𝑟𝑘,𝑚𝑘 × 𝑛𝑘, respectively. The boundary conditions are
determined by the matrices 𝑀1,𝑀2 of sizes 𝑟1 × 𝑟1, 𝑟1 × 𝑟𝑁+1, respectively.

The system (16.25) is said to have well-posed boundary conditions if the
homogeneous system{

𝑓𝑘+1 = 𝐸(𝑘)𝑓𝑘, 𝑘 = 1, . . . , 𝑁 − 1,

𝑀1𝑓1 +𝑀2𝑓𝑁+1 = 0,
(16.26)

has only the trivial solution. It is easy to see that solution of (16.26) satisfies the
relations

𝑓𝑘 = 𝐸
>
𝑘,0𝑓1, 𝑘 = 1, . . . , 𝑁 + 1. (16.27)

In particular, 𝑓𝑁+1 = 𝐸
>
𝑁+1,0𝑓1 and the boundary conditions yield

(𝑀1 +𝑀2𝐸
>
𝑁+1,0)𝑓1 = 0. (16.28)

It follows that the system (16.25) is well posed if and only if the 𝑟1 × 𝑟1 matrix
𝑀 = 𝑀1 +𝑀2𝐸

>
𝑁+1,0 is invertible. Indeed, if det𝑀 ∕= 0, then 𝑓1 = 0 and by

virtue of (16.27) the system (16.26) has only the trivial solution. If (16.26) has
only the trivial solution, then (16.28) has only the trivial solution, which implies
invertibility of 𝑀 .

In the case of well-posed boundary conditions the output 𝑦 = (𝑦(𝑘))𝑁𝑘=1 is
uniquely determined by the input 𝑥 = (𝑥(𝑘))𝑁𝑘=1 . Hence a linear operator 𝐴 such
that 𝑦 = 𝐴𝑥 is defined. The operator 𝐴 is called the input-output operatorof the
system (16.25). We derive explicit formulas for these operators.
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Theorem 16.6. Let there be given a system (16.25) with coefficients 𝐸(𝑘), 𝐵(𝑘),
𝐶(𝑘), 𝐷(𝑘) (𝑘 = 1, . . . , 𝑁) and 𝑀1,𝑀2, which are matrices of sizes 𝑟𝑘+1 ×
𝑟𝑘, 𝑟𝑘+1 × 𝑛𝑘,𝑚𝑘 × 𝑟𝑘,𝑚𝑘 × 𝑛𝑘 and 𝑟1 × 𝑟1, 𝑟1 × 𝑟𝑁+1, respectively, and with
well-posed boundary conditions.

Then the matrix 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 of the input-output operator of the system
is given by the formula

𝐴𝑖𝑗 =

⎧⎨⎩
𝑆𝑖𝑗 + 𝐶(𝑖)𝐸

>
𝑖𝑗𝐵(𝑗),1 ≤ 𝑗 < 𝑖 ≤ 𝑁,

𝐷(𝑖) + 𝑆𝑖𝑖, 1 ≤ 𝑖 = 𝑗 ≤ 𝑁,
𝑆𝑖𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑁,

(16.29)

where

𝑆𝑖𝑗 = −𝐶(𝑖)𝐸>𝑖0𝑀−1𝑀2𝐸
>
𝑁+1,𝑗𝐵(𝑗), (16.30)

with

𝑀 =𝑀1 +𝑀2𝐸
>
𝑁+1,0. (16.31)

Moreover, the matrix 𝐴 has lower quasiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . ,
𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of orders 𝑟𝑘+1 (𝑘 = 0, . . . , 𝑁)
given by the formulas

𝑝(𝑖) = 𝐶(𝑖), 𝑖 = 2, . . . , 𝑁,

𝑞(𝑗) = (𝐼 − 𝐸>𝑗+1,0𝑀
−1𝑀2𝐸

>
𝑁+1,𝑗)𝐵(𝑗), 𝑗 = 1, . . . , 𝑁 − 1,

𝑎(𝑘) = 𝐸(𝑘), 𝑘 = 2, . . . , 𝑁 − 1,

(16.32)

upper semiseparable generators 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁) of
order 𝑟𝑁+1 given by the formulas

𝑔(𝑖) = −𝐶(𝑖)𝐸>𝑖0𝑀−1𝑀2, 𝑖 = 1, . . . , 𝑁 − 1; ℎ(𝑗) = 𝐸>𝑁+1,𝑗𝐵(𝑗), 𝑗 = 2, . . . , 𝑁,
(16.33)

and diagonal entries

𝑑(𝑘) = −𝐶(𝑘)𝐸>𝑘0𝑀−1𝑀2𝐸
>
𝑁+1,𝑘𝐵(𝑘) +𝐷(𝑘), 𝑘 = 1, . . . , 𝑁. (16.34)

Proof. One can check by induction that the solution of the first equation in (16.25)
is given by

𝑓𝑘 = 𝐸
>
𝑘0𝑓1 +

𝑘−1∑
𝑗=1

𝐸>𝑘𝑗𝐵(𝑗)𝑥(𝑗), 𝑘 = 1, . . . , 𝑁 + 1. (16.35)

Indeed, for 𝑘 = 1 the relation (16.35) follows directly from 𝐸>1,0 = 𝐼. Let for
some 𝑘, 𝑘 ≥ 1, (16.35) hold. Using the first equation in (16.25) and the equalities
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𝐸(𝑘)𝐸>𝑘0 = 𝐸
>
𝑘+1,0, 𝐸

>
𝑘+1,𝑘 = 𝐼, 𝐸

>
𝑘+1,𝑗 = 𝐸(𝑘)𝐸

>
𝑘,𝑗 one gets

𝑓𝑘+1 = 𝐸(𝑘)(𝐸
>
𝑘0𝑓1 +

𝑘−1∑
𝑗=1

𝐸>𝑘𝑗𝐵(𝑗)𝑥(𝑗)) +𝐵(𝑘)𝑥(𝑘)

= 𝐸>𝑘+1,0𝑓1 +

𝑘−1∑
𝑗=1

𝐸>𝑘+1,𝑗𝐵(𝑗)𝑥(𝑗) + 𝐸
>
𝑘+1,𝑘𝐵(𝑘)𝑥(𝑘)

= 𝐸>𝑘+1,0𝑓1 +

𝑘∑
𝑗=1

𝐸>𝑘+1,𝑗𝐵(𝑗)𝑥(𝑗).

Setting in (16.35) 𝑘 = 𝑁 + 1 and using the boundary conditions of (16.28)
and the definition (16.31) one gets

𝑓1 = −𝑀−1𝑀2

⎛⎝ 𝑁∑
𝑗=1

𝐸>𝑁+1,𝑗𝐵(𝑗)𝑥(𝑗)

⎞⎠ .
Inserting this formula for 𝑓1 into (16.35) and using the second identity in (16.25)
one gets

𝑦(𝑖) = − 𝐶(𝑖)𝐸>𝑖0𝑀−1𝑀2

⎛⎝ 𝑁∑
𝑗=1

𝐸>𝑁+1,𝑗𝐵(𝑗)𝑥(𝑗)

⎞⎠
+ 𝐶(𝑖)

𝑖−1∑
𝑗=1

𝐸>𝑖𝑗𝐵(𝑗)𝑥(𝑗) +𝐷(𝑖)𝑥(𝑖), 𝑖 = 1, . . . , 𝑁 .

This means that 𝑦(𝑖) =
∑𝑁
𝑗=1 𝐴𝑖𝑗𝑥(𝑗), 𝑗 = 1, . . . , 𝑁 , where 𝐴𝑖𝑗 is given by (16.29).

Thus the matrix 𝐴 has the desired representation (16.29).

Now we check that the elements defined in (16.32)–(16.34) are generators of
the matrix 𝐴.

For 𝑖 > 𝑗, using the first formula from (16.29) and the identity 𝐸>𝑖0 =
𝐸>𝑖𝑗𝐸

>
𝑗+1,0 one gets

𝐴𝑖𝑗 = 𝐶(𝑖)𝐸
>
𝑖𝑗𝐵(𝑗)− 𝐶(𝑖)𝐸>𝑖𝑗𝐸>𝑗+1,0𝑀

−1𝑀2𝐸
>
𝑁+1,𝑗𝐵(𝑗),

which implies

𝐴𝑖𝑗 = 𝐶(𝑖)𝐸
>
𝑖𝑗 [(𝐼 − 𝐸>𝑗+1,0𝑀

−1𝑀2𝐸
>
𝑁+1,𝑗)𝐵(𝑗)], 1 ≤ 𝑗 < 𝑖 ≤ 𝑁.

Hence, the matrices defined in (16.32) are lower quasiseparable generators of the
matrix 𝐴.

For 𝑖 < 𝑗, using the third formula in (16.29) one gets

𝐴𝑖𝑗 = (−𝐶(𝑖)𝐸>𝑖0𝑀−1𝑀2)(𝐸
>
𝑁+1,𝑗𝐵(𝑗)), 1 ≤ 𝑖 < 𝑗 ≤ 𝑁.
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Hence, the matrices defined in (16.33) are upper quasiseparable generators of the
matrix 𝐴.

The formula (16.34) for diagonal entries follows directly from the second
formula in (16.29). □
Corollary 16.7. Under the conditions of Theorem 16.6, let 𝑟𝐿1 , 𝑟

𝐿
𝑁+1, 𝑟𝑈 be nonneg-

ative integers such that 𝑟𝐿1 + 𝑟𝑈 = 𝑟1, 𝑟
𝐿
𝑁+1 + 𝑟𝑈 = 𝑟𝑁+1, and let the matrices

𝑀1,𝑀2 in the boundary conditions in (16.25) have the form

𝑀1 =

(
𝐼𝑟𝐿1 0

0 0𝑟𝑈×𝑟𝑈

)
, 𝑀2 =

(
0𝑟𝐿1 ×𝑟𝐿𝑁+1

0

0 𝐼𝑟𝑈

)
. (16.36)

Then the matrices 𝑆𝑖𝑗 in (16.30) have the form

𝑆𝑖𝑗 = 𝑔(𝑖)ℎ(𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑁 (16.37)

with

𝑔(𝑖) = −(𝐶(𝑖)𝐸>𝑖0)(:, 𝑟𝐿1 + 1 : 𝑟𝐿1 + 𝑟𝑈 ), 𝑖 = 1, . . . , 𝑁 − 1,

ℎ(𝑗) = 𝐸−1
22 (𝐸

>
𝑁+1,𝑗𝐵(𝑗))(𝑟

𝐿
𝑁+1 + 1 : 𝑟𝐿𝑁+1 + 𝑟𝑈 , :), 𝑗 = 2, . . . , 𝑁,

(16.38)

where
𝐸22 = 𝐸

>
𝑁+1,0(𝑟

𝐿
𝑁+1 + 1 : 𝑟𝐿𝑁+1 + 𝑟𝑈 , 𝑟

𝐿
1 + 1 : 𝑟𝐿1 + 𝑟𝑈 ).

Proof. For the 𝑟𝑁+1 × 𝑟1 matrix 𝐸>𝑁+1,0 consider the partition

𝐸>𝑁+1,0 =

(
𝐸11 𝐸12

𝐸21 𝐸22

)
,

with the matrices 𝐸11, 𝐸12, 𝐸21, 𝐸22 of sizes 𝑟
𝐿
𝑁+1×𝑟𝐿1 , 𝑟𝐿𝑁+1×𝑟𝑈 , 𝑟𝑈×𝑟𝐿1 , 𝑟𝑈×𝑟𝑈 ,

respectively. Inserting this expression and the expressions (16.36) in (16.31) one
gets

𝑀 =

(
𝐼𝑟𝐿1 0

𝐸21 𝐸22

)
and furthermore

𝑀−1𝑀2 =

(
0 0
0 𝐸−1

22

)
.

Inserting this expression in (16.30) one obtains the representation

𝑆𝑖𝑗 = −𝐶(𝑖)𝐸>𝑖0
(

0 0
0 𝐸−1

22

)
𝐸>𝑁+1,𝑗𝐵(𝑗) = 𝑔(𝑖)ℎ(𝑗),

with the matrices 𝑔(𝑖), ℎ(𝑗) determined in (16.38). □

Remark. The matrices 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁) defined in
(16.38) are upper semiseparable generators of order 𝑟𝑈 of the matrix 𝐴. This
follows from (16.37) and the last formula in (16.29).
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§16.3 Inversion of matrices with quasiseparable/

semiseparable representations
via one-direction systems

Here we derive inversion formulas for matrices of input-output operators of one-
sided systems.

Theorem 16.8. Let there be given a system⎧⎨⎩
𝑓𝑘+1 = 𝐸(𝑘)𝑓𝑘 +𝐵(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑦(𝑘) = 𝐶(𝑘)𝑓𝑘 +𝐷(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑀1𝑓1 +𝑀2𝑓𝑁+1 = 0,

(16.39)

with coefficients 𝐸(𝑘), 𝐵(𝑘), 𝐶(𝑘), 𝐷(𝑘) (𝑘 = 1, . . . , 𝑁) and 𝑀1,𝑀2 which are
matrices of sizes 𝑟𝑘+1 × 𝑟𝑘, 𝑟𝑘+1 ×𝑚𝑘,𝑚𝑘 × 𝑟𝑘,𝑚𝑘 ×𝑚𝑘 and 𝑟1 × 𝑟1, 𝑟1 × 𝑟𝑁+1,
respectively, and with well-posed boundary conditions. Assume that all the matrices
𝐷(𝑘) (𝑘 = 1, . . . , 𝑁) are invertible. Define the matrices

𝑈(𝑘) = 𝐸(𝑘)−𝐵(𝑘)(𝐷(𝑘))−1𝐶(𝑘), 𝑘 = 1, . . . , 𝑁.

The matrix 𝐴 of the input-output operator of the system is invertible if and
only if the matrix

𝑀× =𝑀1 +𝑀2𝑈
>
𝑁+1,0 (16.40)

is invertible. Furthermore, if this is the case the inverse matrix 𝐴−1 is given by
the formula

𝐴−1(𝑖, 𝑗) =

⎧⎨⎩
𝑆×𝑖𝑗 − (𝐷(𝑖))−1𝐶(𝑖)𝑈>𝑖𝑗𝐵(𝑗)(𝐷(𝑗))

−1, 1 ≤ 𝑗 < 𝑖 ≤ 𝑁,
(𝐷(𝑖))−1 + 𝑆×𝑖𝑖 , 1 ≤ 𝑖 = 𝑗 ≤ 𝑁,
𝑆×𝑖𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑁,

(16.41)

where

𝑆×𝑖𝑗 = (𝐷(𝑖))−1𝐶(𝑖)𝑈>𝑖0(𝑀
×)−1𝑀2𝑈

>
𝑁+1,𝑗𝐵(𝑗)(𝐷(𝑗))

−1. (16.42)

Proof. Assume that the matrix 𝑀× is invertible. Let 𝐴𝑥 = 0. In this case the
system (16.39) takes the form⎧⎨⎩

𝑓𝑘+1 = 𝐸(𝑘)𝑓𝑘 +𝐵(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

0 = 𝐶(𝑘)𝑓𝑘 +𝐷(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑀1𝑓1 +𝑀2𝑓𝑁+1 = 0.

(16.43)

From the second equation of this system one gets

𝑥(𝑘) = −(𝐷(𝑘))−1𝐶(𝑘)𝑓𝑘, 𝑘 = 1, . . . , 𝑁. (16.44)
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Substituting this in the second equation in (16.43) one gets{
𝑓𝑘+1 = 𝑈(𝑘)𝑓𝑘, 𝑘 = 1, . . . , 𝑁,

𝑀1𝑓1 +𝑀2𝑓𝑁+1 = 0.

It follows that (𝑀1+𝑀2𝑈
>
𝑁+1,0)𝑓1 = 0, and since𝑀× is invertible, one gets 𝑓1 = 0

and therefore 𝑓𝑘 = 0, 𝑘 = 1, . . . , 𝑁 . Now using (16.44) one gets 𝑥(𝑘) = 0, 𝑘 =
1, . . . , 𝑁 , and therefore the matrix 𝐴 is invertible.

Assume that the matrix 𝐴 is invertible. Take 𝑓1 such that 𝑀×𝑓1 = 0. We
need to show that 𝑓1 = 0. Put 𝑓𝑘 = 𝑈

>
𝑘,0𝑓1, 𝑘 = 1, . . . , 𝑁 +1 and define 𝑥(𝑘), 𝑘 =

1, . . . , 𝑁 via (16.44). One can easily check that the relations (16.43) hold. Hence,
𝐴((𝑥(𝑘))𝑁𝑘=1) = 0. Since 𝐴 is invertible, this implies that 𝑥(𝑘) = 0, 𝑘 = 1, . . . , 𝑁
and so {

𝑓𝑘+1 = 𝐸(𝑘)𝑓𝑘, 𝑘 = 1, . . . , 𝑁,

𝑀1𝑓1 +𝑀2𝑓𝑁+1 = 0.
(16.45)

But the boundary conditions of (16.39) are well posed. Therefore, (16.45) has only
the trivial solution. In particular, 𝑓1 = 0.

Now changing the input and the output in the system (16.39) one obtains
the system⎧⎨⎩

𝑓𝑘+1 = 𝑈(𝑘)𝑓𝑘 +𝐵(𝑘)(𝐷(𝑘))
−1𝑦(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑥(𝑘) = −(𝐷(𝑘))−1𝐶(𝑘)𝑓𝑘 + (𝐷(𝑘))−1𝑦(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑀1𝑓1 +𝑀2𝑓𝑁+1 = 0.

(16.46)

Let the matrix 𝑀× be invertible. This implies that the system (16.46) has well-
posed boundary conditions and hence the input-output operator of this system,
which is 𝐴−1, is defined. Furthermore, applying the formulas (16.29), (16.30) to
the system (16.46) one obtains the formulas (16.41), (16.42). □

Another proof of Theorem 14.4. By Theorem 16.1, 𝐴 is the matrix of the input-
output operator of the discrete system⎧⎨⎩

𝑓𝑘+1 = 𝐸(𝑘)𝑓𝑘 +𝐵(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑦(𝑘) = 𝐶(𝑘)𝑓𝑘 +𝐷(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝑀1𝑓1 +𝑀2𝑓𝑁+1 = 0,

(16.47)

with the coefficients 𝐸(𝑘), 𝐵(𝑘), 𝐶(𝑘), 𝐷(𝑘) defined in (14.22), (14.21) and

𝑀1 =

(
𝐼𝑟𝐿0 0

0 0𝑟𝑈×𝑟𝑈

)
, 𝑀2 =

(
0𝑟𝐿0 ×𝑟𝐿𝑁 0

0 𝐼𝑟𝑈

)
.

The matrix 𝑀× from (16.40) has the form

𝑀× =

(
𝐼𝑟𝐿0 0

0 0𝑟𝑈×𝑟𝑈

)
+

(
0𝑟𝐿0 ×𝑟𝐿𝑁 0

0 𝐼𝑟𝑈

)
𝑈>𝑁+1,0 =

(
𝐼𝑟𝐿0 0

∗ 𝑈×

)
,
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with the matrix 𝑈× defined in (14.24). Hence, by Theorem 16.8, the matrix 𝐴 is
invertible if and only if the matrix 𝑈× is invertible. Furthermore, one gets

(𝑀×)−1𝑀2 = 𝐾0(𝑈
×)−1𝐾𝑇

𝑁 .

Inserting this in (16.42) and using also (16.41) one obtains the formulas (14.25)–
(14.27). □

§16.4 Comments

The method presented in this chapter was developed by I. Gohberg and M.A.
Kaashoek in [37].



Chapter 17

Multiplication of Matrices

This chapter considers the product 𝐴 = 𝐴1𝐴2 of block matrices 𝐴1 = {𝐴(1)
𝑖𝑗 }𝑁𝑖,𝑗=1

and 𝐴2 = {𝐴(2)
𝑖𝑗 }𝑁𝑖,𝑗=1 with block entries of compatible sizes𝑚𝑖×𝜈𝑗 and 𝜈𝑖×𝑛𝑗. One

assumes that quasiseparable generators of the factors are given and one derives
formulas and algorithms to compute quasiseparable generators of the product.

The product of two matrices is seen as the input-output operator of the
cascade system obtained from the two systems whose input-output operator are
the two factors. The general case of the product is treated by using the results for
the product of lower/upper triangular matrices.

The computational complexity of the product is 𝑂(𝑁) and it can further
be improved, although keeping the same order, for matrices with diagonal plus
semiseparable representations.

§17.1 The rank numbers of the product

We start with the estimate of rank numbers of the product of two matrices via
the rank numbers of the factors.

Lemma 17.1. Let 𝐴1and 𝐴2 be block matrices with lower and upper rank numbers
𝜌𝐿𝑘 , 𝜌

𝑈
𝑘 (𝑘 = 1, . . . , 𝑁 − 1) and 𝑠𝐿𝑘 , 𝑠

𝑈
𝑘 (𝑘 = 1, . . . , 𝑁 − 1).

Then the rank numbers 𝑡𝐿𝑘 , 𝑡
𝑈
𝑘 (𝑘 = 1, . . . , 𝑁 − 1) of the product 𝐴 = 𝐴1𝐴2

satisfy the inequalities

𝑡𝐿𝑘 ≤ 𝜌𝐿𝑘 + 𝑠𝐿𝑘 , 𝑡𝑈𝑘 ≤ 𝜌𝑈𝑘 + 𝑠𝑈𝑘 , 𝑘 = 1, . . . , 𝑁 − 1.

Proof. One has

𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘) = 𝐴1(𝑘 + 1 : 𝑁, :)𝐴2(:, 1 : 𝑘)

= 𝐴1(𝑘 + 1 : 𝑁, 1 : 𝑘)𝐴2(1 : 𝑘, 1 : 𝑘)

+𝐴1(𝑘 + 1 : 𝑁, 𝑘 + 1 : 𝑁)𝐴2(𝑘 + 1 : 𝑁, 1 : 𝑘),

𝑘 = 1, . . . , 𝑁 − 1.

309 Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1  
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory: 
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_17, © Springer Basel 2014
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From here and the equalities

𝑡𝐿𝑘 = rank𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘),

𝜌𝐿𝑘 = rank𝐴1(𝑘 + 1 : 𝑁, 1 : 𝑘),

𝑠𝐿𝑘 = rank𝐴2(𝑘 + 1 : 𝑁, 1 : 𝑘)

it follows that 𝑡𝐿𝑘 ≤ 𝜌𝐿𝑘 + 𝑠𝐿𝑘 , 𝑘 = 1, . . . , 𝑁 − 1.

Applying the obtained result to transposed matrices one obtains the esti-
mates for the upper rank numbers. □

Lemma 17.1 implies that one can obtain generators of the product with orders
not greater than the sum of the corresponding orders of the factors.

§17.2 Multiplication of triangular matrices

We start with a detailed study of products of triangular matrices.

Theorem 17.2. Let 𝐴1 be a block lower triangular matrix with lower quasiseparable
generators 𝑝(1)(𝑘), 𝑞(1)(𝑘), 𝑎(1)(𝑘) (𝑘 = 1, . . . , 𝑁) of orders 𝑟𝐿𝑘 (𝑘 = 0, . . . , 𝑁) and
diagonal entries 𝑑(1)(𝑘) (𝑘 = 1, . . . , 𝑁), and let 𝐴2 be a block lower triangular
matrix with lower quasiseparable generators 𝑝(2)(𝑘), 𝑞(2)(𝑘), 𝑎(2)(𝑘) (𝑘 = 1, . . . , 𝑁)
of orders 𝑠𝐿𝑘 (𝑘 = 0, . . . , 𝑁) and diagonal entries 𝑑(2)(𝑘) (𝑘 = 1, . . . , 𝑁).

Then the product 𝐴 = 𝐴1𝐴2 is a block lower triangular matrix with lower
quasiseparable generators

𝑝(𝑘) =
(
𝑝(1)(𝑘) 𝑑(1)(𝑘)𝑝(2)(𝑘)

)
, 𝑞(𝑘) =

(
𝑞(1)(𝑘)𝑑(2)(𝑘)
𝑞(2)(𝑘)

)
,

𝑎(𝑘) =

(
𝑎(1)(𝑘) 𝑞(1)(𝑘)𝑝(2)(𝑘)

0 𝑎(2)(𝑘)

)
, 𝑘 = 1, . . . , 𝑁

(17.1)

of orders 𝑟𝐿𝑘 + 𝑠𝐿𝑘 (𝑘 = 0, . . . , 𝑁) and diagonal entries

𝑑(𝑘) = 𝑑(1)(𝑘)𝑑(2)(𝑘), 𝑘 = 1, . . . , 𝑁. (17.2)

Proof. By Corollary 13.5, the matrix 𝐴2 is a matrix of the input-output operator
of the system⎧⎨⎩

𝜒
(2)
𝑘+1 = 𝑎

(2)(𝑘)𝜒
(2)
𝑘 + 𝑞(2)(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁 − 1,

𝑢(𝑘) = 𝑝(2)(𝑘)𝜒
(2)
𝑘 + 𝑑(2)(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝜒
(2)
1 = 0.

(17.3)

Here the vector 𝑥 = (𝑥(𝑘))𝑁𝑘=1 is the input of the system and the vector 𝑢 =
(𝑢(𝑘))𝑁𝑘=1 is the output. Similarly, by Corollary 13.5, 𝐴1 is a matrix of the input-
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output operator of the system⎧⎨⎩
𝜒
(1)
𝑘+1 = 𝑎

(1)(𝑘)𝜒
(1)
𝑘 + 𝑞(1)(𝑘)𝑢(𝑘), 𝑘 = 1, . . . , 𝑁 − 1,

𝑦(𝑘) = 𝑝(1)(𝑘)𝜒
(1)
𝑘 + 𝑑(1)(𝑘)𝑢(𝑘), 𝑘 = 1, . . . , 𝑁,

𝜒
(1)
1 = 0.

(17.4)

Here we take the vector 𝑢 to be the input of the system (17.4) and the vector
𝑦 = (𝑦(𝑘))𝑁𝑘=1 is the output.

Substituting the second expression from (17.3) into the system (17.4) one
obtains the system⎧⎨⎩

𝜒
(1)
𝑘+1 = 𝑎

(1)(𝑘)𝜒
(1)
𝑘 + 𝑞(1)(𝑘)𝑝(2)(𝑘)𝜒

(2)
𝑘 + 𝑞(1)(𝑘)𝑑(2)(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁 − 1,

𝜒
(2)
𝑘+1 = 𝑎

(2)(𝑘)𝜒
(2)
𝑘 + 𝑞(2)(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁 − 1,

𝑦(𝑘) = 𝑝(1)(𝑘)𝜒
(1)
𝑘 + 𝑑(1)(𝑘)𝑝(2)(𝑘)𝜒

(2)
𝑘 + 𝑑(1)(𝑘)𝑑(2)(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝜒
(1)
1 = 0, 𝜒

(2)
1 = 0,

(17.5)
with the input 𝑥 and the output 𝑦. The product 𝐴 = 𝐴1𝐴2 is a matrix of the input-
output operator of the system (17.5). Introducing the new state space variable

𝜒𝑘 =

(
𝜒
(1)
𝑘

𝜒
(2)
𝑘

)
, 𝑘 = 1, . . . , 𝑁

and the elements 𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘), 𝑑(𝑘) by the formulas (17.1), (17.2), we represent
the system (17.5) in the form⎧⎨⎩

𝜒𝑘+1 = 𝑎(𝑘)𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁 − 1,

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑘 + 𝑑(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝜒1 = 0.

By Corollary 13.5, the elements 𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘), 𝑑(𝑘) defined in (17.1), (17.2) are
lower quasiseparable generators and the diagonal entries of the lower triangu-
lar matrix 𝐴. From (17.1) it follows that the orders of these generators equal
𝑟𝐿𝑘 + 𝑟𝑈𝑘 . □

Applying Theorem 17.2 to transposed matrices we obtain a similar result for
the product of upper triangular matrices.

Theorem 17.3. Let 𝐴1 be a block upper triangular matrix with upper quasiseparable
generators 𝑔(1)(𝑘), ℎ(1)(𝑘), 𝑏(1)(𝑘) (𝑘 = 1, . . . , 𝑁) of orders 𝑟𝑈𝑘 (𝑘 = 0, . . . , 𝑁)
and diagonal entries 𝑑(1)(𝑘) (𝑘 = 1, . . . , 𝑁) and let 𝐴2 be a block upper triangular
matrix with upper quasiseparable generators 𝑔(2)(𝑘), ℎ(2)(𝑘), 𝑏(2)(𝑘) (𝑘 = 1, . . . , 𝑁)
of orders 𝑠𝑈𝑘 (𝑘 = 0, . . . , 𝑁) and diagonal entries 𝑑(2)(𝑘) (𝑘 = 1, . . . , 𝑁).
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Then the product 𝐴 = 𝐴1𝐴2 is a block upper triangular matrix with a set of
upper quasiseparable generators

𝑔(𝑘) =
(
𝑑(1)(𝑘)𝑔(2)(𝑘) 𝑔(1)(𝑘)

)
, ℎ(𝑘) =

(
ℎ(2)(𝑘)

ℎ(1)(𝑘)𝑑(2)(𝑘)

)
,

𝑏(𝑘) =

(
𝑏(2)(𝑘) 0

ℎ(1)(𝑘)𝑔(2)(𝑘) 𝑏(1)(𝑘)

)
, 𝑘 = 1, . . . , 𝑁

(17.6)

of orders 𝑟𝑈𝑘 + 𝑠𝑈𝑘 (𝑘 = 0, . . . , 𝑁) and diagonal entries

𝑑(𝑘) = 𝑑(1)(𝑘)𝑑(2)(𝑘), 𝑘 = 1, . . . , 𝑁. (17.7)

Next we obtain quasiseparable generators of a product of a lower triangular
matrix and an upper triangular matrix with orders equal to the corresponding
orders of the factors.

Theorem 17.4. Let 𝐴1 be a block lower triangular matrix with lower quasiseparable
generators 𝑝(1)(𝑘), 𝑞(1)(𝑘), 𝑎(1)(𝑘) (𝑘 = 1, . . . , 𝑁) of orders 𝑟𝐿𝑘 (𝑘 = 0, . . . , 𝑁) and
diagonal entries 𝑑(1)(𝑘) (𝑘 = 1, . . . , 𝑁) and let 𝐴2 be a block upper triangular
matrix with upper quasiseparable generators 𝑔(2)(𝑘), ℎ(2)(𝑘), 𝑏(2)(𝑘) (𝑘 = 1, . . . , 𝑁)
of orders 𝑟𝑈𝑘 (𝑘 = 0, . . . , 𝑁) and diagonal entries 𝑑(2)(𝑘) (𝑘 = 1, . . . , 𝑁).

Then the product 𝐴 = 𝐴1𝐴2 is a block matrix with quasiseparable genera-
tors 𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘); 𝑔(𝑘), ℎ(𝑘), 𝑏(𝑘); 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁) of orders 𝑟𝐿𝑘 , 𝑟

𝑈
𝑘 (𝑘 =

0, . . . , 𝑁), where the generators 𝑝(𝑘), 𝑎(𝑘), 𝑏(𝑘), ℎ(𝑘) coincide with the correspond-
ing generators of the factors, i.e.,

𝑝(𝑘) = 𝑝(1)(𝑘), ℎ(𝑘) = ℎ(2)(𝑘), 𝑎(𝑘) = 𝑎(1)(𝑘), 𝑏(𝑘) = 𝑏(2)(𝑘), 𝑘 = 1, . . . , 𝑁,
(17.8)

and the generators 𝑞(𝑘), 𝑔(𝑘), 𝑑(𝑘) are determined via the recursion relations

𝛽0 = 0𝑟𝐿0 ×𝑟𝑈0 , (17.9)(
𝑑(𝑘) 𝑔(𝑘)
𝑞(𝑘) 𝛽𝑘

)
=

(
𝑝(1)(𝑘) 𝑑(1)(𝑘)
𝑎(1)(𝑘) 𝑞(1)(𝑘)

)(
𝛽𝑘−1 0
0 𝐼

)(
ℎ(2)(𝑘) 𝑏(2)(𝑘)
𝑑(2)(𝑘) 𝑔(2)(𝑘)

)
,

𝑘 = 1, . . . , 𝑁, (17.10)

with the auxiliary variables 𝛽𝑘, which are 𝑟
𝐿
𝑘 × 𝑟𝑈𝑘 matrices.

Proof. By Corollary 13.6,𝐴2 is a matrix of the input-output operator of the system⎧⎨⎩
𝜂𝑘−1 = 𝑏

(2)(𝑘)𝜂𝑘 + ℎ
(2)(𝑘)𝑥(𝑘), 𝑘 = 𝑁, . . . , 2

𝑢(𝑘) = 𝑔(2)(𝑘)𝜂𝑘 + 𝑑
(2)(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁

𝜂𝑁 = 0.

(17.11)

Here the vector 𝑥 = (𝑥(𝑘))𝑁𝑘=1 is the input of the system and the vector 𝑢 =
(𝑢(𝑘))𝑁𝑘=1 is the output. By Corollary 13.5, 𝐴1 is a matrix of the input output
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operator of the system⎧⎨⎩
𝜒𝑘+1 = 𝑎

(1)(𝑘)𝜒𝑘 + 𝑞
(1)(𝑘)𝑢(𝑘), 𝑘 = 1, . . . , 𝑁 − 1,

𝑦(𝑘) = 𝑝(1)(𝑘)𝜒𝑘 + 𝑑
(1)(𝑘)𝑢(𝑘), 𝑘 = 1, . . . , 𝑁,

𝜒1 = 0.

(17.12)

Here we take the vector 𝑢 to be input of the system (17.12) and the vector 𝑦 =
(𝑦(𝑘))𝑁𝑘=1 is the output. We represent the systems (17.11) and (17.12) in the form

𝜂𝑁 = 0,

(
𝜂𝑘−1

𝑢(𝑘)

)
=

(
ℎ(2)(𝑘) 𝑏(2)(𝑘)

𝑑(2)(𝑘) 𝑔(2)(𝑘)

)(
𝑥(𝑘)
𝜂𝑘

)
, 𝑘 = 𝑁, . . . , 1, (17.13)

and

𝜒1 = 0,

(
𝑦(𝑘)
𝜒𝑘+1

)
=

(
𝑝(1)(𝑘) 𝑑(1)(𝑘)
𝑎(1)(𝑘) 𝑞(1)(𝑘)

)(
𝜒𝑘
𝑢(𝑘)

)
, 𝑘 = 1, . . . , 𝑁. (17.14)

Here by definition 𝜂0 = 𝑏(2)(1)𝜂1 + ℎ
(2)(1)𝑥(1) and 𝜒𝑁+1 = 𝑎(1)(𝑁)𝜒𝑁 +

𝑞(1)(𝑁)𝑢(𝑁). Next we introduce the new state space variable

𝜒′𝑘 = 𝜒𝑘 − 𝛽𝑘−1𝜂𝑘−1, 𝑘 = 1, . . . , 𝑁, (17.15)

with 𝛽𝑘 defined in (17.9), (17.10). Using (17.9) one obtains the boundary condition

𝜒′1 = 0. (17.16)

Moreover, substituting the expressions (17.15) in (17.14) one gets(
𝑦(𝑘)

𝜒′𝑘+1 + 𝛽𝑘𝜂𝑘

)
=

(
𝑝(1)(𝑘) 𝑑(1)(𝑘)

𝑎(1)(𝑘) 𝑞(1)(𝑘)

)(
𝜒′𝑘 + 𝛽𝑘−1𝜂𝑘−1

𝑢(𝑘)

)
, 𝑘 = 1, . . . , 𝑁,

which implies(
𝑦(𝑘)

𝜒′𝑘+1 + 𝛽𝑘𝜂𝑘

)
=

(
𝑝(1)(𝑘)
𝑎(1)(𝑘)

)
𝜒′𝑘 +

(
𝑝(1)(𝑘) 𝑑(1)(𝑘)
𝑎(1)(𝑘) 𝑞(1)(𝑘)

)(
𝛽𝑘−1 0
0 𝐼

)(
𝜂𝑘−1

𝑢(𝑘)

)
,

𝑘 = 1, . . . , 𝑁.

Using the equalities (17.13) and (17.10) one obtains(
𝑦(𝑘)

𝜒′𝑘+1 + 𝛽𝑘𝜂𝑘

)
=

(
𝑝(1)(𝑘)

𝑎(1)(𝑘)

)
𝜒′𝑘 +

(
𝑑(𝑘) 𝑔(𝑘)
𝑞(𝑘) 𝛽𝑘

)(
𝑥(𝑘)
𝜂𝑘

)
,

𝑘 = 1, . . . , 𝑁,

whence
𝑦(𝑘) = 𝑝(𝑘)𝜒′𝑘 + 𝑔(𝑘)𝜂𝑘 + 𝑑(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁 (17.17)

and
𝜒′𝑘+1 = 𝑎(𝑘)𝜒

′
𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁 − 1. (17.18)
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Combining the relations (17.11), (17.16), (17.17) and (17.18) one obtains the sys-
tem ⎧⎨⎩

𝜒′𝑘+1 = 𝑎(𝑘)𝜒
′
𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁 − 1,

𝜂𝑘−1 = 𝑏(𝑘)𝜂𝑘 + ℎ(𝑘)𝑥(𝑘), 𝑘 = 𝑁, . . . , 2,

𝑦(𝑘) = 𝑝(𝑘)𝜒′𝑘 + 𝑔(𝑘)𝜂𝑘 + 𝑑(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝜒′1 = 0, 𝜂𝑁 = 0,

with the input 𝑥 and the output 𝑦. Moreover, 𝐴 = 𝐴1𝐴2 is a matrix of the input-
output operator of this system. By Theorem 13.3, 𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘); 𝑔(𝑘), ℎ(𝑘),
𝑏(𝑘); 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁) are quasiseparable generators of the matrix 𝐴. □

A similar result is obtained for the product of upper triangular and lower
triangular matrices.

Theorem 17.5. Let 𝐴1 be a block upper triangular matrix with upper quasiseparable
generators 𝑔(1)(𝑘), ℎ(1)(𝑘), 𝑏(1)(𝑘) (𝑘 = 1, . . . , 𝑁) of orders 𝑟𝑈𝑘 (𝑘 = 0, . . . , 𝑁) and
diagonal entries 𝑑(1)(𝑘) (𝑘 = 1, . . . , 𝑁) and let 𝐴2 be a block lower triangular
matrix with lower quasiseparable generators 𝑝(2)(𝑘), 𝑞(2)(𝑘), 𝑎(2)(𝑘) (𝑘 = 1, . . . , 𝑁)
of orders 𝑟𝐿𝑘 (𝑘 = 0, . . . , 𝑁) and diagonal entries 𝑑(2)(𝑘) (𝑘 = 1, . . . , 𝑁).

Then the product 𝐴 = 𝐴1𝐴2 is a block matrix with quasiseparable genera-
tors 𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘); 𝑔(𝑘), ℎ(𝑘), 𝑏(𝑘); 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁) of orders 𝑟𝐿𝑘 , 𝑟

𝑈
𝑘 (𝑘 =

0, . . . , 𝑁), where the generators 𝑞(𝑘), 𝑎(𝑘), 𝑏(𝑘), 𝑔(𝑘) coincide with the correspond-
ing generators of the factors, i.e.,

𝑞(𝑘) = 𝑞(2)(𝑘), 𝑔(𝑘) = 𝑔(1)(𝑘), 𝑎(𝑘) = 𝑎(2)(𝑘), 𝑏(𝑘) = 𝑏(1)(𝑘), 𝑘 = 1, . . . , 𝑁
(17.19)

and the generators 𝑝(𝑘), ℎ(𝑘), 𝑑(𝑘) are determined via the recursion relations

𝛾𝑁+1 = 0𝑟𝑈𝑁×𝑟𝐿𝑁 , (17.20)(
𝛾𝑘 ℎ(𝑘)
𝑝(𝑘) 𝑑(𝑘)

)
=

(
ℎ(1)(𝑘) 𝑏(1)(𝑘)

𝑑(1)(𝑘) 𝑔(1)(𝑘)

)(
𝐼 0
0 𝛾𝑘+1

)(
𝑝(2)(𝑘) 𝑑(2)(𝑘)

𝑎(2)(𝑘) 𝑞(2)(𝑘)

)
,

𝑘 = 𝑁, . . . , 1, (17.21)

with the auxiliary variables 𝛾𝑘, which are 𝑟
𝑈
𝑘−1 × 𝑟𝐿𝑘−1 matrices.

Proof. By Corollary 13.5, the matrix 𝐴2 is a matrix of the input output operator
of the system⎧⎨⎩

𝜒𝑘+1 = 𝑎
(2)(𝑘)𝜒𝑘 + 𝑞

(2)(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁 − 1,

𝑢(𝑘) = 𝑝(2)(𝑘)𝜒𝑘 + 𝑑
(2)(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝜒1 = 0.

(17.22)

Here the vector 𝑥 = (𝑥(𝑘))𝑁𝑘=1 is the input of the system and the vector 𝑢 =
(𝑢(𝑘))𝑁𝑘=1 is the output. By Corollary 13.6, 𝐴1 is a matrix of the input-output
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operator of the system⎧⎨⎩
𝜂𝑘−1 = 𝑏

(1)(𝑘)𝜂𝑘 + ℎ
(1)(𝑘)𝑢(𝑘), 𝑘 = 𝑁, . . . , 2,

𝑦(𝑘) = 𝑔(1)(𝑘)𝜂𝑘 + 𝑑
(1)(𝑘)𝑢(𝑘), 𝑘 = 1, . . . , 𝑁,

𝜂𝑁 = 0.

(17.23)

Here we take the vector 𝑢 to be input of the system (17.23) and the vector 𝑦 =
(𝑦(𝑘))𝑁𝑘=1 is the output. We represent the systems (17.22) and (17.23) in the form

𝜒1 = 0,

(
𝑢(𝑘)
𝜒𝑘+1

)
=

(
𝑝(2)(𝑘) 𝑑(2)(𝑘)
𝑎(2)(𝑘) 𝑞(2)(𝑘)

)(
𝜒𝑘
𝑥(𝑘)

)
, 𝑘 = 1, . . . , 𝑁, (17.24)

and

𝜂𝑁 = 0,

(
𝜂𝑘−1

𝑦(𝑘)

)
=

(
ℎ(1)(𝑘) 𝑏(1)(𝑘)

𝑑(1)(𝑘) 𝑔(1)(𝑘)

)(
𝑢(𝑘)
𝜂𝑘

)
, 𝑘 = 𝑁, . . . , 2. (17.25)

Here 𝜒𝑁+1 = 𝑎(2)(𝑁)𝜒𝑁 + 𝑞(2)(𝑁)𝑥(𝑁) and 𝜂0 = 𝑏(1)(1)𝜂1 + ℎ(1)(1)𝑢(1), by
definition.

Next we introduce the new state space variable

𝜂′𝑘 = 𝜂𝑘 − 𝛾𝑘+1𝜒𝑘+1, 𝑘 = 1, . . . , 𝑁, (17.26)

with 𝛾𝑘 defined in (17.20), (17.21). Using (17.20) one obtains the boundary con-
dition

𝜂′𝑁 = 0. (17.27)

Moreover, substituting the expressions (17.26) in (17.25) one gets(
𝜂′𝑘−1 + 𝛾𝑘𝜒𝑘

𝑦(𝑘)

)
=

(
ℎ(1)(𝑘) 𝑏(1)(𝑘)
𝑑(1)(𝑘) 𝑔(1)(𝑘)

)(
𝑢(𝑘)

𝜂′𝑘 + 𝛾𝑘+1𝜒𝑘+1

)
, 𝑘 = 𝑁, . . . , 1,

which implies(
𝜂′𝑘−1 + 𝛾𝑘𝜒𝑘

𝑦(𝑘)

)
=

(
𝑏(1)(𝑘)

𝑔(1)(𝑘)

)
𝜂′𝑘 +

(
ℎ(1)(𝑘) 𝑏(1)(𝑘)

𝑑(1)(𝑘) 𝑔(1)(𝑘)

)(
𝐼 0
0 𝛾𝑘+1

)(
𝑢(𝑘)
𝜒𝑘+1

)
,

𝑘 = 𝑁, . . . , 1.

Using the equalities (17.24) and (17.21) one obtains(
𝜂′𝑘−1 + 𝛾𝑘𝜒𝑘

𝑦(𝑘)

)
=

(
𝑏(1)(𝑘)
𝑔(1)(𝑘)

)
𝜂′𝑘 +

(
𝛾𝑘 ℎ(𝑘)
𝑝(𝑘) 𝑑(𝑘)

)(
𝜒𝑘
𝑥(𝑘)

)
, 𝑘 = 𝑁, . . . , 1.

It follows that

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑘 + 𝑔(𝑘)𝜂
′
𝑘 + 𝑑(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁, (17.28)

and
𝜂′𝑘−1 = 𝑏(𝑘)𝜂

′
𝑘 + ℎ(𝑘)𝑥(𝑘), 𝑘 = 𝑁, . . . , 2. (17.29)
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Combining the relations (17.22), (17.27), (17.28) and (17.29), one obtains the
system ⎧⎨⎩

𝜒𝑘+1 = 𝑎(𝑘)𝜒𝑘 + 𝑞(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁 − 1,

𝜂′𝑘−1 = 𝑏(𝑘)𝜂
′
𝑘 + ℎ(𝑘)𝑥(𝑘), 𝑘 = 𝑁, . . . , 2,

𝑦(𝑘) = 𝑝(𝑘)𝜒𝑘 + 𝑔(𝑘)𝜂
′
𝑘 + 𝑑(𝑘)𝑥(𝑘), 𝑘 = 1, . . . , 𝑁,

𝜒1 = 0, 𝜂′𝑁 = 0,

with the input 𝑥 and the output 𝑦. Moreover, 𝐴 = 𝐴1𝐴2 is a matrix of the input-
output operator of this system. By Theorem 13.3, 𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘); 𝑔(𝑘), ℎ(𝑘),
𝑏(𝑘); 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁) are quasiseparable generators of the matrix 𝐴. □

§17.3 The general case

Here we derive formulas for quasiseparable generators of a product of two matrices
with given quasiseparable representations.

Theorem 17.6. Let 𝐴1 and 𝐴2 be two block matrices with quasiseparable generators
𝑝(1)(𝑘), 𝑞(1)(𝑘), 𝑎(1)(𝑘); 𝑔(1)(𝑘), ℎ(1)(𝑘), 𝑏(1)(𝑘); 𝑑(1)(𝑘) (𝑘 = 1, . . . , 𝑁) of orders
𝑟𝐿𝑘 , 𝑟

𝑈
𝑘 (𝑘 = 0, . . . , 𝑁) and 𝑝(2)(𝑘), 𝑞(2)(𝑘), 𝑎(2)(𝑘); 𝑔(2)(𝑘), ℎ(2)(𝑘), 𝑏(2)(𝑘); 𝑑(2)(𝑘)

(𝑘 = 1, . . . , 𝑁) of orders 𝑠𝐿𝑘 , 𝑠
𝑈
𝑘 (𝑘 = 0, . . . , 𝑁), respectively.

Then the product 𝐴 = 𝐴1𝐴2 is a block matrix with quasiseparable generators
𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘); 𝑔(𝑘), ℎ(𝑘), 𝑏(𝑘); 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁) of orders 𝑟𝐿𝑘 +𝑠

𝐿
𝑘 , 𝑟

𝑈
𝑘 +𝑠

𝑈
𝑘 (𝑘 =

0, . . . , 𝑁). These generators are determined as follows. We set 𝛽0 = 0𝑟𝐿0 ×𝑠𝑈0 and
compute recursively(

𝑑′(𝑘) 𝑔(𝑘)
𝑞(𝑘) 𝛽𝑘

)
=

(
𝑝(1)(𝑘) 0
𝑎(1)(𝑘) 𝑞(1)(𝑘)

)(
𝛽𝑘−1 0
0 𝐼

)(
ℎ(2)(𝑘) 𝑏(2)(𝑘)

0 𝑔(2)(𝑘)

)
,

𝑘 = 1, . . . , 𝑁 ; (17.30)

next we set 𝛾𝑁+1 = 0𝑟𝑈𝑁×𝑠𝐿𝑁 , and compute recursively(
𝛾𝑘 ℎ̃(𝑘)
𝑝(𝑘) 𝑑′′(𝑘)

)
=

(
ℎ(1)(𝑘) 𝑏(1)(𝑘)
𝑑(1)(𝑘) 𝑔(1)(𝑘)

)(
𝐼 0
0 𝛾𝑘+1

)(
𝑝(2)(𝑘) 𝑑(2)(𝑘)
𝑎(2)(𝑘) 𝑞(2)(𝑘)

)
,

𝑘 = 𝑁, . . . , 1. (17.31)

Here 𝛽𝑘, 𝛾𝑘 are auxiliary variables which are matrices of sizes 𝑟
𝐿
𝑘 ×𝑠𝑈𝑘 , 𝑟𝑈𝑘−1×𝑠𝐿𝑘−1.

Finally, we set

𝑝(𝑘) =
(
𝑝(1)(𝑘) 𝑝(𝑘)

)
, 𝑞(𝑘) =

(
𝑞(1)(𝑘)𝑑(2)(𝑘) + 𝑞(𝑘)

𝑞(2)(𝑘)

)
, (17.32)

𝑎(𝑘) =

(
𝑎(1)(𝑘) 𝑞(1)(𝑘)𝑝(2)(𝑘)

0 𝑎(2)(𝑘)

)
, (17.33)
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𝑔(𝑘) =
(
𝑑(1)(𝑘)𝑔(2)(𝑘) + 𝑔(𝑘) 𝑔(1)(𝑘)

)
, ℎ(𝑘) =

(
ℎ(2)(𝑘)

ℎ̃(𝑘)

)
, (17.34)

𝑏(𝑘) =

(
𝑏(2)(𝑘) 0

ℎ(1)(𝑘)𝑔(2)(𝑘) 𝑏(1)(𝑘)

)
, (17.35)

𝑑(𝑘) = 𝑑′(𝑘) + 𝑑′′(𝑘), 𝑘 = 1, . . . , 𝑁. (17.36)

Proof. For a matrix 𝐵 we denote by 𝐵𝐿, 𝐵𝐷, 𝐵𝑈 the strictly lower triangular,
the diagonal and the strictly upper triangular parts extended by zeros. One has
𝐵 = 𝐵𝐿+𝐵𝐷+𝐵𝑈 . Using these representations for the given matrices 𝐴1, 𝐴2 one
gets

𝐴 = 𝐴1𝐴2 = (𝐴
(1)
𝐿 +𝐴

(1)
𝐷 +𝐴

(1)
𝑈 )(𝐴

(2)
𝐿 +𝐴

(2)
𝐷 +𝐴

(2)
𝑈 ),

which implies

𝐴 = 𝐴
(1)
𝐿 (𝐴

(2)
𝐿 +𝐴

(2)
𝐷 ) +𝐴

(1)
𝐿 𝐴

(2)
𝑈 + (𝐴

(1)
𝐷 +𝐴

(1)
𝑈 )(𝐴

(2)
𝐿 +𝐴

(2)
𝐷 ) + (𝐴

(1)
𝐷 +𝐴

(1)
𝑈 )𝐴

(2)
𝑈 .

Consequently,

𝐴𝐿 =
(
𝐴

(1)
𝐿 (𝐴

(2)
𝐿 +𝐴

(2)
𝐷 ) +𝐴

(1)
𝐿 𝐴

(2)
𝑈 + (𝐴

(1)
𝐷 +𝐴

(1)
𝑈 )(𝐴

(2)
𝐿 +𝐴

(2)
𝐷 )

)
𝐿
, (17.37)

𝐴𝑈 =
(
𝐴

(1)
𝐿 𝐴

(2)
𝑈 + (𝐴

(1)
𝐷 +𝐴

(1)
𝑈 )(𝐴

(2)
𝐿 +𝐴

(2)
𝐷 ) + (𝐴

(1)
𝐷 +𝐴

(1)
𝑈 )𝐴

(2)
𝑈

)
𝑈
, (17.38)

𝐴𝐷 =
(
𝐴

(1)
𝐿 𝐴

(2)
𝑈 + (𝐴

(1)
𝐷 +𝐴

(1)
𝑈 )(𝐴

(2)
𝐿 +𝐴

(2)
𝐷 )

)
𝐷
. (17.39)

𝐴
(1)
𝐿 is a block lower triangular matrix with lower quasiseparable generators

𝑝(1)(𝑘), 𝑞(1)(𝑘), 𝑎(1)(𝑘) (𝑘 = 1, . . . , 𝑁) and zeros on the diagonal. 𝐴
(2)
𝐿 + 𝐴

(2)
𝐷

is a block lower triangular matrix with lower quasiseparable generators 𝑝(2)(𝑘),
𝑞(2)(𝑘), 𝑎(2)(𝑘) (𝑘 = 1, . . . , 𝑁) and diagonal entries 𝑑(2)(𝑘) (𝑘 = 1, . . . , 𝑁). By

Theorem 17.2, the matrix 𝐴
(1)
𝐿 (𝐴

(2)
𝐿 + 𝐴

(2)
𝐷 ) has lower quasiseparable generators

𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘) (𝑘 = 1, . . . , 𝑁), with 𝑝(𝑘), 𝑞(𝑘) defined by the formulas

𝑝(𝑘) =
(
𝑝(1)(𝑘) 0

)
, 𝑞(𝑘) =

(
𝑞(1)(𝑘)𝑑(2)(𝑘)

𝑞(2)(𝑘)

)
, (17.40)

and 𝑎(𝑘) defined by the formulas (17.33).

𝐴
(1)
𝐿 is a block lower triangular matrix with lower quasiseparable genera-

tors 𝑝(1)(𝑘), 𝑞(1)(𝑘), 𝑎(1)(𝑘) (𝑘 = 1, . . . , 𝑁) and zeros on the diagonal, 𝐴
(2)
𝑈 is

a block upper triangular matrix with upper quasiseparable generators 𝑔(2)(𝑘),
ℎ(2)(𝑘), 𝑏(2)(𝑘) (𝑘 = 1, . . . , 𝑁) and zeros on the diagonal. By Theorem 17.4, the

matrix 𝐴
(1)
𝐿 𝐴

(2)
𝑈 has quasiseparable generators 𝑝(1)(𝑘), 𝑞(𝑘), 𝑎(1)(𝑘); 𝑔(𝑘), ℎ(2)(𝑘),

𝑏(2)(𝑘); 𝑑′(𝑘) (𝑘 = 1, . . . , 𝑁) with 𝑞(𝑘), 𝑔(𝑘), 𝑑′(𝑘) (𝑘 = 1, . . . , 𝑁) determined via
(17.30).
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Further, 𝐴
(1)
𝐷 + 𝐴

(1)
𝑈 is a block upper triangular matrix with upper qua-

siseparable generators 𝑔(1)(𝑘), ℎ(1)(𝑘), 𝑏(1)(𝑘) (𝑘 = 1, . . . , 𝑁) and diagonal en-

tries 𝑑(1)(𝑘) (𝑘 = 1, . . . , 𝑁), 𝐴
(2)
𝐿 + 𝐴

(2)
𝐷 is a block lower triangular matrix with

lower quasiseparable generators 𝑝(2)(𝑘), 𝑞(2)(𝑘), 𝑎(2)(𝑘) (𝑘 = 1, . . . , 𝑁) and di-

agonal entries 𝑑(2)(𝑘) (𝑘 = 1, . . . , 𝑁). By Theorem 17.5, the matrix (𝐴
(1)
𝐷 +

𝐴
(1)
𝑈 )(𝐴

(2)
𝐿 +𝐴

(2)
𝐷 ) has quasiseparable generators 𝑝(𝑘), 𝑞(2)(𝑘), 𝑎(2)(𝑘); 𝑔(1)(𝑘), ℎ̃(𝑘),

𝑏(1)(𝑘); 𝑑′′(𝑘) (𝑘 = 1, . . . , 𝑁) with 𝑝(𝑘), ℎ̃(𝑘) and 𝑑′′(𝑘) determined via (17.31).

By the formula (17.39), the diagonal entries of the matrix 𝐴 are the sums of

the diagonal entries of the matrices 𝐴
(1)
𝐿 𝐴

(2)
𝑈 and (𝐴

(1)
𝐷 + 𝐴

(1)
𝑈 )(𝐴

(2)
𝐿 + 𝐴

(2)
𝐷 ) and

hence the relations (17.36) hold.

Next, by formula (17.37) one gets

𝐴(𝑖, 𝑗) = 𝑝(𝑖)𝑎>𝑖𝑗𝑞(𝑗) + 𝑝(𝑖)(𝑎
(2))>𝑖𝑗𝑞

(2)(𝑗) + 𝑝(1)(𝑖)(𝑎(1))>𝑖𝑗𝑞(𝑗), 1 ≤ 𝑗 < 𝑖 ≤ 𝑁.
(17.41)

Consider the elements 𝑝(𝑖)𝑎>𝑖𝑗𝑞(𝑗) (1 ≤ 𝑗 < 𝑖 ≤ 𝑁). Using the formulas (17.32)
one has

𝑝(𝑖)𝑎>𝑖𝑗𝑞(𝑗) =
(
𝑝(1)(𝑖) 𝑝(𝑖)

)
𝑎>𝑖𝑗

(
𝑞(1)(𝑗)𝑑(2)(𝑗) + 𝑞(𝑗)

𝑞(2)(𝑗)

)
,

which implies
𝑝(𝑖)𝑎>𝑖𝑗𝑞(𝑗) = 𝑋1 +𝑋2 +𝑋3 +𝑋4,

with

𝑋1 =
(
𝑝(1)(𝑖) 0

)
𝑎>𝑖𝑗

(
𝑞(1)(𝑗)𝑑(2)(𝑗)
𝑞(2)(𝑗)

)
, 𝑋2 =

(
0 𝑝(𝑖)

)
𝑎>𝑖𝑗

(
𝑞(1)(𝑗)𝑑(2)(𝑗)
𝑞(2)(𝑗)

)
,

𝑋3 =
(
𝑝(1)(𝑖) 0

)
𝑎>𝑖𝑗

(
𝑞(𝑗)
0

)
, 𝑋4 =

(
0 𝑝(𝑖)

)
𝑎>𝑖𝑗

(
𝑞(𝑗)
0

)
.

Using (17.40) one obtains
𝑋1 = 𝑝(𝑖)𝑎

>
𝑖𝑗𝑞(𝑗).

Next, note that 𝑎>𝑖𝑗 is an upper triangular matrix of the form

𝑎>𝑖𝑗 =

(
(𝑎(1))>𝑖𝑗 ∗

0 (𝑎(2))>𝑖𝑗

)
and therefore one gets

𝑋2 = 𝑝(𝑖)(𝑎
(2))>𝑖𝑗𝑞

(2)(𝑗), 𝑋3 = 𝑝
(1)(𝑖)(𝑎(1))>𝑖𝑗𝑞(𝑗), 𝑋4 = 0.

Hence it follows that the expressions 𝑝(𝑖)𝑎>𝑖𝑗𝑞(𝑗) coincide with the right-hand sides
of equalities (17.41) and therefore

𝐴𝑖,𝑗 = 𝑝(𝑖)𝑎
>
𝑖𝑗𝑞(𝑗), 1 ≤ 𝑗 < 𝑖 ≤ 𝑁.
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This implies that the elements 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘)
(𝑘 = 2, . . . , 𝑁 − 1) defined in (17.32), (17.33) are lower quasiseparable generators
of the matrix 𝐴.

In a similar way using the formula (17.38) we derive the formulas (17.34),
(17.35) for upper quasiseparable generators of the matrix 𝐴. □

Remark 17.7. One can check easily that the relations of Theorem 17.6 may be
recast as

𝛽0 = 0𝑟𝐿0 ×𝑠𝑈0 ,(
𝑑′(𝑘) 𝑔(𝑘)
𝑞(𝑘) 𝛽𝑘

)
=

(
𝑝(1)(𝑘) 𝑑(1)(𝑘)

𝑎(1)(𝑘) 𝑞(1)(𝑘)

)(
𝛽𝑘−1 0
0 𝐼

)(
ℎ(2)(𝑘) 𝑏(2)(𝑘)

𝑑(2)(𝑘) 𝑔(2)(𝑘)

)
,

𝑘 = 1, . . . , 𝑁 ; (17.42)

𝛾𝑁+1 = 0𝑟𝑈𝑁×𝑠𝐿𝑁 ,(
𝛾𝑘 ℎ̃(𝑘)
𝑝(𝑘) 𝑑′′(𝑘)

)
=

(
ℎ(1)(𝑘) 𝑏(1)(𝑘)

0 𝑔(1)(𝑘)

)(
𝐼 0
0 𝛾𝑘+1

)(
𝑝(2)(𝑘) 0
𝑎(2)(𝑘) 𝑞(2)(𝑘)

)
,

𝑘 = 𝑁, . . . , 1. (17.43)

Here 𝛽𝑘, 𝛾𝑘 are auxiliary variables, which are matrices of sizes 𝑟𝐿𝑘 ×𝑠𝑈𝑘 , 𝑟𝑈𝑘−1×𝑠𝐿𝑘−1.
Next,

𝑝(𝑘) =
(
𝑝(1)(𝑘) 𝑝(𝑘) + 𝑑(1)(𝑘)𝑝(2)(𝑘)

)
, 𝑞(𝑘) =

(
𝑞(𝑘)
𝑞(2)(𝑘)

)
, (17.44)

𝑎(𝑘) =

(
𝑎(1)(𝑘) 𝑞(1)(𝑘)𝑝(2)(𝑘)

0 𝑎(2)(𝑘)

)
, (17.45)

𝑔(𝑘) =
(
𝑔(𝑘) 𝑔(1)(𝑘)

)
, ℎ(𝑘) =

(
ℎ(2)(𝑘)

ℎ̃(𝑘) + ℎ(1)(𝑘)𝑑(2)(𝑘)

)
, (17.46)

𝑏(𝑘) =

(
𝑏(2)(𝑘) 0

ℎ(1)(𝑘)𝑔(2)(𝑘) 𝑏(1)(𝑘)

)
, (17.47)

𝑑(𝑘) = 𝑑′(𝑘) + 𝑑′′(𝑘), 𝑘 = 1, . . . , 𝑁. (17.48)

§17.4 Multiplication by triangular matrices

Next we consider particular cases where one of the factors is a triangular matrix.

Corollary 17.8. Let 𝐴1 be a block upper triangular matrix with upper quasisepara-
ble generators 𝑔(1)(𝑘), ℎ(1)(𝑘), 𝑏(1)(𝑘) (𝑘 = 1, . . . , 𝑁) of orders 𝑟𝑈𝑘 (𝑘 = 0, . . . , 𝑁)
and diagonal entries 𝑑(1)(𝑘) (𝑘 = 1, . . . , 𝑁), and 𝐴2 be a block matrix with qua-
siseparable generators 𝑝(2)(𝑘), 𝑞(2)(𝑘), 𝑎(2)(𝑘); 𝑔(2)(𝑘), ℎ(2)(𝑘), 𝑏(2)(𝑘); 𝑑(2)(𝑘) (𝑘 =
1, . . . , 𝑁) of orders 𝑠𝐿𝑘 , 𝑠

𝑈
𝑘 (𝑘 = 0, . . . , 𝑁) respectively.
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Then the product 𝐴 = 𝐴1𝐴2 is a block matrix with quasiseparable generators
𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘); 𝑔(𝑘), ℎ(𝑘), 𝑏(𝑘); 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁) of orders 𝑠𝐿𝑘 , 𝑟

𝑈
𝑘 + 𝑠𝑈𝑘 (𝑘 =

0, . . . , 𝑁). These generators are determined as follows. We set 𝛾𝑁+1 = 0𝑟𝑈𝑁×𝑠𝐿𝑁 ,
and we compute recursively(

𝛾𝑘 ℎ̃(𝑘)
𝑝(𝑘) 𝑑(𝑘)

)
=

(
ℎ(1)(𝑘) 𝑏(1)(𝑘)
𝑑(1)(𝑘) 𝑔(1)(𝑘)

)(
𝐼 0
0 𝛾𝑘+1

)(
𝑝(2)(𝑘) 𝑑(2)(𝑘)
𝑎(2)(𝑘) 𝑞(2)(𝑘)

)
,

𝑘 = 𝑁, . . . , 1. (17.49)

Here 𝛾𝑘 are 𝑟
𝑈
𝑘−1 × 𝑠𝐿𝑘−1 matrices. Next we set

𝑞(𝑘) = 𝑞(2)(𝑘), 𝑎(𝑘) = 𝑎(2)(𝑘), (17.50)

𝑔(𝑘) =
(
𝑑(1)(𝑘)𝑔(2)(𝑘) 𝑔(1)(𝑘)

)
, ℎ(𝑘) =

(
ℎ(2)(𝑘)

ℎ̃(𝑘)

)
, (17.51)

𝑏(𝑘) =

(
𝑏(2)(𝑘) 0

ℎ(1)(𝑘)𝑔(2)(𝑘) 𝑏(1)(𝑘)

)
. (17.52)

Proof. Since the matrix 𝐴1 is upper triangular one can set

𝑝(1)(𝑘) = 0, 𝑞(1)(𝑘) = 0, 𝑎(1)(𝑘) = 0.

Inserting this in (17.30) we get

𝑑′(𝑘) = 0, 𝑞(𝑘) = 0, 𝑔(𝑘) = 0.

From here, using (17.31) and (17.34)–(17.36) we obtain the formulas (17.49) and
(17.51), (17.52) for upper quasiseparable generators and diagonal entries of the
product 𝐴 = 𝐴1𝐴2. Using (17.32), (17.33) we obtain the formulas

𝑝(𝑘) =
(
0 𝑝(𝑘)

)
, 𝑞(𝑘) =

(
0

𝑞(2)(𝑘)

)
, �̂�(𝑘) =

(
0 0

0 𝑎(2)(𝑘)

)
for lower quasiseparable generators of the matrix 𝐴. One can see easily that such
lower quasiseparable generators may be replaced by the other ones 𝑝(𝑘), 𝑞(𝑘) =
𝑞(2)(𝑘), 𝑎(𝑘) = 𝑎(2)(𝑘) (𝑘 = 1, . . . , 𝑁). □

Applying Corollary 17.8 to transposed matrices we obtain the following statement.

Corollary 17.9. Let 𝐴1 be a block matrix with quasiseparable generators 𝑝
(1)(𝑘),

𝑞(1)(𝑘), 𝑎(1)(𝑘); 𝑔(1)(𝑘), ℎ(1)(𝑘), 𝑏(1)(𝑘); 𝑑(1)(𝑘) (𝑘 = 1, . . . , 𝑁) of orders 𝑟𝐿𝑘 , 𝑟
𝑈
𝑘

(𝑘 = 0, . . . , 𝑁). Let 𝐴2 be a block lower triangular matrix with lower quasiseparable
generators 𝑝(2)(𝑘), 𝑞(2)(𝑘), 𝑏(2)(𝑘) (𝑘 = 1, . . . , 𝑁) of orders 𝑠𝐿𝑘 (𝑘 = 0, . . . , 𝑁) and
diagonal entries 𝑑(2)(𝑘) (𝑘 = 1, . . . , 𝑁).

Then the product 𝐴 = 𝐴1𝐴2 is a block matrix with quasiseparable generators
𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘); 𝑔(𝑘), ℎ(𝑘), 𝑏(𝑘); 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁) of orders 𝑟𝐿𝑘 + 𝑠𝐿𝑘 , 𝑟

𝑈
𝑘 (𝑘 =
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0, . . . , 𝑁). These generators are determined as follows. We set 𝛾𝑁+1 = 0𝑟𝑈𝑁×𝑠𝐿𝑁 ,
and we compute recursively(

𝛾𝑘 ℎ(𝑘)
𝑝(𝑘) 𝑑(𝑘)

)
=

(
ℎ(1)(𝑘) 𝑏(1)(𝑘)

𝑑(1)(𝑘) 𝑔(1)(𝑘)

)(
𝐼 0
0 𝛾𝑘+1

)(
𝑝(2)(𝑘) 𝑑(2)(𝑘)

𝑎(2)(𝑘) 𝑞(2)(𝑘)

)
,

𝑘 = 𝑁, . . . , 1. (17.53)

Here 𝛾𝑘 are 𝑟
𝑈
𝑘−1 × 𝑠𝐿𝑘−1 matrices. Next we set

𝑔(𝑘) = 𝑔(1)(𝑘), 𝑏(𝑘) = 𝑏(1)(𝑘), (17.54)

𝑝(𝑘) =
(
𝑝(1)(𝑘) 𝑝(𝑘)

)
, 𝑞(𝑘) =

(
𝑞(1)(𝑘)𝑑(2)(𝑘)
𝑞(2)(𝑘)

)
, (17.55)

𝑎(𝑘) =

(
𝑎(1)(𝑘) 𝑞(1)(𝑘)𝑝(2)(𝑘)

0 𝑎(2)(𝑘)

)
. (17.56)

Corollary 17.10. Let 𝐴1 be a block lower triangular matrix with lower quasisepa-
rable generators 𝑝(1)(𝑘), 𝑞(1)(𝑘), 𝑎(1)(𝑘) (𝑘 = 1, . . . , 𝑁) of orders 𝑟𝐿𝑘 (𝑘 = 0, . . . , 𝑁)
and diagonal entries 𝑑(1)(𝑘) (𝑘 = 1, . . . , 𝑁) and 𝐴2 be a block matrix with qua-
siseparable generators 𝑝(2)(𝑘), 𝑞(2)(𝑘), 𝑎(2)(𝑘); 𝑔(2)(𝑘), ℎ(2)(𝑘), 𝑏(2)(𝑘); 𝑑(2)(𝑘) (𝑘 =
1, . . . , 𝑁) of orders 𝑠𝐿𝑘 , 𝑠

𝑈
𝑘 (𝑘 = 0, . . . , 𝑁).

Then the product 𝐴 = 𝐴1𝐴2 is a block matrix with quasiseparable generators
𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘); 𝑔(𝑘), ℎ(𝑘), 𝑏(𝑘); 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁) of orders 𝑟𝐿𝑘 + 𝑠𝐿𝑘 , 𝑠

𝑈
𝑘 (𝑘 =

0, . . . , 𝑁). These generators are determined as follows. We set 𝛽0 = 0𝑟𝐿0 ×𝑠𝑈0 and
compute recursively(

𝑑(𝑘) 𝑔(𝑘)
𝑞(𝑘) 𝛽𝑘

)
=

(
𝑝(1)(𝑘) 𝑑(1)(𝑘)

𝑎(1)(𝑘) 𝑞(1)(𝑘)

)(
𝛽𝑘−1 0
0 𝐼

)(
ℎ(2)(𝑘) 𝑏(2)(𝑘)

𝑑(2)(𝑘) 𝑔(2)(𝑘)

)
,

𝑘 = 1, . . . , 𝑁. (17.57)

Here 𝛽𝑘 are 𝑟
𝐿
𝑘 × 𝑠𝑈𝑘 matrices. Next we set

𝑏(𝑘) = 𝑏(2)(𝑘), ℎ(𝑘) = ℎ(2)(𝑘), (17.58)

𝑝(𝑘) =
(
𝑝(1)(𝑘) 𝑑(1)(𝑘)𝑝(2)(𝑘)

)
, 𝑞(𝑘) =

(
𝑞(𝑘)

𝑞(2)(𝑘)

)
, (17.59)

𝑎(𝑘) =

(
𝑎(1)(𝑘) 𝑞(1)(𝑘)𝑝(2)(𝑘)

0 𝑎(2)(𝑘)

)
. (17.60)

Proof. Since the matrix 𝐴1 is lower triangular, one can set

𝑔(1)(𝑘) = 0, ℎ(1)(𝑘) = 0, 𝑏(1)(𝑘) = 0.

Inserting this in (17.43) we get

𝑑′′(𝑘) = 0, ℎ̃(𝑘) = 0, 𝑝(𝑘) = 0.



322 Chapter 17. Multiplication of Matrices

From here, using (17.42), (17.44), (17.45) and (17.48), we obtain the formulas
(17.57) and (17.59), (17.60) for lower quasiseparable generators and diagonal en-
tries of the product 𝐴 = 𝐴1𝐴2. Using (17.46), (17.47) we obtain the formulas

𝑔(𝑘) =
(
𝑔(𝑘) 0

)
, ℎ̂(𝑘) =

(
ℎ(2)(𝑘)

0

)
, �̂�(𝑘) =

(
𝑏(2)(𝑘) 0

0 0

)
for upper quasiseparable generators of the matrix 𝐴. One can see easily that such
upper quasiseparable generators may be replaced by the other ones 𝑔(𝑘), ℎ(𝑘) =
ℎ(2)(𝑘), 𝑏(𝑘) = 𝑏(2)(𝑘) (𝑘 = 1, . . . , 𝑁). □

Applying Corollary 17.10 to transposed matrices we obtain the following
statement.

Corollary 17.11. Let 𝐴1 be a block matrix with quasiseparable generators 𝑝
(1)(𝑘),

𝑞(1)(𝑘), 𝑎(1)(𝑘); 𝑔(1)(𝑘), ℎ(1)(𝑘), 𝑏(1)(𝑘); 𝑑(1)(𝑘) (𝑘 = 1, . . . , 𝑁) of orders 𝑟𝐿𝑘 , 𝑟
𝑈
𝑘 (𝑘 =

0, . . . , 𝑁). Let 𝐴2 be a block upper triangular matrix with upper quasiseparable
generators 𝑔(2)(𝑘), ℎ(2)(𝑘), 𝑏(2)(𝑘) (𝑘 = 1, . . . , 𝑁) of orders 𝑠𝑈𝑘 (𝑘 = 0, . . . , 𝑁) and
diagonal entries 𝑑(2)(𝑘) (𝑘 = 1, . . . , 𝑁).

Then the product 𝐴 = 𝐴1𝐴2 is a block matrix with quasiseparable generators
𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘); 𝑔(𝑘), ℎ(𝑘), 𝑏(𝑘); 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁) of orders 𝑟𝐿𝑘 , 𝑟

𝑈
𝑘 + 𝑠𝑈𝑘 (𝑘 =

0, . . . , 𝑁). These generators are determined as follows. We set 𝛽0 = 0𝑟𝐿0 ×𝑠𝑈0 and
compute recursively(

𝑑(𝑘) 𝑔(𝑘)
𝑞(𝑘) 𝛽𝑘

)
=

(
𝑝(1)(𝑘) 𝑑(1)(𝑘)
𝑎(1)(𝑘) 𝑞(1)(𝑘)

)(
𝛽𝑘−1 0
0 𝐼

)(
ℎ(2)(𝑘) 𝑏(2)(𝑘)
𝑑(2)(𝑘) 𝑔(2)(𝑘)

)
,

𝑘 = 1, . . . , 𝑁. (17.61)

Here 𝛽𝑘 are 𝑟
𝐿
𝑘 × 𝑠𝑈𝑘 matrices. Next we set

𝑝(𝑘) = 𝑝(1)(𝑘), 𝑎(𝑘) = 𝑎(1)(𝑘), (17.62)

𝑔(𝑘) =
(
𝑔(𝑘) 𝑔(1)(𝑘)

)
, ℎ(𝑘) =

(
ℎ(2)(𝑘)

ℎ(1)(𝑘)𝑑(2)(𝑘)

)
, (17.63)

𝑏(𝑘) =

(
𝑏(2)(𝑘) 0

ℎ(1)(𝑘)𝑔(2)(𝑘) 𝑏(1)(𝑘)

)
. (17.64)

§17.5 Complexity analysis

Here we derive an expression for the complexity of the Algorithm 17.6. Let 𝐴(1) =

{𝐴(1)
𝑖𝑗 }𝑁𝑖,𝑗=1 and 𝐴(2) = {𝐴(2)

𝑖𝑗 }𝑁𝑖,𝑗=1 be matrices with block entries of sizes 𝑚𝑖 × 𝜈𝑗
and 𝜈𝑖 × 𝑛𝑗, respectively, and with quasiseparable generators and their orders as
in Theorem 17.6.
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We start with the formula (17.30). This formula may be written in the form(
𝑑′(𝑘) 𝑔(𝑘)
𝑞(𝑘) 𝛽𝑘

)
=

(
𝑝(1)(𝑘)
𝑎(1)(𝑘)

)
𝛽𝑘−1

(
ℎ(2)(𝑘) 𝑏(2)(𝑘)

)
+

(
0 0
0 𝑞(1)(𝑘)𝑔(2)(𝑘)

)
.

(17.65)
Here the multiplication of the 𝑟𝐿𝑘−1×𝑠𝑈𝑘−1 matrix 𝛽𝑘−1 by the 𝑠

𝑈
𝑘−1×(𝑠𝑈𝑘 +𝑛𝑘) ma-

trix
(
ℎ(2)(𝑘) 𝑏(2)(𝑘)

)
costs 𝑟𝐿𝑘−1𝑠

𝑈
𝑘−1(𝑠

𝑈
𝑘 +𝑛𝑘) multiplications and 𝑟

𝐿
𝑘−1(𝑠

𝑈
𝑘−1−

1)(𝑠𝑈𝑘 + 𝑛𝑘) additions, thus less than 2𝑟𝐿𝑘−1𝑠
𝑈
𝑘−1(𝑠

𝑈
𝑘 + 𝑛𝑘) operations. Next, the

multiplication of the result by the (𝑚𝑘 + 𝑟
𝐿
𝑘 ) × 𝑟𝐿𝑘−1 matrix

(
𝑝(1)(𝑘)

𝑎(1)(𝑘)

)
costs

(𝑚𝑘 + 𝑟
𝐿
𝑘 )𝑟

𝐿
𝑘−1(𝑠

𝑈
𝑘 + 𝑛𝑘) operations and (𝑚𝑘 + 𝑟

𝐿
𝑘 )(𝑟

𝐿
𝑘−1 − 1)(𝑠𝑈𝑘 + 𝑛𝑘) additions,

thus less than 2(𝑚𝑘 + 𝑟
𝐿
𝑘 )𝑟

𝐿
𝑘−1(𝑠

𝑈
𝑘 + 𝑛𝑘) operations. Finally, the multiplication of

the 𝑟𝐿𝑘 × 𝜈𝑘 matrix 𝑞(1)(𝑘) by the 𝜈𝑘 × 𝑠𝑈𝑘 matrix 𝑔(2)(𝑘) costs less than 2𝑟𝐿𝑘 𝜈𝑘𝑠
𝑈
𝑘

operations. Thus the total complexity of the formula (17.65) is less than

2(𝑟𝐿𝑘−1𝑠
𝑈
𝑘−1(𝑠

𝑈
𝑘 + 𝑛𝑘) + (𝑚𝑘 + 𝑟

𝐿
𝑘 )𝑟

𝐿
𝑘−1(𝑠

𝑈
𝑘 + 𝑛𝑘) + 𝑟

𝐿
𝑘 𝜈𝑘𝑠

𝑈
𝑘 )

operations.

In a similar way we rewrite (17.31) in the form(
𝛾𝑘 ℎ̃(𝑘)
𝑝(𝑘) 𝑑′′(𝑘)

)
=

(
ℎ(1)(𝑘)
𝑑(1)(𝑘)

)(
𝑝(2)(𝑘) 𝑑(2)(𝑘)

)
+

(
𝑏(1)(𝑘)

𝑔(1)(𝑘)

)
𝛾𝑘+1

(
𝑎(2)(𝑘) 𝑞(2)(𝑘)

)
where 𝛾𝑘+1 is an 𝑟

𝑈
𝑘 𝑠

𝐿
𝑘 matrix,

(
𝑎(2)(𝑘) 𝑞(2)(𝑘)

)
is an 𝑠𝐿𝑘 × (𝑠𝐿𝑘−1+𝑛𝑘) matrix,

and

(
𝑏(1)(𝑘)
𝑔(1)(𝑘)

)
is an (𝑟𝑈𝑘−1 +𝑚𝑘)× 𝑟𝑈𝑘 matrix.

One obtains that the complexity is less than

2(𝑟𝑈𝑘−1𝜈𝑘𝑠
𝐿
𝑘−1 + 𝑟

𝑈
𝑘 𝑠

𝐿
𝑘 (𝑠

𝐿
𝑘−1 + 𝑛𝑘) + (𝑟𝑈𝑘−1 +𝑚𝑘)𝑟

𝑈
𝑘 (𝑠

𝐿
𝑘−1 + 𝑛𝑘)).

Next, one can see easily that the computation of the products

𝑑(1)(𝑘)𝑝(2)(𝑘), 𝑞(1)(𝑘)𝑑(2)(𝑘), 𝑞(1)(𝑘)𝑝(2)(𝑘), 𝑑(1)(𝑘)𝑔(2)(𝑘),

ℎ(1)(𝑘)𝑑(2)(𝑘), ℎ(1)(𝑘)𝑔(2)(𝑘), 𝑑(1)(𝑘)𝑑(2)(𝑘)

by using the formulas (17.32)–(17.36) requires respectively

𝑚𝑘(2𝜈𝑘 − 1)𝑠𝐿𝑘−1, 𝑟𝐿𝑘 (2𝜈𝑘 − 1)𝑛𝑘, 𝑟𝐿𝑘 (2𝜈𝑘 − 1)𝑠𝐿𝑘−1, 𝑚𝑘(2𝜈𝑘 − 1)𝑠𝑈𝑘 ,

𝑟𝑈𝑘−1(2𝜈𝑘 − 1)𝑛𝑘, 𝑟𝑈𝑘−1(2𝜈𝑘 − 1)𝑠𝑈𝑘 , 𝑚𝑘(2𝜈𝑘 − 1)𝑛𝑘

operations.
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Thus the total complexity of the algorithm is estimated as follows:

𝑐 < 2
𝑁∑
𝑘=1

[
𝑟𝐿𝑘−1(𝑠

𝑈
𝑘 + 𝑛𝑘)(𝑠

𝑈
𝑘−1 +𝑚𝑘 + 𝑟

𝐿
𝑘 ) + 𝑟

𝐿
𝑘 𝜈𝑘𝑠

𝑈
𝑘

+ (𝑠𝐿𝑘 + 𝑟
𝑈
𝑘−1 +𝑚𝑘)𝑟

𝑈
𝑘 (𝑠

𝐿
𝑘−1 + 𝑛𝑘) + 𝑟

𝑈
𝑘−1𝜈𝑘𝑠

𝐿
𝑘−1 +𝑚𝑘𝜈𝑘𝑠

𝐿
𝑘−1

+ 𝑟𝐿𝑘 𝜈𝑘𝑛𝑘 + 𝑟
𝐿
𝑘 𝜈𝑘𝑠

𝐿
𝑘−1 +𝑚𝑘𝜈𝑘𝑠

𝑈
𝑘 + 𝑟𝑈𝑘−1𝜈𝑘𝑛𝑘 + 𝑟

𝑈
𝑘−1𝜈𝑘𝑠

𝑈
𝑘 +𝑚𝑘𝜈𝑘𝑛𝑘

]
.

Let the sizes of matrices 𝑚𝑘, 𝑛𝑘, 𝜈𝑘 be bounded by the number 𝑚 and the
orders of generators 𝑟𝐿𝑘 , 𝑟

𝑈
𝑘 , 𝑠

𝐿
𝑘 , 𝑠

𝑈
𝑘 be bounded by the numbers 𝑟′, 𝑟′′, 𝑠′, 𝑠′′:

𝑚𝑘, 𝑛𝑘, 𝜈𝑘 ≤ 𝑚, 𝑟𝐿𝑘 ≤ 𝑟′, 𝑟𝑈𝑘 ≤ 𝑟′′, 𝑠𝐿𝑘 ≤ 𝑠′, 𝑠𝑈𝑘 ≤ 𝑠′′.
In this case one obtains the estimate

𝑐 < 2𝑁
[
𝑟′(𝑠′′ +𝑚)(𝑠′′ +𝑚+ 𝑟′) + 𝑟′𝑚𝑠′′ + (𝑠′ + 𝑟′′ +𝑚)𝑟′′(𝑠′ +𝑚)

+ 𝑟′′𝑚𝑠′ + 𝑟′𝑚𝑠′ +𝑚2(𝑠′ + 𝑠′′ + 𝑟′ + 𝑟′′) + 𝑟′𝑚𝑠′′ +𝑚3
]
.

If we now set 𝑟 = max{𝑟′, 𝑟′′, 𝑠′, 𝑠′′}, then
𝑐 < 2𝑁(2𝑟(𝑟 +𝑚)(2𝑟 +𝑚) + 4𝑟2𝑚+ 4𝑚2𝑟 +𝑚3),

i.e.,
𝑐 < 2𝑁(4𝑟3 + 10𝑟2𝑚+ 6𝑚2𝑟 +𝑚3). (17.66)

§17.6 Product of matrices with semiseparable
representations

The rules obtained above for quasiseparable representations remain true for semi-
separable generators.

Theorem 17.12. Let 𝐴1 be a block matrix with lower semiseparable generators
𝑝(1)(𝑘), 𝑞(1)(𝑘) (𝑘 = 1, . . . , 𝑁) of order 𝑟𝐿, upper semiseparable generators 𝑔

(1)(𝑘),
ℎ(1)(𝑘) (𝑘 = 1, . . . , 𝑁) of order 𝑟𝑈 , and diagonal entries 𝑑

(1)(𝑘) (𝑘 = 1, . . . , 𝑁).
Let 𝐴2 be a block matrix with lower semiseparable generators 𝑝

(2)(𝑘), 𝑞(2)(𝑘)
(𝑘 = 1, . . . , 𝑁) of order 𝑠𝐿, upper semiseparable generators 𝑔

(2)(𝑘), ℎ(2)(𝑘) (𝑘 =
1, . . . , 𝑁) of order 𝑠𝑈 , and diagonal entries 𝑑

(2)(𝑘) (𝑘 = 1, . . . , 𝑁).

Then the product 𝐴 = 𝐴1𝐴2 is a block matrix with lower semiseparable gener-
ators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1) of order 𝑟𝐿+ 𝑠𝐿, upper semisep-

arable generators 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁−1), ℎ̂(𝑗) (𝑗 = 2, . . . , 𝑁) of order 𝑟𝑈 +𝑠𝑈 and
diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁). These generators are determined as follows.
We set 𝛽0 = 0𝑟𝐿×𝑠𝑈 and we compute recursively(

𝑑′(𝑘) 𝑔(𝑘)
𝑞(𝑘) 𝛽𝑘

)
=

(
𝑝(1)(𝑘) 0

𝐼 𝑞(1)(𝑘)

)(
𝛽𝑘−1 0
0 𝐼

)(
ℎ(2)(𝑘) 𝐼

0 𝑔(2)(𝑘)

)
,

𝑘 = 1, . . . , 𝑁 ; (17.67)
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next we set 𝛾𝑁+1 = 0𝑟𝑈×𝑠𝐿 , and compute recursively(
𝛾𝑘 ℎ̃(𝑘)
𝑝(𝑘) 𝑑′′(𝑘)

)
=

(
ℎ(1)(𝑘) 𝐼

𝑑(1)(𝑘) 𝑔(1)(𝑘)

)(
𝐼 0
0 𝛾𝑘+1

)(
𝑝(2)(𝑘) 𝑑(2)(𝑘)

𝐼 𝑞(2)(𝑘)

)
,

𝑘 = 𝑁, . . . , 1. (17.68)

Here 𝛽𝑘, 𝛾𝑘 are auxiliary variables, which are matrices of sizes 𝑟𝐿 × 𝑠𝑈 , 𝑟𝑈 × 𝑠𝐿.
Next we set

𝑧1 = 0, 𝑧𝑖 =

𝑖∑
𝑘=2

𝑞(1)(𝑘)𝑝(2)(𝑘), 𝑖 = 2, . . . , 𝑁 − 1,

𝑤1 = 0, 𝑤𝑖 =

𝑖∑
𝑘=2

ℎ(1)(𝑘)𝑔(2)(𝑘), 𝑖 = 2, . . . , 𝑁 − 1.

Finally, we determine generators by the formulas

𝑝(𝑖) =
(
𝑝(1)(𝑖) 𝑝(1)(𝑖)𝑧𝑖−1 + 𝑝(𝑖)

)
, 𝑖 = 2, . . . , 𝑁, (17.69)

𝑞(𝑗) =

(
𝑞(1)(𝑗)𝑑(2)(𝑗) + 𝑞(𝑗)− 𝑧𝑗𝑞(2)(𝑗)

𝑞(2)(𝑗)

)
, 𝑗 = 1, . . . , 𝑁 − 1; (17.70)

𝑔(𝑖) =
(
𝑔(1)(𝑖) 𝑑(1)(𝑖)𝑔(2)(𝑖) + 𝑔(𝑖)− 𝑔(1)(𝑖)𝑤𝑖

)
, 𝑖 = 1, . . . , 𝑁 − 1, (17.71)

ℎ̂(𝑗) =

(
ℎ̃(𝑗) + 𝑤𝑗−1ℎ

(2)(𝑗)

ℎ(2)(𝑗)

)
, 𝑗 = 2, . . . , 𝑁, (17.72)

𝑑(𝑘) = 𝑑′(𝑘) + 𝑑′′(𝑘), 𝑘 = 1, . . . , 𝑁. (17.73)

Proof. We apply Theorem 17.6 with 𝑎(1)(𝑘) = 𝐼, 𝑎(2)(𝑘) = 𝐼, 𝑏(1)(𝑘) = 𝐼, 𝑏(2)(𝑘) =
𝐼. Inserting these values into the formulas (17.30), (17.31) one obtains the formu-
las (17.67), (17.68) to determine the elements 𝑑′(𝑘), 𝑑′′(𝑘), 𝑝(𝑘), 𝑞(𝑘), 𝑔(𝑘), ℎ̃(𝑘).
Next, using the formulas (17.32)–(17.36) one obtains the formulas (17.73) for the
diagonal entries of the matrix 𝐴 = 𝐴1𝐴2 and the formulas

𝑝(𝑘) =
(
𝑝(1)(𝑘) 𝑝(𝑘)

)
, 𝑞(𝑘) =

(
𝑞(1)(𝑘)𝑑(2)(𝑘) + 𝑞(𝑘)

𝑞(2)(𝑘)

)
, (17.74)

𝑎(𝑘) =

(
𝐼 𝑞(1)(𝑘)𝑝(2)(𝑘)
0 𝐼

)
, 𝑘 = 1, . . . , 𝑁 (17.75)

and

𝑔(𝑘) =
(
𝑑(1)(𝑘)𝑔(2)(𝑘) + 𝑔(𝑘) 𝑔(1)(𝑘)

)
, ℎ(𝑘) =

(
ℎ(2)(𝑘)

ℎ̃(𝑘)

)
, (17.76)

𝑏(𝑘) =

(
𝐼 0

ℎ(1)(𝑘)𝑔(2)(𝑘) 𝐼

)
, 𝑘 = 1, . . . , 𝑁, (17.77)

for lower and upper quasiseparable generators of 𝐴.
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To obtain lower semiseparable generators of the matrix 𝐴 we apply Theorem
4.2. From (17.75) one obtains easily the equalities

𝑎>𝑖1 =

(
𝐼

∑𝑖−1
𝑘=2 𝑞

(1)(𝑘)𝑝(2)(𝑘)
0 𝐼

)
=

(
𝐼 𝑧𝑖−1

0 𝐼

)
, 𝑖 = 2, . . . , 𝑁 (17.78)

and

(𝑎<𝑗+1,1)
−1 =

(
𝐼 −∑𝑗

𝑘=2 𝑞
(1)(𝑘)𝑝(2)(𝑘)

0 𝐼

)
=

(
𝐼 −𝑧𝑗
0 𝐼

)
, 𝑗 = 1, . . . , 𝑁 − 1.

(17.79)
Substituting the expressions (17.74), (17.78), (17.79) in the formulas (4.15) one
obtains the formulas (17.69), (17.70) for lower semiseparable generators of the
matrix 𝐴.

Applying the obtained formulas to transposed matrices we obtain the formu-
las (17.71), (17.72) for upper semiseparable generators of 𝐴. □

To get an estimate for the complexity 𝑐 of the algorithm presented in Theorem
17.12 we set 𝑚 to be the maximal size of the blocks of the matrices 𝐴1, 𝐴2 and
𝑟 = max{𝑟𝐿, 𝑟𝑈 , 𝑠𝐿, 𝑠𝑈}. Then one can derive the estimate

𝑐 < 2𝑁(9𝑟2𝑚+ 6𝑚2𝑟 +𝑚3).

which is an improvement over (17.66).

§17.7 Comments

Algorithms for multiplication of matrices via quasiseparable representations can
be found for instance in [20]. The treatment via discrete systems appears for the
first time in this chapter.



Part IV

Factorization and
Inversion



Introduction to Part IV

This part is devoted to the problem of LDU and QR factorizations of matrices
in terms of their semiseparable or quasiseparable representations. We also provide
fast algorithms for these factorizations in terms of generators of the appropriate
representations. The results allow one to design fast algorithms for inversion of
matrices via their quasiseparable structure and to deduce via this structure fast
solvers for linear algebraic systems. In this part, like in Part III, one can find
illustrative examples and the computation of the complexity in detail.



Chapter 18

The LDU Factorization and Inversion

Let 𝐴 be a block matrix with block entries of sizes 𝑚𝑖 ×𝑚𝑗 and with invertible
principal leading submatrices 𝐴(1 : 𝑘, 1 : 𝑘), 𝑘 = 1, . . . , 𝑁 . Such matrix is called
strongly regular. By Theorem 1.20, 𝐴 admits the LDU factorization

𝐴 = 𝐿𝐷𝑈, (18.1)

where 𝐿,𝑈,𝐷 are block matrices with the same sizes of blocks as𝐴 and 𝐿 and 𝑈 are
block lower and upper triangular matrices with identities on the main diagonals,
while 𝐷 is a block diagonal matrix.

It is proved that the lower rank numbers of 𝐿 are the lower rank numbers of
𝐴 and the upper rank numbers of 𝑈 are the upper rank numbers of 𝐴. Also, the
minimal completion rank of the strictly lower triangular part of 𝐿 is the minimal
completion rank of the strictly lower triangular part of 𝐴 and the minimal com-
pletion rank of the strictly upper triangular part of 𝑈 is the minimal completion
rank of the strictly upper triangular part of 𝐴.

It is shown that a part of the quasiseparable generators of the factors 𝐿 and 𝑈
are the same as for the original matrix 𝐴 and the rest of the generators are obtained
via an algorithm with linear complexity 𝑂(𝑁). This opens the way to solve the
linear system 𝐴𝑥 = 𝑦 by factoring 𝐴 = 𝐿𝐷𝑈 , in fact computing the induced
quasiseparable representations for 𝐿, 𝐷 and 𝑈 and solving 𝐿(𝐷(𝑈𝑥)) = 𝑦, namely
𝐿𝑧 = 𝑦, 𝐷𝑤 = 𝑧 and then 𝑈𝑥 = 𝑤. Note that linear systems with a triangular
matrix have been treated in the preceding chapter.

Since the inverse matrix has the decomposition 𝐴−1 = 𝑈−1𝐷−1𝐿−1, we will
find quasiseparable generators for 𝐴−1 via an 𝑂(𝑁) algorithm.

§18.1 Rank numbers and minimal completion ranks

Here for a strongly regular matrix we show that the rank numbers and minimal
completion ranks of a matrix are equal to the corresponding numbers of the fac-
tors in the LDU factorization. This implies that one can obtain quasiseparable
and semiseparable representations of the factors with the same orders as for the
matrix 𝐴.

329 Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1  
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Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_18, © Springer Basel 2014
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Lemma 18.1. Let 𝐴 be a block matrix with block entries of sizes 𝑚𝑖 × 𝑚𝑗 and
with invertible principal leading submatrices 𝐴(1 : 𝑘, 1 : 𝑘), 𝑘 = 1, . . . , 𝑁 . Let
𝜌𝐿𝑘 (𝑘 = 1, . . . , 𝑁 − 1) and 𝜌𝑈𝑘 (𝑘 = 1, . . . , 𝑁 − 1) be lower and upper rank numbers
of 𝐴 and 𝑟𝐿 and 𝑟𝑈 be minimal completion ranks of the strictly lower triangular
and strictly upper triangular parts of 𝐴.

Then in the factorization (18.1) the matrix 𝐿 is a lower triangular matrix
with lower rank numbers 𝜌𝐿𝑘 (𝑘 = 1, . . . , 𝑁 − 1) and 𝑈 is an upper triangular
matrix with upper rank numbers 𝜌𝑈𝑘 (𝑘 = 1, . . . , 𝑁 − 1). Moreover, the minimal
completion rank of the strictly lower triangular part of 𝐿 equals 𝑟𝐿 and the minimal
completion rank of the strictly upper triangular part of 𝑈 equals 𝑟𝑈 .

Proof. Set

𝐿𝑘 = 𝐿(1 : 𝑘, 1 : 𝑘), 𝑈𝑘 = (𝐷𝑈)(1 : 𝑘, 1 : 𝑘), 𝑘 = 1, . . . , 𝑁.

Formula (18.1) implies

𝐴𝑘 = 𝐿𝑘𝑈𝑘, 𝑘 = 1, . . . , 𝑁,

and since 𝐴𝑘 is invertible the matrices 𝐿𝑘, 𝑈𝑘 are also invertible. Using (18.1) and
the fact that the matrix 𝑈𝑘 is upper triangular one gets

𝐴(𝑘 + 1 : 𝑁, 1 : 𝑘) = 𝐿(𝑘 + 1 : 𝑁, 1 : 𝑘)𝑈𝑘, 𝑘 = 1, . . . , 𝑁 − 1, (18.2)

and

𝐴(𝑘 + 2 : 𝑁, 1 : 𝑘) = 𝐿(𝑘 + 2 : 𝑁, 1 : 𝑘)𝐷𝑘𝑈𝑘, 𝑘 = 1, . . . , 𝑁 − 2. (18.3)

From (18.2), since the matrices 𝑈𝑘 are invertible, one obtains

𝜌𝐿𝑘 = rank𝐴(𝑘+1 : 𝑁, 1 : 𝑘) = rank𝐿(𝑘+1 : 𝑁, 1 : 𝑘), 𝑘 = 1, . . . , 𝑁−1. (18.4)

From (18.3), since the matrices 𝑈𝑘 are invertible, one obtains

rank𝐴(𝑘 + 2 : 𝑁, 1 : 𝑘) = rank𝐿(𝑘 + 2 : 𝑁, 1 : 𝑘), 𝑘 = 1, . . . , 𝑁 − 2. (18.5)

From the formulas (18.4) and (18.5) we see that the expression for the minimal
completion rank in the formula (3.3) to be applied to the matrix 𝐴 coincides with
the one for the matrix 𝐿.

Using the transposed matrices we obtain the corresponding equalities for the
upper rank numbers and minimal completion ranks. □

§18.2 The factorization algorithm

Next we derive an algorithm to compute quasiseparable generators of the factors
in the factorization (18.1).

Theorem 18.2. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a block matrix with block entries of sizes 𝑚𝑖×
𝑚𝑗 and with invertible principal leading block submatrices 𝐴𝑘 = {𝐴𝑖𝑗}𝑘𝑖,𝑗=1, 𝑘 =
1, . . . , 𝑁 . Assume that 𝐴 has lower quasiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁),
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𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of orders 𝑟𝐿𝑘 (𝑘 = 1, . . . , 𝑁 − 1),
upper quasiseparable generators 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘)
(𝑘 = 2, . . . , 𝑁 − 1) of orders 𝑟𝑈𝑘 (𝑘 = 1, . . . , 𝑁 − 1), and diagonal entries 𝑑(𝑘)
(𝑘 = 1, . . . , 𝑁).

Then in the factorization (18.1) the matrix 𝐿 has lower quasiseparable gen-
erators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(1)(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1),
the matrix 𝑈 has upper quasiseparable generators 𝑔(1)(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗)
(𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1), and the matrix 𝐷 has the form 𝐷 =
diag{𝛾1, . . . , 𝛾𝑁}. Here the elements 𝑝(𝑖), 𝑎(𝑘), ℎ(𝑗), 𝑏(𝑘) are the same as for
the matrix 𝐴 and the elements 𝑞(1)(𝑗), 𝑔(1)(𝑖), 𝛾𝑘 are determined via the following
algorithm.

1. Compute

𝛾1 = 𝑑(1), 𝑞(1)(1) = 𝑞(1)𝛾−1
1 , 𝑔(1)(1) = 𝛾−1

1 𝑔(1), (18.6)

𝑓1 = 𝑞
(1)(1)𝛾1𝑔

(1)(1). (18.7)

2. For 𝑘 = 2, . . . , 𝑁 − 1 compute

𝛾𝑘 = 𝑑(𝑘)− 𝑝(𝑘)𝑓𝑘−1ℎ(𝑘), (18.8)

𝑞(1)(𝑘) = [𝑞(𝑘)− 𝑎(𝑘)𝑓𝑘−1ℎ(𝑘)]𝛾
−1
𝑘 , (18.9)

𝑔(1)(𝑘) = 𝛾−1
𝑘 [𝑔(𝑘)− 𝑝(𝑘)𝑓𝑘−1𝑏(𝑘)], (18.10)

𝑓𝑘 = 𝑎(𝑘)𝑓𝑘−1𝑏(𝑘) + 𝑞
(1)(𝑘)𝛾𝑘𝑔

(1)(𝑘). (18.11)

3. Compute
𝛾𝑁 = 𝑑(𝑁)− 𝑝(𝑁)𝑓𝑁−1ℎ(𝑁). (18.12)

Here 𝑓𝑘 (𝑘 = 1, . . . , 𝑁 − 1) are auxiliary variables, which are 𝑟𝐿𝑘 × 𝑟𝑈𝑘 matrices.
Proof. We should check that

𝐷 = diag{𝛾1, . . . , 𝛾𝑁}
and moreover, by Lemma 5.3 and Lemma 5.6, that the matrices 𝐿,𝑈 satisfy the
relations

𝐿(𝑘 + 1 : 𝑁, 𝑘) = 𝑃𝑘+1𝑞
(1)(𝑘), 𝑘 = 1, . . . , 𝑁 − 1, (18.13)

𝑈(𝑘, 𝑘 + 1 : 𝑁) = 𝑔(1)(𝑘)𝐻𝑘+1, 𝑘 = 1, . . . , 𝑁 − 1, (18.14)

with the matrices 𝑃𝑘, 𝐻𝑘 defined in (5.2), (5.6) and the elements 𝛾𝑘, 𝑞
(1)(𝑘), 𝑔(1)(𝑘)

determined in the algorithm.

Using Lemma 5.1 and Lemma 5.4 one obtains the following partitions of the
matrix 𝐴:

𝐴 =

(
𝐴𝑘−1 𝐺𝑘−1𝐻𝑘
𝑃𝑘𝑄𝑘−1 𝑀𝑘

)
, 𝑘 = 2, . . . , 𝑁,
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with the matrices 𝑃𝑘, 𝑄𝑘 defined in (5.1), (5.2) and the matrices 𝐺𝑘, 𝐻𝑘 defined
in (5.5), (5.6). Moreover, using (5.11) and (5.14) one obtains the partitions of the
principal leading submatrices 𝐴𝑘 = 𝐴(1 : 𝑘, 1 : 𝑘) in the form

𝐴𝑘 =

(
𝐴𝑘−1 𝐺𝑘−1ℎ(𝑘)

𝑝(𝑘)𝑄𝑘−1 𝑑(𝑘)

)
, 𝑘 = 2, . . . , 𝑁. (18.15)

Next we introduce the matrices

𝑓𝑘 = 𝑄𝑘𝐴
−1
𝑘 𝐺𝑘, 𝑘 = 1, . . . , 𝑁 − 1. (18.16)

By Theorem 1.20,

𝛾1 = 𝑑(1), 𝛾𝑘 = 𝑑(𝑘)− 𝑝(𝑘)𝑓𝑘−1ℎ(𝑘), 𝑘 = 2, . . . , 𝑁 (18.17)

which mean that the formulas (18.6), (18.8), (18.12) for 𝛾𝑘 (𝑘 = 1, . . . , 𝑁) hold
and moreover

𝐿(𝑘 : 𝑁, 𝑘) = Δ𝑘(:, 1)𝛾
−1
𝑘 , 𝑘 = 1, . . . , 𝑁, (18.18)

𝑈(𝑘, 𝑘 : 𝑁) = 𝛾−1
𝑘 Δ𝑘(1, :), 𝑘 = 1, . . . , 𝑁, (18.19)

where
Δ1 = 𝐴, Δ𝑘 =𝑀𝑘 − 𝑃𝑘𝑓𝑘−1𝐻𝑘, 𝑘 = 2, . . . , 𝑁. (18.20)

Now we will prove the relations (18.13), (18.14). For 𝑘 = 1 one has 𝛾1 = 𝑑(1)
and, using (5.10), (5.13) one gets

Δ1(2 : 𝑁, 1) = 𝐴(2 : 𝑁, 1) = 𝑃2𝑞(1),

Δ1(1, 2 : 𝑁) = 𝐴(1, 2 : 𝑁) = 𝑔(1)𝐻2

and hence using (18.18), (18.19) one obtains

𝐿(2 : 𝑁, 1) = 𝑃2𝑞
(1), 𝑈(1, 2 : 𝑁) = 𝑔(1)(1)𝐻2

with 𝑞(1)(1) and 𝑔(1)(1) defined in (18.6).

For 𝑘 > 1 one has the following. Using (5.10) one obtains the representations

𝑀𝑘(:, 1) = 𝐴(𝑘 : 𝑁, 𝑘) =

(
𝑑(𝑘)

𝑃𝑘+1𝑞(𝑘)

)
, 𝑘 = 2, . . . , 𝑁 − 1. (18.21)

Similarly, using (5.13) one obtains the representations

𝑀𝑘(1, :) = 𝐴(𝑘, 𝑘 : 𝑁) =
(
𝑑(𝑘) 𝑔(𝑘)𝐻𝑘+1

)
, 𝑘 = 2, . . . , 𝑁 − 1. (18.22)

Using the recursions (5.4) and (5.8) one gets

𝑃𝑘𝑓𝑘−1𝐻𝑘 =

(
𝑝(𝑘)

𝑃𝑘+1𝑎(𝑘)

)
𝑓𝑘−1

(
ℎ(𝑘) 𝑏(𝑘)𝐻𝑘+1

)
. (18.23)
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Next, taking the first columns in (18.20), (18.23) and using (18.21) one obtains

Δ𝑘(:, 1) =

(
𝑑(𝑘)− 𝑝(𝑘)𝑓𝑘−1ℎ(𝑘)

𝑃𝑘+1(𝑞(𝑘) − 𝑎(𝑘)𝑓𝑘−1ℎ(𝑘))

)
.

Similarly, taking the first rows in (18.20), (18.23) and using (18.22) one obtains

Δ𝑘(1, :) =
(
𝑑(𝑘)− 𝑝(𝑘)𝑓𝑘−1ℎ(𝑘) (𝑔(𝑘)− 𝑝(𝑘)𝑓𝑘−1𝑏(𝑘))𝐻𝑘+1

)
.

Thus,

Δ𝑘(:, 1) =

(
𝛾𝑘

𝑃𝑘+1𝑞
′(𝑘)

)
, 𝑘 = 2, . . . , 𝑁 − 1,

and

Δ𝑘(1, :) =
(
𝛾𝑘 𝑔′(𝑘)𝐻𝑘+1

)
, 𝑘 = 2, . . . , 𝑁 − 1,

with the elements 𝛾𝑘 from (18.8) and

𝑞′(𝑘) = 𝑞(𝑘)− 𝑎(𝑘)𝑓𝑘−1ℎ(𝑘), 𝑔′(𝑘) = 𝑔(𝑘)− 𝑝(𝑘)𝑓𝑘−1𝑏(𝑘).

Furthermore, using (18.18), (18.19) one obtains (18.13), (18.14).

It remains to prove the relations (18.7) and (18.11). The equality (18.7)
follows directly from the definition (18.16) and the relations

𝑄1 = 𝑞(1), 𝐺1 = 𝑔(1), 𝛾1 = 𝑑(1).

For 𝑘 > 1 applying the factorization (1.52) to the matrices 𝐴𝑘 partitioned in the
form (18.15) one obtains

𝐴𝑘 =

(
𝐼 0

𝑝(𝑘)𝑄𝑘−1𝐴
−1
𝑘−1 𝐼

)(
𝐴𝑘−1 0
0 𝛾𝑘

)(
𝐼 𝐴−1

𝑘−1𝐺𝑘−1ℎ(𝑘)
0 𝐼

)
,

whence

𝐴−1
𝑘 =

(
𝐼 −𝐴−1

𝑘−1𝐺𝑘−1ℎ(𝑘)
0 𝐼

)(
𝐴−1
𝑘−1 0

0 𝛾−1
𝑘

)(
𝐼 0

−𝑝(𝑘)𝑄𝑘−1𝐴
−1
𝑘−1 𝐼

)
.

(18.24)
Using the recursion (5.3) and (18.16) one has

𝑄𝑘

(
𝐼 −𝐴−1

𝑘−1𝐺𝑘−1ℎ(𝑘)
0 𝐼

)
=
(
𝑎(𝑘)𝑄𝑘−1 −𝑎(𝑘)𝑓𝑘−1ℎ(𝑘) + 𝑞(𝑘)

)
=
(
𝑎(𝑘)𝑄𝑘−1 𝑞′(𝑘)

)
.

(18.25)

Using the recursion (5.7) and (18.16) one has(
𝐼 0

−𝑝(𝑘)𝑄𝑘−1𝐴
−1
𝑘−1 𝐼

)
𝐺𝑘 =

(
𝐺𝑘−1𝑏(𝑘)

−𝑝(𝑘)𝑓𝑘−1𝑏(𝑘) + 𝑔(𝑘)

)
=

(
𝐺𝑘−1𝑏(𝑘)
𝑔′(𝑘)

)
.

(18.26)



334 Chapter 18. The LDU Factorization and Inversion

Now from the definition (18.16) and the relations (18.24)–(18.26) one gets

𝑓𝑘 = 𝑎(𝑘)𝑓𝑘−1𝑏(𝑘) + 𝑞
′(𝑘)𝛾−1

𝑘 𝑔′(𝑘),

which completes the proof. □

Set 𝑚 = max1≤𝑘≤𝑁 (𝑚𝑘), 𝑟 = max1≤𝑘≤𝑁−1(𝑟
𝐿
𝑘 , 𝑟

𝑈
𝑘 ). The complexity of the

operations used in the algorithm from Theorem 18.2 is estimated as follows.

1. The formula (18.8): Two matrix multiplications which require𝑚𝑟2 arithmeti-
cal multiplications and𝑚(𝑟−1)𝑟 arithmetical additions and𝑚2𝑟 arithmetical
multiplications and 𝑚2(𝑟− 1) arithmetical additions, respectively, and a ma-
trix addition which costs 𝑚2 arithmetical additions. Thus (18.8) costs less
than 2𝑚𝑟2 + 2𝑚2𝑟 arithmetical operations.

2. The formula (18.9): In the parentheses two matrix multiplications which
require 𝑟3 arithmetical multiplications and 𝑟2(𝑟 − 1) arithmetical additions
and 𝑟2𝑚 arithmetical multiplications and 𝑟(𝑟 − 1)𝑚 arithmetical additions,
respectively, and a matrix addition which costs 𝑟𝑚 arithmetical additions.

Denote by 𝜌(𝑚) the complexity of the solution of an 𝑚×𝑚 system of
linear algebraic equations using a standard method. Thus finding 𝛾−1

𝑘 costs
𝜌(𝑚) arithmetical operations. Multiplying by 𝛾−1

𝑘 costs 𝑟𝑚2 arithmetical
multiplications and 𝑟(𝑚 − 1)𝑚 arithmetical additions.

Thus (18.9) costs in total less than 2𝑟3+2𝑟2𝑚+𝜌(𝑚)+2𝑟𝑚2 arithmetical
operations.

3. The formula (18.10) costs the same number of operations, except for 𝜌(𝑚)
arithmetical operations if we keep 𝛾−1

𝑘 from before.

4. The formula (18.11): less than 4𝑟3 + 2𝑚2𝑟 + 2𝑚𝑟2 operations.

Thus the complexity is estimated by

𝑐 < (8𝑟3 + 8𝑟2𝑚+ 8𝑚2𝑟 + 𝜌(𝑚))𝑁. (18.27)

Example 18.3. Consider the 𝑁 ×𝑁 matrix 𝐴 from Example 5.14,

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 𝑎 𝑎2 ⋅ ⋅ ⋅ 𝑎𝑁−2 𝑎𝑁−1

𝑏 1 𝑎 ⋅ ⋅ ⋅ 𝑎𝑁−3 𝑎𝑁−2

𝑏2 𝑏 1 ⋅ ⋅ ⋅ 𝑎𝑁−4 𝑎𝑁−3

...
...

...
. . .

...
...

𝑏𝑁−2 𝑏𝑁−3 𝑏𝑁−4 ⋅ ⋅ ⋅ 1 𝑎
𝑏𝑁−1 𝑏𝑁−2 𝑏𝑁−3 ⋅ ⋅ ⋅ 𝑏 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

with 𝑎𝑏 ∕= 1.

For this matrix the quasiseparable generators of the factors in the LDU fac-
torization (18.1) will be computed using the algorithm in Theorem 18.2.
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For 𝐴 one can choose the quasiseparable generators which have been com-
puted in Example 5.14. These are:

𝑝(𝑖) = 𝑏, 𝑖 = 2, . . . , 𝑁, 𝑎(𝑘) = 𝑏, 𝑘 = 2, . . . , 𝑁 − 1,

which will also be generators for the lower triangular matrix 𝐿 in the LDU de-
composition,

ℎ(𝑖) = 𝑎, 𝑖 = 2, . . . , 𝑁, 𝑏(𝑘) = 𝑎, 𝑘 = 2, . . . , 𝑁 − 1,

which will also be generators for the upper triangular matrix 𝑈 in the LDU de-
composition, and

𝑞(𝑗) = 1, 𝑔(𝑗) = 1, 𝑗 = 1, . . . , 𝑁 − 1, 𝑑(𝑘) = 1, 𝑘 = 1, . . . , 𝑁.

It remains to compute the entries 𝛾𝑘, 𝑘 = 1, . . . , 𝑁 of the diagonal matrix
𝐷, the generators 𝑞(1)(𝑗), 𝑗 = 1, . . . , 𝑁 − 1 of 𝐿, the generators 𝑔(1)(𝑗), 𝑗 =
1, . . . , 𝑁 − 1 of 𝑈 and the auxiliary variables 𝑓𝑗, 𝑗 = 1, . . . , 𝑁 − 1.

One has

𝛾1 = 𝑑(1) = 1, 𝑞(1)(1) = 𝑞(1)𝛾−1
1 = 1,

𝑔(1)(1) = 𝛾−1
1 𝑔(1) = 1,

𝑓1 = 𝑞
(1)(1)𝛾1𝑔

(1)(1) = 1,

𝛾2 = 𝑑(2)− 𝑝(2)𝑓1ℎ(2) = 1− 𝑎𝑏,
𝑞(1)(2) = (𝑞(2)− 𝑎(2)𝑓1ℎ(2))𝛾−1

2 = 1,

𝑔(1)(2) = 𝛾−1
2 (𝑔(2)− 𝑝(2)𝑓1𝑏(2)) = 1,

𝑓2 = 𝑎(2)𝑓1𝑏(2) + 𝑞
(1)(2)𝛾2𝑔

(1)(2) = 𝑎𝑏+ 1− 𝑎𝑏 = 1.

One can prove by induction that

𝛾𝑘 = 1− 𝑎𝑏, 𝑘 = 2, . . . , 𝑁, 𝑞(1)(𝑗) = 𝑔(1)(𝑗) = 𝑓𝑗 = 1, 𝑗 = 1, . . . , 𝑁 − 1.

Indeed, suppose that for a certain 𝑘 these formulas are true. Then for 𝑘 + 1 one
has

𝛾𝑘+1 = 𝑑(𝑘 + 1)− 𝑝(𝑘 + 1)𝑓𝑘ℎ(𝑘 + 1) = 1− 𝑎 ⋅ 1 ⋅ 𝑏 = 1− 𝑎𝑏,
𝑞(1)(𝑘 + 1) = (𝑞(𝑘 + 1)− 𝑎(𝑘 + 1)𝑓𝑘ℎ(𝑘 + 1))𝛾−1

𝑘+1 = (1− 𝑎 ⋅ 1 ⋅ 𝑏)/(1− 𝑎𝑏) = 1,

𝑔(1)(𝑘 + 1) = 𝛾−1
𝑘+1(𝑔(𝑘 + 1)− 𝑝(𝑘 + 1)𝑓𝑘𝑏(𝑘 + 1)) =

1

1− 𝑎𝑏 (1− 𝑎 ⋅ 1 ⋅ 𝑏) = 1

and

𝑓𝑘+1 = 𝑎(𝑘 + 1)𝑓𝑘𝑏(𝑘 + 1) + 𝑞(1)(𝑘 + 1)𝛾𝑘+1𝑔
(1)(𝑘 + 1)

= 𝑎 ⋅ 1 ⋅ 𝑏+ 1 ⋅ (1− 𝑎𝑏) ⋅ 1 = 1.
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Using the quasiseparable generators which have been found for the factor
matrices, one concludes that

𝐿 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 ⋅ ⋅ ⋅ 0 0
𝑏 1 0 ⋅ ⋅ ⋅ 0 0
𝑏2 𝑏 1 ⋅ ⋅ ⋅ 0 0
...

...
...

. . .
...

...
𝑏𝑁−2 𝑏𝑁−3 𝑏𝑁−4 ⋅ ⋅ ⋅ 1 0
𝑏𝑁−1 𝑏𝑁−2 𝑏𝑁−3 ⋅ ⋅ ⋅ 𝑏 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

𝐷 = diag(1, 1− 𝑎𝑏, 1− 𝑎𝑏, . . . , 1− 𝑎𝑏),
and

𝑈 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 𝑎 𝑎2 ⋅ ⋅ ⋅ 𝑎𝑁−2 𝑎𝑁−1

0 1 𝑎 ⋅ ⋅ ⋅ 𝑎𝑁−3 𝑎𝑁−2

0 0 1 ⋅ ⋅ ⋅ 𝑎𝑁−4 𝑎𝑁−3

...
...

...
. . .

...
...

0 0 0 ⋅ ⋅ ⋅ 1 𝑎
0 0 0 ⋅ ⋅ ⋅ 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

♢

Example 18.4. Consider the 𝑁 ×𝑁 tridiagonal matrix

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑑 𝛽 0 ⋅ ⋅ ⋅ 0 0
𝛼 0 𝛽 ⋅ ⋅ ⋅ 0 0
0 𝛼 0 ⋅ ⋅ ⋅ 0 0
...

...
...

. . .
...

...
0 0 0 ⋅ ⋅ ⋅ 0 𝛽
0 0 0 ⋅ ⋅ ⋅ 𝛼 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

with 𝑑 ∕= 0. We apply the algorithm from Theorem 18.2 to compute the quasisep-
arable generators of the factors in the LDU factorization of 𝐴.

For 𝐴 one can choose the quasiseparable generators

𝑝(𝑖) = 𝛼, 𝑖 = 2, . . . , 𝑁, 𝑎(𝑘) = 0, 𝑘 = 2, . . . , 𝑁 − 1,

which will also be generators for the lower triangular matrix 𝐿 in the LDU de-
composition,

ℎ(𝑖) = 1, 𝑖 = 2, . . . , 𝑁, 𝑏(𝑘) = 0, 𝑘 = 2, . . . , 𝑁 − 1,

which will also be generators for the upper triangular matrix 𝑈 in the LDU de-
composition and

𝑞(𝑗) = 1, 𝑔(𝑗) = 𝛽, 𝑗 = 1, . . . , 𝑁 − 1, 𝑑(1) = 𝑑, 𝑑(𝑘) = 0, 𝑘 = 2, . . . , 𝑁.
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It remains to compute the entries 𝛾𝑘, 𝑘 = 1, . . . , 𝑁 , of the diagonal matrix
𝐷, the generators 𝑞(1)(𝑗), 𝑗 = 1, . . . , 𝑁 − 1, of 𝐿, the generators 𝑔(1)(𝑗), 𝑗 =
1, . . . , 𝑁 − 1, of 𝑈 , and the auxiliary variables 𝑓𝑗 , 𝑗 = 1, . . . , 𝑁 − 1.

One has

𝛾1 = 𝑑(1) = 𝑑, 𝑞(1)(1) = 𝑞(1)𝛾−1
1 =

1

𝑑
, 𝑔(1)(1) = 𝛾−1

1 𝑔(1) =
𝛽

𝑑
,

𝑓1 = 𝑞
(1)(1)𝛾1𝑔

(1)(1) =
𝛽

𝑑
, 𝛾2 = 𝑑(2)− 𝑝(2)𝑓1ℎ(2) = 0− 𝛼𝑓1 = −𝛼𝛽

𝑑
,

𝑞(1)(2) = (𝑞(2)− 𝑎(2)𝑓1ℎ(2))𝛾−1
2 =

1

𝛾2
, 𝑔(1)(2) = 𝛾−1

2 (𝑔(2)− 𝑝(2)𝑓1𝑏(2)) = 𝛽

𝛾2
,

𝑓2 = 𝑎(2)𝑓1𝑏(2) + 𝑞
(1)(2)𝛾2𝑔

(1)(2) =
𝛽

𝛾2
.

One can prove by induction that

𝛾𝑘 = − 𝛼𝛽

𝛾𝑘−1
, 𝑞(1)(𝑘) =

1

𝛾𝑘
, 𝑓𝑘 = 𝑔

(1)(𝑘) =
𝛽

𝛾𝑘
, 𝑘 = 1, . . . , 𝑁 − 1.

Indeed, suppose that for a certain 𝑘 these formulas are true. Then for 𝑘 + 1 one
has

𝛾𝑘+1 = 𝑑(𝑘 + 1)− 𝑝(𝑘 + 1)𝑓𝑘ℎ(𝑘 + 1) = −𝛼𝛽
𝛾𝑘
,

𝑞(1)(𝑘 + 1) = (𝑞(𝑘 + 1)− 𝑎(𝑘 + 1)𝑓𝑘ℎ(𝑘 + 1))𝛾−1
𝑘+1 =

1

𝛾𝑘+1
,

𝑔(1)(𝑘 + 1) = 𝛾−1
𝑘+1(𝑔(𝑘 + 1)− 𝑝(𝑘 + 1)𝑓𝑘𝑏(𝑘 + 1)) =

𝛽

𝛾𝑘+1

and

𝑓𝑘+1 = 𝑎(𝑘 + 1)𝑓𝑘𝑏(𝑘 + 1) + 𝑞(1)(𝑘 + 1)𝛾𝑘+1𝑔
(1)(𝑘 + 1) =

1

𝛾𝑘+1
𝛾𝑘+1

𝛽

𝛾𝑘+1
=

𝛽

𝛾𝑘+1
.

It is clear that the recursion 𝛾𝑘 = 𝛾𝑘−2 holds and therefore

𝛾2𝑚−1 = 𝑑, 𝛾2𝑚 = −𝛼𝛽
𝑑
, 𝑚 = 1, 2, . . . ,

[
𝑁+1
2

]
.

It follows that

𝐷 = diag

{
𝑑,−𝛼𝛽

𝑑
, 𝑑,−𝛼𝛽

𝑑
, . . . 𝑑

}
for odd 𝑁 and

𝐷 = diag

{
𝑑,−𝛼𝛽

𝑑
, 𝑑,−𝛼𝛽

𝑑
, . . . 𝑑,−𝛼𝛽

𝑑

}
for even 𝑁 .
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Using the quasiseparable generators found for the factor matrices, we obtain

𝐿 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 ⋅ ⋅ ⋅ 0 0
𝛼
𝑑 1 0 0 0 ⋅ ⋅ ⋅ 0 0
0 − 𝑑

𝛽 1 0 0 ⋅ ⋅ ⋅ 0 0

0 0 𝛼
𝑑 1 0 ⋅ ⋅ ⋅ 0 0

0 0 0 − 𝑑
𝛽 1 ⋅ ⋅ ⋅ 0 0

...
...

...
...

...
. . .

...
...

0 0 0 0 0 ⋅ ⋅ ⋅ 𝛼
𝑑 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑈 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 𝛽
𝑑 0 0 0 ⋅ ⋅ ⋅ 0 0

0 1 − 𝑑
𝛼 0 0 ⋅ ⋅ ⋅ 0 0

0 0 1 𝛽
𝑑 0 ⋅ ⋅ ⋅ 0 0

0 0 0 1 − 𝑑
𝛼 ⋅ ⋅ ⋅ 0 0

0 0 0 0 1 ⋅ ⋅ ⋅ 0 0
...

...
...

...
...

. . .
...

...

0 0 0 0 0 ⋅ ⋅ ⋅ 1 𝛽
𝑑

0 0 0 0 0 ⋅ ⋅ ⋅ 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for even 𝑁 and

𝐿 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 ⋅ ⋅ ⋅ 0 0
𝛼
𝑑 1 0 0 0 ⋅ ⋅ ⋅ 0 0
0 − 𝑑

𝛽 1 0 0 ⋅ ⋅ ⋅ 0 0

0 0 𝛼
𝑑 1 0 ⋅ ⋅ ⋅ 0 0

0 0 0 − 𝑑
𝛽 1 ⋅ ⋅ ⋅ 0 0

...
...

...
...

...
. . .

...
...

0 0 0 0 0 ⋅ ⋅ ⋅ − 𝑑
𝛽 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑈 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 𝛽
𝑑 0 0 0 ⋅ ⋅ ⋅ 0 0

0 1 − 𝑑
𝛼 0 0 ⋅ ⋅ ⋅ 0 0

0 0 1 𝛽
𝑑 0 ⋅ ⋅ ⋅ 0 0

0 0 0 1 − 𝑑
𝛼 ⋅ ⋅ ⋅ 0 0

0 0 0 0 1 ⋅ ⋅ ⋅ 0 0
...
...

...
...

...
. . .

...
...

0 0 0 0 0 ⋅ ⋅ ⋅ 1 − 𝑑
𝛼

0 0 0 0 0 ⋅ ⋅ ⋅ 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for odd 𝑁 . ♢
Example 18.5. Consider the 5× 5 matrix

𝐴 =

⎛⎜⎜⎜⎜⎝
3 2 1 1 1
2 3 2 1 1
1 2 3 2 1
1 1 2 3 2
1 1 1 2 3

⎞⎟⎟⎟⎟⎠ .
Using Example 5.16 we get quasiseparable generators of 𝐴:

𝑝(2) = 2, 𝑝(3) =
(
1 2

)
, 𝑝(4) =

(
1 1

)
, 𝑝(5) = 1,

𝑞(1) = 1, 𝑞(2) =

(
0
1

)
, 𝑞(3) =

(
1
1

)
, 𝑞(4) = 2,

𝑎(2) =

(
1
0

)
, 𝑎(3) =

(
1 1
0 0

)
, 𝑎(4) =

(
1 0

)
;

𝑔(1) = 1, 𝑔(2) =
(
0 1

)
, 𝑔(3) =

(
1 1

)
, 𝑔(4) = 2,

ℎ(2) = 2, ℎ(3) =

(
1
2

)
, ℎ(4) =

(
1
1

)
, ℎ(5) = 1,

𝑏(2) =
(
1 0

)
, 𝑏(3) =

(
1 0
1 0

)
, 𝑏(4) =

(
1
0

)
;

𝑑(𝑘) = 3, 𝑘 = 1, . . . , 5.
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From Theorem 18.2 it follows that in the factorization (18.1) for the matrix 𝐴
the matrix 𝐿 has lower quasiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 5), 𝑞(1)(𝑗) (𝑗 =
1, . . . , 5 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 5 − 1), the matrix 𝑈 has upper quasiseparable
generators 𝑔(1)(𝑖) (𝑖 = 1, . . . , 5 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 5), 𝑏(𝑘) (𝑘 = 2, . . . , 5 − 1),
and the matrix𝐷 has the form𝐷 = diag{𝛾1, . . . , 𝛾5}. Here the elements 𝑝(𝑖), 𝑎(𝑘),
ℎ(𝑗), 𝑏(𝑘) are the same as for the matrix 𝐴 and the elements 𝑞(1)(𝑗), 𝑔(1)(𝑖), 𝛾𝑘
will be determined according to the algorithm in the theorem. Thus we proceed
as follows.

Compute

𝛾1 = 𝑑(1) = 3, 𝑞(1)(1) = 𝑞(1)𝛾−1
1 =

1

3
, 𝑔(1)(1) = 𝛾−1

1 𝑔(1) =
1

3
,

𝑓1 = 𝑞
(1)(1)𝛾1𝑔

(1)(1) =
1

3
.

For 𝑘 = 2 we compute the diagonal entry

𝛾2 = 𝑑(2)− 𝑝(2)𝑓2−1ℎ(2) = 3− 4

3
=

5

3
,

the generators

𝑞(1)(2) = [𝑞(2)− 𝑎(2)𝑓2−1ℎ(2)]𝛾
−1
2 =

((
0
1

)
−
(
1
0

)
⋅ 1
3
⋅ 2
)
3

5
=

1

5

(−2
3

)
,

𝑔(1)(2) = 𝛾−1
2 [𝑔(2)− 𝑝(2)𝑓2−1𝑏(2)] =

3

5

((
0 1

)− 2 ⋅ 1
3
⋅ ( 1 0

))
=

1

5

(−2 3
)
,

and the auxiliary matrix

𝑓2 = 𝑎(2)𝑓2−1𝑏(2) + 𝑞
(1)(2)𝛾2𝑔

(1)(2)

=

(
1
0

)
1

3

(
1 0

)
+

( −2
3

)
1

5

5

3

1

5

( −2 3
)
=

1

5

(
3 −2
−2 3

)
.

For 𝑘 = 3 we compute the diagonal entry

𝛾3 = 𝑑(3)− 𝑝(3)𝑓2ℎ(3) = 3− (
1 2

) 1
5

(
3 −2
−2 3

)(
1
2

)
=

8

5
,

the generators of 𝐿 and 𝑈 , respectively,

𝑞(1)(3) = [𝑞(3)− 𝑎(3)𝑓2ℎ(3)]𝛾−1
3

=

((
1
1

)
−
(

1 1
0 0

)
1

5

(
3 −2
−2 3

)(
1
2

))
5

8
=

1

8

(
2
5

)
,

𝑔(1)(3) = 𝛾−1
3 [𝑔(3)− 𝑝(3)𝑓2𝑏(3)]

=
5

8

((
1 1

)− (
1 2

) 1
5

(
3 −2
−2 3

)(
1 0
1 0

))
=

1

8

(
2 5

)
,
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and the auxiliary matrix

𝑓3 = 𝑎(3)𝑓2𝑏(3) + 𝑞
(1)(3)𝛾3𝑔

(1)(3)

=

(
1 1
0 0

)
1

5

(
3 −2
−2 3

)(
1 0
1 0

)
+

1

8

(
2
5

)
8

5

1

8

(
2 5

)
=

1

8

(
4 2
2 5

)
.

For 𝑘 = 4 we compute the diagonal entry

𝛾4 = 3− (
1 1

) 1
8

(
4 2
2 5

)(
1
1

)
=

11

8
,

the last generator of 𝐿

𝑞(1)(4) = [𝑞(4)− 𝑎(4)𝑓3ℎ(4)]𝛾−1
4

=

(
2− (

1 0
) 1
8

(
4 2
2 5

)(
1
1

))
8

11
=

10

11
,

and the last generator of 𝑈

𝑔(1)(4) = 𝛾−1
4 [𝑔(4)− 𝑝(4)𝑓3𝑏(4)]

=
8

11

(
2− (

1 1
) 1
8

(
4 2
2 5

)(
1
0

))
=

10

11
.

Also for 𝑘 = 4 we compute 𝑓𝑘, the auxiliary matrix which will be used in the
computation of 𝛾5:

𝑓4 = 𝑎(4)𝑓3𝑏(4) + 𝑞
(1)(4)𝛾4𝑔

(1)(4)

=
(
1 0

) 1
8

(
4 2
2 5

)(
1
0

)
+

10

11

11

8

10

11
=

18

11
.

Finally, we compute 𝛾5:

𝛾5 = 3− 1 ⋅ 18
11

⋅ 1 = 15

11
.

Thus the generators 𝑞(1)(𝑘), 𝑘 = 1, . . . , 4 of 𝐿 are

𝑞(1)(1) =
1

3
, 𝑞(1)(2) =

1

5

( −2
3

)
, 𝑞(1)(3) =

1

8

(
2
5

)
, 𝑞(1)(4) =

10

11
,

the generators 𝑔(1)(𝑘), 𝑘 = 1, . . . , 4 of 𝑈 are

𝑔(1)(1) =
1

3
, 𝑔(1)(2) =

1

5

( −2 3
)
, 𝑔(1)(3) =

1

8

(
2 5

)
, 𝑔(1)(4) =

10

11
,

and the diagonal entries of 𝐷 are

𝛾1 = 3, 𝛾2 =
5

3
, 𝑔3 =

8

5
, 𝛾4 =

11

8
, 𝛾5 =

15

11
.
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In the decomposition 𝐴 = 𝐿𝐷𝑈 of the matrix 𝐴 of size 𝑁 = 5, the matrix
𝐿 has lower quasiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(1)(𝑗) (𝑗 = 1, . . . , 𝑁 −
1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1), therefore

𝐿 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
2
3 1 0 0 0
1
3

4
5 1 0 0

1
3

1
5

7
8 1 0

1
3

1
5

1
4

10
11 1

⎞⎟⎟⎟⎟⎠ .

The matrix 𝑈 has upper quasiseparable generators 𝑔(1)(𝑖) (𝑖 = 1, . . . , 𝑁 −
1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1), therefore 𝑈 is equal to 𝐿𝑇 :

𝑈 =

⎛⎜⎜⎜⎜⎝
1 2

3
1
3

1
3

1
3

0 1 4
5

1
5

1
5

0 0 1 7
8

1
4

0 0 0 1 10
11

0 0 0 0 1

⎞⎟⎟⎟⎟⎠ .

The matrix 𝐷 has the form

𝐷 = diag{𝛾1, . . . , 𝛾𝑁} = diag

{
3,
5

3
,
8

5
,
11

8
,
15

11

}
. ♢

§18.3 Solution of linear systems and analog
of Levinson algorithm

Let 𝐴 be a matrix satisfying the conditions of Theorem 18.2. The solution of the
corresponding linear system 𝐴𝑥 = 𝑦 may be calculated as follows.

Algorithm 18.6.

1. Start with

𝛾1 = 𝑑(1), 𝑞(1) = 𝑞(1), 𝑔(1)(1) = 𝛾−1
1 𝑔(1), (18.28)

𝑓1 = 𝑞(1)𝑔
(1)(1), (18.29)

then for 𝑘 = 2, . . . , 𝑁 − 1 compute recursively

𝛾𝑘 = 𝑑(𝑘)− 𝑝(𝑘)𝑓𝑘−1ℎ(𝑘), (18.30)

𝑞(𝑘) = 𝑞(𝑘)− 𝑎(𝑘)𝑓𝑘−1ℎ(𝑘), (18.31)

𝑔(1)(𝑘) = 𝛾−1
𝑘 [𝑔(𝑘)− 𝑝(𝑘)𝑓𝑘−1𝑏(𝑘)], (18.32)

𝑓𝑘 = 𝑎(𝑘)𝑓𝑘−1𝑏(𝑘) + 𝑞(𝑘)𝑔
(1)(𝑘), (18.33)
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and finally compute

𝛾𝑁 = 𝑑(𝑁)− 𝑝(𝑁)𝑓𝑁−1ℎ(𝑁). (18.34)

2. Start with
𝑧(1) = 𝛾−1

1 𝑦(1), 𝜒2 = 𝑞(1)𝑥(1),

then for 𝑘 = 2, . . . , 𝑁 − 1 compute recursively

𝑧(𝑘) = 𝛾−1
𝑘 (𝑦(𝑘)− 𝑝(𝑘)𝜒𝑘), (18.35)

𝜒𝑘+1 = 𝑎(𝑘)𝜒𝑘 + 𝑞(𝑘)𝑧(𝑘), (18.36)

and finally compute

𝑧(𝑁) = 𝛾−1
𝑁 (𝑦(𝑁)− 𝑝(𝑁)𝜒𝑁 ). (18.37)

3. Start with
𝑥(𝑁) = 𝑧(𝑁), 𝜂𝑁−1 = ℎ(𝑁)𝑥(𝑁),

then for 𝑘 = 𝑁 − 1, . . . , 2 compute recursively

𝑥(𝑘) = 𝑧(𝑘)− 𝑔(1)(𝑘)𝜂𝑘, (18.38)

𝜂𝑘−1 = 𝑏(𝑘)𝜂𝑘 + ℎ(𝑘)𝑥(𝑘) (18.39)

and finally compute

𝑥(1) = 𝑧(1)− 𝑔(1)(1)𝜂1. (18.40)

We justify Algorithm 18.6 as follows. At first we compute the factorization

𝐴 = �̃�𝑈,

where �̃� is a block lower triangular matrix and 𝑈 is a block upper triangular
matrix with identities on the main diagonal. Using the algorithm from Theorem
18.2 one obtains the factorization of 𝐴 in the form

𝐴 = 𝐿𝐷𝑈,

with the block lower and upper triangular matrices 𝐿 and 𝑈 with identities on the
main diagonals and a block diagonal matrix 𝐷. Here 𝐿 has lower quasiseparable
generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(1)(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1),
𝑈 has upper quasiseparable generators 𝑔(1)(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 =
2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1), and 𝐷 has the form 𝐷 = diag{𝛾1, . . . , 𝛾𝑁},
where the elements 𝑝(𝑖), 𝑎(𝑘), ℎ(𝑗), 𝑏(𝑘) are the same as for the matrix 𝐴 and
the elements 𝑞(1)(𝑗), 𝑔(1)(𝑖), 𝛾𝑘 are determined via the formulas (18.6)–(18.12).
Set �̃� = 𝐿𝐷. One can easily see that �̃� is a block lower triangular matrix
with lower quasiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) = 𝑞(1)(𝑗)𝛾𝑗 (𝑗 =
1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) and diagonal entries 𝛾𝑘 (𝑘 = 1, . . . , 𝑁).
Thus using the formulas (18.6)–(18.12) we obtain the formulas (18.28)–(18.34) for
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lower quasiseparable generators and diagonal entries of the matrix �̃� and upper
quasiseparable generators of the matrix 𝑈 .

Applying the algorithm from Theorem 13.10 to the matrix �̃� we obtain Step 2
of the Algorithm 18.6 for determining the solution 𝑧 of the system �̃�𝑧 = 𝑦. Finally,
applying the algorithm from Theorem 13.13 we obtain Step 3 for determining the
vector 𝑥 from the system 𝑈𝑥 = 𝑧.

Set 𝑚 = max1≤𝑘≤𝑁 (𝑚𝑘), 𝑟 = max1≤𝑘≤𝑁−1(𝑟
𝐿
𝑘 , 𝑟

𝑈
𝑘 ). The complexity of the

operations used in the first step of Algorithm 18.6 is estimated as follows.

1. The formula (18.30): Like in (18.8) two matrix multiplications which require
𝑚𝑟2 arithmetical multiplications and 𝑚(𝑟 − 1)𝑟 arithmetical additions and
𝑚2𝑟 arithmetical multiplications and 𝑚2(𝑟 − 1) arithmetical additions, re-
spectively, and a matrix addition which costs𝑚2 arithmetical additions. Thus
the formula (18.30) costs less than 2𝑚𝑟2 + 2𝑚2𝑟 arithmetical operations.

2. The formula (18.31): Like in the parentheses of the formula (18.9), two matrix
multiplications which require 𝑟3 arithmetical multiplications and 𝑟2(𝑟 − 1)
arithmetical additions and 𝑟2𝑚 arithmetical multiplications and 𝑟(𝑟 − 1)𝑚
arithmetical additions, respectively, and a matrix addition which costs 𝑟𝑚
arithmetical additions.

Thus the formula (18.31) costs in total less than 2𝑟3 + 2𝑟2𝑚 + 𝜌(𝑚)
arithmetical operations.

3. The formula (18.32): In the parentheses two matrix multiplications which
require 𝑟3 arithmetical multiplications and 𝑟2(𝑟 − 1) arithmetical additions
and 𝑟2𝑚 arithmetical multiplications and 𝑟(𝑟 − 1)𝑚 arithmetical additions,
respectively, and a matrix addition which costs 𝑟𝑚 arithmetical additions.

Denote by 𝜌(𝑚) the complexity of the solution of an 𝑚×𝑚 system of
linear algebraic equations using a standard method. Thus finding 𝛾−1

𝑘 costs
𝜌(𝑚) arithmetical operations. Multiplying by 𝛾−1

𝑘 costs 𝑟𝑚2 arithmetical
multiplications and 𝑟(𝑚 − 1)𝑚 arithmetical additions.

Thus the formula (18.32) costs in total less than 2𝑟3 + 2𝑟2𝑚+ 𝜌(𝑚) +
2𝑟𝑚2 arithmetical operations.

4. The formula (18.33): less than 4𝑟3 + 2𝑚2𝑟 operations.

Thus the total estimate for the complexity of Step 1 is

𝑐1 < (8𝑟3 + 6𝑟2𝑚+ 6𝑟𝑚2 + 𝜌(𝑚))𝑁.

Applying the estimate (13.26) to the triangular systems �̃�𝑧 = 𝑦 and 𝑈𝑥 = 𝑤 we
obtain the estimates

𝑐2 < (2𝑟2 + 4𝑚𝑟 + 2𝑚2 + 𝜌(𝑚))𝑁, 𝑐3 < (2𝑟2 + 4𝑚𝑟 + 2𝑚2 + 𝜌(𝑚))𝑁.

Thus the total estimate for the complexity of the Algorithm 18.6 is

𝑐 < (8𝑟3 + 6𝑟2𝑚+ 6𝑚2𝑟 + 8𝑚𝑟 + 4𝑟2 + 4𝑚2 + 3𝜌(𝑚))𝑁.
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Next we present another justification of the Algorithm 18.6 based on the
successive solution of the equations

𝐴𝑘𝑥
(𝑘) = 𝑦(𝑘), 𝑘 = 1, . . . , 𝑁 (18.41)

with 𝐴𝑘 = 𝐴(1 : 𝑘, 1 : 𝑘), 𝑦(𝑘) = (𝑦(1) . . . 𝑦(𝑘))
𝑇
. We use also the auxiliary

equations

𝐴𝑘𝐺
(1)
𝑘 = 𝐺𝑘, 𝑘 = 1, . . . , 𝑁 − 1 (18.42)

with the matrices 𝐺𝑘 defined in (5.5). We set 𝑥(1) = 𝑧(1), 𝐺
(1)
1 = 𝑔(1)(1) and for

𝑘 = 2, . . . , 𝑁 we use the partitions

𝑥(𝑘) =

(
𝑡𝑘−1

𝑧(𝑘)

)
, 𝑦(𝑘) =

(
𝑦(𝑘−1)

𝑦(𝑘)

)
, 𝐺

(1)
𝑘 =

(
𝐺′𝑘

𝑔(1)(𝑘)

)
.

Here 𝑧(𝑘) and 𝑦(𝑘) are the last components of the vectors 𝑥(𝑘) and 𝑦(𝑘) and 𝑔(1)(𝑘)
is the last block row of the matrix 𝐺𝑘.

It is clear that 𝑧(1) = (𝑑(1))−1𝑦(1) and 𝑔(1)(1) = (𝑑(1))−1𝑔(1). For 𝑘 =
2, . . . , 𝑁 , using the partitions of the submatrices 𝐴𝑘 as

𝐴𝑘 =

(
𝐴𝑘−1 𝐺𝑘−1ℎ(𝑘)

𝑝(𝑘)𝑄𝑘−1 𝑑(𝑘)

)
and the recursion (5.7), the system (18.42) may be written in the form{

𝐴𝑘−1𝐺
′
𝑘−1 +𝐺𝑘−1ℎ(𝑘)𝑔

(1)(𝑘) = 𝐺𝑘−1𝑏(𝑘),

𝑝(𝑘)𝑄𝑘−1𝐺
′
𝑘−1 + 𝑑(𝑘)𝑔

(1)(𝑘) = 𝑔(𝑘),
(18.43)

and the system (18.41) in the form{
𝐴𝑘−1𝑡𝑘−1 +𝐺𝑘−1ℎ(𝑘)𝑧(𝑘) = 𝑦

(𝑘−1),

𝑝(𝑘)𝑄𝑘−1𝑡𝑘−1 + 𝑑(𝑘)𝑧(𝑘) = 𝑦(𝑘).
(18.44)

From the first equation in (18.43) we get

𝐺′𝑘−1 = 𝐺
(1)
𝑘−1(𝑏(𝑘)− ℎ(𝑘)𝑔(1)(𝑘)). (18.45)

Inserting this in the second equation in (18.43) we get

𝑝(𝑘)𝑄𝑘−1𝐺
(1)
𝑘−1𝑏(𝑘) + (𝑑(𝑘)− 𝑝(𝑘)𝑄𝑘−1𝐺

(1)
𝑘−1ℎ(𝑘))𝑔

(1)(𝑘) = 𝑔(𝑘). (18.46)

Similarly, the first equation in (18.44) may be written in the form

𝑡𝑘−1 = 𝑥
(𝑘−1) −𝐺(1)

𝑘−1ℎ(𝑘)𝑧(𝑘). (18.47)
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Inserting this in the second equation in (18.44) we get

𝑝(𝑘)𝑄𝑘−1𝑥
(𝑘−1) + (𝑑(𝑘)− 𝑝(𝑘)𝑄𝑘−1𝐺

(1)
𝑘−1ℎ(𝑘))𝑧(𝑘) = 𝑦(𝑘). (18.48)

As it was shown in the proof of Theorem 18.2, the variable

𝑓𝑘−1 = 𝑄𝑘−1𝐴
−1
𝑘−1𝐺𝑘−1 = 𝑄𝑘−1𝐺

(1)
𝑘−1

satisfies the recursion relations (18.29), (18.33). Thus the equalities (18.46), (18.48)
may be written in the form

𝛾𝑘𝑔
(1)(𝑘) = 𝑔(𝑘)− 𝑝(𝑘)𝑓𝑘−1𝑏(𝑘) (18.49)

and

𝛾𝑘𝑧(𝑘) = 𝑦(𝑘)− 𝑝(𝑘)𝜒𝑘, (18.50)

with 𝛾𝑘 defined in (18.30) and 𝜒𝑘 = 𝑄𝑘−1𝑥
(𝑘−1). From (18.49) and (18.50) we

obtain the formulas (18.32) and (18.35), (18.37).

Next we derive recursion relations for 𝜒𝑘. We obviously have 𝜒2 = 𝑞(1)𝑧(1) =
𝑞(1)𝑧(1) and for 𝑘 = 2, . . . , 𝑁−1, using the recursion (5.3) and the equality (18.47),
we get

𝜒𝑘+1 = 𝑄𝑘𝑥
(𝑘) =

(
𝑎(𝑘)𝑄𝑘−1 𝑞(𝑘)

)( 𝑡𝑘−1

𝑧(𝑘)

)
=
(
𝑎(𝑘)𝑄𝑘−1 𝑞(𝑘)

)( 𝑥(𝑘−1) −𝐺(1)
𝑘−1ℎ(𝑘)𝑧(𝑘)
𝑧(𝑘)

)
= 𝑎(𝑘)𝜒𝑘 + (𝑞(𝑘)− 𝑎(𝑘)𝑓𝑘−1ℎ(𝑘))𝑧(𝑘) = 𝑎(𝑘)𝜒𝑘 + 𝑞(𝑘)𝑧(𝑘),

with 𝑞(𝑘) defined in (18.31).

It remains to justify Step 3 of Algorithm 18.6. First we prove by induction
that

𝑡𝑘 = col(𝑧(𝑖)− 𝑔(1)(𝑖)𝜂𝑖𝑘)𝑘𝑖=1, 𝑘 = 1, . . . , 𝑁 − 1, (18.51)

where

𝜂𝑖𝑘 =
𝑘∑
𝑗=𝑖

(𝑏(1))<𝑖,𝑗+1ℎ(𝑗 + 1)𝑧(𝑗 + 1),

with
𝑏(1)(𝑘) = 𝑏(𝑘)− ℎ(𝑘)𝑔(1)(𝑘). (18.52)

Using (18.41) with 𝑘 = 1, 2 and the partition 𝑥(2) =

(
𝑡1
𝑧(2)

)
we get

𝑡1 = 𝑥
(1) − 𝑔(1)(1)ℎ(2)𝑧(2).

Let for some 𝑘 with 2 ≤ 𝑘 ≤ 𝑁 − 1 the relation

𝑡𝑘−1 = col(𝑧(𝑖)− 𝑔(1)(𝑖)𝜂𝑖,𝑘−1)
𝑘−1
𝑖=1 (18.53)
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hold. Using the formula (18.45) and the partitions 𝐺
(1)
𝑘 =

(
𝐺′𝑘

𝑔(1)(𝑘)

)
one can

easily derive that

𝐺
(1)
𝑘 = col(𝑔(1)(𝑖)(𝑏(1))<𝑖,𝑘+1)

𝑘
𝑖=1, 𝑘 = 1, . . . , 𝑁 − 1. (18.54)

Next, using (18.47), the partition 𝑥(𝑘) =

(
𝑡𝑘−1

𝑧(𝑘)

)
and the formulas (18.53),

(18.54) we get

𝑡𝑘 =

(
𝑡𝑘−1

𝑧(𝑘)

)
− col(𝑔(1)(𝑖)(𝑏(1))<𝑖,𝑘+1ℎ(𝑘 + 1)𝑧(𝑘 + 1))𝑘𝑖=1,

whence

𝑡𝑘(𝑘) = 𝑧(𝑘)− 𝑔(1)(𝑘)ℎ(𝑘 + 1)𝑧(𝑘 + 1) = 𝑧(𝑘)− 𝑔(1)(𝑘)𝜂𝑘𝑘 (18.55)

and

𝑡𝑘(𝑖) = 𝑡𝑘−1(𝑖)− 𝑔(1)(𝑖)(𝑏(1))<𝑖,𝑘+1ℎ(𝑘 + 1)𝑧(𝑘 + 1)

= 𝑧(𝑖)− 𝑔(1)(𝑖)(𝜂𝑖,𝑘−1 + (𝑏(1))<𝑖,𝑘+1ℎ(𝑘 + 1)𝑧(𝑘 + 1)))

= 𝑧(𝑖)− 𝑔(1)(𝑖)𝜂𝑖𝑘, 𝑖 = 1, . . . , 𝑘 − 1 . (18.56)

From (18.55) and (18.56) we obtain (18.51).

Thus we have 𝑥 = 𝑥(𝑁) =

(
𝑡𝑁−1

𝑥(𝑁)

)
, and therefore 𝑥(𝑁) = 𝑧(𝑁) and

𝑥(𝑖) = 𝑡𝑁−1(𝑖) = 𝑧(𝑖)− 𝑔(1)(𝑖)𝜂𝑖, 𝑖 = 𝑁 − 1, . . . , 1, (18.57)

where 𝜂𝑖 = 𝜂𝑖,𝑁−1. We have 𝜂𝑁−1 = ℎ(𝑁)𝑧(𝑁) = ℎ(𝑁)𝑥(𝑁). Next, for 𝑖 =
𝑁 − 1, . . . , 2 we get

𝜂𝑖−1 =

𝑁−1∑
𝑗=𝑖−1

(𝑏(1))<𝑖−1,𝑗+1ℎ(𝑗 + 1)𝑧(𝑗 + 1)

= ℎ(𝑖)𝑧(𝑖) +

𝑁−1∑
𝑗=𝑖

(𝑏(1))<𝑖−1,𝑗+1ℎ(𝑗 + 1)𝑧(𝑗 + 1)

= ℎ(𝑖)𝑧(𝑖) + 𝑏(1)(𝑖)

𝑁−1∑
𝑗=𝑖

(𝑏(1))<𝑖,𝑗+1ℎ(𝑗 + 1)𝑧(𝑗 + 1)

= 𝑏(1)(𝑖)𝜂𝑖 + ℎ(𝑖)𝑧(𝑖),

and so, using (18.57) and (18.52), we get

𝜂𝑖−1 = (𝑏(𝑖)− ℎ(𝑖)𝑔(1)(𝑖))𝜂𝑖 + ℎ(𝑖)(𝑥(𝑖) + 𝑔(1)(𝑖)) = 𝑏(𝑖)𝜂𝑖 + ℎ(𝑖)𝑥(𝑖).
This recursive algorithm may be viewed as an analog of the famous Levinson

algorithm for Toeplitz systems.
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§18.4 The inversion formula

Under the assumptions of Theorem 18.2 the generators of the inverse matrix can
be obtained via the following algorithm.

Theorem 18.7. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a block matrix with block entries of sizes

𝑚𝑖 ×𝑚𝑗 and with invertible principal leading block submatrices 𝐴𝑘 = {𝐴𝑖𝑗}𝑘𝑖,𝑗=1,
𝑘 = 1, . . . , 𝑁 . Assume that 𝐴 has quasiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁),
𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1), 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗)
(𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1), 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁) of orders 𝑟𝐿𝑘 , 𝑟

𝑈
𝑘

(𝑘 = 1, . . . , 𝑁 − 1).

Then quasiseparable generators 𝑝(1)(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(1)(𝑗) (𝑗 = 1, . . . ,
𝑁−1), 𝑎(1)(𝑘) (𝑘 = 2, . . . , 𝑁−1), 𝑔(1)(𝑖) (𝑖 = 1, . . . , 𝑁−1), ℎ(1)(𝑗) (𝑗 = 2, . . . , 𝑁),
𝑏(1)(𝑘) (𝑘 = 2, . . . , 𝑁−1), 𝑑(1)(𝑘) (𝑘 = 1, . . . , 𝑁) of the inverse 𝐴−1 are determined
as follows.

1. Determine the elements 𝑞(1)(𝑗) (𝑗 = 1, . . . , 𝑁−1), 𝑔(1)(𝑖) (𝑖 = 1, . . . , 𝑁−1)
and 𝛾𝑘 (𝑘 = 1, . . . , 𝑁) via the formulas

𝛾1 = 𝑑(1), 𝑞(1)(1) = 𝑞(1)𝛾−1
1 , 𝑔(1)(1) = 𝛾−1

1 𝑔(1),

𝑓1 = 𝑞
(1)(1)𝛾1𝑔

(1)(1);
(18.58)

𝛾𝑘 = 𝑑(𝑘)− 𝑝(𝑘)𝑓𝑘−1ℎ(𝑘),

𝑞(1)(𝑘) = [𝑞(𝑘)− 𝑎(𝑘)𝑓𝑘−1ℎ(𝑘)]𝛾
−1
𝑘 ,

𝑔(1)(𝑘) = 𝛾−1
𝑘 [𝑔(𝑘)− 𝑝(𝑘)𝑓𝑘−1𝑏(𝑘)],

𝑓𝑘 = 𝑎(𝑘)𝑓𝑘−1𝑏(𝑘) + 𝑞
(1)(𝑘) ⋅ 𝛾𝑘 ⋅ 𝑔(1)(𝑘),

𝑘 = 2, . . . , 𝑁 − 1;

(18.59)

𝛾𝑁 = 𝑑(𝑁)− 𝑝(𝑁)𝑓𝑁−1ℎ(𝑁). (18.60)

2. Compute 𝜆𝑁 , ℎ
(1)(𝑁), 𝑝(1)(𝑁), 𝑑(1)(𝑁) by(

𝜆𝑁 ℎ(1)(𝑁)

𝑝(1)(𝑁) 𝑑(1)(𝑁)

)
=

(
ℎ(𝑁)
𝐼

)
𝛾−1
𝑁

( −𝑝(𝑁) 𝐼
)
, (18.61)

then for 𝑘 = 𝑁 − 1, . . . , 2 compute 𝜆𝑘, ℎ
(1)(𝑘), 𝑝(1)(𝑘), 𝑑(1)(𝑘) by

𝑎(1)(𝑘) = 𝑎(𝑘)− 𝑞(1)(𝑘)𝑝(𝑘), 𝑏(1)(𝑘) = 𝑏(𝑘)− ℎ(𝑘)𝑔(1)(𝑘), (18.62)(
𝜆𝑘 ℎ(1)(𝑘)

𝑝(1)(𝑘) 𝑑(1)(𝑘)

)
=

(
ℎ(𝑘) 𝑏(1)(𝑘)
𝐼 −𝑔(1)(𝑘)

)(
𝛾−1
𝑘 0
0 𝜆𝑘+1

)( −𝑝(𝑘) 𝐼
𝑎(1)(𝑘) 𝑞(1)(𝑘)

)
,

(18.63)
and finally compute

𝑑(1) = 𝛾−1
1 − 𝑔(1)𝜆2𝑞(1)(1). (18.64)

Here 𝜆𝑘 (𝑘 = 𝑁, . . . , 2) are auxiliary variables, which are 𝑟
𝑈
𝑘−1 × 𝑟𝐿𝑘−1 matrices.

Proof. By Theorem 18.2, one obtains the factorization of the matrix 𝐴 in the form
(18.1) with the block lower triangular matrix 𝐿 which has lower quasiseparable
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generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(1)(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1)
and identity diagonal entries, the block upper triangular matrix 𝑈 with upper
quasiseparable generators 𝑔(1)(𝑖) (𝑖 = 1, . . . , 𝑁−1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 =
2, . . . , 𝑁 − 1) and identity diagonal entries, and the block diagonal matrix 𝐷 =
diag{𝛾1, . . . , 𝛾𝑁}. Here, 𝑝(𝑖), 𝑎(𝑘), ℎ(𝑗), 𝑏(𝑘) are the same as for the matrix 𝐴
and 𝑞(1)(𝑗), 𝑔(1)(𝑖), 𝛾𝑘 are determined via the formulas (18.58)–(18.60).

For the inverse matrix one has

𝐴−1 = (𝑈−1𝐷−1)𝐿−1.

By Theorem 13.13, the matrix 𝑈−1 has upper quasiseparable generators −𝑔(1)(𝑖)
(𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(1)(𝑘)(𝑘 = 2, . . . , 𝑁 − 1) with 𝑏(1)(𝑘) de-
fined in (18.62). One can easily see that the matrix 𝑈−1𝐷−1 is an upper triangular
matrix with upper quasiseparable generators −𝑔(1)(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗)𝛾−1

𝑗

(𝑗 = 2, . . . , 𝑁), 𝑏(1)(𝑘)(𝑘 = 2, . . . , 𝑁−1), and diagonal entries 𝛾−1
𝑘 (𝑘 = 1, . . . , 𝑁).

Next, by Theorem 13.10, the matrix 𝐿−1 has lower quasiseparable generators−𝑝(𝑖)
(𝑖 = 2, . . . , 𝑁), 𝑞(1)(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(1)(𝑘) (𝑘 = 2, . . . , 𝑁 − 1), with 𝑎(1)(𝑘)
defined in (18.62). Now by Theorem 17.5 the generators 𝑞(1)(𝑘), 𝑎(1)(𝑘), 𝑏(1)(𝑘),
𝑔(1)(𝑘) determined above coincide with the corresponding generators of the ma-
trix 𝐴−1, and the rest of the generators 𝑝(1)(𝑘), ℎ(1)(𝑘), 𝑑(1)(𝑘) of this matrix are
determined via recursive relations

𝜆𝑁+1 = 0𝑟𝑈𝑁×𝑟𝐿𝑁 ,(
𝜆𝑘 ℎ(1)(𝑘)

𝑝(1)(𝑘) 𝑑(1)(𝑘)

)
=

(
ℎ(𝑘)𝛾−1

𝑘 𝑏(1)(𝑘)
𝛾−1
𝑘 −𝑔(1)(𝑘)

)(
𝐼 0
0 𝜆𝑘+1

)( −𝑝(𝑘) 𝐼
𝑎(1)(𝑘) 𝑞(1)(𝑘)

)
,

𝑘 = 𝑁, . . . , 1.

From here for 𝑘 = 𝑁 one obtains the equality (18.61), for 𝑘 = 𝑁 − 1, . . . , 2 the
equalities (18.63), and for 𝑘 = 1 the equality (18.64). □

The complexity of the algorithm presented here is estimated as follows. For
the computations by the formulas (18.59) one has the estimate (18.27). The use
of the formula (18.62) costs at most 2𝑟2𝑚𝑁 operations. The formula (18.63) may
be written in the form(

𝜆𝑘 ℎ(1)(𝑘)

𝑝(1)(𝑘) 𝑑(1)(𝑘)

)
=

(
ℎ(𝑘)
𝐼

)
𝛾−1
𝑘

( −𝑝(𝑘) 𝐼 )
+

(
𝑏(1)(𝑘)
−𝑔(1)(𝑘)

)
𝜆𝑘+1

(
𝑎(1)(𝑘) 𝑞(1)(𝑘)

)
.

The cost of computations by this formula does not exceed

𝜌(𝑚) + 2(𝑚2(𝑟 +𝑚) + (𝑟 +𝑚)2𝑚+ 𝑟2(𝑟 +𝑚) + 𝑟(𝑟 +𝑚)2).

Here 𝜌(𝑚) denotes the complexity of the inversion of an 𝑚 ×𝑚 matrix using a
standard method. Thus the total estimate for the complexity is

𝑐 ≤ (𝜌(𝑚) + 2𝜌(𝑚) + 8𝑟3 + 22𝑟2𝑚+ 12𝑚2𝑟 + 4𝑚3)𝑁. (18.65)
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§18.5 The case of a diagonal plus semiseparable
representation

In this section we derive a specification of Theorem 18.2 for matrices with diagonal
plus semiseparable representations.

Theorem 18.8. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a block matrix with block entries of sizes 𝑚𝑖×
𝑚𝑗 and with invertible principal leading block submatrices 𝐴𝑘 = {𝐴𝑖𝑗}𝑘𝑖,𝑗=1, 𝑘 =
1, . . . , 𝑁 . Assume that 𝐴 has lower semiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁),
𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1) of order 𝑟𝐿, upper semiseparable generators 𝑔(𝑖) (𝑖 =
1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁) of order 𝑟𝑈 , and diagonal entries 𝑑(𝑘) (𝑘 =
1, . . . , 𝑁).

Then in the factorization (18.1) the matrix 𝐿 has lower semiseparable gen-
erators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(1)(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), the matrix 𝑈 has upper
semiseparable generators 𝑔(1)(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), and the
matrix 𝐷 has the form 𝐷 = diag{𝛾1, . . . , 𝛾𝑁}. Here the elements 𝑝(𝑖), ℎ(𝑗) are the
same as for the matrix 𝐴 and the elements 𝑞(1)(𝑗), 𝑔(1)(𝑖), 𝛾𝑘 are determined via
the following algorithm.

1. Compute

𝛾1 = 𝑑(1), 𝑞(1)(1) = 𝑞(1)𝛾−1
1 , 𝑔(1)(1) = 𝛾−1

1 𝑔(1), (18.66)

𝑓1 = 𝑞
(1)(1)𝛾1𝑔

(1)(1). (18.67)

2. For 𝑘 = 2, . . . , 𝑁 − 1 compute

𝛾𝑘 = 𝑑(𝑘)− 𝑝(𝑘)𝑓𝑘−1ℎ(𝑘), (18.68)

𝑞(1)(𝑘) = [𝑞(𝑘)− 𝑓𝑘−1ℎ(𝑘)]𝛾
−1
𝑘 , (18.69)

𝑔(1)(𝑘) = 𝛾−1
𝑘 [𝑔(𝑘)− 𝑝(𝑘)𝑓𝑘−1], (18.70)

𝑓𝑘 = 𝑓𝑘−1 + 𝑞
(1)(𝑘)𝛾𝑘𝑔

(1)(𝑘). (18.71)

3. Compute
𝛾𝑁 = 𝑑(𝑁)− 𝑝(𝑁)𝑓𝑁−1ℎ(𝑁). (18.72)

Here 𝑓𝑘 (𝑘 = 1, . . . , 𝑁 − 1) are auxiliary variables, which are 𝑟𝐿 × 𝑟𝑈 matrices.
Proof. 𝐴 may be treated as a matrix with the lower quasiseparable generators

𝑝(𝑖), 𝑖 = 2, . . . , 𝑁, 𝑞(𝑗), 𝑗 = 1, . . . , 𝑁 − 1, 𝑎(𝑘) = 𝐼𝑟𝐿 , 𝑘 = 2, . . . , 𝑁 − 1;

and upper quasiseparable generators

𝑔(𝑖), 𝑖 = 1, . . . , 𝑁 − 1, ℎ(𝑗), 𝑗 = 2, . . . , 𝑁, 𝑏(𝑘) = 𝐼𝑟𝑈 , 𝑘 = 2, . . . , 𝑁 − 1.

Hence, by Theorem 18.2, the matrix 𝐿 has lower quasiseparable generators

𝑝(𝑖), 𝑖 = 2, . . . , 𝑁, 𝑞(1)(𝑗), 𝑗 = 1, . . . , 𝑁 − 1, 𝑎(𝑘) = 𝐼𝑟𝐿 , 𝑘 = 2, . . . , 𝑁 − 1,
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and the matrix 𝑈 has upper quasiseparable generators

𝑔(1)(𝑖), 𝑖 = 1, . . . , 𝑁 − 1, ℎ(𝑗), 𝑗 = 2, . . . , 𝑁, 𝑏(𝑘) = 𝐼𝑟𝑈 , 𝑘 = 2, . . . , 𝑁 − 1.

Thus, by Theorem 4.2, the matrix 𝐿 has lower semiseparable generators 𝑝(𝑖) (𝑖 =
2, . . . , 𝑁), 𝑞(1)(𝑗) (𝑗 = 1, . . . , 𝑁 − 1) and by Theorem 4.3 the elements 𝑔(1)(𝑖) (𝑖 =
1, . . . , 𝑁 − 1), ;ℎ(𝑗) (𝑗 = 2, . . . , 𝑁) are upper semiseparable generators of the
matrix 𝑈 . □

One can easily check that here instead of the estimate for complexity (18.27)
one obtains the better one

𝑐 < (8𝑟2𝑚+ 4𝑚2𝑟 + 𝜌(𝑚))𝑁.

In the corresponding algorithm for the solution of the system 𝐴𝑥 = 𝑦 one obtains
the estimate

𝑐′ < (4𝑚𝑟 + 𝜌(𝑚))𝑁

instead of (13.25), and the total estimate is

𝑐 < (8𝑟2𝑚+ 4𝑚2𝑟 + 8𝑚𝑟 + 3𝜌(𝑚))𝑁.

Example 18.9. Consider the matrix 𝐴 from Example 18.3 with 𝑎 ∕= 0, 𝑏 ∕= 0,
𝑎𝑏 ∕= 1. For this matrix one can use the semiseparable generators

𝑝(𝑖) = 𝑏𝑖−1, ℎ(𝑖) = 𝑎𝑖−1, 𝑖 = 2, . . . , 𝑁,

𝑞(𝑗) =
1

𝑎𝑗−1
, 𝑔(𝑗) =

1

𝑏𝑗−1
, 𝑗 = 1, . . . , 𝑁 − 1, 𝑑(𝑘) = 1, 𝑘 = 1, . . . , 𝑁.

One can use Theorem 18.8 to find the LDU factorization of 𝐴. It follows that
in the factorization (18.1) the matrix 𝐿 has lower semiseparable generators 𝑝(𝑖)
(𝑖 = 2, . . . , 𝑁), 𝑞(1)(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), the matrix 𝑈 has upper semiseparable
generators 𝑔(1)(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), and the matrix 𝐷 has
the form 𝐷 = diag{𝛾1, . . . , 𝛾𝑁}. Here the elements 𝑝(𝑖), ℎ(𝑗) are the same as for
the matrix 𝐴 and the elements 𝑞(1)(𝑗), 𝑔(1)(𝑖), 𝛾𝑘 are determined via the algorithm
in the theorem.

Compute the new semiseparable generators and auxiliary variables with the
first step of the algorithm, namely

𝛾1 = 𝑑(1) = 1, 𝑞(1)(1) = 𝑞(1)𝛾−1
1 = 1, 𝑔(1)(1) = 𝛾−1

1 𝑔(1) = 1,

𝑓1 = 𝑞
(1)(1)𝛾1𝑔

(1)(1) = 1, 𝛾2 = 𝑑(2)− 𝑝(2)𝑓1ℎ(2) = 1− 𝑏𝑎.

One can prove by induction that

𝛾𝑘 = 1− 𝑎𝑏, 𝑘 = 2, . . . , 𝑁,
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and

𝑞(1)(𝑘) =
1

𝑏𝑘−1
, 𝑔(1)(𝑘) =

1

𝑎𝑘−1
, 𝑓𝑘 =

1

𝑎𝑘−1𝑏𝑘−1
, 𝑘 = 1, . . . , 𝑁 − 1.

Indeed, suppose this is true for a certain value of 𝑘. Then for 𝑘 + 1 one has

𝛾𝑘+1 = 𝑑(𝑘 + 1)− 𝑝(𝑘 + 1)𝑓𝑘ℎ(𝑘 + 1) = 1− 𝑏𝑘 1

𝑎𝑘−1𝑏𝑘−1
𝑎𝑘 = 1− 𝑏𝑎,

𝑞(1)(𝑘 + 1) = [𝑞(𝑘 + 1)− 𝑓𝑘ℎ(𝑘 + 1)]𝛾−1
𝑘+1 =

(
1

𝑏𝑘
− 1

𝑎𝑘−1𝑏𝑘−1
𝑎𝑘
)

1

1− 𝑎𝑏 =
1

𝑏𝑘
,

𝑔(1)(𝑘 + 1) = 𝛾−1
𝑘+1[𝑔(𝑘 + 1)− 𝑝(𝑘 + 1)𝑓𝑘] =

1

1− 𝑎𝑏
(

1

𝑎𝑘
− 𝑏𝑘 1

𝑎𝑘−1𝑏𝑘−1

)
=

1

𝑎𝑘
,

𝑓𝑘+1 = 𝑓𝑘 + 𝑞
(1)(𝑘 + 1)𝛾𝑘+1𝑔

(1)(𝑘 + 1) =
1

𝑎𝑘−1𝑏𝑘−1
+

1

𝑏𝑘
(1− 𝑎𝑏) 1

𝑎𝑘
=

1

𝑎𝑘𝑏𝑘

and the induction hypothesis is proved.

It is clear that these semiseparable generators for the matrices 𝐿, 𝐷 and 𝑈
give the same factorization matrices as in Example 18.3. ♢

§18.6 Comments

This chapter is an extension of results obtained by I. Gohberg, T. Kailath and
I. Koltracht in [38] for scalar matrices with diagonal plus semiseparable represen-
tations. The results of [38] were extended to scalar matrices with quasiseparable
representations in [20] and to block matrices in [22]. Further generalizations to
matrices with quasiseparable representations out of a band may be found in [28]
and to diagonal plus semiseparable operator matrices in [24] and [25].

The recursive method mentioned in Section §18.3 was used by I. Gohberg, T.
Kailath and I. Koltracht in [39] for linear algebraic systems with structured matri-
ces. An 𝑂(𝑁2) recursive algorithm for systems with matrices with lower or upper
quasiseparable representations was suggested in [16]. The recursive (Levinson-like)
fast algorithm for linear algebraic systems with matrices with quasiseparable rep-
resentations was suggested by R. Vandebril, N. Mastronardi and M. Van Barel
in [46, 47].



Chapter 19

Scalar Matrices with
Quasiseparable Order One

Generators with orders one are complex numbers. One can then apply the linear
complexity inversion algorithm from Theorem 18.2 suggested under the conditions
of invertibility of the principal leading submatrices of the matrix. In this chapter
an algorithm to determine quasiseparable generators of the inverse without any
restrictions on the principal leading submatrices is obtained. In the proofs here,
the matrices adj𝐴𝑘 of principal leading submatrices 𝐴𝑘 are used instead of their
inverses 𝐴−1

𝑘 .

The direct use of representations may lead to overflow or underflow in the
computing process. That is why an equivalent representation of generators in-
cluding some scaling coefficients is then used. The particular cases of matrices
with diagonal plus semiseparable representations and of tridiagonal matrices are
considered separately.

§19.1 Inversion formula

In this section we derive a basic result for this chapter.

Theorem 19.1. Let 𝐴 be an invertible scalar matrix with quasiseparable of orders
one generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 −
1); 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁−1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁−1); 𝑑(𝑘) (𝑘 =
1, . . . , 𝑁). Using these generators define

𝑙𝑘 = 𝑑(𝑘)𝑎(𝑘)− 𝑝(𝑘)𝑞(𝑘), 𝛿𝑘 = 𝑑(𝑘)𝑏(𝑘)− 𝑔(𝑘)ℎ(𝑘), 2 ≤ 𝑘 ≤ 𝑁 − 1; (19.1)

also, define forward recursively 𝑠1 = 𝑞(1), 𝑣1 = 𝑔(1), 𝑓1 = 𝑞(1)𝑔(1), 𝛾1 = 𝑑(1)

353 Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1  
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory: 
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_19, © Springer Basel 2014
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and for 𝑘 = 2, . . . , 𝑁 − 1

𝑠𝑘 = 𝑞(𝑘)𝛾𝑘−1 − 𝑎(𝑘)𝑓𝑘−1ℎ(𝑘), 𝑣𝑘 = 𝑔(𝑘)𝛾𝑘−1 − 𝑝(𝑘)𝑓𝑘−1𝑏(𝑘),

𝛾𝑘 = 𝑑(𝑘)𝛾𝑘−1 − 𝑝(𝑘)𝑓𝑘−1ℎ(𝑘),

𝑓𝑘 = 𝑎(𝑘)𝑓𝑘−1𝑏(𝑘)𝑑(𝑘) + 𝑞(𝑘)𝑣𝑘 + 𝑠𝑘𝑔(𝑘)− 𝛾𝑘−1𝑞(𝑘)𝑔(𝑘)

𝛾𝑁 = 𝑑(𝑁)𝛾𝑁−1 − 𝑝(𝑁)𝑓𝑁−1ℎ(𝑁);

(19.2)

then define backward recursively 𝑡𝑁 = 𝑝(𝑁), 𝑢𝑁 = ℎ(𝑁), 𝑧𝑁 = ℎ(𝑁)𝑝(𝑁), 𝜃𝑁 =
𝑑(𝑁) and for 𝑘 = 𝑁 − 1, . . . , 2

𝑡𝑘 = 𝑝(𝑘)𝜃𝑘+1 − 𝑔(𝑘)𝑧𝑘+1𝑎(𝑘), 𝑢𝑘 = ℎ(𝑘)𝜃𝑘+1 − 𝑏(𝑘)𝑧𝑘+1𝑞(𝑘),

𝜃𝑘 = 𝑑(𝑘)𝜃𝑘+1 − 𝑔(𝑘)𝑧𝑘+1𝑞(𝑘),

𝑧𝑘 = 𝑏(𝑘)𝑧𝑘+1𝑎(𝑘)𝑑(𝑘) + ℎ(𝑘)𝑡𝑘 + 𝑢𝑘𝑝(𝑘)− 𝜃𝑘+1ℎ(𝑘)𝑝(𝑘),

𝜃1 = 𝑑(1)𝜃2 − 𝑔(1)𝑧2𝑞(1)

(19.3)

and

𝜌𝑘 = 𝛾𝑘−1𝜃𝑘 − 𝑓𝑘−1𝑧𝑘, 2 ≤ 𝑘 ≤ 𝑁, 𝜌1 = 𝜌2;

𝜆1 = 𝜃2, 𝜆𝑘 = 𝛾𝑘−1𝜃𝑘+1 − 𝑎(𝑘)𝑓𝑘−1𝑧𝑘+1𝑏(𝑘), 2 ≤ 𝑘 ≤ 𝑁 − 1,

𝜆𝑁 = 𝛾𝑁−1,

(19.4)

and set det𝐴 = 𝜌.

Then 𝜌𝑘 = 𝜌, 𝑘 = 1, . . . , 𝑁 and the elements −𝑡𝑖/𝜌 (𝑖 = 2, . . . , 𝑁), 𝑠𝑗 (𝑗 =
1, . . . , 𝑁 − 1), 𝑙𝑘 (𝑘 = 2, . . . , 𝑁 − 1); 𝑣𝑖 (𝑖 = 1, . . . , 𝑁 − 1), −𝑢𝑗/𝜌 (𝑗 =
2, . . . , 𝑁), 𝛿𝑘 (𝑘 = 2, . . . , 𝑁 − 1); 𝜆𝑘/𝜌 (𝑘 = 1, . . . , 𝑁) are quasiseparable gen-
erators of the inverse matrix 𝐴−1.

In the proof of the theorem the following auxiliary result is used essentially.

Lemma 19.2. Assume that a matrix 𝐴 admits the representation

𝐴 =

(
𝐴0 𝐺𝐻
𝑃𝑄 𝐵

)
,

where 𝐴0, 𝐵 are square matrices, and 𝑃,𝐺 and 𝑄,𝐻 are correspondingly columns
and rows with appropriate sizes.

Then

det𝐴 = det𝐴0 ⋅ det𝐵 − [𝑄(adj𝐴0)𝐺][𝐻(adj𝐵)𝑃 ], (19.5)

adj𝐴 =

(
𝐴′ −((adj𝐴0)𝐺)(𝐻(adj𝐵))

−((adj𝐵)𝑃 )(𝑄(adj𝐴0)) 𝐵′

)
, (19.6)

where 𝐴′ and 𝐵′ are matrices of the same sizes as 𝐴0 and 𝐵, respectively.
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Proof. Assume for the moment that the matrices 𝐴0, 𝐵,𝐴 are invertible. Then the
inversion formula (1.54) yields

𝐴−1 =

(
𝐴−1

0 + (𝐴−1
0 𝐺)(𝐻�̃�−1𝑃 )(𝑄𝐴−1

0 ) −(𝐴−1
0 𝐺)(𝐻�̃�−1)

−(�̃�−1𝑃 )(𝑄𝐴−1
0 ) �̃�−1

)
, (19.7)

where �̃� = 𝐵 − 𝑃 (𝑄𝐴−1
0 𝐺)𝐻 . Moreover, by the formula (1.53) one has det𝐴 =

det𝐴0 ⋅ det �̃�. Next, using (1.72) one gets

det �̃� = det𝐵 ⋅ det (𝐼 −𝐵−1𝑃 (𝑄𝐴−1
0 𝐺)𝐻

)
= det𝐵

(
1− (𝑄𝐴−1

0 𝐺)(𝐻𝐵−1𝑃 )
)

and therefore

det𝐴 = det𝐴0 ⋅ det𝐵
(
1− [𝑄(adj𝐴0)𝐺][𝐻(adj𝐵)𝑃 ]

det𝐴0 ⋅ det𝐵
)

= det𝐴0 ⋅ det𝐵 − [𝑄(adj𝐴0)𝐺][𝐻(adj𝐵)𝑃 ]

and thus (19.5) is valid without any restriction.

Now using the inversion formula (1.69) we represent the matrix �̃�−1 in the
following form:

�̃�−1 = 𝐵−1 +
1

1− (𝐻𝐵−1𝑃 )(𝑄𝐴−1
0 𝐺)

(𝐵−1𝑃 )(𝑄𝐴−1
0 𝐺)(𝐻𝐵−1)

=
adj𝐵

det𝐵
+

(
1− 𝐻(adj𝐵)𝑃

det𝐵

𝑄(adj𝐴0)𝐺

det𝐴0

)−1
(adj𝐵)𝑃

det𝐵

𝑄(adj𝐴0)𝐺

det𝐴0

𝐻(adj𝐵)

det𝐵

=
adj𝐵

det𝐵
+

𝑄(adj𝐴0)𝐺

det𝐴0 ⋅ det𝐵 − [𝐻(adj𝐵)𝑃 ][𝑄(adj𝐴0)𝐺]

[(adj𝐵)𝑃 ][𝐻(adj𝐵)]

det𝐵
.

It follows that

�̃�−1𝑃 =
(adj𝐵)𝑃 det𝐴0

det𝐴
, 𝐻�̃�−1 =

𝐻(adj𝐵) det𝐴0

det𝐴

and moreover

(�̃�−1𝑃 )(𝑄𝐴−1
0 ) =

[(adj𝐵)𝑃 ]([𝑄(adj𝐴0)]

det𝐴
,

(𝐴−1
0 𝐺)(𝐻�̃�−1) =

[(adj𝐴0)𝐺][𝐻(adj𝐵)]

det𝐴
.

Inserting this in (19.7) we obtain (19.6) without any restriction. □

Proof of the theorem. Using Lemma 5.1 and Lemma 5.4 one obtains for every
𝑘, 1 ≤ 𝑘 ≤ 𝑁 − 1, the representation

𝐴 =

(
𝐴𝑘 𝐺𝑘𝐻𝑘+1

𝑃𝑘+1𝑄𝑘 𝐵𝑘+1

)
. (19.8)
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Here 𝐴𝑘 is the leading principal submatrix of size 𝑘 × 𝑘 and the column vectors
𝑃𝑘, 𝐺𝑘 and the row vectors 𝑄𝑘, 𝐻𝑘 are given via (5.2), (5.5) and (5.1), (5.6).

We introduce the notations

𝑉𝑘 = (adj𝐴𝑘)𝐺𝑘, 𝑆𝑘 = 𝑄𝑘(adj𝐴𝑘), 𝑓𝑘 = 𝑄𝑘(adj𝐴𝑘)𝐺𝑘, 𝛾𝑘 = det𝐴𝑘; (19.9)

𝑇𝑘 = (adj𝐵𝑘)𝑃𝑘, 𝑈𝑘 = 𝐻𝑘(adj𝐵𝑘), 𝑧𝑘 = 𝐻𝑘(adj𝐵𝑘)𝑃𝑘, 𝜃𝑘 = det𝐵𝑘. (19.10)

From (19.5) it follows that

det𝐴 = det𝐴𝑘 ⋅ det𝐵𝑘+1 − [𝑄𝑘(adj𝐴𝑘)𝐺𝑘][𝐻𝑘+1(adj𝐵𝑘+1)𝑃𝑘+1]

= 𝛾𝑘𝜃𝑘+1 − 𝑓𝑘𝑧𝑘+1 = 𝜌𝑘+1, 1 ≤ 𝑘 ≤ 𝑁 − 1.

Next from (19.6) one obtains

adj𝐴 =

(
𝐴′𝑘 −𝑉𝑘𝑈𝑘+1

−𝑇𝑘+1𝑆𝑘 𝐵′𝑘+1

)
, (19.11)

where 𝐴′𝑘, 𝐵
′
𝑘+1 are matrices with the same sizes as 𝐴𝑘, 𝐵𝑘+1.

Consider the elements defined by (19.9). Let 𝑠𝑘, 𝑣𝑘 be the last entries of the
row vector 𝑆𝑘 and the column vector 𝑉𝑘, respectively. For 𝑘 = 1 one has

𝑆1 = 𝑠1 = 𝑞(1), 𝑉1 = 𝑣1 = 𝑔(1), 𝑓1 = 𝑞(1)𝑔(1), 𝛾1 = 𝑑1.

For 𝑘 ≥ 2, the following holds. From the representation

𝐴𝑘 =

(
𝐴𝑘−1 𝐺𝑘−1ℎ(𝑘)

𝑝(𝑘)𝑄𝑘−1 𝑑(𝑘)

)
and from (19.5) it follows that

𝛾𝑘 = 𝑑(𝑘)𝛾𝑘−1 − 𝑝(𝑘)𝑓𝑘−1ℎ(𝑘). (19.12)

Assume for the moment that 𝐴𝑘−1 and 𝐴𝑘 are invertible and apply the formula
(19.7) to the matrix 𝐴𝑘. Then �̃� = 𝐵 − 𝑃 (𝑄𝐴−1

0 𝐺)𝐻 from (19.7) becomes

𝑑(𝑘)− 𝑝(𝑘)𝑄𝑘−1
adj𝐴𝑘−1

det𝐴𝑘−1
𝐺𝑘−1ℎ(𝑘) =

𝛾𝑘
det𝐴𝑘−1

=
𝛾𝑘
𝛾𝑘−1

.

From (19.7) one obtains

𝐴−1
𝑘 =

(
𝐴−1
𝑘−1+(𝐴−1

𝑘−1𝐺𝑘−1)(ℎ(𝑘)
𝛾𝑘−1

𝛾𝑘
𝑝(𝑘))(𝑄𝑘−1𝐴

−1
𝑘−1) −(𝐴−1

𝑘−1𝐺𝑘−1)ℎ(𝑘)
𝛾𝑘−1

𝛾𝑘

− 𝛾𝑘−1

𝛾𝑘
𝑝(𝑘)(𝑄𝑘−1𝐴

−1
𝑘−1)

𝛾𝑘−1

𝛾𝑘

)
,

whence

adj𝐴𝑘 =

(
𝛾𝑘 adj𝐴𝑘−1

𝛾𝑘−1
+ 𝑉𝑘−1(ℎ(𝑘)

1
𝛾𝑘−1

𝑝(𝑘))𝑆𝑘−1 −𝑉𝑘−1ℎ(𝑘)

−𝑝(𝑘)𝑆𝑘−1 𝛾𝑘−1

)
. (19.13)

Next, taking into consideration the recursion (5.3) and the equality

𝑄𝑘−1𝑉𝑘−1 = 𝑓𝑘−1,
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one obtains

𝑆𝑘 = 𝑄𝑘 adj𝐴𝑘 =
(
𝑎(𝑘)𝑄𝑘−1 𝑞(𝑘)

)
adj𝐴𝑘

=
(
{𝑎(𝑘) 1

𝛾𝑘−1
[𝛾𝑘 + 𝑓𝑘−1ℎ(𝑘)𝑝(𝑘)]− 𝑞(𝑘)𝑝(𝑘)}𝑆𝑘−1 −𝑎(𝑘)𝑓𝑘−1ℎ(𝑘) + 𝑞(𝑘)𝛾𝑘−1

)
.

Using (19.12) one obtains

1

𝛾𝑘−1
[𝛾𝑘 + 𝑓𝑘−1ℎ(𝑘)𝑝(𝑘)] = 𝑑(𝑘)

and thus one concludes that

𝑆𝑘 =
(
(𝑑(𝑘)𝑎(𝑘)− 𝑝(𝑘)𝑞(𝑘))𝑆𝑘−1 −𝑎(𝑘)𝑓𝑘−1ℎ(𝑘) + 𝑞(𝑘)𝛾𝑘−1

)
, (19.14)

which holds without any restriction.

Similarly, from (5.7) and the equality 𝑆𝑘−1𝐺𝑘−1 = 𝑓𝑘−1 one obtains

𝑉𝑘 = (adj𝐴𝑘)𝐺𝑘 = adj𝐴𝑘

(
𝐺𝑘−1𝑏(𝑘)
𝑔(𝑘)

)
=

(
𝑉𝑘−1{ 1

𝛾𝑘−1
[𝛾𝑘 + ℎ(𝑘)𝑝(𝑘)𝑓𝑘−1]𝑏(𝑘)− ℎ(𝑘)𝑔(𝑘)}
−𝑝(𝑘)𝑓𝑘−1𝑏(𝑘) + 𝛾𝑘−1𝑔(𝑘)

)
and then, by virtue of (19.12),

𝑉𝑘 =

(
𝑉𝑘−1(𝑑(𝑘)𝑏(𝑘) − 𝑔(𝑘)ℎ(𝑘))
𝛾𝑘−1𝑔(𝑘)− 𝑝(𝑘)𝑓𝑘−1𝑏(𝑘)

)
. (19.15)

Next for 𝑓𝑘 one gets

𝑓𝑘 = 𝑄𝑘(adj𝐴𝑘)𝐺𝑘 = 𝑄𝑘𝑉𝑘 =
(
𝑎(𝑘)𝑄𝑘−1 𝑞(𝑘)

)(𝑉𝑘−1(𝑑(𝑘)𝑏(𝑘) − 𝑔(𝑘)ℎ(𝑘))
𝛾𝑘−1𝑔(𝑘)− 𝑝(𝑘)𝑓𝑘−1𝑏(𝑘)

)
= 𝑎(𝑘)𝑓𝑘−1𝑑(𝑘)𝑏(𝑘)− 𝑎(𝑘)𝑓𝑘−1𝑔(𝑘)ℎ(𝑘) + 𝑞(𝑘)𝛾𝑘−1𝑔(𝑘)− 𝑞(𝑘)𝑝(𝑘)𝑓𝑘−1𝑏(𝑘)

= 𝑎(𝑘)𝑓𝑘−1𝑏(𝑘)𝑑(𝑘) + 𝑔(𝑘)[𝑞(𝑘)𝛾𝑘−1 − 𝑎(𝑘)𝑓𝑘−1ℎ(𝑘)]

+ 𝑞(𝑘)[𝛾𝑘−1𝑔(𝑘)− 𝑝(𝑘)𝑓𝑘−1𝑏(𝑘)]− 𝑞(𝑘)𝛾𝑘−1𝑔(𝑘). (19.16)

Thus the numbers 𝑠𝑘, 𝑣𝑘, 𝑓𝑘, 𝛾𝑘 satisfy the relations (19.2), and moreover
for the vectors 𝑆𝑘, 𝑉𝑘 one has the recursions

𝑆1 = 𝑠1, 𝑆𝑘 =
(
𝑙𝑘𝑆𝑘−1 𝑠𝑘

)
, 𝑘 = 2, . . . , 𝑁 − 1, (19.17)

𝑉1 = 𝑣1, 𝑉𝑘 =

(
𝑉𝑘−1𝛿𝑘
𝑣𝑘

)
, 𝑘 = 2, . . . , 𝑁 − 1, (19.18)

where 𝑙𝑘, 𝛿𝑘 are given by (19.1).
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Next we consider the elements defined by (19.10). Let 𝑡𝑘, 𝑢𝑘 be the first
entries of the column vector 𝑇𝑘 and the row vector 𝑈𝑘, respectively. For 𝑘 = 𝑁
one has

𝑇𝑁 = 𝑡𝑁 = 𝑝(𝑁), 𝑈𝑁 = 𝑢𝑁 = ℎ(𝑁), 𝑧𝑁 = ℎ(𝑁)𝑝(𝑁), 𝜃𝑁 = 𝑑(𝑁).

For 1 ≤ 𝑘 ≤ 𝑁 − 1 one has the following. Consider the submatrices 𝐵𝑘 =
𝐴(𝑘 : 𝑁, 𝑘 : 𝑁). Using (5.10) and (5.13) one obtains the representations

𝐵𝑘 =

(
𝑑(𝑘) 𝑔(𝑘)𝐻𝑘+1

𝑃𝑘+1𝑞(𝑘) 𝐵𝑘+1

)
.

The application of (19.5) yields

𝜃𝑘 = 𝑑(𝑘)𝜃𝑘+1 − 𝑞(𝑘)𝑧𝑘+1𝑔(𝑘).

Moreover, assuming for the moment that 𝐵𝑘+1, 𝐵𝑘 are invertible, we apply the
formula (1.57) to the matrix 𝐵𝑘 and obtain

𝐵−1
𝑘 =

( 𝜃𝑘+1

𝜃𝑘
− 𝜃𝑘+1

𝜃𝑘
𝑔(𝑘)𝐻𝑘+1𝐵

−1
𝑘+1

−𝐵−1
𝑘+1𝑃𝑘+1𝑞(𝑘)

𝜃𝑘+1

𝜃𝑘
(𝐵−1

𝑘+1𝑃𝑘+1)
(
𝑞(𝑘) 𝜃𝑘+1

𝜃𝑘
𝑔(𝑘)

)
(𝐻𝑘+1𝐵

−1
𝑘+1) +𝐵

−1
𝑘+1

)
.

From here one obtains representations similar to (19.13):

adj𝐵𝑘 =

(
𝜃𝑘+1 −𝑔(𝑘)𝑈𝑘+1

−𝑇𝑘+1𝑞(𝑘)
𝜃𝑘adj𝐵𝑘+1

𝜃𝑘+1
+ 𝑇𝑘+1(𝑞(𝑘)

1
𝜃𝑘+1

𝑔(𝑘))𝑈𝑘+1

)
.

Then one can proceed as in (19.14)–(19.16), but in the backward direction,
to obtain the desired relations (19.3) for 𝑡𝑘, 𝑢𝑘, 𝜃𝑘, 𝑧𝑘 and to prove that the
columns 𝑇𝑘 and the rows 𝑈𝑘 satisfy the recursions

𝑇𝑁 = 𝑡𝑁 , 𝑇𝑘 =

(
𝑡𝑘

𝑇𝑘+1𝑙𝑘

)
, 𝑘 = 𝑁 − 1, . . . , 2,

𝑈𝑁 = 𝑢𝑁 , 𝑈𝑘 =
(
𝑢𝑘 𝛿𝑘𝑈𝑘+1

)
, 𝑘 = 𝑁 − 1 . . . , 2.

(19.19)

Indeed, using (5.4) and the equality 𝑈𝑘+1𝑃𝑘+1 = 𝑧𝑘+1 one has

𝑇𝑘 = (adj𝐵𝑘)𝑃𝑘 = (adj𝐵𝑘)

(
𝑝(𝑘)

𝑃𝑘+1𝑎(𝑘)

)
=

(
𝜃𝑘+1𝑝(𝑘)− 𝑔(𝑘)𝑧𝑘+1𝑎(𝑘)

𝑇𝑘+1{[(𝜃𝑘 + 𝑞(𝑘)𝑧𝑘+1𝑔(𝑘))/𝜃𝑘+1]𝑎(𝑘)− 𝑝(𝑘)𝑞(𝑘)}
)
.

Since (𝜃𝑘 + 𝑔(𝑘)𝑧𝑘+1𝑞(𝑘))/𝜃𝑘+1 = 𝑑(𝑘), one obtains

𝑇𝑘 =

(
𝜃𝑘+1𝑝(𝑘)− 𝑔(𝑘)𝑧𝑘+1𝑎(𝑘)
𝑇𝑘+1{𝑑(𝑘)𝑎(𝑘)− 𝑝(𝑘)𝑞(𝑘)}

)
.
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Next, using (5.8) and the equality 𝐻𝑘+1𝑇𝑘+1 = 𝑧𝑘+1 one has

𝑈𝑘 =
(
ℎ(𝑘) 𝑏(𝑘)𝐻𝑘+1

)
adj𝐵𝑘

=
(
ℎ(𝑘)𝜃𝑘+1 − 𝑏(𝑘)𝑧𝑘+1𝑞(𝑘) (𝑑(𝑘)𝑏(𝑘)− ℎ(𝑘)𝑔(𝑘))𝑈𝑘+1

)
.

Finally, we conclude that

𝑧𝑘 = 𝑈𝑘𝑃𝑘

=
(
ℎ(𝑘)𝜃𝑘+1 − 𝑏(𝑘)𝑧𝑘+1𝑞(𝑘) (𝑑(𝑘)𝑏(𝑘)− ℎ(𝑘)𝑔(𝑘))𝑈𝑘+1

)( 𝑝(𝑘)
𝑃𝑘+1𝑎(𝑘)

)
= ℎ(𝑘)𝜃𝑘+1𝑝(𝑘)− 𝑏(𝑘)𝑧𝑘+1𝑞(𝑘)𝑝(𝑘) + 𝑑(𝑘)𝑏(𝑘)𝑧𝑘+1𝑎(𝑘)− ℎ(𝑘)𝑔(𝑘)𝑧𝑘+1𝑎(𝑘)

= 𝑏(𝑘)𝑧𝑘+1𝑎(𝑘)𝑑(𝑘) + ℎ(𝑘)[𝑝(𝑘)𝜃𝑘+1 − 𝑔(𝑘)𝑧𝑘+1𝑎(𝑘)]

+ 𝑝(𝑘)[ℎ(𝑘)𝜃𝑘+1 − 𝑏(𝑘)𝑧𝑘+1𝑞(𝑘)]− ℎ(𝑘)𝜃𝑘+1𝑝(𝑘).

Multiplying (19.19) by −𝜌−1, 𝑁 ≥ 𝑘 ≥ 2 one obtains

−𝑇𝑁/𝜌 = −𝑡𝑁/𝜌𝑁 , −𝑇𝑘/𝜌 =
( −𝑡𝑘/𝜌

−(𝑇𝑘+1/𝜌)𝑙𝑘

)
, 𝑘 = 𝑁 − 1, . . . , 2

(19.20)

and

−𝑈𝑁/𝜌 = −𝑢𝑁/𝜌, −𝑈𝑘/𝜌 =
( −𝑢𝑘/𝜌 −𝛿𝑘𝑈𝑘+1/𝜌

)
, 𝑘 = 𝑁 − 1 . . . , 2.

(19.21)

Let 𝜆𝑘 be the diagonal entries of the matrix adj𝐴. Consider the matrices

𝐴′1 = 𝐵2, 𝐴′𝑘 =
(

𝐴𝑘−1 𝐺𝑘−1𝑏(𝑘)𝐻𝑘+1

𝑃𝑘+1𝑎(𝑘)𝑄𝑘−1 𝐵𝑘+1

)
,

𝑘 = 2, . . . , 𝑁 − 1; 𝐴′𝑁 = 𝐴𝑁−1

obtained from 𝐴 by removing its 𝑘th row and 𝑘th column. One has obviously

𝜆1 = det𝐵2 = 𝜃2, 𝜆𝑁 = det𝐴𝑁−1 = 𝛾𝑁−1

and using (19.5) one gets

det𝐴′𝑘 = det𝐴𝑘−1 ⋅det𝐵𝑘+1−𝑎(𝑘)(𝑄𝑘−1 adj𝐴𝑘−1𝐺𝑘−1)(𝑃𝑘+1 adj𝐵𝑘+1𝐻𝑘+1)𝑏(𝑘)

from which the relations (19.4) for 𝜆𝑘 follow.

Thus for the inverse matrix 𝐴−1 one has the following. From (19.11) we
conclude that

𝐴−1(𝑘 + 1 : 𝑁, 1 : 𝑘) = (−𝑇𝑘+1/𝜌)𝑆𝑘, 𝑘 = 1, . . . , 𝑁 − 1.

Moreover, −𝑇𝑘/𝜌, 𝑆𝑘 satisfy (19.20) and (19.17). Hence, by Lemma 5.3, the ele-
ments −𝑡𝑖/𝜌 (𝑖 = 2, . . . , 𝑁), 𝑠𝑗 (𝑗 = 1, . . . , 𝑁 − 1), 𝑙𝑘 (𝑘 = 2, . . . , 𝑁 − 1) are lower
quasiseparable generators of the inverse matrix 𝐴−1. Next, one has

𝐴−1(1 : 𝑘, 𝑘 + 1 : 𝑁) = 𝑉𝑘(−𝑈𝑘+1/𝜌), 𝑘 = 1, . . . , 𝑁 − 1,
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where 𝑉𝑘, (−𝑈𝑘+1/𝜌) satisfy (19.18) and (19.21). Hence, by Lemma 5.6, the ele-
ments 𝑣𝑖 (𝑖 = 2, . . . , 𝑁), −𝑢𝑗/𝜌 (𝑗 = 2, . . . , 𝑁), 𝛿𝑘 (𝑘 = 2, . . . , 𝑁 − 1) are upper
quasiseparable generators of the inverse matrix 𝐴−1. Finally, for the diagonal en-
tries one has

𝐴−1(𝑘, 𝑘) = det𝐴′𝑘/ det𝐴 = 𝜆𝑘/𝜌.

Thus the numbers −𝑡𝑖/𝜌 (𝑖 = 2, . . . , 𝑁), 𝑠𝑗 (𝑗 = 1, . . . , 𝑁 − 1), 𝑙𝑘 (𝑘 = 2, . . . , 𝑁 −
1); 𝑣𝑖 (𝑖 = 1, . . . , 𝑁 − 1), −𝑢𝑗/𝜌 (𝑗 = 2, . . . , 𝑁), 𝛿𝑘 (𝑘 = 2, . . . , 𝑁 − 1); 𝜆𝑘/𝜌 (𝑘 =
1, . . . , 𝑁) are quasiseparable generators of the inverse matrix 𝐴−1. □

§19.2 Examples

Here Theorem 19.1 is illustrated by concrete examples.

Example 19.3. Consider the matrix

𝐴 =

⎛⎜⎜⎝
𝛼1 0 0 𝛽1
0 𝛼2 0 𝛽2
0 0 𝛼3 𝛽3
𝜖1 𝜖2 𝜖3 𝛼4

⎞⎟⎟⎠ .
Then one can take the scalar quasiseparable generators

𝑔(1) = 𝛽1, 𝑔(2) = 𝛽2, 𝑔(3) = 𝛽3, ℎ(2) = ℎ(3) = 0, ℎ(4) = 1,

𝑝(2) = 𝑝(3) = 0, 𝑝(4) = 1, 𝑞(1) = 𝜖1, 𝑞(2) = 𝜖2, 𝑞(3) = 𝜖3,

𝑑(𝑘) = 𝛼𝑘, 𝑘 = 1, . . . , 4, 𝑎(2) = 𝑎(3) = 𝑏(2) = 𝑏(3) = 1.

One can therefore compute

𝑙2 = 𝛼2, 𝛿2 = 𝛼2, 𝑙3 = 𝛼3, 𝛿3 = 𝛼3,

𝑠1 = 𝜖1, 𝑣1 = 𝛽1, 𝑓1 = 𝜖1𝛽1, 𝛾1 = 𝛼1,

𝑠2 = 𝜖2𝛼1, 𝑣2 = 𝛽2𝛼1, 𝛾2 = 𝛼2𝛼1,

𝑓2 = 𝜖1𝛽1𝛼2 + 𝜖2𝛽2𝛼1 + 𝜖2𝛼1𝛽2 − 𝛼1𝜖2𝛽2 = 𝜖1𝛽1𝛼2 + 𝜖2𝛽2𝛼1,

𝑠3 = 𝜖3𝛼2𝛼1, 𝑣3 = 𝛽3𝛼2𝛼1, 𝛾3 = 𝛼3𝛼2𝛼1,

𝑓3 = 𝜖1𝛽1𝛼2𝛼3 + 𝜖2𝛽2𝛼1𝛼3 + 𝜖3𝛽3𝛼2𝛼1 + 𝜖3𝛼2𝛼1𝛽3 − 𝛼2𝛼1𝜖3𝛽3

= 𝜖1𝛽1𝛼2𝛼3 + 𝜖2𝛽2𝛼1𝛼3 + 𝜖3𝛽3𝛼2𝛼1,

𝛾4 = 𝛼4𝛼3𝛼2𝛼1 − 𝜖1𝛽1𝛼2𝛼3 − 𝜖2𝛽2𝛼1𝛼3 − 𝜖3𝛽3𝛼2𝛼1.

On the other hand,

𝑡4 = 1, 𝑢4 = 1, 𝑧4 = 1, 𝜃4 = 𝛼4, 𝑡3 = −𝛽3,
𝑢3 = −𝜖3, 𝜃3 = 𝛼3𝛼4 − 𝛽3𝜖3, 𝑧3 = −𝛼3,

𝑡2 = −𝛽2𝛼3, 𝑢2 = −𝛼3𝜖3, 𝜃2 = 𝛼2𝛼3𝛼4 − 𝛼2𝛽3𝜖3 − 𝛽2𝛼3𝜖2, 𝑧2 = 𝛼3𝛼2,

𝜃1 = 𝛼1𝛼2𝛼3𝛼4 − 𝛼1𝛼2𝛽3𝜖3 − 𝛼1𝛽2𝛼3𝜖2 − 𝛽1𝛼3𝛼2𝜖1.
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Denote det𝐴 by Δ. Then

𝜌4 = 𝛼3𝛼2𝛼1𝛼4 − 𝜖1𝛽1𝛼2𝛼3 − 𝜖2𝛽2𝛼1𝛼3 − 𝜖3𝛽3𝛼2𝛼1 = Δ,

𝜌3 = 𝛼2𝛼1𝛼3𝛼4 − 𝛼2𝛼1𝛽3𝜖3 − 𝜖1𝛽1𝛼2𝛼3 − 𝜖2𝛽2𝛼1𝛼3 = Δ,

𝜌2 = 𝛼1𝛼2𝛼3𝛼4 − 𝛼1𝛼2𝛽3𝜖3 − 𝛼1𝛽2𝛼3𝜖2 − 𝜖1𝛽1𝛼3𝛼2 = Δ, 𝜌1 = 𝜌2 = Δ,

and

𝜆1 = 𝛼2𝛼3𝛼4 − 𝛼2𝛽3𝜖3 − 𝛽2𝛼3𝜖2, 𝜆2 = 𝛼1𝛼3𝛼4 − 𝛼1𝛽3𝜖3 − 𝜖1𝛽1𝛼3,

𝜆3 = 𝛼2𝛼1𝛼4 − 𝜖1𝛽1𝛼2 − 𝜖2𝛽2𝛼1, 𝜆4 = 𝛾3 = 𝛼3𝛼2𝛼1.

One defines the following numbers, which will be the quasiseparable genera-
tors of the inverse matrix:

𝑝(2) =
𝛽2𝛼3

Δ
, 𝑝(3) =

𝛽3
Δ
, 𝑝(4) =

−1
Δ
,

𝑞(1) = 𝜖1, 𝑞(2) = 𝜖2𝛼1, 𝑞(3) = 𝜖3𝛼2𝛼1,

�̃�(2) = �̃�(2) = 𝛼2, �̃�(3) = �̃�(3) = 𝛼3,

𝑔(1) = 𝛽1, 𝑔(2) = 𝛽2𝛼1, 𝑔(3) = 𝛽3𝛼2𝛼1,

ℎ̃(2) =
𝛼3𝜖3
Δ
, ℎ̃(3) =

𝜖3
Δ
, ℎ̃(4) =

−1
Δ
,

and

𝑑(1) =
𝜆1
Δ

=
𝛼2𝛼3𝛼4 − 𝛼2𝛽3𝜖3 − 𝛽2𝛼3𝜖2

Δ
,

𝑑(2) =
𝜆2
Δ

=
𝛼1𝛼3𝛼4 − 𝛼1𝛽3𝜖3 − 𝜖1𝛽1𝛼3

Δ
,

𝑑(3) =
𝜆3
Δ

=
𝛼2𝛼1𝛼4 − 𝜖1𝛽1𝛼2 − 𝜖2𝛽2𝛼1

Δ
,

𝑑(4) =
𝛼3𝛼2𝛼1

Δ
.

One can build the matrix⎛⎜⎜⎝
𝑑(1) 𝑔(1)ℎ̃(2) 𝑔(1)�̃�(2)ℎ̃(3) 𝑔(1)�̃�(2)�̃�(3)ℎ̃(4)

𝑝(2)𝑞(1) 𝑑(2) 𝑔(2)ℎ̃(3) 𝑔(2)�̃�(3)ℎ̃(4)

𝑝(3)�̃�(2)𝑞(1) 𝑝(3)𝑞(2) 𝑑(3) 𝑔(3)ℎ̃(4)

𝑝(4)�̃�(3)�̃�(2)𝑞(1) 𝑝(4)�̃�(3)𝑞(2) 𝑝(4)𝑞(3) 𝑑(4)

⎞⎟⎟⎠ ,
namely

1

Δ

⎛⎜⎜⎝
𝜆1 𝛽1𝛼3𝜖3 𝛽1𝛼2𝜖3 −𝛽1𝛼2𝛼3

𝛽2𝛼3𝜖1 𝜆2 𝛽2𝛼1𝜖3 −𝛽2𝛼1𝛼3

𝛽3𝛼2𝜖1 𝛽3𝜖2𝛼1 𝜆3 −𝛽3𝛼2𝛼1

−𝛼3𝛼2𝜖1 −𝛼3𝜖2𝛼1 −𝜖3𝛼2𝛼1 𝛼3𝛼2𝛼1

⎞⎟⎟⎠ ,
which is indeed 𝐴−1. ♢
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Example 19.4. Let 𝑎 ∕= 0 be a scalar and consider the (𝑁 − 1)× (𝑁 − 1) matrix

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−(𝑁 − 1)𝑎 𝑎 𝑎 ⋅ ⋅ ⋅ 𝑎 𝑎
𝑎 −(𝑁 − 1)𝑎 𝑎 ⋅ ⋅ ⋅ 𝑎 𝑎
𝑎 𝑎 −(𝑁 − 1)𝑎 ⋅ ⋅ ⋅ 𝑎 𝑎
...

...
...

. . .
...

...
𝑎 𝑎 𝑎 ⋅ ⋅ ⋅ −(𝑁 − 1)𝑎 𝑎
𝑎 𝑎 𝑎 ⋅ ⋅ ⋅ 𝑎 −(𝑁 − 1)𝑎

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

For the matrix 𝐴 one can use the quasiseparable generators

𝑝(𝑖) = 𝑎, 𝑖 = 2, . . . , 𝑁 − 1, 𝑞(𝑗) = 1, 𝑗 = 1, . . . , 𝑁 − 2,

𝑎(𝑘) = 1, 𝑘 = 2, . . . , 𝑁 − 2, 𝑔(𝑗) = 1, 𝑗 = 1, . . . , 𝑁 − 2,

ℎ(𝑖) = 𝑎, 𝑖 = 2, . . . , 𝑁 − 1, 𝑏(𝑘) = 1, 𝑘 = 2, . . . , 𝑁 − 2,

𝑑(𝑘) = −(𝑁 − 1)𝑎, 𝑘 = 1, . . . , 𝑁 − 1.

Then

𝑙𝑘 = −(𝑁 − 1)𝑎− 𝑎 = −𝑁𝑎, 𝛿𝑘 = −(𝑁 − 1)𝑎− 𝑎 = −𝑁𝑎
and forwards one can compute

𝑠1 = 1, 𝑣1 = 1, 𝑓1 = 1, 𝛾1 = −(𝑁 − 1)𝑎,

and prove by induction that for 𝑘 = 1, . . . , 𝑁 − 1

𝛾𝑘 = (−1)𝑘𝑁𝑘−1𝑎𝑘(𝑁 − 𝑘), 𝑓𝑘 = (−1)𝑘−1𝑘𝑁𝑘−1𝑎𝑘−1, 𝑣𝑘 = 𝑠𝑘 = (−𝑁𝑎)𝑘−1.

One can also compute backwards

𝑡𝑁−1 = 𝑎, 𝑢𝑁−1 = 𝑎, 𝑧𝑁−1 = 𝑎
2, 𝜃𝑁−1 = −(𝑁 − 1)𝑎,

and prove by induction that for 𝑘 = 𝑁 − 1, . . . , 1

𝜃𝑘 = 𝛾𝑁−𝑘 = (−1)𝑁−𝑘𝑘𝑁𝑁−𝑘−1𝑎𝑁−𝑘, 𝑢𝑘 = 𝑡𝑘 = (−1)𝑁−𝑘−1𝑁𝑁−𝑘−1𝑎𝑁−𝑘,

𝑧𝑘 = (−1)𝑁−𝑘−1(𝑁 − 𝑘)𝑁𝑁−𝑘−1𝑎𝑁−𝑘+1.

It follows that for 𝑘 = 1, . . . , 𝑁 − 1

𝜌𝑘 = 𝛾𝑘−1𝜃𝑘 − 𝑓𝑘−1𝑧𝑘

= (−1)𝑘−1𝑁𝑘−2𝑎𝑘−1(𝑁 + 1− 𝑘)(−1)𝑁−𝑘𝑘𝑁𝑁−𝑘−1𝑎𝑁−𝑘

− (−1)𝑘−2(𝑘 − 1)𝑁𝑘−2𝑎𝑘−2(−1)𝑁−𝑘−1(𝑁 − 𝑘)𝑁𝑁−𝑘−1𝑎𝑁−𝑘+1

= (−1)𝑁−1𝑁𝑁−3𝑎𝑁−1((𝑁 + 1− 𝑘)𝑘 − (𝑘 − 1)(𝑁 − 𝑘))
= (−1)𝑁−1𝑁𝑁−2𝑎𝑁−1 = det𝐴
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Also

𝜆𝑘 = 𝛾𝑘−1𝜃𝑘+1 − 𝑓𝑘−1𝑧𝑘+1

= (−1)𝑘−1𝑁𝑘−2𝑎𝑘−1(𝑁 + 1− 𝑘)(−1)𝑁−𝑘−1(𝑘 + 1)𝑁𝑁−𝑘−2𝑎𝑁−𝑘−1

− (−1)𝑘−2(𝑘 − 1)𝑁𝑘−2𝑎𝑘−2(−1)𝑁−𝑘−2(𝑁 − 𝑘 − 1)𝑁𝑁−𝑘−2𝑎𝑁−𝑘

= (−1)𝑁𝑁𝑁−4𝑎𝑁−2((𝑁 + 1− 𝑘)(𝑘 + 1)− (𝑘 − 1)(𝑁 − 𝑘 − 1))

= 2(−1)𝑁𝑁𝑁−3𝑎𝑁−2.

One defines the following numbers, which will be the quasiseparable genera-
tors of the inverse matrix

𝑝(𝑖) = − 𝑡𝑖
𝜌𝑖

=
(−1)𝑁−𝑖𝑁𝑁−𝑖−1𝑎𝑁−𝑖

(−1)𝑁−1𝑁𝑁−2𝑎𝑁−1
= (−1)𝑖−1 1

(𝑁𝑎)𝑖−1
, 𝑖 = 2, . . . , 𝑁 − 1,

𝑞(𝑗) = (−1)𝑗−1(𝑁𝑎)𝑗−1, 𝑗 = 1, . . . , 𝑁 − 2, �̃�(𝑘) = −𝑁𝑎, 𝑘 = 2, . . . , 𝑁 − 2,

𝑔(𝑗) = (−1)𝑗−1(𝑁𝑎)𝑗−1 = 𝑞(𝑗), 𝑗 = 1, . . . , 𝑁 − 2,

�̃�(𝑘) = −𝑁𝑎 = �̃�(𝑘), 𝑘 = 2, . . . , 𝑁 − 2,

ℎ̃(𝑖) =
(−1)𝑁−𝑖𝑁𝑁−𝑖−1𝑎𝑁−𝑖

(−1)𝑁−1𝑁𝑁−2𝑎𝑁−1
= (−1)𝑖−1 1

(𝑁𝑎)𝑖−1
= 𝑝(𝑖), 𝑖 = 2, . . . , 𝑁 − 1,

𝑑(𝑘) =
𝜆𝑘
𝜌𝑘

=
2(−1)𝑁𝑁𝑁−3𝑎𝑁−2

(−1)𝑁−1𝑁𝑁−2𝑎𝑁−1
= − 2

𝑁𝑎
, 𝑘 = 1, . . . , 𝑁 − 1.

If 𝑖 > 𝑗, then the element (𝐴−1)𝑖𝑗 of the inverse matrix is

𝑝(𝑖)𝑞(𝑗)�̃�(𝑖− 1)�̃�(𝑖− 2) ⋅ ⋅ ⋅ ⋅ ⋅ �̃�(𝑗 + 1)

= (−1)𝑖−1 1

(𝑁𝑎)𝑖−1
(−1)𝑗−1(𝑁𝑎)𝑗−1(−1)𝑖−𝑗−1(𝑁𝑎)𝑖−𝑗−1 = − 1

𝑁𝑎
,

and if 𝑖 < 𝑗, then the element (𝐴−1)𝑖𝑗 of the inverse matrix is

𝑔(𝑗)ℎ̃(𝑖)�̃�(𝑗 − 1)�̃�(𝑗 − 2) ⋅ ⋅ ⋅ ⋅ ⋅ �̃�(𝑖+ 1) = − 1

𝑁𝑎

also. Therefore, the inverse matrix is

− 1

𝑁𝑎

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 1 1 ⋅ ⋅ ⋅ 1 1
1 2 1 ⋅ ⋅ ⋅ 1 1
1 1 2 ⋅ ⋅ ⋅ 1 1
...

...
...

. . .
...

...
1 1 1 ⋅ ⋅ ⋅ 2 1
1 1 1 ⋅ ⋅ ⋅ 1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
which is indeed 𝐴−1. ♢
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Example 19.5. Let 𝑁 = 2𝑟+1 be an odd number and consider the (𝑁−1)×(𝑁−1)
irreducible tridiagonal matrix

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 𝛽1 0 ⋅ ⋅ ⋅ 0 0 0
𝛼2 0 𝛽2 ⋅ ⋅ ⋅ 0 0 0
0 𝛼3 0 ⋅ ⋅ ⋅ 0 0 0
...

...
...

. . .
...

...
...

0 0 0 ⋅ ⋅ ⋅ 0 𝛽𝑁−3 0
0 0 0 ⋅ ⋅ ⋅ 𝛼𝑁−2 0 𝛽𝑁−2

0 0 0 ⋅ ⋅ ⋅ 0 𝛼𝑁−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with
𝛼𝑖 ∕= 0, 𝑖 = 2, . . . , 𝑁 − 1, 𝛽𝑗 ∕= 0, 𝑗 = 1, . . . , 𝑁 − 2.

For the matrix 𝐴 one can use the quasiseparable generators

𝑝(𝑖) = 𝛼𝑖, 𝑖 = 2, . . . , 𝑁 − 1, 𝑞(𝑗) = 1, 𝑗 = 1, . . . , 𝑁 − 2,

𝑎(𝑘) = 0, 𝑘 = 2, . . . , 𝑁 − 2, 𝑔(𝑗) = 𝛽𝑗 , 𝑗 = 1, . . . , 𝑁 − 2,

ℎ(𝑖) = 1, 𝑖 = 2, . . . , 𝑁 − 1, 𝑏(𝑘) = 0, 𝑘 = 2, . . . , 𝑁 − 2,

𝑑(𝑘) = 𝑑, 𝑘 = 1, . . . , 𝑁 − 1.

Then
𝑙𝑘 = −𝛼𝑘, 𝛿𝑘 = −𝛽𝑘, 𝑘 = 2, . . . , 𝑁 − 2

and one can compute forwards

𝑠1 = 1, 𝑣1 = 𝛽1, 𝑓1 = 𝛽1, 𝛾1 = 0,

𝑠2 = 𝛾1 = 0, 𝑣2 = 0, 𝛾2 = −𝛼2𝛽1, 𝑓2 = 0,

𝑠3 = −𝛼2𝛽1, 𝑣3 = −𝛼2𝛽1𝛽3, 𝛾3 = 0, 𝑓3 = −𝛼2𝛽1𝛽3,

𝑠4 = 0, 𝑣4 = 0, 𝛾4 = 𝛼2𝛼4𝛽1𝛽3, 𝑓4 = 0,

𝑠5 = 𝛼2𝛼4𝛽1𝛽3, 𝑣5 = 𝛼2𝛼4𝛽1𝛽3𝛽5, 𝛾5 = 0, 𝑓5 = 𝛼2𝛼4𝛽1𝛽3𝛽5.

By induction, one can prove that for 𝑚 = 0, . . . , 𝑟 − 1,

𝛾2𝑚+1 = 0, 𝑓2𝑚+1 = (−1)𝑚𝛼2𝛼4 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛼2𝑚𝛽1𝛽3 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛽2𝑚+1,

𝑠2𝑚+1 = (−1)𝑚𝛼2𝛼4 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛼2𝑚𝛽1𝛽3 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛽2𝑚−1,

𝑣2𝑚+1 = 𝛼2𝛼4 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛼2𝑚𝛽1𝛽3 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛽2𝑚+1.

Also, for 𝑚 = 1, . . . , 𝑟,

𝛾2𝑚 = (−1)𝑚𝛼2𝛼4 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛼2𝑚𝛽1𝛽3 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛽2𝑚−1, 𝑠2𝑚 = 𝑣2𝑚 = 𝑓2𝑚 = 0.

One can also compute backwards

𝑡𝑁−1 = 𝛼𝑁−1, 𝑢𝑁−1 = 1, 𝑧𝑁−1 = 𝛼𝑁−1, 𝜃𝑁−1 = 0,

𝑡𝑁−2 = 0, 𝑢𝑁−2 = 0, 𝑧𝑁−2 = 0, 𝜃𝑁−2 = −𝛼𝑁−1𝛽𝑁−2,
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𝑡𝑁−3 = −𝛼𝑁−1𝛼𝑁−3𝛽𝑁−2, 𝑢𝑁−3 = −𝛼𝑁−1𝛽𝑁−2,

𝑧𝑁−3 = −𝛼𝑁−1𝛼𝑁−3𝛽𝑁−2, 𝜃𝑁−3 = 0.

By induction, one can prove that for 𝑚 = 0, . . . , 𝑟 − 1,

𝜃2𝑚+1 = (−1)𝑟−𝑚𝛼𝑁−1𝛼𝑁−3 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛼2𝑚+2𝛽𝑁−2𝛽𝑁−4 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛽2𝑚+1,

𝑧2𝑚+1 = 𝑡2𝑚+1 = 𝑢2𝑚+1 = 0.

Also, for 𝑚 = 1, . . . , 𝑟,

𝑧2𝑚 = (−1)𝑟−𝑚𝛼𝑁−1𝛼𝑁−3 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛼2𝑚𝛽𝑁−2𝛽𝑁−4 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛽2𝑚+1,

𝑢2𝑚 = (−1)𝑟−𝑚𝛼𝑁−1𝛼𝑁−3 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛼2𝑚+2𝛽𝑁−2𝛽𝑁−4 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛽2𝑚+1,

𝑡2𝑚 = (−1)𝑟−𝑚𝛼𝑁−1𝛼𝑁−3 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛼2𝑚𝛽𝑁−2𝛽𝑁−4 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛽2𝑚+1, 𝜃2𝑚 = 0.

It follows that for 𝑘 = 1, . . . , 𝑁 − 1

𝜌𝑘 = (−1)𝑟𝛼𝑁−1𝛼𝑁−3 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛼2𝛽𝑁−2𝛽𝑁−4 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛽1 = det𝐴

and

𝜆1 = 𝜃2 = 0, 𝜆𝑘 = 0, 𝑘 = 2, . . . , 𝑁 − 2, 𝜆𝑁−1 = 0.

One defines the following numbers, which will be the quasiseparable genera-
tors of the inverse matrix

𝑝(2𝑚) = (−1)𝑚+1 1

𝛼2𝛼4 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛼2𝑚−2𝛽1𝛽3 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛽2𝑚−1
, 𝑝(2𝑚+ 1) = 0,

ℎ̃(2𝑚) = (−1)𝑚+1 1

𝛼2𝛼4 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛼2𝑚𝛽1𝛽3 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛽2𝑚−1
, ℎ̃(2𝑚+ 1) = 0,

𝑑(𝑘) = 0, 𝑞(𝑗) = 𝑠𝑗, 𝑔(𝑗) = 𝑣𝑗 ,

�̃�(𝑘) = 𝑙𝑘 = −𝛼𝑘, �̃�(𝑘) = 𝛿𝑘 = −𝛽𝑘.

With the above generators one can write the inverse matrix 𝐴−1. For in-
stance, the last column 𝐿 of the inverse matrix has the even components 𝐿(2𝑚) =
0, 𝑚 = 1, . . . , 𝑟 − 1, since 𝑠2𝑚 = 0 and 𝐿(2𝑟) = 0, since 𝑑(2𝑟) = 0. The odd
components are given by

ℎ̃(2𝑟) = (−1)𝑟+1 1

𝛼2𝛼4 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛼2𝑟𝛽1𝛽3 ⋅ ⋅ ⋅ ⋅ ⋅ 𝛽2𝑟−1

and it follows that

𝐿(2𝑚+ 1) = (−1)𝑟−𝑚+1 1

𝛼𝑁−1

𝛽𝑁−3

𝛼𝑁−3
⋅ ⋅ ⋅ ⋅ ⋅ 𝛽2(𝑚+1)

𝛼2(𝑚+1)
. (19.22)

Similarly one can find the remaining part of the matrix 𝐴−1. ♢
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§19.3 Inversion algorithm with scaling

We present here an algorithm to compute quasiseparable generators of the inverse
matrix 𝐴−1. The direct use of representations derived in Theorem 19.1 may lead
to an overflow or underflow in the computing process. That is why we use an
equivalent representation of generators including some scaling coefficients.

Algorithm 19.6. Let 𝐴 be an invertible scalar matrix with quasiseparable of orders
one generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁−1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁−1);
𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1); 𝑑(𝑘) (𝑘 =
1, . . . , 𝑁).

Then quasiseparable of orders one generators 𝑡𝑖 (𝑖 = 2, . . . , 𝑁), 𝑠𝑗 (𝑗 =

1, . . . , 𝑁 − 1), �̃�𝑘 (𝑘 = 2, . . . , 𝑁 − 1); 𝑣𝑖 (𝑖 = 1, . . . , 𝑁 − 1), �̃�𝑗 (𝑗 = 2, . . . , 𝑁), 𝛿𝑘
(𝑘 = 2, . . . , 𝑁 − 1); �̃�𝑘 (𝑘 = 1, . . . , 𝑁) of the matrix 𝐴−1 are given as follows.

1.1.1. Set 𝑠′1 = 𝑞(1), 𝑣
′
1 = 𝑔(1), 𝛾

′
1 = 𝑑(1) and compute 𝑓 ′1 = 𝑞(1)𝑔(1).

1.1.2. Introduce the scaling coefficient 𝛽𝐼1 as 𝛽𝐼1 = 1/max(∣𝛾′1∣, ∣𝑓 ′1∣) or using
another method.

1.1.3. Compute

𝛾1 = 𝛾
′
1𝛽

𝐼
1 , 𝑓1 = 𝑓

′
1𝛽

𝐼
1 , 𝑠1 = 𝛽

𝐼
1𝑠
′
1, 𝑣1 = 𝑣

′
1𝛽

𝐼
1 .

1.2. For 𝑘 = 2, . . . , 𝑁 − 1, perform the following operations:

1.2.1. Compute

𝑙𝑘 = 𝑑(𝑘)𝑎(𝑘) − 𝑞(𝑘)𝑝(𝑘), 𝛿𝑘 = 𝑑(𝑘)𝑏(𝑘)− ℎ(𝑘)𝑔(𝑘),
𝑠′𝑘 = 𝑞(𝑘)𝛾𝑘−1 − 𝑎(𝑘)𝑓𝑘−1ℎ(𝑘), 𝑣′𝑘 = 𝑔(𝑘)𝛾𝑘−1 − 𝑝(𝑘)𝑓𝑘−1𝑏(𝑘),

𝛾′𝑘 = 𝑑(𝑘)𝛾𝑘−1 − 𝑝(𝑘)𝑓𝑘−1ℎ(𝑘),

𝑓 ′𝑘 = 𝑎(𝑘)𝑓𝑘−1𝑏(𝑘)𝑑(𝑘) + 𝑞(𝑘)𝑣
′
𝑘 + 𝑠

′
𝑘𝑔(𝑘)− 𝛾𝑘−1𝑞(𝑘)𝑔(𝑘).

1.2.2. Introduce the scaling coefficient 𝛽𝐼𝑘 as 𝛽𝐼𝑘 = 1/max(∣𝛾′𝑘∣, ∣𝑓 ′𝑘∣) or by
using another method.

1.2.3. Compute

𝛾𝑘 = 𝛾
′
𝑘𝛽

𝐼
𝑘, 𝑓𝑘 = 𝑓

′
𝑘𝛽

𝐼
𝑘, 𝑠𝑘 = 𝛽

𝐼
𝑘𝑠
′
𝑘,

𝑣𝑘 = 𝑣
′
𝑘𝛽

𝐼
𝑘, 𝑙𝑘 = 𝛽

𝐼
𝑘 𝑙𝑘, 𝛿𝑘 = 𝛽

𝐼
𝑘𝛿𝑘.

2.1.1. Set 𝑡′𝑁 = 𝑝𝑁 , 𝑢
′
𝑁 = ℎ𝑁 , 𝜃

′
𝑁 = 𝑑𝑁 and compute 𝑧′𝑁 = ℎ𝑁𝑝𝑁 .

2.1.2. Introduce the scaling coefficient 𝛽𝑈𝑁 as 𝛽𝑈𝑁 = 1/max(∣𝜃′𝑁 ∣, ∣𝑧′𝑁 ∣) or by
using another method.

2.1.3. Compute

𝜃𝑁 = 𝜃′𝑁𝛽
𝑈
𝑁 , 𝑧𝑁 = 𝑧′𝑁𝛽

𝑈
𝑁 , 𝑡′′𝑁 = 𝛽𝑈𝑁 𝑡

′
𝑁 , 𝑢′′𝑁 = 𝑢′𝑁𝛽

𝑈
𝑁 ,

𝜌𝑁 = 𝛾𝑁−1𝜃𝑁 − 𝑓𝑁−1𝑧𝑁 , 𝑡𝑁 = −𝑡′′𝑁/𝜌𝑁 , �̃�𝑁 = −𝑢′′𝑁/𝜌𝑁 .
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2.2. For 𝑘 = 𝑁 − 1, . . . , 2, perform the following operations:

2.2.1. Compute

𝑡′𝑘 = 𝑝(𝑘)𝜃𝑘+1 − 𝑔(𝑘)𝑧𝑘+1𝑎(𝑘), 𝑢′𝑘 = ℎ(𝑘)𝜃𝑘+1 − 𝑏(𝑘)𝑧𝑘+1𝑞(𝑘),

𝜃′𝑘 = 𝑑𝑘𝜃𝑘+1 − 𝑔(𝑘)𝑧𝑘+1𝑞(𝑘),

𝑧′𝑘 = 𝑏(𝑘)𝑧𝑘+1𝑎(𝑘)𝑑(𝑘) + ℎ(𝑘)𝑡
′
𝑘 + 𝑢

′
𝑘𝑝(𝑘)− 𝜃𝑘+1ℎ(𝑘)𝑝(𝑘).

2.2.2. Introduce the scaling coefficient 𝛽𝑈𝑘 as 𝛽𝑈𝑘 = 1/max(∣𝜃′𝑘∣, ∣𝑧′𝑘∣) or by
using another method.

2.2.3. Compute

𝜃𝑘 = 𝜃
′
𝑘𝛽

𝑈
𝑘 , 𝑧𝑘 = 𝑧

′
𝑘𝛽

𝑈
𝑘 , 𝑡′′𝑘 = 𝛽

𝑈
𝑘 𝑡
′
𝑘, 𝑢′′𝑘 = 𝑢

′
𝑘𝛽

𝑈
𝑘 ,

𝜌𝑘 = 𝛾𝑘−1𝜃𝑘 − 𝑓𝑘−1𝑧𝑘, 𝑡𝑘 = −𝑡′′𝑘/𝜌𝑘, �̃�𝑘 = −𝑢′′𝑘/𝜌𝑘.

3.1. Compute 𝜆1 = 𝜃2𝛽
𝐼
1/𝜌2.

3.2. For 𝑘 = 2, . . . , 𝑁 − 1, compute

𝜆′𝑘 = 𝛾𝑘−1𝜃𝑘+1 − 𝑎(𝑘)𝑓𝑘−1𝑧𝑘+1𝑏(𝑘), �̃�𝑘 = 𝜆
′
𝑘𝛽

𝑈
𝑘 /𝜌𝑘.

3.3. Compute �̃�𝑁 = 𝛾𝑁−1𝛽
𝑈
𝑁/𝜌𝑁 .

To justify this algorithm note the following. It is easy to prove by induction
that the elements 𝑠𝑘, 𝑣𝑘, 𝛾𝑘, 𝑓𝑘 and 𝑡′′𝑘 , 𝑢

′′
𝑘, 𝜃𝑘, 𝑧𝑘 are connected with the

corresponding elements of (19.2), (19.3) via the relations

𝑠𝑘 = 𝑠𝑘

𝑘∏
𝑖=1

𝛽𝐼𝑖 , 𝑣𝑘 = 𝑣𝑘

𝑘∏
𝑖=1

𝛽𝐼𝑖 , 𝛾𝑘 = 𝛾𝑘

𝑘∏
𝑖=1

𝛽𝐼𝑖 , 𝑓𝑘 = 𝑓𝑘

𝑘∏
𝑖=1

𝛽𝐼𝑖 , 1 ≤ 𝑘 ≤ 𝑁 − 1,

and

𝑢′′𝑘 = 𝑢𝑘
𝑁∏
𝑖=𝑘

𝛽𝑈𝑖 , 𝑡
′′
𝑘 = 𝑡𝑘

𝑁∏
𝑖=𝑘

𝛽𝑈𝑖 , 𝜃𝑘 = 𝜃𝑘

𝑁∏
𝑖=𝑘

𝛽𝑈𝑖 , 𝑧𝑘 = 𝑧𝑘

𝑁∏
𝑖=𝑘

𝛽𝑈𝑖 , 𝑁 ≥ 𝑘 ≥ 2.

It follows that

𝜌𝑘 =

(
𝑘−1∏
𝑖=1

𝛽𝐼𝑖

)
𝜌

(
𝑁∏
𝑖=𝑘

𝛽𝑈𝑖

)
, 2 ≤ 𝑘 ≤ 𝑁

and

𝜆′𝑘 =

(
𝑘−1∏
𝑖=1

𝛽𝐼𝑖

)
𝜆𝑘

(
𝑁∏

𝑖=𝑘+1

𝛽𝑈𝑖

)
, 2 ≤ 𝑘 ≤ 𝑁 − 1.

Notice also that

�̃�>𝑖𝑗 = 𝑙
>
𝑖𝑗(𝛽

𝐼
𝑖𝑗)

>, 𝑖 > 𝑗; 𝛿<𝑖𝑗 = 𝛿
<
𝑖𝑗(𝛽

𝐼
𝑖𝑗)

<, 𝑖 < 𝑗.
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Thus one obtains

𝐴𝑖𝑗 = − 𝑡𝑖𝑙
>
𝑖𝑗𝑠𝑗

𝜌

= − 𝑡
′′
𝑖 (
∏𝑁
𝑚=𝑖 𝛽

𝑈
𝑚)
−1𝑙>𝑖𝑗((𝛽

𝐼
𝑖𝑗)

>)−1𝑠𝑗(
∏𝑗
𝑚=1 𝛽

𝐼
𝑚)
−1

(
∏𝑖−1
𝑚=1 𝛽

𝐼
𝑚)
−1𝜌𝑖(

∏𝑁
𝑚=𝑖 𝛽

𝑈
𝑚)
−1

= − 𝑡
′′
𝑖 �̃�
>
𝑖𝑗𝑠𝑗

𝜌𝑖
= 𝑡𝑖𝑙

>
𝑖𝑗𝑠𝑗 , 𝑖 > 𝑗,

and

𝐴𝑖𝑗 = −𝑣𝑖𝛿
<
𝑖𝑗𝑢𝑗

𝜌

= −𝑣𝑖(
∏𝑖
𝑚=1 𝛽

𝐼
𝑚)
−1𝛿<𝑖𝑗((𝛽

𝐼
𝑖𝑗)

<)−1𝑢′′𝑗 (
∏𝑁
𝑚=𝑗 𝛽

𝑈
𝑚)
−1

(
∏𝑗−1
𝑚=1 𝛽

𝐼
𝑚)
−1𝜌𝑗(

∏𝑁
𝑚=𝑗 𝛽

𝑈
𝑚)
−1

= −𝑣𝑖𝛿
<
𝑖𝑗𝑢

′′
𝑗

𝜌𝑗
= 𝑣𝑖𝛿

<
𝑖𝑗 �̃�𝑗, 𝑖 < 𝑗.

Hence the elements 𝑡𝑖 (𝑖 = 2, . . . , 𝑁), 𝑠𝑗 (𝑗 = 1, . . . , 𝑁 − 1), �̃�𝑘 (𝑘 = 2, . . . , 𝑁 − 1)

and 𝑣𝑖 (𝑖 = 1, . . . , 𝑁 − 1), �̃�𝑗 (𝑗 = 2, . . . , 𝑁), 𝛿𝑘 (𝑘 = 2, . . . , 𝑁 − 1) given by
Algorithm 19.6 are correspondingly lower and upper quasiseparable generators of
the matrix 𝐴. The diagonal entries of 𝐴 may be expressed as follows:

�̃�1 = 𝜃2/𝜌 =
𝜃2(
∏𝑁
𝑖=2 𝛽

𝑈
𝑖 )
−1

(𝛽𝐼1 )
−1𝜌2(

∏𝑁
𝑖=2 𝛽

𝑈
𝑖 )
−1

=
𝜃2𝛽

𝐼
1

𝜌2
,

�̃�𝑘 = 𝜆𝑘/𝜌 =
(
∏𝑘−1
𝑖=1 𝛽

𝐼
𝑖 )
−1𝜆′𝑘(

∏𝑁
𝑖=𝑘+1 𝛽

𝑈
𝑖 )
−1

(
∏𝑘−1
𝑖=1 𝛽

𝐼
𝑖 )
−1𝜌𝑘(

∏𝑁
𝑖=𝑘 𝛽

𝑈
𝑖 )
−1

=
𝜆′𝑘𝛽

𝑈
𝑘

𝜌𝑘
, 2 ≤ 𝑘 ≤ 𝑁 − 1,

�̃�𝑁 = 𝛾𝑁−1/𝜌 =
𝛾𝑁−1(

∏𝑁−1
𝑖=1 𝛽𝐼𝑖 )

−1

(
∏𝑁−1
𝑖=1 𝛽𝐼𝑖 )

−1𝜌𝑁(𝛽𝑈𝑁 )
−1

=
𝛾𝑁−1𝛽

𝑈
𝑁

𝜌𝑁
,

which corresponds to Steps 3.1–3.3 in Algorithm 19.6.

An easy calculation shows that Algorithm 19.6 requires 58(𝑁 − 2) + 20 op-
erations. At the same time, substituting 𝑚 = 1, 𝑟 = 1 in (18.65) one obtains
the estimate 𝑐 ≤ 52𝑁 for the complexity of the algorithm from Theorem 18.7,
to be applied to scalar matrices with quasiseparable order one. The last estimate
is better than that for Algorithm 19.6, but the algorithm from Theorem 18.7 is
obtained under some restrictions.

It is clear that using consequently Algorithm 19.6 for quasiseparable genera-
tors of the matrix 𝐴−1 and then applying Algorithm 13.1 to the product 𝑥 = 𝐴−1𝑦
one obtains an algorithm of linear complexity for the solution of the linear equation
𝐴𝑥 = 𝑦.
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§19.4 The case of diagonal plus semiseparable
representation

Let 𝐴 be a scalar matrix with lower and upper semiseparable generators 𝑝(𝑖)
(𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1) and 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 =
2, . . . , 𝑁) of order one, and diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁). Such a matrix
has quasiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁−1), 𝑎(𝑘) = 1,
(𝑘 = 2, . . . , 𝑁 − 1); 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) = 1 (𝑘 =
2, . . . , 𝑁 − 1); 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁). Hence one can set 𝑎𝑘 = 𝑏𝑘 = 1 in Algorithm
19.6 and obtain the following method.

Algorithm 19.7. Let 𝐴 be a scalar matrix with lower and upper semiseparable
generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1) and 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1),
ℎ(𝑗) (𝑗 = 2, . . . , 𝑁) of order one and diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁). Then the
quasiseparable of orders one generators−𝑡𝑖 (𝑖 = 2, . . . , 𝑁), 𝑠𝑗 (𝑗 = 1, . . . , 𝑁−1), 𝑙𝑘
(𝑘 = 2, . . . , 𝑁−1); 𝑣𝑖 (𝑖 = 1, . . . , 𝑁−1), −�̃�𝑗 (𝑗 = 2, . . . , 𝑁), 𝛿𝑘 (𝑘 = 2, . . . , 𝑁−1);

�̃�𝑘 (𝑘 = 1, . . . , 𝑁) of the matrix 𝐴−1 are obtained as follows.

1.1.1. Set 𝑠′1 = 𝑞(1), 𝑣
′
1 = 𝑔(1), 𝛾

′
1 = 𝑑(1) and compute 𝑓 ′1 = 𝑞(1)𝑔(1).

1.1.2. Introduce the scaling coefficient 𝛽𝐼1 as 𝛽𝐼1 = 1/max(∣𝛾′1∣, ∣𝑓 ′1∣) or by
using another method.

1.1.3. Compute

𝛾1 = 𝛾
′
1𝛽

𝐼
1 , 𝑓1 = 𝑓

′
1𝛽

𝐼
1 , 𝑠1 = 𝛽

𝐼
1𝑠
′
1, 𝑣1 = 𝑣

′
1𝛽

𝐼
1 .

1.2. For 𝑘 = 2, . . . , 𝑁 − 1, perform the following operations:

1.2.1. Compute

𝑙𝑘 = 𝑑(𝑘) − 𝑞(𝑘)𝑝(𝑘), 𝛿𝑘 = 𝑑(𝑘)− ℎ(𝑘)𝑔(𝑘),
𝑠′𝑘 = 𝑞(𝑘)𝛾𝑘−1 − 𝑓𝑘−1ℎ(𝑘), 𝑣′𝑘 = 𝑔(𝑘)𝛾𝑘−1 − 𝑝(𝑘)𝑓𝑘−1,

𝛾′𝑘 = 𝑑(𝑘)𝛾𝑘−1 − 𝑝(𝑘)𝑓𝑘−1ℎ(𝑘),

𝑓 ′𝑘 = 𝑓𝑘−1𝑑(𝑘) + 𝑞(𝑘)𝑣
′
𝑘 + 𝑠

′
𝑘𝑔(𝑘)− 𝛾𝑘−1𝑞(𝑘)𝑔(𝑘).

1.2.2. Introduce the scaling coefficient 𝛽𝐼𝑘 as 𝛽𝐼𝑘 = 1/max(∣𝛾′𝑘∣, ∣𝑓 ′𝑘∣) or by
using another method.

1.2.3. Compute

𝛾𝑘 = 𝛾
′
𝑘𝛽

𝐼
𝑘, 𝑓𝑘 = 𝑓

′
𝑘𝛽

𝐼
𝑘, 𝑠𝑘 = 𝛽

𝐼
𝑘𝑠
′
𝑘,

𝑣𝑘 = 𝑣
′
𝑘𝛽

𝐼
𝑘, 𝑙𝑘 = 𝛽

𝐼
𝑘 𝑙𝑘, 𝛿𝑘 = 𝛽

𝐼
𝑘𝛿𝑘.

2.1.1. Set 𝑡′𝑁 =𝑝(𝑁), 𝑢′𝑁=ℎ(𝑁), 𝜃′𝑁 =𝑑(𝑁) and compute 𝑧′𝑁 =ℎ(𝑁)𝑝(𝑁).

2.1.2. Introduce the scaling coefficient 𝛽𝑈𝑁 as 𝛽𝑈𝑁 = 1/max(∣𝜃′𝑁 ∣, ∣𝑧′𝑁 ∣) or by
using another method.
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2.1.3. Compute

𝜃𝑁 = 𝜃′𝑁𝛽
𝑈
𝑁 , 𝑧𝑁 = 𝑧′𝑁𝛽

𝑈
𝑁 , 𝑡′′𝑁 = 𝛽𝑈𝑁 𝑡

′
𝑁 , 𝑢′′𝑁 = 𝑢′𝑁𝛽

𝑈
𝑁 ,

𝜌𝑁 = 𝛾𝑁−1𝜃𝑁 − 𝑓𝑁−1𝑧𝑁 , 𝑡𝑁 = −𝑡′′𝑁/𝜌𝑁 , �̃�𝑁 = −𝑢′′𝑁/𝜌𝑁 .

2.2. For 𝑘 = 𝑁 − 1, . . . , 2, perform the following operations:

2.2.1. Compute

𝑡′𝑘 = 𝑝(𝑘)𝜃𝑘+1 − 𝑔(𝑘)𝑧𝑘+1, 𝑢′𝑘 = ℎ(𝑘)𝜃𝑘+1 − 𝑧𝑘+1𝑞(𝑘),

𝜃′𝑘 = 𝑑(𝑘)𝜃𝑘+1 − 𝑔(𝑘)𝑧𝑘+1𝑞(𝑘),

𝑧′𝑘 = 𝑧𝑘+1𝑑(𝑘) + ℎ(𝑘)𝑡
′
𝑘 + 𝑢

′
𝑘𝑝(𝑘)− 𝜃𝑘+1ℎ(𝑘)𝑝(𝑘).

2.2.2. Introduce the scaling coefficient 𝛽𝑈𝑁 as 𝛽𝑈𝑘 = 1/max(∣𝜃′𝑘∣, ∣𝑧′𝑘∣) or by
using another method.

2.2.3. Compute

𝜃𝑘 = 𝜃
′
𝑘𝛽

𝑈
𝑘 , 𝑧𝑘 = 𝑧

′
𝑘𝛽

𝑈
𝑘 , 𝑡′′𝑘 = 𝛽

𝑈
𝑘 𝑡
′
𝑘, 𝑢′′𝑘 = 𝑢

′
𝑘𝛽

𝑈
𝑘 ,

𝜌𝑘 = 𝛾𝑘−1𝜃𝑘 − 𝑓𝑘−1𝑧𝑘, 𝑡𝑘 = −𝑡′′𝑘/𝜌𝑘, �̃�𝑘 = −𝑢′′𝑘/𝜌𝑘.

3.1. Compute 𝜆1 = 𝜃2𝛽
𝐼
1/𝜌2.

3.2. For 𝑘 = 2, . . . , 𝑁 − 1, compute

𝜆′𝑘 = 𝛾𝑘−1𝜃𝑘+1 − 𝑓𝑘−1𝑧𝑘+1, �̃�𝑘 = 𝜆
′
𝑘𝛽

𝑈
𝑘 /𝜌𝑘.

3.3. Compute �̃�𝑁 = 𝛾𝑁−1𝛽
𝑈
𝑁/𝜌𝑁 .

The amount of operations for this algorithm is 42(𝑁 − 2) + 20.

§19.5 The case of a tridiagonal matrix

Consider a tridiagonal scalar matrix 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1, i.e., 𝐴𝑖𝑗 = 0 for ∣𝑖 − 𝑗∣ > 1.
Quasiseparable of orders one generators of the matrix 𝐴 may be defined (see
§4.11) via

𝑝(𝑖) = 1, 𝑖 = 2, . . . , 𝑁, 𝑞(𝑗) = 𝐴𝑗+1,𝑗 , 𝑗 = 1, . . . , 𝑁 − 1,

𝑎(𝑘) = 𝑏(𝑘) = 0, 𝑘 = 2, . . . , 𝑁 − 1;

𝑔(𝑖) = 𝐴𝑖,𝑖+1, 𝑖 = 1, . . . , 𝑁 − 1, ℎ(𝑗) = 1, 𝑗 = 2, . . . , 𝑁 ;

𝑑(𝑘) = 𝐴𝑘𝑘, 𝑘 = 1, . . .𝑁.

As a direct consequence of Theorem 19.1 one obtains the following inversion
formula that is valid for any invertible tridiagonal matrix.
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Theorem 19.8. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be an invertible tridiagonal matrix. Let us
define:

𝑙𝑘 = −𝐴𝑘+1,𝑘, 𝛿𝑘 = −𝐴𝑘,𝑘+1, 2 ≤ 𝑘 ≤ 𝑁 − 1;

forward recursively 𝑠1 = 𝐴2,1, 𝑣1 = 𝐴1,2, 𝑓1 = 𝑠1𝑣1, 𝛾1 = 𝐴1,1 and for 𝑘 =
2, . . . , 𝑁 − 1

𝑠𝑘 = 𝐴𝑘+1,𝑘𝛾𝑘−1, 𝑣𝑘 = 𝐴𝑘,𝑘+1𝛾𝑘−1,

𝛾𝑘 = 𝐴𝑘,𝑘𝛾𝑘−1 − 𝑓𝑘−1,

𝑓𝑘 = 𝛾𝑘−1𝐴𝑘+1,𝑘𝐴𝑘,𝑘+1,

𝛾𝑁 = 𝐴𝑁,𝑁𝛾𝑁−1 − 𝑓𝑁−1,

backward recursively 𝑡𝑁 = 1, 𝑢𝑁 = 1, 𝑧𝑁 = 1, 𝜃𝑁 = 𝐴𝑁,𝑁 and for 𝑘 = 𝑁 −
1, . . . , 2

𝑡𝑘 = 𝜃𝑘+1, 𝑢𝑘 = 𝜃𝑘+1, 𝑧𝑘 = 𝜃𝑘+1,

𝜃𝑘 = 𝐴𝑘,𝑘𝜃𝑘+1 −𝐴𝑘,𝑘+1𝑧𝑘+1𝐴𝑘+1,𝑘,

𝜃1 = 𝐴1,1𝜃2 −𝐴2,1𝑧2𝐴1,2,

and

𝜌𝑘 = 𝛾𝑘−1𝜃𝑘 − 𝑓𝑘−1𝑧𝑘, 2 ≤ 𝑘 ≤ 𝑁, 𝜌1 = 𝜌2,

𝜆1 = 𝜃2, 𝜆𝑘 = 𝛾𝑘−1𝜃𝑘+1, 2 ≤ 𝑘 ≤ 𝑁 − 1, 𝜆𝑁 = 𝛾𝑁−1.

Set det𝐴 = 𝜌.

Then 𝜌𝑘 = 𝜌, 𝑘 = 1, . . . , 𝑁 , and the elements −𝑡𝑖/𝜌𝑖 (𝑖 = 2, . . . , 𝑁), 𝑠𝑗 (𝑗 =
1, . . . , 𝑁 − 1), 𝑙𝑘 (𝑘 = 2, . . . , 𝑁 − 1); 𝑣𝑖 (𝑖 = 1, . . . , 𝑁 − 1), −𝑢𝑗/𝜌𝑗 (𝑗 =
2, . . . , 𝑁), 𝛿𝑘 (𝑘 = 2, . . . , 𝑁 − 1); 𝜆𝑘/𝜌𝑘 (𝑘 = 1, . . . , 𝑁) are quasiseparable of
orders one generators of the matrix 𝐴−1.

Applying the scaling method described in Subsection §19.3 one obtains in
the case of a tridiagonal matrix the following method.

Algorithm 19.9. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a tridiagonal matrix. Then the quasisep-

arable generators −𝑡𝑖 (𝑖 = 2, . . . , 𝑁), 𝑠𝑗 (𝑗 = 1, . . . , 𝑁 − 1), 𝑙𝑘 (𝑘 = 2, . . . , 𝑁 −
1); 𝑣𝑖 (𝑖 = 1, . . . , 𝑁 − 1), −�̃�𝑗 (𝑗 = 2, . . . , 𝑁), 𝛿𝑘 (𝑘 = 2, . . . , 𝑁 − 1); �̃�𝑘 (𝑘 =
1, . . . , 𝑁) of orders one of the matrix 𝐴−1 are obtained as follows.

1.1.1. Set 𝑠′1 = 𝐴2,1, 𝑣
′
1 = 𝐴1,2, 𝛾

′
1 = 𝐴1,1 and compute 𝑓 ′1 = 𝑠

′
1𝑣
′
1.

1.1.2. Introduce the scaling coefficient 𝛽𝐼1 as 𝛽𝐼1 = 1/max(∣𝛾′1∣, ∣𝑓 ′1∣) or by
using another method.

1.1.3. Compute

𝛾1 = 𝛾
′
1𝛽

𝐼
1 , 𝑓1 = 𝑓

′
1𝛽

𝐼
1 , 𝑠1 = 𝛽

𝐼
1𝑠
′
1, 𝑣1 = 𝑣

′
1𝛽

𝐼
1 .

1.2. For 𝑘 = 2, . . . , 𝑁 − 1, perform the following operations:
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1.2.1. Compute

𝑙𝑘 = −𝐴𝑘+1,𝑘, 𝛿𝑘 = −𝐴𝑘,𝑘+1;

𝑠′𝑘 = 𝐴𝑘+1,𝑘𝛾𝑘−1, 𝑣′𝑘 = 𝐴𝑘,𝑘+1𝛾𝑘−1,

𝛾′𝑘 = 𝐴𝑘𝑘𝛾𝑘−1 − 𝑓𝑘−1, 𝑓 ′𝑘 = 𝐴𝑘+1,𝑘𝑣
′
𝑘.

1.2.2. Introduce the scaling coefficient 𝛽𝐼𝑘 as 𝛽𝐼𝑘 = 1/max(∣𝛾′𝑘∣, ∣𝑓 ′𝑘∣) or by
using another method.

1.2.3. Compute
𝛾𝑘 = 𝛾

′
𝑘𝛽

𝐼
𝑘, 𝑓𝑘 = 𝑓

′
𝑘𝛽

𝐼
𝑘, 𝑠𝑘 = 𝛽

𝐼
𝑘𝑠
′
𝑘,

𝑣𝑘 = 𝑣
′
𝑘𝛽

𝐼
𝑘, 𝑙𝑘 = 𝛽

𝐼
𝑘 𝑙𝑘, 𝛿𝑘 = 𝛽

𝐼
𝑘𝛿𝑘.

2.1.1. Set 𝜃′𝑁 = 𝑟𝑁,𝑁 , 𝑧
′
𝑁 = 1.

2.1.2. Introduce the scaling coefficient 𝛽𝑈𝑁 as 𝛽𝑈𝑁 = 1/max(∣𝜃′𝑁 ∣, ∣𝑧′𝑁 ∣) or by
using another method.

2.1.3. Compute

𝜃𝑁 = 𝜃′𝑁𝛽
𝑈
𝑁 , 𝑧𝑁 = 𝑧′𝑁𝛽

𝑈
𝑁 ,

𝜌𝑁 = 𝛾𝑁−1𝜃𝑁 − 𝑓𝑁−1𝑧𝑁 , 𝑡𝑁 = −𝑧𝑁/𝜌𝑁 , �̃�𝑁 = 𝑡𝑁 .

2.2. For 𝑘 = 𝑁 − 1, . . . , 2, perform the following operations:

2.2.1. Set 𝑧′𝑘 = 𝜃𝑘+1 and compute

𝜃′𝑘 = 𝐴𝑘,𝑘𝜃𝑘+1 −𝐴𝑘,𝑘+1𝑧𝑘+1𝐴𝑘+1,𝑘.

2.2.2. Introduce the scaling coefficient 𝛽𝑈𝑘 as 𝛽𝑈𝑘 = 1/max(∣𝜃′𝑘∣, ∣𝑧′𝑘∣) or by
using another method.

2.2.3. Compute

𝜃𝑘 = 𝜃
′
𝑘𝛽

𝑈
𝑘 , 𝑧𝑘 = 𝑧

′
𝑘𝛽

𝑈
𝑘 ,

𝜌𝑘 = 𝛾𝑘−1𝜃𝑘 − 𝑓𝑘−1𝑧𝑘, 𝑡𝑘 = −𝑧𝑘/𝜌𝑘, 𝑢𝑘 = 𝑡𝑘.

3.1. Compute 𝜆1 = 𝜃2𝛽
𝐼
1/𝜌2.

3.2. For 𝑘 = 2, . . . , 𝑁 − 1, compute

�̃�𝑘 = 𝛾𝑘−1𝜃𝑘+1𝛽
𝑈
𝑘 /𝜌𝑘.

3.3. Compute 𝜆𝑁 = 𝛾𝑁−1𝛽
𝑈
𝑁/𝜌𝑁 .

This algorithm requires 23(𝑁 − 2) + 14 operations.

§19.6 Comments

The material of this chapter is taken mostly from the paper [21].



Chapter 20

The QR-Factorization Based Method

In this chapter we present a method for the inversion of block matrices with given
quasiseparable representations without any restriction on the matrix except its
invertibility. It is based on a special representation of a block invertible matrix 𝐴
in the form

𝐴 = 𝑉 𝑈𝑅, (20.1)

where 𝑉 is a block lower triangular unitary matrix and 𝑈 is a block upper trian-
gular unitary matrix, with nonsquare blocks, and 𝑅 is a block upper triangular
matrix with square invertible blocks on the main diagonal. This is a form of the
QR factorization of the matrix 𝐴 in which the unitary Q-factor is written in a
special form.

The matrices 𝑉, 𝑈, 𝑅 are given by their quasiseparable generators, which
are computed via quasiseparable generators of the original matrix 𝐴. Using this
representation we find the solution of the system of linear algebraic equations
𝐴𝑥 = 𝑦 as 𝑥 = 𝑅−1𝑈∗𝑉 ∗𝑦. As a result, we obtain a linear complexity algorithm
to find the solution 𝑥.

In the first step of the method we compute the factorization 𝐴 = 𝑉 𝑇 , where
𝑉 is a block lower triangular unitary matrix and 𝑇 is a block upper triangular
matrix. In general, these matrices have rectangular blocks on the main diagonal.
In order to obtain matrices which are convenient for inversion, we compute for the
matrix 𝑇 the factorization 𝑇 = 𝑈𝑅, where 𝑈 is a block upper triangular unitary
matrix and 𝑅 is a block upper triangular matrix with square invertible blocks
on the main diagonal. Below we present the description of both steps with the
detailed justification.

§20.1 Factorization of triangular matrices

We derive here factorizations which are valid for any block triangular matrices
with given quasiseparable generators.

373 Y. Eidelman et al., Separable Type Representations of Matrices and Fast Algorithms: Volume 1  
Basics. Completion Problems. Multiplication and Inversion Algorithms, Operator Theory: 
Advances and Applications 234, DOI 10.1007/978-3-0348-0606-0_20, © Springer Basel 2014
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Lemma 20.1. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a block lower triangular matrix with entries
of sizes 𝑚𝑖×𝑛𝑗 and lower quasiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 =
1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) and diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁).
Using these generators and the diagonal entries define matrices

𝐴1 =

(
𝑑(1)
𝑞(1)

)
, 𝐴𝑘 =

(
𝑝(𝑘) 𝑑(𝑘)
𝑎(𝑘) 𝑞(𝑘)

)
, 𝑘 = 2, . . . , 𝑁−1, 𝐴𝑁 =

(
𝑝(𝑁) 𝑑(𝑁)

)
(20.2)

and then set

𝐴1 = diag{𝐴1, 𝐼𝛾1}, 𝐴𝑘 = diag{𝐼𝜂𝑘 , 𝐴𝑘, 𝐼𝛾𝑘}, 𝑘 = 2, . . . , 𝑁 − 1,

𝐴𝑁 = diag{𝐼𝜂𝑁 , 𝐴𝑁}, (20.3)

where 𝜂𝑘 =
∑𝑘−1
𝑖=1 𝑚𝑖, 𝛾𝑘 =

∑𝑁
𝑖=𝑘+1 𝑛𝑖.

Then
𝐴 = 𝐴𝑁𝐴𝑁−1 ⋅ ⋅ ⋅𝐴1. (20.4)

Proof. Let us prove by induction the validity of the relations

𝐴𝑘 ⋅ ⋅ ⋅𝐴1 =

⎛⎝ 𝐴(1 : 𝑘, 1 : 𝑘) 0
𝑄𝑘 0
0 𝐼𝛾𝑘

⎞⎠ , 𝑘 = 1, . . . , 𝑁 − 1, (20.5)

where the matrices 𝑄𝑘 are given by (5.1).

For 𝑘 = 1 (20.5) is obvious. Suppose (20.5) holds for 𝑘 with 1 ≤ 𝑘 ≤ 𝑁 − 2.
Then

𝐴𝑘+1𝐴𝑘 ⋅ ⋅ ⋅𝐴1

=

⎛⎜⎜⎝
𝐼𝜂𝑘+1

0 0 0
0 𝑝(𝑘 + 1) 𝑑(𝑘 + 1) 0
0 𝑎(𝑘 + 1) 𝑞(𝑘 + 1) 0
0 0 0 𝐼𝛾𝑘+1

⎞⎟⎟⎠
⎛⎜⎜⎝
𝐴(1 : 𝑘, 1 : 𝑘) 0 0

𝑄𝑘 0 0
0 𝐼𝑛𝑘+1

0
0 0 𝐼𝛾𝑘+1

⎞⎟⎟⎠

=

⎛⎜⎜⎝
𝐴(1 : 𝑘, 1 : 𝑘) 0 0
𝑝(𝑘 + 1)𝑄𝑘 𝑑(𝑘 + 1) 0
𝑎(𝑘 + 1)𝑄𝑘 𝑞(𝑘 + 1) 0

0 0 𝐼𝛾𝑘+1

⎞⎟⎟⎠ .
Using the equality (5.11) we get(

𝐴(1 : 𝑘, 1 : 𝑘) 0
𝑝(𝑘 + 1)𝑄𝑘 𝑑(𝑘 + 1)

)
= 𝐴(1 : 𝑘 + 1, 1 : 𝑘 + 1)

and thus using (5.3) we conclude that

𝐴𝑘+1𝐴𝑘 ⋅ ⋅ ⋅𝐴1 =

⎛⎝ 𝐴(1 : 𝑘 + 1, 1 : 𝑘 + 1) 0
𝑄𝑘+1 0
0 𝐼𝛾𝑘+1

⎞⎠ .
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The relation (20.5) with 𝑘 = 𝑁 − 1 and the relation (5.11) yield

𝐴𝑁 ⋅ ⋅ ⋅𝐴1 =

(
𝐼𝜂𝑁 0 0
0 𝑝(𝑁) 𝑑(𝑁)

)⎛⎝ 𝐴(1 : 𝑁 − 1, 1 : 𝑁 − 1) 0
𝑄𝑁−1 0
0 𝐼𝑛𝑁

⎞⎠
=

(
𝐴(1 : 𝑁 − 1, 1 : 𝑁 − 1) 0

𝑝(𝑁)𝑄𝑁−1 𝑑(𝑁)

)
= 𝐴(1 : 𝑁, 1 : 𝑁) = 𝐴. □

The inverse statement is also valid.

Lemma 20.2. Let 𝐴 be a block matrix with entries of sizes 𝑚𝑖×𝑛𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁
and let be given the factorization

𝐴 = 𝐴𝑁𝐴𝑁−1 ⋅ ⋅ ⋅𝐴1 (20.6)

with
𝐴1 = diag{𝐴1, 𝐼𝛾1}, 𝐴𝑘 = diag{𝐼𝜂𝑘 , 𝐴𝑘, 𝐼𝛾𝑘}, 𝑘 = 2, . . . , 𝑁 − 1,

𝐴𝑁 = diag{𝐼𝜂𝑁 , 𝐴𝑁},
where 𝜂𝑘 =

∑𝑘−1
𝑖=1 𝑚𝑖, 𝛾𝑘 =

∑𝑁
𝑖=𝑘+1 𝑛𝑖, and with matrices 𝐴1, 𝐴𝑘 (𝑘 = 2, . . . , 𝑁−

1), 𝐴𝑁 of sizes (𝑚1+ 𝑟
𝐿
1 )×𝑛1, (𝑚𝑘+ 𝑟

𝐿
𝑘 )× (𝑛𝑘+ 𝑟

𝐿
𝑘−1) (𝑘 = 2, . . . , 𝑁 −1), 𝑚𝑁 ×

(𝑛𝑁 + 𝑟𝐿𝑁−1), respectively. Assume that the matrices 𝐴𝑘 (𝑘 = 1, . . . , 𝑁) are parti-
tioned in the form

𝐴1 =

(
𝑑(1)
𝑞(1)

)
; 𝐴𝑘 =

(
𝑝(𝑘) 𝑑(𝑘)
𝑎(𝑘) 𝑞(𝑘)

)
,

𝑘 = 2, . . . , 𝑁 − 1; 𝐴𝑁 =
(
𝑝(𝑁) 𝑑(𝑁)

)
,

(20.7)

with submatrices 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁), 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 −
1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of sizes 𝑚𝑘 × 𝑛𝑘, 𝑚𝑖 × 𝑟𝐿𝑖−1, 𝑟

𝐿
𝑗 × 𝑛𝑗 , 𝑟𝐿𝑘 × 𝑟𝐿𝑘−1,

respectively.

Then 𝐴 is a block lower triangular matrix with lower quasiseparable genera-
tors 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of orders
𝑟𝐿𝑘 (𝑘 = 1, . . . , 𝑁 − 1) and diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁).

Proof. Using the elements 𝑑(𝑘), 𝑝(𝑘), 𝑞(𝑘), 𝑎(𝑘) from the partitions (20.7), define
the block lower triangular matrix 𝐴′ = {𝐴′𝑖𝑗}𝑁𝑖,𝑗=1 by

𝐴′𝑖𝑗 =

⎧⎨⎩
𝑝(𝑖)𝑎>𝑖𝑗𝑞(𝑗), 1 ≤ 𝑗 < 𝑖 ≤ 𝑁,
𝑑(𝑖), 1 ≤ 𝑖 = 𝑗 ≤ 𝑁,
0, 1 ≤ 𝑖 < 𝑗 ≤ 𝑁.

This means that 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁−1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁−
1) are lower quasiseparable generators of orders 𝑟𝐿𝑘 (𝑘 = 1, . . . , 𝑁 − 1) of the
matrix 𝐴′ and 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁) are diagonal entries of 𝐴′. Using Lemma 20.1
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and the formula (20.6), we conclude that 𝐴 = 𝐴′ and therefore 𝐴 is a block lower
triangular matrix with these lower quasiseparable generators and diagonal entries
𝑑(𝑘) (𝑘 = 1, . . . , 𝑁). □

Similar results are valid for block upper triangular matrices and are obtained
by passing to transposed matrices.

Lemma 20.3. Let 𝐴 be a block upper triangular matrix with entries of sizes 𝑚𝑖×𝑛𝑗
and upper quasiseparable generators 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁),
𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) and diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁). Using these
quasiseparable generators and diagonal entries define matrices

𝐴1 =
(
𝑑(1) 𝑔(1)

)
, 𝐴𝑘 =

(
ℎ(𝑘) 𝑏(𝑘)
𝑑(𝑘) 𝑔(𝑘)

)
,

𝑘 = 2, . . . , 𝑁 − 1, 𝐴𝑁 =

(
ℎ(𝑁)
𝑑(𝑁)

)
,

(20.8)

and then set

𝐴1 = diag{𝐴1, 𝐼𝜙1}; 𝐴𝑘 = diag{𝐼𝜒𝑘
, 𝐴𝑘, 𝐼𝜙𝑘

},
𝑘 = 2, . . . , 𝑁 − 1; 𝐴𝑁 = diag{𝐼𝜒𝑁 , 𝐴𝑁}, (20.9)

where 𝜒𝑘 =
∑𝑘−1

𝑖=1 𝑛𝑖, 𝜙𝑘 =
∑𝑁

𝑖=𝑘+1𝑚𝑖.

Then
𝐴 = 𝐴1𝐴2 ⋅ ⋅ ⋅𝐴𝑁 . (20.10)

Lemma 20.4. Let 𝐴 be a block matrix with entries of sizes 𝑚𝑖×𝑛𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁,
and let be given the factorization

𝐴 = 𝐴1𝐴2 ⋅ ⋅ ⋅𝐴𝑁 ,
with

𝐴1 = diag{𝐴1, 𝐼𝜙1}, 𝐴𝑘 = diag{𝐼𝜒𝑘
, 𝐴𝑘, 𝐼𝜙𝑘

},
𝑘 = 2, . . . , 𝑁 − 1, 𝐴𝑁 = diag{𝐼𝜒𝑁 , 𝐴𝑁},

where 𝜒𝑘 =
∑𝑘−1
𝑖=1 𝑛𝑖, 𝜙𝑘 =

∑𝑁
𝑖=𝑘+1𝑚𝑖, and with matrices 𝐴1, 𝐴𝑘 (𝑘 = 2, . . . , 𝑁−

1), 𝐴𝑁 of sizes 𝑚1 × (𝑛1 + 𝑟𝑈1 ), (𝑚𝑘 + 𝑟𝑈𝑘−1) × (𝑛𝑘 + 𝑟𝑈𝑘 ) (𝑘 = 2, . . . , 𝑁 −
1), (𝑚𝑁 + 𝑟𝑈𝑁−1)× 𝑛𝑁 respectively. Assume that the matrices 𝐴𝑘 (𝑘 = 1, . . . , 𝑁)
are partitioned in the form

𝐴1 =
(
𝑑(1) 𝑔(1)

)
, 𝐴𝑘 =

(
ℎ(𝑘) 𝑏(𝑘)
𝑑(𝑘) 𝑔(𝑘)

)
,

𝑘 = 2, . . . , 𝑁 − 1, 𝐴𝑁 =

(
ℎ(𝑁)
𝑑(𝑁)

)
,

with submatrices 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁), 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁),
𝑏(𝑘) (𝑘 = 2, . . . , 𝑁−1) of sizes 𝑚𝑘×𝑛𝑘, 𝑚𝑖×𝑟𝑈𝑖 , 𝑟𝑈𝑗−1×𝑛𝑗 , 𝑟𝑈𝑘−1×𝑟𝑈𝑘 , respectively.
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Then 𝐴 is a block upper triangular matrix with upper quasiseparable genera-
tors 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of orders
𝑟𝑈𝑘 (𝑘 = 1, . . . , 𝑁 − 1) and diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁).

§20.2 The first factorization theorem

Let 𝐴 be a block matrix with given quasiseparable generators. We present here an
algorithm for computing generators and diagonal entries of a unitary block lower
triangular matrix 𝑉 and a block upper triangular matrix 𝑇 such that 𝐴 = 𝑉 𝑇 .

Theorem 20.5. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a block matrix with entries of sizes 𝑚𝑖 ×
𝑛𝑗, lower quasiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 −
1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of orders 𝑟𝐿𝑘 (𝑘 = 1, . . . , 𝑁 − 1), upper quasiseparable
generators 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of
orders 𝑟𝑈𝑘 (𝑘 = 1, . . . , 𝑁 − 1), and diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁). Set

𝜌𝑁 = 0, 𝜌𝑘−1 = min{𝑚𝑘 + 𝜌𝑘, 𝑟
𝐿
𝑘−1}, 𝑘 = 𝑁, . . . , 2, 𝜌0 = 0,

𝜈𝑘 = 𝑚𝑘 + 𝜌𝑘 − 𝜌𝑘−1, 𝜌
′
𝑘 = 𝑟

𝑈
𝑘 + 𝜌𝑘, 𝑘 = 1, . . . , 𝑁

(20.11)

and

𝜂𝑘 =

𝑘−1∑
𝑖=1

𝑚𝑖, 𝜙𝑘 =

𝑁∑
𝑖=𝑘+1

𝜈𝑖.

Then the matrix 𝐴 admits the factorization

𝐴 = 𝑉 𝑇, (20.12)

where 𝑉 is a block lower triangular unitary matrix with block entries of sizes
𝑚𝑖 × 𝜈𝑗 (𝑖, 𝑗 = 1, . . . , 𝑁) and 𝑇 is a block upper triangular matrix with block
entries of sizes 𝜈𝑖 × 𝑛𝑗 (𝑖, 𝑗 = 1, . . . , 𝑁). The matrix 𝑉 is determined via the
relations

𝑉 = 𝑉𝑁𝑉𝑁−1 ⋅ ⋅ ⋅𝑉1, (20.13)

where
𝑉1 = diag{𝑉1, 𝐼𝜙1}, 𝑉𝑘 = diag{𝐼𝜂𝑘 , 𝑉𝑘, 𝐼𝜙𝑘

},
𝑘 = 2, . . . , 𝑁 − 1, 𝑉𝑁 = diag{𝐼𝜂𝑁 , 𝑉𝑁},

with (𝑚𝑘 + 𝜌𝑘) × (𝑚𝑘 + 𝜌𝑘) unitary matrices obtained by means of the following
algorithm.

1. Using QR factorization or another method, compute the factorization

𝑝(𝑁) = 𝑉𝑁

(
𝑋𝑁

0𝜈𝑁×𝑟𝐿𝑁−1

)
, (20.14)

where 𝑉𝑁 is a unitary matrix of size 𝑚𝑁 ×𝑚𝑁 and 𝑋𝑁 is a matrix of size 𝜌𝑁−1×
𝑟𝐿𝑁−1.
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2. For 𝑘 = 𝑁 − 1, . . . , 2 using QR factorization or another method, compute the
factorization (

𝑝(𝑘)
𝑋𝑘+1𝑎(𝑘)

)
= 𝑉𝑘

(
𝑋𝑘

0𝜈𝑘×𝑟𝐿𝑘−1

)
, (20.15)

where 𝑉𝑘 is a unitary matrix of size (𝑚𝑘 + 𝜌𝑘)× (𝑚𝑘 + 𝜌𝑘) and 𝑋𝑘 is a matrix of
size 𝜌𝑘−1 × 𝑟𝐿𝑘−1.

3. Set 𝑉1 to be a 𝜈1 × 𝜈1 unitary matrix.
Moreover, lower quasiseparable generators 𝑝𝑉 (𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞𝑉 (𝑗) (𝑗 =

1, . . . , 𝑁 − 1), 𝑎𝑉 (𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of orders 𝜌𝑘 (𝑘 = 1, . . . , 𝑁 − 1), and
diagonal entries 𝑑𝑉 (𝑘) (𝑘 = 1, . . . , 𝑁) of the matrix 𝑉 , which are matrices of sizes
𝑚𝑖 × 𝜌𝑖−1, 𝜌𝑗 × 𝜈𝑗 , 𝜌𝑘 × 𝜌𝑘−1 and 𝑚𝑘 × 𝜈𝑘, respectively, are determined from the
partitions

𝑉𝑁 =
(
𝑝𝑉 (𝑁) 𝑑𝑉 (𝑁)

)
, (20.16)

𝑉𝑘 =

(
𝑝𝑉 (𝑘) 𝑑𝑉 (𝑘)
𝑎𝑉 (𝑘) 𝑞𝑉 (𝑘)

)
, 𝑘 = 𝑁 − 1, . . . , 2, (20.17)

𝑉1 =

(
𝑑𝑉 (1)
𝑞𝑉 (1)

)
. (20.18)

Furthermore, upper quasiseparable generators 𝑔𝑇 (𝑖) (𝑖 = 1, . . . , 𝑁 −1), ℎ𝑇 (𝑗) (𝑗 =
2, . . . , 𝑁), 𝑏𝑇 (𝑘) (𝑘 = 2, . . . , 𝑁−1) of orders 𝜌′𝑘 (𝑘 = 1, . . . , 𝑁 −1) are determined
by the formulas

ℎ̃(𝑁) = 𝑝∗𝑉 (𝑁)𝑑(𝑁), ℎ𝑇 (𝑁) =

(
ℎ(𝑁)

ℎ̃(𝑁)

)
, 𝑑𝑇 (𝑁) = 𝑑∗𝑉 (𝑁)𝑑(𝑁), (20.19)

𝑔𝑇 (𝑘) =
(
𝑑∗𝑉 (𝑘)𝑔(𝑘) 𝑞∗𝑉 (𝑘)

)
, 𝑑𝑇 (𝑘) = 𝑑

∗
𝑉 (𝑘)𝑑(𝑘) + 𝑞

∗
𝑉 (𝑘)𝑋𝑘+1𝑞(𝑘),

ℎ̃(𝑘) = 𝑝∗𝑉 (𝑘)𝑑(𝑘) + 𝑎
∗
𝑉 (𝑘)𝑋𝑘+1𝑞(𝑘), ℎ𝑇 (𝑘) =

(
ℎ(𝑘)

ℎ̃(𝑘)

)
,

𝑏𝑇 (𝑘) =

(
𝑏(𝑘) 0

𝑝∗𝑉 (𝑘)𝑔(𝑘) 𝑎∗𝑉 (𝑘)

)
, 𝑘 = 𝑁 − 1, . . . , 2,

(20.20)

𝑑𝑇 (1) = 𝑑
∗
𝑉 (1)𝑑(1) + 𝑞

∗
𝑉 (1)𝑋2𝑞(1), 𝑔𝑇 (1) =

(
𝑑∗𝑉 (1)𝑔(1) 𝑞∗𝑉 (1)

)
. (20.21)

Proof. By Lemma 20.2, (20.13) implies that 𝑉 is a block lower triangular matrix
with lower quasiseparable generators 𝑝𝑉 (𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞𝑉 (𝑗) (𝑗 = 1, . . . , 𝑁 −
1), 𝑎𝑉 (𝑘) (𝑘 = 2, . . . , 𝑁 − 1), and diagonal entries 𝑑𝑉 (𝑘) (𝑘 = 1, . . . , 𝑁) defined
in (20.16), (20.17), (20.18). Hence, 𝑉 ∗ is a block upper triangular matrix with
entries of sizes 𝜈𝑖 × 𝑚𝑗 (𝑖, 𝑗 = 1, . . . , 𝑁), with upper quasiseparable generators
𝑞∗𝑉 (𝑖) (𝑖 = 1, . . . , 𝑁 − 1), 𝑝∗𝑉 (𝑗) (𝑗 = 2, . . . , 𝑁), 𝑎∗𝑉 (𝑘) (𝑘 = 2, . . . , 𝑁 − 1) and
diagonal entries 𝑑∗𝑉 (𝑘) (𝑘 = 1, . . . , 𝑁). Consider the matrix 𝑇 = 𝑉 ∗𝐴. Applying
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Corollary 17.8 with

𝑔(1)(𝑘) = 𝑞∗𝑉 (𝑘), ℎ
(1)(𝑘) = 𝑝∗𝑉 (𝑘), 𝑏

(1)(𝑘) = 𝑎∗𝑉 (𝑘), 𝑑(1)(𝑘) = 𝑑∗𝑉 (𝑘),

𝑝(2)(𝑘) = 𝑝(𝑘), 𝑞(2)(𝑘) = 𝑞(𝑘), 𝑎(2)(𝑘) = 𝑎(𝑘),

𝑔(2)(𝑘) = 𝑔(𝑘), ℎ(2)(𝑘) = ℎ(𝑘), 𝑏(2)(𝑘) = 𝑏(𝑘), 𝑑(2)(𝑘) = 𝑑(𝑘)

and using the notation 𝑋𝑘 instead of 𝛾𝑘 for the auxiliary variables, we obtain the
formulas in (20.20) and (20.21) for upper generators 𝑏𝑇 (𝑘) and 𝑔𝑇 (𝑘), the formula
(20.19) and the relations

𝑋𝑁 = 𝑝∗𝑉 (𝑁)𝑝(𝑁), 𝑝𝑇 (𝑁) = 𝑑∗𝑉 (𝑁)𝑝(𝑁), (20.22)(
𝑋𝑘 ℎ̃(𝑘)
𝑝𝑇 (𝑘) 𝑑𝑇 (𝑘)

)
=

(
𝑝∗𝑉 (𝑘) 𝑎∗𝑉 (𝑘)
𝑑∗𝑉 (𝑘) 𝑞∗𝑉 (𝑘)

)(
𝐼 0
0 𝑋𝑘+1

)(
𝑝(𝑘) 𝑑(𝑘)
𝑎(𝑘) 𝑞(𝑘)

)
,

𝑘 = 𝑁 − 1, . . . , 1, (20.23)

ℎ𝑇 (𝑘) =

(
ℎ(𝑘)

ℎ̃(𝑘)

)
, 𝑘 = 2, . . . , 𝑁 (20.24)

for the upper generators ℎ𝑇 (𝑘), diagonal entries 𝑑𝑇 (𝑘) and lower generators 𝑝𝑇 (𝑘).
Here 𝛾𝑘 are auxiliary variables.

From (20.23), (20.24) we obtain the formulas (20.20) and (20.21) for ℎ𝑇 (𝑘)
and 𝑑𝑇 (𝑘) and the relations

𝑋𝑘 = 𝑝
∗
𝑉 (𝑘)𝑝(𝑘) + 𝑎

∗
𝑉 (𝑘)𝑋𝑘+1𝑎(𝑘),

𝑝𝑇 (𝑘) = 𝑑
∗
𝑉 (𝑘)𝑝(𝑘) + 𝑞

∗
𝑉 (𝑘)𝑋𝑘+1𝑎(𝑘), 𝑘 = 𝑁 − 1, . . . , 2.

(20.25)

It remains to check that 𝑇 is a block lower triangular matrix. Combin-
ing (20.14), (20.15) and (20.16), (20.17) with (20.22), (20.25), we conclude that
𝑝𝑇 (𝑘) = 0, 𝑘 = 2, . . . , 𝑁 . Hence, 𝑇 is lower triangular. □
Corollary 20.6. Under the conditions of Theorem 20.5, the orders of lower qua-
siseparable generators of the matrix 𝑉 are not greater than the corresponding or-
ders of lower quasiseparable generators of the matrix 𝐴 and the orders of upper
quasiseparable generators of the matrix 𝑇 are not greater than the sum of the
corresponding orders of lower and upper quasiseparable generators of 𝐴:

𝜌𝑘 ≤ 𝑟𝐿𝑘 , 𝜌′𝑘 ≤ 𝑟𝐿𝑘 + 𝑟𝑈𝑘 , 𝑘 = 1, . . . , 𝑁 − 1. (20.26)

Furthermore, if 𝐴 has quasiseparable order (𝜌𝐿, 𝜌𝑈 ), the matrix 𝑉 has the lower
quasiseparable order 𝜌𝐿 at most and the matrix 𝑇 has the upper quasiseparable
order 𝜌𝐿 + 𝜌𝑈 at most.

Proof. The inequalities (20.26) follow directly from the relations

𝜌𝑁−1 = min{𝑚𝑁 , 𝑟
𝐿
𝑁−1}, 𝜌𝑘−1 = min{𝑚𝑘 + 𝜌𝑘, 𝑟

𝐿
𝑘−1}, 𝑘 = 𝑁 − 1, . . . , 2,

𝜌′𝑘 = 𝑟
𝑈
𝑘 + 𝜌𝑘, 𝑘 = 1, . . . , 𝑁 − 1.
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Taking quasiseparable generators of 𝐴 with minimal orders, Corollary 5.11
yields

𝑟𝐿𝑘 ≤ 𝜌𝐿, 𝑟𝑈𝑘 ≤ 𝜌𝑈 , 𝑘 = 1, . . . , 𝑁 − 1,

and therefore

𝜌𝑘 ≤ 𝜌𝐿, 𝜌′𝑘 ≤ 𝜌𝐿 + 𝜌𝑈 , 𝑘 = 1, . . . , 𝑁 − 1.

Hence, the lower quasiseparable order of 𝑉 does not exceed 𝜌𝐿 and the upper
quasiseparable order of 𝑇 does not exceed 𝜌𝐿 + 𝜌𝑈 . □

§20.3 The second factorization theorem

In this section we consider the factorization of a block upper triangular matrix 𝑇
with given generators in the form 𝑇 = 𝑈𝑅 with a block upper triangular unitary
matrix 𝑈 and a block upper triangular matrix 𝑅 with square blocks on the main
diagonal.

Theorem 20.7. Let 𝑇 = {𝑇𝑖𝑗}𝑁𝑖,𝑗=1 be a block upper triangular matrix with entries
of sizes 𝜈𝑖 × 𝑛𝑗 such that

𝑠𝑘 :=
𝑘∑
𝑖=1

(𝜈𝑖 − 𝑛𝑖) ≥ 0, 𝑘 = 1, . . . , 𝑁 − 1, 𝑠𝑁 =
𝑁∑
𝑖=1

(𝜈𝑖 − 𝑛𝑖) = 0, (20.27)

and with upper quasiseparable generators 𝑔𝑇 (𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ𝑇 (𝑗) (𝑗 =
2, . . . , 𝑁), 𝑏𝑇 (𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of orders 𝜌′𝑘 (𝑘 = 1, . . . , 𝑁 − 1) and diagonal
entries 𝑑𝑇 (𝑘) (𝑘 = 1, . . . , 𝑁).

Then 𝑇 admits the factorization

𝑇 = 𝑈𝑅, (20.28)

where 𝑈 is a block upper triangular unitary matrix with block entries of sizes
𝜈𝑖×𝑛𝑗 (𝑖, 𝑗 = 1, . . . , 𝑁) with upper quasiseparable generators 𝑔𝑈 (𝑖) (𝑖 = 1, . . . , 𝑁−
1), ℎ𝑈 (𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏𝑈 (𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of orders 𝑠𝑘 =

∑𝑘
𝑖=1(𝜈𝑖 −

𝑛𝑖) (𝑘 = 1, . . . , 𝑁−1) and diagonal entries 𝑑𝑈 (𝑘) (𝑘 = 1, . . . , 𝑁), and 𝑅 is a block
upper triangular matrix with block entries of sizes 𝑛𝑖 × 𝑛𝑗 (𝑖, 𝑗 = 1, . . . , 𝑁), upper
quasiseparable generators 𝑔𝑅(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ𝑅(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏𝑅(𝑘)
(𝑘 = 2, . . . , 𝑁 − 1) of orders 𝜌′𝑘 (𝑘 = 1, . . . , 𝑁 − 1) and square upper triangular
diagonal entries 𝑑𝑅(𝑘) (𝑘 = 1, . . . , 𝑁).

Quasiseparable generators and the diagonal entries of the matrices 𝑈, 𝑅 are
determined using the following algorithm.

1. Compute 𝑠1 = 𝜈1 − 𝑛1. Compute the QR factorization

𝑑𝑇 (1) = 𝑈1

(
𝑑𝑅(1)
0𝑠1×𝑛1

)
, (20.29)
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where 𝑈1 is a 𝜈1 × 𝜈1 unitary matrix and 𝑑𝑅(1) is an upper triangular 𝑛1 × 𝑛1
matrix.

Determine the matrices 𝑑𝑈 (1), 𝑔𝑈 (1) of sizes 𝜈1 × 𝑛1, 𝜈1 × 𝑠1 from the
partition

𝑈1 =
(
𝑑𝑈 (1) 𝑔𝑈 (1)

)
. (20.30)

Compute
𝑔𝑅(1) = 𝑑

∗
𝑈 (1)𝑔𝑇 (1), 𝑌1 = 𝑔

∗
𝑈 (1)𝑔𝑇 (1). (20.31)

2. For 𝑘 = 2, . . . , 𝑁−1, perform the following. Compute 𝑠𝑘 = 𝑠𝑘−1+𝜈𝑘−𝑛𝑘.
Compute the QR factorization(

𝑌𝑘−1ℎ𝑇 (𝑘)
𝑑𝑇 (𝑘)

)
= 𝑈𝑘

(
𝑑𝑅(𝑘)
0𝑠𝑘×𝑛𝑘

)
, (20.32)

where 𝑈𝑘 is an (𝑛𝑘+𝑠𝑘)× (𝑛𝑘+𝑠𝑘) unitary matrix and 𝑑𝑅(𝑘) is an 𝑛𝑘×𝑛𝑘 upper
triangular matrix.

Determine the matrices 𝑑𝑈 (𝑘), 𝑔𝑈 (𝑘), ℎ𝑈 (𝑘), 𝑏𝑈 (𝑘) of sizes 𝜈𝑘 × 𝑛𝑘, 𝜈𝑘 ×
𝑠𝑘, 𝑠𝑘−1 × 𝑛𝑘, 𝑠𝑘−1 × 𝑠𝑘 from the partition

𝑈𝑘 =

(
ℎ𝑈 (𝑘) 𝑏𝑈 (𝑘)
𝑑𝑈 (𝑘) 𝑔𝑈 (𝑘)

)
. (20.33)

Compute

𝑔𝑅(𝑘) = ℎ
∗
𝑈 (𝑘)𝑌𝑘−1𝑏𝑇 (𝑘) + 𝑑

∗
𝑈 (𝑘)𝑔𝑇 (𝑘), 𝑌𝑘 = 𝑏

∗
𝑈 (𝑘)𝑌𝑘−1𝑏𝑇 (𝑘) + 𝑔

∗
𝑈 (𝑘)𝑔𝑇 (𝑘),

(20.34)
where 𝑈𝑘 is an (𝑛𝑘 + 𝑠𝑘) × (𝑛𝑘 + 𝑠𝑘) unitary matrix, 𝑑𝑅(𝑘) is an 𝑛𝑘 × 𝑛𝑘 upper
triangular matrix, and 𝑔𝑅(𝑘) and 𝑌𝑘 are matrices of sizes 𝑛𝑘 × 𝜌′𝑘 and 𝑠𝑘 × 𝜌′𝑘,
respectively.

Set
ℎ𝑅(𝑘) = ℎ𝑇 (𝑘), 𝑏𝑅(𝑘) = 𝑏𝑇 (𝑘). (20.35)

3. Compute the QR factorization(
𝑌𝑁−1ℎ𝑇 (𝑁)
𝑑𝑇 (𝑁)

)
= 𝑈𝑁𝑑𝑅(𝑁), (20.36)

where 𝑈𝑁 is a unitary matrix of sizes (𝜈𝑁 + 𝑠𝑁−1) × (𝜈𝑁 + 𝑠𝑁−1) and 𝑑𝑅(𝑁) is
an upper triangular matrix of sizes 𝑛𝑁 × 𝑛𝑁 .

Set
ℎ𝑅(𝑁) = ℎ𝑇 (𝑁). (20.37)

Determine the matrices 𝑑𝑈 (𝑁), ℎ𝑈 (𝑁) of sizes 𝜈𝑁 × 𝑛𝑁 , 𝑠𝑁−1 × 𝑛𝑁 from
the partition

𝑈𝑁 =

(
ℎ𝑈 (𝑁)
𝑑𝑈 (𝑁)

)
. (20.38)
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Proof. From (20.27) it follows that all the numbers 𝑠𝑘 are nonnegative and

𝜈1 = 𝑠1 + 𝑛1, 𝜈𝑘 + 𝑠𝑘−1 = 𝑛𝑘 + 𝑠𝑘, 𝑘 = 2, . . . , 𝑁 − 1, 𝜈𝑁 + 𝑠𝑁−1 = 𝑛𝑁 .

Let 𝑈𝑘, 𝑘 = 1, . . . , 𝑁 , be the unitary matrices defined in (20.29), (20.32),
(20.36). Set

�̃�1 = diag{𝑈1, 𝐼𝜙1}, �̃�𝑘 = diag{𝐼𝜒𝑘
, 𝑈𝑘, 𝐼𝜙𝑘

},
𝑘 = 2, . . . , 𝑁 − 1, �̃�𝑁 = diag{𝐼𝜒𝑁 , 𝑈𝑁},

with 𝜒𝑘 =
∑𝑘−1

𝑖=1 𝑛𝑖, 𝜙𝑘 =
∑𝑁
𝑖=𝑘+1 𝜈𝑖, and then set

𝑈 = �̃�1�̃�2 ⋅ ⋅ ⋅ �̃�𝑁 . (20.39)

Since the matrices 𝑈𝑘 are unitary, all matrices �̃�𝑘 are also unitary and hence so
is the matrix 𝑈 . Moreover, from Lemma 20.4 it follows that 𝑈 is a block up-
per triangular matrix with upper quasiseparable generators 𝑔𝑈 (𝑖) (𝑖 = 1, . . . , 𝑁 −
1), ℎ𝑈 (𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏𝑈 (𝑘) (𝑘 = 2, . . . , 𝑁−1) and diagonal entries 𝑑𝑈 (𝑘) (𝑘 =
1, . . . , 𝑁) defined in (20.30), (20.33), (20.38). Hence 𝑈∗ is a block lower triangular
unitary matrix with entries of sizes 𝑛𝑖 × 𝜈𝑗 (𝑖, 𝑗 = 1, . . . , 𝑁) and with lower qua-
siseparable generators ℎ∗𝑈 (𝑖) (𝑖 = 2, . . . , 𝑁), 𝑔∗𝑈 (𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑏∗𝑈 (𝑘) (𝑘 =
2, . . . , 𝑁 − 1) and diagonal entries 𝑑∗𝑈 (𝑘) (𝑘 = 1, . . . , 𝑁).

We apply Theorem 17.4 to determine quasiseparable generators of the prod-
uct 𝑅 = 𝑈∗𝑇 . Using (17.8) we obtain the formulas (20.35), (20.37) for the gener-
ators ℎ𝑅(𝑘), 𝑏𝑅(𝑘). Next, using the recursion relations (17.9), (17.10) we get(

𝑑𝑅(1) 𝑔𝑅(1)
𝑞𝑅(1) 𝑌1

)
= 𝑈∗1

(
𝑑𝑇 (1) 𝑔𝑇 (1)

)
, (20.40)(

𝑑𝑅(𝑘) 𝑔𝑅(𝑘)
𝑞𝑅(𝑘) 𝑌𝑘

)
= 𝑈∗𝑘

(
𝑌𝑘−1ℎ𝑇 (𝑘) 𝑌𝑘−1𝑏𝑇 (𝑘)
𝑑𝑇 (𝑘) 𝑔𝑇 (𝑘)

)
,

𝑘 = 2, . . . , 𝑁 − 1, (20.41)

𝑑𝑅(𝑁) = 𝑈∗𝑁

[
𝑌𝑁−1ℎ𝑇 (𝑁)
𝑑𝑇 (𝑁)

]
, (20.42)

with the auxiliary variables 𝑌𝑘, which are 𝑠𝑘 × 𝜌′𝑘 matrices. From (20.40) and
(20.41) we obtain the formulas(

𝑑𝑅(1)
𝑞𝑅(1)

)
= 𝑈∗1 𝑑𝑇 (1),

(
𝑑𝑅(𝑘)
𝑞𝑅(𝑘)

)
= 𝑈∗𝑘

(
𝑌𝑘−1ℎ𝑇 (𝑘)
𝑑𝑇 (𝑘)

)
, 𝑘 = 2, . . . , 𝑁 − 1

(20.43)
for the diagonal entries 𝑑𝑅(𝑘) and the lower quasiseparable generators 𝑞𝑅(𝑘), and(

𝑔𝑅(1)
𝑌1

)
= 𝑈∗1 𝑔𝑇 (1),

(
𝑔𝑅(𝑘)
𝑌𝑘

)
= 𝑈∗𝑘

(
𝑌𝑘−1𝑏𝑇 (𝑘)
𝑔𝑇 (𝑘)

)
, 𝑘 = 2, . . . , 𝑁 − 1,

(20.44)
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for determining upper quasiseparable generators 𝑔𝑇 (𝑘) and auxiliary variables
𝑌𝑘. Comparing (20.43), (20.42) with (20.29), (20.32), (20.38), we conclude that
𝑞𝑅(𝑘) = 0, 𝑘 = 1, . . . , 𝑁 − 1, and 𝑑𝑅(𝑘), 𝑘 = 1, . . . , 𝑁 are upper triangular ma-
trices. Hence, 𝑅 is an upper triangular matrix. From (20.44) using the partitions
(20.30), (20.33) we obtain the formulas (20.31), (20.34).

From the equalities 𝑏𝑅(𝑗) = 𝑏𝑇 (𝑗), 𝑗 = 2, . . . , 𝑁 − 1 it follows that the orders
of the upper quasiseparable generators of the matrix 𝑅 are equal to the corre-
sponding orders 𝜌′𝑘 (𝑘 = 1, . . . , 𝑁 − 1) of upper quasiseparable generators of the
matrix 𝑇 . □

Remark. The condition (20.27) of Theorem 20.7 holds if the matrix 𝑇 is invertible.
Indeed, consider the submatrix 𝑇 (:, 1 : 𝑘) composed of the first 𝑘 block columns

of 𝑇 . We have 𝑇 (:, 1 : 𝑘) =

(
𝑇𝑘
0

)
, where 𝑇𝑘 is a matrix of size (

∑𝑘
𝑖=1 𝜈𝑖) ×

(
∑𝑘
𝑖=1 𝑛𝑖). From the invertibility of the matrix 𝑇 it follows that rank 𝑇𝑘 =

∑𝑘
𝑖=1 𝑛𝑖

and thus
∑𝑘

𝑖=1 𝑛𝑖 ≤
∑𝑘

𝑖=1 𝜈𝑖, 1 ≤ 𝑘 ≤ 𝑁 − 1. Next, since 𝑇 is invertible, it is

a square matrix and hence
∑𝑁
𝑖=1 𝜈𝑖 =

∑𝑁
𝑖=1 𝑛𝑖. Moreover one can see easily that

in the case where 𝑇 is invertible the diagonal blocks 𝑑𝑅(𝑘) (𝑘 = 1, . . . , 𝑁) are
invertible matrices.

Below we will show that the condition (20.27) is satisfied if the matrix 𝑇
is obtained via the factorization (20.12), where the original matrix 𝐴 has the
sizes of blocks 𝑚𝑖 × 𝑚𝑗, 𝑖, 𝑗 = 1, . . . , 𝑁 . Moreover, in this case the numbers

𝑠𝑘 =
∑𝑘

𝑖=1(𝜈𝑖−𝑛𝑖) (𝑘 = 1, . . . , 𝑁 − 1) are equal to the corresponding orders 𝜌𝑘 of
lower quasiseparable generators of the matrix 𝑉 .

Corollary 20.8. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a block matrix with entries of sizes 𝑚𝑖×𝑚𝑗

(with square blocks on the main diagonal). Let 𝑉, 𝑇 be the matrices obtained in
Theorem 20.5 and 𝑈,𝑅 be the matrices obtained in Theorem 20.7.

Then the orders of upper quasiseparable generators of the matrix 𝑈 are equal
to the corresponding orders of lower quasiseparable generators of the matrix 𝑉 :

𝑠𝑘 = 𝜌𝑘, 𝑘 = 1, . . . , 𝑁. (20.45)

Furthermore, if 𝐴 has quasiseparable order (𝜌𝐿, 𝜌𝑈 ), then the matrix 𝑈 has the
lower quasiseparable order 𝜌𝐿 at most and the matrix 𝑅 has the upper quasisepa-
rable order 𝜌𝐿 + 𝜌𝑈 at most.

Proof. The orders 𝑠𝑘 (𝑘 = 1, . . . , 𝑁 − 1) of upper quasiseparable generators of the
matrix 𝑈 are obtained via the relations

𝑠𝑘 =

𝑘∑
𝑖=1

(𝜈𝑖 − 𝑛𝑖), 𝑘 = 1, . . . , 𝑁 − 1,

with
𝜈1 = 𝑚1 + 𝜌1, 𝜈𝑘 = 𝑚𝑘 + 𝜌𝑘 − 𝜌𝑘−1, 𝑘 = 2, . . . , 𝑁 − 1,
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where 𝜌𝑘 (𝑘 = 1, . . . , 𝑁 − 1) are the orders of lower quasiseparable generators of
the matrix 𝑉 . By the condition of the corollary, 𝑚𝑖 = 𝑛𝑖 (𝑖 = 1, . . . , 𝑁) which
implies (20.45). Furthermore, using the fact that the orders of upper quasiseparable
generators of the matrices 𝑇 and 𝑅 coincide and the second part of Corollary 20.6
we conclude that the matrix 𝑈 has the lower quasiseparable order 𝜌𝐿 at most and
the matrix 𝑅 has the upper quasiseparable order 𝜌𝐿 + 𝜌𝑈 at most. □

§20.4 Solution of linear systems

Let us now consider the system 𝐴𝑥 = 𝑦 of linear algebraic equations with block
invertible matrix 𝐴 with given quasiseparable generators. Using Theorems 20.5,
20.7, Algorithm 13.1 and the algorithm from Theorem 13.13 we obtain the follow-
ing algorithm.

Algorithm 20.9. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a block invertible matrix with entries
of sizes 𝑚𝑖 × 𝑛𝑗 , lower quasiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 =
1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of orders 𝑟𝐿𝑘 (𝑘 = 1, . . . , 𝑁 − 1), upper
quasiseparable generators 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 =
2, . . . , 𝑁 − 1) of orders 𝑟𝑈𝑘 (𝑘 = 1, . . . , 𝑁 − 1) and diagonal entries 𝑑(𝑘) (𝑘 =
1, . . . , 𝑁). Then solution of the system 𝐴𝑥 = 𝑦 is computed as follows.

1. Using the algorithm from Theorem 20.5, compute quasiseparable generators
𝑝𝑉 (𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞𝑉 (𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎𝑉 (𝑘) (𝑘 = 2, . . . , 𝑁 − 1),
𝑔𝑇 (𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ𝑇 (𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏𝑇 (𝑘) (𝑘 = 2, . . . , 𝑁 − 1) and
diagonal entries 𝑑𝑉 (𝑘), 𝑑𝑇 (𝑘) (𝑘 = 1, . . . , 𝑁) of the block lower triangular
unitary matrix 𝑉 and the block upper triangular matrix 𝑇 such that 𝐴 = 𝑉 𝑇 .

2. Using the algorithm from Theorem 20.7, compute quasiseparable generators
𝑔𝑈 (𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ𝑈 (𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏𝑈 (𝑘) (𝑘 = 2, . . . , 𝑁 − 1),
𝑔𝑅(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ𝑅(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏𝑅(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) and
diagonal entries 𝑑𝑈 (𝑘), 𝑑𝑅(𝑘) (𝑘 = 1, . . . , 𝑁) of the block upper triangular
unitary matrix 𝑈 and the block upper triangular matrix 𝑅 with invertible
diagonal entries such that 𝑇 = 𝑈𝑅.

3. Compute the product �̃� = 𝑉 ∗𝑦 as follows: start with �̃�(𝑁) = 𝑑∗𝑉 (𝑁)𝑦(𝑁),
𝑤𝑁−1 = 𝑝

∗
𝑉 (𝑁)𝑦(𝑁), 𝑥(𝑁 − 1) = 𝑞∗𝑉 (𝑁 − 1)𝑤𝑁−1+ 𝑑

∗
𝑉 (𝑁 − 1)𝑦(𝑁 − 1), and

for 𝑖 = 𝑁 − 2, . . . , 1 compute recursively

𝑤𝑖 = 𝑎
∗
𝑉 (𝑖 + 1)𝑤𝑖+1 + 𝑝

∗
𝑉 (𝑖+ 1)𝑦(𝑖+ 1), 𝑥(𝑖) = 𝑞∗𝑉 (𝑖)𝑤𝑖 + 𝑑

∗
𝑉 (𝑖)𝑦(𝑖).

4. Compute the product �̂� = 𝑈∗�̃� as follows: start with �̂�(1) = 𝑑∗𝑈 (1)�̃�(1),
𝑧2 = 𝑔∗𝑈 (1)�̃�(1), �̂�(2) = ℎ∗𝑈 (2)𝑧2 + 𝑑

∗
𝑈 (2)�̃�(2), and for 𝑖 = 3, . . . , 𝑁 compute

recursively

𝑧𝑖 = 𝑏
∗
𝑈 (𝑖 − 1)𝑧𝑖−1 + 𝑔

∗
𝑈 (𝑖 − 1)�̃�(𝑖− 1), �̂�(𝑖) = 𝑑∗𝑈 (𝑖)�̃�(𝑖) + ℎ

∗
𝑈 (𝑖)𝑧𝑖.

5. Compute the solution 𝑥 of the equation 𝑅𝑥 = �̂� as follows: start with 𝑥(𝑁) =
(𝑑𝑅(𝑁))−1�̂�(𝑁), 𝜂𝑁−1 = ℎ𝑅(𝑁)�̂�(𝑁), and for 𝑖 = 𝑁 − 1, . . . , 2 compute
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recursively

𝜂𝑖−1 = 𝑏𝑅(𝑖)𝜂𝑖 + ℎ𝑅(𝑖)𝑥(𝑖), 𝑥(𝑖) = (𝑑𝑅(𝑖))
−1(�̂�(𝑖)− 𝑔𝑅(𝑖)𝜂𝑖),

and finally compute 𝑥(1) = (𝑑𝑅(1))
−1(�̂�(1)− 𝑔𝑅(1)𝜂1).

Here in Steps 3 and 4 we used Algorithm 13.1 for the upper triangular matrix
𝑉 ∗ with upper quasiseparable generators 𝑞∗𝑉 (𝑖), (𝑖 = 1, . . . , 𝑁 − 1), 𝑝∗𝑉 (𝑗), (𝑗 =
2, . . . , 𝑁), 𝑎∗𝑉 (𝑘) (𝑘 = 2, . . . , 𝑁−1) and diagonal entries 𝑑∗𝑉 (𝑘) (𝑘 = 1, . . . , 𝑁) and
for the lower triangular matrix 𝑈∗ with lower quasiseparable generators ℎ∗𝑈 (𝑖) (𝑖 =
2, . . . , 𝑁), 𝑔∗𝑈 (𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑏∗𝑈 (𝑘) (𝑘 = 2, . . . , 𝑁 − 1) and diagonal entries
𝑑∗𝑈 (𝑘) (𝑘 = 1, . . . , 𝑁). Computations in Steps 3 and 4 may be performed also based
on the relation (20.13) for the matrix 𝑉 and the relation (20.39) for the matrix
𝑈 . In Step 5 we apply the algorithm from Theorem 13.13 to the upper triangular
matrix 𝑅.

§20.5 Complexity

Let us estimate the costs of computations in the Algorithm 20.9 presented above. In
Step 1, i.e., in the algorithm from Theorem 20.5, costs are determined by the rela-
tions (20.15) and (20.20). In (20.15), computing of the product 𝑋𝑘+1𝑎(𝑘) requires
𝜌𝑘𝑟

𝐿
𝑘 𝑟

𝐿
𝑘−1 operations of arithmetical multiplication and less operations of arith-

metical addition, and the QR factorization costs 𝜗(𝑚𝑘+𝜌𝑘, 𝑟
𝐿
𝑘−1) operations. Here

𝜗(𝑚,𝑛) means the complexity of QR factorization for a matrix of size 𝑚 × 𝑛. In
(20.20), the computation of the products 𝑝∗𝑉 (𝑘)𝑑(𝑘), 𝑎

∗
𝑉 (𝑘)𝑋𝑘+1𝑞(𝑘), 𝑝

∗
𝑉 (𝑘)𝑔(𝑘),

𝑑∗𝑉 (𝑘)𝑔(𝑘), 𝑑
∗
𝑉 (𝑘)𝑑(𝑘), 𝑞

∗
𝑉 (𝑘)𝑋𝑘+1𝑞(𝑘) cost respectively 𝜌𝑘−1𝑚𝑘𝑛𝑘, 𝜌𝑘−1𝜌𝑘𝑟

𝐿
𝑘 𝑛𝑘,

𝜌𝑘−1𝑚𝑘𝑟
𝑈
𝑘 , 𝜈𝑘𝑚𝑘𝑟

𝑈
𝑘 , 𝜈𝑘𝑚𝑘𝑛𝑘, 𝜈𝑘𝜌𝑘𝑟

𝐿
𝑘 𝑛𝑘 operations of arithmetical multiplication

and less operations of arithmetical addition.

Thus the total complexity of Step 1 is

𝑐1 <

𝑁∑
𝑘=1

[
𝜗(𝑚𝑘 + 𝜌𝑘, 𝑟

𝐿
𝑘−1) + 2(𝜌𝑘−1𝑚𝑘𝑛𝑘 + 𝜌𝑘−1𝜌𝑘𝑟

𝐿
𝑘 𝑛𝑘 + 𝜌𝑘−1𝑚𝑘𝑟

𝑈
𝑘

+ 𝜈𝑘𝑚𝑘𝑟
𝑈
𝑘 + 𝜈𝑘𝑚𝑘𝑛𝑘 + 𝜈𝑘𝜌𝑘𝑟

𝐿
𝑘 𝑛𝑘)

]
operations. In Step 2, i.e., in the algorithm from Theorem 20.7, costs are de-
termined by the relations (20.32). Computation of the products 𝑌𝑘−1ℎ𝑇 (𝑘) and
𝑌𝑘−1𝑏𝑇 (𝑘) costs less than 2𝑠𝑘−1𝜌

𝐿
𝑘−1𝑛𝑘 and 2𝑠𝑘−1𝜌

𝐿
𝑘−1𝜌

𝐿
𝑘 arithmetical operations,

respectively, the computation of the QR factorization costs 𝜗(𝑠𝑘−1 + 𝜈𝑘, 𝑛𝑘 + 𝜌
𝐿
𝑘 )

operations. Thus the total complexity of Step 2 is

𝑐2 <

𝑁∑
𝑘=1

[𝜗(𝑠𝑘−1 + 𝜈𝑘, 𝑛𝑘 + 𝜌
𝐿
𝑘 ) + 2𝑠𝑘−1𝜌

𝐿
𝑘−1(𝑛𝑘 + 𝜌

𝐿
𝑘 )]
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operations. In Step 3, we apply to the upper triangular matrix 𝑉 ∗ the relation
(13.8) with 𝑚𝑘 = 𝜈𝑘, 𝑛𝑘 = 𝑚𝑘, 𝑟

𝑈
𝑘 = 𝜌𝑘, 𝑟

𝐿
𝑘 = 0 and obtain the complexity

𝑐3 =

𝑁∑
𝑘=1

[𝜈𝑘𝜌𝑘 +𝑚𝑘+1𝜌𝑘 + 𝜌𝑘𝜌𝑘+1 + 𝜈𝑘𝑚𝑘].

In Step 4, we apply to the lower triangular matrix 𝑈∗ the relation (13.8) with
𝑚𝑘 = 𝑛𝑘, 𝑛𝑘 = 𝜈𝑘, 𝑟

𝑈
𝑘 = 0, 𝑟𝐿𝑘 = 𝑠𝑘 and obtain the complexity

𝑐4 =

𝑁∑
𝑘=1

[𝑛𝑘𝑠𝑘−1 + 𝜈𝑘−1𝑠𝑘−1 + 𝑠𝑘−1𝑠𝑘−2 + 𝑛𝑘𝜈𝑘].

And finally the complexity of Step 5 is given by

𝑐5 =

𝑁∑
𝑘=1

[𝑛𝑘𝜌
′
𝑘 + 𝑛𝑘+1𝜌

′
𝑘 + 𝜌

′
𝑘𝜌
′
𝑘+1 + 𝜁(𝑛𝑘)],

where 𝜁(𝑛) is the complexity of solving an 𝑛 × 𝑛 linear triangular system by
the standard method. The total complexity of Algorithm 20.9 is the sum 𝑐 =
𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 + 𝑐5.

Assume that the sizes of blocks 𝑚𝑘, 𝑛𝑘, the orders of quasiseparable gener-
ators 𝑟𝐿𝑘 , 𝑟

𝑈
𝑘 of the matrix 𝐴 and the values

∑𝑘
𝑖=1(𝑚𝑖 − 𝑛𝑖) are bounded by the

numbers 𝑚, 𝑟, 𝑠0, respectively, i.e.,

𝑚𝑘, 𝑛𝑘 ≤ 𝑚, 𝑘 = 1, . . . , 𝑁, 𝑟𝐿𝑘 , 𝑟
𝑈
𝑘 ≤ 𝑟,

𝑘∑
𝑖=1

(𝑚𝑖 − 𝑛𝑖) ≤ 𝑠0, 𝑘 = 1, . . . , 𝑁 − 1.

Then the following estimates are obtained. From the relation 𝜌𝑘−1 = min{𝑚𝑘 +
𝜌𝑘, 𝑟

𝐿
𝑘−1} it follows that 𝜌𝑘 ≤ 𝑟 and from the equality 𝜌′𝑘 = 𝑟

𝑈
𝑘 + 𝜌𝑘 we conclude

that 𝜌′𝑘 ≤ 2𝑟. Next, we have

𝑁∑
𝑘=1

𝜈𝑘 =

𝑁∑
𝑘=1

𝑚𝑘 ≤ 𝑚𝑁

and from 𝜈𝑘 = 𝑚𝑘 + 𝜌𝑘 − 𝜌𝑘−1 we conclude that

𝑠𝑘 =
𝑘∑
𝑖=1

(𝜈𝑖 − 𝑛𝑖) =
𝑘∑
𝑖=1

(𝑚𝑖 + 𝜌𝑖 − 𝜌𝑖−1 − 𝑛𝑖) = 𝜌𝑘 +
𝑘∑
𝑖=1

(𝑚𝑖 − 𝑛𝑖) ≤ 𝑟 + 𝑠0,

𝜈𝑘 + 𝑠𝑘−1 = 𝑚𝑘 + 𝜌𝑘 +
𝑘−1∑
𝑖=1

(𝑚𝑖 − 𝑛𝑖) ≤ 𝑚+ 𝑟 + 𝑠0.
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Using these relations the complexities 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5 are estimated as follows:

𝑐1 < (𝜗(𝑚+ 𝑟, 𝑟) + 4𝑟𝑚2 + 2𝑟3𝑚+ 2𝑟2𝑚+ 2𝑚3 + 2𝑟2𝑚2)𝑁,

𝑐2 < (𝜗(𝑚+ 𝑟 + 𝑠0, 𝑛+ 2𝑟) + 4(𝑟𝑚+ 2𝑟2)𝑠0 + 4𝑟2𝑚+ 8𝑟3)𝑁,

𝑐3 < 2(2𝑚𝑟 + 𝑟2 +𝑚2)𝑁,

𝑐4 ≤ 𝑁(2𝑚𝑟 + 𝑟2 + 𝑠0(2𝑚𝑟 + 2𝑟 + 𝑠0) +𝑚
2),

𝑐5 ≤ 𝑁(4𝑚𝑟 + 4𝑟2 + 𝜁(𝑚)).

Thus, the total complexity of Algorithm 20.9 is estimated as

𝑐 <
(
𝜗(𝑚+ 𝑟, 𝑟) + 𝜗(𝑟 +𝑚+ 𝑠0,𝑚+ 𝑟) + 𝜁(𝑚) + 4𝑟𝑚2 + 2𝑟3𝑚+ 6𝑟2𝑚

+ 2𝑟2𝑚2 + 2𝑚3 + 8𝑟3 + 8𝑚𝑟 + 6𝑟2 + 2𝑚2 + 𝑠0(4𝑚𝑟 + 4𝑟2 + 2𝑟 + 𝑠0)
)
𝑁.

Therefore, in this case Algorithm 20.9 has a linear 𝑂(𝑁) complexity.

Assume that the sizes of the blocks of the matrix 𝐴 satisfy 𝑚𝑘 = 𝑛𝑘, 𝑘 =
1, . . . , 𝑁 . Then since 𝑠0 = 0 we conclude that

𝑐 <
(
𝜗(𝑚+ 𝑟, 𝑟) + 𝜗(𝑟 +𝑚,𝑚+ 𝑟) + 𝜁(𝑚) + 4𝑟𝑚2 + 2𝑟3𝑚+ 6𝑟2𝑚

+ 2𝑟2𝑚2 + 2𝑚3 + 8𝑟3 + 8𝑚𝑟 + 6𝑟2 + 2𝑚2
)
𝑁.

(20.46)

§20.6 The case of scalar matrices

We consider here the case of a matrix 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 with scalar entries, i.e.,

𝑚𝑘 = 𝑛𝑘 = 1. Let 𝑟𝐿𝑘 (𝑘 = 1, . . . , 𝑁 − 1) be the orders of lower quasiseparable
generators of 𝐴. In the factorization 𝐴 = 𝑉 𝑈𝑅 the matrix 𝑅 is a scalar upper
triangular matrix and 𝑉, 𝑈 are unitary matrices. Thus we have here a special
form of the QR factorization in which the unitary factor is represented as the
product 𝑉 𝑈 . The matrix 𝑉 = {𝑣𝑖𝑗}𝑁𝑖,𝑗=1 with scalar entries 𝑣𝑖𝑗 may be treated, by
Theorem 20.5, as a block lower triangular matrix with blocks of sizes 1× 𝜈𝑘. Here
𝜈𝑘 = 1+𝜌𝑘−𝜌𝑘−1 (𝑘 = 1, . . . , 𝑁), where 𝜌𝑘 are the orders of lower quasiseparable
generators of the block matrix 𝑉 which are defined by the relations 𝜌𝑁 = 0, 𝜌𝑘−1 =
min{1+ 𝜌𝑘, 𝑟𝐿𝑘−1} (𝑘 = 𝑁 − 1, . . . , 1). The fact that 𝑉 is a block lower triangular

matrix means that 𝑣𝑖𝑗 = 0 for 𝑗 >
∑𝑖
𝑘=1 𝜈𝑘 = 𝑖 + 𝜌𝑖. Similarly, for the unitary

matrix 𝑈 = {𝑢𝑖𝑗}𝑁𝑖,𝑗=1, one has that it follows from Theorem 20.7 that 𝑢𝑖𝑗 = 0
for 𝑖 > 𝑗 + 𝜌𝑗 . Moreover, by Corollary 20.8, the orders of upper quasiseparable
generators of 𝑈 equal 𝜌𝑘. If for some 𝑟 holds 𝑟

𝐿
𝑘 ≤ 𝑟, 𝑘 = 1, . . . , 𝑁 − 1, we obtain

𝜌𝑘 ≤ 𝑟 and hence the matrices 𝑉 and 𝑈 satisfy the relations 𝑣𝑖𝑗 = 0 for 𝑗 > 𝑖+ 𝑟
and 𝑢𝑖𝑗 = 0 for 𝑖 > 𝑗 + 𝑟.

In the case of scalar matrices we obtain the following specification of the
factorization Theorems 20.5 and 20.7.

Theorem 20.10. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be a scalar matrix with lower quasiseparable
generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of
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orders 𝑟𝐿𝑘 (𝑘 = 1, . . . , 𝑁 − 1), upper quasiseparable generators 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 −
1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of orders 𝑟𝑈𝑘 (𝑘 = 1, . . . , 𝑁 − 1),
and diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁). Let us define the numbers 𝜌𝑘 via the
recursion relations 𝜌𝑁 = 0, 𝜌0 = 0, 𝜌𝑘−1 = min{1 + 𝜌𝑘, 𝑟𝐿𝑘−1}, 𝑘 = 𝑁, . . . , 2 and
set 𝑚𝑘 = 1, 𝑛𝑘 = 1, 𝜈𝑘 = 1 + 𝜌𝑘 − 𝜌𝑘−1, 𝜌

′
𝑘 = 𝑟

𝑈
𝑘 + 𝜌𝑘, 𝑘 = 1, . . . , 𝑁 .

The matrix 𝐴 admits the factorization

𝐴 = 𝑉 𝑈𝑅,

where 𝑉 is a unitary matrix represented in the block lower triangular form with
blocks of sizes 𝑚𝑖 × 𝜈𝑗 (𝑖, 𝑗 = 1, . . . , 𝑁), lower generators 𝑝𝑉 (𝑖) (𝑖 = 2, . . . , 𝑁),
𝑞𝑉 (𝑗) (𝑗 = 1, . . . , 𝑁−1), 𝑎𝑉 (𝑘) (𝑘 = 2, . . . , 𝑁−1) of orders 𝜌𝑘 (𝑘 = 1, . . . , 𝑁−1),
and diagonal entries 𝑑𝑉 (𝑘) (𝑘 = 1, . . . , 𝑁), 𝑈 is a unitary matrix represented in
the block upper triangular form with blocks of sizes 𝜈𝑖×𝑛𝑗 (𝑖, 𝑗 = 1, . . . , 𝑁), upper
quasiseparable generators 𝑔𝑈 (𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ𝑈 (𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏𝑈 (𝑘)
(𝑘 = 2, . . . , 𝑁 − 1) of orders 𝜌𝑘 (𝑘 = 1, . . . , 𝑁 − 1), and diagonal entries 𝑑𝑈 (𝑘)
(𝑘 = 1, . . . , 𝑁), and 𝑅 is an upper triangular scalar matrix with upper generators
𝑔𝑅(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ𝑅(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏𝑅(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of orders
𝜌′𝑘 (𝑘 = 1, . . . , 𝑁 − 1), and diagonal entries 𝑑𝑅(𝑘) (𝑘 = 1, . . . , 𝑁).

The generators and the diagonal entries of the matrices 𝑉, 𝑈,𝑅 are deter-
mined using the following algorithm.

1.1. Set 𝑉𝑁 = 1. If 𝑟𝐿𝑁−1 > 0, set 𝑋𝑁 = 𝑝(𝑁), 𝑝𝑉 (𝑁) = 1, ℎ𝑅(𝑁) =

(
ℎ(𝑁)
𝑑(𝑁)

)
and 𝑑𝑉 (𝑁), 𝑑𝑇 (𝑁) to be 1,×0 and 0× 1 empty matrices; else set 𝑋𝑁 , 𝑝𝑉 (𝑁)
to be the 0 × 0 and 1 × 0 empty matrices, 𝑑𝑉 (𝑁) = 1, ℎ𝑅(𝑁) = ℎ(𝑁),
𝑑𝑇 (𝑁) = 𝑑(𝑁).

1.2. For 𝑘 = 𝑁 − 1, . . . , 2 perform the following. Compute the QR factorization(
𝑝(𝑘)

𝑋𝑘+1𝑎(𝑘)

)
= 𝑉𝑘

(
𝑋𝑘

0𝜈𝑘×𝑟𝐿𝑘−1

)
,

where 𝑉𝑘 is a unitary matrix of sizes (1+𝜌𝑘)×(1+𝜌𝑘) and 𝑋𝑘 is a matrix of
sizes 𝜌𝑘−1 × 𝑟𝐿𝑘−1. Determine matrices 𝑝𝑉 (𝑘), 𝑎𝑉 (𝑘), 𝑑𝑉 (𝑘), 𝑞𝑉 (𝑘) of sizes
1 × 𝜌𝑘−1, 𝜌𝑘 × 𝜌𝑘−1, 1 × (1 + 𝜌𝑘 − 𝜌𝑘−1), 𝜌𝑘 × (1 + 𝜌𝑘 − 𝜌𝑘−1) from the
partition

𝑉𝑘 =

(
𝑝𝑉 (𝑘) 𝑑𝑉 (𝑘)
𝑎𝑉 (𝑘) 𝑞𝑉 (𝑘)

)
.

Compute

ℎ′𝑘 = 𝑝
∗
𝑉 (𝑘)𝑑(𝑘) + 𝑎

∗
𝑉 (𝑘)𝑋𝑘+1𝑞(𝑘), ℎ𝑅(𝑘) =

(
ℎ(𝑘)
ℎ′𝑘

)
,

𝑏𝑅(𝑘) =

(
𝑏(𝑘) 0

𝑝∗𝑉 (𝑘)𝑔(𝑘) 𝑎∗𝑉 (𝑘)

)
,

𝑔𝑇 (𝑘) =
(
𝑑∗𝑉 (𝑘)𝑔(𝑘) 𝑞∗𝑉 (𝑘)

)
, 𝑑𝑇 (𝑘) = 𝑑

∗
𝑉 (𝑘)𝑑(𝑘) + 𝑞

∗
𝑉 (𝑘)𝑋𝑘+1𝑞(𝑘).
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1.3. Choose a unitary matrix 𝑉1 of sizes 𝜈1 × 𝜈1. Determine the matrices 𝑑𝑉 (1),
𝑞𝑉 (1) of sizes 1× 𝜈1, 𝜌1 × 𝜈1 from the partition

𝑉1 =

(
𝑑𝑉 (1)
𝑞𝑉 (1)

)
.

Compute

𝑑𝑇 (1) = 𝑑
∗
𝑉 (1)𝑑(1) + 𝑞

∗
𝑉 (1)𝑋2𝑞(1), 𝑔𝑇 (1) =

(
𝑑∗𝑉 (1)𝑔(1) 𝑞∗𝑉 (1)

)
.

Thus we have computed the matrices 𝑉𝑘 and quasiseparable generators 𝑏𝑅(𝑘),
ℎ𝑅(𝑘) of the matrix 𝑅.

2.1. Compute the QR factorization

𝑑𝑇 (1) = 𝑈1

(
𝑑𝑅(1)
0𝜌1×1

)
,

where 𝑈1 is a 𝜈1 × 𝜈1 unitary matrix and 𝑑𝑅(1) is a number.
Determine the matrices 𝑑𝑈 (1), 𝑔𝑈 (1) of sizes 𝜈1×1, 𝜈1×𝜌1 from the partition

𝑈1 =
(
𝑑𝑈 (1) 𝑔𝑈 (1)

)
.

Compute
𝑔𝑅(1) = 𝑑

∗
𝑈 (1)𝑔𝑇 (1), 𝑌1 = 𝑔

∗
𝑈 (1)𝑔𝑇 (1).

2.2. Compute the QR factorization(
𝑌𝑘−1ℎ𝑅(𝑘)
𝑑𝑇 (𝑘)

)
= 𝑈𝑘

(
𝑑𝑅(𝑘)
0𝜌𝑘×1

)
,

where 𝑈𝑘 is a (1 + 𝜌𝑘) × (1 + 𝜌𝑘) unitary matrix and 𝑑𝑅(𝑘) is a number.
Determine the matrices 𝑑𝑈 (𝑘), 𝑔𝑈 (𝑘), ℎ𝑈 (𝑘), 𝑏𝑈 (𝑘) of sizes 𝜈𝑘 × 1, 𝜈𝑘 ×
𝜌𝑘, 𝜌𝑘−1 × 1, 𝜌𝑘−1 × 𝜌𝑘 from the partition

𝑈𝑘 =

(
ℎ𝑈 (𝑘) 𝑏𝑈 (𝑘)
𝑑𝑈 (𝑘) 𝑔𝑈 (𝑘)

)
.

Compute

𝑔𝑅(𝑘) = ℎ
∗
𝑈 (𝑘)𝑌𝑘−1𝑏𝑅(𝑘)+𝑑

∗
𝑈 (𝑘)𝑔𝑇 (𝑘), 𝑌𝑘 = 𝑏

∗
𝑈 (𝑘)𝑌𝑘−1𝑏𝑅(𝑘)+𝑔

∗
𝑈 (𝑘)𝑔𝑇 (𝑘).

2.3. Set 𝑈𝑁 = 1. If 𝑟𝐿𝑁−1 > 0 set ℎ𝑈 (𝑁) = 1 and 𝑑𝑈 (𝑁) to be 0×1 empty matrix;
else set 𝑑𝑈 (𝑁) = 1 and ℎ𝑈 (𝑁) to be 0× 1 empty matrix.

Compute 𝑑𝑅(𝑁) =

(
𝑌𝑁−1ℎ𝑅(𝑁)
𝑑𝑇 (𝑁)

)
.

Thus we have computed quasiseparable generators 𝑔𝑅(𝑘) and diagonal entries
𝑑𝑅(𝑘) of the matrix 𝑅.
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For a matrix with scalar entries we obtain the following algorithm for solving
a system of linear algebraic equations.

Algorithm 20.11. Let 𝐴 = {𝐴𝑖𝑗}𝑁𝑖,𝑗=1 be an invertible matrix with scalar entries
and with lower quasiseparable generators 𝑝(𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞(𝑗) (𝑗 = 1, . . . , 𝑁−
1), 𝑎(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of orders 𝑟𝐿𝑘 (𝑘 = 1, . . . , 𝑁 − 1), upper quasiseparable
generators 𝑔(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ(𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏(𝑘) (𝑘 = 2, . . . , 𝑁 − 1) of
orders 𝑟𝑈𝑘 (𝑘 = 1, . . . , 𝑁 − 1), and diagonal entries 𝑑(𝑘) (𝑘 = 1, . . . , 𝑁). Then the
solution of the system 𝐴𝑥 = 𝑦 is given as follows.

1. Using the algorithm from Theorem 20.10, compute lower quasiseparable
generators 𝑝𝑉 (𝑖) (𝑖 = 2, . . . , 𝑁), 𝑞𝑉 (𝑗) (𝑗 = 1, . . . , 𝑁 − 1), 𝑎𝑉 (𝑘) (𝑘 =
2, . . . , 𝑁 − 1) and diagonal entries 𝑑𝑉 (𝑘) (𝑖 = 1, . . . , 𝑁) of the unitary
block lower triangular matrix 𝑉 , upper quasiseparable generators 𝑔𝑈 (𝑖) (𝑖 =
1, . . . , 𝑁 − 1), ℎ𝑈 (𝑗) (𝑗 = 2, . . . , 𝑁), 𝑏𝑈 (𝑘) (𝑘 = 2, . . . , 𝑁 − 1) and diagonal
entries 𝑑𝑈 (𝑘) (𝑘 = 1, . . . , 𝑁) of the unitary block upper triangular matrix 𝑈 ,
and upper quasiseparable generators 𝑔𝑅(𝑖) (𝑖 = 1, . . . , 𝑁 − 1), ℎ𝑅(𝑗) (𝑗 =
2, . . . , 𝑁), 𝑏𝑅(𝑘) (𝑘 = 2, . . . , 𝑁−1) and diagonal entries 𝑑𝑅(𝑘) (𝑘 = 1, . . . , 𝑁)
of the upper triangular matrix 𝑅, so that 𝐴 = 𝑉 𝑈𝑅.

2. Compute the product �̃� = 𝑉 ∗𝑦 as follows: start with �̃�(𝑁) = 𝑑∗𝑉 (𝑁)𝑦(𝑁),
𝑤𝑁−1 = 𝑝

∗
𝑉 (𝑁)𝑦(𝑁), 𝑥(𝑁 − 1) = 𝑞∗𝑉 (𝑁 − 1)𝑤𝑁−1 + 𝑑

∗
𝑉 (𝑁 − 1)𝑦(𝑁 − 1) and

for 𝑖 = 𝑁 − 2, . . . , 1 compute recursively

𝑤𝑖 = 𝑎
∗
𝑉 (𝑖 + 1)𝑤𝑖+1 + 𝑝

∗
𝑉 (𝑖+ 1)𝑦(𝑖+ 1), 𝑥(𝑖) = 𝑞∗𝑉 (𝑖)𝑤𝑖 + 𝑑

∗
𝑉 (𝑖)𝑦(𝑖).

3. Compute the product �̂� = 𝑈∗�̃� as follows: start with �̂�(1) = 𝑑∗𝑈 (1)�̃�(1),
𝑧2 = 𝑔∗𝑈 (1)�̃�(1), 𝑥(2) = ℎ∗𝑈 (2)𝑧2 + 𝑑

∗
𝑈 (2)�̃�(2) and for 𝑖 = 3, . . . , 𝑁 compute

recursively

𝑧𝑖 = 𝑏
∗
𝑈 (𝑖 − 1)𝑧𝑖−1 + 𝑔

∗
𝑈 (𝑖 − 1)�̃�(𝑖− 1), �̂�(𝑖) = 𝑑∗𝑈 (𝑖)�̃�(𝑖) + ℎ

∗
𝑈 (𝑖)𝑧𝑖.

4. Compute the solution 𝑥 of the equation 𝑅𝑥 = �̂� as follows: start with 𝑥(𝑁) =
(𝑑𝑅(𝑁))−1�̂�(𝑁), 𝜂𝑁−1 = ℎ𝑅(𝑁)�̂�(𝑁) and for 𝑖 = 𝑁 − 1, . . . , 2 compute
recursively

𝜂𝑖−1 = 𝑏𝑅(𝑖)𝜂𝑖 + ℎ𝑅(𝑖)𝑥(𝑖), 𝑥(𝑖) = (𝑑𝑅(𝑖))
−1(�̂�(𝑖)− 𝑔𝑅(𝑖)𝜂𝑖),

and finally compute 𝑥(1) = (𝑑𝑅(1))
−1(�̂�(1)− 𝑔𝑅(1)𝜂1).

The inequality (20.46) for a scalar matrix yields the following estimate for
the complexity of Algorithm 20.11:

𝑐 ≤ 𝑁(𝜗(1 + 𝑟, 𝑟) + 𝜗(𝑟 + 1, 𝑟 + 1) + 5𝑟3 + 10𝑟2 + 10𝑟 + 4).

§20.7 Comments

The idea of the method used in this chapter was suggested by P.M. Dewilde and
A.J. van der Veen in the monograph [15] for infinite matrices. The theorems and
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algorithms of this chapter suitable for finite block matrices were obtained in the
paper [23], but the proofs presented here are essentially simpler. A similar method,
but using Givens representations instead of a part of quasiseparable generators,
was suggested by M. Van Barel and S. Delvaux in [13].

Instead of the factorization (20.1) one can use in a similar way the representa-
tion of the matrix 𝐴 in the form 𝐴 = 𝑈𝐿𝑉 with unitary block triangular matrices
𝑈, 𝑉 and a triangular matrix 𝐿. Such an approach was used by N. Mastronardi,
S. Chandrasekaran, S. Van Huffel, E. Van Camp and M. Van Barel for matrices
with diagonal plus semiseparable of order one representations in [42, 9], and by S.
Chandrasekaran and M. Gu for matrices with banded plus semiseparable of order
one representations in [7], by S. Chandrasekaran, P.M. Dewilde, M. Gu, T. Pals,
X. Sun and A.J. van der Veen in [6, 8] for solving some inversion and least squares
problems for matrices with quasiseparable representations. This method was ex-
tended to matrices with hierarchically semiseparable representations via reduction
to quasiseparable ones, see the paper [49] by J. Xia, S. Chandrasekaran, M. Gu
and X.S. Li and the literature cited therein.
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