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Supervisor’s Foreword

Percolation transition, the transition from a disconnected state to a connected one,
has been regarded as a fundamental model of phase transitions in nonequilibrium
systems. One of the most fundamental characteristics of a phase transition is its
order, i.e., whether the macroscopic quantity affects changes continuously or
discontinuously at the transition point. The percolation phase transitions in random
networks were originally considered to be robust continuous phase transitions. A
few years ago, it was reported that random networks under the Achlioptas process
underwent a discontinuous transition that was called ‘‘explosive percolation.’’ It
was finally proven that the transition is actually continuous in the thermodynamic
limit, although it is extremely abrupt. Thus, understanding what types of phe-
nomena can lead to discontinuous phase transitions in the connectivity of random
networks is an outstanding challenge.

This thesis contains the results of Dr. Wei Chen’s research when he was
working on his Ph.D., with the aim of understanding the BFW model that was first
introduced by Tom Bohman, Alan Frieze, and Nicholas Charles Wormald, a
typical model that exhibits a discontinuous percolation transition. The principal
results dealt with the analysis of several important and unusual behaviors observed
in this model, including discontinuous percolation transition, the underlying
mechanism of discontinuous transition, multiple discontinuous transitions, and
unstable giant components.

The layout of the thesis is as follows: In Chap. 1, the author recalls the
development of network science, the theory of percolation, and explosive perco-
lation in random networks. In Chap. 2, he studies the nature of percolation tran-
sition and number of giant components in the Bohman–Frieze–Wormald model.
Chapter 3 is devoted to the study of the underlying mechanism of discontinuous
transition in this model. In Chap. 4, the author shows that at some point in the
supercritical regime, the fraction of nodes in the largest component stops growing
and eventually a second giant component emerges in a continuous percolation
transition. The author also establishes many features of the second continuous
percolation that include scaling exponents and relations. In the final chapter, he
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investigates whether the location of the largest jump coincides with the percolation
threshold for a range of processes, such as Erdös–Rényi percolation, and perco-
lation via edge competition and via growth by overtaking.

The results arrived at, in this thesis, were mainly obtained through numerical
simulations. Therefore, there is still great potential for further theoretical analysis
in order to understand these results in a rigorous way. The methods developed in
carrying out this work are expected to be useful for analyzing other models of
percolation. It is also hoped that the thesis can serve as a valuable reference for
current development in problems related to both the theory and application of
percolation.

Beijing, April 2014 Prof. Zhiming Zheng

viii Supervisor’s Foreword
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Abstract

Random networks, a collection of nodes and random edges, provide a useful
abstraction of the structure of many complex systems, from biological systems and
social systems to technological systems and economical systems. Viewed in a
random network setting, once the density of edges exceeds a critical threshold, the
system undergoes a sudden transition from small, scattered components to global
connectivity, where the size of the largest connected component transitions from
microscopic to macroscopic in size; mathematicians and physicists call this
‘‘percolation.’’ Percolation governs the dynamics of many social and physical
systems as well as in the epidemic spreading of infectious diseases and information
propagation. The Erdös–Rényi Random Network was considered robust contin-
uous transition at the percolation threshold. An important and interesting question
is whether the transition can be discontinuous or ‘‘explosive’’ under some special
rules of connecting edges. In this work, we study a model of percolation that was
first proposed by T. Bohman, A. Frieze, and N.C. Wormald (see Random Struct.
Algorithms, 25, 432 (2004)). We find that this model not only exhibits
discontinuous transition at the percolation threshold, but also many other unusual
critical behaviors that can trigger much interesting follow on work. The
description of the work is divided into four parts as follows:
We begin Chap. 2 with our study of the nature of percolation transition and the
number of giant components in the Bohman–Frieze–Wormald model. Starting
from a collection of ‘‘n’’ isolated nodes, potential edges chosen uniformly at
random from the complete graph are examined one at a time, while a cap, ‘‘k,’’ on
the maximum allowed component size is enforced. Edges whose addition would
exceed k can be simply rejected, provided the accepted fraction of edges never
becomes smaller than a function that decreases with k, such as

gðkÞ ¼ αþ ð2kÞ�1=2. We show that multiple giant components appear simulta-
neously in a strongly discontinuous percolation transition and remain distinct in
the supercritical regime. Furthermore, tuning the value of α determines the number
of such components with smaller α leading to an increasingly delayed and more
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explosive transition. The location of the critical point and strongly discontinuous
nature is not affected if only edges that span components are sampled.
In Chap. 3, we study the underlying mechanism of discontinuous transition in the
Bohman–Frieze–Wormald model. This mechanism is the domination of overtak-
ing in the growth of the largest component. Here, we assume that

gðkÞ ¼ 1=2þ ð2kÞ�β. We show that if β\ 1, it is always possible to reject a
sampled edge, and the growth in the largest component is dominated by an
overtaking mechanism leading to a discontinuous transition. If β [ 1, once
k � n1=β, there are situations when a sampled edge must be accepted, leading to
direct growth dominated by stochastic fluctuations and a ‘‘weakly’’ discontinuous
transition. We also show that the distribution of component sizes and the evolution
of component sizes are distinct from those previously observed and show no finite
size effects for the range of β studied.
In Chap. 4, we focus on the regime α 2 ½0:6; 0:95�, where it is known that only one
giant component initially appears at the discontinuous phase transition. We show
that at some point in the supercritical regime, the fraction of nodes in the largest
component, denoted as C1, stops growing and eventually a second giant compo-
nent emerges in a continuous percolation transition. The delay between the
emergence of two giant components and their asymptotic sizes both depends on
the value of α and we establish, by several techniques, that there exists a bifur-
cation point αc. For α 2 ½0:6;αcÞ, C1 stops growing the instant it emerges and the
delay between the emergence of two giant components decreases with increasing
α. For α 2 ðαc; 0:95�, in contrast, C1 continues growing into the supercritical
regime and the delay between the emergence of two giant components increases
with increasing α. As we show, αc marks the minimal delay possible between the
emergence of two giant components. We also establish many features of the
continuous percolation of C2, including scaling exponents and relations.
The location and nature of the percolation transition in random networks is a
subject of intense interest. A series of graph evolution processes has been
introduced and leads to discontinuous percolation transitions where the addition of
a single edge causes the size of the largest component to exhibit a significant
macroscopic jump in the thermodynamic limit. These processes can have
additional exotic behaviors, such as displaying a ‘‘Devil’s staircase’’ of discrete
jumps in the supercritical regime. In Chap. 5, we investigate whether the location
of the largest jump coincides with the percolation threshold for a range of pro-
cesses, such as Erdös–Rényi percolation, percolation via edge competition, and via
growth by overtaking. We find that the largest jump asymptotically occurs at the
percolation transition for Erdös–Rényi and other processes exhibiting global
continuity, including models exhibiting an ‘‘explosive’’ transition. However, for
percolation processes exhibiting genuine discontinuities, the behavior is substan-
tially richer. In percolation models where the order parameter exhibits a staircase,
the largest discontinuity generically does not coincide with the percolation tran-
sition. For the generalized Bohman–Frieze–Wormald model, it depends on the
model parameter. Distinct parameter regimes well in the supercritical regime
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feature unstable discontinuous transitions—a novel and unexpected phenomenon
in percolation. We thus show that seemingly and genuinely discontinuous perco-
lation transitions can involve a rich behavior in supercriticality, a regime that has
been largely ignored in percolation.

Keywords Community � Complex networks � Explosive percolation � Giant
connected component � Random graph � Phase transition
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Chapter 1
Introduction

1.1 Network Science: An Emerging Discipline

Networks, or graphs (a collection of nodes with edges connecting them), have long
been studied in a prolific branch of mathematics known as “graph theory” and are
often used by scientists to model the structure of many complex systems, ranging
from technological systems [1–3] and biological systems [4, 5] to social systems
[6, 7] and economic systems [8, 9]. Human beings are surrounded by a variety of
different types of networks. Examples include networks of scientific collaborations
[10, 11], in which nodes are scientists and edges connecting co-authors; the Internet
[2, 3], in which nodes represent the computers or routers and edges represent cables
used to transmit data; the protein homology network [12], in which the nodes are the
proteins and weighted edges represent the degree of similarity between two proteins;
and food webs in ecosystems [5], in which nodes are species and edges show the
predator and prey interactions.

In the middle of the last century, due to the absence of reliable data about complex
systems, the connections between nodeswere considered to be random, and networks
were mostly modeled by random graphs. The most classical and widely used random
graph model is the Erdös-Rényi Random Graph, which was first proposed by the
HungarianmathematiciansPaulErdös andAlfredRényi in themiddle of the twentieth
century [13, 14]. In this model, every pair of nodes is connected with a certain
probability p in a network with a fixed number of nodes, resulting in a Poisson
degree distribution in the network. At the end of the last century, with the rapid
development of complex systems (including the Internet and the World Wide Web),
large-scale information about the structure of complex systems became attainable.
To the surprise of many, the networks of many complex systems are not Erdös-Rényi
random graphs. In 1999, Albert-Laszlo Barabási from the University of Notre Dame,
published a paper entitled “Emergence of Scaling in Random Networks” in Science
[15]. He discovered that the network of the Internet appears to follow a power-law
distribution, not a Poisson distribution. These types of networks are also called “scale-
free” networks. This discovery indicates that the wiring of the Internet is dominated

© Springer-Verlag Berlin Heidelberg 2014
W. Chen, Explosive Percolation in Random Networks, Springer Theses,
DOI: 10.1007/978-3-662-43739-1_1
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2 1 Introduction

by several highly connected hubs, which are not a feature of an Erdös-Rényi random
graph. One year before this study, Duncan Watts from Columbia University and
Steven Strogatz from Cornell University made another important discovery in their
paper “Collective Dynamics of Small-World Networks,” which was published in
Nature [16]. They showed thatmany networks in nature, such as the brain of theworm
C. elegans, as well as the network of movie actors in Hollywood and the network of
power lines in western America, simultaneously have a small node separation and
display a high degree of clustering. These networks are called “small world,” which
was first proposed in 1967 by Stanley Milgram, a sociologist at Harvard University,
[17]. These two papers are considered to be the most distinguished studies in modern
network science because they launched a flood of subsequent papers in this field over
the past 15 years.

1.2 Percolation in Networks

Percolation is a pervasive concept that arises in atomic andmolecular solids in physics
as well as in social, technological and natural systems [18–20] such as epidemic or
rumor spread [21, 22], information diffusion in online social networks [23], porous
media [24], resistor networks [25], forest fires [26] etc. Percolation has been studied to
a great extent for several decades because its critical information on the large-scale
connectivity of a system can be used to quantify its ability to efficiently transfer
information, resources, energy, etc. [27, 28]. A typical percolation model is random
networks, in which a phase transition from small, scattered components, to large-
scale connectedness, occurs upon the sequential addition of random edges between
nodes. Perhaps the most classical and widely used model of random network is the
Erdös-Rényi Random Graph. This model starts with N isolated nodes. At every step
of the way?, two nodes are randomly selected and connected with an edge. Once the
density of edges (number of edges per node in the system) exceeds a critical threshold
pc = 1/2, the order of magnitude in the size of the largest connected component
suddenly changes from o(N ) toO(N ). Mathematical frameworks characterizing the
critical properties of the Erdös-Rényi model can be seen in Refs. [13] and [14].

Since the emergence of complex networks at the endof the last century, percolation
has been studied in a variety of different types of networks. A random network with
(without) pair correlations between nearest-neighbor degrees is called a “correlated
(uncorrelated) network”. The mathematical algorithm for organizing an arbitrary
uncorrelated network, called a “configuration model,” was proposed by Michael
Molloy and Bruce Reed [29, 30]. Mark Newman developed the generating func-
tion technique to provide the analytical solution of the size of the largest connected
component and percolation threshold for uncorrelated networkswith arbitrary degree
distributions [31]. Reuven Cohen et al. first considered the percolation problem of an
uncorrelated network under random removal or damage nodes or edges [32]. Duncan
Callaway et al. considered a more general percolation problem in uncorrelated scale-
free networks where the probability of removing a node depends on its degree. It
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was discovered that giant connected components in a scale-free network are robust to
random attacks but rather vulnerable to intentional damage of highly connected hubs
[33, 34]. Percolation on degree-degree correlated networks is further studied, based
on generating function technique in Refs. [35–37]. Sergey Dorogovtsev et al. [38],
Nehemia Schwartz et al. [39] and M. Angeles Serrano et al. [40] studied the struc-
ture of the giant connected component in uncorrelated directed networks. Marian
Boguñá and M. Angeles Serrano generalized their theory to uncorrelated networks
containing both directed and undirected edges [41]. Duncan Callaway and his group
studied percolation phase transition in a simple model of a growing network [42].
Mark Newman and Duncan Watts investigated the site percolation on small-world
networks as a simple model of disease propagation and they derived an approximate
expression for the percolation probability at which a giant component first emerges
[43]. M. Angeles Serrano et al. studied the percolation in self-similar networks and
proved that graphs in a general class of self-similar networks have a zero percolation
threshold [44]. HonWai Lau et al. studied the agglomerative percolation on bipartite
networks and found the nonuniversal behavior at the percolation threshold resulting
from spontaneous symmetry breaking [45]. James Gleeson et al. [46, 47] and Mark
Newman [48] studied the percolation in clustered networks. Generalizations of per-
colation in networks include k-clique percolation [49, 50] and bootstrap percolation
(k-core percolation) [51, 52], Ising models on networks [53, 54], Potts models on
networks [55], dynamic models of epidemic spreading [21, 56–60], dynamic models
of information diffusion on social networks [61–64], and others.

1.3 Explosive Percolation: A Continuous or Discontinuous
Transition?

One of the most fundamental characteristics of a phase transition is its order, i.e.,
whether the macroscopic quantity it affects changes continuously or discontinuously
at the transition point. Continuous transitions are called “second-order” and include
many magnetization phenomena, whereas discontinuous transitions are called “first-
order,” an example of which is the discontinuous drop in entropy when liquid water
turns into solid ice at zero degrees.

The percolation phase transitions in random networks were originally considered
to be a robust continuous phase transition, such as the Erdös-Rényi model. However,
in 2009, Dimitris Achlioptas et al. reported that a variant of the Erdös-Rényi model,
which was called the “Achlioptas Process,” can undergo a discontinuous transition or
“explosive” percolation, as it was called in their paper [65]. In an Achlioptas Process,
multiple candidate edges are considered randomly from the complete graphgenerated
by all the nodes, and only one edge is connected to the graph according to a pre-set
criterion,while the others are discarded. They showed that if the pre-set criterion is the
product rule or sum rule, i.e., choosing the edge connecting two components with a
smaller product or sumof their sizes, the transition is discontinuous. The reason given
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by them is that in a network of size N , only the number of edges added to the graph is
of order o(N ) during the size of the largest connected component augmenting from
O(Nβ) to γ N for some 0 < β, γ < 1. Several months later, explosive percolation
transition was further observed in two-dimensional square lattices under the product
rule [66, 67], scale-free networks under the product rule [68, 69], random percolation
under triangle rule and adjacent rule [70], product rule in human protein homology
networks [12], nanotube-based systems [71], and even large-scale social networks
[72]. Their results are all based on numerical simulations without strict mathematical
proofs.

Is explosive percolation really discontinuous in the thermodynamic limit? Two
years later, Rui da Costa et al. introduced mean-field equations to describe the evo-
lution of a special “Achlioptas Process” [73, 74]. They proved, by numerical and
analytical approaches, that the product rule actually exhibits a continuous, second-
order phase transition, rather than “discontinuous” transition which is generally con-
vinced but with a small critical exponent of the percolation component size. Peter
Grassberger studied more Achlioptas Processes and reported that they all exhibit
continuous transitions although they belong to different universality classes [75].
Later on, scientists performed extensive numerical simulations with finite-size scal-
ing analysis at criticality to show that more Achlioptas Processes in random graph
and two-dimensional square lattices are continuous [76–80]. Terry Riordan and Scott
Warnke first applied the probability theory to prove that all Achlioptas Processes in
random graphs are continuous [81, 82].

The debate in the nature of explosive percolation gives rise to an outstanding chal-
lenge: what are the essential ingredients that lead to discontinuous phase transitions
in the connectivity of random networks? Actually, this question was in the spot-
light soon after the emergence of explosive percolation. Eric Friedman and Adam
Landsberg first proposed the concept of the powder keg, which is defined as the nodes
in components of a size larger than Nα , when the size of the largest component is
Nβ(1 > α > β > 0) [83]. They found that the fraction of nodes in the powder keg
converges to some positive constant as N → ∞ in the subcritical regime, which
induces the abrupt discontinuous transition at percolation threshold. Similar to the
idea of the powder keg, Hans Hooyberghs and Bert von Schaeybroeck proposed an
equivalent condition for discontinuous explosive percolation,which is themean num-
ber of nodes per cluster diverges in the thermodynamic limit prior to the transition
point. André Moreira et al. suggest that two conditions are sufficient to generate the
discontinuous explosive percolation: (1) the size of all growing components should
be kept approximately the same, and (2) edges that merge two components should
be selected much more frequently than edges inside the components [84]. Young Sul
Cho and Byungnam Kahng show that when the dynamic rules of connecting edges
suppress the growth of all components, the transition is discontinuous [85]. Other
mechanisms that lead to discontinuous transition include cooperative phenomena
[86], hierarchical structures [87], correlated percolation [88], restricted Erdös-Rényi
models [89], algorithms that explicitly suppress growth of the largest component
[90–92], cascading failure in interdependent networks [93], and others. The recent
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advances in explosive percolation can be found in a review paper by Nikolaos Bastas
et al. [94].

In this book, we study a typical explosive percolationmodel that exhibits a discon-
tinuous transition—Bohman-Frieze-Wormald model. We introduce the mechanism
that leads to discontinuous transition [92, 95, 96] and other interesting critical and
supercritical behaviors observed in some generalizations of this model, including
multiple giant components [92], multiple phase transitions [97–100] and unstable
giant components [101].
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Chapter 2
Discontinuous Explosive Percolation
with Multiple Giant Components

2.1 Introduction

The percolation phase transition models the onset of large-scale connectivity in lat-
tices or networks, in systems ranging from porous media, to resistor networks, to
epidemic spreading [1–4]. Percolation was considered a robust second-order transi-
tion until a variant with a choice between edges was shown to result in a seemingly
discontinuous transition [5]. Subsequent studies have shown similar results for scale-
free networks [6, 7], lattices [8, 9], local cluster aggregationmodels [10], single-edge
addition models [11, 12], and models which control only the largest component [13].
It seems a fundamental requirement that in the subcritical regime the evolution
mechanism produces many clusters, which are relatively large, though sublinear, in
size [10, 11, 14]. Most recently, the notions of “strongly” versus “weakly” discon-
tinuous transitions have been introduced [15], with the model studied in [5] showing
weakly discontinuous characteristics,, while an idealized deterministic “most explo-
sive”model [14, 16] is strongly discontinuous. Here, we analyze and extend a related
model byBohman, Frieze, andWormald (BFW) [17], which predates themore recent
work, and show that surprisingly [18], multiple stable giant components can coexist
and that the percolation transition is strongly discontinuous.

2.2 Results

The “most explosive” deterministic process [14–16] begins with n isolated nodes,
with n set to a power of two for convenience. Edges that connect pairs of isolated
nodes, creating components of size k = 2, are added sequentially until no isolated
nodes remain. The cutoff k is then doubled and edges leading to components of size
k = 4 are added sequentially, until all components have size k = 4. k is then doubled
yet again and the process iterated. By the end of the phase when k = n/2, only two
components remain, each with size n/2. The addition of the next edge connects those

© Springer-Verlag Berlin Heidelberg 2014
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two components during which the size of the largest component jumps in value by
n/2. Letting t denote the number of edges added to the graph, we define the critical
tc as the single edge whose addition produces the largest jump in size of the largest
component denoted βCmax; here tc = (n − 1), with βCmax = n/2.

The BFWmodel begins with a collection of n isolated nodes (with n any integer)
and also proceeds in phases starting with k = 2. Edges are sampled one-at-a-time,
uniformly at random from the complete graph. If an edge would lead to formation
of a component of size less than or equal to k it is accepted. The edge is otherwise
rejected provided that the fraction of accepted edges is greater than or equal to a
function g(k) = 1/2 + (2k)−1/2. Once the next edge rejection event would lead
to the fraction of accepted nodes dropping below g(k), the phase is augmented to
k +1, with explicit details given below. Note asymptotically, limk→∞ g(k) = γ with
γ = 1/2.

BFW established rigorous results whereby setting g(200) = 1/2, all components
are no larger than k = 200 nodes (i.e., no giant component exists) when m =
0.96689n edges out of 2m sequentially sampled random edges have been added to
graph. They further establish that a giant component must exist by the time m = c∗n
out of 2m sampled edges have been added, with c∗ ∈ [0.9792, 0.9793]. Yet, they
did not analyze the details of the percolation transition. We show that their model
leads to the simultaneous emergence of two giant components (each of size greater
than 40% of all the nodes), and show analytically the stability of the two giants
throughout the subsequent graph evolution. We then generalize the BFW model by
allowing the asymptotic fraction of accepted edges, γ, to be a parameter and show
that γ determines the number of stable giant components that emerge and that, in
general, smaller values of γ lead to a more delayed and more explosive transition.

Stating the BFW algorithm in detail, let k denote the stage and n the number of
nodes. Let u denote the total number of edges sampled, A the set of accepted edges
(initialized to A = ∅), and t = |A| the number of accepted edges. At each step u, an
edge eu is sampled uniformly at random from the complete graph generated by the
n nodes, and the following algorithm iterated:

Set l = maximum size component in A ∪ {eu}
if (l ≤ k) {

A ← A ∪ {eu}
u ← u + 1 }

else if (t/u < g(k)) { k ← k + 1 }
else { u ← u + 1 }

Thus, while t/u < g(k), k is augmented repeatedly until either k becomes large
enough that edge eu is accepted or g(k) decreases sufficiently that edge eu can be
rejected at which point step u ends. Note g(k) = 1 requires that all edges be accepted,
equivalent to Erdös-Rényi [19].

We numerically implement the BFW model, and measure the fraction of nodes
in both the largest and second largest component, denoted C1 and C2, as a function
of edge density t/n. As shown in Fig. 2.1a, two giants appear at the same critical
point and remain distinct. To establish that the BFW model shows a seemingly
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Fig. 2.2 a βCmax, the biggest single edge increase in C1, is independent of system size n for
BFW and for the restricted BFW process, indicating these transitions are strongly discontinuous. b
Evolution of the distribution of n(s), the fraction of components of size s, for the BFW model

discontinuous transition we apply the numerical method introduced in [5]. Let tCi
0 (n)

denote the last accepted edge for which Ci n ≤ nα and tCi
1 (n) the first accepted edge

with Ci n ≥ An, where n is system size and α and A are parameters. βi (α, A) =
tCi
1 (n) − tCi

0 (n) denotes the number of accepted edges required between these two

points. As shown inset to Fig. 2.3a, βi (α, A)/n ∝ n−0.375, showing that tCi
0 (n)/n

and tCi
1 (n)/n converge to same limiting value tc/n = 0.976 (Fig. 2.1b) for both C1

and C2.
The discontinuous nature is more explicit in Fig. 2.2a showingβCmax, the largest

increase of the largest component due to addition of a single edge, versus n (blue
squares are BFW). βCmax is independent of n (strongly discontinuous). Essentially,
the same value of βCmax is always observed and results from the second and third
componentsmerging together to overtakewhatwas previously the largest. Themodel
studied in [5] (PR) shows a decrease with n (weakly discontinuous), with scaling
n−0.065 as also recently observed in [12, 15].
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The key to coexisting multiple giant components is the high probability of sam-
pling internal-cluster links in the super-critical region which, by definition, do not
increase the component size. We formalize this by first introducing a function
P(k, t, n) defined as the probability of sampling a random link, which leads to a
component of size no larger than stage k at step t for system size n:

P(k, t, n) =
∑

i

C2
i + 2

∑

Ci +C j ≤k/n

Ci C j (2.1)

whereCi denotes the fractionof nodes in component i . Thefirst termon the right-hand
side is the probability of randomly sampling internal-cluster links in all components.
The second term is the probability of sampling spanning-cluster links, which lead to
a component of size no larger than k. This is valid for any configuration in phase k.
We also consider S(k, n), the probability of sampling random links, which lead to
components of size no larger than k if all possible spanning-cluster links are added
in stage k. Thus,

S(k, n) =
∑

i

C2
i . (2.2)

(Note the values of the Ci ’s in Eqs. (2.1) and (2.2) can differ from each other.) For
any specific stage k, it is easy to show that P(k, t, n) ≥ S(k, n) since, if t increases,
P(k, t, n) can only decrease or stay the same. More explicitly, if an internal-cluster
link is added then P(k, t, n) is invariant, while if a spanning-cluster link is added
between components i and j then the first term increases by (Ci + C j )

2−(C2
i + C2

j )= 2Ci C j and second termdecreases by at least 2Ci C j . (Additional decreases result if
there exist components l satisfyingCi + Cl ≤ k/n, butwith (Ci + C j ) + Cl > k/n).

Focusing now on the critical region, let k∗ denote the value of k at tc. Numerical
results for a variety of system sizes show that at tc when n > 106, k∗/n ∼ 0.570,
C1 ∼ 0.570 and C2 ∼ 0.405 with error bars of order O(10−4) obtained over 30
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to 300 realizations dependent on n. Thus, the remaining components have total size
density

∑
i≥3 Ci = 0.025. We can establish a uniform lower bound on S(k, n) for all

k ≥ k∗ using the simple intuition that under the normalization condition
∑

i Ci = 1,
S(k, n) = ∑

i C2
i is minimized when the number of components are as numerous

as possible and of similar size. Given that
∑

i≥3 Ci < C1 − C2, the lower bound
on S(k, n) is if all small components connect to C2. Then P(k, t, n) ≥ S(k, n) ≥
C2
1 + (C2 + ∑

i≥3 Ci )
2 = 0.5702 + (0.405 + 0.025)2 ∼ 0.510, so for any stage

k ≥ k∗(n), we have
P(k, t, n) > γ = 1/2. (2.3)

So for k ≥ k∗, the expected fraction of accepted links approaches a positive value
strictly larger than γ.

Having established that in expectation P(k, t, n) > γ, for k ≥ k∗, we need to
explicitly consider what happens if an edge connecting the two giant components is
sampled in this regime. Here (C1 + C2) > k/n ≥ k∗/n and, by definition, t/u ≥
g(k). Consider the case when edge eu+1 connects C1 and C2. If t/(u + 1) ≥ g(k)

the edge is simply rejected. But if t/(u + 1) < g(k) either k needs to increase until
the edge is accommodated, or (as we show next) a small increase in k quickly leads
to t/(u + 1) ≥ g(k). Setting t/u to the smallest value possible:

t

u
= 1

2
+

√
1

2k
(2.4)

Differentiating both sides in Eq. (2.4) by k we find that

du

d(k/n)
= 1

2
√
2(1/2 + √

1/2k)2

nt

k3/2
. (2.5)

After the critical point we know that t ∼ O(n) and the stage k ∼ C1n ∼ O(n).
Thus, from Eq. (2.5) it follows that du

d(k/n)
∼ O(n1/2) as n → ∞ implying that an

O(n−1/2) increase in k/n results in t/(u + 1) > g(k), so the link which would lead
to merging C1 and C2 is rejected and the two giant components are stable throughout
the subsequent evolution. We verify this numerically. Letting k̄(n) denote the largest
value of the stage ever attained for system size n, we find (k̄(n) − k∗(n))/n ∼ n−α

with α = 0.46 ± 0.03, and as n → ∞, k∗(n)/n and k̄(n)/n converge to the same
limiting value of approximately 0.570.

The BFWmodel samples edges uniformly at random from the complete graph. If
we restrict the process to sampling only edges that span distinct clusters, we observe
that two components with the same C1 = 0.570 and C2 = 0.405 values coexist for
several edge additions beforemerging together.When they domerge the largest jump
in C1, equal to the size of C2, occurs. This is a strongly discontinuous transition as
shown in Fig. 2.2a (the red diamonds) with gap size equal to 0.405.

We now generalize the BFWmodel so that g(k) = γ + (2k)−1/2 (ı.e., the asymp-
totic fraction of accepted links is now a parameter γ). For the unrestricted process
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(sampling from the complete graph)we find thatγ controls the number of stable giant
components. Let N (γ, m) denote the number of stable giant components with size
larger than m, which appear at the critical point and remain throughout the subse-
quent evolution. Figure2.3a shows N (γ, 0.1n) versus γ for the unrestricted process,
with system size 106 and each data point averaged over 100 independent realizations
(showing no fluctuations). As γ first decreases from γ = 1, N (γ, 0.1n) increases,
going from one giant to two at γ = 0.511±0.003. Then, once γ < 0.11, N (γ, 0.1n)

decreases. (Using a less stringent criteria that considers all macroscopic components
Ci n > cn where c > 0 a “giant”, then N (γ, cn) actually continues increasing.)

The same reasoning that applied to the original BFW model can be used here to
show the stability of the multiple giants. Once k ≥ k∗, in expectation P(k, t, n) > γ.
Likewise, once k ≥ k∗, du

d(k/n)
∼ O(n1/2), so k/n increases very slowly and the

process frequently samples new links and rejects links that merge any two giants. For
example, if γ = 0.3, N (γ, 0.1n) = 3 with C1 = 0.414, C2 = 0.321, C3 = 0.265,
so P(k, t, n) ≥ C2

1 + C2
2 + C2

3 ∼ 0.345 > γ = 0.3 when k ≥ k∗(n). See Fig. 2.3b
for details.

In Fig. 2.4a we show the typical evolution for the unrestricted BFW process for
various values of γ in the regime where only one giant component emerges. We
measure the scaling window β(α, A), as discussed earlier, and find that smaller
γ leads to a more “explosive” transition in that A is larger and the scaling window
shrinks more quickly. Explicitly, for γ = 0.7, 0.8, 0.9 (and setting α = 1/2), we find
respectively that A = 0.9, 0.8, 0.7 and tc ≈ 0.915, 0.862, 0.780. This delayed and
more explosive nature with smaller γ is intuitive in that the more links are rejected at
each stage, the longer one stays in that stage, resulting in more components of size
Ci n ∼ k.

Figure2.4b shows the analogous behavior for the restricted BFW process (where
only edges that span components are considered). The delayed and more explosive
nature of the transition with decreasing γ is also observed here. We also note that
the location of tc is not affected. For instance, for γ = 0.3, 0.5, 0.7, 0.8, 0.9 we find
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Fig. 2.4 The results of varying γ on a the unrestricted BFW process in the regime where only
one giant component emerges, and b the restricted BFW process. Both (a) and (b) show increasing
delay and larger βCmax for smaller γ
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that tc ≈ 0.998, 0.976, 0.915, 0.862, 0.780 for both the restricted and unrestricted
processes.

The behavior of the restricted process can also be explained via Eq. (2.1). Here,
because intra-cluster links are not allowed, the first term on the right-hand side
vanishes. If the stage stops at some k0 < n, then the second term on right side of
Eq. (2.1) decreases to 0, which makes P(k0, t, n) < γ and stage keeps on growing
until the two giants merge together. The restriction on sampled links does not change
the sublinear nature of β(α, A). In fact, we find that β(α, A) for the general BFW
model is sublinear in n for all γ ∈ (0, 0.97], regardless of whether link-sampling is
restricted or unrestricted, indicating the transition is discontinuous in all cases.

2.3 Summary and Discussion

In summary, we have analyzed the critical behavior of the BFW model and find
that two stable giant components emerge at the same critical point in a strongly
discontinuous transition (Fig. 2.2a). If we restrict the sampled links to only spanning-
cluster edges, multiple giants coexist for a few moments until they merge together
in a larger discontinuous jump (Fig. 2.2a) and ultimately only one giant component
emerges. We further generalize BFW by making the asymptotic fraction of accepted
links a parameter γ, and find that number of stable giant components increases while
γ decreases.

The existence of multiple stable macroscopic components is surprising and unan-
ticipated [18], and has not been previously observed in stochastic percolation. A
model of cluster aggregation where largest clusters are occasionally “frozen” and
prevented from growing, does lead to multiple giant components [20], however the
freezing is imposed on the system. Simple algorithms that generate multiple giant
components may create a new range of applications. In addition to providing insight
and a potential mechanism for controlling gel sizes during polymerization [20], they
may be useful for creating communication networks consisting of multiple large
components operating on different frequencies or for analyzing epidemic infections
simultaneously arising in distinct, independent groups. In the unrestricted process
(the original BFW process) multiple links between two nodes and self-loops are
allowed. It would be important to understand what happens when only links not yet
added to the graph are sampled for finite networks. In the asymptotic size limit, there
should be no difference as there are O(n2) available edges and O(n) added edges.

The nature of the transition observed in [5] was recently analyzed using cluster
aggregation models with choice, where a set of candidate edges are simultaneously
inspected at each step [21]. The mechanism here, in contrast, inspects one edge
individually at each time. As shown in Fig. 2.2a the models in [21] (labeled MR
(m=2)) and in [5] (labeledPR) showweaklydiscontinuous transitions,whereβCmax
decreases with system size. In contrast both the restricted and unrestricted BFW
models are strongly discontinuous, with a jump independent of system size. Finally,
we show the evolution of the component size distribution for the original BFWmodel
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in Fig. 2.2b (n(s) is the fraction of components of size s). This bimodal distribution
has a large right-hand tail, which deviates from a power law. Whether it would show
a power law at tc as n → ∞ is not obvious.
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Chapter 3
Deriving an Underlying Mechanism
for Discontinuous Percolation Transitions

3.1 Introduction

Percolation is a theoretical underpinning for analyzing properties of networks,
including epidemic thresholds, vulnerability, and robustness [1–6], with large-scale
connectivity typically emerging in a smooth and continuous transition. A prototypi-
cal process begins from a collection of n isolated nodes with edges connecting pairs
of nodes sequentially chosen uniformly at random and added to the graph [7]. A set of
nodes connected by paths following edges is called a component, and the percolation
phase transition corresponds to the first moment that there exists a component of size
proportional to n (i.e., a “giant component”). A “fixed choice” variant of the simple
process has gained much attention in recent years [8], where instead of a single edge,
at each discrete time step a fixed number of randomly selected candidate edges are
examined together, but only the edge that maximizes or minimizes a preset criteria
is added to the graph. The resulting percolation transition can be extremely abrupt,
with a large discontinuous jump in connectivity observed in systems with sizes larger
than any real-world network (e.g., tens of billions of nodes). Yet in the n → ∞ limit
any fixed choice graph evolution rule leads to a continuous transition [9–12]. (which
may actually be followed by discontinuous jumps arbitrarily close to the transition
point [13]). Several models that lead to truly discontinuous percolation transitions
are now known, for instance [14–21], yet the underlying mechanisms are not fully
understood. There are many investigations underway to isolate essential ingredients
that lead to a discontinuous transition, such as cooperative phenomena [22], hier-
archical structures [21], correlated percolation [23], and algorithms that explicitly
suppress types of growth [24].

Here, we show that a simple stochastic graph evolution process, that examines
only one edge at a time, leads to a discontinuous transition and we analytically derive
the simple underlying mechanism for this process: growth by overtaking. The size of
the largest component does not change by direct growth, but instead it changes when
two smaller components merge together and become the new largest. Overtaking is a
natural growth mechanism observed in a range of systems from industrial firms [25]
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to ecosystems [26, 27], where two smaller entities choose to cooperate (or merge)
to gain competitive advantage over a previously larger entity. For the simple growth
model studied here, we show that there is a control parameter (denoted β) that
when small enough only allows significant growth by overtaking and leads to a
discontinuous transition. But once the parameter is large enough, substantial direct
growth of the giant component is allowed leading to a continuous transition. We
also show that the distribution of component sizes is distinct from any previously
observed. Likewise, the time evolution of the components sizes is novel. Also novel
are the lack of finite-size effects for the range of β studied.

3.2 Model

The basic model we analyze was originally introduced by Bohman et al. (BFW) [28]
and predates [8]. The BFW process is initialized with a collection of n isolated nodes
and a cap on the maximum allowed component size set to k = 2. Edges are then
sampled one at a time, uniformly at random from the complete graph and either
added to the graph or rejected following the algorithm in Table 3.1. If an edge would
lead to formation of a component of size less than or equal to k it is accepted (and we
move on to sample a new edge). Otherwise, check if the fraction of accepted edges
remains greater than or equal to a function g(k) = 1/2+ (2k)−1/2. If so, the edge is
simply rejected (and we move onto a new edge). If not, the cap is augmented to k +1
and we iterate the algorithm again. In other words, in this final case, k is augmented
by one repeatedly until either k has increased sufficiently to accept the edge or g(k)

has decreased sufficiently that the edge can be rejected.
Here,wemodify the originalBFWfunction above such that g(k) = 1/2+ (2k)−β ,

for β ∗ 0.5, to analyze how the parameter β, which controls the rate of convergence
of g(k) to its asymptotic limiting value of 1/2, affects the nature of the transition.
Letting Ci denote the fraction of nodes in the i th largest component, we show both
analytically and via numerical investigation that for β < 1 any significant growth
in C1 is dominated by an overtaking mechanism where smaller components merge

Table 3.1 The BFW algorithm

Set l = maximum size component in A ∈ {eu}
if (l ∅ k) {

A ∪ A ∈ {eu}
u ∪ u + 1. (Get next edge.)}

else if (t/u ∗ g(k)) {u ∪ u + 1. (Get next edge.)}

else { k ∪ k + 1. Then repeat this block.}

At each step u, the selected edge eu is examined via this algorithm, where u denotes the total number
of edges sampled, A the set of accepted edges (initially A = ≤), and t = |A| the number of accepted
edges
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Fig. 3.1 Evolution of C1 and C2 versus edge density, t/n for n = 106. a For β = 1/2, two giant
components emerge simultaneously. Inset is the behavior in the critical region showing growth via
the overtaking process when what was C1 becomes C2. b A typical realization for β = 2.0. Inset
shows direct growth, that C1 and C2 merge together, and what was C3 becomes the new C2

together to become the new largest component, leading to a discontinuous transition.
In contrast, if β > 1 significant direct growth of C1 is allowed and the process is
dominated by stochastic fluctuations, leading to a “weakly” discontinuous transition
that is likely continuous as n → ∞. The typical evolution of C1 and C2 for β = 0.5
and β = 2.0 are shown in Fig. 3.1a, b. (The simultaneous emergence of multiple
stable giant components was shown in [15], but the underlying mechanism leading
to the discontinuous transition, our current focus, was not identified.)

3.3 Methods and Results

WenumericallymeasureC1, C2, andC3 throughout the evolution process for various
β ← [0.5,∞], for a large ensemble of realizations and range of system sizes n. For
each realization we define the critical point as the single edge tc whose addition
causes the largest change in the value of C1, with this largest change denoted by
γC1

max. As shown in Fig. 3.2a, for β = 0.5, γC1
max is independent of system size

n and discontinuous. The same holds for γC2
max, the largest jump in C2. Yet for

β = 2.0, γC1
max ≥ 0.285n−0.0068. With this scaling a system of size 1066 would

have γC1
max ∝ 0.1. Following ref. [29] we label this “weakly” discontinuous, to

describe the extremely slow decrease of jump size with n.
As discussed in [29], whenever a single edge is added to the evolving graph,

C1 may increase due to one of three mechanisms: (1) direct growth, when
the largest component merges with a smaller one; (2) doubling, when two com-
ponents both of fractional size C1 merge (this is the largest increase possible); (3)
overtaking, when two smaller components merge together to become the new
largest. In [29] it is proven that if direct growth is strictly prohibited up to the step
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Fig. 3.2 Slow convergence leads to a strongly discontinuous transition and growth by overtaking.
a For β = 0.5, γC1

max and γC2
max are independent of n and both largest components emerge

in strongly discontinuous phase transitions. For β = 2.0, γC1
max ∝ n−0.0068, showing a weakly

discontinuous phase transition. b For β = 0.5, main plot is T (n) the number of times C1 undergoes
direct growth versus n, with the two regimes separated by k = n1/(β+1). (Inset) S(n), the
average size of component that merges with C1 during direct growth, is essentially a constant,
S(n) ≥ 1.1 (i.e., an isolated node), in both regimes. c For β = 2.0, main plot is S(n), showing
three regimes. For k < n1/(β+1) we observe S(n) ≥ 1. The intermediate regime is noisy. Then,
once k > n1/β , random edges must be accepted at times and S(n) ∝ n0.9904 (C1 merges with
other essentially macroscopic components). (Inset) T (n) is essentially constant: T (n) ≥ 5. All data
points are the average over 30 to 100 independent realizations (based on system size), with error
bars smaller than the symbols unless otherwise indicated

when only two components remain in the system, then a strongly discontinuous
transition ensues. We next show via analytic arguments that for our modified BFW
process, if β < 1 then throughout the subcritical regime direct growth only occurs
when the largest component merges with an essentially isolated node and all signif-
icant growth is due to overtaking. In contrast, if β > 1 then the initial evolution is
the same, but once C1 ∝ n1/β , large direct growth of C1 dominates. (Unlike [29],
which requires overtaking until only two components remain, here the discontinuous
transition occurs when there are still an infinite number of components in the limit
of number of nodes n → ∞).

Using the notation of [28], let t denote the number of accepted edges and u the
total number of sampled edges. Thus, for any k (the maximum allowed component
size), the fraction of accepted edges t/u ∗ g(k). If t/u is sufficiently large an edge
leading to C1n > k can be simply rejected. In contrast, if t/u = g(k) and the next
edge sampled, denoted eu+1, would lead to C1n > k that edge cannot be simply
rejected since t/(u + 1) < g(k). One of two situations must happen, either: (i) k
increases until the edge eu+1 is accommodated, or (ii) g(k) decreases sufficiently
that t/(u + 1) ∗ g(k) and eu+1 is rejected. To determine which situation happens
first, we need to determine the order of the smallest augmentation of k that makes
t/(u + 1) > g(k). For β ∗ 0.5 the smallest fraction of accepted edges for any k is
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t

u
= g(k) = 1

2
+

(
1

2k

)β

. (3.1)

Rearranging Eq. (3.1) and differentiating by k yields

du

dk
= β

2β [1/2 + (1/2k)β ]2
t

kβ+1 (3.2)

At some point in the subcritical evolution, t ∝ O(n). (To build a component of size
O(n) requires at least O(n) edges). For the BFW model with β = 0.5 it has been
established rigorously that by the end of stage k = 25, t/n → 0.841 as n → ∞ [28].
We establish via numerical simulation that t/n > 0.82 by the end stage k = 25 for
the full range 0.5 < β < 10. Plugging t ∝ O(n) into Eq. (3.2), once k ∝ nα (with
α < 1 for the subcritical region) then du/dk ∝ n1−αβ−α . Thus, an increase in k of
order O(nαβ+α−1) is sufficient to ensure t/(u + 1) ∗ g(k) and that edge eu+1 can
be rejected. But there are different behaviors for β > 1 and β < 1.

For β > 1 there are three regimes. (i) For α ∅ 1/(β + 1) then αβ + α − 1 ∅ 0
so the necessaryO(nαβ+α−1) increase in k requires only k → k + 1. (ii) Then, once
1/(β + 1) < α < 1/β, an increase in k of O(nαβ+α−1) < k ∝ C1n is required.
(iii) However, once α > 1/β, thenO(nαβ+α−1) > C1n. Here, the required increase
in k is greater than C1n, allowing C1 to even double in size, and edge eu+1 must be
accepted. So, once in the regime C1n ∝ n1/β every time t/u = g(k) the next edge,
eu+1, must be accepted. In this situation, the probability two components are merged
becomes, as in Erdös-Rényi [7], proportional to the product of their sizes.

For β ← [0.5, 1) there are only two regimes. (i) Here, again if α < 1/(β + 1)
then k → k + 1 allows edge eu+1 to be rejected. (ii) This regime extends until
α ∗ 1/(β + 1), when αβ + α − 1 ∗ 0, but now we use the less strict property
that αβ + α − 1 ∅ β and thus nβα+α−1 ∅ nβ < k. So, throughout the evolution
a sublinear increase in k of at most nβ allows edge eu+1 to be rejected. The slow
increase results inmultiple components of size similar toC1 throughout the evolution.
In particular, once C1n = δn with δ ∼ 1, there exist many components of sizeO(n).
Order them as C1n ∗ C2n... ∗ Cln. Assuming “ > ” strictly holds (ı.e., choosing
only one component of each size in the case of degenerate sized components), there
will be components Cl , Cl−1 such that Cl +Cl−1 > C1. (If instead Cl +Cl−1 ∅ C1,
the two smaller components would merge together very quickly as the probability
of randomly sampling an edge that connects them at any step u is Cl(u)Cl−1(u),
of size O(1), and the edge would be accepted since Cl + Cl−1 ∅ C1 ∅ k/n). Due
to the slow increase in k, which is in increments of at most O(nβ), there will be a
point when C1n < (Cl + Cl−1)n < k < (Cl + Cl−2)n, allowing for growth by
overtaking, when Cl and Cl−1 merge to become the new C1, what was C1 becomes
C2, and what was Cl−2 becomes Cl−1. The overtaking mechanism allows several
large components to grow to the same order in size, which is a necessary condition to
generate a strongly discontinuous percolation transition. We explicitly observe this
overtaking process for β = 0.5 as shown in the inset in Fig. 3.1a.
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We confirm these predictions via numerical simulations using two choices,
β = 1/2 and β = 2.0. Let S(n) denote the average size of the component Ci ,
which connects to C1 via direct growth for a system of size n, and let T (n) denote
the number of times direct growth occurs. Figure 3.2b is for β = 1/2 where our
analysis predicts two regimes separated by k = n1/(β+1) = n2/3. As shown in the
inset, throughout both regimes S(n) ≥ 1.1 is essentially a positive constant. But
T (n) (the main figure) shows a distinct regime change. At first T (n) ∝ n0.19. Then,
in the regime starting with k = n2/3 up to and including tc we see a much more
rapid increase, T (n) ∝ n0.51. So, we see direct growth occurring more frequently
in the second regime, but the direct growth continues to be due to merging with an
essentially isolated node.

Figure 3.2c is for β = 2, where our analysis predicts three regimes. Up until
k = n1/(β+1) = n1/3 the behavior is the same as for β = 0.5 as expected since
γk = 1 is enough for an edge to be rejected and we see S(n) ≥ 1.1. Then, in
the second regime of n1/3 < k < n1/2, S(n) is larger and has large fluctuations.
Finally, in the third regime starting from k = n1/β = n1/2 up until edge tc, we see C1
grow in large bursts, with S(n) ∝ n0.99, so C1 merges with other essentially macro-
scopic components. As shown inset, T (n) is essentially independent of regimes, with
T (n) ≥ 5 in the first regime and in the third, with T (n) ∅ 1, but fluctuating in the
second (not shown). The analogous three regimes and behaviors for β = 3 are shown
in Fig. 3.3a. Here, once k = n1/β = n1/3 we see C1 grow directly in large bursts
with S(n) ∝ n1.01.
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Fig. 3.3 a The analogous plot to Fig. 3.2c, but with β = 3: once k > n1/β , the largest component
merges with other macroscopic components (S(n) ∝ n1.0102). b Bounding the critical window from
above and below to estimate tc. For each β value the lower line shows the largest value of t for
which C1 < n1/2, and the upper line the smallest value of t for which C1 > 0.5n for β = 0.5 and
C1 > 0.55n for β = 2, yielding tc ≥ 0.976n for β = 0.5 and tc ≥ 0.951 for β = 2
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Fig. 3.4 a–d Distribution in values of C1 and C2 at tc obtained over 100 independent realizations
for n = 106. (tc is defined as the single edge whose addition causes the biggest increase in C1). (a)
C1 for β = 0.5. b C2 for β = 0.5. c C1 for β = 2.0. d C2 for β = 2.0. Inset to (c) shows average
size of C1 and C2 at tc over 100 realizations for different β

For β = 2.0, due to linear increase permitted in k once k > n1/2, and hence
acceptance of random edges, we observe large fluctuations in the size of the giant
components at tc. For β = 0.5, due to the slow sublinear increase in k, the sizes of
the components evolve in a predictable manner. Figure 3.4 shows these behaviors,
with (a) showing C1 and (b) C2 observed at tc over 100 independent realizations for
β = 0.5 and (c) and (d) the equivalent for β = 2. Note for β = 0.5, tc ≥ 0.976n
and for β = 2.0, tc ≥ 0.951n, as shown in Fig. 3.3b.

A scaling analysis of the general BFW model illuminates other unique features
of the model. With β = 2.0 the model exhibits critical scaling distinct from Erdös-
Rényi (ER) [7] andwith no finite-size effects. Forβ = 0.5, themodel does not exhibit
either critical scaling or finite-size effects. We first examine the behavior of C1 and
C2 near tc, as shown in Fig. 3.5a. For β = 2 we find traditional critical scaling, that
C1, C2 ∝ (tc − t)−η with η = 1.17, the same scaling as displayed by the Product
Rule (PR) [30, 31], a fixed choice edge competition rule studied in [8]. We also
consider the standard finite-size scaling C1 = n−α /ν F[(t − tc)n1/ν] and perform a
data collapse to determine 1/ν = 0.49± 0.02 for BFW with β = 2.0. Note, for ER,
1/ν = 1/3. For BFW with β = 0.5, C1 and C2 show no obvious scaling behavior.



24 3 Deriving an Underlying Mechanism for Discontinuous Percolation Transitions

100 102 104 106
10−6

10−5

10−4

10−3

10−2

10−1

s

n(
s)

 

 

(b)

t/n=0.95
t/n=0.96
t/n=0.97
critical point

100 101 102
10−6

100

10−2

10−4

s

n(
s)

 

 

t/n=0.96

N=104

N=105

N=106

N=107

10−4 10−2 100
10−6

10−4

10−2

100

t
c
−t

 

 

(a)

−1.17

C1,β=0.5

C2,β=0.5

C1,β=2.0

C2,β=2.0

10−4 10−2 10−110−3

−5

0
−1
−2
−3
−4

−6

100 102 104 106

10−1

10−2

10−3

10−4

10−5

10−6

s

n(
s)

n(s)∼ s−2.1

 

 

(c)

t/n=0.92
t/n=0.93
t/n=0.94
critical point

100 102 104

10−2

100

10−4

10−6

s

n(
s)

 

 

t/n=0.93
N=104

N=105

N=106

N=107

Fig. 3.5 No evident scaling behaviors for β = 0.5, whereas quantities for β = 2.0 exhibit critical
scaling. a C1 and C2 versus tc − t . For β = 2.0 both C1, C2 ∝ (tc − t)−1.17, yet β = 0.5 shows no
obvious scaling. Inset is the local slope estimate for C1. b Distribution of component density n(s)
(number of components of size s divided by n) at different points in the evolution for β = 0.5. Inset
is n(s) at t/n = 0.96 for various n, showing no finite size effects in the location of the right hump.
c Evolution of n(s) for β = 2.0, with n(s) ∝ s−2.1 at tc. Inset is n(s) at t/n = 0.93 for various n,
again showing no finite size effects

More importantly we study the component size density n(s) (the number of com-
ponents of size s divided by n). We measure the distribution of n(s) at different
points in the evolution up to the critical point. For β = 2.0, Fig. 3.5c, the behavior is
similar to that for PR and other edge competition models with fixed choice, where at
the critical point there is clear scaling behavior, n(s) ∝ s−τ with τ = 2.1 (the same
τ as for PR). Yet as shown in Fig. 3.5b, the evolution for β = 0.5 does not show
any scaling. There is a pronounced right-hump, which forms early in the evolution,
then moves rightward due to overtaking until there are only two large components
remaining at tc. Inset to Fig. 3.5b and c, respectively, show n(s) at t = 0.96 and
t = 0.93 for many different values of n. The peak of the right-hump is independent
of n.

The BFW model with either β = 0.5 or β = 2.0 shows no finite-size effects,
unlike ER and PR. First, for PR the location of the peak moves rightward with n,
as recently shown in [12] where a finite size scaling function for PR is established.
Second, Fig. 3.6a shows the fraction of edges added at the time when C1n = 25 for
the first time (denoted by t

n (C1n = 25)) versus n for BFW, Erdös-Rényi and the PR
model. For BFW, this value is independent of system size and converges to a positive
constant for both β = 0.5 and 2.0, where as it decreases to 0 asymptotically for
ER and PR, with t

n (C1n = 25) ∝ n−τ , τ = 0.070 and 0.015, respectively. Finally,
rather than measuring t/n for fixed C1n, we can measure the value of C1n at the
time when t/n attains a specified value. Figure 3.6b shows that for BFW with both
β = 0.5 and 2.0, C1n is a positive constant for t/n = 0.9. Whereas for ER and
PR then C1n ∝ nθ with θ = 0.175, 0.062 respectively, measured in the subcritical
regime for each model respectively (t/n = 0.4 for Erdös-Rényi, and t/n = 0.8 for
PR.)
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Fig. 3.6 Lack of finite size effects for BFW with β = 0.5 and β = 2.0. a Fraction of added edges,
t/n, once C1n = k = 25, versus system size n, for ER, PR, and BFWwith β = 0.5 and β = 2.0. b
Size of largest component (C1n) versus system size n at the time when a specified fraction of edges
have been added for ER, PR, and BFW with β = 0.5 and β = 2.0

3.4 Summary

In summary, we have derived the underlying mechanism that leads to the discontinu-
ous percolation transition of the BFWmodel. This mechanism of growth by overtak-
ing is a common mechanism observed in economic and ecological systems [25–27].
Algorithms such as BFW that generate multiple giant components may have a range
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of applications, such as controlling gel sizes during polymerization [32] or creating
building blocks for modular networks. In addition, the BFW model may be simpler
to implement in practice than fixed-choice edge competition models or models with
cooperative interactions. We have previously shown that by varying the asymptotic
fraction of accepted edges, we can control the number of resulting giant compo-
nents [15]. In particular, we studied a BFW model with an acceptance function
g(k) = α + (2k)−1/2 (in the discontinuous regime since β = 1/2) and showed that
α controls the number of resulting giants. These giant components are stable and
persist throughout the supercritical evolution: Once in the supercritical regime, there
are always sufficient edges internal to components sampled that whenever an edge
connecting two giant components is sampled it can be rejected. The same simple
analysis holds for the most general BFW model, with g(k) = α + (2k)−β . From
a practical perspective, we now have an algorithm for generating a specified num-
ber of stable giant components in either a discontinuous or continuous percolation
transition. From a theoretical perspective, we now have an analytic understanding
of the growth mechanism underlying the BFW model, which leads to a discontinu-
ous percolation transition and to multiple stable giant components. Note, growth by
overtaking is one mechanism that gives rise to discontinuous percolation, and there
are also other mechanisms such as cooperation [22].

The mathematical analysis herein strongly suggests the existence of a tricritical
point at β = 1, yet we cannot currently access this regime numerically. Due to the
finite system size, for β ← [0.7, 1.0], we occasionally see significant direct growth
of the largest component in simulations. The rate of direct growth decreases with
system size, but our current systems of size 107 are too small to allow a quantitative
study. This is an outstanding challenge.
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Chapter 4
Continuous Phase Transitions in Supercritical
Explosive Percolation

4.1 Introduction

Percolation in networks, a phase transition from small, scattered components to
large-scale connectivity, is heavily studied and widely applied in technological and
social systems [1–4], biological networks [5, 6], epidemiology [7–10] and even
dynamical models of economic systems [11, 12]. One of the most classic and widely
studied models is the Erdös-Rényi random graph (ER) started from a collection of
n initially isolated nodes, where edges sampled uniformly from the complete graph
are sequentially added between nodes. Percolation under ER-like processes is con-
sidered a robust continuous phase transition with a unique giant component emerg-
ing at the percolation threshold [13]. Thus, altering the location and nature of the
percolation phase transition has been a long-standing challenge. Three years ago,
Achlioptas et al. proposed a modified ER model in which two random edges are
sampled simultaneously, but only the edge connecting two components with smaller
product of their sizes is added, while the other edge is discarded. The authors showed
that the percolation transition can thus be delayed considerably, but when the tran-
sition eventually happens it is extremely abrupt, calling the phenomena “explosive
percolation” [14]. They furthermore presented strong numerical evidence suggest-
ing that the resulting percolation transition was, in fact, discontinuous. Many efforts
were made to study similar processes on different topologies, showing that explosive
percolation is observed in scale-free networks and lattices [15–19]. Although such
explosive percolation phenomena resulting from the choice between a fixed number
of random edges, as studied in [14], was later demonstrated to be actually continu-
ous [20–24], several alternative models are now known to exhibit truly discontinuous
percolation transitions [25–37].

Chen and D’Souza recently established that the percolation transition is discon-
tinuous for a stochastic graph evolution model introduced by Bohman, Frieze and
Wormald (theBFWmodel) [38], which examines a single edge at a time (rather than a
model like that in [14], which examinesmultiple edges at each time step). In [39] they
showed that the BFW model exhibits a discontinuous percolation transition leading

© Springer-Verlag Berlin Heidelberg 2014
W. Chen, Explosive Percolation in Random Networks, Springer Theses,
DOI: 10.1007/978-3-662-43739-1_4

29



30 4 Continuous Phase Transitions in Supercritical Explosive Percolation

to the simultaneous emergence of multiple giant components, and that the number of
stable giant components can be tuned via a parameter denoted β. In [40] the under-
lying mechanism leading to the discontinuous phase transition was derived, namely
that growth of the largest component is dominated by overtaking when two smaller
components merge together to become the new largest component. Such growth by
overtaking is a natural growth mechanism observed in many complex systems from
ecologies to the business world [41–43]. Additionally, the discovery ofmultiple giant
component is unanticipated [44], and may have applications in polymerization [45],
network discovery [46], and epidemiology [47].

The nature of explosive percolation phase transitions has been the topic of intense
debate for the past few years [20–24, 48], but more recently, we are learning that the
evolution of such processes in the supercritical regime can also be unique and of great
interest. For instance, in the supercritical regime, the size of the largest component
can be a nonself averaging quantity [49], furthermore, there can be multiple discon-
tinuous jumps in the size of the largest component [50]. Here, we investigate, both
numerically and analytically, the modified BFW model in the supercritical regime.

Specifically, we study the initial percolation transition and supercritical evolution
of the BFWmodel for the value of the tunable parameter in the range β → [0.6, 0.95].
(This regime is simplest, as only one giant component initially emerges in a discontin-
uous phase transition).We show that the largest component eventually stops growing
leading to the emergence of a second giant component at some delayed time, and
that the second component is stable persisting throughout the subsequent evolution.
Via an extensive finite size scaling analysis we establish that the second transition
is continuous, but that only for β → [0.65, 0.7] is this transition in the same univer-
sality class as the classic model of Erdös-Rényi. The main result we derive is that
there exists a critical value βc such that, for β → [0.6, βc), C1 stops growing at the
discontinuous percolation transition, yet for β → (βc, 0.95], C1 continues growing
for some time into the supercritical regime. Furthermore, for β < βc, the asymptotic
size of C1 is smaller with increasing β, leading to a smaller gap between the two
percolation transitions, while for β > βc, in contrast, the value of C1 is larger with
increasing β, leading to a bigger gap between the two percolation transitions. As we
show, βc marks the minimal delay possible between the emergence of C1 and C2
(i.e., the smallest edge density for which C2 can exist).

The rest of the chapter is organized as follows. In Sect. 4.2, we discuss the BFW
model and show further evidence for the discontinuous transition of the largest com-
ponent. In Sect. 4.3, we analyze the growth cessation of the largest component in the
supercritical regime. Section4.4 contains an analysis of the critical behavior of the
second phase transition throughfinite size scaling.We concludewith somediscussion
in Sect. 4.5.



4.2 The BFW Model and the Discontinuous Transition of the Largest Component 31

4.2 The BFW Model and the Discontinuous Transition
of the Largest Component

In this section, we illustrate the BFWmodel. The system is initializedwith N isolated
nodes and a cap, k, on the maximum allowed component size set to k = 2 and
increased in stages as follows. Edges are sampled one-at-a-time, uniformly at random
from the complete graph. If an edge would lead to formation of a component of size
less than or equal to k it is accepted. Otherwise, the edge is rejected provided that
the fraction of accepted edges remains greater than or equal to a function g(k) =
β + (2k)−1/2, where β is a tunable parameter. Finally, if the fraction of accepted
nodes would drop below g(k), the cap is augmented to k+1, and the impact of adding
the edge reevaluated against the new values, k + 1 and g(k + 1). This final step of
augmenting the cap and reevaluating the impact is iterated until either k increases
sufficiently to accept the edge or g(k) decreases sufficiently that the edge can be
rejected. Asymptotically, the fraction of accepted edges is limk∞∗ g(k) = β. (Note
in the original BFW model they only studied the case β = 1/2).

Stating the BFW algorithm in detail requires some notation. Let k denote the cap
size, N denote the number of nodes, u denote the total number of edges sampled, A
denote the set of accepted edges, and t = |A| denote the number of accepted edges.
At each step u, an edge eu is sampled uniformly at random from the complete graph
generated by the N nodes and evaluated by the following algorithm, stopping once
a specified number of edges, γN , have been accepted:

Repeat until u = γN
{

Set l = size of largest component in A ∈ {eu}
if (l ∅ k) {

A ∪ A ∈ {eu}
u ∪ u + 1 }

else if (t/u < g(k)) { k ∪ k + 1 }
else { u ∪ u + 1 }

}
It has been shown in Ref. [39] that the percolation transition of the order para-

meter |C1| := C1, defined as the fraction of nodes in the largest component, is
discontinuous in the thermodynamic limit for β → (0, 0.97] (see, e.g., Fig. 4.1a).
This holds regardless of whether we sample uniformly at random all edges from the
complete graph or sample only edges not yet existing in the graph [39]. (The former
allows intra-component edges including multiple edges and self-edges). Here, we
provide additional numerical evidence for the discontinuous transition by examining
three quantities: the largest jump in C1 resulting from adding one edge, denoted as
αCmax, order parameter C1 immediately after the largest jump, denoted as P∗, and
the maximum in the second moment of the relative-size distribution of components,
excluding the contribution of the largest component,
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Fig. 4.1 Typical evolution of the BFW model. a Fraction of nodes in the largest component, the
size of C1 as a function of edge density p ≤ t/N , for different values of β, showing a discontinuous
phase transition at a location dependent on the value of β. As derived herein, for β > βc the value of
C1 increases in the supercritical regime.bFraction of nodes in the second largest component, the size
of C2, as a function of p for different values of β, showing an instantaneous peak when C1 emerges
followed later by a continuous phase transition. The extent of delay between the discontinuous
emergence of C1 and the continuous emergence of C2 depends in the value of β The system size is
N = 106

M ←
2 = M2 − C2

1 (4.1)

where M2 = ∑
i C2

i and Ci is the relative size of component i . If αCmax, P∗, M ←
2

converge to some positive constant in the thermodynamic limit, the transition is
discontinuous, while they vanish for continuous phase transitions [21, 26, 28, 37].
We observe αCmax, P∗ and M ←

2 are all asymptotically independent of system sizes
within error bars, which are shown in Fig. 4.2a–c, respectively. For large size systems
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Fig. 4.2 a The largest jump in the size of C1 resulting from one edge as a function of system sizes
for β = 0.6, 0.7, 0.8, 0.9, 0.95 ordered from top to bottom. b The order parameter P∗, which is C1
immediately after the largest jumpofC1, as a function of systemsizes forβ = 0.6, 0.7, 0.8, 0.9, 0.95
from top to bottom. c The maximum of the second moment of the cluster-size distribution M ←

2 as a
function of system size for β = 0.6, 0.7, 0.8, 0.9, 0.95 from top to bottom. All the quantities in (a),
(b) and (c) are asymptotically independent of system sizes and the solid lines are the mean values.
These results indicate that the percolation transitions are discontinuous. Each data is averaged over
500 realizations
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Table 4.1 Summary of
numerical results showing
discontinuous phase
transitions in the order
parameter C1

β αCmax P∗ M ←
2

0.6 0.391 ± 0.005 0.947 ± 0.004 0.154 ± 0.005

0.7 0.374 ± 0.006 0.901 ± 0.005 0.139 ± 0.006

0.8 0.344 ± 0.005 0.829 ± 0.004 0.118 ± 0.006

0.9 0.291 ± 0.005 0.702 ± 0.005 0.084 ± 0.006

0.95 0.240 ± 0.006 0.582 ± 0.005 0.057 ± 0.008

and differing values of β, we obtain the asymptotic values of αCmax, P∗ and M ←
2

for β = 0.6, 0.7, 0.8, 0.9, 0.95, respectively (Table 4.1). These numerical results
indicate that the percolation transition is discontinuous for the range studied here,
β → [0.6, 0.95].

To estimate the percolation threshold, we implement the numerical methods pro-
posed in Refs. [28, 37]. We measure the edge density pc,1(N ) at which the largest
jump in the size of C1 occurs and the edge density pc,2(N ) at which M ←

2 attains
maximum for different system sizes N . Extrapolating these estimators in thermody-
namic limit, we obtain pc = 0.948± 0.007, 0.915± 0.008, 0.862± 0.007, 0.780±
0.007, 0.711± 0.006 forβ = 0.6, 0.7, 0.8, 0.9, 0.95 respectively. These results indi-
cate the percolation threshold is larger for smaller β. We further observe asymptotic
power law relation between |pc,i − pc|(i = 1, 2) and system size N . In particular,
|pc,i − pc| ≥ N−δ with δ = 0.3 ± 0.1, 0.4 ± 0.1, 0.4 ± 0.1, 0.5 ± 0.1, 0.5 ± 0.1
for β = 0.6, 0.7, 0.8, 0.9, 0.95 respectively. The exponent δ = 0.5 ± 0.1 for
β = 0.9, 0.95 is the same as what is observed for BFW model (β = 0.5) in square
lattice within error bars [37].

4.3 Growth Cessation of the Largest Component

The discontinuous transition of the order parameter C1 has been substantiated [39]
and the underlying mechanism accounting for the discontinuous transition has been
identified [40]. However, the behavior of C1 after the largest jump (or in supercritical
regime) has not been studied previously. Here, we study C1 for values of the edge
density p → [0, 10] for different system sizes. Interestingly, we observe that C1 stops
increasing either immediately after the largest jump of C1 or at some delayed point
according to specific β → [0.6, 0.95]. This growth cessation of the largest component
in the supercritical regime has however, not been reported in other models in which
any edge from the complete graph is allowed to be sampled.

Using the notation in Sect. 4.2, t denotes the number of accepted edges, and thus
t/N is the edge density (also denoted throughout by the shorthand p ≤ t/N ). Let
us denote tc as the point where the largest jump of C1 occurs and kc as the value of
stage k at tc. Also denote kfinal as the final value when k stops increasing and t (kfinal)
as the point where k stops increasing. We measure k(tc), kfinal, tc/N , t (kfinal)/N for
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Fig. 4.3 System size is N = 106 for (a), (b), (d), (e). a Behavior of the cap k versus β specifically
measuring k(tc)/N (blue circles) the value at the discontinuous emergence of C1, and kfinal/N (red
triangles) the value when k stops increasing. Both lines intersect the function derived in Eq. (4.4),
y = (1 + (2β − 1)1/2)/2, at the same point βc ∝ 0.763. b αk/N = (kfinal − k(tc))/N as a
function of β. c αk/N versus system size for β = 0.75, 0.76, 0.77, showing αk/N converges
to 0 for β = 0.75, 0.76, while it converges to a positive constant for β = 0.77. Further analysis
shows β = 0.763± 0.002 is the transition point between the behaviors. d tc/N and t (kfinal)/N as a
function of β. e Corresponding density of edges added between tc and t (kfinal), denoted asαt/N =
(t (kfinal)− tc)/N , is plotted as a function of β. f αt/N versus system size for β = 0.75, 0.76, 0.77,
showingαt/N converges to 0 asymptotically for β = 0.75, 0.76, while it asymptotically converges
to some positive constant for β = 0.77. More detailed analysis shows β = 0.763 ± 0.002 is the
transition point between the two behaviors

different β in a system of size N = 106. Figure 4.3a shows when β < βc ∝ 0.763,
k(tc) and kfinal overlap and both decrease with β. When β > βc however, k(tc) keeps
on decreasing while kfinal increases with β. Therefore, kfinal/N reaches a minimum
at β = βc. In Fig. 4.3b, αk/N = (kfinal − k(tc))/N is plotted as a function of β,
showing αk/N becomes finite once β > βc ∝ 0.763. Figure 4.3c shows αk/N ≥
N−1.07, N−0.93 for β = 0.76, 0.75 respectively, indicating αk/n ∞ 0 as n ∞ ∗.
For β = 0.77 however, αk/N converges to some positive constant. More precise
investigation detailed below shows the transition point βc = 0.763 ± 0.002. Figure
4.3d shows tc/N and t (kfinal)/N overlap when β < βc ∝ 0.763 and there is a finite
gap between them once β > βc. We observe that t (kfinal) reaches a minimum at
βc. In Fig. 4.3e, αt/N = (t (kfinal) − tc)/N is plotted as a function of β, showing
a sudden jump from 0 at β ∝ 0.763. In Fig. 4.3f αt/N is plotted as a function of
N for β = 0.75, 0.76, 0.77 where αt/N ≥ N−1.03, N−0.82 for β = 0.76, 0.75
respectively but asymptotically converges to some positive constant for β = 0.77.
This numerical result shows the same transition point at βc ∝ 0.763.
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To understand the underlying mechanism accounting for the fact that the stage k
and the size of the largest component stops increasing in the supercritical regime,
it is useful to measure P(k, t, N ), defined as the probability of sampling a ran-
dom edge that keeps C1N ∅ k if it is added at step t in a system of size N . If
limN∞∗ P(k, t, N ) ∼ limk∞∗ g(k) = β always holds for t > tc where k ≥ O(N ),
the fraction of accepted edges over total sampled edges t/u quickly converges to some
value larger than β, so we can always discard an edge that would increase C1, thus
stage stops increasing. However, if limN∞∗ P(k, t, N ) < β, the stage k keeps on
increasing until the following condition holds at t = t (kfinal)

lim
N∞∗ P(k, t, N ) = β. (4.2)

We measure k(tc)/N and kfinal/N with system sizes N = 106 for over 100 realiza-
tions. We find that at the point where the largest jump of C1 occurs, namely tc/N ,
for all β → [0.6, 0.95], k(tc)/N = C1 > 0.5 averaged over 1000 realizations. Due
to this fact, once t > tc, the growth of C1 can only occur due to the mechanism
of direct growth [21], in particular, the edge connecting the largest component and
another smaller component results in the growth of C1. Therefore, the probability of
sampling a random edge which leads to the growth of C1 is 2(1 − C1)C1, and thus,
P(k, t, N ) satisfies

lim
N∞∗ P(k, t, N ) = 1 − 2(1 − C1)C1. (4.3)

Combining Eqs. (4.2) and (4.3), we obtain C1 at t (kfinal) for infinite system

C1 = 1 + √
2β − 1

2
. (4.4)

Figure 4.3a shows the dashed line of Eq. (4.4) intersects k(tc)/N and kfinal/N at the
same point βc = 0.763 within error bars for system size N = 106. For β < βc,

k(tc)/N > 1+√
2β−1
2 (blue circles lie above the dashed line), and P(k, tc, N ) > β.

Therefore, the stage k stops increasing immediately after the largest jump of C1
and kfinal/N is almost the same as k(tc)/N (blue circles and red triangles overlap).

However, for β > βc, k(tc)/N < 1+√
2β−1
2 (blue circles lie below the dashed line).

Therefore, both the stage k and C1 increase until Eq. (4.4) holds (red triangles and
the dashed line overlap).

4.4 Continuous Transition of the Second Largest Component

The size of the largest component stops increasing at the point t (kfinal)/N (which
is either at the discontinuous phase transition point or in the supercritical regime).
Yet, the second largest component continues growing at this point. Two natural
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and interesting questions follow. Is there a second giant component emerging at
some step t > t (kfinal)? If such percolation transition occurs, is it a discontinuous
phase transition as we find for the order parameter C1? To answer these questions,
we first numerically measure C2 as a function of the edge density p ≤ t/N for
β = 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9. As shown in Fig. 4.1b, we see C2 spike
instantaneously at the first discontinuous transition, then it disappears andwe observe
a seemingly continuous percolation transition when C2 again emerges at some point
in the supercritical regime.

To investigate the continuous nature of percolation transition of C2, we make use
of finite size scaling [51]. If a phase transition is continuous, every variable X is
believed to be scale-independent and obeys the following finite size scaling form
near the percolation threshold pc

X = N−η/ν F[(p − pc)N 1/ν] (4.5)

where η and ν are critical exponents, N is the system size andF is a universal function.
As a result, X follows a power law at p = pc, X ≥ N−η/ν .

Here, we consider two variables in the percolation process: the relative size of
the second largest component C2 and the susceptibility τ∗. The susceptibility τ∗
is defined as the standard deviation of C2

τ∗ =
√

≈C2
2〉 − ≈C2〉2. (4.6)

We assume that C2 and τ∗ obey the following scaling relations

C2 = N−θ/ν F (1)[(p − p←
c)N 1/ν] (4.7)

τ∗ = N−γ /ν F (2)[(p − p←
c)N 1/ν] (4.8)

where F (1) and F (2) are different universal functions; however, they are related to
each other, p←

c denotes the percolation threshold of the second phase transition, and
θ, γ, ν are critical exponents characterizing the transition. We can deduce from the
definition of τ∗ (Eq. (4.6)) and the scaling relations in Eqs. (4.7) and (4.8) at p = p←

c

θ/ν = γ /ν. (4.9)

Since Eqs. (4.7) and (4.8) imply that the curves of Nθ/νC2 versus p and N γ /ντ∗
vs p for different systems sizes cross at a single point at p = p←

c, both the relative
size of the second largest component C2 and the susceptibility τ∗ can be used
for the determination of percolation threshold p←

c. More precisely, we implement
the minimization technique in Ref. [52]. For each system size N , we use Monte
Carlo data for C2 versus p and τ∗ versus p to create functions gN = Nθ/νC2 and
lN = N γ /ντ∗ respectively. The value of p that minimizes the objective function
P = ∑

Ni<N j (gNi − gN j )
2 is the estimation of percolation threshold p←

c. Similarly,
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Fig. 4.4 In a, d, g, fraction of nodes in the second largest component, C2 is plotted as a function
of edge density p for β = 0.7, 0.763, 0.8, respectively. b, e, h show their rescaling C2Nθ/ν ,
respectively. c, f, i show C2Nθ/ν versus (p − p←

c)N 1/ν , indicating the validity of Eq. (4.7). The
system size goes from N = 20000 (magenta) to 1620000 (red) via successive doubling

the value of p, which minimizes the objective function Q = ∑
Ni<N j (lNi − lN j )

2,
is an alternative way to estimate p←

c. In our following numerical simulations, we find
a perfect agreement within error bars between the two different methods.

In Fig. 4.4a, d, and g, we plot the order parameter C2 as a function of edge density
p, for β = 0.7, 0.763, 0.8 in BFW model, respectively. Five curves in each figure
stand for Monte Carlo data averaged over 1000 realizations for five different system
sizes, namely N = 20000, 60000, 180000, 540000, 1620000. To identify the perco-
lation threshold p←

c of C2 and two scaling exponents θ/ν, γ /ν, we first implement
the minimization technique in the objective function P . Figure4.4b, e, and h show
that all curves of C2Nθ/ν versus p cross at a single percolation transition point p←

c =
3.865 ± 0.005, 3.555 ± 0.005, 2.725 ± 0.003 for β = 0.7, 0.763, 0.8, respectively.
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Fig. 4.5 In a, b, c, the susceptibility τ∗ is plotted as a function of p for β = 0.7, 0.763, 0.8,
respectively, showing the peak of the susceptibility τ∗ moves leftward as system size increases.
The dashed lines are the percolation threshold obtained fromnumerical simulation throughEq. (4.8).
The peaks of the susceptibility ismoving leftward to the percolation threshold p←

c which indicates the
continuous nature of the second phase transition. In d, e, f, C2 and τ∗ at the percolation threshold
p←

c is plotted as a function of system sizes for β = 0.7, 0.763, 0.8, respectively. The system size
goes from N = 20000 (magenta) to 1620000 (red) via successive doubling

The corresponding exponent ratios θ/ν are 0.31 ± 0.03, 0.25 ± 0.04, 0.24 ± 0.04
for β = 0.7, 0.763, 0.8, respectively. In Fig. 4.4c, f, and i, the data collapses show
the profiles of the universal scaling function F (1) of Eq. (4.7), where we find the
exponent 1/ν = 0.36 ± 0.01, 0.36 ± 0.01, 0.37 ± 0.01 for β = 0.7, 0.763, 0.8,
respectively.

In Fig. 4.5a–c, τ∗ is plotted as a function of p, where the dashed lines show
the location of percolation threshold through minimization technique in the objec-
tive function Q. We find that percolation threshold obtained through minimization
technique in the objective functions P and Q show perfect agreement within error
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Fig. 4.6 Component size distribution n(s) at the percolation threshold p←
c for β = 0.7 (a), 0.763

(b), 0.8 (c), respectively

bars. Figure 4.5d–f display C2 and τ∗ at p = p←
c as a function of system size N for

β = 0.7, 0.763, 0.8, respectively. The slope of dashed lines, which are the best fit of
points, represent the exponent ratios θ/ν and γ /ν in scaling relations Eqs. (4.7) and
(4.8). We obtain the exponent ratios γ /ν = 0.32 ± 0.03, 0.25 ± 0.04, 0.23 ± 0.05
for β = 0.7, 0.763, 0.8, respectively, which agree with the corresponding exponent
ratios θ/ν. Therefore, the validity of Eq. (4.9) has been verified. The exponent ratios
θ/ν, γ /ν for β = 0.7 are the same as what is observed for ER [17], indicating they
belong to the same universality class. The measurement of exponents θ, γ and ν

verify the fact that the percolation transition is continuous.
Next, we numerically measure the component size distribution n(s) at percola-

tion threshold. Figure 4.6a–c show that n(s) follow a power law distribution for
β = 0.7, 0.763, 0.8 with respective scaling exponent τ = 2.48 ± 0.01, 2.50 ±
0.01, 2.49 ± 0.01, which is further evidence for a continuous phase transition. The
continuous phase transition of the second largest component is a consequence of a
relatively large value of the cap k throughout the continuous growth process of C2.
This stands in contrast to the subcritical regime for C1 where small values of k keep
components similar in size by the mechanism of growth by overtaking.

The ratios of the scaling exponents θ/ν, γ /ν, and the percolation threshold p←
c

are measured by minimization technique with results shown in Table 4.2. For β →
[0.6, 0.95]we find strong numerical evidence that the percolation transition is indeed

Table 4.2 Summary of numerical results obtained from minimization technique

β 0.6 0.65 0.68 0.7 0.72 0.75 0.763(βc) 0.8 0.85 0.9

θ/ν 0.26(4) 0.31(4) 0.30(3) 0.31(3) 0.27(3) 0.30(3) 0.25(4) 0.24(5) 0.28(4) 0.22(5)

γ /ν 0.26(4) 0.32(4) 0.32(1) 0.32(3) 0.27(3) 0.32(3) 0.25(4) 0.23(5) 0.28(4) 0.22(5)

τ 2.50 (1) 2.48(2) 2.49(2) 2.48(1) 2.49(1) 2.49(2) 2.50(1) 2.49(1) 2.46(2) 2.48(2)

p←
c 7.595(6) 5.320(5) 4.385(5) 3.865(5) 3.455(4) 2.860(4) 2.725(3) 3.555(5) 5.215(5) 8.647(7)
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Fig. 4.7 a The asymptotic fraction of nodes in the largest component is plotted as a function of
β. b The asymptotic fraction of nodes in the second largest component is plotted as a function
of β. c The percolation threshold p←

c of the second phase transition is plotted as a function of β.
The minimal values of C1 and p←

c, the maximal value of C2 are obtained at the same critical point
βc = 0.763 ± 0.001, marking also the point with the minimal delay between the emergence of C1
and C2

continuous. Numerical results indicate that for β → [0.65, 0.7], the BFW model and
ER exhibit the same scaling exponent θ, ν, γ , therefore, their percolation phase
transitions belong to the same universality class. We also deduce from Table 4.2
that the minimal percolation threshold of the order parameter C2 is obtained for
βc = 0.763 ± 0.002 as also shown explicitly in Fig. 4.7c. This observation shows
perfect agreement with the location where t (kfinal) and kfinal/N attains minimum
(Fig. 4.3a). The underlying mechanism, which accounts for the minimal percolation
threshold obtained at βc = 0.763 ± 0.002, is actually related with the behavior of
C1 (or stage k) in supercritical regime. Since if β < βc, both k(tc)/N and tc/N
decrease with β from numerical results obtained in Sect. 4.3, the emergence of the
second giant component is earlier for larger β. However, if β > βc, C1 keeps on
augmenting after tc/N and a finite fraction of edges is added before t (kfinal)/N .
Therefore, the competition of edges enhancing the largest component and the second
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largest component delays the onset of the second giant component. In particular, the
emergence of the second giant component is more delayed for larger β if β > βc.
Thus, we observe the minimal percolation threshold of the order parameter C2 is
derived for βc = 0.763 ± 0.002.

4.5 Summary and Discussion

In this chapter, we have analyzed the BFW model in the regime β → [0.6, 0.95]
where only one giant component appears in a discontinuous phase transition. The
growth cessation of the largest component in the supercritical regime results in the
emergence of a second giant component at some delayed time. We have carried out
finite-size scaling to study the critical behavior of the second phase transition and
the results establish that the transition is continuous, but that only for β → [0.65, 0.7]
do BFW and ER belong to the same universality class. We have also established that
there exists an interesting inflection point at βc = 0.763 ± 0.002 that is related to
many properties of the system. As derived in Eq. (4.4), for β < βc, C1 stops growing
the instant it emerges, whereas for β > βc, C1 grows in the supercritical regime.
As shown in Fig. 4.7, at βc the asymptotic size of C1 is minimized, that of C2 is
maximized, and the delay between the emergence of C1 and C2 is minimized.

There is much recent interest in understanding the formation mechanism of mul-
tiple giant components in percolation [39, 40, 53, 54]. In Ref. [39, 40], the modified
BFW model with β < 0.52 exhibits multiple giant components which emerge in a
discontinuous transition. The underlying mechanisms responsible for the formation
of multiple giant components are (i) the domination of overtaking processes in the
growth of C1, which result in the coexistence of many large components in the criti-
cal window, and (ii) the dominance of the sampling of intra-component edges in the
supercritical region, which avoids merging the giant components. In Ref. [53], the
so-called multi-ER model shows multiple giant components appear in a continuous
transition. The formation of multiple giant components is attributed to the relatively
low probability for merger of large components in the critical window. In this paper,
the BFW model with β → [0.6, 0.95] provides a novel formation mechanism result-
ing inmultiple giant components, which is the growth cessation ofC1 in supercritical
regime resulting in the emergence of a second giant component.

The hybrid of continuous and discontinuous phase transitions observed in the stud-
iedmodifiedBFWmodel is an unusual characteristic in classical statisticalmechanics
of critical phenomena. In a recent study, a competitive percolation model called the
Nagler-Tiessen-Gutch model (NTG) [50] has been proposed in which three nodes
are randomly sampled at each step and those two picked nodes are connected whose
components they reside in aremost similar in size. Thismodel undergoes both contin-
uous and discontinuous phase transitions as well. However, there is a different main
feature between the NTG model and the modified BFW model with β → [0.6, 0.9].
In the NTG model, the double giant components would merge infinitely many times
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in the supercritical regime, leading to infinite discontinuous transitions of C1 and
infinite continuous transitions of C2, while in the modified BFW model there are
asymptotically stable double giant components that never merge.
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Chapter 5
Unstable Supercritical Discontinuous
Percolation Transitions

5.1 Introduction

Percolation is a pervasive concept [1], which has applications in a wide variety
of natural, technological and social systems [2–5], ranging from conductivity of
composite materials [6, 7] and polymerization [8] to epidemic spreading [9–11] and
information diffusion [12, 13]. Viewed in a network setting, once the density of
edges exceeds a critical threshold, pc, the system undergoes a sudden transition to
global connectivity, where the size of the largest connected component transitions
from microscopic to macroscopic in size. If, rather than edge density, we consider
the impact of adding individual edges, we expect to observe the largest jump in size
of the largest component at pc.

It iswell known that the classicErdös-Rényi (ER) [14]model of percolation under-
goes a continuous second-order phase transition during link-addition [15]. Here, one
starts from a collection ofN isolated nodes and edges are added uniformly at random,
with the critical edge density, pc = 0.5. Instead of Erdös-Rényi, we can consider
competitive percolation processes [16]. In a competitive process, rather than a single
edge, a fixed number of edges (or nodes) are chosen uniformly at random, but only
the edge that best fits some specified criteria is added to the graph. Competition
between edges is typically referred to as an Achlioptas Process [17].

Achlioptas Processes (AP) can exhibit a very sharp explosive transition, which
appears discontinuous on any finite system [17]. In past years such sharp transi-
tions have been demonstrated for scale-free networks [18–20], square lattices [21,
22], Bethe lattice [23], directed networks [24] and more realistic systems [25–27].
Although strong numerical evidence suggests that many explosive AP are discon-
tinuous [17], more recently it has been shown that the seeming discontinuity at
the percolation transition point disappears in the thermodynamic limit [16, 28–32].
However, this means that neither all AP are necessarily globally continuous nor that
there are no genuine discontinuities during the first continuous emergence of a giant
component. In fact, a giant connected component can emerge in a series of infinitely
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many genuinely discontinuous jumps, and the notion that explosive percolation is
always continuous [30] is thus misleading [33].

Several random network percolation models have now been identified and studied
that show a single genuine discontinuous transition [29, 34–44], or even multiple
discontinuities [33, 45, 46]. The mechanisms for discontinuous transitions such as
dominant overtaking [16, 47], cooperative phenomena [41], and the suppression
principle [48], have received considerable attention, as have criteria to discriminate
between continuous and discontinuous explosive percolation transitions. A signa-
ture for a continuous percolation transition is a critical power-law component-size
distribution [20, 28] and an asymptotically vanishing order parameter at the phase
transition point [36].

A method to discriminate between weakly and genuinely discontinuous transi-
tions proposed in [16] is to use the asymptotic size of the largest jump in the order
parameter from the addition of a single edge. Importantly, if the largest jump of
the order parameter does not vanish as the system size N → ∞, the transition is
necessarily discontinuous. However, whether the largest jump in the order parameter
asymptotically coincides with the percolation transition point, and thus announces
it, has remained largely unaddressed.

In this chapter, we introduce our work in Ref. [49]. We study whether the position
of the largest jump in the order parameter asymptotically converges to the percolation
transition point. To exemplify this we study the Erdös-Rényi model, Achlioptas
Processes and the generalized Bohman-Frieze-Wormald model (BFW) [50]. We find
that the position of the largest jump in the order parameter asymptotically converges
to the percolation transition point for ER and AP with global continuity, but not
necessarily forAPwith discontinuities. For theBFWmodel, it depends on the value of
themodel parameter α. In BFWmultiple giant components emerge at the percolation
transition point, with the value of α determining the number of giants [35]. Here,
we show that there are further sub-regimes of α values, with “stable” regions where
the macroscopic components never merge and “unstable” regions where giants can
have further merging in the supercritical regime. In stable α regions the largest jump
coincides with the percolation threshold, but in unstable regions the largest jump is
in the supercritical regime.

5.2 Percolation Models with Global Continuity

We study whether the position of the largest jump in the order parameter asymptoti-
cally converges to the percolation transition point for percolation models exhibiting
global continuity. The best understood percolation model that shows a continuous
phase transition is the Erdös-Rényi model (ER) [14]. Let N be the number of nodes,
t be the number of links (i.e., edges) in system and let Ci denote the i-th largest
component and Ci denote the fraction of nodes in the i-th largest component. A typ-
ical evolution of C1, as a function of the link density p = t/N (number of links per
node) is shown in Fig. 5.1a. To study whether the position of the largest jump in C1
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Fig. 5.1 Continuous percolation models. a A typical evolution of C1 as a function of the link
density p = t/N for ER, and for the PRmax, PRmin models with the number of candidate edges
c = 2 and c = 4, respectively. The system size N = 106. b (tΔ − tc)/N versus number of nodes N
for these models, all of which follow a power-law distribution. Each data point in (b) is averaged
over 1,000 realizations

converges to the percolation transition point, wemeasure (tΔ− tc)/N as a function of
N , where tc denotes the minimal number of steps for C1 to exceed N1/2, and tΔ is the
time (number of steps) when the largest jump in C1 has occurred. Figure 5.1 shows
that (tΔ − tc)/N ∗ N−0.227 for finite systems of very large size, which suggests
that (tΔ − tc)/N is very likely to asymptotically converge to zero. In addition, both
tΔ/N and tc/N are very likely to converge to the percolation transition point in the
thermodynamic limit.

Next, we study two extremal AP models, specifically the PRmax model and the
“explosive” PRmin model. In the PRmax model, two candidate links are selected
randomly at each step and the link that maximizes the product of the component
sizes that the ends of the link reside in is added, while the other link is discarded. In
the PRmin model, c candidate links are selected randomly at each step and the link
that minimizes the product of the component sizes that the ends of the link reside in
is added, while all other links are discarded. As an example, in Fig. 5.1a we show
the evolution of C1 as a function of the link density p = t/N for PRmax and PRmin.
Similarly to the numerical results for the ER model, we find that (tΔ − tc)/N follows
a power-law distribution for all studied models. In particular, for finite systems of
very large size, (tΔ − tc)/N ∗ N−0.223 for PRmax, ∗N−0.362 for PRmin with c = 2,
and ∗N−0.449 for PRmin with c = 4, respectively.

This suggests that in continuous percolation, even if extremely abrupt, the largest
gap asymptotically announces the percolation transition. This convergence, however,
is not always guaranteed as we will show next.
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5.3 Percolation Models with Discontinuities

In contrast to AP models discussed in the previous section, several random neighbor
models (of the AP class) have been studied that exhibit ‘staircase’ discontinuities
in the supercritical regime [33, 51]. Here, we focus on three types of AP models,
the Devil’s staircase model (DS) [33], the Nagler-Gutch model (NG) [51], and the
modifiedERmodel (mERmodel) [51]. TheDSmodel is based on picking three nodes
at random and forbidding the largest picked component to merge with components
whose sizes are not similar, which results in a Devil’s staircase with an infinite
hierarchy of discontinuous jumps in C1 [33], see Fig. 5.2a. This model has been used
as a counterexample for the conclusion made in Ref. [30] that explosive percolation
should be always continuous [33].

Like the DSmodel, the NGmodel and mERmodel are both based on 3-node rules
in which the addition of links connecting two components whose sizes are similar
is favored. Let p1 denote the link density immediately after the largest jump in C1
from the addition of a single edge, and p2 denote the link density immediately after
the second largest jump in C1 from the addition of a single edge. Figure 5.2d shows
that p1, p2 and p1 − p2 are very likely to asymptotically converge to some positive
constant asN increases, because of the occurrence ofmultiple discontinuous jumps in
the supercritical regime. Figure 5.2b, c show realizations ofC1 andC2 for the NG and
themERmodel, in both cases featuringmultiple discontinuous transitions ofC1 [51].
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Fig. 5.2 Unstable supercritical discontinuous transitions. Typical evolutions ofC1 andC2 versus
the link density for the DS model (a), NGmodel (b) and mERmodel (c) with system size N = 106.
The link density p1 at which the largest jump in C1 occurs, the link density p2 when the second
largest jump in C1 occurs and p1 − p2 versus system size N for the DS model (d), NG model (e)
and mER model (f). Each data point in (d), (e) and (f) is averaged over 100 realizations
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Figure 5.2e, f show that for both theNGmodel and themERmodel, p1, p2 and p1−p2
are very likely to asymptotically converge to some non-zero constant as the system
sizeN increases. This numerical result can be understood in the following way. From
numerical observations, the size of the third largest component immediately before
p2 in the supercritical regime is atmostO(logN) for theDSmodel, theNGmodel and
mER model. In addition, for all these models it has been analytically demonstrated
that immediately before p2 both the size of the largest and second largest component
are of order O(N), where for the DS model it can be shown that C2 = 1

2C1, while
for the NG model and the mER model C2 = C1 [33, 51]. As a result, for these
models once the largest and second largest component merge together inducing a
discontinuous jump, the size of the second largest component drops to O(logN).
ThusO(N) links are required before at p1 the second largest component grows again
to size 1

2C1 (for the DS model), or to size C1 for the NG model and the mER model,
respectively. Thus, p1 − p2 is necessarily extensive and asymptotically converges to
some positive non-zero constant.

This demonstrates the occurrence of multiple discontinuous transitions, including
the transition with the largest discontinuity, in the supercritical regime and not at the
percolation critical point as in traditional percolation.

In general, we use the term stable coexistence when all giant components emerg-
ing at the percolation transition point persist and remain separate throughout the
supercritical regime. We use the term unstable coexistence when at least two giant
components emerging at the percolation transition point merge together at some
point in the supercritical regime. We find that all the models studied in this section
display unstable supercritical discontinuous transitions, which is a novel and unex-
pected feature in percolation. The model we study next shows even a quantitatively
richer behavior, with some regions of stable coexistence and other regions of unstable
coexistence.

5.4 Bohman-Frieze-Wormald Model

In this section, we investigate the Bohman-Frieze-Wormald (BFW) Model. We first
briefly illustrate the process of the BFW model. The system is initialized with N
isolated nodes. A cap, k, on the maximum allowed component size is initially set to
k = 2 and increased in stages as follows. Links are sampled one-at-a-time, uniformly
at random from the complete graph generated by the N nodes. If a link would lead
to formation of a component of size less than or equal to k it is accepted. Otherwise,
the link is rejected provided that the fraction of accepted links remains greater than
or equal to a function g(k) = α + (2k)−1/2, where α is a tunable parameter (In
the original BFW model, Bohman, Frieze, and Wormald only studied the case of
α = 1/2). Finally, if the fraction of accepted links would drop below g(k), the cap
is augmented to k + 1, and the impact of adding the link reevaluated against the new
values, k + 1 and g(k + 1). This final step of augmenting the cap and reevaluating
the impact is iterated until either k increases sufficiently to accept the link or g(k)
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decreases sufficiently that the link can be rejected. Asymptotically, the fraction of
accepted links is limk→∞ g(k) = α. (The details of BFW model can be found in the
appendix.)

The original BFW model (α = 1/2) was first introduced to demonstrate that the
emergence of a giant component can be largely suppressed [50]. In particular, it has
been established that under the BFW evolution, if m = 0.96689N links out of 2m
sequentially sampled random links have been added to a graph, a giant component
does not exist [50]. More recently, the nature of the BFW transition was investigated.
It was established that multiple giant components appear in a discontinuous perco-
lation transition for the BFWmodel [35]. In the asymptotic time limit of the original
BFW model, one-half of all links that are sampled must be added. Generalizing the
BFW model by allowing the asymptotic fraction of accepted links to be a parameter
α, then the number of giant components can be tuned by adjusting the value of α [35].

For thismodel,we investigatewhether discontinuous jumps of the order parameter
occur at the percolation transition point or in the supercritical regime. First, we study
the evolution of the size of the four largest components, Ci with i = 1, 2, 3, 4 for the
BFW model with α ∈ (0, 1], as a function of the link density p.

In Fig. 5.3a we show the discontinuous emergence of a unique giant component in
a sharp transition to global connectivity, for α = 0.6. For other values of α, multiple
giant components emerge simultaneously in a sharp transition. See, for instance,
Fig. 5.3c for α = 0.5 with two giant components, or Fig. 5.3e for α = 0.3 with three
giant components. Thus, for certain values of α, there exists a unique transition to
global connectivity with multiple giant components.

Yet, Fig. 5.3b, d, and f show there is another type of behavior possible, with an
additional transition in the supercritical regime where giant components merge. This
suggests the existence of an instability of giant components.Next,we performnumer-
ical simulations to characterize the occurrence of discontinuities and multiplicities
during the discontinuous transitions.

As in the previous section, we denote the link density p1 as the position immedi-
ately after the largest jump inC1 from the addition of a single edge, and p2 the position
immediately after the second largest jump inC1 from the addition of a single edge. In
addition, let p3 denote the minimal position at which the largest component contains
at least N1/2 nodes. From numerical results in Fig. 5.3, we find that p1 ∅ p2 ∅ p3.

Let us focus initially on the region with stable coexisting giant components. For
α = 0.6, 0.5, 0.3, Fig. 5.4a, c, and e show that the size of the largest component at
p1, denoted as C1(p1), is almost independent of the system size N , and converges
to some positive constant asymptotically. On the other hand, the gap between p1
and p3, i.e., Δp = p1 − p3, scales as a negative power of N , and thus is very likely
to decrease to zero as N → ∞, see Fig. 5.4. This suggests that once the number of
nodes in the largest component increases fromO(N1/2) toO(N), the augmented link
density converges to zero as N → ∞, indicating the percolation process undergoes
a unique discontinuous transition in the thermodynamic limit.

We further find that at p1, for α = 0.5, C2 is very likely to converge to some
positive constant as well, see Fig. 5.4c, and for α = 0.3, C1, C2, and C3 are all
very likely to converge to some positive nonzero constant, respectively, see Fig. 5.4e.
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Fig. 5.3 Critical and unstable supercritical discontinuous transitions. a For α = 0.600, one giant
component emerges in a phase transition. b For α = 0.530, C1, C2 versus the link density, showing
that two giant components emerge simultaneously in the first phase transition. They are, however,
unstable as they merge at a second transition. c For α = 0.500, C1, C2, C3 versus the link density,
showing that two giant components emerge simultaneously. d For α = 0.350, C1, C2, C3 versus
the link density, showing that three giant components emerge simultaneously in the first phase
transition. This configuration is unstable as in a second transition the second largest and the third
largest components merge. e For α = 0.300, C1, C2, C3, C4 versus link density, showing the
simultaneous emergence of three giant components. f For α = 0.260,C1, C2, C3, C4 versus density
of links, showing that four giant components emerge simultaneously in the first phase transition. Two
smallestmacroscopic componentsC3 andC4 merge together and overtakeC1, the othermacroscopic
components are stable in the remaining process, C3 + C4 → C1, C1 → C2, C2 → C3. System size
is N = 106 for all simulations
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Fig. 5.4 Scaling of critical and unstable supercritical discontinuous transitions. a For α = 0.600,
C1 at p1, p1 − p3 versus system size. b For α = 0.530, C1 at p2, the largest jump in C1, p2 − p3,
p1 − p2 versus system size. c For α = 0.500, C1, C2 at p1, p1 − p3 versus system size. d For
α = 0.350, C1, C2 at p2, the largest jump in C1, C2, p2 − p3, p1 − p2 versus system size. e For
α = 0.300, C1, C2, C3 at p1, p1 − p3 versus system size. f For α = 0.260, C1, C2, C3 at p2, the
largest jump in C1, C2, C3, p2 − p3, p1 − p2, versus system size. Each data point is averaged over
1,000 realizations

This indicates that the multiple giant components appear simultaneously in a unique
discontinuous transition, consistent with the theory and observations put forth in
[35, 47].

Let us now focus on the regime with unstable coexistence of multiple giant com-
ponents. For α in the unstable regime, the size of the largest component at p2, is
almost independent of the system size N and converges to some positive constant
asymptotically. For α = 0.53, 0.35, 0.26, the size of the two, three, and four largest
components at p2 are very likely to converge to some positive constant asymptoti-
cally. Yet, we find that p2 − p3 decays as a power law in N , see Fig. 5.4b, d, and f.
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This suggests the percolation transition is discontinuous at p2 with multiple giant
components emerging simultaneously.

In addition, we observe that the size of the largest jump of the largest compo-
nent at p1, denoted by maxΔC1, is independent of system size N , and is very likely
to converge to some positive constant asymptotically (see Fig. 5.4b, d, and f). This
suggests the occurrence of a second discontinuous transition at p1 in the supercrit-
ical regime. We find that the second transition results from the merging of the two
smallest giant components that emerge at the first (i.e., percolation) transition. This
mechanism can be seen clearly from the case of α = 0.26 in Fig. 5.3f, where four
giant components emerge at the first transition, while at the second transition, C3 and
C4 merge together and overtake C1 in size. Thus, C1, C2, C3 all get a sudden jump in
size, but C4 breaks down. This overtaking mechanism dominates the growth of the
largest component in the BFWmodel, which has been proven to be a key mechanism
leading to discontinuous percolation transitions [16, 33, 47].

To test if the transition points p1 and p2 in the unstable regime are still distinct
in the thermodynamic limit, we next perform a scaling analysis. For the values of
α = 0.53, 0.35, 0.26, which are in the unstable region, we find that p1 − p2 is very
likely to converge to a nonzero constant, see Fig. 5.4. This suggests, indeed, the
distinctness of the two transition points.

Taken together, we have identified and studied two parameter regimes in the
BFM model, (i) the stable regime of a unique discontinuous transition where one or
more giant components emerge and coexist throughout the supercritical regime and
(ii) the unstable regime of multiple discontinuous transitions where multiple giant
components emerge but the two smallest ones merge at a well-defined transition
point in the supercritical regime.

However, the characterization remains incomplete as so far we have only studied
three instances for each parameter regime. Our next aim is to establish a phase
diagram by continuously tuning the parameter α.

5.5 Phase Diagram of the BFW Model

We first investigate the behavior in the regime α > α1 with α1 = 0.511 ± 0.003,
where only one giant component asymptotically remains in the system. For values
α < α1, two giant components asymptotically remain [35].

Since in a stable regime of α all giant components that have emerged remain
separate throughout the supercritical regime, a stable regime is characterized by a
unique transition of the largest component. In contrast, an unstable regime is charac-
terized by one (or more) discontinuous transitions of C1 in the supercritical regime
by aggregation of two (or more) giant components emerging at percolation transition
point.

We find that the model undergoes two distinct discontinuous phase transitions for
α ∈ (α1, α

∪
1), referred to as the unstable regime, but undergoes a uniquediscontinuous

phase transition for α ∈ (α∪
1, 1), referred to as the stable regime, where α∪

1 = 0.551±
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Table 5.1 Summary of
bifurcation points αi and α∪

i

i αi α∪
i

1 0.511 ± 0.003 0.551 ± 0.001

2 0.343 ± 0.001 0.352 ± 0.001

3 0.259 ± 0.001 0.261 ± 0.001

4 0.206 ± 0.001 0.208 ± 0.001

0.001. Previous work has established an infinite number bifurcation points αi, at
which the number of stable giant components that asymptotically remain in the
system changes from i to i + 1, i ∅ 1 (see Table 5.1) [35]. Here, we numerically
expand the analysis including transitions of the second largest component, the third
largest component, and the forth largest component as well. These transitions lead
to multiple discontinuous transitions of the largest component and a hierarchy of
stable and unstable regimes. In particular, for α ∈ (α∪

i, αi−1), i ∅ 2, we identify a
stable regime, where in a unique discontinuous transition the i largest macroscopic
components, C1, C2, ..., Ci, simultaneously emerge, and for α ∈ (αi, α

∪
i) an unstable

regime with two distinct discontinuous transitions, for i ∅ 1. We find the numerical
values α∪

2 = 0.352 ± 0.001, α∪
3 = 0.261 ± 0.001, α∪

4 = 0.208 ± 0.001..., see
Table5.1.

In Fig. 5.5 we demonstrate the phase diagram of the BFW model. We show the
number of giant components that emerge at the first transition (percolation transition
point) versus α, with alternating stable and unstable regions. Since the number of
giant components that asymptotically remain in the system increases as α decreases,
there exist infinitely many bifurcation points α∪

i, i ∅ 1, which separate stable from
unstable regimes.

5.6 Summary and Discussions

For various models with continuous, discontinuous, and multiple-discontinuous per-
colation transitions, we have investigated whether the location of the largest jump
in the order parameter asymptotically converges to the percolation transition point
marking the onset of global connectivity.

For globally continuous transitions, including certain Achlioptas processes, the
location of the largest jump in the order parameter asymptotically converges to the
percolation transition point. In contrast, Achlioptas processes with discontinuities
exhibit a “staircase” of discontinuities in the supercritical region and the location of
the largest jump is at an edge density well above the percolation transition point.
Finally, the BFW model exhibits a rich supercritical behavior that is dependent on
the model parameter α, as exemplified by the phase diagram, Fig. 5.5, together with
analytics suggesting an infinite hierarchy of regimes of alternating stability type.
Whether the percolation transition is asymptotically announced by the largest gap
in the size of the largest component depends on the parameter. In the stable regime
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Fig. 5.5 Phase diagram for the BFW model. The number of giant components that appear in the
first discontinuous phase transition (percolation transition point) in dependence on α. In the stable
region, the giant components remain distinct in the supercritical regime, while in the unstable region
the two smallest giant components merge in the supercritical regime at a well-defined transition
point

macroscopic components robustly coexist, displaying the largest jump of the order
parameter at the percolation transition point. In the unstable region the coexistence of
all macroscopic components that have emerged occurs in a finite sized window only,
leading to multiple discontinuous transitions. Macroscopic components that emerge
at the percolation transition are thus not necessarily stable in the thermodynamic
limit.

For AP models with discontinuities and for the BFWmodel, multiple discontinu-
ous transitions are a consequence of the occurrence of extended periods in timewell in
the supercritical regime where macroscopic components cannot merge. Mechanisms
implying such periods are yet to be discovered.

Multiple transitions have been studied in a wide variety of fields, such as
geophysics [52], liquid crystals [53], classical thermodynamics and solid state
physics [54]. However, in randomnetwork percolationmultiple transitions are poorly
understood. It would thus be interesting to identify the sufficient conditions for these
[33, 55]. This numerical work represents a step toward this direction.

In short, we have investigated unstable discontinuous transitions in percolation.
Seemingly and genuinely discontinuous percolation transition can involve a rich
behavior in supercriticality, a regime that deserves attention for percolating systems
with substantial delays [55]. However, our results obtained in this paper are based
on numerical simulations on finite systems for practical purposes (N < 107) since
real-world networks such as social networks or the Internet, are by definition of finite
size, so the implications of asymptotic theory (N → ∞) may not apply. It would thus
be interesting to understand whether our results hold for infinite systems through a
rigorous manner, which remains a challenge to be explored.
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Appendix A
Algorithm of Percolation Models

We state the algorithm of the percolation models studied in this book in detail, which
are the Devil’s staircase model (DS), the Nagler-Gutch model (NG), the modified
Erdös-Rényi model, and the Bohman-Frieze-Wormald model.

A.1 Devil’s Staircase Model

Start with an empty graph with N isolated nodes. At each step, three nodes v1, v2, v3
are randomly selected from N nodes, and let s1, s2, s3 denote the sizes of components
(not necessarily distinct) in which they reside. Consider βi, j = |si − s j | with 1 ≤
i < j ≤ 3 and connect vi , v j for which βi, j is minimal.

A.2 Nagler-Gutch Model

Start with an empty graph with N isolated nodes. At each step, three nodes v1, v2, v3
are randomly selected from N nodes, and let s1, s2, s3 denote the sizes of components
(not necessarily distinct) in which they reside. Let si denote the size of the component
containing vi . If all three component sizes si are equal, add the edge connecting v1v2.
If exactly two component sizes si are equal, connect the corresponding nodes by a
link. Otherwise (if all si are different), link the nodes in the two smallest components.
This model is a modification of the “explosive” triangle rule introduced in [1], which
in contrast exhibits a steep but continuous transition.
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A.3 Modified Erdös-Rényi Model

Let L1 and L2 denote the sizes of the two largest components of the evolving graph.
The mER model proceeds as follows. If the two largest components in the current
graph have the same size (L1 = L2), add the link connecting v1v2.When L1 > L2, if
at least two si are equal to L1, connect two corresponding nodes, otherwise connect
two nodes in components of size smaller than L1.

A.4 Bohman-Frieze-Wormald Model

Let k denote the cap on the maximum allowed component size, which is initially set
to k = 2, N denotes the number of nodes in the graph, u denotes the total number
of links sampled, A denotes the set of accepted links (initially A = ∅), and t = |A|
denotes the number of accepted links. At each step u, a link eu is sampled uniformly
at random from the complete graph generated by the N nodes and evaluated by the
following algorithm. This algorithm iterates until a specified number of links, γN ,
have been accepted:

Repeat until u = γN
{

Set l = size of largest component in A ∪ {eu}
if (l ≤ k) {

A ← A ∪ {eu}
u ← u + 1 }

else if (t/u < g(k)) { k ← k + 1 }
else { u ← u + 1 }

}
where g(k) = α + (1/2k)δ with α ∈ [0, 1], δ ∈ [0,∞]. Thus, α denotes the
asymptotic fraction of accepted links over totally sampled links while δ denotes
the rate of g(k) converging to its limiting value 1/2. In the original BFW model,
α = 1/2, δ = 1/2. We generalize the BFW model by tuning the parameter α.
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