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Preface (Readme)

This is the ninth edition of the text but the first with Farid Golnaraghi as the lead author.
For this edition, we increased the number of examples, added MATLAB™" toolboxes, and
enhanced the MATLAB GUI software, ACSYS. We added more computer-aided tools for
students and teachers. The prepublication manuscript was reviewed by many professors,
and most of the relevant suggestions have been adopted. In this edition, Chapters 1 through
4 are organized to contain all background material, while Chapters 5 through 10 contain
material directly related to the subject of control.

In this edition, the following materials have been moved into appendices on this book’s
Web site at www.wiley.com/college/golnaraghi.

Appendix A: Elementary Matrix Theory and Algebra
Appendix B: Difference Equations

Appendix C: Laplace Transform Table

Appendix D: z-Transform Table

Appendix E: Properties and Construction of the Root Loci
Appendix F: General Nyquist Criterion

Appendix G: ACSYS 2008: Description of the Software
Appendix H: Discrete-Data Control Systems

In addition, the Web site contains the MATLAB files for ACSYS, which are software
tools for solving control-system problems, and PowerPoint files for the illustrations in the
text.

The following paragraphs are aimed at three groups: professors who have adopted the
book or who we hope will select it as their text; practicing engineers looking for answers to
solve their day-to-day design problems; and, finally, students who are going to live with the
book because it has been assigned for the control-systems course they are taking.

To the Professor: The material assembled in this book is an outgrowth of senior-level
control-system courses taught by the authors at their universities throughout their teaching
careers. The first eight editions have been adopted by hundreds of universities in the United
States and around the world and have been translated into at least six Janguages. Practically
all the design topics presented in the eighth edition have been retained.

This text contains not only conventional MATLAB toolboxes, where students can
learn MATLAB and utilize their programming skills, but also a graphical MATLAB-based
software, ACSYS. The ACSYS software added to this edition is very different from the
software accompanying any other control book. Here, through extensive use of MATLAB
GUI programming, we have created software that is easy to use. As a result, students will
need to focus only on learning control problems, not programming! We also have added
two new applications, SIMLab and Virtual Lab, through which students work on realistic
problems and conduct speed and position control labs in a software environment. In
SIMLab, students have access to the system parameters and can alter them (as in any
simulation). In Virtual Lab, we have introduced a black-box approach in which the students

' MATLAB™ is a registered trademark of The MathWorks, Inc.
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have no access to the plant parameters and have to use some sort of system identification
technique to find them. Through Virtual Lab we have essentially provided students with a
realistic online lab with all the problems they would encounter in a real speed- or position-
control lab—for example, amplifier saturation, noise, and nonlinearity. We welcome your
ideas for the future editions of this book.

Finally, a sample section-by-section for a one-semester course is given in the
Instructor’s Manual, which is available from the publisher to qualified instructors. The
Manual also contains detailed solutions to all the problems in the book.

To Practicing Engineers: This book was written with the readers in mind and is very
suitable for self-study. Our objective was to treat subjects clearly and thoroughly. The book
does not use the theorem—proof—Q.E.D. style and is withount heavy mathematics. The
authors have consulted extensively for wide sectors of the industry for many years and have
participated in solving numerous control-systems problems, from aerospace systems to
industrial controls, automotive controls, and control of computer peripherals, Although itis
difficult to adopt all the details and realism of practical problems in a textbook at this level,
some examples and problems reflect simplified versions of real-life systems.

To Students: You have had it now that you have signed up for this course and your
professor has assigned this book! You had no say about the choice, though you can form
and express your opinion on the book after reading it. Worse yet, one of the reasons that
your professor made the selection is because he or she intends to make you work hard. But
please don’t misunderstand us: what we really mean is that, though this is an easy book to
study (in our opinion), it is a no-nonsense book. It doesn’t have cartoons or nice-locking
photographs to amuse you. From here on, it is all business and hard work. You should have
had the prerequisites on subjects found in a typical linear-systems course, such as how to
solve linear ordinary differential equations, Laplace transform and applications, and time-
response and frequency-domain analysis of linear systems. In this book you will not find
too much new mathematics to which you have not been exposed before. What is interesting
and challenging is that you are going to learn how to apply some of the mathematics that
you have acquired during the past two or three years of study in college. In case you need to
review some of the mathematical foundations, you can find them in the appendices on this
book’s Web site. The Web site also contains lots of other goodies, including the ACSYS
software, which is GUI software that uses MATLAB-based programs for solving linear
control systems problems. You will also find the Simulink®?-based SIMLab and Virtual
Lab, which will help you to gain understanding of real-world control systems.

This book has numerous illustrative examples. Some of these are deliberately simple
for the purpose of illustrating new ideas and subject matter. Some examples are more
elaborate, in order to bring the practical world closer to you. Furthermore, the objective of
this book is to present a complex subject in a clear and thorough way. One of the important
learning strategies for you as a student is not to rely strictly on the textbook assigned. When
studying a certain subject, go to the library and check out a few similar texts to see how
other authors treat the same subject. You may gain new perspectives on the subject and
discover that one author may treat the material with more care and thoroughness than the
others. Do not be distracted by written-down coverage with oversimplified examples. The
minute you step into the real world, you will face the design of control systems with
nonlinearities and/or time-varying elements as well as orders that can boggle your mind. It

2Simulink™® is a registered trademark of The MathWorks, Inc.
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may be discouraging to tell you now that strictly linear and first-order systems do not exist
in the real world.

Some advanced engineering students in college do not believe that the material they
learn in the classroom is ever going to be applied directly in industry. Some of our students
come back from field and interview trips totally surprised to find that the material they
learned in courses on control systems is actually being used in industry today. They are
surprised to find that this book is also a popular reference for practicing engineers.
Unfortunately, these fact-finding, eye-opening, and self-motivating trips usually occur near
the end of their college days, which is often too late for students to get motivated.

There are many learning aids available to you: the MATLAB-based ACSYS software
will assist you in solving all kinds of control-systems problems. The SIMLab and Virtual
Lab software can be used for simulation of virtual experimental systems. These are all
found on the Web site. In addition, the Review Questions and Summaries at the end of each
chapter should be useful to you. Also on the Web site, you will find the errata and other
supplemental material.

We hope that you will enjoy this book. It will represent another major textbook
acquisition (investment) in your college career. Qur advice to you is not to sell it back to the
bookstore at the end of the semester. If you do so but find out later in your professional
career that you need to refer to a control systems book, you will have to buy it again at a
higher price.

Special Acknowledgments: The authors wish to thank the reviewers for their invaluable
comments and suggestions. The prepublication reviews have had a great impact on the
revision project. Dr. Earl Foster, Dr. Vahe Caliskan,

The authors thank Simon Fraser students and research associates Michael Ages,
Johannes Minor, Linda Franak, Arash Jamalian, Jennifer Leone, Neda Parnian, Sean
MacPherson, Amin Kamalzadeh, and Nathan (Wuyang) Zheng for their help. Farid
Golnaraghi also wishes to thank Professor Benjamin Kuo for sharing the pleasure of
writing this wonderful book, and for his teachings, patience, and support throughout this
experience.

M. F. Golnaraghi,
Vancouver, British Columbia,
Canada

B. C. Kuo,
Champaign, lllinois, U.S.A.

2009
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' CHAPTER 1

Introduction

1-1 INTRODUCTION

+ Control systems are in
abundance in modern
civilization.

The main objectives of this chapter are:

1. To define a control system.

. To explain why control systems are important.

To introduce the basic components of a control system.
To give some examples of control-system applications.

To explain why feedback is incorporated into most control systems.

L

To introduce types of control systems.

One of the most commonly asked questions by a novice on a control system is: What is
a control system? To answer the question, we can say that in our daily lives there are
numerous “‘objectives” that need to be accomplished. For instance, in the domestic
domain, we need to regulate the temperature and humidity of homes and buildings for
comfortable living. For transportation, we need to control the automobile and airplane to go
from one point to another accurately and safely. Industrially, manufacturing processes
contain numerous objectives for products that will satisfy the precision and cost-
effectiveness requirements. A human being is capable of performing a wide range of
tasks, including decision making. Some of these tasks, such as picking up objects and
walking from one point to another, are commonly carried out in a routine fashion. Under
certain conditions, some of these tasks are to be performed in the best possible way. For
instance, an athlete running a 100-yard dash has the objective of running that distance in the
shortest possible time. A marathon runner, on the other hand, not only must run the distance
as quickly as possible, but, in doing so, he or she must control the consumption of energy
and devise the best strategy for the race. The means of achieving these “objectives’ usually
involve the use of control systems that implement certain control strategies.

In recent years, control systems have assumed an increasingly important role in the
development and advancement of modern civilization and technology. Practically every
aspect of our day-to-day activities is affected by some type of control system. Control
systems are found in abundance in all sectors of industry, such as quality control of
manufactured products, automatic assembly lines, machine-tool control, space technology
and weapon systems, computer control, transportation systems, power systems, robotics,
Micro-Electro-Mechanical Systems (MEMS), nanotechnology. and many others. Even the
control of inventory and social and economic systems may be approached from the theory
of automatic control.
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Objectives CONTROL Results
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SYSTEM Figure 1-1 Basic components of a control
system.

1-1-1 Basic Components of a Control System

The basic ingredients of a control system can be described by:

1. Objectives of control.
2. Control-system components,
3. Results or outputs.

The basic relationship among these three components is illustrated in Fig. 1-1. In more
technical terms, the objectives can be identified with inputs, or actuating signals, z, and
the results are also called outputs, or controlled variables, y. In general, the objective
of the control system is to control the outputs in some prescribed manner by the inputs
through the elements of the control system.

1-1-2 Examples of Control-System Applications

Intelligent Systems

Applications of control systems have significantly increased through the development
of new materials, which provide unique opportunities for highly efficient actuation and
sensing, thereby reducing energy losses and environmental impacts. State-of-the-art
actuators and sensors may be implemented in virtually any system, including biological
propulsion; locomotion; robotics; material handling; biomedical, surgical, and endoscopic;
aeronautics; marine; and the defense and space industries. Potential applications of control
of these systems may benefit the following areas:

* Machine tools. Improve precision and increase productivity by controlling chatter.
» Flexible robotics. Enable faster motion with greater accuracy.

= Photolithography. Enable the manufacture of smaller microelectronic circuits by
controlling vibration in the photolithography circuit-printing process.

= Biomechanical and biomedical. Artificial muscles, drug delivery systems, and
other assistive technologies.

« Process control. For example, on/off shape control of solar reflectors or aero-
dynamic surfaces.

Control in Virtual Prototyping and Hardware in the Loop

The concept of virtual prototyping has become a widely used phenomenon in the
automotive, aerospace, defense, and space industries. In all these areas, pressure to cut
costs has forced manufacturers to design and test an entire system in a computer
environment before a physical prototype is made. Design tools such as MATLAB and
Simulink enable companies to design and test controllers for different components (e.g.,
suspension, ABS, steering, engines, flight control mechanisms, landing gear, and special-
ized devices) within the system and examine the behavior of the control system on the
virtual prototype in real time. This allows the designers to change or adjust controller
parameters online before the actual hardware is developed. Hardware in the loop
terminology is a new approach of testing individual components by attaching them to
the virtual and controller prototypes. Here the physical controller hardware is interfaced
with the computer and replaces its mathematical model within the computer!
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Smart Transportation Systems

The automobile and its evolution in the last two centuries is arguably the most transform-
ative invention of man. Over years innovations have made cars faster, stronger, and
aesthetically appealing. We have grown to desire cars that are “intelligent” and provide
maximum levels of comfort, safety, and fuel efficiency. Examples of intelligent systems in
cars include climate control, cruise control, anti-lock brake systems (ABSs), active
suspensions that reduce vehicle vibration over rough terrain or improve stability, air
springs that self-level the vehicle in high-G turns (in addition to providing a better ride),
integrated vehicle dynamics that provide yaw control when the vehicle is either over- or
understeering (by selectively activating the brakes to regain vehicle control), traction
control systems to prevent spinning of wheels during acceleration, and active sway bars to
provide “controlled” rolling of the vehicle. The following are a few examples.

Drive-by-wire and Driver Assist Systems The new generations of intelligent vehicles
will be able to understand the driving environment, know their whereabouts, monitor their
health, understand the road signs, and monitor driver performance, even overriding drivers
to avoid catastrophic accidents. These tasks require significant overhaul of current designs.
Drive-by-wire technology replaces the traditional mechanical and hydraulic systems with
electronics and control systems, using electromechanical actuators and human-machine
interfaces such as pedal and steering feel emulators—otherwise known as haptic systems.
Hence, the traditional components—such as the steering column, intermediate shafts,
pumps, hoses, fluids, belts, coolers, brake boosters, and master cylinders—are eliminated
from the vehicle. Haptic interfaces that can offer adequate transparency to the driver while
maintaining safety and stability of the system. Removing the bulky mechanical steering
wheel column and the rest of the steering system has clear advantages in terms of mass
reduction and safety in modem vehicles, along with improved ergonomics as a result of
creating more driver space. Replacing the steering wheel with a haptic device that the
driver controls through the sense of touch would be useful in this regard. The haptic device
would produce the samc sensc to the driver as the mechanical steering wheel but with
improvements in cost, safety, and fuel consumption as a result of eliminating the bulky
mechanical system.

Driver assist systems help drivers to avoid or mitigate an accident by sensing the nature
and significance of the danger. Depending on the significance and timing of the threat,
these on-board safety systems will initially alert the driver as early as possible to an
impending danger. Then, they will actively assist or, ultimately, intervene in order to avert
the accident or mitigate its consequences. Provisions for automatic over-ride features when
the driver loses control due to fatigue or lack of attention will be an important part of the
system. In such systems, the so-called advanced vehicle control system monitors the
longitudinal and lateral control, and by interacting with a central management unit, it will
be ready to take control of the vehicle whenever the need arises. The system can be readily
integrated with sensor networks that monitor every aspect of the conditions on the road and
are prepared to take appropriate action in a safe manner.

Integration and Utilization of Advanced Hybrid Powertrains Hybrid technologies offer
improved fuel consumption while enhancing driving experience. Utilizing new energy
storage and conversion technologies and integrating them with powertrains would be prime
objectives of this research activity. Such technologies must be compatible with current
platforms and must enhance, rather than compromise, vehicle function. Sample applica-
tions would include developing plug-in hybrid technology, which would enhance the
vehicle cruising distance based on using battery power alone, and utilizing sustainable
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energy resources, such as solar and wind power, to charge the batteries. The smart plug-in
vehicle can be a part of an integrated smart home and grid energy system of the future,
which would utilize smart energy metering devices for optimal use of grid energy by
avoiding peak energy consumption hours.

High Performance Real-time Control, Health Monitoring, and Diagnosis Modern
vehicles utilize an increasing number of sensors, actuators, and networked embedded
computers, The need for high performance computing would increase with the introduction
of such revolutionary features as drive-by-wire systems into modern vehicles. The
tremendous computational burden of processing sensory data into appropriate control
and monitoring signals and diagnostic information creates challenges in the design of
embedded computing technology. Towards this end, a related challenge is to incorporate
sophisticated computational techniques that control, monitor, and diagnose complex
automotive systems while meeting requirements such as low power consumption and
cost effectiveness.

The following represent more traditional applications of control that have become part
of our daily lives.

Steering Control of an Antomobile

As a simple example of the control system, as shown in Fig. 1-1, consider the steering
control of an automobile. The direction of the two front wheels can be regarded as the
controlled variable, or the output, y; the direction of the steering wheel is the actuating
signal, or the input, #. The control system, or process in this case, is composed of the
steering mechanism and the dynamics of the entire automobile. However, if the objective is
to control the speed of the automobile, then the amount of pressure exerted on the
accelerator is the actuating signal, and the vehicle speed is the controlled variable. As a
whole, we can regard the simplified automobile control system as one with two inputs
(steering and accelerator) and two outputs (heading and speed). In this case, the two
controls and two outputs are independent of each other, but there are systems for which the
controls are coupled. Systems with more than one input and one output are called
multivariable systems.

Idle-Speed Control of an Automobile

As another example of a control system, we consider the idle-speed control of an
automobile engine. The objective of such a control system is to maintain the engine
idle speed at a relatively low value (for fuel economy) regardless of the applied engine
loads (e.g., transmission, power steering, air conditioning). Without the idle-speed control,
any sudden engine-load application would cause a drop in engine speed that might cause
the engine to stall. Thus the main objectives of the idle-speed control system are (1) to
eliminate or minimize the speed droop when engine loading is applied and (2) to maintain
the engine idle speed at a desired value. Fig. 1-2 shows the block diagram of the idle-speed
control system from the standpoint of inputs—system—outputs. In this case, the throttle
angle o and the load torque 77 (due to the application of air conditioning, power steering,
transmission, or power brakes, etc.) are the inputs, and the engine speed a is the output, The
engine is the controlied process of the system.

Sun-Tracking Control of Solar Collectors

To achieve the goal of developing economically feasible non-fossil-fuel electrical power,
the U.S. government has sponsored many organizations in research and development of
solar power conversion methods, including the solar-cell conversion techniques. In most of
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these systems, the need for high efliciencies dictates the use of devices for sun tracking.
Fig. 1-3 shows a solar collector field. Fig. 1-4 shows a conceptual method of efficient water
extraction using solar power. During the hours of daylight, the solar collector would
produce electricity to pump water from the underground water table to a reservoir (perhaps
on a nearby mountain or hill), and in the early morning hours, the water would be released
into the irrigation system.

One of the most important features of the solar collector is that the collector dish must
track the sun accurately. Therefore, the movement of the collector dish must be controlled
by sophisticated control systems. The block diagram of Fig. 1-5 describes the general
philosophy of the sun-tracking system together with some of the most important compo-
nents. The controller ensures that the tracking collector is pointed toward the sun in the
morning and sends a “start track” command. The controller constantly calculates the sun’s
rate for the two axes (azimuth and elevation) of control during the day. The controller uses
the sun rate and sun sensor information as inputs to generate proper motor commands to
slew the collector.

1-1-3 Open-Loop Control Systems (Nonfeedback Systems)

= Open-loop systems are
economical but usually
inaccurate.

The idle-speed control system illustrated in Fig. 1-2, shown previously, is rather un-
sophisticated and is called an open-loop control system. It is not difficult to see that the
system as shown would not satistactorily fulfill critical performance requirements. For
instance, if the throttle angle « is set at a certain initial value that corresponds to a certain
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Figure 1-5 Important components of the sun-tracking control system.

engine speed, then when a load torque 77 is applied, there is no way to prevent a drop in the
engine speed. The only way to make the system work is to have a means of adjusting « in
response to a change in the load torque in order to maintain  at the desired level. The
conventional electric washing machine is another example of an open-loop control system
because, typically, the amount of machine wash time is entirely determined by the
judgment and estimation of the human operator.

The elements of an open-loop control system can usually be divided into two parts: the
controller and the controlled process, as shown by the block diagram of Fig. 1-6. An input
signal, or command, r, is applied to the controller, whose output acts as the actuating signal
u; the actuating signal then controls the controlled process so that the controlled variable y
will perform according to some prescribed standards. In simple cases, the controller can be

Reference Actuating Controlled
input » signal u variable y
~———— CONTROLLER [—— R

Figure 1-6 Elements of an open-loop control system.
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an amplifier, a mechanical linkage, a filter, or other control elements, depending on the
nature of the system. In more sophisticated cases, the controller can be a computer such as a
microprocessor. Because of the simplicity and economy of open-loop control systems, we
find this type of system in many noncritical applications.

1-1-4 Closed-Loop Control Systems (Feedback Control Systems)

* Closed-loop systems have
many advantages over open-
loop systems.

What is missing in the open-loop control system for more accurate and more adaptive
control is a link or feedback from the output to the input of the system. To obtain more
accurate control, the controlled signal y should be fed back and compared with the
reference input, and an actuating signal proportional to the difference of the input and the
output must be sent through the system to correct the error. A system with one or more
feedback paths such as that just described is called a closed-loop system.

A closed-loop idle-speed control system is shown in Fig. 1-7. The reference input w,
sets the desired idling speed. The engine speed at idle should agree with the reference value
®,, and any difference such as the load torque 77 is sensed by the speed transducer and the
error detector. The controller will operate on the difference and provide a signal to adjust
the throttle angle « to correct the error. Fig. 1-8 compares the typical performances of open-
loop and closed-loop idle-speed control systems. In Fig. 1-8(a), the idle speed of the open-
loop system will drop and settle at a lower value after a load torque is applied. In Fig. 1-8
(b), the idle speed of the closed-loop system is shown to recover quickly to the preset value
after the application of T7.

The objective of the idle-speed control system illustrated, also known as a regulator
system, is to maintain the system output at a prescribed level.

1
Error
detector +
oy
CONTROLLER B ENGINE 4
SPEED »
TRANSDUCER
Figure 1-7 Block diagram of a closed-loop idle-speed control system.
Application of T Application of 7,
Desired l Desired l
idle speed idle speed L Time
, o,
4 Time 4
(@) (b)

Figure 1-8 (a) Typical response of the open-loop idle-speed control system. (b) Typical response of
the closed-loop idle-speed control system.
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1-2 WHAT IS FEEDBACK, AND WHAT ARE ITS EFFECTS?

* Feedback exists
whenever there is a closed
sequence of cause-and-
effect relationships.

The motivation for using feedback, as illustrated by the examples in Section [-1, is
somewhat oversimplified. In these examples, feedback is used to reduce the error between
the reference input and the system output. However, the significance of the effects of
feedback in control systems is more complex than is demonstrated by these simple
examples. The reduction of system error is merely one of the many important effects
that feedback may have upon a system. We show in the following sections that feedback
also has effects on such system performance characteristics as stability, bandwidth,
overall gain, impedance, and sensitivity.

To understand the effects of feedback on a control system, it is essential to examine
this phenomenon in a broad sense. When feedback is deliberately introduced for the
purpose of control, its existence is easily identified. However, there are numerous situations
where a physical system that we recognize as an inherently nonfeedback system turns out
to have feedback when it is observed in a certain manner. In general, we can state that
whenever a closed sequence of cause-and-effect relationships exists among the variables
of a system, feedback is said to exist. This viewpoint will inevitably admit feedback in a
large number of systems that ordinarily would be identified as nonfeedback systems.
However, control-system theory allows numerous systems, with or without physical
feedback, to be studied in a systematic way once the existence of feedback in the sense
mentioned previously is established.

We shall now investigate the effects of feedback on the various aspects of system
performance. Without the necessary mathematical foundation of linear-system thcory, at
this point we can rely only on simple static-system notation for our discussion. Let us
consider the simple feedback system configuration shown in Fig. 1-9, where r is the input
signal; y, the output signal; e, the error; and b, the feedback signal. The parameters G and H
may be considered as constant gains. By simple algebraic manipulations, it is simple to
show that the input—output relation of the system is
' G

y
Metes ———— 1-1
r 1+ GH (-3

Using this basic relationship of the feedback system structure, we can uncover some of the
significant effects of feedback.

1-2-1 Effect of Feedback on Overall Gain

* Feedback may increase
the gain of a system in one
frequency range but
decrease it in another.

As seen from Eq. (1-1), feedback affects the gain G of a nonfeedback system by a factor of
1 + GH. The system of Fig. 1-9 is said to have negative feedback, because a minus sign is
assigned to the feedback signal. The quantity GH may itself include a minus sign, so the
general effect of feedback is that it may increase or decrease the gain G. In a practical
control system, G and A are functions of frequency, so the magnitude of 1 + GH may be

+0O O —O0+
r e G ¥
4 b = O —0~
o)
H
Figure 1-9 Feedback system.
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greater than 1 in one frequency range but less than 1 in another. Therefore, feedback could
increase the gain of system in one frequency range but decrease it in another.

1-2-2 Effect of Feedback on Stability

* A system is unstable if its  Stability is a notion that describes whether the system will be able to follow the input

output is out of control.

« Feedback can improve
stability or be harmful to
stability.

command, that is, be useful in general. In a nonrigorous manner, a system is said to be
unstable if its output is out of control. To investigate the effect of feedback on stability, we
can again refer to the expression in Eq. (1-1). If GH = —1, the output of the system is
infinite for any finite input, and the system is said to be unstable. Therefore, we may state
that feedback can cause a system that is originally stable to become unstable. Certainly,
feedback is a double-edged sword; when it is improperly used, it can be harmful. It should
be pointed out, however, that we are only dealing with the static case here, and, in general,
GH = —1 is not the only condition for instability. The subject of system stability will be
treated formally in Chapters 2, 5, 7, and 8.

It can be demonstrated that one of the advantages of incorporating feedback is that it
can stabilize an unstable system. Let us assume that the feedback system in Fig. 1-9 is
unstable because GH = —1. If we introduce another feedback loop through a negative
feedback gain of F, as shown in Fig. 1-10, the input—output relation of the overall system is

¥y G (1-2)
r 14+ GH+ GF

It is apparent that although the properties of G and H are such that the inner-loop
feedback system is unstable, because GH = —1, the overall system can be stable by
properly selecting the outer-loop feedback gain F. In practice, GH is a function of
frequency, and the stability condition of the closed-loop system depends on the magnitude
and phase of GH. The bottom line is that feedback can improve stability or be harmful to
stability if' it is not properly applied.

Sensitivity considerations often are important in the design of control systems.
Because all physical elements have properties that change with environment and age,
we cannot always consider the parameters of a control system to be completely stationary
over the entire operating life of the system. For instance, the winding resistance of an
electric motor changes as the temperature of the motor rises during operation. Control
systems with electric components may not operate normally when first turned on because

+O T T O C —CE
i e G v
-0 b — —+0 O O~
-+ -+
o} [&)
H
0 [}
0 o
F
¢) o

Figure 1-10 Feedback system with two feedback loops.
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* Note: Feedback can
increase or decrease the
sensitivity of a system.

of the still-changing system parameters during warmup. This phenomenon is sometimes
called “morning sickness.” Most duplicating machines have a warmup period during
which time operation is blocked out when first turned on.

In general, a good control system should be very insensitive to parameter variations but
sensitive to the input commands. We shall investigate what effect feedback has on
sensitivity to parameter variations. Referring to the system in Fig. 1-9, we consider G
to be a gain parameter that may vary. The sensitivity of the gain of the overall system M to
the variation in G is defined as

s — oM /M _ percentage change in M
OG/G  percentage change in G

(1-3)

where M denotes the incremental change in M due to the incremental change in G, or 9G.
By using Eq. (1-1), the sensitivity function is written
m_OM G 1

6 =36 M~ T+GH (14)

This relation shows that if GH is a positive constant, the magnitude of the sensitivity
function can be made arbitrarily small by increasing GH, provided that the system remains
stable, It is apparent that, in an open-loop system, the gain of the system will respond in a
one-to-one fashion to the variation in G (i.e.. S’g = 1). Again, in practice, GH is a function
of frequency; the magnitude of 1 + GH may be less than unity over some frequency ranges,
so feedback could be harmful to the sensitivity to parameter variations in certain cases. In
general, the sensitivity of the system gain of a feedback system to parameter variations
depends on where the parameter is located. The reader can derive the sensitivity of the
systemn in Fig. 1-9 due to the variation of H.

1-2-3 Effect of Feedback on External Disturbance or Naise

» Feedback can reduce the
effect of noise.

All physical systems are subject to some types of extraneous signals or noise during
operation. Examples of these signals are thermal-noise voltage in electronic circuits and
brush or commutator noise in electric motors. External disturbances, such as wind gusts
acting on an antenna, are also quite common in control systems, Therefore, control systems
should be designed so that they are insensitive to noise and disturbances and sensitive to
input commands.

The effect of feedback on noise and disturbance depends greatly on where these
extraneous signals occur in the system. No general conclusions can be reached, but in
many situations, feedback can reduce the effect of noise and disturbance on system
performance. Let us refer to the system shown in Fig. 1-11, in which r denotes the command

= +

J ” \‘
HhiG— -0 O+ O —O+F

+ + +

i € G] e & Gz ¥
= h —0 O—— = O
S
H
0O O-

Figure 1-11 Feedback system with a noise signal.
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signal and » is the noise signal. In the absence of feedback, that is, #=0, the output y due to »
acting alone is

y==Gan (1-5)

With the presence of feedback, the system output due to » acting alone is

G

y=1+G|G2H "

(1-6)

Comparing Eq. (1-6) with Eq. (1-5) shows that the noise component in the output of
Eq. (1-6) is reduced by the factor 1 + GG, H if the latter is greater than unity and the
system is kept stable.

In Chapter 9, the feedforward and forward controller configurations are used along
with feedback to reduce the effects of disturbance and noise inputs. In general, feedback
also has effects on such performance characteristics as bandwidth, impedance, transient
response, and frequency response. These effects will be explained as we continue.

P 1-3 TYPES OF FEEDBACK CONTROL SYSTEMS

Feedback control systems may be classified in a number of ways, depending upon the
purpose of the classification. For instance, according to the method of analysis and design,
control systems are classified as linear or nonlinear, and time-varying or time-invariant.
According to the types of signal found in the system, reference is often made to
continuous-data or discrete-data systems, and modulated or unmodulated systems.
Control systems are often classified according to the main purpose of the system. For
instance, a position-control system and a velocity-control system control the output
variables just as the names imply. In Chapter 9, the type of control system is defined
according to the form of the open-loop transfer function. In general, there are many other
ways of identifying control systems according to some special features of the system. It is
important to know some of the more common ways of classifying control systems before
embarking on the analysis and design of these systems.

1-3-1 Linear versus Nonlinear Control Systems

* Most real-life control
systems have nonlinear
characteristics to some
extent,

This classification is made according to the methods of analysis and design. Strictly
speaking, linear systems do not exist in practice, because all physical systems are nonlinear
to some extent. Linear feedback control systems are idealized models fabricated by the
analyst purely for the simplicity of analysis and design. When the magnitudes of signals in
a control system are limited to ranges in which system components exhibit linear
characteristics (i.e., the principle of superposition applies), the system is essentially linear,
But when the magnitudes of signals are extended beyond the range of the linear operation,
depending on the severity of the nonlinearity, the system should no longer be considered
linear. For instance, amplifiers used in control systems often exhibit a saturation effect
when their input signals become large; the magnetic field of a motor usually has saturation
properties. Other common nonlinear effects found in control systems are the backlash or
dead play between coupled gear members, nonlinear spring characteristics, nonlinear
friction force or torque between moving members, and so on. Quite often, nonlinear
characteristics are intentionally introduced in a control system to improve its performance
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or provide more effective control. For instance, to achieve minimum-time control, an on-
off (bang-bang or relay) type controller is used in many missile or spacecraft control
systems. Typically in these systems, jets are mounted on the sides of the vehicle to provide
reaction torque for attitude control. These jets are often controlled in a full-on or full-off
fashion, so a fixed amount of air is applied from a given jet for a certain time period to
control the attitude of the space vehicle.

« There arc no general For linear systems, a wealth of analytical and graphical techniques is available for

methods for solving a wide design and analysis purposes. A majority of the material in this text is devoted to the

class of nonlinear systems. analysis and design of linear systems. Nonlinear systems, on the other hand, are usually
difficult to treat mathematically, and there are no general methods available for solving a
wide class of nonlinear systems. It is practical to first design the controller based on the
linear-system model by neglecting the nonlinearities of the system. The designed controller
is then applied to the nonlinear system model for evaluation or redesign by computer
simulation. The Virtual Lab introduced in Chapter 6 is mainly used to model the
characteristics of practical systems with realistic physical components.

1-3-2 Time-Invariant versus Time-Varying Systems

When the parameters of a control system are stationary with respect to time during the
operation of the system, the system is called a time-invariant system. In practice, most
physical systems contain elements that drift or vary with time. For example, the winding
resistance of an electric motor will vary when the motor is first being excited and its
temperature is rising. Another example of a time-varying system is a guided-missile
control system in which the mass of the missile decreases as the fuel on board is being
consumed during flight. Although a time-varying system without nonlinearity is still a
linear system, the analysis and design of this class of systems are wsually much more
complex than that of the linear time-invariant systems.

Continuous-Data Control Systems

A continuous-data system is one in which the signals at various parts of the system are all
functions of the continuous time variable . The signals in continuous-data systems may be
further classified as ac or dc. Unlike the general definitions of ac and dc signals used in
electrical engineering, ac and dc control systems carry special significance in control
systems terminology. When one refers to an ac control system, it usually means that the
signals in the system are modulated by some form of modulation scheme. A de control
system, on the other hand, simply implies that the signals are unmodulated, but they are
still ac signals according to the conventional definition. The schematic diagram of a closed-
loop dc control system is shown in Fig. [-12. Typical waveforms of the signals in response
to a step-function input are shown in the figure. Typical components of a dc control system
are potentiometers, dc amplifiers, dc motors, dc tachometers, and so on.

Figure 1-13 shows the schematic diagram of a typical ac control system that performs
essentially the same task as the dc system in Fig. 1-12. In this case, the signals in the system
are modulated; that is, the information is transmitted by an ac carrier signal. Notice that the
output controlled variable still behaves similarly to that of the dc system. In this case, the
modulated signals are demodulated by the low-pass characteristics of the ac motor. Ac
control systems are used extensively in aircraft and missile control systems in which noise
and disturbance often create problems. By using modulated ac control systems with carrier
frequencies of 400 11z or higher, the system will be less susceptible to low-frequency noise.
Typical components of an ac control system are synchros, ac amplifiers, ac motors,
gyroscopes, accelerometers, and 50 on.
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Figure 1-13 Schematic diagram of a typical ac closed-loop control system.

In practice, not all control systems are strictly of the ac or dc type. A system may
incorporate a mixture of ac and dc components, using modulators and demodulators to
match the signals at various points in the system.

Discrete-Data Control Systems

Discrete-data control systems differ from the continuous-data systems in that the signals at
one or more points of the system are in the form of either a pulse train or a digital code.
Usually, discrete-data control systems are subdivided into sampled-data and digital
control systems. Sampled-data control systems refer to a more general class of
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= Digital control systems
are usually less susceptible
to noise.
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Figure 1-14 Block diagram of a sampled-data control system.
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Figure 1-15 Digital autopilot system for a guided missile.

discrete-data systems in which the signals are in the form of pulse data. A digital control
system refers to the use of a digital computer or controller in the system so that the signals
are digitally coded, such as in binary code.

In general, a sampled-data system receives data or information only intermittently at
specific instants of time. For example, the error signal in a control system can be supplied
only in the form of pulses, in which case the control system receives no information about
the error signal during the periods between two consecutive pulses. Strictly, a sampled-data
system can also be classified as an ac system, because the signal of the system is pulse
modulated.

Figure 1-14 illustrates how a typical sampled-data system operates. A continuous-data
input signal r(f) is applied to the system. The error signal e(f) is sampled by a sampling
device, the sampler, and the output of the sampler is a sequence of pulses. The sampling
rate of the sampler may or may not be uniform. There are many advantages to incorporating
sampling into a control system. One important advantage is that expensive equipment used
in the system may be time-shared among several control channels. Another advantage is
that pulse data are usually less susceptible to noise.

Because digital computers provide many advantages in size and flexibility, computer
control has become increasingly popular in recent years. Many airborne systems contain
digital controllers that can pack thousands of discrete elements into a space no larger than
the size of this book. Figure 1-15 shows the basic elements of a digital autopilot for guided-
missile control.

In this chapter, we introduced some of the basic concepts of what a control system is and what it is
supposed to accomplish. The basic components of a control system were described. By demonstrat-
ing the effects of feedback in a rudimentary way, the question of why most control systems are closed-
loop systems was also clarified. Most important, it was pointed out that feedback is a double-edged
sword—it can benefit as well as harm the system to be controlled. This is part of the challenging task
of designing a control system, which involves consideration of such performance criteria as stability,
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sensitivity, bandwidth, and accuracy. Finally, various types of control systems were categorized
according to the system signals, linearity, and control objectives. Several typical control-system
examples were given to illustrate the analysis and design of control systems. Most systems
encountcred in real life are nonlinear and time-varying to some extent. The concentration on the
studies of linear systems is due primarily to the availability of unified and simple-to-understand
analytical methods in the analysis and design of linear systems,

B REVIEW QUESTIONS

10.

List the advantages and disadvantages of an open-loop system.
List the advantages and disadvantages of a closed-loop system.

Give the definitions of ac and dc control systems.

Give the advantages of a digital control system over a continuous-data control system.

A closed-loop control system is usually more accurate than an open-loop system. (T)
Feedback is sometimes used to improve the sensitivity of a control system. (D)

If an open-loop system is unstable, then applying feedback will always improve
its stability. 4]
Feedback can increase the gain of a system in one frequency range but decrease
it in another. M

Nonlinear elements are sometimes intentionally introduced to a control system
to improve its performance. (T)

Discrete-data control systems are more susceptible to noise due to the nature of
their signals. M

0 )
(F)

(F)

(F)

()

(¥

Answers to these review questions can be found on this book’s companion Web site:
www.wiley.com/college/golnaraghi.
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CHAPTER Z

Mathematical Foundation

The studies of control systems rely to a great extent on applied mathematics. One of the
major purposes of control-system studies is to develop a set of analytical tools so that the
designer can arrive with reasonably predictable and reliable designs without depending
solely on the drudgery of experimentation or extensive computer simulation.

In this chapter, it is assumed that the reader has some level of familiarity with these
concepts through earlier courses. Elementary matrix algebra is covered in Appendix A.
Because of space limitations, as well as the fact that most subjects are considered as review
material for the reader, the treatment of these mathematical subjects is not exhaustive. The
reader who wishes to conduct an in-depth study of any of these subjects should refer to
books that are devoted to them.

The main objectives of this chapter are:

1.

;oW N

To introduce the fundamentals of complex variables.

To introduce frequency domain analysis and frequency plots.
To introduce differential equations and state space systems.
To introduce the fundamentals of Laplace transforms.

To demonstrate the applications of Laplace transforms to solve linear ordinary
differential equations.

To introduce the concept of transfer functions and how to apply them to the
modeling of linear time-invariant systems.

To discuss stability of linear time-invariant systems and the Routh-Hurwitz
criterion.

To demonstrate the MATLAB tools using case studies.

2-1 COMPLEX-VARIABLE CONCEPT

To understand complex variables, it is wise to start with the concept of complex numbers
and their mathematical properties.

2-1-1 Complex Numbers

A complex number is represented in rectangular form as

z=x+jy -1

where, j = v/—1 and (x, y) are real and imaginary coefficients of = respectively. We can
treat (x, y) as a point in the Cartesian coordinate frame shown in Fig. 2-1. A point in a

16
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Figure 2-1 Complex number =
representation in rectangular and polar
forms.

rectangular coordinate frame may also be defined by a vector R and an angle 6. It is then
easy to see that

x = Rcos8
y = Rsiné 22
where,

R = magnitude of =

6 = phase of z and is measured from the x axis. Right-hand rule convention:
positive phase is in counter clockwise direction,

Hence,
R=+/x*+)?
) 2-3
6 = tan™" 4 (-3)
x
Introducing Eq. (2-2) into Eq. (2-1), we get
z=Rcosf + jRsind 2-4)
Upon comparison of Taylor series of the terms involved, it is easy to confirm
e’ = cos0+ jsing (2-5)

Eq. (2-5) is also known as the Euler formula. As a result, Eq. (2-1) may also be represented
in polar form as

z=Re! =R /6 (2-6)
We define the conjugate of the complex number z in Eq. (2-1) as
Or, alternatively, =X @n
Z* =Rcosf — jRsin =Re # (2-8)
Note:
Z=R* =2 +)* (2-9)

Table 2-1 shows basic mathematical properties of complex numbers.
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TABLE 2-1 Basic Properties of Complex Numbers

Addition 71 =X + " 2 = R/
n=x+jn = Rzejﬂz

—z=(xy+x)+ j(n +¥2) — 2= Rie/ 4 Ryel®
Subtraction 21 =X+ jv 71 = Rie!®
22 =X+ j» 72 = Rae/®

—z=(x1 —x2)+ jlyr —¥2)

Multipl'it‘atl'ml {E[ =x1 + jv = le'”h
n=x+jn 22 = Rael®:
— 2z = (xx2 — yiv2) + jlxya +w0y) — 2= (R1Ry)e! O1+02)
F=-1 —z=(RiR)L(61 +62)
Division 71 =X + j z1 = Ryef?
{zz =x2+jv; 72 = Rpel?

Complex Conjugate

{ZT =x1— N {z’{ = Rye/®
* . j
2 -

H=x2-j¥ 5 =Rye i
—sz=7— = 51_ ej(ﬂ]-ﬂ-s)
2 RZ
vy ¥ - 111 il xav1— X1V
p=UB (132 + y1y2) + J(;\z,w x1v2) R,
2 3+ =i=\z 1{6) — 62)

EXAMPLE 2-1-1 Find /* and j*.

. T, .. 7 iz
j=vV-l=cos=+jsinz = ez

2 2
P = VoVl = V1=
ja = eJL; = e-jzzl
Ji=Pi==F=1

i~ EXAMPLE 2-1-2 Find z” using Eq. (2-6).

Z'=(R eja)n= R"e/™ = R"/ 6 (2-10)

2-1-2 Complex Variables

A complex variable s has two components: a real component o and an imaginary
component w. Graphically, the real component of s is represented by a o axis in the
horizontal direction, and the imaginary component is measured along the vertical jo
axis, in the complex s-planc. Fig. 2-2 illustrates the complex s-plane, in which any
arbitrary point s =s| is defined by the coordinates o = ¢, and @ = w), or simply
51 = ay + jow.
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Figure 2-2 Complex s-plane.

2-1-3 Functions of a Complex Variable

The function G(s) is said to be a function of the complex variable s if, for every value of s,
there is one or more corresponding values of G(s). Because s is defined to have real and
imaginary parts, the function G(s) is also represented by its real and imaginary parts; that is,

G(s) = Re[G(s)] + jIm[G(s)] (2-11)

where Re[G(s)] denotes the real part of G(s), and Im[G(s)] represents the imaginary part of
G(s). The function G(s) is also represented by the complex G(s)-plane, with Re[G(s)] as the
real axis and Im[G(s)] as the imaginary axis. If for every value of s there is only one
corresponding value of G(s) in the G(s)-plane, G(s) is said to be a single-valued function,
and the mapping from points in the s-plane onto points in the G(s)-plane is described as
single-valued (Fig. 2-3). If the mapping from the G(s)-plane to the s-plane is also single-
valued, the mapping is called one-to-one. However, there are many functions for which the
mapping from the function plane to the complex-variable plane is not single-valued. For
instance, given the function

1
G(s) = 2-12
=Gy (2-12)
jo 4 jImG 4
5| = O +jo
s-plane @ |- -—--~ r-s~‘ G(s)-plane
i Tt~
[ RN
1 » > »
0 6 0o S0 | ReG
-\ [
‘\\ ]
L. _rd Gls))

Figure 2-3 Single-valued mapping from the s-plane to the G{s)-plane.
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itis apparent that, for each value of s, there is only one unique corresponding value for G(s).
However, the inverse mapping is not true; for instance, the point G(s) = oo is mapped onto
two points, s = 0 and s = —1, in the s-plane.

2-1-4 Analytic Function

A function G(s) of the complex variable s is called an analytic functionin a region of the s-
plane if the function and all its derivatives exist in the region. For instance, the function
given in Eq. (2-12) is analytic at every point in the s-plane except at the points s = 0 and
s = —1. At these two points, the value of the function is infinite. As another example, the
function G(s) = s + 2 is analytic at every point in the finite s-plane.

2-1-5 Singularities and Poles of a Function

The singularities of a function are the points in the s-plane at which the function or its
derivatives do not exist. A pole is the most common type of singularity and plays a very
important role in the studies of classical control theory.

The definition of 2 pole can be stated as: If a function G(s) is analytic and single-
valued in the neighborhood of point p;, it is said to have a pole of order r at s = p; if the
limit sl_i}m [(s — p:)"G(s)] has a finite, nonzero value. In other words, the denominator of

!
G(s) must include the factor (s — p;)", so when s = p;, the function becomes infinite.
If r = 1, the pole at s = p; is called a simple pole. As an example, the function

10
G(s) = _("‘*_2)2 (2-13)
s(s+1)(s+3)
has a pole of order 2 at s = —3 and simple poles ats = 0 and s = —1. It can also be said that
the function G(s) is analytic in the s-plane except at these poles. See Fig. 2-4 for the
graphical representation of the finite poles of the system.

2-1-6 Zeros of a Function

The definition of a zero of a function can be stated as: If the function G(s) is analytic at
s = z;, it is said to have a zero of order r at s = z; if the limit Slirrg_[(s —z)7G(s)] has a
finite, nonzero value. Or, simply, G(s) has a zero of order r at s =h§i if 1/G(s) has an rth-
order pole at s = z;. For example, the function in Eq. (2-13) has a simple zero at s = —2.

If the function under consideration is a rational function of s, that is, a quotient of two
polynomials of s, the total number of poles equals the total number of zeros, counting the
multiple-order poles and zeros and taking into account the poles and zeros at infinity.
The function in Eq. (2-13) has four finite poles at s =0, — 1, — 3, and —3; there is one
finite zero at s = —2, but there are three zeros at infinity, because

. .10
lim G(s) = lim —=0 (2-14)
§— 00 §—0e 8
Therefore, the function has a total of four poles and four zeros in the entire s-plane,
including infinity. See Fig. 2-4 for the graphical representation of the finite zeros of the
system.
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Figure 2-4 Graphical representation of G(s) =

10(s+2) . . .
oy in the s-plane: % poles and O zeros.

Toolbox 2-1-1

For Eq. (2-13), use *zpk” to create
zero-pole-gain models by the following
sequence of MATLAB functions

>> G = zpk([-2],[0 -1 -3 -3],10)

Zero/pole/gain:
10 (s + 2)

— i e e . b

s(s+1) (s+3)"2

Convert the transfer function to
polynomial form

>» Gp = t£(G)

Transfer function:
10s + 20

s™ 4+ 78”3 + 1582 + 9s

Alternatively use:

>> clear all
>>8=tf('s’);
>> Gp = 10«(s + 2) /(s+(s + LIx(s + 3)"2)

Transfer function:
10s + 20

s o o o et e T > o —

g™ + 75”3 + 1582 + 9s

Use “pole” and *“zero” to obtain the poles
and zeros of the transfer function

>> pole(Gp)

ans =
0
-1
-3
-3

>> zero(Gp)

ans =
-2

Convert the transfer function Gp to
zero-pole-gain form

>> Gzpk = zpk(Gp)

Zero/pole/gain:
10 (s + 2)

-t ety s e o

s(s+3)2(¢+1)
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2-1-7 Polar Representation

To find the polar representation of G(s) in Eq. (2-12) at s = 2, we look at individual
components. That is

1
Cs(s+ 1)

G{s) (2-15)

s=2j=Re! =272

s+1—-2j+1=Rel
R=v224+1=4/5 @19

6 =tan~! % = 1.11 rad(= 63.43°)

1 1 1] 1 e -1l
GRN=— = it -j{3+tan}) 2-17
=356+~ 2° 5° N @17

See Fig. 2-5 for a graphical representation of s) = 27 + 1 in the s-plane.

+ EXAMPLE 2-1-3 Find the polar representation of G(s) given below for s = jw, where w is a constant varying from
zero to infinity.

16 16
66 = e oy i6™ G+2)(s+8) (2-18)
To evaluate Eq. (2-18) at s = jw, we look at individual components. Thus,
jo+2= 122+ wlel (2-19)
@ = Rysin ¢, (2-20)
2 =Rcos ¢, (2-21)
Ri=v 22 4 2 (2-22)
1 @O/R1 )
¢ = tan” oo TR; (2-23)
jo &
s-plane
si=1+j2
R=a/1+22 7 7 2 ' )
I B=tan.2
| 1
. >
o

Figure 2-5 Graphical representation of
51 =2j+1 in the s-plane.
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s-plane

S1=2+jw -92=8+jm

I
| $3= 16
R .- s
. O
= tan’l-gzg = tan"%’-
Figure 2-6 Graphical representation of
X 1
components of TP,
Jo+2=Ri(jsing; +cos¢;) (2-24)
jo+2=Rie/ (2-25)
jo+ 8= /8 + w2eit (2-26)
-1 w/Rz
= — 2"
¢ = tan 8/R: (227
16 = 16¢" (2-28)
. . ) . 16
See Fig. 2-6 for a graphical representation of components of m
Hence,
o 1
JOH2T 22 1 i
) . (2-29)
jo+8 V8 + w? et
As a result, G(s = jw) becomes:
6 ,
Gli) = s e 0% =[G o)l 2-30)
where
16
R = Glw) = |G(jw)] = (2-31)
)= ¥ V{e? +4)(w? + 64)
Similarly, we can define
-1 Im G{ jw .
¢ = tan™! ﬁﬁ((j"_w)) = (G(s = jo) = ~¢) — ¢ (2-32)

Table 2-2 describes different R and ¢ values as & changes. As shown, the magnitude decreases as
the frequency increases. The phase goes from 0° to —180°.
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TABLE 2-2 Numerical Values of Sample Magnitude and Phase of the
System in Example 2-1-3

wrad/s R ¢
0.1 0.999 -3.58

1 0.888 -33.69
10 0.123 -130.03
100 0.0016 ~174.28

Alternative Approach: If we multiply both numerator and denominator of Eq. (2-18) by the
(—Jjw + 2)(— jew + 8)
(—jw+2)(—jo +8)
16(— jw + 2)(— jo -+ 8)

{w? + 22)(w? -+ 82)
_ 16 [
T (@ +4)(w? +64)
= Real + Imaginary

complex conjugate of the denominator, i.e.

=1, we get

G(jo) =

(16 — &) — j100)]

(2-33)
_ 16/(16 - W 4(100)?

(2 + 4)(w? + 64)
_ 16
TV A @l 168)
= Rel?
o1 —10w/R Im(G(jw}))
(16 — @?)/R ~ Re(G(jw))

16
See Fig. 2-7 for a graphical representation of —— ——
g graphicat rep (@) + 2)(wj +9)
So as you have noticed, the frequency response can be determined graphically. Consider the
following second order system:

i

where ¢ = tan

for a fixed value of w.

K
G = ——— 2-34
) = e G 2 @9
Lo 3
1'-‘-‘\ ¢
.'I Y .
'\ 4 : a—
. l- ,
I
- Gl ! -100/R | [~——————~--
9= £G(jo=tan™ T R
Re— 16
A (02 + 4)(0*+ 64)

Figure 2-7 Graphical representation of for a fixed value of w.

16
(@j+2) wj+8)
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Toolbox 2-1-2
Here are MATLAB commands to treat complex variables:

Z = complex (a,b)

creates a complex output, Z, from the two real inputs Z = a + bi
ZC=conj (Z)

returns the complex conjugate of the elements of Z

X=real (Z)

returns the real part of the elements of the complex array Z

Y = imag (Z)

returns the imaginary part of the elements of array Z

R=abs (Z)

returns the complex modulus (magnitude), which is the same as
R=sqre(real(Z).?2 +imag(Z) ."2)

theta = angle(Z)

returns the phase angles, in radians, for each element of complex array Z

The angles lie between the “real axis” in the s-plane and the magnitude R
Z =R.*exp(i*theta)
converts back to the original complex Z

>> Z = complex(3,2)

7=
3.0000 +2.00001

>> ZC=conj (Z)

ZC=
3.0000 -~ 2.00004

>>R=abs(Z)

R=
3.6056

>> theta = angle(2)

theta =
0.5880

>> ZRT = R. *exp(i*theta)

ZRT =
3.0000 + 2.00004
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where (~p,} and (—p,) are poles of the function G(s). By definition, if s = jw, G{ jw) is the frequency
response function of G(s), because w has a unit of frequency (rad/s):
K

G(s) = — . (2-35)
(jo+ p1){jo+ p2)
The magnitude of G{ jw) is
K
R=|G(jo)| =777 (2-36)
| joo + p1]| jeo + p2]

and the phase angle of G( jo) is

¢=/G(jo)="/K—"/jo+ p—/jo+ p; (2-37)

=—¢; — ¢,

For the general case, where

111

> s+ )
Gis)=k =L (2-38)

Z(S + pi)

=l
The magnitude and phase of G(s) are as follows

ljw+z1] - | jo + Zm]
ljw+ p|---| joo + pul (2-39)
¢=‘XG(jw) = ("/’l +oe ) - (e +By)

R=I|G(jo)| =K

2-2 FREQUENCY-DOMAIN PLOTS

Let G(s) be the forward-path transfer function' of a linear control system with unity
feedback. The frequency-domain analysis of the closed-loop system can be conducted
from the frequency-domain plots of G(s) with s replaced by je.

The function G( jw) is generally a complex function of the frequency  and can be
written as

G( jo) = |G jw)|/G( jo) (2-40)

where |G{ jo)| denotes the magnitude of G( jw), and /G( jw) is the phase of G( jw).
The following frequency-domain plots of G( jw) versus w are often used in the
analysis and design of linear control systems in the frequency domain.

1. Polar plot. A plot of the magnitude versus phase in the polar coordinates as w is
varied from zero to infinity

2. Bode plot. A plot of the magnitude in decibels versus @ (or log;ow) in semilog
(or rectangular) coordinates

3. Magnitude-phase plot. A plot of the magnitude (in decibels) versus the phase on
rectangular coordinates, with w as a variable parameter on the curve

2-2-1 Computer-Aided Construction of the Frequency-Domain Plots

The data for the plotting of the frequency-domain plots are usually quite time consuming to
generate if the computation is carried out manually, especially if the function is of high
order. In this textbook, we use MATLAB and the ACSYS software for this purpose.

" For the formal definition of a “transfer function,” refer to Section 2-7-2.
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jod jimG 4
s-plane T/ G(jw)-plane
- Jw
E }‘m
[ 1 2] ™ S(fw' )

Figure 2-8 Polar plot shown as a mapping of the positive half of the jw-axis in the s-plane onto
the G( jw)-plane.

From an analytical standpoint, the analyst and designer should be familiar with the
properties of the frequency-domain plots so that proper interpretations can be made on
these computer-generated plots.

The polar plot of a function of the complex variable s, G(s), is a plot of the magnitude of
G( jw) versus the phase of G( jw) on polar coordinates as w is varied from zero to infinity.
From a mathematical viewpoint, the process can be regarded as the mapping of the positive
haif of the imaginary axis of the s-plane onto the G{ jw)-plane. A simple example of this
mapping is shown in Fig. 2-8. For any frequency @ = w(, the magnitude and phase of
G( jwy) are represented by a vector in the G{ jw)-plane. In measuring the phase,
counterclockwise is referred to as positive, and clockwise is negative.

To illustrate the construction of the polar plot of a function G(s), consider the function
1

Gl =177 (2-41)

where T is a positive constant. Setting s = jw, we have

) 1
Gljo) = 17——= e (2-42)
In terms of magnitude and phase, Eq. (2-42) is rewritten as
i
G( jw) = ——=—=1{—~tan" ! 0T (2-43)

V1 + T2

When w is zero, the magnitude of G( jw) is unity, and the phase of G( jw) is at 0°. Thus, at ® = 0,
G( jw) is represented by a vector of unit length directed in the 0° direction, As w increases, the
magnitude of G( jo) decreases, and the phase becomes more negative. As w increases, the length of
the vector in the polar coordinates decreases and the vector rotates in the clockwise (negative)
direction. When o approaches infinity, the magnitude of G( jw) becomes zero, and the phase reaches
—90°. This is presented by a vector with an infinitesimally small length directed along the —90°-axis
in the G( jw)-plane. By substituting other finite values of w into Eq. (2-43), the exact plot of G( jw)
turns out to be a semicircle, as shown in Fig. 2-9.
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lel'lG“

0~

G (ja)-plane

Figure 2.9 Polar plot of G{ jw) =

tan”' T

Phasor of G(jw}

1
(T /Ty

» EXAMPLE 2-2-2 As a second illustrative example, consider the function

_ 1+ jol;

Gl =Ty

where T and 73 are positive real constants. Eq. (2-44) is re-written as

. l+e?T? -
G(jw) = WcjiT_? [(tan ' wT; — tan™! wT[)

(2-44)

(2-45)

The polar plot of G( jw), in this case, depends on the relative magnitudes of 7 and T». If T, is greater
than 7', the magnitude of G( jw) is always greater than unity as o is varied from zero to infinity, and
the phase of G{ jw) is always positive, If T, is less than 7}, the magnitude of G( jw) is always less than
unity, and the phase is always negative. The polar plots of G( jw) of Eg. (2-45) that correspond to
these two conditions are shown in Fig, 2-10,

The general shape of the polar plot of a function G( jew) can be determined from the following

information.

1. The behavior of the magnitude and phase of G( jw) at w =0 and w = co.

2. The intersections of the polar plot with the real and imaginary axes, and the values of  at
these intersections

jimG4 G(jw)-plane
@~
(T2 > Tl)
0 Tz’T[ 1{o=0 M=%
W= T/Ty Re 6’
—®
(T2<T1)
_ 1+ ijz)

Figure 2-10 Polar plots of G( jw)

T {1+ joTh)
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Toolbox 2-2-1

The Nyquist diagram for Eq. (2-44) for two cases is obtained by the following sequence of MATLAB
functions:

T1=10;

T2 =175;

numl =[T2 1];
denl=1[T117];

Gl = tf(numl,denl);
nyquist(Gl);

hold on;

num2 = [T11]:
den2=[T21];

G2 = tf (num?2,den2);
nyguist (G2);

title ('Nyquist diagram of Gl and G2’)

Note: The *‘nyquist’’ function provides a complete polar diagram, where w is varying from —oo to 4+ occ.
AL} 2 ipiete p g

Nyquist disgram of G1 and G2
0.5 1] ! L] 1] A

04r

03

0.2 -

01 F

Imaginary Axis
2
¢

-1 -05 0

Comparing the results in Toolbox 2-2-1 and Fig. 2-10, it is clear that the polar plot reflects only a
portion of the Nyquist diagram. In many control-system applications, such as the Nyquist stability
criterion (see Chapter 8), an exact plot of the frequency response is not essential. Often, a rough
sketch of the polar plot of the transfer function is adequate for stability analysis in the frequency
domain.
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:» EXAMPLE 2-2-3 In frequency-domain analyses of control systems, often we have to determine the basic properties of a
polar plot. Consider the following transfer function:
10
G =
(s) s(s+1)
By substituting s = jew in Eq. (2-46), the magnitude and phase of G(jw) at =0 and w = o0 are
computed as follows:

(2-46)

: N
Jim |G(jw)| = lim ~ = oo (2-47)
lim /G(j) = lim 210/ jw = —90° (2-48)
lim |G(jo)| = lim 9 =0 (2-49)
w=— 00 w— oG (=
lim (G(jw)= lim /0/(jw)= —180° (2-50)
W= w— G

Thus, the properties of the polar plot of G( jw) at @ = 0 and @ = oc are ascertained. Next, we determine
the intersections, if any, of the polar plot with the two axes of the G( jw)-plane. If the polar plot of G{ jw)
intersects the real axis, at the point of intersection, the imaginary part of G( jw) is zero; that is,

Im[G( jw)] =0 (2-51)

To express G( jw) as the sum of its real and imaginary parts, we must rationalize G( jo) by multi-
plying its numerator and denominator by the complex conjugate of its denominator. Therefore,
G( jeo) is written
Gljw) = 10(— jw)(— jo + 1) - ~100? _j 100

0= et - o) (—Jo 1) ot ot P @-52)
Re[G(jw)] + jIm[G( jw)]
When we set Im[G( jw)] to zero, we get @ = oo, meaning that the G( jw) plot intersects only with the
real axis of the G( jw)-plane at the origin.

Similarly, the intersection of G( jw) with the imaginary axis is found by setting Re[G( jow)] of

Eq. (2-52) to zero. The only real solution for w is also @ = oo, which corresponds to the origin of the
G( jw)-plane. The conclusion is that the polar plot of G( jw) does not intersect any one of the axes at
any finite nonzero frequency. Under certain conditions, we are interested in the properties of the
G( jo) at infinity, which corresponds to w = 0 in this case. From Eq. (2-52), we see that Im[G( jw)] =
oo and Re[G( jw)] = —10 at w = 0. Based on this information as well as knowledge of the angles of
G( jw) at @ = 0 and @ = oo, the polar plot of G( jw) is easily sketched without actual plotting, as
shown in Fig. 2-11.

: F'y
G(jw)-plane jimG
=X .
-10 0 ReG
2
1)
o Figure 2-11 Polar plot of G(s) = -+

s(s+1)° 4
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P> EXAMPLE 2-2-4 Given the transfer function
10
G(s) = ——7——
6 = Gane+D
we want to make a rough sketch of the polar plot of G{ jw). The following calculations are made for
the properties of the magnitude and phase of G{ jw) at @ = 0 and @ = oco:

(2-53)

lim |G( jw)| = lim 3 =00 (2-54)
w0 00w
lim /G(jo) = lim /5/ jw = —90° (2-55)
w—=0 w—0
. , .10
wlx_{nle( jol = mh_)mow—t;,'— =0 {2-56)

To find the intersections of the G( jw) plot on the real and imaginary axes of the G( jw)-plane, we
rationalize G( jw) to give

10(— jw)(—jo + 1)(—jo + 2)

G jo) = —— - - - - 2-57)
(o) = ST T D) (oo + D) (ja) (= Jo + D(—jw 7 3) (
After simplification, the last equation is written
=30 i10(2 — «?)
G( jo) = Re[G( ja)] + JIm[G{jw)] = J102 - &%) 258

92 + (2 -2 90 + (2 — o?)
Setting Re[G( jw)] to zero, we have w = oo, and G( joo) = 0, which means that the G{ jw) plot

intersects the imaginary axis only at the origin. Setting /m[G( jw)] to zero, we have & = £v/2 rad/sec.
This gives the point of intersection on the real axis at

G(:I: j\/E) =_5/3 (2-59)

The result, w = —v/2 rad/sec, has no physical meaning, because the frequency is negative; it simply
represents a mapping point on the negative jw-axis of the s-plane. In general, if G(s) is a rational
function of s (a quotient of two polynomials of s), the polar plot of G( jw) for negative values of w is the
mirror image of that for positive w, with the mirror placed on the real axis of the G{ jw)-plane. From
Eq. (2-58), we also see that Re[G( j0)] = oc and Im[G( jO)] = co. With this information, it is now
possible to make a sketch of the polar plot for the transfer function in Eq. (2-53), as shown in Fig. 2-12.

Although the method of obtaining the rough sketch of the polar plot of a transfer function as
described is quite straightforward, in general, for complicated transfer functions that may have
multiple crossings on the real and imaginary axes of the transfer-function plane, the algebraic
manipulation may again be quite involved. Furthermore, the polar plot is basically a tool for analysis;
it is somewhat awkward for design purposes. We shall show in the next section that approximate
information on the polar plot can always be obtained from the Bode plot, which can be sketched

jimG4
G-plane
D= %
S 0 Re G
3
o=\2 rad/sec

O~

Figure 212 Polar plot of G(s) = 70—
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without any calculations. Thus, for more complicated transfer functions, sketches of the polar plots
can be obtained with the help of the Bode plots, unless MATLAB is used.

2-2-3 Bode Plot (Corner Plot or Asymptotic Plot)

The Bode plot of the function G( jw) is composed of two plots, one with the amplitude of

G( jw) in decibels (dB) versus log;gw or @ and the other with the phase of G( jw) in

degrees as a function'of logqw or w. A Bode plot is also known as a corner plot or an

asymptotic plot of G( jw). These names stem from the fact that the Bode plot can be

constructed by using straight-line approximations that are asymptotic to the actual plot.
In simple terms, the Bode plot has the following features:

1. Because the magnitude of G( jw) in the Bode plot is expressed in dB, product and
division factors in G( jw) became additions and subtractions, respectively. The
phase relations are also added and subtracted from each other algebraically.

2. The magnitude plot of the Bode plot of G( jw) can be approximated by straight-line
segments, which allow the simple sketching of the plot without detailed computation.

Because the straight-line approximation of the Bode plot is relatively easy to construct, the
data necessary for the other frequency-domain plots, such as the polar plot and the
magnitude-versus-phase plot, can be easily generated from the Bode plot.

Consider the function

_ Kls+a)(s+2z)- (s +2m) o=Tus
si(s+ p1)(s+ p2)- - (s + pn)

where K and T, are real constants, and the z’s and the p’s may be real or complex (in
conjugate pairs) numbers. In Chapter 7, Eq. (2-60) is the preferred form for root-locus
construction, because the poles and zeros of G(s) are easily identified. For constructing the
Bode plot manually, G(s) is preferably written in the following form:

Ki(l+Tis)(1+Tos) - (1 + Tws) 7
SH1 4+ TosY(1 + Tps) « -+ (1 + Typs)

G(s) (2-60)

G(s) =

(2-61)

where K| is a real constant, the T"s may be real or complex (in conjugate pairs) numbers,
and T, is the real time delay. If the Bode plot is to be constructed with a computer program,
then either form of Eq. (2-60) or Eq. (2-61) can be used.

Because practically all the terms in Eq. (2-61) are of the same form, then without loss
of generality, we can use the following transfer function to illustrate the construction of the
Bode diagram.

61s) — KO+ T)(1 + T
T s(1+ Tas)(1 4 2¢s/w, + 52 [w?)

where K, T, Ty, T», T,, ¢, and w, are real constants. It is assumed that the second-order
polynomial in the denominator has complex-conjugate zeros.
The magnitude of G( jw) in dB is obtained by multiplying the logarithm (base 10) of
|G( jw)| by 20; we have
IG( jw)lap = 20l0g10|G(jw)|
= 201og|K| + 2010g|1 + jwT1]+ 201ogn|1 + jwT)

— 201logyq| jw| — 201og g|1 + jwTs| — 20log o)1 + j2tw — w?/e?| (2-63)

e Tas (2-62)
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The phase of G( jw) is
(G( jw) = (K + (1 + joT;) + /(1 + joTs) — Liw — {1 + joT,)
~ {1+ 2tw/w, — &*[?) — &T; 1ad (2-64)
In general, the function G( jw) may be of higher order than that of Eq. (2-62) and
have many more factored terms. However, Eqs. (2-63)} and (2-64) indicate that

additional terms in G{ jw) would simply produce more similar terms in the magnitude
and phase expressions, so the basic method of construction of the Bode plot would be

Toolbox 2-2-2

The Bode plot for Example 2-1-3, using the MATLAB “bode” function, is obtained by the following
sequence of MATLAB functions.

Approach 1 Approach 2

nuw = [167; s=tf(‘s?);
den=[11018]; G=16/(s"2 + 10xs + 16) ;
G=tf(num,den); bode(G);

bode(G);

The **bode’” function computes the magnitude and phase of the frequency response of linear time
invariant models. The magnitude is plotted in decibels (dB) and the phase in degrees. Compare the
results to the values in Table 2-2.

Bode Diagrem

0 S — e —— —e

Magnitude (dB)

100 ' TR S A N | 3 g0 g1 gl 1 o1 1 agel 1 TS B

o U T gt ——r———rr

Phase (deg)
&
Q
1
i

-135 - ~
~180 el t ¢ a3l 1 et 10 3al 1 + g 1l T —
10" 10° 10" 10° 10°
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the same. We have also indicated that, in general, G( jw) can contain just five simple
types of factors:
1. Constant factor: K
2. Poles or zeros at the origin of order p: ( jw)i”
3. Poles or zeros at s = —1/T of order ¢: (1 + joT)*?
4. Complex poles and zeros of order r: (1 + j2iw/wy — o? |2
5. Pure time delay ¢ /*T4, where T, p, ¢, and r are positive integers

):l:r

Egs. {2-63) and (2-64) verify one of the unique characteristics of the Bode plot in that
each of the five types of factors listed can be considered as a separate plot; the individual
plots are then added or subtracted accordingly to yield the total magnitude in dB and
the phase plot of G( jw). The curves can be plotted on semilog graph paper or linear
rectangular-coordinate graph paper, depending on whether w or loggw is used as the
abscissa.

We shall now investigate sketching the Bode plot of different types of factors.

2-2-4 Real Constant K

Because
Kgp = 20log,o K = constant (2-65)
and
_Jo° K>0 "
K = { 180° K <0 (2-66)

the Bode plot of the real constant X is shown in Fig. 2-13 in semilog coordinates.

2-2-5 Poles and Zeros at the Origin, (jw)*?
The magnitude of ( jw)*? in dB is given by

20 Iogm‘( jw)*f'| = +20plogow dB (2-67)

for w > 0. The last expression for a given p represents a straight line in either semilog or
rectangular coordinates, The slopes of these lines are determined by taking the derivative of
Eq. (2-67) with respect to logqw; that is,

Tlog g0 (£20plog gw) = £20p dB/decade (2-68)

These lines pass through the 0-dB axis at @ = 1. Thus, a unit change in log;gw corresponds
to a change of 320p dB in magnitude. Furthermore, a unit change in log;qw in the
rectangular coordinates is equivalent to one decade of variation in w, that is, from 1 to 10,
10 to 100, and so on, in the semilog coordinates. Thus, the slopes of the straight lines
described by Eq. (2-68) are said to be £20p dB/decade of frequency.



2-2 Frequency-Domain Plots <4 3§

Y T T

20 logm KdB (K= 10)
K~

| G(jw) | (dB)

0.1 I 10 100
@ (rad/sec)

{AK(K>O)

£G(jo) (deg)

-120
/4K K<0)

-150 /
18 10 100
: I o (rad/sec)

Figure 2-13 Bode plot of constant K.

Instead of decades, sometimes octaves are used to represent the separation of two
frequencies. The frequencies w; and w; are separated by one octave if wp/w; = 2. The
number of decades between any two frequencies w; and ws is given by

!
number of decades = logio(@a/@1) = logyo (ﬂ (2-69)
log,10 w1
Similarly, the number of octaves between @, and w; is
logo{wz/wi) 1 wy
number of octaves = llogm T = 0301 logyg - (2-70)

Thus, the relation between octaves and decades is

number of octaves = 1/0.301 decades = 3.32 decades 2-711)
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Substituting Eq. (2-71) into Eq. (2-67), we have
+20pdB/decade = +20p x 0.301 2 6p dB/octave 2-72)

For the function G(s) = 1/s, which has a simple pole at s = 0, the magnitude of G{ jw) is a
straight line with a slope of —20dB/decade, and it passes through the 0-dB axis at
w = 1rad/sec.

The phase of ( jw)E? is written

[ jw) P=+p x 90° (2-73)
The magnitude and phase curves of the function ( jw)*” are shown in Fig. 2-14 for several
values of P.
60 I
40 \ &ufl’% - 1
S .w) |11
20 \;\\ &0 # 42088/
g R -
: =\ |
3 e I~
> 1A ™~ ~20g
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Figure 2-14 Bode plots of ( jw)”.
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2-2-6 Simple Zero, 1+ jwT
Consider the function
G( jw) = 1 + joT (2-74)
where T is a positive real constant. The magnitude of G{ jw) in dB is
|G( jw)|gg = 2010g,0|G( jw)| = 20log;pV 1 + ?T? (2-75)

To obtain asymptotic approximations of |G( jw)|yg. we consider both very large and very
small values of w. At very low frequencies, wT < 1, Eq. (2-75) is approximated by

|G( jo)lgg = 20log;pl =0 dB (2-76)
because w?7? is neglected when compared with 1.

At very high frequencies, T > 1, we can approximate 1 + w?T? by w*T?; then Eq.
(2-75) becomes

G( jw)|gp = 20log;gVw?T? = 20logq 0T 2-77)

Eq. (2-76) represents a straight line with a slope of 20 dB/decade of frequency.
The intersect of these two lines is found by equating Eq. (2-76) to Eq. (2-77), which
gives

w=1/T (2-78)

This frequency is also the intersect of the high-frequency approximate plot and the low-
frequency approximate plot, which is the 0-dB axis. The frequency given in Eq. (2-78) is
also known as the corner frequency of the Bode plot of Eq. (2-74), because the asymptotic
plot forms the shape of a corner at this frequency, as shown in Fig. 2-15. The actual
|G( jw)|yg plot of Eq. (2-74) is a smooth curve and deviates only slightly from the straight-
line approximation. The actual values and the straight-line approximation of |1 + joT |
as functions of wT are tabulated in Table 2-3. The errur between the actual magnitude curve
and the straight-line asymptotes is symmetrical with respect to the corner frequency
w = 1/T. 1t is useful to remember that the error is 3 dB at the corner frequency, and it is
1 dB at 1 octave above (@ = 2/T) and 1 octave below (@ = 1/2T) the corner frequency.
At 1 decade above and below the corner frequency, the error is dropped to approximately
0.3 dB. Based on these facts, the procedure of drawing |1 + jwT|gg is as follows:

1. Locate the comer frequency w = 1/T on the frequency axis.

2. Draw the 20-dB/decade (or 6-dB/octave) line and the horizontal line at 0 dB, with
the two lines intersecting at w = 1/T.

3. If necessary, the actnal magnitude curve is obtained by adding the errors to the
asymptotic plot at the strategic frequencies. Usually, a smooth curve can be
sketched simply by locating the 3-dB point at the corner frequency and the 1-dB
points at 1 octave above and below the corner frequency.

The phase of G{ jw) = | + joT is

[G(jo) = tan"'wT (2-79)

Similar to the magnitude curve, a straight-line approximation can be made for the phase
curve. Because the phase of G( jw) varies from 0° to 90°, we can draw a line from 0° at 1
decade below the corner frequency to 90° at 1 decade above the corner frequency. As shown
in Fig. 2-15, the maximum deviation between the straight-line approximation and the actual
curve is less than 6°. Table 2-3 gives the values of /(1 + jwT) versus wT.
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Figure 215 Bode plots of G(s) = 1+ T and G(s) = iy

TABLE 2-3 Values of /(1 + jwt) versus T

Straight-Line Approximation Error /(1 + joT)

oT logiowT  |L+joT] (14 joT|g 11+ jooT|gg (dB) (deg)
0.01 -2 1.0 0.000043 0 0.00043 0.5
0.10 -1 1.04 0.043 0 0.043 5.7
0.50 0.3 1.12 | 0 1 26.6
0.76 -0.12 1.26 2 0 2 374
1.00 0 1.41 3 0 3 45.0
1.31 0,117 1.65 43 23 2 52.7
2.00 0.3 223 7.0 6.0 1 63.4
10.00 1.0 104 20.043 200 0,043 84.3

100.00 2.0 100.005 40.00043 40.0 0.00043 89.4




2-2 Frequency-Domain Plots < 39

2-2-1 Simple Pole, 1/(1 + jwT)
For the function

, 1
Gljo) = 1707
the magnitude, |G( jw)| in dB, is given by the negative of the right side of Eq. (2-75), and
the phase /G( jo) is the negative of the angle in Eq. (2-79). Therefore, it is simple to extend

all the analysis for the case of the simple zero to the Bode plot of Eq. (2-80). The
asymptotic approximations of |G( jw)|sg at low and high frequencies are

(2-80)

oT €1 |G(jw)|sp = 0dB (2-81)

Thus, the corner frequency of the Bode plot of Eq. (2-80) is still at w = 1/T, except
that at high frequencies the slope of the straight-line approximation is —20 dB/decade.
The phase of G( jw) is 0 degrees at @ = 0, and —90° when w = co. The magnitude in dB
and phase of the Bode plot of Eq. (2-80) are shown in Fig. 2-15. The data in Table 2-3 are
still useful for the simple-pole case if appropriate sign changes are made to the numbers.
For instance, the numbers in |l + jwT|4, the straight-line approximation of
|1 + jwTl4g, the error (dB), and the /(1 4+ jwT) columns should all be negative. At
the corner frequency, the error between the straight-line approximation and the actual
magnitude curve is —3dB.

2-2-8 Quadratic Poles and Zeros

Now consider the second-order transfer function

w? i

— n —
O) = T Ros R~ 1+ @jan)s + (R)

(2-83)

We are interested only in the case when ¢ < 1, because otherwise G(s) would have two
unequal real poles, and the Bode plot can be obtained by considering G(s) as the product of
two transfer functions with simple poles.

By letting s = jw, Eq. (2-83) becomes

1
G(jo) = (2-84)
e 1= (/o] + 128/ on)

The magnitude of G( jo) in dB is

2
G jo)] = 2010810l jo) = ~201oguoy 1 - (@/wn?] +452(w/n) -89
At very low frequencies, w/w, < 1, Eq. (2-85) can be approximated as
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Thus, the low-frequency asymptote of the magnitude plot of Eq. (2-83) is a straight line that
lies on the 0-dB axis. At very high frequencies, w/wy, 3> 1, the magnitude in dB of G( jw) in
Eq. (2-83) becomes

IG(j)ls = — 20logigy/ (w/wn)* = —40logjg(w/wn) dB  (2-87)

This equation represents a straight line with a slope of —40dB /decade in the Bode-plot
coordinates. The intersection of the two asymptotes is found by equating Eq. (2-86) to
Eq. (2-87), yielding the corner frequency at @ = w,. The actual magnitude curve of G( jw)
in this case may differ strikingly from the asymptotic curve. The reason for this is that the
amplitude and phase curves of the second-order G( jw) depend not only on the corner
frequency w, but also on the damping ratio £, which does not enter the asymptotic curve.
The actual and the asymptotic curves of |G( jw)|4z are shown in Fig. 2-16 for several
values of {. The errors between the two sets of curves are shown in Fig. 2-17 for the same
set of values of ¢. The standard procedure of constructing the second-order |G( jw)|yg is to
first locate the corner frequency w, and —40-dB/decade line to the right of w,. The actual
curve is obtained by making corrections to the asymptotes by using either the data from the
error curves of Fig. 2-17 or the curves in Fig. 2-16 for the corresponding ¢.
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Figure 2-16 Bode plDt of G(S) = W.
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Figure 2-17 Errors in magnitude curves of Bode plots of G{s) = ml)T(s/T)f

The phase of G( jw) is given by

2
(G( jw) = —tan™! {i‘i—w [1 -~ (wﬂ) ]} (2-88)

and is plotted as shown in Fig. 2-16 for various values of {.
The analysis of the Bode plot of the second-order transfer function of Eq. (2-83) can be
applied to the second-order transfer function with two complex zeros. For

Gs)=1+ L izsz (2-89)
wn

n

the magnitude and phase curves are obtained by inverting those in Fig. 2-16. The errors
between the actual and the asymptotic curves in Fig. 2-17 are also inverted.

Toolbox 2-2-3

The Bode plot for Fig. 2-17 when ¢ = 0.05 and @ = 1, using the MATLAB “bode” function, is obtained by
the following sequence of MATLAB functions.

Approach 1

num=[1];
den=[1.11];
G=tf(num,den);
bode(G);

Approach 2

s=tf(‘s’);
G=1/(s"2+ .I's+1);
bode(G);
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2-2-9 Pure Time Delay, e "%

EXAMPLE 2-2-5

The magnitude of the pure time delay term is equal to unity for all values of w. The phase of
the pure time delay term is

Le Il — _ T, (2-90)
which decreases linearly as a function of w. Thus, for the transfer function
G(jw) = Gy( jw)e 1T (2-91)

the magnitude plot |G( jw)|yp is identical to that of |G| ( jw)|sg. The phase plot /G( jw) is
obtained by subtracting w7, radians from the phase curve of G, ( jw) at various w.

As an illustrative example on the manual construction of the Bode plot, consider the function
10(s + 10)
Gis) = ————— X
O = G296+ (2-92)

The first step is to express G(s) in the form of Eq. (2-61) and set s = jw (keeping in mind that, for
computer plotting, this step is unnecessary); we have

3 10(1 + jO.1w)
~ jo(1+ j05w)(1 + j0.2w)

Eq. (2-92) shows that G( je) has corner frequencies at w = 2, 5, and 10 rad/sec. The pole at s = 0
gives a magnitude curve that is a straight line with a slope of —20 dB/decade. passing through the
= 1rad/sec point on the 0-dB axis. The complete Bode plot of the magnitude and phase of G{ jw)
is obtained by adding the component curves together, point by point, as shown in Fig. 2-18. The actual
curves can be obtained by a computer program and are shown in Fig. 2-18.

G( jo) (2-93)
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Toolbox 2-2-4

The Bode plot for Eq. (2-93), using the MATLAB “bode™ function, is obtained by the following sequence of
MATLAB functions.

num=[110];
den=[.1.72107;
G = tf(num,den);
bode(G);

The result is a graph similar to Fig. 2-18.
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2-2-10 Magnitude-Phase Plot

The magnitude-phase plot of G( jw) is a plot of the magnitude of G( jw) in dB versus its
phase in degrees, with @ as a parameter on the curve. One of the most important
applications of this type of plot is that, when G( jw) is the forward-path transfer function
of a unity-feedback control system, the plot can be superposed on the Nichols chart
(see Chapter 8) to give information on the relative stability and frequency response of the
system, When constant coefficient X of the transfer function varies, the plot is simply
raised or lowered vertically according to the value of X in dB. However, in the
construction of the plot, the property of adding the curves of the individual components
of the transfer function in the Bode plot does not carry over to this case. Thus, it is
best to make the magnitude-phase plot by computer or transfer the data from the
Bode plot.

B EXAMPLE 2-2-6 As an illustrative example, the polar plot and the magnitude-phase plot of Eq. (2-92) are shown in
Fig, 2-19 and Fig. 2-20, respectively. The Bode plot of the function is already shown in Fig. 2-18,
The relationships among these three plots are easily identified by comparing the curves in Figs. 2-18,
2-19, and 2-20.
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Figure 219 Polar plot of G(s) = ;ogtidk:
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Toolbox 2-2-5

The magnitude and phase plot for Example 2-2-6 may be obtained using the MATLAB “nichols™ function,
by the following sequence of MATLAB functions.

>> G =zpk([~10],[0-2 -51,10)
Zero/pole/gain:
10 (s +10)

s(s+2) (s+5)

>> nichols(G)

See Fig. 2-20.
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Toolbox 2-2-6

The phase and gain margins for Eq. (2-92) are obtained by the following sequence of MATLAB
functions.

Approach 1 Approach 2

num= {10 100]; s=tf('s’);

den=[17100]; G1=(10"s + 100)/(s"3 + 7"8"2 + 10"8) ;
Gl = tf(num,den); margin(Gl);

margin(Gl);

“Margin” produces a Bode plot and displays the margins on this plot.

Bode Diagram
Gin = 7.36 dB (at 5.77 radizec) , Pm=10.7 deg (et 3.88 radisec)
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2-2-11 Gain- and Phase-Crossover Points

Gain- and phase-crossover points on the frequency-domain plots are important for analysis
and design of control systems. These are defined as follows.

» Gain-crossover point. The gain-crossover point on the frequency-domain plot of
G(jw) is the point at which |G( jw)| = 1 or |G( jw)|4g = 0 dB. The frequency at the
gain-crossover point is called the gain-crossover frequency w,.

» Phase-crossover point. The phase-crossover point on the frequency-domain plot
of G(jw) is the point at which /G( jeo) = 180°. The frequency at the phase-
crossover point is called the phase-crossover frequency wp.
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The gain and phase crossovers are interpreted with respect to three types of plots:

¢ Polar plot. The gain-crossover point (or points) is where |G( jw)] = 1. The phase-
crossover point (or points) is where /G{jw) = 180° (see Fig. 2-19).
* Bode plot. The gain-crossover point (or points) is where the magnitude curve

|G( jw)|yg crosses the 0-dB axis. The phase-crossover point (or points) is where the
phase curve crosses the 180° axis (see Fig. 2-18).

= Magnitude-phase plot. The gain-crossover point (or points) is where the G( jw)
curve crosses the 0-dB axis. The phase-crossover point (or points) is where the
G{ jw) curve crosses the 180° axis (see Fig. 2-20).

2-2-12 Minimum-Phase and Nonminimum-Phase Functions

EXAMPLE 2-2-7

A majority of the process transfer functions encountered in linear control systems do not
have poles or zeros in the right-half s-plane. This class of transfer functions is called the
minimum-phase transfer function. When a transfer function has either a pole or a zero in
the right-half s-plane, it is called a2 nonminimum-phase transfer function.

Minimum-phase transfer functions have an important property in that their magnitude
and phase characteristics are uniquely related. In other words, given a minimum-phase
function G(s), knowing its magnitude characteristics |G(jw)| completely defines the phase
characteristics, /G(jw). Conversely, given /G(jw), |G(jw)| is completely defined.

Nonminimum-phase transfer functions do not have the unique magnitude-phase
relationships. For instance, given the function

1

G( jo) = —— 2-94
(Jo) =1 T (2-94)

the magnitude of G( jw) is the same whether T is positive (nonminimum phase) or negative

(minimum phasc). However, the phase of G( je) is different for positive and negative T.

Additional properties of the minimum-phase transfer functions are as follows:

» For a minimum-phase transfer function G(s) with /m zeros and n poles, excluding
the poles at s = 0, if any, when s = je and as w varies from oo to 0, the total phase
variation of G( jw) is (n — m)n/2.

* The value of a minimum-phase transfer function cannot become zero or infinity at
any finite nonzero frequency.

* A nonminimum-phase transfer function will always have a more positive phase
shift as w is varied from oo to 0.

As an illustrative example of the properties of the nonminimum-phase transfer function, consider that
the zero of the transfer function of Eq. (2-92) is in the right-half s-plane; that is,

Gls) = 10(s — 10)

=G+ D6 15 (2-95)

The magnitude plot of the Bode diagram of G( jw) is identical to that of the minimum-phase transfer
function in Eq. (2-92), as shown in Fig. 2-18. The phase curve of the Bode plot of G( jw) of Eq. (2-95)
is shown in Fig. 2-21(a), and the polar plot is shown in Fig. 2-21(b). Notice that the nonminimum-
phase function has a net phase shift of 270° (from —180° to 4 90°) as w varies from oc¢ to 0, whereas
the minimum-phase transfer function of Eq. (2-92) has a net phase change of only 90° (from
—180°to — 90°) over the same frequency range.
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Figure 2-21 (a) Phase curve of the Bode plot. (b) Polar plot. G(s) = Rﬁ—%ﬁ%.

Care should be taken when using the Bode diagram for the analysis and design of systems
with nonminimum-phase transfer functions. For stability studies, the polar plot, when used
along with the Nyquist criterion discussed in Chapter 8, is more convenient for nonminimum-
phase systems. Bode diagrams of nonminimum-phase forward-path transfer functions should not
be used for stability analysis of closed-loop control systems. The same is true for the magnitude-
phase plot.

Here are some important notes:

* A Bode plot is also known as a corner plot or an asymptotic plot.
* The magnitude of the pure time delay term is unity for all w.
* The magnitude and phase characteristics of a minimum-phase function are uniquely related,

* Do not use the Bode plot and the gain-phase plot of a nonminimum-phase transfer function for
stability studies.

‘The topic of frequency response has a special importance in the study of control systems and is
revisited later in Chapter 8. -
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» 2-3 INTRODUCTION TO DIFFERENTIAL EQUATIONS

A wide range of systems in engineering are modeled mathematically by differential
equations. These equations generally involve derivatives and integrals of the dependent
variables with respect to the independent variable—usually time. For instance, a series
electric RLC (resistance-inductance-capacitance) network can be represented by the
differential equation:

Ri(t) + d’(’) — / (1)dt = e(t) (2-96)

where R is the resistance; L, the inductance; C, the capacitance; #(¢), the current in the
network; and e(f), the applied voltage. In this case, e(?) is the forcing function; ¢, the
independent variable; and i(¢), the dependent variable or unknown that is to be determined
by solving the differential equation.

Eq. (2-96) is referred to as a second-order differential equation, and we refer to the
system as a second-order system. Strictly speaking, Eq. (2-96) should be referred to as an
integrodifterential equation, because an integral is involved.

2-3-1 Linear Ordinary Differential Equations

In general, the differential equation of an sth-order system is written

d"y(t) d"1y() dy(t)
din 7= I

which is also known as a linear ordinary differential equation if the coefficients
ag, 4y, - .. ,ay—1 are not functions of y(¢).
A first-order linear ordinary differential equation is therefore in the general form:

+ -y + agy(t) = f(2) (2-97)

dy(t
DO 4 it = 10 @-9%)
and the second-order general form of a linear ordinary differential equation is
dy(t dy(t
%g) +a }:1( ) +agy(t) = f(1) (2-99)

In this text, because we treat only systems that contain lumped parameters, the differential
equations encountered are all of the ordinary type. For systems with distributed parameters,
such as in heat-transfer systems, partial differential equations are used.

2-3-2 Nonlinear Differential Equations

Many physical systems are nonlinear and must be described by nonlinear differential
equations. For instance, the following differential equation that describes the motion of a
pendulum of mass m and length /, later discussed in this chapter, is

4*9(z)
7o)

Because 6(t) appears as a sine function, Eq. (2-100) is nonlinear, and the system is called a
nonlinear system.

ml

+ mgsinf(t) =0 (2-100)
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2-3-3 First-Order Differential Equations: State Equations®

In general, an nth-order differential equation can be decomposed into n first-order
differential equations. Because, in principle, first-order differential equations are simpler
to solve than higher-order ones, first-order differential equations are used in the analytical
studies of control systems. For the differential equation in Eg. (2-96), if we let

x(n) = f i(f)dr (2-101)
and
%) = dx'( )= i) (2-102)
then Eq. (2-96) is decomposed into the follomng two first-order differential equations:
i) _ oo (2-103)
dt
dea(t) 1 R 1
& = " IcM (1) Lxg(t) +Le(t) (2-104)
In a similar manner, for Eq. (2-97), let us define
x (1) = r{(t())
f
(t) = _y_
(2-105)
dn=1 (t)
x(t) = T

then the nth-order differential equation is decomposed into # first-order differential
equations:

delt(Q = x2(1)
dxy() _

pratll) (2-106)
dx:;t(t) = —agx(t) — alxz(t) — oo = apgpXy | {t) — ap_1xa(2) + £(2)

Notice that the last equation is obtained by equating the highest-ordered derivative term in
Eq. (2-97) to the rest of the terms. In control systems theory, the set of first-order
differential equations in Eq. (2-106) is called the state equations, and x1,x3, ..., xp
are called the state variables.

2-3-4 Definition of State Variables

The state of a system refers to the past, present, and future conditions of the system.
From a mathematical perspective, it is convenient to define a set of state variables and
state equations to model dynamic systems. As it turns out, the variables x(z),
x2(8), ....xn(f) defined in Eq. (2-105) are the state variables of the nth-order system

?Please refer to Chapter 10 for more in-depth study of State Space Systems.



2-3 Introduction to Differential Equations - 51

described by Eq. (2-97), and the # first-order differential equations are the state equations.
In general, there are some basic rules regarding the definition of a state varjable and what
constitutes a state equation. The state variables must satisfy the following conditions:

+ At any initial time 7 = #p, the state variables x| (tp), x2(f0), ... , xx(fo) define the
initial states of the system.

* Once the inputs of the system for ¢ > 13 and the initial states just defined are specified,
the state variables should completely define the future behavior of the system.

The state variables of a system are defined as a minimal set of variables,
x1(£),x2(2), ..., xa(2), such that knowledge of these variables at any time 79 and informa-
tion on the applied input at time #, are sufficient to determine the state of the system at any
time ¢ > fy. Hence, the space state form for # state variables is

x(t) = Ax(t) + Bu (2-107)

where x(t) is the state vector having n rows,

x(t)
.\’2(!)
x(t) = | . (2-108)
L *a(t) ]
and u(t) is the input vector with p rows,
- (t% -
us(t
ult) = ) (2-109)
[ up(f)
The coefficient matrices A and B are defined as:
a1 a1z - Qi
ay a v a,
N D A T ) (2-110)
Quy 4p2 -+ Qp |
byy bia - bip]
by bxn -+ by
B=| . . _ . (nx p) 2-111)
bny by - bap

2-3-5 The Output Equation

One should not confuse the state variables with the outputs of a system. An output of a
system is a variable that can be measured, but a state variable does not always satisfy this
requirement. For instance, in an electric motor, such state variables as the winding current,
rotor velocity, and displacement can be measured physically, and these variables all qualify
as output variables. On the other hand, magnetic flux can also be regarded as a state variable
in an electric motor, because it represents the past, present, and future states of the motor,
but it cannot be measured directly during operation and therefore does not ordinarily
qualify as an output variable. In general, an output variable can be expressed as an algebraic
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combination of the state variables. For the system described by Eq. (2-97), if y(#) is
designated as the output, then the output equation is simply y{z) = x(?). In general,

(8
y2(1)
¥ =", | =Cx(t) + Du 2-112)
yqlt)
[e11 etz <+- cn
€1 € -+ €2
c=|7 (2-113)
\.‘?ql €z " Cqn
[diy di2 -+ dip
dy1 dp - dyy
p=|. . (2-114)
| dg1 dgp -+ dgp

We will utilize these concepts in the modeling of various dynamical systems.

B 2-4 LAPLACE TRANSFORM

The Laplace transform is one of the mathematical tools used to solve linear ordinary
differential equations. In contrast with the classical method of solving linear differential
equations, the Laplace transform method has the following two features:

1. The homogeneous equation and the particular integral of the solution of the
differential equation are obtained in one operation.

2. The Laplace transform converts the differential equation into an algebraic
equation in s-domain. It is then possible to manipulate the algebraic equation
by simple algebraic rules to obtain the solution in the s-domain. The final solution
is obtained by taking the inverse Laplace transform.

2-4-1 Definition of the Laplace Transform

Given the real function f{7) that satisfies the condition

r

for some finite, real o, the Laplace transform of f{¢) is defined as

F(t)e % |dt < o0 (2-115)

F(s) = fo m e "dr (2-116)

or

F(s) = Laplace transform of f(¢) = £ f(2)] (2-117)

The variable s is referred to as the Laplace operator, which is a complex variable; that is,
s = o + jo, where ¢ is the real component and w is the imaginary component. The defining
equation in Eq. (2-117) is also known as the one-sided Laplace transform, as the
integration is evaluated from ¢ = 0 to 0o. This simply means that all information contained
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EXAMPLE 2-4-2

2-4 Laplace Transform < 53

in f{t) prior to ¢ = 0 is ignored or considered to be zero. This assumption does not impose
any limitation on the applications of the Laplace transform to linear systems, since in the
usual time-domain studies, time reference is often chosen at ¢ = 0. Furthermore, for a
physical system when an input is applied at ¢ = 0, the response of the system does not start
sooner than ¢ = 0; that is, response does not precede excitation, Such a system is also
known as being causal or simply physically realizable.

Strictly, the one-sided Laplace transform should be defined from £ = 0~ to ¢ = co. The
symbol ¢ = 0~ implies the limit of  — Qs taken from the left side of = 0. This limiting process
will take care of situations under which the function f¢) has a jump discontinuity or an impulse
at ¢ = 0. For the subjects treated in this text, the defining equation of the Laplace transform in
Eq. (2-117)is almost never used in problem solving, since the transform expressions encountered
are either given or can be found from the Laplace transform table, such as the one given in
Appendix C. Thus, the fine point of using 0~ or 0" never needs to be addressed. For simplicity, we
shall simply use £ = 0 or t = £p{ > 0) as the initial time in all subsequent discussions.

The following examples illustrate how Eq. (2-117) is used for the evaluation of the
Laplace transform of f(f).

Let fir) be a unit-step function that is defined as
fO) =us{t) =1 120

2-118
=0 t<0 ¢ )
The Laplace transform of f{1) is obtained as
o 1 * 1
F(s) = Llis ()] = / w(f)e St = ——e| =1 (2-119)
0 5 o ¢
Eq. (2-119) is valid if
x o
f \u,(t)e“" dt = / e ”dt <o (2-120)
0 0

which means that the real part of s, o, must be greater than zero. In practice, we simply refer to the
Laplace transform of the unit-step function as 1/5, and rarely do we have to be concerned with the
region in the s-plane in which the transform integral converges absolutely. -1

Consider the exponential function

fy=e™ 20 (2-122)
where « is a real constant. The Laplace transform of f{#) is written
= o—lstay|™ 1
F(s) = / e e ¥dt = = (2-122)
0 S+o sS+o o

0 =

Toolbox 2-4-1

Use the MATLAB symbolic toolbox to find the Laplace transforms.

>> syms t
>>f=t"4

f=

t4

>> laplace(f)
ans =

24/s"5
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2-4-2 Inverse Laplace Transformation

Given the Laplace transform F(s), the operation of obtaining f{#) is termed the inverse
Laplace transformation and is denoted by

£(t) = Inverse Laplace transform of F(s) = £~ [F(s)] (2-123)

The inverse Laplace transform integral is given as

£t = f P E)ed 2-124)
2rjJe- Joo e (

where ¢ is a real constant that is greater than the real parts of all the singularities of F(s).
Eq. (2-124) represents a line integral that is to be evaluated in the s-plane. For simple
functions, the inverse Laplace transform operation can be carried out simply by referring to
the Laplace transform table, such as the one given in Appendix C and on the inside back
cover. For complex functions, the inverse Laplace transform can be carried out by first
performing a partial-fraction expansion (Section 2-5) on F(s) and then using the Transform
Table from Appendix D. You may also use the ACSYS ‘““Transfer Function Symbolic”
Tool, Tfsym, for partial-fraction expansion and inverse Laplace transformation.

2-4-3 Important Theorems of the Laplace Transform

The applications of the Laplace transform in many instances are simplified by utilization of
the properties of the transform. These properties are presented by the following theorems,
for which no proofs are given here.

B Theorem 1. Multiplication by a Constant
Let & be a constant and F(s) be the Laplace transform of f{#). Then

LK (£)] = kF(s) (2-125)

M Theorem 2. Sum and Difference
Let F(s) and Fa(s) be the Laplace transform of fj(f) and f;(?), respectively. Then

LLAE) £ fo(D)] = Fi(s) & Fa(s) (2-126)
¥ Theorem 3. Differentiation

Let F(s) be the Laplace transform of ), and {0) is the limit of f{?) as 7 approaches 0. The
Laplace transform of the time derivative of £¢) is

L [%(:l] = sF(s) — lim f(r) = sF(s) - f(0) 2-127)

In general, for higher-order derivatives of f{2),

8

]

n—1
LU = gr(s) ~[1;u3)[f‘1f(t)+ﬂ‘2df7£ﬂ+-'- ML 10}

den=! ] (2-128)
= &F(s) — " 1 f(0) — s 2 f1)(0) — .. — Flr-1)(0)

where f(0) denotes the ith-order derivative of f{£) with respect to ¢, evaluated at ¢ = 0.
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Theorem 4. Integration
The Laplace transform of the first integral of f{¢) with respect to ¢ is the Laplace transform
of f(t) divided by s; that is,

L‘[ /0 t f(t)dt] O] (2-129)

s

For nth-order integration,

In In-1 H _F(S)
[,[/; /0 /0 f(t)dtdt[dtz---dt,,_l] = (2-130)

8 Theorem 5. Shift in Time
The Laplace transform of f{f) delayed by time T is equal to the Laplace transform f(¢)
multiplied by ¢~; that is,

L] f(t = Tug(t — T)] = e~ TF(s) (2-131)

where u;(¢ — T) denotes the unit-step function that is shifted in time to the right by 7.

#® Theorem 6. Initial-Value Theorem
If the Laplace transform of f{¢) is F(s), then

lim £(1) = lim sF(s) (2-132)

§— 00

if the limit exists.

#® Theorem 7. Final-Value Theorem

If the Laplace transform of f{¢) is F(s), and if sF(s) is analytic (see Section 2-1-4 on the
definition of an analytic function) on the imaginary axis and in the right half of the s-plane,
then

Jim £(1) = lim sF(s) (2-133)

The final-value theorem is very useful for the analysis and design of control systems,
because it gives the final value of a time function by knowing the behavior of its Laplace
transform at s = Q. The final-value theorem is no? valid if sF(s) contains any pole whose
real part is zero or positive, which is equivalent to the analytic requirement of sF(s) in the
right-half s-plane, as stated in the theorem. The following examples illustrate the care that
must be taken in applying the theorem.

Consider the function

5
T s(s2+s5+2)

F(s) (2-134)

Because sF(s) is analytic on the imaginary axis and in the right-half s-plane, the final-value theorem
may be applied. Using Eq. (2-133), we have

lim o = g (2-135)

'l_l'ngc fl)y= sll_tf})sF(s) = lim = 513
<
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EXAMPLE 2-4-4 Consider the function

w
Fo)=ara
which is the Laplace transform of f(f) = sin wr. Because the function sF(s) has two poles on the
imaginary axis of the s-plane, the final-value theorem cannot be applied in this case. In other words,

although the final-value theorem would yield a value of zero as the final value of f{z), the result is
CITONEeous.

(2-136)

Theorem 8. Complex Shifting
The Laplace transform of f{£) multiplied by ¢ T % where « is a constant, is equal to the
Laplace transform F(s), with s replaced by s + «; that is,

LleTY ) =F(s+a) (2-137)

TABLE 2-4 Theorems of Laplace Transforms

Multiplication by a constant
Sum and difference

Differentiation

Integration

Shift in time

Initial-value theorem

Final-value theorem

Complex shifting

Real convolution

Complex convolution

LIKF()] = kF(s)

LUAE £ foln)] = Fi(s) £ Fafs)

4%(:_)] = sF(s) — £(0)

d"f(r)
e[t

] = S"F(S) — g f(O) 2 f(o)

where

k
010 =220

EUO’ f(t)dt] _ f(si)

ﬁ[[o’" /O‘n" /0'1 f(t)drd:,dtz...dtn_]] =F_£f;)

LLfe = Thus(t = T)] = e TBF(s)
111_{1-6 FflOH= sll)mx sF(s)

lim f(:) = lin}) sF(s) if sF(s) does not have poles on or to the right of the imaginary axis in
= §—

the s-plane.

Lle™ £()] = F(s £ o)
Fu(s)Fa(s) = z:[ [ A Al r)dr]

_ s[ / "B fi- r)dr} — LA * )
LLAW A(0) = F1(5) * Fals)
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8 Theorem 9. Real Convolution (Complex Multiplication)

Let Fi(s) and Fy(s) be the Laplace transforms of fi(f) and fy(f), respectively, and
filt) =0, f(t) =0, for 1 <0, then

Fi(s)Fa(s) = L[ fi() * (1)

~ 2| [ 7t fte - o] 2139
~ [ [ A0 A6 ar)

where the symbol * denotes convolution in the time domain.

Eg. (2-138) shows that multiplication of two transformed functions in the complex
s-domain is equivalent to the convolution of two corresponding real functions of ¢ in the
t-domain. An important fact to remember is that the inverse Laplace transform of the
product of two functions in the s-domain is not equal to the product of the two
corresponding real functions in the t-domain; that is, in general,

L7UF(S)F(9)] # A ) f(e) (2-139)

There is also a dual relation to the real convolution theorem, called the complex
convolution, or real multiplication. Essentially, the theorem states that multiplication
in the real ?-domain is equivalent to convolution in the complex s-domain; that is,

LLA@) D] = Fi(s)xFa(s) (2-140)

where * denotes complex convolution in this case. Details of the complex convolution

formula are not given here. Table 2-4 summarizes the theorems of the Laplace transforms
represented.

» 2-5 INVERSE LAPLACE TRANSFORM BY PARTIAL-FRACTION EXPANSION

In a majority of the problems in control systems, the evaluation of the inverse Laplace
transform does not rely on the use of the inversion integral of Eq. (2-124). Rather, the
inverse Laplace transform operation involving rational functions can be carried out using a
Laplace transform table and partial-fraction expansion, both of which can also be done by
computer programs.

2-5-1 Partial-Fraction Expansion

‘When the Laplace transform solution of a differential equation is a rational function in s, it
can be written as
Q(s)
G(s) = == -
(s) P(s) (2-141)
where P(s) and Q(s) are polynomials of s. It is assumed that the order of P(s) in s is greater
than that of Q(s). The polynomial P(s) may be written

P(S)=s+a 1" + - +ais+ ag (2-142)

where ay, a1, ..., ap_] are real coefficients. The methods of partial-fraction expansion will
now be given for the cases of simple poles, multiple-order poles, and complex-conjugate
poles of G(s).
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» EXAMPLE 2-5-1

G(s) Has Simple Poles If all the poles of G(s) are simple and real, Eq. (2-117) can be
written as

6y = 20 Q)

TP(s)  {s+s)(s+s2) - (S+5n) (2-143)

where s| # 52 # - - # 5p. Applying the partial-fraction expansion, Eq. (2-143) is written

K + Ky R K.s'n

G(s) = .
s+5 S§+8 R

(2-144)
The coefficient Ky;(i = 1,2, ...,n) is determined by multiplying both sides of Eq. (2-143)
by the factor (s + s;) and then setting s equal to —s;. To find the coefficient K, for instance,
we multiply both sides of Eq. (2-143) by (s + s1) and let s = —s;. Thus,

Q(s) Q(=s1)
Ky = [s+sl =2 = (2-145)
il Rl 0 | M s T ooy ey
Consider the function
Ss+3 5543
= = -14
Gs) (s+D(s+2)(s+3) $+652+11s+6 (2-146)
which is written in the partial-fraction expanded form:
_ K K2 K3
G(S)_s+l+s+2+s+3 2-147)
The coefficients K_;, K_3, and K_3 are determined as follows:
5(-1)+3
K_1 =[{s+ 1)G(s =—— 7 = _=_] (2-148)
1 [( ) ( )] s=—1 (2 _ 1)(3 —_ 1)
5(-2)+3
K_3 =[(s+2)G(s =—=7 2-149)
2 =[(s +2)G(s)] o, U-26-2) (
5(-3)+3
K_ 3 =[(s+3)G(s =— =0 (2-150)
Thus, Eq. (2-146) becomes
-1 7 6
&) =t s2 753 @-15h

Toolbox 2-5-1
For Example 2-5-1, Eq. (2-146) is a ratio of two polynomials.

>>b =[5 3] % numerator polynomial coefficients
>>a=[16116]%denominator polynomial coefficients

You can calculate the partial fraction expansion as

>> [r, p, k] =residue(b,a)
r=
-6.0000
7.0000
-1.0000
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P:
-3.0000
~-2.0000
-1.0000
k=
[1

Now, convert the partial fraction expansion back to polynomial coefficients.

>> [b,a] = residue(xr,p,k)

b=
0.0000 5.0000 3.0000

1.0000 6.0000 11.0000 6.0000

Note that the result is normalized for the leading coefficient in the denominator.

<4

G(s) Has Multiple-Order Poles If r of the n poles of G(s) are identical, or we say that the
pole at § = —s; is of multiplicity », G(s) is written

6y = 29 _ Q()

= = 2-152
P(s) GG o) (s F smn) s+ ] @1
(i#1,2,...,n—r), then G(s) can be expanded as
K K Ko(n—
G(s) = s _32+...+M
s--s1 s+52 5+ Sp—r
| e #n — rterms of simple poles — |

Af As A, (2-153)

2
s+ (s+8)° (s +s)
|« rterms of repeated poles — |

Then (n — r) coefficients, Ks1, K2, . . . , Ky(n—y)» which correspond to simple poles, may be
evaluated by the method described by Eq. (2-145). The determination of the coefficients
that correspond to the multiple-order poles is described as follows.

Ar = [(s+ %) G(s)] (2-154)
A —i[(s-f—s-)"G(s)] (2-155)
1= s ! =g, -
A —ldz[(+~’G] 2-156
r-2 =5y 73 L{s + 51) G(s) s (2-156)
A (2-157)
A = (7—_1)'d9’—“ [(s + s,-)’G(s)] —
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» EXAMPLE 2-5-2 Consider the function

1 1

G(s) = =
© S(S+I)3(S+2) $3 4+ 558 + 053 + 752 4 2¢

By using the format of Eq. (2-153), G(s) is written

Ki . K
Gls)=—+-5+ Ay A A

+
s+2 s+1 (s+1)P (s+ 1)}

The coefficients corresponding to the simple poles are

= [sG(s)]

=0 2

1

K_g = [(s+2)G(s)]

and those of the third-order pole are

s==2 2

=-1

Az = s+ 11°6(s)]

s=-1

= % [(5 + I)JG(S)} _‘_=_1= % [s(s }l- 2)] L=_[= 0

Ar = 21'(15- [(g+ 1y S)]

=-1

14* 1
s=—1 stz S -+ 2)

s=~1

The completed partial-fraction cxpanqion is

1 1 1

s) = 2s 2(5+2) s+l~(s+1)3

(2-158)

(2-159)

(2-160)

(2-161)

(2-162)

(2-163)

(2-164)

(2-165)

Toolbox 2-5-2
For Example 2-5-2, Eq. (2-158) is a ratio of two polynomials.
>> clear all
>>a=[15972]1%coefficients of polynomial s"4 + 5*8"3 + 9%5"2 + 7%s + 2
a =
1 5 9 7 2

>>b=[11 ¥polynomial coefficients
b=
1

>> [r, p, k] =residue(b,a) %b is the numerator and a is the denominator

T =
-1.0000
1.0000
-1.0000
1.0000




>> [b,a] =residue(r,p,k)% Obtain the polynomial form

b=

-2.0000
-1.0000
-1.0000
-1.0000

[3

-0.0000 -0.0000 -0.0000 1.0000

1.0000

5.0000 9.0000 7.0000 2.0000
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» EXAMPLE 2-5-3

G(s) Has Simple Complex-Conjugate Poles The partial-fraction expansion of Eq. (2-
144) is valid also for simple complex-conjugate poles. Because complex-conjugate poles
are more difficult to handle and are of special interest in control system studies, they
deserve special treatment here.

Suppose that G(s) of Eq. (2-117) contains a pair of complex poles:

s=-—0+jo ad §=-0— jw

The corresponding coefficients of these poles are found by using Eq. (2-145),

K gijo=(s+0— jw)G(s)|__, o (2-166)
Keo_jo=(s+0+ jw)G(s)|s=~G_jw (2-167)

Consider the second-order prototype function
G(s) i (2-168)

T+ 2was + w?

Let us assume that the value of ¢ is less than one, so that the poles of G(s) are complex. Then, G(s) is
expanded as follows:

G(S) = K—p’-f—jw K—rr—jw
sto-jo s+o+ jw

(2-169)

where

o = {wy (2-170)

and

w = wyy 1"(2 (2-171)
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The coefficients in Eq. (2-169) are determined as

Keotjo = (s+0 = jw)Gls) = n 2-172)

s=—0+jo 2_]60

w2
K-omjo= (s +0 + jw)G(s) =t (2-173)

§=—0— ji 21‘”

The complete partial-fraction expansion of Eq. (2-168) is
2
|t 1 .

Gls) = 2jw [s‘ +o—jo s+a+ jm] 2-174)

Taking the inverse Laplace transform on both sides of the last equation gives

2

8l = %%6"_“ (e —e ) 120 (2175
Or,
@, —fent
80 === - e borl Sinwn /1= 82t £>0 (2-176)
4

% 2-6 APPLICATION OF THE LAPLACE TRANSFORM TO THE SOLUTION OF LINEAR
ORDINARY DIFFERENTIAL EQUATIONS

As we see later, the mathematical models of most components of control systems are
represented by first- or second-order differential equations. In this textbook, we primarily
study linear ordinary differential equations with constant coefficients such as the first-
order linear system:

dy(t)
dt

+ apy(t) = f(2) (2-177)
or the second-order linear system:

dy d
—d§§i) ta % +agy(r) = £(1) (2-178)

Linear ordinary differential equations can be solved by the Laplace transform method
with the aid of the theorems on Laplace transform given in Section 2-4, the partial-
fraction expansion, and the table of Laplace transforms. The procedure is outlined
as follows:

1. Transform the differential equation to the s-domain by Laplace transform using
the Laplace transform table.

2. Manipulate the transformed algebraic equation and solve for the output variable.

3. Perform partial-fraction expansion to the transformed algebraic equation.

4, Obtain the inverse Laplace transform from the Laplace transform table.

Let us examine two specific cases, first- and second-order prototype systems.
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First-Order Prototype System

s~ EXAMPLE 2-6-1

Consider Eq. (2-177), which may also be represented by the first-order prototype
form:

dy(t) 1\ _
'—dt—-f”?}(t) = f{1) (2-179)

where, T is known as the time constant of the system, which is a measure of how fast the
system responds to initial conditions of external excitations.

Find the solution of the first-order differential Eq. (2-179).

SOLUTION For a unit step input

£ty = () = { o <0 (2-180)
Eq. (2-179) is written as
us(t) = (1) + ¥(5 (2-181)
IF y(0) = ¥ (0) = 0, £ (us(t)) = % and L(y(t)) = ¥(s), we have
% = st¥(s) + ¥(s) (2-182)
or
Y 1 1 (2-183)
(s) = sts+1

Notice that the system has a pole at s = —1/7.
Using partial fractions, Eq. (2-183) becomes

Ko K—l/z
= — 4+ — 2-184
Y(s) - +1:s+1 ( )

where, Ko = 1 and K_y;, = —1. Applying the inverse Laplace transform to Eq. (2-184), we get the
time response of Eq. (2-179).

vot) =1 - /7 (2-185)
where ¢ is the time for y(#) to reach 63% of its finat value of ’I_lp;l(' ) = 1.

Typical unit-step responses of y(f)are shown in Fig. 2-22 for a general value of z. As the value of
time constant 7 decreases, the system response approaches faster to the final value.

¥1) A
b e e e

0.63 F======--=>

P .

__, Figure 2-22  Unit-step response of a
t  first-order RC circnit system.,
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Toolbox 2-6-1

The inverse Laplace transform for Eq. (2-183) is obtained using the MATLAB Symbolic Toolbox by the
following sequence of MATLAB functions.

>> syms s tau;
>>ilaplace(1/(tau*s”"2 +s));

The result is Eq. (2-185).
Note, the sym command lets you construct symbolic variables and expressions, and the command:

>> syms s tau;
is equivalent to:

>>s=sym(‘s’);
>>tau = sym{‘tau’);

Time response of Eq. (2-183), shown in Fig. 2-22, for a given value r = 0.1 is obtained using

>> clear all;
»>>t=0:0.01:1;
>>tau=0.1;
>>plot(l-exp(-t/tau));

You may wish to confirm that at t = 0.1, y(t) = 0.63.

2-6-2 Second-Order Prototype System

Similarly, for the second-order prototype of the form:

dy(t)
dar

d‘fl(t‘) +a2y(t) = F(1) (2-186)

+ 2w,

where ¢ is known as the damping ratio, and w,, is the natural frequency of the system. The
prototype forms of differential equations provide a common format of representing various
components of a control system. The significance of this representation will become more
evident when we study the time response of control systems in Chapter 3.

EXAMPLE 2-6-2 Consider the differential equation

d*y(t) . dy(r)
2 o) =5 I
i 3 i +2y(1) 1 (2) (2-187)
where u,(z) is the unit-step function. The initial conditions are y(0) =—1 and yV(0) =
dy(t)/dt|,—o = 2. To solve the differential equation, we first take the Laplace transform on both
sides of Eq. (2-153):

s2Y(s) = s3(0) — y(D(0) + 35¥(s) — 3v(0) + 2¥(s) = 5/s (2-188)

Substituting the values of the initial conditions into the last equation and solving for ¥(s), we get

——s+5 s —s+5
Y(s) = s(2+35+2) s(s+1){s+2) (2-189)
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Eq. (2-189) is expanded by partial-fraction expansion to give
5 3

= 2-1
Y(s) 2s 11 26+ (2-190)
Taking the inverse Laplace transform of Eq. (2-190), we get the complete solution as
y(t) = %-—Se" +§e*2’ 120 (2-191)

The first term in Eq. (2-191) is the steady-state solution or the particular integral; the last two terms
represent the transient or homogeneous solution. Unlike the classical method, which requires
separate Steps to give the transient and the steady-state responses or solutions, the Laplace transform
method gives the entire solution in one operation.

If only the magnitude of the steady-state solution of y(#) is of interest, the final-value theorem of
Eq. (2-133) may be applied. Thus,

2
. . -5 —s54+35 5
Am () = i sY) = i g a2~ @192
where, in order to ensure the validity of the final-value theorem, we have first checked and found that
the poles of function s¥(s) are all in the left-half s-plane,

|
Consider the linear differential equation
2
4 d} gt) +345 — dy @) + 1000y(¢) = 1000u;(2) (2-193)

The initial values of y(¢) and dy(¢)/dt are zero. Taking the Laplace transform on both sides of
Eq. (2-193), and solving for ¥(s), we have

2
1000 _ W 2-194)

Y6) = 3855 7 1000) ~ 5(2 £ 2wns + @2)

where, using the second-order prototype representation, ¢ = 0.5435 and w, = 31.62. The inverse
Laplace transform of Eq. (2-194) can be executed in a number of ways. The Laplace transform table
in Appendix C provides the time-response expression in Eq. (2-194) directly. The result is

=,
() =1 — 1 — 2 > _
w6 =1 ﬂsm(w,,\/l 7 t—{-B) 1>0 (2-195)
where
6 = cos™!¢ = 0.9938 rad (= 56.94° ’l’ggd) (2-196)
Thus,
y(£) = 1 — 1.193e~ 175 5in (26.5: + 0.9938) >0 (2-197)

Eq. (2-197) can be derived by performing the partial-fraction expansion of Eq. (2-194), knowing that
the poles are at s = 0, —o + jw, and —o — jw, where

o = {w, = 17.25 (2-198)

w=wpV1 -2 =265 (2-199)
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The partial-fraction expansion of Eq. (2-194) is written

&'i' K—o+ju + K—a-—jw

Y(s) = - - (2-200)
s s+o0—jo s+o+ jo
where
Ky = sY(s) =1 (2-201)
s=0
K ( jw)Y (5) e X (2-202)
—otjo = (s + o — jo)Y(s = .
o+ s = —o+jw 2j\/1 —{2
Kormjo = ¥() P (2203
—o—jw = {§+ 0+ jw)Y(s = 203
. ' smmamjo 2J3/1-
The angle ¢ is given by
¢ =180° —cos™ 'z (2-204)
and is illustrated in Fig. 2-23.
The inverse Laplace transform of Eq. (2-200) is now written
v(r) = ] + ;e—cmﬂt [el‘(m‘_¢] — e‘j(luf‘¢)]
' 2V -8 (2-205)
=1+ ! e~ sin [a),,\/ 1 -2~ ¢]
V1=
Substituting Eq. (2-204) into Eq. (2-205) for ¢, we have
¥ =1- 11 = ¢~5r" sin [w,, 1-% +cos'1;‘] >0 (2-206)
— 4‘-—
or
¥(£) = 1 = 1.193¢7 1725 4in(26.5¢ + 0.9938) >0 (2-207)
JO A
s-plane
----- aw/ 1-¢°
|
8=cos -'{ : \d,
i \
i R
-0= —;60" 0 o

Figure 2-23 Root location in the s-plane. =



2-7 Impulse Response and Transfer Functions of Linear Systems 67

Toolbox 2-6-2
Time response of Eq. (2-194) for a unit-step input may also be obtained using
Alternatively:

num = [1000] ;
den=[134.51000]; s=tf(‘s’);
G =tf (num,den); G=1000/(5"2+34.5°s+1000);
step(G); step (G);
title (‘Step Response’) title (*Step Response®)
xlabel (‘Time (sec’) xlabel (‘Time(sec’)
ylabel (‘Amplitude’) ylabel (‘Amplitude’)

“step’’ produces the time response of a function for a unit-step input.

Step Response
1 4 T T T ) 1 1]

08 1

Amplitude

04} .

02 s

a 1 ! 1 1 1 L

0 0.08 01 015 0.2 0.25 0.3 0.35
Time (sec)

2-7 IMPULSE RESPONSE AND TRANSFER FUNCTIONS OF LINEAR SYSTEMS

The classical way of modeling linear time-invariant systems is to use transfer functions to
represent input—output relations between variables. One way to define the transfer function
is to use the impulse response, which is defined as follows.

2-7-1 Impulse Response

Consider that a linear time-invariant system has the input %(7) and output y(#). As shown
in Fig. 2-24, a rectangular pulse function u(r) of a very large magnitude it/2¢ becomes
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% EXAMPLE 2-7-1

@)

8l=

t-tli|t+ 7
[T —P

Figure 2-24 Graphical representation an
impulse function.

an impulse function for very small durations as ¢— (. The equation representing
Fig. 2-24 is

0 t<7—¢
wt) ={ L t-e<t<tte (2-208)
2¢e
0 t>t+e¢

For it = 1, u(t) = &(z) is also known as unit impulse or Dirac delta function. For t = 0 in
Eq. (2-208), using Eq. (2-116) and noting the actual limits of the integral are defined from
t=0" to t =00, it is easy to verify that the Laplace transform of &(f) is unity,
ie. £[8(r))=1as e—0.

The important point here is that the response of any system can be characterized by its
impulse response g(t), which is defined as the output when the input is a unit-impulse
function &(#). Once the impulse response of a linear system is known, the output of the
system y(t), with any input, u(t), can be found by using the transfer function. We define

Gts) = EO1) _ Y(5)

= =L (2-209)
L(u(r))  F(s)
as the transfer function of the system.
For the second-order prototype system Eq. (2-186), shown in Example 2-5-3 as:
d?y(t dy(t
;,g )4 240, ):,(, Lt ahy(t) = wult) (2-210)
Heance,
, 2

L)) 52+ 2lwns + o2

is the transfer function of the system in Eq. (2-210). Similar to Example 2-5-3, given zero initial
conditions. the impulse response g(f) is

Twi—ze"“’"’ sinw,v/1 =82t t2>0 2-212)

8(t) = JIF
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For a unit-step input u(t) = u(r), using the convolution properties of Laplace transforms,
L] = Llus xg(8)]
1 (2-213)
= L‘,[/ usg(t — t)d‘r] = g%
()

From the inverse Laplace transform of Eq. (2-213), the output y(?) is therefore

{
/ u:g(t — T)dr
0

or
—keout
y(r)=l—hsin(w,,\/1—c2t+a) 120 @2-214)
where, 6 = cos~ 1z, <

Toolbox 2-7-1

The unit impulse response of Eq. (2-194) may be obtained using

20

Amplitude

Alternatively:
num = [1000]; s=tf(’s’);
den=[134.51000]; G=1000/(sA2+34.5+s+1000) ;
G =tf (num,den); impulse (G);
impulse(G);
Impulse Response

] T L ] ¥ 1 T

L]
04 018§ 02 025 03 0.35 0.4 045




70

Chapter 2. Mathematical Foundation

2-7-2 Transfer Function (Single-Input, Single-Output Systems)

The transfer function of ¢ linear time-invariant system is defined as the Laplace transform
of the impulse response, with all the initial conditions set to zero.

Let G(s) denote the transfer function of a single-input, single-output (SISO) system, with
input (), output y(¢), and impulse response g(z). The transfer function G(s) is defined as

G(s) = Llg(?)] (2-215)

The transfer function G(s) is related to the Laplace transform of the input and the output
through the following relation:

o0-34

(2-216)

with all the initial conditions set to zero, and ¥(s) and U(s) are the Laplace transforms of
¥(2) and u(1), respectively.

Although the transfer function of a linear system is defined in terms of the impulse
response, in practice, the input—output relation of a linear time-invariant system with
continuous-data input is often described by a differential equation, so it is more convenient
to derive the transfer function directly from the differential equation. Let us consider that
the input-output relation of a linear time-invariant system is described by the following
nth-order differential equation with constant real coefficients:

dy(¢ d"y(r dy(t
(1) n-1 if )+--- +fll‘~—)( )+aoy(t)
d™u(t) d"u(z) du(z)
= by drm by s +--- + b —(-1T—+b0u(t)
The coefficients ag, gy, ..., @,-1 and by, by, ..., by are real constants. Once the input #(#)

fort > t( and the initial conditions of y(¢) and the derivatives of y() are specified at the initial
time ¢ = £, the output response y(f) for ¢ > g is determined by solving Eq. (2-217). However,
from the standpoint of linear-systern analysis and design, the method of using differential
equations exclusively is quite cumbersome. Thus, differential equations of the form of Eq.
(2-217) are seldom used in their original form for the analysis and design of control systems. It
should be pointed out that, although efficient subroutines are available on digital computers
for the solution of high-order differential equations, the basic philosophy of linear control
theory is that of developing analysis and design tools that will avoid the exact solution of the
system differential equations, except when computer-simulation solutions are desired for final
presentation or verification. In classical control theory, even computer simulations often start
with transfer functions, rather than with differential equations.

To obtain the transfer function of the linear system that is represented by Eq. (2-217),
we simply take the Laplace transform on both sides of the equation and assume zero initial
conditions. The result is

(.S‘" + a,,_ls"" + o tas+ aO)Y(S) = (bmsm + bm—lsm_I + - +bis+ b()) U(?)
(2-218)
The transfer function between u(¢) and y(¢) is given by
Y(s) _ bws" + P15 1+ o +bys+ by

G(s) = = 2-21
(s) U(s) St+ap 1+ daistag (2-219)
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The properties of the transfer function are summarized as follows:

» The transfer function is defined only for a linear time-invariant system. It is not
defined for nonlinear systems.

+ The transfer function between an input variable and an output variable of a system
is defined as the Laplace transform of the impulse response. Alternately, the
transfer function between a pair of input and output variables is the ratio of the
Laplace transform of the output to the Laplace transform of the input.

» All initial conditions of the system are set to zero.
« The transfer function is independent of the input of the system.

+ The transfer function of a continuous-data system is expressed only as a function of
the complex variable s. It is not a function of the real variable, time, or any other
variable that is used as the independent variable. For discrete-data systems modeled
by difference equations, the transfer function is a function of z when the z-
transform is used (refer to Appendix D).

2-7-3 Proper Transfer Functions

The transfer function in Eq. (2-219) is said to be strictly proper if the ovder of the
denominator polynomial is greater than that of the numerator polynomial (i.e., n >mn). If
n = m, the transfer function is called proper. The transfer function is improper if m > n.

2-71-4 Characteristic Equation

The characteristic equation of a linear system is defined as the equation obtained by setting
the denominator polynomial of the transfer function to zero. Thus, from Eg.
(2-219), the characteristic equation of the system described by Eq. (2-217) is

S"dayys” V4 fas+ag=0 (2-220)
Later we shall show that the stability of linear, single-input, single-output systems is
completely governed by the roots of the characteristic equation.

2-7-5 Transfer Function (Multivariable Systems)

The definition of a transfer function is easily extended to a system with multiple inputs and
outputs. A system of this type is often referred to as a multivariable system. In a multivariable
system, adifferential equation of the form of Eq. (2-217) may be used to describe the relationship
between a pair of input and output variables, when all other inputs are set to zero. Because the
principle of superposition is valid for linear systems, the total effect on any output due to all the
inputs acting simultaneously is obtained by adding up the outputs due to each input acting alone.

In general, if a linear system has p inputs and ¢ outputs, the transfer function between
the jth input and the ith output is defined as

Yi(s)
Rj(s)
with Rp(s) =0, k=1,2,..., p, ks j. Note that Eq. (2-221) is defined with only the jth
input in effect, whereas the other inputs are set to zero. When all the p inputs are in action,
the ith output transform is written

G,’f(.&‘) =

(2-221)

Yi(s) = G ()R (s) + G (s)Ra(s) + -+ + Gip(s)Rp(s) (2-222)
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It is convenient to express Eq. (2-222) in matrix-vector form:

Y(s) = G(s)R(s) (2-223)
where
[ Y1(s) ]
(s}
Y(5) = . (2-224)
| Y4(5)
is the g x 1 transformed output vector;
[ Ri(s) ]
Ra(s)
R{s) = . (2-225)
| Rp(s) |
is the p x 1 transformed input vector; and
Gu(s) Guls) - Gipls)
G e G
G(s) = 21(s)  Gana(s) 2p(s) (2.226)
Gai(s) Gpls) -+ Gopls)

is the g x p transfer-function matrix.

» 2-8 STABILITY OF LINEAR CONTROL SYSTEMS

From the studies of linear differential equations with constant coefficients of SISO systems, we
leamed that the homogeneous solution that corresponds to the transient response of the system is
governed by the roots of the characteristic equation. Basically, the design of linear control systems
may be regarded as a problem of arranging the location of the poles and zeros of the system
transfer function such that the system will perform according to the prescribed specifications.

Among the many forms of performance specifications used in design, the most
important requirement is that the system must be stable. An unstable system is generally
considered to be useless.

When all types of systems are considered—linear, nonlinear, time-invariant, and time-
varying—the definition of stability can be given in many different forms. We shall deal
only with the stability of linear SISO time-invariant systems in the following discussions.

For analysis and design purposes, we can classify stability as absolute stability and
relative stability. Absolute stability refers to whether the system is stable or unstable; it is
a yes or no answer. Once the system is found to be stable, it is of interest to determine how
stable it is, and this degree of stability is a measure of relative stability.

In preparation for the definition of stability, we define the two following types of
responses for linear time-invariant systems:

» Zero-state response. The zero-state response is due to the input only; all the initial
conditions of the system are zero.
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» Zero-input response. The zero-input response is due to the initial conditions only;
all the inputs are zero.

From the principle of superposition, when a system is subject to both inputs and initial
conditions, the total response is written
Total response = zero-state response + zero-input response

The definitions just given apply to continuous-data as well as discrete-data systems.

> 2-3 BOUNDED-INPUT, BOUNDED-OUTPUT (BIBO)
STABILITY—CONTINUOUS-DATA SYSTEMS

Let 2(1), y(¢), and g(r) be the input, output, and the impulse response of a linear time-invariant

system, respectively. With zero initial conditions, the system is said to be BIBO (bounded-input,

bounded-output) stable, or simply stable, if its output y(t) is bounded to a bounded input u(t).
The convolution integral relating u(z), ¥(t), and g(#) is

o
y(t) = / u(t— 7)g(r)dr (2-227)
0
Taking the absolute value of both sides of the equation, we get
o
¥ = / u(t — 1)g(v)dr (2-228)
0
or
og
bl < [ lute=Dlg(ede 2-229)
If 2(r) 1s bounded,
()] < M (2-230)
where M is a finite positive number, Then,
oc
@) <M / |g(7)ld= (2-231)
0
Thus, if y(¢) is to be bounded, or
[y(5)] SN <o (2-232)
where N is a finite positive number, the following condition must hold:
0
M ] lg(z)|dt < N <00 (2-233)
0

Or, for any finite positive Q,

/x]g(r)]dr <0< (2-234)
0
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The condition given in Eq. (2-234) implies that the area under the |g(7)|-versus—1-curve
must be finite.

» 2-10 RELATIONSHIP BETWEEN CHARACTERISTIC EQUATION ROOTS AND STABILITY

To show the relation between the roots of the characteristic equation and the condition in
Eq. (2-234), we write the transfer function G(s), according to the Laplace transform
definition, as

G(s) = Llg(7)] = fox g(te dt (2-235)

Taking the absolute value on both sides of the last equation, we have

1G(s)| =

/ g(t)e™dt
0

Because |e~*| = [e~7"|, where o is the real part of 5, when s assumes a value of a pole of
G(s), G(s) = o0, Eq. (2-236) becomes

.
< [ letllea 2236
0

s < f lg(0)lle™"|dr (2-237)
0

If one or more roots of the characteristic equation are in the right-half s-plane or on the jw-
axis, o >0, then

e | <M=1 (2-238)
Eq. (2-237) becomes

ws | " Mig(0)ldt = [0 " g(0)ldr (2-239)

which violates the BIBO stability requirement. Thus, for BIBO stability, the roots of the
characteristic equation, or the poles of G(s), cannot be located in the right-half s-plane or
on the jw-axis; in other words, they must all lie in the left-half s-plane. A system is said to
be unstable if it is not BIBO stable. When a system has roots on the jw-axis, say, als = jwy
and 5 = — jay, if the input is a sinusoid, sin wgt, then the output will be of the form of ¢ sin
wot, which is unbounded, and the system is unstable.

» 2-11 ZERO-INPUT AND ASYMPTOTIC STABILITY OF CONTINUOUS-DATA SYSTEMS

In this section, we shall define zero-input stability and asymptotic stability and establish
their relations with BIBO stability.

Zero-input stability refers to the stability condition when the input is zero, and the
system is driven only by its initial conditions. We shall show that the zero-input stability
also depends on the roots of the characteristic equation.

Let the input of an ath-order system be zero and the output due to the initial conditions
be y(r). Then, y(¢) can be expressed as

n—1|
y(1) = ()y* (1) (2-240)
k=0
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where

k
)y = YO 2
y8t0) =—¢ — (2-241)

and gx(t) denotes the zero-input response due to y*'(2,). The zero-input stability is defined
as follows: If the zero-input response y(t), subject to the finite initial conditions, yS(to),
reaches zero as t approaches infinity, the system is said to be zero-input stable, or stable;
otherwise, the system is unstable.

Mathematically, the foregoing definition can be stated: A lineqar time-invariant system
is zero-input stable if, for any set of finite y‘k’(ro), there exists a positive number M, which
depends on Y™(ip), such that

1.
M) <M<oo forallt>g (2-242)

and
2.
‘l_l’ﬂgcly(t)l =0 (2-243)

Because the condition in the last equation requires that the magnitude of y(¢) reaches
zero as time approaches infinity, the zero-input stability is also known at the asymptotic
stability.

Taking the absolute value on both sides of Eq. (2-240), we get

n—1
Y gk (0 ()

k=0

@)l =

n—1
< Y la)Ip® o) @-244)
k=0

Because all the initial conditions are assumed to be finite, the condition in Eq. (2-242)
requires that the following condition be true:

n—1
Z]Sk ()] < oo forall: >0 (2-245)
k=0

Let the n characteristic equation roots be expressed as §; = o; + jw, i=1,2, ..., n
Then, if m of the n roots are simple, and the rest are of multiple order, y(f) will be of the
form:

m n—m-1
Yty =) K" + Y Life™ (2-246)
i=1

i=(}

where K; and L; are constant coefficients. Because the exponential terms €%’ in the last
equation control the response y(f) as t — 0o, to satisfy the two conditions in Egs. (2-242)
and (2-243), the real parts of s; must be negative. In other words, the roots of the
characteristic equation must all be in the left-half s-plane.

From the preceding discussions, we see that, for linear time-invariant systems, BIBO,
zero-input, and asymptotic stability all have the same requirement that the roots of the
characteristic equation must all be located in the left-half s-plane. Thus, if a system is
BIBO stable, it must also be zero-input or asymptotically stuble. For this reason, we shall
simply refer to the stability condition of a linear system as stable or unstable. The latter
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TABLE 2-5 Stability Conditions of Linear Continuous-Data Time-Invariant SISO Systems

Stability Condition Root Values

Asymptotically stable or simply stable o;<0foralli,i=1, 2, ..., n (All the roots are in the
left-half s-plane.)

Marginally stable or marginally o; = 0 for any i for simple roots, and no o7 >0

unstable Fori =1, 2, ..., n (at least one simple root, no
multiple-order roots on the jw-axis, and # roots in the
right-half s-plane; note exceptions)

Unstable o; > 0 for any /, or o; = 0 for any multiple-order root;
i=1, 2...., n(atleast one simple root in the right-
half s-plane or at least one multiple-order root on the
Jew-axis)

condition refers to the condition that at least one of the characteristic equation roots is not
in the left-half s-plane. For practical reasons, we often refer to the situation in which the
characteristic equation has simple roots on the jw-axis and none in the right-half plane as
marginally stable or marginally unstable. An exception to this is if the system were
intended to be an integrator (or, in the case of control systems, a velocity control system);
then the system would have root(s) at s = 0 and would be considered stable. Similarly, if
the system were designed to be an oscillator, the characteristic equation would have simple
roots on the jw-axis, and the system would be regarded as stable.

Because the roots of the characteristic equation are the same as the eigenvalues of A of
the state equations, the stability condition places the same restrictions on the eigenvalues.

Let the characteristic equation roots or eigenvalues of A of a linear continuous-data
time-invariant SISO system be s; =0;+ jw;, i= 1, 2, ..., n. If any of the roots is
complex, it is in complex-conjugate pairs. The possible stability conditions of the system
are summarized in Table 2-5 with respect to the roots of the characteristic equation.

The following example illustrates the stability conditions of systems with reference to
the poles of the system transfer functions that are also the roots of the characteristic
equation.,

¥ EXAMPLE 2-11-1 The following closed-loop transfer functions and their associated stability conditions are given.

20

M(s) = CrOC+26+3) BIBO or asymptotically stable (or, simply, stable)
20 |
M(s) = oD (i‘;:_ 21 T2 Unstable due to the pole at s = 1
M(s) =261 Marginally stable or marginally unstable due to s = +j2
Sl=—— $ S =
G+2)(2+4) gty gimaty J
M(s) =——170——~ Unstable due to the multiple-order pole at s = %2
(s +4)*(s+ 10)
M(s) = 10 Stable if the pole at s = 0 is placed intentionally

T4 +30s% + 52 + 105
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2-12 METHODS OF DETERMINING STABILITY

The discussions in the preceding sections lead to the conclusion that the stability of linear
time-invariant SISO systems can be determined by checking on the location of the roots of
the characteristic equation of the system. For all practical purposes, there is no need to
compute the complete system response to determine stability. The regions of stability and
instability in the s-plane are illustrated in Fig. 2-25. When the system parameters are all
known, the roots of the characteristic equation can be found using MATLAB as demon-
strated in various MATLAB Toolbox windows discussed earlier in this chapter. The
Transfer Function Symbolic Tool (tfsym) developed for this chapter may also be utilized to
find the transfer function poles and zeros. See the end of this chapter for some examples.
These programs are discussed in detail in Appendix G. For design purposes, there will be
unknown or variable parameters imbedded in the characteristic equation, so a Routh-
Hurwitz stability routine has also been developed for this textbook (tfrouth), which is
discussed at the end of this chapter.

The methods outlined in the following list are well known for determining the stability
of linear continuous-data systems without involving root solving.

1. Routh-Hurwitz criterion. This criterion is an algebraic method that provides
information on the absolute stability of a linear time-invariant system that has a
characteristic equation with constant coefficients. The criterion tests whether any
of the roots of the characteristic equation lie in the right-half s-plane. The number
of roots that lie on the jw-axis and in the right-half s-plane is also indicated.

2. Nyquist criterion. This criterion is a semi-graphical method that gives informa-
tion on the difference between the number of poles and zeros of the closed-loop
transfer function that are in the right-half s-plane by observing the behavior of the
Nyquist plot of the loop transfer function. This topic is discussed in detail in
Chapter 8, and the concepts of loop transfer function and close-loop systems are
discussed in Chapter 3.

3. Bode diagram. This diagram is a plot of the magnitude of the loop transfer
function G(jw)H (jw) in dB and the phase of G(jw)H(jw) in degrees, all versus
frequency w- The concepts of loop transfer function and closed-loop systems are

jot
s-plane
Stable Unstable
region region
- >
Stable Unstable
region region

Figure 2-25 Stable and unstable regions in the s-plane.
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discussed in Chapter 3. The stability of the closed-loop system can be determined
by observing the behavior of these plots. This topic is discussed in detail in
Chapter 8.

Thus, as will be evident throughout the text, most of the analysis and design
techniques on control systems represent alternate methods of solving the same problem.
The designer simply has to choose the best analytical tool, depending on the particular
situation.

Details of the Routh-Hurwitz stability criterion are presented in the following section.

# 2-13 ROUTH-HURWITZ CRITERION

The Routh-Hurwitz criterion represents a method of determining the location of zeros of a
polynomial with constant real coefficients with respect to the left half and right half of the
s-plane, without actually solving for the zeros. Because root-finding computer programs
can solve for the zeros of a polynomial with ease, the value of the Routh-Hurwitz criterion
is at best limited to equations with at least one unknown parameter.

Consider that the characteristic equation of a linear time-variant SISO system is of the
form

F$)=ans" +an 15 '+ - +ais+ap=0 (2-247)
where all the coefficients are real. To ensure the last equation does not have roots with
positive real parts, it is necessary (but not sufficient) that the following conditions hold:

1. All the coefficients of the equation have the same sign.
2. None of the coefficients vanish,

These conditions are based on the laws of algebra, which relate the coefficients of
Eq. (2-247) as follows:

ay—1
= — ) allroots 2-248
iy @289
? = " products of the roots taken two at a time (2-249)
It
Gn3 _ _ Z products of the roots taken three at a time

ap (2-250)
@ _ (—1)"products of all the roots (2-251)

Qn

Thus, all these ratios must be positive and nonzero unless at least one of the roots has a
positive real part.

The two necessary conditions for Eq. (2-247) to have no roots in the right-half s-plane
can easily be checked by inspection of the equation. However, these conditions are not
sufficient, for it is quite possible that an equation with all its coefficients nonzero and of the
same sign still may not have all the roots in the left half of the s-plane.
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2-13-1 Routh's Tabulation

The Hurwitz criterion gives the necessary and sufficient condition for all roots of Eq.
(2-247) to lie in the left half of the s-plane. The criterion requires that the equation’s n
Hurwitz determinants must all be positive.

However, the evaluation of the # Hurwitz determinants is tedious to carry out. But
Routh simplified the process by introducing a tabulation method in place of the Hurwitz
determinants.

The first step in the simpiification of the Hurwitz criterion, now called the Routh-
Hurwitz criterion, is to arrange the coefficients of the equation in Eq. (2-247) into two rows.
The first row consists of the first, third, fifth, . . . , coefficients, and the second row consists
of the second, fourth, sixth, . . . , coefficients, all counting from the highest-order term, as
shown in the following tabulation:

Gp  dp-2 Qp-4 Qu-6
Q-1 QAu-3 Gu-5 «au_7

The next step is to form the following array of numbers by the indicated operations,
illustrated here for a sixth-order equation:

af,s:6 + a535 + - tas+ayp=0 (2-252)
6
s ag a4 a; ag
.5‘5 as as al 0
& asaq — aga3 _ 4 asaz — a1 _ B asag — ag X 0 —a 0
as as as
Aasz — asB Aa) — asap AxX0—asx0
3 —————tte T ———e 22 —— e ——————
s 2 C 2 D 2 0 0
BC — AD Cap—A %0 Cx0—-Ax%x0
2 —_———— h-—-—() = _— = 0
K C E C ap C 0
ED — Ca
1 0
——=F 0 0 0
s E
—Ex0
& F““—F"— = ag 0 0 0

This array is called the Routh’s tabulation or Routh’s array. The column of s°s on the left
side is used for identification purposes. The reference column keeps track of the calcula-
tions, and the last row of the Routh’s tabulation should always be the s° row.

Once the Routh’s tabulation has been completed, the last step in the application of the
criterion is to investigate the signs of the coefficients in the first column of the tabulation,
which contains information on the roots of the equation. The following conclusions are
made:

The roots of the equation are all in the left half of the s-plane if all the elements of the first
column of the Routh’s tabulation are of the same sign. The number of changes of signs in
the elements of the first column equals the number of roots with positive real parts, or those
in the right-half s-plane.
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The following examples illustrate the applications of the Routh-Hurwitz criterion
when the tabulation terminates without complications.

EXAMPLE 2.13.1 Consider the equation
27 +57 432 +55+10=0 (2-253)
Because the equation has no missing terms and the coefficients are all of the same sign, it satisfies the

necessary condition for not having roots in the right-half or on the imaginary axis of the s-plane.
However, the sufficient condition must still be checked. Routh’s tabulation is made as follows:

5 2 3 10
s 1 5 0
Sign change
3y —
g WOZRO_ g
Signchange

5! 4———(‘7)(5)__7“)(10)=6.43 0 0
s 10 0 0

Because there are two sign changes in the first column of the tabulation, the equation has two roots in
the right half of the s-plane. Solving for the roots of Eq. (2-253), we have the four roots at s =
—1.005 £ j0.933 and 5 = 0.755 £ j1.444. Clearly, the last two roots are in the right-half s-plane,
which cause the system to be unstable.

Toolbox 2-13-1
The roots of the polynomial in Eq.(2-253) are obtained using the following sequence of MATLAB functions.

>> clear all
>>p=[213510] %¥Define polynomial 2*sA4+s5A3+3*5A2+5%5+10

p=
2 1 3 5 10
>> roots(p)
ans =
0.7555 + 1.44441
0.7555 - 1.444413
-1.0055 + 0.93311
~-1.0055 - 0.93313i

2-13-2 Special Cases when Routh’s Tabulation Terminates Prematurely

The equations considered in the two preceding examples are designed so that Routh’s
tabulation can be carried out without any complications. Depending on the coefficients of
the equation, the following difficulties may occur, which prevent Routh’s tabulation from
completing properly:
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1. The first element in any one row of Routh’s tabulation is zero, but the others are
not.

2. The elements in one row of Routh’s tabulation are all zero.

In the first case, if a zero appears in the first element of a row, the elements in the next
row will all become infinite, and Routh’s tabulation cannot continue. To remedy the
sitwation, we replace the zero element in the first column by an arbitrary small positive

number e, and then proceed with Routh's tabulation. This is illustrated by the following
example.

Consider the characteristic equation of a linear system
S+ +27+25+3=0 (2-254)

Because all the coefficients are nonzero and of the same sign. we need to apply the Routh-Hurwitz
criterion. Routh’s tabulation is carried out as follows:

s 1 203
£ 1L 20
£ 0 3

Because the first element of the 57 row is zero, the elements in the 5’ row would all be infinite. To
overcome this difficulty, we replace the zero in the s° row with a small positive number ¢, and then
proceed with the tabulation. Starting with the s row, the results are as follows:

U
&
o]

Signchange 5

0
Signchange & 3 0

Because there are two sign changes in the first column of Routh’s tabulation, the equation in Eq.
(2-254) has two roots in the right-half s-plane. Solving for the roots of Eq. (2-254), we get s =
—0.091 £ j0.902 and s = 0.406 £ j1.293; the last two roots are clearly in the right-half s-plane.

It should be noted that the e-method described may not give correct results if the equation has
pure imaginary roots.

In the second special case, when all the elements in one row of Routh’s tabulation are zeros
before the tabulation is properly terminated, it indicates that one or more of the following conditions
may exist:

1. The equation has at least one pair of real roots with equal magnitude but opposite signs.
2. The equation has one or more pairs of imaginary roots,

3. The equation has pairs of complex-conjugate roots forming symmetry about the origin of
the s-plane; for example, s = -1 jl, s=1x jl.

The situation with the entire row of zeros can be remedied by using the auxiliary equation
A(s) = 0, which is formed from the coefficients of the row just above the row of zeros in Routh’s
tabulation. The auxiliary equation is always an even polynomial; that is, only even powers of s appear.
The roots of the auxiliary equation also satisfy the original equation. Thus, by solving the auxiliary
equation, we also get some of the roots of the original equation. To continuc with Routh’s tabulation
when a row of zero appears, we conduct the following steps:

1. Form the auxiliary equation A(s) = 0 by using the coefficients from the row just preceding
the row of zeros.

2. Take the derivative of the auxiliary equation with respect to s: this gives dA(s)/ds = 0.
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» EXAMPLE 2.13.3

» EXAMPLE 2-13-4

3. Replace the row of zeros with the coefficients of dA(s)/ds = 0.

4. Continue with Routh’s tabulation in the usual manner with the newly formed row of
coefficients replacing the row of zeros.

5. Interpret the change of signs, if any, of the coefficients in the first column of the Routh’s
tabulation in the usual manner.

2]
Consider the following equation, which may be the characteristic equation of a linear control system:
P +4st + 857 + 82 +Ts+4=0 (2-255)
Routh’s tabulation is
£ 18 7
st 48 4
$ 6 60
P 4 4
s 00
Because a row of zeros appears prematurely, we form the auxiliary equation using the coefficients of
the 5% row:
A(s) =4 +4=0 (2-256)
The derivative of A(s) with respect to 5 is
dA(s)
=8 = 2-257
e 8=0 (2-257)

from which the coefficients 8 and O replace the zeros in the s' row of the original tabulation. The
remaining portion of the Routh’s tabulation is

s! 8 0 coefficients of dA(s)/ds
2 4

Because there are no sign changes in the first column of the entire Routh’s tabulation, the equation in
Eq. (2-257) does not have any root in the right-half s-plane. Solving the auxiliary equation in Eq.
(2-256), we get the two roots at s = j and § = — f, which are also two of the roots of Eq. (2-255).
Thus, the equation has two roots on the jw-axis, and the system is marginally stable. These imaginary
roots caused the initial Routh’s tabulation to have the entire row of zeros in the s' row.

Because all zeros occurring in a row that corresponds to an odd power of s creates. an auxiliary
equation that has only even powers of s, the roots of the auxiliary equation may all lie on the jw-axis.
For design purposes, we can use the all-zero-row condition to solve for the marginal value of a system
parameter for system stability. The following example illustrates the realistic value of the Routh-
Hurwitz criterion in a simple design problem. «

Consider that a third-order control system has the characteristic equation

§* 4+ 3408357 + 1,204,000 + 1.5 x 10K =0 (2-258)
The Routh-Hurwitz criterion is best suited to determine the critical value of X for stability, that is, the
value of X for which at least one root will lie on the jw-axis and none in the right-half s-plane, Routh’s
tabulation of Eq. (2-258) is made as follows:

s 1 1,204,000
5 3408.3 1.5x 107K
41036 x 107 — 1.5 x 10K 0

) 3408.3

s 1.5x 10’K <
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Toolbox 2-13-2

Refer to Section 2-14-2 for the MATLAB symbolic tool to solve this problem.

» EXAMPLE 2.13.5

For the system to be stable, all the roots of Eq. (2-258) must be in the left-half s-plane, and,
thus, all the coefficients in the first column of Routh’s tabulation must have the same sign.
This leads to the following conditions:

410.36 x 107 — 1.5 x 10°K
3408.3

>0 (2-259)
and
1.5x 10°K>0 (2-260)

From the inequality of Eq. (2-259), we have K < 273.57, and the condition in Eq. (2-260)
gives K > 0. Therefore, the condition of K for the system to be stable is

0<K<273.57 (2-261)
If we let K = 273.57, the characteristic equation in Eq. (2-258) will have two roots on the
Jw-axis, To find these roots, we substitute X' = 273.57 in the auxiliary equation, which is
obtained from Routh’s tabulation by using the coefficients of the s* row. Thus,

A(s) = 3408.35% +4.1036 x 10° = 0 (2-262)

which has roots at s = 71097 and s = — j1097, and the corresponding value of X at these
roots is 273.57. Also, if the system is operated with K = 273.57, the zero-input response of
the system will be an undamped sinusoid with a frequency of 1097.27 rad/sec.

As another example of using the Routh-Hurwitz criterion for simple design problems, consider that
the characteristic equation of a closed-loop control system is

S KL+ (K+2)s+4=0 (2-263)
1t is desired to find the range of K so that the system is stable. Routh’s tabulation of Bq. (2-263) is
s 1 K+2
s> 3K 4

3K(K +2)—4
il M A
s 3K 0
50 4

From the s° row, the condition of stability is X > 0, and from the s' row, the condition of stability is

3K2+6K—-4>0 (2-264)
or

K< —2528 or K>0528 (2-265)

Toolbox 2-13-3

Refer to Section 2-14-2 for the MATLAB symbolic tool to solve this problem.
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When the conditions of K >0 and K > (0.528 are compared, it is apparent that the latter
requirement is more stringent. Thus, for the closed-loop system to be stable, K must satisfy

K >0.528 (2-2606)
The requirement of K < —2.528 is disregarded because K cannot be negative.

It should be reiterated that the Routh-Hurwitz criterion is valid only if the characteristic equation
is algebraic with real coefficients. If any one of the coefficients is complex, or if the equation is not
algebraic, for example, containing exponential functions or sinusoidal functions of s, the Routh-
Hurwitz criterion simply cannot be applied.

Another limitation of the Routh-Hurwitz criterion is that it is valid only for the determination of
roots of the characteristic equation with respect to the left half or the right half of the s-plane. The
stability boundary is the jw-axis of the s-plane. The criterion cannot be applied to any other stability
boundaries in a complex plane, such as the unit circle in the z-plane, which is the stability boundary of
discrete-data systems (Appendix H).

> 2-14 MATLAB TOOLS AND CASE STUDIES
2-14-1 Description and Use of Transfer Function Tool

If you have access to the MATLAB Symbolic Toolbox, you may use the ACSYS Transfer
Function Symbolic Tool by pressing the appropriate button in the ACSYS window or by
typing in tfsym in the MATLAB command window. The Symbolic Tool window is shown
in Fig. 2-26. Click the ““Help for st Time User” button to see the instructions on how to use
the toolbox. The instructions appear in a Help Dialog window, as shown in Fig. 2-27. As
instructed, press the “Transfer Function and Inverse Laplace™ button to run the program.
You must run this program within the MATLAB command window. Enter the transfer
function, as shown in Fig. 2-28, to get the time response.

State-Space

Slat&Space with Init. Cond.

Figure 2-26 The Transfer Function Symbolic window.

J Help Dialog
You must have access to MATLAB Symbolic Toolbox. To run Programs, go ta
| @ MATLAB Command window after clicking each pushbutton.

e

Figure 2-27 The Symbolic Help Dialog window.
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Transfer Function Symbolic. © Kuo & Golnaraghi 8th Edition, John Wiley &
Sons. e.g., Use the following input format: (s+2)*{s"3+2%g41)/(s*(s"2+2*s+1))

Enter G=5*(s+0.6)/({s:+1 )*(s+2)*(s+3))
L

(s+1) (s+2) (s+3)

G in polynomial form:

Transfer function:
5543

SA3H65A 2+ 1546
G factored:
Zero/pole/gain:

Inverse Laplace transform:

Gtime =

—exp(=t)+7*exp(=2*)~6*exp (-3*t)

Figure 2-28 The inverse Laplace transform of Eq. (2-267) for an impulse input, in the
MATLAB command window.
» EXAMPLE 2-14-1 Find the inverse Laplace transform of the transfer function

Ss+3 B 55s+3
(s+D(s+2)(s+3) s*+6s2+11s+6

G(s) = (2-267)

You can do this either by using the faplace command in the MATLAB command window, as we
demonstrated in Toolbox 2-5-1 for Example 2-5-1, or by utilizing the tfsym function, as shown in Fig. 2-28.

To find the time representation of Eq. (2-267) for a different input function such as a step or a
sinusoid, the user may combine the input transfer function (e.g. 1/s for a unit-step input) with the
transfer function in the TFtool input window. So to obtain Eq. (2-267) time representation for a unit-
step input, use the following transfer function:

Ss+3
G(s) = 2-268
O = T+ 26+3) (2-268)
and repeat the previous steps.
Similarly, for the transfer function
1000 W}
Y(s) — = n 2-269
() 5(s% 4+ 34,55+ 1000) (5% + 2Lwns + @) ( )
using the tfsym tool, the time representation of this system is obtained as
T4H{—1/2 + 13/40%i)" exp({—69/4 — 53/2*1)}"1 4 (—1/2 — 13/40%1)" exp({—69/4+
53/2*)'1) <

2-14-2 MATLAB Tools for Stability

The easiest way to assess stability of known transfer functions is to find the location of the
poles. For that purpose, the MATLAB code that appears in Toolbox 2-13-1 is the easiest
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» EXAMPLE 2-14-2

B EXAMPLE 2-14-3

> EXAMPLE 2-14-4

way for finding the roots of the characteristic equation polynomial—i.e., the poles of the
system. However, many of the other tools within ACSYS software may also be used to find
the poles of the closed-loop system transfer function, including the “Transfer Function
Symbolic™ (tfsym) and the “Transfer Function Calculator™ (tfcal). You may also conduct
a more thorough stability study of your system using the root locus and phase and gain
margin concepts utilizing the “Controller Design Tool,” respectively. These topics will be
thoroughly discussed in Chapter 9.

In this section, we introduce the tfrouth tool, which may be used to find the Routh
array, and more importantly it may be utilized for controller design applications where it is
important to assess the stability of a system for a controller gain, say k.

The steps involved in setting up and then solving a given stability problem using
tfrouth are as follows.

1. Type “tfrouth” in the MATLAB command module within the ‘“‘tfsymbolic™
directory.

2. Enter the characteristic polynomial in symbolic (e.g., s*3+s*2+s+1) or in vectorial
(e.g. [1 11 1]) forms.

3. Press the “Routh-Hurwitz” button and check the results in the MATLAB
command window.

4. In case you wish to assess the stability of the system for a design parameter, enter
it in the box designated as *“‘Enter Symbolic Parameters.” For example, for s*3
+k1*s#2 4+-k2"s + 1, you need to enter “k1 k2” in the “Enter Symbolic Parame-
ters” box, followed by entering the polynomial s*3 +klxs*2+k24s+1 in the
“Characteristic Equation” box.

5. Press the “Routh-Hurwitz™ button to form the Routh table and conduct the Routh-
Hurwitz stability test.

To better illustrate how to use tfrouth, let us solve some of the earlier examples in this
chapter.

Recall Example 2-13-1; let’s use tfrouth for the following polynomial:

2 + 2 + 3% +55+10=0 (2-270)

In the MATLAB command module, type in “tfrouth” and enter the characteristic Eq. (2-270) in
polynomial form, followed by clicking the “Routh-Hurwitz™ button to get the Routh-Hurwitz matrix,
as shown in Fig. 2-29.

The results match Example 2-14-2. The system is therefore unstable because of two positive poles.
The Routh'’s array first column also shows two sign changes to confirm this result. To see the complete
Routh table, the user must refer to the MATLAB command window, as shown in Fig. 2-30. -9

Consider Example 2-13-2 for characteristic equation of a linear system:

S+ +2% +25+3=0 (2-271)

After entering the transfer function characteristic equation using tfrouth and pressing the “Routh-
Hurwitz™ button, we get the results shown in Fig. 2-31.
As a result, because of the final two sign changes, we expect to see two unstable poles. <

Revisiting Example 2-13-3, use tfrouth to study the following characteristic equation:

£ +4s' +8° 482 +T5+4=0 (2272)
to get the results shown in Fig. 2-32,
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» EXAMPLE 2-14-5

First element of row3 is zero. Epsilon is used.
Routh-Hurwitz Matrix:

-3+ 2eps

---------- 0 0
[ eps

[

[ 3 0 0

There are two sign changes in the first column.

Figure 2-31 Stability results for Example 2-14-3, after using the Routh-Hurwitz test.

Row of zeros found at row5. Auxiliary polynomial is used.

Routh-Hurwitz Matrix:
[t 8 7 1
( ]
[4 8 4 1
[ 1
[6 6 0 1
[ 1
[4 4 0 1
[ |
[8 1] 0 1
[ |
4 0 0 1

There are two sign changes in the first column.

Figure 2-32 Stability resuits for Example 2-14-4, after using the Routh-Hurwitz test.

In this case, the program has automatically replaced the whole row of zeros in the fifth row with
the coefficients of the polynomial formed from the derivative of an auxiliary polynomial formed from
the fourth row. As a result, the system is unstable. Further, because of the final zero sign changes, we
expect to see no additional unstable poles. The unstable poles of the system may be obtained directly
by obtaining the roots of the auxiliary polynomial:

A(s) =45 +4=0 (2-273)

Considering the characteristic equation of a closed-loop control system

S+3K2+ (K+2)s+4=0 (2-274)

It is desired to find the range of K so that the system is stable. See Figs. 2-33, 2-34, and 2-3§ for more
details,

In the end, the user is encouraged to make use of the software to solve examples and problems
appearing in this chapter.
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>> k=4;
>>RH

RH =
L, k2
3*k,
1/3%(-443%kA2+6%k Yk,
41

P =1
(=N~
[ E—

>> eval(RH)
ans =
1.0000 2.4000
1.2000 4.0000
-0.9333 0
4.0000 0

There are two sign changes in the first column.

>> k=1,

>> eval(RH)

ans =
1.0000 3.0000
3.0000 4.0000
1.6667 0
4.0000 0

There are no sign changes in the first column.

Figure 2-35 The Routh’s array for Example 2-14-5.

» 2-15 SUMMARY

In this chapter, we presented some fundamental mathematics required for the study of linear control
systems. Specifically, we started with complex numbers and their basic properties leading to
frequency domain mathematics and plots. The Laplace transform is used for the solution of linear
ordinary differential equations. This transform method is characterized by first transforming the real-
domain equations into algebraic equations in the transform domain. The solutions are first obtained in
the transform domain by using the familiar methods of solving algebraic equations. The final solution
in the real domain is obtained by taking the inverse transform, For engineering problems, the
transform tables and the partial-fraction expansion method are recommended for the inverse
transformation.

In this chapter, the definitions of BIBO, zero-input, and asymptotic stability of linear time-
invariant continuous-data and discrete-data systems are given, It is shown that the condition of these
types of stability is related directly to the roots of the characteristic equation. For a continuous-data
system to be stable, the roots of the characteristic equation must all be located in the left half of the
s-plane.

The necessary condition for a polynomial F(s) to have no zeros on the jeo-axis and in the right half
of the s-plane is that all its coefficients must be of the same sign and none can vanish. The necessary
and sufficient conditions of F(s) to have zeros only in the left half of the s-plane are checked with the
Routh-Hurwitz criterion. The value of the Routh-Hurwitz criterion is diminished if the characteristic
equation can be solved using MATLAB.
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B REVIEW QUESTIONS

1. Give the definitions of the poles and zeros of a function of the complex variable s,

2. What are the advantages of the Laplace transform method of solving linear ordinary
differential equations over the classical method?

3. What are state equations?

4. What is a causal system?

5. Give the defining equation of the one-sided Laplace transform.
6. Give the defining equation of the inverse Laplace transform.

7. Give the expression of the final-value theorem of the Laplace transform. What is the
condition under which the theorem is valid?

8. Give the Laplace transform of the unit-step function, u(?).
9. What is the Laplace transform of the unit-ramp function, f,(¢)?

10. Give the Laplace transform of f) shifted to the right (delayed) by 7, in terms of the
Laplace transform of f{#), F(s).

1. ¥ LA] = Fi(s) and £[H(6)] = Fa(s), then find £ fi(#)] /2(e)] in terms of Fy(s) and
Fa(s).

12. Do you know how to handle the exponential term in performing the partial-fraction
expansion of

10 _2

FO=mneia°

13. Do you know how to handle the partial-fraction expansion of a function whose denominator
order is not greater than that of the numerator, for example,

10(s® + 55+ 1)

Fo) = me+2

14. In trying to find the inverse Laplace transform of the following function, do you have to
perform the partial-fraction expansion?

F(s) =

(s +5)°

15. Can the Routh-Hurwitz criterion be directly applied to the stability analysis of the
following systems?

(a) Continuous-data system with the characteristic equation
453 425 +35 42075 =0
(b) Continunous-data system with the characteristic equation
S 58 438+ Ks+ K2 =0
16. The first two rows of Routh’s tabulation of a third-order system are

s 22

£ 4 4
Select the correct answer from the following choices:
(a) The equation has one root in the right-half s-plane.

(b) The equation has two roots on the jw-axis at s = j and —j. The third root is in the left-half
s-plane.
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{c) The equation has two roots on the jw-axis at s = 2j and s = —2, The third root is in the
left-half s-plane.

{d) The equation has two roots on the jw-axis at s = 2j and s = —2 . The third root is in the
right-half s-plane.

17, If the numbers in the first column of Routh’s tabulation turn out to be all
negative, then the equation for which the tabulation is made has at least one root not in
the left half of the s-plane. T @&

18. The roots of the auxiliary equation, A(s) = 0, of Routh’s tabulation of a characteristic equation
must also be the roots of the latter, Ty (®

19. The following characteristic equation of a continuous-data system represents an unstable
system because it contains a negative coefficient.

- +55+10=0 T ®
20, The following characteristic equation of a continuous-data system represents an unstable
system because there is a zero coefficient.

S+52+4=0 m ®
21. When a row of Routh’s tabulation contains all zeros before the tabulation ends, this means
that the equation has roots on the imaginary axis of the s-plane. I ®

Answers to these review questions can be found on this book’s companion Web site:
www.wiley.com/college/golnaraghi.
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PROBLEMS FOR SECTION 2-1
2-1. Find the poles and zeros of the following functions (including the ones at infinity, if any). Mark
the finite poles with x and the finite zeros with 0 in the s-plane.

10(s +2) __10{s+2)
@ 66) = 6+ D+ 10) © 66) = Tz +2)
C 10s(s+1) e
® G6) = T3 +2) @ GO = G+ DG 2)

2-2. Poles and zeros of a function are given; find the function:
(a) Simple poles: 0, —2; poles of order 2: —3; zeros: —1, oo
(b) Simple poles: —1, —4; zeros: 0

(c) Simple poles: =3, oo; poles of order 2: 0,—1; zeros: %, oc

2-3. Use MATLAB to find the poles and zeros of the functions in Problem 2-1.

PROBLEMS FOR SECTION 2-2
2-4. Find the polar representation of G(s) given in Problem 2-1 for s = jw, where w is a constant
varying from zero to infinity.

2-5. Find the polar plot of the following functions:

(@) G(J'C"}=fj71[17)

o G(,"w)=1+2;(j§1 - (jf)z 0<t<1

© G(jw) = wl @\? i
1+2§(fw—n) + (’w_n)

@ G(fw)=7w(1+w+ﬁ

. e Jol
© 6l =T
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2-6. Use MATLAB to find the polar plot of the functions in Problem 2-5.
2-7. Draw the Bode plot of the following functions:

L 2000( jo +0.5)
(@) G(jo)= jo{ jo + 10){ jew + 50)
- 25
® Gljo) = e 252 + 10)
L 2
© Gljw) = _J© = 1005 + 100)

—w?( jo — 2502 + 100)

1
G( jw) = 2
@ D (D
(] n

0.03 (et + 1)
(eJ* — 1)(3e/et + 1)(e/ +0.5)

0<z¢<1

(e) G jw) =
2-8. Use MATLAB to draw the Bode plot of the functions in Problem 2-7.

PROBLEMS FOR SECTION 2-3
2-9. Express the following set of first-order differential equations in the vector-matrix form of
dx(t)

T = Ax(l) ~+ Bll(f).
dxc'h(t) = —x1(t) + 2x(t)

(a) dizt(—tl = —2x2(1) + 3x3 (1) + i (1)
dx“l;t(t) = —X (t) - 3x2(t) - X3 (t) + uZ(t)
dx_;_lf’) = —x1 (1) + 202(t) + 201 (1)

(b) d%m = 2x1(1) — x3(t) +u2(?)

dx%.t(t) = 3x1(t) — 4x2(s) — x3{2)

PROBLEMS FOR SECTION 2-4

2-10. Prove theorem 3 in Section 2-4-3.
2-11. Prove the integration theorem 4 in Section 2-4-3.
2-12. Prove the shift-in-time theorem, which is

L8t - Tug(z — T) = e7HG(s)]

2-13. Prove the convolution theorem in both time and s domain, which is
Llg1(2) * g2(2)] = Gi(s)G2(s)
Llg1(1)g2(1)] = Gi{s) * Ga(s)
2-14. Prove theorems 6 and 7.
2.15. Use MATLAB to obtain [,{sin22t}. Then, calculate C{COSZZt} when you know ,C{sin22r}.
Verify your answes by calculating £{cos?2t} in MATLAB.
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2-16. Find the Laplace transforms of the following functions. Use the theorems on Laplace
transforms, if applicable.

(@) g(t) = 5te™u(1)

(b) g(t) = (tsin2e + €2 )uy(t)
(©) g(t) = 2eXsin2s u(t)

(d) g(2) = sin2tcos2t uy(t)

o0
{(e) g(t) = Ze'SkTé(t — kT) where 5(t} = unit-impulse function
k=0

2-17. Use MATLAB to solve Problem 2-16.

2-18. Find the Laplace transforms of the functions shown in Fig. 2P-18. First, write a complete
expression for g(z), and then take the Laplace transform. Let g7(#) be the description of the function
over the basic period and then delay g7() appropriately to get g(¢). Take the Laplace transform of g(¢)
to get the following:

{0
1
0 ——
1k 1 2 3 4 5 6 7 8 '
(a)
g0
] -
0 —
1 2 3 4 t
(b)

Figure 2P-18

2-19. Find the Laplace transform of the following function.

t+1 0<t<]

0 1<1<2
8(t) = 22—t 2<1t<3
0 t>23

2-20. Find the Laplace transform of the periodic function in Fig. 2P-20.

f(x)
A
1
0 7 T >t
-1 L
Figure 2P-20

2-21. Find the Laplace transform of the function in Fig. 2P-21.
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f(t)

F 3
L
LZ
0 T T >t
1
17
Figure 2P-21

2-22. Solve the following differential equations by means of the Laplace transform,

2
(@) dd—J;(Q-q-S %QM F(t) = e Zug(t) Assume zero initial conditions.
dx:h(:) = x(t)
™) a0
;t = —2x1(f) — 3x2(2) + us(£) 21 (0) =1, x2(0) = 0

() a1 | d(1) -
© a7 g T TR = —Tul)

Ly 1 Pioy_1 vw0) =

20 =-1 20 =1 y0)=0

2-23. Use MATLARB to find the Laplace transform of the functions in Problem 2-22,
2-24. Use MATLAB to solve the following differential equation:

dy »
Eé’-—y = ¢' (Assuming zero initial conditions)

2-25. A series of a three-reactor tank is arranged as shown in Fig. 2P-25 for chemical reaction.

o [J] ey ]
y
—— )
Reactor 2 Reactor 3
Figure 2P-25

The state equation for each reactor is defined as follows:

1
RI ;% = 11000 + 100Cx2 — 1100Cas — k1 ViCai)
1
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dChy 1
R2: =22 = _[1100C4) — 1100Ca2 — k2V2C2)
dt Vs
dCa3

1
R3: = ‘V_[IOOOCAZ - IOOOCAg - k3 VgCA;;]
3

dr

when V; and k; represent the volume and the temperature constant of each tank as shown in the
following table:

Reactor Vi ki
1000 0.1

1500 0.2

100 04

Use MATLAB to solve the differential equations assuming Cq; = Cq3 = Ca3 =0atz=0.

PROBLEMS FOR SECTION 2-5
2-26. Find the inverse Laplace transforms of the following functions. First, perform partial-fraction
expansion on (G(s); then, use the Laplace transform table.

1

@ G(s) = SE+2)(s+3)

(b) G(s) = (j?;z()m

(©) Gls) = ﬂ% B
(d) G(s) = 9_(322(:4;—1)2)

(e} G(s) = T

 G(s) = (s +2|(s52):rs;15]3 +5)
(8 G(s) = %

(h) G(s) = Fﬁ%

O 0) = 2o 10 Bt S

THESS + T 1551 6

2-27, Use MATLAB to find the inverse Laplace transforms of the functions in Problem 2-26. First,
perform partial-fraction expansion on G(s); then, use the inverse Laplace transform.
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2-28. Giventhe state equation of the system, convert it to the set of first-order differential equation.

0 -1 2 0 -1
@A=|1 0 1| B=|1 0
-1 -2 1 [0 0
301 -2 -1
M Aa=|-12 2| B=|0
0 0 1 [2

2-29. The following differential equations represent linear time-invariant systems, where r(¢)
denotes the input and y(7) the output. Find the transfer function ¥(s)/R(s) for each of the systems.
(Assume zero initial conditions.)

@) “3_5 Lo "Zf’ +5 d);(t) +6y(0) = 3% d(tt) +rl1)

(b) d;;(f ) 110 dtg’) d{g) +5y(1) = 5r{f)

© 0 410D 00 1 1 / y(ear = 1ary
@ 2" ”(” d;z(:) +53(1) = r(t) + 2r(r — 1)

()dzygt;tl)M (rd:rl) 5},(,+1)=¥+2r(,)+2]r(r)dr

—o¢

d"*y(z) zd; qr)+d;()+2v(,)+2 / J(e)dt = (d 2 12r(t - 2)

—oC

®

2-30, Use MATLAB to find Y(s)/R(s) for the differential equations in Problem 2-29,
2-31. Use MATLAB to find the partial-fraction expansion to the following functions.

Lt
® G = T A6+ 6)
(s+1)
® G = TN E T 25+ )
- Gt
(c) G(s) = ss+ 1)(s+5)
5e~%
@ 66 = @S+
_ 100(s* + s+ 3)
© G6) =~z 573
1
OGS = T eTos?
2‘93 + S” + 8s +6
& G(s) = (F+4) (2 +25+2)
. 2
) Gl = E o8 1524542

(s +2)(s+ )

2-32. Use MATLAB to find the inverse Laplace transforms of the functions in Problem 2-31.
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PROBLEMS FOR SECTIONS 2-7 THROUGH 2-13

2-33. Without using the Routh-Hurwitz criterion, determine if the following systems are asymp-
totically stable, marginally stable, or unstable. In each case, the closed-loop system transfer function
is given.

(@ M(s) = Fm—i)j_;-

by M(s) = g‘%

© M) =5-5.773

(@) M(s) = G+ ;())g(zt 213 +2)
(&) M(s) = m%
® M(s) e

TP+ 353 +5052 + 5+ 100

2-34. Use the ROOTS command in MATLAB to solve Problem 2-33.

2-35. Using the Routh-Hurwitz criterion, determine the stability of the closed-loop system that has
the following characteristic equations. Determine the number of roots of each equation that are in the
right-half s-plane and on the jw-axis.

(a) & +255% + 105 + 450 =0

(b) s* + 2552 + 105+ 50 =0

(c) s* +255* +250s + 10 =0

(d) 2s* + 10s* +5.55 +5.55+ 10 =0

(e) s%+ 255 +85* + 155 + 2052 + 165 + 16 = 0

(f) ' +25° + 1052 +205+5=0

() 5% + 257 + 855 + 125% + 205* + 1657 + 1652 = 0

2-36. Use MATLAB to solve Problem 2-35,

2-37. Use MATLAB Toolbox 2-13-1 to find the roots of the following characteristic equations of
linear continuous-data systems and determine the stability condition of the systems,

(a) 5° + 1052 4+ 10s + 130 =0

M) s* +128% +5% + 25 +10=0

(© s*+128 + 102 +10s + 10 =0

@ s +1283+2+10s+1=0

(e) s°+65° + 1255s* + 100s® + 100s> +20s + 10 =0

() s° +1255* 1 1005* | 100s> + 205+ 10 =0

2-38. For each of the characteristic equations of feedback control systems given, use MATLAB
to determine the range of K so that the system is asymptotically stable. Determine the value of K so

that the system is marginally stable and determine the frequency of sustained oscillation, if
applicable.

(@) s*+25°3 + 152 +20s+ K =0
(b s* +Ks* + 252 + (K+1)s+10=0
(€ &+ (K+2)*+2Ks+10=0
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@) s +20s> + 55+ 10K =0
(€) 5* + K& + 552+ 10s + 10K = 0
0T +1255 4+ 2+ 55+ K=0

2-39. The loop transfer function of a single-loop feedback control system is given as

K(s+5)

GHE) = e a+ )

The parameters K and 7 may be represented in a plane with K as the horizontal axis and T as the
vertical axis. Determine the regions in the T-versus-K parameter plane where the closed-loop system
is asymptotically stable and where it is unstable. Indicate the boundary on which the system is
marginally stable.

2-40. Given the forward-path transfer function of unity-feedback control systems, apply the Routh-
Hurwitz, criterion to determine the stability of the closed-loop system as a function of X, Determine
the value of K that will cause sustained constant-amplitude oscillations in the system. Determine the
frequency of oscillation.

_ K(s+4)(s+20)
(@) Gls) =5 {5 + 100){s + 500)
m0m=ﬂ%%%$@
K
© G) = 0 1 20)
@ G5 K{s+1)

TSI 43541
2-41. Use MATLAB to solve Problem 2-40.

2-42. A controlled process is modeled by the following state equations.

‘i"[’lf’ ) d”;t(') = 10x; (1) + ult)

The control #(?) is obtained from state feedback such that

=x(f) — 2x3(2)

u(t) = —kyx1 (1) — kaxa(2)
where k| and k- are real constants. Determine the region in the k)-versus-4> parameter plane in
which the closed-loop system is asymptotically stable.
2-43, A linear time-invariant system is described by the following state equations.
dx(t)
dt

0 1 0o 0
A=(0 0 1 B=|0
0 —4 -3 1

The closed-loop system is implemented by state feedback, so that u{t) = —Kx(t), where K =
[k kp k3] and ky, k2, and k3 are real constants. Determine the constraints on the elements of K
so that the closed-loop system is asymptotically stable.

= Ax(2) + Bu(t)

where

2-44. Given the system in stale equation form,

dx(f)
== Ax(1)+Bu(t)
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(1 0 0 1
(a) A=|0 -3 0 B=10
0 0 =2 1

1 0 0 0
) A=|0 -2 0| B=|1
0 0 3 1

Can the system be stabilized by state feedback u(t) = —Kx(r), where K = [k} k2 k3]?

2-45. Consider the open-loop system in Fig. 2P-45(a).

F(s) —»| G(s) —» Y(s)

Figure 2P-45a

d) 8 dz
where P Akt and f(z) = rz+z.
Our goal is to stabilize this system so the closed-loop feedback control will be defined as shown in
the block diagram in Fig. 2P-45(b).

X(s) E(s) Fs)

Y(s)
H(s) >

G(s)

Figure 2P-45h

Assuming f(t) = kpe + kg %.

(a) Find the open-loop transfer function.
(b) Find the closed-loop transfer function.
(¢) Find the range of k, and k, in which the system is stable.

2-46. The block diagram of a motor-control system with tachometer feedback is shown in Fig.
2P-46. Find the range of the tachometer constant K, so that the system is asymptotically stable.

T 100 @
+ s(s +5.6)(s + 10) S
Ks |

Figure 2P-46
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2-47. Theblock diagram of a control system is shown in Fig. 2P-47. Find the region in the K-versus-
a plane for the system to be asymptotically stable. (Use K as the vertical and « as the horizontal axis.)

) e(t) s+ K(s+2) 0
=l Y

Figure 2P-47

2-48. The conventional Routh-Hurwitz criterion gives information only on the location of the zeros
of a polynomial F(s) with respect to the left half and right half of the s-plane. Devise a linear
transformation s = f( p, @), where p is a complex variable, so that the Routh-Hurwitz criterion can
be applied to determine whether F(s) has zeros to the right of the line s = —«, where « is a positive
real number. Apply the transformation to the following characteristic equations to determine how
many roots are to the right of the line s = —1 in the s-plane.

(a) F(s)=5'2+55+3=0
b) $+3%+3s+1=0
(€) F(s) =5 + 45> +35+10=0
(d) s° +4s2 +4s+4=0

2-49. The payload of a space-shuttle-pointing control system is modeled as a pure mass M. The
payload is suspended by magnetic bearings so that no friction is encountered in the control. The
attitude of the payload in the y direction is controlled by magnetic actuators located at the base.
The total force produced by the magnetic actuators is f{({). The controls of the other degrees of
motion are independent and are not considered here. Because there are experiments located on the
payload, electric power must be brought to the payload through cables. The linear spring with
spring constant K, is used to model the cable attachment. The dynamic system model for the

(1)

L
ot | Tro
2 2

Figure 2P-49
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control of the y-axis motion is shown in Figure 2P-49. The force equation of motion in the y-
direction is

d*y(1)

f(O) =Ky(t) + M di2

where K; =0.5N-m/m and M = 500kg. The magnetic actuators are controlled through state
feedback, so that

dy(t)
dt
(a) Draw a functional block diagram for the system.

f(£) = —Kpy(r) — Kp

(b) Find the characteristic equation of the closed-loop system.
(c) Find the region in the Kp-versus-Kp plane in which the system is asymptotically stable,

2-50. An inventory-control system is modeled by the following differential equations:

B0 )+ ulr)
2240 gty

where x;(f) is the level of inventory; x,(z), the rate of sales of product; #(¢), the production rate; and X,
a real constant, Let the output of the system by y(¢) = x;(¢) and r(z) be the reference set point for the
desired inventory level. Let u(t) = r(t) — y(¢). Determine the constraint on X so that the closed-loop
system is asymptotically stable.

2-51. Use MATLAB to solve Problem 2-50.

2-52. Use MATLAB to
(a) Generate symbolically the time function of f#)

£(0) =5 +2¢Zsin (2: + %’) - 4e-2rcos(2, _ g) + 3

(s+1)

s(s + 2)(s2 + 25 + 2)

(c) Find the Laplace transform of ft) and name it F(s).

(d) Find the inverse Laplace transform of G(s) and name it g(?).

(e) If G(s) is the forward-path transfer function of unity-feedback control systems, find the transfer
function of the closed-loop system and apply the Routh-Hurwitz criterion to determine its stability.
(E) If F(s) is the forward-path transfer function of unity-feedback control systems, find the transfer
function of the closed-loop system and apply the Routh-Hurwitz criterion to determine its stability.

(b) Generate symbolically G(s) =




CHAPTER 3

Block Diagrams and
Signal-Flow Graphs

In this chapter, we discuss graphical techniques for modeling control systems and their
underlying mathematics. We also utilize the block diagram reduction techniques and the
Mason’s gain formula to find the transfer function of the overall control system. Later on in
Chapters 4 and 5, we use the material presented in this chapter and Chapter 2 to fully model
and study the performance of various control systems. The main objectives of this chapter are:

1. To study block diagrams, their components, and their underlying mathematics.

2. To obtain transfer function of systems through block diagram manipulation and
reduction.

To introduce the signal-flow graphs.

To establish a parallel between block diagrams and signal-flow graphs.
To use Mason’s gain formula for finding transfer function of systems.
To introduce state diagrams.

v

N v oW

. To demonstrate the MATLAB tools using case studies.

3-1 BLOCK DIAGRAMS

104

The block diagram modeling may provide control engineers with a better understanding
of the composition and interconnection of the components of a system. Or it can be used,
together with transfer functions, to describe the cause-and-effect relationships throughout
the system. For example, consider a simplified block diagram representation of the heating
system in your lecture room, shown in Fig. 3-1, where by setting a desired temperature, also
defined as the input, one can set off the furnace to provide heat to the room. The process is
relatively straightforward. The actual room temperature is also known as the output and is
measured by a sensor within the thermostat. A simple electronic circuit within the
thermostat compares the actual room temperature to the desired room temperature

Heat Loss
Desired Room Actual Room
Temperature + X Temperature
Thermostat Eirgr Gas Valve Furnace Room —>
Voltage

Feedback

Figure 3-1 A simplified block diagram representation of a heating system.
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Disturbance

torque
Inpur l Output
Ita speed
YOTREC ! AMPLIFIER |—» DC MOTOR »IETOADI P

(a)

V1) Va[/‘ valt) K; + 1 o (1)
V) | %] vt R+Ls O Btls )

(b)

Figure 3-2 (a) Block diagram of a dc-motor control system. (b) Block diagram with transfer
functions and amplifier characteristics.

(comparator). If the room temperature is below the desired temperature, an error voltage
will be generated. The error voltage acts as a switch to open the gas valve and turn on the
furnace (or the actuator). Opening the windows and the door in the classroom would cause
heat loss and, naturally, would disturb the heating process (disturbance). The room
temperature is constantly monitored by the output sensor. The process of sensing the output
and comparing it with the input to establish an error signal is known as feedback. Note that
the error voltage here causes the furnace to turn on, and the furnace would finally shut off
when the error reaches zero.

As another example, consider the block diagram of Fig. 3-2 (a), which models an open-
loop, dc-motor, speed-control system. The block diagram in this case simply shows how the
system components are interconnected, and no mathematical details are given. If the
mathematical and functional relationships of all the system elements are known, the block
diagram can be used as a tool for the analytic or computer solution of the system. In general,
block diagrams can be used to model linear as well as nonlinear systems. For example, the
input—output relations of the dc-motor control system may be represented by the block
diagram shownin Fig. 3-2 (b). In this figure, the input voltage to the motor is the output of the
power amplifier, which, realistically, has a nonlinear characteristic. If the motor is linear, or,
more appropriately, if it is operated in the linear region of its characteristics, its dynamics can
be represented by transfer functions. The nonlinear amplifier gain can only be described in
time domain and between the time variables v;(¢) and v,(f). Laplace transform variables do
not apply to nonlinear systems; hence, in this case, V,(s) and V,(s) donotexist. However, if the
magnitude of v{(¢) is limited to the linear range of the amplifier, then the amplifier can be
regarded as linear, and the amplifier may be described by the transfer function

Va(s)
Vi(s)

=K (3-1)

where K is a constant, which is the slope of the linear region of the amplifier characteristics.
Alternatively, we can use signal-flow graphs or state diagrams to provide a graphical
representation of a control system. These topics are discussed later in this chapter.
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3-1-1 Typical Elements of Block Diagrams in Control Systems

We shall now define the block-diagram elements used frequently in control systems and the
related algebra. The common elements in block diagrams of most control systems include:

e Comparators

* Blocks representing individual component transfer functions, including:
¢ Reference sensor (or input sensor)
» Output sensor
* Actuator
* Controller
« Plant (the component whose variables are to be controlled)
e Input or reference signals

e Qutput signals
» Disturbance signal
¢ Feedback loops

Fig. 3-3 shows one configuration where these elements are interconnected. You may
wish to compare Fig. 3-1 or Fig. 3-2 to Fig. 3-3 to find the control terminology for each
system. As arule, each block represents an element in the control system, and each element
can be modeled by one or more equations. These equations are normally in the time domain
or preferably (because of ease in manipulation) in the Laplace domain. Once the block
diagram of a system is fully constructed, one can study individual components or the
overall system behavior.

One of the important components of a control system is the sensing and the electronic
device that acts as a junction point for signal comparisons—otherwise known as a
comparator. In general, these devices possess sensors and perform simple mathematical
operations such as addition and subtraction (such as the thermostat in Fig. 3-1). Three
examples of comparators are illustrated in Fig. 3-4. Note that the addition and subtraction
operations in Fig. 3-4 (a) and (b) are linear, so the input and output variables of these block-
diagram elements can be time-domain variables or Laplace-transform variables. Thus, in
Fig. 3-4 (a), the block diagram implies

e(t) = r(f) — y(1) (3-2)
or

E(s) = R(s) — Y(s) (3-3)

As mentioned earlier, blocks represent the equations of the system in time domain or the
transfer function of the system in the Laplace domain, as demonstrated in Fig, 3-5.

Disturbance

Input f
p ’ Reference

Output
Sensor "

+
Controller ——7 Actuator Plant

Output
Sensor

Figure 3-3 Block diagram representation of a general control system.
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1) e(t) = r(t) - y(t) e()=r(t) + y(0)
— ——>
R(s) + E(s) = R(s) - Y(s) E(s) = R(s) + Y(5)

W1 | Y(s)

(a)

(b)

Ro(s)

A comparator
performs addition
and subtraction

et) = Q) + ry(t) - y(@)
E(s) = Ry(s) + Ry(s) — ¥(s)

¥ | ¥(s)

(c)

Figure 3-4 Block-diagram elements of typical sensing devices of control systems. (a) Subtraction.
(b) Addition. (c) Addition and subtraction.

u () o x(t) Time Fl.gure 3-5 Time and Laplace domain block
domain  djagrams.
U(s) G(s) | X (s) l&aplagc
omain

In Laplace domain, the following input—output relationship can be written for the system in
Fig. 3-5:
X(s)=G(s)U(s) (3-4)

If signal X(s) is the output and signal U(s) denotes the input, the transfer function of the
block in Fig. 3-5 is

(3-5)

Typical block elements that appear in the block diagram representation of most control
systems include plant, controller, actuator, and sensor.

Consider the block diagram of two transfer functions G,(s) and G,(s) that are connected in series.
Find the transfer function G(s) of the overall system.

SOLUTION  The system transfer function can be obtained by combining individual block equations.
Hence, for signals A(s) and X(s), we have
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> EXAMPLE 3-1-2

U (s) G, ) A (s) G, () X (s) Figure 3-6 Blocl_«\ d‘xag.rams G\(s) and
G,(s) connected in series.

X(s) = A(s)Ga(s)
Als) = U(s)Gi(s)
X(s) = Gi(s)Ga(s)U(s)

G(s) = g%
Hence,
G(s) = G1(5)Ga(s) (3-6)

Hence, using Eq. (3-6), the system in Fig. 3-6 can be represented by the system in Fig. 3-5.

Consider a more complicated system of two transfer functions G(s) and G,(s) that are connected in
parallel, as shown in Fig. 3-7. Find the transfer function G(s) of the overall system.

SOLUTION The system transfer function can be obtained by combining individual block equations.
Note for the two blocks G;(s) and G,(s), A,(s) acts as the input, and A(s) and A;(s) are the outputs,
respectively. Further, note that signal U(s) goes through a branch point P to become A, (s). Hence, for
the overall system, we combine the equations as follows.

Ay(s) = Uls)

As(s) = A1(s)G(s)
A3(s) = Ay (s)Gals)

X(s) = Aax(s) +As(s)

X(s) = U(s)(Gi(s) + G2(s))

Hence,
G(s) = Gi(s) + Ga(s) (3-7)

For a system to be classified as a feedback control system, it is necessary that the controlled
variable be fed back and compared with the reference input. After the comparison, an error signal is
generated, which is used to actuate the control system. As a result, the actuator is activated in the
presence of the error to minimize or eliminate that very error. A necessary component of every
feedback control system is an output sensor, which is used to convert the output signal to a quantity
that has the same units as the reference input. A feedback control system is also known a closed-loop
system. A system may have multiple feedback loops. Fig. 3-8 shows the block diagram of a linear

40 ) g A9
U (s) L p
NN Gy () 3 (9) Figure 3-7 Block diagrams G,(s) and

G,(s) connected in parallel.
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¥(s)

¥(1) i

G(s)

H(s) 1e— Figure 3-8 Basic block diagram of a
feedback control system.

B(s)

feedback control system with a single feedback loop. The following terminology is defined with
reference to the diagram:

r(t), R(s) = reference input(command)
¥(1), Y(s) = output (controlled variable)
b(t), B(s) = feedback signal
u(r), U(s) = actuating signal = ervor signal e(r), E(s), when H{s) = 1
H(s) = feedback transfer function
G(s)H(s) = L(s) = loop transfer function
G(s) = forward-path transfer function
M(s) = Y(s)/R(s) = closed-loop transfer function or system transfer function

The closed-loop transfer function M(s) can be expressed as a function of G(s) and H(s). From Fig. 3-8,

we write
Y(s) = G(s)U(s) (3-8)
and
B(s) = H(s)Y(s) (3-9)
The actuating signal is written
U(s) = R(s) — B(s) (3-10)

Substituting Eq. (3-10) into Eq. (3-8) yields
Y(s) = G(s)R(s) — G(s)H(s) (3-11)

Substituting Eq. (3-9) into Eq. (3-7) and then solving for Y(s)/R(s) gives the closed-loop transfer
function
M(s) = Y(s) G(s)

TRE) T+ GEH() (3-12)

The feedback system in Fig. 3-8 is said to have a negative feedback loop because the comparator
subtracts. When the comparator adds the feedback, it is called positive feedback, and the transfer
function Eq. (3-12) becomes

_Y(s) G(s)
M(s) = T T (3-13)

If G and H are constants, they are also called gains. If H = | in Fig. 3-8, the system is said to have a
unity feedback loop, and if H = 0, the system is said to be open loop.

3-1-2 Relation between Mathematical Equations and Block Diagrams
Consider the following second-order prototype system:

B(t) 2wk (1) + 02x (1) = wlu(r) (3-14)
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,2U(s) +N S XG)

»

28w,°X(s)
2ycs) Figure 3-9 Graphical representation of Eq. (3-17)
By sl using a comparator.

which has Laplace representation (assuming zero initial conditions x(0) =x(0) = 0):
X(s) > +2Cwa X (s)s + 02 X (s) = 02 U(s) (3-15)

Eq. (3-15) consists of constant damping ratio £, constant natural frequency w,, input U(s),
and output X(s). If we rearrange Eq. (3-15) to

WU (5) —2¢w, X (5) s — w2 X (5) = X (5) 5 (3-16)

it can graphically be shown as in Fig. 3-9.

The signals 2¢w,sX(s) and >X(s) may be conceived as the signal X(s) going into
blocks with transfer functions 2¢w,s and w2, respectively, and the signal X(s) may be
obtained by integrating s>X(s) twice or by post-multiplying by %2 as shown in Fig. 3-10.

Because the signals X(s) in the right-hand side of Fig. 3-10 are the same, they can be
connected, leading to the block diagram representation of the system Eq. (3-17), as shown
in Fig. 3-11. If you wish, you can further dissect the block diagram in Fig. 3-11 by factoring
out the term % as in Fig. 3-12(a) to obtain Fig. 3-12(b).

If the system studied here corresponds to the spring-mass-damper seen in Fig. 4-5 (see
Chapter 4), then we can designate internal variables A(s) and V(s), which represent
acceleration and velocity of the system, respectively, as illustrated in Fig. 3-12. The best
way to see this is by recalling that -ls- is the integration operation in Laplace domain. Hence,
if A(s) is integrated once, we get V(s), and after integrating V(s), we get the X(s) signal.

It is evident that there is no unique way of representing a system model with block
diagrams. We may use different block diagram forms for different purposes, as long as the

aJ,,ZU(s) + §° X(s) 1 /\X(s)
;‘2‘ >
2w,s 42
Figure 3-10 Addition of blocks SLQ 2¢w, s,
2 | X6s) and w? to the graphical representation of
o ¢ ;
@,*X(5) Eq. (3-17).
Uls) + 1 Xis)
— ] o >
20w,s 4

Figure 3-11 Block diagram
representation of Eq. (3-17) in Laplace
domain.

£
"
A
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X(5)

v

U(s) + Als) 1

V(s)

] Xs)

(b)

Figure 3-12 (a) Factorization of % term in the internal feedback loop of Fig. 3-11. (b) Final block
diagram representation of Eq. (3-17) in Laplace domain.

Vis)

2
@y
s

Figure 3-13 Block diagram of
Eq. (3-17) in Laplace domain with V(s)
represented as the output.

overall transfer function of the system is not altered. For example, to obtain the transfer
function V(s)/U(s), we may yet rearrange Fig. 3-12 to get V(s) as the system output, as
shown in Fig. 3-13. This enables us to determine the behavior of velocity signal with

input U(s).

EXAMPLE 3-1-3 Find the transfer function of the system in Fig. 3-12 and compare that to the transfer function of

system in Eq. (3-15).

SOLUTIONS The w? block at the input and feedback signals in Fig. 3-12(b) may be moved to the
right-hand side of the comparator. This is the same as factorization of w,% as shown:

W2 U (5) — w2 X (5) = &? (U(s) — X (5)) (3-17)

Fig. 3-14(a) shows the factorization operation of Eq. (3-17), which results in a simpler block diagram
representation of the system shown in Fig. 3-14 (b). Note that Fig. 3-12(b) and Fig. 3-14(b) are

equivalent systems.
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U(s) + 3 A(s)
I~
X(s)
()
U(s) + . A(s) + 1 V(s) 1 X(s)‘
———*<:>——+ o, x "o >
2w,
(b)

Figure 3-14 (a) Factorization of (u%. (b) Alternative block diagram representation of Eq. (3-17)
in Laplace domain.

Us) + 1 1 Xs)
| 5+2 0w, § "

Figure 3-15 A block diagram

2
W

representation of 2427w, s+w?.

Considering Fig. 3-12(b), it is easy to identify the internal feedback loop, which in turn can be
simplified using Eq. (3-12), or
s

= 3-18
s+ 28 wy ( )

V(s)
Als)

1
5
e 2¢ wy
s

After pre- and post-multiplication by «4 and % respectively, the block diagram of the system is
simplified to what is shown in Fig. 3-15, which ultimately results in

2

wll
By

X(s) s(s+2¢wy,) W},
_ = ! -19
Uls) n wi’; ST+ 2t wy s + @l (13
s(s+2Zwy,)
Eq. (3-19) is also the transfer function of system Egq. (3-15).

EXAMPLE 3-1-4 Find the velocity transfer function using Fig. 3-13 and compare that to the derivative of Eq. (3-19).

SOLUTIONS Simplifying the two feedback loops in Fig. 3-13, starting wilh the internal loop first,
we have

1
s
28w, @
V(s)_ s s
N 1 2
U(s) 14 = (_pﬂ
l+2€wn s
§
V(s) 5w

- n 3-20
Uls) 8 +2¢wys+ o =
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Eq. (3-20) is the same as the derivative of Eq. (3-19), which is nothing but multiplying Eq. (3-19) by
an s term. Try to find the A(s)/U(s) transfer function. Obviously you must get: szX(s)/ U(s). |

3-1-3 Block Diagram Reduction

As you might have noticed from the examples in the previous section, the transfer function
of a control system may be obtained by manipulation of its block diagram and by its
ultimate reduction into one block. For complicated block diagrams, it is often necessary to
move a comparator or a branch point to make the block diagram reduction process
simpler. The two key operations in this case are:

1. Moving a branch point from P to Q, as shown in Fig. 3-16(a) and Fig. 3-16(b).
This operation must be done such that the signals Y(s) and B(s) are unaltered. In
Fig. 3-16(a), we have the following relations:

¥(s) = A(s)Ga(s)

B(s) = Y(s)H;(s) (3-21)
In Fig. 3-16(b), we have the following relations:
Y(s) = A(s)Ga(s)
B(s) = A(s) H, (5)Ga(s) (3-22)
But
Gal5) = 13 .

= B(s) = Y(s)H1(s)

2. Moving a comparator, as shown in Fig. 3-17(a) and Fig. 3-17(b), should also be
done such that the output ¥(s) is unaltered. In Fig. 3-17(a), we have the following

relations:
Y(s) = A(s)Ga(s) + B(s)H (s) (3-24)
(a) P
Als) > Gy(s) > Y(s)
B(s) «— H,(5)
b
tl A(s) Q Gy(5) |—» Y(s)

Figure 3-16 (a) Branch point relocation
from point P to (b) point Q.

B(s) «—{ H(s) Gy(5)

"
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(@) P
As) ——»f Gyl(s) ¥(s)
.'.
B(s) —»| Hy(s)
(b) & ¥i(s)
A(s) | Ga(s) —>¥(s)
+
Figure 3-17 (a) Comparator relocation
Bls) —» g]ﬂ from the rlght-han‘d side of block Go(s) to
a($ (b) the left-hand side of block Ga(s).

In Fig. 3-17(b), we have the following relations:

Yi(s) = A(s) + B(s) g;gg (3-25)
Y(s) = ¥1(s)Ga(s)
So
Y(s) = A(s)Ga(s) + B(s) g; 8 Ga(s) (3-26)

= ¥(s) = A(5)Gals) + B(s)H (s)

»» EXAMPLE 3-1-5 Find the input—output transfer function of the system shown in Fig. 3-17(a).

SOLUTION  To perform the block diagram reduction, one approach is to move the branch point at ¥
to the left of block G, as shown in Fig. 3-18(b). After that, the reduction becomes trivial, first by
combining the blocks G5, Gs, and G4 as shown in Fig, 3-18(c), and then by eliminating the two

(a)

Figure 3-18 (a) Original block diagram. (b) Moving the branch point at ¥; to the left of block G,. (c)
Combining the blocks G|, G2, and Gs. (d) Eliminating the inner feedback loop.



3-1 Block Diagrams < 115

.
Y. ¥ +
2 (eh 1 G, ¥
(b)
¥
2 e LN
(c)
R G] YQ = 4
+ 1 +0261H1 6263+G“ 2
(d)

Figure 3-18 (Continued)

feedback loops. As a result, the transfer function of the final system after the reduction in Fig. 3-18(d)
becomes

@ . G1G2G3 + GGy
E(s) 14+G:GiH) + GGG + GGy

(3-27)

3-1-4 Block Diagram of Multi-input Systems—Special Case: Systems with a Disturbance

An important case in the study of control systems is when a disturbance signal is present.
Disturbance (such as heat loss in the example in Fig. 3-1) usually adversely affects the
performance of the control system by placing a burden on the controller/actuator compo-
nents. A simple block diagram with two inputs is shown in Fig. 3-19. In this case, one of the
inputs, D(s), is known as disturbance, while R(s) is the reference input. Before designing a
proper controller for the system, it is always important to learn the effects of D(s) on the
system.
We use the method of superposition in modeling a multi-input system.

Super Position: For linear systems, the overall response of the system under
multi-inputs is the summation of the responses due to the individual inputs, i.e., in this case,

Ymm) = YR|D:0 P YD¥R=() (3-28)
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Controller Plant

E(s)

y 3
G, Gy L.

Output Sensor

H,

Figure 3-19 Block diagram of a system undergoing disturbance

R Y
) G, G, “)=
+

H, Figure 3-20 Block diagram of the
system in Fig. 3-19 when D(s) = 0.

When D(s) = 0, the block diagram is simplified (Fig. 3-20) to give the transfer function

Y(s) G1(s) Ga(s)
= 3-29
R(s) 1+ Gi(s) G2 Hy(s) 22
When R(s) = 0, the block diagram is rearranged to give (Fig. 3-21):
Y(s) —Ga(s) (3-30)

D(s) 1+ Gi(s)Ga(s) H1(5)

Dis)
\ b (
G; Gz {S)=
+
H,
(a)
DGs) - 2 N
1 >
Gz H] <

Figure 3-21 Block diagram of the
(b) system in Fig. 3-19 when R(s) = 0.
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As a result, from Eq. (3-28) to Eq. (3-32), we ultimately get

Y(s) Y(s)
Yiotal = 5= R(Y) +—— D(S‘)
R(s)|p D -
(s) D=0 (s) R=0 331
e GGy -Gy
Y6 = 13616 ° ) 7m0V

Observations: %| . and J| ,_, have the same denominators if the disturbance signal
goes to the forward path. The negative sign in the numerator of %| z—o Shows that the
disturbance signal interferes with the controller signal, and, as a result, it adversely affects
the performance of the system. Naturally, to compensate, there will be a higher burden on
the controller.

and Transfer Functions of Multivariable Systems

In this section, we shall illustrate the block diagram and matrix representations (see
Appendix A) of multivariable systems. Two block-diagram representations of a multi-
variable system with p inputs and ¢ outputs are shown in Fig. 3-22(a) and (b). In Fig. 3-22
(a), the individual input and output signals are designated, whereas in the block diagram of
Fig. 3-22(b), the multiplicity of the inputs and outputs is denoted by vectors. The case of
Fig. 3-22(b) is preferable in practice because of its simplicity.

Fig. 3-23 shows the block diagram of a multivariable feedback control system. The
transfer function relationships of the system are expressed in vector-matrix form (see
Appendix A):

Y(s) = G(s)U(s) (3-32)
U(s) = R(s) — B(s) (3-33)
B(s) = H(s)Y(s) (3-34)
") —— — 1
ra{t) ——— — ¥
MULTIVARIABLE
: SYSTEM :
() ——») > ¥,
(@)

r() — | MULTIVARIABLE | —  y(n
SYSTEM

Figure 3-22 Block diagram representations of
(b) a multivariable system.
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G(s) L B

Figure 3-23 Block diagram of a multivariable
feedback control system.

H(s) [

where Y(s) is the ¢ x 1 output vector; U(s), R(s), and B(s) are all p x | vectors; and G(s)
and H(s) are ¢ X p and p x ¢ transfer-function matrices, respectively. Substituting Eq.
(3-11) into Eq. (3-10) and then from Eq. (3-10) to Eq. (3-9), we get

Y(s) = G(s)R(s) — G(s)H(s)Y(s) (3-35)
Solving for Y(s) from Eq. (3-12) gives

Y(s) = [1+ G(s)H(s)] ' G(s)R(s) (3-36)

provided that I + G(s)H(s) is nonsingular. The closed-loop transfer matrix is defined as

M(s) = [L+ G(s)H(s)] "' G(s) (3-37)
Then Eq. (3-14) is written

Y(s) = M(s)R(s) (3-38)

EXAMPLE 3-1-6 Consider that the forward-path transfer function matrix and the feedback-path transfer function
matrix of the system shown in Fig. 3-23 are

1 1
Gis)=|*T 1 1S H(s) = [1 0] (3.39)
s+2

respectively. The closed-loop transfer function matrix of the system is given by Eq. (3-15), and
is evaluated as follows:

1 1 s+2 1
L4 -3 e
I+ G(s)H(s) = s 1 s _ sl ; +.s3 (3-40)
1 :
2 ¥ s+2 3 §42
The closed-loop transfer function matrix is
s+3 1 I |
] |& e T -
M(s) = [T+ G()H(s)'G(s) =< [$+2 S ||s+L s (3-41)
O = M+ GOHEI'6E) =5 |+ 2 | °H
s+1 52
where
. D) 2 . e
A_s+2A+3 2_s"+55+2 (3-42)

— +_
Nk g4 2 7 F s(s+1)
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Thus,
32 +95+4 1
_ s+l fs(s+DE+2) s
M(s) = 24542 3542 (3-43)
2 e
s(s+1) -4

¥ 3-2 SIGNAL-FLOW GRAPHS (SFGs)

A signal-flow graph (SFG) may be regarded as a simplified version of a block diagram. The
SFG was introduced by S. J. Mason [2] for the cause-and-effect representation of linear
systems that are modeled by algebraic equations. Besides the differences in the physical
appearance of the SFG and the block diagram, the signal-flow graph is constrained by more
rigid mathematical rules, whereas the block-diagram notation is more liberal. An SFG may
be defined as a graphical means of portraying the input—output relationships among the
variables of a set of linear algebraic equations.
Consider a linear system that is described by a set of N algebraic equations:

yi=) agye j=12,...,N (3-44)

N
k=1

It should be pointed out that these N equations are written in the form of cause-and-effect

relations:
N
Jjtheffect = }:(gain fromkto j) x (kth cause) (3-45)
k=1
or simply
Output = Z(gain) x (input) (3-46)

This is the single most important axiom in forming the set of algebraic equations for SFGs.
When the system is represented by a set of integrodifferential equations, we must first
transform these into Laplace-transform equations and then rearrange the latter in the form
of Eq. (3-31), or

N
Yi(s) = Grs)h(s) j=1,2,...,N (3-47)
k=1

3-2-1 Basic Elements of an SFG

When constructing an SFG, junction points, or nodes, are used to represent variables. The
nodes are connected by line segments called branches, according to the cause-and-effect
equations. The branches have associated branch gains and directions. A signal can transmit
through a branch only in the direction of the arrow. In general, given a set of equations
such as Eq. (3-31) or Eq. (3-47), the construction of the SFG is basically a matter of



120 » Chapter 3. Block Diagrams and Signal-Flow Graphs

¥ .‘?z Figure 3-24 Signal flow graph of y; =azy1.

following through the cause-and-effect relations of each variable in terms of itself and the
others. For instance, consider that a linear system is represented by the simple algebraic
equation

Y2 = aizy1 (3-48)

where y; is the input, y; is the output, and 4,5 is the gain, or transmittance, between the two

variables. The SFG representation of Eq. (3-48) is shown in Fig. 3-24. Notice that the branch

directing from node y, (input) to node y, (output) expresses the dependence of y, on y; but not

the reverse. The branch between the input node and the output node should be interpreted as a

unilateral amplifier with gain a,, so when a signal of one unitis applied at the inputy;, a signal

of strength a;,y; is delivered at node y,. Although algebraically Eq. (3-48) can be written as
1

Nn=—mn (3-49)
a2

the SFG of Fig. 3-24 does not imply this relationship. If Eq. (3-49) is valid as a cause-and-
effect equation, a new SFG should be drawn with y, as the input and y; as the output.

-~ EXAMPLE 3-2-1 As an example on the construction of an SFG, consider the following set of algebraic equations:
Y2 = apy1 + a3y
Y3 = a23¥2 -+ aa3y4

(3-50)
Ya = auy2 + azays + auds
V5 = @5¥2 + ss¥a
The SFG for these equations is constructed, step by step, in Fig. 3-25. =

3-2-2 Summary of the Basic Properties of SFG

The important properties of the SFG that have been covered thus far are summarized as
follows.
1. SFG applies only to linear systems.

2. The equations for which an SFG is drawn must be algebraic equations in the form
of cause-and-effect.

3. Nodes are used to represent variables, Normally, the nodes are arranged from left
to right, from the input to the output, following a succession of cause-and-effect
relations through the system.

4. Signals travel along branches only in the direction described by the arrows of the
branches.

5. The branch directing from node y;. to y; represents the dependence of y; upon y;
but not the reverse.

6. Asignal y; traveling along a branch between y;. and y; is multiplied by the gain of
the branch a;;, so a signal ay;yy is delivered at y;.

3-2-3 Definitions of SFG Terms

In addition to the branches and nodes defined earlier for the SFG, the following terms are
useful for the purpose of identification and execution of the SFG algebra.
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3y

a2 / AN
o) o]

Y ¥ Y3 ¥4 ¥s
(a) vz = appyy +any;

32 (L]
s m
o— » o » 0
b4l »2 Y3 Y4 ¥s

(DY yy = apoyy +aza¥1 Y3 = Gaayy +ag3Yy

3 g3 4y

(Cyya =0y + a3y ¥3=Qo¥p+8ga¥y  ¥q = Bpg¥2 + €3qV3 + Uagdy

a2

(d) Complete signal-flow graph

Figure 3-25 Step-by-step construction of the signal-flow graph in Eq. (3-50).

Input Node (Source): Arn input node is a node that has only outgoing branches
{example: node y; in Fig. 3-24).

Output Node (Sink): An output node is a node that has only incoming branches:
(example: node y, in Fig. 3-24). However, this condition is not always readily met by an
output node. For instance, the SFG in Fig. 3-26(a) does not have a node that satisfies the
condition of an output node. It may be necessary to regard y, and/or y3 as output nodes to
find the effects at these nodes due to the input. To make y, an output node, we simply
connect a branch with unity gain from the existing node y; to a new node also designated as
y2, as shown in Fig. 3-26(b). The same procedure is applied to y3. Notice that, in the
modified SFG of Fig. 3-26(b), the equations y; = y and y3 = y3 are added to the original
equations. In general, we can make any noninput node of an SFG an output by the
procedure just illustrated. However, we cannot convert a noninput node into an input node
by reversing the branch direction of the procedure described for output nodes. For instance,
node y, of the SFG in Fig. 3-26(a) is not an input node. If we attempt to convert it into an
input node by adding an incoming branch with unity gain from another identical node y;,
the SFG of Fig. 3-27 would result. The equation that portrays the relationship at node y,
now reads

Y2 =y2 +aizy1 +anys (3-51)

which is different from the original equation given in Fig. 3-26(a).
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12
[ ]

=
o

a3

(a) Original signal-flow graph

(e}
=
[ =3
\
]
I
3
v —

0 > y;\:_/y‘ Q. Figure 3-26 Modification of a
’ "7 signal-flow graph so that y; and

432 y3 satisfy the condition as output
(b) Modified signal-flow graph nodes.
a2
|
a2 a3
e, P » . .
et Q\‘—/& Figure 3-27 Erroneous way to make node y; an input
node.
a3z

Path: A path is any collection of a continuous succession of branches traversed in the
same direction. The definition of a path is entirely general, since it does not prevent any
node from being traversed more than once. Therefore, as simple as the SFG of Fig, 3-26(a)
is, it may have numerous paths just by traversing the branches az; and as; continuously.

Forward Path: A forward path is a path that starts at an input node and ends at an
output node and along which no node is traversed more than once. For example, in the
SFG of Fig. 3-25(d), y; is the input node, and the rest of the nodes are all possible output
nodes. The forward path between y; and y; is simply the connecting branch between the
two nodes. There are two forward paths between y; and y3: One contains the branches from
y1 10 ya to y3, and the other one contains the branches from y to y; to y4 (through the
branch with gain ap4) and then back to y3 (through the branch with gain a43). The reader
should try to determine the two forward paths between y; and y4. Similarly, there are three
forward paths between y; and ys.

Path Gain:  The product of the branch gains encountered in traversing a path is called
the path gain. For example, the path gain for the path y; — y — y3 — y4 in Fig. 3-25(d) is
a)12a23a34.

Loop: Aloop is a path that originates and terminates on the same node and along which

no other node is encountered more than once. For example, there are four loops in the SFG
of Fig. 3-25(d). These are shown in Fig. 3-28.

Forward-Path Gain: The forward-path gain is the path gain of a forward path.
Loop Gain: The loop gain is the path gain of a loop. For example, the loop gain of the
loop y2 — y4 — y3 — y2 in Fig. 3-28 is azas3a3;.

Nontouching Loops: Two parts of an SFG are nontouching if they do not share a
common node. For example, the loops y7 — y3 — y2 and y4 — y4 of the SFG in Fig. 3-25(d)
are nontouching loops.
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Figure 3-28 Four loops in the signal-flow graph of Fig. 3-25(d).

Based on the properties of the SFG, we can outline the following manipulation rules and

algebra:

1.

The value of the variable represented by a node is equal to the sum of all the
signals entering the node. For the SFG of Fig. 3-29, the value of y is equal to the
sum of the signals transmitted through all the incoming branches; that is,

Y1 = a21y2 +a31y3 + aa1ys + as1ys (3-52)

The value of the variable represented by a node is transmitted through all branches
leaving the node. In the SFG of Fig. 3-29, we have

Y6 = a161
¥7 = a1 (3-53)
yg = a18y1

Parallel branches in the same direction connecting two nodes can be replaced by a
single branch with gain equal to the sum of the gains of the parallel branches. An
example of this case is illustrated in Fig. 3-30.

Figure 3-29 Node as a summing point and as a
transmitting point.
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Figure 3-31 Signal-Aow graph with cascade unidirectional branches replaced by a single branch.

G(s) |
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Figure 3-32 Signal-fiow graph of the feedback control system shown in Fig. 3-8.

4. A series connection of unidirectional branches, as shown in Fig. 3-31, can be
replaced by a single branch with gain equal to the product of the branch gains.

3-2-5 SFG of a Feedback Control System

The SFG of the single-loop feedback control system in Fig. 3-8 is drawn as shown in Fig.
3-32. Using the SFG algebra already outlined, the closed-loop transfer function in Eq.
(3-12) can be obtained.

3-2-6 Relation between Block Diagrams and SFGs

The relation between block diagrams and SFGs are tabulated for three important cases, as
shown in Table 3-1.

3-2-7 Gain Formula for SFG

Given an SFG or block diagram, the task of solving for the input—output relations by
algebraic manipulation could be quite tedious. Fortunately, there is a general gain formula
available that allows the determination of the input—output relations of an SFG by
inspection.
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TABLE 3-1  Block diagrams and their SFG equivalent representations

Block Diagram Signal Flow Diagram
Simple Transfer Function
U(s) ¥(s) G ($)
—>» G() —> 0! P —0
Y(s) | 2
8) _ s
0(s) (s)

G (s)
+ G, (s}
Parallel Feedback
U (§) ———> ¥(s) U(s) Y(s)
Kt ¥ Jo
Gy () <

Gas)
¥(s)

G(s)

Y(s) G(s) ¥ ! G(s) 1
= R(s) ¥(s)

R(s) 1+ G(s)H(s) M N R

His) =H(s)

s |

Given an SFG with N forward paths and K loops, the gain between the input node y;,
and output node Yoy is [3]

N

Yout MkAk

M=T=§: < (3-54)
Yin =1

where
¥in = input-node variable
Your = OUtput-node variable
M = gain between y;, and y,,,
N = total number of forward paths between y;, and v,
M, = gain of the kth forward paths between y;, and y,,,

A:I—ZL,-;—%—ZLJ-Z—;LU%—.“ (3-55)
i ' ¢

Ly = gain product of the mth (m =1, j,k, ...) possible combination of r non-
touching loops (1 < r < K).
or
A = 1— (sum of the gains of all individual loops) + (sum of products of gains of all

possible combinations of two nontouching loops) — (sum of products of gains of
all possible combinations of three nontouching loops) + - -

Ay = the A for that part of the SFG that is nontouching with the kth forward path.
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The gain formula in Eq. (3-54) may seem formidable to use at first glance. However, A
and Ay, are the only terms in the formula that could be complicated if the SFG has a large
number of loops and nontouching loops.

Care must be taken when applying the gain formula to ensure that it is applied between
an input node and an output node.

- EXAMPLE 3-2-2 Consider that the closed-loop transfer function ¥ (s5)/R(s) of the SFG in Fig. 3-32 is to be determined
by use of the gain formula, Eq. (3-54). The following results are obtained by inspection of the SFG:

1. There is only one forward path between R(s) and Y(s), and the forward-path gain is
My = G(s) (3-56)
2. There is only one loop; the loop gain is

Ln = —G(S)H(S) (3-57)

3. There are no nontouching loops since there is only one loop. Furthermore, the forward path
is in touch with the only loop. Thus, A; = 1, and

A=1-Ly =1+G(s)H(s) (3-58)

Using Eq. (3-54), the closed-loop transfer function is written

Y(s) M G(s)
Ris) A " T+ GEHE)

which agrees with Eq. (3-12).

(3-59)

.~ EXAMPLE 3-2-3 Consider the SFG shown in Fig. 3-25(d). Let us first determine the gain between y; and ys using the
gain formula.

The three forward paths between y; and ys and the forward-path gains are
M\ = a;panassays Forwardpath: yi —y2 —y3 —ya—ys

M, = appays Forwardpath: y; — y2 — s
M3 = a12a24045 Forwardpath: y; —y2 —y4 —¥s

The four loops of the SFG are shown in Fig. 3-28. The loop gains are
Ly =apan Ly =anan L3 =auaan Ly =asy
There is only one pair of nontouching loops; that is, the two loops are

y2—y3—y2 and yg—y4
Thus, the product of the gains of the two nontouching loops is

Lya = ananag (3-60)

All the loops are in touch with forward paths M, and M5. Thus, A| = Az = 1. Two of the loops are not
in touch with forward path M>. These loops are y3 — y4 — ¥z and ys — y3. Thus,

Bz =1-ayay —an (3-61)
Substituting these quantities into Eq. (3-54), we have
ys _ MiA1 + MyAy + M3Ay
» A

_ (a12a23a34a45) + (@12035) (1 — azqass — ags) + Q12024445
1 — (azaz + 31043 + a24832043 + Q4a) + A23032044

(3-62)
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where
A=1—(Ly+Ly+Ly+Ly)+Lp

(3-63)
=1 — (az3a3 + a3a43 + a24032043 + a44) + azanas
The reader should verify that choosing y, as the output,
y2 _ el ~ anas — au) (3-64)

yi A

where A is given in Bq. {3-63).

> EXAMPLE 3-2-4 Consider the SFG in Fig. 3-33. The following input—output relations are obtained by use of the gain

formula:
»_ L+ G3Ha + Hy + GaHaHy (3-65)
» A
¥4 _ Gi1Ga{l + Hy) (3-66)
»n A
Y6 _¥1 _ G1G1G3Gy + G1Gs(1 + G3H») (3-67)
Yoy A
where
A =1+ G H + GiHy + G1GaG3Hz + Hy + GGz H\Hy (3.68)

+ G1H1Hy + G3H2Hy + GyG2GaH3Hy + GGsH 1 HaHy

Figure 3-33 Signal-flow graph for Example 3-2-4.

3-2-8 Application of the Gain Formula between Output Nodes and Noninput Nodes

It was pointed out earlier that the gain formula can only be applied between a pair of input
and output nodes. Often, it is of interest to find the relation between an output-node variable
and a noninput-node variable. For example, in the SFG of Figure 3-33, it may be of interest
to find the relation y7/y2, which represents the dependence of y; upon y.; the latter is not
an input.
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B EXAMPLE 3-2-5

We can show that, by including an input node, the gain formula can still be applied to
find the gain between a noninput node and an output node. Let y;, be an input and y,,, be an
output node of a SFG. The gain, you:/y2. where y; is not an input, may be written as

M M, Ak |fr0m Yin 10 Yo

You _ ¥ _ A (3-69)
¥ » Z My Atlgeom Yin O Y2
Yin A

Because A is independent of the inputs and the outputs, the last equation is written

EMkAklf‘mmyi,. 1O Yout (3'70)

Jout _
2 ZMkAkifromym to v,

Notice that A does not appear in the last equation.

From the SFG in Fig. 3-33, the gain between y, and y, is written
y1 _y1/n _ G1G2G3Gy + GiGs(1 + G3Hy)
2 y2/n 1+ GaHy + Hy + G3HoHa

(3-71)

3-2-9 Application of the Gain Formula to Block Diagrams

> EXAMPLE 3-2-6

Because of the similarity between the block diagram and the SFG, the gain formula in Eq.
(3-54) can directly be applied to the block diagram to determine the transfer function of the
system. However, in complex systems, to be able to identify all the loops and nontouching
parts clearly, it may be helpful if an equivalent SFG is drawn for the block diagram first
before applying the gain formula.

To illustrate how an equivalent SFG of a block diagram is constructed and how the gain formula is
applied to a block diagram, consider the biock diagram shown in Fig. 3-34(a). The equivalent SFG of
the system is shown in Fig. 3-34(b). Notice that since a node on the SFG is interpreted as the summing
point of all incoming signals to the node, the negative feedbacks on the block diagram are represented
by assigning negative gains to the feedback paths on the SFG. First we can identify the forward paths
and loops in the system and their corresponding gains. That is:

Forward Path Gains: 1. G;G2Ga; 2. GGy
Loop Gains: 1. —=GGaH; 2. —G2GaHa; 3. —GyGaGa; 4. —G4H3; 5. —G1Gy
The closed-loop transfer function of the system is obtained by applying Eq. (3-54) to either the block
diagram or the SFG in Fig. 3-34. That is
Y(s) _G16G2G3 + GGy

o)~ X (3-72)
where
A =14 G1GrHy + GaG3Hr + G1G2G3 + GaHr + GGy (3-73)
Similarly,
E(s) _ L+ GiGoH1 + GGy + GaHy (3-74)
R(s) A
@_ — Gl GZG3 I G1Gy (3"75)

E(s) 1+ GiGHi + G2G3Hy + GsHy

The last expression is obtained using Eq. (3-70).
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» G4

Figure 3-34 (a) Block diagram of a control system. (b) Equivalent signal-flow graph.

3-2-10 Simplified Gain Formula

From Example 3-2-6, we can see that a// loops and forward paths are touching in this case.
As a general rule, if there are no nontouching loops and forward paths (e.g., v2 — y3 — ¥2
and y4 — ya4 in Example 3-2-3) in the block diagram or SFG of the system, then Eq. (3-54)
takes a far simpler look, as shown next.

s Your _ Z Forward Path Gains (3-76)

Vin | — Loop Gains
Redo Examples 3-2-2 through 3-2-6 to confirm the validity of Eq. (3-76).

3-3 MATLAB TOOLS AND CASE STUDIES

There is no specific software developed for this chapter. Although MATLAB Controls
Toolbox offers functions for finding the transfer functions from a given block diagram, it
was felt that students may master this subject without referring to a computer. For simple
operations, however, MATLAB may be used, as shown in the following example.

7 EXAMPLE 3-3-1 Consider the following transfer functions, which correspond to the block diagrams shown in Fig. 3-35.

s+ 1 |

, 1
Gils) = =7 Gals) s(s+1)

—s+1

Use MATLAB to find the transfer function ¥(s)/R(s) for each case. The results are as follows. _
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R(s) Gi(s) > Gy(s) +» Y(s)
(a)
> G(s)
: +
R(s) ——— Y(s)
+
> Go(s)
(b)
R(s) G(s) » Y(s)
H(s) [¢

(c)

Figure 3-35 Basic block diagrams
used for Example 3-3-1.

Toolbox 3-3-1

Case (a) Use MATLAB to find Gy x G3

Ys) s+1 1
R(s) $2+3s+2 (s+2)

Approach 1

>> clear all
s> s=tFf ("8 )
>> Gl=1/(s+1)

Transfer function:
1

s+ 1
>> G2=(s+1)/(s+2)

Transfer function:
s+ 1

s+2
>> YR=G1*'G2

Transfer function:

s"2+3s+2
>> YR _simple=minreal (YR)

Transfer function:

Approach 2

>> clear all
>> Gl=tf([1],[11])

Transfer function:
1

s+ 1
>>G2=tf([11],[12])

Transfer function:
s+ 1

s+ 2
>> YR=G1'G2

Transfer function:
s+ 1

>> YR_simple=minreal (YR)

Transfer function:




Use “minreal(YR)” for pole zero cancellation, if necessary
Alternatively use *“YR=series(G1,G2)" instead of “YR=G1+G2>

Case (b) Usc MATLAB to find Gi + G2

Y(s)  2s+3  2(s+15)
R(s) s243s+2 (s+1)(5+2)

Approach 1 Approach 2

>> clear all
>>s=tf(‘s’);
>>G=1/(s+1)

>> clear all
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>>Gl=t£([1],[11])

Transfer function:

Transfer function: 1

1 _—
- s+1
s+1

>> G2=(s+1)/(s+2)

Transfer function:

5+
s+1 ___i_
N 2
s+ 2 s+
> YR=G1+G2
>> YR=GL+G2 >> YR=G1

Transfer function:
s"2+3s+3

8"2+3s+3

s"2+3s8+2

>> YR=parallel(Gl,G2)

Transfer function:
s*2+3s+3

N g"2+3s4+2

s"2+3s+3

Use “minreal(YR)” for pole zero cancellation, if necessary
Alternatively use ‘“YR=parallel(G1,G2)” instead of “YR=G1+G2"

Use “zpk(YR)” to obtain the real
zero/pole/Gain format:

>> zpk(YR)

function zeros:
>> zero(¥YR)
Zero/pole/gain: ans =

(s"2+3s+3) -1.5000 + 0.86604.

-1.5000 - 0.86604

(s+2) (s+1)

Use “zero(YR)” to obtain transfer

>>G2=t£(f111,[12])

Transfer function:

Transfer function:

>> Y¥YR=parallel (Gi,G2)

Transfer function:

Use “pole(YR)” to obtain
transfer function poles:

>> pole(YR)
ans =

-2
-1
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Toolbox 3-3-2 G
Case (b) Use MATLARB 1o find the closed-loop feedback function 1T CH
Y(s) 1

Cas =

ase (c) R(s) s2+s5s+10
Approach 1 Approach 2
>> clear YR >> clear all
>>s=tf('s’); >> G=tf([11,[110])

>> G=1/(s*(s+1))
Transfer function:

Transfer function: 1
1T
_____ s*2+s
A
§72+s >> H=10
>> H=10 =
H= 10
10

>> YR=G/ (1+G*H)

>> YR=G/ (1+G*'H) Transfer function:

Transfer function: s"2+s
s"2 + s

s"a+2s"3+11s"2+10s

A A A
84 +2s8"3+11s8"2+10s >> YR_simple=minreal (YR)

>>YR_simple=minreal (YR) Transfer function:

Transfer function: 1

__________ s*2 +s5+ 10
s™"2 + s+ 10

Use “minreal(YR)” for pole zero cancellation, if necessary

Alternatively use: Use “pole(YR)” to obtain transfer func-
tion poles:
>> YR=Ffeedback(G,H) >> pole(YR)
Transfer function: ans =
1 -0.5000+ 3.1225i

P -0.5000 - 3.12251.
s"2 +s+10
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This chapter was devoted to the mathematical modeling of physical systems. Transfer functions,
block diagrams, and signal-flow graphs were defined. The transfer function of a linear systeit was
defined in terms of impulse response as well as differential equations. Multivariable and single-
variable systems were examined.

The block diagram representation was shown to be a versatile method of porteaying linear and
nonlinear systems. A powerful method of representing the interrelationships between the signals of a
linear system is the signal-flow graph, or SFG. When applied properly, an SFG allows the derivation of
the transfer functions between input and output variables of a linear system using the gain formula. A
state diagram is an SFG that is applied to dynamic systems that are represented by differential equations.

At the end of the chapter, MATLAB was used to calculate transfer functions of simple block
diagram systems,

REVIEW QUESTIONS

.- REFERENCES

1. Define the transfer function of a lincar time-invariant system in terms of its impulse response.

b

When defining the transfer function, what happens to the initial conditions of the system?

w

Define the characteristic equation of a linear system in terms of the transfer function.

&

What is referred to as a multivariable system?

Can signal-flow graphs (SFGs) be applied to nonlinear systems?

How can SFGs be applied to systems that are described by differential equations?
Define the input node of an SFG.

Define the output node of an SFG.

Y s Mo

State the form to which the equations must first be conditioned before drawing the SFG.
10. What does the arrow on the branch of an SFG represent?

11. Explain how a noninput node of an SFG can be made into an output node.

12. Can the gain formula be applied between any two nodes of an SFG?

13. Explain what the nontouching loops of an SFG are.

14. Does the A of an SFG depend on which pair of input and output is selected?

15. List the advantages and utilities of the state diagram.

16. Given the state diagram of a linear dynamic system, how do you define the state variables?

17. Given the state diagram of a linear dynamic system, how do you find the transfer function
between a pair of input and output variables?

18. Given the state diagram of a linear dynamic system, how do you write the state equations of the
system?

19. The state variables of a dynamic system are not equal to the number of energy-storage elements
under what condition?

Answers to these review questions can be found on this book’s companion Web site:
www.wiley.com/college/golnaraghi.
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- PROBLEMS

PROBLEMS FOR SECTION 3-1
3-1. Consider the block diagram shown in Fig. 3P-1.

Find:
+ E K _
X | sG+p) rY
Kps i
Figure 3P-1

(a) The loop transfer function.

(b) The forward path transfer function.
(¢) The error transfer function.

(d) The feedback transfer function.

(e) The closed loop transfer function.

3-2. Reduce the block diagram shown in Fig. 3P-2 to unity feedback form and find the system
characteristic equation.

t 1

I "
X ) " >Y

(s+1) *

Figure 3P-2

3-3. Reduce the block diagram shown in Fig. 3P-3 and find the Y/X.

Figure 3P-3
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3-4. Reduce the block diagram shown in Fig. 3P-4 to unity feedback form and find the Y/X.

Hs

Hy

Figure 3P-4

3-5. The aircraft turboprop engine shown in Fig. 3P-5(a) is controlled by a closed-loop system with
block diagram shown in Fig. 3P-5(h). The engine is modeled as a multivariable system with input
vector E(s), which contains the fuel rate and propeller blade angle, and output vector Y(s), consisting
of the engine speed and turbine-inlet temperature. The transfer function matrices are given as

2

10
6= 3D | | mw=[p {|

s s+1
Find the closed-loop transfer function matrix [I + G(s)H(s)] "' G(s).

COMBUSTION
é > i
| o [

COMPRESSOR

N
TURBINE
PROPELLER

Figure 3P-5(a)

R(s) E(s) | Ges) Y(S)_:
+

H(s) ¢

Figure 3P-5(h)

3-6. Use MATLAB to solve Problem 3-5.

3-7. The block diagram of the position-control system of an electronic word processor is shown in
Fig. 3P-7.

(a) Find the loop transfer function ®,(s)/®,(s) (the outer feedback path is open).

(b) Find the closed-loop transfer function ®,(s)/®,(s).
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K
2 Gear
Sensor Preamp ratio
6. 6, E ; Ej I T ) 6, 8
1 a m 1 n 1 'm 0
K. K K > K; » - N —
+ y . + y + ; + R, +Lgs ¢ JEERE ) _b
Power amplifier

Current feedback

K,

Tachometer feedback

K, |

Figure 3P-7

3-8. The block diagram of a feedback control system is shown in Fig. 3P-8. Find the following
transfer functions:
Y(s)
(a) -
R(s)|y—o
Y(s)
E(s)|y=o
Y(s)
) ——
N(s)|p=o
(d) Find the output ¥(s) when R(s) and N(s) are applied simultaneously.

(b)

Y
o

N(s)

R(s) E(s) ¥(s)

0.5s

F N

Figure 3P-8

3-9. The block diagram of a feedback control system is shown in Fig, 3P-9.
(a) Apply the SFG gain formula directly to the block diagram to find the transfer functions

Y(s) Y(s)

R(s)ly=0 N()lg=o
Express Y(s) in terms of R(s) and N(s) when both inputs are applied simultaneously.

(b) Find the desired relation among the transfer functions G(s), Ga(s). Ga(s), Ga(s), H1(s), and
Ha(s) so that the output ¥(s) is not affected by the disturbance signal N(s) at all.
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¥ Gyls)

> G,ls) Gyls) > G,(s)

H(s) T
Hy(s)

Figure 3P-9

3-10. Fig. 3P-10 shows the block diagram of the antenna control system of the solar-collector field
shown in Fig. I-5. The signal N(s) denoles the wind gust disturbance acted on the antenna. The
feedforward transfer function G, (s) is used to eliminate the effect of N(s) on the output ¥(s). Find the
transfer function ¥(s)/N(s)|z_o. Determine the expression of Gy(s) so that the effect of N(s) is
entirely eliminated.

N(s)

Gls) ¢

R(s) p E(s) s+5 10 | ¥(s)
+ s+10 s(s +5) +

Figure 3P-10

3-11. Fig. 3P-11 shows the block diagram of a de-motor control system. The signal N(s) denotes the
frictional torque at the motor shaft.

(a) Find the transfer function H(s) so that the output ¥(s) is not affected by the disturbance torque N(s).
(b) With H(s) as determined in part (a), find the value of K so that the steady-state value of e(z) is
equal to 0.1 when the input is a unit-ramp function, 7(r) = tus (1), R(s) = 1/s*, and N(5) = 0. Apply
the final-value theorem.

N(s)
+
+ E (:
R(s) (s) ) e ¥(s)
+
H(s) '«
Gs) = Kis + 3)

Tos(s + (s + 2)

Figure 3P-11
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3-12. The block diagram of an electric train control is shown in Fig. 3P-12. The system parameters
and variables are

e, (1) = voltage representing the desired train speed, V
v(t) = speed of train, ft/sec

M = Mass of train = 30, 000 Ib/sec”

K = amplifier gain

K; = gain of speed indicator = 0.15 V/ft/sec

AMPLIFIER | €.() | CONTROLLER| /1) [ 1. v(n)

K Gls) | Ms Train
speed
SPEED
DETECTOR |¢—
Kt

Figure 3P-12

To determine the transfer function of the controller, we apply a step function of 1 volt to the input of
the controller, that is, e.(f) = us(¢). The output of the controller is measured and described by the
following equation:

£() = 100(1 — 03675 — 0.7¢™"% ) (1)

(a) Find the transfer function G.(s) of the controller.

(b) Derive the forward-path transfer function V(s);/ E(s) of the system. The feedback path is opened in
this case.

{c) Derive the closed-loop transfer function V{s)/E.(s) of the system.

(d) Assuming that K is set at a value so that the train will not run away (unstable), find the steady-state
speed of the train in feet per second when the input is ¢,(r) = us(r)V.

3-13. Use MATLAB to solve Problem 3-12.

3-14. Repeat Problem 3-12 when the output of the controller is measured and described by the
following expression:

f1) = 100(1 " 0.3e“(’("0'5))us(t ~0.5)
when a step input of 1 V is applied to the controller.

3-15. Use MATLAB to solve Problem 3-14.

3-16. A linear time-invariant multivariable system with inputs 71 (#) and r2(¢) and outputs y; (¢) and
¥2(#) is described by the following set of differential equations.

d*y (1) dy; (1)
- 3ya(t) = r(t !
2 T2l =n() +n)
drya(r) L) dry(t)
- — X = ra(t —_—
2 T3 g @ -n)=nl+—
Find the following transfer functions:
Yi(s) Ya(s) Yi(s) Ya(s)
Ri(8)|g,=0 R1(s)|gy=0 Ro(s)lg,—o R2(8)|g,—0

PROBLEMS FOR SECTION 3-2
3-17. Find the state-flow diagram for the system shown in Fig. 3P-4.
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3-18. Draw a signal-flow diagram for the system with the following state-space representation:

G 05 0

X = 1 0 —-1(X+[0 05]|U
|05 15 05 0.5 05
(05 05 0

o X
05 0 05

3-19. Find the state-space representation of a system with the following transfer function:
5 Bis + Bos
e
$c+A1s + Aps

3-20. Draw signal-flow graphs for the following sets of algebraic equations. These equations should
first be arranged in the form of cause-and-effect relations before SFGs can be drawn. Show that there
are many possible SFGs for cach set of equations.

(@) x) =-x—3x3+3
Xy =5x) —2x2 +x3
x3=4x +x2 —5x3+35
(b) 2x) +3xp +x3 = —1
Xy —2xp —x3 =1

v +x3 =0

3-21. The block diagram of a control system is shown in Fig. 3P-21.
(a) Draw an equivalent SFG for the system.
(b) Find the following transfer functions by applying the gain formula of the SFG directly to the
block diagram.
Y(s)

o)
R(s)

v=0 Nls)

E(s)

r—0 R(s)

E(s)

N=o N (5)

R=0

(¢) Compare the answers by applying the gain formula to the equivalent SFG.
N(s)

.

G(s)

+ +
R(s) E(s) Gols) Gyts) Y(s)

H](.\')-‘

Figure 3P-21

3-22. Apply the gain formula to the SFGs shown in Fig. 3P-22 to find the following transfer

functions: o 5
U 10NnS: Yl Y| Yl Y2
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A A

(e)

Figure 3P-22
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3-23. Find the transfer functions ¥;/Y| and Y»/¥, of the SFGs shown in Fig. 3P-23.

G
—

(@)

(b)
Figure 3P-23
3-24. Signal-flow graphs may be used to solve a variety of electric network problems. Shown in Fig.

3P-24 is the equivalent circuit of an electronic circuit. The voltage source e,(r) represents a
disturbance voltage. The objective is to find the value of the constant & so that the output voltage

Figure 3P-24
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e,(1) is not affected by e4(¢). To solve the problem, it is best to first write a set of cause-and-effect
equations for the network. This involves a combination of node and loop equations. Then construct an
SFG using these equations. Find the gain ¢, /¢, with all other inputs set to zero. For e, not to affect ¢,,
set e, /ey to zero.

3-25. Show that the two systems shown in Figs 3P-25(a) and (b) are equivalent.

-GH
| G 1
o] - O > O » O
Yl 3 Y_:; Y}
6)]
1 G 1
[o > O > O » O
Yl F;\_‘_/F'i Ya
-H

Figure 3P-25

3-26. Show that the two systems shown in Figs. 3P-26(a) and (b) are not equivalent.

1 G 1 G: 1 G 1
Y, ./ 2 ] v,
-H, -H, —Hj
(a)
1 G, G, G, 1
Y, Y,
-H, -H, -H

(b)

Figure 3P-26

3-27. Find the following transfer functions for the SFG shown in Fig. 3P-27.
Yg Ys
Y] y_r=0 Y7

¥, =0

o
Y —
y-
o]

Figure 3P-27(a)
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Figure 3P-27(h)

3-28. Find the following transfer functions for the SFG shown in Fig. 3P-28. Comment on why the

results for parts (¢} and (d) are not the same.

Y
@ L
¥ilyg=0
Y7
Y8ly,—o

Y4 ¥Yg=0

Yy ¥1=0

Figure 3P-28

3-29. The coupling between the signals of the turboprop engine shown in Fig. 3P-4(a) is shown in

Fig. 3P-29. The signals are defined as

R (s) = fuelrate

R (s) = propeller blade angle

¥, (5) = engine speed

Y5 (s) = turbine inlet temperature

(a) Draw an equivalent SEG for the system.

(b) Find the A of the system using the SFG gain formula.
(¢) Find the following transfer functions:

Y1(s)| Yi(s) Ya(s)| Ya(s)|
Ri(s)|gyes R2(s)lgi=0 Ri(S)gymo R2(9)lRy=0

(d) Express the transfer functions in matrix form, Y(s) = G(s)R(s).
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Yys)

G(5)

I

G(s) —Pp

Figure 3P-29

3-30. Figure 3P-30 shows the block diagram of a control system with conditional feedback. The
transfer function G p(s) denotes the controlled process, and G.(s) and H(s) are the controller transfer
functions.
(a) Derive the transfer functions Y(s)/R(s)|y—o and Y(s)/N(s)|g—g. Find ¥(s)/R(s)|N = 0 when
Gc(s) = Gp(s).
(b) Let
100
Gl = Gil) =y——e——
o) = Gels) =y 4 9)

Find the output response y(f) when N(s) — 0 and r(r) = u,(s).
(c) With Gp(s) and G.(s) as given in part (b), select H(s) among the following choices such that

when n(t) = us(¢) and r(¢) = 0, the steady-state value of y(z) is equal to zero. (There may be more
than one answer.)

10 10
Ho) =51 #9=ene39
10(s + 1)

H(s) = H(s) :}Iix (n = positive integer) Select 1.

s+2

Keep in mind that the poles of the closed-loop transfer function must all be in the left-half
s-plane for the final-value theorem to be valid.

N(s)
+

S G(s) L. 24

+ +

1
G(s) H(s)

tA:

TR
Figure 3P-30

3-31. Use MATLAB to solve Problem 3-30.



Problems

3-32. Consider the following differential equations of a system:
dx (1)

= —2x1(¢) + 3x2(1)

dx;(t)

== =5u(1) = Sxa(r) +2r(1)

(a) Find the characteristic equation of the system.
(b) Find the transfer functions X;(s)/R(s) and X5 (s)/R(s).

3-33. The differential equation of a linear system is

20 A0 (DO o)

where y(#) is the output, and r(¢) is the input.

+35
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(a) Write the state equation of the system. Define the state variables from right to left in ascending

order.

(b) Find the characteristic equation and its roots. Use MATLAB to find the roots.
(¢) Find the transfer function Y(s)/R(s).

(d) Perform a partial-fraction expansion of Y(s)/R(s).

(e) Find the output y(#) for > 0 when r(t) = uy(t).

(F) Find the final value of y(#) by using the final-value theorem.

3-34. Consider the differential equation given in Problem 3-33. Use MATLAB to
(a) Find the partial-fraction expansion of ¥(s)/R(s).

(b) Find the Laplace transform of the system.

(¢) Find the output y(2) for t >0 when r(t) = u(t).

(d) Plot the step response of the system.

(e) Verify the final value that you obtained in Problem 3-33 part (f).

3-35. Repeat Problem 3-33 for the following differential equation:

d¥y(r) . d>y(t) | d¥(r) L0

3
dart d? L dt? dt

+y(1) = r(r)

3-36. Repeat Problem 3-34 for the differential equation given in Problem 3-35.
3-37. The block diagram of a feedback control system is shown in Fig. 3P-37.

N(s)
G4(S) <
- T o +
! Sl 10 Y(s)
100 + s+ s(s + 20) 5

Figure 3P-37
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{a) Derive the following transfer functions:
Y (s)| Y(s)| E(s)|
R(s)|ly—o N(Hp=o R(S)lyo

{b) The controller with the transfer function G4(s) is for the reduction of the effect of the noise N(s).
Find Gj4(s) so that the output Y(s) is totally independent of N(s).

(¢} Find the characteristic equation and its roots when G(s) is as determined in part (b).

(d) Find the steady-state value of e(#) when the input is a unit-step function. Set N(s) = 0.

(e) Find y(¢) for # >0 when the input is a unit-step function. Use G4(s) as determined in part (b).
3-38. Use MATLAB to solve Problem 3-37.

ADDITIONAL PROBLEMS
3-39. Assuming

Py =258 +95° 4 155* + 255° + 255 + 145 + 6
Py =5 4+ 85 4+ 235* + 365 +385% + 285 + 16

(a) Use MATLAB to find roots of Py and P;.
(b) Use MATLAB to calculate P3 = P; — Py, Py = Py + Py, and P5 = (P} — P3)+P;.
3-40. Use MATLAB to calculate the polynomial
@) Pe=(s+ (s> + (s + )2 +5+1)
) Pr=(24 1)(s12)(s 1 9)(s? 1 25+1)
3-41. Use MATLAB to perform partial-fraction expansion to the following functions:
1 s+4)(s+ 10
@ Gis) = s(s(s:z) zg:zi)i 5(215 f 5 +)4)
3 ? 4+ 475 + 60
(b) Gas) = 75 7555 +S83;1is|3;s37i J1r26s2 + 625+ 12
3-42. Use MATLAB to calculate unity feedback closed loop transfer function in Problem 3-41.
3-43. Use MATLAB to calculate
(@) Ga(s) = G(s) + Ga(s)
(b) Ga(s) = Gi(s) — Gafs)

<a@m=28

_ Gyls)
@ Gols) = G5 Gals)




CHAPTER 4

Theoretical Foundation and
Background Material:
Modeling of Dynamic
Systems

One of the most important tasks in the analysis and design of control systems is
mathematical modeling of the systems. The two most common methods of modeling
linear systems are the transfer function method and the state-variable method. The transfer
function is valid enly for linear time-invariant systems, whereas the state equations can be
applied to linear as well as nonlinear systems.

Although the analysis and design of linear control systems have been well developed,
their counterparts for nonlinear systems are usually quite complex. Therefore, the control-
systems engineer often has the task of determining not only how to accurately describe a
system mathematically but, more importantly, how to make proper assumptions and
approximations, whenever necessary, so that the system may be realistically characterized
by a linear mathematical model.

A control system may be composed of various components including mechani-
cal, thermal, fluid, pneumatic, and electrical; sensors and actuators; and computers.
In this chapter, we review basic properties of these systems, otherwise known as
dynamic systems. Using the basic modeling principles such as Newton’s second law
of motion or Kirchoff’s law, the models of these dynamic systems are represented by
differential equations. It is not difficult to understand that the analytical and
computer simulation of any system is only as good as the model used to describe
it. It should also be emphasized that the modern control engineer should place
special emphasis on the mathematical modeling of systems so that analysis and
design problems can be conveniently solved by computers. In this textbook, we
consider systems that are modeled by ordinary differential equations. The main
objectives of this chapter are:

« To introduce modeling of mechanical systems.

+ To introduce modeling of electrical systems.

* To introduce modeling thermal and fluid systems.
» To discuss sensors and actuators.

« To discuss linearization of nonlinear systems.

« To discuss analogies.

147
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Furthermore, the main objectives of the following sections are:

* To demonstrate mathematical modeling of control systems and components.

* To demonstrate how computer solutions are used to obtain the response of these
models.

» To provide examples that improve learning.

This chapter represents an introduction to the method of modeling. Because numerous
types of control-system components are available, the coverage here is by no means
exhaustive. This chapter further is intended to be self-sufficient and will not affect the
general flow of the text. In Chapters 5 and 9, through various examples and case studies, the
fundamentals discussed here are utilized to model more complex control systems and to
establish their behavior.

»-4-1 INTRODUCTION TO MODELING OF MECHANICAL SYSTEMS

Mechanical systems may be modeled as systems of lumped masses (rigid bodies) or as
distributed mass (continuous) systems. The latier are modeled by partial differential
equations, whereas the former are represented by ordinary differential equations, Of course,
in reality all systems are continuous, but, in most cases, it is easier and therefore preferred to
approximate them with lumped mass models and ordinary differential equations.

Definition: Mass is considered a property of an element that stores the kinetic energy of
translational motion. Mass is analogous to the inductance of electric networks, as shown in
Section 4-10. If W denotes the weight of a body, then M is given by

M= (4-1)

where g is the acceleration of free fall of the body due to gravity (g = 32.174 ft/sec? in
British units, and g = 9.8066 m/sec? in SI units).

The equations of a linear mechanical system are written by first constructing a model
of the system containing interconnected linear elements and then by applying Newton’s
law of motion to the free-body diagram (FBD). For translational motion, the equation of
motion is Eq. (4-2), and for rotational motion, Eq. (4-33) is used.

The motion of mechanical elements can be described in various dimensions as
translational, rotational, or a combination of both. The equations governing the motion
of mechanical systems are often directly or indirectly formulated from Newton’s law of
motion.

4-1-1 Translational Motion

The motion of translation is defined as a motion that takes place along a straight or curved
path. The variables that are used to describe translational motion are acceleration,
velocity, and displacement.

Newton’s law of motion states that the algebraic sum of external forces acting on a
rigid body in a given direction is equal to the product of the mass of the body and its
acceleration in the same direction. The law can be expressed as

Z forces = Ma (4-2)

external
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=0

M ———> fi0)

Figure 4-1 Force-mass system.

where M denotes the mass, and a is the acceleration in the direction considered. Fig. 4-1
illustrates the situation where a force is acting on a body with mass M. The force equation is
written as

2 v
£() = Ma(t) = M2 d’; ,E’ ) M‘—i;i(ti) 4-3)

where a(¢) is the acceleration, v(f) denotes linear velocity, and y(¢) is the displacement of
mass M, respectively.

For linear translational motion, in addition to the mass, the following system elements
are also involved.

= Linear spring. In practice, a linear spring may be a model of an actual spring or a
compliance of a cable or a belt. In general, a spring is considered to be an element
that stores potential energy.

f(5) = Ky() (4-4)

where X is the spring constant, or simply stiffness. Eq. (4-4) implies that the force
acting on the spring is directly proportional to the displacement (deformation) of the
spring. The model representing a linear spring element is shown in Fig. 4-2, If the
spring is preloaded with a preload tension of 7, then Eq. (4-4) should be modified to

F(y =T =Ky (4-5)

» Friction for translation motion. Whenever there is motion or tendency of motion
between two physical elements, frictional forces exist. The frictional forces
encountered in physical systems are usually of a nonlinear nature. The character-
istics of the frictional forces between two contacting surfaces often depend on such
factors as the composition of the surfaces, the pressure between the surfaces, and
their relative velocity among others, 50 an exact mathematical description of the
frictional force is difficult. Three different types of friction are commonly used in
practical systems; viscous friction, static friction, and Coulomb friction, These
are discussed separately in the following paragraphs.

» Viscous friction. Viscous friction represents a retarding force that is a linear
relationship between the applied force and velocity. The schematic diagram
element for viscous friction is often represented by a dashpot, such as that shown
in Fig. 4-3. The mathematical expression of viscous friction is

_ p (1)
f(t) = BT (4-6)

\

K ‘—» ¥

11k > fi5)

Figure 4-2 Force-spring system.
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s 0

]] » fln)

f f f
+F;

Figure 4-3 Dashpot for viscous friction.

Slope=B

0 ¥ 0 ¥y 0

-F,

—F

(a) (b) (9]

Figure 4-4 Graphical representation of linear and nonlinear frictional forces. (a) Viscous friction.
(b) Static friction, (c) Coulomb friction.

where B is the viscous frictional coefficient. Fig. 4-4(a) shows the functional
relation between the viscous frictional force and velocity.

Static friction, Static friction represents a retarding force that tends to prevent
motion from beginning. The static frictional force can be represented by the expression

£(8) = £(Fs)l5=0 @7

which is defined as a frictional force that exists only when the body is stationary
but has a tendency of moving. The sign of the friction depends on the direction of
motion or the initial direction of velocity. The force-to-velocity relation of static
friction is illustrated in Fig. 4-4(b). Notice that, once motion begins, the static
frictional force vanishes and other frictions take over.

Coulomb friction. Coulomb friction is a retarding force that has constant
amplitude with respect to the change of velocity, but the sign of the frictional
force changes with the reversal of the direction of velocity. The mathematical
relation for the Coulomb friction is given by

(dy (t))

dt

f(i‘) S FcTy(t')— (4-8)
dt

where F is the Coulomb friction coefficient. The functional description of the

friction-to-velocity relation is shown in Fig. 4-4(c).

It should be pointed out that the three types of frictions cited here are merely practical
models that have been devised to portray frictional phenomena found in physical systems.
They are by no means exhaustive or guaranteed to be accurate. In many unusual situations,
we have to use other frictional models to represent the actual phenomenon accurately. One
such example is rolling dry friction [3, 4], which is used to model friction in high-precision
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TABLE 4-1 Basic Translational Mechanical System Properties and Their Units

Parameter Symbol Used SI Units  Other Units Conversion Factors
Mass M kilogram  slug 1kg =1000¢g
(k) fiisec? = 2.2046 Ib(mass)
= 35.274 oz(mass)
= 0.06852 slug
Distance y meter (m) ft 1m = 3.2808 ft = 39.37in
in lin. = 25.4mm
1ft =0.3048m
Velocity v mfsec ft/sec
infsec
Acceleration a m/sec? ft/sec*
infsec?
Force f Newton  pound 1N = (.2248 1b(force)
™ (Ib force) = 3.5969 oz(force)
dyne IN = 1kg—m/s?
1dyn = 1g—cm/s?
Spring Constant K N/m 1b/ft
Viscous Friction Coefficient B N/m/sec  Ib/ft/sec

ball bearings used in spacecraft systems. It turns out that rolling dry friction has nonlinear
hysteresis properties that make it impossible for use in linear system modeling.

Table 4-1 shows the basic translational mechanical system properties with their
corresponding basic SI and other measurement units.

Consider the mass-spring-friction system shown in Fig. 4-5(a). The linear motion concerned is in the
horizontal direction. The free-body diagram of the system is shown in Fig. 4-5(b). The force equation
of the system is

dy(1) (1)
— B gy = M2 N
0 - B - k() =M= @9)
The last equation may be rearranged by equating the highest-order derivative term to the rest of the
terms:

d? Bd K 1

t——» ¥(8) i.__> ¥

Ky(t) 4———
p b
dr

M ——s ) M —

(a) (b)
Figure 4-5 (a) Mass-spring-friction system. (b) Free-body diagram.
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A i il e M)
b M il § i’
B <
Figure 4-6 The mass-spring-friction
K le system of Eq. (4-11) block diagram
representation.

Iy(t d*y(r;
where y(r) = (”( ) ) and ¥(1) = ( (1) ) represent velocity and acceleration, respectively. Or,

dt 12
alternatively, the former equation may be rewritten into an input—output form as
. B K 1
y(t — —vy(t) = — f(¢ 2
${1) + 3730 + 2230 = - £(0) @1

0]

where y(/) is the output and Tl is considered the input.

For zero initial conditions, the transfer function between Y(s) and F(s) is obtained by taking the
Laplace transform on both sides of Eq. (4-11) with zero initial conditions:
Y(s) 1
F(s) Ms?+Bs+K
The same result is obtained by applying the gain formula to the block diagram, which is shown
in Fig. 4-6.
Eq. (4-10) may also be representied in the space state form using a state vector x(t) having »n
rows, where # is the number of state variables, so that

(4-12)

X = Ax + Bu (4-13)
where
s = |20 (4-14)
.\'g(t)
yo) =x() 3(f) = x(r) (4-15)
and
o f)
= NOE 4-16
u(t) 5 (4-16)
So using Eqs. (4-13) through (4-16), Eq. (4-10) is rewritten in vectoral form as
-4 Ak e
X ¥ "M b} M
The state Eq. (4-17) may also be written as a set of first-order differential equations:
dx) (f)
=x3(¢
dt w(t)
do() K B 1 (4-18)
5 Mx,(r) ng(t) +M flr)
y(1) =x (1)

For zero initial conditions, the transfer function between Y(s) and F(s) is obtained by taking the
Laplace transform on both sides of Eq. (4-18):

sX1(s) = Xa(s)

Xa(s) =~ Xa(s) — M Xi(s) 2 (s)
Y(s) = Xu(s) e
Y(s) 1

A(s) MsZ+Bs+K
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Fs) 1 1] %W L Y©) =X()
M N $ 5 -
B
M [ : :
Figure 4-7 Block diagram
K representation of mass-spring-
M| friction system of Eq. (4-19).
X,(0)
F(s) 1 X(s) j HRICN
— | s s -

A

Figure 4-8 Block diagram
representation of mass-spring-
friction system of Eq. (4-20) with
initial conditions x(0) and x»(0).

x| |Rl=

F N

The same result is obtained by applying the gain formula to the block diagram representation of the
system in Eq. (4-19), which is shown in Fig. 4-7.

For nonzero initial conditions, Eq. (4-18) has a different Laplace transform representation that
may be written as:

SX| (Y) =X (0) = XQ (5)

) ~ = — %Xg(s) . A—';x, @+ %F(s) (4-20)
Y(s) = X (5)

Upon simplifying Eq. (4-20) or by applying the gain formula to the block diagram representation of
the system, shown in Fig. 4-8, the output becomes
1 Ms M
Y(s) = F 0)+———— 1
O =ik e Ot uer TR 2

(0) (4-21)

Toolbox 4-1-1
Time domain step response for Eq. (4-12) is calculated using MATLAB for K =1, M = 1, B = [:
K=1; M=1; B=1;

t=0:0.02:30;
num=[1];
den=[MBK];

G =tf(num,den);

y1l=STEP (G,t);

plot(t, y1);

xlabel (‘Time (Second)’);ylabel( ‘Step Response’)
title(‘Response of the systemto step input’)
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14

Response of the system to step inpun
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# EXAMPLE 4-1-2 As apother example of writing the dynamic equations of a mechanical system with translational
motion, consider the system shown in Fig. 4-9(a). Because the spring is deformed when it is subject to
a force (1), two displacements, v; and y,, must be assigned to the end points of the spring. The free-

body diagrams of the system are shown in Fig. 4-9(b). The force equations are

These equations are rearranged in input-output form as

X

B

£ =K (1) —»0]

—Klyz(t) = »i(1)] - Bd—y'l(t—) =M

&y (t)

%J’l(t)

B dya()

M

d*y(0) | Bdw() K
a2 M a T
= (0
M ETIR
K
(a)
> y,(0
> < I

Ky -y K

(b}

(4-22)

Figure 4-9 Mechanical
system for Example 4-1-2.
(a) Mass-spring-damper
system. (b) Free-body
diagram,

@23)

(4-24)
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A0

(a)

Yi(s)
il A AL a1
K Ot s M s §

F(s) 1 1 Yols)
—— - >

(b)

Figure 4-10 Mass-spring-friction system of Eq. (4-25) using Eq. (4-22). (a) The signal-flow graph
representation. (b) Block diagram representation.

For zero initial conditions, the transfer function between Y;(s) and Y»(s) is obtained by taking the
Laplace transform on both sides of Eq. (4-24):

Ya(s) _ K
Yi(s)  Ms?2+Bs+K

(4-25)

The same result is obtained by applying the gain formula to the block diagram representation of the
system, which is shown in Fig. 4-10. Note that in Fig. 4-10, Eq. (4-22) was also used.
For state representation, these equations may be rearranged as

y1(0) = 2(0) + 5 £0)

d*y> (1) __Ban(
dr? M dr

(4-26)

L4 R0 - 0]

For zero initial conditions, the transfer function of Eq. (4-26) is the same as Eq. (4-25). By using the
last two equations, the state variables are defined as x{(f) = y2(r) and x(z) = dy,(¢)/dr. The state
equations are therefore written as

(Ix(lit(l’) = (t)
4-27)
dxs(t) B 1
7 —sz(f)‘*'ﬁf(t)

The same result is obtained after taking the Laplace transform of Eq. (4-27) and applying the gain
formula to the block diagram representation of the system, which is shown in Fig. 4-11. Note that in
Fig. 4-11, F(s), Y\(5), X1(s), Ya(s), and X;(s) are Laplace transforms of f(£), y(2), x1(¢), y»(£), and
x(1), respectively.
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Fl(s) ¥i(s)

—~@—

Xy(s) Yals) = X, (s)

»
—p

o =

| L
K

)R]w

A

NS

Figure 4-11 Block diagram representation
of mass-spring-friction system of Eq. (4-27).

EXAMPLE 4-1-3 Consider the two degrees of freedom (2-DOF) spring-mass system, with two masses s and #1,, two
springs &, and k», and two forces f; and f5, as shown in Fig. 4-12. Find the equations of motion.

SOLUTION To avoid any confusion, we first draw the free-body diagram (FBD) of the system by
assuming the masses are displaced in the positive direction, so that y; > y> > 0 (i.e., springs are both
in tension). The FBD of the system is shown in Fig. 4-13. Applying Newton’s second law to the
masses M, and M,, we have

filt) = Kyt + Ka(yy — y2) = M3

A (4-28)
fa(t) = Ka(v1 = ¥2) = Ma¥p
Rearranging the equations into the standard input—output form, we have
" Ky — Koya = fi(¢
Miiy + (Ki + Ka)y = Kaya = fi(1) (4-29)

Ma¥) — Kay1 + Kaya = fa(t)

Alternatively, Eqg. (4-29) may be represented in the standard second-order matrix form, as

]+ )l

Y1
A 5 4-30
0 Mz] [)’z -K; Ky |[» f ey
In state space form, assuming the following state vector x(t), the inputs u,(¢) and u,(7), and the output
(1), we get

x1(2) yi(1)]
x2(t) ya2() ;
t) = £ | = [ U= t), wp = f2lt), y(t) = x1 (¢
X() X3(t) )‘](I) iy fl() %) f’() \() xl()
x4(t) ¥a(t) |
»i() ¥a(0)
[ b
Si® flt)
= —» o
%\N\/\a M "W M,
K, K, Figure 4-12 A 2-DOF spring-mass system.
»() yal1)
>
f©® St
M, M,
«—] X P — — >
K@ Koy ()= ya(0]

Figure 4-13 FBD of the 2-DOF spring-mass system.
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Then, using %3 = J; and x4 = ¥, we get the state-space representation as

X1 0 0 I 07[x 0 0
by) 0 0 01 X 0 0 .
i = _KiMy KM 0 0| -+ /My u + 0 uy  (stateequation)
X4 KMy —-Ky/Mp 0 0] Lxg 0 1/M;
X1
y=[1 0 0 0] z +0-u +0-1 (output equation)
X

4-32)

where the state equation is a set of four first-order differential equations.

4-1-2 Rotational Motion

The rotational motion of a body can be defined as motion about a fixed axis. The extension
of Newton'’s law of motion for rotational motion states that the algebraic sum of moments
or torque about a fixed axis is equal to the product of the inertia and the angular
acceleration about the axis. Or

Ztorques =Ja (4-33)

where J denotes the inertia and « is the angular acceleration. The other variables generally
used to describe the motion of rotation are torque 7, angular velocity w, and angular
displacement 8. The elements involved with the rotational motion are as follows:

« Inertia. Inertia, J, is considered a property of an element that stores the kinetic
energy of rotational motion, The inertia of a given element depends on the
geometric composition about the axis of rotation and its density. For instance,
the inertia of a circular disk or shaft, of radius » and mass M, about its geometric
axis is given by

J==Mr (4-34)

When a torque is applied to a body with inertia J, as shown in Fig. 4-14, the torque
equation is written

w = sze(t)

T(r) =Ja(t)=J 7 -—d}z—

(4-35)

where 0(t) is the angular displacement; w(t), the angular velocity; and «(t), the
angular acceleration.

()

6:3:@ )9(:)

"~

Figure 4-14 Torque-inertia system.
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U]

N% \

8 Figure 4-15 Torque torsional spring system.

Torsional spring. As with the linear spring for translational motion, a torsional
spring constant K, in torque-per-unit angular displacement, can be devised to represent
the compliance of a rod or a shaft when it is subject to an applied torque. Fig. 4-15
illustrates a simple torque-spring system that can be represented by the equation

T(t) = K6(1) (4-36)
If the torsional spring is preloaded by a preload torque of TP, Eq. (4-36) is modified to

T(t) — TP = K6(1) (4-37)

Friction for rotational motion. The three types of friction described for transla-
tional motion can be carried over to the motion of rotation. Therefore, Eqs. (4-6),
(4-7), and (4-8) can be replaced, respectively, by their counterparts:

+ Viscous friction.

_ g%
T(t) = B— (4-38)

« Static Friction.
T() = £(F)lap (4-39)

+ Coulomb friction.

&

(¢

—

E.~|.

dt

~—

Table 4-2 shows the SI and other measurement units for inertia and the variables in
rotational mechanical systems.

¥ EXAMPLE 8-1-4 The rotational system shown in Fig. 4-16(a) consists of a disk mounted on a shaft that is fixed at one
end. The moment of inertia of the disk about the axis of rotation is J. The edge of the disk is riding on
the surface, and the viscous friction coefficient between the two surfaces is B, The inertia of the shaft
is negligible, but the torsional spring constant is K.
Assume that a torque is applied to the disk, as shown; then the torque or moment equation about
the axis of the shaft is written from the free-body diagram of Fig. 4-16(b):

_de(n) | de()
T(t) —JT‘FBT'FKG(I) (4-41)

Notice that this system is analogous to the translational system in Fig. 4-5. The state equations may be

written

by defining the state variables as x{(t) = 6(¢) and x2(¢) = dx(t)/dt.
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Figure 4-16 Rotational system for Example 4-1-4.

TABLE 4-2 Basic Rotational Mechanical System Properties and Their Units

Symbol  SI Other
Parameter Used Units Units Conversion Factors
Inertia J kg-m® slug-ft* lg-cm =
1b-ft-sec” 1.417 x 1073 oz-in.~sec?
oz-insec® b fy sec?
= 192 oz-in.-sec?
= 32.21b-f

1 0z-in.-sec? = 386 oz-in®

1 g-cm-sec? = 980 g-cm®

7 i i 180
Angular Displacement T Radian Radian Irad = g 57.3 deg

Angular Velocity o radian/sec radian/sec I
lrpm = E
= (.1047rad/sec
lpm = 6deg/sec
Angular Acceleration A radian/sec>  radian/sec’
Torque T {(N-m) Ib-ft 1 g-cm = 0.0139 oz-in.
dyne-cm oz-in. 1 Ib-ft = 192 oz-in,
1 0z-in. = 0.00521 Ib-ft
Spring Constant K N-m/rad fe-lb/rad
Viscous Friction Coefficient B N-m/rad/sec  ft-Ib/rad/sec
Energy o J (joules) Btu 1] =1N-m
Calorie 1Btu = 1055)
lcal = 4.184)

EXAMPLE 4-1-5 Fig. 4-17(a) shows the diagram of a motor coupled to an inertial load through a shaft with a spring
constant K. A non-rigid coupling between two mechanical components in a control system often
causes torsional resonances that can be transmitted to all parts of the system. The system variables
and parameters are defined as follows:

T,(t) = motor torque

B,,, = motor viscous-friction coefficient
K = spring constant of the shaft

6(t) = motor displacement

wpy () = motor velocity
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T\"' K \
MOTOR [] ] LOAD
¥ ¥ 1.
J m Bm 8‘" 9['
(a)
B0, + K(6,, - 6,) K(8,,—6,)
K
o ) )
3
8,
o T O “ Figure 4-17 (a) Motor—load
(b) system. (b) Free-body diagram.

J = motor inertia
6¢.(¢) = load displacement
wr(t) = load velocity
Ji. = load inertia
The free-body diagrams of the system are shown in Fig. 4-17(b). The torque equations of the
system are
d*0m(t) _ _Bn a6y (t
ar I, dt
d20.(¢)
dr
In this case, the systemn contains (hree energy-storage elements in J,,., J;, and K. Thus, there should be three

state variables. Care should be taken in constructing the state diagram and assigning the state variables so
that a minimum number of the latter are incorporated. Eqs, (4-42) and (4-43) are rearranged as

) X ()~ 6000+ - Tal) (442)

K[Om(r) — 6.(1)) =J1, (4-43)

dZB,n(l) _ _& dgm(t) £ 1
ar = I, dt In [Om (1) — 6L(2)] +.-1;TM(I) (4-44)
d?0r(t) K
dfz( ) _ 7, 16n(0) = 620 (4-45)

The state variables in this case are defined as xi(f) = 8,,(f) — OL(r), x2(t) = dB,(r}/dr, and
x3(t) = dfy(t)/dt. The state equations are

dxy(t
x“l_t() = x3(t) — x2(t)
dea(t) K
a0 o
dx3(t) _ K B 1
yr = —Z;xl(t) - EX}(I) 'f"In'Tm(t)

The SFG representation is shown in Fig. 4-18.

-G =x
‘Bm/ J "

Figure 4-18 Rotational system of Eq. (4-46) signal-flow graph representation.


http://9i.it

4-1 Introduction to Modeling of Mechanical Systems « 161

4-1-3 Conversion between Translational and Rotational Motions

In motion-control systems, it is often necessary to convert rotational motion into translational
motion. For instance, a load may be controlled to move along a straight linc through a rotary
motor-and-lead screw assembly, such as that shown in Fig. 4-19. Fig. 4-20 shows a similar
situation in which a rack-and-pinion assembly is used as a mechanical linkage. Another familiar
system in motion control is the control of a mass through a pulley by a rotary motor, as shown in
Fig. 4-21. The systems shown in Figs. 4-19, 4-20, and 4-21 can all be represented by a simple
system with an equivalent inertia connected directly to the drive motor. For instance, the mass in
Fig. 4-21 can be regarded as a point mass that moves about the pulley, which has a radius r. By
disregarding the inertia of the pulley, the equivalent inertia that the motor sees is

W
_—=—r2
4

J = Mr* (4-47)

If the radius of the pinion in Fig. 4-20 is r, the equivalent inertia that the motor sees is also
given by Eq. (4-47).

Now consider the system of Fig. 4-19. The lead of the screw, L, is defined as the linear
distance that the mass travels per revolution of the screw. In principle, the two systems in
Fig. 4-20 and Fig. 4-21 are equivalent. In Fig. 4-20, the distance traveled by the mass per
revolution of the pinion is 2zr. By using Eq. (4-47) as the equivalent inertia for the system
of Fig. 4-19, we have

P (i) (4-48)

(), 6(1) }** x(0)

\
Motor /7//7////{///{////

Figure 4-19 Rotary-to-linear motion control
Lead screw system (lead screw).

|—> X0

w

. Rack
Pinion (1)

Drive ; ) Figure 4-20 Rotary-to-linear motion control
motor T() system (rack and pinion).

0

o (9

Belt Pulley
Drive Figure 4-21 Rotary-to-linear motion
motor ¥ T(f) control system (belt and pulley).
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T» 6  Figure 4-22 Gear train.
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4-1-4 Gear Trains

A gear train, lever, or timing belt over a pulley is a mechanical device that transmits
energy from one part of the system to another in such a way that force, torque, speed,
and displacement may be altered. These devices can also be regarded as matching
devices used to attain maximuom power transfer. Two gears are shown coupled together
in Fig. 4-22. The inertia and friction of the gears are neglected in the ideal case

considered.

The relationships between the torques 77 and 7>, angular displacement 6; and 85, and
the teeth numbers N; and N, of the gear train are derived from the following facts:

1. The number of teeth on the surface of the gears is proportional to the radii r; and r;

of the gears; that is,

riN2 = nN|

2. The distance traveled along the surface of each gear is the same. Thus,

O1ry = b1y

3. The work done by one gear is equal to that of the other since there are assumed to

be no losses. Thus,

716 = 126,

If the angular velocities of the two gears w; and w; are brought into the picture, Egs. (4-49)

through (4-51) lead to

In practice, gears do have inertia and friction between the coupled gear teeth that often
cannot be neglected. An equivalent representation of a gear train with viscous friction,
Coulomb friction, and inertia considered as lumped parameters is shown in Fig. 4-23,
where T denotes the applied torque, T; and 7> are the transmitted torque, F; and F, are the
Coulomb friction coefficients, and B; and B, are the viscous friction coefficients. The

torque equation for gear 2 is

a6, (1)
dt

+Fc2&

w2

d292(t)
2

Th(t) =1, + B,
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Figure 4-23 Gear train with friction and inertia.

The torque equation on the side of gear 1 is

a*6, ()
dr?

6, (1
() = J, + B ;!:( )+ F,, % +Ti(0) (4-54)

Using Eq. (4-52), Eq. (4-53) is converted to

M N2 d%()  (N\*,_ d8i(t) Ni_. n
T =—=To(f) == F + (2 g, N L, 2 4-
1) Ny 2(?) (Nz) 2T ae N, Ba i Y

£

Eq. (4-55) indicates that it is possible to reflect inertia, friction, compliance, torque, speed,
and displacement from one side of a gear train to the other. The following quantities are
obtained when refiecting from gear 2 to gear 1:

2
. Np
Inertia: [ — |} J.
nertia (Nz) )
. - - Ny
Viscous-friction coefficient: o B,
2
N
Torque: —T:
R N (4-56)
Angular displacement : ]71- )
2

N
Angular velocity: i} w3
Ny
wy

.. Ny
Coulomb friction torque : — F.p —
T N, "y

Similarly, gear parameters and variables can be reflected from gear 1 to gear 2 by simply
interchanging the subscripts in the preceding expressions. If a torsional spring effect is
present, the spring constant is also multiplied by (N /1\'2)2 in reflecting from gear 2 to gear
1. Now substituting Eq. (4-55) intu Ey. (4-54), we get

d*0:1(1) d6,(2)

T(t) = a2 + B1, dt

+TF (4-57)

where

N 2
Jie =J1 + (—‘) J (4-58)
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N 2
Bl =B + (N—;) B, (4-59)
N
;T B f R 8 (4-60)
lwi] N ||

EXAMPLE 4-1-6 Given a load that has inertia of 0.05 oz-in.-sec? and a Coulomb friction torque of 2 oz-in., find the
inertia and frictional torque reflected through a 1:5 gear train (N; /N> = 1 /5, with N, on the load
side). The reflected inertia on the side of N is (1/5)>%0.05 = 0.002 oz-in.-sec. The reflected
Coulomb friction is (1/5) x 2 = 0.4 oz-in.

4-1-5 Backlash and Dead Zone (Nonlinear Characteristics)

Backlash and dead zone are commonly found in gear trains and similar mechanical
linkages where the coupling is not perfect. In a majority of situations, backlash may give
rise to undesirable inaccuracy, oscillations, and instability in control systems. In
addition, it has a tendency to wear out the mechanical elements. Regardless of the
actual mechanical elements, a physical model of backlash or dead zone between an input
and an output member is shown in Fig. 4-24. The model can be used for a rotational
system as well as for a translational system. The amount of backlash is /2 on either side
of the reference position.

In general, the dynamics of the mechanical linkage with backlash depend on the
relative inertia-to-friction ratio of the output member. If the inertia of the output member is
very small compared with that of the input member, the motion is controlled predominantly
by friction. This means that the output member will not coast whenever there is no contact
between the two members. When the output is driven by the input, the two members will
travel together until the input member reverses its direction; then the output member will be
at a standstill until the backlash is taken up on the other side, at which time it is assumed
that the output member instantaneously takes on the velocity of the input member. The
transfer characteristic between the input and output displacements of a system with
backlash with negligible output inertia is shown in Fig. 4-25.

() A

LR

Slope =1

1o

=
=
(=]
$
=2
-~V

Output

Figure 4-24 Physical model of backlash Figure 4-25 Input—output characteristic of
between two mechanical elements. backlash.
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+ ep(t) — + e é? Figure 4-26 Basic 'passwc electf'lcal
elements. (a) A resistor. (b} An inductor.
(2) (b) © (c) A capacitor.

.- 4-2 INTRODUCTION TO MODELING OF SIMPLE ELECTRICAL SYSTEMS

First we address modeling of electrical networks with simple passive elements such as
resistors, inductors, and capacitors. Later, in the next section, we address operational
amplifiers, which are active electrical elements.

4-2-1 Modeling of Passive Electrical Elements

Consider Fig. 4-26, which shows the basic passive electrical elements: resistors, inductors,
and capacitors,

Resistors; Ohm’s law states that the voltage drop, er(t), across a resistor R is proportional
to the current i(#) going through the resistor. Or

er(f) = i()R 4-61)

Inductors: The voltage drop, er (), across an inductor L is proportional to the time rate
of change of current i(¢) going through the inductor. Thus,

di(t)

er{t) = a (4-62)

Capacitor: The voltage drop, ec(t), across a capacitor C is proportional to the integral
current i(¢) going through the capacitor with respect to time. Therefore,

eclt) = / %ldt (4-63)

4-2-2 Modeling of Electrical Networks

The classical way of writing equations of electric networks is based on the loop method or
the node method, both of which are formulated from the two laws of Kirchhoff, which state:

Current Law or Loop Method: The algebraic summation of all currents entering a
node is zero.

Voltage Law or Node Method: The algebraic sum of all voltage drops around a
complete closed loop is zero.

+ EXAMPLE 4-2-1 Let us consider the RLC network shown in Fig. 4-27. Using the voltage law
e(ty=er+e,te (4-64)
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Figure 4-27 RLC network. (a) Electrical schematics. (b) Signal-flow graph representation.
(c) Block diagram representation.

where

¢xr = Voltage across the resistor R

¢, = Voltage across the inductor L

e. = Voltage across the capacitor C
Or
di(t

e(t) = +e.(t) + Rifr) + L_ld(z-) (4-65)

Using current in C:
de('(t) 7 .
C——==i(t 4-66
== ife) (4-66)

and taking a derivative of Eq. (4-54) with respect to time. we get the equation of the RLC network as

Pilt) | pdilt) i) _ de(t) (4-67)

£ dr? dt 3 dr
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A practical approach is to assign the current in the inductor L, i(£), and the voltage across the
capacitor C, e (1), asthe state variables. The reason for this choice is because the state variables are directly
related to the energy-storage element of a system. The inductor stores kinetic energy, and the capacitor
stores electric potential energy. By assigning i(¢) and e.(?) as state variables, we have a complete
description of the past history (via the initial states) and the present and future states of the network.

The state equations for the network in Fig. 4-27 are written by first equating the current in C and
the voltage across L in terms of the state variables and the applied voltage e(¢). In vector-matrix form,
the equations of the system are expressed as

de (1) 17

i 0 4 0 — 0
dt _ C ec(t)
di) | | _1 _R [ i(f) ] N [%} <t 68
T L LI
This format is also known as the state form if we set
xi(t) - -ec'(r)] -69
[xz(t)] i) @69

Or

. 0o 0
B1-1° < [Q]J,[l]e@ w0

The transfer functions of the system are obtained by applying the gain formula to the SFG or block
diagram of the system in Fig. 4-27 when all the initial states are set to zero.

Ec(s) _ (1/LC)s™2 _ 1 @-71)
E(s) 14+ (R/L)s 1 +(1/LC)s™2 1+ RCs+ LCs?
Is) _ (1/L)s~! _ Cs 472)
E(s) 14 (R/L)s' 4+ (1/LC)s~2 ~ 1+ RCs+ LCs®

«

Toolbox 4-2-1

Time domain step responses for Eqs. (4-71) and (4-72) are shown using MATLIAB forR=1,L=1,C=1I:

R=1; L=1; C=1;
t=0:0.02:30;

numl = [1];

denl = [L*CR*C1];
num2 = [C0];

den? = [L*CR*C1];
Gl = tf(numl,denl);
G2 =tf(num2,den2);
vl =step (G1,t);

yv2 =step (G2,t);
plot(t,yl, ‘r’);
hold on

plot(t,v2, ‘g’);
xlabel (‘Time’)
ylabel(‘Gain’)
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