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Abstract. Traditionally, a large body of metric fixed point theory has been couched
in a functional analytic framework. This aspect of the theory has been written about
extensively. This survey treats the purely metric aspects of the theory—specifically results
that do not depend on any algebraic structure of the underlying space. The focus is on (I)
metric spaces satisfying additional geometric conditions, (II) metric spaces with geodesic
structures, and (III) semimetric spaces satisfying relaxed versions of the triangle inequality.





Preface

Mathematicians interested in topology typically give an abstract set a
“topological structure” consisting of a collection of subsets of the given set to
determine when points are “near” each other. People interested in geometry
need a more rigid notion of nearness. This usually begins with assigning a
symmetric “distance” to each two points of a set, resulting in the notion of
a semimetric. With the addition of the triangle inequality, one passes to a
metric space. This will be our point of departure.

There are four classical fixed point theorems against which metric ex-
tensions are usually checked. These are, respectively, the Banach contraction
mapping principle, Nadler’s well-known set-valued extension of that theorem,
the extension of Banach’s theorem to nonexpansive mappings, and Caristi’s
theorem. These comparisons form a significant component of this survey.

This exposition is divided into three parts. In Part I we discuss some
aspects of the purely metric theory, especially Caristi’s theorem and its rela-
tives. Among other things, we discuss these theorems in the context of their
logical foundations. We omit a discussion of the well-known Banach Con-
traction Principle and its many generalizations in Part I because this topic
is well known and has been reviewed extensively elsewhere (see, e.g., [117]).
In Part II we discuss classes of spaces which, in addition to having a met-
ric structure, also have geometric structure. These specifically include the
geodesic spaces, length spaces, and CAT(0) spaces. In Part III we turn to
distance spaces that are not necessarily metric. These include certain dis-
tance spaces which lie strictly between the class of semimetric spaces and the
class of metric spaces, as well as other spaces whose distance properties do
not fully satisfy the metric axioms.

We make no attempt to explain all aspects of the topics we cover nor to
present a compendium of all known facts, especially since the theory continues
to expand at a rapid rate. Any attempt to provide the latest tweak on the
various theorems we discuss would surely be outdated before reaching print.
Our objective rather is to present a concise accessible document which can
be used as an introduction to the subject and its central themes. We include
proofs selectively, and from time to time we mention open problems. The
material in this exposition is collected together here for the first time. Those
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wishing to investigate these topics deeper are referred to the original sources.
We have attempted to include details in those instances where the sources are
not readily available. This might be the case, for example, when the source is
in a conference proceedings. Also some results appear here for the first time.

Many of the concepts introduced here have found interesting applications.
Indeed some were motivated by attempts to address both mathematical and
applied problems. Other concepts we discuss are more formal in nature and
have yet to find any serious application; indeed some may never. However
our hope is that this discussion will suggest directions for those interested in
further research in this area.

The first author lectured on portions of the material covered in this
monograph to students and faculty at King Abdulaziz University. He wishes
to thank them for providing an attentive and critical audience. Both authors
express their gratitude to Rafa Espínola for calling attention to a number of
oversights in an earlier draft of this manuscript.

Iowa City, IA, USA William Kirk
Jeddah, Saudi Arabia Naseer Shahzad
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Part I

Metric Spaces



CHAPTER 1

Introduction

At the outset we adopt the classical terminology of W.A. Wilson [216].
(The term “semimetric space” (halb-metrischer Raume) is likely due to Karl
Menger [153].)

Definition 1.1. Let X be a set and let d : X ×X → R be a mapping
satisfying for each x, y ∈ X:

I. d (x, y) ≥ 0, and d (x, y) = 0 ⇔ x = y;
II. d (x, y) = d (y, x) .

Then the pair(X, d) is called a semimetric space.

In such a space, convergence of sequences is defined in the usual way:
A sequence {xn} ⊆ X is said to converge to x ∈ X if limn→∞ d (xn, x) = 0.
Also a sequence is said to be Cauchy if for each ε > 0 there exists N ∈ N such
that m,n ≥ N ⇒ d (xm, xn) < ε. The space (X, d) is said to be complete if
every Cauchy sequence has a limit.

With such a broad definition of distance, three problems are immediately
obvious: (i) There is nothing to assure that limits are unique (thus the space
need not be Hausdorff ); (ii) a convergent sequence need not be a Cauchy
sequence; (iii) the mapping d (x, ·) : X → R need not even be continuous.
These facts preclude an effective topological theory in such a general setting.

With the introduction of the triangle inequality problems (i)–(iii) are
simultaneously eliminated.

VI. (Triangle Inequality) With X and d as in Definition 1.1 assume also
that for each x, y, z ∈ X:

d (x, y) ≤ d (x, z) + d (z, y) .

Definition 1.2. A pair (X, d) satisfying Axioms I, II, and VI is called
a metric space.

A metric space (X, d) is said to be metrically convex (or Menger convex)
if given any two points p, q ∈ X there exists a point z ∈ X, p 	= z 	= q, such
that

d (p, z) + d (z, q) = d (p, q) .

© Springer International Publishing Switzerland 2014
W. Kirk, N. Shahzad, Fixed Point Theory in Distance Spaces,
DOI 10.1007/978-3-319-10927-5__1
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4 1. INTRODUCTION

Karl Menger was a pioneer in the axiomatic study of distance spaces, and he
was the first to discover the following fact.

Theorem 1.1 ([153]). Any two points of a complete and metrically con-
vex metric space are the endpoints of at least one metric segment.

See [28, p. 41] for a proof of this theorem due to N. Aronszajn. Menger
based the original proof of his classical result on transfinite induction. A proof
based on Caristi’s theorem is given in [113].

In his study [216], Wilson introduced three axioms in addition to I and
II which are weaker than VI. These are the following:

III. For each pair of (distinct) points x, y ∈ X there is a number rx,y > 0
such that for every z ∈ X

rx,y ≤ d (x, z) + d (z, y) .

IV. For each point x ∈ X and each k > 0 there is a number rx,k > 0
such that if y ∈ X satisfies d (x, y) ≥ k then for every z ∈ X

rx,k ≤ d (x, z) + d (z, y) .

V. For each k > 0 there is a number rk > 0 such that if x, y ∈ X satisfy
d (x, y) ≥ k then for every z ∈ X

rk ≤ d (x, z) + d (z, y) .

Obviously if Axiom V is strengthened to rk = k, then the space becomes
metric. W.A. Wilson asserts in [216] that E.W. Chittenden [53] has shown
(using an equivalent definition) that a semimetric space satisfying Axiom V
is always metrizable. (We have not independently verified this assertion.)

Axiom III in a semimetric space (X, d) is equivalent to the assertion that
there do not exist distinct points x, y ∈ X and a sequence {zn} ⊆ X such that
d (x, zn) + d (y, zn) → 0 as n → ∞. Thus, as Wilson observes, the following
is self-evident.

Proposition 1.1. In a semimetric space Axiom III implies that limits
are unique.

For r > 0, let U (p; r) = {x ∈ X : d (x, p) < r} . Then Axiom III is also
equivalent to the assertion that X is Hausdorff in the sense that given any
two distinct points x, y ∈ X there exist positive numbers rx and ry such that
U (x; rx) ∩ U (y; ry) = ∅.

Definition 1.3. Let (X, d) be a semimetric space. Then the distance
function d is said to be continuous if for any sequences {pn} , {qn} ⊆ X,
limn→∞ d (pn, p) = 0 and limn→∞ d (qn, q) = 0 ⇒ limn→∞ d (pn, qn) =
d (p, q) .



1. INTRODUCTION 5

A point p in a semimetric space X is said to be an accumulation point
of a subset E of X if given any ε > 0, U (p; ε) ∩ E 	= ∅. A subset of a
semimetric space is said to be closed if it contains each of its accumulation
points. A subset of a semimetric space is said to be open if its complement
is closed. With these definitions, if X is a semimetric space with continuous
distance function, then U (p; r) is an open set for each p ∈ X and r > 0 and
moreover, X is a Hausdorff topological space [28, p. 11].

Remark 1.1. Some authors call a space satisfying Axioms I and II a
symmetric space, and reserve the term semimetric space for symmetric spaces
with continuous distance function. We use the classical definition in this
monograph.



CHAPTER 2

Caristi’s Theorem and Extensions

2.1. Introduction

Much of the material immediately following is taken from [115].
We begin with two “equivalent” facts. The first is a well-known variational
principle due to Ekeland [70, 71] and the second is the well-known Caristi
Theorem [49]. Throughout we use R to denote the set of real numbers, N to
denote the set of natural numbers, and R

+ = [0,∞). Recall that if X is a
metric space, a mapping ϕ : X → R

+ is said to be (sequentially) lower semi-
continuous (l.s.c.) if given any sequence {xn} in X, the conditions xn → x
and ϕ (xn) → r imply ϕ (x) ≤ r.

Theorem 2.1 (E). (Ekeland [70]) Let (X, d) be a complete metric space
and ϕ : X → R

+ l.s.c. Define a partial order ≤ on X as follows:

(2.1) x ≤ y ⇔ d (x, y) ≤ ϕ (x)− ϕ (y) , x, y ∈ X.

Then (X,≤) has a maximal element.

Theorem 2.2 (C). (Caristi [49]) Let X and ϕ be as above. Suppose
f : X → X satisfies

(2.2) d (x, f (x)) ≤ ϕ (x)− ϕ (f (x)) , x ∈ X.

Then f has a fixed point.

(E) ⇒ (C).

Proof. With X,ϕ as above and f as in (C), define the relation ≤ on X
by setting

x ≤ y ⇐⇒ d (x, y) ≤ ϕ (x)− ϕ (y) , x, y ∈ X.

By (E) (X,≤) has a maximal element x∗. However by (2.2)

d (x∗, f (x∗)) ≤ ϕ (x∗)− ϕ (f (x∗)) ,

and this in turn implies x∗ ≤ f (x∗) so by maximality of x∗ it must be the
case that f (x∗) = x∗. �

(C) ⇒ (E) .

© Springer International Publishing Switzerland 2014
W. Kirk, N. Shahzad, Fixed Point Theory in Distance Spaces,
DOI 10.1007/978-3-319-10927-5__2

7



8 2. CARISTI’S THEOREM AND EXTENSIONS

Proof. Assume X,ϕ, and ≤ are as in (E), and assume (X,≤) does not
have a maximal element. Then for each x ∈ X there exists yx ∈ X such
that x < yx. Define f : X → X by setting f (x) = yx. Then by (2.1)
d (x, yx) ≤ ϕ (x)− ϕ (yx) ; hence

d (x, f (x)) ≤ ϕ (x)− ϕ (f (x)) , x ∈ X.

By (C) f has a fixed point x∗. But by assumption x∗ < f (x∗), which is a
contradiction. �

Thus it is easy to see that (E) ⇔ (C) . However to a logician these two
results are not equivalent. In particular the implication (C) ⇒ (E) invokes
the Axiom of Choice (AC). In fact, N. Brunner [42] has shown that any
proof of (E) requires at least the basic axioms of Zermelo–Fraenkel (ZF) plus
a form of the Axiom of Choice called the Axiom of Dependent Choice (DC),
whereas R. Mańka [143] has shown that (C) holds within (ZF). So from a
purely logical point of view the two theorems are not equivalent. (DC) is
strictly weaker than (AC) but strictly stronger than the Axiom of Countable
Choice.

Brézis and Browder derive Ekeland’s Theorem from an order princi-
ple (see Theorem 2.4 below) which requires only ZFDC. They then derive
Caristi’s Theorem as in the implication (E) ⇒ (C) above. Hence Choice
is invoked at this step. However in [87] it is shown that Caristi’s theo-
rem can be derived directly from the order principle of Brézis and Browder
without recourse to Ekeland’s Theorem. We give a similar proof below (see
Theorem 2.3).

In the chart below we list the authors of some of the early proofs of
Caristi’s theorem, the methods, and the axioms used. See Sect. 13.2 for a
quick proof using Zorn’s Lemma.

Author Method Axioms
Caristi (1976) [49] Transfinite Induction ZFAC
Wong (1976) [217] Transfinite Induction ZFAC
Kirk (1976) [113] Zorn’s Lemma ZFAC
Brøndsted (1976) [38] Zorn’s Lemma ZFAC
Browder (1976) [39] Mathematical Induction ZFDC
Brézis–Browder (1976) [34] Mathematical Induction ZFDC
Penot (1976) [169] ZFDC
Siegel (1977) [202] ZFDC
Pasicki (1978) [167] ZFAC
Mańka (1988) [144] ZF
Goebel–Kirk (1990) [87] ZFDC
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It is interesting that to this day Caristi’s Theorem continues to be
“generalized” (see, e.g., [32, 206]). Indeed Caristi’s name appears in the
titles of over one hundred papers. It would be a huge undertaking to see how
many of the literally dozens of generalizations and/or extensions of Caristi’s
Theorem can be obtained without at least assuming DC. At the same time
many “extensions” of Caristi’s theorem turn out to be consequences of Caristi’s
theorem. The next section provides an illustration of this very fact.

2.2. A Proof of Caristi’s Theorem

The paper [32] uses as its point of departure the following definition
introduced in Kirk and Saliga [126]. (The idea has also been credited to [52].
However the talk in which this definition was introduced, and on which [126]
is based, was delivered at the meeting of the World Congress of Nonlinear
Analysts in Catania, Sicily, July, 2000.)

Definition 2.1. Let X be a metric space. A mapping ϕ : X → R is said
to be [sequentially ] lower semicontinuous from above (l.s.c.a.) if given any net
[sequence] {xα} in X, whenever xα → x and {ϕ (xα)} → r is nonincreasing
(ϕ (xα) ↘ r), then ϕ (x) ≤ r.

It is shown in [126] that this weaker lower semicontinuity suffices for
Caristi’s Theorem, a fact which leads directly to another proof of the
Downing–Kirk [63] extension of Caristi’s Theorem.

Theorem 2.3 ([126]). Suppose (X, d) is complete, suppose ϕ : X → R is
bounded below and lower semicontinuous from above, and suppose f : X → X
is an arbitrary mapping satisfying

(2.3) d (x, f (x)) ≤ ϕ (x)− ϕ (f (x))

for all x ∈ X. Then f has a fixed point.

We shall derive this theorem from the following order principle due to
Brézis and Browder [34].

Theorem 2.4 (Brézis–Browder Order Principle). Let (X,�) be a par-
tially ordered set, and for x ∈ X, set S (x) = {y ∈ X : x � y} . Suppose
ψ : X → R satisfies:

(a) x � y and x 	= y ⇒ ψ (x) < ψ (y) ;
(b) for any increasing sequence {xn} in X such that ψ (xn) ≤ C < ∞

for all n there exists some y ∈ X such that xn � y for all n;
(c) for each x ∈ X, ψ (S (x)) is bounded above.

Then for each x ∈ X there exists x∗ ∈ S (x) such that x∗ is maximal in
(X,�) , that is, S (x∗) = {x∗} .

Proof of Theorem 2.3. Let � denote the Brøndsted order in X. Thus
for x, y ∈ X, x � y ⇔ d (x, y) ≤ ϕ (x) − ϕ (y) . Now let ψ = −ϕ. Then
condition (a) of Theorem 2.4 is obvious, and condition (c) follows from the
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fact that ϕ is bounded below. To see that (b) holds, suppose {xn} is an
increasing sequence in (X,�) which satisfies ψ (xn) ≤ C < ∞ for all n ∈ N.
Then {ϕ (xn)} is a decreasing sequence in R, so there exists r ∈ R such that
limn→∞ ϕ (xn) = r. Since {ϕ (xn)} is decreasing, for any m > n,

lim
m,n→∞

d (xn, xm) ≤ lim
m,n→∞

[ϕ (xn)− ϕ (xm)] = 0.

Therefore {xn} is a Cauchy sequence in X. Hence there exists x ∈ X such
that limn→∞ xn = x. Since ϕ (xn) ↘ r, ϕ (x) ≤ r and it follows that

d (xn, x) ≤ lim
m→∞

d (xn, xm) ≤ lim
m→∞

[ϕ (xn)− ϕ (xm)]

= ϕ (xn)− r ≤ ϕ (xn)− ϕ (x) .

Therefore x is an upper bound for {xn} in (X,�) , proving (b) of Theorem 2.4.
By Theorem 2.4 (X,�) has a maximal element, say x∗. Since condition (2.3)
implies x∗ � f (x∗) it must be the case that f (x∗) = x∗. �

Theorem 2.3 contains the following theorem due to Downing and
Kirk [63].

Theorem 2.5. Suppose (X, d) and (Y, ρ) are complete metric spaces, let
f : X → Y be a closed mapping, and let φ : X → R be lower semicontinuous
and bounded below. Let g : X → X satisfy

max {d (x, g (x)) , cρ (f (x) , f (g (x)))} ≤ φ (f (x))− φ (f (g (x)))

for some constant c > 0 and all x ∈ X. Then g has a fixed point.

Proof. Introduce the metric D on X by setting

D (x, y) = max {d (x, y) , cρ (f (x) , f (y))}
for all x, y ∈ X. It is easy to check that (X,D) is a complete metric space.
Now let ϕ := φ ◦ f, and define

x � y ⇔ D (x, y) ≤ ϕ (x)− ϕ (y)

for x, y ∈ X. Now suppose {xn} is decreasing in (X,�) . Then {ϕ (xn)} is
decreasing, so there exists r ∈ R such that limn→∞ ϕ (xn) = r. Also

lim
m,n→∞

D (xn, xm) = lim
m,n→∞

max {d (xn, xm) , cρ (f (xn) , f (xm))} = 0,

and this implies that both {xn} and {f (xn)} are Cauchy sequences in (X, d)
and (Y, ρ) , respectively. Hence there exist x ∈ X, y ∈ Y such that
limn→∞ xn = x and limn→∞ f (xn) = y. Since f is a closed mapping, f (x) =
y. Also, since φ is lower semicontinuous we have

ϕ (x) = φ (y) ≤ lim
n→∞

φ ◦ f (xn) = lim
n→∞

ϕ (xn) .

This shows that ϕ is lower semicontinuous from above. Therefore Theorem 2.3
can be applied directly to the complete metric space (X,D) .
Since D (x, g (x)) ≤ ϕ (x)− ϕ (g (x)) , we conclude g has a fixed point. �
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2.3. Suzuki’s Extension

We now turn to the main result of the paper [206]. Suzuki shows that
results of [15, 16] follow directly from his result.

Theorem 2.6. Let (X, d) be a complete metric space. Let f : X → X,
and let ϕ : X → R

+ be lower semicontinuous. Let Ψ : X → R
+ satisfy

sup

{
Ψ(x) : x ∈ X, ϕ (x) ≤ inf

w∈X
ϕ (w) + η

}
< ∞

for some η > 0. Assume that

d (x, f (x)) ≤ Ψ(x) (ϕ (x)− ϕ (f (x)))

for all x ∈ X. Then f has a fixed point.

Proof. When Ψ(x) > 0 then ϕ (f (x)) ≤ ϕ (x) by assumption, and
when Ψ(x) = 0, x = f (x) , so ϕ (f (x)) ≤ ϕ (x) for all x ∈ X. Set

Y =

{
x ∈ X : ϕ (x) ≤ inf

w∈X
ϕ (w) + η

}
and γ = sup

w∈Y
Ψ(w) < ∞.

Note that Y is closed and hence complete because X is complete and ϕ is
lower semicontinuous. It is clear that Y 	= ∅, and because ϕ (f (x)) ≤ ϕ (x) ,
f (Y ) ⊆ Y. Also

d (x, f (x)) ≤ Ψ(x) (ϕ (x)− ϕ (f (x))) ≤ γ (ϕ (x)− ϕ (f (x)))

for all x ∈ Y. Since x �−→ γϕ (x) is lower semicontinuous, f has a fixed point
in Y by Caristi’s Theorem. �

Remark 2.1. In order to apply Caristi’s Theorem, it suffices only to
know that Ψ is lower semicontinuous from above. However this assumption
is not enough to assure that Y is complete.

2.4. Khamsi’s Extension

In [50] Caristi posed the following problem (which he attributed to one
of the present writers). Does Theorem 2.2 remain true if instead of (2.2) it
is merely assumed that for some p > 1,

(d (x, f (x)))
p ≤ ϕ (x)− ϕ (f (x)) , x ∈ X?

Some time ago it was shown by Bae and Park [14] that the answer is
negative. More recently Khamsi [106] has given another negative answer
to this question.
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Example. ([106]) Let p > 1, let xn :=
∑n

i=1

1

i
, and let X = {xn : n ∈ N} .

Then X is a closed (discrete) subset of R+ and is therefore complete. (If m >

n, then d (xn, xm) ≥ 1

m
.) Define f : X → X by taking f (xn) = xn+1 for all

n ≥ 1. Now define ϕ (xn) =
∑∞

i=n+1

1

ip
. Then

(d (xn, f (xn)))
p

=
1

(n+ 1)
p

=

∞∑
i=n+1

1

ip
−

∞∑
i=n+2

1

ip

= ϕ (xn)− ϕ (xn+1)

= ϕ (xn)− ϕ (f (xn)) .

Clearly f is fixed point free. Also note that ϕ is continuous (because X is
discrete) and f is even nonexpansive.

Khamsi then turns to the question of whether there exist positive func-
tions η : R+ → R

+ with the property that if f : X → X (X complete)
satisfies

η (d (x, f (x))) ≤ ϕ (x)− ϕ (f (x)) , x ∈ X,

for some lower semicontinuous ϕ : X → R
+, then f has a fixed point. He

gives an affirmative answer in the form of the following theorem.
The standing assumptions are these: η : R+ → R

+ is nondecreasing,
continuous, and such that there exists c > 0 and δ0 > 0 such that for any
t ∈ [0, δ0] , η (t) ≥ ct. Because η is continuous, there exists ε0 > 0 such that
η−1 ([0, ε0]) ⊂ [0, δ0] .

Theorem 2.7. Suppose X is a complete metric space and ϕ : X → R
+

lower semicontinuous. Define the relation ≺ on X by setting

x ≺ y ⇔ η (d (x, y)) ≤ ϕ (y)− ϕ (x) , x, y ∈ X,

where η is as above. Then (X,≺) has a minimal element x∗ (i.e., x ≺ x∗ for
x ∈ X ⇒ x = x∗).

Proof. ([106]) Set ϕ0 = inf {ϕ (x) : x ∈ X}. For any ε > 0, set

Xε = {x ∈ X : ϕ (x) ≤ ϕ0 + ε} .
Since ϕ is lower semicontinuous, Xε is a closed nonempty subset of X. (This
uses the fact that ϕ is lower semicontinuous. Suppose {xn} ⊂ Xε and xn → x.
Then ϕ (xn) ≤ ϕ0 + ε, so ϕ (x) ≤ ϕ0 + ε i.e., x ∈ Xε.) Also, if x, y ∈ Xε and
if x ≺ y, then

η (d (x, y)) ≤ ϕ (y)− ϕ (x)

which implies
ϕ0 ≤ ϕ (x) ≤ ϕ (y) ≤ ϕ0 + ε.
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Hence η (d (x, y)) ≤ ε. In particular, if x, y ∈ Xε0 and x ≺ y, then

c (d (x, y)) ≤ η (d (x, y)) ≤ ϕ (y)− ϕ (x) .

Now on Xε0 define the new relation ≺∗ by

x ≺∗ y ⇔ d (x, y) ≤ 1

c
ϕ (y)− 1

c
ϕ (x) , x, y ∈ Xε0 .

Clearly (Xε0 ,≺∗) is a partial order with all the necessary assumptions for
securing, via Zorn’s Lemma, an element x∗ ∈ Xε0 which is minimal relative
to ≺∗ .

Now let x ∈ X satisfy x ≺ x∗. Then η (d (x, x∗)) ≤ ϕ (x∗) − ϕ (x) , so
ϕ (x) ≤ ϕ (x∗) ≤ ϕ0 + ε0, i.e., x ∈ Xε0 . As before, η (d (x, x∗)) ≤ ε0 and this
implies

cd (x, x∗) ≤ η (d (x, x∗)) ≤ ϕ (x∗)− ϕ (x) .

Since x∗ is minimal in (Xε0 ,≺∗) we have x = x∗. �

The following is Theorem 3 of [106].

Theorem 2.8. Let X be a complete metric space and let f : X → X be
a mapping such that for all x ∈ X

η (d (x, f (x))) ≤ ϕ (x)− ϕ (f (x)) ,

where η and ϕ are as in Theorem 2.7. Then f has a fixed point.

Proof. Define the relation ≺ as in Theorem 2.7. Obviously f (x) ≺ x
for any x ∈ X. In particular, if x∗ is a minimal element in (X,≺) , it must
be the case that f (x∗) = x∗. �

We now turn to a variant of Khamsi’s Theorem.

Theorem 2.9. Suppose X is a complete metric space and suppose ϕ :
X → R

+ is bounded below and sequentially lower semicontinuous from above.
Define the relation ≺ on X by setting

x ≺ y ⇔ η (d (x, y)) ≤ ϕ (x)− ϕ (y) , x, y ∈ X,

where η is as in Theorem 2.7. Then (X,≺) has a maximal element x∗ (i.e.,
x∗ ≺ x for x ∈ X ⇒ x = x∗).

Proof. Set ϕ0 = inf {ϕ (x) : x ∈ X} . For any ε > 0, set

Xε = {x ∈ X : ϕ (x) ≤ ϕ0 + ε} .
If x, y ∈ Xε and if x ≺ y, then

η (d (x, y)) ≤ ϕ (x)− ϕ (y)

which implies
ϕ0 ≤ ϕ (y) ≤ ϕ (x) ≤ ϕ0 + ε.

Hence η (d (x, y)) ≤ ε. In particular, if x, y ∈ Xε0 and x ≺ y, then

cd (x, y) ≤ η (d (x, y)) ≤ ϕ (x)− ϕ (y) .
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Now on Xε0 we define the new relation ≺∗ by

x ≺∗ y ⇔ d (x, y) ≤ 1

c
ϕ (x)− 1

c
ϕ (y) , x, y ∈ Xε0 .

Set ψ := −1

c
ϕ and define x ≤ y ⇔ d (x, y) ≤ ψ (y)−ψ (x) . We now show that

(Xε0 ,≤) has a maximal element. (Notice that we are not assuming Xε0 is
complete.) Condition (a) of Theorem 2.4 is obvious, and condition (c) follows
from the fact that ϕ is bounded below. To see that (b) holds, suppose {xn} is
an increasing sequence in (Xε0 ,≤) which satisfies ψ (xn) ≤ C < ∞ for all n.
Then {ϕ (xn)} is a decreasing sequence in R, so there exists r ∈ R such that
limn→∞ ϕ (xn) = r. Since for any m > n,

lim
m,n→∞

cd (xn,xm) ≤ lim
m,n→∞

[ϕ (xn)− ϕ (xm)] = 0.

It follows that {xn} is a Cauchy sequence in X, and since X is complete
there exists x ∈ X such that limn xn = x. Since ϕ (xn) ↘ r and ϕ is lower
semicontinuous from above, ϕ (x) ≤ r. However xn ∈ Xε0 ⇒ ϕ (xn) ≤ ϕ0+ε0.
Therefore r ≤ ϕ0 + ε; hence ϕ (x) ≤ ϕ0 + ε0, and so x ∈ Xε0 . It follows that

cd (xn, x) = lim
m→∞

cd (xn, xm) ≤ lim
m→∞

[ϕ (xn)− ϕ (xm)]

= ϕ (xn)− r ≤ ϕ (xn)− ϕ (x) .

Thus x is an upper bound for {xn} in (Xε0 ,≤) . By Theorem 2.4, there exists
a maximal element x∗ in (Xε0 ,≤) , and in turn x∗ is a maximal element in
(Xε0 ,≺∗) .

Now let x ∈ X satisfy x∗ ≺ x. Then η (d (x, x∗)) ≤ ϕ (x∗) − ϕ (x) , so
ϕ (x) ≤ ϕ (x∗) ≤ ϕ0 + ε0, i.e., x ∈ Xε0 . As before, η (d (x, x∗)) ≤ ε0 and this
implies

cd (x, x∗) ≤ η (d (x, x∗)) ≤ ϕ (x∗)− ϕ (x) .

Since x∗ is maximal in (Xε0 ,≺∗) we have x = x∗. �
Since the Brézis–Browder order principle does not require Zorn’s Lemma,

the preceding result yields a more “constructive” proof of a slight generaliza-
tion of Khamsi’s Theorem.

Corollary 2.1. Suppose X is a complete metric space and suppose
ϕ : X → R is bounded below and sequentially lower semicontinuous from
above. Define the relation ≺ on X by setting

x ≺ y ⇔ η (d (x, y)) ≤ ϕ (y)− ϕ (x) , x, y ∈ X,

where η is as above. Then (X,≺) has a minimal element x∗.
Proof. An element x∗ ∈ X is maximal in X relative to the relation

x ≺ y ⇔ η (d (x, y)) ≤ ϕ (x)− ϕ (y) , x, y ∈ X,

if and only if x∗ is minimal in X relative to the relation

x ≺ y ⇔ η (d (x, y)) ≤ ϕ (y)− ϕ (x) , x, y ∈ X.

�
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Theorem 2.10. Let (X, d) be a complete metric space. Let f : X → X,
and let ϕ : X → R

+ be lower semicontinuous from above. Let Ψ : X → R
+

satisfy

sup

{
Ψ(x) : x ∈ X, ϕ (x) ≤ inf

w∈X
ϕ (w) + ε

}
< ∞

for some ε > 0. Introduce the relation ≺ on X by setting

x ≺ y ⇔ η(d (x, y)) ≤ Ψ(x) (ϕ (x)− ϕ (y))

for all x, y ∈ X. Then there is an element x∗ ∈ X that is maximal relative
to ≺ .

Proof. First notice that x ≺ y ⇒ ϕ (y) ≤ ϕ (x) for all x, y ∈ X. Let
ϕ0 = infw∈X ϕ (w) , and set

Y = {x ∈ X : ϕ (x) ≤ ϕ0 + ε} and γ = sup
w∈Y

Ψ(w) < ∞.

Now let
Xε =

{
x ∈ X : ϕ (x) ≤ ϕ0 + γ−1ε

}
and introduce the relation ≺∗ on Xε by setting

x ≺∗ y ⇔ η(d (x, y)) ≤ Ψ(x) (ϕ (x)− ϕ (y)) .

which in turn implies

ϕ0 ≤ ϕ (y) ≤ ϕ (x) ≤ ϕ0 + γ−1ε.

In particular ϕ (x)− ϕ (y) ≤ γ−1ε. Let ε′0 = min {ε, ε0} . Thus if x, y ∈ Xε′0 ,

η(d (x, y)) ≤ Ψ(x) (ϕ (x)− ϕ (y)) ≤ γ
(
γ−1
)
ε′0 ≤ ε0. In particular

cd (x, y) ≤ η(d (x, y)) ≤ Ψ(x) (ϕ (x)− ϕ (y)) ≤ γ (ϕ (x)− ϕ (y)) .

Now let φ := −γ

c
ϕ and introduce the new partial order ≤ on Xε0 by setting

x ≤ y ⇔ d (x, y) ≤ φ (y)− φ (x) .

It is now possible to complete the proof exactly as in the proof of Theorem 2.9.
�

Observe that by taking Ψ to be the identity mapping one recovers
Khamsi’s theorem.

Corollary 2.2. Let (X, d) be a complete metric space. Let f : X → X,
and let ϕ : X → R

+ be lower semicontinuous from above. Let Ψ : X → R
+

satisfy

sup

{
Ψ(x) : x ∈ X, ϕ (x) ≤ inf

w∈X
ϕ (w) + ε

}
< ∞

for some ε > 0. Assume that

η (d (x, f (x))) ≤ Ψ(x) (ϕ (x)− ϕ (f (x)))

for all x ∈ X. Then f has a fixed point.



16 2. CARISTI’S THEOREM AND EXTENSIONS

Proof. Introduce the relation ≺ on X by setting

x ≺ y ⇔ η(d (x, y)) ≤ Ψ(x) (ϕ (x)− ϕ (y))

for all x, y ∈ X. By Theorem 2.10, there is a point x∗ ∈ X that is maximal
relative to this relation. However by assumption, x∗ ≺ f (x∗) . It follows that
f (x∗) = x∗. �

2.5. Results of Z. Li

In [139] Z. Li shows that one can actually derive Khamsi’s results from
Caristi’s Theorem without assumptions on the continuity and the subadditiv-
ity of η. We summarize Li’s results of [139] here. Throughout, (X, d) denotes
a complete metric space. A mapping f : X → X is said to be a Caristi type
mapping if

(2.4) η (d (x, f (x))) ≤ ϕ (x)− ϕ (f (x)) ∀x ∈ X,

where η : R+ → R and ϕ : X → R.

Proposition 2.1. Suppose that η : R+ → R
+ and the Caristi type map-

ping has a fixed point in X. Then η (0) = 0.

Proof. Suppose f (x∗) = x∗. If η(0) 	= 0, then η (0) > 0. Hence from (2.4)

(2.5) 0 < η (0) = η (d (x∗, f (x∗))) ≤ ϕ (x∗)− ϕ (f (x∗)) = 0

which is a contradiction. Therefore η (0) = 0. �

From this result it is easy to see that Khamsi’s theorem holds if η (0) = 0.
The following theorem actually reduces to an application of Caristi’s
theorem. This in turn shows that Khamsi’s theorem is actually a conse-
quence of Caristi’s theorem.

Theorem 2.11. Suppose that η : R+ → R with η (0) = 0, suppose ϕ :
X → R is lower semicontinuous, and suppose there exist x0 ∈ X and two
real numbers a, β ∈ R such that

(2.6) ϕ (x) ≥ ad (x, x0) + β ∀x ∈ X.

Suppose also that one of the following conditions is satisfied.
(i) a ≥ 0, η is nonnegative and nondecreasing on W = {d (x, y) :

x, y ∈ X} , and there exists c > 0 and ε > 0 such that

(2.7) η (t) ≥ ct ∀t ∈ {t ≥ 0 : η (t) ≤ ε} ∩W ;

(ii) a < 0, η (t) + at is nonnegative and nondecreasing on W, and there
exist c > 0 and ε > 0 such that

(2.8) η (t) + at ≥ ct ∀t ∈ {t ≥ 0 : η (t) + at ≤ ε} ∩W.

Then each Caristi type mapping has a fixed point in X.
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Proof. Case (i). From a ≥ 0 and (2.6) we see that ϕ is bounded below
on X. Let

(2.9) α = inf {ϕ (x) : x ∈ X} .
Let

Xε = {x ∈ X : ϕ (x) ≤ α+ ε} .
From the lower semicontinuity of ϕ, it follows that the set Xε is a nonempty
closed subset of X. Hence (Xε, d) is a complete metric space. We show that
f : Xε → Xε. Since η (t) ≥ 0 for each t ∈ W and d (x, f (x)) ∈ W for each
x ∈ X we have

(2.10) 0 ≤ η (d (x, f (x))) ≤ ϕ (x)− ϕ (f (x)) ∀x ∈ Xε.

Therefore

(2.11) α ≤ ϕ (f (x)) ≤ ϕ (x) ≤ α+ ε ∀x ∈ Xε.

This proves that f : Xε → Xε.
For each x ∈ Xε we have from (2.10) and (2.11)

(2.12) 0 ≤ η (d (x, f (x))) ≤ ϕ (x)− ϕ (f (x)) ≤ ϕ (x)− α ≤ ε.

From (2.7) and (2.12)

cd (x, f (x)) ≤ η (d (x, f (x))) ≤ ϕ (x)− ϕ (f (x)) ∀x ∈ Xε.

Letting φ =
1

c
ϕ, we now have

d (x, f (x)) ≤ φ (x)− φ (f (x)) ∀x ∈ Xε.

Therefore by Caristi’s theorem, f has a fixed point in Xε.

Case (ii). Let

(2.13) ψ (x) = ϕ (x)− ad (x, x0) for each x ∈ X.

From (2.6) and (2.13) it is easy to see that ψ : X → [β,∞) is lower semicon-
tinuous and bounded below on X. Let

(2.14) η1 (t) = η (t) + at for each t ∈ R
+.

Then η1 is nonnegative and nondecreasing on W, so from (2.8) we have

η1 (t) ≥ ct for each t ∈ {t ≥ 0 : η1 (t) ≤ ε} ∩W.

On the other hand, from (2.4) and (2.13)–(2.14),

η1 (d (x, f (x))) = η (d (x, f (x))) + ad (x, f (x))

≤ ϕ (x)− ad (x, x0)− ϕ (f (x)) + ad (f (x) , x0)

≤ ψ (x)− ψ (f (x)) .

The above fact and Case (i) imply that f has a fixed point. �
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2.6. A Theorem of Zhang and Jiang

Let γ : R
+ → R

+ be a subadditive (i.e., γ (t+ s) ≤ γ (t) + γ (s) for
s, t ∈ R

+) and increasing continuous mapping such that γ−1 ({0}) = 0. For
example, γ (t) = tp (0 < p ≤ 1) for t ∈ R

+). Let Γ denote the collection of
all such functions γ.

Let A denote the class of all maps η : R+ → R
+ for which there exists

ε̄ > 0 and γ ∈ Γ such that if η (t) ≤ ε̄, then η (t) ≥ γ (t) .
Let F : R → R be an increasing, upper semi-continuous mapping such

that F (0) = 0, F−1 (R+) ⊂ R
+ and such that F (t) + F (s) ≤ F (t+ s) for

t, s ≥ 0. For example,

F (t) =

⎧⎨
⎩

0, if t < 0
tp, if 0 ≤ t < t0

tp+1, if t ≥ t0

where t0 > 1 and p ≥ 1. Denote the class of all such functions F by F . If
F (t) = t ∀t ∈ R, then trivially F ∈ F .

Theorem 2.12 ([223]). Let (X, d) be a complete metric space, let ϕ :
X → R be lower semi-continuous and bounded below, and let f : X → X.
Suppose there exists η ∈ A and F ∈ F such that for all x ∈ X,

η (d (x, f (x))) ≤ F (ϕ (x)− ϕ (f (x))) .

Then f has a fixed point.

It is shown in Remark 3 of [106] that if η is subadditive, then there exists
c > 0 and δ0 > 0 such that for any t ∈ [0, δ0] , η (t) ≥ ct.

For Theorem 2.12 it is assumed that for η : R+ → R
+ there exists ε̄ > 0

and γ ∈ Γ such that if η (t) ≤ ε̄, then η (t) ≥ γ (t) .
Therefore it appears that if one takes η = γ and F (t) = t in Theorem 2.12

one obtains Khamsi’s result for subadditive η. It is not obvious to us that
one fully recovers Khamsi’s theorem.

QUESTION. Is it possible to derive the theorem of Zhang and Jiang
from the Brézis–Browder order principle?



CHAPTER 3

Nonexpansive Mappings and Zermelo’s
Theorem

3.1. Introduction

An extension of a theorem attributed variously to Zermelo, Bourbaki, and
Kneser provides the basis for Mańka’s proof that Caristi’s theorem holds in
ZF. In the sequel we shall simply refer to this theorem as Zermelo’s theorem.
This theorem should NOT be confused with the celebrated well-ordering
theorem also due to Zermelo, which is equivalent to the Axiom of Choice.
See A.3 and A.9 of [107] for a brief discussion of constructive aspects of
mathematics.

Theorem 3.1 (Zermelo [222]). Let (E,≤) be a partially ordered set and
let f : E → E satisfy x ≤ f (x) ∀x ∈ E. Suppose every chain in (E,≤) has a
least upper bound. Then f has a fixed point in E. In fact, given x ∈ E it is
possible to construct x∗ ∈ E so that x ≤ x∗ and f (x∗) = x∗.

For a constructive (ZF) proof of this theorem see [67, p. 9], [221, p. 504],
or [107, p. 284].

3.2. Convexity Structures

In this section we prove an abstract metric fixed theorem for nonexpan-
sive mappings that contains many known theorems as special cases. Our
proof is constructive in that it only relies on Zermelo’s theorem. We first
need some definitions and we start with a concept inspired by observations
of J.-P. Penot in [169].

Definition 3.1. A convexity structure in a metric space (X, d) is a family
Σ of subsets of X such that ∅, X ∈ Σ and Σ is closed under arbitrary
intersections. The structure Σ is said to be [countably ] compact if every
[countable] subfamily of Σ which has the finite intersection property has
nonempty intersection.

Given a convexity structure Σ in a metric space (X, d) , we adopt the
following notation: For D ∈ Σ and x ∈ X, set:

rx (D) = sup {d (x, y) : y ∈ D} ;
rX (D) = inf {rx (D) : x ∈ X} ;
r (D) = inf {rx (D) : x ∈ D} .

© Springer International Publishing Switzerland 2014
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Definition 3.2. A convexity structure Σ in X is said to be normal if
given D ∈ Σ, diam (D) > 0 ⇒ r(D) < diam (D) .

A subset A of a metric space X is said to be admissible if A is the
intersection of closed balls centered at points of X. Thus

A =
⋂
i∈I

{B (xi; ri) : xi ∈ X, ri ≥ 0} .

The set of all admissible subsets of X is denoted by A (X) . Of particular in-
terest in metric fixed point theory is the convexity structure A (X) consisting
of all admissible sets in X. Given any bounded set A ⊆ X we set

cov (A) :=
⋂

{D : D ∈ Σ and D ⊇ A} .

Clearly cov (A) ∈ A (X) , and thus A = cov (A) ⇔ A ∈ A (X) .

Examples of convexity structures

1. Let Σ be the family of all closed and convex subsets of a given closed
convex subset of a Banach space X.

2. Let Σ = A (B) where B is the unit ball in a Banach space X.
3. Let Σ = A (X) where X is a bounded metric space.
4. Let Σ = A (K) where K is a closed convex subset of a complete

CAT(0) space (see Chap. 9).

Examples of compact convexity structures

5. The same as Example 1, but with K weakly compact.
6. The same as Example 2, but with B the unit ball in a dual Banach

space.
7. The same as Example 3, but with X a hyperconvex metric space

(see the next chapter).
8. The same as Example 4.

Examples of convexity structures that are compact and normal

9. The same as Example 5, but with K possessing normal structure
[110].

10. The same as Example 6, but with B possessing normal structure.
12. The same as Example 7.
13. The same as Example 4.

We now derive the following theorem as an application of Zermelo’s
theorem (Theorem 3.1). This provides a constructive proof of the original
theorem of Kirk [110] for nonexpansive mappings. The original proof is
somewhat shorter, but it uses Zorn’s Lemma. (Recall that a mapping f of a
metric space (X, d) into itself is nonexpansive if d (f (x) , f (y)) ≤ d (x, y) for
all x, y ∈ X.) This proof, taken from [115], was inspired by one given by B.
Fuchssteiner in [85].
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Theorem 3.2. If K is a nonempty bounded subset of a metric space
(X, d) for which Σ := A (K) is compact and normal, then every nonexpansive
mapping f : K → K has a fixed point.

Proof. Since K is bounded, K ∈ Σ.
Step 1. Let

M := {D ∈ Σ : D 	= ∅ and f : D → D} ,

and define f1 : M → M by setting f1 (D) = cov (f (D)) , D ∈ M.
Now introduce the order � on M by setting D1 � D2 ⇔ D2 ⊆ D1. Then

D � f1 (D) ∀ D ∈ M. Also, by compactness of Σ every chain C in (M,�)
has a least upper bound, namely

⋂
C. Therefore by Zermelo’s theorem, given

D ∈ M there exists D∗ ∈ M such that D � D∗ and

f1 (D
∗) = D∗.

In particular cov (f (D∗)) = D∗.
Step 2. For D ∈ Σ, D 	= ∅, define

R (D) =

{
r ≥ 0 : D ∩

( ⋂
u∈D

B (u; r)

)
	= ∅
}
.

Then diam (D) ∈ R (D) so R (D) 	= ∅. Thus r (D) := inf {r ≥ 0 : r ∈ R (D)}
is well defined. Now set

C (D) =

{
z ∈ D : z ∈

⋂
u∈D

B (u; r (D))

}
.

Clearly C (D) ∈ Σ.

Assertion. C (D) 	= ∅.
Proof. If r > R (D) , then by the definition of R (D) ,

Cr (D) :=

{
z ∈ D : z ∈

⋂
u∈D

B (u; r)

}
	= ∅.

We will show that C (D) =
⋂

r>r(D) Cr (D) from which the conclusion will
follow by compactness of Σ.

Clearly C (D) ⊆ Cr (D) for each r > r (D) because

C (D) = D ∩
( ⋂

u∈D

B (u; r (D))

)
⊆ D ∩

( ⋂
u∈D

B (u; r)

)
= Cr (D) .

Thus C (D) ⊆
⋂

r>r(D) Cr (D) . Now suppose there exists

z ∈

⎛
⎝ ⋂

r>r(D)

Cr (D)

⎞
⎠ \C (D) .



22 3. NONEXPANSIVE MAPPINGS AND ZERMELO’S THEOREM

Then there exists u ∈ D such that d (z, u) > r (D) ; hence, there exists r′

such that d (z, u) > r′ > r (D) . But d (z, u) > r′ implies z /∈ Cr′ (D)—a
contradiction.

Given D ∈ M, construct D∗ as in Step 1. It is now possible to define
f2 : M → M by setting f2 (D) = C (D∗) . As in Step 1, by Zermelo’s
theorem there exists D∗∗ ∈ M such that f2 (D

∗∗) = D∗∗. This implies that
C (D∗∗) = D∗∗. However since Σ is normal, diam (D∗∗) > 0 ⇒ C (D∗∗) is a
proper subset of D∗∗. Therefore D∗∗ must be a singleton consisting of a fixed
point of f. �

We now give a proof of Theorem 3.2 which mimics the Zorn Lemma proof
in the original paper of Kirk [110]. This more abstract approach, inspired
by observations of Penot [169], is self-contained and somewhat quicker.

Alternate Proof. Since A(K) is compact, an application of Zorn’s
Lemma yields the existence of a set D ∈ A(K) which is minimal with respect
to being nonempty and mapped into itself by f. Also, cov(f(D)) ⊆ D and
f : cov(f(D)) → cov(f(D)), so minimality of D implies

D = cov(f(D)).

Now assume diam(D) > 0 and choose r so that r(D) < r < diam(D). It
follows that the set

C = {x ∈ D : D ⊆ B(x; r)} 	= ∅.

Also one can quickly check that

C =
⋂
x∈D

B(x; r)
⋂

D.

This proves that C ∈ A(K). Now let z ∈ C. Then if x ∈ D

d(f(z), f(x)) ≤ d(x, z) ≤ r.

Therefore f(x) ∈ B(f(z); r) for every x ∈ D; hence, f(D) ⊆ B(f(z); r)
from which cov(f(D)) ⊆ B(f(z); r). But D = cov(f(D)), so D ⊆ B(f(z); r).
This proves that f(z) ∈ C. Hence f : C → C. However if z, w ∈ C, then
d(z, w) ≤ r, so diam(C) ≤ r < diam(D). This proves that C is a proper
subset of D. Since C ∈ A(K) and f : C → C this contradicts the minimality
of D. We thus conclude that diam(D) = 0, so D consists of a single point
which must be a fixed point of f. �

Remark 3.1. In [114] it is shown that countable compactness of Σ is
sufficient for the validity of Theorem 3.2. However it has since been shown
by Kulesza and Lim [136] that if (X, d) a bounded metric space for which
A (X) is countable compact and normal, then A (X) is in fact compact. See
[107, p. 109] for full details.



CHAPTER 4

Hyperconvex Metric Spaces

We only briefly discuss this topic because metric fixed point theory in
these spaces has been discussed extensively elsewhere (see, e.g., [72] or [107,
Chapter 4]). However, since some of the spaces we discuss below are hyper-
convex (in particular the so-called R-trees) we touch on a few of the relevant
properties of these spaces.

A metric space M is said to be injective if it has the following extension
property: Whenever Y is a subspace of a metric space X and f : Y → M
is nonexpansive, then f has a nonexpansive extension f̃ : X → M. This
fact has several nice consequences. For example, suppose M is injective and
suppose M is a subspace of a metric space X. Then since the identity mapping
I : M → M is nonexpansive then I can be extended to a nonexpansive
mapping R : X → M. Since R is a retraction of X onto M we have the
following.

Theorem 4.1. An injective metric space is a nonexpansive retract of any
metric space in which it is metrically embedded.

In light of the above it is clear that an injective metric space must be
complete because it is a nonexpansive retract (hence a closed subspace) of
its own completion.

Definition 4.1. A metric space (X, d) is said to be hyperconvex if for
any indexed class of closed balls B(xi; ri), i ∈ I, of X which satisfy

d(xi, xj) ≤ ri + rj i, j ∈ I,

it is necessarily the case that
⋂
i∈I

B(xi; ri) 	= ∅.

It is easy to see that a hyperconvex metric space X is always complete.
Also if x, y ∈ X then there exists z ∈ X such that d (x, z)+d (z, y) = d (x, y) .
Thus X is Menger convex. Therefore by Menger’s theorem each two points
of X are the endpoints of a metric segment.

Of particular relevance is the fact that hyperconvex spaces are injective.
Indeed, the following well-known theorem is due to Aronszajn and Panitch-
pakdi [12].
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Theorem 4.2. A metric space is injective if and only if it is hyperconvex.

A metric space is said to have the binary ball intersection property if any
family of closed balls, each two of which intersect, has nonempty intersection.
The following is another useful characterization of hyperconvexity. The proof
is straightforward.

Theorem 4.3. For a complete metric space X the following are
equivalent:

(1) X is hyperconvex;
(2) X is metrically convex and has the binary ball intersection property.

For an arbitrary metric space (X, d), J.R. Isbell [99] defined the set of
extremal functions ε (X) on X as follows. For any x ∈ X define fx : X → R

by setting
fx (y) = d (x, y) , y ∈ X.

The space ε (X) is the set of all functions f : X → R satisfying f (x)+f (y) ≥
d (x, y) for all x, y ∈ X, and also satisfying, for some a ∈ X and all x ∈ X,
f (x) ≤ fa (x) . The following remarkable fact shows that every metric space
can be isometrically embedded in a hyperconvex metric space. (See [99], [72,
Section 8], or [107, Section 4.7].)

Theorem 4.4. Let (X, d) be a metric space and ε (X) the set of extremal
points on X. Then:

1. ε (X) is a hyperconvex metric space with metric ρ (f, g) =
supx∈X |f (x)− g (x)| for f, g ∈ ε (X) .

2. X is isometrically embedded in ε (X) via the mapping fx : X →
ε (X) defined by fx (y) = d (x, y) , y ∈ X.

3. If X is isometrically embedded in any hyperconvex metric space Y ,
then ε (X) can also be isometrically embedded into Y.

Other useful facts include the following. (Here we use the terminology
and notation of the previous chapter.)

Proposition 4.1. Suppose (X, d) is a bounded hyperconvex metric space.
Then each set D ∈ A(X) is itself hyperconvex, and the family A(X) is a
compact and normal convexity structure.

In view of Theorem 3.2 we now have the following:

Theorem 4.5. If (X, d) is a bounded hyperconvex metric space, then
every nonexpansive mapping f : X → X has a fixed point.

The above theorem is actually a special case of the following much more
general result.

Theorem 4.6 ([17]). Let (X, d) be a bounded hyperconvex metric space,
and let F be a commuting family of nonexpansive mappings of X into X.
Then the common fixed point set of F is nonempty and hyperconvex.



CHAPTER 5

Ultrametric Spaces

5.1. Introduction

Most of the results of this section are taken from Kirk–Shahzad [127].
We begin by recalling three definitions of an ultrametric space.

The classical definition goes back over 50 years. See [138] for a discussion.
A metric space (X, d) is called an ultrametric space if the metric d satisfies
the strong triangle inequality; namely for all x, y, z ∈ X:

d (x, y) ≤ max {d (x, z) , d (y, z)} .

In this case d is said to be non-archimedean.

A second definition was inspired by the study of functional analysis in
vector valued spaces (cf., [160, 175]). Let X be a nonempty set and let (Γ,≤)
be a totally ordered set with 0 ∈ Γ and 0 = minΓ. A mapping d : X×X → Γ
is said to be an ultrametric distance on X if for all x, y, z ∈ X

(D1) d (x, y) = 0 ⇔ x = y;
(D2) d (x, y) = d (y, x) ;
(D3) d (x, y) ≤ max {d (x, z) , d (z, y)} .
A third definition is found in [33]. It coincides with the definition given

above, except that Γ is assumed to be a complete lattice with least element 0
and a greatest element 1 and (D3) becomes d (x, y) ≤ sup {d (x, z) , d (z, y)} .

NOTE. In keeping with the metric spirit of this text we choose to use
the classical definition, although most of these results hold in more abstract
settings.

We first observe that in an ultrametric space all triangles are isosceles,
with the two equal sides at least as long as the third side. To see this, let
x, y, z be elements of an ultrametric space (X, d) with d (z, y) ≥ d (x, z) , and
suppose

d (x, y) < max {d (x, z) , d (z, y)} .
Then d (x, z) = d (z, y) , because otherwise

d (z, y) > d (x, z) ⇒ d (z, y) > max {d (x, y) , d (x, z)} .
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26 5. ULTRAMETRIC SPACES

We use the notation B (x; r) to denote the closed ball

B (x; r) = {y ∈ X : d (x, y) ≤ r} ,
where r ≥ 0 (with B (x; 0) = {x}) and we observe that always
diam (B (x; r)) ≤ r.

Another characteristic property of ultrametric spaces is the following:

(5.1) α ≤ β and B (x;α) ∩B (y;β) 	= ∅ ⇒ B (x;α) ⊆ B (y;β) .

Moreover if α = d (x, y) , B (x;α) = B (y;α) .

Definition 5.1. An ultrametric space (X, d) is said to be spherically
complete if every chain of balls in X has nonempty intersection.

Remark 5.1. An immediate consequence of (5.1) is the fact that ∩F 	= ∅
for any family F of closed balls in a spherically complete ultrametric space
which has the property that each two members of F intersect.

Ultrametric spaces1 and hyperconvex metric spaces share many common
properties, yet they are quite different in very distinctive ways. The most
striking similarity has to do with the injective extension property; the most
striking difference is likely the fact that while hyperconvex metric spaces are
always metrically convex, ultrametric spaces never are.

An ultrametric space (M,d) is said to have the extension property (EP)
if given any ultrametric space (X, ρ) and any subspace Y of X, every nonex-
pansive mapping f : Y → M has a nonexpansive extension f ′ : X → M.

The following characterization of spherical completeness is found in [175].

Theorem 5.1. An ultrametric space is spherically complete if and only
if it has the extension property.

Proof. (⇒) Suppose (M,d) is spherically complete, let (X, ρ) be an
ultrametric space, let Y be a subspace of X, and suppose f : Y → M is
nonexpansive. Let z ∈ X with z /∈ Y and let Y ′ = Y ∪ {z}. We first show
that f has a nonexpansive extension f ′ : Y ′ → M.

Now let F = {B(f(y); ρ(y, z)) : y ∈ Y }. We assert that each two members
of F intersect. Indeed, suppose y1, y2 ∈ Y with ρ(y1, z) ≤ ρ(y2, z). Then
z ∈ B(y1; ρ(y1, z)) ∩B(y2; ρ(y2, z)) so by (5.1)

B(y1; ρ(y1, z)) ⊆ B(y2; ρ(y2, z)).

Therefore d(f(y1), f(y2)) ≤ ρ(y1, y2) ≤ ρ(y2, z), so f(y1) ∈ B(f(y2); ρ(y2, z)).
Since M is spherically complete, ∩F 	= ∅, so let p ∈ ∩F and define f ′(z) = p.
Then if f ′(y) = f(y) for each y ∈ Y, d(f ′(z), f ′(y)) ≤ ρ(z, y) and f ′ is

1Ultrametrics arise naturally in the study of non-archimedean analysis; in particular in
the study of normed vector spaces over non-archimedean valuation fields (see [156, 160,
213]).
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a nonexpansive extension of f to Y ′. The proof of this implication is now
completed by using Zorn’s lemma as in the extension theorem of Aronszajn
and Panitchpakdi.

(⇐) Now assume (M,d) has the extension property but is not spherically
complete. Then there exists a decreasing family {B(xi; ri)}i∈I of closed balls
in M for which

⋂
i∈I

B(xi; ri) = ∅. Let M ′ = M ∪{p} where p /∈ M and define

a metric ρ on M ′ as follows. Set ρ(p, p) = 0, ρ(x, y) = d(x, y) if x, y ∈ M ;
otherwise for x ∈ M set ρ(x, p) = ρ(p, x) = d(x, xj) where x /∈ B(xj ; rj). By
assumption such j ∈ I must exist. To see that ρ is well defined, notice that
if x /∈ B(xk; rk) then, since these balls are nested, d(xj , xk) < d(x, xj). Thus
d(x, xj) = d(x, xk).

By the extension property, the identity mapping on M has an extension
f ′ : M ′ → M. Also if xi /∈ B(xj ; rj), it must be the case that B(xj ; rj) ⊆
B(xi; ri). Thus

d(f ′(p), xi) = d(f ′(p), f ′(xi)) ≤ ρ(p, xi) = d(xi, xj) ≤ ri,

and f ′(p) ∈
⋂
i∈I

B(xi; ri). This contradicts the original assumption and com-

pletes the proof. �

5.2. Hyperconvex Ultrametric Spaces

An ultrametric space X in the terminology of [33] is said to be hyper-
convex if it satisfies the following two conditions (where Γ is assumed to be
a complete lattice with least element 0 and a greatest element 1):

(H1) For any family {B (xi; γi)}i∈I of balls

B (xi; γi) ∩B
(
xj ; γj

)
	= ∅ ∀ i, j ∈ I ⇒

⋂
i∈I

B (xi; γi) 	= ∅.

(H2) For all x, y ∈ X and γ1, γ2 ∈ Γ :

d (x, y) ≤ sup {γ1, γ2} ⇒ ∃ z ∈ X such that d (x, z) ≤ γ1 and
d (z, y) ≤ γ2 (i.e., B (x; γ1) ∩B (y; γ2) 	= ∅).

We first observe that in the classical setting the second condition is re-
dundant. Indeed, in any classical ultrametric space,

d (x, y) ≤ max {γ1, γ2} ⇔ B (x; γ1) ∩B (y; γ2) 	= ∅.
Consider balls B (x; γ1) and B (y; γ2) with d (x, y) ≤ max {γ1, γ2} . There
are two cases: If γ1 ≤ γ2, then x ∈ B (x; γ1)∩ B (y; γ2) . On the other
hand if γ2 ≤ γ1, then y ∈ B (x; γ1)∩ B (y; γ2) . In either case B (x; γ1)∩
B (y; γ2) 	= ∅. Conversely, suppose B (x; γ1)∩ B (y; γ2) 	= ∅ and let z ∈
B (x; γ1)∩ B (y; γ2) . Then d (x, z) ≤ γ1 and d (y, z) ≤ γ2. By the ultrametric
triangle inequality, d (x, y) ≤ max {d (x, z) , d (y, z)} ≤ max {γ1, γ2} .

Accordingly, we say that an ultrametric space is a classical hyperconvex
ultrametric space if it satisfies (H1).
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A hyperconvex ultrametric space is never hyperconvex in the metric
sense. This is because a hyperconvex metric space is always complete, and
each two points are joined by a metric segment. In contrast, as we have
seen, each three distinct points of an ultrametric space are the vertices of an
isosceles triangle.

Next observe that if B (x; γ) ⊆ B (y; δ), then

d (x, y) ≤ δ ≤ sup {γ, δ} .
Hence any descending collection of balls in a classical hyperconvex ultra-
metric space has nonempty intersection by (5.1), so we conclude that if an
ultrametric space is hyperconvex then it is spherically complete.

Now suppose X is a spherically complete ultrametric space and suppose

{B (xi; γi)}i∈I

is a family of balls in X satisfying d (xi, xj) ≤ max
{
γi, γj

}
. Since the real

numbers are linearly ordered, it follows that {B (xi; γi)}i∈I is a nested chain;
hence by spherical completeness

⋂
i∈I B (xi; γi) 	= ∅.

Theorem 5.2. A classical ultrametric space is hyperconvex in the sense
of (H1 ) if and only if it is spherically complete.

Since it is well known that hyperconvex metric spaces are injective, the
above fact suggests that spherically complete ultrametric spaces should also
be injective. This is indeed the case. Following [175] we say that an ultra-
metric space (X, d) has the extension property (EP) if for every ultrametric
space (X, ρ) and any subspace Y of X, any nonexpansive mapping f : Y → X
has a nonexpansive extension f ′ : X → X. The following is a special case of
Theorem 1.3 of [175].

Theorem 5.3. Let (X, d) be an ultrametric space. Then the following
are equivalent:

(1) (X, d) is spherically complete;
(2) (X, d) has (EP ).

Corollary 5.1. Let Y be a spherically complete subspace of an ultra-
metric space X. Then Y is a nonexpansive retract of X.

Proof. The identity mapping I : Y → Y has a nonexpansive extension
r : X → Y. �

5.3. Nonexpansive Mappings in Ultrametric Spaces

Suppose (X, d) is an ultrametric space and f : X → X a mapping.
We say that ball B := B (x; r) is minimal f -invariant if f : B → B and
d (u, f (u)) = r for all u ∈ B. The following theorem was first proved in [170]
using Zorn’s Lemma. Here we give a constructive proof that seems to be
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more illuminating. Specifically, the fact that the conclusion holds in every
ball of the form B (x, d (x, f (x))) seems to be a new observation.

Theorem 5.4 (cf., [170]). Suppose (X, d) is a spherically complete ul-
trametric space and suppose f : X → X is nonexpansive. Then every ball of
the form

B (x; d (x, f (x)))

contains either a fixed point of f or a minimal f -invariant ball.

Proof. ([127]) Let z ∈ X, let r = d (z, f (z)) and let u ∈ B (z; r) . We
assert that f (u) ∈ B (z; r) and d (u, f (u)) ≤ d (z, f (z)) . To see this we look
at two cases. (i) If d (u, z) < r, then, since d (f (z) f (u)) ≤ d (z, u) , by isosce-
les triangles it must be the case that d (z, f (u)) = r, and
again by isosceles triangles d (u, f (u)) = r. (ii) If d (z, u) = r, then by isosce-
les triangles, either d (z, f (u)) = r and d (u, f (u)) ≤ r or d (z, f (u)) < r
and d (u, f (u)) = r. Thus in either case, f (u) ∈ B (z; r) and d (u, f (u)) ≤ r.
Therefore every ball in X of the form B (z; d (z, f (z))) is invariant under f.

Now let x ∈ X. We shall show that B := B (x, d (x, f (x))) contains either
a fixed point of f or a minimal f -invariant ball. We proceed by induction.
Let x1 = x, let r1 = d (x1, f (x1)) , and set

μ1 = inf {d (x, f (x)) : x ∈ B (x1; r1)} .

Now let {εn} be a sequence of positive numbers such that limn→∞ εn = 0. If
μ1 = r1, then B = B (x1; r1) is either a singleton or a minimal f -invariant
ball, and we are finished. If r1 > 0 and μ1 < r1 select x2 ∈ B (x1; r1) so that

r2 := d (x2, f (x2)) < min {r1, μ1 + ε1} .

Having defined xn ∈ X, let

μn = inf {d (x, f (x)) : x ∈ B (xn; rn)} .

As seen above when n = 1, if μn = rn or rn = 0 we are finished. Otherwise
select xn+1 ∈ B (xn; rn) so that

rn+1 := d (xn+1, f (xn+1)) < min {rn, μn + εn} .

Either this process terminates and the conclusion follows after a finite number
of steps, or {B (xn; rn)}∞n=1 is a nested sequence of nontrivial balls. In the
latter case, since X is spherically complete,

∞⋂
n=1

B (xn; rn) 	= ∅.

Since {rn} is decreasing, r := limn→∞ rn exists. Also {μn} is nondecreasing
and bounded above, so μ := limn→∞ μn also exists. Let x∗ ∈ ∩∞

n=1B (xn; rn) .
Then for each n,

d (x∗, f (x∗)) ≤ max {d (x∗, xn) , d (xn, f (x∗))} ≤ rn.
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Moreover, x∗ ∈ B (xn+1; rn+1) ∀n ⇒
μn ≤ d (x∗, f (x∗)) ≤ r ≤ rn+1 ≤ μn + εn.

Letting n → ∞ we see that d (x∗, f (x∗)) = μ = r. On the other hand,

inf {d (x, f (x)) : x ∈ B (x∗; d (x∗, f (x∗)))} ≥ μn,

and this implies

r ≥ inf {d (x, f (x)) : x ∈ B (x∗; d (x∗, f (x∗)))} ≥ μ = r.

If r > 0, B (x∗; d (x∗, f (x∗))) is a minimal f -invariant ball contained in B.
If r = 0, x∗ is a fixed point of f. �

Remark 5.2. The above proof requires only that descending sequences
of closed balls have nonempty intersection.

Remark 5.3. If B (x; r) is a minimal f -invariant ball, then

d
(
fn (x) , fn+1 (x)

)
= r

for all n ∈ N.

Corollary 5.2 (cf., [174]). Suppose (X, d) is a spherically complete
ultrametric space and suppose f : X → X is strictly contractive (d(f(x),
f(y)) < d (x, y) when x 	= y). Then f has a unique fixed point.

Notice that in Corollary 5.2 the fixed point of f must lie in every ball
of the form B (x; d (x, f (x))) for x ∈ X. Hence these balls are nested, and
consequently

{x∗} =
⋂
x∈X

B (x; d (x, f (x))) ,

where f (x∗) = x∗. Also, if x ∈ X and x 	= x∗, then d (x∗, f (x)) < d (x∗, x) ⇒
d (x∗, x) = d (x, f (x)) . This suggests a method for approximating the fixed
point of a strictly contractive mapping.

5.4. Structure of the “Fixed Point Set” of Nonexpansive Mappings

In this section we examine the nature of the “fixed point set” under the
assumptions of Theorem 5.4.

Theorem 5.5. Suppose (X, d) is a spherically complete ultrametric space
and suppose f : X → X is nonexpansive. Let

M = {x ∈ X : ∃ r ≥ 0 such that d (u, f (u)) = r ∀u ∈ B (x; r)} .
Then M is spherically complete, and hence a nonexpansive retract of X.
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Proof. Let B (xi; γi) be a descending collection of closed balls centered
at points xi ∈ M. Then for each i there exists ri ≥ 0 such that d (u, xi) ≤ ri ⇒
d (u, f (u)) = ri. Since X is spherically complete, B :=

⋂
i∈I B (xi; γi) 	= ∅. If

γi ≤ ri for some i, then the collection of balls all eventually lie in B (xi; ri) ,
and so B ⊆ B (xi; ri) ⊆ M. So, suppose ri < γi for each i. Let x ∈ B. Then
d (f (x) , f (xi)) ≤ d (x, xi) ≤ γi. Also,

d (f (x) , xi) ≤ max {d (f (x) , f (xi)) , d (f (xi) , xi)} ≤ max {γi, ri} = γi.

Thus f : B → B. But B is itself spherically complete. So B ∩M 	= ∅. This
proves that M is spherically complete. The fact that M is a nonexpansive
retract of X follows from Corollary 5.1. �

With f and M as in Theorem 5.5, suppose x ∈ M, and suppose there ex-
ists r > 0 such that f : B (x; r) → B (x; r) and d (u, f (u)) = r ∀ u ∈ B (x; r) .
Then d (u, x) < r ⇒ d (f (u) , x) = r. Moreover, since d

(
fn (x) , fn+1 (x)

)
= r

for all n ∈ N, by isosceles triangles we have d (x, fn (x)) < r ⇒
d
(
x, fn+1 (x)

)
= r for any n ∈ N. The simple example below shows that

this behavior is typical.

Example. Let X = {a, b, c, d} with d (x, x) = 0 for all x ∈ X; d (a, b) =
d (c, d) = 1/2; d (a, c) = d (a, d) = d (b, c) = d (b, d) = 1; d (y, x) = d (x, y) for
all x, y ∈ X. Then (X, d) is a spherically complete ultrametric space. Define
f (a) = c; f (c) = a; f (b) = d; f (d) = b. Then f is nonexpansive, f does not
have any fixed points, and M = X.

Remark 5.4. Under the assumptions of Theorem 5.5, if z ∈ X satisfies
d (z, f (z)) = inf {d (x, f (x)) : x ∈ X} , then

d (u, f (u)) = d (z, f (z))

for all u ∈ B (z; d (z, f (z))) .

Suppose x, y ∈ M with d (x, f (x)) = r1 and d (y, f (y)) = r2. If B (x; r1)∩
B (y; r2) = ∅, then d (x, y) := d > max {r1, r2} . By isosceles triangles,

d (f (x) , f (y)) = d.

On the other hand if B (x; r1)∩B (y; r2) 	= ∅, then r1 = r2. Thus if x, y ∈ M,
either d (x, f (x)) = d (y, f (y)) = r and d (x, y) ≤ r or

d (x, y) > max {d (x, f (x)) , d (y, f (y))}
and d (x, y) = d (f (x) , f (y)) .

5.5. A Strong Fixed Point Theorem

The existence part of the following theorem is Theorem 1 of [179].
The proof given there is indirect and also relies on Zorn’s Lemma. As in
Theorem 5.4, we give a more constructive proof here, one that also shows
f : X → X has a fixed point in every ball of the form B (x; d (x, f (x))) . The
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assumption that f is strictly contracting on orbits [178] means that f (x) 	= x
implies d

(
f2 (x) , f (x)

)
< d (f (x) , x) for each x ∈ X.

Theorem 5.6. Let (X, d) be a spherically complete ultrametric space, let
f : X → X, and assume the following properties are satisfied:

(1 ) If z 	= f (z) and d (x, f (z)) ≤ d
(
f2 (z) , f (z)

)
, then

d (x, f (x)) ≤ d (z, f (z)) .

(2 ) f is strictly contracting on orbits.
Then f has a fixed point in every ball of the form B (x; d (x, f (x))) .

Proof. Choose x ∈ X. We shall show that B (x; d (x, f (x))) contains
a fixed point of f . Let Ω denote the set of all countable ordinals and let
x1 = x. We proceed by transfinite induction. Let β ∈ Ω and assume xα has
been defined for all α < β, where {B (xα; d (xα, f (xα)))}α<β is a descending
chain of balls and {d (xα, f (xα))}α<β a descending chain of real numbers. If
xα′ = f (xα′) for some α′ < β, take xα′ = xβ . Otherwise, if β = α + 1, take
xβ = f (xα) . If β is a limit ordinal, choose

xβ ∈
⋂
α<β

B (xα; d (xα, f (xα))) .

We may now assume that xα 	= f (xα) for all α < β; otherwise xβ is a
fixed point of f in B (x; d (x; f (x))) and there is nothing more to prove.
Suppose β = α+1. Then by (2) we have d (xβ , f (xβ)) = d

(
f (xα) , f

2 (xα)
)
<

d (xα, f (xα)) . Since

f (xα) ∈ B (xβ ; d (xβ , f (xβ))) ∩B (xα; d (xα, f (xα))) ,

it must be the case that

B (xβ ; d (xβ , f (xβ))) = B (xα+1; d (xα+1, f (xα+1))) ⊂ B (xα; d (xα, f (xα))) .

If β is a limit ordinal, then xβ ∈
⋂

α<β B (xα; d (xα, f (xα))) , and in
particular

xβ ∈ B (xα+1; d (xα+1, f (xα+1))) = B
(
f (xα) ; d

(
f (xα) , f

2 (xα)
))

.

Thus d (xβ , f (xα)) ≤ d
(
f (xα) , f

2 (xα)
)
. Since we are assuming xα 	= f (xα) ,

condition (1) implies

d (xβ , f (xβ)) ≤ d (xα, f (xα))

for each α < β. Also

xβ ∈ B (xβ ; d (xβ , f (xβ))) ∩
⋂
α<β

B (xα; d (xα, f (xα)))

so it must be the case that xβ ∈ B (xβ ; d (xβ , f (xβ))) ⊆ B (xα; d (xα, f (xα)))
for each α < β; hence

B (xβ ; d (xβ , f (xβ))) ⊆
⋂
α<β

B (xα; d (xα, f (xα))) .
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We have thus defined xα for all α ∈ Ω. Moreover the transfinite sequence

{d (xα, f (xα))}α∈Ω

is nonincreasing. Also, by (2), d (xα, f (xα)) > 0 implies

0 ≤ d (xα+1, f (xα+1)) = d
(
f (xα) , f

2 (xα)
)
< d (xα, f (xα)) .

Observe that xα 	= f (xα) is not possible for all α ∈ Ω because otherwise it
follows from α′ < α that d (xα′ , f (xα′)) > d (xα, f (xα)) . Then, since Ω has
cofinal type ω1, the transfinite sequence {d (xα, f (xα))}α∈Ω of real positive
numbers ( 	= 0) would be of coinitial type ω1, whereas the coinitial type of
{r ∈ R : r > 0} is countable. �

We now have the following extension of Corollary 5.2.

Corollary 5.3. Let (X, d) be a spherically complete ultrametric space.
Suppose f : X → X is nonexpansive and strictly contracting on orbits. Then
f has a fixed point.

Proof. If f is nonexpansive on X, if z 	= f (z) for z ∈ X, and if
d (x, f (z)) ≤ d

(
f2 (z) , f (z)

)
, then, since d

(
f2 (z) , f (z)

)
≤ d (f (z) , z) ,

Condition (1) of Theorem 5.6 holds. �

The above corollary shows that every strictly contractive mapping
defined on a spherically complete ultrametric space has a unique fixed point.
In fact, the following is true.

Proposition 5.1. Let (X, d) be an ultrametric space. Then the following
are equivalent:

(a) X is spherically complete.
(b) Every strictly contractive mapping f : X → X has a fixed point.

Proof. (a) ⇒ (b): This is a special case of Corollary 5.3.
(b) ⇒ (a): (cf., Lemma 2 (b) in [180]). Assume that X is not spherically

complete. Then there is a strictly decreasing family {B (aι; γι)}ι<λ of balls
such that

⋂
ι<λ (B (aι; γι)) = ∅. We may further assume λ is a limit ordinal

and that {γι}ι<λ is strictly decreasing. Set Bι = B (aι; γι) for ι < λ. For
each x ∈ X there is a smallest ordinal κ (x) < λ such that x /∈ Bκ(x). Define
f : X → X by setting f (x) = aκ(x).

To see that f is strictly contractive, let x, y ∈ X with x 	= y. If κ (x) =
κ (y), then

d (f (x) , f (y)) = d
(
aκ(x), aκ(y)

)
= 0 < d (x, y) .

Now suppose κ (x) < κ (y) . Then Bκ(y) ⊂ Bκ(x); thus, x /∈ Bκ(x) and y ∈
Bκ(x). Hence

d (x, y) > γκ(x) ≥ d
(
aκ(x), aκ(y)

)
= d (f (x) , f (y)) .

Thus f is strictly contractive. Clearly f has no fixed point. �
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Remark 5.5. Implicit in the proof of Theorem 5.6 is a transfinite method
for “approximating” the fixed points of f. Let (X, d) be spherically complete
and f : X → X strictly contractive. Then f has a unique fixed point z in
X. Now let x ∈ X and construct the transfinite sequence {xα} as follows.
Let Ω denote the set of all countable ordinals and let x1 = x. We proceed
by transfinite induction. Let β ∈ Ω and assume xα has been defined for all
α < β, where {B (xα; d (xα, f (xα)))}α<β is a descending chain of balls and
{d (xα, f (xα))}α<β a descending chain of real numbers. If xα′ = f (xα′)

for some α′ < β take xα′ = xβ . Otherwise, if β is not a limit ordinal, say
β = α+ 1, take xβ = f (xα) . If β is a limit ordinal and

⋂
α<β

B (xα; d (xα, f (xα))) = {z} ,

define xβ = z. Otherwise choose

xβ ∈
⋂
α<β

B (xα; d (xα, f (xα))) \ {z} .

This sequence must eventually be constant. Let μ be the smallest ordinal
such that xμ+1 = xμ. If μ is not a limit ordinal, then the transfinite se-
quence terminates at xμ, and xμ = f (xμ) = z. If μ is a limit ordinal, then⋂

γ<μ B (xγ ; d (xγ , f (xγ))) = {z} . See [181] for more details.

We now state two facts which are special cases of more abstract results
proved elsewhere. An ultrametric space (X, d) is said to be an immediate
extension of an ultrametric space (Y, d) if Y ⊆ X and if for each x ∈ X and
every y ∈ Y with y 	= x there exists y′ ∈ Y such that d (y′, x) < d (y, x) .

Theorem 5.7 ([177]). Every ultrametric space (X, d) has an immediate
extension which is spherically complete. (This space is called the spherical
completion of X.)

Theorem 5.8 ([176]). Let Y be a subspace of a spherically complete
metric space (X, d) , and suppose f : Y → Y is strictly contractive. Then
there exists f ′ : X → X such that f ′ is strictly contractive and extends f.

Remark 5.6. Most of the results described in this chapter hold in more
abstract settings where the distance function d takes values in an ordered set
Γ. In some cases, especially when Γ is totally ordered, the arguments parallel
the ones given here and in other cases more technical arguments are needed.
Although we emphasize the metric approach here, it is only appropriate to
mention the more general approach. We follow the terminology of [180].

Definition 5.2. Let (Γ,≤) be an ordered set with smallest element 0,
and let X be a nonempty set. A mapping d : X × X → Γ is called an
ultrametric distance function if for all x, y, z ∈ X
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(d 1) d (x, y) = 0 ⇔ x = y;
(d 2) d (x, y) = d (y, x) ;
(d 3) d (x, y) ≤ γ and d (y, z) ≤ γ ⇒ d (x, z) ≤ γ for all γ ∈ Γ.

In this setting (X, d,Γ) is called an ultrametric space and d (x, y) is called
the ultrametric distance between x and y. If Γ is totally ordered, then (d 3)
becomes

(d 3′) d (x, z) ≤ max {d (x, y) , d (y, z)} .
Several examples are discussed in [180], some where Γ is totally ordered

and others where Γ is not totally ordered.

5.6. Best Approximation

A subspace A of a metric space is said to be an almost nonexpansive
retract of X if for any λ > 1 there exists a retraction rλ of X onto A such
that rλ is λ-Lipschitz, i.e., d (rλ (x) , rλ (z)) ≤ λd (x, z) for all x, z ∈ X.

Theorem 5.9. A metric space X is ultrametric if and only if every closed
subset A of X is an almost nonexpansive retract of X.

One implication of this result is Theorem 2.9 of [37]. The other implica-
tion is alluded to in the lecture notes [N. Brodskiy, Asymptotic Dimension of
Groups], which are based on [37]. An analysis of the proof of Theorem 2.9
of [37] leads to the following.

Theorem 5.10. Suppose K is a spherically complete subspace of an ultra-
metric space X, and suppose f : K → X satisfies d (f (x) , f (y)) ≤ kd (x, y)
for each x, y ∈ K, where k ∈ (0, 1) . Then for any μ > 1 there exists x∗ ∈ K
such that

d (f (x∗) , x∗) ≤ μdist (f (x∗) ,K) .

Proof. Given k ∈ (0, 1) , choose λ > 1 so that kλ < 1, and choose δ > 1
so that δ ≤ μ and δ2 < λ. As seen in the proof of Theorem 2.9 of [37] it is
possible to define an order ≺ on X such that for every nonempty bounded
subset C of X the restricted order ≺|C is a well-order. Define a retraction
r : X → K as follows. For x ∈ X let Bx = {b ∈ K : d (x, b) ≤ δdist (x,K)}
and take r (x) to be the point of Bx which is minimal with respect to ≺ . It
is shown in the proof of Theorem 2.9 of [37] that r is λ-Lipschitz. For x ∈ K,
set g (x) = r ◦ f (x) . Then g : K → K, and moreover for each x, y ∈ K,

d (g (x) , g (y)) = d (r ◦ f (x) , r ◦ f (y))

≤ λd (f (x) , f (y))

≤ kλd (x, y) ,

so by Corollary 5.2 g has a unique fixed point x∗ in K. Since x∗ = r◦f (x∗) ∈
Bf(x∗) we have

d (f (x∗) , x∗) = d (f (x∗) , r ◦ f (x∗)) ≤ δdist (f (x∗) ,K) ≤ μdist (f (x∗) ,K) .

�
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The following is a consequence of results of [147]. For the sake of com-
pleteness we give the simple proof. Recall that a subspace Y of a metric
space X is proximinal in X if for any z ∈ X there exists y ∈ Y such that
d (z, y) = dist (z, Y ) .

Theorem 5.11. Let Y be a spherically complete subspace of an ultramet-
ric space (X, d) . Then Y is proximinal in X.

Proof. Let z ∈ X\Y , and let d = dist (z, Y ) . Choose xn ∈ Y so that
dn := d (xn, z) ≤ d + 1

n and so that {dn} is nonincreasing. Then m > n ⇒
d (xn, xm) = dn. Hence {xn, xn+1, · · ·} ⊂ B (xn; dn)∩ Y. So {B (xn; dn)} is a
descending sequence of nonempty balls in Y. Since Y is spherically complete,
there exists x ∈ ∩∞

n=1B (xn; dn) ∩ Y. Clearly d (x, z) = d. �
Theorem 5.12. Let Y be a spherically complete subspace of an ultramet-

ric space X, and let x∗ ∈ X\Y. Suppose f : X → X is a mapping for which
f (x∗) = x∗. Also assume that f is nonexpansive on Y ∪ {x∗} and that Y is
f -invariant. Then f has a fixed point in Y which is a nearest point of x∗ in
Y, or Y contains a minimal f -invariant set, each point of which is a nearest
point to x∗ in Y.

Proof. Let d = dist (x∗, Y ) and let Z = B (x∗; d)∩Y. By Theorem 5.11,
Z is nonempty. Let y ∈ Z. Then

dist (x∗, Y ) ≤ d (x∗, f (y))

≤ d (x∗, y)

= dist (x∗, Y ) .

This implies that Z is f -invariant. Now let y ∈ Z. Since

d (y, f (y)) ≤ max {d (y, x∗) , d (f (y) , x∗)} = d,

it must be the case that

B (y; d (y, f (y))) ∩ Y ⊆ B (x∗; d) .

Therefore B (y; d (y, f (y))) ∩ Y ⊆ Z, and

f (B (y; d (y, f (y))) ∩ Y ) ⊆ B (y; d (y, f (y))) ∩ Y.

By Theorem 5.4, B (y; d (y, f (y))) ∩ Y contains either a fixed point y∗ of f
which is in Z, or a minimal f -invariant ball which necessarily lies in Z. �

Corollary 5.4. Let Y be a spherically complete subspace of an ultra-
metric space X and suppose f : X → X is a mapping having a fixed point
x∗ ∈ X\Y . Assume that f is strictly contractive on Y ∪ {x∗} and Y is
f -invariant. Then there exists a unique fixed point y∗ of f which is a nearest
point of x∗ in Y .

Proof. Let d = dist (x∗, Y ) and let Z = B (x∗; d) ∩ Y. As we have
seen, Z 	= ∅ and f : Z → Z. If y∗ ∈ Z and f (y∗) 	= y∗, then we have the
contradiction dist (x∗, Y ) ≤ d (x∗, f (y∗)) < d (x∗, y∗) = dist (x∗, Y ) . �
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CHAPTER 6

Busemann Spaces and Hyperbolic Spaces

We begin with the fundamental definitions. These are taken from [166].

Definition 6.1. Let X be a metric space. A geodesic path (or simply a
geodesic) in X is a path γ : [a, b] → X, where γ is an isometry. A geodesic ray
is an isometry γ : R+ → X, and a geodesic line is an isometry γ : R → X.

Definition 6.2. Let E be a vector space. A subset X ⊂ E is said to be
affinely convex if for all x, y ∈ X the affine segment [x, y] := {(1− t)x+ ty :
t ∈ [0, 1]} is contained in X.

Definition 6.3. Let E be a vector space and let C be an affinely convex
subset of E. Then a function f : C → R is said to be convex if for every
x, y ∈ C and every t ∈ [0, 1] ,

f ((1− t)x+ ty) ≤ (1− t) f (x) + tf (y) .

Definition 6.4. A metric space X is said to be a geodesic space if given
two arbitrary points of X there exists a geodesic path that joins them.

A Busemann space (also known as a Busemann convex space) is a ge-
odesic metric space X such that for any two geodesics γ : [a, b] → X and
γ′ : [a′, b′] → X, the map Dγ,γ′ : [a, b]× [a′, b′] → R defined by

Dγ,γ′ (t, t′) = d (γ (t) , γ′ (t′))

is convex. Equivalently, let [x0, x1] and [x′
0, x

′
1] be two geodesic segments

in X. For every t ∈ [0, 1] let xt be the point on [x0, x1] satisfying d (x0, xt) =
td (x0, x1) and let x′

t be the point on [x′
0, x

′
1] satisfying d (x′

0, x
′
t) = td (x′

0, x
′
1) .

Then
d (xt, x

′
t) ≤ (1− t) d (x0, x

′
0) + td (x1, x

′
1) .

The following two conditions are necessary and sufficient conditions for
a geodesic metric space X to be a Busemann space.

(1) Let [x0, x1] and [x0, x
′
1] be two geodesic segments in X having a

common initial point x0, and let m and m′ be their respective mid-
points. Then

d (m,m′) ≤ 1

2
[d (x0, x1) + d (x0, x

′
1)] .
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(2) Let [x0, x1] and [x′
0, x

′
1] be two geodesic segments in X, and let m

and m′ be their respective midpoints. Then

d (m,m′) ≤ 1

2
[d (x0, x1) + d (x′

0, x
′
1)] .

In a Busemann space the geodesic joining any two points is unique. To
see this, let [x0, x1] and [x′

0, x
′
1] be two geodesic segments in X. For every

t ∈ [0, 1] let xt be the point on [x0, x1] satisfying d (x0, xt) = td (x0, x1) and
let x′

t be the point on [x′
0, x

′
1] satisfying d (x′

0, x
′
t) = td (x′

0, x
′
1) . Then

d (xt, x
′
t) ≤ (1− t) d (x0, x

′
0) + td (x1, x

′
1) .

From this we see that if x0 = x′
0 and x1 = x′

1, then it follows that xt = x′
t

for all t ∈ [0, 1] .

Definition 6.5 ([133]). (X, d,W ) is called a hyperbolic space if (X, d)
is a metric space and W : X ×X × [0, 1] → X is a function satisfying

(i) ∀x, y, z ∈ X and ∀λ ∈ [0, 1] , d (z,W (x, y, λ)) ≤ (1− λ) d (z, x) +
λd (z, y) ;

(ii) ∀x, y ∈ X and ∀λ1, λ2 ∈ [0, 1] , d (W (x, y, λ1) ,W (x, y, λ2)) =
|λ1 − λ2| d (x, y) ;

(iii) ∀x, y ∈ X and ∀λ ∈ [0, 1] , W (x, y, λ) = W (y, x, 1− λ) ;
(iv) ∀x, y, z, w ∈ X and ∀λ ∈ [0, 1] , d (W (x, z, λ) ,W (y, w, λ)) ≤ (1− λ)

d (x, y) + λd (z, w) .

If only condition (i) is satisfied, then (X, d,W ) is a convex metric space
in the sense of Takahashi (cf., [208]). We shall use (X, d) for (X, d,W )
when there is no ambiguity. All four conditions imply that the space is a
Busemann space. Conditions (i)–(iii) are equivalent to (X, d,W ) being a
space of hyperbolic type in the sense of [86]. For these spaces we have the
following very useful fact.

Theorem 6.1. Let (X, d) be a metric space of hyperbolic type and let K
be a bounded subset of X. Suppose f : K → X is nonexpansive. Fix α ∈ (0, 1)
and define g : K → X by taking g (x) to be the point of [x, f (x)] satisfying

d (x, g (x)) = αd (x, f (x)) , x ∈ K.

Then if {gn (x)} ⊂ K for x ∈ K, g is asymptotically regular at x. In partic-
ular, if f : K → K, then inf {d (x, f (x)) : x ∈ K} = 0.

In what immediately follows we only use condition (i). We shall adopt
the customary notation and write W (x, y, λ) = (1 − λ)x ⊕ λy, and we shall
say a subset K of X is convex if x, y ∈ K ⇒ (1 − λ)x ⊕ λy ∈ K for all
λ ∈ [0, 1]. Recall that a mapping f from a topological space X into a metric
space M is said to be r-continuous for r > 0 if each point x ∈ X has a
neighborhood Ux such that diam (f (Ux)) ≤ r.

Theorem 6.2 ([122]). Let (X, d) be a compact Busemann space
(or, more generally, a Takahashi convex space) and suppose f : X → X
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is r-continuous. Then there exists a continuous mapping f̄ : X → X such
that d

(
f (x) , f̄ (x)

)
≤ r for each x ∈ X. In particular, if X has the fixed point

property for continuous mappings, there exists x0 ∈ X such that
d (x0, f (x0)) ≤ r.

For x1, x2 ∈ X and a1, a2 ∈ [0, 1] satisfying a1 + a2 = 1, let a1x1 ⊕ a2x2

denote the unique point of X for which

d (x1, a1x1 ⊕ a2x2) = a2d (x1, x2) and d (x2, a1x1 ⊕ a2x2) = a1d (x1, x2) .

Now for a1, a2, a3 ∈ [0, 1] with a1 + a2 + a3 = 1, and an ordered triple
(x1, x2, x3) ∈

∏3
i=1 X, define a1x1⊕a2x2⊕a3x3 = x3 if a3 = 1. Otherwise set

a1x1 ⊕ a2x2 ⊕ a3x3 = a3x3 ⊕ (1− a3)

[
a2

1− a3
x2 ⊕

a1
1− a3

x1

]
.

Since the metric d is convex, for each x ∈ X,

d

(
x, a3x3 ⊕ (1− a3)

[
a2

1− a3
x2 ⊕

a1
1− a3

x1

])

≤ a3d (x, x3) + (1− a3) d

(
x,

a2
1− a3

x2 ⊕
a1

1− a3
x1

)

≤ a3d (x, x3) + a2d (x, x2) + a1d (x, x1) .

Having defined a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ · · · ⊕ an−1xn−1 for (x1, · · ·, xn−1) ∈∏n−1
i=1 X, {ai}n−1

i=1 ⊂ [0, 1] , and
∑n−1

i=1 ai = 1, suppose (x1, · · ·, xn) ∈
∏n

i=1 X,
{ai}ni=1 ⊂ [0, 1] , and

∑n
i=1 ai = 1, and set

a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ · · · ⊕ anxn = xn if an = 1.

Otherwise set

a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ · · · ⊕ anxn

= anxn ⊕ (1− an)

[
a1

1− an
x1 ⊕

a2
1− an

x2 ⊕ · · · ⊕ an−1

1− an
xn−1

]
.

We now adopt the notation

a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ · · · ⊕ anxn =

n∑
i=1

−−→aixi.

Observe that with this convention we have for all x ∈ X,

d

(
x,

n∑
i=1

−−→aixi

)
≤

n∑
i=1

aid (x, xi) .

Proof of Theorem 6.2. Since f is r-continuous, for each x ∈ X there
exists rx > 0 such that diam (f (U (x; rx))) ≤ ε, where U (x; rx) denotes
the open ball centered at x with radius rx. Since X is compact there ex-
ists a finite set {x1, · · ·, xj} ⊆ X such that X ⊆ ∪j

i=1U (xi; rxi
/2) . Let

r = inf (rxi
: 1 ≤ i ≤ j). We now have the following: If x, y ∈ X and
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d (x, y) ≤ r/2, then there exists 1 ≤ i ≤ j such that x, y ∈ U (xi; rxi
) .

Hence d (f (x) , f (y)) ≤ r.
Again using the fact that X is compact, there exists A = {a1, · · ·, an} ⊆

X such that X ⊆ ∪n
i=1Ui where Ui = U (ai; r/2), i = 1, · · ·, n. Then {Ui} is

a finite open covering of X so there exists a partition of unity {φi}
n
i=1 of X

dominated by the family {Ui} .
Now define the function f̄ : X → X as follows: f̄ (x) =

∑n
i=1

−−−−−−−−→
φi (x) f (ai)

for each x ∈ X. Since each of the functions φi is continuous, f̄ is continuous.
Then for x ∈ X,

d
(
f (x) , f̄ (x)

)
= d

(
f (x) ,

n∑
i=1

−−−−−−−−→
φi (x) f (ai)

)

≤
n∑

i=1

φi (x) d (f (x) , f (ai)) .

Since φi (x) = 0 if x 	∈ Ui while d (f (x) , f (ai)) ≤ r if x ∈ Ui, we have
d
(
f (x) , f̄ (x)

)
≤ r. �

6.1. Convex Combinations in a Busemann Space

We now summarize the results of [9]. Throughout this section X denotes
a complete Busemann space. We take as our point of departure the approach
of the previous section, but with the goal of defining the convex combination
of a finite set of points of X that is independent of the order in which they
are chosen. This procedure suggests two new ways to define the convex hull
of a subset of X. We discuss this in more detail at the end of the section. Our
motivation is to try to find a more analytic approach to the study of convex
hulls of subsets of Busemann spaces. At this point it appears that we have
been only partially successful.

We proceed by induction. Having defined a1x1 ⊕ a2x2 for {x1, x2} ⊂ X
and {a1, a2} ⊂ [0, 1] with a1+a2 = 1, we now proceed by induction. Suppose
k > 2 and suppose a1x1⊕···⊕ak−1xk−1 has been defined, regardless of order,
for all sets of k − 1 points of X and all {a1, · · ·, ak−1} ⊂ [0, 1] satisfying∑k−1

i=1 ai = 1. Now consider a k-tuple: {x1, x2, · · ·, xk} ⊂ X and suppose
{a1, · · ·, ak} ⊂ [0, 1] satisfies

∑k
i=1 ai = 1. By the inductive assumption we

may further assume that {a1, · · ·, ak} ⊂ (0, 1) . Now set
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x1
1 = a1x1 ⊕ (1− a1)

(
a2

1− a1
x2 ⊕

a3
1− a1

x3 ⊕ · · · ⊕ ak
1− a1

xk

)

x1
2 = a2x2 ⊕ (1− a2)

(
a1

1− a2
x1 ⊕

a3
1− a2

x3 ⊕ · · · ⊕ ak
1− a2

xk

)

x1
3 = a3x3 ⊕ (1− a3)

(
a1

1− a3
x1 ⊕

a2
1− a3

x2 ⊕ · · · ⊕ ak
1− a3

xk

)

...

x1
k = akxk ⊕ (1− ak)

(
a1

1− ak
x1 ⊕

a2
1− ak

x2 ⊕ · · · ⊕ ak−1

1− ak
xk−1

)

In general, let

xn
1 = a1x

n−1
1 ⊕ (1− a1)

(
a2

1− a1
xn−1
2 ⊕ a3

1− a1
xn−1
3 ⊕ · · · ⊕ ak

1− a1
xn−1
k

)

xn
2 = a2x

n−1
2 ⊕ (1− a2)

(
a1

1− a2
xn−1
1 ⊕ a3

1− a2
xn−1
3 ⊕ · · · ⊕ ak

1− a2
xn−1
k

)

xn
3 = a3x

n−1
3 ⊕ (1− a3)

(
a1

1− a3
xn−1
1 ⊕ a2

1− a3
xn−1
2 ⊕ · · · ⊕ ak

1− a3
xn−1
k

)

...

xn
k = akx

n−1
k ⊕ (1− ak)

(
a1

1− ak
xn−1
1 ⊕ a2

1− ak
xn−1
2 ⊕ · · · ⊕ ak−1

1− ak
xn−1
k−1

)

We now estimate d
(
xn
i , x

n
j

)
, i < j. By iterated use of (i) we obtain

d
(
xn
i , x

n
j

)
≤

k∑
i=1

aid
(
xn−1
i , xn

j

)

≤
k∑

i=1

ai

k∑
j=1

ajd
(
xn−1
i , xn−1

j

)

=

k∑
i,j=1

aiajd
(
xn−1
i , xn−1

j

)

≤ 2

⎡
⎣ k∑
i,j=1(i<j)

aiaj

⎤
⎦ diam ({xn−1

1 , xn−1
2 , xn−1

3 , · · ·, xn−1
k

})
.

In general for i, j ∈ {1, · · ·, k} , i < j,

d
(
xn
i , x

n
j

)
≤ 2

⎡
⎣ k∑
i,j=1(i<j)

aiaj

⎤
⎦ diam ({xn−1

1 , xn−1
2 , xn−1

3 , · · ·, xn−1
k

})
,
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and we conclude

diam ({xn
1 , x

n
2 , x

n
3 , · · ·, xn

k})

≤ 2

⎡
⎣ k∑
i,j=1(i<j)

aiaj

⎤
⎦ diam ({xn−1

1 , xn−1
2 , xn−1

3 , · · ·, xn−1
k

})

It remains to show that if {a1, a2, · · ·, an} ⊂ (0, 1) and
∑k

i=1 ai = 1, then

2
k∑

i,j=1(i<j)

aiaj < 1.

However

2
k∑

i,j=1(i<j)

aiaj = a1

⎛
⎝ k∑

j=2

aj

⎞
⎠+ a2

⎛
⎝ k∑

j=1,j �=2

aj

⎞
⎠+ · · ·+ ak

⎛
⎝k−1∑

j=1

aj

⎞
⎠

= a1 (1− a1) + a2 (1− a2) + · · ·+ ak (1− ak)

=

k∑
i=1

ai −
k∑

i=1

a2i = 1−
k∑

i=1

a2i < 1.

Letting

δ = 2
k∑

i,j=1(i<j)

aiaj ,

we now have

diam ({xn
1 , x

n
2 , x

n
3 , · · ·, xn

k}) ≤ δdiam
({

xn−1
1 , xn−1

2 , xn−1
3 , · · ·, xn−1

k

})
with δ < 1. It follows that

(6.1) diam ({xn
1 , x

n
2 , x

n
3 , · · ·, xn

k}) ≤ δndiam ({x1, x2, x3, · · ·, xk}) .
Now let conv (F ) denote the closed convex hull of a subset F ⊂ X in the

usual sense. Thus conv (F ) denotes the closure of the set

(6.2) conv (F ) =

∞⋃
n=0

Fn,

where F0 = F and for n ≥ 1 the set Fn consists of all points in the space which
lie on geodesics which have endpoints in Fn−1. With this definition it is clear
via (i) that diam (F ) = diam (F1) = diam (F2) = · · · = diam (conv (F )) .

By construction, the set {xn
1 , x

n
2 , x

n
3 , · · ·, xn

k} lies in the convex hull of the
set
{
xn−1
1 , xn−1

2 , xn−1
3 , · · ·, xn−1

k

}
; thus

conv {xn
1 , x

n
2 , x

n
3 , · · ·, xn

k} ⊂ conv
{
xn−1
1 , xn−1

2 , xn−1
3 , · · ·, xn−1

k

}
.

Now, from inequality (6.1), we conclude that

diam (conv {xn
1 , x

n
2 , x

n
3 , · · ·, xn

k}) ≤ δndiam (conv {x1, x2, x3, · · ·, xk}) .
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We can now apply Cantor’s intersection theorem to the closures of the de-
scending sequence of sets

{conv {xn
1 , x

n
2 , x

n
3 , · · ·, xn

k}}
∞
n=1

and conclude that for 1 ≤ j ≤ k, each of the sequences
{
xn
j

}∞
n=1

is a Cauchy
sequence, and all of these sequences converge to a common limit, which we
denote a1x1 ⊕ · · · ⊕ akxk.

As in the approach of [122], with this definition we have the following
estimate: If x, x1, · · ·, xn ∈ X, then

d (x, a1x1 ⊕ · · · ⊕ akxk) ≤
k∑

i=1

aid (x, xi) .

If ai ≡
1

k
, then we have another definition of the mean point (or “barycen-

ter”)
x1 ⊕ · · · ⊕ xk

k
analogous to the one given in [98]. In this case,

2
k∑

i,j=1(i<j)

aiaj =
k − 1

k

and for each x ∈ X,

d

(
x,

x1 ⊕ · · · ⊕ xk

k

)
≤ 1

k

k∑
i=1

d (x, xi) .

Remark 6.1. If X is a closed subset of a strictly convex Banach space,
then the iterative process described above for defining the convex combination
terminates at the first step. It is also known that X is isometric to a convex
subset of a normed space if and only if affine functions on X separate points
(see Theorem 1.1 in [94]).

Remark 6.2. We will use the notation co (F ) to denote the collection
of all convex combinations of finite subsets of F as defined above. All that
is clear at this point is that co (F ) is contained in conv (F ) . It is probably
asking too much to expect the two sets to coincide. A third approach might be
to set F0 = F and for n ≥ 1, set Fn = co (Fn−1). It is now possible to define
a new concept of “convex hull” of F by taking the union of the sets co (Fn) .
In general this “convex hull” lies between co (F ) and conv (F ) .



CHAPTER 7

Length Spaces and Local Contractions

In general, a path in a metric space (X, d) is a continuous image of the
unit interval I = [0, 1] ⊂ R. If S ≡ f (I) is a path, then its length is defined as

� (S) = sup
(xi)

N−1∑
i=0

d (f (xi) , f (xi+1))

where (xi) := (0 = x0 < x1 < · · · < xN = 1) is any partition of [0, 1] .
If � (S) < ∞, then the path is said to be rectifiable.

A metric space (X, d) is said to be a length space if the distance between
each two points x, y of X is the infimum of the lengths of all rectifiable paths
joining them. In this case, d is said to be a length metric (also known as
inner metric or intrinsic metric).

A length space X is called a geodesic space if there is a path S joining
each two points x, y ∈ X for which � (S) = d (x, y) . Such a path is often called
a metric segment (or a geodesic, as in the previous chapter) with endpoints
x and y. There is a simple criterion which assures the existence of metric
segments.

Another criterion is given in [158]. (Recall that a Hausdorff topological
space X is said to be locally compact if each point has a neighborhood that
is contained in a compact subspace of X.)

Theorem 7.1. If X is a complete metric space, locally compact at all
except possibly one of its points, and any pair of points has a path of finite
length joining them, then any pair of points has a shortest path joining them.

There is an analog of Menger’s criterion for length spaces.

Definition 7.1 ([93]). A metric space (X, d) is said to satisfy property
(A) if given any two points x, y ∈ X, any two numbers b, c ≥ 0 such that
b+ c = d (x, y) , and any ε > 0,

(A) B (x; b+ ε) ∩B (y; c+ ε) 	= ∅.
The proof of Theorem 1 of [93] yields the following fact.

Theorem 7.2. If a complete metric space (X, d) satisfies property (A) ,
then each two points of X can be joined by a rectifiable path. (Thus X has
an intrinsic metric.)

© Springer International Publishing Switzerland 2014
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The following is also known.

Theorem 7.3. Let K be a bounded convex subset of a Busemann con-
vex space and let f : K → K be nonexpansive. Then inf {d (x, f (x)) : x
∈ K} = 0.

The question of whether there is an analog of this result for length spaces
is complicated by the fact that it is not clear how to define Busemann con-
vexity for length spaces. One way to circumvent this difficulty is by passing
to a metric space ultrapower of the underlying space. There are many ways
to do this. If (X, d) is a complete metric space, then X can be isometrically
embedded in a Banach space E. It is now possible to identify X with its im-
age in E. (The fact that one can do this is a classical result. In fact, E can be
taken to be the space of all real valued continuous functions defined on X.)

Now let Ẽ denote the Banach space ultrapower of E relative to some non-
trivial ultrafilter U over N in the usual sense (see, e.g., [4] for details). Thus
the elements of Ẽ are equivalence classes of bounded sequences x̃ := [(xn)]
in E, where (un) ∈ [(xn)] if and only if limU ‖un − xn‖ = 0. Next take

X̃ :=
{
x̃ = [(xn)] ∈ Ẽ : xn ∈ X for each n ∈ N

}
.

Then for x̃, ỹ ∈ X̃, set ρ̃ (x̃, ỹ) = limU ‖xn − yn‖ = limU d (xn, yn) . One
can now say that a length space X is Busemann convex if and only if some
ultrapower

(
X̃, ρ̃
)

of X is Busemann convex in the usual sense.

Theorem 7.4. A complete metric space (X, d) is a length space if and
only if every nontrivial ultrapower X̃ of X is a geodesic space.

Proof. Let p, q ∈ X and α = (1/2) ρ (p, q) . Let {εn} ⊂ (0,∞) with
εn → 0. The fact that X is a length space assures the existence of a se-
quence {mn} ⊂ B (p;α+ εn) ∩B (q;α+ εn). If m̃ = [(mn)], then ρ̃ (p̃, m̃) =

ρ̃ (q̃, m̃) = (1/2) ρ̃ (p̃, q̃) . Since X̃ is complete, X is a geodesic space by the
criterion of Menger. On the other hand, if X̃ is a geodesic space, then it is
easy to verify that X satisfies Property (A); hence, X is a length space by
Theorem 7.2. �

Theorem 7.5. Let K be a bounded Busemann convex length space and
let f : K → K be nonexpansive. Then inf {d (x, f (x)) : x ∈ K} = 0.

Proof. By assumption there is a nontrivial ultrapower X̃ of X that is
Busemann convex. Define f̃ : X̃ → X̃ by setting f̃ (x̃) = [f (x)] = f̃ (x).

Then f̃ is also nonexpansive, so inf
{
d̃
(
x̃, f̃ (x̃)

)
: x̃ ∈ X̃

}
= 0. Thus given

ε > 0 there exists x̃ ∈ X̃ such that d̃
(
x̃, f̃ (x̃)

)
= limU d (xn, f (xn)) < ε.

This implies the existence of x ∈ X for which d (x, f (x)) < ε. �

(In the statement of the preceding result in [121] the boundedness as-
sumption is inadvertently omitted.)
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It is also shown in [158] that if (X, d) is a complete metric space which
has the property that each two of its points can be joined by a rectifiable path,
and if � is the length metric on X, then (X, �) is also complete. However this
latter fact was proved earlier by Hu and Kirk [97]. It is implicit in the proof
of the following theorem and stated as a corollary in [97]. (It is not true that
if X is compact, then (X, �) is compact—consider the radial metric on an
appropriate subset of the unit disc in R

2.)

Definition 7.2. A mapping f defined on a metric space (X, d) is said
to be a local radial contraction if there exists k ∈ (0, 1) such that d (f (x) ,
f (u)) ≤ kd (x, u) for u in some neighborhood Ux of x. (It follows that any
local radial contraction is continuous.)

Theorem 7.6. Let (X, d) be a complete metric space and f : X → X a
local radial contraction. Suppose for some x0 ∈ X the points x0 and f (x0)
are joined by a path of finite length. Then the sequence {fn (x0)} converges
to a fixed point of f.

Rakotch proved the above theorem in [182] under the slightly stronger
assumption that f is locally contractive in the sense that there exists k ∈
(0, 1) such that each point of x ∈ X has a neighborhood Ux such that
d (f (u) , f (v)) ≤ kd (u, v) for all u, v ∈ Ux.

The original proof of Theorem 7.6 in [97] was based on the following
claim of Holmes in [96].

Proposition 7.1 ([96]). Let (X, d) be a compact metric space and sup-
pose f : X → X is a local radial contraction. Then there exist numbers
k ∈ (0, 1) and β > 0 such that d (f (x) , f (y)) ≤ kd (x, y) for all x, y ∈ X
such that d (x, y) ≤ β.

However G. Jungck has given an example in [103] which shows that this
proposition is false. At the same time, Jungck has shown that the following
is true.

Proposition 7.2 ([103]). Let (X, d) be a metric space and g : X → X a
local radial contraction with contraction constant k ∈ (0, 1) . If α : [0, 1] → X
is a path of finite length � (α) , then g (α) is also a path of finite length.
Moreover � (g (α)) ≤ k� (α) .

Using Jungck’s proposition the proof given in [97] carries over without
essential change. We give the details.

Proof of Theorem 7.6. Consider the space X̌ consisting of all those
points of X that can be joined to x0 by a rectifiable path and assign the
length metric � to X̌. We complete the proof by showing:

(1) f : X̌ → X̌;
(2) f is a contraction mapping on

(
X̌, �
)
;

(3)
(
X̌, �
)

is complete.
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The conclusion will then follow from Banach’s Theorem, i.e., f has a unique
fixed point in X̌.

Let y ∈ X̌ and let α be a rectifiable path joining x0 and y. By
Proposition 7.2 the restriction of f to α maps α into a path β joining f (x0)
and f (y) with the property that � (β) ≤ k� (α) . By assumption there is a
rectifiable path γ joining x0 and f (x0) . Thus β∪γ is a rectifiable path joining
x0 and f (y) . This proves (1). (2) is also a consequence of Proposition 7.1.

At this point it is possible to complete the proof by observing that
{fn (x0)} is a Cauchy sequence in

(
X̌, �
)
. Since d (fn (x0) , f

m (x0)) ≤
� (fn (x0) , f

m (x0)), it follows that {fn (x0)} is also a Cauchy sequence in
(X, d) . By completeness of (X, d) , there exists x∗ ∈ X such that
limn→∞ d (fn (x0) , x

∗) = 0, and since f is continuous, f (x∗) = x∗.
We now turn to (3). Let {xn} be a Cauchy sequence in

(
X̌, �
)
. Since

� (x, y) ≥ d (x, y) it follows that {xn} is also a Cauchy sequence in (X, d) ;
hence, there exists x ∈ X such that d (xn, x) → 0. We complete the proof by
showing that x ∈ X̌ and � (xn, x) → 0.

Let {εi} be a sequence of positive numbers for which
∑∞

i=1 εi < ∞.

Since {xn} is Cauchy in
(
X̌, �
)
, there exist positive integers {Ni} such that

m,n ≥ Ni ⇒ � (xn, xm) ≤ εi. It is now possible to choose a subsequence {x̄n}
of {xn} such that � (x̄n, x̄n+1) < εn, n = 1, 2, · · ·. For each n there is a path
αn :
[

1
n+1 ,

1
n

]
→
(
X̌, d
)

joining x̄n and x̄n+1 with length less than εn. Define

α : [0, 1] → X̌ by taking

α (t) =

{
αn (t) if t ∈

[
1

n+1 ,
1
n

]
,

x if t = 0.

Clearly α is continuous on (0, 1]. To see that α is continuous at 0, let ti ↓ 0.

Then given any N ∈ N and i sufficiently large, ti ∈
[

1
n+1 ,

1
n

]
for some n ≥ N.

It follows that

d (α (ti) , x) ≤ d

(
α

(
1

n+ 1

)
, x

)
+ d

(
α

(
1

n+ 1

)
, α (ti)

)

≤ d (x̄n, x) + εn.

From this it follows that limi→∞ d (α (ti) , x) = 0. This proves continuity of
α at 0. Also � (α) ≤

∑∞
i=1 εi.

Notice that

� (x̄n, x) ≤
∞∑
i=n

� (x̄i, x̄i+1) ≤
∞∑
i=n

εi.

Therefore limn→∞ � (x̄n, x) = 0. Since {x̄n} is a subsequence of the Cauchy
sequence {xn} in

(
X̌, �
)
, it follows that limn→∞ � (xn, x) = 0, and we are

finished. �

Implicit in the above proof is the following fact.
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Theorem 7.7. Let (X, d) be a complete metric space, and suppose each
two points of X can be joined by a rectifiable path. Then (X, �) is also com-
plete, where � is the length metric on X induced by d. Consequently every
local radial contraction f : X → X has a unique fixed point x∗, and moreover
limn→∞ fn (x) = x∗ for each x ∈ X.

An example is given in [97] (see Example 7.2 in the next section) shows
that Theorem 7.6 is false if x0 and g (x0) are merely assumed to be joined by
an arbitrary path rather than a rectifiable path. Also an earlier example in
[182] shows that the fixed point in Theorem 7.6 need not be unique, even if
the space is connected.

Proposition 7.3 ([10]). A connected open subset of a geodesic space has
a path metric.

Proof. Let U be a connected open subset of a geodesic space and let
x ∈ U. Let

U0 = {y ∈ U : x and y can be joined by a rectifiable path} .
If y ∈ U, then some open ball centered at y also lies in U, and any point
in this ball is clearly in U0. So U0 is an open subset of U. Suppose U0 is a
proper subset of U and let u ∈ U\U0. Then some open ball centered at u lies
in U, and this ball must necessarily lie in U\U0. This would mean that U is
the union of two disjoint open sets, which is clearly impossible because U is
connected. Hence U0 = U. �

In the following theorem, U denotes the closure of U.

Theorem 7.8 ([10]). Let U be a connected open subset of a complete
geodesic space (X, d), suppose f : U → U is a local radial contraction, and
suppose f can be extended to a continuous mapping f : U → U. Then f has
a fixed point in U, and moreover {fn (x)} converges to x∗ for each x ∈ U.

Proof. Let � be the path metric on U. In view of proof of Theorem 7.6
f is a contraction mapping on (U, �) . Let x ∈ U. By a standard argument
{fn (x)} is a Cauchy sequence in (U, �) . This in turn implies that {fn (x)} is a
Cauchy sequence in (U, d) . Hence {fn (x)} converges to some point x∗ ∈ U.
Since f is continuous, we conclude f (x∗) = x∗. Moreover if k is the con-
traction constant for f and if y ∈ U , then � (fn (x) , fn (y)) ≤ kn� (x, y) . It
follows that limn→∞ � (fn (x) , fn (y)) = 0 and so {fn (y)} converges to x∗.
Finally, if for some x ∈ U the segment [x, f (x)] lies in U, then we have the
estimate

d (fn (x) , x∗) ≤ � (fn (x) , x∗) ≤ kn

1− k
� (x, f (x)) =

kn

1− k
d (x, f (x)) .

�
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Example 7.1. At this point it is probably natural to wonder whether
the closure of a connected open subset of a Banach space always has a path
metric. The answer is no. An example can be given in R

2. Let ε ∈ (0, 1/2)
and R the open rectangle with vertices (0, 0) , (0, 1 + ε) , (1, 1 + ε) , (1, 0) .
Delete the closed strip centered on the segment joining (1/2, 0) to (1/2, 1)
of width 1/6. Then delete the closed strip centered on the segment joining
(1/3, 1 + ε) to (1/3, ε) of width 1/12. In general delete the closed strip centered
on the segment joining (1/2n, 0) and (1/2n, 1) of width 1/ [2n (2n+ 1)] and
delete the closed strip centered on the segment joining (1/ (2n+ 1) , 1 + ε) and
(1/ (2n+ 1) , ε) of width 1/ [(2n+ 1) (2n+ 2)] . Now let U be the points of R
remaining after the closed strips have been deleted. Clearly U is a connected
open set in R

2. However the point (0, 1/2) is in the closure of U, but no path
of finite length can join any point of U to (0, 1/2) .

Theorem 7.9 ([10]). Let D be the closure of a connected open set in
a Banach space, and suppose D is rectifiably pathwise connected. Then any
local radial contraction f : D → D has a unique fixed point.

Theorem 7.10 ([10]). Let U be a connected open set in a Banach space
X, and suppose the intersection of every line in X with U consists of at
most finitely many open intervals. Then U is rectifiably pathwise connected.
Consequently every local radial contraction f : U → U has a unique fixed
point.

Proof. Let x, y ∈ U . For z ∈ U, the line L (z, x) passing through z and
x intersects U in a finite number of open intervals. Consequently there is a
metric segment [u, x] lying on this line with [u, x] ⊂ U and u ∈ U. Similarly
there is a metric segment [v, y] ⊂ U with v ∈ U. By Proposition 7.3 there
is a rectifiable path α joining u and v. It follows that α ∪ [u, x] ∪ [v, y] is a
rectifiable path joining x and y. The result now follows from Theorem 7.9. �

It is not difficult to think of very elaborate examples of open sets in
Banach spaces which satisfy the criteria of Theorem 7.10. In fact a more
general formulation is true.

Theorem 7.11 ([10]). Let U be a connected open set in a Banach space,
and suppose for each x ∈ U, there exists z ∈ U such that the interval (x, z)
lies in U . Then U is rectifiably pathwise connected.

The following result is Theorem 1 in Holmes [96].

Theorem 7.12. Let (X, d) be a connected and locally connected metric
space and let f be a homeomorphism of X onto X which is a local radial
contraction. Then there is a metric ρ on X, topologically equivalent to d,
such that f is a contraction on (X, ρ).

Holmes also asserts in a corollary in [96] that completeness of (X, ρ)
follows from completeness of (X, d) . This in turn would imply that f has a
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fixed point if (X, d) is complete. However, in view of the example given in
the next section (Example 7.2), either the theorem is false or the assertion
of the corollary is false.

The following lemma is central to the proof of Theorem 7.12.

Lemma 7.1 ([96]). If fn is a contraction on (X, d) and if f is continuous,
then for each k, 0 < k < 1, there exists a metric ρ on X, equivalent to d,
such that f is a k-contraction on (X, ρ) .

The proof applies the following theorem of P. Meyers [154]. (Holmes
neglects to mention that f is continuous, but it is obvious from his proof
that this assumption is necessary.)

Theorem 7.13. Let (X, d) be a metric space. Suppose f : X → X is
continuous and satisfies:

(i) there exists x∗ ∈ X such that f (x∗) = x∗;
(ii) fn (x) → x∗ as n → ∞ for all x ∈ X;
(iii) there is an open neighborhood U of x∗ such that fn (U) → {x∗}

as n → ∞ (i.e., for any open neighborhood V of x∗ there is an
n(V ) > 0 such that fn (U) ⊂ V for all n ≥ n(V )).

Then for each k ∈ (0, 1) there is a metric ρ on X such that f is a
k-contraction on (X, ρ) . Moreover if (X, d) is complete, then so is (X, ρ) .

Proof of Lemma 7.1. We proceed to show that (i), (ii), (iii) hold
under the assumptions of Lemma 7.1.

If the contraction mapping fn does not have a fixed point, then by the
Banach Contraction Principle we may adjoin a point x∗ to X which will be
the unique fixed point of fn. In either case f i (x) → x∗ as i → ∞ for each
x ∈ X and conditions (i) and (ii) are fulfilled. To see this, observe that
fn (f (x∗)) = f (fn (x∗)) = f (x∗) . Thus f (x∗) is a fixed point of fn. Since
the fixed point of fn is unique, we must have f (x∗) = x∗. So (i) is true. But
why is (ii) true? Because i ∈ N ⇒i = nj + t for some 0 ≤ t ≤ n − 1, so for
x ∈ X

f i (x) = fnj+t (x) = fnj
(
f t (x)

)
→ x∗ as i → ∞.

Note that fnj converges to x∗ uniformly on the finite set

S :=
{
x, f (x) , · · ·, fn−1 (x)

}
.

For (iii) set V = B (x∗; 1) and let λ be the contraction constant of fn. Then
if v ∈ V and j ∈ N,

d
(
fnj (v) , fnj (x∗)

)
≤ λjd (v, x∗)

so fnj (V ) ⊂ B
(
x∗;λj

)
. Set U = ∩n−1

i=0 f
−i (V ). Now notice that since f is

continuous, U is a neighborhood of x∗, and, if 0 ≤ t < n,

fnj+t (U) ⊂ fnj (V ) ⊂ B
(
x∗;λj

)
and condition (iii) is fulfilled. �
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Remark 7.1. In [201] it is shown that if (X, d) is a metric space and
if f : X → X is a contraction with constant λ, then for any λ such that
λ1/n < k < 1 there is a metric ρ on X such that f is a k-contraction on
(X, ρ) . Moreover if f is uniformly continuous on (X, d) and if d is complete,
then so is ρ.

Implicit in Lemma 7.1 is the following fact.

Theorem 7.14. Let X be a complete metric space and f : X → X a
mapping for which fN is a contraction for some N ∈ N. Then f has a
unique fixed point x∗ and limn→∞ fn (x) = x∗ for each x ∈ X.

This is actually a special case of a more general topological result which
has been known for some time. We prove the metric case here.

Theorem 7.15. Let X be a metric space, let x∗ ∈ X, and let f : X → X
be a mapping for which g := fN satisfies limn→∞ gn (x) = x∗ for each x ∈ X.
Then limn→∞ fn (x) = x∗ for each x ∈ X.

Proof. Let ε > 0 and let x ∈ X. By assumption there exists N1 ∈ N

such that j ≥ N1 ⇒ d
(
f jN (x) , x∗) ≤ ε. Similarly there exists N2 ∈ N such

that j ≥ N2 ⇒ d
(
f jN (f (x)) , x∗) = d

(
f jN+1 (x) , x∗) ≤ ε. In general, for

each i ∈ {0, · · ·, n− 1} there exists Ni ∈ N such that j ≥ Ni ⇒
d
(
f jN
(
f i (x)

)
, x∗) = d

(
f jN+i (x) , x∗) ≤ ε.

Finally, there exists N ∈ N such that n ≥ N ⇒ n = jN + i for some j ≥
max {N1, · · ·, Nn−1} and i ∈ {0, · · ·, n− 1} . Thus n ≥ N ⇒ d (fn (x) , x∗)
≤ ε. �

Corollary 7.1. Let X be a complete metric space and f : X → X a
mapping for which fN is an asymptotic contraction for some N ∈ N. Then
f has a unique fixed point x∗ and limn→∞ fn (x) = x∗ for each x ∈ X.

Corollary 7.2. Let X be a complete metric space for which each two
points can be joined by a rectifiable path, and suppose f : X → X is a
mapping for which fN is a local radial contraction for some N ∈ N. Then f
has a unique fixed point x∗, and limn→∞ fn (x) = x∗ for each x ∈ X.

7.1. Local Contractions and Metric Transforms

We now turn to a special case of a classical concept due to L.M.
Blumenthal (see [28, p. 130]). We call strictly increasing concave function
φ : R+ → R for which φ (0) = 0 a metric transform. It is known (see Exer-
cise 5 in [28, p. 26]) that if (X, d) is a metric space and if ρ (x, y) = φ (d (x, y))
for each x, y ∈ X for such a function φ, then (X, ρ) is also a metric space.
Blumenthal had introduced this concept earlier in [27] to show that the met-
ric transform φ (X) of any metric space X, where φ (t) = tα, 0 < α ≤ 1

2 , has
the Euclidean four point property, i.e., each four points of φ (X) are isometric
to a quadruple of points in three-dimensional Euclidean space.
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We now give a simple condition in terms of metric transforms which
implies that a mapping f : X → X is a local radial contraction. Notice that
if φ is taken to be the identity mapping, the following result reduces to the
definition of a local radial contraction. (This discussion is taken from [128].)

Theorem 7.16. Let (X, d) be a metric space and f : X → X. Sup-
pose there exist a metric transform φ and a number k ∈ (0, 1) such that the
following conditions hold:

(a) For each x ∈ X there exists εx > 0 such that

d (x, u) < εx ⇒ φ (d (f (x) , f (u))) ≤ kd (x, u) .

(b) There exists c ∈ (0, 1) such that for all t > 0 sufficiently small

kt ≤ φ (ct) .

Then f is a local radial contraction on (X, d) .

In view of Theorem 7.7 we now have the following.

Theorem 7.17. Suppose, in addition to the assumptions in Theorem 7.16,
X is complete and rectifiably pathwise connected. Then f has a unique fixed
point x∗, and limn→∞ fn (x) = x∗ for each x ∈ X.

Proof of Theorem 7.16. Let x ∈ X. Then if d (x, u) < εx,

φ (d (f (x) , f (u))) ≤ kd (x, u) .

Now suppose there exists c ∈ (0, 1) such that for t sufficiently small,

kt ≤ φ (ct) .

This implies there exists δx > 0 with δx ≤ εx such that d (x, u) < δx ⇒

φ (d (f (x) , f (u))) ≤ kd (x, u) ≤ φ (cd (x, u)) .

Since φ is strictly increasing, d (x, u) < δx ⇒

d (f (x) , f (u)) ≤ cd (x, u) .

Therefore f is a local radial contraction on (X, d) . �

Remark 7.2. If condition (a) is changed to

φ (d (f (x) , f (y))) ≤ kd (x, y) for all x, y ∈ X,

then f is a uniform local contraction on (X, d) . This is because condition
(b) now implies that there exists δ > 0 such that d (x, y) < δ ⇒

φ (d (f (x) , f (y))) ≤ kd (x, y) ≤ φ (cd (x, y)) .
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Remark 7.3. If f : X → X is onto and satisfies the following expansive
type condition: there exists k ∈ (0, 1) such that

d (f (x) , f (y)) ≥ k−1φ (d (x, y)) for all x, y ∈ X,

then f−1 is a uniform local contraction on (X, d) . This is because f−1 exists
and satisfies

φ
(
d
(
f−1 (x) , f−1 (y)

))
≤ kd (x, y) for all x, y ∈ X.

Condition (b) of Theorem 7.16 might appear to be too restrictive. How-
ever we now list several examples of nontrivial metric transforms for which
the condition holds.

(i) φ (t) =
t

1 + t
. Let k ∈ (0, 1) and select c ∈ (k, 1) . Then

kt ≤ φ (ct) ⇔ kt ≤ ct

1 + ct
⇔

k ≤ c

1 + ct
⇔ t ≤ c− k

ck
.

Since c > k, condition (b) follows.
(ii) φ (t) = tβ , for β ∈ (0, 1) . Then for any c, k ∈ (0, 1)

t ≤ φ (ct)

k
⇔ t ≤ (ct)

β

k
,

and condition (b) holds for t ≤ 1.

(iii) φ (t) = sin

(
t

1 + t

)
. Let k ∈ (0, 1) , and set h (t) =

t

1 + t
. We know

that if c ∈ (k, 1) and if t ≤ c− k

ck
, then

kt ≤ h (ct) .

In particular, take k′ ∈ (k, 1) , then choose c ∈ (k′, 1) . The same

argument as in (ii) shows that if t ≤ c− k′

ck′
, then

kt < k′t ≤ h (ct) .

Thus if t is sufficiently small,

kt ≤ sin k′t ≤ sin (h (ct)) = φ (ct) .

(iv) φ (t) = p tan−1 t for fixed p > 1. Let k ∈ (0, 1) . Then kt ≤ φ (ct) ⇔
tan

(
kt

p

)
≤ ct. Let f (t) = ct − tan

(
kt

p

)
. Then f (0) = 0 and

f ′ (t) = c − k

p
sec2
(
kt

p

)
> 0 ⇔ sec2

(
kt

p

)
<

pc

k
. If c ∈ (0, 1) is

chosen so that
pc

k
> 1, then f ′ (t) > 0 for t > 0 sufficiently small.

This implies that f (t) > 0 for t > 0 sufficiently small, and this in
turn implies that condition (b) holds.
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(v) φ (t) = ln (1 + t) . Let k ∈ (0, 1) and select c ∈ (k, 1) Then kt ≤
φ (ct) ⇔ ekt ≤ 1 + ct. Let f (t) = 1 + ct − ekt. Then f (0) = 0 and
for t > 0, f ′ (t) > 0 ⇔ ekt <

c

k
⇔ t < k−1 ln

( c
k

)
. This is clearly

true for t > 0 sufficiently small because c ∈ (k, 1) .

Not every metric transform satisfies condition (b); φ (t) = tan−1 t pro-
vides an example. On the other hand, Proposition 7.4 below shows that
the collection of metric transforms which do satisfy condition (b) are indeed
numerous and complex.

Proposition 7.4. Let M denote the class of all metric transforms φ with
the property that φ is twice differentiable, and let M1 denote the subfamily of
M consisting of those φ ∈ M which satisfy the following condition: for any
k ∈ (0, 1) there exists c ∈ (0, 1) such that for t > 0 sufficiently small,

kt ≤ φ (ct) .

Then both M and M1 are closed under functional composition.

Proof. Let φ, ψ ∈ M and let ϕ = φ ◦ ψ. Then ϕ (0) = φ ◦ ψ (0) = 0.
Also for any t > 0,

ϕ′ (t) = φ′ (ψ (t)) · ψ′ (t) > 0

and
ϕ′′ (t) = φ′ (ψ (t)) · ψ′′ (t) + φ′′ (ψ (t)) ·

[
ψ′ (t)

]2
< 0.

Therefore ϕ ∈ M.
Now suppose φ, ψ ∈ M1. Then there exists c1 ∈ (0, 1) such that for t > 0

sufficiently small,
kt ≤ φ (c1t) .

Also there exists c ∈ (0, 1) such that for t > 0 sufficiently small

c1t ≤ ψ (ct) .

Since φ is strictly increasing,

c1t ≤ ψ (ct) ⇔ φ (c1t) ≤ φ (ψ (ct)) .

Therefore kt ≤ ϕ (ct) for t > 0 sufficiently small, so it follows that ϕ ∈
M1. �

The following example was given in [97]. It shows that Theorem 7.17
is false if the space is merely assumed to be pathwise connected rather than
rectifiably pathwise connected. This illustrates another application of the
idea of metric transforms.
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Example 7.2. Let (βn)
∞
n=−∞ be a strictly increasing doubly infinite

sequence in (0, 1) . For x, y ∈ R
+, set

(7.1) ρ (x, y) =

⎧⎨
⎩

|x− y|βn if x, y ∈ [n, n+ 1] ;

|x− (n+ 1)|βn + (p− 1) + |(n+ p)− y|βn+p

if x ∈ [n, n+ 1] , y ∈ [n+ p, n+ p+ 1] , p ∈ N.

We first observe that (R+, ρ) is a metric space (see Proposition 7.5 below).

Now define f : R
+ → R

+ by setting f (x) = x + 1. This mapping is a
homeomorphism which is a local contraction for any k ∈ (0, 1) . To see this,
suppose x, y ∈ [n, n+ 1] . Then

ρ (f (x) , f (y)) = |x− y|βn+1 ≤ k |x− y|βn = kρ (x, y)

if and only if |x− y|βn+1−βn ≤ k. Since βn+1 −βn > 0, this is always true if
|x− y| is sufficiently small; indeed

ρ (x, y) = |x− y|βn ≤ kβn/(βn+1−βn) ⇔ |x− y|βn+1−βn ≤ k.

To deal with the case x = n > 0, merely take a neighborhood of x with radius
less than min

{
kβn/(βn+1−βn), kβn+1/(βn+2−βn+1)

}
.

Notice that the mapping of the above example is even locally contractive
in the sense of Rakotch [182], but it is fixed point free. We note also that
the space (R+, ρ) is topologically equivalent to R

+ with its usual metric. In
particular (R+, ρ) is complete, connected, and locally connected.

The technique of the example is a special case of “gluing” of metric spaces
(see, e.g., [36, p. 67]). Specifically, we use the following fact, which is a special
case of Lemma 5.34 of [36].

Proposition 7.5. Suppose (M1, d1) and (M2, d2) are metric spaces with
M1 ∩M2 = {u} . For x, y ∈ X := M1 ∪M2 set

ρ (x, y) = di (x, y) if x, y ∈ Mi, i = 1, 2;

ρ (x, y) = d1 (x, u) + d2 (u, y) if x ∈ M1, y ∈ M2.

Then (X, ρ) is a metric space.

We now observe that for each n ∈ Z and βn ∈ (0, 1) , the metric trans-
form φn (t) = tβn induces a metric on the interval [n, n+ 1] . The metric
space (R+, ρ) is obtained by simply “gluing” the consecutive intervals at their
common endpoints and applying Proposition 7.5 inductively. This results in
the metric defined by (7.1).

Remark. A theorem which appears to be a slight extension of
Theorem 7.16 has recently been announced. A mapping ϕ : R+ → R

+ is
said to be metric preserving if for all metric spaces (X, d) , ϕ ◦ d is a metric
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on X. It is known that if ϕ is metric preserving, then ϕ′ (0) in the extended
sense always exists (see [54] for a survey).

The following is the main result of [172].

Theorem 7.18. Let (X, d) be a metric space and let f : X → X. Assume
that there exist k ∈ (0, 1) and a metric preserving function ϕ satisfying the
following conditions:

(a) For each x ∈ X there exists εx > 0 such that for every u ∈ X

d (x, u) < εx ⇒ (ϕ ◦ d) (f (x) , f (u)) ≤ kd (x, u) .

(b) ϕ′ (0) > k.

Then f is a local radial contraction.



CHAPTER 8

The G-Spaces of Busemann

Here we digress somewhat, although fixed point theory in geodesic spaces
is an important underlying factor. A finitely compact (recall, this means
bounded closed sets are compact) geodesically connected (metrically convex)
metric space (R, d) which has the geodesic extension property (see Defini-
tion 9.3 below) and for which such extension is unique is called a G-space.
This definition is due to Busemann [46]. Precisely, to every point p ∈ R
there corresponds a number ρp > 0 such that if x, y ∈ U

(
p; ρp
)

(the open
ball) with x 	= y, there exists a point z ∈ R for which

d (x, y) + d (y, z) = d (x, z) ,

and moreover, the conditions d (x, y)+d (y, z1) = d (x, z1), d (x, y)+d (y, z2) =

d (x, z2) , and d (y, z1) = d (y, z2) ⇒ z1 = z2. A mapping ψ of a G-space R̃

onto a G-space R is called a local isometry if for every p̄ ∈ R̃, there exists
a number ηp̄ > 0 such that ψ maps U

(
p̄; ηp̄
)

isometrically onto U
(
p; ηp
)
.

When such a mapping exists the space R̃ is said to be a covering space of the
G-space R and ψ a covering map. It is shown in [46] that every G-space has a
universal (simply connected) covering space which is unique up to isometries
(and which is, itself, a G-space). In particular, if R̃ is the universal covering
space of R with Ω : R̃ → R a covering map, then the fundamental group of
R may be realized as the group of those motions Ψ (surjective isometries) of
R̃ onto R̃ for which Ω ◦Ψ = Ω.

An isometry of a G-space onto itself is called a motion. It is known that
a local isometry of a noncompact G-space R onto itself is a motion if the
fundamental group of R is not isomorphic with a proper subgroup of itself
[46, p. 174]. Without this hypothesis on the fundamental group the assertion
may or may not be true. It is true for a cylinder with a locally Euclidean
metric but it is false for a cylinder with a locally hyperbolic metric. This leads
to the problem (see [46, p. 405, (27)]) of finding conditions under which local
isometries are motions, in particular conditions which apply to an ordinary
cylinder. A response to this problem is given in [108]. To discuss this further
we need some fundamental properties of local isometries.

Let φ denote a locally isometric mapping of a G-space
(
R̄, d̄
)

onto a
G-space (R, d) . The following properties of φ are found in Busemann [46,
pp. 167–170].
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(1) If x̄ (τ) , α ≤ τ ≤ β, is a curve in R̄ and if φ (x̄ (τ)) = x (τ)
is a geodesic segment in R, then x̄ (τ) is a geodesic segment and
d̄ (x̄ (α) , x̄ (β)) = d (x (α) , x (β)) .

(2) For a given curve x (τ) , α ≤ τ ≤ β, in R and a given point ā ∈ R̄
such that φ (ā) = x (α) there is exactly one curve x̄ (τ) in R̄ such
that φ (x̄ (τ)) = x (τ) with x̄ (α) = ā.

(3) Given p ∈ R there is a number ρ (p) > 0 such that if p̄1, p̄2 ∈ R̄
satisfy p̄1 	= p̄2 and φ (p̄1) = φ (p̄2) = p, then d̄ (p̄1, p̄2) ≥ 2ρ (p) .

(4) The number of points of R̄ that are mapped into a given point of
R is at most countable, and is the same for different points of R.

(5) If φ is one-to-one, then φ is an isometry.
(6) If a, b ∈ R and if φ (ā) = a, there is exactly one point b̄ ∈ R̄ such

that φ
(
b̄
)
= b and d̄

(
ā, b̄
)
= d (a, b) .

The following is immediate from the definition of a local isometry.

(7) If φ is a locally isometric mapping of R onto itself, then φn is also,
n = 1, 2, · · ·.

Theorem 8.1 ([108]). A locally isometric mapping of a G-space onto
itself which has a fixed point is a motion.

Proof. Let φ (p) = p, and suppose φ is not a motion. Then by (5) φ
is not one-to-one so by (4) there is a point p1 ∈ R with p1 	= p such that
φ (p1) = p. By (6) there is a point p2 ∈ R such that φ (p2) = p1 and such that
d (p, p2) = d (p, p1). Proceeding by induction obtain a sequence {pn} ⊂ R
such that φ (pn+1) = pn and d (p, pn) = d (p, p1) , n = 1, 2, · · ·.

If n < m, then φn (pn) = p while φn (pm) = pm−n. Since

d(p, pm−n) = d (p, p1) > 0,

we see that pm−n 	= p. Therefore φn (pn) 	= φn (pm) and it follows that
pn 	= pm. By (7) φn, for each positive integer n, is a locally isometric mapping
of R onto itself, so by (3) d (pi, pj) ≥ 2ρ (p) if i 	= j. Since the sequence {pn}
is bounded, this contradicts the finite compactness of R. �

Theorem 8.2. A locally isometric mapping φ of a G-space (R, d) onto
itself is a motion if and only if there exists a motion ψ of R such that for
some point p ∈ R, ψ ◦ φ (p) = p.

Proof. The necessity is trivial. The sufficiency is established by
observing that ψ ◦ φ is a locally isometric mapping with a fixed point p.
Thus by Theorem 8.1 ψ ◦ φ is a motion, and hence one-to-one. Therefore φ
is one-to-one, and by (5) also a motion. �

The group of motions of a G-space are said to be transitive if given any
two points of the space there is a motion of the space that maps one into the
other. Among two-dimensional G-spaces, it is known that the cylinder (and
torus) with a Minkowskian metric has a transitive group of motions. Thus
the following is an immediate consequence of Theorem 8.2.
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Theorem 8.3 ([108]). If a G-space R has a transitive group of motions,
then every locally isometric mapping of R onto itself is a motion.

Other conditions are known to imply that locally isometric mappings are
always motions. For example:

Theorem 8.4 ([109]). If φ is a locally isometric mapping of a G-space
onto itself and if {φn (p)} is bounded, then φ is a motion.

It is also shown in [109] that if a G-space R is a straight space (has unique
metric segments) with convex spheres, then under the above assumptions,
φ has a fixed point.

It was subsequently shown in [112] that it suffices to assume only that
some subsequence of {φn (x)} is bounded in the preceding theorem, an as-
sumption later shown by A. Całka [48] to be equivalent to the original. In
fact he proves that in any finitely totally bounded metric space X and nonex-
pansive f : X → X, boundedness of some subsequence of {fn (x)} for x ∈ X
implies boundedness of {fn (x)} . This is a fact that is known to be false, for
example, in a Hilbert space (see [68]).

A loop at a point p in G-space is a geodesic monogon L such that L is
the union of two segments from p to q (q ∈ L) have only p and q in common.
Let λ (L) denote the length of a loop L ⊂ G, and denote by Q (p) the set of
all loops at p ∈ R. If Q (p) 	= ∅, set

λi (p) = inf
L∈Q(p)

λ (L) ; λs (p) = sup
L∈Q(p)

λ (L)

and for Q (p) = ∅, set λi (p) = ∞; λs (p) = 0. Let

λi (R) = inf
p∈R

λi (p) ; λs (R) = sup
p∈R

λs (p) .

Theorem 8.5 ([111]). A G-space R does not possess proper local isome-
tries if λi (R) > 0 and λs (R) < ∞.

Całka’s result has arisen again in several related contexts; for example
see [142].

8.1. A Fundamental Problem in G-Spaces

Busemann proved that every one and two-dimensional G-space is a topo-
logical manifold, and he states [46, p. 49]:

Although this is probably true for any G-space, the proof
(if the conjecture is correct) seems quite inaccessible in the
present state of topology.
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We do not know the current state of this conjecture. However it was soon
established for the case of three dimensions by B. Krakus [134], and in a sur-
prising more recent development,2 P. Thurston [209] established Busemann’s
conjecture for four dimensions.

Theorem 8.6 (Berestovskii [21]). Busemann G-spaces of dimension n ≥
5 having Aleksandrov curvature bounded above3 are n-manifolds.

A Comment About Dimension. There are various notions of
dimension in topology (see, e.g., [69]). The one Busemann is referring to
the classical “Menger-Urysohn” dimension. The axioms are:
(MU1) dimX = −1 ⇔ X = ∅;
(MU2) dimX ≤ n, n ∈ N, if for every point x ∈ X and each neighborhood

Vx of x there exists an open set U ⊂ X such that

x ∈ U ⊂ Vx and dimFrU ≤ n− 1;

(MU3) dimX = n if dimX ≤ n and dimX > n − 1, i.e., dimX is not
≤ n− 1;

(MU4) dimX = ∞ if dimX > n ∀n ∈ N.

In the realm of separable metric spaces (e.g., G-spaces) this concept of
dimension coincides with the notion of “covering” dimension. See [22] for a
recent survey of all known results on the topology of Busemann G-spaces of
finite dimension.

2The reviewer of this paper states in [188]: “Without any doubt this is one of the
nicest papers in geometric topology of the 1990’s.”

3A metric space is said to have Alexandrov curvature ≤ κ if it is locally a CAT(κ)
space. CAT(κ) spaces are defined in the next chapter.



CHAPTER 9

CAT(0) Spaces

9.1. Introduction

A substantial part of the discussion in this chapter is taken from two
survey articles [118, 119]. These articles motivated a substantial resurgence
of the study of metric fixed point theory in spaces of non-positive curvature.
The study of spaces of non-positive curvature originated with the discovery
of hyperbolic spaces, the work of J. Hadamard at the beginning of the last
century, and the work of E. Cartan in the 1920s. The idea of what it means for
a geodesic metric space to have non-positive curvature (or, more generally,
curvature bounded above by a real number κ) goes back to the work of
H. Busemann and A.D. Alexandrov in the 1950s. Of particular importance
to the revival of interest in this topic are the lectures which Mikhael Gromov
gave in 1981 at the Collège de France in Paris (see [36, p. VIII]). In these
lectures Gromov explained the main features of global Riemannian geometry
essentially by basing his account wholly on the so-called CAT(0) inequality.

It is shown in [118] that many of the standard ideas and methods of
nonlinear analysis and Banach space theory carry over to the class of spaces
Gromov calls CAT(0) spaces. (The letters C, A, and T stand for Cartan,
Alexandrov, and Toponogov.) A metric space X is said to be a CAT(0) space
if it is geodesically connected, and if every geodesic triangle in X is at least as
“thin” as its comparison triangle in the Euclidean plane. We make this precise
below. However it is this latter property, known as the CAT(0) inequality,
that encapsulates the concept of non-positive curvature in Riemannian ge-
ometry and allows one to reflect the same concept in a much wider setting.
We shall almost invariably assume completeness as well. Complete CAT(0)
spaces are often called Hadamard spaces. CAT(0) spaces have a remarkably
nice geometric structure. One can see almost immediately that in such spaces
angles exist in a strong sense, the distance function is convex, one has both
uniform convexity and orthogonal projection onto convex subsets, etc. Also,
because of their generality, CAT(0) spaces arise in a wide variety of contexts.
In CAT(0) spaces the nonexpansive mappings arise naturally in the study of
isometries or, more generally, local isometries.

© Springer International Publishing Switzerland 2014
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In [186], Reich and Shafrir introduced a class of “hyperbolic” metric
spaces which they proposed as “an appropriate background for the study of
nonlinear operator theory in general, and of iterative processes for nonexpan-
sive mappings in particular.” The observations in this chapter should serve
to reinforce that assessment. Within the hyperbolic framework, the CAT(0)
spaces might be viewed as an analog to the Hilbert spaces in the classical
theory of nonlinear analysis. However such an analogy could be misleading.
CAT(0) spaces include all R-trees, and these spaces bear little resemblance
to Hilbert spaces.

A fundamental source for much of our exposition is the recent book [36]
by M.R. Bridson and A. Haefliger, and one should look there for things not
specifically attributed here to other sources. A more elementary treatment
of many of these ideas can be found in the recent text of Burago et al. [45].
Many results, most of which are found in [36], are stated here without proof.

Several new results concerning fixed point theorems in CAT(0) spaces are
also discussed and proofs of a few new results are included. We also indicate
how some new fixed point theorems in R-trees have applications to graph
theory.

9.2. CAT(κ) Spaces

Denote by Mn
κ the following classical metric spaces:

(1) if κ = 0, then Mn
0 is the Euclidean space R

n;
(2) if κ > 0, then Mn

κ is obtained from the sphere S
n by multiplying

the spherical distance by 1/
√
κ;

(3) if κ < 0, then Mn
κ is obtained from the hyperbolic space H

n by
multiplying the hyperbolic distance by 1/

√
−κ.

A geodesic triangle Δ(x1, x2, x3) in a geodesic metric space (X, d) con-
sists of three points in X (the vertices of Δ) and a geodesic segment between
each pair of vertices (the edges of Δ). A comparison triangle for geodesic
triangle Δ(x1, x2, x3) in (X, d) is a triangle Δ(x1, x2, x3) := Δ (x̄1, x̄2, x̄3)
in M2

κ such that dR2 (x̄i, x̄j) = d (xi, xj) for i, j ∈ {1, 2, 3} . If κ > 0 it is
further assumed that the perimeter of Δ(x1, x2, x3) is less than 2Dκ, where
Dκ denotes the diameter of M2

κ . Such a triangle always exists.
A geodesic metric space is said to be a CAT(κ) space if all geodesic

triangles of appropriate size satisfy the following CAT(κ) comparison axiom.

CAT(κ): Let Δ be a geodesic triangle in X and let Δ ⊂ M2
κ be a com-

parison triangle for Δ. Then Δ is said to satisfy the CAT(κ) inequality if for
all x, y ∈ Δ and all comparison points x̄, ȳ ∈ Δ,

d (x, y) ≤ d (x̄, ȳ) .

Complete CAT(0) spaces are often called Hadamard spaces. These spaces
are of particular relevance to this study.
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Definition 9.1. A metric space X is said to be of curvature ≤ 0 if it is
locally a CAT(0) space. In this case X is said to be non-positively curved.

The significance of the above definition lies in the fact that it provides a
good notion of an upper bound on curvature in an arbitrary geodesic space.
In fact, classical theorems in differential geometry show that if a Riemannian
manifold is sufficiently smooth (e.g., C3), then it has curvature in the above
sense if and only if its sectional curvatures are ≤ κ. This is a result due to
Alexandrov [8] in general, and to E. Cartan [51] in the case κ = 0. It should
be noted that nonpositively curved spaces play a significant role in many
branches of mathematics. See, e.g., B. Kleiner’s review [132] of [36].

To continue with the terminology of [36], the metric on a space X is said
to be convex if X is a geodesic space and all geodesics c1 : [0, a1] → X and
c2 : [0, a2] → X with c1 (0) = c2 (0) satisfy the inequality

d (c1 (ta1) , c2 (ta2)) ≤ td (c1 (a1) , c2 (a2))

for all t ∈ [0, 1] . X is said to be locally convex if every point has a neigh-
borhood in which the induced metric is convex. If the metric space is locally
convex, then in particular X is locally contractible, and therefore X has a
universal covering space X̃. This means that X is simply connected and there
is a local isometry p : X̃ → X. In fact the space X̃ is unique up to an isometry.

Theorem 9.1 ((Cartan–Hadamard Theorem) [36, p. 193]). Let X be a
complete and connected metric space.

(1) If the metric on X is locally convex, then the induced length metric
on the universal covering space X̃ is (globally) convex.

(2) If X is of curvature ≤ 0, then X̃ is of CAT(0) .

Thus if a complete simply connected length space is locally convex and
has curvature ≤ 0, it is a CAT(0) space.

The CAT(0) inequality may be stated in the following equivalent but
formally weaker form.

Proposition 9.1 (cf., [36, p. 161]). A geodesic metric space is a CAT(0)
space if and only if the following condition holds: For every geodesic triangle
Δ(p, q, r) in X and every point x ∈ [q, r] the following inequality is satisfied
by the comparison point x̄ ∈ [q̄, r̄] ⊂ Δ(p, q, r) ⊂ R

2 :

d (p, x) ≤ d (p̄, x̄) .

We now collect some further properties of CAT(κ) spaces. These are all
found in [36].

Proposition 9.2. Let X be a CAT(κ) space.
(1) There is a unique geodesic segment joining each pair of points x, y ∈

X (provided d (x, y) < Dκ if κ > 0), and this geodesic segment
varies continuously with its endpoints.
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(2) Every local geodesic in X of length at most Dκ is a geodesic.
(3) The balls in X of radius smaller that Dκ/2 are convex.
(4) The balls in X of radius less than Dκ are contractible.
(5) Approximate midpoints are close to midpoints. Specifically, for

every λ < Dκ and ε > 0 there exists δ = δ (κ, λ, ε) such that if
m is the midpoint of a geodesic segment [x, y] ⊂ X with d (x, y) ≤ λ
and if

max {d (x,m′) , d (y,m′)} ≤ 1

2
d (x, y) + δ,

then d (m,m′) < ε.

Theorem 9.2. The following relations hold:
(1) If X is a CAT(κ) space, then it is a CAT(κ′) space for every κ′ ≥ κ.
(2) If X is a CAT(κ′) space for every κ′ > κ, then it is a CAT(κ) space.
(3) X is a CAT(κ) space for all κ if and only if X is an R-tree.

One consequence of (1) is that any result proved for CAT(0) spaces auto-
matically carries over to CAT(κ) spaces for κ < 0, and especially to R-trees.
(See Chap. 11 for the definition of an R-tree.)

The following is another important observation.

Proposition 9.3 ([36, p. 176]). If X is a CAT(0) space, then the dis-
tance function d : X ×X → R is convex.

This means that given any pair of geodesics c : [0, 1] → X and c′ [0, 1] →
X parametrized proportional to arc length, the following inequality holds for
all t ∈ [0, 1] :

d (c (t) , c′ (t)) ≤ (1− t) d (c (0) , c′ (0)) + td (c (1) , c′ (1)) .

We now turn to a generalization of Jung’s theorem. (This result also
holds for spaces of curvature bounded below.) We use rad (S) to denote the
usual Chebyshev radius of S relative to the underlying space X:

rad (S) = inf {ρ > 0 : S ⊆ B (x; ρ) for some x ∈ X} .
We also need to introduce the function snκ : R → R, defined by

snκ (x) :=

⎧⎨
⎩

sin (
√
κx) /

√
κ if κ > 0,

x if κ = 0,
sinh
(√

−κx
)
/
√
−κ if κ < 0.

Theorem 9.3 ([137]). Let X be a complete CAT(κ) space and S a
nonempty bounded subset of X. Then there exists a unique x ∈ X such that
S ⊆ B (x; rad (S)) , where

snκ (rad (S)) ≤
√
2snκ

(
diam (S)

2

)
.
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In particular (cf., [47]), if S is a bounded subset of a complete CAT(0)
space, then

rad (S) ≤
√
2

2
diam (S) .

This of course coincides with the well-known Hilbert space estimate.

While many reformulations of the CAT(κ) condition concern the geom-
etry of triangles, there is also a useful reformulation involving the geometry
of quadrilaterals. Let (x1, x2, x3, x4) be a 4-tuple of point of a metric space
X. A subembedding of this 4-tuple in M2

κ is a 4-tuple (x̄1, ȳ1, x̄2, ȳ2) of points
of M2

κ such that d (x̄i, ȳj) = d (xi, yj) for i, j ∈ {1, 2}, and

d (x1,x2) ≤ d (x̄1, x̄2) and d (y1, y2) ≤ d (ȳ1, ȳ2) .

X is said to satisfy the CAT(κ) 4-point condition if every 4-tuple of points

(x1, y1, x2, y2)

in X for which

d (x1, y1) + d (y1, x2) + d (x2, y2) + d (y2, x1) < 2Dκ

has a subembedding in M2
κ .

Proposition 9.4. Let X be a complete metric space. Then the following
conditions are equivalent.

(1) X is a CAT(κ) space.
(2) X satisfies the CAT(κ) 4-point condition and every pair of points

x, y ∈ X with d (x, y) < Dκ has approximate midpoints.

Finally we observe that if x, y1, y2 are points of a CAT(0) space and if y0
is the midpoint of the segment [y1, y2], then the CAT(0) inequality implies

(9.1) d (x, y0)
2 ≤ 1

2
d (x, y1)

2
+

1

2
d (x, y2)

2 − 1

4
d (y1, y2)

2

because equality holds in the Euclidean metric. In fact (cf., [36, p. 163]), a
geodesic metric space is a CAT (0) space if and only if it satisfies inequality
(9.1) (which is known as the CN inequality of Bruhat and Tits [41]). Using
this inequality it is easy to see that if X1 and X2 are CAT(0) spaces, then
X1 ×X2 is also a CAT(0) space, where the metric on X1 ×X2 is given by

d ((x1, x2) , (y1, y2))
2
= d (x1, y1)

2
+ d (x2, y2)

2
.

Also if d (x, y1) = d (x, y2) = 1 and d (y1, y2) ≥ ε, then (9.1) gives

d (x, y0) ≤
√

1− ε2

4
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and so one has the usual Euclidean modulus of convexity in CAT(0) spaces.
In particular, d (x, y1) ≤ R, d (x, y2) ≤ R, and d (y1, y2) ≥ r imply

d (x, y0) ≤
(
1− δ

( r
R

))
R,

where δ (ε) :=

√
1− ε2

4
.

An extremely useful property of CAT(0) is the nearest point projection.
Crucial to the proof of this fact, and useful in other contexts as well, is the
concept of “angle” in a metric space. Let X be a metric space, and let c :
[0, a] → X and c′ : [0, a′] → X be two geodesics with c (0) = c′ (0) . Given t ∈
(0, a] and t′ ∈ (0, a′] we consider the comparison triangle Δ̄ (c (0) , c (t) , c′ (t′))
and the comparison angle ∠̄c(0) (c (t) , c

′ (t′)) . The (Alexandrov) angle be-
tween the geodesic paths c and c′ is the number ∠c,c′ ∈ [0, π] defined by:

∠c,c′ = lim sup
t,t′→0

∠̄c(0) (c (t) , c
′ (t′)) = lim

ε→0
sup

0<t,t′<ε
∠̄c(0) (c (t) , c

′ (t′)) .

Proposition 9.5 ([36, p. 176]). Let X be a CAT(0) space, and let C be
a convex subset of X which is complete in the induced metric. Then:

(1) for every x ∈ X there exists a unique point P (x) ∈ C such that

d (x, P (x)) = dist (x,C) ;

(2) if x′ belongs to the geodesic segment [x, P (x)] , then P (x′) = P (x) ;
(3) given x /∈ C and y ∈ C, if y 	= P (x) then ∠P (x) (x, y) ≥ π/2;
(4) the map x �→ P (x) is a nonexpansive retraction of X onto C; the

map H : X × [0, 1] → X associating with (x, t) the point at dis-
tance td (x, P (x)) from x on the geodesic segment [x, P (x)] is a
continuous homotopy from the identity map of X to P.

9.3. Fixed Point Theory

We now come to one of the central topics of this monograph. From the
preceding section it is easy to see that CAT(0) spaces share many proper-
ties of uniformly convex Banach spaces. For example, closed convex sets
are uniquely proximinal, descending sequences of nonempty bounded closed
convex sets have nonempty intersection, and “asymptotic center” techniques
apply. As we have seen, CAT(0) spaces also enjoy certain Hilbert space prop-
erties: For example, nearest point projections onto closed convex sets are
nonexpansive, and a notion of angle is present for which a law of cosines ap-
plies. Also the family of all bounded closed convex subsets of a given CAT(0)
space is normal in the sense described in Chap. 3. Thus the following theorem
is immediate.

Theorem 9.4. Suppose K is a nonempty bounded closed convex subset
of a complete CAT(0) space and suppose f : K → K is nonexpansive. Then
the set of fixed points of f is nonempty, closed, and convex.
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We begin with some general notation. Let S be a subset of a complete
CAT(0) space X. Then for each x, y ∈ S there is a unique geodesic [x, y] ⊂ X
joining x and y. We denote by G1 (S) the union of all geodesic segments
in X with endpoints in S. Then S is convex if G1 (S) = S. The CAT(0)
inequality ensures that rad (G1 (S)) = rad (S) . For n ≥ 2, define inductively
Gn (S) = G1 (Gn−1 (S)) . The convex hull of S is defined to be the set

convS =
∞⋃

n=1

Gn (S) ,

convS denotes its closure. From this we conclude that rad (convS) = rad (S)
for every bounded S ⊂ X.

One of the fundamental theorems in fixed point of nonexpansive map-
pings is the demiclosedness theorem due to F. Browder [40]. This theorem
asserts that if K is a closed and convex subset of a uniformly convex Banach
space X, and if f : K → X is nonexpansive, then I − f is demiclosed
on K, that is, if {uj} is a sequence in K which converges weakly to u ∈
X and if {(I − f) (uj)} converges strongly (in norm) to w, then w ∈ K
and (I − f) (u) = w. One important corollary of this theorem is that if
inf {‖x− f (x)‖ : x ∈ K} = 0, then f has a fixed point in K when K is
bounded. In the absence of a weak topology, an analog of this theorem can-
not even be formulated in a complete CAT(0) space. However the corollary
can be formulated in such a setting, and indeed, it turns out to be true.

We need some notation. Given a mapping f : K → X where K is a
subset of a metric space X, and a number ε > 0, the ε-fixed point set of f is
the set

Fε (f) = {x ∈ K : d (x, f (x)) ≤ ε} .
We take the following lemma as a point of departure.

Lemma 9.1 ([36, p. 286]). Let X be a CAT(0) space. Fix x, y ∈ X with
d (x, y) = 2r and let m be the midpoint of the geodesic segment [x, y] . If
m′ is a point such that d (m′, x) ≤ r (1 + ε) and d (m′, y) ≤ r (1 + ε) , then
d (m,m′) ≤ r

√
ε2 + 2ε.

A slight modification of the argument given in [36] for Lemma 9.1 leads
to the following result.

Lemma 9.2. Let K be a bounded subset of a CAT(0) space X, suppose
f : K → X is nonexpansive, and suppose x, y ∈ Fε (f) with d (x, y) = r. Let
m ∈ [x, y] ∩K. Then f (m) ∈ Fφ(ε) (f) , where φ (ε) =

√
ε2 + 2rε.

Proof. Let m be the point of [x, y] with distance αr from x, and suppose
m ∈ K. Then if m′ = f (m) ,

d (x,m′) ≤ d (x, f (x)) + d (f (x) , f (m))

≤ d (x, f (x)) + d (x,m)

≤ ε+ αr.
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Similarly d (y,m′) ≤ ε+ (1− α) r. At least one of the angles ∠m (m′, x) and
∠m (m′, y) is greater than or equal to π/2. If ∠m (m′, x) ≥ π/2, then in the
comparison triangle Δ(m,m′, x) the angle at m̄ is also greater than or equal
to π/2. By the law of cosines

(ε+ αr)
2 ≥ d (x,m′)

2 ≥ (αr)
2
+ d (m,m′)

2
.

Similarly, if ∠m (m′, y) ≥ π/2,

(ε+ (1− α) r)
2 ≥ d (y,m′)

2 ≥ ((1− α) r)
2
+ d (m,m′)

2
.

Therefore

d (m, f (m))
2
= d (m,m′)

2 ≤ max
{
ε2 + 2αrε, ε2 + 2 (1− α) rε

}
≤ ε2 + 2rε.

�
Theorem 9.5. Let K be a bounded closed convex subset of a complete

CAT(0) space X. Suppose f : K → X is a nonexpansive mapping for which

inf {d (x, f (x)) : x ∈ K} = 0.

Then f has a fixed point in K.

Proof. Let x0 ∈ X be fixed and define

r0 = inf {r > 0 : inf {d (x, f (x)) : x ∈ B (x0; r) ∩K} = 0} .
Obviously r0 < ∞, and if r0 = 0, then x0 ∈ K and f (x0) = x0 by continuity
of f. So we suppose r0 > 0. Now choose {xn} ⊂ K so that d (xn, f (xn)) → 0
and d (x0, xn) → r0. Since any convergent subsequence of {xn} would have
a fixed point of f as its limit, we may suppose there exist ε > 0 and sub-
sequences {uj} and {vj} of {xn} such that d (uj , vj) ≥ ε. Passing again

to subsequences if necessary we may also suppose d (x0, uj) ≤ r0 +
1

j
and

d (x0, vj) ≤ r0+
1

j
. Let mj be the midpoint of the segment [uj , vj ] and let m̄j

be the point corresponding to mj on the comparison triangle Δ(x̄0, ūj , v̄j) .
Then by the CAT(0) inequality

d (x0,mj) ≤ d (x̄0, m̄j) ≤

√(
r0 +

1

j

)2

−
(ε
2

)2
.

Clearly d (x0,mj) ≤ r∗ < r0 for j sufficiently large. On the other hand, by
Lemma 9.2, d (mj , f (mj)) → 0 as j → ∞. This contradicts the definition
of r0. �

Essentially the same proof gives the following result.

Theorem 9.6. Let U be a connected bounded open set in a complete
CAT(0) space X, and let f : U → X be nonexpansive. Then the following
alternative holds:
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(a) f has a fixed point in U, or;
(b) inf {d (x, f (x)) : x ∈ ∂U} ≤ inf {d (x, f (x)) : x ∈ U} .
Proof. Assume there exists z ∈ U such that

d (z, f (z)) < ξ := inf {d (x, f (x)) : x ∈ ∂U} .
Then if m ∈ [z, f (z)] ∩ U,

d (m, f (m)) ≤ d (m, f (z)) + d (f (z) , f (m))

≤ d (m, f (z)) + d (z,m)

= d (z, f (z)) .

This proves that the segment [z, f (z)] not only lies in U but in fact it is
bounded away from ∂U. Consequently if one defines g : U → X by taking
g (x) to be the midpoint of the segment [x, f (x)] for each x ∈ U, the sequence
{gn (z)} lies in U. Moreover by Theorem 6.1, d

(
gn (z) , gn+1 (z)

)
→ 0. Thus

inf {d (x, f (x)) : x ∈ U} = 0. The argument now follows the preceding one.
All one needs to observe is that if ε > 0 is chosen so that

√
ε2 + 2rε ≤ δ <

ξ, where r = diam (U) , and if m ∈ [u, v] ∩ U , where u, v ∈ Fε (f) , then
d (m, f (m)) ≤ δ. Hence [u, v]∩∂U = ∅. Thus the points mk as defined in the
preceding argument all lie in U. �

Remark 9.1. It is shown in [119] that Theorem 9.6 holds under the
weaker assumption that f : U → X is continuous on U and locally nonex-
pansive on D.

We next consider the approximate fixed point property. A subset K of
a metric space is said to have the approximate fixed point property (for non-
expansive mappings) if given any nonexpansive f : K → K, inf {d (x, f (x)) :
x ∈ K} = 0. To characterize this concept, we need some more definitions.

Definition 9.2 ([197]). Let X be a metric space. A curve γ : [0,∞) →
X is said to be directional (with constant b) if there is b ≥ 0 such that

t− s− b ≤ d (γ (s) , γ (t)) ≤ t− s

for all t ≥ s ≥ 0. A subset of X is said to be directionally bounded if it does
not contain a directional curve.

Definition 9.3. A geodesic metric space X is said to have the geodesic
extension property if for every local geodesic c : [a, b] → X, with a 	= b, there
exists ε > 0 and a local geodesic c′ : [a, b+ ε] → X such that c′ |[a,b]= c.

Lemma 9.3 ([36, p. 298]). If X is a CAT (0) space, then X has the
geodesic extension property if and only if every non-constant geodesic c :
[a, b] → X can be extended to a line c : R → X.
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(If a complete CAT(0) space is homeomorphic to a finite dimensional
manifold, then it always has the geodesic extension property.)

In [185] it is shown that a reflexive Banach space has the approximate
fixed point property if and only if it is directionally bounded (i.e., its inter-
section with any line is bounded), and in [197] Shafrir proved that a closed
convex subset of a complete hyperbolic metric space has the approximate
fixed point property for nonexpansive mappings if and only if it is direc-
tionally bounded. As an immediate corollary of Shafrir’s result, a closed
convex subset of a complete CAT(0) space with the geodesic extension prop-
erty has the approximate fixed point property if and only if it is directionally
bounded. However in this case the stronger assertion of Reich’s result is true.
(One should also compare this result to Theorem 32.2 of [88], which states
that the same result holds for the complex Hilbert ball with a hyperbolic
metric. In fact, in this setting the approximate fixed point property actually
implies the fixed point property.)

Theorem 9.7. A closed convex subset of a complete CAT(0) space with
the geodesic extension property has the approximate fixed point property for
nonexpansive mappings if and only if it does not contain a geodesic ray.

Proof. In view of Shafrir’s result it need only be shown that if a closed
convex set in a complete CAT(0) space X is geodesically bounded then it is
directionally bounded. So, suppose K is a closed convex set in X and suppose
K contains a directional curve γ. We show that this implies K contains a
geodesic ray.

Let xn = γ (n) , n = 0, 1, 2, · · ·, and fix an arbitrary ρ > b, where b is the
directional constant associated with γ. For each n ≥ ρ, let yn be the point of
geodesic segment [x0, xn] with distance ρ from x0. Now suppose m > n ≥ ρ,
and let αn,m be the comparison angle ∠̄x̄0

(x̄n, x̄m) in R
2. By the law of

cosines

cos (αn,m) =
d (x0, xn)

2
+ d (x0, xm)

2 − d (xn, xm)
2

2d (x0, xn) d (x0, xm)
.

Using the inequalities

n− b ≤ d (x0, xn) ≤ n;

m− b ≤ d (x0, xm) ≤ m;

m− n ≥ d (xn, xm) ,
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we have

cos (αn,m) ≥ (n− b)
2
+ (m− b)

2 − (m− n)
2

2nm

=
n

2m

[
(n− b)

2

n2

]
+

m

2n

[
(m− b)

2

m2

]
− (m− n)

2

2nm

=
n

2m
+

m

2n
− (m− n)

2

2nm
− b

n
− b

m
+

b2

nm

= 1− b

(
1

n
+

1

m
− b

nm

)
.

Thus cos (αn,m) → 1 as m,n → ∞; hence αn,m → 0. If ȳn, ȳm are the
respective points of the comparison triangle Δ(x̄0, x̄n, x̄m) corresponding to
yn, ym, then by the CAT(0) inequality d (yn, ym) ≤ d (ȳn, ȳm) . The fact that
αn,m → 0 as m,n → ∞ implies that {ȳn} , hence {yn} , is a Cauchy sequence.
Since ρ > b is arbitrary it now follows that the sequence {[x0, xn]} of geodesic
segments converges to a geodesic ray issuing from x0. �

It has been known for some time that a nonempty closed convex subset
of a Hilbert space has the fixed point property for nonexpansive mappings
if and only if it is bounded (Ray’s theorem [183]). In view of this it might
be tempting to conjecture that a closed convex subset of a complete CAT(0)
space has the fixed point property if and only if it is bounded. However this is
false. In [73] it is shown that a closed convex subset of an R-tree has the fixed
point property for nonexpansive mappings if (and only if) it is geodesically
bounded. The question of whether there is a class of CAT(0) spaces for which
Ray’s theorem holds is taken up in [76]. An affirmative answer is given via
the introduction of the following concept:

Definition 9.4. Let (X, d) be an unbounded geodesic space. Then X is
said to have the property of the far unbounded set (property U for short) if for
any closed convex unbounded set Y ⊂ X, either Y is geodesically unbounded,
or for each closed convex unbounded set K ⊆ Y and x ∈ K there exists a
closed convex unbounded subset K1 of K such that

dist (x,K1) := inf {d (x, y) : y ∈ K1} ≥ 1.

One of the central results of [76] asserts that if (X, d) is a complete
CAT(0) space possessing property U, then a closed convex subset Y of X
has the fixed point property for nonexpansive mappings if and only if it
is bounded. (It is also shown in [76] that any reflexive Banach space has
property U.)

We now turn to a method for approximating fixed points of nonexpansive
mappings in CAT(0) spaces. Let K be a bounded closed convex subset of a
complete CAT(0) space and suppose f : K → K is nonexpansive. Fix x0 ∈ K,
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and define the mapping ft : K → K by taking ft (u) , t ∈ (0, 1) , to be the
point of [x0, f (u)] at distance td (x0, f (u)) from x0. Then by convexity of
the metric

d (ft (u) , ft (v)) ≤ td (u, v) ,

so ft is a contraction mapping of K into K. Since K is complete, Banach’s
contraction mapping theorem assures the existence of a unique point xt such
that:

(9.2) xt ∈ [x0, f (xt)] and d (x0, xt) = td (x0, f (xt)) .

This fact can be used to prove the following theorem. For an analog of
this result in the Hilbert ball, see Theorem 24.1 of [88].

Theorem 9.8. Let K be a bounded closed convex subset of a complete
CAT(0) space X, let f : K → K be nonexpansive, fix x0 ∈ K, and for each
t ∈ [0, 1) let xt be the point of [x0, f (xt)] satisfying (9.2). Then limt→1− xt

converges to the unique fixed point of f which is nearest x.

Proof. Fix 0 < j < l ≤ 1 and consider Δ
(
x̄0, f̄ (xj) , f̄ (xl)

)
, the com-

parison triangle of Δ(x0, f (xj) , f (xl)) in R
2. For convenience we take x̄0 to

be the origin. By the CAT(0) inequality we have∥∥f̄ (xl)− f̄ (xj)
∥∥ = d (f (xl) , f (xj)) ≤ d (xl, xj)

≤ ‖x̄l − x̄j‖ =
∥∥j−1f̄ (xl)− l−1f̄ (xj)

∥∥ .
It is now possible to follow the argument of Halpern [91] step-by-step. Specif-
ically, we have x̄j = jf̄ (xj) and x̄l = lf̄ (xl) . Let d = x̄l − x̄j . Then

〈l−1 (x̄j + d)− j−1x̄j , l
−1 (x̄j + d)− j−1x̄j〉 =

∥∥l−1 (x̄j + d)− j−1x̄j

∥∥2
=
∥∥l−1x̄l − j−1x̄j

∥∥2
=
∥∥f̄ (xl)− f̄ (xj)

∥∥
≤ ‖d‖2 .

Thus(
l−1 − j−1

)2 ‖x̄j‖2 +
(
l−1
)2 ‖d‖2 + 2〈

(
l−1 − j−1

)
l−1x̄j , d〉 ≤ ‖d‖2

from which(
l−1 − j−1

)2 ‖x̄j‖2 +
(
l−2 − 1

)
‖d‖2 ≤ 2

(
j−1 − l−1

)
l−1〈x̄j , d〉.

In particular 〈x̄j , d〉 ≥ 0. Now observe that

‖x̄l‖2 = 〈x̄j + d, x̄j + d〉 = ‖x̄j‖2 + ‖d‖2 + 2〈x̄j , d〉.

Therefore

(9.3) ‖x̄l‖2 ≥ ‖x̄j‖2 + ‖x̄j − x̄l‖2 .
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Now let {ki} satisfy 0 < k1 < k2 < · · · < 1 with ki → 1 as i → ∞. Since the
sequence

{
‖x̄ki

‖2
}

is monotone increasing and bounded, it follows that

d
(
xki

, xkj

)2 ≤
∥∥x̄ki

− x̄kj

∥∥2 ≤ ‖x̄ki
‖2 −
∥∥x̄kj

∥∥2 → 0 as i, j → ∞.

Thus {xki
} converges to some point x∗ ∈ K. However

d (xki
, f (xki

)) = (1− ki) d (x0, f (xki
))

and by continuity

d (x∗, f (x∗)) = lim
ki→1−

(1− ki) d (x0, f (xki
)) = 0.

Therefore x∗ is a fixed point of f.
Now let p be any other fixed point of f. By repeating the preceding

argument taking xl = x1 = p, we conclude from (9.3) that

d (x0, p)
2
= ‖p̄‖2 ≥ ‖x̄ki

‖2 + ‖x̄ki
− p̄‖2

≥ ‖x̄ki
‖2 + d (xki

, p)
2

= k2i d (x0, xki
)
2
+ d (xki

, p)
2
,

from which (letting ki → 1−)

d (x0, p)
2 ≥ d (x0, x

∗)2 + d (x∗, p)2 .

This proves that x∗ is the unique fixed point of f which is nearest x0. �

As a consequence of the above result, if fix (f) denotes the fixed point
set of f, then given any x ∈ K,

lim
t→1−

xt = Px ∈ fix (f) ,

where the mapping P defined by x �→ Px is the nearest point projection of
K onto fix (f) . Since the nearest point projection of CAT(0) space X onto
any complete convex subset of X is nonexpansive, P is nonexpansive. Thus
fix (f) is a nonexpansive retract of X.

In a Banach space context, the fact that in Theorem 9.8 is true outside
Hilbert space, and indeed in any uniformly smooth space (except that the
limit is a certain retraction different from the nearest point projection), is
proved in Reich [184].

Remark 9.2. In fact, it is possible to show that the mapping P is firmly
nonexpansive in the sense of Theorem 27.2 of [88].

We now give two homotopy invariance results in the spirit of Frigon [84].
In these results intK and ∂K denote, respectively, the interior and boundary
of K.
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Theorem 9.9. Let K be a closed convex subset of a complete CAT(0)
space X with intK 	= ∅. Suppose f, g : K → X are contraction mappings,
and suppose h : [0, 1]×K → X is a homotopy satisfying

(a) h (0, ·) = g; h (1, ·) = f (·) ;
(b) h (t, ·) is a contraction mapping with constant k ∈ (0, 1) for each

t ∈ [0, 1] ;
(c) For any ε > 0 there exists δ > 0 such that for x ∈ K and t, s ∈ [0, 1] ,

|t− s| < δ ⇒ d (h (t, x) , h (s, x)) < ε;
(d) x 	= h (t, x) for each x ∈ ∂K and t ∈ [0, 1] .

Then f has a fixed point in K if and only if g has a fixed point in K.

Proof. Assume that G has a fixed point, and let

E = {t ∈ [0, 1] : x = h (t, x) for some x ∈ K} .
The theorem is proved by showing that E is both open and closed. If E is
not open, then there exists t ∈ E and {tn} ⊂ [0, 1] \E such that tn → t.
Now let P be the nearest point projection of X onto K. Define the mappings
ĥ (t, ·) : X → X by setting ĥ (t, x) = h (t, P (x)) . Then the mappings ĥ (t, ·)
are contraction mappings with constant k. In particular there exist points
xn ∈ X such that xn = ĥ (tn, xn) . Thus

d (xn, x) = d (h (tn, P (xn)) , h (t, P (x)))

≤ d (h (tn, P (xn)) , h (tn, P (x))) + d (h (tn, P (x)) , h (t, P (x)))

≤ kd (xn, x) + d (h (tn, P (x)) , h (t, P (x))) ,

from which

d (xn, x) ≤ (1− k)
−1

d (h (tn, P (x)) , h (t, P (x))) .

By (c) it must be the case that xn = h (tn, P (xn)) → x. However {xn} is in
the complement of K and x is in the interior of K. This contradiction proves
that E is open.

To prove that E is closed, assume {tn} ⊂ E with tn → t /∈ E. The same
argument as the one just given leads to the conclusion that xn → x with
{xn} in the interior of K and x in the complement of K. �

Theorem 9.10. Let K be a bounded closed convex subset of a complete
CAT(0) space X with intK 	= ∅. Suppose f : K → X is a nonexpansive
mapping, and suppose h : [0, 1]×K → X is a homotopy satisfying

(a) h (0, ·) has a fixed point;
(b) h (1, ·) = f (·) ;
(c) For each t ∈ [0, 1), h (s, ·) is a kt-contraction mapping for each

s ∈ [0, t);
(d) For any ε > 0 there exists δ > 0 such that for x ∈ K and t, s ∈ [0, 1] ,

|t− s| < δ ⇒ d (h (t, x) , h (s, x)) < ε;
(e) x 	= h (t, x) for each x ∈ ∂K and t ∈ [0, 1] .

Then f has a fixed point in K.
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Proof. Select {tn} ⊂ (0, 1) with tn → 1. By Theorem 9.9, for each n
there exists xn ∈ K such that xn = h (tn, xn) . Thus

d (xn, f (xn)) = d (h (tn, xn) , h (1, xn)) ,

and by (c) we conclude d (xn, f (xn)) → 0. The result now follows from
Theorem 9.5. �

Remark 9.3. It is possible to prove that Theorems 9.5–9.6 hold in uni-
formly convex metric spaces by routinely modifying the arguments given here.
However it does not appear that the same can be said of Theorems 9.7–9.9.
In particular, it is not known whether Theorems 9.8 and 9.9 even hold in a
uniformly convex Banach space. On the other hand, as we have already noted,
Theorem 9.7 holds in any reflexive Banach space but it fails in nonreflexive
spaces.

QUESTION. It remains open whether any of the preceding results
extend to spaces of non-positive curvature. There appear to be serious ob-
stacles to carrying out such extensions.

We close this section with a theorem which invokes the Leray–Schauder
boundary condition. For this we will use the following continuation principle
due to A. Granas.

Theorem 9.11 ([89]). Let U be a domain (i.e., connected open set) in a
complete metric space X, let f, g : U → X be two contraction mappings, and
suppose there exists h : U × [0, 1] → X such that

(a) h (·, 1) = f, h (·, 0) = g;
(b) h (x, t) 	= x for every x ∈ ∂U and t ∈ [0, 1] ;
(c) there exists k < 1 such that d (h (x, t) , h (y, t)) ≤ kd (x, y) for every

x, y ∈ U and t ∈ [0, 1] ;
(d) there exists a constant α ≥ 0 such that for every x ∈ U and t, s ∈

[0, 1] ,
d (h (x, t) , h (x, s)) ≤ α |s− t| .

Then f has a fixed point if and only if g has a fixed point.

We will also need the following lemma due to Crandall and Pazy.

Lemma 9.4 ([56]). Let {zn} be a subset of a Hilbert space H and let {rn}
be a sequence of positive numbers. Suppose

〈zn − zm, rnzn − rmzm〉 ≤ 0, for m = 1, 2, · · ·.
Then if rn is strictly decreasing ‖zn‖ is increasing. If ‖zn‖ is bounded,
limn→∞ zn exists.

Theorem 9.12. Let U be a bounded connected open set in a complete
CAT(0) space X, and suppose f : U → X is nonexpansive. Suppose there
exists p ∈ U such that x /∈ [p, f (x)) for all x ∈ ∂U. Then f has a fixed point
in U.
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When X is a Hilbert space, Theorem 9.12 holds under the even weaker
assumption that f is a lipschitzian pseudocontractive mapping. This has
been known for some time (see [187]). Our proof is patterned after Precup’s
Hilbert space proof [173] for nonexpansive mappings. We observe here that
the CAT(0) inequality is sufficient.

Proof of Theorem 9.12 [120]. Let t ∈ (0, 1) and for u ∈ U let ft (u)
be the point of the segment [p, f (u)] with distance td (p, f (u)) from p. Let
x, y ∈ U and consider the comparison triangle Δ̄ = Δ (p̄, x̄, ȳ) of Δ(p, x, y)
in R

2. If f̄t (x) and f̄t (y) denote the respective comparison points of ft (x)
and ft (y) in Δ̄, then by the CAT(0) inequality,

d (ft (x) , ft (y)) ≤
∥∥f̄t (x)− f̄t (y)

∥∥ = t ‖x̄− ȳ‖ = td (x, y) .

Therefore ft is a contraction mapping of U → X. Moreover, if B (p; r) ⊂ U,
then ft : U → B (p; r) for t sufficiently small. Thus ft has a fixed point
for t sufficiently small. Now let λ ∈ (0, 1) . We apply Theorem 9.11 to show
that fλ has a fixed point. Define the homotopy h : U × [0, 1] → X by
setting h (x, t) = fλt (x) . Then h (·, 1) = fλ and h (·, 0) is a constant map. If
h (x, t) = x for some x ∈ ∂U and t ∈ [0, 1], then fλt (x) = x and x ∈ [p, f (x)).
Since this is not possible, condition (b) of Theorem 9.11 holds. Condition (c)
holds upon taking k to be λ. Finally,

d (h (x, t) , h (x, s)) ≤ |s− t| d (p, f (x)) ,

for all t, s ∈ [0, 1] , and since U is bounded condition (d) holds. Therefore,
by Theorem 9.11, fλ has a unique fixed point, and it follows that ft has a
unique fixed point xt for each t ∈ (0, 1) .

Now denote by xn, n ∈ N, the point xt for t = 1 − 1/n. For m,n ∈ N,
m,n > 1, consider the comparison triangle Δ̄ = Δ

(
0, f̄ (xm) , f̄ (xn)

)
of

Δ(p, f (xm) , f (xn)) in R
2, and let x̄m, x̄n denote the respective comparison

points of xm, xn. Then, using the fact that f is nonexpansive in conjunction
with the CAT(0) inequality,∥∥f̄ (xm)− f̄ (xn)

∥∥ = d (f (xn) , f (xm)) ≤ d (xn, xm) ≤ ‖x̄n − x̄m‖ .

Consequently, if rm = (m− 1)
−1 and rn = (n− 1)

−1
,

〈rnx̄n − rmx̄m, x̄n − x̄m〉
= 〈f̄ (xn)− f̄ (xm) , x̄n − x̄m〉 − ‖x̄n − x̄m‖2 ≤ 0.

Since {rn} is strictly decreasing, {x̄n} converges by Lemma 9.4. Since
d (xn, xm) ≤ d (x̄n, x̄m) , {xn} converges as well, necessarily to a fixed point
of f. �

Remark 9.4. It is noteworthy that in the preceding result the domain U
is not assumed to be convex nor is there any compactness assumption. See
[11] for an interesting extension of Theorem 9.12 to continuous mappings
with compact range.
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9.4. A Concept of “Weak” Convergence

In 1976 T.C. Lim [141] introduced a concept of convergence in a general
metric space setting which he called strong Δ-convergence. We show here
that CAT(0) spaces provide a natural framework for Lim’s concept, and
that in such a setting Δ-convergence shares many properties of the usual
notion of weak convergence in Banach spaces. As a consequence Kirk and
Panyanak were able to show in [124] that many Banach space concepts and
results which involve weak convergence can be extended to a CAT(0) setting.
We discuss those results here. (We should also mention that in [135] T.
Kuczumow introduced an identical notion of convergence in Banach spaces,
which he calls “almost convergence”.)

Throughout, X denotes a complete CAT(0) space. Let {xn} be a bounded
sequence in X and for x ∈ X set

r (x, {xn}) = lim sup
n→∞

d (x, xn) .

The asymptotic radius r ({xn}) of {xn} is given by

r ({xn}) = inf {r (x, {xn}) : x ∈ X} ,
and the asymptotic center A ({xn}) of {xn} is the set

A ({xn}) = {x ∈ X : r (x, {xn}) = r ({xn})} .
It is known [60] that in a CAT(0) space, A({xn})) consists of exactly one
point.

We now turn to the study of Lim’s concept in CAT(0) spaces.

Definition 9.5. A sequence {xn} in X is said to Δ-converge to x ∈ X
if x is the unique asymptotic center of {un} for every subsequence {un} of
{xn}. In this case we write Δ-limn→∞ xn = x and call x the Δ-limit of {xn} .

Next recall that a bounded sequence {xn} in X is said to be regular
if r ({xn}) = r ({un}) for every subsequence {un} of {xn} . It is known
that every bounded sequence in a Banach space has a regular subsequence
[87, p. 166]. The proof is metric in nature and carries over to the present
setting without change. Since every regular sequence Δ-converges, we see
immediately that every bounded sequence in X has a Δ-convergent subse-
quence.

Notice that given {xn} ⊂ X such that {xn} Δ-converges to x and given
y ∈ X with y 	= x,

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y).

Thus X satisfies a condition which is known in Banach space theory as the
Opial property.
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Remark 9.5. Every bounded closed convex subset K of X is Δ-closed
in the sense that it contains the Δ-limits of all of its Δ-convergent sequences
(see Proposition 2.1 in [61]). The following fact is a consequence of this.

Proposition 9.6. If a sequence {xn} in X Δ-converges to x ∈ X, then

x ∈
∞⋂
k=1

conv{xk, xk+1, . . .},

where conv(A) =
⋂
{B : B ⊇ A and B is closed and convex} .

Proposition 9.7. Let K be a closed convex subset of X, and let f : K →
X be a nonexpansive mapping. Then the conditions {xn} Δ-converges to x
and d(xn, f(xn)) → 0, imply x ∈ K and f(x) = x.

Proof. Since

lim sup
n→∞

d(f(x), xn) ≤ lim sup
n→∞

[d(f(x), f(xn)) + d(xn, f(xn))] = r(x, (xn)),

it must be the case that f(x) = x by uniqueness of asymptotic centers. �

Notice that Theorem 9.5 is a corollary to the above proposition.

We have seen that CAT(0) spaces satisfy the Opial property. We now
show that they also satisfy what is known in Banach space theory as the
Kadec–Klee property. For a bounded sequence {xn} in a metric space we
denote

sep {xn} := inf {d(xn, xm) : n 	= m} .

Theorem 9.13. (Kadec–Klee Property) Let p ∈ X, and let ε > 0. Then
there exists δ > 0 such that d(p, x) ≤ 1− δ for every sequence {xn} ⊂ X such
that d(p, xn) ≤ 1, sep {xn} > ε and Δ-limn→∞ xn = x.

Proof. For convenience, and without loss of generality, we assume
d(p, xn) ≡ 1. By passing to a subsequence if necessary we may suppose
d(xn, x) ≥

ε

2
for all n. Let �(p̄, x̄, x̄n) be a comparison triangle for �(p, x, xn)

in R
2. Then x is the asymptotic center of {xn} relative to the segment [p, x],

and lim supn d(x, xn) = r({xn}). For each n, let ūn be the point of the seg-
ment [p̄, x̄] which is nearest to x̄n, and let un be the point of the segment [p, x]
for which d(p, un) = d(p̄, ūn) and d(un, x) = d(ūn, x̄). Let θn = �p̄(x̄, x̄n). By
passing to subsequences again we may suppose {ūn} converges to ū ∈ [p̄, x̄],

{un} converges to u ∈ [p, x], and θn → θ. Since d(x̄n, x̄) = d(xn, x) ≥
ε

2
> 0

it must be the case that θ > 0. If d(p, x) = d(p̄, x̄) ≤ cos θ, take δ = 1− cos θ.

Otherwise d(p, x) > cos θ from which �ūn
(p̄, x̄n) =

π

2
and d(p̄, ūn) = cos θn.
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This implies d(p̄, ū) = cos θ and cos θ = limn→∞ cos θn can be estimated in
terms of ε. In this case, we have (using the CAT(0) inequality),

r({xn}) = lim sup
n→∞

d(x, xn)

= lim sup
n→∞

d(x̄, x̄n)

≥ lim sup
n→∞

d(ūn, x̄n)

= lim sup
n→∞

d(ū, x̄n)

≥ lim sup
n→∞

d(u, xn).

Thus r(u, {xn}) ≤ r({xn}). This implies that u = x by uniqueness of the
asymptotic center. Hence ū = x̄. But d(p, u) = d(p̄, ū) ≤ cos θ < 1. We thus
conclude that in either case d(p, u) ≤ 1− δ, where δ is positive and depends
on ε. �

9.5. Δ-Convergence of Nets

The notion of Δ-convergence readily extends to nets. We begin by sum-
marizing the results of [125]. A relation ≤ is said to be a partial order on a
set S, and (S ≤) is said to be a partially ordered set if for each a, b, c ∈ S

(i) a ≤ a;
(ii) a ≤ b and b ≤ a ⇒ a = b;
(iii) a ≤ b and b ≤ c ⇒ a ≤ c.

Definition 9.6. A directed set is a partially ordered set (S ≤) for which
the following condition holds:

(iv) For each a, b ∈ S there exists c ∈ S such that a ≤ c and b ≤ c.

Recall that a net in a set S is a mapping φ : I → S where I is a directed
set. For α ∈ I we adopt the notation φ = {xα}α∈I (and when there is no
confusion simply {xα}) where it is understood that φ (α) = xα. If G ⊆ S
and {xα} is a net in S, then {xα} is said to be eventually in G if there exists
α0 ∈ I such that α ≥ α0 ⇒ xα ∈ G. If S is a topological space, then the net
{xα} is said to converge to p ∈ S if {xα} is eventually in each neighborhood
of p.

Definition 9.7. A net {xα} in a set S is an ultranet (or universal net)
if, given any subset G of S, {xα} is either eventually in G or eventually in
S\G.

If φ : I → S is a net in S and if ψ : J → I, where J is a directed set,
then φ ◦ ψ is a subnet of φ if the following condition holds:
For each α ∈ I there exists j0 ∈ J such that ψ (j) ≥ α for all j ≥ j0. It is
clear from this definition that a subnet of an ultranet is also an ultranet.

The following fact is a remarkable consequence of the Axiom of Choice.
See, e.g., [4] for further details.
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Proposition 9.8. Every net in a set S has a subnet which is an ultranet.

Some other facts are pertinent to our discussion.

Proposition 9.9. If S is compact in some (Hausdorff) topology, and if
{xα}α∈I is an ultranet in S, then {xα} converges to some p ∈ S.

Proof. The proof is by contradiction. Suppose not. Then each point
p ∈ S has a neighborhood U (p) such that {xα} is eventually in S\U (p) .
Since the family {U (p)}p∈S is an open cover of the compact set S, there
exist p1, · · ·, pn ∈ S such that S ⊆ ∪n

i=1U (pi) . For each i ∈ {1, · · ·, n} there
exists αi ∈ I such that α ≥ αi ⇒ xα ∈ S\U (pi) . However by (iv) there
exists α ∈ I such that α ≥ αi for i = 1, · · ·, n. This implies that xα does not
exist—a contradiction. �

Proposition 9.10. Let S1 and S2 be sets, and let {xα} be an ultranet
in S1. Then if f : S1 → S2 is an arbitrary mapping, {f (xα)} is an ultranet
in S2.

Proof. Let G ⊂ S2 and let

f−1 (G) = {x ∈ S1 : f (x) ∈ G} .
Then {xα} is either eventually in f−1 (G) , in which case {f (xα)} is even-
tually in G, or {xα} is eventually in S1\f−1(G), in which case {f (xα)} is
eventually in S2\G. �

Proposition 9.11. Let X be a metric space and let {xα} be a bounded
ultranet in X. Then for each p ∈ X, {d (xα, p)} converges.

Proof. Define f : X → R by setting f (x) = d (x, p). By Proposition
9.10, {d (xα, p)} is an ultranet in a bounded closed subset of R. By Proposi-
tion 9.9 {d (xα, p)} converges. �

We define the notions of asymptotic radius and asymptotic center for net
analogous to the way they are defined for sequences. Specifically: Let (X, d)
be a metric space and let K be a subset of X. Let I be a directed set, and
let {xα}α∈I be a bounded net in X. For y ∈ X, set

ry ({xα}) = lim
α

{sup {d (y, xβ) : β ≥ α}} ;

rK ({xα}) = inf {ry {xα} : y ∈ K} ;
AK ({xα}) = {x ∈ K : rx ({xα}) = rK ({xα})} .

The number rK ({xα}) is called the asymptotic radius of {xα} relative to K
and the (possibly empty) set is called the asymptotic center of {xα} in K.
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A net {xα} is said to be regular if each of its subnets has the same
asymptotic radius, and {xα} is said to be uniform if each of its subnets has
the same asymptotic center.

Proposition 9.12 ([125]). Let {xα} be a bounded ultranet in a metric
space X. Then {xα} is uniform.

Proof. For each y ∈ X {d (y, xα)} is a bounded ultranet in R. Therefore
limα d (y, xα) := ϕ (y) exists. If {xβ} is a subnet of {xα} , then {d (y, xβ)}
is an ultranet subnet of {d (y, xα)} ; hence limβ d (y, xβ) = ϕ (y) . It follows
that every subnet of {xα} has the same asymptotic radius; hence the same
asymptotic center. �

Now let K be a closed convex subset of a complete CAT(0) space (X, d).
Let {xα}α∈I be a bounded net in K with asymptotic radius r. Then AK({xα})
consists of exactly one point. To see this, let ε > 0. By assumption there
exists x ∈ K and α0 ∈ I such that d (x, xα) ≤ r + ε for α ≥ α0. Therefore

Cε =
⋃
α∈I

⎛
⎝⋂

β≥α

B (xβ ; r + ε)

⎞
⎠ 	= ∅.

Since Cε, being the union of an ascending chain of convex sets, is convex, the
closure Cε of Cε is also convex. It follows that

C :=
⋂
ε>0

Cε 	= ∅.

The fact that this intersection consists of a single point follows from the CN
inequality (9.1). Specifically, if u, v ∈ C and u 	= v and if m is the midpoint
of the segment [u, v], then by (9.1)

d (m,xα)
2 ≤ d (u, xα)

2
+ d (v, xα)

2

2
− 1

4
d (u, v)

2

This implies rm ({xα})2 < rK ({xα})2—a contradiction.

Definition 9.8. Let (X, d) be a complete CAT(0) space. A bounded
net {xα} in X is said to Δ-converge to z ∈ X if z is the unique asymptotic
center of every subnet of {xα} .

Now let {xα} be a bounded net in a complete CAT(0) space. Then
{xα} has a subnet which is an ultranet. Since every ultranet is uniform, it
Δ-converges to some z ∈ X. Thus we have the following:

Proposition 9.13. Every bounded net in a complete CAT(0) space has
a Δ-convergent subnet.
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The preceding fact can be reformulated as follows (cf., Theorem 3 of
[141]).

Proposition 9.14. Every bounded closed convex set in a complete
CAT(0) is Δ-compact.

9.6. A Four Point Condition

In this section (X, d) always denotes a complete CAT(0) space, and we
assume that X satisfies the following seemingly mild geometric condition.

(Q4) For points x, y, p, q ∈ X,

d (x, p) < d (x, q)
d (y, p) < d (y, q)

}
⇒ d (m, p) ≤ d (m, q)

for any point m on the segment [x, y] .

This condition was introduced in [124], and it is easy to see that it holds
in many CAT(0) spaces, including Hilbert spaces and R-trees. This condition
has been studied more deeply by Espínola and Fernández-León in [74]. They
show in particular that any CAT(0) space of constant curvature satisfies (Q4),
but any CAT(0) gluing of two such spaces of different constant curvature fails
the (Q4) condition.

As we observed above (Proposition 9.6), if a sequence {xn} in X
Δ-converges to x ∈ X, then

x ∈
∞⋂
k=1

conv{xk, xk+1, . . .},

and, as is the case for weak convergence in a Banach space, it is natural to
ask when

{x} =

∞⋂
k=1

conv{xk, xk+1, . . .}.

A positive answer is given by Ahmadi Kakavandi in [1], where it is shown
that the following strengthening of condition (Q4) is sufficient.

(Q4) For points x, y, p, q ∈ X,

d (x, p) ≤ d (x, q)
d (y, p) ≤ d (y, q)

}
⇒ d (m, p) ≤ d (m, q)

for any point m on the segment [x, y] .

We now discuss another ultrapower technique. (See Chap. 7 for a pre-
vious discussion.) Assume that K is a bounded closed convex subset of a
complete CAT(0) space X. Let U be a nontrivial ultrafilter on the natural
numbers N. Fix p ∈ X, and let X̃U denote the metric space ultrapower of X
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over U relative to p. In this case the elements of X̃U consist of equivalence
classes x̃ := [(xi)]i∈N for which

lim
U

d(xi, p) < ∞,

with (ui) ∈ [(xi)] if and only if limU d(xi, ui) = 0. It is known that X̃U is also
a CAT(0) space [36, p. 187]. We use ẋ to denote the class [(xi)] with xi ≡ x,

and Ẋ denotes the canonical isometric embedding of X in X̃U .
The following ultrapower characterization of Δ-convergence can be found

in [61].

Proposition 9.15. A regular sequence (xn) ⊂ X Δ-converges to x ∈ X
if and only if for any nontrivial ultrafilter U over N, ẋ is the unique point of
Ẋ which is nearest to x̃ := [(xn)] in the ultrapower X̃U .

Proof. (⇒) Suppose x is the asymptotic center of {xn} , and suppose
dU (ẏ, x̃) ≤ dU (ẋ, x̃) for some y ∈ X. Choose a subsequence {un} of {xn}
such that

lim
n→∞

d (y, un) = lim inf
n→∞

d (y, xn) .

Using the fact that {xn} is regular we have

lim
n→∞

d (y, un) ≤ lim
U

d (y, xn)

= dU (ẏ, x̃)

≤ dU (ẋ, x̃)

≤ lim sup
n→∞

d (x, xn)

= r ({xn})
= lim sup

n→∞
d (x, un) .

Thus limn→∞ d (y, un) ≤ lim sup
n→∞

d (x, un) , and y = x by uniqueness of the

asymptotic center.

(⇐) Suppose ẋ is the unique point of Ẋ which is nearest to x̃ := [(xn)] ,
and suppose y is the asymptotic center of {xn} . Then by the implication
(⇒) ẏ is the unique point of Ẋ which is nearest to x̃, whence ẋ = ẏ; thus
x = y. �

Proposition 9.16. Suppose X satisfies (Q4) , and suppose {xn} and
{yn} both Δ-converge to p ∈ X. Suppose mn ∈ [xn, yn] satisfies d (xn,mn) =
λd (xn, yn) for fixed λ ∈ (0, 1) . Then {mn} also Δ-converges to p.

Proof. We pass to the ultrapower X̃U of Proposition 9.15. Thus ṗ is the
unique point of Ẋ which is nearest to both x̃ and ỹ. Then some subsequence
of {mn} , which we again denote by {mn} , Δ-converges to q, and q̇ is the
unique point of Ẋ which is nearest to m̃. We pass to corresponding subse-
quences of {xn} and {yn} and relabel as at the outset. Assume q̇ 	= ṗ. Then
dU (x̃, ṗ) < dU (x̃, q̇) and dU (ỹ, ṗ) < dU (ỹ, q̇) , while dU (m̃, q̇) < dU (m̃, ṗ) .
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It follows that one can choose n so that d (xn, p) < d (xn, q), d (yn, p) <
d (yn, q) , and d (mn, q) < d (mn, p) . This contradicts condition (Q4) . Thus
every subsequence of the original sequence {mn} Δ-converges to p, and so
{mn} itself Δ-converges to p. �

It is also shown in [124] that the approach of Kirk–Sims in [131] carries
over to CAT(0) spaces which satisfy (Q4) , provided one makes certain minor
adjustments. If K is a closed convex subset of a Banach space X, a continuous
mapping f : K → X is said to be locally almost nonexpansive (LANE) if for
each x ∈ K and ε > 0 there exists a weak neighborhood Ux of x such that for
u, v ∈ Ux, ‖f(u)− f(v)‖ ≤ ‖u− v‖+ ε. The concept is due to R. Nussbaum
[162]. He proved that if X is uniformly convex and if f : K → X is a LANE
mapping, then I − f is demiclosed on K, in the sense that the conditions
{xn} ⊂ K converges weakly to x ∈ X and limn→∞ ‖(I − f)(xn)− y‖ = 0 ⇒
x ∈ K and x− f(x) = y.

It is not even possible to formulate the above result, as stated, in a
CAT(0) setting. However it is possible to use the notion of Δ-convergence to
formulate a precise analogue.

Definition 9.9. Let K be a closed convex subset of a complete CAT(0)
space. A continuous mapping f : K → X is said to be locally almost nonex-
pansive (LANE ) if for each x ∈ K and ε > 0 the following condition holds: If
{un} , {vn} are two sequences in K which Δ-converge to x, then there exists
N ∈ N such that

(9.4) d(f(un), f(vn)) ≤ d(un, vn) + ε whenever n ≥ N.

It is now possible to follow the approach of [131]. Let

K̃U = {x̃ = [(xi)] : xi ∈ K for each i} .
Assume f : K → X is a LANE mapping. For x̃ = [(xi)] ∈ K̃U , define
f̃ : K̃U → X̃U by setting

f̃(x̃) = [(f(xi))].

For each x ∈ K, let

Wx =
{
x̃ = [(xi)] ∈ K̃U : Δ- lim

U
xi = x

}
.

If {xn}Δ-converges to x and {yn}Δ-converges to y, then ẋ and ẏ are the
unique points of Ẋ which are nearest x̃ and ỹ, respectively. Since the near-
est point projection from X̃U onto Ẋ is nonexpansive by Proposition 9.5,
d (x, y) = dU (ẋ, ẏ) ≤ dU (x̃, ỹ) . It follows that the sets Wx are closed, and
by Proposition 9.16 they are also convex. The remaining details follow as in
[131] and lead to the following analog of Proposition 9.7.
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Theorem 9.14 (cf., [203]). Let K be a closed convex subset of a com-
plete CAT(0) space X, suppose X satisfies (Q4) , and let f : K → X be a
continuous LANE mapping. Then the conditions {xn} Δ-converges to x and

lim
n→∞

d(xn, f(xn)) = 0

imply x ∈ K and f(x) = x.

A question posed in [124] is whether every CAT(0) space satisfies (Q4).
This question is answered negatively in [74]. Among other things it is also
shown that Proposition 9.16 holds under a somewhat weaker assumption than
(Q4), a fact which answers negatively another question posed in [124].

9.7. Multimaps and Invariant Approximations

Let (X, d) be a metric space, let 2X be the family of all subsets of X
and let CB (X) be the family of nonempty bounded closed subsets of X. For
A ∈ CB (X) and ε > 0, let

Nε (A) = {y ∈ X : dist (y,A) ≤ ε} .

The Hausdorff–Pompeiu metric H on CB (X) is defined as follows:

H (A,B) = max

{
sup
a∈A

dist (a,B) , sup
b∈B

dist (b, A)

}
.

This can be written in a more geometrical form as follows:

H (A,B) = inf {ε > 0 : A ⊆ Nε (B) and B ⊆ Nε (A)} .

A set-valued mapping T : X → CB (X) is said to be nonexpansive if

H (T (x) , T (y)) ≤ d (x, y) for all x, y ∈ X.

The following is the fundamental fixed point theorem for set-valued mappings
in a CAT(0) space.

Theorem 9.15. Suppose (X, d) is a complete CAT(0) , let K be a bounded
closed convex subset of X, and suppose T : K → 2K is a nonexpansive set-
valued mapping whose values are nonempty compact subsets of K. Then T
has a fixed point.

Proof. Since asymptotic centers of bounded sequences are unique in
CAT(0) spaces, it is possible to follow the standard proof of the Banach space
analog of this theorem in a uniformly convex space (cf., [87, p. 165]). �

As an application of this theorem we obtain the following results of
Shahzad and Markin [199]. In this result the mappings f : X → X and
T : X → 2X are said to commute if for all x ∈ X, T (x) 	= ∅ and f (T (x)) ⊂
T (f (x)) .
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Theorem 9.16. Let (X, d) be a complete bounded CAT(0) space and let
f : X → X be nonexpansive. Suppose T : X → 2X is a nonexpansive
mapping whose values are compact and convex. If the mappings f and T
commute, then there exists x∗ ∈ X such that x∗ = f (x∗) ∈ T (x∗) .

Proof. By Theorem 9.4, f has a nonempty fixed point set A in X
which is closed and convex. Since f and T commute, T (x) is invariant under
f for all x ∈ A. Since T (x) is also closed bounded and convex, it is also a
CAT(0) space, so again by Theorem 9.4, f has a fixed point in T (x) . Thus
T (x) ∩ A 	= ∅ for each x ∈ A. Now consider the mapping T ′ : A → 2A

defined by T ′ (x) = T (x) ∩ A, x ∈ A. We claim that T ′ is nonexpansive.
Indeed, if u ∈ T ′ (x) for some x ∈ A, let v be the unique closest point
to u in T (y) for some y ∈ A. Then d (u, v) = infw∈T (y) d (u,w) . However
d (u, f (v)) = d (f (u) , f (v)) ≤ d (u, v) . Since v is the unique closest point
to u in T (y) and since f (v) ∈ T (y) it must be the case that v = f (v) .
Therefore v ∈ T (y) ∩A = T ′ (y) . Since the argument is symmetric in x and
y, it follows that

H (T ′ (x) , T ′ (y)) ≤ H (T (x) , T (y)) ≤ d (x, y) for all x, y ∈ A.

By Theorem 9.15, T ′ has a fixed point x∗. Thus x∗ ∈ T ′ (x∗) = T (x∗) ∩ A,
whence x∗ = f (x∗) ∈ T (x∗) . �

Theorem 9.17. Suppose K is a closed bounded convex subset of a com-
plete CAT(0) space (X, d). Suppose f : K → K and T : K → 2X are nonex-
pansive with T taking compact convex values, and suppose T (x)∩K 	= ∅ for
each x ∈ K. If the mappings f and T commute (i.e., f(T (x)∩K) ⊂ T (f(x))∩
K for all x ∈ K), then there exists x∗ ∈ X such that x∗ = f (x∗) ∈ T (x∗) .

Proof. As in the previous theorem the mapping f has a nonempty
closed convex fixed point set A in K. By the definition of commuting map-
pings, f (y) ∈ T (f (x)) ∩K = T (x) ∩K for y ∈ T (x) ∩K and x ∈ A, and
therefore T (x) ∩ K is invariant under f for each x ∈ A. It follows that f
has a fixed point in T (x) ∩K, so T (x) ∩ A 	= ∅ for each x ∈ A. Now define
T ′ (x) = T (x) ∩A, x ∈ A and complete the proof as in Theorem 9.16. �

The following is one of the main results of Shahzad [198]. Let ∂KC
denote the relative boundary of C ⊂ K with respect to K.

Theorem 9.18. Let K be a closed bounded convex subset of a complete
CAT(0) space X and f a nonexpansive self-mapping of K. Then for any
closed convex subset C of K such that f (∂KC) ⊂ C we have Pfix(f) (C) ⊂ C.

Proof. Fix u ∈ C, and define the mapping ft : Y → K by taking ft(x)
to be the point of [u, f(x)] at distance td(u, f(x)) from u. Then by convexity
of the metric

d(ft(x), ft(y)) ≤ td(x, y)
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for all x, y ∈ C. This shows that ft : C → K is a contraction. Let PC

be the proximinal nonexpansive retraction of K into C. Then PCft is a
contraction self-mapping of C. By the Banach Contraction Principle, there
exists a unique fixed point yt ∈ C of PCft. Thus

d(ftyt, yt) = inf{d(ftyt, z) : z ∈ C}.
Since f(∂KC) ⊂ C, we have ft(∂KC) ⊂ C and so we have ft(yt) = yt ∈
[u, f(yt)]. Note that A = Fix(f) is nonempty closed bounded convex by
Theorem 9.4. Now Theorem 9.8 guarantees that limt→1− yt converges to
the unique fixed point of f which is nearest u. As a result, limt→1− yt =
PA(u) ∈ C. Since X is a CAT(0) space, PA is nonexpansive and PA(C) ⊂ C.

�

Remark 9.6. Let K be a closed bounded convex subset of a complete
CAT(0) space X and f : K → X a nonexpansive mapping. Then there exists
an element x∗ ∈ K such that

d(f(x∗), x∗) = d(f(x∗),K).

To see this, let PK be the proximinal nonexpansive retraction of X into K.
Then PK ◦f is a nonexpansive self-mapping of K and so has a fixed point x∗.
Hence

d(f(x∗), x∗) = d(f(x∗),K).

The following is one of the invariant approximation results of Shahzad
and Markin [199].

Theorem 9.19. Suppose K is a closed convex subset of a complete
CAT(0) space (X, d) with int(K) nonempty. Suppose f : X → X and
T : X → 2X are nonexpansive mappings with T taking compact convex val-
ues, and suppose f (∂K) ⊂ K and T (∂K) ⊂ K. If the mappings f and
T commute and y ∈ fix(f) ∩ fix(T ), then there exists x∗ ∈ X such that
d (y, x∗) = d (y,K) and x∗ = f (x∗) ∈ T (x∗) .

Proof. Let PK (y) = B (y; d (y,K))∩K = x∗ be the unique closest point
to y ∈ K. Then the point x∗ must lie in ∂ (K). Otherwise, if x∗ ∈ int (K), for
ε > 0 sufficiently small there is a ball B (x∗; ε) that is contained in int (K).
Since B (x∗; ε) is a closed and convex set, let w denote the unique closest
point in B (x∗; ε) to y. Thus d (y, w) < d (y, x∗), which is a contradiction.
Since d (y, f (x∗)) ≤ d (y, x∗) and f (x∗) ∈ K, the uniqueness of x∗ implies
x∗ = f (x∗). Again, since y ∈ T (y), we have B (y; d (y,K)) ∩ T (x∗) 	= ∅.
Since T (x∗) ⊂ K, this implies x∗ ∈ T (x∗). Thus x∗ is the required point. �

We now turn to an extension of Theorem 9.15. For convenience and
brevity we again work in an ultrapower setting and follow the approach of
[61]. Assume that K is a bounded closed convex subset of a complete CAT(0)
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space X. Let U be a nontrivial ultrafilter on the natural numbers N. Fix p ∈
X, and let X̃U denote the metric space ultrapower of X over U relative to p.
A nonexpansive set-valued mapping T : K → CB (X) induces a nonexpansive
set-valued mapping T̃ defined on K̃ as follows:

T̃ (x̃) =
{̃
u∈ X̃U : ∃ a representative (un) of ũ with un ∈T (xn) for each n

}
.

To see that T̃ is nonexpansive (and hence well-defined), let x̃, ỹ ∈ K̃U ,
with x̃ = [(xn)] and ỹ = [(yn)] . Then

H
(
T̃ (x̃) , T̃ (ỹ)

)
≤ lim

U
H (T (xn) , T (yn))

≤ lim
U

d (xn, yn)

= dU (x̃, ỹ) .

The following fact will be needed (see, e.g., [105]).

(9.5) If S ⊆ K is compact, then Ṡ = S̃.

Theorem 9.20. Let K be a closed convex subset of a complete CAT(0)
space X, and let T : K → 2X be a nonexpansive mapping whose values are
nonempty compact subsets of X. Suppose dist (xn, T (xn)) → 0 for some
bounded sequence {xn} ⊂ K. Then T has a fixed point.

Proof. By passing to a subsequence we may suppose {xn} is regular
and hence Δ-converges to some point x ∈ X. By Proposition 9.15 ẋ is the
unique point of X which is nearest to x̃ := [(xn)] . Since x ∈ K, ẋ ∈ K̇. Also,
x̃ must lie in an r-neighborhood of T̃ (ẋ) for r = H

(
T̃ (x̃) , T̃ (ẋ)

)
. Since

T̃ (ẋ) is compact, dist
(
x̃, T̃ (ẋ)

)
= dU (x̃, u̇) for some u̇ ∈ T̃ (ẋ) . But since

T̃ (ẋ) ⊂ Ẋ, if u̇ 	= ẋ we have the contradiction

dU (x̃, u̇) > dU (x̃, ẋ) ≥ H
(
T̃ (x̃) , T̃ (ẋ)

)
= r.

Therefore ẋ = u̇ ∈ T̃ (ẋ) . However T̃ (ẋ) = T̃ (x) , so by (9.5) this in turn
implies x ∈ T (x) . �

Remark 9.7. Convexity of K is needed in the preceding argument only
to assure that the asymptotic center of {xn} lies in K. The theorem actu-
ally holds under the weaker assumption that K is closed and contains the
asymptotic centers of all of its regular sequences.
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9.8. Quasilinearization

Let (X, d) be a metric space. Berg and Nikolaev in [26] introduced the
concept of quasilinearization in metric spaces. Formally denote a pair (a, b)

in X ×X by
−→
ab and call it a vector. Quasilinearization is defined as a map

〈·, ·〉 : X ×X → X ×X → R defined by

(9.6) 〈−→ab,−→cd〉 = 1

2

(
d2 (a, d) + d2 (b, c)− d2 (a, c)− d2 (b, d)

)
.

It is easily seen that 〈−→ab,−→cd〉 = 〈−→cd,−→ab〉, 〈−→ab,−→cd〉 = −〈−→ba,−→cd〉 and

〈−→ax,−→cd〉+ 〈−→xb,−→cd〉 = 〈−→ab,−→cd〉
for all a, b, c, d, x ∈ X, because

〈−→ax,−→cd〉 = 1

2

(
d2 (a, d) + d2 (x, c)− d2 (a, c)− d2 (x, d)

)
and

〈−→xb,−→cd〉 = 1

2

(
d2 (x, d) + d2 (b, c)− d2 (x, c)− d2 (b, d)

)
.

It is known [26] that a geodesically connected metric space is a CAT(0) space
if and only if it satisfies the Cauchy–Schwarz inequality:

〈−→ab,−→cd〉 ≤ d (a, b) d (c, d) .

Using the concept of quasilinearization, the authors in [2] introduce
another notion of “weak” convergence in complete CAT(0) spaces.

Definition 9.10. Let (X, d) be a complete CAT(0) space. A sequence
{xn} in X is said to w-converge to x ∈ X if for each y ∈ X,
limn→∞〈−−→xxn,

−→xy〉 = 0.

It is obvious that convergence in the metric implies w-convergence, and it
is easy to check that w-convergence implies Δ-convergence (see Proposition
2.5 in [2]). It is shown in [1] that the converse is not true. However the
following result provides an explicit relationship between w-convergence and
Δ-convergence.

Theorem 9.21 ([1]). Let (X, d) be a complete CAT(0) space. Then a
sequence {xn} in X Δ-converges to x ∈ X if and only if for each y ∈ X,

lim sup
n→∞

〈−−→xxn,
−→xy〉 ≤ 0.

Remark 9.8. Let (X, d) be a metric space. One can define a weaker
topology Tw on X by taking Tw to be the weakest topology on X for which
the function z �→ d (x, z) − d (y, z) is continuous, and Tc to be the weakest
topology on X for which metrically closed sets are Tc-closed. In view of the
following result, it appears that the latter definition has greater relevance for
CAT(0) spaces. N. Monod has made the following observation in [157].
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Theorem 9.22. Let (X, d) be a complete CAT(0) space, and K ⊆ X a
bounded closed convex set. Then K is compact in the topology Tc.

Finally we call attention to the following result of Dehghan and Rooin
[59]. In this theorem PK denotes the nearest point projection of X onto K.

Theorem 9.23. Let K be a convex subset of a CAT (0) space X. Let
x ∈ X and y ∈ K. Then y = PK (x) if and only if

〈−→xy,−→yu〉 ≥ 0 for all u ∈ K.



CHAPTER 10

Ptolemaic Spaces

A metric space (X, d) is said to be ptolemaic if it satisfies the Ptolemy
inequality:

d (x, y) d (z, p) ≤ d (x, z) d (y, p) + d (x, p) d (y, z)

for all x, y, z, p ∈ X.

It is known [196] that a normed space is an inner product space if and only
if it is ptolemaic. Also, for each normed space (X, ‖·‖) there is a constant
C ∈ [1, 2] such that

‖x− y‖ ‖z − p‖ ≤ C (‖x− z‖ ‖y − p‖+ ‖x− p‖ ‖y − z‖)

for all x, y, z, p ∈ X.
The smallest constant Cp (X) for which the above inequality holds is

called the Ptolemy constant of the space X. Among other things, it is known
that if X is a Banach space for which Cp (X) <

(
1 +

√
3
)
/2, then X has

uniform normal structure.
In is also known [44] that CAT(0) spaces are ptolemaic. However a

geodesic ptolemaic space is not necessarily a CAT(0) space. In fact such
spaces need not even be uniquely geodesic, hence not necessarily Busemann
spaces. On the other hand, a metric space is CAT(0) if and only if it is
ptolemaic and Busemann convex (see Foertsch et al. [82]).

The metric of a ptolemaic geodesic space is always convex. To see this,
let u = (1− t) y + tz. Then d (u, y) = td (y, z) and d (u, z) = (1− t) d (y, z) .
Now apply the ptolemaic inequality as follows:

d (x, (1− t) y + tz) d (y, z) ≤ d (x, y) d ((1− t) y + tz, z)

+d (x, z) d ((1− t) y + tz, y) = (1− t) d (x, y) d (y, z) + td (x, z) d (y, z) .

We say that X admits a continuous midpoint map if there exists an
m : X ×X → X such that

d (x,m (x, y)) = d (y,m (x, y)) =
d (x, y)

2

and for x, y ∈ X, the conditions xn → x and yn → y imply m (xn, yn) →
m (x, y) . It is also shown in [82] that a ptolemaic geodesic space with a
continuous midpoint map is uniquely geodesic.
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10.1. Some Properties of Ptolemaic Geodesic Spaces

Theorem 10.1. ([83]) Let X be a ptolemaic geodesic space with a con-
tinuous midpoint map. Then X is strictly convex.

Definition 10.1. Let X be a geodesic space. We say that X admits a
uniformly continuous midpoint map if there exists a map m : X × X → X
such that

d (x,m (x, y)) = d (y,m (x, y)) =
d (x, y)

2
for all x, y ∈ X,

and for n ∈ N and the conditions xn, x
′
n, yn, y

′
n ∈ X with limn→∞ d (xn, x

′
n) =

0 and limn→∞ d (yn, y
′
n) = 0 imply limn→∞ d (m (xn, yn) ,m (x′

n, y
′
n)) = 0.

Every Busemann space admits a uniformly continuous midpoint map,
but the converse is not true (see [75]).

A geodesic space (X, d) is said to be reflexive if every descending sequence
of nonempty bounded closed convex subsets of X has nonempty intersection.
The following is the main result of [75].

Theorem 10.2. A complete geodesic ptolemaic space (X, d) with a uni-
formly continuous midpoint map is reflexive.

As a consequence of the above, if K is a nonempty, bounded, closed, and
convex subset of X, then every nonexpansive mapping T : K → K has a
nonempty closed and convex fixed point set.

Definition 10.2. A geodesic metric space (X, d) is said to be uniformly
convex if for any r > 0 and any ε ∈ (0, 2], there exists δ ∈ (0, 1] such that for
all a, x, y ∈ X with d (x, a) ≤ r, d (y, a) ≤ r and d (x, y) ≥ εr it is the case
that

d (m, a) ≤ (1− δ) r,

where m denotes the midpoint of any geodesic segment [x, y].

QUESTION. A natural question to raise at this point is whether a
complete geodesic ptolemaic space with a uniformly continuous midpoint map
is a uniformly convex metric space.

The following is Theorem 1.1 of [82].

Theorem 10.3. Let X be an arbitrary Ptolemy space. Then X can be
isometrically embedded into a complete geodesic Ptolemy space X̂.

Proof. ([82]) Explicitly construct the complete geodesic Ptolemy met-
ric space X̂ as follows. First, add midpoints to X in order to obtain a
Ptolemy metric space U (X) which has the midpoint property. Then pass to
an ultraproduct of U (X) .

Let Σ denote the set of unordered tuples in X. Formally,

Σ = {{x1, x2} ⊂ X : x1, x2 ∈ X} ,
that is Σ consists of all subsets of X with one or two elements.
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On Σ define a metric via

d ({x1, x2} , {y1, y2})

=

{
1
4 [d (x1, y1) + d (x1, y2) + d (x2, y1) + d (x2, y2)] if {x1, x2} 	= {y1, y2}

0 otherwise

for all {x1, x2} , {y1, y2} ∈ Σ. This indeed defines a metric on Σ. In order to
verify this, one has to prove the triangle inequality

d ({x1, x2} , {y1, y2}) ≤ d ({x1, x2} , {z1, z2}) + d ({z1, z2} , {y1, y2})
for all {x1, x2} , {y1, y2} , {z1, z2} ∈ Σ. If two of the triples coincide, the
validity of the inequality is evident, and otherwise it just follows by repeated
application of the triangle inequality:

1
4 [d (x1, y1) + d (x1, y2) + d (x2, y1) + d (x2, y2)]

≤ 1
4 [d (x1, z1) + d (z1, y1) + d (x1, z2) + d (z2, y2)

+d (x2, z1) + d (z1, y1) + d (x2, z2) + d (z2, y2)]
.

At this point notice that if x, y ∈ X, x 	= y, then {x, y} is a midpoint of
x and y in M (X) because

d ({x, x} , {x, y}) =
1

4
[d (x, x) + d (x, y) + d (x, x) + d (x, y)]

=
1

2
d (x, y)

= d ({y, y} , {x, y}) .
Moreover it is asserted in [82] that the space M (X) := (Σ, d) is Ptolemy,

that is, it satisfies

d ({x1, x2} , {y1, y2}) d ({z1, z2} , {u1, u2})
≤ d ({x1, x2} , {z1, z2}) d ({y1, y2} , {u1, u2})

+d ({x1, x2} , {u1, u2}) d ({y1, y2} , {z1, z2}) .
Once again, the validity of this inequality is evident if two of the tuples
coincide, and otherwise it follows by applying the Ptolemy inequality in X
16 times. [We take the authors’ word for this.]

Note further that X isometrically embeds into M (X) via x �→ {x, x} .
Thus it is possible to identify X with a subset of M (X) .

Now define M0 (X) := X, and Mn+1 (X) := M (Mn (X)) , and set
U (X) =

⋃∞
n=0 M

n (X) . From the above, this space is a Ptolemy metric space.
Moreover, it has the midpoint property. Namely, each pair x, y ∈ U (X) is
in some Mn (X) and {x, y} ∈ Mn+1 (X) is a midpoint of x and y. By pass-
ing to an ultraproduct X̂ of U (X) over some nontrivial ultrafilter U , one
obtains a complete Ptolemy metric space which has the midpoint property.
By Menger’s Theorem, X̂ is a geodesic space. �



98 10. PTOLEMAIC SPACES

10.2. Another Four Point Condition

Here is a quote from Foertsch et al. [82].
Finally, we want to draw the reader’s attention to a recent
joint work of Berg and Nikolaev. In [26] the authors consider
another four point condition, which one derives from the
Ptolemy inequality by replacing the products of distances
through the sums of their squares. Especially in light of our
Theorem 1.1, it seems remarkable to us, that such a variant
of the Ptolemy inequality indeed forces a geodesic space to
be CAT(0) .

The four point condition referred above is the following quadrilateral
inequality condition.

d2 (x, y) + d2 (z, p)

≤ d2 (x, z) + d2 (y, p) + d2 (x, p) + d2 (y, z)(10.1)

for all x, y, z, p ∈ X. Specifically, the following is Theorem 6 of [26]:

Theorem 10.4. A geodesically connected metric space X is a CAT(0)
space if and only if it satisfies the quadrilateral inequality condition.



CHAPTER 11

R-Trees (Metric Trees)

R-trees are a very special class of CAT(0) spaces. There are many
equivalent definitions of R-trees. Here are two of them.

Definition 11.1. An R-tree is a metric space X such that for every x
and y in X there is a unique arc between x and y and this arc is isometric
to an interval in R (i.e., is a geodesic segment).

Definition 11.2. An R-tree is a metric space X such that
(i) there is a unique geodesic segment denoted by [x, y] joining each

pair of points x and y in X; and
(ii) [y, x] ∩ [x, z] = {x} ⇒ [y, x] ∪ [x, z] = [y, z] .

The following is an immediate consequence of (i) and (ii).
(iii) If x, y, z ∈ X, there exists a point w ∈ X such that [x, y] ∩ [x, z] =

[x,w] (whence by (i), [x,w] ∩ [z, w] = {w}).

Standard examples of R-trees include the “radial” and “river” metrics on
R

2. For the radial metric, consider all rays emanating from the origin in R
2.

Define the radial distance dr between x, y ∈ R
2 as follows:

dr (x, y) = d (x, 0) + d (0, y) .

(Here d denotes the usual Euclidean distance and 0 denotes the origin.) For
the river metric ρ, if two points x, y are on the same vertical line, define
ρ (x, y) = d (x, y) . Otherwise define ρ (x, y) = |x2| + |y2|+ |x1 − y1| , where
x = (x1, x2) and y = (y1, y2) .

Much more subtle examples exist; e.g., the real tree of Dress and Ter-
halle [66].

The concept of an R-tree goes back to a 1977 article of J. Tits [210]. The
idea has also been attributed to A. Dress [64], who first studied the concept
in 1984 and called it T -theory.

Bestvina in [25] observes that much of the importance of R-trees stems
from the fact that in many situations a sequence of negatively curved
objects (manifolds, groups) gives rise (in some sense “converges”) to an R-tree
together with a group acting on it by isometries. There are applications in
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biology and computer science as well. The relationship with biology stems
from the construction of phylogenetic trees [195]. Concepts of “string match-
ing” are also closely related with the structure of R-trees [19].

The following theorem yields a characterization of hyperconvex CAT(0)
spaces.

Theorem 11.1 ([116]). For a metric space X the following are equiva-
lent: (i) X is a complete R-tree; (ii) X is hyperconvex and has unique metric
segments.

It is known that a complete R-tree is a complete CAT(0) space [36,
p. 167]. On the other hand, a CAT(0) space has unique metric segments. If
it is also hyperconvex, then by Theorem 11.1 it must be a complete R-tree.
Thus we have:

Theorem 11.2. A CAT(0) space is hyperconvex if and only if it is a
complete R-tree.

A proof that a complete R-tree is injective is given in [137]. Since
injective spaces are known to be hyperconvex [12] this also gives (i) ⇒ (ii).
Another proof that (i) ⇒ (ii) is given in Aksoy and Maurizi [6]. Their proof
is based on an interesting four point property of metric trees.

Definition 11.3. A metric space (X, d) is said to satisfy the four point
property if for each set of four points x, y, z, w ∈ X the following holds:

d (x, y) + d (u,w) ≤ max {d (x, u) + d (y, w) , d (x,w) + d (y, u)} .
Since one obtains the triangle inequality by taking u = w, the four point

property is a stronger condition. Dress shows in [64] that a metric space is
a complete R-tree if and only if it is complete, connected, and satisfies the
four point property.

11.1. The Fixed Point Property for R-Trees

G.S. Young, Jr. proved the following result in 1946. He notes explicitly
in [220] that compactness is not needed.

Theorem 11.3 ([219]). Let X be an arcwise connected Hausdorff space
which is such that every monotone increasing sequence of arcs is contained
in an arc. Then X has the fixed point property (for continuous maps).

In [151], J.C. Mayer and L.G. Oversteegen proved that for a separable
metric space (X, d) the following are equivalent:

1. X is an R-tree.
2. X is locally arcwise connected and uniquely arcwise connected met-

ric space.
If a complete R-tree is geodesically bounded, it is easy to see that every
monotone increasing sequence of arcs is contained in an arc. In view of this,
we have the following.
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Theorem 11.4. A complete geodesically bounded R-tree has the fixed
point property for continuous maps.

Although the validity of Theorem 11.4 goes back to Young’s 1946 result,
a more constructive metric approach might be of interest. The following
proof is taken from [120].

Proof of Theorem 11.4. For u, v ∈ X let [u, v] denote the (unique)
metric segment joining u and v and let [u, v) = [u, v] \ {v} . We associate with
each point x ∈ X a point ϕ (x) as follows. For each t ∈ [x, f (x)] , let ξ (t) be
the point of X for which

[x, f (x)] ∩ [x, f (t)] = [x, ξ (t)] .

(It follows from the definition of an R-tree that such a point always exists.)
If ξ (f (x)) = f (x), take ϕ (x) = f (x) . Otherwise it must be the case that
ξ (f (x)) ∈ [x, f (x)). Let

A = {t ∈ [x, f (x)] : ξ (t) ∈ [x, t]} ;
B = {t ∈ [x, f (x)] : ξ (t) ∈ [t, f (x)]} .

Clearly A ∪ B = [x, f (x)] . Since ξ is continuous, both A and B are closed.
Also A 	= ∅ as f (x) ∈ A. However the fact that f (t) → f (x) as t → x
implies B 	= ∅ (because t ∈ A implies d (f (t) , f (x)) ≥ d (t, x)). Therefore
there exists a point ϕ (x) ∈ A ∩ B. If ϕ (x) = x, then f (x) = x and we are
done. Otherwise x 	= ϕ (x) and

[x, f (x)] ∩ [x, f (ϕ (x))] = [x, ϕ (x)] .

Now let x0 ∈ X, and let xn = ϕn (x0) . Assuming the process does
not terminate upon reaching a fixed point of f , by construction the points
{x0, x1, x2, · · ·} are collinear and thus lie on a subset of X which is isometric
with a subset of the real line, i.e., on a geodesic. Since X does not contain a
geodesic of infinite length, it must be the case that

∞∑
i=0

d (xi, xi+1) < ∞,

and hence {xn} is a Cauchy sequence. Suppose limn→∞ xn = x∗. Then by
continuity

lim
n→∞

f (xn) = f (x∗) ,

and in particular {f (xn)} is a Cauchy sequence. However, by construction,

d (f (xn) , f (xn+1)) = d (f (xn) , xn+1) + d (xn+1, f (xn+1)) .

Since limn→∞ d (f (xn) , f (xn+1)) = 0, it follows that limn→∞ d (f (xn) , xn+1)
= d (f (x∗) , x∗) = 0 and f (x∗) = x∗. �
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11.2. The Lifšic Character of R-Trees

We now turn to the Lifšic character of R-trees. (The present discussion
is taken from [130].) Balls in X are said to be c-regular if the following holds:
For each k < c there exist μ, α ∈ (0, 1) such that for each x, y ∈ X and r > 0
with d (x, y) ≥ (1− μ) r, there exists z ∈ X such that

(11.1) B (x; (1 + μ) r)
⋂

B (y; k (1 + μ) r) ⊂ B (z;αr) .

The Lifšic character κ (X) of X is defined as follows:

κ (X) = sup {c ≥ 1 : balls in X are c-regular} .
A mapping f : X → X is said to be eventually k-lipschitzian if there

exists n0 ∈ N such that d (fn (x) , fn (y)) ≤ kd (x, y) for all x, y ∈ X and
n ≥ n0. The Lifšic character is fundamental in metric fixed point theory
because of the following result.

Theorem 11.5 ([140]). Let (X, d) be a complete metric space. Then
every eventually k-lipschitzian mapping f : X → X with k < κ (X) has a
fixed point if it has a bounded orbit.

Proof. (Except for the final paragraph, this is identical to the proof
given in [87, p. 172].) If κ (X) = 1, then fn is a contraction mapping for
sufficiently large n and there is nothing to prove. So, suppose κ (X) > 1. For
each x ∈ X, set

r (x) = inf {r > 0 : B (x; r) contains an orbit of f} .
Now let k < κ (X) , and let μ, α ∈ (0, 1) be the numbers associated with k in
the definition of k-regular balls. Then given any x ∈ X there is an integer
m ∈ N such that

d (x, fm (x)) ≥ (1− μ) r (x)

and there is also a point y ∈ X such that

d (x, fn (y)) ≤ (1 + μ) r (x) , n = 1, 2, · · ·.
Since the balls are k-regular, there exists z ∈ X such that

D := B (x; (1 + μ) r (x)) ∩B (fm (x) ; k (1 + μ) r (x)) ⊆ B (z;αr (x)) .

Next observe that for m sufficiently large,

d (fm (x) , fn (y)) ≤ kd
(
x, fn−m (y)

)
≤ k (1 + μ) r (x)

for all n > m. This shows that {fn (y)}n>m is contained in D, and hence in
B (z;αr (x)) . This in turn implies that

r (z) ≤ αr (x) .

Also, for any u ∈ D,

d (z, x) ≤ d (z, u) + d (u, x)

≤ αr (x) + (1 + μ) r (x)

= Ar (x) ,

where A = α+ 1 + μ.
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By setting x = x0 and z = z (x0) , it is possible to define a sequence {xn}
with xn+1 = z (xn) , where z (xn) is defined via the above procedure. Thus
r (xn) ≤ αnr (x0) and d (xn, xn+1) ≤ Ar (xn) ≤ αnr (x0) . This proves that
{xn} is a Cauchy sequence which has limit, say x∗. Now choose N ∈ N so
that both fN and fN+1 are lipschitzian. Since B (x∗; ε) contains an orbit of
f for any ε > 0, there exists a sequence {yn} also converging to x∗ for which
limn→∞ d

(
fN (yn) , f

N+1 (yn)
)
= 0. It follows that fN (x∗) = fN+1 (x∗) ;

hence fN (x∗) is a fixed point of f. �
The Lifšic character is known for many classical Banach spaces. For a

Hilbert space it is
√
2. The following is proved in [60].

Theorem 11.6. If (X, d) is a complete CAT(0) space, then κ (X) ≥
√
2.

Moreover, if X is an R-tree, κ (X) = 2.

Another proof of the second statement is given in [3, Theorem 3.16]; also
a characterization of compact R-trees in terms of metric segments is found
there.

In view of Theorem 11.5, if X is a complete bounded CAT(0) space, then
every eventually k-lipschitzian mapping f : X → X with k <

√
2 has a fixed

point. The corresponding fact for a complete R-tree is the following.

Theorem 11.7. Let X be a complete R-tree and let f : X → X be
eventually uniformly k-lipschitzian for k < 2, and assume that f has bounded
orbits. Then f has a fixed point.

For a direct proof of this result (and related facts), see [5]. The signif-
icance of the above result lies in the fact that the mapping is not assumed
to be continuous. A remarkably stronger result holds if f is assumed to be
continuous. (Throughout we use O (x) to denote the orbit of a mapping
f : X → X at a point x ∈ X; thus O (x) =

{
x, f (x) , f2 (x) , · · ·

}
.)

Theorem 11.8. Let (X, d) be a complete R-tree. Suppose f : X → X
is continuous and has bounded orbits, and suppose for all n ∈ N sufficiently
large,

(11.2) d (fn (x) , fn (y)) ≤ knd (x, y)

for all x, y ∈ X, with lim supn→∞ kn < ∞. Then some bounded convex subset
of X is f -invariant; hence f has a fixed point.

This will be an immediate consequence of Theorem 11.4 and the following
result.

Theorem 11.9 ([130]). Let (X, d) be an R-tree. Suppose f : X → X
is continuous and has bounded orbits, and suppose for all n ∈ N sufficiently
large,

(11.3) d (fn (x) , fn (y)) ≤ knd (x, y)

for all x, y ∈ X, with lim supn→∞ kn < ∞. Then some bounded subtree of X
is f -invariant.
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Proof. Fix x ∈ X and choose m ∈ N and k > 0 with lim supn→∞ kn < k
so that d (fn (u) , fn (v)) ≤ kd (u, v) for all u, v ∈ [x, f (x)] and n ≥ m. Let
Y =

⋃∞
i=1 f

i ([x, f (x)]) . Since each f i ([x, f (x)]) is an arcwise connected
subset of X, Y is an arcwise connected subset of X; hence Y itself is an
R-tree which is clearly f -invariant. We show that Y is bounded.

Let ξ (z) = sup {d (z, fn (z)) : n ≥ m} for each z ∈ [x, f (x)] . By assump-
tion ξ (z) < ∞ for each z ∈ [x, f (x)] . If z, w ∈ [x, f (x)], then

d (w, fn (w)) ≤ d (w, z) + d (z, fn (z)) + d (fn (z) , fn (w))

≤ d (w, z) + ξ (z) + kd (z, w)

for each n ≥ m. Thus ξ (w) ≤ ξ (z) + (1 + k) d (z, w) . Reversing the roles of
z and w, we conclude

|ξ (z)− ξ (w)| ≤ (1 + k) d (z, w)

for all z, w ∈ [x, f (x)] . Thus ξ is continuous, and since [x, f (x)] is compact,

ξ := sup {ξ (z) : z ∈ [x, f (x)]} < ∞.

Now for 1 ≤ i < m, let βi = sup
{
d
(
z, f i (z)

)
: z ∈ [x, f (x)]

}
and let

β = max {βi : i = 1, · · ·,m− 1} .
Since f is continuous, β < ∞. Also, by construction, given y ∈ Y there is at
least one point z ∈ [x, f (x)] such that y ∈ O (z) . It follows that d (z, y) ≤ β+
ξ. Therefore Y is bounded. Specifically, Y ⊂ B (x; γ), where γ = d (x, f (x))+
β + ξ. �

Since a nonexpansive mapping satisfies (11.2) for kn ≡ 1, we have the
following corollary.

Corollary 11.1 (Theorem 4.5 (i) of [73]). A nonexpansive mapping of
a complete R-tree into itself with bounded orbits always has a fixed point.

Remark 11.1. Under the assumptions of Theorem 11.8 it is enough to
assume that one orbit of f is bounded. Indeed, the following is true.

Proposition 11.1. Let (X, d) be a metric space and suppose f : X → X
has a bounded orbit. Suppose that for all n sufficiently large,

d (fn (x) , fn (y)) ≤ knd (x, y)

for all x, y ∈ X. Suppose also that lim supn→∞ kn < ∞. Then all orbits of f
are bounded.

Proof. Assume there exist x ∈ X and r > 0 such that O (x) ⊂ B (x; r) .
Choose k > 0 so that lim supn→∞ kn < k. Then if y ∈ X it is possible to
choose m ∈ N so that for all n ≥ m,

d (fn (x) , fn (y)) ≤ kd (x, y) .

Then for n ≥ m,

d (x, fn (y)) ≤ d (x, fn (x)) + d (fn (x) , fn (y)) ≤ r + kd (x, y) .
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This proves that {fn (y)}n≥m ⊂ B (x; γ), where γ = r + kd (x, y) . Let

γ′ = max
{
d
(
x, f i (y)

)
: i = 1, · · ·,m− 1

}
.

Then O (y) ⊂ B (x; γ∗) , where γ∗ = max {γ, γ′} . Since y is arbitrary, all
orbits of f are bounded. �

11.3. Gated Sets

Many of the ideas discussed above, especially those in R-trees, can be
couched in a more abstract framework. A subset Y of a metric space X is
said to be gated [65] if for any point x /∈ Y there exists a unique point xY ∈ Y
(called the gate of x in Y ) such that for any z ∈ Y,

d (x, z) = d (x, xY ) + d (xY , z) .

Obviously gated sets in a complete geodesic space are always closed and
convex.

It is known [65] that gated subsets of a complete geodesic space X are
proximinal nonexpansive retracts of X. Specifically, if A is a gated subset
of X, then the mapping that associates with each point x in X its gate
in A (i.e., the gate-map, or “nearest point map”) is nonexpansive. Several
other properties of gated sets can be found, for example, in [212, p. 98]. In
particular it can be easily shown by induction that the family of gated sets
in a complete geodesic space X has the Helly property. Thus if S1, · · ·, Sn is
a collection of pairwise intersecting gated sets in X, then ∩n

i=1Si 	= ∅.

The gated subsets of an R-tree are precisely its closed and convex subsets.
Thus the following results apply to R-trees.

Proposition 11.2 ([73]). Let (X, d) be a complete geodesic space, and
let {Hα}α∈Λ be a collection of nonempty gated subsets of X which is directed
downward by set inclusion. If X (or more generally, some Hα) does not
contain a geodesic ray, then ∩α∈ΛHα 	= ∅.

Proposition 11.3 ([73]). Let (X, d) be a complete geodesic space, and
let {Hn} be a descending sequence nonempty gated subsets of X. If {Hn} has
a bounded selection, then ∩∞

n=1Hn 	= ∅.

The following is given in [146].

Theorem 11.10. Let (X, d) be a complete R-tree and K a closed convex
subset of X. Then IK (x) is a closed convex set for each x ∈ K, where IK (x)
is the metrically inward set of K at x defined by

IK (x) = {z ∈ X : z = x or ∃ y ∈ X, y �= x such that d(x, z) = d(x, y) + d(y, z)}.
Remark 11.2. In a complete R-tree X, if K is a gated subset of X, then

IK(x) is also gated for each x ∈ K.
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11.4. Best Approximation in R-Trees

Ky Fan’s classical best approximation theorem [81] asserts that if K
is a nonempty compact convex subset of a normed linear space X and if
f : K → X is continuous, then there exists a point x∗ ∈ K such that

‖x∗ − f (x∗)‖ = inf {‖x− f (x∗)‖ : x ∈ K} .
Over the years this theorem has been extended in various ways. See, e.g.,
Singh et al. [204] for a discussion.

There have been two recent approaches to best approximation for set-
valued mappings in R-trees. In [123] Fan’s best approximation theorem is
extended to upper semicontinuous mappings in an R-tree. The proof given in
[123] is constructive—a modification of the proof of Theorem 11.4—although
as we note below there is a nice topological approach. A second approach
is found in [145], where it is shown that a lower semicontinuity assumption
also suffices.

We begin with the approach of [123]. Once again we assume that the
space X is geodesically bounded, that is, we assume that X does not contain
a geodesic of infinite length.

Theorem 11.11. Suppose X is a closed convex subset of a complete R-
tree Y , and suppose X is geodesically bounded. Let T : X → 2Y be an upper
semicontinuous mapping whose values are nonempty closed convex subsets of
X. Then there exists a point x∗ ∈ X such that

dist (x∗, T (x∗)) = inf
x∈X

dist (x, T (x∗)) .

For a subset B of a metric space Y, Nε (B) = {x ∈ Y : dist (x,B) ≤ ε} .
We will need the following lemma.

Lemma 11.1. Under the assumptions of Theorem 11.11, let f be the
nearest point selection of T. Then if tn → t, either f (tni

) → f (t) for some
subsequence {tni

} of {tn} , or for n sufficiently large, f (t) ∈ [tn, f (tn)] .

Proof. Suppose {f (tn)} is bounded away from f (t) , say d (f (tn) , f (t))
≥ ε > 0 for all n. By upper semicontinuity of T there exists ρ > 0 such that

d (tn, t) < ρ ⇒ T (tn) ⊂ Nε (T (t)) .

Hence there exists a point un ∈ T (t) such that d (f (tn) , un) < ε. Since
f (t) ∈ [t, un], it follows that f (t) ∈ [t, f (tn)] . Therefore for n sufficiently
large any segment joining tn to a point of T (t) must pass through f (t) ,
whence f (t) ∈ [tn, f (tn)] . �

Proof of Theorem 11.11. For u, v ∈ X we let [u, v] denote the
(unique) metric segment joining u and v and let [u, v) = [u, v] \ {v} . For
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each x ∈ X, let f (x) be the nearest point selection of T. Thus f (x) ∈ T (x)
and

d (x, f (x)) = dist (x, T (x)) .

We associate with each point x ∈ X a point ϕ (x) as follows. For each
t ∈ [x, f (x)] ∩X, let ξ (t) be the point of X for which

[x, f (x)] ∩ [x, f (t)] = [x, ξ (t)] .

(It follows from the definition of an R-tree that such a point always exists.)
If ξ (f (x)) = f (x), take ϕ (x) = f (x) . Otherwise it must be the case that
ξ (f (x)) ∈ [x, f (x)). Let

A = {t ∈ [x, f (x)] ∩X : ξ (t) ∈ [x, t]} ;
B = {t ∈ [x, f (x)] ∩X : ξ (t) ∈ [t, f (x)]} .

Clearly A ∪B = [x, f (x)] ∩X.
Now let t ∈ [x, f (x)] ∩X and let ε > 0. Choose ρ > 0 so that

d (t, t′) < ρ ⇒ T (t′) ⊂ Nε (T (t)) .

Then it is easy to see that either d (f (t) , f (t′)) < ε or f (t) ∈ [t′, f (t′)] .
One can use the above fact to show that both A and B are closed. Also

A 	= ∅ as f (x) ∈ A. The fact that B 	= ∅ also follows from the above upon
letting t → x. Therefore there exists a point ϕ (x) ∈ A ∩ B. If ϕ (x) = x,
then f (x) = x and we are done. Otherwise x 	= ϕ (x) and

[x, f (x)] ∩ [x, f (ϕ (x))] = [x, ϕ (x)] .

Now let x0 ∈ X, and let xn = ϕn (x0) . If the process terminates, then
either one has reached a fixed point of T, or one has reached a point x∗ for
which [x∗, f (x∗)] ∩X = {x∗} . In the latter case, clearly

dist (x∗, T (x∗)) = inf
x∈X

dist (x, T (x∗)) .

So we assume the process does not terminate. The points {x0, x1, x2, · · ·}
have been constructed so that they lie on a geodesic. Since X does not
contain a geodesic of infinite length, it must be the case that

∞∑
i=0

d (xi, xi+1) < ∞,

and hence that {xn} is a Cauchy sequence. Suppose limn→∞ xn = x∗. By
construction

(11.4) d (f (xn) , xn+1) + d (xn+1, x
∗) + d (x∗, f (x∗)) = d (f (xn) , f (x∗)) .

We now invoke Lemma 11.1. Clearly (11.4) precludes the possibility that
f (x∗) ∈ [xn, f (xn)] for n sufficiently large. On the other hand, if limi→∞
f (xni

) = f (x∗) for some subsequence {xni
} of {xn} , then (11.4) implies

d (x∗, f (x∗)) = 0, whence x∗ ∈ T (x∗) . �
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As we remarked above, there is a nice topological approach to Theorem
11.11. Let X be a connected Hausdorff space. A point p ∈ X separates
u, v ∈ X if u and v are contained in disjoint open subsets of X\ {p} . If e ∈ X
it is possible to define a relation Γe on X × X in the following way. (Here
Δ(X ×X) denotes the diagonal in X ×X.)

Γe = ({e×X}) ∪Δ(X ×X) ∪ {(x, y) : x separates e from y} .
It is known [214] that Γe is a partial order.

A connected Hausdorff space X is said to satisfy property D(3) if the
following condition holds: If A and B are disjoint closed connected subsets
of X, then there exists z ∈ X such that z separates A and B.

Over 50 years ago L.E. Ward, Jr. proved the following result.
Theorem 11.12 ([214]). Suppose X is a connected Hausdorff space that

satisfies property D(3) . Suppose also that there exists e ∈ X such that, relative
to Γe, each chain in X has a maximal element and a minimal element. Let
T : X → 2X be an upper semicontinuous mapping whose values are nonempty
closed connected subsets of X. Then T has a fixed point.

As we show below, Theorem 11.11 is an easy consequence of Ward’s
theorem.

Another Proof of Theorem 11.11 ([123]). Since an R-tree is a
CAT(0) space, the nearest point map P of Y onto X is nonexpansive by
Proposition 9.5. Hence the map P ◦ T : X → 2X is upper semicontinuous
and has a fixed point x∗ by Theorem 11.12. Thus there exists y ∈ T (x∗)
such that P (y) = x∗. However since P is the nearest point map, it must be
the case that P (y) = x∗ for all y ∈ T (x∗) . If x∗ ∈ T (x∗) we are finished.
Otherwise, choose y1 ∈ T (x∗) such that d (x∗, y1) = dist (x∗, T (x∗)) . Then
if x ∈ X and x 	= x∗,

dist (x∗, T (x∗)) = d (x∗, y1) < d (x, x∗) + d (x∗, y1) = dist (x, T (x∗)) .

�

In fact, the following extension of Theorem 11.12 actually gives a topo-
logical version of Fan’s best approximation theorem. In this theorem

xΓe := {z ∈ X : x ≤ z}
where x ≤ z means (x, z) ∈ Γe.

Theorem 11.13 ([123]). Suppose Y is a connected Hausdorff space that
satisfies property D(3) and suppose X is a closed and connected subset of Y.
Suppose also that there exists e ∈ X such that, relative to Γe, each chain in
X has a maximal element and a minimal element. Let T : X → 2Y be an
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upper semicontinuous mapping whose values are nonempty closed connected
subsets of Y. Then either T has a fixed point, or there exists x ∈ ∂X such
that T (x) ⊂ xΓe\ {x}.

The following KKM principle for trees is also proved in [123]. It can
also be used to give yet another proof of Theorem 11.11. In this theorem,
convY (F ) denotes the intersection of all closed convex subsets of Y that
contain F.

Theorem 11.14 ([123]). Suppose X is a closed convex subset of a com-
plete R-tree Y, and suppose G : X → 2Y has nonempty closed values. Suppose
also that for each finite F ⊂ X,

convY (F ) ⊂
⋃
x∈F

G (x) .

Then {G (x)}x∈X has the finite intersection property. Moreover, if X is
geodesically bounded,

⋂
x∈X G (x) 	= ∅.

We now turn to the results of Markin [145]. Let X be a topological
space, Y a metric space, and T : X → 2Y a mapping with nonempty values.
T is said to be almost lower semicontinuous if given ε > 0, for each x ∈ X
there is a neighborhood U (x) of x such that

⋂
y∈U(x) Nε (T (y)) 	= ∅. It is easy

to check that a mapping which is lower semicontinuous in the usual sense is
also almost lower semicontinuous.

Theorem 11.15 ([145]). Suppose X is a closed convex subset of a com-
plete R-tree Y , and suppose X is geodesically bounded. Let T : X → 2Y be
an almost lower semicontinuous mapping whose values are nonempty bounded
closed convex subsets of Y . Then there exists a point x∗ ∈ X such that

dist (x∗, T (x∗)) = inf
x∈X

dist (x, T (x∗)) .

The proof of Theorem 11.15 is based on Proposition 11.3 and the follow-
ing selection theorem for R-trees.

Theorem 11.16 ([145]). Let X be a paracompact topological space, Y a
complete R-tree, and T : X → 2Y an almost lower semicontinuous mapping
whose values are nonempty bounded closed convex subsets of Y. Then T has
a continuous selection.

11.5. Applications to Graph Theory

A graph is an ordered pair (V,E) where V is a set and E is a binary
relation on V (E ⊆ V × V ) . Elements of E are called edges. We are concerned
here with (undirected) graphs that have a “loop” at every vertex (i.e., (a, a) ∈
E for each a ∈ V ) and no “multiple” edges. Such graphs are called reflexive.
In this case E ⊆ V × V corresponds to a reflexive (and symmetric) binary
relation on V.
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For a graph G = (V,E) a map f : V → V is edge-preserving if (a, b) ∈
E ⇒ (f (a) , f (b)) ∈ E. For such a mapping we simply write f : G →
G. There is a standard way of metrizing connected graphs; let each edge
have length one and take distance d (a, b) between two vertices a and b to
be the length of the shortest path joining them. With this metric edge-
preserving mappings become precisely the nonexpansive mappings. (Keep in
mind that in a reflexive graph an edge-preserving map may collapse edges
between distinct points since loops are allowed.)

We now turn to the classical Fixed Edge Theorem and show how it is a
consequence of Theorem 11.4.

Theorem 11.17 ([161]). Let G be a reflexive graph that is connected,
contains no cycles, and contains no infinite paths. Then every edge-preserving
map of G into itself fixes an edge.

Proof ([73]). Suppose f : G → G is edge-preserving. Since a connected
graph with no cycles is a tree, one can construct from the graph G an R-tree
X by identifying each (nontrivial) edge with a unit interval of the real line
and assigning the shortest path distance to any two points of X. It is easy to
see that with this metric X is complete. One can now extend f affinely on
each edge to the corresponding unit interval, and the resulting mapping f̄ is
a nonexpansive (hence continuous) mapping of X → X. Thus f̄ has a fixed
point z by Theorem 11.4. Moreover, since X has unique metric segments and
f̄ is nonexpansive, the fixed point set F of f̄ is convex (and closed). It follows
from this that either F contains a vertex of G, or z is the midpoint of a unit
interval of X in which case f must leave the corresponding edge fixed. �

An application of Baillon’s theorem [17] about commuting families of
nonexpansive mappings in hyperconvex metric space tells us even more. For
details, see [73].

Theorem 11.18 ([73]). Let G be a reflexive graph that is connected,
contains no cycles, and contains no infinite paths. Suppose F is a commuting
family of edge-preserving mappings of G into itself. Then either :

(a) there is a unique edge in G that is left fixed by each member of F; or
(b) some vertex of G is left fixed by each member of F.

It is likely that the above result is known in a more abstract framework.
This seems to be a natural in a metric space context.



Part III

Beyond Metric Spaces



CHAPTER 12

b-Metric Spaces

12.1. Introduction

In 1993 another axiom for semimetric spaces, which is weaker than the
triangle inequality, was put forth by Czerwik [58] with a view of generaliz-
ing the Banach contraction mapping theorem. This same relaxation of the
triangle inequality is also discussed in Fagin et al. [79], who call this new
distance measure nonlinear elastic matching (NEM). The authors of that pa-
per remark that this measure has been used, for example, in [55] for trade-
mark shapes and in [152] to measure ice floes. Later Q. Xia [218] used this
semimetric distance to study the optimal transport path between probability
measures. Xia has chosen to call these spaces quasimetric spaces, which is
the term used in the book by Heinonen [92].

Definition 12.1 ([18, 58]). A semimetric space (X, d) is said to be a
b-metric space (or quasimetric space) if there exists s ≥ 1 such that for each
x, y, z ∈ X,

(12.1) d (x, y) ≤ s [d (x, z) + d (z, y)] .

Obviously a b-metric space for s = 1 is precisely a metric space. We note
also that these spaces are called s-relaxedt metric spaces in [78]. We mention
two examples. Other examples are found in the papers cited.

Example 12.1 ([31]). Let p ∈ (0, 1) , and let

X = �p (R) :=

{
x = {xn} ⊂ R :

∞∑
n=1

|xn|p < ∞
}
.

For x, y ∈ X, set d (x, y) = (
∑∞

n=1 |xn − yn|p)1/p . Then (X, d) is a b-metric
space with s = 21/p.

The next example follows from the fact that if a and b are positive real
numbers and β > 1, then (

a+ b

2

)β

≤ aβ + bβ

2

and this in turn follows from the fact that the real valued function x �→ xβ

is convex.

© Springer International Publishing Switzerland 2014
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Example 12.2 ([218]). Suppose (X, d) is a metric space. Let β > 1,

λ ≥ 0, and μ > 0, and for x, y ∈ X define J (x, y) = λd (x, y) + μd (x, y)
β
.

Typically J is not a metric on X. However (X, J) is a b-metric space with
s = 2β−1. Indeed, for any z ∈ X,

J (x, y) = λd (x, y) + μd (x, y)
β

≤ λ [d (x, z) + d (z, y)] + μ [d (x, z) + d (z, y)]
β

≤ λ [d (x, z) + d (z, y)] + 2β−1μ
[
d (x, z)

β
+ d (z, y)

β
]

≤ 2β−1 [J (x, z) + J (z, y)] .

Definition 12.2 ([78]). A semimetric space (X, d) is said to have the
metric boundedness property if there exists a metric ρ on X and positive
constants s1 and s2 such that for each x, y ∈ X,

s1ρ (x, y) ≤ d (x, y) ≤ s2ρ (x, y) .

By adjusting the metric ρ to s−1
1 ρ it is clear that we may assume s1 = 1,

in which case d is said to be s2-metric bounded.
It is immediate that the metric boundedness property implies that the

semimetric is a b-metric, since in this case for each x, y, z ∈ X,

d (x, y) ≤ s2ρ (x, y)

≤ s2 [ρ (x, z) + ρ (z, y)]

≤ s2 [d (x, z) + d (z, y)] .

It is also noted by Fagin et al. in [78] that while the converse is not true,
rather surprisingly the converse is true if one replaces the relaxed triangle
inequality (12.1) in the definition of a b-metric with the relaxed polygonal
inequality, which asserts that there is a constant s ≥ 1 such that for all n ∈ N

and x, y, x1, · · ·, xn−1 ∈ X,

d (x, y) ≤ s [d (x, x1) + d (x1, x2) + · · ·+ d (xn−1, y)] .

This leads to the following definition.

Definition 12.3 ([78]). An s-relaxedp metric is a semimetric space
(X, d) for which d satisfies the relaxed polygonal inequality, that is,

d (x, y) ≤ s [d (x, x1) + d (x1, x2) + · · ·+ d (xn−1, y)]

for all x, x1, · · ·, xn−1, y ∈ X.

We discuss these facts further in Sect. 12.8.

Since every b-metric space is a semimetric space, we adopt the termi-
nology and notation of Chap. 1. Also it is easy to see that any b-metric

space satisfies Wilson’s Axiom V by simply defining rk to be
k

s
and thus,

according to Wilson, they are metrizable. See [78] for a further discussion of
metrizability of b-metric spaces.



12.2. BANACH’S THEOREM IN A b-METRIC SPACE 115

12.2. Banach’s Theorem in a b-Metric Space

Theorem 12.1. Let (X, d) be a complete semimetric space which satisfies
Wilson’s Axiom III (see Chap. 1), suppose k ∈ (0, 1) , and suppose f : X →
X satisfies

d (f (x) , f (y)) ≤ kd (x, y)

for all x, y ∈ X. Suppose some orbit O (x) :=
{
x, f (x) , f2 (x) , · · ·

}
is bounded.

Then f has a unique fixed point x∗ ∈ X, and limn→∞ fn (u) = x∗ for each
u ∈ X.

Proof. Let ε > 0 and let M = diam (O (x)) . Choose m ∈ N so that
ki ≤ ε/M for i ≥ m. Then if j > i ≥ m,

d
(
f i (x) , f j (x)

)
≤ kmd

(
f i−m (x) , f j−m (x)

)
≤ kmM ≤ ε.

This proves that {fn (x)} is a Cauchy sequence. Therefore there exists
x∗ ∈ X such that limn→∞ fn (x) = x∗, and by Proposition 1.1, x∗ is unique.
Since f is continuous, it follows that f (x∗) = x∗. Moreover if u ∈ X,
d(fn (u) , x∗) = d (fn (u) , fn (x∗)) ≤ knd (u, x∗) → 0, so limn→∞
fn (u) = x∗. �

In a b-metric space the assumption that O (x) is bounded may be dropped.
As we noted above a b-metric space satisfies Wilson’s Axiom III. Indeed, the
following is essentially Theorem 1 of [58].

Theorem 12.2. Let (X, d) be a complete b-metric space with constant
s > 1, and suppose f : X → X satisfies

d (f (x) , f (y)) ≤ ϕ (d (x, y))

for each x, y ∈ X, where ϕ : [0,∞) → [0,∞) is increasing and satisfies

lim
n→∞

ϕn (t) = 0

for each t > 0. Then f has a unique fixed point x∗ ∈ X, and limn→∞ fn (x) =
x∗ for each x ∈ X.

Proof. (cf., [58]) First we observe that the assumptions on ϕ imply
that

lim
t→0+

ϕ (t) = 0,

so f is continuous. Now let x ∈ X and let ε > 0 be arbitrary. Choose n ∈ N

so that ϕn (ε) < ε/2s. Put g = fn and for each m ∈ N set xm = gm (x) .
Then

d (xm+1, xm) = d (gm (gx) , gm (x)) ≤ ϕnm (d (g (x) , x))

so limm→∞ d (xm+1, xm) = 0.
Now choose m ∈ N so that d (xm+1, xm) < ε/2s and let u ∈ B (xm; ε) .

Then
d (g (u) , g (xm)) ≤ ϕn (d (u, xm)) ≤ ϕn (ε) < ε/2s
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and
d (g (xm) , xm) = d (xm+1, xm) < ε/2s.

By the relaxed triangle inequality,

d (g (u) , xm) ≤ s [d (g (u) , g (xm)) + d (g (xm) , xm)]

< s
[ ε
2s

+
ε

2s

]
= ε.

Therefore g : B (xm; ε) → B (xm; ε) . It follows that if j, t ≥ m,

d (xt, xj) ≤ s [d (xt, xm) + d (xm, xj)]

≤ 2sε.

This proves that {xm} is a Cauchy sequence, so there exists x∗ ∈ X such
that limm→∞ xm = x∗. Also, continuity of f implies continuity of g, so

x∗ = lim
m→∞

xm = lim
x→∞

xm+1 = lim
m→∞

g (xm) = g (x∗) .

Since
d (g (x∗) , g (y∗)) ≤ ϕn (d (x∗, y∗)) < d (x∗, y∗)

if x∗ 	= y∗, it is clear that g has exactly one fixed point. Also, since

d (x∗, gm (x)) = d (gm (x∗) , gm (x)) ≤ ϕnm (d (x∗, x)) → 0 as m → ∞,

{gm (x)} converges to x∗ for all x ∈ X. However, by continuity of f,

f (x∗) = lim
m→∞

f (xm) = lim
m→∞

f (gm (x)) = lim
m→∞

gm (f (x)) = x∗.

Therefore x∗ is also the unique fixed point of f. Finally, since for any x ∈ X
and r ∈ {0, 1, · · ·, n− 1} ,

fnm+r (x) = gm (fr (x)) → x∗ as m → ∞,

it follows that limm→∞ fm (x) = x∗. �

Remark. Theorem 12.2 reveals the extent to which the Banach contrac-
tion mapping theorem does NOT depend on the triangle inequality.

12.3. b-Metric Spaces Endowed with a Graph

The material in this section is taken from [193], motivated in turn by
ideas introduced by Jachymski in [100]. We refer to [29, 193] for further
discussion and citations.

Throughout (X, d) denotes a b-metric space with coefficient s ≥ 1 and
Δ is the diagonal of the cartesian product X × X. G is a directed graph
such that the set V (G) of its vertices coincides with X, and the set E(G) of
its edges contains all loops, i.e., E(G) ⊇ Δ. Assume that G has no parallel
edges (i.e., multiple edges). We assign to each edge having vertices x and y
a unique element d(x, y).

We will also use the following concept introduced by Matkowski [148,
p. 68] in his well-known generalization of Banach’s contraction mapping
principle.
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Let ϕ : R+ → R
+. Consider the following properties:

(i)ϕ t1 ≤ t2 =⇒ ϕ(t1) ≤ ϕ(t2), ∀t1, t2 ∈ R
+;

(ii)ϕ ϕ(t) < t for t > 0;
(iii)ϕ ϕ(0) = 0;
(iv)ϕ limn→∞ ϕn(t) = 0 for all t ≥ 0;
(v)ϕ

∑∞
n=0 ϕ

n(t) converges for all t > 0.
It is easily seen that: (i)ϕ and (iv)ϕ imply (ii)ϕ; (i)ϕ and (ii)ϕ imply

(iii)ϕ.
We recall that a function ϕ satisfying (i)ϕ and (iv)ϕ is said to be a

comparison function. A function ϕ satisfying (i)ϕ and (v)ϕ is known as (c)-
comparison function. Any (c)-comparison function is a comparison function
but converse may not be true. For example, ϕ(t) = t

1+t ; t ∈ R
+ is a compar-

ison function but not a (c)-comparison function. On the other hand, define
ϕ(t) = t

2 ; 0 ≤ t ≤ 1 and ϕ(t) = t − 1
2 ; t > 1, then ϕ is a (c)-comparison

function. For details on ϕ contractions we refer the readers to [23, 191].
Berinde [24] took further step to investigate ϕ contractions when the

framework was taken to be a b-metric space and for some technical reasons
he had to introduce the notion of b-comparison function in particular he
obtained some estimations for rate of convergence [24].

Now, we introduce the following definition.

Definition 12.4. We say that a mapping f : X → X is a b-(ϕ,G)
contraction if for all x, y ∈ X:

(12.2) (f (x) , f (y)) ∈ E(G) whenever (x, y) ∈ E(G);

(12.3) d(f (x) , f (y)) ≤ ϕ(d(x, y)) whenever (x, y) ∈ E(G),

where ϕ : R+ → R
+ is a comparison function.

Remark 12.1. A mapping f : X → X is called a Banach G-contraction
if (i) ∀x, y ∈ X((x, y) ∈ E(G) ⇒ (f (x) , f (y)) ∈ E(G)), (ii) ∃k ∈ (0, 1)
such that ∀x, y ∈ X, (x, y) ∈ E(G) ⇒ d(f (x) , f (y)) ≤ kd(x, y). Note that a
Banach G-contraction is a b-(ϕ,G) contraction.

Example 12.3. Any constant mapping f : X → X is a b-(ϕ,G) contrac-
tion for any graph G with V (G) = X.

Example 12.4. Any self-mapping f on X is trivially a b-(ϕ,G1) con-
traction, where G1 = (V (G), E(G)) = (X,Δ).

Example 12.5. Let X = R and define d : X × X → R by d(x, y) =
|x − y|2. Then d is a b-metric on X with s = 2. Further, set f (x) = x

2 ,
for all x ∈ X. Then f is a b-(ϕ,G0) contraction with ϕ(t) = t/4 and G0 =
(X,X ×X). Note that d is not a metric on X.

Definition 12.5. Sequences {xn} and {yn} in X are said to be equivalent
sequences if limn→∞ d(xn, yn) = 0, and if each of them is a Cauchy sequence
then they are called Cauchy equivalent.
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As an immediate consequence of Definition 12.5, we get the following
fact.

Remark 12.2. Let {xn} and {yn} be equivalent sequences in X. (i) If
{xn} converges to x, then {yn} also converges to x and vice versa. (ii) {yn}
is a Cauchy sequence whenever {xn} is a Cauchy sequence and vice versa.

Now we recollect some preliminaries from graph theory which we need
for the sequel. Let G = (V (G), E(G)) be a directed graph. By letter G̃ we
denote the undirected graph obtained from G by ignoring the direction of
edges. If x and y are vertices in a graph G, then a path in G from x to y of
length l is a sequence {xi}li=0 of l + 1 vertices such that x0 = x, xl = y and
(xi−1, xi) ∈ E(G) for i = 1, · · · , l. A graph G is called connected if there is
a path between any two vertices. G is weakly connected if G̃ is connected.
For a graph G such that E(G) is symmetric and x is a vertex in G, the
subgraph Gx consisting of all edges and vertices which are contained in some
path beginning at x is known as a component of G containing x. So that
V (Gx) = [x]G̃, where [x]G̃ is the equivalence class of a relation R defined on
V (G) by the rule: yRz if there is a path in G from y to z. Clearly, Gx is
connected. A graph G is known as (C)-graph in X [7] if for any sequence
{xn} in X with xn −→ x and (xn, xn+1) ∈ E(G) for n ∈ N then there exists
a subsequence {xnj

} of {xn} such that (xnj
, x) ∈ E(G) for j ∈ N.

Proposition 12.1. Let f : X → X be a b-(ϕ,G) contraction, where
ϕ : R+ → R

+ is a comparison function. Then:

(i) f is a b-
(
ϕ, G̃
)

contraction and also a b-
(
ϕ,G−1

)
contraction;

(ii) [x0]G̃ is f -invariant, and f |[x0]G̃
is a b-

(
ϕ, G̃x0

)
contraction pro-

vided x0 ∈ X is such that f (x0) ∈ [x0]G̃ .

Proof. (i) This is immediate from the symmetry of a b-metric
(ii) Let x ∈ [x0]G̃. Then there is a path x = z0, z1, · · ·, zl = x0 from

x to x0. Since f is a b-(ϕ,G) contraction, (f (zi−1) , f (zi)) ∈ E (G)
for all i = 1, 2, · · ·, l. Thus f (x) ∈ [f (x0)]G̃ = [x0]G̃ . Suppose
(x, y) ∈ E

(
G̃x0

)
. Then again since f is a b-(ϕ,G) contraction,

(f (x) , f (y)) ∈ E (G) . But [x0]G̃ is f -invariant, so we conclude
that (f (x) , f (y)) ∈ E

(
G̃x0

)
. Condition (12.3) is satisfied auto-

matically as G̃x0
is a subgraph of G.

�

Henceforth we assume that the coefficient of the b-comparison function
is at least as large as the coefficient s of the b-metric.
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Lemma 12.1. Let f : X → X be a b-(ϕ,G) contraction, where ϕ : R+ →
R

+ is a comparison function. Then given any x ∈ X and y ∈ [x]G̃ , the
sequences {fn (x)} and {fn (y)} are equivalent.

Proof. Assume x ∈ X and y ∈ [x]G̃ . Then there exists a path {xi}li=0

in G̃ from x to y with x0 = x, xl = y0 and (xi−1, xi) ∈ E
(
G̃
)
. From

Proposition 12.1 f is a b-
(
ϕ, G̃
)

contraction. Therefore

(fn (xi−1) , f
n (xi)) ∈ E

(
G̃
)
⇒

d (fn (xi−1) , f
n (xi)) ≤ ϕ

(
d
(
fn−1 (xi−1) , f

n−1 (xi)
))

for all n ∈ N and i = 1, 2, · · ·, l. Hence

(12.4) d (fn (xi−1) , f
n (xi)) ≤ ϕn (d (xi−1, xi))

for all n ∈ N and i = 1, 2, · · ·, l. We observe that {fn (xi)}li=0 is a path in G̃
from fn (x) to fn (y) . Using (12.1) and (12.4) we have

d (fn (x) , fn (y)) ≤
l∑

i=1

sid (fn (xi−1) , f
n (xi))

≤
l∑

i=1

siϕn (d (xi−1, xi)) .

Letting n → ∞, we obtain d (fn (x) , fn (y)) → 0. �
Proposition 12.2. Let f : X → X be a b-(ϕ,G) contraction, where

ϕ : R+ → R
+ is a comparison function. Suppose f (z0) ∈ [z0]G̃ for some

z0 ∈ X. Then {fn (z0)} is a Cauchy sequence.

Proof. Since f (z0) ∈ [z0]G̃ , let {yi}ri=0 be a path from z0 to f (z0) .
Then following the argument in the previous lemma we arrive at the
conclusion

d
(
fn (z0) , f

n+1 (z0)
)
≤

r∑
i=1

siϕn (d (yi−1, yi)) for each n ∈ N.

Let m > n ≥ 1. Then from the above inequality it follows that for p ≥ 1,

d
(
fn (z0) , f

n+p (z0)
)

≤ sd
(
fn (z0) , f

n+1 (z0)
)

(12.5)

+s2d
(
fn+1 (z0) , f

n+2 (z0)
)

+ · · ·+spd
(
fn+p−1 (z0) , f

n+p (z0)
)

≤ 1

sn−1

⎡
⎣n+p−1∑

j=n

sjd
(
f j (z0) , f

j−1 (z0)
)
⎤
⎦

≤ 1

sn−1

⎡
⎣ r∑

i=1

si
n+p−1∑
j=n

sjϕj (d (yi−1, yi))

⎤
⎦ .
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Denoting for each i = 1, 2, · · ·, r

Si
n =

n∑
j=0

sjϕj (d (yi−1, yi)) , n ≥ 1,

relation (12.5) becomes

(12.6) d
(
fn (z0) , f

n+p (z0)
)
≤ 1

sn−1

[
r∑

i=1

[
Si
n+p−1 − Si

n−1

]]
.

Since ϕ is a b-comparison function, for each i = 1, 2, · · ·, r,
∞∑
j=0

sjϕj (d (yi−1, yi)) < ∞.

Then corresponding to each i, there is a real number Si such that

lim
n→∞

Si
n = Si.

In view of this (12.6) gives d (fn (z0) , f
n+p (z0)) → 0 as n → ∞. This proves

that {fn (z0)} is a Cauchy sequence in X. �

Definition 12.6 (cf., [192]). Let f : X → X, let y ∈ X and suppose the
sequence {fn (y)} in X is such that fn (y) → x∗ with (fn (y) , fn+1 (y)) ∈
E(G) for n ∈ N. We say that a graph G is (Cf )-graph if there exists a
subsequence {fnk (y)} and a natural number p such that (fnk (y) , x∗) ∈ E(G)
for all k ≥ p. We say that a graph G is an (Hf )-graph if fn (y) ∈ [x∗]G̃
for n ≥ 1; then r(fn (y) , x∗) → 0 (as n → ∞), where r(fn (y) , x∗) =∑Mn

i=1 s
id(zi−1, zi) ; {zi}Mn

i=0, is a path from fn (y) to x∗ in G̃.

Obviously every (C)-graph is a (Cf )-graph for any self-mapping f on
X, but an example is given in [193] showing that the converse may not
hold. Examples are also given in [193] showing that for a given f notions of
(Cf )-graph and (Hf )-graph are independent even if f is identity map.

We now come to the main result of this section. Recall that a mapping
f : X → X is called a Picard operator in the terminology of [171] if f has a
unique fixed point x∗ ∈ X and limn→∞ fn (x) = x∗ for each x ∈ X.

Theorem 12.3. Let (X, d) be a complete b-metric space and f be a
b-(ϕ,G) contraction, where ϕ is b-comparison function. Assume d is con-
tinuous and there is z0 in X for which (z0, f (z0)) is an edge in G̃. Then the
following assertions hold:

1. If G is a (Cf )-graph, then f has a unique fixed point x∗ ∈ [z0]G̃ and
for any y ∈ [z0]G̃, fn (y) → x∗. Further if G is a weakly connected,
then f is Picard operator.

2. If G is a weakly connected (Hf )-graph, then f has a unique fixed
point x∗ ∈ X and for any y ∈ X, fn (y) → x∗.



12.4. STRONG b-METRIC SPACES 121

Proof. (1) It follows from Proposition 12.2 that {fn (z0)} is a Cauchy
sequence in X. Since X is complete, there exists x∗ ∈ X such that
limn→∞ fn (z0) = x∗. Since

(
fn (z0) , f

n+1 (z0)
)
∈ E (G) for all

n ∈ N, and G is a (Cf ) graph, there exists a subsequence {fnj (z0)}
of {fn (z0)} and p ∈ N such that (fnj (z0) , x

∗) ∈ E (G) for all j ≥ p.
Observe that

(
z0, f (z0) , f

2 (z0) , · · ·, fni (z0) , · · ·, fnp (z0) , x
∗) is a

path in G̃. Therefore x∗ ∈ [z0]G̃ . Condition (12.3) now implies

d
(
fnj+1 (z0) , f (x∗)

)
≤ ϕ (d (fnj (z0) , x

∗)) < d (fnj (z0) , x
∗) for each j ≥ n0.

Since d is continuous, letting j → ∞ we obtain limj→∞ fnj (z0) =
f (x∗) . Since {fnj (z0)} is a subsequence of {fn (z0)}, we conclude
that f (x∗) = x∗. Finally, if y ∈ [z0]G̃, it follows from Lemma 12.1
that limn→∞ fn (y) = x∗.

(2) Let G be a weakly connected (H)f -graph. From Proposition 12.2,
fn (z0) → x∗ and thus r (fn (z0) , x

∗) → 0 as n → ∞. Now, for each
n ∈ N, let {yni } be a path in G̃ from fn (z0) to x∗ (i = 0, 1, · · ·,Mn) ,
with y0 = x∗ and ynMn

= fn (z0) . Then

d (x∗, f (x∗)) ≤ s
[
d
(
x∗, fn+1 (z0)

)
+ d
(
fn+1 (z0) , f (x∗)

)]

≤ s

[
d
(
x∗, fn+1 (z0)

)
+

Mn∑
i=1

sid
(
f
(
yni−1

)
, f (yni )

)]

≤ s

[
d
(
x∗, fn+1 (z0)

)
+

Mn∑
i=1

siϕ
(
d
(
yni−1, y

n
i

))]

< s

[
d
(
x∗, fn+1 (z0)

)
+

Mn∑
i=1

sid
(
yni−1, y

n
i

)]

= s
[
d
(
x∗, fn+1 (z0)

)
+ r (fn (z0) , x

∗)
]
.

Letting n → ∞, the above inequality yields f (x∗) = x∗. Let y ∈
[z0]G̃ = X be arbitrary. Then from Lemma 12.1 and Remark 12.2
it is easily seen that limn→∞ fn (y) = x∗. �

12.4. Strong b-Metric Spaces

It is easy to see that the distance function in a b-metric space need not
be continuous. In fact if {qn} ⊂ X and if limn→∞ qn = q, then for any p ∈ X
all that can be said is that

s−1d (p, q) ≤ lim inf
n→∞

d (p, qn) ≤ lim sup
n→∞

d (p, qn) ≤ sd (p, q) .

In general limn→∞ d (p, qn) = d (p, q) ⇔ s = 1. Indeed, open balls in such
spaces need not be open sets. This prompts us to suggest a strengthening of
the notion of b-metric spaces which remedies this defect.
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Definition 12.7. A semimetric space (X, d) is said to be a strong b-
metric space (an sb-metric space for short) if there exists s ≥ 1 such that for
each p, q, r ∈ X

(12.7) d (p, q) ≤ d (q, r) + sd (p, r) .

Proposition 12.3. A semimetric space (X, d) is an sb-metric space if
and only if there exists s ≥ 1 such that for each p, q, r, t ∈ X,

(12.8) |d (p, q)− d (r, t)| ≤ s [d (p, r) + d (q, t)] .

Proof. Suppose (X, d) is an sb-metric space with constant s ≥ 1. Then
there exists s ≥ 1 such that for all p, q, r, t ∈ X

d (p, q) ≤ d (p, r) + sd (q, r)

≤ d (r, t) + sd (p, t) + sd (q, r)

from which
d (p, q)− d (t, r) ≤ s [d (p, t) + d (q, r)] .

A similar argument shows that

d (t, r)− d (p, q) ≤ s [d (t, p) + d (r, q)] ;

hence
|d (p, q)− d (t, r)| ≤ s [d (p, r) + d (q, t)] .

Thus an sb-metric space satisfies (12.8). The converse is trivial. �
Remark 12.3. It is interesting to note that if s = 1 in inequality (12.8),

then the resulting inequality is precisely the triangle inequality. This is because
the relation |d (p, q)− d (r, t)| ≤ d (p, r) + d (q, t) implies (upon taking t = r)
d (p, q) ≤ d (p, r) + d (q, r) . Thus the triangle inequality holds. Conversely, if
the triangle inequality is valid in (X, d), then

|d (p, q)− d (r, t)| = |d (p, q)− d (q, r) + d (q, r)− d (r, t)|
≤ |d (p, q)− d (q, r)|+ |d (q, r)− d (r, t)|
≤ d (p, r) + d (q, t) .

Remark 12.4. While the concept of an sb-metric space is appealing on
the surface, it would be nice to know whether there are interesting (natural)
examples of such spaces.

Remark 12.5. In view of Proposition 12.3, sb-metric spaces are precisely
quasimetric spaces which satisfy condition (2.6 ) of Xia [218].

To see that the distance function in an sb-metric space is continuous in
the sense of Definition 1.3 we apply Proposition 12.3. Let {pn} , {qn} ⊆ X,
and suppose

lim
n→∞

d (pn, p) = 0 and lim
n→∞

d (qn, q) = 0.

Then (12.8) implies

|d (p, q)− d (pn, qn)| ≤ s [d (p, pn) + d (q, qn)]
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from which limn→∞ d (pn, qn) = d (p, q) . An important consequence of this
fact is that open balls are always open sets in an sb-metric space.

While the triangle inequality is not always needed in metric fixed point
theory, continuity of the distance function is extremely useful. Of course it
would be possible to just assume one has a b-metric space with a continuous
distance function. This is commonly done (see, e.g., [31, 193]). However cod-
ifying both facts with inequality (12.8) seems both more elegant and more in
keeping with our “distance” approach. This formulation has other advantages
as well. Notably, sb-metric spaces satisfy the relaxed polygonal inequality.
This in turn assures that the Cauchy summation criterion for convergence
of sequences holds. As we shall see, many fixed point theorems require only
this latter fact.

Proposition 12.4. If a semimetric space (X, d) is an sb-metric space,
then it is an s-relaxedp metric space.

Proof. Suppose X is an sb-metric space and let {pn} ⊆ X. We assert
that for any n, j ∈ N, j ≥ 1

(12.9) d (pn, pn+j) ≤ d (pn, pn+1) + s

n+j−1∑
i=n+1

d (pi, pi+1) .

The proof is by induction on j. Clearly (12.9) holds for j = 1 and, by
definition of an sb-metric space, for j = 2. Assume that for j ≥ 2 and n ∈ N,

(12.10) d (pn, pn+j) ≤ d (pn, pn+1) + s

n+j−1∑
i=n+1

d (pi, pi+1) .

Then by (12.8)

|d (pn, pn+j+1)− d (pn, pn+j)| ≤ sd (pn+j , pn+j+1) .

This along with the inductive assumption gives

d (pn, pn+j+1) ≤ d (pn, pn+j) + sd (pn+j , pn+j+1)

≤ d (pn, pn+1) + s

n+j−1∑
i=n+1

d (pi, pi+1) + sd (pn+j , pn+j+1)

= d (pn, pn+1) + s

n+j∑
i=n+1

d (pi, pi+1) .

This completes the induction.
At the same time, since d(pn, pn+1) ≤ sd(pn, pn+1), this implies that

d(pn, pn+j) ≤ s

n+j−1∑
i=n

d(pi, pi+1).
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Taking pn = x, pn+j = y and xk = pn+k, k = 1, · · ·, j − 1, we have

d (x, y) ≤ s [d (x, x1) + d (x1, x2) + · · ·+ d (xj−1, y)] .

�
Proposition 12.5. Let {pn} be a sequence in an sb-metric space and

suppose
∞∑
i=1

d (pi, pi+1) < ∞.

Then {pn} is a Cauchy sequence.

Proof. This is immediate from the relaxed polygonal inequality. If
ε > 0 there exists N ∈ N such that n ≥ N implies

n+j∑
i=n

d(pi, pi+1) ≤ ε.

Thus for all j, n ∈ N with n sufficiently large,

d (pn, pn+j+1) ≤ s

n+j∑
i=n

d (pi, pi+1) ≤ sε.

�

12.5. Banach’s Theorem in a Relaxedp Metric Space

The Cauchy convergence criterion yields a quick proof of the Banach
contraction mapping theorem in s-relaxedp metric spaces. However, as we
note above, Czerwik has shown that this theorem actually holds in a b-metric
space.

Theorem 12.4. Let (X, d) be a complete s-relaxedp metric space, suppose
k ∈ (0, 1), and suppose f : X → X satisfies

(12.11) d (f (x) , f (y)) ≤ kd (x, y)

for all x, y ∈ X. Then f has a unique fixed point x∗, and moreover the Picard
iterates {fn (x)} converge to x∗ for all x ∈ X.

Proof. Define ϕ : X → R by setting ϕ (x) = (1− k)
−1

d (x, f (x)) for
x ∈ X. Then

d (x, f (x))− kd (x, f (x)) ≤ d (x, f (x))− d
(
f (x) , f2 (x)

)
.

Hence

d (x, f (x)) ≤ (1− k)
−1 [

d (x, f (x))− d
(
f (x) , f2 (x)

)]
= ϕ (x)− ϕ (f (x)) .

Therefore
∞∑
i=0

d
(
f i (x) , f i+1 (x)

)
=

∞∑
i=0

[
ϕ
(
f i (x)

)
− ϕ
(
f i+1 (x)

)]
< ∞.
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By the relaxed polygonal inequality {fn (x)} is a Cauchy sequence. Since X
is complete {fn (x)} converges to a point x∗ ∈ X, and since f is continuous,
f (x∗) = x∗. Uniqueness follows from (12.11) and the fact that d (x, y) = 0 ⇔
x = y. �

Theorem 12.4 extends readily to set-valued contraction. Let (X, d) be an
sb-metric space, and let CB (X) be the collection of all nonempty bounded
closed subsets of X. Define the Hausdorff distance Hab on CB (X) in the usual
way (see Sect. 9.7). The following is a generalization of Nadler’s set-valued
contraction mapping theorem in metric spaces. With the aid of Proposi-
tion 12.5 Nadler’s original proof of [159] carries over with only minor change.
We include the details.

12.6. Nadler’s Theorem

Theorem 12.5. Let (X, d) be a complete s-relaxedp metric space, and let
CB (X) be the collection of all nonempty bounded closed subsets of X endowed
with the Hausdorff sb-metric Hsb. Let k ∈ (0, 1) and suppose T : X → CB (X)
satisfies

(12.12) Hsb (T (x) , T (y)) ≤ kd (x, y)

for all x, y ∈ X. Then there exists x∗ ∈ X such that x∗ ∈ T (x∗) .

Proof. Select x0 ∈ X and x1 ∈ T (x0) . Since x1 lies in an Hsb (T (x0) ,
T (x1)) neighborhood of T (x1), there exists x2 ∈ T (x1) such that

d (x1, x2) ≤ Hsb (T (x0) , T (x1)) + k.

Similarly there exists x2 ∈ T (x2) such that

d (x2, x3) ≤ Hsb (T (x1) , T (x2)) + k2.

Continuing in this manner one obtains a sequence {xn} with xi+1 ∈ T (xi)
such that

d (xi, xi+1) ≤ Hsb (T (xi−1) , T (xi)) + ki

≤ kd (xi−1, xi) + ki

≤ k
[
Hsb (T (xi−2) , T (xi−1)) + ki−1

]
+ ki

≤ k2d (xi−2, xi−1) + 2ki

≤ · · ·
≤ kid (x0, x1) + iki.

It follows that
∞∑
i=0

d (xi, xi+1) ≤ d (x0, x1)

∞∑
i=0

ki +

∞∑
i=0

iki < ∞
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so by the relaxed polygonal inequality {xn} is a Cauchy sequence. Since X
is complete, there exists x∗ ∈ X such that limn→∞ xn = x∗. By (12.12)

lim
n→∞

Hsb (T (xn) , T (x∗)) ≤ k lim
n→∞

d (xn, x
∗) = 0.

Since xn ∈ T (xn−1) , limn→∞ dist (xn, T (x∗)) = 0 and since T (x∗) is closed,
it follows that x∗ ∈ T (x∗) . �

Remark. In [57] Czerwik obtains the same result as Theorem 12.5 for
b-metric spaces, but with the further restriction that k ≤ s−1.

The proof of Ostrowski’s stability result [165] also carries over to the
sb-setting with only very minor modification of his original proof.

Theorem 12.6. Let (X, d) be a complete sb-metric space with s > 1. Let
f : X → X be a contraction mapping with Lipschitz constant k ∈ (0, 1) , and
suppose x∗ is the unique fixed point of f. Let {εn} be a sequence of positive
numbers for which limn→∞ εn = 0. Let y0 ∈ X and suppose {yn} ⊂ X
satisfies

d (yn+1, f (yn)) ≤ εn, n ∈ N.

Then limn→∞ yn = x∗.

Proof. Let m ∈ N. Then

d
(
fm+1 (y0) , ym+1

)
≤ d (f (fm (y0)) , f (ym)) + sd (f (ym) , ym+1)

≤ kd (fm (y0) , ym) + sεm

≤ kd
(
f
(
fm−1 (y0)

)
, f (ym−1)

)
+skd (f (ym−1) , ym) + sεm

≤ k2d
(
fm−1 (y0) , ym−1

)
+ skεm−1 + sεm

...

≤
m∑
i=0

km−isεi.

Therefore

d (ym+1, x
∗) ≤ d

(
ym+1, f

m+1 (y0)
)
+ sd
(
fm+1 (y0) , x

∗)

≤
m∑
i=0

km−isεi + sd
(
fm+1 (y0) , x

∗) .
Now let ε > 0. Since limn→∞ εn = 0, there exists N ∈ N such that for m > N,
sεm ≤ ε. Thus

m∑
i=0

km−isεi = s
N∑
i=0

km−iεi +
m∑

i=N+1

km−isεi

≤ km−N
N∑
i=0

kN−isεi + ε

m∑
i=N+1

km−i.
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Hence limm→∞
∑m

i=0 k
m−isεi ≤ ε

∑∞
i=0 k

i, and since ε > 0 is arbitrary, it
follows that limm→∞

∑m
i=0 k

m−isεi = 0. Since limm→∞ sd
(
fm+1 (y0) , x

∗) =
0, we conclude that limm→∞ ym+1 = x∗. �

It is only fair to point out that some results seem to require the full
use of the triangle inequality. In this connection we mention an interesting
extension of Nadler’s theorem due to Dontchev and Hager [62] using the
concept of the excess from a set A to a set B in a metric space. Let (X, d)
be a metric space, and for A ⊆ X and x ∈ X, set

dist (x,A) = inf {d (x, a) : a ∈ A} .
The excess δ from A to the set B ⊆ X is given by

δ (B,A) = sup {dist (x,A) : x ∈ B} .
The following generalization of Nadler’s theorem is used in [62] to prove an
inverse mapping theorem for set-valued mappings T from a complete metric
space X to a linear space Y with a translation invariant metric. We prove
the original version of this theorem here. Another proof is given in the recent
paper [20], where it is pointed out that this “local” version does in fact include
Nadler’s original theorem.

Theorem 12.7. Let (X, d) be a complete metric space and suppose T
maps X into the nonempty closed subsets of X. Let x0 ∈ X and suppose
r ∈ R

+ and k ∈ [0, 1) satisfy
(a) dist (x0, T (x0)) < r (1− k) ;
(b) δ (T (x1) ∩B (x0; r) , T (x2)) ≤ kd (x1, x2) for all x1, x2 ∈ B (x0; r) .

Then T has a fixed point in B (x0; r) .

Proof ([62]). By assumption (a) there exists x1 ∈ T (x0) such that
d (x1, x0) < r (1− k) . Proceeding by induction, suppose that there exists
xj+1 ∈ T (xj) ∩B (x0; r) such that

d (xj+1, xj) < r (1− k) kj

for j = 1, 2, · · ·, n− 1. By assumption (b)

dist (xn, T (xn)) ≤ δ (T (xn−1) ∩B (x0; r) , T (xn)) ≤ kd (xn, xn−1) < r (1− k) kn.

This implies that there exists xn+1 ∈ T (xn) such that

d (xn+1, xn) < r (1− k) kn.

However (and here we make full use of the triangle inequality)

d (xn+1, x0) ≤
n∑

j=0

d (xj+1, xj) < r (1− k)

n∑
j=0

kj < r.

Hence xj+1 ∈ T (xj) ∩B (x0; r). This completes the induction.
For n > m we now have

d (xn, xm) ≤
n−1∑
j=m

d (xj+1, xj) < r (1− k)

n−1∑
j=m

kj < rkm.
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Thus {xj} is a Cauchy sequence which converges to some x∗ ∈ B (x0; r) . By
assumption (b)

dist (xn, T (x∗)) ≤ δ (T (xn−1) ∩B (x0; r) , T (x∗)) ≤ kd (x∗, xn−1) .

The triangle inequality now implies that

dist (x∗, T (x∗)) ≤ d (x∗, xn) + dist (xn, T (x∗)) ≤ d (xn, x
∗) + kd (xn−1, x

∗) .

Since the latter term approaches 0 as n → ∞, and since T (x∗) is closed, it
follows that x∗ ∈ T (x∗) . �

We conclude with two questions.

QUESTION. Does Theorem 12.7 hold under the weaker sb-metric
assumption?

QUESTION. Is every sb-metric space X dense in a complete sb-metric
space X ′? If so, then every contraction mapping f : X → X extends
to a contraction mapping f ′ : X ′ → X ′ which has a unique fixed point.
Ostrowski’s theorem then would provide a method for approximating this
fixed point.

12.7. Caristi’s Theorem in sb-Metric Spaces

The following is Theorem 2.4 of [31]. It is derived from a version of
Ekeland’s variational principle in b-metric spaces.

Theorem 12.8. Let (X, d) be a complete b-metric space, (with s > 1)
such that the b-metric d is continuous and let ψ : X → R be lower semicon-
tinuous. Suppose f : X → X satisfies

(12.13) d (u, v) + sd (u, f (u)) ≥ d (f (u) , v)

and

(12.14)
s2

s− 1
d (u, f (u)) ≤ ψ (u)− ψ (f (u))

for all u, v ∈ X. Then f has a fixed point.

This quickly yields Caristi’s theorem for sb-metric spaces.

Corollary 12.1. Let (X, d) be a complete sb-metric space (with s > 1)
and let ϕ : X → R be lower semicontinuous and bounded below. Suppose
f : X → X satisfies

d (x, f (x)) ≤ ϕ (x)− ϕ (f (x))

for all x ∈ X. Then f has a fixed point.
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Proof. Continuity of the distance functions comes from the fact that d
is an sb-metric. Also, taking q = t in (12.8) we obtain

|d (p, t)− d (r, t)| ≤ sd (p, r)

for each p, r, t ∈ X. Thus

d (r, t) + sd (p, r) ≥ d (p, t)

for each p, r, t ∈ X, and it follows upon taking p = f (u) , t = v, and r = u,
that

d (u, v) + sd (u, f (u)) ≥ d (f (u) , v)

for each u, v ∈ X, so (12.13) holds. Finally, taking ψ =
s2

s− 1
ϕ, we obtain

(12.14). �

Remark 12.6. We do not know whether Caristi’s theorem fully extends
to b-metric spaces. However, as we show in Chap. 14, it does extend to partial
metric spaces.

12.8. The Metric Boundedness Property

We now discuss the relation between b-metric spaces, relaxedp metric
spaces, and metric boundedness. Recall that a semimetric space (X, d) is
s-metric bounded (for s ≥ 1) if there is a metric ρ on X such that for all
x, y ∈ X,

ρ (x, y) ≤ d (x, y) ≤ sρ (x, y) .

Theorem 12.9 ([78]). Let (X, d) be a semimetric space. Then (X, d) is
an s-relaxedp metric if and only if (X, d) is s-metric bounded.

Proof. (⇒) Assume (X, d) is an s-relaxedp metric. Define ρ by taking

(12.15) ρ (x, y) = min
�

min
{x0,x1,···,x�:x0=x;x�=y}

�−1∑
i=0

d (xi, xi+1)

for each x, y ∈ X.
We first show that ρ is a metric. Since d (x, x) = 0 it follows from (12.15)

that ρ (x, x) = 0. Now suppose x, y ∈ X with x 	= y. By the relaxed polygonal
inequality for s we know that in expression (12.15)

d (x, y) ≤ s

�−1∑
i=0

d (xi, xi+1) .

Therefore

ρ (x, y) ≥ 1

s
d (x, y) ,
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and since d (x, y) > 0 it follows that ρ (x, y) > 0. Symmetry of ρ is immediate
from the definition. Finally ρ satisfies the triangle inequality because for any
x, y, z ∈ X,

ρ (x, y) = min
�

min
{x0,x1,···,x�:x0=x;x�=y}

�−1∑
i=0

d (xi, xi+1)

≤ min
�1

min
{y0,y1,···,y�1

:y0=x;y�1
=z}

�1−1∑
i=0

d (yi, yi+1)

+min
�2

min
{z0,z1,···,z�2 :z0=z;z�2=y}

�2−1∑
i=0

d (zi, zi+1)

= ρ (x, z) + ρ (z, y) .

To see that (X, d) is s-metric bounded, by (12.15) it follows easily that
ρ (x, y) ≤ d (x, y), and also by (12.15) and the relaxed polygonal inequality,
d (x, y) ≤ sρ (x, y) .

(⇐) Now assume (X, d) is s-metric bounded. Then there is a metric ρ
on X such that for all x, y ∈ X,

ρ (x, y) ≤ d (x, y) ≤ sρ (x, y) .

Therefore d (x, x) = 0. If x 	= y, then d (x, y) ≥ ρ (x, y) > 0. To see that d
satisfies the relaxed polygonal inequality, let x, x1, · · ·, xn−1, y ∈ X. Then

d (x, y) ≤ sρ (x, y)

≤ s [ρ (x, x1) + ρ (x1, x2) + · · ·+ ρ (xn−1, y)] (since ρ is a metric)

≤ s [d (x, x1) + d (x1, x2) + · · ·+ d (xn−1, y)] (since ρ (·, ·) ≤ d (·, ·) ).

Since d is semimetric by assumption, it follows that (X, d) is an s-relaxedp

metric. �

Having shown that the notions of an s-relaxedp metric space and metric
boundedness are equivalent, we compare these concepts to the concept of a b-
metric space. Every s-relaxedp metric space is a b-metric space by definition.
We see below that the converse is not true.

Theorem 12.10 ([78]). There is a b-metric space that is not an
s-relaxedp metric for any s.

Proof. Let X = [0, 1] and define d on X by setting d (x, y) = (x− y)
2
.

Clearly (X, d) is a semimetric space. To see that (X, d) is a b-metric space,
let x, y, z ∈ X and set α = d (x, z) , β = d (z, y) and γ = d (x, y) . Then
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√
γ ≤ √

α +
√
β since |· − ·| is the standard metric on X. Therefore γ ≤

α+ β + 2
√
αβ. But

√
αβ ≤ α+ β

2
. It follows that

d (x, y) ≤ 2 [d (x, z) + d (z, y)] .

So d is b-metric with constant 2.
Now let n be an arbitrary positive integer and let xi =

i

n
for 1 ≤ i ≤ n−1.

Then

d (0, x1) + d (x1, x2) + · · ·+ d (xn−1, 1) = n

(
1

n

)2

=
1

n
.

Since n is arbitrary it is clear that there can be no constant s such that

d (0, 1) ≤ s [d (0, x1) + d (x1, x2) + · · ·+ d (xn−1, 1)] .

�



CHAPTER 13

Generalized Metric Spaces

13.1. Introduction

We now turn to a concept introduced by A. Branciari. This class of spaces
has received significant attention lately, although at this point it remains
unclear whether the concept has any significant applications.

Definition 13.1 ([35]). Let X be a nonempty set and d : X × X →
[0,∞) a mapping such that for all x, y ∈ X and all distinct points u, v ∈ X,
each distinct from x and y :

(i) d (x, y) = 0 ⇔ x = y;
(ii) d (x, y) = d (y, x) ;
(iii) d (x, y) ≤ d (x, u) + d (u, v) + d (v, y) (quadrilateral inequality).

Then X is called a generalized metric space (g.m.s.).

Proposition 13.1. If (X, d) is a generalized metric space which satisfies
Wilson’s Axiom III (see Chap. 1), then the distance function is continuous
at distinct points.

Proof. Suppose {pn} , {qn} ⊆ X satisfy

lim
n→∞

d (pn, p) = 0 and lim
n→∞

d (qn, q) = 0,

where p 	= q. Also assume that for n arbitrarily large, pn 	= p and qn 	= q. In
view of Axiom III, we may also assume that for n sufficiently large, pn 	= qn.
Then

d (p, q) ≤ d (p, pn) + d (pn, qn) + d (qn, q)

and
d (pn, qn) ≤ d (pn, p) + d (p, q) + d (q, qn) .

Together these inequalities imply

lim inf
n→∞

d (pn, qn) ≥ d (p, q) ≥ lim sup
n→∞

d (pn, qn) .

Thus limn→∞ d (pn, qn) = d (p, q) . �

Proposition 2 of [129] asserts that the distance function is continuous.
However, to get full continuity of d it would be necessary to show that if
limn→∞ d (pn, p) = 0 and limn→∞ d (qn, p) = 0, then limn→∞ d (pn, qn) = 0.
While this is a trivial consequence of the triangle inequality, the quadrilateral
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inequality alone is not strong enough to assure this. However the following
observation shows that the quadrilateral inequality implies a weaker but use-
ful form of distance continuity. (This is a special case of Proposition 1 of
[211]. Also see Lemma 1.10 of [102].)

Proposition 13.2. Suppose {qn} is a Cauchy sequence in a generalized
metric space X and suppose limn→∞ d (qn, q) = 0. Then limn→∞ d (p, qn) =
d (p, q) for all p ∈ X. In particular, {qn} does not converge to p if p 	= q.

Proof. If qn = p for arbitrarily large n, it must be the case that p = q.
So we may also assume that eventually p 	= qn. Also eventually qn 	= q;
otherwise the result is trivial. So by passing to a subsequence we may assume
that qn 	= qm 	= q and qn 	= qm 	= p for all n,m ∈ N with n 	= m. Then by
the quadrilateral inequality,

d (p, q) ≤ d (p, qn) + d (qn, qn+1) + d (qn+1, q)

and
d (p, qn) ≤ d (p, q) + d (q, qn+1) + d (qn+1, qn) .

Since {qn} is a Cauchy sequence, limn→∞ d (qn, qm) = 0. Therefore

lim sup
n→∞

d (p, qn) ≤ d (p, q) ≤ lim inf
n→∞

d (p, qn) .

�

We now come to Branciari’s extension of Banach’s contraction mapping
theorem. Although in his proof Branciari makes the erroneous assertion that
a generalized metric space is a Hausdorff topological space with a neighbor-
hood basis given by

B =
{
B (x; r) : x ∈ S, r ∈ R

+\{0}
}
,

with the aid of Proposition 13.2, Branciari’s proof carries over with only
minor change. The assertion in [194] that the space needs to be Hausdorff
is superfluous, a fact first noted by Turinici in [211].

Theorem 13.1 ([35]). Let (X, d) be a complete generalized metric space,
and suppose the mapping f : X → X satisfies d (f (x) , f (y)) ≤ kd (x, y) for
all x, y ∈ X and fixed k ∈ (0, 1) . Then f has a unique fixed point x∗, and
limn→∞ fn (x) = x∗ for each x ∈ X.

Proof. It is possible to prove this theorem by following the proof given
by Branciari up to the point of showing that {fn (x)} is a Cauchy sequence
for each x ∈ X. We give the details. Let x ∈ X and consider the sequence
{fn (x)} . If f i (x) = x for some i ∈ N, then

d (x, f (x)) = d
(
f i (x) , f i+1 (x)

)
≤ kid (x, f (x))

and it follows that f (x) = x. Thus either f has a fixed point or fn (x) 	=
fm (x) if m 	= n.
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We assert that for each y ∈ X

(a) d
(
y, f2n (y)

)
≤
∑2n−3

i=0 kid (y, f (y)) + k2n−2d
(
y, f2 (y)

)
for n =

2, 3, 4, · · ·;
(b) d

(
y, f2n+1 (y)

)
≤
∑2n

i=0 k
id (y, f (y)) for n = 0, 1, 2, · · ·.

The proof is by mathematical induction. To see that (a) is true, for n = 2
one has

d
(
y, f4 (y)

)
≤ d (y, f (y)) + d

(
f (y) , f2 (y)

)
+ d
(
f2 (y) , f4 (y)

)
≤ d (y, f (y)) + kd (y, f (y)) + k2d

(
y, f2 (y)

)
.

Now let n0 ∈ N and suppose that (a) holds for all n ∈ N such that 2 ≤ n ≤ n0.
Then

d
(
y, f2n0+2 (y)

)
≤ d (y, f (y)) + d

(
f (y) , f2 (y)

)
+ d
(
f2 (y) , f2n0+2 (y)

)
≤ d (y, f (y)) + kd (y, f (y)) + k2d

(
y, f2n0 (y)

)
≤ d (y, f (y)) + kd (y, f (y))

+k2

[
2n0−3∑
i=0

kid (y, f (y)) + k2n0−2d
(
y, f2 (y)

)]

=

2n0−1∑
i=0

kid (y, f (y)) + k2n0d
(
y, f2 (y)

)
.

To see that (b) is true, for n = 0 one has d (y, f (y)) = d (y, f (y)) . Now
suppose (b) holds for some n0 ∈ N and all n ∈ N with 0 ≤ n ≤ n0. Then for
n0 + 1,

d
(
y, f2n0+3 (y)

)
≤ d (y, f (y)) + d

(
f (y) , f2 (y)

)
+ d
(
f2 (y) , f2n0+3 (y)

)
≤ d (y, f (y)) + kd (y, f (y)) + k2d

(
y, f2n0+1 (y)

)
≤ d (y, f (y)) + kd (y, f (y))

+k2
2n0∑
i=0

kid (y, f (y))

=

2n0+2∑
i=0

kid (y, f (y)) .

It now follows that for all n,m ∈ N

d
(
fn (x) , fn+2m (x)

)
≤ knd

(
x, f2m (x)

)

≤ kn
2m−2∑
i=0

ki max
{
d (x, f (x)) , d

(
x, f2 (x)

)}

≤ kn

1− k
max
{
d (x, f (x)) , d

(
x, f2 (x)

)}
.
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Also

d
(
fn (x) , fn+2m+1 (x)

)
≤ knd

(
x, f2m+1 (x)

)

≤ kn
2m∑
i=0

ki max
{
d (x, f (x)) , d

(
x, f2 (x)

)}

≤ kn

1− k
max
{
d (x, f (x)) , d

(
x, f2 (x)

)}
.

Thus for all n,m ∈ N

d (fn (x) , fm (x)) ≤ kn

1− k
max
{
d (x, f (x)) , d

(
x, f2 (x)

)}
.

Therefore {fn (x)} is a Cauchy sequence, and by completeness of X there ex-
ists x∗ ∈ X such that limn→∞ fn (x) = x∗. But limn→∞ d

(
fn+1 (x) , f (x∗)

)
≤

k limn→∞ d (fn (x) , x∗) = 0, so

lim
n→∞

fn+1x = f (x∗) .

In view of Proposition 13.2, f (x∗) = x∗. �

13.2. Caristi’s Theorem in Generalized Metric Spaces

We begin with an examination of an easy proof of Caristi’s original
theorem in a complete metric space to illustrate why it fails in a general-
ized metric space. This proof is based on Zorn’s Lemma (in contrast to the
more constructive and more general approaches discussed earlier in Chap. 2).

Theorem 13.2 (Caristi). Let (X, d) be a complete metric space. Let
f : X → X a mapping, and ϕ : X → R

+ a lower semicontinuous function.
Suppose

(13.1) d (x, f (x)) ≤ ϕ (x)− ϕ (f (x)) , x ∈ X.

Then f has a fixed point.

Proof. Introduce the Brøndsted partial order on X by setting x �
y ⇔ d (x, y) ≤ ϕ (x) − ϕ (y) . Let I be a totally ordered set and let {xγ}γ∈I

be a chain in (X,�) . Then α ≤ β ⇒ xα � xβ ⇔ d (xα, xβ) ≤ ϕ (xα) −
ϕ (xβ) . Therefore {ϕ (xγ)}γ∈I is decreasing. Since ϕ is bounded below,
limγ ϕ (xγ) = r. This implies limα,β d (xα, xβ) = 0; hence {xγ}γ∈I is a Cauchy
net. Since X is complete, there exists x ∈ X such that limγ xγ = x. Thus for
α ∈ I,

d (xα, x) = lim
γ

d (xα, xγ)

≤ lim
γ

(ϕ (xα)− ϕ (xγ))

= ϕ (xα)− r

≤ ϕ (xα)− ϕ (x) .
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Therefore xα � x for each α ∈ I, so x is an upper bound for the chain
{ϕ (xγ)}γ∈I . By Zorn’s Lemma, (X,�) has a maximal element x∗. But con-
dition (13.1) implies x∗ � f (x∗) , so it must be the case that x∗ = f (x∗) . �

The above argument fails in the setting of a generalized metric space
because it is not possible to conclude that (X,�) is transitive in such a space.
In a metric space, transitivity follows directly from the triangle inequality.

The assertion in [129] that Caristi’s Theorem holds in generalized metric
spaces is based on the false assertion that if {pn} is a sequence in a general-
ized metric space (X, d) which satisfies

∑∞
i=1 d (pi, pi+1) < ∞, then {pn} is a

Cauchy sequence. As we have seen in Proposition 12.5 this property is valid
in sb-metric spaces, and with this additional assumption it is likely Caristi’s
theorem holds in a generalized metric space. However, as the following exam-
ple shows, generalized metric spaces do not enjoy this Cauchy criterion. This
example is a modification of Example 1 of [101]. See also [129] for details.

Example 13.1. Let X := N, and define the function d : N × N → R by
putting, for all m,n ∈ N,

d (n+ 1, n) = d (n, n+ 1) :=
1

2n
;

d (n, n) = 0;

d (n,m) = d (m,n) := 1 if m > n and m− n is even;

d (n,m) = d (m,n) :=
m∑
i=n

d (i, i+ 1) if m > n and m− n is odd.

To see that (X, d) is a generalized metric space, let xn = n (n ∈ N) , suppose
m,n ∈ N with m > n and suppose p, q ∈ N are distinct with q > p and p 	= n
and q 	= m. We now show that

(13.2) d (xn, xm) ≤ d (xn, xp) + d (xp, xq) + d (xq, xm) .

If one of the three numbers |n− p| , q − p or |q −m| is even, then, since

d (xn, xm) ≤ 1,

clearly (13.2) holds. If all the three numbers are odd, then, since m − n =
(m− q) + (q − p) + (p− n) , it follows that m− n is odd and

d (xn, xm) =

m∑
i=n

d (xi, xi+1) .

There are four cases to consider:
(i) n < p < q < m
(ii) p < n < q < m
(iii) n < p < m < q
(iv) p < n < m < q
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If (i) holds, then

d (xn, xm) =

m∑
i=n

d (xi, xi+1)

=

p∑
i=n

d (xi, xi+1) +

q∑
i=p

d (xi, xi+1) +

m∑
i=q

d (xi, xi+1)

= d (xn, xp) + d (xp, xq) + d (xq, xm) .

In the other three cases

d (xn, xm) < d (xn, xp) + d (xp, xq) + d (xq, xm) .

Therefore (X, d) is a generalized metric space. Also (X, d) is complete because
any Cauchy sequence in X must eventually be constant. Notice that if m,n ∈
N and m > n, then in order for d (xn, xm) to be small for large n, m − n
must be odd, because if m − n is even, d (xn, xm) = 1. However if {xnk

} is
a subsequence of {xn}, then |ni − nj | cannot be odd for all sufficiently large
i, j. (Suppose ni > nj > nk. If ni − nj is odd and if nj − nk is odd, then
ni −nk is even.) Thus d

(
xni

, xnj

)
= 1 for arbitrarily large i, j. On the other

hand, the Cauchy summation criterion fails, because
∑∞

i=1 d (xi, xi+1) < ∞,
and clearly {xn} is not a Cauchy sequence.

Remark 13.1. Caristi’s Theorem fails in the above example. Let f (n) =

n+1 for n ∈ N, and define ϕ : N → R by setting ϕ (n) =
2

n
. Obviously f has

no fixed points and, because the space is discrete, ϕ is continuous. On the
other hand, f satisfies Caristi’s condition:

d (n, f (n)) ≤ ϕ (n)− ϕ (f (n)) .

To see this, we need to show that
1

2n
≤ 2

n
− 2

n+ 1
=

2

n (n+ 1)
.

This is equivalent to the assertion that

(13.3) 2n+1 ≥ n (n+ 1) .

The proof is by induction. If n = 1,

22 = 4 > 2,

and for n = 2,
23 > 2 · 3.

Assume (13.3) holds for n ∈ N, n ≥ 2. Then

2n+2 = 2
(
2n+1
)

≥ 2n (n+ 1)

= (n+ n) (n+ 1)

≥ (n+ 1) (n+ 2) .
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13.3. Multivalued Mappings in Generalized Metric Spaces

In the study of metric fixed point theory it is customary to investi-
gate multivalued analogs of theorems first established for single-valued map-
pings. In view of Theorem 13.1 it is appropriate to see if Nadler’s theorem
for multivalued contraction mappings holds in generalized metric spaces.
The starting point entails the Hausdorff metric H defined on the family
of nonempty bounded closed subsets CB (X) of a given metric space (X, d)
(see Sect. 9.7). It is well known that H is a metric on CB (X) , and that
(CB (X) , H) is complete if and only if (X, d) is complete. However Kadelburg
and Radenović have noted in [104] that an analogous construction is not pos-
sible in a generalized metric space.

Example 13.2 ([104]). Let X = {a, b, c} and let d : X × X → R be
defined as follows: d(a, b) = 4; d (a, c) = d (b, c) = 1; d (x, x) = 0 for x ∈ X,
and d (x, y) = d (y, x) for x, y ∈ X. The triangle inequality only need be
checked when x = y in which case it is trivial. Thus (X, d) is a generalized
metric space which is obviously not a metric space.
Now let H be the Hausdorff metric on CB (X), and consider the quadrilateral
({a} , {b} , {a, c} , {c}) . It is easy to see that

H ({a} , {b}) = 4 > 1+1+1 = H ({a} , {a, c})+H ({a, c} , {c})+H ({c} , {b}) .
Hence the quadrilateral inequality is not satisfied, so (CB (X) , H) is not a
generalized metric space.



CHAPTER 14

Partial Metric Spaces

14.1. Introduction

The topic of this section has its origins in the study of theoretical computer
science. In 1992, S.G. Matthews [149] introduced the notion of a “partial
metric space” with the aim of providing a quantitative mathematical model
suitable for programming verification. See [150, 200] for further discussion.
Among other things, Matthews proved a partial metric version of the cele-
brated Banach fixed point theorem which has become an appropriate quanti-
tative fixed point technique to capture the meaning of recursive denotational
specifications in programming languages. This is a class of distance spaces for
which the triangle inequality is strengthened but for which Wilson’s Axiom
I (see Chap. 1) is relaxed. Thus these spaces are neither metric spaces nor
semimetric spaces.

We begin with the relevant definitions. A partial metric [149] on a set
X is a function ρ : X ×X → R

+ such that for all x, y, z ∈ X:
(i) x = y ⇔ ρ (x, x) = ρ (x, y) = ρ (y, y) ;
(ii) ρ (x, x) ≤ ρ (x, y) ;
(iii) ρ (x, y) = ρ (y, x) ;
(iv) ρ (x, z) ≤ ρ (x, y) + ρ (y, z)− ρ (y, y) .

How does a partial metric differ from a metric? Suppose ρ (x, y) = 0.
Then by (ii) and (iii), ρ (x, x) = ρ (y, y) = ρ (x, y) = 0, so by (i) x = y. Notice,
however, that in general it is not the case that if x = y, then ρ (x, y) = 0.
On the other hand, if one assumes that ρ (x, x) = 0 for each x ∈ X, then the
space (X, ρ) is a metric space in the usual sense.

Some other pertinent facts about partial metrics (see, e.g., [149, 163,
164] for details):

1. Each partial metric ρ on X induces a T0 topology T (ρ) on X which
has as a base the family of open balls {Uρ (x; ε) : x ∈ X, ε > 0} ,
where Uρ (x; ε) = {y ∈ X : ρ (x, y) < ρ (x, x) + ε} . (Originally, the
definition was taken as Uρ (x; ε) = {y ∈ X : ρ (x, y) < ε} . With
this definition, open balls could be empty. Notice that by the
definition given here it is always the case that x ∈ Uρ (x; ε) for
each ε > 0.) Also, given any two distinct points in X, there is
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a ball containing one that does not contain the other. To see
this, suppose x, y ∈ X with x 	= y. Then by (i) and (ii), either
ρ (x, x) < ρ (x, y) or ρ (y, y) < ρ (x, y) . Suppose ρ (x, x) < ρ (x, y) .

Let ε =
ρ (x, y)− ρ (x, x)

2
. Then ρ (x, y) > ε + ρ (x, x), so x ∈

Uρ (x; ε) and y /∈ Uρ (x; ε) . Observe that a sequence {xn} in a par-
tial metric space (X, ρ) converges to a point x ∈ X with respect to
T (ρ) if and only if ρ (x, x) = limn→∞ ρ (x, xn) ; in symbols we may

write xn
T (ρ)→ x.

2. If ρ is a partial metric on X, then the function ρs : X ×X → R
+

given by

ρs (x, y) = 2ρ (x, y)− ρ (x, x)− ρ (y, y) , x, y ∈ X,

is a metric on X. First note that ρs (x, y) ≥ 0 for all x, y ∈ X by
(ii). Also, observe that for x, y, z ∈ X:
(a) ρs (x, y) = 0 ⇔ x = y. To see this, suppose x = y. Then

ρs (x, x) = 2ρ (x, x) − ρ (x, x) − ρ (x, x) = 0. Now suppose
ρs (x, y) = 0. Then 2ρ (x, y)−ρ (x, x)−ρ (y, y) = 0. If ρ (x, x) =
ρ (y, y) , then ρ (x, x) = ρ (x, y) = ρ (y, y) and by (i) x = y. Sup-
pose ρ (y, y) < ρ (x, x) . Then ρ (x, y) < ρ (x, x) , contradicting
(ii).

(b) ρs (x, y) = 2ρ (x, y)−ρ (x, x)−ρ (y, y) and ρs (y, x) = 2ρ (y, x)−
ρ (y, y)− ρ (x, x) , so ρs (x, y) = ρs (y, x) by (iii).

(c) ρs (x, z) ≤ ρs (x, y) + ρs (y, z) ⇔
2ρ (x, z)− ρ (x, x)− ρ (z, z)
≤ [2ρ (x, y)− ρ (x, x)− ρ (y, y)] + [2ρ (y, z)− ρ (y, y)
−ρ (z, z)] ⇔
2ρ (x, z) ≤ 2ρ (x, y) + 2ρ (y, z) − 2ρ (y, y) , which is precisely
(iv).

3. A sequence {xn} in (X, ρ) is a Cauchy sequence if limn,m→∞ ρ (xn,
xm) exists and is finite.

4. Remark. A sequence {xn} is a Cauchy sequence in (X, ρ) if and
only if it is a Cauchy sequence in the metric space (X, ρs) .

5. A partial metric space (x, ρ) is said to be complete if every Cauchy
sequence {xn} in X converges, with respect to T (ρ), to a point
x ∈ X for which limn,m→∞ ρ (xn, xm) = ρ (x, x) .

6. Remark. It is well known that a partial metric space (X, ρ) is
complete if and only the metric space (X, ρs) is complete. More-
over, given a sequence {xn} in (X, ρ) and x ∈ X one has limn→∞
ρs (x, xn) = 0 if and only if ρ (x, x) = limn→∞ ρ (x, xn) = limn,m→∞
ρ (xn, xm).

7. As mentioned in [200], the success of partial metrics in Computer
Science lies in the fact that every partial metric ρ induces a partial
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order ≤ρ on X (x ≤ρ y ⇔ ρ(x, y) = ρ(x, x)) in such a way that
increasing sequences of elements have supremum with respect to ≤ρ

and converge to it with respect the partial metric topology T (ρ).

14.2. Some Examples

1. Let Sω be the set of all infinite sequences in R. For all such sequences
x = {xi} and y = {yi} , let dS (x, y) = 2−j , where j is the largest
number (possibly ∞) such that xi = yi for all i < j. It can be shown
that (Sω, dS) is a metric space. Now add to Sω the set S∗ of all
finite sequences. Then (Sω ∪ S∗, dS) is a partial metric space, and
dS (x, x) 	= 0 if x is a finite sequence, while dS (x, x) = 0 if x is an
infinite sequence.

2. Let ρ (a, b) = max {a, b} for a, b ∈ R
+. Then (R+, ρ) is a partial

metric space.
3. Let I be the collection of nonempty closed bounded intervals in R.

For [a, b] , [c, d] ∈ I, let ρ ([a, b] , [c, d]) = max {b, d} − min {a, c} .
Then (I, ρ) is a partial metric space.

14.3. The Partial Metric Contraction Mapping Theorem

Theorem 14.1 ([149]). Let (X, ρ) be a complete partial metric space and
suppose for some k ∈ [0, 1), f : X → X satisfies

ρ (f (x) , f (y)) ≤ kρ (x, y) for all x, y ∈ X.

Then there exists a unique x∗ ∈ X such that x∗ = f (x∗) and ρ (x∗, x∗) = 0.

Proof. Suppose u ∈ X. Then for each n, j ∈ N,

ρ
(
fn+j+1 (u) , fn (u)

)
≤ ρ

(
fn+j+1 (u) , fn+j(u)

)
+ ρ
(
fn+j (u) , fn(u)

)
− ρ
(
fn+j (u) , fn+j (u)

)
≤ kn+jρ (f (u) , u) + ρ

(
fn+j (u) , fn (u)

)
.

Thus for each n, j ∈ N

ρ
(
fn+j+1 (u) , fn (u)

)
≤ kn+jρ (f (u) , u) + kn+j−1ρ (f (u) , u) + ρ

(
fn+j−1 (u) , fn (u)

)
≤ · · ·
≤
(
kn+j + kn+j−1 + · · ·+ kn

)
ρ (f (u) , u) + ρ (fn (u) , fn (u))

≤
(
kn+j + kn+j−1 + · · ·+ kn

)
ρ (f (u) , u) + knρ (u, u)

= kn
(
1− kj+1

1− k

)
ρ (f (u) , u) + knρ (u, u)

= kn
[(

1− kj+1

1− k

)
ρ (f (u) , u) + ρ (u, u)

]

≤ kn
[(

ρ (f (u) , u)

1− k

)
+ ρ (u, u)

]
.
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Therefore, if m > n, we see that

ρ (fm (u) , fn (u)) ≤ kn
[(

ρ (f (u) , u)

1− k

)
+ ρ (u, u)

]
.

It follows that
lim

m,n→∞
ρ (fm (u) , fn (u)) = 0.

Thus for all m ∈ N,

ρs (fm (u) , fn (u)) ≤ 2ρ (fm (u) , fn (u)) → 0 as n → ∞.

Therefore {fn (u)} is a Cauchy sequence in (X, ρs) . Since (X, ρ) is complete,
so is (X, ρs) and the sequence {fn (u)} converges to some x∗ ∈ X with respect
to the metric ρs. Therefore

ρ (x∗, x∗) = lim
n→∞

ρ (fn (u) , x∗) = lim
n,m→∞

ρ (fn (u) , fm (u)) = 0.

Also

ρ (f (x∗) , x∗) ≤ ρ
(
f (x∗) , fn+1 (u)

)
+ ρ

(
fn+1 (u) , x∗)− ρ

(
fn+1 (u) , fn+1 (u)

)

≤ kρ (x∗, fn (u)) + ρ
(
fn+1 (u) , x∗) .

Letting n → ∞ we see that ρ (f (x∗) , x∗) = 0. We now have ρ (x∗, x∗) =
ρ (f (x∗) , x∗) = 0 and by (ii) ρ (f (x∗) , f (x∗)) ≤ ρ (f (x∗) , x∗) = 0, so by (i)
x∗ = f (x∗) .

Now suppose there exists y∗ ∈ X such that y∗ = f (y∗). Then

ρ (x∗, y∗) = ρ (f (x∗) , f (y∗)) ≤ kρ (x∗, y∗) .

Since k < 1 we conclude ρ (x∗, y∗) = 0 and so x∗ = y∗. Thus the fixed point
is unique. �

14.4. Caristi’s Theorem in Partial Metric Spaces

In order to give an appropriate notion of a Caristi mapping in the frame-
work of partial metric spaces Romaguera [189] proposes two alternatives.
Throughout, (X, ρ) is a partial metric space with associated metric space
(X, ρs) .

(ρ-C) A mapping f : X → X is called a ρ-Caristi mapping if there exists
a function ϕ : X → R

+ which is lower semicontinuous for ρ and for which

ρ (x, f (x)) ≤ ϕ (x)− ϕ (f (x)) for all x ∈ X.

(ρs-C) A mapping f : X → X is called a ρs-Caristi mapping if there
exists a function ϕ : X → R

+ which is lower semicontinuous for ρs and for
which

ρ (x, f (x)) ≤ ϕ (x)− ϕ (f (x)) for all x ∈ X.

It is clear that every ρ-Caristi mapping is a ρs-Caristi mapping, but the
converse need not be true. [Suppose ϕ is lower semicontinuous for ρ. This
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means that xn
T (ρ)→ x and ϕ (xn) → r ⇒ ϕ (x) ≤ r. However xn

ρs

→ x ⇒
xn

T (ρ)→ x. To see this, suppose xn
ρs

→ x and let ε > 0. Then there exists
n0 ∈ N such that

n ≥ n0 ⇒ ρs (xn, x) = 2ρ (x, xn)− ρ (x, x)− ρ (xn, xn) ≤ ε.

But by (ii), ρ (x, xn) − ρ (x, x) ≤ 2ρ (x, xn) − ρ (x, x) − ρ (xn, xn) . Hence

n ≥ n0 ⇒ xn ∈ Uρ (x; ε) , i.e., xn
T (ρ)→ x.]

In a first attempt to generalize Kirk’s characterization of metric com-
pleteness to the partial metric framework, one could conjecture that a partial
metric space is complete if and only if every ρ-Caristi mapping has a fixed
point. However the following example shows that this conjecture is false.

Example ([189]). On the set N of natural numbers construct the partial
metric ρ given by

ρ (n,m) = max

{
1

n
,
1

m

}
, n,m ∈ N.

Properties (i)–(iii) of the definition of a partial metric are trivial. To see that
(iv) holds, suppose n,m, p ∈ N. We need to show that

ρ (n, p) ≤ ρ (n,m) + ρ (m, p)− ρ (m,m) .

However max

{
1

n
,
1

p

}
≤ max

{
1

n
,
1

m

}
+ max

{
1

m
,
1

p

}
. Case (1). Suppose

n ≤ p. Then the left side is
1

n
, while max

{
1

n
,
1

m

}
≥ 1

n
and max

{
1

m
,
1

p

}
−

1

m
≥ 0. Case (2). Suppose p ≤ n. Then the left side is

1

p
while max

{
1

m
,
1

p

}
≥

1

p
and max

{
1

n
,
1

m

}
− 1

m
≥ 0. Thus (iv) holds.

Notice that if m > n,

ρs (n,m) = 2ρ (n,m)− ρ (n, n)− ρ (m,m)

= 2max

{
1

n
,
1

m

}
− 1

n
− 1

m

=
2

n
− 1

n
− 1

m

=
1

n
− 1

m
.

Thus {n}nεN is a Cauchy sequence in (N, ρs) . However {n}nεN does not have
a limit, and so (N, ρs) , hence (N, ρ), is not complete. Also there are no
fixed-point free ρ-Caristi mappings defined on N.



146 14. PARTIAL METRIC SPACES

Indeed, let f : N → N and suppose there is a lower semicontinuous
mapping ϕ from (N, T (ρ)) into R

+ such that

ρ (n, f (n)) ≤ ϕ (n)− ϕ (f (n)) .

If 1 < f (1) , ρ (1, f (1)) = 1 = ρ (1, 1) . This means that f (1) ∈ Uρ (1; ε) for
any ε > 0, so ϕ (1) ≤ ϕ (f (1)) by lower semicontinuity of ϕ. (It is possible to
think of it this way. The set {x ∈ N : ϕ (x) ≤ ϕ (f (1))} is closed. Obviously
1 is in the closure of this set. Another point of view: Define {xn} by setting

xn ≡ f (1) . Then f (1) ∈ Uρ (1; ε) for any ε > 0 means xn
T (ρ)→ 1. On the other

hand, ϕ (xn) ≡ ϕ (f (1)) → ϕ (f (1)) .) Since ρ (1, f (1)) ≤ ϕ (1) − ϕ (f (1)) ,
we conclude ρ (1, f (1)) = 0, which contradicts ρ (1, f (1)) = 1. We conclude
therefore that there does not exist a fixed-point free ρ-Caristi mapping from
N → N.

Definition 14.1 ([189]). A sequence {xn}n∈N
in a partial metric space

(X, ρ) is called 0-Cauchy if limn,m→∞ ρ (xn, xm) = 0. The space (X, ρ) is said
to be 0-complete if every 0-Cauchy sequence in X converges, with respect to
T (ρ) , to a point x ∈ X for which ρ (x, x) = 0. Of course, every complete
partial metric space is 0-complete but the converse is not true in general.

It is known that the fixed point property for Caristi maps characterizes
metric completeness. Specifically, if (X, d) is a metric space, a mapping f :
X → X is said to be a Caristi mapping if there exists a lower semicontinuous
mapping ϕ : X → R which is bounded below and for which

d (x, f (x)) ≤ ϕ (x)− ϕ (f (x))

for every x ∈ X.

Theorem 14.2 ([113]). A metric space (X, d) is complete if and only if
every Caristi mapping f : X → X has a fixed point.

Subsequently there have been several similar characterizations of com-
pleteness (see, e.g., [215, 207], and papers cited in [189]). In particular,
it is known [30] that a normed linear space is complete if and only if every
contraction mapping defined on the space has a fixed point.

We now discuss Romaguera’s paper [189] in which an analog of
Theorem 14.2 is given for partial metric spaces.

Lemma 14.1. Let (X, ρ) be a partial metric space. Then for each x ∈ X
the function ρx : X → R

+ defined by ρx (y) = ρ (x, y) is lower semicontinuous
for (X, ρs) .
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Proof. Assume that limn→∞ ρs (yn, y) = 0. Then, since ρs (yn, y) =
2ρ (yn, y)− ρ (yn, yn)− ρ (y, y) and ρ (y, y) ≤ ρ (y, yn) ,

ρx (y) ≤ ρx (yn) + ρ (yn, y)− ρ (yn, yn)

= ρx (yn) + ρs (yn, y)− ρ (yn, y) + ρ (y, y)

≤ ρx (yn) + ρs (yn, y) .

Since ρ (y, y) ≤ ρ (y, yn) we have ρx (y) ≤ lim infn→∞ ρx (yn) . �

The main result of [189] is the following:

Theorem 14.3. A partial metric space (X, ρ) is 0-complete if and only
if every ρs-Caristi mapping has a fixed point.

Proof. ([189]) Suppose that (X, ρ) is 0-complete, and let f be a ρs-
Caristi mapping on X. Then there exists a ρs-lower semicontinuous function
ϕ : X → R

+ for which

ρ (x, f (x)) ≤ ϕ (x)− ϕ (f (x)) for all x ∈ X.

For each x ∈ X set

Ax := {y ∈ X : ρ (x, y) ≤ φ (x)− φ (y)} .
f (x) ∈ Ax ⇒ Ax 	= ∅. Moreover Ax is closed in the metric space (X, ρs) since
the mapping y �→ ρ (x, y) + φ (y) is lower semicontinuous in (X, ρs) .

Now fix x0 ∈ X and choose x1 ∈ Ax0
so that φ (x1) < infy∈Ax0

φ (y)+2−1.
Clearly Ax1

⊆ Ax0
. Hence for each x ∈ Ax1

we have

ρ (x1, x) ≤ φ (x1)− φ (x) ≤ inf
y∈Ax0

φ (y) + 2−1 − φ (x)

≤ φ (x) + 2−1 − φ (x) = 2−1.

Continuing in this manner it is possible to construct a sequence {xn} in X
such that the associated {Axn

} of closed subsets of (X, ρs) satisfies
(i) Axn+1

⊆ Axn
and xn+1 ∈ Axn

for all n ∈ N;
(ii) ρ (xn, x) ≤ 2−n for all x ∈ Axn

, n ∈ N.

Since ρ (xn, xn) ≤ ρ (xn, xn+1) and, by (i) and (ii), ρ (xn, xm) ≤ 2−n

for all m > n, it follows that limn,m→∞ ρ (xn, xm) = 0. Therefore {xn}
is a 0-Cauchy sequence in (X, ρ). Since (X, ρ) is 0-complete, there exists
x∗ ∈ X such that limn→∞ ρ (x∗, xn) = ρ (x∗, x∗) = 0, and thus limn→∞
ρs (x∗, xn) = 0. Therefore x∗ ∈ ∩n∈NAxn

.
To see that x∗ = f (x∗) , note that

ρ (xn, f (x∗)) ≤ ρ (xn, x
∗) + ρ (x∗, f (x∗))

≤ φ (xn)− φ (x∗) + φ (x∗)− φ (f (x∗)) ,

for all n ∈ N. Consequently f (x∗) ∈ ∩n∈NAxn
, so by (ii) ρ (xn, f (x∗)) <

2−n for all n ∈ N. Since ρ (x∗, f (x∗)) ≤ ρ (x∗, xn) + ρ (xn, f (x∗)) and
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limn→∞ ρ (x∗, xn) = 0, it follows that ρ (x∗, f (x∗)) = 0. Hence
ρs (x∗, f (x∗)) = 0, and since ρs (x∗, f (x∗)) ≤ 2ρ (x∗, f (x∗)) we conclude
that f (x∗) = x∗.

For the converse, suppose that there is a 0-Cauchy sequence {xn} of
distinct points in (X, ρ) which is not convergent in (X, ρs). Select a sub-
sequence {yn} if {xn} for which ρ (yn, yn+1) < 2−n for all n ∈ N. Let
A := {yn : n ∈ N} , and define f : X → X by setting f (x) = y0 if x ∈ X\A
and f (yn) = yn+1 for all n ∈ N. Also note that A is closed in (X, ρs) .

Now define φ : X → R
+ by setting φ (x) = ρ (x, y0) + 1 if x ∈ X\A

and φ (yn) = 2−n for all n ∈ N. Then φ (yn+1) < φ (yn) for all n ∈ N, and
φ (y0) ≤ φ (x) for all x ∈ X\A. From this fact and Lemma 14.1 we conclude
that φ is lower semicontinuous on (X, ρs) . Moreover, for each x ∈ X\A,

ρ (x, f (x)) = ρ (x, y0) = φ (x)− φ (y0) = φ (x)− φ (f (x)) ,

and for each yn ∈ A,

ρ (yn, f (yn)) = ρ (yn, yn+1) < 2−(n+1)

= φ (yn)− φ (yn+1)

= φ (yn)− φ (f (yn)) .

Therefore f is a Caristi ρs-mapping which has no fixed point. �

14.5. Nadler’s Theorem in Partial Metric Spaces

Following [13] we introduce the notion of a partial Hausdorff metric. Let
(X, ρ) be a partial metric space and let CBρ (X) be the family of all nonempty
bounded T (ρ)-closed subsets of (X, ρ) . (Here a set A in X is bounded if there
exists x0 /∈ X and M ≥ 0 such that for all a ∈ A, ρ (x0, a) ≤ ρ (a, a) +M .)

Now for A,B ∈ CBρ (X) and x ∈ X, set

distρ (x,A) = inf {ρ (x, a) : a ∈ A} ;
δρ (A,B) = sup {distρ (a,B) : a ∈ A} ;
δρ (B,A) = sup {distρ (b, A) : b ∈ B} .

Finally, let Hρ (A,B) = max {δρ (A,B) , δρ (B,A)} . It is easy to check that

distρ (x,A) = 0 ⇒ distρs (x,A) = 0,

where distρs (x,A) = inf {ρs (x, a) : a ∈ A} .

The following is the main result of [13].

Theorem 14.4. Let (X, ρ) be a complete partial metric space, and sup-
pose T : X → CBρ (X) satisfies for some k ∈ (0, 1) and all x, y ∈ X :

Hρ (T (x) , T (y)) ≤ kρ (x, y) .

Then T has a fixed point (i.e., for some x∗ ∈ X, x∗ ∈ T (x∗)).
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We should remark that this theorem, while true, requires the assumption
that CBρ (X) 	= ∅ to be meaningful. In [190] Romaguera gives an example
of a complete partial metric space (X, ρ) for which CBρ (X) = ∅.

Before proving the theorem, we make some preliminary observations,
which are taken from [13]. Throughout (X, ρ) denotes a partial metric space.

Proposition 14.1. For A,B,C ∈ CBρ (X) :

(i) δρ (A,A) = sup {ρ (a, a) : a ∈ A} ;
(ii) δρ (A,A) ≤ δρ (A,B) ;
(iii) δρ (A,B) = 0 ⇒ A ⊆ B;
(iv) δρ (A,B) ≤ δρ (A,C) + δρ (C,B)− infc∈C {ρ (c, c)} .

Proof. (i) Let A ∈ CBρ (X) . Since a is in the closure of A if and only
if distρ (a,A) = ρ (a, a),

δρ (A,A) = sup {distρ (a,A) : a ∈ A} = sup {ρ (a, a) : a ∈ A} .
(ii) Let a ∈ A. Since ρ (a, a) ≤ ρ (a, b) for all b ∈ B, it follows that

ρ (a, a) ≤ distρ (a,B) ≤ δρ (A,B) . From (i) we conclude that

δρ (A,A) = sup {ρ (a, a) : a ∈ A} ≤ δρ (A,B) .

(iii) Suppose that δρ(A,B) = 0. Then distρ (a,B) = 0 for all a ∈ A.
From (i) and (ii) it follows that ρ (a, a) ≤ δρ (A,B) = 0 for all
a ∈ A. Hence distρ (a,B) = ρ (a, a) for all a ∈ A. Thus a is in the
closure of B for all a ∈ A and, since B is closed, A ⊆ B.

(iv) Let a ∈ A, b ∈ B, c ∈ C. Since

ρ (a, b) ≤ ρ (a, c) + ρ (c, b)− ρ (c, c) ,

it follows that

distρ (a,B) ≤ ρ (a, c) + distρ (c,B)− ρ (c, c) ;

whence
distρ (a,B) + ρ (c, c) ≤ ρ (a, c) + δρ (C,B) .

Since c ∈ C is arbitrary,

distρ(a,B) + inf
c∈C

ρ (c, c) ≤ distρ (a,C) + δρ (C,B) .

Since a ∈ A is arbitrary, it follows that

δρ (A,B) ≤ δρ (A,C) + δρ (C,B)− inf
c∈C

ρ (c, c) .

�

Proposition 14.2. For all A,B,C ∈ CBρ (X)

(H1) Hρ (A,A) ≤ Hρ (A,B) ;
(H2) Hρ (A,B) = Hρ (B,A) ;
(H3) Hρ (A,B) ≤ Hρ (A,C) +Hρ (C,B)− infc∈C ρ (c, c) .



150 14. PARTIAL METRIC SPACES

Proof. From (ii) of Proposition 14.1 we have

Hρ (A,A) = δρ (A,A) ≤ δρ (A,B) ≤ Hρ (A,B) .

(H2) is obvious from the definition of Hρ. Using (iv) of Proposition 14.1 we
have

Hρ (A,B) = max {δρ (A,B) , δρ (B,A)}

≤ max

{
δρ (A,C) + δρ (C,B)− infc∈C ρ (c, c) ,
δρ (B,C) + δρ (C,A)− infc∈C ρ (c, c)

}

= max {δρ (A,C) + δρ (C,B) , δρ (B,C) + δρ (C,A)}
− inf

c∈C
ρ (c, c)

≤ max {δρ (A,C) , δρ (C,A)}+max {δρ (C,B) , δρ (B,C)}
− inf

c∈C
ρ (c, c)

= Hρ (A,C) +Hρ (C,B)− inf
c∈C

ρ (c, c) .

�
Corollary 14.1. For A,B ∈ CBρ (X) ,

Hρ (A,B) = 0 ⇒ A = B.

Proof. Suppose Hρ (A,B) = 0. Then by definition, δρ (A,B) =
δρ (B,A) = 0. By (iii) of Proposition 14.1, A ⊆ B and B ⊆ A; hence
A = B. �

Remark 14.1. An example given in [13] shows that in general the con-
verse of the above corollary is not true.

Lemma 14.2. Let A,B ∈ CBρ (X) . Then for any h > 1 and a ∈ A there
exists b = b (a) ∈ B such that

(14.1) ρ(a, b) ≤ hHρ (A,B) .

Proof. Suppose A = B. Then by (i) of Proposition 14.1

Hρ (A,B) = Hρ (A,A) = δρ (A,A) = sup
x∈A

ρ (x, x) .

However since h > 1, if a ∈ A

ρ (a, a) ≤ sup
x∈A

ρ (x, x) = Hρ (A,B) ≤ hHρ (A,B) .

Consequently b = a satisfies (14.1).
Now suppose A 	= B, and suppose there exists a ∈ A such that ρ (a, b) >

hHρ (A,B) for all b ∈ B. This implies that inf {ρ (a, y) : y ∈ B} ≥ hHρ (A,B) .
Thus distρ (a,B) ≥ hHρ (A,B) . However

Hρ (A,B) ≥ δρ (A,B) = sup
x∈A

distρ(x,B) ≥ distρ (a,B) ≥ hHρ (A,B) .

Since A 	= B, Corollary 14.1 implies Hρ (A,B) > 0, and this is a
contradiction. �
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Proof of Theorem 14.4. ([13]) Let x0 ∈ X and x1 ∈ T (x0) . From
Lemma 14.2 there exists x2 ∈ T (x1) such that ρ (x1, x2) ≤ 1√

k
Hρ (T (x0) ,

T (x1)) . Since
Hρ (T (x0) , T (x1)) ≤ kρ (x0, x1) ,

it follows that ρ (x1, x2) ≤
√
kρ(x0, x1). Similarly there exists x3 ∈ T (x2)

such that

ρ (x2, x3) ≤
1√
k
Hρ (T (x1) , T (x2)) ≤

√
kρ (x1, x2) .

Inductively, there exists a sequence {xn} ⊂ X such that

xn+1 ∈ T (xn) and ρ (xn+1, xn) ≤
√
kρ (xn, xn−1) for all n ≥ 1.

By (iv) of the definition of a partial metric, for any n,m ∈ N,

ρ (xn, xn+m) ≤ ρ (xn, xn+1) + ρ (xn+1, xn+2) + · · ·+ ρ (xn+m−1, xn+m)

≤
(√

k
)n

ρ (x0, x1) +
(√

k
)n−1

ρ (x0, x1) +

· · ·+
(√

k
)n+m−1

ρ (x0, x1)

=

((√
k
)n

+
(√

k
)n+1

+ · · ·+
(√

k
)n+m−1

)
ρ (x0, x1)

≤

(√
k
)n

1−
√
k
ρ (x0, x1) → 0 as n → ∞.

Thus for all m ∈ N,

ρs (xn, xn+m) ≤ 2ρ (xn, xn+m) → 0 as n → ∞.

Therefore {xn} is a Cauchy sequence in (X, ρs) . Since (X, ρ) is complete, as
noted earlier so is (X, ρs) and the sequence {xn} converges to some x∗ ∈ X
with respect to the metric ρs. Therefore

(14.2) ρ (x∗, x∗) = lim
n→∞

ρ (xn, x
∗) = lim

n,m→∞
ρ (xn, xm) = 0.

Since Hρ (T (xn) , T (x∗)) ≤ kρ (xn, x
∗) it follows that limn→∞ Hρ (T (xn) ,

T (x∗)) = 0. However xn+1 ∈ T (xn) ; hence

distρ (xn+1, T (x∗)) ≤ δρ (T (xn) , T (x∗)) ≤ Hρ (T (xn) , T (x∗))

and it follows that limn→∞ distρ (xn+1, T (x∗)) = 0. On the other hand

distρ (x
∗, T (x∗)) ≤ ρ (x∗, xn+1) + distρ (xn+1, T (x∗)) .

Letting n → ∞ and using (14.2) it follows that distρ (x
∗, T (x∗)) = 0.

Therefore ρ (x∗, x∗) = distρ (x
∗, T (x∗)) and since T (x∗) is closed, x∗ ∈

T (x∗) . �
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14.6. Further Remarks

Recently it has been shown that many fixed point results proved in the
context to partial metric framework can be obtained from their corresponding
metric counterparts (see [90, 95]). Specifically, it was proved in [95] that
every partial metric ρ on a nonempty set X induces a metric dρ on X such
that T (ρs) ⊆ T (dρ), where

dρ (x, y) =

{
0 if x = y
ρ (x, y) if x 	= y

.

Moreover, (X, dρ) is complete if and only if (X, ρ) is 0-complete.
Taking these facts into account, it was pointed out in [90] that a wide

class of generalized contractive mappings in the partial metric context are
at the same time generalized contractive mappings in the metric setting as
well, so the existence and uniqueness of fixed point results for such mappings
can be deduced from those results given for the same kind of mappings in
the metric case. As a particular case of this observation one sees that if a
mapping f : X → X satisfies the contractive condition

(14.3) ρ (f (x) , f (y)) ≤ kρ (x, y)

for all x, y ∈ X and some k ∈ [0, 1), then

dρ (f (x) , f (y)) ≤ kdρ (x, y)

for all x, y ∈ X. Therefore if the partial metric space (X, ρ) is 0-complete
and if f : X → X satisfies (14.3) the existence and uniqueness of a fixed
point of f follows from the classical Banach contraction mapping theorem.
However, as noted in [200], Theorem 14.1 provides a property of such a fixed
point that cannot be deduced in the metric context and that is essential in
Denotational Semantics. Specifically, if x∗ is the fixed point of the mapping
f , then ρ (x∗, x∗) = 0. As a result, the classical fixed point results do not
invalidate totally the new ones in the partial metric framework. As noted in
[200], this is especially true of the following result.

Theorem 14.5 ([200]). Let (X, ρ) be a 0-complete partial metric space,
let f : X → X be monotone relative to the partial order ≤ρ, and suppose
x0 ∈ X satisfies x0 ≤ f (x0) . If there exists k ∈ [0, 1) such that

ρ (fn (x0) , f
n (x0)) ≤ kρ

(
fn−1 (x0) , f

n−1 (x0)
)

for all n ∈ N, then f has a fixed point x∗ ∈ X such that
1) x∗ is the unique fixed point of f in {z ∈ X : x0 ≤ρ z} .
2) x∗ is the supremum of {fn (x0)}n∈N

in (X,≤ρ) and maximal in
(X,≤ρ) .

3) The sequence {fn (x0)}n∈N
converges to x∗ with respect to T (ρs) .

4) ρ (x∗, x∗) = 0.



CHAPTER 15

Diversities

15.1. Introduction

A generalization of metric spaces called “diversities” has been introduced
by Bryant and Tupper in [43]. It is shown there that remarkable analogies
exist between hyperconvex metric spaces and diversities, especially involving
the “tight span” (otherwise called the injective or hyperconvex envelop).

Definition 15.1. Let X be a set, and let (X) denote the collection of
finite subsets of X. A diversity is a pair (X, δ) , where δ : (X) → R satisfies
for all A,B,C ∈ (X):

(D1) δ (A) ≥ 0, and δ (A) = 0 if and only if |A| ≤ 1;
(D2) if B 	= ∅, δ (A ∪ C) ≤ δ (A ∪B) + δ (B ∪ C) .

A diversity (X, δ) is said to be bounded if there exist M ∈ R such that
δ (A) ≤ M for all A ∈ (X).

Motivation for the use of the term diversity stems from the appear-
ance of special cases of the definition in work on phylogenetic and ecological
diversities [80, 155, 168, 205].

The following are among examples of diversities given in [43].
1. Diameter diversity : Let (X, d) be a metric space. For all A ∈ (X) ,

let

δ (A) = max {d (a, b) : a, b ∈ A} = diam (A) .

Then (X, δ) is a diversity called the diameter diversity.
2. Phylogenetic diversity : Let (T, d) be an R-tree and let μ be the

one-dimensional Hausdorff measure on it. In this case, μ ([a, b]) =
d (a, b) for a, b ∈ T. If A ⊆ T,

conv (A) =
⋃

a,b∈A

[a, b] .

For A ∈ (T ), set

δt (A) = μ (conv (A)) .
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Then δt defines a diversity on T called the R-tree (or real tree)
diversity on T. Finally, a diversity (X, δ) is called a phylogenetic
diversity if it can be embedded in an R-tree diversity for some com-
plete R-tree (T, d) .

Following [43] we now list some basic properties of diversities.

Proposition 15.1. Let (X, δ) be a diversity. Then:
1. δ is monotone, that is, δ (A) ≤ δ (B) for A,B ∈ (X) with A ⊆ B.
2. δ induces a metric d : X × X → R on X defined by d (x, y) =

δ ({x, y}) for x, y ∈ X.
3. For A,B ∈ (X), if A ∩B 	= ∅, then δ (A ∪B) ≤ δ (A) + δ (B) .

Proof. 1. For any A ∈ (X) and b ∈ X, then by (D2) (taking
C = ∅) we have

δ (A) ≤ δ (A ∪ {b}) + δ {b} = δ (A ∪ {b}) .

The result now follows by induction. Let A ∈ (X) , n > 1, and
{b1, · · ·, bn} ∈ (X) , and assume

δ (A) ≤ δ (A ∪ {b1, · · ·, bn−1}) .

Again by (D2)

δ (A) ≤ δ (A ∪ {b1, · · ·, bn−1})
≤ δ (A ∪ {b1, · · ·, bn−1} ∪ {bn})
= δ (A ∪ {b1, · · ·, bn}) .

2. We have d (x, y) = 0 if and only if x = y by (D1) . Symmetry of d
is clear. The triangle inequality follows from (D2):

d (x, z) = δ ({x, z}) ≤ δ ({x, y}) + δ ({y, z}) = d (x, y) + d (y, z)

for all x, y, z ∈ X.
3. Since A ∩B 	= ∅, (D2) implies

δ (A ∪B) ≤ δ (A ∪ (A ∩B)) + δ (B ∪ (A ∩B)) = δ (A) + δ (B) .

�
We remark in particular that statements 1 and 2 in the above proposition

imply the following: If A ∈ (X) and z ∈ X, then

δ (A) ≤ δ (A ∪ {z}) ≤
∑
a∈A

δ ({z, a}) =
∑
a∈A

d (z, a) .
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15.2. Hyperconvex Diversities

Definition 15.2. 1. Given diversities (Y1, δ1) and (Y2, δ2), a map-
ping f : Y1 → Y2 is said to be nonexpansive if for all A ⊆ (Y1)

δ2 (f (A)) ≤ δ1 (A) ,

and f is said to be an embedding if it is one-to-one and δ2 (f (A)) =
δ1 (A) for all A ∈ (Y1) .

2. A diversity is injective if it satisfies the following property: given
any pair of diversities (Y1, δ1) , (Y2, δ2) and embedding π : Y1 → Y2

and a nonexpansive map f : Y1 → X there is a nonexpansive map
g : Y2 → X such that f = g ◦ π.

3. A diversity (X, δ) is said to be hyperconvex if for all r : (X) → R

such that

δ

( ⋃
A∈A

A

)
≤
∑
A∈A

r (A)

for all finite A ⊆ (X) there is a z ∈ X such that δ ({z} ∪ Y ) ≤ r (Y )
for all finite Y ⊆ X.

It is worth noting that if (X, δ) is a hyperconvex diversity and d is its
induced metric, then (X, d) is complete (see Proposition 3.10 of [77]). It is
also proved in [77] that (X, d) need not be hyperconvex.

The following is the diversity counterpart of the fundamental result of
Aronszajn and Panitchpakdi’s result of hyperconvex metric spaces
(see Theorem 4.2 of Chap. 4).

Theorem 15.1. A diversity is injective if and only if it is hyperconvex.

15.3. Fixed Point Theory

As we have observed earlier, any bounded hyperconvex metric space has
the fixed point property for nonexpansive mappings. However it has been
shown in [77] that if (X, δ) is a hyperconvex diversity for which its induced
metric space (X, d) is bounded, then (X, d) need not have the fixed point
property for nonexpansive mappings. However if the diversity δ is bounded,
then (X, d) does have the fixed point property for nonexpansive mappings.
Indeed, the following is Theorem 4.2 of [77].

Theorem 15.2. Let (X, δ) be a bounded and hyperconvex diversity with
induced metric space (X, d) and suppose f : X → X is nonexpansive relative
to d. Then f has a fixed point.

For a bounded subset A of a metric space (X, d) let rx (A) denote the
Chebyshev radius of A relative to x ∈ X, that is

rx (A) = inf {r ≥ 0 : A ⊆ B (x; r)}
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Recall also that

cov (A) :=
⋂

{D : D is a closed ball, and D ⊇ A} .

For the proof of the theorem we will need the simple fact that rx (A) =
rx (cov (A))

Proof of Theorem 15.2. ([77]) Let

U = {A ⊆ X : A 	= ∅, A = cov (A) , f (A) ⊆ A} .
Our first objective is to show that U has a minimal element. First, since δ is
a bounded diversity, (X, d) is a bounded metric space. Thus U 	= ∅ because
X ∈ U . Now let {Ai}i∈I be a decreasing chain in U ordered by set inclusion.
We shall show that ∩i∈IAi 	= ∅.

Notice that for each admissible subset A of X,

A =
⋂
x∈X

B (x; rx (A)) .

For each x ∈ X and i, j ∈ I, Ai ⊆ Aj if i ≥ j; hence rx (Ai) ≤ rx (Aj) . Hence
it is possible to define

r (x) = inf {rx (Ai) : i ∈ I} .
Notice that if r (x) = 0 for some x ∈ X, then x ∈ ∩i∈IAi, so we assume
r (x) > 0 for each x. Let {y1, · · ·, yn} be a finite collection of points of X and
let ε > 0. Then for each k ∈ {1, · · ·, n} there exist i (k) such that

ryk

(
Ai(k)

)
≤ r (yk) + ε.

We may further assume that Ai(1) ⊆ Ai(2) ⊆ · · · ⊆ Ai(n). Hence

ryk

(
Ai(1)

)
≤ r (yk) + ε.

Taking any a ∈ Ai(1) we have d (yk, a) ≤ ryk

(
Ai(1)

)
≤ r (yk) + ε, and thus

δ ({y1, · · ·, yn}) ≤
n∑

k=1

δ ({yk, a}) =
n∑

k=1

d (yk, a) ≤
n∑

k=1

r (yk) + nε.

Since ε > 0 is arbitrary,

δ ({y1, · · ·, yn}) ≤
n∑

k=1

r (yk)

for any finite collection {y1, · · ·, yn} of point in X. Therefore for a given finite
collection {x1, · · ·, xm} ⊆ X we can set

r ({x1, · · ·, xm}) =
m∑
i=1

r (xk) .

It now follows from the hyperconvexity of (X, δ) that there exists z ∈ X such
that

δ ({z} ∪ {y1, · · ·, yn}) ≤
n∑

i=1

r (yi)
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for all finite collections {y1, · · ·, yn} of points of X. In particular this implies
d (z, x) ≤ r (x) for all x ∈ X. Hence z ∈ Ai for each i and it follows that

z ∈
⋂
i∈I

Ai.

It is now immediate that ∩i∈IAi ∈ U . It now follows from Zorn’s lemma that
U contains an element A which is minimal with respect to set inclusion. We
may suppose this element is not a singleton; otherwise it would be a fixed
point of f.

Since A is minimal and f (A) ⊆ A, it follows that A = cov (f (A)) ; thus

A =
⋂
x∈X

B (x; rx (f (A))) .

Define

d = sup
n>1

sup
x1,···,xn∈X

δ ({x1, · · ·, xn})

n
.

Since (X, δ) is bounded, there exists N ∈ N for which this supremum is
attained. Choose ε > 0 so that ε ≤ d

N . Then there exist {y1, · · ·, yN} ⊆ A
such that

δ ({y1, · · ·, yN})
N

> d− ε,

so it follows that

δ ({y1, · · ·, yN}) > (N − 1) d.

From Property 2 of diversities

n∑
i=2

d (y1, yi) ≥ δ ({y1, · · ·, yN}) > (N − 1) d.

It is now possible to select two points, say x, y, in {y1, · · ·, yN} such that
d (x, y) > d.

Now set A′ := A ∩
(⋂

a∈A B (a; d)
)
. We now show that A′ is nonempty.

First, since A is an admissible set,

A =
⋂
x∈X

B (x; rx (A)) .

Consider the function ρ : X → R defined by

ρ (x) =

{
d if x ∈ A and rx (A) > d,
rx (A) otherwise.
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Let {y1, · · ·, yn} be a finite subset of X, and order these points in such a
way that for some i ∈ {0, 1, · · ·, n}, yi ∈ A and ρ (yj) = d if j ≤ i and
ρ (yj) = ryj

(A) if j > i. Then

δ ({y1, · · ·, yi}) ≤ sup
x1,···,xi∈A

δ ({x1, · · ·, xi})

= i
supx1,···,xi∈A δ ({x1, · · ·, xi})

i
≤ id,

and for j > i+ 1,

ρ (yj) = ryj
(A) ≥ d (yj , y1) = δ ({yj , y1}) .

Now proceed as follows (if i = 0, take y0 (in place of y1) to be any point of A)

δ ({y1, · · ·, yn}) ≤ δ ({y1, · · ·, yi}) +
n∑

j=i+1

δ ({y1, yj})

≤ i · d+
n∑

j=i+1

ryj
(A)

=

n∑
k=1

ρ (yk) .

Now for {x1, · · ·, xn} ⊆ X, define

ρ ({x1, · · ·, xn}) =
n∑

k=1

ρ (xk) .

By the hyperconvexity of the diversity δ there exists z ∈ X such that
d (z, a) ≤ d for any a ∈ A. In particular z ∈ ∩a∈AB (a; d) . Moreover, for
any x ∈ X, d (z, x) ≤ ρ (x) ≤ rx (A) . This implies z ∈ A; hence z ∈ A′.
This proves that A′ 	= ∅. Now, since rx (A) = rx (f (A)) we conclude that A′

is f -invariant. On the other hand, A′ 	= A because, as shown above, there
exist two points, x, y ∈ A such that d (x, y) > d while diam (A′) ≤ d. This
contradiction shows that A must be a singleton consisting of a fixed point
for f. �

QUESTION. We end with a final question. The authors mention in
[77] the pattern of the above proof follows the original proof given by Kirk
in [110]. As we have seen earlier (see Theorem 3.2) Kirk’s theorem also has
a constructive proof based on a theorem of Zermelo which avoids an appeal
to the Axiom of Choice. This raises the question of whether it is possible to
give a more constructive proof Theorem 15.2.
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