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. . . above the altar was carved the statue of Madame St. Mary,
and this minstrel did come before this image right humbly.

“Sweet Lady,”said he,“scorn not the thing I know, for with
the help of God I will essay to serve you in good faith, even as I
may. I cannot read your hours nor chant your praise, but at the
least I can set before you what art I have.”

Then commenced this minstrel his merry play, leaping low
and small, tall and high, over and under. Then he knelt upon his
knees before the statue, and meekly bowed his head.

“Most gracious Queen” said he, “of your pity and charity
scorn not this my service” Again he leaped and played, and for
holiday and festival, made the somersault of Metz. Afterwards
he did the Spanish vault, springing and bounding, then the
vaults they love in Britanny, and all of these feats he did as best
as he was able. Then he walked on his two hands, with his feet
in the air, and his head near the ground. Thus long did this
minstrel leap and play, till at last, nigh fainting with weariness,
he could stand no longer on his feet, but fell to his knees.

“Lady,” said he,“I worship you with heart, with body, feet
and hands, for this I can neither add to nor take away. Now I am
your minstrel.”

Then he smote upon his breast, he sighed and wept, since he

knew no better prayer than tears, nor no better worship than his

art . . .

From a medieval French legend.



Preface to the Second Edition

The scientific tripod is based on the three subjects (in alphabetical order to avoid
a value judgment): computation, experiment, and theory. It is obvious at the very
beginning of this millennium that the analytical and theoretical approaches have
lost their impact and influence on research developments. The exponential growth
of computer power has made simulations and visualization tools the effective and
relevant devices to elaborate new models, new designs, and new technologies.

However, the domain covered by the fluid mechanics discipline is quite large and
turbulence in flows is still a challenging problem in classical physics. Therefore the
need for theoretical analyses of simple situations is still required in order to build
up a line of reasoning helping the scientist to understand the basic phenomena.
In the realm of reductionism that decomposes complicated matters into simpler
problems, the simple solutions form the background of more complex cases with
our intellectual abilities and educational biases to practice linear superposition. As
soon as we tackle nonlinear physics we have to rely on the toolbox provided with
those instruments in such a way that we can “think out of the box.” Even though
the Chinese Wise Man wrote “A picture is better than a thousand words” an image
does not yield any explanation nor insight views. Leonardo wrote “Mechanics is
the paradise of the mathematical sciences, because by means of it one comes to the
fruits of mathematics”; replace “Mechanics” by “Fluid mechanics” and here we are.

The author of the first edition, although still teaching, has been away from
research for 20 years. Therefore, to bring the book up to date, a second author who
is more current has been added.

Half a century later, the preface to the first edition seems prophetic. Aspects
of hydrodynamics once considered offbeat have indeed become important. The
authors, for example, have worked on problems where variations in viscosity and
surface tension cannot be ignored. Also, the advent of nanotechnology has expanded
interest in the hydrodynamics of thin films, and hydromagnetic effects and radiative
heat transfer are now routinely encountered in materials processing.

This monograph addresses the basic principles of fluid mechanics and solves
fluid flow problems where viscous effects are the dominant physical phenomena.
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viii Preface to the Second Edition

Readers who are interested in aerodynamics and turbulence applications are invited
to refer to the large body of literature that cover those fields.

M.O.D. thanks the Presses Polytechniques et Universitaires Romandes for giving
permission of borrowing material from the book on finite elements: Azaïez et al.
(2011).

Changes in the New Edition

Many misprints and some outright errors in the first edition have been corrected
here. Topics new to the second edition include the second principle of thermody-
namics, Boussinesq approximation, time dependent flows, Marangoni convection,
Kovasznay flow, plane periodic solutions, Hele-Shaw cells, Stokeslets, rotlets, finite
element methods, Wannier flow, corner eddies, and analysis of the Stokes operator.
In keeping with the spirit of the first edition, we seek to supplement the existing
literature, not to compete with it. Since 1964, for example, there has been an
enormous literature about slow flow past obstacles. We discuss it but make no
attempt to replicate it.

The bibliography is no longer presented at the end of each chapter. References
are collected at the end of the monograph.

San Jose, USA W.E. Langlois
Lausanne, Switzerland Michel O. Deville
February 2014



Preface to the First Edition

A book entitled Slow Viscous Flow could be anything from a treatise on weakly
elliptic systems of partial differential equations to a plumbers manual. To locate the
present book on the spectrum, regard it as a monograph on theoretical hydrodynam-
ics, written in the language of applied mathematics.

Certain key applications of hydrodynamics involve high-speed flow—a subject
which raises many interesting questions. Hence the typical modern treatise on
viscous flow deals primarily with boundary layer theory, heat transfer, turbulence.
Its section on slow flow is brief, for neither the author nor the intended reader is
especially interested. Unfortunately the same dispatch is given to the fundamenlals
of hydrodynamics. The author knows from experience which subtle points must
be stressed and which can be glossed—in the usual applications. As technology
expands, however, aspects of hydrodynamics once considered off-beat become
increasingly important.

This book is intended to supplement the existing literature, not to compete with
it. When continuity requires that a topic be included even though it is adequately
treated elsewhere, a different viewpoint is taken here. Consequently this volume
does not offer a complete course in hydrodynamics, only the first trimester. For
the theory of high-speed flow—a vital subject—and for experimental and historical
aspects, the student must look elsewhere.

Background Requirements

The reader is assumed familiar with elementary differential equations and with
the manipulation of multiple integrals; the required physics background includes
elementary mechanics and the rudiments of thermodynamics. More extensive
preparation makes for easier going, but is not essential.

One can go quite deeply into hydrodynamics without encountering anything
more involved than sines and cosines. The subject offers mathematical content
free of mathematical complexity—a feature which our esoteric brethren found so

ix



x Preface to the First Edition

appealing in topology and algebra when those subjects were young. Complexity
there is, especially in applied hydrodynamics, but this, a basic monograph, usually
avoids it. In a few instances involved calculations are included, for they illustrate
important points.

Two short sections (Chap. 5, Sect. 5.4; Chap. 7, Sects. 7.1–7.4) assume that the
reader has been exposed to complex function theory. They can be skipped without
loss of continuity.

The reader versed in Cartesian tensor analysis can skip Chap. 1. For the reader
who has mastered general tensors, Chap. 3 need only be scanned to ensure that the
notation is compatible with his own.

Bibliographical Scheme

The nine chapters could be expanded to nine volumes. However most readers want
to get on with it, and so do I. If a chapter evokes special interest, the bibliography at
its end indicates appropriate collateral reading; a review comment accompanies each
entry. References pertaining to specific points of analysis are given in footnotes.

San Jose, USA W.E. Langlois
January 1964



Contents

1 Cartesian Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Classical Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Suffix Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 The Summation Convention .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 The Kronecker Delta and the Alternating Tensor . . . . . . . . . . . . . . . . . 9
1.5 Orthogonal Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Basic Properties of Cartesian Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.7 Isotropic Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 The Equations of Viscous Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 Kinematics of Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Description of Deformation in a Fixed
Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.2 Description of Deformation in a Moving
Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Dynamics of Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.1 Conservation of Momentum .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.2 Conservation of Angular Momentum . . . . . . . . . . . . . . . . . . . . 40
2.2.3 The Constitutive Equation for a Newtonian

Viscous Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.4 The Constitutive Equation

for a Non-Newtonian Viscous Fluid . . . . . . . . . . . . . . . . . . . . . . 48
2.3 Energy Considerations .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.1 Conservation of Energy in Continuous Media .. . . . . . . . . . 53
2.3.2 The Energy Equation for a Newtonian

Viscous Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.3.3 Second Principle of Thermodynamics . . . . . . . . . . . . . . . . . . . 57

2.4 Incompressible Fluids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.4.1 The Boussinesq Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.5 The Hydrodynamic Equations in Summary . . . . . . . . . . . . . . . . . . . . . . . 63
2.5.1 Boussinesq Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xi



xii Contents

2.6 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.6.1 The No-Slip Condition .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.6.2 Force Boundary Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.6.3 Thermocapillary Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.6.4 Other Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.7 Similarity Considerations.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.7.1 Similarity Rules for Steady, Incompressible

Flow Without Body Forces When No Free
Surface Is Present . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.7.2 Similarity Rules for Unsteady,
Incompressible Flow Without Body Forces
When No Free Surface Is Present . . . . . . . . . . . . . . . . . . . . . . . . 73

2.8 Vorticity Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3 Curvilinear Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.1 General Tensor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.1.1 Coordinate Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.1.2 The Metric Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.1.3 The Christoffel Symbols: Covariant Differentiation.. . . . 87
3.1.4 Ricci’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.2 The Hydrodynamic Equations in General Tensor Form . . . . . . . . . . 91
3.3 Orthogonal Curvilinear Coordinates: Physical

Components of Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.3.1 Cylindrical Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.3.2 Spherical Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4 Exact Solutions to the Equations of Viscous Flow . . . . . . . . . . . . . . . . . . . . . . 105
4.1 Rectilinear Flow Between Parallel Plates . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.2 Plane Shear Flow of a Non-Newtonian Fluid. . . . . . . . . . . . . . . . . . . . . . 108
4.3 The Flow Generated by an Oscillating Plate . . . . . . . . . . . . . . . . . . . . . . 109
4.4 Transient Flow in a Semi-infinite Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.5 Channel Flow with a Pulsatile Pressure Gradient . . . . . . . . . . . . . . . . . 113
4.6 Poiseuille Flow .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.7 Starting Transient Poiseuille Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.8 Pulsating Flow in a Circular Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.9 Helical Flow in an Annular Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.9.1 The Newtonian Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.9.2 The Non-Newtonian Circular Couette Flow . . . . . . . . . . . . . 126

4.10 Hamel’s Problem: Flow in a Wedge-Shaped Region .. . . . . . . . . . . . . 127
4.10.1 The Axisymmetric Analog of Hamel’s Problem.. . . . . . . . 130

4.11 Bubble Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.12 The Flow Generated by a Rotating Disc . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.13 Free Surface Flow over an Inclined Plane . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.14 Natural Convection Between Two Differentially

Heated Vertical Parallel Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.15 Flow Behind a Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



Contents xiii

4.16 Plane Periodic Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.17 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5 Pipe Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.1 Poisson’s Equation for the Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.2 Polynomial Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2.1 The Elliptical Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.2.2 The Triangular Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.3 Separation of Variables: The Rectangular Pipe . . . . . . . . . . . . . . . . . . . . 149
5.4 Conformal Mapping Methods .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.4.1 Multiply-Connected Regions: Flow Between
Eccentric Cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6 Flow Past a Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.1 The Equations of Creeping Viscous Flow . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.2 Creeping Flow Past a Sphere .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.3 Oseen’s Criticism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.4 Matching Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.5 Flow Past Non-spherical Obstacles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.6 Stokeslets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.6.1 Propulsion of Microorganisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7 Plane Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.1 Description of Plane Creeping Flow in Terms

of Complex Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.2 The Uniqueness Theorem for Creeping Flows

in Bounded Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.3 The Stokes Paradox .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
7.4 Conformal Mapping and Biharmonic Flow . . . . . . . . . . . . . . . . . . . . . . . 196
7.5 Pressure Flow Through a Channel of Varying Width . . . . . . . . . . . . . 201

7.5.1 Wall Slope Everywhere Negligible . . . . . . . . . . . . . . . . . . . . . . . 202
7.5.2 Wall Curvature Everywhere Negligible . . . . . . . . . . . . . . . . . . 203
7.5.3 Power Series Expansion in the Wall Slope . . . . . . . . . . . . . . . 207
7.5.4 The Flow Through a Smooth Constriction .. . . . . . . . . . . . . . 208

7.6 Hele-Shaw Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

8 Rotary Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
8.1 The Equations Governing Creeping Rotary Flow . . . . . . . . . . . . . . . . . 214
8.2 Flow Between Parallel Discs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.3 Flow Between Coaxial Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
8.4 Flow Between Concentric Spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

8.4.1 Secondary Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
8.5 Rotlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

9 Lubrication Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
9.1 Physical Origins of Fluid-Film Lubrication . . . . . . . . . . . . . . . . . . . . . . . 230
9.2 The Mathematical Foundations of Lubrication Theory . . . . . . . . . . . 232



xiv Contents

9.3 Slider Bearings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
9.4 Externally Pressurized Bearings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
9.5 Squeeze Films . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
9.6 Journal Bearings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

9.6.1 The Wannier Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

10 Introduction to the Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
10.1 Weak Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
10.2 The Finite Elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
10.3 One-DimensionalQ1 Lagrange Element . . . . . . . . . . . . . . . . . . . . . . . . . . 255
10.4 One-DimensionalQ2 Lagrange Element . . . . . . . . . . . . . . . . . . . . . . . . . . 257
10.5 Implementation of the Galerkin Method .. . . . . . . . . . . . . . . . . . . . . . . . . . 258
10.6 Natural Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
10.7 Multidimensional Finite Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

10.7.1 Two-DimensionalQ1 Element . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
10.7.2 Implementation of the 2D Galerkin Method .. . . . . . . . . . . . 264
10.7.3 Three-DimensionalQ1 Element . . . . . . . . . . . . . . . . . . . . . . . . . 265

10.8 Two-DimensionalQ2 Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
10.9 Triangular Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

10.9.1 P1 Finite Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
10.9.2 P2 Finite Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

10.10 Spectral and Mortar Element Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

11 Variational Principle, Weak Formulation and Finite Elements . . . . . . . 271
11.1 Variational Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
11.2 Weak Form of the Stokes Problem .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
11.3 Finite Element Discretization of the Stokes Equation.. . . . . . . . . . . . 275
11.4 Stable Finite Elements for Viscous Incompressible Fluids . . . . . . . 277
11.5 Unsteady Stokes Equation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
11.6 Advection-Diffusion Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

11.6.1 One Dimensional Burgers Equation .. . . . . . . . . . . . . . . . . . . . . 282
11.6.2 Multidimensional Burgers Equation . . . . . . . . . . . . . . . . . . . . . 286

11.7 Navier-Stokes Equation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
11.8 Spectral Elements for the Navier-Stokes Equation .. . . . . . . . . . . . . . . 288

12 Stokes Flow and Corner Eddies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
12.1 Two-Dimensional Corners. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
12.2 The Paint-Scraper Problem .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
12.3 Two-Dimensional Corner Eddies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

12.3.1 Real Solutions for � (˛ > 73:15ı) . . . . . . . . . . . . . . . . . . . . . . . 298
12.3.2 Complex Solutions for � (˛ < 73:15ı) . . . . . . . . . . . . . . . . . . 298

12.4 Stokes Eigenmodes and Corner Eddies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
12.4.1 Periodic Stokes Eigenmodes.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
12.4.2 Channel Flow Stokes Eigenmodes . . . . . . . . . . . . . . . . . . . . . . . 301



Contents xv

12.4.3 Stokes Eigenmodes in the Square Domain.. . . . . . . . . . . . . . 303
12.4.4 Corner Modes in the Cubic Domain. . . . . . . . . . . . . . . . . . . . . . 304

12.5 Three-Dimensional Stokes Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Appendix Comments on Some Bibliographical Entries . . . . . . . . . . . . . . . . . . . 307

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317



Chapter 1
Cartesian Tensors

Abstract The notation and methodology of Cartesian tensor analysis is introduced.
The focus is on that part of the subject which is useful in developing the equations
of hydrodynamics.

Tensor notation will be used quite freely throughout this monograph. Since many of
the quantities encountered in viscous flow theory are tensorial in character, avoiding
tensor notation would introduce needless complexity.

In this first chapter we shall introduce the subject of Cartesian tensor analysis,
which, as we shall see in the next chapter, is a useful tool for the formulation of the
equations governing viscous flow. Later on we shall be concerned with obtaining
solutions to these equations—a process often simplified by the use of curvilinear
coordinate systems. Therefore Chap. 3 will cover a bit of general tensor analysis,
which allows us to pass easily from one coordinate system to another.

In a sense it is superfluous to treat Cartesian coordinates as a special case.
Excellent articles and monographs have been written on various aspects of con-
tinuum mechanics with general tensor notation used throughout. However those
readers who are unfamiliar with tensor analysis may find it somewhat easier to
learn the subject in two steps rather than one. Many monographs and textbooks
cover tensor analysis. With no intent of being exhaustive we refer the reader to Aris
(1962), Jeffreys (1931), Rivlin (1957), and Spencer (2004).

1.1 The Classical Notation

Cartesian tensor analysis deals with the problems involved in passing from one
rectangular Cartesian coordinate system to another. Such problems can be resolved
by straightforward algebraic methods. However with the tensor approach the
amount of manipulation is considerably reduced by using an apparently elaborate,
but actually quite simple, suffix notation.

W.E. Langlois and M.O. Deville, Slow Viscous Flow,
DOI 10.1007/978-3-319-03835-3__1,
© Springer International Publishing Switzerland 2014
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2 1 Cartesian Tensors

Fig. 1.1 Cartesian
coordinate system with two
arbitrary points P1 and P2

In order to set the stage for the suffix notation, let us discuss briefly the more
traditional component notation. Consider in x � y � z space a directed straight line
which has direction cosines l; m; n. Any parallel line directed in the same sense also
has direction cosines l; m; n. Even though we have the normalization relation

l2 Cm2 C n2 D 1 ; (1.1)

two direction cosines of a line do not determine the third: there is an indeterminacy
in sign associated with the two possible senses.

If two lines meet, the angle � between them can be expressed in terms of
l1;m1; n1 and l2;m2; n2, the direction cosines of the two lines respectively. With
the construction in Fig. 1.1,

P1P2
2 D .x2 � x1/2 C .y2 � y1/

2 C .z2 � z1/
2I

x1 D r1l1; y1 D r1m1; z1 D r1n1I (1.2)

x2 D r2l2; y2 D r2m2; z2 D r2n2 :

Hence

P1P2
2 D .r2l2 � r1l1/

2 C .r2m2 � r1m1/
2 C .r2n2 � r1n1/2

D .l21 Cm2
1 C n21/r

2
1 C .l22 Cm2

2 C n22/r
2
2 (1.3)

�2.l1l2 Cm1m2 C n1n2/r1r2

D r21 C r22 � 2.l1l2 Cm1m2 C n1n2/r1r2 :

However

r1 D r2 cos �; P1P2 D r2 sin � : (1.4)
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Substituting (1.4) into (1.3) and dividing by r22 gives us the relation

cos � D l1l2 Cm1m2 C n1n2 : (1.5)

When the lines are at right angles, this reduces to the orthogonality condition

l1l2 Cm1m2 C n1n2 D 0 : (1.6)

A point P.x; y; z/ will have different coordinates in another rectangular Cartesian
system x0�y0 �z0 having the same origin and coordinate length scale as the x�y�z
system. Suppose that the direction cosines of the primed axes with respect to the
unprimed axes are as follows:

x0/l1;m1; n1I y0/l2;m2; n2I z0/l3;m3; n3 : (1.7)

The nine direction cosines so defined must satisfy the three normalization relations

l21 Cm2
1 C n21 D 1 ;

l22 Cm2
2 C n22 D 1 ; (1.8)

l23 Cm2
3 C n23 D 1 :

Since the primed axes are mutually perpendicular, the direction cosines also satisfy
the orthogonality conditions1

l2l3 Cm2m3 C n2n3 D 0 ;

l3l1 Cm3m1 C n3n1 D 0 ; (1.9)

l1l2 Cm1m2 C n1n2 D 0 :

Despite the six relationships provided by (1.8) and (1.9), it is necessary, because of
indeterminacies in sign, to specify six direction cosines in order to determine the
orientation of a coordinate system. Three direction cosines are needed to specify the
x0 coordinate direction; when these have been selected, two degrees of freedom
remain for the y0 direction which must be normal to the x0-axis; when the five
direction cosines defining the x0 and y0 directions have been designated, the locus

1The orthogonality conditions hold even if the x � y � z system and the x0 � y0 � z0 system have
different coordinate length scales, i.e., if the transformation of coordinates involves a stretching or
shrinking as well as a rotation. For transformations of this sort, the normalization relations do not
apply.

Coordinate transformations with a change of scale fall within the framework of Chap. 3. For
the present we shall continue to assume that the change of coordinates involves only a rotation,
and possibly a reflexion, so that the normalization relations (1.8) and the orthogonality conditions
(1.9) both apply.
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Fig. 1.2 Coordinate
transformations

of the z0-axis is completely determined, but its sense is not. Thus a sixth direction
cosine is needed to specify whether the x0 � y0 � z0 system is right-handed or left-
handed (Fig. 1.2).

The direction cosines of the unprimed axes with respect to the primed axes are
given by

x/l1; l2; l3I y/m1;m2;m3I z/n1; n2; n3 : (1.10)

Consequently the direction cosines satisfy relationships which can be considered
the duals of (1.8) and (1.9):

l21 C l22 C l23 D 1 ;

m2
1 Cm2

2 Cm2
3 D 1 ; (1.11)

n21 C n22 C n23 D 1 I

m1n1 Cm2n2 Cm3n3 D 0 ;

n1l1 C n2l2 C n3l3 D 0 ; (1.12)

l1m1 C l2m2 C l3m3 D 0 :

The relations (1.11) and (1.12) are equivalent to (1.8) and (1.9), but a direct algebraic
establishment is somewhat awkward. Consequently we shall defer the proof until we
have tensor notation at our disposal.

Consider a point P D .x; y; z/ D .x0; y0; z0/. Let OP D r ; let the line
�!
OP have

direction cosines l; m; n in the x � y � z system and l 0; m0; n0 in the x0 � y0 � z0
system. We have
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x D rl; y D rm; z D rn I (1.13)

x0 D rl0; y0 D rm0; z0 D rn0 : (1.14)

Also, with Eq. (1.5),

l D l 0l1 Cm0l2 C n0l3 ;

m D l 0m1 Cm0m2 C n0m3 ; (1.15)

n D l 0n1 Cm0n2 C n0n3 ;

Substituting (1.15) into (1.13) and then using (1.14), we obtain

x D l1x
0 C l2y

0 C l3z
0 ;

y D m1x
0 Cm2y

0 Cm3z
0 ; (1.16)

z D n1x
0 C n2y

0 C n3z
0 :

The dual of (1.16) is easily obtained. We can solve (1.16) for x0; y0; z0 in terms
of x; y; z, or we can repeat the procedure which led to (1.16), this time using the
obvious dual of (1.15). Either way we obtain

x0 D l1x Cm1y C n1z ;

y0 D l2x Cm2y C n2z ; (1.17)

z0 D l3x Cm3y C n3z :

The coordinates of P in a system x00 � y00 � z00 oriented in the same manner as the
x0 � y0 � z0 system, but with origin at .a; b; c/ in the x0 � y0 � z0 system, are given
by

x00 D x0 � a ;

y00 D y0 � b ; (1.18)

z00 D z0 � c :

With (1.17),

x00 D l1x Cm1y C n1z � a ;

y00 D l2x Cm2y C n2z � b ; (1.19)

z00 D l3x Cm3y C n3z � c :
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Equivalently,

x D l1.x
00 C a/C l2.y

00 C b/C l3.z
00 C c/ ;

y D m1.x
00 C a/Cm2.y

00 C b/Cm3.z
00 C c/ I (1.20)

z D n1.x
00 C a/C n2.y

00 C b/C n3.z
00 C c/ :

1.2 Suffix Notation

The results obtained so far can be written much more succinctly if we set

x D x1; y D x2; z D x3 ;

x0 D x0
1; y0 D x0

2; z0 D x0
3 ; (1.21)

x00 D x00
1 ; y00 D x00

2 ; z00 D x00
3 ;

and denote the direction cosines of the primed axes with respect to the unprimed
axes by

x0
1/a11; a12; a13I x0

2/a21; a22; a23I x0
3/a31; a32; a33 : (1.22)

Equations (1.16) then become

x1 D a11x
0
1 C a21x

0
2 C a31x

0
3 ;

x2 D a12x
0
1 C a22x

0
2 C a32x

0
3 ; (1.23)

x3 D a13x
0
1 C a23x

0
2 C a33x

0
3 :

This system of three equations can be written on a single line:

xi D a1ix
0
1 C a2i x

0
2 C a3ix

0
3 .i D 1; 2; 3/ : (1.24)

More succinctly yet

xi D
3X

jD1
ajix

0
j .i D 1; 2; 3/ : (1.25)

In a similar manner (1.17) can be written

x0
i D

3X

jD1
aijxj .i D 1; 2; 3/ : (1.26)



1.2 Suffix Notation 7

Thus there begins to emerge one of the advantages of suffix notation: economy of
space.

Quite generally we shall adopt the convention that any symbol to which a
subscript is attached represents the set of three quantities obtained by giving
the subscript the values 1; 2; 3 unless some other meaning is explicitly specified.
Thus uk represents u1; u2; u3. Further, any symbol or product of symbols to
which n different subscripts are attached denotes the set of 3n quantities obtained
by giving these subscripts the values 1; 2; 3. Thus, trs represents the set of
nine quantities t11; t12; t13; t21; t22; t23; t31; t32; t33; ui vj represents the nine quantities
u1v1; u1v2; u1v3; u2v1; u2v2; u2v3; u3v1; u3v2; u3v3; ui tpq represents the 27 quantities
u1t11; u1t12; etc.; @ui =@yj represents the set of nine partial derivatives of u1; u2; u3
with respect to y1; y2; y3, and so on.

Meaning is assigned to expressions formed by the addition or subtraction of
symbols or products of symbols to which subscripts are attached, provided that the
terms which are added or subtracted carry the same subscripts. Thus ui Cvi denotes
the three quantities u1 C v1; u2 C v2; u3 C v3; uij C vij denotes the nine quantities
u11Cv11; u12Cv12, etc.; ui sjk � tijk denotes the 27 quantities u1s11� t111; u1s12� t112,
etc. Expressions such as ui C vk; uij C vmn; uij � viwk are not given any meaning in
the suffix notation and will not occur in calculations employing it.

Meaning can be attached to an equation involving symbols with subscripts if
the subscripts occurring on both sides of the equation are the same. If n different
subscripts occur on each side, then the equation represents the 3n equations obtained
by giving these subscripts the values 1; 2; 3 independently. For example

ui D avi (1.27)

represents the three equations

u1 D av1; u2 D av2; u3 D av3 (1.28)

and

ui vj D wij (1.29)

represents the nine equations obtained by giving i and j the values 1; 2; 3. Equations
such as ui D vj ; ui vj D wik have no meaning in the suffix notation. Equations with
fewer different subscripts on one side than on the other can be given a meaning, but
this is almost never done. The only case which occurs with any frequency is that in
which one side of the equation is explicitly zero. Thus

ui D 0 (1.30)

represents the three equations

u1 D 0; u2 D 0; u3 D 0 (1.31)
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and

tij D 0 (1.32)

represents the nine equations

t11 D 0; t12 D 0; t13 D 0 ;

t21 D 0; t22 D 0; t23 D 0 ; (1.33)

t31 D 0; t32 D 0; t33 D 0 :

The meaning of an equation is unchanged if subscripts are altered consistently
throughout the equation. Thus

uk D avk; upvq D wpq; trs D 0 (1.34)

have the same meanings as Eqs. (1.27), (1.29), and (1.32), respectively. We assume
that the symbols with subscripts represent quantities which obey the commutative,
associative, and distributive laws of algebra when the subscripts are assigned values
chosen from among 1; 2; 3. It follows immediately that the symbols themselves obey
these laws. Thus

ui C vi D vi C ui ;

sij C tij D tij C sij ;

ui vk D vkui ;

ui tjk D tjkui ; (1.35)

ui C .vi C wi / D .ui C vi /C wi ;

ui .vjwk/ D .ui vj /wk ;

ui .vj C wj / D ui vj C uiwj ;

and so on.

1.3 The Summation Convention

An important extension of the suffix notation already introduced gives meaning to
symbols and products of symbols in which the same subscript occurs precisely
twice. In such an expression the repeated subscript is given the values 1; 2; 3 and
the three terms so formed are summed. Thus

uii D
3X

iD1
uii ;
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uj vj D
3X

jD1
uj vj ; (1.36)

tiik D
3X

iD1
tiik .k D 1; 2; 3/ ;

aijbji D
3X

iD1

3X

jD1
aijbji ;

and so on.
With this summation convention, the equations for rotation of coordinates

become

xi D ajix
0
j ; (1.37)

x0
i D aijxj ; (1.38)

which are a bit more concise than (1.25) and (1.26) and represent a considerable
shortening of the original systems (1.16) and (1.17). Changing a repeated subscript
to a different subscript which does not occur elsewhere in the symbol or in the
product of symbols does not alter the meaning. Thus

uii D ujj; uj vj D upvp; ui vji D ukvjk : (1.39)

Repeated subscripts are therefore known as dummy suffixes. Subscripts which are
not repeated in a symbol or product of symbols are known as free suffixes. An
equation has meaning only if the free suffixes on its left side match those on its right
side. On the other hand different dummy suffixes may occur on the two sides of an
equation. Alternately, dummy suffixes may occur on one side of the equation and
not on the other.

Terms in which the same subscript appears more than twice have no meaning in
the suffix notation.

The process of setting two free suffixes equal, thereby converting them to a pair
of dummy suffixes, is known as contraction. Each contraction reduces by two the
number of free indices.

1.4 The Kronecker Delta and the Alternating Tensor

A two-suffix symbol frequently encountered is the Kronecker delta ıij (after
Leopold Kronecker 1823–1891) which takes the value unity when i D j and zero
when i ¤ j . Thus, ıij is defined by

ı11 D ı22 D ı33 D 1; ı23 D ı32 D ı31 D ı13 D ı12 D ı21 D 0 : (1.40)
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It is immediately evident that

ıij D ıji ; (1.41)

ıii D 3 : (1.42)

If ui is any one-suffix symbol, it is easily verified that

ıijui D uj : (1.43)

Similarly if trs is any two-suffix symbol,

ıpr trs D tps ;

ıpstrs D trp ; (1.44)

ırstrs D tss ;

and so on. Because of these properties, ıij is sometimes called the substitution
tensor.

The Kronecker delta, or substitution tensor, can be regarded as representing the
elements of the 3 � 3 unit matrix:

�
ıij
� D

0

@
1 0 0

0 1 0

0 0 1

1

A : (1.45)

Somewhat analogous to the Kronecker delta is a three-suffix symbol "ijk, called
the alternating tensor. This quantity is defined as having the value 1 when i; j; k
is an even permutation of 1; 2; 3, the value �1 when i; j; k is an odd permutation of
1; 2; 3, and the value zero when two or more of the subscripts are equal. Thus

"123 D "231 D "312 D 1 ;

"321 D "132 D "213 D �1 ;
"111 D "112 D "113 D "121 D : : : D "323 D "333 D 0 : (1.46)

If vrs is any two-suffix symbol and det.vrs/ is its determinant,2 it follows directly
from the definition of a determinant that

"ijk det.vrs/ � "ijk

ˇ̌
ˇ̌
ˇ̌
v11 v12 v13
v21 v22 v23
v31 v32 v33

ˇ̌
ˇ̌
ˇ̌ D "pqrvipvjqvkr : (1.47)

2A function of an n-suffix symbol is not necessarily an n-suffix symbol. ln particular, det.vrs/ is a
zero-suffix symbol.
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The following relationships between the alternating tensor and the Kronecker delta
are easily established by direct evaluation of both sides:

"ijm"ijn D 2ımn ; (1.48)

"ijk"ipq D
ˇ̌
ˇ̌ ıjp ıjq

ıkp ıkq

ˇ̌
ˇ̌ � ıjpıkq � ıjqıkp : (1.49)

By using the Kronecker delta, we can write the normalization relations (1.8) and
the orthogonality conditions (1.9) quite succinctly. Denoting the direction cosines
by aij, as designated by (1.22), we obtain the orthonormality conditions

aikajk D ıij : (1.50)

This appears to represent nine equations, in place of the six we had before, but there
is a duplicity: the orthogonality conditions are given twice. Similarly Eqs. (1.11)
and (1.12) can be written

akiakj D ıij ; (1.51)

in which the orthogonality conditions are again given twice.

1.5 Orthogonal Transformations

We indicated earlier that (1.51) is equivalent to (1.50). Let us now turn our attention
to the proof. We shall establish that (1.50) implies (1.51); the converse follows
mutatis mutandis.

First we note that aikajk represents the elements of the matrix product of .aij/ and
its transpose. Since the determinant of a matrix product is equal to the product of
the determinants,

det.aikajk/ D �
det.aij/

� �
det.aji/

� D �
det.aij/

�2
: (1.52)

With (1.50), however,

det.aikajk/ D det.ıij/ D 1 : (1.53)

Consequently

det.aij/ D ˙1 : (1.54)

We now seek nine quantities cki which solve the nine linear equations

ckiakj D ıij : (1.55)
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The determinant of this system is Œdet.aij/�
3. Since (1.54) guarantees that this does

not vanish, (1.55) has a unique solution.
Satisfied that there is exactly one set of cki which solves the system (1.55), we

proceed formally. Multiplying both sides of (1.50) by cim yields

cimaikajk D cimıij D cjm : (1.56)

However the cim satisfy (1.55). Consequently

cimaikajk D ımkajk D ajm : (1.57)

Thus cjm D ajm, and substitution into (1.55) yields (1.51).
We have noted that the proof for the equivalence of formulas (1.37) and (1.38)

for rotation of coordinates is fairly easy to carry out with the classical notation. With
suffix notation it is trivial. Multiplying both sides of (1.38) by aik, we obtain

aikx
0
i D aikaijxj D ıkjxj D xk ; (1.58)

which is (1.37). Similarly (1.37) implies (1.38). A transformation

x0
i D aijxj (1.59)

in which the relation

akiakj D ıij (1.60)

and its equivalent

aikajk D ıij (1.61)

are satisfied, so that the inverse transformation is

xi D ajix
0
j ; (1.62)

is called an orthogonal transformation.
In proving the equivalence of (1.50) and (1.51), we called attention to the fact

that

det.aij/ D ˙1 : (1.63)

If the xi -system is right-handed, the plus sign corresponds to the x0
i -system being

right-handed and the minus sign corresponds to the x0
i -system being left-handed.

If the xi -system is left-handed, the opposite holds. Two rectangular Cartesian
coordinate systems with common origin can be brought into coincidence by a solid-
body rotation if and only if they are either both right-handed or both left-handed.
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Otherwise a mirror reflexion must be used. Transformations with det.aij/ D C1 are
called proper orthogonal transformations. Let us suppose that an x00

i system is
defined in terms of the x0

i system by the orthogonal transformation

x00
i D bijx

0
j : (1.64)

With (1.59),

x00
i D hijxj ; (1.65)

where

hij D akjbik : (1.66)

Since (1.59) and (1.64) both represent orthogonal transformations,

hikhjk D amkbimankbjn

D amkankbimbjn

D ımnbimbjn (1.67)

D binbjn

D ıij :

Hence (1.65) also represents an orthogonal transformation.
We have called (1.62) the inverse of (1.59), but we have not yet formally

established the uniqueness. Let us suppose that the x0
i -system is given in terms of

the xi -system according to (1.59) and that there exists a set of nine quantities dij

such that for each xi and x0
j

xi D djix
0
j : (1.68)

We then have

x0
i D aikdjkx

0
j ; (1.69)

so that

aimx
0
i D aimaikdjkx

0
j D ımkdjkx

0
j D djmx

0
j D dimx

0
i : (1.70)

This result must hold for all x0
i and this can be only if dim D aim. Hence (1.62) is

the only inverse to (1.59). The geometrical significance of this needs clarification;
e.g., if (1.59) represents a plane rotation, then its inverse can be achieved by rotating
backward, or by rotating forward to“complete the circle”—or many circles. All of
these processes, however, generate the same set of direction cosines aji.



14 1 Cartesian Tensors

Given one rectangular Cartesian coordinate system xi , we observe that a
rectangular Cartesian coordinate system with the same origin can be formed from
the xi -system by rotation, by reflexion, or by a combination of rotation and
reflexion. However, we must not overlook the simplest thing we can do to the
xi -system to generate a rectangular Cartesian system: we can leave it alone. The
identity transformation

x0
i D xi (1.71)

can also be expressed

x0
i D ıijxj I (1.72)

as is geometrically obvious, the direction cosines of the identity transformation are
the components of the Kronecker delta. It is equally evident that the orthogonal
transformation generated by superimposing the identity transformation upon some
other orthogonal transformation is simply the other transformation.

ln summary, the set of all possible orthogonal transformations satisfies three basic
theorems:

1. It is closed under the binary operation of superposition, i.e., superimposing
one orthogonal transformation upon another yields still another orthogonal
transformation (not necessarily a new one);

2. There is an identity transformation which, when superimposed upon any orthog-
onal transformation, produces no additional change;

3. Each orthogonal transformation has a unique inverse which, when superimposed
upon it, yields the identity transformation.

A fourth property is too evident to be called a theorem:

4. Superposition of orthogonal transformations obeys the associative law.

Readers acquainted with the rudiments of algebra will recognize these four
properties as the defining axioms of a group. Thus the set of all possible orthog-
onal transformations form a group, called the full orthogonal group, under the
binary operation of superposition. As a consequence many important properties of
orthogonal transformations can be deduced from group-theoretic considerations.

lt can be verified, geometrically or algebraically, that the proper orthogonal
transformations also form a group, called the proper orthogonal group, or the
full rotation group, under the binary operation of superposition. It is then said that
these form a subgroup of the full orthogonal group. Other subgroups exist—some,
like the full rotation group, have infinitely many members; others consist of a finite
number of orthogonal transformations. These other subgroups play an important
role in the physics of materials of lower symmetry than isotropic. Since we shall
deal only with viscous fluids, which are inherently isotropic, we need not pursue
these considerations further.
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1.6 Basic Properties of Cartesian Tensors

Let xi and x0
i be two rectangular Cartesian coordinate systems related by the

orthogonal transformation (1.59). Let vi be three quantities defined in the xi -system;
let v0

i be three quantities defined in the x0
i -system which are related to the vi in the

same way that the coordinates in the primed system of a given point are related to
the coordinates in the unprimed system of the same point, viz.,

v0
i D aijvj : (1.73)

Then, the vi are said to be the components of a vector, or Cartesian tensor
of rank 1, in the xi -system and the v0

i are the components of the same vector
in the x0

i -system. The inverse of (1.73) follows directly from the orthonormality
conditions. Thus

vi D ıikvk D ajiajkvk D ajiv
0
j : (1.74)

Going one step further, let tij be nine quantities defined in the xi -system and let
t 0ij be nine quantities defined in the x0

i -system such that

t 0ij D aimajntmn : (1.75)

The tij are then said to be the components in the xi -system of a Cartesian tensor of
rank 2, and the t 0ij are the components of this tensor in the x0

i - system. We find that
(1.75) has the inverse

tij D amianj t
0
mn: (1.76)

Quite generally let Ai1i2:::in denote 3n quantities defined in the xi -system and let
A0
i1i2:::in

denote 3n quantities defined in the x0
i -system such that

A0
i1i2:::in

D ai1j1ai2j2 : : : ainjnAj1j2:::jn ; (1.77)

or, equivalently,

Ai1i2:::in D aj1i1aj2i2 : : : ajninA
0
j1j2:::jn

; (1.78)

Then Ai1i2:::in and A0
i1i2:::in

are said to be the components, in the xi -system and
x0
i -system, respectively, of a Cartesian tensor of rank n.

Finally let us suppose there is a single quantity s which has the same value in
all rectangular Cartesian coordinate systems. Such a quantity is called a scalar, or a
Cartesian tensor of rank zero.
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It is sometimes convenient to refer to a Cartesian tensor by its components in a
generic rectangular Cartesian coordinate system. Thus the tensor with components
vij:::r in the xi -system might be referred to as the tensor vij:::r .

Let us briefly consider second rank tensors, with regard to their symmetry
properties. We see from (1.75) that if tij D tji, then t 0ij D t 0ji. The tensor is then
said to be symmetric. Similarly, if tij D �tji, then t 0ij D �t 0ji, and the tensor is said
to be skew-symmetric.

Any Cartesian tensor of rank 2 can be uniquely represented as the sum of a
symmetric tensor and a skew-symmetric tensor. That such a representation always
exists is trivial:

tij D 1

2
.tij C tji/C 1

2
.tij � tji/ : (1.79)

To show the uniqueness, assume

tij D Aij C Bij ; (1.80)

where Aij is symmetric and Bij is skew-symmetric. Then

tij C tji D Aij C Aji C Bij C Bji

D 2Aij : (1.81)

Hence Aij D 1
2
.tij C tji/; similarly Bij D 1

2
.tij � tji/.

lt is apparent that the sum of two Cartesian tensors of rank n is also a Cartesian
tensor of rank n. No meaning is assigned to the sum of tensors of differing rank.

Let si1i2:::im and tj1j2:::jn be the components in the xi -system of two Cartesian
tensors and let s0

i1i2:::im
and t 0j1j2:::jn be their components in the x0

i -system. The expres-
sions si1i2:::imtj1j2:::jn and s0

i1i2:::im
t 0j1j2:::jn each denote 3mCn quantities. Moreover,

s0
i1i2:::im

t 0j1j2:::jn
D �

ai1p1ai2p2 : : : aimpmsp1p2:::pm
� �
aj1q1aj2q2 : : : ajnqn tq1q2:::qn

�
(1.82)

D ai1p1ai2p2 : : : aimpmaj1q1aj2q2 : : : ajnqn sp1p2:::pm tq1q2:::qn :

Thus si1i2:::im tj1j2:::jn is a Cartesian tensor of rank .mCn/, called the outer product
of si1i2:::im and tj1j2:::jn .

It is easily established that contraction of a tensor of rank R yields a tensor of
rank R � 2. Further contractions each diminish the rank by 2, and yield a Cartesian
tensor at each step. On page 71 of G. K. Batchelor’s monograph (Batchelor 1953),
a tensor of rank 2 is expressed as a tensor of rank 32, 15 times contracted. The
particular contraction si1i2:::im�1ktkj2j2j3:::jn is called the inner product of si1i2:::im and
tj1j2:::jn .
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1.7 Isotropic Tensors

Toward the end of the next chapter we shall introduce a postulate which entails that
the fluids we consider be isotropic, by which we mean that they exhibit no preferred
directions. This coincides rather well with our intuitive feelings about how a fluid
should behave. By contrast, it is not always reasonable to base the mechanics of
deformable solids upon a postulate implying isotropy. Materials such as wood, in
which the direction of grain is important; crystals, which are characterized by the
crystallographic axes; or fibers, which have a direction of draw, must be approached
from less restrictive assumptions.

In isotropic materials, the physical properties are independent of the orientation
of the coordinate system in which the physical laws are set out. In formulating such
laws, we make use of the fact that it is possible to write down the most general
Cartesian tensor, of any given rank, which has the same components in all rectan-
gular Cartesian coordinate systems related by proper orthogonal transformations.
Cartesian tensors which transform in this way are called isotropic tensors.

If the components of a tensor are given in any rectangular Cartesian system, then
their components in any other rectangular Cartesian coordinate system can be found
from the appropriate transformation law. Let us examine specifically that tensor
which has components ıij in the xi -system. By setting tmn D ımn in (1.75) and using
the orthonormality conditions (1.50), we obtain

t 0ij D aimajnımn D aimajm D ıij : (1.83)

Thus the Kronecker delta is an isotropic tensor.
For third-rank tensors the transformation law (1.77) becomes

A0
ijk D aipajqakrApqr : (1.84)

If we set Apqr D "pqr and use (1.47),

A0
ijk D aipajqakr"pqr D "ijk det.aij/ : (1.85)

Since det .aij/ D 1 for a proper orthogonal transformation, the alternating tensor is
an isotropic tensor. Note, however, that the components of this tensor change sign
when the orthogonal transformation includes a reflexion.

By considerations of this sort, we find that ıikımp; ıimıkp and ıipıkm are all
isotropic tensors of rank 4. Each of them is unchanged even if the orthogonal
transformation includes a reflexion.

We have thus found that isotropic tensors do exist. Let us now inquire whether
there are others, substantially different from those already found.

First we note that by definition, every Cartesian tensor of rank zero, i.e., every
scalar, is isotropic. Next, we check to see if there are any isotropic vectors: let us
assume that ei is such a vector. Then, according to (1.73),

ei D aijej ; (1.86)
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for any orthogonal transformation. However consider a rotation with x3-axis fixed.
If � is the angle of rotation,

�
aij
� D

0

@
cos � sin � 0

� sin � cos � 0
0 0 1

1

A : (1.87)

The i D 1; 2 components of Eq. (1.86) require that

.1 � cos �/e1 � sin � e2 D 0 ;

sin � e1 C .1 � cos �/e2 D 0 : (1.88)

Unless � D 2n� , so that the determinant of coefficients vanishes, the unique
solution to (1.88) is

e1 D e2 D 0 : (1.89)

By considering a rotation about one of the other coordinate axes, we find that e3 D 0.
Thus the only isotropic tensor of rank 1 is the null vector, all components of which
are zero.

Considerations of this sort lead to the following conclusions:

1. The only isotropic tensors of rank 2 are scalar multiples of the Kronecker delta.
2. The only isotropic tensors of rank 3 are scalar multiples of the alternating tensor.
3. The most general isotropic tensor of rank 4 isAıikımp CBıimıkp CCıipıkm where
A;B;C are scalars.

The proof of these statements is straight-forward, but the manipulation gets
fiercer as the rank increases. The details involved in calculating the most general
isotropic tensor of rank 4 are set out on page 68 of Jeffreys (1931).

We shall have no need to consider isotropic tensors of rank higher than 4. There
is, however, a quite general result, called the fundamental theorem of isotropic
tensors, which states that any isotropic tensor of any rank can be expressed as
the sum of outer products of Kronecker deltas and alternating tensors with scalar
coefficients. If the rank is even, a typical term in the sum is Aıhiıjk : : : ırs, where A
is a scalar and the subscripts can be permuted in any way; if the rank is odd, a typical
term isAıhi ıjk : : : ıpq"rst. Rivlin and Smith (1957) have described an elegant method
which leads to this result and, more generally, provides a technique for finding those
tensors whose components are unchanged under transformation groups of lower
symmetry.



Chapter 2
The Equations of Viscous Flow

Abstract The equations of viscous hydrodynamics are developed in detail. Lim-
iting assumptions are introduced only at the points where they become necessary.
Boundary conditions for various applications are set out. Incompressible fluids, the
Boussinesq approximation, and vorticity transfer are discussed. Similarity rules for
steady and unsteady flow are presented.

In this chapter we turn our attention to the development of the equations and
boundary conditions which govern the motion of a viscous fluid. Some of the
preliminary results apply to a more general class of continuous media, but we
shall proceed from the general to the specific, introducing the various assumptions
and postulates only when they are needed.

Many books and monographs are devoted to fluid mechanics and hydrodynamics.
Without any pretense of exhaustiveness, we may refer the reader to Batchelor
(1992), Eringen (1962), Guyon et al. (2012), Happel and Brenner (2013), Landau
and Lifshitz (1997), Leal (2007), Panton (1984), Pozrikidis (2009), Serrin (1959),
Tritton (1980), Truesdell (1952), and Truesdell and Toupin (1960).

2.1 Kinematics of Flow

We begin by considering the motion of a continuous medium, without regard to the
forces which may be acting within it or upon its boundaries. We shall, however,
focus our attention on those kinematical quantities which will play a role when we
turn to dynamical considerations, especially those which are known to be important
in hydrodynamic theory.

W.E. Langlois and M.O. Deville, Slow Viscous Flow,
DOI 10.1007/978-3-319-03835-3__2,
© Springer International Publishing Switzerland 2014
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2.1.1 Description of Deformation in a Fixed Coordinate System

Consider a mass of material to be undergoing deformation. We specify the position
of each particle at time t by its coordinates xi in a fixed rectangular Cartesian
system. We further stipulate that at some reference time T the particle is atXi . Thus
we can identify each material particle by its coordinate Xi at time T and consider
xi to be a function of Xi and t . Hence the functional relationship

xi D xi .Xj ; t/ (2.1)

describes the deformation completely.
The velocity of a particle is given by

vi D Dxi
Dt

; (2.2)

whereD=Dt denotes differentiation with respect to time, keepingXi constant. Most
writers in hydrodynamics refer to the operation denoted by D=Dt as material
differentiation, and we shall follow this practice. Other terms in use are substan-
tial differentiation, particle differentiation, differentiation following the fluid,
and differentiation following the particle.

As we shall see later, the reference coordinates Xi have no significance when
the material under consideration is a viscous fluid. Hence it is usually convenient
to treat the various kinematic and dynamic quantities we shall encounter as being
functions of the spatial coordinates xi and time t , rather than as functions of
the material coordinatesXi and time. No conceptual difficulty is involved here, for
the impenetrability of matter requires that at any instant of time the mapping (2.1)
be one-to-one. Hence the inverse mapping exists, and any function of Xi and t can
equally well be regarded as a function of xi and t .

However we don’t want to abandon completely the idea of following the motion
of a specified particle. In particular we shall often find it convenient to use
material differentiation. Let us suppose that f is some flow variable. As mentioned
previously, it is convenient to regard f as a function of xi and t . The material
derivative of f , however, is its partial time derivative, regarding Xi and t as the
independent variables. Therefore

Df .xi ; t/

Dt
D @f .xi ; t/

@t
C @f .xi ; t/

@xj

Dxj .Xk; t/

Dt
; (2.3)

or, using (2.2),

Df

Dt
D @f

@t
C vj

@f

@xj
: (2.4)
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Although the mathematical derivation of (2.4) is rather straightforward, the physical
meaning of Df=Dt may be somewhat elusive. If so, it will be helpful to consider
again the physical origin of Df=Dt: It is the time rate of change of the quantity f
associated with a given particle, as the particle moves through space. If the particle
happens to be stationary, or moving normal to the spatial gradient of f , the only
contribution to Df=Dt arises from the time rate of change of f at the point in space
occupied by the particle, i.e., from @f=@t . On the other hand, even if the values of f
at the various points of space do not vary with time, the spatial distribution of f may
be non-homogeneous and the motion of the particle such that it is being convected
in a direction of changing f . This possibility leads to the vj @f=@xj term in (2.4).
In general f will vary with both time and position, so that both terms in (2.4) must
be retained.

Equation (2.4) was derived formally as though f were a scalar. It is evident,
however, that the derivation is equally valid if f represents a component of a tensor
of any order. In fact one quantity whose material derivative we shall encounter quite
often is a vector: the velocity vi . The acceleration of a particle is given by

Dvi

Dt
D @vi

@t
C vj

@vi

@xj
: (2.5)

We see from (2.5) that the acceleration is non-linear in the velocity components.
It is precisely this nonlinearity which is the principal mathematical difficulty
pervading classical hydrodynamics.

In addition to describing the deformation of the medium, the three relations
represented by (2.1) are parametric equations for a family of space curves, the
particle paths. For fixedXi and varying t , Eq. (2.1) describe the locus of the particle
which, at time T , occupies the point Xi . If the velocity components vi are known
functions of Xi and t , these same particle paths can be obtained by an immediate
integration of (2.2). If vi are known functions of xi and t , however, the particle paths
must be obtained by integration of the differential equations

Dxi
Dt

D vi.xi ; t/ ; (2.6)

subject to the initial conditions

xi .Xi ; T / D Xi : (2.7)

Since in this consideration the Xi are fixed parameters, (2.6) represents a system of
ordinary differential equations.

Now let us consider, not a specific particle, but a specific instant of time. A
curve drawn so that its tangent at each point is in the direction of the fluid velocity
at that point is called a streamline. The aggregate of all streamlines at a given
instant constitutes the flow pattern at that instant. The differential equations for
the streamlines are
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dx2
dx3

D v2

v3
;

dx3
dx1

D v3

v1
; (2.8)

dx1
dx2

D v1

v2
;

any one of which is derivable from the other two.
By its definition the streamline passing through a given point at a specific instant

of time is tangent to the path of the particle which occupies the point at this instant.
If the motion is steady, so that the velocity at any point is independent of time,
the streamlines and particle paths coincide. Thus far we have been concerned with
the kinematics of individual particles, or of the kinematical conditions obtaining at
individual points in space. The variations from particle to particle, or from point to
point, have concerned us only incidentally. The very nature of viscous fluids forces
us to consider these variations in some detail. In particular the spatial derivatives of
the velocity vector play a central role in viscous flow theory: As we shall see later,
the resistance to flow presented by the viscous medium depends upon the quantities
@vi=@xj . These quantities are the nine components of a Cartesian tensor,1 which
may be decomposed into its symmetric and skew-symmetric parts according to

@vi

@xj
D eij C !ij ; (2.9)

where eij is the rate of deformation tensor, defined by

eij D 1

2

�
@vi

@xj
C @vj

@xi

�
; (2.10)

and !ij is the vorticity tensor, defined by

!ij D 1

2

�
@vi

@xj
� @vj

@xi

�
: (2.11)

The names given these tensors would seem to connote that a physical significance
can be assigned to each of them. We can see that this is in fact the case by
considering two neighboring particles, which, at time t , are at the locations xi and
xi C dxi , respectively. The distance ds between these particles is given by

.ds/2 D dxidxi : (2.12)

1It is easily verified that the quantities obtained by taking first derivatives of the components of a
tensor of rank n comprise a tensor of rank nC 1.
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Let us now calculate the time rate of change of .ds/2 as the particles move
through the fluid. We have

D

Dt
.ds/2 D 2dxi

D

Dt
.dxi / : (2.13)

However,

dxi D @xi

@Xk
dXk ; (2.14)

so that

D

Dt
.ds/2 D 2dxi

�
@xi

@Xk

D

Dt
.dXk/C dXk

D

Dt

�
@xi

@Xk

�	
: (2.15)

In calculating a material derivative,Xk and t are independent variables, so that

D

Dt
.dXk/ D 0 : (2.16)

Also

D

Dt

�
@xi

@Xk

�
D @

@Xk

�
Dxi
Dt

�
D @vi

@Xk
D @vi

@xj

@xj

@Xk
: (2.17)

Therefore

D

Dt
.ds/2 D 2dxidXk

@vi

@xj

@xj

@Xk
D 2dxidxj

@vi

@xj
: (2.18)

Using (2.9), this can be written

D

Dt
.ds/2 D 2dxidxj .eij C !ij/ : (2.19)

Since both i and j are dummy variables in Eq. (2.19), they may be interchanged
wherever convenient. Thus

D

Dt
.ds/2 D 2dxidxj eij C dxidxj .!ij C !ji/ : (2.20)

However the vorticity tensor is skew-symmetric. The second term on the right
side of (2.20) therefore vanishes, and we have

D

Dt
.ds/2 D 2dxidxj eij : (2.21)
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Thus the rate of deformation tensor provides a measure of the local and
instantaneous rate at which the shape of the medium is changing. A necessary and
sufficient condition that the fluid motion be one of which a rigid body is susceptible
is that eij vanish throughout the medium. We may anticipate, therefore, that the
dynamical behavior of a fluid medium will be intimately associated with the rate of
deformation tensor.

What then of !ij? If the change of shape of the medium affects only eij, the
vorticity tensor must arise from the rigid-body part of the fluid motion. Since all
the components of @vi=@xj vanish in a pure translation, !ij must arise from the
instantaneous rotation of the particle at xi C dxi about the particle at xi . We shall
abandon discussion of the vorticity tensor for the present, but shall return to it later
when we investigate the description of fluid motion in a moving coordinate system.

Before leaving the description of motion with reference to a stationary coordinate
system, however, we shall formulate the principle of conservation of mass, as
applied to continuous media. We focus our attention on the set of particles which,
at the reference time T , lie within a volume V. Let us suppose that at time t this
same set of particles occupies a volume V�. If the fluid density is denoted by �,
conservation of mass requires that

•

V

�.Xi ; T /dX1dX2dX3 D
•

V�

�.xi ; t/dx1dx2dx3 (2.22)

D
•

V

�.xi ; t/
@.x1; x2; x3/

@.X1;X2;X3/
dX1dX2dX3 ;

where @.x1; x2; x3/=@.X1;X2;X3/ denotes the Jacobian of the transformation
(2.1), i.e.,

@.x1; x2; x3/

@.X1;X2;X3/
D

ˇ̌
ˇ̌
ˇ̌
ˇ

@x1
@X1

@x1
@X2

@x1
@X3

@x2
@X1

@x2
@X2

@x2
@X3

@x3
@X1

@x3
@X2

@x3
@X3

ˇ̌
ˇ̌
ˇ̌
ˇ
: (2.23)

Taking the material derivative of both sides of (2.22), we have

•

V

�
D�

Dt

@.x1; x2; x3/

@.X1;X2;X3/
C �

D

Dt

@.x1; x2; x3/

@.X1;X2;X3/

	
dX1dX2dX3 D 0 : (2.24)

Equation (2.24) must hold for an arbitrary choice of the volume V. This can be
so if and only if the integrand vanishes identically. Hence

D�

Dt

@.x1; x2; x3/

@.X1;X2;X3/
C �

D

Dt

@.x1; x2; x3/

@.X1;X2;X3/
D 0 : (2.25)
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In order to simplify this awkward form of the conservation of mass postulate, let
us evaluate the material derivative of the Jacobian determinant. It can be shown by a
straightforward but rather long induction proof that the derivative of a determinant
of any order is the sum of a number of determinants, each of which is obtained from
the original determinant by replacing the elements of one row by their derivatives.
Thus with (2.2) we have

D

Dt

@.x1; x2; x3/

@.X1;X2;X3/
D @.v1; x2; x3/

@.X1;X2;X3/
C @.x1; v2; x3/

@.X1;X2;X3/
C @.x1; x2; v3/

@.X1;X2;X3/
: (2.26)

However expanding in the minors of the first row,

@.v1; x2; x3/

@.X1;X2;X3/
D @v1

@X1

@.x2; x3/

@.X2;X3/
� @v1

@X2

@.x2; x3/

@.X1;X3/
C @v1

@X3

@.x2; x3/

@.X1;X2/
; (2.27)

and

@v1

@Xi
D @v1

@xj

@xj

@Xi
: (2.28)

Hence

@.v1; x2; x3/

@.X1;X2;X3/
D @v1

@xj

�
@xj

@X1

@.x2; x3/

@.X2;X3/
� @xj

@X2

@.x2; x3/

@.X1;X3/
C @xj

@X3

@.x2; x3/

@.X1;X2/

	

D @v1

@xj

@.xj ; x2; x3/

@.X1;X2;X3/
: (2.29)

Since a determinant with two rows equal vanishes,

@.xj ; x2; x3/

@.X1;X2;X3/
D ı1j

@.x1; x2; x3/

@.X1;X2;X3/
: (2.30)

Therefore

@.v1; x2; x3/

@.X1;X2;X3/
D @v1

@x1

@.x1; x2; x3/

@.X1;X2;X3/
: (2.31)

By similar arguments

@.x1; v2; x3/

@.X1;X2;X3/
D @v2

@x2

@.x1; x2; x3/

@.X1;X2;X3/
; (2.32)

@.x1; x2; v3/

@.X1;X2;X3/
D @v3

@x3

@.x1; x2; x3/

@.X1;X2;X3/
: (2.33)
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Thus

D

Dt

@.x1; x2; x3/

@.X1;X2;X3/
D @vi

@xi

@.x1; x2; x3/

@.X1;X2;X3/
: (2.34)

Since the impenetrability of matter prohibits the vanishing of the Jacobian
@.x1; x2; x3/=@.X1;X2;X3/, substitution of (2.34) into (2.25) yields the equation
of continuity

D�

Dt
C �

@vi

@xi
D 0 : (2.35)

An alternative derivation of (2.35) can be obtained by considering a volume fixed
in space. The rate of change of mass within this volume is equated to the rate of flow
of mass across its boundaries. Gauss’ divergence theorem is then used to convert the
surface integrals to volume integrals and the result

@�

@t
C @

@xi
.�vi / D 0 ; (2.36)

which is identical with (2.35), is obtained immediately.
If Gauss’ theorem is assumed known, this method of proof is much shorter than

ours. However, the result (2.34) is quite useful in its own right—in fact, we’d have
to derive it sooner or later anyway—and the step from (2.34) to the continuity
equation (2.35) is trivial.

For a fluid with constant density,2 we have

@vi

@xi
D 0 ; (2.37)

so that the velocity field is solenoidal, i.e. divergence free.
Let us consider the case of constant-density flow under conditions such that v3 is

independent of x3. Equation (2.37) then becomes

@v1

@x1
C @v2

@x2
D 0 : (2.38)

This equation is identically satisfied by introducing a stream function
 .x1; x2; t/ such that

v1 D @ 

@x2
;

v2 D � @ 
@x1

: (2.39)

2The concept of incompressibility, of which constant density is a special case, will be discussed in
Sect. 2.4.
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A

B

C

PFig. 2.1 Flux across two
curves

We note that, according to (2.39), adding an arbitrary function of time to  does not
change its significance.

In order to obtain a physical interpretation of the stream function, let us consider
the case of two-dimensional flow, defined by

v1 D v1.x1; x2; t/ ;

v2 D v2.x1; x2; t/ ; (2.40)

v3 D 0:

In Fig. 2.1, let A be a fixed point in the plane of motion and ABP;ACP two curves,
also in the plane of motion joining A to an arbitrary point P . We denote the
coordinates in this plane of A and P by .a1; a2/ and .x1; x2/, respectively. Since
the fluid is incompressible, and since no fluid is created or destroyed in the region
bounded by these arcs, the flux of fluid clockwise across ACP is equal to the flux
clockwise across ABP. Thus once the reference point A has been specified, the flux
F across any path joining A and P depends only upon the coordinates of P and
time. In particular, we could, as in Fig. 2.2, choose the path to consist of two straight
lines: one parallel to the x1-axis, one parallel to the x2-axis. Then

F D �
Z x1

a1

v2.x1; a2; t/dx1 C
Z x2

a2

v1.x1; x2; t/dx2 : (2.41)

With Eqs. (2.39),

F D
Z x1

a1

�
@

@x1
 .x1; a2; t/

	
dx1 C

Z x2

a2

�
@

@x2
 .x1; x2; t/

	
dx2

D Œ .x1; a2; t/ �  .a1; a2; t/�C Œ .x1; x2; t/� .x1; a2; t/� (2.42)

D  .x1; x2; t/ �  .a1; a2; t/ :
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A(a1 a2); (x1 a2);

P (x1 x2);Fig. 2.2 Flux across the path
AP made of two straight lines

Thus, if the stream function vanishes at a reference pointA, its value at any other
point P is the clockwise flux through any curve drawn from A to P . The arbitrary
function of time which can be added to the stream function is related to the selection
of the reference point.

Fig. 2.3 Special case with
P and Q on the same
streamline

In Fig. 2.3, consider now another point Q, which, at time t , is on the same
streamline asP . Since the fluid motion at each point on the streamline PQ is parallel
to the streamline, there is no flux across PQ. Hence the stream function has the same
value at Q as it does at P , and we see that the stream function is constant along a
streamline.

Equations (2.40) are sufficient, but not necessary, conditions for the existence of
a stream function in the flow of a fluid with constant density. As mentioned earlier,
we need only

v1 D v1.x1; x2; x3; t/ ;

v2 D v2.x1; x2; x3; t/ ; (2.43)

v3 D v3.x1; x2; t/ ;

but the physical interpretation is now somewhat obscured.
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A stream function can also be introduced for steady compressible flow whenever
.�v3/ is independent of x3. We then let

v1 D 1

�

@ 

@x2
;

v2 D �1
�

@ 

@x1
; (2.44)

whence, with the vanishing of @�=@t for steady flow, the equation of continuity
(2.36) is identically satisfied.

There can be no stream function for unsteady, compressible flow.
The mathematical advantage of introducing a stream function is that the number

of dependent variables is immediately reduced by one. As we shall see later, this
often opens the way to still further simplification of problems in viscous flow.

2.1.2 Description of Deformation in a Moving Coordinate
System

It is not always convenient to describe the deformation of a mass of material with
respect to a fixed coordinate system. For instance, in geophysical applications of
hydrodynamics, the fluid motion is usually referred to a coordinate system rotating
with the earth. Again, an analysis of the motion of a solid object through a fluid is
often facilitated by choosing a coordinate system moving with the object.

Of more immediate concern to us, however, is the formulation of physical laws
governing the motion of a viscous fluid. One of the basic requirements is that the
form of each of these laws be independent of the motion of the coordinate system to
which the fluid motion is referred. This is our principal reason for studying moving
coordinate systems.

Consider, therefore, a rectangular Cartesian coordinate system yi which moves
in a specified manner with respect to the fixed system xi : At time t , the point which
is at xi in the fixed system is at yi in the moving system, where

yi D aij.xj � bj / : (2.45)

In (2.45), aij and bi are functions of time, such that, at each instant, aij is the cosine
of the angle between the axes yi and xj , while b1; b2; b3 , are the coordinates in
the xi system of the origin of the yi system. Since both systems are rectangular
Cartesian, the direction cosines must satisfy the orthonormality conditions

aikajk D akiakj D ıij : (2.46)

We shall assume that both systems are right-handed, so that

det aij D 1 : (2.47)



30 2 The Equations of Viscous Flow

The transformation (2.45) has the inverse

xi D bi C ajiyj : (2.48)

Let us now return our attention to the kinematics of deformation. We shall ignore
relativistic considerations completely, even though this is not strictly justified.
Properly speaking, we should account for the intimate link which exists between
kinematics and dynamics in general relativity theory. In a very few astronomical
investigations relativistic effects are important, so that now and then there appears in
the literature a paper discussing some aspect of relativistic hydrodynamics. In the
overwhelming majority of applications, however, the relative velocities encountered
are tiny fractions of the speed of light, so that a non-relativistic treatment is
operationally quite adequate. We may plead also the counsel of despair: To
treat relativistic hydrodynamics properly, we would first have to develop a rather
large portion of general relativity theory, postponing considerably our study of
hydrodynamics. According to (2.1), the location xi in the fixed system occupied
by a particle at time t is a function of Xi and t ; according to (2.45), the location yi
in the moving system occupied by the same particle at the same time is a function
of xi and t . Thus

yi D yi .Xj ; t/ : (2.49)

It is therefore meaningful to define velocity components ui , relative to the moving
coordinate system, of the material particle, which at time t is at xi in the fixed
system and yi in the moving system, according to

ui D Dyi
Dt

: (2.50)

We can use (2.2) and (2.45) to express this in terms of the velocity components
vi , relative to the fixed system:

ui D aij

�
vj � Dbj

Dt

�
C .xj � bj /Daij

Dt
: (2.51)

On the other hand we can use the inverse transformation (2.48) to express vi in
terms of ui :

vi D Dxi
Dt

D Dbi
Dt

C ajiuj C yj
Daji

Dt
: (2.52)

It is evident that (2.51) and (2.52) are equivalent. In fact it is not difficult to derive
either one from the other.

In a similar manner the acceleration relative to the moving system can be
expressed in terms of the acceleration relative to the fixed system. We have
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Dui
Dt

D aij

�
Dvj

Dt
� D2bj

Dt2

�
C 2

�
vj � Dbj

Dt

�
Daij

Dt
C .xj � bj /

D2aij

Dt2
:

(2.53)

A more important form of this relationship expresses the acceleration relative to
the fixed system in terms of Dui =Dt. Differentiating (2.52),

Dvi

Dt
D aji

Duj
Dt

C D2bi

Dt2
C 2uj

Daji

Dt
C yj

D2aji

Dt2
: (2.54)

If the yi system were stationary, so that the transformation (2.45) would
merely describe the difference in orientation and location-of-origin between the xi
reference frame and the yi -frame, the last three terms would vanish from Eq. (2.54).
They would also vanish if the motion of the yi frame were a steady translation.
In the dynamical equations of hydrodynamics, these terms give rise to D’Alembert
forces when the motion is referred to an accelerated coordinate system.

Let us now return our attention to the spatial variation of velocity. Since aij and
bj depend only upon time, differentiation of (2.51) yields

@ui
@ym

D aik
@vk

@xj

@xj

@ym
C @xj

@ym

Daij

Dt
: (2.55)

However (2.48) implies

@xj

@ym
D akj

@yk

@ym
D akjıkm D amj : (2.56)

Therefore

@ui
@ym

D aikamj
@vk

@xj
C amj

Daij

Dt
: (2.57)

In terms of its symmetric and antisymmetric parts

@ui
@ym

D e0
im C !0

im ; (2.58)

where

e0
im D 1

2

�
amj

Daij

Dt
C aij

Damj

Dt
C .aikamj C amkaij/

@vk

@xj

	
(2.59)

and

!0
im D 1

2

�
amj

Daij

Dt
� aij

Damj

Dt
C .aikamj � amkaij/

@vk

@xj

	
: (2.60)
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The expression for e0
ij can be simplified. We first note that

amj
Daij

Dt
C aij

Damj

Dt
D D

Dt
.amjaij/ : (2.61)

The orthonormality condition (2.46) requires that this vanish. Also, from (2.10),

1

2
.aikamj C amkaij/

@vk

@xj
D aikamjekj : (2.62)

Thus

e0
im D aikamjekj ; (2.63)

which may be recognized as the transformation rule for a Cartesian tensor of rank 2.
By its very definition we expected ekj to transform as a Cartesian tensor from
one fixed coordinate system to another fixed system. That it transforms according to
the same rule from a fixed system to a moving system reflects again the fact that the
rate of deformation tensor does not depend upon rigid body motions of the medium.

By contrast, it is possible to define, for any differentiable velocity field vi in the
neighborhood of a point, a particular motion of the coordinate system yi so that !0

im
vanishes. Using (2.46),

1

2

�
amj

Daij

Dt
� aij

Damj

Dt

�
D amj

Daij

Dt
: (2.64)

Therefore !0
ij vanishes if the aij satisfy the differential equations

amj
Daij

Dt
D 1

2
.amkaij � aikamj/

@vk

@xj
; (2.65)

which can be simplified by multiplying both sides by ainamp and using (2.46):

ain
Daip

Dt
D 1

2
ainamp.amkaij � aikamj/

@vk

@xj
(2.66)

D 1

2
.ınjıpk � ınkıpj/

@vk

@xj

D 1

2

�
@vp

@xn
� @vn

@xp

�
D !pn : (2.67)

We have already observed that the right side of (2.67), the vorticity tensor, is
associated with local rotations in the medium. The left side, since it does not involve
bi , is associated in some way with the rotation of the moving coordinate system. We
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can be more specific: let us consider the motion of a particle attached to the moving
frame. For such a particle ui D 0 and, according to (2.52), vi D wi , where

wi D Dbi
Dt

C yj
Daji

Dt
: (2.68)

Using (2.45),

wi � Dbi
Dt

D ajk
Daji

Dt
.xk � bk/ : (2.69)

The left side of (2.69) represents the velocity of a particle attached to a moving
frame, with the translational motion of the frame subtracted. It can therefore be
expressed in terms of the angular velocity Ωi of the moving frame;

wi � Dbi
Dt

D "ijkΩj .xk � bk/ : (2.70)

Note that the right side of (2.70) is Cartesian tensor notation for the i th component
of � � .x � b/.

Since we are considering the motion of a particle attached to an arbitrary point
on the moving frame, Eqs. (2.69) and (2.70) must be identical for arbitrary values of
.xk � bk/. If we write both equations in component form and compare coefficients
of .xk � bk/ we find, with the help of (2.46),

Ω1 D aj2
Daj 3

Dt
;

Ω2 D aj3
Daj1
Dt

; (2.71)

Ω3 D aj1
Daj 2

Dt
:

Comparing with (2.67), we find

Ω1 D !32 D �!23 ;
Ω2 D !13 D �!31 ; (2.72)

Ω3 D !21 D �!12 :

Thus we have seen that, for every point in space and for every instant of time,
it is possible to define the motion of the yi coordinate system so that !0

ij vanishes.
The yi -system need only rotate with angular velocity components Ωi related to the
off-diagonal components of the vorticity tensor according to (2.72).

We are now in a position to investigate more deeply the connexion between the
vorticity tensor and the local and instantaneous rotations within the medium. Let us
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denote the components of the curl of the velocity by �i . Translating the usual vector
definition � D r � v into Cartesian tensor notation,

�i D "ijk
@vk

@xj
: (2.73)

Comparing with (2.11), we find

�i D �"ijk!jk D "ijk!kj : (2.74)

Thus �i can be expressed in terms of the components of the vorticity tensor. It
is therefore not surprising that � is called the vorticity vector, or more simply the
vorticity. If the vorticity vanishes throughout the medium, we say that the velocity
field is irrotational. If the vorticity vanishes at a point in space, but not necessarily
throughout the medium, we shall say that the velocity field is locally irrotational
in the neighborhood of the point.

As we have seen, the velocity field measured with respect to a coordinate system
rotating with angular velocity Ωi is locally irrotational in the neighborhood of a
point at which the vorticity tensor is related to Ωi according to (2.72). A comparison
of (2.72) with (2.74) reveals that

Ωi D 1

2
�i : (2.75)

We may therefore summarize much of this section with the statement:
The velocity field is locally irrotational at a given point when it is measured

with respect to a coordinate system rotating with angular velocity equal to half
the vorticity at that point.

The rather lengthy derivations leading to this statement do not lend themselves
readily to physical interpretation. The matter becomes quite clear, however, when
we investigate directly the physical significance of the vorticity. Let us consider
again the two neighboring particles which, at time t , are at xp and xp C dxp ,
respectively. Their relative velocity is

vi .xp C dxp/ � vi .xp/ D @vi

@xj
dxj

D eijdxj C !ijdxj : (2.76)

As we have seen in Sect. 2.1, eij measures the rate at which the particles are
moving apart. The term eijdxj in (2.76) is therefore the radial component of their
relative motion. The tangential component is !ijdxj . However

!ijdxj D 1

2
.!ij � !ji/dxj

D 1

2
.ıjsıir � ıjrıis/!rsdxj : (2.77)
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With the identity (1.49),

!ijdxj D �1
2
"kji"krs!rsdxj

D 1

2
"ikj�kdxj : (2.78)

But the right side of (2.78) is Cartesian tensor notation for 1
2
� � dx. Hence the

particle at xi C dxi is rotating about the particle at xi with an angular velocity
equal to half the vorticity. An observer rotating with this same angular velocity will
say that the particles are not rotating about each other. As we shall see later, such
an observer is in an enviable situation for formulating the physical laws governing
viscous flow.

This concludes our kinematical treatment of the deformation of a continuous
medium. We may observe that we have nowhere required the medium to be a fluid.
All references to viscous flow theory have been anticipatory in character. In fact
we have not even yet defined what we mean by a fluid. Everything presented so
far applies equally well to fluids, elastic solids, plastic solids, viscoelastic materials
of various sorts—to all continuous media. Of course the quantities we have chosen
to discuss are those which will pertain to the theory of viscous fluids. If we were
about to undertake the study of some other type of material, we would be obliged to
introduce other quantities, and perhaps could leave off some of those discussed here.

2.2 Dynamics of Flow

Hydrodynamics is often concerned with the motion arising in a fluid mass due to the
application of external forces. Such forces may be applied at the bounding surface of
the fluid or be distributed throughout the volume. Forces applied at the boundaries
are called surface tractions, a term taken over from solid mechanics, where it is
somewhat more appropriate. The surface tractions may vary from point to point of
the boundary. We shall assume, however, that such variation is continuous. Thus
we can characterize the surface tractions by associating with each point of the
boundary a vector, the direction of which is that of the force acting at the point
and the magnitude of which is the magnitude of the force acting per unit area of the
boundary.

Forces distributed throughout the volume of the fluid are called body forces.
They may vary from point to point of the volume and again we assume that the
variation is continuous. We can then characterize the body forces by associating
with each point of the volume a vector, the direction of which is the direction of the
body force acting at the point and the magnitude of which is the magnitude of the
body force acting per unit mass of the fluid.

So far we have discussed only the external forces applied to the fluid. As an
illustration of what we mean, let us consider the forces acting upon the water in
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a lake. Atmospheric pressure and wind forces apply surface tractions to the free-
surface; gravitational body forces act on each particle in the lake; the lake bed
imposes surface tractions as a reaction to the weight of the water; fish swimming
through the lake propel themselves by applying other surface tractions to the water.
In addition to these forces, each layer of water feels the weight of the water above it.
This, however, is not an external force. True, it results from an external force—the
gravitational body force acting on the upper layers. However it is transmitted to the
lower layers by internal forces, through which the various parts of a fluid mass may
act and react on one another. It is toward these internal forces that we shall now turn
our attention.

Let us consider a fixed surface S drawn through the volume occupied by the fluid.
In general there will be a flow of fluid across S. Also, and more to the point, forces
may act across S. At any instant of time these forces may be characterized by a
vector associated with each point of S, having as its direction the direction of the
force acting on an element of area at the point and as its magnitude the magnitude
of the force per unit area of the surface. This vector is called the stress vector.

It is conceivable that force couples may act across the surface S. In fact the
formulation of an approximate continuum theory for the mechanics of a solid
composed of crystallites relies heavily on the concept of couple stresses. Since we
are dealing with fluid materials only, we postulate the complete absence of couple
stresses.

The characterization of the stress vector given above is not quite complete. The
force acting across S acts on the material on both sides of S. In fact the action upon
the material on one side is precisely the reaction to the action upon the material on
the other side. Since these actions are equal and opposite, to speak of “the force
acting on an element of area” leaves an ambiguity of sign. Also it is clear that the
stress vector at a point depends on the orientation, at that point, of the imaginary
surface on which it acts.

Both of these matters can be cleared up by considering a fixed element of volume
which, at a specific instant of time, lies within the space occupied by the fluid. In
Fig. 2.4, following a line of reasoning due to Augustin-Louis Cauchy (1789–1857),
we choose the element of volume in the shape of an infinitesimal tetrahedron OPQR,
the edges OP;OQ;OR of which are parallel to the axes of a rectangular Cartesian
coordinate system xi . Let the face PQR of this tetrahedron have an area dS and let
the normal to it have direction-cosines ni in the xi coordinate system. Let Fi dS be
the components, in the xi -system, of the resultant force acting on the fluid inside
the tetrahedron across the face PQR. We now calculate the forces acting on the fluid
inside the tetrahedron across each of its other three faces.

Consider first the face OPR, normal to the x1-axis. The area of this face is
n1dS. We denote by T1i the components of the stress vector acting across this
face, with the ambiguity of sign resolved in such a way that the resultant force
acting on the material inside the tetrahedron is �T1in1dS. This choice of sign makes
tensions positive and pressures negative. Using the analogous terminology, we have
resultant forces acting on the material inside the tetrahedron across OPQ and OQR
respectively given by �T2in2dS and �T3in3dS.
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Fig. 2.4 Cauchy tetrahedron

Further, let fi be the body force per unit mass acting at the point O . Then the
resultant body force acting on the element of volume is �fidV , where dV is the
volume of the element and � is the density of the fluid in the neighborhood of O .
Applying Newton’s second law to the motion of the fluid within the elementary
tetrahedron, we have

FidS � Tjinj dS C �fidV D �
Dvi

Dt
dV : (2.79)

We now shrink the dimensions of the tetrahedron to zero without altering its shape,
so that dV=dS ! 0. Equation (2.79) then becomes

Fi D Tjinj : (2.80)

Thus if the stress vectors acting on elements of area at O normal to the three
coordinate axes are known, the stress vector on an element of area of arbitrary
orientation can be found. The nine quantities Tij are called the components of stress
in the xi -system. The diagonal components T11; T22; T33 are called the normal
stresses; the other components are called the tangential, or shear, stresses.

Let us consider another rectangular Cartesian coordinate system yi , defined by

yi D aij.xj � bj / ; (2.81)

where aij and bi are either constants or functions of time only. According to the
definition just given, the components of stress in the yi -system are, at any specific
instant of time, the components T 0

1k; T
0
2k; T

0
3k in the yi -system of the three stress

vectors acting on the elements of area normal to the axes y1; y2; y3 respectively. The
direction-cosines of the y1-axis in the xi -system are a1j . Consequently the stress
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vector on an element of area normal to the y1-axis has components Fi in the xi -
system, obtained by replacing ni with a1j in Eq. (2.80), i.e.,

Fi D a1j Tji : (2.82)

However T 0
1k are the components in the yi -system of this same vector, so that at any

specific time the transformation rule for a vector implies

T 0
1k D akiFi D a1j akiTji : (2.83)

In a similar manner analogous formulas for T 0
2k and T 0

3k can be obtained. Together
with (2.83), these may be written as the single equation

T 0
mk D amjakiTji ; (2.84)

which is the transformation rule for a second-rank Cartesian tensor. Thus it is
established that the components of stress in the various rectangular Cartesian
coordinate systems are the components of a Cartesian tensor of rank 2, the Cauchy
stress tensor.

2.2.1 Conservation of Momentum

We have already formulated the principle of conservation of mass as it applies
to continuous media. A somewhat similar technique can be used to formulate the
principle of conservation of momentum.

We consider again the set of particles which, at the reference time T , lie within
the volume V. It is erroneous to stipulate that the total momentum of these particles
remains the same at all times, for they may be acted upon by forces arising outside
V. Rather, we note that at any instant of time t the rate of change of the total
momentum possessed by these particles is equal to the net force acting upon them.

We again suppose that at time t the particles occupy a volume V�. We require
that V� be completely immersed in the fluid, so that no surface tractions act upon the
particles within V�. The net force transmitted across the boundary S� of V� is
therefore

“

S�

TjinjdS� ; (2.85)

where ni are the components of the outward drawn normal at a generic point of S�.
The particles within V� may also be acted upon by body forces fi per unit mass,
which have net resultant

•

V�

�fidV� : (2.86)
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The total momentum of the particles within V � is

•

V�

�vidV� : (2.87)

Since V� always includes the same particles, there is no momentum transfer across
S�. Conservation of momentum then requires that

“

S�

TjinjdS� C
•

V�

�fidV� D D

Dt

•

V�

�vidV� : (2.88)

The surface integral appearing in (2.88) can be converted to a volume integral by
using Gauss’ divergence theorem, we have

“

S�

TjinjdS� D
•

V�

@Tji

@xj
dV� : (2.89)

Equation (2.88) then becomes

•

V�

�
@Tji.xk; t/

@xj
C �.xk; t/fi .xk; t/

	
dV� D D

Dt

•

V�

�.xk; t/vi .xk; t/dV�

(2.90)

or equivalently,

•

V

�
@Tji.xk; t/

@xj
C �.xk; t/fi .xk; t/

	
@.x1; x2; x3/

@.X1;X2;X3/
dV

D D

Dt

•

V

�.xk; t/vi .xk; t/
@.x1; x2; x3/

@.X1;X2;X3/
dV : (2.91)

Carrying out the indicated material differentiation with the help of (2.34) and
omitting the obvious arguments of the various functions, we have

•

V

�
@Tji

@xj
C �fi � �Dvi

Dt
� vi

D�

Dt
� �vi @vj

@xj

�
@.x1; x2; x3/

@.X1;X2;X3/
dV D 0 :

(2.92)
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Using the equation of continuity (2.35),

•

V

�
@Tji

@xj
C �fi � �

Dvi

Dt

�
@.x1; x2; x3/

@.X1;X2;X3/
dV D 0 : (2.93)

The three equations represented by (2.93) must hold for any volume V satisfying
the requirement that, at time t , V� is completely immersed in the fluid. Consequently
the integrands must vanish identically. We then arrive at the equations of motion,
which must be satisfied at each point within a continuous medium:

�
Dvi

Dt
D �fi C @Tji

@xj
: (2.94)

If the medium is in equilibrium, the left side of (2.94) vanishes. The resulting
equations of equilibrium

@Tji

@xj
C �fi D 0 (2.95)

are more important in elasticity theory than in fluid mechanics, but they do form the
basis for the theory of hydrostatics.

2.2.2 Conservation of Angular Momentum

There is one more purely mechanical principle to formulate: the rate of change of
the angular momentum, about any point, possessed by a set of particles must equal
the net torque about the point.

Consider once more the set of particles which, at the reference time T , occupies
the volume V and which, at time t , occupies the volume V�. We again require that
V� be completely immersed in the fluid, so that no surface tractions act upon the
particles within V�.

We first calculate the net torque, about a generic point ai , which acts on
the particles within V�. The body forces acting throughout V� and the stresses
acting across its boundary S� will, in general, both contribute to this torque. It is
conceptually possible that there is another contribution: external force couples may
act on the material.

No force couple acting on the surface of the fluid can contribute to the
torque on V�, which was chosen to be completely immersed. If force couples
act throughout the volume of the fluid, we shall assume they are continuously
distributed. We can thus characterize them by a vector Mi , the force couple per
unit mass. It is assumed that Mi has no resultant force, any such resultant being
incorporated into the body force fi .
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In the study of elastic solids subjected to magnetic fields, it is quite important
to account for a distribution of force couples throughout the medium. Textbooks
on hydrodynamics, however, usually ignore the possibility of force couples act-
ing throughout the fluid. Indeed, if one associates such couples with magnetic
effects, the lack of oriented elements within a fluid would seem to preclude their
existence. The choice of language in this last statement is deliberately cautious,
because the point is not universally conceded. In any case such considerations are
properly the domain of physics, not hydrodynamics. We must either account for the
possible existence of force couples, or postulate that they do not act on the materials
we shall consider. Ultimately we shall adopt the latter course of action. However
there’s no need to do it just yet, and at this stage the former course of action is more
appealing.

Since we assume that no couple stresses act, the net torque about ai which acts
on the particles within V� is

“

S�

"ijk.xj � aj /TmknmdS� C
•

V�

�"ijk.xj � aj /fkdV� C
•

V�

�MidV� :

(2.96)

This must be equated to the instantaneous rate of change of angular momentum

D

Dt

•

V�

�"ijk.xj � aj /vkdV� : (2.97)

Gauss’ divergence theorem yields

“

S�

"ijk.xj � aj /TmknmdS� D
•

V�

"ijk

�
.xj � aj /@Tmk

@xm
C Tjk

	
dV� : (2.98)

Equating (2.96)–(2.97) and using (2.98), we then have

•

V�

"ijk.xj � aj /

�
@Tmk

@xm
C �fk

�
dV� C

•

V�

."ijkTjk C �Mi/dV�

D D

Dt

•

V�

�"ijk.xj � aj /vkdV� : (2.99)

However

D

Dt

•

V�

�"ijk.xj � aj /vkdV� D D

Dt

•

V

�"ijk.xj � aj /vk
@.x1; x2; x3/

@.X1;X2;X3/
dV :

(2.100)
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Carrying out the indicated differentiation in (2.100), substituting into (2.99),
converting the integrals on the left side of (2.99) into integrals over V, and noting
that the resulting equation must hold for an arbitrary choice of the volume V, we find

�
"ijk.xj � aj /

�
@Tmk

@xm
C �fk

�
C "ijkTjk C �Mi

	
@.x1; x2; x3/

@.X1;X2;X3/

D �"ijkvj vk
@.x1; x2; x3/

@.X1;X2;X3/
C �"ijk.xj � aj /Dvk

Dt

@.x1; x2; x3/

@.X1;X2;X3/
(2.101)

C"ijk.xj � aj /vk
�
D�

Dt

@.x1; x2; x3/

@.X1;X2;X3/
C �

D

Dt

@.x1; x2; x3/

@.X1;X2;X3/

	

Equation (2.25) reduces this to

"ijk.xj � aj /
�
@Tmk

@xm
C �fk � �Dvk

Dt

�
C "ijkTjk C �Mi D �"ijkvj vk : (2.102)

The right side of (2.102) vanishes, for it represents the i th component of v � v.
Using the momentum equation (2.94), we therefore have

"ijkTjk C �Mi D 0 ; (2.103)

which, with the identity (1.49), can be rewritten

Tqp � Tpq D �"pqiMi : (2.104)

Thus conservation of angular momentum leads us to an important conclusion:
When no force couples act throughout the volume of the fluid, the stress

tensor is symmetric.
This is about as far as it is convenient to go without specifying the mechanical

properties of the fluids we want to consider. Everything presented so far refers to
any continuous medium; we now begin to be specific.

2.2.3 The Constitutive Equation for a Newtonian Viscous Fluid

The concept of a quantitative relationship between the internal forces in a moving
fluid and the kinematical quantities describing the motion is due to Newton. In the
hypothesis just before Prop. LI, Lib. II of his famous work Philosophiae Naturalis
Principia Mathematica he takes
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Resistentiam quae oritur ex defectu lubricitatis partium fluidi, caeteris paribus,
proportionatem esse velocitati, qua partes fluidi separatur ab invicem.3

This formulation embodies most of the principles which govern the modern
theory of hydrodynamics. Many fluids have been found empirically to behave in
accord with Newton’s hypothesis over a wide range of flow conditions.

In Sect. 2.1.1 we demonstrated that the rate at which neighboring particles
are moving apart is measured by the rate of deformation tensor. Thus Newton’s
hypothesis can be interpreted as stipulating that the viscous contribution to the stress
tensor be proportional to the rate of deformation tensor. However it is not necessary
to adopt so restrictive an assumption, which, as we shall see, can be derived as a
result of a more general postulate. This more general postulate, which we shall take
as the defining axiom for a Newtonian viscous fluid, is:

The components of stress at a given point in the fluid and at a specific
instant of time are linear functions of the first spatial derivatives of the velocity
components, evaluated at the same point and at the same instant. They have
no other explicit dependence upon the kinematic variables describing the fluid
motion.

Observe that the material coordinates Xi play no role in the defining axiom.
This implies, among other things, that a Newtonian viscous fluid has no intrinsic
preferred directions, i.e., that it is isotropic.

The assumption that the stress componentsTij at a place xi in the fixed coordinate
system and at a time t are functions only of the velocity gradients @vm=@xn,
evaluated at the same place and time, can be stated in equation form:

Tij D Fij

�
@vm

@xn

�
: (2.105)

However a physical postulate should contain no reference, explicit or implicit, to
the motion of the coordinate system in which the various quantities appearing in the
postulate are measured. Hence the stress components T 0

ij at a point yi in the moving
coordinate system and at a time t are related to the velocity gradients @um=@yn by
the functional relationship (2.105). Thus

T 0
ij D Fij

�
@um
@yn

�
: (2.106)

We now note that

Tpq D aipajqT
0

ij

D aipajqFij

�
@um
@yn

�
: (2.107)

3The resistance arising from imperfect slipping between fluid particles to be proportional to the
velocity with which the particles are moving apart, other things being equal.
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This relationship between the stress components in the fixed system and the
velocity gradients in the moving system must hold for any choice of the functions
of time aij and bj which define the moving system. In particular it must hold if the
yi -system is moving so that, at time t :

(i) It has an instantaneous angular velocity equal to half the vorticity at the place xi ;
(ii) Its directions coincide instantaneously with those of the fixed coordinate

system xi .

It was shown in Sect. 2.1.2 that the fluid motion is locally irrotational when
observed in a coordinate system moving in accordance with (i), so that

@um
@yn

D e0
mn D amransers : (2.108)

Substituting this result into (2.107), we have

Tpq D aipajqFij.amransers/ : (2.109)

With the yi -system oriented according to (ii),

aij D ıij ; (2.110)

so that (2.109) becomes

Tpq D Fpq.emn/ : (2.111)

Thus we find as a consequence of our defining axiom for a Newtonian fluid: The
components of the stress tensor at a given point in space-time depend only on
the components of the rate of deformation tensor at the same point in space-
time.

Moreover the axiom requires that this dependence be linear. Thus

Tij D Aij C Bijmnemn ; (2.112)

where Aij and Bijmn do not depend explicitly on the kinematic variables describing
the fluid motion. They may depend upon other physical quantities associated with
the state of the medium.

lt is not obvious a priori that Aij and Bijmn are Cartesian tensors. However
Eq. (2.112) determines Tij for all values of emn, and we know that Tij and emn

are both Cartesian tensors. Setting emn equal to zero demonstrates immediately
that Aij is a Cartesian tensor, the stress at equilibrium. To show that Bijmn is
a Cartesian tensor, we consider the transformation of (2.112) into an arbitrary
Cartesian coordinate system x0

i , according to

x0
i D aijxj (2.113)
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with

aikajk D akiakj D ıij (2.114)

and denote by primed symbols the components of various quantities in the
x0
i -system. Thus

B 0
ijmne

0
mn D T 0

ij � A0
ij

D airajs.Trs � Ars/ : (2.115)

With (2.112), therefore,

B 0
ijmne

0
mn D airajsBrspqepq : (2.116)

However

e0
mn D ampanqepq (2.117)

so that

.amnanqB
0
ijmn � airajsBrspq/epq D 0 : (2.118)

Since (2.118) must hold for an arbitrary choice of epq,

ampanqB
0
ijmn D airajsBrspq : (2.119)

Multiplying both sides by agpahq and using (2.114), we find

B 0
ijgh D airajsagpahqBrspq ; (2.120)

which is the transformation rule for a Cartesian tensor of rank 4.4

The constitutive equation of a fluid should be independent of the orientation of
the coordinate system in which it is observed. Hence Aij and Bijmn are isotropic
tensors of rank 2 and rank 4 respectively. Since the most general isotropic tensor
of rank 2 is a scalar multiple of the Kronecker delta, and since the most general
isotropic tensor of rank 4 is

�ıinıjm C �ıijımn C 	ıimıjn ; (2.121)

where �; �; 	 are scalars, Eq. (2.112) can be written

Tij D �pıij C �eji C �ıijekk C 	eij : (2.122)

4This proves a special case of the quotient rule for tensors. See Jeffreys (1931).
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where p; �; �; 	 do not depend explicitly on the kinematic variables. They may
depend upon state (non-kinematic) variables. The minus sign is included in the
first term as a convenience, since it is sometimes possible to assign this term the
significance of a hydrostatic pressure; we adopted earlier a sign convention which
makes pressures negative.

The symmetry of the rate of deformation tensor allows us to write (2.122) in a
form which we shall call the constitutive equation for a Newtonian viscous fluid:

Tij D �pıij C �ıijekk C 2
eij : (2.123)

where

2
 D � C 	 : (2.124)

It is interesting to note from (2.123) that the symmetry of eij guarantees the
symmetry of Tij. Thus, if the stress tensor is not symmetric,—implying the presence
of force couples—it must depend upon something other than the first power of
the velocity gradients. Since we have excluded this possibility, we shall henceforth
assume that the stress tensor is symmetric.

In terms of the velocity gradients, Eq. (2.123) becomes

Tij D �pıij C �ıij
@vk

@xk
C 


�
@vi

@xj
C @vj

@xi

�
: (2.125)

If we substitute this result into the momentum equation (2.94), we obtain the
Navier-Stokes equation

�
Dvi

Dt
D �fi � @p

@xi
C �

@2vj

@xi @xj
C 


�
@2vi

@xj @xj
C @2vj

@xi @xj

�

C @vj

@xj

@�

@xi
C
�
@vi

@xj
C @vj

@xi

�
@


@xj
: (2.126)

If the fluid is in equilibrium, so that the various velocity derivatives vanish and p
becomes the hydrostatic pressure, (2.126) reduces to the hydrostatic equation

@p

@xi
D �fi : (2.127)

Let us discuss briefly the new quantities introduced in this section. The parameters

and �, which may depend upon the state variables but not upon kinematic variables,
are called the shear or dynamic coefficient of viscosity and the coefficient of
volume viscosity, respectively; they have dimensions of impulse per unit area.
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The quantity �C 2
=3 is called the bulk viscosity. It has often been assumed that
the Stokes relation

3�C 2
 D 0 (2.128)

is at least approximately correct if the fluid under consideration is a gas. This
relation follows from a tacit assumption used in the first order kinetic theory of
gases, viz., that T the mean value of the normal stresses, does not depend explicitly
on the kinematic variables. To show the connexion, contract the constitutive
equation (2.123):

T � Tii

3
D �p C .3�C 2
/

eii

3
: (2.129)

Neither the theoretical foundation nor the experimental verification of the Stokes
relation is especially convincing. Also, Truesdell (1952) remarked on page 229 that
“The Stokes relation implies the anomalous result that a spherical mass of fluid
may perform symmetrical oscillations in perpetuity, without frictional loss”. Stokes
himself never took the relation very seriously, and it is now generally conceded to
be invalid, except for monatomic gases, with the hard-to-obtain experimental data
leniently interpreted.

For many fluids an accurate and useful approximation is obtained by assuming
that � and
 do not depend upon the state variables at all, but are empirical constants.
The Navier-Stokes equation (2.126) then reduces to

�
Dvi

Dt
D �fi � @p

@xi
C �

@2vj

@xi @xj
C 


�
@2vi

@xj @xj
C @2vj

@xi @xj

�
: (2.130)

Up to this point the quantity p has been considered merely as “a function of
the state variable”. In most published work on the theory of viscous compressible
fluids, the function used is the thermostatic equation of state. lt is universally
recognized that this is not a logically valid procedure because, in general, the fluid is
not in thermodynamic equilibrium. Since nonequilibrium thermodynamics has not
been sufficiently developed to be used successfully in the theory of fluid dynamics,
the thermostatic equation of state is used to provide an approximate expression
forp. It is then hoped that it is a good approximation, and, except for certain extreme
conditions, this has been found to be the case.

It is relevant to note that the constitutive equation can be thought of as a
nonequilibrium equation of state. Let us consider a static fluid system for which
the pressure is a function only of density and temperature. If the same fluid is
in motion, pressure loses its meaning, and must be replaced by the more general
quantity, stress. The components of stress then depend on density and temperature,
but they also depend on the rate of deformation and probably upon other state
variables which vanish at equilibrium, e.g., the material derivative of temperature.
As the fluid is allowed to approach a state of equilibrium, the constitutive equation
tends to the thermostatic equation of state.



48 2 The Equations of Viscous Flow

In the hydrodynamics literature one sometimes sees reference to “the dependence
of viscosity upon pressure”. This terminology is not really erroneous, but it is
somewhat loose. It refers to experiments in which viscosity measurements are
carried out within a sealed vessel (or equivalent setup) so that the ambient pressure
can be regulated. What is then measured is the dependence of viscosity upon
density. If the coefficient of viscosity really did depend explicitly on the stress, the
constitutive equation would be non-linear and the fluid would be non-Newtonian.

2.2.4 The Constitutive Equation for a Non-Newtonian
Viscous Fluid

Unlike air and water which are standard examples of Newtonian fluids, many other
fluids, present in nature and technological applications, are non-Newtonian. Typical
examples are blood, molten polymers, muds, paints, toothpaste, etc. The branch
of continuum mechanics which comprises the study of such materials is called
rheology.

Blood is made of aqueous plasma, which behaves essentially as a viscous
Newtonian fluid, and of white and red cells and platelets. The presence of these cells
modifies the characteristics of the rheology, leading to a class of non-Newtonian
fluids which will be the subject of this section.

Molten polymers are more complicated. The long molecular chains affect the
flow in complicated ways. The stress-deformation relation is not instantaneous,
but depends on the kinematical history of the material, leading to effects such as
creep and stress relaxation. Molten polymers are not merely non-Newtonian but
viscoelastic. They have memory. Such complex behavior is beyond the scope of
this monograph. Interested readers are referred to the book by Deville and Gatski
(2012).

An experimenter attempting to measure the viscosity of a non-Newtonian fluid
finds that it depends on the rate of shear. However this is only part of the story. Non-
Newtonian fluids exhibit some unexpected and counterintuitive physical effects.
Consider, for example, the circular Couette flow between two concentric cylinders,
with the apparatus not fully filled with the experimental fluid, so that a free surface
is in contact with the ambient air. We fix the outer cylinder and rotate the inner one
at constant speed. If the fluid is Newtonian, the free surface deforms into a parabolic
shape as the fluid is propelled against the outer cylinder by the centrifugal force. In
case of a non-Newtonian fluid, the fluid climbs along the inner cylinder, in some
cases draining the container as is shown in Fig. 2.5.

This is an example of a normal stress effect, also called a Weissenberg effect.
Because these effects exhibit themselves normal to the direction of shear, it is
insufficient to characterize a non-Newtonian fluid solely by an apparent viscosity
which depends on the rate of shear. Weissenberg effects may, however, be explained
by incorporating non-linear terms into the constitutive equation.
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Fig. 2.5 Weissenberg effect
with fluid rising up the inner
cylinder of a Couette device
(Reprinted with
permission from:
Boger and Walters (1993))

A non-Newtonian, but not viscoelastic, viscous fluid is therefore defined by the
following axiom:

The components of the stress tensor at a given point in space-time depend
nonlinearly on the components of the rate of deformation tensor at the same
point in space-time.

Let us start from Eq. (2.111). To construct the functional expression of Fpq,
the principle of material frame-indifference is needed. In continuum mechanics,
it is usual that the description of a physical quantity depends on the observer
who refers to a coordinate system and a clock. The frame is linked to the space
coordinate system xi and time t . The concept of objectivity or frame-indifference is
central in the development of constitutive equations. It is easily understood that the
distance between two material points is objective as this scalar is seen the same by
two different observers. However the velocity is not frame-indifferent as it results
directly from the observations.

Suppose there are two frames with position and time denoted by .xi ; t/ and
.x�
i ; t

�/, respectively. The two frames are in relative motion such that the most
general transformation between the observations .xi ; t/ and .x�

i ; t
�/ of the same

phenomenon or event is given by

x�
i D Qij.t/xj C ci .t/; t� D t � ˛ ; (2.131)

where Qij.t/ is an orthogonal rotation tensor, ci .t/ a translation vector, and ˛ a
scalar constant. Equation (2.131) is the most general description of a rigid body
motion. We note that imposing objectivity of the stress tensor will be equivalent to
considering that rigid body motion does not affect the stress.

Let us now consider two simultaneous events registered as .x1i ; t/ and .x2i ; t/ by
the first observer, and .x1�i ; t/ and .x2�i ; t/ by the second observer. For these two
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events, the relative positions seen by the observers are ui D x2i � x1i and u�
i D

x2�i � x1�i , respectively. From (2.131), one obtains

u�
i D Qijuj or u� D Qu : (2.132)

Vector fields which transform according to (2.132) are called objective or frame-
indifferent.

With the help of the definition of an objective vector, we define an objective
second order tensor. The first observer spots the two vectors vi and wi that are
linked by the second order tensor Lij

wi D Lijvj : (2.133)

As vi and wi are objective vectors, the starred observer sees them as w�
i D Qijwj

and v�
i D Qijvj . This observer considers the second order tensor as L�

ij such that
w�
i D L�

ijv
�
j . The link between Lij and L�

ij is computed

w�
i D Qijwj D QijLjkvk D QijLjkQlkv

�
l ; (2.134)

i.e.

w� D QLQT v� ; (2.135)

where the upper index T indicates the transpose of the tensor. This last relation
yields

L� D QLQT : (2.136)

The tensor fields that are transformed according to (2.136) by a change of frame are
called objective tensors.

Let us examine how the velocity gradient tensor is transformed by the change of
frame. Taking the material time derivative of (2.131) one gets

v�
i D Pci C PQijxj CQijvj ; (2.137)

where the overdots denote material differentiation. The components of the starred
velocity gradient are

@v�
i

@x�
j

D @v�
i

@xk

@xk

@x�
j

: (2.138)

Equation (2.131) yields

@x�
j

@xk
D Qjk :
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The inverse @xk=@x�
j is Q�1

kj D QT
kj . The evaluation of @v�

i =@xk is carried out via
Eq. (2.137). We have

@v�
i

@xk
D PQik CQil

@vl

@xk
:

Combining the various relations, one writes

.rv/� D .Qrv C PQ/QT ; (2.139)

where the tensor PQQT is antisymmetric. Indeed, as Q is orthogonal, one has
QQT D I. Taking the time derivative of this relation, one concludes that

PQQT C Q PQT D 0 :

From Eqs. (2.10) and (2.139) it is easy to show that

e�
ij D Qi`

@v`

@xk
Qjk : (2.140)

The rate of deformation tensor is therefore an objective tensor.
The constitutive equation has to satisfy the principle of material frame indiffer-

ence, which states that the functional Fpq is invariant for each continuous change of
frame. In mathematical terms, the principle demands

T �
pq D Fpq.e

�
mn/ : (2.141)

The function Fpq must verify the identity

QijFjk.emn/Qlk D Fjk.QimemnQjn/ ; (2.142)

or

QF.e/QT D F.QeQT / : (2.143)

This relation expresses that the function Fpq.emn/ is an isotropic function of the
symmetric tensor emn. The following theorem due to Rivlin and Ericksen (1955)
gives the constitutive equation for the non-Newtonian viscous fluid

Theorem 2.1. T is an isotropic tensor function of e if and only if

Tij.emn/ D '0ıij C '1eij C '2eikekj ; (2.144)

where '0; '1; '2 are scalar functions of the invariants of emn.
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An easy proof of the theorem may be found in the appendix of Spencer (2004).
Recall that the invariants of a tensor e are defined as

I1 .e/ D tr e D eii ; (2.145)

I2 .e/ D 1

2

�
.tr e/2 � tr e2

�
; (2.146)

I3 .e/ D det e ; (2.147)

where the notation tr denotes the trace of a tensor. From the Cayley-Hamilton
theorem, which states that a tensor satisfies its own characteristic equation, e then
satisfies

e3 � I1 .e/ e2 C I2 .e/ e � I3 .e/ I D 0 : (2.148)

Therefore e is now expressible as a matrix polynomial in terms of lower degree
matrices. In general, all matrices en; n � 3, can be expressed as linear combinations
of e2; e and I. This is the reason why the constitutive equation (2.144) involves e up
to the power 2.

Note that for an incompressible fluid, I1 .e/ vanishes and the functions 'i ; i D
0; 1; 2 are only functions of the second and third invariants. Furthermore, if the fluid
is at rest in hydrostatic equilibrium, the only stress remaining in the fluid is the
hydrostatic pressure. Therefore the function '0 is identified with the pressure field
and the constitutive equation for the non-Newtonian viscous incompressible fluid
reads

Tij.emn/ D �p ıij C '1.I2 .e/ ; I3 .e//eij C '2.I2 .e/ ; I3 .e//eikekj ; (2.149)

where p is a scalar pressure field which results from the incompressibility con-
straint. This model is the Reiner-Rivlin fluid, a particular case of the Rivlin-Ericksen
fluid of second-order. Note also that if '2 � 0 and '1 D 2
, the Newtonian fluid is
recovered.

2.3 Energy Considerations

Looking back, we find that we have formulated viscous hydrodynamics in terms of
ten unknown quantities:

Six independent components of stress;
Three components of velocity;
One state variable (the density).
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Connecting these quantities, we have:

The constitutive equation (2.123)-6 component equations;
The Navier-Stokes equation (2.126)-3 component equations;
The equation of continuity (2.35).

Everything seems in order, but look further: the parameters p; �; 
 will, in general,
depend upon other state variables besides the density. These state variables may,
in turn, depend upon the ten quantities listed above—perhaps explicitly, perhaps
implicitly. Thus in order to complete the formulation of hydrodynamics, we must
look into the relationships between the ten quantities and state variables, i.e., we
must consider energy transfer.

We shall make no attempt to consider all possible forms of energy which may
be present in a flowing viscous fluid. Rather, we shall restrict ourselves to the
relationships between mechanical energy and thermal energy, so that the only
relevant state variables are the fluid density and temperature. We thereby exclude
from our scope certain interesting and important areas of hydrodynamics—flow of
chemically reacting fluids, magnetohydrodynamics, flow of dissociating gases. To
treat these subjects, we would have to require that the readers (and the authors!)
have a much broader background in physics and chemistry than is needed for the
more traditional hydrodynamics which forms the subject of this book.

2.3.1 Conservation of Energy in Continuous Media

In classical mechanics, the kinetic energy of a particle having mass m and speed v
is defined as 1

2
mv2. Using an obvious generalization, we define the kinetic energy

K of a fluid mass by

K D 1

2

•

V�

�vj vjdV� ; (2.150)

where V� is the volume occupied by the fluid mass at the instant of time under
consideration. If at the reference time T the fluid mass occupied the volume V,
(2.150) can be written

K D 1

2

•

V

�.xi ; t/vj .xi ; t/vj .xi ; t/
@.x1; x2; x3/

@.X1;X2;X3/
dV : (2.151)

If we take the material derivative of both sides and use Eq. (2.25), we find

DK

Dt
D
•

V

�.xi ; t/vj .xi ; t/
Dvj

Dt

@.x1; x2; x3/

@.X1;X2;X3/
dV ; (2.152)
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or, equivalently,

DK

Dt
D
•

V�

�vi
Dvi

Dt
dV� : (2.153)

The kinetic energy of a fluid mass is only part of its total energy. The remainder
is called the internal energy, and is denoted here byE . It can be expressed in terms
of an internal energy density e, according to

E D
•

V�

�e dV� : (2.154)

By a calculation similar to the one just carried out for the kinetic energy,

DE

Dt
D
•

V�

�
De

Dt
dV� : (2.155)

Conservation of energy requires that the material derivative of the total energy
KCE be equal to the sum of the rate at which mechanical work is done on the fluid
mass and the rate at which thermal energy enters the fluid mass.

If we require that V� be entirely immersed in the fluid, so that no surface tractions
act on its boundary, mechanical work is done on the fluid within V� only by the body
forces and by the stress vectors acting on S�, the boundary of V�. The rate at which
work is being done on a particle is equal to the dot product of the particles velocity
and the force acting on the particle. Therefore the rate at which work is done on the
fluid within V� is

•

V�

�fividV� C
“

S�

Tjinj vidS� D
•

V�

�
�fivi C @.Tjivi /

@xj

	
dV� ; (2.156)

where Gauss’s divergence theorem is used to obtain the right side from the left.
Let us now turn our attention to the rate at which thermal energy enters the fluid

within V�. First, heat may be conducted across S�. To account for this, we introduce
a new quantity, the heat flux vector qi , which denotes the amount of heat per unit
area per unit time which crosses a surface normal to the xi -axis in the increasing xi -
direction. Thus the heat flux per unit area across a surface having direction cosines
ni is qini in the increasing ni -direction. The rate at which heat is conducted into the
fluid within V� is, therefore,

�
“

S�

qinidS� D �
•

V�

@qi

@xi
dV� : (2.157)
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Next, there may be heat sources within V�. We assume that any heat sources
which exist are continuously distributed, so that we can characterize them by
associating with each point of the volume a scalar Q, the heat supplied per unit
volume per unit time. Therefore the rate at which heat sources supply energy to the
fluid within V� is

•

V�

Q dV� : (2.158)

Finally, radiant energy may be entering or leaving the fluid within V�. This would
be of importance if, for instance, different parts of the fluid were at significantly
different temperatures. In this case the equations of hydrodynamics become coupled
to the equations of radiative transfer. The resultant theory is quite useful in the
study of stellar atmospheres, and in certain other problems where large temperature
differences obtain, but we shall consider it to be beyond our scope. We shall
postulate that radiative transfer of energy between different parts of the fluid does
not occur.

We need not, however, exclude the possibility that the fluid receives radiant
energy from an external agency, for such energy can be considered part of the heat
source Q. This approach can be used to study an important problem: the effect of
insolation (absorption of radiant solar energy) on oceanographic and meteorological
fluid motions.

We have now accounted for all the energy being added to the fluid within V�.
Note that this is not at all the same as the energy being added to the volume V�
itself. Fluid is moving into and out of V�, and will, in general, carry energy with it.
If we wanted to obtain an energy balance based upon the rate of change of energy
within the fixed volume V, we would have to account for this convected energy.
Although this can be done, it is slightly easier to keep track of the energy possessed
by the fluid mass which, at time t , happens to occupy the volume V�. We are now
in a position to state the law for energy conservation constituting the first principle
of thermodynamics.

First principle of thermodynamics The material time derivative of total energy
in V� is equal to the sum of the power of volume and contact forces and the rate of
heat received by the volume under consideration.

Adding up the contributions from (2.156)–(2.158), we have

D

Dt
.K C E/ D

•

V�

�
�fivi C @.Tjivi /

@xj
� @qi

@xi
CQ

	
dV� : (2.159)

If we now insert (2.153) and (2.155) into (2.159) and note that the resulting
equation must hold for an arbitrary choice of the volume V�, subject only to the
restriction that V� be immersed in the fluid, we obtain
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�vi
Dvi

Dt
C �

De

Dt
D �fivi C @.Tjivi/

@xj
� @qi

@xi
CQ : (2.160)

This can be simplified by using Eqs. (2.9) and (2.94). We have
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(2.161)

D Tjieij C �vi

�
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Dt
� fi

�
:

so that (2.160) becomes

�
De

Dt
D Tjieij � @qi

@xi
CQ ; (2.162)

the Fourier-Kirchhoff-Neumann energy equation.
The scalar Tjieij is the stress power, the rate at which internal mechanical work

is being done per unit volume.

2.3.2 The Energy Equation for a Newtonian Viscous Fluid

It should be noted that nowhere in the derivation of (2.162) was it assumed that we
were dealing with a Newtonian fluid. Equation (2.162) is valid for all continuous
media. By inserting the constitutive equation (2.125) and the relationship (2.10), we
obtain

�
De

Dt
D �p @vi

@xi
C Φ � @qi

@xi
CQ ; (2.163)

where Φ is the dissipation function, denoted by

Φ D �

�
@vi

@xi

�2
C 


@vi

@xj

�
@vi

@xj
C @vj

@xi

�
: (2.164)

If we employ Fourier’s law of heat conduction,

qi D �k @Θ
@xi

; (2.165)
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where k is the coefficient of heat conductivity and Θ is the absolute temperature,
(2.163) becomes

�
De

Dt
D �p @vi

@xi
C Φ C @

@xi

�
k
@Θ

@xi

�
CQ : (2.166)

2.3.3 Second Principle of Thermodynamics

From statistical physics considerations, we know that physical phenomena evolve
in an irreversible way. This irreversibility is taken into account by the physical
quantity called entropy, which is a measure of the disorder in a system. In the
continuum mechanics approach, the Clausius-Duhem inequality expresses the
second principle of thermodynamics in terms of entropy.

Second principle of thermodynamics The rate of change of the entropy in V� is
greater than or equal to the sum of the volume distribution of entropy sources and
the entropy flux across the boundary.

We write

d

dt

•

V�

�s dV� �
•

V�

Q

Θ
dV� �

“

S�

qini

Θ
dS� ; (2.167)

where s is the entropy density per unit mass. We observe that the heat received by
the fluid is decomposed into two terms: the first one for the volume contribution and
the second one for the surface heat exchange.

Carrying through the algebra, this principle gives the Clausius-Duhem inequality

�
Ds

Dt
� 1

Θ

�
�

De

Dt
� Tijeij

�
C 1

Θ2
qi
@Θ

@xi
; (2.168)

which must be satisfied for every thermodynamical process.
At this stage, we have two more unknown quantities, namely the internal energy

density e and the entropy density s. It is customary to consider them depending only
on the temperature field and the density.

Let us examine the consequences of the Clausius-Duhem inequality. To this end,
we define the deviatoric rate of deformation tensor as

edij D eij � 1

3
emmıij ; (2.169)

so that edii D 0. We then assume
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Postulate The Clausius-Duhem inequality (2.168) is always satisfied for arbitrary
and independent histories of the thermodynamic variables, i.e. the temperature Θ,
the density �, the deviatoric rate of deformation edij , and the temperature gradient
.@Θ=@xi /.

Here history means the time evolution of the variables, for a given material
position, and is called the thermodynamic process. We notice that the constitutive
equations express Tij; qi ; e; s according to the thermodynamic process. The history
of � will provide the history of eii by the law of mass conservation. Let us define
� by

� D 3�C 2
 : (2.170)

The constitutive relationship for the stress tensor (2.123) is written as

Tij D �pıij C �ekkıij C 2
edij : (2.171)

The Clausius-Duhem inequality (2.168) yields the following expression valid for all
viscous Newtonian fluids
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�
: (2.172)

With the postulate about the thermodynamic process, the left hand side of this
vanishes:

�

�
De

Dt
� Θ

Ds

Dt

�
� p

�

D�

Dt
D 0 : (2.173)

The reader is referred to Botsis and Deville (2006) for a detailed proof of (2.173).
Replacing the material time derivative in (2.173) by differentials, one finds the
classical state relation

�.de � Θ ds/ � p

�
d� D 0 : (2.174)

In order that the right hand side of the inequality (2.172) be always positive, it is
necessary and sufficient that

� � 0; 
 � 0; k � 0 : (2.175)

Therefore the inequality right hand side is composed of linear combination of
squares of independent terms, which must be a quadratic positive definite form with
positive coefficients.

We note that the Stokes relation (2.128) is a special case of (2.175).
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If we assume that the viscous fluid is such that the internal energy does not
depend on the density �, then e D e.Θ/ and this is the model of an ideal gas.
The equation of state for the pressure is

p D �RΘ ; (2.176)

where the constant R is that of the ideal gas with SI units Jkg�1K�1. For air,
R D 287Jkg�1K�1. Note that the experimental evidence shows that 
, � and k do
not depend on the temperature for an ideal gas.

2.4 Incompressible Fluids

In order to simplify the solution of the hydrodynamic equations, it is often assumed
that the fluid under investigation is incompressible. However our intuitive concept of
incompressibility involves more than is evident at first. Let us examine this concept
in reference to the hydrostatic case, where it can be discussed in terms of pressure,
rather than stress.

It is sometimes said that an incompressible material is characterized by the
equation of state

p D f .Θ/I (2.177)

the possibility that f .Θ/ is constant is not excluded.
In the sense of Sect. 2.2.3, this is not an equation of state at all; it’s a constraint.

Given � and Θ, the equation of state should determine a unique value of the
hydrostatic pressure. Thus an equation of state for a fluid satisfying (2.177) would
be a functional relationship determining a unique value for p for each value of Θ,
over some range of Θ.

However, if there were such an equation of state, it would not be possible for
an incompressible fluid to be simultaneously in static equilibrium and thermal
equilibrium when body forces are present.5 Although this does not contradict any
of the assumptions introduced previously, it certainly fails to reflect our intuitive
concept of how an incompressible fluid should behave. Surely a tower of water can
stand at equilibrium in a gravity field, yet we feel that the compressibility of water
should usually be negligible.

5For thermal equilibrium, the temperature is uniform. Hence, by (2.177), the density is also
uniform. For static equilibrium the hydrostatic equation (2.127) then predicts that p varies along
the body force field. Hence, if each value of Θ were to determine a unique value of p, the
temperature could not be uniform after all.
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Therefore an incompressible fluid has no thermal equation of state. The assump-
tion of incompressibility is a constraint, embodied by (2.177). The pressure is the
reaction to that constraint, cf. Langlois (1971).6 As such it is a primitive unknown to
be determined, for conditions of static equilibrium, from the hydrostatic equation
and, more generally, to be determined along with the velocity components and
temperature from the equations of viscous flow. The fluid density, and hence the two
coefficients of viscosity, are uniquely determined from the temperature via (2.177).

Another way to look at incompressibility consists in linking incompressibility to
isochoric motion which imposes @vi=@xi D 0. Consequently by mass conservation
D�=Dt D 0 and � D constant.

Actually the simplification of the hydrodynamic equations usually associated
with the incompressibility assumption is obtained only when we introduce a second
assumption: that � and
 are constant. For this case, the equation of continuity (2.36)
and the Navier-Stokes equation (2.126) are not coupled to the energy equation. The
four dependent variables, p; vi .i D 1; 2; 3/, are determined from four equations
obtained from (2.36) and (2.126):

@vi

@xi
D 0 ; (2.178)

�
Dvi

Dt
D �fi � @p

@xi
C 
r2vi ; (2.179)

subject to boundary conditions which we shall develop later. Observe that the
volume viscosity � does not appear in (2.179). As we showed in Sect. 2.1.1, for
v3 independent of x3 the continuity equation (2.178) is automatically satisfied by
introducing a stream function  , such that

v1 D @ 

@x2
;

v2 D � @ 
@x1

: (2.180)

We now introduce (2.180) into the three equations represented by (2.179). For
economy of subscripts, we let

x1 D x; x2 D y ;

x3 D z; v3 D w : (2.181)

6Truesdell (1966), pages 42–44, treats the matter for materials much more general than Newtonian
fluids.
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With (2.180) and (2.181), Eq. (2.179) become
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(2.184)

We now differentiate (2.182) with respect to y, differentiate (2.183) with respect
to x, and add the resulting equations. We thus eliminate the pressure and obtain
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where � D 
=� is the kinematic coefficient of viscosity.
This result is not especially useful as its stands. However, if the flow is two-

dimensional, so that w is zero and  is independent of z, a further simplification
results: Eq. (2.184) becomes trivial and Eq. (2.185) reduces to
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In this special case, then, the flow field is determined from one partial differential
equation in one dependent variable.
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2.4.1 The Boussinesq Approximation

An important matter forces us to reconsider the simplification of incompressibility.
We know that gradients of temperature or solute concentration in a liquid can lead
to significant buoyant convection, even if the resulting density differences are only
a few hundreths of a percent. The way out is to use the Boussinesq approximation
(after Joseph Valentin Boussinesq 1842–1929): fluid density changes are ignored
except in the body force term. This is widely useful in practice. The logical inconsis-
tency of accounting for density changes “here” but not “there” can be circumvented
by taking a slightly different view: regard the liquid as an incompressible fluid acted
upon by a body force which depends on the temperature and/or the concentration of
a solute.

A note about terminology: the words “advection” and “convection” are some-
times used as synonyms. However in some branches of applied hydrodynamics,
notably those pertaining to the earth sciences, they are assigned different meanings.
“Advection” is generic, simply referring to transport of mass, heat, momentum,
etc. carried about by a moving fluid. “Convection” is reserved for transport when
the fluid motion originates from, or is strongly influenced by, density variations as
discussed in this subsection. Thus, a meteorologist will refer to “advection fog” but
“cumulus convection”.

For the incompressible fluid, the internal energy density e depends in general
on the entropy s and the temperature Θ, i.e. e D e.s;Θ/, cf. Eq. (2.174). The heat
capacity c is defined by the relation

c D @e

@Θ
: (2.187)

Here the heat capacity c is unique because the difference between heat capacity at
constant pressure and constant volume, cp and cv , respectively, vanishes, cf. Panton
(1984). In the Boussinesq approximation, the density is assumed to be a constant
everywhere in the momentum and energy equations, except in the body force term.
There, the density varies according to the following equation of state

� D �0Œ1 � ˛.Θ � Θ0/� ; (2.188)

where ˛ is the volume expansion coefficient and �0 D �.Θ0/ with Θ0 a reference
temperature. For natural convection, the body force term fi is equal to the gravity
acceleration gi . The energy equation within the Boussinesq approximation becomes

�0c
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�
CQ ; (2.189)

the solution of which will yield the temperature field.
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2.5 The Hydrodynamic Equations in Summary

We have observed that under very general conditions the flow of a Newtonian fluid
is described by the partial differential equations
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(2.192)

Thus we have five equations of motion, three of which are represented by the vector
equation (2.191). The five dependent variables are: the density �; the absolute
temperature Θ; the three velocity components vi . The parameters �;
; k; p; e
are usually assumed to be known functions of � and Θ, although nothing in our
development prohibits k and e from depending upon kinematic variables. The
quantities fi and Q are specified functions of time and space.

If the fluid is incompressible, the governing equations not only become simpler
but also change their fundamental character: if the density does not depend on the
temperature, so that the continuity equation (2.190) becomes

@vi

@xi
D 0 ; (2.193)

all the terms involving the volume viscosity � drop out of the Navier-Stokes
equation (2.191); the pressure p is no longer a specified function of the state
variables, but is a primitive unknown; if the coefficient of viscosity 
 does not
depend upon temperature,7 the dependent variables vi and p can be determined
without recourse to the energy equation (2.192), which now is used only to
determine the temperature distribution once the flow field is obtained. The equations
determining the flow are then

7This monograph is concerned almost exclusively with incompressible, constant-density, constant-
viscosity flow. Somewhat imprecisely, but more succinctly, and more in keeping with common
practice, we shall refer to a fluid flowing under these conditions as an incompressible fluid.



64 2 The Equations of Viscous Flow
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D 0 ; (2.194)
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where � D 
=�.

2.5.1 Boussinesq Equations

With the assumptions given in Sect. 2.4.1 and with Eqs. (2.188) and (2.189), we
write the Boussinesq equations

@vi

@xi
D 0 ; (2.196)

@vi

@t
C vj

@vi

@xj
D gi Œ1 � ˛.Θ � Θ0/� � 1

�0

@p

@xi
C �0r2vi ; (2.197)

�0c

�
@Θ

@t
C vj

@Θ

@xj

�
D @

@xi

�
k
@Θ

@xi

�
CQC 


@vi

@xj

�
@vi

@xj
C @vj

@xi

�
; (2.198)

where �0 D 
=�0 and gi is the i -th component of the gravitational acceleration.

2.6 Boundary Conditions

A system of partial differential equations is not sufficient to determine the dependent
variables in a mathematical problem: we need to impose initial conditions and
boundary conditions. The specification of initial conditions is usually quite obvious
and will not be treated here. Suffice it to say that, for an incompressible fluid, the
initial velocity field must be divergence free. However in years past, the boundary
conditions of hydrodynamics were the subject of considerable debate. The issue is
now fairly well settled, except for certain aspects which we’ll mention presently.

2.6.1 The No-Slip Condition

Under most conditions of importance the layer of fluid in contact with a solid
body has the same velocity as the body. This statement cannot be proved from
hydrodynamic considerations, but has been quite convincingly demonstrated by
many experiments. Also statistical mechanical investigations of fluids tend to
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support its correctness. It is now generally recognized as the boundary condition to
be imposed on the velocity components vi , except under certain extreme conditions.
For the first century or so after Newton, however, the kinematic conditions at solid-
fluid interfaces were not understood at all. Most authors of this period included slip
terms in their solutions to the hydrodynamic equations. As the nineteenth century
progressed, however, more and more experimental evidence piled up in favor of the
no-slip condition. For a viscous fluid, we write

vi;fluid D vi;wall : (2.199)

If we were examining the case of an inviscid fluid, this condition would be
relaxed as the fluid would no longer stick to the wall. The boundary condition
imposes the continuity of normal velocity components

vi;fluidni D vi;wallni ; (2.200)

where ni are the components of the unit normal vector to the wall.
In order to anticipate the circumstances under which the no-slip condition breaks

down, let us discuss briefly and qualitatively its physical origin. First there is the
effect of surface asperities: the fluid tends to become trapped in the tiny pockets and
crevasses which are present on any solid surface. Also there is adhesion: there are
very real attractive forces between the molecules of the solid and those of the fluid.

We may therefore expect the no-slip condition to break down whenever the
important geometrical lengths traversed by the fluid molecules are nearly as short
as their mean free path. Although this does not usually happen, there are at least
three conditions of importance where it does. The fluid under consideration may be
a rarified gas: treatment of problems involving flight through the upper atmosphere
cannot be based on the no-slip condition. The region occupied by the fluid may
be very short in one or more directions: this can be of importance in certain
lubrication problems. The fluid may be flowing at extremely high speeds, so that
the molecules move a long way between collisions: the branch of hydrodynamics
called hypersonics deals with flow under this condition. A relevant reference is
Hayes and Probstein (2004).

The no-slip condition also breaks down when new fluid-solid interfaces are being
formed, so that molecular forces have not yet had time to become established.
This can happen, for instance, in spreading problems. Even a casual reading of the
literature on spreading is sufficient to convince the reader that he has discovered a
poorly understood aspect of hydrodynamics.

The same arguments used to establish the no-slip condition for fluid-solid
interfaces lead to the conclusion that the velocity is continuous across fluid-fluid
interfaces, and the arguments are subject to the same reservations.

The no-slip condition is not always satisfactory as some physical phenomena
occurring at the micro scale fail to be modeled with this boundary condition. The
same experimental evidence holds also for viscoelastic fluids. A slip condition is
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set up which allows the fluid to flow without full adherence along the wall. If i are
the components of the unit tangent vector to the boundary, the slip condition reads

vi i D �Tijnj i ; (2.201)

where � is the slip coefficient chosen, most of the time, on the basis of experimental
results. Condition (2.201) states that the tangential velocity is proportional to the
tangential component of the stress vector.

A very interesting problem, both from the theoretical and experimental point of
view, is related to the moving contact line. This occurs when the interface of a
viscous fluid with air, considered as an inviscid fluid, is in contact with a moving
solid wall. Coating is the industrial process that applies a very thin liquid layer on a
solid support, involving very often the presence of contact lines, see e.g. Weinstein
and Ruschak (2004). Dynamic wetting is a key issue of the problem. The reader is
referred to a recent review for the latest experimental and theoretical developments
on the subject, cf. Snoeijer and Andreotti (2013).

2.6.2 Force Boundary Conditions

It may happen that the velocities of the surfaces bounding a fluid are not all
specified, but that the surface tractions acting on some of these boundaries are
known. It would appear superficially that Newton’s law of action and reaction
requires the stress vector at a point on the fluid surface to equal the surface traction
applied at the same point. This is not quite correct, however, because of the fluid’s
surface tension. The free surface of a liquid possesses a finite energy  per unit area;
 is called the coefficient of surface tension. Consequently work must be done
just to increase the surface area of a body of liquid. In this section, and in many
applications,  is assumed constant. That assumption will be relaxed in the next
section.

2.6.2.1 Free Surface Conditions

When the viscous fluid (medium I) is in contact with a gas (medium II), one assumes
that the contact forces are in equilibrium and one writes the relation:

FI;i C FII;i D 0 ; (2.202)

with the definition (2.80) for the stress vector. With (2.202) and the equality nI;i D
�nII;i , one obtains

TI;ji nI;j D TII;ji nI;j : (2.203)
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The free surface conditions are projected on the unit normal and tangent vectors
to yield

TI;ji nI;j nI;i D TII;ji nI;j nI;i ; (2.204)

TI;ji nI;j I;i D TII;ji nI;j I;i : (2.205)

Taking nI the normal vector pointing outward of the viscous fluid as geometrical
reference, we then have TII;ij D �pgasıij, where pgas is the pressure in the air
considered as an inviscid fluid. Omitting the fluid index I for the sake of simplicity,
the conditions (2.204) and (2.205) become

Tji nj ni D �pgas.nini / D �pgas ; (2.206)

Tji nj i D 0 : (2.207)

Equation (2.207) indicates that at the free surface, the tangential component of the
contact force must vanish as the inviscid air is unable to sustain a shear stress. The
free surface conditions (2.206) and (2.207) imply knowledge of the surface shape.
But the shape of the surface is itself part of the problem solution via the unit normal
vector n. Therefore free surface flows constitute one of the major difficulties in fluid
mechanics as an intrinsically nonlinear problem. To tackle it, one very often resorts
to the Lagrangian representation where a given initial configuration of the surface
deforms with elapsing time.

2.6.2.2 Flow with Surface Tension

Consider first the hydrostatic case, so that we can talk about pressure, rather than
stress. There is a pressure jump across the liquid surface at any point where the
surface is curved. The magnitude of this pressure jump can be calculated by using
virtual work. As an element of surface is given a virtual displacement outward
(cf. Fig. 2.6), the surface area increases. The energy required for this comes from
the unbalanced pressure forces acting through the virtual displacement. Letting the
element of surface shrink to a point then leads to the result Adam (1968)

pfluid � pambient D 

�
1

R1
C 1

R2

�
; (2.208)

where R1 and R2 are the principal radii of curvature of the surface. The fluid
pressure exceeds ambient when the surface is concave inward. The pressure
discontinuity across a fluid-fluid interface is given by an expression analogous to
(2.208), where  now represents the coefficient of interfacial tension.

The hydrodynamic case is not substantially different. Account must be taken
of energy changes going on within an elemental volume of fluid bounded on one
side by the element of area considered in the hydrostatic case. However as this
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Fig. 2.5

Fig. 2.6 Movement of the
liquid surface

elemental volume shrinks to a point, volume effects approach zero as the cube of a
linear dimension; consequently they are negligible compared with surface effects,
which approach zero as the square of the linear dimension. Thus the surface traction
and stress vector at a surface differ by the vector .1=R1 C 1=R2/ni , where ni
is the outward normal. The tangential components of the stress vector equal the
tangential components of the surface traction; it is only the normal components
which differ. If the surface of the fluid is concave outward, the stress vector has the
larger component; if it is concave inward, the opposite occurs; if the mean curvature
is zero, the stress vector equals the surface traction.

We may note that most fluid surfaces and interfaces have a low tension
coefficient. Therefore unless curvatures are large, a good approximation is obtained
by setting the stress vector at fluid surfaces equal to the surface traction, and by
assuming the stress vector to be continuous across fluid-fluid interfaces. This would
be a poor approximation, for example, in a problem involving the motion of small
ripples or small drops.

2.6.3 Thermocapillary Flow

In the processing of molten metals, and in other flows of hot liquids, the surface
tension, which depends on the temperature, can vary significantly from point
to point. The surface traction and stress vector now also differ by a tangential
component as well as a normal component. The difference is now

.1=R1 C 1=R2/ni C .rS/i ; (2.209)

where rS is the surface gradient of the surface tension, i.e.,

.rS/i D @

@xi
� ninj

@

@xj
: (2.210)

As a result the variation of surface tension can drive a flow even in the absence of
any other driving mechanisms.

When the surface tension variation is caused by temperature variation, the effect
is called thermocapillary convection. In materials processing it can be one of
several important driving mechanisms, cf. Langlois (1985). The resulting flow
is often quite complicated and its treatment wasn’t computational feasible until
about 1980.
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If the variation of surface tension is caused by a variation of solute concentration,
the resulting flow is called solutocapillary convection. It was correctly cited by
James Thomson, the elder brother of Lord Kelvin, in 1855 as the explanation for the
phenomenon of “wine tears”.

The generic term for flow caused by variation of surface tension, whatever the
underlying cause, is the eponym Marangoni convection (after Carlo Giuseppe
Matteo Marangoni 1840–1925).

2.6.4 Other Boundary Conditions

It may happen that a flowing fluid is subject to boundary conditions which do not
fall into either of the categories discussed so far. Without attempting to exhaust the
possibilities, we shall cite a few examples.

If the fluid is compressible, so that the energy equation is coupled to flow
equations, it may be necessary to impose boundary conditions on a state variable,
usually the temperature. It may be specified, for instance, that part of the fluid
boundary is thermally insulated, or perhaps maintained at a specific temperature.

In the study of flow through pipes, we may want to impose a volume flow
condition. The net flow of fluid across a fixed area, e.g., the cross section of the
pipe, may be specified.

If the fluid has a free surface, the kinematical free surface condition applies.
This stipulates that the free surface is a material surface: it always consists of the
same particles. At first glance this may seem not quite right: Is not a large part of
physical chemistry concerned with the diffusion of molecules toward and away from
a free surface? True enough, but hydrodynamics completely ignores microscopic
motions within the fluid. A basic assumption, which will be taken throughout this
book, is that the fluid motion can be represented as a smooth function of time and
space. With this assumption all surfaces in the fluid must remain intact, and this
extends, in particular, to free surfaces. If the motion is insufficiently smooth, the free
surface might not be a material surface. For example, the fluid mass might fracture,
as in a breaking wave. In the paper Dussan (1976), E. B. Dussan V develops the
mathematical criteria and supplies a critique of the subject’s history.

Let us suppose that a free surface is described by

S.xi ; t/ D 0 ; (2.211)

and focus our attention on a particle lying on this surface. Since it must remain on
the surface, it must move in such a way that S.xi ; t/, evaluated at the point xi which
the particle occupies at time t , must always be zero. Thus on the free surface

DS

Dt
D 0 : (2.212)
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This can be written

@S

@t
C vi

@S

@xi
D 0 : (2.213)

It is necessary to use this boundary condition, and also the appropriate force
boundary condition, in the study of waves on a liquid surface.

2.7 Similarity Considerations

We shall soon turn our attention to the solution of boundary value problems
involving the flow of viscous fluids. In order to carry out these solutions with some
degree of generality, it is important to know the scaling rules (more often called the
similarity rules) which may allow us to relate the solutions of two different flow
problems pertaining to configurations which are geometrically similar. The reader
is referred to the monograph by Barenblatt (2003) for a complete description of a
modern treatment of dimensional analysis and physical similarity.

Intuition tells us that such scaling rules may not always be available. Consider,
for example, the problems an oceanographer would have in building a scale model
of San Francisco bay. Let us suppose that the bay, 65 km long, were modeled
in a laboratory 12 m long. For geometrical similarity, the 10 m depth would be
represented by a film of fluid 2 mm thick, and the sloughs would correspond to tiny
threads of fluid 3 mm wide and half a millimeter thick. In studying fluid motions
within the bay, it would be reasonable to neglect surface tension, and the fluid
viscosity would play a minor role. The large-scale motions would be analyzed
by a Bernoulli’s law sort of approach. In the model, however, surface tension and
viscosity would be the dominant effects. The scaling would be better if, in the model,
a fluid were used which was much less viscous than sea water and had a much lower
coefficient of surface tension. Liquid helium perhaps?

Other illustrations of this type are easily devised. In general, geometrical scaling
is not enough for the construction of a realistic model. It may be necessary to
change the time scale, and this may induce a change in the velocity scale. As in
the example above, even this may not be enough. Whether scaling can be carried
out should somehow be reflected in the mathematics of the situation. So far the
governing equations and boundary conditions look the same for all geometrically
similar situations, so that scaling rules must be ascertained from the solutions. Since
these solutions are not always obtainable by analytic methods, it is quite important to
rewrite the differential equations so that similarity considerations can be investigated
directly from them. This is done by writing the differential equations in terms of
dimensionless variables, obtained by normalizing the various quantities with respect
to mass, length, time, and temperature scales inherent in the problem.
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2.7.1 Similarity Rules for Steady, Incompressible Flow Without
Body Forces When No Free Surface Is Present

Let us consider in detail the case of steady, incompressible flow without body forces
in a region bounded only by rigid obstacles. The region is not necessarily limited in
extent, but may extend to infinity in one or more directions. In addition to the no-
slip condition on the boundaries the velocity may be required to assume a specified
value “at infinity”, or to produce a specified flux through some given surface. This
monograph will deal almost (but not quite) exclusively with problems which fall
into this category. Such problems are governed by the differential equations

@vi

@xi
D 0 ; (2.214)

�vj
@vi

@xj
D � @p

@xi
C 
r2vi ; (2.215)

subject to appropriate boundary conditions.
We assume that the flow region can be characterized by one geometrical lengthL.

This could represent, for example, the breadth of an obstacle, or the diameter of a
tube through which the fluid flows. In some problems, e.g., flow past a semi-infinite
plate, there is no geometrical length scale; in others, notably fluid-film lubrication,
there is more than one. Such cases require special treatment, and their study will be
deferred. We normalize the length variables with respect to L. Thus, we define new
spatial variables x0

i according to

x0
i D xi

L
: (2.216)

Since the flow is steady, there is no time scale per se. However the velocity scale
imposes one. If the kinematic boundary conditions can be characterized by a single
speed U , the inherent time scale of the problem is L=U , the inertial time tinert, i.e.
the time it takes a particle moving with speed U to traverse the distance L. We
introduce normalized velocity components

v0
i D vi

U
: (2.217)

Since temperature considerations are irrelevant, there remains only to choose the
mass scale. The natural choice is �L3, the mass of fluid within a cube of side equal
to the characteristic length. This choice imposes the force scale �L2U 2, and hence
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the pressure scale �U 2, which those readers familiar with hydraulics will recognize
as twice the dynamic head.8 Consequently we set

p0 D p

�U 2
: (2.218)

In terms of the normalized variables, Eqs. (2.214) and (2.215) become, respec-
tively,

@v0
i

@x0
i

D 0 ; (2.219)
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j @x

0
j

; (2.220)

where Re is the Reynolds number, a dimensionless grouping defined by

Re D �LU



: (2.221)

With this dimensionless formulation, we see that similarity rules can be estab-
lished between two geometrically similar problems only if their Reynolds numbers
are the same, for otherwise they are governed by different systems of differential
equations. This condition is also sufficient, provided the boundary conditions are the
same in the dimensionless formulation of both problems, i.e., provided the problems
are kinematically similar.

In addition to the relation it bears to similarity considerations, the Reynolds
number plays another role in viscous hydrodynamics. It measures the relative
importance of fluid inertia and fluid viscosity: �U measures fluid momentum per
unit volume and 
=L measures the impulse per unit volume arising from viscous
forces.

Either the Reynolds number or its reciprocal can serve as a perturbation param-
eter. If Re is extremely large, fluid inertia dominates the problem. By dropping the
term involving (1=Re) from Eq. (2.220), we obtain the equation of motion for an
inviscid fluid. In doing so, we eliminate the highest derivatives and consequently
lose some ability to satisfy boundary conditions. Inviscid flow theory proceeds on
the assumption that only relative normal velocity need vanish on solid obstacles;

8Actually we could present a good case for doing things the other way around. This monograph
deals with slow viscous flow, so that a pressure scale related to the dynamic head is somewhat
fictitious. We would be better off choosing a pressure scale related to typical viscous stresses, viz.,

U=L, which leads to the mass scale 
L2=U . However the end result is the same, and every other
hydrodynamics book which treats the subject uses, in effect, �L3 as mass scale; perversity for the
sake of consistency seems unfair to the reader. In the next section, we do, in essence, adopt the
alternative choice.
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nothing is required about the tangential velocity. The solution of problems in high
Reynolds number flow can often be carried out by assuming inviscid flow theory
to be applicable, except in thin films of fluid surrounding solid obstacles. Within
these films the viscous flow equations must be used. However the adjustment to no-
slip at the boundary takes place so steeply that derivatives across the film dominate
the differential equations. Hence a simplification can be obtained, and the resulting
boundary layer theory has been extensively studied.

Much of this book will be concerned with the opposite situation. If Re is
sufficiently small, viscosity dominates. As an approximation (or, better, as an
asymptotic result for Re approaching zero), the inertia term can be dropped from
(2.220), unless, as sometimes happens, this term is needed to provide a mechanism
for nonlinear exchange of momentum (more about this in Chap. 6). For small Re the
normalization (2.218) is quite misleading, as indicated in the footnote on page 72.
Although the pressure term in (2.220) appears to be of the same order as the inertia
term, the viscous forces will generate pressures of order 
L2=U . Thus the pressure
term must be retained. In terms of the physical (dimensional) variables we obtain,
for vanishingly small Reynolds number, the equations of creeping viscous flow

@vi

@xi
D 0 ;

@p

@xi
D 
r2vi : (2.222)

These equations could also be obtained from (2.214) and (2.215) by postulating that
the fluid has zero density.

2.7.2 Similarity Rules for Unsteady, Incompressible Flow
Without Body Forces When No Free Surface Is Present

In this case we start from the unsteady Navier-Stokes equation for a viscous
incompressible fluid, namely

@vi

@xi
D 0 ; (2.223)
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@xj
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D � @p

@xi
C 
r2vi : (2.224)

As before, we normalize space by Eq. (2.216) and velocity by (2.217). This choice
automatically induces the time normalization

t 0 D Ut

L
: (2.225)
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The pressure is still given by (2.218) and in terms of normalized variables,
Eqs. (2.223) and (2.224) become, respectively,
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@x0
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D 0 ; (2.226)
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; (2.227)

where Re is the Reynolds number as defined by Eq. (2.221). This normalization
procedure is favored by aerodynamicists, because when Re ! 1, the limit equa-
tions are the Euler equations only valid for inviscid fluids. This limit corresponds
to flows where the characteristic velocity U is very high or the viscosity very low.

If we tackle highly viscous fluids or very slow flows, one may resort to the
normalization procedure rheologists use. The dimensionless time is scaled by the
viscous diffusion time tvisc D L2=�

t 0 D �t

L2
: (2.228)

The pressure is no longer scaled by the dynamic pressure but instead by the viscous
velocity gradient

p0 D p

U

L

: (2.229)

The dimensionless equations are
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D 0 ; (2.230)
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: (2.231)

The Reynolds number zero limit yields the dimensional Stokes momentum equa-
tions

@vi

@xi
D 0 ; (2.232)
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@xj @xj
: (2.233)

The Stokes momentum equation (2.233) is, unlike the Navier-Stokes equation,
a linear equation so that every combination of solutions is itself a solution.
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This property is very useful for obtaining closed form solutions of simple flows.
Note that the Reynolds number may be seen as the ratio of two characteristic times

Re D tvisc

tinert
: (2.234)

However the range of the Reynolds number which occurs in practice is very
large. For values of Re too large for (2.232) and (2.233) to apply but still small,
laminar flow results. For moderate values of Re, around a few dozen the flow
becomes unstable and time dependent physics takes place. This kind of instability
very often goes through a Hopf bifurcation where the time dependency is linked to a
single frequency. Then the instability becomes more and more complex, generating
harmonics and giving rise to a more populated spectrum. At higher values of the
Reynolds number, around 106—107, the flow reaches fully developed turbulence, a
branch of physics that is not yet completely understood.

The flow may be unsteady because it is submitted to a time dependent forcing.
There might be an oscillating pressure gradient. Or there might be motion of a
bounding surface, like an oscillating boundary wall or an oscillating body inside
the fluid. The angular frequency ! of the periodicity provides a natural time scale:
the dimensionless time becomes

t 0 D !t : (2.235)

Keeping the previous dimensionless variables for space, velocity and pressure,
namely Eqs. (2.216)–(2.218), respectively, the reduced Navier-Stokes equations are
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The Strouhal number

St D !L

U
(2.238)

compares two characteristic time scales of the physical phenomenon, the time
associated with the oscillating forcing and the inertial or advection time L=U . This
number is used for example to quantify the von Kármán street behind a circular
cylinder where the vortex shedding corresponds to a Hopf bifurcation with a single
temporal period.

Another set of reduced Navier-Stokes equations can be obtained using the
following normalizations: Eq. (2.216) for space, Eq. (2.235) for time, Eq. (2.217)
for the velocity and Eq. (2.229) for the pressure. We find
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with a translational Reynolds number Retr and an oscillatory Reynolds number
Reosc defined by the relationships

Retr D UL

�
; Reosc D !L2

�
: (2.241)

Here we have adopted the notation proposed by Shankar (2007). Note that Reosc

is the ratio of the frequency time !�1 and the viscous diffusion time L2=�.
This dimensionless group is also named Stokes number by some authors, see
e.g. Fung (1984).

2.8 Vorticity Transfer

One of the most noticeable features which distinguishes viscous flow from inviscid
flow is the presence of vorticity. It is a well-known result of inviscid fluid theory
that a flow field once irrotational remains irrotational unless acted upon by non-
conservative body forces. Thus motion generated from rest by impulsive motion of
solid walls, or by the application of conservative body forces, is always irrotational.

By contrast, in a viscous fluid—even one of low viscosity—the presence of
vorticity is usually quite pronounced. This becomes visually evident, for example,
in the stirring of a martini. The experimental evidence indicates quite strongly that
for low Reynolds number flow the vorticity tends to diffuse through the flow field;
at high Reynolds number it tends to concentrate in wakes and boundary layers.

The question of vorticity transfer is quite important in problems of high-speed
flow, especially where turbulence is a possibility. Although of less import for the
slow-flow case, which is the principal subject matter of this book, it still enters the
picture often enough to warrant at least a brief discussion. To keep the treatment
concise, we consider only the incompressible case.

The vorticity is defined as the curl of the velocity, the tensor expression being
supplied by Eq. (2.73). To obtain an equation for the vorticity, we therefore take the
curl of the Navier-Stokes equation (2.195):
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The first two terms on the left side of this equation comprise D�i=Dt and the
third term can be simplified. Making use of the identity (1.49) and the observation
that "ijk.@vs=@xj /.@vs=@xk/ D 0, we obtain
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Consequently Eq. (2.242) reduces to the vorticity equation
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If the body forces are conservative, they can be derived from a potential:

fi D �@˚
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: (2.245)

For this important case the body force term drops out of the vorticity equation and
we obtain
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C �r2�i : (2.246)

If the flow is two-dimensional, the vorticity vector is perpendicular to the plane
of the motion so that �j @vi =@xj vanishes. If we choose the x1 � x2 plane as the
plane of motion, �1 and �2 both vanish and setting i D 3 in (2.246) gives us

D�3

Dt
D �r2�3 ; (2.247)

in which r2 denotes @2=@2x21 C @2=@2x22 . Thus for two-dimensional flow the only
non-zero component of vorticity obeys the equation for the conduction of heat in a
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moving medium. If, as the experimental evidence indicates, vorticity is generated
mainly where the fluid passes over solid surfaces, the analogy with heat conduction
illustrates vividly why in high-speed flow the vorticity is confined mostly to the
wake and boundary layer.

One should bear in mind that the analogy between vorticity transfer and heat
conduction has its limitations, even in the two-dimensional case where the equations
are the same. Heat is a quantity which may exist independently of the flow field. If
the medium is stationary, the material derivative reduces to the partial time derivative
and we recover the classical heat conduction equation. Motion of the medium
merely superimposes a convective transfer of heat upon the conductive transfer. On
the other hand the vorticity is a kinematical quantity, defined in terms of the velocity
components. Thus it exists in intimate relation with the flow field, not independently
of it. No flow, no vorticity. While it is sometimes useful to think of the vorticity as
something carried about by the flow field, we must bear in mind that this is not
precisely the true picture.

For two-dimensional flow, computational fluid dynamics is sometimes carried
out using the vorticity-streamfunction formulation, see for example Peyret and Tay-
lor (1983). Streamfunction is written as one word to avoid hyphenation difficulties.
The three dependent variables v1; v2; p are replaced by the two variables ! and
Ψ. The fact that vorticity is pseudo-conserved, i.e., behaves much like heat, is
useful in this approach. Stable computation is often facilitated by using conservative
differencing schemes, cf. Sengupta (2013) and Versteeg and Malalasekera (2007),
which are constructed in such a way that truncation error doesn’t lead to false
production of a conserved quantity. The partial analogy between heat and vorticity
makes it practical to use this approach in the vorticity-streamfunction formulation.

When rewritten in terms of the vorticity, the Navier-Stokes equation (2.195)
admits of an interesting interpretation. We begin by rewriting the nonlinear term:
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If we assume conservative body forces, so that (2.245) applies, Eq. (2.195) then
becomes
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or in vector notation
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For steady-state irrotational flow of an inviscid fluid, Bernoulli’s law
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is derived by integrating (2.249). Consider further. If the flow is irrotational, it is
derivable from a potential:

vi D @'
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In order that the continuity equation (2.194) be satisfied, the potential ' must be
harmonic, i.e.,

r2' D 0 : (2.253)

However, if ' is harmonic, (2.252) reveals that each component of the velocity
is harmonic, so that the viscous term �r2vi in (2.249) vanishes. By choosing the
pressure to obey Bernoulli’s law, we satisfy (2.249) by the potential flow (2.252). In
general, however, it is not possible to satisfy the no-slip condition at solid boundaries
by a potential flow. As indicated earlier, viscous flow near solid surfaces tends to be
rotational.

Note that the “Bernoulli term” in Eq. (2.249) includes part of the fluid inertia,
viz.,� 1

2
@.vj vj /=@xi . This becomes significant when we obtain a solution .vi ; p/ to

Eqs. (2.222), which govern steady creeping flow, and seek to determine its value as
an approximation to the flow of a fluid with finite density. The approximation can
always be improved by modifying the pressure according to

pmodified D p � 1

2
�vj vj ; (2.254)

i.e., by exchanging pressure head for dynamic head. Therefore, if creeping flow
becomes in some sense a bad approximation, it must be because the rotational term
"ijkvj �k becomes too large. For a posteriori calculations of this sort, it is convenient
to note that

"ijkvj �k D vj

�
@vj

@xi
� @vi

@xj

�
: (2.255)



Chapter 3
Curvilinear Coordinates

Abstract General tensor analysis relevant to viscous hydrodynamics is presented.
The covariant and contravariant forms of the Navier-Stokes equation are set out. The
complete set of equations, in terms of physical components, is given for cylindrical
and spherical coordinate systems.

We now set about writing the equations of viscous flow, developed in the last
chapter, in a form appropriate for use with curvilinear coordinate systems. For any
given curvilinear system this can be done directly, by writing the various partial
derivatives with respect to the Cartesian coordinates in terms of the partials with
respect to the curvilinear coordinates. Although this is a messy procedure, one
might argue that it need only be carried out once for any given coordinate system.
However, in order to obtain a formulation in terms of an arbitrary curvilinear
system, it is best to employ general tensor analysis. The real power of this method
is appreciated when materials more general than the Newtonian fluid are studied:
without a concise, and completely general, method of passing from one coordinate
system to another, only the most trivial boundary value problems for these materials
would be solved.

This chapter may be considered an introduction to the use of general tensor
analysis in continuum mechanics. What is set out here will suffice for our purposes.
Geometrical interpretations are scarcely touched, and the reader interested in them
is encouraged to consult McConnell (1957), Sokolnikoff (1951), Ericksen (1960).

3.1 General Tensor Analysis

In Chap. 1 we treated quantities called Cartesian tensors, whose components in one
Cartesian coordinate system can be calculated from those in another according
to the transformation rule (1.77). We shall soon find that when we consider
transformations from one curvilinear system to another, two transformation rules

W.E. Langlois and M.O. Deville, Slow Viscous Flow,
DOI 10.1007/978-3-319-03835-3__3,
© Springer International Publishing Switzerland 2014
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82 3 Curvilinear Coordinates

need be considered. Consequently we shall find it convenient to modify our suffix
notation somewhat: both subscripts and superscripts will be used, to denote which
of the two transformation rules applies. Moreover we shall find that whenever the
summation convention applies, the repeated index appears once as a subscript,
once as a superscript.

In the ensuing presentation we shall consider relationships between two
coordinate systems, one or both of which may be curvilinear. Those readers who are
unfamiliar with general tensor notation may find it helpful, at various stages of the
proceedings, to specialize the analysis to a familiar example, e.g., the relationship
between a Cartesian system and a cylindrical polar system.

3.1.1 Coordinate Transformations

Let xi denote the coordinates of a point in one of the systems and let Nxi denote
the coordinates of the same point in the other system. We will use superscripts
for the coordinates since, when we discuss the transformation rules, we shall find
that differentials of the coordinates transform according to the rule traditionally
associated with superscripts. We assume that there is a functional relationship

Nxi D Nxi .xm/ (3.1)

which possesses derivatives of any order required, except perhaps at isolated points
or along isolated arcs. The transformation (3.1) will have an inverse

xi D xi . Nxm/ ; (3.2)

provided the Jacobian determinant

J D
ˇ̌
ˇ̌ @ Nxi
@xm

ˇ̌
ˇ̌ (3.3)

is different from zero. In certain coordinate transformations of practical interest J
vanishes at points or along arcs; for an example of each consider transformation
from spherical coordinates and from cylindrical coordinates into a Cartesian system.
We shall assume that J never vanishes over a region.

We adopt the convention that in expressions involving the operator @=@xi , the
suffix i is to be considered a subscript, not a superscript (this may, at first, appear
confusing, but there is a mnemonic: the suffix appears “below the line”, where a
subscript should). With this convention the differentials dxi and d Nxi are related
according to

d Nxi D @ Nxi
@xj

dxj ; (3.4)
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dxi D @xi

@ Nxj d Nxj ; (3.5)

Equation (3.4) is the prototype of one of the two transformation rules important
in tensor theory. In general let Ai be three quantities defined in the xi -system, and
let NAi be three quantities, defined in the Nxi -system, related to the Ai according to

NAi D @ Nxi
@xj

Aj : (3.6)

Then Ai and NAi are said to be the components, in the xi -system and the Nxi -system,
respectively, of a contravariant vector, or contravariant tensor of rank 1. The
inverse of (3.6) is easily calculated. Solving for Ai , we find

Ai D J�1	 ij NAj ; (3.7)

where 	ij is the cofactor of @ Nxi =@xj in J . By well-known rules for calculating
partial derivatives in an inverse transformation (see, for example, Widder (1989)),
we obtain

Ai D @xi

@ Nxj
NAj : (3.8)

To generalize the definition, let Ai1i2:::in denote 3n quantities defined in the
xi -system and let NAi1i2:::in denote 3n quantities defined in the Nxi -system such that

NAi1i2:::in D @ Nxi1
@xj1

@ Nxi2
@xj2

: : :
@ Nxin
@xjn

Aj1j2:::jn (3.9)

or, equivalently,

Ai1i2:::in D @xi1

@ Nxj1
@xi2

@ Nxj2 : : :
@xin

@ Nxjn
NAj1j2:::jn : (3.10)

Then Ai1i2:::in and NAi1i2:::in are said to be the components, in the xi -system and
Nxi -system, respectively, of a contravariant tensor of rank n.

The prototype of the other transformation rule is suggested by considering the
first partial derivatives of a scalar. Precisely as in Cartesian tensor analysis, a scalar,
or tensor of rank zero, is a quantity which has the same value in all coordinate
systems. If K is any differentiable scalar, then

@K

@ Nxi D @xj

@ Nxi
@K

@xj
: (3.11)

Now letAi be three quantities, defined in the xi -system, which transform to three
quantities NAi defined in the Nxi -system, in the same way that @K=@xi transforms to
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@K=@ Nxi , i.e.,

NAi D @xj

@ Nxi Aj : (3.12)

Then Ai and NAi are said to be the components, in the xi -system and the Nxi - system,
respectively, of a covariant vector, or covariant tensor of rank 1. The generaliza-
tion to covariant tensors of rank n is obvious:

NAi1i2:::in D @xj1

@ Nxi1
@xj2

@ Nxi2 : : :
@xjn

@ Nxin Aj1j2:::jn ; (3.13)

or, equivalently,

Ai1i2:::in D @ Nxj1
@xi1

@ Nxj2
@xi2

: : :
@ Nxjn
@xin

NAj1j2:::jn : (3.14)

We shall sometimes encounter sets of quantities which transform partially
according to the contravariant rule, partially according to the covariant rule. We
say that the 3mCn quantities Ai1i2:::imj1j2:::jn

are the components in the xi -system of a
mixed tensor of rank (m + n), m-times contravariant, n-times covariant, if they
transform to 3mCn quantities NAi1i2:::imj1j2:::jn

according to

NAi1i2:::imj1j2:::jn
D @ Nxi1
@xr1

@ Nxi2
@xr2

: : :
@ Nxim
@xrm

@xs1

@ Nxj1
@xs2

@ Nxj2 : : :
@xsn

@ Nxjn A
r1r2:::rm
s1s2:::sn

: (3.15)

Since no ambiguity can arise, we refer to a mixed tensor of rank 2, once contravari-
ant, once covariant simply as a mixed tensor of rank 2.

In Chap. 1 we found that the Kronecker delta transforms as a Cartesian tensor
which has the same components in any Cartesian coordinate system. This result
can be extended to general tensor analysis by introducing a mixed tensor of rank
2 which, in the xi -system, say, has the same components as the Kronecker delta.
This tensor is denoted by ıij and, for the purposes of general tensor analysis, it is
called the Kronecker delta. Let us suppose that ıij transforms to cij in the Nxi -system.
By (3.15)

cij D @ Nxi
@xr

@xs

@ Nxj ı
r
s D @ Nxi

@xr
@xr

@ Nxj D @ Nxi
@ Nxj D ıij : (3.16)

The substitution properties, discussed in Sect. 1.4 for the Cartesian Kronecker delta,
are also possessed byıij .

The distinction between covariance and contravariance does not arise in
Cartesian tensor analysis, for the transformation rules coincide. Consider two
coordinate systems related by the orthogonal transformation (1.59) and its inverse
(1.62). We have
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@x0
i

@xj
D aij D @xj

@x0
i

: (3.17)

3.1.2 The Metric Tensors

We now turn our attention to the following question: Given a contravariant vector
Ai , can we find an associated covariant vectorAi which has the same components
as Ai in an arbitrary Cartesian system of given length scale?

Let the Cartesian system be denoted by �i and let xi denote a coordinate system
related to �i through a transformation with non-vanishing Jacobian. Associated with
the xi -system, we define a symmetric set of nine quantities gij according to

gij D @�k

@xi
@�k

@xj
: (3.18)

If we have another coordinate system Nxi , with quantities gij defined by

gij D @�k

@ Nxi
@�k

@ Nxj ; (3.19)

then the gij and gij are related according to

gij D @�k

@xr
@xr

@ Nxi
@�k

@xs
@xs

@ Nxj

D @xr

@ Nxi
@xs

@ Nxj grs ; (3.20)

which is the transformation rule for a covariant tensor of rank 2.
Somewhat imprecisely, gij is called the covariant metric tensor for the

xi -system. Actually, it is a set of nine quantities defined only for the xi -system
which are related to nine quantities, analogously defined for another coordinate
system, according to the transformation rule for a covariant tensor of rank 2.

It is evident that the covariant metric tensor for any Cartesian system with
the same length scale as the reference �i -system has the same components as the
Kronecker delta.

Given the contravariant vector Ai , we can show that

Ai D gijA
j ; (3.21)

which has the same components as Ai in any Cartesian system with the same length
scale as the �i -system, transforms as a covariant vector:
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@xj

@ Nxi Aj D @xj

@ Nxi gjkA
k

D @xj

@ Nxi
@�m

@xj
@�m

@xk
Ak

D @�m

@ Nxi
@�m

@xk
@xk

@ Nxj
NAj (3.22)

D @�m

@ Nxi
@�m

@ Nxj
NAj

D gij
NAj D NAi :

Quite generally, if Ai1i2:::imj1j2:::jn
is a tensor of rank .m C n/, m-times contravariant,

n-times covariant, then gkir A
i1i2:::ir :::im
j1j2:::jn

is a tensor of rank .m C n/, .m � 1/-times
contravariant, .nC 1/-times covariant.

In a similar manner we associate with the xi -system a contravariant metric
tensor gij which raises indices in much the same way that the covariant metric
tensor lowers them:

gij D @xi

@�m
@xj

@�m
: (3.23)

By reasoning similar to that set out in display (3.16), we find that, ifAi is a covariant
vector, then

Ai D gijAj (3.24)

is a contravariant vector, and the result generalizes to tensors of any rank.
By comparing (3.4) and (3.8), or by appealing directly to the methods used for

calculating partial derivatives in an inverse transformation, Widder (1989) we find

gij D g�1cij ; (3.25)

where

g D det.gij/ D
�

det

�
@�i

@xj

�	2
(3.26)

and cij is the cofactor of gij in g.
As a direct consequence of (3.25), we find

gikgkj D ıij : (3.27)

Thus the “mixed metric tensor” of any coordinate system is the Kronecker delta.
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It is readily verified that if Ai1i2:::imj1j2:::jm
is any tensor of rank 2m, m-times

contravariant, m-times covariant, then contracting it completely to Ai1i2:::imi1i2:::im
yields

a scalar. In particular

.ds/2 D gijdxidxj (3.28)

is a scalar; by referring to a Cartesian system, we see that it is the square of
the distance between two points whose coordinates, in the xi -system, are xi and
xi C dxi .

3.1.3 The Christoffel Symbols: Covariant Differentiation

It would be convenient if the first partial derivatives of a tensor represented the
components of another tensor, but this is not the case. Consider, for example, a
covariant vector with componentsAi in the xi -system and components NAi in the Nxi
system:

@ NAi
@ Nxj D @

@ Nxj
�
@xr

@ Nxi Ar
�

D @xr

@ Nxi
@Ar

@ Nxj C Ar
@2xr

@ Nxi @ Nxj (3.29)

D @xr

@ Nxi
@xs

@ Nxj
@Ar

@xs
C Ar

@2xr

@ Nxi @ Nxj :

If the transformation from the xi -system to the Nxi -system is linear, so that
@2xr=@ Nxi@ Nxj vanishes, (3.29) reduces to the transformation rule for a covariant
tensor of rank 2. In general, however, (3.29) is not a tensor transformation.

The form of (3.29) suggests a possible method of procedure. Perhaps a set of
quantities, themselves not comprising a tensor, can be added to @Ai=@xj such that:
(1) the sum transforms as a covariant tensor of rank 2; (2) the added terms vanish in
Cartesian coordinate systems.

For the xi -system we define a set of 27 quantities �kIij, called the Christoffel
symbols of the first kind (after Elwin Bruno Christoffel, 1829–1900), according to

�kIij D
�
1

2

��
@gkj

@xi
C @gik

@xj
� @gij

@xk

�
: (3.30)
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x1

x3

x2

Fig. 3.1 Oblique rectilinear
coordinate system

We then define another set of 27 quantities � k
ij , called the Christoffel symbols of

the second kind,1 according to

� k
ij D gkm�mIij : (3.31)

Note that �kIij and � k
ij are symmetric with respect to the indices i and j . Also,

the Christoffel symbols vanish in any Cartesian system, for the gij are then all
constant. In fact they vanish in any coordinate system obtainable from a Cartesian
system by an affine (linear) transformation; the most general such system is an
oblique rectilinear system with different, but constant, scales in the three coordinate
directions, as illustrated in Fig. 3.1.

Let us see how the Christoffel symbols transform. Let � kIij denote the symbols
of the first kind calculated for the Nxi -system. Then

� kIij D 1

2

�
@gkj

@ Nxi C @gik

@ Nxj � @gij

@ Nxk
�

D 1

2

�
@

@ Nxi
�
@xr

@ Nxk
@xs

@ Nxj grs

�
C @

@ Nxj
�
@xr

@ Nxi
@xs

@ Nxk grs

�
� @

@ Nxk
�
@xr

@ Nxi
@xs

@ Nxj grs

�	

D 1

2

�
@xt

@ Nxi
@xr

@ Nxk
@xs

@ Nxj C @xt

@ Nxj
@xr

@ Nxi
@xs

@ Nxk � @xt

@ Nxk
@xr

@ Nxi
@xs

@ Nxj
	
@grs

@xt

C 1

2

�
@

@ Nxi
�
@xr

@ Nxk
@xs

@ Nxj
�

C @

@ Nxj
�
@xr

@ Nxi
@xs

@ Nxk
�

� @

@ Nxk
�
@xr

@ Nxi
@xs

@ Nxj
�	
grs (3.32)

1Some authors prefer the notation Œij; k� for �kIij and



k

ij

�
for � k

ij , principally to stress that the

Christoffel symbols are not tensors.
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D @xr

@ Nxi
@xs

@ Nxj
@xt

@ Nxk �t Irs C 1

2

�
@xr

@ Nxk
@2xs

@ Nxi@ Nxj C @xs

@ Nxk
@2xr

@ Nxi@ Nxj
�
grs

D @xr

@ Nxi
@xs

@ Nxj
@xt

@ Nxk �t Irs C @2xr

@ Nxi @ Nxj
@xs

@ Nxk grs :

The last step in this derivation follows from the symmetry of grs. After this,
determining the transformation rule for the symbols of the second kind seems easy:

�
k

ij D gkm� mIij

D @ Nxk
@xp

@ Nxm
@xq

gpq

�
@xr

@ Nxi
@xs

@ Nxj
@xt

@ Nxm�t Irs C @2xr

@ Nxi @ Nxj
@xs

@ Nxm grs

�

D ıtq
@ Nxk
@xp

@xr

@ Nxi
@xs

@ Nxj g
pq�t Irs C ısq

@2xr

@ Nxi @ Nxj
@ Nxk
@xp

gpqgrs (3.33)

D @ Nxk
@xp

@xr

@ Nxi
@xs

@ Nxj �
p

rs C @2xp

@ Nxi @ Nxj
@ Nxk
@xp

:

An alternate form of (3.33) is sometimes useful. Multiplying both sides by
@xm=@ Nxk and contracting with respect to the index k, we obtain the Christoffel
formula

@2xm

@ Nxi @ Nxj D @xm

@ Nxk �
k

ij � @xr

@ Nxi
@xs

@ Nxj �
m

rs : (3.34)

We now return our attention to the covariant vector Ai but this time we consider
a set of nine quantities Ai;j defined by

Ai;j D @Ai

@xj
� � k

ij Ak : (3.35)

If corresponding quantities NAi;j are defined in the Nxi -system, we have, with (3.29),

NAi;j D @ NAi
@ Nxj � �

k

ij
NAk

D @xr

@ Nxi
@xs

@ Nxj
@Ar

@xs
C
�
@2xm

@ Nxi @ Nxj � @xm

@ Nxk �
k

ij

�
Am : (3.36)

With the Christoffel formula (3.34),

NAi;j D @xr

@ Nxi
@xs

@ Nxj
�
@Ar

@xs
� � m

rs Am

�
D @xr

@ Nxi
@xs

@ Nxj Ar;s : (3.37)
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ThusAi;j , which is called the covariant derivative of Ai , transforms as a covariant
tensor of rank 2. Moreover in a Cartesian system it reduces to the partial derivative.

In a similar manner, we find that if Ai is a contravariant vector, then

Ai;j D @Ai

@xj
C � i

jkA
k (3.38)

transforms as a mixed tensor of rank 2.
The general result is as follows. LetAi1i2:::imj1j2:::jn

be a tensor of rank .mCn/,m-times
contravariant, n-times covariant. Then

A
i1i2:::im
j1j2:::jn;k

D @A
i1i2:::im
j1j2:::jn

@xk

� � p

j1k
A
i1i2:::im
pj2:::jn

� � p

j2k
A
i1i2:::im
j1pj3:::jn

� : : : � � p

jnk
A
i1i2:::im
j1j2:::jn�1p

C �
i1
kpA

pi2:::im
j1j2:::jn

C �
i2
kpA

i1pi3:::im
j1j2:::jn

C : : :C �
im
kp A

i1i2:::im�1p
j1j2:::jn

(3.39)

transforms as a tensor of rank .mC nC 1/, m-times contravariant, .n C 1/- times
covariant, and is called the covariant derivative of Ai1i2:::imj1j2:::jn

. The rules for covariant
differentiation of sums and products of tensor are identical with the usual rules
of differentiation, and the operations of contraction and covariant differentiation
commute.

Higher covariant derivatives, e.g.,Ai1i2:::imj1j2:::jn;rs are obtained by repeated application
of (3.39). By referring to a Cartesian system, in which the second covariant
derivative reduces to the second partial, we obtain

A
i1i2:::im
j1j2:::jn;rs D A

i1i2:::im
j1j2:::jn;sr

; (3.40)

subject to the usual continuity conditions. This result is a consequence of our space
being Euclidean, so that it admits of Cartesian coordinate systems. In more general
spaces (3.40) does not necessarily apply. Even in classical physics and geometry
this point is by no means academic. It is sometimes convenient to consider a curved
surface imbedded in Euclidean 3-space as a two-dimensional, non-Euclidean space
and to define a two-dimensional tensor analysis upon it. Throughout this monograph
we shall restrict our studies to Euclidean spaces, so that (3.40) always applies.

3.1.4 Ricci’s Lemma

An important result, known as Ricci’s lemma (after Gregorio Ricci-Curbastro,
1853–1925), simplifies considerably the manipulations associated with covariant
differentiation:

The covariant derivative of either metric tensor is zero.
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The proof is direct. Taking the covariant derivative of gij, we obtain

gij;k D @gij

@xk
� � p

ik gpj � � p
jk gip

D @gij

@xk
� gpjg

pq�qIik � gipg
pq�qIjk (3.41)

D @gij

@xk
� 1

2
ı
q
j

�
@gqk

@xi
C @giq

@xk
� @gik

@xq

�
� 1

2
ı
q
i

�
@gqk

@xj
C @gjq

@xk
� @gjk

@xq

�

D 0 :

Similarly

g
ij
;k D @gij

@xk
C � i

pkg
pj C �

j
pkg

ip

D @gij

@xk
C .gpjgiq C gipgjq/�qIpk

D @gij

@xk
C gipgjq.�qIpk C �pIqk/

D @gij

@xk
C gipgjq @gpq

@xk
(3.42)

D @gij

@xk
C @

@xk
.gipgjqgpq/� gpq

@

@xk
.gipgjq/

D 2
@gij

@xk
� ıiq

@gjq

@xk
� ıjp

@gip

@xk

D 0 :

As a corollary, we have

ıij;k D .gipgpj/;k D gipgpj;k C gpjg
ip
;k D 0 : (3.43)

An important consequence of Ricci’s lemma is that metric tensors can be taken
outside the sign of covariant differentiation. Thus, the operations of raising and
lowering indices commute with covariant differentiation.

3.2 The Hydrodynamic Equations in General Tensor Form

The equations governing the motion of a Newtonian viscous fluid were summarized,
in Cartesian tensor notation, in Sect. 2.5. We now set out to rewrite each of these
equations in a form which (1) transforms according to the transformation rule for a
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tensor of some rank and variance and (2) reduces to the equations of Chap. 2 when
the coordinate system is Cartesian.

We begin with the scalar equation of continuity (2.190). Our two requirements
are satisfied by the equation

@�

@t
C .�vi /;i D 0 ; (3.44)

where vi is a contravariant vector, called the contravariant velocity, which
coincides with the physical velocity of the fluid particle when the coordinate system
is Cartesian. The associated covariant vector vi is called the covariant velocity.

The contravariant velocity has a kinematical significance. Let a fixed coordinate
system yi and a Cartesian system �i , also fixed, be related by a transformation with
non-vanishing Jacobian. Let Ovi denote the components of velocity in the �i -system.
Then

vi D @xi

@�j
Ovj D @xi

@�j

D�j

Dt
D Dxi

Dt
: (3.45)

Thus the component vi signifies the rate of change of the coordinate xi seen from
a particle as it moves through space. A typical example is the angular velocity
of a particle whose motion is referred to a polar coordinate system. Note that the
contravariant velocity need not have physical dimensions of speed.

The Navier-Stokes equation (2.191) is a vector equation, and we rewrite it in a
form which transforms according to the contravariant rule:

�

�
@vi

@t
C vj vi;j

�
D �f i � gij @p

@xj
C .�C 
/gij @

@xj
.vk;k/C 
gjkvi;jk

Cgij @�

@xj
vk;k C @


@xj
.gjkvi;k C gikv

j

;k/ ; (3.46)

where the contravariant vector f i reduces to the body force when the coordinate
system is Cartesian. Corresponding to (3.46), we have the covariant equation

�

�
@vi

@t
C vj vi;j

�
D �fi � @p

@xi
C .�C 
/

@

@xi
.vk;k/C 
gjkvi;jk

C @�

@xi
vk;k C @


@xj
.gjkvi;k C v

j
;i / : (3.47)

The energy equation (2.192) is a scalar equation. In general tensor notation,

�

�
@e

@t
C vi

@e

@xi

�
D �pvi;i C gij

�
k
@Θ

@xi

�

;j

CQ C �.vi;i /
2 C 2
eij e

j
i ; (3.48)
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where eij denotes the mixed components of the rate of deformation tensor, whose
covariant components are

eij D 1

2
.vi;j C vj;i / : (3.49)

Equations (2.194) and (2.195), which govern the motion of an incompressible
fluid, generalize to

vi;i D 0 ; (3.50)

@vi

@t
C vj vi ; j D f i � gij

�

@p

@xj
C �gjkvi;jk : (3.51)

The covariant form equivalent to (3.51) is

@vi

@t
C vj vi;j D fi � 1

�

@p

@xi
C �gjkvi;jk : (3.52)

Generalizing the constitutive equation (2.123), we obtain an expression for the
mixed stress tensor:

T ij D �pıij C �ıij e
k
k C 2
eij ; (3.53)

from which expressions for Tij and T ij are readily obtained.

3.3 Orthogonal Curvilinear Coordinates: Physical
Components of Tensors

Consider a pointP which has coordinates xi0 in the curvilinear xi -system. The three
surfaces

xi D xi0 (3.54)

meet and form a trihedral at P in Fig. 3.2. If for every point P these three surfaces
meet at right angles, we say that xi is an orthogonal coordinate system.2 The
distance ds from P to a point with coordinates xi0 C dxi is then given by the
Pythagorean theorem.

We have

2This terminology is not intended to connote that such coordinate systems are obtained from
Cartesian systems by orthogonal transformation—which is the case only if the xi -system is itself
Cartesian.
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.ds/2 D
�

dxi

hi

�2
; (3.55)

where hi are scale factors for the three coordinate directions. Their values will, in
general, be functions of the point P . Comparing with Eq. (3.28), we see that for
orthogonal coordinate systems

gii D 1

h2i
(no summation convention) ;

gij D 0 .i ¤ j / : (3.56)

Consequently

g D det.gij/ D 1

h21h
2
2h
2
3

; (3.57)

so that, in view of Eq. (3.25),

gii D h2i (not summed) ;

gij D 0 .i ¤ j / : (3.58)

It is then easily verified that the Christoffel symbols of the second kind are given by

� k
ij D 0 ;

�
j

ii D
 
h2j

h3i

!
@hi

@xj
;

� i
ij D � i

ji D �
�
1

hi

�
@hi

@xj
; (3.59)

� i
ii D �

�
1

hi

�
@hi

@xi
;

where i; j; k are unequal and the summation convention is not used.
Let us now consider again the generic point P in space. We define a Cartesian

coordinate system �i with origin at P and with the increasing �i -axis directed
along dxi . If the length scale of the �i -system is chosen so that

.ds/2 D .d�1/2 C .d�2/2 C .d�3/2 ; (3.60)

comparison with (3.55) reveals
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Fig. 3.2 Orthogonal
coordinate system

@�i

@xi
D 1

hi
(not summed) ;

@�i

@xj
D 0 .i ¤ j / : (3.61)

Therefore, according to the transformation rule (3.6), a contravariant vector with
componentsAi in the xi -system will have components

OAi D Ai

hi
(not summed) (3.62)

in the �i -system. Because of the intimate relation between the �i -system and the
xi -system, we may think of the OAi as a new set of components, defined in the
xi -system, of the vector Ai . These components, which do not form a tensor,
are called the physical components of the vector. Since they are defined for a
local Cartesian system, they have the physical significance, and dimensions, which
characterize the vector in the usual sense of vector analysis. By way of example, if
vi is the contravariant velocity of the particle at P , then

p
. Ov1/2 C . Ov2/2 C . Ov3/2 is

the speed of the particle and Ovi is its component of velocity along the direction dxi .
Since the physical components of velocity do not form a tensor, it is customary

to adopt for them some notation which cannot be confused with tensor notation.
Our own preference is to attach subscripts signifying the descriptive labels of the
curvilinear coordinates. Thus for a spherical polar system we shall denote the
physical components of velocity by vr ; v� ; v� . For the generic curvilinear system xi ,
there are no descriptive labels. Hence we use the letters ˛; ˇ; 	 , associated in an
obvious manner with the x1; x2; x3-directions. Thus Eq. (3.62) is rewritten

A˛ D A1

h1
; Aˇ D A2

h2
; A	 D A3

h3
: (3.63)

By using Eqs. (3.24) and (3.58), we can express the physical components in terms
of the covariant components:

A˛ D h1A1; Aˇ D h2A2; A	 D h3A3 : (3.64)
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Physical components can be defined for tensors of any rank. For the important
case of rank 2, we have

A˛˛ D A11

h21
D A11 D h21A11 ;

A˛ˇ D A12

h1h2
D
�
h1

h2

�
A21 D

�
h2

h1

�
A12 D h1h2A12 ; etc. (3.65)

The equations of hydrodynamics, referred to a generic orthogonal coordinate
system, can be written in terms of the physical velocity components. Since this only
involves substituting the results of this section into the general tensor equations of
flow, it is not difficult. However it is messy and serves little purpose. Instead we
shall carry out the details for the two curvilinear systems most used in practice.

3.3.1 Cylindrical Polar Coordinates

A cylindrical polar system xi is usually designated by the descriptive labels r; �; z.
In terms of a reference Cartesian system �i ,

r D x1 D
p
.�1/2 C .�2/2 ;

� D x2 D arctan.�2=�1/; (3.66)

z D x3 D �3 :

For this system the metric tensors are given by

�
gij
� D

0

@
1 0 0

0 1=r2 0

0 0 1

1

A ;
�
gij
� D

0

@
1 0 0

0 r2 0

0 0 1

1

A : (3.67)

Thus the cylindrical polar system is orthogonal.
The Christoffel symbols of the second kind all vanish except

� 1
22 D �r; � 2

12 D � 2
21 D 1

r
: (3.68)

The physical components of velocity are related to the tensor components according
to

vr D v1 D v1 ;

v� D rv2 D v2

r
; (3.69)
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vz D v3 D v3 :

Substituting these results into the equation of continuity (3.44), we obtain

@�

@t
C vr

@�

@r
C v�

r

@�

@�
C vz

@�

@z
C �Δ D 0 ; (3.70)

where the dilation Δ is given by

Δ D @vr

@r
C vr

r
C 1

r

@v�

@�
C @vz

@z
: (3.71)

The Navier-Stokes equation (3.47) yields the three component equations

�

�
@vr

@t
C vr

@vr

@r
C v�

r

@vr

@�
C vz

@vr

@z
� v2�
r

�
D �fr � @p

@r

C .�C 
/
@Δ

@r
C 


�
r2vr � vr

r2
� 2

r2
@v�

@�

�

C Δ
@�

@r
C 2

�
err
@


@r
C 1

r
er�
@


@�
C erz

@


@z

�
;

�

�
@v�

@t
C vr

@v�

@r
C v�

r

@v�

@�
C vz

@v�

@z
C vrv�

r

�
D �f� � 1

r

@p

@�

C .�C 
/

r

@Δ

@�
C 


�
r2v� C 2

r2
@vr

@�
� v�

r2

�

C Δ

r

@�

@�
C 2

�
e�r
@


@r
C 1

r
e��

@


@�
C e�z

@


@z

�
;

�

�
@vz

@t
C vr

@vz

@r
C v�

r

@vz

@�
C vz

@vz

@z

�
D �fz � @p

@z
C .�C 
/

@Δ

@z
C 
r2vz

C Δ
@�

@z
C 2

�
ezr
@


@r
C 1

r
ez�
@


@�
C ezz

@


@z

�
; (3.72)

where

r2 D @2

@r2
C 1

r

@

@r
C 1

r2
@2

@�2
C @2

@z2
; (3.73)

and the physical components of the rate of deformation tensor are given by

err D @vr

@r
;
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e�� D 1

r

�
@v�

@�
C vr

�
;

ezz D @vz

@z
; (3.74)

2e�z D 2ez� D 1

r

@vz

@�
C @v�

@z
;

2ezr D 2erz D @vr

@z
C @vz

@r
;

2er� D 2e�r D @v�

@r
� v�

r
C 1

r

@vr

@�
:

From the energy equation (3.48), we obtain

�

�
@e

@t
C vr

@e

@r
C v�

r

@e

@�
C vz

@e

@z

�
D �pΔ C @

@r

�
k
@Θ

@r

�
C k

r

@Θ

@r

C 1

r2
@

@�

�
k
@Θ

@�

�
C @

@z

�
k
@Θ

@z

�
C QC �Δ2 C 2


X

˛;ˇDr;�;z
e2˛ˇ : (3.75)

The physical components of stress are given by

T˛˛ D �p C �Δ C 2
e˛˛ .˛ D r; �; z/

T˛ˇ D 2
e˛ˇ .˛ ¤ ˇ/ : (3.76)

For an incompressible fluid with constant � and 
, Eqs. (2.223) and (2.224)
apply. When the motion is referred to the cylindrical polar system, we have

@vr

@r
C vr

r
C 1

r

@v�

@�
C @vz

@z
D 0 ; (3.77)

�.
@vr

@t
C vr

@vr

@r
C v�

r

@vr

@�
C vz

@vr

@z
� v2�
r
/ (3.78)

D �fr � @p

@r
C 
.r2vr � vr

r2
� 2

r2
@v�

@�
/ ;

�.
@v�

@t
C vr

@v�

@r
C v�

r

@v�

@�
C vz

@v�

@z
C vrv�

r
/ (3.79)

D �f� � 1

r

@p

@�
C 
.r2v� C 2

r2
@vr

@�
� v�

r2
/ ;

�.
@vz

@t
C vr

@vz

@r
C v�

r

@vz

@�
C vz

@vz

@z
/ D �fz � @p

@z
C 
r2vz : (3.80)
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For two dimensional flow, in which vz is zero and all @=@z terms vanish,3 this
system can be somewhat simplified by introducing a stream function  such that

vr D 1

r

@ 

@�
; v� D �@ 

@r
: (3.81)

Equations (3.77) and (3.80) are automatically satisfied and p can be eliminated from
(3.78), (3.79), yielding

�

�
@

@t
.r2 / � 1

r

@. ;r2 /

@.r; �/

	
D �

r

�
@fr

@�
� @

@r
.rf�/

	
C 
r4 ; (3.82)

in which r2 denotes the two-dimensional Laplacian, i.e.,

r2 D @2

@r2
C 1

r

@

@r
C 1

r2
@2

@�2
: (3.83)

For fluid motion which is symmetrical about the z-axis, so that @=@� terms
vanish, we introduce the Stokes stream function Ψ, i.e. a stream function for flow
in the meridional planes, such that

vz D 1

r

@Ψ

@r
; vr D �1

r

@Ψ

@z
(3.84)

and proceed as for two-dimensional flow. If v� is not zero, the resulting equations
are usually expressed in terms of the swirl Ω, defined by

Ω D rv� : (3.85)

Since @v�=@� D 0, use of (3.84) automatically satisfies (3.77). Eliminating p from
(3.78) and (3.80), we obtain

@

@t
.E2Ψ/C 1

r2
@

@z
.Ω2/C 1

r

@.Ψ; E2Ψ/

@.r; z/
C 2

r2
@Ψ

@z
E2Ψ

D r

�
@fz

@r
� @fr

@z

�
C �E4Ψ ; (3.86)

where E2 is a second order differential operator, defined by

E2 D @2

@r2
� 1

r

@

@r
C @2

@z2
: (3.87)

3 Except that, if fz is a function of z alone, we permit the pressure p to include an additive term
depending on z, so that (3.80) can be satisfied hydrostatically by setting @p=@z D �fz.



100 3 Curvilinear Coordinates

In terms of the swirl, Eq. (3.79) becomes

@Ω

@t
C 1

r

@.Ψ;Ω/

@.r; z/
D rf� C �E2Ω : (3.88)

In Sect. 2.8 it was pointed out that, in two-dimensional incompressible flow, the
vorticity is “pseudo-conserved”, in the sense that its equation closely resembles that
of a truly conserved physical quantity. In axisymmetric flow, that isn’t true for ! D
@vz=@r � @vr=@z. However a related quantity, the Svanberg vorticity S D !=r ,
is pseudo-conserved. It was so named Langlois (1981) because a very old result,
Svanberg’s vorticity theorem Truesdell and Toupin (1960), sheds light on why this
is so. It is a better choice than ! for the vorticity-streamfunction formulation of
axisymmetric incompressible flow. The governing equation for S is

@S

@t
C 1

r

@

@r
.rvr S/C @

@z
.vz S/C @

@z
.
Ω2

r4
/

D 1

r

�
@fz

@r
� @fr

@z

�
C �

r

@

@r

�
1

r

@

@r
.r2 S/

	
C �

@2S

@z2
: (3.89)

3.3.2 Spherical Polar Coordinates

It is sometimes advantageous to refer fluid motion to a spherical polar coordinate
system .r; �; �/, defined in terms of a Cartesian system �i according to

r D x1 D
p
.�1/2 C .�2/2 C .�3/2 ;

� D x2 D arctan

p
.�1/2 C .�2/2

�3
; (3.90)

� D x3 D arctan

�
�2

�1

�
:

The metric tensors of the spherical polar system are given by

�
gij
� D

0

@
1 0 0

0 1=r2 0

0 0 1=r2 sin2 �

1

A ;
�
gij
� D

0

@
1 0 0

0 r2 0

0 0 r2 sin2 �

1

A ; (3.91)

so that the system is orthogonal. The non-vanishing Christoffel symbols of the
second kind are

� 1
22 D �r; � 1

33 D �r sin2 � ;
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� 2
12 D � 2

21 D 1

r
; � 2

33 D � sin � cos � ; (3.92)

� 3
13 D � 3

31 D 1

r
; � 3

23 D � 3
32 D cot � :

The physical components of velocity are related to the tensor components
according to

vr D v1 D v1 ;

v� D rv2 D v2

r
; (3.93)

v� D .r sin �/v3 D v3

r sin �
:

Substituting these results into the equation of continuity (3.44), we obtain

@�

@t
C vr

@�

@r
C v�

r

@�

@�
C v�

r sin �

@�

@�
C �Δ D 0 ; (3.94)

where

Δ D @vr

@r
C 2vr

r
C 1

r

@v�

@�
C v� cot �

r
C 1

r sin �

@v�

@�
: (3.95)

The Navier-Stokes equation (3.47) yields

�

 
@vr

@t
C vr

@vr

@r
C v�

r

@vr

@�
C v�

r sin �

@vr

@�
� v2� C v2�

r

!
D �fr � @p

@r

C .�C 
/
@Δ

@r
C 


�
r2vr � 2vr

r2
� 2

r2
@v�

@�
� 2v� cot �

r2
� 2

r2 sin �

@v�

@�

�

C Δ
@�

@r
C 2

�
err
@


@r
C 1

r
er�
@


@�
C 1

r sin �
er�

@


@�

�
;

�

 
@v�

@t
C vr

@v�

@r
C v�

r

@v�

@�
C v�

r sin �

@v�

@�
C vrv�

r
� v2� cot �

r

!
D �f� � 1

r

@p

@�

C .�C 
/

r

@Δ

@�
C 


�
r2v� C 2

r2
@vr

@�
� v�

r2 sin2 �
� 2 cos �

r2 sin2 �

@v�

@�

�

C Δ

r

@�

@�
C 2

�
e�r

@


@r
C 1

r
e��

@


@�
C 1

r sin �
e��

@


@�

�
;

�

�
@v�

@t
C vr

@v�

@r
C v�

r

@v�

@�
C v�

r sin �

@v�

@�
C vrv�

r
C v�v� cot �

r

�
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D �f� � 1

r sin �

@p

@�
C .�C 
/

r sin �

@Δ

@�

C 


�
r2v� � v�

r2 sin2 �
C 2

r2 sin �

@vr

@�
C 2 cos �

r2 sin2 �

@v�

@�

�

C Δ

r sin �

@�

@�
C 2

�
e�r

@


@r
C 1

r
e��

@


@�
C 1

r sin �
e��

@


@�

�
; (3.96)

where

r2 D @2

@r2
C 2

r

@

@r
C 1

r2
@2

@�2
C cot �

r2
@

@�
C 1

r2 sin2 �

@2

@�2
; (3.97)

and the physical components of the rate of deformation tensor are given by

err D @vr

@r
;

re�� D @v�

@�
C vr ;

r sin � e�� D @v�

@�
C vr sin � C v� cos � ; (3.98)

2r sin � e�� D 2r sin � e�� D sin �
@v�

@�
� v� cos � C @v�

@�
;

2r sin � e�r D 2r sin � er� D @vr

@�
C r sin �

@v�

@r
� v� sin � ;

2rer� D 2re�r D r
@v�

@r
� v� C @vr

@�
:

The energy equation (3.48) becomes

�

�
@e

@t
C vr

@e

@r
C v�

r

@e

@�
C v�

r sin �

@e

@�

�
D �pΔ C @

@r

�
k
@Θ

@r

�
C 2k

r

@Θ

@r

C 1

r2
@

@�

�
k
@Θ

@�

�
C k cot �

r2
@Θ

@�
C 1

r2 sin2 �

@

@�

�
k
@Θ

@�

�
(3.99)

CQC �Δ2 C 2

X

˛;ˇDr;�;�
e2˛ˇ :

The physical components of stress are given by

T˛˛ D �p C �Δ C 2
e˛˛ .˛ D r; �; �/ ;

T˛ˇ D 2
e˛ˇ .˛ ¤ ˇ/ : (3.100)
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Equations (2.223) and (2.224), which govern an incompressible fluid with constant
� and 
, become

@vr

@r
C 2vr

r
C 1

r

@v�

@�
C v� cot �

r
C 1

r sin �

@v�

@�
D 0; (3.101)

�

 
@vr

@t
C vr

@vr

@r
C v�

r

@vr

@�
C v�

r sin �

@vr

@�
� v2� C v2�

r

!
D �fr � @p

@r

C

�

r2vr � 2vr

r2
� 2

r2
@v�

@�
� 2v� cot �

r2
� 2

r2 sin �

@v�

@�

�
; (3.102)

�

 
@v�

@t
C vr

@v�

@r
C v�

r

@v�

@�
C v�

r sin �

@v�

@�
C vrv�

r
� v2� cot �

r

!
D �f� � 1

r

@p

@�

C

�

r2v� C 2

r2
@vr

@�
� v�

r2 sin2 �
� 2 cos�

r2 sin2 �

@v�

@�

�
; (3.103)

�

�
@v�

@t
C vr

@v�

@r
C v�

r

@v�

@�
C v�

r sin �

@v�

@�
C vrv�

r
C v�v� cot �

r

�
D �f�

� 1

r sin �

@p

@�
C 


�
r2v� � v�

r2 sin2 �
C 2

r2 sin �

@vr

@�
C 2 cos�

r2 sin2 �

@v�

@�

�
: (3.104)

If the flow is symmetrical about the axis � D 0, so that all �-derivatives vanish,
the continuity equation (3.101) is automatically satisfied by expressing vr and v� in
terms of a Stokes stream function:

vr D 1

r2 sin �

@Ψ

@�
; v� D � 1

r sin �

@Ψ

@r
: (3.105)

The velocity component v� is related to the swirl according to

v� D Ω

r sin �
: (3.106)

Eliminating p from Eqs. (3.92) and (3.103), we obtain

@

@t
.E2Ψ/C 2Ω

r2 sin2 �

�
@Ω

@r
cos � � 1

r

@Ω

@�
sin �

�
� 1

r2 sin �

@.Ψ; E2Ψ/

@.r; �/

C 2E2Ψ

r2 sin2 �

�
@Ψ

@r
cos � � 1

r

@Ψ

@�
sin �

�
D sin �

�
@fr

@�
� @

@r
.rf� /

	
C �E4Ψ ;

(3.107)

where E2 is a second order differential operator, defined by
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E2 D @2

@r2
C 1

r2
@2

@�2
� cot �

r2
@

@�
: (3.108)

In terms of the swirl, Eq. (3.104) becomes

@Ω

@t
� 1

r2 sin �

@.Ψ;Ω/

@.r; �/
D rf� sin � C �E2Ω : (3.109)



Chapter 4
Exact Solutions to the Equations of Viscous Flow

Abstract A collection of exact solutions to the equations of viscous hydrodynamics
is presented, along with one for non-Newtonian flow and one which uses the
Boussinesq approximation to treat a problem in natural convection.

In this chapter we present some of the very few known cases for which the
equations of viscous flow can be solved without approximation. We consider only
incompressible flow, since there are virtually no exact solutions known for the
flow of a viscous, compressible fluid. However for a few exceptions, see Goldstein
(1960), von Mises (2004) and Chap. 9 in Panton (1984).

An impressive review of exact and approximate solutions of the Navier-Stokes
equation was compiled by Berker (1963).

We shall assume throughout that the body forces are zero. However the solutions
are easily modified to cover the important case of a conservative body force field.
For this case the covariant components of body force are derivable from a potential:

fi D @�

@xi
:

Consequently, if we set

p� D p � �� ;

the grouping .�fi � @p=@xi / in the covariant Navier-Stokes equation (3.47) is
replaced by �@p�=@xi . If the body force is gravity, we might describe this procedure
as incorporating the gravitational head into the pressure head.

W.E. Langlois and M.O. Deville, Slow Viscous Flow,
DOI 10.1007/978-3-319-03835-3__4,
© Springer International Publishing Switzerland 2014
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4.1 Rectilinear Flow Between Parallel Plates

In Fig. 4.1, consider that an incompressible fluid is contained in the region between
two parallel infinite plates, which move steadily in their own planes. We choose
a Cartesian coordinate system with x3-axis normal to the plates and with origin
midway between them, so that the plates correspond, say, to x3 D ˙h. Further we
let the coordinate system translate with the average velocity of the plates. Hence
if the plate at x3 D Ch moves with velocity components U; V in the x1- and x2-
directions, respectively, then the plate at x3 D �h moves with velocity components
�U;�V . Thus, the no-slip condition requires that

v1 D ˙U at x3 D ˙h ;
v2 D ˙V at x3 D ˙h ; (4.1)

v3 D 0 at x3 D ˙h :
Since the coordinate system is not accelerated, Eqs. (2.194) and (2.195) apply.

We seek a solution of the form

v1 D u.x3/ ;

v2 D v.x3/ ;

v3 D 0 ; (4.2)

p D p.x1/ :

Such a solution does, in fact, exist: the continuity equation (2.194) and the i D 3

component of the momentum equation (2.195) are automatically satisfied; the other
two component equations reduce to



@2u

@x23
D @p

@x1
; (4.3)



@2v

@x23
D 0 ; (4.4)

which are easily solved subject to the boundary conditions (4.1). According to (4.2),
u is a function of x3, only and p is a function of x1 only. Consequently both sides
of (4.3) are equal to the same constant, say �G. Thus

u D U
x3

h
C
�

Gh2

2


��
1 � x23

h2

�
;

v D Vx3
h
; (4.5)

p D C � Gx1 ;

where C is a constant of integration.
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Fig. 4.1 Geometry for flow
between parallel plates

A particular case corresponds to the flow between stationary plates, i.e. U D
V D 0 in the presence of a pressure gradient. The velocity field reduces to a parabola

uP D
�

Gh2

2


��
1 � x23

h2

�
; (4.6)

and this flow is know as channel flow or plane Poiseuille flow (after Jean Louis
Marie Poiseuille, 1797–1869).

The flux Q of the flow in the x1-direction per unit length in the x2 direction is
defined by

Q D
Z h

�h
u dx3 : (4.7)

Integrating the first of Eqs. (4.5), we obtain

Q D 2G
h3

3

: (4.8)

Thus the pressure gradient is proportional to the flux, to which the motion of the
plates does not contribute.

If there is no pressure gradient, we can select an orientation of the coordinate
system so that (4.5) reduces to the Couette flow (after Maurice Marie Alfred
Couette, 1858–1943)

u D U
x3

h
;

v D 0 ; (4.9)

p D C :

This solution is sometimes called homogeneous shear flow.
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The general case (4.5) corresponds to Couette flow with a pressure flow
superimposed; the two basic flows may be oblique to each other. Since, for the
assumed form of solution (4.2), the nonlinear terms drop out of the Navier-Stokes
equation, the two flows do not couple.

4.2 Plane Shear Flow of a Non-Newtonian Fluid

Let us consider the simple shear flow of the Reiner-Rivlin fluid (Eq. (2.149)) in a
Cartesian orthonormal coordinate system such that

v1 D P	 x2; v2 D v3 D 0 ; (4.10)

where P	 is called the shear rate. The components eij of the tensor e vanish except

for e12 D e21 D P	
2

, which then leads to I2 .e/ D � P	2=4 and I3 .e/ D 0. We will
denote the matrices associated with tensors by their symbol within square brackets.
Therefore the matrices Œe�; Œe2� are given by

Œe� D

0

B@
0

P	
2
0

P	
2
0 0

0 0 0

1

CA ;
�
e2
� D

0

B@

P	2
4
0 0

0
P	2
4
0

0 0 0

1

CA : (4.11)

The corresponding stress components are then

T11 D T22 D �p C '2
P	2
4
; T33 D �p ; (4.12)

T12 D T21 D '1
P	
2

D . P	/ ; (4.13)

T13 D T23 D 0 : (4.14)

Let us introduce the first normal stress differences defined by the relations

N1 D T11 � T22; N2 D T22 � T33 : (4.15)

Here we obtain

N1 D 0 and N2 D '2
P	2
4
: (4.16)

However, this does not correspond to the physical reality as experimental data show
neitherN1 norN2 vanishes. We therefore need a different kind of model, namely the
second-order fluid, to resolve the right normal stress differences. This model uses
Rivlin-Ericksen tensors, a concept described in Deville and Gatski (2012). It can be
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shown that all three functions N1;N2;  depend on the nature of the fluid, and are
called the viscometric functions of the material. Note also that in the Newtonian
case N2 D 0, indicating that for this kind of fluid, there is no imbalance in the first
normal stress differences.

4.3 The Flow Generated by an Oscillating Plate

Let us now suppose that an infinite flat plate at the bottom of an infinitely deep sea
of fluid executes linear harmonic motion parallel to itself. We let the plate lie in the
x3 D 0 plane of a Cartesian coordinate system, so oriented that the oscillation is
along the x1-axis. The location of the origin is unimportant, but the xi -system is
fixed in space, not in the oscillating plate. The motion of the plate generates in the
fluid a rectilinear flow, partially in-phase, partially out-of-phase, with the plate. The
pressure, however, remains constant.

If the velocity-amplitude and frequency of the plate motion are denoted, respec-
tively, by A and !, the no-slip condition requires that

v1 D D A cos!t at x3 D 0 ; (4.17)

v2 D v3 D 0 at x3 D 0 : (4.18)

If we set

v1 D f .x3/ cos!t C g.x3/ sin!t ;

v2 D v3 D 0 ; (4.19)

p D constant ;

the equations of motion (2.194), (2.195) are satisfied, provided only that

.!g � �f 00/ cos!t D .!f C �g00/ sin!t : (4.20)

Equation (4.20) can hold for all values of t only if both sides vanish independently.
Thus

!g � �f 00 D 0 ;

!f C �g00 D 0 : (4.21)

It is readily verified that the general solution of this system is

f .x3/ D e�kx3 .c1 cos kx3 C c2 sin kx3/C eCkx3 .c3 cos kx3 C c4 sin kx3/ ;

g.x3/ D e�kx3 .c1 sin kx3 � c2 cos kx3/� eCkx3 .c3 sin kx3 � c4 cos kx3/ ;

(4.22)
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�2Fig. 4.2 Velocity distribution
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where

k D
r
!

2�
: (4.23)

Since the growing exponentials are not physically admissible, we set

c3 D c4 D 0 : (4.24)

The remaining constants are evaluated from the boundary condition (4.17):

c1 D A; c2 D 0 : (4.25)

We then have

v1 D Ae�kx3 .cos kx3 cos!t C sin kx3 sin!t/

D Ae�kx3 cos.!t � kx3/ : (4.26)

Thus the oscillating plate sets up a corresponding oscillation in the fluid. As we
move away from the plate, the amplitude decays exponentially and the phase lag
with respect to the plate motion varies linearly. Two fluid layers a distance 2�=k
apart oscillate in phase. This distance, which, by (4.23), is equal to 2�

p
2�=!, is

called the depth of penetration of the harmonic motion. That it increases with
viscosity and decreases with frequency is not surprising: if we slowly oscillate a flat
plate in a sticky fluid, we expect to drag large masses of fluid along with the plate;
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on the other hand, if we move the plate rapidly in a fluid of low viscosity, we expect
the fluid essentially to ignore the plate, except in a thin boundary-layer.

The velocity profile above an oscillating plate is illustrated in Fig. 4.2.

4.4 Transient Flow in a Semi-infinite Space

Let us consider the case in which the plate executes a motion more general than
steady-state oscillation. To make it definite, let us suppose that the plate, and the
fluid above it, are at rest until time zero, when the plate begins to move in the
x1-direction1 with velocity V.t/. If we set

v1 D v.x3; t/ ;

v2 D v3 D 0 ; (4.27)

p D constant ;

the equations of motion (2.194), (2.195) are satisfied if

@v

@t
D �

@2v

@x23
: (4.28)

Thus the velocity generated by the moving plate diffuses through the fluid according
to the heat equation. This equation can be solved subject to the initial condition

v.x3; 0/ D 0 ; (4.29)

and to the boundary condition

v.0; t/ D V.t/ ; (4.30)

by straightforward application of the Laplace transform. Some instructive cases are
worked out in Schlichting (1960); unsteady motion between parallel plates is also
considered. The reader is also referred to Dowty (1963).

If we assume V.t/ D V , with V a constant, then we can work out easily a closed
form solution. The initial and boundary conditions are recapitulated as

t < 0; v D 0; 8 x3 ; (4.31)

t > 0; v D V; at x3 D 0 ; (4.32)

v D 0; at x3 D 1 : (4.33)

1Motion in the x2-direction could be superimposed; the resulting fluid motions do not couple.
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Equation (4.28) is a diffusion type equation similar to the heat equation. We will
transform this partial differential equation into an ordinary differential equation by
a change of variables that is based on similarity considerations. As the problem has
no other space variable than x3 and no other time scale than t , one combines them
to form the dimensionless group

� D x3

2
p
�t
: (4.34)

This change of variable will produce an ordinary differential equation whose
solution is a function of �. This solution is called a self-similar solution as the
velocity profile with respect to x3 is similar at any time t . Setting

v D V f .�/ ; (4.35)

Eq. (4.28) becomes

f 00 C 2�f 0 D 0 ; (4.36)

with the conditions

� D 0; f D 1I � D 1; f D 0 : (4.37)

Integrating (4.36), one obtains

f D A

Z �

0

e��02

d�0 C B : (4.38)

With the conditions (4.37), one gets for � D 0, B D 1 and for � D 1, A D
�2=p� . In terms of the error function erf(x) defined by

erf .x/ D 2p
�

Z x

0

e�2d ; (4.39)

which makes erf.1/ D 1, Eq. (4.38) becomes

f D 1 � erf � : (4.40)

The velocity profile for t > 0 is

v D V

�
1 � erf.

x3

2
p
�t
/

	
: (4.41)

and is shown in Fig. 4.3.
The penetration depth of the plate movement in the semi-infinite space is related

to the question: for t fixed, what is the distance to the plate where the velocity
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reaches, for example, 1 % of the V value? From numerical erf values, the function
1 � erf(�) is 0:01 for � � 2. The penetration depth ı is consequently given by

�ı D ı

2
p
�t

' 2; ı ' 4
p
�t : (4.42)

It is proportional to the square root of the kinematic viscosity and time. If the
viscosity is very small, the fluid “sticks” less to the wall and the effect of the wall
presence is reduced. If t goes to infinity, the velocity at each position in the semi-
infinite space goes to V .

4.5 Channel Flow with a Pulsatile Pressure Gradient

Blood flow in the vascular tree is driven by the pulsating pressure gradient produced
by the heart that is acting as a pump. In order to avoid (temporarily) the geometrical
complexity of cylindrical coordinates appropriate for blood flow in the arteries, we
will tackle a simplified version of the problem, namely the plane channel flow under
an oscillating pressure gradient.

Recall that the standard Poiseuille flow with a steady constant pressure gradient
denoted by G gives rise to the parabolic velocity profile (4.6). Let us add now an
oscillating component characterized by the pulsation ! such that

� 1

�

@p

@x1
D �G � C cos!t ; (4.43)

with C a constant obtained from experimental data, for example. For the sake
of simplicity in the analytical treatment, it is customary to resort to Fourier
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representation and use the following relation

� 1

�

@p

@x1
D �G � <.Cei!t / ; (4.44)

where < means the real part. As a steady state oscillating solution is sought for the
velocity field, the solution is written as a complex function

v1 D uP C < �
u.!; x3/e

i!t
�
; (4.45)

where the Poiseuille solution uP given by Eq. (4.6) corresponds to constant pressure
gradient.

The Navier-Stokes equations lead to the relation

@v1

@t
D �1

�

@p

@x1
C �

@2v1

@x23
: (4.46)

With Eqs. (4.44) and (4.45), Eq. (4.46) gives

i! u D �C C �
@2u

@x23
: (4.47)

The boundary conditions are

u.h/ D 0;
@u

@x3
.0/ D 0 : (4.48)

The solution of (4.47) is

u D <

2
64
iC

!

0
B@1 �

cosh
q

i!
�
x3

cosh
q

i!
�
h

1
CA

3
75 : (4.49)

Taking the relation i 1=2 D .1 C i/=
p
2 into account, the real part of (4.49) yields

the velocity field

v1 D uP � C

!

��
1 � f1.!; x3/

f3.kh/

�
sin!t � f2.!; x3/

f3.kh/
cos!t

	
; (4.50)

where the various notations are defined as follows

k D
r
!

2�
;

cc.x/ D cos.x/ cosh.x/ ;

ss.x/ D sin.x/ sinh.x/ ;
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Fig. 4.4 Pulsating velocity field with ! D 1; left: k D 1=
p
2; right: k D 5=

p
2

f1.!; x3/ D cc.kx3/cc.kh/C ss.kx3/ss.kh/ ; (4.51)

f2.!; x3/ D cc.kx3/ss.kh/ � ss.kx3/cc.kh/ ;

f3.!/ D cc2.!/C ss2.!/ :

Figure 4.4 shows the time evolution of the velocity profile for two different values
of k. The left part represents the flow for a low frequency case or when the viscous
forces are important, i.e. hk � 1, whereas the right part corresponds to high
frequency forcing or to a fluid with low viscosity. The low frequency solution may
be obtained by taking the limit of Eq. (4.50) when k ! 0. Since cc.x/ ! 1 and
ss.x/ is asymptotic to x2 as x ! 0, one has

v1 D uP C Ch2

2�
cos!t

�
1 � .

x3

h
/2

; (4.52)

so that the pulsating term is still a parabola with a modified amplitude which is
given by the oscillating part of the pressure gradient in (4.43). The high frequency
case or the equivalent inviscid fluid may be treated with the approximation hk 	 1.
Then, since cc.x/ and ss.x/ are asymptotic, respectively, to 1=2 ex cos x and
1=2 ex sin.x/ as x ! 1, the limit solution reads

v1 D uP � C

!
.sin!t � sin.!t � �/e��/ ; (4.53)

where the new variable � measuring the distance from the upper wall is defined as
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� D k.h � x3/ D h � x3p
2�=!

: (4.54)

Note that the first term of the oscillating part of (4.53) is the response of the inviscid
fluid (� D 0) to the pressure gradient. As soon as we are inside the fluid the second
oscillating term goes to zero leaving the flow oscillating under the influence of the
pressure gradient.

4.6 Poiseuille Flow

Probably the most important exact solution in applied viscous hydrodynamics is
the Poiseuille solution for pressure flow through a straight circular pipe of uniform
diameter. Let a cylindrical polar coordinate system be defined with z-axis along
the axis of the pipe; in view of the axial symmetry of the situation, the specific
orientation of the � D 0 direction is unimportant. If the radius of the pipe is denoted
by R, the no-slip condition requires

vr D v� D vz D 0 at r D R : (4.55)

We seek a solution to Eqs. (3.77) through (3.80) in the form

vr D v� D 0 ;

vz D u.r/ ; (4.56)

p D p.z/ :

The continuity equation (3.77) is automatically satisfied, as are the momentum
equations (3.78) and (3.79). There remains only (3.80), which reduces to




�
@2u

@r2
C 1

r

@u

@r

�
D @p

@z
: (4.57)

As for the flow between plates, both sides must be equal to the same constant, say
�G. With the boundary conditions (4.55) and the restriction that the velocity be
finite at the tube axis,

u D
�

GR2

4


��
1 � r2

R2

�
; (4.58)

p D C �Gz ; (4.59)

where C is a constant of integration.
If we denote by Q the volume rate of flow through the pipe, so that
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Q D 2�

Z R

0

ru dr ; (4.60)

integration of (4.58) yields

Q D �
GR4

8

: (4.61)

We can superimpose a swirl without disturbing the parabolic velocity profile
(4.58). Let us suppose that we rotate the pipe about its own axis, not necessarily with
constant angular velocity. The boundary conditions (4.55) must then be modified:

vr D vz D 0 at r D R ; (4.62)

v� D R!.t/ at r D R: (4.63)

If we set

vr D 0;

v� D v.r; t/ ; (4.64)

vz D u.r/ ;

where u.r/ is the Poiseuille solution (4.58), the continuity equation (3.77) is
automatically satisfied.

The pressure field (4.59) will not quite suffice. As evidenced by Eq. (3.78), an r-
dependence must be added to balance the centrifugal force generated by v� . We set

p.z; r; t/ D C �Gz C �

Z r

0

r�1Œv.r; t/�2dr : (4.65)

With (4.64) and (4.65), Eqs. (3.78) and (3.80) are satisfied. There remains only
(3.79), which reduces to

@v

@t
D �

�
@2v

@r2
C 1

r

@v

@r
� v

r2

�
: (4.66)

By way of example, suppose that the pipe wall undergoes steady-state torsional
oscillation, so that

!.t/ D A cos nt : (4.67)

We expect that the resulting swirl will have an in-phase and an out-of-phase
component, so that

v.r; t/ D f .r/ cos nt C g.r/ sin nt : (4.68)
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Substituting into (4.66),

.cos nt/

�
ng

�
� f 00 � f 0

r
C f

r2

�
D .sin nt/

�
nf

�
C g00 C g0

r
� g

r2

�
: (4.69)

If (4.69) is to hold for all values of t , both sides must vanish independently. Thus

ng

�
� f 00 � f 0

r
C f

r2
D 0 ; (4.70)

nf

�
C g00 C g0

r
� g

r2
D 0 : (4.71)

If we multiply (4.70) by i and subtract from (4.71), we obtain

n

�
.f � ig/C

�
d2

dr2
C 1

r

d

dr
� 1

r2

�
.g C if / D 0 : (4.72)

By setting

F.r/ D f .r/ � ig.r/ ; (4.73)

(4.72) can be written as Bessel’s equation of order unity:

d2F

dr2
C 1

r

dF

dr
C
�
i 3n

�
� 1

r2

�
F D 0 : (4.74)

SinceF.0/must be finite, we reject the Neumann function as an admissible solution.
Therefore

F.r/ D cJ1.i
3=2r

p
n=�/ ; (4.75)

where c is a (complex) constant of integration. Comparing (4.63), (4.64), (4.67),
(4.68), (4.73), we see that

F.R/ D RA ; (4.76)

so that

c D ber1R
p
n=� � i bei1R

p
n=�

.ber1R
p
n=�/2 C .bei1R

p
n=�/2

RA ; (4.77)

where ber1z and bei1z denote, respectively, the real and imaginary parts of J1.i3=2z/.
With (4.73) and (4.75), we then obtain



4.7 Starting Transient Poiseuille Flow 119

f .r/ D RA

.ber1R
p
n=�/2 C .bei1R

p
n=�/2

.ber1R
p
n=�ber1r

p
n=� C

bei1R
p
n=�bei1r

p
n=�/ ;

g.r/ D RA

.ber1R
p
n=�/2 C .bei1R

p
n=�/2

.bei1R
p
n=�ber1r

p
n=� �

ber1R
p
n=�bei1r

p
n=�/ : (4.78)

The remarks in Sect. 4.3 concerning the penetration of the boundary motion into
the fluid carry over mutatis mutandis to the torsional oscillation of a circular pipe.
Also in analogy with Sect. 4.3, more general rotary motion of the pipe can be treated
by applying the Laplace transform to Eq. (4.66). Unsteady longitudinal motion of
the pipe can also be treated.

In the next chapter we shall consider the exact solution of the problem of steady-
state flow through a pipe of non-circular cross section.

4.7 Starting Transient Poiseuille Flow

We will examine the transient flow in a circular pipe where the fluid starts from
rest to reach the Poiseuille steady parabolic profile (4.58). The only non vanishing
velocity component is vz and the pressure gradient goes instantaneously at t D 0

from zero to the value �G everywhere. The dynamic equation is from (3.80)

G C 


�
@2vz

@r2
C 1

r

@vz

@r

�
D �

@vz

@t
; (4.79)

with the initial condition

vz.r; 0/ D 0; 0 � r � R ; (4.80)

and the boundary condition

vz.R; t/ D 0;8t : (4.81)

In order to render (4.79) homogeneous, let us change variables

w.r; t/ D G

4


�
R2 � r2

� � vz.r; t/ : (4.82)

The new variable will be solution of the equation

@2w

@r2
C 1

r

@w

@r
D 1

�

@w

@t
; (4.83)
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with the initial condition

w.r; 0/ D G

4


�
R2 � r2

�
; (4.84)

and the boundary condition

w.R; t/ D 0; 8t : (4.85)

Through the transient phase, the velocity vz will increase till the steady state (4.58)
is reached, whereas the transient perturbation w.r; t/ will decay to zero. To solve
(4.83), we proceed by separation of variables

w.r; t/ D f .r/g.t/ : (4.86)

Substituting in (4.83), one gets

dg.t/

dt
C C� g.t/ D 0 ; (4.87)

d2f

dr2
C 1

r

df

dr
C C f D 0 ; (4.88)

where C is an arbitrary constant. The solution of (4.87) reads

g.t/ D B exp.�C�t/ : (4.89)

As w.r; t/ decreases with respect to time, we assume that C will involve only
positive values so thatC can be written �2=R2. This will ease the next computations,
as we will observe. Equation (4.88) then becomes

d2f

dr2
C 1

r

df

dr
C �2

R2
f D 0 : (4.90)

The change of variable �r=R D z leads (4.90) to the canonical form of the Bessel
equation

d2f

dz2
C 1

z

df

dz
C .1 � k2

z2
/ f D 0 ; (4.91)

whose general solution is given by

f D C1Jk.z/C C2Yk.z/ ; (4.92)
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where the functions Jk and Yk are Bessel functions of first and second kind,
respectively, of order k and C1; C2 are arbitrary constants. Consequently, the
solution of (4.90) is

f D C1J0.
�r

R
/C C2Y0.

�r

R
/ : (4.93)

As Y0 goes to �1 when r ! 0, one concludes that C2 D 0 for w to remain finite
on the axis. The general solution of (4.83) becomes

w.r; t/ D C3J0.
�r

R
/ exp.� �

2

R2
�t/ : (4.94)

The solution (4.94) verifies condition (4.85) for � values, denoted �n, given by the
zeroes of the Bessel function J0

J0.�n/ D 0 : (4.95)

The solution is obtained as

w.r; t/ D G

4


1X

nD1
cn J0.

�nr

R
/ exp.� �

2
n

R2
�t/; (4.96)

and the coefficients cn are determined by (4.84):

R2 � r2 D
1X

nD1
cn J0.

�nr

R
/ : (4.97)

To solve Eq. (4.97), let us recall the orthogonality properties of Bessel functions as
expressed by Lommel integrals

Z 1

0

zJn.�i z/Jn.�j z/dz D 0; �i ¤ �j ; (4.98)

Z 1

0

zJ 2n .�i z/dz D 1

2
ŒJ 0
n.�i /�

2 : (4.99)

Solution of (4.97) is obtained with z D r=R as

cn D 2R2

ŒJ 0
0.�n/�

2

Z 1

0

.1 � z2/zJ0.�nz/dz : (4.100)

The evaluation of the two integrals in (4.100) is carried out using successively the
recurrence relationships (4.102) and then (4.101) Abramowitz and Stegun (1972)
with ` D 2;m D 0
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Z
z`C1Jm.z/dz D z`C1JmC1.z/C .` �m/z`Jm.z/

� .`2 �m2/

Z
z`�1Jm.z/dz ; (4.101)

Z z

z0

zmJm�1.z/dz D ŒzmJm.z/�
z
z0 ; (4.102)

zJ 0
m.z/ D mJm.z/� zJmC1.z/ : (4.103)

This yields

Z 1

0

zJ0.�nz/dz D 1

�n
J1.�n/ ; (4.104)

Z 1

0

z3 J0.�nz/dz D 1

�4n

�
�3nJ1.�n/C 2�2nJ0.�n/� 4�nJ1.�n/

�
; (4.105)

D 1

�n
J1.�n/ � 4

�3n
J1.�n/ :

One finds with the help of the relation ŒJ 0
0.�n/�

2 D ŒJ1.�n/�
2:

cn D 8R2

�3nJ1.�n/
: (4.106)

Taking Eqs. (4.82), (4.96) and (4.106) into account, the velocity profile is

vz.r; t/ D G

4


�
R2 � r2

� � 2GR2




1X

nD1

J0.
�nr
R
/

�3nJ1.�n/
exp.� �

2
n

R2
�t/ : (4.107)

Figure 4.5 shows the velocity variation with respect to time.

4.8 Pulsating Flow in a Circular Pipe

We come back to the blood flow in arteries. Assuming that arteries are rigid circular
pipes, —an assumption far from the physiological phenomena as arterial walls
deform and move under pressure waves Zamir (2000)—, we are faced with a time-
periodic pressure gradient driving the Poiseuille flow. The cardiac cycle is indeed
time-periodic and therefore the pressure gradient should be represented by a Fourier
series. For the sake of simplicity we will consider only a Fourier in such a way that

@p

@z
D �Cei!t ; (4.108)
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with ! the angular frequency. The flow governing equation is obtained from (3.80):

Cei!t C 


�
@2vz

@r2
C 1

r

@vz

@r

�
D �

@vz

@t
; (4.109)

and a solution is sought in terms of the Fourier representation

vz D u.r/ei!t : (4.110)

The combination of Eqs. (4.109) and (4.110) generates the solution

u D C

i�!

�
1 � J0.i

3=2˛r=R/

J0.i3=2˛/

�
; (4.111)

in which there appears a dimensionless number ˛ called the Womersley number
defined as

˛ D R

r
!

�
: (4.112)

Note that the Womersley number is the square root of the oscillatory Reynolds
number (2.241).

The solution (4.111) was obtained with the boundary conditions

u.R/ D 0;
du

dr
.r D 0/ D 0 : (4.113)

The function J0.i3=2
p

!
�
r/ D J0.i

3=2˛r=R/ is the Kelvin function of order 0.
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As the Womersley number is the ratio of the radius to the penetration depth, it
is a characteristic feature of pulsatile blood flow. Typical values of ˛ in the aorta
range from 20 for a human in good health to 8 for a cat. Another way of interpreting
the Womersley number consists in estimating the distance from the rigid wall, say
ı, where the viscous forces and the inertia are of equal magnitude. Near the wall,
viscosity is dominant and a rough estimate of the viscous forces is 
U=ı2. Near the
symmetry axis, inertia dominates and yields the estimate �!U . Equating the two
forces leads to the definition

ı D �

!
: (4.114)

If ˛ is large, the viscous effects are confined to a region very close to the wall.
In the centre of the flow, the dynamics will be driven by the equilibrium of inertia
and pressure forces, resulting in a velocity profile that will be more blunt than the
parabolic profile that comes from the balance of viscous and pressure forces.

4.9 Helical Flow in an Annular Region

4.9.1 The Newtonian Case

In this section we treat the motion of fluid contained between two concentric circular
pipes of constant radii R1 and R2 with, say, R1 < R2 as indicated in Fig. 4.6. The
pipes rotate about their common axis with constant angular velocities !1 and !2,
respectively. In addition the pipes may translate steadily, parallel to their common
axis; let us say that the outer pipe translates with velocity U relative to the inner.

We define a cylindrical coordinate system r; �; z which translates with the inner
pipe but does not rotate with it. The z-axis lies along the common axis of the pipes;
because of the axial symmetry, the orientation of the � D 0 axis is unimportant.

Since the cylindrical coordinate system is not accelerated, the fluid motion is
governed by Eqs. (3.77) through (3.80). The no-slip condition requires that

vr D vz D 0; v� D R1!1 at r D R1 I
vr D 0; v� D R2!2; vz D U at r D R2 : (4.115)

From our experiences with the exact solutions found in previous sections, we
expect that

vr D 0 ;

v� D v.r/ ;

vz D u.r/ ; (4.116)

p D C �Gz C �

Z r

0

r�1Œv.r/�2dr :
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The continuity equation is indeed satisfied, as is Eq. (3.78). Equation (3.79)
reduces to

d2v

dr2
C 1

r

dv

dr
� v

r2
D 0 ; (4.117)

and Eq. (3.80) becomes

d2u

dr2
C 1

r

du

dr
D �G



: (4.118)

Thus the rotary flow and the axial flow do not couple. Integrating (4.117) subject to
the boundary conditions on v� yields the axisymmetric Couette flow

v D
�
R22!2 �R21!1
R22 �R21

�
r C

�
!1 � !2

R22 � R21

�
R21R

2
2

r
: (4.119)

Integrating (4.118) subject to the boundary conditions on vr yields

u D G

4


�
R21 � r2 C .R22 � R21/ ln.r=R1/

ln.R2=R1/

	
C U

ln.r=R1/

ln.R2=R1/
: (4.120)

If the pipes do not translate relative to one another, so that U D 0, Eq. (4.120)
describes pressure flow in a coaxial pipe. The opposite case, for which G D 0

but U ¤ 0, is referred to as drag flow, but the term is not in common use. The
general case described by (4.119) and (4.120) might be termed pressure flow with
superimposed Couette flow and drag flow.

As in Poiseuille’s problem, the exact solution presented here can be generalized
by permitting unsteady motion of the pipes parallel to themselves.
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4.9.2 The Non-Newtonian Circular Couette Flow

Circular Couette flow occurs in the gap between two rotating concentric cylinders.
The inner cylinder of radius R1 has the angular velocity !1 while the outer cylinder
of radiusR2 spins at !2. The apparatus has a heightH which is much larger than the
radius of either cylinder so that the apparatus height is supposed infinite. Referring
to the previous cylindrical coordinates system r; �; z, the steady state velocity field
is such that

vr D 0; v� D v� .r/; vz D 0 : (4.121)

This v� velocity field is then determined from the integration of the �-momentum
equation

�.
@v�

@t
C vr

@v�

@r
C v�

r

@v�

@�
C vz

@v�

@z
C vrv�

r
/

D @Tr�

@r
C 1

r

@T��

@�
C @T�z

@z
C 2Tr�

r
; (4.122)

which reduces to

1

r2
d

dr

�
r2 Tr�

� D 0 : (4.123)

The stress component Tr� of (2.149) is given by the relation

Tr� D '1

2

�
@v�

@r
� v�

r

�
: (4.124)

Taking (4.124) into account, the integration of (4.123) with the boundary conditions
v� .R1/ D R1!1 and v� .R2/ D R2!2 yields the velocity field (4.119).

In the case of a fixed outer cylinder !2 D 0 and the velocity is given by

v� D Ar C B

r
D !1R

2
1

R22 �R21

�
R22
r

� r

�
: (4.125)

The r-momentum equation

�.
@vr

@t
C vr

@vr

@r
C v�

r

@vr

@�
C vz

@vr

@z
� v2�
r
/

D @Trr

@r
C 1

r

@Tr�

@�
C @Trz

@z
C Trr � T��

r
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simplifies and gives

d Trr

dr
C 1

r
.Trr � T��/ D ��v

2
�

r
: (4.126)

With the stress component

Trr D �p C '2

4

�
@v�

@r
� v�

r

�2
;

Eq. (4.126) yields

�@p
@r

C '2
@

@r

�
B2

r4

�
D ��v

2
�

r
: (4.127)

As Tzz D �p, one obtains

� Tzz D p D '2
B2

r4
jrR1 C

Z r

R1

�
v2�
r

dr C C (4.128)

D p.R1/C '2
B2

r4
C
Z r

R1

�
v2�
r

dr : (4.129)

If the fluid is Newtonian, '2 D 0 and the pressure increases from the inner to the
outer cylinder. The fluid rises along the outer cylinder under centrifugal forces. For
the non-Newtonian fluid, if '2 > 0 and if B is sufficiently large under a high
shear due to a small gap between the cylinders, the pressure increases when one
approaches the inner cylinder and this produces the rod-climbing effect as shown in
Fig. 2.5.

4.10 Hamel’s Problem: Flow in a Wedge-Shaped Region

The exact solutions presented so far have all been somewhat degenerate. In every
case the form we assumed for the velocity profile caused the nonlinear inertia terms
in the Navier-Stokes equation either to vanish completely or to produce only a
centrifugal force, easily balanced by a pressure gradient. Since the mechanism of
non-linear momentum transfer is best studied through exact solutions in which the
non-linear terms play an important role, it is worthwhile to seek out such solutions.

In Fig. 4.7 consider that an incompressible fluid is contained in the trough
between two non-parallel walls. Consider further that a line-source (or sink) of
uniform outputQ per unit length lies along the line of intersection of the walls. Let a
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cylindrical polar coordinate system r; �; z be defined so that the walls correspond to
� D ˙˛. The velocity components must, then, satisfy the no-slip condition

vr D v� D vz D 0 at � D ˙˛; (4.130)

along with the volume flow condition

Z ˛

�˛
rvr d� D Q : (4.131)

We expect a priori that the flow will be two-dimensional. Moreover we suspect
that a purely radial pattern of flow may satisfy the hydrodynamic equations.
Therefore we seek a solution with

v� D vz D 0 : (4.132)

The continuity equation (3.77) then requires that

vr D 1

r
f .�/ ; (4.133)

so that Eq. (3.79) becomes

@p

@�
D 2


r2
f 0.�/ : (4.134)

Thus

p D 2


r2
f .�/C g.r/ : (4.135)
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Substituting (4.133) and (4.135) into (3.78) yields

r3g0.r/ D 
Œf 00.�/C 4f .�/�C �Œf .�/�2 : (4.136)

Since the left side of (4.136) is a function of r alone and the right side is a function
of � alone, both sides must equal some constant, call it �
K . Then (4.135) yields

p D 


2r2
Œ4f .�/CK�C pa ; (4.137)

where pa is the pressure at r D 1. Also (4.136) becomes a differential equation for
f .�/:

f 00 C 4f C f 2

�
CK D 0 : (4.138)

Integration of this equation introduces two new constants, which can be eliminated
by use of the boundary conditions (4.130). The volume flow condition (4.131) then
determinesK .

Before proceeding, let us consider the consequences of the non-linear term in
(4.138). Were it not for this term, the flow would be reversible: if f were a solution,
then �f would be a solution to the equation obtained by replacing K with �K ,
i.e., by replacing the source with a sink. However, with the non-linear term, which
results from fluid inertia, no such conclusion can be drawn. Because of its inertia,
the fluid attempts to obey Bernoulli’s law, which relates the pressure to the fluid
speed, not to the direction of flow; it is prevented from doing so by viscosity, which
always acts to oppose the flow. If either inertia or viscosity were negligible, the flow
would be reversible (in the first case p � pa would reverse sign; in the second case
it would not). With both effects present, source flow differs qualitatively from sink
flow. Discussions of the nature of the difference are presented in Goldstein (1938)
and Schlichting (1960).

In order to obtain a first integral to (4.138), multiply through by f 0 and integrate.
Since the geometry of Hamel’s problem is symmetric with respect to the � D 0 axis,
f 0.0/ D 0. Hence

1

2
f 02 C 2.f 2 � f 2

1 /C 1

3�
.f 3 � f 3

1 /CK.f � f1/ D 0 ; (4.139)

where f1=r is the midstream velocity. Thus an implicit relation between f and �
can be obtained in terms of an elliptic integral:

� D ˙
r
3�

2

Z f1

f

df
p
f1 � f

q
f 2 C .f1 C 6�/f C f 2

1 C 6�f1 C 3�K

:

(4.140)
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Because of the symmetry about � D 0, either sign may be retained. If we choose
the plus sign, the no-slip condition at � D ˛ gives us

Z f1

0

df
p
f1 � f

q
f 2 C .f1 C 6�/f C f 2

1 C 6�f1 C 3�K

D ˛

r
2

3�
: (4.141)

The second relation required to determine the constants f1 andK is provided by the
volume flow condition (4.131).

4.10.1 The Axisymmetric Analog of Hamel’s Problem

Having succeeded in finding an exact solution to the problem of source flow in
a wedge, we might try seeking another exact solution by considering flow from a
source at the apex of a cone. As we shall see, the search leads quickly to a frustration.

Let a spherical coordinate system be chosen with origin at the apex of the
cone and with � D 0 along its axis. Since the problem is axially symmetric, the
orientation of the � D 0 axis is unimportant.

If we assume that, as in Hamel’s problem, the flow pattern is purely radial, the
continuity equation (3.101) requires that

vr D 1

r2
f .�/ : (4.142)

Equation (3.103) then becomes

@p

@�
D 2


r3
f 0.�/ ; (4.143)

so that

p D 2


r3
f .�/C g.r/ : (4.144)

Substituting (4.142) and (4.144) into Eq. (3.102) yields

r4g0.r/ � 2�

r
Œf .�/�2 D 
Œf 00.�/C cot �f 0.�/C 6f .�/� : (4.145)

Since the left side depends upon r and the right side does not, both sides must equal
some constant, say C . But consider further: setting the left side of (4.145) equal to
C yields

2�Œf .�/�2 D r5g0.r/ � Cr : (4.146)
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Once more we find that both sides must equal some constant, so that f .�/ itself is
constant. However, f .�/ vanishes at � D ˛, where ˛ is the semi-vertical angle of
the cone. Consequently f .�/ is identically zero.

Thus we have shown that there can be no purely radial flow in a cone, at least for
an incompressible fluid without body forces. There must be a component of flow in
the �-direction, so that an eddy pattern results. For such a pattern the Navier-Stokes
equation is quite complicated. Hence there is not much hope for exact solution—
especially as people have been trying ever since Georg Karl Wilhelm Hamel (1877–
1954) published his paper in 1916 Hamel (1916).2

Some insight as to why radial flow obtains in a wedge but not in a cone comes
from dimensional considerations. For wedge flow the relevant physical parameters
are the fluid density, its viscosity, the wedge half-angle, and the source output per
unit length. The dimensions of these quantities are

Œ�� D ML�3 ;

Œ
� D ML�1T �1 ; (4.147)

˛ W dimensionless ;

ŒQ� D L2T �1 :

No combination of these parameters yields a length. If source flow in a wedge
were to produce a steady-state eddy pattern, the eddies would presumably be
characterized by a length, (for example, the distance from the origin beyond which
no back-flow occurs,) expressible in terms of the parameters of the problem (for
otherwise we would reach the ridiculous conclusion that it is a fundamental constant
of the universe). As we have seen, however, the parameters do not give us such a
length. For flow in a cone, however, the source strength, say Q�, has dimensions of
volume per unit time. Hence, Q��=
 is a length. Moreover, it depends on Q� the
way one might expect: as the source gets stronger, the eddies are blasted farther and
farther out from the origin.

4.11 Bubble Dynamics

Let us now suppose that a spherical bubble of inviscid gas is contained in an
otherwise unlimited volume of liquid. Suppose further that the pressurepg of the gas
forming the bubble varies with time. As a consequence the radius R of the bubble
will also vary with time. The pulsating bubble will generate a velocity field within
the liquid which in turn generates a stress field.

2A translation of the paper exists: United States NACA Technical Memorandum 1342. Since
Hamel’s result is extensively discussed in the hydrodynamics literature, his original paper is now
primarily of historical interest.
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The spherical symmetry of the situation makes it convenient to choose a spherical
coordinate system with origin at the center of the bubble as in Fig. 4.8. The velocity
field generated in the liquid will have only a radial component

vr D v.r; t/ ; (4.148)

so that the hydrodynamic equations (3.101) and (3.102) reduce to

@v

@r
C 2v

r
D 0 ; (4.149)

�

�
@v

@t
C v

@v

@r

	
D �@p

@r
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�
@2v

@r2
C 2

r

@v

@r
� 2v

r2

	
: (4.150)

At the bubble wall, the liquid velocity must equal PR.t/, where an overdot denotes
ordinary differentiation with respect to time. Thus integration of (4.149) yields

v D
PRR2
r2

: (4.151)

Substituting this result into (4.150) and integrating, we obtain

.p � pa/
�

D
�
R

r

�
.R RRC 2 PR2/�

 
R4 PR2
2r4

!
; (4.152)

where pa is the pressure at infinity.
With Eqs. (3.98) and (3.100), we see that the physical components of stress are

given by
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Trr D �p �
 
4
R2 PR
r3

!
;

T�� D T�� D �p C
 
2
R2 PR
r3

!
; (4.153)

T�� D T�r D Tr� D 0 :

Within the bubble,

Trr D T�� D T�� D �pg.t/ ;
T�� D T�r D Tr� D 0 : (4.154)

The stress components T�r and Tr� must be continuous across the bubble surface.
A comparison of (4.153) and (4.154) reveals that this requirement is automatically
satisfied. The stress component Trr must experience a jump of magnitude 2=R,
where  is the coefficient of interfacial tension ; the value inside the bubble is lower.
Comparing the first of Eqs. (4.153) with the first of Eqs. (4.154), we find that the
pressure just outside the bubble wall is given by

p.RC 0; t/ D pg.t/ � .2 C 4
 PR/
R

: (4.155)

By setting r D .R C 0/ in Eq. (4.152), we obtain an ordinary differential equation
for the bubble radius as a function of time:

R RRC 3

2
PR2 C 4
 PR

�R
C 2

�R
D pg.t/ � pa

�
: (4.156)

Since (4.156) is an equation of second order, two initial conditions must be specified.
Most simply, R.0/ and PR.0/ will be given.

The treatment given here has been restricted to spherical bubbles. In practice,
the presence of a unidirectional gravitational field tends to destroy the spherical
symmetry. It also causes the bubble to rise in the liquid, and our analysis does not
account for streaming past the bubble. Thus Eq. (4.156) is virtually useless in the
study of large-scale bubbles arising, say, from an underwater explosion.

However in certain physical problems the bubble is small enough so that
interfacial tension causes it to remain essentially spherical. When streaming past
the bubble is negligible, Eq. (4.156) can then be applied. This approach has been
used to study the growth of vapor bubbles in superheated liquids, Plesset and Zwick
(1954), where the variation of pg with time is caused by thermal expansion of the
gas due to the diffusion of heat into the bubble. Also the growth of small bubbles
by diffusion of gas through the liquid has been studied by use of Eq. (4.156), cf.
Barlow and Langlois (1962) and Langlois (1963). Cavitation bubbles can also be
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treated, but in the literature on cavitation in liquids, viscosity is usually neglected,
so that the term 4
 PR=�R is dropped from Eq. (4.156).

4.12 The Flow Generated by a Rotating Disc

As our next example of an exact solution to the equations of viscous hydrodynamics,
we consider the flow generated by an infinite flat disc rotating in its own plane
with constant angular velocity !d , as in Fig. 4.9. At first it would seem that purely
rotary flow is generated, but, looking deeper, we see that this is not the case. First,
solid body rotation is not an acceptable solution, for infinite pressures would be
required to support the centrifugal forces generated by the rotating fluid. Therefore
the fluid near the disc rotates faster than the fluid farther away. Consequently there is
a variation of centrifugal force in the axial direction. The fluid near the disc is thrown
outward more violently, so that other fluid must stream down the axis to replace it.
Thus the motion is fully three-dimensional, albeit axisymmetric. By making a clever
guess as to the form of the flow pattern, Theodore von Kármán (1891–1963) was
able to reduce the hydrodynamic equations to a set of ordinary differential equations
von Kármán (1921). He assumed that

vr D ru.z/; v� D r!.z/; vz D v.z/; p D p.z/ : (4.157)

Substituting these forms into Eqs. (3.77) through (3.80) yields

2u C v0 D 0 ;

u2 � !2 C u0v D �u00 ; (4.158)

2u! C !0v D �!00 ;

�vv0 C p0 D 
v00 :
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Fig. 4.10 Velocity
components with respect to
the normalized axial
coordinate

These equations can be normalized by setting

z D p
�=!dZ; u.z/ D !dU.Z/; !.z/ D !dΩ.Z/ :

v.z/ D p
�!dV.Z/; p.z/ D �
!dP.Z/ : (4.159)

Thus

2U C V 0 D 0 ;

U 2 � Ω2 C U 0V D U 00 ;

2UΩ C Ω0V D Ω00 ; (4.160)

VV 0 D P 0 C V 00 :

For boundary conditions, von Kármán assumed that the radial and azimuthal
components of velocity approach zero as z approaches infinity. At z D 0, the no-slip
condition applies. In terms of the normalized variables,

U D V D 0; Ω D 1 at Z D 0 ;

U ! 0;Ω ! 0 as Z ! 1 : (4.161)

von Kármán obtained an approximate solution to the system (4.160) subject to
the boundary conditions (4.161). We shall not go into the details, nor into those
of Cochran’s numerical solution Cochran (1934) for they are set out in Goldstein
(1938) and Schlichting (1960)

As shown in Fig. 4.10, the significant point is that the radial and azimuthal
velocity components differ appreciably from zero only in a layer near the disc. The
thickness of this layer is proportional to

p
�=!d which therefore plays the role of a

depth of penetration for the flow generated by a rotating disc. As z ! 1, the axial
component of velocity approaches asymptotically the finite value �0:886p�!d so
that the rotating disc acts as a centrifugal pump.



136 4 Exact Solutions

Fig. 4.11 Flow over an
inclined plane

4.13 Free Surface Flow over an Inclined Plane

Taking the effect of gravity into account, consider the steady two-dimensional flow
of a viscous fluid over a plane inclined with respect to the vertical direction by the
angle ˛ (cf. Fig. 4.11). The thickness of the fluid layer is uniform and equal to h.
The fluid is in contact at the free surface with ambient air, which we will model as an
inviscid fluid at pressure pa. We assume that the air flow does not affect the viscous
fluid flow. The flow is parallel as the trajectories of the fluid particles are parallel
to the inclined plane. Therefore v D .v1; 0; 0/. By the incompressibility constraint,
one obtains

@v1

@x1
D 0; (4.162)

and we deduce v1 D v1.x2/. The only non zero component of the stress tensor is
T12 or T21. As pressure is uniform at the free surface, the pressure in the viscous
fluid does not depend on the x1 direction, but does depend on x2. The first equation
of (2.95) written in the x1 direction yields

@T12

@x2
C �g1 D @T12

@x2
C �g cos˛ D 0 : (4.163)

Integration of this relation yields

T12 D ��g x2 cos˛ C C : (4.164)

At the free surface x2 D h, the shear stress must vanish as the inviscid fluid cannot
sustain shear. One obtains

T12 D �g cos˛.h � x2/ : (4.165)
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As T12 D 
dv1=dx2, we may evaluate v1 by integrating Eq. (4.165) with respect to
x2, with the boundary condition v1.x2 D 0/ D 0. The velocity profile is given by

v1 D �g cos˛

2

x2.2h� x2/ : (4.166)

The Navier-Stokes equation in the x2 direction gives the relation

� @p

@x2
C �g2 D � @p

@x2
� �g sin ˛ D 0 : (4.167)

Integrating with respect to x2 and using the free surface condition p.x2 D h/ D pa,
we get

p D pa � .� g sin˛/.x2 � h/ : (4.168)

The mass flux per unit length in the x3 direction reads

Q D
Z h

0

u dx2 D �g cos˛ h3

2

: (4.169)

4.14 Natural Convection Between Two Differentially Heated
Vertical Parallel Walls

We now consider the steady, two-dimensional, non-isothermal slow flow of a
viscous incompressible fluid subjected to a variable temperature field. The fluid
flows between two infinite vertical parallel walls at different temperatures, cf.
Fig. 4.12, such that Θ1 > Θ2. We assume that the Boussinesq approximation is
valid and the relevant equations are given by (2.196)–(2.198). The velocity field is
a priori of the form v D .u.x1; x2/; v.x1; x2/; 0/. However as the flow is invariant
with respect to translation in the x2 direction, one concludes that it depends only on
the x1 coordinate. With (2.196),

@u

@x1
D 0 : (4.170)

As u D 0 at the walls, u D 0 and v D v.x1/. The temperature gradient is oriented
in the horizontal direction, so that the temperature field is such that Θ D Θ.x1/.
Consequently Eq. (2.198) becomes

d2Θ

dx21
D 0 : (4.171)
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Θ1 Θ2

h

x2

x1+h

Fig. 4.12 Natural convection
in an infinite plane channel

Integrating with the boundary conditions Θ D Θ1 at x1 D �h and Θ D Θ2 at x D h

yields

Θ D Θ2 � Θ1

2h
x1 C Θ1 C Θ2

2
D Ax1 C Θ1 C Θ2

2
: (4.172)

The momentum equation (2.197) gives

� @p

@x2
C 


d2v

dx21
� �0g.1 � ˛.Θ � Θ0// D 0 (4.173)

The reference temperature is chosen such that Θ0 D .Θ1 C Θ2/=2, i.e. the mean
temperature. As the flow is not driven by an exterior pressure gradient, the pressure
is purely hydrostatic and results from the integration of

� @p

@x2
� �0g D 0 ; (4.174)

valid at equilibrium. Therefore the velocity field is driven by the buoyancy force and
one solves



d2v

dx21
C �0g˛Ax1 D 0 : (4.175)

With the boundary conditions v D 0 at x1 D ˙h,

v D g˛A

6�
x1.h

2 � x21/ : (4.176)
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It is easy to verify that this velocity profile corresponds to a vanishing flow rate
across each horizontal section. A posteriori the velocity field is orthogonal to the
temperature field; this leads to the vanishing of the transport term in the material
derivative of Θ.

In the real world, it is impossible to build infinite walls. Therefore top and bottom
walls confine the fluid and force it to form a convection cell. The flow we have
analyzed is thus unstable Koschmieder (1993) and constitutes an idealization of the
physical phenomena.

4.15 Flow Behind a Grid

Kovasznay (1948) examines the steady state two-dimensional exact solution of the
Navier-Stokes equation for the laminar flow behind a periodic array of cylinders or
rods. The velocity field is assumed to be such that v1 D U C u1; v2 D u2, where U
is the mean velocity in the x1 direction. The vorticity equation (2.247) yields

@�3

@t
C .U C u1/

@�3

@x1
C u2

@�3

@x2
D �r2�3 : (4.177)

Denoting the spacing of the grid by ı, we define the Reynolds number as Re D
ıU=�. The dimensionless vorticity becomes ! D �3 ı=U . The other dimensionless
variables are x D x1=ı; y D x2=ı;  D tU=ı; 1 C u D v1=U; v D v2=U . The
governing equation (4.177) is

@!

@
C .1C u/

@!

@x
C v

@!

@y
D 1

Rer2! : (4.178)

As steady state solutions are sought, the term @!=@ vanishes. We are left with

r2! � Re @!
@x

� Re
�

u
@!

@x
C v

@!

@y

�
D 0 : (4.179)

To build up the analytical solution, the trick consists in finding an expression that
cancels the nonlinear term. The streamfunction is introduced to satisfy the continuity
equation

u D @ 

@y
; v D �@ 

@x
; (4.180)

and therefore the vorticity is

! D �r2 : (4.181)
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Taking the periodicity into account, the streamfunction is set up such that

 D f .x/ sin 2�y : (4.182)

With (4.182), the nonlinear term of (4.179) gives

f 0f 00 � ff 000 D 0 : (4.183)

Integrating (4.183) we obtain

f 00 D k2 f ; (4.184)

where k is a real or complex arbitrary constant. A further integration yields

f D Cekx : (4.185)

With the stream function

 D Cekx sin 2�y (4.186)

canceling the nonlinear term in (4.179), we have to seek a solution of the equation

r2! � Re @!
@x

D 0 : (4.187)

Setting

! D g.x/ sin 2�y ; (4.188)

we have

g00 � Re g0 � 4�2g D 0 ; (4.189)

the solution of which is

g.x/ D Ae�1x CBe�2x ; (4.190)

where

�1;2 D Re
2

˙
r

Re
2

C 4�2 : (4.191)

Combining (4.188) and (4.190), the vorticity is

! D �
Ae�1x C Be�2x

�
sin 2�y ; (4.192)
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Fig. 4.13 Streamlines of the
Kovasznay flow for Re D 40

while Eqs. (4.181) and (4.186) give

! D C.4�2 � k2/ekx sin 2�y : (4.193)

Comparison of (4.192) and (4.193) shows that two solutions are possible

k D �1; A D �Re�1C; B D 0; (4.194)

k D �2; A D 0; B D �Re�2C; (4.195)

With �2 and Re D 40 the streamlines are shown in Fig. 4.13, with pairs of eddies
generated behind the cylinders. The flow recovers uniformity downstream through
the exponential term of the solution.

As the Kovasznay flow incorporates the nonlinear term, it is a good benchmark
to test the numerical accuracy and space convergence of computational methods
integrating the Navier-Stokes equation.

4.16 Plane Periodic Solutions

Many exact solutions of the Navier-Stokes equations are obtained for spatial
periodic conditions. In this section we consider a two-dimensional (2D) solution
due to Walsh (1992).

Let us first proof the following theorem

Theorem 4.1. Let us consider a vector field u in the domain˝ that satisfies

r2u D � u; (4.196)

div u D 0 : (4.197)
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Then the velocity v D e��tu satisfies the Navier-Stokes equation (2.178) and (2.179)
with a pressure such that

r p D �v 
 rv : (4.198)

The vector v is divergence free as is also u. Furthermore,

@v
@t

D ��v D ��v : (4.199)

It remains to prove that the nonlinear term is a gradient. This amounts to showing
that

@

@x2

�
v1
@v1

@x1
C v2

@v1

@x2

�
D @

@x1

�
v1
@v2

@x1
C v2

@v2

@x2

�
; (4.200)

as curlr D 0. This is evident by incompressibility and relation (4.199).
In the 2D case, we resort to the streamfunction  , assuming that it is

an eigenfunction of the Laplacian with eigenvalue �. Consequently, u D
.@ =@x2;�@ =@x1/ satisfies (4.196) and (4.197)with the same �. Therefore, e��t 
is the streamfunction of the associated Navier-Stokes flow. If we have a periodic
domain of size 2� , then the eigenfunctions � are of the form � D �.k2x1 C k2x2/,
with kx1 and kx2 positive integers. For given kx1 ; kx2 , the linearly independent
eigenfunctions are

cos.kx1x1/ cos.kx2x2/; sin.kx1x1/ sin.kx2x2/ ;

cos.kx1x1/ sin.kx2x2/; sin.kx1x1/ cos.kx2x2/ :

It is possible to build up complicated geometrical patterns by combination of
the eigenfunctions named n;m eigenfunction by Walsh, with � D �.n2 C m2/. A
theorem in number theory shows that integers of the form p2i and p2iC1, where p
is an integer number such that p � 1 .mod 4/, may be written as sums of squares
in exactly i C 1 manners. For example, 625 D 252 D 242 C 72 D 202 C 152.
Figure 4.14 displays the streamlines corresponding to D sin.25x1/Ccos.25x2/�
sin.24x1/ cos.7x2/C cos.15x1/ cos.20x2/ � cos.7x1/ sin.24x2/.

4.17 Summary

The exact solutions presented in this chapter do not exhaust the list of those
available, but they are fairly representative. A more comprehensive collection can
be obtained by consulting the references.
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Some flow problems such as the flow between parallel plates or in an annular
region, are amenable to exact solution because the nonlinear inertia terms drop out
of the hydrodynamic equations. Others, such as Hamel’s problem, retain a nonlinear
character, but enough nonlinear terms disappear so that the problem reduces to
a differential equation whose solution can be recognized. Finally, there are flow
problems, such as the flow generated by a rotating disc, which can be reduced to a
system of normalized ordinary differential equations to be integrated numerically.

A semantical question arises: What is meant by “exact solution”? The answer
probably varies from one era to another. In the mid-nineteenth century Hamel’s
solution probably would not have qualified, for it cannot be expressed in terms of
functions well understood at that time. In the earlier twentieth century von Kármán’s
formulation of the rotating disc problem might not have been accepted as an exact
solution because of the numerical labor that remained to be done.

Perhaps now we have come full cycle on von Kármán’s problem: the student
today might well ask if the numerical integration of four ordinary differential
equations is any more an exact solution than would be numerical integration of the
full hydrodynamic equations. However let us recall the state of computational art in
the 1920s and 1930s. Numerical integration methods for both ordinary and partial
differential equations were known, and the construction of analog computers was in
sight. However high speed digital equipment, which makes practical the numerical
treatment of partial differential equations, was still a generation away. Thus the
reduction of a problem to ordinary differential equations really was a significant
step.

Today much open source and commercial software is available. Visualization
packages are also available to show the myriads of numerical results produced by
simulation tools relying on high-performance computing. However the display of
a result does not explain everything and simple (or simplified) models are still a
source of understanding for what some people have named the incomprehensible
Navier-Stokes equation.



Chapter 5
Pipe Flow

Abstract Steady flow of viscous fluids through straight pipes of noncircular cross
section is treated by semi-inverse methods, separation of variables, and conformal
mapping.

In this chapter we consider the general problem of steady-state flow through a
straight pipe of uniform, but non-circular, cross section. As we shall see, the steady
problem reduces to an exercise in potential theory; it is quite analogous to the
problem of torsion of an elastic bar having the same cross section as the pipe.

5.1 Poisson’s Equation for the Velocity

Choose in Fig. 5.1 a Cartesian coordinate system with x3-axis parallel to the gen-
erators of the pipe. We assume that there exists within the fluid a constant pressure
gradient, or equivalent conservative body force field, in the decreasing x3-direction.
We assume further that this pressure gradient generates a rectilinear flow field along
the pipe. Thus we seek a solution to the hydrodynamic equations (2.194) and (2.195)
in the form

v1 D v2 D 0 ;

v3 D v.x1; x2/ ; (5.1)

p D C � OGx3 ;

where C and OG are constants and v.x1; x2/ vanishes on the periphery of the
pipe cross-section. It is evident that (2.194) is automatically satisfied, as are the
i D 1; 2 components of (2.195), provided f1 and f2 are both zero. As in Chap. 4,
a conservative body force field can be handled by modifying the pressure. If f3 is
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Fig. 5.1 Pipe geometry

constant, the i D 3 component reduces to

r2v C G



D 0 ; (5.2)

where G D OG C �f3, and r2 is the two-dimensional Laplacian , i.e..

r2 D @2

@x21
C @2

@x22
: (5.3)

Equation (5.2) is a special case of Poisson’s equation, a linear, second-order partial
differential equation of the elliptic type, which has been extensively studied in the
literature of mathematics and mathematical physics. In this chapter we shall look
for solutions which satisfy the boundary condition

v.x1; x2/ D 0 on Γ ; (5.4)

where Γ is the periphery of the pipe cross section.
The boundary value problem represented by (5.2) and (5.4) is equivalent to the

Dirichlet problem

r2u D 0 ; (5.5)

u D f .x1; x2/ on Γ : (5.6)

To show the equivalence, we need only set

v.x1; x2/ D G

2

Œu.x1; x2/ � f .x1; x2/� ; (5.7)

where f is any function satisfying

r2f D 2 : (5.8)
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The analogy with the torsion problem of elasticity is reinforced by choosing

f .x1; x2/ D 1

2
.x21 C x22/ : (5.9)

5.2 Polynomial Solutions

We begin with what might be termed a semi-inverse method. Evidently many
polynomials have constant Laplacian; some of these, when equated to zero, yield
the equation of a closed contour. Thus setting v.x1; x2/ equal to such a polynomial,
multiplied by an appropriate constant, will satisfy (5.2) and (5.4), with Γ the contour
on which the polynomial vanishes. We reject immediately all linear polynomials
for two reasons: they vanish only on straight lines, not on closed contours;
their Laplacians are not only constant, they vanish. Consideration of quadratic
polynomials, however, bears fruit.

5.2.1 The Elliptical Pipe

We note first that the Laplacian of any quadratic polynomial is constant. We next
recall that equating any quadratic polynomial to zero yields the equation of a conic
section. Only the ellipses are of interest to us, for circles were treated in the last
chapter and none of the other conic sections are closed contours.

The algebra is simplified by placing the centroid of the ellipse on the x3-axis, and
orienting the x1- and x2-axes along the axes of the ellipse (Fig. 5.2). Thus the most
general ellipse can be represented by

�x1
a

2 C
�x2
b

2 D 1 : (5.10)

We find by inspection that a solution to (5.2) which vanishes on the ellipse (5.10)
is provided by

v D G

2


a2b2

a2 C b2

�
1 � x21

a2
� x22
b2

�
: (5.11)

The volume flow rate is easily calculated. We have

Q D
Z Z

v dx1dx2 ; (5.12)

where the integration is carried out over the ellipse. With (5.11),

Q D �G

4


a3b3

a2 C b2
: (5.13)



148 5 Pipe Flow
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Fig. 5.2 Elliptical pipe

This result may be rewritten

Q D GA2

4�


R

1CR2
; (5.14)

where A D �ab is the area of the ellipse and R D a=b is the ratio of the semi-axes.
We then obtain

@Q

@R
D GA2

4�


1 � R2

.1CR2/2
: (5.15)

Hence, for 
;G;A all fixed,Q has an extremum at R D 1, which is easily shown to
be a maximum. We thus find that the circular pipe is more efficient than any elliptical
pipe, in the sense that the circular pipe produces a greater volume flow for a given
pressure gradient than does an elliptical pipe of the same cross-sectional area.This
result can be generalized. In Pólya (1948) it is proved that the circular cross section
has maximum torsional rigidity of all simply-connected cross sections with a given
area. The hydrodynamic analogy is that the circular pipe is the most efficient.

5.2.2 The Triangular Pipe

It seems surprising that we can express in closed form the flow through so unlikely a
cross section as an equilateral triangle, but such is the way of semi-inverse methods.

If we place the origin at the intersection of the medians and let the negative x1-
axis pass through one vertex (Fig. 5.3), the equation of an equilateral triangle with
altitude 3a becomes

.x1 � a/.x1 � p
3 x2 C 2a/.x1 C p

3 x2 C 2a/ D 0 : (5.16)
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Fig. 5.3 Triangular pipe

Since

r2
h
.x1 � a/.x1 � p

3 x2 C 2a/.x1 C p
3 x2 C 2a/

i
D 12a ; (5.17)

we have

v D
�

G

12a


�
.a � x1/.x1 � p

3 x2 C 2a/.x1 C p
3 x2 C 2a/ : (5.18)

It is readily verified that the maximum velocity occurs at the origin, and that its
value there is Ga2=3
.

5.3 Separation of Variables: The Rectangular Pipe

The flow through a pipe of rectangular cross section is not so easily solved, for the
equation of a rectangle does not have constant Laplacian.

If the rectangle has sides 2a and 2b, and if we choose the orientation of the
coordinate system as illustrated in Fig. 5.4, we require

r2v C G



D 0 ;

v D 0 on x1 D ˙a ; (5.19)

v D 0 on x2 D ˙b :

If we set

v.x1; x2/ D
�
G

2


� �
b2 � x22 C u.x1; x2/

�
; (5.20)

we require instead
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Fig. 5.4 Rectangular pipe

r2u D 0 ; (5.21)

u D x22 � b2 on x1 D ˙a ; (5.22)

u D 0 on x2 D ˙b : (5.23)

Since Laplace’s equation (5.21) is linear, a sum of its solutions is also a solution.
As we shall see, the required solution can be expressed as a sum of terms of the
form X.x1/:Y.x2/. This separation of variables solves (5.21) if and only if

X 00

X
D �Y

00

Y
: (5.24)

Since the left side of (5.24) depends only on x1 and the right side depends only on
x2, both sides must equal the same constant, say c2n.

If we choose

cn D
�
nC 1

2

�
�

b
; (5.25)

and let n be an integer, the function

Yn.x2/ D cos cnx2 (5.26)

vanishes on x2 D ˙b and satisfies

� Y 00
n

Yn
D c2n : (5.27)

The correspondingXn.x1/ is determined from

X 00
n

Xn
D c2n ; (5.28)

i.e.,

Xn D An cosh cnx1 C Bn sinh cnx1 : (5.29)
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Because of the symmetry of the problem, we take Bn D 0. Thus we let

u.x1; x2/ D
1X

nD0
An cosh cnx1 cos cnx2 ; (5.30)

and set about determining the coefficients An so as to satisfy the boundary
conditions (5.22). With the symmetry of the hyperbolic cosine, we need

1X

nD0
A�
n cos cnx2 D x22 � b2 ; (5.31)

where

A�
n D An cosh cna

D An cosh

��
nC 1

2

�
�a

b

	
: (5.32)

We can now follow the usual procedures of Fourier analysis, observing that

Z b

�b
cos cnx2 cos cmx2 dx2 D



0; if m ¤ n

1; if m D n
: (5.33)

Thus, if we multiply both sides of (5.31) by cos cmx2 and integrate, we obtain

A�
m D 1

b

Z b

�b
.x22 � b2/ cos cmx2 dx2

D 4.�1/mC1

bc3m
(5.34)

D 32.�1/mC1b2

.2mC 1/3�3
:

We now obtain the solution for the fluid velocity by going back through the
various substitutions:

v D G

2


"
b2 � x22 C 32b2

�3

1X

nD0

.�1/nC1 cosh.2nC 1/�x1=2b cos.2nC 1/�x2=2b

.2nC 1/3 cosh.2nC 1/�a=2b

#
:

(5.35)
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5.4 Conformal Mapping Methods

Up to the present point this monograph has been self-contained, in the sense that
the reader was not assumed to have prior knowledge of any mathematics beyond
elementary differential equations and vector analysis. However, in order to present
a very general method of solving pipe flow problems, we must bring in some
techniques from the theory of functions of a complex variable. The reader who is
not familiar with this subject, and who has not the time to learn it now, is invited to
rejoin us at the beginning of Chap. 6. The remainder of the book is not contingent
upon the present section.

As indicated in Sect. 5.1, the transformation

v D G

2


�
u � .x21 C x22/

2

	
(5.36)

reduces the problem of flow in a pipe to the Dirichlet problem

r2u D 0 ;

u D .x21 C x22/

2
on Γ : (5.37)

Since u is harmonic, it can be represented as the real part of an analytic function of
z D x1 C ix2; equivalently, it could be represented as the imaginary part of another
analytic function of z. Moreover

x21 C x22 D zNz : (5.38)

Hence the Dirichlet problem (5.37) is equivalent to the selection of a function,
analytic inside Γ, whose real part, or whose imaginary part, assumes the value zNz=2
on Γ.

If the cross section of the pipe is simply-connected, the selection of the analytic
function is effected by conformal mapping of the cross section onto the unit circle.
Let the cross section occupy the region R in the z-plane and let the conformal
transformation

z D m.w/; w D m�1.z/ (5.39)

map the region R onto the unit disc jwj � 1. Let F.z/ be the function whose real
part1 assumes the value zNz=2 on the boundary of R. If we set

1 We could equally well deal with the imaginary part, as is done in Sokolnikoff (1983). Our
treatment, based on the real part, is similar to that carried out in Muskhelishvili (1963).



5.4 Conformal Mapping Methods 153

f .w/ D F Œm.w/� ; (5.40)

then the real part of the f .w/ assumes the value 1
2
m.w/m.w/ on C, the unit circle

in the w-plane.
Since F.z/ is analytic inside Γ , f .w/ is analytic inside C. Hence by Cauchy’s

integral formula we have, for w inside C,

f .w/ D 1

2�i

I

C

f .�/d�

� � w
: (5.41)

By a somewhat less well-known result of the theory of functions (the proof is set
out in Sokolnikoff (1983) and Muskhelishvili (1963)),

f .0/ D 1

2�i

I

C

f .�/d�

� � w
(5.42)

for any w inside C. Combining these results,

f .w/C f .0/ D 1

2�i

I

C

f .�/C f .�/

� � w
d�

D 1

�i

I

C

<f .�/
� � w

d� (5.43)

D 1

2�i

I

C

m.�/m.�/

� � w
d� :

However

f .0/ D <f .0/ � i=f .0/ D 1

2

h
f .0/C f .0/

i
� i=f .0/ : (5.44)

If we set w D 0 in the formula (5.43) and then substitute the resulting expression
for f .0/C f .0/ into the right side of Eq. (5.44), we obtain

f .0/ D 1

4�i

I

C

m.�/m.�/

�
d� � i=f .0/ : (5.45)

Equation (5.43) therefore becomes

f .w/ D 1

2�i

I

C

m.�/m.�/

� � w
d� � 1

4�i

I

C

m.�/m.�/

�
d� C i=f .0/

D 1

4�i

I

C

� C w

�.� � w/
m.�/m.�/d� C i=f .0/ : (5.46)
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Hence the fluid velocity through the pipe is determined. Retracing the various
transformations, we obtain

�
2


G

�
v.x1; x2/C .x21 C x22/

2
D u.x1; x2/

D <F.z/
D <f �m�1.z/

�
(5.47)

D <f .w/

D <
�
1

4�i

I

C

� C w

�.� � w/
m.�/m.�/d�

	
:

If the required conformal mapping can be found and the resulting integrations
carried out, Eq. (5.47) will give a closed-form expression for the fluid velocity at
any point in the pipe.

The conformal method also opens the way for approximation techniques. If the
mapping function can be constructed, the integral in (5.47) can be evaluated by
quadrature. Also it may be possible to find transformations which almost map the
region R conformally onto the unit disc. The subject of approximate conformal
mapping has been extensively studied in the literature of elasticity theory, to which
the interested reader is referred. He will also discover several examples of Dirichlet
problems solved exactly by conformal mapping methods.

Numerical solution of the Dirichlet problem by the conformal mapping method
may or may not be easier than the direct solution of a finite difference approximation
to Laplace’s equation. It depends upon the shape of the region R and upon the
computing equipment one has available.

5.4.1 Multiply-Connected Regions: Flow Between Eccentric
Cylinders

If the cross section of the pipe is not simply-connected, it cannot be mapped
conformally onto the unit disc. Consequently the method derived above breaks
down. Sometimes, however, the cross section can be mapped onto a region simple
enough that the solution to the resulting Dirichlet problem can be recognized. This
procedure makes explicit use of the fact that Laplace’s equation is invariant under
conformal transformation.

By way of example, the bilinear transformation

z D w

1 � aw
; w D z

1C az
; (5.48)
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where a is a real positive constant, can be used to map the region between a pair of
eccentric circles in the z-plane onto a concentric ring in the w-plane. The circle

jwj D � ; (5.49)

where 0 < � < 1=a, transforms to a circle with center on the real axis at

z D a�2

1 � a2�2 ; (5.50)

and with radius

r D �

1 � a2�2
: (5.51)

Consequently the ring

0 < �1 < jwj < �2 < 1=a (5.52)

maps onto the region between two circles of radii

r1 D �1

1 � a2�21
; r2 D �2

1 � a2�22
; (5.53)

with distance

l D a�22

1 � a2�22
� a�21

1� a2�21
(5.54)

between their centers. Conversely, if we wish to map the region between circles of
radii r1 and r2, with distance l between their centers, onto a circular ring, we select
�1; �2, and a by solving equations (5.53) and (5.54):

a D l
q
.r22 � r21 /

2 � 2l2.r21 C r22 /C l4
;

�1 D
q
1C 4r21a

2 � 1

2r1a2
; �2 D

q
1C 4r22a

2 � 1

2r2a2
: (5.55)

As before, we let the fluid velocity in the eccentric circular pipe be given by

v D G

2


�
u � .x21 C x22/

2

	
; (5.56)
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where u is harmonic and assumes the values zNz=2 on the pipe walls. If we employ
the mapping (5.48) and let

w D Wei� (5.57)

then, in the ring �1 < W < �2, u obeys Laplace’s equation in polar coordinates:

@2u

@W 2
C 1

W

@u

@W
C 1

W 2

@2u

@�2
D 0 : (5.58)

Since we seek a single valued solution on a complete ring, the �-dependence of
u.W; �/ must have period 2� . Therefore, noting that

.aCW n C a�W �n/ sin n� C .bCW n C b�W �n/ cosn� (5.59)

solves (5.58) for any integer n and any set of constants a˙; b˙, we set

u D b0 C bl lnW C
1X

nD1
Œ.anW

n C a�W �n/ sin n� C .bnW
n C b�nW �n/ cosn��

(5.60)

and determine the an; a�n; bn; b�n; b0; bl in terms of the Fourier coefficients of the
transformed boundary conditions.

We have

1

2
zNz D 1

2

w

1 � aw

 Nw
1 � a Nw

D 1

2

W 2

.1 � aw/.1 � a Nw/

D W 2

2.1� a2W 2/



1C aw

1 � aw
C a Nw
1 � a Nw

�
(5.61)

D W 2

2.1� a2W 2/
f1C .aw C a2w2 C : : :/C .a Nw C a2 Nw2 C : : :/g

D W 2

.1 � a2W 2/
f1
2

C aW cos � C a2W 2 cos 2� C : : :g

D W 2

.1 � a2W 2/

(
1

2
C

1X

nD1
anW n cosn�

)
:

The series converges absolutely for W < 1=a. Hence the ring (5.52) lies within the
circle of convergence.
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Since u.W; �/, given by (5.60), must assume the values of zNz=2 on W D �1; �2,
the coefficients an; a�n must of necessity vanish, for there are no sine terms
in (5.61). Notice that physically, the flow is symmetric about the line of centers.
The b0s are determined pairwise by a system of algebraic equations:

b0 C bl ln �1 D �21
2

�21
2.1 � a2�21/

;

b0 C bl ln �2 D �22
2

�22

2.1 � a2�22/
;

bn�
2n
1 C b�n D an�

2.nC1/
1

.1 � a2�21/
n D 1; 2; 3; : : : ;

bn�
2n
2 C b�n D an�

2.nC1/
2

.1 � a2�22/
n D 1; 2; 3; : : : : (5.62)

The analogy between pipe flow and torsion is not quite complete in the case of
multiply connected cross sections. In the torsion of a rod bounded by eccentric
circular cylinders, for example, there is sufficient arbitrariness in the boundary
conditions that the logarithm term—essential in the corresponding pipe flow
problem treated above—need not be retained.



Chapter 6
Flow Past a Sphere

Abstract The classical approaches to the problem of flow past a sphere are
presented, along with the more modern technique of matched inner and outer
expansions. For the huge literature on flow past nonspherical obstaces, a list
of references is provided. Stokeslets are introduced and related to Lighthill’s
compelling work on the propulsion of microorganisms.

One of the most deeply studied problems in viscous hydrodynamics deals with the
steady-state flow past a sphere placed in an otherwise uniform stream. Despite the
apparent simplicity of the geometry of this problem, a closed-form exact solution
appears to be permanently out of reach. However the asymptotic solution of the
problem for small Reynolds number has received considerable attention, beginning
with the researches of G.G. Stokes in 1851. Stokes attacked the problem using
the equations of creeping viscous flow. Approximate solutions to viscous flow
problems obtained by using the creeping flow equations are sometimes called
Stokes solutions, and the problem of flow past a sphere is sometimes called the
Stokes problem. Subsequently certain conceptual difficulties were noted in the
theory of creeping flow past obstacles, and modern research on the problem has
centered around these difficulties.

ln this chapter we shall present a more-or-less historical development of the
problem, principally because the modern approaches draw so heavily upon the
classical treatments as developed e.g. in Lamb (1995).

6.1 The Equations of Creeping Viscous Flow

In Sect. 2.2, we pointed out that, in the absence of body forces, the creeping viscous
flow of an incompressible fluid is governed by the linear equations

W.E. Langlois and M.O. Deville, Slow Viscous Flow,
DOI 10.1007/978-3-319-03835-3__6,
© Springer International Publishing Switzerland 2014
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@vi

@xi
D 0 ; (6.1)

@p

@xi
D 
r2vi ; (6.2)

in which Cartesian tensor notation is employed. Differentiating (6.2) and using (6.1)
gives us

r2p D 0 : (6.3)

Thus, for creeping flow, the pressure is harmonic.
The introduction of a stream function is especially valuable in problems of

creeping viscous flow. If v3 is independent of x3, we express the remaining velocity
components in terms of a stream function  according to Eqs. (2.180):

v1 D @ 

@x2
; v2 D � @ 

@x1
: (6.4)

If the fluid motion is referred to cylindrical coordinates, we have, according to
Eqs. (3.81),

vr D 1

r

@ 

@�
; v� D �@ 

@r
: (6.5)

If we set the density of the fluid equal to zero, Eqs. (2.186) and (3.82) each reduce
to the biharmonic equation

r4 D 0 : (6.6)

For Cartesian coordinates the operator r4 denotes .@2=@x21 C @2=@x22/
2; for cylin-

drical coordinates it signifies Œ@2=@r2 C .1=r/@=@rC .1=r2/@2=@�2�2. Note that for
creeping flow the equation for  is not coupled to the equation for v3.

For axially symmetric flow we introduce the Stokes stream function. In cylindri-
cal coordinate we have, according to (3.84),

vz D 1

r

@Ψ

@r
; vr D �@Ψ

@z
: (6.7)

In spherical coordinates we use (3.105):

vr D 1

r2 sin �

@Ψ

@�
; v� D � 1

r sin �

@Ψ

@r
: (6.8)

Setting the fluid density equal to zero in Eq. (3.86), or in (3.107), we obtain

E4Ψ D 0 : (6.9)
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For cylindrical coordinates E4 denotes

�
@2

@r2
C 1

r

@

@r
C @2

@z2

�2
I (6.10)

for spherical coordinates

E4 D
�
@2

@r2
C 1

r2
@2

@�2
� cot �

r2
@

@�

�2
: (6.11)

For creeping flow the motion in the meridional planes is not coupled to the swirl,
which is governed by

E2Ω D 0 : (6.12)

6.2 Creeping Flow Past a Sphere

Let us suppose that a solid sphere of radius a is held fixed in an otherwise uniform
stream of speed U . As illustrated in Fig. 6.1, we refer the motion to a spherical
coordinate system with origin at the center of the sphere. The � D 0 axis is chosen
in the direction of free-stream flow. In view of the axial symmetry, the choice of
� D 0 direction is unimportant.

With Eqs. (6.8), the no-slip condition requires that

@Ψ

@r
D @Ψ

@�
D 0 at r D a. (6.13)

At large r we expect that the motion will approach the free-stream flow. Thus

vr ! U cos �; v� ! U sin � as r ! 1. (6.14)

However the free-stream flow is derivable from the stream function 1
2
Ur2 sin2 �

CC , where C is an arbitrary constant of no importance. Thus, with a tacit
assumption of smooth behavior at infinity, (6.14) can be replaced by the condition

Ψ.r; �/ � Ψ1.r; �/
def:D 1

2
Ur2 sin2 � as r ! 1. (6.15)

Condition (6.15) suggests the trial solution

Ψ.r; �/ D 1

2
Uf .r/ sin2 � ; (6.16)
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v

vr

vq

q

r

Fig. 6.1 Geometry and
coordinate system for flow
past a sphere

which, when substituted into Eq. (6.9), yields

�
d2

dr2
� 2

r2

�2
f .r/ D 0 : (6.17)

We can satisfy this equation by a sum of terms of the form crn, provided that each
n satisfy the algebraic equation

Œ.n � 2/.n � 3/� 2�Œn.n � 1/� 2� D 0 : (6.18)

The roots of (6.18) are n D �1; 1; 2; 4, so that

f .r/ D A

r
C Br C Cr2 C Dr4 : (6.19)

The limiting condition (6.15) requires that

C D 1; D D 0 : (6.20)

The no-slip condition (6.13) then provides simultaneous equations for A and B:

�
1

a2

�
A� B D 2a ;

�
1

a2

�
AC aB D �a2 : (6.21)

Thus A D a3=2; B D �3a=2 and

§.r; �/ D 1

2
U

�
a3

2r
� 3ar

2
C r2

�
sin2 � : (6.22)

The lines of constant Ψ, i,e., the streamlines of the flow, are illustrated in Fig. 6.2.
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Fig. 6.2 Streamlines of the
flow past a fixed sphere

U

Fig. 6.3 Streamlines of the
flow generated by a sphere
translating through a fluid
otherwise at rest

If we subtract off the contribution of the free-stream flow and plot the lines of
constant Ψ�, where

Ψ� D Ψ � Ψ1 D 1

2
U

�
a3

2r
� 3ar

2

�
sin2 � ; (6.23)

we obtain the streamlines which result when a sphere is slowly and steadily
translated through fluid otherwise at rest. These streamlines, illustrated in Fig. 6.3,
seem peculiar, but we must remember that the frame of reference is fixed in the fluid
rather than in the sphere. Hence the motion is unsteady and the streamlines do not
coincide with the particle paths. Figure 6.3 is an instantaneous picture, taken as the
sphere moves across the field of view from right to left. As it moves, it tends to push
some of the fluid just ahead out of its way and to drag with it some of the fluid just
behind.

If we substitute the stream function Ψ.r; �/ into Eqs. (6.8), we obtain the velocity
components for the creeping flow past a sphere:

vr D U

�
1

2

�a
r

3 � 3

2

�a
r


C 1

	
cos � ;

v� D U

�
1

4

�a
r

3 C 3

4

�a
r


� 1

	
sin � : (6.24)

In order to exhibit more clearly the disturbing effect of the sphere, we express this
result in terms of the velocity components in a Cartesian coordinate system with
origin at the center of the sphere and with positive x3-axis in the direction of flow.
Writing (6.24) in covariant or contravariant form and applying the rules of vector
transformation set out in Chap. 3, we find
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v1 D �3
4

Uax1x3
r3

�
1 � a2

r2

�
;

v2 D �3
4

Uax2x3
r3

�
1 � a2

r2

�
; (6.25)

v3 D U

�
1 � 3

4

ax23
r3

�
1 � a2

r2

�
� 1

4

a

r

�
3C a2

r2

�	
:

The pressure could now be determined by substituting the results (6.25) into
Eq. (6.1) and integrating. However the manipulations are somewhat easier if we stay
with spherical coordinates. For incompressible, axially symmetric creeping flow,
Eqs. (3.102) and (3.103) reduce to

1




@p

@r
D
�
@2

@r2
C 2

r

@

@r
C 1

r2
@2

@�2
C cot �

r2
@

@�
� 2

r2

�
vr

� 2

r2

�
@

@�
C cot �

�
v� ; (6.26)
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r
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D
�
@2

@r2
C 2

r

@

@r
C 1

r2
@2

@�2
C cot �

r2
@

@�
� 1

r2 sin2 �

�
v�

C 2

r2
@vr

@�
: (6.27)

With Eqs. (6.24), these become

@p

@r
D
�
3
aU

r3

�
cos � ; (6.28)

@p

@�
D
�
3
aU

2r2

�
sin � ; (6.29)

so that

p D p1 �
�
3
aU

2r2

�
cos �

D p1 � 3
aUx3

2r3
; (6.30)

where p1 denotes the pressure far from the sphere.
lt is of interest to calculate the net force acting on the sphere. First we note that

by symmetry this force acts along the x3-axis. Intuitively we feel that it acts in
the increasing x3-direction, so that the streaming fluid exerts a drag on the sphere.
There are two methods of procedure: we can compute the x3-component of the
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stress vector acting on a generic point of the sphere and integrate over the surface of
the sphere; alternatively we can calculate the total rate at which mechanical energy
is being dissipated in the flow field and equate it to the power required to pull the
sphere at velocity U through a fluid otherwise at rest.

The first of these procedures is most easily carried out in Cartesian coordinates.
Substituting the results (6.25) and (6.30) into the stress-deformation relation (2.125),
we obtain

T33 D �p1 C 3

2


a3Ux3

r5

�
3C x23

a2

�
3 � 5a

2

r2

�	
;

T13 D 3

2


a3Ux1

r5

�
1C 3x23

a2
� 5x23
r2

	
: (6.31)

Consider now a point on the intersection of the sphere with the x2 D 0 plane.
Specifically consider the point with coordinates

x1 D a sin �; x2 D 0; x3 D a cos � : (6.32)

At this point the stress components given by (6.31) become

T33 D �p1 C 3

2


U

a

�
3 � 2 cos2 �

�
cos � ;

T13 D 3

2


U

a

�
1 � 2 cos2 �

�
sin � : (6.33)

Moreover the unit normal to the sphere at this point has components

n1 D sin �; n2 D 0; n3 D cos � : (6.34)

Consequently

T3j nj D T13 sin � C T33 cos �

D �p1 cos � C 3
U

2a
: (6.35)

In view of the axial symmetry, the x3-component of the stress vector has the value
given by (6.35) at each point of the ring

x1 D a sin � cos�; x2 D a sin � sin �; x3 D a cos �; 0 � � � 2� : (6.36)

In addition we note that T3j nj is independent of � , except for the term in p1.
Thus, since p1 cos � gives no contribution when we integrate over the surface of
the sphere, the only part of the stress vector which contributes to the drag is constant
over the sphere. Therefore the net drag D is obtained by multiplying 3
U=2a by
the area of the sphere. We thereby obtain the familiar Stokes’ law
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D D
�
3
U

2a

�
.4�a2/ (6.37)

D 6�
aU :

Although the energy method leads to the same result, it is instructive to carry
out the details. It is easiest to use spherical coordinates. Substituting the velocity
components given by (6.24) into Eqs. (3.98), we find that the physical components
of the rate of deformation tensor for the flow past a sphere are given by

� 1

2
err D e�� D e�� D �3

4

aU

r2

�
1 � a2

r2

�
cos � ;

er� D e�r D �3a
3U

4r4
sin � ; (6.38)

er� D e�r D e�� D e�� D 0 :

Since a rigid-body motion does not contribute, these same results apply when we
consider that the sphere is pulled through fluid otherwise at rest.

For incompressible flow the dissipation term in the energy equation (3.99) is

2

X

˛;ˇDr;�;�
e2˛ˇ : (6.39)

If we call this Φ, Eqs. (6.38) give us

Φ D 9
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�
aU

r2

�2 "
3

�
1 � a2

r2

�2
cos2 � C

�
a2

r2

�2
sin2 �

#
: (6.40)

The net power expended in pulling the sphere through the fluid is the product of
the drag and the speed. Equating this to the integral of the dissipation over the flow
field, we obtain

DU D
•

r�a
Φ dV

D 9
a2U 2

4

Z 1

a

1

r4

Z �

0

"
3

�
1 � a2

r2

�2
cos2 � C

�
a2

r2

�2
sin2 �

#
(6.41)

� Œ2�r2 sin ��d� dr D 6�
aU2 ;

in agreement with (6.37).
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6.3 Oseen’s Criticism

The Stokes solution for flow past a sphere was constructed by assuming that the
inertia term in the Navier-Stokes equation is negligible compared with the viscous
term. We can now check to see if this assumption is justified a posteriori.

As pointed out in Sect. 2.8, we need not concern ourselves with that part of the
inertia term arising from the dynamic head associated with the Stokes flow, for the
pressure could be modified to take care of this. Rather we need only calculate the
contribution arising from v � � and compare it with the viscous term. In general
tensor notation v � � corresponds to the covariant vector �i , where

�i D vj .vj;i � vi;j /

D vj
�
@vj

@xi
� Γ kj ivk � @vi

@xj
C Γ kij vk

�
(6.42)

D vj
�
@vj

@xi
� @vi

@xj

�
:

For Stokes flow, v3 D 0. Consequently Eqs. (3.93) give us

�1 D v�

r

�
@

@r
.rv� /� @vr

@�

	
;

�2 D vr

�
@vr

@�
� @

@r
.rv� /

	
; (6.43)

�3 D 0 :

With vr and v� given by Eqs. (6.24), the corresponding physical components are
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�� D 0 :

Hence the magnitude � of the vector �i is given by

� D
q
�2r C �2� C �2� (6.45)
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Let �i denote the viscous term in the covariant Navier-Stokes equation (3.52).
Thus

�i D �gjkvi;jk : (6.46)

The corresponding physical components can be obtained by inspection from
Eqs. (3.102) through (3.104). With the velocity components given by Eqs. (6.24),
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D 3aU

2r3
sin � ;

�� D 0 :

The magnitude � of the vector �i is then given by

� D 3�aU

2r3

p
sin2 � C 4 cos2 � : (6.48)

The relative importance of inertia and viscosity is measured by the ratio of � to � .
With Eqs. (6.45) and (6.48), we have

�

�
D Re

� r
a

� 1


sin �

�
s
.1C a=4r C a2=4r2/2 sin2 � C .1 � a=2r � a2=2r2/2 cos2 �

sin2 � C 4 cos2 �
; (6.49)

where Re is the Reynolds number based on the sphere radius as length scale,

Re D aU

�
: (6.50)

Inertia is negligible compared with viscosity if �=� is small compared with unity.
From Eq. (6.49) we see that this is indeed the case in the neighborhood of the sphere,
i.e., where r is not much larger than a, provided only that Re is small compared
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with unity.1 Far from the sphere, however, conditions are somewhat distressing.
Equation (6.49) reveals that

�

�
� Re r
a
p
1C 4 cot2 �

as r ! 1 :

Thus for any preassigned finite value of Re however small, and for any fixed
value of � other than 0 or � , the assumptions underlying the Stokes solution
fail to hold at points far enough from the sphere so that r is comparable with
.a=Re/p1C 4 cot2 � .

The analysis presented so far in this section represents the now-classical criticism
of the Stokes solution by Carl Wilhelm Oseen (1879–1944), and it raises an
even more troublesome point. In constructing the Stokes solution, one applies
the boundary condition that the velocity field approaches uniform streaming as r
approaches infinity. However, on its way out to infinity via any path not asymptotic
to the axis of symmetry, r passes into a region where the neglect of inertia is not
valid. Consequently if the equations of creeping flow are applied only where they
are valid, the boundary condition at infinity never enters the picture and the problem
is underdetermined, except for the degenerate and idealized case of a completely
massless fluid. However it is possible to salvage the validity of the Stokes solution
in the region close to the sphere for a fluid of finite density. From Eqs. (6.15)
and (6.23), we observe that

Ψ1 � Ψ

Ψ1
� 3a

2r
as r ! 1 : (6.51)

Thus for any fixed value of the Reynolds number the Stokes flow approaches
the uniform stream at the same rate as the viscous term ceases to be dominant.
For sufficiently small Reynolds number, therefore, the Stokes flow approaches
arbitrarily close to the uniform stream before the underlying assumptions break
down. In a sense, then, the boundary condition can be moved in from infinity to
a location where it can be validly applied to the equations of creeping flow. Hence
for sufficiently low Reynolds number the Stokes solution is self-consistent in its
prediction of the flow field in the neighborhood of the sphere; in particular, the
expression (6.37) for the drag is reliable.2

Things are not always so fortunate. Attempts to find a Stokes solution for flow
past a circular cylinder, with uniform flow at infinity, lead to frustration: the best one

1The component �r vanishes identically on the � D �=2 plane, where �r remains finite. Hence it
might be objected that the inertia term in Eq. (3.102) cannot be neglected in the neighborhood of
this plane, no matter how small the Reynolds number. However the vanishing of �r is merely an
accident resulting from the selection of coordinate system. It would not, in general, be observed
in a coordinate system with origin, say, off the axis of symmetry. The Navier-Stokes equation is a
vector equation and it is the relative vector magnitudes of �i and �i that matter.
2Experimental evidence cited by Schlichting (1960), p. 16, indicates that (6.37) is accurate within
the limits of experimental error for Re < 0:3.



170 6 Flow Past a Sphere

can do is to construct a solution with a logarithmic singularity at infinity, obviously
an unsatisfactory result. Even for the flow past a sphere one encounters difficulties.
Thirty-eight years after Stokes published his result, Alfred North Whitehead (1879–
1944) attempted to improve upon it by obtaining higher-order approximations to
the flow when the Reynolds number is not negligibly small. His method was the
obvious one of using the Stokes result to calculate the inertia term in the Navier-
Stokes equation and considering it to be the driving force of a perturbation flow field.
Unfortunately his result behaved at infinity in a way which is incompatible with the
uniform stream condition. This difficulty seems to pervade all problems of uniform
streaming past finite bodies, and is sometimes called “Whitehead’s paradox”. The
paradox was, of course, resolved by Oseen’s criticism, which came 21 years later.

Oseen improved upon the Stokes solution by linearizing the Navier-Stokes
equation in such a way as to account for inertia where it is important, but to neglect it
in the region close to the sphere. We now turn our attention to his method of attack.

Let us examine the nonlinear inertia term in the covariant Navier-Stokes equa-
tion (3.52). If we denote the contravariant components of the uniform velocity far
from the sphere by U i , we may write

vj vi;j D U jvi;j � .U j � vj /vi;j : (6.52)

Far from the sphere, U j and vj are practically the same. Hence we approximate

vj vi;j � U jvi;j : (6.53)

Close to the sphere, (6.53) does not apply. For small Reynolds number, however,
a posteriori analysis of the Stokes solution revealed that, close to the sphere, the
inertia term was, in fact, small compared with the viscous term. It seems not
unreasonable to hope, subject to a posteriori confirmation, that near the sphere the
inertia term modified according to Eq. (6.53) will also be negligible compared with
the viscous term. If vj vi;j and U j vi;j are both negligibly small, the presence of
either one in the equation presumably does no harm.

For steady motion in the absence of body forces the Oseen technique thus
involves the replacement of the covariant Navier-Stokes equation (3.52) by the
approximate equation

�U j vi;j D � @p

@xi
C 
gjkvi;jk (6.54)

on the grounds that: (1) far from the sphere, the left side approximates �vj vi;j
sufficiently well; (2) close to the sphere, for small Reynolds number, �U j vi;j and
�vj vi;j are both negligibly small, so that it doesn’t matter which is used.

For the spherical coordinate system used in Sect. 6.2,

U 1 D U cos �; U 2 D �U
r

sin �; U 3 D 0 : (6.55)
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By substituting these components into (6.54) we obtain, as approximations
to (3.102) and (3.103),

� U

�
@vr

@r
cos � C

�
v� � @vr

@�

�
sin �

r

	

D �@p
@r

C 


�
r2vr � 2vr

r2
� 2

r2
@v�

@�
� 2v� cot �

r2

�
; (6.56)

� U

�
@v�

@r
cos � �

�
vr C @v�

@�

�
sin �

r

	

D �1
r

@p

@�
C 


�
r2v� C 2

r2
@vr

@�
� v�

r2 sin2 �

�
; (6.57)

where r2 is the axisymmetric Laplacian, i.e.,

r2 D @2

@r2
C 2

r

@

@r
C 1

r2
@2

@�2
C cot �

r2
@

@�
: (6.58)

If we express vr and v� in terms of a Stokes stream function, according to (6.8),
and eliminate the pressure from (6.56) and (6.57) by cross-differentiation, we obtain
after a manipulation

E4Ψ D
�Re
a

��
cos �

@

@r
� sin �

r

@

@�

�
E2Ψ : (6.59)

Equivalently we may write

�
aE2 � Re @

@x3

�
E2Ψ D 0 ; (6.60)

where, as before,

x3 D r cos � : (6.61)

The construction of an exact solution of (6.59), subject to the boundary condi-
tions (6.13) and (6.15), is a matter of some difficulty. Fortunately, however, it is
easy to exhibit a solution which solves the problem to a degree of approximation no
worse than that used in setting it up.3 This solution, which is the one given by Oseen
himself, takes the form

3 The exact solution to the problem was given by Goldstein (1929). Investigations of this sort
are motivated by the idea that Oseen’s equation and the Navier-Stokes equation are qualitatively
similar, so that solutions of the former might be expected to yield qualitative information about
solutions of the latter for all Reynolds numbers.
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U

wake

Fig. 6.4 Streamlines of the
Oseen solution in absence of
the uniform flow

Ψ D 1

2
a2U

��
a

2r
C r2

a2

�
sin2 � � 3

Re .1C cos �/.1 � e�.Re r=2a/.1�cos �//

	
:

(6.62)

We can verify by direct substitution that this function satisfies the differential
equation (6.59); that it satisfies (6.15), the boundary condition at infinity, is obvious.
The remaining boundary conditions (6.13) are not satisfied, but expanding the
exponential term in (6.62) as a Maclaurin series in Re r=a, yields

Ψ D 1

2
a2U

�
a

2r
� 3r

2a
C r2

a2

�
sin2 � CO

�Re r
a

�
: (6.63)

Thus for small Reynolds number the Oseen solution merges with the Stokes
solution (6.22) in the region where the Stokes solution is valid. Consequently the
stream function given by (6.62) satisfies the no-slip condition on the sphere, with
neglect only of terms too small to be discussed within the framework of the Oseen
approximation.

Since the Stokes and Oseen results coincide in the neighborhood of the sphere,
both predict the result (6.37) for the net drag.

Far from the sphere, however, the picture of flow afforded by the Oseen solution
is quite different from that given by Stokes’ method. If we subtract off the uniform
streaming and plot streamlines, we obtain the configuration shown in Fig. 6.4. The
main feature which distinguishes this flow pattern from the Stokes pattern shown in
Fig. 6.3 is the laminar wake behind the sphere.

Before passing on to modern refinements of the Stokes problem, we note that the
Oseen equation (6.54) can be formally derived by considering the flow field to be a
perturbation of the uniform stream. Thus, if we set

vi D Ui C "ui ;

vi D U i C "ui ; (6.64)
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where " is a small parameter whose square is negligible, we obtain

vj vi;j D U jUi;j C ".U jui;j C ujUi;j /C "2ujui;j

� U j vi;j C "ujUi;j : (6.65)

Since Ui;j vanishes,4 we recover (6.53). Conceptually, however, this view-point
leaves something to be desired, for it requires the perturbation velocity ui to become
large of order "�1 on the surface of the sphere. It is better to take the view
that (6.53) approximates the inertia term where this term matters, and introduces
an unimportant error in the neighborhood of the sphere.

6.4 Matching Techniques

It is not difficult to verify from Eq. (6.62) that the Oseen solution of Stokes problem
is self-consistent at sufficiently low Reynolds number. Far from the sphere, (6.53)
is a reasonable approximation; close to the sphere, the error doesn’t matter. In
principle, then, it should be possible to obtain higher approximations to the flow
by Whitehead’s iterative procedure, using Oseen’s solution, rather than Stokes’
solution, as a first approximation. In practice, however, the construction of Oseen-
type solutions is a wearing task. Moreover the scheme entails a built-in drawback,
already evident in the Oseen solution (6.62): the dependence of the solution
upon the Reynolds number is somewhat obscured by the functional form. This is
understandable, for the Oseen method seeks out a uniformly valid approximation
which describes the flow both near the sphere, where inertia is unimportant, and
far from the sphere, where inertia dominates. To the degree of approximation
considered so far, relevant information about the flow can be extracted from
Eq. (6.62), without inordinate difficulty, by straightforward asymptotic methods. In
this manner we found, for example, that the Stokes and Oseen solutions predict the
same net drag. When higher order approximations are undertaken, however, it is of
obvious advantage to obtain the various flow quantities expressed as power series,
or as simple extensions of power series, in the Reynolds number.

In order to obtain expressions of this sort, we develop and consider simulta-
neously two expansions—an inner expansion valid close to the sphere, an outer
expansion valid far away. These are termed “Stokes” and “Oseen” expansions,
respectively, since their leading terms are related to the corresponding approximate
solutions. The Stokes expansion is constrained to obey the no-slip condition at the
sphere; the Oseen expansion is generated so as to approach uniform streaming at
infinity. It is almost self-evident that these boundary conditions are not enough. To
render the problem determinate, it is necessary to use the fact that the Stokes and

4This is most easily seen by observing that it vanishes in a Cartesian system.
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Oseen expansions are different forms of the same function; this leads to a matching
of the expansions which makes it possible to derive alternately the successive terms
in each expansion.

The Stokes expansion is of the sort envisaged by Whitehead: a perturbation
expansion in the Reynolds number for fixed values of the spatial coordinates. To
bring the Reynolds number explicitly into the analysis, we normalize the stream
function and the spatial variables according to

Ψ D a2UΨ.s/ ;

r D aR ; (6.66)

ˇ D cos � :

The last of these relationships is introduced not for conceptual purposes but to
simplify the forthcoming algebra. The quantities Ψ.s/; R; ˇ are sometimes called
the Stokes variables.

It is quickly verified, beginning with Eq. (3.107) with the inappropriate terms
deleted, that the dimensionless stream function is governed by the equation

1

R2
@.Ψ.s/;D2Ψ.s//

@.R; ˇ/
C 2D2Ψ.s/

R2

�
ˇ

1� ˇ2
@Ψ.s/

@R
C 1

R

@Ψ.s/

@̌

�
D 1

ReD
4Ψ.s/ ;

(6.67)
whereD2 is the dimensionless operator corresponding to E2, i.e.,

D2 D @2

@R2
C 1 � ˇ2

R2
@2

@̌ 2
: (6.68)

We assume an expansion of the form

Ψ.s/ D  0.R; ˇ/C f1.Re/ 1.R; ˇ/C f2.Re/ 2.R; ˇ/C : : : ; (6.69)

where

f1.Re/ ! 0;
fnC1.Re/
fn.Re/ ! 0 as Re ! 0 : (6.70)

The expansion (6.69) should be regarded as representing the exact solution
Ψ.s/.R; ˇIRe/ for small values of Re at a fixed point in space. This involves
the rather plausible assumption that there is no singular dependence on Re in the
finite part of the flow field, such as gives rise to Whitehead’s paradox by appearing
at infinity.

The expansion (6.69) is required to satisfy the differential equation (6.67) and
the no-slip condition on the sphere. Since the expansion is invalid at large values of
R, the uniform stream condition at infinity cannot be applied; it is replaced by the
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requirement that the expansion be perfectly matched to an expansion which is valid
in the outer region.

As Oseen pointed out, Whitehead’s successive approximation scheme based
on the Stokes solution breaks down because inertia and viscous effects become
comparable at large values of R. The outer expansion should therefore be sought
in terms of variables normalized in such a way that the Reynolds number does not
appear in the governing equation, thereby reflecting explicitly the fact that all terms
in the equation are of comparable magnitude. This can be done in many ways, but
is simplest to use the Oseen variables

� D ReR D Re r
a

D
�
U

�

�
r ;

Ψ.o/ D Re2Ψ.s/ D Re2Ψ
a2U

D
�
U

�2

�
Ψ ; (6.71)

in terms of which the governing equation (6.67) becomes

1

�2
@.Ψ.o/; L2Ψ.o//

@.�; ˇ/
C 2L2Ψ.o/

�2

�
ˇ

1 � ˇ2
@Ψ.o/

@�
C 1

�

@Ψ.o/

@̌

�
D L4Ψ.o/ ; (6.72)

where

L2 D @2

@�2
C 1 � ˇ2

�2
@2

@̌ 2
: (6.73)

The Oseen expansion is assumed to take the form

Ψ.o/ D Ψ0.�; ˇ/C F1.Re/Ψ1.�; ˇ/C F2.Re/Ψ2.�; ˇ/C : : : ; (6.74)

where

F1.Re/ ! 0;
FnC1.Re/
Fn.Re/ ! 0 as Re ! 0 : (6.75)

That the leading term in (6.74) should be independent of Re is implicit in the choice
of the Oseen variables (6.71).

The expansion (6.74) is required to satisfy the differential equation (6.72) and
the condition of uniform streaming at infinity. The no-slip condition on the sphere,
which in the Oseen coordinates has shrunk to an infinitesimal sphere of radius Re,
is replaced by the condition that the Oseen expansion (6.74) should be matched
to the Stokes expansion (6.69) at small values of �. This procedure entails the
assumption that the flow exhibits no singular dependence on � and ˇ as Re ! 0,
except possibly at � D 0.

The Oseen expansion relates to the limiting process of Re approaching zero
with � and ˇ fixed. For fixed values of U and �, the first of Eqs. (6.71) reveals that
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� fixed corresponds to r fixed. Thus the limit process corresponds to considering
the flow at a given point in space as the radius of the sphere shrinks to zero. As
Re ! 0, the Oseen coordinate � becomes enormously stretched in comparison to
the Stokes coordinateR. The matching procedure is therefore carried out by relating
the behavior at zero in the stretched coordinate to the behavior at infinity in the
unstretched coordinate. We require that the form of the Oseen expansion as � ! 0

should be the same as the form of the Stokes expansion as R ! 1.
If we make the fairly safe assumption that the disturbance caused by the sphere

vanishes with its radius, we arrive at the conclusion that the leading term in the
Oseen expansion corresponds to the uniform stream. Thus

Ψ0 D 1

2
�2.1 � ˇ2/ : (6.76)

We suspect that the leading term in the Stokes expansion is the classical Stokes
solution itself, i.e., that

 0 D 1

2

�
1

2R
� 3R

2
CR2

�
.1 � ˇ2/ ; (6.77)

and this is easily verified. That (6.77) satisfies the no-slip condition at R D 1 is
immediately evident; that it satisfies the differential equation (6.67), with neglect
only of terms of order Re, follows from the observation that D4 0 D 0. It remains
only to show that (6.77) merges with (6.76) as R approaches infinity. To check this
final point, we need only observe that

 0 � 1

2
R2.1 � ˇ2/ as R ! 1 : (6.78)

The second of Eqs. (6.71) stipulates that Ψ.0/ and Re2Ψ.s/ represent the same
function. Since � D ReR, comparison of (6.76) and (6.78) reveals, as expected,

 0 � Re�2Ψ0 as R ! 1 : (6.79)

The second term in the outer expansion is closely related to the classical Oseen
solution (6.62). If we express (6.62) in terms of the Oseen variables (6.71), we obtain

Ψ
.o/
classical D 1

2
�2.1 � ˇ2/C 1

4
Re3��1.1 � ˇ2/ � 3

2
Re.1C ˇ/.1 � e� 1

2 �.1�ˇ// :
(6.80)

The first term on the right side has already appeared as Ψ0; the second term,
involving as it does Re3, should not appear at this stage of the expansion. Thus,
the evidence is strong that
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F1.Re/ D Re; Ψ1.�; ˇ/ D �3
2
.1C ˇ/.1 � e� 1

2 �.1�ˇ// : (6.81)

With Ψ1.�; ˇ/ so defined, it is easily verified that Ψ0 C ReΨ1 satisfies the uniform
stream condition at infinity and obeys the differential equation (6.72), with neglect
only of terms of order Re2. Furthermore for small values of � we have

Ψ0 C ReΨ1 D 1

2
�2.1 � ˇ2/� 3

4
ReŒ�.1 � ˇ2/CO.�2/� : (6.82)

Expressing this result in terms of the Stokes variables gives

Re�2.Ψ0 C ReΨ1/ D 1

2
.R2 � 3

2
R/.1� ˇ2/CO.Re/ : (6.83)

The term of order Re0 in this equation should be asymptotic to  0 as R ! 1.
Examination of Eq. (6.77) reveals that this is the case. In fact not only do the
R2-terms have the same coefficient, but so do the R-terms; this coincidence is
related to the fact that the assumed form of the classical Oseen solution reduces
to the classical Stokes solution in the neighborhood of the sphere.

We are now in a position to proceed beyond the classical results by obtaining
the second term in the Stokes expansion. With  0.R; ˇ/ given by Eq. (6.77),
substitution of the expansion (6.69) into the differential equation (6.67) yields

f1.Re/D4 1 D 9

4
Reˇ.ˇ2 � 1/

�
2

R2
� 3

R3
C 1

R5

�
COŒRef1.Re/� : (6.84)

The form of this equation tentatively suggests that we set

f1.Re/ D Re ; (6.85)

but we must allow for the possibility that the constants which arise in the integration
of (6.84) may be functions of Re. This possibility will not arise in the present
calculation, but it does enter when higher order approximations are considered.

With (6.84) and (6.85),  1 is required to satisfy the differential equation

D4 1 D 9

4
ˇ.ˇ2 � 1/

�
2

R2
� 3

R3
C 1

R5

�
; (6.86)

subject to appropriate boundary conditions. If we measure the stream function from
the axis of symmetry, then

 1 D 0 for ˇ D ˙1 : (6.87)
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On the sphere the no-slip condition applies. Thus

@ 1

@R
D @ 1

@̌
D 0 on R D 1 : (6.88)

The remaining condition on  1 is the matching condition. As R approaches infinity,
 0 C Re 1 should be asymptotic to that part of the Oseen solution obtained so
far, evaluated at small values of �. Since terms in Re0 have already been matched,
we must look one term beyond those explicitly set down in Eqs. (6.82) and (6.83).
With (6.76) and (6.81), we have

Ψ0CReΨ1 D 1

2
�2.1�ˇ2/�3

4
ReŒ�.1�ˇ2/�1

4
�2.1�ˇ2/.1�ˇ/CO.�3/� : (6.89)

Passing to the Stokes variables gives us

Re�2.Ψ0CReΨ1/ D 1

2
.R2� 3

2
R/.1�ˇ2/C 3

16
ReR2.1�ˇ2/.1�ˇ/CO.Re2/ :

(6.90)
The matching condition on  1 thus becomes

 1.R; ˇ/ � 3

16
R2.1 � ˇ2/.1 � ˇ/ as R ! 1 : (6.91)

A particular integral of (6.86) which satisfies all boundary conditions except the
matching condition (6.91) is

3

16
ˇ.ˇ2 � 1/

�
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2R2
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2R
C 1

2
� 3R

2
CR2

�
: (6.92)

We must add to this a complementary function  c which satisfies

D4 c D 0 ;

 c D 0 for ˇ D ˙1 ;
@ c

@R
D @ c

@̌
D 0 on R D 1 ;

 c � 3

16
R2.1 � ˇ2/ as R ! 1 : (6.93)

If the factor 3
16

in the last of these requirements were replaced by 1
2
, we would have

the classical Stokes problem. Thus, there is no difficulty whatsoever in selecting the
appropriate complementary function: we have

 c D 3

8
 0 : (6.94)
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Adding this result to the particular integral (6.92) gives us

 1 D 3

16

�
1

2R
� 3R

2
CR2

�
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� 3

16

�
1

2R2
� 1

2R
C 1
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� 3R
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CR2

�
.1 � ˇ2/ˇ : (6.95)

Because of a fortuitous combination of circumstances, it is quite easy to calculate
the contribution of  1 to the net drag on the sphere. First we note that the second
term on the right side of (6.95) is an odd function of ˇ. Consequently the flow field
described by this term is a mirror image of itself with respect to the equatorial plane
of the sphere. This part of the flow generates a drag-force in one hemisphere, a push-
force in the other; the two precisely balance. Hence the only contribution of  1 to
the net drag arises from the first term on the right side of (6.95). But as we have
already noted, this term is merely the classical Stokes result, multiplied by 3

8
. Since

the net drag is in proportion, we have, to the present degree of approximation,

D D 6�
aU.1C 3

8
Re/ : (6.96)

The result (6.96) is also obtained if the Oseen equation (6.54), rather than the
Navier-Stokes equation, is used as the starting point. That the correct result is thus
obtained is often considered a remarkable stroke of luck, for the Oseen formulation
neglects inertia in the neighborhood of the sphere,5 and the appearance of the
Reynolds number certainly indicates that the inertia contributes to (6.96). This
“inverse paradox” is cleared away if we retrace the derivation of (6.96). The term
in (6.95) which is odd in ˇ is the particular integral (6.92), and hence represents
the contribution of inertia in the neighborhood of the sphere, i.e., it results from the
right side of (6.86). As we pointed out, this term does not contribute to the net drag.
The term which does contribute is the complimentary function  c . This term was
calculated from the differential equation of creeping flow and was influenced by
inertia only through the matching condition. Thus inertia enters the result (6.96) in
a manner compatible with the assumptions used in deriving Oseen’s equations.

The back-and-forth procedure we have been using can, in principle, be continued
indefinitely. However we have now reached the point beyond which further calcula-
tions can be set out only through the extensive sacrifice of either brevity or lucidity.
It does seem worthwhile, though, to quote the next order of approximation for the
drag:

D D 6�
aU Œ1C 3

8
Re C 9

40
Re2 lnRe CO.Re2/� : (6.97)

5In fact it does worse than neglect the inertia in this region: it misrepresents it. However the
misrepresentation is also negligible.
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The logarithmic term arises in the evaluation of constants of integration (note the
reservations we expressed following Eq. (6.85)). For a quantitative outline of the
analysis leading to (6.97), we refer the reader to Proudman and Pearson (1957).
The logarithmic term does not appear if the Oseen equation is used instead of the
Navier-Stokes equation. Goldstein’s result (1960, p. 144) gives

D D 6�
aU Œ1C 3

8
Re � 19

320
Re2 CO.Re3/� :

As Goldstein himself pointed out, this approach gives valid results only as far as the
term of order Re.

A more accurate relation for the drag is proposed by Ockendon and Ockendon
(1995):

D D 6�
aU Œ1C 3

8
Re C 9

40
Re2 lnRe C 1

40
.9	 C 15 ln 2 � 323

40
/Re2 C : : :� ;

where 	 D 0:5772156649 is Euler’s constant. After Chester et al. (1969), the next
term in the drag is

27

80
Re3 lnRe:

6.5 Flow Past Non-spherical Obstacles

Naturally enough, the researches of Stokes and Oseen on the flow past a sphere
stimulated other work on the flow past obstacles. Research along this line has been
given a more recent impetus with the emergence, in the late 1950s, of the matching
technique described in Sect. 6.4. Unfortunately, when geometries less symmetric
than the sphere are considered, the analysis becomes exceedingly complicated. To
get involved with calculations of this sort would lead us far afield. Instead, we refer
the interested reader to Rubinow and Keller (1961), Hasimoto (1956), Payne and
Pell (1960), Pell and Payne (1960), Chester (1962), Brenner (1962), Carrier (1953),
and Hill and Power (1956).

6.6 Stokeslets

In the theory of suspensions, it’s useful to simplify the results for the steady motion
of a sphere through a liquid at rest by letting the sphere become infinitesimal. See,
for example, Brenner et al. (1990). If the sphere moves with velocity Ui , (6.37)
indicates that the force it exerts on the fluid will be

Fi D �6�
aUi : (6.98)
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With an appropriate translation and rotation of coordinates, (6.25) becomes
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; (6.99)

where r D .xkxk/
1=2. Far from the sphere, the second term in brackets becomes

insignificant compared with the first. If we disregard it, what remains is itself a
solution to the Stokes equations, with a singularity at the origin.

This solution

vSi D
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C xixj Fj
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/

	
(6.100)

was termed a Stokeslet by Hancock (1953). It can be interpreted as the flow
resulting from a delta-function point force of magnitude F S acting at the origin:

� @pS

@xi
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@2vSi
@xj @xj

D �F S
i ı.xk/ ; (6.101)

where ı.x/ is the Dirac function. The velocity (6.100) is induced by this forcing and
may take the form

vSi D Gij Fj
8
�

; (6.102)

where the Oseen-Burgers tensor

Gij D ıij

r
C xixj

r3
; (6.103)

is in fact the Green’s function for the Stokes equation. As such, since the Stokes
equations are linear, it is the basis of boundary integral and singularity methods
for building up solutions to boundary value problems. A detailed description, along
with a copious bibliography, is provided in the book by Shankar (2007). Another
source is provided by Guazzelli and Morris (2011).

6.6.1 Propulsion of Microorganisms

In the case of large animals, swimming and flying are accomplished almost entirely
through inertial effects. In complete contrast, at the micrometer scale viscosity is the
whole story. The whipping of the flagellum on a spermatozoon might be reminiscent
of the flapping of a fish’s tail, but there is no dynamical analogy, except that some
kind of hydrodynamics is involved in both cases. The propulsion might best be
described as swimming for the fish, squirming for the spermatozoon.
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Many mechanisms exist for the propulsion of microorganisms by viscous effects.
These include, but are not limited to: pseudopod extension achieved by internal
cytoplasmic streaming; cilia beating, random in some cases, organized in others;
flagellar motion, the most extensively studied case, sometimes involving a single
flagellum, sometimes more.

For flagellar motion there are two important subcases. Sometimes, often in the
case of bacteria, the flagellum essentially rotates as a rigid body, propelled by a
biochemical motor at its base. In the case of eukaryotes (organisms whose cells
incorporate membrane-bound organelles), waves propagate along the flagellum.

Early studies of motion propelled by flagella, for example Gray and Hancock
(1955), have been termed flagellar dynamics. They achieved a certain degree of
success, despite the use of local resistance coefficients, based on the oversimplified
assumption that the fluid resists any local movement with a local force proportional
to the velocity.

In a now classic paper, Lighthill (1976), Michael James Lighthill (1924–1998)
initiated a true flagellar hydrodynamics. The dynamical problem involves simulta-
neous treatment of a pair of conditions:

1. With the insignificance of inertial effects, the translational motion of the microor-
ganism, combined with whatever undulatory motions it might make, will gener-
ate zero resultant force on the body.

2. A system of forces with zero resultant might still have a net moment, making
it necessary to determine both translation and rotation vectors for the organism
such that the forces between the body and the fluid produce a system with zero
resultant and zero moment.

Lighthill’s treatment is far too detailed and extensive to be replicated here, but it
hinges on a simple (a posteriori!) idea embodied in his “Theorem 6.1”:

Theorem 6.1. If f .s/ is the force per unit length with which a flagellum of radius a
acts on a fluid, where the variable s signifies length measured along the centerline
of the flagellum from some given cross section, then the resulting fluid motion can be
represented by a distribution of Stokeslets along the centerline, of strength f .s/ per
unit length, accompanied by dipoles of strength �a2 fn.s/=.4
/ per unit length;
here fn.s/ is the vector normal to the centerline obtained by resolving f .s/ onto
planes normal to the centerline.

The strengths of the Stokelets and dipoles are obtained by solving an integral
equation representing the no-slip condition on the surface of the flagellum.

Subsequent developments can be found in a paper published by Lighthill (1996)
shortly before his death6 and in a subsequent paper by Purcell (1997).

6Lighthill was an accomplished open-water swimmer, believed to be the first to complete the 14 km
swim around Sark. He first did it at age 49, and repeated it five times subsequently. He had nearly
completed his seventh attempt, at age 74, when he incurred a fatal rupture of his mitral valve.



Chapter 7
Plane Flow

Abstract Complex variable methods for treating plane flow are discussed, includ-
ing a treatment of the Stokes paradox. Approximation methods for the flow in a
channel of varying width are presented. Hele-Shaw flow is treated in detail.

The neglect of inertia in continuum mechanics is sometimes criticized with
surprising contentiousness. From one point of view the objection is understandable:
we have already seen that the promiscuous neglect of inertia in the Stokes problem
leads to inconsistent results. For some reason, however, other examples of this
sort of thing are treated more tolerantly. It is often postulated that the material
under consideration is incompressible—leading to the conclusion that disturbances
propagate with infinite speed; one sometimes defines an “inviscid fluid”—which
cannot, in general, satisfy the no-slip condition; it is not uncommon to assume
that the flow field is isothermal—the heat generated by viscous dissipation being
whisked off to hell by a Maxwellian demon. Yet postulates that the fluid is
incompressible, or inviscid, or isothermal are seldom greeted with apoplectic
revulsion. Rightly so: correctly handled, these postulates can lead to accurate and
useful approximations of the way real materials behave under properly delineated
circumstances, and do so through the development of analytical methods quite
interesting in themselves. Moreover, when a postulate leads unexpectedly to
anomalous results, a study of the paradox often deepens our understanding of
the mathematical structure of fluid dynamics and of the underlying physics.

In like manner, to postulate that the fluid is massless does not automatically brand
one as a hydrodynamical sophist. From an abstract standpoint, it is of no concern
whether the hypothetical material exists in nature—the analysis provides its own
justification. More pragmatically, we suspect that under some circumstances the
flow of a real fluid can be approximated by the flow of a massless fluid. Needless
to say, neither viewpoint justifies the use of creeping flow theory when inertia is
obviously important, or when paradoxes appear; bad analysis remains bad analysis.

In the present chapter we shall study the general subject of creeping flow in the
plane. This subject includes the well-known Stokes paradox—the non-existence of
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a Stokes solution for flow past a circular cylinder with uniform streaming at infinity.
Therefore much of our treatment will be directed toward the task of deciding when
creeping flow theory is more than a mathematical exercise.

The first four sections of this chapter deal with the use of complex variable
methods in creeping flow. The results of these sections are not used elsewhere in
the book; hence readers with no background in complex variable theory can pick up
the thread at Sect. 7.5.

7.1 Description of Plane Creeping Flow in Terms
of Complex Potentials

In Sect. 6.1, we recalled that if the velocity component v3 is independent of x3, then
the velocity components v1 and v2 can be expressed in terms of a stream function.
To reduce the number of subscripts, we set

x1 D x; x2 D y; v1 D u; v2 D v : (7.1)

We then have

u D @ 

@y
; v D �@ 

@x
; (7.2)

where, for creeping flow, the stream function  satisfies the biharmonic equation

r4 D 0 : (7.3)

In Eq. (7.3) and throughout this chapter, r2 denotes the two-dimensional Laplacian,
i.e.,

r2 D @2

@x2
C @2

@y2
: (7.4)

An immediate consequence of (7.3) is that the function (r2 ) is harmonic.
However

r2 D @u

@y
� @v

@x

D �� ; (7.5)

where � denotes the component of vorticity in the x3 direction, i.e., the component
normal to the plane of flow. Since r2 is harmonic, so is �.

We also saw in Sect. 6.1, that for creeping flow the pressure obeys Laplace’s
equation in three dimensions. When v3 is independent of x3, Eq. (6.2) reveals that
@2p=@x23 D 0. Hence,
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r2p D 0 ; (7.6)

where, as indicated above, r2 is the two-dimensional Laplacian.
From (7.5) we observe that

@�

@x
D @2v

@x2
� @2u

@x@y
: (7.7)

However, since @v3=@x3 D 0, the continuity equation (6.1) gives us

� @2u

@x@y
D @2v

@y2
; (7.8)

so that

@�

@x
D r2v : (7.9)

In a similar manner we find

@�

@y
D �r2u : (7.10)

Introducing (6.2) into (7.9) and (7.10), we find that � and .p=
/ satisfy the Cauchy-
Riemann equations

@�

@x
D @.p=
/

@y
;

@�

@y
D �@.p=
/

@x
: (7.11)

Thus, � and p=
 are conjugate harmonic functions, so that they represent the real
and imaginary parts of an analytic function of z D x C iy.

Let 4�.z/ D 4g.x; y/ C 4i Qg.x; y/ be one of the infinitely many analytic
functions whose derivative is � C ip=
. Further let

G.x; y/ D xg.x; y/C y Qg.x; y/C  .x; y/ : (7.12)

We then have

r2G D xr2g C yr2 Qg C 2

�
@g

@x
C @ Qg
@y

�
C r2 

D 4
@g

@x
C r2 D 4<�0.z/C r2 D � C r2 D 0 ; (7.13)

so that G is harmonic. If we let �.z/ be the analytic function whose real part is
�G.x; y/ Eq. (7.12) gives us

 .x; y/ D �<Œ�.z/� � Œxg.x; y/C y Qg.x; y/� : (7.14)
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However xg C y Qg D <ŒNz�.z/�, so that

 .x; y/ D �<ŒNz�.z/C �.z/� : (7.15)

Thus we have  .x; y/ expressed in terms of a pair of complex potentials �.z/ and
�.z/. Moreover this followed entirely from the fact that  is biharmonic; that r2 

and its harmonic conjugate have direct physical significance is purely incidental.
Conversely, it is easily verified that any expression of the form (7.15) is biharmonic,
provided only that � and � are analytic functions.

There is a certain degree of arbitrariness in the selection of the complex
potentials. It is a straightforward matter to show that, if we simultaneously replace
� by � C Q� and � by �C Q�, where

Q� D iaz C c; Q� D k � Ncz; (7.16)

in which a is a real constant and c; k are complex constants, then the value of  
is changed only by the additive constant �<k. As usual, an additive constant in a
stream function is irrelevant.

The velocity components can be expressed directly in terms of the complex
potentials. With Eqs. (7.2),

i.u C iv/ D @ 

@x
C i

@ 

@y
: (7.17)

Calculating the derivatives of  from Eq. (7.15) gives1

� i.u C iv/ D �.z/C z�0.z/C �0.z/
defD �.z; Nz/ : (7.18)

1The value of the derivative of an analytic function does not depend upon the direction of
differentiation. If f .z/ D R.x; y/C iI.x; y/, differentiating parallel to the x-axis gives

f 0.z/ D @R

@x
C i

@I

@x

and differentiating parallel to the y-axis gives

f 0.z/ D �i
�
@R

@y
C i

@I

@y

�
:

This, of course, is how the Cauchy-Riemann equations are established. In the matter at hand,

@R

@x
C i

@R

@y
D @R

@x
� i

@I

@x
D f 0.z/ :

The �0.z/ term in (7.18) follows immediately; the remaining terms are easily obtained, but a bit of
care must be exercised, for Nz is not an analytic function of z.
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In a similar way, the stress components can be expressed in terms of � and �.
Since p D 4
=Œ�0.z/�, we have

T11 D �p C 2

@u

@x

D �4
=Œ�0.z/� � 2

@

@x
=Œ�.z/C z�0.z/C �0.z/�

D �2
=Œ2�0.z/ � Nz�00.z/ � �00.z/� ;

T22 D �p C 2

@v

@y
D �p � 2


@u

@x
(7.19)

D �2
=Œ2�0.z/C Nz�00.z/C �00.z/� ;

T12 D 


�
@u

@y
C @v

@x

�

D 

@

@x
<Œ�.z; Nz/� � 


@

@y
=Œ�.z; Nz/�

D 2
<ŒNz�00.z/C �00.z/� :

As we can see, the solution of a problem in creeping viscous flow reduces
to the selection of two appropriate analytic functions to serve as the complex
potentials. On solid boundaries the velocity components are specified; hence,
Eq. (7.18) provides a boundary condition for � and �. If the velocity at infinity
is specified, (7.18) governs the limiting behavior of the potentials. Even if there are
free surfaces or fluid interfaces, the boundary conditions on the surface tractions can,
by use of Eqs. (7.19) be converted to conditions on � and �; in this case, however,
the location of the boundaries is not necessarily known a priori. The extension to
free-surface flows was pointed out by Moisil (1955).

A sidelight is worth noting. The flow is irrotational, so that @u=@y D @v=@x,
if and only if @.< N�/=@x D @.= N�/=@y, which is one of the Cauchy-Riemann
equations. By (7.18), N� D vC iu, and the incompressibility of the fluid guarantees
that the real and imaginary parts of N� satisfy the second Cauchy-Riemann equation.
Therefore when the flow is irrotational, and only when it is so, the complex velocity
v C iu is an analytic function of z D x C iy—a fact which finds widespread
application in the theory of inviscid flow.

7.2 The Uniqueness Theorem for Creeping Flows
in Bounded Regions

If a massless fluid is contained in a finite region bounded only by stationary solid
walls, we expect, on purely physical grounds, that the fluid is at rest: no energy
is supplied to balance any losses which may arise from viscous dissipation. This
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Fig. 7.1 Geometrical
configuration of region R

argument assumes that the flow field is free from sources, sinks, doublets, and other
discontinuities. By considering the velocity potentials, we can confirm that this is
indeed the case.

We shall need to use the complex variable form of Stokes’ theorem relating con-
tour integrals to double integrals. The theorem2 states that if f .z; Nz/ is differentiable
in the region R, which may be simply or multiply connected, and if the boundary of
R is the piecewise smooth contour C, then

I

C
f .z; Nz/dz D 2i

“

R

@f

@Nz dRI
I

C
f .z; Nz/d Nz D �2i

“

R

@f

@z
dR : (7.20)

The cyclic integrals over various parts of C are taken in the direction which keeps
the region R on the left.

Referring to Fig. 7.1, let us now suppose that a region R is bounded externally
by a closed contour smooth enough for Stokes’ theorem to apply. We also permit R
to be bounded internally by a collection of piecewise-smooth, closed contours. We
assume that these external and internal closed contours complete the boundary C,
so that Stokes’ theorem applies to the region R.

Let

f1.z; Nz/ D �0.z/�.z; Nz/
D �0.z/Œ�.z/C Nz�0.z/C �0.z/� : (7.21)

Since

@f1

@Nz D �0.z/Œ�0.z/C �0.z/� D 2�0.z/<�0.z/ ; (7.22)

2For a proof see Milne-Thomson (1996), p. 130.
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the first half of Stokes’ theorem gives

4i

“

R

�0.z/<�0.z/dR D
I

C
�0.z/�.z; Nz/dz : (7.23)

If all portions of the boundary are at rest, Eq. (7.18) implies that�.z; Nz/ vanishes on
C. Equation (7.23) then reduces to

“

R

�0.z/<�0.z/dR D 0 : (7.24)

In like manner, if we let

f2.z; Nz/ D �0.z/�.z; Nz/ ; (7.25)

so that

@f2

@z
D 2�0.z/<�0.z/ ; (7.26)

the second half of Stokes theorem gives, if all boundaries are at rest,

“

R

�0.z/<�0.z/dR D 0 : (7.27)

Adding (7.24) and (7.27) yields

2

“

R

Œ<�0.z/�2dR D 0 : (7.28)

Since Œ<�0.z/�2 is everywhere non-negative, (7.28) implies that Œ<�0.z/� D 0. Thus,
since �.z) is analytic,

�.z/ D aiz C c ; (7.29)

where a is a real constant and c is a complex constant.
Substituting (7.29) into (7.18) gives

�.z; Nz/ D c C �0.z/ : (7.30)

As already noted,� vanishes on C. Hence �0.z/ D �Nc on C. However � is analytic
in R and hence so is �0. By the identity theorem for analytic functions, an analytic
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function which is constant on the periphery of a region is constant throughout the
region. Hence

�.z/ D k � Ncz (7.31)

throughout R. Substituting (7.29) and (7.31) into (7.18) yields

u C iv D 0 : (7.32)

We thus see that if all portions of the boundary C are at rest, the fluid everywhere
in R is at rest. Moreover time considerations never enter the picture. For time-
dependent motion we have quite generally: the fluid motion vanishes throughout
R at any instant when all portions of C are at rest. Physically, motion in a real fluid
persists after the boundaries stop only because of fluid inertia. For extremely viscous
fluids, the residual motion is almost nonexistent. The problems of a dog with a big
piece of caramel are not unfamiliar.

Since the equations governing creeping viscous flow are linear, the result derived
above immediately generalizes to a uniqueness theorem for creeping viscous flow in
a bounded region. Let us suppose that at some instant of time the boundary C is not
completely at rest. If  and O are two functions, biharmonic in R, which satisfy the
instantaneous boundary conditions on C, their difference is biharmonic in R and has
vanishing derivatives on C. Thus  � O is the stream function for creeping flow in
a bounded region with fixed boundaries; as we have seen, the state of rest is all that
can exist in such a region. Hence  and O differ by at most an additive constant.

Ladyzhenskaya (1969) is a useful source of information on existence and
uniqueness theorems for viscous flow at finite Reynolds number.

7.3 The Stokes Paradox

The approach used in Sect. 6.2, to calculate the creeping flow past a sphere, cannot
be modified to treat successfully the flow past a circular cylinder: it leads to a
velocity field with a logarithmic singularity at infinity.

The nonexistence of a solution for the creeping flow past a cylinder is not too easy
to accept. One might argue that the neglected inertia terms provide a mechanism
for momentum exchange far from the sphere which makes possible a solution with
uniform streaming at infinity: we did observe that inertia becomes dominant at large
distances in the flow past the sphere. This argument is valid at small but finite
Reynolds number. However it begs a more persistent question: What happens at
zero Reynolds number? If we are willing to postulate a massless fluid, we somehow
feel that this hypothetical material should behave decently for us. However, this is
pushing our intuition beyond its bounds. Without the mitigating effect of at least a
slight bit of inertia, we find that dragging a cylinder through a fluid entails dragging
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B 2

B n r0

r

Fig. 7.2 Array of obstacles

all the fluid with it. Stokes himself gave the following physical picture of motion
starting from rest:

The pressure of a cylinder on the fluid continually tends to increase the quantity of
fluid which it carries with it, while the friction of the fluid at a distance from the cylinder
continually tends to diminish it. In the case of a sphere, these two causes eventually counteract
each other, and the motion becomes uniform. But in the case of a cylinder, the increase
in the quantity of fluid carried continually gains on the decrease due to the friction of the
surrounding fluid, and the quantity carried increases indefinitely as the cylinder moves on.

Although basically reasonable, this traditional explanation is not completely
precise. As we pointed out in Sect. 7.2, time plays no role in the equations of
creeping viscous flow. lf we set the density of the fluid equal to zero, the @=@t
term in the Navier-Stokes equation disappears along with the non-linear term.
Thus creeping viscous flow is quasi-static: time enters only through the boundary
conditions; at any specific instant of time, only spatial variation of the flow variables
matters in a boundary value problem. Thus in Stokes’ explanation of his paradox the
reference to what the flow does “eventually” is really irrelevant. The paradox sets in
as soon as the cylinder begins to move.

Our inability to produce a bounded solution for the flow past a cylinder does not
itself prove that a paradox really exists. One might conjecture that there is a bounded
solution which has so far eluded discovery. We shall presently see that this is not the
case.

One feels intuitively that, if the paradox exists, it should not be confined to the
special case of a circular cylinder. Let us consider in Fig. 7.2 the general problem of
creeping flow in the presence of an array of stationary obstacles B1;B2; : : : ;Bn, all
of which lie in the bounded region jzj < r0 and all of whose boundaries are smooth
enough for Stokes’ theorem to hold.

We shall see that the state of rest is the only solution to the creeping flow
equations which does not have a logarithmic (or stronger) singularity at infinity.

The investigation proceeds in somewhat the same way as it did for the case of
bounded flow. The principal difference, of course, is that we now have no outer
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boundary upon which the velocity components are specified. Instead we enclose the
obstacles in a circle of radius r , centered at the origin, and investigate asymptotic
behavior as r ! 1.

The complex potentials are analytic throughout the flow field, but inside the
obstacles there may be singularities. In particular there may be branch points.
Because of this possibility, �.z/ and �.z/ may be multiple-valued functions.3

Let us assume that, along any path circling the obstacle Bk precisely once in the
counterclockwise sense, and enclosing no other obstacle, the function �.z/ increases
by 2�iAk, whereAk is a complex constant. We can represent this jump by including
in �.z/ a term of the form Ak ln.z � zk/, where zk lies within Bk . Thus

�.z/ D �1.z/C
nX

kD1
Ak ln.z � zk/ ; (7.33)

where �1.z/ is single-valued in the region of flow.
Although �.z/ and �.z/ may be multiple-valued, the functions �0.z/ and �.z; Nz/

cannot be, for they represent, respectively, 1
4
.�C ip=
/ and �i.u C iv/—quantities

with physical meaning. Consequently introducing (7.33) into (7.18), and noting that
ln.z � zk/ increases by �2�i as we circle Bk , yields

�0.z/ D Φ.z/C
nX

kD1
NAk ln.z � zk/ ; (7.34)

where Φ.z/ is single-valued in the region of flow. Integrating (7.34) gives

�.z/ D �1.z/C
nX

kD1
NAk.z � zk/ ln.z � zk/ ; (7.35)

where �1.z/ is a single-valued function related to Φ.z/ according to

Φ.z/ D �0
1.z/C

nX

kD1
NAk : (7.36)

Let us now examine the behavior of the complex potentials far from the obstacles.
We may write

ln.z � zk/ D ln z C ln

�
1 � zk

z

�
: (7.37)

3The term “multiple-valued function” is used as in Knopp (1945). Those who find the term
distasteful should have no difficulty in recasting the forthcoming arguments in terms of Riemann
sheets, except that the phrasing gets awkward in spots.
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Since ln.1 � zk=z/ is analytic and single-valued everywhere outside jzj D r0,
Eqs. (7.33) through (7.35) can be rewritten

�.z/ D �0.z/C A ln z ; (7.38)

�0.z/ D Φ0.z/C NA ln z ; (7.39)

�.z/ D �0.z/C . NAz � B/ ln z ; (7.40)

where �0.z/;Φ0.z/ and �0.z/ are analytic and single-valued for jzj > r0, and the
complex constants A;B are defined by

A D
nX

kD1
Ak; B D

nX

kD1
NAkzk : (7.41)

The functions Φ0.z/ and �0.z/ are related by

Φ0.z/ D �0
0.z/C NA� B

z
: (7.42)

Substituting (7.38) and (7.39) into (7.18) yields

� i.u C iv/ D �0.z/C z�0
0.z/C Φ0.z/C

NAz

Nz C 2A ln jzj ; (7.43)

which holds for jzj > r0. We now introduce the key assumption

u C iv D o.ln jzj/ as z ! 1 : (7.44)

Since �0.z/ and Φ0.z/ are analytic and single-valued outside the circle jzj D r0,
neither of these functions has a branch point at infinity. Hence the grouping Œ�0.z/C
z�0
0.z/C Φ0.z/CAz=Nz� in Eq. (7.43) has no logarithmic infinity to cancel 2 NA ln jzj.

Therefore the assumption (7.44) entails

A D 0: (7.45)

Equations (7.38) and (7.39) then give

�.z/ D �0.z/; �0.z/ D Φ0.z/ : (7.46)

If we express �0.z/ and Φ0.z/ as the Laurent series

�0.z/ D
1X

jD�1
aj zj ; Φ0.z/ D

1X

jD�1
bj zj ; (7.47)
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substitution into Eq. (7.43), with A D 0, yields

� i.u C iv/ D
1X

jD�1
Œ.aj zj�1 C j Naj Nzj�1/z C Nbj Nzj � : (7.48)

The assumption (7.44) then requires that

bj D 0; j � 1;

aj D 0; j � 2; (7.49)

a1 C Na1 D 0:

The last of these conditions can be rephrased as

a1 D i˛ ; (7.50)

where ˛ is real.
Since �.z/ D �0.z/; �0.z/ D Φ0.z/ outside the circle of radius r0, we may write

�.z/ D i˛z C a0 C
1X

jD1
a�j z�j ; jzj > r0 ; (7.51)

�.z/ D b C b0z C b�1 ln z �
1X

jD2

b�j
j � 1 z�jC1 ; jzj > r0 ; (7.52)

where b is a complex constant of integration. Comparing with (7.40), we see that

b�1 D �B : (7.53)

To get the proper asymptotic behavior, we now introduce modified complex
potentials O�.z/ and O�.z/, defined by

O�.z/ D �.z/� i˛z � a0 ; (7.54)

O�.z/ D �.z/C Na0z : (7.55)

As indicated in Sect. 7.1, the potential pairs .�; �/ and . O�; O�/ describe the same flow
field. Thus,

� i.u C iv/ D O�.z/C z O�0.z/C O�0.z/
defD O�.z; Nz/ : (7.56)
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Equations (7.51) and (7.52) reveal that, for jzj ! 1,

O�.z/ D O.z�1/ ;
O�0.z/ D O.z�2/ ;

O�0.z/ D Na0 C b0 CO.z�1/ ; (7.57)

O�.z; Nz/ D a0 C Nb0 CO.z�1/ :

Consider now the region of flow bounded internally by the obstacles and bounded
externally by the circle jzj D r > r0. If we let

f1.z; Nz/ D O�0.z/ O�.z; Nz/; f2.z; Nz/ D O�0.z/ O�.z; Nz/ ; (7.58)

then Eqs. (7.57) tell us that f1.z; Nz/ and f2.z; Nz/ are both O.z�2/ as z ! 1.
Consequently their integrals around jzj D r are O.r�1/ as r ! 1.

The arguments of Sect. 7.2 can now be applied mutatis mutandis. The functions
f1.z; Nz/; f2.z; Nz/ vanish identically on the internal boundaries, and their integrals
around the ficticious outer boundary can be made arbitrarily small in magnitude
by choosing r large enough. Stokes’ theorem can then be used to show that the
magnitude of the complex velocity is less than any preassigned positive quantity,
i.e., the fluid is at rest.

Thus, if the fluid is bounded internally by stationary obstacles and is unbounded
externally, it is at rest unless the assumption (7.44) is violated. Consequently any
streaming past a configuration of obstacles is, of necessity, accompanied by a
logarithmic (or stronger) singularity at infinity.

The establishment of Stokes’ paradox can also be taken as a uniqueness proof for
flow generated by motion of the obstacles. If we find one solution to the equations
of creeping flow which produces the given velocity components on all the solid
boundaries, then any other solution obeying these same boundary conditions is
logarithmically singular at infinity.

Stokes’ paradox does not necessarily obtain if the flow field is only partially
bounded at infinity. For example, it is possible to calculate a physically reasonable
solution for the creeping flow past a cylinder situated between a pair of infinite,
parallel walls, see Bairstow et al. (1922). In this problem, and in other problems
involving what might be termed internal flows, it is physically meaningful to
specify a finite pressure gradient in the distant portions of the flow field, cf. Fig. 7.3.
Since �0.z/ D 1

4
.� C ip=
/, the key arguments concerning the asymptotic behavior

of �0 do not apply.
The uniqueness proofs set out in Sects. 7.2 and 7.3 are taken from Krakowski

and Charnes (1951), which extends the results to a wider class of obstacles. The
boundary is no longer required to consist of piecewise-smooth, closed contours; it
is sufficient that, in a properly defined sense, they can be uniformly approximated
by a family of such contours. For example, a line-segment can be considered as the
limit of a family of nested ellipses, major axis fixed, minor axis shrinking to zero.
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Fig. 7.3 Internal flow with specified pressure gradient

Expressions for the forces and moments on an obstacle in terms of the complex
potentials are also included.

An alternate method of establishing the Stokes paradox is presented in Finn and
Noll (1957). Complex variable methods are not used. Instead a series of lemmas
dealing with the asymptotic behavior of harmonic functions is proved; Stokes’
paradox follows from applying these lemmas to the vorticity. A uniqueness theorem
for three-dimensional flow is also proved. It is shown that for any piecewise smooth
obstacle there is at most one three-dimensional flow past the obstacle which has a
prescribed uniform velocity at infinity.

Kaplun (1957) applied the matching procedure illustrated in Sect. 6.4 to the more
difficult problem of flow past a circular cylinder.

In a significant paper, Chang (1961) treated the general problem of
two-dimensional flow at large distance from an object of finite size moving through
a viscous fluid, assuming neither large nor small Reynolds number. The paper
develops asymptotic expansions of the velocity and pressure, valid at large distances
from the body, for a fixed but arbitrary value of the Reynolds number. The expansion
parameter is a dimensionless distance from the obstacle. Terms of logarithmic
order appear in the expansion, a phenomenon which the author named switchback
and discussed extensively. The flow field far from an object gives rise to Filon’s
paradox: the second approximation predicts infinite torque on unsymmetrical
bodies. The paper provides a systematic way of showing that higher order terms in
the expansion are necessary and sufficient to keep the torque finite.

7.4 Conformal Mapping and Biharmonic Flow

If the boundary configuration is such that the Stokes paradox results, there is little
more to be said about creeping flow; we must resort to some technique, such as
Oseen’s, which takes at least partial account of inertia. For internal flows, however,
creeping flow may give a good physical approximation, so that it is of interest to
determine the complex potentials.
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Except for the most degenerate geometries, the selection of the potentials is an
exceedingly difficult task. Since the problem has been cast in terms of analytic
functions of a complex variable, we might look to conformal mapping methods
for some help. These do indeed simplify the problem, but one should be forewarned
that, unlike the case of the Dirichlet problem, finding a conformal mapping only
carries us part way to the solution. Fundamentally the difference is rooted in the
fact that the Laplace’s equation is preserved under conformal mapping, whereas the
biharmonic equation is not.

Let us suppose that the conformal transformation

z D m.w/; w D m�1.z/ (7.59)

maps the flow region R into a (presumably simpler) region S in the w D X C iY

plane. Since the mapping is conformal, the functionsm andm�1 are analytic. Hence
X and Y , considered as functions of x and y, satisfy the Cauchy-Riemann equations

@X

@x
D @Y

@y
;

@X

@y
D �@Y

@x
: (7.60)

It then follows by a straightforward calculation that

@2

@x2
C @2

@y2
D
"�

@X

@x

�2
C
�
@Y

@y

�2#�
@2

@X2
C @2

@Y 2

�
: (7.61)

Thus, if r2
xy and r2

XY denote the Laplacian before and after transformation, we have

r2
xy D

ˇ̌
ˇ̌dw

dz

ˇ̌
ˇ̌
2

r2
XY

D
ˇ̌
ˇ̌ dz

dw

ˇ̌
ˇ̌
�2

r2
XY : (7.62)

Since neither dw=dz nor dz=dw can vanish in a conformal transformation, a function
which is harmonic with respect to one of the sets of variables is also harmonic with
respect to the other.

If we apply formula (7.61) twice, however, we find

r4
xy D

ˇ̌
ˇ̌dw

dz

ˇ̌
ˇ̌
2

r2
XY

 ˇ̌
ˇ̌dw

dz

ˇ̌
ˇ̌
2

r2
XY

!
: (7.63)

Thus a function which is biharmonic with respect to the X � Y variables will not,
in general, be biharmonic with respect to the x � y variables. If the transforma-
tion (7.59) is linear, so that w D ˛z Cˇ .˛; ˇ constant/, then dw=dz is constant, and
the biharmonic character of a function is preserved.
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In solving boundary value problems, linear transformations are almost useless. If
we can’t solve a problem for a small region of given shape, it’s unlikely that we’d be
able to solve the problem for a big region of the same shape. Hence we must resign
ourselves to the expectation that functions which are biharmonic in the region of
flow will not be biharmonic in the transformed region.

As expected, the power of conformal mapping methods for biharmonic problems
lies with the expression of a biharmonic function in terms of complex potentials.
These potentials are analytic functions, both in the flow plane and in the transformed
plane. Thus, if we represent the stream function according to Eq. (7.15), so that

 .x; y/ D �<ŒNz�.z/C �.z/� ; (7.64)

and we let

 .x; y/ D Ψ.X; Y / ; (7.65)

then

Ψ.X; Y / D �<Œm.w/Φ.w/C �.w/� ; (7.66)

where

Φ.w/ D �Œm.w/�; �.w/ D �Œm.w/� : (7.67)

On solid boundaries the representation (7.18) provides a boundary condition on
the complex potentials. Let us suppose that on a solid boundary C, the complex
velocity v � iu is a specified function of z, say f .z/. Equation (7.18) then gives

�.z/C z�0.z/C �0.z/ D f .z/ on C : (7.68)

It is an easy matter to calculate the corresponding boundary condition in the w-plane.
Since

�0.z/ D dw

dz
Φ0.w/

D 1

m0.w/
Φ0.w/ (7.69)

we have, with (7.67),

Φ.w/C m.w/

m0.w/
Φ0.w/C Υ.w/ D F.w/ on Γ ; (7.70)
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where

Υ.w/ D 1

m0.w/
�0.w/ ; (7.71)

F.w/ D f Œm.w/� ; (7.72)

and Γ is the curve in the w-plane into which C transforms under (7.59).
If the fluid motion is generated solely by the motion of rigid boundaries, all

boundaries conditions in the flow plane are of the form (7.68); consequently all
boundary conditions in the transformed plane are of the form (7.70). The problem
of selecting the potentials under such circumstances is called the first fundamental
problem for biharmonic functions. It has been extensively studied in the literature
of plane elasticity, where it deals with the state of stress in a plate subjected to a
prescribed distribution of normal forces on its boundaries.

In view of the complete analogy between the fluid-flow problem and the elastic
stress problem established by Goodier (1934), one might wonder at first why the
first fundamental problem for biharmonic functions is virtually always couched in
the language of elasticity theory rather than in the language of hydrodynamics. The
answer appears when we reflect on the sort of regions primarily of interest in the
two disciplines. To consider the stress field in a simply-connected plate subjected
to edge loading is certainly a meaningful undertaking. It is precisely for regions of
this sort that the first fundamental problem is most amenable to solution. For the
various methods of attack, the reader is referred to Kantorovich and Krylov (1964)
and to Muskhelishvili (1963), a well-known treatise. On the other hand creeping
viscous flow in a simply-connected region is a rather artificial sort of problem.4

To the hydrodynamicist, multiply connected regions are of genuine interest, but in
studying them he finds himself working in an area where it seems every problem
is either trivial or impossible. Some meaningful results, however, do exist; the best
place to start looking is probably Dean (1958).

Another class of problems can be reduced to the first fundamental problem. Let
us consider the problem of streaming through a channel which is uniform except for
a bounded array of obstacles, as illustrated, for example, in Fig. 7.2. We set

 D  0 C  1 ; (7.73)

where  0 is a stream-function for parabolic flow through the channel. Thus, if the
walls of the channel are at y D ˙h, we can take

 0 D Q0

4h3
.3h2y � y3/ ; (7.74)

4One might pose, as a counterexample, flow in a rectangle, one side of which is moving. However,
this problem, and most others like it, involves discontinuous boundary conditions (in the example
cited, at two corners)—this can make the first fundamental problem most difficult.
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Fig. 7.4 Two cylinders
rotating in opposite directions
in a plane channel

where Q0 is constant. We cannot expect  0 to satisfy the no-slip condition at the
obstruction, but this gives us boundary conditions for  1. If the surfaces of the
obstacles move with velocity components U; V ,

@ 1

@x
D �V � @ 0

@x
;

@ 1

@y
D U � @ 0

@y
: (7.75)

Since  0 satisfies no-slip on the channel walls,

@ 1

@x
D @ 1

@y
D 0; on y D ˙h (7.76)

if the walls are stationary; if one or both of the walls is in motion, (7.76) undergoes
an obvious modification.

Following the usual procedure, we can convert (7.75) and (7.76) to the boundary
conditions of the first fundamental problem. If we can solve this problem for  1, we
are almost finished, but there is a detail to clear up. The flow represented by  1 may
contribute a flux Q1 through the channel. One feels that this might be the case if
the obstruction consists, for example, of two cylinders, arranged across the channel,
which rotate in opposite directions as is shown in Fig. 7.4. However, for a given set
of obstacles and boundary velocities, use of the boundary conditions (7.75) gives
Q1, as a function of Q0. Thus the total flux Q D Q0 C Q1 through the channel is
given by an expression of the form

Q D Q0 C f .Q0/ : (7.77)

In a typical problem, the total flux Q will be specified a priori. If (7.77) can be
solved uniquely for Q0 in terms of Q, the stream function  D  0 C  1 is the
required solution.

The success of this technique hinges upon the linearity of creeping flow, which
permits no coupling between  0 and  1 in the governing equations.
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7.5 Pressure Flow Through a Channel of Varying Width

The solution of a problem in plane creeping flow need not always be attempted in
terms of the complex potentials. To do so for an extremely simple problem, such as
Couette flow for example, would obviously be quite foolish. In very complicated
problems approximation methods based upon the conformal mapping technique
may provide the best line of attack, but we should not overlook other possibilities.

One might expect, for instance, that the flow at a given point is most strongly
influenced by the local geometry, and is only slightly modified by the presence of
boundaries far away. By considering various regions of the flow field, it is often
possible to patch together a fairly good picture of the flow field. Moreover the
patching is not necessarily a mortar-and-trowel numerical matter: in this section we
treat a class of problems in which it is carried out gradually, and in analytic terms,
from one part of the flow field to another.

The reader will find additional details on the problem of flow through
non-uniform channels in Langlois (1958).

We consider creeping flow through an infinitely long channel of smoothly
varying gap, cf. Fig. 7.5. For simplicity we assume that the channel is symmetric
with respect to an axis stretching along the channel, which we choose for the x-axis.
Thus, the walls of the channel follow the curves

y D ˙h.x/ ; (7.78)

where h.x/ is smooth and positive for all values of x.
We take the walls to be stationary, so that

uŒx;˙h.x/� D vŒx;˙h.x/� D 0 (7.79)

for all x. There may be a net fluxQ through the channel. Incompressibility requires
that this be the same at all cross sections. Therefore

Z h.x/

�h.x/
u dy D Q (all x) : (7.80)

As usual the differential equations governing the motion are the continuity equation

@u

@x
C @v

@y
D 0 ; (7.81)

and the force-balance equations

@p

@x
D 
r2u ; (7.82)

@p

@y
D 
r2v : (7.83)
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Fig. 7.5 Channel with curvy
walls

When suitable restrictions are placed upon h.x/, the boundary value problem
represented by Eqs. (7.79) through (7.83) is precisely of the sort in which it is helpful
to look at the local picture of flow.

7.5.1 Wall Slope Everywhere Negligible

If h0.x/ is everywhere small compared with unity, it is reasonable to assume that, at
each value of x, the components of velocity and pressure gradient are approximately
equal to those obtaining in a channel of uniform width. This gives the familiar
parabolic velocity profile with pressure gradient parallel to the x-axis, i.e.,

u D 3Q

4h3
.h2 � y2/; v D 0 ; (7.84)

@p

@x
D �3Q


2h3
;

@p

@y
D 0 : (7.85)

Since h.x/ is nearly constant, it is tempting to infer from (7.85) that pD const.�
3Q
x=2h3, but this is incorrect. The components of pressure gradient are approx-
imated locally by the uniform-channel values, but the integrated value of p can be
quite different. The correct result is

p D
�
3Q


2

�Z c

x

dx

h3
; (7.86)

where c is a constant of integration.
Direct substitution of (7.84) into (7.79) and (7.80) reveals that the boundary

conditions are exactly satisfied. Since the assumed values of v and @p=@y are both
zero, Eq. (7.83) is trivially satisfied.

The remaining Eqs. (7.81) and (7.82), are satisfied by (7.84) and (7.85), provided
we neglect terms in h0.x/ and h.x/h00.x/. The validity of this approach therefore
requires

jh0.x/j � 1; (7.87)

jh.x/h00.x/j � 1 : (7.88)
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a
Fig. 7.6 Channel with
smooth bumps

The meaning of (7.87) is clear, but (7.88) requires a bit of explanation, best provided
by an example. Suppose, for simplicity, that the channel is uniform, except for a
slight constriction caused by a pair of smooth bumps as in Fig. 7.6. If a, the nominal
radius of the bumps, is small compared with the channel width, so that (7.88) is
violated, the flow near one of the bumps is precisely that—the flow near a bump;
uniform-channel flow would be a bad local approximation.

Fig. 7.7 Channel with a
divergent wedge

7.5.2 Wall Curvature Everywhere Negligible

Under suitable conditions the restriction (7.87) can be removed by assuming the
flow locally to be as if h.x/ were a linear function of x. Where h0.x/ is positive, the
channel is approximated by a divergent wedge with a source of fluxQ at its vertex;
where h0.x/ is negative, the wedge is convergent with a sink at its vertex. We shall
carry out the analysis explicitly for h0.x/ positive as Fig. 7.7 shows, but we shall
see a posteriori that the expressions for the flow variables have the same functional
form, regardless of the sign of h0.x/; the discontinuities of these expressions at
h0.x/ D 0 are removable, the results reducing to those of Sect. 7.5.1.

The solution to the full Navier-Stokes equation for flow in a wedge-shaped region
was set out in Chap. 4. As we saw, this solution is obtained implicitly, in terms of
elliptical integrals. For creeping flow, however, the solution is much simpler and
lends itself readily to the method we have in mind.
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In plane polar coordinates, the equations of creeping flow become

@

@r
.rvr /C @v�

@�
D 0 ;

@p

@r
D 


�
r2vr � vr

r2
� 2

r2
@v�

@�

�
; (7.89)

@p

@�
D 
r

�
r2v� C 2

r2
@vr

@�
� v�

r2

�
; (7.90)

where

r2 D @2

@r2
C 1

r

@

@r
C 1

r2
@2

@�2
: (7.91)

For wedge flow the boundary conditions are

vr.r;˙˛/ D v� .r;˙˛/ D 0;
Z ˛

�˛
rvrd� D Q : (7.92)

It can be verified by direct substitution that the differential equations (7.89) and
the boundary conditions (7.92) are all exactly satisfied by

vr D Q

r

sin2 ˛ � sin2 �

sin˛ cos˛ � ˛ C 2˛ sin2 ˛
;

v� D 0 ; (7.93)

p D 
Q

r2
cos2 � � sin2 �

sin˛ cos˛ � ˛ C 2˛ sin2 ˛
C const.

In order to use these results in the varying-channel problem, we shall convert
them to Cartesian coordinates. With the notation indicated in Fig. 7.7,

u D vr cos �; v D vr sin � ;

@p

@x
D x � X

r

@p

@r
� y

r2
@p

@�
;

@p

@y
D y

r

@p

@r
C x �X

r2
@p

@�
;

cos � D .x �X/p
.x � X/2 C y2

; (7.94)

sin � D yp
.x � X/2 C y2

;
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r D
p
.x � X/2 C y2 ;

sin˛ D Dp
1CD2

; cos˛ D 1p
1CD2

:

Equations (7.93) then yield

u D Q.x � X/

E

D2.x � X/2 � y2

Œ.x � X/2 C y2�2
;

v D Qy

E

D2.x � X/2 � y2

Œ.x � X/2 C y2�2
;

@p

@x
D �2
Q.1CD2/.x � X/

E

.x �X/2 � 3y2
Œ.x �X/2 C y2�3

; (7.95)

@p

@y
D �2
Q.1CD2/y

E

3.x �X/2 � y2
Œ.x �X/2 C y2�3

;

where

E D .sin ˛ cos˛ � ˛ C 2˛ sin2 ˛/.1C tan2 ˛/

D D � .1 �D2/ arctanD : (7.96)

The somewhat fictitious length X can be removed from Eqs. (7.95) by noting that

h D D.x �X/ : (7.97)

Thus

u D QD3h

E

h2 � y2

.h2 CD2y2/2
;

v D QD4y

E

h2 � y2

.h2 CD2y2/2
; (7.98)

@p

@x
D �2
Q.1CD2/D3h

E

h2 � 3D2y2

.h2 CD2y2/3
;

@p

@y
D �2
Q.1CD2/D4y

E

3h2 �D2y2

.h2 CD2y2/3
: (7.99)

If the curvature of the walls is everywhere small (in the sense that h.x/h00.x/ is
small compared with unity), it might be hoped that, at each value of x, the flow in
a non-uniform channel can be approximated by the flow in a wedge with vertex at
ŒX.x/; 0� and vertex angle Œ2 arctanD.x/�, where
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D.x/ D h0.x/;

X.x/ D x � h.x/

D.x/
: (7.100)

Upon checking by direct substitution, we find that the velocity components given
by (7.98) satisfy exactly the boundary conditions (7.79) and (7.80). We also find
that (7.98) and (7.99) satisfy approximately the differential equations (7.81)–(7.83),
provided

jh.x/h00.x/j � 1 ; (7.101)

jh.x/2h000.x/j � 1 : (7.102)

If (7.101) is satisfied, it is easy to verify that

dp D @p

@x
dx C @p

@y
dy

approximates an exact differential when @p=@x and @p=@y are given by Eqs. (7.99).
Therefore,

p D
Z x;y

C;0

�
@p

@x
dx C @p

@y
dy

�

D 2
Q

Z C

x

.1CD2/D3

Eh3
dx

� 2
QD4.1CD2/

E

Z y

0

3h2y �D2y3

.h2 CD2y2/3
dy (7.103)

D 2
Q

Z C

x

.1CD2/D3

Eh3
dx � 
QD4.1CD2/

h2E

3.y=h/2 CD2.y=h/4

Œ1CD2.y=h/2�2
;

where C is a constant of integration.
If we set

 .x; y/ D Q

2E

�
Dh.1CD2/y

h2 CD2y2
� .1 �D2/ arctan.Dy=h/

	
; (7.104)

we see that

u D @ 

@y
;

v D �@ 
@x

C terms in h.x/D0.x/ : (7.105)

Thus, within the limits of validity of the approximation, .x; y/ is a stream function
for the flow.
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7.5.3 Power Series Expansion in the Wall Slope

The method of Sect. 7.5.2 leads to rather cumbersome results, even for analytically
simple forms of h.x/. Consequently it is desirable to compromise between the
methods of Sects. 7.5.1 and 7.5.2 by developing a method wherein condition (7.87)
is not completely removed, but is merely relaxed.

It may happen that a function h.x/ satisfying (7.101) and (7.102) is such that
h0.x/ is small but not negligible, in the sense that the modified condition

jDnj D jh0.x/jn � 1 (7.106)

is satisfied for some positive integer n. The case n D 1 corresponds to Sect. 7.5.1.
For n > 1, the results of Sect. 7.5.2 can be expanded in a power series in D and
terms of the nth degree or higher in D neglected. The treatment given here will
be restricted to the case n D 3, for with n > 3 the resulting expressions are so
complicated that no advantage is gained over a direct use of Sect. 7.5.2.

Since

arctanD D D � 1

3
D3 C 1

5
D5 CO.D7/ ; (7.107)

Eq. (7.96), which defines the functionE , gives us

E D 4

3
D3Œ1 � 2

5
D2 CO.D4/� ; (7.108)

so that

D3

E
D 3

4
Œ1C 2

5
D2 CO.D4/� : (7.109)

If terms of the third degree or higher in D are neglected in the expansions of
Eqs. (7.98) and (7.99), it follows that
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; (7.110)
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Fig. 7.8 Channel with a
smooth constriction

Equation (7.103), the integrated equation for the pressure, becomes

p D 3
Q

4

 
2

Z C

x

1C 7
5
D2

h3
dx � 3Dy2

h4

!
(7.112)

and Eq. (7.104) for the stream function reduces to

 .x; y/ D 3Q

4

y

h
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1 � 1
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2	C 2
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�
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2	� 2
: (7.113)

7.5.4 The Flow Through a Smooth Constriction

With reference to Fig. 7.8, let us suppose that the function h.x/ is given by

h.x/ D H
h
1 � c tanh

� x
L

i
; (7.114)

whereH and L are constant lengths and c is a positive, dimensionless constant less
than unity. Application of the general results developed in the preceding sections
give an illustration of the type of flow to be expected when a very viscous fluid is
forced through a smooth constriction connecting two uniform channels of different
widths.

From (7.114),

h0.x/ D D.x/ D �
�
ch

L

�n
sech2

� x
L

o
;
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�
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L2

�n
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� x
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o
; (7.115)
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Elementary methods can be used to verify that the factors enclosed in braces all
have magnitude less than or equal to unity. Hence (7.87) is satisfied if

ˇ̌
ˇ̌cH
L

ˇ̌
ˇ̌ � 1 ; (7.116)

condition (7.88), which is the same as (7.101), is satisfied if

ˇ̌
ˇ̌
ˇc.1C c/

�
H

L

�2ˇ̌ˇ̌
ˇ � 1 ; (7.117)

condition (7.102) is satisfied if

ˇ̌
ˇ̌
ˇc.1C c/2

�
H

L

�3ˇ̌ˇ̌
ˇ � 1 ; (7.118)

and condition (7.106), with n D 3, is satisfied if

ˇ̌
ˇ̌cH
L

ˇ̌
ˇ̌
3

� 1 : (7.119)

If we assume that conditions (7.117), (7.118), and (7.119) are satisfied, and
permit (7.116) to be violated, then the method of Sect. 7.5.3 is applicable, but the
method of Sect. 7.5.1 may not be.

Let us take

cH

L
D ı

and substitute (7.114) into Eq. (7.110). We obtain

u D 3Q

4HŒ1 � c tanh.x=L/�

�
1 � y2

H2Œ1 � c tanh.x=L/�2

	

�
"
1 � 2ı2

y2sech4.x=L/

H2Œ1 � c tanh.x=L/�2
C 2

5
ı2sech4.x=L/

#
(7.120)

v D � 3Qyı sech2.x=L/

4H2Œ1 � c tanh.x=L/�2

�
1 � y2

H2Œ1 � c tanh.x=L/�2

	
:

Equation (7.112) for the pressure gives

p D 3
Q

4

"
2

Z C

x

1C 7
5
ı2sech4.x=L/

H3Œ1 � c tanh.x=L/�3
dx C 3ıy2sech2.x=L/

H4Œ1 � c tanh.x=L/�4

#
;

(7.121)
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and Eq. (7.113) for the stream function becomes

 D 3Qy

4HŒ1 � c tanh.x=L/�

( �
1 � y2

3H2Œ1 � c tanh.x=L/�2

	

C 2

5
ı2sech2.x=L/

�
1 � y2

H2Œ1 � c tanh.x=L/�2

	 )
: (7.122)

7.6 Hele-Shaw Flow

The Hele-Shaw flow (after Henry Selby Hele-Shaw, 1854–1941) and its theory are
quite useful in modern engineering applications: to compute for example the flow
in injection molding, the viscous fingering instability related to oil recovery, flow
through porous media.

The theory of Hele-Shaw cells may be found in Lamb (1995) and Batchelor
(1992). Let us consider the creeping flow between two fixed parallel plates, cf.
Fig. 4.1, of a very viscous fluid in a layer of thickness 2h. Inside the gap is placed
an obstacle of cylindrical shape with its generators orthogonal to the plates, and of
characteristic length L. The geometrical aspect ratio, defined as

" D h

L
; (7.123)

is such that " � 1. With the incompressibility constraint (2.194), an order of
magnitude estimate of the various terms yields

jv3j � "v1 ' "v2 � jv1j ' jv2j : (7.124)

As the length scales in the directions parallel and orthogonal to the plates are quite
different, we write

ˇ̌
ˇ̌@
2v1

@x21

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌@
2v1

@x23

ˇ̌
ˇ̌ ;

ˇ̌
ˇ̌@
2v2

@x21

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌@
2v2

@x23

ˇ̌
ˇ̌ : (7.125)

The Stokes equations (6.1) and (6.2) reduce to the set

@vi

@xi
D 0 ; (7.126)

@p

@xi
D 
r2vi ; (7.127)
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for vi D vi .x1; x2/; i D 1; 2. Since v3 is of order ", the i D 3 component of (6.2)
indicates that the pressure is essentially constant across the gap, i.e, p D
p.x1; x2/.This set of equations is meaningful in the symmetry plane parallel to
the plates containing the origin of the coordinate axes. It is possible with the help of
Eqs. (7.123) and (7.124) to write

vi .x1; x2; x3/ D vi .x1; x2; 0/f .x3/ ; (7.128)

as the variation of vi with respect to x1; x2 is slower than that of f with respect
to x3. With pressure variation across the gap ignored, the Poiseuille flow solution
provides the relationship

f .x3/ D
�
1 � x23

h2

�
: (7.129)

The momentum equations (7.127) become



@2v1

@x23
D @p

@x1
; (7.130)



@2v2

@x23
D @p

@x2
: (7.131)

Taking Eqs. (7.128) and (7.129) into account, one obtains

vi .x1; x2; 0/ D � h2

2


@p

@xi
; i=1,2 : (7.132)

Thus the velocity is a gradient field (i.e., irrotational). Therefore it can be derived
from a velocity potential:

vi D @'

@xi
; (7.133)

and Eq. (7.132) yields

' D �h
2p

2

: (7.134)

The streamline configuration will be the same in planes x3 D cst. Furthermore
they will be similar to those of a two-dimensional potential flow of an inviscid
fluid around obstacles of the same shape. Near the obstacles the viscous fluid
sticks to the walls, but this influence will be limited to a zone of thickness h.
This discussion explains why the Hele-Shaw cell is used in many experiments to
provide the observer with the geometrical pattern resulting from the presence of
bodies inside an internal flow.



Chapter 8
Rotary Flow

Abstract Axially symmetric creeping flow generated by rotary motion of solid
boundaries is treated. If the Reynolds number is not zero, there will be a secondary
flow, due to centrifugal force, in the meridional planes. For the case of flow between
concentric spheres, this is calculated to first order using the Reynolds number as a
perturbation parameter. Rotlets are introduced.

ln this chapter we focus our attention on axially symmetric flows generated entirely
by rotary motion of solid boundaries. Flows of this sort are often used to measure
viscosity.

Two special cases of rotary flow were considered in Chap. 4. The axisymmetric
Couette flow between cylinders, calculated in Sect. 4.9, is particularly simple: the
streamlines are all circles about the axis of rotation. In Sect. 4.12 we treated von
Karman’s problem of flow generated by a rotating disc, and found that the non-
uniform centrifugal force generated a pumping effect, so that a secondary flow in
the meridional planes was superimposed upon the circular motion. This centrifugal
pumping is characteristic of rotary flow when fluid inertia is taken into account; the
axisymmetric Couette flow is the only known counterexample. Even in this case
secondary flow enters the picture. Taylor (1922) showed that at moderate Reynolds
number the Couette flow passes over into a different mode. When this happens,
there is a flow in the meridional planes which presents the appearance of a system
of vortices contained in rectangular compartments, so that the axial variation of flow
is periodic rather than uniform. For massless fluids there is no centrifugal pumping,
so that it is reasonable to seek solutions without secondary flow.

Taylor vortices are the first sign of flow instability. This topic is beyond the scope
of the present monograph and the reader is referred to, e.g., Drazin and Reid (2004),
Koschmieder (1993), and Schmid and Henningson (2001).

W.E. Langlois and M.O. Deville, Slow Viscous Flow,
DOI 10.1007/978-3-319-03835-3__8,
© Springer International Publishing Switzerland 2014

213



214 8 Rotary Flow

8.1 The Equations Governing Creeping Rotary Flow

Let us assume that a massless fluid occupies an axially symmetric region of space,
which may be either finite or infinite in extent. The boundaries of the region will,
in general, consist partly of rigid walls, partly of free surfaces. The only motion
we permit the rigid walls to have is a rotation about the axis of symmetry, and we
specify that flow in the region is generated only by this boundary rotation.

The general problem of axisymmetric creeping flow was treated in Sect. 6.1. We
showed that the Stokes stream function Ψ and the swirl Ω are governed by

E4Ψ D 0 ; (8.1)

E2Ω D 0 ; (8.2)

where E2 is a second-order differential operator, defined in cylindrical coordinates
by

E2 D @2

@r2
� 1

r

@

@r
C @2

@z2
(8.3)

and in spherical coordinates by

E2 D @2

@r2
C 1

r2
@2

@�2
� cot �

r2
@

@�
: (8.4)

For the class of problems under consideration the velocity components in the
meridional planes vanish on the solid boundaries. The no-slip condition on these
boundaries and the differential equation (8.1) are both satisfied by taking

Ψ D const . (8.5)

Since purely rotary flow results, the kinematic boundary condition that the free
surfaces always consist of the same particles is automatically satisfied.

In Chap. 3 the swirl was defined as the velocity-moment about the axis of
symmetry. Thus in cylindrical coordinates we have, according to Eq. (3.85),

Ω D rv� : (8.6)

For spherical coordinates, Eq. (3.106) gives

Ω D r sin � v� : (8.7)
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In terms of the velocity, Eq. (8.2) becomes

�
@2

@r2
C 1

r

@

@r
� 1

r2
C @2

@z2

�
v� D 0 (cylindrical coordinates) ; (8.8)

�
@2

@r2
C 2

r

@

@r
C 1

r2
@2

@�2
C cot �

r2
@

@�
� 1

r2 sin2 �

�
v� D 0

(spherical coordinates) : (8.9)

It is easily checked from the Navier-Stokes equations for a massless incompress-
ible fluid, referred to the appropriate coordinate system, that the pressure is uniform
throughout a region of creeping rotary flow.

8.2 Flow Between Parallel Discs

In the parallel disc viscometer the fluid to be tested is contained in the cylindrical
region between two discs, which rotate with different angular velocities about their
common axis. In practice one of the plates is held fixed, and there is no loss of
generality in assuming that this is always the case, cf. Fig. 8.1. If both discs rotate,
we can let the coordinate system rotate with one of them. For a massless fluid the
acceleration of the reference frame does not matter. If the stationary disc lies in the
z D 0 plane and the moving disc lies in the z D h plane, the no-slip condition
requires that

v� .r; 0/ D 0 ; (8.10)

v� .r; h/ D !r ; (8.11)

where ! is the angular velocity of the moving disc.
The cylindrical surface r D a; 0 < z < h is, ideally, force-free, except for an

isotropic and uniform ambient pressure. Since this cannot be achieved in practice,
the problem of edge effects has received considerable attention, see, for example,
Kestin and Persen (1955). Since the outward normal to the free surface is in the
direction of increasing r , the stress boundary conditions for the ideal case are

Trr D �pa; Tr� D Trz D 0 on r D a ; (8.12)

where pa is the ambient pressure. Setting vr D vz D @v�=@� D 0 in Eqs. (3.74)
and (3.76) then gives

p.a; z/ D pa ; (8.13)

a

�
@

@r
v� .r; z/

	

rDa
� v� .a; z/ D 0 : (8.14)
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h

r a

z

w

Fig. 8.1 Coordinate system
for the parallel discs

In view of the remarks ending Sect. 8.1, the condition (8.13) requires that

p.r; z/ D pa : (8.15)

The solution of (8.8) subject to (8.10) and (8.14) is trivial. We find by inspection
that

v� .r; z/ D !
rz

h
: (8.16)

Throughout the fluid,

T�z D 2
e�z D 

@v�

@z
D 
!

r

h
: (8.17)

Consequently the moment M required to rotate the top disc, or to hold the bottom
one still, is given by

M D
Z a

0

.2�r/.rT�z/dr D 2�
!

h

Z a

0

r3dr D �
!a4

2h
: (8.18)

Since the quantities M;!; a; h can presumably be measured, (8.18) can be used
to determine the viscosity of the fluid, provided the underlying assumptions of
creeping flow and idealized geometry are sufficiently well approximated.
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8.3 Flow Between Coaxial Cones

Another widely used type of viscometer contains the fluid between a pair of rotating
coaxial cones as depicted in Fig. 8.2. The rate of deformation tensor is almost
constant throughout the flow field generated in this instrument. For this reason it
is often the viscometer which is chosen when the experimenter wishes to measure
the dynamic behavior of the fluid under uniform kinematic conditions. Basically it
is a compromise between a coaxial cylinder (Couette) viscometer, in which uniform
conditions are quite well approximated (there is a small variation across the gap),
and a parallel disc viscometer, which is easily loaded even when extremely viscous
liquids are measured.

The problem is most easily studied in spherical coordinates. If we denote the
semivertical angles of the cones by ˛ and Q̨ and the corresponding angular velocities
by ! and Q!, the no-slip condition requires

v�.r; ˛/ D r! sin ˛; v�.r; Q̨ / D r Q! sin Q̨ : (8.19)

Since Eq. (8.9) is homogeneous in r , it is reasonable to seek a solution of the form

v�.r; �/ D r sin � �.�/ : (8.20)

Substituting (8.20) into (8.9) gives an ordinary differential equation for �.�/:

d2

d�2
.� sin �/C cot �

d

d�
.� sin �/C

 
2 sin2 � � 1

sin �

!
� D 0 : (8.21)

Comparing (8.19) and (8.20), we obtain the boundary conditions

�.˛/ D !; �. Q̨ / D Q! : (8.22)

One family of solutions to (8.21) is � D const. Physically, this corresponds to the
rigid body motion which results when ! D Q!. The second solution follows easily
when we rewrite (8.21) as

�
sin �

d

d�
C 3 cos �

�
d�

d�
D 0 ; (8.23)

from which we obtain

d�

d�
D const.

sin3 �
: (8.24)
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Fig. 8.2 Coaxial cones

Integrating (8.24) then gives the general solution to (8.21):

�.�/ D AC B

�
ln tan

1

2
� � cos �

sin2 �

�
: (8.25)

The constants of integrationA;B are determined by the conditions (8.22); we obtain
the untidy but symmetric result

A D
!
�

ln tan 1
2

Q̨ � cos Q̨
sin2 Q̨


� Q!

�
ln tan 1

2
˛ � cos˛

sin2 ˛



ln
�

tan 1
2 Q̨

tan 1
2 ˛


� cos Q̨

sin2 Q̨ C cos˛
sin2 ˛

; (8.26)

B D . Q! � !/

ln
�

tan 1
2 Q̨

tan 1
2 ˛


� cos Q̨

sin2 Q̨ C cos˛
sin2 ˛

:

Substituting (8.25) into (8.20) yields

v�.r; �/ D Ar sin � C Br.sin � ln tan
1

2
� � cot �/ : (8.27)

The physical components of the rate of deformation tensor can now be calculated
from Eqs. (3.98). All components vanish except

e�� D e�� D B

sin2 �
: (8.28)

As indicated earlier, e�� is nominally constant throughout the flow field: it is entirely
independent of r and, if " D . Q̨ �˛/=˛ is small compared with unity, the percentage
variation of sin2 � across the gap is proportional to ".

So far in this section we have ignored the question of free-surface conditions.
If the region of flow extends to infinity, the question never arises. However in
most laboratories the viscometer is filled only to a finite level. Since the only non-
zero component of the rate of deformation tensor is given by (8.28), the stress
components are given by
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r = f (q)Fig. 8.3 Free surface
between the coaxial cones

Trr D T�� D T�� D �p ;

T�� D T�� D 2
B

sin2 �
; (8.29)

Tr� D T�r D Tr� D T�r D 0I

as indicated at the end of Sect. 8.1, the pressure is constant. Let us suppose that as
shown in Fig. 8.3 the fluid fills the viscometer only up to the surface

r D f .�/ : (8.30)

Above this surface is an inviscid atmosphere, so that the stress is isotropic and
uniform. The unit normal to the surface (8.30) has components

nr D rp
r2 C Œf 0.�/�2

; n� D � f 0.�/p
r2 C Œf 0.�/�2

(8.31)

in the r- and �-directions, respectively.
For the configuration described, the stress boundary conditions take the form

Trrnr C Tr�n� D �panr ; (8.32)

T�rnr C T��n� D �pan� ; (8.33)

T�rnr C T��n� D 0 ; (8.34)

where pa is the ambient pressure. With the stresses given by (8.29), condi-
tions (8.32) and (8.33) are satisfied by taking p D pa. However (8.34) cannot be
satisfied unless eitherB or n� vanishes. The case of B D 0 corresponds to rigid body
motion; if we ignore this case, rotary flow is an acceptable solution only if n� D 0.
From (8.30) and (8.31) we see that this is the case only if the surface is a ring cut
from the surface of a sphere with center at r D 0.

If the fluid surface is not spherical, one might conjecture that the flow is almost
purely rotary except for a churning motion near the surface; it is conceivable
that the fluid would ultimately take up the spherical shape as the only stable
possibility. In practice, however, the discussion is academic, for the presence of
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even a slightly positive fluid density destroys the rotary pattern, especially near
the surface, where gravity will not permit the spherical shape. Thus, the use of
the bi-conical viscometer is predicated on the hope that, for very viscous fluids at
least, the secondary motions arising from fluid inertia and edge effects do not couple
strongly with the main flow. If this is the case, the moment acting on the inner cone
is given by

M D
Z R

0

.2�r sin ˛/.r sin ˛/ŒT�� ��D˛ dr

D 4�
B

Z R

0

r2dr D 4

3
�
BR3 ; (8.35)

where it is assumed that the fluid extends to the surface r D R; the moment on the
outer cone has the same magnitude.

8.4 Flow Between Concentric Spheres

The question of edge effects never enters when we consider the flow produced
in a fluid contained between two concentric spheres which rotate slowly about a
common axis of symmetry with different angular velocities as in Fig. 8.4.

We make the obvious choice of a spherical coordinate system with origin at the
common center of the spheres and � D 0 axis along the axis of rotation. The radius
and angular velocity of the inner sphere are denoted by R and ! respectively and
those of the outer sphere by QR and Q!. Thus we seek a solution to (8.9) which satisfies
the boundary conditions

v�.R; �/ D !R sin � ; (8.36)

v�. QR; �/ D Q! QR sin � :

A trial solution of the form

v�.r; �/ D �.r/ sin � (8.37)

does the job, for substitution in (8.9) yields the ordinary differential equation

r2�00.r/C 2r�0.r/ � 2�.r/ D 0: (8.38)

The general solution is

�.r/ D !

�
Kr C LR3

r2

�
(8.39)

and the dimensionless constants of integration K;L are easily obtained from the
boundary conditions (8.36):
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Fig. 8.4 Concentric spheres

K D
QR3 Q!=! � R3

QR3 � R3
; (8.40)

L D
QR3.1 � Q!=!/

QR3 �R3 : (8.41)

If the inner sphere is absent, a condition of finite velocity at r D 0 requires that
L vanishes. Equation (8.37) then represents the solid body rotation obtained when a
revolving sphere is completely filled with fluid. The coefficient L also vanishes, so
that solid body rotation is again obtained, if ! D Q!.

If the outer sphere is absent, it is K that must vanish. In this case L is unity and
Eq. (8.37) describes the flow generated in an infinite volume of massless fluid by a
rotating sphere.

Combining (8.37) and (8.39) yields

v�.r; �/ D !

�
Kr C LR3

r2

�
sin � ; (8.42)

from which the stresses can be calculated via Eqs. (3.98) and (3.100). We obtain

Trr D T�� D T�� D �p ;
Tr� D T�r D T�� D T�� D 0 ; (8.43)

Tr� D D T�r D �3
!LR3
sin �

r3
I

the pressure p may be assigned any constant value p0.
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The moment on the outer sphere, which has the same magnitude as the moment
on the inner sphere, is given by

M D
Z �

0

.2� QR sin �/. QR sin �/ŒTr��rD QR d. QR�/ (8.44)

D �6�
!LR3
Z �

0

sin3 �d� D �8�
!LR3 D 8�
R3 QR3. Q! � !/

QR3 �R3 :

Kanwal (1961) treated the general problem of creeping rotary flow generated by
an axially symmetric body rotating in an unbounded fluid. Several special bodies,
including the lens and the torus, were treated explicitly.

8.4.1 Secondary Flow

As we mentioned in Chap. 6, Whitehead attempted to improve upon Stokes’ solution
for the flow past a sphere by treating the inertia associated with Stokes’ result
as the driving force of a perturbation flow field. The attempt was doomed from
the start, since the Stokes solution is not self-consistent if the fluid has any
density whatsoever: as Oseen pointed out, inertia dominates over viscosity in region
sufficiently far from the sphere. For the rotary flow between spheres, however,
Whitehead’s procedure works very well.

Since the pressure is constant and the inertia is neglected in creeping rotary
flow, the only term that remains in the Navier-Stokes equation is the viscous term.
Consequently solving the flow problem involves seeing to it that this term vanishes;
hence it is pointless to examine its magnitude. A measure of the relative importance
of viscosity and inertia can, however, be obtained by comparing a typical term
in (8.9) with a typical inertia term in the full Navier-Stokes equation. We need only
consider the case of unbounded flow, for this is where Whitehead’s paradox might
be encountered. If we set K D 0 in Eq. (8.42), we see that a typical term in (8.9)
has the form !R3r�4f .�/. A typical neglected term in the Navier-Stokes equation
is .�=
r/v2� D .�!2R6=
/r�5 sin2 � . If we ignore the �-dependence and take the
ratio ı, we obtain a measure of the relative importance of inertia and viscosity:

ı D �R3!


r
: (8.45)

The worst case occurs not at infinity but on the sphere, where ı equals the Reynolds
number

Re D �R2!



: (8.46)
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Consequently, for sufficiently small Re, inertia is everywhere negligible compared
with viscosity.

The flow field

vr D v� D 0 ;

v� D !

�
Kr C LR3

r2

�
sin � ; (8.47)

p D p0 ;

represents the zero-order term in a perturbation expansion with Re as the parameter.
In calculating higher order terms, it is best to use a dimensionless formulation. This
can be done several ways, but it is easiest to useR as length scale andR! as velocity
scale, for the problem of a single sphere in unbounded flow then appears as a special
case. Thus we set

r D R� ;

vr D R!ŒRe u�.�; �/CO.Re2/� ;
v� D R!ŒRe u� .�; �/CO.Re2/� ; (8.48)

v� D R!

��
K�C L

�2

�
sin � C Re u�.�; �/CO.Re2/

	
;

p D p0 C 
!ŒRe $.�; �/CO.Re2/� :

We now substitute these results into the incompressible flow Eqs. (3.101)
through (3.104) with time-dependent terms and body force terms deleted. Terms in
Re0 cancel out and we ignore terms in Re2. The terms in Re1 give us the equations
governing the perturbation flow; with the axial symmetry,

@u�
@�

C 2u�
�

C 1

�

@u�
@�

C u� cot �

�
D 0 ; (8.49)

Qr2u� � 2u�
�2

� 2

�2
@u�
@�

� 2u� cot �

�2
D @$

@�
� �

�
K C L

�3

�2
sin2 � ; (8.50)

Qr2u� C 2

�2
@u�
@�

� u�
�2 sin2 �

D 1

�

@$

@�
� �

�
K C L

�3

�2
cos � sin � ; (8.51)

Qr2u� � u�
�2 sin2 �

D 0 ; (8.52)

where Qr2 is the dimensionless Laplacian, i.e.,

Qr2 D @2

@�2
C 2

�

@

@�
C 1

�2
@2

@�2
C cot �

�2
@

@�
: (8.53)
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Since the basic flow (8.48) satisfies the no-slip conditions, all velocity compo-
nents of the perturbation solution must vanish on both spheres. Thus,

u�.1; �/ D u�.˛; �/ D 0 ; (8.54)

u� .1; �/ D u� .˛; �/ D 0 ; (8.55)

u�.1; �/ D u�.˛; �/ D 0 ; (8.56)

in which ˛ D QR=R.
With (8.52) and (8.56), we have immediately

u�.�; �/ D 0 : (8.57)

Thus, to the present order of approximation, the perturbation flow consists entirely
of a circulation in the meridional planes. To determine the nature of this circulation,
we introduce a dimensionless Stokes stream function Υ.�; �/ such that

u� D 1

�2 sin �

@Υ

@�
; u� D � 1

� sin �

@Υ

@�
: (8.58)

Cross-differentiating (8.50) and (8.51) so as to eliminate $ yields

�
@2

@�2
C 1

�2
@2

@�2
� cot �

�2
@

@�

�2
Υ

D sin �

(
@

@�

"�
K�C L

�2

�2
cos � sin �

#
� @

@�

"
�

�
K C L

�3

�2
sin2 �

#)

D �6L
�
K

�2
C L

�5

�
sin2 � cos � : (8.59)

The boundary conditions on Υ can be deduced by substituting (8.58) into (8.54)
and (8.55). From (8.55) we see immediately that @Υ=@� must vanish on both
spheres. Condition (8.54) tells us that @Υ=@� vanishes on the spheres, or equiva-
lently, that Υ is constant on each sphere. If we assume Υ.1; �/ D c andΥ.˛; �/ D Qc,
where c and Qc are different, we make nonsense of (8.58): for u� to remain finite on
the axis of symmetry, @Υ=@� must vanish along � D 0, which is not the case if Υ
varies continuously from the value c to the different value Qc. Consequently Qc D c.
Moreover we may take c D Qc D 0 without affecting the meaning of the stream
function. We thus obtain the boundary conditions

Υ.1; �/ D Υ.˛; �/ D @

@�
Υ.1; �/ D @

@�
Υ.˛; �/ D 0 : (8.60)

The solution of (8.59) subject to (8.60) is easily carried out with the help of the
identity
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�
@2

@�2
C 1

�2
@2

@�2
� cot �

�2
@

@�

�2
.�n sin2 � cos �/ D sin2 � cos �

�
@2

@�2
� 6

�2

�2
�n

D sin2 � cos �Œ.n � 2/.n� 3/� 6�Œ n .n � 1/� 6��n�4

D n.n � 5/.n � 3/.nC 2/�n�4 sin2 � cos � : (8.61)

A solution to (8.59) which retains sufficient arbitrariness to satisfy (8.60) is provided
by

Υ.�; �/ D �1
4
L

�
AC B

�2
C C�3 CD�5 CK�2 � L

�

�
sin2 � cos � ; (8.62)

where A;B;C;D are constants of integration. With (8.60),

AC B C C CD D L �K ;

˛2ACB C ˛5C C ˛7D D ˛.L � ˛3K/ ;

�2B C 3C C 5D D �.LC 2K/ ; (8.63)

�2B C 3˛5C C 5˛7D D �˛.LC 2˛3K/ :

Expanding Δ, the determinant of coefficients, we find

Δ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

1 1 1 1

˛2 1 ˛5 ˛7

0 �2 3 5

0 �2 3˛5 5˛7

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D
ˇ̌
ˇ̌
ˇ̌
.1 � ˛2/ .˛5 � ˛2/ .˛7 � ˛2/

�2 3 5

�2 3˛5 5˛7

ˇ̌
ˇ̌
ˇ̌

D 4˛12 � 25˛9 C 42˛7 � 25˛5 C 4˛2 (8.64)

D ˛2.˛ � 1/4.4˛6 C 16˛5 C 40˛4 C 55˛3 C 40˛2 C 16˛ C 4/ :

By Descartes’ rule of signs, the only positive real root of Δ D 0 is the quadruple root
at unity. Since ˛ D QR=R > 1, the coefficients A;B;C;D are uniquely determined
by (8.63).

There is, of course, no conceptual difficulty in carrying out the explicit solution
of the system (8.63). This was in fact the approach used in a note by Haberman
(1962). Haberman’s notation is somewhat different from that used here. In particular
his stream function is chosen with opposite sign.

However it is instructive to use a somewhat different approach, which involves
working backwards: the boundary conditions are met first, then the coefficients are
adjusted to satisfy the differential equation. Since Υ.r; �/ has a double zero on both
spheres, we set

Υ.�; �/ D �1
4
L
.1 � �/2.˛ � �/2

�2
.a C b�C c�2 C d�3/ sin2 � cos � ; (8.65)
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Fig. 8.5 Streamlines in a
meridional plane

and adjust the coefficients a; b; c, and d so that the expansion of (8.65) gives a result
consistent with (8.62). This procedure leads to the result

� 4.4˛6 C 16˛5 C 40˛4 C 55˛3 C 40˛2 C 16˛ C 4/�2

.1 � �/2.˛ � �/2 sin2 � cos �
Υ.�; �/

D KLŒ˛2.4˛2 C 7˛ C 4/C 2˛.˛ C 1/.4˛2 C 7˛ C 4/�

C 4.˛ C 1/2.˛2 C 3˛ C 1/�2 C 2.˛ C 1/.˛2 C 3˛ C 1/�3�

C L2

˛
Œ2.˛ C 1/.˛4 C 3˛3 C 7˛2 C 3˛ C 1/

C .4˛4 C 16˛3 C 25˛2 C 16˛ C 4/�

C2.˛ C 1/.3˛2 C 4˛ C 3/�2 C .3˛2 C 4˛ C 3/�3� : (8.66)

In a typical case, the projections of the streamlines upon a meridional plane form
four separate vortices, one in each quadrant, as illustrated in Fig. 8.5. If K and L
have different signs, however, there may be other dividing streamlines, viz., the
circles � D �� , where �� represents the zeros of the right side of (8.66).

If the outer sphere is absent, so that K D 0 and L D 1, the calculations become
quite a bit easier. To avoid infinite velocities, the coefficients C andD in Eq. (8.62)
are set equal to zero. The remaining coefficients are determined by the boundary
conditions at � D 1:

AC B D 1 ;

�2B D �1 : (8.67)

Hence, A D B D 1=2, and (8.62) becomes

Υ.�; �/ D �1
8

�
1 � 2

�
C 1

�2

�
sin2 � cos � (8.68)

D �1
8
.� � 1/2��2 sin2 � cos � : (8.69)
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Fig. 8.6 Streamlines around
one sphere

For this case the streamline projections do not close upon themselves: if the stream
function and the colatitude are assigned specific values Υ0; �0; .�0 ¤ 0; �=2; �/,
Eq. (8.68) takes the form

k2�2 D .� � 1/2 ; (8.70)

where

k2 D � 8Υ0

sin2 �0 cos �0
< lim

�!1
.� � 1/2
�2

D 1I (8.71)

Eq. (8.70) has only one positive solution, viz., � D .1 � k/�1. Thus, if we proceed
along the ray � D �0, we encounter the streamline Υ D Υ0 only once. We obtain
the configuration shown in Fig. 8.6; since Υ.r; �/ approaches a finite limit as r tends
to infinity, � fixed, the streamlines become asymptotically radial.

8.5 Rotlets

As discussed in Sect. 6.6, the flow generated at great distance from a concentrated
force applied to the fluid is that of a Stokeslet, a fact that is often exploited in the
solution of boundary value problems. If the fluid is acted upon by a concentrated
force couple, a similar result is found.

When the outer sphere is absent, (8.37) becomes

v� D !.R3=r2/ sin � ; (8.72)
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and the expression (8.44) for the moment which the sphere exerts on the fluid
reduces to

M D 8�
R3! : (8.73)

If the fluid rotates about an arbitrary axis, so that the rotation is described by a
rotation vector !, the corresponding moment vector M exerted by the sphere on the
fluid is given by

M D 8�
R3!: (8.74)

With an appropriate rotation of coordinates, (8.72) can be expressed in terms of M.
The resulting velocity field

vRi D .1=8�
r3/�ijkMjxk (8.75)

is termed a rotlet. Just as a Stokeslet can be interpreted as the flow resulting from
a delta-function force acting at the origin, a rotlet, as discussed by Guazzelli and
Morris (2011), can be interpreted as the flow created by a delta function force couple
acting at the origin.



Chapter 9
Lubrication Theory

Abstract Lubrication theory is the hydrodynamical analog of shell theory, capital-
izing on the fact that the physical domain is thin in one direction compared with
the others. A stretched coordinate, akin to that used in boundary layer theory, is
used to derive the general Reynolds equation. If the lubricant is incompressible,
this is a linear equation for the pressure in terms of time and the transverse space
variables. In the important case where the lubricant is an isothermal gas, the
Reynolds equation is nonlinear. For slider bearings, externally pressurized bearings,
and journal bearings, the pressure is determined by the steady-state Reynolds
equations, unless transients are of interest. Squeeze bearings are governed by the
time-dependent Reynolds equation.

It has long been known that the presence of a fluid film greatly reduces the
sliding friction between solid objects. The enormous practical importance of this
effect has, quite naturally, stimulated a great deal of research, both theoretical and
experimental. Since much of the work has been geared directly to application, there
is some tendency among hydrodynamicists to regard lubrication theory as a prosaic
subject, complicated but not fundamentally difficult, useful but not intellectually
satisfying. There is at least a subconscious inclination to consider it not really
part of hydrodynamics at all, but a separate subject which, like hydraulics and
acoustics, happens to use a certain part of the hydrodynamics vocabulary. This is
quite unfortunate, for a considerable amount of “real hydrodynamics” is involved in
the foundations of lubrication theory.

Lubrication theory is the hydrodynamical analog of shell theory. In most
lubricating films the thickness of the film is extremely small compared with its
lateral dimensions. Properly handled, this observation can be used to eliminate from
the hydrodynamic equations the dependence upon one of the three spatial variables.
Roughly speaking, the continuity equation is integrated across the film and the
Navier-Stokes equation is used to evaluate the quantities appearing as integrands.

W.E. Langlois and M.O. Deville, Slow Viscous Flow,
DOI 10.1007/978-3-319-03835-3__9,
© Springer International Publishing Switzerland 2014
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We shall consider only the fundamentals of lubrication theory, plus a few
illustrative examples. Development and application are extensively covered in
Pinkus and Sternlicht (1961), Gross (1962), and Tipei (1962). A more recent
monograph is Hori (2006).

9.1 Physical Origins of Fluid-Film Lubrication

From a very superficial consideration of the matter one might expect that the main
problem of lubrication theory is to predict the friction which results from a given
bearing configuration. However a little more reflection reveals that the real problem
is quite different. Lubricating films are usually found between two solid objects
which are acted upon by forces tending to push them together. To carry this load,
the film must develop normal stresses. We shall see in the next section that in a
lubricating film the significant portion of the stress tensor is represented by the
pressure term. Thus the first task is to predict the pressure distribution and from
it the load-carrying capacity.

Many different types of film-lubricated bearings are in use, but the relevant
features are represented by four basic types:

1. In the slider bearing the lubricating pressure is generated by the lateral motion of two
surfaces which are not quite parallel.

2. In the externally pressurized bearing lubricant is forced into the film at a pressure high
enough to sustain the load.

3. The squeeze-bearing, which gets its load-carrying capacity from relative normal motion
of the surfaces, was first developed1 as the first edition of this book was being written,
although it had been known for some time that lubricating pressure can be generated by
such motion.

4. The journal bearing is a bearing wrapped around a cylinder. This could be any one of
the three previous types, or a combination of them. Boundary conditions applied on the
bearing periphery in the other cases are replaced here by periodicity conditions.

Thus the four basic bearings represent three different principles of lubrication:
lateral motion; external pressurization; relative normal motion. All fluid-film bear-
ings generate their load-carrying capacity through application of these principles,
singly or in combination. The journal bearing is included as a basic type because its
boundary conditions are distinctive.

Again from a superficial viewpoint, one might obtain an erroneous concept of
the physical origin of the lubricating pressure. The slider-bearing configuration
illustrated in Fig. 9.1a brings to mind such concepts as hydrofoil, lifting surface,
Bernoulli principle. However the principal effects in fluid-film lubrication have
nothing to do with Bernoulli’s equation, which assumes inviscid flow; in most
lubrication problems the relevant Reynolds number is so small that viscosity
dominates completely. The misconception arises since Fig. 9.1a is not drawn to

1For an engineering description, Salbu (1964).
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Fig. 9.1 (a) Slider bearing. (b) Externally pressurized bearing. (c) Squeeze bearing. (d) Journal
bearing

A B

hB

hA

U

Fig. 9.2 Detailed slider bearing

scale; if it were, the gap would not be visible. The illustration sometimes given
is that a slider bearing, drawn to scale, would correspond to two surfaces the size of
football pitches, 1 cm apart at one end, 2 at the other.

The true physical origin of lubricating pressure is more easily grasped by
considering first the externally-pressurized bearing. Lubricant supplied at the orifice
streams toward the periphery, where ambient pressure obtains. This streaming,
through an extremely narrow passage, is resisted by the viscosity of the fluid.
To overcome this resistance, a pressure gradient must be set up. Thus the portion
of the film away from the periphery is at a pressure higher than ambient,2 so that
there is a pressure difference across the upper surface of the bearing, i.e., there is a
load-carrying capacity.

In the slider bearing the origin of the lubricating pressure is more subtle, but again
it arises from the fluid viscosity rather than from inertia. To illustrate the point, let
us consider an extremely simple case, which is nevertheless often approximated in
practice: we assume that the lubricant is an incompressible Newtonian fluid and that
the local velocity profile approximates the exact solution (4.5), with the transverse
velocity v set equal to zero. By referring to Fig. 9.2, we see that the pressure gradient
cannot vanish throughout the film: if it did, the resulting shear flow would produce a
lubricant flux of 1

2
UhA through the section at A and a smaller flux 1

2
UhB through the

section at B, violating continuity. To achieve the proper mass balance, the shear flow

2This explanation is somewhat oversimplified. In practice inertia dominates the flow in the
immediate neighborhood of the orifice, giving rise to a Bernoulli’s region, in which the pressure
is subambient.
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must be reduced by a component of back-flow, stronger at A than at B. Associated
with this backflow is an adverse pressure gradient. Hence, as we proceed from A
farther into the region of lubrication, the pressure increases. The rate of increase at
B is slower, and eventually the backflow reverses, reinforcing the shear flow, so that
the pressure returns to ambient at the trailing edge of the bearing.

Although the fluid motion in a lubricating film is “slow”, in the sense that the
appropriate Reynolds number is quite small, it does not necessarily follow that
compressibility can be neglected. In recent years gas bearings have come into
widespread use. In a gas, significant variations in pressure are usually accompanied
by significant variations in density.

Fortunately, however, there is seldom any need to bring in the energy equation.
Gas lubrication films are extremely thin—from 0:5 to 25�m, and the bearing sur-
faces are usually metals—excellent conductors of heat. Hence, unless we consider
refinements of lubrication theory, we may consider the film to be isothermal, so that
the density of the gas is proportional to its pressure.

The heuristic discussion presented above is of necessity somewhat vague.
It should, however, provide at least a qualitative feeling for the way an analytical
development should proceed. Such a development is considered next.

9.2 The Mathematical Foundations of Lubrication Theory

Assume that a thin, continuous film of fluid is contained between the surfaces

x3 D H.x1; x2; t/ ; (9.1)

x3 D H0.x1; x2; t/ ; (9.2)

where x1; x2; x3 are right-handed Cartesian coordinates fixed in the ambient fluid as
exhibited in Fig. 9.3. The film thickness h, defined by

h.x1; x2; t/ D H0.x1; x2; t/ � H.x1; x2; t/ (9.3)

is positive for all values of x1; x2; t ; the surfaces move relative to the ambient fluid
with velocity components V˛; V

0

˛ .
The surfaces bounding the film may be either rigid or flexible, but are assumed

continuous. At each point of each surface three components of velocity provide
one degree of freedom too many and must therefore be related through a kinematic
constraint analogous to the kinematic boundary condition on a free surface (see
Sect. 2.6.4). With the convention that Latin indices extend over the values 1; 2, and
Greek indices extend over 1; 2; 3, the constraints are

V3 D @H

@t
C Vi

@H

@xi
;
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Fig. 9.3 General
configuration of lubrication
flow

V 0
3 D @H0

@t
C V 0

i

@H0

@xi
; (9.4)

repeated indices denoting summation.
We consider only cases in which the viscosity coefficients 
 and � can be

assumed constant. We thus exclude many problems, occurring mostly for oil-film
lubrication, in which temperature variations cause 
 and � to vary significantly.
The appropriate form of the Navier-Stokes equation is therefore (2.130). Neglecting
the body force term and converting to Greek indices gives us

�
Dv�

Dt
D @

@x�
Œ�p C .�C 
/Δ�C 


@2v�

@x˛@x˛
; (9.5)

where the dilation Δ is given by3

Δ D �1
�

D�

Dt
D @v˛

@x˛
I (9.6)

the second part of (9.6) follows from the continuity equation (2.35).
Lubrication theory is founded on the assumption that the film thickness is small

compared with the lateral dimensions of the bounding surfaces. Thus, if h0 denotes a
typical value of h.x1; x2; t/ and B denotes a typical lateral dimension, we introduce

" D h0

B
(9.7)

as a perturbation parameter.

3In Langlois (1962), Δ is defined with opposite sign. The form (9.6) is used here for consistency
with Eqs. (3.71) and (3.95). With (9.6), Δ is positive when the fluid is expanding.
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We shall want to compare the magnitudes of the various terms in the
Navier-Stokes equation. However in the xi coordinate system the terms have a
misleading appearance, for the velocity components vary much more rapidly in
the x3-direction than in the lateral directions. In order to indicate the magnitude of
each term by its coefficient, we introduce a dimensionless coordinate system which
stretches the coordinate normal to the film:

Xi D xi

B
.i D 1; 2/; (9.8)

z D x3

"mB
D
�
B

h0

�m �x3
B


; (9.9)

where the value of the positive exponentm will be determined later.
To complete the normalization, we must select, in a meaningful way, a dimen-

sionless time variable, dimensionless pressure and density, and dimensionless
components of velocity.

For the time scale, we choose the reciprocal of a typical frequency ! of the
squeeze component of surface motion. Thus we assume

V3 D h0!W; V 0
3 D h0!W

0 ; (9.10)

where W and W 0 are dimensionless velocities of order unity, and introduce a
dimensionless time T defined by

T D !t : (9.11)

To be consistent with (9.10), we let

v3 D h0!w : (9.12)

We can now select the appropriate value of the exponent m in Eq. (9.9). The
variation of v3 across the film is of order h0!, so that @v3=@x3 is of order !.
With (9.9) and (9.12), however,

@v3

@x3
D h0!

"mB

@w

@z
D "1�m!

@w

@z
: (9.13)

If @w=@z is to be of order unity, we must take m D 1. Equation (9.9) therefore
becomes

z D x3

"B
D x3

h0
: (9.14)

The scale of the lateral velocity components is not necessarily related to the
scale of the squeeze component. While it is true that the squeeze motion forces
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fluid outward or sucks it inward, at a characteristic velocity !B , there is also a
contribution to the lateral velocity arising from the lateral motion of the bearing
surfaces. We need not require that the lateral components of surface motion remain
constant, but it is convenient to assume that their variation is not too great; this
allows us to introduce a reference velocity V such that

Vi D V Ui ; V 0
i D V U 0

i ; (9.15)

where the dimensionless velocities Ui; U 0
i are of order unity. To account for both

contributions to the lateral velocity, we let

vi D .!B C V /ui ; (9.16)

and expect the ui to be of order unity.
In terms of our dimensionless quantities, the constraints (9.4) becomes

!W D !
@ QH
@T

C V

B
Ui
@ QH
@Xi

;

!W 0 D !
@ QH0

@T
C V

B
U 0
i

@ QH0

@Xi
; (9.17)

in which

QH D H

h0
; QH0 D H0

h0
: (9.18)

The factor V=!B implicit in Eq. (9.17) provides a measure of the relative magnitude
of the two reciprocal times characteristic of the bearing kinematics: V=B represents
a shear rate characteristic of the lateral motion; !, as defined above, is a typical
frequency of the squeeze motion.

We now turn our attention to the definition of a dimensionless pressure.
As pointed out in Sect. 9.1, viscous effects dominate. Consequently it is a mistake to
normalize with respect to the dynamic head. The typical pressure is proportional to
the coefficient of viscosity, multiplied by an appropriate measure of the rate of defor-
mation tensor. The parameter " may enter into the coefficient of proportionality; to
allow for this possibility, we set

p D 


�
! C V

B

�
"�n$ ; (9.19)

where the exponent n will be selected later. It is a priori conceivable that the
form (9.19) might not be sufficiently general; if this were the case (it is not), the
fact would become evident in the analysis which follows.
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For the normalized density, we use

q D �

�a
; (9.20)

where �a denotes the ambient density.
With Eqs. (9.6), (9.8), (9.14), (9.12), and (9.16), the dilatational stress .�C 
/Δ

can be expressed

.�C 
/Δ D 


�
!�S C V

B
�L

�
; (9.21)

where �S and �L are dimensionless quantities, defined by

�S D
�
1C �




��
@ui
@Xi

C @w

@z

�
; (9.22)

�L D
�
1C �




�
@ui
@Xi

: (9.23)

Near the bearing periphery, where steep gradients of pressure obtain, �S and �L
may be quite large. In the interior of the film, however, they are normally of order
unity. As indicated at the end of Sect. 9.1, we consider only films with continuous
bounding surfaces. However bearings with steps and grooves are sometimes used in
practical applications. In such bearings �S and �L may be large in the neighborhood
of the discontinuity.

In terms of the dimensionless quantities introduced above, the � D 1; 2

components of the equation of motion (9.5) become

"2�n
@$

@Xi
D @2ui

@z2
� ReSq

�
@ui
@T

C w
@ui
@z

�
� .ReS C ReL/quj

@ui
@Xj

C "2
�

@�S=@Xi

.1C V=!B/
C @�L=@Xi

.1C !B=V /
C @2ui
@Xj @Xj

	
; (9.24)

where ReS andReL are modified Reynolds numbers corresponding, respectively, to
the squeeze motion and to the lateral motion:

ReS D !�ah
2
0



; ReL D V�ah

2
0

B

: (9.25)

For Eq. (9.24) to be meaningful, we must set n D 2, so that the pressure
normalization (9.19) becomes

p D 


�
! C V

B

�
$

"2
: (9.26)
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The � D 3 component of Eq. (9.5) becomes

@$

@z
D "2

.1C V=!B/
Œ
@2w

@z2
C @�S

@z
� ReSq

�
@w

@T
C w

@w

@z

�

� .ReS C ReL/qui
@w

@Xi
�

C "2

.1C !B=V /

@�L

@z
C "4

.1C V=!B/

@2w

@Xi@Xi
: (9.27)

Equation (9.27) implies that, with neglect only of terms of the second degree
or higher in ", the pressure is constant across the film. This conclusion does not
necessarily apply near the periphery of the bearing nor in regions where one or
both of the dimensionless dilational stresses �S ; �L become large (of order "�2).
Moreover either qReS or qReL could conceivably be of order "�2. In most cases
of interest, however, it is correct to infer from Eq. (9.27) that @$=@z vanishes
throughout the interior of the film, and we shall proceed on the assumption that
this is the case. Consistent with this assumption is the reduction of Eq. (9.24) to

@$

@Xi
D @2ui

@z2
� ReSq

�
@ui
@T

C w
@ui
@z

�
� .ReS C ReL/quj

@ui
@Xj

: (9.28)

In most bearing applications, the Reynolds numbers are negligibly small, so
that (9.28) becomes

@$

@Xi
D @2ui

@z2
: (9.29)

In view of Eqs. (9.15), (9.16), and (9.18), the dimensionless velocity components
satisfy the boundary conditions

Œui �zD QH D Ui

.1C !B=V /
;

Œui �
zD QH0 D U 0

i

.1C !B=V /
: (9.30)

Since $ is assumed constant across the film, integration of Eq. (9.29) subject to
the boundary conditions (9.30) yields

ui D 1

2

@$

@Xi
.z � QH/.z � QH0/C Ui

QH0 � U 0
i
QH C .U 0

i � Ui/z

.1C !B=V /H
; (9.31)

in which

H D h

h0
D QH0 � QH : (9.32)
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Equation (9.31) represents a preliminary result to which we shall return presently.
For the moment, however, let us consider the continuity equation. In terms of the
normalized variables

@q

@T
C
�
1C V

!B

�
@

@Xi
.qui /C @

@z
.qw/ D 0 : (9.33)

As indicated previously, we neglect the z-variation of pressure. It was pointed out in
Sect. 9.1 that temperature variations across gas films are also negligible. Hence, the
density, and the normalized density, can be assumed constant across the film, even
if the lubricant is a gas. Integration of Eq. (9.33) across the film therefore yields

H
@q

@T
C
�
1C V

!B

�Z QH0

QH
@.qui /

@Xi
d z C q.W 0 �W / D 0 : (9.34)

However with the boundary conditions (9.30),

�
1C V

!B

�Z QH0

QH
@.qui /
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D
�
1C V

!B

�
@

@Xi

Z QH0

QH
qui d z C qV

!B
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@ QH
@Xi

� U 0
i

@ QH0

@Xi

!
; (9.35)

so that, if we again neglect density variation across the film,

H
@q

@T
C q.W 0 �W /C qV

!B
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@ QH
@Xi

� U 0
i
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In view of the kinematic constraints (9.17), Eq. (9.36) becomes
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With the dimensionless velocity components ui given by Eq. (9.31), Eq. (9.37)
becomes

@

@Xi

�
H3q

@$

@Xi

�

D 6

.1C !B=V /

@

@Xi

�
qH.Ui C U 0

i /
�C 12

.1C V=!B/

@.qH/

@T
: (9.38)



9.2 Foundations of Lubrication Theory 239

In terms of the original variables (9.38) becomes the Reynolds equation
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which is the fundamental equation of lubrication theory.
If the lubricant is incompressible, the density cancels out of (9.39), leaving a

linear equation for the pressure:
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The other important case is that of an isothermal gas, for which the density is
proportional to the pressure. Equation (9.39) then becomes
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If compressibility and temperature variation are both important, the density
cannot be eliminated from the Reynolds equation, which is therefore coupled to
an energy equation for the film. Sometimes, however, it is possible to get around
this by using the polytropic approximation

p D c�n ; (9.42)

where c and n are constants. In an isothermal film the polytropic index n takes
the value unity. At the other extreme, seldom encountered in practice, when the
lubricant is an adiabatic gas, n D 	 , where 	 is the specific-heat ratio. In general

1 � n � 	 : (9.43)

As we have indicated several times already, however, gas films are almost
always isothermal. Thus, in most practical applications, either the incompressible
form (9.40) or the isothermal form (9.41) is used, the former for liquid films, the
latter for gas films.

Each boundary value problem considered in earlier chapters was treated by
deriving an equation for a velocity component or for the stream function, and
by solving this equation subject to appropriate boundary conditions. Now, in the
lubrication problem, we derive instead an equation for the pressure. It is not yet clear
that this can lead anywhere: by itself the pressure has no physical significance, since
force boundary conditions involve the components of stress—of which the pressure
is only a part. However, introducing the normalizations (9.8), (9.14), (9.12), (9.16),
(9.26), (9.21) into the constitutive equation (2.125), we obtain
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Fig. 9.4 Sketch of the different regions in the bearing

where the components of E˛ˇ are given by
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If we drop terms involving " from the right side of Eq. (9.44) and return to the
physical variables, we obtain

T˛ˇ D �pı˛ˇ ; (9.46)

so that force boundary conditions can be expressed in terms of the pressure.
At the periphery of the bearing the lubricant is no longer constrained to flow

through a narrow gap, so that a rapid adjustment to ambient conditions takes place,
cf. Fig. 9.4. The extent of the adjustment region is measured by h0. Since the typical
lateral dimension of the film is B D h0=", it is consistent with the approximations
already introduced to neglect the breadth of the adjustment region. Thus for a
boundary condition on the Reynolds equation, we require that p equal the ambient
pressure all along the bearing periphery.

The four basic problems of lubrication theory are discussed in the sections
which follow. These sections give only a brief introduction to a big subject; for
the manifold extensions, nuances, and ramifications, Pinkus and Sternlicht (1961),
Gross (1962), Tipei (1962), and Hori (2006) can be consulted.

9.3 Slider Bearings

If there is no relative normal motion of the bearing surfaces, the time-derivative term
drops out of the Reynolds equation (9.39) and we obtain
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Fig. 9.5 The slider bearing
problem
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In many slider bearing problems, we can orient the coordinate system so that
V2 D V 0

2 D 0, see Fig. 9.5. In this case, Eq. (9.47) can be written
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The extent of the bearing in the direction of motion is called the breadth; the
transverse extent is called the length. This infuriating terminology is carried over
from the study of journal bearings, where it corresponds to the definitions of length
and breadth in their usual (non-technical) sense.

If the length-to-breadth ratio is very large, and if the leading and trailing edges
of the bearing are straight, the @=@x2 term in Eq. (9.48) may be unimportant, i.e.,
the side leakage may be negligible. In this case, (9.48) becomes a second order
ordinary differential equation; dropping the subscripts, we obtain
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For boundary conditions we require that the pressure be ambient at the leading and
trailing edges.

A first integral of (9.49) is obtained immediately:
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� C

�h3
; (9.50)

where C is a constant of integration. For incompressible films p is obtained by
one more integration, plus use of the boundary conditions. For isothermal films �
is proportional to p and (9.50) represents a first order differential equation, which
may or may not be soluble in closed form.

In the more general case of arbitrary bearing plan-form, the mathematical
character of Eq. (9.47) is best studied by rewriting it in normalized form. We use
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the dimensionless variables introduced in Sect. 9.2, except now we normalize the
pressure with respect to the ambient pressure pa, i.e., we set

P D p

pa
: (9.51)

Equation (9.47) then becomes, in terms of the normalized density q D �=�a,
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where the dimensionless parameter Λ is the bearing number, defined by

Λ D 6
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: (9.53)

If the lubricant is incompressible, there is little more to be said at the conceptual
level. The normalized density cancels out of (9.52), which then becomes a linear
equation of the elliptic type. If the bearing geometry and the functional forms of
H;Ui ; U

0
i are simple enough, analytic solution can be achieved by well-known

methods. If not, computer solution can be carried out by equally well-known
numerical methods.

The isothermal case is less trivial. With q proportional to P , (9.52) becomes the
nonlinear equation
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Except for the most trivial problems the search for exact solutions now appears
futile. Numerical methods remain available. We should not, however, overlook the
possibility of asymptotic solutions, especially since (9.54) contains a parameter
(the bearing number).

If the bearing number is precisely zero, the pressure is ambient throughout the
film. Consequently, for small Λ, we might expect the pressure to depart only slightly
from ambient. We therefore set
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whence (9.54) becomes
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Collecting equal powers of Λ yields
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Since the pressure is ambient at the bearing periphery, all theP .n/ must vanish there.
It is of interest to set

1C ΛP .1/ D ΠΛ ; (9.59)

so that, with the expansion (9.55),

P D ΠΛ CO.Λ2/ : (9.60)

The boundary condition requires that ΠΛ be unity on the bearing periphery, and
Eq. (9.57) implies that
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Thus ΠΛ satisfies the equation for an incompressible lubricant. Hence, with
neglect only of terms of the second degree and higher in the bearing number, an
isothermal gas can be considered incompressible. Physically, at low bearing number
nothing very violent happens to the gas as it passes between the bearing surfaces.

9.4 Externally Pressurized Bearings

If there is neither lateral motion nor relative normal motion, the entire right side of
the Reynolds equation vanishes, so that
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Whatever the pressure-density relationship, this homogeneous equation yields non-
trivial solutions only if non-homogeneous boundary conditions are applied, i.e.,
only if somewhere on the periphery the pressure differs from ambient. In the usual
construction of such bearings, as typified by Fig. 9.1b, ambient pressure obtains on
the external boundary, but there are one or more internal boundaries across which
lubricant is supplied at pressure ps higher than ambient.
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Fig. 9.6 Simplified
pressurized bearing

For externally pressurized bearings there are two cases which yield linear
equations. One of these, of course, is the case of incompressible lubricant. The
other comes about when h is constant, so that (9.62) reduces (in the case of an
isothermal gas) to

r2p2 D 0 ; (9.63)

where r2 is the two-dimensional Laplacian. By treating p2 as the dependent
variable, the methods of potential theory become available.

One of the simplest problems is important in practice. Let us consider that a flat,
circular disc, with a hole in its center, is placed parallel to a flat back-up plate as
in Fig. 9.6. Through the hole lubricant is supplied at pressure ps . Thus, if the inner
and outer radius of the disc are denoted, respectively, by a and A, the boundary
conditions on (9.63) become4

p2 D p2s on x21 C x22 D a2 ;

p2 D p2a on x21 C x22 D A2 : (9.64)

In view of the axial symmetry we seek a solution to (9.63), subject to (9.64), in
the form

p D p
f .r/ ; (9.65)

where

r D
q
x21 C x22 : (9.66)

Substituting into (9.63) yields the ordinary differential equation

d
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�
D 0 : (9.67)

4In practice the first of these idealized boundary conditions may or may not a good approximation.
If the film thickness is too large or the supply pressure too high, it may be necessary to account
for the Bernoulli region—or even turbulence and shock waves—in the neighborhood of the inner
boundary.
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Since f .a/ D p2s and f .A/ D p2a, integration of (9.67) yields
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: (9.68)

Using (9.65) then gives the pressure profile
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: (9.69)

9.5 Squeeze Films

If there is no lateral motion of the bearing surfaces, (9.39) reduces to the squeeze-
film equation
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For squeeze films the difference between incompressible and isothermal lubri-
cants involves much more than the difference between linear and non-linear
differential equations. If � is constant, (9.70) becomes
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in which the time-derivatives of the dependent variable do not appear. Thus the
incompressible squeeze-film problem is quasi-static: time enters only through the
coefficients in the differential equation.

For isothermal films, however, (9.70) becomes the non-linear parabolic equation

@

@xi

�
h3p

@p

@xi

�
D 12


@.ph/

@t
: (9.72)

This is a tough one, even for the simplest possible forms for the dependence of h
on xi and t . For asymptotic investigations, we use the dimensionless variables of
Sect. 9.2, excepting again the pressure, which is normalized according to (9.48).
Equation (9.72) then becomes
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where the dimensionless parameter � is the squeeze number, defined by
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We proceed by analogy with the slider bearing problem. When the squeeze
number is small, we expect that the pressure will not differ much from ambient:
small squeeze number corresponds to low-frequency normal motion, so that the
bearing has time to leak. Thus we use � as a perturbation parameter, setting
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The isothermal squeeze-film equation (9.72) then becomes
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and collecting equal powers of � yields
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All the P .n/ vanish on the bearing periphery.
If we set

1C �P .1/ D Π� ; (9.79)

so that, with (9.75),

P D Π� CO.�2/ ; (9.80)

the boundary conditions require that Π be unity on the periphery, and (9.77) requires
that Π� satisfy the incompressible squeeze-film equation. Thus, with neglect only
of terms of the second degree and higher in the squeeze number, an isothermal gas
film can be considered incompressible. Physically, at low squeeze number the gas
leaks out before it is significantly compressed.
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Squeeze-film effects are not confined to lubrication phenomena. For example,
the tackiness of liquid adhesives is a squeeze-film effect. For a discussion of this
subject, see Bikerman (1958).

9.6 Journal Bearings

As mentioned in Sect. 9.1, a journal bearing is nothing more than a bearing wrapped
around a cylinder. Since there is nothing new except the periodicity condition,
we shall consider only the simplest possible case, viz., that of an infinitely long
bearing with incompressible lubricant and neither squeeze motion nor external
pressurization.

Figure 9.7 is not drawn to scale. In practice the radius R of the rotating
shaft (the journal) is more than 1;000 times the clearance c. Thus, although the
derivation of the Reynolds equation presented in Sect. 9.1 does not hold for curved
films, we can ignore the curvature in most journal bearing problems. Curvature
corrections for the journal bearing have been calculated by Elrod (1960). We simply
let x D R� in the infinitely-long slider bearing Eq. (9.49). Since V D ΩR and
V 0 D 0, and since � is assumed constant, we obtain
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or the equivalent first integral
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where k is a dimensionless constant of integration.
The film thickness h depends both upon the clearance c and upon the eccentricity

e. For c=R � 1, we may write

h D c.1C " cos �/ ; (9.83)

where " is the eccentricity ratio e=c.
Substituting (9.83) into (9.82) and carrying out the rather lengthy integration

yields
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Fig. 9.7 Journal bearing

Since the fluid film is not open to the atmosphere, the constant of integration p0
can be assigned arbitrarily. However the pressure must be single-valued function
of � , so that the coefficient of the arctangent term in (9.84) must be made to vanish.
Therefore

k D 2

�
1 � "2
2C "2

�
(9.85)

and

p D p0 C 6
ΩR2".2C " cos �/ sin �

c2.2C "2/.1C " cos �/2
: (9.86)

In practice,
;Ω; R, and c are known a priori, but " is not. Under stable operation
the journal assumes whatever eccentricity is required for Eq. (9.86) to produce the
proper load-carrying capacity.

9.6.1 The Wannier Flow

Wannier (1950) solves the cylindrical bearing problem in Cartesian coordinates.
Solutions of the biharmonic equation (7.3) are expressed as linear combinations
of harmonic functions denoted by the generic variable '. Therefore x1' and x2'
are biharmonic as is the expression .x21 C x22/'. Wannier uses electrostatics theory,
especially the treatment of cylindrical geometries, to obtain the lubrication solution.
The reader may consult the original paper for the full relationship.

An interesting limit case is obtained when the radius of the outer cylinder goes
to infinity. The flow occurs in the upper half plane and is set into motion by the
lower wall moving with a constant velocity U in the x1 direction. A fixed cylinder
of radius R is located above the wall with its center at a distance d . The Wannier
solution for the velocity components is
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where
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2; K2 D x21 C .s � x2/2; s2 D d2 � R2: (9.89)

This solution is very useful for checking the numerical accuracy of Navier-Stokes
solvers on irregular geometries.



Chapter 10
Introduction to the Finite Element Method

Abstract The necessary steps for setting up the finite element method are
described, beginning with the weak formulation, which is the cornerstone of
Galerkin’s method. Various schemes for constructing the finite elements to
implement this method are developed.

The numerical treatment of the fluid mechanics equations is classically performed
by a method discretizing the space. The numerical process starts by the construction
of a mesh, i.e. a set of grid points which the discrete variables are attached to. Then
a methodology is built to replace the continuous partial derivatives with discrete
approximations or operators that will eventually lead to the creation of matrix
equations and the use of associated solvers.

Today three major methods constitute the state-of-the-art of the scientific domain
called computational fluid dynamics (CFD): the finite difference method (FDM), the
finite volume method (FVM) and the finite element method (FEM). These acronyms
are subtly designated by the generic name FXM, the choice for the user being
reduced to X.

FDM is the simplest tool to understand and to set up. The derivatives are
approximated by discrete operators generated by Taylor series of the problem
variables. For the velocity-pressure formulation of the Navier-Stokes equation,
FDM led in the sixties of the last century to the well-known MAC (Marker and
Cell) method Harlow and Welch (1965) and the projection methods due to Chorin
(1968) and Témam (1969). FDM presents weaknesses in coping with complicated
industrial geometries and in discretizating accurate boundary conditions.

FVM avoids some drawbacks of FDM by using the conservative form of the
equations based on the presence of the divergence operator defined on the global
computational domain. Finite volumes are generated by hexahedra or tetrahedra;
then the divergence theorem is locally applied on each volume. Therefore the
volume integrals are replaced by surface integrals for three-dimensional problems
and by curvilinear integrals for two-dimensional cases. The variables are expressed

W.E. Langlois and M.O. Deville, Slow Viscous Flow,
DOI 10.1007/978-3-319-03835-3__10,
© Springer International Publishing Switzerland 2014

251



252 10 Finite Element Method

by fluxes. This is one of the reasons why numericists who favor the physical
interpretation of computational results are keen FVM practioners. One of the major
FVM advantages rests upon the ability of using unstructured meshes that allow
dealing with complex geometries. The reader is referred to Eymard et al. (2000),
Hirsch (1991), and Versteeg and Malalasekera (2007) for further developments.

The finite element method is based on the weak formulation, the Galerkin
method, and finite element theory. In this chapter we will describe all the necessary
steps to set up the finite element method for diffusion problems in one and two
space dimensions. However in order to keep the developments on a pedestrian track,
we will skip some heavy mathematical details that the reader may get acquainted
with from references given in due course. For general introductions without being
exhaustive we may cite Carey and Oden (1983), Ciarlet (1978), Girault and Raviart
(1986), Gresho and Sani (2000), Johnson (1990), Quarteroni and Valli (1997), and
Strang and Fix (1973). The present description of the finite element method is
inspired by the monograph of Azaïez et al. (2011).

The recent monograph by Sengupta (2013) is highly recommended as it covers
the full world of discretization methods with the view of achieving high quality and
high accuracy numerics.

10.1 Weak Formulation

For the sake of simplicity let us examine first a very simple boundary value problem
given by the relationship

Lu D f; on ˝ ; (10.1)

whereL is a linear operator described by partial derivatives, u D u.x/ the dependent
variable and f D f .x/ a given source term. The domain ˝ is bounded by a
smooth and continuous boundary @˝ . For the sake of facility we assume that (10.1)
is subjected to homogeneous Dirichlet boundary conditions u D 0 on @˝ . The
problem (10.1) is called the strong formulation because if, for example, L D �Δ,
the Laplace operator, it involves second order partial derivatives that from a
mathematical standpoint should at least exist for the problem to be well posed. The
weak formulation lowers the order of the derivatives to enlarge the function space
where solutions are sought. Typically the weak formulation will use integration
by parts to reduce the degree of the derivatives and consequently will require less
continuity in the solution.

In a formal setting, the weak formulation is based on the relation

.Lu;w/ D .f;w/ for every w ; (10.2)

where w is a well-chosen, sufficiently smooth function having first order continuous
derivatives on ˝ . The notation .:; :/ is a scalar product based on the integral
definition
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.f; g/ D
Z

˝

f g d˝ : (10.3)

Note that Eq. (10.2) may be recast as

.Lu � f;w/ D
Z

˝

.Lu � f /wd˝ ; (10.4)

where the quantity Lu � f is called the residual. If u were the solution of
problem (10.1) then the residual would vanish. In the context of a numerical
approach this non zero residual is projected to minimize the error. This theory is
known as the weighted residual method.

The key question is: which space is involved in the selection of the test
function w? If the choice is appropriate it is possible to prove that weak formulation
and minimization of a variational principle are equivalent procedures. This is no
trivial matter and we refer the reader to the following references where these topics
are treated in full detail and with great care: Deville et al. (2002), Strang and Fix
(1973), and Strang (1986).

Let us treat the Poisson equation

.�Δu;w/ D .f;w/ for every w ; (10.5)

with the boundary condition u D 0 on @˝ . The weak form is obtained by integration
by parts of (10.5) with the requirement that the test function also satisfies the
homogeneous boundary condition w D 0 on @˝ . One obtains

Z

˝

�
@u

@x1

@w

@x1
C @u

@x2

@w

@x2
C @u

@x3

@w

@x3

�
d˝ D

Z

˝

f wd˝ : (10.6)

This is the weak form of the Poisson equation with homogeneous Dirichlet boundary
condition. Equation (10.6) is an instance of the Green’s formula for a scalar
variable u derived from the divergence theorem

Z

˝

�
w

@2u

@xj @xj
C @u

@xj

@w

@xj

�
d˝ D

Z

@˝

w
@u

@xj
nj dS ; (10.7)

with n the outward unit vector normal to the boundary. In the context of the weak
formulation, the Dirichlet condition is called an essential boundary condition.

Suppose now that a Neumann condition is imposed on @˝ , i.e. the normal
derivative is specified by

@u

@xj
nj D g ; (10.8)
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where g is a given function. The weak form becomes in this case

Z

˝

�
@u

@xj

@w

@xj
� fw

�
d˝ D

Z

@˝

w
@u

@xj
nj dS D

Z

@˝

wg dS : (10.9)

The Neumann condition is called a natural condition as it is incorporated
automatically in the weak formulation.

The weak formulation is the cornerstone for building up Galerkin’s method.
The first step consists in choosing a finite set of approximation functions like,
e.g., Fourier polynomials (spectral methods) or piecewise Lagrange interpolating
polynomials (finite elements). Then the variable(s) of the problem is (are) expressed
as finite series of the approximation functions, which are inserted in the weak form.
The coefficients of the approximation constitute the unknowns of the problem and
their computation is performed with the use of the test functions w needed in the
weak form. From symmetry considerations, the Galerkin method requires the test
functions to be the same as the approximation functions. This process leads most of
the time to matrices that are symmetric.

As already mentioned, the Galerkin method is a weighted residual method. When
the series of approximating functions is substituted into the weak form a residual
is produced. If the series were infinite and involved, for example, eigenfunctions
of the operator as approximating functions, the residual might be zero. The actual
finite series produces a non-vanishing residual that is a projection obtained via the
test function. This projection in the Galerkin framework is an orthogonal projection
that minimizes the error in the least square sense.

10.2 The Finite Elements

In order to construct the finite element (FE) theory, four basic ingredients are
needed

1. A mesh M, sometimes called a grid,
2. A reference domain Ő ,
3. A set of parameters uj ; j D 1; : : : ; N , named the degrees of freedom or the

problem variables,
4. A set of J associated functions O'j ; j D 1; : : : ; N defined in Ő .

The mesh M is built by a decomposition of the computational domain in E
subdomains

˚
˝i
�E
iD1 such that

˝ D [E
iD1˝i and ˝k \˝` D ;; 8k ¤ ` ; (10.10)

where ˝ is the closure of ˝ and ; is the empty set. Mesh or grid generation is
based on Delaunay triangulation which produces unstructured meshes able to cope
with complex geometries. An excellent introduction to this topic is the monograph
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by Frey and George (2000). The subdomains are the finite elements and they
are composed of geometrical building blocks of various shapes. These physical
elements are matched onto a reference or parent element defined for the one-
dimensional (1D) case as

Ő D Œ�1;C1� : (10.11)

In two or three dimensions, these reference elements generalize easily to triangles,
rectangles, parallelepipeds and tetrahedra.

In the 1D case, let us choose ˝ D .a; b/. The mesh is built between the end
points x1 D a and xEC1 D b. Then each element is such that ˝i D .xi ; xiC1/.
FE meshes are generally irregular (unlike the finite difference method where regular
meshes are mostly used) and each subdomain has a size hi D xiC1 � xi . Each point

P 2 ˝i
of coordinate x such that xi � x � xiC1 has an image OP 2 Ő provided by

the affine mapping

� D 2

hi

�
x � xi C xiC1

2

�
; �1 � � � C1; (10.12)

where � is the local coordinate of OP . This linear relation is invertible. Each point
OP of local coordinate � yields one and only one image P in ˝

i
, characterized by

the physical coordinate x

x D hi

2

�
� C xi C xiC1

hi

�
; xi � x � xiC1 : (10.13)

Note that every node of coordinate xiC1 belongs to element ˝
i

as the image of

� D C1 and to element˝
iC1

as the image of � D �1.

10.3 One-Dimensional Q1 Lagrange Element

The 1D Q1 Lagrange finite element uses Lagrangian linear interpolation. Then, we
have two degrees of freedom as the interpolator is a linear polynomial. On the parent
element the interpolation nodes are the end points of Ő corresponding to �1 D �1
and �2 D C1, respectively. As a consequence every function w.�/ is approximated
by the linear interpolation

w.�/ � w.�1/ O'1.�/C w.C1/ O'2.�/; �1 � � � C1; (10.14)

where

O'1.�/ D 1 � �

2
and O'2.�/ D 1C �

2
: (10.15)
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Fig. 10.1 Hat function of the Q1 element

It is easily checked that O'i.�j / D ıij , which is a feature of Lagrange interpolation
known as the cardinality condition. The unknowns of theQ1 finite element will be
the nodal values at the end points of the parent element.

The application of the mapping (10.13) is carried out over all elements ˝
i
.

Taking into account the fact that xi belongs by construction to two adjacent
elements, we will approximate a function u.x/ 2 H1.˝/ by uI.x/, the Q1

interpolation of u,

u.x/ � uI.x/ D
EC1X

iD1
ui'i .x/; a � x � b ; (10.16)

which is a global approximation of the variable u in the domain ˝ D .a; b/. The
spaceH1.˝/ is the Sobolev space, where the function and its first-order derivatives
(hence the superscript being 1) are each square integrable, i.e. in L2. We recall that
a square integrable function f is such that

Z

˝

jf j2 d˝ < 1

meaning that the function contains a finite energy. The space of square integrable
functions is usually denoted as the L2 space. In (10.16), the quantity ui D u.xi /
is the nodal value at the physical mesh node xi . The interpolating polynomial is
defined as

'i .x/ D

8
<̂

:̂

x�xi�1
hi�1

x 2 Œxi�1; xi �
xiC1�x
hi

x 2 Œxi ; xiC1�
0 x … Œxi�1; xiC1�

; 2 � i � E: (10.17)

The function displayed in Fig. 10.1 is called a hat function and results from the
assembly of adjacent basis functions given by (10.15). Note that for theQ1 element,
the number of grid points is N D E C 1.

The theory of interpolation Strang and Fix (1973) shows that if the mesh size h,
defined as the maximum of hi , goes to zero, the L2 norm of the interpolation error
varies as O.h2/. More precisely
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ku � uIkL2 D
 Z b

a

.u � uI/2dx

!1=2
� Ch2 ; (10.18)

where the constant C depends on the interpolated function and is independent of
the grid size.

10.4 One-Dimensional Q2 Lagrange Element

The 1D Q2 Lagrange finite element uses Lagrangian quadratic interpolation. Then,
we have three degrees of freedom as the interpolator is a polynomial of degree two.
On the parent element the interpolation nodes are the end points of Ő , �1 D �1 and
�3 D C1 and the middle point �2 D 0. As a consequence every function w.�/ is
approximated by the quadratic interpolation

w.�/ � w.�1/ O'1.�/C w.0/ O'2.�/C w.C1/ O'3.�/; �1 � � � C1 ; (10.19)

where

O'1.�/ D 1

2
�.� � 1/; O'2.�/ D 1 � �2; O'3.�/ D 1

2
�.� C 1/ ; (10.20)

as shown in Fig. 10.2.
Approximating again u.x/ by its global interpolation uI.x/, we can write

uI.x/ D
EC1X

iD1
ui 'i .x/ C

EX

iD1
uiC1=2 'iC1=2.x/; a � x � b; (10.21)

with ui D u.xi / and the global basis functions

'i.x/ D

8
<̂

:̂

1

h2i�1
.2x � xi�1 � xi /.x � xi�1/; x 2 Œxi�1; xi � ;

1

h2i
.2x � xi � xiC1/.x � xiC1/; x 2 Œxi ; xiC1� ;

0; x … Œxi�1; xiC1� ;
(10.22)

'iC1=2.x/ D
(

2

h2i
.xiC1 � x/.x � xi /; x 2 Œxi ; xiC1� ;

0; x … Œxi ; xiC1� ;
(10.23)

respectively for i D 2; : : : ; E and for i D 1; : : : ; E, with the basis functions
corresponding to the end points of ˝ being excluded.

For the Q2 element the number of interpolation nodes is 2EC 1. For the sake of
facility we may write (10.21) similarly to (10.16) as

u.x/ � uI.x/ D
2EC1X

iD1
ui'i .x/ ; a � x � b ; (10.24)
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Fig. 10.2 Basis functions of
the Q2 element

where the odd nodes are the elemental boundary nodes and the even nodes the
element interior nodes. For the Q2 element, the L2 norm of the interpolation error
is proven to be O.h3/.

10.5 Implementation of the Galerkin Method

Considering the 1D version of Eq. (10.6) with ordinary differentials replacing
partial derivatives, the problem is stated as follows, with the convention that the
(continuous) space variable x1 is denoted by x:

Find u.x/ 2 H1
e .˝/ such that

Z

˝

du

dx

dw

dx
dx D

Z

˝

f w dx ; 8w.x/ 2 H1
e .˝/ ; (10.25)

whereH1
e .˝/ is a subspace of H1.˝/ defined as

H1
e .˝/ D fw.x/jw.x/ 2 H1.˝/;w.a/ D w.b/ D 0g ; (10.26)

the lower index indicating that the test functions satisfy the essential boundary
conditions. Covering ˝ with a mesh M comprising E elements f˝igEiD1, we then
construct VN , a subspace of dimension N of H1.˝/, with Q1 finite elements. This
procedure yields global basis functions f'k.x/gNkD1. We build up the interpolation
functions uN .x/ 2 VN�2 and fN 2 VN such that

uN .x/ D
N�1X

kD2
uk'k.x/; fN .x/ D

NX

kD1
fk'k.x/ : (10.27)
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The coefficients ffkgNkD1 are the problem data while the fukgN�1
kD2 constitute

the problem unknowns inasmuch the essential boundary conditions impose
u1 D uN D 0.

The discrete weak formulation becomes: Find uN .x/ 2 VN�2 such that

Z

˝

duN
dx

dwN
dx

dx D
Z

˝

fNwN dx ; 8wN 2 VN�2 : (10.28)

We take full advantage of a property of the Galerkin method: the test functions wN
are the same as the basis functions. Recall that for Q1 elements, N D E C 1.
Introducing (10.27) into (10.28) we generate a linear system of algebraic equations
of order N � 2

N�1X

kD2
Ki;k uk D

NX

kD1
Mi;kfk; 2 � i � N � 1 : (10.29)

In the left side of (10.29) the square matrix ŒK� is of the order N � 2 and has
components

Ki;k D
Z

˝

d'i

dx

d'k

dx
dx; 2 � i; k � N � 1 : (10.30)

The matrix ŒM � on the right side is rectangular and has N � 2 rows and N columns

Mi;k D
Z

˝

'i'kdx; 2 � i � N � 1; 1 � k � N : (10.31)

The stiffness matrix (or rigidity matrix) ŒK� is symmetric and positive definite. The
matrix ŒM � is the mass matrix. Adding the relations u1 D 0 and uN D 0 to the
linear system (10.29) yields the algebraic equations

ŒK�u D ŒM �f : (10.32)

The vector u D Œ0 u2 : : : uN�1 0� is formed with all the unknowns and the boundary
conditions. Standard direct methods like the Cholesky algorithm may be used to
solve (10.32).

The classical description of the finite element method uses Gauss-Legendre
quadrature rules to approximate the integrals appearing in the stiffness (10.30) and
mass (10.31) matrices. However it is possible to compute these integrals in closed
form. As an example we carry out the evaluation of the left side of (10.29). We
first fix i to a chosen value. Then due to the fact that the local basis extends over
two adjacent elements, the integral contains non vanishing contributions only for
k D i � 1; i; i C 1. Therefore one obtains taking (10.13) into account
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N�1X
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: (10.33)

A similar development for the right side of (10.29) yields

NX

kD1
Mi;kfk D hi�1

6
fi�1 C .hi�1 C hi /

fi

3
C hi

6
fiC1 : (10.34)

The discrete equations are

� ui�1
hi�1

C
�

1

hi�1
C 1

hi

�
ui � uiC1

hi
D hi�1

6
fi�1 C .hi�1 C hi /

fi

3
C hi

6
fiC1 ;

2 � i � N � 1 : (10.35)

The ŒK� matrix is tridiagonal. For a regular mesh with hi D �x; i D 2 : : : ; N

Eq. (10.35) becomes

� 1

�x
.ui�1 � 2ui C uiC1/ D �x

�
1

6
fi�1 C 2fi

3
C 1

6
fiC1

�
; (10.36)

where the left side is exactly the second order centered finite difference of the second
derivative. If we lump the mass matrix, which consists in replacing the diagonal
coefficient by the sum of all coefficients of the row, then the condensed or lumped
mass matrix is the identity matrix and the right side of the discrete equation is
fi , the finite difference approximation. We may conclude at this point that the finite
element methodology is able to produce finite difference approximations, if need
be. This is especially interesting for irregular meshes.
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10.6 Natural Boundary Conditions

The 1D continuous problem is stated as

� d2u

dx2
D f; on ˝ D .a; b/ ; (10.37)

with the Dirichlet boundary condition u.x D a/ D 0 and the Neumann condition
du=dx.x D b/ D 0. Because g D 0 in Eq. (10.9) the weak form is the same
as (10.25), with the space H1

e now defined as

H1
e .˝/ D fw.x/jw.x/ 2 H1.˝/;w.a/ D 0g : (10.38)

The global basis functions are still f'k.x/gNkD1, while the interpolation functions
uN .x/ 2 VN�1 and fN 2 VN are given by

uN .x/ D
NX

kD2
uk'k.x/; fN .x/ D

NX

kD1
fk'k.x/ : (10.39)

The fukgNkD2 constitute the problem unknowns as the essential boundary condition
imposes u1 D 0. Therefore the computation involves the last grid point xN . The
global functions for the two extreme nodes are given as

'1 D
(
x2�x
h1

; x 2 Œx1; x2�
0 ; x 2 Œx2; xEC1�

; 'EC1 D
(

0 ; x 2 Œx1; xE�
x�xE
hE

; x 2 ŒxE; xEC1�
: (10.40)

The discrete interior equations are still given by (10.35). For i D N , the equation
reads

uN � uN�1
hE

D hE.
fN

3
C fN�1

6
/ : (10.41)

With hE D �x, this last relation yields

1

�x
.uN � uN�1/ D O.�x/ (10.42)

or

du

dx
.x D b/ D 0CO.�x/ : (10.43)

Unlike the finite difference approximation, we observe that the FE method generates
the appropriate discrete approximation of the Neumann boundary condition. The
procedure is self-contained and suffices to close the linear system.
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Fig. 10.3 Two-dimensional
mesh

10.7 Multidimensional Finite Elements

We will introduce here the two-dimensional (2D) FE, the extension for the three-
dimensional (3D) case being straightforward. The integration domain˝ is split into
E elements ˝e; e D 1; : : : ; E which for the sake of simplicity we assume to be
quadrilaterals. The mesh size h is defined as the diameter of the circumscribed circle
of the largest quadrilateral

h D max
eD1;��� ;E diam.˝e/ : (10.44)

�
+1−1

+1

−1
�

1
�

2

�
4

�
3

Fig. 10.4 Two-dimensional
Q1 parent element

Each element is such that ˝e D .xi�1; xi / � .yj�1; yj / with mesh sizes hxi D
xi � xi�1; hyj D yj � yj�1, as shown in Fig. 10.3.

The parent element is defined as the square Ő D Œ�1;C1�2 with local
coordinates � D .�; �/, as it is exhibited in Fig. 10.4.
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10.7.1 Two-Dimensional Q1 Element

The 2D Q1 FE is built as a tensor product of the 1D linear interpolators; the basis
is therefore linear in x for every y and vice versa. The degrees of freedom in the
parent element are the nodal values attached to the vertices Ovj ; j D 1; : : : 4; if we
go around the parent element in the trigonometric sense, cf. Fig. 10.4. Based on the
Lagrange interpolation properties, each function w.�/ may be written in Ő as

w.�/ D
4X

jD1
w.Ovj / O'j .�/ ; (10.45)

where Ovj represent the nodal values at the element vertices. The canonical basis is
made up of tensor products of the 1D bases (10.15) such that

Q'1.�/ D O'1.�/ O'1.�/ D .1 � �/ .1 � �/=4 ;

Q'2.�/ D O'2.�/ O'1.�/ D .1C �/ .1 � �/=4 ;

Q'3.�/ D O'2.�/ O'2.�/ D .1C �/ .1C �/=4 ;

Q'4.�/ D O'1.�/ O'2.�/ D .1 � �/ .1C �/=4 : (10.46)

These functions satisfy the cardinality condition

Q'j .�i / D ıij ; i; j D 1; : : : ; 4 : (10.47)

Usually the grid points in the mesh are labeled by two integer indices i and j
that increase in the positive direction of the axes. This generates a natural ordering
of the unknowns that are taken from the lower left corner of the physical domain
up to the upper right end by sweeping each horizontal line from left to right and
then visiting each horizontal grid line from bottom to top. By this procedure it is
possible to obtain easily the global number of the element whose lower left corner
is given by i; j as e D i C .j � 1/.Nx � 1/ if Nx denotes the number of nodes in
the x direction. The global approximation of the discrete variable denoted by uh is
given by

uh.x/ D
NX

kD1
uk 'k.x/; x 2 ˝ ; (10.48)

with N D Nx Ny , the total number of unknowns in the mesh. The global basis
f'kgNkD1 is the canonical basis in ˝ satisfying (10.47) and uk D uh.xk/.
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10.7.2 Implementation of the 2D Galerkin Method

We consider Eq. (10.6) with the convention x � x1; y � x2. The physical domain is
split inEx D Nx �1 elements in the x direction andEy D Ny �1 in the y direction
such that E D ExEy . The space VN is a subspace of dimension N of H1

e .˝/ built

with the FE basis
n
'k.x/

oN
kD1. The discrete space V 1

0;N , a subspace of Vh, is made of

Q1 FE in each ˝e; however as we have homogeneous boundary conditions on @˝ ,
we require that the bases corresponding to nodes belonging to the boundary vanish.
The weak formulation is stated as: Find uh.x/ 2 V 1

0;N such that

Z

˝

ruh 
 rwh dx D
Z

˝

f .x/vh.x/ dx; 8 wh.x/ 2 VN (10.49)

We next introduce the geometrical cobble block˝cb D ˝e[˝eC1[˝eCNx�1[
˝eCNx made of the four contiguous elements contributing to the computation of the
unknown uij D u.xi ; yj /. We insert (10.48) into (10.49) and we choose as test
functions wh D 'i .x/; i D 1; : : : ; Nint, with the notation Nint D .Nx � 2/.Ny � 2/,
the number of interior nodes. Therefore, the locality of the FE bases leads to the
relation

NintX

mD1
um

Z

˝cb

@'m

@x

@'n

@x
C @'m

@y

@'n

@y
dx D

Z

˝cb

f .x/'n.x/dx; n D 1; : : : ; Nint :

(10.50)

We wish to generate the discrete equation related to node .i; j /. We set 'n.x/ D
'i.x/'j .y/, where n designates the global number of node .i; j / inside the
element ˝e. To proceed, we replace the global approximation with one index by
a global approximation with the two indices of the natural ordering

uh.x/ D
Nx�1X

kD2

Ny�1X

`D2
uk ` 'k.x/ '`.y/ : (10.51)

With (10.51) and a similar expression for the test functions, Eq. (10.50) yields

Nx�1X

kD2

Ny�1X

`D2
uk `

Z

˝cb

.
@'k

@x
'`
@'i

@x
'j C 'k

@'`

@y
'i
@'j

@y
/ dx

D
Z

˝cb

f .x/'i .x/'j .y/d x : (10.52)

Fixing the indices i; j , the non vanishing contributions to the integrals of (10.52)
are obtained for the indices k D i � 1; i; i C 1 and ` D j � 1; j; j C 1.
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Let us examine in detail the relevant contribution to ui�1;j�1 in (10.52). The
associated integral in the left side is carried out on the lower left of˝cb, as k D i�1
and ` D j � 1. One has

Z xi

xi�1

Z yj

yj�1

�
@'i�1
@x

'j�1
@'i

@x
'j C 'i�1

@'j�1
@y

'i
@'j

@y

�
dx : (10.53)

The double integrals are separable as a consequence of the tensorization of the bases.
Therefore the first term of (10.53) may be written as

Z xi

xi�1

@'i�1.x/
@x

@'i .x/

@x
dx
Z yj

yj�1

'j�1.y/'j .y/ dy : (10.54)

Due to the mapping of the physical element onto the parent element (in case of
Fig. 10.3 the mapping is affine and is very easy to handle), the integral in x is the
1D rigidity matrix (10.30) and the integral in y is the mass matrix (10.31). The
evaluation of the product (10.54) gives �.1=6/ .hyj�1=hxi�1/. Taking all k and `
values into account, the first integral of (10.52) yields
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: (10.55)

This shows that the 2D Q1 element involves 9 nodal values. The corresponding
stiffness matrix is sparse and symmetric positive definite with a bandwidth of order
Nx, i.e. the number of unknowns in the x direction.

10.7.3 Three-Dimensional Q1 Element

The mesh M is decomposed into parallelepipeds. The parent element is the
unit cube Ő D Œ�1;C1�3. The 3D element involves eight degrees of freedom
corresponding to the vertices of the parent element, as the polynomial basis is
made of Lagrange polynomials of degree one. Each node i; j; k is connected to
26 adjacent neighbors as a result of the presence of the adjacent 8 elements.
The stiffness matrix has now a bandwidth of order NxNy corresponding to the
number of points inside a plane of the mesh.
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Fig. 10.5 Two-dimensional
Q2 parent element

10.8 Two-Dimensional Q2 Element

The 2DQ2 parent element is the unit square Ő D Œ�1;C1�2. The element possesses
nine nodes as shown in Fig. 10.5 with nodal values Ovj ; j D 1; : : : ; 9 attached to the
vertices, the mid-side points, and the central node. The polynomial basis is a tensor
product of interpolation polynomials of degree two in each space direction. Each
function w.�/ is written in Ő as

w.�/ D
9X

jD1
w.Ovj / O'j .�/ : (10.56)

The canonical basis is made of tensor products of the 1D bases (10.20) such that

Q'1.�/ D O'1.�/ O'1.�/ D ��.1 � �/.1 � �/=4 ;
Q'2.�/ D O'2.�/ O'1.�/ D ��.1C �/.1 � �/.1 � �/=2 ;
Q'3.�/ D O'3.�/ O'1.�/ D ���.1C �/.1 � �/=4 ;

Q'4.�/ D O'3.�/ O'2.�/ D �.1C �/.1C �/.1 � �/=2 ;
Q'5.�/ D O'3.�/ O'3.�/ D ��.1C �/.1C �/=4 ; (10.57)

Q'6.�/ D O'2.�/ O'3.�/ D �.1C �/.1 � �/.1C �/=2 ;

Q'7.�/ D O'1.�/ O'3.�/ D ���.1 � �/.1C �/=4 ;

Q'8.�/ D O'1.�/ O'2.�/ D ��.1 � �/.1C �/.1C �/.�/=2 ;

Q'9.�/ D O'2.�/ O'2.�/ D .1C �/.1 � �/.1C �/.1 � �/ :
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For a domain ˝ covered with Ex � Ey Q2 elements and with Dirichlet
homogeneous boundary condition, the total number of unknowns is .2Ex � 1/

.2Ey �1/. Each discrete equation involves 25 nodal values. For the 3DQ2 element,
the connection between neighbors extends over 125 nodes.

For a direct factorization solver, the Q2 computational cost increases by a factor
of 8 with respect to that of the Q1 cost. This is one of the reason for choosing a
preconditioned conjugate gradient (PCG) method instead of the Cholesky algorithm
for three-dimensional problems.

10.9 Triangular Elements

For complex geometries the use of 2D triangular elements and 3D tetrahedra is
practically mandatory as they are the most practical way to build up meshes that can
cope with curvy boundaries, interior obstacles, and other complicated shapes. The
triangle FEs of degree one and two are known as P1 and P2, respectively.

10.9.1 P1 Finite Element

In the physical space, the triangular element˝e has the vertices s1; s2; s3. TheP1 FE
is related to the parent element Ő , a triangle with three degrees of freedom attached
to the nodes Os1 D .0; 0/; Os2 D .1; 0/; Os3 D .0; 1/ as it is shown in Fig. 10.6. Each
regular function w.x/ may be interpolated in ˝e as

w.x/ �
3X

jD1
w.sj /'ej .x/ ; (10.58)

where 'ej belongs to the space of polynomial functions of total degree less than or
equal to one given by the relationship

'.x/ D a C bx C cy; a; b; c 2 R : (10.59)

The canonical basis in the parent element is written as

O'1.�/ D 1 � � � �;
O'2.�/ D �; (10.60)

O'3.�/ D �:

We observe that this basis satisfies the cardinality property. The correspondence
between the physical and parent elements is obtained through an affine
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Fig. 10.6 Triangular P1
parent element

transformation which maps Ő onto ˝e such that Osi 7�! si ; i D 1; 2; 3 with
si D .xi ; yi /. We skip the details related to the construction of this transformation
as many of the technicalities are intricate. The interested reader may consult Rappaz
et al. (2003). The resulting stiffness matrix is sparse and symmetric. A PCG method
is recommended for solving the linear system.

10.9.2 P2 Finite Element

The triangular element ˝e has the vertices s1; s2; s3 and also the mid-points
s12; s13; s23 of the three edges .s1; s2/; .s1; s3/; .s2; s3/. Each regular function w.x/
may be interpolated in ˝e as

w.x/ �
6X

jD1
w.sj /'ej .x/ ; (10.61)

where 'ej belongs to the space of polynomial functions of total degree less than or
equal to two given by the relationship

'.x/ D aC bx C cy C dx2 C exy C fy2; a; b; c; d; e; f 2 R : (10.62)

The canonical bases on the element ˝e are given by

'j .x/ D �j .2 �j � 1/; 1 � j � 3 ; (10.63)

and '12, '13 and '23 are the functions

'12.x/ D 4 �1 �2; '13.x/ D 4 �1 �3; '23.x/ D 4 �2 �3 ; (10.64)



10.10 Spectral and Mortar Element Method 269

where the parameters �j .1 � j � 3/ are the barycentric coordinates of triangle
˝e. Let˝e be the triangle with vertices s1; s2; s3 andP any point inside the triangle.
The barycentric coordinates .�1; �2; �3/ of P are defined by the expression

�i D area �P sj sk

area �si sj sk
; i D 1; 2; 3; i ¤ j ¤ k; (10.65)

where, for example,�P sj sk denotes the triangle P sj sk . The barycentric coordinates
satisfy the following property

�1 C �2 C �3 D 1: (10.66)

The 3D extension generates the P1 and P2 tetrahedra.

10.10 Spectral and Mortar Element Method

The spectral element method (SEM) constitutes a generalization of the FE method
based on high-order Lagrange-Legendre interpolants used in conjunction with
Gauss-Legendre quadrature rules. Beyond degree two, standard Lagrange interpo-
lation with equally spaced nodes is prone to Runge instability that produces violent
oscillations, destroying the accuracy. Therefore a cure consists in using the nodes as
the roots of orthogonal polynomials to stabilize the interpolation process. Among
the several possible choices the Legendre polynomials are best, as the associated
weight in the weak formulation is unity. Furthermore the relevant Gauss-Legendre
rules are based on quadrature nodes that match exactly the interpolation nodes. The
Gauss-Lobatto-Legendre (GLL) rule implies nodes on the elemental edges, ensuring
C0 continuity between the elements.

To give more precise statements, the 1D spectral element uses the set of N C 1

GLL quadrature nodes on Ő . These nodes are the roots of the equation

.1 � �2/L0
N .�/ D 0; � 2 Ő ; (10.67)

where L0
N is the first derivative of the Legendre polynomial of degree N . The

Lagrange interpolation polynomial of degreeN of the regular function u at the GLL
quadrature nodes is

uI D
NX

jD0
u.�j /'j .�/ ; � 2 Ő ; (10.68)

with 'j .�/; j D 1; : : : ; N the associated interpolation basis of degree N . One may
show that the elements of this basis are given by
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'j D �1
N.N C 1/

.1 � �2/L0
N .�/

.� � �j /LN .�j /
; 0 � j � N ; � 2 Ő : (10.69)

SEM exhibits several favorable computational properties, such as the use of
tensor products, naturally diagonal mass matrices, adequacy to concurrent imple-
mentations. It rests on firm theoretical ground, e.g. Deville et al. (2002). The
spectral element method aims at combining the high-order precision of the spectral
methods Quarteroni and Valli (1997) and the geometrical flexibility of the finite
element methods. Due to these advantages, the spectral element method exhibits
the so-called spectral accuracy, where the error decreases exponentially, if smooth
solutions of regular problems are sought.

The requirement of C0 continuity across the element interfaces demands that any
field be interpolated identically on both sides of a common interface. Accordingly
any local increase of the polynomial-expansion degree propagates to the rest of the
mesh, so that zones where the solution field undergoes little variation end up being
meshed as finely as the zones of actual interest. An appropriate remedy was devised:
the mortar element method, cf. Anagnostou et al. (1990) and Bernardi et al. (1994).
Mortars consist in variational patches of the discontinuous field along the element
interfaces. Mortars relax the C0 continuity condition and thus remove the need for
uniform polynomial expansion in every direction all over the mesh.



Chapter 11
Variational Principle, Weak Formulation
and Finite Elements

Abstract Finite element treatment of the steady and unsteady Stokes equations
is developed in detail. This is then extended to the advection-diffusion problem
through the non-linear Burgers equation and finally to the full Navier-Stokes
equation.

In this chapter we will focus our attention on the spatial finite element
approximation of the steady Stokes problem. A main topic consists in describing
stable elements which do not contain spurious pressure modes. Theoretical analyses
go beyond the scope of an introductory text such as this monograph. The reader
will find complementary reading in Azaïez et al. (2011), Brezzi and Fortin (1991),
Girault and Raviart (1986), and Gresho and Sani (2000). Then we will consider time
dependent problems that will need time discretizations. Finally, the full Navier-
Stokes equation will challenge the talents of numericists: the nonlinear advection
term is most difficult to treat correctly without inducing too much numerical
dispersion and dissipation.

11.1 Variational Principle

In this section we follow a line of reasoning proposed by Rieutord (1997). With body
forces neglected, the Stokes equation (6.2) for a Newtonian viscous incompressible
fluid may be written as

@Tij

@xj
D 0 ; (11.1)

W.E. Langlois and M.O. Deville, Slow Viscous Flow,
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with the Cauchy stress tensor given by

Tij D �p ıij C 2
eij : (11.2)

The Stokes momentum equation (11.1) may be obtained from a variational
principle in which a convex functional will be minimized. This functional is related
to energy considerations and more specifically to viscous dissipation.

To this end consider a body of fluid in a given volume˝ bounded by the surface
@˝ . The global dissipation is the integral

D D
Z

˝

2
eij eij d˝ ; (11.3)

where the integrand is the stress power of Eq. (2.162). Indeed

Tij eij D .�pıij C 2
 eij /eij D �peii C 2
 eij eij D 2
 eij eij : (11.4)

The first-order variation ıvk of the velocity field satisfies a homogeneous boundary
condition and implies a variation ofD such that

ıD D
Z

˝

4
eij ıeij d˝ : (11.5)

With (11.2) this becomes

ıD D 2

Z

˝

Tij ıeij d˝ : (11.6)

With the symmetry of the stress tensor and the vanishing of ıei i , Eq. (11.6) becomes

ıD D 4

Z

˝

Tij
@ ıvj

@xi
d˝ : (11.7)

With the help of (11.1) and the divergence theorem, one may write

ıD D 4

Z

˝

@.Tij ıvj /

@xi
d˝ D 4

Z

@˝

Tij ıvj ni dS : (11.8)

Since the homogeneous boundary condition ıvj D 0 applies on @˝ , one obtains

ıD D 0 : (11.9)

From (11.9) we conclude that viscous dissipation reaches an extremum when the
velocity field is a solution of the Stokes problem. This extremum may easily be
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shown to be a minimum, as the functional (11.3) is a convex quadratic form. The
associated Stokes solution is unique.

11.2 Weak Form of the Stokes Problem

Coming back to the Stokes problem, we write

@Tij

@xj
C �fi D 0 ; (11.10)

@vj

@xj
D 0 ; (11.11)

where fi is a given volume force. Insertion of (11.2) into (11.10) yields another
form of the Stokes problem (where p is normalized by the density, i.e. p D p=�)

� �Δvi C @p

@xi
D fi ; (11.12)

@vj

@xj
D 0 : (11.13)

For the sake of simplicity, we assume that the Stokes equation (11.12) has
homogeneous Dirichlet boundary conditions vi D 0 on @˝ .

The generalized Green’s theorem for the tensorial case reads

Z

˝

@Tij

@xj
wi d˝ D �

Z

˝

Tij
@wi
@xj

d˝ C
Z

@˝

wi Tij nj dS : (11.14)

Note that we can easily incorporate stress boundary conditions, as the surface
integral involves the stress vector Tij nj .

In order to design the weak formulation of the Stokes problem, let us choose
the test functions wi such that they vanish on the boundaries. As the Laplacian
Δ D div (grad), the application of the Green’s formula (11.14) to the viscous term
of (11.12) leads to

� �

Z

˝

@

@xj
.
@vi

@xj
/wi d˝ D ��

Z

@˝

wi
@vi

@xj
nj dS C �

Z

˝

@vi

@xj

@wi
@xj

d˝

D �

Z

˝

@vi

@xj

@wi
@xj

d˝ : (11.15)

Equation (11.15) demands that first order derivatives of wi should at least exist. It is
customary to choose wi in the Sobolev space H1.
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The weak form for the pressure gradient is

Z

˝

@p

@xi
wi d˝ D

Z

˝

@

@xi
.pwi / d˝ �

Z

˝

p
@wi
@xi

d˝

D
Z

@˝

p ni wi dS �
Z

˝

p
@wi
@xi

d˝ (11.16)

D �
Z

˝

p
@wi
@xi

d˝ :

The test function for the pressure variable is a scalar square integrable function
q. More precisely, pressure will be sought in the L20 space, a subspace of L2 with
vanishing average functions, i.e.

L20 D f' 2 L2j
Z

˝

' d˝ D 0g : (11.17)

Therefore the reference pressure is an average over the full domain; this is in contrast
with finite difference or finite volume methods where the reference pressure is fixed
at a predefined grid point. Recall that fixing the pressure at one particular point
impedes the control at that point of the evolution of the numerical divergence of the
velocity field.

Therefore the weak formulation of the Stokes problem (11.12) and (11.13) is
given as

�

Z

˝

@vi

@xj

@wi
@xj

d˝ �
Z

˝

p
@wi
@xi

d˝ D
Z

˝

fi wi d˝ ; (11.18)

�
Z

˝

q
@vj

@xj
d˝ D 0 : (11.19)

The first integral on the left side of (11.18) may be considered as a dissipation
term of the form (11.3). Let us define the following notation

eij .v/ D 1

2

�
@vi

@xj
C @vj

@xi

�
; eij .w/ D 1

2

�
@wi
@xj

C @wj
@xi

�
: (11.20)

Then using Eq. (2.76) and the symmetry of eij , we have

Z

˝

eij .v/eij .w/ d˝ D
Z

˝

eij .v/
@wi
@xj

d˝ : (11.21)

Moreover by integration by parts
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Z

˝

@vj

@xi

@wi
@xj

d˝ D �
Z

˝

@

@xi

�
@vj

@xj

�
wi d˝ D 0 : (11.22)

Combining (11.21) and (11.22) we obtain the identity

2

Z

˝

eij .v/eij .w/ d˝ D
Z

˝

@vi

@xj

@wi
@xj

d˝ ; (11.23)

which shows the deep link between the variational principle and the weak for-
mulation. We observe that the second term on the left side of (11.18) acts on
the pressure variable. In fact the pressure is multiplied by the divergence of
the test function. We conclude that the pressure is the Lagrange multiplier that
imposes the incompressibility constraint. This is one of the major benefits of the
weak formulation. It should also be emphasized that Eq. (11.19) is enforcing a
weak divergence free condition. This also means that if one computes the strong
formulation of the divergence of the velocity, it will never be zero.

The Stokes problem (11.18) and (11.19) corresponds to a saddle point problem
as the energy functional with the incorporation of the pressure term is minimized
for the velocity solution and maximized for the pressure. The name saddle point
was given by taking into account the geometric features of the functional that is
convex for the velocity minimization and concave for the pressure maximization.
This results in an object shaped like a saddle with double curvature. The solution
of the saddle point problem presents adequate stability and convergence properties
if it satisfies the well-known inf-sup condition, which imposes a condition of
compatibility of the functional spaces chosen for the velocity and the pressure. This
theory is beyond the scope of the present monograph and interested readers are
referred to the original papers by Brezzi (1974) and Babuška (1973).

11.3 Finite Element Discretization of the Stokes Equation

The domain˝ is covered with E polyhedral elements˝e such that˝ D SE
eD1 ˝

e
.

On each element˝e , the velocity and pressure fields are approximated by

v.x/j˝e � vh.x/j˝e D ve.x/ D
NvX

jD1
vej'v;j ; (11.24)

p.x/j˝e � ph.x/j˝e D pe.x/ D
NpX

jD1
pej 'p;j ; (11.25)

where the subscript h refers to the FE mesh discretization. The velocity approxima-
tion uses Nv vector basis functions 'v;j while the pressure involvesNp scalar basis
functions 'p;j , with Nv ¤ Np . The variational problem on ˝e reads
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�

dX

iD1

Z

˝e

rvei 
 rwei dx �
Z

˝e

div wpe dx D
Z

˝e

fe 
 w dx ; (11.26)

�
Z

˝e

div ve q dx D 0 ; (11.27)

where d is the space dimension and the dot denotes the scalar product. For the 2D
case we suppose that the velocity components of v are subject to the same boundary
conditions. They have an identical number of degrees of freedom (d.o.f.) which we
will denote nv and thereforeNv D d � nv .

Choosing the basis functions 'v;i as test functions in (11.26) and 'p;i in (11.27),
the variational problem at the element level is written

0

@
ŒKe� Œ0� ŒDe

1 �
T

Œ0� ŒKe� ŒDe
2 �
T

ŒDe
1� ŒD

e
2 � Œ0�

1

A

0

@
ve1
ve2
pe

1

A D

0
B@
f e

1

f e

2

0

1
CA : (11.28)

The various elementary matrices are defined as follows:

1. The square matrix ŒKe� in R
nv�nv is given by

ŒKe�ij DD �

Z

˝e

r'ev;j 
 r'ev;i dx I

2. The matrices ŒDe
i � are rectangular matrices of dimension np by nv

ŒDe
1 �ij D �

Z

˝e

'ep;j
@'ev;i

@x
dx ;

ŒDe
2 �ij D �

Z

˝e

'ep;j
@'ev;i

@y
dx I

3. The data are vectors of dimension nv

.f e

1
/i D

Z

˝e

f e
1 '

e
v;i dx and .f e

2
/i D

Z

˝e

f e
2 '

e
v;i dx :

We notice that the matrices composing the discrete gradient are transposes of the
matrices involved in the discrete divergence.

Now let us discuss the possible choice of the elements and the local shape
functions 'ev;i and 'ep;i .
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11.4 Stable Finite Elements for Viscous Incompressible
Fluids

The finite element theory analyzes at large the velocity-pressure discretizations.
Even if we are tempted to choose the same polynomial degree for both fields, this
is a very bad idea. Indeed the saddle point problem related to the Stokes equation
requires that the discrete fields satisfy the inf-sup compatibility condition. If this
condition is not enforced the computational results show the presence of spurious
pressure modes which do not affect the computation of the velocities as those
modes produce vanishing pressure gradients. However they should be avoided,
especially if the stress has to be evaluated on the boundaries as is required in fluid-
structure interaction.

The functions 'ev;i and 'ep;i cannot be taken arbitrarily. In practice the pressure
approximation is one unit lower than the polynomial degree of the velocity.
Figure 11.1 shows theQ1 �Q0 element whereQ1 refers to the bilinear approxima-
tion of the velocity and Q0 to the constant approximation of pressure. The crosses
are the velocity nodes with components v1; v2 and the central node is the pressure.

Unfortunately this element is also unstable and presents one spurious pressure
mode, namely the checkerboard mode. This means that the pressure oscillates in
sign from one element to the next in both space directions. Even though this mode
may be filtered (see e.g. Sani et al. (1981)) it is safer to rely on stable elements like
the one introduced by Taylor and Hood (1973). This element is the Q2 � Q1 nine
node Lagrangian element where the velocity is locally approximated by quadratics
and the pressure by bilinear functions as shown in Fig. 11.2.

Note that the 2D Q2 � Q1 element has 18 velocity d.o.f. and 4 pressures. In
3D this leads to 81 velocities and 8 pressures. The associated bandwidth of the
linear system and consequently the solution cost increase. This is one of the reason
why practioners still prefer to use the 3D Q1 � Q0 element with filtering as it is
less expensive. The triangular counterpart of the Q2 � Q1 element is the P2 � P1
element. Both elements offer second order accuracy in space. More specifically,
if the velocity is approximated by polynomials of degree k and the pressure by
polynomials of degree k � 1, then the following error estimate can be proved:

kv � vhkH1 C kp � phkL2 � Chk .kvkHkC1 C kpkHk / ;

where C is a constant independent of h and the various norms are evaluated in the
appropriate spaces. The method is accurate to order k, i.e. the convergence isO.hk/.
Consequently the Q2 �Q1 element is O.h2/.

If we carry out the direct stiffness procedure which performs the assembling of
the local contributions (11.28) to construct the global matrix system, we obtain

ŒK � v C ŒDT � p D ŒM� f ; (11.29)

ŒD� v D 0 : (11.30)
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Fig. 11.1 2D Q1 �Q0

element

Note that the matrices yielding vector quantities as a result are written in boldface.
The stiffness and mass matrices, ŒK � and ŒM� are square in RN;N , the gradient

matrix ŒD�T is a rectangular matrix of RN;M and the transposed matrix ŒD� is the
discrete divergence. The data f is a vector of RN and the unknowns are the vectors
v of RN and p of RM with N and M , both integers. One can show that the
system (11.29) and (11.30) has a unique solution that is computed by decoupling
the velocity and the pressure by first solving the relation

ŒS� p D b ; (11.31)

Fig. 11.2 2D Q2 �Q1

element

with

ŒS� D ŒD�ŒK ��1ŒDT � ; (11.32)

b D ŒD�ŒK ��1ŒM� f ; (11.33)
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and afterwards

ŒK � v D ŒM�f � ŒD�T p : (11.34)

The ŒS� matrix is called the Uzawa matrix and has the following properties

1. ŒS�T D ŒS�;

2. .ŒS� p; p/ � 0;

3. .ŒS� p; p/ D 0 if and only if p D 0:

The solution of Eq. (11.31) is performed iteratively so we can take full advantage of
the symmetric and positive definite characteristic features of ŒS�. A preconditioned
conjugate gradient method is an excellent choice.

11.5 Unsteady Stokes Equation

With the given body force f, the transient Stokes equation governs the evolution of
the velocity and pressure fields

@v
@t

� ��v C rp D f in ˝��0; T � ; (11.35)

div v D 0 in ˝��0; T � ; (11.36)

v D 0 on @˝��0; T � ; (11.37)

v.t D 0; x/ D v0.x/ in ˝ : (11.38)

The symbol T is the given final time and v0.x/ is the initial incompressible velocity.
Let us denote the time step by �t .

Now, on each element˝e, the velocity and pressure fields are approximated by

v.x; t/j˝e � vh.x; t/j˝e D ve.x; t/ D
NvX

jD1
vej .t/'v;j ; (11.39)

p.x; t/j˝e � ph.x; t/j˝e D pe.x; t/ D
NpX

jD1
pej .t/'p;j : (11.40)

Inserting (11.39) and (11.40) into (11.35) and (11.36) yields

ŒM� Pv C �ŒK� v C ŒD�T p D ŒM� f; (11.41)

ŒD� v D 0 : (11.42)
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Equations (11.41) and (11.42) form a differential-algebraic system where the
ordinary differential equations (11.41) are constrained by the set of algebraic
equations (11.42). Let us observe that even if we choose an explicit time scheme,
we will have to solve a matrix system to get the evolution of the velocity, unless we
lump the mass matrix. Furthermore the time scheme should be stable. This means
that for a highly viscous fluid, a stability restriction like the von Neumann criterion
��t=h2 � 1=2 reduces dramatically the time step. Therefore most numericists
today use an implicit scheme for the Stokes problem.

For ease of description, the time scheme is chosen as the first order Euler implicit
scheme

ŒM� Pv � ŒM�
�t

�
vnC1 � vn

�
; (11.43)

where the superscript indicates the time level. Combining (11.43) with (11.41) and
(11.42) yields the matrix system

�
ŒH� ŒD�T

ŒD� Œ0�

� 
vnC1
pnC1

!
D
�
ŒM�f
0

�
C 1

�t

�
ŒM�vn

0

�
: (11.44)

The symbol ŒH� is the discrete Helmholtz operator

ŒH� D 1

�t
ŒM�C �ŒK�; (11.45)

composed of d block matrices ŒH � D 1=.�t/ŒM �C �ŒK�. The same applies to the
stiffness matrix ŒK�. The system (11.44) is solved by the Uzawa algorithm. The
pressure is computed by solving

ŒSt � p
nC1 D bn ; (11.46)

with

ŒSt � D ŒD�ŒH��1ŒD�T ; (11.47)

and

bn D ŒD�ŒH��1 .ŒM�f C 1

�t
ŒM�vn/ ; (11.48)

and then the velocity is obtained from

ŒH� vnC1 D ŒM�.f C 1

�t
vn/� ŒD�T pnC1: (11.49)

As the Uzawa method is reputed to converge (too) slowly, projection methods are
widely used to undertake the velocity-pressure decoupling.
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To this end, let us LU decompose the matrix (11.44)

�
ŒH� ŒD�T

ŒD� Œ0�

�
D
�
ŒH� Œ0�
ŒD� �ŒD�ŒH��1ŒD�T

��
ŒI� ŒH��1ŒD�T
Œ0� ŒI �

�
: (11.50)

Then theL step consists in computing a temporary velocity QvnC1 and pressure QpnC1,
solutions of

ŒH� QvnC1 D bnC1; (11.51)

ŒD�QvnC1 � ŒD�ŒH��1ŒD�T QpnC1 D 0;

and afterwards the U step computes the new time level velocity and pressure by
solving

vnC1 C ŒH��1ŒD�T pnC1 D QvnC1;

pnC1 D QpnC1:

If we wish to alleviate the burden of theL step, we can proceed with an approximate
factorization where the inverse of ŒH� is obtained by a truncated Taylor series

ŒH��1 D
�
1

�t
ŒM�C �ŒK�

��1

D �t
�
ŒI�C ��tŒM��1ŒK�

��1
ŒM��1

D �t

1X

jD0
.�1/j .��tŒM��1ŒK�/j ŒM��1

D �t.ŒI� � ��tŒM��1ŒK�C 
 
 
 /ŒM��1: (11.52)

The first and simplest choice is to take the first term in (11.52)

ŒH��1 � �tŒM��1 : (11.53)

The algorithm computes first the temporary velocity QvnC1 through Eq. (11.51); then
the final pressure pnC1 is obtained from

��tŒD�ŒM��1ŒD�T pnC1 D ŒD�QvnC1: (11.54)

Finally the velocity results from

vnC1 D QvnC1 ��tŒM��1ŒD�T pnC1 :

If the mass matrix is lumped and therefore diagonal, the matrix in (11.54) is
ŒD�ŒD�T , i.e. a divergence times a gradient. This corresponds to a discrete Laplacian
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and this relation is a Poisson pressure equation. This approximate method was
proposed independently by Chorin (1968) and Témam (1969). The projection
method, while easing the computation, induces a splitting error resulting from the
velocity-pressure decoupling. Here the splitting error is O.�t/.

11.6 Advection-Diffusion Equation

The beauty and the difficulty of fluid flow problems come from the presence of
the nonlinear term in the Navier-Stokes equation. As this monograph treats mainly
slow viscous flow the problem of tackling turbulence or instabilities is put aside.
However the advent of the computer era has allowed entry into this nonlinear world
and discover what it brings to flow understanding. In this section we will describe
briefly the way finite elements discretize the nonlinear terms and how this spatial
approximation may be incorporated into a full time scheme. Our mathematical
model is based on the advection-diffusion equation, where the advective part is
nonlinear.

11.6.1 One Dimensional Burgers Equation

The Burgers equation is a one dimensional Navier-Stokes equation where the
pressure influence is discarded:

@u

@t
C u

@u

@x
D �

@2u

@x2
; �1 < x < 1; t 2�0; T � ; (11.55)

u.x/0 D � sin�x ; (11.56)

u.�1; t/ D u.C1; t/ D 0 : (11.57)

Using the change of variable

u D �2�
�

�
@�

@x

�
(11.58)

in (11.55) yields a linear diffusion equation for the � variable

@�

@t
D �

@2�

@x2
: (11.59)

The analytical solution of (11.55) obtained by Cole and compiled by Benton and
Platzmann (1972) is
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u.t; x/ D 4��

P1
nD1 n ane��n2�2t sin.n�x/

a0 C 2
P1

nD1 n ane��n2�2t cos.n�x/
: (11.60)

In this expression, the an coefficients are given by

an D .�1/nIn.1=2��/; (11.61)

where In.z/ is the modified Bessel function of first kind and of order n. This
analytical solution is very difficult to evaluate for small values of t .0 � t � 2=�/

and of � as In.z/, when z goes to 1, behaves asymptotically as ez.2�z/�1=2,
independently of the n value. High-order numerical solutions are found in Basdevant
et al. (1986). An interesting quantity for measuring the scheme accuracy is the
time evolution of the slope at the origin. For � D 1=100� one has j@u=@xjmax D
152:00516 for tmax D 0:5105.

As far as the dynamics is concerned, the peaks of the initial profile start moving
with a velocity close to unity toward the origin. As the viscosity is very low, the
initial times are advection dominated and therefore the profile deforms and takes
the shape of a sawtooth. We get an internal shear layer. Note that the profile is not
discontinuous. In the long run however viscosity enters into play and damps the
profile to zero.

11.6.1.1 The Galerkin Method

Let us apply the Q1 FE method to (11.55). The weak formulation reads: Find
u.x; t/ 2 H1

e .˝/ such that

@

@t

Z

˝

u.x; t/w.x/dxC�
Z

˝

@u

@x

@w

@x
dxC

Z

˝

.u
@u

@x
/wdx D 0 ; 8w.x/ 2 H1

e .˝/ :

(11.62)

Choosing the approximation uN as in (10.27), with the uk being time dependent,
and the test function wN in H1

e .˝/, one obtains

Z

˝

�
@uN
@t

wN C �
@uN
@x

@wN
@x

C wN uN
@uN
@x

�
dx D 0 : (11.63)

The semi-discrete equation for the mesh node i is given by

hi�1
6

dui�1
dt

C hi�1 C hi

3

dui
dt

C hi

6

duiC1
dt

C ui�1 C ui C uiC1
3

uiC1 � ui�1
2

��
�

ui�1
hi�1

�
�

1

hi�1
C 1

hi

�
ui C uiC1

hi

�
D 0 :

(11.64)
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As usual we observe the presence of the stiffness and mass matrices. In the nonlinear
term we have a centered scheme for the first order derivative with the contribution of
the local velocity taken as the mean over three successive points. This is in contrast
with the value ui that would be produced by a FD discretization.

In compact form one gets

ŒM �
du.t/

dt
C ŒK� u.t/ C ŒC.u.t//� u.t/ D 0 ; (11.65)

where the operator ŒC.u.t//� acts on the vector u. Note that ŒC � is not a matrix. A
simple time scheme consists of the explicit forward Euler scheme

ŒM �

�t

�
unC1 � un

� C ŒK� un C ŒC.un/� un D 0: (11.66)

Note that as the time scheme is explicit it is subject to stability conditions. If we
lump the mass matrix and therefore get back to FD, the stability is restricted by two
conditions, namely:

��t

h2
� 1

2
; (11.67)

and

uni �t

h
< 1; 8i 2 Œ2; N �: (11.68)

Condition (11.67) is the von Neumann condition imposed on the viscous part
of the operator. If we treat a very viscous fluid this condition is quite stringent
and this is one of the reasons why viscous terms are very often treated implicitly.
Condition (11.68) is the CFL (Courant-Friedrichs-Lewy) condition imposing that
within one time step, the numerical information should not travel a distance longer
than one mesh spacing. For high Reynolds number flows where advection is the
dominating physical phenomenon this CFL condition constitutes a severe restriction
and reduces drastically the time step of the time integration. If one tries to avoid
the CFL condition, the other possible time scheme would be implicit. However
as the non linearity leads to quadratic terms, a Newton linearization is needed.
The resulting matrix system is no longer symmetric and must be solved using the
GMRES method Saad (2003).

The scheme proposed in (11.66) is only first order time accurate. To reach second
order accuracy, many numericists resort to time splitting. This means that different
time integrators are used for the linear viscous part and the nonlinear term. A state-
of-the-art scheme is given by the BE2/AB2 formula meaning that the linear term
is treated implicitly by the second order backward Euler scheme (hence BE2) and
the non linearity is handled explicitly by the second order Adams-Bashforth (hence
AB2) scheme
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ŒM �

2�t

�
3unC1 � 4un C un�1� C ŒK� unC1

C 3

2
ŒC.un/� un � 1

2
ŒC.un�1/� un�1 D 0 : (11.69)

However even though each time integrator is second order accurate the full splitting
error is only first order, a very deceptive result. Second order accuracy is achieved
if the nonlinear term is evaluated by a second order time extrapolation denoted by
EXT2

ŒC.unC1/� unC1 � 2 ŒC.un/� un � ŒC.un�1/� un�1 ; (11.70)

leading to the full scheme BE2/EXT2.

11.6.1.2 Petrov-Galerkin Method

The Galerkin method generates centered schemes for first-order derivatives. For the
nonlinear term this seems a bit odd because if the local velocity is positive this
means that to compute the derivative at node i we need to go downstream to i C 1

to pick up the relevant discrete values. Should we not use some kind of upwind
schemes that would be more appropriate from the physical point of view? The
Petrov-Galerkin (PG) method allows one to build such an approach. Here the test
functions are different from the basis functions. For the Q1 case, the test functions
in Ő are basis functions modified by the addition of a parabolic contribution that
gives more weight to the upstream quantities:

f O 1.�/; O 2.�/g D f1� �

2
� 3˛.1 � �2/;

1C �

2
C 3˛.1 � �2/g (11.71)

where the parameter ˛ will manage the amount of upwinding needed. The PG
method does not affect the discrete scheme of the viscous term; it will modify the
nonlinear term which becomes

ui�1 C ui C uiC1
3

�uiC1 � ui�1
2h


� ˛h

4

u2i�1 � 2u2i C u2iC1
h2

; (11.72)

where the additional PG term is a diffusive term expressed as a function of u2 instead
of u. This will improve the stability of the scheme.

11.6.1.3 Numerical Results

Solving (11.55)–(11.57) by BE2/EXT2 with E D 1;000 elements for � D
1=.100�/ yields the results shown in Fig. 11.3.
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Fig. 11.3 Burgers equation, � D 1=100� , t 2�0; 10=��, E D 1;000 (Reprinted with permission
from Azaïez et al. (2011))

If the number of elements is not sufficient, e.g.E D 100, oscillations are induced
near the origin because of the steep gradient. The maximum slope at the origin is
equal to 155:7 and occurs at time tmax D 0:5093, indicating that the numerical
solution leads the analytical solution by a bit.

11.6.2 Multidimensional Burgers Equation

The multidimensional Burgers equation is described through the problem unknown
v.x; t/

@v
@t

C v 
 rv D ��v; in ˝��0; T � ; (11.73)

v.x; t/ D 0 on @˝��0; T � ; (11.74)

v.x; 0/ D v0.x/ in ˝ : (11.75)

Each velocity component of v satisfies a nonlinear advection-diffusion equation
where a coupling occurs via the transport term. For the sake of simplicity we present
the Galerkin method applied to Eq. (11.73).

Let us build Vh, a subspace of dimension N of .H1
e .˝//

d , with the help of the
Q1 FE basis f'j .x/gNjD1. The global polynomial approximation of v is given by

vh D
NX

jD1
vj .t/'j .x/ : (11.76)
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The test functions are chosen in Vh such that wh D 'k; k D 1; : : : ; N . The weak
formulation of the problem integrates the diffusive term by parts, the nonlinear term
remaining unchanged. One then has the following problem:

Find vh.x; t/ 2 Vh such that 8 wh 2 Vh

Z

˝

wh

�
@vh
@t

C vh 
 rvh

�
dx D ��

Z

˝

rvhrwh dx : (11.77)

For each component of vh, one performs the discretization of (11.77), obtaining the
mass ŒM� and the stiffness ŒK� matrices for the linear terms. In the 2D case, the
nonlinear term generates the following contributions at the node i; j in a structured
mesh

N1;ij v1;j D
�
v1;k

Z

˝

'i'k
@'j

@x
dx C v2;k

Z

˝

'i'k
@'j

@y
dx
�
v1;j ;

N2;ij v2;j D
�
v1;k

Z

˝

'i'k
@'j

@x
dx C v2;k

Z

˝

'i'k
@'j

@y
dx
�
v2;j ;

with the summation convention on repeated indices j and k. We are led to the
compact form

ŒM�
dv
dt

C ŒK�v C ŒN.v/�v D 0 ; (11.78)

where the vector v D .v1; v2/
T . The matrices ŒM� and ŒK� are diagonal matrices

with d blocks, equal respectively to ŒM � and ŒK�. This system of nonlinear ordinary
differential equations is integrated by time schemes similar to those proposed in
Sect. 11.6.1.

As an example, the Crank-Nicolson/AB2 (CN/AB2) method yields

ŒM�
vnC1 � vn

�t
C ŒK�

2

�
vnC1 C vn

�C 3

2
ŒN.vn/�vn � 1

2
ŒN.vn�1/�vn�1 D 0 :

11.7 Navier-Stokes Equation

The velocity-pressure formulation of the Navier-Stokes equation is summarized as
follows

@v
@t

C v 
 rv D ��v � rp C f ; (11.79)

div v D 0 ; (11.80)

v.x; t D 0/ D v0 ; (11.81)
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where v is the velocity and p the pressure normalized by the density. The finite
element discretization in space produces the semi-discrete problem: Find the
velocity field v.t/ and the scalar field p.t/ which are solutions of

ŒM� Pv C .ŒK� C N.v// v C ŒD�T p D ŒM� f ; (11.82)

ŒD� v D 0 : (11.83)

A second order accurate time scheme with an adaptive time stepping is proposed
by Gresho et al. (1980). The time integrator is a predictor-corrector scheme where
the prediction step is AB2 and the correction step CN. The choice of the time step
is controlled by the time error during the evolution of the dynamics. The detailed
description of this excellent and sophisticated method is beyond the scope of the
present text and the reader is referred to the original paper. This method is very
useful for problems where the time evolution may become wild or chaotic.

A good example is blood flow simulation in the aorta, where the systole peak
may induce strong pressure gradients and steep accelerations Tu et al. (1992).

Another application that needs time accuracy is the von Kármán street behind
a circular cylinder. This is composed of vortices that are shed alternately from the
top and bottom parts of the rear boundary layer. Accurate capture of the shedding
frequency remains a real challenge for most of the numerical methods undertaking
this difficult problem.

An easier time treatment of (11.82) and (11.83) consists in using split schemes
with an implicit part for the Stokes problem and an explicit treatment for the
nonlinearity. One might carry out a BE2/AB2 scheme.

11.8 Spectral Elements for the Navier-Stokes Equation

Let us define by PN the set of polynomials of degree � N with respect to each of
the space variables. Then the spectral element discretization for the Navier-Stokes
primitive variables v and p is based on the PN � PN�2 element which is free of
spurious pressure modes. (The choice PN � PN�1 still contains spurious modes.)
One can show that this element is optimal. The underlying quadrature rules involve
the Gauss–Lobatto–Legendre nodes for the velocity field and the Gauss–Legendre
grid for the pressure. Figure 11.4 displays the staggered spectral element for the
polynomial degree N D 6 (left) and N D 7 (right). The velocities are continuous
along the element interfaces while the pressure is not necessarily continuous. We
observe in Fig. 11.4 that the dashed lines represent the pressure grid and the solid
lines the velocity grid. The two grids are entwined and in the right element there
is no pressure node in the central strips of the element. For smooth problems with
regular solutions, the velocity error decays as N1�N while the 3D pressure decays
like N2�N (N3=2�N for 2D problems).
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Fig. 11.4 2D staggered spectral elements for N D 6 (left) and N D 7 (right) (Reprinted with
permission from Deville et al. (2002))

To illustrate the ability of SEM to solve challenging problems we will consider
the flow that occurs behind a horizontal circular cylinder placed between two lateral
vertical walls. The solution we show is due to Latt (2013, private communication)
and is based on the software described in Bosshard et al. (2011). The physical
phenomena and experimental data are summarized in Williamson (1996).

Fig. 11.5 Horizontal cylinder between vertical walls

Let us refer to Fig. 11.5 for the problem description. The horizontal cylinder has
a diameter d D 1 and span lz D 2:5. The two vertical walls have length lx D 15

and height ly D 2. The symmetry axis of the cylinder is located at a distance px D
3:5 from the inlet section where a uniform velocity profile is prescribed. On the
vertical walls and on the cylinder, no-slip boundary conditions are applied. On the
top and bottom walls of the computational box free-slip conditions are imposed. At
the outlet we let the flow leave the domain with a stress free boundary condition.

Figure 11.6 shows the SEM grid in the symmetry plane of the computational
box. This grid is extruded in the spanwise direction. We note that most elements
are uniform quadrilaterals (or more precisely uniform hexahedra). However curvy
elements are needed close to the cylinder boundaries to resolve the boundary layers.
They are taken into account by the method of isoparametric elements where the
geometry is described by the same polynomial approximation as the one used for
the velocity variables. This consistent approach yields the same accuracy for the
geometry as for the problem unknowns.
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Fig. 11.6 The spectral element mesh

All the computations were carried out withE D 4;096 elements with polynomial
degree N D 8 in each space direction. The parallel toolbox Speculoos (http://
sourceforge.net/projects/openspeculoos) was used on 4;096 cores of the EPFL IBM
BlueGene.

Fig. 11.7 Stationary flow at Re D 80

Because the lateral walls induce viscous effects on the main flow, the transition
to a time periodic flow is slowed down and delayed. Figure 11.7 shows the velocity
magnitude for Re D 80 in the symmetry plane. Obviously the flow is laminar,
steady state, and presents a symmetric recirculation zone in the wake of the cylinder.

Fig. 11.8 Time-periodic von Karman vortex structure at Re D 160

At Reynolds number Re D 160, Fig. 11.8 displays the first time-periodic feature
of the Hopf bifurcation and a von Kármán vortex street starts evolving. The Hopf
bifurcation has a single characteristic frequency corresponding to an elliptical limit
cycle in the phase plane.

http://sourceforge.net/projects/openspeculoos
http://sourceforge.net/projects/openspeculoos
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Fig. 11.9 Quasi-periodic flow at Re D 320

Increasing the Reynolds number to Re D 320 brings more complexity to the
flow in terms of spatial structures. Figure 11.9 exhibits the various geometrical
patterns of a quasi-periodic flow. Here the frequency analysis of the flow dynamics
reveals that the fundamental frequency is present with higher harmonics.

Fig. 11.10 Weak turbulent flow at Re D 640

Finally, in Fig. 11.10 for Re D 640, a turbulent flow is generated wherein more
eddies are created. The temporal behavior becomes chaotic and weak turbulence
constitutes the dominant phenomenon as a consequence of the nonlinear dynamics.

Fig. 11.11 Vorticity at Re D 640

Figure 11.11 represents the norm of the vorticity field at Re D 640. The two
vortices shed by the flow instability are clearly identified. Note also that vorticity
develops on the lateral wall.
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To summarize the chapter, we may conclude that direct numerical simulation
is feasible only for small or moderate Reynolds numbers. To compute developed
turbulent flows (Re D 106 : : : 107) additional modeling is needed. Numericists
integrate the Reynolds-averaged Navier-Stokes equation that is derived by
(Reynolds) decomposing the velocity field into a mean contribution based on a
time averaging and a fluctuating part. Another route to tackle turbulent flows uses
large eddy simulation where the dynamics of gross structures is resolved by
integrating a filtered Navier-Stokes equation while small structures are modeled by
a subgrid scale approach. Obviously both theoretical developments are beyond the
scope of the present monograph. For further reading the reader is referred to Deville
and Gatski (2012).



Chapter 12
Stokes Flow and Corner Eddies

Abstract Creeping flow in two- and three-dimensional corners is investigated.
A solution to the paint scraper problem is presented. The Stokes operator is numer-
ically analyzed and the eigenspectrum with the eigenvalues and the eigenmodes is
calculated. A three-dimensional solution for the steady Stokes equations, based on
harmonic solutions of the Laplace equation, is presented.

This chapter is devoted to the creeping flow occurring in two- and three-dimensional
corners. Analytical solutions are available and constitute a set of benchmark
references for numerical solutions of the Navier-Stokes equation. Even in this
century where the computational power is growing at a rapid pace, the need for
closed form solutions is still imperative as a tool for deeper insight into and
understanding of fluid flow phenomena. The reader who wants to go further than
this introductory text should consult Barthès-Biesel (2012) and Shankar (2007).

As the Stokes operator is the cornerstone of many numerical methods for
integrating the Navier-Stokes equation, we will survey the present knowledge of
the associated eigenspectrum.

12.1 Two-Dimensional Corners

With the assumption of plane creeping flow, the governing equation for the stream
function  is the biharmonic relation (6.6) with the velocity components given by
(6.5). For the sequel it is useful to remember that the operator r4 is defined in polar
coordinates by

r4 D
�
@2

@r2
C 1

r

@

@r
C 1

r2
@2

@�2

�2
: (12.1)
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We look for separable solutions of (6.6) expressed by

 D r�f .�/ ; (12.2)

where � is a real or complex number. Carrying through the algebra, the biharmonic
equation yields

r4 D r��4
�
d2

d�2
C �2

��
d2

d�2
C .� � 2/2

�
f D 0 : (12.3)

If � ¤ 0; 1; 2, the differential equation (12.3) has solutions behaving like f .�/ �
ei�� or ei.��2/� . Therefore, according to Jeffrey and Sherwood (1980), we may list
the solutions

• For � ¤ 0; 1; 2,

 D r�
�
Aei�� CBei.��2/� � ; (12.4)

or, as is explained below,

 D �
Ar� C Br�C2� ei�� : (12.5)

• For � D 0,

 D Ae2i� C C� CD : (12.6)

• For � D 1,

 D r
�
Aei� C B�ei�

�
; (12.7)

or

 D .Ar C Br ln r/ ei� : (12.8)

• For � D 2,

 D r2
�
Ae2i� C C� CD

�
: (12.9)

• Solution independent of �

 D Ar2 ln r C B ln r C Cr2 CD : (12.10)

Note that (12.4) and (12.5) are equivalent because r�ei�� is a harmonic func-
tion, so that r�C2ei�� is a solution of the biharmonic equation. The parameters
�;A;B;C;D are, in principle, complex numbers.
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12.2 The Paint-Scraper Problem

This problem was first solved by Taylor (1962). Let us consider the flow generated
in a corner as is displayed in Fig. 12.1. The lower wall is fixed while the wall
inclined with angle �0 is in a uniform translation at constant speed U . This is an
idealized situation of a plate scraping paint over a fixed horizontal wall. Near the
origin, the velocity gradients are very high; however, it is expected that the viscous
forces will be preponderant in the neighborhood of the origin. To perform a steady
state formulation of the problem, the coordinate axes are chosen with the origin
at the intersection of both walls and moving with the upper wall. In this case, the
boundary conditions are

1

r

@ 

@�
D �U; @ 

@r
D 0 on � D 0 ; (12.11)

1

r

@ 

@�
D 0;

@ 

@r
D 0 on � D �0 : (12.12)

The expression of the boundary conditions suggests that  be given by

 D r f .�/ : (12.13)

This situation corresponds to the special 2D corner flow with � D 1 and the solution
given by (12.7) is such that

f .�/ D A sin � C B cos � C C� sin � CD� cos � : (12.14)

The boundary conditions (12.11) and (12.12) impose f .0/ D 0; f 0.0/ D
�U; f .�0/ D 0; f 0.�0/ D 0. One finds

A;B;C;D D ���20 ; 0; �0 � sin �0 cos �0; sin2 �0
� U

�20 � sin2 �0
: (12.15)

For the particular case of a rectangular corner

 D rU

.�
2
/2 � 1

�
�.�
2
/2 sin � C �

2
� sin � C � cos �


; (12.16)

which leads easily to the velocity components

vr D U

.�
2
/2 � 1

�
.1� �2

4
/ cos � C �

2
sin � C �

2
� cos � � � cos �

�
; (12.17)

v� D � U

.�
2
/2 � 1

�
�.�
2
/2 sin � C �

2
� sin � C � cos �


: (12.18)
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Fig. 12.1 Geometry of the
paint-scraper

We can examine a posteriori the validity of the creeping flow hypothesis. Indeed
the acceleration components given in Eqs. (3.78) and (3.79) are evaluated with
(12.17) and (12.18) and are proportional to U 2=r with a factor depending on �
which is of order of unity. The viscous effects are of the order
U=r2. Consequently
the assumption of creeping flow is satisfied if �rU=
 � 1 is enforced. This is
certainly true in a region close enough to the origin such that r � �U . Farther
away the solution is no longer correct as the inertia forces become quickly of the
same order of magnitude as the viscous forces.

It is interesting to compute the pressure from Eq. (3.79):

@p

@�
D r


�
r2v� C 2

r2
@vr

@�
� v�

r2

�
D r


�
�r2 @ 

@r
C 2

r3
@2 

@�2
C 1

r2
@ 

@r

�
;

(12.19)

which yields

p D 2


r.�20 � sin2 �0/

�
.
1

2
sin 2�0 � �0/ sin � � sin2 �0 cos �

�
: (12.20)

Observe that the pressure varying like r�1 becomes unbounded when we
approach the corner. This dismal performance comes from the fact that at the corner
the boundary conditions are not consistent with the real problem, which has always
a tiny gap so that the forces remain finite.

12.3 Two-Dimensional Corner Eddies

Plane Stokes flows occur in engineering or physical problems in the neighborhood
of slots or cracks in a wall. This situation is modeled by analyzing the creeping flow
close to the vertex of a sharp wedge with an aperture angle 2˛ formed by the walls
� D ˙˛ as shown in Fig. 12.2.

The forcing mechanism generating the corner flow is “far” from the wedge
vertex. For example, in the lid-driven square cavity problem, corner vortices are
generated by the influence of the main primary vortex.
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q
q

q +a=

q –a=

= 0O

Fig. 12.2 Geometry of the
corner flow

For the flow in a wedge, two geometrical configurations are possible: the flow is
asymmetric with respect to the symmetry axis � D 0; the flow is symmetric in �
and the symmetry axis plays the role of a mirror.

Here we will concentrate on the asymmetric case shown in Fig. 12.2 with
the assumption of 2D creeping flow described by the stream function. Following
Moffatt (1964), the 2D streamfunction is expanded in a series of basic solutions
(12.2)

 D <
1X

nD1
Anr

�nf�n.�/ ; (12.21)

where the An are complex numbers and the �n satisfy the condition

1 < <�1 < <�2 < : : : (12.22)

The first inequality imposes that the flow vanish at the origin, which is located at the
corner. The remaining inequalities indicate that the first term in (12.21) dominates
over the others and then

 � A1r
�1f�1.�/ � Ar�f�.�/ ; (12.23)

the last equivalence sign being an abuse of notation. As for the asymmetric solution
vr.r;��/ D �vr.r; �/ and v� .r;��/ D v� .r; �/, the function f� has to be even
in � . The solution (12.4), rewritten as

A sin�� C B cos�� C C cos.� � 2/� CD sin.� � 2/� ; (12.24)

is such that the constants A and D vanish:

f� D B cos�� C C cos.� � 2/� : (12.25)
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Fig. 12.3 Real solutions for
˛ D 75ı

The no slip boundary conditions on the two walls f�.˙˛/ D f 0
�.˙˛/ D 0 yield the

system

B cos�˛ C C cos.� � 2/˛ D 0 ; (12.26)

B� sin�˛ C C.� � 2/ sin.� � 2/˛ D 0 : (12.27)

For a nonzero solution the determinant of this system must vanish, i.e.

sin 2.�� 1/˛ C .� � 1/ sin 2˛ D 0 : (12.28)

12.3.1 Real Solutions for � (˛ > 73:15ı)

The nonlinear equation (12.28) gives real solutions for an angle ˛ > 73:15ı.
Figure 12.3 shows the real solutions obtained as the intersections of the sine function
sin 2.�� 1/˛ in black and the straight line �.� � 1/ sin 2˛ in green with respect to
the variable .� � 1/˛. The smallest value is the relevant one when we approach the
corner r ! 0 as the solution goes like r�.

12.3.2 Complex Solutions for � (˛ < 73:15ı)

Let us write � D p C 1C iq. The azimuthal velocity component is

v� .r; �/ D �@ 
@r

D < ���r��1 f .�/
�
: (12.29)
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Table 12.1 Main eigenvalue
� with respect to the corner
half angle

˛ .ı/ �

2 61:34043791 C i 32:2266675

10 13:0794799 C i 6:3843883

20 7:0578309 C i 3:0953659

30 5:0593290 C i 1:9520499

40 4:0674345 C i 1:3395862

50 3:4792155 C i 0:9303733

60 3:0941391 C i 0:6045850

70 2:8268686 C i 0:2616953

73:155 2:7634862 C i 0

On the symmetry axis of the corner, � D 0, and therefore

v� .r; 0/ D < ���r��1 f .0/
� D < �

r��1C
�
; (12.30)

where C D jC jeiˇ � ��f .0/. Equation (12.30) yields

v� .r; 0/ D < �
rpjC jeiq ln reiˇ

� D rpjC j cos.q ln r C ˇ/ : (12.31)

When r ! 0, ln r ! �1 and the velocity v� .r; 0/ changes sign infinitely often.
This behavior means that a string of counter-rotating vortices is present in the corner.
The center of the nth corner eddy denoted by rn is the distance of this center to the
origin. It is given by the relation v� .r; 0/ D 0 leading to

q ln rnCˇ D �.2nC1/�
2
; n D 0; 1; 2; : : : ; or rn D e

�.2nC1/ �2q e� ˇ
q : (12.32)

A simple calculation yields

rn

rnC1
D rn � rnC1
rnC1 � rnC2

D e
�
q ; (12.33)

which shows that the sizes of the vortices fall off in geometrical progression with
a common ratio e�=q , depending on the aperture angle of the corner. If we now

inspect the velocity maxima, we find v�;max D rpjC j at points rnC 1
2

D e
�n �

2q e
� ˇ
q .

The maximum velocity will be called the intensity of the eddy. The corner vortices
have their intensities falling off in geometrical progression with the common ratio

ˇ̌
ˇ̌ vn
vnC1

ˇ̌
ˇ̌ D e�p=q ; (12.34)

which also depends on ˛.
The numerical solution of Eq. (12.28) for the angle ˛ is given in Table 12.1.

We observe that � decreases when ˛ increases. Furthermore, the imaginary part =�
goes to 0 when ˛ reaches the value 73:15ı, meaning that � then becomes real.
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Fig. 12.4 Corner flow in a wedge of aperture ˛ D 28:5ı (Courtesy of E. Rønquist. The picture is
reprinted with permission from Taneda (1979))

Figure 12.4 shows a spectral element solution computed by Rønquist (1991) for
the Stokes flow in a wedge. As the top lid moves at unit velocity, a series of Moffat
corner eddies is generated. These eddies are stacked from top to bottom in an infinite
cascade to the tip. The wedge shown has an aperture angle of 28.5ı. The asymptotic
ratio of successive eddy intensities is 405. With the discretization shown in the figure
(K D E D 30;N D 8), one obtains four eddies. The ratio of the strength of two
successive eddies is from top to bottom 386; 406, and 411. We observe also that the
computed results are very close to the experimental data provided by Taneda (1979)
and Van Dyke (1983).

12.4 Stokes Eigenmodes and Corner Eddies

Most state-of-the-art numerical methods dealing with the Navier-Stokes equation
rely on an implicit treatment of the Stokes operator and an explicit scheme for the
nonlinearity (rejecting it as a source term). Hence it is essential to understand the
structure of the Stokes operator. Furthermore if we can write the eigenmodes in
closed form, or if we can compute them accurately, then we are able to use those
modes as the basis for the approximation of the Stokes equation, see for example
Batcho and Karniadakis (1994).

The Stokes eigenproblem is defined by setting @v
@t

D �v in Eq. (11.35) and
assuming that f D 0. The eigenvalue � provides the growth or decay rate of the
velocity field. Now the eigensystem becomes

�v � ��v C rp D 0 in ˝ ; (12.35)

div v D 0 in ˝ ; (12.36)

v D 0 on @˝ : (12.37)
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12.4.1 Periodic Stokes Eigenmodes

Let us consider the fully periodic solutions of the transient Stokes problem
Eqs. (11.35) in the open square domain ˝ D� � 1;C1Œ2 with the Fourier
approximation

v.x; t/ D
X

kkk<1
Ov.k/ei.k�xC!t/; p D

X

kkk<1
Op.k/ei.k�xC!t/ ;

f.x; t/ D
X

kkk<1
Of.k/ei.k�xC!t/ ; (12.38)

where Ov; Op; Of are the complex Fourier coefficients, k the wavevector and ! a
complex frequency. The notation kkk < 1 is defined to mean �1 < ki < C1
for i D 1; 2.

Let us denote by ek the unit vector in the direction of k. Then k D k ek. The
solution is easily obtained

Op D �i ek 
 Of
k
; .i! C k2/Ov D

�Of � ek.ek 
 Of

: (12.39)

The resulting periodic eigenmode corresponding to � D i ! is

Op D 0; .�C k2/Ov D 0; k 
 Ov D 0 : (12.40)

The periodic Stokes modes are constant pressure modes driven only by diffusion
as � D �k2. The incompressibility constraint div v D 0 does not influence the
space configuration, except that the wavevector k must be orthogonal to the velocity.
Geometrically speaking the velocity is contained in a plane perpendicular to k, while
the pressure is aligned with the wavevector.

12.4.2 Channel Flow Stokes Eigenmodes

The problem is based on the plane channel flow between horizontal plates as treated
in Orszag et al. (1986). The flow is assumed periodic in the x2 direction while it is
confined by rigid walls in x1 D ˙1. We seek a solution of the 2D Stokes equation
in the form

v.x; t/ D �
u.x1/e

ikx2C�t ; v.x1/eikx2C�t
�
; p D p.x1/e

ikx2C�t ; (12.41)

where k is a chosen wavenumber and u; v are complex functions. The Stokes
equations satisfied by u; v; p are
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�u D � dp

dx1
C �.

d2u

dx21
� k2u/ ;

�v D �ikp C �.
d2v

dx21
� k2v/ ; (12.42)

du

dx1
C ikv D 0 ;

for �1 � x1 � C1. The boundary conditions are

v.˙1; x2; t/ D 0 ; (12.43)

for the no-slip walls. The elimination of v and p in Eqs. (12.42) yields

�
�
D2 � k2

�
u D �

�
D2 � k2

�2
u ; (12.44)

with u.˙1/ D Du.˙1/ D 0, where D D d=dx1. The solutions of Eq. (12.44) are
either symmetric in x1

u.x1/ D cos
 cosh kx1 � cosh k cos
x1 ; (12.45)

or antisymmetric

u.x1/ D sin
 sinh kx1 � sinh k sin
x1 : (12.46)

The eigenvalues are

� D ��.
2 C k2/ ; (12.47)

satisfying the relations

k tanh k D �
 tan
 ; (12.48)

for (12.45) and

k cothk D 
 cot
 ; (12.49)

for (12.46). For k D 1 and k D 10, the first symmetric eigenmode decays
with �=� D �9:3137 and �=� D �103:0394, respectively, while, for k D 1

and k D 10, the antisymmetric eigenmode decays with �=� D �20:5706 and
�=� D �112:0836. All the eigenvalues � are real and negative, indicating strong
damping by the viscous forces.



12.4 Stokes eigenmodes 303

Fig. 12.5 Streamlines of the fundamental eigenmode. (a) Core vortex; (b) zoom of the primary
corner eddy; (c) zoom of the secondary corner eddy (Reprinted with kind permission from Springer
Science: Leriche and Labrosse (2005))

12.4.3 Stokes Eigenmodes in the Square Domain

Here, the Stokes problem is solved using a Chebyshev pseudo-spectral method.
A split scheme of projection-diffusion type is set up, the details of which are
found inLeriche and Labrosse (2004). The eigenmodes are investigated taking
the symmetry properties into account, mainly rotations and reflections. As the
projection method is only asymptotically divergence free when the polynomial
degree of the Chebyshev approximation goes to infinity, corner eddies show up
in the Stokes eigenspace computation. The presence of these eddies ensures that
discrete incompressibility will be numerically achieved.

Among the various geometrical isometries, three of them are independent,
namely rotation by a multiple of �=2 and reflections about the coordinate axes.
This leads to accurate computation of the Stokes eigenmodes in the reference
square for each of the six corresponding symmetry families. Figure 12.5 displays
the streamline contours of the first eigenmode computed with N D 96 Chebyshev
polynomials. The main core vortex has values in the range Œ0;�1�. The first corner
eddy is in between Œ0; 10�4� and the second corner eddy is in Œ0;�4: 10�10�

The numerical results for the eigenvalues confirm the theoretical predictions by
Constantin and Foias (1988), given by the next theorem:
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Theorem 12.1. Let ˝ � R
n; n D 2 or 3. Then there exists a scale invariant

constant C0 such that 8 k D 1; 2; : : : the eigenvalues �k of the Stokes operator
satisfies

�k > C0k
2=n�1 : (12.50)

In the periodic case, �1 D 4�2

L2
where L is the length of the domain.

The computed spectra �k are indeed linear in k with a second term proportional
to

p
k, Leriche and Labrosse (2004, 2005).

12.4.4 Corner Modes in the Cubic Domain

The extension of the Moffatt corner eddies to the three-dimensional case made
of orthogonal planes has resisted analytical treatment till now. As Shankar (2007)
writes in Sect. 11.3: “Nothing is known about such flows: : : There is still much to
be done about three-dimensional corner flows”. However recent studies based on
numerical methods bring new insights into this challenging problem, e.g. Leriche
and Labrosse (2011), Labrosse et al. (2014), and Scott (2013).

12.5 Three-Dimensional Stokes Solution

In this section we present a three-dimensional solution for the steady Stokes
equations (6.1) and (6.2). This procedure is due to Tran-Cong and Blake (1982) and
is based on harmonic solutions of the Laplace equation, assuming that separable
solutions are relevant.

Suppose that A and B are vector and scalar fields satisfying Laplace’s equations

Ai;jj D 0; B;jj D 0 : (12.51)

Then the velocity vi and pressure p are given by the relationships

vi D @

@xi

�
rjAj C B

�� 2Ai ; (12.52)

p



D 2Aj;j ; (12.53)

where rj are the components of the position vector. The proofs given in Tran-Cong
and Blake (1982) are based on theoretical developments coming from elasticity
theory. For the sake of simplicity we will skip them. However let us examine how the
methodology of solving both Laplace equations (12.51) and then combining the two
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harmonic solutions through (12.52)–(12.53) yields the Stokes solution. In Cartesian
coordinates with rj D xj , Eqs. (12.52) and (12.53) give

vi D @

@xi
.xjAj C B/� 2Ai D xjAj;i � Ai C B;i ; (12.54)

p



D 2Aj;j : (12.55)

The incompressibility constraint is ensured:

vi;i D xjAj;i i C Ai;i �Ai;i C B;i i D 0 : (12.56)

We next employ the equilibrium equation (6.2) and use (12.51) to eliminate some
terms

vi;kk D @

@xk

�
Ak;i C xjAj;ik �Ai;k C B;ik

�

D Ak;ik C Ak;ik C xjAj;ikk � Ai;kk C B;ikk D 2Ak;ik

D 1




@p

@xi
: (12.57)

Let us apply the previous solution technique to the Stokes flow of a sphere of
radius a moving at constant speed U in an infinite fluid, as reported in Sect. 6.2.
We refer the problem to a Cartesian coordinate system with origin at the center of
the sphere and with positive x3-axis in the flow direction. The harmonic solutions are

A1 D A2 D 0; A3 D �U C 3Ua

4r
; B D �Ux3a

2

4r3
: (12.58)

Using (12.58) in (12.54) we easily obtain the Eqs. (6.25).



Appendix
Comments on Some Bibliographical Entries

The present biographical scheme is quite different from that of the first edition.
There, each chapter ended with a short bibliography suggesting further reading.
Each entry was accompanied by a short review.

Now, in keeping with the publishers current format, the entire bibliography is
placed at the end, without reviews.

In the belief that some of the reviews retain value, we offer this appendix.
It has been wisely said that a trick used twice becomes a method. Some of the

reviews in the first edition reported techniques which were novel at the time, but
which now are widespread in the literature. Such reviews are omitted here.

Aris R This monograph goes quite deeply into the use of tensor methods in
hydrodynamics.

Berker R An extensive collection of exact and approximate solutions to the
Navier-Stokes equations.

Brenner H Presents a general theory for the motion of a particle when the fluid
is not unbounded. Creeping flow is assumed and the particle is assumed to be small
in comparison with its distance from the boundary. If the force on the particle in
an unbounded stream is a pure drag—no side thrust—the wall-correction can be
calculated from a knowledge of the drag on the particle in an unbounded stream and
the wall-correction for a spherical particle.

Carrier GF Offers an alternate approach to the problem of flow past obstacles.
The suggestion is made that the inertia term in the Navier Stokes equation be
replaced by cU j vi;j where c is a constant whose value lies between zero and unity.
In the Stokes approximation c D 0; in the Oseen approximation, c D 1. Thus
either of the classical approaches might be interpreted as replacing the factor vj

in vj vi;j by a weighted average, and this report suggests that a better weighting
might be found. From a study of sharp-edged obstacles, c D 0:43 appears to be
the most appropriate choice; moreover, the corresponding formulas for drag fit the
experimental data for spheres, cylinders, and flat plates for Reynolds numbers up
to about 20. The approach might be termed “semi-empirical”, but in view of the

W.E. Langlois and M.O. Deville, Slow Viscous Flow,
DOI 10.1007/978-3-319-03835-3,
© Springer International Publishing Switzerland 2014
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physical insight this particular author showed on so many occasions, it would be
unwise to dismiss the matter that briefly.

Ericksen JL Nominally an appendix to Truesdell and Toupin (1960), this
contribution is of significant interest in its own right. Many advanced results in
general tensor theory are derived and the main emphasis is on those aspects of the
subject which are of direct importance in continuum physics.

Goldstein S. 1938 This well-known work covers many matters in the general
area of viscous hydrodynamics. In particular the Hamel and von Kármán exact
solutions are discussed in detail with flow curves provided.

Gross WA Although no explicit division of the book into two parts is indicated,
that is the impression conveyed to the reader. Roughly speaking the first half of
the book introduces the subject to a reader presumed to have no prior knowledge
of lubrication theory. The remainder of the volume is, in essence, a handbook,
cataloguing many solutions to lubrication problems and giving references rather
than details. The bibliography, which extends over fifteen pages, is quite impressive.

Jeffreys H The standard reference on Cartesian tensor analysis is now somewhat
dated, but still quite useful. Much of its material is also included in Chap. 3 of
Methods of Mathematical Physics by H. and B. S. Jeffreys (Cambridge, 1951).

Kantorovich LV, Krylov VI This 700-page volume surveys many topics in
higher analysis. Included is a lucid discussion of the fundamental biharmonic
problems and of the conformal mapping methods for solving them. Although the
connexion with plane elasticity is developed, it is not assumed that the reader is
already familiar with elementary elasticity theory.

Lamb SH For a classical look at classical problems, one can hardly do better.
The treatment of the Stokes problem is particularly instructive.

Lighthill J, 1976 The reader with little or no background in microbiology
will appreciate that the author provides it, lucidly and in sufficient depth to
convey what biological problems await treatment. After reviewing the successes and
shortcomings of prior work, i.e., the use of local resistance coefficients, he sets the
stage for flagellar hydrodynamics. This he then pursues in depth, covering several
important cases. One ironic result: despite his obvious distaste for local resistance
coefficients, he uses the results of his more sophisticated analysis to offer ways to
improve them.

McConnell AJ A republication under a new title of Applications of the Absolute
Differential Calculus. For many years the standard reference on the subject, this
book offers a detailed and quite lucid treatment of the geometrical aspects of tensor
analysis. Several applications to mathematical physics are also extensively treated,
but this part of the book is now somewhat dated.

Muskhelishvili NI Treats extensively the use of complex variable techniques in
elasticity theory.

Proudman I, Pearson JRA The matching procedure set out in Sect. 6.4 was
taken from this paper, which also treats the corresponding, but more difficult,
problem of flow past a circular cylinder.

Rivlin RS In preparing Chap. 1, we drew heavily upon Chap. 1 of Rivlin’s
notes. The treatment is not completely parallel, for Rivlin’s treatment is intended to
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provide a background appropriate for elasticity theory, rather than hydrodynamics.
Nevertheless we are grateful to Professor Rivlin for demonstrating that the use of
Cartesian tensors in mechanics can be simply and succinctly presented.

Serrin J This article presents an accurate and thorough development of the basic
principles underlying several aspects of hydrodynamics.

Sokolnikoff IS, 1951 Written by one of the most prominent workers in elasticity
theory, this reference treats extensively the application of tensor methods to classical
continuum mechanics.

Sokolnikoff IS, 1983 Chap. 4 includes the solution of a variety of torsion
problems. By the analogy noted at the beginning of Chap. 5, these can be converted
to pipe-flow problems.

Tipei N This is the first English edition of a book previously available only in
Rumanian. The viewpoint taken appears somewhat strange to American and British
workers in lubrication theory, but unorthodox viewpoints are often enlightening.
Both liquid films and gas films are discussed.

Truesdell C, 1960 Not intended for beginners, this article presents a wealth of
information on the basic principles underlying continuum physics. Much of the
material is directly related to the subject matter of Chap. 2.
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A
Acceleration

in fixed coordinates, 21
in moving coordinates, 30, 215

Adams-Bashforth scheme, 284
Advection, 62
Advection-diffusion equation, 282
Alternating tensor, 10
Annular region, 124, 143
Axisymmetric

analog of Hamel flow, 130
Couette flow, 125, 213
flow, 100, 103, 214

B
Bacteria, 182
Bandwidth, 265
Barycentric coordinates, 269
Bearing number, 242
Bearings, 230

with steps and grooves, 236
Bernoulli

equation, 129, 230
law, 79
region, 231, 244
term, 79

Bessel function, 283
Bi-conical viscometer, 220
Biharmonic equation, 160, 184, 293
Biharmonic flow, 196
Bilinear transformation, 154
Blood flow simulation, 288
Body forces, 35
Boundary conditions, 64

in lubrication theory, 239
Boundary integral methods, 181

Boundary-layer theory, 73
Bounded regions, 187
Boussinesq

approximation, 62, 137
equations, 64

Breadth of a bearing, 241
Bubble dynamics, 131
Bulk viscosity, 47
Burgers equation, 282

C
Canonical basis, 263
Cardinality condition, 256
Cardinality property, 267
Cartesian

system, 1, 85, 90, 92, 94, 232
tensors, 1, 15

Cauchy-Riemann equations, 185–187, 197
Cauchy’s integral formula, 153
Cauchy stress tensor, 272
Cavitation, 134
Cayley-Hamilton theorem, 52
Centered scheme, 284
Centrifugal pumping, 135, 213
CFL condition, 284
Channel, 106, 199

of varying width, 201
Channel flow

with pulsatile pressure gradient, 113
Chebyshev method, 303
Checkerboard mode, 277
Chemically reacting fluids, 53
Christoffel formula, 89
Christoffel symbols, 87, 88

for cylindrical coordinates, 96
for spherical coordinates, 100
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Cilia beating, 182
Circular Couette flow

for a Newtonian fluid, 125
for a non-Newtonian fluid, 126

Circular cylinder, 169, 184, 190, 288
between parallel walls, 195

Clausius-Duhem inequality, 57
Clearance, 247
CN/AB2 method, 287
Coaxial cones, 217
Coefficient of

bulk viscosity, 63, 233
heat conductivity, 57
interfacial tension, 67, 133
surface tension, 66
viscosity, 233
volume viscosity, 46, 60

Complex
potentials, 186
velocity, 187

Compressible flow, 29, 232
Concentrated

force, 227
force coulpe, 227

Concentric spheres, 220
Cone-shaped region, 130
Conformal mapping, 154

and biharmonic flows, 196
Conjugate gradient method, 267
Conservation of

angular momentum, 40
energy, 53
mass, 24
momentum, 38

Conservative body forces, 76
Conservative differencing schemes, 78
Constant-density flow, 26
Constitutive equation

for a Newtonian viscous fluid, 42
as a nonequilibrium equation of state, 47
for a non-Newtonian viscous fluid, 48, 51

Constriction in a channel, 208
Continuity equation, 26

in cylindrical coordinates, 97
in general tensor notation, 92
integrated across a film, 238
in spherical coordinates, 101

Contraction, 9, 16
Contravariant

metric, 86
tensor, 83
vector, 83
velocity, 92

Convection, 62

Convergence, 277
Coordinate transformation, 3, 82
Corner

eddies, 296, 303
flow, 293, 295
modes, 304
vortices, 296, 299

Couette flow, 107
Couple stress, 36, 41
Covariant

derivative, 90
metric, 85
tensor, 84
vector, 84
velocity, 92

Crank-Nicolson scheme, 287
Creeping flow, 159

past a sphere, 161
Creeping rotary flow, 214
Crystallographic axes, 17
Curvature correction, 247
Curvilinear coordinates, 1, 82
Cylinder, 169, 190

between walls, 195
Cylindrical polar coordinates, 96

D
D’Alembert forces, 31
Delat function

point force, 228
Delaunay triangulation, 254
Delta function

point couple, 228
point force, 181

“Dependence of viscosity upon pressure”,
48

Depth of penetration, 110, 135
Differential-algebraic system, 280
Differentiation

following the fluid, 20
following the particle, 20

Dilation, 233
in cylindrical coordinates, 97
in spherical coordinates, 101

Dimensionless variables, 70, 75, 174, 234
Dirac function, 181
Direction

cosines, 2
of draw, 17
of grain, 17
preferred, 17

Dirichlet boundary condition, 252, 253
Dirichlet problem, 146, 152
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Dissipation, 166, 272
function, 56

Dissociating gas flow, 53
Divergence theorem, 26, 39, 41, 54
Doublet, 188
Drag

flow, 125
on a sphere, 164, 179

Drops, 68
Dummy suffix, 9
Dynamic head, 72, 79

E
Eccentric cylinders, 154
Eccentricity, 247

ratio, 247
Eddy pattern, 131
Edge effects, 215
Elliptical pipe, 147
Energy, 52

method of computing drag, 166
Energy equation, 69, 232

in the Boussinesq approximation, 62
in cylindrical coordinates, 98
in general tensor notation, 92
for a Newtonian fluid, 56
in spherical coordinates, 102

Entropy, 57, 62
E2-operator

in cylindrical coordinates, 99
in spherical coordinates, 103

Equation of state, 47, 59
Equations of creeping flow, 73, 159

for rotary motion, 214
in plane polar coordinates, 204

Equations of equilibrium, 40
Equations of motion, 40
Essential boundary condition, 253
Euclidean space, 90
Eukaryotes, 182
Euler equations, 74
Euler scheme, 284
Exact solutions, 105
Existence theorems, 190
External forces, 35
Externally pressurized bearing, 231, 243
Extremum, 272

F
Filon’s paradox, 196
Fingering instability, 210

Finite difference
method, 251
second order, 260

Finite element method, 252, 254
Finite volume method, 251
First fundamental problem for biharmonic

functions, 199
First normal stress differences, 108
First principle of thermodynamics, 55
Fixed coordinate system, 20
Flagellar

dynamics, 182
hydrodynamics, 182
motion, 182

Flow pattern, 21
Fluid-structure interaction, 277
Flux, 107, 200, 201, 203
Force

boundary conditions, 66, 239
couple, 40, 46

Fourier
representation, 114
series, 122

Fourier’s law of heat conduction, 56
Fourier-Kirchhoff-Neumann energy equation,

56
Free

suffix, 9
surface, 69, 187
surface flow over an inclined plane,

136
Full

orthogonal group, 14
rotation group, 14

Fundamental
biharmonic problems, 199
theorem of isotropic tensors, 18

G
Galerkin method, 254, 285

implementation, 258, 264
Gas film, 232, 239, 246
Gauss-Legendre, 288

quadrature, 259, 269
Gauss-Lobatto-Legendre, 269, 288
Gauss’s divergence theorem, 26, 39, 41, 54
General tensor analysis, 1, 81
Geometrical similarity, 70
Geophysical applications, 29
Gradient

field, 211
of pressure, 107, 119

pulsatile, 113
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of solute concentration, 69
of temperature, 137

Green’s
formula, 253
function, 181
theorem, 273

Group, 14

H
Hamel’s problem, 127, 129, 143
Harmonic functions, 79, 152, 160, 184, 197
Hat function, 256
Heat

capacity, 62
flux vector, 54
supplied, 55

Heat conduction, 56
analogy with vorticity transfer, 78

Hele-Shaw cells, 210, 211
Hele-Shaw flow, 210
Helical flow, 124
Helmholtz operator, 280
High Reynolds number flow, 73
Hopf bifurcation, 75, 290
Hydrodynamic equations

Cartesian coordinates, 63
cylindrical coordinates, 96
general tensor forms, 91
spherical coordinates, 100

Hydrostatic equation, 46
Hypersonics, 65

I
Identity transformation, 14
Impenetrability of matter, 20, 26
Incompressible fluid, 27, 59, 63, 93, 98, 103,

231, 271
stable finite elements, 277

Inertia, 72, 127, 129, 168, 179, 183, 190, 196,
222, 296

Inf-sup condition, 275
Injection molding, 210
Inner product, 16
Insolation, 55
Insulation, 69
Interface

fluid-fluid, 65, 67, 68, 187
fluid-solid, 65

Interfacial tension, 133
Internal

flows, 195
forces, 36

Internal energy, 54
density, 54, 62

Interpolation
error, 256
polynomial, 256

Invariants, 52
Irrotational flow, 34, 79, 187, 211
Isoparametric elements, 289
Isothermal

flow, 183
gas film, 239, 246

Isotropic, 17, 43
tensor, 17, 45

J
Jacobian, 82, 85, 92
Journal, 247

bearing, 230, 231, 247

K
Kelvin function, 123
Kinematic

coefficient of viscosity, 61
constraint, 232, 238
free-surface condition, 69
similarity, 72

Kinematics, 19
Kinetic energy, 53
Kronecker delta, 9, 86

L
Lagrange interpolation, 263
Lagrange-Legendre, 269
Lagrange multiplier, 275
Laminar wake, 172
Laplace transform, 111, 119
Laplacian

axisymmetric, 171
cylindrical coordinates, 97, 99
spherical coordinates, 102
two-dimensional, 99, 146, 197

Large eddy simulation, 292
Left-handed systems, 4, 12
Length of a bearing, 241
Lens, 222
Lid-driven square cavity problem, 296
Liquid films, 239
Load-carrying capacity, 230
Local coordinate, 255
Locally irrotational flow, 34
Local resistance coefficient, 182
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Logarithmic singularity, 170, 190, 191, 195
Lommel integrals, 121
Lubrication, 65, 71

M
Magnetohydrodynamics, 53
Marangoni convection, 69
Massless fluid, 183, 187
Mass lumping, 260
Mass matrix, 259, 270, 278, 287

lumped, 260, 281, 284
Matching techniques, 173
Material derivative, 20, 23, 24

of a Jacobian, 25
Material surface, 69
Meteorological applications, 55
Metric tensor, 85

cylindrical coordinates, 96
spherical coordinates, 100

Microorganisms
propulsion, 181

Mixed
stress tensor, 93
tensor, 84

“Mixed metric tensor”, 86
Moffatt corner eddies, 300, 304
Mortar element, 269
Moving contact line, 66
Moving coordinate system, 29, 43
Multidimensional finite elements, 262
Multiply connected regions, 154, 199

N
Natural boundary condition, 254, 261
Natural convection, 62

between differentially heated walls, 137
Natural ordering, 263
Navier-Stokes equation, 46, 53, 63, 73, 105,

143, 233, 282, 287
contravariant, 92
covariant, 92
curl of, 76
cylindrical coordinates, 97
dimensionless, 72
for � and 
 constant, 47
for incompressible fluid, 60, 93, 98
spherical coordinates, 101
in terms of vorticity, 78

Neumann condition, 253, 261
Neumann function, 118
Newtonian viscous fluid, 43, 44
Non-Euclidean space, 90

Non-Newtonian viscous fluid, 49
Non-spherical obstacles, 180
Normalization relation, 2
Normal stress, 37, 230

effect, 48
No-slip condition, 64
Null vector, 18
Numerical methods, 143, 293

O
Objective, 50
Objectivity, 49
Obstacles, 180, 191, 195, 199, 200
Oceanographic applications, 55
Orthogonal

coordinate system, 93, 94, 96
transformation, 12, 93

Orthogonality conditions, 3
Orthonormality conditions, 11, 29, 32
Oscillating

plate, 109
pressure gradient, 113

Oseen
criticism, 167
equation, 170
expansion, 173, 176
variables, 175

Oseen-Burgers tensor, 181
Outer product, 16

P
Paint-scraper problem, 295
Parallel

discs, 215
plates, 106, 143

Parent element, 255, 256, 262, 265, 267
Particle

derivative, 20
path, 21

Penetration depth, 110, 135
Periodic

condition, 230, 247
Stokes eigenmodes, 301

Perturbation, 72, 170, 172, 174, 222, 233,
246

Petrov-Galerkin method, 285
Physical components of

stress (cylindrical coordinates), 84, 86, 98
stress (spherical coordinates), 102
tensors, 96
vectors, 95

Pipe flow, 69, 116, 145
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Plane flow, 183
Plane Poiseuille flow, 107
Plane stress

analogy with creeping flow, 199
Poiseuille flow, 113, 116, 211
Poisson’s equation, 145, 253

for pressure computation, 282
Polytropic

approximation, 239
index, 239

Porous media
flow through, 210

Postulate, 58
Potentials for

conservative body forces, 77
irrotational flow, 79
plane creeping flow, 184, 197

PN � PN�2 spectral element, 288
Predictor-corrector scheme, 288
Pressure, 46

head, 79, 105
modified, 79, 145
as a primitive unknown, 63
scale, 72

Pressure flow
in an annular region, 125
in a channel of varying width, 201
in a circular pipe, 116
between parallel plates, 108

Principle of material frame-indifference, 49, 51
Proper orthogonal

group, 14
transformation, 13, 17

Pseudopod extension, 182
Pulsating flow in a circular pipe, 122

Q
Q1

finite elements, 255
Q2

finite elements, 257
Quasi-static, 191, 245
Quotient rule for tensors, 45

R
Radiative transfer, 55
Rank, 15, 83
Rarified-gas flow, 65
Rate of deformation tensor, 22, 24, 32, 43, 44,

46, 49
covariant components, 93

cylindrical coordinates, 97
for flow between cones, 218
for flow past a sphere, 166
spherical coordinates, 102

Rectangular
corner, 295
matrix, 276, 278
pipe, 149

Rectilinear flow between parallel plates, 106
Reflexion, 3, 13, 17
Relativistic considerations, 30
Reynolds-averaged Navier-Stokes equation,

292
Reynolds lubrication equation, 239
Reynolds number, 72, 74, 190

for flow between spheres, 222
for flow past a sphere, 168
modified, 236
oscillatory, 76, 123
as a perturbation parameter, 72, 169, 173,

223
as a scaling parameter, 73
translational, 76

Ricci’s lemma, 90
Right-handed systems, 4, 12
Rigid-body motion, 24, 32, 49
Ripples, 68
Rod-climbing effect, 48, 127
Rotary flow, 213, 222
Rotating disc, 134, 143
Rotation, 3, 18

group, 14
Rotlet, 227, 228

S
Saddle point problem, 275
Scalar, 15, 83
Scaling rules, 70
Secondary flow, 222
Second principle of thermodynamics, 57
Self similar solution, 112
Separation of variables, 120, 149
Shear coefficient of viscosity, 46
Shear stress, 37
Shock waves, 244
Side leakage, 241
Similarity rules, 70
Singularity methods, 181
Sink, 127, 129, 188, 203
Skew-symmetric tensor, 16, 22
Slider bearing, 230, 231, 240, 246
Slip condition, 65
Smooth constriction, 208
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Sobolev space, 256
Solutocapillary convection, 69
Source, 127, 129, 188, 203
Spectral element, 288

method, 269
Spectral methods, 254
Sphere, 159
Spherical polar coordinates, 100
Splitting error, 282
Spreading of liquids, 65
Spurious pressure modes, 277
Square integrable function, 256
Squeeze

bearing, 230
film equation, 245
films, 245
motion, 234, 247
number, 246

State variables, 46, 53
Steady flow, 22
Stiffness matrix, 259, 265, 268, 278, 287
Stokes

eigenmodes, 300
eigemodes for channel flow, 301
equations, 74, 159, 275
expansion, 173
flow in a wedge, 300
flow past a sphere, 305
law, 165
number, 76
paradox, 183, 190, 195
problem, 159, 273
relation, 47
solution, 159, 304
stream function, 99, 103, 160, 171, 214
theorem, 188
variables, 174

Stokeslets, 180
Stream function, 26, 60

cylindrical coordinates, 99
Streamlines, 21

of flow between spheres, 226
of flow past a sphere, 162, 172
for rotary flow, 213

Stress
components, 37, 43, 44, 49
power, 56, 272
tensor, 38, 46
vector, 36, 66, 68

Stretched coordinates, 3, 176, 234
Strong formulation, 252
Strouhal number, 75
Substantial differentiation, 20
Substitution tensor, 10

Suffix notation, 2, 6
Summation convention, 8, 82
Surface

tension, 66
traction, 35, 66

Suspension, 180
Svanberg vorticity, 100
Swirl, 99, 103
Switchback, 196
Symmetric tensor, 16, 22, 42, 46

T
Tackiness, 247
Tangential stresses, 37
Thermocapillary convection, 68
Thermodynamic process, 58
Three-dimensional Q1 element, 265
Time extrapolation, 285
Time splitting, 285
Torsion problem of elasticity, 145, 147, 148
Torus, 222
Trace, 52
Triangular elements, 267

P1, 267
P2, 268

Triangular pipe, 148
Turbulence, 282, 291
Two-dimensional

Q1 element, 263
Q1 �Q0 element, 277
Q2 element, 266
Q2 �Q1 element, 277

Two-dimensional flow, 61, 77, 99, 183

U
Underwater explosion bubbles, 133
Uniqueness theorem, 187, 190
Unsteady flow, 29
Unsteady Stokes equation, 279
Upwinding, 285
Uzawa

algorithm, 280
matrix, 279

V
Vapor bubbles, 133
Variational principle, 271, 272
Vector, 15, 17, 83, 84, 95
Velocity

in fixed coordinates, 21
in moving coordinates, 30
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Velocity potential, 211
Velocity-pressure decoupling, 280
Viscometric functions, 109
Viscometry, 215, 217, 219
Volume flow

condition, 69, 128, 130
rate, 116, 147

von Kármán street, 75, 290
von Neumann condition, 284
Vortices, 226
Vorticity, 34

equation, 77
tensor, 22, 23, 32
transfer, 76
vector, 34, 77

Vorticity-streamfunction formulation, 78,
100

W
Waves on a liquid surface, 70
Weak form, 253
Weak formulation, 252

of the Stokes problem, 273, 274
Wedge-shaped region, 127, 203
Weighted residual method, 253
Weissenberg effect, 48
Whitehead’s paradox, 170, 174
Womersley number, 123
Wood, 17
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