
Yeol Je Cho · Choonkil Park
Themistocles M. Rassias · Reza Saadati

Stability of 
Functional 
Equations in 
Banach Algebras



Stability of Functional Equations in Banach
Algebras





Yeol Je Cho • Choonkil Park
Themistocles M. Rassias • Reza Saadati

Stability of Functional
Equations in Banach
Algebras

123



Yeol Je Cho
Department of Mathematics Education

and the RINS
Gyeongsang National University

College of Education
Jinju, Korea, Republic of South Korea

Themistocles M. Rassias
Department of Mathematics
National Technical University of Athens
Athens, Greece

Choonkil Park
Department of Mathematics
Hanyang University
Seoul, Korea, Republic of South Korea

Reza Saadati
Department of Mathematics
Iran University of Science and Technology
Tehran, Iran

ISBN 978-3-319-18707-5 ISBN 978-3-319-18708-2 (eBook)
DOI 10.1007/978-3-319-18708-2

Library of Congress Control Number: 2015939079

Mathematics Subject Classification (2010): 39-XX, 26-XX, 41-XX, 46-XX, 47-XX

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.
springer.com)

www.springer.com
www.springer.com


To S.M. Ulam for the 75th anniversary of his
stability problem for approximate
homomorphisms





Preface

The main purpose of this book is to present some of the old and recent results
on homomorphisms and derivations in Banach algebras, quasi-Banach algebras,
C�-algebras, C�-ternary algebras, non-Archimedean Banach algebras, and multi-
normed algebras.

In 1940, S. M. Ulam [321] proposed a stability problem on group homomor-
phisms in metric groups. In 1941, D. H. Hyers [133] proved the stability of additive
mappings in Banach spaces associated with the Cauchy equation. In 1978, Th. M.
Rassias [267] proved the stability of R-linear mappings associated with the Cauchy
equation, and in 2002 C. Park [220] proved the stability of C-linear mappings
in the spirit of Hyers, Ulam, and Rassias in Banach modules. Homomorphisms
and derivations in Banach algebras, quasi-Banach algebras, C�-algebras, C�-
ternary algebras, non-Archimedean Banach algebras and multi-normed algebras
are additive and R-linear or C-linear, and so we study the stability problems for
additive functional equations and additive mappings. Using the direct method and
the fixed point method, the authors have studied the stability and the superstability
of homomorphisms and derivations in Banach algebras, quasi-Banach algebras,
C�-algebras, C�-ternary algebras, non-Archimedean Banach algebras, and multi-
normed algebras, which are also associated with additive functional equations and
additive functional inequalities.

The book provides a survey of both the latest and new results especially on the
following topics:

(1) Stability theory for several new functional equations in Banach algebras and
C�-algebras via fixed point method and direct method.

(2) Stability theory for several new functional inequalities in Banach algebras and
C�-algebras via fixed point method and direct method.

(3) Stability theory of well-known new functional equations in non-Archimedean
Banach algebras and non-Archimedean C�-algebras.

(4) Stability theory for several new functional equations and functional inequalities
in multi-Banach algebras and multi-C�-algebras via fixed point method and
direct method.
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viii Preface

The book is intended to be accessible especially to graduate students who
have a basic background with operator theory, functional analysis, functional
equations, and analytic inequalities including an introduction to Banach alge-
bras, quasi-Banach algebras, C�-algebras, C�-ternary algebras, non-Archimedean
Banach algebras, and multi-normed algebras.

In Chap. 1, we provide a brief introduction to concepts with historic remarks
for functional equations and their stability and the definitions of Banach alge-
bras, quasi-Banach algebras, C�-algebras, C�-ternary algebras, non-Archimedean
Banach algebras, and multi-normed algebras.

In Chap. 2, we study the stability of additive functional equations in Banach
spaces as well as the stability and the superstability of isomorphisms, homomor-
phisms, derivations, and generalized derivations in Banach algebras and quasi-
Banach algebras associated with additive functional equations.

In Chap. 3, we study the stability and the superstability of isomorphisms, homo-
morphisms, and derivations in C�-algebras, Lie C�-algebras, and JC�-algebras, as
well as the stability and the superstability of linear mappings in Banach modules
over unital C�-algebras. Moreover, we study Jordan �-derivations, quadratic Jordan
�-derivations, .˛; ˇ; �/-derivations on Lie C�-algebras, square root functional
equations, 3rd root functional equations, and positive-additive functional equations.

In Chap. 4, we study the stability of C-linear mappings in Banach spaces and
linear mappings in normed modules over a C�-algebra as well as the stability of
homomorphisms and derivations in proper CQ�-algebras associated with functional
inequalities.

In Chap. 5, we study the stability and the superstability of C�-ternary homo-
morphisms, C�-ternary derivations, C�-ternary 3-homomorphisms, and C�-ternary
3-derivations in C�-ternary algebras as well as investigate the stability of JB�-triple
homomorphisms and JB�-triple derivations in JB�-triples by using the direct method
and the fixed point method.

In Chap. 6, we study the stability of linear mappings in multi-Banach spaces
as well as the stability and the superstability of isomorphisms, homomorphisms,
and derivations in multi-Banach algebras, multi-C�-algebras, proper multi-CQ�-
algebras, and multi-C�-ternary algebras. Moreover, we study the stability of
ternary Jordan homomorphisms and ternary Jordan derivations in multi-C�-ternary
algebras.

Finally, in Chap. 7, we study the stability of additive functional equations
in non-Archimedean Banach spaces as well as the stability of homomorphisms
and derivations in non-Archimedean C�-algebras and non-Archimedean Lie C�-
algebras.
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Athens, Greece Themistocles M. Rassias
Tehran, Iran Reza Saadati
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Chapter 1
Introduction

In this chapter, we recall some definitions and results which will be used later on in
the book.

The study of functional equations has a long history. In 1791 and 1809, Legendre
[184] and Gauss [121] attempted to provide a solution of the following functional
equation:

f .x C y/ D f .x/C f .y/

for all x; y 2 R, which is called the Cauchy functional equation. A function
f W R ! R is called an additive function if it satisfies the Cauchy functional
equation. In 1821, Cauchy [67] first found the general solution of the Cauchy
functional equation, that is, if f W R ! R is a continuous additive function, then
f is R–linear, that is, f .x/ D mx, where m is a constant. Further, we can consider the
biadditive function on R � R as follows:

A function f W R � R ! R is called a biadditive function if it is additive in each
variable, that is,

f .x C y; z/ D f .x; z/C f .y; z/

and

f .x; y C z/ D f .x; y/C f .x; z/

for all x; y; z 2 R. It is well–known that every continuous biadditive function
f W R � R ! R is of the form

f .x; y/ D mxy

for all x; y 2 R, where m is a constant.

© Springer International Publishing Switzerland 2015
Y.J. Cho et al., Stability of Functional Equations in Banach
Algebras, DOI 10.1007/978-3-319-18708-2_1
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2 1 Introduction

Since the time of Legendre and Gauss, several mathematicians had dealt with
additive functional equations in their books [4–6, 178, 313] and a number of them
have studied Lagrange’s mean value theorem and related functional equations, Pom-
peiu’s mean value theorem and associated functional equations, two-dimensional
mean value theorem and functional equations as well as several kinds of functional
equations. We know that the mean value theorems have been motivated to study
the functional equations (see the book “Mean Value Theorems and Functional
Equations” by Sahoo and Riedel [305]) in 1998.

In 1940, Ulam [321] proposed the following stability problem of functional
equations:

Given a group G1, a metric group G2 with the metric d.�; �/ and a positive number
", does there exist ı > 0 such that, if a mapping f W G1 ! G2 satisfies

d.f .xy/; f .x/f .y// � ı

for all x; y 2 G1, then there exists a homomorphism h W G1 ! G2 such that

d.f .x/; h.x// � "

for all x 2 G1?
Since then, several mathematicians have dealt with special cases as well as

generalizations of Ulam’s problem.
In fact, in 1941, Hyers [133] provided a partial solution to Ulam’s problem for

the case of approximately additive mappings in which G1 and G2 are Banach spaces
with ı D " as follows:

Let X and Y be Banach spaces and let " > 0. Then, for all g W X ! Y with

sup
x;y2X

kg.x C y/ � g.x/� g.y/k � ";

there exists a unique mapping f W X ! Y such that

sup
x2X

kg.x/� f .x/k � "

and

f .x C y/ D f .x/C f .y/

for all x; y 2 X.
This proof remains unchanged if G1 is an Abelian semigroup. Particularly, in

1968, it was proved by Forti ([115], Proposition 1) that the following theorem can
be proved:



1 Introduction 3

Theorem F (Forti). Let .S;C/ be an arbitrary semigroup and E be a Banach
space. Assume that f W S ! E satisfies

kf .x C y/� f .x/� f .y/k � ": (A)

Then the limit

g.x/ D lim
n!1

f .2nx/

2n
(B)

exists for all x 2 S and g W S ! E is the unique function satisfying

kf .x/ � g.x/k � "; g.2x/ D 2g.x/:

Finally, if the semigroup S is Abelian, then G is additive.

Here, the proof method which generates the solution g by the formula like (B) is
called the direct method.

If f is a mapping of a group or a semigroup .S; �/ into a vector space E, then we
call the following expression:

Cf .x; y/ D f .x � y/� f .x/ � f .y/

the Cauchy difference of f on S � S. In the case that E is a topological vector space,
we call the equation of homomorphism stable if, whenever the Cauchy difference
Cf is bounded on S � S, there exists a homomorphism g W S ! E such that f � g is
bounded on S.

In 1980, Rätz [298] generalized Theorem F as follows: Let .X;�/ be a power-
associative groupoid, i.e., X is a nonempty set with a binary relation x1 � x2 2 X
such that the left powers satisfy xmCn D xm � xn for all m; n � 1 and x 2 X. Let
.Y; j � j/ be a topological vector space over the field Q of rational numbers with Q

topologized by its usual absolute value j � j.
Theorem R (Rätz). Let V be a nonempty bounded Q-convex subset of Y contain-
ing the origin and assume that Y is sequentially complete. Let f W X ! Y satisfy the
following conditions: for all x1; x2 2 X, there exist k � 2 such that

f ..x1 � x2/
kn
/ D f .xkn

1 � xkn

2 / (C)

for all n � 1 and

f .x1/C f .x2/� f .x1 � x2/ 2 V: (D)

Then there exists a function g W X ! Y such that g.x1/ C g.x2/ D g.x1 � x2/ and
f .x/ � g.x/ 2 V, where V is the sequential closure of V for all x 2 X. When Y is a
Hausdorff space, then g is uniquely determined.



4 1 Introduction

Note that the condition (C) is satisfied when X is commutative and it takes the
place of the commutativity in proving the additivity of g. However, as Rätz pointed
out in his paper, the condition

.x1 � x2/
kn D xkn

1 � xkn

2

for all x1; x2 2 X, where X is a semigroup, and, for all k � 1, does not imply the
commutativity.

In the proofs of Theorems F and R, the completeness of the image space E and the
sequential completeness of Y, respectively, were essential in proving the existence
of the limit which defined the additive function g. The question arises whether the
completeness is necessary for the existence of an odd additive function g such that
f � g is uniformly bounded, given that the Cauchy difference is bounded.

For this problem, in 1988, Schwaiger [306] proved the following:

Theorem S (Schwaiger). Let E be a normed space with the property that, for each
function f W Z ! E, whose Cauchy difference Cf D f .xCy/�f .x/�f .y/ is bounded
for all x; y 2 Z and there exists an additive mapping g W Z ! E such that f .x/�g.x/
is bounded for all x 2 Z. Then E is complete.

Corollary 1. The statement of Theorem S remains true if Z is replaced by any
vector space over Q.

In 1950, Aoki [17] generalized Hyers’ theorem as follows:

Theorem A (Aoki). Let E1 and E2 be two Banach spaces. If there exist K > 0 and
0 � p < 1 such that

kf .x C y/� f .x/ � f .y/k � K.kxkp C kykp/

for all x; y 2 E1, then there exists a unique additive mapping g W E1 ! E2 such that

kf .x/ � g.x/k � 2K

2 � 2p
kxkp

for all x 2 E1.

In 1978, Th. M. Rassias [267] formulated and proved the stability theorem for
the linear mapping between Banach spaces E1 and E2 subject to the continuity of
f .tx/ with respect to t 2 R for each fixed x 2 E1. Thus Rassias’ Theorem implies
Aoki’s Theorem as a special case. Later, in 1990, Th. M. Rassias [274] observed that
the proof of his stability theorem also holds true for p < 0. In 1991, Gajda [119]
showed that the proof of Rassias’ Theorem can be proved also for the case p > 1

by just replacing n by �n in (B). These results are stated in a generalized form as
follows (see Rassias and Šemrl [293]):
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Theorem RS (Th.M. Rassias and P. Semrl). Let ˇ.s; t/ be nonnegative function
for all nonnegative real numbers s; t and positive homogeneous of degree p, where
p is real and p ¤ 1, i.e., ˇ.�s; �t/ D �pˇ.s; t/ for all nonnegative �; s; t. Given a
normed space E1 and a Banach space E2, assume that f W E1 ! E2 satisfies the
inequality

kf .x C y/� f .x/ � f .y/k � ˇ.kxk; kyk/

for all x; y 2 E1. Then there exists a unique additive mapping g W E1 ! E2 such that

kf .x/ � g.x/k � ıkxkp

for all x 2 E1, where

ı WD
(

ˇ.1;1/

2�2p ; p < 1;
ˇ.1;1/

2�2p ; p > 1:

The proofs for the cases p < 1 and p > 1 were provided by applying the direct
methods. For p < 1, the additive mapping g is given by (B), while, in case p > 1,
the formula is

g.x/ D lim
n!1 2nf

� x

2n

�
:

Corollary 2. Let f W E1 ! E2 be a mapping satisfying the hypotheses of
Theorem RS and suppose that f is continuous at a single point y 2 E1. Then the
additive mapping g is continuous.

Corollary 3. If, under the hypotheses of Theorem RS, we assume that, for each
fixed x 2 E1, the mapping t ! f .tx/ from R to E2 is continuous, then the additive
mapping g is R–linear.

Remark 4. (1) For p D 0, Theorem RS, Corollaries 2 and 3 reduce to the results
of Hyers in 1941. If we put ˇ.s; t/ D ".sp C tp/, then we obtain the results of
Rassias [267] in 1978 and Gajda [119] in 1991.

(2) The case p D 1 was excluded in Theorem RS. Simple counterexamples prove
that one can not extend Rassias’ Theorem when p takes the value one (see Z.
Gajda [119], Rassias and Šemrl [293] and Hyers and Rassias [135] in 1992).

A further generalization of the Hyers-Ulam stability for a large class of mappings
was obtained by Isac and Rassias [139] by introducing the following:

Definition 5. A mapping f W E1 ! E2 is said to be �-additive if there exist ˚ � 0

and a function � W RC ! RC satisfying

lim
t!C1

�.t/

t
D 0



6 1 Introduction

such that

kf .x C y/� f .x/ � f .y/k � ˚Œ�.kxk/C �.kyk/�

for all x; y 2 E1.

In [139], Isac and Rassias proved the following:

Theorem IR (Isac and Rassias). Let E1 be a real normed vector space and E2 be
a real Banach space. Let f W E1 ! E2 be a mapping such that f .tx/ is continuous in
t for each fixed x 2 E1. If f is �-additive and � satisfies the following conditions:

(1) �.ts/ � �.t/�.s/ for all s; t 2 R;
(2) �.t/ < t for all t > 1,

then there exists a unique R–linear mapping T W E1 ! E2 such that

kf .x/ � T.x/k � 2�

2 � �.2/�.kxk/

for all x 2 E1.

Remark 6. (1) If �.t/ D tp with p < 1, then, from Theorem IR, we obtain Rassias’
Theorem [267].

(2) If p < 0 and �.t/ D tp with t > 0, then Theorem IR is implied by the result of
Gajda in 1991.

Since the time the above stated results have been proven, several mathematicians
(cf. [1, 3, 14, 44, 46, 49–65, 69–80, 82–85, 87–90, 95–99, 101–107, 109, 116–
118, 120, 122, 124, 125, 129–134, 136, 137, 140–149, 151–153, 156–158, 160–
162, 164, 173–179, 187, 189, 190, 195–201, 207, 208, 212, 214, 217, 219, 221–
223, 226, 228, 230, 236, 239–241, 262, 266, 268, 269, 275–288, 296–303, 309,
311–322, 324, 330, 331] and also very recent survey papers [42, 60, 61]) have
extensively studied stability theorems for several kinds of functional equations
in various spaces, for example, Banach spaces, 2-Banach spaces, Banach n-
Lie algebras, quasi-Banach spaces, Banach ternary algebras, non-Archimedean
normed and Banach spaces, metric and ultra metric spaces, Menger probabilistic
normed spaces, probabilistic normed space, p-2-normed spaces, C�-algebras, C�-
ternary algebras, Banach ternary algebras, Banach modules, inner product spaces,
Heisenberg groups and others. Further, we have to pay attention to applications
of the Hyers-Ulam-Rassias stability problems, for example, (partial) differential
equations, Fréchet functional equations, Riccati differential equations, Volterra
integral equations, group and ring theory and some kinds of equations (see
[66, 142, 150, 154, 159, 176, 185, 186, 192–194, 259–261, 327, 329]). For more
details on recent development in Ulam’s type stability and its applications, see
the papers of Brillouët-Belluot et al. [53] and Ciepliński [86] in 2012 (see also
[3–22, 47, 78, 79, 81, 110–112, 138, 148–150, 154, 157–163, 165, 166, 183, 204,
205, 213, 215, 216, 245, 246, 249, 255, 257, 263, 264, 270–295, 302, 304, 328]).
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A functional equation is called stable if any function satisfying the functional
equation “approximately” is near to a true solution of the functional equation. We
say that a functional equation is superstable if every approximate solution is an
exact solution of it (see some recent papers [40, 41, 55, 59]).

1.1 Fixed Point Theorems

In this section, we present some fixed point theorems which will play important
roles in proving our main theorems. All stability results for functional equations
were proved by applying direct method. Since the direct method sometimes does
not work. In consequence, the fixed point method for studying the stability of
functional equations was used for the first time by Baker in 1991 (see [43]). Next, in
2003, Radu [265] gave a lecture at Seminar on Fixed Point Theory Cluj-Napoca
and proved a stability of functional equation by fixed method. Then, in 2003,
Cădariu and Radu [62, 64] considered Jensen functional equation and proved a
stability result via fixed point method. Jung and Chang [155] proved the stability
of a cubic type functional equation with the fixed point alternative. Since then,
some authors [151–153, 156, 157, 162, 164, 191, 211, 234, 251, 256] considered
some important functional equations and proved the stability results via fixed point
method introduced by Baker and Radu.

The Banach fixed point theorem [45] (also known as the Banach contraction
principle) is an important tool in the theory of metric spaces because it guarantees
the existence and uniqueness of fixed points of certain self mappings of metric
spaces and provides a constructive method to find those fixed points. The theorem
is named after Banach (1892–1945) and was first stated by him in 1922.

Theorem 1.1 (Banach [45]). Let .X; d/ be a complete metric space and
T W X�!X be a contraction, i.e., there exists ˛ 2 Œ0; 1/ such that

d.Tx;Ty/ � ˛d.x; y/

for all x; y 2 X. Then there exists a unique a 2 X such that Ta D a.
Moreover, for all x 2 X,

lim
n!1 Tnx D a

and, in fact, for all x 2 X,

d.x; a/ � 1

1 � ˛
d.x;Tx/:
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Theorem 1.2 ([62, 265]). Let .X; d/ be a complete metric space and J W X ! X be
a strictly contractive mapping, i.e., there exists a Lipschitz constant L < 1 such that

d.Jx; Jy/ � Ld.x; y/

for all x; y 2 X. Then we have

(1) The mapping J has a unique fixed point x� 2 X;
(2) The fixed point x� is globally attractive, i.e.,

lim
n!1 Jnx D x�

for all x 2 X;
(3) The following inequalities hold:

d.Jnx; x�/ � Lnd.x; x�/;

d.Jnx; x�/ � 1

1 � L
d.Jnx; JnC1x/;

d.x; x�/ � 1

1 � L
d.x; Jx/

for all x 2 X and n � 1.

Following Luxemburg [188], the concept of a generalized complete metric space
may be introduced as in this quotation:

Let X be a nonempty set. A function d W X � X ! Œ0;1� is called a generalized
metric on X if, for any x; y; z 2 X,

(1) d.x; y/ D 0 if and only if x D y;
(2) d.x; y/ D d.y; x/;
(3) d.x; z/ � d.x; y/C d.y; z/.

This concept differs from the usual concept of a complete metric space by the
fact that not every two points in X have necessarily a finite distance. One might call
such a space a generalized complete metric space.

Next, Diaz and Margolis [95] proved a theorem of the alternative for any
contraction mapping T on a generalized complete metric space X. The conclusion
of the theorem, speaking in general terms, asserts that: either all consecutive pairs
of the sequence of successive approximations (starting from an element x0 of X)
are infinitely far apart or the sequence of successive approximations, with initial
element x0 converges to a fixed point of T (what particular fixed point depends, in
general, on the initial element x0).

Theorem 1.3 ([62, 95]). Let .X; d/ be a complete generalized metric space and
J W X ! X be a strictly contractive mapping with a Lipschitz constant L < 1. Then,
for each x 2 X, either
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d.Jnx; JnC1x/ D 1

for all n � 0 or there exists a positive integer n0 such that

(1) d.Jnx; JnC1x/ < 1 for all n � n0;
(2) The sequence .Jnx/ converges to a fixed point y� of J;
(3) y� is the unique fixed point of J in the set Y D fy 2 X W d.Jn0x; y/ < 1g;
(4) d.y; y�/ � 1

1�L d.y; Jy/ for all y 2 Y.

1.2 Quasi-Banach Algebras

Let X be a vector space on field C. A normed space X in which, for all x; y 2 X,
xy 2 X and kxyk � kxkkyk is called a complex normed algebra. A complete normed
algebra is called a Banach algebra. Moreover, if there exists a unit element e such
that ex D xe D x for all x 2 X, then kek D 1 and X is called a unital Banach
algebra.

Let X;Y be Banach algebras. A C-linear mapping H W X ! Y is called a
homomorphism in Banach algebras if H satisfies

H.xy/ D H.x/H.y/

for all x; y 2 X. A C-linear mapping ı W X ! X is called a derivation on X if ı
satisfies

ı.xy/ D ı.x/y C xı.y/

for all x; y 2 X.
We recall some basic facts concerning quasi-Banach spaces and some prelimi-

nary results.

Definition 1.4 ([48, 300]). Let X be a real linear space. A quasi-norm is a real-
valued function on X satisfying the following:

(1) kxk � 0 for all x 2 X and kxk D 0 if and only if x D 0;
(2) k�xk D j�j � kxk for all � 2 R and x 2 X;
(3) There is a constant K � 1 such that kx C yk � K.kxk C kyk/ for all x; y 2 X.

The pair .X; k � k/ is called a quasi-normed space if k � k is a quasi-norm on X.
The smallest possible K is called the modulus of concavity of k � k. Obviously, the
balls with respect to k � k define a linear topology on X. By a quasi-Banach space
we mean a complete quasi-normed space, i.e., a quasi-normed space in which every
k � k-Cauchy sequence in X converges. This class includes Banach spaces and the
most significant class of quasi-Banach spaces which are not Banach spaces are the
Lp spaces for 0 < p < 1 with the quasi-norm k � kp.
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A quasi-norm k � k is called a p-norm .0 < p � 1/ if

kx C ykp � kxkp C kykp

for all x; y 2 X. In this case, a quasi-Banach space is called a p-Banach space.

For any p-norm, the formula d.x; y/ WD kx � ykp gives us a translation invariant
metric on X. By the Aoki–Rolewicz theorem [300] (see also [48]), each quasi-norm
is equivalent to some p-norm. Since it is much easier to work with p-norms than
quasi-norms, henceforth we restrict our attention mainly to p-norms.

Definition 1.5 ([10]). Let .A; k � k/ be a quasi-normed space. The quasi-normed
space .A; k � k/ is called a quasi-normed algebra if A is an algebra and there exists a
constant C > 0 such that

kxyk � Ckxk � kyk

for all x; y 2 A. A quasi-Banach algebra is a complete quasi-normed algebra.
If the quasi-norm k � k is a p-norm, then the quasi-Banach algebra is called a

p-Banach algebra.

1.3 C�-Algebras

Let U be a Banach algebra. Then an involution on U is a mapping u ! u� from U
into U which satisfies the following conditions:

(1) u�� D u for all u 2 U;
(2) .˛u C ˇv/� D ˛u� C ˇv�;
(3) .uv/� D v�u� for all u; v 2 U.

If, in addition, ku�uk D kuk2 for all u 2 U, then U is a C�-algebra.
Let U;V be C�-algebras. A C-linear mapping H W U ! V is called a

homomorphism in C�-algebras if H satisfies

H.xy/ D H.x/H.y/; H.x�/ D H.x/�

for all x; y 2 U. A C-linear mapping ı W U ! U is called a derivation on U if ı
satisfies

ı.xy/ D ı.x/y C xı.y/

for all x; y 2 U.
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Suppose that A is a complex Banach �-algebra. Let C-linear mapping
ı W D.ı/ ! A be a derivation on A, where D.ı/ is the domain of ı and D.ı/
is dense in A. If ı satisfies the additional condition

ı.a�/ D ı.a/�

for all a 2 A, then ı is called a �-derivation on A.
It is well-known that, if A is a C�-algebra and D.ı/ is A, then the derivation ı is

bounded.
Now, we consider proper CQ�-algebras, which arise as completions of

C�-algebras (see [15–39]) as follows:
Let A be a Banach module over the C�-algebra A0 with an involution �

and C�-norm k � k0 such that A0 � A. We say that .A;A0/ is a proper CQ�-
algebra if

(1) A0 is dense in A with respect to its norm k � k;
(2) An involution �, which extends the involution of A0, is defined in A with the

property .xy/� D y�x� for all x; y 2 A whenever the multiplication is defined;
(3) kyk0 D supx2A;kxk�1 kxyk for all y 2 A0.

Definition 1.6. Let .A;A0/ and .B;B0/ be proper CQ�-algebras.

(1) A C-linear mapping h W A ! B is called a proper CQ�-algebra homomor-
phism if

h.xy/ D h.x/h.y/

for all x; y 2 A whenever the multiplication is defined;
(2) A C-linear mapping ı W A ! A is called a derivation on A if

ı.xy/ D ı.x/y C xı.y/

for all x; y 2 A whenever the multiplication is defined.

A C�-algebra C endowed with the Lie product Œx; y� WD xy�yx
2

on C is called a Lie
C�-algebra (see [224, 225, 227]).

Definition 1.7. Let A and B be Lie C�-algebras. A C-linear mapping H W A ! B is
called a Lie C�-algebra homomorphism if

H.Œx; y�/ D ŒH.x/;H.y/�

for all x; y 2 A.

Definition 1.8. Let A be a Lie C�-algebra. A C-linear mapping ı W A ! A is called
a Lie derivation if

ı.Œx; y�/ D Œı.x/; y�C Œx; ı.y/�

for all x; y 2 A.
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1.4 C�-Ternary Algebras

Ternary algebraic structures appear more or less naturally in various domains of
theoretical and mathematical physics, for example, the quark model inspired a
particular brand of ternary algebraic system. One such attempt has been proposed
by Nambu in 1973 and is now known under the name of “Nambu mechanics” [316]
(see also [332]).

A C�-ternary algebra is a complex Banach space A, equipped with a ternary
product .x; y; z/ 7! Œx; y; z� of A3 into A, which is C-linear in the outer variables,
conjugate C-linear in the middle variable and associative in the sense that

Œx; y; Œz;w; v�� D Œx; Œw; z; y�; v� D ŒŒx; y; z�;w; v�

and satisfies

kŒx; y; z�k � kxk � kyk � kzk; kŒx; x; x�k D kxk3

(see [332]).
If a C�-ternary algebra .A; Œ�; �; ��/ has the identity, i.e., an element e 2 A such

that x D Œx; e; e� D Œe; e; x� for all x 2 A, then it is routine to verify that A, endowed
with x ı y WD Œx; e; y� and x� WD Œe; x; e�, is a unital C�-algebra. Conversely, if .A; ı/
is a unital C�-algebra, then Œx; y; z� WD x ı y� ı z makes A into a C�-ternary algebra.

A C-linear mapping H W A ! B is called a C�-ternary algebra homomorphism
if

H.Œx; y; z�/ D ŒH.x/;H.y/;H.z/�

for all x; y; z 2 A. A C-linear mapping ı W A ! A is called a C�-ternary derivation
if

ı.Œx; y; z�/ D Œı.x/; y; z�C Œx; ı.y/; z�C Œx; y; ı.z/�

for all x; y; z 2 A (see [231]).
Ternary structures and their generalization, the so-called n-ary structures, are

important in view of their applications in physics (see [171]).
Suppose that J is a complex vector space endowed with a real trilinear

composition J � J � J 3 .x; y; z/ 7! fxy�zg 2 J which is complex bilinear in
.x; z/ and conjugate linear in y. Then J is called a Jordan triple system if

fxy�zg D fzy�xg

and

ffxy�zgu�vg C ffxy�vgu�zg � fxy�fzu�vgg D fzfyx�ug�vg:
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We are interested in Jordan triple systems having a Banach space structure.
A complex Jordan triple system J with a Banach space norm k � k is called a J�-
triple if, for all x 2 J , the operator x�x� is hermitian in the sense of Banach algebra
theory. Here the operator x�x� on J is defined by .x�x�/y WD fxx�yg. This implies
that x�x� has the real spectrum �.x�x�/ � R. A J�-triple J is called a JB�-triple
if every x 2 J satisfies �.x�x�/ � 0 and kx�x�k D kxk2.

A C-linear mapping H W J ! L is called a JB�-triple homomorphism if

H.fxyzg/ D fH.x/H.y/H.z/g

for all x; y; z 2 J . A C-linear mapping ı W J ! J is called a JB�-triple
derivation if

ı.fxyzg/ D fı.x/yzg C fxı.y/zg C fxyı.z/g

for all x; y; z 2 J (see [225]).

1.5 Non-Archimedean Normed Algebras

By a non-Archimedean field we mean a field K equipped with a function (valuation)
j � j from K into Œ0;1/ such that

(1) jrj D 0 if and only if r D 0;
(2) jrsj D jrj jsj;
(3) jr C sj � maxfjrj; jsjg for all r; s 2 K.

Clearly, j1j D j � 1j D 1 and jnj � 1 for all n � 1. By the trivial valuation we
mean the mapping j � j taking everything but 0 into 1 and j0j D 0.

Let X be a vector space over a field K with a non-Archimedean non-trivial
valuation j � j. A function k � k W X ! Œ0;1/ is called a non-Archimedean norm
if it satisfies the following conditions:

(1) kxk D 0 for all x 2 X if and only if x D 0;
(2) For all r 2 K; x 2 X, krxk D jrjkxk;
(3) The strong triangle inequality (ultrametric) holds, i.e.,

kx C yk � maxfkxk; kykg

for all x; y 2 X.

Then .X; k � k/ is called a non-Archimedean normed space. From the fact that

kxn � xmk � maxfkxjC1 � xjk W m � j � n � 1g
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for all n � 1 with n > m, a sequence fxng is a Cauchy sequence if and only if
fxnC1 � xng converges to zero in a non-Archimedean normed space. By a complete
non-Archimedean normed space we mean one in which every Cauchy sequence is
convergent.

For any nonzero rational number x, there exists a unique integer nx 2 Z such that

x D a

b
pnx ;

where a and b are integers not divisible by p. Then jxjp WD p�nx defines a non-
Archimedean norm on Q. The completion of Q with respect to the metric d.x; y/ D
jx � yjp is denoted by Qp, which is called the p-adic number field.

A non-Archimedean Banach algebra is a complete non-Archimedaen algebra A
which satisfies kabk � kak � kbk for all a; b 2 A. For more detailed definitions of
non-Archimedean Banach algebras, the readers refer to [310].

If U is a non-Archimedean Banach algebra, then an involution on U is a mapping
t ! t� from U into U satisfying the following:

(1) t�� D t for all t 2 U ;
(2) .˛s C ˇt/� D ˛s� C ˇt�;
(3) .st/� D t�s� for all s; t 2 U .

If, in addition kt�tk D ktk2 for all t 2 U , then U is a non-Archimedean
C�–algebra.

1.6 Multi–normed Algebras

The notion of multi-normed space was introduced by Dales and Polyakov in [92].
This concept is somewhat similar to the operator sequence space and has some
connections with the operator spaces and Banach lattices. Motivations for the study
of multi-normed spaces and many examples are given in [91, 92, 206].

Let .E ; k � k/ be a complex normed space and let k 2 N. We denote by Ek the
linear space E ˚ � � � ˚ E consisting of k-tuples .x1; � � � ; xk/, where x1; � � � ; xk 2 E .
The linear operations on Ek are defined coordinate-wise. The zero element of either
E or Ek is denoted by 0. We denote by Nk the set f1; 2; � � � ; kg and by ˙k the group
of permutations on k symbols.

Definition 1.9. A multi-norm on fEk W k 2 Ng is a sequence

.k � kk/ D .k � kk W k 2 N/

such that k � kk is a norm on Ek for each k 2 N:

(A1) k.x�.1/; � � � ; x�.k//kk D k.x1; � � � ; xk/kk for all � 2 ˙k and x1; � � � ; xk 2 E ;
(A2) k.˛1x1; � � � ; ˛kxk/kk � .maxi2Nk j˛ij/ kx1; � � � ; xkkk for all ˛1; � � � ; ˛k 2 C and

x1; � � � ; xk 2 E ;
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(A3) k.x1; � � � ; xk�1; 0/kk D k.x1; � � � ; xk�1/kk�1 for all x1; � � � ; xk�1 2 E ;
(A4) k.x1; � � � ; xk�1; xk�1/kk D k.x1; � � � ; xk�1/kk�1 for all x1; � � � ; xk�1 2 E .

In this case, we say that ..Ek; k � kk/ W k 2 N/ is a multi-normed space.

Lemma 1.10 ([206]). Suppose that ..Ek; k � kk/ W k 2 N/ is a multi-normed space
and let k 2 N. Then

(1) k.x; � � � ; x/kk D kxk for all x 2 E;
(2) maxi2Nk kxik � k.x1; � � � ; xk/kk � Pk

iD1 kxik � k maxi2Nk kxik for all
x1; � � � ; xk 2 E .

It follows from (2) that, if .E ; k �k/ is a Banach space, then .Ek; k �kk/ is a Banach
space for each k 2 N. In this case, ..Ek; k � kk/ W k 2 N/ is a multi-Banach space.

Now, we state two important examples of multi-norms for an arbitrary normed
space E (see [92]).

Example 1.11. The sequence .k � kk W k 2 N/ on fEk W k 2 Ng defined by

kx1; � � � ; xkkk WD max
i2Nk

kxik

for all x1; � � � ; xk 2 E is a multi-norm called the minimum multi-norm. The
terminology “minimum” is justified by the property (2).

Example 1.12. Let f.k � k˛k W k 2 N/ W ˛ 2 Ag be the (non-empty) family of all
multi-norms on fEk W k 2 Ng. For k 2 N, set

kjx1; � � � ; xkkjk WD sup
˛2A

k.x1; � � � ; xk/k˛k

for all x1; � � � ; xk 2 E . Then .kj � kjk W k 2 N/ is a multi-norm on fEk W k 2 Ng, which
is called the maximum multi-norm.

We need the following observation which can be easily deduced from the triangle
inequality for the norm k � kk and the property (2) of multi-norms.

Lemma 1.13. Suppose that k 2 N and .x1; � � � ; xk/ 2 Ek. For each j 2 f1; � � � ; kg,
let .xj

n/n�1 be a sequence in E such that limn!1 xj
n D xj. Then, for each

.y1; � � � ; yk/ 2 Ek, we have

lim
n!1.x

1
n � y1; � � � ; xk

n � yk/ D .x1 � y1; � � � ; xk � yk/:

Definition 1.14. Let ..Ek; k � kk/ W k 2 N/ be a multi-normed space. A sequence
.xn/ in E is a multi-null sequence if, for any " > 0, there exists n0 2 N such that

sup
k2N

k.xn; � � � ; xnCk�1/kk < "

for each n � n0. We say that the sequence .xn/ is multi-convergent to a point x 2 E
.write limn!1 xn D x/ if .xn � x/ is a multi-null sequence.
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Definition 1.15 ([92, 170, 202]). Let .A; k � k/ be a normed algebra such that
..Ak; k � kk/ W k 2 N/ is a multi-normed space. Then ..Ak; k � kk/ W k 2 N/ is
called a multi-normed algebra if

k.a1b1; � � � ; akbk/kk � k.a1; � � � ; ak/kk � k.b1; � � � ; bk/kk

for all k 2 N and a1; � � � ; ak; b1; � � � ; bk 2 A. Further, the multi-normed algebra
..Ak; k � kk/ W k 2 N/ is called a multi-Banach algebra if ..Ak; k � kk/ W k 2 N/ is a
multi-Banach space.

Example 1.16 ([92, 202, 252]). Let p; q with 1 � p � q < 1 and A D
`p. The algebra A is a Banach sequence algebra with respect to coordinatewise
multiplication of sequences. Let .k � kk W k 2 N/ be the standard .p; q/-multi-norm
on fAk W k 2 Ng. Then ..Ak; k � kk/ W k 2 N/ is a multi-Banach algebra.

Definition 1.17. Let .A; k�k/ be a Banach �-algebra with the involution �. A multi-
C�-algebra is a multi-Banach algebra such that

k.a1a�
1 ; � � � ; aka�

k /k D k.a1; � � � ; ak/k2:

In a series of the papers [15–33, 36–38] and [318–320], many authors have
considered a special class of quasi �-algebras, called proper CQ�-algebras, which
arise as completions of C�-algebras. They can be introduced in the following way:

Let A be a linear space and A be a �-algebra contained in A. We say that A is
a quasi-�-algebra over A if the right and left multiplications of an element of A
and an element of A are always defined and linear. An involution � which extends
the involution of A is defined in A with the property .ab/� D b�a� whenever the
multiplication is defined.

A quasi-�-algebra .A;A/ is said to be topological if there exists a locally convex
topology � on A such that

(Q1) The involution a 7! a� is continuous;
(Q2) The mappings a 7! ab and a 7! ba are continuous for each b 2 A;
(Q3) A is dense in A with topology � .

In a topological quasi-�-algebra, the associative law holds in the following two
formulations:

a.bc/ D .ab/c; b.ac/ D .ba/c

for all b; c 2 A and a 2 A.
A CQ�-algebra is a topological quasi-�-algebra .A;A/ with the following

properties:

(CQ1) .A; k�k�/ is a C�-algebra with respect to the norm k�k� and the involution �;
(CQ2) .A; k � k/ is a Banach space and ka�k D kak for all a 2 A;
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(CQ3) For all b 2 A, we have

kbk� D max
n

sup
kak�1

kabk; sup
kak�1

kbak
o
:

Bagarello and Trapani [34] showed that both .Lp.X; 	/;C0.X// and .Lp.X; 	/;
L1.X// are CQ�-algebras.

Now, we define the multi-CQ�-algebra.
Let .A;A/ be a CQ�-algebra. We say that f.Ak;Ak/ W k 2 Ng is a multi-CQ�-

algebra if, for each k 2 N, the couple .Ak;Ak/ is a CQ�-algebra, where fAk W k 2 Ng
and fAk W k 2 Ng are a multi-Banach algebra and a multi-C�-algebra, respectively.

Example 1.18. In [34], the authors showed that the couple .A;A/ is a CQ�-algebra,
where A D `p and A D c0. Now, consider Example 1.16. Then f.Ak;Ak/ W k 2 Ng
is a multi-CQ�-algebra.

Definition 1.19. Let ..Ak; k � kk/ W k 2 N/ be a multi-Banach space. A multi-C�-
ternary algebra is a complex multi-Banach space ..Ak; k � kk/ W k 2 N/ equipped
with a ternary product.



Chapter 2
Stability of Functional Equations in Banach
Algebras

Beginning around the year 1980, the topic of approximate homomorphisms and
derivations and their stability theory in the field of functional equations and
inequalities was taken up by several mathematicians (see Hyers and Rassias [135],
Rassias [285] and the references therein).

In this chapter, in the first section, we show that, if X and Y are normed spaces
with the norms k � kX and k � kY , respectively, and f W X ! Y is a mapping such that

kf .x/C f .y/C f .z/kY �
���1

q
f .qx C qy C qz/

���
Y

for all x; y; z 2 X and for a fixed nonzero rational number q, then f is Cauchy
additive. Next, we approximate isomorphisms and derivations in Banach algebras
by the direct method.

In Sect. 2.2, we consider the m-variable additive functional equation:

mX
iD1

f
�

mxi C
mX

jD1; j¤i

xj

�
C f

� mX
iD1

xi

�
D 2f

� mX
iD1

mxi

�

for all m 2 N and m � 2 and, by the fixed point method, we approximate
homomorphisms and derivations in Banach algebras.

In Sect. 2.3, we prove the Hyers-Ulam stability of homomorphisms in quasi-
Banach algebras and generalized derivations on quasi-Banach algebras for the
following functional equation:

nX
iD1

f

0
@ nX

jD1
q.xi � xj/

1
AC nf

 
nX

iD1
qxi

!
D nq

nX
iD1

f .xi/:

© Springer International Publishing Switzerland 2015
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In Sect. 2.4, we approximate homomorphisms in real Banach algebras and
generalized derivations on real Banach algebras for the following Cauchy-Jensen
functional equations

f
�x C y

2
C z

�
C f

�x � y

2
C z

�
D f .x/C 2f .z/

and

2f
�x C y

2
C z

�
D f .x/C f .y/C 2f .z/:

2.1 Stability of 1
qf.qx C qy C qz/ D f.x/ C f.y/ C f.z/

Using the direct method, we investigate isomorphisms in Banach algebras and
derivations on Banach algebras associated with the following functional equation

1

q
f .qx C qy C qz/ D f .x/C f .y/C f .z/ (2.1)

for a fixed nonzero rational number q.

2.1.1 Isomorphisms in Banach Algebras

Here we consider isomorphisms in Banach algebras associated with the functional
equation (2.1).

Lemma 2.1. Let X and Y be normed spaces with norms k�kX and k�kY , respectively.
Let f W X ! Y be a mapping with f .0/ D 0 such that

kf .x/C f .y/C f .z/kY �
���1

q
f .qx C qy C qz/

���
Y

(2.2)

for all x; y; z 2 X, then f is Cauchy additive, i.e.,

f .x C y/ D f .x/C f .y/:

Proof. Letting z D 0 and y D �x in (2.2), we get

kf .x/C f .�x/kY �
���1

q
f .0/

���
Y

D 0
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for all x 2 X. Hence f .�x/ D �f .x/ for all x 2 X. Letting z D �x � y in (2.2),
we get

kf .x/C f .y/ � f .x C y/kY D kf .x/C f .y/C f .�x � y/kY

�
���1

q
f .0/

���
Y

D 0

for all x; y 2 X. Thus

f .x C y/ D f .x/C f .y/

for all x; y 2 X. This completes the proof. �

Here, we assume that A is a Banach algebra with the norm k�kA and B is a Banach
algebra with the norm k � kB.

Theorem 2.2. Let r ¤ 1, � be nonnegative real numbers and f W A ! B be a
bijective mapping with f .0/ D 0 such that

k	f .x/C f .y/C f .z/kB �
���1

q
f .q	x C qy C qz/

���
B

(2.3)

and

kf .xy/ � f .x/f .y/kB � �.kxk2r
A C kyk2r

A / (2.4)

for all 	 2 T
1 WD f� 2 C W j�j D 1g and x; y; z 2 A, then the bijective mapping

f W A ! B is an isomorphism.

Proof. Let 	 D 1 in (2.3). By Lemma 2.1, the mapping f W A ! B is Cauchy
additive. Letting z D 0 and y D �	x in (2.3), we get

	f .x/ � f .	x/ D 	f .x/C f .�	x/ D 0

for all x 2 A and so f .	x/ D 	f .x/ for all x 2 A. By (2.3), the mapping f W A ! B
is C-linear.

(i) Assume that r < 1. By (2.4), we have

kf .xy/ � f .x/f .y/kB D lim
n!1

1

4n
kf .4nxy/� f .2nx/f .2ny/kB

� lim
n!1

4nr

4n
�.kxk2r

A C kyk2r
A /

D 0
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for all x; y 2 A and so

f .xy/ D f .x/f .y/

for all x; y 2 A.
(ii) Assume that r > 1. By a similar method to the proof of the case (i), one can

prove that the mapping f W A ! B satisfies

f .xy/ D f .x/f .y/

for all x; y 2 A. Therefore, the bijective mapping f W A ! B is an isomorphism
in Banach algebras. This completes the proof. �

Theorem 2.3. Let r ¤ 1, � be nonnegative real numbers and f W A ! B be a
bijective mapping satisfying f .0/ D 0 and (2.3) such that

kf .xy/ � f .x/f .y/kB � � � kwkr
A � kxkr

A (2.5)

for all x; y 2 A, then the bijective mapping f W A ! B is an isomorphism.

Proof. By (2.3), the mapping f W A ! B is C-linear.

(i) Assume that r < 1. By (2.5), we have

kf .xy/ � f .x/f .y/kB D lim
n!1

1

4n
kf .4nxy/� f .2nx/f .2ny/kB

� lim
n!1

4nr

4n
� � kwkr

A � kxkr
A

D 0

for all x; y 2 A and so

f .xy/ D f .x/f .y/

for all x; y 2 A.
(ii) Assume that r > 1. By a similar method to the proof of the case (i), one can

prove that the mapping f W A ! B satisfies

f .xy/ D f .x/f .y/

for all x; y 2 A. Therefore, the bijective mapping f W A ! B is an isomorphism.
This completes the proof. �
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2.1.2 Derivations in Banach Algebras

We consider derivations on Banach algebras associated with the functional equa-
tion (2.1).

Theorem 2.4. Let r ¤ 1, � be nonnegative real numbers and f W A ! A be a
mapping with f .0/ D 0 such that

k	f .x/C f .y/C f .z/kA �
���1

q
f .q	x C qy C qz/

���
A

(2.6)

and

kf .xy/� f .x/y � xf .y/kA � �.kxk2r
A C kyk2r

A / (2.7)

for all 	 2 T
1 and x; y; z 2 A, then the mapping f W A ! A is a derivation on A.

Proof. By (2.7), the mapping f W A ! A is C-linear.

(i) Assume that r < 1. By (2.7),

kf .xy/� f .x/y � xf .y/kA

D lim
n!1

1

4n
kf .4nxy/� f .2nx/ � 2ny � 2nxf .2ny/kA

� lim
n!1

4nr

4n
�.kxk2r

A C kyk2r
A /

D 0

for all x; y 2 A and so

f .xy/ D f .x/y C xf .y/

for all x; y 2 A.
(ii) Assume that r > 1. By a similar method to the proof of the case (i), one can

prove that the mapping f W A ! A satisfies

f .xy/ D f .x/y C xf .y/

for all x; y 2 A. Therefore, the mapping f W A ! A is a derivation on A. This
completes the proof. �

Theorem 2.5. Let r ¤ 1, � be nonnegative real numbers and f W A ! A be a
mapping satisfying f .0/ D 0 and (2.6) such that

kf .xy/ � f .x/y � xf .y/kA � � � kxkr
A � kykr

A

for all x; y 2 A, then the mapping f W A ! A is a derivation on A.
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Proof. The proof is similar to the proofs of Theorems 2.2 and 2.4. �

2.2 Stability of m-Variable Functional Equations

In this section, using the fixed point method, we prove the Hyers-Ulam stability of
homomorphisms and of derivations on Banach algebras for the following additive
functional equation (see [108]):

mX
iD1

f
�

mxi C
mX

jD1; j¤i

xj

�
C f

� mX
iD1

xi

�
D 2f

� mX
iD1

mxi

�

for all m 2 N with m � 2.

2.2.1 Stability of Homomorphisms in Banach Algebras

For any mapping f W A ! B, we define

D	f .x1; � � � ; xm/

WD
mX

iD1
	f
�

mxi C
mX

jD1; j¤i

xj

�
C 	f

� mX
iD1

xi

�
� 2f

�
	

mX
iD1

mxi

�

for all 	 2 T
1 WD f
 2 C W j
j D 1g and x1; � � � ; xm 2 A.

Now, we prove the Hyers-Ulam stability of homomorphisms in Banach algebras
for the functional equation D	f .x1; � � � ; xm/ D 0. Assume that A is a complex
Banach algebra with norm k � kA and B is a complex Banach algebra with norm
k � kB.

Theorem 2.6. Let f W A ! B be a mapping for which there are functions
' W Am ! Œ0;1/ and  W A2 ! Œ0;1/ such that

limj!1 m�j'.mjx1; � � � ;mjxm/ D 0; (2.8)

kD	f .x1; � � � ; xm/kB � '.x1; � � � ; xm/; (2.9)

kf .xy/ � f .x/f .y/kB �  .x; y/; (2.10)

limj!1 m�2j .mjx;mjy/ D 0 (2.11)
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for all 	 2 T
1 and x1; � � � ; xm; x; y 2 A. If there exists L < 1 such that

'.mx; 0; � � � ; 0/ � mL'.x; 0; � � � ; 0/

for all x 2 A, then there exists a unique homomorphism H W A ! B such that

kf .x/ � H.x/kB � 1

m � mL
'.x; 0; � � � ; 0/ (2.12)

for all x 2 A.

Proof. Consider the set X WD fg W A ! Bg and introduce the generalized metric
on X:

d.g; h/ D inffC 2 RC W kg.x/� h.x/kB � C'.x; 0; � � � ; 0/; 8x 2 Ag;

which .X; d/ is complete.
Now, we consider the linear mapping J W X ! X such that Jg.x/ WD 1

m g.mx/
for all x 2 A. Now, we have d.Jg; Jh/ � Ld.g; h/ for all g; h 2 X. Letting 	 D 1,
x D x1 and x2 D � � � D xm D 0 in (2.9), we get

kf .mx/ � mf .x/kB � '.x; 0; � � � ; 0/ (2.13)

for all x 2 A and so

���f .x/ � 1

m
f .mx/

���
B

� 1

m
'.x; 0; � � � ; 0/

for all x 2 A. Hence d.f ; Jf / � 1
m .

By Theorem 1.3, there exists a mapping H W A ! B such that

(1) H is a fixed point of J, i.e.,

H.mx/ D mH.x/ (2.14)

for all x 2 A. The mapping H is a unique fixed point of J in the set

Y D fg 2 X W d.f ; g/ < 1g:

This implies that H is a unique mapping satisfying (2.13) such that there exists
C 2 .0;1/ satisfying

kH.x/ � f .x/kB � C'.x; 0; � � � ; 0/

for all x 2 A;
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(2) d.Jnf ;H/ ! 0 as n ! 1. This implies the equality

lim
n!1

f .mnx/

mn
D H.x/ (2.15)

for all x 2 A;
(3) d.f ;H/ � 1

1�L d.f ; Jf /, which implies the inequality d.f ;H/ � 1
m�mL : This

implies that the inequality (2.12) holds.

Thus it follows from (2.8), (2.9) and (2.14) that

��� mX
iD1

H
�

mxi C
mX

jD1; j¤i

xj

�
C H

� mX
iD1

xi

�
� 2H

� mX
iD1

mxi

����
B

D lim
n!1

1

mn

��� mX
iD1

f
�

mnC1xi C
mX

jD1; j¤i

mnxj

�

C f
� mX

iD1
mnxi

�
� 2f

� mX
iD1

mnC1xi

����
B

� lim
n!1

1

mn
'.mnx1; � � � ;mnxm/ D 0

for all x1; � � � ; xm 2 A and so

mX
iD1

H
�

mxi C
mX

jD1; j¤i

xj

�
C H

� mX
iD1

xi

�
D 2H

� mX
iD1

mxi

�
(2.16)

for all x1; � � � ; xm 2 A. By a similar method given in above, we get
	H.mx/ D H.m	x/ for all 	 2 T

1 and x 2 A. Thus one can show that the
mapping H W A ! B is C-linear. It follows from (2.10) that

kH.xy/� H.x/H.y/kB D lim
n!1

1

mn
kf .mnxy/� f .mnx/f .mny/kB

� lim
n!1

1

mn
 .mnx;mny/

D 0

for all x; y 2 A and so H.xy/ D H.x/H.y/ for all x; y 2 A. Thus H W A ! B is a
homomorphism satisfying (2.12). This completes the proof. �
Corollary 2.7. Let r < 1, � be nonnegative real numbers and f W A ! B be a
mapping such that

kD	f .x1; � � � ; xm/kB � � � .kx1kr
A C kx2kr

A C � � � C kxmkr
A/ (2.17)
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and

kf .xy/ � f .x/f .y/kB � � � .kxkr
A � kykr

A/ (2.18)

for all 	 2 T
1 and x1; � � � ; xm; x; y 2 A. Then there exists a unique homomorphism

H W A ! B such that

kf .x/ � H.x/kB � �

m � mr
kxkr

A

for all x 2 A.

Proof. The proof follows from Theorem 2.6 by taking

'.x1; � � � ; xm/ D � � .kx1kr
A C kx2kr

A C � � � C kxmkr
A/;

 .x; y/ WD � � .kxkr
A � kykr

A/

for all x1; � � � ; xm; x; y 2 A and L D mr�1. �

Theorem 2.8. Let f W A ! B be a mapping for which there exist the functions
' W Am ! Œ0;1/ and  W A2 ! Œ0;1/ such that

lim
j!1 mj'.m�jx1; � � � ;m�jxm/ D 0; (2.19)

kD	f .x1; � � � ; xm/kB � '.x1; � � � ; xm/; (2.20)

kf .xy/ � f .x/f .y/kB �  .x; y/; (2.21)

lim
j!1 m2j .m�jx;m�jy/ D 0 (2.22)

for all 	 2 T
1 and x1; � � � ; xm; x; y 2 A. If there exists L < 1 such that

'.x; 0; � � � ; 0/ � L
m'.mx; 0; � � � ; 0/ for all x 2 A, then there exists a unique

homomorphism H W A ! B such that

kf .x/ � H.x/kB � L

m � mL
'.x; 0; � � � ; 0/ (2.23)

for all x 2 A.

Proof. We consider the linear mapping J W X ! X such that

Jg.x/ WD mg
� x

m

�
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for all x 2 A. It follows from (2.13) that

���f .x/ � mf
� x

m

����
B

� '
� x

m
; 0; � � � ; 0

�
� L

m
'.x; 0; � � � ; 0/

for all x 2 A and so d.f ; Jf / � L
m . By Theorem 1.3, there exists a mapping

H W A ! B such that

(1) H is a fixed point of J, i.e.,

H.mx/ D mH.x/ (2.24)

for all x 2 A. The mapping H is a unique fixed point of J in the set

Y D fg 2 X W d.f ; g/ < 1g:

This implies that H is a unique mapping satisfying (2.20) such that there exists
C 2 .0;1/ satisfying

kH.x/ � f .x/kB � C'.x; 0; � � � ; 0/

for all x 2 A;
(2) d.Jnf ;H/ ! 0 as n ! 1. This implies the equality

lim
n!1 mnf

� x

mn

� D H.x/

for all x 2 A;
(3) d.f ;H/ � 1

1�L d.f ; Jf /, which implies the inequality

d.f ;H/ � L

m � mL
;

which implies that the inequality (2.23) holds.

The rest of the proof is similar to the proof of Theorem 2.6. �

Corollary 2.9. Let r > 1, � be nonnegative real numbers and let f W A ! B be a
mapping such that

kD	f .x1; � � � ; xm/kB � � � .kx1kr
A C kx2kr

A C � � � C kxmkr
A/ (2.25)

and

kf .xy/ � f .x/f .y/kB � � � .kxkr
A � kykr

A/ (2.26)
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for all 	 2 T
1 and x1; � � � ; xm; x; y 2 A. Then there exists a unique homomorphism

H W A ! B such that

kf .x/ � H.x/kB � �

mr � m
kxkr

A

for all x 2 A.

Proof. The proof follows from Theorem 2.6 by taking

'.x1; � � � ; xm/ D � � .kx1kr
A C kx2kr

A C � � � C kxmkr
A/;

 .x; y/ WD � � .kxkr
A � kykr

A/

for all x1; � � � ; xm; x; y 2 A and L D m1�r. �

2.2.2 Stability of Derivations in Banach Algebras

Now, we prove the Hyers-Ulam stability of derivations on Banach algebras for the
functional equation D	f .x1; � � � ; xm/ D 0.

Theorem 2.10. Let f W A ! A be a mapping for which there exist the functions
' W Am ! Œ0;1/ and  W A2 ! Œ0;1/ such that

lim
j!1 m�j'.mjx1; � � � ;mjxm/ D 0; (2.27)

kD	f .x1; � � � ; xm/kA � '.x1; � � � ; xm/; (2.28)

kf .xy/� f .x/y � xf .y/kA �  .x; y/; (2.29)

lim
j!1 m�2j .mjx;mjy/ D 0 (2.30)

for all 	 2 T
1 and x1; � � � ; xm; x; y 2 A. If there exists L < 1 such that

'.mx; 0; � � � ; 0/ � mL'.x; 0; � � � ; 0/ for all x 2 A. Then there exists a unique
derivation ı W A ! A such that

kf .x/ � ı.x/kA � 1

m � mL
'.x; 0; � � � ; 0/ (2.31)

for all x 2 A.

Proof. By the same reasoning as in the proof of Theorem 2.6, there exists a unique
C-linear mapping ı W A ! A satisfying (2.31). The mapping ı W A ! A is given by

ı.x/ D lim
n!1

f .mnx/

mn
(2.32)
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for all x 2 A. It follows from (2.29), (2.30) and (2.32) that

kı.xy/� ı.x/y � xı.y/kA

D lim
n!1

1

m2n
kf .m2nxy/� f .mnx/ � mny � mnxf .mny/kA

� lim
n!1

1

m2n
 .mnx;mny/

D 0

for all x; y 2 A and so

ı.xy/ D ı.x/y C xı.y/

for all x; y 2 A. Thus ı W A ! A is a derivation satisfying (2.31). This completes
the proof. �

Corollary 2.11. Let r < 1, � be nonnegative real numbers and f W A ! A be a
mapping such that

kD	f .x1; � � � ; xm/kA � � � .kx1kr
A C � � � C kxmkr

A/ (2.33)

and

kf .xy/ � f .x/y � xf .y/kA � � � .kxkr
A � kykr

A/ (2.34)

for all 	 2 T
1 and x1; � � � ; xm; x; y 2 A. Then there exists a unique derivation

ı W A ! A such that

kf .x/ � ı.x/kA � �

m � mr
kxkr

A

for all x 2 A.

Proof. The proof follows from Theorem 2.10 by taking

'.x1; � � � ; xm/ WD � � .kx1kr
A C � � � kxmkr

A/;

 .x; y/ WD � � .kxkr
A � kykr

A/

for all x1; � � � ; xm; x; y 2 A and L D mr�1. �

Remark 2.12. Let f W A ! B be a mapping for which there exist the functions
' W Am ! Œ0;1/ and  W A2 ! Œ0;1/ such that

lim
j!1 mj'.m�jx1; � � � ;m�jxm/ D 0; (2.35)
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kD	f .x1; � � � ; xm/kA � '.x1; � � � ; xm/; (2.36)

kf .xy/� f .x/y � xf .y/kA �  .x; y/; (2.37)

lim
j!1 m2j .m�jx;m�jy/ D 0 (2.38)

for all 	 2 T
1 and x1; � � � ; xm; x; y 2 A. If there exists L < 1 such that

'.mx; 0; � � � ; 0/ � L
m'.x; 0; � � � ; 0/ for all x 2 A. Then there exists a unique

derivation ı W A ! A such that

kf .x/ � ı.x/kA � L

m � mL
'.x; 0; � � � ; 0/ (2.39)

for all x 2 A.

Corollary 2.13. Let r > 1, � be nonnegative real numbers and f W A ! A be a
mapping such that

kD	f .x1; � � � ; xm/kA � � � .kx1kr
A C � � � kxmkr

A/ (2.40)

and

kf .xy/ � f .x/y � xf .y/kA � � � .kxkr
A � kykr

A/ (2.41)

for all 	 2 T
1 and x1; � � � ; xm; x; y 2 A. Then there exists a unique derivation

ı W A ! A such that

kf .x/ � ı.x/kA � �

mr � m
kxkr

A

for all x 2 A.

Proof. Consider Remark 2.12 and take

'.x1; � � � ; xm/ WD � � .kx1kr
A C � � � kxmkr

A/;

 .x; y/ WD � � .kxkr
A � kykr

A/

for all x1; � � � ; xm; x; y 2 A and L D m1�r. �

2.3 Stability in Quasi-Banach Algebras

Let q be a positive rational number and n be a nonnegative integer. We consider the
Hyers-Ulam stability of homomorphisms in quasi-Banach algebras and generalized
derivations on quasi-Banach algebras for the following functional equation:
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nX
iD1

f
� nX

jD1
q.xi � xj/

�
C nf

� nX
iD1

qxi

�
D nq

nX
iD1

f .xi/: (2.42)

This is applied to investigate some isomorphisms in quasi-Banach algebras (see
[180, 233, 238]).

2.3.1 Stability of Homomorphisms in Quasi-Banach Algebras

Let q be a positive rational number. For any mapping f W A ! B, we define
Df W An ! B by

Df .x1; � � � ; xn/

WD
nX

iD1
f
� nX

jD1
q.xi � xj/

�
C nf

� nX
iD1

qxi

�
� nq

nX
iD1

f .xi/

for all x1; � � � ; xn 2 X.

Lemma 2.14. Let f W A ! B be a mapping satisfies the functional equation (2.42).
Then the mapping f is Cauchy additive and R-linear.

Proof. The proof is easy (see also [229, 267]). �

Now, we prove the Hyers-Ulam stability of homomorphisms in quasi-Banach
algebras.

Theorem 2.15. Assume that r > 2 if nq > 1 and 0 < r < 1 if nq < 1. Let � be a
positive real number and f W A ! B be an odd mapping such that

kDf .x1; � � � ; xn/kB � �

nX
jD1

kxjkr
A (2.43)

and

kf .xy/� f .x/f .y/kB � �.kxkr
A C kykr

A/ (2.44)

for all x; y; x1; � � � ; xn 2 A. If f .tx/ is continuous in t 2 R for each fixed x 2 A, then
there exists a unique homomorphism H W A ! B such that

kf .x/ � H.x/kB � �

..nq/pr � .nq/p/
1
p

kxkr
A (2.45)

for all x 2 A.
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Proof. Letting x1 D � � � D xn D x in (2.43), we get

knf .nqx/� n2qf .x/kB � n�kxkr
A (2.46)

for all x 2 A and so

���f .x/ � nqf
� x

nq

����
B

� �

.nq/r
kxkr

A

for all x 2 A. Since B is a p-Banach algebra, we have

���.nq/lf
� x

.nq/l

�
� .nq/mf

� x

.nq/m

����p

B

�
m�1X
jDl

���.nq/jf
� x

.nq/j

�
� .nq/jC1f

� x

.nq/jC1
����p

B
(2.47)

� �p

.nq/pr

m�1X
jDl

.nq/pj

.nq/prj
kxkpr

A

for all m � 1, l with m > l and x 2 A. It follows from (2.47) that the sequence
f.nq/df . x

.nq/d
/g is a Cauchy sequence for all x 2 A. Since B is complete, the sequence

f.nq/df . x
.nq/d

/g converges. So one can define a mapping H W A ! B by

H.x/ WD lim
d!1.nq/df .

x

.nq/d
/

for all x 2 A. Moreover, letting l D 0 and m ! 1 in (2.47), we get (2.46). It follows
from (2.43) that

kDH.x1; � � � ; xn/kB D lim
d!1.nq/d

���Df
� x1
.nq/d

; � � � ; xn

.nq/d

����
B

� lim
d!1

.nq/d�

.nq/dr

nX
jD1

kxjkr
A

D 0

for all x1; � � � ; xn 2 A. Thus we have

DH.x1; � � � ; xn/ D 0

for all x1; � � � ; xn 2 A. By (2.43), the mapping H W A ! B is Cauchy additive and
R-linear. It follows from (2.45) that
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kH.xy/ � H.x/H.y/kB

D lim
d!1.nq/2d

���f
� xy

.nq/d.nq/d

�
� f
� x

.nq/d

�
f
� y

.nq/d

����
B

� lim
d!1

.nq/2d�

.nq/dr
.kxkr

A C kykr
A/

D 0

for all x; y 2 A and so

H.xy/ D H.x/H.y/

for all x; y 2 A.
Now, let T W A ! B be another mapping satisfying (2.46). Then we have

kH.x/ � T.x/kB

D .nq/d
���H
� x

.nq/d

�
� T

� x

.nq/d

����
B

� .nq/dK
����H

� x

.nq/d

�
� f
� x

.nq/d

����
B

C
���T
� x

.nq/d

�
� f
� x

.nq/d

����
B

�

� 2 � .nq/dK�

..nq/pr � .nq/p/
1
p .nq/dr

kxkr
A;

which tends to zero as n ! 1 for all x 2 A. So we can conclude that H.x/ D T.x/
for all x 2 A. This proves the uniqueness of H. Thus the mapping H W A ! B is a
unique homomorphism satisfying (2.46). This completes the proof. �

Theorem 2.16. Assume that 0 < r < 1 if nq > 1 and that r > 2 if nq < 1. Let �
be a positive real number, and let f W A ! B be an odd mapping satisfying (2.43)
and (2.45). If f .tx/ is continuous in t 2 R for each fixed x 2 A, then there exists a
unique homomorphism H W A ! B such that

kf .x/ � H.x/kB � �

..nq/p � .nq/pr/
1
p

kxkr
A (2.48)

for all x 2 A.

Proof. It follows from (2.46) that

kf .x/ � 1

nq
f .nqx/kB � �

nq
kxkr

A

for all x 2 A. Since B is a p-Banach algebra, we have
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��� 1

.nq/l
f ..nq/lx/ � 1

.nq/m
f ..nq/mx/

���p

B

�
m�1X
jDl

��� 1

.nq/j
f ..nq/jx/ � 1

.nq/jC1
f ..nq/jC1x/

���p

B
(2.49)

� �p

.nq/p

m�1X
jDl

.nq/prj

.nq/pj
kxkpr

A

for all m � 1, l with m > l and x 2 A. It follows from (2.49) that the sequence
f 1
.nq/d

f ..nq/dx/g is a Cauchy sequence for all x 2 A. Since B is complete, the

sequence f 1
.nq/d

f ..nq/dx/g converges. So one can define a mapping H W A ! B by

H.x/ WD lim
d!1

1

.nq/d
f ..nq/dx/

for all x 2 A. Moreover, letting l D 0 and m ! 1 in (2.49), we get (2.48).
The rest of the proof is similar to the proof of Theorem 2.15. �

2.3.2 Isomorphisms in Quasi-Banach Algebras

Assume that A is a quasi-Banach algebra with the quasi-norm k � kA and the unit
e and B is a p-Banach algebra with the p-norm k � kB and the unit e0. Let K be the
modulus of concavity of k � kB.

Now, we consider isomorphisms in quasi-Banach algebras.

Theorem 2.17. Assume that r > 2 if nq > 1 and that 0 < r < 1 if nq < 1. Let � be
a positive real number and f W A ! B be an odd bijective mapping satisfying (2.43)
such that

f .xy/ D f .x/f .y/ (2.50)

for all x; y 2 A. If limd!1.nq/df . e
.nq/d

/ D e0 and f .tx/ is continuous in t 2 R for
each fixed x 2 A, then the mapping f W A ! B is an isomorphism.

Proof. The condition (2.50) implies that f W A ! B satisfies (2.45). By the same
reasoning as in the proof of Theorem 2.15, there exists a unique homomorphism
H W A ! B, which is defined by

H.x/ WD lim
d!1.nq/df

� x

.nq/d

�

for all x 2 A. Thus we have
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H.x/ D H.ex/ D lim
d!1.nq/df

� ex

.nq/d

�
D lim

d!1.nq/df
� e

.nq/d
� x
�

D lim
d!1.nq/df

� e

.nq/d

�
f .x/ D e0f .x/ D f .x/

for all x 2 A. So the bijective mapping f W A ! B is an isomorphism. This completes
the proof. �
Remark 2.18. Assume that 0 < r < 1 if nq > 1 and that r > 2 if nq < 1. Let � be
a positive real number and f W A ! B be an odd bijective mapping satisfying (2.43)
and (2.50). If f .tx/ is continuous in t 2 R for each fixed x 2 A and

lim
d!1

1

.nq/d
f ..nq/de/ D e0;

then the mapping f W A ! B is an isomorphism.

2.3.3 Stability of Generalized Derivations in Quasi-Banach
Algebras

Assume that A is a p-Banach algebra with the p-norm k � kA. Let K be the modulus
of concavity of k � kA.

Definition 2.19 ([18]). A generalized derivation ı W A ! A is R-linear and fulfills
the generalized Leibniz rule:

ı.xyz/ D ı.xy/z � xı.y/z C xı.yz/

for all x; y; z 2 A.

Now, we prove the Hyers-Ulam stability of generalized derivations on quasi-
Banach algebras.

Theorem 2.20. Assume that r > 3 if nq > 1 and that 0 < r < 1 if nq < 1. Let �
be a positive real number and f W A ! A be an odd mapping satisfying (2.43) such
that

kf .xyz/ � f .xy/z C xf .y/z � xf .yz/kA

� �.kxkr
A C kykr

A C kzkr
A/ (2.51)

for all x; y; z 2 A. If f .tx/ is continuous in t 2 R for each fixed x 2 A, then there
exists a unique generalized derivation ı W A ! A such that
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kf .x/ � ı.x/kA � �

..nq/pr � .nq/p/
1
p

kxkr
A (2.52)

for all x 2 A.

Proof. By the same reasoning as in the proof of Theorem 2.15, there exists a unique
R-linear mapping ı W A ! A satisfying (2.52). The mapping ı W A ! A is defined by

ı.x/ WD lim
d!1.nq/df

� x

.nq/d

�

for all x 2 A. It follows from (2.51) that

kı.xyz/� ı.xy/z C xı.y/z � xı.yz/kA

D lim
d!1.nq/3d

���f
� xyz

.nq/3d

�
� f
� xy

.nq/2d

� z

.nq/d

C x

.nq/d
f
� y

.nq/d

� y

.nq/d
� x

.nq/d
f
� yz

.nq/2d

����
A

� lim
d!1

.nq/3d�

.nq/dr
.kxkr

A C kykr
A C kzkr

A/

D 0

for all x; y; z 2 A and so

ı.xyz/ D ı.xy/z � xı.y/z C xı.yz/

for all x; y; z 2 A. Thus the mapping ı W A ! A is a unique generalized derivation
satisfying (2.52). This completes the proof. �

Theorem 2.21. Assume that 0 < r < 1 if nq > 1 and that r > 3 if nq < 1. Let
� be a positive real number and f W A ! A be an odd mapping satisfying (2.43)
and (2.51). If f .tx/ is continuous in t 2 R for each fixed x 2 A, then there exists a
unique generalized derivation ı W A ! A such that

kf .x/ � ı.x/kA � �

..nq/p � .nq/pr/
1
p

kxkr
A (2.53)

for all x 2 A.

Proof. By the same reasoning as in the proof of Theorem 2.16, there exists a unique
R-linear mapping ı W A ! A satisfying (2.53). The mapping ı W A ! A is defined by

ı.x/ WD lim
d!1

1

.nq/d
f ..nq/dx/

for all x 2 A.
The rest of the proof is similar to the proof of Theorem 2.20. �
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2.4 Stability of Cauchy–Jensen Functional Equations

In this section, we prove the Hyers-Ulam stability of homomorphisms in real Banach
algebras and generalized derivations on real Banach algebras for the following
Cauchy-Jensen functional equations(see also [19, 147, 232]):

f
�x C y

2
C z

�
C f

�x � y

2
C z

�
D f .x/C 2f .z/

and

2f
�x C y

2
C z

�
D f .x/C f .y/C 2f .z/:

2.4.1 Stability of Homomorphisms in Real Banach Algebras

Assume that A is a real Banach algebra with the norm k � kA and B is a real Banach
algebra with the norm k � kB. For any mapping f W A ! B, we define

Cf .x; y; z/ WD f
�x C y

2
C z

�
C f

�x � y

2
C z

�
� f .x/� 2f .z/

for all x; y; z 2 A.
Now, we prove the Hyers-Ulam stability of homomorphisms in real Banach

algebras for the functional equation Cf .x; y; z/ D 0.

Lemma 2.22. Let X and Y be vector spaces. If a mapping f W X ! Y satisfies

f
�x C y

2
C z

�
C f

�x � y

2
C z

�
D f .x/C 2f .z/; (2.54)

f
�x C y

2
C z

�
� f
�x � y

2
C z

�
D f .y/ (2.55)

or

2f
�x C y

2
C z

�
D f .x/C f .y/C 2f .z/ (2.56)

for all x; y; z 2 X, then the mapping f W X ! Y is Cauchy additive.

Proof. Letting x D y in (2.54), we get

f .x C z/C f .z/ D f .x/C 2f .z/
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for all x; z 2 X and so f .x C z/ D f .x/ C f .z/ for all x; z 2 X. Hence f W X ! Y is
Cauchy additive. Letting x D y in (2.55), we get

f .x C z/� f .z/ D f .x/

for all x; z 2 X and so f .x C z/ D f .x/ C f .z/ for all x; z 2 X. Hence f W X ! Y is
Cauchy additive. Letting x D y in (2.56), we get

2f .x C z/ D 2f .x/C 2f .z/

for all x; z 2 X and so f .x C z/ D f .x/ C f .z/ for all x; z 2 X. Hence f W X ! Y is
Cauchy additive. This completes the proof. �

The mappings f W X ! Y given in the statement of Lemma 2.22 are called
Cauchy–Jensen type additive mappings. Putting z D 0 in (2.56), we get the Jensen
additive mapping 2f . xCy

2
/ D f .x/ C f .y/ and, putting x D y in (2.56), we get the

Cauchy additive mapping f .x C z/ D f .x/C f .z/.

Theorem 2.23. Let f W A ! B be a mapping for which there exists a function
' W A3 ! Œ0;1/ such that

1X
jD0

1

2j
'.2jx; 2jy; 2jz/ < 1; (2.57)

kCf .x; y; z/kB � '.x; y; z/; (2.58)

kf .xy/ � f .x/f .y/kB � '.x; y; 0/ (2.59)

for all x; y; z 2 A. If there exists L < 1 such that

'.x; x; x/ � 2L'.
x

2
;

x

2
;

x

2
/

for all x 2 A and f .tx/ is continuous in t 2 R for each fixed x 2 A, then there exists
a unique homomorphism H W A ! B such that

kf .x/ � H.x/kB � 1

2 � 2L
'.x; x; x/ (2.60)

for all x 2 A.

Proof. Consider the set

X WD fg W A ! Bg
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and introduce the generalized metric on X defined by

d.g; h/ D inffC 2 RC W kg.x/ � h.x/kB � C'.x; x; x/; 8x 2 Ag;

which .X; d/ is complete.
Now, we consider the linear mapping J W X ! X such that

Jg.x/ WD 1

2
g.2x/

for all x 2 A. Note that

d.Jg; Jh/ � Ld.g; h/

for all g; h 2 X. Letting y D z D x in (2.58), we get

kf .2x/ � 2f .x/kB � '.x; x; x/ (2.61)

for all x 2 A and so

���f .x/ � 1

2
f .2x/

���
B

� 1

2
'.x; x; x/

for all x 2 A. Hence d.f ; Jf / � 1
2
. By Theorem 1.3, there exists a mapping

H W A ! B such that

(1) H is a fixed point of J, i.e.,

H.2x/ D 2H.x/ (2.62)

for all x 2 A. The mapping H is a unique fixed point of J in the set

Y D fg 2 X W d.f ; g/ < 1g:

This implies that H is a unique mapping satisfying (2.62) such that there exists
C 2 .0;1/ satisfying

kH.x/ � f .x/kB � C'.x; x; x/

for all x 2 A;
(2) d.Jnf ;H/ ! 0 as n ! 1. This implies the equality

lim
n!1

f .2nx/

2n
D H.x/ (2.63)

for all x 2 A;
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(3) d.f ;H/ � 1
1�L d.f ; Jf /, which implies the inequality

d.f ;H/ � 1

2 � 2L
:

This implies that the inequality (2.60) holds.
It follows from (2.57), (2.58) and (2.63) that

���H
�x C y

2
C z

�
C H

�x � y

2
C z

�
� H.x/� 2H.z/

���
B

D lim
n!1

1

2n
kf .2n�1.x C y/C 2nz/C f .2n�1.x � y/C 2nz/

�f .2nx/ � 2f .2nz/kB

� lim
n!1

1

2n
'.2nx; 2ny; 2nz/

D 0

for all x; y; z 2 A and so

H
�x C y

2
C z

�
C H

�x � y

2
C z

�
D H.x/C 2H.z/

for all x; y; z 2 A. By Lemma 2.22, the mapping H W A ! B is Cauchy additive.
By (2.58), the mapping H W A ! B is R-linear. It follows from (2.59) that

kH.xy/ � H.x/H.y/kB D lim
n!1

1

4n
kf .4nxy/� f .2nx/f .2ny/kB

� lim
n!1

1

4n
'.2nx; 2ny; 0/

� lim
n!1

1

2n
'.2nx; 2ny; 0/

D 0

for all x; y 2 A and so

H.xy/ D H.x/H.y/

for all x; y 2 A. Thus H W A ! B is a homomorphism satisfying (2.60). This
completes the proof. �

Corollary 2.24. Let r < 1, � be nonnegative real numbers and f W A ! B be a
mapping such that

kCf .x; y; z/kB � �.kxkr
A C kykr

A C kzkr
A/ (2.64)
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and

kf .xy/� f .x/f .y/kB � �.kxkr
A C kykr

A/ (2.65)

for all x; y; z 2 A. If f .tx/ is continuous in t 2 R for each fixed x 2 A, then there
exists a unique homomorphism H W A ! B such that

kf .x/ � H.x/kB � 3�

2� 2r
kxkr

A

for all x 2 A.

Proof. The proof follows from Theorem 2.23 by taking

'.x; y; z/ WD �.kxkr
A C kykr

A C kzkr
A/

for all x; y; z 2 A and L D 2r�1. We get the desired result. �

Theorem 2.25. Let f W A ! B be a mapping for which there exists a function
' W A3 ! Œ0;1/ satisfying (2.58) and (2.59) such that

1X
jD0

4j'
� x

2j
;

y

2j
;

z

2j

�
< 1 (2.66)

for all x; y; z 2 A. If there exists L < 1 such that

'.x; x; x/ � 1

2
L'.2x; 2x; 2x/

for all x 2 A and f .tx/ is continuous in t 2 R for each fixed x 2 A, then there exists
a unique homomorphism H W A ! B such that

kf .x/ � H.x/kB � L

2 � 2L
'.x; x; x/ (2.67)

for all x 2 A.

Proof. We consider the linear mapping J W X ! X such that

Jg.x/ WD 2g
�x

2

�

for all x 2 A. It follows from (2.61) that

���f .x/ � 2f
� x

2

����
B

� '
� x

2
;

x

2
;

x

2

�
� L

2
'.x; x; x/
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for all x 2 A. Hence d.f ; Jf / � L
2
. By Theorem 1.3, there exists a mapping

H W A ! B such that

(1) H is a fixed point of J, i.e.,

H.2x/ D 2H.x/ (2.68)

for all x 2 A. The mapping H is a unique fixed point of J in the set

Y D fg 2 X W d.f ; g/ < 1g:

This implies that H is a unique mapping satisfying (2.68) such that there exists
C 2 .0;1/ satisfying

kH.x/ � f .x/kB � C'.x; x; x/

for all x 2 A;
(2) d.Jnf ;H/ ! 0 as n ! 1. This implies the equality

lim
n!1 2nf

� x

2n

�
D H.x/ (2.69)

for all x 2 A;
(3) d.f ;H/ � 1

1�L d.f ; Jf /, which implies the inequality

d.f ;H/ � L

2 � 2L
;

which implies that the inequality (2.67) holds.

It follows from (2.58), (2.66) and (2.69) that

���H
�x C y

2
C z

�
C H

�x � y

2
C z

�
� H.x/� 2H.z/

���
B

D lim
n!1 2n

���f
�x C y

2nC1 C z

2n

�
C f

�x � y

2nC1 C z

2n

�
� f
� x

2n

�
� 2f

� z

2n

����
B

� lim
n!1 2n'

� x

2n
;

y

2n
;

z

2n

�
� lim

n!1 4n'
� x

2n
;

y

2n
;

z

2n

�
D 0

for all x; y; z 2 A and so

H
�x C y

2
C z

�
C H

�x � y

2
C z

�
D H.x/C 2H.z/
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for all x; y; z 2 A. By Lemma 2.22, the mapping H W A ! B is Cauchy additive.
By (2.58), the mapping H W A ! B is R-linear. It follows from (2.59) that

kH.xy/� H.x/H.y/kB D lim
n!1 4n

���f
�xy

4n

�
� f
� x

2n

�
f
� y

2n

����
B

� lim
n!1 4n'

� x

2n
;

y

2n
; 0
�

D 0

for all x; y 2 A and so

H.xy/ D H.x/H.y/

for all x; y 2 A. Thus H W A ! B is a homomorphism satisfying (2.67). This
completes the proof. �

Corollary 2.26. Let r > 2, � be nonnegative real numbers and f W A ! B be a
mapping satisfying (2.64) and (2.65). If f .tx/ is continuous in t 2 R for each fixed
x 2 A, then there exists a unique homomorphism H W A ! B such that

kf .x/ � H.x/kB � 3�

2r � 2kxkr
A

for all x 2 A.

Proof. The proof follows from Theorem 2.25 by taking

'.x; y; z/ WD �.kxkr
A C kykr

A C kzkr
A/

for all x; y; z 2 A and L D 21�r. �

2.4.2 Stability of Generalized Derivations in Real Banach
Algebras

Assume that A is a real Banach algebra with the norm k � kA. For any mapping
f W A ! A, we define

Df .x; y; z/ WD 2f
�x C y

2
C z

�
� f .x/ � f .y/� 2f .z/

for all x; y; z 2 A.
Now, we prove the Hyers-Ulam stability of generalized derivations on real

Banach algebras for the functional equation Df .x; y; z/ D 0.
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Theorem 2.27. Let f W A ! A be a mapping for which there exists a function
' W A3 ! Œ0;1/ satisfying (2.57) such that

kDf .x; y; z/kA � '.x; y; z/ (2.70)

and

kf .xyz/ � f .xy/z C xf .y/z � xf .yz/kA � '.x; y; z/ (2.71)

for all x; y; z 2 A. If there exists L < 1 such that

'.x; x; x/ � 2L'
�x

2
;

x

2
;

x

2

�

for all x 2 A and f .tx/ is continuous in t 2 R for each fixed x 2 A, then there exists
a unique generalized derivation ı W A ! A such that

kf .x/ � ı.x/kA � 1

4 � 4L
'.x; x; x/ (2.72)

for all x 2 A.

Proof. Consider the set

X WD fg W A ! Ag

and introduce the generalized metric on X defined by

d.g; h/ D inffC 2 RC W kg.x/ � h.x/kA � C'.x; x; x/; 8x 2 Ag;

which .X; d/ is complete.
Now, we consider the linear mapping J W X ! X such that

Jg.x/ WD 1

2
g.2x/

for all x 2 A. Now, we have

d.Jg; Jh/ � Ld.g; h/

for all g; h 2 X. Letting y D z D x in (2.70), we get

k2f .2x/� 4f .x/kA � '.x; x; x/ (2.73)

for all x 2 A and so
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���f .x/ � 1

2
f .2x/

���
A

� 1

4
'.x; x; x/

for all x 2 A. Hence d.f ; Jf / � 1
4
. By Theorem 1.3, there exists a mapping ı W A ! A

such that

(1) ı is a fixed point of J, i.e.,

ı.2x/ D 2ı.x/ (2.74)

for all x 2 A. The mapping ı is a unique fixed point of J in the set

Y D fg 2 X W d.f ; g/ < 1g:

This implies that ı is a unique mapping satisfying (2.74) such that there exists
C 2 .0;1/ satisfying

kı.x/� f .x/kA � C'.x; x; x/

for all x 2 A;
(2) d.Jnf ; ı/ ! 0 as n ! 1. This implies the equality

lim
n!1

f .2nx/

2n
D ı.x/ (2.75)

for all x 2 A;
(3) d.f ; ı/ � 1

1�L d.f ; Jf /, which implies the inequality

d.f ; ı/ � 1

4 � 4L
:

This implies that the inequality (2.72) holds.
It follows from (2.57), (2.70) and (2.75) that

���2ı�x C y

2
C z

�
� ı.x/� ı.y/� 2ı.z/

���
A

D lim
n!1

1

2n
k2f .2n�1.x C y/C 2nz/ � f .2nx/ � f .2ny/� 2f .2nz/kA

� lim
n!1

1

2n
'.2nx; 2ny; 2nz/

D 0

for all x; y; z 2 A and so
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2ı
�x C y

2
C z

�
D ı.x/C ı.y/C 2ı.z/

for all x; y; z 2 A. By Lemma 2.22, the mapping ı W A ! A is Cauchy additive.
By (2.71), the mapping ı W A ! A is R-linear. It follows from (2.71) that

kı.xyz/� ı.xy/z C xı.y/z � xı.yz/kA

D lim
n!1

1

8n
kf .8nxyz/� f .4nxy/ � 2nz C 2nxf .2ny/ � 2nz � 2nxf .4nyz/kA

� lim
n!1

1

8n
'.2nx; 2ny; 2nz/

� lim
n!1

1

2n
'.2nx; 2ny; 2nz/

D 0

for all x; y; z 2 A and so

ı.xyz/ D ı.xy/z � xı.y/z C xı.yz/

for all x; y; z 2 A. Thus ı W A ! A is a generalized derivation satisfying (2.72).
This completes the proof. �

Corollary 2.28. Let r < 1, � be nonnegative real numbers and f W A ! A be a
mapping such that

kDf .x; y; z/kA � � � kxk r
3

A � kyk r
3

A � kzk r
3

A (2.76)

and

kf .xyz/ � f .xy/z C xf .y/z � xf .yz/kA (2.77)

� � � kxk r
3

A � kyk r
3

A � kzk r
3

A

for all x; y; z 2 A. If f .tx/ is continuous in t 2 R for each fixed x 2 A, then there
exists a unique generalized derivation ı W A ! A such that

kf .x/ � ı.x/kA � �

4 � 2rC1 kxkr
A

for all x 2 A.

Proof. The proof follows from Theorem 2.27 by taking

'.x; y; z/ WD � � kxk r
3

A � kyk r
3

A � kzk r
3

A

for all x; y; z 2 A and L D 2r�1. �
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Theorem 2.29. Let f W A ! A be a mapping for which there exists a function
' W A3 ! Œ0;1/ satisfying (2.70) and (2.71) such that

1X
jD0

8j'
� x

2j
;

y

2j
;

z

2j

�
< 1 (2.78)

for all x; y; z 2 A. If there exists L < 1 such that

'.x; x; x/ � 1

2
L'.2x; 2x; 2x/

for all x 2 A and f .tx/ is continuous in t 2 R for each fixed x 2 A, then there exists
a unique generalized derivation ı W A ! A such that

kf .x/ � ı.x/kA � L

4 � 4L
'.x; x; x/ (2.79)

for all x 2 A.

Proof. We consider the linear mapping J W X ! X such that

Jg.x/ WD 2g.
x

2
/

for all x 2 A. It follows from (2.73) that

���f .x/ � 2f
� x

2

����
A

� 1

2
'
� x

2
;

x

2
;

x

2

�
� L

4
'.x; x; x/

for all x 2 A. Hence d.f ; Jf / � L
4
. By Theorem 1.3, there exists a mapping ı W A !

A such that

(1) ı is a fixed point of J, i.e.,

ı.2x/ D 2ı.x/ (2.80)

for all x 2 A. The mapping ı is a unique fixed point of J in the set

Y D fg 2 X W d.f ; g/ < 1g:

This implies that ı is a unique mapping satisfying (2.80) such that there exists
C 2 .0;1/ satisfying

kı.x/� f .x/kA � C'.x; x; x/

for all x 2 A;
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(2) d.Jnf ; ı/ ! 0 as n ! 1. This implies the equality

lim
n!1 2nf

� x

2n

�
D ı.x/ (2.81)

for all x 2 A;
(3) d.f ; ı/ � 1

1�L d.f ; Jf /, which implies the inequality

d.f ; ı/ � L

4 � 4L
;

which implies that the inequality (2.79) holds.
It follows from (2.70), (2.78) and (2.81) that���2ı�x C y

2
C z

�
� ı.x/� ı.y/ � 2ı.z/

���
A

D lim
n!1 2n

���2f
�x C y

2nC1 C z

2n

�
� f
� x

2n

�
� f
� y

2n

�
� 2f

� z

2n

����
A

� lim
n!1 2n'.

x

2n
;

y

2n
;

z

2n
/

� lim
n!1 8n'

� x

2n
;

y

2n
;

z

2n

�
D 0

for all x; y; z 2 A and so

2ı
�x C y

2
C z

�
D ı.x/C ı.y/C 2ı.z/

for all x; y; z 2 A. By Lemma 2.22, the mapping ı W A ! A is Cauchy additive.
It is straight forward to show that the mapping ı W A ! A is R-linear. It follows
from (2.71) that

kı.xyz/� ı.xy/z C xı.y/z � xı.yz/kA

D lim
n!1 8n

���f
�xyz

8n

�
� f
�xy

4n

�
� z

2n
C x

2n
f
� y

2n

�
� z

2n
� x

2n
f
� yz

4n

����
A

� lim
n!1 8n'

� x

2n
;

y

2n
;

z

2n

�
D 0

for all x; y; z 2 A and so

ı.xyz/ D ı.xy/z � xı.y/z C xı.yz/

for all x; y; z 2 A. Thus ı W A ! A is a generalized derivation satisfying (2.80).
This completes the proof. �
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Corollary 2.30. Let r > 3, � be nonnegative real numbers and f W A ! A be a
mapping satisfying (2.76) and (2.77). If f .tx/ is continuous in t 2 R for each fixed
x 2 A, then there exists a unique generalized derivation ı W A ! A such that

kf .x/ � ı.x/kA � �

2rC1 � 4
kxkr

A

for all x 2 A.

Proof. The proof follows from Theorem 2.29 by taking

'.x; y; z/ WD � � kxk r
3

A � kyk r
3

A � kzk r
3

A

for all x; y; z 2 A and L D 21�r. �



Chapter 3
Stability of Functional Equations in C�-Algebras

In this chapter, we study the stability of some important functional equations in
�-algebras by using both the direct and fixed point methods.

In Sect. 3.1, we consider the linear bijection h W A ! B of a unital C�-algebra
A onto a unital C�-algebra B and show that it is a C�-algebra isomorphism when
h.3nuy/ D h.3nu/h.y/ for all unitaries u 2 A, y 2 A and n 2 Z by the Ulam method.

In Sect. 3.2, we introduce a new functional equation, which is called the Apollo-
nius type additive functional equation, and a solution of the functional equation is
called the Apollonius type additive mapping:

L.z � x/C L.z � y/ D �1
2

L.x C y/C 2L
�

z � x C y

4

�
:

Also, we investigate homomorphisms and derivations in C�-algebras associated
with the Apollonius type additive functional equation, homomorphisms and deriva-
tions on Lie C�-algebras associated with the Apollonius type additive functional
equation. Finally, we study homomorphisms and derivations on JC�-algebras
associated with the Apollonius type additive functional equation.

In Sect. 3.3, by using the fixed point method, we prove the Hyers-Ulam sta-
bility of homomorphisms in C�-algebras and Lie C�-algebras and derivations on
C�-algebras and Lie C�-algebras for the following Jensen type functional equation

f
�x C y

2

�
C f

�x � y

2

�
D f .x/:

In Sect. 3.4, we introduce the following additive functional equation :

nX
jD1

f
�1
2

X
1�i�n;i¤j

rixi � 1

2
rjxj

�
C

nX
iD1

rif .xi/ D nf
�1
2

nX
iD1

rixi

�
;
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where r1; � � � ; rn 2 R: Using the fixed point method, we investigate the Hyers-Ulam
stability of the above functional equation in Banach modules over a C�-algebra.
These results are applied to investigate C�-algebra homomorphisms in unital
C�-algebras.

In Sect. 3.5, we show that, if an odd mapping f W X ! Y satisfies the functional
equation:

rf
�Pd

jD1 xj

r

�
C

X
�.j/ D 0; 1Pd

jD1 �.j/ D l

rf
�Pd

jD1.�1/�.j/xj

r

�

D .d�1Cl �d�1 Cl�1 C 1/

dX
jD1

f .xj/;

then the odd mapping f W X ! Y is additive. Also, we prove the Hyers-Ulam
stability of the above functional equation in Banach modules over a unital C�-
algebra. As an application, we show that every almost linear bijection h W A ! B of
a unital C�-algebra A onto a unital C�-algebra B is a C�-algebra isomorphism when
h. 2

n

rn uy/ D h. 2
n

rn u/h.y/ for all unitaries u 2 A, y 2 A and n 2 N.
In Sect. 3.6, we investigate the Hyers-Ulam stability of Jordan �-derivations and f

quadratic Jordan �-derivations on real C�-algebras and real JC�-algebras. Also, we
prove the superstability of Jordan �-derivations and quadratic Jordan �-derivations
on real C�-algebras and real JC�-algebras under some conditions.

In Sect. 3.7, we investigate the Hyers-Ulam stability of .˛; ˇ; �/-derivations on
Lie C�-algebras associated with the following functional equation:

f
�x2 � x1

3

�
C f

�
x1 � 3x3

3

�
C f

�
3x1 C 3x3 � x2

3

�
D f .x1/:

In Sects. 3.8 and 3.9, we introduce a square root functional equation and a 3rd
root functional equation. By using both the fixed point method and direct method,
we prove the Hyers-Ulam stability of the square root functional equation and of the
3rd root functional equation in C�-algebras.

In Sect. 3.10, we introduce the following functional equation:

T
��

x
1
m C y

1
m

�m� D
�

T.x/
1
m C T.y/

1
m

�m

for all x; y 2 AC and a fixed integer m greater than 1, which is called a positive-
additive functional equation. Using the fixed point and direct methods, we prove
the stability of the positive-additive functional equation in C�-algebras.

Finally, in Sect. 3.11, we show that every almost unital almost linear mapping
f W A ! B of JC�-algebra A to a JC�-algebra B is a homomorphism when
f .2nu ı y/ D f .2nu/ı f .y/ for all unitaries u 2 A, y 2 A and n � 0 and every almost
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unital almost linear continuous mapping f W A ! B of a JC�-algebra A of real rank
zero to a JC�-algebra B is a homomorphism when f .2nu ı y/ D f .2nu/ ı f .y/ for all
u 2 fv 2 A W v D v�; kvk D 1; v is invertibleg, y 2 A and n � 0. Furthermore, we
prove the Hyers-Ulam stability of �-homomorphisms in JC�-algebras and C-linear
�-derivations on JC�-algebras.

3.1 Isomorphisms in Unital C�-Algebras

It is shown that every almost linear bijection h W A ! B of a unital C�-algebra A
onto a unital C�-algebra B is a C�-algebra isomorphism when h.3nuy/ D h.3nu/h.y/
for all unitaries u 2 A, y 2 A, n 2 Z and an almost linear continuous bijection
h W A ! B of a unital C�-algebra A of real rank zero onto a unital C�-algebra B is a
C�-algebra isomorphism when h.3nuy/ D h.3nu/h.y/ for all u 2 fv 2 A j v D v�,
kvk D 1; v is invertibleg, y 2 A and n 2 Z.

Assume that X and Y are left normed modules over a unital C�-algebra A. It is
shown that every surjective isometry T W X ! Y satisfying T.0/ D 0 and T.ux/ D
uT.x/ for all x 2 X and unitaries u 2 A is an A-linear isomorphism. This is applied
to investigate C�-algebra isomorphisms in unital C�-algebras.

Let X and Y be Banach spaces with the norms k � k and k � k, respectively.
Consider a mapping f W X ! Y such that f .tx/ is continuous in t 2 R for each fixed
x 2 X. Th. M. Rassias [267] introduced the following inequality, which is called the
Cauchy-Rassias inequality. Assume that there exist constants � � 0 and p 2 Œ0; 1/

such that

kf .x C y/� f .x/ � f .y/k � �.jjxjjp C jjyjjp/

for all x; y 2 X. Th. M. Rassias [267] showed that there exists a unique R-linear
mapping T W X ! Y such that

kf .x/ � T.x/k � 2�

2 � 2p
jjxjjp

for all x 2 X. The above inequality has provided a lot of influence in the development
of what we now call the Hyers–Ulam stability of functional equations. Beginning
around the year 1980 the topic of approximate homomorphisms or the stability
of the equation of homomorphism was studied by a number of mathematicians.
In [145], Jun and Lee proved the following:

Denote by ' W X � X ! Œ0;1/ a function such that

Q'.x; y/ D
1X

jD0

1

3j
'.3jx; 3jy/ < 1
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for all x; y 2 X. Suppose that f W X ! Y is a mapping satisfying f .0/ D 0 and

���2f .
x C y

2
/ � f .x/ � f .y/

��� � '.x; y/

for all x; y 2 X. Then there exists a unique additive mapping T W X ! Y such that

kf .x/ � T.x/j � 1

3
. Q'.x;�x/C Q'.�x; 3x//

for all x 2 X. In [242], Park and Park applied Jun and Lee’s result to Jensen’s
equation in Banach modules over a C�-algebra.

Throughout this section, let A be a unital C�-algebra with the norm k � k and
the unit e and B be a unital C�-algebra with the norm k � k. Let U.A/ be the set
of unitary elements in A, Asa D fx 2 A j x D x�g and I1.Asa/ D fv 2 Asa j
kvk D 1; v is invertibleg.

We prove that every almost linear bijection h W A ! B is a C�-algebra
isomorphism when h.3nuy/ D h.3nu/h.y/ for all u 2 U.A/, y 2 A, n 2 Z and,
for a unital C�-algebra A of real rank zero, every almost linear continuous bijection
h W A ! B is a C�-algebra isomorphism when h.3nuy/ D h.3nu/h.y/ for all
u 2 I1.Asa/, y 2 A and n 2 Z. Also, we prove that every surjective isometry
satisfying some conditions is a C�-algebra isomorphism.

3.1.1 C�-Algebra Isomorphisms in Unital C�-Algebras

Now, we investigate C�-algebra isomorphisms in unital C�-algebras.

Theorem 3.1. Let h W A ! B be a bijective mapping satisfying h.0/ D 0 and
h.3nuy/ D h.3nu/h.y/ for all u 2 U.A/, y 2 A and n 2 Z, for which there exists a
function ' W A � A ! Œ0;1/ such that

Q'.x; y/ WD
1X

jD0

1

3j
'.3jx; 3jy/ < 1; (3.1)

���2h
�	x C 	y

2

�
� 	h.x/� 	h.y/

��� � '.x; y/; (3.2)

kh.3nu�/ � h.3nu/�k � '.3nu; 3nu/ (3.3)

for all 	 2 S1 WD f� 2 C W j�j D 1g, u 2 U.A/, n 2 Z and x; y 2 A. Assume that

lim
n!1

h.3ne/

3n
(3.4)

is invertible. Then the bijective mapping h W A ! B is a C�-algebra isomorphism.
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Proof. Put 	 D 1 2 S1. By direct method there exists a unique additive mapping
H W A ! B such that

kh.x/ � H.x/k � 1

3

� Q'.x;�x/C Q'.�x; 3x/
�

(3.5)

for all x 2 A. The additive mapping H W A ! B is given by

H.x/ D lim
n!1

1

3n
h.3nx/

for all x 2 A. By the assumption, for each 	 2 S1,

1

3n

���2h
�3n	x

2

�
� 	h.3nx/

��� � 1

3n
'.3nx; 0/;

which tends to zero as n ! 1 for all x 2 A. Hence we have

2H
�	x

2

�
D lim

n!1
2h. 3

n	x
2
/

3n
D lim

n!1
	h.3nx/

3n
D 	H.x/

for all 	 2 S1 and x 2 A. Since H W A ! B is additive,

H.	x/ D 2H
�	x

2

�
D 	H.x/ (3.6)

for all 	 2 S1 and x 2 A.
Now, let � 2 C .� ¤ 0/ and M be an integer greater than 4j�j. Then we have

ˇ̌̌ �
M

ˇ̌̌
<
1

4
< 1 � 2

3
D 1

3
:

By Kadison and Pedersen [167], there exist three elements 	1; 	2; 	3 2 S1 such
that 3 �M D 	1 C 	2 C 	3. So, by (3.6), we have

H.�x/ D H
�M

3
� 3 �

M
x
�

D M � H
�1
3

� 3 �
M

x
�

D M

3
H
�
3
�

M
x
�

D M

3
H.	1x C 	2x C 	3x/ D M

3
.H.	1x/C H.	2x/C H.	3x//

D M

3
.	1 C 	2 C 	3/H.x/ D M

3
� 3 �

M
H.x/

D �H.x/
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for all x 2 A. Hence we have

H.�x C y/ D H.�x/C H.y/ D �H.x/C H.y/

for all �;  2 C .�;  ¤ 0/ and x; y 2 A and H.0x/ D 0 D 0H.x/ for all x 2 A. Thus
the unique additive mapping H W A ! B is a C-linear mapping. By (3.1) and (3.3),
we get

H.u�/ D lim
n!1

h.3nu�/
3n

D lim
n!1

h.3nu/�

3n

D
�

lim
n!1

h.3nu/

3n

�� D H.u/�

for all u 2 U.A/. Since H is C-linear and each x 2 A is a finite linear combination
of unitary elements (see [168]), i.e., x D Pm

jD1 �juj for all �j 2 C and uj 2 U.A/,
we have

H.x�/ D H
� mX

jD1
�ju

�
j

�
D

mX
jD1

�jH.u
�
j / D

mX
jD1

�jH.uj/
�

D
� mX

jD1
�jH.uj/

�� D H.
mX

jD1
�juj/

� D H.x/�

for all x 2 A. Since h.3nuy/ D h.3nu/h.y/ for all u 2 U.A/, y 2 A and n 2 Z,
we have

H.uy/ D lim
n!1

1

3n
h.3nuy/ D lim

n!1
1

3n
h.3nu/h.y/ D H.u/h.y/ (3.7)

for all u 2 U.A/ and y 2 A. By the additivity of H and (3.7), we have

3nH.uy/ D H.3nuy/ D H.u.3ny// D H.u/h.3ny/

for all u 2 U.A/ and y 2 A. Hence it follows that

H.uy/ D 1

3n
H.u/h.3ny/ D H.u/

1

3n
h.3ny/ (3.8)

for all u 2 U.A/ and y 2 A. Taking n ! 1 in (3.8), we obtain

H.uy/ D H.u/H.y/ (3.9)

for all u 2 U.A/ and y 2 A. Since H is C-linear and each x 2 A is a finite linear
combination of unitary elements, i.e., x D Pm

jD1 �juj for all �j 2 C and uj 2 U.A/,
it follows from (3.9) that
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H.xy/ D H
� mX

jD1
�jujy

�
D

mX
jD1

�jH.ujy/ D
mX

jD1
�jH.uj/H.y/

D H
� mX

jD1
�juj

�
H.y/ D H.x/H.y/

for all x; y 2 A. By (3.7) and (3.9), we have

H.e/H.y/ D H.ey/ D H.e/h.y/

for all y 2 A. Since limn!1 h.3ne/
3n D H.e/ is invertible,

H.y/ D h.y/

for all y 2 A. Therefore, the bijective mapping h W A ! B is a C�-algebra
isomorphism. This completes the proof. �

Corollary 3.2. Let h W A ! B be a bijective mapping satisfying h.0/ D 0 and
h.3nuy/ D h.3nu/h.y/ for all u 2 U.A/, y 2 A and n 2 Z, for which there exist
constants � � 0 and p 2 Œ0; 1/ such that

���2h
�	x C 	y

2

�
� 	h.x/� 	h.y/

��� � �.kxkp C kykp/

and

kh.3nu�/� h.3nu/�k � 2 � 3np�

for all 	 2 S1, u 2 U.A/, n 2 Z and x; y 2 A. Assume that limn!1 h.3ne/
3n is

invertible. Then the bijective mapping h W A ! B is a C�-algebra isomorphism.

Proof. Defining

'.x; y/ D �.kxkp C kykp/

(Rassias upper bound in the Cauchy-Rassias inequality) and applying Theorem 3.1,
we get the desired result. �
Theorem 3.3. Let h W A ! B be a bijective mapping satisfying h.0/ D 0 and
h.3nuy/ D h.3nu/h.y/ for all u 2 U.A/, y 2 A and n 2 Z, for which there exists a
function ' W A � A ! Œ0;1/ satisfying (3.1), (3.3) and (3.4) such that

���2h
�	x C 	y

2

�
� 	h.x/ � 	h.y/

��� � '.x; y/ (3.10)

for 	 D 1; i and x; y 2 A. If h.tx/ is continuous in t 2 R for each fixed x 2 A, then
the bijective mapping h W A ! B is a C�-algebra isomorphism.
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Proof. Put	 D 1 in (3.10). Then, there exists a unique additive mapping H W A ! B
satisfying (3.5). Also, by (3.10), the additive mapping H W A ! B is R-linear.

Put 	 D i and y D 0 in (3.10). By the same method as in the proof of
Theorem 3.1, one can obtain that

H.ix/ D 2H
� ix

2

�
D lim

n!1
2h. 3

nix
2
/

3n
D lim

n!1
ih.3nx/

3n
D iH.x/

for all x 2 A. For each � 2 C, let � D s C it for all s; t 2 R. So, we have

H.�x/ D H.sx C itx/ D sH.x/C tH.ix/ D sH.x/C itH.x/

D .s C it/H.x/ D �H.x/

for all � 2 C and x 2 A. Thus we have

H.�x C y/ D H.�x/C H.y/ D �H.x/C H.y/

for all �;  2 C and x; y 2 A. Hence the additive mapping H W A ! B is C-linear.
The rest of the proof is the same as in the proof of Theorem 3.1. This completes

the proof. �

From now on, assume that A is a unital C�-algebra of real rank zero, where “real
rank zero” means that the set of invertible self-adjoint elements is dense in the set
of self-adjoint elements (see [54]).

Now, we investigate continuous C�-algebra isomorphisms in unital C�-algebras.

Theorem 3.4. Let h W A ! B be a continuous bijective mapping satisfying
h.0/ D 0 and h.3nuy/ D h.3nu/h.y/ for all u 2 I1.Asa/, y 2 A and n 2 Z, for which
there exists a function ' W A � A ! Œ0;1/ satisfying (3.1), (3.2), (3.3) and (3.4).
Then the bijective mapping h W A ! B is a C�-algebra isomorphism.

Proof. It is straight forward to show that, there exists a unique C-linear involution
H W A ! B satisfying (3.5). Since h.3nuy/ D h.3nu/h.y/ for all u 2 I1.Asa/, y 2 A
and n 2 Z, we have

H.uy/ D lim
n!1

1

3n
h.3nuy/ D lim

n!1
1

3n
h.3nu/h.y/ D H.u/h.y/ (3.11)

for all u 2 I1.Asa/ and y 2 A. By the additivity of H and (3.11), we have

3nH.uy/ D H.3nuy/ D H.u.3ny// D H.u/h.3ny/
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for all u 2 I1.Asa/ and y 2 A. Hence we have

H.uy/ D 1

3n
H.u/h.3ny/ D H.u/

1

3n
h.3ny/ (3.12)

for all u 2 I1.Asa/ and y 2 A. Taking n ! 1 in (3.12), we obtain

H.uy/ D H.u/H.y/ (3.13)

for all u 2 I1.Asa/ and y 2 A. By (3.11) and (3.13), we have

H.e/H.y/ D H.ey/ D H.e/h.y/

for all y 2 A. Since limn!1 h.3ne/
3n D H.e/ is invertible,

H.y/ D h.y/

for all y 2 A. So H W A ! B is continuous. But, by the assumption that A has real
rank zero, it is easy to show that I1.Asa/ is dense in fx 2 Asa W kxk D 1g. Thus, for
each w 2 fz 2 Asa W kzk D 1g, there exists a sequence f�jg such that �j ! w as
j ! 1 and �j 2 I1.Asa/. Since H W A ! B is continuous, it follows from (3.13) that

H.wy/ D H. lim
j!1 �jy/ D lim

j!1 H.�jy/ D lim
j!1 H.�j/H.y/

D H. lim
j!1 �j/H.y/ D H.w/H.y/ (3.14)

for all w 2 fz 2 Asa W kzk D 1g and y 2 A. For each x 2 A, x D xCx�

2
C i x�x�

2i , where

x1 WD xCx�

2
and x2 WD x�x�

2i are self-adjoint.
First, consider the case that x1 ¤ 0 and x2 ¤ 0. Since H W A ! B is C-linear, it

follows from (3.14) that

H.xy/ D H.x1y C ix2y/

D H
�
kx1k x1

kx1ky C ikx2k x2
kx2ky

�

D kx1kH
� x1

kx1ky
�

C ikx2kH
� x2

kx2ky
�

D kx1kH
� x1

kx1k
�

H.y/C ikx2kH
� x2

kx2k
�

H.y/

D
n
H
�
kx1k x1

kx1k
�

C iH
�
kx2k x2

kx2k
�o

H.y/

D H.x1 C ix2/H.y/ D H.x/H.y/

for all y 2 A.
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Next, consider the case that x1 ¤ 0; x2 D 0. Since H W A ! B is C-linear, it
follows from (3.14) that

H.xy/ D H.x1y/ D H
�
kx1k x1

kx1ky
�

D kx1kH
� x1

kx1ky
�

D kx1kH
� x1

kx1k
�

H.y/ D H
�
kx1k x1

kx1k
�

H.y/

D H.x1/H.y/ D H.x/H.y/

for all y 2 A.
Finally, consider the case that x1 D 0; x2 ¤ 0. Since H W A ! B is C-linear, it

follows from (3.14) that

H.xy/ D H.ix2y/ D H
�

ikx2k x2
kx2ky

�
D ikx2kH

� x2
kx2ky

�

D ikx2kH
� x2

kx2k
�

H.y/ D H
�

ikx2k x2
kx2k

�
H.y/

D H.ix2/H.y/ D H.x/H.y/

for all y 2 A. Hence

H.xy/ D H.x/H.y/

for all x; y 2 A. Therefore, the bijective mapping h W A ! B is a C�-algebra
isomorphism. This completes the proof. �

Corollary 3.5. Let h W A ! B be a continuous bijective mapping satisfying h.0/ D
0 and h.3nuy/ D h.3nu/h.y/ for all u 2 I1.Asa/, y 2 A and n 2 Z, for which there
exist constants � � 0 and p 2 Œ0; 1/ such that

���2h
�	x C 	y

2

�
� 	h.x/� 	h.y/

��� � �.kxkp C kykp/

and

kh.3nu�/ � h.3nu/�k � 2 � 3np�

for all 	 2 S1, u 2 I1.Asa/, n 2 Z and x; y 2 A. Assume that limn!1 h.3ne/
3n is

invertible. Then the bijective mapping h W A ! B is a C�-algebra isomorphism.

Proof. Defining

'.x; y/ D �.kxkp C kykp/

(Rassias upper bound in the Cauchy-Rassias inequality) and applying Theorem 3.4,
we get the desired result. �
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Remark 3.6. If h W A ! B is a continuous bijective mapping satisfying h.0/ D 0

and h.3nuy/ D h.3nu/h.y/ for all u 2 I1.Asa/, y 2 A and n 2 Z, for which there
exists a function ' W A � A ! Œ0;1/ satisfying (3.1), (3.3), (3.4) and (3.10). Then
the bijective mapping h W A ! B is a C�-algebra isomorphism.

3.1.2 On the Mazur-Ulam Theorem in Modules over
C�-Algebras

Now, we prove the Mazur-Ulam theorem in modules over C�-algebras.

Lemma 3.7 ([114]). If T is an isometry from a normed vector space X onto a
normed vector space Y, then

T.x C y/ D T.x/C T.y/� T.0/

and

T.rx/ D rT.x/C .1 � r/T.0/

for all r 2 R.

Corollary 3.8 ([114]). If T is an isometry from a normed vector space X onto a
normed vector space Y and T.0/ D 0, then T is R-linear.

Theorem 3.9. Let X and Y be left normed modules over a unital C�-algebra A. If
T W X ! Y is a surjective isometry with T.0/ D 0 and T.ux/ D uT.x/ for all
u 2 U.A/ and x 2 X, then T W X ! Y is an A-linear isomorphism.

Proof. By Corollary 3.8, T W X ! Y is R-linear. Since i 2 U.A/, T.ix/ D iT.x/ for
all x 2 X. For each � 2 C, � D �1 C i�2 for all �1; �2 2 R. Thus we have

T.�x/ D T.�1x C i�2 x/ D T.�1x/C T.i �2 x/

D �1T.x/C iT.�2x/ D .�1 C i�2/T.x/

D �T.x/

for all x 2 X. Since each a 2 A is a finite linear combination of unitary elements,
i.e., a D Pn

jD1 �juj for all �j 2 C and uj 2 U.A/,

T.ax/ D T
� nX

jD1
�jujx

�
D

nX
jD1

�jT.ujx/ D
nX

jD1
�jujT.x/ D aT.x/
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for all x 2 X and so

T.ax C by/ D T.ax/C T.by/ D aT.x/C bT.y/

for all a; b 2 A and x; y 2 X. This completes the proof. �

Now, we investigate C�-algebra isomorphisms in unital C�-algebras.

Theorem 3.10. If T W A ! B is a surjective isometry with T.0/ D 0, T.iu/ D
iT.u/, T.u�/ D T.u/� and T.uv/ D T.u/T.v/ for all u; v 2 U.A/, then T W A ! B
is a C�-algebra isomorphism.

Proof. It is straight forward to show that, T W A ! B is R-linear and

T.�u/ D �T.u/

for all � 2 C and u 2 U.A/. Since each a 2 A is a finite linear combination of
unitary elements, i.e., a D Pn

jD1 �juj for all �j 2 C and uj 2 U.A/, we have

T.�a/ D T
� nX

jD1
��juj

�
D

nX
jD1

��jT.uj/ D �
� nX

jD1
�jT.uj/

�

D �T
� nX

jD1
�juj

�
D �T.a/

for all � 2 C and a 2 A. Thus T W A ! B is C-linear. Furthermore, we have

T.a�/ D T
� nX

jD1
�ju

�
j

�
D

nX
jD1

�jT.u
�
j / D

nX
jD1

�jT.uj/
�

D T
� nX

jD1
�juj

�� D T.a/�

for all a 2 A and

T.av/ D T
� nX

jD1
�jujv

�
D

nX
jD1

�jT.ujv/ D
nX

jD1
�jT.uj/T.v/

D T
� nX

jD1
�juj

�
T.v/ D T.a/T.v/

for all a 2 A and v 2 U.A/. Since each b 2 A is a finite linear combination of
unitary elements, i.e., b D Pm

jD1 
jvj for all 
j 2 C and vj 2 U.A/, we have
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T.ab/ D T
� mX

jD1

javj

�
D

mX
jD1


jT.avj/ D
mX

jD1

jT.a/T.vj/

D T.a/T
� mX

jD1

jvj

�
D T.a/T.b/

for all a; b 2 A and so T W A ! B is multiplicative. Therefore, T W A ! B is a
C�-algebra isomorphism. This completes the proof. �

3.2 Apollonius Type Additive Functional Equations

In an inner product space, the following equality:

kz � xk2 C kz � yk2 D 1

2
kx � yk2 C 2

���z � x C y

2

���2
holds, which is called the Apollonius’ identity. The following functional equation,
which was motivated by this equation,

Q.z � x/C Q.z � y/ D 1

2
Q.x � y/C 2Q

�
z � x C y

2

�
(3.15)

is quadratic. For this reason, the function equation (3.15) is called a quadratic
functional equation of Apollonius type and each solution of the functional equa-
tion (3.15) is called a quadratic mapping of Apollonius type. In [144], Jun and Kim
investigated the quadratic functional equation of Apollonius type.

In this section, modifying the above equality (3.15), we consider a new functional
equation, which is called the Apollonius type additive functional equation and whose
solution of the functional equation is said to be the Apollonius type additive mapping
[209]:

L.z � x/C L.z � y/ D �1
2

L.x C y/C 2L
�

z � x C y

4

�
:

In [126], Gilányi showed that, if f has it’s values in an inner product space and
satisfies the functional inequality:

k2f .x/C 2f .y/� f .xy�1/k � kf .xy/k; (3.16)

then f satisfies the Jordan–von Neumann functional inequality

2f .x/C 2f .y/ D f .xy/C f .xy�1/:
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In [113] and [127], Fechner and Gilányi proved the stability of the functional
inequality (3.16), respectively. In [253], Park et al. proved the stability of functional
inequalities associated with Jordan–von Neumann type additive functional equa-
tions.

In 1932, Jordan observed that L.H/ is a (non-associative) algebra via the
anticommutator product x ı y WD xyCyx

2
. A commutative algebra X with the product

x ı y is called a Jordan algebra. A Jordan C�-subalgebra of a C�-algebra endowed
with the anti-commutator product is called a JC�-algebra. A C�-algebra C endowed
with the Lie product Œx; y� D xy�yx

2
on C is called a Lie C�-algebra.

In this section, we investigate homomorphisms and derivations in C�-algebras
associated with the Apollonius type additive functional equation. Also, we inves-
tigate homomorphisms and derivations on Lie C�-algebras associated with the
Apollonius type additive functional equation.

Finally, we investigate homomorphisms and derivations on JC�-algebras associ-
ated with the Apollonius type additive functional equation.

3.2.1 Homomorphisms and Derivations on C�-Algebras

Now, we study homomorphisms and derivations on C�-algebras.

Theorem 3.11. Let A be a uniquely 2-divisible Abelian group and B be a normed
linear space. A mapping f W A ! B satisfies the following:

���f .z � x/C f .z � y/C 1

2
f .x C y/

���
B

�
���2f

�
z � x C y

4

����
B

(3.17)

for all x; y; z 2 A if and only if f W A ! B is additive.

Proof. Letting x D y D z D 0 in (3.17), we get

5

2
kf .0/kB � 2kf .0/kB

and so f .0/ D 0. Letting z D 0 and y D �x in (3.17), we get

kf .�x/C f .x/kB � 2kf .0/kB D 0

for all x 2 A and hence f .�x/ D �f .x/ for all x 2 A. Letting x D y D 2z in (3.17),
we get

���2f .�z/C 1

2
f .4z/

���
B

� k2f .0/kB D 0

for all z 2 A and hence

f .4z/ D �4f .�z/ D 4f .z/
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for all z 2 A. Letting z D xCy
4

in (3.17), we get

���f
��3x C y

4

�
C f

�x � 3y

4

�
C 1

2
f .x C y/

���
B

� k2f .0/kB D 0

for all x; y 2 A and so

f
��3x C y

4

�
C f

�x � 3y

4

�
C 1

2
f .x C y/ D 0 (3.18)

for all x; y 2 A. Let w1 D �3xCy
4

and w2 D x�3y
4

in (3.18). Then we have

f .w1/C f .w2/ D �1
2

f .�2w1 � 2w2/ D 1

2
f .2w1 C 2w2/ D 2f

�w1 C w2
2

�
for all w1;w2 2 A and so f is additive.

It is clear that each additive mapping satisfies the inequality (3.17). This
completes the proof. �

Now, we investigate C�-algebra homomorphisms between C�-algebras and
linear derivations on C�-algebras associated with the Apollonius type additive
functional equation. From now on, assume that A is a C�-algebra with the norm
k � kA and B is a C�-algebra with the norm k � kB.

Lemma 3.12. Let f W A ! B be an additive mapping such that f .	x/ D 	f .x/ for
all x 2 A and 	 2 T

1 D f� 2 C W j�j D 1g: Then the mapping f is C-linear.

Proof. Let � 2 C .� ¤ 0/ and M an integer greater than 4j�j.
Then we have j �M j < 1

4
< 1 � 2

3
D 1

3
. By Theorem 1 of [54], there exist three

elements 	1; 	2; 	3 2 T
1 such that 3 �M D 	1 C 	2 C 	3. And f .x/ D f .3 � 1

3
x/ D

3f . 1
3
x/ for all x 2 A and so f . 1

3
x/ D 1

3
f .x/ for all x 2 A. Thus

f .�x/ D f
�M

3
� 3 �

M
x
�

D M � f
�1
3

� 3 �
M

x
�

D M

3
f
�
3
�

M
x
�

D M

3
f .	1x C 	2x C 	3x/ D M

3
.f .	1x/C f .	2x/C f .	3x//

D M

3
.	1 C 	2 C 	3/f .x/ D M

3
� 3 �

M
f .x/

D �f .x/

for all x 2 A. Hence we have

f .�x C y/ D f .�x/C f .y/ D �f .x/C f .y/

for all �;  2 C .�;  ¤ 0/ and all x; y 2 A. And f .0x/ D 0 D 0f .x/ for all x 2 A.
So the additive mapping f W A ! B is a C-linear mapping. This completes the
proof. �
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Theorem 3.13. Let r > 1, � be nonnegative real numbers and f W A ! B be a
mapping such that

���f .z � 	x/C 	f .z � y/C 1

2
f .x C y/

���
B

�
���2f .z � x C y

4
/
���

B
; (3.19)

kf .xy/� f .x/f .y/kB � � � kxkr
A � kykr

A; (3.20)

kf .x�/ � f .x/�kB � 2�kxkr
A (3.21)

for all 	 2 T
1 WD f� 2 C W j�j D 1g and x; y; z 2 A. Then the mapping f W A ! B

is a C�-algebra homomorphism.

Proof. Let 	 D 1 in (3.19). By Theorem 3.11, the mapping f W A ! B is additive.
Letting y D �x and z D 0 in (3.19), we get

kf .�	x/C 	f .x/kB � k2f .0/kB D 0

for all x 2 A and 	 2 T
1 and so

�f .	x/C 	f .x/ D f .�	x/C 	f .x/ D 0

for all x 2 A and 	 2 T
1. Hence f .	x/ D 	f .x/ for all x 2 A and 	 2 T

1. So, the
mapping f W A ! B is C-linear. It follows from (3.20) that

kf .xy/� f .x/f .y/kB D lim
n!1 4n

���f
� xy

2n � 2n

�
� f
� x

2n

�
f
� y

2n

����
B

� lim
n!1

4n�

4nr
� kxkr

A � kykr
A

D 0

for all x; y 2 A and so

f .xy/ D f .x/f .y/

for all x; y 2 A. It follows from (3.21) that

kf .x�/� f .x/�kB D lim
n!1 2n

���f
�x�

2n

�
� f
� x

2n

�����
B

� lim
n!1

2nC1�
2nr

kxkr
A

D 0
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for all x 2 A and so

f .x�/ D f .x/�

for all x 2 A. Therefore, the mapping f W A ! B is a C�-algebra homomorphism.
This completes the proof. �

Remark 3.14. Let r < 1, � be positive real numbers and f W A ! B be a mapping
satisfying (3.19), (3.20) and (3.21). Then the mapping f W A ! B is a C�-algebra
homomorphism.

Theorem 3.15. Let r > 1, � be nonnegative real numbers and f W A ! A be a
mapping satisfying (3.21) such that

kf .xy/ � f .x/y � xf .y/kA � � � kxkr
A � kykr

A (3.22)

for all x; y 2 A. Then the mapping f W A ! A is a linear derivation.

Proof. By applying Lemma 3.12, the mapping f W A ! A is C-linear. It follows
from (3.22) that

kf .xy/� f .x/y � xf .y/kA D lim
n!1 4n

���f
�xy

4n

�
� f
� x

2n

� y

2n
� x

2n
f
� y

2n

����
A

� lim
n!1

4n�

4nr
� kxkr

A � kykr
A

D 0

for all x; y 2 A and so

f .xy/ D f .x/y C xf .y/

for all x; y 2 A. Thus the mapping f W A ! A is a linear derivation. This completes
the proof. �

Remark 3.16. Let r < 1, � be positive real numbers and f W A ! A be a mapping
satisfying (3.19) and (3.22). Then the mapping f W A ! A is a linear derivation.

3.2.2 Homomorphisms and Derivations in Lie C�-Algebras

Assume that A is a Lie C�-algebra with the norm k � kA and B is a Lie C�-algebra
with the norm k � kB.

We recall that a C-linear mapping H W A ! B is called a Lie C�-algebra
homomorphism if H W A ! B satisfies the following:

H.Œx; y�/ D ŒH.x/;H.y/�
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for all x; y 2 A. A C-linear mapping D W A ! A is called a Lie derivation if
D W A ! A satisfies the following:

D.Œx; y�/ D ŒD.x/; y�C Œx;D.y/�

for all x; y 2 A.
Now, we investigate Lie C�-algebra homomorphisms in Lie C�-algebras and

Lie derivations on Lie C�-algebras associated with the Apollonius type additive
functional equation.

Theorem 3.17. Let r > 1, � be nonnegative real numbers and f W A ! B be a
mapping satisfying (3.19) such that

kf .Œx; y�/ � Œf .x/; f .y/�kB � � � kxkr
A � kykr

A (3.23)

for all x; y 2 A. Then the mapping f W A ! B is a Lie C�-algebra homomorphism.

Proof. It is straight forward to show that, the mapping f W A ! B is C-linear. It
follows from (3.23) that

���f .Œx; y�/ � Œf .x/; f .y/�
���

B
D lim

n!1 4n
���f
� Œx; y�
2n � 2n

�
�
h
f
� x

2n

�
; f
� y

2n

�i���
B

� lim
n!1

4n�

4nr
� kxkr

A � kykr
A

D 0

for all x; y 2 A and so

f .Œx; y�/ D Œf .x/; f .y/�

for all x; y 2 A. Hence the mapping f W A ! B is a Lie C�-algebra homomorphism.
This completes the proof. �

Remark 3.18. If r < 1, � is positive real numbers and f W A ! B be a mapping
satisfying (3.19) and (3.23). Then the mapping f W A ! B is a Lie C�-algebra
homomorphism.

Theorem 3.19. Let r > 1, � be nonnegative real numbers and f W A ! A be a
mapping satisfying (3.19) such that

kf .Œx; y�/ � Œf .x/; y� � Œx; f .y/�kA � � � kxkr
A � kykr

A (3.24)

for all x; y 2 A. Then the mapping f W A ! A is a Lie derivation.

Proof. It is straight forward to show that, the mapping f W A ! A is C-linear. It
follows from (3.24) that
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kf .Œx; y�/ � Œf .x/; y� � Œx; f .y/�kA

D lim
n!1 4n

���f
� Œx; y�
4n

�
�
h
f
� x

2n

�
;

y

2n

i
�
h x

2n
; f
� y

2n

�i���
A

� lim
n!1

4n�

4nr
� kxkr

A � kykr
A

D 0

for all x; y 2 A and so

f .Œx; y�/ D Œf .x/; y�C Œx; f .y/�

for all x; y 2 A. Thus the mapping f W A ! A is a Lie derivation. This completes the
proof. �

Remark 3.20. If r < 1, � is positive real numbers and f W A ! A be a mapping
satisfying (3.19) and (3.24). Then the mapping f W A ! A is a Lie derivation.

3.2.3 Homomorphisms and Derivations in JC�-Algebras

Assume that A is a JC�-algebra with the norm k � kA and B is a JC�-algebra with the
norm k � kB.

A C-linear mapping H W A ! B is called a JC�-algebra homomorphism if H W
A ! B satisfies the following:

H.x ı y/ D H.x/ ı H.y/

for all x; y 2 A. A C-linear mapping D W A ! A is called a Jordan derivation if
D W A ! A satisfies the following:

D.x ı y/ D D.x/ ı y C x ı D.y/

for all x; y 2 A.
Now, we investigate JC�-algebra homomorphisms between JC�-algebras and

Jordan derivations on JC�-algebras associated with the Apollonius type additive
functional equation.

Remark 3.21. Let r > 1, � be nonnegative real numbers and f W A ! B be a
mapping satisfying (3.19) such that

kf .x ı y/� f .x/ ı f .y/kB � � � kxkr
A � kykr

A (3.25)

for all x; y 2 A. Then the mapping f W A ! B is a JC�-algebra homomorphism.
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Remark 3.22. Let r < 1, � be positive real numbers and f W A ! B be a mapping
satisfying (3.19) and (3.25). Then the mapping f W A ! B is a JC�-algebra
homomorphism.

Remark 3.23. Let r > 1, � be nonnegative real numbers and f W A ! A be a
mapping satisfying (3.19) such that

kf .x ı y/� f .x/ ı y � x ı f .y/kA � � � kxkr
A � kykr

A (3.26)

for all x; y 2 A. Then the mapping f W A ! A is a Jordan derivation.

Remark 3.24. Let r < 1, � be positive real numbers and f W A ! A be a mapping
satisfying (3.19) and (3.26). Then the mapping f W A ! A is a Jordan derivation.

3.3 Stability of Jensen Type Functional Equations
in C�-Algebras

Using the fixed point method, we consider [250] the Hyers-Ulam stability of
homomorphisms in C�-algebras and Lie C�-algebras and derivations on C�-
algebras and Lie C�-algebras for the following Jensen type functional equation:

f
�x C y

2

�
C f

�x � y

2

�
D f .x/:

3.3.1 Stability of Homomorphisms in C�-Algebras

Assume that A is a C�-algebra with the norm k � kA and B is a C�-algebra with the
norm k � kB. For any mapping f W A ! B, we define

D	f .x; y/ WD 	f
�x C y

2

�
C 	f

�x � y

2

�
� f .	x/

for all 	 2 T
1 WD f
 2 C W j
j D 1g and x; y 2 A.

Now, we prove the Hyers-Ulam stability of homomorphisms in C�-algebras for
the functional equation D	f .x; y/ D 0.

Theorem 3.25. Let f W A ! B be a mapping for which there exists a function
' W A2 ! Œ0;1/ such that

1X
jD0

2�j'.2jx; 2jy/ < 1; (3.27)
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kD	f .x; y/kB � '.x; y/; (3.28)

kf .xy/ � f .x/f .y/kB � '.x; y/; (3.29)

kf .x�/ � f .x/�kB � '.x; x/ (3.30)

for all 	 2 T
1 and x; y 2 A. If there exists L < 1 such that

'.x; 0/ � 2L'
� x

2
; 0
�

for all x 2 A, then there exists a unique C�-algebra homomorphism H W A ! B
such that

kf .x/ � H.x/kB � L

1 � L
'.x; 0/ (3.31)

for all x 2 A.

Proof. Consider the set

X WD fg W A ! Bg

and introduce the generalized metric on X defined by

d.g; h/ D inffC 2 RC W kg.x/� h.x/kB � C'.x; 0/; 8x 2 Ag;

which .X; d/ is complete.
Now, we consider the linear mapping J W X ! X such that

Jg.x/ WD 1

2
g.2x/

for all x 2 A. Thus we have

d.Jg; Jh/ � Ld.g; h/

for all g; h 2 X. Letting 	 D 1 and y D 0 in (3.28), we get

���2f
� x

2

�
� f .x/

���
B

� '.x; 0/ (3.32)

for all x 2 A and so

���f .x/� 1

2
f .2x/

���
B

� 1

2
'.2x; 0/ � L'.x; 0/

for all x 2 A. Hence d.f ; Jf / � L.
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By Theorem 1.3, there exists a mapping H W A ! B such that

(1) H is a fixed point of J, i.e.,

H.2x/ D 2H.x/ (3.33)

for all x 2 A. The mapping H is a unique fixed point of J in the set

Y D fg 2 X W d.f ; g/ < 1g:

This implies that H is a unique mapping satisfying (3.33) such that there exists
C 2 .0;1/ satisfying

kH.x/ � f .x/kB � C'.x; 0/

for all x 2 A;
(2) d.Jnf ;H/ ! 0 as n ! 1. This implies the equality

lim
n!1

f .2nx/

2n
D H.x/ (3.34)

for all x 2 A;
(3) d.f ;H/ � 1

1�L d.f ; Jf /, which implies the inequality

d.f ;H/ � L

1 � L
:

This implies that the inequality (3.31) holds.

It follows from (3.27), (3.28) and (3.34) that

���H
�x C y

2

�
C H

�x � y

2

�
� H.x/

���
B

D lim
n!1

1

2n
kf .2n�1.x C y//C f .2n�1.x � y//� f .2nx/kB

� lim
n!1

1

2n
'.2nx; 2ny/

D 0

for all x; y 2 A and so

H
�x C y

2

�
C H

�x � y

2

�
D H.x/ (3.35)

for all x; y 2 A. Letting z D xCy
2

and w D x�y
2

in (3.35), we get
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H.z/C H.w/ D H.z C w/

for all z;w 2 A. So the mapping H W A ! B is Cauchy additive, i.e.,

H.z C w/ D H.z/C H.w/

for all z;w 2 A. Letting y D x in (3.28), we get

	f .x/ D f .	x/

for all 	 2 T
1 and x 2 A. By a similar method to above, we get

	H.x/ D H.	x/

for all 	 2 T
1 and x 2 A. Thus one can show that the mapping H W A ! B is

C-linear. It follows from (3.29) that

kH.xy/� H.x/H.y/kB D lim
n!1

1

4n
kf .4nxy/� f .2nx/f .2ny/kB

� lim
n!1

1

4n
'.2nx; 2ny/

� lim
n!1

1

2n
'.2nx; 2ny/

D 0

for all x; y 2 A. Then we have

H.xy/ D H.x/H.y/

for all x; y 2 A. It follows from (3.30) that

kH.x�/ � H.x/�kB D lim
n!1

1

2n
kf .2nx�/ � f .2nx/�kB

� lim
n!1

1

2n
'.2nx; 2nx/

D 0

for all x 2 A. Then we have

H.x�/ D H.x/�

for all x 2 A. Thus H W A ! B is a C�-algebra homomorphism satisfying (3.31).
This completes the proof. �
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Corollary 3.26. Let r < 1, � be nonnegative real numbers and f W A ! B be a
mapping such that

kD	f .x; y/kB � �.kxkr
A C kykr

A/; (3.36)

kf .xy/� f .x/f .y/kB � �.kxkr
A C kykr

A/; (3.37)

kf .x�/ � f .x/�kB � 2�kxkr
A (3.38)

for all 	 2 T
1 and x; y 2 A. Then there exists a unique C�-algebra homomorphism

H W A ! B such that

kf .x/ � H.x/kB � 2r�

2� 2r
kxkr

A (3.39)

for all x 2 A.

Proof. The proof follows from Theorem 3.25 by taking

'.x; y/ WD �.kxkr
A C kykr

A/

for all x; y 2 A and L D 2r�1. �

Theorem 3.27. Let f W A ! B be a mapping for which there exists a function
' W A2 ! Œ0;1/ satisfying (3.28), (3.29) and (3.30) such that

1X
jD0

4j'
� x

2j
;

y

2j

�
< 1 (3.40)

for all x; y 2 A. If there exists L < 1 such that

'.x; 0/ � 1

2
L'.2x; 0/

for all x 2 A, then there exists a unique C�-algebra homomorphism H W A ! B
such that

kf .x/ � H.x/kB � L

2 � 2L
'.x; 0/ (3.41)

for all x 2 A.

Proof. We consider the linear mapping J W X ! X such that

Jg.x/ WD 2g
�x

2

�
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for all x 2 A. It follows from (3.32) that

���f .x/ � 2f
� x

2

����
B

� '
� x

2
; 0
�

� L

2
'.x; 0/

for all x 2 A and hence d.f ; Jf / � L
2
. By Theorem 1.3, there exists a mapping

H W A ! B such that

(1) H is a fixed point of J, i.e.,

H.2x/ D 2H.x/ (3.42)

for all x 2 A. The mapping H is a unique fixed point of J in the set

Y D fg 2 X W d.f ; g/ < 1g:

This implies that H is a unique mapping satisfying (3.42) such that there exists
C 2 .0;1/ satisfying

kH.x/ � f .x/kB � C'.x; 0/

for all x 2 A;
(2) d.Jnf ;H/ ! 0 as n ! 1. This implies the equality

lim
n!1 2nf .

x

2n
/ D H.x/

for all x 2 A;
(3) d.f ;H/ � 1

1�L d.f ; Jf /, which implies the inequality

d.f ;H/ � L

2 � 2L
;

which implies that the inequality (3.41) holds.

The rest of the proof is similar to the proof of Theorem 3.25. This completes the
proof. �
Corollary 3.28. Let r > 2, � be nonnegative real numbers and f W A ! B be a
mapping satisfying (3.36), (3.37) and (3.38). Then there exists a unique C�-algebra
homomorphism H W A ! B such that

kf .x/ � H.x/kB � �

2r � 2kxkr
A (3.43)

for all x 2 A.
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Proof. The proof follows from Theorem 3.27 by taking

'.x; y/ WD �.kxkr
A C kykr

A/

for all x; y 2 A and L D 21�r. �

Theorem 3.29. Let f W A ! B be an odd mapping for which there exists a function
' W A2 ! Œ0;1/ satisfying (3.27), (3.28), (3.29) and (3.30). If there exists L < 1

such that

'.x; 3x/ � 2L'
� x

2
;
3x

2

�

for all x 2 A, then there exists a unique C�-algebra homomorphism H W A ! B
such that

kf .x/ � H.x/kB � 1

2 � 2L
'.x; 3x/ (3.44)

for all x 2 A.

Proof. Consider the set

X WD fg W A ! Bg

and introduce the generalized metric on X defined by

d.g; h/ D inffC 2 RC W kg.x/� h.x/kB � C'.x; 3x/; 8x 2 Ag;

which .X; d/ is complete.
Now, we consider the linear mapping J W X ! X such that

Jg.x/ WD 1

2
g.2x/

for all x 2 A. Now, we have

d.Jg; Jh/ � Ld.g; h/

for all g; h 2 X. Letting 	 D 1 and replacing y by 3x in (3.28), we get

kf .2x/� 2f .x/kB � '.x; 3x/ (3.45)

for all x 2 A and so

kf .x/ � 1

2
f .2x/kB � 1

2
'.x; 3x/
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for all x 2 A. Hence d.f ; Jf / � 1
2
. By Theorem 1.3, there exists a mapping H W A !

B such that

(1) H is a fixed point of J, i.e.,

H.2x/ D 2H.x/ (3.46)

for all x 2 A. The mapping H is a unique fixed point of J in the set

Y D fg 2 X W d.f ; g/ < 1g:
This implies that H is a unique mapping satisfying (3.46) such that there exists
C 2 .0;1/ satisfying

kH.x/ � f .x/kB � C'.x; 3x/

for all x 2 A;
(2) d.Jnf ;H/ ! 0 as n ! 1. This implies the equality

lim
n!1

f .2nx/

2n
D H.x/

for all x 2 A;
(3) d.f ;H/ � 1

1�L d.f ; Jf /, which implies the inequality

d.f ;H/ � 1

2 � 2L
:

This implies that the inequality (3.44) holds.

The rest of the proof is similar to the proof of Theorem 3.25. This completes the
proof. �

Corollary 3.30. Let r < 1
2
, � be nonnegative real numbers and f W A ! B be an

odd mapping such that

kD	f .x; y/kB � � � kxkr
A � kykr

A; (3.47)

kf .xy/� f .x/f .y/kB � � � kxkr
A � kykr

A; (3.48)

kf .x�/ � f .x/�kB � �kxk2r
A (3.49)

for all 	 2 T
1 and x; y 2 A. Then there exists a unique C�-algebra homomorphism

H W A ! B such that

kf .x/ � H.x/kB � 3r�

2 � 22r
kxk2r

A (3.50)

for all x 2 A.
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Proof. The proof follows from Theorem 3.29 by taking

'.x; y/ WD � � kxkr
A � kykr

A

for all x; y 2 A and L D 22r�1. �

Theorem 3.31. Let f W A ! B be an odd mapping for which there exists a function
' W A2 ! Œ0;1/ satisfying (3.28), (3.29), (3.30) and (3.40). If there exists L < 1

such that

'.x; 3x/ � 1

2
L'.2x; 6x/

for all x 2 A, then there exists a unique C�-algebra homomorphism H W A ! B
such that

kf .x/ � H.x/kB � L

2 � 2L
'.x; 3x/ (3.51)

for all x 2 A.

Proof. We consider the linear mapping J W X ! X such that

Jg.x/ WD 2g
�x

2

�

for all x 2 A. It follows from (3.45) that

���f .x/ � 2f
� x

2

����
B

� '
� x

2
;
3x

2

�
� L

2
'.x; 3x/

for all x 2 A and hence d.f ; Jf / � L
2
. By Theorem 1.3, there exists a mapping

H W A ! B such that

(1) H is a fixed point of J, i.e.,

H.2x/ D 2H.x/ (3.52)

for all x 2 A. The mapping H is a unique fixed point of J in the set

Y D fg 2 X W d.f ; g/ < 1g:

This implies that H is a unique mapping satisfying (3.52) such that there exists
C 2 .0;1/ satisfying

kH.x/ � f .x/kB � C'.x; 3x/

for all x 2 A;
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(2) d.Jnf ;H/ ! 0 as n ! 1. This implies the equality

lim
n!1 2nf

� x

2n

�
D H.x/

for all x 2 A;
(3) d.f ;H/ � 1

1�L d.f ; Jf /, which implies the inequality

d.f ;H/ � L

2 � 2L
;

which implies that the inequality (3.51) holds.

The rest of the proof is similar to the proof of Theorem 3.25. This completes the
proof. �

Corollary 3.32. Let r > 1, � be nonnegative real numbers and f W A ! B be an odd
mapping satisfying (3.47), (3.48) and (3.49). Then there exists a unique C�-algebra
homomorphism H W A ! B such that

kf .x/ � H.x/kB � �

22r � 2
kxk2r

A (3.53)

for all x 2 A.

Proof. The proof follows from Theorem 3.31 by taking

'.x; y/ WD � � kxkr
A � kykr

A

for all x; y 2 A and L D 21�2r. �

3.3.2 Stability of Derivations in C�-Algebras

Now, we prove the Hyers-Ulam stability of derivations on C�-algebras for the
functional equation D	f .x; y/ D 0.

Theorem 3.33. Let f W A ! A be a mapping for which there exists a function
' W A2 ! Œ0;1/ satisfying (3.27) such that

kD	f .x; y/kA � '.x; y/ (3.54)

and

kf .xy/ � f .x/y � xf .y/kA � '.x; y/ (3.55)

for all 	 2 T
1 and x; y 2 A. If there exists L < 1 such that
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'.x; 0/ � 2L'
� x

2
; 0
�

for all x 2 A. Then there exists a unique derivation ı W A ! A such that

kf .x/ � ı.x/kA � L

1 � L
'.x; 0/ (3.56)

for all x 2 A.

Proof. It is straight forward to show that, there exists a unique involutive C-linear
mapping ı W A ! A satisfying (3.56). The mapping ı W A ! A is given by

ı.x/ D lim
n!1

f .2nx/

2n

for all x 2 A. It follows from (3.55) that

kı.xy/� ı.x/y � xı.y/kA

D lim
n!1

1

4n
kf .4nxy/� f .2nx/ � 2ny � 2nxf .2ny/kA

� lim
n!1

1

4n
'.2nx; 2ny/

� lim
n!1

1

2n
'.2nx; 2ny/

D 0

for all x; y 2 A and so

ı.xy/ D ı.x/y C xı.y/

for all x; y 2 A. Thus ı W A ! A is a derivation satisfying (3.56). This completes the
proof. �
Corollary 3.34. Let r < 1, � be nonnegative real numbers and f W A ! A be a
mapping such that

kD	f .x; y/kA � �.kxkr
A C kykr

A/ (3.57)

and

kf .xy/ � f .x/y � xf .y/kA � �.kxkr
A C kykr

A/ (3.58)

for all 	 2 T
1 and x; y 2 A. Then there exists a unique derivation ı W A ! A such

that

kf .x/ � ı.x/kA � 2r�

2 � 2r
kxkr

A (3.59)

for all x 2 A.
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Proof. The proof follows from Theorem 3.33 by taking

'.x; y/ WD �.kxkr
A C kykr

A/

for all x; y 2 A and L D 2r�1. �

Remark 3.35. If f W A ! A is a mapping for which there exists a function ' W
A2 ! Œ0;1/ satisfying (3.40), (3.54) and (3.55). If there exists L < 1 such that
'.x; 0/ � 1

2
L'.2x; 0/ for all x 2 A, then there exists a unique derivation ı W A ! A

such that

kf .x/ � ı.x/kA � L

2 � 2L
'.x; 0/ (3.60)

for all x 2 A.

Corollary 3.36. Let r > 2, � be nonnegative real numbers and f W A ! A be a
mapping satisfying (3.57) and (3.58).

Then there exists a unique derivation ı W A ! A such that

kf .x/ � ı.x/kA � �

2r � 2
kxkr

A (3.61)

for all x 2 A.

Proof. The proof follows from Theorem 3.35 by taking

'.x; y/ WD �.kxkr
A C kykr

A/

for all x; y 2 A and L D 21�r. �

Remark 3.37. For the inequalities controlled by the product of powers of norms,
one can obtain similar results to Theorems 3.29 and 3.31 and Corollaries 3.30
and 3.32.

3.3.3 Stability of Homomorphisms in Lie C�-Algebras

Assume that A is a Lie C�-algebra with the norm k � kA and B is a Lie C�-algebra
with the norm k � kB.

Now, we prove the Hyers-Ulam stability of homomorphisms in Lie C�-algebras
for the functional equation D	f .x; y/ D 0.

Theorem 3.38. Let f W A ! B be a mapping for which there exists a function
' W A2 ! Œ0;1/ satisfying (3.27) and (3.28) such that

kf .Œx; y�/ � Œf .x/; f .y/�kB � '.x; y/ (3.62)
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for all x; y 2 A. If there exists L < 1 such that

'.x; 0/ � 2L'
� x

2
; 0
�

for all x 2 A, then there exists a unique Lie C�-algebra homomorphism H W A ! B
satisfying (3.31).

Proof. It is straight forward to show that, there exists a unique C-linear mapping
H W A ! B satisfying (3.31). The mapping H W A ! B is given by

H.x/ D lim
n!1

f .2nx/

2n

for all x 2 A. It follows from (3.62) that

kH.Œx; y�/ � ŒH.x/;H.y/�kB

D lim
n!1

1

4n
kf .4nŒx; y�/ � Œf .2nx/; f .2ny/�kB

� lim
n!1

1

4n
'.2nx; 2ny/

� lim
n!1

1

2n
'.2nx; 2ny/

D 0

for all x; y 2 A and so

H.Œx; y�/ D ŒH.x/;H.y/�

for all x; y 2 A. Thus H W A ! B is a Lie C�-algebra homomorphism
satisfying (3.31). This completes the proof. �

Corollary 3.39. Let r < 1, � be nonnegative real numbers and f W A ! B be a
mapping satisfying (3.36) such that

kf .Œx; y�/ � Œf .x/; f .y/�kB � �.kxkr
A C kykr

A/ (3.63)

for all x; y 2 A.
Then there exists a unique Lie C�-algebra homomorphism H W A ! B

satisfying (3.39).

Proof. The proof follows from Theorem 3.38 by taking

'.x; y/ WD �.kxkr
A C kykr

A/

for all x; y 2 A and L D 2r�1. �



3.3 Stability of Jensen Type Functional Equations in C�-Algebras 83

Remark 3.40. If f W A ! B is a mapping for which there exists a function
' W A2 ! Œ0;1/ satisfying (3.28), (3.40) and (3.62). If there exists L < 1 such
that '.x; 0/ � 1

2
L'.2x; 0/ for all x 2 A, then there exists a unique Lie C�-algebra

homomorphism H W A ! B satisfying (3.41).

Corollary 3.41. Let r > 2, � be nonnegative real numbers and f W A ! B be a
mapping satisfying (3.36) and (3.63). Then there exists a unique Lie C�-algebra
homomorphism H W A ! B satisfying (3.43).

Proof. The proof follows from Theorem 3.40 by taking

'.x; y/ WD �.kxkr
A C kykr

A/

for all x; y 2 A and L D 21�r. �

Remark 3.42. For the inequalities controlled by the product of powers of norms,
one can obtain similar results to Theorems 3.29 and 3.31 and their corollaries.

3.3.4 Stability of Lie Derivations in C�-Algebras

Assume that A is a Lie C�-algebra with the norm k � kA.
Now, we prove the Hyers-Ulam stability of derivations on Lie C�-algebras for

the functional equation D	f .x; y/ D 0.

Theorem 3.43. Let f W A ! A be a mapping for which there exists a function
' W A2 ! Œ0;1/ satisfying (3.27) and (3.54) such that

kf .Œx; y�/ � Œf .x/; y� � Œx; f .y/�kA � '.x; y/ (3.64)

for all x; y 2 A. If there exists L < 1 such that

'.x; 0/ � 2L'
� x

2
; 0
�

for all x 2 A. Then there exists a unique Lie derivation ı W A ! A satisfying (3.56).

Proof. It is easy to show that, there exists a unique involution C-linear mapping
ı W A ! A satisfying (3.56). The mapping ı W A ! A is given by

ı.x/ D lim
n!1

f .2nx/

2n

for all x 2 A. It follows from (3.62) that

kı.Œx; y�/ � Œı.x/; y� � Œx; ı.y/�kA

D lim
n!1

1

4n
kf .4nŒx; y�/ � Œf .2nx/; 2ny� � Œ2nx; f .2ny/�kA
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� lim
n!1

1

4n
'.2nx; 2ny/

� lim
n!1

1

2n
'.2nx; 2ny/

D 0

for all x; y 2 A and so

ı.Œx; y�/ D Œı.x/; y�C Œx; ı.y/�

for all x; y 2 A. Thus ı W A ! A is a derivation satisfying (3.56). This completes the
proof. �

Corollary 3.44. Let r < 1, � be nonnegative real numbers and f W A ! A be a
mapping satisfying (3.57) such that

kf .Œx; y�/ � Œf .x/; y� � Œx; f .y/�kA � �.kxkr
A C kykr

A/ (3.65)

for all x; y 2 A. Then there exists a unique Lie derivation ı W A ! A
satisfying (3.59).

Proof. The proof follows from Theorem 3.38 by taking

'.x; y/ WD �.kxkr
A C kykr

A/

for all x; y 2 A and L D 2r�1. �

Remark 3.45. If f W A ! A is a mapping for which there exists a function
' W A2 ! Œ0;1/ satisfying (3.40), (3.54) and (3.64). Whenever there exists L < 1

such that

'.x; 0/ � 1

2
L'.2x; 0/

for all x 2 A, then there exists a unique Lie derivation ı W A ! A satisfying (3.60).

Corollary 3.46. Let r > 2, � be nonnegative real numbers and f W A ! A be
a mapping satisfying (3.57) and (3.65). Then there exists a unique Lie derivation
ı W A ! A satisfying (3.61).

Proof. The proof follows from Theorem 3.45 by taking

'.x; y/ WD �.kxkr
A C kykr

A/

for all x; y 2 A and L D 21�r. �

Remark 3.47. For the inequalities controlled by the product of powers of norms,
one can obtain similar results to Theorems 3.29 and 3.31 and their corollaries.
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3.4 Generalized Additive Mapping

Recently, Park and Park [243] introduced and investigated the following generalized
additive functional equation

nX
iD1

riL

0
@ nX

jD1
rj.xi � xj/

1
AC

 
nX

iD1
ri

!
L

 
nX

iD1
rixi

!

D
 

nX
iD1

ri

!
nX

iD1
riL.xi/ (3.66)

for all r1; � � � ; rn 2 .0;1/ whose solution is called a generalized additive mapping.
In this section, we consider [210] the following additive functional equation

which is somewhat different from (3.66):

nX
jD1

f
�1
2

X
1�i�n;i¤j

rixi � 1

2
rjxj

�
C

nX
iD1

rif .xi/ D nf
�1
2

nX
iD1

rixi

�
(3.67)

for all r1; � � � ; rn 2 R: Every solution of the functional equation (3.67) is said to be
a generalized additive mapping.

Using the fixed point method, we investigate the Hyers–Ulam stability of the
functional equation (3.67) in Banach modules over a C�-algebra. These results are
applied to investigate C�-algebra homomorphisms in unital C�-algebras.

Throughout this section, assume that A is a unital C�-algebra with the norm k �kA

and the unit e that B is a unital C�-algebra with the norm k � kB and X and Y are
left Banach modules over a unital C�-algebra A with the norms k � kX and k � kY ;

respectively. Let U.A/ be the group of unitary elements in A and let r1; � � � ; rn 2 R:

3.4.1 Hyers–Ulam Stability of Functional Equations
in Banach Modules over a C�-Algebra

For any mapping f W X ! Y; u 2 U.A/ and 	 2 C; we define Du;r1;��� ;rn f and
D	;r1;��� ;rn f W Xn ! Y by

Du;r1;��� ;rn f .x1; � � � ; xn/

WD
nX

jD1
f
�1
2

X
1�i�n;i¤j

riuxi � 1

2
rjuxj

�
C

nX
iD1

riuf .xi/� nf
�1
2

nX
iD1

riuxi

�
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and

D	;r1;��� ;rn f .x1; � � � ; xn/

WD
nX

jD1
f
�1
2

X
1�i�n;i¤j

	rixi � 1

2
	rjxj

�
C

nX
iD1

	rif .xi/� nf
�1
2

nX
iD1

	rixi

�

for all x1; � � � ; xn 2 X, respectively.

Lemma 3.48. Let X and Y be linear spaces and r1; � � � ; rn be real numbers withPn
kD1 rk ¤ 0 and ri ¤ 0, rj ¤ 0 for some 1 � i < j � n: Assume that a mapping

L W X ! Y satisfies the functional equation (3.67) for all x1; � � � ; xn 2 X: Then the
mapping L is additive. Moreover, L.rkx/ D rkL.x/ for all x 2 X and 1 � k � n:

Proof. Since
Pn

kD1 rk ¤ 0, putting x1 D � � � D xn D 0 in (3.67), we get L.0/ D 0.
Without loss of generality, we assume that r1; r2 ¤ 0. Letting x3 D � � � D xn D 0

in (3.67), we get

L

��r1x1 C r2x2
2

�
C L

� r1x1 � r2x2
2

�
C r1L.x1/C r2L.x2/

D 2L

�
r1x1 C r2x2

2

�
(3.68)

for all x1; x2 2 X. Letting x2 D 0 in (3.68), we get

r1L.x1/ D L
� r1x1
2

�
� L

��r1x1
2

�
(3.69)

for all x1 2 X. Similarly, by putting x1 D 0 in (3.68), we get

r2L.x2/ D L
� r2x2
2

�
� L

��r2x2
2

�
(3.70)

for all x2 2 X. It follows from (3.68), (3.69) and (3.70) that

L

��r1x1 C r2x2
2

�
C L

� r1x1 � r2x2
2

�

C L
� r1x1
2

�
C L

� r2x2
2

�
� L

��r1x1
2

�
� L

��r2x2
2

�
(3.71)

D 2L

�
r1x1 C r2x2

2

�

for all x1; x2 2 X. Replacing x1 and x2 by 2x
r1

and 2x
r2

in (3.71), we get

L.�x C y/C L.x � y/C L.x/C L.y/� L.�x/ � L.�y/

D 2L.x C y/ (3.72)
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for all x; y 2 X. Letting y D �x in (3.72), we get that

L.�2x/C L.2x/ D 0

for all x 2 X. Then the mapping L is odd. Therefore, it follows from (3.72) that the
mapping L is additive. Moreover, let x 2 X and 1 � k � n. Setting xk D x and
xl D 0 for all 1 � l � n with l ¤ k in (3.67) and, using the oddness of L, it follows
that L.rkx/ D rkL.x/. This completes the proof. �

Using the same method as in the proof of Lemma 3.48, we have an alternative
result of Lemma 3.48 when

Pn
kD1 rk D 0.

Lemma 3.49. Let X and Y be linear spaces and r1; � � � ; rn be real numbers with
ri ¤ 0; rj ¤ 0 for some 1 � i < j � n: Assume that a mapping L W X ! Y with
L.0/ D 0 satisfies the functional equation (3.67) for all x1; � � � ; xn 2 X: Then the
mapping L is additive. Moreover, L.rkx/ D rkL.x/ for all x 2 X and all 1 � k � n:

Now, we investigate the Hyers-Ulam stability of a generalized additive mapping
in Banach modules over a unital C�-algebra. Here r1; � � � ; rn are real numbers such
that ri ¤ 0 and rj ¤ 0 for fixed 1 � i < j � n:

Theorem 3.50. Let f W X ! Y be a mapping satisfying f .0/ D 0 for which there
exists a function ' W Xn ! Œ0;1/ such that

kDe;r1;��� ;rn f .x1; � � � ; xn/kY � '.x1; � � � ; xn/ (3.73)

for each x1; � � � ; xn 2 X. Let

'ij.x; y/ WD '
�
0; � � � ; 0; x„ƒ‚…

i th

; 0; � � � ; 0; y„ƒ‚…
j th

; 0; � � � ; 0
�

for all x; y 2 X and 1 � i < j � n: If there exists 0 < C < 1 such that

'.2x1; � � � ; 2xn/ � 2C'.x1; � � � ; xn/

for all x1; � � � ; xn 2 X, then there exists a unique generalized additive mapping
L W X ! Y such that

kf .x/ � L.x/kY � 1

4� 4C

n
'ij

�2x

ri
;
2x

rj

�
C 2'ij

� x

ri
;� x

rj

�

C 'ij

�2x

ri
; 0
�

C 2'ij

� x

ri
; 0
�

C 'ij

�
0;
2x

rj

�
C 2'ij

�
0;� x

rj

�o
(3.74)

for all x 2 X: Moreover, L.rkx/ D rkL.x/ for all x 2 X and 1 � k � n:
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Proof. For each 1 � k � n with k ¤ i; j; let xk D 0 in (3.73). Then we get the
following inequality:

���f
��rixi C rjxj

2

�
C f

� rixi � rjxj

2

�
� 2f

� rixi C rjxj

2

�
C rif .xi/C rjf .xj/

���
Y

� '
�
0; � � � ; 0; xi„ƒ‚…

i th

; 0; � � � ; 0; xj„ƒ‚…
j th

; 0; � � � ; 0
�

(3.75)

for all xi; xj 2 X: Letting xi D 0 in (3.75), we get

���f
�
� rjxj

2

�
� f

� rjxj

2

�
C rjf .xj/

���
Y

� 'ij.0; xj/ (3.76)

for all xj 2 X: Similarly, letting xj D 0 in (3.75), we get

���f
�
� rixi

2

�
� f

� rixi

2

�
C rif .xi/

���
Y

� 'ij.xi; 0/ (3.77)

for all xi 2 X: It follows from (3.75), (3.76) and (3.77) that

���f
��rixi C rjxj

2

�
C f

� rixi � rjxj

2

�
� 2f

�rixi C rjxj

2

�
C f

� rixi

2

�
C f

� rjxj

2

�
� f
�

� rixi

2

�
� f
�

� rjxj

2

����
Y

� 'ij.xi; xj/C 'ij.xi; 0/C 'ij.0; xj/ (3.78)

for all xi; xj 2 X: Replacing xi and xj by 2x
ri

and 2y
rj

in (3.78), it follows that

kf .�x C y/C f .x � y/ � 2f .x C y/

C f .x/C f .y/ � f .�x/ � f .�y/kY

� 'ij

�
2x

ri
;
2y

rj

�
C 'ij

�
2x

ri
; 0

�
C 'ij

�
0;
2y

rj

�
(3.79)

for all x; y 2 X: Putting y D x in (3.79), we get

k2f .x/ � 2f .�x/ � 2f .2x/kY

� 'ij

�2x

ri
;
2x

rj

�
C 'ij

�2x

ri
; 0
�

C 'ij

�
0;
2x

rj

�
(3.80)
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for all x 2 X: Replacing x and y by x
2

and � x
2

in (3.79), respectively, we get

kf .x/C f .�x/kY

� 'ij

� x

ri
;� x

rj

�
C 'ij

� x

ri
; 0
�

C 'ij

�
0;� x

rj

�
(3.81)

for all x 2 X: It follows from (3.80) and (3.81) that

���1
2

f .2x/� f .x/
���

Y
� 1

4
 .x/ (3.82)

for all x 2 X; where

 .x/ WD 'ij

�2x

ri
;
2x

rj

�
C 2'ij

� x

ri
;� x

rj

�

C 'ij

�2x

ri
; 0
�

C 2'ij

� x

ri
; 0
�

C 'ij

�
0;
2x

rj

�
C 2'ij

�
0;� x

rj

�
:

Consider the set W WD fg W X ! Yg and introduce the generalized metric on W
defined by

d.g; h/ D inffC 2 RC W kg.x/� h.x/kY � C .x/; 8x 2 Xg:

It is easy to show that .W ; d/ is complete. Now, we consider the linear mapping
J W W ! W such that

Jg.x/ WD 1

2
g.2x/ (3.83)

for all x 2 X. It follows that d.Jg; Jh/ � Cd.g; h/ for all g; h 2 W and so
d.f ; Jf / � 1

4
. By Theorem 1.3, there exists a mapping L W X ! Y such that

(1) L is a fixed point of J, i.e.,

L.2x/ D 2L.x/ (3.84)

for all x 2 X. The mapping L is a unique fixed point of J in the set

Z D fg 2 W W d.f ; g/ < 1g:
This implies that L is a unique mapping satisfying (3.84) such that there exists
C 2 .0;1/ satisfying

kL.x/ � f .x/kY � C .x/

for all x 2 X;
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(2) d.Jnf ;L/ ! 0 as n ! 1. This implies the equality

lim
n!1

f .2nx/

2n
D L.x/

for all x 2 X;
(3) d.f ;L/ � 1

1�C d.f ; Jf /, which implies the inequality d.f ;L/ � 1
4�4C : This

implies that the inequality (3.74) holds.

Since '.2x1; � � � ; 2xn/ � 2C'.x1; � � � ; xn/, we have

kDe;r1;��� ;rn L.x1; � � � ; xn/kY D lim
k!1

1

2k
kDe;r1;��� ;rn f .2kx1; � � � ; 2kxn/kY

� lim
k!1

1

2k
'.2kx1; � � � ; 2kxn/

� lim
k!1 Ck'.x1; � � � ; xn/ D 0

for all x1; � � � ; xn 2 X: Therefore, the mapping L W X ! Y satisfies the Eq. (3.67)
and L.0/ D 0: Hence, by Lemma 3.49, L is a generalized additive mapping and
L.rkx/ D rkL.x/ for all x 2 X and all 1 � k � n: This completes the proof. �

Theorem 3.51. Let f W X ! Y be a mapping satisfying f .0/ D 0 for which there
exists a function ' W Xn ! Œ0;1/ satisfying

kDu;r1;��� ;rn f .x1; � � � ; xn/k � '.x1; � � � ; xn/ (3.85)

for all x1; � � � ; xn 2 X and u 2 U.A/: If there exists 0 < C < 1 such that

'.2x1; � � � ; 2xn/ � 2C'.x1; � � � ; xn/

for all x1; � � � ; xn 2 X, then there exists a unique A-linear generalized additive
mapping L W X ! Y satisfying (3.74) for all x 2 X: Moreover, L.rkx/ D rkL.x/
for all x 2 X and 1 � k � n:

Proof. By Theorem 3.50, there exists a unique generalized additive mapping L W
X ! Y satisfying (3.74) and, moreover, L.rkx/ D rkL.x/ for all x 2 X and 1 � k �
n: By the assumption, for all u 2 U.A/, we get

���Du;r1;��� ;rn L.0; � � � ; 0; x„ƒ‚…
i th

; 0 � � � ; 0/
���

Y

D lim
k!1

1

2k

���Du;r1;��� ;rn f .0; � � � ; 0; 2kx„ƒ‚…
i th

; 0 � � � ; 0/
���

Y
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� lim
k!1

1

2k
'
�
0; � � � ; 0; 2kx„ƒ‚…

i th

; 0 � � � ; 0
�

� lim
k!1 Ck'

�
0; � � � ; 0; x„ƒ‚…

i th

; 0 � � � ; 0
�

D 0

for all x 2 X and so

riuL.x/ D L.riux/

for all u 2 U.A/ and x 2 X: Since L.rix/ D riL.x/ for all x 2 X and ri ¤ 0; we have

L.ux/ D uL.x/

for all u 2 U.A/ and x 2 X: Now, we have

L.ax C by/ D L.ax/C L.by/ D aL.x/C bL.y/

for all a; b 2 A .a; b ¤ 0/ and x; y 2 X: Since L.0x/ D 0 D 0L.x/ for all x 2 X;
the unique generalized additive mapping L W X ! Y is an A-linear mapping. This
completes the proof. �

Theorem 3.52. Let f W X ! Y be a mapping satisfying f .0/ D 0 for which there
exists a function ' W Xn ! Œ0;1/ such that

kDe;r1;��� ;rn f .x1; � � � ; xn/kY � '.x1; � � � ; xn/ (3.86)

for all x1; � � � ; xn 2 X. If there exists 0 < C < 1 such that

'.x1; � � � ; 2n/ � C

2
'.2x1; � � � ; 2xn/

for all x1; � � � ; xn 2 X, then there exists a unique generalized additive mapping
L W X ! Y such that

kf .x/ � L.x/kY

� C

4 � 4C

n
'ij

�2x

ri
;
2x

rj

�
C 2'ij

� x

ri
;� x

rj

�

C 'ij

�2x

ri
; 0
�

C 2'ij

� x

ri
; 0
�

C 'ij

�
0;
2x

rj

�
C 2'ij

�
0;� x

rj

�o
(3.87)

for all x 2 X; where 'ij is defined in the statement of Theorem 3.50. Moreover,
L.rkx/ D rkL.x/ for all x 2 X and 1 � k � n:



92 3 Stability of Functional Equations in C�-Algebras

Proof. It follows from (3.82) that

���f .x/� f
� x

2

����
Y

� 1

2
 
� x

2

�
� C

4
 .x/

for all x 2 X; where is defined in the proof of Theorem 3.50. The rest of the proof
is similar to the proof of Theorem 3.50. This completes the proof. �

Remark 3.53. Let f W X ! Y be a mapping with f .0/ D 0 for which there exists a
function ' W Xn ! Œ0;1/ satisfying

kDu;r1;��� ;rn f .x1; � � � ; xn/k � '.x1; � � � ; xn/ (3.88)

for all x1; � � � ; xn 2 X and u 2 U.A/: If there exists 0 < C < 1 such that

'.x1; � � � ; 2n/ � C

2
'.2x1; � � � ; 2xn/

for all x1; � � � ; xn 2 X, then there exists a unique A-linear generalized additive
mapping L W X ! Y satisfying (3.87) for all x 2 X: Moreover, L.rkx/ D rkL.x/
for all x 2 X and 1 � k � n:

Remark 3.54. In Theorems 3.52 and 3.53, one can assume that
Pn

kD1 rk ¤ 0 instead
of f .0/ D 0:

3.4.2 Homomorphisms in Unital C�-Algebras

Now, we investigate C�-algebra homomorphisms in unital C�-algebras.
We use the following lemma in the proof of the following theorem.

Lemma 3.55 ([229]). Let f W A ! B be an additive mapping such that
f .	x/ D 	f .x/ for all x 2 A and 	 2 S

1 WD f� 2 C W j�j D 1g: Then the mapping
f W A ! B is C-linear.

Theorem 3.56. Let f W A ! B be a mapping with f .0/ D 0 for which there exists a
function ' W An ! Œ0;1/ satisfying

��D	;r1;��� ;rn f .x1; � � � ; xn/
��

B
� '.x1; � � � ; xn/; (3.89)��f .2ku�/� f .2ku/�

��
B

� '
�
2ku; � � � ; 2ku„ ƒ‚ …

n times

�
; (3.90)

��f .2kux/� f .2ku/f .x/
��

B
� '

�
2kux; � � � ; 2kux„ ƒ‚ …

n times

�
(3.91)
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for all x; x1; � � � ; xn 2 A; u 2 U.A/; k 2 N and 	 2 S
1. If there exists 0 < C < 1

such that

'.2x1; � � � ; 2xn/ � 2C'.x1; � � � ; xn/

for all x1; � � � ; xn 2 A, then the mapping f W A ! B is a C�-algebra homomorphism.

Proof. Since jJj � 3; letting 	 D 1 and xk D 0 for all 1 � k � n with k ¤ i; j
in (3.89), we get

f

��rixi C rjxj

2

�
C f

� rixi � rjxj

2

�
C rif .xi/C rjf .xj/

D 2f

�
rixi C rjxj

2

�

for all xi; xj 2 A: By Lemma 3.48, the mapping f is additive and f .rkx/ D rkf .x/
for all x 2 A and k D i; j: So, by letting xi D x and xk D 0 for all 1 � k � n with
k ¤ i in (3.89), it follows that f .	x/ D 	f .x/ for all x 2 A and 	 2 S

1. Therefore,
by Lemma 3.55, the mapping f is C-linear. Hence it follows from (3.90) and (3.91)
that

kf .u�/ � f .u/�kB D lim
k!1

1

2k

��f .2ku�/� f .2ku/�
��

B

� lim
k!1

1

2k
'
�
2ku; � � � ; 2ku„ ƒ‚ …

n times

�

� lim
k!1 Ck'

�
u; � � � ; u„ ƒ‚ …

n times

�

D 0

and

kf .ux/ � f .u/f .x/kB D lim
k!1

1

2k

��f .2kux/� f .2ku/f .x/
��

B

� lim
k!1

1

2k
'
�
2kux; � � � ; 2kux„ ƒ‚ …

n times

�

� lim
k!1 Ck'

�
ux; � � � ; ux„ ƒ‚ …

n times

�

D 0
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for all x 2 A and u 2 U.A/ and so

f .u�/ D f .u/�; f .ux/ D f .u/f .x/

for all x 2 A and u 2 U.A/: Since f is C-linear and each x 2 A is a finite linear
combination of unitary elements (see [168]), i.e., x D Pm

kD1 �kuk; where �k 2 C

and uk 2 U.A/ for all 1 � k � n; we have

f .x�/ D f

 
mX

kD1
�ku�

k

!
D

mX
kD1

�kf
�
u�

k

� D
mX

kD1
�kf .uk/

�

D
 

mX
kD1

�kf .uk/

!�
D f

 
mX

kD1
�kuk

!�
D f .x/�

and

f .xy/ D f

 
mX

kD1
�kuky

!
D

mX
kD1

�kf .uky/

D
mX

kD1
�kf .uk/f .y/ D f

 
mX

kD1
�kuk

!
f .y/ D f .x/f .y/

for all x; y 2 A: Therefore, the mapping f W A ! B is a C�-algebra homomorphism.
This completes the proof. �

Remark 3.57. Let f W A ! B be a mapping with f .0/ D 0 for which there exists a
function ' W An ! Œ0;1/ satisfying

kD	;r1;��� ;rn f .x1; � � � ; xn/kB � '
�

x1; � � � ; xn

�
;

���f
�u�

2k

�
� f
� u

2k

�����
B

� �
� u

2k
; � � � ; u

2k„ ƒ‚ …
n times

�
; (3.92)

���f
�ux

2k

�
� f
� u

2k

�
f .x/

���
B

� �
� ux

2k
; � � � ; ux

2k„ ƒ‚ …
n times

�
(3.93)

for all x; x1; � � � ; xn 2 A; u 2 U.A/; k 2 N and 	 2 S
1. If there exists 0 < C < 1

such that

'.x1; � � � ; 2n/ � C

2
'.2x1; � � � ; 2xn/

for all x1; � � � ; xn 2 A, then the mapping f W A ! B is a C�-algebra homomorphism.
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Remark 3.58. In Theorem 3.56 and last remark, one can assume that
Pn

kD1 rk ¤ 0

instead of f .0/ D 0:

Theorem 3.59. Let f W A ! B be a mapping with f .0/ D 0 for which there exists a
function ' W An ! Œ0;1/ satisfying (3.90), (3.91) and

kD	;r1;��� ;rn f .x1; � � � ; xn/kB � '.x1; � � � ; xn/; (3.94)

for all x1; � � � ; xn 2 A and 	 2 S
1. Assume that limk!1 1

2k f .2ke/ is invertible. If
there exists 0 < C < 1 such that

'.2x1; � � � ; 2xn/ � 2C'.x1; � � � ; xn/

for all x1; � � � ; xn 2 A, then the mapping f W A ! B is a C�-algebra homomorphism.

Proof. Consider the C�-algebras A and B as left Banach modules over the unital
C�-algebra C: By Theorem 3.51, there exists a unique C-linear generalized additive
mapping H W A ! B defined by

H.x/ D lim
k!1

1

2k
f .2kx/

for all x 2 A: By (3.90) and (3.91), we get

��H
�
u��� H.u/�

��
B

D lim
k!1

1

2k

��f
�
2ku�� � f

�
2ku
�� ��

B

� lim
k!1

1

2k
'
�
2ku; � � � ; 2ku„ ƒ‚ …

n times

�

D 0

and

kH.ux/� H.u/f .x/kB D lim
k!1

1

2k

��f
�
2kux

�� f .2ku/f .x/
��

B

� lim
k!1

1

2k
'
�
2kux; � � � ; 2kux„ ƒ‚ …

n times

�

D 0

for all u 2 U.A/ and x 2 A and so

H
�
u�� D H.u/�; H.ux/ D H.u/f .x/
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for all u 2 U.A/ and x 2 A: Therefore, by the additivity of H, we have

H.ux/ D lim
k!1

1

2k
H
�
2kux

� D H.u/ lim
k!1

1

2k
f
�
2kx
� D H.u/H.x/ (3.95)

for all u 2 U.A/ and x 2 A: Since H is C-linear and each x 2 A is a finite linear
combination of unitary elements, i.e., x D Pm

kD1 �kuk;where �k 2 C and uk 2 U.A/
for all 1 � k � n; it follows from (3.95) that

H.xy/ D H

 
mX

kD1
�kuky

!
D

mX
kD1

�kH.uky/

D
mX

kD1
�kH.uk/H.y/ D H

 
mX

kD1
�kuk

!
H.y/

D H.x/H.y/

and

H
�
x�� D H

 
mX

kD1
�ku�

k

!
D

mX
kD1

�kH.u�
k /

D
mX

kD1
�kH.uk/

� D
 

mX
kD1

�kH.uk/

!�

D H

� mX
kD1

�kuk

��
D H.x/�

for all x; y 2 A: Since H.e/ D limk!1 1
2k f .2ke/ is invertible and

H.e/H.y/ D H.ey/ D H.e/f .y/; H.y/ D f .y/

for all y 2 A: Therefore, the mapping f W A ! B is a C�-algebra homomorphism.
This completes the proof. �

Remark 3.60. Let f W A ! B be a mapping with f .0/ D 0 for which there exists a
function ' W An ! Œ0;1/ satisfying (3.92), (3.93) and

kD	;r1;��� ;rn f .x1; � � � ; xn/kB � '.x1; � � � ; xn/;

for all x1; � � � ; xn 2 A and	 2 S
1. Assume that limk!1 2kf . e

2k / is invertible. If there
exists 0 < C < 1 such that

'.x1; � � � ; 2n/ � C

2
'.2x1; � � � ; 2xn/

for all x1; � � � ; xn 2 A, then the mapping f W A ! B is a C�-algebra homomorphism.
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In the last Remark, one can assume that
Pn

kD1 rk ¤ 0 instead of f .0/ D 0:

Theorem 3.61. Let f W A ! B be a mapping with f .0/ D 0 for which there exists a
function ' W An ! Œ0;1/ satisfying (3.90), (3.91) and

kD	;r1;��� ;rn f .x1; � � � ; xn/kB � '.x1; � � � ; xn/ (3.96)

for 	 D i; 1 and x1; � � � ; xn 2 A. Assume that limk!1 1
2k f .2ke/ is invertible and,

for each fixed x 2 A, the mapping t 7! f .tx/ is continuous in t 2 R. If there exists
0 < C < 1 such that

'.2x1; � � � ; 2xn/ � 2C'.x1; � � � ; xn/

for all x1; � � � ; xn 2 A, then the mapping f W A ! B is a C�-algebra homomorphism.

Proof. Put 	 D 1 in (3.96). By the same reasoning as in the proof of Theorem 3.50,
there exists a unique generalized additive mapping H W A ! B defined by

H.x/ D lim
k!1

f .2kx/

2k

for all x 2 A: It is straight forward to show that, the generalized additive mapping
H W A ! B is R-linear. By the same method as in the proof of Theorem 3.51, we
have ���D	;r1;��� ;rn H.0; � � � ; 0; x„ƒ‚…

j th

; 0 � � � ; 0/
���

Y

D lim
k!1

1

2k

���D	;r1;��� ;rn f .0; � � � ; 0; 2kx„ƒ‚…
j th

; 0 � � � ; 0/
���

Y

� lim
k!1

1

2k
'.0; � � � ; 0; 2kx„ƒ‚…

j th

; 0 � � � ; 0/

D 0

for all x 2 A and so

rj	H.x/ D H.rj	x/

for all x 2 A: Since H.rjx/ D rjH.x/ for all x 2 X and rj ¤ 0; we have

H.	x/ D 	H.x/
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for all x 2 A and 	 D i; 1. For each element � 2 C, we have � D s C it; where
s; t 2 R. Thus it follows that

H.�x/ D H.sx C itx/ D sH.x/C tH.ix/ D sH.x/C itH.x/

D .s C it/H.x/ D �H.x/

for all � 2 C and x 2 A: So, we have

H.�x C y/ D H.�x/C H.y/ D �H.x/C H.y/

for all �;  2 C and x; y 2 A: Hence the generalized additive mapping H W A ! B is
C-linear.

The rest of the proof is the same as in the proof of Theorem 3.59. This completes
the proof. �

The following is an alternative result of Theorem 3.61.

Remark 3.62. Let f W A ! B be a mapping with f .0/ D 0 for which there exists a
function ' W An ! Œ0;1/ satisfying (3.92), (3.93) and

kD	;r1;��� ;rn f .x1; � � � ; xn/kB � '.x1; � � � ; xn/

for all x; x1; � � � ; xn 2 A and 	 D i; 1:Assume that limk!1 2kf . e
2k / is invertible and,

for each fixed x 2 A, the mapping t 7! f .tx/ is continuous in t 2 R. If there exists
0 < C < 1 such that

'.x1; � � � ; 2n/ � C

2
'.2x1; � � � ; 2xn/

for all x1; � � � ; xn 2 A, then the mapping f W A ! B is a C�-algebra homomorphism.

Remark 3.63. Also, one can assume that
Pn

kD1 rk ¤ 0 instead of f .0/ D 0:

3.5 Generalized Additive Mappings in Banach Modules

Let X;Y be vector spaces. It is shown that, if an odd mapping f W X ! Y satisfies
the functional equation

rf

 Pd
jD1 xj

r

!
C

X
�.j/ D 0; 1Pd
jD1 �.j/ D l

rf

 Pd
jD1.�1/�.j/xj

r

!

D .d�1Cl �d�1 Cl�1 C 1/

dX
jD1

f .xj/; (3.97)
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then the odd mapping f W X ! Y is additive. Also, we consider the Hyers-Ulam
stability of the functional equation (3.97) in Banach modules over a unital C�-
algebra. As an application, we show that every almost linear bijection h W A ! B of
a unital C�-algebra A onto a unital C�-algebra B is a C�-algebra isomorphism when
h. 2

n

rn uy/ D h. 2
n

rn u/h.y/ for all unitaries u 2 A, y 2 A and n � 0 [20].
Throughout this section, assume that r is a positive rational number and d, l are

integers with 1 < l < d
2
.

3.5.1 Odd Functional Equations in d–Variables

Now, assume that X and Y are real linear spaces.

Lemma 3.64. An odd mapping f W X ! Y satisfies (3.97) for all x1; x2; � � � ; xd 2 X
if and only if f is Cauchy additive.

Proof. Assume that f W X ! Y satisfies (3.97) for all x1; x2; � � � ; xd 2 X. Note that
f .0/ D 0 and f .�x/ D �f .x/ for all x 2 X since f is an odd mapping. Putting
x1 D x; x2 D y and x3 D � � � D xd D 0 in (3.97), we get

.d�2Cl �d�2 Cl�2 C 1/rf
�x C y

r

�
D .d�1Cl �d�1 Cl�1 C 1/.f .x/C f .y// (3.98)

for all x; y 2 X. Since d�2Cl �d�2 Cl�2 C 1 Dd�1 Cl �d�1 Cl�1 C 1, we have

rf
�x C y

r

�
D f .x/C f .y/

for all x; y 2 X. Letting y D 0 in (3.98), we get rf . x
r / D f .x/ for all x 2 X. Hence

we have

f .x C y/ D rf
�x C y

r

�
D f .x/C f .y/

for all x; y 2 X. Thus f is Cauchy additive.
The converse is obviously true. This completes the proof. �

In the proof of Lemma 3.64, we prove the following.

Corollary 3.65. An odd mapping f W X ! Y satisfies

rf
�x C y

r

�
D f .x/C f .y/

for all x; y 2 X if and only if f is Cauchy additive.
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3.5.2 Stability of Odd Functional Equations in Banach
Modules over a C�-Algebra

Assume that A is a unital C�-algebra with the norm j � j and a unitary group U.A/
and X, Y are left Banach modules over a unital C�-algebra A with norms k � k and
k � k, respectively.

For any mapping f W X ! Y, we set

Duf .x1; � � � ; xd/

WD rf
�Pd

jD1 uxj

r

�
C

X
�.j/ D 0; 1Pd

jD1 �.j/ D l

rf
�Pd

jD1.�1/�.j/uxj

r

�

�.d�1Cl �d�1 Cl�1 C 1/

dX
jD1

uf .xj/

for all u 2 U.A/ and x1; � � � ; xd 2 X.

Theorem 3.66. Let r ¤ 2. Let f W X ! Y be an odd mapping for which there exists
a function ' W Xd ! Œ0;1/ such that

Q'.x1; � � � ; xd/ WD
1X

jD0

rj

2j
'
�2j

rj
x1; � � � ; 2

j

rj
xd

�
< 1 (3.99)

and

kDuf .x1; � � � ; xd/k � '.x1; � � � ; xd/ (3.100)

for all u 2 U.A/ and x1; � � � ; xd 2 X. Then there exists a unique A-linear generalized
additive mapping L W X ! Y such that

kf .x/ � L.x/k � 1

2.d�2Cl �d�2 Cl�2 C 1/
Q'
�

x; x; 0; � � � ; 0„ ƒ‚ …
d � 2 times

�
(3.101)

for all x 2 X.

Proof. Note that f .0/ D 0 and f .�x/ D �f .x/ for all x 2 X since f is an odd
mapping. Let u D 1 2 U.A/. Putting x1 D x2 D x and x3 D � � � D xd D 0

in (3.100), we have

���rf
�2

r
x
�

� 2f .x/
��� � 1

d�2Cl �d�2 Cl�2 C 1
'
�

x; x; 0; � � � ; 0„ ƒ‚ …
d � 2 times

�
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for all x 2 X. Letting t WDd�2 Cl �d�2 Cl�2 C 1, we get

���f .x/� r

2
f
�2

r
x
���� � 1

2t
'
�

x; x; 0; � � � ; 0„ ƒ‚ …
d � 2 times

�

for all x 2 X. Hence we have

��� rn

2n
f
�2n

rn
x
�

� rnC1

2nC1 f
�2nC1

rnC1 x
����

D rn

2n

���f
�2n

rn
x
�

� r

2
f
�2

r
� 2

n

rn
x
����

� rn

2nC1t
'
�2n

rn
x;
2n

rn
x; 0; � � � ; 0„ ƒ‚ …

d � 2 times

�
(3.102)

for all x 2 X and n � 1. By (3.102), we have

��� rm

2m
f
�2m

rm
x
�

� rn

2n
f
�2n

rn
x
����

�
n�1X
kDm

rk

2kC1 t
'
�2k

rk
x;
2k

rk
x; 0; � � � ; 0„ ƒ‚ …

d � 2 times

�
(3.103)

for all x 2 X and m; n � 1 with m < n. This shows that the sequence f rn

2n f . 2
n

rn x/g
is a Cauchy sequence for all x 2 X. Since Y is complete, the sequence f rn

2n f . 2
n

rn x/g
converges for all x 2 X. So we can define a mapping L W X ! Y by

L.x/ WD lim
n!1

rn

2n
f
�2n

rn
x
�

for all x 2 X. Since f .�x/ D �f .x/ for all x 2 X, we have L.�x/ D �L.x/ for all
x 2 X. Also, we get

kD1L.x1; � � � ; xd/k D lim
n!1

rn

2n

���D1f
�2n

rn
x1; � � � ; 2

n

rn
xd

����
� lim

n!1
rn

2n
'
�2n

rn
x1; � � � ; 2

n

rn
xd

�
D 0

for all x1; � � � ; xd 2 X. So L is a generalized additive mapping. Putting m D 0 and
letting n ! 1 in (3.103), we get (3.101).

Now, let L0 W X ! Y be another additive mapping satisfying (3.101). By
Lemma 3.64, L and L0 are additive. So we have
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kL.x/ � L0.x/k D rn

2n

���L
�2n

rn
x
�

� L0
�2n

rn
x
����

� rn

2n

����L
�2n

rn
x
�

� f
�2n

rn
x
����C

���L0�2n

rn
x
�

� f
�2n

rn
x
����/

� 2rn

2nC1 t
Q'
�2n

rn
x;
2n

rn
x; 0; � � � ; 0„ ƒ‚ …

d � 2 times

�
;

which tends to zero as n ! 1 for all x 2 X. So we can conclude that L.x/ D L0.x/
for all x 2 X. This proves the uniqueness of L.

By the assumption, for each u 2 U.A/, we get

kDuL.x; 0; � � � ; 0„ ƒ‚ …
d � 1 times

/k D lim
n!1

rn

2n

���Duf
�2n

rn
x; 0; � � � ; 0„ ƒ‚ …

d � 1 times

����
� lim

n!1
rn

2n
'
�2n

rn
x; 0; � � � ; 0„ ƒ‚ …

d � 1 times

�

D 0

for all x 2 X and so

.d�1Cl �d�1 Cl�1 C 1/rL
�ux

r

�
D .d�1Cl �d�1 Cl�1 C 1/uL.x/

for all u 2 U.A/ and x 2 X. Since L is additive,

L.ux/ D rL
�ux

r

�
D uL.x/ (3.104)

for all u 2 U.A/ and x 2 X.
Now, let a 2 A .a ¤ 0/ and M be an integer greater than 4jaj. Then we have

ˇ̌̌ a

M

ˇ̌̌
<
1

4
< 1 � 2

3
D 1

3
:

By Kadison and Pederson [167], there exist three elements u1; u2; u3 2 U.A/ such
that 3 a

M D u1 C u2 C u3. So, by (3.104), we have

L.ax/ D L
�M

3
� 3 a

M
x
�

D M � L
�1
3

� 3 a

M
x
�

D M

3
L
�
3

a

M
x
�

D M

3
L.u1x C u2x C u3x/ D M

3
.L.u1x/C L.u2x/C L.u3x//

D M

3
.u1 C u2 C u3/L.x/ D M

3
� 3 a

M
L.x/

D aL.x/
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for all a 2 A and x 2 X. Hence we have

L.ax C by/ D L.ax/C L.by/ D aL.x/C bL.y/

for all a; b 2 A with a; b ¤ 0 and x; y 2 X and L.0x/ D 0 D 0L.x/ for all x 2 X. So
the unique generalized additive mapping L W X ! Y is an A-linear mapping. This
completes the proof. �

Corollary 3.67. Let r > 2 and � , p > 1 be positive real numbers or let r < 2 and
� , p < 1 be positive real numbers. Let f W X ! Y be an odd mapping such that

kDuf .x1; � � � ; xd/k � �

dX
jD1

jjxjjjp

for all u 2 U.A/ and x1; � � � ; xd 2 X. Then there exists a unique A-linear generalized
additive mapping L W X ! Y such that

kf .x/ � L.x/k � rp�1�
.rp�1 � 2p�1/.d�2Cl �d�2 Cl�2 C 1/

kxkp

for all x 2 X.

Proof. Defining '.x1; � � � ; xd/ D �
Pd

jD1 jjxjjjp and applying Theorem 3.66, we get
the desired result. �

Theorem 3.68. Let r ¤ 2. Let f W X ! Y be an odd mapping for which there exists
a function ' W Xd ! Œ0;1/ satisfying (3.100) such that

Q'.x1; � � � ; xd/ WD
1X

jD1

2j

rj
'
� rj

2j
x1; � � � ; rj

2j
xd

�
< 1

for all u 2 U.A/ and x1; � � � ; xd 2 X. Then there exists a unique A-linear generalized
additive mapping L W X ! Y such that

kf .x/ � L.x/k � 1

2.d�2Cl �d�2 Cl�2 C 1/
Q'
�

x; x; 0; � � � ; 0„ ƒ‚ …
d � 2 times

�

for all x 2 X.

Proof. Note that f .0/ D 0 and f .�x/ D �f .x/ for all x 2 X since f is an odd
mapping. Let u D 1 2 U.A/. Putting x1 D x2 D x and x3 D � � � D xd D 0

in (3.100), we have

���rf
�2

r
x
�

� 2f .x/
��� � 1

d�2Cl �d�2 Cl�2 C 1
'
�

x; x; 0; � � � ; 0„ ƒ‚ …
d � 2 times

�
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for all x 2 X. Letting t WDd�2 Cl �d�2 Cl�2 C 1, we get

���f .x/� 2

r
f
� r

2
x
���� � 1

rt
'
� r

2
x;

r

2
x; 0; � � � ; 0„ ƒ‚ …

d � 2 times

�

for all x 2 X.
The rest of the proof is similar to the proof of Theorem 3.66. This completes the

proof. �

Corollary 3.69. Let r < 2 and � , p > 1 be positive real numbers or let r > 2 and
� , p < 1 be positive real numbers. Let f W X ! Y be an odd mapping such that

kDuf .x1; � � � ; xd/k � �

dX
jD1

kxjkp

for all u 2 U.A/ and x1; � � � ; xd 2 X. Then there exists a unique A-linear generalized
additive mapping L W X ! Y such that

kf .x/ � L.x/k � rp�1�
.2p�1 � rp�1/.d�2Cl �d�2 Cl�2 C 1/

kxkp

for all x 2 X.

Proof. Defining

'.x1; � � � ; xd/ D �

dX
jD1

jjxjjjp

and applying Theorem 3.68, we get the desired result. �
Now, we investigate the Hyers–Ulam stability of linear mappings for the case

d D 2.

Theorem 3.70. Let r ¤ 2. Let f W X ! Y be an odd mapping for which there exists
a function ' W X2 ! Œ0;1/ such that

Q'.x; y/ WD
1X

jD0

rj

2j
'
�2j

rj
x;
2j

rj
y
�
< 1

and ���rf
�ux C uy

r

�
� uf .x/� uf .y/

��� � '.x; y/ (3.105)
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for all u 2 U.A/ and x; y 2 X. Then there exists a unique A-linear mapping
L W X ! Y such that

kf .x/ � L.x/k � 1

2
Q'.x; x/

for all x 2 X.

Proof. Let u D 1 2 U.A/. Putting x D y in (3.105), we have

���rf
�2

r
x
�

� 2f .x/
��� � '.x; x/

for all x 2 X and so

���f .x/� r

2
f
�2

r
x
���� � 1

2
'.x; x/

for all x 2 X.
The rest of the proof is the same as in the proof of Theorem 3.66. This completes

the proof. �

Corollary 3.71. Let r > 2 and � , p > 1 be positive real numbers or let r < 2 and
� , p < 1 be positive real numbers. Let f W X ! Y be an odd mapping such that

���rf
�ux C uy

r

�
� uf .x/� uf .y/

��� � �.kxkp C kykp/

for all u 2 U.A/ and x; y 2 X. Then there exists a unique A-linear mapping
L W X ! Y such that

kf .x/ � L.x/k � rp�1�
rp�1 � 2p�1 jjxjjp

for all x 2 X.

Proof. Defining '.x; y/ D �.jjxjjp C jjyjjp/ and applying Theorem 3.70, we get the
desired results. �

Theorem 3.72. Let r ¤ 2. Let f W X ! Y be an odd mapping for which there exists
a function ' W X2 ! Œ0;1/ satisfying (3.105) such that

Q'.x; y/ WD
1X

jD1

2j

rj
'
� rj

2j
x;

rj

2j
y
�
< 1

for all u 2 U.A/ and all x; y 2 X. Then there exists a unique A-linear mapping
L W X ! Y such that
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kf .x/ � L.x/k � 1

2
Q'.x; x/

for all x 2 X.

Proof. Let u D 1 2 U.A/. Putting x D y in (3.105), we have

���rf
�2

r
x
�

� 2f .x/
��� � '.x; x/

for all x 2 X and so

���f .x/ � 2

r
f
� r

2
x
���� � 1

r
'
� r

2
x;

r

2
x
�

for all x 2 X.
The rest of the proof is similar to the proof of Theorem 3.66. This completes the

proof. �

Corollary 3.73. Let r < 2 and � , p > 1 be positive real numbers or let r > 2 and
� , p < 1 be positive real numbers. Let f W X ! Y be an odd mapping such that

���rf
�ux C uy

r

�
� uf .x/� uf .y/

��� � �.kxkp C kykp/

for all u 2 U.A/ and x; y 2 X. Then there exists a unique A-linear mapping
L W X ! Y such that

kf .x/ � L.x/k � rp�1�
2p�1 � rp�1 kxkp

for all x 2 X.

Proof. Defining '.x; y/ D �.kxkp C kykp/ and applying Theorem 3.72, we get the
desired results. �

3.5.3 Isomorphisms in Unital C�-Algebras

Assume that A is a unital C�-algebra with the norm jj � jj and the unit e and B is a
unital C�-algebra with the norm k � k. Let U.A/ be the set of unitary elements in A.

Now, we investigate C�-algebra isomorphisms in unital C�-algebras.

Theorem 3.74. Let r ¤ 2. Let h W A ! B be an odd bijective mapping satisfying
h. 2

n

rn uy/ D h. 2
n

rn u/h.y/ for all u 2 U.A/, y 2 A and n � 0 for which there exists a
function ' W Ad ! Œ0;1/ such that
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1X
jD0

rj

2j
'
�2j

rj
x1; � � � ; 2

j

rj
xd

�
< 1; (3.106)

kD	h.x1; � � � ; xd/k � '.x1; � � � ; xd/;���h.
2n

rn
u�/ � h.

2n

rn
u/�
��� � '

� 2n

rn
u; � � � ; 2

n

rn
u„ ƒ‚ …

d times

�
(3.107)

for all 	 2 S1 WD f� 2 C W j�j D 1g, u 2 U.A/, n � 0 and x1; � � � ; xd 2 A. Assume
that limn!1 rn

2n h. 2
n

rn e/ is invertible. Then the odd bijective mapping h W A ! B is a
C�-algebra isomorphism.

Proof. Consider the C�-algebras A and B as left Banach modules over the unital
C�-algebra C. By Theorem 3.66, there exists a unique C-linear generalized additive
mapping H W A ! B such that

kh.x/ � H.x/k � 1

2.d�2Cl �d�2 Cl�2 C 1/
Q'
�

x; x; 0; � � � ; 0„ ƒ‚ …
d � 2 times

�
(3.108)

for all x 2 A. The generalized additive mapping H W A ! B is given by

H.x/ D lim
n!1

rn

2n
h
�2n

rn
x
�

for all x 2 A. By (3.106) and (3.107), we get

H.u�/ D lim
n!1

rn

2n
h
�2n

rn
u�
�

D lim
n!1

rn

2n
h
�2n

rn
u
��

D
�

lim
n!1

rn

2n
h
�2n

rn
u
��� D H.u/�

for all u 2 U.A/. Since H is C-linear and each x 2 A is a finite linear combination
of unitary elements (see [168]), i.e., x D Pm

jD1 �juj for all �j 2 C and uj 2 U.A/,
we have

H.x�/ D H
� mX

jD1
�ju

�
j

�
D

mX
jD1

�jH.u
�
j / D

mX
jD1

�jH.uj/
�

D
� mX

jD1
�jH.uj/

�� D H
� mX

jD1
�juj

�� D H.x/�

for all x 2 A. Since h. 2
n

rn uy/ D h. 2
n

rn u/h.y/ for all u 2 U.A/, y 2 A and n � 0, we
have
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H.uy/ D lim
n!1

rn

2n
h
�2n

rn
uy
�

D lim
n!1

rn

2n
h
�2n

rn
u
�

h.y/

D H.u/h.y/ (3.109)

for all u 2 U.A/ and y 2 A. By the additivity of H and (3.109), we have

2n

rn
H.uy/ D H

�2n

rn
uy
�

D H
�

u
�2n

rn
y
��

D H.u/h
�2n

rn
y
�

for all u 2 U.A/ and y 2 A. Hence we have

H.uy/ D rn

2n
H.u/h

�2n

rn
y
�

D H.u/
rn

2n
h
�2n

rn
y
�

(3.110)

for all u 2 U.A/ and y 2 A. Taking n ! 1 in (3.110), we obtain

H.uy/ D H.u/H.y/ (3.111)

for all u 2 U.A/ and y 2 A. Since H is C-linear and each x 2 A is a finite linear
combination of unitary elements, i.e., x D Pm

jD1 �juj for all �j 2 C and uj 2 U.A/,
it follows from (3.111) that

H.xy/ D H
� mX

jD1
�jujy

�
D

mX
jD1

�jH.ujy/ D
mX

jD1
�jH.uj/H.y/

D H.
mX

jD1
�juj/H.y/ D H.x/H.y/

for all x; y 2 A. By (3.109) and (3.111), we have

H.e/H.y/ D H.ey/ D H.e/h.y/

for all y 2 A. Since limn!1 rn

2n h. 2
n

rn e/ D H.e/ is invertible,

H.y/ D h.y/

for all y 2 A. Therefore, the odd bijective mapping h W A ! B is a C�-algebra
isomorphism. This completes the proof. �
Corollary 3.75. Let r > 2 and � , p > 1 be positive real numbers or let r < 2 and
� , p < 1 be positive real numbers. Let h W A ! B be an odd bijective mapping
satisfying h. 2

n

rn uy/ D h. 2
n

rn u/h.y/ for all u 2 U.A/, y 2 A and n � 0 such that
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kD	h.x1; � � � ; xd/k � �

dX
jD1

jjxjjjp

and

���h
�2n

rn
u�� � h

�2n

rn
u
����� � d

2pn

rpn
�

for all 	 2 S1, u 2 U.A/, n � 0 and x1; � � � ; xd 2 A. Assume that limn!1 rn

2n h. 2
n

rn e/
is invertible. Then the odd bijective mapping h W A ! B is a C�-algebra
isomorphism.

Proof. Defining

'.x1; � � � ; xd/ D �

dX
jD1

jjxjjjp

and applying Theorem 3.74, we get the desired results. �

Theorem 3.76. Let r ¤ 2. Let h W A ! B be an odd bijective mapping satisfying
h. 2

n

rn uy/ D h. 2
n

rn u/h.y/ for all u 2 U.A/, y 2 A and n � 0 for which there exists a
function ' W Ad ! Œ0;1/ satisfying (3.106), (3.107). Assume that limn!1 rn

2n h. 2
n

rn e/
is invertible such that

kD	h.x1; � � � ; xd/k � '.x1; � � � ; xd/ (3.112)

for all x1; � � � ; xd 2 A and 	 D 1; i. If h.tx/ is continuous in t 2 R for each fixed
x 2 A, then the odd bijective mapping h W A ! B is a C�-algebra isomorphism.

Proof. Put	 D 1 in (3.112). By the same reasoning as in the proof of Theorem 3.74,
there exists a unique generalized additive mapping H W A ! B satisfying (3.108).
By (3.112), the generalized additive mapping H W A ! B is R-linear. Put 	 D i
in (3.112). By the same method as in the proof of Theorem 3.66, one can obtain that

H.ix/ D lim
n!1

rn

2n
h
�2n

rn
ix
�

D lim
n!1

i rn

2n
h
�2n

rn
x
�

D iH.x/

for all x 2 A. For each element � 2 C, let � D s C it, where s; t 2 R. Then we have

H.�x/ D H.sx C itx/ D sH.x/C tH.ix/ D sH.x/C itH.x/

D .s C it/H.x/ D �H.x/

for all � 2 C and x 2 A. Thus we have
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H.�x C y/ D H.�x/C H.y/ D �H.x/C H.y/

for all �;  2 C and x; y 2 A. Hence the generalized additive mapping H W A ! B is
C-linear.

The rest of the proof is the same as in the proof of Theorem 3.66. This completes
the proof. �

3.6 Jordan �-Derivations and Quadratic Jordan
�-Derivations

Jordan �-derivations were introduced in [307, 308] for the first time and the structure
of such derivations has been investigated in [52]. The reason for introducing
these mappings was the fact that the problem of representing quadratic forms by
sesquilinear ones is closely connected with the structure of Jordan �-derivations.
In [13], An et al. investigated Jordan �-derivations on C�-algebras and Jordan
�-derivations on JC�-algebras associated with a special functional inequality.

In this section, we consider the Hyers-Ulam stability of Jordan �-derivations and
quadratic Jordan �-derivations on real C�-algebras and real JC�-algebras. We also
prove the superstability of Jordan �-derivations and quadratic Jordan �-derivations
on real C�-algebras and real JC�-algebras under some conditions [50].

3.6.1 Stability of Jordan �-Derivations

Here we prove the Hyers–Ulam stability of Jordan �-derivations on real C�-algebras
and real JC�-algebras.

Definition 3.77. Let A be a real C�-algebra. An R-linear mapping D W A ! A is
called a Jordan �-derivation if

D.a2/ D a�D.a/C D.a/a�

for all a 2 A.

The mapping Dx W A ! A; a 7! a�x � xa�, where x is a fixed element in A,
is a Jordan �-derivation. A real C�-algebra A endowed with the Jordan product
a ı b WD abCba

2
on A is called a real JC�-algebra (see [13, 225]).

Definition 3.78. Let A be a real JC�-algebra. An R-linear mapping ı W A ! A is
called a Jordan �-derivation if

ı.a2/ D a� ı D.a/C D.a/ ı a�

for all a 2 A.
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Theorem 3.79. Let A be a real C�-algebra. Suppose that f W A ! A is a mapping
with f .0/ D 0 for which there exists a function ' W A3 ! Œ0;1/ such that

Q'.a; b; c/ WD
1X

nD0

1

2nC1 '.2
na2nb; 2nc/ < 1 (3.113)

and

kf .�a C b C c2/ � �f .a/� f .b/� f .c/c� � c�f .c/k
� '.a; b; c/ (3.114)

for all � 2 R and a; b; c 2 A. Then there exists a unique Jordan �-derivation ı on
A satisfying

kf .a/� ı.a/k � Q'.a; a; 0/ (3.115)

for all a 2 A.

Proof. Setting a D b; c D 0 and � D 1 in (3.114), we have

kf .2a/� 2f .a/k � '.a; a; 0/

for all a 2 A. One can use induction to show that

���� f .2na/

2n
� f .2ma/

2m

���� D
n�1X
kDm

1

2kC1 '.2
ka; 2ka; 0/ (3.116)

for all n > m � 0 and a 2 A. It follows from (3.113) and (3.116) that the
sequence f f .2na/

2n g is a Cauchy sequence. Due to the completeness of A, this sequence
is convergent. Define

d.a/ WD lim
n!1

f .2na/

2n
(3.117)

for all a 2 A. Then we have

ı
� 1
2k

a
�

D lim
n!1

1

2k

f .2n�ka/

2n�k
D 1

2k
d.a/

for each k 2 N. Putting c D 0 and replacing a and b by 2na and 2nb, respectively,
in (3.114), we get

��� 1
2n

f .2n.�a C b//� �
1

2n
f .2na/� 1

2n
f .2nb/

��� � 1

2n
'.2na; 2nb; 0/:
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Taking n ! 1, we obtain

ı.�a C b/ D �ı.a/C ı.b/

for all a; b 2 A and � 2 R. So ı is R-linear. Putting a D b D 0 and substituting c
by 2nc in (3.114), we get

��� 1
22n

f .22nc2/� 1

22n
f .2nc/.2nc�/� 1

22n
.2nc�/f .2nc/

���
� 1

22n
'.0; 0; 2nc/

� 1

2n
'.0; 0; 2nc/:

Taking n ! 1, we obtain

ı.c2/ D ı.c/c� C c�ı.c/

for all c 2 A. Moreover, it follows from (3.116) with m D 0 and (3.117) that

kı.a/� f .a/k � Q'.a; a; 0/

for all a 2 A.
For the uniqueness of ı, let Qı W A �! B be another Jordan �-derivation

satisfying (3.115). Then we have

kı.a/� Qı.a/k D 1

2n
kı.2na/� Qı.2na/k

� 1

2n
.kı.2na/� f .2na/k C kf .2na/� Qı.2na/k/

� 2

1X
jD1

1

2nCj
'.2nCja; 2nCja; 0/

D 2

1X
jDn

1

4j
'.2ja; 2ja; 0/;

which tends to zero as n ! 1 for all a 2 A. So ı is unique. Therefore, ı is a Jordan
�-derivation on A. This completes the proof. �

Remark 3.80. Let A be a real C�-algebra. Suppose that f W A ! A is a mapping
with f .0/ D 0 for which there exists a function ' W A3 ! Œ0;1/ satisfying (3.114)
and
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Q'.a; b; c/ WD
1X

nD1
2n�1'

� a

2n
;

b

2n
;

c

2n

�
< 1

for all a; b; c 2 A. Then there exists a unique Jordan �-derivation ı on A satisfying

kf .a/� ı.a/k � Q'.a; a; 0/

for all a 2 A.

Corollary 3.81. Let A be a real C�-algebra and "; p be positive real numbers with
p ¤ 1. Suppose that f W A ! A is a mapping satisfying

kf .�a C b C c2/� �f .a/� f .b/ � cf .c/� f .c/c�k
� ".kakp C kbkp C kckp/

for all � 2 R and a; b; c 2 A. Then there exists a unique Jordan �-derivation ı on
A satisfying

kf .a/� ı.a/k � 2"

j2� 2pjkakp (3.118)

for all a 2 A.

Proof. Putting

'.a; b; c/ D ".kakp C kbkp C kckp/

in Theorem 3.79, we get the desired result. �

Now, we consider the Hyers-Ulam stability of Jordan �-derivations on a real
JC�-algebra A. Since the proofs are similar to the above results, here we omit them.

Remark 3.82. Let A be a real JC�-algebra. Suppose that f W A ! A is a mapping
with f .0/ D 0 for which there exists a function ' W A3 ! Œ0;1/ such that

Q'.a; b; c/ WD
1X

nD0

1

2nC1 '.2
na; 2nb; 2nc/ < 1

and

kf .�a C b C c2/� �f .a/� f .b/ � f .c/ ı c� � c� ı f .c/k
� '.a; b; c/ (3.119)
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for all � 2 R and a; b; c 2 A. Then there exists a unique Jordan �-derivation ı on A
satisfying

kf .a/� ı.a/k � Q'.a; a; 0/

for all a 2 A.

Remark 3.83. Let A be a real JC�-algebra. Suppose that f W A ! A is a mapping
with f .0/ D 0 for which there exists a function ' W A3 ! Œ0;1/ satisfying (3.119)
and

Q'.a; b; c/ WD
1X

nD1
2n�1'

� a

2n
;

b

2n
;

c

2n

�
< 1

for all a; b; c 2 A. Then there exists a unique Jordan �-derivation ı on A satisfying

kf .a/� ı.a/k � Q'.a; a; 0/

for all a 2 A.

Corollary 3.84. Let A be a real JC�-algebra and ", p be positive real numbers with
p ¤ 1. Suppose that f W A ! A is a mapping satisfying

kf .�a C b C c2/� �f .a/� f .b/� c� ı f .c/ � f .c/ ı c�k
� ".kakp C kbkp C kckp/

for all � 2 R and a; b; c 2 A. Then there exists a unique Jordan �-derivation ı on
A satisfying

kf .a/� ı.a/k � 2"

j2 � 2pj kakp

for all a 2 A.

Proof. The result follows from Remarks 3.82 and 3.83 by putting

'.a; b; c/ D ".kakp C kbkp C kckp/: �

3.6.2 Stability of Quadratic Jordan �-Derivations

Now, we prove the Hyers-Ulam stability of quadratic Jordan �-derivations on real
C�-algebras and real JC�-algebras.
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Definition 3.85. Let A be a real C�-algebra. A mapping D W A ! A is called a
quadratic Jordan �-derivation if D is a quadratic R-homogeneous mapping, that is,
D is quadratic, D.�a/ D �2D.a/ for all a 2 A and � 2 R and

D.a2/ D .a�/2D.a/C D.a/.a�/2

for all a 2 A.

The mapping Dx W A ! A, a 7! .a�/2x � x.a�/2, where x is a fixed element in
A, is a quadratic Jordan �-derivation.

Definition 3.86. Let A be a real JC�-algebra. A mapping ı W A ! A is called a
quadratic Jordan �-derivation if ı is a quadratic R-homogeneous mapping and

ı.a2/ D .a�/2 ı D.a/C D.a/ ı .a�/2

for all a 2 A.

Theorem 3.87. Let A be a real C�-algebra. Suppose that f W A ! A is a mapping
with f .0/ D 0 for which there exists a function ' W A2 ! Œ0;1/ such that

Q'.a; b/ WD
1X

kD0

1

4k
'.2ka; 2kb/ < 1;

kf .�a C �b/C f .�a � �b/� 2�2f .a/� 2�2f .b/k
� '.a; b/; (3.120)

kf .a2/� f .a/.a�/2 � .a�/2f .a/k � '.a; a/ (3.121)

for all a; b 2 A and� 2 R. Then there exists a unique quadratic Jordan �-derivation
ı on A satisfying

kf .a/ � ı.a/k � 1

4
Q'.a; a/ (3.122)

for all a 2 A.

Proof. Putting a D b and � D 1 in (3.120), we have

kf .2a/� 4f .a/k � '.a; a/

for all a 2 A. One can use induction to show that
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��� f .2na/

4n
� f .2ma/

4m

��� � 1

4

n�1X
kDm

'.2ka; 2ka/

4k
(3.123)

for all n > m � 0 and a 2 A. It follows from (3.123) that the sequence

	
f .2na/

4n



is a Cauchy sequence. Since A is complete, this sequence is convergent. Define

ı.a/ WD lim
n!1

f .2na/

4n

for all a 2 A. Since f .0/ D 0, we have ı.0/ D 0. Replacing a and b by 2na and 2nb,
respectively, in (3.120), we get

��� f .2n.�a C �b//

4n
C f .2n.�a � �b//

4n
� 2�2

f .2na/

4n
� 2�2

f .2nb/

4n

���
� '.2na; 2nb/

4n
:

Taking n ! 1, we obtain

ı.�a C �b/C ı.�a � �b/ D 2�2ı.a/C 2�2ı.b/ (3.124)

for all a; b 2 A and � 2 R. Putting � D 1 in (3.124), we obtain that ı is a quadratic
mapping. It is easy to check that the quadratic mapping ı satisfying (3.122) is unique
(see the proof of Theorem 3.79). Setting b WD a in (3.124), we get ı.2�a/ D 4�2ı.a/
for all a 2 A and � 2 R. Hence ı.�a/ D �2ı.a/ for all a 2 A and � 2 R. Replacing
a by 2na in (3.121), we get

��� f .2na � 2na/

42n
� 22n.a�/2f .2na/

42n
� f .2na/22n.a�/2

42n

���
D
��� f .22na2/

42n
� 22n.a�/2

22n

f .2na/

4n
� f .2na/

4n

22n.a�/2

22n

���
� '.2na; 2na/

42n

� '.2na; 2na/

4n

for all a 2 A. Thus we have

kı.a2/� .a�/2ı.a/� ı.a/.a�/2k � lim
n!1

'.2na; 2na/

4n
D 0:

Therefore, ı is a quadratic Jordan �-derivation on A. This completes the proof. �
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Remark 3.88. Let A be a real C�-algebra. Suppose that f W A ! A is a
mapping with f .0/ D 0 for which there exists a function ' W A2 ! Œ0;1/

satisfying (3.120), (3.121) and

Q'.a; b/ WD
1X

kD1
4k'

� a

2k
;

b

2k

�
< 1

for all a; b 2 A. Then there exists a unique quadratic Jordan �-derivation ı on A
satisfying

kf .a/ � ı.a/k � 1

4
Q'.a; a/

for all a 2 A.

Corollary 3.89. Let A be a real C�-algebra and ", p be positive real numbers with
p ¤ 2. Suppose that f W A ! A is a mapping such that

kf .�a C �b/C f .�a � �b/� 2�2f .a/� 2�2f .b/k � ".kakp C kbkp/

and

kf .a2/ � a2f .a/� f .a/.a�/2k � 2"kakp

for all a; b 2 A and� 2 R. Then there exists a unique quadratic Jordan �-derivation
ı on A satisfying

kf .a/� ı.a/k � 2"

j4� 2pjkakp (3.125)

for all a 2 A.

Proof. Putting

'.a; b/ D ".kakp C kbkp/

in Theorem 3.87, we get the desired result. �

Here we assume that A is a real JC�-algebra. Then we can get the Hyers-Ulam
stability of quadratic Jordan �-derivations on A.

Remark 3.90. Suppose that f W A ! A is a mapping with f .0/ D 0 for which there
exists a function ' W A2 ! Œ0;1/ such that

Q'.a; b/ WD
1X

kD0

1

4k
'.2ka; 2kb/ < 1;
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kf .�a C �b/C f .�a � �b/� 2�2f .a/� 2�2f .b/k � '.a; b/; (3.126)

kf .a2/ � .a�/2 ı f .a/ � f .a/ ı .a�/2k � '.a; a/ (3.127)

for all a; b 2 A and � 2 R. Then there exists a unique quadratic Jordan �-derivation
ı on A satisfying

kf .a/ � ı.a/k � 1

4
Q'.a; a/

for all a 2 A.

Remark 3.91. Suppose that f W A ! A is a mapping with f .0/ D 0 for which there
exists a function ' W A2 ! Œ0;1/ satisfying (3.126), (3.127) and

Q'.a; b/ WD
1X

kD1
4k'

� a

2k
;

b

2k

�
< 1

for all a; b 2 A. Then there exists a unique quadratic Jordan �-derivation ı on A
satisfying

kf .a/ � ı.a/k � 1

4
Q'.a; a/

for all a 2 A.

We can obtain the following Remark by letting '.a; b/ D ".kakp C kbkp/ in
Remarks 3.90 and 3.91.

Remark 3.92. Let " and p be positive real numbers with p ¤ 2. Suppose that
f W A ! A is a mapping such that

kf .�a C �b/C f .�a � �b/� 2�2f .a/� 2�2f .b/k � ".kakp C kbkp/

and

kf .a2/ � .a�/2 ı f .a/ � f .a/ ı .a�/2k � 2"kakp

for all a; b 2 A and � 2 R. Then there exists a unique quadratic Jordan �-derivation
ı on A satisfying

kf .a/� ı.a/k � 2"

j4� 2pjkakp

for all a 2 A.
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3.6.3 Stability of Jordan �-Derivations: The Fixed
Point Method

Now, we assume that A is a real C�-algebra and prove the stability of Jordan �-
derivations by the fixed point method.

Theorem 3.93. Let f W A ! A be a mapping with f .0/ D 0 and ' W A3 ! Œ0;1/

be a function such that

kf .�a C b C c2/ � �f .a/� f .b/� f .c/c� � c�f .c/k
� '.a; b; c/ (3.128)

for all � 2 R and a; b; c 2 A: If there exists a constant k 2 .0; 1/ such that

'.2a; 2b; 2c/ � 2k'.a; b; c/ (3.129)

for all a; b; c 2 A, then there exists a unique Jordan �-derivation ı W A ! A
satisfying

kf .a/� ı.a/k � 1

2.1 � k/
'.a; a; 0/ (3.130)

for all a 2 A.

Proof. It follows from (3.129) that

lim
j!1

'.2ja; 2jb; 2jc/

2j
D 0

for all a; b; c 2 A: Putting � D 1; a D b and c D 0 in (3.128), we have

kf .2a/� 2f .a/k � '.a; a; 0/

for all a 2 A and so

���f .a/� 1

2
f .2a/

��� � 1

2
'.a; a; 0/ (3.131)

for all a 2 A: We consider the set ˝ WD fh W A ! A W h.0/ D 0g and introduce the
generalized metric on ˝ defined as follows:

d.h1; h2/ WD inffC 2 .0;1/ W kh1.a/� h2.a/k � C'.a; a; 0/; 8a 2 Ag

if there exists such a constant C and, otherwise, d.h1; h2/ D 1. We know that d is
a generalized metric on ˝ and the metric space .˝; d/ is complete. We now define
the linear mapping T W ˝ ! ˝ by
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Th.a/ D 1

2
h.2a/ (3.132)

for all a 2 A. For any h1; h2 2 ˝ , let C 2 R
C be an arbitrary constant with

d.h1; h2/ � C, that is,

kh1.a/� h2.a/k � C'.a; a; 0/ (3.133)

for all a 2 A. Substituting a by 2a in the inequality (3.133) and using the
equalities (3.129) and (3.132), we have

kTh1.a/� Th2.a/k D 1

2
kh1.2a/� h2.2a/k

� 1

2
C'.2a; 2a; 0/

� Ck'.2a; 2a; 0/

for all a 2 A and so d.Th1;Th2/ � Ck. Therefore, we conclude that
d.Th1;Th2/ � kd.h1; h2/ for all h1; h2 2 ˝ . It follows from (3.131) that

d.Tf ; f / � 1

2
: (3.134)

By Theorem 1.3, the sequence fTnf g converges to a unique fixed point ı W A ! A
in the set ˝1 D fh 2 ˝ W d.f ; h/ < 1g, that is,

lim
n!1

f .2na/

2n
D ı.a/

for all a 2 A. By Theorem 1.3 and (3.134), we have

d.f ; ı/ � d.Tf ; f /

1 � k
� 1

2.1� k/
:

The above inequalities show that (3.130) holds for all a 2 A. Thus, by the same
proof of Theorem 3.79, we can deduce that ı is R-linear by letting c D 0 and
replacing a and b by 2na and 2nb, respectively, in (3.128). Also, we have

ı.c2/ D ı.c/c� C c�ı.c/

for all c 2 A. This completes the proof. �

The following shows that we can obtain a more accurate approximation
of (3.118) in the case p < 1.
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Corollary 3.94. Let p, � be non-negative real numbers with p < 1 and f W A ! A
be a mapping with f .0/ D 0 such that

kf .�a C b C c2/ � �f .a/� f .b/� f .c/c� � c�f .c/k
� �.kakp C kbkp C kckp/

for all � 2 R and a; b; c 2 A: Then there exists a unique Jordan �-derivation
ı W A ! A satisfying

kf .a/� ı.a/k � �

2 � 2p
kakp

for all a 2 A.

Proof. The result follows from Theorem 3.93 by taking

'.a; b; c/ D �.kakp C kbkp C kckp/:

�

In the following, we show that, under some conditions, the superstability for
Jordan �-derivations on real C�-algebras.

Corollary 3.95. Let p, q, r, � be non-negative real numbers such that
p C q C r 2 .1;1/. Suppose that a mapping f W A ! A satisfies the following:

kf .�a C b C c2/ � �f .a/� f .b/� f .c/c� � c�f .c/k
� �.kakpkbkqkckr/ (3.135)

for all a; b; c 2 A. Then f is a Jordan �-derivation on A.

Proof. Letting a D b D c D 0 in (3.135), we have f .0/ D 0. Once more, if we
put � D 1; c D 0 and a D b in (3.135), then we get f .2a/ D 2f .a/ for all a 2 A.
By induction, it is easy to see that f .2na/ D 2nf .a/ and so f .a/ D f .2na/

2n for all a 2 A
and n 2 N. Now, it follows from Theorem 3.93 that f is a Jordan �-derivation. �

Note that, in Corollary 3.95, if p C q C r 2 .0; 1/ and p > 0 such that
the inequality (3.135) holds, then, by applying '.x; y/ D �.kakpkbkqkckr/ in
Theorem 3.93, f is again a Jordan �-derivation.

Theorem 3.96. Let f W A ! A be a mapping with f .0/ D 0 and ' W A2 ! Œ0;1/

be a function such that

kf .�a C �b/C f .�a � �b/� 2�2f .a/� 2�2f .b/k � '.a; b/ (3.136)
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and

kf .a2/� f .a/.a�/2 � .a�/2f .a/k � '.a; a/

for all a; b 2 A and � 2 R. If there exists a constant k 2 .0; 1/ such that

'.2a; 2b/ � 4k'.a; b/ (3.137)

for all a; b 2 A, then there exists a unique quadratic Jordan �-derivation
ı W A ! A satisfying

kf .a/� ı.a/k � 1

4.1� k/
'.a; a/ (3.138)

for all a 2 A.

Proof. By the same proof of Theorem 3.93, we consider the set
˝ D fg W A ! A W g.0/ D 0g and define the mapping d on ˝ �˝ as follows:

d.g; h/ WD inffc 2 .0;1/ W kg.a/� h.a/k � c�.a; a/; 8a 2 Ag

if there exists such a constant c and, otherwise, d.g; h/ D 1. One can easily show
that .˝; d/ is complete. Now, we consider the mapping T W ˝ ! ˝ defined by

Tg.a/ D 1

4
g.2a/

for all a 2 A. For any g; h 2 ˝ with d.g; h/ < c, by the definition of d and T, we get

���1
4

g.2a/� 1

4
h.2a/

��� � 1

4
c'.2a; 2a/

for all a 2 A. Using (3.137), we have

���1
4

g.2a/� 1

4
h.2a/

��� � ck'.a; a/

for all a 2 A. The above inequality shows that d.Tg;Th/ � kd.g; h/ for all g; h 2 ˝ .
Hence T is a strictly contractive mapping on˝ with the Lipschitz constant k.

Now, we prove that d.Tf ; f / < 1. Putting a D b and � D 1 in (3.136), we obtain

kf .2a/� 4f .a/k � '.a; a/

for all a 2 A and so

���1
4

f .2a/� f .a/
��� � 1

4
'.a; a/ (3.139)
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for all a 2 A. We deduce from (3.139) that d.Tf ; f / � 1
4
. It follows from

Theorem 1.3 that d.Tng;TnC1g/ < 1 for all n � 0 and so, in Theorem 1.3, we
have n0 D 0. Thus Theorem 1.3 hold on the whole ˝ . Hence there exists a unique
mapping ı W A ! A such that ı is a fixed point of T and Tnf ! ı as n ! 1. Thus
we have

lim
n!1

f .2na/

4n
D ı.a/

for all a 2 A and so

d.f ; ı/ � 1

1 � k
d.Tf ; f / � 1

4.1� k/
:

The above equalities show that (3.138) is true for all a 2 A. Now, it follows
from (3.137) that

lim
n!1

'.2na; 2nb/

4n
D 0:

The rest of the proof is easy. �

In the following, we find a more accurate approximation relative to Corol-
lary 3.89 with the same conditions on the mapping f when p < 2. In fact, we obtain
a refinement of the inequality (3.125).

Corollary 3.97. Let � and p be positive real numbers with p < 2. Suppose that
f W A ! A is a mapping such that

kf .�a C �b/C f .�a � �b/� 2�2f .a/� 2�2f .b/k � �.kakp C kbkp/

and

kf .a2/ � .a�/2f .a/� f .a/.a�/2k � 2�kakp

for all a; b 2 A and� 2 R. Then there exists a unique quadratic Jordan �-derivation
ı on A satisfying

kf .a/ � ı.a/k � �

4 � 2p
kakp

for all a 2 A.

Proof. If we put

'.a; b/ D �.kakp C kbkp/

in Theorem 3.96, then we obtain the desired result. �
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The following shows that, under which conditions, a quadratic Jordan �-
derivation on a real C�-algebra is superstable.

Corollary 3.98. Let � , p, q be positive real numbers with p C q ¤ 2. Suppose that
f W A ! A is a mapping such that

kf .�a C �b/C f .�a � �b/� 2�2f .a/� 2�2f .b/k
� �.kakpkbkq/ (3.140)

and

kf .a2/ � .a�/2f .a/� f .a/.a�/2k � �kakpCq (3.141)

for all a; b 2 A and � 2 R. Then f is a quadratic Jordan �-derivation on A.

Proof. Putting a D b D 0 in (3.140), we get f .0/ D 0. Now, if we put a D b and
� D 1 in (3.140), then we have f .2a/ D 4f .a/ for all a 2 A. It is easy to see, by
induction, that f .2na/ D 4nf .a/ and so f .a/ D f .2na/

4n for all a 2 A and n 2 N.
It follows from Theorem 3.96 that f is a quadratic homogeneous mapping. Letting
'.a; b/ D �.kakpkbkq/ in Theorem 3.96, the we can obtain the desired result. �

3.7 .˛; ˇ; �/-Derivations on Lie C�-Algebras:
The Direct Method

Let A be a Lie C�-algebra. A C-linear mapping D W A ! A is a called an .˛; ˇ; �/-
derivation of A if there exist ˛; ˇ; � 2 C such that

˛D.Œx; y�/ D ˇŒD.x/; y�C �Œx;D.y/�

for all x; y 2 A:
In this section, we review some works of Eshaghi Gordji et al. [98, 100] on the

Hyers-Ulam stability of .˛; ˇ; �/-derivations on Lie C�-algebras associated with the
following functional equation:

f
�x2 � x1

3

�
C f

�x1 � 3x3
3

�
C f

�3x1 C 3x3 � x2
3

�
D f .x1/:

In fact, we investigate the superstability and the Hyers–Ulam stability of
.˛; ˇ; �/-derivations on Lie C�-algebras.

Assume that A is a Lie C�-algebra with the norm k � k: Now, we remember a
lemma to be used in the last sections.
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Lemma 3.99. Let X, Y be linear spaces and f W X ! Y be an additive mapping
such that f .	x/ D 	f .x/ for all x 2 X and 	 2 T

1 WD f� 2 C W j�j D 1g: Then the
mapping f W X ! Y is C-linear.

Lemma 3.100. Let f W A ! A be a mapping such that

���f
�x2 � x1

3

�
C f

�x1 � 3x3
3

�
C f

�3x1 C 3x3 � x2
3

����
A

� kf .x1/k (3.142)

for all x1; x2; x3 2 A: Then the mapping f W A ! A is additive.

Proof. Letting x1 D x2 D x3 D 0 in (3.142), we get k3f .0/kA � kf .0/kA D 0 and
so f .0/ D 0. Letting x1 D x2 D 0 in (3.142), we get

kf .�x3/C f .x3/kA � kf .0/kA D 0

for all x3 2 A. Hence f .�x3/ D �f .x3/ for all x3 2 A. Letting x1 D 0 and x2 D 6x3
in (3.142), we get

kf .2x3/� 2f .x3/kA � kf .0/kA D 0

for all x3 2 A and so f .2x3/ D 2f .x3/ for all x3 2 A. Letting x1 D 0 and x2 D 9x3
in (3.142), we get

kf .3x3/� 3f .x3/kA � kf .0/kA D 0

for all x3 2 A and so f .3x3/ D 3f .x3/ for all x3 2 A. Letting x1 D 0 in (3.142), we
get

���f
�x2
3

�
C f .�x3/C f

�
x3 � x2

3

����
A

� kf .0/kA D 0

for all x2; x3 2 A. Then we have

f
�x2
3

�
C f .�x3/C f

�
x3 � x2

3

�
D 0 (3.143)

for all x2; x3 2 A. Letting t1 D x3 � x2
3

and t2 D x2
3

in (3.143), we get

f .t2/� f .t1 C t2/C f .t1/ D 0

for all t1; t2 2 A and so f is additive. This completes the proof. �

Now, we prove the superstability of .˛; ˇ; �/-derivations in Lie C�-algebra A.
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Theorem 3.101. Let p ¤ 1, � be nonnegative real numbers and f W A ! A be a
mapping such that, for some ˛; ˇ; � 2 C,

���f
�	x2 � x1

3

�
C f

�x1 � 3	x3
3

�
C 	f

�3x1 C 3x3 � x2
3

����
� kf .x1/k (3.144)

and

k˛f .Œx1; x2�/ � ˇŒf .x1/; x2� � �Œx1; f .x2/�k
� �.kx1k2p C kx2k2p/ (3.145)

for all 	 2 T
1 and x1; x2; x3 2 A: Then the mapping f W A ! A is an .˛; ˇ; �/-

derivation.

Proof. Assume p > 1. Let 	 D 1 in (3.144). By Lemma 3.100, the mapping
f W A ! A is additive. Letting x1 D x2 D 0 in (3.144), we get

kf .�	x3/C 	f .x3/kA � kf .0/kA D 0

for all x3 2 A and 	 2 T
1. Then we have

�f .	x3/C 	f .x3/ D f .�	x3/C 	f .x3/ D 0

for all x3 2 A and 	 2 T
1. Hence f .	x3/ D 	f .x3/ for all x3 2 A and 	 2 T

1.
By Lemma 3.99, the mapping f W A ! A is C-linear. Since f is additive, it follows
from (3.145) that

k˛f .Œx1; x2�/ � ˇŒf .x1/; x2� � �Œx1; f .x2/�kA

D lim
n!1 4n

���˛f
� Œx1; x2�

4n

�
� ˇ

h
f .

x1
2n
/;

x2
2n

i
� �

h x1
2n
; f .

x2
2n
/
i���

A

� lim
n!1

4n�

4np
.kx1k2p

A C kx2k2p
A /

D 0

for all x1; x2 2 A. Thus for some ˛; ˇ; � 2 C

˛f .Œx1; x2�/ D ˇŒf .x1/; x2�C �Œx1; f .x2/�

for all x1; x2 2 A. Hence the mapping f W A ! A is an .˛; ˇ; �/-derivation. Similarly,
one obtains the results for the case p < 1. This completes the proof. �

Now, we prove the Hyers-Ulam stability of .˛; ˇ; �/-derivations on Lie
C�-algebras.
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Theorem 3.102. Let p > 1, � be nonnegative real numbers and f W A ! A be a
mapping with f .0/ D 0 such that, for some ˛; ˇ; � 2 C,

���f
�	x2 � x1

3

�
C f

�x1 � 3	x3
3

�
C 	f

�3x1 C 3x3 � x2
3

�
� 	f .x1/

���
� �.kx1kp C kx2kp C kx3kp/ (3.146)

and

k˛f .Œx1; x2�/ � ˇŒf .x1/; x2� � �Œx1; f .x2/�k
� �.kx1k2p C kx2k2p/ (3.147)

for all 	 2 T
1 and x1; x2; x3 2 A: Then there exists a unique .˛; ˇ; �/-derivation

D W A ! A such that

kD.x1/� f .x1/k � 3p.1C 2p/�kx1kp

3p � 3
(3.148)

for all x1 2 A:

Proof. Letting 	 D 1; x2 D 2x1 and x3 D 0 in (3.146), we get

���3f
�x1
3

�
� f .x1/

��� � .1C 2p/�kx1kp (3.149)

for all x1 2 A: By induction, we have

���3nf
� x1
3n

�
� f .x1/

��� � .1C 2p/�kx1kp
n�1X
iD0

3i.1�p/

for all x1 2 A: Hence ���3nCmf
� x1
3nCm

�
� 3mf

� x1
3m

����
� .1C 2p/�kx1kp

n�1X
iD0

3.iCm/.1�p/

� .1C 2p/�kx1kp
nCm�1X

iDm

3i.1�p/ (3.150)

for all m; n � 1 and x1 2 A: This implies that the sequence f3nf . x1
3n /g is a Cauchy

sequence for all x1 2 A: Since A is complete, the sequence f3nf . x1
3n /g converges.

Thus one can define the mapping D W A ! A by
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D.x1/ WD lim
n!1 3nf

� x1
3n

�

for all x1 2 A: Moreover, letting m D 0 and n ! 1 in (3.150), we get (3.148). It
follows from (3.146) that

���D
�	x2 � x1

3

�
C D

�x1 � 3	x3
3

�
C 	D

�3x1 C 3x3 � x2
3

�
� 	D.x1/

���
D lim

n!1 3n
����f

�	x2 � x1
3nC1

�
C f

�x1 � 3	x3
3nC1

�

C	f
�3x1 C 3x3 � x2

3nC1
�

� 	f
� x1
3n

�����

� lim
n!1

3n�

3np
.kx1kp C kx2kp C kx3kp/

D 0

for all 	 2 T
1 and x1; x2; x3 2 A and so

D
�	x2 � x1

3

�
C D

�x1 � 3	x3
3

�
C 	D

�3x1 C 3x3 � x2
3

�
D 	D.x1/ (3.151)

for all 	 2 T
1 and x1; x2; x3 2 A: Let 	 D 1 in (3.151). Then the mapping

D W A ! A satisfies the inequality (3.142). By Lemma 3.100, the mapping
D W A ! A is additive. Letting x1 D x2 D 0 in (3.151), we get

D
��3	x3

3

�
C 	D

�
3x3
3

� D 0 and so D.	x3/ D 	D.x3/ for all 	 2 T
1 and all

x3 2 A: By Lemma 3.99, D is C-linear. It follows from (3.147) that

k˛D.Œx1; x2�/ � ˇŒD.x1/; x2� � �Œx1;D.x2/�k

D lim
n!1 9n

���˛f
� Œx1; x2�

9n

�
� ˇ

h
f
� x1
3n

�
;

x2
3n

i
� �

h x1
3n
; f
� x2
3n

�i���
� lim

n!1
9n�

9np
.kx1k2p C kx2k2p/ D 0

for all x1; x2 2 A: So, for some ˛; ˇ; � 2 A, we have

˛D.Œx1; x2�/ D ˇŒD.x1/; x2�C �Œx1;D.x2/�

for all x1; x2 2 A: Thus D is an .˛; ˇ; �/-derivation.
Now, let D

0 W A ! A be another .˛; ˇ; �/-derivation satisfying (3.148). Then we
have
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kD.x1/� D
0

.x1/k
D 3n

���D
� x1
3n

�
� D

0

� x1
3n

����
� 3n

����D
� x1
3n

�
� f
� x1
3n

����C
���D

0

� x1
3n

�
� f
� x1
3n

�����

� 2 � 3n.1C 2p/3p

3np.3p � 3/ �kxkp ;

which tends to zero as n ! 1 for all x1 2 A: So we can conclude that
D.x1/ D D

0

.x1/ for all x1 2 A: This proves the uniqueness of D: Therefore,
the mapping D W A ! A is a unique .˛; ˇ; �/-derivation satisfying (3.148). This
completes the proof. �
Theorem 3.103. Let p < 1, � be nonnegative real numbers and f W A ! A with
f .0/ D 0 be a mapping satisfying (3.146) and (3.147). Then there exists a unique
.˛; ˇ; �/-derivation D W A ! A such that

kD.x1/� f .x1/k � 3p.1C 2p/�kx1kp

3 � 3p
(3.152)

for all x1 2 A:

Proof. It follows from (3.149) that���f .x1/� 1

3
f .3x1/

��� � 3p

3
.1C 2p/�kx1kp

for all x1 2 A: By induction, we have

���f .x1/� 1

3n
f .3nx1/

��� � .1C 2p/�kx1kp
nX

iD1
3i.p�1/

for all x1 2 A: Hence we have

��� 1
3m

f .3mx1/ � 1

3nCm
f .3nCmx1/

���
� .1C 2p/�kx1kp

nX
iD1

3.iCm/.p�1/

� .1C 2p/�kx1kp
nCmX

iDmC1
3i.p�1/ (3.153)

for all m � 1 and x1 2 A: This implies that the sequence f 1
3n f .3nx1/g is a Cauchy

sequence for all x1 2 A: Since A is complete, the sequence f 1
3n f .3nx1/g converges.

Thus one can define the mapping D W A ! A by
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D.x1/ WD lim
n!1

1

3n
f .3nx1/

for all x1 2 A: Moreover, letting m D 0 and n ! 1 in (3.153), we get (3.152).
The rest of the proof is similar to the proof of Theorem 3.102. This completes

the proof. �

Corollary 3.104. Let � be a nonnegative real number. Let f W A ! A with be a
mapping f .0/ D 0 such that, for some ˛; ˇ; � 2 C,

���f
�	x2 � x1

3

�
C f

�x1 � 3	x3
3

�
C 	f

�3x1 C 3x3 � x2
3

�
� 	f .x1/

���
� �

and

k˛f .Œx1; x2�/ � ˇŒf .x1/; x2� � �Œx1; f .x2/�k � �

for all 	 2 T
1 and x1; x2; x3 2 A: Then there exists a unique .˛; ˇ; �/-derivation

D W A ! A such that

kD.x1/ � f .x1/k � �

2

for all x1 2 A:

3.8 Square Roots and 3rd Root Functional Equations:
The Direct Method

In this section, we introduce a square root functional equation and a 3rd root
functional equation. We prove the Hyers-Ulam stability of the square root functional
equation and of the 3rd root functional equation in C�-algebras.

Definition 3.105 ([96]). Let A be a C�-algebra and x 2 A be a self-adjoint element,
i.e., x� D x. Then x is said to be positive if it is of the form yy� for some y 2 A. The
set of positive elements of A is denoted by AC.

Note that AC is a closed convex cone (see [96]). It is well-known that, for a
positive element x and a positive integer n, there exists a unique positive element
y 2 AC such that x D yn. We denote y by x

1
n (see [128]).

In this section, we introduce a square root functional equation:

S
�

x C y C x
1
4 y

1
2 x

1
4 C y

1
4 x

1
2 y

1
4

�
D S.x/C S.y/ (3.154)
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and a 3rd root functional equation:

T
�

x C y C 3x
1
3 y

1
3 x

1
3 C 3y

1
3 x

1
3 y

1
3

�
D T.x/C T.y/ (3.155)

for all x; y 2 AC. Each solution of the square root functional equation is called a
square root mapping and each solution of the 3rd root functional equation is called
a 3rd root mapping.

Note that the functions S.x/ D p
x D x

1
2 and T.x/ D 3

p
x D x

1
3 in the set of non-

negative real numbers are solutions of the functional equations (3.154) and (3.155),
respectively.

Throughout this section, let AC and BC be the sets of positive elements in C�-
algebras A and B, respectively.

3.8.1 Stability of the Square Root Functional Equation

Here we investigate the square root functional equation in C�-algebras.

Lemma 3.106. Let S W AC ! BC be a square root mapping satisfying (3.154).
Then S satisfies

S.4nx/ D 2nS.x/ (3.156)

for all x 2 AC and n 2 Z.

Proof. Putting x D y D 0 in (3.154), we obtain S.0/ D 0. Letting y D 0 in (3.154),
we obtain

S.40x/ D S.x/ D 20S.x/

for all x 2 AC.
First of all, we use the induction on n to prove the equality (3.155) for all n � 1.

Replacing y by x in (3.154), we get

S.4x/ D 2S.x/ (3.157)

for all x 2 AC. So the equality (3.156) holds for n D 1. Assume that

S.4kx/ D 2kS.x/ (3.158)

holds for a positive integer k. Replacing x by 4x in (3.158) and using (3.157), we
obtain

S.4kC1x/ D S.4k � 4x/ D 2kS.4x/ D 2kC1S.x/
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for all x 2 AC. So the equality (3.156) holds for n D k C 1. Thus, by induction, we
have

S.4nx/ D 2nS.x/ (3.159)

for all x 2 AC and n � 1.
Next, replacing x by 4�nx in (3.159), we obtain

S.x/ D S.4n � 4�nx/ D 2nS.4�nx/

for all x 2 AC and n � 1 and so

S.4nx/ D 2nS.x/

for all x 2 AC and n � 1. Therefore, we have

S.4nx/ D 2nS.x/

for all x 2 AC and n 2 Z. This completes the proof. �

Now, we prove the Hyers-Ulam stability of the square root functional equation
in C�-algebras.

Theorem 3.107. Let f W AC ! BC be a mapping for which there exists a function
' W AC � AC ! Œ0;1/ such that

Q'.x; y/ WD
1X

jD1
2j'
� x

4j
;

y

4j

�
< 1 (3.160)

and ���f
�

x C y C x
1
4 y

1
2 x

1
4 C y

1
4 x

1
2 y

1
4

�
� f .x/ � f .y/

��� � '.x; y/ (3.161)

for all x; y 2 AC. Then there exists a unique square root mapping S W AC ! AC
satisfying (3.154) and

kf .x/ � S.x/k � 1

2
Q'.x; y/ (3.162)

for all x 2 AC.

Proof. Letting y D x in (3.161), we get

���f .4x/� 2f .x/
��� � '.x; x/ (3.163)
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for all x 2 AC. It follows from (3.163) that���f .x/� 2f
� x

4

���� � '
� x

4
;

x

4

�
for all x 2 AC. Hence

���2lf
� x

4l

�
� 2mf

� x

4m

���� � 1

2

mX
jDlC1

2j'
� x

4j
;

x

4j

�
(3.164)

for all m; l � 1 with m > l and x 2 AC. It follows from (3.160) and (3.164) that the
sequence

˚
2kf

�
x
4k

��
is a Cauchy sequence for all x 2 AC. Since BC is complete, the

sequence
˚
2kf

�
x
4k

��
converges and so one can define the mapping S W AC ! BC by

S.x/ WD lim
k!1 2kf

� x

4k

�
for all x 2 AC. By (3.163) and (3.164), we have���S

�
x C y C x

1
4 y

1
2 x

1
4 C y

1
4 x

1
2 y

1
4

�
� S.x/� S.y/

���
D lim

k!1 2k
���f
�x C y C x

1
4 y

1
2 x

1
4 C y

1
4 x

1
2 y

1
4

4k

�
� f
� x

4k

�
� f
� y

4k

����
� lim

k!1 2k'
� x

4k
;

y

4k

�
D 0

for all x; y 2 AC and so

S
�

x C y C x
1
4 y

1
2 x

1
4 C y

1
4 x

1
2 y

1
4

�
� S.x/� S.y/ D 0:

Hence the mapping S W AC ! BC is a square root mapping. Moreover, letting l D 0

and m ! 1 in (3.164), we get (3.162). So, there exists a square root mapping
S W AC ! BC satisfying (3.154) and (3.162).

Now, let S0 W AC ! BC be another square root mapping satisfying (3.154)
and (3.162). Then we have

kS.x/� S0.x/k D 2q
���S
� x

4q

�
� S0

� x

4q

����
� 2q

���S
� x

4q

�
� f
� x

4q

����C 2q
���S0� x

4q

�
� f
� x

4q

����
� 2 � 2q

2
Q'
� x

4q
;

x

4q

�
;

which tends to zero as q ! 1 for all x 2 AC. So we can conclude that S.x/ D S0.x/
for all x 2 AC. This proves the uniqueness of S. This completes the proof. �
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Corollary 3.108. Let p > 1
2

and �1; �2 be non-negative real numbers, and let
f W AC ! BC be a mapping such that

���f
�

x C y C x
1
4 y

1
2 x

1
4 C y

1
4 x

1
2 y

1
4

�
� f .x/ � f .y/

���
� �1.kxkp C kykp/C �2 � kxk p

2 � kyk p
2 (3.165)

for all x; y 2 AC. Then there exists a unique square root mapping S W AC ! BC
satisfying (3.154) and

kf .x/ � S.x/k � 2�1 C �2

4p � 2 kxkp

for all x 2 AC.

Proof. Define

'.x; y/ D �1.kxkp C kykp/C �2 � kxk p
2 � kyk p

2

and apply Theorem 3.107. Then we get the desired result. �

Theorem 3.109. Let f W AC ! BC be a mapping for which there exists a function
' W AC � AC ! Œ0;1/ satisfying (3.161) such that

Q'.x; y/ WD
1X

jD0
2�j'.4jx; 4jy/ < 1

for all x; y 2 AC. Then there exists a unique square root mapping S W AC ! BC
satisfying (3.154) and

kf .x/ � S.x/k � 1

2
Q'.x; x/

for all x 2 AC.

Proof. It follows from (3.163) that

����f .x/ � 1

2
f .4x/

���� � 1

2
'.x; x/

for all x 2 AC. The rest of the proof is similar to the proof of Theorem 3.107. �

Corollary 3.110. Let 0 < p < 1
2
, �1, �2 be non-negative real numbers and f W

AC ! BC be a mapping satisfying (3.165). Then there exists a unique square root
mapping S W AC ! BC satisfying (3.154) and
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kf .x/ � S.x/k � 2�1 C �2

2� 4p
kxkp

for all x 2 AC.

Proof. Define

'.x; y/ D �1.kxkp C kykp/C �2 � kxk p
2 � kyk p

2

and apply Theorem 3.109. Then we get the desired result. �

3.8.2 Stability of the 3rd Root Functional Equation

Now, we investigate the 3rd root functional equation in C�-algebras.

Lemma 3.111. Let T W AC ! BC be a 3rd root mapping satisfying (3.155). Then
T satisfies

T.8nx/ D 2nT.x/

for all x 2 AC and n 2 Z.

Proof. The proof is similar to the proof of Lemma 3.106. �

Now, we prove the Hyers-Ulam stability of the 3rd root functional equation in
C�-algebras.

Theorem 3.112. Let f W AC ! BC be a mapping for which there exists a function
' W AC � AC ! Œ0;1/ such that

Q'.x; y/ WD
1X

jD1
2j'

� x

8j
;

y

8j

�
< 1

and ���f
�

x C y C 3x
1
3 y

1
3 x

1
3 C 3y

1
3 x

1
3 y

1
3

�
� f .x/� f .y/

���
� '.x; y/ (3.166)

for all x; y 2 AC. Then there exists a unique 3rd root mapping T W AC ! AC
satisfying (3.155) and

kf .x/ � T.x/k � 1

2
Q'.x; y/

for all x 2 AC.
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Proof. Letting y D x in (3.166), we get

kf .8x/ � 2f .x/k � '.x; x/ (3.167)

for all x 2 AC. The rest of the proof is similar to the proof of Theorem 3.107. �

Corollary 3.113. Let p > 1
3
, �1, �2 be non-negative real numbers and f W AC ! BC

be a mapping such that

���f
�

x C y C 3x
1
3 y

1
3 x

1
3 C 3y

1
3 x

1
3 y

1
3

�
� f .x/ � f .y/

���
� �1.kxkp C kykp/C �2 � kxk p

2 � kyk p
2 (3.168)

for all x; y 2 AC. Then there exists a unique 3rd root mapping T W AC ! BC
satisfying (3.155) and

kf .x/ � T.x/k � 2�1 C �2

8p � 2 kxkp

for all x 2 AC.

Proof. Define

'.x; y/ D �1.kxkp C kykp/C �2 � kxk p
2 � kyk p

2

and apply Theorem 3.112. Then we get the desired result. �

Theorem 3.114. Let f W AC ! BC be a mapping for which there exists a function
' W AC � AC ! Œ0;1/ satisfying (3.166) such that

Q'.x; y/ WD
1X

jD0
2�j'.8jx; 8jy/ < 1

for all x; y 2 AC. Then there exists a unique 3rd root mapping T W AC ! BC
satisfying (3.155) and

kf .x/ � T.x/k � 1

2
Q'.x; x/

for all x 2 AC.

Proof. It follows from (3.167) that

���f .x/ � 1

2
f .8x/

��� � 1

2
'.x; x/

for all x 2 AC. The rest of the proof is similar to the proof of Theorem 3.107. �
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Corollary 3.115. Let 0 < p < 1
3
, �1, �2 be non-negative real numbers and

f W AC ! BC be a mapping satisfying (3.168). Then there exists a unique 3rd root
mapping T W AC ! BC satisfying (3.155) and

kf .x/ � T.x/k � 2�1 C �2

2 � 8p
kxkp

for all x 2 AC.

Proof. Define '.x; y/ D �1.kxkp Ckykp/C�2 �kxk p
2 �kyk p

2 and apply Theorem 3.114.
Then we get the desired result. �

3.9 Square Root and 3rd Root Functional Equations:
The Fixed Point Method

In this section, we prove the Hyers-Ulam stability of the square root functional
equation and the 3rd root functional equation in C�-algebras via fixed point
method [235].

3.9.1 Stability of the Square Root Functional Equation

In this section, we investigate the square root functional equation in C�-algebras.
Now, we prove the Hyers-Ulam stability of the square root functional equation

in C�-algebras.

Theorem 3.116. Let ' W AC � AC ! Œ0;1/ be a function such that there exists
L < 1 with

'.x; y/ � L

2
'.4x; 4y/ (3.169)

for all x; y 2 AC. Let f W AC ! BC be a mapping satisfying���f
�

x C y C x
1
4 y

1
2 x

1
4 C y

1
4 x

1
2 y

1
4

�
� f .x/ � f .y/

���
� '.x; y/ (3.170)

for all x; y 2 AC. Then there exists a unique square root mapping S W AC ! AC
satisfying (3.154) and

kf .x/ � S.x/k � L

2 � 2L
'.x; x/ (3.171)

for all x 2 AC.
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Proof. Letting y D x in (3.170), we get

kf .4x/ � 2f .x/k � '.x; x/ (3.172)

for all x 2 AC. Consider the set

X WD fg W AC ! BCg

and introduce the generalized metric on X defined by

d.g; h/ D inff	 2 RC W kg.x/� h.x/k � 	'.x; x/; 8x 2 ACg;

where, as usual, inf� D C1 which .X; d/ is complete.
Now, we consider the linear mapping J W X ! X such that

Jg.x/ WD 2g
�x

4

�

for all x 2 AC. Let g; h 2 X be given such that d.g; h/ D ". Then

kg.x/ � h.x/k � '.x; x/

for all x 2 AC. Hence we have

kJg.x/� Jh.x/k D
���2g

� x

4

�
� 2h

� x

4

���� � L'.x; x/

for all x 2 AC. So, d.g; h/ D " implies that d.Jg; Jh/ � L". This means that

d.Jg; Jh/ � Ld.g; h/

for all g; h 2 X. It follows from (3.172) that

���f .x/� 2f
� x

4

���� � L

2
'.x; x/

for all x 2 AC and so d.f ; Jf / � L
2
. By Theorem 1.3, there exists a mapping

S W AC ! BC satisfying the following:

(1) S is a fixed point of J, i.e.,

S
� x

4

�
D 1

2
S.x/ (3.173)

for all x 2 AC. The mapping S is a unique fixed point of J in the set

M D fg 2 X W d.f ; g/ < 1g:
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This implies that S is a unique mapping satisfying (3.173) such that there exists
a 	 2 .0;1/ satisfying

kf .x/ � S.x/k � 	'.x; x/

for all x 2 AC;
(2) d.Jnf ; S/ ! 0 as n ! 1. This implies the equality

lim
n!1 2nf

� x

4n

�
D S.x/

for all x 2 AC;
(3) d.f ; S/ � 1

1�L d.f ; Jf /, which implies the inequality

d.f ; S/ � L

2 � 2L
:

This implies that the inequality (3.171) holds.

By (3.169) and (3.170), we have

2n
���f
�x C y C x

1
4 y

1
2 x

1
4 C y

1
4 x

1
2 y

1
4

4n

�
� f
� x

4n

�
� f
� y

4n

����
� 2n'

� x

4n
;

y

4n

�
� Ln'.x; y/

for all x; y 2 AC and n 2 N. So, we have

���S
�

x C y C x
1
4 y

1
2 x

1
4 C y

1
4 x

1
2 y

1
4

�
� S.x/� S.y/

��� D 0

for all x; y 2 AC. Thus the mapping S W AC ! BC is a square root mapping. This
completes the proof. �

Corollary 3.117. Let p > 1
2
, �1, �2 be non-negative real numbers and f W AC ! BC

be a mapping such that

���f
�

x C y C x
1
4 y

1
2 x

1
4 C y

1
4 x

1
2 y

1
4

�
� f .x/ � f .y/

���
� �1.kxkp C kykp/C �2 � kxk p

2 � kyk p
2 (3.174)

for all x; y 2 AC. Then there exists a unique square root mapping S W AC ! BC
satisfying (3.154) and
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kf .x/ � S.x/k � 2�1 C �2

4p � 2 jjxjjp

for all x 2 AC.

Proof. The proof follows from Theorem 3.116 by taking
'.x; y/ D �1.kxkp C kykp/C �2 � kxk p

2 � kyk p
2 for all x; y 2 AC and L D 21�2p. �

Theorem 3.118. Let ' W AC � AC ! Œ0;1/ be a function such that there exists
L < 1 with

'.x; y/ � 2L'
� x

4
;

y

4

�

for all x; y 2 AC. Let f W AC ! BC be a mapping satisfying (3.170). Then there
exists a unique square root mapping S W AC ! AC satisfying (3.154) and

kf .x/ � S.x/k � 1

2 � 2L
'.x; x/

for all x 2 AC.

Proof. Let .X; d/ be the generalized metric space defined in the proof of Theo-
rem 3.116. Consider the linear mapping J W X ! X such that

Jg.x/ WD 1

2
gt.4x/

for all x 2 AC. It follows from (3.172) that

���f .x/� 1

2
f .4x/

��� � 1

2
'.x; x/

for all x 2 AC. So d.f ; Jf / � 1
2
.

The rest of the proof is similar to the proof of Theorem 3.116. This completes
the proof. �

Corollary 3.119. Let 0 < p < 1
2
, �1, �2 be non-negative real numbers and

f W AC ! BC be a mapping satisfying (3.174). Then there exists a unique square
root mapping S W AC ! BC satisfying (3.154) and

kf .x/ � S.x/k � 2�1 C �2

2� 4p
kxkp

for all x 2 AC.
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Proof. The proof follows from Theorem 3.118 by taking

'.x; y/ D �1.kxkp C kykp/C �2 � kxk p
2 � kyk p

2

for all x; y 2 AC and L D 22p�1. �

3.9.2 Stability of the 3rd Root Functional Equation

Now, we investigate the 3rd root functional equation in C�-algebras.
Now, we prove the Hyers-Ulam stability of the 3rd root functional equation in

C�-algebras.

Theorem 3.120. Let ' W AC � AC ! Œ0;1/ be a function such that there exists an
L < 1 with

'.x; y/ � L

2
'.8x; 8y/

for all x; y 2 AC. Let f W AC ! BC be a mapping satisfying

���f
�

x C y C 3x
1
3 y

1
3 x

1
3 C 3y

1
3 x

1
3 y

1
3

�
� f .x/ � f .y/

���
� '.x; y/ (3.175)

for all x; y 2 AC. Then there exists a unique 3rd root mapping T W AC ! AC
satisfying (3.155) and

kf .x/ � T.x/k � L

2 � 2L
'.x; x/

for all x 2 AC.

Proof. Letting y D x in (3.175), we get

kf .8x/ � 2f .x/k � '.x; x/ (3.176)

for all x 2 AC. Let .X; d/ be the generalized metric space defined in the proof of
Theorem 3.116. Consider the linear mapping J W X ! X such that

Jg.x/ WD 2g
�x

8

�

for all x 2 AC.
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Now, we consider the linear mapping J W X ! X such that

Jg.x/ WD 2g
�x

8

�

for all x 2 AC. It follows from (3.176) that

���f .x/� 2f
� x

8

���� � L

2
'.x; x/

for all x 2 X and so d.f ; Jf / � L
2
.

The rest of the proof is similar to the proof of Theorem 3.116. This completes
the proof. �

Corollary 3.121. Let p > 1
3
, �1, �2 be non-negative real numbers and f W AC ! BC

be a mapping such that

���f
�

x C y C 3x
1
3 y

1
3 x

1
3 C 3y

1
3 x

1
3 y

1
3

�
� f .x/ � f .y/

���
� �1.kxkp C kykp/C �2 � kxk p

2 � kyk p
2 (3.177)

for all x; y 2 AC. Then there exists a unique 3rd root mapping T W AC ! BC
satisfying (3.155) and

kf .x/ � T.x/k � 2�1 C �2

8p � 2 kxkp

for all x 2 AC.

Proof. The proof follows from Theorem 3.120 by taking

'.x; y/ D �1.kxkp C kykp/C �2 � kxk p
2 � kyk p

2

for all x; y 2 AC and L D 21�3p. �
Theorem 3.122. Let ' W AC � AC ! Œ0;1/ be a function such that there exists
L < 1 with

'.x; y/ � 2L'
� x

8
;

y

8

�

for all x; y 2 AC. Let f W AC ! BC be a mapping satisfying (3.175). Then there
exists a unique 3rd root mapping T W AC ! AC satisfying (3.155) and

kf .x/ � T.x/k � 1

2 � 2L
'.x; x/

for all x 2 AC.
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Proof. Let .X; d/ be the generalized metric space defined in the proof of Theo-
rem 3.116. Consider the linear mapping J W X ! X such that

Jg.x/ WD 1

2
g.8x/

for all x 2 AC. It follows from (3.176) that

���f .x/� 1

2
f .8x/

��� � 1

2
'.x; x/

for all x 2 AC and so d.f ; Jf / � 1
2
.

The rest of the proof is similar to the proof of Theorem 3.116. This completes
the proof. �

Corollary 3.123. Let 0 < p < 1
3
, �1, �2 be non-negative real numbers and

f W AC ! BC be a mapping satisfying (3.177). Then there exists a unique 3rd root
mapping T W AC ! BC satisfying (3.155) and

kf .x/ � T.x/k � 2�1 C �2

2 � 8p
kxkp

for all x 2 AC.

Proof. The proof follows from Theorem 3.122 by taking

'.x; y/ D �1.kxkp C kykp/C �2 � kxk p
2 � kyk p

2

for all x; y 2 AC and L D 23p�1. �

3.10 Positive-Additive Functional Equation

In this section, we consider a positive-additive functional equation in C�-algebras
[258]. Using fixed point and direct methods, we prove the stability of the positive-
additive functional equation in C�-algebras.

Definition 3.124 ([96]). Let A be a C�-algebra and x 2 A be a self-adjoint element,
i.e., x� D x. Then x is said to be positive if it is of the form yy� for some y 2 A. The
set of positive elements of A is denoted by AC.

Note that AC is a closed convex cone (see [96]). It is well known that for a
positive element x and a positive integer n there exists a unique positive element
y 2 AC such that x D yn. We denote y by x

1
n (see [128]).
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In this section, we introduce the following functional equation:

T
��

x
1
m C y

1
m

�m� D
�

T.x/
1
m C T.y/

1
m

�m
(3.178)

for all x; y 2 AC and a fixed integer m greater than 1, which is called a positive-
additive functional equation. Each solution of the positive-additive functional
equation is called a positive-additive mapping.

Note that the function f .x/ D cx for any c � 0 in the set of non-negative real
numbers is a solution of the functional equation (3.178).

Throughout this section, let AC and BC be the sets of positive elements in
C�-algebras A and B, respectively. Assume that m is a fixed integer greater than 1.

3.10.1 Stability of the Positive-Additive Functional
Equations: The Fixed Point Method

Here we investigate the positive-additive functional equation (3.178) in C�-algebras.

Lemma 3.125. Let T W AC ! BC be a positive-additive mapping satisfy-
ing (3.178). Then T satisfies

T.2mnx/ D 2mnT.x/

for all x 2 AC and n 2 Z.

Proof. Putting x D y in (3.178), we obtain T.2mx/ D 2mT.x/ for all x 2 AC. So,
one can show that

T.2mnx/ D 2mnT.x/

for all x 2 AC and n 2 Z. �
Using the fixed point method, we prove the Hyers-Ulam stability of the positive-

additive functional equation (3.178) in C�-algebras. Note that the fundamental ideas
in the proofs of the main results in this section are contained in [62–64].

Theorem 3.126. Let ' W AC � AC ! Œ0;1/ be a function such that there exists
L < 1 with

'.x; y/ � L

2m
' .2mx; 2my/ (3.179)

for all x; y 2 AC. Let f W AC ! BC be a mapping satisfying
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���f
��

x
1
m C y

1
m

�m� �
�

f .x/
1
m C f .y/

1
m

�m��� � '.x; y/ (3.180)

for all x; y 2 AC. Then there exists a unique positive-additive mapping T W AC ! AC
satisfying (3.178) and

kf .x/ � T.x/k � L

2m � 2mL
'.x; x/ (3.181)

for all x 2 AC.

Proof. Letting y D x in (3.180), we get

kf .2mx/ � 2mf .x/k � '.x; x/ (3.182)

for all x 2 AC. Consider the set

X WD fg W AC ! BCg

and introduce the generalized metric on X defined by

d.g; h/ D inff	 2 RC W kg.x/� h.x/k � 	'.x; x/; 8x 2 ACg;

where, as usual, inf� D C1 which .X; d/ is complete.
Now, we consider the linear mapping J W X ! X such that

Jg.x/ WD 2mg
� x

2m

�

for all x 2 AC. Let g; h 2 X be given such that d.g; h/ D ". Then we have

kg.x/ � h.x/k � '.x; x/

for all x 2 AC and so

kJg.x/� Jh.x/k D
���2mg

� x

2m

�
� 2mh

� x

2m

���� � L'.x; x/

for all x 2 AC. So, d.g; h/ D " implies that d.Jg; Jh/ � L". This means that

d.Jg; Jh/ � Ld.g; h/

for all g; h 2 X. It follows from (3.182) that

���f .x/ � 2mf
� x

2m

�
k � L

2m
'.x; x/
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for all x 2 AC and so d.f ; Jf / � L
2m . By Theorem 1.3, there exists a mapping

T W AC ! BC satisfying the following:

(1) T is a fixed point of J, i.e.,

T
� x

2m

�
D 1

2m
T.x/ (3.183)

for all x 2 AC. The mapping T is a unique fixed point of J in the set

M D fg 2 X W d.f ; g/ < 1g:

This implies that T is a unique mapping satisfying (3.183) such that there exists
a 	 2 .0;1/ satisfying

kf .x/ � T.x/k � 	'.x; x/

for all x 2 AC;
(2) d.Jnf ;T/ ! 0 as n ! 1. This implies the equality

lim
n!1 2mnf

� x

2mn

�
D T.x/

for all x 2 AC;
(3) d.f ;T/ � 1

1�L d.f ; Jf /, which implies the inequality

d.f ;T/ � L

2m � 2mL
:

This implies that the inequality (3.181) holds.

By (3.179) and (3.180), we have

2mn
���f
��x 1

m C y
1
m
�m

2mn

�
�
��
2mnf

� x

2mn

�� 1
m C

�
2mnf

� y

2mn

�� 1
m
�m���

� 2mn'
� x

2mn
;

y

2mn

�
� Lmn'.x; y/

for all x; y 2 AC and n 2 N and so

���T
��

x
1
m C y

1
m

�m� �
�

T.x/
1
m C T.y/

1
m

�m��� D 0

for all x; y 2 AC. Thus the mapping T W AC ! BC is positive-additive. This
completes the proof. �



3.10 Positive-Additive Functional Equation 147

Corollary 3.127. Let p > 1, �1, �2 be non-negative real numbers and f W AC ! BC
be a mapping such that���f

��
x
1
m C y

1
m

�m��
�

f .x/
1
m C f .y/

1
m

�m���
� �1.kxkp C kykp/C �2 � kxk p

2 � kyk p
2 (3.184)

for all x; y 2 AC. Then there exists a unique positive-additive mapping T W AC ! BC
satisfying (3.178) and

kf .x/ � T.x/k � 2�1 C �2

2mp � 2m
kxkp

for all x 2 AC.

Proof. The proof follows from Theorem 3.126 by taking

'.x; y/ D �1.kxkp C kykp/C �2 � kxk p
2 � kyk p

2

for all x; y 2 AC and L D 2m�mp. �

Theorem 3.128. Let ' W AC � AC ! Œ0;1/ be a function such that there exists an
L < 1 with

'.x; y/ � 2mL'
� x

2m
;

y

2m

�

for all x; y 2 AC. Let f W AC ! BC be a mapping satisfying (3.180). Then there
exists a unique positive-additive mapping T W AC ! AC satisfying (3.178) and

kf .x/ � T.x/k � 1

2m � 2mL
'.x; x/

for all x 2 AC.

Proof. Let .X; d/ be the generalized metric space defined in the proof of Theo-
rem 3.126. Consider the linear mapping J W X ! X such that

Jg.x/ WD 1

2m
g .2mx/

for all x 2 AC. It follows from (3.182) that����f .x/� 1

2m
f .2mx/

���� � 1

2m
'.x; x/

for all x 2 AC and so d.f ; Jf / � 1
2m .

The rest of the proof is similar to the proof of Theorem 3.126. This completes
the proof. �
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Corollary 3.129. Let 0 < p < 1, �1, �2 be non-negative real numbers and
f W AC ! BC be a mapping satisfying (3.184). Then there exists a unique positive-
additive mapping T W AC ! BC satisfying (3.178) and

kf .x/ � T.x/k � 2�1 C �2

2m � 2mp
kxkp

for all x 2 AC.

Proof. The proof follows from Theorem 3.128 by taking

'.x; y/ D �1.kxkp C kykp/C �2 � kxk p
2 � kyk p

2

for all x; y 2 AC and L D 2mp�m. �

3.10.2 Stability of the Positive-Additive Functional
Equations: The Direct Method

Now, using the direct method of Hyers, we prove the Hyers-Ulam stability of the
positive-additive functional equation (3.178) in C�-algebras.

Theorem 3.130. Let f W AC ! BC be a mapping for which there exists a function
' W AC � AC ! Œ0;1/ satisfying (3.180) and

Q'.x; y/ WD
1X

jD1
2mj'

� x

2mj
;

y

2mj

�
< 1 (3.185)

for all x; y 2 AC. Then there exists a unique positive-additive mapping T W AC ! AC
satisfying (3.178) and

kf .x/ � T.x/k � 1

2m
Q'.x; y/ (3.186)

for all x 2 AC.

Proof. It follows from (3.182) that

���f .x/ � 2mf
� x

2m

���� � '
� x

2m
;

x

2m

�

for all x 2 AC and so

���2mlf
� x

2ml

�
� 2mkf

� x

2mk

���� � 1

2m

kX
jDlC1

2mj'
� x

2mj
;

x

2mj

�
(3.187)
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for all k; l � 1 with k > l and x 2 AC. It follows from (3.185) and (3.187)
that the sequence

˚
2mjf

�
x
2mj

��
is a Cauchy sequence for all x 2 AC. Since BC is

complete, the sequence
˚
2mjf

�
x
2mj

��
converges and so one can define the mapping

T W AC ! BC by

T.x/ WD lim
j!1 2mjf

� x

2mj

�

for all x 2 AC. By (3.180) and (3.185), we have

���T
��

x
1
m C y

1
m

�m� �
�

T.x/
1
m C T.y/

1
m

�m���
D lim

j!1 2mj
���f
��x 1

m C y
1
m
�m

2mj

�

�
��
2mjf

� x

2mj

�� 1
m C

�
2mjf

� y

2mj

�� 1
m
�m���

� lim
j!1 2mj'

� x

2mj
;

y

2mj

�
D 0

for all x; y 2 AC and so

T
��

x
1
m C y

1
m

�m� �
�

T.x/
1
m C T.y/

1
m

�m D 0

for all x; y 2 AC. Hence the mapping T W AC ! BC is positive-additive. Moreover,
letting l D 0 and passing the limit k ! 1 in (3.187), we get (3.186). So there exists
a positive-additive mapping T W AC ! BC satisfying (3.178) and (3.186).

Now, let T 0 W AC ! BC be another positive-additive mapping satisfying (3.178)
and (3.186). Then we have

kT.x/ � T 0.x/k
D 2mq

���T
� x

2mq

�
� T 0

� x

2mq

����
� 2mq

���T
� x

2mq

�
� f

� x

2mq

����C 2mq
���T 0 � x

2mq

�
� f

� x

2mq

����
� 2 � 2mq

2m
Q'
� x

2mq
;

x

2mq

�
;

which tends to zero as q ! 1 for all x 2 AC. So, we can conclude that T.x/ D T 0.x/
for all x 2 AC, which proves the uniqueness of T. This completes the proof. �
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Corollary 3.131. Let p > 1, �1, �2 be non-negative real numbers and f W AC ! BC
be a mapping satisfying (3.184). Then there exists a unique positive-additive
mapping T W AC ! BC satisfying (3.178) and

kf .x/ � T.x/k � 2�1 C �2

2mp � 2m
kxkp

for all x 2 AC.

Proof. Define

'.x; y/ D �1.kxkp C kykp/C �2 � kxk p
2 � kyk p

2

and apply Theorem 3.130. Then we get the desired result. �

Theorem 3.132. Let f W AC ! BC be a mapping for which there exists a function
' W AC � AC ! Œ0;1/ satisfying (3.180) such that

Q'.x; y/ WD
1X

jD0
2�mj'.2mjx; 2mjy/ < 1

for all x; y 2 AC. Then there exists a unique positive-additive mapping T W AC ! BC
satisfying (3.178) and

kf .x/ � T.x/k � 1

2m
Q'.x; x/

for all x 2 AC.

Proof. It follows from (3.182) that

���f .x/� 1

2m
f .2mx/

��� � 1

2m
'.x; x/

for all x 2 AC. The rest of the proof is similar to the proof of Theorem 3.130. �

Corollary 3.133. Let 0 < p < 1, �1, �2 be non-negative real numbers and
f W AC ! BC be a mapping satisfying (3.184). Then there exists a unique positive-
additive mapping T W AC ! BC satisfying (3.178) and

kf .x/ � T.x/k � 2�1 C �2

2m � 2mp
kxkp

for all x 2 AC.
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Proof. Define

'.x; y/ D �1.kxkp C kykp/C �2 � kxk p
2 � kyk p

2

and apply Theorem 3.132. Then we get the desired result. �

3.11 Stability of �-Homomorphisms in JC�-Algebras

It is shown that every almost unital almost linear mapping f W A ! B of JC�-
algebra A to a JC�-algebra B is a homomorphism when f .2nu ı y/ D f .2nu/ ı f .y/
for all unitaries u 2 A, y 2 A and n � 0 and every almost unital almost linear
continuous mapping f W A ! B of a JC�-algebra A of real rank zero to a JC�-
algebra B is a homomorphism when f .2nu ı y/ D f .2nu/ ı f .y/ for all u 2 fv 2 A W
v D v�; kvk D 1; v is invertibleg, y 2 A and n � 0.

Furthermore, we prove the Hyers-Ulam stability of �-homomorphisms in JC�-
algebras and C-linear �-derivations on JC�-algebras.

Our knowledge concerning the continuity properties of epimorphisms on Banach
algebras, Jordan–Banach algebras, and, more generally, non-associative complete
normed algebras, is now fairly complete and satisfactory (see [143] and [326]). A
basic continuity problem consists in determining algebraic conditions on a Banach
algebra A which ensure that derivations on A are continuous. In 1996, Villena [326]
proved that derivations on semisimple Jordan–Banach algebras are continuous.

Let E1 and E2 be Banach spaces with the norms k � k and k � k, respectively.
Consider f W E1 ! E2 to be a mapping such that f .tx/ is continuous in t 2 R for
each fixed x 2 E1. Assume that there exist constants � � 0 and p 2 Œ0; 1/ such that

kf .x C y/� f .x/� f .y/k � �.kxkp C kykp/

for all x; y 2 E1. In [267], Th. M. Rassias showed that there exists a unique R-linear
mapping T W E1 ! E2 such that

kf .x/ � T.x/k � 2�

2 � 2p
kxkp

for all x 2 E1. Găvruta [123] generalized the Rassias’ result.
In [146], Jun et al. proved the following:
Let X and Y be Banach spaces. Denote by ' W X � X ! Œ0;1/ a function such

that

".x/ WD
1X

jD1
2�j.'.2j�1x; 0/C '.0; 2j�1x/C '.2j�1x; 2j�1x// < 1



152 3 Stability of Functional Equations in C�-Algebras

for all x 2 X. Suppose that f ; g; h W X ! Y are mappings satisfying

k2f .
x C y

2
/� g.x/� h.y/k � '.x; y/

for all x; y 2 X. Then there exists a unique additive mapping T W X ! Y such that

k2f .
x

2
/ � T.x/k � kg.0/k C kh.0/k C ".x/;

kg.x/� T.x/k � kg.0/k C 2kh.0/k C '.x; 0/C ".x/;

kh.x/ � T.x/k � 2kg.0/k C kh.0/k C '.0; x/C ".x/

for all x 2 X.
In Theorem 7.2 of Johnson [143], Johnson also investigated almost algebra �-

homomorphisms between Banach �-algebras:
Suppose that U and B are Banach �-algebras which satisfy the conditions of

Theorem 3.1 in [143]. Then, for each positive � and K, there exists a positive ı such
that if T 2 L.U ;B/ with kTk < K, kT_k < ı and kT.x�/� � T.x/k � ıkxk for all
x 2 U , then there exists a �-homomorphism T 0 W U ! B with kT � T 0k < �. Here
L.U ;B/ is the space of bounded linear mappings from U into B and

T_.x; y/ D T.xy/� T.x/T.y/

for all x; y 2 U (see [143] for details).
The original motivation to introduce the class of nonassociative algebras known

as Jordan algebras came from quantum mechanics (see [323]).
Let H be a complex Hilbert space, regarded as the “state space” of a quantum

mechanical system. Let L.H/ be the real vector space of all bounded self-
adjoint linear operators on H, interpreted as the (bounded) observables of the
system. In 1932, Jordan observed that L.H/ is a (nonassociative) algebra via the
anticommutator product x ı y WD xyCyx

2
. A commutative algebra X with product x ı y

is called a Jordan algebra if

x2 ı .x ı y/ D x ı .x2 ı y/:

A complex Jordan algebra C with the product x ı y and involution x 7! x� is
called a JB�-algebra if C carries a Banach space norm k � k satisfying

kx ı yk � kxk � kyk; kfxx�xgk D kxk3:

Here fxy�zg WD x ı .y� ı z/ � y� ı .z ı x/ C z ı .x ı y�/ denotes the Jordan triple
product of x; y; z 2 C. A unital Jordan C�-subalgebra of a C�-algebra endowed with
the anticommutator product is called a JC�-algebra.
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Throughout this section, let A be a JC�-algebra with the norm k � k and the unit
e and B be a JC�-algebra with the norm k � k and the unit e0. Let

U.A/ D fu 2 A W u�u D uu� D eg; Asa D fx 2 A W x D x�g;
I1.Asa/ D fv 2 Asa W kvk D 1; v is invertibleg:

In this section, we prove that every almost unital almost linear mapping
h W A ! B is a homomorphism when h.3nu ı y/ D h.3nu/ ı h.y/ for all u 2 U.A/,
y 2 A and n � 0 and, for a JC�-algebra A of real rank zero, every almost
unital almost linear continuous mapping h W A ! B is a homomorphism when
h.3nu ı y/ D h.3nu/ ı h.y/ for all u 2 I1.Asa/, y 2 A and n � 0.

Furthermore, we prove the Hyers-Ulam stability of �-homomorphisms between
JC�-algebras and C-linear �-derivations on JC�-algebras.

3.11.1 �-Homomorphisms in JC�-Algebras

Now, we investigate �-homomorphisms in JC�-algebras.

Theorem 3.134. Let f ; g; h W A ! B be mappings satisfying f .0/ D 0, g.0/ D 0

and h.0/ D 0 and let f .2nu ı y/ D f .2nu/ ı f .y/, g.2nu ı y/ D g.2nu/ ı g.y/ and
h.2nu ı y/ D h.2nu/ ı h.y/ for u 2 U.A/, y 2 A and n � 0 for which there exists a
function ' W A n f0g � A n f0g ! Œ0;1/ such that

Q'.x; y/ WD
1X

jD0
2�j'.2j�1x; 2j�1y/ < 1; (3.188)

���2f
�	x C 	y

2

�
� 	g.x/� 	h.y/

��� � '.x; y/; (3.189)

kf .2nu�/ � f .2nu/�k � '.2nu; 2nu/ (3.190)

for all 	 2 T
1 WD f� 2 C j j�j D 1g, u 2 U.A/, x; y 2 A and n � 0. Assume that

lim
n!1

f .2ne/

2n
D e0: (3.191)

Then the mappings f ; g; h W A ! B are �-homomorphisms.

Proof. Put 	 D 1 2 T
1. It follows from Corollary 2.5 of [146] that there exists a

unique additive mapping H W A ! B such that

���2f
� x

2

�
� H.x/

��� � ".x/; kg.x/� H.x/k � '.x; 0/C ".x/;
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kh.x/� H.x/k � '.0; x/C ".x/ (3.192)

for all x 2 A n f0g, where

".x/ WD
1X

jD1
2�j.'.2j�1x; 0/C '.0; 2j�1x/C '.2j�1x; 2j�1x// < 1

for all x 2 A n f0g. The additive mapping H W A ! B is given by

H.x/ D lim
n!1

1

2n
f .2nx/

for all x 2 A and

lim
n!1 2�nf .2nx/ D lim

n!1 2�ng.2nx/ D lim
n!1 2�nh.2nx/

for all x 2 A. Let Qf .x/ D 2f . x
2
/ for all x 2 A. Then we have

lim
n!1

1

2n
Qf .2nx/ D lim

n!1
1

2n
f .2nx/

for all x 2 A. By the assumption, we have

kf .2n	x/ � 	f .2nx/k

D
���f .2n	x/ � 1

2
	g.2nx/ � 1

2
	h.2nx/C 1

2
	g.2nx/C 1

2
	h.2nx/ � 	f .2nx/

���
� 1

2
'.2nx; 2nx/C 1

2
j	j'.2nx; 2nx/

D '.2nx; 2nx/

for all 	 2 T
1 and x 2 A n f0g. Thus 2�nkf .2n	x/ � 	f .2nx/k ! 0 as n ! 1 for

all 	 2 T
1 and x 2 A n f0g. Hence we have

H.	x/ D lim
n!1

f .2n	x/

2n
D lim

n!1
	f .2nx/

2n
D 	H.x/ (3.193)

for all 	 2 T
1 and x 2 A n f0g.

Now, let � 2 C .� ¤ 0/ and M be an integer greater than 2j�j. Then we have
j �M j < 1

2
D 1 � 2

4
. By Theorem 1 of Kadison and Pedersen [167], there exist four

elements 	1; 	2; 	3; 	4 2 T
1 such that 4 �M D 	1 C 	2 C 	3 C 	4. Note that

H.x/ D H.2 � 1
2
x/ D 2H. 1

2
x/ for all x 2 A and so H. 1

2
x/ D 1

2
H.x/ for all x 2 A.

Thus, by (3.193), we have
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H.�x/ D H
�M

4
� 4 �

M
x
�

D M � H
�1
4

� 4 �
M

x
�

D M

4
H
�
4
�

M
x
�

D M

4
H.	1x C 	2x C 	3x C 	4x/

D M

4
.H.	1x/C H.	2x/C H.	3x/C H.	4x//

D M

4
.	1 C 	2 C 	3 C 	4/H.x/

D M

4
� 4 �

M
H.x/ D �H.x/

for all x 2 A. Hence we have

H.�x C y/ D H.�x/C H.y/ D �H.x/C H.y/

for all �;  2 C n f0g and x; y 2 A and H.0x/ D 0 D 0H.x/ for all x 2 A. So the
unique additive mapping H W A ! B is a C-linear mapping. By (3.188) and (3.190),
we get

H.u�/ D lim
n!1

f .2nu�/
2n

D lim
n!1

f .2nu/�

2n
D
�

lim
n!1

f .2nu/

2n

�� D H.u/�

for all u 2 U.A/. Since H is C-linear and each x 2 A is a finite linear combination
of unitary elements (see [168]), say, x D Pm

jD1 �juj for all �j 2 C and uj 2 U.A/, it
follows that

H.x�/ D H
� mX

jD1
�ju

�
j

�
D

mX
jD1

�jH.u
�
j / D

mX
jD1

�jH.uj/
�

D
� mX

jD1
�jH.uj/

�� D H
� mX

jD1
�juj

�� D H.x/�

for all x 2 A. Since f .2nu ı y/ D f .2nu/ ı f .y/ for all u 2 U.A/, y 2 A and n � 0,
we have

H.u ı y/ D lim
n!1

1

2n
f .2nu ı y/ D lim

n!1
1

2n
f .2nu/ ı f .y/

D H.u/ ı f .y/ (3.194)

for all u 2 U.A/ and y 2 A. By the additivity of H and (3.194), we have

2nH.u ı y/ D H.2nu ı y/ D H.u ı .2ny// D H.u/ ı f .2ny/

for all u 2 U.A/ and y 2 A and so



156 3 Stability of Functional Equations in C�-Algebras

H.u ı y/ D 1

2n
H.u/ ı f .2ny/ D H.u/ ı 1

2n
f .2ny/ (3.195)

for all u 2 U.A/ and y 2 A. Taking n ! 1 in (3.195), we obtain

H.u ı y/ D H.u/ ı H.y/ (3.196)

for all u 2 U.A/ and y 2 A. Since H is C-linear and each x 2 A is a finite linear
combination of unitary elements, i.e., x D Pm

jD1 �juj for all �j 2 C and uj 2 U.A/,
it follows from (3.196) that

H.x ı y/ D H
� mX

jD1
�juj ı y

�
D

mX
jD1

�jH.uj ı y/

D
mX

jD1
�jH.uj/ ı H.y/ D H

� mX
jD1

�juj

�
ı H.y/

D H.x/ ı H.y/

for all x; y 2 A. By (3.194) and (3.196), we have

H.e/ ı H.y/ D H.e ı y/ D H.e/ ı f .y/

for all y 2 A. Since limn!1 f .2ne/
2n D H.e/ D e0, it follows that

H.y/ D f .y/

for all y 2 A. Similarly, H.y/ D g.y/ D h.y/ for all y 2 A. Therefore, the mapping
f ; g; h W A ! B are �-homomorphisms. This completes the proof. �

Corollary 3.135. Let f ; g; h W A ! B be mappings satisfying f .0/ D 0, g.0/ D 0

and h.0/ D 0 and let f .2nu ı y/ D f .2nu/ ı f .y/, g.2nu ı y/ D g.2nu/ ı g.y/ and
h.2nu ı y/ D h.2nu/ ı h.y/ for all u 2 U.A/, y 2 A and n � 0 for which there exist
constants � � 0 and p 2 Œ0; 1/ such that

���2f
�	x C 	y

2

�
� 	g.x/ � 	h.y/

��� � �.kxkp C kykp/

and

kf .2nu�/ � f .2nu/�k � 2npC1�

for all	 2 T
1, u 2 U.A/, n � 0 and x; y 2 Anf0g. Assume that limn!1 f .2ne/

2n D e0.
Then the mappings f ; g and h are �-homomorphisms.

Proof. Define '.x; y/ D �.kxkp C kykp/ for all x; y 2 A n f0g and apply
Theorem 3.134. The we have the conclusion. �
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Theorem 3.136. Let f ; g; h W A ! B be mappings satisfying f .0/ D 0, g.0/ D 0

and h.0/ D 0 and let f .2nu ı y/ D f .2nu/ ı f .y/, g.2nu ı y/ D g.2nu/ ı g.y/ and
h.2nu ı y/ D h.2nu/ ı h.y/ for all u 2 U.A/, y 2 A and n � 0 for which there exists
a function ' W A � A ! Œ0;1/ satisfying (3.188), (3.190) and (3.191) such that

���2f
�	x C 	y

2

�
� 	g.x/� 	h.y/

��� � '.x; y/ (3.197)

for all x; y 2 A n f0g and 	 D 1; i. If f .tx/ is continuous in t 2 R for each fixed
x 2 A, then the mappings f ; g; h W A ! B are �-homomorphisms.

Proof. Put 	 D 1 in (3.197). By the same reasoning as the proof of Theorem 3.134,
there exists a unique additive mapping H W A ! B satisfying the inequality (3.192).
It is easy to show that, the additive mapping H W A ! B is R-linear.

Put 	 D i in (3.197). By the same method as the proof of Theorem 3.134, one
can obtain that

H.ix/ D lim
n!1

f .2nix/

2n
D lim

n!1
if .2nx/

2n
D iH.x/

for all x 2 A. For each element � 2 C, � D s C it for all s; t 2 R. So, we have

H.�x/ D H.sx C itx/ D sH.x/C tH.ix/ D sH.x/C itH.x/

D .s C it/H.x/ D �H.x/

for all � 2 C and x 2 A and

H.�x C y/ D H.�x/C H.y/ D �H.x/C H.y/

for all �;  2 C and x; y 2 A. Hence the additive mapping H W A ! B is C-linear.
The rest of the proof is the same as the proof of Theorem 3.134. This completes

the proof. �

From now on, assume that A is a JC�-algebra of real rank zero, where “real rank
zero” means that the set of invertible self-adjoint elements is dense in the set of
self-adjoint elements (see [54]).

Now, we investigate continuous �-homomorphisms between JC�-algebras.

Theorem 3.137. Let f ; g; h W A ! B be continuous mappings satisfying f .0/ D 0,
g.0/ D 0 and h.0/ D 0 and let f .2nu ı y/ D f .2nu/ı f .y/, g.2nu ı y/ D g.2nu/ı g.y/
and h.2nu ı y/ D h.2nu/ ı h.y/ for all u 2 I1.Asa/, y 2 A and all n � 0 for which
there exists a function ' W A � A ! Œ0;1/ satisfying (3.188), (3.189), (3.190)
and (3.191). Then the mappings f ; g; h W A ! B are �-homomorphisms.
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Proof. By the same reasoning as the proof of Theorem 3.134, there exists a unique
C-linear involution mapping H W A ! B satisfying the inequality (3.192). Since
f .2nu ı y/ D f .2nu/ ı f .y/ for all u 2 I1.Asa/, y 2 A and n � 0, we have

H.u ı y/ D lim
n!1

1

2n
f .2nu ı y/ D lim

n!1
1

2n
f .2nu/ ı f .y/

D H.u/ ı f .y/ (3.198)

for all u 2 I1.Asa/ and y 2 A. By the additivity of H and (3.198), we have

2nH.u ı y/ D H.2nu ı y/ D H.u ı .2ny// D H.u/ ı f .2ny/

for all u 2 I1.Asa/ and y 2 A. Hence it follows that

H.u ı y/ D 1

2n
H.u/ ı f .2ny/ D H.u/ ı 1

2n
f .2ny/ (3.199)

for all u 2 I1.Asa/ and y 2 A. Taking n ! 1 in (3.199), we obtain

H.u ı y/ D H.u/ ı H.y/ (3.200)

for all u 2 I1.Asa/ and y 2 A. By (3.198) and (3.200), we have

H.e/ ı H.y/ D H.e ı y/ D H.e/ ı f .y/

for all y 2 A. Since limn!1 f .2ne/
2n D H.e/ D e0, we have

H.y/ D f .y/

for all y 2 A. Similarly, H.y/ D g.y/ D h.y/ for all y 2 A. So H W A ! B is
continuous. But, by the assumption that A has real rank zero, it is easy to show that
I1.Asa/ is dense in fx 2 Asa W kxk D 1g. So, for each w 2 fz 2 Asa W kzk D 1g,
there exists a sequence f�jg such that �j ! w as j ! 1 and �j 2 I1.Asa/. Since
H W A ! B is continuous, it follows from (3.200) that

H.w ı y/ D H
�

lim
j!1 �j ı y

�
D lim

j!1 H.�j ı y/

D lim
j!1 H.�j/ ı H.y/ D H

�
lim

j!1 �j

�
ı H.y/

D H.w/ ı H.y/ (3.201)

for all w 2 fz 2 Asa W kzk D 1g and y 2 A.
For each x 2 A, let x D xCx�

2
C i x�x�

2i , where x1 WD xCx�

2
and x2 WD x�x�

2i are
self-adjoint.
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First, consider the case that x1 ¤ 0; x2 ¤ 0. Since H W A ! B is C-linear, it
follows from (3.201) that

H.x ı y/ D H.x1 ı y C ix2 ı y/ D H
�
kx1k x1

kx1k ı y C ikx2k x2
kx2k ı y

�

D kx1kH
� x1

kx1k ı y
�

C ikx2kH
� x2

kx2k ı y
�

D kx1kH
� x1

kx1k
�

ı H.y/C ijjx2jjH
� x2

kx2k
�

ı H.y/

D
n
H
�
kx1k x1

kx1k
�

C iH
�
kx2k x2

kx2k
�o

ı H.y/

D H.x1 C ix2/ ı H.y/ D H.x/ ı H.y/

for all y 2 A.
Next, consider the case that x1 ¤ 0 and x2 D 0. Since H W A ! B is C-linear, it

follows from (3.201) that

H.x ı y/ D H.x1 ı y/ D H
�
kx1k x1

kx1k ı y
�

D kx1kH
� x1

kx1k ı y
�

D kx1kH
� x1

kx1k
�

ı H.y/ D H
�
kx1k x1

kx1k
�

ı H.y/

D H.x1/ ı H.y/ D H.x/ ı H.y/

for all y 2 A.
Finally, consider the case that x1 D 0; x2 ¤ 0. Since H W A ! B is C-linear, it

follows from (3.201) that

H.x ı y/ D H.ix2 ı y/ D H
�

ikx2k x2
kx2k ı y

�
D ikx2kH

� x2
kx2k ı y

�

D ikx2kH
� x2

kx2k
�

ı H.y/ D H
�

ikx2k x2
kx2k

�
ı H.y/

D H.ix2/ ı H.y/ D H.x/ ı H.y/

for all y 2 A. Hence we have

H.x ı y/ D H.x/ ı H.y/

for all x; y 2 A. Therefore, the mappings f ; g; h W A ! B are �-homomorphisms.
This completes the proof. �
Corollary 3.138. Let f ; g; h W A ! B be continuous mappings satisfying f .0/ D 0,
g.0/ D 0 and h.0/ D 0 and let f .2nu ı y/ D f .2nu/ı f .y/, g.2nu ı y/ D g.2nu/ı g.y/
and h.2nu ı y/ D h.2nu/ ı h.y/ for all u 2 I1.Asa/, y 2 A and n � 0 for which there
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exist constants � � 0 and p 2 Œ0; 1/ such that���2f
�	x C 	y

2

�
� 	g.x/ � 	h.y/

��� � �.kxkp C kykp/

and

kf .2nu�/� f .2nu/�kł 2npC1�

for all 	 2 T
1, u 2 I1.Asa/, x; y 2 A n f0g and n � 0. If limn!1 f .2ne/

2n D e0, then
the mappings f ; g; h W A ! B are �-homomorphisms.

Proof. Define

'.x; y/ D �.kxkp C kykp/

for all x; y 2 A n f0g and then apply Theorem 3.137. Then we get the desired
result. �
Remark 3.139. Let f ; g; h W A ! B be continuous mappings satisfying f .0/ D 0,
g.0/ D 0 and h.0/ D 0 and let f .2nu ı y/ D f .2nu/ı f .y/, g.2nu ı y/ D g.2nu/ı g.y/
and h.2nu ı y/ D h.2nu/ ı h.y/ for all u 2 I1.Asa/, y 2 A and n � 0 for which
there exists a function ' W A � A ! Œ0;1/ satisfying (3.188), (3.190), (3.191)
and (3.197). Then the mappings f ; g; h W A ! B are �-homomorphisms.

Note that there exists a unique C-linear mapping H W A ! B satisfying the
system of the inequalities (3.192).

3.11.2 Stability of �-Homomorphisms in JC�-Algebras

Now, we prove the Hyers-Ulam stability of �-homomorphisms in JC�-algebras.

Theorem 3.140. Let f ; g; h W A ! B be mappings with f .0/ D 0, g.0/ D 0 and
h.0/ D 0 for which there exists a function ' W A4 ! Œ0;1/ such that

Q'.x; y; z;w/ D
1X

jD0
2�j'.2jx; 2jy; 2jz; 2jw/ < 1; (3.202)

���2f
�	x C 	y C z ı w

2

�
� 	g.x/� 	h.y/� f .z/ ı f .w/

���
� '.x; y; z;w/; (3.203)

kf .2nu�/� f .2nu/�k � '.2nu; 2nu; 0; 0/ (3.204)
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for all 	 2 T
1, u 2 U.A/, x; y; z;w 2 A n f0g and n � 0. Then there exists a unique

�-homomorphism H W A ! B such that

���2f
�

x
2

� � H.x/
��� � ".x/; kg.x/ � H.x/k � '.x; 0; 0; 0/C ".x/;

kh.x/� H.x/k � '.0; x; 0; 0/C ".x/ (3.205)

for all x 2 A n f0g, where

".x/ WD
1X

jD1
2�j.'.2j�1x; 0; 0; 0/C '.0; 2j�1x; 0; 0/C '.2j�1x; 2j�1x; 0; 0//

< 1:

Proof. Put z D w D 0 and 	 D 1 2 T
1 in (3.203). By the same reasoning as

in the proof of Theorem 3.134, there exists a unique C-linear involutive mapping
H W A ! B satisfying the inequality (3.205). The C-linear mapping H W A ! B is
given by

H.x/ D lim
n!1

1

2n
f .2nx/ (3.206)

for all x 2 A. It follows from (3.206) that

H.x/ D lim
n!1

f .22nx/

22n
(3.207)

for all x 2 A. Let x D y D 0 in (3.203). Then we get

���2f
� z ı w

2

�
� f .z/ ı f .w/

��� � '.0; 0; z;w/

for all z;w 2 A. Since 1
22n '.0; 0; 2

nz; 2nw/ � 1
2n '.0; 0; 2

nz; 2nw/, it follows that

1

22n

���2f
�1
2
2nz ı 2nw

�
� f .2nz/ ı f .2nw/

��� (3.208)

� 1

22n
'.0; 0; 2nz; 2nw/ (3.209)

� 1

2n
'.0; 0; 2nz; 2nw/

for all z;w 2 A. By (3.206), (3.207) and (3.208), we have
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2H
�z ı w

2

�
D lim

n!1
2f . 1

2
22nz ı w/

22n
D lim

n!1
2f . 1

2
2nz ı 2nw/

2n � 2n

D lim
n!1

� f .2nz/

2n
ı f .2nw/

2n

�
D lim

n!1
f .2nz/

2n
ı lim

n!1
f .2nw/

2n

D H.z/ ı H.w/

for all z;w 2 A. But, since H is C-linear,

H.z ı w/ D 2H
�z ı w

2

�
D H.z/ ı H.w/

for all z;w 2 A. Hence the C-linear mapping H W A ! B is a �-homomorphism
satisfying the inequality (3.205). This completes the proof. �
Corollary 3.141. Let f ; g; h W A ! B be a mapping with f .0/ D 0, g.0/ D 0 and
h.0/ D 0 for which there exist constants � � 0 and p 2 Œ0; 1/ such that

���2f
�	x C 	y C z ı w

2

�
� 	g.x/� 	h.y/� f .z/ ı f .w/

���
� �.kxkp C kykp C kzkp C kwkp/

and

kf .2nu�/ � f .2nu/�k � 2npC1�

for all 	 2 T
1, u 2 U.A/, x; y; z;w 2 A n f0g and n � 0. Then there exists a unique

�-homomorphism H W A ! B such that

���2f
� x

2

�
� H.x/

��� � 1

2 � 2p
�kxkp;

kg.x/� H.x/k � 3 � 2p

2 � 2p
�kxkp;

kh.x/ � H.x/k � 3 � 2p

2 � 2p
�kxkp

for all x 2 A n f0g.

Proof. Define

'.x; y; z;w/ D �.kxkp C kykp C kzkp C kwkp/

and apply Theorem 3.140. Then we get the desired result. �
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Remark 3.142. Let f ; g; h W A ! B be a mapping with f .0/ D 0, g.0/ D 0 and
h.0/ D 0 for which there exists a function ' W A4 ! Œ0;1/ satisfying (3.202)
and (3.203) such that

���2f
�	x C 	y C z ı w

2

�
� 	g.x/� 	h.y/ � f .z/ ı f .w/

��� � '.x; y; z;w/

for all x; y; z;w 2 A n f0g and 	 D 1; i. If f .tx/ is continuous in t 2 R for each
fixed x 2 A, then there exists a unique �-homomorphism H W A ! B satisfying the
inequality (3.205).

Note that there exists a unique C-linear mapping H W A ! B satisfying the
inequality (3.205).



Chapter 4
Stability of Functional Inequalities
in Banach Algebras

In this chapter, we study functional inequalities in Banach algebras via the direct
and fixed point methods.

In Sect. 4.1, we consider the following additive functional inequality:

kf .2x/C f .2y/C 2f .z/k � k2f .x C y C z/k:

Next, we approximate the homomorphisms in proper CQ�-algebras and
derivations on proper CQ�-algebras associated with the above additive functional
inequality by direct method.

In Sect. 4.2, we consider the functional inequality

kf .x/C f .y/C f .z/C f .w/k � kf .x/C f .y C z C w/k:

Next, we prove that, if f W A ! B is a multiplicative mapping such that

kf .x/C f .y/C f .z/C 	f .w/k � kf .x/C f .y C z C 	w/k

for all x; y; z;w 2 A and all 	 2 T WD f� 2 C W j�j D 1g. Then the mapping
f W A ! B is a C�-algebra homomorphism. Moreover, by using fixed point method,
we prove the Hyers-Ulam stability of the functional following inequality:

kf .x/C f .y/C f .z/C f .w/k
� kf .x/C f .y C z C w/k

C�.kxkp C kykp C kzkp C kwkp C kxk p
4 � kyk p

4 � kzk p
4 � kwk p

4 /

in real Banach spaces.

© Springer International Publishing Switzerland 2015
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4.1 Stability of Additive Functional Inequalities
in Banach Algebras

In this section, by the direct method, we prove the Hyers-Ulam stability of the
following additive functional inequality:

kf .2x/C f .2y/C 2f .z/k � k2f .x C y C z/k: (4.1)

Then we consider homomorphisms in proper CQ�-algebras and derivations on
proper CQ�-algebras associated with the additive functional inequality (4.1) (see
[181, 182, 186, 254]).

4.1.1 Stability of C-Linear Mappings in Banach Spaces

Now, we investigate the Hyers-Ulam stability of C-linear mappings in Banach
spaces associated with the additive functional inequality.

Now, we assume that X;Y are Banach spaces.

Lemma 4.1. Let f W X ! Y be a mapping satisfying the following:

kf .2x/C f .2y/C 2f .z/kY � k2f .x C y C z/kY (4.2)

for all x; y; z 2 X. Then f is additive.

Proof. Letting x D y D z D 0 in (4.2), we get k4f .0/kY � k2f .0/kY and so
f .0/ D 0. Letting z D 0 and replacing y by �x in (4.2), we get

kf .2x/C f .�2x/kY � k2f .0/kY D 0

for all x 2 X. Hence f .�2x/ D �f .2x/ and so f .�x/ D �f .x/ for all x 2 X.
Letting y D 0 and replacing z by �x in (4.2), we get

kf .2x/C 2f .�x/kY � k2f .0/kY D 0

for all x 2 X. Thus we have f .2x/ D 2f .x/ for all x 2 X. Letting replacing z by
�x � y in (4.2), we get

kf .2x/C f .2y/� 2f .x C y/kY � k2f .0/kY D 0

for all x; y 2 X. Thus we have

f .2x C 2y/ D f .2x/C f .2y/
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for all x 2 X and so

f .x C y/ D f .x/C f .y/

for all x; y 2 X. This completes the proof. �

Theorem 4.2. Let f W X ! Y be a mapping with f .0/ D 0. If there exists a function
' W X3 ! Œ0;1/ satisfying the following;

kf .2x/C f .2y/C 2f .z/kY � k2f .x C y C z/kY C '.x; y; z/ (4.3)

and

Q'.x; y; z/ WD
1X

jD0

1

2j
'
�
.�2/jx; .�2/jy; .�2/jz� < 1 (4.4)

for all x; y; z 2 X, then there exists a unique additive mapping L W X ! Y such that

kf .x/ � L.x/kY � 1

2
Q'.0;�x; x/ (4.5)

for all x 2 X.

Proof. Replacing x; y; z by 0;�.�2/nx; .�2/nx, respectively, and dividing by 2nC1
in (4.3). Since f .0/ D 0, we get

���� f ..�2/nC1x/
.�2/nC1 � f ..�2/nx/

.�2/n
����

Y

� 1

2nC1 '.0;�.�2/nx; .�2/nx/

for all x 2 X. From the above inequality, we have

���� f ..�2/nx/

.�2/n � f ..�2/qx/

.�2/q
����

Y

�
n�1X
jDq

���� f ..�2/jC1x/
.�2/jC1 � f ..�2/jx/

.�2/j
����

Y

�
n�1X
jDq

1

2jC1 '.0;�.�2/jx; .�2/jx/

for all x 2 X and q; n � 1 with q < n. From (4.4), the sequence f f ..�2/nx/
.�2/n g is

a Cauchy sequence for all x 2 X. Since Y is complete, the sequence f f ..�2/nx/
.�2/n g

converges for all x 2 X and so we can define a mapping L W X ! Y by

L.x/ WD lim
n!1

f ..�2/nx/

.�2/n

for all x 2 X.
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In order to prove that L satisfies (4.5), if we put q D 0 and let n ! 1 in the
above inequality, then we obtain

kf .x/ � L.x/kY �
1X

jD0

1

2jC1 '.0;�.�2/jx; .�2/jx/ D 1

2
Q'.0;�x; x/

for all x 2 X. Replacing x; y; z by .�2/nx; .�2/ny; .�2/nz, respectively, and dividing
by 2n in (4.3), we get

���� f ..�2/n2x/

.�2/n C f ..�2/n2y/

.�2/n C 2f ..�2/nz/

.�2/n
����

Y

�
����2 f ..�2/n.x C y C z//

.�2/n
����

Y

C 1

2n
'..�2/nx; .�2/ny; .�2/nz/

for all x; y; z 2 X. Since (4.4) gives

lim
n!1

1

2n
'..�2/nx; .�2/ny; .�2/nz/ D 0

for all x; y; z 2 X, if we let n ! 1 in the above inequality, then we get

kL.2x/C L.2y/C 2L.z/kY � k2L.x C y C z/kY ;

and so L is additive by Lemma 4.1.
Now, to prove the uniqueness of L, let L0 W X ! Y be another additive mapping

satisfying (4.5). Since L and L0 are additive, we have

kL.x/ � L0.x/kY D 1

2n

��L.2nx/ � L0.2nx/
��

Y

� 1

2n
.kL.2nx/� f .2nx/kY C ��L0.2nx/ � f .2nx/

��
Y
/

� 1

2n
� 2 Q'.0;�2nx; 2nx/

D 2

1X
jD0

1

2nCj
'.0; .�2/jCnx; .�2/jCnx/;

which goes to zero as n ! 1 for all x 2 X by (4.4). Consequently, L is a unique
additive mapping satisfying (4.5). This completes the proof. �
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Corollary 4.3. Let f W X ! Y be a mapping. If there exists a function
' W X3 ! Œ0;1/ satisfying (4.3) and

Q'.x; y; z/ WD
1X

iD1
2i'

�
x

.�2/i ;
y

.�2/i ;
z

.�2/i
�
< 1 (4.6)

for all x; y; z 2 X, then there exists a unique additive mapping L W X ! Y such that

kf .x/ � L.x/kY � 1

2
Q'.0;�x; x/ (4.7)

for all x 2 X.

Proof. Since Q'.0; 0; 0/ < 1 in (4.6), we have '.0; 0; 0/ D 0 and so f .0/ D 0.
Replacing x; y; z by 0;� x

.�2/n ;
x

.�2/n , respectively, and multiplying by 2n�1 in (4.3),
we get ����.�2/n�1f

�
x

.�2/n�1

�
� .�2/nf

�
x

.�2/n
�����

Y

� 2n�1'
�
0;� x

.�2/n ;
x

.�2/n
�

for all x 2 X. From the above inequality, we have����.�2/nf

�
x

.�2/n
�

� .�2/qf

�
x

.�2/q
�����

Y

�
nX

iDqC1

����.�2/if
�

x

.�2/i
�

� .�2/i�1f
�

x

.�2/i�1
�����

Y

�
nX

iDqC1
2i�1'

�
0;� x

.�2/i ;
x

.�2/i
�

for all x 2 X and q; n � 1 with q < n. From (4.6), the sequence

	
.�2/nf

�
x

.�2/n
� 


is a Cauchy sequence for all x 2 X. Since Y is complete, the sequence	
.�2/nf

�
x

.�2/n
� 


converges for all x 2 X and so we can define a mapping

L W X ! Y by

L.x/ WD lim
n!1.�2/

nf

�
x

.�2/n
�

for all x 2 X.
In order to prove that L satisfies (4.7), if we put q D 0 and let n ! 1 in the

above inequality, then we obtain

kf .x/ � L.x/kY �
1X

iD1
2i�1'

�
0;� x

.�2/i ;
x

.�2/i
�

D 1

2
Q'.0;�x; x/
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for all x 2 X. Replacing x; y; z by x
.�2/n ;

y
.�2/n ;

z
.�2/n , respectively, and multiplying

by 2n in (4.3), we get

����.�2/nf

�
2x

.�2/n
�

C .�2/nf

�
2y

.�2/n
�

C 2 � .�2/nf

�
z

.�2/n
�����

Y

�
����2 � .�2/nf

�
x C y C z

.�2/n
�����

Y

C 2n'

�
x

.�2/n ;
y

.�2/n ;
z

.�2/n
�

for all x; y; z 2 X. Since (4.6) gives

lim
n!1 2n'

�
x

.�2/n ;
y

.�2/n ;
z

.�2/n
�

D 0

for all x; y; z 2 X, if we let n ! 1 in the above inequality, then we get

kL.2x/C L.2y/C 2L.z/kY � k2L.x C y C z/kY

and so L is additive by Lemma 4.1.
The rest of the proof is the same as in the corresponding part of the proof of

Theorem 4.2. This completes the proof. �
Lemma 4.4. Let f W X ! Y be a mapping satisfying

kf .2x/C 	f .2y/C 2f .z/kY � k2f .x C 	y C z/kY (4.8)

for all 	 2 T
1 and all x; y; z 2 X. Then f is C-linear.

Proof. If we put	 D 1 in (4.8), then f is additive by Lemma 4.1. Replacing x; y; z by
	x;�x; 0 in (4.8), respectively, we get f .2	x/C	f .�2x/ D 0 and so f .	x/ D 	f .x/
for all 	 2 T

1 and x 2 X. Thus we have

f .	x C N	x/ D f .	x/C f . N	x/ D 	f .x/C N	f .x/

for all 	 2 T
1 and x 2 X and so f .tx/ D tf .x/ for any real number t with jtj � 1 and

all x 2 X.
On the other hand, since f .2x/ D 2f .x/, we get f .2nx/ D 2nf .x/ for all n � 1.

So, for any real number t, there exists an integer n � 1 with jtj � 2n. Thus we have

f .tx/ D f
�
2n � t

2n
x
�

D 2nf
� t

2n
x
�

D 2n � t

2n
f .x/ D tf .x/:

Now, we consider any ˛ 2 C with ˛ D t C si for some real numbers t; s. Since
f .ix/ D if .x/ all x 2 X, we have

f .˛x/ D f .tx/C f .six/ D tf .x/C sf .ix/ D tf .x/C sif .x/ D ˛f .x/

and so f is C-linear. This completes the proof. �
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Theorem 4.5. Let f W X ! Y be a mapping with f .0/ D 0. If there exists a function
' W X3 ! Œ0;1/ satisfying (4.4) and

kf .2x/C 	f .2y/C 2f .z/kY � k2f .x C 	y C z/kY C '.x; y; z/ (4.9)

for all 	 2 T
1 and x; y; z 2 X, then there exists a unique C-linear mapping

L W X ! Y satisfying (4.5).

Proof. If we put	 D 1 in (4.9), then, by Theorem 4.2, there exists a unique additive
mapping L W X ! Y defined by

L.x/ WD lim
n!1

f ..�2/nx/

.�2/n

for all x 2 X, which satisfies (4.5). By the similar method to the corresponding part
in the proof of Theorem 4.2, L satisfies

kL.2x/C 	L.2y/C 2L.z/kY � k2L.x C 	y C z/kY

for all 	 2 T
1 and x; y; z 2 X. Thus Lemma 4.4 gives that L is C-linear. This

completes the proof. �

Corollary 4.6. Let f W X ! Y be a mapping. If there exists a function
' W X3 ! Œ0;1/ satisfying (4.6) and (4.9), then there exists a unique C-linear
mapping L W X ! Y satisfying (4.7).

Proof. If we put	 D 1 in (4.9), then, by Corollary 4.3, there exists a unique additive
mapping L W X ! Y defined by

L.x/ WD lim
n!1 .�2/nf

�
x

.�2/n
�

for all x 2 X which satisfies (4.7).
The rest of the proof is the same as in the corresponding part of the proof of

Theorem 4.5. �

4.1.2 Stability of Homomorphisms in Proper CQ�-Algebras

Now, we investigate the Hyers-Ulam stability of isomorphisms in proper CQ�-
algebras associated with the additive functional inequality.

Theorem 4.7. Let f W A ! B be a mapping with f .0/ D 0. If there exists a function
' W A3 ! Œ0;1/ satisfying

kf .2x/C 	f .2y/C 2f .z/kB � k2f .x C 	y C z/kB C '.x; y; z/ (4.10)
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and

Q'.x; y; z/ WD
1X

jD0

1

2j
'
�
.�2/jx; .�2/jy; .�2/jz� < 1; (4.11)

for all	 2 T
1 and x; y; z 2 A. If, in addition, there exists a function � W A2 ! Œ0;1/

satisfying

kf .xy/ � f .x/f .y/kB � �.x; y/ (4.12)

and

lim
n!1

1

4n
�..�2/nx; .�2/ny/ D 0 (4.13)

for all x; y 2 A whenever the multiplication is defined, then there exists a unique
proper CQ�-algebra homomorphism h W A ! B such that

kf .x/ � h.x/kB � 1

2
Q'.0;�x; x/ (4.14)

for all x 2 A.

Proof. By Theorem 4.5, we have a unique C-linear mapping h W A ! B defined by

h.x/ WD lim
n!1

f ..�2/nx/

.�2/n

for all x 2 A which satisfies (4.14).
Now, we show that h.xy/ D h.x/h.y/ for all x; y 2 A whenever the multiplication

is defined. Replacing x; y by .�2/nx; .�2/ny, respectively, and dividing by 4n

in (4.12), we get

���� 14n
Œf ..�2/nx.�2/ny/ � f ..�2/nx/f ..�2/ny/�

����
B

� 1

4n
�..�2/nx; .�2/ny/

for all x; y 2 A whenever the multiplication is defined. Also, we have

lim
n!1

1

4n
f ..�2/nx.�2/ny/ D lim

n!1
f ..�2/2nxy/

.�2/2n
D h.xy/
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and

lim
n!1

1

4n
f ..�2/nx/f ..�2/ny/ D lim

n!1
f ..�2/nx/

.�2/n � lim
n!1

f ..�2/nx/

.�2/n
D h.x/h.y/

for all x; y 2 A whenever the multiplication is defined. If we let n ! 1 in the
above inequality, then (4.13) gives h.xy/ D h.x/h.y/ for all x; y 2 A whenever the
multiplication is defined. This completes the proof. �

Corollary 4.8. Let �; p be nonnegative real numbers with p < 1 and f W A ! B be
a mapping satisfying

kf .2x/C 	f .2y/C 2f .z/kB

� k2f .x C 	y C z/kB C �.kxkp
A C kykp

A C kzkp
A/

and

kf .xy/� f .x/f .y/kB � �.kxk2p
A C kyk2p

A /

for all 	 2 T
1 and x; y; z 2 A whenever the multiplication is defined. Then there

exists a unique proper CQ�-algebra homomorphism h W A ! B such that

kf .x/ � h.x/kB � 2�

2 � 2p
kxkp

A

for all x 2 A

Proof. Let ' W A3 ! Œ0;1/ be a mapping defined by

'.x; y; z/ D �.kxkp
A C kykp

A C kzkp
A/:

for all x; y; z 2 A. For any p < 1, we have

Q'.x; y; z/ W D
1X

jD0

1

2j
'
�
.�2/jx; .�2/jy; .�2/jz�

D
1X

jD0

2pj

2j
�.kxkp

A C kykp
A C kzkp

A/

D 2�

2 � 2p
.kxkp

A C kykp
A C kzkp

A/:
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In addition, let � W A2 ! Œ0;1/ be �.x; y/ D �.kxk2p
A C kyk2p

A /. For any p < 1, we
have

lim
n!1

1

4n
�..�2/nx; .�2/ny/ D lim

n!1
22pn

4n
�.kxk2p

A C kyk2p
A / D 0

for all x; y 2 A. By applying Theorem 4.7, there exists a unique proper CQ�-algebra
homomorphism h W A ! B such that

kf .x/ � h.x/kB � 1

2
Q'.0;�x; x/ D 2�

2 � 2p
kxkp

A

for all x 2 A. This completes the proof. �

Corollary 4.9. Let �; p be nonnegative real numbers with p < 1 and f W A ! B be
a mapping satisfying

kf .2x/C 	f .2y/C 2f .z/kB

� k2f .x C 	y C z/kB C �.kxkp
A C kykp

A C kzkp
A/

and

kf .xy/ � f .x/f .y/kB � � � kxkp
A � kykp

A

for all x; y 2 A whenever the multiplication is defined. Then there exists a unique
proper CQ�-algebra homomorphism h W A ! B such that

kf .x/ � h.x/kB � 2�

2 � 2p
kxkp

A

for all x 2 A

Proof. Let a mapping ' W A3 ! Œ0;1/ be defined by

'.x; y; z/ D �.kxkp
A C kykp

A C kzkp
A/

for all x; y; z 2 A and � W A2 ! Œ0;1/ be a mapping defined by

�.x; y/ D � � kxkp
A � kykp

A

for all x; y 2 A. When p < 1, we have Q'.x; y; z/ < 1 and

lim
n!1

1

4n
�..�2/nx; .�2/ny/ D lim

n!1
22pn

4n
� � � kxkp

A � kykp
A D 0
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for all x; y; z 2 A. By applying Theorem 4.7, there exists a unique proper CQ�-
algebra homomorphism h W A ! B such that

kf .x/ � h.x/kB � 1

2
Q'.0;�x; x/ D 2�

2 � 2p
kxkp

A

for all x 2 A. This completes the proof. �

Theorem 4.10. Let f W A ! B be a mapping. Suppose that there exists a function
' W A3 ! Œ0;1/ satisfying (4.10) and

Q'.x; y; z/ WD
1X

iD1
2i'

�
x

.�2/i ;
y

.�2/i ;
z

.�2/i
�
< 1 (4.15)

for all x; y; z 2 A If, in addition, there exists a function � W A2 ! Œ0;1/

satisfying (4.12) and

lim
n!1 4n�

�
x

.�2/n ;
y

.�2/n
�

D 0 (4.16)

for all x; y 2 A whenever the multiplication is defined, then there exists a unique
proper CQ�-algebra homomorphism h W A ! B such that

kf .x/ � h.x/kB � 1

2
Q'.0;�x; x/ (4.17)

for all x 2 A.

Proof. By Corollary 4.12, we have a uniqueC-linear mapping h W A ! B defined by

h.x/ WD lim
n!1.�2/

nf

�
x

.�2/n
�

for all x 2 A, which satisfies (4.17). Now, replacing x; y by x
.�2/n ;

y
.�2/n , respectively,

and multiplying by 4n in (4.12), we get

����4n

�
f

�
x

.�2/n � y

.�2/n
�

� f

�
x

.�2/n
�

f

�
y

.�2/n
�����

B

� 4n�

�
x

.�2/n ;
y

.�2/n
�

for all x; y 2 A whenever the multiplication is defined. Since

lim
n!1 4nf

�
x

.�2/n � y

.�2/n
�

D lim
n!1.�2/

2nf

�
xy

.�2/2n

�
D h.xy/
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and

lim
n!1 4nf

�
x

.�2/n
�

f

�
y

.�2/n
�

D lim
n!1.�2/

nf

�
x

.�2/n
�

� lim
n!1.�2/

nf

�
y

.�2/n
�

D h.x/h.y/

for all x; y 2 A whenever the multiplication is defined. If we let n ! 1 in the
above inequality then (4.16) gives h.xy/ D h.x/h.y/ for all x; y 2 A whenever the
multiplication is defined. This completes the proof. �

Corollary 4.11. Let �; p be nonnegative real numbers with p > 1 and f W A ! B
be a mapping satisfying

kf .2x/C 	f .2y/C 2f .z/kB

� k2f .x C 	y C z/kB C �.kxkp
A C kykp

A C kzkp
A/

and

kf .xy/� f .x/f .y/kB � �.kxk2p
A C kyk2p

A /

for all 	 2 T
1 and x; y; z 2 A whenever the multiplication is defined. Then there

exists a unique proper CQ�-algebra homomorphism h W A ! B such that

kf .x/ � h.x/kB � 2�

2p � 2
kxkp

A

for all x 2 A

Proof. Let ' W A3 ! Œ0;1/ be a mapping defined by

'.x; y; z/ D �.kxkp
A C kykp

A C kzkp
A/

for all x; y; z 2 A. When p > 1, we get

Q'.x; y; z/ W D
1X

iD1
2i'

�
x

.�2/i ;
y

.�2/i ;
z

.�2/i
�

D
1X

iD1

2i

2pi
�.kxkp

A C kykp
A C kzkp

A/

D 2�

2p � 2
.kxkp

A C kykp
A C kzkp

A/
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for all x; y; z 2 A. In addition, let � W A2 ! Œ0;1/ be a mapping defined by

�.x; y/ D �.kxk2p
A C kyk2p

A /

for all x; y 2 A. When p > 1, we get

lim
n!1 4n�

�
x

.�2/n ;
y

.�2/n
�

D lim
n!1

4n

22pn
�.kxk2p

A C kyk2p
A / D 0

for all x; y 2 A. By applying Theorem 4.10, there exists a unique proper CQ�-
algebra homomorphism h W A ! B such that

kf .x/ � h.x/kB � 1

2
Q'.0;�x; x/ D 2�

2p � 2
kxkp

A

for all x 2 A. This completes the proof. �
Corollary 4.12. Let �; p be nonnegative real numbers with p > 1 and f W A ! B
be a mapping satisfying

kf .2x/C 	f .2y/C 2f .z/kB

� k2f .x C 	y C z/kB C �.kxkp
A C kykp

A C kzkp
A/

and

kf .xy/ � f .x/f .y/kB � � � kxkp
A � kykp

A

for all 	 2 T
1 and x; y; z 2 A whenever the multiplication is defined. Then there

exists a unique proper CQ�-algebra homomorphism h W A ! B such that

kf .x/ � h.x/kB � 2�

2p � 2
kxkp

A

for all x 2 A.

Proof. Let ' W A3 ! Œ0;1/ be a mapping defined by

'.x; y; z/ D �.kxkp
A C kykp

A C kzkp
A/

for all x; y; z 2 A and � W A2 ! Œ0;1/ be a mapping defined by

�.x; y/ D � � kxkp
A � kykp

A

for all x; y 2 A. For any p > 1, we have Q'.x; y; z/ < 1 and

lim
n!1 4n�

�
x

.�2/n ;
y

.�2/n
�

D lim
n!1

4n

22pn
� � � kxkp

A � kykp
A D 0
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for all x; y; z 2 A. By applying Theorem 4.10, there exists a unique proper CQ�-
algebra homomorphism h W A ! B such that

kf .x/ � h.x/kB � 1

2
Q'.0;�x; x/ D 2�

2p � 2
kxkp

A

for all x 2 A. This completes the proof. �

4.1.3 Stability of Derivations in Proper CQ�-Algebras

Now, we consider the Hyers-Ulam stability of derivations on proper CQ�-algebras
associated with the additive functional inequality.

Theorem 4.13. Let f W A ! A be a mapping with f .0/ D 0. Suppose that there
exists a function ' W A3 ! Œ0;1/ such that

kf .2x/C 	f .2y/C 2f .z/kA � k2f .x C 	y C z/kA C '.x; y; z/ (4.18)

and

Q'.x; y; z/ WD
1X

jD0

1

2j
'
�
.�2/jx; .�2/jy; .�2/jz� < 1 (4.19)

for all	 2 T
1 and x; y; z 2 A. If, in addition, there exists a function W A2 ! Œ0;1/

such that

kf .xy/ � f .x/y � xf .y/kA �  .x; y/ (4.20)

and

lim
n!1

1

4n
 ..�2/nx; .�2/ny/ D 0 (4.21)

for all x; y 2 A whenever the multiplication is defined, then there exists a unique
derivation ı on A such that

kf .x/ � ı.x/kA � 1

2
Q'.0;�x; x/ (4.22)

for all x 2 A.

Proof. By Theorem 4.5, we have a unique C-linear mapping ı W A ! A defined by

ı.x/ WD lim
n!1

f ..�2/nx/

.�2/n

for all x 2 A which satisfies (4.22).
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Now, we show that ı.xy/ D ı.x/ı.y/ for all x; y 2 A whenever the multiplication
is defined. Replacing x; y by .�2/nx; .�2/ny, respectively, and dividing by 4n in
(4.3), we have���� 14n

Œf ..�2/nx.�2/ny/� f ..�2/nx/.�2/ny � .�2/nxf ..�2/ny/�

����
A

� 1

4n
 ..�2/nx; .�2/ny/

for all x; y 2 A whenever the multiplication is defined. Also, we have

lim
n!1

1

4n
f ..�2/nx.�2/ny/ D lim

n!1
f ..�2/2nxy/

.�2/2n
D ı.xy/;

lim
n!1

1

4n
f ..�2/nx/ � .�2/ny D lim

n!1
f ..�2/nx/

.�2/n � .�2/
ny

.�2/n D ı.x/y

and

lim
n!1

1

4n
.�2/nx � f ..�2/ny/ D lim

n!1
.�2/nx

.�2/n � .�2/
ny

.�2/n D xı.y/

for all x; y 2 A whenever the multiplication is defined. If we let n ! 1 in the above
inequality, then (4.21) gives ı.xy/ D ı.x/y � xı.y/ for all x; y 2 A whenever the
multiplication is defined. This completes the proof. �

Corollary 4.14. Let �; p be nonnegative real numbers with p < 1 and f W A ! A
be a mapping satisfying

kf .2x/C 	f .2y/C 2f .z/kA

� k2f .x C 	y C z/kA C �.kxkp
A C kykp

A C kzkp
A/

and

kf .xy/ � f .x/y � xf .y/kA � �.kxk2p
A C kyk2p

A /

for all 	 2 T
1 and x; y; z 2 A whenever the multiplication is defined. Then there

exists a unique derivation ı on A such that

kf .x/ � ı.x/kA � 2�

2 � 2p
kxkp

A

for all x 2 A.
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Proof. Let ' W A3 ! Œ0;1/ be a mapping defined by

'.x; y; z/ D �.kxkp
A C kykp

A C kzkp
A/

for all x; y; z 2 A. For any p < 1, we have

Q'.x; y; z/ W D
1X

jD0

1

2j
'
�
.�2/jx; .�2/jy; .�2/jz�

D
1X

jD0

2pj

2j
�.kxkp

A C kykp
A C kzkp

A/

D 2�

2 � 2p
.kxkp

A C kykp
A C kzkp

A/:

In addition, let  W A2 ! Œ0;1/ be a mapping defined by

 .x; y/ D �.kxk2p
A C kyk2p

A /

for all x; y 2 A. For any p < 1, we have

lim
n!1

1

4n
 ..�2/nx; .�2/ny/ D lim

n!1
22pn

4n
�.kxk2p

A C kyk2p
A / D 0

for all x; y 2 A. By applying Theorem 4.13, there exists a unique proper
CQ�-algebra homomorphism h W A ! B such that

kf .x/ � ı.x/kA � 1

2
Q'.0;�x; x/ D 2�

2 � 2p
kxkp

A

for all x 2 A. This completes the proof. �

Corollary 4.15. Let �; p be nonnegative real numbers with p < 1 and f W A ! B
be a mapping satisfying

kf .2x/C 	f .2y/C 2f .z/kA � k2f .x C 	y C z/kA C �.kxkp
A C kykp

A C kzkp
A/

and

kf .xy/ � f .x/y � xf .y/kA � � � kxkp
A � kykp

A

for all x; y; z 2 A whenever the multiplication is defined. Then there exists a unique
derivation ı on A such that

kf .x/ � ı.x/kA � 2�

2 � 2p
kxkp

A

for all x 2 A.
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Proof. Let ' W A3 ! Œ0;1/ be a mapping defined by

'.x; y; z/ D �.kxkp
A C kykp

A C kzkp
A/

for all x; y; z 2 A and  W A2 ! Œ0;1/ be a mapping by

 .x; y/ D � � kxkp
A � kykp

A

for all x; y 2 A. For any p < 1, we have Q'.x; y; z/ < 1 and

lim
n!1

1

4n
�..�2/nx; .�2/ny/ D lim

n!1
22pn

4n
� � � kxkp

A � kykp
A D 0

for all x; y; z 2 A. By applying Theorem 4.13, there exists a unique proper CQ�-
algebra homomorphism ı W A ! A such that

kf .x/ � ı.x/kA � 1

2
Q'.0;�x; x/ D 2�

2 � 2p
kxkp

A

for all x 2 A. This completes the proof. �

Theorem 4.16. Let f W A ! A be a mapping. Suppose that there exists a function
' W A3 ! Œ0;1/ satisfying (4.18) and

Q'.x; y; z/ WD
1X

iD1
2i'

�
x

.�2/j ;
y

.�2/j ;
z

.�2/j
�
< 1 (4.23)

for all x; y; z 2 A. If, in addition, there exists a function  W A2 ! Œ0;1/

satisfying (4.20) and

lim
n!1 4n 

�
x

.�2/n ;
y

.�2/n
�

D 0 (4.24)

for all x; y 2 A, then there exists a unique derivation ı on A satisfying

kf .x/ � ı.x/kA � 1

2
Q'.0;�x; x/ (4.25)

for all x 2 A.

Proof. By Corollary 4.18, we have a uniqueC-linear mapping ı W A ! A defined by

ı.x/ WD lim
n!1.�2/

nf

�
x

.�2/n
�
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for all x 2 A, which satisfies (4.25). Now, replacing x; y by x
.�2/n ;

y
.�2/n , respectively,

and multiplying by 4n in (4.20), we get

����4n

�
f

�
x

.�2/n � y

.�2/n
�

� f

�
x

.�2/n
�

f

�
y

.�2/n
�����

A

� 4n 

�
x

.�2/n ;
y

.�2/n
�

for all x; y 2 A whenever the multiplication is defined. Also, we have

lim
n!1 4nf

�
x

.�2/n � y

.�2/n
�

D lim
n!1.�2/

2nf

�
xy

.�2/2n

�
D ı.xy/;

lim
n!1 4nf

�
x

.�2/n
�

� y

.�2/n

D lim
n!1.�2/

nf

�
x

.�2/n
�

� lim
n!1

.�2/ny

.�2/n D ı.x/y

and

lim
n!1 4n x

.�2/n � f

�
y

.�2/n
�

D lim
n!1

.�2/nx

.�2/n � lim
n!1.�2/

nf

�
y

.�2/n
�

D xı.y/

for all x; y 2 A whenever the multiplication is defined. If we let n ! 1 in the above
inequality, then (4.24) gives ı.xy/ D ı.x/y � xı.y/ for all x; y 2 A whenever the
multiplication is defined. This completes the proof. �

Corollary 4.17. Let �; p be nonnegative real numbers with p > 1 and f W A ! A
be a mapping satisfying

kf .2x/C 	f .2y/C 2f .z/kA

� k2f .x C 	y C z/kA C �.kxkp
A C kykp

A C kzkp
A/

and

kf .xy/ � f .x/y � xf .y/kA � �.kxk2p
A C kyk2p

A /
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for all 	 2 T
1 and x; y; z 2 A whenever the multiplication is defined. Then there

exists a unique derivation ı on A such that

kf .x/ � ı.x/kA � 2�

2p � 2
kxkp

A

for all x 2 A.

Proof. Let ' W A3 ! Œ0;1/ be a mapping by

'.x; y; z/ D �.kxkp
A C kykp

A C kzkp
A/

for all x; y; z 2 A. For any p > 1, we have

Q'.x; y; z/ W D
1X

iD1
2i'

�
x

.�2/i ;
y

.�2/i ;
z

.�2/i
�

D
1X

iD1

2i

2pi
�.kxkp

A C kykp
A C kzkp

A/

D 2�

2p � 2
.kxkp

A C kykp
A C kzkp

A/:

In addition, let  W A2 ! Œ0;1/ be a mapping defined by

�.x; y/ D �.kxk2p
A C kyk2p

A /

for all x; y 2 A. For any p > 1, we get

lim
n!1 4n 

�
x

.�2/n ;
y

.�2/n
�

D lim
n!1

4n

22pn
�.kxk2p

A C kyk2p
A / D 0

for all x; y 2 A. By applying Theorem 4.16, there exists a unique proper CQ�-
algebra homomorphism ı W A ! A such that

kf .x/ � ı.x/kA � 1

2
Q'.0;�x; x/ D 2�

2p � 2
kxkp

A

for all x 2 A. This completes the proof. �

Corollary 4.18. Let �; p be nonnegative real numbers with p > 1 and f W A ! B
be a mapping satisfying

kf .2x/C 	f .2y/C 2f .z/kA

� k2f .x C 	y C z/kA C �.kxkp
A C kykp

A C kzkp
A/
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and

kf .xy/ � f .x/y � xf .y/kA � � � kxkp
A � kykp

A

for all 	 2 T
1 and x; y; z 2 A whenever the multiplication is defined. Then there

exists a unique derivation ı on A such that

kf .x/ � ı.x/kA � 2�

2p � 2
kxkp

A

for all x 2 A.

Proof. Let ' W A3 ! Œ0;1/ be a mapping defined by

'.x; y; z/ D �.kxkp
A C kykp

A C kzkp
A/

for all x; y; z 2 A and  W A2 ! Œ0;1/ be a mapping defined by

 .x; y/ D � � kxkp
A � kykp

A

for all x; y 2 A. When p > 1, we have Q'.x; y; z/ < 1 and

lim
n!1 4n�

�
x

.�2/n ;
y

.�2/n
�

D lim
n!1

4n

22pn
� � � kxkp

A � kykp
A D 0

for all x; y; z 2 A. By applying Theorem 4.10, there exists a unique proper CQ�-
algebra homomorphism ı W A ! A such that

kf .x/ � ı.x/kA � 1

2
Q'.0;�x; x/ D 2�

2p � 2
kxkp

A

for all x 2 A. This completes the proof. �

4.2 Stability of Functional Inequalities over C�-Algebras

In this section, we investigate a module linear mapping associated with the following
functional inequality.

kf .x/C f .y/C f .z/C f .w/k � kf .x/C f .y C z C w/k: (4.26)

This is applied to understand homomorphisms in C�-algebras. Moreover, we prove
the Hyers-Ulam stability of the functional following inequality:
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kf .x/C f .y/C f .z/C f .w/k
� kf .x/C f .y C z C w/k

C�.kxkp C kykp C kzkp C kwkp C kxk p
4 � kyk p

4 � kzk p
4 � kwk p

4 / (4.27)

in real Banach spaces. Using the fixed point method, we prove the Hyers-Ulam
stability of the functional inequality (4.27) in real Banach spaces.

4.2.1 Functional Inequalities in Normed Modules
over C�-Algebras

Throughout this section, let A be a unital C�-algebra with the unitary group U.A/
and the unit e and let B be a C�-algebra. Assume that X is a normed A-module with
the norm k � k and Y is a normed A-module with the norm k � k.

Now, we investigate an A-linear mapping associated with the functional inequal-
ity (4.26).

Theorem 4.19. Let f W X ! Y be a mapping such that

kf .x/C f .y/C f .z/C uf .w/k � kf .x/C f .y C z C uw/k (4.28)

for all x; y; z;w 2 X and u 2 U.A/. Then the mapping f W X ! Y is A-linear.

Proof. Letting x D y D z D w D 0 and u D e 2 U.A/ in (4.28), we have

k4f .0/k � k2f .0/k:

So f .0/ D 0. Letting x D w D 0 in (4.28), we have

kf .y/C f .z/k � kf .y C z/k (4.29)

for all y; z 2 X. Replacing y and z by x and y C z C w in (4.29), respectively, we get

kf .x/C f .y C z C w/k � kf .x C y C z C w/k

for all x; y; z;w 2 X and so

kf .x/C f .y/C f .z/C f .w/k � kf .x C y C z C w/k (4.30)

for all x; y; z;w 2 X. Letting z D w D 0 and y D �x in (4.30), we have

kf .x/C f .�x/k � kf .0/k D 0
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for all x 2 X. Hence f .�x/ D �f .x/ for all x 2 X. Letting z D �x � y and w D 0

in (4.30), we have

kf .x/C f .y/� f .x C y/k D kf .x/C f .y/C f .�x � y/k � kf .0/k D 0

for all x; y 2 X. Thus

f .x C y/ D f .x/C f .y/

for all x; y 2 X. Letting z D �uw and x D y D 0 in (4.28), we have

k � f .uw/C uf .w/k D kf .�uw/C uf .w/k � k2f .0/k D 0

for all w 2 X and all u 2 U.A/. Thus we have

f .uw/ D uf .w/ (4.31)

for all u 2 U.A/ and all w 2 X.
Now, let a 2 A .a ¤ 0/ and M be an integer greater than 4jaj. Then we have

j a

M
j < 1

4
< 1 � 2

3
D 1

3
:

By Theorem 1 of Kadison and Pedersen [167], there exist three elements u1; u2; u3 2
U.A/ such that 3 a

M D u1 C u2 C u3. So, by (4.31), we have

f .ax/ D f
�M

3
� 3 a

M
x
�

D M � f
�1
3

� 3 a

M
x
�

D M

3
f
�
3

a

M
x
�

D M

3
h.u1x C u2x C u3x/ D M

3
.f .u1x/C f .u2x/C f .u3x//

D M

3
.u1 C u2 C u3/f .x/ D M

3
� 3 a

M
f .x/ D af .x/

for all x 2 X. Therefore, f W X ! Y is A-linear. This completes the proof. �
Corollary 4.20. Let f W A ! B be a multiplicative mapping such that

kf .x/C f .y/C f .z/C 	f .w/k � kf .x/C f .y C z C 	w/k (4.32)

for all x; y; z;w 2 A and 	 2 T WD f� 2 C W j�j D 1g. Then the mapping f W A ! B
is a C�-algebra homomorphism.

Proof. By Theorem 4.19, the multiplicative mapping f W A ! B is C-linear since
C�-algebras are normed modules over C. So, the multiplicative mapping f W A ! B
is a C�-algebra homomorphism. �
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Assume that X is a real normed linear space and Y is a real Banach space. Now,
we prove the Hyers-Ulam stability of the functional inequality (4.27) in real Banach
spaces.

Theorem 4.21. Assume that f W X ! Y is an odd mapping for which there exist the
constants � � 0 and p 2 R such that p ¤ 1 and f W X ! Y satisfies the following
functional inequality:

kf .x/C f .y/C f .z/C f .w/k
� kf .x/C f .y C z C w/k

C�.kxkp C kykp C kzkp C kwkp C kxk p
4 � kyk p

4 � kzk p
4 � kwk p

4 / (4.33)

for all x; y; z;w 2 X. Then there exists a unique Cauchy additive mapping A W X ! Y
such that

kf .x/ � A.x/k � 2p C 2

j2p � 2j�kxkp (4.34)

for all x 2 X. If, in addition, f W X ! Y is a mapping such that the transformation
t ! f .tx/ is continuous in t 2 R for each fixed x 2 X; then A is an R-linear mapping.

Proof. Since f is odd, f .0/ D 0 and f .�x/ D �f .x/ for all x 2 X. Letting x D 0,
z D y and w D �2y in (4.33), we have

k2f .y/ � f .2y/k � .2C 2p/� jjyjjp (4.35)

for all y 2 X and so ���f .x/� 2f
� x

2

���� � 2C 2p

2p
� jjxjjp

for all x 2 X. Hence we have

���2lf
� x

2l

�
� 2mf

� x

2m

���� � 2C 2p

2p

m�1X
jDl

2j

2pj
�kxkp (4.36)

for all m; l � 1 with m > l and x 2 X.
Assume that p > 1. It follows from (4.36) that the sequence f2kf . x

2k /g is a Cauchy
sequence for all x 2 X. Since Y is complete, the sequence f2kf . x

2k /g converges and
so one can define the mapping A W X ! Y by

A.x/ WD lim
k!1 2kf

� x

2k

�
for all x 2 X. Letting l D 0 and m ! 1 in (4.36), we get

kf .x/ � A.x/k � 2p C 2

2p � 2 � jjxjjp
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for all x 2 X. It follows from (4.33) that���2kf
� x

2k

�
C 2kf

� y

2k

�
C 2kf

� z

2k

�
C 2kf

� w

2k

����
�
����2kf

� x

2k

�
C 2kf

�
y C z C w

2k

�����
C2k�

2pk
.kxkp C kykp C kzkp C kwkp C kxk p

4 � kyk p
4 � kzk p

4 � kwk p
4 / (4.37)

for all x; y; z;w 2 X. Letting k ! 1 in (4.37), we get

kA.x/C A.y/C A.z/C A.w/k � kA.x/C A.y C z C w/k (4.38)

for all x; y; z;w 2 X. It is easy to show that A W X ! Y is odd. Letting w D �y � z
and x D 0 in (4.38), we get A.y C z/ D A.y/C A.z/ for all y; z 2 X. So, there exists
a Cauchy additive mapping A W X ! Y satisfying (4.34) for the case p > 1.

Now, let T W X ! Y be another Cauchy additive mapping satisfying (4.33). Then
we have

kA.x/� T.x/k D 2q
���A
� x

2q

�
� T

� x

2q

����
� 2q

����L
� x

2q

�
� f

� x

2q

����C
���T
� x

2q

�
� f

� x

2q

�����

� 2p C 2

2p � 2 � 2 � 2q

2pq
�kxkp;

which tends to zero as q ! 1 for all x 2 X. So, we can conclude that A.x/ D T.x/
for all x 2 X. This proves the uniqueness of A.

Assume that p < 1. It follows from (4.35) that����f .x/ � 1

2
f .2x/

���� � 2p C 2

2
� jjxjjp

for all x 2 X. Hence we have

���� 12l
f .2lx/ � 1

2m
f .2mx/

���� � 2p C 2

2

m�1X
jDl

2pj

2j
�kxkp (4.39)

for all m; l � 1 with m > l and x 2 X. It follows from (4.39) that the
sequence f 1

2k f .2kx/g is a Cauchy sequence for all x 2 X. Since Y is complete,
the sequence f 1

2k f .2kx/g converges and so one can define the mapping A W X ! Y by

A.x/ WD lim
k!1

1

2k
f
�
2kx
�

for all x 2 X. Letting l D 0 and m ! 1 in (4.39), we get
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kf .x/ � A.x/k � 2p C 2

2 � 2p
� jjxjjp

for all x 2 X.
The rest of the proof is similar to the above proof. So, there exists a unique

Cauchy additive mapping A W X ! Y such that

kf .x/ � A.x/k � 2p C 2

j2p � 2j�kxkp (4.40)

for all x 2 X. Assume that f W X ! Y is a mapping such that the transformation
t ! f .tx/ is continuous in t 2 R for each fixed x 2 X. By the same reasoning as
in the proof of Theorem 4.19, one can prove that A is an R-linear mapping. This
completes the proof. �

Using the fixed point method, we prove the Hyers-Ulam stability of the func-
tional inequality (4.27) in Banach spaces.

Theorem 4.22. Let f W X ! Y be an odd mapping for which there exists a function
' W X4 ! Œ0;1/ such that there exists L < 1 such that

'.x; y; z;w/ � 1

2
L'.2x; 2y; 2z; 2w/

for all x; y; z;w 2 X and

kf .x/C f .y/C f .z/C f .w/k
� kf .x/C f .y C z C w/k C '.x; y; z;w/ (4.41)

for all x; y; z;w 2 X. Then there exists a unique Cauchy additive mapping A W X ! Y
such that

kf .x/ � A.x/k � L

2 � 2L
'.0; x; x;�2x/ (4.42)

for all x 2 X.

Proof. Consider the set S WD fg W X ! Yg and introduce the generalized metric on
S as follows:

d.g; h/ D inffK 2 RC W kg.x/� h.x/k � K'.0; x; x;�2x/; 8x 2 Xg:

which .S; d/ is complete.
Now, we consider the linear mapping J W S ! S defined by

Jg.x/ WD 2g
�x

2

�
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for all x 2 X. Now, we have

d.Jg; Jh/ � Ld.g; h/

for all g; h 2 S. Since f W X ! Y is odd, f .0/ D 0 and f .�x/ D �f .x/ for all x 2 X.
Letting z D y D x and w D �2x in (4.41), we have

k2f .x/ � f .2x/k D k2f .x/C f .�2x/k � '.0; x; x;�2x/ (4.43)

for all x 2 X. It follows from (4.43) that

���f .x/� 2f
� x

2

���� � '
�
0;

x

2
;

x

2
;�x

�
� L

2
'.0; x; x;�2x/

for all x 2 X. Hence d.f ; Jf / � L
2
. By Theorem 1.3, there exists a mapping

A W X ! Y satisfying the following:

(1) A is a fixed point of J, i.e.,

A
� x

2

�
D 1

2
A.x/ (4.44)

for all x 2 X. Then A W X ! Y is an odd mapping. The mapping A is a unique
fixed point of J in the set

M D fg 2 S W d.f ; g/ < 1g:

This implies that A is a unique mapping satisfying (4.44) such that there exists
a K 2 .0;1/ satisfying

kf .x/ � A.x/k � K'.0; x; x;�2x/

for all x 2 X;
(2) d.Jnf ;A/ ! 0 as n ! 1. This implies the equality

lim
n!1 2nf

� x

2n

�
D A.x/ (4.45)

for all x 2 X;
(3) d.f ;A/ � 1

1�L d.f ; Jf /, which implies the inequality

d.f ;A/ � L

2 � 2L
:

This implies that the inequality (4.42) holds.
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It follows from (4.41) and (4.45) that

kA.x/C A.y/C A.z/C A.w/k � kA.x/C A.y C z C w/k

for all x; y; z;w 2 X. By Theorem 4.19, the mapping A W X ! Y is a Cauchy additive
mapping. Therefore, there exists a unique Cauchy additive mapping A W X ! Y
satisfying (4.43). This completes the proof. �

Corollary 4.23. Let r > 1 and � be nonnegative real numbers and f W X ! Y be
an odd mapping such that

kf .x/C f .y/C f .z/C f .w/k
� kf .x/C f .y C z C w/k

C�.kxkr C kykr C kzkr C kwkr C kxk r
4 � kyk r

4 � kzk r
4 � kwk r

4 / (4.46)

for all x; y; z;w 2 X. Then there exists a unique Cauchy additive mapping A W X ! Y
such that

kf .x/ � A.x/k � 2r C 2

2r � 2
�kxkr

for all x 2 X.

Proof. The proof follows from Theorem 4.22 by taking

'.x; y; z;w/

WD �.kxkr C kykr C kzkr C kwkr C kxk r
4 � kyk r

4 � kzk r
4 � kwk r

4 /

for all x; y; z;w 2 X and L D 21�r and so we get the desired result. �
Remark 4.24. Let f W X ! Y be an odd mapping for which there exists a
function ' W X4 ! Œ0;1/ satisfying (4.41). By the similar method to the proof
of Theorem 4.22, one can show that, if there exists L < 1 such that

'.x; y; z;w/ � 2L'
� x

2
;

y

2
;

z

2
;

w

2

�
for all x; y; z;w 2 X, then there exists a unique Cauchy additive mapping A W X ! Y
such that

kf .x/ � A.x/k � 1

2 � 2L
'.0; x; x;�2x/

for all x 2 X.
For the case 0 < r < 1, one can obtain the similar result to Corollary 4.23:
Let 0 < r < 1, � � 0 be real numbers and f W X ! Y be an odd mapping

satisfying (4.46). Then there exists a unique Cauchy additive mapping A W X ! Y
such that
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kf .x/ � A.x/k � 2C 2r

2 � 2r
�kxkr

for all x 2 X.

4.2.2 On Additive Functional Inequalities in Normed
Modules over C�-Algebras

In [12], An investigated the following additive functional inequality:

kf .x/C f .y/C f .z/C f .w/k � kf .x C y/C f .z C w/k (4.47)

in normed modules over a C�-algebra. This is applied to understand homomor-
phisms in C�-algebras. Moreover, he proved the Hyers-Ulam stability of the
functional following inequality:

kf .x/C f .y/C f .z/C f .w/k
� kf .x C y C z C w/k C �kxkpkykpkzkpkwkp (4.48)

in real Banach spaces, where � and p are positive real numbers with 4p ¤ 1.
Gilányi [126] showed that, if f satisfies the functional following inequality:

k2f .x/C 2f .y/� f .x � y/k � kf .x C y/k; (4.49)

then f satisfies the Jordan-von Neumann functional equation:

2f .x/C 2f .y/ D f .x C y/C f .x � y/:

Fechner [113] and Gilányi [127] proved the Hyers-Ulam stability of the func-
tional inequality (4.49). Park et al. [253] investigated the functional following
inequality:

kf .x/C f .y/C f .z/k � kf .x C y C z/k (4.50)

in Banach spaces and proved the Hyers-Ulam stability of the functional inequal-
ity (4.50) in Banach spaces.

Now, let A be a unital C�-algebra with the unitary group U.A/ and the unit e and
let B be a C�-algebra. Assume that X is a normed A-module with the norm k � kX

and Y is a normed A-module with the norm k � kY .

Theorem 4.25. Let f W X ! Y be a mapping such that

kuf .x/C f .y/C f .z/C f .w/kY � kf .ux C y/C f .z C w/kY (4.51)
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for all x; y; z;w 2 X and u 2 U.A/. Then the mapping f W X ! Y is A-linear.

Proof. Letting x D y D z D w D 0 and u D e 2 U.A/ in (4.51), we have

k4f .0/kY � k2f .0/kY

and so f .0/ D 0. Letting z D w D 0 in (4.51), we have

kf .x/C f .y/kY � kf .x C y/kY (4.52)

for all x; y 2 X. Replacing x and y by x C y and z C w in (4.52), respectively, we
have

kf .x C y/C f .z C w/kY � kf .x C y C z C w/kY

for all x; y; z;w 2 X and so

kf .x/C f .y/C f .z/C f .w/kY � kf .x C y C z C w/kY (4.53)

for all x; y; z;w 2 X. Letting z D w D 0 and y D �x in (4.53), we have

kf .x/C f .�x/kY � kf .0/kY D 0

for all x 2 X. Hence f .�x/ D �f .x/ for all x 2 X. Letting z D �x � y and w D 0

in (4.53), we have

kf .x/C f .y/ � f .x C y/kY D kf .x/C f .y/C f .�x � y/kY � kf .0/kY D 0

for all x; y 2 X. Thus we have

f .x C y/ D f .x/C f .y/

for all x; y 2 X. Letting y D �ux and y D w D 0 in (4.51), we have

kf .ux/ � f .ux/kY D kf .ux/C f .�ux/kY � k2f .0/kY D 0

for all x 2 X and u 2 U.A/. Thus we have

f .ux/ D uf .x/ (4.54)

for all u 2 U.A/ and x 2 X.
Now, let a 2 A with a ¤ 0 and M be an integer greater than 4jaj. Then we have

ˇ̌̌ a

M

ˇ̌̌
<
1

4
< 1 � 2

3
D 1

3
:
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By Theorem 1 of Kadison and Pedersen [167], there exist three elements
u1; u2; u3 2 U.A/ such that 3 a

M D u1 C u2 C u3 and so, by (4.54), we have

f .ax/ D f
�M

3
� 3 a

M
x
�

D M � f
�1
3

� 3 a

M
x
�

D M

3
f
�
3

a

M
x
�

D M

3
h.u1x C u2x C u3x/ D M

3
.f .u1x/C f .u2x/C f .u3x//

D M

3
.u1 C u2 C u3/f .x/ D M

3
� 3 a

M
f .x/ D af .x/

for all x 2 X. Therefore, f W X ! Y is A-linear. This completes the proof. �

Corollary 4.26. Let f W A ! B be a multiplicative mapping such that

k	f .x/C f .y/C f .z/C f .w/k � kf .	x C y/C f .z C w/k (4.55)

for all x; y; z;w 2 A and 	 2 T WD f� 2 C W j�j D 1g. Then the mapping f W A ! B
is a C�-algebra homomorphism.

Proof. By Theorem 4.25, the multiplicative mapping f W A ! B is C-linear since
C�-algebras are normed modules over C. So, the multiplicative mapping f W A ! B
is a C�-algebra homomorphism. �
Theorem 4.27. Let X be a real normed linear space and Y be a real Banach space.
Assume that f W X ! Y is an approximately additive odd mapping for which there
exist the constants � � 0 and p 2 R such that 4p ¤ 1 and f satisfies the general
Cauchy-Rassias inequality:

kf .x/C f .y/C f .z/C f .w/k
� kf .x C y C z C w/k C �kxkpkykpkzkpkwkp (4.56)

for all x; y; z;w 2 X. Then there exists a unique additive mapping L W X ! Y such
that

kf .x/ � L.x/k � 3p�

j81p � 3jkxk4p (4.57)

for all x 2 X. If, in addition, f W X ! Y is a mapping such that the transformation
t ! f .tx/ is continuous in t 2 R for each fixed x 2 X; then L is an R-linear mapping.

Proof. Since f is odd, f .0/ D 0 and f .�x/ D �f .x/ for all x 2 X. Letting y D z D x
and w D �3x in (4.56), we have

k3f .x/ � f .3x/k � 3p� jjxjj4p (4.58)

for all x 2 X and so

���f .x/ � 3f
� x

3

���� � �

27p
jjxjj4p
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for all x 2 X. Hence we have

���3lf
� x

3l

�
� 3mf

� x

3m

���� � �

27p

m�1X
jDl

3j

81pj
jjxjj4p (4.59)

for all m; l � 1 with m > l and x 2 X.
Assume that p > 1

4
. It follows from (4.59) that the sequence f3kf . x

3k /g is a Cauchy
sequence for all x 2 X. Since Y is complete, the sequence f3kf . x

3k /g converges and
so one can define the mapping L W X ! Y by

L.x/ WD lim
k!1 3kf

� x

3k

�

for all x 2 X. Letting l D 0 and m ! 1 in (4.59), we have

kf .x/ � L.x/k � 3p�

81p � 3 jjxjj4p

for all x 2 X. It follows from (4.56) that���3kf
� x

3k

�
C 3kf

� y

3k

�
C 3kf

� z

3k

�
C 3kf

� w

3k

����
�
����3kf

�
x C y C z C w

3k

�����C 3k�

81pk
kxkpkykpkzkpkwkp (4.60)

for all x; y; z;w 2 X. Letting k ! 1 in (4.60), we get

kL.x/C L.y/C L.z/C L.w/k � kL.x C y C z C w/k (4.61)

for all x; y; z;w 2 X. It is easy to show that L W X ! Y is odd. Letting z D �x � y
and w D 0 in (4.61), we get L.x C y/ D L.x/C L.y/ for all x; y 2 X. So, there exists
an additive mapping L W X ! Y satisfying (4.57) for the case p > 1

4
.

Now, let T W X ! Y be another additive mapping satisfying (4.57). Then we have

kL.x/ � T.x/k D 3q
���L
� x

3q

�
� T

� x

3q

����
� 3q

����L
� x

3q

�
� f

� x

3q

����C
���T
� x

3q

�
� f

� x

3q

�����

� 3p�

81p � 3 � 2 � 3q

81q
jjxjj4p;

which tends to zero as q ! 1 for all x 2 X. So we can conclude that L.x/ D T.x/
for all x 2 X. This proves the uniqueness of L.
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Assume that p < 1
4
. It follows from (4.58) that����f .x/ � 1

3
f .3x/

���� � 3p�1�kxk4p

for all x 2 X. Hence we have���� 13l
f .3lx/ � 1

3m
f .3mx/

���� � 3p�1�
m�1X
jDl

81pj

3j
jjxjj4p (4.62)

for all m; l � 1 with m > l and x 2 X. It follows from (4.62) that the
sequence f 1

3k f .3kx/g is a Cauchy sequence for all x 2 X. Since Y is complete,
the sequence f 1

3k f .3kx/g converges and so one can define the mapping L W X ! Y by

L.x/ WD lim
k!1

1

3k
f
�
3kx
�

for all x 2 X. Letting l D 0 and m ! 1 in (4.62), we have

kf .x/ � L.x/k � 3p�

3 � 81p
jjxjj4p

for all x 2 X.
The rest of the proof is similar to the above proof. So, there exists a unique

additive mapping L W X ! Y satisfying

kf .x/ � L.x/k � 3p�

j81p � 3jkxk4p (4.63)

for all x 2 X. Assume that f W X ! Y is a mapping such that the transformation
t ! f .tx/ is continuous in t 2 R for each fixed x 2 X. By the same reasoning as
in the proof of Theorem 4.25, one can prove that L is an R-linear mapping This
completes the proof. �

4.2.3 Generalization of Cauchy-Rassias Inequalities
via the Fixed Point Method

Now, we improve the results of An’s results [12], which presented at last pages. In
fact, we get a better error estimation of main result of An by applying the fixed point
alternative theorem.
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Theorem 4.28. Let X be a real normed linear space and Y be a real Banach space.
Assume that f W X ! Y is an approximately additive odd mapping satisfying the
general Cauchy-Rassias inequality:

kf .x/C f .y/C f .z/C f .w/k
� kf .x C y C z C w/k C '.x; y; z;w/ (4.64)

for all x; y; z;w 2 X, where ' W X4 ! Œ0;1/ is a given function. If there exists
0 < L < 1 such that

'.x; y; z;w/ � 1

3
L'.3x; 3y; 3z; 3w/ (4.65)

for all x; y; z;w 2 X. Then there exists a unique additive mapping A W X ! Y such
that

kf .x/ � A.x/k � L

3 � 3L
'.x; x; x;�3x/ (4.66)

for all x 2 X. If, in addition, f W X ! Y is a mapping such that the transformation
t ! f .tx/ is continuous in t 2 R for each fixed x 2 X; then A is an R-linear mapping.

Proof. Since f is odd, f .0/ D 0 and f .�x/ D �f .x/ for all x 2 X. Consider the set
S WD fg W X ! Yg and introduce the generalized metric on S as follows:

d.g; h/ D inffC 2 RC W kg.x/ � h.x/k � C'.x; x; x;�3x/; 8x 2 Xg:

Now, we show that .S; d/ is complete. Let fhng be a Cauchy sequence in .S; d/.
Then, for any " > 0, there exists an integer N" > 0 such that d.hm; hn/ < " for all
m; n � N". Then there exists C 2 .0; "/ such that

khm.x/� hn.x/k � C'.x; x; x;�3x/ � "'.x; x; x;�3x/ (4.67)

for all m; n � N" and x 2 X. Since Y is complete, fhn.x/g converges for each x 2 X.
Thus a mapping h W X ! Y can be defined by

h.x/ WD lim
n!1 hn.x/ (4.68)

for all x 2 X. Letting n ! 1 in (4.67), we have

m � N" H) khm.x/� hn.x/k � "'.x; x; x;�3x/

H) " 2 fC 2 RC W kg.x/ � h.x/k � C'.x; x; x;�3x/; 8x 2 Xg
H) d.hm; h/ � "

for all x 2 X. This means that the Cauchy sequence fhng converges to h in .S; d/.
Hence .S; d/ is complete.
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Now, we consider the linear mapping� W S ! S defined by

�g.x/ WD 3g
�x

3

�
(4.69)

for all x 2 X. We show that � is a strictly contractive on S. For any g; h 2 S, let
Cg;h � 0 be an arbitrary constant with d.g; h/ � Cg;h. Then we have

d.g; h/ � Cg;h H) kg.x/� h.x/k � Cg;h'.x; x; x;�3x/

H) k3g
�x

3

�
� 3h

�x

3

�
k � 3Cg;h'

� x

3
;

x

3
;

x

3
;�x

�
H) k3g

�x

3

�
� 3h

�x

3

�
k � LCg;h'.x; x; x;�3x/

for all x 2 X. This means d.�g; �h/ � LCg;h. Hence we see that d.�g; �h/ �
Ld.g; h/ for any g; h 2 S. Therefore, � is a strictly contractive on S with the
Lipschitz constant 0 < L < 1.

Letting y D z D x and w D �3x in (4.64), we have

k3f .x/ � f .3x/k � '.x; x; x;�3x/ (4.70)

for all x 2 X and so

���f .x/ � 3f
� x

3

���� � '
� x

3
;

x

3
;

x

3
;�x

�
� 1

3
L'.x; x; x;�3x/

for all x 2 X. Thus we have

d.f ; �f / � L

3
:

Therefore, it follows of Theorem 1.3 that the sequence f�nf g converges to the
unique fixed point A of �, i.e.,

A.x/ D .�f /.x/ DWD lim
k!1 3kf

� x

3k

�

and A.3x/ D 3A.x/ for all x 2 X. Also, we have

d.A; f / � 1

1 � L
d.�f ; f / � L

3 � 3L
;

which means that (4.66) holds.
Assume that f W X ! Y is a mapping such that the transformation t ! f .tx/ is

continuous in t 2 R for each fixed x 2 X. By the same reasoning as in the proof
of Theorem 4.25, one can prove that A is an R-linear mapping. This completes the
proof. �
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In the following, we get a better error estimation of the main result of An [12].

Corollary 4.29. Let X be a real normed linear space and Y be a real Banach space.
Assume that f W X ! Y is an approximately additive odd mapping for which there
exist the constants � � 0 and p 2 R such that 4p ¤ 1 and f satisfies the general
Cauchy-Rassias inequality:

kf .x/C f .y/C f .z/C f .w/k
� kf .x C y C z C w/k C �kxkpkykpkzkpkwkp

for all x; y; z;w 2 X. Then there exists a unique additive mapping A W X ! Y such
that

kf .x/ � A.x/k � 3p�1�
j81p � 3jkxk4p

for all x 2 X. If, in addition, f W X ! Y is a mapping such that the transformation
t ! f .tx/ is continuous in t 2 R for each fixed x 2 X; then A is an R-linear mapping.

Proof. In Theorem 4.28, take

'.x; y; z;w/ WD �kxkpkykpkzkpkwkp

for all x; y; z;w 2 X and L D 811�p. Then we have desired result. �

Corollary 4.30. Let X be a real normed linear space and Y be a real Banach space.
Assume that f W X ! Y is an approximately additive odd mapping for which there
exist the constants � � 0 and p 2 R such that 4p ¤ 1 and f satisfies the general
Cauchy-Rassias inequality:

kf .x/C f .y/C f .z/C f .w/k
� kf .x C y C z C w/k C �.kxkp C kykp C kzkp C kwkp/

for all x; y; z;w 2 X. Then there exists a unique additive mapping A W X ! Y such
that

kf .x/ � A.x/k � .3p C 3/�

j3p � 3j kxkp

for all x 2 X. If, in addition, f W X ! Y is a mapping such that the transformation
t ! f .tx/ is continuous in t 2 R for each fixed x 2 X; then A is an R-linear mapping.

Proof. In Theorem 4.28, take

'.x; y; z;w/ WD �kxkp C kykp C kzkp C kwkp

for all x; y; z;w 2 X and L D 31�p. Then we have desired result. �



Chapter 5
Stability of Functional Equations
in C�-Ternary Algebras

Ternary algebraic operations were considered in the nineteenth century by several
mathematicians such as Cayley [68] who introduced the notion of cubic matrix
which, in turn, was generalized by Kapranov et al. [169]. The simplest example
of such non-trivial ternary operation is given by the following composition rule:

fa; b; cgijk D
X

1�l;m;n�N

anilbljmcmkn

for each i; j; k D 1; 2; � � � ;N.
Ternary structures and their generalization, the so-called n-ary structures, raise

certain hopes in view of their applications in physics. Some significant applications
are as follows (see [171] and [172]):

(1) The algebra of nonions generated by two matrices

0
@0 1 00 0 1

1 0 0

1
A ;

0
@ 0 1 0

0 0 !

!2 0 0;

1
A

where ! D e
2�i
3 , was introduced by Sylvester as a ternary analog of Hamiltons

quaternions (see [2]).
(2) The quark model inspired a particular brand of ternary algebraic systems. The

so-called Nambu mechanics is based on such structures (see [93]).
There are also some applications, although still hypothetical, in the fractional

quantum Hall effect, the nonstandard statistics, supersymmetric theory and the
Yang-Baxter equation (see [2, 171] and [325]).

In Sect. 5.1, we prove the Hyers-Ulam stability of C�-ternary 3-derivations
and of C�-ternary 3-homomorphisms for the following functional equation:

© Springer International Publishing Switzerland 2015
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f .x1 C x2; y1 C y2; z1 C z2/ D
X

1�i;j;k�2
f .xi; yj; zk/

in C�-ternary algebras.

In Sect. 5.2, we consider the following Apollonius type additive functional
equation:

f .z � x/C f .z � y/ D �1
2

f .x C y/C 2f

�
z � x C y

4

�

and prove the superstability of C�-ternary homomorphisms, C�-ternary derivations,
JB�-triple homomorphisms and JB�-triple derivations by using the fixed point
method.

In Sect. 5.3, we prove the Hyers-Ulam stability of bi-�-derivations on JB�-triples.

5.1 C�-Ternary 3-Homomorphism and C�-Ternary
3-Derivations

In this section, we prove the Hyers-Ulam stability of C�-ternary 3-derivations and
of C�-ternary 3-homomorphisms for the following functional equation:

f .x1 C x2; y1 C y2; z1 C z2/ D
X

1�i;j;k�2
f .xi; yj; zk/

in C�-ternary algebras (see [94]).
Let X and Y be complex vector spaces. A mapping f W X�X�X ! Y is called a 3-

additive mapping if f is additive for each variable and a mapping f W X�X�X ! Y is
called a 3-C-linear mapping if f is C-linear for each variable. A 3-C-linear mapping
H W A � A � A ! B is called a C�-ternary 3-homomorphism if it satisfies

H.Œx1; y1; z1�; Œx2; y2; z2�; Œx3; y3; z3�/

D ŒH.x1; x2; x3/;H.y1; y2; y3/;H.z1; z2; z3/�

for all x1; y1; z1; x2; y2; z2; x3; y3; z3 2 A. For a given mapping f W A3 ! B, we define

D�;	;
 f .x1; x2; y1; y2; z1; z2/

WD f .�x1 C �x2; 	y1 C 	y2; 
z1 C 
z2/ � �	

X

1�i;j;k�2
f .xi; yj; zk/

for all �;	; 
 2 S1 WD f� 2 C W j�j D 1g and x1; x2; y1; y2; z1; z2 2 A.
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Bae and Park [21] proved the Hyers–Ulam stability of 3-homomorphisms in
C�-ternary algebras for the following functional equation:

D�;	;
 f .x1; x2; y1; y2; z1; z2/ D 0:

Lemma 5.1 ([21]). Let X and Y be complex vector spaces and f W X � X � X ! Y
be a 3-additive mapping such that

f .�x; 	y; 
z/ D �	
f .x; y; z/

for all �;	; 
 2 S1 and x; y; z 2 X. Then f is 3-C-linear.

Theorem 5.2 ([21]). Let p; q; r 2 .0;1/ with p C q C r < 3 and � 2 .0;1/ and
f W A3 ! B be a mapping such that

kD�;	;
 f .x1; x2; y1; y2; z1; z2/k (5.1)

� � � maxfkx1k; kx2kgp � maxfky1k; ky2kgq � maxfkz1k; kz2kgr

and

kf .Œx1; y1; z1�; Œx2; y2; z2�; Œx3; y3; z3�/

�Œf .x1; x2; x3/; f .y1; y2; y3/; f .z1; z2; z3/�k (5.2)

� �

3X
iD1

kxikp � kyikq � kzikr

for all �;	; 
 2 S1 and x1; x2; x3; y1; y2; y3; z1; z2; z3 2 A. Then there exists a unique
C�-ternary 3-homomorphism H W A3 ! B such that

kf .x; y; z/ � H.x; y; z/k � �

23 � 2pCqCr
kxkp � kykq � kzkr (5.3)

for all x; y; z 2 A.

5.1.1 C�-Ternary 3-Homomorphisms in C�-Ternary Algebras

Now, we investigate C�-ternary 3-homomorphisms in C�-ternary algebras.

Theorem 5.3. Let p; q; r 2 .0;1/ with p C q C r < 3 and � 2 .0;1/ and
f W A3 ! B be a mapping satisfying (5.1) and (5.2). If there exists .x0; y0; z0/ 2 A3

such that

lim
n!1

1

8n
f .2nx0; 2

ny0; 2
nz0/ D e0;

then the mapping f is a C�-ternary 3-homomorphism.
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Proof. By Theorem 5.2, there exists a unique C�-ternary 3-homomorphism
H W A3 ! B satisfying (5.3). Note that

H.x; y; z/ WD lim
n!1

1

8n
f .2nx; 2ny; 2nz/

for all x; y; z 2 A. By the assumption, we have

H.x0; y0; z0/ D lim
n!1

1

8n
f .2nx0; 2

ny0; 2
nz0/ D e0:

It follows from (5.2) that

kŒH.x1; x2; x3/;H.y1; y2; y3/;H.z1; z2; z3/�
�ŒH.x1; x2; x3/;H.y1; y2; y3/; f .z1; z2; z3/�k

D kH.Œx1; y1; z1�; Œx2; y2; z2�; Œx3; y3; z3�/

�ŒH.x1; x2; x3/;H.y1; y2; y3/; f .z1; z2; z3/�k

D lim
n!1

1

82n
kf .Œ2nx1; 2

ny1; z1�; Œ2
nx2; 2

ny2; z2�; Œ2
nx3; 2

ny3; z3�/

�Œf .2nx1; 2
nx2; 2

nx3/; f .2
ny1; 2

ny2; 2
ny3/; f .z1; z2; z3/�k

� lim
n!1

�2n.pCq/

82n

3X
iD1

kxikp � kyikq � kzikr

D 0

for all x1; x2; x3; y1; y2; y3; z1; z2; z3 2 A and so

ŒH.x1; x2; x3/;H.y1; y2; y3/;H.z1; z2; z3/�

D ŒH.x1; x2; x3/;H.y1; y2; y3/; f .z1; z2; z3/�

for all x1; x2; x3; y1; y2; y3; z1; z2; z3 2 A. Letting x1 D y1 D x0; x2 D y2 D y0
and x3 D y3 D z0 in the last equality, we get f .z1; z2; z3/ D H.z1; z2; z3/ for all
z1; z2; z3 2 A. Therefore, the mapping f is a C�-ternary 3-homomorphism. This
completes the proof. �

Theorem 5.4. Let pi; qi; ri 2 .0;1/ .i D 1; 2; 3/ such that pi ¤ 1 or qi ¤ 1 or
ri ¤ 1 for some 1 � i � 3, �;  2 .0;1/ and f W A3 ! B be a mapping such that

kD�;	;
 f .x1; x2; y1; y2; z1; z2/k
� �.kx1kp1 � kx2kp2 � ky1kq1 � ky2kq2 (5.4)

Cky1kq1 � ky2kq2 � kz1kr1 � kz2kr2 C kx1kp1 � kx2kp2 � kz1kr1 � kz2kr2 /
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and

kf .Œx1; y1; z1�; Œx2; y2; z2�; Œx3; y3; z3�/

�Œf .x1; x2; x3/; f .y1; y2; y3/; f .z1; z2; z3/�k
� kx1kp1 � kx2kp2 � kx3kp3 (5.5)

�ky1kq1 � ky2kq2 � ky3kq3 � kz1kr1 � kz2kr2 � kz3kr3

for all �;	; 
 2 S1 and x1; x2; x3; y1; y2; y3; z1; z2; z3 2 A. Then the mapping
f W A3 ! B is a C�-ternary 3-homomorphism.

Proof. Letting xi D yj D zk D 0 .i; j; k D 1; 2/ in (5.4), we get f .0; 0; 0/ D 0.
Putting � D 	 D 
 D 1; x2 D 0 and yj D zk D 0 .j; k D 1; 2/ in (5.4), we have
f .x1; 0; 0/ D 0 for all x1 2 A. Similarly, we get f .0; y1; 0/ D f .0; 0; z1/ D 0 for all
y1; z1 2 A. Setting � D 	 D 
 D 1; x2 D 0; y2 D 0 and z1 D z2 D 0, we have
f .x1; y1; 0/ D 0 for all x1; y1 2 A. Similarly, we get f .x1; 0; z1/ D f .0; y1; z1/ D 0

for all x1; y1; z1 2 A.
Now, letting � D 	 D 
 D 1 and y2 D z2 D 0 in (5.4), we have

f .x1 C x2; y1; z1/ D f .x1; y1; z1/C f .x2; y1; z1/

for all x1; x2; y1; z1 2 A. Similarly, one can show that the other equations hold and
so f is 3-additive. Letting x2 D y2 D z2 D 0 in (5.4), we get

f .�x1; 	y1; 
z1/ D �	
f .x1; y1; z1/

for all �;	; 
 2 S1 and x1; y1; z1 2 A. So, by Lemma 5.1, the mapping f is
3-C-linear.

Without any loss of generality, we may suppose that p1 ¤ 1. Let p1 < 1.
It follows from (5.5) that

kf .Œx1; y1; z1�; Œx2; y2; z2�; Œx3; y3; z3�/

�Œf .x1; x2; x3/; f .y1; y2; y3/; f .z1; z2; z3/�k

D lim
n!1

1

3n
kf .Œ3nx1; y1; z1�; Œx2; y2; z2�; Œx3; y3; z3�/

�Œf .3nx1; x2; x3/; f .y1; y2; y3/; f .z1; z2; z3/�k

�  lim
n!1

3np1

3n
.kx1kp1 � kx2kp2 � kx3kp3 � ky1kq1 � ky2kq2

�ky3kq3 � kz1kr1 � kz2kr2 � kz3kr3 /

D 0
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for all x1; x2; x3; y1; y2; y3; z1; z2; z3 2 A. Let p1 > 1. It follows from (5.5) that

kf .Œx1; y1; z1�; Œx2; y2; z2�; Œx3; y3; z3�/

�Œf .x1; x2; x3/; f .y1; y2; y3/; f .z1; z2; z3/�k

D lim
n!1 3n

���f
�h 1
3n

x1; y1; z1
i
; Œx2; y2; z2�; Œx3; y3; z3�

�

�
h
f
� 1
3n

x1; x2; x3
�
; f .y1; y2; y3/; f .z1; z2; z3/

i���
�  lim

n!1
3n

3np1
.kx1kp1 � kx2kp2 � kx3kp3 � ky1kq1 � ky2kq2

�ky3kq3 � kz1kr1 � kz2kr2 � kz3kr3 /

D 0

for all x1; x2; x3; y1; y2; y3; z1; z2; z3 2 A. Therefore, we have

f .Œx1; y1; z1�; Œx2; y2; z2�; Œx3; y3; z3�/

D Œf .x1; x2; x3/; f .y1; y2; y3/; f .z1; z2; z3/�

for all x1; x2; x3; y1; y2; y3; z1; z2; z3 2 A. Therefore, the mapping f W A3 ! B is a
C�-ternary 3-homomorphism. This completes the proof. �
Remark 5.5. Let ' W A6 ! Œ0;1/ and  W A9 ! Œ0;1/ be the functions such that

'.x1; � � �; x6/ D 0

if xi D 0 for some 1 � i � 6 and

1

3n
 .x1; � � �; 3nxi; � � �; x9/ D 0

or

3n 
�

x1; � � �; 1
3n

xi; � � �; x9
�

D 0:

Suppose that f W A3 ! B is a mapping satisfying

kD�;	;
 f .x1; x2; y1; y2; z1; z2/k � '.x1; x2; y1; y2; z1; z2/

and

kf .Œx1; y1; z1�; Œx2; y2; z2�; Œx3; y3; z3�/

�Œf .x1; x2; x3/; f .y1; y2; y3/; f .z1; z2; z3/�k
�  .x1; x2; x3; y1; y2; y3; z1; z2; z3/



5.1 C�-Ternary 3-Homomorphism and C�-Ternary 3-Derivations 207

for all �;	; 
 2 S1 and x1; x2; x3; y1; y2; y3; z1; z2; z3 2 A. Then the mapping f is a
C�-ternary 3-homomorphism.

Corollary 5.6. Let pi; qi; ri 2 .0;1/ .i D 1; 2; 3/ such that pi ¤ 1 or qi ¤ 1 or
ri ¤ 1 for some 1 � i � 3, �;  2 .0;1/ and f W A3 ! B be a mapping such that

kD�;	;
 f .x1; x2; y1; y2; z1; z2/k
� �kx1kp1 � kx2kp2 � ky1kq1 � ky2kq2 � kz1kr1 � kz2kr2

and

kf .Œx1; y1; z1�; Œx2; y2; z2�; Œx3; y3; z3�/

�Œf .x1; x2; x3/; f .y1; y2; y3/; f .z1; z2; z3/�k
� kx1kp1 � kx2kp2 � kx3kp3 � ky1kq1 � ky2kq2 � ky3kq3 � kz1kr1 � kz2kr2 � kz3kr3

for all �;	; 
 2 S1 and x1; x2; x3; y1; y2; y3; z1; z2; z3 2 A. Then the mapping f W
A3 ! B is a C�-ternary 3-homomorphism.

5.1.2 C�-Ternary 3-Derivations in C�-Ternary Algebras

Now, we investigate C�-ternary 3-derivations in C�-ternary algebras.

Definition 5.7. A 3-C-linear mapping D W A3 ! A is called a C�-ternary
3-derivation if it satisfies the following:

D.Œx1; y1; z1�; Œx2; y2; z2�; Œx3; y3; z3�/

D ŒD.x1; x2; x3/; Œy1; y
�
2 ; y3�; Œz1; z

�
2 ; z3��

CŒŒx1; x�
2 ; x3�;D.y1; y2; y3/; Œz1; z

�
2 ; z3��

CŒŒx1; x�
2 ; x3�; Œy1; y

�
2 ; y3�;D.z1; z2; z3/�

for all x1; x2; x3; y1; y2; y3; z1; z2; z3 2 A.

Theorem 5.8. Let p; q; r 2 .0;1/ with p C q C r < 3 and � 2 .0;1/, and let
f W A3 ! A be a mapping such that

kD�;	;
 f .x1; x2; y1; y2; z1; z2/k (5.6)

� � � maxfkx1k; kx2kgp � maxfky1k; ky2kgq � maxfkz1k; kz2kgr

and

kf .Œx1; y1; z1�; Œx2; y2; z2�; Œx3; y3; z3�/

�Œf .x1; x2; x3/; Œy1; y�
2 ; y3�; Œz1; z

�
2 ; z3��
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�ŒŒx1; x�
2 ; x3�; f .y1; y2; y3/; Œz1; z

�
2 ; z3��

�ŒŒx1; x�
2 ; x3�; Œy1; y

�
2 ; y3�; f .z1; z2; z3/�k

� �

3X
iD1

kxikp � kyikq � kzikr (5.7)

for all �;	; 
 2 S1 and x1; x2; x3; y1; y2; y3; z1; z2; z3 2 A. Then there exists a unique
C�-ternary 3-derivation ı W A3 ! A such that

kf .x; y; z/ � ı.x; y; z/k � �

23 � 2pCqCr
kxkp � kykq � kzkr (5.8)

for all x; y; z 2 A.

Proof. By the same method as in the proof of [21, Theorem 1.2], we obtain a 3-C-
linear mapping ı W A3 ! A satisfying (5.8) and the mapping

ı.x; y; z/ WD lim
j!1

1

8j
f .2jx; 2jy; 2jz/

for all x; y; z 2 A. It follows from (5.7) that

kı.Œx1; y1; z1�; Œx2; y2; z2�; Œx3; y3; z3�/
�Œı.x1; x2; x3/; Œy1; y�

2 ; y3�; Œz1; z
�
2 ; z3��

�ŒŒx1; x�
2 ; x3�; ı.y1; y2; y3/; Œz1; z

�
2 ; z3��

�ŒŒx1; x�
2 ; x3�; Œy1; y

�
2 ; y3�; ı.z1; z2; z3/�k

D lim
n!1

1

83n
kf .23nŒx1; y1; z1�; 2

3nŒx2; y2; z2�; 2
3nŒx3; y3; z3�/

�Œf .2nx1; 2
nx2; 2

nx3/; Œ2
ny1; 2

ny�
2 ; 2

ny3�; Œ2
nz1; 2

nz�
2 ; 2

nz3��

�ŒŒ2nx1; 2
nx�
2 ; 2

nx3�; f .2
ny1; 2

ny2; 2
ny3/; Œ2

nz1; 2
nz�
2 ; 2

nz3��

�ŒŒ2nx1; 2
nx�
2 ; 2

nx3�; Œ2
ny1; 2

ny�
2 ; 2

ny3�; f .2
nz1; 2

nz2; 2
nz3/�k

� lim
n!1

�2n.pCqCr/

83n

3X
iD1

kxikp � kyikq � kzikr D 0

for all x1; x2; x3; y1; y2; y3; z1; z2; z3 2 A.
Now, let T W A3 ! A be another 3-derivation satisfying (5.8). Then we have

kı.x; y; z/� T.x; y; z/k D 1

8n
kı.2nx; 2ny; 2nz/ � T.2nx; 2ny; 2nz/k

� 1

8n
kı.2nx; 2ny; 2nz/ � f .2nx; 2ny; 2nz/k
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C 1

8n
kf .2nx; 2ny; 2nz/ � T.2nx; 2ny; 2nz/k

� �2.pCqCr�3/nC1

23 � 2pCqCr
kxkp � kykq � kzkr;

which tends to zero as n ! 1 for all x; y; z 2 A. So we can conclude that
ı.x; y; z/ D T.x; y; z/ for all x; y; z 2 A. This proves the uniqueness of ı. Therefore,
the mapping ı W A3 ! A is a unique C�-ternary 3-derivation satisfying (5.8). This
completes the proof. �

Corollary 5.9. Let � 2 .0;1/ and f W A3 ! A be a mapping satisfying

kD�;	;
 f .x1; x2; y1; y2; z1; z2/k � �

and

kf .Œx1; y1; z1�; Œx2; y2; z2�; Œx3; y3; z3�/

�Œf .x1; x2; x3/; Œy1; y�
2 ; y3�; Œz1; z

�
2 ; z3��

�ŒŒx1; x�
2 ; x3�; f .y1; y2; y3/; Œz1; z

�
2 ; z3��

�ŒŒx1; x�
2 ; x3�; Œy1; y

�
2 ; y3�; f .z1; z2; z3/�k

� 3�

for all �;	; 
 2 S1 and x1; x2; x3; y1; y2; y3; z1; z2; z3 2 A. Then there exists a unique
C�-ternary 3-derivation ı W A3 ! A such that

kf .x; y; z/ � ı.x; y; z/k � �

7

for all x; y; z 2 A.

5.2 Apollonius Type Additive Functional Equations

C. Park and Th. M. Rassias proved the superstability of C�-ternary homomorphisms,
C�-ternary derivations, JB�-triple homomorphisms and JB�-triple derivations asso-
ciated with the following Apollonius type additive functional equation:

f .z � x/C f .z � y/ D �1
2

f .x C y/C 2f

�
z � x C y

4

�

by using the direct method (see [244–248]).
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In this section, under the conditions of the theorems, we can show that the map-
pings f must be zero and we correct some conditions. Furthermore, we prove the
superstability of C�-ternary homomorphisms, C�-ternary derivations, JB�-triple
homomorphisms and JB�-triple derivations by using fixed point method.

In an inner product space, the following equality holds:

kz � xk2 C kz � yk2 D 1

2
kx � yk2 C 2

���z � x C y

2

���2;
which is called the Apollonius’ identity. The following functional equation, which
was motivated by this equation:

Q.z � x/C Q.z � y/ D 1

2
Q.x � y/C 2Q

�
z � x C y

2

�
; (5.9)

is quadratic. For this reason, the function equation (5.9) is called a quadratic func-
tional equation of Apollonius type and each solution of the functional equation (5.9)
is said to be a quadratic mapping of Apollonius type. Jun and Kim [144] investigated
the quadratic functional equation of Apollonius type.

Now, employing the above equality (5.9), we introduce a new functional
equation, which is called the Apollonius type additive functional equation and
whose solution of the functional equation is said to be the Apollonius type additive
mapping:

L.z � x/C L.z � y/ D �1
2

L.x C y/C 2L
�

z � x C y

4

�
:

5.2.1 Homomorphisms in C�-Ternary Algebras

Assume that A is a C�-ternary algebra with the norm k�kA and that B is a C�-ternary
algebra with the norm k � kB.

Now, we investigate homomorphisms in C�-ternary algebras.

Lemma 5.10. Let f W A ! B be a mapping such that

kf .z � x/C f .z � y/C 1

2
f .x C y/kB �

���2f .z � x C y

4
/
���

B
(5.10)

for all x; y; z 2 A. Then f is additive.

Proof. Letting x D y D z D 0 in (5.10), we get
��� 52 f .0/

���
B

� k2f .0/kB and so

f .0/ D 0. Letting z D 0 and y D �x in (5.10), we have

kf .�x/C f .x/kB � k2f .0/kB D 0
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for all x 2 A. Hence f .�x/ D �f .x/ for all x 2 A. Letting x D y D 2z in (5.10), we
have ���2f .�z/C 1

2
f .4z/

���
B

� k2f .0/kB D 0

for all z 2 A and so

f .4z/ D �4f .�z/ D 4f .z/

for all z 2 A. Letting z D xCy
4

in (5.10), we have

���f
��3x C y

4

�
C f

�x � 3y

4

�
C 1

2
f .x C y/

���
B

� k2f .0/kB D 0

for all x; y 2 A and so

f
��3x C y

4

�
C f

�x � 3y

4

�
C 1

2
f .x C y/ D 0 (5.11)

for all x; y 2 A. Let w1 D �3xCy
4

and w2 D x�3y
4

in (5.11). Then we have

f .w1/C f .w2/ D �1
2

f .�2w1 � 2w2/ D 1

2
f .2w1 C 2w2/ D 2f

�w1 C w2
2

�

for all w1;w2 2 A and so f is additive. This completes the proof. �

Theorem 5.11. Let r ¤ 1, � be a nonnegative real number and f W A ! B be a
mapping such that ���f .	z � 	x/C 	f .z � y/C 	

2
f .x C y/

���
B

�
����2f

�
z � x C y

4

�����
B

(5.12)

and

kf .Œx; y; z�/ � Œf .x/; f .y/; f .z/�kB

� �.kxk3r
A C kyk3r

A C kzk3r
A / (5.13)

for all 	 2 T
1 WD f� 2 C W j�j D 1g and all x; y; z 2 A. Then the mapping

f W A ! B is a C�-ternary algebra homomorphism.

Proof. Assume r > 1. Let	 D 1 in (5.12). By Lemma 5.10, the mapping f W A ! B
is additive. Letting y D �x and z D 0, we get

kf .�	x/C 	f .x/kB � k2f .0/kB D 0
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for all x 2 A and 	 2 T
1 and so

�f .	x/C 	f .x/ D f .�	x/C 	f .x/ D 0

for all x 2 A and 	 2 T
1. Hence f .	x/ D 	f .x/ for all x 2 A and 	 2 T

1. By the
same reasoning as in the proof of Theorem 2.1 of Park [227], the mapping f W A ! B
is C-linear. It follows from (5.13) that

kf .Œx; y; z�/ � Œf .x/; f .y/; f .z/�kB

D lim
n!1 8n

���f
� Œx; y; z�

2n � 2n � 2n

�
�
h
f
� x

2n

�
; f
� y

2n

�
; f
� z

2n

�i���
B

� lim
n!1

8n�

8nr
.kxk3r

A C kyk3r
A C kzk3r

A /

D 0

for all x; y; z 2 A and so

f .Œx; y; z�/ D Œf .x/; f .y/; f .z/�

for all x; y; z 2 A. Hence the mapping f W A ! B is a C�-ternary algebra
homomorphism.

Similarly, one obtains the result for the case r < 1. This completes the proof. �

5.2.2 Derivations in C�-Ternary Algebras

Assume that A is a C�-ternary algebra with the norm k � kA. Now, we investigate
derivations on C�-ternary algebras.

Theorem 5.12. Let r ¤ 1 and � be nonnegative real numbers, and let f W A ! A
be a mapping such that

���f .	z � 	x/C 	f .z � y/C 	

2
f .x C y/

���
A

�
����2f

�
z � x C y

4

�����
A

(5.14)

and

kf .Œx; y; z�/ � Œf .x/; y; z� � Œx; f .y/; z� � Œx; y; f .z/�kA

� �.kxk3r
A C kyk3r

A C kzk3r
A /

for all x; y; z 2 A. Then the mapping f W A ! A is a C�-ternary derivation.
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Proof. Assume r > 1. By the same reasoning as in the proof of Theorem 5.11, the
mapping f W A ! A is C-linear. It follows from (5.15) that

kf .Œx; y; z�/ � Œf .x/; y; z� � Œx; f .y/; z� � Œx; y; f .z/�kA

D lim
n!1 8n

���f
� Œx; y; z�

8n

�
�
h
f
� x

2n

�
;

y

2n
;

z

2n

i
�
h x

2n
; f
� y

2n

�
;

z

2n

i
�
h x

2n
;

y

2n
; f
� z

2n

�i���
A

� lim
n!1

8n�

8nr
.kxk3r

A C kyk3r
A C kzk3r

A /

D 0

for all x; y; z 2 A and so

f .Œx; y; z�/ D Œf .x/; y; z�C Œx; f .y/; z�C Œx; y; f .z/�

for all x; y; z 2 A. Thus the mapping f W A ! A is a C�-ternary derivation.
Similarly, one obtains the result for the case r < 1. This completes the proof. �

5.2.3 Homomorphisms in JB�-Triples

Assume that J is a JB�-triple with the norm k � kJ and that L is a JB�-triple with
the norm k � kL.

Now, we investigate homomorphisms in JB�-triples.

Theorem 5.13. Let r ¤ 1, � be a nonnegative real number and f W J ! L be a
mapping such that

���f .	z � 	x/C 	f .z � y/C 	

2
f .x C y/

���
L

�
����2f

�
z � x C y

4

�����
L

(5.15)

and

kf .fxyzg/� ff .x/f .y/f .z/gkL
� �.kxk3r

J C kyk3r
J C kzk3r

J / (5.16)

for all 	 2 T
1 and all x; y; z 2 J . Then the mapping f W J ! L is a JB�-triple

homomorphism.
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Proof. Assume r > 1. By the same reasoning as in the proof of Theorem 5.11, the
mapping f W J ! L is C-linear. It follows from (5.16) that

kf .fxyg�/ � ff .x/f .y/f .z/gkL
D lim

n!1 8n
���f
� fxyzg
2n � 2n � 2n

�
�
n
f
� x

2n

�
f
� y

2n

�
f
� z

2n

�o
kL

� lim
n!1

8n�

8nr
.kxk3r

J C kyk3r
J C kzk3r

J /

D 0

for all x; y; z 2 J and so

f .fxyzg/ D ff .x/f .y/f .z/g

for all x; y; z 2 J . Hence the mapping f W J ! L is a JB�-triple homomorphism.
Similarly, one obtains the result for the case r < 1. This completes the proof. �

5.2.4 Derivations in JB�-Triples

Assume that J is a JB�-triple with the norm k � kJ . Now, we investigate derivations
on JB�-triples.

Theorem 5.14. Let r ¤ 1, � be a nonnegative real number and f W J ! J be a
mapping such that

���f .	z � 	x/C 	f .z � y/C 	

2
f .x C y/

���
J

�
����2f

�
z � x C y

4

�����
J

(5.17)

and

kf .fxyzg/� ff .x/yzg � fxf .y/zg � fxyf .z/gkJ
� �.kxk3r

J C kyk3r
J C kzk3r

J / (5.18)

for all x; y; z 2 J . Then the mapping f W J ! J is a JB�-triple derivation.

Proof. Assume r > 1. By the same reasoning as in the proof of Theorem 5.11, the
mapping f W J ! J is C-linear. It follows from (5.18) that
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kf .fxyzg/� ff .x/yzg � fxf .y/zg � fxyf .z/gkJ
D lim

n!1 8n
���f
�fxyzg
8n

�
�
n
f
� x

2n

� y

2n

z

2n

o
�
n x

2n
f
� y

2n

� z

2n

o
�
n x

2n

y

2n
f
� z

2n

�o���
J

� lim
n!1

8n�

8nr
.kxk3r

J C kyk3r
J C kzk3r

J /

D 0

for all x; y; z 2 J and so

f .fxyzg/ D ff .x/yzg C fxf .y/zg C fxyf .z/g

for all x; y; z 2 J . Thus the mapping f W J ! J is a JB�-triple derivation.
Similarly, one obtains the result for the case r < 1. This completes the proof. �

5.2.5 C�-Ternary Homomorphisms: Fixed Point Method

Now, we prove the superstability of C�-ternary homomorphisms by the using fixed
point method.

Theorem 5.15. Let ' W A3 ! Œ0;1/ be a function such that there exists ˛ < 1

with

'.x; y; z/ � 8˛'
� x

2
;

y

2
;

z

2

�
(5.19)

for all x; y; z 2 A. Let f W A ! B be a mapping satisfying (5.12) and

kf .Œx; y; z�/ � Œf .x/; f .y/; f .z/�kB � '.x; y; z/ (5.20)

for all x; y; z 2 A: Then the mapping f W A ! B is a C�-ternary homomorphism.

Proof. By the same reasoning as in the proof of Theorem 5.11, one can show that
the mapping f W A ! B is C-linear. It follows from (5.19) that

lim
n!1

1

8n
'.2nx; 2ny; 2nz/ D 0 (5.21)

for all x; y; z 2 A. Since f W A ! B is additive, it follows from (5.20) and (5.21) that

f .Œx; y; z�/ D Œf .x/; f .y/; f .z/�

for all x; y; z 2 A. Thus the mapping f W A ! B is a C�-ternary homomorphism.
This completes the proof. �
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Theorem 5.16. Let ' W A3 ! Œ0;1/ be a function such that there exists ˛ < 1

with

'.x; y; z/ � ˛

2
' .2x; 2y; 2z/ (5.22)

for all x; y; z 2 A. Let f W A ! B be a mapping satisfying (5.12) and (5.20). Then
the mapping f W A ! B is a C�-ternary homomorphism.

Proof. By the same reasoning as in the proof of Theorem 5.11, one can show that
the mapping f W A ! B is C-linear. It follows from (5.22) that

lim
n!1 2n'

� x

2n
;

y

2n
;

z

2n

�
D 0 (5.23)

for all x; y; z 2 A. Since f W A ! B is additive, it follows from (5.20) and (5.23) that

f .Œx; y; z�/ D Œf .x/; f .y/; f .z/�

for all x; y; z 2 A. Thus the mapping f W A ! B is a C�-ternary homomorphism.
This completes the proof. �

Remark 5.17. Theorem 5.11 follows from Theorems 5.15 and 5.16 by taking

'.x; y; z/ D �.kxk3r C kyk3r C kzk3r/

for all x; y; z 2 A.

5.2.6 C�-Ternary Derivations: The Fixed Point Method

Now, we prove the superstability of C�-ternary derivations by using the fixed point
method.

Theorem 5.18. Let ' W A3 ! Œ0;1/ be a function satisfying (5.19). Let f W A ! A
be a mapping satisfying (5.14) and

kf .Œx; y; z�/ � Œf .x/; y; z� � Œx; f .y/; z� � Œx; y; f .z/�kA

� '.x; y; z/ (5.24)

for all x; y; z 2 A: Then the mapping f W A ! A is a C�-ternary derivation.

Proof. The proof is similar to the proof of Theorem 5.15. �

Theorem 5.19. Let ' W A3 ! Œ0;1/ be a function satisfying (5.22). Let f W A ! A
be a mapping satisfying (5.14) and (5.24). Then the mapping f W A ! A is a C�-
ternary derivation.
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Proof. The proof is similar to the proof of Theorem 5.16. �

Remark 5.20. Theorem 5.12 follows from Theorems 5.18 and 5.19 by taking

'.x; y; z/ D �.kxk3r C kyk3r C kzk3r/

for all x; y; z 2 A.

5.2.7 JB�-Triple Homomorphisms: The Fixed Point Method

Now, we prove the superstability of JB�-triple homomorphisms by using the fixed
point method.

Theorem 5.21. Let ' W J 3 ! Œ0;1/ be a function such that there exists ˛ < 1

with

'.x; y; z/ � 8˛'
� x

2
;

y

2
;

z

2

�
(5.25)

for all x; y; z 2 J . Let f W J ! L be a mapping satisfying (5.15) and

kf .fxyzg/� ff .x/f .y/f .z/gkL � '.x; y; z/ (5.26)

for all x; y; z 2 J : Then the mapping f W J ! L is a JB�-triple homomorphism.

Proof. By the same reasoning as in the proof of Theorem 5.13, one can show that
the mapping f W J ! L is C-linear. It follows from (5.25) that

lim
n!1

1

8n
'.2nx; 2ny; 2nz/ D 0 (5.27)

for all x; y; z 2 J . Since f W J ! L is additive, it follows from (5.26) and (5.27)
that

f .Œx; y; z�/ D Œf .x/; f .y/; f .z/�

for all x; y; z 2 J . Thus the mapping f W J ! L is a JB�-triple homomorphism.
This completes the proof. �
Theorem 5.22. Let ' W J 3 ! Œ0;1/ be a function such that there exists an ˛ < 1
with

'.x; y; z/ � ˛

2
' .2x; 2y; 2z/ (5.28)

for all x; y; z 2 J . Let f W J ! L be a mapping satisfying (5.15) and (5.26). Then
the mapping f W J ! L is a JB�-triple homomorphism.
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Proof. By the same reasoning as in the proof of Theorem 5.13, one can show that
the mapping f W J ! L is C-linear. It follows from (5.28) that

lim
n!1 2n'

� x

2n
;

y

2n
;

z

2n

�
D 0 (5.29)

for all x; y; z 2 J . Since f W J ! L is additive, it follows from (5.26) and (5.29)
that

f .Œx; y; z�/ D Œf .x/; f .y/; f .z/�

for all x; y; z 2 J . Thus the mapping f W J ! L is a C�-ternary homomorphism.
This completes the proof. �

Remark 5.23. Theorem 5.13 follows from Theorems 5.21 and 5.22 by taking

'.x; y; z/ D �.kxk3r C kyk3r C kzk3r/

for all x; y; z 2 J .

5.2.8 JB�-Triple Derivations: Fixed Point Method

Now, we prove the superstability of JB�-triple derivations by using the fixed point
method.

Theorem 5.24. Let ' W J 3 ! Œ0;1/ be a function satisfying (5.25). Let
f W J ! J be a mapping satisfying (5.17) and

kf .fxyzg/� ff .x/yzg � fxf .y/zg � fxyf .z/gkJ
� '.x; y; z/ (5.30)

for all x; y; z 2 J : Then the mapping f W J ! J is a JB�-triple derivation.

Proof. The proof is similar to the proof of Theorem 5.21. �
Theorem 5.25. Let ' W J 3 ! Œ0;1/ be a function satisfying (5.28). Let
f W J ! J be a mapping satisfying (5.17) and (5.30). Then the mapping
f W J ! J is a JB�-triple derivation.

Proof. The proof is similar to the proof of Theorem 5.22. �

Remark 5.26. Theorem 5.14 follows from Theorems 5.24 and 5.25 by taking

'.x; y; z/ D �.kxk3r C kyk3r C kzk3r/

for all x; y; z 2 J .
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5.3 Bi-�-Derivations in JB�-Triples

In this section, we prove the Hyers-Ulam stability of bi-�-derivations in JB�-
triples (see [237]).

Definition 5.27 ([97]). Let J be a complex JB�-triple and � W J ! J be a C-linear
mapping. A C-bilinear mapping D W J � J ! J is called a bi-�-derivation on J if

D.fx; y; zg;w/ D fD.x;w/; �.y/; �.z/g C f�.x/;D.y;w/; �.z/g
Cf�.x/; �.y/;D.z;w/g

and

D.x; fy; z;wg/ D fD.x; y/; �.z/; �.w/g C f�.y/;D.x; z/; �.w/g
Cf�.y/; �.z/;D.x;w/g

for all x; y; z;w 2 J.

The w-variable of the left side in the first equality is C-linear and the x-variable
of the left side in the second equality is C-linear. But the w-variable of the right side
in the first equality is not C-linear and the x-variable of the right side in the second
equality is not C-linear. Thus we correct the definition of bi-�-derivation as follows:

Definition 5.28. Let J be a complex JB�-triple and � W J ! J be a C-linear
mapping. A C-bilinear mapping D W J � J ! J is called a bi-�-derivation on
J if

D.fx; y; zg;w/ D fD.x;w/; �.y/; �.z/g C f�.x/;D.y;w�/; �.z/g
Cf�.x/; �.y/;D.z;w/g

and

D.x; fy; z;wg/ D fD.x; y/; �.z/; �.w/g C f�.y/;D.x�; z/; �.w/g
Cf�.y/; �.z/;D.x;w/g

for all x; y; z;w 2 J.

Under the conditions of [97, Theorem 2.5], we can easily show that the mapping
D W J � J ! J must be zero. In particular, if f is bi-additive, then D must be zero.
In this section, we correct the statements of the results, and prove the corrected
theorems and corollaries.

Throughout this section, assume that J is a JB�-triple with the norm k �k: For any
mapping f W J � J ! J, we define
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E�;	f .x; y; z;w/

D f .�x C �y; 	z � 	w/

Cf .�x � �y; 	z C 	w/ � 2�	f .x; z/C 2�	f .y;w/

for all x; y; z;w 2 J and �;	 2 T
1 WD f� 2 C W j�j D 1g.

Lemma 5.29 ([21]). Let f W J � J ! J be a mapping satisfying

E�;	f .x; y; z;w/ D 0

for all x; y; z;w 2 J and �;	 2 T
1. Then the mapping f W J � J ! J is C-bilinear.

Now, we prove the Hyers-Ulam stability of bi-�-derivations on JB�-triples.

Theorem 5.30. Let p; " be positive real numbers with p < 1 and f W J � J ! J
with f .0; 0/ D 0, h W J ! J with h.0/ D 0 be the mappings such that

kE�;	f .x; y; z;w/C h.	a C 	b/� 	h.a/� 	h.b/k
� ".kxkp C kykp C kzkp C kwkp C kakp C kbkp/ (5.31)

and

kf .fx; y; zg;w/� ff .x;w/; h.y/; h.z/g
�fh.x/; f .y;w�/; h.z/g � fh.x/; h.y/; f .z;w/gk
Ckf .x; fy; z;wg/ � ff .x; y/; h.z/; h.w/g
�fh.y/; f .x�; z/; h.w/g � fh.y/; h.z/; f .x;w/gk

� ".kxkp C kykp C kzkp C kwkp/ (5.32)

for all �;	 2 T
1 and x; y; z;w 2 J: If the mapping f W J � J ! J satisfies the

following:

lim
n!1

1

4n
f .2nx; 2ny/ D lim

n!1
1

16n
f .2nx; 8ny/

D lim
n!1

1

16n
f .8nx; 2ny/; (5.33)

then there exist a unique C-linear mapping � W J ! J and a unique bi-�-derivation
D W J � J ! J such that

kh.a/� �.a/k � 2"

2 � 2p
kakp (5.34)
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and

kf .x; z/ � D.x; z/k � 5"

4 � 2p
.kxkp C kzkp/ (5.35)

for all a; x; z 2 J:

Proof. Letting x D y D z D w D 0 in (5.31), we have

kh.	a C 	b/� 	h.a/� 	h.b/k � ".kakp C kbkp/

for all a; b 2 J. By the same reasoning as in the proof of Park [227, Theorem 2.1],
one can show that there exists a uniqueC-linear mapping � W J ! J satisfying (5.34)
and the mapping � W J ! J is given by

�.a/ WD lim
n!1

1

2n
h.2na/

for all a 2 J. Letting � D 	 D 1, a D b D 0, y D x and w D �z in (5.31), we have

kf .2x; 2z/� 2f .x; z/C 2f .x;�z/k � 2".kxkp C kzkp/ (5.36)

for all x; z 2 J. Letting � D 	 D 1, a D b D 0, y D �x and w D z in (5.31), we
have

kf .2x; 2z/� 2f .x; z/C 2f .�x; z/k � 2".kxkp C kzkp/ (5.37)

for all x; z 2 J. Letting � D 	 D 1, a D b D 0, x D z D 0 in (5.31), we have

kf .y;�w/C f .�y;w/C 2f .y;w/k � ".kykp C kwkp/ (5.38)

for all y;w 2 J. Replacing y;w by x; z in (5.38), respectively, we have

kf .x;�z/C f .�x; z/C 2f .x; z/k � ".kxkp C kzkp/ (5.39)

for all x; z 2 J. By (5.36) and (5.39), we obtain

kf .2x; 2z/� 4f .x; z/C f .x;�z/ � f .�x; z/k
� 3".kxkp C kzkp/ (5.40)

for all x; z 2 J. By (5.36) and (5.37), we obtain

kf .x;�z/ � f .�x; z/k � 2".kxkp C kzkp/ (5.41)
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for all x; z 2 J. By (5.40) and (5.41), we obtain

kf .2x; 2z/� 4f .x; z/k � 5".kxkp C kzkp/ (5.42)

for all x; z 2 J. It follows from (5.42) that

���� 14l
f .2lx; 2lz/ � 1

4m
f .2m; 2mz/

���� �
m�1X
jDl

5"

4

2pj

4j
.kxkp C kzkp/ (5.43)

for all x; z 2 J and m; l � 1 with m > l. This implies that the sequence˚
1
4n f .2nx; 2nz/

�
is a Cauchy sequence for all x; z 2 J: Since J is complete, the

sequence
˚
1
4n f .2nx; 2nz/

�
converges and so one can define the mapping D W J � J !

J by

D.x; z/ WD lim
n!1

1

4n
f .2nx; 2nz/

for all x; z 2 J: Moreover, letting l D 0 and passing the limit m ! 1 in (5.43), we
have (5.35). Let a D b D 0 in (5.31). Then, by the definition of the mapping D, we
have

kE�;	D.x; y; z;w/k D lim
n!1

1

4n
kE�;	f .2nx; 2ny; 2nz; 2nw/k

� lim
n!1

2pn

4n
".kxkp C kykp C kzkp C kwkp/

D 0

for all �;	 2 T
1 and all x; y; z;w 2 J: By Lemma 5.29, the mapping D W J � J ! J

is C-bilinear. It follows from (5.32) and (5.33) that

kD.fx; y; zg;w/ � fD.x;w/; �.y/; �.z/g � f�.x/;D.y;w�/; �.z/g
� f�.x/; �.y/;D.z;w/gk C kD.x; fy; z;wg/� fD.x; y/; �.z/; �.w/g
� f�.y/;D.x�; z/; �.w/g � f�.y/; �.z/;D.x;w/gk

D lim
n!1

���� 1
24n

f .8nfx; y; zg; 2nw/ �
n 1
4n

f .2nx; 2nw/;
1

2n
h.2ny/;

1

2n
h.2nz/

o

�
n 1
2n

h.2nx/;
1

4n
f .2ny; 2nw�/;

1

2n
h.2nz/

o

�
n 1
2n

h.2nx/;
1

2n
h.2ny/;

1

4n
f .2nz; 2nw/

o

C
��� 1
24n

f .2nx; 8nfy; z;wg/�
n 1
4n

f .2nx; 2ny/;
1

2n
h.2nz/;

1

2n
h.2nw/

o



5.3 Bi-� -Derivations in JB�-Triples 223

�
n 1
2n

h.2ny/;
1

4n
f .2nx�; 2nz/;

1

2n
h.2nw/

o

�
n 1
2n

h.2ny/;
1

2n
h.2nz/;

1

4n
f .2nx; 2nw/

o����

� lim
n!1

2pn"

24n
.kxkp C kykp C kzkp C kwkp/

D 0

for all x; y; z;w 2 J and so

D.fx; y; zg;w/ D fD.x;w/; �.y/; �.z/g
Cf�.x/;D.y;w�/; �.z/g C f�.x/; �.y/;D.z;w/g

and

D.x; fy; z;wg/ D fD.x; y/; �.z/; �.w/g
Cf�.y/;D.x�; z/; �.w/g C f�.y/; �.z/;D.x;w/g

for all x; y; z;w 2 J:
Let T W J �J ! J be another C-bilinear mapping satisfying (5.35). Then we have

kD.x; z/ � T.x; z/k

D 1

4n
kD.2nx; 2nz/ � T.2nx; 2nz/k

� 1

4n
kD.2nx; 2nz/ � f .2nx; 2nz/k C 1

4n
kf .2nx; 2nz/ � T.2nx; 2nz/k

� 2
2pn

4n

5"

4 � 2p
.kxkp C kzkp/;

which tends to zero as n ! 1 for all x; z 2 J. This proves the uniqueness of D.
Therefore, the mapping D W J � J ! J is a unique bi-�-derivation satisfying (5.35).
This completes the proof. �

Similarly, one can obtain the following theorem.

Remark 5.31. Let p; " be positive real numbers with p > 4 and f W J � J ! J with
f .0; 0/ D 0, h W J ! J with h.0/ D 0 be the mappings satisfying (5.31), (5.32)
and (5.33). Then there exist a unique C-linear mapping � W J ! J and a unique
bi-�-derivation D W J � J ! J such that

kh.a/� �.a/k � 2"

2p � 2
kakp
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and

kf .x; z/ � D.x; z/k � 5"

2p � 4.kxkp C kzkp/

for all a; x; z 2 J:

Theorem 5.32. Let p; "; ı be nonnegative real numbers with 0 < p < 1 and
f W J � J ! J with f .0; 0/ D 0, h W J ! J with h.0/ D 0 be the mappings
satisfying (5.33) and

kE�;	f .x; y; z;w/C h.	a C 	b/ � 	h.a/� 	h.b/k
� "kxkpkykpkzkpkwkpkakpkbkp C ı (5.44)

and

kf .fx; y; zg;w/� ff .x;w/; h.y/; h.z/g
�fh.x/; f .y;w�/; h.z/g � fh.x/; h.y/; f .z;w/gk
Ckf .x; fy; z;wg/ � ff .x; y/; h.z/; h.w/g
�fh.y/; f .x�; z/; h.w/g � fh.y/; h.z/; f .x;w/gk

� "kxkpkykpkzkpkwkp C ı (5.45)

for all �;	 2 T
1 and x; y; z;w 2 J: Then there exist a unique C-linear mapping

� W J ! J and a unique bi-�-derivation D W J � J ! J such that

kh.a/� �.a/k � ı (5.46)

and

kf .x; z/ � D.x; z/k � ı (5.47)

for all a; x; z 2 J:

Proof. Letting x D y D z D w D 0 in (5.44), we have

kh.	a C 	b/� 	h.a/ � 	h.b/k � ı

for all a; b 2 J. By the same reasoning as in the proof of Park [227, Theorem 2.1],
one can show that there exists a uniqueC-linear mapping � W J ! J satisfying (5.46)
and the mapping � W J ! J is given by

�.a/ WD lim
n!1

1

2n
h.2na/
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for all a 2 J. Letting � D 	 D 1, a D b D 0, y D x and w D �z in (5.44), we have

kf .2x; 2z/ � 2f .x; z/C 2f .x;�z/k � ı (5.48)

for all x; z 2 J. Letting � D 	 D 1, a D b D 0, y D �x and w D z in (5.44), we
have

kf .2x; 2z/ � 2f .x; z/C 2f .�x; z/k � ı (5.49)

for all x; z 2 J. Letting � D 	 D 1, a D b D 0, x D z D 0 in (5.44), we have

kf .y;�w/C f .�y;w/C 2f .y;w/k � ı (5.50)

for all y;w 2 J. Replacing y;w by x; z in (5.50), respectively, we have

kf .x;�z/C f .�x; z/C 2f .x; z/k � ı (5.51)

for all x; z 2 J. By (5.48) and (5.51), we obtain

kf .2x; 2z/� 4f .x; z/C f .x;�z/ � f .�x; z/k � 2ı (5.52)

for all x; z 2 J. By (5.48) and (5.49), we obtain

kf .x;�z/ � f .�x; z/k � ı (5.53)

for all x; z 2 J. By (5.52) and (5.53), we obtain

kf .2x; 2z/ � 4f .x; z/k � 3ı (5.54)

for all x; z 2 J. It follows from (5.54) that

���� 14l
f .2lx; 2lz/� 1

4m
f .2m; 2mz/

���� �
m�1X
jDl

3ı

4

1

4j
(5.55)

for all x; z 2 J and m; l � 1 with m > l. This implies that the sequence˚
1
4n f .2nx; 2nz/

�
is a Cauchy sequence for all x; z 2 J: Since J is complete, the

sequence
˚
1
4n f .2nx; 2nz/

�
converges and so one can define the mapping D W J�J ! J

by

D.x; z/ WD lim
n!1

1

4n
f .2nx; 2nz/

for all x; z 2 J: Moreover, letting l D 0 and passing the limit m ! 1 in (5.55), we
have (5.47).
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Let a D b D 0 in (5.44). Then by the definition of the mapping D, we have

kE�;	D.x; y; z;w/k D lim
n!1

1

4n
kE�;	f .2nx; 2ny; 2nz; 2nw/k

� lim
n!1

ı

4n

D 0

for all �;	 2 T
1 and x; y; z;w 2 J: By Lemma 5.29, the mapping D W J � J ! J is

C-bilinear. It follows from (5.33) and (5.45) that

kD.fx; y; zg;w/� fD.x;w/; �.y/; �.z/g � f�.x/;D.y;w�/; �.z/g
� f�.x/; �.y/;D.z;w/gk C kD.x; fy; z;wg/ � fD.x; y/; �.z/; �.w/g
� f�.y/;D.x�; z/; �.w/g � f�.y/; �.z/;D.x;w/gk

D lim
n!1

���� 1
24n

f .8nfx; y; zg; 2nw/ �
n 1
4n

f .2nx; 2nw/;
1

2n
h.2ny/;

1

2n
h.2nz/

o

�
n 1
2n

h.2nx/;
1

4n
f .2ny; 2nw�/;

1

2n
h.2nz/

o

�
n 1
2n

h.2nx/;
1

2n
h.2ny/;

1

4n
f .2nz; 2nw/

o

C
��� 1
24n

f .2nx; 8nfy; z;wg/�
n 1
4n

f .2nx; 2ny/;
1

2n
h.2nz/;

1

2n
h.2nw/

o

�
n 1
2n

h.2ny/;
1

4n
f .2nx�; 2nz/;

1

2n
h.2nw/

o

�
n 1
2n

h.2ny/;
1

2n
h.2nz/;

1

4n
f .2nx; 2nw/

o����

� lim
n!1

�24pn"

24n
kxkpkykpkzkpkwkp C ı

24n

�
D 0

for all x; y; z;w 2 J and so

D.fx; y; zg;w/ D fD.x;w/; �.y/; �.z/g
C f�.x/;D.y;w�/; �.z/g C f�.x/; �.y/;D.z;w/g

and

D.x; fy; z;wg/ D fD.x; y/; �.z/; �.w/g
C f�.y/;D.x�; z/; �.w/g C f�.y/; �.z/;D.x;w/g

for all x; y; z;w 2 J:
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Let T W J �J ! J be another C-bilinear mapping satisfying (5.47). Then we have

kD.x; z/ � T.x; z/k

D 1

4n
kD.2nx; 2nz/ � T.2nx; 2nz/k

� 1

4n
kD.2nx; 2nz/ � f .2nx; 2nz/k C 1

4n
kf .2nx; 2nz/ � T.2nx; 2nz/k

� 2ı

4n
;

which tends to zero as n ! 1 for all x; z 2 J. This proves the uniqueness of D.
Therefore, the mapping D W J � J ! J is a unique bi-�-derivation satisfying (5.47).
This completes the proof. �

Theorem 5.33. Let p; " be positive real numbers with p ¤ 1 and f W J � J ! J
with f .0; 0/ D 0, h W J ! J with h.0/ D 0 be the mappings such that

kE�;	f .x; y; z;w/C h.	a C 	b/ � 	h.a/� 	h.b/k
� "kxkpkykpkzkpkwkpkakpkbkp (5.56)

and

kf .fx; y; zg;w/� ff .x;w/; h.y/; h.z/g
�fh.x/; f .y;w�/; h.z/g � fh.x/; h.y/; f .z;w/gk
Ckf .x; fy; z;wg/ � ff .x; y/; h.z/; h.w/g
�fh.y/; f .x�; z/; h.w/g � fh.y/; h.z/; f .x;w/gk

� "kxkpkykpkzkpkwkp (5.57)

for all �;	 2 T
1 and x; y; z;w 2 J: Then the mapping h W J ! J is a C-linear

mapping and the mapping f W J � J ! J is a bi-h-derivation.

Proof. Letting x D y D z D w D 0 in (5.56), we have

kh.	a C 	b/ � 	h.a/� 	h.b/k � 0

for all a; b 2 J. By the same reasoning as in the proof of [227, Theorem 2.1], one
can show that the mapping h W J ! J is a C-linear mapping. Letting a D b D 0

in (5.56), we have

kE�;	f .x; y; z;w/k D 0
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for all �;	 2 T
1 and x; y; z;w 2 J: By Lemma 5.29, the mapping f W J � J ! J is

C-bilinear.
For the case p < 1, it follows from (5.57) that

kf .fx; y; zg;w/ � ff .x;w/; h.y/; h.z/g � fh.x/; f .y;w�/; h.z/g
� fh.x/; h.y/; f .z;w/gk C kf .x; fy; z;wg/ � ff .x; y/; h.z/; h.w/g
� fh.y/; f .x�; z/; h.w/g � fh.y/; h.z/; f .x;w/gk

D lim
n!1

���� 1
24n

f .8nfx; y; zg; 2nw/ �
n 1
4n

f .2nx; 2nw/;
1

2n
h.2ny/;

1

2n
h.2nz/

o

�
n 1
2n

h.2nx/;
1

4n
f .2ny; 2nw�/;

1

2n
h.2nz/

o

�
n 1
2n

h.2nx/;
1

2n
h.2ny/;

1

4n
f .2nz; 2nw/

o

C
��� 1
24n

f .2nx; 8nfy; z;wg/�
n 1
4n

f .2nx; 2ny/;
1

2n
h.2nz/;

1

2n
h.2nw/

o

�
n 1
2n

h.2ny/;
1

4n
f .2nx�; 2nz/;

1

2n
h.2nw/

o

�
n 1
2n

h.2ny/;
1

2n
h.2nz/;

1

4n
f .2nx; 2nw/

o����

� lim
n!1

24pn"

24n
kxkpkykpkzkpkwkp

D 0

for all x; y; z;w 2 J and so the mapping f W J � J ! J is a bi-h-derivation.
Similarly, for the case p > 1, one can show that the mapping f W J � J ! J is

a bi-h-derivation. Therefore, the mapping h W J ! J is a C-linear mapping and the
mapping f W J � J ! J is a bi-h-derivation. This completes the proof. �



Chapter 6
Stability of Functional Equations
in Multi-Banach Algebras

In this chapter, we extend some results from last chapters in multi-Banach algebras
(see [7, 91, 218, 252]).

In Sect. 6.1, we consider the stability of the m-variable additive functional
equation:

mX
iD1

f
�

mxi C
mX

jD1; j¤i

xj

�
C f

� mX
iD1

xi

�
D 2f

� mX
iD1

mxi

�

for each m � 2, which was presented at Sect. 2.2 of Chap. 2 and, by the fixed
point method, we approximate homomorphisms and derivations in multi-Banach
algebras.

In Sect. 6.2, by using the fixed point method, we prove the Hyers-Ulam stability
of homomorphisms in multi-C�-ternary algebras and derivations on multi-C�-
ternary algebras for the additive functional equation:

mX
iD1

f
�

mxi C
mX

jD1; j¤i

xj

�
C f

� mX
iD1

xi

�
D 2f

� mX
iD1

mxi

�

for each m � 2.
In Sect. 6.3, we consider the functional equation (3.97) presented at Sect. 3.5 of

Chap. 3 and we use a fixed point method to prove the Hyers-Ulam stability of the
functional equation (3.97) in multi-Banach modules over a unital multi-C�-algebra.

© Springer International Publishing Switzerland 2015
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As an application, we show that every almost linear bijection h W A ! B of a unital
multi-C�-algebra A onto a unital multi-C�-algebra B is a C�-algebra isomorphism
when

h
�2n

rn
uy
�

D h
�2n

rn
u
�

h.y/

for all unitaries u 2 U.A/, y 2 A and n � 0.
In Sect. 6.4, we approximate the following additive functional inequality:

���.dC1X
iD1

f .x1i/; � � � ;
dC1X
iD1

f .xki//
���

k

�
����mf

�PdC1
iD1 x1i

m

�
; � � � ;mf

�PdC1
iD1 xki

m

�����
k

for all x11; � � � ; xk dC1 2 X where d � 2 is a fixed integer. Also, we investigate
homomorphisms in proper multi-CQ�-algebras and derivations on proper multi-
CQ�-algebras associated with the above additive functional inequality.

In Sect. 6.5, by using the fixed point method, we prove the Hyers-Ulam stability
of homomorphisms and derivations on multi-C�–ternary algebras for the additive
functional equation:

2f
�Pp

jD1 xj

2
C

dX
jD1

yj

�
D

pX
jD1

f .xj/C 2

dX
jD1

f .yj/:

6.1 Stability of m-Variable Additive Mappings

For any mapping f W A ! B, we define

D	f .x1; � � � ; xm/

WD
mX

iD1
	f
�

mxi C
mX

jD1; j¤i

xj

�
C 	f

� mX
iD1

xi

�
� 2f

�
	

mX
iD1

mxi

�

for all 	 2 T
1 WD f
 2 C W j
j D 1g and x1; � � � ; xm 2 A.

6.1.1 Stability of Homomorphisms in Multi-Banach Algebras

Now, we prove the Hyers-Ulam stability of homomorphisms in multi-Banach
algebras for the functional equation D	f .x1; � � � ; xm/ D 0.
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Theorem 6.1. Let ..Bk; k � kk/ W k � 1/ be a multi-Banach algebra. Let f W A ! B
be a mapping for which there exists the functions ' W Amk ! Œ0;1/ and
 W A2k ! Œ0;1/ such that

lim
j!1 m�j'.mjx11; � � � ;mjx1m; � � � ;mjxk1; � � � ;mjxkm/ D 0; (6.1)

k.D	f .x11; � � � ; x1m/; � � � ;D	f .xk1; � � � ; xkm//kk

� '.x11; � � � ; x1m; � � � ; xk1; � � � ; xkm/; (6.2)

k.f .x1y1/ � f .x1/f .y1/; � � � ; f .xkyk/� f .xk/f .yk//kk

�  .x1; y1; � � � ; xk; yk/ (6.3)

and

lim
j!1 m�2j .mjx1;m

jy1; � � � ;mjxk;m
jyk/ D 0 (6.4)

for all 	 2 T
1 and x11; � � � ; x1m; � � � ; xk1; � � � ; xkm; x1; � � � ; xm; x; y1; � � � ; yk 2 A. If

there exists L < 1 such that

'
� m‚ …„ ƒ

mx11; 0; � � � ; 0;
m‚ …„ ƒ

mx21; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

mxk1; 0; � � � ; 0
�

� mL'
� m‚ …„ ƒ

x11; 0; � � � ; 0;
m‚ …„ ƒ

x21; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk1; 0; � � � ; 0
�

for all x11; x21; � � � ; xk1 2 A, then there exists a unique homomorphism H W A ! B
such that

k.f .x1/� H.x1/; � � � ; f .xk/ � H.xk//kk

� 1

m � mL
'
� m‚ …„ ƒ

x1; 0; � � � ; 0;
m‚ …„ ƒ

x2; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk; 0; � � � ; 0
�

(6.5)

for all x1; � � � ; xk 2 A.

Proof. Consider the set X WD fg W A ! Bg and introduce the generalized metric on
X as follows:

d.g; h/ D inffC 2 RC W k.g.x1/ � h.x1/; � � � ; g.xk/ � h.xk//kk

� C'.

m‚ …„ ƒ
x1; 0; � � � ; 0;

m‚ …„ ƒ
x2; 0; � � � ; 0; � � � ;

m‚ …„ ƒ
xk; 0; � � � ; 0/; 8x1; � � � ; xk 2 Ag;

which .X; d/ is complete.
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Now, we consider the linear mapping J W X ! X such that

Jg.x/ WD 1

m
g.mx/

for all x 2 A. Now, we have

d.Jg; Jh/ � Ld.g; h/

for all g; h 2 X. Letting 	 D 1, xi1 D x1 and xi2 D � � � D xim D 0, 1 � i � k,
in (6.2), we have

k.f .mx1/ � mf .x1/; � � � ; f .mxk/ � mf .xk//kk

� '
� m‚ …„ ƒ

x1; 0; � � � ; 0;
m‚ …„ ƒ

x2; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk; 0; � � � ; 0
�

(6.6)

for all x1; � � � ; xk 2 A and so

k.f .x1/ � 1

m
f .mx1/; � � � ; f .xk/ � 1

m
f .mxk//kk

� 1

m
'
� m‚ …„ ƒ

x1; 0; � � � ; 0;
m‚ …„ ƒ

x2; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk; 0; � � � ; 0
�

for all x1; � � � ; xk 2 A. Hence d.f ; Jf / � 1
m . By Theorem 1.3, there exists a mapping

H W A ! B such that

(1) H is a fixed point of J, i.e.,

H.mx/ D mH.x/ (6.7)

for all x 2 A. The mapping H is a unique fixed point of J in the set

Y D fg 2 X W d.f ; g/ < 1g:

This implies that H is a unique mapping satisfying (6.7) such that there exists
C 2 .0;1/ satisfying

k.H.x1/ � f .x1/; � � � ;H.xk/� f .xk//kk

� C'
� m‚ …„ ƒ

x1; 0; � � � ; 0;
m‚ …„ ƒ

x2; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk; 0; � � � ; 0
�

for all x1; � � � ; xk 2 A;
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(2) d.Jnf ;H/ ! 0 as n ! 1. This implies the equality

lim
n!1

f .mnx/

mn
D H.x/ (6.8)

for all x 2 A;
(3) d.f ;H/ � 1

1�L d.f ; Jf /, which implies the inequality

d.f ;H/ � 1

m � mL
:

This implies that the inequality (6.4) holds.

It follows from (6.1), (6.2) and (6.8) that

���� mX
iD1

H
�

mx1i C
mX

jD1; j¤i

x1j

�
C H

� mX
iD1

x1i

�
� 2H

� mX
iD1

mx1i

�
;

� � � ;
mX

iD1
H
�

mxki C
mX

jD1; j¤i

xkj

�
C H

� mX
iD1

xki

�
� 2H

� mX
iD1

mxki

�����
k

D lim
n!1

1

mn

���� mX
iD1

f
�

mnC1x1i C
mX

jD1; j¤i

mnx1j

�

Cf
� mX

iD1
mnx1i

�
� 2f

� mX
iD1

mnC1x1i

�
;

� � � ;
mX

iD1
f
�

mnC1xki C
mX

jD1; j¤i

mnxkj

�

Cf
� mX

iD1
mnxki

�
� 2f

� mX
iD1

mnC1xki

�����
k

� lim
n!1

1

mn
'.mnx11; � � � ;mnx1m; � � � ;mnxk1; � � � ;mnxkm/

D 0

for all x11; � � � ; x1m; � � � ; xk1; � � � ; xkm 2 A and so

mX
iD1

H
�

mxi C
mX

jD1; j¤i

xj

�
C H

� mX
iD1

xi

�
D 2H

� mX
iD1

mxi

�
(6.9)

for all x1; � � � ; xm 2 A. So H is additive. By a similar method to above, we get

	H.mx/ D H.m	x/
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for all 	 2 T
1 and x 2 A. Thus one can show that the mapping H W A ! B is

C-linear. It follows from (6.3), (6.4) and (6.8) that

k.H.x1y1/ � H.x1/H.y1/; � � � ;H.xkyk/� H.xk/H.yk//kk

D lim
n!1

1

m2n
k.f .m2nx1y1/ � f .mnx1/f .m

ny1/;

� � � ; f .m2nxkyk/ � f .mnxk/f .m
nyk//kk

� lim
n!1

1

m2n
 .mnx1;m

ny1; � � � ;mnxk;m
nyk/

D 0

for all x1; y1; � � � ; xk; yk 2 A and so

H.xy/ D H.x/H.y/

for all x; y 2 A. Thus H W A ! B is a homomorphism satisfying (6.5). This
completes the proof. �
Corollary 6.2. Let ..Bk; k � kk/ W k � 1/ be a multi-Banach algebra. Let r < 1 and
� be nonnegative real numbers and f W A ! B be a mapping such that

k.D	f .x11; � � � ; x1m/; � � � ;D	f .xk1; � � � ; xkm//kk

� �
� mX

jD1
kx1jkr

A C � � � C
mX

jD1
kxkmkr

A

�
(6.10)

and

k.f .x1y1/ � f .x1/f .y1/; � � � ; f .xkyk/ � f .xk/f .yk//kk

� �
�
kx1kr

A � ky1kr
A C � � � C kxkkr

A � kykkr
A

�
(6.11)

for all 	 2 T
1 and x11; � � � ; x1m; � � � ; xk1; � � � ; xkm; x1; � � � ; xm; x; y1; � � � ; yk 2 A.

Then there exists a unique homomorphism H W A ! B such that

k.f .x1/� H.x1/; � � � ; f .xk/� H.xk//kk

� �

m � mr

�
kx1kr

A C ky1kr
A C � � � C kxkkr

A C kykkr
A

�

for all x1; � � � ; xk 2 A.
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Proof. The proof follows from Theorem 6.1 by taking

'.x11; � � � ; x1m; � � � ; xk1; � � � ; xkm/ WD �
� mX

jD1
kx1jkr

A C � � � C
mX

jD1
kxkmkr

A

�

and

 .x1; y1; � � � ; xk; yk/ WD �
�kx1kr

A � ky1kr
A C � � � C kxkkr

A � kykkr
A

�
for all x11; � � � ; x1m; � � � ; xk1; � � � ; xkm; x1; � � � ; xm; x; y1; � � � ; yk 2 A and L D mr�1.

�

Theorem 6.3. Let ..Bk; k�kk/ W k � 1/ be a multi-Banach algebra. Let f W A ! B be
a mapping for which there are functions ' W Amk ! Œ0;1/ and  W A2k ! Œ0;1/

such that

lim
j!1 mj'.m�jx11; � � � ;m�jx1m; � � � ;m�jxk1; � � � ;m�jxkm/ D 0; (6.12)

k.D	f .x11; � � � ; x1m/; � � � ;D	f .xk1; � � � ; xkm//kk

� '.x11; � � � ; x1m; � � � ; xk1; � � � ; xkm/; (6.13)

k.f .x1y1/� f .x1/f .y1/; � � � ; f .xkyk/� f .xk/f .yk//kk

�  .x1; y1; � � � ; xk; yk/ (6.14)

and

lim
j!1 m2j .m�jx1;m

�jy1; � � � ;m�jxk;m
�jyk/ D 0 (6.15)

for all 	 2 T
1 and x11; � � � ; x1m; � � � ; xk1; � � � ; xkm; x1; � � � ; xm; x; y1; � � � ; yk 2 A. If

there exists L < 1 such that

'
� m‚ …„ ƒ

x11; 0; � � � ; 0;
m‚ …„ ƒ

x21; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk1; 0; � � � ; 0
�

� L

m
'
� m‚ …„ ƒ

mx11; 0; � � � ; 0;
m‚ …„ ƒ

mx21; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

mxk1; 0; � � � ; 0
�

for all x11; x21; � � � ; xk1 2 A, then there exists a unique homomorphism H W A ! B
such that

k.f .x1/� H.x1/; � � � ; f .xk/ � H.xk//kk

� L

m � mL
'
� m‚ …„ ƒ

x1; 0; � � � ; 0;
m‚ …„ ƒ

x2; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk; 0; � � � ; 0
�

(6.16)

for all x1; � � � ; xk 2 A.
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Proof. We consider the linear mapping J W X ! X such that

Jg.x/ WD mg
� x

m

�

for all x 2 A. It follows from (6.6) that����f .x1/ � mf
�x1

m

�
; � � � ; f .xk/� mf

�xk

m

�����
k

� '
� m‚ …„ ƒ

x1
m
; 0; � � � ; 0;

m‚ …„ ƒ
x2
m
; 0; � � � ; 0; � � � ;

m‚ …„ ƒ
xk

m
; 0; � � � ; 0

�
(6.17)

� L

m
'
� m‚ …„ ƒ

x1; 0; � � � ; 0;
m‚ …„ ƒ

x2; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk; 0; � � � ; 0
�

for all x1; � � � ; xk 2 A. Hence we have

d.f ; Jf / � L

m
:

By Theorem 1.3, there exists a mapping H W A ! B such that

(1) H is a fixed point of J, i.e.,

H.mx/ D mH.x/ (6.18)

for all x 2 A. The mapping H is a unique fixed point of J in the set

Y D fg 2 X W d.f ; g/ < 1g:

This implies that H is a unique mapping satisfying (6.18) such that there exists
C 2 .0;1/ satisfying

k.H.x1/ � f .x1/; � � � ;H.xk/� f .xk//kk

� C'
� m‚ …„ ƒ

x1; 0; � � � ; 0;
m‚ …„ ƒ

x2; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk; 0; � � � ; 0
�

for all x1; � � � ; xk 2 A;
(2) d.Jnf ;H/ ! 0 as n ! 1. This implies the equality

lim
n!1 mnf

� x

mn

�
D H.x/

for all x 2 A;
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(3) d.f ;H/ � 1
1�L d.f ; Jf /, which implies the inequality

d.f ;H/ � L

m � mL
;

which implies that the inequality (6.16) holds.

The rest of the proof is similar to the proof of Theorem 6.1. This completes the
proof. �

Corollary 6.4. Let ..Bk; k � kk/ W k � 1/ be a multi-Banach algebra. Let r > 1, � be
nonnegative real numbers and f W A ! B be a mapping such that

k.D	f .x11; � � � ; x1m/; � � � ;D	f .xk1; � � � ; xkm//kk

� �
� mX

jD1
kx1jkr

A C � � � C
mX

jD1
kxkmkr

A

�
(6.19)

and

k.f .x1y1/ � f .x1/f .y1/; � � � ; f .xkyk/ � f .xk/f .yk//kk

� �
�kx1kr

A � ky1kr
A C � � � C kxkkr

A � kykkr
A

�
(6.20)

for all 	 2 T
1 and x11; � � � ; x1m; � � � ; xk1; � � � ; xkm; x1; � � � ; xm; x; y1; � � � ; yk 2 A.

Then there exists a unique homomorphism H W A ! B such that

k.f .x1/� H.x1/; � � � ; f .xk/ � H.xk//kk

� �

mr � m

�kx1kr
A C ky1kr

A C � � � C kxkkr
A C kykkr

A

�
for all x1; � � � ; xk 2 A.

Proof. The proof follows from Theorem 6.3 by taking

'.x11; � � � ; x1m; � � � ; xk1; � � � ; xkm/ WD �
� mX

jD1
kx1jkr

A C � � � C
mX

jD1
kxkmkr

A

�
;

 .x1; y1; � � � ; xk; yk/ WD �
�kx1kr

A � ky1kr
A C � � � C kxkkr

A � kykkr
A

�
for all x11; � � � ; x1m; � � � ; xk1; � � � ; xkm; x1; � � � ; xm; x; y1; � � � ; yk 2 A and L D m1�r.

�
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6.1.2 Stability of Derivations in Multi-Banach Algebras

Now, we prove the Hyers-Ulam stability of derivations in multi-Banach algebras for
the following functional equation:

D	f .x1; � � � ; xm/ D 0

for all 	 2 T
1 WD f
 2 C W j
j D 1g and x1; � � � ; xm 2 A.

Theorem 6.5. Let ..Ak; k � kk/ W k � 1/ be a multi-Banach algebra. Let f W A ! A
be a mapping for which there exist the functions ' W Amk ! Œ0;1/ and
 W A2k ! Œ0;1/ such that

lim
j!1 m�j'.mjx11; � � � ;mjx1m; � � � ;mjxk1; � � � ;mjxkm/ D 0; (6.21)

k.D	f .x11; � � � ; x1m/; � � � ;D	f .xk1; � � � ; xkm//kk

� '.x11; � � � ; x1m; � � � ; xk1; � � � ; xkm/; (6.22)

k.f .x1y1/ � f .x1/y1 � x1f .y1/; � � � ; f .xkyk/� f .xk/yk � xkf .yk//kk

�  .x1; y1; � � � ; xk; yk/ (6.23)

and

lim
j!1 m�2j .mjx1;m

jy1; � � � ;mjxk;m
jyk/ D 0 (6.24)

for all 	 2 T
1 and x11; � � � ; x1m; � � � ; xk1; � � � ; xkm; x1; � � � ; xm; x; y1; � � � ; yk 2 A. If

there exists L < 1 such that

'
� m‚ …„ ƒ

mx11; 0; � � � ; 0;
m‚ …„ ƒ

mx21; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

mxk1; 0; � � � ; 0
�

� mL'
� m‚ …„ ƒ

x11; 0; � � � ; 0;
m‚ …„ ƒ

x21; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk1; 0; � � � ; 0
�

for all x11; x21; � � � ; xk1 2 A, then there exists a unique derivation ı W A ! A such
that

k.f .x1/� ı.x1/; � � � ; f .xk/� ı.xk//kk

� 1

m � mL
'
� m‚ …„ ƒ

x1; 0; � � � ; 0;
m‚ …„ ƒ

x2; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk; 0; � � � ; 0
�

(6.25)

for all x1; � � � ; xk 2 A.
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Proof. By the same reasoning as in the proof of Theorem 6.1, there exists a unique
C-linear mapping ı W A ! A satisfying (6.24). The mapping ı W A ! A is given by

ı.x/ D lim
n!1

f .mnx/

mn
(6.26)

for all x 2 A. It follows from (6.21), (6.24) and (6.26) that

k.ı.x1y1/ � ı.x1/y1 � x1ı.y1/; � � � ; ı.xkyk/� ı.xk/yk � xkı.yk//kk

D lim
n!1

1

m2n
k.f .m2nx1y1/� f .mnx1/ � mny1 � mnx1f .m

ny1/;

� � � ; f .m2nxkyk/ � f .mnxk/ � mnyk � mnxkf .mnyk//kk

� lim
n!1 m�2n .mnx1;m

ny1; � � � ;mnxk;m
nyk/

D 0

for all x; y 2 A and so

ı.xy/ D ı.x/y C xı.y/

for all x; y 2 A. Thus ı W A ! A is a derivation satisfying (6.23). This completes the
proof. �
Corollary 6.6. Let ..Ak; k � kk/ W k � 1/ be a multi-Banach algebra. Let r < 1, � be
nonnegative real numbers and f W A ! A be a mapping such that

k.D	f .x11; � � � ; x1m/; � � � ;D	f .xk1; � � � ; xkm//kk

� �
� mX

jD1
kx1jkr

A C � � � C
mX

jD1
kxkjkr

A

�
(6.27)

and

k.f .x1y1/ � f .x1/y1 � x1f .y1/; � � � ; f .xkyk/� f .xk/yk � xkf .yk//kk

� �
�kx1kr

A � ky1kr
A C � � � C kxkkr

A � kykkr
A

�
(6.28)

for all 	 2 T
1 and x11; � � � ; x1m; � � � ; xk1; � � � ; xkm; x1; � � � ; xm; x; y1; � � � ; yk 2 A.

Then there exists a unique derivation ı W A ! A such that

k.f .x1/� ı.x1/; � � � ; f .xk/ � ı.xk//kk � �

m � mr
kxk2r

A

for all x 2 A.
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Proof. The proof follows from Theorem 6.5 by taking

'.x11; � � � ; x1m; � � � ; xk1; � � � ; xkm/ WD �
� mX

jD1
kx1jkr

A C � � � C
mX

jD1
kxkjkr

A

�
;

 .x1; y1; � � � ; xk; yk/ WD �
�kx1kr

A � ky1kr
A C � � � C kxkkr

A � kykkr
A

�
for all x; y 2 A and L D mr. �

Remark 6.7. Let ..Ak; k � kk/ W k � 1/ be a multi-Banach algebra. Let f W A ! A
be a mapping for which there exist the functions ' W Amk ! Œ0;1/ and
 W A2k ! Œ0;1/ such that

lim
j!1 mj'.m�jx11; � � � ;m�jx1m; � � � ;m�jxk1; � � � ;m�jxkm/ D 0; (6.29)

k.D	f .x11; � � � ; x1m/; � � � ;D	f .xk1; � � � ; xkm//kk

� '.x11; � � � ; x1m; � � � ; xk1; � � � ; xkm/; (6.30)

k.f .x1y1/� f .x1/y1 � x1f .y1/; � � � ; f .xkyk/� f .xk/yk � xkf .yk//kk

�  .x1; y1; � � � ; xk; yk/ (6.31)

and

lim
j!1 m2j .m�jx1;m

�jy1; � � � ;m�jxk;m
�jyk/ D 0 (6.32)

for all 	 2 T
1 and x11; � � � ; x1m; � � � ; xk1; � � � ; xkm; x1; � � � ; xm; x; y1; � � � ; yk 2 A. If

there exists L < 1 such that

'
� m‚ …„ ƒ

mx11; 0; � � � ; 0;
m‚ …„ ƒ

mx21; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

mxk1; 0; � � � ; 0
�

� L

m
'
� m‚ …„ ƒ

x11; 0; � � � ; 0;
m‚ …„ ƒ

x21; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk1; 0; � � � ; 0
�

for all x11; x21; � � � ; xk1 2 A, then there exists a unique derivation ı W A ! A such
that

k.f .x1/� ı.x1/; � � � ; f .xk/� ı.xk//kk

� L

m � mL
'
� m‚ …„ ƒ

x1; 0; � � � ; 0;
m‚ …„ ƒ

x2; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk; 0; � � � ; 0
�

(6.33)

for all x1; � � � ; xk 2 A.
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Corollary 6.8. Let ..Ak; k � kk/ W k � 1/ be a multi-Banach algebra. Let r > 1, � be
nonnegative real numbers and f W A ! A be a mapping such that

k.D	f .x11; � � � ; x1m/; � � � ;D	f .xk1; � � � ; xkm//kk

� �

0
@ mX

jD1
kx1jkr

A C � � � C
mX

jD1
kxkjkr

A

1
A

and

k.f .x1y1/ � f .x1/y1 � x1f .y1/; � � � ; f .xkyk/� f .xk/yk � xkf .yk//kk

� �
�
kx1kr

A � ky1kr
A C � � � C kxkkr

A � kykkr
A

�

for all 	 2 T
1 and x11; � � � ; x1m; � � � ; xk1; � � � ; xkm; x1; � � � ; xm; x; y1; � � � ; yk 2 A.

Then there exists a unique derivation ı W A ! A such that

k.f .x1/� ı.x1/; � � � ; f .xk/ � ı.xk//kk � �

mr � m
kxk2r

A

for all x 2 A.

Proof. The proof follows from Remark 6.7 by taking

'.x11; � � � ; x1m; � � � ; xk1; � � � ; xkm/ WD �
� mX

jD1
kx1jkr

A C � � � C
mX

jD1
kxkjkr

A

�
;

 .x1; y1; � � � ; xk; yk/ WD �
�kx1kr

A � ky1kr
A C � � � C kxkkr

A � kykkr
A

�
for all x; y 2 A and L D m1�r. �

6.2 Ternary Jordan Homomorphisms and Derivations
in Multi-C�-Ternary Algebras

In this section, using the fixed point method, we prove the Hyers-Ulam stability of
homomorphisms in multi-C�-ternary algebras and derivations on multi-C�-ternary
algebras for the following additive functional equation:

mX
iD1

f
�

mxi C
mX

jD1; j¤i

xj

�
C f

� mX
iD1

xi

�
D 2f

� mX
iD1

mxi

�

for each m � 2.
Throughout this section, assume that A, B are C�-ternary algebras.
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6.2.1 Stability of Homomorphisms in Multi-C�-Ternary
Algebras

For any mapping f W A ! B, we define

D	f .x1; � � � ; xm/

WD
mX

iD1
	f
�

mxi C
mX

jD1; j¤i

xj

�
C 	f

� mX
iD1

xi

�
� 2f

�
	

mX
iD1

mxi

�

for all 	 2 T
1 WD f
 2 C W j
j D 1g and x1; � � � ; xm 2 A.

Using Theorem 1.3, we prove the Hyers-Ulam stability of homomorphisms in
multi-C� ternary algebras for the functional equation

D	f .x1; � � � ; xm/ D 0:

Theorem 6.9. Let ..Bk; k � kk/ W k � 1/ be a multi-C�-ternary algebra. Let
f W A ! B be a mapping for which there exist the functions ' W Amk ! Œ0;1/

and  W A2k ! Œ0;1/ such that

lim
j!1 m�j'.mjx11; � � � ;mjx1m; � � � ;mjxk1; � � � ;mjxkm/ D 0; (6.34)

k.D	f .x11; � � � ; x1m/; � � � ;D	f .xk1; � � � ; xkm//kk

� '.x11; � � � ; x1m; � � � ; xk1; � � � ; xkm/; (6.35)

k.f .Œx1; y1; z1�/ � Œf .x1/; f .y1/; f .z1/�;

� � � ; f .Œxk; yk; zk�/ � Œf .xk/; f .yk/; f .zk/�/kk

�  .x1; y1; z1; � � � ; xk; yk; zk/ (6.36)

and

lim
j!1 m�3j .mjx1;m

jy1;m
jz1; � � � ;mjxk;m

jyk;m
jzk/ D 0 (6.37)

for all 	 2 T
1 and x11; � � � ; x1m; � � � ; xk1; � � � ; xkm; x1; � � � ; xk; y1; � � � ; yk;

z1; � � � ; zk 2 A. If there exists L < 1 such that

'
� m‚ …„ ƒ

mx11; 0; � � � ; 0;
m‚ …„ ƒ

mx21; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

mxk1; 0; � � � ; 0
�

� mL'
� m‚ …„ ƒ

x11; 0; � � � ; 0;
m‚ …„ ƒ

x21; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk1; 0; � � � ; 0
�
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for all x11; x21; � � � ; xk1 2 A, then there exists a unique homomorphism H W A ! B
such that

k.f .x1/� H.x1/; � � � ; f .xk/ � H.xk//kk

� 1

m � mL
'
� m‚ …„ ƒ

x1; 0; � � � ; 0;
m‚ …„ ƒ

x2; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk; 0; � � � ; 0
�

(6.38)

for all x1; � � � ; xk 2 A.

Proof. Consider the set X WD fg W A ! Bg and introduce the generalized metric on
X as follows:

d.g; h/ D inffC 2 RC W k.g.x1/ � h.x1/; � � � ; g.xk/ � h.xk//kk

� C'.

m‚ …„ ƒ
x1; 0; � � � ; 0;

m‚ …„ ƒ
x2; 0; � � � ; 0; � � � ;

m‚ …„ ƒ
xk; 0; � � � ; 0/; 8x1; � � � ; xk 2 Ag;

which .X; d/ is complete.
Now, we consider the linear mapping J W X ! X such that

Jg.x/ WD 1

m
g.mx/

for all x 2 A. Now, we have

d.Jg; Jh/ � Ld.g; h/

for all g; h 2 X. Letting 	 D 1, xi1 D xi and xi2 D � � � D xim D 0 (1 � i � k)
in (6.35), we have

k.f .mx1/� mf .x1/; � � � ; f .mxk/� mf .xk//kk

� '
� m‚ …„ ƒ

x1; 0; � � � ; 0;
m‚ …„ ƒ

x2; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk; 0; � � � ; 0
�

(6.39)

for all x1; � � � ; xk 2 A. Thus we have

k.f .x1/� 1

m
f .mx1/; � � � ; f .xk/� 1

m
f .mxk//kk

� 1

m
'
� m‚ …„ ƒ

x1; 0; � � � ; 0;
m‚ …„ ƒ

x2; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk; 0; � � � ; 0
�

for all x1; � � � ; xk 2 A. Hence d.f ; Jf / � 1
m . By Theorem 1.3, there exists a mapping

H W A ! B such that
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(1) H is a fixed point of J, i.e.,

H.mx/ D mH.x/ (6.40)

for all x 2 A. The mapping H is a unique fixed point of J in the set

Y D fg 2 X W d.f ; g/ < 1g:

This implies that H is a unique mapping satisfying (6.40) such that there exists
C 2 .0;1/ satisfying the following:

k.H.x1/� f .x1/; � � � ;H.xk/ � f .xk//kk

� C'
� m‚ …„ ƒ

x1; 0; � � � ; 0;
m‚ …„ ƒ

x2; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk; 0; � � � ; 0
�

for all x1; � � � ; xk 2 A;
(2) d.Jnf ;H/ ! 0 as n ! 1. This implies the equality

lim
n!1

f .mnx/

mn
D H.x/ (6.41)

for all x 2 A;
(3) d.f ;H/ � 1

1�L d.f ; Jf /, which implies the inequality

d.f ;H/ � 1

m � mL
:

This implies that the inequality (6.38) holds.

It follows from (6.34), (6.35) and (6.41) that

���� mX
iD1

H
�

mx1i C
mX

jD1; j¤i

x1j

�
C H

� mX
iD1

x1i

�
� 2H

� mX
iD1

mx1i/;

� � � ;
mX

iD1
H
�

mxki C
mX

jD1; j¤i

xkj

�
C H

� mX
iD1

xki

�
� 2H

� mX
iD1

mxki

�����
k

D lim
n!1

1

mn

���� mX
iD1

f
�

mnC1x1i C
mX

jD1; j¤i

mnx1j

�

C f
� mX

iD1
mnx1i

�
� 2f

� mX
iD1

mnC1x1i

�
;
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� � � ;
mX

iD1
f
�

mnC1xki C
mX

jD1; j¤i

mnxkj

�

Cf
� mX

iD1
mnxki

�
� 2f

� mX
iD1

mnC1xki

�����
k

� lim
n!1

1

mn
'.mnx11; � � � ;mnx1m; � � � ;mnxk1; � � � ;mnxkm/ D 0

for all x11; � � � ; x1m; � � � ; xk1; � � � ; xkm 2 A and so

mX
iD1

H
�

mxi C
mX

jD1; j¤i

xj

�
C H

� mX
iD1

xi

�
D 2H

� mX
iD1

mxi

�
(6.42)

for all x1; � � � ; xm 2 A. Thus H is additive. By the similar method, we have

	H.mx/ D H.m	x/

for all 	 2 T
1 and x 2 A. Thus one can show that the mapping H W A ! B is

C-linear. It follows from (6.36), (6.37) and (6.41) that

k.H.Œx1; y1; z1�/ � ŒH.x1/;H.y1/;H.z1/�;

� � � ;H.Œxk; yk; zk�/ � ŒH.xk/;H.yk/;H.zk/�/kk

D lim
n!1

1

m3n
k.f .Œmnx1;m

ny1;m
nz1�/ � Œf .mnx1/; f .m

ny1/; f .m
nz1/�;

� � � ; f .Œmnxk;m
nyk;m

nzk�/ � Œf .mnxk/; f .m
nyk/; f .m

nzk/�/kk

� lim
n!1

1

m3n
 .mnx1;m

ny1; � � � ;mnxk;m
nyk/

D 0

for all x1; y1; � � � ; xk; yk 2 A and so

H.Œx; y; z�/ D ŒH.x/;H.y/;H.z/�

for all x; y 2 A. Thus H W A ! B is a homomorphism satisfying (6.38). This
completes the proof. �

Corollary 6.10. Let ..Bk; k � kk/W k � 1/ be a multi-C�-ternary algebra. Let r<1, �
be nonnegative real numbers and f W A ! B be a mapping such that
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k.D	f .x11; � � � ; x1m/; � � � ;D	f .xk1; � � � ; xkm//kk

� �

0
@ mX

jD1
kx1jkr

A C � � � C
mX

jD1
kxkjkr

A

1
A (6.43)

and

k.f .Œx1; y1; z1�/ � Œf .x1/; f .y1/; f .z1/�;

� � � ; f .Œxk; yk; zk�/ � Œf .xk/; f .yk/; f .zk/�/kk

� �
�kx1kr

A � ky1kr
A � kz1kr

A C � � � C kxkkr
A � kykkr

A � kzkkr
A

�
(6.44)

for all 	 2 T
1 and x11; � � � ; x1m; � � � ; xk1; � � � ; xkm; x1; � � � ; xk; y1; � � � ; yk;

z1; � � � ; zk 2 A. Then there exists a unique homomorphism H W A ! B such that

k.f .x1/ � H.x1/; � � � ; f .xk/� H.xk//kk

� �

m � mr

�kx1kr
A C � � � C kxkkr

A

�
for all x1; � � � ; xk 2 A.

Proof. The proof follows from Theorem 6.9 by taking

'.x11; � � � ; x1m; � � � ; xk1; � � � ; xkm/ WD �
� mX

jD1
kx1jkr

A C � � � C
mX

jD1
kxkjkr

A

�
;

 .x1; y1; z1; � � � ; xk; yk; zk/

WD �
�kx1kr

A � ky1kr
A � kz1kr

A C � � � C kxkkr
A � kykkr

A � kzkkr
A

�
for all x11; � � � ; x1m; � � � ; xk1; � � � ; xkm; x1; � � � ; xk; y1; � � � ; yk; z1; � � � ; zk 2 A and
L D mr�1. �

Theorem 6.11. Let ..Bk; k � kk/ W k � 1/ be a multi-C�-ternary algebra. Let
f W A ! B be a mapping for which there exist the functions ' W Amk ! Œ0;1/

and  W A2k ! Œ0;1/ satisfying the inequalities (6.35) and (6.36) such that

lim
j!1 mj'.mjx11; � � � ;m�jx1m; � � � ;m�jxk1; � � � ;m�jxkm/ D 0 (6.45)

and

lim
j!1 m3j .m�jx1;m

�jy1;m
�jz1; � � � ;m�jxk;m

�jyk;m
�jzk/ D 0 (6.46)
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for all 	 2 T
1 and x11; � � � ; x1m; � � � ; xk1; � � � ; xkm; x1; � � � ; xm; y1; � � � ; yk;

z1; � � � ; zk 2 A. If there exists L < 1 such that

'
� m‚ …„ ƒ

x11; 0; � � � ; 0;
m‚ …„ ƒ

x21; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk1; 0; � � � ; 0
�

� L

m
'
� m‚ …„ ƒ

mx11; 0; � � � ; 0;
m‚ …„ ƒ

mx21; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

mxk1; 0; � � � ; 0
�

for all x11; x21; � � � ; xk1 2 A, then there exists a unique homomorphism H W A ! B
such that

k.f .x1/� H.x1/; � � � ; f .xk/ � H.xk//kk

� L

m � mL
'
� m‚ …„ ƒ

x1; 0; � � � ; 0;
m‚ …„ ƒ

x2; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk; 0; � � � ; 0
�

(6.47)

for all x1; � � � ; xk 2 A.

Proof. We consider the linear mapping J W X ! X defined by

Jg.x/ WD mg
� x

m

�

for all x 2 A. It follows from (6.39) that����f .x1/� mf
�x1

m

�
; � � � ; f .xk/ � mf

�xk

m

�����
k

� '
� m‚ …„ ƒ

x1
m
; 0; � � � ; 0;

m‚ …„ ƒ
x2
m
; 0; � � � ; 0; � � � ;

m‚ …„ ƒ
xk

m
; 0; � � � ; 0

�

� L

m
'
� m‚ …„ ƒ

x1; 0; � � � ; 0;
m‚ …„ ƒ

x2; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk; 0; � � � ; 0
�

(6.48)

for all x1; � � � ; xk 2 A. Hence we have

d.f ; Jf / � L

m
:

By Theorem 1.3, there exists a mapping H W A ! B such that

(1) H is a fixed point of J, i.e.,

H.mx/ D mH.x/ (6.49)

for all x 2 A. The mapping H is a unique fixed point of J in the set
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Y D fg 2 X W d.f ; g/ < 1g:
This implies that H is a unique mapping satisfying (6.49) such that there exists
C 2 .0;1/ satisfying the following:

k.H.x1/ � f .x1/; � � � ;H.xk/ � f .xk//kk

� C'
� m‚ …„ ƒ

x1; 0; � � � ; 0;
m‚ …„ ƒ

x2; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk; 0; � � � ; 0
�

for all x1; � � � ; xk 2 A;
(2) d.Jnf ;H/ ! 0 as n ! 1. This implies the equality

lim
n!1 mnf

� x

mn

�
D H.x/

for all x 2 A;
(3) d.f ;H/ � 1

1�L d.f ; Jf /, which implies the inequality

d.f ;H/ � L

m � mL
;

which implies that the inequality (6.47) holds.

The rest of the proof is similar to the proof of Theorem 6.9. This completes the
proof. �

Corollary 6.12. Let ..Bk; k � kk/ W k � 1/ be a multi-C�-ternary algebra. Let
r > 1, � be nonnegative real numbers and f W A ! B be a mapping such that
satisfying (6.43) and (6.44). Then there exists a unique homomorphism H W A ! B
such that

k.f .x1/ � H.x1/; � � � ; f .xk/� H.xk//kk

� �

mr � m

�kx1kr
A C � � � C kxkkr

A

�
for all x1; � � � ; xk 2 A.

Proof. The proof follows from Theorem 6.11 by taking

'.x11; � � � ; x1m; � � � ; xk1; � � � ; xkm/ WD �
� mX

jD1
kx1jkr

A C � � � C
mX

jD1
kxkjkr

A

�
;

 .x1; y1; z1; � � � ; xk; yk; zk/

WD �
�kx1kr

A � ky1kr
A � kz1kr

A C � � � C kxkkr
A � kykkr

A � kzkkr
A

�
for all x11; � � � ; x1m; � � � ; xk1; � � � ; xkm; x1; � � � ; xk; y1; � � � ; yk; z1; � � � ; zk 2 A and
L D m1�r. �
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6.2.2 Stability of Derivations in Multi-C�-Ternary Algebras

Now, we prove the Hyers-Ulam stability of derivations on multi-C�-ternary algebras
for the following functional equation:

D	f .x1; � � � ; xm/ D 0

for all 	 2 T
1 WD f
 2 C W j
j D 1g and x1; � � � ; xm 2 A.

Theorem 6.13. Let ..Ak; k � kk/ W k � 1/ be a multi-C�-ternary algebra. Let
f W A ! A be a mapping for which there exist the functions ' W Amk ! Œ0;1/

and  W A3k ! Œ0;1/ satisfying (6.34), (6.35) and (6.37) such that

k.f .Œx1; y1; z1�/� Œf .x1/; y1; z1� � Œx1; f .y1/; z1� � Œx1; y1; f .z1/�;

� � � ; f .Œxk; yk; zk�/ � Œf .xk/; yk; zk�

�Œxk; f .yk/; zk� � Œxk; yk; f .zk/�/kk (6.50)

�  .x1; y1; z1; � � � ; xk; yk; zk/

for all 	 2 T
1 and x11; � � � ; x1m; � � � ; xk1; � � � ; xkm; x1; � � � ; xk; y1; � � � ; yk,

z1; � � � ; zk 2 A. If there exists L < 1 such that

'
� m‚ …„ ƒ

mx11; 0; � � � ; 0;
m‚ …„ ƒ

mx21; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

mxk1; 0; � � � ; 0
�

� mL'
� m‚ …„ ƒ

x11; 0; � � � ; 0;
m‚ …„ ƒ

x21; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk1; 0; � � � ; 0
�

for all x11; x21; � � � ; xk1 2 A, then there exists a unique derivation ı W A ! A
such that

k.f .x1/� ı.x1/; � � � ; f .xk/ � ı.xk//kk

� 1

m � mL
'
� m‚ …„ ƒ

x1; 0; � � � ; 0;
m‚ …„ ƒ

x2; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk; 0; � � � ; 0
�

(6.51)

for all x1; � � � ; xk 2 A.

Proof. By the same reasoning as in the proof of Theorem 6.9, there exists a unique
C-linear mapping ı W A ! A satisfying (6.50) and the mapping ı W A ! A is
given by

ı.x/ D lim
n!1

f .mnx/

mn
(6.52)
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for all x 2 A. It follows from (6.34), (6.37) and (6.52) that

k.ı.Œx1; y1; z1�/ � Œı.x1/; y1; z1� � Œx1; ı.y1/; z1� � Œx1; y1; f .z1/�;
� � � ; ı.Œxk; yk; zk�/ � Œı.xk/; yk; zk�

�Œxk; ı.yk/; zk� � Œxk; yk; ı.zk/�/kk

D lim
n!1

1

m3n
k.f .Œmnx1;m

ny1;m
nz1�/ � Œf .mnx1/;m

ny1;m
nz1�

�Œmnx1; f .m
ny1/;m

nz1� � Œmnx1;m
ny1; f .m

nz1/�;

� � � ; f .Œmnxk;m
nyk;m

nzk�/ � Œf .mnxk/;m
nyk;m

nzk�

�Œmnxk; f .m
nyk/;m

nzk� � Œmnxk;m
nyk; f .m

nzk/�/kk

� lim
n!1 m�3n .mnx1;m

ny1;m
nz1; � � � ;mnxk;m

nyk;m
nzk/

D 0

for all x1; � � � ; xm; y1; � � � ; yk; z1; � � � ; zk 2 A and so

ı.Œx; y; z�/ D Œı.x/; y; z�C Œx; ı.y/; z�C Œx; y; ı.z/�

for all x; y; z 2 A. Thus ı W A ! A is a derivation satisfying (6.50). This completes
the proof. �

Corollary 6.14. Let ..Ak; k�kk/ W k � 1/ be a multi-C�-ternary algebra. Let r<1, �
be nonnegative real numbers and f W A ! A be a mapping such that

k.D	f .x11; � � � ; x1m/; � � � ;D	f .xk1; � � � ; xkm//kk

� �
� mX

jD1
kx1jkr

A C � � � C
mX

jD1
kxkjkr

A

�
(6.53)

and

k.f .Œx1; y1; z1�/ � Œf .x1/; y1; z1� � Œx1; f .y1/; z1� � Œx1; y1; f .z1/�;

� � � ; f .Œxk; yk; zk�/ � Œf .xk/; yk; zk�

�Œxk; f .yk/; zk� � Œxk; yk; f .zk/�/kk (6.54)

� �
�kx1kr

A � ky1kr
A � kz1kr

A C � � � C kxkkr
A � kykkr

A � kykkr
A

�
for all 	 2 T

1 and x11; � � � ; x1m; � � � ; xk1; � � � ; xkm; x1; � � � ; xk; y1; � � � ; yk;

z1; � � � ; zk 2 A. Then there exists a unique derivation ı W A ! A such that

k.f .x1/ � ı.x1/; � � � ; f .xk/� ı.xk//kk � �

mr � m

�kx1kr
A C � � � C kxkkr

A

�
for all x1; � � � ; xk 2 A.
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Proof. The proof follows from Theorem 6.50 by taking

'.x11; � � � ; x1m; � � � ; xk1; � � � ; xkm/ WD �
� mX

jD1
kx1jkr

A C � � � C
mX

jD1
kxkjkr

A

�
;

 .x1; y1; z1; � � � ; xk; yk; zk/

WD �
�kx1kr

A � ky1kr
A � kz1kr

A C � � � C kxkkr
A � kykkr

A � kykkr
A

�
for all x1; � � � ; xk; y1; � � � ; yk; z1; � � � ; zk 2 A and L D mr . This completes the
proof. �

Remark 6.15. Let ..Ak; k � kk/ W k � 1/ be a multi-C�-ternary algebra. Let
f W A ! A be a mapping for which there exist the functions ' W Amk ! Œ0;1/

and  W A3k ! Œ0;1/ satisfying (6.35), (6.45), (6.46) and (6.50) for all 	 2 T
1 and

x11; � � � ; x1m; � � � ; xk1; � � � ; xkm; x1; � � � ; xk, y1; � � � ; yk; z1; � � � ; zk 2 A. If there exists
L < 1 such that

'
� m‚ …„ ƒ

mx11; 0; � � � ; 0;
m‚ …„ ƒ

mx21; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

mxk1; 0; � � � ; 0
�

� L

m
'
� m‚ …„ ƒ

x11; 0; � � � ; 0;
m‚ …„ ƒ

x21; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk1; 0; � � � ; 0
�

for all x11; x21; � � � ; xk1 2 A, then there exists a unique derivation ı W A ! A such
that

k.f .x1/� ı.x1/; � � � ; f .xk/ � ı.xk//kk

� L

m � mL
'
� m‚ …„ ƒ

x1; 0; � � � ; 0;
m‚ …„ ƒ

x2; 0; � � � ; 0; � � � ;
m‚ …„ ƒ

xk; 0; � � � ; 0
�

for all x1; � � � ; xk 2 A.

Corollary 6.16. Let ..Ak; k � kk/ W k � 1/ be a multi-C�-ternary algebra. Let
r > 1, � be nonnegative real numbers and f W A ! A be a mapping satisfying (6.53)
and (6.54). Then there exists a unique derivation ı W A ! A such that

k.f .x1/ � ı.x1/; � � � ; f .xk/� ı.xk//kk � �

mr � m

�kx1kr
A C � � � C kxkkr

A

�
for all x1; � � � ; xk 2 A.
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Proof. The proof follows from Theorem 6.15 by taking

'.x11; � � � ; x1m; � � � ; xk1; � � � ; xkm/ WD �
� mX

jD1
kx1jkr

A C � � � C
mX

jD1
kxkjkr

A

�
;

 .x1; y1; z1; � � � ; xk; yk; zk/

WD �
�kx1kr

A � ky1kr
A � kz1kr

A C � � � C kxkkr
A � kykkr

A � kykkr
A

�
for all x1; � � � ; xk; y1; � � � ; yk; z1; � � � ; zk 2 A and L D m1�r. This completes the
proof. �

6.3 Generalized Additive Mappings and Isomorphisms
in Multi-C�-Algebras

Let X and Y be vector spaces. It is shown that, if an odd mapping f W X ! Y
satisfies the functional equation (3.97), then the odd mapping f is additive. Also,
we use the fixed point method to prove the Hyers-Ulam stability of the functional
equation (3.97) in multi-Banach modules over a unital multi-C�-algebra. As an
application, we show that every almost linear bijection h W A ! B of a unital multi-
C�-algebra A onto a unital multi-C�-algebra B is a C�-algebra isomorphism when

h
�2n

rn
uy
�

D h
�2n

rn
u
�

h.y/

for all unitaries u 2 U.A/, y 2 A and n � 0.

6.3.1 Stability of Odd Functional Equations in Multi-Banach
Modules over a Multi-C�-Algebra

We assume that ..Ak; k � kk/ W k � 1/ is a unital multi-C�-algebra and ..Xk; k � kk/ W
k � 1/, ..Yk; k�kk/ W k � 1/ are multi-Banach left modules over ..Ak; k�kk/ W k � 1/.
Moreover, by U.A/, we denote the unitary group of A. For any mapping f W X ! Y,
we set
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Duf .x1; � � � ; xd/

WD rf
�Pd

jD1 uxj

r

�
C

X
�.j/ D 0; 1Pd

jD1 �.j/ D l

rf
�Pd

jD1.�1/�.j/uxj

r

�

�.d�1Cl �d�1 Cl�1 C 1/

dX
jD1

uf .xj/

for all u 2 U.A/ and x1; � � � ; xd 2 X.

Theorem 6.17. Let r ¤ 2 and f W X ! Y be an odd mapping such that, for each
k � 1, there exists a function 'k W Xkd ! Œ0;1/ such that

lim
j!1

rj

2j
'k

�
2j

rj
x11; � � � ; 2

j

rj
x1d; � � � ; 2

j

rj
xk1; � � � ; 2

j

rj
xkd

�
D 0 (6.55)

and

k.Duf .x11; � � � ; x1d/; � � � ;Duf .xk1; � � � ; xkd//kk

� 'k.x11; � � � ; x1d; � � � ; xk1; � � � ; xkd/ (6.56)

for all u 2 U.A/ and x11; � � � ; x1d; � � � ; xk1; � � � ; xkd 2 X. If there exists L < 1 such
that

'k

� d‚ …„ ƒ
2

r
x11;

2

r
x11; � � � ; 0; � � � ;

d‚ …„ ƒ
2

r
xk1;

2

r
xk1; � � � ; 0

�

� 2

r
L'k

� d‚ …„ ƒ
x11; x11; � � � ; 0; � � � ;

d‚ …„ ƒ
xk1; xk1; � � � ; 0

�
for all k � 1 and x11; � � � ; xk1 2 X, then there exist a unique A-linear generalized
additive mapping� W X ! Y such that

k.�.x1/ � f .x1/; � � � ; �.xk/� f .xk//kk (6.57)

� 1

2.d�2Cl �d�2 Cl�2 C 1/.1� L/
'k

�
x1; x1; 0; : : : ; 0„ ƒ‚ …

d � 2 times

; : : : ; xk; xk; 0; : : : ; 0„ ƒ‚ …
d � 2 times

�

for all k � 1 and x1; � � � ; xk 2 X.
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Proof. Put S WD f� W X ! Yg and

d.�; h/ D inffC 2 RC W k.�.x1/� h.x1/; � � � ; �.xk/ � h.xk//kk

� C'k.

d‚ …„ ƒ
x1; x1; 0; � � � ; 0; � � � ;

d‚ …„ ƒ
xk; xk; 0; � � � ; 0/; k � 1; x1; � � � ; xk 2 Xg

for all �; h 2 S which .S; d/ is a complete generalized metric space. Define a
mapping J W S ! S by

J�.x/ WD r

2
�

�
2

r
x

�

for all � 2 S and x 2 X. Now, we have

d.J�; Jh/ � Ld.�; h/

for all �; h 2 S. For a fixed k � 1, putting u D 1 2 U.A/, xi1 D xi2 D x1 and
xi3 D � � � D xid D 0 for each i 2 f1; � � � ; kg in (6.56), we have

����rf
�2

r
x1
�

� 2f .x1/; � � � ; rf
�2

r
xk

�
� 2f .xk/

����
k

� 1

d�2Cl �d�2 Cl�2 C 1
'k

�
x1; x1; 0; � � � ; 0„ ƒ‚ …

d � 2 times

; � � � ; xk; xk; 0; � � � ; 0„ ƒ‚ …
d � 2 times

�

since f is odd and t WDd�2 Cl �d�2 Cl�2 C 1 Dd�1 Cl �d�1 Cl�1 C 1. Thus we have����f .x1/� r

2
f
�2

r
x1
�
; � � � ; f .xk/� r

2
f
�2

r
xk

�����
k

� 1

2t
'k

�
x1; x1; 0; � � � ; 0„ ƒ‚ …

d � 2 times

; � � � ; xk; xk; 0; � � � ; 0„ ƒ‚ …
d � 2 times

�

for all x1; � � � ; xk 2 X and so

d.f ; Jf / � 1

2t
: (6.58)

Consequently, by Theorem 1.3, there exists a mapping� W X ! Y such that

(1) � is a fixed point of J, i.e.,

�

�
2

r
x

�
D 2

r
�.x/ (6.59)

for all x 2 X and � is unique in the set

Y D f� 2 X W d.f ; �/ < 1g:
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This means that � is a unique mapping satisfying (6.59) such that there exists
C 2 .0;1/ with

k.�.x1/ � f .x1/; � � � ; �.xk/ � f .xk//kk

� C'k

�
x1; x1; 0; � � � ; 0„ ƒ‚ …

d � 2 times

; � � � ; xk; xk; 0; � � � ; 0„ ƒ‚ …
d � 2 times

�

for all k � 1 and x1; � � � ; xk 2 X;
(2) d.Jnf ; �/ ! 0 as n ! 1. This implies the equality

lim
n!1

rn

2n
f

�
2n

rn
x

�
D �.x/ (6.60)

for all x 2 X;
(3) d.f ; �/ � 1

1�L d.f ; Jf / which together with (6.58) gives

d.f ; �/ � 1

2t � 2tL

and so the inequality (6.57) holds for all x1; � � � ; xk 2 X.

Next, note that the fact that the mapping f is odd and (6.60) imply that � is odd.
Moreover, by (6.55) and (6.56), we have

k.D1�.x11; � � � ; x1d/; � � � ;D1�.xk1; � � � ; xkd//kk

D lim
n!1

rn

2n

����
�

D1f

�
2n

rn
x11; � � � ; 2

n

rn
x1d

�
; � � � ;D1f

�
2n

rn
xk1; � � � ; 2

n

rn
xkd

������
k

� lim
n!1

rn

2n
'k

�
2n

rn
x11; � � � ; 2

n

rn
x1d; � � � ; 2

n

rn
xk1; � � � ; 2

n

rn
xkd

�

D 0

for all k � 1 and x11; � � � ; x1d; � � � ; xk1; � � � ; xkd 2 X and so � is a generalized
additive mapping.

For any fixed u 2 U.A/ and x 2 X, using (6.55) and (6.56), we have���.Du�.x; 0; � � � ; 0„ ƒ‚ …
d � 1 times

/; � � � ;Du�.x; 0; � � � ; 0„ ƒ‚ …
d � 1 times

//
���

k

D lim
n!1

rn

2n

����Duf
�2n

rn
x; 0; � � � ; 0„ ƒ‚ …

d � 1 times

�
; � � � ;Duf

�2n

rn
x; 0; � � � ; 0„ ƒ‚ …

d � 1 times

�����
k

� lim
n!1

rn

2n
'k

�2n

rn
x; 0; � � � ; 0„ ƒ‚ …

d � 1 times

; � � � ; 2
n

rn
x; 0; � � � ; 0„ ƒ‚ …

d � 1 times

�

D 0



256 6 Stability of Functional Equations in Multi-Banach Algebras

and so

.d�1Cl �d�1 Cl�1 C 1/r�
�ux

r

�
D .d�1Cl �d�1 Cl�1 C 1/u�.x/:

Since � is a generalized additive mapping, from Lemma 3.64 it follows that � is
additive and so

�.ux/ D r�
�ux

r

�
D u�.x/

for all u 2 U.A/ and x 2 X. It is straight forward to show that � is an A-linear
mapping (see also Theorem 3.1 in [20]). This completes the proof. �
Corollary 6.18. Let r ¤ 2 and �; p 2 .0;1/. Assume also that p > 1 for r > 2

and p < 1 for r < 2. If f W X ! Y is an odd mapping such that

k.Duf .x11; � � � ; x1d/; � � � ;Duf .xk1; � � � ; xkd//kk

� �
� dX

jD1
kx1jkp C : : :C

dX
jD1

kxkjkp
�

for all u 2 U.A/, k � 1 and x11; � � � ; x1d; � � � ; xk1; � � � ; xkd 2 X, then there exists a
unique A-linear generalized additive mapping� W X ! Y such that

k.�.x1/� f .x1/; � � � ; �.xk/� f .xk//kk

� rp�1�
.rp�1 � 2p�1/.d�2Cl �d�2 Cl�2 C 1/

.jjx1jjp C � � � C jjxkjjp/

for all k � 1 and x1; � � � ; xk 2 X.

Proof. Taking L D 2p�1

rp�1 and

'k.x11; � � � ; x1d; � � � ; xk1; � � � ; xkd/ D �
� dX

jD1
kx1jkp C : : :C

dX
jD1

kxkjkp
�

for all k � 1 and x11; � � � ; x1d; � � � ; xk1; � � � ; xkd 2 X in Theorem 6.17, we get the
desired assertion. �

Theorem 6.19. Let r ¤ 2. Let f W X ! Y be an odd mapping for which there exists
a function ' W Xkd ! Œ0;1/ such that

lim
j!1

2j

rj
'

�
rj

2j
x11; � � � ; rj

2j
x1d; � � � ; rj

2j
xk1; � � � ; rj

2j
xkd

�
D 0
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and

k.Duf .x11; � � � ; x1d/; � � � ;Duf .xk1; � � � ; xkd//kk

� '.x11; � � � ; x1d; � � � ; xk1; � � � ; xkd/

for all u 2 U.A/ and x11; � � � ; x1d; � � � ; xk1; � � � ; xkd 2 X. If there exists L < 1

such that

'
� d‚ …„ ƒ

r

2
x11;

r

2
x11; � � � ; 0;

d‚ …„ ƒ
r

2
x21;

r

2
x21; � � � ; 0; � � � ;

d‚ …„ ƒ
r

2
xk1;

r

2
xk1; � � � ; 0

�

� r

2
L'
� d‚ …„ ƒ

x11; x11; � � � ; 0;
d‚ …„ ƒ

x21; x21; � � � ; 0; � � � ;
d‚ …„ ƒ

xk1; xk1; � � � ; 0
�

for all x11; x21; � � � ; xk1 2 X, then there exists a unique A-linear generalized additive
mapping� W X ! Y such that

sup
k�1

k.�.x1/� f .x1/; � � � ; �.xk/ � f .xk//kk

� sup
k�1

L

2.d�2Cl �d�2 Cl�2 C 1/.1 � L/
'
�

x1; x1; 0; � � � ; 0„ ƒ‚ …
d � 2 times

;

� � � ; xk; xk; 0; � � � ; 0„ ƒ‚ …
d � 2 times

�

for all x1; � � � ; xk 2 X.

Proof. Note that f .0/ D 0 and f .�x/ D �f .x/ for all x 2 X since f is an odd
mapping. Let u D 1 2 U.A/. Putting xi1 D xi2 D x1 and xi3 D � � � D xim D 0

(1 � i � k) in (6.56), we have����
�

rf

�
2

r
x1

�
� 2f .x1/; � � � ; rf

�
2

r
xk

�
� 2f .xk/

�����
k

� 1

d�2Cl �d�2 Cl�2 C 1
'
�

x1; x1; 0; � � � ; 0„ ƒ‚ …
d � 2 times

; � � � ; xk; xk; 0; � � � ; 0„ ƒ‚ …
d � 2 times

�
:

Letting t WDd�2 Cl �d�2 Cl�2 C 1, we have

����
�

f .x1/ � 2

r
f
� r

2
x1
�
; � � � ; f .xk/� 2

r
f
� r

2
xk

������
k
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� 1

rt
'
� r

2
x1;

r

2
x1; 0; � � � ; 0„ ƒ‚ …

d � 2 times

; � � � ; r

2
xk;

r

2
xk; 0; � � � ; 0„ ƒ‚ …

d � 2 times

�

� L

2t
'
�

x1; x1; 0; � � � ; 0„ ƒ‚ …
d � 2 times

; � � � ; xk; xk; 0; � � � ; 0„ ƒ‚ …
d � 2 times

�

for all x1; � � � ; xk 2 X.
The rest of the proof is similar to the proof of Theorem 6.17. This completes the

proof. �

Corollary 6.20. Let r < 2 and � , p > 1 be positive real numbers or let r > 2 and
� , p < 1 be positive real numbers. Let f W X ! Y be an odd mapping such that

k.Duf .x11; � � � ; x1d/; � � � ;Duf .xk1; � � � ; xkd//kk

� �
� dX

jD1
kx1jkp C � � � C

dX
jD1

kxkjkp
�

for all u 2 U.A/ and x11; � � � ; x1d; � � � ; xk1; � � � ; xkd 2 X. Then there exists a unique
A-linear generalized additive mapping� W X ! Y such that

sup
k�1

k.�.x1/ � f .x1/; � � � ; �.xk/� f .xk//kk

� sup
k�1

rp�1�
.2p�1 � rp�1/.d�2Cl �d�2 Cl�2 C 1/

.jjx1jjp C � � � C kxkkp/

for all x 2 X.

Proof. Define

'.x11; � � � ; x1d; � � � ; xk1; � � � ; xkd/ D �
� dX

jD1
kx1jkp C � � � C

dX
jD1

kxkjkp
�

and put L D rp�1

2p�1 in Theorem 6.19. Then we get the desired result. �

Now, we investigate the Hyers–Ulam stability of linear mappings for the case
d D 2.

Theorem 6.21. Let r ¤ 2. Let f W X ! Y be an odd mapping for which there exists
a function ' W X2k ! Œ0;1/ such that

lim
j!1

rj

2j
'

�
2j

rj
x1;

2j

rj
y1; � � � ; 2

j

rj
xk;
2j

rj
yk

�
D 0
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and ����rf
�ux1 C uy1

r

�
� uf .x1/ � uf .y1/;

� � � ; rf
�uxk C uyk

r

�
� uf .xk/� uf .yk/

����
k

� '.x1; y1; � � � ; xk; yk/ (6.61)

for all u 2 U.A/ and x1; � � � xk; y1 � � � ; yk 2 X. If there exists L < 1 such that

'

�
2

r
x1;

2

r
x1;

2

r
x2;

2

r
x2; � � � ; 2

r
xk;
2

r
xk

�
� 2

r
L' .x1; x1; x2; x2; � � � ; xk; xk/

for all x1; � � � xk 2 X. Then there exists a unique A-linear generalized additive
mapping� W X ! Y such that

sup
k�1

k.�.x1/ � f .x1/; � � � ; �.xk/ � f .xk//kk

� sup
k�1

L

2.1� L/
'.x1; x1; � � � ; xk; xk/

for all x1; � � � ; xk 2 X.

Proof. Let u D 1 2 U.A/. Putting xi D yi (1 � i � k) in (6.61), we have

����
�

rf

�
2

r
x1

�
� 2f .x1/; � � � ; rf

�
2

r
xk

�
� 2f .xk/

�����
k

� '.x1; x1; � � � ; xk; xk/

for all x 2 X and so����
�

f .x1/ � r

2
f

�
2

r
x1

�
; � � � ; f .xk/� r

2
f

�
2

r
xk

������
k

� 1

2
'.x1; x1; � � � ; xk; xk/

for all x 2 X.
The rest of the proof is the same as in the proof of Theorem 6.17. This completes

the proof. �
Corollary 6.22. Let r > 2 and � , p > 1 be positive real numbers or let r < 2 and
� , p < 1 be positive real numbers. Let f W X ! Y be an odd mapping such that
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����rf
�ux1 C uy1

r

�
� uf .x1/ � uf .y1/;

� � � ; rf
�uxk C uyk

r

�
� uf .xk/� uf .yk/

����
k

� �

kX
jD1
.kxjkp C kyjkp/

for all u 2 U.A/ and x1; � � � xk 2 X. Then there exists a unique A-linear generalized
additive mapping� W X ! Y such that

sup
k�1

k.�.x1/� f .x1/; � � � ; �.xk/� f .xk//kk � sup
k�1

rp�1�
rp�1 � 2p�1

kX
jD1

jjxjjjp

for all x1; � � � xk 2 X.

Proof. Define

'.x1; y1; � � � ; xk; yk/ D �

kX
jD1
.jjxjjjp C jjyjjjp/

and apply Theorem 6.21. Then we get the desired result. �

Theorem 6.23. Let r ¤ 2. Let f W X ! Y be an odd mapping for which there exists
a function ' W X2k ! Œ0;1/ such that

lim
j!1

2j

rj
'

�
rj

2j
x1;

rj

2j
y1; � � � ; rj

2j
xk;

rj

2j
yk

�
D 0

and ����rf
�ux1 C uy1

r

�
� uf .x1/� uf .y1/;

� � � ; rf
�uxk C uyk

r

�
� uf .xk/� uf .yk/

����
k

� '.x1; y1; � � � ; xk; yk/ (6.62)

for all u 2 U.A/ and x1; � � � xk; y1 � � � ; yk 2 X. If there exists L < 1 such that

'
� r

2
x1;

r

2
x1;

r

2
x2;

r

2
x2; � � � ; r

2
xk;

r

2
xk

�
� r

2
L' .x1; x1; x2; x2; � � � ; xk; xk/

for all x1; � � � xk 2 X. Then there exists a unique A-linear generalized additive
mapping� W X ! Y such that
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sup
k�1

k.�.x1/ � f .x1/; � � � ; �.xk/ � f .xk//kk

� sup
k�1

1

2.1� L/
'.x1; x1; � � � ; xk; xk/

for all x1; � � � ; xk 2 X.

Proof. Let u D 1 2 U.A/. Putting xi D yi (1 � i � k) in (6.62), we have

����
�

rf

�
2

r
x1

�
� 2f .x1/; � � � ; rf

�
2

r
xk

�
� 2f .xk/

�����
k

� '.x1; x1; � � � ; xk; xk/

for all x1; � � � ; xk 2 X and so����
�

f .x1/� 2

r
f
� r

2
x1
�
; � � � ; f .xk/� 2

r
f
� r

2
xk

������
k

� 1

r
'
� r

2
x1;

r

2
x1; � � � ; r

2
xk;

r

2
xk

�

� 1

2
L'.x1; x1; � � � ; xk; xk/

for all x1; � � � ; xk 2 X.
The rest of the proof is similar to the proof of Theorem 6.17. This completes the

proof. �
Corollary 6.24. Let r > 2 and � , p > 1 be positive real numbers or let r < 2 and
� , p < 1 be positive real numbers. Let f W X ! Y be an odd mapping such that

����rf
�ux1 C uy1

r

�
� uf .x1/� uf .y1/;

� � � ; rf
�uxk C uyk

r

�
� uf .xk/� uf .yk/

����
k

� �

kX
jD1
.kxjkp C kyjkp/

for all u 2 U.A/ and x1; � � � xk 2 X. Then there exists a unique A-linear generalized
additive mapping� W X ! Y such that

sup
k�1

k.�.x1/� f .x1/; � � � ; �.xk/ � f .xk//kk � sup
k�1

rp�1�
2p�1 � rp�1

kX
jD1

kxjkp

for all x1; � � � xk 2 X.
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Proof. Define

'.x1; y1; � � � ; xk; yk/ D �

kX
jD1
.kxjkp C kyjkp/

and apply Theorem 6.23. Then we get the desired result. �

6.3.2 Isomorphisms in Unital Multi-C�-Algebras

Assume that A and B are unital multi-C�-algebras with the unit e. Let U.A/ be the
set of unitary elements in A.

Now, we investigate C�-algebra isomorphisms in unital multi-C�-algebras.

Theorem 6.25. Let r ¤ 2. Let h W A ! B be an odd bijective mapping satisfying

h
�2n

rn
uy
�

D h
�2n

rn
u
�

h.y/

for all u 2 U.A/, y 2 A and n � 0 for which there exists a function ' W Akd ! Œ0;1/

such that

lim
j!1

rj

2j
'

�
2j

rj
x11; � � � ; 2

j

rj
x1d; � � � ; 2

j

rj
xk1; � � � ; 2

j

rj
xkd

�
D 0;

k.D	h.x11; � � � ; x1d/; � � � ;D	h.xk1; � � � ; xkd//kk

� '.x11; � � � ; x1d; � � � ; xk1; � � � ; xkd/

and ����
�

h

�
2n

rn
u�
1

�
� h

�
2n

rn
u1

��
; � � � ; h

�
2n

rn
u�

k

�
� h

�
2n

rn
uk

�������
k

� '
� 2n

rn
u1; � � � ; 2

n

rn
u1„ ƒ‚ …

d times

; � � � ; 2
n

rn
uk; � � � ; 2

n

rn
uk„ ƒ‚ …

d times

�

for all 	 2 S1 WD f� 2 C W j�j D 1g, u1; � � � ; uk 2 U.A/, n � 0 and
x11; � � � ; xkd 2 A. Assume that limn!1 rn

2n h. 2
n

rn e/ is invertible. Then the odd bijective
mapping h W A ! B is a C�-algebra isomorphism.

Proof. Consider the multi-C�-algebras A and B as left Banach modules over
the unital multi-C�-algebra C. By Theorem 6.17, there exists a unique C-linear
generalized additive mapping H W A ! B such that
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sup
k�1

k.h.x1/� H.x1/; � � � ; h.xk/� H.xk//kk

� sup
k�1

1

2.d�2Cl �d�2 Cl�2 C 1/
'
�

x1; x1; 0; � � � ; 0„ ƒ‚ …
d � 2 times

; � � � ; xk; xk; 0; � � � ; 0„ ƒ‚ …
d � 2 times

�

for all x1; � � � ; xk 2 A in which H W A ! B is given by

H.x/ D lim
n!1

rn

2n
h
�2n

rn
x
�

for all x 2 A.
The rest of the proof is easy. This completes the proof. �

Corollary 6.26. Let r > 2 and � , p > 1 be positive real numbers or let r < 2 and
� , p < 1 be positive real numbers. Let h W A ! B be an odd bijective mapping
satisfying

h
�2n

rn
uy
�

D h
�2n

rn
u
�

h.y/

for all u 2 U.A/, y 2 A and n � 0 such that

k.D	h.x11; � � � ; x1d/; � � � ;D	h.xk1; � � � ; xkd//kk

� �

dX
jD1
.kx1jkp C � � � C kxkjkp/

and ����
�

h

�
2n

rn
u�
1

�
� h

�
2n

rn
u1

��
; � � � ; h

�
2n

rn
u�

k

�
� h

�
2n

rn
uk

�������
k

� kd
2pn

rpn
�

for all	 2 S1, u 2 U.A/, n � 0 and x11; � � � ; xkd 2 A. Assume that limn!1 rn

2n h. 2
n

rn e/
is invertible. Then the odd bijective mapping h W A ! B is a C�-algebra
isomorphism.

Proof. Define

'.x11; � � � ; x1d; � � � ; xk1; � � � ; xkd/ D �

dX
jD1
.jjx1jjjp C � � � C jjxkjjjp/

and apply Theorem 6.25. Then we get the desired result. �
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6.4 Additive Functional Inequalities in Proper
Multi-CQ�-Algebras

In this section, we approximate the following additive functional inequality:

���.dC1X
iD1

f .x1i/; � � � ;
dC1X
iD1

f .xki//
���

k

�
����mf

�PdC1
iD1 x1i

m

�
; � � � ;mf

�PdC1
iD1 xki

m

�����
k

(6.63)

for all x11; � � � ; xk dC1 2 X, where d � 2 is a fixed integer. Also, we investigate
homomorphisms in proper multi-CQ�-algebras and derivations on proper multi-
CQ�-algebras associated with the above additive functional inequality.

6.4.1 Stability of C-Linear Mappings in Multi-Banach Spaces

Now, we investigate the Hyers-Ulam stability of C-linear mappings in multi-Banach
spaces associated with the multi-additive functional inequality (6.63).

In this section, we assume that .X; k � k/ and .Y; k � k/ are Banach spaces such
that .Xk; k � kk/ and .Yk; k � kk/ are multi-Banach spaces.

Lemma 6.27. Let f W X ! Y be a mapping satisfying (6.63) in which f .0/ D 0.
Then f is additive.

Proof. Letting x3 D � � � D xdC1 D 0 and replacing x1 by x and x2 by �x in (6.63),
we have

kf .x/C f .�x/k � kmf .0/k D 0

for all x 2 X. Hence f .�x/ D �f .x/ for all x 2 X. Replacing x1 by x, x2 by y and x3
by �x � y and putting x4 D � � � D xdC1 D 0 in (6.63), we have

kf .x/C f .y/� f .x C y/k D kf .x/C f .y/C f .�x � y/k
� kmf .0/kY

D 0

for all x; y 2 X. Thus we have

f .x C y/ D f .x/C f .y/

for all x; y 2 X. This completes the proof. �
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Theorem 6.28. Let f W X ! Y be a mapping. If there exists a function
' W XkdCk ! Œ0;1/ satisfying the following:

���.dC1X
iD1

f .x1i/; � � � ;
dC1X
iD1

f .xki//
���

k

�
����mf

�PdC1
iD1 x1i

m

�
; � � � ;mf

�PdC1
iD1 xki

m

�����
k

C '.x11; � � � ; x1 dC1; � � � ; xk1; � � � ; xk dC1/ (6.64)

and

Q'.x11; � � � ; x1 dC1; � � � ; xk1; � � � ; xk dC1/

WD
1X

jD0
sup
k�1

dj'
�
d�j�1x11; � � � ; d�j�1x1 dC1; � � � ; d�j�1xk1; � � � ; d�j�1xk dC1

�

< 1 (6.65)

for all x11; � � � ; xk dC1 2 X, then there exists a unique additive mapping L W X ! Y
such that

sup
k�1

k.f .x1/ � L.x1/; � � � ; f .xk/� L.xk//kk

� sup
k�1

Q'.x1; x1; � � � ;�dx1; � � � ; xk; xk; � � � ;�dxk/ (6.66)

for all x1; � � � ; xk 2 X.

Proof. Since Q'.0; � � � ; 0/ < 1 in (6.65), we have '.0; � � � ; 0/ D 0 and so f .0/ D 0.
Replacing xi1; � � � ; xid by xi and xidC1 by �dxi (1 � i � k), respectively, in (6.64),
since f .0/ D 0, we have

k.df .x1/� f .dx1/; � � � ; df .xk/ � f .dxk//kk

D k.df .x1/C f .�dx1/; � � � ; df .xk/C f .�dxk//kk

� k.mf .0/; � � � ;mf .0//kk

C '.x1; x1; � � � ;�dx1; � � � ; xk; xk; � � � ;�dxk/

for all x1; � � � ; xk 2 X. From the above inequality, we have

����f .x1/� df
�x1

d

�
; � � � ; f .xk/� df

�xk

d

�����
k

� '
�x1

d
;

x1
d
; � � � ;�x1; � � � ; xk

d
;

xk

d
; � � � ;�xk

�
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for all x1; � � � ; xk 2 X. Replacing xi by d�nxi (1 � i � k) in the above inequality, we
have ����dnf

� x1
dn

�
� dnC1f

� x1
dnC1

�
; � � � ; dnf

� xk

dn

�
� dnC1f

� xk

dnC1
�����

k

� dn'
� x1

dnC1 ;
x1

dnC1 ; � � � ;�
x1
dn
; � � � ; xk

dnC1 ;
xk

dnC1 ; � � � ;�
xk

dn

�
:

From the above inequality, we have

sup
k�1

����dnf
� x1

dn

�
� dqf

� x1
dq

�
; � � � ; dnf

� xk

dn

�
� dqf

� xk

dq

�����
k

�
n�1X
jDq

sup
k�1

����djC1f
� x1

djC1
�

� djf
�x1

dj

�
; � � � ; djC1f

� xk

djC1
�

� djf
�xk

dj

�����
k

�
n�1X
jDq

sup
k�1

dj'

�
x1

djC1 ;
x1

djC1 ; � � � ;�
dx1
djC1 ; � � � ;

xk

djC1 ;
xk

djC1 ; � � � ;�
dxk

djC1

�

for all x1; � � � ; xk 2 X and q; n � 1 with q < n. From (6.64), the sequence
˚
dnf

�
x

dn

��
is a Cauchy sequence for all x 2 X and so it is convergent in the complete multi-
norm Y. Thus we can define a mapping L W X ! Y by

L.x/ WD lim
n!1 dnf

� x

dn

�

for all x 2 X.
In order to prove that L satisfies (6.66), if we put q D 0 and let n ! 1 in the

above inequality, then we obtain

sup
k�1

k.f .x1/ � L.x1/; � � � ; f .xk/� L.xk//kk

�
n�1X
jD0

sup
k�1

dj'

�
x1

djC1 ;
x1

djC1 ; � � � ;�
dx1
djC1 ; � � � ;

xk

djC1 ;
xk

djC1 ; � � � ;�
dxk

djC1

�

D sup
k�1

Q'.x1; x1; � � � ;�dx1; � � � ; xk; xk; � � � ;�dxk/

for all x1; � � � ; xk 2 X. Replacing xij by x1j

dn (1 � i � k and 1 � j � d C 1),
respectively, and multiplying by dnC1 in (6.64), we have
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��� dC1X
iD1

dnf
� x1i

dnC1
����

�
���mdnf

�PdC1
iD1 x1i

mdnC1
����C dn'

� x11
dnC1 ; � � � ;

x1dC1
dnC1 ; � � �

x11
dnC1 ; � � � ;

x1dC1
dnC1

�
for all x1j 2 X (1 � j � d C 1). Since (6.65) gives

lim
n!1 dn sup

k�1
'
� x11

dnC1 ; � � � ;
x1dC1
dnC1 ; � � �

x11
dnC1 ; � � � ;

x1dC1
dnC1

�
D 0

for all x1j 2 X (1 � j � d C 1), letting n ! 1 in the above inequality, we have

��� dC1X
iD1

L.x1i/
��� �

���mL
�PdC1

iD1 x1i

m

���� (6.67)

and so L is additive by Lemma 6.27.
Now, to prove the uniqueness of L, let L0 W X ! Y be another additive mapping

satisfying (6.66). Since L and L0 are additive, we have

kL.x/ � L0.x/k
D dn

���L
� x

dn

�
� L0

� x

dn

����
� dn

����L
� x

dn

�
� f

� x

dn

����C
���L0 � x

dn

�
� f

� x

dn

�����

� dn � 2 Q'
�

x

dn
; � � � ; x

dn
;

�dx

dn
; � � � ; x

dn
; � � � ; x

dn
;

�dx

dn

�

D 2

1X
jD0

sup
k�1

dnCj' .A/ ;

where

'.A/

D '

0
BBBBBBB@

k‚ …„ ƒ
dC1‚ …„ ƒ

x

dnCjC1 ; � � � ;
x

dnCjC1 ;
�dx

dnCjC1 ; � � � ;

dC1‚ …„ ƒ
x

dnCjC1 ; � � � ;
x

dnCjC1 ;
�dx

dnCjC1

1
CCCCCCCA
;

which goes to zero as n ! 1 for all x 2 X by (6.65). Consequently, L is the unique
additive mapping satisfying (6.66). This completes the proof. �
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Corollary 6.29. Let f W X ! Y be a mapping with f .0/ D 0. If there exists a
function ' W XkdCk ! Œ0;1/ satisfying (6.64) and

Q'.x11; � � � ; xkdCk/ WD
1X

jD0
sup
k2N

1

djC1 '
�
djx11; � � � ; djxk dC1

�
< 1 (6.68)

for all x11; � � � ; xk dC1 2 X, then there exists a unique additive mapping L W X ! Y
such that

sup
k�1

k.f .x1/ � L.x1/; � � � ; f .xk/� L.xk//kk

� sup
k�1

Q'.x1; x1; � � � ;�dx1; � � � ; xk; xk; � � � ;�dxk/ (6.69)

for all x1; � � � ; xk 2 X.

Proof. The proof is same as in the corresponding part of the proof of Theorem 6.28.
�

Lemma 6.30. Let f W X ! Y be a mapping satisfying the following:

��� dX
iD1

f .xi/C 	f .xdC1/
��� �

���mf
�Pd

iD1 xi C 	xdC1
m

���� (6.70)

for all 	 2 T
1 and x1; � � � ; xdC1 2 X. Then f is C-linear.

Proof. If we put 	 D 1 in (6.70), then f is additive by Lemma 6.27.
Putting x1 D x, xi D 0 (2 � i � d) and xdC1 D �x, respectively, we get

f .	x/C	f .�x/ D 0 and so f .	x/ D 	f .x/ for all 	 2 T
1 and x 2 X. Thus we have

f .	x C N	x/ D f .	x/C f . N	x/ D 	f .x/C N	f .x/

for all 	 2 T
1 and x 2 X and so f .tx/ D tf .x/ for any real number t with jtj � 1 and

x 2 X.
On the other hand, since f .mx/ D mf .x/, we get f .mnx/ D mnf .x/ for all n 2 N.

So, for any real number t, there exists a positive integer n with jtj � mn. Thus we
have

f .tx/ D f
�

mn � t

mn
x
�

D mnf
� t

mn
x
�

D mn � t

mn
f .x/ D tf .x/:

Now, we consider any ˛ 2 C with ˛ D t C si for some real numbers t; s. Since
f .ix/ D if .x/ holds, we have

f .˛x/ D f .tx/C f .six/ D tf .x/C sf .ix/ D tf .x/C sif .x/ D ˛f .x/

and so f is C-linear. This completes the proof. �
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Theorem 6.31. Let f W X ! Y be a mapping. If there exists a function
' W XkdCk ! Œ0;1/ satisfying (6.64) and

���� dX
iD1

f .x1i/C 	f .x1dC1/; � � � ;
dX

iD1
f .xki/C 	f .xk dC1/

����
k

�
����mf

�Pd
iD1 x1i C 	x1dC1

m

�
; � � � ;mf

�Pd
iD1 xki C 	xk dC1

m

�����
k

C '.x11; � � � ; xk dC1/ (6.71)

for all 	 2 T
1 and x11; � � � ; xk dC1 2 X, then there exists a unique C-linear mapping

L W X ! Y satisfying (6.66).

Proof. If we put 	 D 1 in (6.71), then, by Theorem 6.28, there exists a unique
additive mapping L W X ! Y defined by

L.x/ WD lim
n!1 dnf

� x

dn

�

for all x 2 X which satisfies (6.66). By the similar method to the corresponding part
of the proof of Theorem 6.28, L satisfies the following:

��� dX
iD1

L.xi/C 	L.xdC1/
��� �

���mL
�Pd

iD1 xi C 	xdC1
m

����
for all 	 2 T

1 and x1; � � � ; xdC1 2 X. Thus Lemma 6.30 gives that L is C-linear.
This completes the proof. �
Corollary 6.32. Let f W X ! Y be a mapping with f .0/ D 0. If there exists a
function ' W XkdCk ! Œ0;1/ satisfying (6.68) and (6.70), then there exists a unique
C-linear mapping L W X ! Y satisfying (6.71).

Proof. The proof is same as in the corresponding part of the proof of Theorem 6.31.
�

6.4.2 Stability of Homomorphisms in Proper
Multi-CQ�-Algebras

Now, we investigate the Hyers-Ulam stability of isomorphisms in proper multi-
CQ�-algebras associated with the additive functional inequality.

We assume that .A; k � k/ and .B; k � k/ are Banach algebras such that .Ak; k � kk/

and .Bk; k � kk/ are multi-Banach algebras.
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Theorem 6.33. Let f W A ! B be a mapping. Suppose that there exists a function
' W AkdCk ! Œ0;1/ satisfying (6.65) and

���� dX
iD1

f .x1i/C 	f .x1dC1/; � � � ;
dX

iD1
f .xki/C 	f .xk dC1/

����
k

�
����mf

�Pd
iD1 x1i C 	x1dC1

m

�
; � � � ;mf

�Pd
iD1 xki C 	xk dC1

m

�����
k

C '.x11; � � � ; xk dC1/ (6.72)

for all 	 2 T
1 and x11; � � � ; xk dC1 2 A. If, in addition, there exists a function

� W A2k ! Œ0;1/ satisfying the following:

k.f .x1y1/ � f .x1/f .y1/; � � � ; f .xkyk/� f .xk/f .yk//kk

� �.x1; y1; � � � ; xk; yk/ (6.73)

and

lim
n!1 sup

k�1
d2n�.d�nx1; d

�ny1; � � � ; d�nxk; d
�nyk/ D 0 (6.74)

for all x1; � � � ; xk; y1; � � � ; yk 2 A whenever the multiplication is defined, then there
exists a unique proper CQ�-algebra homomorphism h W A ! B such that

sup
k�1

k.f .x1/ � h.x1/; � � � ; f .xk/� h.xk//kk

� sup
k�1

Q'.x1; x1; � � � ;�dx1; � � � ; xk; xk; � � � ;�dxk/ (6.75)

for all x1; � � � ; xk 2 A.

Proof. By Theorem 6.31, we have a unique C-linear mapping h W A ! B defined by

h.x/ WD lim
n!1 dnf

� x

dn

�

for all x 2 A which satisfies (6.75).
Now, we show that h.xy/ D h.x/h.y/ for all x; y 2 A whenever the multiplication

is defined. Replacing xi; yi by d�nxi; d�nyi (1 � i � k), respectively, and multiplying
by d2n in (6.73), we have

k.d2nŒf .d�nx1d
�ny1/ � f .d�nx1/f .d

�ny1/�;

� � � ; d2nŒf .d�nxkd�nyk/� f .d�nxk/f .d
�nyk/�/kk

� d2n�.d�nx1; d
�ny1; � � � ; d�nxk; d

�nyk/ (6.76)
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for all x1; � � � ; xk; y1; � � � ; yk 2 A whenever the multiplication is defined. Also, we
have

lim
n!1 d2nf .d�nxd�ny/ D lim

n!1 d2nf .d�2nxy/ D h.xy/

and

lim
n!1 d2nf .d�nx/f .d�ny/ D lim

n!1 dnf .d�nx/ � lim
n!1 dnf .d�ny/

D h.x/h.y/

for all x; y 2 A whenever the multiplication is defined. If we let n ! 1 in the
above inequality, then (6.74) gives h.xy/ D h.x/h.y/ for all x; y 2 A whenever the
multiplication is defined. This completes the proof. �

Corollary 6.34. Let �; p be nonnegative real numbers with p > 1 and f W A ! B
be a mapping satisfying the following:

���� dX
iD1

f .x1i/C 	f .x1dC1/; � � � ;
dX

iD1
f .xki/C 	f .xk dC1/

����
k

�
����mf

�Pd
iD1 x1i C 	x1dC1

m

�
; � � � ;mf

�Pd
iD1 xki C 	xk dC1

m

�����
k

C � �
kX

lD1

dC1X
iD1

kxlikp (6.77)

for all 	 2 T
1 and x11; � � � ; xk dC1 2 A. If, in addition,

k.f .x1y1/ � f .x1/f .y1/; � � � ; f .xkyk/� f .xk/f .yk//kk

� � �
dC1X
iD1
.kxik2p C kyik2p/ (6.78)

for all x1; � � � ; xk; y1; � � � ; yk 2 A whenever the multiplication is defined. Then there
exists a unique proper CQ�-algebra homomorphism h W A ! B such that

sup
k�1

k.f .x1/ � h.x1/; � � � ; f .xk/� h.xk//kk � sup
k�1

dp�1 C 1

dp�1 � 1 �
kX

lD1
kxlkp

for all x1; � � � ; xk 2 A.
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Proof. Let ' W AkdCk ! Œ0;1/ be a mapping defined by

'.x11; � � � ; x1 dC1; � � � ; xk1; � � � ; xk dC1/ D � �
kX

lD1

dC1X
iD1

kxlikp:

When p > 1, we have

Q'.x11; � � � ; x1 dC1; � � � ; xk1; � � � ; xk dC1/

WD
1X

jD0
sup
k�1

dj'.d�j�1x11; � � � ; d�j�1x1 dC1;

� � � ; d�j�1xk1; � � � ; d�j�1xk dC1/

D 1

d

1X
jD0

djC1

d.jC1/p
sup
k�1

� �
kX

lD1

dC1X
iD1

kxlikp

D �

d p � d
sup
k�1

kX
lD1

dC1X
iD1

kxlikp:

In addition, let � W A2k ! Œ0;1/ be a mapping defined by

�.x1; y1; � � � ; xk; yk/ D � �
dC1X
iD1
.kxik2p C kyik2p/:

When p > 1, we have

lim
n!1 d2n�.d�nx1; d

�ny1; � � � ; d�nxk; d
�nyk/

D lim
n!1

d2n

d2pn
� �

dC1X
iD1
.kxik2p C kyik2p/

D 0

for all x1; � � � ; xk; y1; � � � ; yk 2 A. By applying Theorem 6.33, there exists a unique
proper CQ�-algebra homomorphism h W A ! B such that

sup
k�1

k.f .x1/� h.x1/; � � � ; f .xk/ � h.xk//kk � sup
k�1

dp C d

dp � d
�

kX
lD1

kxlkp

for all x1; � � � ; xk 2 A. This completes the proof. �
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Corollary 6.35. Let �; p be nonnegative real numbers with p > 1 and f W A ! B
be a mapping satisfying the following:

���� dX
iD1

f .x1i/C 	f .x1dC1/; � � � ;
dX

iD1
f .xki/C 	f .xk dC1/

����
k

�
����mf

�Pd
iD1 x1i C 	x1dC1

m

�
; � � � ;mf

�Pd
iD1 xki C 	xk dC1

m

�����
k

C � �
kX

lD1

dC1X
iD1

kxlikp (6.79)

for all 	 2 T
1 and x11; � � � ; xk dC1 2 A. If, in addition,

k.f .x1y1/� f .x1/f .y1/; � � � ; f .xkyk/ � f .xk/f .yk//kk

� � �
dC1X
iD1
.kxikp � kyikp/ (6.80)

for all x1; � � � ; xk; y1; � � � ; yk 2 A whenever the multiplication is defined. Then there
exists a unique proper CQ�-algebra homomorphism h W A ! B such that

sup
k�1

k.f .x1/ � h.x1/; � � � ; f .xk/� h.xk//kk � sup
k�1

dp�1 C 1

dp�1 � 1 �
kX

lD1
kxlkp

for all x1; � � � ; xk 2 A.

Proof. Let ' W AkdCk ! Œ0;1/ be a mapping defined by

'.x11; � � � ; x1 dC1; � � � ; xk1; � � � ; xk dC1/ D � �
kX

lD1

dC1X
iD1

kxlikp:

When p > 1, we have

Q'.x11; � � � ; x1 dC1; � � � ; xk1; � � � ; xk dC1/

WD
1X

jD0
sup
k�1

dj'.d�j�1x11; � � � ; d�j�1x1 dC1;

� � � ; d�j�1xk1; � � � ; d�j�1xk dC1/

D 1

d

1X
jD0

djC1

d.jC1/p
sup
k�1

� �
kX

lD1

dC1X
iD1

kxlikp

D �

d p � d
sup
k�1

kX
lD1

dC1X
iD1

kxlikp:
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In addition, let � W A2k ! Œ0;1/ be a mapping defined by

�.x1; y1; � � � ; xk; yk/ D � �
dC1X
iD1
.kxikp � kyikp/:

When p > 1, we have

lim
n!1 d2n�.d�nx1; d

�ny1; � � � ; d�nxk; d
�nyk/

D lim
n!1

d2n

d2pn
� �

dC1X
iD1
.kxikp � kyikp/

D 0

for all x1; � � � ; xk; y1; � � � ; yk 2 A. By applying Theorem 6.33, there exists a unique
proper CQ�-algebra homomorphism h W A ! B such that

sup
k�1

k.f .x1/� h.x1/; � � � ; f .xk/ � h.xk//kk � sup
k�1

dp C d

dp � d
�

kX
lD1

kxlkp

for all x1; � � � ; xk 2 A. This completes the proof. �

Remark 6.36. Let f W A ! B be a mapping with f .0/ D 0. Suppose that there exists
a function ' W AkdCk ! Œ0;1/ satisfying (6.68) and

���� dX
iD1

f .x1i/C 	f .x1dC1/; � � � ;
dX

iD1
f .xki/C 	f .xk dC1/

����
k

�
����mf

�Pd
iD1 x1i C 	x1dC1

m

�
; � � � ;mf

�Pd
iD1 xki C 	xk dC1

m

�����
k

C '.x11; � � � ; xk dC1/ (6.81)

for all 	 2 T
1 and x11; � � � ; xk dC1 2 A. If, in addition, there exists a function

� W A2k ! Œ0;1/ satisfying the following:

k.f .x1y1/ � f .x1/f .y1/; � � � ; f .xkyk/� f .xk/f .yk//kk

� �.x1; y1; � � � ; xk; yk/ (6.82)



6.4 Additive Functional Inequalities in Proper Multi-CQ�-Algebras 275

and

lim
n!1 sup

k�1
d�2n�.dnx1; d

ny1; � � � ; dnxk; d
nyk/ D 0 (6.83)

for all x1; � � � ; xk; y1; � � � ; yk 2 A whenever the multiplication is defined, then there
exists a unique proper CQ�-algebra homomorphism h W A ! B satisfying the
following:

sup
k�1

k.f .x1/ � h.x1/; � � � ; f .xk/� h.xk//kk

� sup
k�1

Q'.x1; x1; � � � ;�dx1; � � � ; xk; xk; � � � ;�dxk/ (6.84)

for all x1; � � � ; xk 2 A.

Corollary 6.37. Let �; p be nonnegative real numbers with p < 1 and f W A ! B
be a mapping satisfying the following:

���� dX
iD1

f .x1i/C 	f .x1dC1/; � � � ;
dX

iD1
f .xki/C 	f .xk dC1/

����
k

�
����mf

�Pd
iD1 x1i C 	x1dC1

m

�
; � � � ;mf

�Pd
iD1 xki C 	xk dC1

m

�����
k

C � �
kX

lD1

dC1X
iD1

kxlikp (6.85)

for all 	 2 T
1 and x11; � � � ; xk dC1 2 A. If, in addition,

k.f .x1y1/ � f .x1/f .y1/; � � � ; f .xkyk/� f .xk/f .yk//kk

� � �
dC1X
iD1
.kxik2p C kyik2p/ (6.86)

for all x1; � � � ; xk; y1; � � � ; yk 2 A whenever the multiplication is defined, then there
exists a unique proper CQ�-algebra homomorphism h W A ! B satisfying

sup
k�1

k.f .x1/� h.x1/; � � � ; f .xk/ � h.xk//kk � sup
k�1

d C dp

d � dp
�

kX
lD1

kxlkp

for all x1; � � � ; xk 2 A.
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Proof. Let � W A2k ! Œ0;1/ be a mapping defined by

�.x1; y1; � � � ; xk; yk/ D � �
dC1X
iD1
.kxik2p C kyik2p/:

When p < 1, we have

lim
n!1 d�2n�.dnx1; d

ny1; � � � ; dnxk; d
nyk/

D lim
n!1

d2np

d2n
� �

dC1X
iD1
.kxik2p C kyik2p/

D 0

for all x1; � � � ; xk; y1; � � � ; yk 2 A. By Remark 6.36, there exists a unique proper
CQ�-algebra homomorphism h W A ! B such that

sup
k�1

k.f .x1/� h.x1/; � � � ; f .xk/ � h.xk//kk � sup
k�1

d C dp

d � dp
�

kX
lD1

kxlkp

for all x1; � � � ; xk 2 A. This completes the proof. �

Corollary 6.38. Let �; p be nonnegative real numbers with p < 1 and f W A ! B
be a mapping satisfying the following:

���� dX
iD1

f .x1i/C 	f .x1dC1/; � � � ;
dX

iD1
f .xki/C 	f .xk dC1/

����
k

�
����mf

�Pd
iD1 x1i C 	x1dC1

m

�
; � � � ;mf

�Pd
iD1 xki C 	xk dC1

m

�����
k

C � �
kX

lD1

dC1X
iD1

kxlikp (6.87)

for all 	 2 T
1 and x11; � � � ; xk dC1 2 A. If, in addition,

k.f .x1y1/ � f .x1/f .y1/; � � � ; f .xkyk/� f .xk/f .yk//kk

� � �
dC1X
iD1
.kxikp � kyikp/ (6.88)

for all x1; � � � ; xk; y1; � � � ; yk 2 A whenever the multiplication is defined, then there
exists a unique proper CQ�-algebra homomorphism h W A ! B such that
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sup
k�1

k.f .x1/� h.x1/; � � � ; f .xk/ � h.xk//kk � sup
k�1

d C dp

d � dp
�

kX
lD1

kxlkp

for all x1; � � � ; xk 2 A.

Proof. Let � W A2k ! Œ0;1/ be a mapping defined by

�.x1; y1; � � � ; xk; yk/ D � �
dC1X
iD1
.kxikp � kyikp/:

When p < 1, we have

lim
n!1 d�2n�.dnx1; d

ny1; � � � ; dnxk; d
nyk/

D lim
n!1

d2pn

d2n
� �

dC1X
iD1
.kxikp � kyikp/

D 0

for all x1; � � � ; xk; y1; � � � ; yk 2 A. By Remark 6.36, there exists a unique proper
CQ�-algebra homomorphism h W A ! B such that

sup
k�1

k.f .x1/� h.x1/; � � � ; f .xk/ � h.xk//kk � sup
k�1

d C dp

d � dp
�

kX
lD1

kxlkp

for all x1; � � � ; xk 2 A. This completes the proof. �

6.4.3 Stability of Derivations in Proper CQ�-Algebras

Now, we investigate the Hyers-Ulam stability of derivations on proper multi-CQ�-
algebras associated with the additive functional inequality.

In this section, we assume that .A; k � k/ is a Banach algebra such that .Ak; k � kk/

is a multi-Banach algebra.

Theorem 6.39. Let f W A ! A be a mapping. Suppose that there exists a function
' W AkdCk ! Œ0;1/ satisfying (6.65) and

���� dX
iD1

f .x1i/C 	f .x1dC1/; � � � ;
dX

iD1
f .xki/C 	f .xk dC1/

����
k

�
����mf

�Pd
iD1 x1i C 	x1dC1

m

�
; � � � ;mf

�Pd
iD1 xki C 	xk dC1

m

�����
k

C '.x11; � � � ; xk dC1/ (6.89)
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for all 	 2 T
1 and x11; � � � ; xk dC1 2 A. If, in addition, there exists a function

 W A2k ! Œ0;1/ satisfying the following:

k.f .x1y1/� f .x1/y1 � x1f .y1/; � � � ; f .xkyk/� f .xk/yk � xkf .yk//kk

�  .x1; y1; � � � ; xk; yk/ (6.90)

and

lim
n!1 sup

k2N
d2n .d�nx1; d

�ny1; � � � ; d�nxk; d
�nyk/ D 0 (6.91)

for all x1; � � � ; xk; y1; � � � ; yk 2 A whenever the multiplication is defined, then there
exists a unique derivation ı W A ! A satisfying the following:

sup
k�1

k.f .x1/ � ı.x1/; � � � ; f .xk/� ı.xk//kk

� sup
k�1

Q'.x1; x1; � � � ;�dx1; � � � ; xk; xk; � � � ;�dxk/ (6.92)

for all x1; � � � ; xk 2 A.

Proof. By Theorem 6.31, we have a unique C-linear mapping ı W A ! A defined by

ı.x/ WD lim
n!1 dnf

� x

dn

�
for all x 2 A which satisfies (6.92).

Now, we show that ı.xy/ D ı.x/ı.y/ for all x; y 2 A whenever the multiplication
is defined. Replacing xi; yi by d�nxi; d�nyi (1 � i � k), respectively, and multiplying
by d2n in (6.90), we have

k.d2nŒf .d�nx1d
�ny1/� d�nf .d�nx1/y1 � d�nx1f .d

�ny1/�;

� � � ; d2nŒf .d�nxkd�nyk/ � d�nf .d�nxk/yk � d�nxkf .d�nyk/�/kk

� d2n .d�nx1; d
�ny1; � � � ; d�nxk; d

�nyk/ (6.93)

for all x1; � � � ; xk; y1; � � � ; yk 2 A whenever the multiplication is defined. Also, we
have

lim
n!1 d2nf .d�nxd�ny/ D lim

n!1 d2nf .d�2nxy/ D ı.xy/;

lim
n!1 d2nf .d�nx/d�ny D lim

n!1 dnf .d�nx/ � y D ı.x/y

and

lim
n!1 d2nd�nxf .d�ny/ D lim

n!1 x � dnf .d�ny/ D xı.y/
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for all x; y 2 A whenever the multiplication is defined. If we let n ! 1 in the above
inequality, then (6.93) gives

ı.xy/ D ı.x/y � xı.y/

for all x; y 2 A whenever the multiplication is defined. This completes the proof. �

Corollary 6.40. Let �; p be nonnegative real numbers with p > 1 and f W A ! A
be a mapping such that

���� dX
iD1

f .x1i/C 	f .x1dC1/; � � � ;
dX

iD1
f .xki/C 	f .xk dC1/

����
k

�
����mf

�Pd
iD1 x1i C 	x1dC1

m

�
; � � � ;mf

�Pd
iD1 xki C 	xk dC1

m

�����
k

C � �
kX

lD1

dC1X
iD1

kxlikp (6.94)

for all 	 2 T
1 and x11; � � � ; xk dC1 2 A. If, in addition,

k.f .x1y1/� f .x1/y1 � x1f .y1/; � � � ; f .xkyk/� f .xk/yk � xkf .yk//kk

� � �
dC1X
iD1
.kxik2p C kyik2p/ (6.95)

for all x1; � � � ; xk; y1; � � � ; yk 2 A whenever the multiplication is defined, then there
exists a unique derivation ı W A ! A satisfying the following:

sup
k�1

k.f .x1/ � ı.x1/; � � � ; f .xk/ � ı.xk//kk � sup
k�1

dp C d

dp � d
�

kX
lD1

kxlkp

for all x1; � � � ; xk 2 A.

Proof. The proof is same to the proof given in Corollary 6.34. �

Corollary 6.41. Let �; p be nonnegative real numbers with p > 1 and f W A ! A
be a mapping such that

���� dX
iD1

f .x1i/C 	f .x1dC1/; � � � ;
dX

iD1
f .xki/C 	f .xk dC1/

����
k

�
����mf

�Pd
iD1 x1i C 	x1dC1

m

�
; � � � ;mf

�Pd
iD1 xki C 	xk dC1

m

�����
k

C � �
kX

lD1

dC1X
iD1

kxlikp (6.96)
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for all 	 2 T
1 and x11; � � � ; xk dC1 2 A. If, in addition,

k.f .x1y1/� f .x1/y1 � x1f .y1/; � � � ; f .xkyk/ � f .xk/yk � xkf .yk//kk

� � �
dC1X
iD1
.kxikp � kyikp/ (6.97)

for all x1; � � � ; xk; y1; � � � ; yk 2 A whenever the multiplication is defined, then there
exists a unique derivation ı W A ! A satisfying the following:

sup
k�1

k.f .x1/ � ı.x1/; � � � ; f .xk/ � ı.xk//kk � sup
k�1

dp C d

dp � d
�

kX
lD1

kxlkp

for all x1; � � � ; xk 2 A.

Remark 6.42. Let f W A ! A be a mapping with f .0/ D 0. Suppose that there exists
a function ' W AkdCk ! Œ0;1/ satisfying (6.68) and (6.89). If, in addition, there
exists a function  W A2k ! Œ0;1/ such that

k.f .x1y1/ � f .x1/f .y1/; � � � ; f .xkyk/� f .xk/f .yk//kk

�  .x1; y1; � � � ; xk; yk/ (6.98)

and

lim
n!1 sup

k�1
d�2n .dnx1; d

ny1; � � � ; dnxk; d
nyk/ D 0 (6.99)

for all x1; � � � ; xk; y1; � � � ; yk 2 A whenever the multiplication is defined, then there
exists a unique derivation ı W A ! A such that

sup
k�1

k.f .x1/� ı.x1/; � � � ; f .xk/� ı.xk//kk

� sup
k�1

Q'.x1; x1; � � � ;�dx1; � � � ; xk; xk; � � � ;�dxk/ (6.100)

for all x1; � � � ; xk 2 A.

Corollary 6.43. Let �; p be nonnegative real numbers with p < 1 and f W A ! A
be a mapping satisfying the following:
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���� dX
iD1

f .x1i/C 	f .x1dC1/; � � � ;
dX

iD1
f .xki/C 	f .xk dC1/

����
k

�
����mf

�Pd
iD1 x1i C 	x1dC1

m

�
; � � � ;mf

�Pd
iD1 xki C 	xk dC1

m

�����
k

C � �
kX

lD1

dC1X
iD1

kxlikp (6.101)

for all 	 2 T
1 and x11; � � � ; xk dC1 2 A. If, in addition,

k.f .x1y1/� f .x1/y1 � x1f .y1/; � � � ; f .xkyk/ � f .xk/yk � xkf .yk//kk

� � �
dC1X
iD1
.kxik2p C kyik2p/ (6.102)

for all x1; � � � ; xk; y1; � � � ; yk 2 A whenever the multiplication is defined. Then there
exists a unique derivation ı W A ! A satisfying

sup
k�1

k.f .x1/� ı.x1/; � � � ; f .xk/ � ı.xk//kk � sup
k�1

d C dp

d � dp
�

kX
lD1

kxlkp

for all x1; � � � ; xk 2 A.

Corollary 6.44. Let �; p be nonnegative real numbers with p < 1 and f W A ! A
be a mapping satisfying the following:

���� dX
iD1

f .x1i/C 	f .x1dC1/; � � � ;
dX

iD1
f .xki/C 	f .xk dC1/

����
k

�
����mf

�Pd
iD1 x1i C 	x1dC1

m

�
; � � � ;mf

�Pd
iD1 xki C 	xk dC1

m

�����
k

C � �
kX

lD1

dC1X
iD1

kxlikp (6.103)

for all 	 2 T
1 and x11; � � � ; xk dC1 2 A. If, in addition,

k.f .x1y1/� f .x1/y1 � x1f .y1/; � � � ; f .xkyk/ � f .xk/yk � xkf .yk//kk

� � �
dC1X
iD1
.kxikp � kyikp/ (6.104)
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for all x1; � � � ; xk; y1; � � � ; yk 2 A whenever the multiplication is defined, then there
exists a unique derivation ı W A ! A such that

sup
k�1

k.f .x1/ � ı.x1/; � � � ; f .xk/ � ı.xk//kk � sup
k�1

d C dp

d � dp
�

kX
lD1

kxlkp

for all x1; � � � ; xk 2 A.

6.5 Stability of Homomorphisms and Derivations
in Multi-C�–Ternary Algebras

Using the fixed point method, we prove the Hyers-Ulam stability of homomor-
phisms and derivations on multi-C�-ternary algebras for the additive functional
equation:

2f
�Pp

jD1 xj

2
C

dX
jD1

yj

�
D

pX
jD1

f .xj/C 2

dX
jD1

f .yj/:

6.5.1 Stability of Homomorphisms

Assume that A, B are C�-ternary algebras.
For any mapping f W A ! B; we define

C	f .x1; � � � ; xp; y1; � � � ; yd/

WD 2f
�Pp

jD1 	xj

2
C

dX
jD1

	yj

�
�

pX
jD1

	f .xj/� 2

dX
jD1

	f .yj/

for all 	 2 T
1 WD f� 2 C W j�j D 1g and x1; � � � ; xp; y1; � � � ; yd 2 A: One can easily

show that a mapping f W A ! B satisfies

C	f .x1; � � � ; xp; y1; � � � ; yd/ D 0

for all 	 2 T
1 and x1; � � � ; xp; y1; � � � ; yd 2 A if and only if

f .	x C �y/ D 	f .x/C �f .y/

for all 	; � 2 T
1 and x; y 2 A:
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Now, we introduce the following lemma for the main results in this section:

Lemma 6.45. Let fxng, fyng and fzng be the convergent sequences in A. Then the
sequence fŒxn; yn; zn�g is convergent in A

Proof. Let x; y; z 2 A be such that

lim
n!1 xn D x; lim

n!1 yn D y; lim
n!1 zn D z:

Since

Œxn; yn; zn� � Œx; y; z�
D Œxn � x; yn � y; zn; z�C Œxn; yn; z�C Œx; yn � y; zn�C Œxn; y; zn � z�

for all n � 1, we get

kŒxn; yn; zn� � Œx; y; z�k D kxn � xkkyn � ykkzn � zk C kxn � xkkynkkzk
Ckxkkyn � ykkznk C kxnkkykkzn � zk

for all n � 1 and so

lim
n!1Œxn; yn; zn� D Œx; y; z�:

This completes the proof. �

Using Theorem 1.3, we prove the Hyers-Ulam stability of homomorphisms in
multi-C�–ternary algebras for the following functional equation:

C	f .x1; � � � ; xm/ D 0:

Theorem 6.46. Let ..Bk; k � kk/ W k � 1/ be a multi-C�-ternary algebra. Let
f W A ! B be a mapping for which there exist the functions ' W A.pCd/k ! Œ0;1/

and  W A3k ! Œ0;1/ such that

lim
n!1 ��n'.�nx11; � � � ; �nx1p; �

ny11; � � � ; �ny1p;

� � � ; �nxk1; � � � ; �nxkp; � � � ; �nyk1; � � � ; �nykd/ D 0; (6.105)����C	f .x11; � � � ; x1p; y11;

� � � ; y1d/; � � � ;C	f .xk1; � � � ; xkp; yk1; � � � ; ykd/
����

k
(6.106)

� '.x11; � � � ; x1p; y11; � � � ; y1d; � � � ; xk1; � � � ; xkp; yk1; � � � ; ykd/;
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����f .Œx1; y1; z1�/ � Œf .x1/; f .y1/; f .z1/�;

� � � ; f .Œxk; yk; zk�/ � Œf .xk/; f .yk/; f .zk/�
����

k

�  .x1; y1; z1; � � � ; xk; yk; zk/; (6.107)

lim
n!1 ��3n .�nx1; �

ny1; �
nz1; � � � ; �nxk; �

nyk; �
nzk/ D 0 (6.108)

and

lim
n!1 ��2n .�nx1; �

ny1; z1; � � � ; �nxk; �
nyk; zk/ D 0 (6.109)

for all 	 2 T
1 and x11; � � � ; x1p; y11; � � � ; y1d; � � � ; xk1; � � � ; xkp; yk1; � � � ; ykd;

x1; � � � ; xk; y1; � � � ; yk; z1; � � � ; zk 2 A, where � D pC2d
2

. If there exists L < 1

such that

'
� pCd‚ …„ ƒ
�x1; � � � ; �x1;

pCd‚ …„ ƒ
�x2; � � � ; �x2; � � � ;

pCd‚ …„ ƒ
�xk; � � � ; �xk

�

� �L'
� pCd‚ …„ ƒ

x1; � � � ; x1;
pCd‚ …„ ƒ

x2; � � � ; x2; � � � ;
pCd‚ …„ ƒ

xk; � � � ; xk

�
(6.110)

for all x1; x2; � � � ; xk 2 A, then there exists a unique multi-C�-ternary algebra
homomorphism H W A ! B such that����f .x1/� H.x1/; � � � ; f .xk/ � H.xk/

����
k

� 1

.1 � L/2�
'
� pCd‚ …„ ƒ

x1; � � � ; x1;
pCd‚ …„ ƒ

x2; � � � ; x2; � � � ;
pCd‚ …„ ƒ

xk; � � � ; xk

�
(6.111)

for all x1; � � � ; xk 2 A.

Proof. Let 	 D 1 and xij D yij D xi for 1 � i � k in (6.106). Then we have

����f .�x1/� � f .x1/; � � � ; f .�xk/ � � f .xk/
����

k

� 1

2
'
� pCd‚ …„ ƒ

x1; � � � ; x1;
pCd‚ …„ ƒ

x2; � � � ; x2; � � � ;
pCd‚ …„ ƒ

xk; � � � ; xk

�
(6.112)

for all x1; � � � ; xk 2 A. Consider the set E WD fg W A ! Bg and introduce the
generalized metric on E as follows:
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d.g; h/ D inf
n
C 2 RC W

����g.x1/ � h.x1/; � � � ; g.xk/ � h.xk/
����

k

� C'
� pCd‚ …„ ƒ

x1; � � � ; x1;
pCd‚ …„ ƒ

x2; � � � ; x2; � � � ;
pCd‚ …„ ƒ

xk; � � � ; xk

�
; 8x1; � � � ; xk 2 A

o

which .E; d/ is complete.
Now, we consider the linear mapping� W E ! E such that

�g.x/ WD 1

�
g.�x/

for all x 2 A. Now, we have

d.�g; �h/ � Ld.g; h/

for all g; h 2 E. Let g; h 2 E and C 2 Œ0;1� be an arbitrary constant with
d.g; h/ � C. From the definition of d, we have

����g.x1/ � h.x1/; � � � ; g.xk/ � h.xk/
����

k
� C'

� pCd‚ …„ ƒ
x1; � � � ; x1; � � � ;

pCd‚ …„ ƒ
xk; � � � ; xk

�

for all x1; � � � ; xk 2 A. By the assumption and the last inequality, we have

�����g.x1/ ��h.x1/; � � � ; �g.xk/ ��h.xk/
����

k

D 1

�

����g.�x1/� h.�x1/; � � � ; g.�xk/ � h.�xk/
����

k

� C

�
'
� pCd‚ …„ ƒ
�x1; � � � ; �x1; � � � ;

pCd‚ …„ ƒ
�xk; � � � ; �xk

�

� CL'
� pCd‚ …„ ƒ

x1; � � � ; x1; � � � ;
pCd‚ …„ ƒ

xk; � � � ; xk

�
for all x1; � � � ; xk 2 A and so�����f .x1/� f .x1/; � � � ; �f .xk/� f .xk/

����
k

D
���� 1
�

f .�x1/� f .x1/; � � � ; 1
�

f .�xk/� f .xk/
����

k

D 1

�

����f .�x1/� � f .x1/; � � � ; f .�xk/� � f .xk/
����

k

� 1

2�
'
� pCd‚ …„ ƒ

x1; � � � ; x1; � � � ;
pCd‚ …„ ƒ

xk; � � � ; xk

�
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for all x1; � � � ; xk 2 A. Hence d.�f ; f / � 1
2�

. By Theorem 1.3, the sequence f�nf g
converges to a fixed point H of �, i.e., H W A ! B is a mapping defined by

H.x/ D lim
n!1.�

nf /.x/ D lim
n!1

1

�n
f .�nx/ (6.113)

and H.�x/ D �H.x/ for all x 2 A. Also, H is the unique fixed point of � in the set
E0 D fg 2 E W d.f ; g/ < 1g and

d.H; f / � 1

1 � L
d.�f ; f / � 1

.1 � L/2�

i.e., the inequality (6.111) holds for all x1; � � � ; xk 2 A. Thus it follows from the
definition of H, (6.105) and (6.106) that

����2H
�Pp

jD1 	x1j

2
C

dX
jD1

	y1j

�
�

pX
jD1

	H.x1j/� 2

dX
jD1

	H.y1j/;

� � � ; 2H
�Pp

jD1 	xkj

2
C

dX
jD1

	ykj

�
�

pX
jD1

	H.xkj/� 2

dX
jD1

	H.ykj/
����

k

D lim
n!1

1

�n

����2f
�
�n

Pp
jD1 	x1j

2
C �n

dX
jD1

	y1j

�

�
pX

jD1
	f .�nx1j/ � 2

dX
jD1

	f .�ny1j/;

� � � ; 2f
�
�n

Pp
jD1 	xkj

2
C �n

dX
jD1

	ykj

�

�
pX

jD1
	f .�nxkj/� 2

dX
jD1

	f .�nykj/
����

k

� lim
n!1

1

�n

����C	f .�nx11; � � � ; �nx1p; �
ny11; � � � ; �ny1d/;

� � � ;C	f .�nxk1; � � � ; �nxkp; �
nyk1; � � � ; �nykd/

����
k

� lim
n!1

1

�n
'.�nx11; � � � ; �nx1p:�

ny11; � � � ; �ny1d;

� � � ; �nxk1; � � � ; �nxkp; �
nyk1; � � � ; �nykd/ D 0
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for all 	 2 T
1 and x11; � � � ; x1p; y11; � � � ; y1d; � � � ; xk1; � � � ; xkp; yk1; � � � ; ykd 2 A.

Hence we have

2H
�Pp

jD1 	xij

2
C

dX
jD1

	yij

�
D

pX
jD1

	H.xij/C 2

dX
jD1

	H.yij/

for all 	 2 T
1, x11; � � � ; x1p; y11; � � � ; y1d; � � � ; xk1; � � � ; xkp; yk1; � � � ; ykd 2 A and

1 � i � k and so

H.�x C 	y/ D �H.x/C 	H.y/

for all �;	 2 T
1 and x; y 2 A. Therefore, by Lemma 3.12, the mapping H W A ! B

is C-linear.
On the other hand, it follows from (6.107) and (6.108) that����H.Œx1; y1; z1�/� ŒH.x1/;H.y1/;H.z1/�;

� � � ;H.Œxk; yk; zk�/ � ŒH.xk/;H.yk/;H.zk/�
����

k

D lim
n!1

1

�3n

����f
�
Œ�nx1; �

ny1; �
nz1�

�
�
h
f .�nx1/; f .�

ny1/; f .�
nz1/

i
;

� � � ; f
�
Œ�nxk; �

nyk; �
nzk�

�
�
h
f .�nxk/; f .�

nyk/; f .�
nzk/

i����
k

� lim
n!1

1

�3n
 .�nx1; �

ny1; �
nz1; � � � ; �nxk; �

nyk; �
nzk/

D 0

for all x1; y1; z1; � � � ; xk; yk; zk 2 A. Thus we have

H.Œx; y; z�/ D ŒH.x/;H.y/;H.z/�

for all x; y; z 2 A. Thus H W A ! B is a homomorphism satisfying (6.111).
Now, let T W A ! B be another multi-C�-ternary algebras homomorphism

satisfying (6.111). Since d.f ;T/ � 1
.1�L/2� and T is C-linear, we get T 2 E0 and

.�T/.x/ D 1
�
.T�x/ D T.x/ for all x 2 A, i.e., T is a fixed point of�. Since H is the

unique fixed point of� 2 E0, we have H D T. This completes the proof. �

Theorem 6.47. Let ..Bk; k � kk/ W k � 1/ be a multi-C�-ternary algebra.
Let f W A ! B be a mapping for which there exist the functions ' W A.pCd/k ! Œ0;1/

and  W A3k ! Œ0;1/ satisfying the inequalities (6.106) and (6.107) such that
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lim
n!1 �n'

�x11
�n
; � � � ; x1p

�n
;

y11
�n
; � � � ; y1p

�n
; � � � ; xk1

�n
;

� � � ; xkp

�n
; � � � ; yk1

�n
; � � � ; ykd

�n

�
D 0; (6.114)

lim
n!1 �3n 

� x1
�n
;

y1
�n
;

z1
�n
; � � � ; xk

�n
;

yk

�n
;

zk

�n

�
D 0 (6.115)

and

lim
n!1 �2n 

� x1
�n
;

y1
�n
; z1; � � � ; xk

�n
;

yk

�n
; zk

�
D 0 (6.116)

for all 	 2 T
1 and x11; � � � ; x1p; y11; � � � ; y1d; � � � ; xk1; � � � ; xkp; yk1; � � � ; ykd;

x1; � � � ; xk; y1; � � � ; yk; z1; � � � ; zk 2 A, where � D pC2d
2

. If there exists L < 1 such
that

'
� pCd‚ …„ ƒ

x1
�
; � � � ; x1

�
;

pCd‚ …„ ƒ
x2
�
; � � � ; x2

�
; � � � ;

pCd‚ …„ ƒ
xk

�
; � � � ; xk

�

�

� L

�
'
� pCd‚ …„ ƒ

x1; � � � ; x1;
pCd‚ …„ ƒ

x2; � � � ; x2; � � � ;
pCd‚ …„ ƒ

xk; � � � ; xk

�
(6.117)

for all x1; x2; � � � ; xk 2 A, then there exists a unique multi-C�-ternary algebra
homomorphism H W A ! B such that

����f .x1/� H.x1/; � � � ; f .xk/ � H.xk/
����

k

� 1

.1 � L/2�
'
� pCd‚ …„ ƒ

x1; � � � ; x1;
pCd‚ …„ ƒ

x2; � � � ; x2; � � � ;
pCd‚ …„ ƒ

xk; � � � ; xk

�
(6.118)

for all x1; � � � ; xk 2 A.

Proof. If we replace xi in (6.112) by xi
�

for 1 � i � k, then we have

����f .x1/ � � f
� 1

x1

�
; � � � ; f .xk/� � f

� 1
xk

�����
k

� 1

2
'
� pCd‚ …„ ƒ
1

x1
; � � � ; 1

x1
;

pCd‚ …„ ƒ
1

x2
; � � � ; 1

x2
; � � � ;

pCd‚ …„ ƒ
1

xk
; � � � ; 1

xk

�
(6.119)
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for all x1; � � � ; xk 2 A. Consider the set E WD fg W A ! Bg and introduce the
generalized metric on E as follows:

d.g; h/ D inf
n
C 2 RC W

����g.x1/ � h.x1/; � � � ; g.xk/ � h.xk/
����

k

� C'
� pCd‚ …„ ƒ

x1; � � � ; x1;
pCd‚ …„ ƒ

x2; � � � ; x2; � � � ;
pCd‚ …„ ƒ

xk; � � � ; xk

�
; 8x1; � � � ; xk 2 A

o
;

which .E; d/ is complete. Now, we consider the linear mapping � W E ! E such
that

�g.x/ WD �g
� x

�

�

for all x 2 A. Now, we have

d.�g; �h/ � Ld.g; h/

for all g; h 2 E. Let g; h 2 E and C 2 Œ0;1� be an arbitrary constant with
d.g; h/ � C. From the definition of d, we have

����g.x1/ � h.x1/; � � � ; g.xk/ � h.xk/
����

k
� C'

� pCd‚ …„ ƒ
x1; � � � ; x1; � � � ;

pCd‚ …„ ƒ
xk; � � � ; xk

�

for all x1; � � � ; xk 2 A. By the assumption and the last inequality, we have

�����g.x1/ ��h.x1/; � � � ; �g.xk/ ��h.xk/
�
kk

D �
����g

�x1
�

�
� h

�x1
�

�
; � � � ; g

�xk

�

�
� h

�xk

�

�����
k

� C�'
� pCd‚ …„ ƒ

x1
�
; � � � ; x1

�
; � � � ;

pCd‚ …„ ƒ
xk

�
; � � � ; xk

�

�

� CL'
� pCd‚ …„ ƒ

x1; � � � ; x1; � � � ;
pCd‚ …„ ƒ

xk; � � � ; xk

�
for all x1; � � � ; xk 2 A and so

d.�g; �h/ � Ld.g; h/

for any g; h 2 E. It follows from (6.119) that d.�f ; f / � 1
2�

. Therefore, according to
Theorem 1.3, the sequence f�nf g converges to a fixed point H of�, i.e., H W A ! B
is a mapping defined by
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H.x/ D lim
n!1.�

nf /.x/ D lim
n!1 �nf

� x

�n

�
(6.120)

for all x 2 A.
The rest of the proof is similar to the proof of Theorem 6.46 and so we omit it.

This completes the proof. �

Theorem 6.48. Let r and � be non-negative real numbers such that r … Œ1; 3� and
..Bk; k � kk/ W k � 1/ be a multi-C�-ternary algebra. Let f W A ! B be a mapping
such that����C	f .x11; � � � ; x1p; y11; � � � ; y1d/;

� � � ;C	f .xk1; � � � ; xkp; yk1; � � � ; ykd/
����

k
(6.121)

� �
� pX

jD1
kx1jkr

A C
dX

jD1
ky1jkr

A C � � � C
pX

jD1
kxkjkr

A C
dX

jD1
kykjkr

A

�

and ����f .Œx1; y1; z1�/ � Œf .x1/; f .y1/; f .z1/�;

� � � ; f .Œxk; yk; zk�/ � Œf .xk/; f .yk/; f .zk/�
����

k
(6.122)

� �.kx1kr
A � ky1kr

A:kz1kr
A C � � � C kxkkr

A � kykkr
A � kzkkr

A/

for all 	 2 T
1 and x11; � � � ; x1p; y11; � � � ; y1d; � � � ; xk1; � � � ; xkp; yk1; � � � ; ykd;

x1; � � � ; xk; y1; � � � ; yk; z1; � � � ; zk 2 A: Then there exists a unique C�-ternary algebra
homomorphism H W A ! B such that����f .x1/� H.x1/; � � � ; f .xk/� H.xk/

����
B

� 2r.p C d/�

j2.p C 2d/r � .p C 2d/2rj .kx1kr
A C � � � C kxkkr

A/ (6.123)

for all x1; � � � ; xk 2 A.

Proof. The proof follows from Theorem 6.46 by taking

'.x11; � � � ; x1p; y11; � � � ; y1d; � � � ; xk1; � � � ; xkp; yk1; � � � ; ykd/

WD �
� pX

jD1
kxijkr

A C
dX

jD1
kyijkr

A C � � � C
pX

jD1
kxkjkr

A C
dX

jD1
kykjkr

A

�
;
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 .x1; y1; z1; � � � ; xk; yk; zk/

WD �.kx1kr
A � ky1kr

A � kz1kr
A C � � � C kxkkr

A � kykkr
A � kzkkr

A/

for all 	 2 T
1 and x11; � � � ; x1p; y11; � � � ; y1d; � � � ; xk1; � � � ; xkp; yk1; � � � ; ykd;

x1; � � � ; xk; y1; � � � ; yk; z1; � � � ; zk 2 A, L D 21�r.p C 2d/r�1, when 0 < r < 1, and
L D 2 � 21�r.p C 2d/r�1, when r > 3. This completes the proof. �

Theorem 6.49. Let ..Bk; k � kk/ W k � 1/ be a multi-C�-ternary algebra. Let
f W A ! B be a mapping for which there exist the functions ' W A.pCd/k ! Œ0;1/

and  W A3k ! Œ0;1/ such that

lim
n!1 d�n'.dnx11; � � � ; dnx1p; d

ny11; � � � ; dny1p;

� � � ; dnxk1; � � � ; dnxkp; � � � ; dnyk1; � � � ; dnykd/ D 0; (6.124)

k.C	f .x11; � � � ; x1p; y11; � � � ; y1d/;

� � � ;C	f .xk1; � � � ; xkp; yk1; � � � ; ykd//kk (6.125)

� '.x11; � � � ; x1p; y11; � � � ; y1d; � � � ; xk1; � � � ; xkp; yk1; � � � ; ykd/;

k.f .Œx1; y1; z1�/ � Œf .x1/; f .y1/; f .z1/�;
� � � ; f .Œxk; yk; zk�/ � Œf .xk/; f .yk/; f .zk/�/kk

�  .x1; y1; z1; � � � ; xk; yk; zk/; (6.126)

lim
n!1 d�3n .dnx1; d

ny1; d
nz1; � � � ; dnxk; d

nyk; d
nzk/ D 0 (6.127)

and

lim
n!1 d�2n .dnx1; d

ny1; z1; � � � ; dnxk; d
nyk; zk/ D 0 (6.128)

for all 	 2 T
1 and x11; � � � ; x1p; y11; � � � ; y1d; � � � ; xk1; � � � ; xkp; yk1; � � � ; ykd;

x1; � � � ; xk; y1; � � � ; yk; z1; � � � ; zk 2 A, where � D pC2d
2

. If there exists L < 1 such
that

'
� pCd‚ …„ ƒ

dx1; � � � ; dx1;

pCd‚ …„ ƒ
dx2; � � � ; dx2; � � � ;

pCd‚ …„ ƒ
dxk; � � � ; dxk

�
(6.129)

� dL'
� p‚ …„ ƒ
0; � � � ; 0;

d‚ …„ ƒ
x1; � � � ; x1;

p‚ …„ ƒ
0; � � � ; 0;

d‚ …„ ƒ
x2; � � � ; x2; � � � ;

p‚ …„ ƒ
0; � � � ; 0;

d‚ …„ ƒ
xk; � � � ; xk

�
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for all x1; x2; � � � ; xk 2 A, then there exists a unique homomorphism H W A ! B such
that

k.f .x1/� H.x1/; � � � ; f .xk/� H.xk//kk

� 1

.1 � L/2d
'
� p‚ …„ ƒ
0; � � � ; 0;

d‚ …„ ƒ
x1; � � � ; x1;

p‚ …„ ƒ
0; � � � ; 0; (6.130)

d‚ …„ ƒ
x2; � � � ; x2; � � � ;

p‚ …„ ƒ
0; � � � ; 0;

d‚ …„ ƒ
xk; � � � ; xk

�
for all x1; � � � ; xk 2 A.

Proof. Let 	 D 1 and xij D 0; yij D xi for 1 � i � k in (6.125). Then we get

k.f .dx1/� df .x1/; � � � ; f .dxk/� df .xk//kk (6.131)

� 1

2
'
� p‚ …„ ƒ
0; � � � ; 0;

d‚ …„ ƒ
x1; � � � ; x1;

p‚ …„ ƒ
0; � � � ; 0;

d‚ …„ ƒ
x2; � � � ; x2; � � � ;

p‚ …„ ƒ
0; � � � ; 0;

d‚ …„ ƒ
xk; � � � ; xk

�

for all x1; � � � ; xk 2 A. Consider the set E WD fg W A ! Bg and introduce the
generalized metric on E as follows:

d.g; h/

D inf
˚
C 2 RC W k.g.x1/� h.x1/; � � � ; g.xk/ � h.xk//kk; 8x1; � � � ; xk 2 A

�

� C'
� p‚ …„ ƒ
0; � � � ; 0;

d‚ …„ ƒ
x1; � � � ; x1;

p‚ …„ ƒ
0; � � � ; 0;

d‚ …„ ƒ
x2; � � � ; x2; � � � ;

p‚ …„ ƒ
0; � � � ; 0;

d‚ …„ ƒ
xk; � � � ; xk

�
;

which .E; d/ is complete.
Now, we consider the linear mapping� W E ! E defined by

�g.x/ WD 1

d
g.dx/

for all x 2 A. Now, we have

d.�g; �h/ � Ld.g; h/

for all g; h 2 E. Let g; h 2 E and let C 2 Œ0;1� be an arbitrary constant with
d.g; h/ � C. From the definition of d, we have

k.g.x1/� h.x1/; � � � ; g.xk/� h.xk//kk

� C'
� p‚ …„ ƒ
0; � � � ; 0;

d‚ …„ ƒ
x1; � � � ; x1; � � � ;

p‚ …„ ƒ
0; � � � ; 0;

d‚ …„ ƒ
xk; � � � ; xk

�
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for all x1; � � � ; xk 2 A. By the assumption and the last inequality, we have

k.�g.x1/ ��h.x1/; � � � ; �g.xk/ ��h.xk//kk

D 1

d
k.g.dx1/� h.dx1/; � � � ; .g.dxk/� h.dxk/kk

� C

d
'
� p‚ …„ ƒ
0; � � � ; 0;

d‚ …„ ƒ
dx1; � � � ; dx1; � � � ;

p‚ …„ ƒ
0; � � � ; 0;

d‚ …„ ƒ
dxk; � � � ; dxk

�

� CL'
� p‚ …„ ƒ
0; � � � ; 0;

d‚ …„ ƒ
x1; � � � ; x1; � � � ;

p‚ …„ ƒ
0; � � � ; 0;

d‚ …„ ƒ
xk; � � � ; xk

�
for all x1; � � � ; xk 2 A. Thus we have

k.�f .x1/� f .x1/; � � � ; �f .xk/ � f .xk//kk

D
���. 1

d
f .dx1/ � f .x1/; � � � ; 1

d
f .dxk/� f .xk//

���
k

D 1

d
k.f .dx1/ � df .x1/; � � � ; f .dxk/� df .xk//kk

� 1

2d
'
� p‚ …„ ƒ
0; � � � ; 0;

d‚ …„ ƒ
x1; � � � ; x1; � � � ;

p‚ …„ ƒ
0; � � � ; 0;

d‚ …„ ƒ
xk; � � � ; xk

�

for all x1; � � � ; xk 2 A. Hence d.�f ; f / � 1
2d . By Theorem 1.3, the sequence f�nf g

converges to a fixed point H of �, i.e., H W A ! B is a mapping defined by

H.x/ D lim
n!1.�

nf /.x/ D lim
n!1

1

dn
f .dnx/ (6.132)

and H.dx/ D dH.x/ for all x 2 A. Also, H is the unique fixed point of � in the set
E0 D fg 2 E W d.f ; g/ < 1g and

d.H; f / � 1

1 � L
d.�f ; f / � 1

.1 � L/2d
;

i.e., the inequality (6.130) holds for all x1; � � � ; xk 2 A. It follows from the definition
of H, (6.124) and (6.125) that

����2H
�Pp

jD1 	x1j

2
C

dX
jD1

	y1j

�
�

pX
jD1

	H.x1j/� 2

dX
jD1

	H.y1j/;

� � � ; 2H
�Pp

jD1 	xkj

2
C

dX
jD1

	ykj

�
�

pX
jD1

	H.xkj/� 2

dX
jD1

	H.ykj/
����

k
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D lim
n!1

1

dn

����2f
�

dn

Pp
jD1 	x1j

2
C dn

dX
jD1

	y1j

�

�
pX

jD1
	f .dnx1j/� 2

dX
jD1

	f .dny1j/;

� � � ; 2f
�

dn

Pp
jD1 	xkj

2
C dn

dX
jD1

	ykj

�

�
pX

jD1
	f .dnxkj/� 2

dX
jD1

	f .dnykj/
����

k

� lim
n!1

1

dn

����C	f .dnx11; � � � ; dnx1p; d
ny11; � � � ; dny1d/;

� � � ;C	f .dnxk1; � � � ; dnxkp; d
nyk1; � � � ; dnykd/

����
k

C lim
n!1

1

dn
'.dnx11; � � � ; dnx1p; d

ny11; � � � ; dny1d;

� � � ; dnxk1; � � � ; dnxkp; d
nyk1; � � � ; dnykd/ D 0

for all 	 2 T
1 and x11; � � � ; x1p; y11; � � � ; y1d; � � � ; xk1; � � � ; xkp; yk1; � � � ; ykd 2 A.

Hence we have

2H
�Pp

jD1 	xij

2
C

dX
jD1

	yij

�
D

pX
jD1

	H.xij/C 2

dX
jD1

	H.yij/

for all 	 2 T
1, x11; � � � ; x1p; y11; � � � ; y1d; � � � ; xk1; � � � ; xkp; yk1; � � � ; ykd 2 A and

1 � i � k and so

H.�x C 	y/ D �H.x/C 	H.y/

for all �;	 2 T
1 and x; y 2 A. Therefore, by Lemma 3.12, the mapping H W A ! B

is C-linear.
On the other hand, it follows from (6.126) and (6.127) that���H.Œx1; y1; z1�/ � ŒH.x1/;H.y1/;H.z1/�;

� � � ;H.Œxk; yk; zk�/ � ŒH.xk/;H.yk/;H.zk/�
���

k
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D lim
n!1

1

d3n

���f
�
Œdnx1; d

ny1; d
nz1�

�
�
h
f .dnx1/; f .d

ny1/; f .d
nz1/

i
;

� � � ; f
�
Œdnxk; d

nyk; d
nzk�

�
�
h
f .dnxk/; f .d

nyk/; f .d
nzk/

i���
k

� lim
n!1

1

d3n
 .dnx1; d

ny1; d
nz1; � � � ; dnxk; d

nyk; d
nzk/

D 0

for all x1; y1; z1; � � � ; xk; yk; zk 2 A. Thus

H.Œx; y; z�/ D ŒH.x/;H.y/;H.z/�

for all x; y; z 2 A. Thus H W A ! B is a multi-C�-ternary algebra homomorphism
satisfying (6.129).

Now, let T W A ! B be another C�-ternary algebras homomorphism satis-
fying (6.130). Since d.f ;T/ � 1

.1�L/2d and T is C-linear, we have T 2 E0 and

.�T/.x/ D 1
d .T�x/ D T.x/ for all x 2 A, i.e., T is a fixed point of�. Since H is the

unique fixed point of� 2 E0, we have H D T. This completes the proof. �
Theorem 6.50. Let r; s; � be nonnegative real numbers such that 0 < r ¤ 1,
0 < s ¤ 3 and let d � 2: Suppose that f W A ! B is a mapping with f .0/ D 0

satisfying (6.121) and

����f .Œx1; y1; z1�/ � Œf .x1/; f .y1/; f .z1/�;

� � � ; f .Œxk; yk; zk�/ � Œf .xk/; f .yk/; f .zk/�
����

k
(6.133)

� �
�
kx1ks

A � ky1ks
A � kz1ks

A C � � � C kxkks
A � kykks

A � kzkks
A

�

for all 	 2 T
1 and x1; � � � ; xk; y1; � � � ; yk; z1; � � � ; zk 2 A: Then there exists a unique

C�–ternary algebra homomorphism H W A ! B such that

����f .x1/� H.x1/; � � � ; f .xk/ � H.xk/
����

K

� d�

2jd � drj
�
kx1kr

A C � � � C kxKkr
A

�
(6.134)

for all x1; � � � ; xk 2 A
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Proof. Let 0 < r < 1 and 0 < s < 3: Similarly, one can prove the theorem for other
cases. The proof follows from Theorem 6.49 by taking

'.x11; � � � ; x1p; y11; � � � ; y1d; � � � ; xk1; � � � ; xkp; yk1; � � � ; ykd/

WD �
� pX

jD1
kx1jkr

A C
dX

jD1
ky1jkr

A C � � � C
pX

jD1
kxkjkr

A C
dX

jD1
kykjkr

A

�
;

 .x1; y1; z1; � � � ; xk; yk; zk/

WD �.kx1ks
A � ky1ks

A � kz1ks
A C � � � C kxkks

A � kykks
A � kzkks

A/

for all 	 2 T
1 and x11; � � � ; x1p; y11; � � � ; y1d; � � � ; xk1; � � � ; xkp; yk1; � � � ; ykd; x1;

� � � ; xk; y1; � � � ; yk; z1; � � � ; zk 2 A and L D dr�1, when 0 < r < 1 and 0 < s < 3 and
L D 2 � dr�1, when r > 1 and s > 3. This completes the proof. �

Now, assume that A is a unital multi-C�-ternary algebra with the norm k � k and
the unit e and B is a unital C�-ternary algebra with the norm k � k and the unit e0.

We investigate homomorphisms in multi-C�-ternary algebras associated with the
following functional equation:

C	f .x1; � � � ; xp; y1; � � � ; yd/ D 0:

Theorem 6.51. Let r < 1, � be nonnegative real numbers and f W A ! B be a
mapping satisfying (6.121) and (6.122). If there exist a real number � > 1 .resp.,
0 < � < 1/ and an element x0 2 A such that limn!1 1

�n f .�nx0/ D e0 .resp.,
limn!1 �nf . x0

�n / D e0/, then the mapping f W A ! B is a multi–C�–ternary algebra
homomorphism.

Proof. By using the proof of Theorem 6.48, there exists a unique multi-C�-ternary
algebra homomorphism H W A ! B satisfying (6.123). It follows from (6.123) that

H.x/ D lim
n!1

1

�n
f .�nx/

�
resp:; H.x/ D lim

n!1�nf
� x

�n

��

for all x 2 A and � > 1 .0 < � < 1/: Therefore, by the assumption, we get that
H.x0/ D e0: Let � > 1 and limn!1 1

�n f .�nx0/ D e0: It follows from (6.122) that

����ŒH.x1/;H.y1/;H.z1/� � ŒH.x1/;H.y1/; f .z1/�;
� � � ; ŒH.xk/;H.yk/;H.zk/� � ŒH.xk/;H.yk/; f .zk/�

����
D
����HŒx1; y1; z1� � ŒH.x1/;H.y1/; f .z1/�;

� � � ;HŒxk; yk; zk� � ŒH.xk/;H.yk/; f .zk/�
����



6.5 Stability of Homomorphisms and Derivations in Multi-C�–Ternary Algebras 297

D lim
n!1

1

�2n

����f .Œ�nx1; �
ny1; z1�/ � Œf .�nx1/; f .�

ny1/; f .z1/�;

� � � ; f .Œ�nxk; �
nyk; zk�/ � Œf .�nxk/; f .�

nyk/; f .zk/�
����

� lim
n!1

�rn

�3n
�.kx1kr

A � ky1kr
A � kz1kr

A C � � � C kxkkr
A � kykkr

A � kzkkr
A/

D 0

for all x1; � � � ; xk 2 A and so

ŒH.x/;H.y/;H.z/� D ŒH.x/;H.y/; f .z/�

for all x; y; z 2 A: Letting x D y D x0 in the last equality, we get f .z/ D H.z/ for all
z 2 A: Similarly, one can show that H.x/ D f .x/ for all x 2 A when 0 < � < 1 and
limn!1 �nf . x0

�n / D e0:
Similarly, one can show the theorem for the case � > 1. Therefore, the mapping

f W A ! B is a multi-C�-ternary algebra homomorphism. This completes the
proof. �

Remark 6.52. Let r > 1, � be nonnegative real numbers and f W A ! B be a
mapping satisfying (6.121) and (6.122). If there exist a real number � > 1 .resp.,
0 < � < 1/ and an element x0 2 A such that limn!1 1

�n f .�nx0/ D e0 .resp.,
limn!1 �nf . x0

�n / D e0/, then the mapping f W A ! B is a multi-C�-ternary algebra
homomorphism.

6.5.2 Stability of Derivations in Multi-C�-Ternary Algebras

Assume that A is a C�-ternary algebra with the norm k � k.
Park [231] proved the Hyers-Ulam stability of derivations on C�-ternary algebras

for the following functional equation:

C	f .x1; � � � ; xp; y1; � � � ; yd/ D 0:

For any mapping f W A ! A; let

Df .x; y; z/ D f .Œx; y; z�/ � Œf .x/; y; z� � Œx; f .y/; z� � Œx; y; f .z/�
for all x; y; z 2 A.

Theorem 6.53. Let ..Ak; k � kk/ W k 2 N/ be a multi-C�-ternary algebra. Let
f W A ! A be a mapping for which there exist the functions ' W A.pCd/k ! Œ0;1/

and  W A3k ! Œ0;1/ satisfying the inequalities (6.105), (6.106) and (6.108) such
that
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����Df .x1; y1; z1/; � � � ;Df .xk; yk; zk/
����

�  .x1; y1; z1; � � � ; xk; yk; zk/ (6.135)

for all 	 2 T
1 and x11; � � � ; x1p; y11; � � � ; y1d; � � � ; xk1; � � � ; xkp; yk1; � � � ; ykd;

x1; � � � ; xk; y1; � � � ; yk; z1; � � � ; zk 2 A, where � D pC2d
2

. If there exists L < 1

such that

'
� pCd‚ …„ ƒ
�x1; � � � ; �x1;

pCd‚ …„ ƒ
�x2; � � � ; �x2; � � � ;

pCd‚ …„ ƒ
�xk; � � � ; �xk

�

� �L'
� pCd‚ …„ ƒ

x1; � � � ; x1;
pCd‚ …„ ƒ

x2; � � � ; x2; � � � ;
pCd‚ …„ ƒ

xk; � � � ; xk

�
(6.136)

for all x1; x2; � � � ; xk 2 A, then there exists a unique multi-C�-ternary derivation
ı W A ! B such that����f .x1/� ı.x1/; � � � ; f .xk/� ı.xk/

����
k

� 1

.1 � L/2�
'
� pCd‚ …„ ƒ

x1; � � � ; x1;
pCd‚ …„ ƒ

x2; � � � ; x2; � � � ;
pCd‚ …„ ƒ

xk; � � � ; xk

�
(6.137)

for all x1; � � � ; xk 2 A.

Proof. By the same reasoning as in the proof of Theorem 6.46, there exists a unique
C-linear mapping ı W A ! A satisfying (6.135). The mapping ı W A ! A is given by

ı.x/ D lim
n!1.�

nf /.x/ D lim
n!1

1

�n
f .�nx/ (6.138)

and ı.�x/ D �ı.x/ for all x 2 A. Also, H is the unique fixed point of � in the set
E0 D fg 2 E W d.f ; g/ < 1g and

d.ı; f / � 1

1 � L
d.�f ; f / � 1

.1 � L/2�
;

i.e., the inequality (6.110) holds for all x1; � � � ; xk 2 A. It follows from the definition
of ı, (6.105), (6.106) and (6.138) that����C	ı.x11; � � � ; x1py11; � � � y1d/; � � � ;C	ı.xk1; � � � ; xkpyk1; � � � ykd/

����
k

D lim
n!1

1

�n

����C	f .�nx11; � � � ; �nx1p; �
ny11; � � � ; �ny1d/;
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� � � ;C	f .�nxk1; � � � ; �nxkp; �
nyk1; � � � ; �nykd/

����
k

� lim
n!1

1

�n
'.�nx11; � � � ; �nx1p:�

ny11; � � � ; �ny1d;

� � � ; �nxk1; � � � ; �nxkp; �
nyk1; � � � ; �nykd/

D 0

for all 	 2 T
1 and x11; � � � ; x1p; y11; � � � ; y1d; � � � ; xk1; � � � ; xkp; yk1; � � � ; ykd 2 A.

Hence we have

2ı
�Pp

jD1 	xij

2
C

dX
jD1

	yij

�
D

pX
jD1

	ı.xij/C 2

dX
jD1

	ı.yij/

for all 	 2 T
1, x11; � � � ; x1p; y11; � � � ; y1d; � � � ; xk1; � � � ; xkp; yk1; � � � ; ykd 2 A and

1 � i � k and so

ı.�x C 	y/ D �ı.x/C 	ı.y/

for all �;	 2 T
1 and x; y 2 A. Therefore, by Lemma 3.12, the mapping ı W A ! B

is C-linear.
On the other hand, it follows from (6.108) and (6.135) that����Dı.x1; y1; z1/; � � � ;Dı.xk; yk; zk/

����
k

D lim
n!1

1

�3n

���f
�

Df .�nx1; �
ny1; �

nz1/; � � � ; f .�nxk; �
nyk; �

nzk/
����

� lim
n!1

1

�3n
 .�nx1; �

ny1; �
nz1; � � � ; �nxk; �

nyk; �
nzk/

D 0

for all x1; y1; z1; � � � ; xk; yk; zk 2 A and so

.ı.Œx1; y1; z1�/; � � � ; ı.Œxk; yk; zk�//

D .Œı.x1/; .y1/; .z1/�C Œx1; ı.y1/; z1�C Œx1; y1; ı.z1/�; (6.139)

� � � ; Œı.xk/; .yk/; .zk/�C Œxk; ı.yk/; zk�C Œxk; yk; ı.zk/�/

for all x; y; z 2 A and so the mapping ı W A ! A is a C�-ternary derivation. It follows
from (6.135) and (6.108) that
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����ıŒx1; y1; z1� � Œı.x1/; y1; z1� � Œx1; ı.y1/; z1� � Œx; y; f .z1/�;

� � � ; ıŒxk; yk; zk� � Œı.xk/; yk; zk�� Œxk; ı.yk/; zk� � Œx; y; f .zk/�
����

D lim
n!1

1

�2n

����f Œ�nx1; �
ny1; z1� � Œf .�nx1/; �

ny1; z1�

� Œ�nx1; f .�
ny1/; z1� � Œ�nx1; �

ny1; f .z1/�;

� � � ; f Œ�nxk; �
nyk; zk� � Œf .�nxk/; �

nyk; zk�

� Œ�nxk; f .�
nyk/; zk� � Œ�nxk; �

nyk; f .zk/�
����

� lim
n!1

1

�2n
 .�nx1; �

ny1; z1; � � � ; �nxk; �
nyk; zk/

D 0

for all x1; y1; z1; � � � ; xk; yk; zk 2 A and so

.ıŒx; y; z�/ D Œı.x/; y; z�C Œx; ı.y/; z�C Œx; y; f .z/� (6.140)

for all x; y; z 2 A: Hence it follows from (6.139) and (6.140) that

Œx; y; ı.z/� D Œx; y; f .z/� (6.141)

for all x; y; z 2 A: Letting x D y D f .z/� ı.z/ in (6.141), we have

kf .z/ � ı.z/k3 D
���hf .z/ � ı.z/; f .z/� ı.z/; f .z/� ı.z/

i��� D 0 (6.142)

for all z1; � � � ; zk 2 A and hence f .z/ D ı.z/ for all z 2 A. Therefore, the mapping
f W A ! A is a multi-C�–ternary derivation. This completes the proof. �

Corollary 6.54. Let r < 1; s < 2, � be non-negative real numbers and f W A ! A
be a mapping satisfying (6.121) and

k
�

Df .x1; y1; z1/; � � � ;Df .xk; yk; zk/
�
k

� �.kx1ks
A � ky1ks

A � kz1ks
A C � � � C kxkks

A � kykks
A � kzkks

A/

for all x1; y1; z1; � � � ; xk; yk; zk 2 A: Then the mapping f W A ! A is a multi-C�-
ternary derivation.

Proof. Define

'.x11; � � � ; x1p; y11; � � � ; y1d; � � � ; xk1; � � � ; xkp; yk1; � � � ; ykd/

D �
� pX

jD1
kx1jkr

A C
dX

jD1
ky1jkr

A; � � � ;
pX

jD1
kxkjkr

A C
dX

jD1
kykjkr

A

�
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and

 .x1; y1; z1; � � � ; xk; yk; zk/

D �
�
kx1ks

A � ky1ks
A � kz1ks

A C � � � C kxkks
A � kykks

A � kzkks
A

�
for all x1; y1; z1; � � � ; xk; yk; zk; x11; � � � ; x1p; y11; � � � ; y1d; � � � ; xk1; � � � ; xkp;

yk1; � � � ; ykd 2 A and applying Theorem 6.53. Then we get the desired result. �

Theorem 6.55. Let ..Ak; k � kk/ W k � 1/ be a multi-C�-ternary algebra. Let
f W A ! A be a mapping for which there exist the functions ' W A.pCd/k ! Œ0;1/

and  W A3k ! Œ0;1/ satisfying (6.106), (6.114), (6.115) and (6.135) for all
	 2 T

1 and x11; � � � ; x1p; y11; � � � ; y1d; � � � ; xk1; � � � ; xkp; yk1; � � � ; ykd; x1; � � � ; xk;

y1; � � � ; yk; z1; � � � ; zk 2 A, where � D pC2d
2

. If there exists L < 1 such that

'
� pCd‚ …„ ƒ

x1
�
; � � � ; x1

�
;

pCd‚ …„ ƒ
x2
�
; � � � ; x2

�
; � � � ;

pCd‚ …„ ƒ
xk

�
; � � � ; xk

�

�
(6.143)

� L

�
'
� pCd‚ …„ ƒ

x1; � � � ; x1;
pCd‚ …„ ƒ

x2; � � � ; x2; � � � ;
pCd‚ …„ ƒ

xk; � � � ; xk

�
(6.144)

for all x1; x2; � � � ; xk 2 A, then there exists a unique multi-C�-ternary algebra
homomorphism ı W A ! A such that

k.f .x1/ � ı.x1/; � � � ; f .xk/� ı.xk//kk

� 1

.1 � L/2�
'
� pCd‚ …„ ƒ

x1; � � � ; x1;
pCd‚ …„ ƒ

x2; � � � ; x2; � � � ;
pCd‚ …„ ƒ

xk; � � � ; xk

�
(6.145)

for all x1; � � � ; xk 2 A.

Proof. By the same reasoning as in the proof of Theorem 6.47, there exists a unique
C-linear mapping ı W A ! A satisfying (6.135). The rest of the proof is similar to
the proof of Theorem 6.53 and so we omit it. �



Chapter 7
Stability of Functional Equations
in Non-Archimedean Banach Algebras

In [203], Moslehian and Rassias proved the Hyers-Ulam stability of the Cauchy
and quadratic functional equations in non-Archimedean normed spaces. After their
results, some papers (see, for instance, [71, 83, 103]) on the stability of other
equations in such spaces have been published.

Next, Eshaghi-Gordji et al. and Cho et al. applied the direct method or the
fixed point method to prove the stability of some functional equations in non-
Archimedean Banach algebras. In this chapter, we study the directions mentioned
above and apply the fixed point method to show the Hyers-Ulam stability of some
wide classes of functional equations in non-Archimedean Banach algebras and non-
Archimedean C�-algebras.

In Sect. 7.1, we extend the results presented in Chap. 3 to the setting of non-
Archimedean C�-algebras.

In Sect. 7.2, we extend the results presented in Chap. 2 to the setting of non-
Archimedean C�-algebras. In fact, by using the fixed point method, we prove
the Hyers-Ulam stability of homomorphisms and derivations on non-Archimedean
C�-algebras and non-Archimedean Lie C�-algebras for the following additive
functional equation:

mX
iD1

f
�

mxi C
mX

jD1; j¤i

xj

�
C f

� mX
iD1

xi

�
D 2f

� mX
iD1

mxi

�

for each m � 2.
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7.1 Stability of Jensen Type Functional Equations:
The Fixed Point Approach

Using the fixed point method, we prove the Hyers-Ulam stability of homomor-
phisms in non-Archimedean C�-algebras and non-Archimedean Lie C�-algebras
and derivations on non-Archimedean C�-algebras and non-Archimedean Lie C�-
algebras for the following Jensen type functional equation:

f
�x C y

2

�
C f

�x � y

2

�
D f .x/:

7.1.1 Stability of Homomorphisms in Non-Archimedean
C�-Algebras

Throughout this section, assume that A is a non-Archimedean C�-algebra with the
norm k � kA and B is a non-Archimedean C�-algebra with the norm k � kB.

For any mapping f W A ! B, we define

D	f .x; y/ WD 	f
�x C y

2

�
C 	f

�x � y

2

�
� f .	x/ (7.1)

for all 	 2 T
1 WD f
 2 C W j
j D 1g and x; y 2 A.

Now, we prove the Hyers-Ulam stability of homomorphisms in non-
Archimedean C�-algebras for the functional equation D	f .x; y/ D 0.

Theorem 7.1. Let f W A ! B be a mapping for which there exist the functions
'; W A2 ! Œ0;1/ and  W A ! Œ0;1/ such that

kD	f .x; y/kB � '.x; y/; (7.2)

kf .xy/� f .x/f .y/kB �  .x; y/ (7.3)

and

kf .x�/ � f .x/�kB � .x/ (7.4)

for all 	 2 T
1 and x; y 2 A. If there exists L < 1 such that j2j < 1 and

'.2x; 2y/ � j2jL'.x; y/; (7.5)

 .2x; 2y/ � j4jL .x; y/ (7.6)

and

.2x/ � j2jL.x/ (7.7)
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for all x; y 2 A, then there exists a unique non-Archimedean C�-algebra homomor-
phism H W A ! B such that

kf .x/ � H.x/kB � L

1 � L
'.x; 0/ (7.8)

for all x 2 A.

Proof. It follows from (7.5), (7.6), (7.7) and L < 1 that

lim
n!1

1

j2jn
'.2nx; 2ny/ D 0; (7.9)

lim
n!1

1

j2j2n
 .2nx; 2ny/ D 0 (7.10)

and

lim
n!1

1

j2jn
.2nx/ D 0 (7.11)

for all x; y 2 A. Consider the set X WD fg W A ! Bg and introduce the generalized
metric on X as follows:

d.g; h/ D inffC 2 RC W kg.x/� h.x/kB � C'.x; 0/; 8x 2 Ag;

which .X; d/ is complete.
Now, we consider the linear mapping J W X ! X defined by

Jg.x/ WD 1

2
g.2x/

for all x 2 A. Now, we have

d.Jg; Jh/ � Ld.g; h/

for all g; h 2 X. Letting 	 D 1 and y D 0 in (7.2), we have

���2f
� x

2

�
� f .x/

���
B

� '.x; 0/ (7.12)

for all x 2 A and so

���f .x/ � 1

2
f .2x/

���
B

� 1

j2j'.2x; 0/ � L'.x; 0/

for all x 2 A. Hence d.f ; Jf / � L. By Theorem 1.3, there exists a mapping
H W A ! B such that
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(1) H is a fixed point of J, i.e.,

H.2x/ D 2H.x/ (7.13)

for all x 2 A. The mapping H is a unique fixed point of J in the set

Y D fg 2 X W d.f ; g/ < 1g:

This implies that H is a unique mapping satisfying (7.13) such that there exists
C 2 .0;1/ such that

kH.x/ � f .x/kB � C'.x; 0/

for all x 2 A;
(2) d.Jnf ;H/ ! 0 as n ! 1. This implies the equality

lim
n!1

f .2nx/

2n
D H.x/ (7.14)

for all x 2 A;
(3) d.f ;H/ � 1

1�L d.f ; Jf /, which implies the inequality

d.f ;H/ � L

1 � L
:

This implies that the inequality (7.8) holds.

It follows from (7.5) and (7.14) that

���H
�x C y

2

�
C H

�x � y

2

�
� H.x/

���
B

D lim
n!1

1

j2jn
kf .2n�1.x C y//C f .2n�1.x � y//� f .2nx/kB

� lim
n!1

1

j2jn
'.2nx; 2ny/

D 0

for all x; y 2 A. Then we have

H
�x C y

2

�
C H

�x � y

2

�
D H.x/ (7.15)

for all x; y 2 A. Letting z D xCy
2

and w D x�y
2

in (7.15), we have

H.z/C H.w/ D H.z C w/
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for all z;w 2 A and so the mapping H W A ! B is Cauchy additive, i.e.,

H.z C w/ D H.z/C H.w/

for all z;w 2 A. Letting y D x in (7.2), we get

	f .x/ D f .	x/

for all 	 2 T
1 and all x 2 A. By the similar method as in above, we have

	H.x/ D H.	x/

f or all 	 2 T
1 and x 2 A. Thus one can show that the mapping H W A ! B is

C-linear. It follows from (7.6) that

kH.xy/ � H.x/H.y/kB D lim
n!1

1

j4jn
kf .4nxy/� f .2nx/f .2ny/kB

� lim
n!1

1

j4jn
 .2nx; 2ny/

D 0

for all x; y 2 A and so

H.xy/ D H.x/H.y/

for all x; y 2 A. It follows from (7.7) that

kH.x�/� H.x/�kB D lim
n!1

1

j2jn
kf .2nx�/� f .2nx/�kB

� lim
n!1

1

j2jn
.2nx/

D 0

for all x 2 A and so

H.x�/ D H.x/�

for all x 2 A. Thus H W A ! B is a non-Archimedean C�-algebra homomorphism
satisfying (7.8). This completes the proof. �



308 7 Stability of Functional Equations in Non-Archimedean Banach Algebras

Corollary 7.2. Let r < 1, � be nonnegative real numbers and f W A ! B be a
mapping such that

kD	f .x; y/kB � �.kxkr
A C kykr

A/; (7.16)

kf .xy/ � f .x/f .y/kB � �.kxkr
A C kykr

A/ (7.17)

and

kf .x�/ � f .x/�kB � �kxkr
A (7.18)

for all 	 2 T
1 and x; y 2 A. Then there exists a unique non-Archimedean C�-

algebra homomorphism H W A ! B such that

kf .x/ � H.x/kB � j2jr�

j2j � j2jr
kxkr

A (7.19)

for all x 2 A.

Proof. The proof follows from Theorem 7.1 by taking

'.x; y/ D  .x; y/ WD �.kxkr
A C kykr

A/;

.x/ WD �.kxkr
A/

for all x; y 2 A and L D j2jr�1. �

Theorem 7.3. Let f W A ! B be a mapping for which there exist the functions
'; W A2 ! Œ0;1/ and  W A ! Œ0;1/ satisfying (7.2), (7.3) and (7.4). If there
exists L < 1 such that j2j < 1 and

j2j'
� x

2
;

y

2

�
� L'.x; y/; (7.20)

j4j 
� x

2
;

y

2

�
� L .x; y/ (7.21)

and

j2j
� x

2

�
� L.x/ (7.22)

for all x; y 2 A, then there exists a unique non-Archimedean C�-algebra homomor-
phism H W A ! B such that

kf .x/ � H.x/kB � L

j2j � j2jL'.x; 0/ (7.23)

for all x 2 A.
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Proof. It follows from (7.20), (7.21), (7.22) and L < 1 that

lim
n!1 j2jn'

� x

2n
;

y

2n

�
D 0;

lim
n!1 j2j2n 

� x

2n
;

y

2n

�
D 0

and

lim
n!1 j2jn

� x

2n

�
D 0

for all x; y 2 A. We consider the linear mapping J W X ! X defined by

Jg.x/ WD 2g
�x

2

�

for all x 2 A. It follows from (7.12) that

���f .x/ � 2f
� x

2

����
B

� '
� x

2
; 0
�

� L

j2j'.x; 0/

for all x 2 A. Hence d.f ; Jf / � L
j2j . By Theorem 1.3, there exists a mapping

H W A ! B such that

(1) H is a fixed point of J, i.e.,

H.2x/ D 2H.x/ (7.24)

for all x 2 A. The mapping H is a unique fixed point of J in the set

Y D fg 2 X W d.f ; g/ < 1g:

This implies that H is a unique mapping satisfying (7.24) such that there exists
C 2 .0;1/ such that

kH.x/ � f .x/kB � C'.x; 0/

for all x 2 A;
(2) d.Jnf ;H/ ! 0 as n ! 1. This implies the equality

lim
n!1 2nf

� x

2n

�
D H.x/

for all x 2 A;
(3) d.f ;H/ � 1

1�L d.f ; Jf /, which implies the inequality
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d.f ;H/ � L

j2j � j2jL ;

which implies that the inequality (7.23) holds.

The rest of the proof is similar to the proof of Theorem 7.1. This completes the
proof. �

Corollary 7.4. Let r > 2, � be nonnegative real numbers and f W A ! B be
a mapping satisfying (7.16), (7.17) and (7.18). Then there exists a unique non-
Archimedean C�-algebra homomorphism H W A ! B such that

kf .x/ � H.x/kB � �

j2jr � j2jkxkr
A (7.25)

for all x 2 A.

Proof. The proof follows from Theorem 7.3 by taking

'.x; y/ D  .x; y/ WD �.kxkr
A C kykr

A/; .x/ WD �kxkr
A

for all x; y 2 A and L D j2j1�r. �

Theorem 7.5. Let f W A ! B be an odd mapping for which there exist the functions
'; W A2 ! Œ0;1/ and  W A ! Œ0;1/ satisfying (7.2), (7.3) and (7.4). If there
exists L < 1 such that

'.x; 3x/ � j2jL'
� x

2
;
3x

2

�

for all x 2 A and (7.5), (7.6) and (7.7) hold then there exists a unique non-
Archimedean C�-algebra homomorphism H W A ! B such that

kf .x/ � H.x/kB � 1

j2j � j2jL'.x; 3x/ (7.26)

for all x 2 A.

Proof. Consider the set X WD fg W A ! Bg and introduce the generalized metric on
X as follows:

d.g; h/ D inffC 2 RC W kg.x/� h.x/kB � C'.x; 3x/; 8x 2 Ag;

which .X; d/ is complete. Now, we consider the linear mapping J W X ! X
defined by

Jg.x/ WD 1

2
g.2x/
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for all x 2 A. Now, we have

d.Jg; Jh/ � Ld.g; h/

for all g; h 2 X. Letting 	 D 1 and replacing y by 3x in (7.2), we have

kf .2x/� 2f .x/kB � '.x; 3x/ (7.27)

for all x 2 A and so

���f .x/ � 1

2
f .2x/

���
B

� 1

j2j'.x; 3x/

for all x 2 A. Hence d.f ; Jf / � 1
j2j . By Theorem 1.3, there exists a mapping

H W A ! B such that

(1) H is a fixed point of J, i.e.,

H.2x/ D 2H.x/ (7.28)

for all x 2 A. The mapping H is a unique fixed point of J in the set

Y D fg 2 X W d.f ; g/ < 1g:
This implies that H is a unique mapping satisfying (7.28) such that there exists
C 2 .0;1/ such that

kH.x/ � f .x/kB � C'.x; 3x/

for all x 2 A;
(2) d.Jnf ;H/ ! 0 as n ! 1. This implies the equality

lim
n!1

f .2nx/

2n
D H.x/

for all x 2 A;
(3) d.f ;H/ � 1

1�L d.f ; Jf /, which implies the inequality

d.f ;H/ � 1

j2j � j2jL :

This implies that the inequality (7.26) holds.

The rest of the proof is similar to the proof of Theorem 7.1. This completes the
proof. �
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Corollary 7.6. Let r < 1
2
, � be nonnegative real numbers and f W A ! B be an odd

mapping such that

kD	f .x; y/kB � � � kxkr
A � kykr

A; (7.29)

kf .xy/ � f .x/f .y/kB � � � kxkr
A � kykr

A (7.30)

and

kf .x�/� f .x/�kB � �kxk2r
A (7.31)

for all 	 2 T
1 and x; y 2 A. Then there exists a unique non-Archimedean

C�-algebra homomorphism H W A ! B such that

kf .x/ � H.x/kB � 3r�

j2j � j2j2r
kxk2r

A (7.32)

for all x 2 A.

Proof. The proof follows from Theorem 7.5 by taking

'.x; y/ D  .x; y/ WD � � kxkr
A � kykr

A; .x/ WD � � kxkr
A

for all x; y 2 A and L D j2j2r�1. �

Theorem 7.7. Let f W A ! B be an odd mapping for which there exist the functions
'; W A2 ! Œ0;1/ and  W A ! Œ0;1/ satisfying (7.2), (7.3), and (7.4). If there
exists L < 1 such that

'.x; 3x/ � 1

j2jL'.2x; 6x/

for all x 2 A, and also (7.20), (7.21) and (7.22) hold, then there exists a unique
non-Archimedean C�-algebra homomorphism H W A ! B such that

kf .x/ � H.x/kB � L

j2j � j2jL'.x; 3x/ (7.33)

for all x 2 A.

Proof. We consider the linear mapping J W X ! X defined by

Jg.x/ WD 2g
�x

2

�
for all x 2 A. It follows from (7.27) that

���f .x/ � 2f .
x

2
/
���

B
� '

� x

2
;
3x

2

�
� L

j2j'.x; 3x/
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for all x 2 A. Hence d.f ; Jf / � L
2
. By Theorem 1.3, there exists a mapping

H W A ! B such that

(1) H is a fixed point of J, i.e.,

H.2x/ D 2H.x/ (7.34)

for all x 2 A. The mapping H is a unique fixed point of J in the set

Y D fg 2 X W d.f ; g/ < 1g:
This implies that H is a unique mapping satisfying (7.34) such that there exists
C 2 .0;1/ such that

kH.x/ � f .x/kB � C'.x; 3x/

for all x 2 A;
(2) d.Jnf ;H/ ! 0 as n ! 1. This implies the equality

lim
n!1 2nf

� x

2n

�
D H.x/

for all x 2 A;
(3) d.f ;H/ � 1

1�L d.f ; Jf /, which implies the inequality

d.f ;H/ � L

2 � 2L
;

which implies that the inequality (7.33) holds.

The rest of the proof is similar to the proof of Theorem 7.1. �

Corollary 7.8. Let r > 1, � be nonnegative real numbers and f W A ! B be an
odd mapping satisfying (7.29), (7.30) and (7.31). Then there exists a unique non-
Archimedean C�-algebra homomorphism H W A ! B such that

kf .x/ � H.x/kB � �

j2j2r � j2jkxk2r
A (7.35)

for all x 2 A.

Proof. The proof follows from Theorem 7.7 by taking

'.x; y/ D  .x; y/ WD � � kxkr
A � kykr

A; .x/ WD � � kxkr
A

for all x; y 2 A and L D j2j1�2r. �
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7.1.2 Stability of Derivations in Non-Archimedean
C�-Algebras

Assume that A is a non-Archimedean C�-algebra with the norm k � kA.
Now, we prove the Hyers-Ulam stability of derivations in non-Archimedean C�-

algebras for the functional equation D	f .x; y/ D 0.

Theorem 7.9. Let f W A ! A be a mapping for which there exist the functions
'; W A2 ! Œ0;1/ such that

kD	f .x; y/kA � '.x; y/ (7.36)

and

kf .xy/ � f .x/y � xf .y/kA �  .x; y/ (7.37)

for all 	 2 T
1 and all x; y 2 A. If there exists L < 1 such that

'.x; 0/ � j2jL'
� x

2
; 0
�

for all x 2 A, (7.5) and (7.6) hold. Then there exists a unique non-Archimedean
derivation ı W A ! A such that

kf .x/ � ı.x/kA � L

1 � L
'.x; 0/ (7.38)

for all x 2 A.

Proof. By the same reasoning as in the proof of Theorem 7.1, there exists a unique
involution C-linear mapping ı W A ! A satisfying (7.38). Also, the mapping
ı W A ! A is given by

ı.x/ D lim
n!1

f .2nx/

2n

for all x 2 A. It follows from (7.37) that

kı.xy/� ı.x/y � xı.y/kA

D lim
n!1

1

j4jn
kf .4nxy/ � f .2nx/ � 2ny � 2nxf .2ny/kA

� lim
n!1

1

j4jn
 .2nx; 2ny/

D 0

for all x; y 2 A. Then we have

ı.xy/ D ı.x/y C xı.y/

for all x; y 2 A. Thus ı W A ! A is a derivation satisfying (7.38). This completes the
proof. �
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Corollary 7.10. Let r < 1, � be nonnegative real numbers and f W A ! A be a
mapping such that

kD	f .x; y/kA � �.kxkr
A C kykr

A/ (7.39)

and

kf .xy/ � f .x/y � xf .y/kA � �.kxkr
A C kykr

A/ (7.40)

for all 	 2 T
1 and x; y 2 A. Then there exists a unique derivation ı W A ! A such

that

kf .x/ � ı.x/kA � j2jr�

j2j � j2jr
kxkr

A (7.41)

for all x 2 A.

Proof. The proof follows from Theorem 7.9 by taking

'.x; y/ D  .x; y/ WD �.kxkr
A C kykr

A/

for all x; y 2 A and L D j2jr�1. �

Remark 7.11. Let f W A ! A be a mapping for which there exist the functions
'; W A2 ! Œ0;1/ satisfying (7.36) and (7.37). If there exists L < 1 such that

'.x; 0/ � 1

j2jL'.2x; 0/

for all x 2 A, (7.20) and (7.21) hold, then there exists a unique derivation ı W A ! A
such that

kf .x/ � ı.x/kA � L

j2j � j2jL'.x; 0/ (7.42)

for all x 2 A.

Corollary 7.12. Let r > 2, � be nonnegative real numbers and f W A ! A
be a mapping satisfying (7.39) and (7.40). Then there exists a unique derivation
ı W A ! A such that

kf .x/ � ı.x/kA � �

j2jr � j2jkxkr
A (7.43)

for all x 2 A.
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Proof. The proof follows from Remark 7.11 by taking

'.x; y/ D  .x; y/ WD �.kxkr
A C kykr

A/

for all x; y 2 A and L D j2j1�r. �

Remark 7.13. For the inequalities controlled by the product of powers of norms,
one can obtain similar results to Theorems 7.5, 7.7 and Corollaries 7.6, 7.8.

7.1.3 Stability of Homomorphisms in Non-Archimedean
Lie C�-Algebras

A non-Archimedean C�-algebra C endowed with the Lie product

Œx; y� WD xy � yx

2

on C is called a non-Archimedean Lie C�-algebra (see [224, 225, 227]).

Definition 7.14. Let A and B be non-Archimedean Lie C�-algebras. A C-linear
mapping H W A ! B is called a non-Archimedean Lie C�-algebra homomorphism if

H.Œx; y�/ D ŒH.x/;H.y/�

for all x; y 2 A.

Throughout this section, assume that A is a non-Archimedean Lie C�-algebra
with the norm k � kA and B is a non-Archimedean Lie C�-algebra with the norm
k � kB.

Now, we prove the Hyers-Ulam stability of homomorphisms in non-
Archimedean Lie C�-algebras for the functional equation D	f .x; y/ D 0.

Theorem 7.15. Let f W A ! B be a mapping for which there are functions
'; W A2 ! Œ0;1/ satisfying (7.2) such that

kf .Œx; y�/ � Œf .x/; f .y/�kB �  .x; y/ (7.44)

for all x; y 2 A. If there exists L < 1 such that

'.x; 0/ � j2jL'
� x

2
; 0
�

for all x 2 A, and also (7.5) and (7.6) hold, then there exists a unique non-
Archimedean Lie C�-algebra homomorphism H W A ! B satisfying (7.8).
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Proof. By the same reasoning as in the proof of Theorem 7.1, there exists a unique
C-linear mapping H W A ! B satisfying (7.8). Also, the mapping H W A ! B is
given by

H.x/ D lim
n!1

f .2nx/

2n

for all x 2 A. It follows from (7.44) that

kH.Œx; y�/ � ŒH.x/;H.y/�kB

D lim
n!1

1

j4jn
kf .4nŒx; y�/ � Œf .2nx/; f .2ny/�kB

� lim
n!1

1

j4jn
 .2nx; 2ny/

D 0

for all x; y 2 A. Then we have

H.Œx; y�/ D ŒH.x/;H.y/�

for all x; y 2 A. Thus H W A ! B is a non-Archimedean Lie C�-algebra
homomorphism satisfying (7.8). This completes the proof. �

Corollary 7.16. Let r < 1, � be nonnegative real numbers and f W A ! B be a
mapping satisfying (7.16) such that

kf .Œx; y�/ � Œf .x/; f .y/�kB � �.kxkr
A C kykr

A/ (7.45)

for all x; y 2 A. Then there exists a unique non-Archimedean Lie C�-algebra
homomorphism H W A ! B satisfying (7.19).

Proof. The proof follows from Theorem 7.15 by taking

'.x; y/ D  .x; y/ WD �.kxkr
A C kykr

A/

for all x; y 2 A and L D j2jr�1. �

Remark 7.17. Let f W A ! B be a mapping for which there exist the functions
'; W A2 ! Œ0;1/ and  W A ! Œ0;1/ satisfying (7.2), (7.5), (7.6) and (7.44). If
there exists L < 1 such that

'.x; 0/ � 1

j2jL'.2x; 0/

for all x 2 A, then there exists a unique non-Archimedean Lie C�-algebra
homomorphism H W A ! B satisfying (7.23).
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Corollary 7.18. Let r > 2, � be nonnegative real numbers and f W A ! B be a
mapping satisfying (7.16) and (7.45). Then there exists a unique non-Archimedean
Lie C�-algebra homomorphism H W A ! B satisfying (7.25).

Proof. The proof follows from Remark 7.17 by taking

'.x; y/ D  .x; y/ WD �.kxkr
A C kykr

A/

for all x; y 2 A and L D j2j1�r. �

Remark 7.19. For the inequalities controlled by the product of powers of norms,
one can obtain similar results to Theorems 7.5, 7.7 and their corollaries.

7.1.4 Stability of Non-Archimedean Lie Derivations
in C�-Algebras

First, we give the following definition on the non-Archimedean Lie derivation in a
non-Archimedean Lie C�-algebra.

Definition 7.20. Let A be a non-Archimedean Lie C�-algebra. A C-linear mapping
ı W A ! A is called a non-Archimedean Lie derivation if

ı.Œx; y�/ D Œı.x/; y�C Œx; ı.y/�

for all x; y 2 A.

Assume that A is a non-Archimedean Lie C�-algebra with the norm k � kA.
Now, we prove the Hyers-Ulam stability of non-Archimedean Lie derivations on

non-Archimedean Lie C�-algebras for the functional equation

D	f .x; y/ D 0:

Theorem 7.21. Let f W A ! A be a mapping for which there exists a function
'; W A2 ! Œ0;1/ satisfying (7.5), (7.6) and (7.36) such that

kf .Œx; y�/ � Œf .x/; y� � Œx; f .y/�kA �  .x; y/ (7.46)

for all x; y 2 A. If there exists L < 1 such that

'.x; 0/ � j2jL'
� x

2
; 0
�

for all x 2 A. Then there exists a unique non-Archimedean Lie derivation ı W A ! A
satisfying (7.38).
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Proof. By the same reasoning as in the proof of Theorem 7.1, there exists a unique
involution C-linear mapping ı W A ! A satisfying (7.38). Also, the mapping
ı W A ! A is given by

ı.x/ D lim
n!1

f .2nx/

2n

for all x 2 A. It follows from (7.44) that

kı.Œx; y�/ � Œı.x/; y� � Œx; ı.y/�kA

D lim
n!1

1

j4jn
kf .4nŒx; y�/ � Œf .2nx/; 2ny� � Œ2nx; f .2ny/�kA

� lim
n!1

1

j4jn
 .2nx; 2ny/

D 0

for all x; y 2 A. Then we have

ı.Œx; y�/ D Œı.x/; y�C Œx; ı.y/�

for all x; y 2 A. Thus ı W A ! A is a non-Archimedean Lie derivation
satisfying (7.38). This completes the proof. �

Corollary 7.22. Let r < 1, � be nonnegative real numbers and f W A ! A be a
mapping satisfying (7.39) such that

kf .Œx; y�/ � Œf .x/; y� � Œx; f .y/�kA � �.kxkr
A C kykr

A/ (7.47)

for all x; y 2 A. Then there exists a unique non-Archimedean Lie derivation
ı W A ! A satisfying (7.41).

Proof. The proof follows from Theorem 7.15 by taking

'.x; y/ D  .x; y/ WD �.kxkr
A C kykr

A/; .x/ WD �kxkr
A

for all x; y 2 A and L D j2jr�1. �

Remark 7.23. Let f W A ! A be a mapping for which there exist functions
'; W A2 ! Œ0;1/ and  W A ! Œ0;1/ satisfying (7.20), (7.21), (7.22), (7.36)
and (7.46). If there exists L < 1 such that

'.x; 0/ � 1

j2jL'.2x; 0/

for all x 2 A, then there exists a unique non-Archimedean Lie derivation ı W A ! A
satisfying (7.42).
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Corollary 7.24. Let r > 2, � be nonnegative real numbers and f W A ! A be a
mapping satisfying (7.39) and (7.47). Then there exists a unique non-Archimedean
Lie derivation ı W A ! A satisfying (7.43).

Proof. The proof follows from Remark 7.23 by taking

'.x; y/ D  .x; y/ WD �.kxkr
A C kykr

A/

for all x; y 2 A and L D j2j1�r. �

Remark 7.25. For the inequalities controlled by the product of powers of norms,
one can obtain similar results to Theorems 7.5, 7.7 and their corollaries.

7.2 Stability for m-Variable Additive Functional Equations

Using the fixed point method, we prove the Hyers-Ulam stability of homomor-
phisms and derivations on non-Archimedean C�-algebras and non-Archimedean Lie
C�-algebras for the following additive functional equation:

mX
iD1

f
�

mxi C
mX

jD1; j¤i

xj

�
C f

� mX
iD1

xi

�
D 2f

� mX
iD1

mxi

�
(7.48)

for each m � 2. For any mapping f W A ! B, we define

D	f .x1; � � � ; xm/

WD
mX

iD1
	f
�

mxi C
mX

jD1; j¤i

xj

�
C f

�
	

mX
iD1

xi

�
� 2f

�
	

mX
iD1

mxi

�

for all 	 2 T
1 WD f
 2 C W j
j D 1g and x1; � � � ; xm 2 A.

7.2.1 Stability of Homomorphisms and Derivations
in Non-Archimedean C�-Algebras

Now, we prove the Hyers–Ulam stability of homomorphisms in non-Archimedean
C�-algebras for the functional equation D	f .x1; � � � ; xm/ D 0.

Theorem 7.26. Let f W A ! B be a mapping for which there exist the functions
' W Am ! Œ0;1/,  W A2 ! Œ0;1/ and  W A ! Œ0;1/ such that jmj < 1 is far
from zero and

kD	f .x1; � � � ; xm/kB � '.x1; � � � ; xm/; (7.49)

kf .xy/� f .x/f .y/kB �  .x; y/ (7.50)
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and

kf .x�/ � f .x/�kB � .x/ (7.51)

for all 	 2 T
1 and x1; � � � ; xm; x; y 2 A. If there exists L < 1 such that

'.mx1; � � � ;mxm/ � jmjL'.x1; � � � ; xm/; (7.52)

 .mx;my/ � jmj2L .x; y/ (7.53)

and

.mx/ � jmjL.x/ (7.54)

for all x; y; x1; � � � ; xm 2 A, then there exists a unique non-Archimedean C�-algebra
homomorphism H W A ! B such that

kf .x/ � H.x/kB � 1

jmj � jmjL'.x; 0; � � � ; 0/ (7.55)

for all x 2 A.

Proof. It follows from (7.52), (7.53), (7.54) and L < 1 that

lim
n!1

1

jmjn
'.mnx1; � � � ;mnxm/ D 0; (7.56)

lim
n!1

1

jmj2n
 .mnx;mny/ D 0 (7.57)

and

lim
n!1

1

jmjn
.mnx/ D 0 (7.58)

for all x; y; x1; � � � ; xm 2 A. Let us define ˝ to be the set of all mappings g W A ! B
and introduce a generalized metric on˝ as follows:

d.g; h/ (7.59)

D inffk 2 .0;1/ W kg.x/ � h.x/kB < k�.x; 0; � � � ; 0/; 8x 2 Ag;

which .˝; d/ is a generalized complete metric space. Now, we consider the function
J W ˝ ! ˝ defined by Jg.x/ D 1

m g.mx/ for all x 2 A and g 2 ˝ . Note that, for all
g; h 2 ˝ ,

d.g; h/ < k H) kg.x/ � h.x/kB < k�.x; 0; � � � ; 0/
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H)
��� 1

m
g.mx/� 1

m
h.mx/

���
B
<

k

jmj�.mx; 0; � � � ; 0/

H)
��� 1

m
g.mx/� 1

m
h.mx/

���
B
< kL�.mx; 0; � � � ; 0/

H) d.Jg; Jh/ < kL: (7.60)

From this, it is easy to see that

d.Jg; Jk/ � Ld.g; h/

for all g; h 2 ˝ , that is, J is a self-function of ˝ with the Lipschitz constant L.
Putting 	 D 1, x D x1 and x2 D x3 D � � � D xm D 0 in (7.49) we have

kf .mx/ � mf .x/kB � �.x; 0; � � � ; 0/ (7.61)

for all x 2 A. Then

���f .x/ � 1

m
f .mx/

���
B

� 1

jmj�.x; 0; � � � ; 0/ (7.62)

for all x 2 A, that is,

d.Jf ; f / � 1

jmj < 1:

Now, from the fixed point method, it follows that there exists a fixed point H of
J in ˝ such that

H.x/ D lim
n!1

1

mn
f .mnx/ (7.63)

for all x 2 A since limn!1 d.Jnf ;H/ D 0.
On the other hand, it follows from (7.49), (7.56) and (7.63) that

kD	H.x1; � � � ; xm/kB D lim
n!1

��� 1
mn

Df .mnx1; � � � ;mnxm/
���

B

� lim
n!1

1

jmjn
�.mnx1; � � � ;mnxm/ (7.64)

D 0:

By the similar method as in above, we have

	H.mx/ D H.m	x/
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for all 	 2 T
1 and x 2 A. Thus one can show that the mapping H W A ! B is

C-linear. It follows from (7.50), (7.57) and (7.63) that

kH.xy/� H.x/H.y/kB

D lim
n!1

1

jmj2n
kf .m2nxy/� f .mnx/f .mny/kB

� lim
n!1

1

jmj2n
 .mnx;mny/

D 0 (7.65)

for all x; y 2 A and so H.xy/ D H.x/H.y/ for all x; y 2 A. Thus H W A ! B is a
homomorphism satisfying (7.55).

Also, by (7.51), (7.58), (7.63) and the similar method, we have H.x�/ D H.x/�.
This completes the proof. �
Corollary 7.27. Let r > 1, � be nonnegative real numbers and f W A ! B be a
mapping such that

kD	f .x1; � � � ; xm/kB � � � .kx1kr
A C kx2kr

A C � � � C kxmkr
A/;

kf .xy/� f .x/f .y/kB � � � .kxkr
A � kykr

A/ (7.66)

and

kf .x�/� f .x/�kB � � � kxkr
A

for all 	 2 T
1 and x1; � � � ; xm; x; y 2 A. Then there exists a unique non-Archimedean

C�-algebra homomorphism H W A ! B such that

kf .x/ � H.x/kB � �

jmj � jmjr
kxkr

A (7.67)

for all x 2 A.

Proof. The proof follows from Theorem 7.26 by taking

'.x1; � � � ; xm/ WD � � .kx1kr
A C kx2kr

A C � � � C kxmkr
A/;

 .x; y/ WD � � .kxkr
A � kykr

A/;

.x/ WD � � kxkr
A (7.68)

for all x1; � � � ; xm; x; y 2 A and L D jmjr�1. �



324 7 Stability of Functional Equations in Non-Archimedean Banach Algebras

Now, we prove the Hyers-Ulam stability of derivations on non-Archimedean
C�-algebras for the functional equation

D	f .x1; � � � ; xm/ D 0:

Remark 7.28. Let f W A ! A be a mapping for which there exist the functions
' W Am ! Œ0;1/,  W A2 ! Œ0;1/ and  W A ! Œ0;1/ such that jmj < 1 is far
from zero and

kD	f .x1; � � � ; xm/kA � '.x1; � � � ; xm/;

kf .xy/ � f .x/y � xf .y/kA �  .x; y/ (7.69)

and

kf .x�/ � f .x/�kA � .x/

for all 	 2 T
1 and x1; � � � ; xm; x; y 2 A. If there exists L < 1 such that (7.52), (7.53)

and (7.54) hold, then there exists a unique non-Archimedean C�-algebra derivation
ı W A ! A such that

kf .x/ � ı.x/kA � 1

jmj � jmjL'.x; 0; � � � ; 0/

for all x 2 A.

7.2.2 Stability of Homomorphisms and Derivations
in Non-Archimedean Lie C�-Algebras

Now, we prove the Hyers-Ulam stability of homomorphisms in non-Archimedean
Lie C�-algebras for the functional equation D	f .x1; � � � ; xm/ D 0.

Theorem 7.29. Let f W A ! B be a mapping for which there exist the functions
' W Am ! Œ0;1/ and  W A2 ! Œ0;1/ such that (7.49) and (7.51) hold and

kf .Œx; y�/ � Œf .x/; f .y/�kB �  .x; y/ (7.70)

for all 	 2 T
1 and x; y 2 A. If there exists L < 1 and (7.52) and (7.53) hold, then

there exists a unique non-Archimedean Lie C�-algebra homomorphism H W A ! B
such that (7.55) hold.
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Proof. By the same reasoning as in the proof of Theorem 7.26, we can find the
mapping H W A ! B given by

H.x/ D lim
n!1

f .mnx/

mn
(7.71)

for all x 2 A. It follows from (7.53) and (7.71) that

kH.Œx; y�/ � ŒH.x/;H.y/�kB

D lim
n!1

1

jmj2n
kf .m2nŒx; y�/ � Œf .mnx/; f .mny/�kB

� lim
n!1

1

jmj2n
 .mnx;mny/ (7.72)

D 0

for all x; y 2 A and so

H.Œx; y�/ D ŒH.x/;H.y/� (7.73)

for all x; y 2 A. Thus H W A ! B is a non-Archimedean Lie C�-algebra
homomorphism satisfying (7.55). This completes the proof. �

Corollary 7.30. Let r > 1, � be nonnegative real numbers and f W A ! B be a
mapping such that

kD	f .x1; � � � ; xm/kB � �.kx1kr
A C kx2kr

A C � � � C kxmkr
A/;

kf .Œx; y�/ � Œf .x/; f .y/�kB � � � kxkr
A � kykr

A (7.74)

and

kf .x�/� f .x/�kB � � � kxkr
A

for all 	 2 T
1 and x1; � � � ; xm; x; y 2 A. Then there exists a unique non-Archimedean

Lie C�-algebra homomorphism H W A ! B such that

kf .x/ � H.x/kB � �

jmj � jmjr
kxkr

A (7.75)

for all x 2 A.

Proof. The proof follows from Theorem 7.29 and the method similar to Corol-
lary 7.27. �
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Definition 7.31. Let A be a non-Archimedean Lie C�-algebra. A C-linear mapping
ı W A ! A is called a non-Archimedean Lie derivation if

ı.Œx; y�/ D Œı.x/; y�C Œx; ı.y/�

for all x; y 2 A.

Now, we prove the Hyers-Ulam stability of derivations on non-Archimedean Lie
C�-algebras for the functional equation

D	f .x1; � � � ; xm/ D 0:

Theorem 7.32. Let f W A ! A be a mapping for which there exist the functions
' W Am ! Œ0;1/ and  W A2 ! Œ0;1/ such that (7.49) and (7.51) hold and

kf .Œx; y�/ � Œf .x/; y� � Œx; f .y/�kA �  .x; y/ (7.76)

for all x; y 2 A. If there exists L < 1 and (7.52) and (7.53) hold, then there exists a
unique non-Archimedean Lie derivation ı W A ! A such that such that (7.55) holds.

Proof. It is straight forward to show, there exists a unique C-linear mapping
ı W A ! A satisfying (7.55) and the mapping ı W A ! A is given by

ı.x/ D lim
n!1

f .mnx/

mn
(7.77)

for all x 2 A. It follows from (7.53) and (7.75) that

kı.Œx; y�/ � Œı.x/; y� � Œx; ı.y/�kA
D lim

n!1
1

jmj2n
kf .m2nŒx; y�/ � Œf .mnx/; �mny� � Œmnx; f .mny/�kA

� lim
n!1

1

jmj2n
 .mnx;mny/ (7.78)

D 0

for all x; y 2 A and so

ı.Œx; y�/ D Œı.x/; y�C Œx; ı.y/�

for all x; y 2 A. Thus ı W A ! A is a non-Archimedean Lie derivation
satisfying (7.55). This completes the proof. �
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55. Brzdȩk, J.: Remarks on hyperstability of the Cauchy functional equation. Aequ. Math. 86,

255–267 (2013)
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57. Brzdȩk, J., Sikorska, J.: A conditional exponential functional equation and its stability.

Nonlinear Anal. 72, 2923–2934 (2010)
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