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Series Introduction

Many textbooks have been written on control engineering, describing new tech-
niques for controlling systems, or new and better ways of mathematically formulat-
ing existing methods to solve the ever-increasing complex problems faced by
practicing engineers. However, few of these books fully address the applications
aspects of control engineering. It is the intention of this new series to redress this
situation.

The series will stress applications issues, and not just the mathematics of con-
trol engineering. It will provide texts that present not only both new and well-estab-
lished techniques, but also detailed examples of the application of these methods to
the solution of real-world problems. The authors will be drawn from both the aca-
demic world and the relevant applications sectors.

There are already many exciting examples of the application of control tech-
niques in the established fields of electrical, mechanical (including aerospace), and
chemical engineering. We have only to look around in today’s highly automated
society to see the use of advanced robotics techniques in the manufacturing indus-
tries; the use of automated control and navigation systems in air and surface trans-
port systems; the increasing use of intelligent control systems in the many artifacts
available to the domestic consumer market; and the reliable supply of water, gas, and
electrical power to the domestic consumer and to industry. However, there are
currently many challenging problems that could benefit from wider exposure to
the applicability of control methodologies, and the systematic systems-oriented
basis inherent in the application of control techniques.

This series presents books that draw on expertise from both the academic
world and the applications domains, and will be useful not only as academically
recommended course texts but also as handbooks for practitioners in many applica-
tions domains.Modern Control Engineering is another outstanding entry to Dekker’s
Control Engineering series.

Neil Munro
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Preface

Automatic control is one of today’s most significant areas of science and technology.
This can be attributed to the fact that automation is linked to the development of
almost every form of technology. By its very nature, automatic control is a multi-
disciplinary subject; it constitutes a core course in many engineering departments,
such as electrical, electronic, mechanical, chemical, and aeronautical. Automatic
control requires both a rather strong mathematical foundation, and implementation
skills to work with controllers in practice.

The goal of this book is to present control engineering methods using only the
essential mathematical tools and to stress the application procedures and skills by
giving insight into physical system behavior and characteristics. Overall, the
approach used herein is to help the student understand and assimilate the basic
concepts in control system modeling, analysis, and design.

Automatic control has developed rapidly over the last 60 years. An impressive
boost to this development was provided by the technologies that grew out of space
exploration and World War II. In the last 20 years, automatic control has undergone
a significant and rapid development due mainly to digital computers. Indeed, recent
developments in digital computers—especially their increasingly low cost—facilitate
their use in controlling complex systems and processes.

Automatic control is a vast technological area whose central aim is to develop
control strategies that improve performance when they are applied to a system or a
process. The results reported thus far on control design techniques are significant
from both a theoretical and a practical perspective. From the theoretical perspective,
these results are presented in great depth, covering a wide variety of modern control
problems, such as optimal and stochastic control, adaptive and robust control,
Kalman filtering, and system identification. From the practical point of view,
these results have been successfully implemented in numerous practical systems
and processes—for example, in controlling temperature, pressure, and fluid level;
in electrical energy plants; in industrial plants producing paper, cement, steel, sugar,
plastics, clothes, and food; in nuclear and chemical reactors; in ground, sea, and air
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transportation systems; and in robotics, space applications, farming, biotechnology,
and medicine.

I should note that classical control techniques—especially those using propor-
tional-integral-derivative (PID) controllers, which have existed since 1942—predo-
minate in the overall practice of control engineering today. Despite the impressive
progress since the 1940s, practical applications of modern control techniques are
limited. This is indeed a serious gap between theory and practice. To reduce this
gap, techniques of modern control engineering should be designed with an eye
toward applicability, so as to facilitate their use in practice. To this end, modern
control techniques must be presented in a simple and user-friendly fashion to engi-
neering students in introductory control courses, so that these techniques may find
immediate and widespread application. In turn, control engineering could serve
human needs better and provide the same breadth of technological application
found in other, related areas, such as communications and computer science. This
book has been written in this spirit.

Modern Control Engineering is based on the introductory course on control
systems that I teach to junior undergraduate students in the Department of Electrical
and Computer Engineering at the National Technical University of Athens. It begins
with a description and analysis of linear time-invariant systems. Next, classical (Bode
and Nyquist diagrams, the root locus, compensating networks, and PID controllers)
and modern (pole placement, state observers, and optimal control) controller design
techniques are presented. Subsequent chapters cover more advanced techniques of
modern control: digital control, system identification, adaptive control, robust con-
trol, and fuzzy control. This text is thus appropriate for undergraduate and first-year
graduate courses in modern control engineering, and it should also prove useful for
practicing engineers. The book has 16 chapters, which may be grouped into two
parts: Classical Control (Chapters 1 through 9) and Modern Control (Chapters 10
through 16). (Please note that, throughout the book, bold lowercase letters indicate
vectors and bold capital letters indicate matrices.)

CLASSICAL CONTROL

Chapter 1 is an introduction to automatic control systems. Chapter 2 presents the
Laplace transform and matrix theory, which is a necessary mathematical back-
ground for studying continuous-time systems. Chapter 3 describes and analyzes
linear time-invariant systems by using the following mathematical models: differen-
tial equations, transfer functions, impulse response, and state-space equations; the
topics of block diagrams and signal-flow graphs are also covered.

Chapter 4 describes classical time-domain analysis, covering topics such as
time response, model simplification, comparison of open- and closed-loop systems,
model reduction, sensitivity analysis, steady-state errors, and disturbance rejection.
Chapter 5 describes state-space analysis of linear systems and discusses the impor-
tant concepts of controllability and observability, along with their relation to the
transfer function. Chapter 6 discusses the important problem of stability. It covers
the algebraic criteria of Ruth, Hurwitz, and continuous fraction, and provides an
introduction to the stability of nonlinear and linear systems using the Lyapunov
methods.
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Chapter 7 covers the popular root locus method. Chapter 8 describes the
frequency response of linear time-invariant systems, introducing the three well-
known frequency domain methods: those of Nyquist, Bode, and Nichols. Chapter
9 is devoted to the classical design techniques, emphasizing controller design meth-
ods using controllers of the following types: PID, phase-lead, phase-lag, and phase
lead-lag. The chapter also presents an introduction to classical optimal control.

MODERN CONTROL

Chapters 10 and 11 focus on modern controller design techniques carried out in
state-space. Chapter 10 covers the design problems of pole assignment, input-output
decoupling, model matching, and state observers. Closed-loop system design using
state observers is also explained. Chapter 11 elucidates the problem of optimal
control, as illustrated in the optimal regulator and servomechanism problems.

Chapter 12 is an introduction to digital control that provides extensive cover-
age of basic problems in discrete-time system description, analysis, stability, con-
trollability, observability, and classical control techniques. Chapter 13 explains
discrete-time system identification and gives the basic algorithms for off-line and
on-line parametric identification.

Chapter 14 covers discrete-time system adaptive control. The following four
adaptive schemes are presented: the gradient method (MIT rule), model reference,
adaptive control, and self-tuning regulators. Chapter 15 is an introduction to robust
control, focusing on topics such as model uncertainty, robust stability, robust per-
formance, and Kharitonov s theorem. Chapter 16 is an introduction to fuzzy control,
emphasizing the design of fuzzy controllers.

The book concludes with three appendixes that provide useful background informa-
tion. Appendix A presents the Laplace transform tables, Appendix B demonstrates
the Z-transform technique necessary for analyzing and designing the discrete-time
(or digital) control systems presented in Chapter 12, and Appendix C gives the Z-
transform tables.
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1
Introduction to Automatic Control
Systems

1.1 INTRODUCTION

An automatic control system is a combination of components that act together in
such a way that the overall system behaves automatically in a prespecified desired
manner.

A close examination of the various machines and apparatus that are manufac-
tured today leads to the conclusion that they are partially or entirely automated, e.g.,
the refrigerator, the water heater, the clothes washing machine, the elevator, the TV
remote control, the worldwide telephone communication systems, and the Internet.
Industries are also partially or entirely automated, e.g., the food, paper, cement, and
car industries. Examples from other areas of control applications abound: electrical
power plants, reactors (nuclear and chemical), transportation systems (cars, air-
planes, ships, helicopters, submarines, etc.), robots (for assembly, welding, etc.),
weapon systems (fire control systems, missiles, etc.), computers (printers, disk drives,
magnetic tapes, etc.), farming (greenhouses, irrigation, etc.), and many others, such
as control of position or velocity, temperature, voltage, pressure, fluid level, traffic,
and office automation, computer-integrated manufacturing, and energy manage-
ment for buildings. All these examples lead to the conclusion that automatic control
is used in all facets of human technical activities and contributes to the advancement
of modern technology.

The distinct characteristic of automatic control is that it reduces, as much as
possible, the human participation in all the aforementioned technical activities. This
usually results in decreasing labor cost, which in turn allows the production of more
goods and the construction of more works. Furthermore, automatic control reduces
work hazards, while it contributes in reducing working hours, thus offering to work-
ing people a better quality of life (more free time to rest, develop hobbies, have fun,
etc.).

Automatic control is a subject which is met not only in technology but also in
other areas such as biology, medicine, economics, management, and social sciences.
In particular, with regard to biology, one can claim that plants and animals owe their
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very existence to control. To understand this point, consider for example the human
body, where a tremendous number of processes take place automatically: hunger,
thirst, digestion, respiration, body temperature, blood circulation, reproduction of
cells, healing of wounds, etc. Also, think of the fact that we don’t even decide when
to drink, when to eat, when to go to sleep, and when to go to the toilet. Clearly, no
form of life could exist if it were not for the numerous control systems that govern all
processes in every living organism.

It is important to mention that modern technology has, in certain cases, suc-
ceeded in replacing body organs or mechanisms, as for example in replacing a human
hand, cut off at the wrist, with an artificial hand that can move its fingers automatically,
as if it were a natural hand. Although the use of this artificial hand is usually limited to
simple tasks, such as opening a door, lifting an object, and eating, all these functions are
a great relief to people who were unfortunate enough to lose a hand.

1.2 A BRIEF HISTORICAL REVIEW OF AUTOMATIC CONTROL
SYSTEMS

Control systems have been in existence since ancient times. A well-known ancient
automatic control system is the regulator of Heron of Alexandria (Figure 1.1). This
control system was designed to open the doors of a temple automatically when a fire
was lit at the altar located outside the temple and to close the doors when the fire was
put out. In particular, the regulator operated in the following way: the fire, acting as
the input to the system, heated the air underneath the altar and the warm (expanded)
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air pushed the water from the water container (pot 1) to the bucket (pot 2). The
position of the water container was fixed, while the bucket was hanging from ropes
wrapped around a mechanism (the door spindles) with a counterweight W. When
pot 2 was empty, this mechanism, under the pull of the counterweight W, held the
doors closed. When pot 2 was filled with adequate amount of water from pot 1, it
moved downwards, while the counterweight W moved upwards. As a result of the
downward motion of pot 2, the door spindles turned and the doors opened. When
the fire was put out, water from pot 2 returned to pot 1, and the counterweight W
moved downwards forcing the gates to close. Apparently, this control system was
used to impress believers, since it was not visible or known to the masses (it was
hidden underground).

Until about the middle of the 18th century, automatic control has no particular
progress to show. The use of control started to advance in the second half of the 18th
century, due to James Watt, who, in 1769, invented the first centrifugal speed reg-
ulator (Figure 1.2) which subsequently has been widely used in practice, most often
for the control of locomotives. In particular, this regulator was used to control the
speed of the steam engine. This is accomplished as follows: as the angular velocity of
the steam engine increases, the centrifugal force pushes the masses m upwards and the
steam valve closes. As the steam valve closes, the steam entering the engine from the
boiler is reduced and the steam engine’s angular velocity decreases, and vice versa: as
the angular velocity of the steam engine decreases, the masses m go down, the steam
valve opens, the amount of steam entering the engine increases, resulting in an
increase of the angular velocity. This way, one can regulate the speed of the engine.

The period until about the middle of the 19th century is characterized by
developments based on intuition, i.e., there was no mathematical background for
control design. Maxwell in 1868 [82, 83] and Vyshnegradskii in 1877 [52] set the first
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mathematical background for control design for applying their theoretical (mathe-
matical) results on Watt’s centrifugal regulator. Routh’s mathematical results on
stability presented in 1877 [47] were also quite important.

Automatic control theory and its applications have developed rapidly in the
last 60 years or so. The period 1930–1940 was important in the history of control,
since remarkable theoretical and practical results, such as those of Nyquist [84, 85]
and Black [60, 61], were reported.

During the following years and until about 1960, further significant research
and development was reported, due mainly to Ziegler and Nichols [92], Bode [11],
Wiener [53] and Evans [18, 64]. All the results of the last century, and up to about
1960, constitute what has been termed classical control. Progress from 1960 to date
has been especially impressive, from both the theoretical and the practical point of
view. This last period has been characterized as that of modern control, the most
significant results of which have been due to Astrom [3–5], Athans [6, 57–59],
Bellman [7, 8], Brockett [12, 62], Doyle [63, 66], Francis [63, 66], Jury [24, 25],
Kailath [26, 67], Kalman [27, 28, 68–79], Luenberger [33, 80, 81], MacFarlane
[34], Rosenbrock [45, 46], Saridis [48], Wonham [54, 89, 90], Wolovich [55], Zames
[91], and many others. For more on the historical development of control the reader
can refer to [35] and [41].

A significant boost to the development of classical control methods was given
by the Second World War, whereas for modern control techniques the launch of
Sputnik in 1957 by the former Soviet Union and the American Apollo project, which
put men on the moon in 1969, were prime movers. In recent years, an impressive
development in control systems has taken place with the ready availability of digital
computers. Their power and flexibility have made it possible to control complex
systems efficiently, using techniques which were hitherto unknown.

The main differences between the classical and the modern control approaches
are the following: classical control refers mainly to single input–single output sys-
tems. The design methods are usually graphical (e.g., root locus, Bode and Nyquist
diagrams, etc.) and hence they do not require advanced mathematics. Modern con-
trol refers to complex multi-input multi-output systems. The design methods are
usually analytical and require advanced mathematics. In today’s technological con-
trol applications, both classical and modern design methods are used. Since classical
control is relatively easier to apply than modern control, a control engineer may
adopt the following general approach: simple cases, where the design specifications
are not very demanding, he uses classical control techniques, while in cases where the
design specifications are very demanding, he uses modern control techniques.

Today, automatic control systems is a very important area of scientific research
and technological development. Worldwide, a large number of researchers aim to
develop new control techniques and apply them to as many fields of human activity
as possible. In Sec. 1.4, as in other parts of this book, we present many practical
control examples that reflect the development of modern control engineering.

1.3 THE BASIC STRUCTURE OF A CONTROL SYSTEM

A system is a combination of components (appropriately connected to each other)
that act together in order to perform a certain task. For a system to perform a
certain task, it must be excited by a proper input signal. Figure 1.3 gives a simple

4 Chapter 1



view of this concept, along with the scientific terms and symbols. Note that the
response yðtÞ is also called system’s behavior or performance.

Symbolically, the outputyðtÞ is related to the input u(t) by the following equation

yðtÞ ¼ TuðtÞ ð1:3-1Þ

where T is an operator. There are three elements involved in Eq. (1.3-1): the input
uðtÞ, the system T , and the output yðtÞ. In most engineering problems, we usually
know (i.e., we are given) two of these three elements and we are asked to find the
third one. As a result, the following three basic engineering problems arise:

1. The analysis problem. Here, we are given the input uðtÞ and the system T
and we are asked to determine the output yðtÞ.

2. The synthesis problem. Here, we are given the input uðtÞ and the output yðtÞ
and we are asked to design the system T .

3. The measurement problem. Here, we are given the system T and the output
yðtÞ and we are asked to measure the input uðtÞ.

The control design problem does not belong to any of these three problems and
is defined as follows.

Definition 1.3.1

Given the system T under control and its desired response yðtÞ, find an appropriate
input signal uðtÞ, such that, when this signal is applied to system T , the output of the
system to be the desired response yðtÞ. Here, this appropriate input signal uðtÞ is
called control signal.

From Definition 1.3.1 it appears that the control design problem is a signal
synthesis problem: namely, the synthesis of the control signal uðtÞ. However, as it will
be shown later in this section, in practice, the control design problem is reduced to
that of designing a controller (see Definition 1.3.4).

Control systems can be divided into two categories: the open-loop and the
closed-loop systems.

Definition 1.3.2

An open-loop system (Figure 1.4a) is a system whose input uðtÞ does not depend on
the output yðtÞ, i.e., uðtÞ is not a function of yðtÞ.

Definition 1.3.3

A closed-loop system (Figure 1.4b) is a system whose input uðtÞ depends on the
output yðtÞ, i.e., uðtÞ is a function of yðtÞ.

In control systems, the control signal uðtÞ is not the output of a signal gen-
erator, but the output of another new additional component that we add to the
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system under control. This new component is called controller (and in special cases
regulator or compensator). Furthermore, in control systems, the controller is excited
by an external signal rðtÞ, which is called the reference or command signal. This
reference signal rðtÞ specifies the desired performance (i.e., the desired ouput yðtÞ)
of the open- or closed-loop system. That is, in control systems, we aim to design an
appropriate controller such that the output yðtÞ follows the command signal rðtÞ as
close as possible. In particular, in open-loop systems (Figure 1.4a) the controller is
excited only by the reference signal rðtÞ and it is designed such that its output uðtÞ is
the appropriate input signal to the system under control, which in turn will produce
the desired output yðtÞ. In closed-loop systems (Figure 1.4b), the controller is excited
not only by reference signal rðtÞ but also by the output yðtÞ. Therefore, in this case the
control signal uðtÞ depends on both rðtÞ and yðtÞ. To facilitate better understanding of
the operation of open-loop and closed-loop systems we present the following intro-
ductory examples.

A very simple introductory example of an open-loop system is that of the
clothes washing machine (Figure 1.5). Here, the reference signal rðtÞ designates the
various operating conditions that we set on the ‘‘programmer,’’ such as water tem-
perature, duration of various washing cycles, duration of clothes wringing, etc. These
operating conditions are carefully chosen so as to achieve satisfactory clothes wash-
ing. The controller is the ‘‘programmer,’’ whose output uðtÞ is the control signal. This
control signal is the input to the washing machine and forces the washing machine to
execute the desired operations preassigned in the reference signal rðtÞ, i.e., water
heating, water changing, clothes wringing, etc. The output of the system yðtÞ is the
‘‘quality’’ of washing, i.e., how well the clothes have been washed. It is well known
that during the operation of the washing machine, the output (i.e., whether the
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clothes are well washed or not) it not taken into consideration. The washing machine
performs only a series of operations contained in uðtÞ without being influenced at all
by yðtÞ. It is clear that here uðtÞ is not a function of yðtÞ and, therefore, the washing
machine is a typical example of an open-loop system. Other examples of open-loop
systems are the electric stove, the alarm clock, the elevator, the traffic lights, the
worldwide telephone communication system, the computer, and the Internet.

A very simple introductory example of a closed-loop system is that of the
water heater (Figure 1.6). Here, the system is the water heater and the output yðtÞ
is the water temperature. The reference signal rðtÞ designates the desired range of
the water temperature. Let this desired temperature lie in the range from 65 to
708C. In this example, the water is heated by electric power, i.e., by a resistor that
is supplied by an electric current. The controller of the system is a thermostat,
which works as a switch as follows: when the temperature of the water reaches
708C, the switch opens and the electric supply is interrupted. As a result, the water
temperature starts falling and when it reaches 658C, the switch closes and the
electric supply is back on again. Subsequently, the water temperature rises again
to 708C, the switch opens again, and so on. This procedure is continuously
repeated, keeping the temperature of the water in the desired temperature range,
i.e., between 65 and 708C.

A careful examination of the water heater example shows that the controller
(the thermostat) provides the appropriate input uðtÞ to the water heater. Clearly, this
input uðtÞ is decisively affected by the output yðtÞ, i.e., uðtÞ is a function of not only of
rðtÞ but also of yðtÞ. Therefore, here we have a typical example of a closed-loop
system.

Other examples of closed-loop systems are the refrigerator, the voltage control
system, the liquid-level control system, the position regulator, the speed regulator,
the nuclear reactor control system, the robot, and the guided aircraft. All these
closed-loop systems operate by the same principles as the water heater presented
above.

It is remarked that in cases where a system is not entirely automated, man may
act as the controller or as part of the controller, as for example in driving, walking,
and cooking. In driving, the car is the system and the system’s output is the course
and/or the speed of the car. The driver controls the behavior of the car and reacts
accordingly: he steps on the accelerator if the car is going too slow or turns the
steering wheel if he wants to go left or right. Therefore, one may argue that driving a
car has the structure of a closed-loop system, where the driver is the controller.
Similar remarks hold when we walk. When we cook, we check the food in the
oven and appropriately adjust the heat intensity. In this case, the cook is the con-
troller of the closed-loop system.

Automatic Control Systems 7

Figure 1.6 The water heater as a closed-loop system.



From the above examples it is obvious that closed-loop systems differ from
open-loop systems, the difference being whether or not information concerning the
system’s output is fed back to the system’s input. This action is called feedback and
plays the most fundamental role in automatic control systems.

Indeed, it is of paramount importance to point out that in open-loop systems,
if the performance of the system (i.e., yðtÞ) is not satisfactory, the controller (due to
the lack of feedback action) does nothing to improve it. On the contrary, in closed-
loop systems the controller (thanks to the feedback action) acts in such a way as to
keep the performance of the system within satisfactory limits.

Closed-loop systems are mostly used when the control specifications are highly
demanding (in accuracy, in speed, etc.), while open-loop systems are used in simple
control problems. Closed-loop systems are, in almost all cases, more difficult to design
and implement than open-loop systems. More specific comparisons between open- and
closed-loop systems are made in several parts of teh book (e.g., see Sec. 4.5).

The complexity in implementing controllers for open- or closed-loop systems
increases as the design requirements increase. We can have simple controllers, e.g.,
thermostats or programmers, but we can also have more complex controllers like an
amplifier and/or an RC or an RL network to control a system or process, a computer
to control an airplane, or even a number of computers (a computer centre) to control
the landing of a spacecraft on Mars. Furthermore, depending mainly upon the
design requirements and the nature of the system under control, a controller may
be electronic, electrical, mechanical, pneumatic, or hydraulic, or a combination of
two or more of these types of controllers.

On the basis of all the above material, we can now give the well-known defini-
tion of the control design problem.

Definition 1.3.4

Given the system T under control and the desired response yðtÞ, find a controller
whose output uðtÞ is such that, when applied to system T , the output of the system is
the desired response yðtÞ.

It is obvious that Definitions 1.3.1 and 1.3.4 are equivalent. In practice, only
Definition 1.3.4 is used, which reduces the control problem to that of designing a
controller. Many controller design methods have been developed that give satisfac-
tory practical results; however, as technology advances, new control design problems
appear, which in turn require new research and development techniques.

In closing this section, we present a more complete schematic diagram of open-
and closed-loop systems. Open-loop systems have the structure of Figure 1.7 and
closed-loop systems have the structure of Figure 1.8. In both cases, the control
problem is to have yðtÞ follow, as close as possible, the reference signal rðtÞ. This is
clearly demonstrated in the many practical control systems presented in Sec. 1.4,
which follows. The term disturbances refer to changes in the system’s environment or
in the system itself, which result in a deviation of the actual system’s output from its
desired form. Based on the material presented thus far, it is obvious that when the
output of an open-loop system deviates from its desired form due to disturbances,
the controller (due to the lack of feedback action) does nothing to bring it back to its
desired form. On the contrary, in a closed-loop system, if the output deviates from its
desired form due to disturbances, then (thanks to the feedback action) the controller
acts in such a way so as to restore the output to its desired form.
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1.4 PRACTICAL CONTROL EXAMPLES

In this section we describe several well-known practical control examples (both open-
and closed-loop systems) that are certainly more complex than those described in
Sec. 1.3. These examples give an overall picture of the wide use of control in modern
technology. Furthermore, some of these examples show how the principles of control
can be used to understand and solve control problems in other fields, such as eco-
nomics, medicine, politics, and sociology. Some of the examples given below are
studied further in Sec. 3.13, as well as in other parts of this book.

From the examples that follow, it will become obvious that many control
systems are designed in such a way as to control automatically certain variables of
the system (e.g., the voltage across an element, the position or velocity of a mass, the
temperature of a chamber, etc.). It is remarked that for the special category of
control systems where we control a mechanical movement—e.g., the position or
velocity of a mass—the term servomechanism is widely used.

1 Position Control System or Position Servomechanism (Figure 1.9)

The desired angular position rðtÞ of the steering wheel is the reference input to the
system and the angular position yðtÞ of the small gear is the output of the system.
Here, the system is designed such that yðtÞ follows rðtÞ as closely as possible. This is
accomplished as follows: the angular positions rðtÞ and yðtÞ are transformed into
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Figure 1.7 Schematic diagram of an open-loop system.

Figure 1.8 Schematic diagram of a closed-loop system.



voltages by using potentiometers (see Subsec. 3.12.4). The error eðtÞ ¼ rðtÞ � yðtÞ
between these two voltages is driven into the amplifier. The output of the amplifier
excites the system generator motor (see Subsec. 3.12.1). As a result, the motor turns
the gears in one or the other direction, depending on the sign of the error eðtÞ, thus
reducing (and finally completely eliminating) the error eðtÞ ¼ rðtÞ � yðtÞ. This way,
the actual output yðtÞ follows the reference input rðtÞ, i.e., yðtÞ ¼ rðtÞ. In figure 1.9b, a
schematic diagram of the system is given, where one can clearly understand the role
of feedback and of the controller. A similar system is described in more detail in
Subsec. 3.13.2.

2 Metal Sheet Thickness Control System (Figure 1.10)

The desired thickness rðtÞ is the reference input to the system and the actual thickness
yðtÞ of the metal sheet is the otuput of the system. Here, the system is designed such
that yðtÞ follows rðtÞ as closely as possible. This is accomplished as follows: the
desired thickness is secured by the appropriate choice of the pressure pðtÞ of the
cylinders applied to the metal sheet. This pressure is measured indirectly via the
thickness meter which measures the thickness yðtÞ. Let bðtÞ be the indication of
this meter. Then, when the error eðtÞ ¼ rðtÞ � bðtÞ is not zero, where rðtÞ is the desired
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Figure 1.9 Position control or position servomechanism. (a) Overall view of the position
control system; (b) schematic diagram of the position control system.



thickness, the hydraulic servomotor increases or decreases the pressure pðtÞ of the
cylinders and thus the thickness yðtÞ becomes smaller or greater, respectively. This
procedure yields the desired result, i.e., the thickness yðtÞ of the metal sheet is, as
close as possible, to the desired thickness rðtÞ. In Figure 1.10b, a schematic diagram
of the closed-loop system is given.

3 Temperature Control of a Chamber (Figure 1.11)

This system is designed so that the temperature of the chamber, which is the system’s
output, remains constant. This is accomplished as follows: the temperature of the
chamber is being controlled by a bimetallic thermostat, appropriately adjusted to
deactivate the circuit of the magnetic valve whenever the chamber temperature is
higher than the desired one. The valve closes and the supply of fuel gas into the
burner stops. When the temperature of the chamber is lower than the desired tem-
perature, the circuit of the magnetic valve opens and the supply of fuel gas into the
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Figure 1.10 Metal sheet thickness control system. (a) Overall view of the metal sheet thick-
ness control system; (b) schematic diagram of the metal sheet control system.



burner starts again. This way, the temperature in the chamber remains close to
constant. A similar system is described in more detail in Subsection 3.13.5.

4 Liquid-Level Control (Figure 1.12)

This system is used in chemical and other industries and is designed such that the
height yðtÞ of the surface of a liquid remains constant. This is accomplished as
follows: the cork floating on the surface of the liquid is attached to the horizontal
surface of the flapper in such a way that when the height yðtÞ increases or decreases,
the distance dðtÞ between the end of the nozzle and the vertical surface of the flapper
decreases or increases, respectively. When the distance dðtÞ decreases or increases,
subsequently the pressure of the compressed air acting upon the surface A of the
valve increases or decreases. As a result, the distance qðtÞ between the piston and the
base of the container, decreases or increases, respectively. This control system can be
considered as a system whose input is the distance dðtÞ and the output is the pressure
of the compressed air acting upon the surface A of the valve. This system is actually a
pneumatic amplifier, since although changing dðtÞ does not demand a great amount
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Figure 1.11 Temperature control of a chamber.

Figure 1.12 Liquid-level control system.



of pressure, the corresponding pressure on the surface A is indeed very big. Finally,
knowing that a decrease or increase in the distance qðtÞ corresponds to a decrease or
increase in the height yðtÞ, it is obvious that in this way the liquid level will remain
constant. A similar system is described in more detail in Subsec. 3.13.4.

5 Aircraft Wing Control System (Figure 1.13)

This system is designed such that the slope (or angle or inclination) of the wings of
the aircraft is controlled manually by the pilot using a control stick. The system
works as follows: when the control stick is moved to a new position, the position A
of the potentiometer P changes, creating a voltage across the points A and B. This
voltage activates the electromagnet and the piston of the valve of the hydraulic
servomotor is moved (see Subsec. 3.12.6). The movement of the valve will allow
the oil under pressure to enter the power cylinder and to push its piston right or
left, moving the wings of the aircraft downwards or upwards. This way, the pilot can
control the inclination of the wings.

6 Missile Direction Control System (Figure 1.14)

This system directs a missile to destroy an enemy aircraft. The system works as follows:
the guided missile, as well as its target, are monitored by a radar system. The informa-
tion acquired by the radar is fed into a computer, which estimates the possible course
of the enemy aircraft. The missile’s course changes, as new data of the aircraft’s course
is received. The computer constantly compares the two courses and makes the neces-
sary corrections in the direction of the missle so that it strikes the target.
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Figure 1.13 Aircraft wing control system.



7 Paper-Making Control System (Figure 1.15)

This system is designed such that the output yðtÞ of the system, i.e., the consistency of
the dilution of the thick pulp, remains constant. This is accomplished as follows: the
pulp is stored in a large container, it is constantly rotated by a mixing mechanism to
maintain pulp uniformity. Subsequently, as the pulp is driven into the drying and
rolling stations of the paper-making industrial plant, water is added, which dilutes
the thick pulp to a desired consistency rðtÞ. The actual consistency yðtÞ is measured
by an appropriate device and is compared with the desired consistency rðtÞ. The
controller compares rðtÞ and yðtÞ. If yðtÞ 6¼ rðtÞ, then the output of the controller
uðtÞ adjusts the water valve such that yðtÞ ¼ rðtÞ.

8 Nuclear Reactor Control System (Figure 1.16)

The major control objective of a nuclear reactor is to maintain the output power
within specified limits. This can be achieved as follows. The nuclear reaction releases
energy in the form of heat. This energy is used for the production of steam. The
steam is subsequently used to drive a turbine and, in turn, the turbine drives a
generator, which finally produces electric power.

The reference signal rðtÞ corresponds to the desired output power, whereas yðtÞ
is the actual output power. The two signals rðtÞ and yðtÞ are compared and their
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Figure 1.14 Missile direction control system.



difference eðtÞ ¼ rðtÞ � yðtÞ is fed into the control unit. The control unit consists of
special rods which, when they move towards the point where the nuclear reaction
takes place, result in an increase of the output power yðtÞ, and when they move away,
result in a decrease of the output power yðtÞ. When yðtÞ > rðtÞ, the error eðtÞ is
negative, the rods move away from the point of the nuclear reaction and the output
yðtÞ decreases. When yðtÞ < rðtÞ, the error eðtÞ is positive, the rods move towards the
point of the nuclear reaction and the output yðtÞ increases. This way, the power
output yðtÞ follows the desired value rðtÞ.

9 Boiler–Generator Control System (Figure 1.17)

The boiler–generator control system operates as follows: the steam produced by the
boiler sets the shaft in rotation. As the shaft rotates, the generator produces electric
power. Here, we have a system with many inputs (water, air, and liquid fuel) and one
output (electric power). The electric power is automatically controlled as follows: the
output power, along with intermediate variables or states of the system, such as
oxygen, temperature, and pressure, are fed back to the controller, namely, to the
computer. The computer regulates automatically the amount of water, air, and
liquid fuel that should enter the boiler, as well as the angular velocity of the shaft,
depending on the desired and real (measured) values of temperature, pressure, oxy-
gen, and electric power, such that the electric power output is the desired one.
Clearly, the controller here is the digital computer. Systems that are controlled by
a computer are usually called computer-controlled systems or digital control systems
and they are studied in Chapter 12.

10 Remote Robot Control (Figure 1.18)

Here, we consider a remote control system that can control, from the earth, the
motion of a robot arm on the surface of the moon. As shown in Figure 1.18a, the
operator at earth station watches the robot on the moon on a TV monitor. The
system’s output is the position of the robot’s arm and the input is the position of the
control stick. The operator compares the desired and the real position of the robot’s
arm, by looking at the position of the robot’s arm on the monitor and decides on
how to move the control stick so that the position of the robot arm is the desired one.
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Figure 1.15 Paper-making control system.



In Figure 1.18b a schematic diagram of this system is given. In this example, the
operator is part of the controller.

11 Machine Tool Control (Figure 1.19)

A simplified scheme of a machine tool for cutting (or shaping or engraving) metals is
shown in Figure 1.19. The motion of the cutting tool is controlled by a computer.
This type of control is termed numerical control. When there is a difference between
the desired position rðtÞ and the actual position yðtÞ of the cutting tool, the amplifier
amplifies this difference so that the output current of the amplifier is large enough to
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Figure 1.16 Control system of a nuclear reactor. (a) Overall picture of the nuclear reactor;
(b) schematic diagram of the system.



activate the coil. The magnetic field produced around the coil creates a force on the
piston of the valve of the hydraulic servomotor, moving it to the left or to the right.
These small movements of the piston result in controlling the position of the cutting
tool in such a way that yðtÞ ¼ rðtÞ.

12 Ship Stabilization (Figure 1.20)

This example refers to the stabilization of ship oscillations due to waves and strong
winds. When a ship exhibits a deviation of �8 from the vertical axis, as shown in
Figure 1.20, then most ships use fins to generate an opposite torque, which restores
the ship to the vertical position. In Figure 1.20b the block diagram of the system is
given, where, obviously, �rðtÞ ¼ 0 is the desired position of the ship. The length of
the fins projecting into the water is controlled by an actuator. The deviation from
the vertical axis is measured by a measuring device. Clearly, when the error
eðtÞ ¼ �rðtÞ � �yðtÞ 6¼ 0, then the fin actuator generates the proper torque, such
that the error eðtÞ goes to zero, i.e., the ship position is restored to normal
ð�rðtÞ ¼ 0Þ.

13 Orientation Control of a Sun-Seeker System (Figure 1.21)

The sun-seeker automatic control system is composed of a telescope, two light-
sensing cells, an amplifier, a motor, and gears. The two light-sensing cells are
placed on the telescope in such a way that when the telescope is not aligned
with the sun, one cell receives more light than the other. The two cells behave
as current sources and are conected with opposite polarity, so that when one of the
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Figure 1.17 Boiler–generator control system [16].
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Figure 1.18 Remote robot control system. (a) Overall picture of remote robot control
system; (b) schematic diagram of remote robot control.

Figure 1.19 Machine tool control [16].



two cells gets more light, a current Is is produced, which is equal to the difference
of the two currents of the cells. This current is subsequently driven into the
amplifier. The output of the amplifier is the input to the motor, which in turn
moves the gears in such a way as to align the telescope with the sun, i.e., such that
�yðtÞ ¼ �rðtÞ, where �rðtÞ is the desired telescope angle and �yðtÞ is the actual tele-
scope angle.

14 Laser Eye Surgery Control System (Figure 1.22)

Lasers can be used to ‘‘weld’’ the retina of the eye in its proper position inside the eye
in cases where the retina has been detached from its original place. The control
scheme shown in Figure 1.22 is of great assistance to the ophthalmologist during
surgery, since the controller continuously monitors the retina (using a wide-angle
video camera system) and controls the laser’s position so that each lesion of the
retina is placed in its proper position.
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Figure 1.20 Ship stabilization control system. (a) Ship in roll position; (b) simplified block
diagram of ship stabilization control system.



15 Wheelchair

The automatic wheelchair is especially designed for people disabled from their neck
down. It is actually a system which the disabled person activates by moving his head.
In so doing, he determines both the direction and the speed of the wheelchair. The
direction is determined by sensors placed on the person’s head 908 apart, so that he
may choose one of the following four movements: forward, backward, left, or right.
The speed is determined by another sensor whose output is proportional to the speed
of the head movement. Clearly, here, the man is the controller.

16 Economic Systems (Figure 1.23)

The concept of closed-loop control systems also appears in economic and social
systems. As an example, consider the inflation control system presented in Figure
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Figure 1.21 Orientation control of a sun-seeker system [31].

Figure 1.22 Laser eye surgery control system.



1.23. Here, the input rðtÞ to the system is the desired level of inflation. The system
under control is the society, and yðtÞ is the actual inflation. The government operates
as a controller, comparing the desired inflation rðtÞ and the actual inflation yðtÞ. If
yðtÞ � rðtÞ, no action takes place. If yðtÞ > rðtÞ, the controller (i.e., the government)
takes the necessary decisions so as to keep yðtÞ � rðtÞ. The same closed-loop scheme
may be used to describe a variety of economic systems, as for example unemploy-
ment and national income. In example 4.8.1, the operation of a company is also
described as a closed-loop system, wherein its mathematical model is used to study
the performance of the company.

17 Human Speech (Figure 1.24)

As we all know, we use our ears not only to hear others but also to hear ourselves.
Indeed, when we speak, we hear what we are saying and, if we realize that we didn’t
say something the way we had in mind to say it, we immediately correct it. Thus,
human speech operates as a closed-loop system, where the reference input rðtÞ is what
we have in mind to say and want to put into words, the system is the vocal cords, and
its output yðtÞ is our voice. The output yðtÞ is continuously monitored by our ears,
which feed back our voice to our brain, where comparison is made between our-
intended (desired) speech rðtÞ and the actual speech yðtÞ that our own ears hear
(measure). If the desired speech rðtÞ and the ‘‘measured’’ speech yðtÞ are the same,
no correction is necessary, and we keep on talking. If, however, an error is realized,
e.g., in a word or in a number, then we immediately make the correction by saying
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Figure 1.23 Schematic diagram of inflation control system.

Figure 1.24 Block diagram of human speech.



the correct word or number. The reason that some people talk very loud is that their
hearing is not very good and, in order to be able to hear themselves (so as to make
the necessary speech corrections), they talk louder than normal.

18 Teaching (Figure 1.25)

The proper procedure for teaching has the structure of a closed-loop system. Let the
students be the system, the teaching material presented by the teacher the input, and
the ‘‘degree’’ of understanding of this material by the students the system’s output.
Then, teaching can be described with the schematic diagram of Figure 1.25. This
figure shows that the system’s output, i.e., the degree of understanding by students of
the material taught, is fed back to the input, i.e., to the teacher. Indeed, an experi-
enced teacher should be able to ‘‘sense’’ (measure) if the students understood the
material taught. Subsequently, the teacher will either go on teaching new material, if
the students understood the material taught, or repeat the same material, if they did
not. Therefore, proper teaching has indeed the structure of a closed-loop system.
Clearly, if teachers keep on teaching new material without checking whether or not
the students understand what they are saying, this is not proper teaching.
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2
Mathematical Background

2.1 INTRODUCTION

This chapter covers certain mathematical topics necessary for the study of control
systems: in particular, it aims to offer the appropriate mathematical background on
subjects such as basic control signals, Laplace transform, and the theory of matrices.
This background is very useful for most of the material of the book that follows.

2.2 THE BASIC CONTROL SIGNALS

In this section we present definitions of the following basic control signals: the step
function, the gate function, the impulse function, the ramp function, the exponential
function, and the sinusoidal function. These signals are of major importance for
control applications.

1 The Unit Step Function

The unit step function is designated by uðt� TÞ and is defined as follows:

uðt� TÞ ¼

1 for t > T
0 for t < T
undefined for t ¼ T

2
4 ð2:2-1Þ

The graphical representation of uðt� TÞ is shown in Figure 2.1. The amplitude of
uðt� TÞ, for t > T , is equal to 1. This is why the function uðt� TÞ is called the
‘‘unit’’ step function.

A physical example of a unit step function is the switch of the circuit shown in
Figure 2.2. It is obvious that the voltage vRðtÞ is given by:

vRðtÞ ¼
vðtÞ for t > T
0 for t < T
undefined for t ¼ T

2
4

or

vRðtÞ ¼ vðtÞuðt� TÞ

27



Here, the role of the switch is expressed by the unit step function uðt� TÞ.

2 The Unit Gate Function

The unit gate (or window) function is denoted by g�ðtÞ ¼ uðt� T1Þ � uðt� T2Þ,
where T1 < T2, and is defined as follows:

g�ðtÞ ¼
1 for t 2 ðT1;T2Þ

0 for t 6¼ ðT1;T2Þ

undefined for t ¼ T1 and t ¼ T2

2
4 ð2:2-2Þ

The graphical representation of g�ðtÞ is given in Figure 2.3. The unit gate function is
usually used to zero all values of another function, outside a certain time interval.
Consider for example the function f ðtÞ. Then, the function yðtÞ ¼ f ðtÞg�ðtÞ is as
follows:

yðtÞ ¼ f ðtÞg�ðtÞ ¼
f ðtÞ for T1 � t � T2

0 for t < T1 and for t > T2

2
4

3 The Unit Impulse Function

The unit impulse function, which is also called the Dirac function, is designated by
�ðt� TÞ and is defined as follows:

�ðt� TÞ ¼
0 8t; except for t ¼ T
1 for t ¼ T

�
ð2:2-3Þ
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Figure 2.1 The unit step function.

Figure 2.2 The switch as the unit step function.



The graphical representation of �ðt� TÞ is given in Figure 2.4. In Figure 2.5 �ðt� TÞ

is defined in a different way as follows: the area cðtÞ of the parallelogram is
cðtÞ ¼ ð1=aÞa ¼ 1. As a becomes larger, the base of the parallelogram 1=a becomes
smaller. In the limit, as the height a tends to infinity, the base 1=a tends to zero, i.e.,

�ðt� TÞ occurs when lim
a!1

cðtÞ ð2:2-4Þ

From definition (2.2-4) we readily haveð1
�1

�ðt� TÞ dt ¼ 1 ð2:2-5Þ

Relation (2.2-5) shows that the area of the unit impulse function is equal to 1 (this is
why it is called the ‘‘unit’’ impulse function).

The functions uðt� TÞ and �ðt� TÞ are related as follows:

�ðt� TÞ ¼
duðt� TÞ

dt
and uðt� TÞ ¼

ðt
�1

�ð�� TÞ d� ð2:2-6Þ

Finally, we have the following interesting property of �ðt� TÞ: consider a function
xðtÞ with the property jxðtÞj < 1, thenð1

�1

xðtÞ�ðt� TÞ dt ¼ xðTÞ ð2:2-7Þ

4 The Ramp Function

The ramp function is designated by rðt� TÞ and is defined as follows:

rðt� TÞ ¼
t� T for t > T
0 for t � T

�
ð2:2-8Þ
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Figure 2.3 The unit gate function.

Figure 2.4 The unit impulse function.



The graphical representation of rðt� TÞ is shown in Figure 2.6. It is obvious that
uðt� TÞ and rðt� TÞ are related as follows:

uðt� TÞ ¼
drðt� TÞ

dt
and rðt� TÞ ¼

ðt
�1

uð�� TÞ d�

Remark 2.2.1

All the above functions are usually applied when T ¼ 0. In cases where T > 0, then
the function is delayed by T units of time, whereas when T < 0 the function is
preceding by T units of time.

5 The Exponential Function

The exponential function is the function f ðtÞ ¼ Aeat and its graphical representation
is shown in Figure 2.7.

6 The Sinusoidal Function

The sinsoidal function is the function f ðtÞ ¼ A sinð!tþ 
Þ and its graphical represen-
tation is shown in Figure 2.8.

Remark 2.2.2

All functions presented in this section can be expressed in terms of exponential
functions or derived from the exponential function, a fact which makes the expo-
nential function very interesting. This can easily be shown as follows: (a) the sinu-
soidal function is a linear combination of two exponential functions, e.g.,
sin 
 ¼ ð1=2jÞðej
 � e�j


Þ; (b) the unit step function for T ¼ 0 is equal to the expo-
nential function when A ¼ 1 and a ¼ 0, i.e., uðtÞ ¼ f ðtÞ ¼ Aeat ¼ 1, for A ¼ 1 and
a ¼ 0; (c) the functions �ðt� TÞ and rðt� TÞ can be derived from the unit step
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Figure 2.5 The area function cðtÞ.

Figure 2.6 The ramp function.



function uðt� TÞ, while uðt� TÞ may be derived from the exponential function.
Furthermore, a periodic function can be expressed as a linear combination of expo-
nential functions (Fourier series). Moreover, it is worth mentioning that the expo-
nential function is used to describe many physical phenomena, such as the response
of a system and radiation of nuclear isotopes.

2.3 THE LAPLACE TRANSFORM

To study and design control systems, one relies to a great extent on a set of math-
ematical tools. These mathematical tools, an example of which is the Laplace trans-
form, facilitate the engineer’s work in understanding the problems he deals with as
well as solving them.

For the special case of linear time-invariant continuous time systems, which is
the main subject of the book, the Laplace transform is a very important mathema-
tical tool for the study and design of such systems. The Laplace transform is a special
case of the generalized integral transform presented just below.
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2.3.1 The Generalized Linear Integral Transform

The generalized linear integral transform of a function f ðtÞ is defined as follows:

FðsÞ ¼

ðb
a

f ðtÞkðs; tÞ dt ð2:3-1Þ

where kðs; tÞ is known as the kernel of the transform. It is clear that the main feature
of Eq. (2.3-1) is that it transforms a function defined in the t domain to a function
defined in the s domain. A particular kernel kðs; tÞ, together with a particular time
interval ða; bÞ, define a specific transform.

2.3.2 Introduction to Laplace Transform

The Laplace transform is a linear integral transform with kernel kðs; tÞ ¼ e�st and
time interval ð0;1Þ. Therefore, the definition of the Laplace transform of a function
f ðtÞ is as follows:

Lf f ðtÞg ¼

ð1
0

f ðtÞe�st dt ¼ FðsÞ ð2:3-2Þ

where L designates the Laplace transform and s is the complex variable defined as
s ¼ � þ j!. Usually, the time function f ðtÞ is written with a small f , while the com-
plex variable function FðsÞ is written with a capital F .

For the integral (2.3-2) to converge, f ðtÞ must satisfy the conditionð1
0

j f ðtÞje��t dt � M ð2:3-3Þ

where � and M are finite positive numbers.
Let Lf f ðtÞg ¼ FðsÞ. Then, the inverse Laplace transform of FðsÞ is also a linear

integral transform, defined as follows:

L�1
fFðsÞg ¼

1

2�j

ðcþj1

c�j1

FðsÞest ds ¼ f ðtÞ ð2:34Þ

where L�1 designates the inverse Laplace transform, j ¼
ffiffiffiffiffiffiffi
�1

p
, and c is a complex

constant.
Clearly, the Laplace transform is a mathematical tool which transforms a

function from one domain to another. In particular, it transforms a time-domain
function to a function in the frequency domain and vice versa. This gives the flex-
ibility to study a function in both the time domain and the frequency domain, which
results in a better understanding of the function, its properties, and its time-domain
frequency-domain properties.

A popular application of the Laplace transform is in solving linear differential
equations with constant coefficients. In this case, the motivation for using the
Laplace transform is to simplify the solution of the differential equation. Indeed,
the Laplace transform greatly simplifies the solution of a constant coefficient differ-
ential equation, since it reduces its solution to that of solving a linear algebraic
equation. The steps of this impressive simplification are shown in the bottom half
of Figure 2.9. These steps are analogous to the steps taken in the case of multiplying
numbers using logarithms, as shown in the top half of Figure 2.9. The analogy here is
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that logarithms reduce the multiplication of two numbers to the sum of their loga-
rithms, while the Laplace transform reduces the solution of a differential equation to
an algebraic equation.

2.3.3 Properties and Theorems of the Laplace Transform

The most important properties and theorems of the Laplace transform are presented
below.

1 Linearity

The Laplace transform is a linear transformation, i.e., the following relation holds

Lfc1f1ðtÞ þ c2 f2ðtÞg ¼ Lfc1 f1ðtÞg þ Lfc2 f2ðtÞg ¼ c1F1ðsÞ þ c2F2ðsÞ ð2:3-5Þ

where c1 and c2 are constants, F1ðsÞ ¼ Lf f1ðtÞg and F2ðsÞ ¼ Lf f2ðtÞg.

2 The Laplace Transform of the Derivative of a Function

Let f ð1ÞðtÞ be the time derivative of f ðtÞ, and FðsÞ be the Laplace transform of f ðtÞ.
Then, the Laplace transform of f ð1ÞðtÞ is given by
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L f ð1ÞðtÞ
n o

¼ sFðsÞ � f ð0Þ ð2:3-6Þ

Proof

From definition (2.3-2) we have that

L f ð1ÞðtÞ
n o

¼

ð1
0

f ð1ÞðtÞe�st dt ¼

ð1
0

e�st df ðtÞ ¼ f ðtÞe�st

�1
0

þ s

ð1
0

f ðtÞe�st dt

¼ sFðsÞ � f ð0Þ

where use was made of the integration-by-parts method. Working in the same way
for the Laplace transform of the second derivative f ð2ÞðtÞ of f ðtÞ, we have that

L f ð2ÞðtÞ
n o

¼ s2FðsÞ � sf ð0Þ � f ð1Þð0Þ ð2:3-7Þ

For the general case we have

L f ðnÞðtÞ
n o

¼ snFðsÞ � sn�1f ð0Þ � sn�2f ð1Þð0Þ � . . .� f ðn�1Þ
ð0Þ

¼ snFðsÞ �
Xn�1

k¼0

skf ðn�k�1Þ
ð0Þ ð2:3-8Þ

where f ðmÞ
ðtÞ is the mth time derivative of f ðtÞ.

3 The Laplace Transform of the Integral of a Function

Let
Ð t
�� f ð�Þd� be the integral of a function f ðtÞ, where � is a positive number and

FðsÞ is the Laplace transform of f ðtÞ. Then, the Laplace transform of the integral is
given by

L

ðt
��

f ð�Þ d�

� �
¼

FðsÞ

s
þ
f ð�1Þ

ð0Þ

s
ð2:3-9Þ

where f ð�1Þ
ð0Þ ¼

Ð 0
�� f ðtÞ dt.

Proof

From definition (2.3-2) we have that

L

ðt
��

f ð�Þ d�

� �
¼

ð1
0

ðt
��

f ð�Þ d�

� �
e�st dt ¼ �

1

s

ð1
0

ðt
��

f ð�Þ d�

� �
d½e�st

�

¼ �
1

s

ðt
��

f ð�Þ d�

� �
e�st

�1
0

�

ð1
0

e�stf ðtÞ dt

� �

¼
1

s

ð1
0

f ðtÞe�st dtþ
1

s

ð0
��

f ðtÞ dt ¼
FðsÞ

s
þ
f ð�1Þ

ð0Þ

s

where use was made of the integration-by-parts method.
Working in the same way, we may determine the Laplace transform of the

double integral
Ð t
��

Ð t
�� f ð�Þðd�Þ

2 to yield

L

ðt
��

ðt
��

f ð�Þðd�Þ2
� �

¼
FðsÞ

s2
þ
f ð�1Þ

ð0Þ

s2
þ
f ð�2Þ

ð0Þ

s
ð2:3-10Þ
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where

f ð�2Þ
ð0Þ ¼

ð0
��

ð0
��

f ðtÞðdtÞ2:

For the general case we have

L

ðt
��

. . .

ðt
��|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

n times

f ð�Þðd�Þn

8>>><
>>>:

9>>>=
>>>; ¼

FðsÞ

sn
þ
f ð�1Þ

ð0Þ

sn
þ
f ð�2Þ

ð0Þ

sn�1
þ � � � þ

f ð�nÞ
ð0Þ

s
ð2:3-11Þ

where

f ð�kÞ
ð0Þ ¼

ð0
��

. . .

ð0
��|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

k times

f ðtÞðdtÞk

Remark 2.3.1

In the special case where f ðkÞð0Þ ¼ 0, for k ¼ 0; 1; . . . ; n� 1 and f ð�kÞ
ð0Þ ¼ 0, for

k ¼ 1; 2; . . . ; n, relations (2.3-8) and (2.3-11) reduce to

L f ðnÞðtÞ
n o

¼ snFðsÞ ð2:3-12aÞ

L

ðt
��

. . .

ðt
��|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

n times

f ð�Þðd�Þn

8>>><
>>>:

9>>>=
>>>; ¼

FðsÞ

sn
ð2:3-12bÞ

Relation (2.3-12) points out that the important feature of the Laplace transform is
that it greatly simplifies the procedure of taking the derivative and/or the integral of
a function f ðtÞ. Indeed, the Laplace transform ‘‘transforms’’ the derivative of f ðtÞ in
the time domain into multiplying FðsÞ by s in the frequency domain. Furthermore, it
‘‘transforms’’ the integral of f ðtÞ in the time domain into dividing FðsÞ by s in the
frequency domain.

4 Time Scaling

Consider the functions f ðtÞ and f ðatÞ, where a is a positive number. The function
f ðatÞ differs from f ðtÞ, in time scaling, by a units. For these two functions, it holds
that

Lf f ðatÞg ¼
1

a
F

s

a

� �
; where FðsÞ ¼ Lf f ðtÞg ð2:3-13Þ

Proof

From definition (2.3-2), we have

Lf f ðatÞg ¼

ð1
0

f ðatÞe�st dt ¼
1

a

ð1
0

f ðatÞe�
s
a ðatÞ dðatÞ

Setting � ¼ at, we arrive at the relation
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Lf f ðatÞg ¼ Lf f ð�Þg ¼
1

a

ð1
0

f ð�Þe�
s
a� d� ¼

1

a
F

s

a

� �

5 Shift in the Frequency Domain

It holds that

L e�at f ðtÞ
� �

¼ Fðsþ aÞ ð2:3-14Þ

Relation (2.3-14) shows that the Laplace transform of the product of the functions
e�at and f ðtÞ leads to shifting of FðsÞ ¼ Lf f ðtÞg by a units.

Proof

From definition (2.3-2) we have

L e�at f ðtÞ
� �

¼

ð1
0

f ðtÞe�ate�st dt ¼

ð1
0

f ðtÞe�ðsþaÞt dt ¼ Fðsþ aÞ

6 Shift in the Time Domain

Consider the function f ðtÞuðtÞ. Then, the function f ðt� TÞuðt� TÞ is the same func-
tion shifted to the right of f ðtÞuðtÞ by T units (Figure 2.10). The Laplace transform of
the initial function f ðtÞuðtÞ and of the shifted (delayed) function f ðt� TÞuðt� TÞ, are
related as follows:

Lf f ðt� TÞuðt� TÞg ¼ e�sTFðsÞ ð2:3-15Þ

Proof

Setting � ¼ t� T , we have

Lf f ðt� TÞuðt� TÞg ¼ L½ f ð�Þuð�Þ� ¼

ð1
0

f ð�Þuð�Þe�sð�þTÞd�

¼ e�sT

ð1
0

f ð�Þuð�Þe�s� d�

¼ e�sTFðsÞ
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7 The Initial Value Theorem

This theorem refers to the behavior of the function f ðtÞ as t ! 0 and, for this reason,
is called the initial value theorem. This theorem is given by the relation

lim
t!0

f ðtÞ ¼ lim
s!1

sFðsÞ ð2:3-16Þ

assuming that the Laplace transform of f ð1ÞðtÞ exists.

Proof

Taking the limit of both sides of Eq. (2.3-6) as s ! 1, the left-hand side of this
relation becomes

lim
s!1

L f ð1ÞðtÞ
n o

¼ lim
s!1

ð1
0

f ð1ÞðtÞe�st dt ¼ 0

while the right-hand side becomes

lim
s!1

½sFðsÞ � f ð0Þ� ¼ 0 and hence lim
t!0

f ðtÞ ¼ lim
s!1

sFðsÞ

8 The Final Value Theorem

This theorem refers to the behavior of the function f ðtÞ as t ! 1 and, for this
reason, it is called the final value theorem. This theorem is given by the relation

lim
t!1

f ðtÞ ¼ lim
s!0

sFðsÞ ð2:3-17Þ

assuming that the Laplace transform of f ð1ÞðtÞ exists and that the denominator of
sFðsÞ has no roots on the imaginary axis or in the right-half complex plane.

Proof

Taking the limit of both sides of Eq. (2.3-6) as s ! 0, the left-hand side of this
relation becomes

lim
s!0

ð1
0

f ð1ÞðtÞe�st dt ¼

ð1
0

f ð1ÞðtÞ dt ¼ lim
t!1

ðt
0

f ð1Þð�Þ d�

¼ lim
t!1

½ f ðtÞ � f ð0Þ� ¼ lim
t!1

f ðtÞ � f ð0Þ

while the right-hand side becomes

lim
s!0

½sFðsÞ � f ð0Þ� ¼ lim
s!0

sFðsÞ � f ð0Þ

Equating the resulting two sides, we readily have relation (2.3-17).

Remark 2.3.2

Clearly, given FðsÞ, one can find the behavior of f ðtÞ as t ! 0 and as t ! 1, by first
determining the inverse Laplace transform of FðsÞ, i.e., by determining f ðtÞ ¼ L�1FðsÞ
and subsequently determining f ð0Þ and f ð1Þ using directly the function f ðtÞ. The
initial and final value theorems greatly simplify this problem, since they circumvent
the rather cumbersome task of determining L�1FðsÞ, and yield the values of f ð0Þ and
f ð1Þ by directly applying the relations (2.3-16) and (2.3-17), respectively, which are
simple to carry out.
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9 Multiplication of a Function by t

The following relation holds

Lftf ðtÞg ¼ �
d

ds
FðsÞ ð2:3-18Þ

Proof

Differentiating Eq. (2.3-2) with respect to s, we have

d

ds
FðsÞ ¼ �

ð1
0

tf ðtÞe�st dt ¼ �Lftf ðtÞg

Thus relation (2.3-18) is established. In the general case, the following relation holds

L tnf ðtÞ
� �

¼ ð�1Þn
dn

dsn
FðsÞ ð2:3-19Þ

10 Division of a Function by t

The following relation holds:

L
f ðtÞ

t

� �
¼

ð1
s

FðsÞ ds ð2:3-20Þ

Proof

Integrating Eq. (2.3-2) from s to 1, we have thatð1
s

FðsÞ ds ¼

ð1
s

ð1
0

f ðtÞe��t dt

� �
d� ¼

ð1
0

ð1
s

f ðtÞe��t d�

� �
dt

¼

ð1
0

�
f ðtÞ

t

ð1
s

de�st

� �
dt ¼

ð1
0

f ðtÞ

t
e�st dt ¼ L

f ðtÞ

t

� �
In the general case, the following relation holds

L
f ðtÞ

tn

� �
¼

ð1
s

� � �

ð1
s|fflfflfflfflfflffl{zfflfflfflfflfflffl}

n times

Fð�Þðd�Þn ð2:3-21Þ

11 Periodic Functions

Let f ðtÞ be a periodic function with period T . Then, the Laplace transform of f ðtÞ is
given by

Lf f ðtÞg ¼
F1ðsÞ

1� e�sT
; F1ðsÞ ¼ Lf f1ðtÞg ð2:3-22Þ

where f1ðtÞ is the function f ðtÞ during the first period, i.e., for t 2 ½0;T �:

Proof

The periodic function f ðtÞ can be expressed as a sum of time-delay functions as
follows:

f ðtÞ ¼ f1ðtÞuðtÞ þ f1ðt� TÞuðt� TÞ þ f1ðt� 2TÞuðt� 2TÞ þ � � �

Taking the Laplace transform of f ðtÞ, we have
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L f ðtÞg ¼ F1ðsÞ þ F1ðsÞe
�st

þ F1ðsÞe
�2sT

þ � � � ¼ F1ðsÞ½1þ e�sT
þ e�2sT

þ � � ��

¼
F1ðsÞ

1� e�sT

where use was made of the property (2.3-15).

2.4 THE INVERSE LAPLACE TRANSFORM

The inverse Laplace transform of a function FðsÞ is given by the relation (2.3-4). To
avoid the calculation of the integral (2.3-4), which it is often quite difficult and time
consuming, we usually use special tables (see Appendix A) which give the inverse
Laplace transform directly. These tables cover only certain cases and therefore they
cannot be used directly for the determination of the inverse Laplace transform of any
function FðsÞ. The way to deal with cases which are not included in the tables is,
whenever possible, to convert FðsÞ by using appropriate methods, in such a form that
its inverse Laplace transform can be found directly in the tables. A popular such
method is, when FðsÞ is a rational function of s (and this is usually the case), to
expand FðsÞ in partial fractions, in which case the inverse Laplace transform is found
directly in the tables.

Therefore, our main interest here is to develop a method for expanding a
rational function to partial fractions. To this end, consider the rational function

FðsÞ ¼
bðsÞ

aðsÞ
¼

bms
m
þ bm�1s

m�1
þ � � � þ b1sþ b0

sn þ an�1s
n�1 þ � � � þ a1sþ a0

; m < n ð2:4-1Þ

Let �1; �2; . . . ; �n be the roots of the polynomial aðsÞ, i.e., let aðsÞ ¼
Qn

i¼1ðs� �iÞ. We
distinguish three cases: (a) all roots are real and distinct, (b) all roots are real but not
all distinct, and (c) certain or all roots are complex conjugates.

1 Distinct Real Roots

In this case the roots �1; �2; . . . ; �n of the polynomial aðsÞ are real and distinct, i.e.,
�1 6¼ �2 6¼ �3 6¼ . . . 6¼ �n. Here, FðsÞ can be expanded into a sum of n partial frac-
tions, as follows:

FðsÞ ¼
bðsÞ

aðsÞ
¼

c1
s� �1

þ � � � þ
ck

s� �k
þ � � � þ

cn
s� �n

¼
Xn
i¼1

ci
s� �i

ð2:4-2Þ

The inverse Laplace transform of each term of FðsÞ can be found in the Laplace
transform tables (Appendix A). From the tables, we have

f ðtÞ ¼ L�1
fFðsÞg ¼ c1e

�1t þ c2e
�2t þ � � � þ cne

�nt

The constants c1; c2; . . . ; cn, are determined as follows: multiply both sides of (2.4-2)
by the factor s� �k to yield

ðs� �kÞFðsÞ ¼
s� �k
s� �1

c1 þ
s� �k
s� �2

c2 þ � � � þ ck þ � � � þ
s� �k
s� �n

cn

Taking the limit as s approaches the root �k, we have

ck ¼ lim
s!�k

ðs� �kÞFðsÞ; k ¼ 1; 2; . . . ; n ð2:4-3Þ
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Relation (2.4-3) is a very simple procedure for determining the constants
c1; c2; . . . ; cn.

2 Nondistinct Real Roots

In this case the roots �1; �2; . . . ; �n of the polynomial aðsÞ are real but not distinct.
For simplicity, let the polynomial aðsÞ have only one repeated root �1, with multi-
plicity r, i.e., let

aðsÞ ¼ ðs� �1Þ
r
Yn
i¼rþ1

ðs� �iÞ ð2:4-4Þ

Then, FðsÞ is expanded into partial fractions, as follows:

FðsÞ ¼
bðsÞ

aðsÞ
¼

c1
s� �1

þ
c2

ðs� �1Þ
2
þ � � � þ

ck

ðs� �1Þ
k
þ � � � þ

cr
ðs� �1Þ

r

þ
crþ1

s� �rþ1

þ � � � þ
cn

s� �n

Using the Laplace transform tables, the inverse Laplace transform of FðsÞ is

f ðtÞ ¼ L�1
fFðsÞg ¼ c1e

�1t þ c2te
�1t þ � � � þ

ck
ðk� 1Þ!

tk�1e�1t þ � � �

þ
cr

ðr� 1Þ!
tr�1e�1t þ crþ1e

�rþ1t þ � � � þ cne
�nt

The coefficients crþ1; crþ2; . . . ; cn are determined according to relation (2.4-3). To
determine the coefficients ck, k ¼ 1; 2; . . . ; r, we work as follows: multiply both
sides of Eq. (2.4-4) by the factor ðs� �1Þ

r to yield

ðs� �1Þ
rFðsÞ ¼ ðs� �1Þ

r�1c1 þ � � � þ ðs� �1Þ
r�kck þ � � �

þ cr þ
ðs� �1Þ

r

s� �rþ1

crþ1 þ � � � þ
ðs� �1Þ

r

s� �n
cn

Differentiating by s, ðr� kÞ times, both sides of the above relation and taking the
limit as s ! �1, all terms of the right-hand side go to zero, except for the term
ðs� �1Þ

r�kck, which becomes ðr� kÞ!ck. Hence

ck ¼ lim
s!�1

1

ðr� kÞ!

dr�k

dsr�k
ðs� �1Þ

rFðsÞ½ �; k ¼ 1; 2; . . . ; r ð2:4-5Þ

Clearly, if more than one root is repeated, one may apply the above procedure
for each repeated root.

3 Complex Roots

Since all coefficients of aðsÞ are real numbers, it follows that all complex roots of aðsÞ
appear in complex conjugate pairs. For simplicity, let the polynomial aðsÞ have only
one such pair, say �1 ¼ þ j!, and �2 ¼ ���1 ¼ � j!, where the symbol ‘‘-‘‘ indicates
the complex conjugate number. Here, FðsÞ may be expanded in partial fractions, as
in the case of distinct real roots, as follows:

FðsÞ ¼
c1

s� �1
þ

c2

ðs� ���1Þ
þ

c3
s� �3

þ � � � þ
cn

s� �n
ð2:4-6Þ
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Using the tables, the inverse Laplace transform is

f ðtÞ ¼ L�1
fFðsÞg ¼ c1e

�1t þ c2e
���1t þ

Xn
i¼3

cie
�i t

Using relation (2.4-3) we conclude that c2 ¼ �cc1. If the complex roots are
repeated, we use relation (2.4-5). Consequently, the results of cases (a) and (b) can
be used in the present case, with the difference that the coefficients ci of complex
roots appear always in conjugate pairs, a fact which simplifies their calculation.

Consider the case where aðsÞ has the form aðsÞ ¼ ½ðsþ aÞ2 þ !2
�qðsÞ, where qðsÞ

has only real roots. This special form of aðsÞ is quite frequently met in practice. In
this case and when the polynomial qðsÞ is of a low degree (e.g., first or second degree),
the following partial fractions expansion of FðsÞ is recommended:

FðsÞ ¼
bðsÞ

aðsÞ
¼

bðsÞ

½ðsþ aÞ2 þ !�qðsÞ
¼

�1sþ �0

ðsþ aÞ2 þ !2
þ eðsÞ ð2:4-7Þ

where eðsÞ consists of all fractions which have as denominators the factors of qðsÞ.
Consequently, eðsÞ can be determined using the results of this section. The coeffi-
cients �0 and �1 are determined from the following relation:

�1sþ �0

ðsþ aÞ2 þ !2
¼ FðsÞ � eðsÞ

The motivation for presenting the method (2.4-7) is that it has computational
advantages over relation (2.4-6), since the complex conjugate roots do not appear in
determining �0 and �1.

Remark 2.4.1

In FðsÞ of relation (2.4-1), let m � n, which means that the degree of the polynomial
of the numerator is equal or greater than the degree of the polynomial of the
denominator. In this case, the method of partial fractions expansion cannot be
applied. To circumvent this difficulty, divide the numerator by the denominator to
yield

FðsÞ ¼
bðsÞ

aðsÞ
¼ �ðsÞ þ

�ðsÞ

aðsÞ
ð2:4-8Þ

where �ðsÞ is a polynomial of degree m� n and �ðsÞ is a polynomial of degree n� 1.
Clearly, the inverse Laplace transform of FðsÞ may now be found from the tables.

2.5 APPLICATIONS OF THE LAPLACE TRANSFORM

This section presents certain applications of the Laplace transform in the study of
linear systems.

Example 2.5.1

Determine the voltage across the capacitor of the circuit shown in Figure 2.11. The
switch S closes when t ¼ 0. The initial condition for the voltage capacitor is zero, i.e.
vcð0Þ ¼ 0.
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Solution

From Kirchhoff’s voltage law we have

RiðtÞ þ
1

C

ðt
�1

iðtÞ dt ¼ V0

Applying the Laplace transform to both sides of the integral equation, we get the
following algebraic equation

RIðsÞ þ
1

C

IðsÞ

s
þ
ið�1Þ

ð0Þ

s

" #
¼

V0

s

where IðsÞ ¼ LfiðtÞg and ið�1Þ
ð0Þ ¼

Ð 0
�1

iðtÞ dt ¼ Cvcð0Þ ¼ 0. Replacing ið�1Þ
ð0Þ ¼ 0 in

the above equation, we have

IðsÞ
1

Cs
þ R

� �
¼

V0

s
or IðsÞ ¼

V0=R

sþ 1=RC

The inverse Laplace transform of IðsÞ is found in Appendix A and is as follows

iðtÞ ¼ L�1
fIðsÞg ¼

V0

R
e�t=RC

Hence, the voltage vcðtÞ across the capacitor will be

vcðtÞ ¼ V0 � RiðtÞ ¼ V0 � V0e
�t=RC

¼ V0½1� e�t=RC
�

Example 2.5.2

Consider the mechanical system shown in Figure 2.12, where y, K , m, and B are the
position of the mass, the spring’s constant, the mass, and the friction coefficient,
respectively. The initial conditions are yð0Þ ¼ 0 and yð1Þð0Þ ¼ 2. Let the applied force
f ðtÞ ¼ uðtÞ; here uðtÞ is the unit step function. Determine the response yðtÞ of the
mechanical system, where for simplicity, let m ¼ 1, B ¼ 3, and K ¼ 2.

Solution

Using d’Alemberts law of forces, the following differential equation is obtained:

m
d2y

dt2
þ B

dy

dt
þ Ky ¼ f ðtÞ
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Using the particular values for m, B, K , and f ðtÞ, the differential equation becomes

d2y

dt2
þ 3

dy

dt
þ 2y ¼ uðtÞ

Applying the Laplace transform to both sides of the differential equation, we arrive
at the following algebraic equation

s2YðsÞ � syð0Þ � yð1Þð0Þ þ 3½sYðsÞ � yð0Þ� þ 2YðsÞ ¼
1

s

Solving for YðsÞ we have

YðsÞ ¼
syð0Þ þ 3yð0Þ þ yð1Þð0Þ

s2 þ 3sþ 2
þ

1

sðs2 þ 3sþ 2Þ

¼
2

s2 þ 3sþ 2
þ

1

sðs2 þ 3sþ 2Þ

where use was made of the given values of the initial conditions. Next, using the
method of partial fraction expansion, we have

YðsÞ ¼
2

ðs2 þ 3sþ 2Þ
þ

1

sðs2 þ 3sþ 2Þ
¼

2

ðsþ 1Þðsþ 2Þ
þ

1

sðsþ 1Þðsþ 2Þ

or

YðsÞ ¼
2

sþ 1
�

2

sþ 2

� �
þ

1=2

s
�

1

sþ 1
þ

1=2

sþ 2

� �

Taking the inverse Laplace transform, yields that the position yðtÞ of the mass m is
given by

yðtÞ ¼ 2e�t
� 2e�t

! "
þ 1

2 � e�t
þ 0:5e�2t

! "
¼ 1

2 � e�t
þ 3

2 e
�2t
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Example 2.5.3

Determine the voltage across the resistor R of the circuit shown in Figure 2.13. The
capacitor C is initially charged at 10V and the switch S closes when t ¼ 0.

Solution

From Kirchhoff’s voltage law we have

L
di

dt
þ Ri þ

1

C

ðt
�1

idt ¼ 0

Applying the Laplace transform to both sides of the integrodifferential equation, we
get the following algebraic equation

L½sIðsÞ � ið0Þ� þ RIðsÞ þ
1

C

IðsÞ

s
þ
ið�1Þ

ð0Þ

s

" #
¼ 0

or

Lsþ Rþ
1

Cs

� �
IðsÞ ¼ Lið0Þ �

ið�1Þ
ð0Þ

Cs

Replacing the values of the parameters of the circuit and the initial conditions vcð0Þ
¼ ið�1Þ

ð0Þ=C ¼ �10V and ið0Þ ¼ 0, we have

5sþ 20þ
20

s

� �
IðsÞ ¼

10

s

Solving this equation for IðsÞ, we get

IðsÞ ¼
2

s2 þ 4sþ 4
¼

2

ðsþ 2Þ2

Hence

iðtÞ ¼ L�1
½IðsÞ� ¼ L�1 2

ðsþ 2Þ2

� �
¼ 2te�2t

Therefore, the voltage vRðtÞ across the resistor will be vRðtÞ ¼ 20iðtÞ ¼ 40te�2t.
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Example 2.5.4

Determine the voltage across the capacitor of the circuit shown in Figure 2.14. The
input voltage is a pulse of 1 sec duration. The switch S closes when t ¼ 0.

Solution

From Kirchhoff’s voltage law we have

106iðtÞ þ 106
ðt
0

iðtÞ dt ¼ 10½uðtÞ � uðt� 1Þ�

Applying the Laplace transform to the above equation, we get the following alge-
braic equation

105IðsÞ þ
105

s
IðsÞ ¼

1

s
�
e�s

s

Solving for IðsÞ, we get

IðsÞ ¼ 10�5 1� e�s

sþ 1

� �
¼ 10�5 1

sþ 1
�

e�s

sþ 1

� �

Hence

iðtÞ ¼ L�1
fIðsÞg ¼ 10�5

½e�tuðtÞ � e�ðt�1Þuðt� 1Þ�

where relation (2.3-15) was used. The voltage vcðtÞ across the capacitor will be

vcðtÞ ¼
1

C

ðt
0

iðtÞ dt ¼ 10

ðt
0

e�tuðtÞ � e�ðt�1Þuðt� 1Þ
h i

dt

¼ 10 ½1� e�t
�uðtÞ � ½1� e�ðt�1Þ

�uðt� 1Þ
h i

The plot of the capacitor voltage is given in Figure 2.15.
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2.6 MATRIX DEFINITIONS AND OPERATIONS

2.6.1 Matrix Definitions

Consider the system of linear algebraic equations

a11x1 þ a12x2 þ � � � a1nxn ¼ b1

a21x1 þ a22x2 þ � � � þ a2nxn ¼ b2

..

. ..
. ..

. ..
.

an1x1 þ an2x2 þ � � � þ annxn ¼ bn

ð2:6-1Þ

This system can be written compactly as:

Ax ¼ b ð2:6-2Þ

where

A ¼

a11 a12 � � � a1n
a21 a22 � � � a2n
..
. ..

. ..
.

an1 an2 � � � ann

2
6664

3
7775; x ¼

x1
x2
..
.

xn

2
6664

3
7775; and b ¼

b1
b2
..
.

bn

2
6664

3
7775

The rectangular array, which has n columns and n rows, designated by the upper case
letter A, is called a matrix. Matrices which have only one column, designated by
lower case letters (i.e., x and b) are called vectors and have n� 1 dimensions. A can
also be written as A ¼ ½aij�, i; j ¼ 1; 2; . . . ; n. The parameters aij are called the ele-
ments of matrix A.

One of the basic reasons which lead to the use of matrices is that they provide a
concise description of multivariable systems. For example, relation (2.6-2) is a con-
cise description of the algebraic equations (2.6-1). Furthermore, investigation of the
solution of Eq. (2.6-1) is simplified when using Eq. (2.6-2). For example, we say that
Eq. (2.6-2) has a unique solution if the determinant (see Section 2.6-2) of A is
nonzero.

We present below certain useful types of matrices.
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1 The Column Vector

This matrix is composed of a single column, i.e., it has the form

a ¼

a1
a2
..
.

an

2
6664

3
7775 ð2:6-3Þ

2 The Row Vector

This matrix is composed of a single row, i.e., it has the form

a
T
¼ ½a1 a2 � � � an� ð2:6-4Þ

3 The Square and Nonsquare Matrices

A square matrix is one which has an equal number of rows and columns, whereas a
nonsquare matrix has an unequal number of rows and columns.

4 The Diagonal Matrix

The diagonal matrix is a square matrix whose elements are all zero, except those that
lie on the main diagonal and has the form

A ¼

a11 0 � � � 0
0 a22 � � � 0

..

. ..
. ..

.

0 0 � � � ann

2
6664

3
7775 ¼ diagfa11; a22; . . . ; anng ð2:6-5Þ

5 The Identity Matrix

A diagonal matrix that has ones along the main diagonal and zeros elsewhere is
called an ðn� nÞ identity matrix. This matrix is denoted by I and has the form

I ¼

1 0 � � � 0
0 1 � � � 0
..
. ..

. ..
.

0 0 � � � 1

2
664

3
775 ð2:6-6Þ

6 The Zero Matrix

This is a matrix whose elements are all zero.

7 The Singular and Nonsingular Matrices

If the determinant of a square matrix is zero, the matrix is called singular, while if the
determinant is nonzero, the matrix is called nonsingular.

8 The Transpose of a Matrix

The matrix AT is the transpose of A if the rows of the first matrix are the columns of
the second. Hence, if A ¼ ½aij�, then A

T
¼ ½aji�. Therefore, if A has dimensions n�m,

then AT has dimensions m� n. The superscript T denotes transposition.
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9 The Symmetric Matrix

The symmetric matrix is a square matrix for which A ¼ A
T or aij ¼ aji; 8i; j.

10 The Triangular Matrix

The triangular matrix is a square matrix which has one of the following two forms

A ¼

a11 a12 � � � a1n
0 a22 � � � a2n
..
. ..

. ..
.

0 0 � � � ann

2
6664

3
7775 or B ¼

a11 0 � � � 0
a21 a22 � � � 0

..

. ..
. ..

.

an1 an2 � � � ann

2
6664

3
7775 ð2:6-7Þ

Matrix A is called upper triangular, whereas matrix B is called lower triangular.

11 The Conjugate Matrix

The matrix �AA is called the conjugate matrix of A and its elements are the conjugate
elements of A: that is, if A ¼ ½aij �, then �AA ¼ ½ �aaij �.

12 The Hermitian Matrix

If A ¼ �AAT, then the matrix A is called Hermitian.

13 The Orthogonal Matrix

A matrix A is called orthogonal if it is a square matrix with real elements and the
following relation holds:

A
T
A ¼ AA

T
¼ I ð2:6-8Þ

Other useful definitions regarding matrices are:

a. The Trace

The trace of an n� n square matrix A ¼ ½aij� is denoted as trA or trace A and is
defined as the sum of all the elements of the main diagonal, i.e.,

trA ¼
Xn
i¼1

aii ð2:6-9Þ

b. The Rank

The rank of a matrix is equal to the dimension of its largest non-singular (square)
submatrix.

2.6.2 Matrix Operations

1 Matrix Addition

Consider the matrices A ¼ ½aij� and B ¼ ½bij �, both of whose dimensions are n�m.
Then, their addition Aþ B is the n�m matrix C ¼ ½cij�, whose elements cij are
cij ¼ aij þ bij.
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2 Matrix Multiplication

Consider the matrices A ¼ ½aij� and B ¼ ½bij � of dimensions n�m and m� p, respec-
tively. Then, their product AB is the n� p matrix C ¼ ½cij �, whose elements cij are
given by

cij ¼
Xm
k¼1

aikbkj ¼ a
T
i bj

where aTi is the ith row of matrix A and bj is the jth column of matrix B. Hence, every
cij element is determined by multiplying the ith row of the matrix A with the jth
column of the matrix B.

3 Multiplying a Matrix with a Constant

Consider the matrix A ¼ ½aij � and the constant k. Then, every element of the matrix
C ¼ kA is simply cij ¼ kaij .

4 Transpose of a Matrix Product

Consider the matrix product A1A2 . . .Am. Then

ðA1A2 . . .AmÞ
T
¼ A

T
mA

T
m�1 . . .A

T
1 ð2:6-10Þ

5 Derivatives of a Matrix

Consider the matrix A ¼ ½aij �, whose elements aij are functions of time t, and the
function f which is a scalar function of time. Then, the following relations hold:

dA

dt
¼

daij
dt

� �
ð2:6-11Þ

dð fAÞ

dt
¼

df

dt
Aþ f

dA

dt
ð2:6-12Þ

dðAþ BÞ

dt
¼

dA

dt
þ
dB

dt
ð2:6-13Þ

dðABÞ

dt
¼

dA

dt

� �
Bþ A

dB

dt

� �
ð2:6-14Þ

dðA�1
Þ

dt
¼ �A

�1 dA

dt

� �
A

�1
ð2:6-15Þ

6 Derivatives of a Matrix with Respect to a Vector

The following relations hold
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@f

@x
¼

@f

@x1
@f

@x2

..

.

@f

@xn

2
66666666664

3
77777777775

and
@yT

@x
¼

@y1
@x1

@y2
@x1

� � �
@ym
@x1

@y1
@x2

@y2
@x2

� � �
@ym
@x2

..

. ..
. ..

.

@y1
@xn

@y2
@xn

� � �
@ym
@xn

2
66666666664

3
77777777775

ð2:6-16Þ

@½QðtÞyðtÞ�

@y
¼ Q

T
ðtÞ ð2:6-17Þ

1

2

@½yTðtÞQðtÞyðtÞ�

@y
¼ QðtÞyðtÞ ð2:6-18Þ

1

2

@½yTðtÞQðtÞyðtÞ�

@x
¼

@yTðtÞ

@x

" #
QðtÞyðtÞ ð2:6-19Þ

where yT ¼ ð y1; y2; . . . ; ymÞ and QðtÞ is a symmetric matrix with dimensions m�m.

7 Matrix Integration

Here ð
A dt ¼

ð
aijdt

� �
ð2:6-20Þ

2.7 DETERMINANT OF A MATRIX

1 Calculation of the Determinant of a Matrix

The determinant of an n� n matrix A is denoted by jAj or detA, and it is scalar
quantity. A popular method to calculate the determinant of a matrix is the Laplace
expansion in which the determinant of an n� n matrix A ¼ ½aij � is the sum of the
elements of a row or a column, where each element is multiplied by the determinant
of an appropriate matrix, i.e.,

jAj ¼
Xn
i¼1

aijcij; j ¼ 1 or 2 or � � � or n (column expansion) ð2:7-1Þ

or

jAj ¼
Xn
j¼1

aijcij; i ¼ 1 or 2 or � � � or n (row expansion) ð2:7-2Þ

where cij is defined as follows:

cij ¼ ð�1Þiþj
jMijj

where Mij is the ðn� 1Þ � ðn� 1Þ square matrix formed from A by deleting the ith
row and the jth column from the original matrix.
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2 The Determinant of a Matrix Product

Consider the square matrices A1;A2;A3; . . . ;Am and their product B ¼ A1A2 . . .Am.
Then,

jBj ¼ jA1jjA2j � � � jAmj ð2:7-3Þ

2.8 THE INVERSE OF A MATRIX

1 Calculation of the Inversion of a Matrix

The inverse of an n� n square matrix A is denoted by A�1 and has the following
property

A
�1
A ¼ AA

�1
¼ I ð2:8-1Þ

The inverse matrix A�1 is determined as follows:

A
�1

¼
AdjA

jAj
ð2:8-2Þ

where the matrix adjA, called the adjoint matrix of A, is the matrix whose elements
are the adjoint elements of A.

2 The Inverse of a Matrix Product

Consider the n� n square matrices A1;A2; . . . ;Am and their product
B ¼ A1A2 � � �Am. Then

B
�1

¼ A
�1
m A

�1
m�1 � � �A

�1
1

2.9 MATRIX EIGENVALUES AND EIGENVECTORS

The eigenvalues of a matrix are of significance in the study of control systems, since
their behavior is strongly influenced by their eigenvalues. The issue of the eigenvalues
of an n� n square matrix A ¼ ½aij� stems from the following problem: consider the n-
dimensional vectors uT ¼ ðu1; u2; . . . ; unÞ and y

T
¼ ðy1; y2; . . . ; ynÞ and the relation

y ¼ Au ð2:9-1Þ

The foregoing relation is a transformation of the vector u onto the vector y through
the matrix A. One may ask the following question: are there nonzero vectors u which
maintain their direction after such transformation? If there exists such a vector u,
then the vector y is proportional to the vector u, i.e., the following holds:

y ¼ Au ¼ �u ð2:9-2Þ

where � is a constant. From relation (2.9-2) we get that Au ¼ �u or Au� �u ¼ 0, and
if we set �u ¼ �Iu, then we have

ð�I� AÞu ¼ 0 ð2:9-3Þ

The system of equations (2.9-3) has a nonzero solution if the determinant of the
matrix �I� A is equal to zero, i.e., if

j�I� Aj ¼ 0 ð2:9-4Þ
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Equation (2.9-4) is a polynomial equation of degree n and has the general form

j�I� Aj ¼ pð�Þ ¼ �n þ a1�
n�1

þ a2�
n�2

þ � � � þ an�1�þ an

¼
Yn
i¼1

ð�� �iÞ ¼ 0
ð2:9-5Þ

The roots �1; �2; . . . ; �n of Eq. (2.9-5) are called the eigenvalues of the matrix A.
These eigenvalues, if set in Eq. (2.9-3), produce nonzero solutions to the problem of
determining the vectors u, which maintain their direction after the transformation
Au.

The polynomial pð�Þ is called the characteristic polynomial of the matrix A and
Eq. (2.9-5) is called the characteristic equation of the matrix A.

A vector ui is an eigenvector of matrix A and corresponds to the eigenvalue �i if
ui 6¼ 0 and relation (2.9-2) is satisfied, i.e.,

Aui ¼ �iui ð2:9-6Þ

In determining the characteristic polynomial pð�Þ of A, considerable computa-
tional effort may be required in computing the coefficients a1; a2; . . . ; an of pð�Þ from
the elements of matrix A, particularly as n becomes large. Several numerical methods
have been proposed, one of the most popular of which is Bocher’s recursive relation:

ak ¼ �
1

k
ðak�1T1 þ ak�2T2 þ � � � þ a1Tk�1 þ TkÞ; k ¼ 1; 2; . . . ; n ð2:9-7Þ

where Tk ¼ trAk, k ¼ 1; 2; . . . ; n. The description of this method is simple but has a
serious numerical drawback in that it requries the computation up to the nth power
of the matrix A.

Certain interesting properties of matrix A, of its eigenvalues, and of the coeffi-
cients of pð�Þ, which may immediately be derived from the relations (2.9-5) to (2.9-7),
are the following:

1. If the matrix A is singular, then it has at least one zero eigenvalue and vice
versa.

2. trA ¼ �1 þ �2 þ � � � þ �n (2.9-8)

3. jAj ¼ �1�2 . . . �n (2.9-9)

4. an ¼ ð�1ÞnjAj ¼ ð�1Þn�1�2 . . . �n ¼ pð0Þ (2.9-10)

Example 2.9.1

Find the characteristic polynomial, the eigenvalues, and the eigenvectors of the
matrix

A ¼
�1 1
0 �2

� �

Solution

The characteristic polynomial pð�Þ of the matrix A, accoding to definition (2.9-5), is

pð�Þ ¼ j�I� Aj ¼ det
�þ 1 �1
0 �þ 2

� �
¼ ð�þ 1Þð�þ 2Þ ¼ �2 þ 3�þ 2
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The coefficients of pð�Þ may be determined from the recursive equation (2.9-7). In
this case, we first compute T1 and T2. We have: T1 ¼ trA ¼ �3 and T2 ¼ trA2

¼ 5.
Hence

a1 ¼ �T1 ¼ 3 and a2 ¼ � 1
2 ða1T1 þ T2Þ ¼ � 1

2 ð�9þ 5Þ ¼ 2

Therefore, pð�Þ ¼ �2 þ a1�þ a
2
¼ �2 þ 3�þ 2. We observe that, working in two

different ways, we arrive at the same characteristic polynomial, as expected. The
eigenvalues of matrix A are the roots of the characteristic polynomial
pð�Þ ¼ �2 þ 3�þ 2 ¼ ð�þ 1ð�þ 2Þ, and hence we immediately have that the eigen-
values of matrix A are �1 ¼ �1 and �2 ¼ �2. The eigenvectors can be determined
from relation (2.9-6). Let the vector u1, which corresponds to the eigenvalue
�1 ¼ �1, have the form u1 ¼ ð!1; !2Þ

T. Then, relation (2.9-6) becomes

�1 1
0 �2

� �
!1

!2

� �
¼ �

!1

!2

� �
or

0 1
0 �1

� �
!1

!2

� �
¼

0
0

� �
Thus, the eigenvector u1 is u1 ¼ ð!1; !2Þ

T
¼ ðd; 0ÞT, 8d 2 R, where R is the space of

real numbers. In the same way, we calculate the eigenvector u2 ¼ ðv1; v2Þ
T, which

corresponds to the eigenvalue �2 ¼ �2. From (2.9-6) we have

�1 1
0 �2

� �
v1
v2

� �
¼ �2

v1
v2

� �
or

1 1
0 0

� �
v1
v2

� �
¼

0
0

� �
Hence, the eigenvector u2 is u2 ¼ ðv1; v2Þ

T
¼ ð�k; kÞT, 8k 2 R. Setting d ¼ k ¼ 1, we

have the following two eigenvectors

u1 ¼
1
0

� �
; u2 ¼

�1
1

� �

2.10 SIMILARITY TRANSFORMATIONS

Consider the n� n square matrices A and B. The matrix B is similar to the matrix A
if there exists an n� n nonsingular matrix T such that:

B ¼ T
�1
AT ð2:10-1Þ

It is obvious that if relation (2.10-1) is true, then it is also true that

A ¼ TBT
�1

Hence, if B is similar to A, then A must be similar to B.
Relation (2.10-1) is called a similarity transformation. The similarity transfor-

mation usually aims at simplifying the matrix A. Such a simplification facilitates the
solution of certain problems. For example, consider the linear system of first-order
differential equations

_xx ¼ Ax; xð0Þ ð2:10-2Þ

where xT ¼ ðx1; x2; . . . ; xnÞ. The vector xð0Þ is the initial vector of the system. Setting
x ¼ Tz, where zT ¼ ðz1; z2; . . . ; znÞ is a new vector, the system (2.10-2) becomes

_zz ¼ T�1
ATz; zð0Þ ¼ T�1

xð0Þ ð2:10-3Þ
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If the similarity transformation matrix T is chosen so that
T
�1
AT ¼ , ¼ diagð�1; �2; . . . ; �nÞ, where �1; �2; . . . ; �n are the eigenvalues of matrix

A, then Eq. (2.10-3) becomes

_zz ¼ ,z or _zzi ¼ �izi; i ¼ 1; 2; . . . ; n ð2:10-4Þ

Comparing relations (2.10-2) and (2.10-4), we realize that the similarity transforma-
tion has simplified (decoupled) the vector differential system of equations (2.10-2)
into n first-order scalar differential equations whose ith solution is given by the
simple relation

ziðtÞ ¼ zið0Þ e
�i t

In using the similarity transformation (2.10-1), one has to determine the trans-
formation matrix T. In the case where the similarity transformation aims at diag-
onalizing the matrix A, then the determination of T is directly linked to the problem
of eigenvalues and eigenvectors of A. In this case, the following holds true:

1. If the eigenvalues �1; �2; . . . ; �n of the matrix A are distinct, then the eigen-
vectors u1; u2; . . . ; un are linearly independent. In this case, the similarity transforma-
tion matrix T which diagonalizes A, is denoted by M and has the form

M ¼ ½u1
..
.
u2

..

.
� � � ..

.
un� ð2:10-5Þ

The matrix M is called the eigenvector matrix.
2. If the eigenvalues �1; �2; . . . ; �n of the matrix A are not distinct, then the

eigenvectors u1; u2; . . . ; un are not always linearly independent. Since the diagonali-
zation of A has as a necessary and sufficient condition the existence of n linearly
independent eigenvectors of the matrix A, it follows that in the case where the
eigenvalues of A are not distinct, the matrix A can be diagonalized only if it has n
linearly independent eigenvectors. When A does not have n linearly independent
eigenvectors, the matrix cannot be transformed into a diagonal form. However, it
can be transformed to an ‘‘almost diagonal’’ form, known as the Jordan canonical
form and is denoted by J. The general form of the matrix J is the following:

J ¼

J11ð�1Þ
J21ð�1Þ 0

. .
.

Jk1ð�1Þ
J12ð�2Þ

0 . .
.

Jmpð�pÞ

2
66666666664

3
77777777775

ð2:10-6Þ

where

Jjið�iÞ ¼

�i 1 0 � � � 0 0
0 �i 1 � � � 0 0

..

. ..
. ..

. ..
. ..

.

0 0 0 � � � �i 1
0 0 0 � � � 0 �i

2
666664

3
777775

where Jjið�iÞ is called the Jordan submatrix.
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Certain useful properties of the similarity transformation are that the charac-
teristic polynomial (and therefore the eigenvalues), the trace, and the determinant of
a matrix are invariable under the similarity transformation. However, it should be
noted that, in general, the reverse does not hold true. If, for example, two matrices
have the same characteristic polynomial, that does not necessarily mean that they are
similar.

Moreover, if B ¼ T
�1
AT and u is an eigenvector of A, then the vector T�1

u is
an eigenvector of B.

Example 2.10.1

Diagonalize the matrix A of Example 2.9.1.

Solution

From Example 2.9.1 we have the two eigenvalues u1 ¼ ð1; 0ÞT and u2 ¼ ð�1; 1ÞT.
According to the relation (2.10-5), the similarity matrix M is

M ¼ ½u1
..
.
u2� ¼

1 �1
0 1

� �
and M

�1
¼

1 1
0 1

� �
Since u1 and u2 are linearly independent, the matrix M diagonalized the matrix A.
Indeed

, ¼M
�1
AM ¼

1 1
0 1

� �
�1 1
0 �2

� �
1 �1
0 1

� �
¼

�1 0
0 �2

� �

2.11 THE CAYLEY–HAMILTON THEOREM

The Cayley–Hamilton theorem relates a matrix to its characteristic polynomial, as
follows:

Theorem 2.11.1

Consider an n� n matrix A with characteristic polynomial
pð�Þ ¼ j�I� Aj ¼ �n þ a1�

n�1
þ � � � þ an�1�þ an. Then, the matrix A satisfies its

characteristic polynomial, i.e.

pðAÞ ¼ An
þ a1A

n�1
þ � � � þ an�1Aþ anI ¼ 0 ð2:11-1Þ

The Cayley–Hamilton theorem has several interesting and useful applications.
Some of them are given below.

a. Calculation of the Inverse of a Matrix

From relation (2.11-1), we have

anI ¼ �½A
n
þ a1A

n�1
þ � � � þ an�1A�

Let the matrix A be nonsingular. Then, multiplying both sides of the foregoing
relation with A�1, we obtain

anA
�1

¼ �½A
n�1

þ a1A
n�2

þ � � � þ an�1I�

or
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A
�1

¼ �
1

an
½A

n�1
þ a1A

n�2
þ � � � þ an�1I� ð2:11-2Þ

where an ¼ ð�1ÞnjAj 6¼ 0. Relation (2.11-2) expresses the matrix A�1 as a matrix
polynomial of A of degree n� 1 and presents an alternate way of determining
A

�1, different from that of Section 2.8, which essentially requires the calculation
of the matrices Ak, k ¼ 2; 3; . . . ; n� 1.

Example 2.11.1

Consider the matrix

A ¼
0 1

�6 �5

� �
Show that the matrix A satisfies its characteristic equation and calculate A�1.

Solution

We have

pð�Þ ¼ j�I� Aj ¼ �2 þ 5�þ 6

whence

pðAÞ ¼ A2
þ 5Aþ 6I

¼
�6 �5

30 19

� �
þ 5

0 1

�6 �5

� �
þ 6

1 0

0 1

� �
¼

0 0

0 0

� �
Therefore pðAÞ ¼ 0. For the calculation of A�1, using relation (2.11-2), we have

A
�1

¼ �
1

6
ðAþ 5IÞ ¼ �

1

6

5 1
�6 0

� �

b. Calculation of Ak

From relation (2.11-1) we have

A
n
¼ �½a1A

n�1
þ � � � þ an�1Aþ anI� ð2:11-3Þ

Multiplying both sides of the above equation with the matrix A we have

A
nþ1

¼ �½a1A
n
þ � � � þ an�1A

2
þ anA� ð2:11-4Þ

Substituting Eq. (2.11-3) into Eq. (2.11-4) we have

A
nþ1

¼ �½�a1ða1A
n�1

þ � � � þ an�1Aþ anIÞ þ � � � þ an�1A
2
þ anA� ð2:11-5Þ

Relation (2.11-5) expresses the matrix Anþ1 as a linear combination of the matrices I,
A; . . . ;An�1. The general case is

A
k
¼
Xn�1

i¼0

ð�kÞiA
i; k � n ð2:11-6Þ

where ð�kÞi are constants depending on the coefficients a1; a2; . . . ; an of the charac-
teristic polynomial pð�Þ.
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Example 2.11.2

Calculate the matrix A5, where

A ¼
0 1
2 1

� �

Solution

From the Cayley–Hamilton theorem we have pðAÞ ¼ A2
� A� 2I ¼ 0 or

A
2
¼ Aþ 2I. From relation (2.11-5) we get A

3
¼ A

2
þ 2A ¼ ðAþ 2IÞ þ 2A ¼

3Aþ 2I, A4
¼ 3A2

þ 2A ¼ 3ðAþ 2IÞ þ 2A ¼ 5Aþ 6I and A5
¼ 5A2

þ 6A ¼ 5ðAþ

2IÞþ 6A ¼ 11Aþ 10I. Therefore

A
5
¼ 11Aþ 10I ¼ 11

0 1
2 1

� �
þ 10

1 0
0 1

� �
¼

10 11
22 21

� �

2.12 QUADRATIC FORMS AND SYLVESTER THEOREMS

Consider a second-order polynomial of the form

gðxÞ ¼
Xn
j¼1

Xn
i¼1

aijxixj ð2:12-1Þ

where xT ¼ ðx1; x2; . . . ; xnÞ is a vector of real parameters. The polynomial gðxÞ is
called the quadratic form of n variables. Some of the properties and definitions of
gðxÞ are the following:

1. The polynomial gðxÞ may be written as

gðxÞ ¼ xTAx; A ¼ ½aij�; i; j ¼ 1; 2; . . . ; n ð2:12-2Þ

where A is an n� n real symmetric matrix (i.e., A ¼ A
T
Þ.

2. The polynomial gðxÞ may also be written as an inner product as follows:

gðxÞ ¼ hx;Axi ð2:12-3Þ

where ha; bi ¼ aTb, and a and b are vectors of the same dimension.
3. The matrix A is called the matrix of the quadratic form gðxÞ. The rank of

the matrix A is the order of gðxÞ.
4. The polynomial gðxÞ is positive (negative) if its value is positive (negative)

or zero for every set of real values of x.
5. The polynomial gðxÞ is positive definite (negative definite) if its value is

positive (negative) for all x and equal to zero only when x ¼ 0.
6. The polynomial gðxÞ is positive semidefinite (negative semidefinite) if its

value is positive (negative) or zero.
7. The polynomial gðxÞ is undefined if its value can take positive as well as

negative values.

A central problem referring to quadratic forms pertains to the determination of
whether or not a quadratic form is positive, negative definite, or semidefinite. Certain
theorems due to Sylvester, are presented below:

Mathematical Background 57



Theorem 2.12.1

Let rankA ¼ m. Then, the polynomial gðxÞ ¼ xTAx may be written in the following
form

pðyÞ ¼ y21 þ � � � þ y2� � y2�þ1 � � � � � y2�þ� þ 0y2�þ�þ1 þ � � � þ 0y2n ð2:12-4Þ

where x ¼ Ty. The intergers � and � correspond to the number of positive and
negative eigenvalues of A and are such that �þ � ¼ m.

Theorem 2.12.2

From Eq. (2.12-4) we obtain pðyÞ and, hence, the polynomial gðxÞ is:

1. Positive definite if � ¼ n and � ¼ 0
2. Positive semidefinite if � < n and � ¼ 0
3. Negative definite if � ¼ 0 and � ¼ n
4. Negative semidefinite if � ¼ 0 and � < n
5. Undefined if �� 6¼ 0

Theorem 2.12.3

The necessary and sufficient conditions for gðxÞ to be positive definite are

�i > 0; i ¼ 1; 2; . . . ; n ð2:12-5Þ

where

�1 ¼ a11;�2 ¼
a11 a21
a21 a22

))))
)))); . . . ;�n ¼

a11 � � � an1
..
. ..

.

an1 � � � ann

)))))))
)))))))

Theorem 2.12.4

The necessary and sufficient conditions for gðxÞ to be negative definite are

�i
> 0 when i is even
< 0 when i is odd

�
ð2:12-6Þ

for i ¼ 1; 2; . . . ; n.

Theorem 2.12.5

The necessary and sufficient conditions for gðxÞ to be negative semidefinite are

�i � 0; i ¼ 1; 2; . . . ; n� 1 and �n ¼ 0 ð2:12-7Þ

Theorem 2.12.6

The necessary and sufficient conditions for gðxÞ to be negative semidefinite are

�1 � 0;�2 � 0;�3 � 0; . . . and �n ¼ 0 ð2:12-8Þ

We note that Theorem 2.12.2 has the drawback, over Theorems 2.12.3–2.12.6,
in that it requires the calculation of the integers � and � of the eigenvalues and of the
rank m of matrix A. For this reason, Theorems 2.12.3–2.12.6 are used more often.
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Example 2.12.1

Find if the quadratic forms

g1ðxÞ ¼ 4x21 þ x22 þ 2x23 þ 2x1x2 þ 2x1x3 þ 2x2x3

g2ðxÞ ¼ �2x21 � 4x22 � x23 þ 2x1x2 þ 2x1x3

g3ðxÞ ¼ �4x21 � x22 � 12x23 þ 2x1x2 þ 6x2x3

are positive or negative definite.

Solution

We have

g1ðxÞ ¼ x
T
Ax; x ¼

x1
x2
x3

2
4

3
5; A

4 1 1
1 1 1
1 1 2

2
4

3
5

and

�1 ¼ 4 > 0;�2 ¼
4 1
1 1

))))
)))) ¼ 3 > 0; �3 ¼ jAj ¼ 3 > 0

Hence, according to Theorem 2.12.3, g1ðxÞ is positive definite. Also

g2ðxÞ ¼ x
T
AX; x ¼

x1
x2
x3

2
4

3
5; A ¼

�2 1 1
1 �4 0
1 0 �1

2
4

3
5

and

�1 ¼ �2 < 0;�2 ¼
�2 1
1 �4

))))
)))) ¼ 7 > 0;�3 ¼j A j¼ �3 < 0

Hence, according to Theorem 2.12.4, g2ðxÞ is negative definite. Finally,

g3ðxÞ ¼ x
T
Ax; x ¼

x1
x2
x3

2
4

3
5; A ¼

�4 1 0
1 �1 3
0 3 �12

2
4

3
5

and

�1 ¼ �4 < 0;�2 ¼
�4 1
1 �1

))))
)))) ¼ 3 > 0;�3 ¼ jAj ¼ 0

Hence, according to Theorem 2.12.6, g3ðxÞ is negative semidefinite.

2.13 PROBLEMS

1. Find the Laplace transform of the following functions:

(a) t3e�at (g) ðtþ T1Þe
�atuðt� T2Þ (m) cos!ðt� TÞ

(b) sinð!tþ 
Þ (h) e�ðt�1Þuðt� 1Þ (n) t2 sin �t
(c) t cosð!tþ 
Þ (i) ðtþ T1Þuðt� T1Þ (o) 5 sin½!ðt� Þ�uðt� Þ
(d) Etuðt� TÞ (j) ðtþ T2Þ

2uðt� T2Þ (p) sinðt� TÞuðt� TÞ

(e) eT2uðt� TÞ (k) t cos at (q) sin t uðt� TÞ

(f) ðt� 2Þuðt� 2Þ (l) te�t cos 2t (r) sinðt� TÞuðtÞ
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2. Find the Laplace transform of the periodic waveforms shown in Figure 2.16.
3. Obtain the initial values f ð0þÞ and f ð1Þð0þÞ, given that

FðsÞ ¼
3

sþ 0:2

4. Obtain the final values of the functions having the following Laplace transforms:

(a) Lf f ðtÞg ¼ FðsÞ ¼
3

sðs2 þ sþ 2Þ
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(b) Lf f ðtÞg ¼ FðsÞ ¼
sþ 2

sðs2 þ 4Þ

5. Find the inverse Laplace transforms of the functions

(a)
1

ðsþ 1Þðsþ 2Þðsþ 3Þ
(b)

1

ðsþ aÞðsþ bÞ2
(c)

1

s2 � 2sþ 9

(d)
sþ 4

s2 þ 4sþ 8
(e)

1

sðs2 þ 4Þ
(f)

sþ 1

sðs2 þ 4Þ

(g)
sþ 3

ðs� 2Þðsþ 1Þ
(h)

8

s3ðs2 � s� 2Þ
(i)

1

ðs2 þ 1Þðs2 þ 4sþ 8Þ

(j)
s2 þ 1

s2 þ 2
(k)

e�s

s2 þ 1
(l)

e�Ts

s4 þ a4

(m)
e�Ts

s
(n)

1� e�s

s2

6. Find the current iðtÞ and the voltage vLðtÞ across the inductor for the RL circuit
shown in Figure 2.17. The switch S is closed at t ¼ 0 and the initial condition for
the inductor current is zero ðiLð0Þ ¼ 0Þ:

7. Find the current iðtÞ for the RC circuit shown in Figure 2.18. The switch S is
closed at t ¼ 0 and the initial condition for the capacitor voltage is zero
ðvcð0Þ ¼ 0Þ.

8. Find the current iðtÞ for the LC circuit shown in Figure 2.19. The switch S is
closed at t ¼ 0 and the initial conditions for the inductor and the capacitor are
iLð0Þ ¼ 0 and vcð0Þ ¼ 0.

9. For the RLC circuit shown in Figure 2.20, find the voltage across the resistor R
using the Laplace transform method. Assume that the switch S is closed at t ¼ 0.

10. Using the Laplace transform method, find the currents of the circuits shown in
Figure 2.21.

11. Obtain the output voltage vRðtÞ of the highpass filter shown in Figure 2.22.
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12. Find the voltage across the resistor R ¼ 10� for the circuit shown in Figure
2.23. Initially, the capacitor is fully charged and the switch S is moved from
position a to position b.

13. Consider the frictionless movement of a mass m shown in Figure 2.24, where f ðtÞ
is the force applied, yðtÞ is the displacement of the mass, and m ¼ 1 kg. Using the
Laplace transform, find yðtÞ for t > 0 if f ðtÞ has the form shown in Figure 2.24
and the initial conditions are yð0Þ ¼ 1 and _yyð0Þ ¼ 0.

14. Solve Problem 13 for the system shown in Figure 2.25, where K is the spring
constant. Consider the case where K ¼ 0:5.
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15. Determine the eigenvalues and the eigenvectors and diagonalize the following
matrices:

A ¼
2 0

4 3

� �
; B ¼

0 1

�2 �3

� �
; C ¼

0 1 0

0 0 0

0 �2 �3

2
64

3
75;

D ¼

3 0 2

0 3 �2

2 �2 1

2
64

3
75

16. Solve the system of differential equations

_xx ¼ Ax; xð0Þ ¼ x0

where

x ¼

x1
x2
x3

2
4

3
5; A ¼

0 1 0
0 0 1

�6 �11 �6

2
4

3
5; x0 ¼

�1
�1
2

2
4

3
5

using the diagonalization method for the matrix A.
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17. For the following matrices

A ¼

1 1 0
1 �3 0
0 0 2

2
4

3
5; B ¼

1 �2
2 3

� �
; C ¼

1 2 �2
1 �3 1
0 6 3

2
4

3
5

show that they satisfy their characteristic equations and find A�1, B�1, and C�1.
Also obtain B3 and C8.

18. Determine whether the following quadratic forms are positive or negative defi-
nite.

g1ðxÞ ¼ x21 þ 2x1x2 þ 4x22 g6ðxÞ ¼ 10x21 þ x22 þ x23 þ 2x1x2 þ 8x1x3 þ x2x3
g2ðxÞ ¼ �x21 � 2x1x2 � 2x22 g7ðxÞ ¼ x21 � 2x22 þ 2x23 þ 2x1x2
g3ðxÞ ¼ ðx1 � x2Þ

2 g8ðxÞ ¼ x21 � 2x22 þ 2x23
g4ðxÞ ¼ �ðx1 � x2Þ

2 g9ðxÞ ¼ 6x21 þ 4x22 þ 2x23 þ 4x1x2 � 4x2x3 � 2x1x3
g5ðxÞ ¼ �x21 � x22 g10ðxÞ ¼ �2x21 � 5x22 � 10x23 þ 4x1x2 � 2x1x3

� 6x2x3
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3
Mathematical Models of Systems

3.1 INTRODUCTION

The general term system description, loosely speaking, refers to a mathematical
expression that appropriately relates the physical system quantities to the system
components. This mathematical relation constitutes the mathematical model of the
system.

As an example, consider a resistor whose voltage v, current i, and resistance R
are related in the well-known equation v ¼ Ri. This expression relates the physical
quantities (variables) v and i with the component R and constitutes a description;
i.e., it constitutes a mathematical model of this simple (one-component) system.

As another example, consider a circuit composed of a resistor and an inductor
connected in series. In this case, the voltage v across the circuit, the current i, the
resistance R of the resistor, and the self-inductance L of the inductor are related with
the well-known relation v ¼ Lðdi=dtÞ þ Ri. This expression relates the physical quan-
tities v and i with the components R and L and constitutes a mathematical model of
the system.

As already mentioned in Chap. 1, a system in operation involves the following
three elements: the system’s input (or excitation), the system itself, and the system’s
output (or response) (see Figure 3.1). Based on this three-fold element concept
(input, system, and output), a more strict definition of the mathematical model of
a system can be given.

Definition 3.1.1

The mathematical model of a system is a mathematical relation which relates the
input, the system, and the output. This relation must be such as to guarantee that
one can determine the system’s output for any given input.

From the above definition it follows that the mathematical model is not just any
relation, but a very special relation, which offers the capability of system analysis, i.e.,
the capability to determine the system’s response under any excitation. Furthermore,
the foregoing definition reveals the basic motive for determining mathematical mod-
els. This motive is to have available appropriate tools that will facilitate the system
analysis (it is well known that in order to analyze a system, we must have available its
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mathematical model). It should be also noted that the mathematical model is useful
for other purposes, as for example to study the system’s stability and other properties,
to improve the system’s performance by applying control techniques, etc.

3.2 GENERAL ASPECTS OF MATHEMATICAL MODELS

The problem of determining a system’s mathematical model is essentially a problem
of approximating the behavior of a physical system with an ideal mathematical
expression. For example, the expression v ¼ Ri is an approximation of the physical
relation between v, i, and R. To have greater accuracy, one must take into account
additional factors: for example, that the resistance R changes with temperature and,
consequently, the relation v ¼ Ri should have the nonlinear form v ¼ RðiÞ, where
RðiÞ denotes that R is a nonlinear function of the current i. However, it is well known
that this more accurate model is still an approximation of the physical system. The
final conclusion is that, in general, the mathematical model can only give an approx-
imate description of a physical system.

The problem of deriving the mathematical model of a system usually appears
as one of the following two cases.

1 Derivation of System’s Equations

In this case, the system is considered known: for example, the network shown in
Figure 3.2a. Here, we know the components R, L, C1, and C2 and their interconnec-
tions. To determine a mathematical model of the network, one may apply
Kirchhoff’s laws and write down that particular system of equations which will
constitute the mathematical model. From network theory, it is well known that
the system of equations sought are the linearly independent loop or node equations.

2 System Identification

In this case the system is not known. By ‘‘not known,’’ we mean that we do not know
either the system’s components or their interconnections. The system is just a black
box. In certain cases, we may have available some a priori (in advance) useful
information about the system, e.g., that the system is time-invariant or that it has
lumped parameters, etc. Based on this limited information about the system, we are
asked to determine a mathematical model which describes the given system ‘‘satis-
factorily.’’ A well-known technique for dealing with this problem is depicted in
Figure 3.2b. Here, both the physical system and the mathematical model are excited
by the same input uðtÞ. Subsequently, the difference eðtÞ of the respective responses
y1ðtÞ and y2ðtÞ is measured. If the error eðtÞ is within acceptable bounds, then the
mathematical model is a satisfactory description of the system. The acceptable
bounds depend on the desired degree of accuracy of the model, and they are usually
stated in terms of the minimum value of the following cost function:
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J ¼

ðt1

t0

e2
ðtÞ dt

The area of system identification is a very interesting but very difficult engi-
neering area. It is for this reason that it is usually taught as a special course or part of
a course in the last undergraduate year or first graduate year. In this book, a very
useful introduction to the problem of system identification is given in Chap. 13.

3.3 TYPES OF MATHEMATICAL MODELS

Several types of mathematical models have been proposed for the description of
systems. The most popular ones, which we will present in this chapter, are the
following:

1. The differential equations
2. The transfer function
3. The impulse response
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(a)

Figure 3.2a An RLC network.

(b)

Figure 3.2b Schematic diagram of system identification.



4. The state equations.

The main reason that all these four models will be studied here is that each
model has advantages and disadvantages over the others. Hence, the knowledge of
all four models offers the flexibility of using the most appropriate model among the
four for a specific system or for a specific application.

The above four mathematical models are based on mathematical relationships
and they are presented in Secs 3.4–3.9. Note, however, that there are other ways of
describing a system, aiming to give a schematic overview of the system. Two such
popular schematic system descriptions are

1. The block diagrams
2. The signal-flow graphs

These diagrams and graphs are particularly useful in giving a simplified overall
picture of a system and they are presented in Secs 3.10 and 3.11, respectively.

Practical examples, where all the above types of description are applied, are
presented in Secs 3.12 and 3.13. In particular, Sec. 3.12 presents mathematical mod-
els of components used in control systems, such as motors, error indicators, coupled
gears, etc., while Sec. 3.13 presents mathematical models of practical control sys-
tems, such as voltage control, position and velocity control, liuqid-level control,
temperature control, chemical process control, etc.

3.4 DIFFERENTIAL EQUATIONS

The mathematical model of differential equations (or, more generally, of integrodif-
ferential equations) is the oldest method of system description. This description
includes all the linearly independent equations of the system, as well as the appro-
priate initial conditions.

To illustrate this mathematical model we consider first the case of linear, time-
invariant networks. Here, the physical variables v (voltage) and i (current) in any
component (e.g., R, L, and C) are related via a linear operator T (see Table 3.1).
When many such elements are linked together to form a network, then the variables
v and i in each element are constrained according to the following well-known
Kirchhoff’s laws:

1. Kirchhoff’s voltage law. The algebraic sum of the voltages in a loop is equal
to zero.

2. Kirchhoff’s current law. The algebraic sum of the currents in a node is equal
to zero.

Hence, the description of a network using differential equations consists of
determining all its linearly independent differential equations. Special methods
have been developed for deriving these equations and they are the main subject of
a particular branch of network theory, called network topology, which provides a
systematic way of choosing the independent loop and node equations.

The linear time-invariant mechanical systems are another area of applications
of differential equations, as a mathematical model. Here, the physical variables f
(force) and v (velocity) of any component are related via a linear operator T in the
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same way as in an electrical network (see Table 3.1). Analogous to Kirchhoff’s laws
for networks is d’Alembert’s law for mechanical systems which is stated as follows:

D’Alembert’s law of forces: The sum of all forces acting upon a point mass is
equal to zero.

Finally, as in the case of electrical networks, in order to derive a description for
a mechanical system via differential equations, one must determine all the system’s
linearly independent differential equations.
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Table 3.1 Physical Variables in Elements of Linear Electrical Networks and Mechanical
Systems.

Element
Physical
variable

Linear operator
T ½��

Inverse operator
T�1

½��

Electrical Networks

Resistor R Voltage vðtÞ vðtÞ ¼ RiðtÞ iðtÞ ¼
1

R
vðtÞ

Current iðtÞ T ½�� ¼ R½�� T�1
½�� ¼

1

R
½��

Inductor L Voltage vðtÞ vðtÞ ¼ L
d

dt
iðtÞ iðtÞ ¼

1

L

ðt

0

vðtÞ dt

Current iðtÞ T ½�� ¼ L
d

dt
½�� T�1

½�� ¼
1

L

ðt

0

½�� dt

Capacitor C Voltage vðtÞ vðtÞ ¼
1

C

ðt

0

iðtÞ dt iðtÞ ¼ C
d

dt
vðtÞ

Current iðtÞ T ½�� ¼
1

C

ðt

0

½�� dt T�1
½�� ¼ C

d

dt
½��

Mechanical Systems

Friction coefficient B Force f ðtÞ f ðtÞ ¼ BvðtÞ vðtÞ ¼
1

B
f ðtÞ

Velocity vðtÞ T ½�� ¼ B½�� T�1
½�� ¼

1

B
½��

Mass m Force f ðtÞ f ðtÞ ¼ m
d

dt
vðtÞ vðtÞ ¼

1

m

ðt

0

f ðtÞ dt

Velocity vðtÞ T ½�� ¼ m
d

dt
½�� T�1

½�� ¼
1

m

ðt

0

½�� dt

Spring constant K Force f ðtÞ f ðtÞ ¼ K

ðt

0

vðtÞ dt vðtÞ ¼
1

K

d

dt
f ðtÞ

Velocity vðtÞ T ½�� ¼ K

ðt

0

½�� dt T�1
½�� ¼

1

K

d

dt
½��



The differential equation method is demonstrated by the following examples.

Example 3.4.1

Consider the network shown in Figure 3.3. Derive the network’s differential equa-
tion mathematical model.

Solution

Applying Kirchhoff’s voltage law, we have

L
di

dt
þ

1

C

ðt

0

idt þ Ri ¼ vðtÞ

The above integrodifferential equation constitutes a mathematical description
of the network. To complete this description, two appropriate initial conditions must
be given, since the above mathematical model is essentially a second-order differen-
tial equation. As initial conditions, we usually consider the inductor’s current iLðtÞ
and the capacitor’s voltage vCðtÞ at the moment the switch S closes, which is usually
at t ¼ 0. Therefore, the initial conditions are

iLð0Þ ¼ I0 and vCð0Þ ¼ V0; where I0 and V0 are given constants

The integrodifferential equation and the two initial conditions constitute a complete
description of the network shown in Figure 3.3.

Example 3.4.2

Consider the network shown in Figure 3.4. Derive the network’s differential equa-
tion mathematical model.

Solution

The differential equations method for describing this network is based on the two
differential equations of the first and second loop which arise by applying
Kirchhoff’s voltage law. These two loop equations are
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R1i1ðtÞ þ
1

C

ðt

0

i1ðtÞ dt �
1

C

ðt

0

i2ðtÞ dt ¼ vðtÞ

�
1

C

ðt

0

i1ðtÞ dt þ R2i2ðtÞ þ L
di2
dt

þ
1

C

ðt

0

i2ðtÞ dt ¼ 0

with initial conditions vcð0Þ ¼ V0 and iLð0Þ ¼ I0.

Example 3.4.3

Consider the mechanical system shown in Figure 3.5, where y, K , m, and B are the
position of the mass, the spring’s constant, the mass, and the friction coefficient,
respectively. Derive the system’s differential equation mathematical model.

Solution

By using d’Alembert’s law of forces, the following differential equation is obtained
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Figure 3.4 A two-loop network.

Figure 3.5 A spring and a mass.



m
d2y

dt2
þ B

dy

dt
þ Ky ¼ f ðtÞ

The initial conditions of the above equation are the distance yðtÞ and the velocity
vðtÞ ¼ dy=dt at the moment t ¼ 0, i.e., at the moment where the external force f ðtÞ
is applied. Therefore the initial conditions are

yð0Þ ¼ Y0 and vð0Þ ¼
dy

dt

� �
t¼0

¼ V0; where Y0 and V0 are given constants

The differential equation and the two initial conditions constitute a complete
description of the mechanical system shown in Figure 3.5 using the method of
differential equations.

Remark 3.4.1

The method of differential equations is a description in the time domain which can
be applied to many categories of systems, such as linear and non linear, time-invar-
iant and time-varying, with lumped and distributed parameters, with zero and non-
zero initial conditions and many others.

3.5 TRANSFER FUNCTION

In contrast to the differential equation method which is a description in the time
domain, the transfer function method is a description in the frequency domain and
holds only for a restricted category of systems, i.e., for linear time-invariant systems
having zero initial conditions. The transfer function is designated by HðsÞ and is
defined as follows:

Definition 3.5.1

The transfer function HðsÞ of a linear, time-invariant system with zero initial con-
dtiions is the ratio of the Laplace transform of the output yðtÞ to the Laplace trans-
form of the input uðtÞ, i.e.,

HðsÞ ¼
Lf yðtÞg

LfuðtÞg
¼

YðsÞ

UðsÞ
ð3:5-1Þ

The introductory examples used in Sec. 3.4 will also be used here for the
derivation of their transfer function.

Example 3.5.1

Consider the network shown in Figure 3.3. Derive the transfer function
HðsÞ ¼ IðsÞ=VðsÞ.

Solution

This network, in the frequency domain and with zero initial conditions I0 and V0, is
as shown in Figure 3.6. To determine the transfer function HðsÞ ¼ IðsÞ=VðsÞ, we
work as follows: From Kirchhoff’s voltage law, we have

LsI ðsÞ þ RIðsÞ þ
IðsÞ

Cs
¼ VðsÞ
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Therefore, the transfer function sought is given by

HðsÞ ¼
IðsÞ

VðsÞ
¼

IðsÞ

Ls þ R þ
1

Cs

� �
IðsÞ

¼
Cs

LCs2 þ RCs þ 1

Furthermore, consider as circuit output the voltage VRðsÞ across the resistor. In this
case, the transfer function becomes

HðsÞ ¼
VRðsÞ

VðsÞ
¼

RIðsÞ

VðsÞ
¼

RCs

LCs2 þ RCs þ 1

Example 3.5.2

Consider the electrical network shown in Figure 3.4. Determine the transfer function
HðsÞ ¼ I2ðsÞ=VðsÞ.

Solution

This network, in the frequency domain and with zero initial conditions, is as shown
in Figure 3.7. To determine HðsÞ ¼ I2ðsÞ=VðsÞ, we start by writing the two loop
equations:

R1 þ
1

Cs

� �
I1ðsÞ �

1

Cs
I2ðsÞ ¼ VðsÞ

�
1

Cs
I1ðsÞ þ R2 þ Ls þ

1

Cs

� �
I2ðsÞ ¼ 0

Next, solve the system for I2ðsÞ. The second equation yields

I1ðsÞ ¼ ½LCs2
þ R2Cs þ 1�I2ðsÞ

Substituting this result in the first equation, we have

ðR1Cs þ 1ÞðLCs2
þ R2Cs þ 1ÞI2ðsÞ � I2ðsÞ ¼ CsVðsÞ

Hence
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Figure 3.6 RLC circuit.



HðsÞ ¼
I2ðsÞ

VðsÞ
¼

Cs

ðR1Cs þ 1ÞðLCs2 þ R2Cs þ 1Þ � 1

¼
1

R1LCs2 þ ðR1R2C þ LÞs þ R1 þ R2

Example 3.5.3

Consider the mechanical system shown in Figure 3.5. Determine the transfer func-
tion HðsÞ ¼ YðsÞ=FðsÞ.

Solution

This system, in the frequency domain and with zero initial conditions, will be as
shown in Figure 3.8. In order to determine the transfer function HðsÞ ¼ YðsÞ=FðsÞ,
we first write down the d’Alembert’s law of forces. The result is

ms2YðsÞ þ BsYðsÞ þ KYðsÞ ¼ FðsÞ
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Figure 3.7 A two-loop network.

Figure 3.8 A spring and a mass.



Therefore

HðsÞ ¼
YðsÞ

FðsÞ
¼

1

ms2 þ Bs þ K

Remark 3.5.1

In the above examples, we observe that the transfer function HðsÞ is the ratio of two
polynomials in the freqency domain. In general, HðsÞ has the following form

HðsÞ ¼
bðsÞ

aðsÞ
¼

bmsm
þ bm�1sm�1

þ � � � þ b1s þ b0

sn þ an�1sn�1 þ � � � þ a1s þ a0

¼ K

Ym
i¼1

ðs þ ziÞ

Yn

i¼1

ðs þ piÞ

where �pi are the roots of the denominator’s polynomial aðsÞ of HðsÞ and are called
the poles of HðsÞ, and �zi are the roots of the numerator’s polynomial bðsÞ of HðsÞ
and are called the zeros of HðsÞ. Poles and zeros, particularly the poles, play a
significant role in the behavior of a system. This fact will most often be demonstrated
in many places of this book.

3.6 IMPULSE RESPONSE

Impulse response is a time-domain description and holds only for a limited category
of systems; i.e., the linear time-invariant and time-varying systems having zero initial
conditions. The impulse response is designated by hðtÞ and is defined as follows:

Definition 3.6.1

The impulse response hðtÞ of a linear system with zero initial conditions is the
system’s output when its input is the unit impulse function �ðtÞ (see Eq. (2.2-3) of
Chap. 2).

Consider the special case of linear, time-invariant systems where the relation
YðsÞ ¼ HðsÞUðsÞ holds. Let the input be the unit impulse function, i.e., let uðtÞ ¼ �ðtÞ.
Then, since UðsÞ ¼ 1, we readily have that YðsÞ ¼ HðsÞ. Therefore, the transfer
function HðsÞ and the impulse response hðtÞ are related as follows:

HðsÞ ¼ LfhðtÞg or hðtÞ ¼ L�1
fHðsÞg ð3:6-1Þ

The two relations in Eq. (3.6-1) show that for time-invariant systems, HðsÞ and
hðtÞ are essentially the same description; whereas HðsÞ is in the frequency domain,
hðtÞ is in the time domain. Also, Eq. (3.6-1) suggests an easy way of passing from one
description to the other. Actually, if HðsÞ is known, then hðtÞ ¼ L�1

fHðsÞg and vice
versa; if hðtÞ is known, then HðsÞ ¼ LfhðtÞg.

Therefore, one way of determining the impulse response of a linear, time-
invariant system, provided that its HðsÞ is known, is to use the relation
hðtÞ ¼ L�1

fHðsÞg. Another way of determining the impulse response is through the
system’s differential equation. In this case, let the system’s differential equation have
the general form

anyðnÞ þ an�1yðn�1Þ
þ � � � þ a1yð1Þ þ a0y ¼ uðtÞ ð3:6-2Þ
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Then it can be readily shown that the solution of the homogeneous equation

anyðnÞ þ an�1yðn�1Þ
þ � � � þ a1yð1Þ þ a0y ¼ 0 ð3:6-3Þ

with initial conditions

yð0Þ ¼ yð1Þð0Þ ¼ � � � ¼ yðn�2Þ
ð0Þ ¼ 0 and yðn�1Þ

ð0Þ ¼ 1=an ð3:6-4Þ

is the system’s impulse response.

3.7 STATE EQUATIONS

3.7.1 General Introduction

State-space equations, or simply state equations, is a description in the time domain
which may be applied to a very wide category of systems, such as linear and non-
linear systems, time-invariant and time-varying systems, systems with nonzero initial
conditions, and others. The term state of a system refers to the past, present, and
future of the system. From the mathematical point of view, the state of a system is
expressed by its state variables. Usually, a system is described by a finite number of
state variables, which are designated by x1ðtÞ; x2ðtÞ; . . . ; xnðtÞ and are defined as
follows:

Definition 3.7.1

The state variables x1ðtÞ; x2ðtÞ; . . . ; xnðtÞ of a system are defined as a (minimum)
number of variables such that if we know (a) their values at a certain moment t0,
(b) the input function applied to the system for t � t0, and (c) the mathematical
model which relates the input, the state variables, and the system itself, then the
determination of the system’s states for t > t0 is guaranteed.

Consider a system with many inputs and many outputs, as shown in Figure 3.9.
The input vector is designated by uðtÞ and has the form

78 Chapter 3

Figure 3.9 System with many inputs and many outputs.



uðtÞ ¼

u1ðtÞ
u2ðtÞ

..

.

umðtÞ

2
6664

3
7775 ð3:7-1Þ

where m is the number of inputs. The output vector is designated by yðtÞ and has the
form

yðtÞ ¼

y1ðtÞ
y2ðtÞ

..

.

ypðtÞ

2
6664

3
7775 ð3:7-2Þ

where p is the number of outputs. The state vector is designated by xðtÞ and has the
form

xðtÞ ¼

x1ðtÞ
x2ðtÞ

..

.

xnðtÞ

2
6664

3
7775 ð3:7-3Þ

where n is the number of the state variables.
The state equations are a set of n first-order differential equations which relate

the input vector uðtÞ with the state vector xðtÞ and has the form

�xðtÞ ¼ f½xðtÞ; uðtÞ� ð3:7-4Þ

where f is a column with n elements. The function f is, in general, a complex non-
linear function of xðtÞ and uðtÞ. Note that Eq. (3.7-4) is a set of dynamic equations.

The output vector yðtÞ of the system is related to the input vector uðtÞ and the
state vector xðtÞ as follows:

yðtÞ ¼ g½xðtÞ; uðtÞ� ð3:7-5Þ

where g is a column with p elements. Relation (3.7-5) is called the output equation.
The function g is generally a complex nonlinear function of xðtÞ and uðtÞ. Note that
Eq. (3.7-5) is a set of algebraic (nondynamic) equations.

The initial conditions of the state-space equations (3.7-4) are the values of the
elements of the state vector xðtÞ for t ¼ t0 and are denoted as

xðt0Þ ¼ x0 ¼

x1ðt0Þ

x2ðt0Þ

..

.

xnðt0Þ

2
6664

3
7775 ð3:7-6Þ

The state-space equations (3.7-4), the output equation (3.7-5), and the initial
conditions (3.7-6), i.e., the following equations

�xðtÞ ¼ f½xðtÞ; uðtÞ� ð3:7-7aÞ

yðtÞ ¼ g½xðtÞ; uðtÞ� ð3:7-7bÞ

xðt0Þ ¼ x0 ð3:7-7cÞ
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constitute the description of a dynamic system in state space. Due to the fact that the
dynamic state equations (3.7-7a) dominate in the three sets of equations (3.7-7a–c), in
the sequel, all three equations in (3.7-7a–c), will be called, for simplicity, state equa-
tions.

The state equations (3.7-7) are, for the field of automatic control systems, the
modern method of system description. This method has special theoretical, compu-
tational, and practical importance for the following main reasons:

1. State equations can describe a large category of systems, such as linear and
nonlinear systems, time-invariant and time-varying systems, systems with
time delays, systems with nonzero initial conditions, and others.

2. Due to the fact that state equations are a set of first-order differential
equations, they can be easily programmed and simulated on both digital
and analog computers.

3. State equations, by their very nature, greatly facilitate both in formulating
and subsequently in investigating a great variety of properties in system
theory, such as stability, controllability, and observability. They also facil-
itate the study of fundamental control problems, such as pole placement,
optimal and stochastic control, and adaptive and robust control.

4. State equations provide a more complete description of a system than the
other three methods: i.e., differential equations, transfer function, and
impulse response. This is because state equations involve very important
additional information about the system—namely, the system’s state. This
information is particularly revealing of the system’s structure (e.g., regard-
ing controllability, observability, pole-zero cancellation in the transfer
function, etc.).

Overall, state equations is a description which relates the following four
elements: input, system, state variables, and output. In contrast, the differential
equations, the transfer function, and the impulse response relate three elements:
input, system, and output—wherein the input is related to the output via the system
directly (i.e., without giving information about the state of the system). It is exactly
for this reason that these three system descriptions are called input–output descrip-
tions.

3.7.2 Description of Linear Systems via State Equations

If a linear, time-invariant system can be described by a set of ordinary differential
equations, then the state equations (3.7-7) take on the following special form:

�xðtÞ ¼ AxðtÞ þ BuðtÞ ð3:7-8aÞ

yðtÞ ¼ CxðtÞ þDuðtÞ ð3:7-8bÞ

xðt0Þ ¼ xð0Þ ¼ x0 ð3:7-8cÞ

Matrix A has dimensions n  n and it is called the system matrix, having the general
form
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A ¼

a11 a12 � � � a1n

a21 a22 � � � a2n

..

. ..
. ..

.

an1 an2 � � � ann

2
6664

3
7775 ð3:7-9Þ

Matrix B has dimensions n  m and it is called the input matrix, having the general
form

B ¼

b11 b12 � � � b1m

b21 b22 � � � b2m

..

. ..
. ..

.

bn1 bn2 � � � bnm

2
6664

3
7775 ð3:7-10Þ

Matrix C has dimensions p  n and it is called the output matrix, having the general
form

C ¼

c11 c12 � � � c1n

c21 c22 � � � c2n

..

. ..
. ..

.

cp1 cp2 � � � cpn

2
6664

3
7775 ð3:7-11Þ

Matrix D has dimensions p  m and it is called the feedforward matrix, having the
general form

D ¼

d11 d12 � � � d1m

d21 d22 � � � d2m

..

. ..
. ..

.

dp1 dp2 � � � dpm

2
6664

3
7775 ð3:7-12Þ

Depending on the dimensions m and p of the input and output vectors, we have
the following four categories of systems:

1. Multi-input–multi-output systems (MIMO). In this case m > 1 and p > 1, and
the system is described by Eqs (3.7-8).

2. Multi-input–single-output systems (MISO). In this case m > 1 and p ¼ 1, and
the system is described by the equations

�xðtÞ ¼ AxðtÞ þ BuðtÞ ð3:7-13aÞ

yðtÞ ¼ c
T
xðtÞ þ dT

uðtÞ ð3:7-13bÞ

xð0Þ ¼ x0 ð3:7-13cÞ

where c and d are column vectors with n and m elements, respectively.
3. Single-input–multi-output systems (SIMO). In this case m ¼ 1 and p > 1, and

the system is described by the equations

�xðtÞ ¼ AxðtÞ þ buðtÞ ð3:7-14aÞ

yðtÞ ¼ CxðtÞ þ duðtÞ ð3:7-14bÞ

xð0Þ ¼ x0 ð3:7-14cÞ

where b and d are column vectors with n and p elements, respectively.
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4. Single-input–single-output systems (SISO). In this case m ¼ p ¼ 1 and the
system is described by the equations

�xðtÞ ¼ AxðtÞ þ buðtÞ ð3:7-15aÞ

yðtÞ ¼ c
T
xðtÞ þ duðtÞ ð3:7-15bÞ

xð0Þ ¼ x0 ð3:7-15cÞ

where d is a scalar quantity.
It is noted that very often in the literature, for the sake of brevity, system (3.7-

8a,b) is denoted by ½A;B;C;D�n.
If a linear time-varying system can be described by a set of linear differential

equations, then the state equations (3.7-7) take on the form

�xðtÞ ¼ AðtÞxðtÞ þ BðtÞuðtÞ ð3:7-16aÞ

yðtÞ ¼ CðtÞxðtÞ þDðtÞuðtÞ ð3:7-16bÞ

xðt0Þ ¼ x0 ð3:7-16cÞ

where the time-varying matrices AðtÞ, BðtÞ, CðtÞ, and DðtÞ are defined similarly to the
constant matrices A, B, C, and D of system (3.7-8).

3.7.3 Transfer Function and Impulse Response Matrices

1 Transfer Function Matrix

In studying linear, time-invariant systems described by state equations (3.7-8), one
may use the Laplace transform. Indeed, applying the Laplace transform to Eqs (3.7-
8a,b) yields

sXðsÞ � xð0Þ ¼ AXðsÞ þ BUðsÞ ð3:7-17aÞ

YðsÞ ¼ CXðsÞ þDUðsÞ ð3:7-17bÞ

where XðsÞ ¼ LfxðtÞg, UðsÞ ¼ LfuðtÞg and YðsÞ ¼ Lf yðtÞg. From Eq. (3.7-17a), we
have

XðsÞ ¼ ðsI� AÞ�1
BUðsÞ þ ðsI� AÞ�1

xð0Þ ð3:7-18Þ

If we substitute Eq. (3.7-18) in Eq. (3.7-17b), we have

YðsÞ ¼ ½CðsI� AÞ�1
BþD�UðsÞ þ CðsI� AÞ�1

xð0Þ ð3:7-19Þ

Equation (3.7-19) is an expression of the output vector YðsÞ as a function of the input
vector UðsÞ and of the initial condition vector xð0Þ. When the initial condition vector
xð0Þ ¼ 0, then Eq. (3.7-19) reduces to

YðsÞ ¼ ½CðsI� AÞ�1
BþD�UðsÞ ð3:7-20Þ

Obviously, Eq. (3.7-20) is an input–output relation, since it directly relates the
input vector UðsÞ with the output vector YðsÞ (the state vector XðsÞ has been elimi-
nated). Equation (3.7-20) is the same as Eq. (3.5-1), except that Eq. (3.5-1) relates
scalars, while Eq. (3.7-20) relates vectors. This difference is because Eq. (3.5-1) holds
for SISO systems, while Eq. (3.7-20) holds for MIMO systems. Therefore, Eq. (3.5-1)
is a special case of Eq. (3.7-20), where m (number of inputs) ¼ p (number of out-
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puts) ¼ 1. The transfer function matrix HðsÞ of system (3.7-8) is analogous to the
scalar transfer function HðsÞ of Eq. (3.5-1) and has the following form

HðsÞ ¼ CðsI� AÞ�1
BþD ð3:7-21Þ

The transfer function matrix HðsÞ has dimensions p  m and has the general
form

HðsÞ ¼

h11ðsÞ h12ðsÞ � � � h1mðsÞ
h21ðsÞ h22ðsÞ � � � h2mðsÞ

..

. ..
. ..

.

hp1ðsÞ hp2ðsÞ � � � hpmðsÞ

2
6664

3
7775 ð3:7-22Þ

Each element hijðsÞ of HðsÞ is a scalar transfer function which relates the element yiðsÞ
of the output vector YðsÞ with the element ujðsÞ of the input vector UðsÞ, provided
that all the other elements of the ith row of HðsÞ are zero. In general, we have

yiðsÞ ¼
Xm

j¼1

hijðsÞujðsÞ; i ¼ 1; 2; . . . ; p ð3:7-23Þ

To give a simplified view of Eq. (3.7-23), consider the special case of a two
input–two output system, in which case relation YðsÞ ¼ HðsÞUðsÞ has the form

y1ðsÞ ¼ h11ðsÞu1ðsÞ þ h12ðsÞu2ðsÞ

y2ðsÞ ¼ h21ðsÞu1ðsÞ þ h22ðsÞu2ðsÞ

The block diagram (see Sec. 3.10) of these two equations is shown in Figure 3.10.

2 Impulse Response Matrix

The impulse response matrix HðtÞ is analogous to the scalar impulse function hðtÞ
given by Definition 3.6.1. Using Eq. (3.6-1) we readily have

LfHðtÞg ¼ HðsÞ or HðtÞ ¼ L�1
fHðsÞg ð3:7-24Þ

The impulse response matrix HðtÞ has a general form

HðtÞ ¼

h11ðtÞ h12ðtÞ � � � h1mðtÞ
h21ðtÞ h22ðtÞ � � � h2mðtÞ

..

. ..
. ..

.

hp1ðtÞ hp2ðtÞ � � � hpmðtÞ

2
6664

3
7775 ð3:7-25Þ

Therefore, the element hijðtÞ ¼ L�1
fhijðsÞg is the scalar impulse response between the

element yiðtÞ of the output vector yðtÞ and the element ujðtÞ of the input vector uðtÞ,
provided that all the other vectors of the ith row of HðtÞ are zero.

Example 3.7.1

Consider the network shown in Figure 3.11 with initial condition iLð0Þ ¼ I0.
Determine the state equations of the network.

Solution

The loop equation is
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L
di

dt
þ Ri ¼ vðtÞ or

di

dt
¼ �

R

L
i þ

1

L
vðtÞ

Define as state variable xðtÞ of the network the physical quantity xðtÞ ¼ iLðtÞ ¼ the
inductor’s current. The system output is the voltage across the resistor R. As a result,
the network’s description via state equations is

_xxðtÞ ¼ �
R

L
xðtÞ þ

1

L
vðtÞ

vRðtÞ ¼ R xðtÞ

iLð0Þ ¼ ið0Þ ¼ I0
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Since the network is a SISO system, the above state equations have the same form as
that of Eqs (3.7-15), with the exception that in this case all values are scalar. This is
because the network is a first-order system, and hence there is only one state variable
ðn ¼ 1Þ.

Example 3.7.2

Consider the network shown in Figure 3.3, with initial conditions iLð0Þ ¼ I0 and
vCð0Þ ¼ V0. Determine the state equations of the network.

Solution

The loop equation is

L
di

dt
þ Ri þ

1

C

ðt

0

idt ¼ vðtÞ

Define as state variables x1ðtÞ and x2ðtÞ of the network the following physical quan-
tities:

x1ðtÞ ¼ iLðtÞ ¼ the inductor’s current

x2ðtÞ ¼

ðt

0

idt ¼ the capacitor’s electrical charge

By differentiating the last equation, the following relation is obtained:

_xx2ðtÞ ¼ iðtÞ ¼ iLðtÞ ¼ x1ðtÞ

If the state variables are inserted in the loop equation, it yields

L _xx1ðtÞ þ Rx1ðtÞ þ
1

C
x2ðtÞ ¼ vðtÞ

or

_xx1ðtÞ ¼ �
R

L
x1ðtÞ �

1

LC
x2ðtÞ þ

1

L
vðtÞ

The above relation, together with the relation _xx2ðtÞ ¼ x1ðtÞ, gives the following sys-
tem of first-order differential equations:

_xx1ðtÞ

_xx2ðtÞ

� �
¼

�
R

L
�

1

LC
1 0

2
4

3
5 x1ðtÞ

x2ðtÞ

� �
þ

1

L
0

2
4

3
5vðtÞ

Let the network’s output be the voltage vRðtÞ across the resistor R. Then, the net-
work’s output equation is

yðtÞ ¼ vRðtÞ ¼ RiðtÞ ¼ Rx1ðtÞ ¼ ½R 0�
x1ðtÞ
x2ðtÞ

� �

The initial condition vector of the network is

xð0Þ ¼
x1ð0Þ
x2ð0Þ

� �
¼

iLð0Þ
CvCð0Þ

� �
¼

I0

CV0

� �

Since the network is a SISO system, the state equations sought have the form of Eqs
(3.7-15), where
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xðtÞ ¼
x1ð0Þ
x2ð0Þ

� �
¼

iLðtÞ
vCðtÞ

� �
; uðtÞ ¼ vðtÞ; yðtÞ ¼ vRðtÞ

A ¼
�

R

L
�

1

LC
1 0

2
4

3
5; b ¼

1

L
0

2
4

3
5; c ¼

R

0

� �
; x0 ¼

I0

CV0

� �

Example 3.7.3

Consider the mechanical system shown in Figure 3.5 with initial conditions yð0Þ ¼
Y0 and yð1Þð0Þ ¼ U0, where Y0 is the initial position and U0 is the initial velocity of
the mass. Determine the state equations of the system.

Solution

The d’Alembert’s law of forces is as follows:

m
d2y

dt2
þ B

dy

dt
þ Ky ¼ f ðtÞ

Define as state variables: x1ðtÞ ¼ yðtÞ ¼ the mass displacement and x2ðtÞ ¼ _yyðtÞ ¼ the
mass velocity. We notice that _xx1ðtÞ ¼ x2ðtÞ. By substituting the state variables in
d’Alembert’s equation, we have

m _xx2ðtÞ þ Bx2ðtÞ þ Kx1ðtÞ ¼ f ðtÞ

or

_xx2ðtÞ ¼ �
K

m
x1ðtÞ �

B

m
x2ðtÞ þ

1

m
f ðtÞ

The above equation, together with the relation _xx1ðtÞ ¼ x2ðtÞ, may be written as the
following system of first-order differential equations:

_xx1ðtÞ

_xx2ðtÞ

� �
¼

0 1

�
K

m
�

B

m

" #
x1ðtÞ

x2ðtÞ

� �
þ

0
1

m

" #
f ðtÞ

Let yðtÞ be the displacement of the mass m. Then, the system’s output equation will
be

yðtÞ ¼ ½1 0�
x1ðtÞ
x2ðtÞ

� �

The initial condition vector is

xð0Þ ¼
x1ð0Þ
x2ð0Þ

� �
¼

yð0Þ
_yyð0Þ

� �
¼

Y0

U0

� �

Hence, the state equations of the mechanical system have the form of Eqs (3.7-15),
where
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xðtÞ ¼
x1ðtÞ
x2ðtÞ

� �
¼

yðtÞ
_yyðtÞ

� �
; uðtÞ ¼ f ðtÞ

A ¼

0 1

�
K

m
�

B

m

" #
; b ¼

0
1

m

" #
; c ¼

1

0

� �
; x0 ¼

Y0

U0

� �

3.8 TRANSITION FROM ONE MATHEMATICAL MODEL TO
ANOTHER

As pointed out in Sec. 3.3, every mathematical model has advantages and disadvan-
tages over others: to take advantage of the advantages of all mathematical models,
one must have the flexibility of going from one model to another. The issue of
transition from one mathematical model to another is obviously of great practical
and theoretical importance. In the sequel, we present some of the most interesting
such cases.

3.8.1 From Differential Equation to Transfer Function for SISO
Systems

Case 1. The Right-Hand Side of the Differential Equation Does Not Involve
Derivatives

Consider a SISO system described by the differential equation

yðnÞ þ an�1yðn�1Þ
þ � � � þ a1yð1Þ þ a0y ¼ b0uðtÞ ð3:8-1Þ

where all the system’s initial conditions are assumed zero, i.e., yðkÞð0Þ ¼ 0 for
k ¼ 1; 2; . . . ; n � 1. Applying the Laplace transform to Eq. (3.8-1), we obtain

snYðsÞ þ an�1sn�1YðsÞ þ � � � a1sYðsÞ þ a0YðsÞ ¼ b0UðsÞ

Hence, the transfer function sought is given by

HðsÞ ¼
YðsÞ

UðsÞ
¼

b0

sn þ an�1sn�1 þ � � � þ a1s þ a0

ð3:8-2Þ

Case 2. The Right-Hand Side of the Differential Equation Involves
Derivatives

Consider a SISO system described by the differential equation

yðnÞ þ an�1yðn�1Þ
þ � � � þ a1yð1Þ þ a0y ¼ bmuðmÞ

þ � � � þ b1uð1Þ þ b0u ð3:8-3Þ

where m < n and where all initial conditions are assumed zero, i.e., yðkÞð0Þ ¼ 0, for
k ¼ 0; 1; . . . ; n � 1. We can determine the transfer function of Eq. (3.8-3) as follows:
Let zðtÞ be the solution of Eq. (3.8-1), with b0 ¼ 1. Then, using the superposition
principle, the solution yðtÞ of Eq. (3.8-3) will be

yðtÞ ¼ bmzðmÞ
þ bm�1zðm�1Þ

þ � � � þ b1zð1Þ þ b0z ð3:8-4Þ

Applying the Laplace transformation to Eq. (3.8-4) we obtain

YðsÞ ¼ bmsmZðsÞ þ bm�1sm�1ZðsÞ þ � � � þ b1sZðsÞ þ b0ZðsÞ ð3:8-5Þ
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Here, we have set zðkÞð0Þ ¼ 0, for k ¼ 0; 1; . . . ; n � 1, since the solution of Eq. (3.8-1),
when b0 ¼ 1, is zðtÞ ¼ yðtÞ, where it was assumed that all initial conditions of yðtÞ
(and hence of zðtÞ) are zero. In Eq. (3.8-2), if b0 ¼ 1, then

ZðsÞ ¼
1

sn þ an�1sn�1 þ � � � þ a1s þ a0

� �
UðsÞ

By substituting the above expression of ZðsÞ in Eq. (3.8-5), the transfer function HðsÞ
of the differential equation (3.8-3) is obtained; it has the form

HðsÞ ¼
YðsÞ

UðsÞ
¼

bmsm
þ bm�1sm�1

þ � � � þ b1s þ b0

sn þ an�1sn�1 þ � � � þ a1s þ a0

ð3:8-6Þ

Remark 3.8.1

The transfer function HðsÞ given by Eq. (3.8-6) can be easily derived from Eq. (3.8-3)
if we set sk in place of the kth derivative and replace yðtÞ and uðtÞ with YðsÞ and UðsÞ,
respectively; i.e., we derive Eq. (3.8-6) by replacing yðkÞðtÞ by skYðsÞ and uðkÞðtÞ by
skUðsÞ in Eq. (3.8-3).

3.8.2 From Transfer Function to Differential Equation for SISO
Systems

Let a SISO system be described by Eq. (3.8-6). Then, working backwards the method
given in Remark 3.8.1, the differential equation (3.8-3) can be constructed by sub-
stituting sk by the kth derivative and YðsÞ and UðsÞ with yðtÞ and uðtÞ, respectively.

3.8.3 From HðsÞ to HðtÞ and Vice Versa

The matricesHðsÞ andHðtÞ, according to Eqs (3.6-1) and (3.7-24) are related through
the Laplace transform. Therefore, the following transition relations may be used:

LfHðtÞg ¼ HðsÞ or HðtÞ ¼ L�1
fHðsÞg ð3:8-7Þ

3.8.4 From State Equations to Transfer Function Matrix

Consider a system described by the state equations (3.7-8a,b). Then the system’s
transfer function matrix HðsÞ is given by (3.7-21), i.e., by the relation

HðsÞ ¼ CðsI� AÞ�1
BþD ð3:8-8Þ

3.8.5 From Transfer Function Matrix to State Equations

The transition from HðsÞ to state equations is the well-known problem of state-space
realization. This is, in general, a difficult problem and has been, and still remains, a
topic of research. In the sequel, we will present some introductory results regarding
this problem.
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Case 1. SISO Systems

Let a system be described by a scalar transfer function of the form

HðsÞ ¼
YðsÞ

UðsÞ
¼

bn�1sn�1
þ bn�2sn�2

þ � � � þ b1s þ b0

sn þ an�1sn�1 þ � � � þ a1s þ a0

ð3:8-9Þ

or, equivalently, by the differential equation

yðnÞ þ an�1yðn�1Þ
þ � � � þ a1yð1Þ þ a0y ¼ bn�1uðn�1Þ

þ bn�2uðn�2Þ
þ � � �

þ b1uð1Þ þ b0u
ð3:8-10Þ

Equation (3.8-10) can be expressed in the form of two equations as follows:

zðnÞ þ an�1zðn�1Þ
þ � � � þ a1zð1Þ þ a0z ¼ u ð3:8-11Þ

yðtÞ ¼ bn�1zðn�1Þ
þ � � � þ b1zð1Þ þ b0z ð3:8-12Þ

Let zðtÞ be the solution of Eq. (3.8-11). Then, the solution of Eq. (3.8-10) will be
given by Eq. (3.8-12), where use is made of the superposition principle.

The state variables x1; x2; . . . ; xn are defined as follows:

x1ðtÞ ¼ zðtÞ

x2ðtÞ ¼ zð1ÞðtÞ ¼ x
ð1Þ
1 ðtÞ

x3ðtÞ ¼ zð2ÞðtÞ ¼ x
ð1Þ
2 ðtÞ

..

. ..
. ..

.

xnðtÞ ¼ zðn�1Þ
ðtÞ ¼ x

ð1Þ
n�1ðtÞ

ð3:8-13Þ

If we substitute Eqs (3.8-13) into Eq. (3.8-11), we have

_xxnðtÞ ¼ �an�1xnðtÞ � � � � � a1x2ðtÞ � a0x1ðtÞ þ uðtÞ ð3:8-14Þ

Also, if we substitute Eqs (3.8-13) into (3.8-12), we have

yðtÞ ¼ bn�1xnðtÞ þ bn�2xn�1ðtÞ þ � � � þ b1x2ðtÞ þ b0x1ðtÞ ð3:8-15Þ

Equations (3.8-13)–(3.8-15) can be expressed in a matrix form, as follows:

�xðtÞ ¼ AxðtÞ þ buðtÞ ð3:8-16aÞ

yðtÞ ¼ c
T
xðtÞ ð3:8-16bÞ

where xT
¼ ðx1; x2; . . . ; xnÞ and

A ¼

0 1 0 0 � � � 0
0 0 1 0 � � � 0
..
. ..

. ..
. ..

.
� � � ..

.

0 0 0 0 � � � 1
�a0 �a1 �a2 �a3 � � � �an�1

2
66664

3
77775; b ¼

0
0
..
.

0
1

2
66664

3
77775; c ¼

b0

b1

..

.

bn�2

bn�1

2
666664

3
777775

ð3:8-17Þ

Hence, Eqs (3.8-16) constitute the state equations’ description of the transfer func-
tion (3.8-9).
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Due to the special form of matrix A and of vector b, wherein there are only
ones and zeros, except in the last line in A and b, we say that the state equations (3.8-
16) are in phase canonical form, while the state variables are called phase variables.
Phase variables are, in general, state variables which are defined according to Eqs
(3.8-13); i.e., every state variable is the derivative of the previous one. In particular,
the special form of matrix A and of vector b is characterized by as follows: in matrix
A, if the first column and the last row are deleted, then a ðn � 1Þ  ðn � 1Þ unit matrix
is revealed. Also, the elements of the last row of A are the coefficients of the differ-
ential equation (3.8-10), placed in reverse order and all having negative signs. The
vector b has all its elements equal to zero, except for the nth element, which is equal
to one. The block diagram of system (3.8-16) is given in Figure 3.12.

Case 2. MIMO Systems

To determine a state-space realization of a MIMO system, where the dimension n of
the state vector xðtÞ is the smallest possible (i.e., n is minimum), is a rather difficult
task and is beyond the scope of this book. However, certain types of nonminimal
realizations are easy to attain, as shown in the sequel. Let a system be described by
the transfer function matrix HðsÞ, with dimensions p  m, having the general form

HðsÞ ¼

h11ðsÞ h12ðsÞ � � � h1mðsÞ
h21ðsÞ h22ðsÞ � � � h2mðsÞ

..

. ..
. ..

.

hp1ðsÞ hp2ðsÞ � � � hpmðsÞ

2
6664

3
7775 ð3:8-18Þ

where hijðsÞ ¼ �ijðsÞ=pijðsÞ, and the degree of the polynomial �ijðsÞ is smaller than that
of pijðsÞ. Let
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pðsÞ ¼ sn
þ pn�1sn�1

þ � � � þ p1s þ p0

be the least common multiplier polynomial of all pijðsÞ. Then the product pðsÞHðsÞ is
a matrix polynomial which can be expressed as follows:

pðsÞHðsÞ ¼ H0 þH1s þ � � � þHn�1sn�1

Let Om be a m  m zero matrix, i.e., a matrix with all its elements equal to zero and
Im be a m  m unit matrix. Then, the following state equations constitute a descrip-
tion of Eq. (3.8-18) in state space:

�x ¼ Axþ Bu ð3:8-19aÞ

y ¼ Cx ð3:8-19bÞ

where

A ¼

Om Im Om � � � Om

Om Om Im � � � Om

..

. ..
. ..

. ..
.

Om Om Om � � � Im
�p0Im �p1Im �p2Im � � � �pn�1Im

2
666664

3
777775; B ¼

Om

Om

..

.

Om

Im

2
666664

3
777775

and

C ¼ ½H0 j H1 j � � � j Hn�2 j Hn�1�

The dimensions of x, u, y, A, B, and C are nm  1, m  1, p  1, nm  nm, nm  m,
and p  nm, respectively. It is obvious that the results of Case 1 are a special case of
the present case, since if we set m ¼ p ¼ 1 in Eqs (3.8-19), then we readily derive
system (3.8-16).

In system realization, i.e., when going from HðsÞ to state equations, several
problems arise. We mention the following:

1. The Problem of Realization

This problem examines the existence of a description in state space. Practically, this
means that it is not always possible for any given transfer function, or more gen-
erally, for any given input–output description, to be able to determine a description
in state space of the form (3.7-8).

2. The Problem of Minimum Dimension n

This problem refers to the determination of a state-space realization involving the
minimum possible number of state variables. Such a realization is called a minimal
realization. For example, realization (3.8-16) is a minimal realization, while (3.8-19),
in general, is not.

3. The Problem of Minimum Number of Parameters

This problem refers to the determination of a state-space realization in which the
number of parametric elements in the matrices A, B, and C are as minimum as
possible. Realization (3.8-16) is a minimum parameter realization. This is due to
the special form of A and b, where A has only n parametric elements (the n elements
of its last row), while b has none. Note that the elements 0 and 1 in A and b are not
parametric, since they do not depend on the parameters of the system.
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3.9 EQUIVALENT STATE-SPACE MODELS

The transition from one description to another may or may not be unique. For
example, the transition from a state-space description to its input–output description
HðsÞ or HðtÞ is unique. On the contrary, the transition from an input–output descrip-
tion to a state-space model is never unique. That is, the realization problem does not
have a unique solution. Hence, the state equations (3.8-16) are one of the many
possible descriptions of the transfer function (3.8-9) in state space. The same stands
for the state-space realization (3.8-19) of the transfer function matrix (3.8-18). The
nonuniqueness in state-space realization generates the problem of description
equivalence, examined in the sequel.

Definition 3.9.1

Systems ½A;B;C;D�n and ½A*;B*;C*;D*�n are strictly equivalent if and only if there
is a constant square matrix T, with jTj 6¼ 0, such that the following relations hold:

A ¼ TA*T
�1 or A* ¼ T

�1
AT ð3:9-1aÞ

B ¼ TB* or B* ¼ T
�1
B ð3:9-1bÞ

C ¼ C*T
�1 or C* ¼ CT ð3:9-1cÞ

D ¼ D* or D* ¼ D ð3:9-1dÞ

The above definition originates from the following: consider the state trans-
formation

x ¼ Tx*; where jTj 6¼ 0

where x is the original state vector and x* is the new state vector. Substitute this
transformation in the state equations of system ½A;B;C;D�n, i.e., of the system

�x ¼ Axþ Bu

y ¼ CxþDu

Then, we have

T �x* ¼ ATx* þ Bu

y ¼ CTx* þDu

Premuliplying the first equation by T�1 yields the following state-space description

�x* ¼ T
�1
ATx* þ T

�1
Bu ¼ A*x* þ B*u

y ¼ CTx* þDu ¼ C*x* þD*u

where A* ¼ T
�1
AT, B* ¼ T

�1
B, C* ¼ CT, and D* ¼ D. These four relations are the

relations stated in Eqs (3.9-1).
The input–output description of a linear time-invariant system under strict

equivalence is invariant. This property is proven in the following theorem.

Theorem 3.9.1

If the linear time-invariant systems ½A;B;C;D�n and ½A*;B*;C*;D*�n are strictly
equivalent, then these two systems have the same input–output description, i.e.,
their transfer function matrices are equal.
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Proof

Let HðsÞ ¼ CðsI� AÞ�1
BþD and H*ðsÞ ¼ C*ðsI� A*Þ�1

B* þD* be the transfer
function matrices of systems ½A;B;C;D�n and ½A*;B*;C*;D�n, respectively. By sub-
stituting the relations of strict equivalence (3.9-1) in HðsÞ, we have

HðsÞ ¼ CðsI� AÞ�1
BþD ¼ C*T

�1
½sI� TA*T�1

�
�1
TB* þD*

¼ C*T
�1
½TðsI� A*ÞT�1

�
�1
TB* þD* ¼ C*T

�1
T½sI� A*��1

T
�1
TB* þD*

¼ C*½sI� A*��1
B* þD* ¼ H*ðsÞ ð3:9-2Þ

All minimal dimension realizations of a linear time-invariant system are strictly
equivalent among themselves. This property is given in the following theorem.

Theorem 3.9.2

Let system ½A;B;C;D�n be a minimum dimension realization of the transfer function
matrix HðsÞ. Then, any other minimum dimension realization ½A*;B*;C*;D*�n of
HðsÞ is given by the relations

A* ¼ T
�1
AT

B* ¼ T
�1
B

C* ¼ CT

D* ¼ D

ð3:9-3Þ

where T is an arbitrary constant square n  n matrix, with jTj 6¼ 0.
From the above, it follows that the transition from state equations to the

input–output description is only a computational problem, while the transition
from the input–output description to the state equations, is first a theoretical and
then a computational problem. Finally, from a practical point of view, the realiza-
tion problem is essentially the selection of the most appropriate matrices A, B, C,
and D among many equivalent descriptions in state space.

3.10 BLOCK DIAGRAMS

Block diagrams may be considered as a form of system description that provides a
simplified overview schematic diagram of a system. Each block is characterized by an
input–output description, by its input signal, and by its output signal (see Figure
3.13). The frequency domain appears to facilitate the use of block diagrams and it is
for this reason that transfer functions are used to describe each block.

When describing a system by block diagrams, what we actually have is many
blocks appropriately linked to form the overall block diagram of the system. To
handle complex block diagrams, one needs special rules that specify the significance
of each connection and assist in simplifying or modifying the block diagram. The
most important of such rules are listed below.
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3.10.1 Block Diagram Rules

1 Summation Point (Figure 3.14)

The point where two or more signals may be added or subtracted is called a summa-
tion point.

2 Blocks in Cascade (Figure 3.15)

Two or more blocks in cascade may be simplified to a single block in the following
way. Going from left to right, we have the following relations for each block:

X1ðsÞ ¼ H1ðsÞUðsÞ

X2ðsÞ ¼ H2ðsÞX1ðsÞ

..

.

Xn�1ðsÞ ¼ Hn�1ðsÞXn�2ðsÞ

YðsÞ ¼ HnðsÞXn�1ðsÞ

Eliminating X1ðsÞ;X2ðsÞ; . . . ;Xn�1ðsÞ in the above equations yields

YðsÞ ¼ ½H1ðsÞ H2ðsÞ � � � HnðsÞ�UðsÞ

Hence, the transfer function HðsÞ of the equivalent single block diagram is

HðsÞ ¼ H1ðsÞH2ðsÞ � � �HnðsÞ ð3:10-1Þ

3 Blocks in Parallel (Figure 3.16)

Two or more blocks in parallel may be simplified to a single block in the following
way. Going from top to bottom, the input–output relation for each block is
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Figure 3.13 Single block system.

Figure 3.14 Summation point.
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Figure 3.15 Block diagram with blocks in cascade. (a) Blocks in cascade; (b) equivalent
single block.

Figure 3.16 Block diagram with blocks in parallel. (a) Blocks in parallel; (b) equivalent
block.



X1ðsÞ ¼ H1ðsÞUðsÞ

X2ðsÞ ¼ H2ðsÞUðsÞ

..

.

Xn�1ðsÞ ¼ Hn�1ðsÞUðsÞ

XnðsÞ ¼ HnðsÞUðsÞ

Eliminating X1ðsÞ;X2ðsÞ; . . . ;XnðsÞ in the above equation yields

YðsÞ ¼ ½H1ðsÞ þ H2ðsÞ þ � � � þ HnðsÞ�UðsÞ

Hence, the transfer function HðsÞ of the equivalent single block diagram is

HðsÞ ¼ H1ðsÞ þ H2ðsÞ þ � � � þ HnðsÞ ð3:10-2Þ

4 Conversion of a Closed-Loop System to an Open-Loop System (Figure
3.17)

The definitions of closed-loop and open-loop systems have been presented in Sec.
1.3. Consider the closed-loop system of Figure 3.17a. The transfer functions GðsÞ and
FðsÞ are called the forward-path transfer function and the feedback-path transfer
function, respectively.

The closed-loop system of Figure 3.17a may be converted into an open-loop,
single-block system as follows. From the closed-loop system, we have

UðsÞ ¼ RðsÞ � FðsÞYðsÞ

YðsÞ ¼ GðsÞUðsÞ

Eliminating UðsÞ gives

YðsÞ ¼
GðsÞ

1 � GðsÞFðsÞ

� �
RðsÞ
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Figure 3.17 Block diagrams of (a) a closed-loop system and (b) its equivalent open-loop
system.



Hence, the transfer function HðsÞ of the equivalent open-loop system is

HðsÞ ¼
GðsÞ

1 � GðsÞFðsÞ
ð3:10-3Þ

Special Case

If the feedback-path transfer function FðsÞ is unity, i.e., if FðsÞ ¼ 1, then Eq. (3.10-3)
takes on the form

HðsÞ ¼
GðsÞ

1 � GðsÞ

� �
ð3:10-4Þ

5 Conversion of an Open-Loop System to a Closed-Loop System (Figure
3.18)

An open-loop system can be converted into a closed-loop system in the following
way: Solving Eq. (3.10-4) for GðsÞ gives

GðsÞ ¼
HðsÞ

1 � HðsÞ
ð3:10-5Þ

Hence, an open-loop system, having transfer function HðsÞ, is equivalent to a closed-
loop system with unity FðsÞ and with GðsÞ given by Eq. (3.10-5).

6 Conversion of the Feedback-Path Transfer Function F ðsÞ into Unity

Consider the closed-loop system shown in Figure 3.17a. An equivalent block dia-
gram with unity FðsÞ is the closed-loop system shown in Figure 3.19. From Figure
3.19 we have

UðsÞ ¼
RðsÞ

FðsÞ
� YðsÞ and YðsÞ ¼ GðsÞFðsÞUðsÞ

Eliminating UðsÞ gives
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Figure 3.18 Block diagrams of (a) an open-loop system and (b) its equivalent closed-loop
system.



HðsÞ ¼
YðsÞ

RðsÞ
¼

GðsÞ

1 � GðsÞFðsÞ

Hence, both diagrams have the same transfer function, and thus they are equivalent.

7 Moving a Summation Point

Consider the block diagram shown in Figure 3.20a. An equivalent block diagram
with the summation point shifted is as shown in Figure 3.20b. The diagram shown in
Figure 3.20a gives

YðsÞ ¼ HðsÞU1ðsÞ þ U2ðsÞ

while the diagram shown in Figure 3.20b gives

YðsÞ ¼ HðsÞ U1ðsÞ þ
U2ðsÞ

HðsÞ

� �
¼ HðsÞU1ðsÞ þ U2ðsÞ

Hence, the two block diagrams are equivalent.
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Figure 3.19 Closed-loop system with unity feedback-path transfer function.

Figure 3.20 Moving a summation point. (a) Summation point following HðsÞ; (b) summa-
tion point proceeding HðsÞ.



8 Moving a Pickoff Point

Consider the block diagram shown in Figure 3.21a. An equivalent block diagram is
shown in Figure 3.21b. From the diagram shown in Figure 3.21a, we have that
YðsÞ ¼ HðsÞUðsÞ; also, from the diagram shown in Figure 3.21b, we have that
YðsÞ ¼ HðsÞUðsÞ. Hence, both block diagrams are equivalent.

All above cases of equivalent block diagrams are frequently used. Figure 3.22
summarizes these cases, while other additional useful cases of equivalent block dia-
grams are included.

3.10.2 Simplification of Block Diagrams

In the two examples that follow, we apply the rules of block diagrams of Subsec.
3.10.1 to simplify complex block diagrams.

Example 3.10.1

Simplify the block diagram shown in Figure 3.23 to a single block.

Solution

This can be done step by step as follows. First, simplify the closed-loop system
involving the blocks G1ðsÞ, G2ðsÞ, and F1ðsÞ to an open-loop system, as in Figure
3.24, to yield

G4ðsÞ ¼
G1ðsÞG2ðsÞ

1 � G1ðsÞG2ðsÞF1ðsÞ
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Figure 3.21 Moving a pickoff point. (a) Pickoff point at the input of HðsÞ; (b) pickoff point
at the output of HðsÞ.
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Figure 3.22 Equivalent block diagrams.
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Figure 3.22 (contd.)
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Figure 3.22 (contd.)



Then, simplify the two blocks in cascade, as shown in Figure 3.25, where
G5ðsÞ ¼ G4ðsÞG3ðsÞ. Finally, simplify the closed-loop system shown in Figure 3.25
to an open-loop system, as in Figure 3.26, to yield

HðsÞ ¼
G5ðsÞ

1 � G5ðsÞF2ðsÞ

Example 3.10.2

Simplify the block diagram shown in Figure 3.27.

Solution

This diagram has two inputs, R1ðsÞ and R2ðsÞ. To determine the response YðsÞ we
work as follows. Using the superposition principle, YðsÞ can be determined by add-
ing two responses: the response Y1ðsÞ due to the input R1ðsÞ, where the other input is
assumed zero, i.e., when R2ðsÞ ¼ 0; the response Y2ðsÞ due to the input R2ðsÞ, where
the other input is assumed zero, i.e., when R1ðsÞ ¼ 0. Thus, when R2ðsÞ ¼ 0, the
block diagram will be as shown in Figure 3.28, and the response Y1ðsÞ, due to the
input R1ðsÞ, will be

Y1ðsÞ ¼
G1ðsÞG2ðsÞ

1 � G1ðsÞG2ðsÞFðsÞ

� �
R1ðsÞ

Similarly, when R1ðsÞ ¼ 0, the block diagram will be as shown in Figure 3.29, and the
response Y2ðsÞ, due to the input R2ðsÞ, will be
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Figure 3.23 Original block diagram.

Figure 3.24 First simplification of the block diagram of Figure 3.23.
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Figure 3.25 Second simplification of the block diagram of Figure 3.23.

Figure 3.26 Simplification of the block diagram of Figure 3.23 in a single block.

Figure 3.27 Block diagram with two inputs.

Figure 3.28 The block diagram of Figure 3.27 when R2ðsÞ ¼ 0.

Figure 3.29 Block diagram of Figure 3.27 when R1ðsÞ ¼ 0.



Y2ðsÞ ¼
G2ðsÞ

1 � G1ðsÞG2ðsÞFðsÞ

� �
R2ðsÞ

Hence, the total response YðsÞ of Figure 3.27 will be

YðsÞ ¼ Y1ðsÞ þ Y2ðsÞ ¼
G1ðsÞG2ðsÞ

1 � G1ðsÞG2ðsÞFðsÞ

� �
R1ðsÞ þ

G2ðsÞ

1 � G1ðsÞG2ðsÞFðsÞ

� �
R2ðsÞ

Remark 3.10.1

Systems described in state space can also be represented by block diagrams. For
example, consider the system (3.7-16a,b), i.e., the system

�xðtÞ ¼ AxðtÞ þ BuðtÞ

yðtÞ ¼ CxðtÞ þDuðtÞ

The block diagram of this system is given in Figure 3.30, where the double lines
represent multiple signals.

3.11 SIGNAL-FLOW GRAPHS

3.11.1 Definitions

A signal-flow graph, as in the case of block diagrams, gives a simplified schematic
overview of a system. In particular, a signal-flow graph gives this view based on the
equations which describe the system.

A signal-flow graph is composed of nodes (junctions) and branches. Each node
represents a system’s variable. We have three types of nodes:

. A source or input node (independent variable) is a node where no branch
ends and from which one or more branches begin (Figure 3.31a).

. A sink or output node (dependent variable) is a node to which one or more
branches end and from which no branch begins (Figure 3.31b).

. A mixed or generalized node is a node to which branches both end and begin
(Figure 3.31c).

Mathematical Models of Systems 105

Figure 3.30 State equations block diagram.



Every branch connects two nodes and has two characteristics: the direction and
the gain. Direction is simply the direction of the flow of the signal from one node to
another (Figure 3.31d). Gain or transmittance or transfer function is the quantity Tij

which relates the variables (nodes) xi and xj in the cause-and-effect sense. Hence, the
direction and the gain are related by the equation xj ¼ Tijxi. If the direction of the
branch was opposite, then the equation would be xi ¼ Tjixj.

A signal-flow graph forms ‘‘paths.’’ Depending on the particular form of these
paths, the following definitions are given:

. A path is a succession of branches which have the same direction. For
example, in Figure 3.31e, the combinations x1x2x3, x1x2x3x4, and x3x4x5

x6 are paths.
. A forward path is the path which starts from the input (source) node and

ends at the otput (sink) node. For example, the path x1x2x3x4x5x6 in
Figure 3.31e is a forward path.

. A loop is the path that begins and ends in the same node and along which
no other node is encountered more than once. For example, the path
x4x5x4 in Figure 3.31e is a loop.

. A single-branch loop is a loop formed by a single branch. For example, the
paths x2x2 and x3x3 in Figure 3.31e are single-branch loops.

3.11.2 Construction of Signal-Flow Graphs

Consider a system described by the following equations

T11x1 þ T12x2 ¼ x3

T21x1 þ T22x2 ¼ x4

ð3:11-1Þ
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The signal-flow graph of this system is composed of the nodes x1; x2; x3, and x4,
properly linked with the branch gains T11;T12;T21, and T22, so that the equations of
the given system are satisfied. It can be easily shown that the diagram of Figure 3.32
is the signal-flow graph sought of Eq. (3.11-1).

Similarly, for the system described by the equations

x2 ¼ T12x1 þ T32x3

x3 ¼ T23x2

x4 ¼ T34x3

ð3:11-2Þ

one arrives at the signal-flow graph of Figure 3.33.
Because a signal-flow graph is a schematic representation of the equations that

describe the system, a good point to start for the construction of a signal-flow graph
is to write down the equations of the system. This is done by applying the physical
laws that govern the particular system. For example, in electrical networks one
applies the Kirchhhoff’s laws of currents and voltages, while in mechanical systems
one applies d’Alembert’s law of forces.

With regard to the network equations, the following are pointed out. We
consider as signals the node voltages and the loop currents. For a network with N
passive elements (resistors, capacitors, and inductors) we can write Nk � 1 node
equations and N � ðNk � 1Þ loop equations, where Nk is the number of nodes.
The total number of node and loop equations, and hence the total number of vari-
ables (or signals) for the network, is N.

Example 3.11.1

Find the signal-flow graph for the network shown in Figure 3.34.
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Figure 3.32 Signal-flow graph of system in Eq. (3.11-1).

Figure 3.33 Signal-flow graph of system in Eq. (3.11-2).



Solution

The network’s variables are v, v1, v2, i1, and i2. Variable v is known and is the input
to the graph. Writing down the network equations, going from left to right, we have
the following four equations:

i1 ¼
v � v1

R1

; v1 ¼ R3ði1 � i2Þ; i2 ¼
v1 � v2

R2

; v2 ¼ i2R4

The signal-flow graph of the network can be easily constructed and is given in Figure
3.35.

3.11.3 Mason’s Rule

Simplification rules, analogous to those for block diagrams presented in Subsec.
3.10.2, have been developed for signal-flow graphs, among which the most popular
is Mason’s rule. Mason’s rule has the attractive characteristic in that it yields the
input–output gain T (i.e., the gain from the input to the output node) of a signal-flow
graph directly, without intermediate steps. Mason’s rule has the form

T ¼
1

�

Xk

n¼1

Tn�n ð3:11-3Þ

where

1. Tn is the gain of every forward path.
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Figure 3.34 A resistive network of two loops.

Figure 3.35 The signal-flow graph of the network of Figure 3.34.



2. � is the determinant of the signal-flow graph, which is given by

� ¼ 1 ��L1 þ�L2 ��L3 þ � � �

where
a. L1 is the gain of every loop and �L1 is the sum of the gains of all the

loops of the graph.
b. L2 is the product of the gains of two nontouching loops (two loops are

nontouching when they don’t have common nodes). �L2 is the sum of
the product of the gains of all possible combinations of two nontouch-
ing loops.

c. L3 is the product of the gains of three nontouching loops, and so on.
3. �n is the determinant � of the signal-flow graph which remains when the

path which produces Tn is removed.
4. k is the number of the forward paths.

Example 3.11.2

Determine the transfer function (the gain) T between v and v2 of the flow diagram of
Figure 3.35.

Solution

The gain T between v and v2 will be determined using Mason’s rule as follows:

1 Forward Path

There is one forward path, as shown in Figure 3.36. The gain T1 of this path is
T1 ¼ R3R4=R1R2.

2 Evaluation of the Determinant �

There are three loops, as shown in Figure 3.37. The gains of the first, second, and
third loop are �R3=R1, �R3=R2, and �R4=R2, respectively. Hence

�L1 ¼ �
R3

R1

þ
R3

R2

þ
R4

R2

� �

There are two nontouching loops, namely the first and the third loop. Thus,
�L2 ¼ R3R4=R1R2. Therefore,

� ¼ 1 ��L1 þ�L2 ¼ 1 þ
R3

R1

þ
R3

R2

þ
R4

R2

� �
þ

R3R4

R1R2

¼
R1R2 þ R1R3 þ R1R4 þ R2R3 þ R3R4

R1R2
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Figure 3.36 Forward path of the signal-flow graph of Figure 3.35.



3 Evaluation of �1

Since all branches touch the forward path, it follows that �1 ¼ 1.
Hence

T ¼
T1�1

�
¼

R3R4

R1R2 þ R1R3 þ R1R4 þ R2R3 þ R3R4

3.12 MATHEMATICAL MODELS FOR CONTROL SYSTEMS
COMPONENTS

In this section we will derive one or more of the four mathematical models presented
in Sections 3.4–3.7 to describe several components which are used in control systems.
In particular, we will derive mathematical models for DC and AC motors, tach-
ometers, error detectors, gears, hydraulic actuators, and pneumatic amplifiers. Also,
the block diagram and signal-flow graphs of several of these components will be
presented. In Sec. 3.13 that follows (as well as in many other places in the book) we
present the mathematical descriptions of several practical control systems.

3.12.1 DC Motors

One component which is often used in control systems is the DC motor. There are
several types of DC motors. We present here only the separately excited type,
because its characteristics present several advantages over others, particularly with
regard to linearity. Separately excited DC motors are distinguished in two categories:
those that are controlled by the stator, which are usually called field-controlled
motors; those that are controlled by the rotor, which are usually called armature-
controlled motors.

1 Motors Controlled by the Stator

A simple diagram of a DC motor controlled by its stator (i.e., by its field) is given in
Figure 3.38. For simplicity, we make the following approximations:

a. The rotor’s current iaðtÞ is constant, i.e., iaðtÞ ¼ Ia.
b. The magnetic flux ’ðtÞ between the stator and the rotor is given by the linear

relation

’ðtÞ ¼ Kf if ðtÞ ð3:12-1Þ

where Kf is a constant and if ðtÞ is the stator’s current.
c. The torque TmðtÞ that is developed by the motor is given by the relation
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Figure 3.37 Loops in the signal-flow graph of Figure 3.35.



TmðtÞ ¼ KmIa ’ðtÞ ð3:12-2Þ

where Km is a constant.
d. The Kirchhoff’s voltage law for the stator network is

Lf

dif
dt

þ Rf if ¼ vf ðtÞ ð3:12-3Þ

e. The rotor’s rotational motion is described by the differential equation

Jm

d!m

dt
þ Bm!m ¼ TmðtÞ; !m ¼

d
m

dt
ð3:12-4Þ

where Jm is the torque inertia, Bm is the coefficient of friction, 
mðtÞ is the angular
position or displacement, and !mðtÞ is the angular velocity of the motor.

Substituting Eq. (3.12-1) into (3.12-2), we have

TmðtÞ ¼ KmKfIaif ðtÞ ð3:12-5Þ

Also, if we substitute Eq. (3.12-5) into Eq. (3.12-4), we have

Jm

d!m

dt
þ Bm!m ¼ KmKfIaif ðtÞ ð3:12-6Þ

In the sequel, we will present the four different mathematical models which
describe the motor, together with the motor’s block diagram and signal-flow graph.

a. Differential Equations

These are the Eqs (3.12-5) and (3.12-4) i.e., the equations

Lf

dif
dt

þ Rf if ¼ vf ðtÞ ð3:12-7aÞ

Jm

d!m

dt
þ Bm!m ¼ TmðtÞ ð3:12-7bÞ

b. State Equations

Let x1 ¼ 
m, x2 ¼ !m, and x3 ¼ if be the state variables. Then, the system of differ-
ential equations (3.12-7), together with the equation _xx1 ¼ x2 ¼ !m, take on the form
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Figure 3.38 A DC motor controlled by the stator.



�x ¼ Axþ bu and y ¼ c
T
x ð3:12-8aÞ

where

x ¼


m

!m

if

2
4

3
5; A ¼

0 1 0
0 �T�1

m J�1
m KmKfIa

0 0 �T�1
f

2
4

3
5; b ¼

0
0

L�1
f

2
4

3
5; c ¼

1
0
0

2
4

3
5

ð3:12-8bÞ

and where u ¼ vf , Tm ¼ Jm=Bm is the mechanical time constant, and Tf ¼ Lf=Rf is
the electrical time constant of the stator.

c. Transfer Function

Applying the Laplace transform to Eqs (3.12-7) or (3.12-8) and after some algebraic
manipulations we derive the following transfer function

GðsÞ ¼
�mðsÞ

Vf ðsÞ
¼

KmKfIa

sðJms þ BmÞðLfs þ Rf Þ
¼

B�1
m R�1

f KmKfIa

sðTms þ 1ÞðTfs þ 1Þ
ð3:12-9Þ

where all initial conditions of the motor are assumed zero.

d. Block Diagram

A simple block diagram of the motor is given in Figure 3.39a.

e. Signal-Flow Graph

The signal-flow graph of the state equations (3.12-8) is given in Figure 3.39b.

2 Motors Controlled by the Rotor

A simple diagram of a DC motor controlled by its rotor (i.e., by its armature) is
given in Figure 3.40. For simplicity, we assume the following approximations:

a. The stator current if ðtÞ is constant, i.e., if ðtÞ ¼ If .
b. The magnetic flux ’ðtÞ, given by Eq. (3.12-1), will be constant since if ðtÞ is

constant, i.e., ’ðtÞ ¼ KfIf ¼ �.
c. The torque TmðtÞ, given by Eq. (3.12-2), now has the form

TmðtÞ ¼ KmiaðtÞ� ¼ KiiaðtÞ ð3:12-10Þ

where Ki ¼ Km�.
d. The voltage vbðtÞ is proportional to the angular velocity of the motor, i.e.,

vbðtÞ ¼ Kb!mðtÞ ð3:12-11Þ

e. The Kirchhoff’s law of voltages for the rotor network is

La

dia
dt

þ Raia þ vb ¼ va
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Figure 3.39a Block diagram of a motor controlled by the stator.



or

La

dia
dt

þ Raia þ Kb!m ¼ va ð3:12-12Þ

where use was made of Eq. (3.12-11).
f. The rotor’s rotational motion is described by the differential equation

Jm

d!m

dt
þ Bm!m ¼ TmðtÞ ¼ Kiia; !m ¼

d
m

dt
ð3:12-13Þ

In what follows, we present the four mathematical models and the block diagram
and signal-flow graph of the motor.

a. Differential Equations

These are the Eqs (3.12-12) and (3.12-13), i.e., the equations

La

dia
dt

þ Raia þ Kb!m ¼ va ð3:12-14aÞ

Jm

d!m

dt
þ Bm!m ¼ Kiia ð3:12-14bÞ

b. State Equations

Let x1 ¼ 
m, x2 ¼ !m, and x3 ¼ ia be the state variables. Then the system of differ-
ential equations (3.12-14), together with the equation _xx1 ¼ x2 ¼ !m, take on the
form
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Figure 3.39b Signal-flow graph of a motor controlled by the stator.

Figure 3.40 A DC motor controlled by the rotor.



�x ¼ Axþ bu and y ¼ c
T
x ð3:12-15aÞ

where

x ¼


m

!m

ia

2
4

3
5; A ¼

0 1 0
0 �T�1

m J�1
m Ki

0 �L�1
a Kb �T�1

a

2
4

3
5; b ¼

0
0

L�1
a

2
4

3
5; c ¼

1
0
0

2
4

3
5

ð3:12-15bÞ

and where u ¼ va, and Ta ¼ La=Ra is the electrical time constant of the rotor.

c. Transfer Function

Apply the Laplace transform to Eq. (3.12-14) to yield

sLaIaðsÞ þ RaIaðsÞ þ Kb�mðsÞ ¼ VaðsÞ ð3:12-16aÞ

Jms�mðsÞ þ Bm�mðsÞ ¼ KiIaðsÞ; �mðsÞ ¼ s�mðsÞ ð3:12-16bÞ

where all initial conditions are assumed zero. The transfer function will then be

GðsÞ ¼
�mðsÞ

VaðsÞ
¼

Ki

sðsLa þ RaÞðJms þ BmÞ þ KiKbs

¼
Ki

LaJms3 þ ðRaJm þ LaBmÞs
2 þ ðRaBm þ KiKbÞs

ð3:12-17Þ

d. Block Diagram

The equations of system (3.12-16) can be represented by the closed-loop block dia-
gram of Figure 3.41. From this diagram it is clear that the feedback signal Kbs�mðsÞ
is actually the derivative of the output 
mðtÞ. For this reason this type of control is
called ‘‘derivative’’ or ‘‘speed’’ feedback control.

e. Signal-Flow Graph

The signal-flow graph of the state equations (3.12-15) is given in Figure 3.42.

3.12.2 AC Motors

In cases where the control requires low power, then two-phase alternating current
(AC) motors are usually used. A two-phase AC motor has two coils on the stator
which are perpendicular to each other (Figure 3.43). One of the two coils is used as a
reference, while the other is used to control the rotor. The transfer function, which
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Figure 3.41 Block diagram of a motor controlled by the rotor.



relates the angular position of the rotor �mðsÞ to the control voltage V2ðsÞ, is given
approximately, by the following relation

GðsÞ ¼
�mðsÞ

V2ðsÞ
¼

K

sðTs þ 1Þ
ð3:12-18Þ

where K and T are the gain and time constant of the motor, respectively.

3.12.3 Tachometers

The tachometer has the property that its output voltage voðtÞ is proportional to the
angular velocity !ðtÞ of the motor, i.e.,

voðtÞ ¼ Kt!ðtÞ ð3:12-19Þ

where Kt is the constant of the tachometer.
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Figure 3.42 Signal-flow graph of a motor controlled by the rotor.

Figure 3.43 Two-phase AC motor.



3.12.4 Error Detectors

Error detectors are special components whose output is the difference of two signals.
Such components are very useful in control systems. Two rather well-known types of
error detectors are presented below.

1 Operational Amplifier with Resistors

This error detector is given in Figure 3.44. The output voltage voðtÞ of the amplifier is

voðtÞ ¼
Rf

R1

v1ðtÞ �
Rf

R2

v2ðtÞ ð3:12-20Þ

Hence, for R1 ¼ R2 ¼ Rf , the voltage voðtÞ will be

voðtÞ ¼ v1ðtÞ � v2ðtÞ ð3:12-21Þ

2 The Potentiometer

This error detector is given in Figure 3.45. The voltage V0 is constant. Depending on
the position of the points A and B on the resistors, the voltages v1ðtÞ and v2ðtÞ are
produced, respectively. The voltage eðtÞ across the points A and B will then be

eðtÞ ¼ Kp½v1ðtÞ � v2ðtÞ� ð3:12-22Þ

where eðtÞ is the error voltage and Kp is the potentiometer constant, which depends
on the sensitivity of the elements involved.

3 Synchrosystems (Figure 3.46)

A synchrosystem is usually composed of two parts—the transmitter and the receiver.
Both the transmitter and the receiver are actually three-phase rotating electrical
motors. Let 
t and 
r be the angles of the axis of rotation of the transmitter rotor
and of the receiver rotor, respectively. It can be shown that if viðtÞ ¼ sin!t is the
synchrosystem input voltage, then the amplitude of the output voltage voðtÞ of the
synchrosystem will be proportional to the difference of the angles 
t and 
r, i.e.,

voðtÞ ¼ Kð
t � 
rÞ sin!t ð3:12-23Þ
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Figure 3.44 Error detector using operational amplifiers and resistors.



where K is the synchrosystem’s constant. Relation (3.12-23) suggests that a synchro-
system can be used to measure the difference between 
t and 
r.

3.12.5 Gears

Gears are used in order to increase or decrease the rotational speed of a motor.
Figure 3.47 shows a simple arrangement of gears where

N1;N2 ¼ number of teeth of each gear
R1;R2 ¼ radius of each gear
T1;T2 ¼ torque of each gear

1; 
2 ¼ angular displacement of each gear
!1; !2 ¼ angular velocity of each gear
J1; J2 ¼ torque of inertia of each gear
B1;B2 ¼ viscous friction coefficient of each gear
C1;C2 ¼ Coulomb friction coefficient of each gear
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For the ideal system of coupled gears of Figure 3.47a, where the torques of inertia J1

and J2 and the friction coefficients B1, B2, C1, and C2 are considered to be zero, the
following relations hold

R1N2 ¼ R2N1 ð3:12-24aÞ

R1
1 ¼ R2
2 ð3:12-24bÞ

T1
1 ¼ T2
2 ð3:12-24cÞ

Relation (3.12-24a) expresses the fact that the ratio of the number of teeth is propor-
tional to the radii ratio. Relation (3.12-24b) expresses the fact that the distances run
by the two gears are equal. Finally, relation (3.12-24c) expresses the fact that, given
that there are no losses, the work done by one gear is equal to the work done by the
other. From the above relations, we have that

T1

T2

¼

2


1

¼
N1

N2

¼
!2

!1

¼
R1

R2

ð3:12-25Þ

It is well known that, in practice, the torques of inertia J1 and J2, as well as the
friction coefficients B1, B2, C1, and C2, are not zero. In this case, the algebraic
relation (3.12-24c) is not valid, due to losses. Instead, the following dynamic rela-
tions hold:

J1

d2
1

dt2
þ B1

d
1

dt
þ C1

!1

j!1j
þ T1 ¼ T ð3:12-26Þ

J2

d2
2

dt2
þ B2

d
2

dt
þ C2

!2

j!2j
¼ T2 ð3:12-27Þ
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Figure 3.47 (a) Ideal and (b) nonideal gears.



where T is the external torque applied. Relation (3.12-26) is the torque equation of
the gear with N1 number of teeth, while relation (3.12-27) is the torque equation of
the gear with N2 number of teeth.

From relation (3.12-25), we have that T2 ¼ N�1T1 and 
2 ¼ N
1, where
N ¼ N1=N2. Substitute these relations in Eq. (3.12-27) to yield

NJ2

d2
1

dt2
þ NB2

d
1

dt
þ C2

!2

j!2j
¼ N�1T1

or

N2J2

d2
1

dt2
þ N2B2

d
1

dt
þ NC2

!2

j!2j
¼ T1 ð3:12-28Þ

If we substitute Eq. (3.12-28) into Eq. (3.12-26), we have

J�
1

d2
1

dt2
þ B�

1

d
1

dt
þ Tc ¼ T ð3:12-29Þ

where

J�
1 ¼ J1 þ N2J2; B�

1 ¼ B1 þ N2B2; and Tc ¼ C1

!1

j!1j
þ NC2

!2

j!2j

Relation (3.12-29) is the differential equation which describes the dynamic behavior
of the gears with reference to the gear with N1 number of teeth. It is noted that the
above analysis of gears is analogous to that of transformers. Indeed, gears and
transformers are analogous systems, where the primary transformer coil corresponds
to the gear with N1 number of teeth and the secondary transformer coil corresponds
to the gear with N2 number of teeth.

3.12.6 Hydraulic Actuator or Servomotor

The hydraulic actuator or servomotor is the main component in any hydraulic
control system. A typical hydraulic actuator is given in Figure 3.48 and operates
as follows: let the actuator input be the position x of the piston valve and the
actuator output be the position y of the power cylinder piston. The actuator excita-
tion is caused by pressing the piston valve, which results in moving the valve to the
right or to the left from its equilibrium position by �x. Then the power cylinder
piston’s position will move correspondingly to the right or to the left from the
equilibrium position by �y. The displacement �y results as follows: as the piston
valve moves to the right, oil will run towards port 1. As this oil is under pressure P1,
the power cylinder piston will move to the right by �y, because the oil pressure P2 in
port 2 is less than the pressure P1.

Let q be the oil flow per minute. Then, a first approximation, gives

q ¼ K1�x � K2�p; �p ¼ P2 � P1 ð3:12-30Þ

where K1 and K2 are constants. Also, the following relation is valid:

A��y ¼ q�t ð3:12-31Þ

where A is the area of the power cylinder piston surface and � is the oil density. If we
eliminate q from relations (3.12-30) and (3.12-31), then we arrive at the relation
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�p ¼
1

K2
K1�x � A�

�y

�t

� �
ð3:12-32Þ

The force f produced by the power cylinder piston will be

f ¼ A�p ¼
A

K2

K1�x � A�
�y

�t

� �
ð3:12-33Þ

Finally, the differential equation that describes the motion of the load (mass) m will
be

m
d2y

dt2
þ B

dy

dt
¼ f ¼

AK1

K2

u �
A2�

K2

dy

dt

or

m
d2y

dt2
þ B þ

A2�

K2

" #
dy

dt
¼

AK1

K2

u ð3:12-34Þ

where we have set �y=�t ¼ dy=dt and �x ¼ u.
The transfer function of the hydraulic actuator will then be
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Figure 3.48 The hydraulic actuator.



GðsÞ ¼
YðsÞ

UðsÞ
¼

K

sðTs þ 1Þ
ð3:12-35Þ

where

K ¼
BK2

AK1

þ
A�

K1

� ��1

and T ¼
mK2

BK2 þ A2�

If we assume that T ’ 0, then GðsÞ ¼ K=s. Therefore, we observe that the hydraulic
actuator of Figure 3.48 serves simultaneously as an amplifier and as an integrator.

3.12.7 Pneumatic Amplifier

A typical pneumatic amplifier is given in Figure 3.49a. Let the system input be the
distance x between the nozzle and the flapper, and the system output be the pressure
P which regulates a control valve. Figure 3.49b shows the relation between x and P,
where Ps is the pressure of the forced air and Pa is the atmospheric pressure. This
system operates as an amplifier, because the power which is required to move the
flapper by a distance x is much less than the power P delivered by the system to the
control valve. A practical application of pneumatic amplifiers is in the liquid-level
control system given in Figure 1.12.

3.13 MATHEMATICAL MODELS OF PRACTICAL CONTROL
SYSTEMS

In this section, the mathematical models of several practical closed-loop control
systems are presented. These systems are used to control a specific variable such
as voltage, position or speed of a mass, flow or level of a liquid, room temperature,
satellite orientation control, etc. Such practical control systems are often used in
process industries, as for example in the paper, cement, and food industries, etc.; in
controlling airplanes, ships, spacecrafts, etc., and in high-precision control systems
such as guns, rockets, radars, radio telescopes, satellites, and others.
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Figure 3.49 (a) Pneumatic amplifier and (b) the effect of distance x upon the pressure P

acting upon the control valve.



3.13.1 Voltage Control System

A voltage control system is given in Figure 3.50a. This system is designed so that the
load voltage vL remains constant despite any changes in the load RL. It operates as
follows: The reference voltage vr and the feedback voltage vb are constantly com-
pared. Under ideal load conditions, i.e., when RL ! 1, the voltage error ve ¼ vr �

vb is such that the generator produces the desired voltage vL. Under nonideal load
condtions, the resistance of RL decreases and the voltage vb also decreases, resulting
in an increase in the error voltage ve. Increasing the error voltage ve increases the
output voltage vf of the amplifier, which in turn increases the field current if .
Further, increasing the current if , increases the generator voltage vg. Finally, increas-
ing the voltage vg increases the voltage vL. As a result, the voltage vL will approach
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Figure 3.50 Voltage control system. (a) Overall picture of the voltage control system; (b)
schematic diagram of the system; (c) block diagram of the system.



its desired initial value, i.e., its value when RL ! 1. This procedure is shown in the
schematic diagram of Figure 3.50b.

The differential equations that describe the voltage control system are

ve ¼ vr � vb ð3:13-1aÞ

vf ¼ Kave ð3:13-1bÞ

L
dif
dt

þ Rf if ¼ vf ð3:13-1cÞ

vg ¼ Kg!if ð3:13-1dÞ

ðRg þ RLÞia ¼ vg ð3:13-1eÞ

vb ¼
R2

R1 þ R2

vL ð3:13-1fÞ

The above relations refer (from top to bottom) to the error, the amplifier, the field of
excitation, the generator’s voltage (see subsec. 3.12.1), the generator–load network,
and the feedback voltage. In relation (3.13-1e), we have assumed that R1 þ R1 � RL.

The block diagram of the system is given in Figure 3.50c. The forward-path
transfer function GðsÞ will be

GðsÞ ¼
K

sTf þ 1
; where K ¼

RLRf

Rg þ RL

� �
KaKg! and Tf ¼ Lf=Rf ð3:13-2Þ

The transfer function HðsÞ of the closed-loop system is

HðsÞ ¼
GðsÞ

1 þ KpGðsÞ
¼

K

sTf þ 1 þ KpK
¼

K1

sT þ 1
ð3:13-3Þ

where

Kp ¼
R2

R1 þ R2

; T ¼
Tf

1 þ KpK
; and K1 ¼

K

1 þ KpK

3.13.2 Position (or Servomechanism) Control System

A well-known position (or servomechanism) control system is given in Figure 3.51a.
This system is designed to control the load angular position. Specifically, the system
must be such that any change in the command, i.e., in the input angular position 
r,
is followed as closely as possible by the output angular position 
y. This is accom-
plished as follows: the command 
r is driven manually, rotating the slider of the
input potentiometer by 
r degrees. The input angle 
r, as well as the output angle 
y,
are converted into electrical signals, which subsequently are subtracted from each
other to yield their difference 
e, which is called the error. The error 
e is driven into
the amplifier. The amplifier output is then used to excite the armature-controlled
motor (Subsec. 3.12.1). Finally, the motor rotates the load through the gears.
Clearly, if 
e ¼ 0, then 
r ¼ 
y, meaning that the system has come to a standstill.
In the case where 
e 6¼ 0, the motor will turn clockwise or counterclockwise, depend-
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ing on the sign of the error 
e, until 
e ¼ 0. This procedure is depicted in the sche-
matic diagram in Figure 3.51b.

It is remarked that the ideal situation would be, as soon as we apply the
command input 
r, the load rotates instantly and stops at the angle 
y ¼ 
r. But,
due to the inertia and other properties of the system, the output 
y cannot become 
r

instantly (it has the general form shown in Figure 4.2).
The algebraic and differential equations describing each subsystem, going from

the input to the output, are

1 The Error Detector

According to relation (3.12.22) we have


eðtÞ ¼ Kp½
rðtÞ � 
yðtÞ� ð3:13-4Þ

where Kp is the potentiometer detector constant.
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Figure 3.51 Position (or servomechanism) control system. (a) Overall picture of a position
control system; (b) schematic diagram of the system; (c) block diagram of the system.



2 The DC Amplifier

We have

vaðtÞ ¼ Ka
eðtÞ ð3:13-5Þ

where Ka is the amplifier gain constant.

3 The Motor

This is an armature-controlled motor with a fixed field current whose dynamic
equations are given in Subsec. 3.12.1. To the motor we have added gears plus the
load. Hence, the motor equations are modified as follows:

La

dia
dt

þ Raia þ vb ¼ va; where vbðtÞ ¼ Kb!mðtÞ ð3:13-6Þ

J�
m

d!m

dt
þ B�

m!m ¼ Tm; where TmðtÞ ¼ KiiaðtÞ ð3:13-7Þ

where N ¼ N1=N2; J�
m ¼ Jm þ N2JL, and B�

m ¼ Bm þ N2BL. The constants J�
m and

B�
m are determined using the results of Subsec. 3.12.5, under the assumption that the

gears are ideal, i.e., that there are no losses. JL is the moment of inertia and BL the
viscosity coefficient of the load. Likewise, Jm and Bm are the moment of inertia and
the viscosity coefficient of the motor and J�

m and B�
m of the subsystem, consisting of

the motor, the gears, and the load.

4 The Output

We have

d
m

dt
¼ !m and 
y ¼ N
m ð3:13-8Þ

The forward-path transfer function is given by

GðsÞ ¼
�yðsÞ

�eðsÞ
¼

KaKiN

sðsLa þ RaÞðJ
�
ms þ B�

mÞ þ KiKbs
ð3:13-9Þ

The above relation is essentially relation (3.12-17), where we have set �yðsÞ ¼ N�mðsÞ
and the constants Jm and Bm have been replaced by J�

m and B�
m. The transfer function

of the closed-loop system (see Figure 3.51c) will be

HðsÞ ¼
�yðsÞ

�rðsÞ
¼ Kp

GðsÞ

1 þ KpGðsÞ

� �
¼

KpKaKiN

sðsLa þ RaÞðsJ
�
m þ B�

mÞ þ KiKbs þ KpKaKiN

ð3:13-10Þ

Assuming that La ’ 0, then the forward-path transfer function GðsÞ reduces to

GðsÞ ¼
KaKiN

s½RaJ�
ms þ RaB�

m þ KiKb�
¼

K

sðAs þ BÞ
ð3:13-11Þ

where

K ¼
KaKiN

Ra

; A ¼ J�
m; and B ¼ B�

m þ
KiKb

Ra

ð3:13-12Þ

Relation (3.13-11) shows that for La ’ 0 the open-loop system reduces to a
second-order system.
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3.13.3 Speed Control System

A well-known speed control system is given in Figure 3.52a. This system is
designed to control the angular velocity (speed) !y of the load, despite changes
in the load. For this purpose the Ward–Leonard generator–motor layout is used.
The command input vr is constantly compared with the output of the tachometer
vy. The resulting error ve is driven into the amplifier, whose output is the voltage
vf . Note that the input to the Ward–Leonard layout is the voltage vf , which excites
the field of the generator G, and that the output is the angular velocity !m of the
motor M. When the error ve ¼ 0, then the angular velocity !y of the load is the
desired one. If ve 6¼ 0, the motor angular velocity !m will speed up or slow down,
so that ve reaches zero, in which case !y reaches the desired value. It is important
to point out that the closed-loop system involves speed feedback action via the
tachometer.
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Figure 3.52 Speed control system. (a) Overall picture of a speed control system; (b) sche-
matic diagram of the system; (c) block diagram of the system.



The equations of the Ward–Leonard layout are as follows. The Kirchhoff’s law
of voltages of the excitation field of the generator G is

vf ¼ Rf if þ Lf

dif
dt

ð3:13-13Þ

The voltage vg of the generator G is proportional to the current if , i.e.,

vg ¼ Kgif

The voltage vm of the motor M is proportional to the angular velocity !m, i.e.,

vm ¼ Kb!m

The differential equation for the current ia is

Raia þ La

dia
dt

¼ vg � vm ¼ Kgif � Kb!m ð3:13-14Þ

where Ra ¼ Rag þ Ram and La ¼ Lag þ Lam. The torque Tm of the motor is propor-
tional to the current ia, i.e.,

Tm ¼ Kmia

The rotational motion of the rotor is described by

J�
m

d!m

dt
þ B�

m!m ¼ Kmia ð3:13-15Þ

where J�
m ¼ Jm þ N2JL and B�

m ¼ Bm þ N2BL, where N ¼ N1=N2. Here, Jm is the
moment of inertia and Bm the viscosity coefficient of the motor: likewise, for JL and
BL of the load. From the above relations, we can determine the transfer function of
the Ward–Leonard (WL) layout (including the load):

GWLðsÞ ¼
�yðsÞ

Vf ðsÞ
¼

KgKmN

ðLfs þ Rf Þ½ðLas þ RaÞðJ
�
ms þ B�

mÞ þ KmKb�
ð3:13-16Þ

where use was made of the relation !y ¼ N!m. The forward-path transfer function
GðsÞ is given by

GðsÞ ¼
KaKgKmN

ðLfs þ Rf Þ½ðLas þ RaÞðJ
�
ms þ B�

mÞ þ KmKb�

where Ka is the gain constant of the amplifier.
The tachometer (see Subsec. 3.12.3) is mechanically linked to the motor. The

tachmotor equation is the following:

vy ¼ Kt!y

Finally, the transfer function of the closed-loop system (see Figure 3.52c) is the
following third-order system:

HðsÞ ¼
�yðsÞ

VrðsÞ
¼

KaKgKmN

ðLfs þ Rf Þ½ðLas þ RaÞðJ
�
ms þ B�

mÞ þ KmKb� þ KaKtKgKmN

If we assume that La ’ 0, then HðsÞ becomes the following second-order system:

HðsÞ ¼
KaKgKmN

ðLfs þ Rf ÞðRaJ�
ms þ RaB�

m þ KmKbÞ þ KaKtKgKmN
ð3:13-17Þ
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3.13.4 Liquid-Level Control System

A simple liquid-level control system is given in Figure 3.53a. This system is designed
such that the liquid level (i.e., the height y) remains constant despite the changes in the
outflow rate qo of the liquid. It operates as follows. The load valve regulates the outflow
rate qo of the liquid from the container and the control valve regulates the inflow rate qi

of the liquid in the container. The liquid level y is monitored by the analog measuring
device. The output of this device is connected to the control valve in order to control the
inflow rate qi. When qo increases (decreases), then y decreases (increases) and the
analog device opens (closes) the control valve, thus increasing (decreasing) the inflow
rate qi. This procedure keeps the height y of the liquid level constant.
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Figure 3.53 Liquid-level control system. (a) Overall picture of a liquid-level control system;

(b) block diagram of the liquid-level analog measuring device; (c) block diagram of the closed-
loop system.



The differential equation describing the system is determined as follows. The
continuity law of fluids states that the amount of liquid which enters the container
minus the amount of liquid which leaves the container is equal to the increase of the
amount of liquid in the container. Let the load valve be closed (which means that
qo ¼ 0). Then, the continuity law of fluids gives

qidt ¼ Ady ð3:13-18Þ

where qi is the volume of the liquid inflow per unit time, A is the horizontal area of
the container, and dt and dy are the differentials of time and height, respectively. If
the load valve is open (which means that qo 6¼ 0), then the continuity law of fluids
gives

ðqi � qoÞ dt ¼ Ady ð3:13-19Þ

Let the liquid flow be laminar. A laminar fluid system is characterized by the con-
stants R (resistance of a valve or of a pipe) and C (capacitance of the container),
which are defined as follows

R ¼ y=qo and C ¼ A ð3:13-20Þ

Substitute relation (3.13-20) into Eq. (3.13-19) to yield

RC
dy

dt
þ y ¼ Rqi ð3:13-21Þ

The differential equation (3.13-21) describes the open-loop system with input as the
supply qi and output as the height y. The transfer function of the open-loop system
will then be

GðsÞ ¼
YðsÞ

QiðsÞ
¼

R

RCs þ 1
ð3:13-22Þ

The liquid-level analog measuring device operates as shown in Figure 3.53b.
The height YðsÞ of the liquid level is compared with the reference signal RðsÞ produ-
cing the error EðsÞ ¼ RðsÞ � KfYðsÞ, where Kf is the constant of the measuring
device. The error EðsÞ is driven into a pneumatic amplifier (see Subsec. 3.12.7)
whose output is air with pressure PðsÞ ¼ KaEðsÞ, where Ka is the amplification con-
stant of the liquid-level measuring device. This pressure is in turn driven into the
control valve. This results in the liquid inflow rate QiðsÞ delivered to the tank, where
QiðsÞ ¼ KvPðsÞ, where Kv is the control valve constant. Hence, the overall block
diagram of the closed-loop system will be as shown in Figure 3.53c. The transfer
function of the closed-loop system is given by

HðsÞ ¼
YðsÞ

RðsÞ
¼

KaKvR

RCs þ 1 þ KfKaKvR
ð3:13-23Þ

3.13.5 Temperature Control System

A simple room temperature control system is given in Figure 3.54. This system is
designed such that the room temperature remains constant despite changes in the
external temperature. The operation of the system is regulated via a temperature
analog measurement device. This device compares the room temperature 
y with the
desired temperature 
r and transforms the error signal 
e (i.e., the difference 
r � 
yÞ
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into a pressure signal. This pressure acts on the control valve, which accordingly
closes or opens, thus controlling the supply of the liquid fuel. The amount of the
liquid fuel which enters the burner, essentially controls the temperature 
i of the hot
air. This procedure results in maintaining the room temperature 
y constant.

We define the following parameters of the system:

. C ¼ heat capacity of the room’s air. If the room’s air has mass m and
specific heat capacity , then C ¼ m.
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Figure 3.54 Room temperature control system. (a) Overall picture of a room temperature

control system; (b) block diagram of the temperature analog measuring device; (c) block
diagram of the closed-loop system.



. R ¼ thermal resistance of the room’s air. If A is the horizontal area of the
room, h is the height, and k is the thermal conductance coefficient of the
air, then we have the approximate relation R ¼ h=kA.

. q ¼ flow of the air mass through the room per unit time. If 
i and 
y are the
input and output temperatures of the room, respectively, then

q ¼ ð
i � 
yÞ=R ð3:13-24Þ

The mathematical model describing the system is determined as follows. Let
the room temperature be 
y. Then, an increase d
y in the temperature 
y requires
Cd
y amount of heat. This amount of heat must be delivered by the hot air flow q in
a time dt. Hence, we have

Cd
y ¼ qdt ¼

i � 
y

R
dt or RC

d
y

dt
þ 
y ¼ 
i ð3:13-25Þ

Relation (3.13-25) describes an open-loop system with input as the temperature of
the hot air and output as the temperature 
y of the room. The transfer function of
this open-loop system is given by

GðsÞ ¼
�yðsÞ

�iðsÞ
¼

1

RCs þ 1
ð3:13-26Þ

The temperature analog measuring device operates as shown in Figure 3.54b. The
block diagram of the closed-loop system is given in Figure 3.54c. Let FðsÞ ¼ Lf f ðtÞg
be the flow of the liquid fuel, while Kd is a constant that relates the liquid fuel flow
f ðtÞ to the temperature 
iðtÞ of the hot air produced. The transfer function of the
closed-loop system is

HðsÞ ¼
�yðsÞ

�rðsÞ
¼

KaKvKd

RCs þ 1 þ KaKvKd

ð3:13-27Þ

where Kv is the valve constant.

3.13.6 Chemical Composition Control System

A simple chemical composition control system is given in Figure 3.55a. This system
is designed such that the chemical composition of a certain product, which comes for
example from mixing water and a certain liquid, remains the same despite any
changes in operating conditions, e.g., in temperature or pressure. The chemical
composition of the mixture is compared with the desired composition. The resulting
error is converted into pressure, which controls the valve. If the mixture content is
smaller than the desired content, then the valve opens, allowing more liquid to enter
the container. If the mixture content is greater than the desired content, then the
valve closes so that less liquid enters the container. This procedure guarantees that
the chemical composition of the product remains constant.

A simplified mathematical model which describes the operation of the chemical
composition control system is determined as follows. Let qv, q�, and qy be the flows
(m3/sec) of water, liquid, and of produced mixture, where the flow qv is maintained
constant. Also, let x� and xy be the contents (kg/m3) of the liquid and of the
produced mixture in a certain chemical substance, e.g., calcium. Then, in a time
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interval dt, q�x�dt mass of calcium enters the container and qyxydt mass of calcium
leaves the container. Hence, the change dxy in the mixture content in calcium will be

dxy ¼
q�x�dt � qyxydt

V
ð3:13-28Þ

where V is the volume of the container. According to the law of mass preservation
we have
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Figure 3.55 Chemical composition control system. (a) Overall picture of a chemical com-

position control system; (b) block diagram of the chemical composition analog measuring
device and sample analysis apparatus; (c) block diagram of the closed-loop system.



qy ¼ qv þ q� ð3:13-29Þ

Since qv � q�, we have that qy ’ qv ¼ K� ¼ constant. Hence Eq. (3.13-28) becomes

dxy

dt
þ

K�

V
xy ¼

x�

V
q� ð3:13-30Þ

Relation (3.13-30) describes the open-loop system with input q� and output xy. The
transfer function of the open-loop system is

GðsÞ ¼
XyðsÞ

Q�ðsÞ
¼

x�

Vs þ K�
ð3:13-31Þ

In Figure 3.55b the block diagram of the chemical composition analog mea-
suring device and the sample analysis apparatus are given, where Kf and Ka are the
constants of this layout and XrðsÞ is the reference signal. From Figure 3.55c we find
that the transfer function of the closed-loop system is given by

HðsÞ ¼
XyðsÞ

XrðsÞ
¼

K

Ts þ 1
ð3:13-32Þ

where

K ¼
KaKvx�

K� þ KfKaKvx�

and T ¼
V

K� þ KfKaKvx�

3.13.7 Satellite Orientation Control System

This system (see Figure 3.56a) is designed so that the satellite’s telescope, which is
mounted on the satellite, is constantly in perfect orientation with a star, despite
disturbances such as collisions with meteorites, gravity forces, etc. The system oper-
ates as follows: the orientation of the telescope is achieved with the help of a refer-
ence star, which is much brighter than the star under observation. It is initially
assumed that the axis of the telescope is in line with the star under observation.
At this position, the axis forms an angle of 
r with the line which connects the
telescope to the reference star. The angle 
r is known in advance and is the system’s
excitation. If for any reason the angle 
y, which is formed by the axis of the telescope
with the reference star, is different from the desired angle 
r, then the control system
must align the Z-axis so that 
y ¼ 
r. The block diagram of the closed-loop system is
given in Figure 3.56b, where the block designated ‘‘thruster’’ is excited by the con-
troller’s output and produces torque forces about the X-axis. These forces will
ultimately cause the correction in the angle 
y, so that 
y ¼ 
r.

The various blocks in Figure 3.56c are described, respectively, by the relations

EðsÞ ¼ Kt½�rðsÞ ��yðsÞ� ð3:13-33aÞ

VðsÞ ¼ GcðsÞEðsÞ ð3:13-33bÞ

TðsÞ ¼ GbðsÞVðsÞ ¼ KbVðsÞ ð3:13-33cÞ

�yðsÞ ¼ GsðsÞTðsÞ ¼
1

Js2
TðsÞ ð3:13-33dÞ

where Kt is the conversion constant of the position angle to an electrical signal, GcðsÞ
is the transfer function of the controller, Kb is the constant of the thruster in which
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the voltage VðsÞ is converted to the torque TðsÞ, and GsðsÞ ¼ 1=Js2 is the satellite’s
transfer function, where J is the moment of inertia of the satellite about the X-axis.
It is noted that relation (3.13-33d) does not involve friction terms, since the satellite is
assumed to be in space.

The transfer function of the closed-loop system is

HðsÞ ¼
�yðsÞ

�rðsÞ
¼

KtKbGcðsÞ

Js2 þ KtKbGcðsÞ
ð3:13-34Þ

From relation (3.13-34) it follows that if the controller is just an amplifier, in which
case GcðsÞ ¼ Ka, where Ka is the amplifier’s gain, then HðsÞ would have the form
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Figure 3.56 Satellite orientation control system. (a) Overall picture of satellite orientation

control system; (b) schematic diagram of the closed-loop system; (c) block diagram of the
closed-loop system.



HðsÞ ¼
KtKbKa

Js2 þ KtKbKa

¼
!2

n

s2 þ !2
n

; !2
n ¼ KtKbkaJ�1

ð3:13-35Þ

3.14 PROBLEMS

1. Derive the integrodifferential equations for the two electrical networks shown in
Figure 3.57.

2. Obtain the transfer functions and the impulse responses for the circuits shown in
Figure 3.58.

3. Derive the transfer functions for the operational amplifier circuits shown in
Figure 3.59.

4. Determine the state equations for the systems shown in Figure 3.60. The blocks
shown to the right or below the systems define the inputs, the state variables, and
the outputs of the system.

5. Find the transfer functions and impulse responses for the systems of Problem 4.
6. Obtain a state-space model for each of the systems having the following transfer

functions:
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HðsÞ ¼
s2

þ 4

s3 þ 4s þ 1
; HðsÞ ¼

2s þ 1

s4 þ 4s3 þ 2s2 þ s þ 5

HðsÞ ¼
1

s þ 1

2

s þ 2

� �
; HðsÞ ¼

s þ 2

sðs þ 1Þ

2s þ 4

sðs þ 1Þ

1

s þ 1

2

s þ 1

2
664

3
775

7. A thin glass-walled mercury thermometer has initial temperature 
1. At time
t ¼ 0, it is immersed in a bath of temperature 
0. The thermometer instant
temperature is 
m. Derive the state equations and the transfer function of the
thermometer from the two network representations shown in Figure 3.61. The
simplified network representation of Figure 3.61a, involves a capacitance C that
stores heat and a resistance R that limits the heat flow. The more accurate
network representation of Figure 3.61b involves the resistance Rg and the capa-
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citance Cg of the glass, as well as the resistance Rm and the capacitance Cm of the
mercury.

8. Find the transfer function and the impulse response of the system shown in
Figure 3.62.

9. For the system shown in Figure 3.63, determine (a) the differential equation, (b)
the transfer function, and (c) the state equations, considering that the input is the
displacement uðtÞ of the cart and the output is the displacement yðtÞ of the mass.

10. An inverted pendulum mounted on a motor-driven cart is shown in Figure 3.64.
Assume that the input to the system is the control force u applied to the cart and
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the two outputs are the angle 
 of the rod from the vertical axis and the position
x of the cart. Obtain a state-space representation of the system.

11. A schematic diagram of a pneumatic actuating valve is shown in Figure 3.65.
Assume that at t ¼ 0, there is a control pressure change pc from the steady-state
value. As a result, there is a change pv of the valve pressure. The valve pressure
variation pv results in a change x of the valve displacement. Considering that pc

is the input and x is the output of the system, determine the transfer function of
the valve. Here, A is the area of the diaphragm and K is the spring constant.

12. A two-tank liquid-level system is shown in Figure 3.66. At steady state, the flow
rate is Q and the fluid heights in tank 1 and tank 2 are H1 and H2, respectively.
Small flow rate changes at the input of tank 1, at the output of tank 1, and at the
output of tank 2 and are defined as q, q1, and q2, respectively. Small variations of
the liquid level of tank 1 and tank 2 from the steady-state values are defined as h1

and h2, respectively. Assume that C1 and C2 are the capacitances of tanks 1 and
2, respectively, while R1 is the flow resistance between the two tanks and R2 is
the flow resistance at the output of tank 2. The quantities C and R are defined as
follows:

C ¼
Change in liquid stored (m3

Þ

Change in liquid level
and

R ¼
Change in level difference (m)

Change in flow rate (m3=secÞ

Derive a state-space representation of the system when (a) q2 is considered to be
the output and, (b) h2 is considered to be the output.

13. Find the transfer functions of the block diagrams shown in Figure 3.67.
14. Find the transfer functions of the signal-flow graphs shown in Figure 3.68.
15. For every system described in Section 3.13, find a state-space description.
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Figure 3.60 (contd.)
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Figure 3.61

Figure 3.62

Figure 3.63



Figure 3.64

Figure 3.65 [16].

Figure 3.66
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Figure 3.67
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Figure 3.67 (contd.)



BIBLIOGRAPHY

Books

1. PJ Antsaklis, AN Michel. Linear Systems. New York: McGraw-Hill, 1997.

2. RH Cannon Jr. Dynamics of Physical Systems. New York: McGraw-Hill, 1967.
3. JJ D’Azzo, CH Houpis. Linear Control System Analysis and Design, Conventional and

Modern. New York: McGraw-Hill, 1975.
4. PM DeRusso, RJ Roy, CM Close. State Variables for Engineers. New York: John Wiley,

1965.
5. JJ DiStefano III, AR Stubberud, IJ Williams. Feedback and Control Systems. Schaum’s

outline series. New York: McGraw-Hill, 1967.

6. RC Dorf, RE Bishop. Modern Control Analysis. London: Addison-Wesley, 1995.
7. VW Eveleigh. Introduction to Control Systems Design. New York: McGraw-Hill, 1972.
8. TE Fortman, KL Hitz. An Introduction to Linear Control Systems. New York: Marcel

Dekker, 1977.
9. GF Franklin, JD Powell, A Emami-Naeini. Feedback Control of Dynamic Systems.

Reading MA: Addison-Wesley, 1986.

10. B Friedland. Control System Design. An Introduction to State-Space Methods. New
York: McGraw-Hill, 1987.

11. R Johansson. System Modeling and Identification. Englewood Cliffs, New Jersey:
Prentice Hall, 1993.

144 Chapter 3

Figure 3.68



12. T Kailath. Linear Systems. Englewood Cliffs, New Jersey: Prentice Hall, 1980.
13. BC Kuo. Automatic Control Systems. London: Prentice Hall, 1995.

14. AGC MacFarlane. Dynamic System Models. London: George G. Harrap and Co., 1970.
15. NS Nise. Control Systems Engineering. New York: Benjamin and Cummings, 1995.
16. K Ogata. Modern Control Systems. London: Prentice Hall, 1997.

17. FH Raven. Automatic Control Engineering. 4th ed. New York: McGraw-Hill, 1987.

Articles

18. LM Silverman. Realization of linear dynamical systems. IEEE Trans Automatic Control
AC-16:554–567, 1971.

Mathematical Models of Systems 145





4
Classical Time-Domain Analysis of
Control Systems

4.1 INTRODUCTION

Chapters 4 and 5 refer to the time-domain analysis of linear time-invariant control
systems. In particular, Chap. 4 refers to single-input–single-output (SISO) systems
and uses the classical system description techniques: namely, the differential equa-
tions and the transfer function. On the other hand, Chap. 5 refers to the general case
of systems with many inputs and many outputs (MIMO), and uses the modern
system description technique: namely, the state equations. The reason for studying
both the classical as well as the modern analysis methods is that both methods have
great theoretical and practical importance for control engineers.

The problem of time-domain analysis may be briefly stated as follows: given
the system (i.e., given a specific description of the system) and its input, determine
the time-domain behavior of the output of the system.

The basic motivation for system analysis is that one can predict (theoretically)
the system’s behavior.

4.2 SYSTEM TIME RESPONSE

4.2.1 Analytical Expression of Time Response

Consider the SISO linear time-invariant system described by the differential equation

yðnÞ þ an�1y
ðn�1Þ

þ � � � þ a1y
ð1Þ

þ a0y ¼ bmuðmÞ
þ � � � þ b1u

ð1Þ
þ b0u ð4:2-1Þ

with initial conditions yðkÞð0Þ ¼ ck, k ¼ 0; 1; 2; . . . ; n � 1 and uðkÞð0Þ ¼ dk, k ¼ 0; 1; 2
; . . . ;m� 1 and m � n. To find the general solution of Eq. (4.2-1) we proceed as
follows: Apply the Laplace transform to Eq. (4.2-1); after some algebraic simplifica-
tions, we arrive at the following:

aðsÞYðsÞ � �ðsÞ ¼ bðsÞUðsÞ � �ðsÞ ð4:2-2Þ

where
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aðsÞ ¼ sn þ an�1 þ � � � þ a1s þ a0; bðsÞ ¼ bmsm þ bm�1s
m�1

þ � � � þ b1s þ b0

�ðsÞ ¼
Xn

i¼0

Xi�1
k¼0

aicks
i�1�k

¼ �n�1s
n�1

þ �n�2s
n�2

þ � � � þ �1s þ �0

�ðsÞ ¼
Xm
i¼0

Xi�1
k¼0

bidks
i�1�k

¼ �m�1s
m�1

þ �m�2s
m�2

þ � � � þ �1s þ �0

It is pointed out that the polynomials aðsÞ and bðsÞ are functions of the coefficients ai

and bi, respectively, while the polynomial �ðsÞ is a function of both the coefficients ai

and the initial conditions ck and the polynomial �ðsÞ is a function of both the
coefficients bi and the initial conditions dk. The solution of Eq. (4.2-2) is given by

YðsÞ ¼
bðsÞ

aðsÞ

� �
UðsÞ þ

�ðsÞ

aðsÞ
�

�ðsÞ

aðsÞ
¼

�ðsÞ

aðsÞ

� �
þ

bðsÞ

aðsÞ

� �
UðsÞ �

�ðsÞ

aðsÞ

� �
¼ YhðsÞ þ Yf ðsÞ ð4:2-3Þ

where

YhðsÞ ¼
�ðsÞ

aðsÞ
and Yf ðsÞ ¼

bðsÞ

aðsÞ

� �
UðsÞ �

�ðsÞ

aðsÞ

Here, yhðtÞ ¼ L�1
fYhðsÞg is called the natural or free response of the system and it is

due solely to the initial conditions c0; c1 � � � ck�1. In other words yhðtÞ is the system’s
response when there is no external excitation, i.e., when uðtÞ ¼ 0. It is for this reason
that yhðtÞ is also known as the homogeneous solution of the differential equation (4.2-
1). On the other hand, yf ðtÞ ¼ L�1

fYf ðsÞg is called the forced response and it is due
solely to the input uðtÞ and its initial conditions d0; d1; . . . ; dm�1. The forced response
yf ðtÞ is also known as the particular solution of the differential equation (4.2-1).

Clearly, when the initial conditions c1; c2; . . . ; ck are all zero, then �ðsÞ ¼ 0, and
when the initial conditions d1; d2; . . . ; dm are all zero, then �ðsÞ ¼ 0. When both �ðsÞ
and �ðsÞ are zero or �ðsÞ � �ðsÞ ¼ 0, then YðsÞ reduces to

YðsÞ ¼
bðsÞ

aðsÞ

� �
UðsÞ ¼ GðsÞUðsÞ; where GðsÞ ¼

aðsÞ

bðsÞ
ð4:2-4Þ

where GðsÞ is the system’s transfer function.
Let the input UðsÞ have the general form

UðsÞ ¼
f ðsÞ

vðsÞ
¼

fqs
q
þ fq�1s

q�1
þ � � � þ f1s þ f0

s p þ vp�1s
p�1 þ � � � þ v1s þ v0

ð4:2-5Þ

In this case, Eq. (4.2-3) becomes

YðsÞ ¼
bðsÞ f ðsÞ

aðsÞvðsÞ
þ
�ðsÞ

aðsÞ
�

�ðsÞ

aðsÞ

Also, let

bðsÞ f ðsÞ

aðsÞvðsÞ
¼

�ðsÞ

aðsÞ
þ

�ðsÞ

vðsÞ

Then, YðsÞ becomes
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YðsÞ ¼
�ðsÞ

aðsÞ
þ

�ðsÞ

vðsÞ
þ
�ðsÞ

aðsÞ
�

�ðsÞ

aðsÞ
¼

�ðsÞ

aðsÞ
þ

�ðsÞ

vðsÞ
¼ Y1ðsÞ þ Y2ðsÞ ð4:2-6Þ

where Y1ðsÞ ¼
�ðsÞ

aðsÞ
, Y2ðsÞ ¼

�ðsÞ

vðsÞ
, and �ðsÞ ¼ �ðsÞ þ �ðsÞ � �ðsÞ. Further, assume that

aðsÞ ¼
Yn
i¼1

ðs � �iÞ and vðsÞ ¼
Yp
i¼1

ðs � 	iÞ

To determine yðtÞ, we expand YðsÞ in partial fractions. Let

Y1ðsÞ ¼
�ðsÞ

aðsÞ
¼

Xn

i¼1

Ki

s � �i

and YsðsÞ ¼
�ðsÞ

vðsÞ
¼

Xp

i¼0

Ri

s � 	i

Then, yðtÞ ¼ L�1
fYðsÞg is given by

yðtÞ ¼ L�1
Xn

i¼0

Ki

s � �i

( )
þ L�1

Xp

i¼0

Ri

s � 	i

( )
¼

Xn

i¼0

Kie
�i t þ

Xp

i¼0

Rie
	i t

¼ y1ðtÞ þ y2ðtÞ

ð4:2-7Þ

It is clear from Eq. (4.2-7) that the behavior of yðtÞ is crucially affected by the poles �i

of the system transfer function GðsÞ ¼ bðsÞ=aðsÞ and by the poles 	i of the input
UðsÞ ¼ f ðsÞ=vðsÞ.

The following definitions are introduced.

Definition 4.2.1

The transient response ytrðtÞ of a system is that particular part of the response of the
system which tends to zero as time increases. This means tht ytrðtÞ has the property

lim
t!1

ytrðtÞ ¼ 0

Definition 4.2.2

The steady-state response yssðtÞ of a system is that particular part of the response of
the system which remains after the transient part has reached zero. The steady-state
response may be a constant (e.g., yssðtÞ ¼ c), a sinusoidal function with constant
amplitude (e.g., yssðtÞ ¼ A sin!t), a function increasing with time (e.g., yssðtÞ ¼ ct
or yssðtÞ ¼ ct2 or yssðtÞ ¼ At sin!t), etc.

From the above two definitions it is clear that the total solution yðtÞ is the sum
of the transient response and the steady-state response, i.e.,

yðtÞ ¼ ytrðtÞ þ yssðtÞ

Now, let all poles �i of GðsÞ lie on the left-hand complex plane, or equivalently, let
the real part of all poles �i be negative (Re �i < 0). In this case (and this is usually the
case) we say that the system is asumptotically stable (see Sec. 6.2). It is obvious that if
Re �i < 0, then

lim
t!1

e�i t ¼ 0

Therefore, for asymptotically stable systems, the part y1ðtÞ of the response yðtÞ of
relation (4.2-7), where
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y1ðtÞ ¼
Xn

i¼0

Kie
�i t

belongs to the transient response ytrðtÞ of yðtÞ. This means that the contribution of
�ðsÞ, which is due to the initial conditions of the input uðtÞ, the contribution of �ðsÞ,
which is due to the initial conditions of the output yðtÞ, and the part of the response
�ðsÞ=aðsÞ, all appear only in the system’s transient response. Hence, in the steady-
state response, only the part y2ðtÞ of the response yðtÞ of relation (4.2-7) will appear,
where

y2ðtÞ ¼
Xp

i¼0

Rie
	i t

for which Re 	i � 0. The rest of y2ðtÞ, for which Re 	i < 0, belongs to the transient
response of yðtÞ.

Remark 4.2.1

From the aforementioned material, we arrive at the conclusion that the waveform of
yssðtÞ of asymptotically stable systems solely depends upon the poles 	i of the input,
for which Re 	i � 0. In control systems, the input is usually the unit step input
uðtÞ ¼ 1. In this case, we have

Y2ðsÞ ¼
�ðsÞ

vðsÞ
¼

�0
s
¼

Gð0Þ

s
¼

b0
a0s

; where GðsÞ ¼
bðsÞ

aðsÞ

For simplicity, assume that Gð0Þ ¼ b0=a0 ¼ 1. Then, Y2ðsÞ ¼ 1=s, and hence
yssðtÞ ¼ 1, i.e., the output follows exactly the input in the steady state.

To illustrate the material of the present subsection, we present two simple
examples. In the first example, in order to simplify the analysis, no use is made of
the general procedure presented in this subsection. On the contrary, in the second
example, the general procedure is illustrated by applying all steps to yield yðtÞ.

Example 4.2.1

Consider the RL circuit shown in Figure 4.1 with initial conditions ið0Þ ¼ I0. For
simplicity, let the input voltage vðtÞ ¼ uðtÞ ¼ the unit step function, R ¼ 1� and
L ¼ 1H. Determine the total response of the circuit.

Solution

Kirchhoff’s voltage law is

L
di

dt
þ Ri ¼ vðtÞ or

di

dt
þ i ¼ uðtÞ;

since R ¼ 1�;L ¼ 1H; and vðtÞ ¼ uðtÞ:

Here, the output yðtÞ ¼ vRðtÞ ¼ Ri ¼ i. Substituting this relation in the differential
equation yields

dy

dt
þ y ¼ uðtÞ

The above differential equation relates directly the input uðtÞ with the output yðtÞ.
Take the Laplace transform of both sides of the differential equation to yield
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sYðsÞ � yð0Þ þ YðsÞ ¼
1

s
; where yð0Þ ¼ vRð0Þ ¼ Rið0Þ ¼ I0

Solving for YðsÞ gives

YðsÞ ¼
1

sðs þ 1Þ
þ

yð0Þ

s þ 1
¼
1

s
�

1

s þ 1
þ

yð0Þ

s þ 1

Taking the inverse Laplace transform, yields

yðtÞ ¼ 1� e�t
þ yð0Þe�t

The above expression for yðtÞ is the total response of the circuit. The right-hand side
of the equation may be grouped as follows:

yðtÞ ¼ yð0Þe�t|fflfflffl{zfflfflffl}
free response

þ ½1� e�t
�|fflfflfflfflffl{zfflfflfflfflffl}

forced response

¼ yhðtÞ þ yf ðtÞ

or may be grouped as follows

yðtÞ ¼ ½ yð0Þ � 1�e�t|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
transient response

þ 1|{z}
steady�state response

¼ ytrðtÞ þ yssðtÞ

These two ways of writing yðtÞ clearly demonstrate the four characteristics of the
time response of a system:

1. Free response yhðtÞ ¼ the part of yðtÞ which is due to the initial condition
yð0Þ.

2. Forced response yf ðtÞ ¼ the part of yðtÞ which is due to the external excita-
tion uðtÞ.

3. Transient response ytrðtÞ ¼ the part of yðtÞ which goes to zero fast.
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4. Steady state yssðtÞ ¼ the part of yðtÞ which remains after the transient
response has died out.

Example 4.2.2

Consider a system described by the following differential equation:

yð2Þ þ 3yð1Þ þ 2y ¼ 6uð1Þ þ 2u

with initial conditions yð0Þ ¼ 1 and yð1Þð0Þ ¼ 2. Let uðtÞ ¼ e5t, in which case uð0Þ ¼ 1.
To illustrate the general procedure presented in this subsection for determining the
total time response of a system, apply this procedure, step by step, to solve the given
differential equation.

Solution

Take the Laplace transform of both sides of the differential equation to yield

½s2YðsÞ � syð0Þ � yð1Þð0Þ� þ 3½sYðsÞ � yð0Þ� þ 2YðsÞ ¼ 6½sUðsÞ � uð0Þ� þ 2UðsÞ

or

ðs2 þ 3s þ 2ÞYðsÞ � ½yð0Þs þ yð1Þð0Þ þ 3yð0Þ� ¼ ð6s þ 2ÞUðsÞ � 6uð0Þ

Comparing the equation above with Eq. (4.2-2), we have

aðsÞ ¼ s2 þ a1s þ a0 ¼ s2 þ 3s þ 2 ¼ ðs þ 1Þðsþ 2Þ

bðsÞ ¼ b1s þ b0 ¼ 6sþ 2 ¼ 2ð3s þ 1Þ

�ðsÞ ¼ �1sþ �0 ¼ yð0Þs þ yð1Þð0Þ þ 3yð0Þ ¼ s þ 5

�ðsÞ ¼ �0 ¼ 6uð0Þ ¼ 6

The free response of the system is

YhðsÞ ¼
�ðsÞ

aðsÞ
¼

s þ 5

s2 þ 3s þ 2
¼

s þ 5

ðs þ 1Þðs þ 2Þ
¼

4

s þ 1
�

3

sþ 2

and hence

yhðtÞ ¼ L�1
fYhðsÞg ¼ 4e�t

� 3e�2t

The force response of the system is

Yf ðsÞ ¼
bðsÞ

aðsÞ

� �
UðsÞ �

�ðsÞ

aðsÞ
¼

2ð3s þ 1Þ

s2 þ 3s þ 2

� �
1

s� 5

� �
�

6

s2 þ 3s þ 2

¼
32

ðs þ 1Þðs þ 2Þðs � 5Þ
¼

�16=3

s þ 1
þ
32=7

s þ 2
þ
16=21

s � 5

and hence

yf ðtÞ ¼ �
16

3
e�t

þ
32

7
e�2t þ

16

21
e5t

Therefore, the total time response of the system is
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yðtÞ ¼ yhðtÞ þ yf ðtÞ

¼ ½4e�t
� 3e�2t� þ �

16

3
e�t

þ
32

7
e�2t þ

16

21
e5t

� �

¼ �
4

3
e�t

þ
11

7
e�2t þ

16

21
e5t

The transient response ytrðtÞ involves all terms of yðtÞ which tend to zero as time
increases. Therefore

ytrðtÞ ¼ 4e�t
� 3e�2t �

16

3
e�t

þ
32

7
e�2t ¼ �

4

3
e�t

þ
11

7
e�2t

The steady-state response will then be

yssðtÞ ¼
16

21
e5t

Clearly

yðtÞ ¼ yhðtÞ þ yf ðtÞ ¼ ytrðtÞ þ yssðtÞ

4.2.2 Characteristics of the Graphical Representation of Time
Response

The total system time response (i.e., both transient and steady state) of an asump-
totically stable system with uðtÞ ¼ 1, has the general form shown in Figure 4.2. This
waveform gives an overall picture of the system’s behavior in the time domain. The
basic characteristics of this unit step response waveform are the following.
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1 Maximum Overshoot

This is the difference between the maximum value ym and the final value (i.e., the
steady state yss) of yðtÞ. The percentage v of the maximum overshoot is defined as

v% ¼ 100
ym � yss

yss

� �
ð4:2-7Þ

2 Delay Time Td

This is the time required for yðtÞ to reach half of its final value.

3 Rise Time Tr

This is the time required for yðtÞ to rise from 10% to 90% of its final value.

4 Settling Time Ts

This is the time required for yðtÞ to reach and remain within a certain range of its
final value. This range is usually from 2–5% of the amplitude of the final value.

4.3 TIME RESPONSE OF FIRST- AND SECOND-ORDER SYSTEMS

In Sec. 4.2 we presented a rather general method of analyzing linear systems. In this
section we present a detailed analysis of first- and second-order systems with zero
initial conditions, since these type of systems are often met in practice. In particular,
we derive the analytical expressions of the responses for first- and second-order
systems. We also study the effects of the transfer function parameters on the system’s
output waveform, aiming in waveform standardization. It is shown that the stan-
dardization is easy for first- and second-order systems, but becomes more and more
difficult as the order of the system increases.

4.3.1 First-Order Systems

The transfer function of a first-order system has the general form

GðsÞ ¼
b0

s þ a0
¼

K

Ts þ 1
ð4:3-1Þ

where K is the amplification constant and T is the time constant. The system
response YðsÞ, when UðsÞ ¼ 1=s and K ¼ 1, will be YðsÞ ¼ 1=s ðTs þ 1Þ: If we expand
YðsÞ in partial fractions, we obtain

YðsÞ ¼
1

s
�

1

s þ 1=T
; and hence yðtÞ ¼ 1� e�ðt=TÞ

ð4:3-2Þ

It is clear that first-order systems involve no oscillations and the waveform yðtÞ is
affected only by the time constant T . The waveforms of y1ðtÞ, y2ðtÞ, and y3ðtÞ, which
correspond to the time constants T1 < T2 < T3, are given in Figure 4.3. The con-
clusion derived from Figure 4.3 is that the smaller the T , the higher the speed
response of the system, where the term speed response is defined as the amount of
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time required for yðtÞ to reach 63.78% of its final value. For first-order systems, this
amount of time coincides with the time constant T , since yðTÞ ¼ 1� e�1 ¼ 0:6378:

4.3.2 Second-Order Systems

Consider a second-order system with transfer function

GðsÞ ¼
!2
n

s2 þ 2!ns þ !2
n

ð4:3-3Þ

where the constants !n and  are called the natural undamped frequency and the
damping ratio of the system, respectively. The poles of GðsÞ are

s1;2 ¼ �!n  �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 1

p� �
¼ �!n � j!n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p
¼ �� � j!d

where � ¼ !n and !d ¼ !n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p
are called the attenuation or damping constant

and the damped natural frequency of the system, respectively.
The system’s response YðsÞ, when UðsÞ ¼ 1=s, is as follows:

YðsÞ ¼
!2
n

sðs2 þ 2!þ !2
nÞ

ð4:3-4Þ

Depending on the value, or range of values, of the damping ratio , we distinguish
the following four cases:

Case 1 ð� ¼ 0Þ

In this case the poles of GðsÞ are imaginary since s1;2 ¼ �j!n and relation (4.3-4)
becomes
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YðsÞ ¼
!2
n

sðs2 þ !2
nÞ

If we expand YðsÞ in partial fractions, we have

YðsÞ ¼
1

s
�

s

s2 þ !2
n

; and thus yðtÞ ¼ 1� cos!nt ð4:3-5Þ

Thus, when  ¼ 0 we observe that the response yðtÞ is a sustained oscillation with
constant frequency to !n and constant amplitude equal to 1 (see Figure 4.4). In this
case, we say that the system is undamped.

Case 2 ð0 < � < 1Þ

In this case the poles of GðsÞ are a complex conjugate pair since s1;2 ¼ �� � j!d and
relation (4.3-4) becomes
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YðsÞ ¼
!2
n

s½ðs þ �Þ2 þ !2
d�

If we expand YðsÞ in partial fractions, we have

YðsÞ ¼
1

s
�

s þ 2�

ðs þ �Þ2 þ !2
d

¼
1

s
�

s þ �

ðs þ �Þ2 þ !2
d

�
�

!d

� �
!d

ðs þ �Þ2 þ !2
d

" #

Taking the inverse Laplace transform, we have

yðtÞ ¼ 1� e��t cos!dt�
�

!d

e��t sin!dt

The above expression for yðtÞ may be written as

yðtÞ ¼ 1�
e��tffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p sinð!dtþ ’Þ; where ’ ¼ tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p


ð4:3-6Þ

Thus, when 0 <  < 1 we observe that the response yðtÞ is a damped oscillation
which tends to 1 as t ! 1 (see Figure 4.4). In this case, we say that the system is
underdamped.

Case 3 ð� ¼ 1Þ

In this case the poles of G(s) are the real double pole �!n, and relation (4.3-4)
becomes

YðsÞ ¼
!2
n

sðs þ !nÞ
2

If we expand YðsÞ in partial fractions, we have

YðsÞ ¼
1

s
�

1

s þ !n

�
!2

n

ðsþ !nÞ
2
; and thus yðtÞ ¼ 1� e�!nt � !nte

�!nt

ð4:3-7Þ

Thus, when  ¼ 1 we observe that the waveform of the response yðtÞ involves no
oscillations, and asymptotically tends to 1 as t ! 1 (see Figure 4.4). In this case we
say that the system is critically damped.

Case 4 ð� > 1Þ

In this case the poles of GðsÞ are both real and negative since s1:2 ¼ �� � !n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 1

p
and relation (4.3-4) becomes

YðsÞ ¼
!2
n

s½ðs þ �Þ2 � a2�

where a ¼ !n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 1

p
. If we expand YðsÞ in partial fractions, we have

YðsÞ ¼
1

s
�

s þ �

ðs þ �Þ2 � a2
�

�

a

h i a

ðs þ �Þ2 � a2

� �
Taking the inverse Laplace transform, we have
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yðtÞ ¼ 1� e��t cosh at �
�

a
e��t sinh at

¼ 1� e��t cosh !n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 1

p� �
t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 1

p sinh !n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 1

p� �
t

" #
ð4:3-8Þ

Thus, when > 1 we observe that the response yðtÞ involves no oscillations and tends
asymptotically to 1 as t ! 1, while the speed response decreases as  becomes larger
(see Figure 4.4). In this case, we say that the system is overdamped.

Summarizing the above results we conclude that when  ¼ 0, we have sustained
(undamped) oscillations. As  increases towards 1, these oscillations are damped
more and more. When  reaches 1, the oscillations stop. Finally, as  further
increases becoming greater than 1, we have no oscillations and the output requires
more and more time to reach asymptotically the value 1.

4.3.3 Special Issues for Second-Order Systems

Here we will study certain issues regarding second-order systems which are of parti-
cular interest.

1 The Root Locus

The term root locus (see Chap. 7) is defined as the locus of all roots of the character-
istic polynomial pðsÞ of a system in the complex plane. This locus is formed when
varying one or more system parameters. Consider a system described by its transfer
function GðsÞ, where pðsÞ is the denominator of GðsÞ. For second-order systems, pðsÞ
has the form

pðsÞ ¼ s2 þ 2!ns þ !2
n ð4:3-9Þ

The roots of pðsÞ are s1;2 ¼ �!n � !n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 1

p
. In Figure 4.5 the root locus of these

two roots is shown, as  varies from �1 to þ1.

2 The Time Response as a Function of the Positions of the Two Poles

In Figure 4.6 several typical positions of the poles of relation (4.3-9) and the corre-
sponding unit-step responses are given.

3 Relation Between the Damping Ratio and the Overshoot

We have found that when 0 <  < 1 the response yðtÞ has the analytical form (4.3-6),
while its waveform presents an overshoot. To determine this overshoot it suffices to
determine the maximum value ym of yðtÞ. To this end, we take the derivative of
relation (4.3-6) to yield

yð1ÞðtÞ ¼
e��tffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p ½� sinð!dt þ ’Þ � !d cosð!dt þ ’Þ� ¼
!ne

��tffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p sin!dt

Here yð1ÞðtÞ is zero when sin!dt ¼ 0. Furthermore, sin!dt is zero when !dtk ¼ k�,
where k ¼ 1; 2; . . . ; i.e., when

tk ¼
k�

!d

¼
k�

!n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p ; k ¼ 1; 2; . . .

Hence, the expression for yðtkÞ is
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yðtkÞ ¼1�
exp �k�=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p sinðk�þ ’Þ

¼ 1þ ð�1Þk�1 exp �k�=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p� �
; k ¼ 1; 2; . . .

Clearly, yðtkÞ becomes maximum for k ¼ 1; 3; 5 . . . and minimum for k ¼ 2; 4; 6; . . .
(see Figure 4.7a). Therefore, the maximum value ym is given by

ym ¼ 1þ exp ��=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p� �
ð4:3-10Þ

which occurs when k ¼ 1, i.e., at the time instant

t1 ¼
�

!n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p ð4:3-11Þ

The overshoot percentage defined in Eq. (4.2-7) will be

v% ¼ 100 exp ��=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p� �
ð4:3-12Þ

The overshoot v as a function of the damping ratio  is given in Figure 4.7b.

4.4 MODEL SIMPLICATION

The model simplification or model reduction problem may be stated as follows. We
are given a detailed mathematical model of a system, which is usually of very high
order and hence very difficult to work with. We wish to find a simpler model, which
approximates the original model satisfactorily. Clearly, the simpler model has the
advantage in that it simplifies the system description, but it has the disadvantage in
that it is less accurate than the original detailed model.

The motivation for deriving simplified models may be summarized as follows:

1. It simplifies the description and the analysis of the system
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2. It simplifies the computer simulation of the system
3. It facilitates the controller design problem and yields controllers with sim-

pler structures
4. It reduces the computational effort in the analysis and design of control

systems.

Obviously, the order of the simplified model is much less than that of the
original model. For this reason the model simplification problem is also known as
the order reduction problem.

Many techniques have been proposed to simplify a model [36–39]. This section
aims to introduce the reader to this interesting problem. To this end, we will present
here one of the simplest techniques known as the dominant pole method.

The dominant pole method is as follows. Let GðsÞ be the transfer function of
the original system. Expand GðsÞ in partial fractions to yield

GðsÞ ¼
c1

s � �1
þ

c2
s� �2

þ � � � þ
cn

s � �n

where �1; �2; . . . ; �n are the poles of GðsÞ. Let GðsÞ be asymptotically stable, i.e., let
Re �i < 0, for i ¼ 1; 2; . . . ; n. Then, the closer any pole �i is to the imaginary axis, the
greater the effect on the system response and vice versa; i.e., the farther away �i is
from the imaginary axis, the less the effect on the system response. For this reason,
the poles that are located close to the imaginary axis are called dominant poles.

The dominant pole simplification method yields a simplified model involving
only the dominant poles.

To illustrate the dominant pole approach, consider a system with input signal
uðtÞ ¼ 1 and transfer function

GðsÞ ¼
1

sþ �1
þ

1

sþ �2
; where �1 and �2 positive and �1 � �2:

Then
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YðsÞ ¼ GðsÞUðsÞ ¼
1

sðs þ �1Þ
þ

1

sðsþ �1Þ

¼
1

�1

1

s
�

1

s þ �1

� �
þ

1

�2

1

s
�

1

s þ �2

� �
Hence

yðtÞ ¼
1

�1
ð1� e��1tÞ þ

1

�2
ð1� e��2tÞ

Here, ��1 is closer to the imaginary axis than ��2. Hence, the term e��2 t goes to zero
much faster than e��1t. For this reason the dominant pole ��1 is often called slow
mode and ��2 is called fast mode. Let G1ðsÞ be the satisfactory approximant of GðsÞ
sought. Then, since e��2t goes to zero much faster than e��1t, it is clear that G1ðsÞ
should ‘‘keep’’ the slow mode ��1 and ‘‘drop’’ the fast mode ��2. For this reason,
we choose as simplified model the transfer function G1ðsÞ, where

G1ðsÞ ¼
1

sþ �1

Clearly, G1ðsÞ is simpler than the original GðsÞ and involves the most dominant pole
��1. The time response y1ðtÞ of the simplified model is given by

y1ðtÞ ¼ L�1
fG1ðsÞUðsÞg ¼

1

�1
ð1� e��1tÞ

Example 4.4.1

Consider the transfer function

GðsÞ ¼
A1

s þ 1
þ

A2

s þ 2
þ

A3

s þ 10
þ

A4

s þ 100
þ

A5

s þ 1000

Find a simplified model of third and second order using the dominant pole method.

Solution

The dominant poles of GðsÞ, in decreasing order, are �1, �2, and �10. Let G3ðsÞ and
G2ðsÞ be the third- and the second-order approximants of GðsÞ. Then, the simplified
models sought are the following:

G3ðsÞ ¼
A1

s þ 1
þ

A2

s þ 2
þ

A3

s þ 10
and G2ðsÞ ¼

A1

s þ 1
þ

A2

s þ 2

For simplicity, let A1 ¼ A2 ¼ A3 ¼ A4 ¼ A5 ¼ 1. Also, let the input signal
uðtÞ ¼ 1. Then, the output yðtÞ of the original system GðsÞ and the output y3ðtÞ and
y2ðtÞ of the reduced-order systems G3ðsÞ and G2ðsÞ, respectively, may be determined
as follows: For yðtÞ, we have

YðsÞ ¼
1

s

1

s þ 1
þ

1

s þ 2
þ

1

s þ 10
þ

1

s þ 100
þ

1

s þ 1000

� �

¼
1

s
�

1

s þ 1

� �
þ
1

2

1

s
�

1

s þ 2

� �
þ

1

10

1

s
�

1

s þ 10

� �

þ
1

100

1

s
�

1

100

� �
þ

1

1000

1

s
�

1

1000

� �
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and hence

yðtÞ ¼ ½1� e�t
� þ 1

2 ½1� e�2t� þ 1
10 ½1� e�10t� þ 1

100 ½1� e�100t� þ 1
1000 ½1� e�1000t�

For y3ðtÞ and y2ðtÞ we keep only the first three and two brackets in the above
expression, respectively, i.e.,

y3ðtÞ ¼ ½1� e�t
� þ 1

2 ½1� e�2t� þ 1
10 ½1� e�10t�

y2ðtÞ ¼ ½1� e�t
� þ 1

2 ½1� e�2t�

In Figure 4.8 the plots of yðtÞ, y3ðtÞ, and y2ðtÞ are given. Comparison of these three
plots shows that both y3ðtÞ and y2ðtÞ are close to yðtÞ. For better accuracy, one may
choose G3ðsÞ as an approximant of GðsÞ. For greater simplicity one may choose G2ðsÞ.
Clearly, in choosing either G3ðsÞ or G2ðsÞ, we reduce the order of the original system
from five to three ðG3ðsÞÞ or to two ðG2ðsÞÞ.

4.5 COMPARISON BETWEEN OPEN- AND CLOSED-LOOP SYSTEMS

There are important differences between open- and closed-loop systems. Three of
these differences are of paramount importance and they are described below. From
these differences we conclude that closed-loop systems are superior over open-loop
systems and, for this reason, they are more often used in practice.
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4.5.1 Effect on the Output Due to Parameter Variations in the Open-
Loop System

Consider the closed-loop system shown in Figure 4.9, where GðsÞ is the transfer
function of the system under control and FðsÞ is the feedback transfer function.
The open-loop system’s output YðsÞ (i.e., when FðsÞ ¼ 0) is

YðsÞ ¼ GðsÞRðsÞ ð4:5-1Þ

The closed-loop system’s output YcðsÞ (i.e., when FðsÞ 6¼ 0Þ is

YcðsÞ ¼
GðsÞ

1þ GðsÞFðsÞ

� �
RðsÞ ð4:5-2Þ

Now, assume that certain parameters of the transfer function GðsÞ undergo varia-
tions. Let dGðsÞ be the change in GðsÞ due to these parameter variations. As a result,
the output YðsÞ will also vary. In particular, for the open-loop system (4.5-1) the
change dYðsÞ of the output YðsÞ will be

dYðsÞ ¼ RðsÞdGðsÞ ð4:5-3Þ

while for the closed-loop system (4.5-2) the change dYcðsÞ of the output YcðsÞ will be

dY
c
ðsÞ ¼

RðsÞ

½1þ GðsÞFðsÞ�2

� �
dGðsÞ ð4:5-4Þ

If we divide relations (4.5-3) and (4.5-1), we have

dYðsÞ

YðsÞ
¼
dGðsÞ

GðsÞ
ð4:5-5Þ

Similarly, if we divide relations (4.5-4) and (4.5-2), we have

dYcðsÞ

YcðsÞ
¼

1

1þ GðsÞFðsÞ

� �
dGðsÞ

GðsÞ
ð4:5-6Þ

Next, consider the magnitudes in Eqs (4.5-5) and (4.5-6). We have

dYðsÞ

YðsÞ

����
���� ¼ dGðsÞ

GðsÞ

����
���� ð4:5-7Þ

dYcðsÞ

YcðsÞ

����
���� ¼ 1

j1þ GðsÞFðsÞj

dGðsÞ

GðsÞ

����
���� ð4:5-8Þ

164 Chapter 4

Figure 4.9 Closed-loop system.



In control systems, we usually work in low frequencies, in which case we have that
jGðsÞFðsÞj � 1. This readily yields

jdYcðsÞj � jdYðsÞj ð4:5-9Þ

Releation (4.5-9) reveals that the effects of parameter changes of the transfer func-
tion GðsÞ on the closed-loop system’s output YcðsÞ is much smaller than that its
effects on the open-loop system’s output YðsÞ. This property is one of the most
celebrated basic advantages of closed-loop systems over open-loop systems.

4.5.2 Effect on the Output Due to Parameter Variations in the
Feedback Transfer Function

Assume that the parameters of FðsÞ undergo certain variations. If we differentiate,
relation (4.5-2) yields

dYcðsÞ ¼ �
G2

ðsÞRðsÞ

½1þ GðsÞFðsÞ�2

" #
dFðsÞ ð4:5-10Þ

If we divide relations (4.5-10) and (4.5-2), we have

dYcðsÞ

YcðsÞ
¼ �

GðsÞ

1þ GðsÞFðsÞ

� �
dFðsÞ or

dYcðsÞ

YcðsÞ

����
���� ¼ jGðsÞFðsÞj

j1þ GðsÞFðsÞj

dFðsÞ

FðsÞ

����
����

ð4:5-11Þ

Since jGðsÞFðsÞj � 1, it follows that

jGðsÞFðsÞj

j1þ GðsÞFðsÞj
’ 1

Hence, relation (4.5-11) becomes

dYcðsÞ

YcðsÞ

����
���� ’ dFðsÞ

FðsÞ

����
���� ð4:5-12Þ

Relation (4.5-12) indicates that the variation dFðsÞ crucially affects the system’s
output. For this reason the feedback transfer function FðsÞ must be made up of
elements which should vary as little as possible.

4.5.3 Effect of Disturbances

Consider the two systems shown in Figure 4.10b, where we assume the presence of
the disturbance (or noise) DðsÞ. For the open-loop system of Figure 4.10a, the por-
tion YdðsÞ of the output which is due to the disturbance DðsÞ will be

YdðsÞ ¼ G2ðsÞDðsÞ ð4:5-13Þ

Similarly for the closed-loop system of Figure 4.10, we have that

YcdðsÞ ¼
G2ðsÞ

1þ G1ðsÞG2ðsÞ

� �
DðsÞ ð4:5-14Þ

where YcdðsÞ is the output YcðsÞ of the closed-loop system due to the disturbance
DðsÞ. From relations (4.5-13) and 4.5-14) we have that
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YcdðsÞ ¼
1

1þ G1ðsÞG2ðsÞ

� �
YdðsÞ ð4:5-15Þ

Taking under consideration that jG1ðsÞG2ðsÞj � 1, yields

jYcdðsÞj � jYdðsÞj ð4:5-16Þ

Relation (4.5-16) reveals another advantage of the feedback action, i.e., of the
closed-loop system over the open-loop system. Specifically, it shows that the output
of a closed-loop system is much less sensitive to disturbances than that of an open-
loop system. This advantage of the closed-loop systems is of paramount importance
in practical control applications.

4.6 SENSITIVITY TO PARAMETER VARIATIONS

In the previous section, we dealt with systems or processes which are very often
subject to parameter variations, which, in turn have undesirable effects upon the
performance of the system. These variations in GðsÞ are usually due to component
aging, changing in the environment, inevitable errors in the system or process model
(e.g., in the parameters of its transfer function GðsÞ), and other factors. In Subsec.
4.5.1 it was assessed that in the open-loop case, changes in GðsÞ have a serious effect
on the output YðsÞ. In the closed-loop case, this effect is considerably reduced, a fact
which makes the closed-loop configuration much more attractive in practice than the
open-loop configuration.

In Subsec. 4.5.1, we studied the effect upon the output due to parameter
variations. In this section we focus our attention on the determination of the sensi-
tivity of the transfer function and of the poles of the closed-loop system due to
parameter variations in GðsÞ. In this section we seek to establish techniques which
yield the magnitude of the sensitivity of the transfer function and of the poles of the
closed-loop system due to parameter variations.

166 Chapter 4

Figure 4.10 (a) Open- and (b) closed-loop systems with disturbances.



4.6.1 System Sensitivity to Parameter Variations

Definition 4.6.1

The closed-loop system sensitivity, designated by SH
G is defined as the ratio of the

percentage change in the closed-loop transfer function HðsÞ to the percentage change
in the system transfer function GðsÞ, for a small incremental change. That is

SH
G ¼

�HðsÞ=HðsÞ

�GðsÞ=GðsÞ
ð4:6-1Þ

In the limit, as the incremental changes go to zero, Eq. (4.6-1) becomes

S ¼
@H=H

@G=G
¼

@ lnH

@ lnG
ð4:6-2Þ

For the open-loop case, we have that HðsÞ ¼ GðsÞ and, hence, the sensitivity SG
G

of the open-loop system is

SG
G ¼

@HðsÞ=HðsÞ

@GsÞ=GðsÞ
¼

@GðsÞ=GðsÞ

@GðsÞ=GðsÞ
¼ 1 ð4:6-3Þ

For the closed-loop case, we will consider the following two problems: the
sensitivity of the closed system with respect to the changes in GðsÞ, denoted as SH

G ,
and the sensitivity of the closed system with respect to the changes in FðsÞ, denoted as
SH

F . To this end, consider the closed-loop transfer function

HðsÞ ¼
GðsÞ

1þ GðsÞFðsÞ
ð4:6-4Þ

Hence,

SH
G ¼

@HðsÞ=HðsÞ

@GðsÞ=GðsÞ
¼

GðsÞ

HðsÞ

� �
@HðsÞ

@GðsÞ

� �
¼ GðsÞ

1þ GðsÞFðsÞ

GðsÞ

� �
@HðsÞ

@GðsÞ

� �

¼ ½1þ GðsÞFðsÞ�
1

½1þ GðsÞFðsÞ�2

� �
¼

1

1þ GðsÞFðsÞ
ð4:6-5Þ

Similarly,

SH
F ¼

@HðsÞ=HðsÞ

@FðsÞ=FðsÞ
¼

FðsÞ

HðsÞ

� �
@HðsÞ

@FðsÞ

� �
¼ FðsÞ

1þ GðsÞFðsÞ

GðsÞ

� �
@HðsÞ

@FðsÞ

� �

¼ �
FðsÞ½1þ GðsÞFðsÞ�

GðsÞ

� �
G2

ðsÞ

½1þ GðsÞFðsÞ�2

" #
¼ �

GðsÞFðsÞ

1þ GðsÞFðsÞ
ð4:6-6Þ

Clearly, when GðsÞFðsÞ � 1, then

SH
G ! 0 and SH

F ! �1 ð4:6-7Þ

Hence SG
G and SH

F indicate that the system is very sensitive to changes in GðsÞ in the
open-loop system case and also very sensitive to changes in FðsÞ in the closed-loop
system case, respectively. On the contrary, SH

G indicates that the closed-loop system
is very insensitive to changes in GðsÞ. These remarks are in complete agreement with
the results of Sec. 4.5.
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4.6.2 Pole Sensitivity to Parameter Variations

Definition 4.6.2

The closed-loop pole sensitivity, denoted as Ss
�, is the ratio of the change in the

position s of the corresponding root � of the characteristic equation of the
closed-loop system to the change in the parameter �, for a small increment
change, i.e.,

Ss
� ¼

ds

d�
ð4:6-8Þ

Definition 4.6.2 is very useful in determining the sensitivity of the roots of the
characteristic equation (and hence the sensitviity of the poles) of the closed-loop
system due to variations in a certain parameter. In computing Eq. (4.6-8), one may
find the sensitivity to be, for example, very high, in which case one should take
appropriate steps to reduce it.

Example 4.6.1

Consider a typical second-order closed-loop system given in Figure 4.11. Find:

a. The sensitivity of the transfer function of the closed-loop system with
respect to the gain K and to the parameter a (here, 1=a is the time constant
of the open-loop system).

b. The sensitivity of the roots r1 and r2 with respect to K and a. The nominal
values of K and a are K ¼ 20 and a ¼ 4.

c. Let �K ¼ 4 and�a ¼ 2 be the variations in K and a, respectively, in which
case the new values of K and a are K ¼ 20þ�K ¼ 24 and
a ¼ 4þ�a ¼ 6. Using the sensitivity approach, find the approximate
values of r1 and r2 for each variation �K and �a, separately, and compare
them with the exact values. Repeat the same step when both variations �K
and �a take place simultaneously.

Solution

a. The transfer function HðsÞ of the closed-loop system is

HðsÞ ¼
YðsÞ

RðsÞ
¼

GðsÞ

1þ GðsÞFðsÞ
¼

K

sðs þ aÞ þ K

The sensitivity of HðsÞ with respect to K is given by
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SH
K ¼

K

H

� �
dH

dK

� �
¼

K ½sðs þ aÞ þ K �

K

� �
sðsþ aÞ þ K � � K

½sðsþ aÞ þ K �
2

� �
¼

sðs þ aÞ

sðs þ aÞ þ K

Similarly, the sensitivity of HðsÞ with respect to a is given by

SH
a ¼

a

H

h i dH

da

� �
¼

a½sðs þ aÞ þ K �

K

� �
�sK

½sðs þ aÞ þ K �
2

� �
¼

�as

sðs þ aÞ þ K

Clearly, both SH
K and SH

a are functions of s.
b. The characteristic equation of the closed-loop system is

sðs þ aÞ þ K ¼ ðs � r1Þðs � r2Þ ¼ 0

Taking the derivative with respect to K yields

2s
ds

dK
þ a

ds

dK
þ 1 ¼ 0

and hence

Ss
K ¼

ds

dK
¼

�1

a þ 2s

For the nominal values K ¼ 20 and a ¼ 4, the roots of the characteristic equation are
r1 ¼ �2þ j4 and r2 ¼ �2� 4j. Hence, the root sensitivity Ss

K with respect to K for
the root r1 (i.e., for s ¼ r1) may be determined as follows:

Sr1
K ¼

ds

dK

����
s¼r1

¼
dr1
dK

¼
�1

a þ 2s

����
s¼r1

¼
�1

4þ 2ð�2þ j4Þ
¼

j

8

Similarly, for the sensitivity of r2 (i.e., for s ¼ r2):

Sr2
K ¼

ds

dK

����
s¼r2

¼
dr2
dK

¼
�1

a þ 2s

����
s¼r2

¼
�1

4þ 2ð�2� j4Þ
¼ �

j

8

Next, the sensitivity Ss
a of the roots r1 and r2 of the characteristic polynomial with

respect to a will be determined. To this end, take the derivative of the characteristic
equation sðs þ aÞ þ K ¼ 0 with respect to a to yield

2s
ds

da
þ

d

da
½as� ¼ 2s

ds

da
þ a

ds

da
þ s

da

da

� �
¼ 0

and hence

Ss
a ¼

ds

da
¼

�s

a þ 2s

The sensitivity of the root r1 (i.e., for s ¼ r1) is

Sr1
a ¼

dr1
da

¼
�ð�2þ j4Þ

4þ 2ð�2þ j4Þ
¼ �

2þ j

4

Similarly, for the root r2 (i.e., for s ¼ r2):

Sr2
a ¼

dr2
da

¼ �
2� j

4

c. We consider the following three cases:
1. �K ¼ 4 and �a ¼ 0. In this case, we make use of the relation
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dr1 ¼
dr1
dK

� �
dK ¼ Sr1

K dK

Using this relation, one may approximately determine r1, when K varies, as follows:

�r1 ffi S
r1
K�K ¼

j

8
�K

For �K ¼ 4, the above expression gives �r1 ffi 0:5j. Hence, the new value ~rr1 of r1
due to �K ¼ 4 is given by ~rr1 ffi r1 þ�r1 ¼ �2þ j4:5. To find the exact value �rr1 for
r1, solve the characteristic equation for K ¼ 20þ 4 ¼ 24 and a ¼ 4 to yield
�rr1 ¼ �2þ j

ffiffiffiffiffi
20

p
¼ �2þ j4:47. Comparing the results, we observe that the approx-

imate value ~rr1 is very close to the exact value �rr1.
2. �K ¼ 0 and �a ¼ 2. As in case 1, we use the relation

dr1 ¼
dr1
da

� �
da ¼ Sr1

a da

Using this relation, we determine �r1, when a varies, as follows:

�r1 ffi Sr1
a �a ¼ �

2þ j

8
�a

For �a ¼ 2, the new value ~rr1 of r1 due to �a ¼ 2, is given by

~rr1 ffi r1 þ�r1 ¼ ð�2þ j4Þ �
ð2þ jÞ

4
2 ¼ �3þ j3:5

To find the exact value �rr1 of r1, solve the characteristic equation for K ¼ 20 and a ¼

4þ 2 ¼ 6 to yield �rr1 ¼ �3þ j
ffiffiffiffiffi
11

p
¼ �3þ j3:32. Comparing the results, we observe

that the approximate value �rr1 is very close to its exact value.
3. �K ¼ 4 and �a ¼ 2. In this case both K and a change simultaneously. For

this case, we have

ds ¼
@s

@K

� �
dK þ

@s

@a

� �
da

An approximate expression of the above equation is

�s ffi
@s

@K
�K þ

@s

@a
�a ¼ Ss

K�K þ Ss
a�a

When �K ¼ 4 and �a ¼ 2, we have

�r1 ffi
j

8
4�

2þ j

4
2 ¼ �1

Hence, the new value r̂r1 of r1 due to �K ¼ 4 and �a ¼ 2 is given by
r̂r1 ¼ ð�2þ j4Þ ¼ �3þ j4. To find the exact value �rr1 of r1, solve the characteristic
equation for K ¼ 20þ 4 ¼ 24 and a ¼ 4þ 2 ¼ 6 to yield �rr1 ¼ �3þ j

ffiffiffiffiffi
15

p
¼

�3þ j3:87. Comparing the results, we observe that the approximate value r̂r1 is
very close to the exact value �rr1.

Application of the above procedure yields analogous results for the root r2.
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4.7 STEADY-STATE ERRORS

In this section, the behavior of the steady-state performance of closed-loop systems is
studied. In the design of a control system the steady-state performance is of special
significance, since we seek a system whose output yðtÞ, among other things, has a
prespecified desired steady-state value yssðtÞ. This desired yssðtÞ is usually the steady-
state value rssðtÞ of the input (command) function rðtÞ. That is, control systems are
designed in such a way that when they are excited by rðtÞ, they ‘‘follow’’ this input
rðtÞ in the steady state as closedly as possible, which means that in the steady state it
is desired to have yssðtÞ ¼ rssðtÞ. If yssðtÞ is not exactly equal to rssðtÞ, then an error
appears, which is called the steady-state error. The determination of the steady-state
error is the subject of this section.

4.7.1 Types of Systems and Error Constants

Consider the unity feedback closed-loop system of Figure 4.12. The general case of
nonunity feedback systems is presented in Figure 4.13a, which may readily be
reduced to unity feedback as shown in Figure 4.13b. The material of this section
is based on the configuration of unity feedback of Figure 4.12. To facilitate the study
of nonunity feedback systems, use can be made of its equivalent unity feedback
system of Figure 4.13b.

Consider the unity feedback system of Figure 4.12 and assume that GðsÞ has the
form

GðsÞ ¼ K

Ym
i¼1

ðT 0
i s þ 1Þ

s j
Yq
i¼1

ðTis þ 1Þ

; where j þ q ¼ n � m ð4:7-1Þ

The following definitions are useful.

Definition 4.7.1

A system is called type j system when GðsÞ has j poles at the point s ¼ 0, in which case
GðsÞ has the general form (4.7-1).

Definition 4.7.2

The position (or step) error constant Kp of a system is defined as Kp ¼ lim
s!0

GðsÞ.
Hence, the cosntant Kp takes on the values
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Kp ¼ lim
s!0

GðsÞ ¼ lim
s!0

K

Ym
i¼1

ðT 0
j s þ 1Þ

s j
Yq
i¼1

ðTis þ 1Þ

¼
K when j ¼ 0
1 when j > 0

�
ð4:7-2Þ

Definition 4.7.3

The speed (or velocity, or ramp) error constant Kv of a system is defined as
Kv ¼ lim

s!0
sGðsÞ. Hence, the constant Kv takes on the values

Kv ¼ lim
s!0

sGðsÞ ¼ lim
s!0

K

Ym
i¼1

ðT 0
i s þ 1Þ

s j�1
Yq
i¼1

ðTis þ 1Þ

¼

0 when j ¼ 0
K when j ¼ 1
1 when j > 1

2
4 ð4:7-3Þ

Definition 4.7.4

The acceleration (or parabolic) error constant Ka of a system is defined as
Ka ¼ lim

s!0
s2GðsÞ. Hence, the constant Ka takes on the values

Ka ¼ lim
s!0

s2GðsÞ ¼ lim
s!0

K

Ym
i¼1

ðT 0
i sþ 1Þ

s j�2
Yq
i¼1

ðTis þ 1Þ

¼

0 when j ¼ 0; 1
K when j ¼ 2
1 when j > 2

2
4 ð4:7-4Þ
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4.7.2 Steady-State Errors with Inputs of Special Forms

Consider the closed-loop system of unity feedback of Figure 4.12. The system error
eðtÞ studied in this section is defined as the difference between the command signal
rðtÞ and the output of the system yðtÞ, i.e.,

eðtÞ ¼ rðtÞ � yðtÞ ð4:7-5Þ

The steady-state error essðtÞ is given by

essðtÞ ¼ rssðtÞ � yssðtÞ ð4:7-6Þ

where

essðtÞ ¼ lim
t!1

eðtÞ; rssðtÞ ¼ lim
t!1

rðtÞ; and yssðtÞ ¼ lim
t!1

yðtÞ

Clearly, the above definitions may be applied to nonunity feedback systems, as long
as their equivalent block diagram of Figure 4.13b is used.

The steady-state error (4.7-6) indicates the deviation of yssðtÞ from rssðtÞ. In
practice, we wish essðtÞ ¼ 0, i.e., we wish yssðtÞ to follow exactly the command signal
rssðtÞ. In cases where essðtÞ 6¼ 0, one seeks ways to reduce or even to zero the steady-
state error.

In order to evaluate essðtÞ, we work as follows. From Figure 4.12 we have

EðsÞ ¼
RðsÞ

1þ GðsÞ
ð4:7-7Þ

It is noted that for the general case of nonunity feedback systems, using Figure 4.13,
relation (4.7-7) becomes

EðsÞ ¼
1

1þ GðsÞ

� �
RðsÞ ¼

1þ ~GGðsÞ ~FFðsÞ � ~GGðsÞ

1þ ~GGðsÞ ~FFðsÞ

" #
RðsÞ ð4:7-8Þ

If we apply the final value theorem (see relation (2.3-17)) to Eq. (4.7-7) we have

essðtÞ ¼ lim
s!0

sEðsÞ ¼ lim
s!0

sRðsÞ

1þ GðsÞ
ð4:7-9Þ

given that the function sEðsÞ has all its poles on the left-half complex plane.
We will examine the steady-state error essðtÞ for the following three special

forms of the input r(t).
1. rðtÞ ¼ P. In this case the input is a step function with amplitude P. Here,

essðtÞ is called the position error. We have

essðtÞ ¼ lim
s!0

sEðsÞ ¼ lim
s!0

s½P=s�

1þ GðsÞ
¼

P

1þ lim
s!0

GðsÞ
¼

P

1þ Kp

¼

P

1þ K
when j ¼ 0

0 when j > 0

2
4

ð4:7-10Þ

where use was made of relation (4.7-2). From relation (4.7-10) we observe that for
type 0 systems the position error is P=ð1þ KÞ, while for type greater than 0 systems
the position error is zero.
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2. rðtÞ ¼ Vt. In this case the input is a ramp function with slope equal to V .
Here essðtÞ is called the speed or velocity error. We have

essðtÞ ¼ lim
s!0

sEðsÞ ¼ lim
s!0

s½V=s2�

1þ GðsÞ
¼

V

lim
s!0

sGðsÞ
¼

V

Kv

¼

1 when j ¼ 0

A

Kv

when j ¼ 1

0 when j > 1

2
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ð4:7-11Þ

where use was made of relation (4.7-3). From relation (4.7-11) we observe that for
type 0 systems the speed error is infinity, for type 1 systems it is V=K , and for type
greater than 1 systems it is zero.

3. rðtÞ ¼ ð1=2ÞAt2. In this case the input is a parabolic function. Here, essðtÞ is
called the acceleration error. We have

essðtÞ ¼ lim
s!0

sEðsÞ ¼ lim
s!0

s½A=s3�

1þ GðsÞ
¼

A

lim
s!0

s2GðsÞ
¼

A

Ka

¼

1 when j ¼ 0; 1
A

K
when j ¼ 2

0 when j > 2

2
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ð4:7-12Þ

where use was made of relation (4.7-4). From relation (4.7-12) we observe that for
type 0 and 1 systems the acceleration error is infinity, for type 2 systems it is A=K ,
and for type higher than 2 systems it is zero.

In Figure 4.14 we present the error constants and the value of essðtÞ for type 0,
1, and 2 systems.

Example 4.7.1

Consider the liquid-level control system of Subsec. 3.13.4 (Figure 3.53). For simpli-
city, assume that

GðsÞFðsÞ ¼
KaKvR

RCsþ 1

� �
Kf ¼

K

RCs þ 1
; K ¼ KaKvKfR

Determine yðtÞ and the steady-state error essðtÞ when the input rðtÞ is the unit step
function.

Solution

We have

YðsÞ ¼ HðsÞRðsÞ ¼
K=Kf

RCs þ 1þ K

� �
1

s

� �
Thus, yðtÞ ¼ L�1

fYðsÞg will be

yðtÞ ¼
K

Kf ð1þ KÞ
ð1� e�t=T

Þ; where T ¼
RC

1þ K

The waveform of yðtÞ is given in Figure 4.15, from which it is obvious that the liquid-
level control system makes an attempt to ‘‘follow’’ the command signal rðtÞ ¼ 1.
Unfortuantely, at the steady state it presents an error.

To determine the steady-state error ess we work as follows. First, we convert
the nonunity feedback system to unity feedback, according to Figure 4.13a. Since
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~GGðsÞ ¼
KaKvR

RCs þ 1
and ~FFðsÞ ¼ Kf

it follows that

GðsÞ ¼
~GGðsÞ

1þ ~GGðsÞ ~FFðsÞ � ~GGðsÞ
¼

K=Kf

RCs þ 1þ K � K=Kf

We have

lim
s!0

GðsÞ ¼
K=Kf

1þ K � K=Kf

Now, we are in position to apply relation (4.7-10) to yield

ess ¼ lim
s!0

sEðsÞ ¼
1

1þ lim
s!0

GðsÞ
¼

Kf þ KKf � K

Kf þ KKf

To check the above results, we first determine

yssðtÞ ¼ lim
s!0

sYðsÞ ¼
K

Kf ð1þ KÞ
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Therefore, the level yðtÞ of the liquid will never reach the desired level yðtÞ ¼ rðtÞ ¼ 1,
but it will remain at a level lower than 1. The distance (i.e., the error) of this lower
level to the desired level of 1 may be determined as follows:

ess ¼ rssðtÞ � yssðtÞ ¼ 1�
K

Kf ð1þ KÞ
¼

Kf þ KfK � K

Kf ð1þ KÞ

This error is in complete agreement with the steady-state error ess found above. It is
remarked that this steady-state error may be eliminated if a more complex feedback
transfer function FðsÞ is used, which would include not only the output analog
feedback term KfyðtÞ but also other terms – for example of the form Kdy

ð1Þ
ðtÞ, i.e.,

terms involving the derivative of the output. Such feedback controllers, and even
more complex ones, are presented in Chap. 9.

Example 4.7.2

Consider the voltage control system of Subsec. 3.13.1 (Figure 3.50). For simplicity,
let Tf ¼ Lf=Rf ¼ 2 and Kp ¼ 1; in which case, GðsÞ simplifies as follows:

GðsÞ ¼
K

2s þ 1

Investigate the system’s steady-state errors.

Solution

If we apply the results of Subsecs 4.7.1 and 4.7.2 we readily have that, since the
system is type 0, the error constants will be Kp ¼ K, Kv ¼ 0, and Ka ¼ 0. The steady-
state error will be

essðtÞ ¼

P

1þ K
rðtÞ ¼ P

1 rðtÞ ¼ Vt
1 rðtÞ ¼ 1

2At2

2
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Example 4.7.3

Consider the position servomechanism of Subsec. 3.13.2 (Figure 3.51). Assume that
La ’ 0. Then the open-loop transfer function reduces to

GðsÞ ¼
KaKiN

s½RaJ
�
ms þ RaB

�
m þ KiKb�

¼
K

sðAs þ BÞ
¼

K

sðs þ 2Þ

where we further have chosen Kp ¼ 1, A ¼ 1, B ¼ 2, and where

K ¼
KaKiN

Ra

; A ¼ J�
m; and B ¼ B�

m þ KiKb=Ra

This simplified system is shown in Figure 4.16. Here, eðtÞ ¼ �eðtÞ ¼ �rðtÞ � �yðtÞ.
Investigate the steady-state errors of the system.

Solution

If we apply the relations (4.7-2), (4.7-3), and (4.7-4), we readily have that, since the
system is of type 1, the error constants will be Kp ¼ 1, Kv ¼ K=2, and Ka ¼ 0. The
steady-state error will be

essðtÞ ¼

0 when �rðtÞ ¼ P ð4:7-13aÞ
2V

K
when �rðtÞ ¼ Vt ð4:7-13bÞ

1 when �rðtÞ ¼
1
2At2 ð4:7-13cÞ

2
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4.8 DISTURBANCE REJECTION

In Subsec. 4.5.3, the effect of disturbances upon the output of open- and closed-loop
systems is compared. In this section, an approach will be given which aims to reduce
or even completely eliminate the effect of disturbances upon the system’s output.

Consider the closed-loop system of Figure 4.17, involving the disturbance
signal dðtÞ (or DðsÞ). This disturbance is usually external to systems under control.
For example, a sudden change in the wind is an external disturbance for a microwave
antenna mounted on the Earth. It may also be internal, e.g., an unexpected variation
in the value of the capacitance C of a capacitor which is part of the system under
control.

Disturbances appear very often in practice, and they affect the system’s output,
resulting in a deviation from its normal operating performance. The elimination of

Time-Domain Analysis 177

Figure 4.16 Simplified block diagram of the position control system.



the influence of dðtÞ on yðtÞ is the well-known problem of disturbance rejection and
has, for obvious reasons, great practical importance.

Using the general layout of Figure 4.17, we distinguish two cases: the unity
feedback and the nonunity feedback systems.

1 Unity Feedback Systems

In this case FðsÞ ¼ 1 and

YðsÞ ¼ GcðsÞGðsÞEðsÞ þ GðsÞDðsÞ

Furthermore,

YðsÞ ¼ RðsÞ � EðsÞ ð4:8-1Þ

Eliminating YðsÞ in the above two equations, we have

EðsÞ ¼ ErðsÞ þ EdðsÞ ¼
1

1þ GcðsÞGðsÞ

� �
RðsÞ �

GðsÞ

1þ GcðsÞGðsÞ

� �
DðsÞ ð4:8-2Þ

Hence, the steady-state error essðtÞ ¼ lim
s!0

sEðsÞ is given by

essðtÞ ¼ lim
s!0

s

1þ GcðsÞGðsÞ

� �
RðsÞ � lim

s!0

sGðsÞ

1þ GcðsÞGðsÞ

� �
DðsÞ ð4:8-3Þ

2 Nonunity Feedback Systems

In this case FðsÞ 6¼ 1 and one may readily show that

EðsÞ ¼ ErðsÞ þ EdðsÞ ¼ 1�
GcðsÞGðsÞ

1þ GcðsÞGðsÞFðsÞ

� �
RðsÞ �

GðsÞ

1þ GcðsÞGðsÞFðsÞ

� �
DðsÞ

ð4:8-4Þ

Hence, the steady-state error essðtÞ ¼ lim
s!0

sEðsÞ is given by

essðtÞ ¼ lim
s!0

s �
sGcðsÞGðsÞ

1þ GcðsÞGðsÞFðsÞ

� �
RðsÞ � lim

s!0

sGðsÞ

1þ GcðsÞGðsÞFðsÞ

� �
DðsÞ ð4:8-5Þ
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In the examples that follow, we show how to choose the controller GcðsÞ such
as as to eliminate the influence of dðtÞ on yðtÞ in the steady state.

Example 4.8.1

In this example we study the operation of an industrial company from the point of
view of control system theory. In Figure 4.18, a simplified description of an indus-
trial company is given, where it is shown that a company is run (or should be run) as
a closed-loop control system, i.e., using the principle of feedback action. The process
of producing a particular industrial product requires a certain amount of time. The
time constant of the process is 1=a and, for simplicity, let a ¼ 1. The company’s
board of directors (which here acts as the ‘‘controller’’ of the company) study in
depth the undesirable error EðsÞ ¼ RðsÞ � YðsÞ, where RðsÞ is the desired productivity
and, subsequently, take certain appropriate actions or decisions. These actions may
be approximately described by an integral controller GcðsÞ ¼ K1=s, which integrates
(smooths out) the error EðsÞ. The parameters K1 and K2 in the block diagram
represent the effort put in by the management and by the production line, respec-
tively. Investigate the steady-state errors for DðsÞ ¼ 0 and DðsÞ ¼ 1=s. The distur-
bance DðsÞ ¼ 1=s may be, for example, a sudden increase or decrease in the demand
for the product.

Solution

(a) For the case DðsÞ ¼ 0, we have

GcðsÞGðsÞ ¼
K1K2

sðs þ 1Þ
¼

K

sðs þ 1Þ
; where K ¼ K1K2

EðsÞ ¼ ErðsÞ ¼
1

1þ GcðsÞGðsÞ

� �
RðsÞ ¼

sðs þ 1Þ

s2 þ s þ K

� �
RðsÞ

By applying the results of Subsecs 4.7.1 and 4.7.2, we derive that, since it is a system
of type 1, the error constants will be Kp ¼ 1, Kv ¼ 2K , and Ka ¼ 0. The steady state
error is

essðtÞ ¼

0 when rðtÞ ¼ P
V=K when rðtÞ ¼ Vt
1 when rðtÞ ¼ 1

2At2

2
4
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(b) For the case DðsÞ ¼ 1=s the error is given by the relation (4.8-2), i.e., by the
relation

EðsÞ ¼
RðsÞ

1þ GcðsÞGðsÞ
�

GðsÞ

1þ GcðsÞGðsÞ
DðsÞ ¼ ErðsÞ þ EdðsÞ

With regard to ErðsÞ, the results of case (a) remain the same. With regard to EdðsÞ, we
have

EdðsÞ ¼ �
K2sðs þ 1Þ

s2 þ s þ K

� �
1

s

� �
Hence, the steady-state error due to the disturbance DðsÞ will be

lim
t!1

edðtÞ ¼ lim
s!0

sEdðsÞ ¼ 0

Therefore, the effect of the disturbance on the steady-state error is zero. It is noted
that for the closed-loop system to be stable there must be K > 0.

Example 4.8.2

Consider the block diagram of Figure 4.19, where dðtÞ ¼ A�ðtÞ and rðtÞ ¼ 1 for t � 0
and rðtÞ ¼ 0 for t < 0. Find the range of values of K1 and K2 such that the effect of
the disturbance dðtÞ on the system’s output is eliminated (rejected) in the steady state,
while simultaneously the system’s output follows the input signal, i.e.,
lim
t!1

½ðyðtÞ � rðtÞ� ¼ 0Þ.

Solution

To determine the system’s output we will apply the superposition principle. To this
end, assume that the disturbance dðtÞ is the only input, in which case we get

YdðsÞ ¼
K2ðs

2
þ s þ 1Þ

sðs2 þ s þ 1Þ þ K1K2ðs þ 1Þ

" #
DðsÞ; where DðsÞ ¼ LfdðtÞg ¼ A

Similarly, assuming that rðtÞ is the only input, we get

YrðsÞ ¼
K2ðs þ 1Þ

sðs2 þ sþ 1Þ þ K1K2ðs þ 1Þ

� �
RðsÞ; where RðsÞ ¼ LfuðtÞg ¼

1

s

Using the superposition principle, we have

YðsÞ ¼
K2ðs

2
þ s þ 1Þ

sðs2 þ s þ 1Þ þ K1K2ðs þ 1Þ

" #
Aþ

K2ðs þ 1Þ

sðs2 þ s þ 1Þ þ K1K2
ðs þ 1Þ

" #
1

s

For the disturbance dðtÞ to be eliminated in the steady-state, the following condition
must hold:

lim
t!1

ydðtÞ ¼ 0

To investigate the above condition, we use the final value theorem which, as is well
known, holds if sYdðsÞ is stable. For sYdðsÞ to be stable, its denominator must not
have any roots in the right-half complex plane. Using the Routh criterion (see Chap.
6) for the characteristic polynomial of the closed-loop system:
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pðsÞ ¼ s3 þ s2 þ ðK1K2 þ 1Þs þ K1K2

we form the Routh table

s3

s2

s1

s0

��������
1
1
1
K1K2

K1K2 þ 1
K1K2

0
0

Hence, in order for pðsÞ to be stable, the condition K1K2 > 0 must hold. Given that
this condition holds and using the final value theorem, we obtain

lim
t!1

ydðtÞ ¼ lim
s!0

sYdðsÞ ¼ lim
s!0

sK2ðs
2
þ s þ 1Þ

s3 þ s2 þ ðK1K2 þ 1Þs þ K1K2

" #
A ¼ 0

Therefore, the effect of the disturbance in the steady state is eliminated when
K1K2 > 0.

We will now examine the second condition lim
t!1

½ yðtÞ � rðtÞ� ¼ 0. Given that
K1K2 > 0, we have that sYðsÞ is stable. Hence, using the final value theorem and
given that ydðtÞ ¼ 0, in the steady state, we have that

lim
t!1

½ yðtÞ � rðtÞ� ¼ lim
s!0

½sYðsÞ � sRðsÞ� ¼ lim
s!0

½sYrðsÞ � 1�

¼ lim
s!0

K2ðs þ 1Þ

s3 þ s2 þ ðK1K2 þ 1Þs þ K1K2

� 1

� �
¼ 0

or

K2

K1K2

� 1 ¼ 0

The above relation yields K1 ¼ 1 which, in conjunction with the condition K1K2 > 0,
gives the range of values of K1 and K2, which are

K1 ¼ 1 and K2 > 0

Another approach to solve the problem is to use Eq. (4.8-4), in which case

EðsÞ ¼ ErðsÞ þ EdðsÞ

where
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ErðsÞ ¼ 1�
GcðsÞGðsÞ

1þ GcðsÞGðsÞFðsÞ

� �
RðsÞ ¼ 1�

K2ðs þ 1Þ

sðs2 þ s þ 1Þ þ K1K2ðsþ 1Þ

� �
RðsÞ

EdðsÞ ¼ �
GðsÞ

1þ GcðsÞGðsÞFðsÞ

� �
DðsÞ ¼ �

K2ðsþ 1Þ

sðs2 þ s þ 1Þ þ K1K2ðs þ 1Þ

� �
DðsÞ

Here, RðsÞ ¼ 1=s and DðsÞ ¼ A and, hence,

ess ¼ lim
s!0

sErðsÞ þ lim
s!0

sEdðsÞ

Simple calculations yield

lim
s!0

sErðsÞ ¼ lim
s!0

s �
sK2ðs þ 1Þ

sðs2 þ s þ 1Þ þ K1K2ðs þ 1Þ

� �
1

s
¼ 1�

K2

K1K2

¼
K1 � 1

K1

lim
s!0

sEdðsÞ ¼ lim
s!0

�sK2ðs þ 1Þ

sðs2 þ sþ 1Þ þ K1K2ðs þ 1Þ

� �
A ¼ 0

Hence, the problem requirements are satisfied when K1 ¼ 1. However, for the above
limits to exist, according to the final value theorem, the characteristic polynomial of
the closed-loop system must be stable. This, as shown previously, leads to the con-
dition K1K2 > 0. Finally, we arrive at the conclusion that K1 and K2 must satisfy the
conditions K1 ¼ 1 and K2 > 0, which are in perfect agreement with the results of the
previous approach.

Example 4.8.3

Consider a telephone network of signal transmission in which noise (disturbance) is
introduced as shown in Figure 4.20. In the feedback path introduce a filter FðsÞ (FðsÞ
is a rational function of s) such that for the closed-loop system in the steady state, the
following conditions hold simultaneously:

(a) The effect of the noises d1ðtÞ and d2ðtÞ on the output is rejected.
(b) The receiver’s signal yðtÞ is the same as that of the transmitter’s signal rðtÞ.

Solution

First, we determine the system’s output due to the signals rðtÞ, d1ðtÞ, and d2ðtÞ, one at
a time, using the superposition principle. When rðtÞ is the only input, we have

YrðsÞ ¼
G1ðsÞG2ðsÞ

1� G1ðsÞG2ðsÞFðsÞ

� �
RðsÞ ¼

1

ðsþ 2Þðs2 þ s þ 1Þ � FðsÞ

� �
RðsÞ

When the disturbance d1ðtÞ is the only input, we have

Yd1ðsÞ ¼
G2ðsÞ

1� G1ðsÞG2ðsÞFðsÞ

� �
D1ðsÞ ¼

sþ 2

ðs þ 2Þðs2 þ s þ 1Þ � FðsÞ

When the disturbance d2ðtÞ is the only input, we have

Yd2ðsÞ ¼
G2ðsÞG1ðsÞ

1� G1ðsÞG2ðsÞFðsÞ

� �
D2ðsÞ ¼

1

ðs þ 2Þðs2 þ s þ 1Þ � FðsÞ

According to the problem’s requirements, the following must be simultaneously
valid
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lim
t!1

yd1ðtÞ ¼ lim
t!1

yd2ðtÞ ¼ 0

lim
t!1

½ yðtÞ � rðtÞ� ¼ 0; for every rðtÞ

From requirement (a) of the problem, and by choosing FðsÞ such that the denomi-
nator ðs þ 2Þðs2 þ s þ 1Þ � FðsÞ is stable, we must have

lim
s!0

sYd1 ðsÞ ¼ lim
s!0

sYd2 ðsÞ ¼ 0

From requirement (b) of the problem, we have

lim
s!0

s½YðsÞ � RðsÞ� ¼ lim
s!0

s½YrðsÞ � RðsÞ� ¼ 0; for every RðsÞ

under the assumption that the effect of the disturbances has been eliminated. The
above relation may be written as follows

lim
s!0

s
1

ðs þ 2Þðs2 þ s þ 1Þ � FðsÞ
� 1

� �
RðsÞ ¼ 0:

This relation must hold for every RðsÞ. Consequently, the following must hold:

1

ðs þ 2Þðs2 þ s þ 1Þ � FðsÞ
¼ 1

The above relation yields FðsÞ ¼ ðs þ 1Þ3. By replacing FðsÞ ¼ ðs þ 1Þ3 in Yd1 ðsÞ and
Yd2 ðsÞ we obtain

Yd1ðsÞ ¼ s þ 2 and Yd2ðsÞ ¼ 1

Using these values, one may readily prove that the following condition is satisfied:

lim
s!0

sYd1 ðsÞ ¼ lim
s!0

sYd2 ðsÞ ¼ 0

Hence, the function FðsÞ ¼ ðs þ 1Þ3 is the transfer function sought.
To realize the function FðsÞ ¼ ðs þ 1Þ3, one may use Figure 9.40. From this

figure it follows that the gain of the operational amplifier is given by
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GðsÞ ¼ �
Z2ðsÞ

Z1ðsÞ
¼ �ðs þ 1Þ

where use was made of the PD controller case and where the values of R1, R2 and C1

are chosen as follows: R1 ¼ R2 ¼ 1=C1. If we have in cascade three such operational
amplifiers together with an inverter, then the total transfer function GtðsÞ will be

GtðsÞ ¼ GðsÞGðsÞGðsÞð�1Þ ¼ ðs þ 1Þ3

in which case FðsÞ ¼ GtðsÞ ¼ ðs þ 1Þ3.

PROBLEMS

1. Find the currents i1ðtÞ and i2ðtÞ for the network shown in Figure 4.21. Assume
that the switch is closed at t ¼ 0 and the initial condition for the inductor current
is i2ð0Þ ¼ 0.

2. Find and plot the response yðtÞ of the network shown in Figure 4.22 for R ¼ 1�,
2�, 4�, and 10�. The input is uðtÞ ¼ 1.

3. Find and plot the response yðtÞ of the mechanical system shown in Figure 4.23
for B ¼ 1, 2, and 4. The input is uðtÞ ¼ 1.

4. The block diagram of the liquid-level control system of Figure 4.24a is shown in
Figure 4.24b. The liquid flows into the tank through a valve that controls the
input flow Q1. When the output flow Q2 through the orifice increases, the liquid-
level height H decreases. As a result, the sensor that measures H causes the valve
to open in order to increase the input flow Q1. When the output flow Q2

decreases, H increases, and the valve closes in order to decrease the input flow
Q1. Determine the parameters K and T , given that for a step input the maximum
overshoot is 25.4% and occurs when t1 ¼ 3 sec.

5. The block diagram of a system that controls the movement of a robot arm is
given in Figure 4.25. For a unit step input, the system has a maximum percent
overshoot of 20%, which occurs when t1 ¼ 1 sec. Determine:

(a) The constants K and Kh

(b) The rise time tr required for the output to reach value 1 for the first time
(c) The settling time ts required for the output to reach and stay within 2%

and 5% of its final value
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6. Consider the closed-loop system shown in Figure 4.12. Find the position, speed,
and acceleration error constants when

(a) GðsÞ ¼
10

ðs þ 1Þð2s þ 1Þ
ðcÞ GðsÞ ¼

K

s2ð0:5s þ 1Þðs þ 1Þ

(b) GðsÞ ¼
K

sðsþ 1Þð2s þ 1Þ
ðdÞ GðsÞ ¼

Kðs þ 4Þ

s2ðs2 þ 6s þ 2Þ

7. For the closed-loop systems of Problem 6 find the steady-state position, speed,
and acceleration errors.

8. The block diagram of an active suspension system for an automobile is shown in
Figure 4.26. In this system, the position of the valves of the shock absorber is
controller by means of a small electric motor:

(a) Find the position, speed, and acceleration error constants.
(b) Determine the steady-state position, speed, and acceleration errors.

9. The block diagram of a position servomechanism is shown in Figure 4.27.
Determine the steady-state error when the input is rðtÞ ¼ a0 þ a1tþ a2t

2.
10. For the Example 4.7.2 find the error essðtÞ when rðtÞ ¼ 1þ 2t� t2 and when

rðtÞ ¼ 10t3.
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11. Find the position, speed, and acceleration error constants of all systems
described in Sec. 3.13.

12. Find the steady-state position, speed, and acceleration errors of all systems
described in Sec. 3.13.

13. A control system for a human heart with problems related to heart rate is shown
in Figure 4.28. The controller used is an electronic pacemaker to keep the heart
rate within a desired range. Determine a suitable transfer function for the pace-
maker, so that the steady-state error due to a disturbance dðtÞ ¼ 1; t > 0, is zero.
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14. The block diagram of a position control system of a large microwave antenna is
shown in Figure 4.29. To design such a system, we must take into account the
disturbance due to large wind gust torques. Determine the range of values of K1

and K2, so that the effect of the disturbance dðtÞ ¼ �ðtÞ is minimized in the steady
state, while the output follows the input signal rðtÞ ¼ 1.

Time-Domain Analysis 187

Figure 4.27

Figure 4.28

Figure 4.26



15. Consider a remotely controlled vehicle used for reconnaissance missions. The
desired speed of the vehicle is transmitted to a receiver mounted on the vehicle.
The block diagram of the control system is shown in Figure 4.30, where the
disturbance input expresses the transmission noise. Find a transfer function for
the feedback controller FðsÞ so that the effect of noise dðtÞ ¼ �ðtÞ at the output is
eliminated as t ! 1, while lim

t!1
½ yðtÞ � rðtÞ� ¼ 0 for every input rðtÞ.

16. The block diagram of a system that controls the roll angle of a ship is shown in
Figure 4.31. Determine the values of the gain Kp so that the disturbance due to
wind is eliminated while the output follows a step input at steady state, when

(a) Ki ¼ 0 (proportional controller)
(b) Ki ¼ 1 (proportional plus integral controller)

17. For the system shown in Figure 4.32, determine K1 and K2, so that the effect of
noise dðtÞ ¼ �ðtÞ is minimized at steady state.

18. Consider the system shown in Figure 4.33. Determine the transfer function of
the controller GcðsÞ, so that when the disturbance is dðtÞ ¼ t, the steady-state
error is zero.
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5
State-Space Analysis of Control
Systems

5.1 INTRODUCTION

The classical methods of studying control systems are mostly referred to single-
input–single-output (SISO) systems, which are described in the time domain by
differential equations or by a scalar transfer function in the frequency domain (see
Chap. 4). The modern methods of studying control systems are referred to the
general category of multi-input–multi-ouput (MIMO) systems, which are described
in the time domain by state equations (i.e., by a set of linear first-order differential
equations) or by a transfer function matrix in the frequency domain.

The modern approach of describing a system via the state equations model,
compared with the classical models of Chap. 4, has the distinct characteristic of
introducing a new concept to the system description—namely, the system’s state
variables. The state variables give information about the internal structure of the
system, which the classical methods do not. This information is of great significance
to the study of the structure and properties of the system, as well as to the solution of
high-performance control design problems, such as optimal control, adaptive
control, robust control, and pole assignment.

This chapter is devoted to linear, time-invariant systems having the following
state-space form:

�xðtÞ ¼ AxðtÞ þ BuðtÞ ð5:1-1aÞ

yðtÞ ¼ CxðtÞ þDuðtÞ ð5:1-1bÞ

xð0Þ ¼ x0 ð5:1-1cÞ

where xðtÞ is an n-dimensional state vector, uðtÞ is an m-dimensional input vector,
and yðtÞ is a p-dimensional ouput vector. The matrices A, B, C, and D are time-
invariant, and their dimensions are n� n, n�m, p� n, and p�m, respectively. The
initial conditions are at t ¼ 0 and they are given by Eq. (5.1-1c).

The first objective of this chapter is the solution of Eqs (5.1-1). This will be
done in two steps. In Sec. 5.2 the solution of the homogeneous equation �xðtÞ ¼ AxðtÞ
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will be determined. Subsequently, in Sec. 5.3, the general solution of Eqs (5.1-1) will
be derived. The next objective of this chapter is the state vector transformations and
special forms of the state equations, presented in Sec. 5.4. Block diagrams and signal-
flow graphs are given in Sec. 5.5. The important topics of controllability and obser-
vability are presented in Sec. 5.6. Finally, the Kalman decomposition theorem is
given in Sec. 5.7.

5.2 SOLUTION OF THE HOMOGENEOUS EQUATION

5.2.1 Determination of the State Transition Matrix

Consider the dynamic part (5.2-1a) of the state equations (5.2-1), i.e., consider the
first-order vector differential equation

�xðtÞ ¼ AxðtÞ þ BuðtÞ; xð0Þ ¼ x0 ð5:2-1Þ

The homogeneous part of Eq. (5.2-1) is

�xðtÞ ¼ AxðtÞ; xð0Þ ¼ x0 ð5:2-2Þ

We introduce the following definition.

Definition 5.2.1

The state transition matrix of Eq. (5.2-2) is an n� n matrix, designated by rðtÞ, which
satisfies the homogeneous equation (5.2-2), i.e.,

_rrðtÞ ¼ ArðtÞ ð5:2-3Þ

A rather simple method to solve the homogeneous equation (5.2-2) and simul-
taneously determine the state transition matrix rðtÞ is to assume the solution of (5.2-
2) in a form of Taylor series, i.e., to assume that the state vector xðtÞ has the form

xðtÞ ¼ e0 þ e1tþ e2t
2
þ e3t

3
þ � � � ð5:2-4Þ

where e0; e1; e2; e3; . . . are n-dimensional constant unknown vectors. To determine
these unknown vectors, we successively differentiate Eq. (5.2-4) and then evaluate
the derivatives at t ¼ 0. Thus, the zero derivative of xðtÞ at t ¼ 0 is xð0Þ ¼ e0. The
first derivative of xðtÞ at t ¼ 0 is xð1Þð0Þ ¼ e1. However, from Eq. (5.2-2) we have that
x
ð1Þ
ð0Þ ¼ Axð0Þ. Hence, e1 ¼ Axð0Þ. The second derivative of xðtÞ at t ¼ 0 is

x
ð2Þ
ð0Þ ¼ 2e2. However, if we take the second derivative of Eq. (5.2-2), we will

have that x
ð2Þ
ðtÞ ¼ Ax

ð1Þ
ðtÞ ¼ A

2
xðtÞ and, therefore, xð2Þð0Þ ¼ A

2
xð0Þ ¼ 2e2. Further

application of this procedure yields the solution of Eq. (5.2-2) sought, having the
Taylor series form

xðtÞ ¼ Iþ Atþ
1

2!
A

2t2 þ
1

3!
A

3t3 þ � � �

� �
xð0Þ ð5:2-5Þ

The power series in the bracket defines the matrix eAt, i.e.,

eAt ¼ Iþ Atþ
1

2!
A

2t2 þ
1

3!
A

3t3 þ � � � ð5:2-6Þ

The above series converges for all square matrices A. Therefore, Eq. (5.2-5) takes on
the form
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xðtÞ ¼ eAtxð0Þ ð5:2-7Þ

Relation (5.2-7) is the solution of the homogeneous equation (5.2-2). From Eq.
(5.2-6) one may readily derive that

deAt

dt
¼ AeAt

that is, the matrix eAt satisfies Eq. (5.2-3). Hence, it follows that the state transition
matrix rðtÞ is given by

rðtÞ ¼ eAt ð5:2-8Þ

Another popular method to solve the homogeneous equation (5.2-2) and deter-
mine the transition matrix rðtÞ is that of using the Laplace transform. To this end,
apply the Laplace transform to (5.2-2) to yield

sXðsÞ � xð0Þ ¼ AXðsÞ

Solving for XðsÞ, we have

XðsÞ ¼ ðsI� AÞ
�1
xð0Þ ð5:2-9Þ

Using the inverse Laplace transform in (5.2-9), we obtain

xðtÞ ¼ L�1
fðsI� AÞ

�1
gxð0Þ ð5:2-10Þ

Comparing Eqs (5.2-7) and (5.2-10), we immediately have that

rðtÞ ¼ eAt ¼ L�1
fðsI� AÞ

�1
g ð5:2-11Þ

Remark 5.2.1

From the above results, it follows that the state transition matrix rðtÞ depends only
upon the matrix A. The state vector xðtÞ describes the system’s free response—
namely, the response of the system when it is excited only by its initial condition
x0 (i.e., here uðtÞ ¼ 0). Furthermore, according to Eq. (5.2-7), rðtÞ completely defines
the transition of the state vector xðtÞ, from its initial state xð0Þ to any new state xðtÞ.
This is the reason why the matrix rðtÞ is called the state transition matrix.

Remark 5.2.2

For the more general case, where the initial conditions are given for t ¼ t0,

xðtÞ ¼ rðt; t0Þxðt0Þ ð5:2-12Þ

where

rðt; t0Þ ¼ rðt� t0Þ ¼ eAðt�t0Þ ð5:2-13Þ

This can easily be proved if the Taylor series (5.2-4) is expanded about the arbitrary
point t ¼ t0.

5.2.2 Properties of the State Transition Matrix

The state transition mattrix rðtÞ has various properties. Some of them are useful for
the material that follows and are presented in the next theorem.
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Theorem 5.2.1

The state transition matrix rðtÞ has the following properties:

rð0Þ ¼ I ð5:2-14aÞ

r�1
ðtÞ ¼ rð�tÞ ð5:2-14bÞ

rðt2 � t1Þrðt1 � t0Þ ¼ rðt2 � t0Þ; 8 t0; t1; t2 ð5:2-14cÞ

½rðtÞ�k ¼ rðktÞ ð5:2-14dÞ

Proof

If we set t ¼ 0 in Eq. (5.2-6) and subsequently use Eq. (5.2-8), we immediately have
property (5.2-14a). If we multiply (5.2-8) from the left by e�At and from the right by
r�1

ðtÞ, we have

e�AtrðtÞr�1
ðtÞ ¼ e�AteAtr�1

ðtÞ

Canceling out terms in the above equation, we immediately have property (5.2-14b).
Property (5.2-14c) can be proved if we use Eq. (5.2-13), as follows:

rðt2 � t1Þrðt1 � t0Þ ¼ eAðt2�t1ÞeAðt1�t0Þ ¼ eAðt2�t0Þ ¼ rðt2 � t0Þ

Finally, property (5.2-14d) can be proven as follows:

½rðtÞ�k ¼ eAteAt � � � eAt|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
k�times

¼ eAkt ¼ rðktÞ

5.2.3 Computation of the State Transition Matrix

For the computation of the matrix eAt, many methods have been proposed. We
present the three most popular ones.

First Method

This method is based on Eq. (5.2-11), i.e., on the equation

rðtÞ ¼ L�1
fðsI� AÞ

�1
g

To apply this method, one must first compute the matrix ðsI� AÞ
�1 and sub-

sequently take its inverse Laplace transform. A method for computing the matrix
ðsI� AÞ

�1 is given by the following theorem.

Theorem 5.2.2 (Leverrier’s algorithm)

It holds that

rðsÞ ¼ ðsI� AÞ
�1

¼
sn�1

F1 þ sn�2
F2 þ � � � þ sFn�1 þ Fn

sn þ a1s
n�1 þ � � � þ an�1sþ an

ð5:2-15aÞ

where F1;F2; . . . ;Fn and a1; a2; . . . ; an are determined by the recursive equations
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F1 ¼ I a1 ¼ �trðAF1Þ

F2 ¼ AF1 þ a1I a2 ¼ � 1
2 trðAF2Þ

..

. ..
.

Fn ¼ AFn�1 þ an�1I an ¼ �
1

n
trðAFnÞ

ð5:2-15bÞ

Upon determining the matrix rðsÞ using Leverrier’s algorithm, we expand rðsÞ
in partial fractions, by extending the results of Sec. 2.4, which hold for scalar func-
tions, to the more general case of matrix functions, to yield

rðsÞ ¼
Xn
i¼1

1

s� �i
ri

where �1; �2; . . . ; �n are the roots of the characteristic polynomial pðsÞ of matrix A,
where

pðsÞ ¼ jsI� Aj ¼ sn þ a1s
n�1

þ a2s
n�2

þ � � � þ an�1sþ an ¼
Yn
i¼1

ðs� �iÞ

and where ri are constant n� n matrices. The matrices ri can be computed by
extending Eq. (2.4-3) to the matrix case, to yield

ri ¼ lim
s!�i

ðs� �iÞrðsÞ; i ¼ 1; 2; . . . ; n

If certain roots of the characteristic polynomial pðsÞ are repeated or complex con-
jugate pairs, then analogous results to the scalar functions case given in Sec. 2.4 hold
for the present case of matrix functions.

Clearly, for the case of distinct roots, we have

rðtÞ ¼ L�1
frðsÞg ¼ eAt ¼

Xn
i¼1

rie
�i t

Second Method

This method takes place entirely in the time domain and is based on the diagonaliza-
tion of the matrix A. Indeed, if the eigenvalues of matrix A are distinct, then the
eigenvector matrix M (see relation (2.10-5)) diagonalizes matrix A, i.e., A can be
transformed to a diagonal matrix , via the transformation matrix M as follows:
, ¼ M

�1
AM. Matrix rðtÞ, under the transformation M, becomes

rðtÞ ¼ eAt ¼ Me,t
M

�1
ð5:2-16Þ

Since

e,t
¼

e�1t 0

e�2t

. .
.

0 e�nt

2
664

3
775; , ¼

�1 0

�2

. .
.

0 �n

2
6664

3
7775

it follows that
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rðtÞ ¼ eAt ¼ M

e�1t 0

e�2t

. .
.

0 e�nt

2
664

3
775M�1

ð5:2-17Þ

In the case where the matrix A has repeated eigenvalues, analogous results may be
derived (see Sec. 2.10).

Third Method

This method, as in the case of the second method, takes place entirely in the time
domain and is based on the expansion of eAt in a power series—namely, it is based on
Eq. (5.2-6). This particular method does not require the determination of the eigen-
values �1; �2; . . . ; �n of the matrix A, as compared to the first and second methods
and is relatively easy to implement on a digital computer.

5.3 GENERAL SOLUTION OF THE STATE EQUATIONS

To determine the state vector xðtÞ and the output vector yðtÞ of the linear system
(5.2-1), we start by solving the first-order vector differential equation (5.2-1a), i.e.,
the vector differential equation

�xðtÞ ¼ AxðtÞ þ BuðtÞ; xðt0Þ ¼ x0 ð5:3-1Þ

In the previous section we found that the free response of Eq. (5.3-1), i.e., the
solution xhðtÞ of the homogeneous part �xðtÞ ¼ AxðtÞ of Eq. (5.3-1), is given by

xhðtÞ ¼ rðt� t0Þxðt0Þ; where rðt� t0Þ ¼ eAðt�t0Þ ð5:3-2Þ

To determine the forced response or particular solution xf ðtÞ of Eq. (5.3-1), we
assume that xf ðtÞ has the form

xf ðtÞ ¼ rðt� t0ÞqðtÞ; with xf ðt0Þ ¼ 0 ð5:3-3Þ

where qðtÞ is an n-dimensional unknown vector. Substitute Eq. (5.3-3) into Eq. (5.3-
1) to yield

�
rðt� t0ÞqðtÞ þ rðt� t0Þ

�qðtÞ ¼ Arðt� t0ÞqðtÞ þ BuðtÞ ð5:3-4Þ

Since
�
rðt� t0Þ ¼ Arðt� t0Þ, Eq. (5.3-4) takes on the form

Arðt� t0ÞqðtÞ þ rðt� t0Þ
�qðtÞ ¼ Arðt� t0ÞqðtÞ þ BuðtÞ

or

rðt� t0Þ
�qðtÞ ¼ BuðtÞ

Hence

�qðtÞ ¼ r�1
ðt� t0ÞBuðtÞ ð5:3-5Þ

If we integrate Eq. (5.3-5) from t0 to t, we have

qðtÞ ¼

ðt
t0

r�1
ð�� t0ÞBuð�Þd�
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where qðt0Þ ¼ r�1
ðt0 � t0Þxf ðt0Þ ¼ xf ðt0Þ ¼ 0, where use was made of Eq. (5.3-3).

Thus, the forced response of Eq. (5.3-1) will be

xf ðtÞ ¼ rðt� t0ÞqðtÞ ¼ rðt� t0Þ

ðt
t0

r�1
ð�� t0ÞBuð�Þd�

¼

ðt
t0

rðt� t0Þr
�1
ð�� t0ÞBuð�Þd�

or

xf ðtÞ ¼

ðt
t0

rðt� �ÞBuð�Þd�

where use was made of properties (5.2-14b,c). Hence, the general solution of Eq.
(5.3-1) will be

xðtÞ ¼ xhðtÞ þ xf ðtÞ ¼ rðt� t0Þxðt0Þ þ

ðt
t0

rðt� �ÞBuð�Þd�

The output vector yðtÞ of system (5.1-1) can now be easily determined using Eq.
(5.3-6) to yield

yðtÞ ¼ CxðtÞ þDuðtÞ ¼ Crðt� t0Þxðt0Þ þ C

ðt
t0

rðt� �ÞBuð�Þd�þDuðtÞ

ð5:3-7Þ

Example 5.3.1

Consider the network of Figure 5.1a with initial conditions iLð0Þ ¼ 1 and vcð0Þ ¼ 0.
The input, the state variables, and the output of the network are shown in Figure
5.1b. Determine:

(a) A state-space description
(b) The state transition matrix
(c) The solution of the homogeneous equation
(d) The general solution

Solution

(a) The loop equation is

di

dt
þ 3i þ 2

ðt
0

idt ¼ vðtÞ

The two state variables, which are given in Figure 5.1b, are defined as follows:

x1ðtÞ ¼

ðt
0

iðtÞdt and x2ðtÞ ¼
�x1ðtÞ ¼ iLðtÞ ¼ iðtÞ

Using the above definitions, the loop equation can be written in state space as
follows: _xx2ðtÞ þ 3x2ðtÞ þ 2x1ðtÞ ¼ vðtÞ. This equation, combined with the equation
_xx1ðtÞ ¼ x2ðtÞ, yields the following state equations for the given network:
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_xx1ðtÞ
_xx2ðtÞ

� �
¼

0 1
�2 �3

� �
x2ðtÞ
x2ðtÞ

� �
þ

0
1

� �
uðtÞ

with initial condition vector xð0Þ ¼ x0 ¼ ½0; 1�T and uðtÞ ¼ vðtÞ.
(b) To determine the transition matrix rðtÞ, we apply the first method of Sec.

5.2, as follows:

rðsÞ ¼ ðsI� AÞ
�1

¼
s �1

2 sþ 3

� ��1

¼

sþ 3

ðsþ 1Þðsþ 2Þ

1

ðsþ 1Þðsþ 2Þ

�2

ðsþ 1Þðsþ 2Þ

s

ðsþ 1Þðsþ 2Þ

2
664

3
775

Hence

rðtÞ ¼ L�1
frðsÞg ¼ 2e�t

� e�2t e�t
� e�2t

�2e�t
þ 2e�2t

�e�t
þ 2e�2t

� �
(c) The solution of the homogeneous equation is

xhðtÞ ¼ rðtÞxð0Þ

or

xhðtÞ ¼ rðtÞ
0
1

� �
¼

e�t
� e�2t

�e�t
þ 2e�2t

� �
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(d) The general solution of the state vector is

xðtÞ ¼ xhðtÞ þ xf ðtÞ ¼ rðtÞ xð0Þ þ
ðt

0

rðt� �Þbuð�Þ d�

The forced response xf ðtÞ is determined as follows:ðt
0

rðt� �Þbuð�Þ d� ¼

ðt
0

e�ðt��Þ
� e�2ðt��Þ

�e�ðt��Þ
þ 2e�2ðt��Þ

" #
uð�Þ d�

¼

e�t

ðt
0

e�d�� e�2t

ðt
0

e2�d�

�e�t

ðt
0

e�d�þ 2e�2t

ðt
0

e2�d�

2
6664

3
7775

¼
e�t

ðet � 1Þ � 1
2 e�2t

ðe2t
� 1Þ

�e�t
ðet � 1Þ þ e�2t

ðe2t
� 1Þ

" #
¼

1
2 � e�t

þ 1
2 e�2t

e�t
� e�2t

" #

Hence, the general solution xðtÞ ¼ xhðtÞ þ xf ðtÞ is as follows:

xðtÞ ¼
x1ðtÞ

x2ðtÞ

� �
¼

ðe�t
� e�2t

Þ þ ð12 � e�t
þ 1

2 e�2t

ð�e�t
þ 2e�2t

Þ þ ðe�t
� e�2t

Þ

" #
¼

1
2 �

1
2 e�2t

e�2t

" #

The output of the system is

yðtÞ ¼ vRðtÞ ¼ RiðtÞ ¼ Rx2ðtÞ ¼ 3e�2t

Working in the s-domain, we should arrive at the same result. Indeed we have

XðsÞ ¼ ðsI� AÞ
�1
x0 þ ðsI� AÞ

�1
bUðsÞ ¼ ðsI� AÞ

�1
½x0 þ bUðsÞ�

¼ ðsI� AÞ
�1

0

1

" #
þ

0

1

s

2
4

3
5

8<
:

9=
;

¼

sþ 3

ðsþ 1Þðsþ 2Þ

1

ðsþ 1Þðsþ 2Þ

�2

ðsþ 1Þðsþ 2Þ

s

ðsþ 1Þðsþ 2Þ

2
6664

3
7775

0

sþ 1

s

2
4

3
5 ¼

1

sðsþ 2Þ

1

sþ 2

2
664

3
775

and hence

xðtÞ ¼ L�1
fXðsÞg ¼

1
2 �

1
2 e�2t

e�2t

� �

Example 5.3.2

Consider the network of Figure 5.2a with zero initial conditions. The inputs, the
state variables, and the outputs of the network are shown in Figure 5.2b. Determine:

(a) The state equations of the network
(b) The transition matrix and the output vector of the network, when

R1 ¼ 0�, R2 ¼ 1:5�, C ¼ 1 F, L1 ¼ L2 ¼ 1 H, and v1ðtÞ ¼ v2ðtÞ ¼ 1 V.
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Solution

(a) The two loop equations are

R1ði1 þ i2Þ þ vc þ L1

di1
dt

¼ v1ðtÞ

R1ði1 þ i2Þ þ vc þ L2

di2
dt

þ R2i2 ¼ v1ðtÞ � v2ðtÞ

Furthermore, we have that

C
dvc

dt
¼ i1 þ i2

Hence, the three first-order differential equations that describe the network are

dvc

dt
¼

1

C
i1 þ

1

C
i2

di1
dt

¼ �
1

L1

vc �
R1

L1

i1 �
R1

L1

i2 þ
1

L1

v1ðtÞ

di2
dt

¼ �
1

L2

vc �
R1

L2

i1 �
R1 þ R2

L2

i2 þ
1

L2

v1ðtÞ �
1

L2

v2ðtÞ

Note that i1 ¼ iL1
and i2 ¼ iL2

. Thus, the state equations of the network are
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�x ¼ Axþ Bu

y ¼ Cx

where

x ¼

x1ðtÞ
x2ðtÞ
x3ðtÞ

2
4

3
5 ¼

vc

iL1

iL2

2
4

3
5; u ¼

v1ðtÞ
v2ðtÞ

� �
; y ¼

iL1

iL2

� �

A ¼

0
1

C

1

C

�
1

L1

�
R1

L1

�
R1

L1

�
1

L2

�
R1

L2

�
R1 þ R2

L2

2
66666664

3
77777775
; B ¼

0 0

�
1

L1

0

1

L2

�
1

L2

2
666664

3
777775;

C ¼
0 1 0

0 0 1

" #

(b) Substituting the given values for each element, we have

A ¼

0 1 1
�1 0 0
�1 0 �1:5

2
4

3
5; B ¼

0 0
1 0
1 �1

2
4

3
5; sI� A ¼

s �1 �1
1 s 0
1 0 sþ 1:5

2
4

3
5

jsI� Aj ¼ s½sðsþ 1:5Þ� þ sþ 1:5 þ s ¼ s3
þ 1:5s2

þ 2sþ 1:5

¼ ðsþ 1Þðs2
þ 0:5sþ 1:5Þ

Therefore

rðsÞ ¼ ðsI� AÞ
�1

¼
1

ðsþ 1Þðs2 þ 0:5sþ 1:5Þ

sðsþ 1:5Þ sþ 1:5 s

�ðsþ 1:5Þ s2
þ 1:5sþ 1 �1

�s �1 s2
þ 1

2
64

3
75

Hence

rðtÞ ¼ L�1
fðsI� AÞ

�1
g ¼

’11ðtÞ ’12ðtÞ ’13ðtÞ
’21ðtÞ ’22ðtÞ ’23ðtÞ
’31ðtÞ ’32ðtÞ ’33ðtÞ

2
4

3
5

where

’11ðtÞ ¼ �0:25e�t
þ e�0:25t

ð1:25 cos 1:199tþ 0:052 sin 1:199tÞ

’12ðtÞ ¼ �0:5e�t
þ e�0:25t

ð0:5 cos 1:199tþ 0:99 sin 1:199tÞ

’13ðtÞ ¼ �0:5e�t
þ e�0:25t

ð0:5 cos 1:199tþ 0:521 sin 1:199tÞ

’21ðtÞ ¼ �’12ðtÞ

’22ðtÞ ¼ 0:25e�t
þ e�0:25t

ð0:75 cos 1:199tþ 0:365 sin 1:199tÞ
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’23ðtÞ ¼ �0:5e�t
þ e�0:25t

ð0:5 cos 1:199t� 0:312 sin 1:199tÞ

’31ðtÞ ¼ �’13ðtÞ

’32ðtÞ ¼ ’23ðtÞ

’33ðtÞ ¼ e�t
� 0:417e�0:25t sin 1:199t

The output vector is

YðsÞ ¼ ½CðsI� AÞ
�1
B�UðsÞ ¼

1

ðsþ 1Þðs2 þ 0:5sþ 1:5Þ

s2
þ 1:5s 1

s2
�s2

� 1

" #

1=s

1=s

� �

¼
1

sðsþ 1Þðs2 þ 0:5sþ 1:5Þ

s2
þ 1:5sþ 1

�1

" #

Therefore

yðtÞ ¼ L�1
fYðsÞg ¼

y1ðtÞ

y2ðtÞ

� �

¼
0:67 þ 0:08e�t

þ 0:75e�0:25t cos 1:2t� 0:82e�0:25t sin 1:199t

�0:67 þ 0:17e�t
þ 0:5e�0:25t cos 1:2tþ 0:23e�0:25t sin 1:199t

" #

5.4 STATE VECTOR TRANSFORMATIONS AND SPECIAL FORMS OF
STATE EQUATIONS

Consider the linear transformation

x ¼ Tz ð5:4-1Þ

of the state vector x of system (5.1-1), where T is the transformation matrix n� n
with jTj 6¼ 0 and z is the new n-dimensional state vector. Substitute Eq. (5.4-1) into
Eq. (5.1-1) to yield

T �z ¼ ATzþ Bu

y ¼ CTzþDu

xð0Þ ¼ Tzð0Þ

or

�z ¼ A*zþ B*u ð5:4-2aÞ

y ¼ C*zþD*u ð5:4-2bÞ

zð0Þ ¼ z0 ð5:4-2cÞ

where

A* ¼ T
�1
AT ð5:4-3aÞ

B* ¼ T
�1
B ð5:4-3bÞ
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C* ¼ CT ð5:4-3cÞ

D* ¼ D ð5:4-3dÞ

zð0Þ ¼ T
�1
xð0Þ ð5:4-3eÞ

For brevity, systems (5.1-1) and (5.4-2) are presented as ðA;B;C;DÞn and as
ðA*;B*;C*;D*Þn, respectively. System ðA*;B*;C*;D*Þn is called the transformed
state model of system ðA;B;C;DÞn. The motivation for transforming the state vector
x to the state vector z is to select a new coordinate system z1; z2; . . . ; zn which has
more advantages than the original coordinate system x1; x2; . . . ; xn. These advan-
tages are related to the physical structure and characteristics as well as to the com-
putational and technological aspects of the given system. Therefore, the problem of
transforming x to z consists in determining a suitable state transformation matrix T

such that the forms of A*;B*;C*; and D* of the new system (5.4-2) have certain
desirable characteristics. Usually, more attention is paid to matrix A*, so that its
form is as simple as possible. The most popular such forms for A* are the diagonal
and the phase canonical form.

5.4.1 The Invariance of the Characteristic Polynomial and of the
Transfer Function Matrix

Independently of the particular choice of the transformation matrix T, certain char-
acteristics of the initial system ðA;B;C;DÞn remain invariant under state transfor-
mation. Two such characteirstics are the characteristic polynomial and the transfer
function matrix. This is proven in the following theorem.

Theorem 5.4.1

It holds that

pðsÞ ¼ p�ðsÞ ð5:4-4Þ

HðsÞ ¼ H
�
ðsÞ ð5:4-5Þ

where

pðsÞ ¼ characteristic polynomial of matrix A ¼ jsI� Aj

p�ðsÞ ¼ characteristic polynomial of matrix A* ¼ jsI� A*j

HðsÞ ¼ transfer function matrix of system (5.1-1) ¼ CðsI� AÞ
�1
BþD

H*ðsÞ ¼ transfer function matrix of system (5.4-2)=C*ðsI� A*Þ
�1
B* þD*

Proof

We have

p�ðsÞ ¼ jsI� A*j ¼ jsI� T
�1
ATj ¼ jT

�1
ðsI� AÞTj

¼ jT
�1
jjsI� AjjTj ¼ jsI� Aj ¼ pðsÞ

Furthermore,
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H*ðsÞ ¼ C*ðsI� A*Þ
�1
B* þD* ¼ CTðsI� T

�1
ATÞT

�1
BþD

¼ CT½T
�1
ðsI� AÞT�

�1
T
�1
BþD

¼ CTT
�1
ðsI� AÞ

�1
TT

�1
BþD ¼ CðsI� AÞ

�1
BþD ¼ HðsÞ

where use was made of Eqs (5.4-3). Relations (5.4-5) have been also proved in
Theorem 3.9.2.

5.4.2 Special State-Space Forms: The Phase Canonical Form

The main objective of the state vector transformation is to choose an appropriate
matrix T such that the transformed system is as simple as possible. As mentioned
earlier, one such simple form is the well-known phase canonical form. Another pop-
ular simple form is when the matrix A* is diagonal. Note that the problem of diag-
onalizing the matrix A of the original system is adequately covered in Sec. 2.10. For
this reason we will not deal with the subject of diagonalization any further here. It is
important to mention that diagonalization is a problem that is strongly related to the
eigenvalues and eigenvectors of A, as compared with the phase canonical form, which
is a problem strongly related to the controllability of the system (see Sec. 5.6).

With regard to the phase canonical form, we give the following definitions.

Definition 5.4.1

System ðA*;B*;C*;D*Þn is in phase canonical form when the matrices A* and B*

have the following special forms

A* ¼

A*
11

A*
12

� � � A*
1m

A*
21

A*
22

� � � A*
2m

..

. ..
. ..

.

A*
m1 A*

m2 � � � A*
mm

2
6664

3
7775 and B* ¼

B*
1

� � � � � �

B*
2

� � � � � �

..

.

� � � � � �

B*
m

2
66666666664

3
77777777775

ð5:4-6aÞ

where

A*
ii
¼

0 1 0 � � � 0
0 0 1 � � � 0
..
. ..

. ..
.

� � � ..
.

�ða�iiÞ0 �ða�iiÞ1 �ða�iiÞ2 � � � �ða�iiÞ�i�1

2
664

3
775 ð5:4-6bÞ

A*
ij
¼

0

�ða�ijÞ0 �ða�ijÞ1 �ða�ijÞ2 � � � �ða�ijÞ�j�1

" #
ð5:4-6cÞ

B*
i
¼

0

0 0 � � � 0 1 ðb�i Þiþ1 ðb�i Þiþ2 � � � ðb�i Þm

" #
ð5:4-6dÞ

"

ith position

where �1; �2; . . . ; �m are positive integer numbers satisfying the relation
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Xm
i¼1

�i ¼ n

Definition 5.4.2

Assume that system ðA*;B*;C*;D*Þn has one input. In this case, the system is in its
phase canonical form when the matrix A* and the vector b* have the special forms

A* ¼

0 1 0 0
0 0 1 � � � 0
..
. ..

. ..
. ..

.

0 0 0 � � � 1
�a�0 �a�1 �a�2 � � � �a�n�1

2
66664

3
77775 and b* ¼

0
0
..
.

0
1

2
66664

3
77775 ð5:4-7Þ

It is obvious that Definition 5.4.2 constitutes a special (but very important) case of
Definition 5.4.1.

With regard to the procedure of transforming a system to its phase canonical
form, we present the following theorems.

Theorem 5.4.2

Assume that the system ðA;B;C;DÞn has one input and that the matrix

S ¼ ½b ..
.
Ab ..

.
A

2
b ..
.
� � � ..

.
A

n�1
b� ð5:4-8Þ

is regular, i.e., jSj 6¼ 0. In this case, there exists a transformation matrix T which
transforms the given system to its phase canonical form ðA*;B*;C*;D*Þn, where the
matrix T is given by

T ¼ P
�1

where

P ¼

p1

� � �

p2

� � �

p3

� � �

..

.

� � �

pn

2
6666666666664

3
7777777777775
¼

q

� � �

qA

� � �

qA
2

� � �

..

.

� � �

qA
n�1

2
6666666666664

3
7777777777775

ð5:4-9Þ

where q is the last row of the matrix S
�1.

Proof

Since x ¼ Tz, it follows that z ¼ T
�1
x ¼ Px, where P ¼ T

�1. We also have z1 ¼

p1x and _zz1 ¼ p1
�x. If we replace �x ¼ Axþ bu we have that _zz1 ¼

p1ðAxþ buÞ ¼ p1Axþ p1bu. From the structure of the matrix A* given in Eq.
(5.4-7), it follows that _zz1 ¼ z2; _zz2 ¼ z3; . . . ; _zzn�1 ¼ zn. Hence, the expression for _zz1

takes on the form
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_zz1 ¼ z2 ¼ p1Axþ p1bu

Since, according to relation z ¼ Px, the elements of z are functions of the elements of
x only, it follows that p1b ¼ 0. Also, since

_zz2 ¼ z3 ¼ p1A
�x ¼ p1AðAxþ buÞ ¼ p1A

2
xþ p1Abu

it follows that p1Ab ¼ 0. If we repeat this procedure, we arrive at the final equation

_zzn�1 ¼ zn ¼ p1A
n�2 �x ¼ p1A

n�2
ðAxþ buÞ ¼ p1A

n�1
xþ p1A

n�2
bu

and, consequently, p1A
n�2

b ¼ 0. The above results can be summarized as follows:

z ¼ Px

where

P ¼

p1

� � � � � �

p1A

� � � � � �

p1A
2

� � � � � �

..

.

� � � � � �

p1A
n�1

2
6666666666664

3
7777777777775

where p1 is, for the time being, an arbitrary row vector which must satisfy the
following relations:

p1b ¼ p1Ab ¼ p1A
2
b ¼ � � � ¼ p1A

n�2
b ¼ 0

or

p1½b
..
.
Ab ..

.
A

2
b ..
.
� � � ..

.
A

n�2
b� ¼ 0

For the vector b* ¼ Pb to have the form (5.4-7), it must hold that

b* ¼ Pb ¼

p1b

� � � � � � � � �

p1Ab

� � � � � � � � �

..

.

� � � � � � � � �

p1A
n�1

b

2
666666664

3
777777775

¼

0
� � �

0
� � �

..

.

� � �

1

2
666666664

3
777777775

The above relation holds when p1A
n�1

b ¼ 1. Hence, the vector p1 must satisfy the
equation

p1½b
..
.
Ab ..

.
A

2
b ..
.
� � � ..

.
A

n�2
b ..
.
A

n�1
b� ¼ p1S ¼ ½0; 0; . . . ; 0; 1�

Hence

p1 ¼ ½0; 0; � � � ; 0; 1�S�1
¼ q

where q is the last row of matrix S
�1.
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Example 5.4.1

Consider a system of the form (5.1-1), where

A ¼
1 �1

�1 2

� �
; b ¼

1
1

� �

Transform matrix A and vector b to A* and b* of the form (5.4-7).

Solution

We have

S ¼ ½b ..
.
Ab� ¼ 1 ..

.
0

1 ..
.

1

2
4

3
5; S

�1
¼

1 0
�1 1

� �

Since S is invertible, matrix A and vector b can be transformed in phase canonical
form. Matrix P will then be

P ¼
q1

q1A

" #
¼

�1 1

�2 3

" #
; P

�1
¼

�3 1

�2 1

" #

and hence T ¼ P
�1 given above. Consequently,

A* ¼ T
�1
AT ¼

�1 1

�2 3

" #
1 �1

�1 2

" #
�3 1

�2 1

" #
¼

0 1

�1 3

" #

b* ¼ T
�1
b ¼

�1 1

�2 3

" #
1

1

" #
¼

0

1

" #

Theorem 5.4.3

Assume that the system ðA;B;C;DÞn is a MIMO. Further, assume that there are
positive integer numbers �1; �2; . . . ; �m such that the matrix

ŜS ¼ ½b1
..
.
Ab1

..

.
� � � ..

.
A

�1�1
b1jb2

..

.
Ab2

..

.
� � � ..

.
A

�2�1
b2j � � � jbm

..

.
Abm

..

.
� � � ..

.

A
�m�1

bm�

ð5:4-10Þ

is of full rank and that �1 þ �2 þ � � � þ �m ¼ n, where bi is the ith column of the
matrix B (a systematic way of choosing the integers �1; �2; . . . ; �m is given in [11]).
Then, there is a transformation matrix T which transforms the given system to its
phase canonical form ðA*;B*;C*;D*Þn. Matrix T is given by the relation T ¼ P

�1,
where
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P ¼

P1

� � � � �

P2

� � � � �

..

.

� � � � �

Pm

2
66666666666666666666666664

3
77777777777777777777777775

¼

p1

p2

..

.

p�1

� � � � � � � � �

p�1þ1

p�2þ2

..

.

p�1þ�2

� � � � � � � � �

..

.

� � � � � � � � �

pn��m
pn��mþ1

..

.

pn

2
6666666666666666666666666666664

3
7777777777777777777777777777775

¼

q1

q1A

..

.

q1A
�1�1

� � � � � � � � �

q2

q2A

..

.

q2A
�2�1

� � � � � � � � �

..

.

� � � � � � � � �

qm
qmA

..

.

qmA
�m�1

2
6666666666666666666666666666664

3
7777777777777777777777777777775

ð5:4-11Þ

where qk is the �k row of the matrix ŜS
�1 and where

�k ¼
Xk
i¼1

�i k ¼ 1; 2; . . . ;m ð5:4-12Þ

Example 5.4.2

Consider a system of the form (5.1-1), where

A ¼

�2 �1 �1

3 1 1

5 1 3

2
64

3
75; B ¼

1 1

�1 0

�1 �1

2
64

3
75; C ¼

2 0 2

0 1 �1

� �
;

D ¼
0 0

0 0

� �

Transform this system to its phase canonical form (5.4-6).

Solution

We have ŜS ¼ ½b1
..
.
Ab1

..

.
b2�. Hence

ŜS ¼

1 ..
.

0 ..
.

1

�1 ..
.

1 ..
.

0

�1 ..
.

1 ..
.

�1

2
664

3
775 and ŜS

�1
¼

1 �1 1
1 0 1
0 1 �1

2
4

3
5

Here, �1 ¼ 2 and �2 ¼ 1 and thus �1 þ �2 ¼ 3 ¼ n. Also, �1 ¼ �1 ¼ 2 and
�2 ¼ �1 þ �2 ¼ 3. The rows q1 and q2 are the 2nd and 3rd rows of the matrix ŜS

�1,
i.e., q1 ¼ ð1; 0; 1Þ and q2 ¼ ð0; 1;�1Þ. Therefore, the matrix P has the form
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P ¼

q1

q1A

q2

2
664

3
775 ¼

1 0 1
2 0 3

0 1 �1

2
664

3
775 and P

�1
¼

�2 1 0
3 �1 1
3 �1 0

2
4

3
5

Finally, the matrices of the transformed system ðA*;B*;C*;D*Þn have the form

A* ¼ T
�1
AT ¼

0 1 0
2 2 �1

�2 0 0

2
664

3
775 ¼

A*
11 A*

12

A*
21 A*

22

2
4

3
5

B* ¼ T
�1
B ¼

0 0
1 1

0 1

2
664

3
775 ¼

B*
1

B*
2

2
4

3
5

C* ¼ CT ¼
2 0 0
0 0 1

� �
and D* ¼ D ¼

0 0
0 0

� �

We observe that the forms of A* and B* are in agreement with the forms in Eqs
(5.4-6).

5.4.3 Transition from an nth Order Differential Equation to State
Equations in Phase Canonical Form

Consider the differential equation

yðnÞ þ an�1y
ðn�1Þ

þ an�2y
ðn�2Þ

þ � � � þ a1y
ð1Þ

þ a0y ¼ uðtÞ

Define as state variables x1ðtÞ ¼ yðtÞ; x2ðtÞ ¼ yð1ÞðtÞ; . . . ; xnðtÞ ¼ yðn�1Þ
ðtÞ. This parti-

cular set of state variables are called phase variables. Then, as shown in Subsec. 3.8.5,
the above differential equation in state space takes on the following form:

�x ¼ Axþ bu; y ¼ c
T
x

where A and b are in phase canonical form of the form (5.4-7). The vector cT has the
form c

T
¼ ð1; 0; . . . ; 0Þ.

It is important to observe that the structure of matrix A in phase canonical
form is as follows

A ¼

0 In�1

a

2
4

3
5

where 0 is a zero column of dimension n� 1, the matrix In�1 is the unity ðn� 1Þ �
ðn� 1Þ matrix and a ¼ ½�a0;�a1;�a2; . . . ;�an�1� is a row whose elements are the
coefficients of the differential equation, in reverse order and with negative sign. Due
to this special structure of matrix A, we readily have the following three relations:

pðsÞ ¼ jsI� Aj ¼ sn þ an�1s
n�1

þ an�2s
n�2

þ � � � þ a1sþ a0 ð5:4-13aÞ
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ðsI� AÞ
�1
b ¼

1

pðsÞ

1
s
s2

..

.

sn�1

2
66664

3
77775 ð5:4-13bÞ

HðsÞ ¼ c
T
ðsI� AÞ

�1
b ¼

1

pðsÞ
ð5:4-13cÞ

5.4.4 Transition from the Phase Canonical Form to the Diagonal
Form

Assume that a system is already in phase canonical form and that we want to
diagonalize the matrix A of the system. A general method of diagonalizing any
square matrix is given in Sec. 2.10. For the special case, where the matrix A is already
in phase canonical form, the diagonalization is simple and may be carried out as
follows: a similarity matrix T, which diagonalizes the matrix A, can be determined by
letting

, ¼ T
�1
AT or T, ¼ AT; where , ¼ diagf�ig ð5:4-14Þ

or

t1
t2
t2

..

.

tn

2
666664

3
777775

�1 0 0 � � � 0
0 �2 0 � � � 0
0 0 �3 � � � 0

..

. ..
. ..

. ..
.

0 0 0 � � � �n

2
666664

3
777775 ¼

0 1 0 � � � 0
0 0 1 � � � 0
0 0 0 � � � 0
..
. ..

. ..
. ..

.

�a0 �a1 �a2 � � � �an�1

2
66664

3
77775

t1
t2
t3

..

.

tn

2
666664

3
777775

or

t1, ¼ t2

t2, ¼ t3

..

.

tn�1, ¼ tn

tn, ¼ aT

where a ¼ ½�a0;�a1;�a2; . . . ;�an�1� and ti is the ith row of the matrix T. The above
relations can be written as

t2 ¼ t1,

t3 ¼ t2, ¼ t1,
2

..

.

tn�1 ¼ tn�2, ¼ t1,
n�2

tn ¼ tn�1, ¼ t1,
n�1

tn, ¼ aT

These equations yield t1 ¼ ½1; 1; . . . ; 1�. Hence, T has the following form
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T ¼

t1
t2

..

.

tn�1

tn

2
666664

3
777775 ¼

t1
t1,

..

.

t1,
n�2

t2,
n�1

2
666664

3
777775 ¼

1 1 � � � 1
�1 �2 � � � �n
..
. ..

. ..
.

�n�2
1 �n�2

2 � � � �n�2
n

�n�1
1 �n�1

2 � � � �n�1
n

2
666664

3
777775 ð5:4-15Þ

This particular form of T is known as the Vandermonde matrix, and it is always
regular under the condition that the eigenvalues �1; �2; . . . ; �n are distinct.

Example 5.4.3

Diagonalize the following matrix

A ¼

0 1 0
0 0 1
6 11 6

2
4

3
5

Solution

The characteristic polynomial pðsÞ of matrix A is

pðsÞ ¼ jsI� Aj ¼ s3
� 6s2

� 11s� 6 ¼ ðs� 1Þðs� 2Þðs� 3Þ

Hence, the eigenvalues of A are 1, 2, and 3. The transformation matrix T will be

T ¼

1 1 1

�1 �2 �3

�2
1 �2

2 �2
3

2
64

3
75 ¼

1 1 1

1 2 3

1 4 9

2
64

3
75

Therefore

, ¼ T
�1
AT ¼

1 0 0
0 2 0
0 0 3

2
4

3
5

5.5 BLOCK DIAGRAMS AND SIGNAL-FLOW GRAPHS

MIMO systems can be described by block diagrams and signal-flow graphs in a
similar way that SISO systems are described (see Secs. 3.10 and 3.11). Consider a
MIMO system, which is described in state space by the equations

�x ¼ Axþ Bu; xð0Þ ¼ x0 ð5:5-1aÞ

y ¼ CxþDu ð5:5-1bÞ

This system can also be described in the s-domain as follows:

sXðsÞ � xð0Þ ¼ AXðsÞ þ BUðsÞ ð5:5-2aÞ

YðsÞ ¼ CXðsÞ þDUðsÞ ð5:5-2bÞ

The block diagrams of Eqs (5.5-1) and (5.5-2) are given in Figures 5.3 and 5.4,
respectively. The signal-flow graph of Eqs (5.5-2) is given in Figure 5.5.

For the special case where the system is described by the nth order differential
equation
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yðnÞ þ an�1y
ðn�1Þ

þ � � � þ a1y
ð1Þ

þ a0y ¼ uðtÞ

with zero initial conditions yðkÞð0Þ; k ¼ 0; 1; . . . ; n� 1; the signal-flow graph of the
state equations of this differential equation can be constructed as follows. Let
x1 ¼ y; x2 ¼ yð1Þ; . . . ; xn ¼ yðn�1Þ. Then, the differential equation becomes

_xx1 ¼ x2

_xx2 ¼ x3

..

.

_xxn ¼ �a0x1 � a1x2 � � � � � an�1xn þ uðtÞ
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Figure 5.3 Block diagram of state equations in the time domain.

Figure 5.4 Block diagram of state equations in the frequency domain.

Figure 5.5 Signal-flow graph of state equations.



Take the Laplace transform to yield

sX1ðsÞ � x1ð0Þ ¼ X2ðsÞ

sX2ðsÞ � x2ð0Þ ¼ X3ðsÞ

..

.

sXnðsÞ � xnð0Þ ¼ �a0X1ðsÞ � a1X2ðsÞ � � � � � an�1XnðsÞ þUðsÞ

From the above relations we can easily construct the signal-flow graph given in
Figure 5.6. The corresponding block diagram has already been presented in
Figure 3.12.

5.6 CONTROLLABILITY AND OBSERVABILITY

The concepts of controllability and observability have been introduced by Kalman
[24–30] and are of great theoretical and practical importance in modern control. For
example, controllability and observability play an important role in solving several
control problems, such as optimal control, adaptive control, pole assignment, etc.

5.6.1 State Vector Controllability

The concept of controllability is related to the state vector as well as to the output
vector of a system. Simply speaking, we say that the state (or output) vector is
controllable if a control vector uðtÞ can be found such that the state (or output)
vector reaches a preassigned value in a finite period of time. If this is not possible –
i.e., even if one state (or output) variable cannot be controlled (in which case we say
that this variable is uncontrollable) – it follows that the whole system is uncontrol-
lable.

As an introductionary example, consider the following system:

_xx1

_xx2

� �
¼

�1 0
0 �2

� �
x1

x2

� �
þ

0
1

� �
u
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From the first equation _xx1 ¼ �x1, it is obvious that the state variable x1 is not a
function of the input u. Therefore, the behavior of x1 cannot be affected by the input
u, and hence the variable x1 is uncontrollable. On the contrary, from the second
equation _xx2 ¼ �2x2 þ u, it follows that the variable x2 is controllable since the input
u affects x2, and we can therefore select an input u such that x2 reaches any pre-
assigned value in a finite period of time.

The strict definition of state controllability of system (5.2-1) is the following.

Definition 5.6.1

The vector xðtÞ of system (5.1-1) is completely controllable or simply controllable if
there exists a piecewise continuous control function uðtÞ such as to drive xðtÞ from its
initial condition xðt0Þ to its final value xðtf Þ in a finite period of time ðtf � t0Þ � 0.

In Definition 5.6.1 the expression ‘‘a piecewise . . . uðtÞ’’ has the meaning that
we do not put any limitation on the amplitude or on the energy of uðtÞ.

The definition of controllability of xðtÞ gives a very good insight into the
physical meaning of controllability, but it is not easy to apply in order to determine
whether or not xðtÞ is controllable. To facilitate this problem we give two alternative
theorems (criteria) that simplify the determination of the controllability of xðtÞ.

Theorem 5.6.1

Assume that the matrix A of system (5.1-1) has distinct eigenvalues. Also assume
that the transformation matrix T diagonalizes matrix A, in which case the diagona-
lized system will be

�z ¼ ,zþ B*u; where , ¼ diagf�ig ¼ diagf�1; �2; . . . ; �ng ð5:6-1Þ

where z ¼ T
�1
x, , ¼ T

�1
AT and B* ¼ T

�1
B. Then, xðtÞ is controllable if no row of

matrix B* is a zero row.

Proof

Equation (5.6-1) can be written as

_zzi ¼ �izi þ b*iu; i ¼ 1; 2; . . . ; n ð5:6-2Þ

where b*i is the ith row of matrix B*. From Eq. (5.6-2) it is obvious that the state
variable zi of system (5.6-1) is controllable if at least one of the elements of the row b*i
is not zero. Hence, all variables z1; z2; . . . ; zn are controllable if none of the rows of
matrix B* are zero.

Theorem 5.6.2

The state vector xðtÞ of Eq. (5.1-1a) is controllable if and only if

RankS ¼ n; where S ¼ ½B ..
.
AB ..

.
A

2
B ..

.
� � � ..

.
A

n�1
B� ð5:6-3Þ

where S is called the controllability matrix and has dimensions n�mn.

Proof

The solution of Eq. (5.1-1a) is given by Eq. (5.3-6), i.e., by the equation
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xðtÞ ¼ rðt� t0Þxðt0Þ þ

ðt
t0

rðt� �ÞBuð�Þ d� ð5:6-4Þ

To simplify the proof, let xðtf Þ ¼ 0. Then, solving Eq. (5.6-4) for xðt0Þ gives

xðt0Þ ¼ �r�1
ðtf � t0Þ

ð
tf

t0

rðtf � �ÞBuð�Þ d� ¼ �

ðtf
t0

rð�tf þ t0 þ tf � �ÞBuð�Þ d�

¼ �

ðtf
t0

rðt0 � �ÞBuð�Þ d� ð5:6-5Þ

where use was made of Eq. (5.2-14b). From Cayley–Hamilton’s theorem, given in
Eq. (2.11-6), we have that

A
k
¼

Xn�1

i¼0

ð�kÞiA
i; k � n

Using this relation, the state transition matrix rðtÞ can be written as

rðtÞ ¼ eAt ¼
Xn�1

k¼0

tk

k!
A

k
þ
X1
k¼n

tk

k!

Xn�1

i¼0

ð�kÞiA
i
¼

Xn�1

i¼0

A
i
X1
k¼0

ð�kÞi
tk

k!
¼

Xn�1

i¼0

	iðtÞA
i;

where 	iðtÞ ¼
X1
k¼0

ð�kÞi
tk

k!

Using the above expression for rðtÞ, the matrix rðt0 � �Þ can be written as

rðt0 � �Þ ¼
Xn�1

i¼0

	iðt0 � �ÞAi
ð5:6-6Þ

If we substitute Eq. (5.6-6) into Eq. (5.6-5), we have

xðt0Þ ¼ �
Xn�1

i¼0

A
i
B

ðtf
t0

	iðt0 � �Þuð�Þ d� ¼ �
Xn�1

i¼0

A
i
Bqi

where the vector qi is defined as

qi ¼

ðtf
t0

	iðt0 � �Þuð�Þ d�

The above expression for xðt0Þ can be written in compact matrix form, as follows

xðt0Þ ¼ �Sq ð5:6-7Þ

where

S ¼ ½B ..
.
AB ..

.
A

2
B ..

.
� � � ..

.
A

n�1
B� and q ¼

q0

q1

..

.

qn�1

2
6664

3
7775

Equation (5.6-7) is a system of n equations with n�m unknowns. The problem at
hand, i.e., the determination of an input vector uðtÞ such that xðtf Þ ¼ 0, has been
reduced to that of solving system (5.6-7). From linear algebra, it is well known that
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for system (5.6-7) to have a solution, the rank of S must be equal to n, i.e., condition
(5.6-3) must hold.

Example 5.6.1

Determine if the state vector of the system �x ¼ Axþ bu is controllable, where

A ¼
2 3
0 5

� �
and b ¼

1
0

� �

Solution

Construct the matrix S:

S ¼ ½b ..
.
Ab� ¼ 1 ..

.
2

0 ..
.

0

2
4

3
5

Since jSj ¼ 0, it follows that the rank of S is less than n ¼ 2. Hence, the state vector is
not controllable.

Example 5.6.2

Determine if the state vector of a SISO system in phase canonical form (5.4-7) is
controllable.

Solution

Construct the matrix S*:

S* ¼ ½b* ..
.
A*b* ..

.
� � � ..

.
ðA*Þ

n�1
b*� ¼

0 0 � � � 1
0 0 � � � 	1

..

. ..
. ..

.

0 1 � � � 	n�1

1 �a�n�1 � � � 	n

2
666664

3
777775

where 	1; 	2; . . . ; 	n are linear combinations of the coefficients a�0; a
�
1; . . . ; a

�
n�1 of the

characteristic polynomial jsI� A
�
j. Due to the lower-diagonal form of matrix S*, it

immediately follows that jS*j ¼ �1. Hence, the state vector of the SISO system (5.4-
7) in phase canonical form is always controllable.

Remark 5.6.1

Example 5.6.2, in combination with Theorem 5.4.2, shows that, for SISO systems,
the controllability of the state vector is the necessary and sufficient condition
required to transform the system to its phase canonical form. Hence, if a SISO
system is already in its phase canonical form, it follows that its state vector is
controllable.

5.6.2 Output Vector Controllability

The controllability of the output vector is defined as follows.

Definition 5.6.2

The output vector yðtÞ of system (5.1-1) is completely controllable or simply control-
lable if there exists a piecewise continuous control function uðtÞ, which will drive yðtÞ
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from its initial condition yðt0Þ to its final value yðtf Þ, in a finite period of time
ðtf � t0Þ � 0.

A simple criterion for determining the controllability of the output vector is
given by the following theorem.

Theorem 5.6.3

The output vector yðtÞ of system (5.1-1) is controllable if and only if

RankQ ¼ p; where Q ¼ ½D ..
.
CB ..

.
CAB ..

.
CA

2
B ..

.
� � � ..

.
CA

n�1
B� ð5:6-8Þ

where matrix Q has dimensions p� ðnþ 1Þm.
The proof of Theorem 5.6.3 is analogous to the proof of Theorem 5.6.2.

Example 5.6.3

Consider a system of the form (5.1-1), where

A ¼
�1 0

0 �2

� �
; B ¼

1 0
0 1

� �
; C ¼

1 1
1 0

� �
; D ¼

1 1
0 0

� �
Determine if the state and output vectors are controllable.

Solution

We have

S ¼ ½B ..
.
AB� ¼ 1 0 ..

.
�1 0

0 1 ..
.

0 �2

2
4

3
5

Since RankS ¼ 2, it follows that the state vector is controllable. Furthermore, we
have

Q ¼ ½D ..
.
CB ..

.
CAB� ¼ 1 1 ..

.
1 1 ..

.
�1 �2

0 0 ..
.

1 0 ..
.

�1 0

2
4

3
5

Since RankQ ¼ 2, it follows that the output vector is also controllable.

5.6.3 State Vector Observability

The concept of observability is related to the state variables of the system and it is
dual to the concept of controllability (the concept of duality is explained in Remarks
5.6.2 and 5.6.3, which follow). Assume that we have available the input vector uðtÞ
and the corresponding output vector yðtÞ of system (5.1-1) over a finite period of
time. If, on the basis of these measurements of uðtÞ and yðtÞ, one can determine the
vector of initial conditions xðt0Þ, then we say that the system is observable. In case
that this is not possible—i.e., even if one element of the vector of initial conditions
xðt0Þ cannot be determined—then we say that this element is unobservable, and as a
result we say that the whole system is unobservable.

As an introductory example, consider the following system:

_xx1

_xx2

� �
¼

�1 0
0 �2

� �
x1

x2

� �
þ

1
1

� �
u; y ¼ ½2 0�

x1

x2

� �
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The above description breaks down to the two differential equations _xx1 ¼ �x1 þ u
and _xx2 ¼ �2x2 þ u. Furthermore, the output is given by y ¼ 2x1. Since _xx1 ¼

�x1 þ u – i.e., x1 is not a function of x2 but only a function of u, it follows that
the output of the system is affected only by the state x1 and therefore the output does
not involve any information regarding the state x2. As a result, the determination of
the initial condition x2ðt0Þ becomes impossible. Hence, the system at hand is unob-
servable.

The strict definition of observability is as follows.

Definition 5.6.3

The state vector xðtÞ of system (5.1-1) is observable in the time interval ½t0; tf � if,
knowing the input uðtÞ and the output yðtÞ for t 2 ½t0; tf �, one can determine the initial
condition vector xðt0Þ.

In the sequel, we present two alternative theorems (criteria) that simplify the
procedure of determining the observability of xðtÞ.

Theorem 5.6.4

Let system (5.1-1) have distinct eigenvalues. Furthermore, let the transformation
matrix T be given by (5.4-15), in which case T diagonalizes matrix A. Then the
diagonalized system is the following:

�z ¼ ,zþ B*u ð5:6-9aÞ

y ¼ C*zþDu ð5:6-9bÞ

where z ¼ T
�1
x, , ¼ T

�1
AT, B* ¼ T

�1
B, and C* ¼ CT. Then, xðtÞ is observable if

no column of matrix C* is a zero column.

Proof

The output Eq. (5.6-9b) can be written as

y ¼ c*1z1 þ c*2z2 þ � � � þ c*izi þ � � � þ c*nzn þDu ð5:6-10Þ

where c*
i

is the ith column of matrix C*. It is obvious that if one column, for
example ci, of matrix C*, is zero then the corresponding state variable zi will not
appear in the output yðtÞ. Consequently, we cannot, in this case, determine the initial
condition ziðt0Þ. As a result, xðtÞ is unobservable.

Remark 5.6.2

Theorems 5.6.1 and 5.6.4 are dual, in the sense that the role of rows of matrix B* for
controllability play the columns of matrix C* for observability.

Theorem 5.6.5

The state vector xðtÞ of system (5.1-1) is observable if and only if

rankRT
¼ n; where R

T
¼ ½C

T ..
.
A

T
C

T ..
.
ðA

T
Þ
2
C

T ..
.
� � � ..

.
ðA

T
Þ
n�1

C
T
�

ð5:6-11Þ

where R is called the observability matrix and has dimensions n� np.
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Proof

The general solution of Eq. (5.2-1) is given by Eq. (5.3-7), i.e., by the equation

yðtÞ ¼ Crðt� t0Þxðt0Þ þ C

ðt
t0

rðt� �ÞBuð�Þ d�þDuðtÞ ð5:6-12Þ

To simplify the proof, let uðtÞ ¼ 0. Then, Eq. (5.6-12) becomes

yðtÞ ¼ Crðt� t0Þxðt0Þ

If we use Eq. (5.6-6) in the above relation, we have

yðtÞ ¼ C
Xn�1

i¼0

	iðt� t0ÞA
i

" #
xðt0Þ ¼

Xn�1

i¼0

	iðt� t0ÞCA
i

" #
xðt0Þ

The above relation can be written in compact matrix form as follows:

yðtÞ ¼ ERxðt0Þ ð5:6-13Þ

where

E ¼ ½	0I
..
.
	1I

..

.
	2I

..

.
� � � ..

.
	n�1I� and R ¼

C

CA

CA
2

..

.

CA
n�1

2
66664

3
77775

From linear algebra it is well known that for system (5.6-13) to have a solution for
xðt0Þ, the rank of matrix R, or equivalently the rank of its transpose matrix

R
T
¼ ½C

T ..
.
A

T
C

T ..
.
ðA

T
Þ
2
C

T ..
.
� � � ..

.
ðA

T
Þ
n�1

C
T
�

must be equal to n.

Remark 5.6.3

Theorems 5.6.2 and 5.6.5 are dual, in the sense that the role of the matrices B and A

in the controllability matrix S play the matrices C
T and A

T in the observability
matrix R

T. The duality of S and R
T also appears in transforming a system to its

phase canonical form. In Subsec. 5.4.2 we presented a method of transforming
system ðA;B;C;DÞn to its phase canonical form ðA*;B*;C*;D*Þn based on the con-
trollability matrix S, where the matrices A* and B* have special forms. In an analo-
gous way, system ðA;B;C;DÞn can be transformed to its phase canonical form
ðA

þ;Bþ;Cþ;Dþ
Þn based on the observability matrix R, where the matrices A

þ

and C
þ have special forms. The forms of the matrices A* and A

þ, and of the matrices
B* and C

þ, are dual. In order to distinguish these two cases, we say that system
ðA*;B*;C*;D*Þn is in its input phase canonical form, whereas system
ðA

þ;Bþ;Cþ;Dþ
Þn is in its output phase canonical form. The example that follows

refers to the determination of the output phase canonical form.

Example 5.6.4

Determine if the state vector of a system with matrices

State-Space Analysis 221



A ¼

�1 0 0
0 �2 0
0 0 �3

2
4

3
5; B ¼

0 0
1 0
0 1

2
4

3
5; and C ¼ ½ 1 1 1 �

is observable. Furthermore, determine the output phase canonical form of the
system.

Solution

Construct the matrix R
T:

R
T
¼ ½C

T ..
.
A

T
C

T ..
.
ðA

T
Þ
2
C

T
� ¼

1 ..
.

�1 ..
.

1

1 ..
.

�2 ..
.

4

1 ..
.

�3 ..
.

9

2
664

3
775

Since rankR ¼ 3, it follows that the state vector of the given system is observable. To
determine its output phase canonical form, we have

ðR
T
Þ
�1

¼
1

2

6 �6 2

5 �8 3

1 �2 1

2
64

3
75; P ¼

q3

q3A
T

q3ðA
T
Þ
2

2
64

3
75 ¼

1

2

1 �2 1

�1 4 �3

1 �8 9

2
64

3
75;

T ¼ P
�1

¼

6 5 1

3 4 1

2 3 1

2
64

3
75

where q3 is the last row of ðRT
Þ
�1. The matrices of the given system in output phase

canonical form are

ðA
þ
Þ
T
¼ T

�1
A

T
T ¼

0 1 0
0 0 1

�6 �11 �6

2
4

3
5; ðB

þ
Þ
T
¼ B

T
T ¼

3 4 1
2 3 1

� �

ðC
þ
Þ
T
¼ T

�1
C

T
¼

0
0
1

2
4

3
5

5.6.4 The Invariance of Controllability and Observability

The properties of controllability and observability are invariant under state vector
similarity transformation. Indeed, the matrices S*, Q*, and R* of the transformed
system ðA*;B*;C*;D*Þn are related to the matrices S, Q, and R of the original
system ðA;B;C;DÞn as follows:

S* ¼ ½B* ..
.
A*B* ..

.
ðA*Þ

2
B* ..

.
� � � ..

.
ðA*Þ

n�1
B*�

¼ ½T
�1
B ..

.
T
�1
ATT

�1
B ..

.
ðT

�1
ATÞ

2
T
�1
B ..

.
� � � ..

.
ðT

�1
ATÞ

n�1
T
�1
B�

¼ ½T
�1
B ..

.
T
�1
AB ..

.
T
�1
A

2
B ..

.
� � � ..

.
T
�1
A

n�1
B�

¼ T
�1
½B ..

.
AB ..

.
A

2
B ..

.
� � � ..

.
A

n�1
B� ¼ T

�1
S ð5:6-14Þ
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Furthermore

Q* ¼ ½D* ..
.
C*B* ..

.
C*A*B* ..

.
� � � ..

.
C*ðA*Þ

n�1
B*�

¼ ½D ..
.
CTT

�1
B ..

.
CTT

�1
ATT

�1
B ..

.
� � � ..

.
CTðT

�1
ATÞ

n�1
T
�1
B�

¼ ½D ..
.
CB ..

.
CAB ..

.
� � � ..

.
CA

n�1
B� ¼ Q ð5:6-15Þ

Finally,

R*T
¼ ½C*T ..

.
A*T

C*T ..
.
ðA*T

Þ
2
C*T ..

.
� � � ..

.
ðA*T

Þ
n�1

C*T
�

¼ ½T
T
C

T ..
.
T

T
A

T
ðT

�1
Þ
T
T

T
C

T ..
.
½T

T
A

T
ðT

�1
Þ
T
�
2
T

T
C

T ..
.
� � � ..

.

½T
T
A

T
ðT

�1
Þ
T
�
n�1

T
T
C

T
�

¼ ½T
T
C

T ..
.
T

T
A

T
C

T ..
.
T

T
ðA

T
Þ
2
C

T ..
.
� � � ..

.
T

T
ðA

T
Þ
n�1

C
T
�

¼ T
T
½C

T ..
.
A

T
C

T ..
.
ðA

T
Þ
2
C

T ..
.
� � � ..

.
ðA

T
Þ
n�1

C
T
� ¼ T

T
R

T
ð5:6-16Þ

From Eqs (5.6-14)–(5.6-16) it follows that, if the original system is controllable and/
or observable, then the transformed system is also controllable and/or observable.

5.6.5 Relation Among Controllability, Observability, and Transfer
Function Matrix

It is clear that the transfer function matrix HðsÞ is an input–output description of a
system. That is, it relates the input vector UðsÞ to the output vector YðsÞ of the system
without involving the state vector XðsÞ. At this point, we raise the following question:
Is the transfer function matrix HðsÞ affected and how by the properties of controll-
ability and observability of the system? The answer to this question is of great
importance and constitutes one of the basic reasons for preferring the state equations
over transfer function matrices for describing control systems. In the sequel, we will
try to give the answer to this question.

We introduce the following definition.

Definition 5.6.4

Consider the sequences

Sj ¼ ½B ..
.
AB ..

.
� � � ..

.
A

j�1
B� ð5:6-17Þ

R
T
j ¼ ½C

T ..
.
A

T
C

T ..
.
� � � ..

.
ðA

T
Þ
j�1

C
T
� ð5:6-18Þ

Let 
 and � be the smallest positive integer numbers such that rankS
 ¼ rankS
þ1

and rankR� ¼ rankR�þ1 (therefore rankSi ¼ rankS
, 8i > 
 and rankRi ¼ rankR�,
8i > �). Then, the index 
 is called the controllability index and the index � is called
the observability index.

It has been proven that there is a strong relationship among the three system
characteristics: (a) controllability and observability; (b) the matrices S
 and R�; and
(c) the minimum state-space realization (see Subsec. 3.8.5). This strong relationship
is stated in the following theorem.
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Theorem 5.6.6

For system (5.1-1), the following three propositions are equivalent:

(a) The system is observable and controllable—namely, the rank of both
matrices S and R is n.

(b) RankR�S
 ¼ n.
(c) The dimension n of the state-space realization is minimum.

The following theorem relates the classical and the modern control theory,
since it relates the classical input–output description HðsÞ to the modern description
of a system in state space. This relation has come to light from the concepts of
controllability and observability.

Theorem 5.6.7

If the transfer function matrix of a system involves pole-zero cancellations, then the
system is either uncontrollable or unobservable or both. If the transfer function
matrix does not involve any pole-zero cancellation, then the system is both control-
lable and observable.

Proof

Consider an SISO system which is already in diagonal form, i.e., consider the follow-
ing diagonal system

�x ¼ ,x ¼ bu ð5:6-19aÞ

y ¼ c
T
x ð5:6-19bÞ

For this system we have

_xxi ¼ �ixi þ biu; i ¼ 1; 2; . . . ; n

or

XiðsÞ ¼
bi

s� �i
UðsÞ; i ¼ 1; 2; . . . ; n ð5:6-20Þ

where bi is the ith element of b. Therefore

YðsÞ ¼ c
T
XðsÞ ¼

Xn
i¼1

ciXiðsÞ ¼
Xn
i¼1

cibi
s� �i

UðsÞ ð5:6-21Þ

where ci is the ith element of the vector c. The transfer function HðsÞ of the system
has the general form

HðsÞ ¼ K
ðs� z1Þðs� z2Þ � � � ðs� zmÞ

ðs� �1Þðs� �2Þ � � � ðs� �nÞ
; m < n

If we expand HðsÞ in partial functions, we have

HðsÞ ¼
Xn
i¼1

hi
s� �i

ð5:6-22Þ
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Comparing Eqs (5.6-21) and (5.6-22), it follows that

hi ¼ cibi ð5:6-23Þ

Consequently, if HðsÞ involves cancellation of the pole �i, then there must be hi ¼ 0.
From Eq. (5.6-23) it follows that for hi ¼ 0 to hold, then there must be either bi ¼ 0
or ci ¼ 0, or even bi ¼ ci ¼ 0. Clearly, if bi ¼ 0, then the system is uncontrollable
(because one of the rows of b is zero). If ci ¼ 0, then the system is unobservable
(because one of the columns of cT is zero). Finally, if bi ¼ ci ¼ 0, then the system is
both uncontrollable and unobservable.

If hi 6¼ 0, 8i, then all ci’s and bi’s are different than zero and hence system (5.6-
19) is both controllable and observable.

The following theorem is of great practical importance.

Theorem 5.6.8

The transfer function matrix involves only the controllable and observable part of a
system.

The practical importance of the previous theorems, and particularly of
Theorem 5.6.8, is demonstrated by the following examples.

Example 5.6.5

Consider the network of Figure 5.7. Determine the transfer function and study the
case of pole-zero cancellations.

Solution

The transfer function of the network is

HðsÞ ¼
YðsÞ

UðsÞ
¼

Z2ðsÞ

Z1ðsÞ þ Z2ðsÞ

where
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Z1ðsÞ ¼

R1

1

C1s

� �
R1 þ

1

C1s

¼
R1

R1C1sþ 1
; Z2ðsÞ ¼

R2

1

C2s

� �
R2 þ

1

C2s

¼
R2

R2C2sþ 1

Furthermore,

HðsÞ ¼

R2

RcC2sþ 1
R1

R1C1sþ 1
þ

R2

R2C2sþ 1

¼
R2ðR1C1sþ 1Þ

R1ðR2C2sþ 1Þ þ R2ðR1C1sþ 1Þ

¼
C1

C1 þ C2

� �
sþ 


sþ �

� �
where


 ¼
1

R1C1

; � ¼
R1 þ R2

R1R2ðC1 þ C2Þ

If we choose R1;R2;C1, and C2 such that R1C1 ¼ R2C2, then 
 ¼ � and

HðsÞ ¼
C1

C1 þ C2

¼
R2

R1 þ R2

¼ constant

The above results indicate that, in general, HðsÞ is a function of s. However, in the
special case where R1C1 ¼ R2C2 the transfer function HðsÞ reduces to a constant. In
this case, HðsÞ gives misleading information about the network, because one may
arrive at the conclusion that the RC network is a pure resistive network, which it is
not. Furthermore, when R1C1 ¼ R2C2, the network is neither controllable (the vol-
tages of the capacitors C1 and C2 cannot be controlled) nor observable (the initial
voltages of the capacitors C1 and C2 cannot be estimated from input and output
data).

Example 5.6.6

Consider the SISO system �x ¼ Axþ bu, y ¼ c
T
x, where

A ¼
0 1
2 �1

� �
; b ¼

0
1

� �
; and c ¼

�1
1

� �
Determine if the system is controllable and observable and find its transfer function.

Solution

Since the system is already in its phase canonical form, it immediately follows that it
is controllable. To determine if the system is observable, construct the matrix

R
T
¼ ½c ..

.
A

T
c� ¼ �1 ..

.
2

1 ..
.

�2

" #

Since jRj ¼ 0, it follows that rankR < 2, and hence the system is not observable.
The transfer function of the system is

HðsÞ ¼ c
T
ðsI� AÞ

�1
b ¼

s� 1

ðs� 1Þðsþ 2Þ
¼

1

sþ 2
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Clearly, since the system is unobservable, it was expected that at least one pole-zero
cancellation will take place. The cancellation of the factor ðs� 1Þ results in ‘‘con-
cealing’’ the eigenvalue 1. This can have extremely undesirable results, particularly in
cases like the present example, where the cancelled out pole is in the right-half
complex plane. In this case, if the system were excited, the states of the system
would increase with time, and could even break down or burn out the system.
Indeed, if, for simplicity, we let uðtÞ ¼ �ðtÞ, then

X1ðsÞ ¼
1

ðs� 1Þðsþ 2Þ
and thus x1ðtÞ ¼

1

3
ðet � e�2t

Þ

X2ðsÞ ¼
s

ðs� 1Þðsþ 2Þ
and thus x2ðtÞ ¼

1

3
ðet þ 2e�2t

Þ

Hence, due to the term et, both x1ðtÞ and x2ðtÞ increase with time. Now, consider
determining the output on the bases of the transfer function. We have

YðsÞ ¼ HðsÞUðsÞ ¼
1

ðsþ 2Þ
and thus yðtÞ ¼ e�2t

Clearly, the output gives very misleading results as to the behavior of the system: in
reality, the system may break down or burn out and the output leads us to believe
that there is ‘‘no problem’’ and that the system’s behavior is described by the decay-
ing function yðtÞ ¼ e�2t. This leads to the conclusion that we should not ‘‘trust’’ HðsÞ
unless the following theorem is satisfied.

Theorem 5.6.9

When a system is controllable and observable, then no pole-zero cancellations take
place and its transfer function matrix constitutes a complete description of the
system.

5.7 KALMAN DECOMPOSITION

Kalman showed that it is possible to introduce certain coordinates, using a suitable
transformation matrix T, such that a system can be decomposed as follows:

�xðtÞ ¼
A11 A12 0 0

0 A22 0 0

A31 A32 A33 A34

0 A42 0 A44

2
664

3
775xðtÞ þ

B1

0

B3

0

2
664

3
775uðtÞ ð5:7-1aÞ

yðtÞ ¼ ½ C1 C2 0 0 � xðtÞ ð5:7-1bÞ

where Aij, Bi, and Ci are block matrices of suitable dimensions. The state-space
vector xðtÞ is accordingly decomposed into four subvectors, each one of which
corresponds to one of the following four cases:

. States that are both controllable and observable

. States that are uncontrollable but are observable

. States that are controllable but unobservable

. States that are both uncontrollable and unobservable.
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The following theorem, which is related to the above results, is called the
Kalman decomposition theorem.

Theorem 5.7.1

A system can be decomposed into four subsystems with the following properties:

. Subsystem SOC: the observable and controllable subsystem ðA11;B1;C1Þ.

. Subsystem SO �CC: the observable but uncontrollable subsystem ðA22; 0;C2Þ.

. Subsystem S �OOC: the unobservable but controllable subsystem ðA33;B3; 0Þ.

. Subsystem S �OO �CC: the unobservable and uncontrollable subsystem ðA44; 0; 0Þ.

The transfer function matrix of system (5.7-1) is unique and can be determined
from the subsystem which is both controllable and observable. Indeed, straightfor-
ward calculations show that the transfer function matrix of system (5.7-1) is given by

HðsÞ ¼ C1ðsI� A11Þ
�1
B1 ð5:7-2Þ

Relation (5.7-2) contains only the controllable and the observable part of the system.
Figure 5.8 shows the block diagram of the Kalman decomposition, involving

all four subsystems and the way in which they are linked to each other. Also, it shows
that the input is related to the output only through the subsystem SOC.

5.8 PROBLEMS

1. Consider the frictionless horizontal movement of the mass m shown in Figure
5.9a. A force f ðtÞ is applied to the mass. The displacement and the velocity of the
mass are yðtÞ and vðtÞ, respectively. The input, state, and output variables are
defined in Figure 5.9b. Determine (a) the state equations of the system, (b) the
transition matrix, (c) the solution of the homogeneous equation, and (d) the
general solution, given that f ðtÞ ¼ f0uðtÞ, and (e) the output of the system.
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2. For the RLC network shown in Figure 5.10a, determine (a) the state equations,
using the definitions of input, state, and output variables shown in Figure 5.10b,
(b) the transition matrix, (c) the solution of the homogeneous equation, (d) the
general solution, and (e) the output vector of the system.

3. Consider the mechanical system shown in Figure 5.11a, where the two inputs are
the forces f1ðtÞ and f2ðtÞ applied to the masses m1 and m2, respectively. The two
outputs are the displacements y1ðtÞ and y2ðtÞ of the masses. Using the definitions
shown in Figure 5.11b, determine (a) the state equations of the system and (b)
the transition matrix and the output vector of the system, when m1 ¼ m2 ¼ 1 kg,
K1 ¼ 1, K2 ¼ 2, B1 ¼ 1, f1ðtÞ ¼ f2ðtÞ ¼ 1, y1ð0Þ ¼ 1, _yy1ð0Þ ¼ y2ð0Þ ¼ _yy2ð0Þ ¼ 0:

4. Consider the liquid-level control system shown in Figure 5.12a. Using the defini-
tions of Figure 5.12b, determine (a) the state equations of the system and (b) the
transition matrix and the output vector when the horizontal area of both tanks is
A ¼ 1m2 and the flow resistance at the output of both tanks is R ¼ 1.

5. A system of two carts connected by a damper is shown in Figure 5.13a. The
input, state, and output variables are defined in Figure 5.13b, where f is the force
applied, v1 and v2 are the velocities of the two carts, and the difference v2 � v1 is
the system output. (a) Determine the state equations and (b) transform the
system into phase canonical form.

6. A control system is described by the following state equations:

_xx1

_xx2

� �
¼

0 1
�2 �3

� �
x1

x2

� �
þ

0
2

� �
u

y ¼ ½ 1 0 �
x1

x2

� �
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(a) Transform the system into diagonal form and (b) determine the general
solution for the transformed system, given that x1ð0Þ ¼ x2ð0Þ ¼ 0 and
uðtÞ ¼ e�t, t � 0.

7. Diagonalize the following matrices

0 1
�2 �3

� �
;

0 1 0
0 0 1
0 1 0

2
4

3
5;

0 1 0 0
0 0 1 0
0 0 0 1
0 2 1 2

2
664

3
775

8. Derive the block diagrams and the signal-flow graphs for the following systems

ðaÞ HðsÞ ¼

1

s
0

0
1

sþ 1

2
664

3
775 ðbÞ HðsÞ ¼

0
1

s

1

sþ 2

1

sþ 1
0 0

0 1
1

sþ 3

2
66666664

3
77777775

ðcÞ �x ¼

0 1 0

0 0 1

6 11 6

2
664

3
775xþ

0

0

1

2
664

3
775u; xð0Þ ¼

1

�1

0

2
664

3
775

9. A simplified picture of a submarine is shown in Figure 5.14a. In Figure 5.14b the
input, state, and output variables of the system are defined. The state equations
describing the system are the following:

_xx1

_xx2

_xx3

2
664

3
775 ¼

0 1 0

1 �3 2

0 � �1

2
664

3
775

x1

x2

x3

2
664

3
775þ

0

1

�1

2
664

3
775u

y ¼ ½ 1 0 0 �
x1

x2

x3

2
4

3
5

Examine the controllability and observability of the system.
10. Consider the electrical network given in Figure 5.15a. Find its state equations

using the definitions of input, state, and output variables shown in Figure 5.15b.
Investigate the observability of the system in relation to the free values of the
network elements.

11. Investigate the controllability and observability of the following systems.
Furthermore, transform them into their phase canonical input and output
forms:
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ðaÞ A ¼

1 0 1
2 �2 0

�1 2 1

2
4

3
5; b ¼

1
1
0

2
4

3
5; c

T
¼ ½ 1 0 1 �

ðbÞ A ¼

1 2 1 0
0 1 4 �1
0 0 1 0

�1 0 0 0

2
664

3
775; b ¼

0
1
1
1

2
664

3
775; C ¼

1 �1 1 0
0 1 0 0

� �

ðcÞ A ¼

1 0 0
0 �1 1
1 0 0

2
4

3
5; B ¼

1 1
0 1
1 0

2
4

3
5; c

T
¼ ½�1 1 �1 �

12. Consider the network of Figure 5.16a, where R1 ¼ R2 ¼ 1�, C1 ¼ C2 ¼ 1 F,
L ¼ 2 H, vc1

ð0Þ ¼ 1 V, vc2
ð0Þ ¼ �1 V, iLð0Þ ¼ 0 A. The input, state, and output

variables are defined in Figure 5.16b. Determine (a) the state equations, (b) the
state transition matrix, (c) the output of the network, (d) the state and output
controllability, (e) the state observability, and (f) a phase canonical form
description.
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13. A system is described by the matrix equations

�x ¼ Axþ Bu; y ¼ CxþDu; xð0Þ ¼ 0

where

A ¼

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1

2
664

3
775; B ¼

0 0
0 0
1 0
0 1

2
664

3
775; C ¼

1 0 0 0
0 0 0 1

� �
;

D ¼
0 0
0 1

� �
Determine (a) the matrix ðsI� AÞ

�1, using the Leverrier’s algorithm, (b) the state
transition matrix, (c) the transfer function matrix, (d) the output vector yðtÞ, and
(e) the state and output controllability and the state observability.

14. Solve Problem 13 for the system with matrices

A ¼

0 1 0
2 3 0
1 1 1

2
4

3
5; B ¼

0 0
1 0
0 1

2
4

3
5; C ¼

1 1 1
0 0 1

� �
;

D ¼
�1 0

0 0

� �
and initial state vector x

T
ð0Þ ¼ ½1;�1; 0�.
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6
Stability

6.1 INTRODUCTION

Systems have several properties—such as controllability, observability, stability, and
invertibility—that play a very decisive role in their behavior. From these character-
istics, stability plays the most important role.

The most basic practical control problem is the design of a closed-loop system
such that its output follows its input as closely as possible (see Chap. 4). In the
present chapter we will show that unstable systems cannot guarantee such behavior
and therefore are not useful in practice. Another serious disadvantage of unstable
systems is that the amplitude of at least one of their state and/or output variables
tends to infinity as time increases, even though the input of the system is bounded.
This usually results in driving the system to saturation and in certain cases the
consequences may be even more undesirable: the system may suffer serious damage,
such as burn out, break down, explosion, etc. For these and other reasons, in
designing an automatic control system, our primary goal is to guarantee stability.
As soon as stability is guaranteed, then one seeks to satisfy other design require-
ments, such as speed of response, settling time, bandwidth, and steady-state error.

The concept of stability has been studied in depth, and various criteria for
testing the stability of a system have been proposed. Among the most celebrated
stability criteria are those of Routh, Hurwitz, Nyquist, Bode, Nichols, and
Lyapunov. From these criteria, the first five are in the frequency domain, whereas
the last one is in the time domain. These criteria are presented in this chapter, except
the criteria of Nyquist, Bode, and Nichols, which are presented in Chap. 8. The very
popular root locus technique proposed by Evans, which also facilitates the study of
stability, is presented in Chap. 7.

6.2 STABILITY DEFINITIONS

In this section, the stability of linear, time-invariant systems is studied in connection
with each of the three well-established mathematical models of a system—namely,
the state equations, the transfer function matrix, and the impulse response matrix.
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1 Stability of Systems Described in State Space

Consider a linear, time-invariant system described in state space as follows

�x ¼ Axþ Bu; xð0Þ ¼ x0 6¼ 0 ð6:2-1aÞ

y ¼ CxþDu ð6:2-1bÞ

The stability considered here refers to the zero-input case, i.e., to the case where the
sysem (6.2-1) has zero input ðuðtÞ ¼ 0Þ. This is the case of natural (or free) response
of the system, also known as the homogeneous solution (see relation (4.2-3)). The
stability defined for uðtÞ ¼ 0 is called zero-input stability.

a Asymptotic Stability

System (6.2-1) is asymptotically stable if, for uðtÞ ¼ 0 and for every finite initial state
xð0Þ 6¼ 0, the following condition is satisfied

lim
t!1

kxðtÞk ¼ 0 ð6:2-2Þ

where k:k stands for the Euclidean norm of the vector xðtÞ, i.e.,

kxðtÞk ¼ ðx2
1 þ x2

2 þ 	 	 	 þ x2
nÞ

1=2

A simplified picture of the above definition is given in Figure 6.1, where, for
simplicity, we consider the case where the state vector has only two variables. In
the figure it is shown that the state vector xðtÞ of the system (6.2-1) with uðtÞ ¼ 0

and initial conditions xð0Þ moves towards the origin when condition (6.2-2) is
satisfied.
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b Stability in the Circle M

System (6.2-1) is stable in the circle M if, for uðtÞ ¼ 0 and for every finite initial state
xð0Þ 6¼ 0, the following condition is satisfied:

kxðtÞk <M; t 
 0 ð6:2-3Þ

In this case, xðtÞ remains within a circle of finite radius M, as shown in Figure 6.1.

c Instability

If xðtÞ does not satisfy condition (6.2-3), the system is said to be unstable. In this
case, the vector xðtÞ, for uðtÞ ¼ 0 and initial state xð0Þ 6¼ 0, moves towards infinity as
t! 1, as shown in Figure 6.1.

2 Stability of Systems Described by Their Transfer Function Matrix

The previous definition of stability refers to systems described in state space and
relates their stability with the Euclidean norm of the state vector. For systems
described by their transfer function matrix HðsÞ, the asymptotic stability condition
follows directly from the asymptotic stability definition (6.2-2). Here, the stability is
exclusively related to the poles of HðsÞ. This marks out the great importance that the
poles of a system have in relation to its stability.

Consider a linear, time-invariant system described in the s domain by its
transfer function matrix

HðsÞ ¼ C½sI� A
�1
BþD ð6:2-4Þ

The characteristic polynomial of the system is

pðsÞ ¼ jsI� Aj ¼
Yn
i¼1

ðs� �iÞ

where �1; �2; . . . ; �n are the eigenvalues of A, or equivalently, the poles of HðsÞ.

a Asymptotic Stability

System (6.2-4) is asymptotically stable if all the poles �1; �2; . . . ; �n of HðsÞ lie in the
left-half complex plane, i.e., if the following condition holds:

Re �i < 0; i ¼ 1; 2; . . . ; n ð6:2-5Þ

In this case, the natural response of the system goes to zero as time goes to infinity.

b Marginal Stability

System (6.2-4) is marginally stable if there exist poles on the imaginary axis of
multiplicity one. The rest of the poles are in the left-half complex plane. In this
case the natural response of the system neither grows nor decays. It remains constant
or it oscillates with constant amplitude.

It is remarked that stability in the circleM and marginal stability are essentially
equivalent.

Remark 6.2.1

In marginal stability, we tacitly assume that none of the poles of the system excitation
uðtÞ coincides with any of the poles of HðsÞ on the imaginary axis. In the opposite case,
the system is unstable. For example, let UðsÞ ¼ 1=s and HðsÞ ¼ 1=sðsþ 1Þ. Then
YðsÞ ¼ HðsÞUðsÞ ¼ 1=s2ðsþ 1Þ and, hence, the system is unstable. Similarly, for con-
jugate poles on the imaginary axis. Let UðsÞ ¼ 1=ðs2 þ 1Þ (i.e., let uðtÞ ¼ sin t) and
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HðsÞ ¼ 1=ðsþ 4Þðs2 þ 1Þ; then YðsÞ ¼ HðsÞUðsÞ ¼ 1=ðsþ 4Þðs2 þ 1Þ2, and hence the
system is unstable.

Remark 6.2.2

In certain special cases the system is intended to be marginally stable: as, for exam-
ple, in the case of an integrator ðHðsÞ ¼ K=sÞ or an oscillator ðHðsÞ ¼ Ks=ðs2 þ !2

nÞÞ.
In these special cases, we make an exception to the rule and we usually say that the
system is stable (even though it is marginally stable).

c Instability

System (6.2-4) is unstable if it has at least one pole in the right-half complex plane or
it has poles on the imaginary axis of multiplicity greater than 1. In this case, as time
approaches infinity, the natural response of the system approaches infinity.

3 Stability of Systems Described by their Impulse Response Matrix

For systems described by their impulse response matrix HðtÞ, the asymptotic stability
condition follows directly from the asymptotic stability definition (6.2-2). Here, the
stability is related to the absolute value of each element or to the integral of the
absolute value of each element of HðtÞ.

Consider a linear, time-invariant system described in the time domain by its
impulse response matrix

HðtÞ ¼ L�1
fCðsI� AÞ

�1
BþDg ¼ CeAtBþD�ðtÞ; t 
 0 ð6:2-6Þ

a Asymptotic Stability

System (6.2-6) is asymptotically stable if the following condition is satisfied:ð1
0

jhijðtÞjdt < A; 8i; j ð6:2-7Þ

where A is a finite positive constant and hijðtÞ is the ði; jÞth element of the impulse
response matrix HðtÞ.

b Marginal Stability

System (6.2-6) is marginally stable if the following conditon holds

jhijðtÞj < B; 8i; j ð6:2-8Þ

where B is a finite positive number. An analogous remark to Remark 6.2.1 holds for
the present case.

c Instability

System (6.2-6) is unstable even if one element hijðtÞ of HðtÞ does not satisfy Eq. (6.2-8).
At this point, we briefly introduce another definition for stability, called the

bounded-input–bounded-output (BIBO) stability. A system is BIBO stable if, for
any bounded input, its output is also bounded.

This definition is more general than all previous definitions, because it refers to
systems that may not be linear and time invariant, while it gives a simple picture of
the concept of stability. For single-input–single-output (SISO) systems, BIBO stabi-
lity may be interpreted as follows. Consider the bounded input uðtÞ, i.e., assume that
juðtÞj � C1, for t 2 ð0;1Þ, where C1 is a finite constant. Also assume that the
response of the system to this input is yðtÞ which is also bounded, i.e., assume that

240 Chapter 6



jyðtÞj � C2, for t 2 ð0;1Þ, where C2 is a finite constant. If for all possible bounded
inputs the corresponding outputs of the system are also bounded, then the system is
said to be BIBO stable.

Finally, it is mentioned that asymptotic stability is the strongest, since it is
more stringent than marginal stability and BIBO stability.

Example 6.2.1

Investigate the stability of a system described in state space in the form (6.2-1), where

A ¼
0 1

�2 �3

� �
; b ¼

0
1

� �
; c ¼

1
0

� �
; D ¼ 0; xð0Þ ¼

1
�1

� �

Solution

The state vector, for uðtÞ ¼ 0, will be

xðtÞ ¼ L�1
fðsI� AÞ

�1
xð0Þg ¼ L�1

sþ 3

ðsþ 1Þðsþ 2Þ

1

ðsþ 1Þðsþ 2Þ

�2

ðsþ 1Þðsþ 2Þ

s

ðsþ 1Þðsþ 2Þ

2
664

3
775 x1ð0Þ

x2ð0Þ

" #8>><
>>:

9>>=
>>;

¼
2e�t � e�2t e�t � e�2t

�2e�t þ 2e�2t
�e�t þ 2e�2t

" #
1

�1

" #
¼

e�t

�e�t

" #

The norm of the vector xðtÞ is

kxðtÞk ¼ ½x2
1ðtÞ þ x2

2ðtÞ
1=2

¼ ½e�2t
þ e�2t


1=2

¼ ½2e�2t

1=2

¼
ffiffiffi
2

p
e�t

It is clear that, on the basis of the definition of asymptotic stability, condition (6.2-2)
is satisfied, since kxðtÞk <

ffiffiffi
2

p
for t > 0 and lim

t!1
kxðtÞk ! 0. Therefore, the system is

asymptotically stable.
The characteristic polynomial of the system is

pðsÞ ¼ jsI� Aj ¼ ðsþ 1Þðsþ 2Þ

The two eigenvalues of the matrix A are �1 and �2, and they both lie in the left-half
complex plane. Therefore, the system, on the basis of condition (6.2-5), is asympto-
tically stable.

The impulse response of the system is

hðtÞ ¼ c
TeAtb ¼ c

T
Me,tM�1

b

where M is a transformation matrix which transforms the matrix A in its diagonal
form ,. According to the results of Subsec. 5.4.4, the matrix M has the form

M ¼
1 1
�1 �2

� �
¼

1 1
�1 �2

� �
; M

�1
¼

2 1
�1 �1

� �
Therefore,

hðtÞ ¼ c
T
Me,tM�1

b ¼ ½1; 0
1 1

�1 �2

� �
e�t 0
0 e�2t

� �
2 1

�1 �1

� �
0
1

� �
¼ e�t � e�2t
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If we apply condition (6.2-7), we haveð1
0

jhðtÞj dt ¼

ð1
0

je�t � e�2t
j dt �

ð1
0

e�tdtþ

ð1
0

e�2tdt ¼ 1 þ 0:5 ¼ 1:5 < 1

Hence, the system, on the basis of condition (6.2-7), is asymptotically stable.
Assume that the system is excited by a bounded input juðtÞj < C < 1. Then,

the absolute value of the output of the system will be

jyðtÞj ¼

ðt
0

hð�Þuðt� �Þd�

����
���� �

ðt
0

jhð�Þjjuðt� �Þjd� ¼ C

ðt
0

jhð�Þjd� � 1:5C < 1

Hence, on the basis of definition of the BIBO stability, it is concluded that the system
is BIBO stable.

Example 6.2.2

Investigate the stability of a system described in state-space form (6.2-1), where

A ¼
0 1
1 0

� �
; b ¼

0
1

� �
; c ¼

0
1

� �
; D ¼ 0; xð0Þ ¼

1
1

� �

Solution

The state vector, for uðtÞ ¼ 0, will be

xðtÞ ¼ L�1
fðsI� AÞ

�1
xð0Þg ¼ L�1

s

s2 � 1

1

s2 � 1

1

s2 � 1

s

s2 � 1

2
664

3
775

8>><
>>:

9>>=
>>;

x1ð0Þ

x2ð0Þ

" #

¼

1
2 ðe

t
þ e�tÞ 1

2 ðe
t
� e�tÞ

1
2 ðe

t
� e�tÞ 1

2 ðe
t
þ e�tÞ

" #
1

1

" #
¼

et

et

" #

The norm of the state vector is

kxðtÞk ¼ ½x2
1ðtÞ þ x2

2ðtÞ
1=2

¼ ½2e2t

1=2

¼
ffiffiffi
2

p
et

It is clear that the system is unstable because, as t! 1, xðtÞ tends to infinity.
The characteristic polynomial of the system is

pðsÞ ¼ jsI� Aj ¼ ðs� 1Þðsþ 1Þ

The two eigenvalues of the matrix A are 1 and �1. From these two eigenvalues, one
lies in the right-half complex plane and therefore the system is unstable.

The impulse response of the system is

hðtÞ ¼ L�1
fc

T
ðsI� AÞ

�1
bg ¼ 1

2 ðe
t
þ e�tÞ

If we apply condition (6.2-7) we haveð1
0

jhðtÞj dt ¼
1

2

ð1
0

jet þ e�tjdt �
1

2

ð1
0

et dtþ
1

2

ð1
0

e�t dt ¼ 1

Hence the system, is unstable.
Assume that the system is excited by a bounded input juðtÞj < C < 1. Then,

the absolute value of the output of the system will be
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jyðtÞj ¼

ðt
0

hð�Þuðt� �Þ d�

����
���� �

ðt
0

jhð�Þjjuðt� �Þjd� ¼ C

ðt
0

jhð�Þj d�

Therefore

lim
t!1

jyðtÞj ¼ C lim
t!1

ðt
0

jhð�Þjd� ¼ 1

Hence the system is not BIBO stable.
A summary of the main points of the present section is given in Figure 6.2.

6.3 STABILITY CRITERIA

Clearly, each of the definitions of Sec. 6.2 may be applied to study the stability of a
system. Their application, however, appears to have many difficulties. For example,
the definition based on the state-space description requires the determination of the
state vector xðtÞ. This computation is usually quite difficult. The definition based on
the transfer function matrix HðsÞ requires the computation of the roots of the char-
acteristic polynomial jsI� Aj. This computation becomes more complex as the
degree of the characteristic polynomial becomes greater. The definition based on
the impulse response matrix HðtÞ requires the determination of the impulse response
matrix HðtÞ. This appears to have about the same difficulties as the determination of
the transition matrix rðtÞ. The BIBO definition appears to be simple and practical to
apply, but because of its very nature, it is almost impossible to use. This is because in
order to study the stability of a system on the basis of the BIBO stability definition,
one must examine all possible bounded inputs, which requires an infinitely long
period of time.

From all different definitions mentioned above, the definition based on the
transfer function description appears to offer, from the computational point of
view, the simplest approach. But even in this case, particularly when the degree of
the characteristic polynomial is very high, the determination of the poles could
involve numerical difficulties which might make it difficult, if not impossible, to
apply.

From the above, one may conclude that in practice it is very difficult to apply
the definitions of stability presented in Sec. 6.2 directly in order to study the stability
of a system. To circumvent this difficulty, various stability criteria have been devel-
oped. These criteria give pertinent information regarding the stability of a system
without directly applying the definitions for stability and without requiring compli-
cated numerical procedures. The most popular criteria are the following:

1. The algebraic criteria: these criteria assume that the analytical expression
of the characteristic polynomial of the system is available and give infor-
mation with regard to the position of the roots of the characteristic poly-
nomial in the left- or the right-half complex plane. Examples of such
algebraic criteria are the Routh criterion, the Hurwitz criterion, and the
continued fraction expansion criterion. These criteria are simple to apply
and, for this reason, they have become most popular in studying the sta-
bility of linear systems.
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Figure 6.2 Types of system description and their corresponding definitions of asymptotic stability, marginal stability, and
instability.



2. The Nyquist criterion: this criterion refers to the stability of the closed-loop
systems and is based on the Nyquist diagram of the open-loop transfer
function.

3. The Bode criterion: this criterion is essentialy the Nyquist criterion
extended to the Bode diagrams of the open-loop transfer function.

4. The Nichols criterion: this criterion, as in the case of the Bode criterion, is
essentially an extension of the Nyqist criterion to the Nichols diagrams of
the open-loop transfer function.

5. The root locus: this method consists of determining the root loci of the
characteristic polynomial of the closed-loop system when one or more
parameters of the system vary (usually these parameters are gain constants
of the system).

6. The Lyapunov criterion: this criterion is based on the properties of
Lyapunov functions of a system and may be applied to both linear and
nonlinear systems.

The algebraic criteria, the Nyquist criterion, the Bode criterion, and the
Nichols criterion, as well as the root locus technique, are all criteria in the frequency
domain. The Lyapunov criterion is in the time domain.

The algebraic criteria and the Lyapunov criterion are presented in this chapter.
The root locus technique is presented in Chap. 7 and the Nyquist, the Bode, and the
Nichols criteria are presented in Chap. 8.

6.4 ALGEBRAIC STABILITY CRITERIA

6.4.1 Introductory Remarks

The most popular algebraic criteria are the Routh, Hurwitz, and the continued
fraction expansion criteria. The main characteristic of these three algebraic criteria
is that they determine whether or not a system is stable by using a very simple
numerical procedure, which circumvents the need for determining the roots of the
characteristic polynomial.

Consider the characteristic polynomial

pðsÞ ¼ ans
n
þ an�1s

n�1
þ 	 	 	 þ a1sþ a0 ð6:4-1Þ

where the coefficients an; an�1; . . . ; a0 are real numbers. Here, we assume a0 6¼ 0 to
avoid having a root at the origin. Next, we state the following well-known theorem
of algebra.

Theorem 6.4.1

The polynomial pðsÞ has one or more roots in the right-half complex plane if at least
one of its coefficients is zero and/or all coefficients do not have the same sign.

Theorem 6.4.1 is very useful since it allows one to determine the stability of a
system by simply inspecting the characteristic polynomial. However, Theorem 6.4.1
gives only necessary stability conditions. This means that if pðsÞ satisfies Theorem
6.4.1, then the system with characteristic polynomial pðsÞ is definitely unstable. For
the cases where pðsÞ does not satisfy Theorem 6.4.1, i.e., none of the coefficients of
pðsÞ is zero and all its coefficients have the same sign, we cannot conclude as to the
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stability of the system. For these cases, we apply one of the algebraic criteria (Routh,
or Hurwitz, or continued fraction expansion), which are presented below.

6.4.2 The Routh Criterion

The Routh criterion determines the number of the roots of the characteristic poly-
nomial pðsÞ which lie in the right-half complex plane. This criterion is applied by
using the Routh array, as shown in Table 6.1. In the Routh array, the elements an;
an�1; an�2; . . . ; a1; a0 are the coefficients of pðsÞ. The elements b1; b2; b3; . . . ; c1; c2; c3
; . . . ; etc., are computed as follows:

b1 ¼ �

an an�2

an�1 an�3

������
������

an�1

; b2 ¼ �

an an�4

an�1 an�5

������
������

an�1

; . . . ð6:4-2aÞ

c1 ¼ �

an�1 an�3

b1 b2

����
����

b1

; c2 ¼ �

an�1 an�5

b1 b3

����
����

b1

; . . . ð6:4-2bÞ

and so on. The Routh criterion is given by the following theorem.

Theorem 6.4.2

The necessary and sufficient conditions for Re�i < 0, i ¼ 1; 2; . . . ; n, where �1; �2;
. . . ; �n are the roots of the characteristic polynomial pðsÞ, are that the first column of
the Routh array does not involve any sign changes. In cases where it involves sign
changes, then the system is unstable and the number of roots of pðsÞ with positive
real part is equal to the number of sign changes.

Example 6.4.1

Investigate the stability of a system with characteristic polynomial
pðsÞ ¼ s3 þ 10s2 þ 11sþ 6.
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Table 6.1 The Routh Array

sn an an�2 an�4 	 	 	

sn�1 an�1 an�3 an�5 	 	 	

sn�2 b1 b3 b3 	 	 	

sn�3 c1 c2 c3 	 	 	

..

. ..
. ..

. ..
. ..

. ..
. ..
.

s1 ..
.

s0 ..
.



Solution

Construct the Routh array as follows:

s3

s2

s1

s0

����������

1 11

10 6

52=5 0

6 0

Since the first column of the Routh array involves no sign changes, it follows that the
system is stable.

Example 6.4.2

Investigate the stability of a system with characteristic polynomial
pðsÞ ¼ s4 þ s3 þ s2 þ 2sþ 1.

Solution

Construct the Routh array as follows:

s4

s3

s2

s1

s0

������������

1 1 1

1 2 0

�1 1 0

3 0 0

1 0 0

Since the first column of the Routh array involves two sign changes, it follows that
pðsÞ has two roots in the right-half complex plane and therefore the system is
unstable.

It has been proven that we can multiply or divide a column or a row in the
Routh array by a constant without influencing the end results of the Routh criterion.
We may take advantage of this fact to simplify several operations which are required
in constructing the Routh array.

There are two cases in which the Routh criterion, as it has been presented
above, cannot be applied. For these two cases certain modifications are necessary
so that the above procedure is applicable. These two cases are the following.

1 A Zero Element in the First Column of the Routh Array

In this case the Routh array cannot be completed because the element below the zero
element in the first column will become infinite as one applies relation (6.4-2). To
circumvent this difficulty, we multiply the characteristic polynomial pðsÞ with a
factor ðsþ aÞ, where a > 0 and �a is not a root of pðsÞ. The conclusions regarding
the stability of the new polynomial p̂pðsÞ ¼ ðsþ aÞpðsÞ are obviously the same as those
of the original polynomial pðsÞ.

Example 6.4.3

Investigate the stability of a system with characteristic polynomial
pðsÞ ¼ s4 þ s3 þ 2s2 þ 2sþ 3.
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Solution

Construct the Routh array as follows:

s4

s3

s2

s1

s0

����������

1 2 3
1 2 0
0 3 0
1

Since the third element in the first column of the Routh array is zero, it is clear that
the Routh array cannot be completed. If we multiply pðsÞ by the factor ðsþ 1Þ, we
have

p̂pðsÞ ¼ ðsþ 1ÞpðsÞ ¼ s5 þ 2s4 þ 3s3 þ 4s2 þ 5sþ 3

Next, construct the Routh array of p̂pðsÞ:

s5

s4

s3

s2

s1

s0

������������

1 3 5
2 4 3
1 3:5 0

�3 3 0
4:5 0 0
3 0 0

According to the above Routh array, one observes that the polynomials p̂pðsÞ and pðsÞ
have two roots in the right-half complex plane, and therefore the system with char-
acteristic polynomial pðsÞ is unstable.

2 A Zero Row in the Routh Array

In this case the Routh array cannot be completed, because in computing the rest of
the elements that follow the zero row, according to formula (6.4-2), the indetermi-
nate form 0/0 will appear. To circumvent this difficulty, we proceed as follows:

1. Form the ‘‘auxiliary polynomial’’ qðsÞ of the row which precedes the zero
row.

2. Take the derivative of qðsÞ and replace the zero row with the coefficients of
qð1ÞðsÞ, where qð1ÞðsÞ is the derivative of qðsÞ:

3. Complete the construction of the Routh array in the usual manner.

Example 6.4.4

Investigate the stability of a system with characteristic polynomial
pðsÞ ¼ s5 þ s4 þ 2s3 þ 2s2 þ 3sþ 3.

Solution

Construct the Routh array as follows:

s5

s4

s3

s2

s1

s0

������������

1 2 3
1 2 3
0 0 0
? ? ?
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Since the row s3 of the Routh array involves only zeros, it is clear that the Routh
array cannot be completed. At this point we construct the ‘‘auxiliary polynomial’’
qðsÞ ¼ s4 þ 2s2 þ 3 of the row s4. Taking the derivative of qðsÞ yields
qð1ÞðsÞ ¼ 4s3 þ 4s. Next, form the new row s3 of the Routh array using the coefficients
of qð1ÞðsÞ and, subsequently, complete the Routh array in the usual manner to yield

s5

s4

s3

s2

s1

s0

������������

1 2 3
1 2 3
4 4 0
1 3 0

�8 0 0
3 0 0

Since the first column of the new Routh array appears to have two sign changes, it
follows that p(s) has two roots in the right-half complex plane and therefore the
system is unstable.

Finally, consider the case where pðsÞ involves free parameters. Then the Routh
criterion can be used to determine the appropriate range of values of these free
parameters which guarantee stability of the system. This can be accomplished if
one imposes the restriction that all the free parameters appearing in pðsÞ be such
that all the coefficients of the elements of the first column in the Routh array have
the same sign. This leads to a system of algebraic inequalities whose solution deter-
mines the range of values of the free parameters for which the system is stable.

Example 6.4.5

Determine the range of values of the free parameter K such that the system with
characteristic polynomial pðsÞ ¼ s3 þ 10s2 þ 11sþ K is stable.

Solution

Construct the Routh array:

s3

s2

s1

s0

����������

1 11

10 K
110 � K

10
0

K 0

For the system to be stable all elements of the first column of the Routh array must
have the same sign. Hence, there must be ð110 � KÞ=10 > 0 and K > 0. The two
inequalities are simultaneously satisfied for 0 < K < 110. Hence the system is stable
when 0 < K < 110.

6.4.3 The Hurwitz Criterion

The Hurwitz criterion determines whether or not the characteristic polynomial has
roots in the right-half complex plane. However, compared with the Routh criterion,
it does not give any information regarding the number of the roots that the char-
acteristic polynomial has in the right-half complex plane.

The Hurwitz criterion is applied on the basis of the Hurwitz determinants,
which are defined as follows:
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�0 ¼ an

�1 ¼ an�1

�2 ¼
an�1 an�3

an an�2

����
����

�3 ¼

an�1 an�3 an�5

an an�2 an�4

0 an�1 an�3

�������
�������

..

.

�n ¼

an�1 an�3 	 	 	
a0 if n is odd

a1 if n is even

� �
0 	 	 	 0

an an�2 	 	 	
a1 if n is odd

a0 if n is even

� �
0 	 	 	 0

0 an�1 an�3 	 	 	 0

0 an an�2 	 	 	 0

..

. ..
. ..

. ..
. ..
. ..
. ..

.

0 0 0 	 	 	 an

��������������������

��������������������
The Hurwitz criterion is given by the following theorem.

Theorem 6.4.3

The necessary and sufficient conditions for Re �i < 0, i ¼ 0; 1; 2; . . . ; n, where �1; �2

; . . . ; �n are the roots of the characteristic polynomial pðsÞ, are that �i > 0, for all
i ¼ 0; 1; 2; . . . ; n.

Example 6.4.6

Investigate the stability of a system with characteristic polynomial
pðsÞ ¼ s3 þ 10s2 þ 11sþ 6.

Solution

Compute the Hurtwitz determinants:

�0 ¼ 1; �1 ¼ 10; ;�2 ¼
10 6

1 11

����
���� ¼ 104;

�3 ¼

10 6 0

1 11 0

0 10 6

�������
������� ¼ 624

Since all determinants are positive, it follows that the system is stable.

6.4.4 The Continued Fraction Expansion Criterion

The continued fraction expansion criterion, as in the case of the Hurwitz criterion,
determines whether or not the characteristic polynomial has roots in the right-half
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complex plane. To apply the continued fraction expansion criterion, the character-
istic polynomial pðsÞ is first grouped into two polynomials p1ðsÞ and p2ðsÞ as follows:

p1ðsÞ ¼ ans
n
þ an�2s

n�2
þ an�4s

n�4
þ 	 	 	

p2ðsÞ ¼ an�1s
n�1

þ an�3s
n�3

þ an�5s
n�5

þ 	 	 	

Next, we examine the ratio of p1ðsÞ divided by p2ðsÞ by expanding it as follows:

p1ðsÞ

p2ðsÞ
¼ h1sþ

1

h2sþ
1

h3sþ
1

. .
.

1

hns

The continued fraction expansion criterion is given by the following theorem.

Theorem 6.4.4

If hj > 0, for all j ¼ 1; 2; . . . ; n, then Re �j < 0, j ¼ 1; 2; . . . ; n, where �1; �2; . . . ; �n
are the roots of the characteristic polynomial pðsÞ and vice versa.

Example 6.4.7

Investigate the stability of a system with characteristic polynomial
pðsÞ ¼ s3 þ 10s2 þ 11sþ 6.

Solution

Construct the polynomials p1ðsÞ and p2ðsÞ:

p1ðsÞ ¼ s2 þ 11s; p2ðsÞ ¼ 10s2 þ 6

We have

p1ðsÞ

p2ðsÞ
¼
s3 þ 11s

10s2 þ 6
¼

1

10
sþ

104

10
s

10s2 þ 6
¼

1

10
sþ

1

100

104
sþ

1

104

60
s

Therefore

h1 ¼
1

10
; h2 ¼

100

104
; h3 ¼

104

60

Since all coefficients of the continued fraction expansion are positive, it follows that
the system is stable.

6.4.5 Stability of Practical Control Systems

In what follows, we will present several practical automatic control system examples,
investigating their stability using one of the algebraic criteria which we have just
presented.
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Example 6.4.8

For the closed-loop position control system of Example 4.7.3 presented in Chap. 4,
determine the range of values of the parameter K for which the closed-loop system is
stable.

Solution

The transfer function of the closed-loop system of the Example 4.7.3 is

HðsÞ ¼
GðsÞ

1 þ GðsÞ
¼

K

sðsþ 2Þ

1 þ
K

sðsþ 2Þ

¼
K

sðsþ 2Þ þ K

The characteristic polynomial pðsÞ of the closed-loop system is

pðsÞ ¼ sðsþ 2Þ þ K ¼ s2 þ 2sþ K

Construct the Routh array of the characteristic polynomial:

s2

s1

s0

������
1 K
2 0
K 0

Therefore, for the closed-loop system to be stable, K > 0.

Example 6.4.9

Consider the closed-loop speed control system of Example 3.13.3 presented in Chap.
3 and assume that La ffi 0. The transfer function of the closed-loop system is given by
relation (3.13-17). For simplicity, choose all parameters Lf ;Rf ; J

�
m;B

�
m;Km;Kb and

Kt to be equal to unity and let K ¼ KtKaKgKmN. Determine the range of values of
the parameter K for which the closed-loop system is stable.

Solution

The transfer function of the closed-loop system is

HðsÞ ¼
KaKgKmN

ðLfsþ Rf ÞðRaJ
�
msþ RaB

�
m þ KmKbÞ þ KtKaKgKmN

¼
KaKgKmN

ðsþ 1Þðsþ 2Þ þ K

Therefore, the characteristic polynomial pðsÞ of the closed-loop system is

pðsÞ ¼ s2 þ 3sþ K þ 2

Construct the Routh array of the characteristic polynomial:

s2

s1

s0

������
1 K þ 2
3 0

K þ 2 0

For the closed-loop system to be stable, K þ 2 > 0 or K > �2.

Example 6.4.10

This example refers to an automatic depth control system for submarines. In Figure
6.3 the block diagram of the closed-loop system is given, where the submarine is
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approximated by a second-order transfer function. The depth of the submarine is
measured by a depth sensor with transfer function FdðsÞ. It is remarked that, as the
value of the gain K of the controller is increased, so does the speed of sinking of the
submarine. For simplicity, let FdðsÞ ¼ 1. Determine the range of values of K for
which the closed-loop system is stable.

Solution

The transfer function of the closed-loop system is

HðsÞ ¼
GcðsÞGsðsÞ

1 þ GcðsÞGsðsÞFdðsÞ
¼

K

s

� �
ðsþ 0:3Þ2

ðs2 þ 0:01Þ

" #

1 þ
K

s

� �
ðsþ 0:3Þ2

ðs2 þ 0:01Þ

" #

¼
Kðsþ 0:3Þ2

sðs2 þ 0:01Þ þ Kðsþ 0:3Þ2

The characteristic polynomial pðsÞ of the closed-loop system is

pðsÞ ¼ sðs2 þ 0:01Þ þ Kðsþ 0:3Þ2 ¼ s3 þ Ks2 þ ð0:01 þ 0:6KÞsþ 0:09K

Construct the Routh array of the characteristic polynomial:

s3

s2

s1

s0

��������
1 0:01 þ 0:6K
K 0:09K
0:6K � 0:08 0
0:09K

For the closed-loop system to be stable, the two inequalities 0:06K � 0:08 > 0 and
0:09K > 0 must hold simultaneously. This holds true for K > 0:1333:

Example 6.4.11

This example refers to the stabilization of ships due to oscillations resulting from
waves and strong winds, presented in paragraph 12 of Sec. 1.4 and shown in Figure
1.20. When a ship exhibits a deviation of 	 degrees from the vertical axis, as shown in
Figure 1.20, then most ships use fins to generate an opposite torque which restores
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the ship to the vertical position. In Figure 6.4 the block diagram of the system is
given, where, obviously, 	r ¼ 0 is the desired deviation of the ship. The length of the
fins projecting into the water is controlled by an actuator with transfer function
GcðsÞ ¼ K=s. The deviation from the vertical axis is measured by a measuring device
with transfer function FdðsÞ ¼ F0 ¼ constant. A simplified mathematical description
of the ship is given by the second-order transfer function GsðsÞ. Typical values of 

and !n in GsðsÞ are 
 ¼ 0:1 and !n ¼ 2. For simplicity, let F0 ¼ 1. Determine the
range of values of K for which the closed-loop system is stable. It is noted that since
it is desirable that 	r ¼ 0, the problem of restoring the ship to its vertical position is a
typical regulator problem (see Sec. 11.3).

Solution

The transfer function of the closed-loop system is given by

HðsÞ ¼
GcðsÞGsðsÞ

1 þ GcðsÞGsðsÞFdðsÞ
¼

K

s

� �
4

s2 þ 0:4sþ 4

� �

1 þ
K

s

� �
4

s2 þ 0:4sþ 4

� � ¼
4K

s3 þ 0:4s2 þ 4sþ 4K

The characteristic polynomial pðsÞ of the transfer function of the closed-loop system
is the following:

pðsÞ ¼ s3 þ 0:4s2 þ 4sþ 4K

Construct the Routh array of the characteristic polynomial:

s3

s2

s1

s0

��������
1 4
0:4 4K
4 � 10K 0
4K

For the closed-loop system to be stable, the inequalities 4 � 10K > 0 and K > 0 must
hold simultaneously. This holds true for 0 < K < 0:4.
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Example 6.4.12

This example refers to the problem of controlling the yaw of a fighter jet (Figure
6.5a). A simplified diagram of the closed-loop system is given in Figure 6.5b, where
the aircraft is approximated by a fourth-order system. Determine the range of values
of K for which the closed-loop system is stable.

Solution

The transfer function of the closed-loop system is given by

HðsÞ ¼
GcðsÞGaðsÞ

1 þ GcðsÞGaðsÞ
¼

K

sðsþ 2Þðs2 þ sþ 1Þ

1 þ
K

sðsþ 2Þðs2 þ sþ 1Þ

¼
K

sðsþ 2Þðs2 þ sþ 1Þ þ K

The characteristic polynomial pðsÞ of the transfer function of the closed-loop system
is the following:

pðsÞ ¼ s4 þ 3s2 þ 3s2 þ 2sþ K

Construct the Routh array of the characteristic polynomial:

Stability 255

Figure 6.5 Closed-loop system for the control of the yaw of a fighter aircraft. (a) A fighter
aircraft; (b) simplified block diagram of the closed-loop system.



s4

s3

s2

s1

s0

������������

1 3 K

3 2 0

7=3 K

2 � 9K=7 0

K

For the closed-loop system to be stable, the inequalities 2 � 9K=7 > 0 and K > 0
must hold simultaneously. This holds true for 0 < K < 14=9:

Example 6.4.13

One of the most important applications of industrial robots is that of welding. Many
such robots use a vision system to measure the performance of the welding. Figure
6.6 shows a simplified block diagram of such a system. The welding process is
approximated by a second-order underdamped system, the vision system by a
unity transfer function, and the controller is assumed to be of the integrator type.
Determine the range of values of K for which the closed-loop system is stable.

Solution

The transfer function of the closed-loop system is

HðsÞ ¼
GcðsÞGwðsÞ

1 þ GcðsÞGwðsÞFvðsÞ
¼

K

sðsþ 3Þðsþ 4Þ

1 þ
K

sðsþ 3Þðsþ 4Þ

¼
K

sðsþ 3Þðsþ 4Þ þ K

The characteristic polynomial pðsÞ of the transfer function of the closed-loop system
is the following:

pðsÞ ¼ s3 þ 7s2 þ 12sþ K

Construct the Routh array of the characteristic polynomial:
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s3 1 12

s2 7 K

s1
84 � K

7
0

s0 K

For the closed-loop system to be stable, the inequalities ð84 � KÞ=7 > 0 and K > 0
must hold simultaneously. This holds true for 0 < K < 84.

Example 6.4.14

In digital computers, large disk-storage devices are widely used today. As the disk is
spinning, the data head is moved to various positions. This movement must be made
very fast and very accurately. A simplified block diagram of the closed-loop head-
position control system is given in Figure 6.7. The mathematical model of the head is
approximated by a third-order system and the particular controller applied is of the
phase lead or lag type (see Chap. 9), depending on the parameter �. Determine:

(a) For � ¼ 3, the range of values of K for which the closed-loop system is
stable.

(b) For arbitrary �, the ranges of both � and K for which the closed-loop
system is stable.

Solution

(a) For � ¼ 3, the transfer function of the closed-loop system is given by

HðsÞ ¼
GcðsÞGhðsÞ

1 þ GcðsÞGhðsÞ
¼

K
ðsþ 3Þ

ðsþ 1Þ

� �
1

sðsþ 2Þðsþ 5Þ

� �

1 þ K
ðsþ 3Þ

ðsþ 1Þ

� �
1

sðsþ 2Þðsþ 5Þ

� �

¼
Kðsþ 3Þ

sðsþ 1Þðsþ 2Þðsþ 5Þ þ Kðsþ 3Þ

The characteristic polynomial pðsÞ of the transfer function of the closed-loop system
is the following:

pðsÞ ¼ s4 þ 8s2 þ 17s2 þ ðK þ 10Þsþ 3K
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Construct the Routh array of the characteristic polynomial:

s4 1 17 3K

s3 8 K þ 10 0

s2
126 � K

8
3K

s1
�K2

� 76K þ 1260

126 � K
0

s0 3K

For the closed-loop system to be stable, the inequalities ð126 � KÞ=8 > 0, �K2
�

76K þ 1260 > 0 and 3K > 0 must hold simultaneously, i.e., there must hold
K < 126, �90 < K < 14, and K > 0. This holds true for 0 < K < 14.

(b) For arbitrary �, the transfer function of the closed-loop system is given by

HðsÞ ¼
GcðsÞGhðsÞ

1 þ GcðsÞGhðsÞ
¼

Kðsþ �Þ

sðsþ 1Þðsþ 2Þðsþ 5Þ

1 þ
Kðsþ �Þ

sðsþ 1Þðsþ 2Þðsþ 5Þ

¼
Kðsþ �Þ

sðsþ 1Þðsþ 2Þðsþ 5Þ þ Kðsþ �Þ

The characteristic polynomial pðsÞ of the transfer function of the closed-loop system
is the following:

pðsÞ ¼ s4 þ 8s3 þ 17s2 þ ðK þ 10Þsþ K�

Construct the Routh array of the characteristic polynomial:

s4 1 17 K�

s3 8 K þ 10 0

s2
126 � K

8
K�

s1

126 � K

8
ðK þ 10Þ � 8K�

126 � K

8

0

s0 K�

For the closed-loop system to be stable, the following inequalities must hold simul-
taneously:

126 � K

8
> 0

126 � K

8
ðK þ 10Þ � 8K�

126 � K

8

> 0

K� > 0

The above inequalities may be written as
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126 > K

ðK þ 10Þð126 � KÞ � 64K� > 0

K� > 0

In Figure 6.8, the hatched area shows the range of values of � and K for which the
above inequalities are satisfied and, consequently, the closed-loop system is stable.

Example 6.4.15

This example refers to the human respiratory control system. A simplified block
diagram of the system is given in Figure 6.9. Our body has certain special chemo-
receptors which measure the percentage of CO2 in the blood. This percentage is the
output YðsÞ. The ventilation BðsÞ at the lungs is known to be proportional to the
percentage of CO2 in the blood. That is, our body, by measuring YðsÞ, indirectly
measures the ventilation BðsÞ at the lungs. Determine the range of values of K for
which the closed-loop system is stable.

Solution

The transfer function of the closed-loop system is

HðsÞ ¼
GcðsÞGrðsÞ

1 þ KGcðsÞGrðsÞ
¼

0:25

ðsþ 0:5Þ2ðsþ 0:1Þðsþ 10Þ

1 þ
0:25K

ðsþ 0:5Þ2ðsþ 0:1Þðsþ 10Þ

¼
0:25

s4 þ 11:1s3 þ 11:35s2 þ 3:525sþ 0:25ðK þ 1Þ

Construct the Routh array of the characteristic polynomial of the closed-loop
system:
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s4

s3

s2

s1

s0

����������

1 11:35 0:25ðK þ 1Þ
11:1 3:525 0
11:032 0:25ðK þ 1Þ
3:273 � 0:252K 0
0:25ðK þ 1Þ

For the closed-loop system to be stable, the inequalities 3:273 � 0:252K > 0 and
0:25ðK þ 1Þ > 0 must simultaneously be satisfied. This holds true for �1 < K < 13.

6.5 STABILITY IN THE SENSE OF LYAPUNOV

6.5.1 Introduction—Definitions

The final objective of this section is to derive the Lyapunov stability criterion for
linear, time-invariant systems presented in Subsec. 6.5.4. To this end, we first present
some preliminary results from the Lyapunov’s stability theory for nonlinear systems
which are necessary for the derivation of the results sought in Subsec. 6.5.4. The
stability results for nonlinear sytems are, by themselves, of great importance to
control engineers.

The Lyapunov approach is based on the differential equations which describe
the system and gives information about the stability of the system without requiring
the solution of the differential equations. The Lyapunov’s results may be grouped in
two basic methods: the first method of Lyapunov (or the method of the first approx-
imation) and the second method of Lyapunov (or the direct method).

Before we present the two methods of Lyapunov, we first give some prelimin-
ary material and definitions necessary for the results that follow. To this end, con-
sider a system described in state space via the mathematical model

�x ¼ fðx; tÞ; xðt0Þ ¼ x0 ð6:5-1Þ

The solution of Eq. (6.5-1) is denoted by rðt; x0; t0Þ. This solution depends not only
upon x0 but also upon t0. Then, the following identity holds:

rðt0; x0; t0Þ ¼ x0 ð6:5-2Þ

Definition 6.5.1

The vector xe is called an equilibrium state of system (6.5-1) if it satisfies the relation
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fðxe; tÞ ¼ 0; for all t ð6:5-3Þ

Obviously, for the determination of the equilibrium states, it is not necessary to solve
the dynamic equations (6.5-1) but only the algebraic equations (6.5-3). For example,
when the system (6.5-1) is linear time-invariant, i.e., fðx; tÞ ¼ Ax, then there exists
only one equilibrium state when jAj 6¼ 0 and an infinite number of equilibrium states
when jAj ¼ 0. When the system (6.5-1) is nonlinear, then one or more equilibrium
states may exist. It is noted that each equilibrium state can be shifted to the origin by
using an appropriate transformation, where the new equilibrium state will now
satisfy the following condition:

fð0; tÞ ¼ 0; for all t ð6:5-4Þ

We give the following definition of stability.

Definition 6.5.2

The equilibrium state xe of system (6.5-1) is stable if, for every real number " > 0,
there exists a real number �ð"; t0Þ > 0 such that, if

kx0 � xek � � ð6:5-5Þ

then

krðt; x0; t0Þ � xek � "; for all t ð6:5-6Þ

If � does not depend on t0, then xe is uniformly stable.
In Figure 6.10, an equilibrium state xe of a system with two variables is pre-

sented. The regions Sð"Þ and Sð�Þ are the interiors of two circles with their centers at
xe and with radii " > 0 and � > 0. The region Sð"Þ consists of all points which satisfy
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the condition kx� xek � ". In the figure it is shown that for every Sð"Þ there exists an
Sð�Þ such that, starting with an initial state x0 which lies inside Sð�Þ, the trajectory
rðt; x0; t0Þ is contained within Sð"Þ.

Definition 6.5.3

The solution rðt; x0; t0Þ of system (6.5-1) is bounded if for � > 0 there exists a
constant "ð�; t0Þ such that, if

kx0 � xek � � ð6:5-7aÞ

then

krðt; x0; t0Þ � xek � "ð�; t0Þ; for all t 
 t0 ð6:5-7bÞ

If " does not depend upon t0, then the solution is uniformly bounded.

Definition 6.5.4

An equilibrium state xe of system (6.5-1) is asymptotically stable if it is stable and if
every solution with x0 sufficiently close to xe converges to xe as t increases.

6.5.2 The First Method of Lyapunov

The first method of Lyapunov, or the method of the first approximation, is based on
the approximation of the nonlinear differential equation by a linearized differential
equation. This approximation is performed for each equilibrium state separately,
and conclusions about stability hold only for a small region around the particular
equilibrium state. For this reason the first method of Lyapunov is of limited value.

Consider the nonlinear system

�x ¼ fðxÞ ð6:5-8Þ

and let xe be an equilibrium state. Expand Eq. (6.5-8) in Taylor series about the
point x ¼ xe to yield

�x ¼ fðxÞ ¼ fðxeÞ þ
@f

@x

� �T

x¼xe

ðx� xeÞ þ
1

2
ðx� xeÞ

T @

@x

@f

@x

� �T

x¼xe

ðx� xeÞ þ 	 	 	

¼ fðxeÞ þ Aðx� xeÞ þ ½Bðx� xeÞðx� xeÞ þ 	 	 	 ð6:5-9Þ

where

fðxÞ ¼

f1ðxÞ

f2ðxÞ

..

.

fnðxÞ

2
66664

3
77775; A ¼

@f

@x

� �T

x¼xe

¼

@f1
@x1

@f1
@x2

	 	 	
@f1
@xn

@f2
@x1

@f2
@x2

	 	 	
@f2
@xn

..

. ..
. ..

.

@fn
@x1

@fn
@x2

	 	 	
@fn
@xn

2
66666666664

3
77777777775

x¼xe

The matrix Bðx� xeÞ involves higher-order terms. Since xe is an equilibrium point, it
follows that fðxeÞ ¼ 0. If we let z ¼ x� xe, then Eq. (6.5-9) can be written as follows:

�z ¼ Azþ BðzÞzþ 	 	 	 ð6:5-10Þ
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The first approximation, that is the linear part of (6.5-10), is the following:

�z ¼ Az ð6:5-11Þ

The first method of Lyapunov is based on the following theorem.

Theorem 6.5.1

If all the eigenvalues of the matrix A have nonzero real parts, then the conclusions
about the stability of the nonlinear system in the neighborhood of xe may be derived
from the study of the stability of the linear system (6.5-11).

Thus, the first method of Lyapunov reduces the problem of studying the sta-
bility of nonlinear systems to well-established methods for studying the stability of
linear systems.

6.5.3 The Second Method of Lyapunov

The second or direct method of Lyapunov is based on the following idea: if a system
has a stable equilibrium state xe, then the total energy stored in the system decays as
time t increases, until this total energy reaches its minimum value in the equilibrium
state xe. The determination of the stability of a linear or nonlinear system via the
second method of Lyapunov requires the determination of a special scalar function,
which is called the Lyapunov function. We give the following definition.

Definition 6.5.5

The time-invariant Lyapunov function, designated by VðxÞ, satisfies the following
conditions for all t1 > t0 and for all x in the neighborhood of x ¼ 0, where x ¼ 0 is
an equilibrium point:

1. VðxÞ and its partial derivatives are defined and they are continuous
2. Vð0Þ ¼ 0
3. VðxÞ > 0, for all x 6¼ 0

4. _VVðxÞ < 0, for all x 6¼ 0, where _VVðxÞ is the total derivative of VðxÞ, i.e.,
_VVðxÞ ¼ ½gradxV 

T �x
The second method of Lyapunov is based on the following theorem.

Theorem 6.5.2

Consider the system

�x ¼ fðx; tÞ; fð0; tÞ ¼ 0 ð6:5-12Þ

Assume that a Lyapunov function VðxÞ can be determined for this system. Then, the
equilibrium state x ¼ 0 is asymptotically stable and the system (6.5-12) is said to be
stable in the sense of Lyapunov.

6.5.4 The Special Case of Linear Time-Invariant Systems

From Theorem 6.5.2 it follows that the problem of studying the stability of a system
using the second method of Lyapunov is one of determining a Lyapunov function
for the particular system. This function may not be unique, while its determination
presents great difficulties. It is noted that in cases where we cannot determine even
one Lyapunov function for a particular system, this simply means that we cannot
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conclude about the stability of the system and not that the system is unstable. In
what follows we will restrict our presentation to the determination of Lyapunov
functions for the special case of linear time-invariant systems. For other types of
system, e.g., time-varying, non-linear, etc., see [2–4] and [12].

For the case of time-invariant systems, the following theorem holds.

Theorem 6.5.3

Consider the linear time invariant system �x ¼ Ax, with jAj 6¼ 0 and xe ¼ 0. Also
consider the scalar function VðxÞ ¼ x

T
Px, where P is a positive definite real sym-

metric matrix. Then, VðxÞ ¼ x
T
Px is a Lyapunov function of the system if, and only

if, for any positive definite real symmetric matrix Q there exists a positive definite
real symmetric matrix P such that the following relation holds:

A
T
Pþ PA ¼ �Q ð6:5-13Þ

Proof

Taking the derivative of VðxÞ ¼ x
T
Px with respect to time yields

�
VðxÞ ¼ �xT

Pxþ x
T
P �x ð6:5-14Þ

Upon using the relation �x ¼ Ax, the expression for
�
VðxÞ becomes

�
VðxÞ ¼ x

T
A

T
Pxþ x

T
PAx ð6:5-15Þ

According to Definition 6.5.5, Condition 4, there must be
�
VðxÞ < 0, for all

x 6¼ 0. Hence, Condition 4 is satisfied if we set

�
VðxÞ ¼ x

T
A

T
Pxþ x

T
PAx ¼ �x

T
Qx ð6:5-16Þ

where the right-hand side term �x
T
Qx < 0 due to the choice of Q. For eq. (6.5-16)

to hold, the matrices P and A must satisfy the following relation:

A
T
Pþ PA ¼ �Q ð6:6-17Þ

which is the same with relation (6.5-13).

Example 6.5.1

Consider the linear system �x ¼ Ax, where

A ¼
0 1

�2 �3

� �

Determine the Lyapunov function for the system.

Solution

Consider the relation (6.5-13) where, for simplicity, let Q ¼ I. Then we have

0 �2
1 �3

� �
p11 p12

p12 p22

� �
þ

p11 p12

p12 p22

� �
0 1

�2 �3

� �
¼

�1 0
0 �1

� �

where use was made of the relation p21 ¼ p12, since we have assumed that the matrix
P is symmetric. The above equation, due to the symmetry in P and Q, yields the
following nðnþ 1Þ=2 ¼ 3 algebraic equations:
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�4p12 ¼ �1

p11 � 3p12 � 2p22 ¼ 0

2p12 � 6p22 ¼ �1

The above equations give the following matrix

P ¼
5
4

1
4

1
4

1
4

� �

If we apply the Sylvester’s criterion (Sec. 2.12), it follows that the matrix P is positive
definite. Therefore, the sytem is asymptotically stable. The Lyapunov function is

VðxÞ ¼ x
T
Px ¼ ½ x1 x2 

5
4

1
4

1
4

1
4

" #
x1

x2

� �
¼ 1

4 ½5x
2
1 þ 2x1x2 þ x2

2

To check the results, we investigate VðxÞ using Definition 6.5.5. It is clear that VðxÞ

satisfies the first three conditions of Definition 6.5.5. For the fourth condition we
compute _VVðxÞ to yield

_VVðxÞ ¼ ½gradx V
T �x ¼ ½gradx V

T
Ax ¼ 1

2 ½10x1 þ 2x2; 2x1 þ 2x2Ax

¼ 1
4 ½�4x1 � 4x2; 4x1 � 4x2

x1

x2

" #
¼ �x2

1 � x2
2

Clearly, VðxÞ also satisfies the fourth condition of Definition 6.5.5. Hence, VðxÞ is a
Lyapunov function and therefore the system is asymptotically stable.

PROBLEMS

1. Investigate the stability of the systems having the following characteristic poly-
nomials:

(a) s4 þ 2s3 þ 6s2 þ 7sþ 5 (f) s5 þ 3s4 þ 2s3 þ 6s2 þ 6sþ 9
(b) s3 þ s2 þ 2sþ 1 (g) s4 þ 2s3 þ 3s2 þ 4sþ 5
(c) s3 þ s2 þ 1 (h) s5 þ s4 þ 2s3 þ 2s2 þ 3sþ 4
(d) s4 þ s3 þ s2 þ 2sþ 4 (i) s5 þ s4 þ s3 þ 2s2 þ 2sþ 2
(e) 2s4 þ s3 þ 3s2 þ 5sþ 10 (j) s4 þ 3s3 þ 4s2 þ 3sþ 3

2. Find the range of values of the parameter K for which the systems, with the
following characteristic polynomials, are stable:

(a) s3 þ s2 þ Ksþ 1
(b) s4 þ s3 þ 2s2 þ 3sþ K
(c) s4 þ ðK þ 1Þs3 þ s2 þ 5sþ 2

3. The block diagram of a system for the speed control of a tape drive is shown in
Figure 6.11. Find the range of values of K so that the closed-loop system is
stable.

4. Consider a rocket altitude control system having the block diagram shown in
Figure 6.12. (a) Given that the transfer function of the controller is
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GcðsÞ ¼ ðsþ 3Þðsþ 2Þ=s, determine the range of values of K for which the closed-
loop system is stable. (b) Given that the transfer function of the controller is
Gc ¼ sþ a, determine the range of values of K and a for which the closed-loop
system is stable.

5. The block diagram of a metal sheet thickness control system (depicted in Figure
1.10) is given in Figure 6.13. Find the range of values of K and a such that the
closed-loop system is stable.

6. The block diagram of a feedback control system is shown in Figure 6.14. (a)
Determine the range of values of K2 so that the system is stable for K1 ¼ K3 ¼ 1,
T1 ¼ 1, T3 ¼ 1=2, and T4 ¼ 1=3. (b) Determine the range of values of the para-
meter T4 for which the system is stable, given that K1 ¼ 1, K2 ¼ 2, K3 ¼ 5,
T1 ¼ 1=2, and T3 ¼ 1=3.

7. Consider a satellite orientation control system shown in Figure 3.56 of Example
3.13.7, where KbKt ¼ 1 and J ¼ 1. Let the transfer function of the controller be
GsðsÞ ¼ Kp þ ðKi=sÞ þ Kds (PID controller). (a) Find the range of values of the
controller parameters so that the closed-loop system is stable. (b) For Kp ¼ 1,
Ki ¼ 2, and Kd ¼ 1, determine the number of the closed-loop poles located in the
right-half complex plane.

8. The closed-loop control system of an aircraft wing is given in Figure 6.15.
Determine the range of values of the parameters K and T of the hydrualic
servomotor that guarantee the stability of the closed-loop system.
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9. The differential equation which describes the dynamics of the pendulum shown
in Figure 6.16 is the following

mR2 €		 þ K _		 þmgR sin 	 ¼ 0

where K is the friction coefficient, m is the mass at the end of the rod, R is
the length of the pendulum, g is the gravitational constant, and 	 is the
angle of the pendulum from the vertical axis. for this system, (a) find a
state-space model and determine the equilibrium states and (b) investigate
the stability of the equilibrium states by means of the first method of
Lyapunov.

10. Carry out the study of stability of the following nonlinear systems using the
corresponding candidate Lyapunov functions:

(a) _xx1 ¼ �2x1 þ 2x4
2; _xx2 ¼ �x2; and

VðxÞ ¼ 6x2
1 þ 12x2

2 þ 4x1x
4
2 þ x8

2

(b) _xx1 ¼ �x1 þ x2 þ x1ðx
2
1 þ x2

2Þ; _xx2 ¼ �x1 � x2 þ x2ðx
2
1 þ x2

2Þ; and

VðxÞ ¼ x2
1 þ x2

2

(c) _xx1 ¼
6x1

ð1 þ x2
1Þ

2
þ 2x2; _xx2 ¼

�2x1

ð1 þ x2
1Þ

2
�

2x2

ð1 þ x2
1Þ

2
; and

VðxÞ ¼
x2

1

1 þ x2
1

þ x2
2

11. For the system described by the equation �x ¼ Ax, where

A ¼
a 0
1 �1

� �

determine the range of values of the parameter a so that the system is asymp-
totically stable.
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12. Determine a Lyapunov function for the systems of the form �x ¼ Ax, where

A ¼
�1 �2

1 �4

� �
; A ¼

0 1 0

��3 0 1

0 ��2 ��1

2
64

3
75;

A ¼

0 1 0

0 0 1

�2 �5 �4

2
64

3
75; A ¼

1 1

�2 �3

� �
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7
The Root Locus Method

7.1 INTRODUCTION

The positions of the poles of the transfer function of a system in the complex plane
characterize completely the system’s stability and play a decisive role in the shape of
its time response. For these two basic reasons, the determination of a system’s poles
is a problem of special importance in control practice.

One of the main problems in control systems is the design of an appropriate
controller capable of shifting the poles of the open-loop system to new desired
closed-loop pole positions in the complex plane. In its simplest form, such a con-
troller is a gain constant K of an amplifier connected in series with the system’s open-
loop transfer function. Changing the value of the constant K, from �1 and þ1,
results in shifting the poles of the closed-loop system in the complex plane.
Specifically, the locus of the roots of the closed-loop system characteristic poly-
nomial, which is formed in the s-plane as K varies, is the subject of this chapter.

The development of a relatively simple method for constructing the root locus
of the closed-loop characteristic polynomial is due to Evans [4, 8, 9]. This method
gives an approximate graphical representation of the root locus which is very useful
in the design of a closed-loop system since it gives the position of the poles of the
closed-loop system in the s-plane for all values of the gain constant K .

7.2 INTRODUCTORY EXAMPLE

To facilitate the understanding of the root locus method, a simple introductory
example will first be presented.

Example 7.2.1

Consider the closed-loop position servomechanism system described in Subsec.
3.13.2. Let La ffi 0, Kp ¼ 1, A ¼ 1, and B ¼ 6. Then, the closed-loop system is sim-
plified, as in Figure 7.1. For this simplified system, draw the root locus of the closed-
loop system, for K 2 ð�1;þ1Þ.
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Solution

The closed-loop system transfer function is given by

HðsÞ ¼
GðsÞ

1þ GðsÞFðsÞ
¼

K

s2 þ 6sþ K
ð7:2-1Þ

The characteristic polynomial pcðsÞ of the closed-loop system is

pcðsÞ ¼ s2 þ 6sþ K ð7:2-2Þ

The roots of the characteristic polynomial pcðsÞ, or equivalently the poles of the
closed-loop system transfer function HðsÞ, are

s1 ¼ �3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
9� K

p
and s2 ¼ �3�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9� K

p
ð7:2-3Þ

It is clear that the roots s1 and s2 depend upon the parameter K . Therefore, as K
varies, the two roots will vary as well. The diagrams of s1 and s2 in the complex
plane, for K 2 ð�1;þ1Þ, form the root locus of the characteristic polynomial pcðsÞ.

To draw the root locus of pcðsÞ, we calculate the roots s1 and s2 while K changes
from �1 to þ1. We observe the following:

1. For �1 < K < 0, both roots are real with s1 > 0 and s2 < 0
2. For K ¼ 0, s1 ¼ 0 and s2 < 0
3. For 0 < K < 9, both roots are negative
4. For K ¼ 9, we have the double root s1 ¼ s2 ¼ �3
5. For 9 < K < þ1, both roots are complex conjugates with real part �3.

The above remarks for the roots s1 and s2 suffice to determine their root locus.
In Figures 7.2a and 7.2b, the root locus of s1 and s2 are shown, respectively. Usually,
the root locus of all roots of a polynomial pcðsÞ is given in one single figure. For this
example, the root locus of both roots s1 and s2 of pcðsÞ ¼ s2 þ 6sþ K is given in
Figure 7.3.

The motivation for constructing the root locus of the characteristic polynomial
pcðsÞ is that it reveals important information with regard to the behavior of the
closed-loop system. The most important information is the following.

1 Stability

From the root locus of Figure 7.3, the stability of the closed-loop system may easily
be studied. As already known, the closed-loop system is stable when both roots s1
and s2 are in the left-half complex plane, which occurs when K > 0. Therefore, the
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Figure 7.1 Simplified block diagram of the position control system described in Subsec.
3.13.2.



root locus technique can replace the stability criteria for linear time-invariant sys-
tems presented in Chap. 6.

2 Transient Response

The closed-loop system’s transient response depends mainly on the locations of the
roots of pcðsÞ in the complex plain (see Secs 4.2 and 4.3). This is demonstrated by the
following two cases:

a. For 0 < K 
 9, the system has two negative roots; therefore its response
does not invovle any oscillations.

b. For K > 9, the system has two complex roots; therefore its response
involves oscillations. Furthermore, the system’s damped frequency !d

increases as K increases.

We must keep in mind that the positions of the zeros of any transfer function
also affect the transient response of the system.
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Figure 7.2 The root locus of s1 and s2 of the characteristic polynomial pcðsÞ ¼ s2 þ 6sþ K

of the position control system of Figure 7.1. (a) The root locus of s1 ¼ �3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
9� K

p
; (b) the

root locus of s2 ¼ �3�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
9� K

p
.

Figure 7.3 The root locus of pcðsÞ ¼ s2 þ 6sþ K of the position control system of Figure
7.1.



3 Characteristics in the Frequency Domain

Since the bandwidth is proportional to the damped frequency !d (see Sec. 8.3), the
root locus also gives information about the system’s bandwidth. For this example, as
K increases, it is clear that the bandwidth also increases.

The above observations are valuable in the study and design of control systems
and are presented so as to further motivate the study of the root locus method.

For the general case, where the characteristic polynomial pcðsÞ is of higher
order, the root locus construction method presented in the above example is difficult,
if not impossible, to apply. This is mainly because for very high order polynomials
there exists no method for determining the analytical expression of the roots of the
polynomial as a function of its coefficients. For this reason, the construction of the
root locus for the general case is not done directly, i.e., on the basis of the analytical
expressions of the roots of pcðsÞ, but indirectly. This chapter is devoted to the
development of such a method, which, as already mentioned, was first introduced
by Evans.

7.3 CONSTRUCTION METHOD OF ROOT LOCUS

7.3.1 Definition of Root Locus

Here, we shall present a more mathematical definition of the root locus. To this end,
consider the characteristic equation of any closed-loop system (see for example figure
7.1) given by the following relation:

1þ GðsÞFðsÞ ¼ 0 ð7:3-1Þ

or equivalently by the relation

GðsÞFðsÞ ¼ �1 ð7:2-2Þ

The characteristic equation (7.3-2) can also be written as two equations, involving
the amplitude and the phase, as follows

jGðsÞFðsÞj ¼ 1 ð7:3-3aÞ

and

GðsÞFðsÞ ¼ ð2�þ 1Þ�; � ¼ 0;�1;�2; . . . ð7:3-3bÞ

Assume that the open-loop transfer function GðsÞFðsÞ has the following general
form:

GðsÞFðsÞ ¼ K
ðsþ z1Þðsþ z2Þ    ðsþ zmÞ

ðsþ p1Þðsþ p2Þ    ðsþ pnÞ
¼ K

sm þ d1s
m�1

þ    dm�1sþ dm
sn þ b1s

n�1 þ    þ bn�1sþ bn
ð7:3-4Þ

Hence, Eqs (7.3-3a) and (7.3-3b) will have the form
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jK j

Ym
i¼1

jsþ zij

Yn
i¼1

jsþ pij

¼ 1; �1 < K < þ1 ð7:3-5aÞ

Xm
i¼1

sþ zi �
Xn
i¼1

sþ pi ¼
ð2�þ 1Þ�; K > 0 ð7:3-5bÞ

2��; K < 0 ð7:3-5cÞ

�

for � ¼ 0;�1;�2; . . .

Definition 7.3.1

The root locus of a closed-loop system with characteristic equation (7.3-1) is defined
as the locus of all points s which satisfy Eqs (7.3-5a,b) for K 2 ð0;þ1Þ. The locus of
points s which satisfy Eqs (7.3-5a,c) for K 2 ð�1; 0Þ is called the complementary
root locus.

7.3.2 Theorems for Constructing the Root Locus

In this section, several theorems will be presented which greatly facilitate the con-
struction of the root locus. In particular, these theorems are the basic tools in
approximately constructing the root locus.

Theorem 7.3.1 (Starting or Departure Points)

The points of the root locus for K ¼ 0 are the poles of GðsÞFðsÞ. These points are
called starting or departure points of the root locus.

Proof

Relation (7.3-5a) may be written as

Yn
i¼1

jsþ pij ¼ jK j
Ym
i¼1

jsþ zij ð7:3-6Þ

For K ¼ 0, relation (7.3-6) gives

Yn
i¼1

jsþ pij ¼ 0 ð7:3-7Þ

Relation (7.3-7) is satisfied for s ¼ �pi. Therefore, the points of the root locus for
K ¼ 0 are the poles �p1;�p2; . . . ;�pn of GðsÞFðsÞ.

Theorem 7.3.2 (Ending or Arrival Points)

The points of the root locus for K ! �1 are the zeros of GðsÞFðsÞ. These points are
called ending or arrival points of the root locus.
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Proof

Relation (7.3-5a) may be written as

Ym
i¼1

jsþ zij

Yn
i¼1

jsþ pij

¼
1

jK j
ð7:3-8Þ

For K ¼ �1, relation (7.3-8) gives

Ym
i¼1

jsþ zij ¼ 0 ð7:3-9Þ

Relation (7.3-9) is satisfied for s ¼ �zi. Also, for K ! �1 and for m < n, relation
(7.3-8) is satisfied for s ! 1. Therefore, the points of the root locus for K ! �1

are the zeros �z1;�z2; . . . ;�zm of GðsÞFðsÞ and infinity when m < n.

Theorem 7.3.3 (Number of Branches)

The number of branches of the root locus is maxðm; nÞ, where m and n are the
number of zeros and poles of GðsÞFðsÞ, respectively.

Proof

Introducing Eq. (7.3-4) in Eq. (7.3-1), we obtain

1þ GðsÞFðsÞ ¼ 1þ K

Ym
i¼1

ðsþ ziÞ

Yn
i¼1

ðsþ piÞ

¼ 0 ð7:3-10Þ

The closed-loop system characteristic polynomial pcðsÞ is given by

pcðsÞ ¼
Yn
i¼1

ðsþ piÞ þ K
Ym
i¼1

ðsþ ziÞ ð7:3-11Þ

The degree of pcðsÞ will be maxðm; nÞ. Therefore, the number of roots (and hence the
number of branches of the root locus) is maxðm; nÞ.

Theorem 7.3.4 (Symmetry About the Real Axis)

The root locus for K 2 ð�1;þ1Þ is symmetrical about the real axis.

Proof

Since all complex roots of the pcðsÞ appear always in conjugates pairs, it follows that
the root locus will be symmetrical about the real axis.

Theorem 7.3.5 (Asymptotes)

For large values of s, the root locus for K � 0 approaches asymptotically the straight
lines having the following angles
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�� ¼
ð2�þ 1Þ�

n�m
; � ¼ 0; 1; . . . ; jn�mj � 1 ð7:3-12Þ

The root locus for K 
 0 approaches asymptotically the straight lines having the
following angles:

�� ¼
2��

n�m
; � ¼ 0; 1; . . . ; jn�mj � 1 ð7:3-13Þ

Proof

The characteristic equation (7.3-10) can be written as

Yn
i¼1

ðsþ piÞ

Ym
i¼1

ðsþ ziÞ

¼ �K

Dividing the two polynomials, we obtain

sn�m
þ ðb1 � d1Þs

n�m�1
þ    ¼ �K ð7:3-14Þ

where use was made of relation (7.3-4). For large values of s, the left-hand side of
relation (7.3-14) may be approximated by its first two terms, as follows:

sn�m
þ ðb1 � d1Þs

n�m�1
¼ �K ð7:3-15Þ

Relation (7.3-15) can be written as

sn�m 1þ
b1 � d1

s

� �
¼ �K

Taking the ðn�mÞ root of both parts of the above equation, we obtain

s 1þ
b1 � d1

s

� �1=ðn�mÞ

¼ ð�KÞ
1=ðn�mÞ or

s 1þ
b1 � d1
ðn�mÞs

þ   

� �
¼ ð�KÞ

1=ðn�mÞ
ð7:3-16Þ

where the expansion of ð1þ aÞ1=ðn�mÞ was used. For large values of s, this expansion
is approximated by its first two terms, in which case Eq. (7.3-16) becomes

sþ
b1 � d1
n�m

¼ ð�KÞ
1=ðn�mÞ

ð7:3-17Þ

Since, for K � 0, it holds that

�K ¼ jK je jð2�þ1Þ�; � ¼ 0;�1;�2;

and for K 
 0, it holds that

�K ¼ jK je j2��; � ¼ 0;�1;�2; . . .

it follows that for K � 0, we have

ð�KÞ
1=ðn�mÞ

¼ jK j
1=ðn�mÞ exp½ jðð2�þ 1Þ�=ðn�mÞÞ�; � ¼ 0;�1;�2; . . .
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and for K 
 0, we have

ð�KÞ
1=ðn�mÞ

¼ jK j
1=ðn�mÞ exp½ jð2��=ðn�mÞÞ�; � ¼ 0;�1;�2; . . .

Therefore, relation (7.3-17) can be written as


 þ j!þ
b1 � d1
n�m

¼ jKj
1=ðn�mÞ exp½ jðð2�þ 1Þ�=ðn�mÞÞ�; for K � 0

ð7:3-18aÞ


 þ j!þ
b1 � d1
n�m

¼ jKj
1=ðn�mÞ exp½ jðð2��Þ=ðn�mÞÞ�; for K 
 0

ð7:3-18bÞ

for � ¼ 0;�1;�2 . . . ; where s ¼ 
 þ j!. Relations (7.3-18a,b) hold if both sides of
the two equations have the same phase. That is, if

tan�1
!


 þ
b1 � d1
n�m

2
64

3
75 ¼

ð2�þ 1Þ�

n�m
; for K � 0

and

tan�1
!


 þ
b1 � d1
n�m

2
64

3
75 ¼

2��

n�m
; for K � 0

Solving the above equations for !, we obtain

! ¼ tan
2�þ 1Þ�

n�m

� �

 þ

b1 � d1
n�m

� �
; K � 0 ð7:3-19aÞ

! ¼ tan
2��

n�m

� �

 þ

b1 � d1
n�m

� �
; K 
 0 ð7:3-19bÞ

Relations (7.3-19a,b) are actually straight lines in the s-plane with angles (slopes) as
follows:

�� ¼
ð2�þ 1Þ�

n�m
; for K � 0

�� ¼
2��

n�m
; for K 
 0

for � ¼ 0;�1;�2; . . . A careful examination of the values of the angles ��, as � takes
on the values 0;�1;�2; . . . ; shows that there are only 2jn�mj asymptotes which
correspond to the values of � ¼ 0; 1; . . . ; jn�mj � 1.

Theorem 7.3.6 (Intersection of Asymptotes)

All the 2jn�mj asymptotes of the root locus intersect on the real axis at the point 
1,
where


1 ¼ �
b1 � d1
n�m

¼ �

Xn
i¼1

pi �
Xm
i¼1

zi

n�m
ð7:3-20Þ
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Proof

From relations (7.3-19a,b) it immediately follows that all the asymptotes intersect
the real axis at the point 
1 specified in Eq. (7.3-20).

Theorem 7.3.7 (Real Axis Segments)

A segment of the real axis can be part of the root locus if the following hold:

1. For K � 0, the number of real poles and zeros of GðsÞFðsÞ, which are to the
right of the segment, is odd.

2. For K 
 0, the number of real poles and zeros of GðsÞFðsÞ, which are to the
right of the segment, is even.

Proof

Assume that the point s1 is located on the real axis. According to relation (7.3-5b),
the point s1 is a point of the root locus for K � 0, if it satisfies the following
equation:

Xm
i¼1

s1 þ zi �
Xn
i¼1

s1 þ pi ¼ ð2�þ 1Þ�; � ¼ 0;�1;�2; . . . ð7:3-21Þ

It is obvious that the complex conjugate poles and zeros do not contribute in Eq.
(7.3-21) because their angles cancel each other. Similarly, with the real poles and
zeros in Eq. (7.3-21), which are located to the left of the point s1. On the other hand,
the phase contribution of every real pole and zero which is located to the right of the
point s1, is �. Let pi; i ¼ 1; 2; . . . ; q and zi; i ¼ 1; 2; . . . ; r to be the poles and zeros of
GðsÞFsÞ which are located on the real axis and to the right of the point s1. In this case,
Eq. (7.3-21) yields

�r� �q ¼ ðr� qÞ� ¼ ð2�þ 1Þ� ð7:3-22Þ

Relation (7.3-22) holds if r� q ¼ 2�þ 1, i.e., when either r or q is odd (or when rþ q
is odd).

Working likewise for K 
 0, where relation (7.3-21) has the form

Xm
i¼1

s1 þ zi �
Xn
i¼1

s1 þ pi ¼ 2��; � ¼ 0;�1;�2; . . . ð7:3-23Þ

we conclude that relation (7.3-23) holds if r or q is even (or when rþ q is even).

Theorem 7.3.8 (Breakaway Points)

Assume that the characteristic equation

1þ GðsÞFðsÞ ¼ 0 ð7:3-24Þ

has repeated roots. These roots are called breakaway points of the root locus and are
also roots of the equation

d

ds
½GðsÞFðsÞ� ¼ 0 ð7:3-25Þ
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Proof

Let s ¼ � be a repeated root of multiplicity r. In this case, Eq. (7.3-24) can be
factored out as follows:

1þ GðsÞFðsÞ ¼ ðs� �ÞrqðsÞ ¼ 0 ð7:3-26Þ

where qðsÞ is a rational function. If we take the derivative with respect to s of both
sides of Eq. (7.3-26), we have

d

ds
½GðsÞFðsÞ� ¼ rðs� �Þr�1qðsÞ þ ðs� �Þr

dqðsÞ

ds
ð7:3-27Þ

Since we have assumed that r � 2, it follows that the right-hand side of Eq. (7.3-27)
becomes zero for s ¼ �. Thus, s ¼ � is also a root of Eq. (7.3-25).

Relation (7.3-25) is a necessary but not a sufficient condition. This means that
the breakaway points are roots of Eq. (7.3-25), but all roots of Eq. (7.3-25) are not
necessarily breakaway points. Therefore, in order to make sure that a certain root of
Eq. (7.3-25) is a breakaway point of the root locus, it is sufficient that this root
satisfies Eq. (7.3-24) for some real value of K.

7.3.3 Additional Information for Constructing the Root Locus

In addition to the above eight theorems, we also give the following useful informa-
tion for the construction of a root locus.

1 Angles of Departure and Arrival of the Root Locus

The angle of the root locus at the poles and zeros of GðsÞFðsÞ can be calculated on the
basis of Eq. (7.3-5b). As an example, consider calculating the angle at the arbitrary
pole �pq. To this end, assume that the point s1 is very close to the pole �pq. Thus, if
we solve Eq. (7.3-5b) for the angle at the pole �pq, we obtain

��pq ¼ s1 þ pq ¼ �ð2�þ 1Þ�þ
Xm
i¼1

s1 þ zi �
Xn
i¼1
i 6¼q

s1 þ pi ð7:3-28Þ

The results are similar for the angle of an arbitrary zero �zp.
The angles ��pq and ��zq are called the departure and arrival angles, respec-

tively. Their graphical representation is given in Figure 7.4. Since the departure angle
of the root locus for K � 0 is equal to the arrival angle for K 
 0, as shown in Figure
7.4, the arrival angle at the point s1 ! �zq can be calculated from the relation (7.3-
5c) as follows

��zq ¼ s1 þ zq ¼ 2���
Xm
i¼1
i 6¼q

s1 þ zi þ
Xn
i¼1

s1 þ pi ð7:3-29Þ

2 Intersection of the Root Locus with the Imaginary Axis

The intersection of the root locus with the imaginary axis (if there exists such an
intersection) is a set of points beyond which the system becomes unstable. A method
for determining these points is based on the Routh’s criterion and is illustrated in the
examples presented in the following subsection.
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7.3.4 Root Locus of Practical Control Systems

In this subsection we illustrate the application of the derived theoretical results by
constructing the root locus of several practical control systems. To facilitate the
understanding of the general procedure for constructing the root locus, we start
by applying this general procedure to the introductory Example 7.2.1 in the example
that immediately follows.

Example 7.3.1

Determine the root locus of the closed-loop system of Example 7.2.1 using the
construction method presented in this section, i.e., the eight theorems of Subsec.
7.3.2 and the additional information of Subsec. 7.3.3.

Solution

Following the root locus construction method step by step, we have:
1. The root locus points for K ¼ 0 are the poles of GðsÞFðsÞ, e.g., the points

s ¼ 0 and s ¼ �6. These are the root locus starting points for K � 0.
2. The root lcous points for K ! �1 are the zeros of GðsÞFðsÞ. Since there are

no zeros in GðsÞFðsÞ and since the degree of the numerator is smaller than that of the
denominator ðm < nÞ, the root locus points for K ! �1 are at infinity. These are
the ending points of the root locus.

3. The number of branches of the root locus is maxðm; nÞ ¼ maxð0; 2Þ ¼ 2.
4. The angles of the asymptotes are

�� ¼
ð2�þ 1Þ�

2
; � ¼ 0; 1; for K � 0

�� ¼
2��

2
; � ¼ 0; 1; for K 
 0

Therefore, the asymptotes are straight lines having the following slopes:
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�0 ¼
�

2
; �1 ¼

3�

2
; for K � 0 and

�0 ¼ 0; �1 ¼ �; for K 
 0

5. The point of intersection of the asymptotes is


1 ¼ �
b1 � d1
n�m

¼ �
6� 0

2
¼ �3

6. The segments of the real axis that can be part of the root locus are

a. For K � 0, the segment from �6 to 0.
b. For K 
 0, the segment from �1 to �6 and from 0 to þ1.

7. The root locus breakaway points are roots of the following equation:

d

ds
½GðsÞFðsÞ� ¼

d

ds

K

sðsþ 6Þ

� �
¼

�Kð2sþ 6Þ

s2ðsþ 6Þ2
¼ 0

From the above equation, the point s ¼ �3 appears to be a candidate breakaway
point. To be a breakaway point, it must satisfy the equation 1þ GðsÞFðsÞ for any real
value of K . Let s ¼ �3. Then

1þ Gð�3ÞFð�3Þ ¼ 1�
K

9
¼ 0

Hence, equation 1þ Gð�3ÞFð�3Þ ¼ 0 is satisfied for K ¼ 9. Thus, the point s ¼ �3
is a breakaway point of the root locus.

8. The departure angles at the two poles of GðsÞFðsÞ are calculated according to
the Eq. (7.3-28) as follows:

a. At the pole s ¼ 0: as s1 ! 0, we have

�0 ¼ s1 þ 0 ¼ �ð2�þ 1Þ�� s1 þ 6 ¼ �ð2�þ 1Þ�� 0

Taking the smallest angle, e.g., for � ¼ 0, we have �0 ¼ ��.
b. At the pole s ¼ �6: as s1 ! �6, we have

��6 ¼ s1 þ 6 ¼ �ð2�þ 1Þ�� s1 ¼ �ð2�þ 1Þ�� �

Taking the smallest angle, e.g., for � ¼ 0, we have ��6 ¼ �2� or ��6 ¼ 0.
9. The root locus intersection with the imaginary axis is determined using

Routh’s criterion. To this end, construct the Routh’s table of the characteristic
polynomial pcðsÞ ¼ sðsþ 6Þ þ K , as follows:

s2

s1

s0

������
1 K
6 0
K

From the first column of the Routh table we observe that the system changes from
stable to unstable (i.e., it intersects the imaginary axis) when K ¼ 0. Next, using the
row s2, we form the auxiliary polynomial AðsÞ ¼ s2 þ K . For K ¼ 0, the roots of AðsÞ
are s ¼ �j0. Thus, the point s ¼ �j0 is the root locus intersection with the imaginary
axis.

Using the above results one can construct the root locus, which, as expected,
will be exactly the same as that of Figure 7.3.
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Example 7.3.2

This example refers to the control of the nuclear reactor which was presented in Sec.
1.4 (see Figure 1.16). The reactor’s block diagram is given in Figure 7.5, where the
reactor is described by the simplified model of a first-order system. We assume that
the regulator GcðsÞ has two terms, an analog and an integral, so that
GcðsÞ ¼ K1 þ K2=s. Therefore,

GðsÞ ¼ GcðsÞGrðsÞ ¼ ðK1 þ K2=sÞ
1

Tsþ 1

� �
¼

Kðsþ �Þ

sðTsþ 1Þ

where K ¼ K1 and � ¼ K2=K1. To simplify, let � ¼ 2 and T ¼ 1, in which case the
open-loop transfer function becomes

GðsÞFðsÞ ¼
Kðsþ 2Þ

sðsþ 1Þ

Determine the root locus of the closed-loop system using the construction method
presented in this section.

Solution

We have:
1. The root locus points for K ¼ 0 of GðsÞFðsÞ are s ¼ 0 and s ¼ �1. These

points are the starting points of the root locus.
2. The root locus points for K ! þ1 are s ¼ �2 and infinity. Those points are

the ending points of the root locus.
3. The number of branches of the root locus is maxðm; nÞ ¼ maxð1; 2Þ ¼ 2.
4. The angles of the asymptotes are

�� ¼ ð2�þ 1Þ�; � ¼ 0; when K � 0

�� ¼ 2��; � ¼ 0; when K 
 0

Therefore, the asymptotes are straight lines having the following slopes

�0 ¼ �; when K � 0 and �0 ¼ 0; when K 
 0

5. The point of intersection of the asymptotes is


1 ¼ �
b1 � d1
n�m

¼ �ð1� 2Þ ¼ 1
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It is noted that because jn�mj � 1 ¼ 0, we have only one asymptote, which is the
real axis. Therefore, there is no point of intersection of the asymptotes, and hence the
point 
1 ¼ 1 does not have any particular meaning.

6. The segments of the real axis that can be part of the root locus are

a. For K > 0, the segment from �1 to �2 and the part from �1 to 0.
b. For K < 0, the segment from �2 to �1 and from 0 to þ1.

7. The root locus breakaway points are roots of the following equation:

d

ds
½GðsÞFðsÞ� ¼

d

ds

Kðsþ 2Þ

sðsþ 1Þ

� �
¼ K

sðsþ 1Þ � ðsþ 2Þð2sþ 1Þ

s2ðsþ 1Þ2

� �
¼ 0

Simplifying the above equation yields

s2 þ 4sþ 2 ¼ 0

The roots of the above algebraic equation are s1 ¼ �2þ
ffiffiffi
2

p
¼ �0:586 and

s2 ¼ �2�
ffiffiffi
2

p
¼ �3:414. For s1 and s2 to be breakaway points, they must satisfy

the equation 1þ GðsÞFðsÞ ¼ 0 for any real value of K . For the root s1 we have

1þ Gð�0:586ÞFð�0:586Þ ¼ 1þ K
1:414

ð�0:586Þð0:414Þ
¼ 0

The above equation is satisfied for K ¼ 0:1716. For the root s2 we have

1þ Gð�3:414ÞFð�3:414Þ ¼ 1þ K
ð�1:414Þ

ð�3:414Þð�2:414Þ
¼ 0

The above equation is satisfied for K ¼ 5:8274. Therefore, both points s1 ¼ �0:586
and s2 ¼ �3:414 are breakaway points of the root locus.

8. The root locus departure angles are calculated using Eq. (7.3-28), as follows:
a. At the pole s ¼ 0: as s1 ! 0 we have

�0 ¼ s1 ¼ �ð2�þ 1Þ�þ s1 þ 2 � s1 þ 1 ¼ ��� 0þ 0 ¼ �� or �

for � ¼ 0.
b. At the pole s ¼ �1: as s1 ! �1 we have

��1 ¼ s1 þ 1 ¼ �ð2�þ 1Þ�þ s1 þ 2 � s1 ¼ ��þ 0� � ¼ �2� or 0

for � ¼ 0.
The root locus arrival angles are calculated using Eq. (7.3-29) as follows: here,

we have only one zero, namely, the zero s ¼ �2. At the zero s ¼ �2, as s1 ! �2, we
have

��2 ¼ s1 þ 2 ¼ 2��þ s1 þ s1 þ 1 ¼ 0þ �þ � ¼ 2� or 0

for � ¼ 0.
9. The root locus intersection with the imaginary axis is determined using the

Routh’s criterion. To this end, construct the Routh table of the characteristic poly-
nomial pcðsÞ ¼ sðsþ 1Þ þ Kðsþ 2Þ ¼ s2 þ ðK þ 1Þsþ 2K , as follows:
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s2

s1

s0

������
1 2K

K þ 1 0
2K

The system is stable if the inequalities K > �1 and K > 0 hold simultaneously. Thus,
for K > 0 the system is stable. Next, using the row s2, we form the auxiliary poly-
nomial AðsÞ ¼ s2 þ 2K . For K ¼ 0 the auxiliary polynomial AðsÞ ¼ s2 þ 2K gives
s ¼ �j0. Therefore, the root locus is intersecting the j!-axis at the point s ¼ �j0.

Using the above results one can construct the root locus for K > 0, as shown in
Figure 7.6.

Example 7.3.3

This example refers to the automatic piloting system for supersonic airplanes (Figure
7.7a), which assists the aerodynamic stability of the plane, thus making the flight
more stable and more comfortable. A simplified block diagram of this system is
given in Figure 7.7b. The aircraft dynamics are approximated by a second-order
system, where K is a parameter which changes according to the flight conditions
(e.g., fast landing or take-off, steady flight, etc). Assume that there are no distur-
bances, i.e., DðsÞ ¼ 0. Determine the closed-loop system root locus for K > 0 and the
range of values of K such that the closed-loop system is stable.

Solution

From the block diagram of Figure 7.7b we have

GðsÞFðsÞ ¼
Kðsþ 4Þ

sðsþ 6Þðsþ 8Þðs2 þ 2sþ 2Þ

Following the root locus construction method step by step, we have:
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1. The root locus points for K ¼ 0 are s ¼ 0; s ¼ �6; s ¼ �8; s ¼ �1þ j, and
s ¼ �1� j. These points are the root locus starting points.

2. The root locus points for K ! þ1 are s ¼ �4 and infinity. These points are
the root locus ending points.

3. The number of branches of the root locus is maxðm; nÞ ¼ maxð1; 5Þ ¼ 5.
4. The angles of the asymptotes are

�� ¼
ð2�þ 1Þ�

n�m
¼

ð2�þ 1Þ�

4
; � ¼ 0; 1; 2; 3; when K > 0

Therefore, the asymptotes are straight lines having the following slopes

�0 ¼
�

4
; �1 ¼

3

4
�; �2 ¼

5

4
�; and �3 ¼

7

4
�

5. The point of intersection of the asymptotes is

�1 ¼ �
b1 � d1
n�m

¼ �
16� 4

4
¼ �3

6. The segments of the real axis that can be part of the root locus for K > 0 are
the segments from 0 to �4 and from �6 to �8.
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7. The root locus breakaway points are roots of the equation

d

ds
½GðsÞFðsÞ� ¼

d

ds

Kðsþ 4Þ

sðsþ 6Þðsþ 8Þðs2 þ 2sþ 2Þ

� �
¼ K

ðsÞ

�ðsÞ

where

ðsÞ ¼ sðsþ 6Þðsþ 8Þðs2 þ 2sþ 2Þ � ðsþ 4Þ½2sðsþ 7Þðs2 þ 2sþ 2Þ

þ ðsþ 6Þðsþ 8Þð3s2 þ 4sþ 2Þ�

Because the determination of the roots of the equation ðsÞ ¼ 0 is quite diffi-
cult, an attempt will be made to come to a conclusion regarding the approximate
position of the root locus breakaway points, by circumventing the direct calculation
of the roots of the equation ðsÞ ¼ 0. To this end, taking advantage of the informa-
tion that we already have about the root locus, it appears that there is only one
breakaway point which lies between the points ð�6; 0Þ and ð�8; 0Þ. Indeed, since the
points ð�6; 0Þ and �8; 0Þ are starting points, the root locus which begins from these
two points must intersect between the points ð�6; 0Þ and ð�8; 0Þ and then change
course, moving away from the real axis.

8. The root locus departure angles are calculated according to Eq. (7.3-28) as
follows:

a. At the pole s ¼ 0: as s1 ! 0 for � ¼ 0, we have

�0 ¼ s1 ¼ �ð2�þ 1Þ�þ sþ 4� s1 þ 6 � s1 þ 8 � s1 þ 1þ j

� s1 þ 1� j

¼ ��þ 0� 0� 0�
�

4
� �

�

4

 �
¼ ��

b. At the pole s ¼ �6: as s1 ! �6 and for � ¼ 0, we have

��6 ¼ s1 þ 6 ¼ �ð2�þ 1Þ�þ s1 þ 4 � s1 � s1 þ 8 � s1 þ 1þ j

� s1 þ 1� j

¼ ��þ ð��Þ � ð��Þ � 0� ð�Þ � ð��Þ ¼ ��

where � ¼ s1 þ 1þ j.

c. At the pole s ¼ �8: as s1 ! �8 and for � ¼ 0, we have

��8 ¼ s1 þ 8 ¼ �ð2�þ 1Þ�þ s1 þ 4 � s1 � s1 þ 6 � s1 þ 1þ j

� s1 þ 1� j

¼ ��þ ð��Þ � ð��Þ � ð��Þ � ð�Þ � ð��Þ ¼ 0

d. At the pole s ¼ �1� j: as s1 ! �1� j and for � ¼ 0, we have
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��1�j ¼ s1 þ 1þ j ¼ �ð2�þ 1Þ�þ

s1 þ 4 � s1 � s1 þ 6 � s1 þ 8 � s1 þ 1� j

¼ ��þ 3� j � � 1� j � 5� j � 7� j � � 2j

¼ �1808þ ð�18:438Þ � ð�1358Þ � ð�11:308Þ � ð�8:138Þ � ð�908Þ ¼ 468

e. At the pole s ¼ �1þ j: from the root locus symmetry about the real axis we
conclude that

��1þj ¼ ���1�j ¼ �468

The arrival angle at the zero s ¼ �4 is calculated according to Eq. (7.3-29) as
follows: as s1 ! �4 and for � ¼ 0, we have

��4 ¼ s1 þ 4 ¼ 2�� þ

s1 þ s1 þ 6 þ s1 þ 8 þ s1 þ 1þ j þ s1 þ 1� j

¼ 0þ �þ 0þ 0þ �� � ¼ �

9. The root locus intersection with the imaginary axis is determined as follows:
construct the Routh table of the characteristic polynomial

pcðsÞ ¼ sðsþ 6Þðsþ 8Þðs2 þ 2sþ 2Þ þ Kðsþ 4Þ ¼ s5 þ 16s4 þ 78s3 þ 124s2

þ ð96þ KÞsþ 4K

as follows:

s5 1 78 96þ K 0

s4 16 124 4K 0

s3 70:25 96þ 0:75K 0 0

s2 102:1352� 0:1708K 4K 0 0

s1
9805� 220:7972K � 0:1281K2

102:1352� 0:1708K
0 0 0

s0 4K 0 0 0

From the Routh criterion it is well known that the closed-loop system is stable if all
the elements of the first column of the Routh table have the same sign. For this to
hold, the inequalities 102:1352� 0:1708K > 0 (or K < 597:89), 9805� 220:7972K �

0:1281K2 > 0 (�1767 < K < 43:3) and 4K > 0, must be satisfied simultaneously.
From these three inequalities it immediately follows that the system is stable when
0 < K < 43:3. Clearly, for the values of K ¼ 0 and K ¼ 43:3 the root locus intersects
the j!-axis. The points of intersection are calculated from the auxiliary equation
AðsÞ ¼ ð102:1352� 0:1708KÞs2 þ 4K ¼ 0, which is formed using the row s2. For K ¼

43:3 the auxiliary equation becomes 94:739s2 þ 173:2 ¼ 0 which gives the points of
intersection s ¼ �j1:352. For K ¼ 0 the auxiliary equation becomes 102:1352s2 ¼ 0,
which gives the point of intersection s ¼ 0.

Using all the above information we construct the root locus for K > 0 as
shown in Figure 7.8.

288 Chapter 7



Example 7.3.4

Consider the closed-loop control system which controls the thickness of metal sheets,
shown in Figure 1.10 of Chap. 1. The system is approximately described as in Figure
7.9. Determine the root locus for the following two cases:

(a) GcðsÞ ¼ K
(b) GcðsÞ ¼ Kðsþ 0:5Þ

Solution

Case (a)

The open-loop transfer function is
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Figure 7.9 Simplified block diagram of the thickness control system.



GcðsÞGðsÞ ¼
K

s2ðsþ 1Þ

Following the root locus construction method step by step, we have:
1. The points of the root locus for K ¼ 0 are s ¼ 0 and s ¼ �1. These points are

the root locus starting points for K � 0.
2. The points of the root locus for K ! 1 are the root locus ending points,

which are at infinity.
3. The number of branches of the root locus is maxðm; nÞ ¼ maxð0; 3Þ ¼ 3.
4. The angles of the asymptotes are

�� ¼
ð2�þ 1Þ�

3
; � ¼ 0; 1; 2; for K � 0

�� ¼
2��

3
; � ¼ 0; 1; 2; for K 
 0

Therefore, the asymptotes are straight lines having the following slopes:

�0 ¼
�

3
; �1 ¼ �; �2 ¼

5�

3
; when K � 0

�0 ¼ 0; �1 ¼
2�

3
; �2 ¼

4�

3
; when K 
 0

5. The point of intersection of the asymptotes is


1 ¼ �

Xn
i¼1

pi �
Xm
i¼1

zi

n�m
¼ �

1� 0

3
¼ �

1

3

6. The segments of the real axis that can be part of the root locus are
a. For K � 0, the segment from �1 to �1.
b. For K 
 0, the segment from �1 to 0 and the segment from 0 to þ1.

7. The root locus breakaway points are roots of the equation

d

ds
½GcðsÞGðsÞ� ¼ �K

2sðsþ 1Þ þ s2

s4ðsþ 1Þ2

" #
¼ 0

From the above equation we conclude that candidate breakaway points of the root
locus are s ¼ 0 and s ¼ �2=3. For these points to be breakaway points, they must
satisfy the equation

1þ GcðsÞGðsÞ ¼ 0

for any real value of K . The point s ¼ 0 satisfies the above equation for K ¼ 0 and
the point s ¼ 2=3 for K ¼ �4=27. Hence, theya re both breakaway points.

8. The root locus departure angles are
a. At the double pole s ¼ 0: as s1 ! 0 and " ! 0, we have

�0 ¼ s1 þ 0� j" ¼ �ð2�þ 1Þ�� s1 þ 1� s1 þ 0� j"

¼ �ð2�þ 1Þ��
�

2

Choosing the smallest angles, e.g., for � ¼ 0, we obtain
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�0 ¼ �
3�

2
and �0 ¼ �

�

2

b. At the pole s ¼ �1: as s1 ! �1, we have

��1 ¼ s1 þ 1 ¼ �ð2�þ 1Þ�� 2 s1 ¼ �ð2�þ 1Þ�� 2�

Choosing the smallest angles, e.g., for � ¼ 0, we have ��1 ¼ �3�.
The results presented above are adequate to construct the root locus sought, as

shown in Figure 7.10a.
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Figure 7.10 The root locus of the closed-loop system of Example 7.4.3: (a) when
GCðsÞ ¼ K ; (b) when GCðsÞ ¼ Kðsþ 0:5Þ.



Case (b)

The open-loop transfer function has the form

GcðsÞGðsÞ ¼
Kðsþ 0:5Þ

s2ðsþ 1Þ

Following the root locus construction method step by step, we have:
1. The root locus starting points are at s ¼ 0 and s ¼ �1 for K � 0.
2. The root locus ending points are at s ¼ �0:5 and at infinity for K � 0.
3. The number of branches of the root locus is maxð1; 3Þ ¼ 3.
4. The angles of the asymptotes are
a. For K � 0, �0 ¼ �=2, and �1 ¼ 3�=2
b. For K 
 0, �0 ¼ 0, and �1 ¼ �.
5. The point of intersection of the asymptotes is


1 ¼ �
0:5

2
¼ �0:25

6. The segments of the real axis that can be part of the root locus are
a. For K � 0, the segment ð�1; 0:5Þ
b. For K 
 0, the segments ð�1;�1Þ, ð0:5; 0Þ, and ð0;þ1Þ.
7. The root locus breakaway points are roots of the equation

d

ds
½GcðsÞGðsÞ� ¼ 0 or sð2s2 þ 2:5sþ 1Þ ¼ 0

We have three roots: s ¼ 0 and s ¼ �0:625� j0:33. From these three roots, only the
root s ¼ 0 satisfies the equation 1þ GcðsÞGðsÞ ¼ 0 for K ¼ 0. For the other two
roots, there are no real values of K which satisfy the equation 1þ GcðsÞGðsÞ ¼ 0.

8. The root locus departure angles are
a. At the pole s ¼ 0: as s1 ! 0 and " ! 0, we have

�0 ¼ s1 þ 0� j" ¼ �2ð�þ 1Þ�þ s1 þ 0:5� s1 þ 0� j"

¼ �ð2�þ 1Þ�þ 0�
�

2

Choosing the smallest angles, i.e., for � ¼ 0, we have

�0 ¼ �
3�

2
and �0 ¼ �

�

2

b. At the pole s ¼ �1: as s1 ! �1, we have

��1 ¼ s1 þ 1 ¼ �ð2�þ 1Þ�þ s1 þ 0:5� 2 s1 þ 0 ¼ �ð2�þ 1Þ�þ �� 2�

Choosing the smallest angles, i.e., for � ¼ 0, we have

��1 ¼ �2� or 0

9. The root locus arrival angle is at the zero ¼ �0:5: as s1 ! �0:5, we have

��0:5 ¼ s1 þ 0:5 ¼ 2��þ 2 s1 þ 0 þ s1 þ 1 ¼ 2��þ 2�þ 0

or

292 Chapter 7



��0:5 ¼ 2� ¼ 0

Using the above results, one may construct the root locus, as shown in Figure
7.10b. In Fig. 7.10a, where GcðsÞ ¼ K , the closed-loop system is unstable. In Fig.
7.10b, where GcðsÞ ¼ Kðsþ 0:5Þ, the closed-loop system is stable for K > 0. This is
obviously because we added the zero s ¼ �0:5 in the loop transfer function. It is
noted that this zero lies between the poles �1 and 0. The effects of adding poles and/
or zeros in the loop transfer function is studied in Sec.7.5.

The following example demonstrates that in several cases it is possible to find
an analytical expression for a certain segment of the root locus of a system (another
interesting similar problem is stated in Problem 9 of Sec. 7.6).

Example 7.3.5

Consider the closed-loop system of Figure 7.11. Show that the root locus segment
which is not located on the real axis is described analytically in polar coordinates as
follows: �3 cos � ¼ �3, where s ¼ �e j�.

Solution

The closed-loop system transfer function is

HðsÞ ¼
GðsÞ

1þ GðsÞ
¼

Ks

ðsþ 1Þðsþ 2Þðs� 3Þ

1þ
Ks

ðsþ 1Þðsþ 2Þðs� 3Þ

¼
Ks

s3 þ ðK � 7Þs� 6

The characteristic polynomial pcðsÞ of the closed-loop system transfer function is
pcðsÞ ¼ s3 þ ðK � 7Þs� 6. Replacing s with �e j� in pcðsÞ, we obtain that the points
of the root locus which are not located on the real axis satisfy the equation

ð�e j�Þ3 þ ðK � 7Þ�e j� � 6 ¼ 0 or �3e3j� þ ðK � 7Þ�e j� � 6 ¼ 0

or

½�3 cos 3� þ ðK � 7Þ� cos � � 6� þ j½�3 sin 3� þ ðK � 7Þ� sin �� ¼ 0

The points of the root locus must satisfy both the real and the imaginary part in the
above equation, i.e., there must be

�3 cos 3� þ ðK � 7Þ� cos � � 6 ¼ 0 and �3 sin 3� þ ðK � 7Þ� sin � ¼ 0

Solving the second equation for ðK � 7Þ and introducing the result into the first we
obtain
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Figure 7.11 The closed-loop system of Example 7.3.5.



�3 cos 3� �
�3 cos � sin 3�

sin �
� 6 ¼ 0

Consider the trigonometry relations: cos 3� ¼ cos3 � � 3 sin2 � cos � and
sin 3� ¼ 3 sin � cos2 � � sin3 �. Using these two relations, the above equation becomes

�3½cos3 � þ sin2 � cos �� ¼ �3 or �3 cos �ðcos2 � þ sin2 �Þ ¼ �3

or �3 cos � ¼ �3

Remark 7.3.1

From the examples presented in the present subsection it must be obvious that the
form of the root locus changes drastically with the position of the poles and zeros of
GðsÞFðsÞ. This is demonstrated in Figure 7.12, which gives various pole-zero config-
urations of GðsÞFðsÞ and their corresponding root loci.

7.4 APPLYING THE ROOT LOCUS METHOD FOR DETERMINING
THE ROOTS OF A POLYNOMIAL

The root locus method can be used to determine the roots of a polynomial. This idea
can be easily illustrated by the following two simple examples.

Example 7.4.1

Consider the polynomial

pðsÞ ¼ s2 þ 2sþ 2 ð7:4-1Þ

Determine the roots of pðsÞ using the root locus method.

Solution

To determine the roots of pðsÞ using the root locus method, we find an appropriate
form of 1þ GðsÞFðsÞ such that the characteristic polynomial of 1þ GðsÞFðsÞ is equal
to pðsÞ. Such a form is

1þ GðsÞFðsÞ ¼ 1þ
Kðsþ 2Þ

sðsþ 1Þ
ð7:4-2Þ

where, for K ¼ 1, the characteristic polynomial of Eq. (7.4-2) is equal to pðsÞ.
Therefore, the roots of pðsÞ are the points of the root locus of Eq. (7.4-2) when
K ¼ 1. Since the root locus of Eq. (7.4-2) is the root locus of the Example 7.3.2,
the roots of pðsÞ can be found from Figure 7.6 to be �1þ j and �1� j.

Example 7.4.2

Consider the polynomial

pðsÞ ¼ s3 þ 3s2 þ 2sþ 6 ð7:4-3Þ

Determine the roots of pðsÞ using the root locus method.
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Solution

Repeating the method used in the previous example, we obtain

1þ GðsÞFðsÞ ¼ 1þ
K

sðsþ 1Þðsþ 2Þ
ð7:4-4Þ

The characteristic polynomial of Eq. (7.4-4), for K ¼ 6, is equal to pðsÞ. Therefore,
the roots of pðsÞ are the points of the root locus of Eq. (7.4-4) when K ¼ 6. The root
locus of Eq. (7.4-4) is given in Figure 7.13, where for K ¼ 6 we find that the roots are
�3, j

ffiffiffi
2

p
, and �j

ffiffiffi
2

p
. This can also be found from Eq. (7.4-3) if we expand pðsÞ as

follows: pðsÞ ¼ sðs2 þ 2Þ þ 3ðs2 þ 2Þ ¼ ðs2 þ 2Þðsþ 3Þ.
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Figure 7.12 Various pole-zero configurations of GðsÞFðsÞ and the corresponding root loci
for K > 0.



7.5 EFFECTS OF ADDITION OF POLES AND ZEROS ON THE ROOT
LOCUS

The root locus method is usually used to obtain an overall simple picture of the effect
that the gain constant K has on the positions of the poles of a closed-loop system. It
is also used to obtain an overall picture of the effect that has on the root locus the
addition of poles and/or zeros in the loop transfer function GðsÞFðsÞ. The addition of
new poles and/or zeros in GðsÞFðsÞ is done as in Figure 7.14b and it aims at the
improvement of the closed-loop system behavior. For the closed-loop system 7.14b
the characteristic equation takes on the form

1þ ½G1ðsÞF1ðsÞ�GðsÞFðsÞ ¼ 0 ð7:5-1Þ

The transfer functions G1ðsÞ and F1ðsÞ are the additional controllers introduced in the
closed-loop system. Depending on the particular form of G1ðsÞF1ðsÞ the root locus of
Eq. (7.5-1) may change drastically. In the next two subsections, we study this change
that the original root locus undergoes when the additional controller G1ðsÞF1ðsÞ is
included in the closed-loop system.

7.5.1 Addition of Poles and Its Effect on the Root Locus

Assume that

G1ðsÞF1ðsÞ ¼
1

ðsþ �1Þðsþ �2Þ    ðsþ �pÞ
ð7:5-2Þ
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Figure 7.13 The root locus of Example 7.4.2.



Then, Eq. (7.5-1) becomes

1þ
GðsÞFðsÞ

ðsþ �1Þ    ðsþ �pÞ
¼ 0 ð7:5-3Þ

Here, the root locus of Eqs (7.3-1) and (7.5-3) differ from each other in that the root
locus of Eq. (7.5-3) is ‘‘moved’’ or ‘‘bended’’ more to the right of the root locus of
Eq. (7.3-1). Thus, the addition of poles to closed-loop systems results in more
unstable closed-loop systems. This fact will be illustrated by the following two exam-
ples.

Example 7.5.1

Let

GðsÞFðsÞ ¼
K

sðsþ aÞ
; a > 0 ð7:5-4Þ

and

G1ðsÞF1ðsÞ ¼
1

sþ �1
; �1 > a

Then, Eq. (7.5-3) becomes

1þ
K

sðsþ aÞðsþ �1Þ
¼ 0 ð7:5-5Þ

Study the stability of Eq. (7.5-5).
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Figure 7.14 Closed-loop system without and with additional controllers. (a) Original
closed-loop system; (b) closed-loop system with additional controllers.



Solution

The root locus of Eqs (7.5-4) and (7.5-5) are given in Figure 7.15a and 7.15b,
respectively. Figure 7.15b shows that the addition of one pole results in ‘‘bending’’
the root locus of Figure 7.15a more to the right. To be more precise, even though the
entire root locus of Eq. (7.5-4) is located in the left-half complex plane for K � 0, the
root locus of Eq. (7.5-7) is partly located in the right-half complex plane. This means
that while system (7.5-4) is stable for K � 0, system (7.5-5) is unstable for large
values of K and in particular for K > K1.

Example 7.5.2

Consider the open-loop transfer function (7.5-4). Also, consider the additional con-
troller G1ðsÞF1ðsÞ, having the form

G1ðsÞF1ðsÞ ¼
1

ðsþ �1Þðsþ �2Þ
; �2 > �1 > a ð7:5-6Þ

Then, Eq. (7.5-3) becomes

1þ
K

sðsþ aÞðsþ �1Þðsþ �2Þ
¼ 0 ð7:5-7Þ

Study the stability of Eq. (7.5-7).

Solution

The root locus of Eq. (7.5-7) is given in Figure 7.16. It is clear that the addition of
two poles ‘‘bends’’ the root locus of Eq. (7.5-4) even more to the right, a fact which
makes the closed-loop system ‘‘more’’ unstable, compared with the case of adding
only one pole. Indeed, if one compares Figure 7.15a (case of adding one pole) with
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Figure 7.16 (case of adding two poles), one observes that the root locus in Figure
7.15a crosses the j!-axis when K ¼ K1, while in Figure 7.16 it crosses the j!-axis
when K ¼ K2. Since K2 < K1, it follows that the closed-loop system of Figure 7.16
becomes unstable for smaller values of K compared with Figure 7.15a. Hence, the
system with characteristic equation (7.5-7) is more unstable compared with the
system with characteristic equation (7.5-5).

7.5.2 Addition of Zeros and Its Effect on the Root Locus

Assume that G1ðsÞF1ðsÞ ¼ ðsþ �1Þ. Then, Eq. (7.5-1) becomes

1þ ðsþ �1ÞGðsÞFðsÞ ¼ 0 ð7:5-8Þ

Here, the root locus of Eqs (7.3-1) and (7.5-8) differ from each other in that the root
locus of Eq. (7.5-8) is ‘‘moved’’ or ‘‘bended’’ more to the left of the root locus of Eq.
(7.3-1). Thus, the addition of zeros to closed-loop systems results in more stable
closed-loop systems. This fact is illustrated by the following example.

Example 7.5.3

Consider the loop transfer function Eq. (7.5-4). Then for G1ðsÞF1ðsÞ ¼ sþ �1, Eq.
(7.5-8) becomes

1þ K
sþ �1

sðsþ aÞ

� �
¼ 0; �1 > a ð7:5� 9Þ

Study the stability of Eq. (7.5-9).
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Figure 7.16 The effect of adding two poles in the root locus of Eq. (7.5-4).



Solution

The root locus of Eq. (7.5-9) is given in Figure 7.17, from which we conclude that the
root locus of Eq. (7.5-9) is ‘‘bended’’ to the left of the root locus of Eq. (7.5-4) and
therefore Eq. (7.5-9) is ‘‘more’’ stable than Eq. (7.5-4).

PROBLEMS

1. Draw the root locus for the closed-loop systems having the following loop
transfer functions:

ðaÞ
K

s2
ðbÞ

Kðs2 þ 4sþ 8Þ

s2ðsþ 4Þ

ðcÞ
Kðsþ 2Þ

sðsþ 1Þðsþ 19Þ
ðdÞ

Kðsþ 2Þðsþ 6Þ

sðsþ 4Þðsþ 3Þ

ðeÞ
Kðsþ 1Þ

sðsþ 2Þðsþ 3Þðsþ 4Þ
ðfÞ

K

ðsþ 1Þðsþ 2Þðsþ 3Þ

ðgÞ
Kðsþ 3Þ

ðsþ 1Þðsþ 2Þðsþ 4Þ
ðhÞ

K

ðsþ 1Þðsþ 2Þðsþ 3Þðsþ 4Þ

ðiÞ
K

sðs2 þ 6sþ 25Þ
ðjÞ

Kðsþ 1Þ

sðs2 þ 4sþ 8Þ

ðkÞ
Kðsþ 3Þ

ðsþ 1Þðsþ 2Þðs2 þ 4sþ 8Þ
ðlÞ

Kðsþ 3Þðsþ 5Þ

sðsþ 1Þðsþ 4Þðs2 þ 4sþ 8Þ

2. Figure 7.18 shows the block diagram of the direction control system of an
automobile where the controller is a human driver. Draw the root locus of the
system.

3. The block diagram of a position control system using a robot is shown in Figure
7.19. Draw the root locus of the system.
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Figure 7.17 The effect of adding a zero in the root locus of Eq. (7.5-4).



4. The block diagram of a speed control system for an aircraft is shown in Figure
7.20. Draw the root locus of the system.

5. Consider the control system of a tape drive shown in Figure 7.21. Determine the
root locus of the system for the following two cases:

(a) GcðsÞ ¼
K

sþ 4

(b) GcðsÞ ¼
Kðsþ 5Þ

sþ 4

6. Determine the root locus of the system shown in Figure 7.22, where

GcðsÞ ¼
Kðsþ 2Þ2

s
and GðsÞ ¼

1

sðs� 1Þ

7. Determine the root locus of the system in Figure 7.23 for the following three
cases:

(a) GcðsÞ ¼ K
(b) GcðsÞ ¼ Kðsþ 2Þ

(c) GcðsÞ ¼
Kðs2 þ 2sþ 2Þ

s

8. Draw the root locus of a submarine depth control system shown in Figure 6.3
(Example 6.4.10).

9. Consider the root locus of Example 7.3.2 given in Figure 7.6. Find an analytical
expression of the root locus segment which has the shape of a perfect circle.
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10. Find the roots of the following polynomials using the root locus method:

(a) s3 þ 4s2 þ 4sþ 10
(b) s3 þ s2 þ 10sþ 10

11. Study the effect of variation of the parameter a on the root locus of the loop
transfer functions:

(a)
K

sðsþ aÞ
(b)

Kðsþ aÞ

sðsþ 1Þ
(c)

K

sðsþ 1Þðsþ aÞ

(d)
Kðsþ 1Þ

sðsþ 2Þðsþ aÞ
(e)

Kðsþ 1Þ

ðsþ aÞðsþ 2Þðs2 þ 2sþ 2Þ
(f)

Kðsþ 1Þ

s2ðsþ aÞ

12. Consider the speed control system described in Subsec. 3.13.3. Let Kg ¼ 1,
Km ¼ 1, N ¼ 10, Lf ¼ 1, La ¼ 1, Ra ¼ 1, J�

m ¼ 1, and B�
m ¼ 3. Then,

GðsÞ ¼ Ka

10

ðsþ Rf Þ½ðsþ 1Þðsþ 3Þ þ Kb�

For each of the four cases shown in Table 7.1 draw the root locus for Ka � 0,
and compare the results.

13. Consider the position control system described in Subsec. 3.12.2. For simplicity,
let GðsÞ of Eq. (3.13-9) have the form

GðsÞ ¼ Ka

10

sðsþ 1Þðsþ 3Þ þ Kbs

� �

For Kb ¼ 0:1, 1, and 10, the transfer function GðsÞ takes on the forms given in
Table 7.2. Draw the root locus for the three cases, for Ka � 0, and compare the
results.
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Table 7.1

Rf ¼ 1:5 Kb ¼ 1 GðsÞ ¼ G1ðsÞ ¼ Ka

10

ðsþ 1:5Þ½ðsþ 1Þðsþ 3Þ þ 1�

¼ Ka

10

ðsþ 1:5Þðsþ 2Þ2

Kb ¼ 10 GðsÞ ¼ G2ðsÞ ¼ Ka

10

ðsþ 1:5Þ½ðsþ 1Þðsþ 3Þ þ 10�

¼ Ka

10

ðsþ 1:5Þðs2 þ 4sþ 13Þ

Rf ¼ 4 Kb ¼ 1 GðsÞ ¼ G3ðsÞ ¼ Ka

10

ðsþ 4Þ½ðsþ 1Þðsþ 3Þ þ 1�

¼ Ka

10

ðsþ 4Þðsþ 2Þ2

Kb ¼ 10 GðsÞ ¼ G4ðsÞ ¼ Ka

10

ðsþ 4Þ½ðsþ 1Þðsþ 3Þ þ 10�

¼ Ka

10

ðsþ 4Þðs2 þ 4sþ 13Þ
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Table 7.2

Kb ¼ 0:1 GðsÞ ¼ G1ðsÞ ¼ Ka

10

sðsþ 1Þðsþ 3Þ þ 0:1s
¼ Ka

10

sðsþ 1:05Þðsþ 2:95Þ

Kb ¼ 1 GðsÞ ¼ G2ðsÞ ¼ Ka

10

sðsþ 1Þðsþ 3Þ þ s
¼ Ka

10

sðsþ 2Þ2

Kb ¼ 10 GðsÞ ¼ G3ðsÞ ¼ Ka

10

sðsþ 1Þðsþ 3Þ þ 10s
¼ Ka

10

s½ðs2 þ 4sþ 4Þ þ 32�



8
Frequency Domain Analysis

8.1 INTRODUCTION

This chapter refers to the behavior of linear time-invariant systems in the frequency
domain. Here the important control analysis and design tools of Nyquist, Bode, and
Nichols diagrams are presented.

It is important to stress that the control engineer should be able to understand
the behavior of a system both in the time and in the frequency domain. Generally
speaking, it is easier to understand the time domain behavior of a system compared
with its frequency domain behavior. However (particularly with respect to the clas-
sical control methods), the time domain has the disadvantage in that it is more
difficult to handle (e.g., in designing controllers), compared with the frequency
domain. It is therefore important that the control engineer knows both the time-
and the frequency-domain system’s behavior and is able to correlate the behavior of
the system in these two domains. Chapter 8 aims to offer this knowledge, which is
particularly necessary for Chap. 9.

8.2 FREQUENCY RESPONSE

Consider a SISO system with transfer function

HðsÞ ¼
Kðsþ z1Þðsþ z2Þ � � � ðsþ zmÞ

ðsþ p1Þðsþ p2Þ � � � ðsþ pnÞ
; m < n ð8:2-1Þ

Let the input be the sinusoidal function uðtÞ ¼ R sin!t. Then the response YðsÞ of the
system will be

YðsÞ ¼ HðsÞUðsÞ ¼
Kðsþ z1Þðsþ z2Þ � � � ðsþ zmÞ

ðsþ p1Þðsþ p2Þ � � � ðsþ pnÞ

� �
R!

s2 þ !2

� �

Expand YðsÞ in partial fractions as follows:

YðsÞ ¼
K

sþ p1
þ

K2
sþ p2

þ � � � þ
Kn

sþ pn
þ
Knþ1
sþ j!

þ
Knþ2
s� j!

The output yðtÞ ¼ L�1
fYðsÞg will be
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yðtÞ ¼ K1e
�p1t þ K2e

�p2t þ � � � þ Kne
�pnt þ Knþ1e

�j!t
þ Knþ2e

j!t

Assume that all poles of HðsÞ lie in the left-half complex plane, i.e., Reð�piÞ < 0, 8i.
Then the output of the system in the steady state will be

yssðtÞ ¼ Knþ1e
�j!t

þ Knþ2e
j!t

Since

Knþ1 ¼ lim
s!�j!

ðsþ j!ÞYðsÞ ¼ �
Hð�j!ÞR

2j

and

Knþ2 ¼ lim
s!j!

ðs� j!ÞYðsÞ ¼
Hð j!ÞR

2j

it follows that

yssðtÞ ¼
R

2j
½�Hð�j!Þe�j!t þHð j!Þe j!t� ¼ RjHð j!Þj sin½!tþ ’ð!Þ� ð8:2-2Þ

where jHð j!Þj and ’ð!Þ are the amplitude and the phase of Hð j!Þ, respectively.
From relation (8.2-2) it follows that when the transfer function of an SISO

system has all its poles in the left-half complex plane, then the output of the system in
the steady state, with sinusoidal excitation, is also sinusoidal. In particular, we
observe that the amplitude of the output is the amplitude of the input multiplied
by jHð j!Þj, while the phase of the output is the phase of the input shifted by ’ð!Þ.
The output of the system in steady state, when excited by a sinusoidal function, i.e.,
yssðtÞ of relation (8.2-2), is known as the frequency response of the system.

Relation (8.2-2) has a significant characteristic in suggesting a relatively easy
laboratory method to determine the transfer function Hð j!Þ of a system. Indeed, if a
system is excited by a sinusoidal function with amplitude equal to unity and phase
equal to zero, then the amplitude of the output steady state will be the amplitude of
the transfer function, while the phase of the output steady state will be the phase of
the transfer function. Therefore, if we excite Eq. (8.2-1) with uðtÞ ¼ sin!t and let !
take values for a certain range of frequencies, then we can readily sketch the curves
of jHð j!Þj and ’ð j!Þ of the transfer function HðsÞ for this particular range of fre-
quencies.

This graphical representation of jHð j!Þj and ’ð j!Þ constitutes an important
frequency domain tool for studying stability, specifying the closed-loop desired
behavior, developing control design techniques, etc. For this reason, very often,
even in cases where we know the analytical expression for the transfer function,
we prefer to first determine its graphical representation and subsequently apply
the graphical design methods.

The above remarks can also be applied to MIMO systems whose transfer
functions are matrices. In this case, the element hijðsÞ of the transfer function matrix
HðsÞ relates the ith output yiðtÞ to the jth input ujðtÞ ¼ Rjn�!t, assuming that all
other inputs are zero. In the steady state, the following relation holds

½ yiðtÞ�ss ¼ Rjjhijð j!Þj sin½!tþ ’ijð!Þ� ð8:2-3Þ

where jhijð j!Þj is the amplitude and ’ijð!Þ is the phase of the element hijðsÞ of HðsÞ.
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8.3 CORRELATION BETWEEN FREQUENCY RESPONSE AND
TRANSIENT RESPONSE

8.3.1 Characteristics of Frequency Response

The transfer function Hð j!Þ of Eq. (8.2-1) can be written as

Hð j!Þ ¼ jHð j!Þj Hð j!Þ ¼M ’ ð8:3-1Þ

where, for simplicity, we have placed M ¼ jHð j!Þj and ’ ¼ Hð j!Þ. Typical gra-

phical representations of M and ’, as functions of the frequency !, are given in
Figure 8.1a and b, respectively.

Certain characteristics of the amplitude curve M have special significance for
the frequency response of a system. These characteristics are the following.

1 Resonant Peak Mp

The value Mp is the maximum value of the amplitude M. As we will see in the
Subsec. 8.3.4 (see Figure 8.9), large values of Mp usually correspond to large values
of overshoot in the time domain, when the excitation is the step function. For most
design problems, the value of Mp is chosen to lie between the values 1.1 and 1.5.

2 Resonant Frequency !p
The resonant frequency !p is defined as the frequency for which Mð!pÞ ¼Mp.

3 Bandwidth (BW)

The bandwidth BW of the amplitude curve of Figure 8.1a is defined as the frequency
!b for which Mð!bÞ ¼ 0:707. The BW in the frequency domain and the rise time Tr
of a system’s response in the time domain (see Subsec. 4.2.2), are inversely propor-
tional quantities.

In the sequel, we will discuss the correlation between the frequency and time
response of a system. In particular, we will study the correlation between the char-
acteristicsMp, !p, and BW in the frequency domain with the characteristics T (time
constant), ym (peak value), and � (damping ratio) in the time domain.

8.3.2 Correlation for First-Order Systems

The transfer function of a first-order system has the form
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Figure 8.1 Typical graphical representations of (a) the amplitude M and (b) the phase ’.



HðsÞ ¼
K

Tsþ 1

Clearly, HðsÞ in the sinusoidal steady state will be

Hð j!Þ ¼
K

j!T þ 1
¼

Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2T2 þ 1

p � tan�1 !T ¼M ’

The waveforms of M and ’ are given in Figures 8.2a and 8.2b, respectively.
Mp, !p, and BW are Mp ¼ K, !p ¼ 0, and BW ¼ !b ¼ 1=T .

The above results in the frequency domain are correlated with those in the time
domain (Subsec. 4.3.1) by the relation BW ¼ 1=T . This equation shows that BW and
T are inversely proportional.

8.3.3 Correlation for Second-Order Systems

Consider a second-order system with transfer function

HðsÞ ¼
!20

s2 þ 2�!0sþ !
2
0

ð8:3-2Þ

The transfer function HðsÞ in the sinsusoidal steady state will be

Hð j!Þ ¼
!20

ð j!Þ2 þ 2�!0ð j!Þ þ !
2
0

¼
1

1� u2 þ j2�u
ð8:3-3Þ

where, for simplicity, we have set u ¼ !=!0. The amplitude M and the phase ’ of
Hð j!Þ, according to Eq. (8.3-1), will be

M ¼
1

½ð1� u2Þ2 þ ð2�uÞ2�1=2
; ’ ¼ � tan�1

2�u

1� u2

� �
ð8:3-4Þ

Next, we will determine !p, Mp, and BW of the system. To this end, to deter-
mine !p we differentiateM with respect to u and set the derivative equal to zero, i.e.,

dM

du
¼ �

½�2ð1� u2Þuþ 4�2u�

2½ð1� u2Þ2 þ ð2�uÞ2�3=2
¼ 0

The above relation gives
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Figure 8.2 Diagrams of (a) amplitude M and (b) phase ’ of a first-order system.



2u3 � 2uþ 4�2u ¼ 0 ð8:3-5Þ

The roots of Eq. (8.3-5) are u ¼ 0, u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�2

p
, and u ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�2

p
. We disregard

the third root since it has no physical meaning. Consider the root

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�2

p
; � < 0:707 ð8:3-6Þ

Its resonant frequency !p will be

!p ¼ !0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�2

p
; � < 0:707 ð8:3-7Þ

The resonant value Mp is found if we substitute Eq. (8.3-6) into Eq. (8.3-4) to
yield

Mp ¼
1

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p ; � < 0:707 ð8:3-8Þ

From relations (8.3-7) and (8.3-8) it is clear that !p is a function of !0 and �, while
Mp is a function of � only. Figure 8.3 presents typical shapes of the amplitudeM as a
function of the normalized frequency u and with free parameter the damping ratio �.
From Figure 8.3 it follows that for � < 0:7, the peak value Mp increases as �
decreases. For � � 0:707, the peak value is Mp ¼ 1, which occurs when u ¼ 0.

To determine the bandwidth BW, it suffices to specify the frequency !b. From
Eq. (8.3-4) and the definition of bandwidth, we have

Mð!bÞ ¼
1

½ð1� u2bÞ
2
þ ð2�ubÞ

2
�
1=2

¼
1ffiffiffi
2

p ð8:3-9Þ

where ub ¼ !b=!0. If we solve Eq. (8.3-9) for ub, we obtain

ub ¼ 1� 2�2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�4 � 4�2 þ 2

ph i1=2
ð8:3-10Þ
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Figure 8.3 The plot of amplitude M of a second-order system versus u.



Thus

BW ¼ !b ¼ !0 1� 2�
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�4 � 4�2 þ 2

ph i1=2
ð8:3-11Þ

From relation (8.3-10) we obseve that the normalized bandwidth ub is a function of
the damping ratio � only. The dependence of ub upon � is given graphically in Figure
8.4.

To correlate the frequency response with the time response, we make use of the
results of Sec. 4.3. First, we compare the maximum value ym of the response yðtÞ
when the excitation is the unit step function. In this case, ym is given by Eq. (4.3-10),
i.e., by the relation

ym ¼ 1þ exp ��	=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

ph i
; 0 < � < 1

The maximum value Mp of the amplitude of the function Hð j!Þ is given by Eq.
(8.3-8). We remark that both ym and Mp are functions of � only. In figure 8.5, ym
and Mp are given as functions of �.

If we now compare the resonant frequency !p (see relation (8.3-7)) with the
damped natural frequency !d (see Subsec. 4.3.2), where !d ¼ !n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
, we observe

that both frequencies are functions of !n and � (Figure 8.6). Their ratio is given by

!p
!d

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p

8.3.4 Correlation for Higher-Order Systems

The analytical correlation between the frequency domain and the time domain
response for higher-order systems is, in general, very difficult. This is because the
time domain response yðtÞ and the frequency domain response Yð j!Þ are related by
the Fourier integral, as follows:
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Figure 8.4 The plot of the ratio Bw=!0 versus the damping constant �.



Yð j!Þ ¼

ð1
�1

yðtÞe�j!tdt ð8:3-12aÞ

yðtÞ ¼
1

2	

ð1
�1

Yð j!Þe j!td! ð8:3-12bÞ

The above Fourier transform pair requries great computational effort, particularly
as the order of the system increases. Another reason which makes it difficult to
extend the correlation between the frequency and time domain response to higher-
order systems is that there is no analytical expression for the calculation of the poles
of a higher-order algebraic equation. To circumvent this difficulty, it is usually
proposed to approximate the original high-order transfer function HðsÞ with a
new transfer function H�

ðsÞ of second order. If H�
ðsÞ approximates HðsÞ satisfacto-

rily, then the study of the system is subsequently based on H�
ðsÞ, rather than HðsÞ,

which makes the study of the system much simpler. Usually, we choose as poles of
the new transfer function H�

ðsÞ the poles of HðsÞ which are closest to the imaginary
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Figure 8.5 The maximum amplitude Mp and the maximum value ym as a function of �.

Figure 8.6 The plot of the ratio !p=!d versus the damping constant �.



axis. The issue of the approximation (simplification) of HðsÞ by H�
ðsÞ has been

considered in Sec. 4.4.
We close this sec. with Figure 8.7, 8.8, and 8.9 which refer to second- and

higher-order systems and give an overall picture of the correlation between the
behavior of a system in the time domain and frequency domain. In Figure 8.7 the
correlation between the time domain and frequency domain is given, where the
description in the frequency domain is given both with the curves M and ’, as
well as with the Nyquist diagrams (see next section). Figure 8.8 gives an overall
picture of the correlation between the rise time Tr and the bandwidth BW, from
which we reach the conclusion that Tr and BW are inversely proportional. Finally,
Figure 8.9 gives the curves related to the overshoot ym and the resonance value Mp,
from which we reach the conclusion that as the resonance value Mp increases, the
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Figure 8.7 Nyquist diagram, amplitude curves of M and ’, and the output yðtÞ for stable
and unstable systems. (a) Stable system without oscillations; (b) stable system with oscilla-
tions; (c) stable system with sustained oscillations; (d) unstable system.
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Figure 8.8 (a) AmplitudeM and (b) output yðtÞ curves of two different systems which show
the relation between Tr and bandwidth BW.

Figure 8.9 (a) The amplitude M and (b) the output yðtÞ of four different systems, which
show the relation between ym and Mp.



overshoot ym also increases. In practice, it is widely accepted that a system has a
good performance if the value for Mp lies between 1.1 and 1.5, with special prefer-
ence to the value Mp ¼ 1:3.

8.4 THE NYQUIST STABILITY CRITERION

8.4.1 Introduction

The Nyquist stability criterion refers to the stability of closed-loop systems. In cases
where a mathematical model is not available and the system transfer function is
described graphically, then the use of the Nyquist stability criterion comes in very
handy. In cases where a mathematical model is available, then one can apply one of
the algebraic criteria to readily determine the stability of the closed-loop system.
However, even in this latter case, one can also apply the Nyquist stability criterion to
acquire further useful knowledge about the behavior of the closed-loop system.
Some important advantages of the Nyquist criterion are given below.

1. It gives information, not only about the stability but also about the relative
stability of the system. The meaning of the term relative stability may be given on the
basis of the roots of the closed-loop characteristic polynomial pcðsÞ in the complex
plane as follows. Let all roots of pcðsÞ lie in the left-half complex plane. Then, as the
roots of pcðsÞ move to the right and hence closer to the imaginary axis (from left to
right), the system becomes less stable, and as the root of pcðsÞ move to the left and
hence away from the imaginary axis, the system becomes more stable.

2. It gives information about the behavior (the performance) of the system in
the time domain.

3. It can be used for the study of the stability of other categories of systems,
such as time-delay systems, nonlinear systems, etc.

Consider the closed-loop system of Figure 8.10. The transfer function HðsÞ of
the closed-loop system is given by

HðsÞ ¼
GðsÞ

1þ GðsÞFðsÞ
¼
GðsÞ

WðsÞ
ð8:4-1Þ

where

WðsÞ ¼ 1þ GðsÞFðsÞ ð8:4-2Þ

Assume that the open-loop transfer function GðsÞFðsÞ has the form
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Figure 8.10 Block diagram of a closed-loop system.



GðsÞFðsÞ ¼
Kðsþ z1Þðsþ z2Þ � � � ðsþ zmÞ

s jðsþ p1Þðsþ p2Þ � � � ðsþ pqÞ
; where j þ q ¼ n ð8:4-3Þ

Substituting expression (8.4-3) in expression (8.4-2) yields

WðsÞ ¼ 1þ GðsÞFðsÞ ð8:4-4Þ

or

WðsÞ ¼
s jðsþ p1Þðsþ p2Þ � � � ðsþ pqÞ þ Kðsþ z1Þðsþ z2Þ � � � ðsþ zmÞ

s jðsþ p1Þðsþ p2Þ � � � ðsþ pqÞ
¼
pcðsÞ

p
ðsÞ

ð8:4-5Þ

The polynomials pcðsÞ and p
ðsÞ are the characteristic polynomials of the systems with
transfer functions HðsÞ and GðsÞFðsÞ, respectively. It is important to note that the
stabilities of the closed-loop system and of the system with transfer function GðsÞ FðsÞ
are not correlated. For example, if a system with transfer function GðsÞFðsÞ is
unstable, this does not necessarily mean that the closed-loop system is also unstable.

The study of the stability of closed-loop systems through the use of algebraic
criteria is based on the characteristic polynomial pcðsÞ, whereas the Nyquist criterion
is based on the graphical representation of the open-loop transfer function GðsÞFðsÞ,
for s 2 �s, where �s is a specific closed path in the s-plane. This graphical representa-
tion of GðsÞFðsÞ gives information not only about the stability but also about the
relative stability of the system. In order to formulate the Nyquist criterion, a certain
mathematical background on complex function theory is necessary and it is given
below.

8.4.2 Background Material on Complex Function Theory for the
Formulation of the Nyquist Criterion

Consider a complex function WðsÞ and let �s be an arbitrary closed path in the s-
plane (Figure 8.11a). Then, for s 2 �s, the complex function WðsÞ (except for some
special forms ofWðsÞ which will not be considered here), will also form a closed path
�W in the WðsÞ plane (Figure 8.11b).

If in the closed path �s we give a particular direction, then the path �W will
also have a certain direction, not necessarily the same as the direction of �s (see
Figure 8.12). Furthermore, if the path �s is a simple closed path, then the path �W
will not, in general, be a simple closed path but can be, as for example, in Figure
8.12a and d. Of course, the particular form of the path �W depends not only on the
path �s but also on the particular form of the function WðsÞ.

Let the complex function WðsÞ have the form

WðsÞ ¼ K
ðsþ z1Þðsþ z2Þ � � � ðsþ zmÞ

ðsþ p1Þðsþ p2Þ � � � ðsþ pnÞ
; K > 0 ð8:4-6Þ

Also let the closed path �s enclose P poles and Z zeros ofWðsÞ. Then, the numbers P
and Z play a very decisive role in the shape of the closed path �W , as stated by the
following theorem.
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Theorem 8.4.1

Let the complex functionWðsÞ be a single-valued, rational function of the form (8.4-
6) and also assume that this function is analytical (i.e., all its derivatives exist) in all
points of a closed path �s. Then, the corresponding path �W will encircle the origin
N times, where N ¼ Z � P. If N > 0 ðN < 0Þ then the closed path �W has the same
(the opposite) direction as that of the closed path �s.
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Figure 8.11 The closed path �W of WðsÞ for s 2 �s.

Figure 8.12 Various possible closed paths �W of WðsÞ.



Instead of giving a strict mathematical proof, we will give a rather simple and
practical explanation of Theorem 8.4.1. To this end, we write WðsÞ as follows:

WðsÞ ¼ jWðsÞj WðsÞ ð8:4-7Þ

where

jWðsÞj ¼ amplitude of WðsÞ ¼ K
jsþ z1jjsþ z2j � � � jsþ zmj

jsþ p1jjsþ p2j � � � jsþ pnj
ð8:4-8Þ

WðsÞ ¼ phase of WðsÞ ¼
Xm
i¼1

’ið!Þ �
Xn
i¼1

�ið!Þ ð8:4-9Þ

where ’ið!Þ ¼ sþ zi and �ið!Þ ¼ sþ pi. The positions of the zeros �z1;�z2; . . .

;�zm and of the poles �p1;�p2; . . . ;�pn ofWðsÞ are depicted in Figure 8.13. Choose
the closed path �s such as to encircle Z zeros and P poles ofWðsÞ. Also, let the point
s 2 �s move on �s, having the direction of the arrow (i.e., counterclockwise). Then,
we observe that as the point s travels around the closed path �s, each factor sþ zk or
sþ pi will generate an angle of 3608 when �zk or �pi lie within the closed path �s, or
an angle of 08 when �zk or �pi lie outside the closed path �s. Since the phase of
WðsÞ, according to the relation (8.4-9), is the sum of the phases of the factors sþ zk
of the numerator minus the sum of the phases of the factors sþ pi of the denomi-
nator, it follows that the total phase ’ which the transfer functionWðsÞ will generate
as the point s travels around the closed path �s will be

’ ¼ WðsÞ ¼ 2	ðZ � PÞ ¼ 2	N ð8:4-10Þ

To determine the number N from the diagram of WðsÞ, we draw an arbitrary
radius from the origin to infinity. Then, the diagram ofWðsÞ will intersect this radius
Z times in the direction of �s and P times in the opposite direction. Therefore
N ¼ Z � P. Certain illustrative examples are given in Figure 8.12.
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Figure 8.13 The closed path �s which enclosed Z zeros and P poles of WðsÞ.



8.4.3 The Nyquist Stability Criterion

The Nyquist stability criterion is based on Theorem 8.4.1. Since the objective of the
Nyquist criterion is the study of the stability of the closed-loop system, the closed
path �s is no longer arbitrary. It is that particular path which encloses, in the clock-
wise direction, the entire right-half complex plane (Figure 8.14). This special path is
called the Nyquist path and it is designated by �N . If the functionWðsÞ has poles on
the imaginary axis, then the Nyquist path circumvents these poles by going around
them on a semicircle with infinitesimal radius ! 0 (Figure 8.14). This is done in
order that the function WðsÞ remains analytcial on the Nyquist path and, hence,
Theorem 8.4.1 holds. The path �W ofWðsÞ, which corresponds to the Nyquist path,
is called the Nyquist diagram of WðsÞ.

Assume that WðsÞ is the transfer function of a system. Then, it is clear that in
the case of a stable system there must be P ¼ 0, since there are no poles in the right-
half complex plane. This means that N ¼ Z, i.e., the Nyquist diagram of a stable
system must encircle the origin clockwise as many times as the number of zeros Z of
WðsÞ which lie in the right-half complex plane.

Now let WðsÞ be given by the expression (8.4-5), i.e., by the expression

WðsÞ ¼ 1þ GðsÞFðsÞ ¼
pcðsÞ

p
ðsÞ
ð8:4-11Þ

where pcðsÞ is the characteristic polynomial of the closed-loop transfer function HðsÞ
and p
ðsÞ is the characteristic polynomial of the open-loop transfer function GðsÞFðsÞ.
Also assume that WðsÞ has Z zeros and P poles within the Nyquist path �N .
Apparently, for the closed-loop system to be stable, the roots of pcðsÞ must lie in
the left-half complex plane, i.e., there must be Z ¼ 0. This means that for the closed-
loop system to be stable, the Nyquist diagram ofWðsÞ, having the same direction as
that of the Nyquist path �N , encircles the origin N ¼ �P times. If P ¼ 0, then the
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Figure 8.14 The Nyquist path �N .



Nyquist diagram ofWðsÞ does not encircle the origin. Therefore, we have established
the following theorem, which is the well-known Nyquist theorem.

Theorem 8.4.2

Assume that the transfer function WðsÞ ¼ 1þ GðsÞFðsÞ does not have poles in the
right-half complex plane. Then, for the closed-loop system (8.4-1) to be stable, the
Nyquist diagram ofWðsÞ, having the same direction as that of the path �N , must not
encircle the origin.

Define

W�
ðsÞ ¼WðsÞ � 1 ¼ GðsÞFðsÞ ð8:4-12Þ

Then, the Nyquist diagrams of WðsÞ andW�
ðsÞ differ in that the diagram forW�

ðsÞ
has been translated by one unit to the left of the diagram for WðsÞ. This means that
the conclusions about the stability ofWðsÞ hold forW�

ðsÞ as well, if the origin is now
substituted by the point ð�1; j0Þ, which is called the critical point. Hence, the follow-
ing theorem holds.

Theorem 8.4.3

Assume that the transfer functionW�
ðsÞ ¼ GðsÞFðsÞ does not have poles in the right-

half complex plane. Then, for the closed-loop system (8.4-1) to be stable, the Nyquist
diagram of GðsÞFðsÞ, having the same direction as that of the path �N , does not
encircle the critical point ð�1; j0Þ.

As an introductory illustrative example of Theorem 8.4.3, we will study the
stability of the two closed-loop systems which have as Nyquist diagrams the Nyquist
diagrams of the open-loop transfer functions GðsÞFðsÞ of Figure 8.15. It is assumed
that the transfer function GðsÞFðsÞ does not have any poles in the right-half complex
plane. In Figure 8.15a, we observe that the Nyquist diagram of GðsÞFðsÞ does not
encircle clockwise the critical point ð�1; j0Þ, while it does in Figure 8.15b. Hence the
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Figure 8.15 Nyquist diagrams of (a) a stable and (b) an unstable system.



closed-loop system, having as Nyquist diagram of the open-loop transfer function
GðsÞFðsÞ that of Figure 8.15a, is stable, while that of Figure 8.15b is unstable.

We introduce the following definition.

Definition 8.4.1

A transfer function HðsÞ is called a minimum phase function when it does not have
any poles or zeros in the right-half complex plane. In the case where it does, then the
complex function HðsÞ is called a nonminimum phase function.

Using all the material we have presented up to now regarding the Nyquist
criterion, we have essentially proven the following theorem.

Theorem 8.4.4

Assume that the transfer function W�
ðsÞ ¼ GðsÞFðsÞ is a nonminimum phase func-

tion and has P poles in the right-half complex plane. Then, for the closed-loop
system (8.4-1) to be stable, the Nyquist diagram of GðsÞFðsÞ, having the opposite
direction to that of the path �N , must encircle P times the critical point ð�1; j0Þ.

Theorem 8.4.4 is called the generalized Nyquist theorem. It is clear that
Theorem 8.4.3 is a special case of Theorem 8.4.4.

As an introductory illustrative example of Theorem 8.4.4 we will study the
following open-loop transfer functions:

W�
1 ðsÞ ¼ GðsÞFðsÞ ¼

K

sðTs� 1Þ
and W�

2 ðsÞ ¼ GðsÞFðsÞ ¼
KðT 0

1sþ 1Þ

sðT1s� 1Þ

ð8:4-13Þ

The Nyquist diagrams ofW�
1 ðsÞ andW

�
2 ðsÞ are given in Figure 8.16. For the transfer

functionW�
1 ðsÞ, we have that P ¼ 1 (becauseW�

1 ðsÞ has the pole 1=T in the right-half
complex plane). According to Theorem 8.4.4, for the closed-loop system to be stable,
the Nyquist diagram must encircle the critical point ð�1; j0Þ once in the counter-
clockwise direction. From Figure 8.16a it follows that the Nyquist diagram encircles
the critical point but in the clockwise direction and, hence, the closed-loop system is
unstable. In this example we observe that both the open-loop system and the closed-
loop system are unstable. For the transfer function W�

2 ðsÞ we also have that P ¼ 1.
The Nyquist diagram for small values of K does not encircle, in the counterclockwise
direction, the point ð�1; j0Þ and, therefore, the closed-loop system is unstable (see
Figure 8.16b). For greater values of K , the Nyquist diagram encircles the critical
point ð�1; j0Þ once in the counterclockwise direction and, hence, the closed-loop
system is stable (see Figure 8.16c). In this example we observe that even though
the open-loop system is unstable, the closed-loop system can be stable, provided that
K assumes large enough values.

8.4.4 Construction of Nyquist Diagrams

Since the Nyquist diagram of the open-loop transfer function GðsÞFðsÞ constitutes
the basis for the application of the Nyquist criterion, it follows that one must be
familiar with how to construct such diagrams. To this end, this subsection presents a
rather systematic approach on how to construct Nyquist diagrams of various forms
of transfer functions.
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1 Nyquist Diagram for First-Order Systems

Consider the first-order system with transfer function

HðsÞ ¼
1

Tsþ 1
ð8:4-14Þ

where, for simplicity, we use HðsÞ instead of GðsÞFðsÞ. Since HðsÞ does not have any
poles on the imaginary axis, it follows that the Nyquist path �N will cover the entire
imaginary axis. Therefore, the Nyquist diagram of HðsÞ is the function
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Figure 8.16 Nyquist diagrams of nonminimum phase systems. (a) Plot of W�
1 ðsÞ (unstable

system); (b) plot of W�
2 ðsÞ for small values of K (unstable system); (c) plot of W�

2 ðsÞ for large
values of K (stable system).



Hð j!Þ ¼
1

j!T þ 1
; ! 2 ð�1;þ1Þ ð8:4-15Þ

We have

Hð j!Þ ¼ jHð j!Þj ’ð!Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2T2 þ 1
p � tan�1 !T

If we let ! ¼ 0, then jHð j!Þj ¼ 1 and ’ð!Þ ¼ 08. As the frequency ! increases, the
amplitude jHð j!j becomes smaller while the phase ’ð!Þ becomes more negative. In
the limit where !! 1, the amplitude jHð j!j ! 0, whereas the phase ’ð!Þ ! �908.
Finally, we observe that jHð j!Þj ¼ jHð�j!Þj and ’ð!Þ ¼ �’ð�!Þ. Hence, the
Nyquist diagram is symmetrical with respect to the ReHð j!Þ axis and has the
form given in Figure 8.17.

It is mentioned that the determination of the analytical expression of the
Nyquist diagram with coordinates ReH and ImH is difficult, particularly as the
order of the system becomes greater. For the case of first-order systems, the deter-
mination of the analytical expression of the Nyquist diagram is relatively simple and
is derived as follows. We have

Hð j!Þ ¼
1

j!T þ 1
¼

1

!2T2 þ 1
� j

!T

!2T2 þ 1
¼ xþ jy

where

x ¼ ReHð j!Þ ¼
1

!2T2 þ 1
; y ¼ ImHð j!Þ ¼ �

!T

!2T2 þ 1

Let u ¼ !T . then

x ¼
1

u2 þ 1
; y ¼ �

u

u2 þ 1

Since y ¼ �ux, it follows that
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Figure 8.17 The Nyquist diagram of a first-order transfer function.



y ¼ �
u

u2 þ 1
¼

y

x
�y

x

h i2
þ1

¼
xy

x2 þ y2
or y2 þ x2 � x ¼ 0

We finally have

y2 þ x�
1

2

� �2
¼
1

4
ð8:4-16Þ

Relation (8.4-16) is the equation of a circle with its center at the point ð1=2; 0Þ and
with radius 1/2 and constitutes the analytical expression of the Nyquist diagram of
Eq. (8.4-14). The circle (8.4-16) is shown in Fig. 8.17.

2 Nyquist Diagram for Second-Order Systems

Consider a second-order system with transfer function

HðsÞ ¼
!2n

s2 þ 2�!nsþ !
2
n

Since HðsÞ does not have any poles on the imaginary axis, it follows that the Nyquist
path will cover the entire imaginary axis. Therefore, the Nyquist diagram of HðsÞ is

Hð j!Þ ¼
!2n

ð j!Þ2 þ 2�!nð j!Þ þ !
2
n

; ! 2 ð�1;1Þ ð8:4-17Þ

We have

Hð j!Þ ¼ jHð j!Þj ’ð!Þ ¼
!2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð!2n � !
2Þ
2
þ 4�2!2n!

2

q � tan�1½2�!n!=ð!
2
n�!

2
Þ�

As the frequency ! varies from 0 to1, the Nyquist diagram starts with amplitude 1
and zero phase and terminates with amplitude 0 and phase �1808. For ! ¼ !n, the
amplitude is ð2�Þ�1 and the phase is �908. In Figure 8.18 the Nyquist diagram of
HðsÞ is given only for ! 2 ð0;1Þ. The rest of the diagram for ! 2 ð0;�1Þ is omitted
since it is symmetrical to the Nyquist diagram for ! 2 ð0;þ1Þ with respect to the
ReH axis.

3 Nyquist Diagrams for Higher-Order Systems

The construction of Nyquist diagrams for systems of third, fourth, etc., order cannot
be constructed easily, as opposed to the cases of first- and second-order systems,
unless the numerator and the denominator of the transfer function can be factored
out. For this last case, very interesting results may be derived, as shown in the sequel.

4 Nyquist Diagrams for Transfer Functions with Poles on the Imaginary
Axis

When a transfer function has poles on the imaginary axis, the construction of the
Nyquist diagrams must be carried out with extra attention, as shown in the following
introductory example.
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Example 8.4.1

Consider a system with transfer function

HðsÞ ¼
K

sðTsþ 1Þ
ð8:4-18Þ

Construct the Nyquist diagram.

Solution

Since HðsÞ has a pole at s ¼ 0 on the imaginary axis, it follows that the path �N will
cover the entire imaginary axis, except the point s ¼ 0 (see Figure 8.19a). To facil-
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Figure 8.18 The Nyquist diagram of a second-order system.

Figure 8.19 The Nyquist diagram of a system with a pole on the imaginary axis. (a) The
Nyquist path; (b) the Nyquist diagram of Eq. (8.4-18).



itate the construction of the Nyquist diagram of HðsÞ we divide the Nyquist path �N
into four segments and construct the Nyquist diagram for each of the corresponding
four segments of �N as follows.

a. The segment for s 2 ð j0þ; j1Þ. This segment of the path �N is the positive
part of the imaginary axis not including the origin. For this range of frequencies the
transfer function is given by

Hð j!Þ ¼
K

j!ð j!T þ 1Þ
; ! 2 ð0þ;1Þ

We have

Hð j!Þ ¼ jHð j!Þj ’ð!Þ ¼
K

!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2T2 þ 1

p � 908� tan�1 !T

As the frequency ! varies from 0þ to þ1, the amplitude jHð j!Þj varies from1 to 0
and the phase ’ð!Þ from �908 to �1808 (see Figure 8.19b).

b. The segment for s 2 ð j1;�j1Þ, or s ¼ Re j�, where R! 1 and
� 2 ð908;�908Þ. This segment is the large semicircle of the path �N . In this case,
the transfer function becomes

lim
R!1

HðRe j�Þ ¼ lim
R!1

K

Re j�ðTRe j� þ 1Þ

� �
¼ lim

R!1

K

TR2e j2�

� �
¼ lim

!0
e�j2�

This means that as the phase � of the semicircle Re j� takes on values in the clockwise
direction from 908 to �908, the Nyquist diagram of the transfer function HðsÞ moves
counterclockwise, generating a phase change of 3608 from �1808 to 1808. Therefore,
when s ¼ Re j�, where R! 1 and � 2 ð908;�908Þ, the transfer functionHðsÞ is given
by HðsÞ ¼ e�j2�, where ! 0. Hence, the large semicircle of the path �N maps onto
a small circle around the origin in the HðsÞ plane.

c. The segment for s 2 ð�j1; j0�Þ. Since this segment is symmetric to the
segment s 2 ðj0þ; j1Þ with respect to the real axis, it follows that the corresponding
Nyquist diagram will be symmetric with respect to the ReH axis.

d. The segment for s 2 ð j0�; j0þÞ, or s ¼ e j�, where ! 0 and
� 2 ð�908; 908Þ. This segment is the small semicircle, where the path �N moves
around the pole s ¼ 0. In this case the transfer function becomes

lim
!0

Hðe j�Þ ¼ lim
!0

K

e j�ðTe j� þ 1

� �
¼ lim

R!1
Re�j�

This means that as the phase � of the semicircle e j� takes on values in the counter-
clockwise direction from �908 and 908, the Nyquist diagram of the transfer function
moves clockwise, generating an angle of 1808 from 908 to �908. Therefore, as
s ¼ e j�, where ! 0 and � 2 ð�908; 908Þ, the transfer function HðsÞ is given by
HðsÞ ¼ Re�j�, where R! 1. Hence, the small interior semicircle of the path �N
maps onto the big semicircle in the right-half HðsÞ plane.
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5 The Influence on the Nyquist Diagram of Adding Poles and Zeros to the
Transfer Function

Consider the transfer function

H1ðsÞ ¼
K

T1sþ 1

Assume that the transfer function H1ðsÞ is multiplied by the factor ðT2sþ 1Þ
�1, i.e., a

pole is added to the transfer function at the point s ¼ �1=T2. Then, the resulting
transfer function H2ðsÞ is given by

H2ðsÞ ¼
K

ðT2sþ 1ÞðT1sþ 1Þ
ð8:4-19Þ

The Nyquist diagrams of H1ðsÞ and H2ðsÞ are given in Figure 8.20a and b, respec-
tively. From these two diagrams, the influence of adding a pole to the transfer
function H1ðsÞ is clear. If we add one or two more poles to the original transfer
function H1ðsÞ, the Nyquist diagram will be as in Figures 8.20c and d. In cases where
the added poles are at the origin, or some are at the origin and some are not, then the
Nyquist diagram of H1ðsÞ is influenced as in Figures 8.20e–h and 8.21a–d, respec-
tively.

On the basis of Figures 8.20 and 8.21a–d, one may derive the following general
conclusion: if a new pole is added to a transfer function, then the new Nyquist
diagram occupies the next quadrant which lies in the counterclockwise direction.
For the particular case where the new pole is at the origin, then the new Nyquist
diagram occupies the next quadrant, in the counterclockwise direction, but it no
longer occupies the starting quadrant. It is almost like ‘‘rotating’’ the Nyquist dia-
gram by one quadrant in the counterclockwise direction. In the general case, where

HðsÞ ¼ K
ðT 0
1sþ 1ÞðT

0
2sþ 1Þ � � �

s jðT1sþ 1ÞðT2sþ 1Þ � � �

the Nyquist diagrams for systems of type 0, 1, 2, and 3, which corresponds to the
values of j ¼ 0, 1, 2, and 3, are given in Figure 8.22. From the Figures 8.20, 8.21a–d,
and 8.22 it becomes clear that adding poles to the transfer function of a system
results in a system that is less stable or might even result in an unstable system.

Now, consider multiplying the transfer function H1ðsÞ with the factor
ðT 0sþ 1Þ, i.e., a zero is added to the transfer function at the point s ¼ �1=T 0.
Then the new transfer function will be

H2ðsÞ ¼ K
T 0sþ 1

T2sþ 1
ð8:4-20Þ

The Nyquist diagram of H2ðsÞ is given in the Figure 8.21e, where the influence of
adding a zero to the transfer function is clear. Other examples which illustrate the
influence of adding zeros to the Nyquist diagrams are given in Figures 8.21f–h. On
the basis of these figures one may arrive at the general conclusion that adding zeros
results in a more stable system.

It is remarked once again that, for the sake of simplicity, in all material of the
present subsection we have been using HðsÞ instead of GðsÞFðsÞ. From this point on,
we return to the regular notation GðsÞFðsÞ for the open-loop transfer function.
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Figure 8.20 Nyquist diagrams. Influence of additional poles.

ðaÞ HðsÞ ¼
K

ðT1sþ 1Þ
ðeÞ HðsÞ ¼

K

ðTsþ 1Þ

ðbÞ HðsÞ ¼
K

ðT2sþ 1ÞðT1sþ 1Þ
ðfÞ HðsÞ ¼

K

sðTsþ 1Þ

ðcÞ HðsÞ ¼
K

ðT3sþ 1ÞðT2sþ 1ÞðT1sþ 1Þ
ðgÞ HðsÞ ¼

K

s2ðTsþ 1Þ

ðdÞ HðsÞ ¼
K

ðT4sþ 1ÞðT3sþ 1ÞðT2sþ 1ÞðT1sþ 1Þ
ðhÞ HðsÞ ¼

K

s3ðTsþ 1Þ
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Figure 8.21 Nyquist diagrams. Influence of additional poles and zeros.

ðaÞ HðsÞ ¼
K

sðT2sþ 1ÞðT1sþ 1Þ
ðeÞ HðsÞ ¼ K

T 0sþ 1

ðT1sþ 1Þ

ðbÞ HðsÞ ¼
K

s2ðT2sþ 1ÞðT1sþ 1Þ
ðfÞ HðsÞ ¼ K

T 0sþ 1

sðT1sþ 1Þ

ðcÞ HðsÞ ¼
K

sðT3sþ 1ÞðT2sþ 1ÞðT1sþ 1Þ
ðgÞ HðsÞ ¼ K

T 0sþ 1

sðT1 þ sÞðT2sþ 1Þ

ðdÞ HðsÞ ¼
K

s2ðT3sþ 1ÞðT2sþ 1ÞðT1sþ 1Þ
ðhÞ HðsÞ ¼ K

T 0sþ 1

s2ðT1sþ 1Þ



In closing the issue of constructing the Nyquist diagram of a system, we point
out the following with regard to the influence of the gain K . For first- and second-
order systems, the closed-loop system is always stable for all values of K . However,
for third- or higher-order systems, the stability is greatly influenced by the gain K . In
the general case one may conclude that, as the gain K is increased, the closed-loop
system tends to become unstable. This becomes particularly clear for the case of
third-order systems for which the open-loop transfer function GðsÞFðsÞ has the form

GðsÞFðsÞ ¼
K

ðT1sþ 1ÞðT2sþ 1ÞðT3sþ 1Þ

From Figure 8.23 it is clear that as K increases the closed-loop system becomes
unstable. In particular, when K ¼ K1 the closed-loop system is stable, when K ¼
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Figure 8.22 Influence of the system’s type on the Nyquist diagrams.

Figure 8.23 The Nyquist diagram of a third-order system as K increases.



K2 the closed-loop system undergoes sustained oscillations, and for K ¼ K3 the
closed-loop system is unstable.

There are, however, cases where the closed-loop system is stable only for
certain ranges of values of the gain K . As an example, consider the system having
the following open-loop transfer function:

GðsÞFðsÞ ¼
KðT 0sþ 1Þ2

ðT1sþ 1ÞðT2sþ 1ÞðT3sþ 1ÞðT4sþ 1Þ
2

The Nyquist diagram of GðsÞFðsÞ is given in Figure 8.24. From this figure it follows
that the closed-loop system can become unstable not only as K increases but also as
K decreases. In this case, the closed-loop system is stable only for certain ranges of
values of the gain K .

8.4.5 Gain and Phase Margins

Consider the Nyquist diagrams of Figure 8.25 of a certain open-loop transfer func-
tion GðsÞFðsÞ having the form (8.4-3). We introduce the following definitions.

Definitions 8.4.2

Let !c be the critical frequency where the Nyquist diagram of GðsÞFðsÞ intersects the
ReGF -axis. Then, the gain margin Kg of the closed-loop system is given by the
following relationship:

KgðdBÞ ¼ �20 log10 jGð j!cÞFðj!cÞj ð8:4-21Þ

The physical meaning of the gain margin Kg may be interpreted as follows. The
gain margin Kg is the gain in decibels (dB) which the open-loop transfer function is
allowed to increase before the closed-loop system becomes unstable. This increase is
usually done by increasing the gain K of the open-loop system.

330 Chapter 8

Figure 8.24 The Nyquist diagram of a system which becomes unstable not only as K
increases but also as K decreases.



Definition 8.4.3

Let ! 0 be the critical frequency where the amplitude of the Nyquist diagram of
GðsÞFðsÞ is equal to unity, i.e., jGð j! 0

ÞFð j! 0
Þj ¼ 1. Also, let ’ be the phase of

Gð j! 0
ÞFð j! 0

Þ. Then, the phase margin ’p of the closed-loop system is given by the
following relationship:

’p ¼ 1808þ ’ ð8:4-22Þ

The physical meaning of the phase margin ’p may be interpreted as follows: the
phase margin ’p is the phase in degrees which the Nyquist diagram of Gð j!ÞFð j!Þ
must rotate about the origin until the point where jGð j!ÞFð j!Þj ¼ 1 passes through
the critical point ð�1; j0Þ. This change in phase is usually done by varying the para-
meters of the system, as for example the damping ratio, the time constants, etc., and
not by varying the gain K of the system.

From Definitions 8.4.2 and 8.4.3 it follows that the phase margin ’p and the
gain margin Kg give an indication of how close the Nyquist diagram of GðsÞFðsÞ is to
the critical point ð�1; j0Þ. Therefore, ’p and Kg give pertinent information regarding
the relative stability of the closed-loop system. For this reason, they constitute
important design criteria.

The stability of the closed-loop system may readily be determined by the signs
of ’p and Kg. Indeed, the closed-loop is stable when the margins ’p and Kg are both
positive (Figure 8.25a). On the contrary, a closed-loop system is unstable when one
or both margins ’p and Kg are negative (Figure 8.25b).

The relative stability of a stable closed-loop system is directly related to the
values of ’p and Kg. As the values of ’p and Kg become greater, the closed-loop
systems becomes more stable. That is to say that the greater the margins ’p and Kg,
the less probable it is for the system to become unstable.

All the above results hold for systems whose open-loop transfer function
GðsÞFðsÞ is of minimum phase (Definition 8.4.1). However, in cases where GðsÞFðsÞ
is of nonminimum phase the above results do not hold because one of the margins
may be negative even though the closed-loop system is stable (see Example 8.4.5).
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Figure 8.25 Diagrams of the gain and phase margin of (a) a stable and (b) unstable system.



Example 8.4.2

Consider the third-order system with open-loop transfer function

GðsÞFðsÞ ¼
K

sðT1sþ 1ÞðT2sþ 1Þ
; K;T1;T2 > 0

Construct the Nyquist diagram and study the stability of the closed-loop system.

Solution

For s 2 ðj0þ; j1Þ, we have

Gð j!ÞFð j!Þ ¼
K

j!ð j!T1 þ 1Þð j!T2 þ 1Þ
¼ xþ jy

where

x ¼ �
KðT1 þ T2Þ

1þ !2ðT21 þ T22 Þ þ !
4T21T

2
2

and y ¼
K!�1

ð!2T1T2 � 1Þ

1þ !2ðT21 þ T2} Þ þ !
4T21T

2
2

The point where the Nyquist diagram intersected the real axis is when y ¼ 0, i.e.,
when K!�1

ð!2T1T2 � 1Þ ¼ 0. The roots of this equation are

! ¼
1ffiffiffiffiffiffiffiffiffiffiffi
T1T2

p ; ! ¼ �
1ffiffiffiffiffiffiffiffiffiffiffi
T1T2

p and ! ¼ 1

The negative value of ! is rejected because it has no physical meaning. The transfer
function Gð j!ÞFð j!Þ, for ! ¼ !c ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
T1T2

p
, becomes

Gð j!cÞFð j!cÞ ¼ x ¼ �K
T1T2
T1 þ T2

� �

For the closed-loop system to be stable there must be x > �1, or equivalently

�K
T1T2
T1 þ T2

� �
> �1 or 0 < K <

T1 þ T2
T1T2

� �

Therefore, the Nyquist diagram is as in Figure 8.26.

Example 8.4.3

Consider the third-order system with open-loop transfer function

GðsÞFðsÞ ¼
K

s2ðTsþ 1Þ
; K;T > 0

Construct the Nyquist diagram and study the stability of the closed-loop system.

Solution

For s 2 ð j0þ; j!Þ, we have

Gð j!ÞFð j!Þ ¼
K

�!2ð j!þ 1Þ
¼ xþ jy

where

x ¼ �
K

!2ð!2T2 þ 1Þ
and y ¼

KT

!ð!2T2 þ 1Þ
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The point where the Nyquist diagram intersects the x-axis is when y ¼ 0, i.e., when
!! 1. Therefore, the Nyquist diagram has the form of Figure 8.27. Hence there is
no value of K for which the closed-loop system is stable, since the Nyquist diagram
encircles clockwise the point ð�1; j0Þ permanently.

Example 8.4.4

Consider the numerical control tool machine described in Sec. 1.4 (see Figure 1.19).
A simplified block diagram of the closed-loop system is given in Figure 8.28. The

Frequency Domain Analysis 333

Figure 8.26 Nyquist diagram of Example 8.4.2.

Figure 8.27 Nyquist diagram of Example 8.4.3.



transfer function GhðsÞ of the hydraulic servomotor has been determined in Subsec.
3.12.6. For the servomotor, let K1 ¼ 1 and a ¼ 1. For the amplifier controller circuit
transfer function GcðsÞ, let L ¼ 1 and R ¼ 4. Then, the open-loop transfer function
becomes

GðsÞFðsÞ ¼ GcðsÞGhðsÞFðsÞ ¼
K

sðsþ 1Þðsþ 4Þ
; K > 0

Determine:

(a) The range of values of K for which the closed-loop system is stable
(b) The gain margin Kg when K ¼ 2 and when K ¼ 40.

Solution

(a) For s 2 ð j!þ; j1Þ, we have

Gð j!ÞFð j!Þ ¼
K

j!ð j!þ 1Þð j!þ 4Þ
¼

ðK=4Þ

j!ð j!þ 1Þð j!=4þ 1Þ

If we apply the results of Example 8.4.2, we have

!c ¼
1ffiffiffiffiffiffiffiffiffiffiffi
T1T2

p ¼
1ffiffiffiffiffiffiffiffiffiffiffi
ð1=4Þ

p ¼ 2

Therefore, the closed-loop system is stable when

0 <
K

4
<
T1 þ T2
T1T2

or 0 <
K

4
<
1þ 1=4

1=4
or 0 < K < 20

Indeed, for ! ¼ 2, the Nyquist diagram of Gð j!ÞFð j!Þ intersects the real axis and

Gð j2ÞFð j2Þ ¼ �
K

20

The critical value of K for which Gð j2ÞFð j2Þ ¼ �1, is K ¼ 20. Therefore, for K 2

ð0; 20Þ the closed-loop system is stable.
(b). For K ¼ 2, and upon using definition (8.4-21), we have

Kg ðdBÞ ¼ �20 log10 �
2

20










 ¼ 20 ðdBÞ

For K ¼ 40, we have
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Figure 8.28 Block diagram of the numerical control tool machine.



Kg ðdBÞ ¼ �20 log10 �
40

20










 ¼ �20 log 2 ðdBÞ

Therefore, for K ¼ 2 the closed-loop system is stable, with gain margin Kg ¼ 20 dB,
whereas when K ¼ 40 the closed-loop system is unstable.

In Figure 8.29 the Nyquist diagrams of the open-loop transfer function are
given for K < 20 and for K > 20, where it is clear how the closed-loop system
becomes unstable as K increases.

Example 8.4.5

Consider the closed-loop system of Figure 8.30. Determine the range of values of K
for which the closed-loop system is stable.

Solution

We have

GðsÞFðsÞ ¼
K

s� 1
; K > 0

Frequency Domain Analysis 335

Figure 8.29 Nyquist diagram of a machine tool control system. (a) Stable: K < 20; (b)
unstable: K > 20.

Figure 8.30 The closed-loop block diagram of Example 8.4.5.



Since the open-loop transfer function is of nonminimum phase (it has a pole in the
right-half complex plane), it follows that for the closed-loop system to be stable, the
Nyquist diagram of GðsÞFðsÞ, having the opposite direction than that of the Nyquist
path �N , must encircle N ¼ P ¼ 1 times the critical point ð�1; j0Þ (Theorem 8.4.4).
We next construct the Nyquist diagram. We have

Gð j!ÞFð j!Þ ¼
K

j!� 1

If we use the results of case 1 of Subsec. 8.4.4, it follows that the Nyquist diagram
will be a circle, as in Figure 8.31. Therefore, since the Nyquist diagram must encircle
once the critical point ð�1; j0Þ in the counterclockwise direction, in order that the
closed-loop system be stable, it follows that the circle must have a radius greater than
1/2, i.e., there must be K > 1.

Of course, one would arrive at the same results by applying one of the algebraic
stability criteria. Indeed, since the denominator of the closed-loop transfer function
is given by

1þ GðsÞFðsÞ ¼ 1þ
K

s� 1
¼
s� 1þ K

s� 1

it follows that the characteristic polynomial pcðsÞ of the closed-loop system is
pcðsÞ ¼ s� 1þ K . Upon using Routh’s criterion, it readily follows that for the
closed-loop system to be stable, there must be K > 1. Finally, it is worth mentioning
that a careful examination of Figure 8.31 shows that for the present example (where
the open-loop transfer function GðsÞFðsÞ is nonminimum phase), even though the
closed-loop system is stable (i.e., for K > 1), the phase margin is positive, whereas
the gain margin is negative.

Example 8.4.6

An automatic control system for controlling the thickness of sheet metal is given in
Figure 1.10. A simplified block diagram of this system is given in Figure 8.32.
Construct the Nyquist diagram and determine the range of values of K for which
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Figure 8.31 Nyquist diagram of Example 8.4.5.



the closed-loop system is stable. The controller transfer function GcðsÞ is specified as
follows:

(a) GcðsÞ ¼ K , i.e., the controller is a gain amplifier
(b) GcðsÞ ¼ Kð0:5þ sÞ, i.e., when the controller is a PD controller (see Subsec.

9.6.2).

Solution

(a) For this case (i.e., when GcðsÞ ¼ K), the system is unstable for all values of K (see
Example 8.4.3).

(b) For s 2 ð j0þ; j1Þ, we have

GðsÞFðsÞ ¼ Gcð j!ÞGhð j!ÞFðj!Þ ¼
Kðj!þ 0:5Þ

�!2ð j!þ 1Þ
¼ xþ jy

where

x ¼ �
Kð!2 þ 0:5Þ

!2ð!2 þ 1Þ
; y ¼

0:5K

!ð!2 þ 1Þ

The point where the Nyquist diagram intersects the x-axis is when y ¼ 0, i.e., when
!! 1. The Nyquist diagram has the form of Figure 8.33. From this diagram we
conclude that the closed-loop system of Figure 8.32 is stable for all values of K in the
interval ð0;þ1Þ. We observe that by adding a zero to the open-loop transfer func-
tion, which lies to the right of the pole �1 (namely, by adding the zero �0:5 of the
controller), the system becomes stable (see also, Figure 8.21h).

8.4.6 Comparison Between Algebraic Criteria and the Nyquist
Criterion

We close Sec. 8.4 by making a comparison between the algebraic criteria of Chap. 6
and the Nyquist criterion.

The algebraic criteria have the following characteristics:

a. They require knowledge of the analytical expression of the characteristic
polynomial of the system under control

b. The computational effort required to apply the algebraic criteria is extre-
mely small
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c. the algebraic criteria do not give any information on the exact position of
the poles in the complex plane and, therefore, they do not give any infor-
mation on the relative stability of the system or its transient response.

The Nyquist criterion has the following characteristics:

a. The Nyquist diagram of GðsÞFðsÞ can be determined experimentally and
relatively easily

b. The stability is determined by simply inspecting the Nyquist diagram of the
open-loop transfer function GðsÞFðsÞ

c. The relationship between the Nyquist diagram and the amplifier gain K of
the system is well understood, which allows us to take advantage of the
influence of the variations of K in order to secure stability of the closed-
loop system

d. The Nyquist diagram gives information on the relative stability and the
transient response of the system.

8.5 BODE DIAGRAMS

8.5.1 Introduction

Simply speaking, the Bode and the Nyquist diagrams are plots of the transfer func-
tion Hð j!Þ as a function of the angular frequency !. The difference between the two
diagrams is that the Nyquist diagram consists of only one curve, while the Bode
diagrams consist of two curves. The two curves of the Bode diagrams are the ampli-
tudeM curve of Hð j!Þ in decibels, i.e., the curve A ¼ 20 logM ¼ 20 log jHð j!Þj and

the phase ’ of Hð j!Þ, i.e., the curve ’ ¼ Hð j!Þ.

The Bode and Nyquist diagrams essentially offer the same information about
the transfer function Hð j!Þ. The reason for introducing the Bode diagrams here is
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Figure 8.33 Nyquist diagram of Example 8.4.6.



that these diagrams, in comparison with the Nyquist diagrams, can be plotted more
easily, a fact that has contributed to the extensive use of Bode diagrams. Both Bode
and Nyquist diagrams give information about the stability of the system and its
phase and gain margins. They are both rather simple to apply and, for this reason,
they have become particularly helpful in control system design.

8.5.2 Bode Diagrams for Various Types of Transfer Function
Factors

Usually, the transfer function Hð j!Þ involves factors of the form ð j!Þ�,
ð j!T þ 1Þ�, and ½ð j!Þ2 þ 2�!nð j!Þ þ !

2
n�
�. Consider the following transfer func-

tion:

Hð j!Þ ¼
Kð j!T 0

1 þ 1Þðj!T
0
2 þ 1Þ

ð j!Þ2ð j!T1 þ 1Þ½ð j!Þ
2
þ 2�!nð j!Þ þ !

2
n�

ð8:5-1Þ

The Bode diagrams of Hð j!Þ are the curves of A and ’, where

A ¼ 20 logM ¼ 20 log jHð j!Þj

¼ 20 log
jK jj j!T 0

1 þ 1jj j!T
0
2 þ 1j

jð j!Þ2jj j!T1 þ 1jjð j!Þ
2
þ 2�!nð j!Þ þ !

2
nj

¼ 20 log jK j þ 20 log j j!T 0
1 þ 1j þ 20 log j j!T

0
2 þ 1j � 20 log jð j!Þ

2
j

� 20 log j j!T1 þ 1j � 20 log jð j!Þ
2
þ 2�!nð j!Þ þ !

2
nj ð8:5-2Þ

and

’ ¼ Hð j!Þ ¼ K þ j!T 0
1 þ 1 þ j!T 0

2 þ 1 � ð j!Þ2 � j!T1 þ 1

� ð j!Þ2 þ 2�!nð j!Þ þ !
2
n

ð8:5-3Þ

From Eqs (8.5-2) and (8.5-3) we observe that plotting the curves of A and ’
becomes particularly easy because curve A is actually the sum of the curves of the
individual terms 20 log jK j, 20 log j j!T 0

1 þ 1j; . . . ; etc., and curve ’ is actually the

sum of the curves of the individual terms K , j!T 0
1 þ 1; . . . ; etc. In the sequel

we will show that the sketching of each of these individual terms is rather simple.

1 The Constant Term K

In this case we have

A ¼ 20 log jK j ð8:5-4aÞ

’ ¼
08; when K > 0
1808; when K > 0

�
ð8:5-4bÞ

The plots of A and ’ are given in Figure 8.34.
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2 Poles or Zeros at the Origin: ð j!Þ��

In this case we have

A ¼ 20 log jð j!Þ�j ¼ �20 log! ð8:5-5aÞ

’ ¼ ð j!Þ� ¼ �908 ð8:5-5bÞ

Relation (8.5-5a) presents a family of lines on semilogarithmic paper. All these lines
meet at the point where A ¼ 0 and ! ¼ 1. Their slopes are �20, in which case we
say that these slopes are �20 dB/decade. This means that if the frequency is
increased from ! 0 to 10! 0, the change in amplitude is �20 dB. Indeed, from relation
(8.5-5a), we have

�A ¼ Að10! 0
Þ � Að! 0

Þ ¼ 20 log jð j10! 0
Þ
�
j � 20 log jð j! 0

Þ
�
j

¼ �20 log! 0
� 20 log 10� ð�20 log! 0

Þ ¼ �20

The plots of A and ’ are given in Figure 8.35.
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Figure 8.34 The plots of (a) amplitude A and (b) phase ’ when HðsÞ ¼ K .



3 Poles or Zeros of the Form ð j!T þ 1Þ��

In this case we have

A ¼ �20 log jðj!T þ 1Þj ¼ �20 log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2T2 þ 1

p
ð8:5-6aÞ

’ ¼ � tan�1ð!TÞ ð8:5-6bÞ

Relation (8.5-6a) is a family of curves which may be plotted approximately using the
following:

a. When !� 1=T , Eq. (8.5-6a) becomes

A ¼ �20 log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2T2 þ 1

p
’ 20 log 1 ¼ 0 ð8:5-7aÞ

b. When ! ¼ 1=T , Eq. (8.5-6a) becomes

A ¼ �20 log
ffiffiffi
2

p
’ �3 ð8:5-7bÞ

c. When !� 1=T , Eq. (8.5-6a) becomes

A ’ �20 log!T ð8:5-7cÞ
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Figure 8.35 The plots of (a) amplitude A and (b) phase ’ when HðsÞ ¼ s�.



The frequency ! ¼ 1=T is called the corner frequency. Hence, the plot of Eq. (8.5-6a)
consists, approximately, of two asymptotes. The first asymptote coincides with the
0 dB axis and holds for 0 � ! � 1=T . The other asymptote crosses over the !-axis at
the point ! ¼ 1=T , has a slope of �20 dB and holds for 1=T � ! � þ1. At the
corner frequency ! ¼ 1=T , the plot of A, according to relation (8.5-7b), is approxi-
mately equal to �3 dB.

The plot of phase ’, given by Eq. (8.5-6b), is sketched by assigning several
values to ! and calculating the respective values of the phase ’. Some characteristic
values of ’ are the following:

a. When ! ¼ 0, then ’ ¼ 08

b. When ! ¼ 1=T , then ’ ¼ �458

c. When ! ¼ 1, then ’ ¼ �908.

Thus, the plot of ’ starts from the point zero, passes through the point �458, and
terminates asymptotically to the line �908.

The plots of A and ’, when  ¼ �1, are given in Figure 8.36.

Factors of the Form ½!�2
n ð j!Þ2 þ 2�!�1

n ð j!Þ þ 1���

In this case, we have
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Figure 8.36 The plots of (a) amplitude A and (b) phase ’ when HðsÞ ¼ ðTsþ 1Þ�.



A ¼ �20 log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� u2Þ2 þ 4�2u2

q
ð8:5-8aÞ

’ ¼ � tan�1
2�u

1� u2

� �
ð8:5-8bÞ

where u ¼ !=!n. The plot of Eq. (8.5-8a) is sketched approximately using the follow-
ing:

a. When u� 1, then A ’ �20 log 1 ¼ 0
b. When u� 1, then A ’ �40 log u
c. When � ¼ 1, then A ¼ �20 log j1þ u2j
d. When � ¼ 0, then A ¼ �20 log j1� u2j.

Thus, the curve of Eq. (8.5-8a) consists, approximately, of two asymptotes. The
first asymptote coincides with the 0 dB-axis and the second has a slope of �40 dB
and crosses over the u-axis at the point u ¼ 1. In the vicinity of the point of inter-
section of the two asymptotes, the form of the curve of A is decisively influenced by
the damping ratio �.

The plot of the phase ’, which is given by Eq. (8.5-8b), has the following
characteristics:

a. When u ¼ 0, then ’ ¼ 08
b. When u ¼ 1, then ’ ¼ �908
c. When u ¼ 1, then ’ ¼ �1808.

The plots of A and ’, when  ¼ �1 (which is the most common case), are given
in Figure 8.37.

8.5.3 Transfer Function Bode Diagrams

The plots of the amplitude A and the phase ’ of a transfer function HðsÞ start by
plotting each factor in A and ’, separately. Subsequently, we add the curves of all
factors in A and the curves of all factors in ’, resulting in the curves A and ’ sought.
This methodology is presented, step by step, in the following example.

Example 8.5.1

Consider the transfer function

Hð j!Þ ¼
10ð j!þ 1Þ

ð j!Þð10�1j!þ 1Þð3� 10�3j!þ 1Þ

Plot the Bode diagrams A and ’ of Hð j!Þ.

Solution

With respect to the diagram A, define A1 ¼ 20 log 10 ¼ 20, A2 ¼ 20 log j j!þ 1j,
A3 ¼ �20 log j j!j, A4 ¼ �20 log j10�1j!þ 1j, and A5 ¼ �20 log j3� 10�3j!þ 1j.
Then, the diagram of the amplitude A is A ¼ A1 þ A2 þ A3 þ A4 þ A5. Thus, in
order to plot the curve A, it suffices to plot each curve A1, A2, A3, A4, and A5
separately and then add them. To this end, plot the curves A1, A2, A3, A4, and A5
by applying the results of Subsec. 8.5.2. The break points of A2, A4, and A5 are 1, 10,
and 103=3, respectively. The plots of A1, A2, A3, A4, and A5, as well as that of A, are
given in Figure 8.38.
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Figure 8.37 The plots of (a) amplitude A and (b) phase ’ when HðsÞ ¼
½!�2
n s

2
þ 2�!�1

n sþ 1�
�1.

Figure 8.38 The plot of the amplitude A of the transfer function of Example 8.5.1.



With respect to the diagram of ’, define ’1 ¼ 10 ¼ 0, ’2 ¼

j!þ 1 ¼ tan�1 !, ’3 ¼ � j! ¼ �908, ’4 ¼ � 10�1j!þ 1 ¼ � tan�1 10�1!,

and ’5 ¼ � 3� 10�3j!þ 1 ¼ � tan�1 3� 10�3!. The total phase ’ ¼ ’1 þ ’2 þ

’3 þ ’4 þ ’5 is determined following the same steps as for determining A. The plots
of ’1, ’2, ’3, ’4, and ’5, as well as that of ’, are given in Figure 8.39.

8.5.4 Gain and Phase Margin

Consider the definitions for gain and phase margin given in Eqs (8.4-21) and (8.4-22),
respectively. These two definitions are given on the basis of the Nyquist diagram of
the open-loop transfer function and are shown in Figure 8.25. Similarly, the gain and
phase margins can be defined on the basis of the Bode diagrams. To this end,
consider Figure 8.40. Here, the Bode diagrams A and ’ of a certain open-loop
transfer function Gð j!ÞFð j!Þ are depicted. In this figure, when ! ¼ ! 0, then
jGð j! 0

Þ Fð j! 0
Þj ¼ 1 and hence Að! 0

Þ ¼ 0, and when ! ¼ !c, then ’ð!cÞ ¼ �1808.
Thus, Kg is the vertical straight line which connects the point !c with the curve A,
while ’p is the vertical straight line which connects the point !

0 with the curve ’.
More specifically, from Figure 8.40, we have

Kg ¼ �20 log jGð j!ÞFð j!cÞj ¼ DE dB ð8:5-9Þ

’p ¼ 1808þ Gð j! 0
ÞFð j! 0

Þ ¼ 1808þ ½�1808þ ðCBÞ8� ¼ ðCBÞ8 ð8:5-10Þ

In Figure 8.40, both margins Kg and ’p are positive. Therefore, for this particular
open-loop system, the closed-loop system is stable.

Example 8.5.2

This example refers to the system of automatically adjusting the opening and closing
of the pupil of the human eye. A simplified diagram of this system is given in Figure
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Figure 8.39 The plot of the phase ’ of the transfer function of Example 8.5.1.



8.41. Here, the constant a, which is the inverse of the time constant of the pupil of the
eye, is usually 0.5 sec; the constant K is the gain constant of the pupil; and FðsÞ is the
feedback transfer function of the signal from the optic nerve, where T is the time
constant, which is usually 0.2 sec. For simplicity, assume that T is zero. Using the
Bode diagrams, determine the range of values of K for which the closed-loop system
is stable.

Solution

The open-loop transfer function has the form

Gð j!ÞFð j!Þ ¼
K

ð j!þ 0:5Þ3
¼

8K

ð2j!þ 1Þ3
; K > 0
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Figure 8.40 Definitions of gain margin and phase margin in Bode diagrams.

Figure 8.41 Closed-loop system for the automatic control of human vision.



To plot the diagram of the amplitude A, define A1 ¼ 20 logð8KÞ and A2 ¼
�60 log j2j!þ 1j ¼ �60 log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4!2 þ 1

p
. The plot of A2 has a break point at

! ¼ 1=2 ¼ 0:5 rad/sec, and is shown in Figure 8.42. The plot of A1 is a horizontal
line which passes through the point 20 logð8KÞ. The diagram of the amplitude A is
the sum of A1 and A2, which means that the diagram A essentially is the plot A2
moving upwards or downwards depending on the sign of A1. To plot the diagram of

the phase ’, define ’1 ¼ 8K ¼ 08 and ’2 ¼ �3 tan�1ð2!Þ. The diagram of ’ is the

sum of ’1 and ’2, shown in Figure 8.43. The critical frequency !c for which the total
phase becomes �1808 satisfies the following equation

’ð!cÞ ¼ �1808 or � 3 tan�1ð2!cÞ ¼ �1808 or

2!c ¼ tan 608 ¼
ffiffiffi
3

p

Hence, the critical frequency is !c ¼ 0:87 rad/sec. The gain margin Kg is given by

Kg ¼ �20 log jGð j!cÞFð j!cÞj ¼ �20 logð8KÞ þ 60 log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4!2c þ 1

q
¼ �20 logð8KÞ þ 18

For the closed-loop system to be stable, the gain margin Kg and the phase margin ’p
must both be positive. For Kg to be positive, we must have 20 logð8KÞ < 18 or
K < 1. For values of K less than the total amplitude diagram of Gð j!ÞFð j!Þ will
cross over the 0 dB axis at a frequency whose value is less than !c. From Figure 8.43
we conclude that for ! < !c the phase ’ is less (in absolute value) than �1808, and
hence ’p > 0. Therefore, for the closed-loop system to be stable it must hold that
0 < K < 1.
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Figure 8.42 The amplitude diagram of a closed-loop system for the automatic control of
human vision.



8.5.5 Bode’s Amplitude–Phase Theorem

One of the most important contributions of Bode is the celebrated Bode’s ampli-
tude–phase theorem. According to this theorem, for every minimum phase system
(e.g., a system without poles or zeros in the right complex plane), the phase

Gð j!ÞFð j!Þ of the open-loop transfer function Gð j!ÞFð j!Þ of the system is related

to its amplitude jGð j!ÞFð j!Þj in a unique manner. The exact expression is

Gð j! 0
ÞFð j! 0

Þ ¼
1

	

ðþ1

�1

dM

du

� �
WðuÞdu (in radians)

where

M ¼ ln jGð j!ÞFð j!Þj; u ¼ ln
!

! 0

 �
and WðuÞ ¼ lnðcoth juj=2Þ

Here, ! 0 is the critical amplitude frequency, where jGð j! 0
ÞFð j! 0

Þj ¼ 1.
The hyperbolic cotangent is defined as coth x ¼ ðex þ e�xÞ=ðex � e�xÞ. The

weighting function WðuÞ is presented in Figure 8.44. From its form we conclude
that the phase of Gð j!ÞFð j!Þ depends mainly upon the gradient dM=du at the
frequency ! 0 and to a lesser degree upon the gradient dM=du at neighboring fre-
quencies. If we approximate WðuÞ with an impulse function at the point ! 0 and
assume that the slope of Gð j!ÞFð j!Þ remains constant and is equal to �20n dB/
decade for a band of frequencies of about 1 decade above and one below the fre-

quency ! 0, then we can arrive at the approximate relation Gð j! 0
ÞFð j! 0

Þ ffi �n 908.

We know that in order to have positive phase margin (stability),
Gð j! 0

ÞFð j! 0
Þ > �1808 at the frequency ! 0, where jGð j! 0

ÞFð j! 0
Þj ¼ 1. For this

reason, if ! 0 is the desired critical amplitude frequency, it is plausible that the
gradient of jGð j!ÞFð j!Þj is �20 dB/decade ðn ¼ 1Þ for 1 decade above and 1 decade
below the critical amplitude frequency ! 0. Then, according to the approximate
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Figure 8.43 The phase diagram of the closed-loop system for the automatic control of
human vision.



relation Gð j! 0
ÞFð j!Þ ffi �908, the phase margin is about 908. To obtain a more

desired (smaller) value for the phase margin, it suffices that the gradient of the
logarithmic amplitude curve of Gð j!ÞFð j!Þ is equal to �20 dB/decade for a band
of frequencies of 1 decade with center frequency the desired critical frequency ! 0.

Example 8.5.3

Using Bode’s theorem, design a satisfactory controller for the altitude control of a
spaceship, which is described by the transfer function GsðsÞ ¼ 0:9=s2. We wish to
obtain a satisfactory damping ratio and a bandwidth of about 0.2 rad/sec.

Solution

The block diagram of the compensated closed-loop system is shown in Figure 8.45.
The amplitude diagram of the uncompensated system, with transfer function
GsðsÞ ¼ 0:9=s2, is shown in Figure 8.46, from which it follows that the slope is
constant and equal to �40 dB/decade, due to the double pole at s ¼ 0. According
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Figure 8.44 The weighting function WðuÞ ¼ lnðcoth juj=2Þ.

Figure 8.45 The block diagram of the spaceship altitude control system.



to the design requirements, we should obtain a constant slope of �20 dB/decade for
a decade of frequencies near the desired amplitude frequency.

Thus, it is obvious that the controller must add, in a band of frequencies near
the desired critical amplitude frequency, a slope of þ20 dB/decade. This means that
the controller GcðsÞ must be of the form GcðsÞ ¼ KðTsþ 1Þ, which is a PD controller
(see Subsec. 9.6.2). This controller adds a zero, which must yield a gradient �20 dB/
decade near the critical amplitude frequency, as well as an amplification K , which
must yield the desired bandwidth. At first, we assume that the criical frequency and
the bandwidth are the same for the system, a fact which will be checked later. Since
we wish a bandwidth (and hence a critical amplitude frequency) of 0.2 rad/sec, we
choose the corner frequency 1=T to be four times lower than the desired critical
frequency, e.g., we choose T ¼ 20. This is done in order to keep the slope �20 dB/
decade for frequencies lower than 0.2 rad/sec. Hence, the open-loop transfer function
has the form

GðsÞFðsÞ ¼ GcðsÞGsðsÞ ¼ ð20sþ 1Þ
0:9

s2

� �

The amplitude curve of GðsÞFðsÞ is given in Figure 8.46. From this figure, it follows
that the gradient is �20 dB/decade in the band of frequencies from 0.1 to 1 rad/sec
(one decade of frequencies near the desired critical frequency 0.2 rad/sec). However,
for ! ¼ 0:2 rad/sec, the amplitude of GðsÞFðsÞ is

20 log
0:9ð1þ 20j!Þ

ð j!Þ2











!¼0:2

ffi 39:3 dB
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Figure 8.46 Bode amplitude diagrams for 0:9=s2 and 0:9ð1þ 20sÞ=s2.



Thus, if we choose 20 logK ¼ �39:3 dB, which yields K ¼ 0:0108, it follows that the
frequency ! ¼ 0:2 rad/sec is the critical frequency of the compensated system. At this
point, our design is completed. Checking the results, from Figure 8.47 it follows that
it is true that the critical frequency and the bandwidth are the same. If we further
draw the phase curve of the open-loop system transfer function GðsÞFðsÞ, we will
have that the phase margin is 758, which is quite satisfactory.

8.6 NICHOLS DIAGRAMS

8.6.1 Consant Amplitude Loci

Consider a closed-loop system with unity feedback transfer function, i.e., with
FðsÞ ¼ 1. The transfer function of the closed-loop system is given by

HðsÞ ¼
GðsÞ

1þ GðsÞ
ð8:6-1Þ

In the sinusoidal steady state, expression (8.6-1) becomes

Hð j!Þ ¼
Gð j!Þ

1þ Gð j!Þ
¼ jHð j!Þj Hð j!Þ ¼M ’ ð8:6-2Þ

Let

Gð j!Þ ¼ ReGð j!Þ þ jImGð j!Þ ¼ xþ jy ð8:6-3Þ

Then, the amplitude M may be written as

M ¼
jGð j!Þj

j1þ Gð j!Þj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ xÞ2 þ y2

q ð8:6-4Þ

Equation (8.6-4) is the mathematical expression which defines the locus of constant
amplitude M in the Gð j!Þ-plane. This locus is the circumference of a circle. Indeed,
Eq. (8.6-4) can be written in the well-known form of a circle, as follows
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Figure 8.47 Frequency response of the closed-loop system.



x�
M2

1�M2

" #2
þy2 ¼

M

1�M2

� �2
ð8:6-5Þ

Consequently, for any consant M, relation (8.6-5) represents the circumference of a
circle with at center the point ðxc; ycÞ and radius R, where

xc ¼
M2

1�M2
; yc ¼ 0; and R ¼

M

1�M2












For the particular value of M ¼ 1, Eq. (8.6-5) is not defined. However, from Eq.
(8.6-4) we can obtain that for M ¼ 1, the constant M locus is the straight line.

x ¼ �
1

2
ð8:6-6Þ

Typical curves of the loci (8.6-5) and (8.6-6) are given in Figure 8.48, where we can
observe that the circles of constant amplitude M are symmetrical to the lines y ¼ 0
and x ¼ �1=2. To the left of the line x ¼ �1=2 are the circles withM > 1 and to the
right are the circles with M < 1. At the boundary values, i.e., when M ! 1 and
M ! 0, the radii tend to zero, which means that the circles degenerate to the points
ð�1; 0Þ and ð0; 0Þ, respectively.

The above results are very useful for correlating the curve of the open-loop
transfer function Gð j!Þ in the Gð j!)-plane with the curve of the amplitude Mð!Þ
of Hð j!Þ. This correlation is given in Figure 8.49, where it is shown that the
tangent point of the two curves is also the resonant point, which means that the
curve Mð!Þ reaches its maximum value Mp for the frequency for which the curve
Gð j!Þ is tangent to the circumference of the circle with constant M and ampli-
tude equal to Mp.
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Figure 8.48 The loci of constant amplitude M.



8.6.2 Constant Phase Loci

Using relation (8.6-3), the phase ’ of Hð j!Þ may be written as

’ ¼ Hð j!Þ ¼ tan�1
y

x

h i
� tan�1

y

1þ x

� �
ð8:6-7Þ

Next, take the tangent of both sides of Eq. (8.6-7) to yield

tan ’ ¼ tan tan�1
y

x

h i
� tan�1

y

1þ x

� �� �
¼

y

x2 þ xþ y2
ð8:6-8Þ

If we set N ¼ tan ’ in Eq. (8.6-8), we have
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Figure 8.49 The correlation between the amplitudeM curves and the corresponding Gð j!Þ
curves. (a) Constant amplitudeM circles and the curves of three open-loop transfer functions;
(b) amplitude curves of three open-loop transfer functions.



x2 þ xþ y2 �
y

N
¼ 0

The above relation may be written as

xþ
1

2

� �2
þ y�

1

2N

� �2
¼
N2

þ 1

4N2
ð8:6-9Þ

Equation (8.6-9) represents a circle with center at the point ðxc; ycÞ and radius R,
where

xc ¼ �
1

2
; yc ¼

1

2N
; and R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þ 1

4N2

s

Figure 8.50 shows the circles of Eq. (8.6-9). As in the case of Figure 8.48, the circles
of constant phase N ¼ tan ’ are symmetrical to the lines y ¼ 0 and x ¼ �1=2.

8.6.3 Constant Amplitude and Phase Loci: Nichols Charts

In Subsec. 8.6.1 and 8.6.2 we studied the constant amplitude and phase curves,
respectively, of a closed-loop system with unity feedback in the Gð j!Þ-plane. The
Nichols diagrams, which are presented in the sequel, are curves with the following
coordinates: the y-axis is the amplitude jGð j!Þj, in dB, and the x-axis is the phase

� ¼ Gð j!Þ, in degrees.
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Figure 8.50 The loci of constant phase ’.



1 Curves with Constant Amplitude M

From Relation (8.6-2), we have

M ¼
jGð j!Þj

j1þ jGð j!Þje j�j
; � ¼ Gð j!Þ

or

M2
¼

jGð j!Þj2

1þ 2jGð j!Þj cos � þ jGð j!Þj2

The above relation may also be written as

jGð j!Þj2 þ
2M2

M2 � 1

" #
jGð j!Þj cos � þ

2M2

M2 � 1
¼ 0 ð8:6-10Þ

For every value of the amplitude M, relation (8.6-10) is a curve whose coordinates
are jGð j!Þj (in dB) and � (in degrees), as shown in Figure 8.51. These curves are
called curves of constant M of the closed-loop system.

2 Curves with Constant Phase ’

From relation (8.6-2), we have

’ ¼ Gð j!Þ � 1þ Gð j!Þ ¼ Gð j!Þ � 1þ jGð j!Þj cos � þ jjGð j!Þj sin �

¼ � � tan�1
jGð j!Þj sin �

1þ jGð j!Þj cos �

� �
¼ � �  

Frequency Domain Analysis 355

Figure 8.51 Nichols charts: curves of constant amplitude M and phase ’.



Examining the relation N ¼ tan ’, we have

N ¼ tan ’ ¼ tanð� �  Þ ¼
tan � � tan 

1þ tan � tan 
¼

tan � �
jGð j!Þj sin �

1þ jGð j!Þj cos �

1þ
jGð j!Þj sin � tan �

1þ jGð j!Þj cos �

¼
sin �½1þ jGð j!Þj cos �� � jGð j!Þj sin � cos �

cos � þ jGð j!Þj cos2 � þ jGð j!Þj sin2 �
¼

sin �

cos � þ jGð j!Þj

Finally, we arrive at the relation

jGð j!Þj þ cos � �
1

N
sin � ¼ 0 ð8:6-11Þ

For every value of the phase ’, relation (8.6-11) is a curve whose coordinates are
jGð j!Þj (in dB) and � (in degrees), as shown in Figure 8.51. These curves are called
curves of constant N (or ’) of the closed-loop system.

3 Closed-Loop System Response Curves

The curves of constant M and ’ of Figure 8.51 are essentially the same curves as
those of constant M and ’ of Figures 8.48 and 8.50, except for the fact that Figure
8.51 has coordinates the amplitude jGð j!Þj and phase � of Gð j!Þ, while Figures 8.48
and 8.50 have coordinates ReGð j!Þ and ImGð j!Þ. The basic advantage of Nichols
charts, i.e., of the diagrams of Figure 8.51, is that for every change of the gain
constant K , the response curve of the closed-loop system moves upwards or down-
wards without affecting the shape of the response curve. The gain margin Kg and
phase margin ’p in Nichols charts are defined in Figure 8.52. In this figure both Kg
and ’p are positive. A comparison among Nyquist, Bode, and Nichols diagrams, as
far as the gain and phase margins are concerned, is given in Figure 8.53. Finally, an
example, where there is correlation between Nichols charts and the response curve of
M and ’ is given in Figure 8.54. In particular, in Figure 8.54a the Nichols curve of a
transfer function Gð j!Þ is given. This curve is plotted by calculating the value for
each coordinate jGð j!Þj in dB and � ¼ Gð j!Þ for different values of the frequency
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Figure 8.52 The gain margin Kg and the phase margin ’p.
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Figure 8.53 Comparison among (a) Nyquist, (b) Bode, and (c) Nicholas diagrams for the
gain and phase margins.



!. In Figure 8.54b, the Bode curves of a closed-loop system are given. These curves
are plotted as follows. For each value of the frequency !, the Nichols crosses over
the curves ofM and ’. By using several values of !, we find the respective values of
M and ’ in Figure 8.54a and, subsequently, we transfer these values to Figure 8.54b.
By joining these different values of M and ’, we obtain the curves of Figure 8.54b.

Remark 8.6.1

The Nyquist and Nichols diagrams of Gð j!Þ have the common characteristic in that
they both consist of only one curve, with the frequency ! as a free parameter.
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Figure 8.54 Curves of constant amplitude M and constant phase ’. (a) The Nichols curve
of the transfer function Gð j!Þ; (b) the curves M and ’ of the transfer function of the closed-
loop system.



However, they differ in that the Nyquist diagrams have coordinates ReGð j!Þ and
ImGð j!Þ, while the Nichols diagrams have coordinates jGð j!Þ� and Gð j!Þ. On the

contrary, Bode diagrams consists of two separate curves: the amplitude curve and
the phase curve. Both of these curves are functions of the frequency !.

In Figure 8.55 we present, for some typical transfer functions, the root loci and
the Nyquist diagrams. These diagrams are worth studying because they facilitate the
comparison of the basic concepts developed in Chaps 7 and 8, in relation to the very
popular classical control design tools in the frequency domain: namely, the root
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Figure 8.55 Root loci and Nyquist diagrams for typical transfer functions (continued).



locus and the Nyquist diagrams (the Bode diagrams may readily be derived from the
Nyquist diagrams).

Remark 8.6.2

For simplicity, in the presentation of Nichols charts it was assumed that FðsÞ ¼ 1, in
which case the open-loop transfer function is GðsÞ. When FðsÞ 6¼ 1, we have the more
general case where
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Figure 8.55 (contd.)



HðsÞ ¼
GðsÞ

1þ GðsÞFðsÞ
¼

1

FðsÞ

� �
GðsÞFðsÞ

1þ GðsÞFðsÞ

� �
¼

1

FðsÞ

� �
G�

ðsÞ

1þ G�ðsÞ

� �
¼
H�

ðsÞ

FðsÞ

From the above relation we conclude that when FðsÞ 6¼ 1, we can directly apply
the results of the present section for H�

ðsÞ, as long as, instead of GðsÞ, we set
G�

ðsÞ ¼ GðsÞFðsÞ. To determine HðsÞ ¼ H�
ðsÞF�1

ðsÞ, we must multiply the two
transfer functions H�

ðsÞ and 1=FðsÞ. This can be done easily by using Bode
diagrams.
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PROBLEMS

1. Plot the Nyquist diagrams and investigate the stability of the closed-loop sys-
tems for the following open-loop transfer functions:

(a) GðsÞFðsÞ ¼
Kðs� 1Þ

sðsþ 1Þ
(d) GðsÞFðsÞ ¼

Kðsþ 3Þ

sð1þ sÞð1þ 2sÞ

(b) GðsÞFðsÞ ¼
10Kðsþ 2Þ

s3 þ 3s2 þ 10
(e) GðsÞFðsÞ ¼

Kðs� 3Þ

sð1þ sÞð1þ 2sÞ

(c) GðsÞFðsÞ ¼
Ks

1� 0:5s
(f) GðsÞFðsÞ ¼

K

s2ð1þ sÞð1þ 2sÞ

2. Find the gain and phase margins of the systems of Problem 1.
3. The block diagram of a laser beam control system used for metal processing is
shown in Figure 8.56. Plot the Nyquist diagram for K > 0 and investigate the
stability of the system.

4. The block diagram of a position control system for a space robot arm is given in
Figure 8.57. Determine the stability of the system using the Nyquist diagram, for
K > 0.

5. Let GðsÞFðsÞ ¼ KðTsþ 1Þ=s2. Plot the Nyquist diagram and determine the value
of T so that the phase margin is 458.

6. Consider a field-controlled DC motor represented by the block diagram in
Figure 8.58. Draw the Nyquist diagram. Furthermore:

(a) Determine the gain K so that the gain margin is 20 dB
(b) Determine the value of K so that the phase margin is 608.

7. Plot the Bode diagrams and determine the gain and phase margins of the systems
having the following open-loop transfer functions:

(a) GðsÞFðsÞ ¼
sþ 1

0:1sþ 1
(d) GðsÞFðsÞ ¼

0:1sþ 1

s2ðsþ 1Þð0:2sþ 1Þ2

(b) GðsÞFðsÞ ¼
10

s2ðsþ 1Þ
(e) GðsÞFðsÞ ¼

100

s2ðs2 þ 2sþ 1Þ

(c) GðsÞFðsÞ ¼
sþ 1

sð0:1sþ 1Þ
(f) GðsÞFðsÞ ¼

ðsþ 1Þ2

sð0:1sþ 1Þ3ð0:01sþ 1Þ
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8. The block diagram of the orientation control system of a space telescope is
shown in Figure 8.59. Determine the value of the gain K for which the phase
margin is 508. Find the gain margin for this case.

9. Consider the field-controlled DC motor system of Problem 6.

(a) For K ¼ 4, plot the Bode diagram of the system, find the phase-crossover
and gain-crossover frequencies and determine the gain margin and the
phase margin. Is the system stable?

(b) Determine the value of K for which the phase margin is 508.
(c) Find the value of K so that the gain margin is 16 dB.

10. The Bode diagram of a system is given in Figure 8.60. Determine the transfer
function of the system.

11. Determine the transfer function GðsÞ of a system, based on the measurement
data shown in Table 8.1.

12. For K ¼ 1, plot the Nichols diagram for the unity feedback systems having

(a) GðsÞ ¼
Kðsþ 1Þ

sð0:1sþ 1Þð0:01sþ 1Þ
; ðbÞ GðsÞ ¼

K

s2ðsþ 1Þ

Plot the response of the closed-loop systems and find the values of K for which
Mp ¼ 1:3:
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Figure 8.59

Figure 8.60

Table 8.1

! jGð j!Þj ’8

0.1000

0.2154
0.4642
1.0000

2.1544
4.6416
10.0000
21.5443

46.4159
100.0000

0.0481

0.0481
0.0482
0.0485

0.0501
0.0592
0.1244
0.0135

0.0024
0.0005

�0:2204
�0:4750
�1:0249
�2:2240
�4:9571
�12:6895
�84:2894
�166:5435
�174:8261
�177:6853



13. Consider the open-loop transfer function

GðsÞFðsÞ ¼
Kð0:25s2 þ 0:5sþ 1Þ

sð1þ 2sÞ2ð1þ 0:25sÞ

The Nichols diagram is shown in Figure 8.61, for K ¼ 1. Determine the gain K
so that the gain margin is at least 10 dB and the phase margin is at least 458.

14. The Nichols chart of a system is shown in Figure 8.62. Using the data given
below determine: (a) the resonance peak Mp in dB, (b) the resonant frequency,
(c) the bandwidth, (d) the phase margin, and (e) the gain margin of the system.

Angular frequency !1 !2 !3 !4

rad/sec 1 3 6 10

15. For the control system shown in Figure 8.63, plot the Nyquist, Bode, and
Nichols diagrams, the constant M and ’ loci, and the curves Mð!Þ and ’ð!Þ,
for K ¼ 1, 10, and 100. Comment on the results by comparing the diagrams.
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9
Classical Control Design Methods

9.1 GENERAL ASPECTS OF THE CLOSED-LOOP CONTROL DESIGN
PROBLEM

The problem of designing an open- or closed-loop control system can be stated using
Figure 9.1 as follows (see also Subsec. 1.3): given the system G under control and its
desirable behavior yðtÞ, find an appropriate controller Gc such that the composite
system (i.e., the system composed of the controller Gc plus the system G) yields the
desired output yðtÞ.

A general form of the controller Gc in closed-loop systems is given in Figure
9.2, where G1 and G2 are the controllers in ‘‘series’’ and F is the controller in
‘‘parallel’’ or the feedback loop controller. In practice, in most case, various combi-
nations of G1, G2, and F are used, as for example G2 alone, F alone, G1 and F in
pair, G2 and F in pair, etc.

For the design of the controller Gc, many methods have been developed, which
may be distinguished in two categories: the classical and the modern. The classical
methods are based mainly on the root locus techniques and the Nyquist, Bode, and
Nichols diagrams. These methods are graphical and they are developed in the fre-
quency domain. The advantage of the classical methods is that they are rather simple
to apply. However, they have certain disadvantages. One disadvantage is that clas-
sical methods can be applied to SISO systems. In recent years, major efforts have
been made to extend many of the SISO classical methods to MIMO systems.
Another disadvantage is that in many cases, due to their graphical nature, these
methods do not give the necessary and sufficient conditions which must be satisfied
for the design problem to have a solution. This means that in situations where the
design requirements cannot be satisfied, the designer will be searching in vain for the
solutions of the problem.

In contrast to classical methods, modern control design methods can be char-
acterized as analytical and are mostly developed in the time domain. Necessary and
sufficient conditions are established for the design problem to have a solution. Many
of these methods are based upon the idea of minimizing a cost function (or perfor-
mance index). In particular, one of the major problems of modern control theory can
be formulated on the basis of Figure 9.3, as follows: we are given the system G whose
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Figure 9.1 Block diagrams of (a) open- and (b) closed-loop control systems.

Figure 9.2 Typical structure of a closed-loop system.

Figure 9.3 Block diagram of a closed-loop system with a reference model.



behavior is considered unsatisfactory. We are also given a second system, systemM,
whose behavior is considered ideal. This system M is called the reference model or
simply the model. Find an appropriate controller Gc (i.e., find G1, G2, and F) which
minimizes a specific cost function. The cost function is designated by the letter J and
its typical form is given by

J ¼ lim
T!1

1

T

ðT
0

e
T
ðtÞeðt dt ð9:1-1Þ

where eðtÞ ¼ yðtÞ � ymðtÞ is the error between the desired behavior (output) ymðtÞ of
the reference model and the actual behavior (output) yðtÞ of the given system. It is
clear that the solution of Eq. (9.1-1) is the optimal solution to the problem. The field
of modern control engineering which is based upon the minimization of cost func-
tions is called optimal control. Chapter 11 constitutes an extensive introduction to
this very important approach of optimal control.

To give a simple comparison between classical and optimal design methods, the
following example is presented.

Example 9.1.1.

Consider the closed-loop system of Figure 9.4. Let rðtÞ ¼ 1. Find the appropriate
value of the parameter K which minimizes the cost function

J ¼

ð1
0

jeðtÞj dt ð9:1-2Þ

Solution

To facilitate the understanding of the main idea of optimal control, no strict math-
ematical proof will be given here, but rather a simple and practical explanation of the
solution of the problem. In Figure 9.5a the output yðtÞ is given for various values of
K . In Figures 9.5b and 9.5c the waveforms of jeðtÞj and JðKÞ are given, where JðKÞ is
the cost function (9.1-2) with the amplification constant K as a parameter. From
these figures we conclude that the optimal control approach guarantees the optimal
solution K3. If a classical method were applied, the resulting solution for K would be,
in general, different from the optimal solution K3.

This chapter is devoted to the classical control design methods. In particular,
we will present control design techniques using proportional controllers and PID
controllers, i.e., controllers consisting of three terms: P(proportional), I(integral),
and D(derivative). Also, use of special types of circuits, such as phase-lead, phase-
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Figure 9.4 A closed-loop system with a proportional controller.



lag, and phase lag-lead circuits will be used for closed-loop system compensation. At
the end of the chapter we give a brief description of certain quite useful classical
methods of optimal cotnrol, which preceded the modern advanced techniques of
optimal control presented in Chap. 11.

Chapters 10 and 11 give an introduction to modern state-space control
techniques. Specifically, in Chap. 10 the following very important algebraic con-
trol design techniques are presented: eigenvalue assignment, input–output decou-
pling, exact model-matching, and state observers. Chapter 11 gives an
introduction to optimal control covering the well-known problems of optimal
regulator and optimal servomechanism. Further material on even more recent
results on modern control design techniques are presented in the remaining chap-
ters (Chaps 12–16).
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Figure 9.5 Waveforms of (a) yðtÞ, (b) jeðtÞj, and (c) JðKÞ of Example 9.1.1.



9.2 GENERAL REMARKS ON CLASSICAL CONTROL DESIGN
METHODS

As already mentioned in Sec. 9.1, the classical control design methods are mainly
graphical and as a result they are mostly based upon experience. A typical example
of system design with classical control methods is the closed-loop system of Figure
9.6a. Assume that the performance of the given system GðsÞ is not satisfactory, e.g.,
assume that the output yðtÞ is slower than expected. To improve its performance, we
introduce the controller GcðsÞ. Suppose that the transfer function Gð j!Þ of the system
under control is tangent to the circumference of the circle of constant M at the
frequency !1 (Figure 9.6b). To improve the performance, we choose the dynamic
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Figure 9.6 Performance improvement of a closed-loop system using a dynamic controller.
(a) Unity feedback closed-loop system; (b) Nyquist diagrams of Gð j!Þ and Gcð j!ÞGð j!Þ; (c)
time response of an open- and closed-loop system; (d) frequency response of an open- and

closed-loop system.



controller Gcð j!Þ such that Gcð j!ÞGð j!Þ is tangent to the same circle M but at the
frequency !2, where !2 > !1. In Figures 9.6c and d, the waveforms M1ð!Þ and y1ðtÞ
correspond to the open-loop system and the waveformsM2ð!Þ and y2ðtÞ correspond
to the closed-loop system. From these waveforms we conclude that the closed-loop
system has a wider bandwidth than the open-loop system and as a result it is a faster
system than the open-loop system. The maximum valueM ¼Mp for both systems is
the same. Thus, as a result of the introduction of the controller Gcð j!Þ, the speed of
response of the closed-loop system is greatly improved since it is much faster than
that of the open-loop system.

Another typical design example is the case of making an unstable system stable.
To this end, consider the unstable system with transfer function

GðsÞ ¼
1

s2ðsT þ 1Þ

Its Nyquist diagram is given in Figure 9.7. Here, the control design problem is to find
an appropriate GcðsÞ so that the closed-loop system becomes stable. This can be done
if GcðsÞ is chosen such that the Nyquist diagram of Gcð j!ÞGð j!Þ takes the particular
form shown in Figure 9.7. Clearly, such a choice of GcðsÞ makes the closed-loop
stable.

9.3 CLOSED-LOOP SYSTEM SPECIFICATIONS

The desired improvement of a system’s behavior can be specified either in the time
domain, the frequency domain, or in both domains. In the time domain the
requirements are specified on the basis of the output function yðtÞ, and they
refer mainly to the transient and the steady-state response of yðtÞ. In the case of
the transient response it is desired that the system responds as fast as possible (and
rarely more slowly), i.e., we want a short rise time, while the overshoot should be
kept small. In the case of the steady-state response, it is desired that the error in
the steady state (see Sec. 4.7) be zero, and if this is not possible, made as small as
possible.
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Figure 9.7 Nyquist diagrams of Gð j!Þ and Gcð j!ÞGð j!Þ.



In the frequency domain the specifications are given on the basis of the
Nyquist, Bode, or Nichols diagrams of the transfer function GcðsÞGðsÞ and they
mainly refer to the gain and phase margins and to the bandwidth. In the case of
gain and phase margins, it is desirable to have large margins to guarantee sufficient
relative stability. In the case of the bandwidth, we seek to make it as wide as possible
to reduce the rise time.

Certain of the aforementioned specifications are equivalent or conflicting
(opposing). Equivalent requirements are, for example, the short rise time and
wide bandwidth, since wide bandwidth results in short rise time and vice versa
(see Secs 4.3 and 8.3). Conflicting specifications are the cases where as one tries to
improve one requirement one does damage to the other and vice versa. Such
specifications are, for example, the small steady-state error and the large gain
and phase margins. Here, in order to obtain a small steady-state error, the
open-loop transfer function GcðsÞGðsÞ must have a big amplification factor or
many integrations or both, as opposed to obtaining large gain and phase margins,
which require small amplification and no integrations (see Sec. 4.7 and Subsec.
8.4.5). Other examples of conflicting specifications are the steady-state and the
transient response of yðtÞ, because as the steady-state error improves, i.e., as the
steady-state error decreases, the closed-loop system tends to become unstable with
its transient response becoming oscillatory.

In our effort to improve the behavior of a system we are often confronted
with conflicting desired specifications, a common problem in all branches of engi-
neering. In this situation the classical control theory deals with the problem by
appropriately comprising the conflicting specifications. Modern control theory
uses, for the same purpose, the minimization of a cost function which refers to
one or more requirements—for example, the minimization of time and/or energy
(see chap. 11).

Classical control theory compromises the conflicting specifications most often
by using controllers, which are composed of an amplifier with an amplifications
constant K in series with electric circuits (as well as other types of circuits such as
hydraulic and pneumatic) connected in such a way that the transfer function GcðsÞ of
the controller has the general form

GcðsÞ ¼ K

Yd
i¼1

ð1þ T 0
i sÞ

Yr
i¼1

ð1þ TisÞ

ð9:3-1Þ

The circuits used to realize GcðsÞ are called controller circuits. The most com-
mon controller circuits used include the phase-lead, the phase-lag, the phase
lag-lead, the bridged T, the proportional (P), the proportional plus derivative
(PD), the proportional plus integral (PI), and the proportional plus integral
plus derivative (PID). Since later in this chapter we will use these circuits for
the realization of controllers, we next give a short description of these circuits.
Note that these controller circuits are also known in the literature as compen-
sating networks, since they are inserted in the closed-loop system to compensate
for certain undesirable performances appearing in the uncompensating closed-
loop system.
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9.4 CONTROLLER CIRCUITS

9.4.1 Phase-Lead Circuit

The most common phase-lead circuit is the simple circuit shown in Figure 9.8. When
this circuit is excited by a sinusoidal signal, the phase of the output signal leads the
phase of the input signal, i.e., the circuit introduces a ‘‘positive’’ phase. For this
reason it is called a phase-lead circuit.

Using Figure 9.8 one may readily determine the transfer function GcðsÞ of the
phase-lead circuit as follows

GcðsÞ ¼
YðsÞ

UðsÞ
¼

R2 þ R1R2Cs

R1 þ R2 þ R1R2Cs
¼ a�1 1þ aTs

1þ Ts

� �
¼ a�1G


c ðsÞ ð9:4-1Þ

where

G

c ðsÞ ¼

1þ aTs

1þ Ts
; a ¼

R1 þ R2

R2

> 1; and T ¼
R1R2

R1 þ R2

C

Hence GcðsÞ has a real zero at s ¼ �1=aT and a real pole at s ¼ �1=T . Since
a > 1, the pole is always to the left of the zero.

The GcðsÞ diagram for s ¼ j!, i.e., the Nyquist diagram of GcðsÞ, is a semicircle.
Indeed, if we set s ¼ j! and u ¼ T!, G


c ðsÞ becomes

G

c ð j!Þ ¼ aGcð j!Þ ¼

1þ jaT!

1þ jT!
¼

1þ jau

1þ ju
¼ ReG


c ð j!Þ þ j ImG

c ð j!Þ ¼ xþ jy

ð9:4-2Þ

Equation (9.4-2) is further written as

xþ jy ¼
ð1þ jauÞð1� juÞ

1þ u2
¼

1þ au2

1þ u2

" #
þ j

ða� 1Þu

1þ u2

� �

Equating the real and the imaginary parts of both sides in the above equation yields
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Figure 9.8 Typical phase-lead circuit.



x ¼
1þ au2

1þ u2
ð9:4-3aÞ

y ¼
ða� 1Þu

1þ u2
ð9:4-3bÞ

From Eq. (9.4-3a), we have

u2 ¼
1� x

x� a
ð9:4-4Þ

If we square both sides of Eq. (9.4-3b) and use Eq. (9.4-4), we have

y2 ¼
ða� 1Þ2u2

ð1þ u2Þ2
¼ ða� 1Þ2

1� x

x� a

1þ
1� x

x� a

� �2 ¼ ða� 1Þ2
ð1� xÞðx� aÞ

ða� 1Þ2

¼ x� a� x2 þ ax

or

x2 � ðaþ 1Þxþ y2 ¼ �a

or

x�
1þ a

2

� �2
þy2 ¼

a� 1

2

� �2
ð9:4-5Þ

Equation (9.4-5) represents a circle with center at the point ðð1þ aÞ=2; 0Þ and
radius ða� 1Þ=2. However, due to Eqs (9.4-3a and b), x and y are always positive,
and hence Eq. (9.4-5) refers only to positive x and y. Such semicircles are given in
Figure 9.9. Note that Figure 9.9 is the same as that of the right semicircle of the
diagram of Figure 8.21e, with K ¼ 1 and T 0

¼ aT > T ¼ T1, where a > 1.
For large values of the parameter a, the denominator of G


c ðsÞ will be smaller
than the numerator. Therefore, as a! þ1 then G


c ðsÞ ! 1þ aTs and, hence, G

c ðsÞ

becomes a straight line, as can be seen in figure 9.9. In this case G

c ðsÞ has two terms:

an analog and a differential term. For this reason this controller is called a propor-
tional plus derivative (PD) controller.

The phase ’ of G

c ðsÞ and, consequently, of GcðsÞ is given by

’ ¼ tan�1 au� tan�1 u ¼ tan�1 ða� 1Þu

1þ au2

� �
ð9:4-6Þ

The angle ’m will have its maximum value when

d’

du
¼

a

1þ a2u2
�

1

1þ u2
¼ 0 ð9:4-7Þ

Equation (9.4-7) is satisfied when

u ¼ um ¼
1ffiffiffi
a

p or ! ¼ !m ¼
1

T
ffiffiffi
a

p ð9:4-8Þ

and the maximum angle is

’m ¼ tan�1 a� 1

2
ffiffiffi
a

p

� �
ð9:4-9Þ
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From Eq. (9.4-9), we have

sin ’m ¼
a� 1

aþ 1
ð9:4-10Þ

Equation (9.4-10) is very useful for the calculation of the suitable value of a for
the maximum leading phase. The relation between ’m and a is given in Figure 9.10.

The Bode diagrams of the transfer function G

c ðsÞ are obtained in the usual way

and are presented in Figure 9.11.

9.4.2 Phase-Lag Circuit

The most common phase-lag circuit is the simple circuit shown in Figure 9.12. When
this circuit is excited by a sinusoidal signal, the phase of the output signal is lagging
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Figure 9.9 Nyquist diagram of the phase-lead circuit transfer function G

c ð j!Þ.

Figure 9.10 The maximum angle ’m as a function of parameter a for the phase-lead circuit.



the phase of the input signal, i.e., the circuit introduces a ‘‘negative’’ phase. For this
reason it is called a phase-lag circuit.

Using Figure 9.12 one may readily determine the transfer function GcðsÞ of the
phase-lag circuit as follows:

GcðsÞ ¼
YðsÞ

UðsÞ
¼

1þ R2Cs

1þ ðR2 þ R2ÞCs
¼

1þ aTs

1þ Ts
ð9:4-11Þ

where

a ¼
R2

R1 þ R2

< 1 and T ¼ ðR1 þ R2ÞC

Classical Control Design Methods 377

Figure 9.11 Bode diagrams of the phase-lead circuit transfer function G

c ð j!Þ. (a)

Magnitude Bode diagram of G

c ð j!Þ; (b) phase Bode diagram of G


c ð j!Þ.

Figure 9.12 Typical phase-lag circuit.



The transfer function GcðsÞ has a real zero at s ¼ �1=aT and a real pole at
s ¼ �1=T . Since a < 1, the pole is always to the right of the zero.

The Nyquist diagram of GcðsÞ is similar to the Nyquist diagram of G

c ðsÞ, and is

given in Figure 9.13. In the present case, the circles are described by Eq. (9.4-5), with
the only difference that x is positive (Eq. (9.4-3a)) but y is negative ((Eq. (9.4-3b)).
Such semicircles are given in Figure 9.13. Note that Figure 9.13 is the same as that of
the left semicircle of the diagram of Figure 8.21e, with K ¼ 1 and
T 0

¼ aT < T ¼ T1, where a < 1.
The Bode diagrams of the transfer function GcðsÞ are obtained in the usual way

and are presented in Figure 9.14.

9.4.3 Phase Lag-Lead Circuit

The most common phase lag-lead circuit is given in Figure 9.15. When this
circuit is excited by a sinusoidal signal, the phase of the output signal shows
a phase lag in the low frequencies and a phase lead in the high frequencies. This
circuit combines the characteristics of the phase-lag and the phase-lead circuits
studied previously. The transfer function GcðsÞ of the phase lag-lead network is
given by

GcðsÞ ¼
ð1þ R1C1sÞð1þ R2C2sÞ

1þ ðR1C1 þ R1C2 þ R2C2Þsþ R1R2C1C2s
2

In the special case where ab ¼ 1, GcðsÞ can be expressed as the product of G1ðsÞ and
G2ðsÞ, as follows:

GcðsÞ ¼
1þ bT2s

1þ T2s

� �
1þ aT1s

1þ T1s

� �
¼ G1ðsÞG2ðsÞ ð9:4-12Þ

where G1ðsÞ and G2ðsÞ are the phase-lag and phase-lead circuit transfer functions,
respectively, and where aT1 ¼ R1C1, bT2 ¼ R2C2, T1 þ T2 ¼ R1C1 þ R1C2 þ R2C2,
and T1T2 ¼ R1R2C1C2. To verify this result, multiply the first two equations aT1 ¼
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Figure 9.13 Nyquist diagram of the phase-lag circuit transfer function G

c ð j!Þ.



R1C1 and bT2 ¼ R2C2 to yield abT1T2 ¼ R1R2C1C2. Upon using the last of the
four above equations, T1T2 ¼ R1R2C1C2, we readily have that ab ¼ 1. Clearly, in
order to have the convenient property of Eq. (9.4-12), a and b cannot take any
independent aribtrary values, but they are constrained by the equation ab ¼ 1.

The Nyquist and Bode diagrams of GcðsÞ are shown in Figures 9.16 and 9.17,
respectively. From Eq. (9.4-12) and from Figures 9.16 and 9.17, it follows that GcðsÞ
behaves in the low frequencies as a phase-lag circuit and in the high frequencies as a
phase-lead circuit, thus combining the advantages of both phase-lag and phase-lead
circuits.

Classical Control Design Methods 379

Figure 9.14 Bode diagrams of the phase-lag circuit transfer function GcðsÞ. (a) Magnitude
Bode diagram of Gcð j!Þ; (b) phase Bode diagram of Gcð j!Þ.

Figure 9.15 Typical phase lag-lead circuit.



Remark 9.4.1

A close examination of the three types of controller circuits presented thus far shows
that these circuits have, in general, the following design capabilities:

1. Phase-lead circuits, in the frequency domain, can improve the open-loop
transfer function in the high frequencies. In the time domain, they can
improve the transient response by decreasing the rise time and the over-
shoot and to some extent can reduce the steady-state error.
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Figure 9.16 Nyquist diagram of the phase lag-lead circuit transfer function Gcð j!Þ.

Figure 9.17 Bode diagrams of the phase lead-lag circuit transfer function GcðsÞ.



2. Phase-lag circuits, in the frequency domain, can improve the open-loop
transfer function in the low frequencies. In the time domain, they can
improve the steady-state error at the expense of the transient response,
because the rise time increases.

3. Phase lag-lead circuits combine the characteristics of phase-lag and phase-
lead circuits. However, the phase lag-lead circuits increase the order of the
system by two compared with phase-lead or phase-lag circuits, which
increases the order of the system only by one. This means that although
phase lag-lead circuits give better design flexibility than phase-lag and
phase-lead circuits, they are not often used because the increase in the
order of the system by two complicates the system analysis and design.

9.4.4 Bridged T Circuit

The most common bridged T circuit may have one of the two versions given in
Figure 9.18. The circuit transfer function of Figure 9.18a is given by

G1ðsÞ ¼
1þ 2RC2sþ R2C1C2s

2

1þ RðC1 þ 2C2Þsþ R2C1C2s
2

ð9:4-13Þ

and that of Figure 9.18b is given by

G2ðsÞ ¼
1þ 2R1Csþ C2R1R2s

2

1þ Cð2R1 þ R2Þsþ C2R1R2s
2

ð9:4-14Þ

Note that G1ðsÞ and G2ðsÞ have essentially the same form. These circuits are different
from the phase-lead, phase-lag, and phase lag-lead circuits, because their transfer
functions can have complex conjugate zeros which may prove useful in realizing a
controller.

9.4.5 Other Circuits

Besides the above four types of circuits, many other types of circuits can be used for
controller realization. In Figure 9.19 we give a variety of such circuits.
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Figure 9.18 Typical T-bridged circuits.



9.5 DESIGN WITH PROPORTIONAL CONTROLLERS

In this case the controller is an amplifier of gain K and, hence, GcðsÞ ¼ K (Figure
9.20a). Since GcðsÞ is constant, one should expect that this type of controller has
limited capabilities for improving the system’s performance. Indeed, when GcðsÞ ¼ K
the only thing that one can do is to increase or decrease K. When increasing K , the
steady state of the closed-loop system of Figure 9.20a decreases. This is demon-
strated in Figure 9.20b for various types of systems, as well as for various types of
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Figure 9.19 Controller circuits (continued).



excitation signals. Furthermore, as K increases, the gain margin decreases, and for
larger values of K the closed-loop system becomes unstable, as shown in Figure
9.20c. In practice, it is desirable to have a small steady-state error and a large gain
margin. These specifications are apparently conflicting, since in improving one we
damage the other. In this case, a compromise is usually made, where the steady-state
error is small enough, while the gain margin is large enough. A satisfactory such
choice for K is K ¼ K1 shown in Figure 9.20c.
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Figure 9.19 (contd.)



9.6 DESIGN WITH PID CONTROLLERS

9.6.1 Introduction to PID Controllers

A PID controller involves three terms: the proportional term designated as Kp, the
integral term designated as Ki=s, and the derivative term designated as sKd. Thus, the
transfer function of a PID controller has the general form

GcðsÞ ¼ Kp þ
Ki

s
þ Kds ¼

Kpsþ Ki þ Kds
2

s
¼

Kd s2 þ
Kp

Kd

sþ
Ki

Kd

� �
s

ð9:6-1aÞ
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Figure 9.20 Proportional controller and its influence upon the behavior of a closed-loop

system. (a) Proportional controller in a closed-loop system; (b) steady-state error as a function
of K ; (c) influence of the parameter K upon the stability of the closed-loop system.



where Kp, Ki, and Kd are the proportional, integral, and derivative gains, respec-
tively. PID controllers are also expressed as follows:

GcðsÞ ¼ Kp 1þ
1

Tis
þ Tds

� �
; where Ti ¼

Kp

Ki

and Td ¼
Kd

Kp

ð9:6-1bÞ

where Kp is the proportional gain, Ti is called the integration time constant, and Td is
called the derivative or rate time constant. The block diagram of the PID controller
(Eq. (9.6-1b)) is given in Figure 9.21. Clearly, the transfer function of a PID con-
troller involves one pole at the origin and two zeros whose position depends upon the
parameters Kp, Ki, and Kd or Kp, Ti, and Td. The overall problem of PID controllers
is how to select (or tune) the arbitrary parameters involved in GcðsÞ such as to satisfy
the design requirements as best as possible [1].

Special cases of PID controllers are the PI and PD controllers. To facilitate the
study of PID controllers, we will first examine the PD and PI controllers.

9.6.2 PD Controllers

The transfer function of a PD controller is given by

GcðsÞ ¼ Kp þ Kds ¼ Kd sþ
Kp

Kd

� �
¼ Kpð1þ TdsÞ ð9:6-2Þ

Consider the closed-loop system of Figure 9.22, where the controller is of the PD
type and, for simplicity, the system’s transfer function GpðsÞ is of second order. Then,
the forward-path transfer function GðsÞ of Figure 9.22 is given by

GðsÞ ¼
YðsÞ

EðsÞ
¼ GcðsÞGpðsÞ ¼

�ðKp þ KdsÞ

sðsþ 	Þ
ð9:6-3Þ

Thus, in this case, we add to the original system a zero at s ¼ �Kp=Kd ¼ �1=Td, but
the order of the closed-loop system remains the same. As a result, the closed-loop
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Figure 9.21 Block diagram of the PID controller.



system becomes more stable (see Subsec. 7.5.2). The influence of GcðsÞ upon the
behavior of the closed-loop system may be interpreted using Figure 9.23. All three
waveforms concern a closed-loop system, where the input signal rðtÞ is the step
function and the controller is just a proportional controller. We observe that we
have a rather high overshoot and the system is quite oscillatory. The waveform of the
derivative _eeðtÞ of the error signal eðtÞ gives information about the expected overshoot
increase or decrease of yðtÞ. Indeed, in linear systems, if the slope of eðtÞ or of yðtÞ is
large, then the overshoot will also be large. Now, if a PD controller were used, then
its term sKd predicts this fact and tries to reduce the overshoot. That is, the deriva-
tive term of the PD controller acts as an ‘‘anticipatory’’ controller, wherein, by
knowing the slope of eðtÞ, the derivative term can anticipate the direction of the
error and use it to improve the performance of the closed-loop system.

Return to Eq. (9.6-3). For simplicity, set 	 ¼ � ¼ 1, in which case the closed-
loop system transfer function becomes

HðsÞ ¼
GðsÞ

1þ GðsÞ
¼

Kp þ Kds

s2 þ ð1þ KdÞsþ Kp

ð9:6-4Þ

To further simplify our study, let Kp ¼ 4 and Kd ¼ 0 and 1. Then, the closed-loop
transfer functions H1ðsÞ and H2ðsÞ for Kd ¼ 0 and Kd ¼ 1, respectively, become

H1ðsÞ ¼
4

s2 þ sþ 4
for Kd ¼ 0 and

H2ðsÞ ¼
4þ s

s2 þ 2sþ 4
for Kd ¼ 1

The response of the closed-loop system for rðtÞ ¼ 1 is given in Figure 9.24. The figure
shows that the derivative term reduces the overshoot and damps the oscillations.

Example 9.6.1

Consider the orientation control system of a satellite which is described in Subsec.
3.13.7. Examine the behavior of the satellite when the controller GcðsÞ is P and PD,

386 Chapter 9

Figure 9.22 Closed-loop system with PD controller.
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Figure 9.23 The waveforms of (a) yðtÞ, (b) eðtÞ, and (c) _eeðtÞ.

Figure 9.24 Closed-loop system response of system of Figure 9.22 for 	 ¼ � ¼ 1, Kp ¼ 4,
and Kd ¼ 0 and 1.



i.e., when GcðsÞ ¼ Kp and GcðsÞ ¼ Kpð1þ TdsÞ. Assume that the input of the closed-
loop system is 
rðtÞ ¼ 1.

Solution

The angular position of the satellite, when GcðsÞ ¼ Kp, is given by (see Eq. (3.13-35))

�yðsÞ ¼ HðsÞ�rðsÞ ¼
!2
n

sðs2 þ !2
nÞ

¼
1

s
�

s

s2 þ !2
n

; !2
n ¼ KtKbKpJ

�1

Taking the inverse Laplace transform, we have 
yðtÞ ¼ 1� cos!nt. This expression
for 
yðtÞ shows that the output of the system is an undamped oscillation of the
satellite about the x-axis. This is because there is no friction in space (i.e., the
damping ratio is � ¼ 0). Therefore, the system with GcðsÞ ¼ Kp, is not behaving
satisfactory at all! To improve its behavior, we introduce the PD controller

GcðsÞ ¼ Kpð1þ TdsÞ

For this case, the transfer function of the closed-loop system is given by

HðsÞ ¼
KtKbKpð1þ TdsÞ

Js2 þ KtKbKpð1þ TdsÞ
¼

!2
nð1þ TdsÞ

s2 þ 2�!nsþ !2
n

; !2
n ¼ KtKbKpJ

�1

where � ¼ Td!n=2. Let �rðsÞ ¼ 1=s. Then the ouput of the system is given by

�yðsÞ ¼ HðsÞ�rðsÞ ¼
HðsÞ

s
¼

!2
nð1þ TdsÞ

sðs2 þ 2�!nsþ !2
nÞ

If we select a value for the constant Td such that 0 < � < 1, then according to case 2
of Subsec. 4.3.2 and Eq. (2.4-7), we have

�yðsÞ ¼
1

s
�
sþ 2� þ !2

nTd

ðsþ �Þ2 þ !2
d

; � ¼ !n�; and !d ¼ !nð1� �2Þ1=2

or

�yðsÞ ¼
1

s
�

sþ �

ðsþ �Þ2 þ !2
d

�
� þ !2

nTd

!d

" #
!d

ðsþ �Þ2 þ !2
d

" #

The response in the time domain will be


yðtÞ ¼ 1� e��t cos!dtþ
� þ !2

nTd

!d

sin!dt

" #
¼ 1� C e��t sinð!dtþ ’Þ

where

C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2
d þ ð� þ !2

nTdÞ
2

q
!d

and ’ ¼ tan�1 !d

� þ !2
nTd

� �
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From the above expression for 
yðtÞ we see that, when a PD controller is used, the
response of the system will be as in Figure 9.25. In this case, the system will exhibit
some damped oscillations and will settle in the position 
y ¼ 
r ¼ 1. The amplitude
of these oscillations is influenced by the damping ratio (Figure 4.4) and, therefore, it
can be adjusted from the constants Td and !n, since � ¼ Td!n=2, where 0 < � < 1
and !2

n ¼ KtKbKpJ
�1.

The present example reveals in a very clear way the influence of the PD con-
troller on the behavior of a closed-loop system. Here, when GcðsÞ ¼ Kp the system
contantly oscillates, whereas when GcðsÞ ¼ Kpð1þ TdsÞ the system quickly comes to
a standstill. This is solely due to the differential term, which by anticipating the
direction of the error, acts accordingly, and reduces the overshoot and the oscilla-
tions and brings the system to the desired standstill position 
y ¼ 
r ¼ 1.

9.6.3 PI Controllers

The transfer function of a PI controller is given by

GcðsÞ ¼ Kp þ
Ki

s
¼

Kp sþ
Ki

Kp

	 

s

¼ Kp 1þ
1

Tis

	 

ð9:6-5Þ

Consider the closed-loop system of Figure 9.26, where the controller is of the
PI type and, for simplicity, the system’s transfer function GpðsÞ is of second order.
Then, the forward-path transfer function GðsÞ of Figure 9.26 is

GðsÞ ¼
YðsÞ

EðsÞ
¼ GcðsÞGpðsÞ ¼

�ðKi þ KpsÞ

s2ðsþ 	Þ
ð9:6-6Þ

Thus, the PI controller adds to the original system a zero at s ¼ �Ki=Kp ¼ �1=Ti

and a pole at s ¼ 0. Here, as compared with the PD controller, the order of the
system increases by one. We also have an increase by one in the system type (see
subsection 4.7.1). As a result, the PI controller has a beneficiary influence on the
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Figure 9.25 Time response of the closed-loop system for the control of a satellite orienta-
tion system when GcðsÞ ¼ Kpð1þ TdsÞ.



steady-state error, since it increases the type of the system by one (see Sec. 4.7). On
the contrary, the relative stability decreases due to the pole s ¼ 0 (see Subsec.7.5.1).
In particular, the closed-loop response of the system for 	 ¼ � ¼ 1, and ðKpÞ1 >
ðKpÞ2 > ðKpÞ3 and for ðKiÞ1 > ðKiÞ2 > ðKiÞ3 is shown in Figure 9.27. This figure
shows that as the gains Kp and Ki decrease, the oscillations decrease and the
system becomes more stable. Appropriate choice of Kp and Ki may yield the desired
behavior, which is usually an overshoot of about 25%.

Overall, the PI controllers behave as low-frequency filters that improve the
steady-state error, but they decrease the relative stability.

Example 9.6.2

Consider a system under control, with transfer function

GðsÞ ¼
K

1þ T1s
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Figure 9.26 Closed-loop system with PI controller.

Figure 9.27 Closed-loop system response of system of Figure 9.26.



Show that by using the PI controller (Eq. (9.6-5)), one can achieve arbitrary pole
placement and simultaneously drive the position steady-state error to zero.

Solution

Clearly, by choosing a PI controller, the type of the system becomes one, which
guarantees zero position steady-state error (see Sec. 4.7). With regard to pole place-
ment, the transfer function HðsÞ of the closed-loop system is given by

HðsÞ ¼
GcðsÞGðsÞ

1þ GcðsÞGðsÞ

We have

1þ GcðsÞGðsÞ ¼ 1þ
K

1þ T1s

� �
Kp 1þ

1

Tis

	 
� �
¼
bðsÞ

aðsÞ

The characteristic equation bðsÞ ¼ 0 is as follows:

s2 þ
1

T1

þ
KKp

T1

� �
sþ

KKp

TiT1

¼ 0

Hence, the closed-loop system is a second-order system. The general form of the
characteristic equation of a second-order system is

s2 þ 2�!nsþ !2
n ¼ 0

Equating coefficients of like powers of s in the last two equations and solving for the
two PI controller parameters – namely, for the parameters Kp and Ti – we get

Kp ¼
2�!nT1 � 1

K
and Ti ¼

2�!nT1 � 1

!2
nT1

Hence, for any desired values of � and !n we can always find Kp and Ti such that the
closed-loop system has the desired characteristic polynomial s2 þ 2�!nsþ !2

n. Since
the roots of this polynomial are the poles of the closed-loop system, it follows that
we can achieve arbitrary pole placement of the given first-order system with a PI
controller. This result is of paramount importance, since controlling the poles one
controls completely the stability and may greatly influence the time response of the
closed-loop system.

From the above expressions for Kp and Ti, we observe the following:

1. The gain Kp is positive for !n > 2�T1.
2. For large values of !n, Ti ffi 2�=!n. In this case, Ti does not depend on the

system’s time constant T1.

9.6.4 PID Controllers

A typical closed-loop system involving a PID controller is given in Figure 9.28. The
PID controller transfer function GcðsÞ defined in Eq. (9.6-1b) may further be written
as

GcðsÞ ¼ Kp 1þ
1

Tis
þ Tds

� �
¼ Kp

ðasþ 1Þðbsþ 1Þ

s
ð9:6-7aÞ
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where

aþ b ¼ Ti and ab ¼ TiTd ð9:6-7bÞ

Hence, the PID controller increases the number of zeros by two and the number of
poles by one, where the two zeros are located at s ¼ �1=a and s ¼ �1=b and the pole
is located at s ¼ 0.

The PID controller is designed by properly choosing Kp, Ki, and Kd, or Kp, Ti,
and Td such as to control the system with all the advantages of the PD and PI
controllers combined. The resulting desired closed-loop system’s behavior is
shown in Figure 9.29. Here, yðtÞ has a small rise time, a small overshoot, a small
settling time, and a zero steady-state error. Such a response is, of course, close to the
ideal. The difficulty in achieving such a response is the selection (or tuning) of the
appropriate Kp, Ki, and Kd for any specific system under control [1]. Two practical
methods for selecting the appropriate Kp, Ki, and Kd are presented in Subsec. 9.6.5
that follows.
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Figure 9.28 Closed-loop system with PID controller.

Figure 9.29 Response of a closed-loop system with PID controller when rðtÞ ¼ 1.



Example 9.6.3

Consider a system under control, with transfer function

GðsÞ ¼
K

ð1þ sT1Þð1þ sT2Þ

Show that using the PID controller (Eq. (9.6-1)), one can achieve arbitrary pole
placement and simultaneously drive the position steady-state error to zero.

Solution

Clearly, by choosing a PID controller, the type of the system becomes one, which
guarantees zero position steady-state error (see Sec. 4.7). With regard to pole place-
ment, we work as in Example 9.6.2, and find that the characteristic equation of the
closed-loop system is as follows:

s3 þ
1

T1

þ
1

T2

þ
KKpTd

T1T2

� �
s2 þ

1

T1T2

þ
KKp

T1T2

� �
sþ

KKp

T1T2Ti

¼ 0

Hence, the closed-loop system is a third-order system. The general form of the
characteristic equation of a third-order system is

ðsþ !Þðs2 þ 2�!nsþ !2
nÞ ¼ 0

Equating coefficients of like powers of s in the last two characteristic equations, and
after some algebraic manipulations, we arrive at the following values for the PID
controller parameters Kp, Ti, and Td:

Kp ¼
T1T2!

2
nð1þ 2�Þ � 1

K
; Ti ¼

T1T2!
2
nð1þ 2�Þ � 1

T1T2!
3
n

;

Td ¼
T1T2!nð þ 2�Þ � T1 � T2

T1T2!ð1þ 2Þ � 1

Hence, for any desired values of �, !n, and  we can always find Kp, Ti, and Td such
that the closed-loop characteristic polynomial has the desired form
ðsþ !nÞðs

2
þ 2�!nsþ !2

nÞ. Since the roots of this polynomial are the poles of the
closed-loop system, it follows that we can achieve arbitrary pole placement of the
given second-order system with a PID controller. This result is of paramount impor-
tance, since controlling the poles one controls completely the stability and may
greatly influence the time response of the closed-loop system.

Example 9.6.4

Consider the closed-loop system shown in Figure 9.30, where a PID controller is
used to control the direction of a ship. The disturbance (e.g., due to the wind) affects
the system, as shown in the block diagram. The input reference signal rðtÞ is usually
constant. Design a control system such that the closed-loop response to a unit step
disturbance decays fast (e.g., the settling time Ts is 2 or 3 sec with 2% final value
tolerance) and the damping of the system is satisfactory. Choose the position of the
poles so that the closed-loop system has a pair of dominant poles. Find the time
response of the system to a unit step disturbance and to a unit step input reference
signal.
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Solution

According to relation (9.6-7), the transfer function of the PID controller can be
written as

GcðsÞ ¼
Kðasþ 1Þðbsþ 1Þ

s
¼ Kp 1þ

1

Tis
þ Tds

� �

where K ¼ Kp, aþ b ¼ Ti, and ab ¼ TiTd. When RðsÞ ¼ 0 and DðsÞ 6¼ 0, the closed-
loop transfer function due to the disturbance DðsÞ is given by

YdðsÞ

DðsÞ
¼

GcðsÞGsðsÞ

1þ GcðsÞGsðsÞ
¼

s

sðs2 þ 4sþ 16Þ þ Kðasþ 1Þðbsþ 1Þ

¼
s

s3 þ ð4þ KabÞs2 þ ð16þ Kaþ KbÞsþ K

where YdðsÞ is the output due to the disturbance DðsÞ.
The closed-loop specifications require that the response to a unit step distur-

bance be such that the settling time Ts is 2–3 sec with 2% final value tolerance, and
the system has satisfactory damping. However, we have that

Ts ¼
4

�!0

¼ 2 sec and therefore we have �!0 ¼ 2

We can choose � ¼ 0:4 and !n ¼ 5 rad/sec for the dominant poles of the closed-loop
system. We choose the third pole at s ¼ �12, so that it has negligible effect on the
response. Then, the desired characteristic equation can be written as

ðsþ 12Þ½s2 þ 2ð0:4Þ5sþ 52� ¼ ðsþ 12Þðs2 þ 4sþ 25Þ ¼ s3 þ 16s2 þ 73sþ 300 ¼ 0

The characteristic equation of the closed-loop transfer function (having as input the
disturbance DðsÞ), is given by

s3 þ ð4þ KabÞs2 þ ð16þ Kaþ KbÞsþ K ¼ 0

Comparing the coefficients of the two characteristic polynomials, it follows
that 4þ Kab ¼ 16, 16þ Kaþ Kb ¼ 73, and K ¼ 300. Hence, ab ¼ 0:04 and
aþ b ¼ 0:19. Therefore, the PID controller becomes
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Figure 9.30 Control system which uses a PID controller to control the direction of a ship.



GcðsÞ ¼
K ½abs2 þ ðaþ bÞsþ 1�

s
¼

12ðs2 þ 4:75sþ 25Þ

s

Using this PID controller, the response YdðsÞ to the disturbance DðsÞ is

YdðsÞ ¼
s

ðsþ 12Þðs2 þ 4sþ 25Þ

� �
DðsÞ

For DðsÞ ¼ 1=s, the output in the steady state is zero, since, according to the final
value theorem, we have

lim
t!1

ydðtÞ ¼ lim
s!0

sYdðsÞ ¼ lim
s!0

s2

ðsþ 12Þðs2 þ 4sþ 25Þ

" #
1

s

� �
¼ 0

More specifically, we have

YdðsÞ ¼
s2

ðsþ 12Þðs2 þ 4sþ 25Þ

" #
1

s

� �
¼

0:099174

sþ 12
þ

�0:099174sþ 0:206612

s2 þ 4sþ 25

� �

¼
0:099174

sþ 12
�

0:099174ðsþ 2Þ

ðsþ 2Þ2 þ ð
ffiffiffiffiffi
21

p
Þ
2
þ

0:08837
ffiffiffiffiffi
21

p

ðsþ 2Þ2 þ ð
ffiffiffiffiffi
21

p
Þ
2

Taking the inverse Laplace transform, we have

ydðtÞ ¼ 0:099174e�12t
� 0:099174e�2t cos

ffiffiffiffiffi
21

p
t

h i
þ 0:08837e�2t sin

ffiffiffiffiffi
21

p
t

h i
The unit step response is shown in Figure 9.31, from which we get a settling

time around 0.72 sec and a satisfactory damping. Therefore, the design with regard
to the disturbance is satisfactory.

When RðsÞ 6¼ 0 and DðsÞ ¼ 0, the closed-loop transfer function due to the input
reference signal RðsÞ is given by
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Figure 9.31 Closed-loop response to unit step disturbance.



YrðsÞ

RðsÞ
¼

GcðsÞGsðsÞ

1þ GcðsÞGsðsÞ
¼

12ðs2 þ 4:75sþ 25Þ

s3 þ 16s2 þ 73sþ 300

For RðsÞ ¼ 1=s, the output YrðsÞ becomes

YrðsÞ ¼
12ðs2 þ 4:75sþ 25Þ

s3 þ 16s2 þ 73sþ 300

" #
1

s

� �

¼
1

s
�
0:92562

sþ 12
�

0:07438ðsþ 2Þ

ðsþ 2Þ2 þ ð
ffiffiffiffiffi
21

p
Þ
2
þ

0:16231
ffiffiffiffiffi
21

p

ðsþ 2Þ2 þ ð
ffiffiffiffiffi
21

p
Þ
2

Taking the inverse Laplace transform, we have

yrðtÞ ¼ 1� 0:92562 e�12t
� 0:07438e�2t cos

ffiffiffi
2

p
1 t

h i
þ 0:1623 e�2t sin

ffiffiffiffiffi
21

p
t

h i
The unit step response is shown in Figure 9.32, from which we find that the

maximum overshoot is 7.15% and the settling time is 1.1 sec, which are very satis-
factory.

9.6.5 Design of PID Controllers Using the Ziegler–Nichols Methods

The PID controller has the flexibility of simultaneously tuning three parameters:
namely, the parameters Kp, Ti, and Td. This allows a PID controller to satisfy the
design requirements in many practical cases, a fact which makes the PID controller
the most frequently met controller in practice. The appropriate values of the para-
meters Kp, Ti, and Td of the PID controller may be chosen by trial and error. This is
usually a formidable task, even in cases where the design engineer has great experi-
ence on the subject. To facilitate the determination of the appropriate values of the
parameters Kp, Ti, and Td, even for cases where a mathematical model for the system
under control is not available, Ziegler and Nichols [11] have suggested the following
two rather simple and practically useful methods.

1 The Transient Response Method

In this case, the system under control is excited with the unit step function (Figure
9.33a). The shape of the transient response of the open-loop system may have the
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Figure 9.32 Closed-loop response to unit step reference signal.



general form shown in Figure 9.33b. In this case, we introduce the parameters
td ¼ delay time and tr ¼ rise time. Aiming in achieving a damping ratio � of
about 0.2 (which corresponds to an overshoot of about 25%), the values of the
parameters Kp, Ti, and Td of the PID controller are chosen according to Table 9.1.

It is useful to mention that here the transfer function of the system under
control may be approximated as follows

GðsÞ ¼ K
e�tds

1þ trs

� �
ð9:6-8Þ

Furthermore, upon using Table 9.1, the PID controller transfer function GcðsÞ
becomes

GcðsÞ ¼ Kp 1þ
1

Tis
þ Tds

� �
¼ 1:2

tr
td

1þ
1

2tds
þ 0:5tds

� �

¼ ð0:6trÞ
ðsþ 1=tdÞ

2

s

" #
ð9:6-9Þ

That is, the PID controller has a pole at the origin and a double zero at s ¼ �1=td.
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Figure 9.33 The transient response method. (a) Experimental step response; (b) detailed
step response.



Example 9.6.5

In Figure 9.34, the unit step response of a plant is given. Determine Kp, Ki, and Kd of
a PID controller using the transient response method.

Solution

From the figure we have that td ¼ 150 sec and tr ¼ 75 sec. Using Table 9.1, we read-
ily have

Kp ¼ 1:2
tr
td

¼ ð1:2Þ
75

150
¼ 0:6

Ti ¼ 2td ¼ 2ð150Þ ¼ 300 sec

Td ¼ 0:5td ¼ ð0:5Þð150Þ ¼ 75 sec

2 The Stability Limit Method

Here, we start by controlling the system only with a proportional controller (Figure
9.35a). The gain Kp is slowly increased until a persistent oscillation is reached (Figure
9.35b). At this point, we mark down the value of the parameter Kp, denoted as ~KKp, as
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Table 9.1 The Values of the Parameters Kp, Ti, and Td Using the Ziegler–Nichols
Transient Response Method

Controller Kp Ti Td

Proportional P
tr
td

1 0

Proportional–integral PI 0:9
tr
td

td
0:3 0

Proportional–integral–derivative PID 1:2
tr
td

2td 0:5td

Figure 9.34 The unit step response of a plant of Example 9.6.5.



well as the value of the respective oscillation period, denoted as ~TT . Then, the para-
meters Kp, Ti, and Tp of the PID controller are chosen according to Table 9.2.

For the present case, and upon using Table 9.2, the transfer function of the
PID controller becomes

GcðsÞ ¼ Kp 1þ
1

Tis
þ Tds

	 

¼ 0:6 ~KKp 1þ

1

0:5 ~TT
þ

~TT

8

 !

¼ ð0:075 ~KKp
~TTÞ

ðsþ 4= ~TTÞ2

s

" #
ð9:6-10Þ

That is, the PID controller has a pole at the origin and a double zero at s ¼ �4= ~TT .

Example 9.6.6

The position control system of an object holder robot is shown in Figure 9.36. The
block diagram is given in Figure 9.37. Use the stability limit method of Ziegler-
Nichols to determine the parameters of the PID controller. Use the Routh stability
criterion to calculate the values of ~KKp and ~TT .
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Figure 9.35 The stability limit method. (a) Closed-loop system with proportional control-
ler; (b) sustained oscillations with period ~TT .

Table 9.2 The Values of the Parameters Kp, Ti, and Td Using the Ziegler–Nichols

Stability Limit Method

Controller Kp Ti Td

Proportional P 0:5 ~KKp 1 0
Proportional–integral PI 0:45 ~KKp

~TT=1:2 0

Proportional–integral–derivative PID 0:6 ~KKp
~TT=2 ~TT=8



Solution

Using only a proportional controller, as in Figure 9.35a, yields the following closed-
loop transfer function

YðsÞ

RðsÞ
¼

Kp

sðsþ 1Þðsþ 4Þ þ Kp

The value of Kp that makes the system marginally stable, in which case sustained
oscillations occur, can be obtained using Routh’s stability criterion. The character-
istic equation of the closed-loop system is given by

s3 þ 5s2 þ 4sþ Kp ¼ 0

The Routh array is as follows:

s3 1 4
s2 5 Kp

s1
20� Kp

5
s0 Kp

����������
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Figure 9.36 Object holder robot.

Figure 9.37 Position control system with PID controller of an object holder robot.



Examining the coefficients of the first column of the Routh table, we find that
sustained oscillation will occur when Kp ¼ 20. Thus, the critical gain ~KKp is 20. With
the gain Kp set equal to ~KKp, the characteristic equation becomes

s2 þ 5s2 þ 4sþ 20 ¼ 0

Substituting s ¼ j! into the characteristic equation, we can find the frequency of the
sustained oscillations. We have

ð j!Þ3 þ 5ð j!Þ2 þ 4j!þ 20 ¼ 0

or

5ð4� !2
Þ þ j!ð4� !2

Þ ¼ 0 and hence !2
¼ 4 or ! ¼ 2

The period ~TT of the sustained oscillations is

~TT ¼
2�

!
¼

2�

2
¼ � ¼ 3:14

Referring to Table 9.2, we determine Kp, Ti, and Td as follows:

Kp ¼ 0:6 ~KKp ¼ ð0:6Þð20Þ ¼ 12

Ti ¼ 0:5 ~TT ¼ ð0:5Þð3:14Þ ¼ 1:57

Td ¼ 0:125 ~TT ¼ ð0:125Þð3:14Þ ¼ 0:3925

Hence, the transfer function of the PID controller is the following:

GcðsÞ ¼ Kp 1þ
1

Tis
þ Tds

� �
¼ 12 1þ

1

1:57s
þ 0:3925s

� �

¼
4:71ðsþ 1:27389Þ2

s

The PID controller has a pole at the origin and double zero at s ¼ �1:27389. The
transfer function HðsÞ of the closed-loop system is given by

HðsÞ ¼
GcðsÞGrðsÞ

1þ GcðsÞGrðsÞ
¼

4:71ðsþ 1:27389Þ2

s

" #
1

sðsþ 1Þðsþ 4Þ

� �

1þ
4:71ðsþ 1:27389Þ2

s

" #
1

sðsþ 1Þðsþ 4

� �

¼
4:71s2 þ 12sþ 7:643

s4 þ 5s3 þ 8:71s2 þ 12sþ 7:643

The unit step response YðsÞ of the closed-loop system is given by

YðsÞ ¼ HðsÞRðsÞ ¼ HðsÞ

"
1

s

#
¼

4:71s2 þ 12sþ 7:643

s4 þ 5s3 þ 8:71s2 þ 12sþ 7:643

" #"
1

s

#

The unit step response of the closed-loop system is shown in Figure 9.38. If the
maximum overshoot is excessive, it can be reduced by fine tuning the controller
parameters.
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9.6.6 Active Circuit Realization for PID Controllers

In Sec. 9.4, several circuits were presented, which are the circuit realizations of many
popular controllers, such as phase-lead, phase-lag, phase lag-lead, etc. These realiza-
tions involve the passive elements R, L, and C and for this reason they are called
passive circuit controller realizations.

Here, we will present another approach to controller realization by using an
active element, namely, the operational amplifier. A typical such circuit involving an
operational amplifier is given in Figure 9.39. Since the operational amplifier is an
active element, it is for this reason that such realization is called active-circuit reali-
zation of a controller, as compared with passive-circuit realizations presented in Sec.
9.4.

The active circuit of Figure 9.39 appears to have great flexibility in realizing
many types of controllers, by making the proper choice of Z1ðsÞ and Z2ðsÞ. Note that
here the input voltage ViðsÞ is related to the output voltage V0ðsÞ via the transfer
function

GcðsÞ ¼
V0ðsÞ

ViðsÞ
¼ �

Z2ðsÞ

Z1ðsÞ
ð9:6-11Þ

Figure 9.40 presents several configurations which lead to active realizations for
various types of controllers, including PI, PD, and PID.
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Figure 9.38 Closed-loop response to unit step reference signal.

Figure 9.39 Active-circuit realization of a controller.



9.7 DESIGN WITH PHASE-LEAD CONTROLLERS

Phase-lead controllers are used to introduce a positive phase in the closed-loop
transfer function, aimed at improving the transition response of the system in the
time domain (i.e., decreasing the rise time and overshoot) and in the frequency
domain at improving the gain and phase margins and the bandwidth (i.e., increasing
Kg, ’p, and BW). The transfer function G


c ðsÞ defined in Eq. (9.4-1) of the phase-lead
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Figure 9.40 Active-circuit realization of controllers.



circuit influences the open-loop transfer function at the high frequencies. This is
easily seen if we consider G


c ðsÞ to have the special form

G

c ðsÞ ¼ 1þ sKd ð9:7-1Þ

Equation (9.7-1) is the special case of G

c ðsÞ defined by Eq. (9.4-1) as a! þ1 (see

Figure 9.9). In this case we observe that the controller G

c ðsÞ ¼ 1þ sKd involves two

terms: the proportional term 1 and the differential term sKd. Hence, G

c ðsÞ is a PD

controller. For this reason we say that the phase-lead controller, as a! 1, behaves
like a PD controller. A simple way of realizing G


c ðsÞ ¼ 1þ sKd is given in Figure
9.41a. The influence of G


c ð j!Þ ¼ 1þ j!Kd upon the transfer function Gð j!Þ of a
given system under control is shown in Figure 9.41b, wherein the closed-loop sytem
becomes stable.

When the G

c ð j!Þ does not have the special form of 1þ j!Kd, but instead has

the general form G

c ð j!Þ ¼ ½ð1þ ja!TÞ=ð1þ j!TÞ�, whose Nyquist diagram is a semi-

circle as shown in Figure 9.9, then G

c ð j!Þ is actually an approximation of 1þ j!Kd

and, as a result, it influences the diagram of G

c ð jÞGð j!Þ in approximately the same

way as in Figure 9.41b.
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Figure 9.41 Closed-loop system with a phase-lead controller and the influence of this con-

troller on the Nyquist diagram of the closed-loop system. (a) Closed-loop system with con-
troller G


c ðsÞ ¼ l þ sKd; (b) Nyquist diagram of Gðj!Þ; G

c ðj!Þ; and G



c ðj!ÞGðj!Þ.



The design of a phase-lead controller is done preferably with the use of Bode
diagrams, since the influence of the controller is calculated by simply adding the
amplitude and phase diagrams of the controller to the corresponding diagrams of the
given system. Let the design specifications refer only to the steady-state error and the
gain and phase margins. Also let the open-loop transfer function involve an ampli-
fication factor K . Then, the main steps in determining the amplification constant K
and the transfer function GcðsÞ ¼ a�1G


c ðsÞ of the controller are

1. The amplification constant K is chosen so as to compensate for the para-
meter a�1 and to satisfy the specifications of the steady-state error.

2. Using the bode diagrams of the transfer function Gð j!Þ of the system
under control, the angle ’m of G


c ð j!Þ is determined, which must be
added to the system in order to satisfy the phase margin specifications.

3. On the basis ’m, the parameter a of G

c ð j!Þ is determined by using Eq. (9.4-

10) or from Figure 9.10.
4. The parameter T is calculated in such a way that, for ! ¼ !m,

20 log jGð j!mÞj ¼ �0:5½20 log a�. Since !m is the geometric mean of the
corner frequencies 1=aT and 1=T , we can conclude that the parameter T
is calculated from the equation

T ¼
1

!m

ffiffiffi
a

p ð9:7-2Þ

5. Finally, we draw the compensated open-loop diagram GcðsÞGðsÞ. If the
value of the parameter T does not give satisfactory results we repeat the
above steps by giving new (usually bigger) values to the parameter ’m until
we get satisfactory results.

The above procedure for determining K and GcðsÞ, is illustrated in the example
that follows.

Example 9.7.1

Consider the sun-seeker control system shown in Figure 1.21 in Chap. 1. The block
diagram of this system is given in Figure 9.42. The transfer function of each block is
as follows:

G1ðsÞ ¼ Is; G2ðsÞ ¼ Ka; G3ðsÞ ¼
Ki

sðRaJmsþ RaBm þ KiKbÞ
; and

G4ðsÞ ¼ K4

Classical Control Design Methods 405

Figure 9.42 Block diagram of the sun-seeker orientation control system.



Note that the transfer function G3ðsÞ of the motor is given by Eq. (3.12-17) when
La ! 0. The open-loop transfer function GðsÞ will then be

GðsÞ ¼ G1ðsÞG2ðsÞG3ðsÞG4ðsÞ ¼
IsKaKiK4

sðRaJmsþ RaBm þ KiKbÞ

Typical values for the parameters of GðsÞ are approximately RaJm ¼ 1,
RaBm þ KiKb ¼ 10, and IsKiK4 ¼ 103. For simplicity let K ¼ Ka. Then GðsÞ takes
on the form

GðsÞ ¼
103K

sðsþ 10Þ

The transfer function HðsÞ of the closed-loop system will be

HðsÞ ¼
103K

s2 þ 10sþ 103K

Let the angular position of 
rðtÞ of the sun be given by


rðtÞ ¼ t

Since the Laplace transform of t is 1=s2, the output �yðsÞ becomes

�yðsÞ ¼ HðsÞ�rðsÞ ¼
103K

s2 þ 10sþ 103K

" #
1

s2

� �

The inverse Laplace transformation of �yðsÞ has the general form


yðtÞ ¼ C0 þ C1tþ C2e
��t sinð!tþ ’Þ

where C1 ¼ 1. The constant C0 is the velocity steady error which 
yðtÞ presents in
comparison to 
rðtÞ ¼ t (Figure 9.43). The constant C0 is calculated according to Eq.
(4.7-11), as follows:
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Figure 9.43 The steady-state error of the system of Figure 9.42 when 
rðtÞ ¼ t.



C0 ¼ essðtÞ ¼ lim
s!0

sEðsÞ ¼
1

lim
s!0

sGðsÞ
¼

1

100K

The design problem here is the following. We are given the closed-loop system
of Figure 9.44a. In this system we introduce a phase-lead controller with transfer
function GcðsÞ (Figure 9.44b). Determine the parameters of GcðsÞ, as well as the
system amplification constant K , such that the compensated closed-loop system of
Figure 9.44b satisfies the following:

(a) The velocity steady-state error, when 
rðtÞ ¼ t, is equal to or less than
0.01.

(b) The phase margin is larger than 408.

Solution

According to Eq. (4.7-11), the velocity error of the compensated closed-loop system
of Figure 9.44b is as follows

essðtÞ ¼ lim
s!0

s�rðsÞ

1þ GcðsÞGðsÞ

� �
; GcðsÞ ¼ a�1 1þ aTs

1þ Ts

� �

Therefore

essðtÞ ¼ lim
s!0

s
1

s2

� �

1þ a�1 1þ aTs

1þ Ts

� �
1000K

sðsþ 10Þ

� �
8>><
>>:

9>>=
>>; ¼

a

100K
� 10�2

Thus, we must have K � a. For simplicity, let K ¼ a. Then, the open-loop transfer
function becomes

GcðsÞGðsÞ ¼ a�1 1þ aTs

1þ Ts

� �
1000a

sðsþ 10Þ

� �
¼

1þ aTs

1þ Ts

� �
1000

sðsþ 10Þ

� �
¼ G


c ðsÞG


ðsÞ

where
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Figure 9.44 The sun-seeker orientation control system (a) without a controller (uncompen-
sated system) and (b) with a controller (compensated system).



G

c ðsÞ ¼

1þ aTs

1þ Ts

� �
and G


ðsÞ ¼
1000

sðsþ 10Þ

� �

From the above equation we can conclude that when the amplification constant K is
selected to be equal to a, then the amplifier compensates the amplitude damping
which is introduced by the factor a�1. Hence, the selection of the parameters a and T
is facilitated by working with the transfer functions G


c ðsÞ and G


ðsÞ, rather than the

transfer functions GcðsÞ and GðsÞ. This is the approach used in the sequel.
The critical frequency ! 0 (see Sec. 8.5.4 and Figure 8.40) for which the curve

20 log jG

ð j!Þj becomes 0 dB satisfies the relation jG


ð j! 0
Þj ¼ 1, i.e., satisfies the

relation

102

! 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:01Þð! 0Þ

2
þ 1

q ¼ 1 or ð! 0
Þ
2
½ð0:01Þð! 0

Þ
2
þ 1� ¼ 104

From the above equation and Figure 9.45, we find that ! 0
’ 31 rad/sec. For this

frequency we calculate the phase margin ’p for the uncompensated system. We have

’p ¼ 1808þ Gð j! 0
Þ ¼ 1808� 908� "’�1

ð0:1! 0
Þ ¼ 908� "’�13:1

¼ 908� 728 ¼ 188

Since this phase margin is too small, the controller G

c ðsÞ must introduce a positive

phase in the high frequencies. The phase-lead circuit achieves just that, as we have
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Figure 9.45 Phase and amplitude Bode diagrams of the uncompensated system G

ð j!Þ and

the compensated G

ð j!ÞG


c ð j!Þ system of Example 9.7.1.



already explained in Remark 9.4.1 of Sec. 9.4. To satisfy the specification for a phase
margin of 408, the phase of the controller transfer function

G

c ð j!Þ ¼

1þ j!aT

1þ j!T

should be 228.

Remark 9.7.1

Using the relation 20 log jG

ð j!mÞ ¼ �0:5½20 log a�, as mentioned in step 4 of the

phase-lead controller design approach presented at the beginning of this section, we
seek to secure that when ! ¼ !m, the amplitude of G


c ð j!ÞG


ð j!Þ is zero and its phase

is ’m (given by Eq. (9.4-9)). This, unfortunately, is not possible to achieve exactly for
the following reason: since !m > ! 0, the phase of G


ð j!Þ at the frequency !m is
different (smaller) than the phase at the frequency ! 0. This means that the correction
of 228 that we expect from G


c ð j!Þ to have in order to secure a phase margin of 408 at
the frequency !m, is no longer valid. To overcome this obstacle, we increase the angle
of 228 by an amount analogous to the slope of Gð j!Þ.

Using Remark 9.7.1, we increase the phase by 58, in which case the maximum
angle ’m of G


c ð j!Þ becomes ’m ¼ 278. Then, using Eq. (9.4-10) we can determine the
constant a. We have

sin ’m ¼ sin 278 ¼
a� 1

aþ 1
¼ 0:454

thus, a ¼ 2:663. Of course, we would have arrived at the same value for a if we had
used Figure 9.10.

The frequency !m is calculated from the equation
20 log jG


ð j!mÞj ¼ �0:5½20 log a� ¼ �4:25. From the plot of 20 log jG

ð j!Þj of figure

9.45 we obtain !m ¼ 40 rad/sec.
Using the values of a and !m we can specify the time constant T . The corner

frequencies 1=aT and 1=T of the Bode curve of G

ð j!Þ (Figure 9.11) are selected

such that the maximum angle ’m is equal to ’m ¼ G

c ð j!mÞ, where !m is the

geometrical mean of the two corner frequencies. In other words, we choose

!m ¼
1

T
ffiffiffi
a

p

Hence

T ¼
1

!m

ffiffiffi
a

p ¼ 0:0153

Consequently, the transfer function GcðsÞ of the phase-lead controller is given by

GcðsÞ ¼
1

a

� �
1þ aTs

1þ Ts

� �
¼

1

2:66

� �
1þ 0:04s

1þ 0:0153s

� �

Hence, the open-loop compensated transfer function becomes

GcðsÞGðsÞ ¼
1

2:663

� �
1þ 0:045s

1þ 0:0153s

� �� �
ð1000Þð2:663Þ

sðsþ 10Þ

� �
¼

2663ðsþ 24:5Þ

sðsþ 10Þðsþ 65:2Þ

The phase margin for the compensated system (see Figure 9.45) is about 438.
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In Figure 9.45 we show the phase and magnitude Bode plots of the compen-
sated and uncompensated system. In Figure 9.46, the same plots are shown using
Nichols diagrams. In Figure 9.47, we give the time response of those two systems
when the input is the unit step function. One can observe the improvement of the
transient response of the compensated system (shorter rise time and smaller over-
shoot). In Figure 9.48 the amplitude M of the two systems is given as a function of
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Figure 9.46 Nichols diagrams of the uncompensated and the compensated system of
Example 9.7.1.

Figure 9.47 Time response of the uncompensated and the compensated system of Example
9.7.1.



the frequency !, where the effect of the controller on the bandwidth is shown.
Finally, in Figure 9.49 the root locus of both systems is given, where the effect of
the phase-lead controller upon the root locus of the closed-loop system is clearly
shown.

9.8 DESIGN WITH PHASE-LAG CONTROLLERS

The phase-lag controllers are used to introduce a negative phase in the closed-
loop transfer function aimed at improving the overshoot and the relative stability
(note that, the rise time usually increases). The transfer function GcðsÞ of the
phase-lag circuit affects the closed-loop transfer function in the low frequencies.
This is easily seen if one considers the special case where GcðsÞ has the form
GcðsÞ ¼ 1þ Ki=s. This form of GcðsÞ is the phase-lag controller (Eq. (9.4-11)) as
a! 0. This special case is shown in Figure 9.13. Since this special case involves a
proportional and an integral term, we say that the phase-lag controller, as a! 0,
behaves like a PI controller. A simple way to realize GcðsÞ ¼ 1þ Ki=s is as in
Figure 9.50a. Note that the phase of Gcð j!Þ is constant and equal to �908. The
influence of GcðsÞ ¼ 1þ Ki=s on the closed-loop system performance is shown in
Figure 9.50b. The influence of the phase-lag controller GcðsÞ ¼ ð1þ aTsÞ=ð1þ TsÞ
on the closed-loop system performance is quite similar to the influence of
GcðsÞ ¼ 1þ Ki=s.

The main steps in determining the system amplification constant K of the open-
loop transfer function and of the parameter of the controller transfer function GcðsÞ
of the phase-lag controller, using the Bode diagrams, are the following:

1. The amplification constant K is chosen such as to satisfy the specifications
of the steady-state error.

2. From the Bode diagrams of Gð j!Þ we determine the phase and gain mar-
gins. Next, we find the frequency ! 0 corresponding to the specified phase
margin. By knowing the frequency ! 0 we can determine the value of the
parameter a of Gcð j!Þ such that the magnitude diagram of the open-loop
transfer function Gcð j!ÞGð j!Þ, for ! ¼ ! 0, becomes 0 dB, i.e., at the fre-
quency ! 0, we have 20 log jGcð j!

0
ÞGð j! 0

Þj ¼ 0. We choose Gcð j!Þ so that
the frequency ! 0 is bigger than the corner frequency 1=aT (see Figure
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Figure 9.48 The amplitude M of the uncompensated and the compensated system of

Example 9.7.1.



9.14), in which case 20 log jGcð j!
0
Þj ¼ �20 log a. Thus, the parameter a

may be calculated according to the relation

20 log jGcð j!
0
Þj ¼ �20 log a ¼ �20 log ajGð j! 0

Þj

or according to the relation

a ¼ 10�
20 log jGð j! 0

Þj

20 ð9:8-1Þ

3. The selection of the parameter T is done by approximation: usually, it is
selected so that the highest corner frequency 1=aT is 10% of the new
critical frequency ! 0, i.e., we choose

1

aT
¼

! 0

10
ð9:8-2Þ

The choice of T is made so that the phase of GcðsÞ does not affect the phase
of Gð j!Þ at the frequency ! 0.

4. Finally, we construct the diagram of the compensated open-loop transfer
function GcðsÞGðsÞ. If the values of the parameters a and T do not give
satisfactory results, we repeat step 2 by giving new (usually smaller) values
to the critical frequency ! 0 until we get satisfactory results.
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Figure 9.49 The root locus of (a) the uncompensated and (b) the compensated system of
Example 9.7.1.



Example 9.8.1

Design a phase-lag controller that it satisfies the design specifications of the system of
Example 9.7.1.

Solution

Consider Figure 9.44b. For the present example, the controller GcðsÞ is the phase-lag
controller, whose transfer function has the form

GcðsÞ ¼
1þ aTs

1þ Ts
; a < 1

The steady-state velocity error requirement is met by appropriately choosing
the amplification constant K using Eq. (4.7-11) as follows:

essðtÞ ¼ lim
s!0

s�iðsÞ

1þ GcðsÞGðsÞ

� �
¼ lim

s!0

s
1

s2

� �

1þ
1þ aTs

1þ Ts

� �
1000K

sðsþ 10Þ

� �
8>><
>>:

9>>=
>>; ¼

1

100K
� 10�2

Hence, K � 1:
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Figure 9.50 Closed-loop system with phase-lag controller and the effect of the controller on

the Nyquist diagram of the closed-loop system. (a) Closed-loop system with controller
GcðsÞ ¼ 1þ ðKi=sÞ; (b) Nyquist diagram of Gð j!Þ, Gcð j!Þ, and Gcð j!ÞGðsÞ.



The Bode diagrams of Gð j!Þ are given in Figure 9.51. From these diagrams we
can conclude that at the frequency ! ¼ 14 rad/sec the phase of Gð j!Þ is 408. The
frequency ! 0 is usually chosen to be smaller than ! ¼ 14 rad/sec for the reasons given
in the following remark.

Remark 9.8.1

For the case of the phase-lead circuits (as mentioned in Remark 9.7.1) there are
certain difficulties in selecting !m for the appropriate maximum angle ’m. Similar
difficulties arise for the case of phase-lag circuits in selecting ! 0 which will lead to the
appropriate parameter a. This difficulty is handled in the same way as in Remark
9.7.1. Specifically, in place of the frequency ! 0, we choose a smaller frequency,
analogous to the slope of the magnitude diagram of Gð j!Þ, because the critical
frequency of Gcð jÞGð j!Þ will be smaller than the critical frequency ! 0 of Gð j!Þ.
This is because in Gcð j!ÞGð j!Þ the factor Gcð j!Þ shifts the magnitude plot of
Gð j!Þ downwards.

Using Remark 9.8.1 we select ! 0 a bit smaller than the value 14 rad/sec. For
example, let ! 0

¼ 10 rad/sec. Then, the magnitude of Gð j!Þ at the frequency
! 0

¼ 10 rad/sec is about 20 dB. Hence the constant a, according to Eq. (9.8-1), is
given by

a ¼ 10�
20
20 ¼ 0:1

The time constant T is calculated according to Eq. (9.8-2). We have

1

aT
¼

! 0

10
¼

10

10
¼ 1

414 Chapter 9

Figure 9.51 Bode diagrams of phase and magnitude plots of the uncompensated and the
compensated system of Example 9.8.1.



Hence, T ¼ 10.
The transfer function GcðsÞ of the phase-lag controller has the form

GcðsÞ ¼
1þ aTs

1þ Ts
¼

1þ s

1þ 10s

The open-loop transfer function of the compensated system becomes

GcðsÞGðsÞ ¼
100ðsþ 1Þ

sðsþ 0:1Þðsþ 10Þ

The phase margin of the compensated system (see Figure 9.51) is close to 508. This
margin is about 108 bigger than the required margin of 408, and it is therefore very
satisfactory.

In Figure 9.52 the Nichols diagrams of Gð j!Þ and Gcð j!ÞGð j!Þ are given. In
Figure 9.53 we present the time response of these two systems when the input is the
unit step function, from which it is clear that the compensated system has a smaller
overshoot but higher rise time. The increase in the rise time is because the bandwidth
of the compensated system has decreased.

9.9 DESIGN WITH PHASE LAG-LEAD CONTROLLERS

The phase lag-lead controllers are used in cases where a phase-lead or a phase-lag
controller alone cannot satisfy the design specifications. For the selection of the
appropriate phase lag-lead controller there is no systematic method. For this reason,
it is usually done by successive approximations. Note that a special form of the
transfer function GcðsÞ of the phase lag-lead networks is the PID controller, which
has been presented in Sec. 9.6.
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Figure 9.52 Nichols diagrams of the uncompensated and the compensated system of
Example 9.8.1.



Example 9.9.1

Consider a system with transfer function

GðsÞ ¼
K

sð1þ 0:1sÞð1þ 0:4sÞ

Find a phase lag-lead controller such as to satisfy the following closed-loop specifi-
cations:

(a) Velocity constant Kv ¼ 100 sec�1

(b) Phase margin ’p � 458.

Solution

Using the definition (4.7-3) of the velocity constant Kv yields

Kv ¼ lim
s!0

½sGðsÞ� ¼ K

Hence, K ¼ 100 sec�1.
The transfer function GcðsÞ of the phase lag-lead controller is given by Eq. (9.4-

12), i.e., by the equation

GcðsÞ ¼
1þ bT2s

1þ T2s

� �
1þ aT1s

1þ T1s

� �
¼ G1ðsÞG2ðsÞ; with ab ¼ 1

The determination of GcðsÞ will be done in two steps. First, we determine the para-
meters of G1ðsÞ and, secondly, the parameters of G2ðsÞ, as follows.

Step 1

Determination of G1ðsÞ. We draw the Bode diagrams of Gð j!Þ (Figure 9.54). The
critical frequency ! 0 is ! 0

¼ 14 rad/sec. Assume that we want to move ! 0 from
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Figure 9.53 Time response of the uncompensated and the compensated system of Example
9.8.1.



! 0
¼ 14 rad/sec to the new position ! 0

¼ 5 rad/sec using only G1ðsÞ. Since
20 log jGð j5Þj ¼ 20 dB and using Eq. (9.8-1), the constant b is given by

b ¼ 10�
20
20 ¼ 0:1

To find T2, we use Eq. (9.8-2), in which case we have

1

bT2

¼
5

10

and, thus, T2 ¼ 20. Hence G1ðsÞ has the form

G1ðsÞ ¼
1þ 2s

1þ 20s

Step 2

Determination of G2ðsÞ. The parameter a is calculated by the constraint relation
ab ¼ 1, which yields a ¼ 10. The maximum angle which corresponds to a ¼ 10 is
found by the relation

sin ’m ¼
a� 1

aþ 1
¼

9

11
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Figure 9.54 The Bode diagrams of the magnitude and phase plots of the uncompensated
and the compensated system of Example 9.9.1.



which yields ’m ¼ 54:98. The frequency !m is calculated by the relation
20 log jGð j!mÞ ¼ �0:5½20 log a� ¼ �10 dB. From the diagram 20 log jGð j!Þj of
Figure 9.54 we get that !m ¼ 9 rad/sec. Finally, from relation (9.7-2), the parameter
T1 may be determined as follows:

T1 ¼
1

!m

ffiffiffi
a

p ¼
1

9
ffiffiffiffiffi
10

p ¼
1

28:46

Therefore, the transfer function G2ðsÞ has the form

G2ðsÞ ¼
1þ 0:35s

1þ 0:035s

Finally, GcðsÞ has the form

GcðsÞ ¼ G1ðsÞG2ðsÞ ¼
1þ 0:35s

1þ 0:035s

� �
1þ 2s

1þ 20s

� �

The open-loop transfer function of the compensated system becomes

GcðsÞGðsÞ ¼
2500ðsþ 2:86Þðsþ 0:5Þ

sðsþ 10Þðsþ 2:5Þðsþ 28:6Þðsþ 0:05Þ

In Figure 9.54 one can observe that the phase margin of the compensated system is
about 508. Hence, both specifications of the problem are satisfied.

9.10 DESIGN WITH CLASSICAL OPTIMAL CONTROL METHODS

Generally speaking, the ‘‘classical’’ optimal control approach aims to determine the
parameters of the controller such as to minimize a specific cost function for a
particular type of input signal. More specifically, the classical optimal control
problem is formulated as follows. Given a linear time-invariant SISO system,
described by the transfer function GðsÞ, apply output feedback as shown in Figure
9.55. The cost function J may have several forms. In this section we consider the two
cost functions Je and Ju, where

Je ¼

ð1
0

e2ðtÞ dt ð9:10-1Þ

Ju ¼

ð1
0

u2ðtÞ dt ð9:10-2Þ

418 Chapter 9

Figure 9.55 Block diagram of classical optimal control system.



The cost function Je is called the integral square error (ISE) and expresses the
specifications of the closed-loop system that refer to features such as overshoot,
rise time, and relative stability. The cost function Ju is called the integral square
effort and expresses the energy that is consumed by the control signal in performing
the specified control action.

The control design problem considered in this chapter is to find the appropriate
parameters of the controller GcðsÞ in Figure 9.55 such that one of the two cost
functions, Je or Ju, or a combination of both, is a minimum.

There are two general categories of classical optimal control problems: the case
where the structure of the controller is free and the case where the structure of the
controller is fixed. Both categories are studied in the material that follows.

It is noted that in Chap. 11 we present an introduction to ‘‘modern’’ optimal
control approach. In this case, the system under control is described in state space
and the derivation of the optimal controller is based on very advanced mathematical
techniques, such as the calculus of variations, the maximum principle, and the prin-
ciple of optimality. Before we present these modern techniques, we thought that it is
worthwhile to present in this chapter, in conjunction with other classical control
techniques that we have already presented, the ‘‘classical’’ optimal control techni-
ques that were founded before the modern theories of optimal and stochastic control
appeared. The classical control methods that we are about to present are useful in
practice and are helpful in understanding the modern optimal control methods that
follow in Chap. 11.

9.10.1 Free Structure Controllers

In this case there are no restrictions on the form of the type of the controller. More
specifically, the design problem for the present case is the following: find a controller
which minimizes Je (or JuÞ, withJu ¼ K (or Je ¼ K), where K is a constant.

Assume that we wish to minimize Je, while Ju ¼ K . To solve the problem, we
make use of the Lagrange multiplier method. This method begins by expressing Je
and Ju as a single cost criterion, as follows

J ¼ Je þ �Ju ð9:10-3Þ

where � is the Lagrange multiplier. The minimization of J will be done in the s-
domain by using Parseval’s theorem. Parseval’s theorem relates a function f ðtÞ
described in the time domain with its complex frequency counterpart FðsÞ, as fol-
lows: ð1

0

f 2ðtÞ dt ¼
1

2�j

ð j1
�j1

FðsÞFð�sÞ ds ð9:10-4Þ

where FðsÞ is the Laplace transformation of f ðtÞ. The theorem is valid under the
condition that FðsÞ has all its poles in the left-hand side of the complex plane.

Using Eqs (9.10-1) and (9.10-2), the cost function (9.10-3) may be written as

J ¼ Je þ �Ju ¼

ð1
0

½e2ðtÞ þ �u2ðtÞ� dt ð9:10-5Þ

If we apply Parseval’s theorem (9.10-4) and (9.10-5), the cost function J becomes
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J ¼
1

2�j

ð j1
�j1

½EðsÞEð�sÞ þ �UðsÞUð�sÞ� ds ð9:10-6Þ

From Figure 9.55, we have

EðsÞ ¼ RðsÞ � GðsÞUðsÞ ð9:10-7Þ

Hence, the cost function J takes on the form

J ¼
1

2�j

ð j1
�j1

�
½RðsÞ � GðsÞUðsÞ�½Rð�sÞ � Gð�sÞUð�sÞ� þ �UðsÞUð�sÞ

�
ds

ð9:10-8Þ

The cost function J is a function of UðsÞ and �. To study the maxima and
minima of J we apply the method of calculus of variations (see also Subsec. 11.2.1).
To this end, assume that UðsÞ is a rational function of s, which is given by the
equation

UðsÞ ¼ ÛUðsÞ þ "R1ðsÞ ¼ ÛUðsÞ þ �UðsÞ ð9:10-9Þ

where ÛUðsÞ is the optimal control signal sought, " is a constant, R1ðsÞ is any rational
function whose poles lie in the left-half complex plane, and �UðsÞ is the change of
UðsÞ about the optimal control signal ÛUðsÞ. If we substitute Eq. (9.10-9) into Eq.
(9.10-8), and after some appropriate grouping, we have

J ¼ Je þ �Ju ¼ J1 þ J2 þ J3 þ J4 ð9:10-10Þ

where

J1 ¼
1

2�j

ð j1
�j1

½RR� RGÛ� RGÛU þ �ÛUÛU þ GGÛUÛU� ds ð9:10-11aÞ

J2 ¼
1

2�j

ð j1
�j1

½�ÛU � GRþ GGÛ �"R1 ds ð9:10-11bÞ

J3 ¼
1

2�j

ð j1
�j1

½�ÛU � GRþ GGÛU�"R1 ds ð9:10-11cÞ

J4 ¼
1

2�j

ð j1
�j1

½�þ GG�"2R1R1 ds ð9:10-11dÞ

where, for simplicity, we use G instead of GðsÞ, G instead of Gð�sÞ, U instead of UðsÞ,
U instead of Uð�sÞ, etc.

Next, we calculate the linear part �J of the first differential of J. We observe the
following with regard to the factor "R1: the factor "R1 does not appear in J1, it
appears to the first power in J2 and J3, and it appears to higher (second) power in J4.
Furthermore, from Eqs (9.10-11b and c) we have that J2 ¼ J3, which can be easily
proven if we substitute s by �s and vice versa. Consequently, �J becomes

�J ¼ J2 þ J3 ¼
2

2�j

ð j1
�j1

½�ÛU � GRþ GGÛU�"R1 ds ð9:10-12Þ

A necessary condition for J to be a minimum for UðsÞ ¼ ÛUðsÞ is that

�J ¼ 0 ð9:10-13Þ
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For Eq. (9.10-13) to be valid for every "R1, the function XðsÞ, where

XðsÞ ¼ �ÛU � GRþ GGÛU ¼ ½�þ GG�ÛU � GR ð9:10-14Þ

must satisfy the following condition:

�J ¼
2

2�j

ð j1
�j1

XðsÞ"R1 ds ¼ 0 ð9:10-15Þ

We assume that the control signal uðtÞ is bounded. Then, it follows that the function
R1ðsÞ has all its poles in the left-half complex plane. This means that R1 ¼ R1ð�sÞ
will have all its poles in the right-half complex plane. A sufficient condition for
�J ¼ 0, independently of R1, is that the function XðsÞ has all its poles in the right-
half complex plane and that the integration should be performed around the left-half
complex plane. Indeed, in this case, if we integrate going from �j1 to j1 and
passing only through the left-half complex plane, the integral in Eq. (9.10-15) will
become zero. Next, define

YðsÞYð�sÞ ¼ YY ¼ �þ GG ð9:10-16Þ

Since the function �þ GG is symmetrical about the j!-axis, it follows that the
function YðsÞ has poles and zeros only in the left-half complex plane, while Yð�sÞ
has poles and zeros only on the right-half complex plane. We can express these
remarks by the following definitions:

Y ¼ ½�þ GG�þ ð9:10-17aÞ

Y ¼ ½�þ GG�� ð9:10-17bÞ

The factorization of the function �þ GG in the sense of definitions (9.10-17a and b)
is called spectral factorization. Hence, XðsÞ may be written as

X ¼ YYÛU � GR or
X

Y
¼ YÛU �

GR

Y

or

X

Y
þ

GR

Y

� �
�

¼ YÛU �
GR

Y

� �
þ

ð9:10-18Þ

where

GR

Y

� �
þ

¼
the part of the partial fraction expansion of GR=Y
whose poles lie in left-half complex plane

GR

Y

� �
�

¼
the part of the partial fraction expansion of GR=Y
whose poles lie in right-half complex plane

The left-hand side of Eq. (9.10-18) involves terms whose poles lie only in the right-
half complex plane, while the right-hand side involves terms whose poles lie only in
the left-half complex plane. Hence, in order for Eq. (9.10-18) to hold, both sides must
be equal to zero. This yields

ÛU ¼
1

Y

GR

Y

� �
þ

ð9:10-19Þ
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Equation (9.10-19) is the optimal control signal. However, this signal is a function of
the parameter �. The value of the parameter � can be found from the constraint
Ju ¼ K, i.e., from the equation

Ju ¼
1

2�j

ð j1
�j1

ÛUðsÞÛUð�sÞ dsÞ ¼ K ð9:10-20Þ

To facilitate the calculations of the integral (9.10-20), define

In ¼
1

2�j

ð j1
�j1

MðsÞMð�sÞ ds ¼
1

2�j

ð j1
�j1

cðsÞcð�sÞ

dðsÞdð�sÞ

� �
ds

where

cðsÞ ¼ cn�1s
n�1

þ � � � þ c1sþ c0 and

dðsÞ ¼ dns
n
þ dn�1s

n�1
þ � � � þ d1sþ d0

The integrals I1, I2, I3, and I4, are given in Table 9.3. To derive the general expression
of In is a formidable task.

The transfer function HðsÞ of the optimal closed-loop system is given by

HðsÞ ¼
YðsÞ

RðsÞ
¼
GðsÞ

RðsÞ
ÛUðsÞ ð9:10-21Þ

Using Eq. (9.10-21) we can determine the transfer function GcðsÞ of the optimal
controller. Indeed, if for example the closed-loop system is as shown in Figure
9.56, the optimal controller has the form

GcðsÞ ¼
1

GðsÞ

HðsÞ

1�HðsÞ

� �
ð9:10-22Þ
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Table 9.3 The Integrals I1, I2, I3, and I4

I1 ¼
c20

2d0d1

I2 ¼
c21d0 þ c20d2
2d0d1d2

I3 ¼
c21d0d1 þ ðc21 � 2c0c2Þd0d3 þ c21d2d3

2d0d3ð�d0d3 þ d1d2Þ

I4 ¼
c23ð�d

2
0d3 þ d0d1d2Þ þ ðc22 � 2c1c3Þd0d1d4
2d0d3ð�d0d

2
3 � d21d

2
4 þ d1d2d3Þ

þ
ðc21 � 2c0c2Þd0d3d4 þ c20ð�d1d

2
4 þ d2d3d4Þ

2d0d3ð�d0d
2
3 � d21d

2
4 þ d1d2d3Þ



Remark 9.10.1

The results of the present subsection may also be applied for the case of MIMO
systems. However, this extension involves great difficulties, particularly in dealing
with the problem of the spectral factorization.

Example 9.10.1

Consider the closed-loop system of Figure 9.56, where GðsÞ ¼ 1=s2 and RðsÞ ¼ 1=s.
Find the transfer function GcðsÞ of the optimal controller such that Je ¼ minimum
and Ju � 1.

Solution

We have

�þ GG ¼ �þ
1

s2

� �
1

ð�sÞ2

� �
¼

�s4 þ 1

s4

To factorize the function �þ GG, we assume that the output YðsÞ has the form
YðsÞ ¼ ½a2s

2
þ a1sþ a0�=s

2. Then

YðsÞYð�sÞ ¼
a2s

2
þ a1sþ a0
s2

" #
a2s

2
� a1sþ a0
s2

" #
¼
a22s

4
� ða21 � 2a0a2Þs

2
þ a20

s4

From Eq. (9.10-16), we have

�s4 þ 1 ¼ a22s
4
� ða21 � 2a0a2Þs

2
þ a20

Equating the coefficients of like powers of s of both sides in the above equation, we
obtain � ¼ a22, a

2
1 � 2a0a2 ¼ 0 and a20 ¼ 1. We finally obtain a0 ¼ 1, a1 ¼

ffiffiffi
2

p
�, and

a2 ¼ �2, where � ¼ �4. Hence,

YðsÞ ¼
�2s2 þ

ffiffiffi
2

p
�sþ 1

s2
and Yð�sÞ ¼

�2s2 �
ffiffiffi
2

p
�sþ 1

s2

We also have

GR

Y
¼

1

s2

� �
1

s

� �
�2s2 �

ffiffiffi
2

p
�sþ 1

s2

¼
1

s½�2s2 �
ffiffiffi
2

p
�sþ 1�

Therefore
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Figure 9.56 Block diagram with optimal controller.



GR

Y

� �
þ

¼
1

s

where we have considered that the pole s ¼ 0 lies in the left-half complex plane.
Using Eq. (9.10-19), we obtain

ÛUðsÞ ¼
s

�2s2 þ
ffiffiffi
2

p
�sþ 1

Therefore, we have determined the optimal control signal ÛUðsÞ, as a function of
� ¼ �4. To find �, we use Eq. (9.10-20) with K ¼ 1. This yields

Ju ¼
1

2�j

ð j1
�j1

s

�2s2 þ
ffiffiffi
2

p
�sþ 1

� �
�s

�2s2 �
ffiffiffi
2

p
�sþ 1

� �
ds

¼
c21d0 þ c20d2
2d0d1d2

¼
1

2
ffiffiffi
2

p
�3

� 1

where

� ¼
1

2
ffiffiffi
2

p

� �1=3
; � ¼

1

2
ffiffiffi
2

p

� �4=3
; and UðsÞ ¼

2

s2 þ 2sþ 2

where for the calculation of Ju use was made of Table 9.3. Finally, the transfer
function of GcðsÞ of the optimal controller has the form

GcðsÞ ¼
1

GðsÞ

HðsÞ

1�HðsÞ

� �
¼ s2

1

s
ÛUðsÞ

1�
1

s
ÛUðsÞ

2
64

3
75 ¼

s

�2sþ
ffiffiffi
2

p
�
¼

2s

sþ 2

9.10.2 Fixed Structure Controllers

In this case, the transfer function GcðsÞ of the controller has a preassigned fixed
structure. For example, for the closed-loop system of Figure 9.56, the following
specific form for GcðsÞ may be assigned:

GcðsÞ ¼
bms

m
þ bm�1s

m�1
þ � � � þ b1sþ b0

sn þ an�1s
n�1 þ � � � þ a1sþ a0

; m � n ð9:10-23Þ

The problem here is to find the appropriate values of the parameters a0; a1; . . . ; an�1;
b0; b1; . . . ; bm of GcðsÞ which minimize a cost function J. This method is called the
parameter optimization method and is actually a minimization problem of a function
involving many variables. To illustrate the method, three examples are presented
which show the procedure involved. The last example is of practical interest because
it refers to the optimal control of a position control system.

Example 9.10.2

Consider the closed-loop system of Figure 9.57. Find the value of K such that the
cost function J ¼ Je þ �Ju is a minimum when rðtÞ ¼ 1.

Solution

The error EðsÞ and the signal UðsÞ are given by
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EðsÞ ¼
1

sþ K
and UðsÞ ¼ KEðsÞ ¼

K

sþ K

Therefore

J ¼ Je þ �Ju ¼
1

2�j

ð j1
�j1

EðsÞEð�sÞ dsþ �
K2

2�j

ð j1
�j1

EðsÞEð�sÞ ds

¼
1

2K
þ �

K2

2K
¼

1

2K
þ
�K

2

The value of K which minimizes J can be found using well-known techniques. For
example, take the partial derivative of J with respect to K to yield

@J

@K
¼ �

1

2K2
þ
�

2
¼ 0

Solving the above equation yields that J is minimum when K ¼ K̂K ¼ ��1=2.

Example 9.10.3

Consider the block diagram of Figure 9.58. The transfer functions GðsÞ and GcðsÞ are
given by

GðsÞ ¼
K

s2ðTsþ 1Þ
and GcðsÞ ¼ 1þ Kds

Find the value of the constant Kd which minimizes Je when rðtÞ ¼ 1.

Solution

The error EðsÞ is given by

EðsÞ ¼ RðsÞ � YðsÞ

Also, we have that
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Figure 9.57 Block diagram of Example 9.10.2.

Figure 9.58 Block diagram of Example 9.10.3.



YðsÞ ¼
GðsÞ

1þ GðsÞGcðsÞ

� �
RðsÞ

Therefore

EðsÞ ¼ RðsÞ � YðsÞ ¼
1þ GðsÞGcðsÞ � GðsÞ

1þ GðsÞGcðsÞ

� �
RðsÞ

Substitute the expressions of GðsÞ and of GcðsÞ in the above relation to yield

EðsÞ ¼
Ts2 þ sþ KKd

Ts3 þ s2 þ KKdsþ K

Using definition (9.10-1) and the Parseval’s theorem, the cost function Je becomes

Je ¼

ð1
0

e2ðtÞ dt ¼
1

2�j

ð j1
�j1

EðsÞEð�sÞ ds ¼
1

2
Kd þ

1

KðKd � TÞ

� �

where use was made of Table 9.3. The value Kd for which Je is minimum can be
found using well-known techniques. For example, take the partial derivative of Je
with respect to Kd to yield

@Je
@Kd

¼
1

2
1�

1

KðKd � TÞ2

� �
¼ 0

The above equation gives

Kd ¼ K̂Kd ¼ T � K�1=2

It is noted that the optimal value K̂Kd of Kd, as K ! 1, becomes K̂Kd ¼ T . In this case
GcðsÞ becomes GcðsÞ ¼ 1þ Ts. In other words, the zero of GcðsÞ coincides with one of
the poles of GðsÞ. As a result, the closed-loop system is of second order.

Example 9.10.4

Consider the position control system described in Subsec. 3.13.2 (Figure 3.51). Find
the values of the unspecified parameters of the closed-loop system such as to mini-
mize the cost function

J ¼

ð1
0

½
eðtÞ�
2 dt

For simplicity, let La ’ 0 and Kp ¼ 1.

Solution

As we have already shown in subsec. 3.13.2, when La ’ 0 and Kp ¼ 1, then the block
diagram 3.51c of the closed-loop system is simplified as shown in Figure 9.59. The
forward-path transfer function GðsÞ reduces to

GðsÞ ¼
K

As2 þ Bs
; where K ¼

KaKiN

Ra

; A ¼ J
m; and

B ¼ B

m þ

KiKb

Ra

Let the input 
rðtÞ of the system be the unit step function, i.e., let 
rðtÞ ¼ 1. In GðsÞ, all
the unspecified parameters K , A, and B of the system are to be chosen so as to
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minimize J. To determine the values of K , A, and B which minimize J, use the
Parseval’s theorem given by relation (9.10-4). For this example, we haveð1

0

½
eðtÞ�
2 dt ¼

1

2�j

ð j1
�j1

�eðsÞ�eð�sÞ ds

It can be easily shown that

�eðsÞ ¼
As2 þ Bs

As2 þ Bsþ K

" #
�rðsÞ

Since 
rðtÞ ¼ 1, or �rðsÞ ¼ 1=s, the above equation becomes

�eðsÞ ¼
Asþ B

As2 þ Bsþ K

Since �eðsÞ is of the form cðsÞ=dðsÞ, where cðsÞ ¼ c0 þ c1s and dðsÞ ¼ d0 þ d1sþ d2s
2,

the calculation of the Parseval’s integral can be done by using Table 9.3, where
c0 ¼ B, c1 ¼ A, d0 ¼ K , d1 ¼ B and d2 ¼ A. using Table 9.3 yields

I2 ¼
c21d0 þ c20d2
2d0d1d2

¼
A2K þ B2A

2KBA
¼
AK þ B2

2KB

Hence

J ¼

ð1
0

½
eðtÞ�
2 dt ¼

AK þ B2

2KB

Clearly, the above cost function J is an analytical expression of the cost function J in
terms of the parameters K , A, and B of the closed-loop system.

We will further investigate the above expression for J in terms of K , A, and B,
wherein we distinguish the following four interesting cases:

Case 1

Let K and B be constants. Then, for J to be minimum we must have A ¼ 0, in which
case J ¼ B=2K .

Case 2

A more realistic approach is to assume that K and A are constant. Then, J becomes
maximum with respect to B when @J=@B ¼ 0, which gives B ¼

ffiffiffiffiffiffiffi
KA

p
. Returning to

Figure 9.59, we may write the differential equation of the closed-loop system as
follows:
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Figure 9.59 Simplified block diagram of the servomechanism.



d2
yðtÞ

dt2
þ 2�!n

d
yðtÞ

dt
þ !2

n
yðtÞ ¼ !2
n
rðtÞ

where

� ¼
B

2
ffiffiffiffiffiffiffi
KA

p and !n ¼

ffiffiffiffi
K

A

r

Clearly, in the present case where B ¼
ffiffiffiffiffiffiffi
KA

p
, we have � ¼ 0:5. That is, we have the

very interesting result that the value of the damping ratio � ¼ 0:5.

Case 3

Let A and B be constants. The parameter K is strongly influenced by the amplifica-
tion constant Ka of the amplifier. If we differentiate J with respect to K , then the
derivative tends to zero as K ! 1. For K ! 1, we obtain

lim
K!1

J ¼
A

2B

Case 4

One more useful case is to limit the values of K and B such that KB ¼ C, where C is a
cosntant. Then, since K ¼ C=B, the cost function J becomes

J ¼
ACB�1

þ B2

2C

The partial derivative @J=@B is zero when 2B3
¼ AC ¼ AKB. Hence

B ¼

ffiffiffiffiffiffiffi
KA

2

r

In this case the damping ratio � ¼ ½2
ffiffiffi
2

p
�
�1

ffi 0:353.
Finally, it is noted that by using the above results, one may study other com-

binations of K , A, and B.

9.11 PROBLEMS

1. For the control system shown in Figure 9.60, solve the design problems given in
Table 9.4. Furthermore:

(a) draw the Bode and the Nichols diagrams
(b) plot the amplitudes M and the step responses of the systems.
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2. The closed-loop block diagram for controlling the altitude of a space vehicle is
given in Figure 9.61. Determine a phase-lead controller so that for the closed-
loop system the settling time (2%) is Ts � 4 sec and the maximum percent over-
shoot is less than 20%.

3. Consider the case of controlling the angle 
 of the robot arm shown in Figure
9.62a. Determine a phase-lag network so that Kv ¼ 20 sec�1 and � ¼ 0:707 for
the compensated closed-loop system shown in Figure 9.62b.

4. The open-loop transfer function of a position control servomechanism is given
by

GðsÞFðsÞ ¼
K

sð0:1sþ 1Þð0:2sþ 1Þ

Design a phase lag-lead compensator such that for the compensated closed-loop
system the velocity error constant is Kv ¼ 30 sec�1, the phase margin is ’p ffi 508,
and the bandwidth BW ffi 12 rad/sec.

5. Consider the orientation control system of a satellite described in Subsec. 3.13.7
and Example 9.6.1, where the controller is a PD controller and Kt ¼ Kb ¼ J ¼ 1.
Determine the parameters of the PD controller such that for the closed-loop
system � ¼ 0:7 and !n ¼ 2.
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Table 9.4

GðsÞ Compensator type
Design

requirements

1
1

sð1þ 0:2sÞ Phase-lead controller
Kv ¼ 4 sec�1

’p � 408

2
1

sð1þ 0:1sÞ Phase-lag controller
Kv ¼ 10 sec�1

’p � 408

3
1

s2ð1þ 0:2sÞ Phase-lead controller
Ka ¼ 4 sec�2

Mp � 2

4
1

ðsþ 0:5Þðsþ 0:1Þðsþ 0:2Þ Phase-lag controller
Kp ¼ 1

Mp � 0:7

Figure 9.61



6. Consider the position servomechanism shown in Figure 9.63, where a PI con-
troller is used. Determine the parameters of the PI controller for a 25% over-
shoot.

7. Consider the system shown in Figure 9.64. Determine the parameters of the PI
controller, such that the poles of the closed-loop system are �2 and �3.

8. Consider the system shown in Figure 9.65. Determine the parameters of the PID
controller, such that the poles of the closed-loop system are �2þ j, �2� j, and
�5.

9. Consider the system shown in Figure 9.66. Using the Ziegler–Nichols stability
limit method, determine the parameters of the PID controller in order to achieve
an overshoot of 25%.
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10. Consider the system with transfer function

GðsÞ ¼
1

ðsþ 1Þð0:2sþ 1Þð0:05sþ 1Þð0:01sþ 1Þ

Draw the step response of the system and determine the parameters of the PID
controller using the Ziegler–Nichols method.

11. Find an active-circuit realization for each of the controllers found in Problems 4,
5, 6, and 7.

12. Consider the system shown in Figure 9.67, where rðtÞ ¼ 1. Find the transfer
functions of the controllers GcðsÞ and FðsÞ so that

Je ¼

ð1
0

e2ðtÞ dt is minimized, while Ju ¼

ð1
0

u2ðtÞ dt � 2:

13. The orientation control system of a space telescope is shown in Figure 9.68.
Given that RðsÞ ¼ 0:5=s, determine the optimal control signal UðsÞ, the optimal
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linear controller, and the optimal closed-loop transfer function HðsÞ, so that
JeðtÞ ¼

Ð1
0 e2ðtÞ dt is minimized, while Ju ¼

Ð1
0 u2ðtÞ � 2:5.

14. For the system shown in Figure 9.69, find the value of the parameter T for which
the cos Je ¼

Ð1
0 e2ðtÞ dt is minimized for rðtÞ ¼ 1.
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10
State-Space Design Methods

10.1 INTRODUCTION

This chapter presents an introduction to certain modern state-space control design
methods. The specific methods presented are distinguished into two categories: the
algebraic control methods and the observer design methods. There are many other
interesting modern control design methods presented in the remainder of this book:
optimal control (Chap. 11), digital control (Chap. 12), system identification (Chap.
13), adaptive control (Chap. 14), robust control (Chap. 15), and fuzzy control (Chap.
16). All these modern control methods are of paramount theoretical and practical
importance to the control engineer. It should be mentioned that there are several
control designmethods—such as geometrical control, hierarchical control, and neural
control—that are not presented here, since they are beyond the scope of this book.

Algebraic control refers to a particular category of modern control design
problems wherein the controller has a prespecified structure. In this case, the design
problem reduces to that of determining the controller parameters such that certain
closed-loop requirements are met. This is not achieved via minimization of some cost
functions (as is done, for example, in optimal control in Chap. 11), but via the
solution of algebraic equations. It is for this reason that these techniques are called
algebraic control design techniques. These algebraic techniques are used to solve
many interesting practical control problems, such as pole placement, input–output
decoupling, and exact model matching. These three problems are studied in Secs
10.3, 10.4, and 10.5, respectively. In Sec. 10.2 an overview of the structure of state
and output feedback laws is given, which are subsequently used for the study of the
three aforementioned algebraic control problems.

State observers are used in order to produce a good estimate of the state vector
xðtÞ. It is well known that, in practice, most often not all state variables of a system
are accessible to measurement. This obstacle can be circumvented by the use of state
observers which yield a good estimate x̂xðtÞ of the real state vector xðtÞ, provided that
a mathematical model of the system is available. Estimating x̂xðtÞ makes it possible to
use state feedback techniques to solve many important control problems, such as
pole assignment, input–output decoupling, and model matching, presented in Secs
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10.3–10.5; optimal regulator and optimal servomechanism, presented in Chap. 11;
and many others.

10.2 LINEAR STATE AND OUTPUT FEEDBACK LAWS

In designing control systems using algebraic techniques, we usually apply linear state
or output feedback.

1 State Feedback Controllers

Consider the linear time-invariant system

�x ¼ Axþ Bu ð10:2-1aÞ

y ¼ Cx ð10:2-1bÞ

where x 2 R
n, u 2 Rm, y 2 Rp and the matrices A, B, and C are of appropriate

dimensions. Let the controller have the linear state feedback form

u ¼ FxþGr ð10:2-2Þ

where r 2 Rm
�

is a new vector with m� inputs and F and G are the unknown con-
troller matrices with dimensions m� n and m�m�, respectively (Figure 10.1).
Substituting Eq. (10.2-2) in Eq. (10.2-1) yields the closed-loop system

�x ¼ ðAþ BFÞxþ BGr ð10:2-3aÞ

y ¼ Cx ð10:2-3bÞ

The control problem here is to determine the control law (10.2-2), i.e., to determine
the controller matrices F and G, such that the closed-loop system has the desired
prespecified characteristics.

2 Output Feedback Controllers

Consider the system (10.2-1) and the linear output feedback controller

u ¼ KyþNr ð10:2-4Þ
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where K and N are the unknown controller matrices with dimensions m� p and
m�m�, respectively (Figure 10.2). Substituting Eq. (10.2-4) in Eq. (10.2-1) yields the
closed-loop system

�x ¼ ðAþ BKCÞxþ BNr ð10:2-5aÞ

y ¼ Cx ð10:2-5bÞ

The problem here is to determine the control law (10.2-4), i.e., to determine the
controller matrices K and N, such that the closed-loop system (10.2-5) has the desired
prespecified characteristics.

By inspection, we observe that the controller matrices (F;GÞ and ðK;NÞ of the
foregoing controller design problems via state or output feedback, respectively, are
related via the following equations

F ¼ KC ð10:2-6aÞ

G ¼ N ð10:2-6bÞ

In fact, if Eqs (10.2-6a and b) hold true, the closed-loop systems (10.2-4) and (10.2-5)
are identical. This shows that if the problem via state feedback has a solution, Eqs
(10.2-6a and b) may facilitate the solution of the problem via output feedback. In
this latter case, the solution procedure will be simple since Eqs (10.2-6a and b) are
linear in K and N.

The main differences between the state and the output feedback methods are
the following. The state feedback method has the advantage over the output feed-
back method in that it has greater degrees of freedom in the controller parameters.
This is true since the matrix F has nm arbitrary elements, while K has mp < mn
arbitrary elements. However, the output feedback method is superior to the state
feedback method from the practical point of view, because the output vector yðtÞ is
known and measurable. On the contrary, it is almost always difficult, if not impos-
sible, to measure the entire state vector xðtÞ, in which case we are forced to use a
special type of system, called the state observer, for the estimation of the vector xðtÞ
(see Sec. 10.6).

In the sequel, the problem of determining the matrices F and G (or K and N) is
considered for the following three specific problems: pole placement, input–output
decoupling, and exact model matching. These three problems have been chosen
because they are very useful in practice.
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10.3 POLE PLACEMENT

10.3.1 Pole Placement via State Feedback

Consider the linear, time-invariant system

�xðtÞ ¼ AxðtÞ þ BuðtÞ ð10:3-1Þ

where we assume that all states are accessible and known. To this system we apply a
linear state feedback control law of the form

uðtÞ ¼ �FxðtÞ ð10:3-2Þ

Then, the closed-loop system (see Figure 10.3) is given by the homogeneous equation

�xðtÞ ¼ ðA� BFÞxðtÞ ð10:3-3Þ

It is remarked that the feedback law uðtÞ ¼ �FxðtÞ is used rather than the
feedback law uðtÞ ¼ FxðtÞ. This difference in sign is chosen to facilitate the observer
design problem presented in Sec. 10.6.

Here, the design problem is to find the appropriate controller matrix F so as to
improve the performance of the closed-loop system (10.3-3). One such method of
improving the performance of (10.3-3) is that of pole placement. The pole-placement
method consists in finding a particular matrix F, such that the poles of the closed-
loop system (10.3-3) take on desirable preassigned values. Using this method, the
behavior of the open-loop system may be improved significantly. For example, the
method can stabilize an unstable system, increase or decrease the speed of response,
widen or narrow the system’s bandwidth, increase or decrease the steady-state error,
etc. For these reasons, improving the system performance via the pole-placement
method is widely used in practice.

The pole placement or eigenvalue assignment problem can be defined as fol-
lows: let �1; �2; . . . ; �n be the eigenvalues of the matrix A of the open-loop system
(10.3-1) and �̂�1; �̂�2; . . . ; �̂�n be the desired eigenvalues of the matrix A� BF of the
closed-loop system (10.3-3), where all complex eigenvalues exist in complex conju-
gate pairs. Also, let pðsÞ and p̂pðsÞ be the respective characteirstic polynomials, i.e., let
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Figure 10.3 Closed-loop system with a linear state feedback law.



pðsÞ ¼
Yn
i¼1

ðs� �iÞ ¼ jsI� Aj ¼ sn þ a1s
n�1

þ 
 
 
 þ an�1sþ an ð10:3-4Þ

p̂pðsÞ ¼
Yn
i¼1

ðs� �̂�iÞ ¼ jsI� Aþ BFj ¼ sn þ âa1s
n�1

þ 
 
 
 þ âan�1sþ âan ð10:3-5Þ

Find a matrix F so that Eq. (10.3-5) is satisfied.
The pole-placement problem has attracted considerable attention for many

years. The first significant results were established by Wonham in the late 1960s
and are given by the following theorem [25].

Theorem 10.3.1

There exists a state feedback matrix F which assigns to the matrix A� BF of the
closed-loop system any arbitrary eigenvalues �̂�1; �̂�2; . . . ; �̂�n, if and only if the state
vector of the open-loop system (10.3-1) is controllable, i.e., if and only if

rankS ¼ n; where S ¼ ½B ..
.
AB ..

.
A
2
B ..

.

 
 
 ..

.
A
n�1
B� ð10:3-6Þ

where all complex eigenvalues of the set f�̂�1; . . . ; �̂�ng appear in conjugate pairs.
According to this theorem, in cases where the open-loop system (10.3-1) is not

controllable, at least one eigenvalue of the matrix A remains invariant under the state
feedback law (10.3-2). In such cases, in order to assign all eigenvalues, one must
search for an appropriate dynamic controller wherein the feedback law (10.3-2) may
involve, not only propontial, but also derivative, integral and other terms (a special
category of dynamic controllers are the PID controllers presented in Sec. 9.6).
Dynamic controllers have the disadvantage in that they increase the order of the
system.

Now, consider the case where the system ðA;BÞ is controllable, a fact which
guarantees that there exists an F which satisfies the pole-placement problem. Next,
we will deal with the problem of determining such a feedback matrix F. For simpli-
city, we will first study the case of single-input systems, in which case the matrix B
reduces to a column vector b and the matrix F reduces to a row vector fT . Equation
(10.3-5) then becomes

p̂pðsÞ ¼
Yn
i¼1

ðs� �̂�iÞ ¼ jsI� Aþ bf
T
j ¼ sn þ âa1s

n�1
þ 
 
 
 þ âan�1sþ âan ð10:3-7Þ

It is remarked that the solution of Eq. (10.3-7) for f is unique.
Several methods have been proposed for determining f. We present three well-

known such methods.

Method 1. The Base–Gura Formula. One of the most popular pole-placement
methods, due to Bass & Gura [3], gives the following simple solution:

f ¼ ½W
T
S
T
�
�1
ðâa� aÞ ð10:3-8Þ

where S is the controllability matrix defined in Eq. (10.3-6) and
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W ¼

1 a1 
 
 
 an�1

0 1 
 
 
 an�2

..

. ..
. ..

.

0 0 
 
 
 1

2
6664

3
7775; âa ¼

âa1
âa2
..
.

âan

2
6664

3
7775; a ¼

a1
a2
..
.

an

2
6664

3
7775 ð10:3-9Þ

Method 2. The Phase Canonical Form Formula. Consider the special case where
the system under control is described in its phase-variable canonical form, i.e., A
and b have the special forms A� and b�, where (see Subsec. 5.4.2)

A
�
¼

0 1 0 
 
 
 0
0 0 1 
 
 
 0
0 0 0 
 
 
 0
..
. ..

. ..
. ..

.

0 0 0 
 
 
 1
�a�n �a�n�1 �a�n�2 
 
 
 �a�1

2
6666664

3
7777775
; b

�
¼

0
0
0
..
.

0
1

2
6666664

3
7777775

ð10:3-10Þ

Then, it can be easily shown that the matrix S� ¼ ½b
� ..
.
A

�
b
� ..
.
A

�2
b
� ..
.

 
 
 ..

.
A

�n�1
b
�
�

is such that the product WT
S
�T reduces to the simple form

W
T
S
�T

¼ ~II ¼

0 0 
 
 
 0 1
0 0 
 
 
 1 0
..
. ..

. ..
. ..

.

1 0 
 
 
 0 0

2
664

3
775 ð10:3-11Þ

In this case, the vector f� in expression (10.3-8) reduces to f� ¼ ~IIðâa�aÞ, i.e., it reduces
to the following form [22]:

f
�
¼ ~IIðâa� aÞ ¼

âan � an
âan�1 � an�1

..

.

âa1 � a1

2
6664

3
7775 ð10:3-12Þ

where use is made of the property ð~IIÞ�1
¼ ~II. It is evident that expression (10.3-12) is

extremely simple to apply, provided that the matrix A and the vector b of the system
under control are in the phase-variable canonical form (10.3-10).

Method 3. The Ackermann’s Formula. Another approach for computing f has been
proposed by Ackermann, leading to the following expression [5]:

f
T
¼ e

T
S
�1
p̂pðAÞ ð10:3-13Þ

where the matrix S is given in Eq. (10.3-6) and eT ¼ ð0; 0; . . . ; 0; 1Þ. The matrix
polynomial p̂pðAÞ is given by Eq. (10.3-5), wherein the variable s is substituted by
the matrix A, i.e.,

p̂pðAÞ ¼ A
n
þ âa1A

n�1
þ 
 
 
 þ âan�1Aþ âanI ð10:3-14Þ

In the general case of multi-input systems, the determination of the matrix F is
somewhat complicated. A simple approach to the problem is to assume that F has
the following outer product form:

F ¼ qp
T

ð10:3-15Þ
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where q and p are n-dimensional vectors. Then, the matrix A� BF becomes

A� BF ¼ A� Bqp
T
¼ A� bpT ; where b ¼ Bq ð10:3-16Þ

Therefore, assuming that F has the form (10.3-15), then the multi-input system case
is reduced to the single-input case studied previously. In other words, the solution for
the vector p is Eq. (10.3-8) or Eq. (10.3-13) and differs only in that the matrix S is
now the matrix ~SS, having the form

~SS ¼ ½b ..
.
Ab ..

.
A

2b ..
.

 
 
 ..

.
A
n�1b� ð10:3-17Þ

The vector b ¼ Bq involves arbitrary parameters, which are the elements of the
arbitrary vector q. These arbitrary parameters can have any value, provided that
rank ~SS ¼ n. In cases where this condition cannot be satisfied, other approaches for
determining F may be found in the literature [22].

Example 10.3.1

Consider a system in the form (10.3-1), where

A ¼
0 1

�1 0

� 	
and b ¼

0
1

� 	

Find a vector f such that the closed-loop system has eigenvalues �̂�1 ¼ �1 and
�̂�2 ¼ �1:5.

Solution

We have

pðsÞ ¼ jsI� Aj ¼ s2 þ 1 and p̂pðsÞ ¼ ðs� �̂�1Þðs� �̂�2Þ ¼ s
2
þ 2:5sþ 1:5

Method 1. Here we use Eq. (10.3-8). Equations (10.3-9) and (10.3-6) give

W ¼
1 a1
0 1

� 	
¼

1 0
0 1

� 	
and S ¼ ½b ..

.
Ab� ¼

0 1
1 0

� 	

Therefore

W
T
S
T
¼

1 0
0 1

� 	
0 1
1 0

� 	
¼

0 1
1 0

� 	
and ðW

T
S
T
Þ
�1

¼
0 1
1 0

� 	

Hence

f ¼ ðW
T
S
T
Þ
�1
ðâa� aÞ ¼

0 1
1 0

� 	
2:5
1:5

� 	
�

0
1

� 	
 �
¼

0 1
1 0

� 	
2:5
0:5

� 	
¼

0:5
2:5

� 	

Method 2. Since the system is in phase-variable canonical form, the vector f can
readily be determined by Eq. (10.3-12), as follows:

f ¼ f
�
¼
âa2 � a2
âa1 � a1

� 	
¼

1:5� 1
2:5� 0

� 	
¼

0:5
2:5

� 	

Method 3. Here we apply Eq. (10.3-13). We have
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p̂pðAÞ ¼ A
2
þ âa1Aþ âa2I ¼ a

2
þ 2:5Aþ 1:5I

¼
0 1

�1 0

� 	2
þ2:5

0 1

�1 0

� 	
þ 1:5

1 0

0 1

� 	

¼
�1 0

0 �1

� 	
þ

0 2:5

�2:5 0

� 	
þ

1:5 0

0 1:5

� 	
¼

0:5 2:5

�2:5 0:5

� 	

S
�1

¼ ½b ..
.
Ab�

�1
¼

0 1

1 0

� 	

Therefore

f
T
¼ e

T
S
�1
p̂pðAÞ ¼ ½0 1�

0 1
1 0

� 	
0:5 2:5

�2:5 0:5

� 	
¼ 0:5 2:5�½

Clearly, the resulting three controller vectors derived by the three methods are
identical. This is due to the fact that for single-input systems, f is unique.

Example 10.3.2

Consider a system in the form (10.3-1), where

A ¼

0 1 0
0 0 1
1 0 0

2
4

3
5 and b ¼

0
0
1

2
4

3
5

Find a vector f such that the closed-loop system has eigenvalues �̂�1 ¼ �1, �̂�2 ¼ �2,
and �̂�3 ¼ �2.

Solution

We have

pðsÞ ¼ jsI� Aj ¼ s3 � 1 and p̂pðsÞ ¼ ðs� �̂�1Þðs� �̂�2Þðs� �̂�3Þ

¼ s3 þ 5s2 þ 8sþ 4

Method 1. Here, we make use of Eq. (10.3-8). Equations (10.3-9) and (10.3-6) give

W ¼

1 a1 a2
0 1 a1
0 0 1

2
4

3
5 ¼

1 0 0
0 1 0
0 0 1

2
4

3
5; S ¼ ½b ..

.
Ab ..

.
A

2
b� ¼

0 0 1
0 1 0
1 0 0

2
4

3
5

Therefore,

W
T
S
T
¼

1 0 0

0 1 0

0 0 1

2
64

3
75

0 0 1

0 1 0

1 0 0

2
64

3
75 ¼

0 0 1

0 1 0

1 0 0

2
64

3
75 and

ðW
T
S
T
Þ
�1

¼

0 0 1

0 1 0

1 0 0

2
64

3
75

Hence
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f ¼ ðW
T
S
T
Þ
�1
ðâa� aÞ ¼

0 0 1

0 1 0

1 0 0

2
64

3
75

5

8

4

2
64

3
75�

0

0

�1

2
64

3
75

8><
>:

9>=
>; ¼

0 0 1

0 1 0

1 0 0

2
64

3
75

5

8

5

2
64

3
75

¼

5

8

5

2
64

3
75

Method 2. Since the system is in phase-variable canonical form, the vector f can
readily be determined by Eq. (10.3-12), as follows:

f ¼ f
�
¼

âa3 � a3
âa2 � a2
âa1 � a1

2
4

3
5 ¼

4þ 1
8þ 0
5þ 0

2
4

3
5 ¼

5
8
5

2
4

3
5

Method 3. Here, we make use of Eq. (10.3-13). We have

p̂pðAÞ ¼ A
3
þ âa1A

2
þ âa2Aþ âa3I ¼ A

3
þ 5A2

þ 8Aþ 4I

¼

0 1 0

0 0 1

1 0 0

2
64

3
75

3

þ5

0 1 0

0 0 1

1 0 0

2
64

3
75

2

þ8

0 1 0

0 0 1

1 0 0

2
64

3
75þ 4

1 0 0

0 1 0

0 0 1

2
64

3
75

¼

1 0 0

0 1 0

0 0 1

2
64

3
75þ

0 0 5

5 0 0

0 5 0

2
64

3
75þ

0 8 0

0 0 8

8 0 0

2
64

3
75þ

4 0 0

0 4 0

0 0 4

2
64

3
75

¼

5 8 5

5 5 8

8 5 5

2
64

3
75

S
�1

¼ ½b ..
.
Ab ..

.
A

2
b�

�1
¼

0 0 1

0 1 0

1 0 0

2
64

3
75

Therefore

f
T
¼ e

T
S
�1
p̂pðAÞ ¼ ½0 0 1�

0 0 1
0 1 0
1 0 0

2
4

3
5 5 8 5

5 5 8
8 5 5

2
4

3
5 ¼ ½5 8 5�

The resulting three controller vectors derived by the three methods are identical. As
mentioned in the previous example, this is becuase, for single-input systems, f is
unique.

Example 10.3.3

Consider the position control system shown in Figure 10.4. The state variables of
the system are as follows. State x1 ¼ y ¼ �m is the angular position of the motor
axis which is converted into an electrical signal through the use of a potenti-
ometer. State x2 ¼ _��m ¼ !m is the angular velocity of the motor which is mea-
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sured by the tachometer. State x3 ¼ if is the current of the stator. To measure if ,
we insert a small resistor R in series with the inductor. The voltage vRðtÞ ¼ Rif is
fed into an amplifier with gain 1=R, which produces an output if ¼ x3. Using the
state equations (3.12-8) and Figure 3.39 of Chap. 3, we can construct the block
diagram for the closed-loop system as shown in Figure 10.5. It is noted that the
amplifier with gain Ka, which is inserted between eðtÞ and uðtÞ, is used to amplify
the signal eðtÞ, which is usually small. The control of the angular position �m is
achieved in the following way. The external control signal �r is the desired angu-
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Figure 10.4 Position control system of Example 10.3.3. (a) Overall picture of a position

control system, with a motor controlled by the stator; (b) schematic diagram of the position
control system.



lar position �y ¼ �m of the motor axis. If �y 6¼ �r, then part of the error eðtÞ is due
to the difference �y � �r. This difference is amplified by the amplifier, which
subsequently drives the motor, resulting in a rotation of the axis so that the
error �y � �r reduces to zero. The problem here is to study the pole placement
problem of the closed-loop system via state feedback.

Solution

The state equations of the closed-loop system in Figure 10.5b are (compare with Eq.
(3.12-8))
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Figure 10.5 Block diagram of the closed-loop system in Example 10.3.3. (a) Block diagram

of the position control system; (b) simplified block diagram for Lf ¼ 0:5, Rf ¼ 2, Jm ¼ 1,
Bm ¼ 1, and KmKfIa ¼ 2.



�x ¼ Axþ bu

y ¼ cTx

u ¼ Ka½�f
T
xþ �r�

where

x ¼

x1

x2

x3

2
64

3
75 ¼

�y

!m

if

2
64

3
75; f ¼

f1

f2

f3

2
64

3
75; A ¼

0 1 0

0 �1 2

0 0 �4

2
64

3
75;

b ¼

0

0

2

2
64

3
75; c ¼

1

0

0

2
64

3
75

where use was made of the definitions T�1
f ¼ Rf=Lf ¼ 4 and T�1

m ¼ Bm=Jm ¼ 1. The
controllability matrix of the open-loop system is

S ¼ ½b ..
.
Ab ..

.
A

2
b� ¼

0 0 4
0 4 �20
2 �8 32

2
4

3
5

The determinant of the matrix S is jSj ¼ �32 6¼ 0. Consequently, we may arbitrarily
shift all poles of the closed-loop system of Figure 10.5b via state feedback. The
characteristic polynomials pðsÞ and p̂pðsÞ of the open-loop and closed-loop systems are

pðsÞ ¼ jsI� Aj ¼ s3 þ 5s2 þ 4s ¼ sðsþ 1Þðsþ 4Þ

p̂pðsÞ ¼ jI� Aþ Kabf
T
j ¼ s3 þ �2s

2
þ �2sþ �0 ¼ ðs� �̂�1Þðs� �̂�2Þðs� �̂�3Þ

where �̂�1, �̂�2, and �̂�3 are the desired poles of the closed-loop system. To determine the
vector f we use formula (10.3-8). The matrix W has the form

W ¼

1 5 4
0 1 5
0 0 1

2
4

3
5 and ½W

T
S
T
�
�1

¼

0 0 1
4

� 1
4

1
4 0

1
2 0 0

2
4

3
5

Hence

Kaf ¼ ½W
T
S
T
�
�1
ðâa� aÞ or f ¼

1

Ka

½W
T
S
T
�
�1
ðâa� aÞ

Finally

f ¼

f1

f2

f3

2
64

3
75 ¼

�
1

4Ka

�0

�
1

4Ka

ð5� �2Þ þ
1

4Ka

ð4� �1Þ

1

2Ka

ð5� �2Þ

2
66666664

3
77777775
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10.3.2 Pole Placement via Output Feedback

For the case of pole placement via output feedback wherein u ¼ �Ky, a theorem
similar to the Theorem 10.3.1 has not yet been proven. The determination of the
output feedback matrix K is, in general, a very difficult task. A method for determin-
ing the matrix K, which is closely related to the method of determining the matrix F
presented earlier, is based on Eq. (10.2-6a), namely on the equation

F ¼ KC ð10:3-18Þ

This method starts with the determination of the matrix F and in the sequel the
matrix K is determined by using Eq. (10.3-18). It is fairly easy to determine the
matrix K from Eq. (10.3-18) since this equation is linear in K. A more general
method to determine matrix K is given in [16]. Note that Eq. (10.3-18) is only a
sufficient condition. That is, if Eq. (10.3-18) does not have a solution for K, it does
not follow that pole placement by output feedback is impossible.

Example 10.3.4

Consider the multi-input–multi-output (MIMO) system of the form

�x ¼ Axþ Bu; y ¼ Cx

where

A ¼

0 1 0
�2 3 0
5 1 3

2
4

3
5; B ¼

0 0
1 3
0 1

2
4

3
5; C ¼

0 0 7
7 9 0

� 	

Find an output feedback matrix K such that the poles of the closed-loop system are
�3, �3, and �4.

Solution

First, we determine a state feedback matrix F which satisifes the problem. Using the
techniques of Subsec. 10.3.1, we obtain the following matrix F:

F ¼
7 9 �21
0 0 7

� 	

Now, consider the equation F ¼ KC and investigate if the above matrix F is sufficient
for the determination of the matrix K. Simple algebraic calculations lead to the
conclusion that F ¼ KC has a solution for K having the following form:

K ¼
�3 1
1 0

� 	

Checking the results, we have
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A� BKC ¼

0 1 0

�2 3 0

5 1 3

2
64

3
75þ

0 0

1 3

0 1

2
64

3
75 �3 1

1 0

� 	
0 0 7

7 9 0

� 	

¼

0 1 0

�9 �6 0

5 1 �4

2
64

3
75

and hence

jsI� Aþ BKCj ¼

s �1 0
9 sþ 6 0
�5 �1 sþ 4

������
������ ¼ ðsþ 4Þðsþ 3Þ2

Example 10.3.5

Consider the position control system of Example 10.3.3. To this system apply output
feedback for pole placement.

Solution

In practice, the output variable y is usually the output position �y. Thus
y ¼ �y ¼ �m ¼ x1 ¼ c

T
x, where cT ¼ ð1 0 0Þ. Hence, the output feedback law

here is u ¼ Ka½�kyþ �r� ¼ Ka½�kc
T
xþ �r�, where k is the output feedback controller

or gain. The characteristic polynomial p̂pðsÞ of the closed-loop system then becomes

p̂pðsÞ ¼ jsI� Aþ Kabkc
T
j ¼ s3 þ 5s2 þ 4sþ 4Kak

By using one of the algebraic stability criteria of Chap. 6 we conclude that the closed-
loop system is stable when 0 < Kak < 5. By using the material of Chap. 7, one may
draw the root-locus diagram for p̂pðsÞ, thus revealing the regions of the root locus
where the closed-loop system is stable. It must be clear that for single-output sys-
tems, using output feedback, we may be able to make the closed-loop system stable,
but we cannot shift the poles to any arbitrary positions, as in the case of state
feedback.

10.4 INPUT–OUTPUT DECOUPLING

The problem of input–output decoupling of a system may be stated as follows.
Consider the system (10.2-1) and assume that it has the same number of inputs
and outputs, i.e., assume that p ¼ m. Determine a pair of matrices F and G of the
state feedback law (10.2-2) (or a pair of matrices K and N of the output feedback law
(10.2-4)) such that every input of the closed-loop system (10.2-3) (or of the closed-
loop system (10.2-5)) influences only one of the systems outputs, and vice-versa,
every output of the closed-loop system is influenced by only one of its inputs.
More precisely, in an input–output decoupled system the following relation must
hold

yi ¼ f ðriÞ; i ¼ 1; 2; . . . ;m ð10:4-1Þ

The transfer function matrix HðsÞ of the closed-loop system (10.2-3) is given by
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HðsÞ ¼ CðsI� A� BFÞ
�1
BG ð10:4-2Þ

and the transfer function matrix ĤHðsÞ of the closed-loop system (10.2-5) is given by

ĤHðsÞ ¼ CðsI� A� BKCÞ
�1
BN ð10:4-3Þ

Since YðsÞ ¼ HðsÞRðsÞ (or YðsÞ ¼ ĤHðsÞRðsÞÞ it follows that a definition, equivalent to
the foregoing definition of the input–output decoupling problem, is the following:
determine a pair of matrices F and G (or a pair of matrices K and N) such that the
transfer function matrix HðsÞ (or ĤHðsÞ) is regular and diagonal. In fact, if HðsÞ is
regular and diagonal, that is if HðsÞ has the form

HðsÞ ¼

h11ðsÞ 0 
 
 
 0
0 h22ðsÞ 
 
 
 0

..

. ..
. . .

. ..
.

0 0 
 
 
 hmmðsÞ

2
6664

3
7775 ð10:4-4Þ

with jHðsÞj 6¼ 0, then equation YðsÞ ¼ HðsÞRðsÞ may be written as follows:

yiðsÞ ¼ hiiðsÞriðsÞ; i ¼ 1; 2; . . . ;m ð10:4-5Þ

Equation (10.4-5) is equivalent to Eq. (10.4-1). A similar definition may be given for
the matrix transfer function ĤHðsÞ.

The basic motivation for input–output decoupling of a system is that by mak-
ing each output of the system depend only upon one input and vice versa, we convert
a MIMO system to m single-input–single-output (SISO) systems. This fact signifi-
cantly simplifies and facilitates the control of the closed-loop system, since one has to
deal with m scalar systems rather than a MIMO system. For these reasons the
problem of input–output decoupling is of great practical importance. A block dia-
gram representation of input–output decoupling via state feedback is given in Figure
10.6.

10.4.1 Decoupling via State Feedback

For the case of input–output decoupling via state feedback the following theorem
holds which was first proven by Falb and Wolovich [9].

Theorem 10.4.1

System (10.2-1) can be decoupling using the state-variable feedback law (10.2-2), if
and only if the matrix Bþ, where

B
þ
¼

c1A
d1B


 
 
 
 
 
 
 
 


c2A
d2B


 
 
 
 
 
 
 
 


..

.


 
 
 
 
 
 
 
 


cmA
dmB

2
6666666664

3
7777777775

ð10:4-6Þ

is regular, i.e., jBþ
j 6¼ 0, where ci is the ith row of matrix C and d1; d2; . . . ; dm are

integers, which are defined as follows:
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di ¼
min j : ciA

j
B 6¼ 0; j ¼ 0; 1; . . . ; n� 1

n� 1 if ciA
j
B ¼ 0 for all j

�
ð10:4-7

A pair of matrices F and G which satisfy the problem of decoupling is the following

F ¼ �ðB
þ
Þ
�1
A

þ
ð10:4-8aÞ

G ¼ ðB
þ
Þ
�1

ð10:4-8bÞ

where matrix Aþ and the transfer function matrix HðsÞ ¼ CðsI� A� BFÞ
�1
BG of

the closed-loop system have the following forms:
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Figure 10.6 Input–output decoupling via state feedback. (a) Open-loop system:
�x ¼ Axþ Bu, y ¼ Cx; (b) closed-loop system: �x ¼ ðAþ BFÞxþ BGr, y ¼ Cx; (c) closed-
loop system transfer function: HðsÞ ¼ CðsI� A� BFÞBG ¼ diagfh11ðsÞ; h22ðsÞ; . . . ; hmmðsÞg.



A
þ
¼

c1A
d1þ1

c2A
d2þ1

..

.

cmA
dmþ1

2
66666666666664

3
77777777777775

and HðsÞ ¼

1

sd1þ1
0 
 
 
 0

0
1

sd1þ1

 
 
 0

..

. ..
. . .

. ..
.

0 0 
 
 

1

sdmþ1

2
6666666664

3
7777777775

ð10:4-9Þ

From Theorem 10.4.1 we conclude that in order to solve the input–output
decoupling problem one must first construct the matrix Bþ and then calculate its
determinant. If jBþ

j ¼ 0 it follows that decoupling is not possible via feedback of the
form (10.2-2), i.e., no matrices F and G exist such that the closed-loop transfer
function matrix HðsÞ is diagonal and regular. In this case and provided that the
open-loop system is invertible, i.e., det½CðsI� AÞ�1

B� 6¼ 0, one seeks a ‘‘dynamic’’
form of state feedback (not considered in this book) to solve the problem. But if
jB

þ
j 6¼ 0, decoupling is possible using Eq. (10.2-2), and a simple form of the matrices

F and G that make HðsÞ regular and diagonal is given by relation (10.4-8). For the
general form of F and G, involving arbitrary parameters, see [19].

Example 10.4.1

Consider the system of the form (10.2-1), where

A ¼
1 2
2 3

� 	
; B ¼

1 4
1 4

� 	
; C ¼

1 0
�1 1

� 	

Find matrices F and G such that the closed-loop system is input–output decoupled.

Solution

Determine the integers d1 and d2 according to definition (10.4-7). We have

c1A
0
B ¼ ½ 1 0 �

1 4

1 4

� 	
¼ ½ 1 4 � 6¼ 0

c2A
0
B ¼ ½�1 1 �

1 4

1 4

� 	
¼ ½ 0 0 � ¼ 0

c2A
1
B ¼ ½�1 1 �

1 2

2 3

� 	
1 4

1 4

� 	
¼ ½ 2 8 � 6¼ 0

Therefore d1 ¼ 0 and d2 ¼ 1. Consequently, matrix Bþ has the form

B
þ
¼

c1A
d1B


 
 
 
 
 
 
 
 


c2A
d2B

2
4

3
5 ¼

c1B


 
 
 
 
 


c2AB

2
4

3
5 ¼

1 4

 
 
 
 
 


2 8

2
4

3
5

Examining the determinant of the matrix Bþ shows that jB
þ
j ¼ 0. Therefore, we

conclude that the system under control cannot be decoupled using the linear state
feedback law (10.2-2).
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Example 10.4.2

Consider a system of the form (10.2-1), where

A ¼

1 0 2
0 1 1

�1 2 0

2
4

3
5; B ¼

1 0
1 �2

�1 2

2
4

3
5; C ¼

1 0 0
0 1 1

� 	

Find matrices F and G such that the closed-loop system is input–output decoupled.

Solution

Determine the integers d1 and d2 using definition (10.4-7). We have

c1A
0
B ¼ ½ 1 0 0 �

1 0
1 �2

�1 2

2
4

3
5 ¼ ½ 1 0 � 6¼ 0

c2A
0
B ¼ ½ 0 1 1 �

1 0
1 �2

�1 2

2
4

3
5 ¼ ½ 0 0 � ¼ 0

c2A
1
B ¼ ½ 0 1 1 �

1 0 2
0 1 1

�1 2 0

2
4

3
5 1 0

1 �2
�1 2

2
4

3
5 ¼ ½ 1 �4 � 6¼ 0

Therefore, d1 ¼ 0 and d2 ¼ 1. Consequently, the matrix Bþ has the form

B
þ
¼

c1A
d1B


 
 
 
 
 
 
 
 


c2A
d2B

2
4

3
5 ¼

c1B


 
 
 
 
 


c2AB

2
4

3
5 ¼

1 0

 
 
 
 
 
 


1 � 4

2
4

3
5

Examining the determinant of the matrix Bþ shows that jBþ
j ¼ �4. Consequently,

the system under control can be decoupled using the feedback law (10.2-2). To
determine the matrices F and G according to relation (10.4-8), we must first compute
the matrix Aþ. We have

A
þ
¼

c1A
d1þ1


 
 
 
 
 
 
 
 


c2A
d2þ1

2
4

3
5 ¼

c1A


 
 
 
 
 


c2A
2

2
4

3
5 ¼

1 0 2

 
 
 
 
 
 
 
 
 


�2 5 1

2
4

3
5

Hence, the matrices G and F are given by

G ¼ ðB
þ
Þ
�1

¼
1

4

4 0
1 �1

� 	
and F ¼ �ðB

þ
Þ
�1
A

þ
¼ �

1

4

4 0 8
3 �5 1

� 	

The decoupled closed-loop system is the following

�x ¼ ðAþ BFÞxþ BGr and y ¼ Cx

If we substitute the matrices A, B, C, F, and G in the above state equations we obtain

�x ¼
1

2

0 0 0
1 �3 �1

�3 9 3

2
4

3
5xþ 1

2

2 0
1 1

�1 �1

2
4

3
5r and y ¼

1 0 0
0 1 1

� 	
x

The transfer function matrix HðsÞ of the closed-loop system is given by
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HðsÞ ¼ CðsI� A� BFÞ
�1
BG ¼

1=sd1þ1 0
0 1=sd2þ1

� 	
¼

1=s 0
0 1=s2

� 	

As expected, the matrix HðsÞ is diagonal and regular. Using the relation YðsÞ ¼
HðsÞRðsÞ we obtain

Y1ðsÞ ¼
1

s
R1ðsÞ and Y2ðsÞ ¼

1

s2
R2ðsÞ

Hence, it is clear that y1ðsÞ is only a function of r1ðsÞ and that y2ðsÞ is only a function
of r2ðsÞ. The corresponding differential equations of the decoupled closed-loop
system are

dy1
dt

¼ r1 and
d2y2
dt2

¼ r2

Example 10.4.3

Consider the following system:

_xx1ðtÞ
_xx2ðtÞ

� 	
¼ A

x1ðtÞ
x2ðtÞ

� 	
þ B

u1ðtÞ
u2ðtÞ

� 	
;

y1ðtÞ
y2ðtÞ

� 	
¼ C

x1ðtÞ
x2ðtÞ

� 	

which it is assumed can be decoupled and for which c1B 6¼ 0 and c2B 6¼ 0, where c1
and c2 are the rows of the matrix C. (a) Find matrices F and G such that the closed-
loop system is decoupled and (b) determine the transfer function matrix of the
decoupled closed-loop system.

Solution

(a) Since c1B 6¼ 0 and c2B 6¼ 0, it follows that d1 ¼ d2 ¼ 0. Thus,

B
þ
¼

c1B


 
 
 
 
 


c2B

2
4

3
5 ¼ CB and A

þ
¼

c1A


 
 
 
 
 


c2A

2
4

3
5 ¼ CA

Consequently, the matrices F and G are given by the following relations:

G ¼ ðB
þ
Þ
�1

¼ ðCBÞ
�1 and F ¼ �ðB

þ
Þ
�1
A

þ
¼ �ðCBÞ

�1
CA

(b) The transfer function of the closed-loop system is
HðsÞ ¼ CðsI� A� BFÞ

�1
BG. If we expand HðsÞ in negative power series of s, we

obtain

HðsÞ ¼ C
I

s
þ
Aþ BF

s2
þ
ðAþ BFÞ

2

s3
þ 
 
 


" #
BG

Using the foregoing expressions for F and G, the matrix CðAþ BFÞ takes on the
form

CðAþ BFÞ ¼ C½A� BðCBÞ
�1
CA� ¼ CA � CBðCBÞ

�1
CA ¼ 0

Consequently CðAþ BFÞ
k
¼ 0, for k � 1 and therefore the transfer function of the

closed-loop system reduces to
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HðsÞ ¼
CBG

s
¼
CBðCBÞ

�1

s
¼
I

s
; where I the unit matrix

We can observe that the closed-loop system has been decoupled into two subsystems,
each of which is a simple integrator.

10.4.2 Decoupling via Output Feedback

A simple approach to solve the problem of decoupling via output feedback is to use
relation (10.2-6). This method requires prior knowledge of the matrices F and G. For
any given pair of matrices F and G, which decouples the system under control,
relation (10.2-6) may have a solution for K and N. Since N ¼ G, it follows that
the problem of decoupling via output feedback has a solution provided that equation
KC ¼ F can be solved for K. Note that the solution of the equation KC ¼ F is only a
sufficient decoupling condition. This means that in cases where the equation KC ¼ F

does not have a solution for K, it does not follow that the decoupling problem via
output feedback does not have a solution.

Results analogous to Subsec. 10.4.1 are difficult to derive for the case of output
feedback and for this reason they are omitted here. For a complete treatment of this
problem see [19].

10.5 EXACT MODEL MATCHING

The problem of exact model matching is defined as follows. Consider a system whose
behavior is not satisfactory and a model whose behavior is the ideal one. Determine
a control law such that the behavior of the closed-loop system follows exactly the
behavior of the model.

It is obvious that the solution of such a problem is of great practical impor-
tance, since it makes it possible to modify the behavior of a system so as to match an
ideal one.

In Sec. 9.1, the criterion (9.1-1) expresses the basic idea behind the problem of
exact model matching, wherein we seek a controller such that the behavior of the
closed-loop system follows, as closely as possible, the behavior of a model. Of
course, this matching may become exact when the cost criterion (9.1-1) reduces to
zero. The present section is devoted to this latter case—namely, to the exact model
matching problem.

The problem of exact model matching of linear time-invariant systems, from
the algebraic point of view adopted in this chapter, is as follows. Consider a system
under control described in state space by Eqs (10.2-1a and b) and a model described
by its transfer function matrix HmðsÞ. Determine the controller matrices F and G of
the feedback law (10.2-2) [or the matrices K and N of the feedback law (10.2-4)] so
that the transfer function HðsÞ of the closed-loop system (10.2-3) (or the transfer
function matrix ĤHðsÞ of the closed-loop system (10.2-5)) is equal to the transfer
function matrix of the model, i.e., such that

HðsÞ ðor ĤHðsÞÞ ¼ HmðsÞ ð10:5-1Þ

where
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HðsÞ ¼ CðsI� A� BFÞ
�1
BG ð10:5-2aÞ

ĤHðsÞ ¼ CðsI� A� BKCÞ
�1
BN ð10:5-2bÞ

The solution of Eq. (10.5-1) for F and G is, in the general case, quite difficult.
However, the solution of Eq. (10.5-1) for K and N is rather simple [15]. For this
reason we will examine here this latter case.

To this end, consider Figure 10.7. This figure is a closed-loop system with
output feedback, where GðsÞ ¼ CðsI� AÞ�1

B is the transfer function matrix of the
open-loop system under control (10.2-1). On the basis of this figure we obtain
UðsÞ ¼ KYðsÞ þNRðsÞ, YðsÞ ¼ GðsÞUðsÞ and, consequently, YðsÞ ¼ ĤHðsÞRðsÞ, where
ĤHðsÞ is the transfer function matrix of the closed-loop system of Figure 10.7 and it
is given by

ĤHðsÞ ¼ ½Ip �GðsÞK�
�1
GðsÞN ð10:5-3Þ

where Ip is the p� p identity matrix. Substituting Eq. (10.5-3), into Eq. (10.5-1) gives

½Ip �GðsÞK�
�1
GðsÞN ¼ HmðsÞ ð10:5-4Þ

By premultiplying Eq. (10.5-4) by the matrix ½Ip �GðsÞK�, we obtain

GðsÞN ¼ HmðsÞ �GðsÞKHmðsÞ

or

GðsÞNþGðsÞKHmðsÞ ¼ HmðsÞ ð10:5-5Þ

Relation (10.5-5) is a polynomial equation in s, whose coefficients are matrices.
Therefore, Eq. (10.5-5) has a solution only when a pair of matrices K and N exists
such that the coefficients of all like powers of s in both sides of Eq. (10.5-5) are equal.
If we carry out the matrix multiplications involved in Eq. (10.5-5) and appropriately
group the results such that each side is a matrix polynomial in s and subsequently
equate the coefficients of like powers in s, we obtain a linear algebraic system of
equations having the general form

Ph ¼ h ð10:5-6Þ

where P and h are known matrices, while h is the unknown vector, whose elements
are the elements of the matrices K and N.

Relation (10.5-6) is, in general, a system of equations with more equations than
unknowns. Solving Eq. (10.5-6) using the least-squares method we obtain

h� ¼ ðP
T
PÞ

�1
P
T
h ð10:5-7Þ
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Expression (10.5-7) is the exact solution of system (10.5-6) when the error J ¼ eTe
equals zero, where e ¼ PðPTPÞ�1

Ph� h. In this case, the solution h� yields the
matrices K and N which satisfy Eq. (10.5-5) (and, consequently, the relation of
exact model matching (10.5-4)), exactly, provided that the matrix ½Ip �GðsÞK� is
regular. This procedure is demonstrated by the example that follows.

Example 10.5.1

Consider an unstable system under control with transfer function matrix GðsÞ and a
stable model with transfer function matrix HmðsÞ, where

GðsÞ ¼

s

s2 þ s� 1
sþ 1

s2 þ s� 1

2
64

3
75 ¼

1

	ðsÞ

s

sþ 1

� 	
; HmðsÞ ¼

2

sþ 1
2

s

2
664

3
775 ¼

1


ðsÞ

2s

sðsþ 1Þ

� 	

where 	ðsÞ ¼ s2 þ s� 1 and 
ðsÞ ¼ sðsþ 1Þ. Determine the output controller matrices
K and N such that the transfer function matrix ĤHðsÞ of the closed-loop system is
equal to the transfer function matrix HmðsÞ of the model.

Solution

In this example K ¼ ½k1; k2� and N ¼ n. Hence relation (10.5-5) becomes

1

	ðsÞ

s

 
 
 
 
 


sþ 1

2
4

3
5nþ 1

	ðsÞ
ðsÞ

s

 
 
 
 
 


sþ 1

2
4

3
5½k1; k2� 2s


 
 
 
 
 
 
 


2ðsþ 1Þ

2
4

3
5 ¼

1


ðsÞ

2s

 
 
 
 
 
 
 
 


2ðsþ 1Þ

2
4

3
5

or

ns
ðsÞ

 
 
 
 
 
 
 
 


nðsþ 1Þ
ðsÞ

2
4

3
5þ

2s2k1 þ 2sðsþ 1Þk2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


2ðsþ 1Þsk1 þ 2ðsþ 1Þ2k2

2
4

3
5 ¼

2s	ðsÞ

 
 
 
 
 
 
 
 
 
 
 


2ðsþ 1Þ	ðsÞ

2
4

3
5

The above relation can be written more compactly as follows:

QðsÞh ¼ dðsÞ

where

QðsÞ ¼
s
ðsÞ 2s2 2sðsþ 1Þ

ðsþ 1Þ
ðsÞ 2sðsþ 1Þ 2ðsþ 1Þ2

" #

h ¼

n

k1

k2

2
64

3
75; dðsÞ ¼

2s	ðsÞ

2ðsþ 1Þ	ðsÞ

� 	

If we substitute the polynomials 	ðsÞ and 
ðsÞ in the matrixQðsÞ and in the vector dðsÞ
we obtain

QðsÞ ¼
s3 þ s2 2s2 2s2 þ 2s

s3 þ 2s2 þ s 2s2 þ 2s 2s2 þ 4sþ 2

� 	
¼ Q0 þQ1sþQs2s

2
þQ3s

3

where
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Q0 ¼
0 0 0

0 0 2

� 	
; Q1 ¼

0 0 2

1 2 4

� 	
; Q2 ¼

1 2 2

2 2 2

� 	
;

Q3 ¼
1 0 0

1 0 0

� 	

and

dðsÞ ¼
2s3 þ 2s2 � 2s
2s3 þ 4s2 � 2

� 	
¼ d0 þ d1sþ d2s

2
þ d3s

3

where

d0 ¼
0

�2

� 	
; d1 ¼

�2
0

� 	
; d2 ¼

2
4

� 	
; d3 ¼

2
2

� 	

Consequently, relation QðsÞh ¼ dðsÞ can be rewritten as

½Q0 þQ1sþQ2s
2
þQ3s

3
�h ¼ d0 þ d1sþ d2s

2
þ d3s

3

For the above relation to hold, the vector h must be such that the coefficients of the
like powers of s in both sides of the equation are equal, i.e.,

Qih ¼ di; i ¼ 0; 1; 2; 3

This relation can be rewritten in the compact form of Eq. 10.5-6), i.e., in the form

Ph ¼ h

where

P ¼

Q0

Q1

Q2

Q3

2
664

3
775; h ¼

d0
d1
d2
d3

2
664

3
775

If we substitute the values of Qi and di in the equation Ph ¼ h and solve for h we
obtain the exact solution h ¼ ½2; 1;�1�T . Thus, the matrices N and K of the com-
pensator are N ¼ 2 and K ¼ ½k1; k2� ¼ ½1;�1�. To check the results, we substitute K
and N in Eq. (10.5-3), which yields ĤHðsÞ ¼ HmðsÞ. Hence, an exact model matching
has been achieved.

10.6 STATE OBSERVERS

10.6.1 Introduction

In designing a closed-loop system using modern control techniques, the control
strategy applied is usually a feedback loop involving feedback of the system state
vector xðtÞ. Examples of such strategies is the application of the state feedback law
u ¼ FxþGr for pole assignment, decoupling, and model matching presented in the
previous sections. This means that for this type of feedback law to be applicable, the
entire state vector x must be available (measurable).

In practice, however, it happens very often that not all state variables of a
system are accessible to measurement. This obstacle can be circumvented if a math-
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ematical model for the system is available, in which case it is possible to estimate the
state vector.

A widely known method for state-vector estimation or reconstruction is that of
using an observer. This technique was first proposed by Luenberger [11–13] and is
presented in the sequel.

10.6.2 State-Vector Reconstruction Using a Luenberger Observer

Consider the system

�xðtÞ ¼ AxðtÞ þ BuðtÞ ð10:6-1aÞ

yðtÞ ¼ CxðtÞ ð10:6-1bÞ

Assume that state vector xðtÞ is given approximately by the state vector x̂xðtÞ of the
following system

�̂x�xðtÞ ¼ ÂAx̂xðtÞ þ B̂BuðtÞ þ KyðtÞ ð10:6-2Þ

where x̂x is an n-dimensional vector and the matrices ÂA, B̂B, and K are unknown.
System (10.6-2) is called the state observer of system (10.6-1). A closer examination
of Eq. (10.6-2) shows that the observer is a dynamic system having two inputs, the
input vector uðtÞ and the output vector yðtÞ of the initial system (10.6-1) (see Figure
10.8). Clearly, the observer matrices ÂA, B̂B, and K should be chosen such that x̂xðtÞ is as
close as possible to xðtÞ. In cases where x̂xðtÞ and xðtÞ are of equal dimension, then the
observer is referred to as a full-order observer. This case is studied in the present
section. When the dimension of x̂xðtÞ is smaller than that of xðtÞ, then the observer is
referred to as a reduced-order observer, which is studied in Subsec. 10.6.3.

Define the state error

eðtÞ ¼ xðtÞ � x̂xðtÞ ð10:6-3Þ

The formal definition of the problem of designing the observer (10.6-2) is the follow-
ing: determine appropriate matrices ÂA, B̂B, and K, such that the error eðtÞ tends to
zero as fast as possible.

To solve the problem, we proceed as follows. Using Eqs (10.6-1) and (10.6-2), it
can be shown that the error eðtÞ satisfies the differential equation

�eðtÞ ¼ �xðtÞ � �̂x�xðtÞ ¼ AxðtÞ þ BuðtÞ � ÂA½xðtÞ � eðtÞ� � B̂BuðtÞ � KCxðtÞ

or
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�eðtÞ ¼ ÂAeðtÞ þ ½A� KC� ÂA�xðtÞ þ ½B� B̂B�uðtÞ

For the error eðtÞ to tend to zero, independently of xðtÞ and uðtÞ, the following three
conditions must be satisfied simultaneously:

1. ÂA ¼ A� KC

2. B̂B ¼ B

3. matrix ÂA is stable.

From the above we conclude that the error eðtÞ satisfies the differential equation

�eðtÞ ¼ ÂAeðtÞ ¼ ½A� KC�eðtÞ

while the state observer (10.6-2) takes on the form

�̂x�xðtÞ ¼ ½A� KC�x̂xðtÞ þ BuðtÞ þ KyðtÞ ð10:6-4aÞ

or

�̂x�xðtÞ ¼ Ax̂xðtÞ þ BuðtÞ þ K½yðtÞ � Cx̂xðtÞ� ð10:6-4bÞ

According to Eq. (10.6-4a), the observer can be considered as a system involving the
matrices A, B, and C of the original system together with an arbitrary matrix K. This
matrix K must be chosen so that the eigenvalues of the matrix ÂA ¼ A� KC effec-
tively force the error eðtÞ to zero as fast as possible. According to Eq. (10.6-4b), the
observer appears to be exactly the original system plus an additional term
K½yðtÞ � Cx̂xðtÞ�. The term xðtÞ ¼ yðtÞ � ŷyðtÞ ¼ yðtÞ � Cx̂xðtÞ can be considered as a
corrective term, often called a residual. Of course, if x̂xðtÞ ¼ xðtÞ, then xðtÞ ¼ 0.
Therefore, a residual exists if the system output vector yðtÞ and the observer vector
ŷyðtÞ ¼ Cx̂xðtÞ are different.

Remark 10.6.1

To construct the observer it is necessary to construct the model of the original system
itself, plus the corrective term K½yðtÞ � Cx̂xðtÞ�. One may then ask: Why not build the
model �̂x�xðtÞ ¼ Ax̂xðtÞ þ BuðtÞ of the original system with initial condition x̂xðt0Þ, and on
the basis of this model estimate the state vector x̂xðtÞ? Such an approach is not used in
practice because it presents certain serious drawbacks. The most important draw-
back is the following. Since x̂xðt0Þ is only an estimate of xðt0Þ, the initial condition
xðt0Þ of the system and the initial condition x̂xðt0Þ of the model differ in most cases. As
a result, x̂xðtÞ may not converge fast enough to xðtÞ. To secure rapid convergence of
x̂xðtÞ to xðtÞ, we add the term K½yðtÞ � Cx̂xðtÞ� to the model �̂x�xðtÞ ¼ Ax̂xðtÞ þ BuðtÞ, result-
ing in an observer of the form (10.6-4b). Under the assumption that the system
ðA;CÞ is observable, the matrix K provides adequate design flexibility, as shown
below, so that x̂xðtÞ converges to xðtÞ very fast.

The block diagram for the state observer (10.6-4) is presented in Figure 10.9.
The state observer design problem therefore reduces to one of determining an

appropriate matrix K, such that all eigenvalues of the matrix ÂA ¼ A� KC lie in the
left-half complex plane. A closer look at the problem reveals that it comes down to
one of solving a pole-placement problem for the matrix ÂA ¼ A� KC. As a matter of
fact, this problem is dual to the pole-placement problem discussed earlier in Sec. 10.3.
In what follows, we will use the results of Sec. 10.3 to solve the observer design
problem.

State-Space Design Methods 459



As already mentioned in Sec. 10.3, the necessary and sufficient condition for a
matrix F to exist, such that the matrix A� BF may have any desired eigenvalues, is
that the system ðA;BÞ is controllable, i.e.,

rankS ¼ n; where S ¼ ½B ..
.
AB ..

.

 
 
 ..

.
A
n�1
B� ð10:6-5Þ

In the case of the observer, the necessary and sufficient condition for a matrix K to
exist, so that the matrix ÂA ¼ A� KC or, equivalently, the matrix ÂAT ¼ A

T
� C

T
K
T

has any desired eigenvalues, is that the system ðA
T ;CT Þ is controllable or, equiva-

lently, that the system ðA;CÞ is observable, i.e.,

rankR ¼ n; where RT ¼ ½C
T ..
.
A
T
C
T ..
.

 
 
 ..

.
ðA
T
Þ
n�1
C
T
� ð10:6-6Þ

Hence, the following theorem holds.

Theorem 10.6.1

The necessary and sufficient conditions for the reconstruction of the state of system
(10.6-1) is that the system is completely observable.

For the system ðA;B;CÞ, we say that the conditions (10.6-5) and (10.6-6) are
dual.

We will first consider the single-output case for system (10.6-1). For this case,
the matrix C reduces to a row vector cT , thus reducing R to the n� n matrix:

R
T
¼ ½c ..

.
A
T
c ..
.

 
 
 ..

.
ðA
T
Þ
n�1
c�

The matrix ÂA becomes ÂA ¼ A� kc
T , where kT ¼ ½k1; k2; . . . ; kn�. Define
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pðsÞ ¼ jsI� Aj ¼ sn þ a1s
n�1

þ 
 
 
 þ an ¼
Yn
i¼1

ðs� �iÞ

p̂pðsÞ ¼ jsI� ÂAj ¼ sn þ âa1s
n�1

þ 
 
 
 þ âan ¼
Yn
i¼1

ðs� �̂�iÞ

where �i are the eigenvalues of the system (10.6-1) and �̂�i are the desired eigenvalues
of the observer (10.6-4). Hence, the problem here is to find k so that the observer has
the desired eigenvalues �̂�1; �̂�2; . . . ; �̂�n. The vector k sought is uniquely defined. In Sec.
10.3, three alternative methods were presented to solve for k. Applying the Buss–
Gura formula (10.3-8) yields the following solution:

k ¼ ½W
T
R�

�1
ðâa� aÞ ð10:6-7Þ

where

W ¼

1 a1 
 
 
 an�1

0 1 
 
 
 an�2

..

. ..
. ..

.

0 0 
 
 
 1

2
66664

3
77775; R ¼

c
T

c
T
A

..

.

c
T
A
n�1

2
66664

3
77775; âa ¼

âa1

âa2

..

.

âan

2
66664

3
77775; and

a ¼

a1

a2

..

.

an

2
66664

3
77775

Clearly, the solution (10.6-7) corresponds to the solution (10.3-8).
For the multi-output case, determining the matrix K, as discussed in Sec. 10.3,

is usually a complicated task. A simple approach to the problem is to assume that K
has the following outer product form:

K ¼ qp
T

ð10:6-8Þ

where q and p are n-dimensional vectors. Then ÂA ¼ A� KC ¼

A� qp
T
C ¼ A� q�T , where cT ¼ p

T
C. Therefore, assuming K to be of the form

(10.6-8), the multi-output case reduces to the single-output case studied previously.
Hence, the solution for q is given by Eq. (10.6-7), where the matrix R must be
replaced by the matrix ~RR, where ~RRT ¼ ½c ..

.
A
Tc ..

.

 
 
 ..

.
ðA
T
Þ
n�1c�. It is noted that

the vector c ¼ C
T
p involves arbitrary parameters, which are the elements of the

arbitrary vector p. These arbitrary parameters may take any values as long as
rank ~RR ¼ n. If the condition rank ~RR ¼ n cannot be satisfied, other methods for deter-
mining K may be found in the literature.

10.6.3 Reduced-Order Observers

Suppose that the matrix C in the output equation yðtÞ ¼ CxðtÞ is square and non-
singular. Then xðtÞ ¼ C�1

yðtÞ, thus eliminating the need for an observer.
Now, assume that only one of the state variables is not accessible to measure-

ment. Then, it is reasonable to expect that the required state observer will not be of
order n, but of lower order. This is in fact true, and can be stated as a theorem.
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Theorem 10.6.2

If system (10.6-1) is observable, then the smallest possible order of the state observer
is n� p.

We will next present some useful results regarding the design of reduced-order
observers. To this end, we assume that the vector xðtÞ and the matrices A and B may
be decomposed as follows:

xðtÞ ¼
q1ðtÞ
q2ðtÞ

� 	
; A ¼

A11 A12

A21 A22

� 	
; B ¼

B1

B2

� 	

Thus

�q1ðtÞ ¼ A11q1ðtÞ þ A12q2ðtÞ þ B1uðtÞ
�q2ðtÞ ¼ A21q1ðtÞ þ A22q2ðtÞ þ B2uðtÞ

ð10:6-9Þ

where q1ðtÞ is a vector whose elements are all the measurable state variables of xðtÞ,
i.e.,

yðtÞ ¼ C1q1ðtÞ; with jC1j 6¼ 0 ð10:6-10Þ

In cases where the system is not in the form of Eqs (10.6-9) and (10.6-10), it can
easily be converted to this form by using an appropriate transformation matrix. The
observer of the form (10.6-4b) for the system (10.6-9) and (10.6-10) will then become

�̂q�q1ðtÞ ¼ A11q̂q1ðtÞ þ A12q̂q2ðtÞ þ B1uðtÞ þ K1½yðtÞ � C1q̂q1ðtÞ� ð10:6-11aÞ

�̂q�q2ðtÞ ¼ A21q̂q1ðtÞ þ A22q̂q2ðtÞ þ B2uðtÞ þ K2½yðtÞ � C1q̂q1ðtÞ� ð10:6-11bÞ

According to Eq. (10.6-10), we have

q1ðtÞ ¼ q̂q1ðtÞ ¼ C
�1
1 yðtÞ ð10:6-12Þ

Therefore, there is no need for the observer (10.6-11a), while the observer (10.6-11b)
becomes

�̂q�q2ðtÞ ¼ A22q̂q2ðtÞ þ B2uðtÞ þ A21C
�1
yðtÞ ð10:6-13Þ

where use was made of Eq. (10.6-12). The observer (10.6-13) is a dynamic system of
order equal to the number of the state variables which are not accessible to measure-
ment.

It is obvious that for the observer (10.6-13), the submatrix A22 plays an impor-
tant role. If A22 has by luck satisfactory eigenvalues, then system (10.6-13) suffices
for the estimation of q2ðtÞ. On the other hand, if the eigenvalues of A22 are not
satisfactory, then the following observer is proposed for estimating q2ðtÞ:

q̂q2ðtÞ ¼ ryðtÞ þ vðtÞ ð10:6-14Þ

where vðtÞ is an ðn� pÞ vector governed by the vector difference equation

�vðtÞ ¼ FvðtÞ þHuðtÞ þGyðtÞ ð10:6-15Þ

Define the error as before, i.e., let

eðtÞ ¼ xðtÞ � x̂xðtÞ ¼
q1ðtÞ � q̂q1ðtÞ
q2ðtÞ � q̂q2ðtÞ

� 	
¼

e1ðtÞ
e2ðtÞ

� 	
¼

0

e2ðtÞ

� 	

The differential equation for e2ðtÞ is the following:
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�e2ðtÞ ¼ �q2ðtÞ � �̂q2ðtÞ ¼ A21q1ðtÞ þ A22q2ðtÞ þ B2uðtÞ � r �yðtÞ � �vðtÞ

After some algebraic manipulations and simplifications, we have

�e2ðtÞ ¼ Fe2ðtÞ þ ðA21 � rC1A11 �GC2 þ FrC1Þq1ðtÞ

þ ðA22 � rC1A12 � FÞq2ðtÞ þ ðB2 � rC1B1 �HÞuðtÞ
ð10:6-16Þ

In order for e2ðtÞ to be independent of q1ðtÞ, q2ðtÞ and uðtÞ, as well as to tend rapidly
to zero, the following conditions must hold:

1. GC2 ¼ A21 � rC1A11 þ FrC1 or G ¼ ðA21 � rC1A11ÞC
�1
1 þ Fr

(10.6-17a)

2. F ¼ A22 � rC1A12 (10.6-17b)

3. H ¼ B2 � rC1B1 (10.6-17c)

4. Matrix F is stable

If the foregoing conditions are met, then Eq. (10.6-16) becomes

�e2ðtÞ ¼ Fe2ðtÞ
The matrix r may be chosen such that the matrix F ¼ A22 � rC1A12 has any desired
eigenvalues, as long as the system ðA22;C1A12Þ is observable, i.e., as long as

rankR1 ¼ n� p; where

R
T
1 ¼ ½C1A12�

T ..
.
A
T
22½C1A12�

T ..
.

 
 
 ..

.
½A
T
22�
n�p�1

½C1A12�
T

� 	

The following useful theorem has been proven [6].

Theorem 10.6.3

The pair ðA22;C1A12Þ is observable, if and only if the pair ðA;CÞ is observable.
The final form of the observer (10.6-15) is

�vðtÞ ¼ FvðtÞ þHuðtÞ þ ½ðA21 � rC1A11ÞC
�1
1 þ Fr�yðtÞ

or

�vðtÞ ¼ Fq̂q2ðtÞ þHuðtÞ þ ðA21 � rC1A11ÞC
�1
1 yðtÞ ð10:6-18Þ

The block diagram of the observer (10.6-18) is presented in Figure 10.10.

10.6.4 Closed-Loop System Design Using State Observers

Consider the system

�xðtÞ ¼ AxðtÞ þ BuðtÞ; yðtÞ ¼ CxðtÞ ð10:6-19Þ

with the state observer

�̂x�xðtÞ ¼ Ax̂xðtÞ þ BuðtÞ þ K2½yðtÞ � Cx̂xðtÞ� ð10:6-20Þ

Apply the control law

uðtÞ ¼ �K1x̂xðtÞ ð10:6-21Þ

Then, system (10.6-19) becomes
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�xðtÞ ¼ AxðtÞ � BK1x̂xðtÞ ð10:6-22Þ

and the observer (10.6-20) takes on the form

�̂x�xðtÞ ¼ Ax̂xðtÞ � BK1x̂xðtÞ þ K2½CxðtÞ � Cx̂xðtÞ� ð10:6-23Þ

If we use the definition eðtÞ ¼ xðtÞ � x̂xðtÞ, then Eq. (10.6-22) becomes

�xðtÞ ¼ AxðtÞ � BK1½xðtÞ � eðtÞ�

or

�xðtÞ ¼ ðA� BK1ÞxðtÞ þ BK1eðtÞ ð10:6-24Þ

Subtracting Eq. (10.6-23) from Eq. (10.6-22), we have

�eðtÞ ¼ ðA� K2CÞeðtÞ ð10:6-25Þ

The foregoing results are very interesting, because they illustrate the fact that
the matrix K1 of the closed-loop system (10.6-24) and the matrix K2 of the error
equation (10.6-25) can be designed independently of each other. Indeed, if system
ðA;BÞ is controllable, then the matrix K1 of the state feedback law (10.6-21) can be
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chosen so that the poles of the closed-loop system (10.6-24) have any desired
arbitrary values. The same applies to the error equation (10.6-25), where, if the
system ðA;CÞ is observable, the matrix K2 of the observer (10.6-20) can be chosen
so as to force the error to go rapidly to zero. This property, where the two design
problems (the observer and the closed-loop system) can be handled independently,
is called the separation principle. This principle is clearly a very important design
feature, since it reduces a rather difficult design task to two separate simpler design
problems.

Figure 10.11 presents the closed-loop system (10.6-24) and the error equation
(10.6-25). Figure 10.12 gives the block diagram representation of the closed-loop
system with state observer.

Finally, the transfer function GcðsÞ of the compensator defined by the equation
UðsÞ ¼ GcðsÞYðsÞ will be

GcðsÞ ¼ �K1½sI� Aþ BK1 þ K2CÞ
�1
K2 ð10:6-26Þ

The results above cover the case of the full-order observer (order n). In the case
of a reduced-order observer, e.g., of an observer of order n� p, similar results can be
derived relatively easily.

Remark 10.6.2

Consider the pole placement and the observer design problems. The pole-place-
ment problem is called the control problem and it is rather a simple control design
tool for improving the closed-loop system performance. The observer design pro-
blem is called the estimation problem, since it produces a good estimate of xðtÞ in
cases where xðtÞ is not measurable. The solution of the estimation problem reduces
to that of solving a pole-placement problem. In cases where an estimate of xðtÞ is
used in the control problem, one faces the problem of simultaneous solving the
estimation and the control problem. At first sight this appears to be a formidable
task. However, thanks to the separation theorem, the solution of the combined
problem of estimation and control breaks down to separately solving the estima-
tion and the control problem. Since the solution of these two problems is essen-
tially the same, we conclude that the solution of the combined problem of
estimation and control requires twice the solution of the pole placement problem.
These results are usually referred to as algebraic techniques and cover the case of
deterministic environment (i.e., deterministic systems and signals).
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Figure 10.11 Representation of closed-loop system (10.6-24) and the error equation
(10.6-25).



Remark 10.6.3

Going from the algebraic design techniques pointed out in Remark 10.6.2 to optimal
design techniques (see Chap. 11), one realizes that there is a striking analogy between
the two approaches: the optimal control problem reduces to that of solving a first-
order matrix differential equation, known as the Ricatti equation. When we are in a
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stochastic environment, the problem of estimating xðtÞ, known as Kalman filtering,
also reduces to that of solving a Ricatti equation. Now, consider the case where
Kalman filtering is needed to estimate xðtÞ, which subsequently is to be applied for
optimal control (this is the well-known linear quadratic gaussian or LQG problem).
Then, thanks again to the separation theorem, the combined estimation and control
problem, i.e., the LQG problem, breaks down to solving two separate Ricatti equa-
tions, i.e., solving twice a Ricatti equation.

Remark 6.10.4

Clearly, Remark 10.6.2 summarizes the crux of the algebraic design approach results,
whereas Remark 10.6.3 summarizes the crux of the optimal design approach results. It
is most impressive that in both cases the separation theorem holds, a fact which
greatly facilitates the solution of the combined estimation and control problem. As
one would expect, the difficulty in solving estimation and control problems increases
as one goes from algebraic to optimal techniques and as one goes from deterministic
(Luenberger observer) to stochastic environment (Kalman filtering and LQG pro-
blem).

10.6.5 Observer Examples

Example 10.6.1

Consider the system

�xðtÞ ¼ AxðtÞ þ BuðtÞ; yðtÞ ¼ cTxðtÞ

where

A ¼

6 1 0
�11 0 1

6 0 0

2
4

3
5; B ¼

1 0
0 1
1 0

2
4

3
5; and c ¼

1
0
0

2
4

3
5

Design:

(a) A full-order state observer, i.e., of order n ¼ 3
(b) A reduced-order state observer, i.e., of order n� p ¼ 3� 1 ¼ 2
(c) The closed-loop system for both cases

Solution

(a) Examine the system’s observability. We have

R
T
¼ ½c ..

.
A
T
c ..
.
ðA
T
Þ
2
c� ¼

1 6 25
0 1 6
0 0 1

2
4

3
5

Since rankR ¼ 3, there exists a full-order state observer having the form

�̂x�xðtÞ ¼ ½A� kc
T
�x̂xðtÞ þ BuðtÞ þ kyðtÞ

The characteristic polynomial of the open-loop system is pðsÞ ¼ s3 � 6s2 þ 11s� 6.
Suppose that the desired observer characteristic polynomial is chosen as
p̂pðsÞ ¼ ðsþ 1Þðsþ 3Þðsþ 4Þ ¼ s3 þ 8s2 þ 19sþ 12. From Eq. (10.6-7), we have
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W ¼

1 �6 11

0 1 �6

0 0 1

2
64

3
75; âa ¼

âa1

âa2

âa3

2
64

3
75 ¼

8

19

12

2
64

3
75; and

a ¼

a1

a2

a3

2
64

3
75 ¼

�6

11

�6

2
64

3
75

and hence

k ¼

k1
k2
k3

2
4

3
5 ¼ ½W

T
R�

�1
ðâa� aÞ ¼

14
7

18

2
4

3
5

(b) The system of the present example is in the form (10.6-9), where

A11 ¼ 6; A12 ¼ ½1 0�; A21 ¼
�11

6

� 	
; and A22 ¼

0 1
0 0

� 	

B1 ¼ ½1 0�; B2 ¼
0 1
1 0

� 	
; and c1 ¼ 1

and where

q1ðtÞ ¼ x1ðtÞ and q2ðtÞ ¼
x2ðtÞ
x3ðtÞ

� 	

Here, q1ðtÞ ¼ x1ðtÞ ¼ yðtÞ. The proposed observer for the estimation of the vector
q2ðtÞ is

q2ðtÞ ¼ uyðtÞ þ vðtÞ

where vðtÞ is a two-dimensional vector described by the vector difference equation

�vðtÞ ¼ FvðtÞ þHuðtÞ þ gyðtÞ
and where

F ¼ A22 � uc1A12 ¼
0 1

0 0

� 	
�

’1

’2

� 	
½1 0� ¼

�’1 1

�’2 0

� 	
g ¼ ðA21 � uc1A11Þc

�1
1 þ Fu

¼
�11

6

� 	
�

’1

’2

� 	
6þ

�’1 1

�’2 0

� 	
’1

’2

� 	
¼

�11� 6’1 � ’21 þ ’2

6� 6’2 � ’1’2

" #

H ¼ B2 � uc1B1 ¼
0 1

1 0

� 	
�

’1

’2

� 	
½1 0� ¼

�’1 1

1� ’2 0

� 	

Since

rankRT1 ¼ rank ½c1A12�
T ..
.
A
T
22½c1A12�

T

� 	
¼ rank

1 0
0 1

� 	
¼ 2

we can find a vector u such that the matrix F has the desired eigenvalues. The
characteristic polynomial of A22 is p2ðsÞ ¼ s

2. Let p̂p2ðsÞ ¼ ðsþ 1Þðsþ 2Þ ¼ s2 þ 3sþ
2 be the desired characteristic polynomial of matrix F. From Eq. (10.6-7), we have
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W ¼
1 0
0 1

� 	
; âa ¼

3
2

� 	
; a ¼

0
0

� 	

and therefore

u ¼
’1
’2

� 	
¼ ½W

T
R1�

�1
ðâa� aÞ ¼

3
2

� 	

Introducing the value of u into g, F, and H yields

g ¼
�36
�12

� 	
; F ¼

�3 1
�2 0

� 	
; H ¼

�3 1
�1 0

� 	

(c) Let pcðsÞ ¼ ðsþ 1Þðsþ 2Þðsþ 3Þ ¼ s3 þ 6s2 þ 11sþ 6 be the desired charac-
teristic polynomial of the closed-loop system. The system is controllable because
rankS ¼ rank ½B ..

.
AB ..

.
A

2
B� ¼ 3. Consequently, a feedback matrix K1 exists such

that the closed-loop system poles are the roots of pcðsÞ ¼ s
3
þ 6s2 þ 11sþ 6. Using

Eqs (10.3-15) and (10.3-16), the following matrix may be determined:

K1 ¼
12 0 0
0 0 0

� 	

Checking, we have that jsI� ðA� BK1Þj ¼ s
3
þ 6s2 þ 11sþ 6 ¼ pcðsÞ. Of course, in

the case of a full-order observer, k2 ¼ k, where k was determined in part (a) above.
In the case of a reduced-order observer, k2 ¼ u, where u was determined in part (b)
above.

Example 10.6.2

Consider the system

�xðtÞ ¼ AxðtÞ þ buðtÞ; yðtÞ ¼ cTxðtÞ

where

A ¼
0 1
0 ��

� 	
; b ¼

0



� 	
; c ¼

1
0

� 	

In this example we suppose that only the state x1ðtÞ ¼ yðtÞ can be directly measured.
Design:

(a) A full-order state observer, i.e., of order n ¼ 2
(b) A reduced-order state observer, i.e., of order n� p ¼ 2� 1 ¼ 1. In other

words, find an observer to estimate only the state x2ðtÞ, which we assume
it not accessible to measurement. Note that x1ðtÞ is measurable since
x1ðtÞ ¼ yðtÞ.

(c) The closed-loop system for both cases.

Solution

(a) Examine the system’s observability. We have

R
T
¼ ½c ..

.
A
T
c� ¼

1 0
0 1

� 	

Since rankR ¼ n ¼ 2, there exists a full-order state observer having the form
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�̂x�xðtÞ ¼ ½A� kc
T
�x̂xðtÞ þ BuðtÞ þ kyðtÞ

The characteristic polynomials pðsÞ and p̂pðsÞ of the open-loop system and of the
observer are pðsÞ ¼ jsI� Aj ¼ s2 þ �s and p̂pðsÞ ¼ jsI� ðA� kc

T
Þj ¼ s2 þ âa1sþ âa2,

respectively. From Eq. (10.6-7) we have

W ¼
1 �
0 1

� 	
; âa ¼

âa1
âa2

� 	
; and a ¼

�
0

� 	

and thus

k ¼
k1
k2

� 	
¼ ½W

T
R�

�1
ðâa� aÞ ¼

âa1 � �
âa2 � �ðâa1 � �Þ

� 	

From a practical point of view, we choose âa1 and âa2 in p̂pðsÞ so that the error eðtÞ ¼
xðtÞ � x̂xðtÞ tends rapidly to zero. Of course, both roots of p̂pðsÞmust lie in the left-hand
complex plane.

(b) The system of the present example is in the form (10.6-9), where A11 ¼ 0,
A12 ¼ 1, A21 ¼ 0, A22 ¼ ��, b1 ¼ 0, b2 ¼ 
, and c1 ¼ 1. Here q1ðtÞ ¼ x1ðtÞ and
q2ðtÞ ¼ x2ðtÞ. Moreover q̂q1ðtÞ ¼ x1ðtÞ ¼ yðtÞ. For the estimation of x2ðtÞ the proposed
observer is

q2ðtÞ ¼ x̂x2ðtÞ ¼ ’yðtÞ þ vðtÞ

where vðtÞ is a scalar function governed by the differential equation

_vvðtÞ ¼ f vðtÞ þ huðtÞ þ gyðtÞ

and where

f ¼ A22 � ’c1A12 ¼ �� � ’

g ¼ ðA21 � ’c1A11Þc
�1
1 þ f ’ ¼ ð�� � ’Þ’ ¼ ��’� ’2

h ¼ B2 � ’c1B1 ¼ 


Since rankRT1 ¼ rank ½ðc1A12Þ
T
� ¼ rank ð1Þ ¼ 1 we can find a ’ such that f has the

desired eigenvalue. Let �� be the desired eigenvalue of f . Then, ’ ¼ �� �.
Introducing the value of ’ into g and f we have

g ¼ ��2 þ �� and f ¼ ��

(c) Let pcðsÞ ¼ s
2
þ �1sþ �2 be the desired characteristic polynomial of the

closed-loop ystem. The parameters �1 and �2 are arbitrary, but they will ultimately
be specified in order to meet closed-loop system requirements. The system is con-
trollable since rankS ¼ rank ½b ..

.
Ab� ¼ 2. Therefore, we can choose a feedback vec-

tor k1 such that the closed-loop system poles are the roots of pcðsÞ ¼ s
2
þ �1sþ �2.

Using the results of Sec. 10.3, the following vector is determined:

k
T
1 ¼

�2



�
� � �1




� 	

Checking the results, we have jsI� ðA� bk
T
1 Þj ¼ s

2
þ �1sþ �2 ¼ pcðsÞ. Of course, in

the case of a full-order observer, k1 ¼ k, where k has been determined in part (a)
above. In the case of a reduced-order observer, k2 ¼ ’, where ’ has been determined
in part (b) above. The block diagram representations of the closed-loop systems in
both cases are given in Figures 10.13 and 10.14.
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Figure 10.13 Block diagram of the closed-loop system of Example 10.6.2 with a full-order
state observer.
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Figure 10.14 Block diagram of the closed-loop system of Example 10.6.2 with a reduced-
order state observer.



10.7 PROBLEMS

1. Consider the linear system with

A ¼

1 1 0
0 1 1

�1 2 1

2
4

3
5; b ¼

1
0
1

2
4

3
5; c ¼

0
0
1

2
4

3
5

Find a state feedback control law of the form uðtÞ ¼ �f
T
xðtÞ and an output

feedback control law of the form uðtÞ ¼ �k
T
yðtÞ, such that the closed-loop

eigenvalues are �1, �2, and �3.
2. Consider the linear system with

A ¼

�4 �1 �3

3 1 1

5 1 3

2
64

3
75; B ¼

1 1

�1 0

�1 �1

2
64

3
75; C ¼

4 �1 4

0 0 0

� 	
;

D ¼
0 0

0 1

� 	

Find a state feedback control law of the form uðtÞ ¼ �FxðtÞ and an output
feedback control law of the form uðtÞ ¼ �KyðtÞ, such that the closed-loop eigen-
values are 0, �2, and �2.

3. The lateral motion of a helicopter can be approximately described by the follow-
ing third-order linear state-space model [2]:

_qqðtÞ
_��ðtÞ
_vvðtÞ

2
4

3
5 ¼

�0:4 0 �0:01
1 0 0

�1:4 9:8 �0:02

2
4

3
5 qðtÞ

�ðtÞ
vðtÞ

2
4

3
5þ

6:3
0
0:8

2
4

3
5ðtÞ

or

�xðtÞ ¼ AxðtÞ þ BuðtÞ
where qðtÞ is the pitch rate, �ðtÞ is the pitch angle of the fuselage, vðtÞ the
horizontal velocity of the helicopter, and ðtÞ is the rotor inclination angle.
Determine a state feedback control law of the form u ¼ �f

T
x so that the

closed-loop system eigenvalues are �2, �1þ j, �1� j.
4. Consider the system of the inverted pendulum on a cart (Chap. 3, Sec. 3.14,

Problem 10), where M ¼ 3 kg, m ¼ 200 g, I ¼ 60 cm.

(a) Find a state feedback control law u ¼ �f
T
x, such that the eigenvalues of

the closed-loop system are �2þ j, �2� j, and �5.
(b) Find an output feedback control law of the form u ¼ �k

T
y which assigns

the same eigenvalues.

5. Decouple via both state and output feedback the linear systems:

ðaÞ A ¼
�1 0

0 �2

� 	
; B ¼

1 0

0 1

� 	
; C ¼

1 1

1 1

� 	

ðbÞ A ¼

0 1 0

2 3 0

1 1 1

2
64

3
75; B ¼

0 0

1 0

0 1

2
64

3
75; C

T
¼

1 0

1 0

0 1

2
64

3
75
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ðcÞ A ¼

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 1

2
6664

3
7775; B ¼

0 0

0 0

1 0

0 1

2
6664

3
7775; C

T
¼

1 0

0 0

0 0

0 1

2
6664

3
7775

6. Consider controlling the lateral motion of the helicopter of Problem 3. If the
output is the horizontal velocity v of the helicopter, determine the gains k and n
of the output feedback control law of the form

 ¼ kvþ nref

where ref is a reference input, such that the transfer function of the closed-loop
system has the form

HðsÞ ¼
9

s2 þ 3s2 þ 9s

7. Consider the linear system with

A ¼
�1 0
0 �2

� 	
; B ¼

1 0
0 1

� 	
; C ¼

1 1
1 0

� 	
; D ¼

1 1
0 0

� 	

Show that if the state feedback law (10.2-2) is applied to this system with

F ¼
�1 �2
0 �2

� 	
and G ¼

0
1

� 	

then the transfer function matrix of the closed-loop system becomes

HðsÞ ¼
1

ðsþ 2Þðsþ 4Þ

ðsþ 1Þðsþ 2Þ

�2

2
4

3
5

Now assume that HmðsÞ ¼ HðsÞ and F and G are unknown matrices. Solve the
exact model matching problem.

8. Show that if we apply the law (10.2-2) to the system of Problem 2 with

F ¼
�13 4 �11
12 �3 12

� 	
; G ¼

1 0
�1 1

� 	

then the transfer function matrix of the closed-loop system becomes

HðsÞ ¼

1

sþ 3
0

�s

sþ 3
1

2
64

3
75

Now assume that HmðsÞ ¼ HðsÞ and F and G are unknown matrices. Solve the
exact model matching problem.

9. Solve the exact model matching problem via output feedback for the following
two cases:
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System under control Model

a: GðsÞ ¼

s

ðsþ 1Þðsþ 2Þ

�1

sþ 1

2
664

3
775 and HmðsÞ ¼

1

ðsþ 2Þ

�1

sþ 1

2
6664

3
7775

b: GðsÞ ¼

1

sðsþ 1Þ
1

�2=ðsþ 2Þ 1=s

2
64

3
75 and HmðsÞ ¼

1

sþ 1

1

sþ 2

�1
s

sþ 1

2
664

3
775

10. Consider the helicopter of Problem 3. Let the pitch rate qðtÞ be the output of the
system. Find

(a) A full-order state observer
(b) A reduced-order observer

11. The state-space model of a satellite position control system is as follows:

�xðtÞ ¼ AxðtÞ þ buðtÞ

y ¼ cTxðtÞ

where xT ¼ ½x1; x2� ¼ ½�y; !� with �y the angular position and ! the angular
velocity, and

A ¼
0 1
0 0

� 	
; b ¼

0
�

� 	
; c ¼

1
0

� 	

(a) Find a full-order state observer.
(b) Find a reduced-order observer.
(c) Draw the closed-loop system diagram for (a) and (b).

12. Consider the speed control system described in Subsec. 3.13.3. A description of
the system in state space is as follows

�xðtÞ ¼ AxðtÞ þ buðtÞ

y ¼ cTxðtÞ

where xT ¼ ½x1; x2�, where x1 is the angular speed !m of the motor, x2 is the
current if , u is the input voltage vf , and y is the angular speed !y of the load. The
system matrices are

A ¼
�1 �2
0 �3

� 	
; b ¼

0
L�1
f

� 	
; c ¼

N
0

� 	

where

�1 ¼ �
B�m
J�m

þ
K2

m

J�mRa

 !
; �2 ¼

KmKg

J�mRa

; and �3 ¼ �
Rf

Kf

Assume that only the state variable x1ðtÞ can be measured. Then
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(a) Find a full-order state observer.
(b) Find a reduced-order state observer for the estimation of the current if ,

which is not measurable.
(c) Draw the block diagram of the closed-loop system for both cases (a) and

(b).

13. Consider the system

�xðtÞ ¼
0 1 0
0 0 1
1 3 3

2
4

3
5xðtÞ þ 0

0
1

2
4

3
5uðtÞ

yðtÞ ¼ ½ 1 1 0 �xðtÞ

(a) Determine the state feedback control law of the form uðtÞ ¼ �f
T
xðtÞ, so

that the closed loop eigenvalues are �1, �1:5, �2.
(b) Find a full-order observer with characteristic polynomial p̂pðsÞ ¼ s3 þ 12s2

þ47sþ 60:
(c) Draw the block diagram of the system incorporating the controller and

the observer found in (a) and (b).
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11
Optimal Control

11.1 GENERAL REMARKS ABOUT OPTIMAL CONTROL

Optimal control deals with the solution of one of the most celebrated problems of
modern control theory. Generally speaking, this problem is defined as the determi-
nation of the best possible control strategy (usually of the optimum control vector
uðtÞ), which minimizes a certain cost function or performance index.

In this chapter we consider the optimal control of linear systems (the nonlinear
case is far too difficult for the level of this book). The system under control is
described in state space by the equations

�xðtÞ ¼ AðtÞxðtÞ þ BðtÞuðtÞ ð11:1-1aÞ

yðtÞ ¼ CðtÞxðtÞ þ DðtÞuðtÞ ð11:1-1bÞ

xðt0Þ ¼ x0 ð11:1-1cÞ

where the matrices AðtÞ, BðtÞ, CðtÞ, and DðtÞ have dimensions n� n, n�m, p� n, and
p�m, respectively. The objective of the optimal control problem is to determine a
control vector uðtÞ which will ‘‘force’’ the behavior of the system under control to
minimize some type of cost function, while at the same time satisfying the physical
constraints of the system—namely, the state equations (11.1-1). The cost criterion is
usually formulated so as to express some physical quantity. This way, the very idea
of minimization of a cost criterion has a practical meaning, as for example the
minimization of the control effort energy, the energy dissipated by the system, etc.

A particular form of the cost function, which in itself is very general, is the
following:

J ¼ �½xðtÞ; t�
t ¼ tf
t ¼ t0

���� þ

ðtf
t0

’½xðtÞ; uðtÞ; t� dt ð11:1-2Þ

The first term in Eq. (11.1-2) refers to the cost on the boundaries of the optimization
time interval ½t0; tf �. More precisely, �½xðt0Þ; t0� is the cost at the beginning, while
�½xðtf Þ; tf � is the cost at the end of the interval. The second term in Eq. (11.1-2) is an
integral which refers to the cost in the entire optimization interval.
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Depending on the requirements of the particular optimization problem, the
functions �½xðtÞ; t� and ’½xðtÞ; uðtÞ; t� take on special forms. In the sequel, some of the
most well-known special forms of Eq. (11.1-2) are given, together with a description
of the corresponding optimal control problem.

1 The Minimum Time Control Problem

In this case the cost function has the form

J ¼

ðtf
t0

dt ¼ tf � t0 ð11:1-3Þ

It is obvious that this criterion refers only and exclusively to the time duration
tf � t0. The control problem here is to find a control vector uðtÞ such that the time
required for xðtÞ to go from its initial state xðt0Þ to its final state xðtf Þ, is a minimum.
Examples of ‘‘final states’’ are the crossing of the finish line by a car or a sprinter in a
race, the time needed to complete a certain task, etc.

2 The Terminal Control Problem

In this case the cost function has the form

J ¼ ½xðtf Þ � mðtf Þ�
T
S½xðtf Þ � mðtf Þ� ð11:1-4Þ

where mðtf Þ is the desired final value of the vector xðtÞ and S is an n� n real, sym-
metric, positive semidefinite weighting matrix (see Sec. 2.12). This form of J shows
clearly that here our attention has been exclusively concentrated on the final value
xðtf Þ of xðtÞ. Here, we want to determine a control vector uðtÞ so that the error xðtf Þ �
mðtf Þ is minimal. An example of such a problem is the best possible aiming at a point
on earth, in the air, on the moon, or elsewhere.

3 The Minimum Control Effort Problem

In this case the cost function has the form

J ¼

ðtf
t0

u
T
ðtÞRðtÞuðtÞ dt ð11:1-5Þ

where RðtÞ is an m�m real, symmetric, positive definite weighting matrix for
t 2 ðt0; tf Þ. This expression for J represents the energy consumed by the control
vector uðtÞ in controlling the system. We want this energy to be the least possible.
As an example, consider the gasoline and break pedals of a car. The driver must use
each pedal in such a way as to reach his destination by consuming the least possible
fuel. Note that the present cost criterion is essentially the same with the cost criterion
Ju of relation (9.10-2) which is used in the classical optimal control techniques (Sec.
9.10).

4 The Optimal Servomechanism or Tracking Problem

In this case the cost function has the form

J ¼

ðtf
t0

½xðtÞ � mðtÞ�TQðtÞ½xðtÞ � mðtÞ� dt ¼
ðtf
t0

e
T
ðtÞQðtÞeðtÞdt ð11:1-6Þ

480 Chapter 11



where QðtÞ is an n� n real, symmetric, positive semidefinite weighting matrix for t 2
ðt0; tf Þ and mðtÞ is the prespecified desired path of the state vector xðtÞ. The vector
eðtÞ ¼ xðtÞ � mðtÞ is the error, which we want to minimize. This may be accomplished
by determining an appropriate uðtÞ so that J in Eq. (11.-6) becomes minimal. The
track of a space shuttle, the desired course of a missile, of a ship, of a car or even of a
pedestrian, are optimal control problems of the form (11.1-6). If we desire to incor-
porate the least-effort problem (11.1-5), then Eq. (11.1-6) takes on the more general
form

J ¼

ðtf
t0

½xðtÞ � mðtÞ�TQðtÞ½xðtÞ � mðtÞ� þ u
T
ðtÞRðtÞuðtÞ�

� �
dt ð11:1-7Þ

We often also want to include the terminal control problem, in which case Eq.
(11.1-7) takes on the even more general form

J ¼ ½xðtf Þ � mðtf Þ�
T
S½xðtf Þ � mðtf Þ�

þ

ðtf
t0

½xðtÞ � mðtÞ�TQðtÞ½xðtÞ � mðtÞ� þ u
T
ðtÞRðtÞuðtÞ�

� �
dt

ð11:1-8Þ

5 The Optimal Regulator Problem

In this case the cost function is a special case of Eq. (11.1-8), where mðtÞ ¼ 0. Hence,
in this case we have

J ¼ x
T
ðtf ÞSxðtf Þ þ

ðtf
t0

�
xðtÞTQðtÞxðtÞ þ u

T
ðtÞRðtÞuðtÞ

�
dt ð11:1-9Þ

A well-known optimal regulator example is the restoring of a system to its equili-
brium position after it has been disturbed.

It is noted that the weighting matrices S,QðtÞ, and RðtÞ are chosen according to
the ‘‘weight,’’ i.e., to the importance we want to assign to each element of the error
vector eðtÞ ¼ xðtÞ � mðtÞ and the input vector uðtÞ. The choice of suitable S, QðtÞ, and
RðtÞ for a specific problem is usually difficult and requires experience and engineering
insight.

Among the many problems that have been solved thus far using the modern
optimal control techniques, only two are presented in this book due to space limita-
tions. These problems are the optimal linear regulator (Sec. 11.3) and the optimal
linear servomechanism (Sec. 11.4). These two problems are of great theoretical as
well as of practical interest. For more information on these problems, as well as on
other problems of optimal control (for example bang-bang control, stochastic con-
trol, adaptive control, etc.) see [1–20].

To facilitate the study of the optimal linear regulator and servomechanism
control problems, we present the necessary mathematical background in Sec. 11.2
that follows. This mathematical background covers two very basic topics: (i) maxima
and minima using the calculus of variations and (ii) the maximum principle.
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11.2 MATHEMATICAL BACKGROUND

11.2.1 Maxima and Minima Using the Method of Calculus of
Variations

In what follows, we will use the method of calculus of variations to study the
following two problems: maxima and minima of a functional without constraints
and maxima and minima of a functional with constraints.

1 Maxima and Minima of a Functional Without Constraints

Consider the cost function or performance index

JðxÞ ¼

ðtf
t0

’½xðtÞ; _xxðtÞ; t� dt ð11:2-1Þ

This performance index JðxÞ is a functional, i.e., JðxÞ is a function of another func-
tion, namely, of the function xðtÞ. We are asked to find a function xðtÞ in the interval
½t0; tf � such that JðxÞ is a minimum. A convenient method to solve this problem is to
apply the method of calculus of variations presented in the sequel.

Let xðtÞ and _xxðtÞ be presented as follows:

xðtÞ ¼ x̂xðtÞ þ "�ðtÞ ¼ x̂xðtÞ þ �x ð11:2-2aÞ

_xxðtÞ ¼ _̂xx_xxðtÞ þ " _��ðtÞ ¼ _̂xx_xxðtÞ þ � _xx ð11:2-2bÞ

where x̂xðtÞ is an admissable optimal trajectory, i.e., x̂xðtÞ minimizes J, �ðtÞ is a devia-
tion of xðtÞ and " is small number. Substitute Eq. (11.2-2) in Eq. (11.2-1). Next,
expand ’ðx; _xx; tÞ in Taylor series about the point " ¼ 0, to yield

’
�
x̂xðtÞ þ "�ðtÞ; _̂xx_xxðtÞ þ " _��ðtÞ; t

�
¼ ’

�
x̂x; _̂xx_xx; t

�
þ
@’

@x̂x
"�ðtÞ þ

@’

@ _̂xx_xx
" _��ðtÞ þ hot ð11:2-3Þ

where hot stands for higher-order terms and includes all the Taylor series terms
which involve " raised to a power equal or greater than two. Let �J be a small
deviation of J from its optimal value, i.e., let

�J ¼ J½x̂xþ "�ðtÞ; _̂xx_xxþ " _��ðtÞ; t� � Jðx̂x; _̂xx_xx; tÞ ð11:2-4Þ

Substitute Eq. (11.2-3) in Eq. (11.2-4) and, using Eq. (11.2-1), we have

�J ¼

ðtf
t0

’½x̂xþ "�ðtÞ; _̂xx_xxþ " _��ðtÞ; t� � ’ðx̂x; _̂xx_xx; tÞ
h i

dt

¼

ðtf
t0

@’

@x̂x
"�ðtÞ þ

@’

@ _̂xx_xx
" _��ðtÞ þ hot

	 

dt

¼

ðtf
t0

@’

@x̂x
�xþ

@’

@ _̂xx_xx
� _xxþ hot

	 

dt ð11:2-5Þ

where �x ¼ "�ðtÞ and � _xx ¼ " _��ðtÞ. Let �J be the linear part of �J with respect to �x
and � _xx. Then �J takes on the form

�J ¼

ðtf
t0

@’

@x̂x
�xþ

@’

@ _̂xx_xx
� _xx

	 

dt ð11:2-6Þ

The following theorem holds.
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Theorem 11.2.1

A necessary condition for J to be maximum or minimum when xðtÞ ¼ x̂xðtÞ is that
�J ¼ 0.

If we apply Theorem 11.2.1 to Eq. (11.2-6) and if, for simplicity, we drop the
symbol ‘‘ ^ ’’ from the optimal trajectory x̂xðtÞ, then we readily haveðtf

t0

@’

@x
�xþ

@’

@ _xx
� _xx

	 

dt ¼ 0 ð11:2-7Þ

The above integral may be simplified by using the ‘‘integration by parts’’ method, as
follows. Letðb

a

udv ¼ uv

����
b

a

�

ðb
a

vdu

where

u ¼
@’

@ _xx
and dv ¼ � _xxdt ¼ dð�xÞ

Then

du ¼ d
@’

@ _xx

	 

¼
d

dt

@’

@ _xx

	 

dt and v ¼ �x

Hence, the second term in Eq. (11.2-7) becomesðtf
t0

@’

@ _xx
� _xxdt ¼

ðtf
t0

@’

@ _xx
dð�xÞ ¼

@’

@ _xx
�x

����
tf

t0

�

ðtf
t0

ð�xÞ
d

dt

@’

@ _xx

	 

dt

Thus the integral (11.2-7) may be written asðtf
t0

@’

@x
�
d

dt

@’

@ _xx

	 
	 

�xdtþ

@’

@ _xx
�x

����
tf

t0

ð11:2-8Þ

For Eq. (11.2-8) to be equal to zero, independently of the variation �x, the following
two conditions must hold simultaneously:

@’

@x
�
d

dt

@’

@ _xx

	 

¼ 0 ð11:2-9Þ

@’

@ _xx
�x ¼ 0; for t ¼ t0 and tf ð11:2-10Þ

Equation (11.2-9) is the Euler–Lagrange equation and Eq. (11.2-10) represents the
boundary conditions of the problem.

The linear portion �2L of the second differential �2L may be determined in a
similar way to that of determining �J, to yield

�2J ¼
1

2

ðtf
t0

@2’

@x2
�
d

dt

@2’

@x@ _xx

" #
ð�xÞ2 þ

@2’

@ _xx2
ð� _xxÞ2

" #
dt

"
ð11:2-11Þ

For J to be maximum (minimum), there must be �2J 
 0 (�2J � 0). For example, for
J to be minimum, from Eq. (11.20-11) it follows that the following relations must
hold:
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@2’

@x2
�
d

dt

@2’

@x@ _xx

" #
� 0 and

@2’

@ _xx2
� 0 ð11:2-12Þ

Remark 11.2.1

With regard to the boundary conditions (11.2-10), we distinguish the following four
cases:

Case 1. The trajectory xðtÞ is fixed at t0 and tf , in which case

xðt0Þ ¼ C1 and xðtf Þ ¼ C2

where C1 and C2 are the given constants. In this case, no restriction is placed upon
@’=@ _xx.

Case 2. The trajectory xðtÞ is fixed at t0 and free at tf , in which case

xðt0Þ ¼ C1 and
@’

@ _xx
¼ 0; for t ¼ tf

The condition @’=@ _xx ¼ 0 for t ¼ tf is because since we don’t know the value of xðtÞ at
tf , it follows that we don’t know �x for t ¼ tf . Hence, to satisfy the boundary
condition (11.2-10) at t ¼ tf we must have @’=@ _xx ¼ 0 for t ¼ tf .

Case 3. The trajectory xðtÞ is free at t0 and fixed at tf , in which case

@’

@ _xx
¼ 0 for t ¼ t0 and xðtf Þ ¼ C2

Case 4. The trajectory xðtÞ is free at both t0 and tf , in which case

@’

@ _xx
¼ 0 for t ¼ t0 and t ¼ tf

Remark 11.2.2

The results of this section can readily be expanded to cover the more general case
where xðtÞ is no longer a scalar function but rather a vector function, i.e., when

J ¼

ðtf
t0

’ðx; �x; tÞ dt; where x
T
¼ ðx1x2; . . . ; xnÞ ð11:2-13Þ

Here, the Euler–Lagrange equation is

@’

@x
�
d

dt

@’

@ �x

	 

¼ 0 ð11:2-14Þ

and the boundary conditions are

ð�xÞT
@’

@ �x ¼ 0; for t ¼ t0 and tf ð11:2-15Þ
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Remark 11.2.3

From the foregoing material it follows that the problem of determining the maxima
and minima of a functional using the calculus of variations reduces to that of solving
a two-point boundary value problem (TPVBP).

Example 11.2.1

Determine the optimum xðtÞ which minimizes the cost function

J ¼

ðtf
t0

’½xðtÞ; _xxðtÞ; t� dt ¼

ð
=2
0

½x2ðtÞ � _xx2ðtÞ� dt

with boundary conditions xðt0Þ ¼ xð0Þ ¼ 0 and xðtf Þ ¼ xð
=2Þ ¼ 1.

Solution

The Euler–Lagrange equation is

@’

@x
�
d

dt

@’

@ _xx

	 

¼ 2x�

d

dt
ð�2 _xxÞ ¼ 2xþ 2xð2Þ ¼ 0 or xð2Þ þ x ¼ 0

where xð2Þ is the second derivative of x with respect to t. The general solution of the
Euler–Lagrange equation is

xðtÞ ¼ A1 sin tþ A2 cos t

The constants A1 and A2 are determined using the boundary conditions (11.2-10).
For the present example, we have (see Case 1 of Remark 11.2.1)

xðt0Þ ¼ xð0Þ ¼ 0 and xðtf Þ ¼ x



2

 �
¼ 1

Thus

xð0Þ ¼ A2 ¼ 0 and x



2

 �
¼ A1 ¼ 1

Hence, the optimum xðtÞ sought is xðtÞ ¼ sin t. The graphical representation of the
optimum xðtÞ is given in Figure 11.1.
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Example 11.2.2

Determine a trajectory xðtÞ such as to minimize the distance between the point
xðt0Þ ¼ xð0Þ ¼ 1 and the straight line t ¼ tf ¼ 2.

Solution

In Figure 11.2 we present a few possible trajectories which may satisfy the problem
specifications, since they all start from the point xðtoÞ ¼ 1 and end on the straight line
t ¼ tf ¼ 2. However, the optimum trajectory sought is the one which will minimize
the cost function

J ¼

ðtf
tÞ

’½xðtÞ; _xxðtÞ; t�dt ¼

ð2
0

ds

where ðdsÞ2 ¼ ðdxÞ2 þ ðdtÞ2 and hence ds ¼ ð1þ _xx2Þ1=2dt. Therefore

J ¼

ð2
0

�
1þ _xx2

�1=2
dt; where ’ðx; _xx; tÞ ¼

�
1þ _xx2

�1=2
The Euler–Lagrange equation is

@’

@x
�
d

dt

@’

@ _xx

	 

¼ �

d

dt

_xx

ð1þ _xx2Þ1=2

	 

¼

xð2Þð1þ _xx2Þ � _xx2xð2Þ

ð1þ _xx2Þ3=2
¼ 0

The above equation reduces to the differential equation xð2ÞðtÞ ¼ 0. The general
solution of the Euler–Lagrange equation will then be

xðtÞ ¼ A1tþ A2

The constants A1 and A2 are determined by using the boundary conditions (11.2-10).
For the present example, the boundary conditions are fixed at t0 ¼ 0 but free at tf ¼
2 (see Case 2 of Remark 11.2.1). Thus

xð0Þ ¼ A2 ¼ 1 and
@’

@ _xx

����
t¼2

¼
_xx

ð1þ _xx2Þ1=2

����
t¼2

¼
A1

ð1þ A2
1Þ
1=2

¼ 0

Hence, the optimum trajectory xðtÞ is the straight line xðtÞ ¼ 1.

Example 11.2.3

Determine the optimum trajectory which minimizes the cost function
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J ¼

ðtf
t0

’½xðtÞ; _xxðtÞ; t� dt ¼

ð2
0

1

2
_xx2 þ x _xxþ _xxþ x

	 

dt

where no restrictions are placed upon the optimum xðtÞ at the boundaries t0 ¼ 0 and
tf ¼ 2.

Solution

The Euler–Lagrange equation is given by

@’

@x
�
d

dt

@’

@ _xx

	 

¼ _xxþ 1�

d

dt
ð _xxþ xþ 1Þ ¼ 1� xð2Þ ¼ 0

The general solution of the above differential equation is

xðtÞ ¼
1

2
t2 þ A1tþ A2

The constants A1 and A2 are determined by using the boundary conditions (11.2-10).
For the present example, the boundary conditions are free at both t0 ¼ 0 and at tf ¼
2 (see Case 4 of Remark 11.2.1). We thus have

@’

@ _xx
¼ _xxþ xþ 1 ¼ 0; for t ¼ 0 and 2

This leads to the following two algebraic system of equations:

@’

@ _xx

�����
t¼0

¼ ðtþ A1Þ þ
1

2
t2 þ A1tþ A2

� �
þ 1

	 

t¼0

¼ A1 þ A2 þ 1 ¼ 0

@’

@ _xx

�����
t¼2

¼ ðtþ A1Þ þ
1

2
t2 þ A1tþ A2

� �
þ 1

	 

t¼2

¼ 3A1 þ A2 þ 5 ¼ 0

The solution of these two algebraic equations yields A1 ¼ �2 and A2 ¼ 1. Hence, the
optimal trajectory is xðtÞ ¼ 1

2 t
2
� 2tþ 1.

2 Maxima and Minima of Functionals with Constraints

Here, we will extend the results of maxima and minima of functionals without
constraints to the more general case where constraint equations are imposed upon
the problem of optimization. More specifically, we will study the case where the cost
function has the form

J ¼

ðtf
t0

’ðx; �x; tÞ dt ð11:2-16Þ

where xðtÞ is constrained by the following set of equations:

fðx; �x; tÞ ¼ 0 for t 2 ½t0; tf � ð11:2-17Þ

To determine the maxima and minima of J under the constraint (11.12-17) we will
apply the method of Lagrange multipliers. To this end, define a new cost function J 0

as follows:

J 0
¼

ðtf
t0

½’ðx; �x; tÞ þ kTðtÞfðx; �x; tÞ�dt ¼
ðtf
t0

 ðx; �x; k; tÞ dt ð11:2-18Þ
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where k ¼ ð�1; �2; . . . ; �nÞ
T is the vector of Language multipliers and

 ðx; �x; k; tÞ ¼ ’ðx; �x; tÞ þ kTðtÞfðx; �x; tÞ

Since fðx; �x; tÞ ¼ 0, it follows that kTðtÞfðx; �x; tÞ ¼ 0 and hence J ¼ J 0. If we extend
the results of Remark 11.2.2 to the present case where constraints are involved, we
will arrive at the following Euler–Lagrange equation:

@ 

@x
�
d

dt

@ 

@ �x

	 

¼ 0 ð11:2-19Þ

Clearly, when no constraints are involved, then Eq. (11.2-19) reduces to Eq. (11.2-14)
of Remark 11.2.2.

Example 11.2.4

Determine the optimum trajectory xðtÞ which minimizes the cost function

J ¼

ðtf
t0

’½uðtÞ; t� dt ¼

ð1
0

1

2
u2ðtÞ dt

where xðtÞ is subject to the constraint

�x ¼ Ax þ bu or fðx; �x; tÞ ¼ Ax þ bu� �x ¼ 0

where

x ¼
x1
x2

	 

; A ¼

0 1
0 0

	 

; and b ¼

0
1

	 


with boundary conditions

xð0Þ ¼
x1ð0Þ
x2ð0Þ

	 

¼

1
1

	 

and xð1Þ ¼

x1ð1Þ
x2ð1Þ

	 

¼

0
0

	 


Solution

The present problem is the minimum effort problem defined in Eq. (11.1-5), subject
to the constraints of the system model, namely, the state-space equations
�x ¼ Ax þ bu. Apply the method of Lagrange multipliers to yield

J 0
¼

ð1
0

½’ðu; tÞ þ kTðtÞfðx; �x; tÞ� dt ¼
ð1
0

1

2
u2 þ kTðAx þ bu� �xÞ

	 

dt

¼

ð1
0

1

2
u2 þ �1ðx2 � _xx1Þ þ �2ðu� _xx2Þ

	 

dt ¼

ð1
0

 ðu; x; �x; k; tÞ dt

where kTðtÞ ¼ ½�1ðtÞ; �2ðtÞ� is the Lagrange multiplier vector and

 ðu; x; �x; k; tÞ ¼ 1
2 u

2
þ �1ðx2 � _xx1Þ þ �2ðu� _xx2Þ

In what follows, we will determine simultaneously both the optimum xðtÞ and the
optimum uðtÞ. This means that we must determine the three functions x1ðtÞ, x2ðtÞ,
and uðtÞ. The Euler–Lagrange equation (11.2-19) is actually the following three
differential equations:
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@ 

@x1
�
d

dt

@ 

@ _xx1

	 

¼ _��1 ¼ 0

@ 

@x2
�
d

dt

@ 

@ _xx2

	 

¼ �1 þ _��2 ¼ 0

@ 

@u
�
d

dt

@ 

@ _uu

	 

¼ uþ �2 ¼ 0

The general solution of these three equations is

�1ðtÞ ¼ A1; �2ðtÞ ¼ �A1tþ A2; and uðtÞ ¼ ��2ðtÞ ¼ A1t� A2

Note that from the state-space system model we have

_xx1 ¼ x2

_xx2 ¼ uðtÞ

Therefore _xx2 ¼ A1t� A2. Hence

x2ðtÞ ¼

ðt
0

uðtÞ dt ¼

ðt
0

ðA1t� A2Þ dt ¼
1

2
A1t

2
� A2tþ A3

and

x1ðtÞ ¼

ðt
0

x2ðtÞ dt ¼
1

6
A1t

3
�
1

2
A2t

2
þ A3tþ A4

The constants A1, A2, A3, and A4 will be determined using the boundary conditions.
We have

x1ð0Þ ¼ A4 ¼ 1

x2ð0Þ ¼ A3 ¼ 1

x1ð1Þ ¼
1

6
A1 �

1

2
A2 þ A3 þ A4 ¼ 0

x2ð1Þ ¼
1

2
A1 � A1 þ A3 ¼ 0

This system of four algebraic equations has the following solution: A1 ¼ 18,
A2 ¼ 10, A3 ¼ 1, and A4 ¼ 1. Hence, the optimum xðtÞ is given by

xðtÞ ¼
x1ðtÞ
x2ðtÞ

	 

¼

3t3 � 5t2 þ tþ 1
9t2 � 10tþ 1

	 


while the optimum uðtÞ is given by

uðtÞ ¼ 18t� 10

Note that here the final system is an open-loop system.

11.2.2 The Maximum Principle

The method of calculus of variations, presented in Subsec. 11.2.1, constitutes a
general methodology for the study of maxima and minima of a functional. Here,
we will restrict our interest to specialized optimization methods which facilitate the
solution of optimal control design problems. Such a method is the maximum prin-
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ciple which was initially proposed by Pontryagin [17]. This method is based on the
calculus of variations and yields a general solution to optimal control problems.

More specifically, the following general control problem will be studied.
Consider the cost function

J ¼ �ðx; tÞ

����
tf

t0

þ

ðtf
t0

’ðx; u; tÞdt ð11:2-20Þ

Determine the optimum control vector uðtÞ which minimizes the cost function J,
where the system under control is described by a mathematical model in state space
having the general form

�x ¼ fðx; u; tÞ ð11:2-21Þ

To solve the problem, apply the Lagrange multipliers method. To this end,
define the new cost function J 0 as follows:

J 0
¼ �ðx; tÞ

����
tf

t0

þ

ðtf
t0

’ðx; u; tÞ þ kTðtÞ½fðx; u; tÞ � �x�
� �

dt ð11:2-22Þ

Clearly J ¼ J 0. To facilitate the study of the new cost function J 0, we introduce the
Hamiltonian function, defined as

Hðx; u;k; tÞ ¼ ’ðx; u; tÞ þ kT �x ¼ ’ðx; u; tÞ þ kTfðx; u; tÞ ð11:2-23Þ

where k is the vector of Lagrange multipliers. If we substitute Eq. (11.2-23) in Eq.
(11.2-22), we have

J 0
¼ �ðx; tÞ

����
tf

t0

þ

ðtf
t0

½Hðx; u;k; tÞ � _kkT �x� dt ð11:2-24Þ

If we apply the integration by parts method, Eq. (11.2-24) becomes

J 0
¼ ½�ðx; tÞ � kTx�

����
tf

t0

þ

ðtf
t0

½Hðx; u; k; tÞ � _kkTx� dt ð11:2-25Þ

The first differential �J 0 with respect to the vectors x and u is given by

�J 0
¼ �xT

@�

@x
� k

	 
	 
tf
t0

þ

ðtf
t0

�xT
@H

@x
þ _kk

	 

þ �uT

@H

@u

	 

dt ð11:2-26Þ

Using Theorem 11.2.1, it follows that a necessary condition for J 0 to be maximum or
minimum is that �J 0

¼ 0. Application of this theorem in Eq. (11.2-26) yields that for
�J 0 to be zero, for every �x and �u, the vectors x and u must satisfy the equations

@H

@x
¼ �_kk ð11:2-27aÞ

@H

@u
¼ 0 ð11:2-27bÞ

@H

@k
¼ �x ¼ fðx; u; tÞ ð11:2-27cÞ

with boundary conditions
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�xT
@�

@x
� k

	 

¼ 0; for t ¼ t0 and tf ð11:2-27dÞ

The first three equations (Eqs (11.2-27a,b,c)) are of paramount importance in
control engineering and they are called canonical Hamiltonian equations.

Now, consider the second differential �2J 0 of the cost function J 0. We have

�2J 0
¼
1

2
�xT

@2�

@x2
�x

" #tf

t0

þ
1

2

ðtf
t0

½�xT ..
.
�uT�P

�x

�u

" #
dt ð11:2-28Þ

where P is an ðnþmÞ � ðnþmÞ square matrix having the form

P ¼

@2H

@x2
@

@u

@H

@x

@

@u

@H

@x

	 
T @2H

@u2

2
6664

3
7775

where use was made of the first differential of Eq. (11.2-21), i.e., use was made of the
relation

� �x ¼
@f

@x
�x þ

@f

@u
�u ð11:2-29Þ

For J 0 (and hence for J, since J 0
¼ J) to be minimum, the matrices P and @2h=@x2

must be negative definite (see Sec. 2.12).

Remark 11.2.4

It has been shown that the control signal uðtÞ which minimizes the cost function J,
necessarily minimizes the Hamiltonian function, i.e., it holds that

Hðx; u; k; tÞ 
 Hðx; ~uu; k; tÞ

where ~uu is any control signal, different from the optimum control signal u. For this
reason, the present method is known as the minimum principle method. However,
because of a sign difference in the Hamiltonian function, the method has become
known as the maximum principle.

Example 11.2.5

Minimize the cost function

J ¼

ð1
0

1

2
u2ðtÞ dt

when the system under control is the following:

_xx1
_xx2

	 

¼

0 1
0 �1

	 

x1
x2

	 

þ

0
1

	 

u

with boundary conditions

xð0Þ ¼ 0 and xð1Þ ¼ ½4 2�T
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Solution

For the present problem the Hamiltonian function has the form

H ¼ 1
2 u

2
þ kTðAx þ buÞ ¼ 1

2 u
2
þ �1x2 � �2x2 þ �2u

The canonical Hamiltonian equations are

@H

@x
¼

@H

@x1

@H

@x2

2
6664

3
7775 ¼

� _��1

� _��2

" #
¼

0

�1 � �2

" #

@H

@u
¼ uþ �2 ¼ 0

@H

@k
¼

_xx1

_xx2

" #
¼

x2

�x2 þ u

" #

The general solution of the above equations is given by

�1ðtÞ ¼ C3

�2ðtÞ ¼ C3½1� e�t
� þ C4e

t

x1ðtÞ ¼ C1 þ C2½1� e�t
� þ C3 �t� 1

2 e
�t

þ 1
2 e

t
� þ C4½1�

1
2 e

�t
� 1

2 e
t

� �
x2ðtÞ ¼ C2e

�t
þ C3 �1þ 1

2 e
�t

þ 1
2 e

t
� �

þ C4
1
2 e

�t
� 1

2 e
t

� �
The parameters C1, C2, C3, and C4 are determined using the boundary conditions.
We have x1ð0Þ ¼ C1 ¼ 0, x2ð0Þ ¼ C2 ¼ 0, x1ð1Þ ¼ 4, and x2ð1Þ ¼ 2. From these alge-
braic equations we readily have that C1 ¼ 0, C2 ¼ 0, C3 ¼ �40:5, and C4 ¼ �20:42.
Hence

x1ðtÞ ¼ 40:5t� 20:42þ 30:46e�t
� 10:04et

x2ðtÞ ¼ 40:5� 30:46e�t
� 10:04et

and the optimum control signal uðtÞ is given by

uðtÞ ¼ ��2ðtÞ ¼ 40:5� 20:08et

Note that here the final system is an open-loop system.

11.3 OPTIMAL LINEAR REGULATOR

11.3.1 General Remarks

The optimal linear regulator problem is a special, but very important, optimal con-
trol problem. Simply speaking, the regulator problem can be stated as follows.
Consider a linear homogeneous system with zero input and nonzero initial state
vector conditions xðt0Þ. Here, the vector xðt0Þ is the only excitation to the system.
An optimal control signal uðtÞ is to be determined such as to restore the state vector
to its equilibrium point, i.e., such that xðtf Þ ’ 0, while minimizing a certain cost
function.
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As a practical example of an optimal regulator, consider a ground antenna
having a fixed orientation. Assume that the antenna undergoes a disturbance, e.g.,
due to a sudden strong wind. As a result, the antenna will be forced to a new position
xðt0Þ. It is obvious that in the present situation it is desirable to implement a control
strategy which will restore the antenna to its equilibrium position. Furthermore, this
restoration must take place in the time interval ½t0; tf �, while minimizing a certain
cost function. This cost function normally includes the following three characteris-
tics:

a. The amplitude of the optimal control signal uðtÞ should be as small as
possible, making the required control effort (control energy) for restoring
the antenna to its equilibrium position as small as possible.

b. The amplitude of xðtÞ should be small enough to avoid saturations or even
damage (i.e., from overheating) to the system under control.

c. The final value xðtf Þ of xðtÞ should be as close as possible to the equilibrium
point of the system, i.e., xðtf Þ ’ 0.

Another practical example of an optimal regulator is the problem of ship
stabilization presented in Figure 1.20 of Chapter 1 and in Example 6.4.11 of
Chapter 6.

From a mathematical point of view, the optimal regulator problem may be
formulated as follows. Consider the linear, time-varying system described in state
space by the vector differential equation

�xðtÞ ¼ AðtÞxðtÞ þ BðtÞuðtÞ; xðt0Þ ¼ x0 ð11:3-1Þ

Find a control signal uðtÞ which minimizes the cost function

J ¼
1

2
x
T
ðtf ÞSxðtf Þ þ

1

2

ðtf
t0

½x
T
ðtÞQðtÞxðtÞ þ u

T
ðtÞRðtÞuðtÞ� dt ð11:3-2Þ

The foregoing cost function J is identical to the cost function (11.1-9). This criterion
is a sum of inner products of the vectors xðtÞ and uðtÞ, and for this reason it is called
the quadratic cost function. The matrices S, QðtÞ, and RðtÞ are weighting matrices and
are chosen to be symmetric. Here, we stress again that the main reason for including
the energy-like quadratic terms x

T
ðtÞQðtÞxðtÞ and u

T
ðtÞRðtÞuðtÞ in the cost function J

is to minimize the dissipated energy in the system and the required input energy
(control effort), respectively. The quadratic term x

T
ðtf ÞSxðtf Þ is included in J to force

the final value xðtf Þ of xðtÞ to be as close as possible to the equilibrium point of the
system. Note that xðtf Þ is unspecified.

11.3.2 Solution of the Optimal Linear Regulator Problem

The minimization of the cost function J will be done using the method of maximum
principle. To this end, define the Hamiltonian

Hðx; u; k; tÞ ¼ 1
2 x

T
ðtÞQðtÞxðtÞ þ 1

2 u
T
ðtÞRðtÞuðtÞ þ kTðtÞ½AðtÞxðtÞ þ BðtÞuðtÞ�

ð11:3-3Þ

where kðtÞ is the vector of the Lagrange multipliers. Next, define the new cost
criterion J 0

¼ J by adding the zero term kTðtÞ½AðtÞxðtÞ þ BðtÞuðtÞ � �xðtÞ� to the initial
cost function J as follows:
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J 0
¼
1

2
x
T
ðtf ÞSxðtf Þ þ

1

2

ðtf
t0

½x
T
ðtÞQðtÞxðtÞ þ u

T
ðtÞRðtÞuðtÞ�

�
þ kTðtÞ½AðtÞxðtÞ þ BðtÞuðtÞ � �xðtÞ�

�
dt

or

J 0
¼
1

2
x
T
ðtf ÞSxðtf Þ þ

ðtf
t0

½Hðx; u;k; tÞ � kTðtÞ �xðtÞ �dt

where use was made of the Hamiltonian defined in Eq. (11.3-3). Using the method of
integration by parts, the cost criterion J 0 becomes

J 0
¼
1

2
x
T
ðtf ÞSxðtf Þ � kTðtÞxðtÞ

� �tf
t0
þ

ðtf
t0

½Hðx; u; k; tÞ � _kkTðtÞxðtÞ� dt

The first differential �J 0 with respect to the vectors x and u is given by

�J 0
¼ Sxðtf Þ � kðtf Þ þ

ðtf
t0

�xT
@H

@x
þ _kk

	 

þ �uT

@H

@u

	 
� �
dt

where use was made of the fact that xðt0Þ is fixed and that xðtf Þ is unspecified. It has
been proven that a necessary condition for J to be maximum or minimum is that
�J 0

¼ 0 (see Theorem 11.2.1). Consequently, the vectors x and u should satisfy the
equation �J 0

¼ 0, in which case the following relations should hold:

@H

@x
¼ �_kkðtÞ ¼ QðtÞxðtÞ þ A

T
ðtÞkðtÞ ð11:3-4aÞ

@H

@u
¼ 0 ¼ RðtÞuðtÞ þ B

T
ðtÞkðtÞ ð11:3-4bÞ

@H

@k
¼ AðtÞxðtÞ þ BðtÞuðtÞ ð11:3-4cÞ

@�

@x

����
t¼tf

¼ Sxðtf Þ ¼ kðtf Þ ð11:3-4dÞ

where use was made of the following vector and matrix properties (see relations (2.6-
17) and (2.6-18) of Chapter 2):

@

@x
½q
T
ðtÞxðtÞ� ¼ qðtÞ and

1

2

@

@x
½x
T
ðtÞQðtÞxðtÞ� ¼ QðtÞxðtÞ

where QðtÞ is a symmetric matrix. As first pointed out in Subsec. 11.2.2, Eqs. (11.3-
4a,b,c) are called canonical Hamiltonian equations and relation (11.3-4d) represents
the boundary conditions of the problem. Note that for the present case Eq. (11.3-4d)
refers only to the final condition, i.e., for t ¼ tf .

In the sequel, we will solve the canonical Hamiltonian equations (11.3-a,b,c)
with respect to uðtÞ. This solution must satisfy the boundary condition (11.3-4d). For
simplicity, assume that RðtÞ is invertible, i.e., jRðtÞj 6¼ 0 for every t 2 ½t0; tf �. Thus,
from relation (11.3-4b), we obtain

uðtÞ ¼ �R
�1
ðtÞBT

ðtÞkðtÞ ð11:3-5Þ
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At this point we make the assumption that the solution of Eq. (11.3-5) can be
expressed as a linear state feedback law, i.e., we assume that

uðtÞ ¼ KðtÞxðtÞ ð11:3-6Þ

where KðtÞ is called the state feedback matrix. We also assume that the vector of
Lagrange multipliers kðtÞ is linear in xðtÞ, i.e., we assume that

kðtÞ ¼ PðtÞxðtÞ ð11:3-7Þ

Note that the vector of Lagrange multipliers kðtÞ is called the costate vector. If we
substitute Eq. (11.3-5) in Eq. (11.3-1), we have

�xðtÞ ¼ AðtÞxðtÞ � BðtÞR�1
ðtÞBTðtÞkðtÞ ð11:3-8aÞ

If we substitute Eq. (11.3-7) in Eq. (11.3-8a), we obtain

�xðtÞ ¼ AðtÞxðtÞ � BðtÞR�1
ðtÞBTðtÞPðtÞxðtÞ ð11:3-8bÞ

If we differentiate Eq. (11.3-7), we have

�
kðtÞ ¼

�
PðtÞxðtÞ þ PðtÞ �xðtÞ ¼ �QðtÞxðtÞ � A

T
ðtÞkðtÞ ð11:3-9Þ

where use was made of Eq. (11.3-4a). Finally, if we substitute Eq. (11.3-8b) in
Eq. (11.3-9) and use Eq. (11.3-7), we arrive at the relation

½
�
PðtÞ � PðtÞAðtÞ þ A

T
ðtÞPðtÞ þ QðtÞ � PðtÞBðtÞR�1

ðtÞBTðtÞPðtÞ�xðtÞ ¼ 0

ð11:3-10Þ

Relation (11.3-10) must hold for all vectors xðtÞ 6¼ 0. For this to be valid the coeffi-
cient of xðtÞ must be equal to zero, i.e.,

�
PðtÞ þ PðtÞAðtÞ þ A

T
ðtÞPðtÞ � PðtÞBðtÞR�1

ðtÞBT
ðtÞPðtÞ ¼ �QðtÞ ð11:3-11Þ

Relation (11.3-11) is known as the matrix Riccati differential equation where the
matrix PðtÞ is unknown. The final condition of matrix PðtÞ, according to relation
(11.3-4d) and definition (11.3-7), will be

Sxðtf Þ ¼ kðtf Þ ¼ Pðtf Þxðtf Þ

Consequently

Pðtf Þ ¼ S ð11:3-12Þ

If we substitute relation (11.3-7) in relation (11.3-5), we obtain

uðtÞ ¼ �R
�1
ðtÞBT

ðtÞPðtÞxðtÞ ð11:3-13Þ

By comparing relations (11.3-13) and (11.3-6), we have

KðtÞ ¼ �R
�1
ðtÞBTðtÞPðtÞ ð11:3-14Þ

Henceforth, the optimal solution of the linear optimal regulator problem is of
the form (11.3-6), where the matrix KðtÞ is given by relation (11.3-14). To determine
the feedback matrix KðtÞ one has to solve the Ricatti equation (11.3-11) for PðtÞ. The
solution (11.3-13) was first determined by Kalman, and it is for this reason that
matrix KðtÞ is called the Kalman matrix [8].

The second differential �2J of the cost function J is given by
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�2J ¼
1

2
dx

T
ðtf ÞSdxðtf Þ þ

1

2

ðtf
t0

�
dx

T
ðtÞQðtÞdxðtÞ þ du

T
ðtÞRðtÞduðtÞ

�
dt ð11:3-15Þ

For the cost function J to be minimal it must hold that �2J � 0. We observe that �2J
is a sum of three terms which are in quadratic form. Consequently for �2J � 0 to
hold true, every term in Eq. (11.3-15) must be positive definite. Thus, for Eq. (11.3-
13) to be the solution of the problem, the matrices S,QðtÞ, and RðtÞ should be at least
positive semidefinite matrices.

The following theorems hold true for the Ricatti equation (11.3-11).

Theorem 11.3.1

If S is positive definite and QðtÞ is at least nonnegative definite, or vice versa, and
RðtÞ is positive definite, then a minimum J exists if and only if the solution PðtÞ of the
Riccati equation (11.3-11) exists, is bounded, and is positive definite for all t < tf .
Under these conditions the minimum cost function J becomes

J ¼ 1
2 x

T
ðt0ÞPðt0Þxðt0Þ

Theorem 11.3.2

If S, QðtÞ, and RðtÞ are symmetric, then the solution of the Riccati equation (11.3-11)
is also a symmetric matrix. This means that in this case the n� n matrix PðtÞ has
nðnþ 1Þ=2 unknown elements and, consequently, the solution of eq. (11.3-11)
requires only the solution of nðnþ 1Þ=2 equations.

Two block diagrams referring to the problem of the optimal regulator and its
solution are given in Figures 11.3 and 11.4.

The Ricatti equation (11.3-11) is usually solved using a digital computer rather
than analytically. Since the final condition Pðtf Þ is given, the solution using a digital
computer is carried out starting from the final point t ¼ tf and going backwards until
we reach the starting part t ¼ t0. However, this can be avoided if we change variables
in the following way. Let � ¼ tf � t. Then the Ricatti equation becomes
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dPðtf � �Þ

d�
� Pðtf � �ÞAðtf � �Þ � A

T
ðtf � �ÞPðtf � �Þ

þ Pðtf � �ÞBðtf � �ÞR
�1
ðtf � �ÞB

T
ðtf � �ÞPðtf � �Þ ¼ Qðtf � �Þ

ð11:3-16Þ

with initial condition Pð0Þ ¼ S. Equation (11.3-16) is solved using a digital computer
by starting at point � ¼ 0 and ending at point � ¼ tf � t0.

Remark 11.3.1

Another method of determining the optimal control vector uðtÞ is the following.
Rewrite relations (11.3-8a) and (11.3-4a) in the form

�xðtÞ�
kðtÞ

	 

¼

AðtÞ �BðtÞR�1
ðtÞBT

ðtÞ
�QðtÞ �A

T
ðtÞ

	 

xðtÞ
kðtÞ

	 

ð11:3-17Þ

with boundary conditions xðt0Þ ¼ x0 and kðtf Þ ¼ Sxðtf Þ. The solution of Eq. (11.3-17)
yields the vector kðtÞ, on the basis of which the optimal control vector uðtÞ may be
calculated using relation (11.3-5). To determine kðtÞ, we work as follows. The solu-
tion of Eq. (11.3-17) has the general form

xðtf Þ
kðtf Þ

	 

¼ rðtf ; tÞ

xðtÞ
kðtÞ

	 

ð11:3-18Þ
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where the 2n� 2n matrix rðtf ; tÞ is the transition matrix of Eq. (11.3-17). Partition
Eq. (11.3-18) as follows:

xðtf Þ
kðtf Þ

	 

¼

r11ðtf ; tÞ r12ðtf ; tÞ
r21ðtf ; tÞ r22ðtf ; tÞ

	 

xðtÞ
kðtÞ

	 

ð11:3-19Þ

where all four submatrices r11, r12, r21, and r22 have dimensions n� n. Since,
according to Eq. (11.3-4d), we have that kðtf Þ ¼ Sxðtf Þ, relation (11.3-19) is written as

xðtf Þ ¼ r11ðtf ; tÞxðtÞ þ r12ðtf ; tÞkðtÞ

Sxðtf Þ ¼ r21ðtf ; tÞxðtÞ þ r22ðtf ; tÞkðtÞ

These two equations yield

kðtÞ ¼ PðtÞxðtÞ ð11:3-20aÞ

where

PðtÞ ¼ ½r22ðtf ; tÞ � Sr12ðtf ; tÞ�
�1
½Sr11ðtf ; tÞ � r21ðtf ; tÞ� ð11:320bÞ

Finally

uðtÞ ¼ �R
�1
ðtÞBT

ðtÞPðtÞxðtÞ ¼ KðtÞxðtÞ ð11:3-21aÞ

where

KðtÞ ¼ �R
�1
ðtÞBTðtÞ½r22ðtf ; tÞ � Sr12ðtf ; tÞ�

�1
½Sr11ðtf ; tÞ � r21ðtf ; tÞ�

ð11:3-21bÞ

The present method is easily applied when the matrices A, B, Q, and R are time
invariant. In this case the transition matrix rðtÞ is the inverse Laplace transform of
the matrix

rðsÞ ¼ sI �
A �BR

�1
B
T

�Q �A
T

	 
	 
�1
ð11:3-22Þ

where t has been replaced by tf � t. When the matrices A, B, Q, and R are time
varying, the transition matrix is usually computed numerically.

11.3.3 The Special Case of Linear Time-Invariant Systems

Consider the special case of linear time-invariant systems. Furthermore, assume that
the weighting matrix S ¼ 0 and that tf ! þ1. Then the matrix PðtÞ and, conse-
quently, the matrix KðtÞ, are time invariant and the Riccati equation reduces to the
nonlinear algebraic equation

PA þ A
T
P � PBR

�1
B
T
P ¼ �Q ð11:3-23Þ

The following interesting and very useful results have been proven concerning the
solution of Eq. (11.3-23):

1. If there exists a matrix P, it is positive definite and unique.
2. If there exists a matrix P, the closed-loop system is asymptotically stable.
3. If �i is an eigenvalue of matrix M, then � ���i is also an eigenvalue of matrix

M, where

M ¼
A �BR

�1
B
T

�Q �A
T

	 

ð11:3-24Þ
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4. If matrix M has n distinct eigenvalues �1; �2; . . . ; �n with Re �i < 0, then

P ¼ GT
�1

ð11:3-25Þ

where

G ¼ ½g1
..
.
g2

..

.
   ..

.
gn� and T ¼ ½t1

..

.
t2

..

.
   ..

.
tn�

where the vectors gi and ti are defined as

�ixi ¼ Mxi; xi ¼
ti
gi

	 

; i ¼ 1; 2; . . . ; n

That is, the vector xi is an eigenvector of the matrix M.
5. The state vector xðtÞ of the closed-loop system is given by

xðtÞ ¼ Te,ðt�t0ÞT
�1

x0; , ¼ diagð�1; �2; . . . ; �nÞ ð11:3-26Þ

6. The matrix A � BR
�1

B
T
P of the closed-loop system has eigenvalues �1;

�2; . . . ; �n and eigenvectors t1; t2; . . . ; tn.

Example 11.3.1

Consider the scalar system

_xxðtÞ ¼ uðtÞ; xð0Þ ¼ 1

with cost function

J ¼

ð1
0

½x2ðtÞ þ u2ðtÞ� dt

Thus, here we have S ¼ 0, QðtÞ ¼ 2, and RðtÞ ¼ 2. Find the optimal uðtÞ and xðtÞ,
both in the form an open-loop system as well as in the form of a closed-loop system.

Solution

First we study the case of the open-loop system using relation (11.3-17) of Remark
11.3.1. For the present example, we have

_xxðtÞ
_��ðtÞ

	 

¼

0 �0:5
�2 0

	 

xðtÞ
�ðtÞ

	 

; xð0Þ ¼ 1; and �ð1Þ ¼ Sxð1Þ ¼ 0

From this vector differential system, we have that _xx ¼ 0:5� and _�� ¼ �2x. Thus
xð2Þ ¼ x, where xð2Þ is the second derivative of xðtÞ with respect to t. The solution
of this last differential equation is xðtÞ ¼ Ae�t

þ Bet and, hence, �ðtÞ ¼ 2Ae�t
� 2Bet.

From the boundary conditions xð0Þ ¼ 1 and �ðþ1Þ ¼ 0, we have that A ¼ 1 and
B ¼ 0. Therefore �ðtÞ ¼ 2e�t and, consequently, the optimal uðtÞ and xðtÞ are

uðtÞ ¼ �e�t and xðtÞ ¼ e�t

Consequently, for the cost function to be minimal we must excite the system with the
input uðtÞ ¼ �e�t. This input can be produced, for example, by a waveform gen-
erator. In this case, of course, we have an open-loop system.

For the case of the closed-loop system we solve the algebraic Riccati equation,
which for the present example is �0:5p2 ¼ �2. Consequently, p ¼ �2. Since p must
be positive definite we keep only the value p ¼ 2. Thus, the optimal uðtÞ and xðtÞ are
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uðtÞ ¼ �xðtÞ and xðtÞ ¼ e�t

We observe that the optimal xðtÞ is, as expected, the same with that of the open-loop
system. We also observe that the optimal uðtÞ has not a specific waveform, as in the
case of the open-loop system, but it is a function of xðtÞ.

Example 11.3.2

Consider the scalar system

_xxðtÞ ¼ uðtÞ; xðt0Þ ¼ x0

with cost function

J ¼
1

2
sx2ðtf Þ þ

1

2

ðtf
t0

u2ðtÞ dt

Find the optimal uðtÞ as a function of xðtÞ.

Solution

The Hamiltonian is given by

H ¼ 1
2 u

2
þ �u

Hence, the canonical equations are

@H

@x
¼ � _�� ¼ 0; thus � ¼ C ¼ constant

@H

@u
¼ uþ � ¼ 0; thus u ¼ �� ¼ �C

@H

@�
¼ _xx ¼ u

with boundary conditions �ðtf Þ ¼ sxðtf Þ. The Riccati equation is given by

_pp� p2 ¼ 0; pðtf Þ ¼ s

The Ricatti equation may be written as follows:

dp

p2
¼ dt

Integrating from t to tf we have

�
1

p


tf
t

¼ tf � t and hence pðtÞ ¼
1

s�1 þ tf � t

	 

xðtÞ

Consequently, the optimal uðtÞ becomes

uðtÞ ¼ �pðtÞxðtÞ ¼
�1

s�1 þ tf � t

	 

xðtÞ

Example 11.3.3

Consider the scalar system

_xxðtÞ ¼ �axðtÞ þ buðtÞ; xðt0Þ ¼ x0
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with cost function

J ¼
1

2
sx2ðtf Þ þ

1

2

ðtf
t0

u2ðtÞ dt

Find the optimal uðtÞ as a function of xðtÞ.

Solution

The Hamiltonian is given by

H ¼ 1
2 u

2
þ �ð�axþ buÞ

Hence, the canonical equations are

@H

@x
¼ � _�� ¼ �a�

@H

@u
¼ uþ b�

@H

@�
¼ _xx ¼ �axþ bu

with boundary conditions �ðtf Þ ¼ sxðtf Þ. The Riccati equation is

_pp� 2ap� b2p2 ¼ 0; pðtf Þ ¼ s

and may be written as

_pp ¼ 2apþ b2p2 ¼ 2a pþ
b2

2a
p2

 !

or

dp

p
�

b2

2a
dp

b2

2a
pþ 1

¼ 2adt

Integrating from t to tf , we have

ln s� ln pðtÞ � ln s
b2

2a
þ 1

 !
þ ln pðtÞ

b2

2a
þ 1

" #
¼ 2aðtf � tÞ

or

ln pðtÞ
b2

2a
þ 1

" #
� ln pðtÞ ¼ ln

s
b2

2a
þ 1

s

2
664

3
775þ 2aðtf � tÞ

or

pðtÞ
b2

2a
þ 1

pðtÞ
¼

s
b2

2a
þ 1

s

2
664

3
775 exp½2aðtf � tÞ�
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Solving for pðtÞ, we obtain

pðtÞ ¼
exp½�2aðtf � tÞ�

1

s
þ

b2

2a

�
1� exp½�2aðtf � tÞ�

�
Consequently, the optimal uðtÞ becomes

uðtÞ ¼ �bpðtÞxðtÞ ¼ �b
exp½�2aðtf � tÞ�

1

s
þ

b2

2a

�
1� exp½�2aðtf � tÞ�

�
2
664

3
775xðtÞ

11.4 OPTIMAL LINEAR SERVOMECHANISM OR TRACKING
PROBLEM

Consider the linear time-varying system

�xðtÞ ¼ AðtÞxðtÞ þ BðtÞuðtÞ ð11:4-1aÞ

yðtÞ ¼ CðtÞxðtÞ ð11:4-1bÞ

Let mðtÞ be the desired closed-loop system output vector. Then the optimal linear
servomechansim or tracking problem may be stated as follows: determine a control
vector uðtÞ such that the cost function

J ¼
1

2
e
T
ðtf ÞSeðtf Þ þ

1

2

ðtf
t0

�
e
T
ðtÞQðtÞeðtÞ þ u

T
ðtÞRðtÞuðtÞ

�
dt ð11:4-2Þ

is minimized, where eðtÞ ¼ mðtÞ � yðtÞ ¼ mðtÞ � CxðtÞ.
Clearly, the optimal linear servomechanism problem is a generalization of the

optimal linear regulator problem. The solution of the optimal servomechanism pro-
blem will be determined using the same technique which was applied for the solution
of the optimal regulator problem. Thus, we start with the Hamiltonian, defined as
follows:

Hðx; u; k; tÞ ¼ 1
2 e

T
ðtÞQðtÞeðtÞ þ 1

2 u
T
ðtÞRðtÞuðtÞ þ kTðtÞ½AðtÞxðtÞ þ BðtÞuðtÞ�

ð11:4-3Þ

The canonical equations are

@H

@x
¼ �

�
kðtÞ ¼ C

T
ðtÞQðtÞ½CðtÞxðtÞ � mðtÞ� þ A

T
ðtÞkðtÞ ð11:4-4aÞ

@H

@u
¼ 0 ¼ RðtÞuðtÞ þ B

T
ðtÞkðtÞ ð11:4-4bÞ

@H

@k
¼ AðtÞxðtÞ þ BðtÞuðtÞ ð11:4-4cÞ

and the final condition

kðtf Þ ¼
@

@x

1

2
e
T
ðtf ÞSeðtf Þ

	 

¼ C

T
ðtf ÞS

�
Cðtf Þxðtf Þ � mðtf Þ

�
ð11:4-4dÞ

where use was made of the following vector and matrix properties:
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@

@x

�
q
T
ðtÞxðtÞ

�
¼ qðtÞ and

1

2

@

@x

�
z
T
ðtÞEðtÞzðtÞ

�
¼

@zTðtÞ

@x

" #
EðtÞzðtÞ

where EðtÞ is a symmetric matrix. From relation (11.4-4b) and provided that
jRðtÞj 6¼ 0 for t 2 ½t0; tf �, we have

uðtÞ ¼ �R
�1
ðtÞBT

ðtÞkðtÞ ð11:4-5Þ

Assume that kðtÞ has the form

kðtÞ ¼ PðtÞxðtÞ � lðtÞ ð11:4-6Þ

Then, the control vector (11.4-5) becomes

uðtÞ ¼ �R
�1
ðtÞBðtÞ½PðtÞxðtÞ � lðtÞ� ð11:4-7Þ

Finally

uðtÞ ¼ KðtÞxðtÞ þ qðtÞ

where

KðtÞ ¼ �R
�1
ðtÞBTðtÞPðtÞ and qðtÞ ¼ R

�1
ðtÞBTðtÞlðtÞ

If we substitute Eq. (11.4-5) in Eq. (11.4-1), we obtain

�xðtÞ ¼ AðtÞxðtÞ � BðtÞR�1
ðtÞBTðtÞPðtÞxðtÞ þ BðtÞR�1

ðtÞBT
ðtÞlðtÞ ð11:4-8aÞ

yðtÞ ¼ CðtÞxðtÞ ð11:4-8bÞ

Differentiate Eq. (11.4-6) to yield

�
kðtÞ ¼

�
PðtÞxðtÞ þ PðtÞ �xðtÞ � �lðtÞ

¼ �C
T
ðtÞQðtÞ½CðtÞxðtÞ � mðtÞ� � A

T
ðtÞkðtÞ

¼ �
�
C
T
ðtÞQðtÞCðtÞ þ A

T
ðtÞPðtÞ

�
xðtÞ þ C

T
ðtÞQðtÞmðtÞ þ A

T
ðtÞlðtÞ ð11:4-9Þ

where use was made of relations (11.4-4a) and (11.4-6). Substituting Eq. (11.4-8a) in
Eq. (11.4-9) gives� �

PðtÞ þ PðtÞAðtÞ � PðtÞBðtÞR�1
ðtÞBTðtÞPðtÞ þ C

T
ðtÞQðtÞCðtÞ þ A

T
ðtÞPðtÞ

�
xðtÞ

þ
�
� �lðtÞ �

�
AðtÞ � BðtÞR�1

ðtÞBTðtÞPðtÞ
�T

lðtÞ � C
T
ðtÞQðtÞmðtÞ

�
¼ 0

ð11:4-10Þ

For Eq. (11.4-10) to be valid, the coefficient of xðtÞ and the second term in Eq. (11.4-
10) must simultaneously be equal to zero. This reduces Eq. (11.4-10) to the following
two differential equations, together with their corresponding final conditions:

�
PðtÞ þ PðtÞAðtÞ þ A

T
ðtÞPðtÞ � PðtÞBðtÞR�1

ðtÞBT
ðtÞPðtÞ ¼ �C

T
ðtÞQðtÞCðtÞ

ð11:4-11aÞ

with final condition

Pðtf Þ ¼ C
T
ðtf ÞSCðtf Þ ð11:4-11bÞ

and

�lðtÞ þ
�
AðtÞ � BðtÞR�1

ðtÞBT
ðtÞPðtÞ

�T
lðtÞ ¼ �C

T
ðtÞQðtÞmðtÞ ð11:4-12aÞ
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with final condition

lðtf Þ ¼ C
T
ðtf ÞSmðtf Þ ð11:4-12bÞ

Consequently, we note that for the determination of the optimal control law (11.4-7)
for the linear servomechanism problem it is required to solve two matrix differential
equations: the Riccati equation (11.4-11), which is in fact essentially the same as the
Riccati equation (11.3-11) of the linear regulator problem; and Eq. (11.4-12), which
provides the part of the control vector uðtÞ which depends on the desired output mðtÞ
of the closed-loop system. If mðtÞ ¼ 0 and CðtÞ ¼ I, then Eq. (11.4-12) yields lðtÞ ¼ 0

and Eq. (11.4-11) becomes identical to Eq. (11.3-11). This means that in this case the
linear servomechanism problem reduces to the linear regulator problem.

Remark 11.4.1

Equation (11.4-8a), together with the canonical equation (11.4-4a), may be written as
follows:

�xðtÞ�
kðtÞ

	 

¼

AðtÞ �BðtÞR�1
ðtÞBTðtÞ

�C
T
ðtÞQðtÞCðtÞ �A

T
ðtÞ

	 

xðtÞ
kðtÞ

	 

þ

0

C
T
ðtÞQðtÞmðtÞ

	 

ð11:4-13Þ

If we set CðtÞ ¼ I and mðtÞ ¼ 0 in Eq. (11.4-13), we obtain Eq. (11.4-17). The solution
of Eq. (11.4-13) is given by

xðtf Þ
kðtf Þ

	 

¼ rðtf ; tÞ

xðtÞ
�ðtÞ

	 

þ

ðtf
t

rðtf ; �Þ
0

C
T
ð�ÞQð�Þmð�Þ

	 

d� ð11:4-14Þ

Partition the matrix rðtf ; tÞ, as in the case of rðtf ; tÞ of the linear regulator problem
in relation (11.3-19), and defineðtf

t

rðtf ; �Þ
0

C
T
ð�ÞQð�Þmð�Þ

	 

d� ¼

f1ðtÞ
f2ðtÞ

	 


Then Eq. (11.4-14) may be rewritten as follows:

xðtf Þ ¼ r11ðtf ; tÞxðtÞ þ r12ðtf ; tÞkðtÞ þ f1ðtÞ ð11:4-15aÞ

kðtf Þ ¼ r21ðtf ; tÞxðtÞ þ r22ðtf ; tÞkðtÞ þ f2ðtÞ ð11:4-15bÞ

with boundary condition

kðtf Þ ¼ C
T
ðtf ÞS

�
Cðtf Þxðtf Þ � mðtf Þ

�
ð11:4-16Þ

Substituting Eq. (11.4-16) in Eq. (11.4-15b) and xðtf Þ from Eq. (11.4-15a) in Eq.
(11.4-15b) and finally solving for kðtÞ, we obtain

kðtÞ ¼ PðtÞxðtÞ � lðtÞ ð11:4-17Þ

where

PðtÞ ¼
�
r22ðtf ; tÞ � C

T
ðtf ÞSCðtf Þr12ðtf ; tÞ

��1�
C
T
ðtf ÞSCðtf Þr11ðtf ; tÞ � r21ðtf ; tÞ

�
ð11:4-18Þ

and
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lðtÞ ¼ �
�
r22ðtf ; tÞ � C

T
ðtf ÞSr12ðtf ; tÞ

��1�
C
T
ðtf ÞSCðtf Þf1ðtÞ

� C
T
ðtf ÞSmðtf Þ � f2ðtÞ

� ð11:4-19Þ

Finally

uðtÞ ¼ KðtÞxðtÞ þ qðtÞ

where

KðtÞ ¼ �R
�1
ðtÞBTðtÞPðtÞ and qðtÞ ¼ R

�1
ðtÞBTðtÞlðtÞ

Figures 11.5 and 11.6 give an overview of the optimal servomechanism pro-
blem. Comparing these figures with Figures 11.3 and 11.4 of the optimal regulator
problem we note that here an additional input vector �ðtÞ is present. The vector qðtÞ
is due to mðtÞ, which can be viewed as a reference vector.

Remark 11.4.2

Consider the special case where the system under control is time invariant, the
weighting matrix S ¼ 0, and tf ! þ1. Then, similar results to those of Subsec.
11.3.3 can be obtained for the optimal linear servomechanism [2].
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Figure 11.5 A simplified diagram of the optimal linear serovmechanism problem.



Example 11.4.1

Consider the system

_xx1ðtÞ

_xx2ðtÞ

" #
¼

0 1

0 0

" #
x1ðtÞ

x2ðtÞ

" #
þ

0

1

" #
uðtÞ

y1ðtÞ
y2ðtÞ

	 

¼

1 0
0 1

	 

x1ðtÞ
x2ðtÞ
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Figure 11.6 Block diagram of the optimal linear servomechanism problem.



with cost function

J ¼
1

2

ðtf
0

�
½xðtÞ � mðtÞ�TQ½xðtÞ � mðtÞ� þ uðtÞRuðtÞ

�
dt

¼
1

2

ðtf
0

�
½x1ðtÞ � �1ðtÞ�

2
þ u2ðtÞ

�
dt

where

Q ¼
1 0
0 0

	 

and R ¼ 1

Find the optimal uðtÞ as a function of xðtÞ.

Solution

The Riccati equation is given by

�
P þ PA þ A

T
P � PBR

�1
B
T
P ¼ �C

T
QC

or

_pp11 _pp12
_pp21 _pp22

	 

þ

0 p11
0 p21

	 

þ

0 0
p11 p12

	 

�

p12p21 p12p22
p21p22 p222

	 

¼ �

1 0
0 0

	 


Since matrix P is symmetric, namely p12 ¼ p21, the above equation reduces to the
following three nonlinear differential equations:

_pp11 � p212 ¼ �1

_pp12 þ p11 � p12p22 ¼ 0

_pp22 þ 2p12 � p222 ¼ 0

with boundary conditions

Pðtf Þ ¼ C
T
SC ¼ 0; since S ¼ 0

To facilitate the solution of the Riccati equation, we assume that tf ! þ1. This
results in the following algebraic system of nonlinear equations:

p212 ¼ 1; p11 � p12p22 ¼ 0; 2p12 � p222 ¼ 0

from which we obtain that p12 ¼ 1, p22 ¼
ffiffiffi
2

p
, and p11 ¼

ffiffiffi
2

p
. Consequently,

P ¼

ffiffiffi
2

p
1

1
ffiffiffi
2

p

	 


In the sequel, we determine the vector lðtÞ. We have

A � BR
�1

B
T
P ¼

0 1
�1 �

ffiffiffi
2

p

	 


Hence, Eq. (11.4-12a) becomes

_��1ðtÞ
_��2ðtÞ

	 

þ

0 �1
1 �

ffiffiffi
2

p

	 

�1ðtÞ
�2ðtÞ

	 

¼ �

�1ðtÞ
0
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When �1ðtÞ ¼ � ¼ constant, then for tf ! þ1 we further assume that
_��1ðtÞ ¼ _��2ðtÞ ¼ 0, and thus we have �2 ¼ 0:707�1 ¼ �. This solution is finally sub-
stituted in Eq. (11.4-7) to obtain the optimal control signal

u ¼ �x1 �
ffiffiffi
2

p
x2 þ �2

Figure 11.7 shows the block diagram of the closed-loop system.

11.5 PROBLEMS

1. Find the optimal vector xðtÞ which minimizes the cost function

J ¼

ðtf
t0

’ðx; �x; tÞ dt ¼
ð
=4
0

�
x21 þ 4x22 þ _xx1 _xx2

�
dt

where x
T
¼ ½x1 x2�, and where

xð0Þ ¼
x1ð0Þ
x2ð0Þ

	 

¼

�1
1

	 

and xð
=4Þ ¼

x1ð
=4Þ
x2ð
=4Þ

	 

¼

1
0

	 


2. Find the optimal vector xðtÞ which minimizes the cost function

J ¼

ðtf
t0

’ðx; �x; tÞ dt ¼
ð
=4
0

�
x21 þ _xx1 _xx2 þ _xx22

�
dt

where x
T
¼ ½x1 x2�, and where

xð0Þ ¼
x1ð0Þ

x2ð0Þ

	 

¼

1

3=2

	 

and

xð
=4Þ ¼
x1ð
=4Þ

x2ð
=4Þ

	 

¼

2

unspecified

	 


3. Consider the system

�xðtÞ ¼ AxðtÞ þ BuðtÞ; xð0Þ ¼ x0
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yðtÞ ¼ CxðtÞ þ DuðtÞ

where

A ¼
0 1

�1 0

	 

; B ¼

1 1 1
1 1 �1

	 

;

C ¼
1=2 1=2
1=4 �1=4

	 

; D ¼

0 0 0
0 0 1

	 


Find the optimal input vector uðtÞ so that the output vector yðtÞ belongs to the
ellipse

1
4 y

2
1ðtÞ þ y22ðtÞ ¼ 1

or equivalently

y1ðtÞ ¼ 2 cos t and y2ðtÞ ¼ sin t

while the following cost function is minimized:

J ¼

ð
=2
0

� �uTðtÞ �uðtÞ þ u
T
ðtÞuðtÞ

�
dt

with

uð0Þ ¼
1

�1
0

2
4

3
5 and uð
=2Þ ¼

1
�1
0

2
4

3
5

4. Find the optimal input uðtÞ which minimizes the cost function

J ¼
1

2

ðtf
t0

�
½xðtÞ � mðtÞ�TQðtÞ½xðtÞ � mðtÞ� þ u

T
ðtÞRðtÞuðtÞ

�
dt

for the linear time-varying system

�xðtÞ ¼ AðtÞxðtÞ þ BðtÞuðtÞ; xð0Þ ¼ x0

where mðtÞ is a predetermined desired state trajectory.

5. Consider the network of Figure 11.8. The capacitor’s initial voltage is x0. At
t ¼ 0, the switches S1 and S2 are closed. Find the optimal input uðtÞ which
minimizes the following cost function:

J ¼

ð1
0

x2ðtÞ þ
1

5
u2ðtÞ

	 

dt

Let RC ¼ 1 and consider both cases: the open- and the closed-loop system.

6. Consider the system

_xxðtÞ ¼ xðtÞ þ uðtÞ; xð0Þ ¼ x0

Find the optimal input uðtÞ which minimizes the cost function
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J ¼ x2ð1Þ þ

ð1
0

x2ðtÞ þ
1

8
u2ðtÞ

	 

dt

for both the open- as we well as for the closed-loop system case.
7. Consider the system

_xxðtÞ ¼ axðtÞ þ uðtÞ; xðt0Þ ¼ x0

and the cost function

J ¼
1

2
sx2ðtf Þ þ

1

2

ðtf
t0

�
qx2ðtÞ þ ru2ðtÞ

�
dt

Find the optimal uðtÞ as a function of xðtÞ.

8. Consider the system

_xx1ðtÞ
_xx2ðtÞ

	 

¼

0 1
�!2 0

	 

x1ðtÞ
x2ðtÞ

	 

þ

0
1

	 

uðtÞ; xðt0Þ ¼

x2ðt0Þ
x2ðt0Þ

	 


and the cost function

J ¼
1

2
sx21ðtf Þ þ

1

2

ðtf
t0

u2ðtÞ dt

Find the optimal uðtÞ as a function of xðtÞ.

9. Consider the controllable and observable system

�xðtÞ ¼ AðtÞxðtÞ þ BðtÞuðtÞ

yðtÞ ¼ CðtÞxðtÞ

The response of the closed-loop system is desired to follow the response of an
ideal model described by the vector differential equation

�wðtÞ ¼ LðtÞwðtÞ

Find the optimal control vector uðtÞ, as a function of xðtÞ, which minimizes the
cost function
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J ¼
1

2

ðtf
t0

�
½ �yðtÞ � LðtÞyðtÞ�TQðtÞ½ �yðtÞ � LðtÞyðtÞ� þ u

T
ðtÞRðtÞuðtÞ

�
dt

where QðtÞ is symmetrical, positive semidefinite and RðtÞ is symmetrical positive
definite.

10. The yaw motion of a tanker is described in state space by the equations [21]

�xðtÞ ¼ AxðtÞ þ BuðtÞ

yðtÞ ¼ CxðtÞ

where

x
T
ðtÞ ¼ ½vðtÞ rðtÞ  ðtÞ�; uðtÞ ¼ �ðtÞ; y

T
ðtÞ ¼ ½ ðtÞ vðtÞ�;

A ¼

�0:44 �0:28 0
�2:67 �2:04 0
0 1 0

2
4

3
5; B ¼

0:07
�0:53
0

2
4

3
5; C ¼

0 0 1
1 0 0

	 


In particular (see Figure 11.9),

vðtÞ ¼ the y-component of the tanker velocity
rðtÞ ¼ the tanker velocity
 ðtÞ ¼ the axial inclination of the tanker relative to the given frame of

reference
�ðtÞ ¼ the rudder orientation with respect to the axial direction.

Find a state feedback control law of the form

uðtÞ ¼ k
T
xðtÞ

so that the following cost function is minimized:

J ¼

ð1
0

�
x
T
ðtÞQxðtÞ þ ru2ðtÞ

�
dt; where Q ¼

1 0 0

0 2 1

0 1 2

2
64

3
75

and r ¼ 3:
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11. Consider a linear time-invariant system described by the differential equation

yð2ÞðtÞ þ 4yð1ÞðtÞ þ 3yðtÞ ¼ uðtÞ

with zero initial conditions.
(a) Find the optimal solution uðtÞ ¼ f ½yðtÞ; _yyðtÞ; t� of the linear serovmechan-

ism problem which minimizes the cost function

J ¼

ðtf
t0

�
½ _yyðtÞ � 2�2 þ ½yðtÞ � 1�2 þ 3u2ðtÞ

�
dt

with tf given. Do not solve the differential equations derived in the solution
procedure but put them in their simplest form and find the necessary boundary
conditions for their solution.
(b) Consider the same cost function as in (a), and determine the analytical

expression of the optimal input uðtÞ, for tf ! 1.
12. The simplified block diagram of a position control servomechanism is shown in

Figure 11.10. Let � ¼ K=A and � ¼ B=A. Then GðsÞ ¼ �=sðsþ �Þ and the differ-
ential equation of the open system is the following: �ð2Þy ðtÞ þ ��ð1Þy ðtÞ ¼ ��rðtÞ.
Assume that �rðtÞ ¼ 1, and that the desired output of the closed-loop system is
�ðtÞ ¼ 1. Choose the following cost function:

J ¼
1

2

ðtf
0

�
q½�yðtÞ � �ðtÞ�

2
þ r�2r ðtÞ

�
dt; with �ðtÞ ¼ 1

(a) Find the optimal �rðtÞ which minimizes the cost function. Do not solve the
differential equations derived in the solution procedure but put them in their
simplest form and find the necessary boundary conditions for their solution.
(b) Find the optimal �rðtÞ, for tf ! 1. (Let � ¼ 1, � ¼ 2, q ¼ 1, and r ¼ 1).

13. For the yaw motion control system of the tanker of Problem 10, find the optimal
control input uðtÞ, which minimizes the cost function

J ¼
1

2

ð1
0

�
e21ðtÞ þ 0:2e22ðtÞ þ u2ðtÞ

�
dt

where

e1ðtÞ ¼ �1ðtÞ � y1ðtÞ ¼ �1ðtÞ � x3ðtÞ ¼ �1ðtÞ �  ðtÞ

e2ðtÞ ¼ �2ðtÞ � y2ðtÞ ¼ �2ðtÞ � x1ðtÞ ¼ �2ðtÞ ¼ vðtÞ
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and the output of the system to follow the desired course mðtÞ, where

mðtÞ ¼
�1ðtÞ
�2ðtÞ

	 

¼

�2 deg
7 knots
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12
Digital Control

12.1 INTRODUCTION

The aim of this chapter is to introduce the reader to the modern and very promising
approach of controlling systems using a computer. Our goal is to extend, as much as
possible, the material covered thus far in this book for continuous-time systems to
discrete-time systems. The material of this chapter is a condensed version of most of
the material presented by the author in the first five chapters of his book Digital
Control Systems [13].

12.1.1 The Basic Structure of Digital Control Systems

The basic structure of a typical digital control system or computer-controlled system
or discrete-time system is shown in Figure 12.1. The system (plant or process) under
control is a continuous-time system (e.g., a motor, electrical power plant, robot,
etc.). The ‘‘heart’’ of the controller is the digital computer. The A/D converter
converts a continuous-time signal into a discrete-time signal at times specified by a
clock. The D/A converter, in contrast, converts the discrete-time signal output of the
computer to a continuous-time signal to be fed to the plant. The D/A converter
normally includes a hold circuit (for more on A/D and D/A converters see Subsecs
12.3.1 and 12.3.2). The quantizer Q converts a discrete-time signal to binary digits.

The controller may be designed to satisfy simple, as well as complex, specifica-
tions. For this reason, it may operate as a simple logic device as in programmable
logic controllers (PLCs), or make dynamic and complicated processing operations
on the error eðkTÞ to produce a suitable input uðtÞ to control the plant. This control
input uðtÞ to the plant must be such that the behavior of the closed-loop system (i.e.,
the output yðtÞÞ satisfies desired specifications.

The problem of realizing a digital controller is mainly one of developing a
computer program. Digital controllers present significant advantages over classical
analog controllers. Some of these advantages are as follows:

1. Digital controllers have greater flexibility in modifying the controller’s
features. Indeed, the controller’s features may be readily programmed.
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For classical analog controllers, any change in the characteristics of the
controller is usually laborious and expensive, since it reqires changes in the
structure and/or the elements of the controller.

2. Processing of data is simple. Complex computations may be performed in
a fast and convenient way. Analog controllers do not have this character-
istic.

3. Digital controllers are superior over analog controllers with regard to the
following characteristics:
a. Sensitivity
b. Drift effects
c. Internal noise
d. Reliability

4. Digital controllers are cheaper than analog controllers.
5. Digital controllers are considerably smaller in size than analog controllers.

Nevertheless, digital controllers have certain disadvantages compared with
analog controllers. The most significant disadvantage is due to the error introduced
during sampling of the analog signals, as well as during the quantization of the
discrete-time signals.

12.1.2 Mathematical Background

The mathematical background necessary for the study of digital control systems is
the Z-transform, presented in Appendix B. The Z-transform facilitates the study and
design of discrete-time control systems in an analogous way to that Laplace trans-
form does for the continuous-time control systems. For this reason, we strongly
advise that the reader becomes familiar with the material presented in Appendix B.

12.2 DESCRIPTION AND ANALYSIS OF DISCRETE-TIME SYSTEMS

The term discrete-time systems covers systems which operate directly with discrete-
time signals. In this case, the input, as well as the output, of the system is obviously a
discrete-time signal (Figure 12.2). A well-known discrete-time system is the digital
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Figure 12.1 Simplified block diagram of a typical closed-loop digital control or computer-
controlled system.



computer. In this case the signals uðkÞ and yðkÞ are number sequences (usually 0 and
1). These types of systems, as we shall see, are described by difference equations.

The term sampled-data systems [1, 8] covers the usual analog (continuous-time)
systems, having the following distinct characteristics: the input uðtÞ and the output
yðtÞ are piecewise constant signals, i.e., they are constant over each interval between
two consecutive sampling points (Figure 12.3). The piecewise constant signal uðtÞ is
derived from the discrete-time signal vðkTÞ using a hold circuit (see Subsec. 12.3.2).
The output sðtÞ of the system is a continuous-time function. Let yðtÞ be the output of
the system having a piecewise constant form with yðtÞ ¼ sðtÞ at the sampling points.
Then, the system having uðtÞ as input and yðtÞ as output, where both signals are
piecewise constant in each interval, is a sampled-date system and may be described
by difference equations, as shown in Subsecs 12.3.3 and 12.3.4. This means that
sampled-data systems may be described and subsequently studied similarly to dis-
crete-time systems. This fact is of particular importance since it unifies the study of
hybrid systems, which consist of continuous-time and discrete-time subsystems (the
computer-controlled system shown in Figure 12.1 is a hybrid system) using a com-
mon mathematical tool, namely the difference equations. For this reason, and for
reasons of simplicity, sampled-data systems are usually addressed in the literature
(and in this book) as discrete-time systems. It is noted that sampled-data systems are
also called discretized systems.

12.2.1 Properties of Discrete-Time Systems

From a mathematical point of view, discrete-time system description implies the
determination of a law which assigns an output sequence yðkÞ to a given input
sequence uðkÞ (Figure 12.4). The specific law connecting the input and output
sequences uðkÞ and yðkÞ constitutes the mathematical model of the discrete-time
system. Symbolically, this relation can be written as follows:
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Figure 12.2 Block diagram of a discrete-time system.

Figure 12.3 Block diagram of a sampled-data system.



yðkÞ ¼ Q½uðkÞ�

where Q is a discrete operator.
Discrete-time systems have a number of properties, some of which are of

special interest and are presented below.

1 Linearity

A discrete-time system is linear if the following relation holds true:

Q½c1u1ðkÞ þ c2u2ðkÞ� ¼ c1Q½u1ðkÞ� þ c2Q½u2ðkÞ� ¼ c1y1ðkÞ þ c2y2ðkÞ ð12:2-1Þ

for every c1, c2, u1ðkÞ, and u2ðkÞ, where c1, c2 are constants and y1ðkÞ ¼ Q½u1ðkÞ� is the
output of the system with input u1ðkÞ and y2ðkÞ ¼ Q½u2ðkÞ� is the output of the system
with input u2ðkÞ:

2 Time-Invariant System

A discrete-time system is time-invariant if the following holds true:

Quðk� k0Þ� ¼ yðk� k0Þ ð12:2-2Þ

for every k0. Equation (12.2-2) shows that when the input to the system is shifted by
k0 units, the output of the system is also shifted by k0 units.

3 Causality

A discrete-time system is called causal if the output yðkÞ ¼ 0 for k < k0, when the
input uðkÞ ¼ 0 for k < k0. A discrete-time signal is called causal if it is zero for
k < k0. Hence, a system is causal if every causal excitation produces a causal
response.

12.2.2 Description of Linear Time-Invariant Discrete-Time Systems

A linear time-invariant causal discrete-time system involves the following elements:
summation units, amplification units, and delay units. The block diagram of all three
elements is shown in Figure 12.5. The delay unit is designated as z�1, meaning that
the output is identical to the input delayed by a time unit.

When these three elements are suitably interconnected, then one has a dis-
crete-time system, as, for example, the first-order discrete-time system shown in
Figure 12.6. Adding the three signals at the summation point �, we arrive at the
equation

yðkÞ þ a1yðk� 1Þ ¼ b0uðkÞ þ b1uðk� 1Þ ð12:1-3aÞ
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Figure 12.4 Block diagram of a discrete-time system.



Similarly, for the second-order discrete-time system shown in Figure 12.7, we obtain
the equation

yðkÞ þ a1yðk� 1Þ þ a2yðk� 2Þ ¼ b0uðkÞ þ b1uðk� 1Þ þ b2uðk� 2Þ ð12:2-3bÞ

Obviously, Eqs (12.2-3a and b) are mathematical models describing the dis-
crete-time systems shown in Figures 12.6 and 12.7, respectively. Equations (12.2-3a
and b) are examples of difference equations.

There are many ways to describe discrete-time systems, as is also the case for
continuous-time systems. The most popular ones are the following: the difference
equations, as in Eqs (12.2-3a and b); the transfer function; the impulse response or
weight function; and the state-space equations.

In presenting these four methods, certain similarities and dissimilarities
between continuous-time and discrete-time systems will be revealed. There are
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Figure 12.5 (a) Summation, (b) amplification, and (c) delay units.

Figure 12.6 Block diagram of a first-order discrete-time system.



three basic differences, going from continuous-time to discrete-time systems: differ-
ential equations are now difference equations; the Laplace transform gives way to
the Z-transform (see Appendix B); and the integration procedure is replaced by
summation.

1 Difference Equations

The general form of a difference equation is as follows:

yðkÞ þ a1yðk� 1Þ þ � � � þ anyðk� nÞ ¼ b0uðkÞ þ b1uðk� 1Þ þ � � � þ bmuðk�mÞ

ð12:2-4Þ

with initial conditions yð�1Þ; yð�2Þ; . . . ; yð�nÞ. The solution of Eq. (12.2-4) may be
found either in the time domain (using methods similar to those for solving a differ-
ential equation in the time domain) or in the complex frequency or z-domain using
the Z-transform.

2 Transfer Function

The transfer function of a discrete-time system is denoted by HðzÞ and is defined
as the ratio of the Z-transform of the output yðkÞ divided by the Z-transform of
the input uðkÞ, under the condition that uðkÞ ¼ yðkÞ ¼ 0, for all negative values of
k. That is

HðzÞ ¼
Z½yðkÞ�

Z½uðkÞ�
¼
YðzÞ

UðzÞ
; where uðkÞ ¼ yðkÞ ¼ 0 for k < 0

ð12:2-5Þ
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Figure 12.7 Block diagram of a second-order discrete-time system.



The transfer function of a system described by the difference equation (12.2-4), with
yðkÞ ¼ uðkÞ ¼ 0, for k < 0, is determined as follows: multiply both sides of Eq. (12.2-
4) by the term z�k and add for k ¼ 0; 1; 2; . . . ;1, to yield:

X1
k¼0

yðkÞz�k þ a1

X1
k¼0

yðk� 1Þz�k þ a2

X1
k¼0

yðk� 2Þz�k þ � � �

þ an
X1
k¼0

yðk� nÞz�k ¼ b0

X1
k¼0

uðkÞz�k þ b1

X1
k¼0

uðk� 1Þz�k þ � � �

þ bm
X1
k¼0

uðk�mÞz�k

Using the Z-transform time-shifting property given by Eq. (B.3-12a) in Appendix B
and the assumption that uðkÞ and yðkÞ are zero for negative values of k, the above
equation can be simplified as follows:

YðzÞ þ a1z
�1YðzÞ þ � � � þ anz

�nYðzÞ ¼ b0uðzÞ þ b1z
�1UðzÞ þ � � � þ bmz

�mUðzÞ

where use was made of the definition of the Z-transform (Eq. (B.3-1)) in Appendix
B. Hence, using definition (12.2-5), we arrive at the following rational polynomial
form for HðzÞ:

HðzÞ ¼
YðzÞ

UðzÞ
¼
b0 þ b1z

�1
þ � � � þ bmz

�m

1 þ a1z
�1 þ � � � þ anz

�n
ð12:2-6Þ

3 Impulse Response or Weight Function

The impulse response (or weight function) of a system is denoted by hðkÞ and is
defined as the output of a system when its input is the unit impulse sequence �ðkÞ (see
Figure B.1 in Appendix B), under the constraint that the initial conditions
yð�1Þ; yð�2Þ; . . . ; yð�nÞ of the system are zero. The block diagram definition of
the impulse response is shown in Figure 12.8. The transfer function HðzÞ and the
weight function hðkÞ are related by the following equation:

HðzÞ ¼ Z½hðkÞ� ð12:2-7Þ

where Z½f ðkÞ� indicates the Z-transform of f ðkÞ defined by Eq. (B.3-1) in Appendix
B.

4 State-Space Equations

State-space equations or simply state equations is a set of first-order difference
equations describing high-order systems and have the form
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Figure 12.8 Block diagram definition of the impulse response.



xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ ð12:2-8aÞ

yðkÞ ¼ CxðkÞ þDuðkÞ ð12:2-8bÞ

where uðkÞ 2 Rm, xðkÞ 2 Rn, and yðkÞ 2 Rp, are the input, state, and output vectors,
respectively, and A, B, C, and D are constant matrices of appropriate dimensions.

Let YðzÞ ¼ Z½yðkÞ� and UðzÞ ¼ Z½uðkÞ�. Then, the transfer function matrix HðzÞ
of Eqs (12.2-8) is given by

HðzÞ ¼ CðzIn � A�
�1
BþD ð12:2-9Þ

The impulse response matrix HðkÞ of Eqs (12.2-8) is given by

HðkÞ ¼ Z�1
½HðzÞ� ¼

D; for k ¼ 0
CA

k�1
B; for k > 0

� �
ð12:2-10Þ

12.2.3 Analysis of Linear Time-Invariant Discrete-Time Systems

The problem of the analysis of linear time-invariant discrete-time systems will be
treated using four different methods, where each method corresponds to one of the
four description models presented in Subsec. 12.2.2.

1 Analysis Based on the Difference Equation

We present the following introductory example.

Example 12.2.1

A discrete-time system is described by the difference equation

yðkÞ ¼ uðkÞ þ ayðk� 1Þ

with the initial condition yð�1Þ. Solve the difference equation, i.e., determine yðkÞ.

Solution

The difference equation may be solved to determine yðkÞ, using the Z-transform, as
follows. Take the Z-transform of both sides of the equation to yield

Z½ yðkÞ� ¼ Z½uðkÞ� þ aZ½ yðk� 1Þ�

or

YðzÞ ¼ UðzÞ þ a½z�1YðzÞ þ yð�1Þ�

and thus

YðzÞ ¼
z½UðzÞ þ ayð�1Þ�

z� a
¼
ayð�1Þz

z� a
þ
UðzÞz

z� a

Suppose that the excitation uðkÞ is the unit step sequence �ðkÞ (see Figure B.2 in
Appendix B). In this case

UðzÞ ¼ Z½�ðkÞ� ¼
z

z� 1

Then, the output YðzÞ becomes

YðzÞ ¼
ayð�1Þz

z� a
þ

z2

ðz� aÞðz� 1Þ
¼
ayð�1Þz

z� a
þ

1

1 � a

� �
z

z� 1

h i
�

a

1 � a

h i z

z� a

h i
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Take the inverse Z-transform (see Appendix C) to yield

yðkÞ ¼ akþ1yð�1Þ þ
1

1 � a
�

1

1 � a
akþ1

The expression for the output yðkÞ clearly converges for jaj < 1. The initial condition
yð�1Þ contributes only during the transient period. The output yðkÞ, in the steady
state, takes on the form

yssðkÞ ¼
1

1 � a

where yssðkÞ denotes the steady-state value of yðkÞ. Figure 12.9 shows yðkÞ when the
initial condition yð�1Þ ¼ 0, the input uðkÞ ¼ �ðkÞ, and jaj < 1.

2 Analysis Based on the Transfer Function

The input UðzÞ, the output YðzÞ, and the transfer function HðzÞ are related by the
equation

YðzÞ ¼ HðzÞUðzÞ

Hence

yðkÞ ¼ Z�1
½YðzÞ� ¼ Z�1

½HðzÞUðzÞ�

3 Analysis Based on the Impulse Response

The input uðkÞ, the output yðkÞ, and the impulse response hðkÞ are related via the
following convolution relation:

yðkÞ ¼ uðkÞ � hðkÞ ¼
X1
i¼�1

uðiÞhðk� iÞ ð12:2-11Þ

If the system is causal, i.e., if hðkÞ ¼ 0 for k < 0, then relation (12.2-11) becomes

yðkÞ ¼
X1
i¼0

uðiÞhðk� iÞ ¼
X1
i¼0

uðk� iÞhðiÞ ð12:2-12Þ
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Figure 12.9 Response of system of Example 12.2.1 when yð�1Þ ¼ 0, uðkÞ ¼ �ðkÞ, and
jaj < 1.



If both the system and the input signal are causal, i.e., if hðkÞ ¼ 0 and uðkÞ ¼ 0 for
k < 0, then Eq. (12.2-12) becomes

yðkÞ ¼
Xk
i¼0

hðiÞuðk� iÞ ¼
Xk
i¼0

hðk� iÞuðiÞ ð12:2-13Þ

The values yðoÞ; yð1Þ; . . . of the output yðkÞ can be calculated from Eq. (12.2-13) as
follows:

yð0Þ ¼ hð0Þuð0Þ

yð1Þ ¼ hð0Þuð1Þ þ hð1Þuð0Þ

yð2Þ ¼ hð0Þuð2Þ þ hð1Þuð1Þ þ hð2Þuð0Þ

..

.

yðkÞ ¼ hð0ÞuðkÞ þ hð1Þuðk� 1Þ þ � � � þ hðkÞuð0Þ

or more compactly as

y ¼ Hu ¼ Uh ð12:2-14Þ

where

y ¼

yð0Þ
yð1Þ

..

.

yðkÞ

2
6664

3
7775; u ¼

uð0Þ
uð1Þ

..

.

uðkÞ

2
6664

3
7775; and h ¼

hð0Þ
hð1Þ

..

.

hðkÞ

2
6664

3
7775

H ¼

hð0Þ 0 � � � 0

hð1Þ hð0Þ � � � 0

..

. ..
. ..

.

hðkÞ hðk� 1Þ � � � hð0Þ

2
66664

3
77775; and

U ¼

uð0Þ 0 � � � 0

uð1Þ uð0Þ � � � 0

..

. ..
. ..

.

uðkÞ uðk� 1Þ � � � uð0Þ

2
66664

3
77775

Remark 12.2.1

Equation (12.2-14) can be used for the determination of the impulse response hðkÞ
based on the input uðkÞ and the output yðkÞ. Indeed, from Eq. (12.2-14), we have that

h ¼ U
�1
y; if uð0Þ 6¼ 0 ð12:2-15Þ

The above procedure is called deconvolution (since it is the reverse of convolution)
and constitutes a simple identification method for a discrete-time system. For more
on the issue of identification see Chap. 13.

4 Analysis Based on the State Equations

Consider the state equations (12.2-8). From Eq. (12.2-8a),
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xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ

we have that

For k ¼ 0 : xð1Þ ¼ Axð0Þ þ Buð0Þ

For k ¼ 1 : xð2Þ ¼ Axð1Þ þ Buð1Þ ¼ A½Axð0Þ þ Buð0Þ� þ Buð1Þ

¼ A
2
xð0Þ þ ABuð0Þ þ Buð1Þ

For k ¼ 2 : xð3Þ ¼ Axð2Þ þ Buð2Þ ¼ A½A2
xð0Þ þ ABuð0Þ þ Buð1Þ� þ Buð2Þ

¼ A
3
xð0Þ þ A2

Buð0Þ þ ABuð1Þ þ Buð2Þ

If we continue this procedure for k ¼ 3; 4; 5; . . . we arrive at the following general
expression for xðkÞ:

xðkÞ ¼ Ak
xð0Þ þ Ak�1

Buð0Þ þ Ak�2
Buð1Þ þ � � � þ ABuðk� 2Þ þ Buðk� 1Þ

or more compactly

xðkÞ ¼ Ak
xð0Þ þ

Xk�1

i¼0

A
k�i�1

BuðiÞ ð12:2-16Þ

According to Eq. (12.2-8b), the output vector yðkÞ is

yðkÞ ¼ CxðkÞ þDuðkÞ

or

yðkÞ ¼ CAk
xð0Þ þ C

Xk�1

i¼0

A
k�i�1

BuðiÞ þDuðkÞ ð12:2-17Þ

where use was made of Eq. (12.2-16)
The matrix Ak is called the fundamental or transition matrix of system (12.2-8)

and is denoted as follows:

rðkÞ ¼ Ak
ð12:2-18Þ

The matrix rðkÞ is analogous to the matrix rðtÞ of the continuous-time systems (see
Table 12.1).
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Table 12.1 Comparison of the Description Methods Between Continuous-Time and
Discrete-Time Systems

Description method Continuous-time system Discrete-time system

State-space equations �xðtÞ ¼ FxðtÞ þGuðtÞ xðkþ 1Þ ¼ FxðkÞ þGuðkÞ

yðtÞ ¼ CxðtÞ þDuðtÞ yðkÞ ¼ CxðkÞ þDuðkÞ

Transition matrix �ðtÞ ¼ eFt rðkÞ ¼ Ak

L=Z-transform of
transition matrix

rðsÞ ¼ ðsI� FÞ�1 rðzÞ ¼ zðzI� AÞ�1

Transfer function matrix HðsÞ ¼ CrðsÞGþD HðzÞ ¼ z�1
CrðzÞBþD

Impulse response matrix HðtÞ ¼ C�ðtÞGþD�ðtÞ HðkÞ ¼ Crðk� 1ÞGþD for k > 0
HðkÞ ¼ D for k ¼ 0



The state vector xðkÞ may also be calculated from Eq. (12.2-8a) using the Z-
transform as follows. Take the Z-transform of both sides of the equation to yield

zXðzÞ � zxð0Þ ¼ AXðzÞ þ BUðzÞ

or

XðzÞ ¼ z½zI� A��1
xð0Þ þ ½zI� A��1

BUðzÞ

Taking the inverse Z-transform, we have

xðkÞ ¼ Ak
xð0Þ þ Ak�1

� BuðkÞ ¼ Ak
xð0Þ þ

Xk�1

i¼0

A
k�i�1

BuðiÞ ð12:2-19Þ

Equation (12.2-19) is in agreement with Eq. (12.2-16), as expected. It is evident
that the state transition matrix can also be expressed as

rðkÞ ¼ Ak
¼ Z�1

½zðzI� AÞ�1
� ð12:2-20Þ

A comparison between the description methods used for continuous-time and
discrete-time systems is shown in Table 12.1.

Example 12.2.2

Find the transition matrix, the state and the output vectors of a discrete-time system
with zero initial condition, with uðkÞ ¼ �ðkÞ and

A ¼
0 1

�2 3

� �
; b ¼

0
1

� �
; and c ¼

1
1

� �

Solution

We have

rðzÞ ¼ ZðrðkÞ� ¼ zðzI� AÞ�1
¼

1

z2 � 3zþ 2

zðz� 3Þ z
�2z z2

� �

Hence

rðkÞ ¼

Z�1 zðz� 3Þ

z2 � 3zþ 2

� �
Z�1 z

z2 � 3zþ 2

� �

Z�1 �2z

z2 � 3zþ 2

� �
Z�1 z2

z2 � 3zþ 2

" #
2
66664

3
77775

Using the Z-transform pairs given in Appendix C, one obtains

rðkÞ ¼ 2 � 2k 2k � 1
2ð1 � 2kÞ 2kþ1

� 1

� �

These results may be checked as follows. Since rðkÞ ¼ Ak, it follows that rð0Þ ¼ I
and rð1Þ ¼ A. Moreover, from the initial value theorem it follows that
limz!1 rðzÞ ¼ rð0Þ. Indeed

rð0Þ ¼ lim
z!1

rðzÞ ¼
1 0
0 1

� �
¼ 1
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Since the initial conditions are zero, the state vector may be calculated as
follows:

XðzÞ ¼ ðzI� AÞ�1
BuðzÞ ¼

rðzÞ
z
BuðzÞ ¼

1

ðz� 1Þ2ðz� 2Þ

z
z2

� �

Using the Z-transform pairs given in the Appendix C, one obtains

xðkÞ ¼ Z�1
½XðzÞ� ¼

2k � k� 1
2ð2k � 1Þ � k

� �

From this expression, it follows that xð0Þ ¼ 0. Finally, the output of the system is
given by

yðkÞ ¼ cT
xðkÞ ¼ 2k � k� 1 þ ð2Þ ð2kÞ � 2 � k ¼ ð3Þ ð2kÞ � 2k� 3

Remark 12.2.2

When the initial conditions hold for k ¼ k0, the above results take on the following
general forms:

rðk; k0Þ ¼ Ak�k0 ð12:2-21aÞ

xðkÞ ¼ rðk� k0Þxðk0Þ þ
Xk�1

i¼k0

rðk� i � 1ÞBuðiÞ ð12:2-21bÞ

yðkÞ ¼ Crðk� k0Þxðk0Þ þ
Xk�1

i¼k0

Crðk� i � 1ÞBuðiÞ þDuðkÞ ð12:2-21cÞ

12.3 DESCRIPTION AND ANALYSIS OF SAMPLED-DATA SYSTEMS

12.3.1 Introduction to D/A and A/D Converters

As we have already noted in Subsec. 12.1.1, in modern control systems a continuous-
time system is usually controlled using a digital computer (Figure 12.1). As a result,
the closed-loop system involves continuous-time, as well as discrete-time, subsys-
tems. To have a common base for the study of the closed-loop system, it is logical
to use the same mathematical model for both continuous-time and discrete-time
systems. The mathematical model uses difference equations. This approach unifies
the study of closed-loop systems. Furthermore, it facilitates the study of closed-loop
systems, since well-known methods and results, such as transfer function, stability
criteria, controller design techniques, etc., may be extended to cover the case of
discrete-time systems.

A practical problem which we come across in such systems is that the output of
a discrete-time system, which is a discrete-time signal, may be the input to a con-
tinuous-time system (in which case, of course, the input ought to be a continuous-
time signal). And vice versa, the output of a continuous-time system, which is a
continuous-time signal, could be the input to a discrete-time system (which, of
course, ought to be a discrete-time signal). This problem is dealt with using special
devices called converters. There are two types of converters: D/A converters, which
convert the discrete-time signals to analog or continuous-time signals (Figure
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12.10a), and A/D converters, which convert analog or continuous-time signals to
discrete-time signals (Figure 12.10b). The constant T is the sampling time period. It
is noted that before the discrete-time signal yðkTÞ of the A/D converter is fed into a
digital computer, it is first converted to a digital signal with the help of a device
called a quantizer. The digital signal is a sequence of 0 and 1 digits (see also Figure
12.1).

12.3.2 Hold Circuits

A D/A converter is actually a hold circuit whose output yðtÞ is a piecewise constant
function. Specifically, the operation of the hold circuit (Figure 12.10a) is described
by the following equations:

yðtÞ ¼ uðkTÞ; for kT � t < ðkþ 1ÞT ð12:3-1aÞ

or

yðkT þ 	Þ ¼ uðkT Þ; for 0 � 	 < T ð12:3-1bÞ

We will show that the operation of a hold circuit, described by Eqs (12.3-1a and b),
may be equivalently described (from a mathematical point of view) by the idealized
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Figure 12.10 The operation of (a) D/A and (b) A/D converters.



hold circuit shown in Figure 12.11b. Here it is assumed that the signal uðtÞ goes
through an ideal sampler �T , whose output u�ðtÞ is given by the relation

u�ðtÞ ¼
X1
k¼0

uðkTÞ�ðt� kTÞ ð12:-2Þ

Clearly, u�ðtÞ is a sequence of impulse functions. Applying the Laplace transform on
u�ðtÞ, we obtain

U�
ðsÞ ¼

X1
k¼0

uðkTÞe�skT ð12:3-3Þ

Therefore, the output YðsÞ is

YðsÞ ¼
1 � e�sT

s

� �X1
k¼0

uðkTÞe�skT ð12:3-4Þ

We would have arrived at the same result as in Eq. (12.3-4) if we had calculated
YðsÞ of the hold circuit shown in Figure 12.11a. Indeed, since the impulse response
hðtÞ of the hold circuit is a gate function (see Figure B.3 in Appendix B), i.e.,
hðtÞ ¼ �ðtÞ � �ðt� TÞ, the output yðtÞ should be the convolution of uðkTÞ and hðtÞ,
i.e.,

yðtÞ ¼ uðkTÞ � hðtÞ ¼
X1
k¼0

uðkT Þ½�ðt� kTÞ � �ðt� kT � TÞ� ð12:3-5Þ

Taking the Laplace transform of Eq. (12.3-5), we have

YðsÞ ¼
X1
k¼0

uðkTÞ
e�skT � e�sðkþ1ÞT

s

" #
¼

1 � e�sT

s

� �X1
k¼0

uðkTÞ�skT ð12:3-6Þ

Equations (12.3-6) and (12.3-4) are identical. Therefore, both configurations in
Figures 12.11a and b are equivalent with regard to the output yðtÞ. It is clear that
the device shown in Figure 12.11b cannot be realized in practice and it is used only
because it facilitates the mathematical description of the hold circuit. Figure 12.12
shows a typical output of the present hold circuit (known as a zero-order hold
circuit).
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Figure 12.11 Hold circuit block diagrams: (a) hold circuit; (b) idealized hold circuit.



12.3.3 Conversion of GðsÞ to GðzÞ
To convert a continuous-time transfer function GðsÞ to the transfer function GðzÞ of
the respective discretized system, various techniques have been proposed. In what
follows, we briefly present some of the most popular techniques.

1 The Backward Difference Method

For simplicity, consider the case of a first-order system described by the transfer
function

GðsÞ ¼
YðsÞ

UðsÞ
¼

a

sþ a
ð12:3-7Þ

The system’s differential equation is

yð1Þ ¼ �ayþ au ð12:3-8Þ

Integrating both sides of the differential equation from 0 to t, one obtainsðt
0

dy

dt
dt ¼ �a

ðt
0

ydtþ a

ðt
0

udt

Suppose that we want to determine the values of the output yðtÞ at the sampling
instants, i.e., at the points where t ¼ kT . Then, the integral equation above becomesðkT

0

dy

dt
dt ¼ �a

ðkT
0

ydtþ a

ðkT
0

udt

Hence, we have

yðkTÞ � yð0Þ ¼ �a

ðkT
0

ydtþ a

ðkT
0

udt ð12:3-9Þ

Substituting kT by ðk� 1ÞT in this equation, one obtains

y½ðk� 1ÞT � � yð0Þ ¼ �a

ððk�1ÞT

0

ydtþ a

ððk�1ÞT

0

udt ð12:3-10Þ

Substracting Eq. (12.3-10) from Eq. (12.3-9), we further obtain

530 Chapter 12

Figure 12.12 Typical output of a zero-order hold circuit.



yðkTÞ � y½ðk� 1ÞT � ¼ �a

ðkT
ðk�1ÞT

ydtþ a

ðkT
ðk�1ÞT

udt ð12:3-11Þ

Both terms on the right-hand side of Eq. (12.3-11) may be calculated approximately
in various ways. If the approximation is done as shown in Figure 12.13a, i.e., by
applying the backward difference method, then Eq. (12.3-11) takes the form

yðkTÞ ¼ y½ðk� 1ÞT � � aT ½yðkTÞ � uðkTÞ� ð12:3-12Þ

Obviously, Eq. (12.3-12) is the equivalent difference equation of the differential
equation (12.3-8). To find GðzÞ, we only need to take the Z-transform of Eq.
(12.3-12) to yield

GðzÞ ¼
YðzÞ

UðzÞ
¼

a

1 � z�1

T

" #
þ a

ð12:3-13Þ

Extending the results of the above example to the general case, we arrive at the
following procedure for discretizing GðsÞ using the backward difference method:
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Figure 12.13 Area approximation using (a) the backward difference method, (b) the for-
ward difference method, and (c) the Tustin or the trapezoidal method.



GðzÞ ¼ GðsÞ

����
s¼ð1�z�1Þ=T

ð12:3-14Þ

2 The Forward Difference Method

In this case, the approximation of the two terms of the right-hand side of Eq. (12.3-
11) is done, as shown in Figure 12.13b. Working in the same way as in the previous
case, we arrive at the following result for discretizing GðsÞ using the forward differ-
ence method:

GðzÞ ¼ GðsÞ

����
s¼
�

1�z�1
�
=Tz�1

ð12:3-15Þ

3 The Bilinear Transformation Method or Trapezoidal Method or Tustin
Transformation Method

The Tustin transformation is based on the approximation of the two terms on the
right-hand side of Eq. (12.3-11) using the trapezoidal rule, as shown in Figure
12.13a. This leads to the following result for discretizing GðsÞ:

GðzÞ ¼ GðsÞ

����
s¼2=T ð1�z�1Þ=ð1þz�1Þ½ �

ð12:3-16Þ

4 The Invariant Impulse Response Method

In this case, both GðsÞ and GðzÞ present a common characteristic in that their respec-
tive impulse functions gðtÞ and gðkTÞ are equal for t ¼ kT . This is achieved when

GðzÞ ¼ Z½gðkTÞ�; where gðkTÞ ¼ ½L�1GðsÞ�t¼kT ð12:3-17Þ

5 The Invariant Step Response Method

In this case, both GðsÞ and GðzÞ present the common characteristic that their step
responses, i.e., the response yðtÞ produced by the excitation uðtÞ ¼ 1 and the response
yðkTÞ produced by the excitation uðkTÞ ¼ 1, are equal for t ¼ kT . This is achieved
when

Z�1 GðzÞ
1

1 � z�1

� �
¼ L�1 GðsÞ

1

s

� �� �
t¼kT

ð12:3-18Þ

where, obviously, the left-hand side of Eq. (12.3-18) is equal to yðkTÞ, whereas the
right-hand side is equal to yðtÞ at t ¼ kT . Applying the Z-transform on Eq. (12.3-18),
we obtain

GðzÞ ¼
�
1 � z�1

�
Z

GðsÞ

s

� �
¼ Z

1 � e�Ts

s
GðsÞ

� �
¼ Z½GhðsÞGðsÞ� ð12:3-19Þ

where GhðsÞ is the transfer function of the zero-order hold circuit presented in Sec.
12.3.2.

6 Pole-Zero Matching Method

Consider the transfer function
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GðsÞ ¼ Ks

ðsþ 
1Þðsþ 
2Þ � � � ðsþ 
mÞ

ðsþ �1Þðsþ �2Þ � � � ðsþ �nÞ
; m � n ð12:3-20Þ

Then, the pole-zero matching method assumes that GðzÞ has the general form

GðzÞ ¼ Kz

ðzþ 1Þn�mðzþ z1Þðzþ z2Þ � � � ðzþ zmÞ

ðzþ p1Þðzþ p2Þ � � � ðzþ pnÞ
ð12:3-21Þ

where the zi’s and pi’s are ‘‘matched’’ to the respective 
i’s and �i’s according to the
following relations

zi ¼ �e
iT and pi ¼ �e��iT ð12:3-22Þ

The n�m multiple zeros ðzþ 1Þn�m which appear in GðzÞ represent the order differ-
ence between the numerator’s polynomial and the denominator’s polynomial in Eq.
(12.3-20). The constant Kz is calculated so as to satisfy particular requirements. For
example, when we are interested in the behavior of a system at low frequencies (and
this is the usual case in control systems), Kz is chosen such that GðsÞ and GðzÞ are
equal for s ¼ 0 and z ¼ 1, respectively, i.e., the following relation holds:

GðzÞ

����
z¼1

¼ Kz2
n�m ð1 þ z1Þð1 þ z2Þ � � � ð1 þ zmÞ

ð1 þ p1Þð1 þ p2Þ � � � ð1 þ pnÞ
¼ GðsÞ

����
s¼0

¼ Ks


1
2 � � �
m

�1�2 � � ��n

ð12:3-23Þ

Using Eq. (12.3-23), one can easily determine Kz.
Note that when a second-order term appears in GðsÞ, then the pole-zero match-

ing method yields the following ‘‘matching’’:

ðsþ aÞ2 þ b2
) z2

� 2ðe�aT cos bTÞzþ e�2aT

Example 12.3.1

For the system with transfer function GðsÞ ¼ a=ðsþ aÞ, find all above six equivalent
descriptions of GðzÞ.

Solution

After several simple algebraic calculations, all six descriptions of GðzÞ are found and
summarized in Table 12.2.

Example 12.3.2

Consider a second-order continuous-time system having the following transfer
function:

HðsÞ ¼
b

sðsþ aÞ

Find HðzÞ using the invariant impulse response method.

Solution

We have

hðtÞ ¼ L�1HðsÞ ¼
b

a
L�1 1

s
�

1

ðsþ aÞ

� �
¼
b

a

�
1 � e�at

�
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Hence

hðkTÞ ¼ hðtÞ

����
t¼kT

¼
b

a

�
1 � e�akT

�
The Z-transform of hðkTÞ is

HðzÞ ¼ Z½hðkTÞ� ¼
b

a

X1
k¼0

�
1 � e�akT

�
z�k ¼

b

a
1 � z�1

�

b

a
1 � e�aTz�1

or

HðzÞ ¼
bz�1

�
1 � e�aT

�
a
�
1 � z�1

��
1 � e�aTz�1

�
Example 12.3.3

Consider a second-order continuous-time system having the following transfer func-
tion:

HðsÞ ¼
2

ðsþ 1Þðsþ 2Þ
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Table 12.2 Equivalent Discrete-Time Transfer Functions GðzÞ of the Continuous-Time
Transfer Function GðsÞ ¼ a=ðsþ aÞ.

Method
Conversion of
GðsÞ to GðzÞ

Equivalent discrete-time transfer
function

Backward difference method s ¼
1 � z�1

T

GðzÞ ¼
a

1 � z�1

T

" #
þ a

Forward difference method s ¼
1 � z�1

Tz�1

GðzÞ ¼
a

1 � z�1

Tz�1

" #
þ a

Tustin transformation s ¼
2

T

1 � z�1

1 þ z�1

" #
GðzÞ ¼

a

2

T

1 � z�1

1 þ z1

 !" #
þ a

Invariant impulse response
method

GðzÞ ¼ Z½gðtÞ� where
gðtÞ ¼ Z�1GðsÞ

GðzÞ ¼
a

1 � e�Atz�1

Invariant step response method
GðzÞ ¼ Z

1 � eTs

s
GðsÞ

� �
GðzÞ ¼

ð1 � e�aT Þz�1

1 � e�aTz�1

Pole-zero matching method GðzÞ ¼ Kz

zþ 1

zþ p1

� �
GðzÞ ¼

1 � e�aT

2

� �
1 þ z�1

1 � e�aTz�1

" #



Find HðzÞ using the invariant step response method.

Solution

We have

HðzÞ ¼ Z½GhðsÞHðsÞ� ¼ Z
1 � e�Ts

s

� �
HðsÞ

� �
¼
�
1 � z�1

�
Z

HðsÞ

s

� �
Using the relation

HðsÞ

s
¼

2

sðsþ 1Þðsþ 2Þ
¼

1

s
�

2

sþ 1
þ

1

sþ 2

and the Z-transform tables of Appendix C, we obtain

Z
HðsÞ

s

� �
¼

1

1 � z�1
�

2

1 � e�Tz�1
þ

1

1 � e�2Tz�1

Hence

HðzÞ ¼
�
1 � z�1

�
Z

HðsÞ

s

� �
¼
�
1 � z�1

� 1

1 � z�1
�

2

1 � e�Tz�1
þ

1

1 � e�2Tz�1

� �

12.3.4 Conversion of Differential State Equations to Difference State
Equations

Consider the continuous-time multi-input–multi-output (MIMO) open-loop system
shown in Figure 12.14. Let this system be described in state space by the equations

�xðtÞ ¼ FxðtÞ þGmðtÞ ð12:3-24aÞ

yðtÞ ¼ CxðtÞ þDmðtÞ ð12:3-24bÞ

We will show that Eqs (12.3-24a and b) may be approximately written in the form of
difference equations. To this end, consider the piecewise constant excitation vector
mðtÞ described by

mðtÞ ¼ uðkTÞ; for kT � t < ðkþ 1ÞT ð12:3-25Þ

Then, solving Eq. (12.3-24a) for xðtÞ, we have

xðtÞ ¼ eFtxð0Þ þ

ðt
0

eFðt�	Þ
Gmð	Þd	 ð12:3-26Þ

According to Eq. (12.-3-25), mð0Þ ¼ uð0Þ for 0 � t < T and hence Eq. (12.3-26)
becomes

xðtÞ ¼ eFtxð0Þ þ

ðt
0

eFðt�	Þ
Guð0Þd	; 0 � t < T ð12:3-27Þ

The state vector xðtÞ, for t ¼ T , will be
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Figure 12.14 Open-loop system with a sampler and a hold circuit.



xðTÞ ¼ eFTxð0Þ þ

ðT
0

eFðT�	Þ
Guð0Þd	 ð12:3-28Þ

Define

AðTÞ ¼ eFT ð12:3-29aÞ

BðTÞ ¼

ðT
0

eFðT�	Þ
Gd	 ¼

ðT
0

eF�Gd�; � ¼ T � 	 ð12:3-29bÞ

Then, for t ¼ T , Eq. (12.3-27) can be simplified as follows:

xðTÞ ¼ AðTÞxð0Þ þ BðTÞuð0Þ ð12:3-30Þ

Repeating the above procedure for T � t < 2T , 2T � t < 3T , etc., we arrive at
the following general formula:

x½ðkþ 1ÞT � ¼ AðTÞxðkTÞ þ BðTÞuðkT Þ

The output equation (12.3-24b) may therefore be written as

yðkTÞ ¼ CxðkT Þ þDuðkTÞ

Hence, the state differential equations (12.3-24) can be written as a system of dif-
ference equations, as follows:

x½ðkþ 1ÞT � ¼ AðTÞxðkTÞ þ BðTÞuðkT Þ ð12:3-31aÞ

yðkTÞ ¼ CxðkT Þ þDuðkTÞ ð12:3-31bÞ

The state equations (12.3-24) and (12.3-31) are equivalent only for the time instants
t ¼ kT under the constraint that the input vectors mðtÞ and uðtÞ satisfy the condition
(12.3-25).

Remark 12.3.1

The transfer function matrix of the continuous-time system (12.3-24) is HðsÞ ¼
CðsI� FÞ�1

GþD and the transfer function matrix of the equivalent discrete-
time system (12.3-31) is GðzÞ ¼ C½zI� AðTÞ��1

BðTÞ þD. These two matrices are
related as follows:

GðzÞ ¼ Z½GhðsÞHðsÞ� ¼ Z
1 � e�sT

s

� �
HðsÞ

� �
ð12:3-32Þ

This means that the matrix GðzÞ is equivalent to the matrix HðsÞ in the sense of the
invariant step response (see Eq. (12.3-19)).

Remark 12.3.2

Going from the continuous-time state-space description (12.3-24) to the discrete-time
(sampled-data) state-space description (12.3-31), we need to determine the matrices
AðTÞ and BðTÞ using the definition (12.3-29). For the determination of AðTÞ we note
that it can be easily carried out using the following relation:

AðTÞ ¼ eFt
����
t¼T

¼ L�1
½sI� F��1

� �
t¼T

ð12:3-33aÞ

Equation (12.3-33a) facilitates the determination of BðTÞ, since, according to the
definition (12.3-29b) of BðTÞ, we have that
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BðTÞ ¼

ðT
0

L�1
½sI� F��1

� �
t¼�
Gd� ¼

ðT
0

Að�ÞGd� ð12:3-33bÞ

Example 12.3.4

Consider the continuous-time system

�xðtÞ ¼ FxðtÞ þ gmðtÞ

yðtÞ ¼ cTxðtÞ

where

F ¼
�1 0

1 0

� �
; g ¼

2
1

� �
; c ¼

0
1

� �

Find the equivalent discrete-time (sampled-data) system, i.e., find the matrix AðTÞ
and the vector bðTÞ.

Solution

We have

sI� F ¼
sþ 1 0

�1 s

" #
; ðsI� FÞ�1

¼

1

sþ 1
0

1

sðsþ 1Þ

1

s

2
6664

3
7775; and

L�1
½sI� F��1

¼
e�t 0

1 � e�t 1

" #

Therefore, from Eq. (12.3-33a), we obtain

AðTÞ ¼ L�1
½sI� F��1

� �
t¼T

¼ eFT ¼
e�T 0

1 � e�T 1

� �

Moreover, from Eq. (12.3-33b), we obtain

bðTÞ ¼

ðT
0

eF�gd� ¼

ðT
0

e�� 0

1 � e�� 1

" #
2

1

� �
d� ¼

ðT
0

2e��

3 � 2e��

" #
d�

¼
2ð1 � e�T Þ

3T � 2ð1 � e�T Þ

" #

Example 12.3.5

Consider a harmonic oscillator with transfer function

GðsÞ ¼
YðsÞ

UðsÞ
¼

!2

s2 þ !2

A state-space description of the oscillator is of the form �x ¼ Fxþ gu, y ¼ c
T
x, where

x ¼
x1

x2

� �
¼

y
!�1yð1Þ

� �
; F ¼

0 !
�! 0

� �
; g ¼

0
!

� �
; c ¼

1
0

� �
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Find the equivalent discrete-time (sampled-data) system of the form (12.3-31), i.e.,
find the matrix AðTÞ and the vector bðTÞ.

Solution

We have

ðsI� FÞ�1
¼

s

s2 þ !2

!

s2 þ !2

�!

s2 þ !2

s

s2 þ !2

2
64

3
75 and eFt ¼

cos!t sin!t

� sin!t cos!t

" #

Therefore

AðTÞ ¼ L�1
½sI� F��1

� �
t¼T

¼
cos!T sin!T
� sin!T cos!T

� �

bðTÞ ¼

ðT
0

eF�gd�

� �
¼

1 � cos!T
sin!T

� �

12.3.5 Analysis of Sampled-Data Systems

1 Analysis Based on the State Equations

To solve Eqs (12.3-31), we take advantage of the results of Subsec. 12.2.3, since they
differ only by the constant T in Eqs (12.3-31). We therefore have that the general
solution of Eq. (12.3-31a) is given by

xðkTÞ ¼ r½ðk� k0ÞT �xðk0TÞ þ
Xk�1

i¼k0

r½ðk� i � 1ÞT �BðTÞuðiTÞ ð12:3-34aÞ

and the general solution of Eq. (12.3-31b) by

yðkTÞ ¼ Cr½ðk� k0ÞT �xðk0TÞ þ C
Xk�1

i¼k0

r½ðk� i � 1ÞT �BðTÞuðiTÞ þDuðkTÞ

ð12:3-34bÞ

where r½ðk� k0ÞT � is the transition matrix, given by the relation

r½ðk� k0ÞT � ¼ ½AðTÞ�k�k0

Clearly, if we set T ¼ 1 in Eqs (12.3-34a and b), then we obtain the formulas
(12.2-16) and (12.2-17), respectively.

2 Analysis Based on HðkT Þ

Consider the continuous-time system shown in Figure 12.15, where the two samplers
are synchronized. The output vector yðkTÞ, i.e., the vector yðtÞ at the sampling points
t ¼ kT , is
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yðkTÞ ¼
X1
i¼0

HðkT � iTÞuðiTÞ ð12:3-35Þ

Equation (12.3-35) represents, as is already known, a convolution. If we set T ¼ 1,
then Eq. (12.3-35) is the vector form of the scalar convolution (12.2-12).

3 Analysis Based on HðzÞ

If we take the Z-transform of Eq. (12.3-35), we obtain the following expression for
the output vector:

YðzÞ ¼ HðzÞUðzÞ ð12:3-36Þ

where

YðzÞ ¼ Z½yðkTÞ�; UðzÞ ¼ Z½uðkTÞ�; and HðzÞ ¼ Z½HðkTÞ�

ð12:3-37Þ

Example 12.3.6

For the system of Example 12.3.5, for T ¼ 1 and ! ¼ �=2, find:

(a) The transition matrix rðkTÞ
(b) The state-space vector xðkTÞ
(c) The output vector yðkTÞ:

Solution

For the given values of ! and T , A, B, and c become

A ¼
0 1

�1 0

� �
; b ¼

1
1

� �
; c ¼

1
0

� �

(a) rðzÞ ¼ Z½rðkTÞ� ¼ zðzI� AÞ�1
¼

1

z2 þ 1

z2 z
�z z2

� �

Therefore

rðkTÞ ¼

Z�1 z2

z2 þ 1

" #
Z�1 z

z2 þ 1

� �

Z�1 �z

z2 þ 1

�
Z�1 z2

z2 þ 1

" #
2
666664

3
777775

Using the tables of Z-transform pairs given in Appendix C, we have
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rðkTÞ ¼
cos

k�T

2
sin

k�T

2

� sin
k�T

2
cos

k�T

2

2
664

3
775

ðbÞ XðzÞ ¼ ðzI� AÞ�1
BUðzÞ ¼

1

z2 þ 1

z 1

�z z

� �
1

1

� �
z

z� 1

h i

¼
1

ðz2 þ 1Þðz� 1Þ

zðzþ 1Þ

zðz� 1Þ

� �

Hence

xðkTÞ ¼ Z�1
½XðzÞ� ¼

1 � cos
k�T

2

sin
k�T

2

2
664

3
775

(c) Finally, the output of the system is given by

yðkTÞ ¼ cTxðkTÞ ¼ ½1 0�xðkT Þ ¼ 1 � cos
k�T

2

12.4 STABILITY

12.4.1 Definitions and Basic Theorems of Stability

1 Introduction

Consider the nonlinear discrete-time system

xðkT þ TÞ ¼ f½xðkTÞ; kT; uðkTÞ�; xðk0TÞ ¼ x0 ð12:4-1Þ

Let uðkTÞ ¼ 0, for k � k0. Moreover, let xðkTÞ and ~xxðkTÞ be the solutions of Eq.
(12.4-1) when the initial conditions are xðk0TÞ and ~xxðk0TÞ, respectively. Also let the
symbol k � k represent the Euclidean norm

kxk ¼ x2
1 þ x2

2 þ � � � þ x2
n

� �1=2

We give the following definitions of stability.

Definition 12.4.1: Stability

The solution xðkTÞ of Eq. (12.4-1) is stable if for a given " > 0 there exists a �ð"; k0Þ

> 0 such that all solutions satisfying kxðk0TÞ � ~xxðk0TÞk < " imply that kxðkTÞ�
~xxðkTÞk < � for all k � k0.

Definition 12.4.2: Asymptotic Stability

The solution xðkTÞ of Eq. (12.4-1) is asymptotically stable if it is stable and if
kxðkT Þ � ~xxðkTÞk ! 0 as k ! þ1, under the constraint that kxðk0TÞ � ~xxðk0TÞk is
sufficiently small.
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In the case where the system (12.4-1) is stable in accordance with Definition
12.4.1, the point xðk0TÞ is called the equilibrium point. In the case where the system
(12.4-1) is asymptotically stable, the equilibrium point is the origin 0.

2 Stability of Linear Time-Invariant Discrete-Time Systems

Consider the linear time-invariant discrete-time system

xðkT þ TÞ ¼ AxðkTÞ þ BuðkTÞ; xðk0TÞ ¼ x0

yðkTÞ ¼ CxðkTÞ þDuðkTÞ

�
ð12:4-2Þ

Applying Definition 12.4.1 to the system (12.4-2), we have the following theorem.

Theorem 12.4.1

System (12.4-2) is stable according to Definition 12.4.1 if, and only if, the eigenvalues
�i of the matrix A, i.e., the roots of the characteristic equation j�I� Aj ¼ 0, lie inside
the unit circle (i.e., j�ij < 1), or the matrix A has eigenvalues on the unit circle (i.e.,
j�ij ¼ 1) of multiplicity one.

Applying Definition 12.4.2 to the system (12.4-2), we have the following
theorem.

Theorem 12.4.2

System (12.4-2) is asymptotically stable if, and only if, limk!1 xðkTÞ ¼ 0, for every
xðk0TÞ, when uðkTÞ ¼ 0 ðk � k0Þ.

On the basis of Theorem 12.4.2, we prove the following theorem.

Theorem 12.4.3

System (12.4-2) is asymptotically stable if, and only if, the eigenvalues �i of A are
inside the unit circle.

Proof

The theorem will be proved for the special case where the matrix A has distinct
eigenvalues. The proof of the case where the eigenvalues are repeated is left as an
exercise. When uðkTÞ ¼ 0 ðk � k0Þ, the state vector xðkTÞ is given by

xðkTÞ ¼ Ak�k0xðk0TÞ ð12:4-3Þ

Let the eigenvalues �1; �2; . . . ; �n of the matrix A be distinct. Then, according to the
Sylvester theorem (see Sec. 2.12), the matrix Ak can be written as

A
k
¼
Xn
i¼1

Ai�
k
i ð12:4-4Þ

where Ai are special matrices which depend only on A. Substituting Eq. (12.4-4) in
Eq. (12.4-3), we obtain

xðkTÞ ¼
Xn
i¼1

Ai�
k�k0

i xðk0TÞ ð12:4-5Þ

Hence

Digital Control 541



lim
k!1

xðkTÞ ¼
Xn
i¼1

Aixðk0TÞ lim
k!1

�k�k0

i

� �" #
ð12:4-6Þ

From Eq. (12.4-6) it is obvious that limk!1 xðkT Þ ¼ 0, 8xðk0TÞ if, and only if,
limk!1 �k�k0

i ¼ 0; 8i ¼ 1; 2; . . . ; n, which is true if and only if
j�ij < 1; 8i ¼ 1; 2; . . . ; n, where j � j stands for the magnitude of a complex number.

A comparison between linear time-invariant continuous-time systems and lin-
ear time-invariant discrete-time systems with respect to the asymptotic stability is
shown in Figure 12.16.

3 Bounded-Input Bounded-Output Stability

Definition 12.4.3

A linear time-invariant system is bounded-input–bounded-output (BIBO) stable if a
bounded input produces a bounded output for every initial condition.

Applying Definition 12.4.3 to system (12.4-2), we have the following theorem.

Theorem 12.4.4

The linear time-invariant system (12.4-2) is BIBO stable if, and only if, the poles of
the transfer function HðzÞ ¼ CðzI� AÞ�1

BþD, before any pole-zero cancellation,
are inside the unit circle.
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From Definition 12.4.3 we may conclude that asymptotic stability is the stron-
gest, since it implies both stability and BIBO stability. It is easy to give examples
showing that stability does not imply BIBO stability and vice versa.

12.4.2 Stability Criteria

The concept of stability has been presented in some depth in the preceding subsec-
tion. For testing stability, various techniques have been proposed. The most popular
techniques for determining the stability of a discrete-time system are the following:

1. The Routh criterion, using the Möbius transformation
2. The Jury criterion
3. The Lyapunov method
4. The root locus method
5. The Bode and Nyquist criteria

Here, we briefly present criteria 1 and 2. For the rest of the stability criteria see [3, 11,
13].

1 The Routh Criterion Using the Möbius Transformation

Consider the polynomial

aðzÞ ¼ a0z
n
þ a1z

n�1
þ � � � þ an ð12:4-7Þ

The roots of the polynomial are the roots of the equation

aðzÞ ¼ a0z
n
þ a1z

n�1
þ � � � þ an ¼ 0 ð12:4-8Þ

As stated in Theorem 12.4.3, asymptotic stability is secured if all the roots of the
characteristic polynomial lie inside the unit circle. The well-known Routh criterion
for continuous-time systems is a simple method for determining if all the roots of an
arbitrary polynomial lie in the left complex plane without requiring the determina-
tion of the values of the roots. The Möbius bilinear transformation

w ¼
zþ 1

z� 1
or z ¼

wþ 1

w� 1
ð12:4-9Þ

maps the unit circle of the z-plane into the left w-plane. Consequently, if the Möbius
transformation is applied to Eq. (12.4-8), then the Routh criterion may be applied, as
in the case of continuous-time systems.

Example 12.4.1

The characteristic polynomial aðzÞ of a system is given by aðzÞ ¼ z2
þ 0:7zþ 0:1.

Investigate the stability of the system.

Solution

Applying the transformation (12.4-9) to aðzÞ yields
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aðwÞ ¼
wþ 1

w� 1

� �2

þ0:7
wþ 1

w� 1

� �
þ 0:1 ¼

ðwþ 1Þ2 þ 0:7ðw2
� 1Þ þ 0:1ðw� 1Þ2

ðw� 1Þ2

¼
1:8w2

þ 1:8wþ 0:4

ðw� 1Þ2

The numerator of aðwÞ is called the ‘‘auxiliary’’ characteristic polynomial to which
the well-known Routh criterion will be applied. For the present example, the Routh
array is

w2

w1

w0

������
1:8 0:4
1:8 0
0:4 0

The coefficients of the first column have the same sign and, according to Routh’s
criterion, the system is stable. We can reach the same result if we factorize aðzÞ into a
product of terms, in which case aðzÞ ¼ ðzþ 0:5Þðzþ 0:2Þ. The two roots of aðzÞ are
�0:5 and �0:2, which are both inside the unit circle and hence the system is stable.

2 The Jury Criterion

It is useful to establish criteria which can directly show whether a polynomial aðzÞ
has all its roots inside the unit circle instead of determining its eigenvalues. Such a
criterion, which is equivalent to the Routh criterion for continuous-time systems, has
been developed by Schur, Cohn, and Jury. This criterion is usually called the Jury
criterion and is described in detail below.

First, the Jury table is formed for the polynomial aðzÞ, given by Eq. (12.4-7), as
shown in Table 12.3. The first two rows of the table are the coefficients of the
polynomial aðzÞ presented in the forward and reverse order, respectively. The third
row is formed by multiplying the second row by �n ¼ an=a0 and subtracting the
result from the first row. Note that the last element of the third row becomes
zero. The fourth row is identical to the third row, but in reverse order. The above
procedure is repeated until the 2nþ 1 row is reached. The last row consists of only a
single element. The following theorem holds.

Theorem 12.4.5: The Jury Stability Criterion

If a0 > 0, then the polynomial aðzÞ has all its roots inside the unit circle if, and only
if, all ak0, k ¼ 0; 1; . . . ; n� 1, are positive. If all coefficients ak0 differ from zero, then
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Table 12.3 The Jury Table

a0 a1 � � � an�1 an

an an�1 � � � a1 a0

�n ¼ an=a0

an�1
0 an�1

1 � � � an�1
n�1

an�1
n�1 an�1

n�2 � � � an�1
0

�n�1 ¼ an�1
n�1=a

n�1
0

..

.

a0
0 where an�1

i ¼ aki � �ka
k
k�1 and �k ¼ akk=a

k
0



the number of negative coefficients ak0 is equal to the number of roots which lie
outside the unit circle.

Remark 12.4.1

If all coefficients ak0, k ¼ 1; 2; . . . ; n, are positive, then it can be shown that the
condition a0

0 > 0 is equivalent to the following two conditions:

að1Þ > 0 ð12:4-10aÞ

ð�1Þnað�1Þ > 0 ð12:4-10bÞ

Relations (12.4-10a and b) present necessary conditions for stability and may there-
fore be used to check for stability, prior to construction of the Jury table.

Example 12.4.2

Consider the characteristic polynomial aðzÞ ¼ z3
� 1:3z2

� 0:8zþ 1. Investigate the
stability of the system.

Solution

Condition (12.4-10a) is first examined. Here að1Þ ¼ 1 � 1:3 � 0:8 þ 1 ¼ �0:1 and,
since að1Þ < 0, the necessary condition (12.4-10a) is not satisfied. Therefore, one or
more roots of the characteristic polynomial lie outside the unit circle. It is immedi-
ately concluded that the system must be unstable.

Example 12.4.3

Consider the second-order characteristic polynomial aðzÞ ¼ z2
þ a1zþ a2.

Investigate the stability of the system.

Solution

The Jury table is formed as shown in Table 12.4. All the roots of the characteristics
polynomial are inside the unit circle if

1 � a2
2 > 0 and

1 � a2

1 þ a2

� �
ð1 þ a2Þ

2
� a2

1

� �
> 0

which lead to the conditions �1 < a2 < 1, a2 > �1 þ a1, and a2 > �1 � a1. The
stability region of the second-order characteristic polynomial is shown in Figure
12.17.
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Table 12.4 The Jury Table for Example 12.4.3

1 a1 a2

a2 a1 1
�2 ¼ a2

1 � a2
2 a1ð1 � a2Þ

a1ð1 � a2Þ 1 � a2
2

�1 ¼
a1

1 þ a2

1 � a2
2 �

a2
1ð1 � a2Þ

1 þ a2



Example 12.4.4

Consider the characteristic polynomial aðzÞ ¼ z3
þ Kz2

þ 0:5zþ 2. Find the values of
the constant K for which all the roots of the polynomial aðzÞ lie inside the unit circle.

Solution

The Jury table is formed as shown in Table 12.5. According to Theorem 12.4.5, all ak0
elements are positive, except for the last element which may become positive for
certain values or for a range of values of K . This last element in the Jury table may be
written as

1
3 ð1 � KÞ

2
� 1

3 ð2K þ 1Þ2ð1 � KÞ ¼ 1
3 ð1 � KÞ 1 � K � ð2K þ 1Þ2

� �
¼ 1

3 ð1 � KÞð�4K2
� 5KÞ

¼ 1
3 ð1 � KÞð�KÞð4K þ 5Þ

The last product of terms becomes positive if the following inequalities are true: K >
� 5

4 and K < 0. Hence, when � 5
4 < K < 0, the characteristic polynomial has all its

roots inside the unit circle and the system under consideration is stable.

12.5 CONTROLLABILITY AND OBSERVABILITY

12.5.1 Controllability

Simply speaking, controllability is a property of a system which is strongly related to
the ability of the system to go from a given initial state to a desired final state within
a finite time (see Sec. 5.6). Consider the system

xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ; xð0Þ ¼ x0 ð12:5-1aÞ

yðkÞ ¼ CxðkÞ ð12:5-1bÞ

The state xðkÞ at time k is given by Eq. (12.2-16), which can be rewritten as follows:
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Figure 12.17 The stability region for Example 12.4.3.
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Table 12.5 The Jury Table for Example 12.4.4

1 K 0:5 0:5

1 2 K 1
�3 ¼ 0:5

1 � 0:25 K � 1 0:5 � 0:5K
0:5 � 0:5K K � 1 0:75

�2 ¼ 2
3 ð1 � KÞ

1
3 ð1 � KÞ

2 2
3 ð1 � KÞðK � 1Þ � ðK � 1Þ 0

2
3 ð1 � KÞðK � 1Þ � ðK � 1Þ 1

3 ð1 � KÞ
2

�1 ¼ 2K þ 1
1
3 ð1 � KÞ

2
� 1

3 ð2K þ 1Þ2ð1 � KÞ



xðkÞ ¼ Ak
xð0Þ þ ½B ..

.
AB ..

.
� � � ..

.
Ak�1

B�

uðk� 1Þ
uðk� 2Þ

..

.

uð0Þ

2
6664

3
7775 ð12:5-2Þ

Definition 12.5.1

Assume that jAj 6¼ 0. Then system (12.5-1a) is controllable if it is possible to find a
control sequence fuð0Þ; uð1Þ; . . . ; uðq� 1Þg which allows the system to reach an arbi-
trary final state xðqÞ ¼ m 2 R

n, within a finite time, say q, from any initial state xð0Þ.
According to Definition 12.5.1, Eq. (12.5-2) takes on the form

m� Aq
xð0Þ ¼ ½B ..

.
AB ..

.
� � � ..

.
A
q�1
B�

uðq� 1Þ
uðq� 2Þ

..

.

uð0Þ

2
6664

3
7775 ð12:5-3Þ

This relation is an inhomogenous algebraic system of equations, having the control
sequence fuð0Þ; uð1Þ; . . . ; uðq� 1Þg and the parameter q as unknowns. From linear
algebra, it is known that this equation has a solution if and only if

rank½B ..
.
� � � ..

.
A
q�1
B j m� Aq

xð0Þ� ¼ rank½B ..
.
� � � ..

.
A
q�1
B�

This condition, for every arbitrary final state xðqÞ ¼ m, holds true if and only if

rank½B ..
.
AB ..

.
� � � ..

.
A
q�1
B� ¼ n; q 2 N ð12:5-4Þ

Clearly, an increase in time q improves the possibility of satisfying condition (12.5-4).
However, the Cayley–Hamilton theorem (Sec. 2.11) states that the terms A j

B, for
j � n, are linearly dependent on the first n terms (i.e., on the terms
B;AB; . . . ;An�1

BÞ. Thus, condition (12.5-4) holds true if and only if q ¼ n, i.e., if

rank½B ..
.
AB ..

.
� � � ..

.
A
n�1
B� ¼ n ð12:5-5Þ

Therefore, the following theorem has been proved.

Theorem 12.5.1

System (12.5-1a) is controllable if and only if

rankS ¼ n; where S ¼ ½B AB � � � A
n�1
B� ð12:5-6Þ

Here the n� nm matrix S is called the controllability matrix (see also Subsec. 5.6.1).

Remark 12.5.1

For a controllable system of order n, n time units are sufficient for the system to
reach any final state m ¼ xðnÞ.

Example 12.5.1

Consider the system (12.5-1a), where
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A ¼
1 1

�0:25 0

� �
; b ¼

1
�0:5

� �
; and xð0Þ ¼

2
2

� �

Find a control sequence, if it exists, such that x
T
ð2Þ ¼ ½�0:5 1� and

x
T
ð2Þ ¼ ½0:5 1�.

Solution

From Eq. (12.5-2), for k ¼ 2, we have

xð2Þ ¼ A2
xð0Þ þ Abuð0Þ þ buð1Þ

For the first case, where xT ð2Þ ¼ ½�0:5 1�, the above equation yields

�0:5
1

� �
¼

3:5
�1

� �
þ

1
�0:5

� �
½0:5uð0Þ þ uð1Þ�

This equation leads to the scalar equation 0:5uð0Þ þ uð1Þ ¼ �4. A possible control
sequence would be uð0Þ ¼ �2 and uð1Þ ¼ �3.

For the second case, where xT ð2Þ ¼ ½0:5 1�, we have

0:5
1

� �
¼

3:5
�1

� �
þ

1
�0:5

� �
½0:5uð0Þ þ uð1Þ�

This equation does not possess a solution. Of course, this occurs because the system
is uncontrollable, since rank S ¼ 1, where

S ¼ ½b ..
.
Ab� ¼

1 0:5
�0:5 �0:25

� �

Therefore, when the system is uncontrollable, it is not possible for the state vector to
reach any preassigned value.

Example 12.5.2

Consider the system (12.5-1a), where

A ¼
1 1
0 1

� �
; b ¼

0
1

� �
; and xð0Þ ¼

0
0

� �

Find a control sequence, if it exists, that can drive the system to the desired final state
m ¼ ½1 1:2�T .

Solution

The controllability matrix of the system is

S ¼ ½b ..
.
Ab� ¼

0 1
1 1

� �

Here, jSj 6¼ 0. Hence, the system is controllable and therefore there exists a control
sequence that can drive the system to the desired final state m ¼ ½1 1:2�T . The
response of the system at time k ¼ 2 is

xð2Þ ¼ buð1Þ þ Abuð0Þ ¼
0
1

� �
uð1Þ þ

1
1

� �
uð0Þ ¼

uð0Þ
uð1Þ þ uð0Þ

� �
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For m ¼ xð2Þ, we obtain uð0Þ ¼ 1 and uð1Þ ¼ 0:2. Thus, the desired control sequence
is fuð0Þ; uð1Þg ¼ f1; 0:2g.

12.5.2 Observability

Definition 12.5.2

System (12.5-1) is observable if there exists a finite time q such that, on the basis of
the input sequence fuð0Þ; uð1Þ; . . . ; uðq� 1Þg and the output sequence
fyð0Þ; yð1Þ; . . . ; yðq� 1Þg, the initial state xð0Þ of the system may be uniquely deter-
mined.

Consider the system (12.5-1). The influence of the input signal uðkÞ on the
behavior of the system can always be determined. Therefore, without loss of gen-
erality, we can assume that uðkÞ ¼ 0. We also assume that the output sequence
fyð0Þ; yð1Þ; . . . ; yðq� 1Þg is known (for a certain q). This leads to the following system
of equations:

C

CA

..

.

CA
q�1

2
664

3
775xð0Þ ¼

yð0Þ
yð1Þ

..

.

yðq� 1Þ

2
6664

3
7775 ð12:5-7Þ

where use was made of Eq. (12.2-17) with uðkÞ ¼ 0. Equation (12.5-7) is an inhomo-
genous linear algebraic system of equations with xð0Þ unknown. Equation (12.5-7)
has a unique solution for xð0Þ (as is required from Definition 12.5.2) if, and only if,
there exists a finite q such that

rank

C

CA

..

.

CA
q�1

2
664

3
775 ¼ n ð12:5-8Þ

Clearly, an increase in time q improves the possibility of satisfying condition (12.5-8).
However, the Cayley–Hamilton theorem (Sec. 2.11) states that the terms CA j, for
j � n, are linearly dependent on the first n terms (i.e., on the terms
C;CA; . . . ;CAn�1

Þ. Thus, condition (12.5-8) holds true if, and only if, q ¼ n, i.e., if

rank

C

CA

..

.

CA
n�1

2
664

3
775 ¼ n ð12:5-9Þ

Therefore, the following theorem has been proved.

Theorem 12.5.2

System (12.5-1) is observable if, and only if,

rankR ¼ n; where R ¼

C

CA

..

.

CA
n�1

2
664

3
775
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Here the np� n matrix R is called the observability matrix (see also Subsec. 5.6.3).

Remark 12.5.3

In an observable system of order n, the knowledge of the first n output values fyð0Þ;
yð1Þ; . . . ; yðn� 1Þg is sufficient to determine the initial condition xð0Þ of the system
uniquely.

Example 12.5.3

Consider the system (12.5-1), where uðkTÞ ¼ 0; 8k, and

A ¼
1 0
1 1

� �
; c ¼

0
1

� �

The output sequence of the system is fyð0Þ; yð1Þg ¼ f1; 1:2g. Find the initial state xð0Þ
of the system.

Solution

The observability matrix R of the system is

R ¼
c
T

c
T
A

� �
¼

0 1
1 1

� �

which has a nonzero determinant. Hence, the system is observable and the initial
conditions may be determined from Eq. (12.5-7) which, for the present example, is

0 1
1 1

� �
x1ð0Þ
x2ð0Þ

� �
¼

1
1:2

� �

From this equation, we obtain x2ð0Þ ¼ 1 and x1ð0Þ ¼ 0:2.

12.5.3 Loss of Controllability and Observability Due to Sampling

As we already know from Sec. 12.3, when sampling a continuous-time system, the
resulting discrete-time system matrices depend on the sampling period T . How does
this sampling period T affect the controllability and the observability of the discre-
tized system?

For a discretized system to be controllable, it is necessary that the initial con-
tinuous-time system be controllable. This is because the control signals of the
sampled-data system are only a subset of the control signals of the continuous-
time system. However, the controllability may be lost for certain values of the
sampling period. Hence, the initial continuous-time system may be controllable,
but the equivalent discrete-time system may not. Similar problems occur for the
observability of the system.

Example 12.5.4

The state equations of the harmonic oscillator with HðsÞ ¼ !2=ðs2
þ !2

Þ are

�xðtÞ ¼ 0 !
�! 0

� �
xðtÞ þ

0
!

� �
uðtÞ

yðtÞ ¼ ½1 0�xðtÞ

Digital Control 551



Investigate the controllability and the observability of the sampled-data (discrete-
time) system whose states are sampled with a sampling period T .

Solution

The discrete-time model of the harmonic oscillator is (see Example 12.3.5)

xðkT þ TÞ ¼
cos!T sin!T

� sin!T cos!T

� �
xðkTÞ þ

1 � cos!T

sin!T

� �
uðkTÞ

yðkTÞ ¼ ½1 0�xðkTÞ

One can easily calculate the determinants of the controllability and observability
matrices to yield jSj ¼ � sin!Tð1 � cos!TÞ and jRj ¼ sin!T , respectively. We
observe that the controllability and observability of the discrete-time system is lost
when !T ¼ q�, where q is an integer, although the respective continuous-time sys-
tem is both controllable and observable.

12.6 CLASSICAL AND DISCRETE-TIME CONTROLLER DESIGN

The classical discrete-time controller design methods are categorized as indirect and
direct techniques.

1 Indirect Techniques

Using these techniques, a discrete-time controller GcðzÞ is determined indirectly as
follows. Initially, the continuous-time controller GcðsÞ is designed in the s-domain,
using well-known classical techniques (e.g., root locus, Bode, Nyquist, etc.). Then,
based on the continuous-time controller GcðsÞ, the discrete-time controller GcðzÞ may
be calculated using one of the discretization techniques presented in Subsec. 12.3.3.
The indirect techniques are presented in Sec. 12.7 that follows.

2 Direct Techniques

These techniques start by deriving a discrete-time mathematical model of the con-
tinuous-time system under control. Subsequently, the design is carried out in the z-
domain, wherein the discrete-time controller GcðzÞ is directly determined. The design
in the z-domain may be done either using the root locus (Sec. 12.8) or the Bode and
Nyquist diagrams (Sec. 12.9).

Special attention is given to the PID discrete-time controller design (Sec.
12.10). In Sec. 12.11, a brief description of the steady errors appearing in discrete-
time systems is presented.

12.7 DISCRETE-TIME CONTROLLERS DERIVED FROM
CONTINUOUS-TIME CONTROLLERS

12.7.1 Discrete-Time Controller Design Using Indirect Techniques

The practicing control engineer has often greater knowledge and experience in
designing continuous-time rather than discrete-time controllers. Moreover, many
practical systems already incorporate a continuous-time controller which we desire
to replace by a discrete-time controller.
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The remarks above are the basic motives for the implementation of indirect
design techniques for discrete-time controllers mentioned in Sec. 12.6. Indirect tech-
niques take advantage of the knowledge and the experience one has for continuous-
time systems. Furthermore, in cases where a continuous-time controller is already
incorporated in the system under control, it facilitates the design of a discrete-time
controller.

Consider the continuous-time closed-loop control system shown in Figure
12.18 and the discrete-time closed-loop control system shown in Figure 12.19. The
indirect design technique for the design of a discrete-time controller may be stated as
follows. Let the specifications of the closed-loop systems shown in Figures 12.18 and
12.19 be the same. Assume that a continuous-time controller GcðsÞ, satisfying the
specifications of the closed-loop system shown in Figure 12.18, has already been
determined. Then, the discrete-time controller GcðzÞ shown in Figure 12.19 may be
calculated from the continuous-time controller GcðsÞ of Figure 12.18, using the dis-
cretization techniques presented in Subsec. 12.3.3.

12.7.2 Specifications of the Time Response of Continuous-Time
Systems

In this section, a brief review of the specifications of the time response of the con-
tinuous-time systems is given. These specifications are useful for the material that
follows and, as it is usually done, refer to the step response of a second-order system
(see also Sec. 4.3).

1 Overshoot

One of the basic characteristics of the transient response of a system is the overshoot
v, which depends mainly on the damping factor �. In the case of a second-order
system, without zeros, i.e., for a system with a transfer function of the form

HðsÞ ¼
!n

s2 þ 2�!nsþ !2
n

ð12:7-1Þ

it is approximately true [see also Eq. (4.3-12)] that

Overshoot percentage ¼ %v ¼ 100 exp
���ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � �2

p
" #

ffi 100 1 �
�

0:6

� �
ð12:7-2Þ

where !n is the natural frequency of the system. Therefore, for a desired overshoot
percentage, the damping ratio would be
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Figure 12.18 Continuous-time closed-loop control system.



� � ð0:6Þ 1 �
%v

100

� �
ð12:7-3Þ

2 Rise Time

Another property which is of interest is the rise time Tr, which is defined as the time
required for the response of the system to rise from 0.1 to 0.9 of its final value. For
all values of � around 0.5, the rise time is approximately given by

Tr ffi 1:8=!n ð12:7-4Þ

Hence, satisfying the above relation for the rise time, the natural frequency !n

should satisfy the condition

!n � 1:8=Tr ð12:7-5Þ

3 Settling Time

Finally, another significant characteristic of the response in the time domain is the
settling time Ts, which is defined as the time required for the response to remain close
(i.e., within a small error) to the final value. The settling time Ts is given by the
relation

Ts ¼ �=�!n ð12:7-6Þ

where � is a constant. It is mentioned that in the case of an error tolerance of about
1%, the constant � takes on the value 4.6, whereas in the case of an error tolerance of
about 2%, the constant � takes on the value 4. Hence, if we desire that the settling
time be smaller than a specified value and for an error tolerance of about 1%, then

�!n � 4:6=Ts ð12:7-7Þ

Remark 12.7.1

Theorem B.3.1 of Appendix B requires that the sampling frequency f be at least
twice the highest frequency of the frequency spectrum of the continuous-time input
signal. In practice, for a wide class of systems, the selection of the sampling period
T ¼ 1=f is made using the following approximate method: let q be the smallest time
constant of the system; then, T is chosen such that T 2 ½0:1q; 0:5q�.
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Example 12.7.1

Consider the position control servomechanism described in Subsec. 3.13.2. For sim-
plicity, let La ’ 0, Kp ¼ 1, and K ¼ A ¼ 1 and B ¼ 2. Then, the transfer function of
the motor–gear–load system becomes GpðsÞ ¼ 1=sðsþ 2Þ. To this servomechanism, a
continuous-time controller GcðsÞ is introduced, as shown in Figure 12.20, which
satisfies certain design requirements. Of course, if a discrete-time controller GcðzÞ
is introduced instead of the continuous-time controller GcðsÞ, then the closed-loop
system would be as shown in Figure 12.21.

Let the continuous-time controller GcðsÞ satisfying the design requirements
have the following form:

GcðsÞ ¼ Ks

sþ a

sþ b

� �
¼ 101

sþ 2

sþ 6:7

� �
ð12:7-8Þ

Then the problem at hand is to determine GcðzÞ of the closed-loop system shown in
Figure 12.21 satisfying the same design requirements, where the sampling time
T ¼ 0:2 sec.

Solution

The transfer function HðsÞ of the closed-loop system of Figure 12.20 is

HðsÞ ¼
�yðsÞ

�rðsÞ
¼

GcðsÞGpðsÞ

1 þ GcðsÞGpðsÞ
¼

101ðsþ 2Þ

sðsþ 2Þðsþ 6:7Þ þ 101ðsþ 2Þ

¼
101sþ 202

s3 þ 8:7s2 þ 114:4sþ 202
ð12:7-9Þ

To find GcðzÞ of the closed-loop system of Figure 12.21, it is sufficient to
discretize GcðsÞ given in Eq. (12.7-8). To this end, we will use the method of pole-
zero matching presented in Subsec. 12.3.3 [relations (12.3-20)–(12.3-23)]. According
to this method, GcðzÞ has the form

GcðzÞ ¼ Kz

zþ z1

zþ p1

� �
ð12:7-10Þ

where the pole s ¼ �6:7 of GcðsÞ is mapped into the pole z ¼ �p1 of GcðzÞ and the
zero s ¼ �2 of GcðsÞ is mapped into the zero z ¼ �z1 of GcðzÞ. That is, we have that
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Figure 12.20 Continuous-time closed-loop control system of the position control servo-

mechanism.



p1 ¼ �e�bT ¼ �e�6:7ð0:2Þ
¼ �e�1:34

¼ �0:264

z1 ¼ �e�aT ¼ �e�2ð0:2Þ
¼ �e�0:4

¼ �0:67

The constant Kz of Eq. (12.7-10) is calculated so that the zero frequency amplifica-
tion constants of GcðzÞ and GcðsÞGhðsÞ are the same, i.e., so that the following holds
(see relation (12.3-23)):

Gcðz ¼ 1Þ ¼ Kz

1 � 0:67

1 � 0:264

� �
¼ Gcðs ¼ 0ÞGhðs ¼ 0Þ ¼ 101

0 þ 2

0 þ 6:7

� �
2

0 þ 10

� �

Thus Kz ¼ 13:6. It is noted that in the relation above the value of GhðsÞ for s ¼ 0 was
taken into consideration to obtain the total zero frequency amplification for the
continuous-time controller. Hence

GcðzÞ ¼ 13:6
z� 0:67

z� 0:264

� �
ð12:7-11Þ

In what follows, the responses of the closed-loop systems of Figures 12.20 and
12.21 are compared. To this end, the discrete-time transfer function of ĜGðsÞ ¼ GhðsÞ
GpðsÞ is determined for T ¼ 0:2. We have

ĜGðzÞ ¼ ZfGhðsÞGpðsÞg ¼ Z
1 � e�0:2s

s

" #
1

sðsþ 2Þ

� �( )

¼
�
1 � z�1

�
Z

1

s2ðsþ 2Þ

� �
¼
�
1 � z�1

�
Z

0:5

s2
�

0:25

s
þ

0:25

sþ 2

� �

¼
z� 1

z

0:1

ðz� 1Þ2
�

0:25z

z� 1
þ

0:25z

z� e�0:4

� �

¼
0:0176ðzþ 0:876Þ

ðz� 1Þðz� 0:67Þ
ð12:7-12Þ

The transfer function of the closed-loop system of Figure 12.21 would be

HðzÞ ¼
GcðzÞĜGðzÞ

1 þ GcðzÞĜGðzÞ
¼

0:239z�1
ð1 þ 0:876z�1

Þ�
1 � 0:264z�1

��
1 � z�1

�
þ 0:239z�1

�
1 þ 0:876z�1

�
¼

0:239z�1
þ 0:209z�2

1 � 1:025z�1 þ 0:473z�2
ð12:7-13Þ
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Figure 12.21 Discrete-time closed-loop control system of the position control servo-
mechanism.



Figures 12.22 and 12.23 show the response of the closed-loop systems of
Figures 12.20 and 12.21, respectively, where it can be seen that the two step
responses are almost the same.

12.8 CONTROLLER DESIGN VIA THE ROOT LOCUS METHOD

The root locus method is a direct method for determining GcðzÞ and is applied as
follows. Consider the closed-loop system shown in Figure 12.24. The transfer func-
tion HðzÞ of the closed-loop system is

HðzÞ ¼
GðzÞ

1 þ GðzÞFðzÞ
ð12:8-1Þ

The characteristic equation of the closed-loop system is

1 þ GðzÞFðzÞ ¼ 0 ð12:8-2Þ

For linear time-invariant systems, the open-loop transfer function GðzÞFðzÞ has the
form

Digital Control 557

Figure 12.22 Step response of the continuous-time closed-loop system of Figure 12.20.

Figure 12.23 Step response of the discrete-time closed-loop system of Figure 12.21.



GðzÞFðzÞ ¼ K

Ym
i¼1

ðzþ ziÞ

Yn
i¼1

ðzþ piÞ

ð12:8-3Þ

Substituting Eq. (12.8-3) in Eq. (12.8-2) yields the algebraic equation

Yn
i¼1

ðzþ piÞ þ K
Ym
i¼1

ðzþ ziÞ ¼ 0 ð12:8-4Þ

Definition 12.8.1

The root locus of the closed-loop system of Figure 12.24 are the loci of (12.8-4) in the
z-domain as the parameter K varies from �1 to þ1. Since the poles �pi and the
zeros �zi are, in general, functions of the sampling time T , it follows that for each T
there corresponds a root locus of Eq. (12.8-4), thus yielding a family of root loci for
various values of T .

The construction of the root locus of Eq. (12.8-4) is carried out using the
material of Chap. 7.

The following example illustrates the construction of the root locus as the
parameter K varies from 0 to þ1. It also illustrates the influence on the root
locus of the parameter T . Clearly, the influence of the sampling time T on the
root locus is a feature which appears in the case of discrete-time systems, but not
in the continuous-time systems.

Example 12.8.1

Consider the closed-loop system shown in Figure 12.25. Construct the root locus of
the system for K > 0 and for several values of the sampling time T . Note that for
a ¼ 2, the system under control is the position control system presented in Example
12.7.1.

Solution

Let ĜGðsÞ ¼ GhðsÞGpðsÞ. Then

ĜGðsÞ ¼
1 � e�sT

s

� �
1

sðsþ aÞ

� �
¼

1

s2ðsþ aÞ

�
1 � e�sT

�
¼

1

a2

a

s2
�

1

s
þ

1

sþ a

� ��
1 � e�sT

�
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Figure 12.24 Discrete-time closed-loop system.



Hence

ĝgðtÞ ¼ L�1
fĜGðsÞg ¼ pðtÞ � pðt� TÞ�ðt� TÞ

where

pðtÞ ¼ L�1 1

a2

a

s2
�

1

s
�

1

sþ a

� �� �
¼

1

a2

�
at� 1 þ e�at

�
Therefore

ĝgðkTÞ ¼ pðkTÞ � pðkT � TÞ�ðkT � TÞ

Applying relation (B.3-12b) of Appendix B, we have

ĜGðzÞ ¼ ZfĝgðkTÞg ¼ PðzÞ � z�1PðzÞ ¼
�
1 � z�1

�
PðzÞ

where

PðzÞ ¼ ZfpðkTÞg ¼
1

a2
Z
�
akT � �ðkTÞ þ e�akT

�
¼

1

a2

aTz

ðz� 1Þ2
�

z

z� 1
þ

z

z� e�aT

� �

Therefore

ĜGðzÞ ¼ ZfĜGðsÞg ¼ ZfGhðsÞGpðsÞg ¼ ZfĝgðkTÞg ¼
�
1 � z�1

�
PðzÞ

¼
1

a2

�
1 � z�1

� aTz

ðz� 1Þ2
�

z

z� 1
þ

z

z� e�aT

� �

¼

�
aT þ e�aT � 1

�
a2

zþ

�
1 � aTe�aT � e�aT

��
� 1 þ aT þ e�aT

��
z� 1Þðz� e�aT

�
2
6664

3
7775

or

ĜGðzÞ ¼ K0

zþ z1Þ

ðz� 1Þðz� p1Þ

� �

where
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Figure 12.25 Discrete-time closed-loop control system of Example 12.8.1.



K0 ¼
1

a2

�
aT þ e�aT � 1

�
; p1 ¼ e�aT ; and z1 ¼

1 � Tae�aT � e�aT

�1 þ aT þ e�aT

Hence, the open-loop transfer function GðzÞFðzÞ for the present example is

GðzÞFðzÞ ¼ KĜGðzÞ ¼ K
K0ðzþ z1Þ

ðz� 1Þðz� p1Þ

� �

Clearly, the constant K0, the pole p1, and the root �z1 are changing with the sam-
pling period T . For this reason, as T changes, so will the root locus of GðzÞFðzÞ.
Figure 12.26 presents the root loci for three different values T1, T2, and T3 of T ,
where T1 < T2 < T3.
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Figure 12.26 Root loci diagrams of the closed-loop system of Figure 12.25 where
T1 < T2 < T3.



Next, the special case where a ¼ 1 and T ¼ 1; 2, and 4 sec will be studied. For
a ¼ 1 and T ¼ 1, the open-loop transfer function GðzÞFÞzÞ becomes

GðzÞFðzÞ ¼ K
0:368ðzþ 0:718Þ

ðz� 1Þðz� 0:368Þ

� �

For a ¼ 1 and T þ 2, the open-loop transfer function GðzÞFðzÞ becomes

GðzÞFðzÞ ¼ K
1:135ðzþ 0:523Þ

ðz� 1Þðz� 0:135Þ

� �

Finally, for a ¼ 1 and T ¼ 4, the open-loop transfer function GðzÞFðzÞ becomes

GðzÞFðzÞ ¼ K
3:018ðzþ 0:3Þ

ðz� 1Þðz� 0:018Þ

� �

Figure 12.27 presents the root loci for a ¼ 1 and for the three cases of T ¼ 1, 2,
and 4 sec. The influence of the parameter T can be observed here in greater detail
than in Figure 12.26. Figure 12.27 shows that, for a fixed value of K, an increase in
the sampling time T would result in a less stable closed-loop system. On the con-
trary, a decrease in T results in a more stable system. As a matter of fact, the more
the sampling period T goes to zero ðT ! 0Þ, the more the behavior of the closed-
loop system approaches that of the continuous-time system (here, the continuous-
time closed-loop system is stable for all positive values of K). It is also noted that as
the value of T increases, the critical value of Kc decreases and vice versa, where by
critical value of K we mean that particular value of K where the system becomes
unstable.

12.9 CONTROLLER DESIGN BASED ON THE FREQUENCY
RESPONSE

12.9.1 Introduction

The well-established frequency domain design controller techniques for continuous-
time systems (see Chap. 9), can be extended to cover the case of the discrete-time
systems. At first, one might think of carrying out this extension by using the relation
z ¼ esT . Making use of this relation, the simple and easy-to-use logarithmic curves of
the Bode diagrams for the continuous-time case cease to hold for the discrete-time
systems (that is why the extension via the relation z ¼ esT is not recommended). To
maintain the simplicity of the logarithmic curves for the discrete-time systems, we
make use of the following bilinear transformation:

z ¼
1 þ Tw=2

1 � Tw=2
or w ¼

2

T

z� 1

zþ 1

� �
ð12:9-1Þ

The transformation of a function of s to a function of z based on the relation z ¼ esT

and, subsequently, the transformation of the resulting function of z to a function of
w based on the relation (12.9-1), are presented in Figure 12.28. The figure shows that
the transformation of the left-half complex plane on the s-plane transforms into the
unit circle in the z-plane via the relation z ¼ esT , whereas the unit circle on the z-
plane transforms into the left-half complex plane in the w-plane, via the bilinear
transformation (12.9-1).
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At first sight, it seems that the frequency responses would be the same in both
the s- and the w-domain. This is actually true, with the only difference that the scales
of the frequencies w and v are distorted, where v is the (hypothetical or abstract)
frequency in the w-domain. This frequency ‘‘distortion’’ may be observed if in Eq.
(12.9-1) we set w ¼ jv and z ¼ e j!T , yielding

w

����
w¼jv

¼ jv ¼
2

T

z� 1

zþ 1

� �����
z¼e j!T

¼
2

T

e j!t
� 1

e j!T þ 1

� �
¼ j

2

T
tan

!T

2

�  
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Figure 12.27 Root loci diagrams for the closed-loop system 12.25 for a ¼ 1 and T ¼ 1, 2,
and 4 sec.



Therefore

v ¼
2

T
tan

!T

2

�  
ð12:9-2Þ

Since

tan
!T

2

�  
¼

!T

2
�
ð!TÞ3

8
þ � � � ð12:9-3Þ

it follows that for small values of !T we have that tanð!T=2Þ ’ !T=2. Substituting
this result in Eq. (12.9-2), we have

v ’ !; for small !T ð12:9-4Þ

Therefore, the frequencies ! and v are linearly related if the product !T is small. For
greater !T , Eq. (12.9-4) does not hold true. Figure 12.29 shows the graphical repre-
sentation of Eq. (12.9-2). It is noted that the frequency range �!s=2 � ! � !s=2 in
the s-domain corresponds to the frequency range �1 � v � 1 in the w-domain,
where !s is defined by the relation ð!s=2ÞðT=2Þ ¼ �=2.

12.9.2 Bode Diagrams

Using the above results, one may readily design discrete-time controllers using Bode
diagrams. To this end, consider the closed-loop system shown in Figure 12.30. Then,
the five basic steps for the design of GcðzÞ are the following:

1. Determine ĜGðzÞ from the relation ĜGðzÞ ¼ ZfĜGðsÞg ¼ ZfGhðsÞGpðsÞg
2. Determine ĜGðwÞ using the bilinear transformation (12.9-1), yielding

ĜGðwÞ ¼ ĜGðzÞjz¼ð1þTw=2Þ=ð1�Tw=2Þ ð12:9-5Þ

3. Set w ¼ jv in ĜGðwÞ and draw the Bode diagrams of ĜGð jvÞ
4. Determine the controller GcðwÞ using similar techniques to those applied

for continuous-time systems (see Chap. 9)
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Figure 12.28 Mappings from the s-plane to the z-plane and from the z-plane to the w-plane.



5. Determine GcðzÞ from GcðwÞ using the bilinear transformation (12.9-1),
yielding

GcðzÞ ¼ GcðwÞjw¼ð2=TÞ½ðz�1Þ=ðzþ1Þ� ð12:9-6Þ

Note that the specifications for the bandwidth are transformed from the s-
domain to the w-domain using relation (12.9-2). Thus, if for example !b is the
desired frequency bandwidth, then the design in the w-domain must be carried out
for a frequency bandwidth vb, where

vb ¼
2

T
tan

!bT

2

�  
ð12:9-7Þ

Example 12.9.1

Consider the position servomechanism shown in Figure 12.21 of Example 12.7.1.
Find a controller GcðzÞ such that the closed-loop system satisfies the following
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Figure 12.29 Graphical representation of relation (12.9-2).

Figure 12.30 Discrete-time closed-loop system.



specifications: gain margin Kg � 25 dB, phase margin ’p � 708, and velocity error
constant Kv ¼ 1 sec�1. The sampling period T is chosen to be 0.1 sec.

Solution

Let ĜGðsÞ ¼ GhðsÞGpðsÞ. Then

ĜGðzÞ ¼ Z
�
ĜGðsÞ

�
¼ Z

1 � e�Ts

s

1

sðsþ 2Þ

� �
¼
�
1 � z�1

�
Z

1

s2ðsþ 2Þ

� �

¼ 0:0047z�1 1 þ 0:935z�1�
1 � z�1

��
1 � 0:819z�1

�
" #

¼ ð0:0047Þ
zþ 0:935

ðz� 1Þðz� 0:819Þ

For T ¼ 0:1 sec, the bilinear transformation (12.9-1) becomes

z ¼
1 þ ðTw=2Þ

1 � ðTw=2Þ
¼

1 þ 0:05w

1 � 0:05w

Substituting the above transformation in ĜGðzÞ we have

ĜGðwÞ ¼

0:0047
1 þ 0:05w

1 � 0:05w
þ 0:935

�  
1 þ 0:05w

1 � 0:05w
� 1

�  
1 þ 0:05w

1 � 0:05w
� 0:8187

�  

¼
0:5ð1 þ 0:00167wÞð1 � 0:05wÞ

wð1 þ 0:5wÞ

The gain and phase Bode diagrams of ĜGð jvÞ ¼ ĜGðw ¼ jvÞ are given in Figure
12.31.

We choose the following form for the controller GcðwÞ:

GcðwÞ ¼ K
1 þ aw

1 þ bw

� �

where a and b are constants. The open-loop transfer function is

GcðwÞĜGðwÞ ¼ K
1 þ aw

1 þ bw

� �
0:5ð1 þ 0:00167wÞð1 � 0:05wÞ

wð1 þ 0:5wÞ

� �

From the definition of the velocity error constant Kv, we have

Kv ¼ lim
w!0

�
wGcðwÞĜGðwÞ

�
¼ 0:5K ¼ 1

and therefore K ¼ 2. The parameters a and b can be determined by applying the
respective techniques of continuous-time systems (Chap. 9), which yield a ¼ 0:8 and
b ¼ 0:5. Hence

GcðwÞ ¼ 2
1 þ 0:8w

1 þ 0:5w

�  

The open-loop transfer function is

GcðwÞĜGðwÞ ¼ 2
1 þ 0:8w

1 þ 0:5w

� �
0:5ð1 þ 0:00167wÞð1 � 0:05wÞ

wð1 þ 0:5wÞ

� �
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Checking the above results, we find that Kg ’ 25:05 dB, ’p ’ 728, and
Kv ¼ 1 sec�1. Therefore, the closed-loop design requirements are satisfied. It remains
to determine GcðzÞ from GcðwÞ. To this end, we use the bilinear transformation Eq.
(12.9-1) which, for T ¼ 0:1 sec, becomes

w ¼
2

T

z� 1

zþ 1

� �
¼

2

0:1

z� 1

zþ 1

� �
¼ 20

z� 1

zþ 1

� �

Thus, GcðzÞ has the form

GcðzÞ ¼ 2

1 þ ð0:8Þð20Þ
z� 1

zþ 1

� �

1 þ ð0:5Þð20Þ
z� 1

zþ 1

� �
2
664

3
775 ¼ 3:09

z� 0:882

z� 0:818

�  
¼ 3:09

1 � 0:882z�1

1 � 0:818z�1

 !

12.9.3 Nyquist Diagrams

Consider a closed-loop system with an open-loop transfer function ~GGðzÞ ¼
ZfGðsÞFðsÞg. Since the z- and s-domains are related via the relation z ¼ esT , it follows
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Figure 12.31 The gain and phase Bode diagrams of ĜGð jvÞ of Example 12.9.1.



that the Nyquist diagram of ~GGðzÞ would be the diagram of ~GGðesT Þ, as s traces the
Nyquist path. In the z-domain, the Nyquist path is given by the relation

z ¼ esT js¼j! ¼ e j!T
ð12:9-8Þ

and, therefore, the Nyquist path in the z-domain is the unit circle. Hence, to apply
the Nyquist stability criterion for discrete-time systems, we draw the diagram of
~GGðe j!T

Þ having the cyclic frequency ! as a parameter.
The following theorem holds.

Theorem 12.9.1

Assume that the transfer function ZfGðsÞFðsÞg does not have any poles outside the
unit circle. Then, the closed-loop system is stable if the Nyquist diagram of
ZfGðsÞFðsÞg, for z ¼ e j!T , does not encircle the critical point ð�1; j0Þ.

Theorem 12.9.1 is the respective (or equivalent) of the Nyquist theorem for
continuous-time systems (Subsec. 8.4.3).

Clearly, the study of the stability of discrete-time closed-loop systems, as well
as the design of discrete-time controllers, can be accomplished on the basis of the
Nyquist diagrams, by extending the known techniques of continuous-time systems as
was done in the case of the Bode diagrams in the previous subsection. This extension
is straightforward and is not presented here (see for example [6]).

12.10 THE PID CONTROLLER

In discrete-time systems, as in the case of continuous-time systems (see Sec. 9.6), the
PID controller is widely used in practice. This section is devoted to the study of
discrete-time PID controllers. We will first study separately the proportional (P), the
integral (I), and the derivative (D) controller and, subsequently, the composite PID
controller.

12.10.1 The Proportional Controller

For the continuous-time systems, the proportional controller is described by the
relation

uðtÞ ¼ KpeðtÞ ð12:10-1aÞ

and therefore

GcðsÞ ¼ Kp ð12:10-1bÞ

For the discrete-time systems, the proportional controller is described by the relation

uðkÞ ¼ KpeðkÞ ð12:10-2aÞ

and therefore

GcðzÞ ¼ Kp ð12:10-2bÞ

12.10.2 The Integral Controller

For the continuous-time systems, the integral controller is described by the integral
equation
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uðtÞ ¼
Kp

Ti

ðt
t0

eðtÞ dt ð12:10-3aÞ

and therefore

GcðsÞ ¼
Kp

Tis
ð12:10-3bÞ

where the constant Ti is called the integration time constant or reset. In the case of
discrete-time systems, the integral equation (12.10-3a) is approximated by the dif-
ference equation

uðkÞ � uðk� 1Þ

T
¼
Kp

Ti

eðkÞ

or

uðkÞ ¼ uðk� 1Þ þ
KpT

Ti

eðkÞ ð12:10-4aÞ

and therefore

GcðzÞ ¼
KpT

Tið1 � zÞ�1
¼

KpTz

Tiðz� 1Þ
ð12:10-4bÞ

12.10.3 The Derivative Controller

For the continuous-time systems, the derivative controller is described by the differ-
ential equation

uðtÞ ¼ KpTd _eeðtÞ ð12:10-5aÞ

and therefore

GcðzÞ ¼ KpTds ð12:10-5bÞ

where the constant Td is called the derivative or rate time constant. In the case of
discrete-time systems, the differential equation (12.10-5a) is approximated by the
difference equation

uðkÞ ¼ KpTd

eðkÞ � eðk� 1Þ

T

� �
ð12:10-6aÞ

and therefore

GcðzÞ ¼ KpTd

1 � z�1

T

" #
¼
KpTd

T

z� 1

z

� �
ð12:10-6bÞ

12.10.4 The Three-Term PID Controller

Combining all the above, we have that the PID controller, for continuous-time
systems, is described by the integrodifferential equation

uðtÞ ¼ Kp eðtÞ þ
1

Ti

ðt
t0

eðtÞ dtþ Td _eeðtÞ

� �
ð12:10-7aÞ

568 Chapter 12



and therefore

GcðsÞ ¼ Kp 1 þ
1

Tis
þ Tds

� �
ð12:10-7bÞ

Figure 9.21 presents the block diagram of the GcðsÞ for the continuous-time PID
controller.

In the case of discrete-time systems, the PID controller is described by the
difference equation

uðkÞ ¼ Kp eðkÞ þ
T

Ti

Xk�1

i¼0

eðiÞ þ
Td

T
½eðkÞ � eðk� 1Þ�

" #
ð12:10-8aÞ

where the middle term in Eq. (12.10-8a) is the solution of Eq. (12.10-4a). Hence

GcðzÞ ¼ Kp 1 þ
T

Ti

z

z� 1

h i
þ
Td

T

z� 1

z

� �� �
ð12:10-8bÞ

After some algebraic manipulations, GcðzÞ may be written as

GcðzÞ ¼ K
z2

� azþ b

zðz� 1Þ

" #
ð12:10-9Þ

where

K ¼ Kp

TTi þ TdTi þ T2

TiT

" #

a ¼
TiT � TdTi

TTi þ TdTi þ T2

b ¼
TdTi

TTi þ TdTi þ T2

Figure 12.32 presents the block diagram of the discrete-time PID controller GcðzÞ.
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Figure 12.32 The block diagram of the discrete-time PID controller.



12.10.5 Design of PID Controllers Using the Ziegler–Nichols
Methods

The Ziegler–Nichols methods for continuous-time systems have been presented in
Subsec. 9.6.5. These methods can be extended directly to the case of discrete-time
systems, provided that the sampling is sufficiently fast, i.e., 20 times the highest
bandwidth frequency, as is normally the case in practice. If the sampling is not
that fast, then the discrete-time PID controller may not produce satisfactory accu-
rate results.

12.11 STEADY-STATE ERRORS

The subject of steady-state errors for the case of continuous-time systems was pre-
sented in Sec. 4.7. These results can readily be extended to cover the discrete-time
systems case. In the sequel, we briefly cover the subject.

Consider the unity feedback discrete-time closed-loop system shown in Figure
12.33. Assume that the system under control is stable (a fact which will allow us to
apply the final value theorem given by Eq. (B.3-20) of Appendix B). Define

ĜGðzÞ ¼ Z
�
GhðsÞGðsÞ

�
¼ Z

1 � e�Ts

s

� �
GðsÞ

� �
¼
�
1 � z�1

�
Z

GðsÞ

s

� �

Then, the closed-loop transfer function HðzÞ will be

HðzÞ ¼
YðzÞ

RðzÞ
¼

ĜGðzÞ

1 þ ĜGðzÞ
ð12:11-1Þ

The error EðzÞ is given by

EðzÞ ¼ RðzÞ � BðzÞ ¼ RðzÞ � ĜGðzÞEðzÞ

and hence

EðzÞ ¼
1

1 þ ĜGðzÞ

" #
RðzÞ ð12:11-2Þ

The steady-state error of eðkTÞ, denoted as ess, is defined as

ess ¼ lim
k!1

eðkTÞ ¼ lim
z!1

ð1 � z�1
ÞEðzÞ ð12:11-3Þ

Relation (12.11-3) is known as the final value theorem, which is defined by the
relation (B.3-20) of Appendix B. If Eq. (12.11-2) is substituted in Eq. (12.11-3) then
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ess ¼ lim
z!1

ð1 � z�1
Þ

1

1 þ ĜGðzÞ

" #
RðzÞ

" #
ð12:11-4Þ

Next, we will consider three particular excitations rðtÞ: namely, the step func-
tion, the ramp function, and the acceleration function.

1 Step Function

In this case, rðtÞ ¼ 1 or rðkTÞ ¼ 1 and

RðzÞ ¼ ZfrðkTÞg ¼ Zf1g ¼
1

1 � z�1

Substituting the above value of RðzÞ in Eq. (12.11-4) yields

ess ¼ lim
z!1

ð1 � z�1
Þ

1

1 þ ĜGðzÞ

" #
1

1 � z�1

� �" #
¼ lim

z!1

1

1 þ ĜGðzÞ

" #
¼

1

1 þ Kp

;

Kp ¼ lim
z!1

ĜGðzÞ ð12:11-5Þ

where Kp is called the position error constant.

2 Ramp Function

In this case rðtÞ ¼ t or rðkTÞ ¼ kT , which is defined by Eq. (B.2-4) of Appendix B.
Hence

RðzÞ ¼ ZfrðkTÞg ¼ ZfkTg ¼
Tz�1�

1 � z�1
�2

Substituting the value of RðzÞ in Eq. (12.11-4) yields

ess ¼ lim
z!1

�
1 � z�1

� 1

1 þ ĜGðzÞ

" #
Tz�1�

1 � z�1
�2

" #" #
¼ lim

z!1

T�
1 � z�1

�
ĜGðzÞ

" #
¼

1

Kv

;

Kv ¼ lim
z!1

�
1 � z�1

�
ĜGðzÞ

T

" #
ð12:11-6Þ

where Kv is called the velocity error constant.

3 Acceleration Function

In this case rðtÞ ¼ 1
2 t

2 or rðkTÞ ¼ 1
2 ðkTÞ

2 and

RðzÞ ¼ ZfrðkTÞg ¼ Z
1

2
ðkTÞ2

� �
¼
T2
�
1 þ z�1

�
z�1

2
�
1 � z�1

�3
Substituting the value of RðzÞ in Eq. (12.11-4) yields
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ess ¼ lim
z!1

�
1 � z�1

� 1

1 þ ĜGðzÞ

" #
T2
�
1 þ z�1

�
z�1

2
�
1 � z�1

�3
" #" #

¼ lim
z!1

T2

1 � z�1
�2
ĜGðzÞ

" #

¼
1

Ka

; Ka ¼ lim
z!1

�
1 � z�1

�2
ĜGðzÞ

T2

" #
ð12:11-7Þ

where Ka is called the acceleration error constant.
It is remarked that, as in the case of continuous-time systems (see Sec. 4.7), a

discrete-time system is called a type j system when its open-loop transfer function
ĜGðzÞ has the form

ĜGðzÞ ¼
1

ðz� 1Þ j
aðzÞ

bðzÞ

� �
ð12:11-8Þ

where aðzÞ and bðzÞ are polynomials in z which do not involve the term ðz� 1Þ.

12.12 STATE-SPACE DESIGN METHODS

The results of Chap. 10 on state-space design methods for continuous-time systems
may readily be extended to the case of discrete-time systems. Indeed, the problems
of pole assignment, input–output decoupling, exact model matching, and state
observers may be solved in a similar way for discrete-time systems (see for example
[13]).

12.13 OPTIMAL CONTROL

The results of Chap. 11 on optimal control for continuous-time systems may be
extended to cover the case of discrete-time systems. However, this extension is not
as easy as for the case of the results of Chap. 10. Here, one first has to present the
appropriate mathematical background for the study of optimal control problems of
discrete-time systems and, subsequently, use this mathematical background to solve
the linear regulator and servomechanism problems.

Going from continuous-time systems, which are described by differential equa-
tions, to discrete-time systems, which are described by difference equations, a basic
difference appears in the form of the cost function: the cost function for continuous-
time systems is an integral expression, whereas for discrete-time systems it is a
summation expression. Applying the principles of calculus of variations, one arrives
at the discrete-time Euler–Lagrange equation. With regard to the maximum princi-
ple, an analogous treatment leads to the discrete-time Hamiltonian function, and
from there to the discrete-time canonical Hamiltonian equations. Using this discrete-
time mathematical background, one may then solve the discrete-time regulator and
servomechanism problems along the same lines as those used for the case of con-
tinuous-time systems. For more details see [13].
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12.14 PROBLEMS

1. A discrete-time system is described by the state-space equations (12.2-8), where

A ¼
0 1

�6 �5

� �
; b ¼

0
1

� �
; c ¼

1
1

� �
; D ¼ 0

Find the transition matrix, the transfer function, and the response of the system
when the input is the unit step sequence.

2. Find the transfer functions of the systems described by the difference equations

(a) yðkþ 2Þ þ 5yðkþ 1Þ þ 6yðkÞ ¼ uðkþ 1Þ
(b) yðkþ 2Þ � yðkÞ ¼ uðkÞ

3. Find the values of the responses yð0Þ, yð1Þ, yð2Þ, and yð3Þ using the convolution
method when

(a) hðkÞ ¼ 1 � e�k and uðkÞ ¼ �ðkÞ
(b) hðkÞ ¼ 1 � e�k and uðkÞ ¼ k�ðkÞ
(c) hðkÞ ¼ sin k and uðkÞ ¼ �ðkÞ
(d) hðkÞ ¼ e�k and uðkÞ ¼ e�2k

where �ðkÞ is the unit step sequence (see Eq. (B.2-2) of Appendix B).
4. Consider the continuous-time system (12.3-24), where

F ¼
�1 0

0 �2

� �
; g ¼

1
�1

� �
; c

T
¼

0
1

� �
; D ¼ 0

Discretize the system, i.e., find the difference equations of the system in state
space, when the sampling frequency T ¼ 0:1 sec.

5. Find the equivalent discrete-time transfer function GðzÞ of the continuous-time
transfer function GðsÞ ¼ 1=½sðsþ 1Þ� preceded by a zero-order hold described by
GhðsÞ ¼ ð1 � e�TsÞ=s. Use two approaches: one making use of the Z-transform
tables and the other using a time-domain analysis.

6. The block diagram of a digital space vehicle control system is shown in Figure
12.34, where G and F are constants and J is the vehicle moment of inertia (all in
appropriate units). Find the discrete-time transfer function of the closed-loop
system.

7. A continuous-time process described by the transfer function K=s is controlled
by a digital computer, as shown in Figure 12.35.

(a) Find the closed-loop transfer function YðzÞ=RðzÞ, the disturbance-to-out-
put transfer function YðzÞ=DðzÞ, and the open-loop transfer function
YðzÞ=EðzÞ.

(b) Obtain the steady-state characteristics of the system using the final value
theorem.

(c) Find the unit step response of the system for K ¼ 20, F ¼ 5, Kc ¼ 1:25,
and T ¼ 0:005 sec.

8. A simplified state-space model for the altitude control (roll control) of a space-
craft is
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_xx1ðtÞ

_xx2ðtÞ

" #
¼

0 1

0 0

" #
x1ðtÞ

x2ðtÞ

" #
þ

0

1=J

" #
uðtÞ ¼ FxðtÞ þ guðtÞ

yðtÞ ¼ ½1 0�
x1ðtÞ
x2ðtÞ

� �
¼ c

T
xðtÞ
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Figure 12.34 A digital space vehicle control system.

Figure 12.35 Block diagram of a computer-controlled process.



where

x1 ¼ the roll of the spacecraft in rad
x2 ¼ the roll rate in rad/sec
u ¼ the control torque about the roll axis produced by the thrusters in Nm
J ¼ the moment of inertia of the vehicle about the roll axis at the vehicle

center of mass in kg m2

The transfer function relating the roll of the spacecraft to the torque input is

GðsÞ ¼
YðsÞ

UðsÞ
¼

1

Js2

Find the equivalent discrete-time description of the system with sampling period
T .

9. Find all values of K for which the roots of the following characteristic poly-
nomials lie inside the unit circle:

(a) z2
þ 0:2zþ K (b) z2

þ Kzþ 0:4
(c) z2

þ ðK þ 0:4Þzþ 1 (d) z3
þ Kz2

þ 2zþ 2
(e) z3

� 0:5z2
� 0:2zþ K (f) z3

þ ðK þ 1Þz2
� 0:5zþ 1

10. A magnetic disk drive requires a motor to position a read/write head over tracks
of data on a spinning disk. The motor and the head may be approximated by the
transfer function

GðsÞ ¼
1

sðT1sþ 1Þ

where T1 > 0. The controller takes the difference of the actual and desired
positions and generates an error. This error is discretized with sampling period
T , multiplied by a gain K, and applied to the motor with the use of a zero-order
hold of period T (see Figure 12.36).

Determine the range of values of the gain K , so that the closed-loop dis-
crete-time system is stable. Apply the invariant impulse response method and the
Routh criterion.

11. Consider the system given in Figure 12.37. Apply the Jury criterion to determine
the range of values of the gain K for which the system is stable. Assume sam-
pling period T ¼ 0:1 sec, 0.2 sec, and 1 sec.
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12. Check the stability of the system described by

x
1
ðkþ 1Þ ¼ x2ðkÞ

x2ðkþ 1Þ ¼ 2:5x1ðkÞ þ x2ðkÞ þ uðkÞ

yðkÞ ¼ x1ðkÞ

If the system is unstable, use the output feedback law uðkÞ ¼ �gyðkÞ to stabilize
it. Determine the range of values of a suitable g.

13. Consider a system described by the state-space equations (12.2-8), where

ðaÞ A ¼

0 1 0 0

0 0 1 0

0 0 0 1

�4 �2 1 0:4

2
6664

3
7775; B ¼

0

0

0

1

2
6664

3
7775; and

C ¼ ½1 � 2 1 4�

ðbÞ A ¼

0 0 1

1 1 0

�1 0 0:5

2
64

3
75; B ¼

1 2

1 1

�1 �0:5

2
64

3
75; and

C ¼
0 1 1

1 �1 1

� �

ðcÞ A ¼

1 0 1

1 2 1

�T 0 0

2
64

3
75; B ¼

1 1

0 1

1 0

2
64

3
75; and C ¼

0 0 1

1 0 0

� �

Investigate the controllability and observability of these systems. For case (c),
find the values of the sampling time T , appearing in matrix A, which make the
system controllable and/or observable.

14. Consider the continuous-time system of a rotating body described by the dyna-
mical equation
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_!! ¼
d2�

dt2
¼
L

J

where � is the position (angle of rotation), ! is the rate of the angle of rotation, L
is the externally applied torque, and J is the moment of inertia. If x1 ¼ � and
x2 ¼ _�� ¼ !, then the state-space description is

_xx1

_xx2

� �
¼

0 1
0 0

� �
x1

x2

� �
þ

0
1

� �
L

J
¼ Fxþ gu

Obtain the discrete-time description using a zero-order hold and a sampling
period T . If � is taken to be the output, determine if this description is obser-
vable. What happens if the angular velocity ! is measured instead? Discuss the
results in both cases.

15. A system is described by the state equations

xðkþ 1Þ ¼ AxðkÞ þ buðkÞ

yðkÞ ¼ cTxðkÞ

where

A ¼
0 1

�2 �3

� �
; b ¼

1
1

� �
; and c

T
¼ ½1 2�

Determine the controllability and observability of both the open-loop and the
closed-loop systems when

uðkÞ ¼ rðkÞ � fTxðkÞ

where rðkÞ is some reference input and f ¼ ½ f1 f2�
T .

16. Solve Example 12.7.1 with the following specifications:

(a) maximum overshoot � 10% and natural frequency !n ¼ 2 rad/sec
(b) maximum overshoot � 20% and natural frequency !n ¼ 6 rad/sec
(c) maximum overshoot � 10% and natural frequency !n ¼ 6 rad/sec.

Note that here one first has to determine GcðsÞ satisfying these specifications
and, subsequently, determine GcðsÞ.

17. Consider the ball and beam system depicted in Figure 12.38a. The beam is free to
rotate in the plane of the page about an axis perpendicular to the page, while the
ball rolls in a groove along the rod. The control problem is that of maintaining
the ball at a desired position by applying an input torque to the beam.

(a) A linear model for the system is GðsÞ ¼ 1=s2, as shown with a PD con-
troller in Figure 12.38b. Obtain an equivalent discrete-time system. The
sampling period is T ¼ 0:1 sec.

(b) Design a discrete-time controller using the pole-zero matching method.
Draw the unit step responses for the continuous- and the discrete-time
systems.

18. Plastic extrusion is an industrial process. The extruders consist of a large barrel
divided into several temperature zones with a hopper at one end and a die at the
other. The polymer is fed into the barrel from the hopper and is pushed forward
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by a powerful screw. Simultaneously, it is heated while passing through the
various temperature zones set to gradually increasing temperatures. The heat
produced by the heaters in the barrel, together with the heat released from the
friction between the raw polymer and the surfaces of the barrel and the screw,
eventually causes the polymer to melt. The polymer is then pushed out from the
die. The discrete-time system for the temperature control is shown in Figure
12.39.

The transfer function relating the angular velocity of the screw and the
output temperature is GðsÞ ¼ e�2s=ðsþ 1Þ, i.e., the system is of the first order,
incorporating a delay of 2 sec. The sampling period T ¼ 1 sec. Design a PI
controller so that the dominant closed-loop poles have a damping ratio
� ¼ 0:5 and the number of the output samples in a full cycle of the damped
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Figure 12.38 Ball and beam closed-loop control system: (a) ball and beam system; (b) block
diagram of closed-loop control system.

Figure 12.39 Temperature control system for plastic extrusion.



sinusoidal response is 10. Find the unit step response of the discrete-time
system. Determine the velocity error coefficient Kv and the steady-state
error of the output due to a ramp input.

19. A photovoltaic system is mounted on a space station in order to develop the
required power. To maximize the energy production, the photovoltaic panels
should follow the sun as accurately as possible. The system uses a dc motor and
the transfer function of the panel mount and the motor is

GðsÞ ¼
1

sðsþ 1Þ

An optical sensor accurately tracks the sun’s position and forms a unity feed-
back (see Figure 12.40). The sampling period T ¼ 0:2 sec. Find a discrete-time
controller such that the dominant closed-loop poles have damping ratio � ¼ 0:5
and there are eight output samples in a complete cycle of the damped sinusoidal
response. Use the root locus method in the z-plane to determine the transfer
function of the required controller. Find the unit step response of the system and
the velocity error coefficient Kv.

20. In this problem, the automatic control of a wheelchair will be studied. The
automatic wheelchair is specially designed for handicapped people with a dis-
ability from the neck down. It consists of a control system which the handi-
capped person may operate by using his or her head, thus determining the
direction as well as the speed of the chair. The direction is determined by a
sensor, situated on the head of the handicapped person at intervals of 908, so
that the person may choose one of the four possible directions (motions): for-
ward, backward, left, and right. The speed is regulated by another sensor, whose
output is proportional to the movement of the head. Clearly, in the present
example, the person is part of the overall controller.

For simplicity, we assume that the wheelchair, as well as the sensory device
on the head, are described by first-order transfer functions, as shown in Figure
12.41a. We also assume that the time delay, which is anticipated to appear in the
visual feedback path, is negligible. More specifically, we assume that K1 ¼ 1,
K2 ¼ 10, a ¼ 1, b ¼ 2, and FðsÞ ¼ 1. Suppose that we want to introduce a dis-
crete-time controller to the system. Then, the closed-loop system would be as in
Figure 12.41b. Find GcðzÞ in order for the closed-loop system to have a gain
margin Kg � 12 dB, a phase margin ’p � 508, and an error constant
Kv ¼ 4 sec�1. The sampling period is chosen to be 0.1 sec.
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21. Construct the root locus of Example 12.8.1 for the following values of the
parameters a and T : a ¼ 4 and T ¼ 0:1, 1, 5, and 10 sec.

22. Consider a continuous-time open-loop system with transfer function
GðsÞ ¼ a=sðsþ aÞ. Close the loop with unity feedback and find the position
and the velocity error constants. Use a zero-order hold and unity feedback to
obtain a discrete-time equivalent system. Determine the new position and
velocity error constants and compare with the continuous-time case.

23. Consider the system of Figure 12.42 with unity feedback, where GðsÞ ¼
K

sðsþ aÞ
:

(a) Determine the transfer function YðzÞ=RðzÞ in terms of K , a, and T (sam-
pling period).

(b) Determine the root locus and the maximum value of K for a stable
response with T ¼ 0:1 sec, 0.5 sec, and 1 sec and a ¼ 2.

(c) Find the steady-state error characteristics for a unit step sequence and a
ramp sequence for those error values of K and T that yield a stable system
response for a ¼ 1 and a ¼ 2.
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Figure 12.41 Wheelchair automatic control system: (a) wheelchair closed-loop system using
a continuous time controller; (b) wheelchair closed-loop system using a discrete-time
controller.
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13
System Identification

13.1 INTRODUCTION

A fundamental concept in science and technology is that of mathematical modeling
(see Chap. 3, particularly Secs 3.1–3.7). A mathematical model is a very useful, as
well as very compact way, of describing the knowledge we have about a process or
system. The determination of a mathematical model of a process or system is known
as system identification. In control systems, a mathematical model of a process or
system is in most cases necessary for the design of the controller. This becomes
apparent if we recall that most of the controller design methods covered in previous
chapters are based on the model of the system under control, which was assumed
known. The model is also necessary for the design of adaptive and robust control
systems presented in Chaps 14 and 15.

A process or a system may be described by several models, ranging from
necessarily very detailed and complex microscopic models to simplistic macroscopic
models which facilitate the understanding of the gross characteristics of a system’s
performance. Complex microscopic models require a long time to determine and
they are mostly used for the detailed control of a system’s performance. Between the
two extremes, there exist several different types of models. Clearly, one must be able
to choose the suitable type of model for each specific application.

There are basically two ways of determining a mathematical model of a system:
by implementing known laws of nature or through experimentation on the process.
A popular approach to obtaining a model is to combine both ways.

Mathematical models may be distinguished as parametric and nonparametric
models. Parametric models obviously involve parameters: for example, the coeffi-
cients of differential or difference equations, of state equations, and of transfer
functions. Nonparametric models do not involve parameters and are usually graphi-
cal representations, such as the Nyquist or Bode diagrams of a transfer function or
impulse response function. This chapter refers to parametric models. For nonpara-
metric models see for example [6]. Overall, the parametric identification problem
reduces to the development of methods which give a good estimate of the parameters
of the system model.

583



In particular, in this chapter we deal with the problem of determining math-
ematical models of linear, time-invariant, single-input–single-output (siso) discrete-
time systems, described by difference equations. The proposed method for the iden-
tification (estimation) of the coefficients (parameters) of a difference equation is
experimental and may be briefly described as follows. First, a set of N linear alge-
braic equations is formulated, where N is the number of measurements. From these
equations, one may easily derive the canonical equation whose solution yields the
parameter estimate hðNÞ, where h is the vector parameter under identification. If an
estimate of the initial conditions of the dynamic equation is also required, then N þ n
measurements are taken and hence N þ n equations are produced, where n is the
order of the difference equation.

An interesting feature of this chapter, is the determination of a recursive algo-
rithm, which allows the estimation of the vector parameter h for N þ 1 measure-
ments, based on the following formula:

hðN þ 1Þ ¼ hðNÞ þ�h ¼ hðNÞ þ cðNÞ½ yNþ1 � uT
ðN þ 1ÞhðNÞ� ð13:1-1Þ

where cðNÞ and uðN þ 1Þ are known vector quantities and yNþ1 is the N þ 1 mea-
surement of the output y of the system. This formula shows that for the determina-
tion of hðN þ 1Þ one can use the previous estimate hðNÞ plus a corrective term �h,
which is due to the new N þ 1 measurement, instead of starting the estimation
procedure right from the beginning. This algorithm facilitates the numerical part
of the problem and constitutes the cornerstone notion and tool for the solution of
ON-LINE identification, i.e., the identification which takes place in real time while
the system is operating under normal conditions (Sec. 13.3). In contrast, when the
identification procedure is desired to take place involving only the first N measure-
ments, it is carried out off-line only once and for this reason it is called OFF-LINE
identification or parameter estimation.

For relevant references to system identification see [1–23]. Most of the material
of this chapter is a condensed version of the identification material reported in [15].

13.2 OFF-LINE PARAMETER ESTIMATION

13.2.1 First-Order Systems

The simple case of a first-order discrete-time system is studied first. Assume that the
system under consideration is described by the differential equation

yðkÞ þ a1yðk� 1Þ ¼ b1uðk� 1Þ ð13:2-1Þ

with initial condition yð�1Þ. Assume that the system (13.2-1) is excited with an input
sequence uð�1Þ; uð0Þ; uð1Þ; . . . . As a result, the output of the system has a sequence
yð0Þ; yð1Þ; . . . . The identification problem may now be defined as follows. Given the
known input sequence uð�1Þ; uð0Þ; uð1Þ; . . . as well as the measured output sequence
yð0Þ; yð1Þ; . . . ; find an estimate of the system’s parameters a1 and b1 and of the initial
condition yð�1Þ.

To solve the problem, we begin by writing down Eq. (13.2-1) for N þ 1 mea-
surements, i.e., for k ¼ 0; 1; 2; . . . ;N. Consequently, we arrive at the following set of
linear algebraic equations:
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yð0Þ þ a1yð�1Þ ¼ b1uð�1Þ ð13:2-2aÞ

yð1Þ þ a1yð0Þ ¼ b1uð0Þ

yð2Þ þ a1yð1Þ ¼ b1uð1Þ ð13:2-2bÞ

..

.

yðNÞ þ a1yðN � 1Þ ¼ b1uðN � 1Þ

The last N equations, i.e., Eqs (13.2-2b), are used for the estimation of the para-
meters a1 and b1. Having estimated the parameters a1 and b1, Eq. (13.2-2a) can be
used for the estimation of the initial condition yð�1Þ. To this end, define

h ¼
a1

b1

� �
; y ¼

yð1Þ

yð2Þ

..

.

yðNÞ

2
66664

3
77775; and

r ¼

uT
ð0Þ

� � � � � � � � �

uT
ð1Þ

� � � � � � � � �

..

.

� � � � � � � � �

uT
ðN � 1Þ

2
6666666666664

3
7777777777775
¼

�yð0Þ uð0Þ

�yð1Þ uð1Þ

..

. ..
.

�yðN � 1Þ uðN � 1Þ

2
666666666664

3
777777777775

ð13:2-3Þ

Using these definitions, Eqs (13.2-2b) can be written compactly as

y ¼ rh ð13:2-4Þ

Equation (13.2-4) is an algebraic system of N equations with two unknowns. It
is clear that if the known input and output sequences involve errors due to measure-
ment or noise, then, for every input–output pair fuðkÞ; yðkÞg, there exists an error
eðkÞ; thus, Eqs (13.2-2) will take on the form

yðkÞ þ a1yðk� 1Þ ¼ b1uðk� 1Þ þ eðkÞ; k ¼ 0; 1; 2; . . . ;N ð13:2-5Þ

Consequently Eq. (13.2-4) becomes

y ¼ rh þ e ð13:2-6Þ

where e is the N-dimensional error vector e
T
¼ ½eð1Þ eð2Þ � � � eðNÞ�. For the

minimization of the error vector e, the least-squares methods can be aplied. To
this end, define the following cost function

J ¼ e
T
e ¼

XN
k¼1

e2ðkÞ ð13:2-7Þ

If Eq. (13.2-6) is substituted in Eq. (13.2-7), we obtain
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J ¼ ðy� rhÞTðy� rhÞ

Hence

@J

@h
¼ �2rT

ðy� rhÞ

where the following formula was used (see Subsec. 2.6.2):

@

@h
½Ah� ¼

@

@h



hTAT

�
¼ A

T

If we set @J=@h equal to zero, we obtain

rTrh ¼ rT
y ð13:2-8Þ

Relation (13.2-8) is known as the canonical equation and has a solution when the
matrix rTr is invertible, in which case we have

h ¼
�
rTr

�1
rT

y ¼ r#
y; r#

¼ ðrTr
�1

rT
ð13:2-9Þ

where r# is the pseudoinverse of r. The solution (13.2-9) minimizes the cost function
(13.2-7).

The matrix rTr is symmetrical and has the following form:

rTr ¼

XN�1

k¼0

y2ðkÞ �
Xn�1
k¼0

yðkÞuðkÞ

�
XN�1

k¼0

yðkÞuðkÞ
XN�1

k�0

u2ðkÞ

2
66664

3
77775 ð13:2-10aÞ

Moreover, the vector rT
y has the form

rT
y ¼

�
XN
k¼1

yðkÞyðk� 1Þ

XN
k¼1

yðkÞuðk� 1Þ

2
66664

3
77775 ð13:2-10bÞ

The estimate of the parameters a1 and a2 is based on Eq. (13.2-9). The initial
condition yð�1Þ is estimated on the basis of Eq. (13.2-2a), which gives

yð�1Þ ¼
1

a1
½b1uð�1Þ � yð0Þ�

where it is assumed that a1 6¼ 0 and uð�1Þ is known.

Example 13.2.1

A discrete-time system is described by the first-order difference equation

yðkÞ þ a1yðk� 1Þ ¼ b1ðk� 1Þ

The input and output sequences uðkÞ and yðkÞ, for N ¼ 6, are given in Table 13.1.
Estimate the parameters a1 and b1, as well as the initial condition yð�1Þ:
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Solution

From Eq. (13.2-10) and for N ¼ 6, we have that

rTr ¼

X5
k¼0

y2ðkÞ �
X5
k¼0

yðkÞuðkÞ

�
X5
k¼0

yðkÞuðkÞ
X5
k¼0

u2ðkÞ

2
66664

3
77775 ¼

3:106445 �4:21875

�4:21875 6

� �

rT
y ¼

�
X6
k¼1

yðkÞyðk� 1Þ

X6
k¼1

yðkÞuðk� 1Þ

2
66664

3
77775 ¼

�2:665527

3:890625

� �

Hence

h ¼
a1

b1

� �
¼

�
rTr

�1
rT

y ¼
1

0:84082

6 4:21875

4:21875 3:106445

� �
�2:665527

3:890625

� �

¼
0:5

1

� �

Finally, the estimate of yð�1Þ, derived using Eq. (13.2-2a), is

yð�1Þ ¼
1

a1
½b1uð�1Þ � yð0Þ� ¼ 2½1 � 1� ¼ 0

13.2.2 Higher-Order Systems

Here, the results of Subsec. 13.2.1 will be extended to cover the general case where
the difference equation is of order n and has the form

yðkÞ þ a1yðk� 1Þ þ � � � þ anyðk� nÞ ¼ b1uðk� 1Þ þ � � � þ bnuðk� nÞ ð13:2-11Þ

with initial conditions yð�1Þ; yð�2Þ; . . . ; yð�nÞ. In this case, the unknowns are the
parameters a1; a2; . . . ; an, b1; b2; . . . ; bn and the initial conditions yð�1Þ;
yð�2Þ; . . . ; yð�nÞ. As before take N þ n measurements. For k ¼ 0;
1; . . . ;N þ n� 1, the difference equation (13.2-11) yields the following equations:

yð0Þ þ a1yð�1Þ þ � � � þ anðyð�nÞ ¼ b1uð�1Þ þ � � � þ bnðuð�nÞ

yð1Þ þ a1yð0Þ þ � � � þ anyð�nþ 1Þ ¼ b1uð0Þ þ � � � þ bnu � �nþ 1Þ

..

.
ð13:2-12aÞ

yðn� 1Þ þ a1yðn� 2Þ þ � � � þ anyð�1Þ ¼ b1uðn� 2Þ þ � � � þ bnuð�1Þ
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Table 13.1 Input–Output Measurements for Example 13.2.1

k �1 0 1 2 3 4 5 6

uðkÞ 1 1 1 1 1 1 1 1

yðkÞ 1 1/2 3/4 5/8 11/16 21/32 43/64



yðnÞ þ a1yðn� 1Þ þ � � � þ anyð0Þ ¼ b1uðn� 1Þ þ � � � þ bnuð0Þ

yðnþ 1Þ þ a1yðnÞ þ � � � þ anyð1Þ ¼ b1uðnÞ þ � � � þ bnuð1Þ

..

.
ð13:2-12bÞ

yðnþN � 1Þ þ a1yðnþN � 2Þ þ � � � þ anyðN � 1Þ

¼ b1uðnþN � 2Þ þ � � � þ bnuðN � 1Þ

Relation (13.2-12) has a total of N þ n algebraic equations: the first n equations
are in Eqs (13.2-12a), whereas the remaining N equations are in Eqs (13.2-12b).
Define:

hT ¼ ½ a1 a2 � � � an b1 b2 � � � bn �;

y
T
¼ ½ yðnÞ yðnþ 1Þ � � � yðnþN � 1Þ �

ð13:2-13aÞ

r ¼

uT
ð0Þ

� � � � � � � � �

uT
ð1Þ

� � � � � � � � �

..

.

� � � � � � � � �

uT
ðN � 1Þ

2
6666666666664

3
7777777777775

¼

�yðn� 1Þ � � � �yð0Þ uðn� 1Þ � � � uð0Þ

�yðnÞ � � � �yð1Þ uðnÞ � � � uð1Þ

..

. ..
.

�yðnþN � 2Þ � � � �yðN � 1Þ uðnþN � 2Þ � � � uðN � 1Þ

2
666666666664

3
777777777775

ð13:2-13bÞ

Using the foregoing definitions, Eqs (13.2-12b) can be written compactly as follows:

y ¼ rh ð13:2-14Þ

Based on the relation (13.2-14), the results derived for the first-order systems of
Subsec. 13.2.1 can easily be extended to the higher-order case. Hence, the canonical
equation for Eq. (13.2-14) takes the form

rTrh ¼ rT
y ð13:2-15Þ

and therefore

h ¼
�
rTr

�1
rT

y ¼ r#
y ð13:2-16Þ

under the assumption that the matrix rTr is invertible.
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Example 13.2.2

Consider a discrete-time system described by the following second-order difference
equation:

yðkþ 2Þ þ !2yðkÞ ¼ buðkÞ

The input uðkÞ and the output yðkÞ, for N ¼ 5, are presented in Table 13.2. Esti-
mate the parameters ! and b.

Solution

For k ¼ 0, 1, 2, 3, we have

yð2Þ þ !2yð0Þ ¼ buð0Þ þ eð0Þ

yð3Þ þ !2yð1Þ ¼ buð1Þ þ eð1Þ

yð4Þ þ !2yð2Þ ¼ buð2Þ þ eð2Þ

yð5Þ þ !2yð3Þ ¼ buð3Þ þ eð3Þ

where eðkÞ is the measurement error at time k. The above equations can be grouped
as follows:

yþ rh þ e

where

y
T
¼ ½ yð2Þ yð3Þ yð4Þ yð5Þ � ¼ ½ 1=2 1=3 1=4 1=5 �

r ¼

�yð0Þ 1

�yð1Þ 1

�yð2Þ 1

�yð3Þ 1

2
6664

3
7775 ¼

0 1

0 1

�1=2 1

�1=3 1

2
6664

3
7775; h ¼

!2

b

" #
; e ¼

eð2Þ

eð3Þ

eð4Þ

eð5Þ

2
6664

3
7775

Using the above, we have

rTr ¼
13=36 �5=6

�5=6 4

� �
; rT

y ¼
�23=120

77=60

� �
;

�
rTr

�1
¼
36

27

4 5=6

5=6 13:36

� �

The optimum estimates of !2 and b are obtained from

h ¼
!2

b

� �
¼

�
rTr

�1
rT

y ¼
0:404
0:405

� �

whereupon ! ¼ ð0:404Þ1=2 ¼ 0:635 and b ¼ 0:405.

System Identification 589

Table 13.2 Input–Output Data Sequence for Example 13.2.2

k 0 1 2 3 4 5

uðkÞ 1 1 1 1 1 1
yðkÞ 0 0 1/2 1/3 1/4 1/5



13.3 ON-LINE PARAMETER ESTIMATION

In many practical cases, it is necessary that parameter estimation takes place con-
currently with the system’s operation. This parameter estimation problem is called
on-line identification and its methodology usually leads to a recursive procedure for
every new measurement (or data entry). For this reason, it is also called recursive
identification. In simple words, on-line identification is based on the following idea.
Assume that we have available an estimate of the parameter vector h based on N
pairs of input–output data entries. Let this estimate be denoted by hðNÞ. Assume that
hðNÞ is not accurate enough and we wish to improve the accuracy using the new (the
next) N þ 1 data entry. Clearly, using N þ 1 data entries, we will obtain a new
estimate for h, denoted as hðN þ 1Þ, which is expected to be an improved estimate
compared with the previous estimate hðNÞ.

Now, it is natural to ask the following question. For the calculation of
hðN þ 1Þ, do we have to estimate hðN þ 1Þ right from the beginning, based on Eq.
(13.2-16), or is there an easier way by taking advantage of the already known para-
meter vector hðNÞ? The answer to this question is that the estimate hðN þ 1Þ may
indeed be determined in terms hðNÞ, in accordance with the following general expres-
sion:

hðN þ 1Þ ¼ hðNÞ þ�h ð13:3-1Þ

where �h is the change in hðNÞ because of the new N þ 1 measurement. Expression
(13.3-1) is computationally attractive, since for each new measurement we do not
have to compute hðN þ 1Þ from the beginning, a fact which requires a great deal of
computation, but determine only the correction term �h, which requires much less
computation. Even though the calculation of the correction term �h is not always
simple, for the case of linear time-invariant systems, a computationally simple
expression for �h may be found, as shown below. To this end, we return to the
results of Subsec. 13.2.2. Since the initial conditions yð�1Þ; yð�2Þ; . . . ; yð�nÞ are not
of interest in on-line identification, they are dropped from the identification proce-
dure. We are therefore left with the canonical equation (13.2-14) which, for simpli-
city, will be stated in the rest of the chapter as follows:

rðNÞhðNÞ ¼ yðNÞ ð13:3-2Þ

Working as usual, we obtain the following estimate for hðNÞ:

hðNÞ ¼


rT

ðNÞrðNÞ
��1
rT

ðNÞyðNÞ ð13:3-3Þ

We may partition rðN þ 1Þ and yðN þ 1Þ as follows:

rðN þ 1Þ ¼
rðNÞ

uTðN þ 1Þ

� �
and yðN þ 1Þ ¼

yðNÞ

yðN þ 1Þ

� �
¼

yðNÞ

yNþ1

� �
ð13:3-4Þ

where yNþ1 indicates the last measurement yðN þ 1Þ in order to avoid any confusion
between the vector yðN þ 1Þ and the data entry yNþ1. Then, Eq. (13.3-2) for the N þ

1 measurements takes on the form

rðN þ 1ÞhðN þ 1Þ ¼ yðN þ 1Þ ð13:3-5Þ

Hence

590 Chapter 13



hðN þ 1Þ ¼


rT

ðN þ 1ÞrðN þ 1Þ
��1
rT

ðN þ 1ÞyðN þ 1Þ

¼


rT

ðNÞrðNÞ þ uðN þ 1ÞuT
ðN þ 1Þ

��1

uT

ðNÞyðNÞ þ uðN þ 1ÞyNþ1

�
ð13:3-6Þ

where use was made of Eq. (13.3-4). Equation (13.3-6) may take the form of Eq.
(13.3-1) by using the following formula (known as the matrix inversion lemma):

½Aþ BCD�
�1

¼ A
�1

� A
�1
B


C

�1
þDA

�1
B
��1

DA
�1

ð13:3-7Þ

The foregoing equation can easily be verified. To this end, the matrix ½Aþ BCD� is
multiplied from the left to the right-hand side of Eq. (13.3-7), to yield

½Aþ BCD� A
�1

� A
�1
B


C

�1
þDA

�1
B
��1

DA
�1

h i
¼ I� B



C

�1
þDA

�1
B
��1

DA
�1

þ BCDA
�1

� BCDA
�1
B


C

�1
þDA

�1
B
��1

DA
�1

¼ Iþ BCDA
�1

� BC


C

�1
þDA

�1
B
�

C

�1
þDA

�1
B
��1

DA
�1

¼ Iþ BCDA
�1

� BCDA
�1

¼ I

Hence, the proof is completed. Now, using Eq. (13.3-7), we obtain

rT

ðNÞrðNÞ þ uðN þ 1ÞuT
ðN þ 1Þ

��1
¼



rT

ðNÞrðNÞ
��1

¼


rT

ðNÞrðNÞ
��1

rðN þ 1Þ 1þ uT
ðN þ 1Þ



rT

ðNÞrðNÞ
��1

uðN þ 1Þ
h i�1

uT
ðN þ 1Þ


rT
ðNÞrðNÞ

��1
ð13:3-8Þ

Substituting Eq. (13.3-8) in Eq. (13.3-6), we obtain

hðN þ 1Þ ¼


rT

ðNÞrðNÞ
��1
rT

ðNÞyðNÞ þ

h

rT

ðNÞrðNÞ þ uðN þ 1ÞuT
ðN þ 1Þ

�
� rT

ðNÞrðNÞ
��1i�1

rT
ðNÞyðNÞ þ



rT

ðNÞrðNÞ þ uðN þ 1ÞuðN þ 1Þ
��1

uðN þ 1ÞyNþ1 ð13:3-9Þ

The following holds true:

rT

ðNÞrðNÞ þ uðN þ 1ÞuT
ðN þ 1Þ

��1
�


rT

ðNÞrðNÞ
��1h i

rT
ðNÞyðNÞ

¼


rT

ðNÞrðNÞ þ uðN þ 1ÞuT
ðN þ 1Þ

��1h

rT

ðNÞrðNÞ
�
�


rT

ðNÞrðNÞ

þ uðN þ 1ÞuT
ðN þ 1Þ

�i

rT

ðNÞrðNÞ
��1
rT

ðNÞyðNÞ ¼ �


rT

ðNÞrðNÞ

þ uðN þ 1ÞuT
ðN þ 1Þ

��1
uðN þ 1ÞuT

ðN þ 1Þ


rT

ðNÞrðNÞ
��1
rT

ðNÞyðNÞ

¼ �


rT

ðNÞrðNÞ þ uðN þ 1ÞuT
ðN þ 1Þ

��1
uðN þ 1ÞuT

ðN þ 1ÞhðNÞ

where, in deriving the final step in the foregoing equation, use was made of Eq.
(13.3-3). Using this result, Eq. (13.3-9) can be written as
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hðN þ 1Þ ¼ hðNÞ �


rT

ðNÞrðNÞ þ uðN þ 1ÞuT
ðN þ 1Þ

��1
’ðN þ 1ÞuT

ðN þ 1Þ

hðNÞ þ


rT

ðNÞrðNÞ þ uðN þ 1ÞuT
ðN þ 1Þ

��1
uðN þ 1ÞyNþ1

ð13:3-10Þ

where use was made of Eq. (13.3-3). Finally, defining

cðNÞ ¼


rT

ðNÞrðNÞ þ uðN þ 1ÞuT
ðN þ 1Þ

��1
uðN þ 1Þ

¼


rT

ðN þ 1ÞrðN þ 1Þ
��1

uðN þ 1Þ ð13:3-11Þ

Eq. (13.3-10) is transformed as follows:

hðN þ 1Þ ¼ hðNÞ þ cðNÞ


yNþ1 � uT

ðN þ 1ÞhðNÞ
�

ð13:3-12Þ

Equation (13.3-12) is of the general form (13.3-1) sought. Unfortunately, the
determination of the vector cðNÞ of Eq. (13.3-11) is numerically cumbersome since it
requires inversion of the matrix rT

ðN þ 1ÞrðN þ 1Þ at every step. To overcome this
difficulty, define

PðNÞ ¼


rT

ðNÞrðNÞ
��1

ð13:3-13Þ

Hence

PðN þ 1Þ ¼


rT

ðN þ 1ÞrðN þ 1Þ
��1

¼


rT

ðNÞrðNÞ þ uðN þ 1ÞuT
ðN þ 1Þ

��1
Using Eq. (13.3-8), the matrix PðN þ 1Þ can be written as

PðN þ 1Þ ¼ PðNÞ � PðNÞuðN þ 1Þ


1þ uT

ðN þ 1ÞPðNÞuðN þ 1Þ
��1

uT
ðN þ 1ÞPðNÞ ð13:3-14Þ

Equation (13.3-14) offers a convenient way for calculating PðN þ 1Þ. It is noted that
the term 1þ



uT

ðN þ 1ÞPðNÞuðN þ 1Þ
�
is scalar, whereupon calculation of its

inverse is simple. The calculation of the matrix PðN þ 1Þ, according to the recursive
formula (13.3-14), requires a matrix inversion only once at the beginning of the
procedure to obtain

PðN0Þ ¼


rT

ðN0ÞrðN0Þ
��1

where N0 is the starting number of data entries. Upon computing PðN þ 1Þ, the
vector cðNÞ can easily be determined from Eq. (13.3-11), i.e., from the expression

cðNÞ ¼ PðN þ 1ÞuðN þ 1Þ ð13:3-15Þ

In summary, the proposed recursive algorithm is given by the following theorem.

Theorem 13.3.1

Suppose that hðNÞ is the estimate of the parameters of the nth order system (13.2-11)
for N data entries. Then, the estimate of the parameter vector hðN þ 1Þ for N þ 1
data entries is given by the expression

hðN þ 1Þ ¼ hðNÞ þ cðNÞ


yNþ1 � uT

ðN þ 1ÞhðNÞ
�

ð13:3-16Þ

where

cðNÞ ¼ PðN þ 1ÞuðN þ 1Þ ð13:3-17aÞ
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and the matrix PðN þ 1Þ is calculated from the recursive formula

PðN þ 1Þ ¼ PðNÞ � PðNÞuðN þ 1Þ


1þ uT

ðN þ 1ÞPðNÞuðN þ 1Þ
��1

uT
ðN þ 1ÞPðNÞ ð13:3-17bÞ

with initial conditions

PðN0Þ ¼


rT

ðN0ÞrðN0Þ
��1

ð13:3-17cÞ

hðN0Þ ¼ PðN0Þr
T
ðN0ÞyðN0Þ ð13:3-17dÞ

In Figure 13.1, a block diagram of the on-line algorithm is given. It is clear that
at every step the (known) inputs are the yNþ1, uT

ðN þ 1Þ, hðNÞ, and PðNÞ and the
algorithm produces the new estimate hðN þ 1Þ. The algorithm also produces the
matrix PðN þ 1Þ, which is used in the next step. In Figure 13.2, a more detailed
block diagram of the on-line algorithm is given.

Remark 13.3.1

In Eq. (13.3-16) we observe that the correction term �h, defined in Eq. (13.3-1), is
proportional to the difference yNþ1 � uT

ðN þ 1ÞhðNÞ, where yNþ1 is the new data
entry and uT

ðN þ 1ÞhðNÞ is an estimate of this new entry, based on Eq. (13.3-5) and
using the latest estimate of the system parameters. Had there not existed any error in
the measurements, the expected value uT

ðN þ 1ÞhðNÞ of yNþ1 would be equal to the
respective measurement value yNþ1 and the difference between them would be zero,
in which case hðN þ 1Þ ¼ hðNÞ. In other words, when there is no error in the data
entries, a new entry does not add any new information, so the new estimate of h has
exactly the same value as that of the previous estimate. Finally, it is noted that the
term �ðNÞ may be considered as a weighting factor of the difference term
yNþ1 � uT

ðN þ 1ÞhðNÞ.

Example 13.3.1

Consider the simple case of a resistive network given in Figure 13.3. Estimate the
parameter a when uðkÞ is a step sequence, i.e., when uðkÞ ¼ 1, for k ¼ 1; 2; 3; . . . .

Solution

The difference equation for the system is yðkÞ ¼ auðkÞ. Since uðkÞ ¼ 1, for all k, it
follows that
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Figure 13.1 Block diagram presentation of the on-line algorithm.



yðkÞ ¼ aþ eðkÞ; k ¼ 1; 2; . . . ;N

To start with, we solve the problem using the following very simple technique. Define
the cost function

J ¼
XN
k¼1

e2ðkÞ ¼
XN
k¼1

½yðkÞ � a�2

Then

@J

@a
¼ �2

XN
k¼1

½yðkÞ � a� ¼ 0

The foregoing equation can be written as

XN
k¼1

½yðkÞ � a� ¼
XN
k¼1

yðkÞ

" #
�Na ¼ 0

Hence, the estimate aðNÞ of the parameter a is

aðNÞ ¼
1

N

XN
k¼1

yðkÞ

The expression above for aðNÞ is the mean value of the measurements yðkÞ, as was
anticipated. Assume now that we have a new measurement. Then
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Figure 13.2 Detailed block diagram representation of the on-line algorithm.

Figure 13.3 Simple case of a resistive network.



aðN þ 1Þ ¼
1

N þ 1

XNþ1

k¼1

yðkÞ

¼
1

N

XN
k¼1

yðkÞ �
1

N

XN
k¼1

yðkÞ þ
1

N þ 1

XN
k¼1

½yðkÞ þ yðN þ 1Þ�

¼
1

N

XN
k¼1

yðkÞ þ
N � ðN þ 1Þ

NðN þ 1Þ

XN
k¼1

yðkÞ þ
1

N þ 1
yðN þ 1Þ

¼ aðNÞ þ
1

N þ 1
½yðN þ 1Þ � aðNÞ�

The foregoing equation represents the recursive algorithm (13.3-16), where
uT

ðN þ 1Þ ¼ 1, yNþ1 ¼ yðN þ 1Þ, and cðNÞ ¼ 1=ðN þ 1Þ.
Now, we solve the problem using the method presented in this section. As a

first step, we formulate the canonical equation

rðNÞhðNÞ ¼ yðNÞ

where hðNÞ ¼ aðNÞ, rðNÞ ¼ ½1 1 � � � 1�T, and yðNÞ ¼ ½yð1Þ yð2Þ � � � yðNÞ�
T.

The solution of the canonical equation is

aðNÞ ¼


rT

ðNÞrðNÞ
��1
rT

ðNÞyðNÞ ¼ N�1rT
ðNÞyðNÞ ¼ N�1

XN
k¼1

yðkÞ

We observe that PðNÞ ¼ N�1. Thus Eq. (13.3-17b) yields

PðN þ 1Þ ¼ N�1
�N�1



1þN�1

�
N�1

¼
1

N þ 1

whereas Eq. (13.3-17a) gives

cðNÞ ¼ PðN þ 1ÞuðN þ 1Þ ¼
1

N þ 1

Hence, Eq. (13.3-16) becomes

aðN þ 1Þ ¼ aðNÞ þ
1

N þ 1



yNþ1 � aðNÞ

�
Figure 13.4 shows the block diagram of the ON-LINE algorithm for Example

13.3.1.

Example 13.3.2

Consider the system of Example 13.3.1 with the difference that the input is not a unit
step function but any other type of function. Estimate the parameter a.

Solution

The difference equation is yðkÞ ¼ auðkÞ. We formulate the canonical equation

rðNÞhðNÞ ¼ yðNÞ

where
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hðNÞ ¼ aðNÞ; rðNÞ ¼ ½uð1Þ uð2Þ � � � uðNÞ�
T and

yðNÞ ¼ ½yð1Þ yð2Þ � � � yðNÞ�
T

The solution of the canonical equation gives the following result:

aðNÞ ¼


rT

ðNÞrðNÞ
��1
rT

ðNÞyðNÞ ¼
XN
k¼1

u2ðkÞ

" #�1XN
k¼1

uðkÞ’ðkÞ

We observe that

PðNÞ ¼
XN
k¼1

u2ðkÞ

" #�1

Hence, Eq. (13.3-17b) becomes

PðN þ 1Þ ¼ PðNÞ � PðNÞuðN þ 1Þ½1þ u2ðN þ 1ÞPðNÞ�
�1uðN þ 1ÞPðNÞ

¼


½1þ u2ðN þ 1ÞPðNÞ� � u2ðN þ 1ÞPðNÞ

�
PðNÞ½1þ u2ðN þ 1ÞPðNÞ�

�1

¼ PðNÞ½1þ u2ðN þ 1ÞPðNÞ�
�1

Therefore

aðN þ 1Þ ¼ aðNÞ þ cðNÞ


yNþ1 � uT

ðN þ 1ÞaðNÞ
�

¼ aðNÞ þ PðNÞuðN þ 1Þ½1þ u2ðN þ 1ÞPðNÞ�
�1


yNþ1 � uðN þ 1ÞaðNÞ

�
If uðkÞ ¼ 1, k ¼ 1; 2; . . . ; the results of Example 13.3.1 can readily be derived as a
special case of the foregoing results. Indeed, since PðNÞ ¼ N�1 and uðkÞ ¼ 1, k ¼

1; 2; . . . ; the above expression for aðN þ 1Þ becomes

aðN þ 1Þ ¼ aðNÞ þN�1


1þN�1

�

yNþ1 � aðNÞ

�
¼ aðNÞ þ

1

N þ 1



yNþ1 � aðNÞ

�
Example 13.3.3

Consider the discrete-time system described by the nonlinear difference equation

yðkþ 1Þ þ ay2ðkÞ ¼ buðkÞ
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Figure 13.4 Block diagram of the on-line algorithm of Example 13.3.1.



If the unit uðkÞ is a unit step sequence, it results in the following output measure-
ments:

k 0 1 2 3 4 5 6

yðkÞ 0 0.01 1.05 1.69 3.02 7.4 39.3

Determine:

(a) An estimate of the parameters a and b.
(b) Assume that a new output measurement yð7Þ ¼ 1082 is available. Find the

new estimates for a and b using the recursive formula.

Solution

(a) For k ¼ 1, 2, 3, 4, 5 we have

yð2Þ þ ay2ð1Þ ¼ buð1Þ þ eð2Þ

yð3Þ þ ay2ð2Þ ¼ buð2Þ þ eð3Þ

yð4Þ þ ay2ð3Þ ¼ buð3Þ þ eð4Þ

yð5Þ þ ay2ð4Þ ¼ buð4Þ þ eð5Þ

yð6Þ þ ay2ð5Þ ¼ buð5Þ þ eð6Þ

where eðkÞ is the measurement error at time k. The above equations can be written
compactly as follows:

yðNÞ ¼ rðNÞhðNÞ þ e

where

y
T
ðNÞ ¼ ½ yð2Þ yð3Þ � � � yð6Þ � ¼ ½ 1:05 1:69 3:02 7:4 39:3 �

rðNÞ ¼

�y2ð1Þ uð1Þ

�y2ð2Þ uð2Þ

�y2ð3Þ uð3Þ

�y2ð4Þ uð4Þ

�y2ð5Þ uð5Þ

2
6666664

3
7777775
¼

�0:0001 1

�1:1025 1

�2:8561 1

�9:1204 1

�54:76 1

2
6666664

3
7777775
; hðNÞ ¼

a

b

� �
;

e ¼

eð2Þ

eð3Þ

eð4Þ

eð5Þ

eð6Þ

2
6666664

3
7777775

Using the above results, we obtain
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rT
ðNÞrðNÞ ¼

3091:12 �67:839
�67:839 5

� �
; rT

ðNÞyðNÞ ¼
�2230:04771

52:46

� �


rT

ðNÞrðNÞ
��1

¼
0:0005 0:0063
0:0063 0:2848

� �

The optimal estimate of the parameters a and b is

hðNÞ ¼
a
b

� �
¼



rT

ðNÞrðNÞ
��1
rT

ðNÞyðNÞ ¼
�0:7845
0:891

� �

(b) Using the recursive equation (13.3-16), we have

hð7Þ ¼ hð6Þ þ cð6Þ


y7 � uT

ð7Þhð6Þ
�

where

hð6Þ ¼
�0:7845
0:891

� �
; y7 ¼ yð7Þ ¼ 1082; uT

ð7Þ ¼ ½�1544:5 1�

cð6Þ ¼ Pð7Þuð7Þ ¼
�0:0006
�0:008

� �

Hence

hð7Þ ¼
a
b

� �
¼

�0:7062
1:9354

� �

13.4 PROBLEMS

1. A system is described by the following difference equation

yðkþ 3Þ þ a1yðkþ 2Þ þ a2yðkþ 1Þ þ a3yðkÞ ¼ uðkÞ

If the input to the system is the impulse function uðkÞ ¼ �ðkÞ, it results in the
following output measurements:

k 0 1 2 3 4 5 6

yðkÞ 1 0.2 �0:6 �1:2 �1:6 �1:7 �1:6

Estimate the parameters a1, a2, and a3:
2. Estimate the parameters a, b, and ! of a system described by the difference

equation

yðkÞ þ !2yðk� 2Þ ¼ auðk� 1Þ þ buðk� 2Þ

given that the following measurements are available:

k 1 2 3 4 5

uðkÞ 1 1 1 1 1
yðkÞ 0 1/2 1/3 1/4 1/5
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Are the estimates unique? Explain your results.
3. Estimate the parameters a, b, and c of the system

yðkÞ þ ayðk� 1Þ ¼ bu2ðkÞ þ cuðk� 1Þ

given the information shown in Table 13.3 regarding its input and output.
Make use of all the information provided in the table. The resulting identi-

fication must be unique.

4. Let a system be described by

yðkþ 2Þ ¼ ayðkþ 1Þ þ yðkÞ þ buðkÞ

(a) Estimate the parameters a and b given the following measurements:

k 0 1 2 3 4

uðkÞ 1 1 1 1 1
yðkÞ 1 0.9 0.9 0.8 0.6

(b) What are the new parameter estimates in view of the additional measure-
ments uð5Þ ¼ 1 and yð5Þ ¼ 0:4?

5. The output of a given system HðzÞ is compared with the output of a known
system H2ðzÞ, as shown in Figure 13.5.

It is known that the difference equation that describes HðzÞ is of the form

yðkÞ ¼ auðkÞ þ buðk� 1Þ þ cuðk� 2Þ

The equation of H2ðzÞ is

yðkÞ ¼ uðkÞ þ 2uðk� 1Þ � 3uðk� 2Þ

and the feedback coefficient f ¼ 1. Find the unknown parameters a, b, and c
given the following measurements:

k 0 1 2 3 4 5

rðkÞ 1 1 1 1 1 1
dðkÞ 0 0 �0:5 �0:8 �1:1 �1:4
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Table 13.3 Output Sequences yðkÞ of Several Inputs for
Problem 3

Input yð1Þ yð2Þ yð3Þ yð4Þ

u1ðkÞ ¼ k2 0 0 1 1.5
u2ðkÞ ¼ k 0 �0:5 1 2.5
yðkÞ ¼ 1 0 0:5 1 4
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14
Adaptive Control

14.1 INTRODUCTION

An adaptive control system is a system which adjusts automatically on-line the para-
meters of its controller, so as to maintain a satisfactory level of performance when
the parameters of the system under control are unknown and/or time varying.

Generally speaking, the performance of a system is affected either by external
perturbations or by parameter variations. Closed-loop systems involving feedback
(top portion of Figure 14.1), are used to cope with external perturbations. In this
case, the measured value of the output yðkTÞ is compared with the desired value of
the reference signal rðkTÞ. The difference eðkT Þ between the two signals is applied to
the controller, which in turn provides the appropriate control action uðkTÞ to the
plant or system under control. A somewhat similar approach can be used when
parametric uncertainties (unknown parameters) appear in the system model of
Figure 14.1. In this case the controller involves adjustable parameters. A perfor-
mance index is defined, reflecting the actual performance of the system. This index is
then measured and compared with a desired performance index (see Figure 14.1) and
the error between the two performance indices activates the controller adaptation
mechanism. This mechanism is suitably designed so as to adjust the parameters of
the controller (or modify the input signals in a more general case), so that the error
between the two performance indices lies within acceptable bounds.

Closer examination of Figure 14.1 reveals that two closed loops are involved:
the ‘‘inner’’ feedback closed loop, whose controller involves adjustable parameters
(upper portion of the figure); the supplementary ‘‘outer’’ feedback closed loop (or
adaptation loop), which involves the performance indices and the adaptation
mechanism (lower portion of the figure). The role of the adaptation loop is to find
appropriate estimates for the adjustable controller parameters at each sampling
instant.

It should be mentioned that a general definition, on the basis of which one
could characterize a system as being adaptive or not, is still missing. However, it is
clear that constant feedback systems are not adaptive systems. The existence of a
feedback loop involving the performance index of the closed-loop system is a safe
rule for characterizing a system as adaptive or not.
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An adaptive control system is inherently nonlinear, since the controller para-
meters are nonlinear functions of the measured signals through the adaptation
mechanism. This is true even for the control of linear systems with unknown para-
meters, a fact which makes the analysis of adaptive systems very difficult. This
analysis involves the stability characteristics of the closed-loop system, the satisfac-
tion of the performance requirements, and the convergence of the parameter esti-
mates.

Adaptive control has been under investigation for many years. Major break-
throughs in the area have been reported in the last two decades [1–27]. Adaptive
control schemes have been applied in the paper industries, rolling mills, power
plants, motor drives, chemical reactors, cement mills, autopilots for aircrafts, mis-
siles and ships, etc. Microprocessor advances have made it quite easy to implement
adaptive controllers and at low cost. The use of adaptive controllers may lead to
improvement of product quality, increase in production rates, fault detection, and
energy saving.

The two basic techniques to control discrete-time systems with unknown para-
meters are the model reference adaptive control (MRAC) scheme [8, 20–24] and self-
tuning regulators (STRs) [2, 7, 15–18, 26, 27]. These two techniques are presented in
Secs 14.3 and 14.4, respectively, and constitute a condensed version of the material
reported in Chap. 9 in [12].

In MRAC, a reference model is used explicitly in the control scheme and sets
the desired performance. Then, an appropriate on-line adaptation mechanism is
designed to adjust the controller parameters at each step, so that the output of the
system converges to the output of the reference model asymptotically, while simul-
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Figure 14.1 Block diagram of a general adaptive control system.



taneously the stability of the closed-loop system is secured. In STRs, the control
design and the adaptation procedure are separate. Different parameter estimators
can be combined with appropriate control schemes to yield a variety of STRs.
Restrictions in the structure of the models under which both methods can be applied
are discussed on several appropriate occasions in the material of this chapter.

Model reference adaptive controllers can be either direct or indirect. The essen-
tial difference between them is that in direct MRAC the controller parameters are
directly adjusted by the adaptation mechanism, while in indirect MRAC the adjust-
ment of the controller parameters is made in two steps. In the first step, the control
law is reparametrized so that the plant parameters appear explicitly in the control
law. A relation between the controller parameters and the plant parameters is thus
established. The plant parameters are adjusted by the adaptation mechanism. In the
second step, the controller parameters are calculated from the estimates of the plant
parameters. Direct MRAC, using the hyperstability approach for proving stability,
is discussed in Sec. 14.3.

STRs can be either explicit or implicit. In explicit STRs an estimate of the
explicit plant-model parameters is obtained. The explicit plant model is the actual
plant model. In implicit STRs the parameters of an implicit model are estimated. The
implicit model is a reparametrization of the explicit plant model. The parameters of
the implicit model and those of the controller are the same; therefore, we call the
plant parameters explicit or indirect and the controller parameters implicit or direct.
Though of different nature and origin, a close relation between MRAC systems and
STRS has been established [18, 20]. It is clear that explicit self-tuners correspond to
indirect MRAC schemes, while implicit self-tuners correspond to direct MRAC
schemes. Self-tuners based on pole-placement control are presented in Sec. 14.4.2.

Another approach to discrete-time MRAC is that of using Lyapunov functions
to prove asymptotic stability and the satisfaction of performance requirements. An
expression for the error between the output of the reference model and that of the
plant is formed and then the adaptation mechanism is chosen in order to make the
increments of a Lyapunov candidate function negative. This method is not devel-
oped in this chapter. A demonstration by using a simple example, can be found in
[12]. The difficulty of finding an appropriate Lyapunov candidate function in the
general discrete-time case restricts the use of this method. The hyperstability
approach of Sec. 14.3 is preferable for discrete-time MRAC systems, while for con-
tinuous-time systems the Lyapunov design has mainly been used.

A first approach to MRAC was based on the gradient method. The parameter
adaptation scheme obtained for synthesizing the adaptive loop was heuristically
developed, initially for continuous-time systems and is known as the MIT rule [3].
A version of MRAC for discrete-time systems, based on the gradient method, is
presented below.

14.2 ADAPTIVE CONTROL WITH THE GRADIENT METHOD (MIT
RULE)

Consider a system with a single output yðkT; hÞ, where T is the sampling period and
h is the vector of unknown parameters which parametrizes the adjustable controller
(hence the system’s input signal is a function of h, i.e., uðkT; hÞ) and the output of the
system. The control objective is to follow the output ymðkTÞ of a reference model, in
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the sense that a particular performance index, involving the error
eðkT; hÞ ¼ yðkT; hÞ � ymðkTÞ, is a minimum.

Consider the quadratice performance index

JðkT ; hÞ ¼ 1
2 e2

ðkT; hÞ ð14:2-1Þ

It is obvious that to minimize the JðkT; hÞ, the parameter vector h of the adjustable
controller should change in the opposite direction to that of the gradient @J=@h.
Consequently, the adaptation rule for h, i.e., the difference equation giving the
time evolution of h at the sampling instants, is

hðkT þ TÞ ¼ hðkTÞ � �
@JðkT; hÞ

@h

� �
¼ hðkTÞ � � eðkT; hÞ

@eðkT; h

@h

� �
ð14:2-2Þ

where � is a constant positive adaptation gain. More precisely, when @JðkT; hÞ=@h is
negative, i.e., when J decreases while h increases, then h should increase in order for
J to decrease further. In the case where @JðkT; hÞ=@h is positive, i.e., when J and h

increase simultaneously, then h should decrease in order for J to decrease further.
This is achieved by the heuristic adaptation mechanism of Eq. (14.2-2). The partial
derivative @eðkT; hÞ=@h appearing in Eq. (14.2-2) is called the system’s sensitivity
derivative. For the ‘‘MIT rule’’ to perform well, the adaptation gain � should be
small, since its value influences the convergence rate significantly. Moreover, it is
possible for the ‘‘MIT rule’’ to lead to an unstable closed-loop system, since it is only
a heuristic algorithm not rigidly based on stability requirements. Other performance
indices are also possible.

The following example will illustrate the application of the MIT rule. This
example will reveal the main problem in applying this method: namely, the necessity
of using approximations to calculate the sensitivity derivatives of a certain system.

Example 14.2.1

Consider a first-order system described by the difference equation

yðkT þ TÞ ¼ �ayðkTÞ þ buðkTÞ ð14:2-3Þ

where uðkTÞ is the input and yðkTÞ is the output. It is desired to obtain a closed-loop
system of the form

ymðkT þ TÞ ¼ �amymðkT Þ þ bmrðkTÞ ð14:2-4Þ

where rðkTÞ is a bounded reference sequence and ymðkTÞ is the output of the refer-
ence model. To this end, an output feedback control law is used, having the form

uðkTÞ ¼ �fyðkTÞ þ grðkTÞ ð14:2-5Þ

Assume that the system parameters a and b are unknown. Determine the appropriate
adaptation mechanism for the controller parameters f and g, using the MIT rule.

Solution

Combining Eqs (14.2-3) and (14.2-5), we obtain the closed-loop system

yðkT þ TÞ ¼ �ayðkTÞ þ b½�fyðkTÞ þ grðkTÞ� ¼ �ða þ bf ÞyðkTÞ þ bgrðkTÞ

or

yðkTÞ ¼ �ða þ bf ÞyðkT � TÞ þ bgrðkT � TÞ
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or

yðkTÞ ¼
bgq�1

1 þ ða þ bf Þq�1

" #
rðkT Þ ð14:2-6Þ

where q�1 is the backward shift operator such that q�1yðkTÞ � yðkT � TÞ.
Comparing Eqs (14.2-4) and (14.2-6), we have that in the case of known parameters
a and b, the particular choice f ¼ ðam � aÞ=b and g ¼ bm=b leads to satisfaction of
the control objective. This case is called perfect model following.

In the case of uncertain system parameters, we will use the ‘‘MIT rule.’’ Here,
the controller is parametrized by the adjustable parameters f ðkÞ and gðkÞ. The error
eðkTÞ between the outputs of the system and the reference model is now given by

eðkTÞ ¼ yðkTÞ � ymðkTÞ ¼
bgq�1

1 þ ða þ bf Þq�1

" #
rðkTÞ � ymðkT Þ ð14:2-7Þ

Using the foregoing expression for eðkTÞ, the system’s sensitivity derivatives @e=@g
and @e=@f can be easily determined. We have

@eðkTÞ

@g
¼

bq�1

1 þ ða þ bf Þq�1

" #
rðkTÞ ð14:2-8Þ

@eðkTÞ

@f
¼ �

b2gq�2

½1 þ ða þ bf Þq�1�
2

" #
rðkTÞ ¼ �

bq�1

1 þ ða þ bf Þq�1

" #
yðkTÞ ð14:2-9Þ

These expressions for the sensitivity derivatives cannot be used in the adapta-
tion mechanism, since the unknown parameters a and b appear explicitly. For the
present system, when perfect model following is achieved, we have that a þ bf ¼ am.
Taking advantage of this fact, the following approximate forms can be used for the
sensitivity derivatives (still containing the unknown b):

@eðkTÞ

@g
ffi

bq�1

1 þ amq�1

" #
rðkT Þ ð14:2-10Þ

@eðkTÞ

@f
ffi �

bq�1

1 þ amq�1

" #
yðkTÞ ð14:2-11Þ

These sensitivity derivatives lead to the following parameter adaptation laws (‘‘MIT
rule’’):

gðkT þ TÞ ¼ gðkTÞ � �
q�1

1 þ amq�1
rðkTÞ

" #
eðkTÞ ð14:2-12Þ

f ðkT þ TÞ ¼ f ðkTÞ þ �
q�1

1 þ amq�1
yðkT Þ

" #
eðkTÞ ð14:2-13Þ

Notice here that the adaptation laws were obtained by absorbing the parameter b in
the adaptation gain �. This is done because b is unknown and should not appear in
the adaptation laws; however, this requires that the sign of b is known. Then the sign
of � depends on the sign of b. The foregoing laws are initialized with arbitrary gð0Þ

Adaptive Control 607



and f ð0Þ, which should reflect our a priori knowledge on the appropriate controller
parameters which achieve model following.

Finally, the adjustable controller is given by

uðkTÞ ¼ �f ðkTÞyðkTÞ þ gðkTÞrðkT Þ ð14:2-14Þ

Equations (14.2-12), (14.2-13), and (14.2-14) specify the dynamic adaptive controller
being sought.

The aformentioned results can be generalized to the case of a single-input–
single-output (SISO) linear system described by the difference equation

Aðq�1
ÞyðkTÞ ¼ q�dBðq�1

�
uðkTÞ ð14:2-15Þ

where d 
 1 is the system’s delay and Aðq�1
Þ and Bðq�1

Þ are polynomials in the
backward shift operator having the form

Aðq�1
�
¼ 1 þ a1q�1

þ � � � þ anA
q�nA ð14:2-16Þ

Bðq�1
Þ ¼ b0 þ b1q1 þ � � � þ bnB

q�nB ð14:2-17Þ

For more details, see [12], where both direct and indirect algorithms are developed.

14.3 MODEL REFERENCE ADAPTIVE CONTROL—
HYPERSTABILITY DESIGN

14.3.1 Introduction

MRAC is a systematic method for controlling plants with unknown parameters. The
basic scheme of an MRAC system is presented in Figure 14.2. In comparison to the
general structure of an adaptive control system given in Figure 14.1, here the desired
performance index is generated by means of a reference model.

The reference model is a dynamic system whose behavior is considered to be
the desired (ideal) one and it is a part of the control system itself, since it appears
explicitly in the control scheme. The output ymðkTÞ of the reference model indicates
how the output yðkTÞ of the plant should behave. Both systems are excited by the
same command signal rðkTÞ. Comparing Figures 14.1 and 14.2, we observe that the
desired performance index is now replaced by ymðkTÞ and the measured performance
index by yðkTÞ.

We distinguish two control loops: the ‘‘inner’’ loop and the ‘‘outer’’ loop. The
‘‘inner’’ loop consists of the plant which involves unknown parameters and the
adjustable controller. The ‘‘outer’’ loop is designed appropriately to adjust the con-
troller’s parameters so that the error eðkT Þ ¼ yðkTÞ � ymðkTÞ approaches zero
asymptotically, while the stability of the overall system can be proved using the
so-called hyperstability approach.

Compared with techniques which involve other kinds of performance indices,
the MRAC technique is characterized by high speed of adaptation. This is because a
simple subtracter is needed to form the error eðkTÞ ¼ yðkTÞ � ymðkTÞ. This error,
together with other available on-line data, is then fed to the adaptation mechanism.
The parameters of the adjustable controller are modified accordingly, in order to
minimize the difference between the two performance indices: namely, the desired
performance index and the measured performance index.

608 Chapter 14



14.3.2 Definition of the Model Reference Control Problem

Consider a deterministic, SISO, discrete-time, linear, time-invariant systems,
described by

Aðq�1
Þyðk þ dÞ ¼ Bðq�1

ÞuðkÞ or Aðq�1
ÞyðkÞ ¼ q�dBðq�1

ÞuðkÞ ð14:3-1Þ

with initial condition yð0Þ 6¼ 0. Here

Aðq�1
Þ ¼ 1 þ a1q�1

þ � � � þ anA
q�nA ¼ 1 þ q�1A

ðq�1
Þ ð14:3-2Þ

Bðq�1
�
¼ b0 þ b1q�1

þ � � � þ bnB
q�nB ¼ b0 þ q�1B

ðq�1
Þ; b0 6¼ 0 ð14:3-3Þ

where q�1 is the backward shift operator, d > 0 represents the system’s time delay,
and uðkÞ and yðkÞ represent the system’s input and output signals, respectively. The
following three assumptions are made for the system under control:

1. The roots of Bðz�1
Þ, which are the system’s zeros, are all inside the unit

circle jzj < 1, i.e., z
nB

i Bðz�1
i Þ ¼ 0 with jzij < 1. Thus, the system zeros are

stable and can be canceled out without leading to an unbounded control
signal.

2. The system’s delay d is known (this implies b0 6¼ 0).
3. An upper limit for the orders nA and nB of the polynomials Aðq�1

Þ and
Bðq�1

Þ, respectively, is given.
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According to the foregoing assumptions, any change in the system’s character-
istics should not affect the delay d, whereas the system’s zeros can move only inside
the unit circle. The method is therefore valid only for minimum-phase systems.

The control objective is twofold: linear model following during tracking and
elimination of any initial output disturbance during regulation. It is desirable to be
able to specify the tracking and regulation objectives independently. This flexibility is
crucial for certain applications. The control objectives are specified as follows.

1 Tracking

During tracking, it is desired for the plant output yðkÞ to satisfy the equation

Amðq
�1
ÞyðkÞ ¼ q�dBmðq

�1
ÞrðkÞ ð14:3-4Þ

where

Amðq
�1
Þ ¼ 1 þ am

1 q�1
þ � � � þ am

nAm
q�nAm ð14:3-5Þ

Bmðq
�1
Þ ¼ bm

0 þ bm
1 q�1

þ � � � þ bm
nBm

q�nBm ð14:3-6Þ

Here, rðkÞ is a bounded reference sequence and the polynomial Amðq
�1
Þ is chosen to

be asymptotically stable.

2 Regulation ðr ðkÞ � 0; ymðkÞ � 0Þ

In regulation, the influence of any initial nonzero output yð0Þ 6¼ 0 (which corre-
sponds to an impulse perturbation), should be eliminated via the dynamics defined
by

�ðq�1
Þyðk þ dÞ ¼ 0 for k 
 0 ð14:3-7Þ

where �ðq�1
Þ is an asymptotically stable polynomial of the designer’s choice, having

the form

�ðq�1
Þ ¼ 1 þ �1q�1

þ � � � þ �n�q�n� ð14:3-8Þ

Consider the following explicit reference model:

Amðq
�1
ÞymðkÞ ¼ q�dBmðq

�1
ÞrðkÞ ð14:3-9Þ

with input rðkÞ and output ymðkÞ. Note here that the sequence ymðkÞ, apart from
being calculated by means of the reference model (14.3-9), can also be a predefined
sequence stored in memory.

It is obvious that both control objectives (i.e., tracking and regulation) can be
accomplished if the control law uðkÞ is such that

�eeðk þ dÞ ¼ �ðq�1
Þeðk þ dÞ ¼ �ðq�1

Þ½yðk þ dÞ � ymðk þ dÞ� � 0 for k 
 0

ð14:3-10Þ

The error eðkÞ is the difference between the plant and reference model outputs (plant-
model error), i.e.,

eðkÞ ¼ yðkÞ � ymðkÞ ð14:3-11Þ

and �eeðkÞ ¼ �ðq�1
ÞeðkÞ is the so-called filtered error between the plant and the refer-

ence model outputs. The error �eeðkÞ is also called the a priori adaptation error. The
foregoing objectives will be satisfied below in the case of known or unknown para-
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meters in the polynomials Aðq�1
Þ and Bðq�1

Þ, in Subsecs 9.3.3 and 9.3.4, respectively,
by seeking appropriate control laws.

If Eq. (14.3-10) is satisfied, then any initial plant-model error or any initial
output disturbance, will converge to zero, i.e., limk!þ1 eðkÞ ¼ 0. Note that if
�ðq�1

Þ ¼ 1, one has eðk þ dÞ � 0, k 
 0, which means that in this case the plant-
model error vanishes d steps after the control input is applied. The polynomial
�ðq�1

Þ is a filtering polynomial. As is made clear in the sequel, adaptive control
performance depends critically on the choice of �ðq�1

Þ.

14.3.3 Design in the Case of Known Parameters

In this subsection we assume that the plant parameters appearing in the polynomials
Aðq�1

Þ and Bðq�1
Þ are known. Consider the general case where d > 1. We wish to

obtain a control law uðkÞ satisfying the control objectives and being causal, i.e., not
depending on future values of the input and output. This control law we seek will
therefore have the form

uðkÞ ¼ f ðyðkÞ; yðk � 1Þ; . . . ; uðk � 1Þ; uðk � 2Þ; . . .Þ

To this end, consider the following equation, which is equivalent to Eq. (14.3-1):

yðk þ dÞ ¼ �A
ðq�1

Þyðk þ d � 1Þ þ Bðq�1
ÞuðkÞ ð14:3-12Þ

Next, we want to express Eq. (14.3-12) in the form

�ðq�1
Þyðk þ dÞ ¼ gðyðkÞ; yðk � 1Þ; . . . ; uðkÞ; uðk � 1Þ; . . .Þ ð14:3-13Þ

The specific form of g sought can be determined in two ways: either by repeatedly
substituting yðk þ d � 1Þ; . . . ; yðk þ 1Þ in Eq. (14.3-12) generated by the same equa-
tion (Eq. (14.3-12)) delayed in time, or more easily, by directly considering the
following polynomial identity (decomposition of �ðq�1

ÞÞ:

�ðq�1
Þ ¼ Aðq�1

ÞSðq�1
Þ þ q�dRðq�1

Þ ð14:3-14Þ

with Rðq�1
Þ and Sðq�1

Þ appropriate polynomials. We adopt the second method for
simplicity and, to this end, the results of the following remark will be useful.

Remark 14.3.1

The above identity (14.3-14) is a special case of what is referred to as the Diophantine
equation or the Bezout identity. It can be proven that �ðq�1

Þ can be uniquely factor-
ized as in Eq. (14.3-14), where

Sðq�1
Þ ¼ 1 þ s1q�1

þ � � � þ snS
q�nS ð14:3-15Þ

Rðq�1
�
¼ r0 þ r1q�1

þ � � � þ rnR
q�nR ð14:3-16Þ

with nS ¼ d � 1 and nR ¼ maxðnA � 1; n� � dÞ (see Subsec. 14.4.2 that follows for
the uniqueness conditions). The coefficients of the polynomials Sðq�1

Þ and Rðq�1
Þ

are uniquely determined by the solution of the following algebraic equation:
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1

a1 1

a2 a1 1

..

.
0

ad�1 ad�2 � � � a1 1

ad ad�1 � � � a2 a1 1

adþ1 ad � � � a3 a2 0 1

adþ2 adþ1 � � � a4 a3 0 0 1

..

. ..
. ..

. ..
.

0 0 0 1

..

. ..
. ..

. ..
.

0 0 0 � � � 1

0 0 0 � � � 0 1

2
666666666666666666666666664

3
777777777777777777777777775

1

s1

s2

..

.

sd�1

r0

r1

r2

..

.

rnR

2
666666666666666666666666664

3
777777777777777777777777775

¼

1

�1

�2

..

.

�d�1

..

.

..

.

2
666666666666666666666666664

3
777777777777777777777777775
ð14:3-17Þ

Returning to Eq. (14.3-13) and using Eq. (14.3-14), we express �ðq�1
Þyðk þ dÞ

as follows:

�ðq�1
Þyðk þ dÞ ¼ Aðq�1

ÞSðq�1
Þyðk þ dÞ þ q�dRðq�1

Þyðk þ dÞ

¼ Bðq�1
ÞSðq�1

ÞuðkÞ þ Rðq�1
ÞyðkÞ ð14:3-18Þ

Let

 ðq�1
Þ ¼ Bðq�1

ÞSðq�1
Þ¼ b0 þ q�1 

ðq�1
Þ¼ b0 þ  1q�1

þ� � � þ dþnB�1q�ðdþnB�1Þ

ð14:3-19Þ

where

 1 ¼ b0s1 þ b1;  2 ¼ b0s2 þ b1s1 þ b2; . . . ;  dþnB�1 ¼ bnB
sd�1

ð14:3-20Þ

Finally, we have

�ðq�1
Þyðk þ dÞ ¼ b0uðkÞ þ  

ðq�1
Þuðk � 1Þ þ Rðq�1

ÞyðkÞ ð14:3-21Þ

Note that the right-hand side of Eq. (14.3-21) is the function g appearing in Eq.
(14.3-13). Equation (14.3-21) can also be written as

�ðq�1
Þyðk þ dÞ ¼ hTuðkÞ ¼ b0uðkÞ þ hT

0 u0ðkÞ ð14:3-22Þ

where

hT
¼ b0

..

.
 1; . . . ;  dþnB�1; r0; r1; . . . ; rnR

� �
¼ b0

..

.
bthetaT

0

� �
ð14:3-23Þ

and uðkÞ is the so-called regression vector having the form

uT
ðkÞ ¼ uðkÞ ..

.
uðk � 1Þ; . . . ; uðk � d � nB þ 1Þ; yðkÞ; yðk � 1Þ; . . . ; yðk � nRÞ

� �

¼ uðkÞ ..
.
uT

0 ðkÞ

� �
ð14:3-24Þ
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In what follows, we seek to find a control law uðkÞ, which drives the filtered
plant-model error �eeðk þ dÞ ¼ �ðq�1

Þeðk þ dÞ to zero. Using Eqs (14.3-21) and
(14.3-22), we have

�ðq�1
Þeðk þ dÞ ¼ �ðq�1

�
yðk þ dÞ � �ðq�1

Þymðk þ dÞ

¼ b0uðkÞ þ  
ðq�1

Þuðk � 1Þ þ Rðq�1
ÞyðkÞ � �ðq�1

Þymðk þ dÞ

¼ b0uðkÞ þ hT
0 u0ðkÞ � �ðq�1

Þymðk þ dÞ ð14:3-25Þ

Solving for uðkÞ, which drives the filtered error to zero, i.e.,
�eeðk þ dÞ ¼ �ðq�1

Þeðk þ dÞ ¼ 0, we arrive at the desired control law:

uðkÞ ¼
�ðq�1

Þymðk þ dÞ � Rðq�1
ÞyðkÞ �  

ðq�1
Þuðk � 1Þ

b0

ð14:3-26Þ

or equivalently

uðkÞ ¼
�ðq�1

Þymðk þ dÞ � hT
0 u0ðkÞ

b0

ð14:3-27Þ

where use has been made of the fact that b0 6¼ 0. Finally, using the fact that
 ðq�1

Þ ¼ Bðq�1
ÞSðq�1

Þ, the expression for uðkÞ becomes

uðkÞ ¼
1

Bðq�1ÞSðq�1Þ
�ðq�1

Þymðk þ dÞ � Rðq�1
ÞyðkÞ

� 
ð14:3-28Þ

From this last expression for uðkÞ, it is readily seen why the process should be
minimum phase, as the system zeros appear in the denominator of the control law.

It can be seen that the control law (14.3-26), which satisfies the control objec-
tive �ðq�1

Þeðk þ dÞ ¼ 0, also minimizes the quadratic performance index

Jðk þ dÞ ¼ �ðq�1
Þ½yðk þ dÞ � ymðk þ dÞ�

� 2
ð14:3-29Þ

thereby assuring that Jðk þ dÞ � 0, for k 
 0.
The control scheme analyzed above for the case of known parameters is shown

in Figure 14.3.

14.3.4 Hyperstability Design in the Case of Unknown Parameters

1 The Adaptation Algorithm

When the system parameters appearing in the polynomials Aðq�1
Þ and Bðq�1

Þ are
unknown, we keep the same structure for the controller, but replace the constant b0

and the vector h0 (which are now unknown) in Eq. (14.3-27), with the time-varying
adjustable parameters

b̂b0ðkÞ and ĥhT
0 ðkÞ ¼  ̂ 1ðkÞ; . . . ;  ̂ dþnB�1ðkÞ; r̂r0ðkÞ; r̂r1ðkÞ; . . . ; r̂rnR

ðkÞ
h i

ð14:3-30Þ

This procedure is widely known in the literature as the certainty equivalence principle.
The adjustable parameters of Eq. (14.3-30) will be appropriately updated by the
adaptation mechanism. The certainty equivalence control law now becomes
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uðkÞ ¼
�ðq�1

Þymðk þ dÞ � ĥhT
0 ðkÞu0ðkÞ

b̂b0ðkÞ
ð14:3-31Þ

For convenience, we keep the same notation uðkÞ for the certainty equivalence con-
trol law (14.3-31) as well. Expression (14.3-31) may also be written as

�ðq�1
Þymðk þ dÞ ¼ ĥhT

ðkÞuðkÞ ð14:3-32Þ

where

ĥhT
ðkÞ ¼ b̂b0ðkÞ

..

.
ĥhT

0 ðkÞ

� �
ð14:3-33Þ

In the case of unknown plant parameters, it is not possible to keep the filtered
error �eeðk þ dÞ ¼ �ðq�1

Þeðk þ dÞ identically equal to zero. The design objective now
changes and becomes that of finding a suitable adaptation mechanism for the adjus-
table parameters in Eq. (14.3-33), which will secure the asymptotic convergence of
�eeðk þ dÞ to zero, with bounded input and output signals. Consequently, in the case of
unknown plant parameters the control objective becomes

lim
k!þ1

�eeðk þ dÞ ¼ lim
k!þ1

�ðq�1
Þ½yðk þ dÞ � ymðk þ dÞ� ¼ 0; 8 �eeð0Þ 6¼ 0;

ĥhð0Þ 2 R
dþnBþnRþ1

ð14:3-34Þ
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with kuðkÞk bounded by all k. Then, if Eq. (14.3-34) holds, since �ðq�1
Þ is an

asymptotically stable polynomial, one could conclude that limk!þ1 eðkÞ ¼ 0. That
is, the plant-model error vanishes asymptotically. Using Eqs (14.3-22) and (14.3-32),
the filtered plant-model error (or a priori adaptation error) �eeðk þ dÞ is expressed as

�eeðk þ dÞ ¼ �ðq�1
Þeðk þ dÞ ¼ �ðq�1

Þ½yðk þ dÞ � ymðk þ dÞ�

¼ hTuðkÞ � ĥhT
ðkÞuðkÞ

or

�eeðk þ dÞ ¼
�
h � ĥhðkÞ

�T
uðkÞ ð14:3-35Þ

Equivalently

�eeðkÞ ¼ �ðq�1
ÞeðkÞ ¼

�
h � ĥhðk � dÞ

�T
uðk � dÞ ð14:3-36Þ

Define the auxiliary error �eeðkÞ as

�""ðkÞ ¼
�
ĥhðk � dÞ � ĥhðkÞ

�T
uðk � dÞ ð14:3-37Þ

and the a posteriori filtered plant-model error or augmented error "ðkÞ as

"ðkÞ ¼ �eeðkÞ þ �""ðkÞ ¼
�
h � ĥhðkÞ

�T
uðk � dÞ ð14:3-38Þ

By using the so-called hyperstability approach not presented herein, but analyzed in
[12], it can be proven that the following adaptation algorithm:

ĥhðkÞ ¼ ĥhðk � 1Þ þ FðkÞuðk � dÞ"ðkÞ ð14:3-39Þ

assures that, for all �eeð0Þ 6¼ 0 and ĥhð0Þ 2 R
dþnBþnRþ1, we have

lim
k!þ1

"ðkÞ ¼ 0 and lim
k!þ1

�eeðkÞ ¼ lim
k!þ1

eðkÞ ¼ 0 ð14:3-40Þ

The gain matrix FðkÞ is positive definite and is generated by

F
�1
ðk þ 1Þ ¼ 
1ðkÞF

�1
ðkÞ þ 
2ðkÞuðk � dÞuT

ðk � dÞ when Fð0Þ > 0

ð14:3-41Þ

with

0 < 
1ðkÞ � 1 and 0 � 
2ðkÞ < 2 for all k ð14:3-42Þ

Clearly, relation (14.3-40) states that the control objective is satisfied asymptotically.
Note that the algorithm presented above is a special case of the algorithm given

by Ionescu & Monopoli in [19], who introduced the notion of the augmented error
for the first time for discrete-time systems.

Remark 14.3.2

To apply the adaptation algorithm (14.3-39), an implementable form for the a pos-
teriori filtered plant-model error "ðkÞ may be derived using Eqs (14.3-32) and (14.3-
39), as follows:
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"ðkÞ ¼ �eeðkÞ þ �""ðkÞ ¼ �ðq�1
ÞðyðkÞ � ymðkÞÞ þ

�
ĥhðk � dÞ � ĥhðkÞ

�T
uðk � dÞ

¼ �ðq�1
ÞyðkÞ � ĥhT

ðk � dÞuðk � dÞ þ
�
ĥhðk � dÞ � ĥhðkÞ

�T
uðk � dÞ

¼ �ðq�1
ÞyðkÞ � ĥhT

ðkÞuðk � dÞ

¼ �ðq�1
ÞyðkÞ � ĥhT

ðk � 1Þuðk � dÞ � uT
ðk � dÞFðkÞuðk � dÞ"ðkÞ ð14:3-43Þ

Hence

"ðkÞ ¼
~""ðkÞ

1 þ uTðk � dÞFðkÞuðk � dÞ
ð14:3-44Þ

where

~""ðkÞ ¼ �ðq�1
ÞyðkÞ � ĥhT

ðk � 1Þuðk � dÞ ð14:3-45Þ

Remark 14.3.3

During the adaptation procedure we have b̂b0ðkÞ ¼ 0. To avoid division by zero in Eq.
(14.3-31), if jb̂b0ðkÞj < �ð� > 0Þ for a certain k, we repeat evaluating ĥhðkÞ from Eq.
(14.3-39), using appropriate values for 
1ðk � 1Þ and 
2ðk � 1Þ in Eq. (14.3-41).
These values must be chosen by trial and error so that jb0ðkÞj 
 �.

The control algorithm is summarized in Table 14.1. The control scheme for
tracking and regulation with independently chosen dynamics, for the case of
unknown parameters, is given in Figure 14.4.
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Table 14.1 The Model Reference Adaptive Control (MRAC) Algorithm

Algorithm Equation No.

uT
ðkÞ ¼ ½uðkÞ ..

.
uðk � 1Þ; . . . ; uðk � d � nB þ 1Þ; yðkÞ; yðk � 1Þ; . . . ; yðk � nRÞ�

¼ ½uðkÞ ..
.

uT
0 ðkÞ� ð14:3-46Þ

ĥhT
ðkÞ ¼ ½b̂b0ðkÞ

..

.
ĥhT

0 ðkÞ� (14.3-47)

uðkÞ ¼
�ðq�1

Þymðk þ dÞ � ĥhT
0 ðkÞu0ðkÞ

b̂b0ðkÞ
(14.3-48)

~""ðkÞ ¼ �ðq�1
ÞyðkÞ � ĥhT

ðk � 1Þu0ðk � dÞ (14.3-49)

"ðkÞ ¼
~""ðkÞ

1 þ uTðk � dÞFðkÞuðk � dÞ
(14.3-50)

ĥhðkÞ ¼ ĥhðk � 1Þ þ FðkÞuðk � dÞ"ðkÞ (14.3-51)

F
�1
ðk þ 1Þ ¼ 
1F

�1
ðkÞ þ 
2ðkÞuðk � dÞuT

ðk � dÞ

with initial conditions yð0Þ; Fð0Þ > 0; ĥhð0Þ

(14.3-52)



Example 14.3.1

Consider the system

Aðq�1
ÞyðkÞ ¼ q�1Bðq�1

ÞuðkÞ; yð0Þ ¼ 1

where Aðq�1
Þ ¼ 1 þ 2q�1

þ q�2 and Bðq�1
Þ ¼ 2 þ q�1

þ 0:5q�2 (asymptotically
stable). It is desired to track the output of the reference model

ymðkÞ ¼
q�1Bmðq

�1
Þ

Amðq
�1Þ

" #
rðkÞ ¼ q�1 1 þ 0:3q�1

1 � q�1 þ 0:25q�2

" #
rðkÞ with ymð0Þ ¼ 2

The dynamics during regulation are characterized by the asymptotically stable poly-
nomial �ðq�1

Þ ¼ 1 þ 0:5q�1.

(a) Determine a model reference control law which achieves the control
objectives in the case of known parameters for Aðq�1

Þand Bðq�1
Þ.
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Figure 14.4 The control scheme for tracking and regulation with independent dynamics for
the case of unknown parameters.



(b) In the case of unknown plant parameters, determine a control law and
appropriate adaptations (MRAC design) to satisfy the control objectives
asymptotically.

Solution

(a) Here d ¼ 1, Sðq�1
Þ ¼ 1, and we are looking for Rðq�1

Þ ¼ r0 þ r1q�1 such that

�ðq�1
Þ ¼ 1 þ 0:5q�1

¼ ð1 þ 2q�1
þ q�2

Þ þ q�1
ðr0 þ r1q�1

Þ

¼ Aðq�1
ÞSðq�1

Þ þ q�dRðq�1
Þ

or equivalently

1 0 0
a1 1 0
a2 0 1

2
4

3
5 1

r0

r1

2
4

3
5 ¼

1
�1

0

2
4

3
5 or

1 0 0
2 1 0
1 0 1

2
4

3
5 1

r0

r1

2
4

3
5 ¼

1
0:5
0

2
4

3
5

One easily obtains r0 ¼ �1:5 and r1 ¼ �1. Moreover,

 ðq�1
Þ ¼ Bðq�1

ÞSðq�1
Þ ¼ 2 þ q�1

þ 0:5q�2
¼ 2 þ q�1

ð1 þ 0:5q�1
Þ

¼ b0 þ q�1 
ðq�1

Þ

In the case of unknown parameters, the control law is

uðkÞ ¼
�ðq�1

Þymðk þ 1Þ � Rðq�1
ÞyðkÞ �  

ðq�1
Þuðk � 1Þ

b0

¼
ymðk þ 1Þ þ 0:5ymðkÞ þ 1:5yðkÞ þ yðk � 1Þ � uðk � 1Þ � 0:5uðk � 2Þ

2

(b) In the case of unknown plant parameters, the certainty equivalence control
law is

uðkÞ ¼

ymðk þ 1Þ þ 0:5ymðkÞ � �̂�1ðkÞuðk � 1Þ�

�̂�2ðkÞuðk � 2Þ � �̂�3ðkÞyðkÞ � �̂�4ðkÞyðk � 1Þ

�̂�0ðkÞ

where

ĥhT
ðkÞ ¼

�
�̂�0ðkÞ; �̂�1ðkÞ; �̂�2ðkÞ; �̂�3ðkÞ; �̂�4ðkÞ


where ĥhðkÞ is appropriately changed at each step, by using the adaptation algorithm
given below. In this algorithm we let 
1ðkÞ ¼ 0:98 and 
2ðkÞ ¼ 1. This corresponds to
a forgetting factor algorithm, as explained in the discussion of the parameter adap-
tation algorithm presented at the end of this section. The adaptation algorithm is

Fð0Þ ¼
1

10�3
I5

uT
ðkÞ ¼ ½uðkÞ; uðk � 1Þ; uðk � 2Þ; yðkÞ; yðk � 1Þ� for k ¼ 0; 1; 2; . . .

~""ðkÞ ¼ yðkÞ þ 0:5yðk � 1Þ � ĥhT
ðk � 1Þuðk � 1Þ for k ¼ 1; 2; . . .

"ðkÞ ¼
~""ðkÞ

1 þ uTðk � 1ÞFðkÞuðk � 1Þ
for k ¼ 1; 2; . . .
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ĥhðkÞ ¼ ĥhðk � 1Þ þ FðkÞuðk � 1Þ"ðkÞ for k ¼ 1; 2; . . .

F
�1
ðk þ 1Þ ¼ 0:98F�1

ðkÞ þ uðk � 1ÞuT
ðk � 1Þ for k ¼ 0; 1; 2; . . .

We can initialize ĥhðkÞ with ĥhT
ð0Þ ¼ ½1; 0; 0;�1;�1� for convenience

The particular choice made for the adaptation algorithm was guided by the
objective of global asymptotic stability for the whole system (14.3-39), (14.3-41),
(14.3-42), (14.3-44), i.e., asymptotic stability for any finite initial parameter error
and plant-model error. Moreover, the adaptation mechanism should ensure that the
error between the plant output and the ouput of the reference model tends to zero
asymptotically, which is the control objective. The approach applied to satisfy the
aforementioned objectives relies upon the hyperstability theory presented in [12].
Global asymptotic stability is guaranteed.

Indeed, most adaptive control schemes, after an adequate analysis, lead to an
equation of the form

vðkÞ ¼ Hðq�1
Þ
�
h � ĥhðkÞ

�T
uðk � dÞ ð14:3-53Þ

where h is an unknown parameter vector, ĥhðkÞ is the estimate of h resulting from an
appropriate parameter adaptation algorithm, uðk � dÞ is a measurable regressor
vector, Hðq�1

Þ is a rational discrete transfer function of the form

Hðz�1
Þ ¼

1 þ h 0
1z�1

þþh 0
z

�

1 þ h1z�1 þ � � � þ h�z
��

ð14:3-54Þ

and the measurable quantity vðkÞ is the so-called processed augmented error. A
particular case of Eq. (14.3-53) is given by Eq. (14.3-38), where Hðq�1

Þ ¼ 1 and
the a posteriori filtered plant-model error "ðkÞ takes the place of vðkÞ. Then, a stabi-
lity theorem given in [22] provides the following appropriate adaptation mechanism
sought, which makes use of vðkÞ as the basis of the parameter update law for ĥhðkÞ:

ĥhðkÞ ¼ ĥhðk � 1Þ þ FðkÞuðk � dÞvðkÞ ð14:3-55Þ

F
�1
ðk þ 1Þ ¼ 
1ðkÞF

�1
ðkÞ þ 
2ðkÞuðk � dÞuT

ðk � dÞ; Fð0Þ > 0 ð14:3-56Þ

with

0 < 
1ðkÞ � 1; 0 � 
2ðkÞ < 2; 8k ð14:3-57Þ

The convergence of the plant-model error eðkÞ to zero and the boundedness of the
input and output signals can be proved.

2 Discussion of the Parameter Adaptation Algorithm

Expression (14.3-56) defines a general law for the determination of the adaptation
gain matrix FðkÞ and is repeated here for convenience:

F
�1
ðk þ 1Þ ¼ 
1ðkÞF

�1
ðkÞ þ 
2ðkÞuðk � dÞuT

ðk � dÞ with Fð0Þ > 0

ð14:3-58Þ
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where 0 < 
1ðkÞ � 1 and 0 � 
2ðkÞ < 2. Using the matrix inversion lemma of
Chapter 13 (relation 13.3-7)), the above equation may be written equivalently as
follows:

Fðk þ 1Þ ¼
1


1ðkÞ
FðkÞ �

FðkÞuðk � dÞuT
ðk � dÞFðkÞ


1ðkÞ

�1
2 ðkÞ þ uTðk � dÞFðkÞuðk � dÞ

" #
ð14:3-59Þ

We note that, in general, 
1ðkÞ and 
2ðkÞ have opposite effects on the adaptation
gain. That is, as 
1ðkÞ � 1 increases, the gain 
2ðkÞ does the opposite, i.e., it decreases
the gain.

Different types of adaptation algorithms are obtained by appropriate choices
of 
1ðkÞ and 
2ðkÞ, 0 < 
1ðkÞ � 1, 0 � 
2ðkÞ < 2. We distinguish the following
choices:

1. 
1ðkÞ � 1 and 
2ðkÞ � 0. In this case FðkÞ ¼ Fð0Þ. This choice corresponds
to an algorithm with a constant gain. It is the simplest to implement, but
also the least efficient. It is convenient for the estimation of unknown
constant parameters, but not for time-varying parameters.

2. 
1ðkÞ ¼ 
2ðkÞ � 1. This choice corresponds to a recursive least-squares
algorithm with decreasing gain.

3. 
1ðkÞ � 
1 < 1 (usually 0:95 � 
1 � 0:99) and 
2ðkÞ � 1. This choice cor-
responds to an algorithm with a constant forgetting factor 
1 (it ‘‘forgets’’
old measurements exponentially).

4. 
1ðkÞ < 1 and 
2ðkÞ � 1. This choice corresponds to a variable forgetting
factor type of algorithm. Usually, 0:95 � 
1ðkÞ � 0:99 or

1ðk þ 1Þ ¼ 
0
1ðkÞ þ 1 � 
0, with 0:95 � 
0 � 0:99 and
0:95 � 
1ð0Þ � 0:99A. In this last case it holds true that limk!þ1 
1ðkÞ ¼ 1.

5. When both 
1ðkÞ and 
2ðkÞ are time varying, we have extra freedom in
choosing the gain profiles. For example, by choosing 
1ðkÞ=
2ðkÞ ¼ ðkÞ,
we have the following expression for the trace of FðkÞ:

trFðk þ 1Þ ¼
1


1ðkÞ
tr FðkÞ �

FðkÞuðk � dÞuT
ðk � dÞFðkÞ

ðkÞ þ uTðk � dÞFðkÞuðk � dÞ

" #

ð14:3-60Þ

At each step we can choose ðkÞ ¼ 
1ðkÞ=
2ðkÞ and then specify 
1ðkÞ from Eq.
(14.3-60) such that the trace of FðkÞ has a prespecified value (constant or time
varying) at each step.

Remark 14.3.4

We note that when uðk � dÞ ¼ 0 for a long period of time (this may happen in the
steady state or in the absence of any signal in the input), using choices 3 or 4 may
lead to an undesirable increase in the adaptation gain. In this case there is no
change in the parameter estimates and FðkÞ will grow exponentially if 
1ðkÞ < 1,
since in this case we have that Fðk þ 1Þ ¼ 1=
�1

1 ðkÞFðkÞ. A new change in the set
point can then lead to large changes in the parameter estimates and the plant
output.
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Remark 14.3.5

In practice we initialize at Fð0Þ ¼ ð1=�ÞI, 0 < �� 1.

14.4 SELF-TUNING REGULATORS

14.4.1 Introduction

Another important class of adaptive systems with many industrial applications is
that of STRs. The block diagram of an STR is shown in Figure 14.5.

The STR is based on the idea of separating the estimation of the unknown
parameters of the system under control, from the design of the controller. The
control scheme consists of two loops: the ‘‘inner’’ loop, which involves the plant
with unknown parameters and a linear feedback controller with adjustable para-
meters and the ‘‘outer‘‘ loop, which is used in the case of unknown plant parameters
and is composed of a recursive parameter estimator and a block named ‘‘controller
design.’’

In the case of known plant parameters, the design of the controller (i.e., the
determination of its parameters as functions of the plant parameters) is carried out
off-line. This controller satisfies a specific control design problem, such as minimum
variance, pole placement, model following, etc. This control problem, in the context
of the STRs, is called the underlying control problem.

When the plant parameters are uncertain, the recursive parameter estimator
provides on-line estimates of the unknown plant parameters. On the basis of these
estimates, the solution of the control design problem (i.e., the determination of the
controller parameters as functions of the plant parameters) is achieved on-line in
each step by the ‘‘controller design’’ block. The controller parameter estimates thus
obtained, are used to recalculate the control law at each step. Apart from the fact
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that the controller parameters are substituted by estimates obtained by the on-line
solution of the control design problem, the controller structure is kept the same as in
the case of known plant parameters. This is the certainty equivalence principle.

For the estimation of the plant parameters, various schemes can be used: least
squares, recursive least squares, maximum likelihood, extended Kalman filtering, etc.
Different combinations of appropriate parameter estimation methods and suitable
control strategies lead to different adaptive controllers. For example, an adaptive
controller based on least-squares estimation and deadbeat control was first described
by Kalman in 1958, while the original STR design by A

�

ström et al. [16] was based on
least-squares estimation and the minimum-variance control problem.

The control procedure discussed above leads to an explicit STR, where the
term explicit is used because the plant parameters are estimated explicitly. Such
explicit STRs need to solve, at each step, the tedious controller design problem. It
is sometimes possible, in order to eliminate the design calculations, to reparametrize
the plant model, so that it can be expressed in terms of the controller parameters,
which are then updated directly by the estimator. This leads to implicit STRs.
Implicit STRs avoid controller design calculations and are based on estimates of
an implicit plant model. Explicit STRs correspond to indirect adaptive control, while
implicit STRs correspond to direct adaptive control.

A close relation has been established between STRs and MRAC systems, in
spite of differences in their origin. Indeed, MRAC design was based on the determi-
nistic servoproblem, while STR design was based on the stochastic regulation pro-
blem. Although the design methods of the ‘‘inner’’ loop and the parameter
adjustments in the ‘‘outer’’ loop are different, direct MRAC systems are closely
related to implicit STRs, while indirect MRAC systems are related to explicit STRs.

Implicit STRs are not discussed here. Explicit STRs, using the pole placement
technique, are treated in Subsec. 14.4.2 that follows. Furthermore, it is explained
how implicit pole-placement designs can also be derived.

14.4.2 Pole-Placement Self-Tuning Regulators

1 Pole-Placement Design with Known Parameters

The pole-placement design (chosen as the underlying control problem), can be
applied for nonminimum phase systems. The procedure consists of finding a feed-
back law for which the closed-loop poles have desired locations. Both explicit and
implicit schemes may be formulated. Explicit schemes are based on estimates of
parameters in an explicit system model, while implicit schemes are based on esti-
mates of parameters in a modified implicit system model. Similarities between
MRAC and STRs will emerge.

The discussion is limited to SISO systems described by

Aðq�1
ÞyðkÞ ¼ q�dBðq�1

ÞuðkÞ ð14:4-1Þ

where

Aðq�1
Þ ¼ 1 þ a1q�1

þ � � � þ anA
q�nA ð14:4-2Þ

Bðq�1
Þ ¼ b0 þ b1q�1

þ � � � þ bnB
q�nB ð14:4-3Þ
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The polynomial Aðq�1
Þ is thus monic, Aðq�1

Þ and Bðq�1
Þ are relatively prime (have

no common factors), and the system’s delay is d 
 1. It is desired to find a controller
for which the relation from the command signal rðkÞ to the output yðkÞ becomes

Amðq
�1
ÞyðkÞ ¼ q�dBmðq

�1
ÞrðkÞ ð14:4-4Þ

where Amðq
�1
Þ is a stable monic polynomial and Amðq

�1
Þ and Bmðq

�1
Þ are relatively

prime. Restrictions on Bmðq
�1
Þ will appear in what follows.

A general structure ðR�S�T canonical structure) for the controller is presented
in Figure 14.6. The controller is described by

Rðq�1
ÞuðkÞ ¼ Tðq�1

ÞrðkÞ � Sðq�1
ÞyðkÞ ð14:4-5Þ

This controller offers a negative feedback with transfer function �Sðq�1
Þ=Rðq�1

Þ and
feedforward with transfer function Tðq�1

Þ=Rðq�1
Þ. Multiplying Eq. (14.4-5) by

q�dBðq�1
Þ, one obtains

q�dBðq�1
ÞRðq�1

ÞuðkÞ ¼ q�dTðq�1
ÞBðq�1

ÞrðkÞ � q�dSðq�1
ÞBðq�1

ÞyðkÞ

or

A q�1
� �

Rðq�1
Þ þ q�dBðq�1

ÞSðq�1
Þ

h i
yðkÞ ¼ q�dTðq�1

ÞBðq�1
ÞrðkÞ ð14:4-6Þ

Hence, the relation between yðkÞ and rðkÞ is given by

yðkÞ

rðkÞ
¼

q�dTðq�1
ÞBðq�1

Þ

Aðq�1ÞRðq�1Þ þ q�dBðq�1ÞSðq�1Þ
ð14:4-7Þ

Relation (14.4-4), which represents the desired behavior, may be written as

yðkÞ

rðkÞ
¼

q�dBmðq
�1
Þ

Amðq
�1Þ

ð14:4-8Þ

Thus, the design problem is equivalent to the algebraic problem of finding Rðq�1
Þ,

Sðq�1
Þ, and Tðq�1

Þ, for which the following equation holds true:

q�dTðq�1
ÞBðq�1

Þ

Aðq�1ÞRðq�1Þ þ q�dBðq�1ÞSðq�1Þ
¼

q�dBmðq
�1
Þ

Amðq
�1Þ

ð14:4-9Þ

From the left-hand side of Eq. (14.4-9), it is evident that the system zeros
ðznBBðz�1

Þ ¼ 0) will also be closed-loop zeros, unless they are canceled out by corre-
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sponding closed-loop poles. But unstable (or poorly damped) zeros should not be
canceled out by the controller, since they would lead to instability. Thus, let us factor
out Bðq�1

Þ as follows

Bðq�1
Þ ¼ Bþ

ðq�1
ÞB�

ðq�1
Þ ð14:4-10Þ

where Bþ
ðq�1

Þ contains the well-damped zeros (which are canceled out) and B�
ðq�1

Þ

contains the unstable and poorly damped zeros (which are not canceled out). To
obtain a unique factorization, we also require that Bþ

ðq�1
Þ is a monic polynomial.

From Eq. (14.4-9), it follows that the characteristic polynomial of the closed-loop
system is

Aðq�1
ÞRðq�1

Þ þ q�dBðq�1
ÞSðq�1

Þ ð14:4-11Þ

The factors of this polynomial should be the desired reference model poles, i.e., the
roots of Amðq

�1
Þ, and the system zeros which can be canceled out, i.e., the roots of

Bþ
ðq�1

Þ. Moreover, since in general, the order of the reference model ðdeg Amðq
�1
ÞÞ,

is less than the order of the closed-loop system degðAðq�1
ÞRðq�1

Þ

þ q�dBðq�1
ÞSðq�1

ÞÞ, there are factors in the left-hand side of Eq. (14.4-9) which
cancel out. These factors correspond to a polynomial A0ðq

�1
Þ. The polynomial A0

ðq�1
Þ is called the observer polynomial and is chosen to have well-damped roots.

The appearance of this polynomial is more evident when a state-space solution to
this problem is considered. In this case, the solution is a combination of state
feedback and an observer. Hence, the characteristic polynomial of the closed-
loop system assumes the form

Aðq�1
ÞRðq�1

Þ þ q�dBðq�1
ÞSðq�1

Þ ¼ Bþ
ðq�1

ÞAmðq
�1
ÞA0ðq

�1
Þ ð14:4-12Þ

Now, since Bþ
ðq�1

Þ is the divident of Bðq�1
Þ and the polynomials Aðq�1

Þ and
Bðq�1

Þ are relatively prime, it is clear from Eq. (14.4-12) that Bþ
ðq�1

Þ should also be
the dividend of the polynomial Rðq�1

Þ, i.e.,

Rðq�1
Þ ¼ Bþ

ðq�1
ÞR1ðq

�1
Þ ð14:4-13Þ

Equation (14.4-12) may then be rewritten as

Aðq�1
ÞR1ðq

�1
Þ þ q�dB�

ðq�1
ÞSðq�1

Þ ¼ Amðq
�1
ÞA0ðq

�1
Þ ð14:4-14Þ

Hence, Eq. (14.4-9) is then equivalent to the equation

q�dBþ
ðq�1

ÞB�
ðq�1

ÞTðq�1
Þ

Bþðq�1ÞAmðq
�1ÞA0ðq

�1Þ
¼

q�dBmðq
�1
Þ

Amðq
�1Þ

ð14:4-15Þ

In order that the foregoing equation holds true and since B�
ðq�1

Þ cannot be
canceled out, it is clear that B�

ðq�1
Þ must be a factor of Bmðq

�1
Þ i.e.,

Bmðq
�1
Þ ¼ B�

ðq�1
ÞBþ

mðq
�1
Þ ð14:4-16Þ

and also that

Tðq�1
Þ ¼ A0ðq

�1
ÞBþ

mðq
�1
Þ ð14:4-17Þ

It should be evident that we are not absolutely free in the choice of Bmðq
�1
Þ, which

corresponds to the specifications for the closed-loop zeros. We can choose freely the
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part Bþ
mðq

�1
Þ of Bmðq

�1
Þ while Eq. (14.4-16) should be valid, otherwise there is no

solution to the design problem.
It is necessary to establish conditions under which a solution for the poly-

nomials R1ðq
�1
Þ and Sðq�1

Þ in Eq. (14.4-14), is guaranteed. This equation, linear
in the polynomials R1ðq

�1
Þ and Sðq�1

Þ is a special case of the Diophantine equation
(or Bezout identity), which has the general form (see also Remark 14.3.1):

�AAðq�1
Þ �RRðq�1

Þ þ �BBðq�1
Þ �SSðq�1

Þ ¼ �CCðq�1
Þ ð14:4-18Þ

It can be proved that the Diophantine equation (14.4-18) always has a solution for
�RRðq�1

Þ and �SSðq�1
Þ, if the greatest common factor of �AAðq�1

Þ and �BBðq�1
Þ is a dividend

of �CCðq�1
Þ. Therefore, Eq. (14.4-14) will always have a solution for R1ðq

�1
Þ and

Sðq�1
Þ, since we have assumed that Aðq�1

Þ and Bðq�1
Þ are coprime and, conse-

quently, Aðq�1
Þ and q�dB�

ðq�1
Þ are also coprime.

Note that if a solution exists, then Eq. (14.4-18), in general, has infinitely many
solutions. Indeed, if R0

ðq�1
Þ and S0

ðq�1
Þ are solutions of Eq. (14.4-18), then it can be

easily verified that R0
ðq�1

Þ þ �BBðq�1
ÞQðq�1

Þ and S0
ðq�1

Þ � �AAðq�1
ÞQðq�1

Þ, with Qðq�1
Þ

an arbitrary polynomial, are also solutions of Eq. (14.4-18). Particular solutions can
be specified in several ways. Different solutions give systems with different noise
rejection properties.

It can be proved that there are unique solutions to Eq. (14.4-18) if, in addition,
we impose the following restriction for the solution sought:

deg �RRðq�1
Þ < deg �BBðq�1

Þ ð14:4-19Þ

or

deg �SSðq�1
Þ < deg �AAðq�1

Þ ð14:4-20Þ

Moreover, for the pole placement control problem, we seek particular solutions
which lead to causal control laws (i.e., deg Sðq�1

Þ � deg Rðq�1
Þ and

deg Tðq�1
Þ � deg Rðq�1

ÞÞ. Note also that it is often advantageous to keep
deg Sðq�1

Þ ¼ deg Tðq�1
Þ ¼ deg Rðq�1

Þ, in order to avoid an unnecessary delay in
the controller.

Note that from Eq. (14.4-12) we must select either

deg Rðq�1
Þ ¼ deg Amðq

�1
Þ þ deg A

0
ðq�1

Þ þ deg Bþ
ðq�1

Þ � deg Aðq�1
Þ

ð14:4-21Þ

or

deg Sðq�1
Þ ¼ deg Amðq

�1
Þ þ deg A0ðq

�1
Þ � deg B�

ðq�1
Þ � d ð14:4-22Þ

The degrees of Rðq�1
Þ and Sðq�1

Þ are imposed by the structure of the system and the
structure of the desired closed-loop transfer function. To assure unique solutions,
using Eq. (14.4-21) we must have deg Sðq�1

Þ � deg Aðq�1
Þ � 1 (this results from Eq.

(14.4-20)), and if we choose to satisfy Eq. (14.4-22) we must have deg Rðq�1
Þ � deg

Bðq�1
Þ þ d � 1 (this results from Eq. (14.4-19)).
By selecting Eq. (14.4-21) or Eq. (14.4-22), possible choices for the degrees of

R1ðq
�1
Þ and Sðq�1

Þ in Eq. (14.4-14), corresponding to unique solutions and mini-
mum-order polynomials, are consequently given below:
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deg R1ðq
�1
Þ ¼ deg Amðq

�1
Þ þ deg A0ðq

�1
Þ � deg Aðq�1

Þ ð14:4-23Þ

deg Sðq�1
Þ ¼ deg Aðq�1

Þ � 1 ð14:4-24Þ

or

deg R1ðq
�1
Þ ¼ deg B�

ðq�1
Þ þ d � 1 ð14:4-25Þ

deg Sðq�1
Þ ¼ deg Amðq

�1
Þ þ deg A0ðq

�1
Þ � deg B�

ðq�1
Þ � d ð14:4-26Þ

By selecting Eqs (14.4-23) and (14.4-24), and in order to have causal control
laws (that is deg Sðq�1

Þ ¼ deg Aðq�1
Þ � 1 � deg Rðq�1

ÞÞ, relation (14.4-21) leads to

deg A0ðq
�1
Þ 
 2 deg Aðq�1

Þ � deg Amðq
�1
Þ � deg Bþ

ðq�1
Þ � 1 ð14:4-27Þ

Relation (14.4-27) is a restriction on the degree of the observer polynomial A0ðq
�1
Þ.

Moreover, requiring that deg Tðq�1
Þ � deg Rðq�1

Þ and using Eqs (14.4-17) and
(14.4-21), we obtain

deg A0ðq
�1
Þ þ deg Bþ

mðq
�1
Þ ¼ deg Tðq�1

Þ � deg Rðq�1
Þ

¼ deg Amðq
�1
Þ þ deg A0ðq

�1
Þ þ deg Bþ

ðq�1
Þ

� deg Aðq�1
Þ

or

deg Aðq�1
Þ � deg Bðq�1

Þ � deg Amðq
�1
Þ � deg Bmðq

�1
Þ ð14:4-28Þ

The pole excess of the system should be less than the pole excess of the reference
model. Condition (14.4-27) in combination with Eq. (14.4-28) guarantees that the
feedback will be causal when Eqs (14.4-23) and (14.4-24) are chosen. This, in turn,
implies that the transfer functions S=R and T=R will be causal.

The control algorithm, in the case of known parameters, is summarized in
Table 14.2.
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Table 14.2 The Pole-Placement Control Algorithm for the Case of Known Parameters*

Step 1 Factor Bðq�1
Þ ¼ Bþ

ðq�1
ÞB�

ðq�1
Þ with Bþ

ðq�1
Þ monic. Choose Amðq

�1
Þ,

Bmðq
�1
Þ ¼ B�

ðq�1
ÞBþ

mðq
�1
Þ and A0ðq

�1
Þ such that Eqs (14.4-27) and

(14.4-28) are satisfied

Step 2 Select the degrees of R1ðq
�1
Þ and Sðq�1

Þ in order to satisfy Eqs (14.4-23)
and (14.4-24) or Eqs (14.4-25) and (14.4-26). Solve Aðq�1

ÞR1ðq
�1
Þ þ

q�dB�
ðq�1

ÞSðq�1
Þ ¼ Amðq

�1
ÞA0ðq

�1
Þ for R1ðq

�1
Þ and Sðq�1

Þ

Step 3 Compute Rðq�1
Þ ¼ Bþ

ðq�1
ÞR1ðq

�1
Þ and Tðq�1

Þ ¼ A0ðq
�1
ÞBþ

mðq
�1
Þ. The

foregoing steps are executed once off-line.

Step 4 Apply the control law

uðkÞ ¼
Tðq�1

Þ

Rðq�1Þ

" #
rðkÞ �

Sðq�1
Þ

Rðq�1Þ

" #
yðkÞ at each step

*Given Aðq�1Þ and Bðq�1Þ monic and Aðq�1Þ and Bðq�1Þ co prime.



2 Pole-Placement Design in the Case of Unknown Parameters

In the case of uncertain system model parameters, an STR is used on the basis of the
following separation principle. Here, the unknown system parameters are estimated
recursively. Based on the certainty equivalence principle, the controller is recom-
puted at each step using the estimated system parameters. The controller design
problem (Diophantine equation) is therefore solved at each step.

The parameter estimator is based on the system model

Aðq�1
ÞyðkÞ ¼ Bðq�1

Þuðk � dÞ ð14:4-29Þ

or explicitly

yðkÞ þ a1yðk � 1Þ þ � � � þ anA
yðk � nAÞ ¼ b0uðk � dÞ þ b1uðk � d � 1Þ þ � � �

þ bnB
uðk � d � nBÞ

ð14:4-30Þ

Introducing the parameter vector

hT
¼ a1; . . . ; anA

; b0; . . . ; bnB

� 
ð14:4-31Þ

and the regression vector

uT
ðkÞ ¼ �yðk � 1Þ; . . . ;�yðk � nAÞ; uðk � dÞ; . . . ; uðk � d � nBÞ½ � ð14:4-32Þ

Eq. (14.4-30) is expressed compactly as

yðkÞ ¼ hTuðkÞ ð14:4-33Þ

Based on the prediction model (14.4-33), the recursive least-squares estimator is
described by the recursive equation

ĥhðkÞ ¼ ĥhðk � 1Þ þ FðkÞuðkÞ"ðkÞ ð14:4-34Þ

with prediction error

"ðkÞ ¼ yðkÞ � uT
ðkÞĥhðk � 1Þ ð14:4-35Þ

The gain matrix FðkÞ can be deduced recursively using the expression

Fðk þ 1Þ ¼
1



FðkÞ �

FðkÞuðkÞuT
ðkÞFðkÞ

1 þ uTðkÞFðkÞuðkÞ

� �
; Fð0Þ > 0 ð14:4-36Þ

where 0 < 
 � 1 is a forgetting factor. The restrictions of Remark 14.3.4 hold for Eq.
(14.4-36).

In self-tuning, the convergence of the parameter estimates to the true values is
of great importance. To obtain good estimates using Eq. (14.4-34), it is necessary
that the process input be sufficiently rich in frequencies, or persistently exciting. The
concept of persistent excitation was first introduced in identification problems. This
states that we cannot identify all the parameters of a model unless we have enough
distinct frequencies in the spectrum of the input signal. In general, when the input to
a system is the result of feedback and is therefore a dependent variable within the
adaptive loop, the input signal is not persistently exciting.

In the explicit STR based on the pole-placement design discussed above, the
estimated parameters are the parameters of the system model. This explicit adaptive
pole-placement algorithm is summarized in Table 14.3.
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An implicit STR design procedure based on pole placement may also be con-
sidered. To this end, we reparametrize the system model such that the controller
parameters appear. These controller parameters can then be updated directly. The
proper system model structure sought is obtained by multiplying Eq. (14.4-14) by
yðkÞ to yield

Amðq
�1
ÞA0ðq

�1
ÞyðkÞ ¼ Aðq�1

ÞR1ðq
�1
ÞyðkÞ þ q�dB�

ðq�1
ÞSðq�1

ÞyðkÞ

¼ q�dBðq�1
ÞR1ðq

�1
ÞuðkÞ þ q�dB�

ðq�1
ÞSðq�1

ÞyðkÞ

¼ q�dB�
ðq�1

Þ Rðq�1
ÞuðkÞ þ Sðq�1

ÞyðkÞ
� 

ð14:4-37Þ

The reparametrization (14.4-37), which is an implicit system model, is redun-
dant, since it has more parameters than Eq. (14.4-29). It is also bilinear in the
parameters of B�

ðq�1
Þ, Rðq�1

Þ, and Sðq�1
Þ. This leads to a nontrivial bilinear estima-

tion problem. We can obtain the regulator parameters by estimating B�
ðq�1

Þ,
Rðq�1

Þ, and Sðq�1
Þ in Eq. (14.4-37) directly, avoiding at each step the control design

problem, i.e., the solution of the Diophantine equation. This leads to a less time-
consuming algorithm, in the sense that the design calculations become trivial. The
implicit STR is summarized in Table 14.4.

To avoid nonlinear parametrization, Eq. (14.4-37) is rewritten equivalently as

Amðq
�1
ÞA0ðq

�1
ÞyðkÞ ¼ q�d �RRðq�1

ÞuðkÞ þ q�d �SSðq�1
ÞyðkÞ ð14:4-38Þ

where

�RRðq�1
Þ ¼ B�

ðq�1
ÞRðq�1

Þ ð14:4-39Þ

and

�SSðq�1
Þ ¼ B�

ðq�1
ÞSðq�1

Þ ð14:4-40Þ

Based on the linear model (14.4-41), it is possible to estimate the coefficients of
the polynomials �RRðq�1

Þ and �SSðq�1
Þ. However, it should be noted that, in general, this

is not a minimal parametrization since the coefficients of the polynomial B�
ðq�1

Þ are
estimated twice. Moreover, possible common factors in �RRðq�1

Þ and �SSðq�1
Þ (corre-
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Table 14.3 The Explicit Adaptive Pole-Placement Algorithm for the Case of Unknown
Parameters

Step 1 Estimate the model parameters in Aðq�1
Þ and Bðq�1

Þ using Eqs (14.4-34),
(14.4-35), and (14.4-36), recursively, at each step. It is assumed that Aðq�1

Þ

and Bðq�1
Þ have no common factors

Step 2 Factorize the polynomial Bðq�1
Þ so that the decomposition Bþ

ðq�1
ÞB�

ðq�1
Þ

can be made ON-LINE at each step. Solve the controller design problem

with the estimates obtained in step 1, i.e., solve Eq. (14.4-14) for R1ðq
�1
Þ

and Sðq�1
Þ using Aðq�1

Þ and B�
ðq�1

Þ calculated on the basis of the
estimation at step. 1. Calculate Rðq�1

Þ and Tðq�1
Þ from Eqs (14.4-13) and

(14.4-17), respectively

Step 3 Compute the control law using Eq. (14.4-5)

Step 4 Repeat steps 1–3 at each sampling period



sponding to B�
ðq�1

Þ) should be canceled out to avoid cancellation of unstable modes
in the control law. The algorithm thus obtained is summarized in Table 14.5.

Example 14.4.1

Consider the system

Aðq�1
ÞyðkÞ ¼ q�1Bðq�1

ÞuðkÞ with yð0Þ ¼ 1

where Aðq�1
Þ ¼ 1 þ 2q�1

þ q�2 and Bðq�1
Þ ¼ 2 þ q�1

þ q�2. The polynomial Bðq�1
Þ

can be factored as follows:

Bðq�1
Þ ¼ 2ð1 þ 0:5q�1

þ 0:5q�2
Þ ¼ B�

ðq�1
ÞBþ

ðq�1
Þ

with Bþ
ðq�1

Þ monic. The desired closed-loop behavior is given by

Amðq
�1
ÞyðkÞ ¼ q�1Bmðq

�1
ÞrðkÞ

with

Amðq
�1
Þ ¼ 1 � q�1

þ 0:25q�2
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Table 14.4 The Implicit Pole-Placement STR for the Case of Unknown Parameters

Step 1 Estimate the coefficients in Rðq�1
Þ, B�

ðq�1
Þ, and Sðq�1

Þ recursively based on the
reparametrized model (bilinear estimation problem)

Amðq
�1
ÞA0ðq

�1
ÞyðkÞ ¼ q�dB�

ðq�1
Þ½Rðq�1

ÞuðkÞ þ Sðq�1
ÞyðkÞ� ð14:4 � 41Þ

Step 2 Compute the control law using the relations

Tðq�1
Þ ¼ A0ðq

�1
ÞBþ

mðq
�1
Þ ð14:4 � 42Þ

uðkÞ ¼
Tðq�1

Þ

Rðq�1Þ

" #
rðkÞ �

Sðq�1
Þ

Rðq�1Þ

" #
yðkÞ ð14:4 � 43Þ

Step 3 Repeat steps 1 and 2 at each sampling period

Table 14.5 An Alternate Implicit Pole-Placement STR for the Case of Unknown

Parameters

Step 1 Using the model (14.4-41) and least-squares, estimate the coefficients of the
polynomials �RRðq�1

Þ and �SSðq�1
Þ

Step 2 Cancel out possible common factors in �RRðq�1
Þ and �SSðq�1

Þ in order to obtain
Rðq�1

Þ and Sðq�1
Þ

Step 3 Compute the control law using the relations

Tðq�1
Þ ¼ A0ðq

�1
ÞB�

mðq
�1
Þ

uðkÞ ¼
Tðq�1

Þ

Rðq�1Þ

" #
rðkÞ �

Sðq�1
Þ

Rðq�1Þ

" #
yðkÞ

Step 4 Repeat steps 1 and 3 at each sampling period



and

Bmðq
�1
Þ ¼ 1 þ 0:3q�1

¼ 2ð0:5 þ 0:15q�1
Þ ¼ B�

ðq�1
ÞBþ

mðq
�1
Þ

(a) In the case of known plant parameters, calculate the pole-placement
control law

(b) In the case of unknown plant parameters, define an explicit adaptive pole-
placement control scheme

(c) Repeat part (b) for an implicit adaptive pole-placement control scheme.

Solution

(a) In the case of known parameters and to satisfy Eqs (14.4-23), (14.4-24), and
(14.4-27) we select deg A0ðq

�1
Þ ¼ 0, deg R1ðq

�1
Þ ¼ 0, and deg Sðq�1

Þ ¼ 1. Hence,
A0ðq

�1
Þ ¼ 1, R1ðq

�1
Þ ¼ r0, and Sðq�1

Þ ¼ s0 þ s1q�1. We now solve the following
Diophantine equation for r0, s0, and s1:

Aðq�1
ÞR1ðq

�1
Þ þ q�1B�

ðq�1
ÞSðq�1

Þ ¼ Amðq
�1
ÞA0ðq

�1
Þ

or

ð1 þ 2q�1
þ q�2

Þr0 þ 2q�1
ðs0 þ s1q�1

Þ ¼ 1 � q�1
þ 0:25q�2

One easily obtains r0 ¼ 1, s0 ¼ �1:5, and s1 ¼ �0:375 and, consequently, R1ðq
�1
Þ ¼

1 and Sðq�1
Þ ¼ �1:5 � 0:375q�1. Note from Eq. (14.4-14) that when A0ðq

�1
Þ is a

monic polynomial, then R1ðq
�1
Þ and Rðq�1

Þ are restricted to being monic polyno-
mials also. Now, Rðq�1

Þ ¼ Bþ
ðq�1

ÞR1ðq
�1
Þ ¼ 1 þ 0:5q�1

þ 0:5q�2 and
Tðq�1

Þ ¼ Bþ
mðq

�1
ÞA0ðq

�1
Þ ¼ 0:5 þ 0:15q�1. The control law is given by

uðkÞ ¼
Tðq�1

Þ

Rðq�1Þ

" #
rðkÞ �

Sðq�1
Þ

Rðq�1Þ

" #
yðkÞ

or

uðkÞ ¼
0:5 þ 0:15q�1

1 þ 0:5q�1 þ 0:5q�2

" #
rðkÞ þ

1:5 þ 0:375q�1

1 þ 0:5q�1 þ 0:5q�2

" #
yðkÞ

(b) The system model belongs to the following class of models:

ð1 þ a1q�1
þ a2q�2

ÞyðkÞ ¼ ðb0 þ b1q�1
þ b2q�2

Þuðk � 1Þ

which may be rewritten as

yðkÞ ¼ hTuðkÞ

where

hT
¼ ½a1; a2; b0; b1; b2�

uT
ðkÞ ¼ ½�yðk � 1Þ;�yðk � 2Þ; uðk � 1Þ; uðk � 2Þ; uðk � 3Þ�

The parameters ai, bi can be estimated on-line using the following algorithm:
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uT
ðkÞ ¼ ½�yðk � 1Þ;�yðk � 2Þ; uðk � 1Þ; uðk � 2Þ; uðk � 3Þ�

Fðk þ 1Þ ¼
1

0:99
FðkÞ �

FðkÞuðkÞuT
ðkÞFðkÞ

1 þ uTðkÞFðkÞuðkÞ

" #
with Fð0Þ ¼

1

10�3
I5

"ðkÞ ¼ yðkÞ � uT
ðkÞĥhðk � 1Þ

ĥhðkÞ ¼ ĥhðk � 1Þ þ FðkÞuðkÞ"ðkÞ

ĥhT
ðkÞ ¼ âa1ðkÞ; âa2ðkÞ; b̂b0ðkÞ; b̂b1ðkÞ; b̂b2ðkÞ

h i
initialized for example at

ĥhT
ð0Þ ¼ ½1; 0; 1; 0; 1�

At each step

B̂Bðq�1
Þ ¼ b̂b0ðkÞ þ b̂b1ðkÞq

�1
þ b̂b2ðkÞq

�2

is factored as

B̂Bðq�1
Þ ¼ B̂B�

ðq�1
ÞB̂Bþ

ðq�1
Þ

where B̂Bþ
ðq�1

Þ is chosen to be monic. Moreover, at each step, the following
Diophantine equation is solved for r̂r0ðkÞ, ŝs0ðkÞ, and ŝs1ðkÞ:

ÂAðq�1
Þr̂r0ðkÞ þ q�1B̂B�

ðq�1
Þ ŝs0ðkÞ þ ŝs1ðkÞq

�1
� 

¼ 1 � q�1
þ 0:25q�2

where

ÂAðq�1
Þ ¼ 1 þ âa1ðkÞq

�1
þ âa2ðkÞq

�2 and ŜSðq�1
Þ ¼ ŝs0ðkÞ þ ŝs1ðkÞq

�1

Then, the following computations are made:

R̂Rðq�1
Þ ¼ R̂R1ðq

�1
ÞB̂Bþ

ðq�1
Þ ¼ r0ðkÞB̂B

þ
ðq�1

Þ

Tðq�1
Þ ¼ Bþ

mðq
�1
Þ

where

Bmðq
�1
Þ ¼ B̂B�

ðq�1
ÞBþ

mðq
�1
Þ

Here, Bþ
mðq

�1
Þ can be any polynomial of our choice. The control law to be applied to

the system at each step is

uðkÞ ¼
Tðq�1

Þ

R̂Rðq�1Þ

" #
rðkÞ �

ŜSðq�1
Þ

R̂Rðq�1Þ

" #
yðkÞ

(c) In the case of an implicit adaptive pole-placement design, the parameters of
the following implicit system model are estimated using recursive least squares:

A0ðq
�1
ÞAmðq

�1
ÞyðkÞ ¼ q�1 �RRðq�1

ÞuðkÞ þ q�1 �SSðq�1
ÞyðkÞ

or

ð1 � q�1
þ 0:25q�2

ÞyðkÞ ¼ �rr0ðkÞ þ �rr1ðkÞq
�1

þ �rr2ðkÞq
�2

� 
uðk � 1Þ

þ �ss0ðkÞ þ �ss1ðkÞq
�1

� 
yðk � 1Þ
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or

yðkÞ � yðk � 1Þ þ 0:25yðk � 2Þ ¼ �rr0ðkÞ; �rr1ðkÞ; �rr2ðkÞ; �ss0ðkÞ; �ss1ðkÞ½ �

uðk � 1Þ
uðk � 2Þ
uðk � 3Þ
yðk � 1Þ
yðk � 2Þ

2
66664

3
77775

with �RRðq�1
Þ ¼ B�

ðq�1
ÞRðq�1

Þ and �SSðq�1
Þ ¼ B�

ðq�1
ÞSðq�1

Þ. Next, any common fac-
tors in �RRðq�1

Þ and �SSðq�1
Þ (corresponding to B�

ðq�1
Þ) are canceled out to obtain

Rðq�1
Þ and Sðq�1

Þ. One then has

Tðq�1
Þ ¼ Bþ

mðq
�1
Þ

and the control law is given by

uðkÞ ¼
Tðq�1

Þ

Rðq�1Þ

" #
rðkÞ �

Sðq�1
Þ

Rðq�1Þ

" #
yðkÞ

The procedure described above is repeated at each sampling period.

14.5 PROBLEMS

1. Consider a system described by

yðkÞ ¼ �0Gðq�1
ÞuðkÞ

where �0 is an unknown parameter and Gðq�1
Þ is a known rational function of

q�1. The reference model is described by

ymðkÞ ¼ �mGðq�1
ÞrðkÞ

where �m is a known parameter. The controller is of the form

uðkÞ ¼ �rðkÞ

Find an adaptation mechanism for the feedforward gain �, by using the MIT
rule.

2. Consider a system described by

yðkÞ ¼
q�1

ð0:36 þ 0:28q�1
Þ

1 � 1:36q�1 þ 0:36q�2

" #
uðkÞ

and a reference model given by

ymðkÞ ¼
q�1

ð0:38 þ 0:24q�1
Þ

1 � 0:78q�1 þ 0:37q�2

" #
rðkÞ

Determine an adaptive controller to achieve model following by using the MIT
rule (assume that the parameters appearing in the system model are unknown).

3. Consider a system described by

yðkÞ ¼
q�2�0

1 þ 1q�1 þ 2q�2

" #
uðkÞ
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where �0, 1, and 2 are free parameters. The desired input–output behavior is
given by

ymðkÞ ¼ q�2 b0

1 þ a1q�1 þ a2q�2

� �
rðkÞ

where 1 þ a1q�1
þ a2q�2 is an asymptotically stable polynomial.

(a) In the case where �0, 1, and 2 are assumed to be known, calculate a
pole-placement control law

(b) Design an implicit adaptive pole-placement algorithm in the case where
�0, 1, and 2 are unknown.

4. The plastic extrusion process is briefly described in Problem 18 (Sec. 12.14) of
Chap. 12. The discrete-time system for the temperature control is shown in
Figure 14.7. The transfer function from the screw speed (which is the main
controlling variable) to the temperature of the polymer at the output is given by

HðsÞ ¼
Ke�s�

�s þ 1

where K is the static gain, � is the time constant, and � the system delay. The
system delay � is such that

� ¼ ðd � 1ÞT þ L; 0 < L < T

where T is the sampling period and d is a positive integer.

(a) Verify that the equivalent discrete-time transfer function, using a zero-
order hold circuit, is given by

HðzÞ ¼
z�d

ðb0 þ b1z�1
Þ

1 þ a1z�1

with

a1 ¼ �e�T=�

b0 ¼ K 1 � eðL�TÞ=�
� �

b1 ¼ Ke�T=� eL=�
� 1

� �
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Figure 14.7 Temperature control system for plastic extrusion.



The discretized system is thus equivalently described by the difference
equation

yðk þ dÞ ¼ �a1yðk þ d � 1Þ þ b0uðkÞ þ b1uðk � 1Þ

It is clear that d is the discretized (sampled-date) system delay.
(b) Choose d ¼ 1 and a sampling period T such that the sampled-data system

has a stable zero (i.e., choose �b1=b0 to be inside the unit circle). The
minimum-phase system thus obtained is described by

yðk þ 1Þ ¼ �a1yðkÞ þ b0uðkÞ þ b1uðk � 1Þ

For this system model, determine a model reference control law which, in
the case of known model parameters, satisfies the control objective

�ðq�1
Þ½yðk þ 1Þ � ymðk þ 1Þ� � 0 for k 
 0

where �ðq�1
Þ ¼ 1 þ �1q�1. The polynomial �ðq�1

Þ is assumed to be
asymptotically stable. The asymptotically stable reference model is
given by

ymðkÞ ¼
q�1

ðbm
0 þ bm

1 q�1
Þ

1 þ am
1 q�1

" #
rðkÞ

(c) In the case of unknown plant parameters, determine an MRAC design
that satisfies the control objective of part (b) asymptotically.

5. A system is described by the model (initially known to the designer) [22]

yðkÞ ¼
q�2

ð1 þ 0:4q�1
Þ

ð1 � 0:5q�1Þ½1 � ð0:8 þ 0:3jÞq�1�½1 � ð0:8 � 0:3jÞq�1�

" #
uðkÞ

It is desired to follow the reference model

ymðkÞ ¼
q�2

ð0:28 þ 0:22q�1
Þ

ð1 � 0:5q�1Þ½1 � ð0:7 þ 0:2jÞq�1�½1 � ð0:7 � 0:2jÞq�1�

" #
rðkÞ

(a) By choosing �ðq�1
Þ ¼ 1, or �ðq�1

Þ ¼ ½1 � 0:4q�1
�
3, design a model refer-

ence control law, assuming the new model reference parameters known.
(b) Suppose now that parameter changes occur in the system model. The

system, after the parameter changes, is described by (the new model is
assumed unknown to the designer)

yðkÞ ¼
q�2

ð0:9 þ 0:5q�1
Þ

ð1 � 0:5q�1Þ½1 � ð0:9 þ 0:5jÞq�1�½1 � ð0:9 � 0:5jÞq1 �

" #
uðkÞ

When the control objective is tracking, the changes occur at t ¼ 25 sec,
while when the control objective is regulation, the changes occur at
t ¼ 0 sec. In the case of unknown parameters determine an adaptive
MRAC scheme. Simulate the behavior of the closed-loop system during
tracking and during regulation, with the choices �ðq�1

Þ ¼ 1 or
�ðq�1

Þ ¼ ½1 � 0:4q�1
�
3. Use as initial parameter values for the adaptive

controller those obtained from the design in the nonadaptive case.
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Assume that a constant trace algorithm is used for the adaptation gain,
with 
1ðkÞ=
2ðkÞ ¼ 1 and trFðkÞ ¼ trFð0Þ, with Fð0Þ ¼ 10I.

6. For the system of Problem 4, it is desired to design an explicit STR, considering
the model reference control as the ‘‘underlying control problem.’’ Define a least-
squares algorithm to estimate the plant parameters. Reparametrize the control
law of Problem 4, so that the plant parameters appear explicitly. Solve the
controller design problem and define the STR. Simulate the behavior of the
system.

7. For the system of Problem 4, design an explicit pole-placement STR. Distinguish
the cases of stable and unstable system zero.

8. Determine explicit and implicit self-tuners for the plant

yðkÞ ¼ 0:86yðk � 1Þ þ 0:08uðk � 1Þ þ 0:06uðk � 2Þ

The desired characteristic polynomial is chosen as follows:

Amðq
�1
Þ ¼ 1 � 1:5q�1

þ 0:6q�2

Also, choose Bþ
mðq

�1
Þ ¼ 1. Use a forgetting adaptation algorithm with 
 ¼ 0:95.

Moreover, use Fð0Þ ¼ 100I. Simulate the behavior of the system.
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15
Robust Control

15.1 INTRODUCTION

Control engineers are always aware that any design of a controller based on a fixed
plant model (e.g., transfer function or state space) is very often unrealistic. This is
because there is always a nagging doubt about the performance specifications if the
model on which the design is based deviates from the assumed value over a certain
range.

Robust control refers to the control of uncertain plants with unknown distur-
bance signals, uncertain dynamics, and imprecisely known parameters making use of
fixed controllers. That is, the problem of robust control is to design a fixed controller
that guarantees acceptable performance norms in the presence of plant and input
uncertainty. The performance specification may include properties such as stability,
disturbance attenuation, reference tracking, control energy reduction, etc. In the case
of single-input–single-output (SISO) systems this is roughly covered by concepts such
as gain and phase margins (see Chap. 8). However, in the multiple-input–multiple-
output (MIMO) systems case, matters become quite complicated and an easy exten-
sion of gain and phase margins is not possible. This led to new approaches and new
techniques to deal with the situation. In this chapter, we report some of these new
developments. We limit our presentation to linear time-invariant SISO systems for
both the plant and the controller, wherein the controller configuration remains fixed.

It was pointed out in Chap. 1 that control theory is a relatively new discipline
and was recognized as such only during the early 1930s. The contributions made by
Nyquist [27] and Bode [2] in those days, placed this discipline on firm theoretical
foundations. Furthermore, the contribution of Wiener [10] and Kolmogorov [26] on
filtering and prediction of stationary processes constitutes a landmark in stochastic
control theory. In all these developments the emphasis was on frequency domain
techniques. In particular, Bode and Nyquist understood and appreciated the concept
of robustness, which is embodied in their definitions of gain and phase margins. An
important change in control theory development took place in the 1950s with the
emergence of the state-space approach. The high point of this development was
reached during the 1960s with the formulation and solution of what is known as
the linear quadratic gaussian (LQG) problem [5]. This development was primarily
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inspired by the important contributions of Kalman [21–24]. The LQG approach
provided a mathematically elegant method for designing feedback controllers of
systems working in a noisy environment. However, it was soon realized that one
of its principal drawbacks was its inability to guarantee a robust solution. Control
engineers found it difficult to incorporate robustness criteria in a quadratic integral
performance index used in the LQG problem. For this reason, during the early
1970s, an attempt was made to generalize some of the useful concepts such as
gain and phase margins so that they are made applicable to MIMO systems [7, 8].
This brings us to the 1980s, where a variety of ideas of far-reaching significance were
developed in the area of robust control. Some of these ideas are the following:

1. Use of singular values as a measure of gain in transformations [16]
2. The factorization approach in controller synthesis [3, 9]
3. Parametrization of stabilizing controllers [14, 28, 29]
4. H1 optimization [5, 20, 31, 32]
5. Robust stabilization and sensitivity minimization [12, 18, 25, 30]
6. Computational aspects of H1 optimization, such as

(a) Interpolation methods based on Nevanlinna–Pick interpolation theory
[13]

(b) Hankel norm approach [19]
(c) Operator–theoretic approach [17]
(d) State space approach using separation principle [15]

7. Kharitonov theory and related approaches [1]

With all these developments, robust control gained a great momentum, and it
is currently one of the most important areas of research in the field of control theory
and practice. In the subsequent sections of this chapter, an introduction to the main
problems and principles of robust control is presented based on certain transfer
function approaches. There have been proposed many other important robust con-
trol techniques, which are not presented here due to space limitations.

15.2 MODEL UNCERTAINTY AND ITS REPRESENTATION

15.2.1 Origins of Model Uncertainty

Uncertainty in control systems may stem from different sources. Model uncertainty
is one main consideration. Other considerations include sensor and actuator failures,
physical constraints, changes in control purposes, loop opening and loop closure,
etc. Moreover, in control design problems based on optimization, robustness issues
due to mathematical objective functions not properly describing the real control
problem may occur. On the other hand, numerical design algorithms may not be
robust. However, when we refer to robustness in this chapter, we mean robustness
with respect to model uncertainty. We also assume that a fixed linear controller is
used.

Model uncertainty may have several origins. In particular, it may be caused by:

1. Parameters in a linear model, which are approximately known or are
simply in error

2. Parameters, which may vary due to nonlinearities or changes in the oper-
ating conditions

638 Chapter 15



3. Neglected time delays and diffusion processes
4. Imperfect measurement devices
5. Reduced (low-order) models of a plant, which are commonly used in

practice, instead of very detailed models of higher order
6. Ignorance of the structure and the model order at high frequencies
7. Controller order reduction issues and implementation inaccuracies.

The above sources of model uncertainty may be grouped into three main
categories.

Parametric or Structured Uncertainty

In this case the structure of the model and its order is known, but some of the
parameters are uncertain and vary in a subset of the parameter space.

Neglected and Unmodeled Dynamics Uncertainty

In this case the model is in error because of missing dynamics (usually at high
frequencies), most likely due to a lack of understanding of the physical process.

Lumped Uncertainty or Unstructured Uncertainty

In this case uncertainty represents several sources of parametric and/or unmodeled
dynamics uncertainty combined into a single lumped perturbation of prespecified
structure. Here, nothing is known about the exact nature of the uncertainties, except
that they are bounded.

15.2.2 Representation of Uncertainty

Parametric uncertainty will be quantified by assuming that each uncertain parameter
� is bounded within some region ½�min; �max�. In other words, there are parameter
sets of the form

�p ¼ �mð1 þ r��Þ ð15:2-1Þ

where �m is the mean parameter value, r� ¼ ð�max � �minÞ=ð�max þ �minÞ is the rela-
tive parametric uncertainty and � is any scalar satisfying j�j 
 1.

Neglected and unmodeled dynamics uncertainty is more difficult to quantify.
The frequency domain is particularly well suited for representing this class of uncer-
tainty, through complex perturbations, which are normalized such that k�k1 
 1,
where k�k1 is given by the following definition.

Definition 15.2.1

For a scalar complex function �ðsÞ, the H1-norm of �ðsÞ is defined as

k�k1 ¼ sup
!

j�ð j!Þj

Lumped unstructured uncertainty can easily be described in the frequency
domain. In most cases, it is preferred to lump the uncertainty into a ‘‘multiplicative
uncertainty’’ of the form

Pm : GpðsÞ ¼ GðsÞ½1 þ wmðsÞ�mðsÞ�; k�mk1 
 1 ð15:2-3Þ

where
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Pm : set of possible linear time-invariant models (usually called the uncertainty
set)

GðsÞ 2 Pm : nominal plant model (without uncertainty)
GpðsÞ 2 Pm : perturbed plant model
wmðsÞ : the multiplicative uncertainty weight
�mðsÞ : any stable transfer function which is less than or equal to 1 in magni-

tude at all frequencies. Some examples of allowable �mðsÞ with k�k1 
 1
are

1

�sþ 1
and

0:1

s2 þ 0:1sþ 1
; where � > 0

It is worth noting at this point that the requirement for stability on �mðsÞ may
be removed if one assumes that the number of right-half plane poles in GðsÞ and
GpðsÞ remains unchanged.

The block diagram of Figure 15.1 represents a plant with multiplicative uncer-
tainty.

Other less common uncertainty forms are the additive uncertainty, having the
form

P a : GpðsÞ ¼ GðsÞ þ waðsÞ�aðsÞ; k�ak1 
 1 ð15:2-4Þ

the inverse multiplicative uncertainty, having the form

P im : GpðsÞ ¼ GðsÞ½1 þ wimðsÞ�imðsÞ�
�1; k�imk1 
 1 ð15:2-5Þ

and the division uncertainty, having the form

P d : GpðsÞ ¼ GðsÞ½1 þ wdðsÞ�dðsÞGðsÞ�
�1; k�dk1 
 1 ð15:2-6Þ

It is pointed out here that the additive and the multiplicative uncertainty
descriptions are equivalent if at each frequency the following relation holds:

jwmð j!Þj ¼
jwað j!Þj

jGð j!Þj
ð15:2-7Þ

Next, we give some examples on representing parametric model uncertainty.

Example 15.2.1

Assume that the set of possible plants is given by
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GPðsÞ ¼ �pG0ðsÞ; �min 
 �P 
 �max ð15:2-8Þ

where �p is an uncertain gain and G0ðsÞ is a transfer function without uncertainty.
Determine the multiplicative uncertainty description of Eq. (15.2-8).

Solution

Write �p as follows

�p ¼ �mð1 þ r��Þ; j�j 
 1

where

�m ¼
�min þ �max

2
and r� ¼

�max � �min

�max þ �min

Clearly, �m and r� are the average gain and the relative magnitude of the gain
uncertainty, respectively. Therefore, the model set (15.2-8) can be written as

GPðsÞ ¼ �mG0ðsÞ½1 þ r��� ¼ GðsÞ½1 þ r���; k�k 
 1

The above expression for GpðsÞ is the multiplicative uncertainty description of the set
(15.2-8).

Example 15.2.2

Assume that the set of possible plants is given by

GPðsÞ ¼
1

�Psþ 1
G0ðsÞ; �min 
 �p 
 �max ð15:2-9Þ

Determine the inverse multiplicative uncertainty description of Eq. (15.2-9).

Solution

By writing

�P ¼ �mð1 þ r��Þ; j�j 
 1

where

�m ¼
�min þ �max

2
and r� ¼

�max � �min

�max þ �min

the model set (15.2-9) can be written as

GpðsÞ ¼
G0ðsÞ

1 þ �ms þ r��ms�
¼

G0ðsÞ

1 þ �ms
½1 þ wimðsÞ��

�1
¼ GðsÞ½1 þ wimðsÞ��

�1

where

GðsÞ ¼
G0ðsÞ

1 þ rms
and wimðsÞ ¼

r��ms

1 þ �ms

The above expression for GpðsÞ is the inverse multiplicative form of the uncertainty
set (15.2-9).

Example 15.2.3

Assume that the set of possible plants is given by
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GpðsÞ ¼ ð1 þ zpsÞG0ðsÞ; zmin 
 zp 
 zmax ð15:2-10Þ

where G0ðsÞ is assumed to have no uncertainty. Determine the multiplicative uncer-
tainty form of Eq. (15.2-10).

Solution

By writing

zp ¼ zmð1 þ rz�Þ; j�j 
 1

where

zm ¼
zmax þ zmin

2
and rz ¼

zmax � zmin

zmax þ zmin

the model (15.2-10) can be written as

GpðsÞ ¼ ð1 þ zmsþ zmrzs�ÞG0ðsÞ ¼ ð1 þ zmsÞG0ðsÞ þ zmrzs�G0ðsÞ

¼ ð1 þ zmsÞG0ðsÞ þ
zmrzs

1 þ zms
ð1 þ zmsÞG0ðsÞ� ¼ GðsÞ þ

zmrzs

1 þ zms
GðsÞ�

¼ GðsÞ½1 þ wmðsÞ��

where

GðsÞ ¼ ð1 þ zmsÞG0ðsÞ and wmðsÞ ¼
zmrzs

1 þ zms

The above expression for GpðsÞ is the multiplicative form of the uncertainty set (15.2-
10).

Example 15.2.4

Consider the family of plant transfer functions

GpðsÞ ¼
1

s2 þ �sþ 1
; 0:4 
 � 
 0:8 ð15:2-11Þ

Determine the division uncertainty description of Eq. (15.2-11).

Solution

It is easy to see that

� ¼ 0:6 þ 0:2�; j�j 
 1

Therefore, the model set (15.2-11) can be expressed as

GpðsÞ ¼ GðsÞ½1 þ wdðsÞ�GðsÞ�
�1

where

GðsÞ ¼
1

s2 þ 0:6sþ 1
; wdðsÞ ¼ 0:2s

The foregoing relation for GpðsÞ is the division uncertainty description of the family
(15.2-11).

Although parametric uncertainty is easily represented in some simple cases, it is
avoided in most cases because of the following reasons:
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1. It requires large efforts to model parametric uncertainty, particularly in the
case of systems with a large number of uncertain parameters.

2. In many cases, the assumptions about the model and the parameters may
be inexact. However, the description of a family of systems through para-
metric uncertainty is very detailed and accurate.

3. In order to model uncertain systems through parametric uncertainty, the
exact model structure is indispensable. Unmodeled dynamics cannot then
be incorporated in this description.

We next focus our attention on the problem of describing a set of possible
plants P by a single unstructured perturbation �aðsÞ or �mðsÞ. This description can
be obtained on the basis of the following steps:

1. Choose a nominal model GðsÞ. A nominal model can be selected to be
either a low-order, delay-free model or a model of mean parameter values
or, finally, the central plant obtained from the Nyquist plots corresponding
to all of the plants of the given set P .

2. In the case of additive uncertainty, find the smallest radius ‘að!Þ, which
includes all possible plants

‘að!Þ ¼ max
Gp2P a

jGpð j!Þ � Gð j!Þj ð15:2-12Þ

In most cases we look for a rational transfer function weight waðsÞ for
additive uncertainty. This weight must be chosen such that

jwað j!Þj  ‘að!Þ; 8! ð15:2-13Þ

and is usually selected to be of low order to simplify the design of con-
trollers.

3. In the case of multiplicative uncertainty (which is the preferred uncertainty
form), find the smallest radius ‘mð!Þ, which includes all possible plants

‘mð!Þ ¼ max
Gp2Pm

Gpð j!Þ � Gð j!Þ

Gð j!Þ

����
���� ð15:2-14Þ

For a chosen rational weight wmðsÞ, there must be

jwmð j!Þj  ‘mð!Þ; 8! ð15:2-15Þ

We next give an example of how this approach is applied in practice.

Example 15.2.5

Consider the family of plants with parametric uncertainty given by

P : GpðsÞ ¼
s

s2 þ asþ b
; 1 
 a 
 3; 2 
 b 
 6 ð15:2-16Þ

Obtain a representation of the above set using multiplicative uncertainty with a
single rational weight wpðsÞ.

Solution

Choose a nominal model as the model of mean parameter values. That is, let

Robust Control 643



GðsÞ ¼
s

s2 þ 2sþ 4

In order to obtain ‘mð!Þ, we consider three values for each of the two para-
meters a and b. In particular, we consider a ¼ 1, 2.5, or 3 and b ¼ 2, 5, or 6. With
this choice, we obtain 32

¼ 9 alternative plants. In general, this choice does not
guarantee that the worst case is obtained, since the worst case may correspond to
another interior point of the intervals. However, in our example, it can be shown that
the worst case corresponds to the choice a ¼ 1 and b ¼ 2. The relative error

Gpð j!Þ � Gð j!Þ

Gð j!Þ

����
����

for the nine resulting GpðsÞ, are depicted as functions of frequency in Figure 15.2.
According to our analysis, the curve for ‘mð!Þ must at each frequency lie above all
the curves corresponding to the nine GpðsÞ. One can also observe that as s! 0,
‘mð!Þ ! 1, and as s! 1, ‘mð!Þ ! 0. With these observations one must choose a
simple first-order weight that approximately matches this limiting behavior, as for
example

wmðsÞ ¼
20

sþ 20
ð15:2-17Þ

This weight is also depicted in Figure 15.2. It can be shown that this weight
gives a good fit of ‘mð!Þ, except at frequencies around ! ¼ 1:5, where jwmð j!Þj is too
small, and thus this weight does not include all possible plants. To change this such
that jwmð j!Þj  ‘mð!Þ, 8!, we can work along two alternative approaches: The first
approach is to augment the numerator of Eq. (15.2-17), as for example

wmðsÞ ¼
37

sþ 20
ð15:2-18Þ
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This multiplicative uncertainty weight is shown in Figure 15.3 and obviously
includes all possible plants.

The second approach is to multiply wmðsÞ of the form (15.2-17) by a correction
factor to lift the gain slightly at ! ¼ 1:5. Thus, for example, we obtain the following
weight:

wmðsÞ ¼
20ð2:15sþ 1Þ

ðsþ 20Þðsþ 1Þ
¼

43sþ 20

s2 þ 21sþ 20
ð15:2-19Þ

This second-order multiplicative uncertainty weight is shown in Figure 15.4, and
obviously includes all possible plants.

15.3 ROBUST STABILITY IN THE H1-CONTEXT

In the previous section we discussed how to represent model uncertainty in a math-
ematical context. In this section, we will derive conditions under which a system
remains stable for all perturbations in an uncertainty set.

15.3.1 Robust Stability with a Multiplicative Uncertainty

In Figure 15.5, a feedback system with a plant HðsÞ, a controller KðsÞ, and a multi-
plicative uncertainty is presented. In what follows, our aim is to determine whether
the stability of the uncertain feedback system is maintained, if there is a multiplica-
tive uncertainty of magnitude jwmð j!Þj.

With the uncertainty present, the open-loop transfer function of the feedback
system of Figure 15.5 is given by
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GpðsÞ ¼ HpðsÞKðsÞ ¼ HðsÞKðsÞ½1 þ wmðsÞ�mðsÞ� ¼ GðsÞ þ wmðsÞGðsÞ�mðsÞ;

k�mð j!Þk1 
 1

ð15:3-1Þ

Assume that, by design, the stability of the nominal closed-loop system is
guaranteed. For simplicity, we also assume tht the open-loop transfer function
GpðsÞ is stable. To test for robust stability of the closed-loop feedback system, we
use the Nyquist stability condition. Then, we obtain that robust stability, which is
equivalent to the stability of the system for all GpðsÞ, is also equivalent to the fact that
GpðsÞ should not encircle the point �1 þ j0, for all GpðsÞ.

Now, consider a typical plot of GpðsÞ as shown in Figure 15.6. The distance
from the point 1 þ j0 to the center of the disk, which represents GpðsÞ, is j1 þ GðsÞj.
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Furthermore, the radius of this disk is jwmðsÞGðsÞj. To avoid encirclement of �1 þ j0,
none of the disks should cover the critical point. By inspection of Figure 15.6, we
conclude that the encirclement is avoided if and only if

jwmðsÞGðsÞj < j1 þ GðsÞj; 8! ð15:3-2Þ

or equivalently if and only if

wmðsÞGðsÞ

1 þ GðsÞ

����
���� < 1; 8! ð15:3-3Þ

Definition 15.3.1

The sensitivity function designated by SðsÞ and the complementary sensitivity func-
tion designated by TðsÞ are defined as follows:

SðsÞ ¼ ½1 þ GðsÞ��1
¼ ½1 þ KðsÞHðsÞ��1 and

TðsÞ ¼ KðsÞHðsÞ½1 þ KðsÞGðsÞ��1
ð15:3-4Þ

The sensitivity functions SðsÞ and TðsÞ satisfy the relation SðsÞ þ TðsÞ ¼ 1.
Using Eq. (15.3-4), one can conclude that the encirclement is avoided (equiva-

lently the robust stability condition is satisfied) if and only if

jwmðsÞTðsÞj < 1; 8! ð15:3-5Þ

Making use of Definition 15.2.1, we can finally conclude that robust stability under
multiplicative perturbation is assumed if and only if

kwmðsÞTðsÞk1 < 1 ð15:3-6Þ

It is worth noting that the robust stability condition (15.3-6) for the case of the
multiplicative uncertainty gives an upper bound on the complementary sensitivity
function. In other words, to guarantee robust stability in the case of multiplicative
uncertainty one has to make TðsÞ small at frequencies where the uncertainty weight
exceeds 1 in magnitude.
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Condition (15.3-6) is necessary and sufficient provided that, at each frequency,
all perturbations satisfying j�mð j!Þj 
 1 are possible for the feedback system stu-
died. If this is not the case, the condition is only sufficient.

An alternative, rather algebraic, way of obtaining the robust stability condition
(15.3-6) is the following. Since GpðsÞ is assumed to be stable and the nominal closed-
loop system is stable by design, then the nominal open-loop transfer function does
not encircle the critical point �1 þ j0. Conseqently, since the family of uncertain
plants is norm bounded, it then follows that, if for some Gp1ðsÞ in the uncertain
family, we have encirclement of �1 þ j0, then there must be another Gp2ðsÞ in the
uncertain family, which passes through �1 þ j0 at some frequency. Therefore, to
guarantee robust stability, the following condition must hold (and vice versa):

j1 þ GpðsÞj 6¼ 0; 8Gp; 8! ð15:3-7Þ

Hence, robust stability is guaranteed if and only if

j1 þ GðsÞ þ wmðsÞGðsÞ�mðsÞj > 0; 8j�mðsÞj 
 1; 8! ð15:3-8Þ

This last condition is most easily violated at each frequency when �mð j!Þ has
magnitude 1 and the phase is such that the terms 1 þ GðsÞ and wmðsÞGðsÞ�mðsÞ have
opposite signs. Thus, robust stability is guaranteed if and only if

j1 þ GðsÞj � jwmðsÞGðsÞj > 0; 8! ð15:3-9Þ

Then, condition (15.3-6) follows easily.
We next give an example of how to check robust stability when using multi-

plicative perturbation.

Example 15.3.1

Consider the uncertain feedback control system of Figure 15.5. Assume that the
uncertain plant transfer function is given by

HpðsÞ ¼ HðsÞ½1 þ wmðsÞ�mðsÞ�

where

HðsÞ ¼
1

s� 1
and wmðsÞ ¼

2

sþ 10

while the controller KðsÞ is a constant gain controller of the form KðsÞ ¼ 10.
Determine whether the closed-loop system is robustly stable.

Solution

For this case the complementary sensitivity function TðsÞ is given by

TðsÞ ¼
10

s þ 9

Figure 15.7 gives the magnitude of TðsÞ as a function of the frequency, versus the
magnitude of 1=wmðsÞ ¼ ðsþ 10Þ=2. From the figure, it is clear that, at each fre-
quency, the magnitude of 1=wmðsÞ overbounds the magnitude of TðsÞ. Hence, in
our case, condition (15.3-6) is satisfied, and the closed-loop system is robustly stable.
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15.3.2 Robust Stability with an Inverse Multiplicative Uncertainty

In this subsection a corresponding robust stability condition is derived for the case of
feedback systems with inverse multiplicative uncertainty. To this end, we consider
the feedback system of Figure 15.8, with a plant HðsÞ, a controller KðsÞ, and an
inverse multiplicative uncertainty of magnitude wimðsÞ. That is, here,

HpðsÞ ¼ HðsÞ½1 þ wimðsÞ�imðsÞ�
�1

ð15:3-10Þ

Now, suppose that the open-loop transfer function GpðsÞ is stable and that
the nominal closed-loop system is also stable. As mentioned above, robust stabi-
lity is guaranteed, if encirclements of the point �1 þ j0 are avoided, and since
GpðsÞ belongs to a norm-bounded set, we conclude that robust staiblity is guar-
anteed if and only if one of the following four equivalent inequalities holds:

j1 þ GpðsÞj > 0; 8GpðsÞ; 8! ð15:3-11aÞ

j1 þ GðsÞ½1 þ wimðsÞ�imðsÞ�
�1
j > 0; 8j�imð j!Þj 
 1; 8! ð15:3-11bÞ
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Figure 15.7 Checking robust stability with a multiplicative uncertainty, for Example 15.3.1.

Figure 15.8 Closed-loop feedback system with inverse multiplicative uncertainty.



1 þ GðsÞ þ wimðsÞ�imðsÞ

1 þ wimðsÞ�imðsÞ

����
���� > 0; 8j�imð j!Þj 
 1; 8! ð15:3-11cÞ

j1 þ GðsÞ þ wimðsÞ�imðsÞj > 0; 8j�imð j!Þj 
 1; 8! ð15:3-11dÞ

The last condition is most easily violated at each frequency when �imð j!Þ has
magnitude 1 and the phase is such that the terms 1 þ GðsÞ and wimðsÞ�imðsÞ have
opposite signs. Thus, robust stability is guaranteed if and only if

j1 þ GðsÞj � jwimðsÞj > 0; 8! ð15:3-12Þ

Taking into account the definitions of the sensitivity function SðsÞ and of the
H1-norm, we finally obtain that robust stability with inverse multiplicative uncer-
tainty is guaranteed if and only if

kwimðsÞSðsÞk1 < 1 ð15:3-13Þ

Condition (15.3-13) indicates that in order to guarantee robust stability, in the
case of an inverse multiplicative perturbation, one has to make SðsÞ small at fre-
quencies where the uncertainty weight exceeds 1 in magnitude.

Example 15.3.2

Consider the feedback system of Figure 15.8. Assume that the uncertain plant
transfer function is given by

HpðsÞ ¼ HðsÞ½1 þ wimðsÞ�imðsÞ�
�1

where

HðsÞ ¼
1

s� 1
and wimðsÞ ¼

sþ 2:1

3sþ 0:7

while the controller KðsÞ is a PI controller of the form

KðsÞ ¼ 1 þ
2

s

Determine whether the closed-loop system is robustlys table.

Solution

For this case, the sensitivity function SðsÞ is given by

SðsÞ ¼
s2 � s

s2 þ 2

Figure 15.9 gives the magnitude of SðsÞ as a function of the frequency versus the
magnitude of 1=wimðsÞ ¼ ð3sþ 0:7Þ=ðsþ 2:1Þ. From the figure, it is clear that, at each
frequency, the magnitude of 1=wimðsÞ overbounds the magnitude of SðsÞ. Hence, in
our case, condition (15.3-4) is satisfied and the closed-loop system is robustly stable.

Remark 15.3.1

In the case of other well-known uncertainty descriptions, such as the additive or the
division uncertainty, one can easily obtain robust stability conditions analogous to
the conditions (15.3-6) and (15.3-13). Table 15.1 summarizes the robust stability tests
for several commonly used uncertainty models.
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15.4 ROBUST PERFORMANCE IN THE H1-CONTEXT

In this section we study the performance of a perturbed plant. The general notion of
robust performance is that internal stability and performance, of a specific type,
should hold for all plants in a family P . Before dealing with robust performance,
we study briefly the nominal performance and its relation to the sensitivity function.

15.4.1 Nominal Performance

Consider the feedback system presented in Figure 15.10. Here, HðsÞ is the (unper-
turbed) plant transfer function, KðsÞ is the controller transfer function, rðtÞ or RðsÞ is
the reference input (command, setpoint), dðtÞ or DðsÞ is the disturbance (process
noise), nðtÞ or NðsÞ is the measurement noise, ymðtÞ or YmðsÞ is the measured output,
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Figure 15.9 Checking robust stability with an inverse multiplicative uncertainty, for
Example 15.3.2.

Table 15.1 Robust Stability Tests

Uncertainty description Robust stability condition

Additive uncertainty
GðsÞ þ waðsÞ�aðsÞ

kwaðsÞKðsÞSðsÞk1 < 1

Multiplicative uncertainty

GðsÞð1 þ wmðsÞ�mðsÞÞ
kwmðsÞTðsÞk1 < 1

Inverse multiplicative uncertainty
GðsÞð1 þ wimðsÞ�imðsÞÞ

�1 kwimðsÞSðsÞk1 < 1

Division uncertainty
GðsÞð1 þ wdðsÞGðsÞ�dðsÞÞ

�1 kwdðsÞGðsÞSðsÞk1 < 1



and uðtÞ or UðsÞ is the control signal (actuator signal). The control error eðtÞ ¼ yðtÞ �
rðtÞ or EðsÞ ¼ YðsÞ � RðsÞ is given by

EðsÞ ¼ ½1 þ KðsÞHðsÞ��1RðsÞ þ ½1 þ KðsÞHðsÞ��1GdðsÞDðsÞ

� KðsÞHðsÞ½1 þ KðsÞHðsÞ��1NðsÞ
ð15:4-1Þ

or, in terms of the sensitivity and the complementary sensitivity functions,

EðsÞ ¼ SðsÞRðsÞ þ SðsÞGdðsÞDðsÞ � TðsÞNðsÞ ð15:4-2Þ

For ‘‘perfect control,’’ we want eðtÞ ¼ yðtÞ � rðtÞ ¼ 0. That is, we would like to
have good disturbance rejection and command tracking as well as reduction of
measurement noise on the plant output. This means that, for disturbance rejection
and command tracking, the sensitivity function SðsÞ must be chosen to be small in
magnitude, whereas for zero noise transmission the same function must have a large
magnitude, close to 1 (in this case TðsÞ is small in magnitude). This illustrates the
fundamental nature of feedback design, which always involves a trade-off among
conflicting control objectives. Moreover, it illustrates that the sensitivity function
SðsÞ is a very good indicator of closed-loop performance. In particular, when con-
sidering SðsÞ as such an indicator, our main advantage stems from the fact that it is
sufficient to consider just its magnitude and not worry about its phase.

Some very common specifications in terms of SðsÞ are listed below:

1. Maximum tracking error at prespecified frequencies
2. Minimum steady-state tracking error A
3. Maximum peak magnitude M of SðsÞ
4. Minimum bandwidth !�

B

Performance specifications of the above type can usually be incorporated in an
upper bound, 1=jwPðsÞj, on the magnitude of the sensitivity function, where wPðsÞ is a
weight chosen by the designer. The subscript P stands for performance, since, as
already mentioned, the sensitivity function is used as a performance indicator.
Then, the performance requirement is guaranteed if and only if one of the following
three equivalent inequalities holds:
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Figure 15.10 Block diagram of feedback control system with disturbance and noise.



jSð j!Þj < 1=jwPð j!Þj; 8! ð15:4-3aÞ

jwPð j!ÞSð j!Þj < 1; 8! ð15:4-3bÞ

kwPðsÞSðsÞk1 < 1 ð15:4-3cÞ

A typical performance weight is the following:

wPðsÞ ¼
s=M þ !�

B

sþ !�
BA

ð15:5-4Þ

It can be easily seen from Eq. (15.4-4) that

1. As s! 0, SðsÞ ! A:
2. As s! 1, SðsÞ !M:
3. The asymptote of the Bode plot of the magnitude of SðsÞ crosses 0 dB, at

the frequency !�
B, which is the bandwidth requirement.

Now, consider the Nyquist plot of Figure 15.11. Taking into account the
definition of the sensitivity function, one can obtain from Eq. (15.4-3) that nominal
performance is equivalent to

jwPð j!Þj < j1 þ Gð j!ÞÞj; 8! ð15:4-5Þ

At each frequency, the term j1 þ GðsÞj is the distance of GðsÞ from the critical
point �1 þ j0 in the Nyquist plot. Therefore, for nominal performance, Gð j!Þ must
be at least at a distance of jwPð j!Þj from the critical point. In other words, for nominal
performance, Gð j!Þ must stay outside a disk of radius jwPð j!Þj, centered at �1 þ j0.
This graphical interpretation of nominal performance is depicted in Figure 15.11.

Example 15.4.1

Consider the feedback system depicted in Figure 15.10, with

HðsÞ ¼
1

s� 1
and KðsÞ ¼ 10

Let the design specifications for the closed-loop system be the following:

1. Steady-state tracking error A ¼ 0:2
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2. Maximum peak magnitude M ¼ 2 of the sensitivity function SðsÞ
3. Minimum bandwidth !�

B ¼ 0:5 rad/sec

Determine whether the closed-loop system meets the nominal performance require-
ment.

Solution

These design specifications can be written in the form of a rational performance
bound wPðsÞ of the form (15.4-4). In particular, for the present case, the performance
bound has the form

wPðsÞ ¼
sþ 1

2sþ 0:2

In Figure 15.12, the magnitude of the sensitivity function SðsÞ as a function of
the frequency, versus the magnitude of 1=wPðsÞ ¼ ðsþ 1Þ=ð2sþ 0:2Þ is shown. From
the figure it is apparent that, at each frequency, the magnitude of the sensitivity
function SðsÞ is bounded by the magnitude of 1=wPðsÞ. Therefore, in our case, con-
dition (15.4-3) is satisfied, and the closed-loop system meets the nominal perfor-
mance requirement.

15.4.2 Robust Performance

Clearly, for robust performance, it is sufficient to require that condition (15.4-5) is
satisfied for all possible plants GpðsÞ. In mathematical terms, robust performance is
defined by one of the following two equivalent inequalities:

jwPð j!ÞSpð j!Þj < 1; 8Sp; 8! ð15:4-6aÞ

jwPð j!Þj < j1 þ Gpð j!Þj; 8Gp; 8! ð15:4-6bÞ
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Next, and for sake of simplicity, we focus our attention on the multiplicative
uncertainty case. Figure 15.13 presents the block diagram for robust performance in
the multiplicative uncertainty case. It is not difficult to see that condition (15.4-6)
corresponds to the requirement j y�=dj < 1; 8�m. In this case, the set of possible
open-loop transfer functions is given by

GpðsÞ ¼ KðsÞHpðsÞ ¼ GðsÞ½1 þ wmðsÞ�mðsÞ� ¼ GðsÞ þ wmðsÞGðsÞ�mðsÞ ð15:4-7Þ

Now, consider the Nyquist plot of Figure 15.14. To guarantee robust perfor-
mance, one must require that all possible open-loop transfer functions Gpð j!Þ stay
outside a disk of radius jwPð j!Þj centered on the critical point �1 þ j0. It is evident
that Gpð j!Þ, at each frequency, stays within a disk of radius wmð j!ÞGð j!Þ, centered
on Gð j!Þ. Therefore, from Figure 15.14, the condition for robust performance is that
these two disks must not overlap. The centers of the two disks are located at a
distance j1 þ Gð j!Þj apart. Consequently, the robust performance is guaranteed if
and only if one of the following two equivalent inequalities holds:

jwPð j!Þj þ jwmð j!ÞGð j!Þj < j1 þ Gð j!Þj; 8! ð15:4-8aÞ

jwPð j!Þ½1 þ Gð j!Þ��1
j þ jwmð j!ÞGð j!Þ½1 þ Gð j!Þ��1

j < 1; 8! ð15:4-8bÞ

Taking into account the definitions of the sensitivity and the complementary
sensitivity functions, we may further obtain robust performance if and only if
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Figure 15.14 Robust performance in the Nyquist plot.



jwPð j!ÞSð j!Þj þ jwmð j!ÞTð j!Þj < 1; 8!

or in other words

kjwPð j!ÞSð j!Þj þ jwmð j!ÞTð j!Þjk1 < 1 ð15:4-9Þ

where, in deriving Eq. (15.4-9), use was made of the definition of the H1-norm.
Relation (15.4-9) is a necessary and sufficient condition for robust performance.

An alternative (rather algebraic) way of obtaining the robust performance
condition (15.4-9) is the following. According to relation (15.4-6a), robust perfor-
mance is guaranteed if the maximum weighted sensitivity wPðsÞSðsÞ, at each fre-
quency, is less than 1 in magnitude. This means that robust performance is
assured if and only if

sup
Sp

jwPð j!ÞSpð j!Þj < 1; 8! ð15:4-10Þ

The perturbed sensitivity is

SpðsÞ ¼ ½1 þ GpðsÞ�
�1

¼
1

1 þ GðsÞ þ wmðsÞGðsÞ�ðsÞ
ð15:4-11Þ

The worst-case (maximum) is obtained in the case where, at each frequency, we
select j�mðsÞj ¼ 1, such that the signs of the terms 1 þ GðsÞ and wmðsÞGðsÞ�mðsÞ are
opposite. In mathematical terms, we have

sup
Sp

jwPð j!ÞSpð j!Þj ¼
jwPð j!Þj

j1 þ Gð j!Þj � jwmð j!ÞGð j!Þj
¼

jwPð j!ÞSð j!Þj

1 � jwmð j!ÞTð j!Þj

ð15:4-12Þ

Combining relations (15.4-10) and (15.4-12) and taking into account the defi-
nition of the H1-norm we readily obtain the robust performance condition (15.4-9).

Condition (15.4-9) provides us with some useful bounds on the magnitude of
GðsÞ. In particular, by observing that j1 þ Gð j!Þj  1 � jGð j!Þj and
j1 þ Gð j!Þj  jGð j!Þj � 1, 8!, we can easily see that the robust performance condi-
tion (15.4-9) is satisfied if

jGð j!Þj >
1 þ jwPð j!Þj

1 � jwmð j!Þj
; 8! : jwmð j!Þj < 1 ð15:4-13aÞ

or if

jGð j!Þj <
1 � jwPð j!Þj

1 þ jwmð j!Þj
; 8! : jwPð j!Þj < 1 ð15:4-13bÞ

We can also prove that the robust performance condition is satisfied if

jGð j!Þj >
jwPð j!Þj � 1

1 � jwmð j!Þj
; 8! : jwmð j!Þj < 1 and jwPð j!Þj > 1

ð15:4-14aÞ

or if

jGð j!Þj <
1 � jwPð j!Þj

jwmð j!Þj � 1
; 8! : jwPð j!Þj < 1; and jwmð j!Þj > 1

ð15:4-14bÞ
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For the case of SISO systems the term jwPðsÞSðsÞj þ jwmðsÞTðsÞj is the structured
singular value (SSV) designated by �ð!Þ. With this definition, robust performance is
guaranteed if and only if

k�ð!k1 < 1 ð15:4-15Þ

Example 15.4.2

Consider the feedback control system of Figure 15.13, where

HðsÞ ¼
1

s� 1
;KðsÞ ¼ 10; wmðsÞ ¼

2

sþ 10
; and wPðsÞ ¼

sþ 1

2sþ 0:2

As shown in Example 15.3.1, the system is robustly stable. Moreover, in
Example 15.4.1, it has been shown that the nominal plant satisfies the nominal
performance specification imposed by wPðsÞ. Determine whether the closed-loop
system also satisfies the robust performance specification.

Solution

Figure 15.15 shows that the structured singular value �ð!Þ as function of the fre-
quency. From this figure, it becomes clear that, at each frequency, the SSV is less
than 1. Therefore, condition (15.4-15) (or equivalently, condition (15.4-9)) is satis-
fied, and robust performance of the feedback system is guaranteed.

15.4.3 Some Remarks on Nominal Performance, Robust Stability,
and Robust Performance

Consider once again the block diagram of Figure 15.13 representing a feedback loop
with multiplicative uncertainty and assume that the nominal closed-loop system is
stable. Relations (15.4-3), (15.3-5), and (15.4-9) (or (15.4-15)) give the conditions for
nominal performance, robust stability, and robust performance, respectively. From
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these conditions, it becomes clear that the closed-loop system satisfies the robust
performance specification if it satisfies the nominal performance specification and is
simultaneously robustly stable. Therefore, robust performance is not our primary
objective for siso systems. Our primary objectives for siso systems are nominal per-
formance and robust stability. However, this is not true, in general, for the MIMO
system case.

From condition (15.3-5), it is clear that in order to satisfy robust stability we
want, in general, to make TðsÞ small. On the other hand, for nominal performance,
we want, in general, to make SðsÞ small. However, since SðsÞ þ TðsÞ ¼ 1, we cannot
make both S(s) and T(s) small at the same frequency. That is, we cannot satisfy more
than 100% uncertainty and good performance at the same frequency. This is another
example of conflicting control objectives in feedback control systems.

It is worth noting at this point that robust performance can be viewed as a
special case of robust stability with multiple uncertainty description. To make this
clear, consider the block diagrams of Figure 15.16. The block diagram of Figure
15.16a is almost the same as that of Figure 15.13. The block diagram of Figure
15.16b represents a closed-loop feedback system with both multiplicative and inverse
multiplicative uncertainties. Referring to Figure 15.16a, in order to satisfy robust
performance, condition (15.4-9) must hold. We now focus our attention on Figure
15.16b. To guarantee robust stability, it is necessary and sufficient that the following
relation holds

j1 þ Gpð j!Þj > 0; 8Gpð j!Þ; 8! ð15:4-16Þ
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Figure 15.16 Similarity between robust stability and robust performance: (a) robust per-

formance with multiplicative uncerainty; (b) robust performance with both multiplicative and
inverse uncertainty.



Block diagram algebra shows that, from condition (15.4-16), we can readily
obtain that robust stability is ensured if and only if one of the following two inequal-
ities hold:

1 þ Gð j!Þ½1 þ wmð j!Þ�mð j!Þ�½1 � wimð j!Þ�imð j!Þ�
�1

�� �� > 0; 8�m;�im; 8!

ð15:4-17aÞ

1 þ Gð j!Þ þ Gð j!Þwmð j!Þ�mð j!Þ � wimð j!Þ�imð j!Þ
�� �� > 0; 8�m;�im; 8!

ð15:4-17bÞ

The worst-case (maximum) is obtained in the case where, at each frequency, we
select j�mðsÞj ¼ 1, and j�imðsÞj ¼ 1, such that the signs of the terms wimðsÞ�imðsÞ and
wmðsÞGðsÞ�mðsÞ are opposite to the sign of 1 þ GðsÞ. In mathematical terms, robust
stability is guaranteed if and only if one of the following four equivalent inequalities
holds:

j1 þ Gð j!Þj � jGð j!Þwmð j!Þj � jwimð j!Þj > 0; 8! ð15:4-18aÞ

jGð j!Þwmð j!Þj þ jwimð j!Þj < j1 þ Gð j!Þj; 8! ð15:4-18bÞ

jGð j!Þ½1 þ Gð j!Þ��1wmð j!Þj þ jwimð j!Þ½1 þ Gð j!Þ��1
j < 1; 8! ð15:4-18cÞ

jwmð j!ÞTð j!Þj þ jwimð j!ÞSð j!Þj < 1; 8! ð15:4-18dÞ

Condition (15.4-18) is equivalent to condition (15.4-9), provided that wimðsÞ � wPðsÞ.

15.5 KHARITONOV’S THEOREM AND RELATED RESULTS

This section refers mainly to the seminal theorem of Kharitonov [1], which, since its
appearance in the late 1970s, has motivated a variety of powerful results (such as the
sixteen-plant theorem, the edge theorem [1], etc.) for more general robustness pro-
blems.

15.5.1 Kharitonov’s Theorem for Robust Stability

Kharitonov’s theorem addresses robust stability of interval polynomials with lumped
uncertainty and fixed degree of the form

pðs; aÞ ¼
Xn

i¼0

ais
i

ð15:5-1Þ

where

ai 2 ½a�i ; a
þ
i �; i ¼ 0; 1; . . . ; n

where ½a�i ; a
þ
i � denotes the a priori known bounding interval for the ith component

of uncertainty (the ith uncertain coefficient) ai.
To describe Kharitonov’s theorem for robust stability, it is first necessary to

define four fixed polynomials associated with a family of interval polynomials.

Definition 15.5.1 (Khartinov Polynomials)

Associated with the interval polynomial pðs; aÞ are the four fixed Kharitonov poly-
nomials
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p1ðsÞ ¼ a�0 þ a�1 sþ aþ2 s
2
þ aþ3 s

3
þ a�4 s

4
þ a�5 s

5
þ aþ6 s

6
þ � � �

p2ðsÞ ¼ aþ0 þ aþ1 sþ a�2 s
2
þ a�3 s

3
þ aþ4 s

4
þ aþ5 s

5
þ a�6 s

6
þ � � �

p3ðsÞ ¼ aþ0 þ a�1 sþ a�2 s
2
þ aþ3 s

3
þ aþ4 s

4
þ a�5 s

5
þ a�6 s

6
þ � � �

p4ðsÞ ¼ a�0 þ aþ1 sþ aþ2 s
2
þ a�3 s

3
þ a�4 s

4
þ aþ5 s

5
þ aþ6 s

6
þ � � �

The Kharitonov polynomials are easily constructed by inspection, as in the following
example.

Example 15.5.1

Consider the following interval polynomial with fixed degree 6:

pðs; aÞ ¼ ½2; 3�s6 þ ½1; 8�s5 þ ½3; 12�s4 þ ½5; 6�s3 þ ½4; 7�s2 þ ½9; 11�sþ ½6; 15�

Derive the four Kharitonov polynomials.

Solution

For this case, the four Kharitonov polynomials are

p1ðsÞ ¼ 6 þ 9sþ 7s2 þ 6s3 þ 3s4 þ s5 þ 3s6

p2ðsÞ ¼ 15 þ 11sþ 4s2 þ 5s3 þ 12s4 þ 8s5 þ 2s6

p3ðsÞ ¼ 15 þ 9sþ 4s2 þ 6s3 þ 12s4 þ s5 þ 2s6

p4ðsÞ ¼ 6 þ 11sþ 7s2 þ 5s3 þ 3s4 þ 8s5 þ 3s6

We are now in position to present the celebrated Kharitonov’s theorem.

Theorem 15.5.1

An interval polynomial pðs; aÞ with invariant degree n is robustly stable if and only if
its four associated Kharitonov polynomials are stable.

We next give an application example of Kharitonov’s theorem.

Example 15.5.2

Consider the following interval polynomial with fixed degree 5:

pðs; aÞ ¼ ½1; 3�s5 þ ½3; 6�s4 þ ½4; 7�s3 þ ½5; 9�s2 þ ½3; 4�sþ ½2; 5�

Determine if this interval polynomial is robustly stable.

Solution

In this case, the four Kharitonov polynomials are

p1ðsÞ ¼ 2 þ 3sþ 9s2 þ 7s3 þ 3s4 þ s5

p2ðsÞ ¼ 5 þ 4sþ 5s2 þ 4s3 þ 6s4 þ 3s5

p3ðsÞ ¼ 5 þ 3sþ 5s2 þ 7s3 þ 6s4 þ s5

p4ðsÞ ¼ 2 þ 4sþ 9s2 þ 4s3 þ 3s4 þ 3s5

According to Kharitonov’s theorem, in order to guarantee robust stability of
the given interval polynomial, it is sufficient to test the stability of the above four
Kharitonov polynomials. This can be accomplished by using an algebraic stability
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criterion, e.g., the Routh criterion. Applying the Routh criterion in the four
Kharitonov’s polynomials, we obtain the following four Routh tables:

1. Polynomial p1ðsÞ:

s5

s4

s3

s2

s1

s0

������������

1 7 3
3 9 2
4 7=3 0

29=4 2 0
107=77 0

2

2. Polynomial p2ðsÞ:

s5

s4

s3

s2

s1

s0

������������

3 4 4
6 5 5

3=2 3=2 0
�1 15=2 0

51=4 0
15=2

3. Polynomial p3ðsÞ:

s5

s4

s3

s2

s1

s0

������������

1 7 3
6 5 5

37=6 13=6 0
107=37 5 0

�909=107 0
5

4. Polynomial p4ðsÞ:

s5

s4

s3

s2

s1

s0

������������

3 4 4
3 9 2
�5 2 0

51=5 2 0
152=51 0

2

Since the polynomials p2ðsÞ, p3ðsÞ, and p4ðsÞ are unstable, the interval polynomial
pðs; aÞ of the present example is not robustly stable.

Kharitonov’s test for robust stability can signficantly be simplified if the inter-
val polynomial studied is of degree 5, 4, or 3. In these cases, the Kharitonov poly-
nomials necessary for performing the test are 3, 2, or 1 in number, respectively, as
against the four polynomials of the general case. More precisely, we have the follow-
ing propositions.

Proposition 15.5.1

An interval polynomial pðs; aÞ with invariant degree 5 is robustly stable if and only if
the Kharitonov polynomials p1ðsÞ, p2ðsÞ, and p3ðsÞ are stable.
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Proposition 15.5.2

An interval polynomial pðs; aÞ with invariant degree 4 is robustly stable if and only if
the Kharitonov polynomials p2ðsÞ and p3ðsÞ are stable.

Proposition 15.5.3

An interval polynomial pðs; aÞ with invariant degree 3 is robustly stable if and only if
the Kharitonov polynomial p3ðsÞ is stable.

Although Kharitonov’s theorem is a very important result in the area of
robustness analysis, it has several limitations. The most important limitations are
the following:

(a) Kharitonov’s theorem is applicable only in problems for which the stabi-
lity region is the open left-half plane. In other words, Kharitonov’s the-
orem cannot be applied in the case of discrete-time systems.

(b) Kharitonov’s theorem is applicable only in the case of interval polyno-
mials whose coefficients vary independently. In the more general case of
interval polynomials of the form

pðs; aÞ ¼
Xn

i¼0

fiða1; a2; . . . ; amÞs
i

ð15:5-2Þ

where fiða1; a1; . . . ; amÞ; i ¼ 1; 2; . . . ; n are multilinear functions of the
uncertain coefficients a1; a2; . . . ; am, Kharitonov’s theorem fails to give
an answer to the question of the robust stability of interval polynomials
of the form (15.5-2).

Much research effort has been devoted to removing these limitations. An
important such effort is the celebrated Edge theorem, which will not be presented
here since it is beyond the scope of this book. The interested reader may refer to [1]
for a detailed discussion of this important theorem.

15.5.2 The Sixteen-Plant Theorem

Here, we generalize the analytical results presented in the previous subsection, in
order to develop a technique for the design of robustly stabilizing compensators. In
particular, we focus our attention on the design of proper first-order compensators
of the form

FðsÞ ¼
Kðs� zÞ

s� p
ð15:5-3Þ

which robustly stabilize a strictly proper interval plant family of the form

Gðs; a; bÞ ¼
Aðs; aÞ

Bðs; bÞ

Xm

j¼0

ajs
j

sn þ
Xn�1

i¼0

bis
i

; m < n ð15:5-4Þ

aj 2 ½a�j ; a
þ
j �; j ¼ 0; 1; . . . ;m; bi 2 ½b�i ; b

þ
i �; i ¼ 0; 1; . . . ; n� 1
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with ½a�j ; a
þ
j � and ½b�i ; b

þ
i � denoting the a priori known bounding intervals for the jth

and the ith components of uncertainties aj and bi, respectively.
We say that the compensator FðsÞ of the form (15.5-3) robustly stabilizes the

interval plant family (15.5-4), if for all aj 2 ½a�j ; a
þ
j �, j ¼ 0; 1; . . . ;m and bi 2 ½b�i ; b

þ
i �,

i ¼ 0; 1; . . . ; n� 1, the resulting closed-loop polynomial

pcðs; a; bÞ ¼ Kðs� zÞAðs; aÞ þ ðs� pÞBðs; bÞ ð15:5-5Þ

is Hurwitz (i.e., its roots lie in the open left-half plane). FðsÞ is then called a robust
stabilizer of the interval plant family (15.5-4).

The focal point of this subsection is the following question. Given the interval
plant family (15.5-4), with a compensator interconnected as a Figure 15.17, under
what conditions can we establish robust stability of the closed-loop system, under a
‘‘small’’ finite subset of systems corresponding to the extreme members of the family
(15.5-4)?

We next try to answer this question. To this end, we introduce the Kharitonov
polynomials for the numerator and the denominator of Eq. (15.5-4). For the
numerator, let

A1ðsÞ ¼ a�0 þ a�1 sþ aþ2 s
2
þ aþ3 s

3
þ a�4 s

4
þ a�5 s

5
þ aþ6 s

6
þ � � �

A2ðsÞ ¼ aþ0 þ aþ1 sþ a�2 s
2
þ a�3 s

3
þ aþ4 s

4
þ aþ5 s

5
þ a�6 s

6
þ � � �

A3ðsÞ ¼ aþ0 þ a�1 sþ a�2 s
2
þ aþ3 s

3
þ aþ4 s

4
þ a�5 s

5
þ a�6 s

6
þ � � �

A4ðsÞ ¼ a�0 þ aþ1 sþ aþ2 s
2
þ a�3 s

3
þ a�4 s

4
þ aþ5 s

5
þ aþ6 s

6
þ � � �

and for the denominbtor let

B1ðsÞ ¼ b�0 þ b�1 sþ bþ2 s
2
þ bþ3 s

3
þ b�4 s

4
þ b�5 s

5
þ bþ6 s

6
þ � � �

B2ðsÞ ¼ bþ0 þ bþ1 sþ b�2 s
2
þ b�3 s

3
þ bþ4 s

4
þ bþ5 s

5
þ b�6 s

6
þ � � �

B3ðsÞ ¼ bþ0 þ b�1 sþ b�2 s
2
þ bþ3 s

3
þ bþ4 s

4
þ b�5 s

5
þ b�6 s

6
þ � � �

B4ðsÞ ¼ b�0 þ bþ1 sþ bþ2 s
2
þ b�3 s

3
þ b�4 s

4
þ bþ5 s

5
þ bþ6 s

6
þ � � �

By taking all combinations of the AiðsÞ, i ¼ 1, 2, 3, 4, and BkðsÞ, k ¼ 1, 2, 3, 4,
we obtain the 16 Kharitonov plants

GikðsÞ ¼
AiðsÞ

BkðsÞ
ð15:5-6Þ

for i; k ¼ 1, 2, 3, 4. For these extreme plants, when it is said that FðsÞ stabilizes GikðsÞ,
we understand that the closed-loop polynomial

pc;ikðsÞ ¼ Kðs� zÞAiðsÞ þ ðs� pÞBkðsÞ ð15:5-7Þ
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is asymptotically stable. We are now able to state the so-called sixteen-plant
theorem.

Theorem 15.5.2

A proper first-order compensator of the form (15.5-3) robustly stabilizes the interval
plant family (15.5-4), if and only if it stabilizes all of the 16 Kharitonov plants GikðsÞ,
i; k ¼ 1, 2, 3, 4.

We next give some examples regarding the 16 Kharitonov plants and the
application of the sixteen-plant theorem as a design tool.

Example 15.5.3

Consider the interval plant family

Gðs; a; bÞ ¼
½2; 5�s2 þ ½6; 9�sþ ½3; 11�

s3 þ ½4; 6�s2 þ ½1; 8�sþ ½5; 7�

Determine one proper first-order compensator that can robustly stabilize the family
and one that cannot.

Solution

The 16 Kharitonov plants associated with this family are

G11ðsÞ ¼
2s2 þ 6sþ 11

s3 þ 4s2 þ sþ 7
; G12ðsÞ ¼

2s2 þ 6sþ 11

s3 þ 6s2 þ 8sþ 5

G13ðsÞ ¼
2s2 þ 6sþ 11

s3 þ 6s2 þ sþ 5
; G14ðsÞ ¼

2s2 þ 6sþ 11

s3 þ 4s2 þ 8sþ 7

G21ðsÞ ¼
5s2 þ 9sþ 3

s3 þ 4s2 þ sþ 7
; G22ðsÞ ¼

5s2 þ 9sþ 3

s3 þ 6s2 þ 8sþ 5

G23ðsÞ ¼
5s2 þ 9sþ 3

s3 þ 6s2 þ sþ 5
; G24ðsÞ ¼

5s2 þ 9sþ 3

s3 þ 4s2 þ 8sþ 7

G31ðsÞ ¼
5s2 þ 6sþ 3

s3 þ 4s2 þ sþ 7
; G32ðsÞ ¼

5s2 þ 6sþ 3

s3 þ 6s2 þ 8sþ 5

G33ðsÞ ¼
5s2 þ 6sþ 3

s3 þ 6s2 þ sþ 5
; G34ðsÞ ¼

5s2 þ 6sþ 3

s3 þ 4s2 þ 8sþ 7

G41ðsÞ ¼
2s2 þ 9sþ 11

s3 þ 4s2 þ sþ 7
; G42ðsÞ ¼

2s2 þ 9sþ 11

s3 þ 6s2 þ 8sþ 5

G43ðsÞ ¼
2s2 þ 9sþ 11

s3 þ 6s2 þ sþ 5
; G44ðsÞ ¼

2s2 þ 9sþ 11

s3 þ 4s2 þ 8sþ 7

With a particular first-order compensator, say FðsÞ ¼ ðs� 1Þ=ðsþ 1Þ, it can
easily be verified that the closed-loop polynomial, associated with the Kharitonov
plant G32ðsÞ, is given by

pc;32ðsÞ ¼ ðs� 1Þð5s2 þ 6sþ 3Þ þ ðsþ 1Þðs3 þ 6s2 þ 8sþ 5Þ

¼ s4 þ 12s3 þ 15s2 þ 10sþ 2
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It is not difficult to show that the controller f ðsÞ ¼ ðs� 1Þ=ðsþ 1Þ cannot
robustly stabilize the given interval plant family. Indeed, with this controller, the
closed-loop polynomial pc;11ðsÞ is given by

pc;11ðsÞ ¼ ðs� 1Þð2s2 þ 6sþ 11Þ þ ðsþ 1Þðs3 þ 4s2 þ sþ 7Þ

¼ s4 þ 7s3 þ 9s2 þ 13s� 4

Since there is a sign change in the coefficients of pc;11ðsÞ, the polynomial is not
stable. Therefore, FðsÞ ¼ ðs� 1Þ=ðsþ 1Þ cannot robustly stabilize the entire interval
plant family.

On the other hand, as can easily be checked by performing 16 Routh tests for
closed-loop polynomials of the 16 Kharitonov plants, the PI controller of the form

FðsÞ ¼ 1 þ
1

s

robustly stabilizes the given interval plant family.

Example 15.5.4

Although the sixteen-plant theorem is stated as an analysis tool, it can be quite easily
used in a synthesis context as well. Explain how this is possible.

Solution

Consider the interval plant family

Gðs; a; bÞ ¼
½1; 1:5�sþ ½0:5; 1�

s3 þ ½2; 3�s2 þ ½1; 2�sþ ½3; 4�

Suppose that one wants to find a robustly stabilizing PI controller of the form

FðsÞ ¼ K1 þ K2=s ð15:5-8Þ

for the above family. Note that a PI controller of the form (15.5-8) is the special case
of a first-order compensator of the form (15.5-3), for which p ¼ 0, K ¼ K1, and
z ¼ �K2=K1.

To deal with this problem, we first construct the 16 Kharitonov plants asso-
ciated with the given interval plant family. These are the following:

G11ðsÞ ¼
sþ 0:5

s3 þ 2s2 þ sþ 4
; G12ðsÞ ¼

sþ 0:5

s3 þ 3s2 þ 2sþ 3

G13ðsÞ ¼
sþ 0:5

s3 þ 3s2 þ sþ 3
; G14ðsÞ ¼

sþ 0:5

s3 þ 2s2 þ 2sþ 4

G21ðsÞ ¼
1:5sþ 1

s3 þ 2s2 þ sþ 4
; G22ðsÞ ¼

1:5sþ 1

s3 þ 3s2 þ 2sþ 3

G23ðsÞ ¼
1:5sþ 1

s3 þ 3s2 þ sþ 3
; G24ðsÞ ¼

1:5sþ 1

s3 þ 2s2 þ 2sþ 4

G31ðsÞ ¼
1:5sþ 0:5

s3 þ 2s2 þ sþ 4
; G32ðsÞ ¼

1:5sþ 0:5

s3 þ 3s2 þ 2sþ 3

G33ðsÞ ¼
1:5sþ 0:5

s3 þ 3s2 þ sþ 3
; G34ðsÞ ¼

1:5sþ 0:5

s3 þ 2s2 þ 2sþ 4
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G41ðsÞ ¼
sþ 1

s3 þ 2s2 þ sþ 4
; G42ðsÞ ¼

sþ 1

s3 þ 3s2 þ 2sþ 3

G43ðsÞ ¼
sþ 1

s3 þ 3s2 þ sþ 3
; G44ðsÞ ¼

sþ 1

s3 þ 2s2 þ 2sþ 4

With the PI compensator of the form (15.5-8), the closed-loop polynomials
associated with the 16 Kharitonov plants can be easily obtained. For example, for
the Kharitonov plant G42ðsÞ, the associated closed-loop polynomials, is found to be

pc;42ðsÞ ¼ sðs3 þ 3s2 þ 2sþ 3Þ þ ðK1sþ K2Þðsþ 1Þ

¼ s4 þ 3s3 þ ð2 þ K1Þs
2
þ ð3 þ K1 þ K2Þsþ K2

Now, using the polynomial pc;42ðsÞ, we generate the Routh table

s4

s3

s2

s1

s0

����������

1 2 þ K1 K2

3 3 þ K1 þ K2 0
a1ðK1;K2Þ K2

a2ðK1;K2Þ 0
K2

where

a1ðK1;K2Þ ¼
3 þ 2K1 � K2

3
and a2ðK1;K2Þ ¼ 3 þ K1 þ K2 �

3K2

a1ðK1;K2Þ

In a similar manner one can generate Routh tables for the remaining 15 Kharitonov
plants. Using the 16 Routh tables our next steps is to enforce positivity in each of the
first columns. As a result, we obtain inequalities involving K1 and K2. For example,
for the Routh table corresponding to the Kharitonov polynomial pc;42ðsÞ, positivity
of the first column leads to the conditions

K1 >
K2 � 3

2
and 2K2

1 � K2
2 þ K1K2 þ 9K1 � 3K2 þ 9 > 0 ð15:5-9Þ

It is not difficult to plot the set of the gains K1 and K2, satisfying condition
(15.5-9). This set is shown in Figure 15.18, for the range 0 < K1 < 70, 0 < K2 < 70.
The set of stabilizing PI controllers for each of the remaining 15 Kharitonov plants
can be obtained in a similar way. Then, the desired set of robustly stabilizing con-
trollers for the interval plant family is obtained as the cross-section of the above 16
particular stabilizing sets. In our case, the set K of robust PI stabilizers of the form
(15.5-8) is shown in Figure 15.19. This set is obviously nonempty, and the given
interval plant family is robustly stabilizable. To stabilize the interval plant family, we
can choose any pair ðK1;K2Þ which belongs to the set K. For example, a robust PI
stabilizer is given by

FðsÞ ¼ 20 þ
10

s

Before closing this section, we point out that the sixteen-plant theorem can be
extended to the more general class of compensators

FðsÞ ¼
Kðs� zÞ

sqðs� pÞ
; q > 1
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Unfortunately, the sixteen-plant theorem does not hold in the case of more
general classes of compensators, or in the case of more general classes of interval
plant families. In these cases, one may use other important results (such as the ‘‘sixty-
four polynomial approach’’ or the ‘‘4k polynomial approach’’) to characterize the
stability of an interval plant family, by performing tests in a finite number of char-
acteristic plants (see [4] for details). It should, however, be noted that in these
situations, the issue of the computational effort needed to find such a compensator
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is of paramount importance, since the number of parameters entering FðsÞ may be
very large.

PROBLEMS

1. Consider the set of plants with parametric uncertainty given by relation (15.2-9).
Show that the additive form of the uncertainty set (15.2-9) is given by

GpðsÞ ¼ GðsÞ þ waðsÞ�a; j�aj 
 1

where

GðsÞ ¼
G0ðsÞ

1 þ �ms
; waðsÞ ¼ �

r��ms

ð1 þ �msÞ
2

and where

�m ¼
�min þ �max

2
; r� ¼

�max � �min

�max þ �min

2. Consider the set of plants with parameters uncertainty given by

P : GpðsÞ ¼
3ðsþ 1Þ

ðasþ 1Þðbsþ 1Þ
; amin 
 a 
 amax; bmin 
 b 
 bmax

Show that the above set of plants can be set in the following inverse multi-
plicative uncertainty form

P : GpðsÞ ¼ GðsÞ½1 þ wimðsÞ��
�1; j�j 
 1

where

GðsÞ ¼
sþ 1

ðamsþ 1Þðbmsþ 1Þ þ rarbambms
2

wimðsÞ ¼
½raamðbmsþ 1Þ þ rbbmðamsþ 1Þ�s

ðamsþ 1Þðbmsþ 1Þ þ rarbambms
2

and where

am ¼
amin þ amax

2
; bm ¼

bmin þ bmax

2

ra ¼
amax � amin

amax þ amin

; rb ¼
bmax � bmin

bmax þ bmin

3. Consider the family of plants with parametric uncertainty given by

P : GpðsÞ ¼
3ðasþ 1Þ

ð2sþ 1Þðbsþ 1Þ2
; 1 
 a 
 2; 2 
 b 
 3

Suppose that we want to obtain a multiplicative uncertainty description of the
above family. Plot the smallest radius ‘mð!Þ and approximate it by a rational
transfer function weight wmðsÞ. Show that two good choices for the multiplica-
tive uncertainty weight are
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wmðsÞ ¼
5sþ 1

2sþ 3
and wmðsÞ ¼

s2 þ 3sþ 0:01

0:7s2 þ 3sþ 1

Also, show that the approximation of ‘mð!Þ by

wmðsÞ ¼
5sþ 1

2sþ 7
or wmðsÞ ¼

s2

2s2 þ 3sþ 1

is not good enough to represent in the multiplicative uncertainty form the given
family of plants.

4. Consider the uncertain feedback control system of Figure 15.5. Assume that the
uncertain plant transfer function is given by

HpðsÞ ¼ HðsÞ½1 þ wmðsÞ�mðsÞ�

where

HðsÞ ¼
sþ 2

s2 � 2sþ 1
and wmðsÞ ¼

3sþ 1

2sþ 10

while the controller KðsÞ is a PI controller of the form

K1ðsÞ ¼ 5 þ
10

s

Show that the closed-loop systems is robustly stable. Repeat the test with the PI
controller of the form

K2ðsÞ ¼ 5 �
10

s

and verify that, in this case, the closed-loop system is not robustly stable.
5. Consider the feedback system of Figure 15.8. Assume that the uncertain plant

transfer function is given by

HpðsÞ ¼ HðsÞ½1 þ wimðsÞ�imðsÞ�
�1

where

HðsÞ ¼
sþ 2

s2 � 2sþ 1
and wimðsÞ ¼

sþ 1

2sþ 5

while the controller KðsÞ is a PI controller of the form

KðsÞ ¼ 3 þ
5

s

Show that the closed-loop system is robustly stable.
6. Consider the feedback system of Figure 15.10, with

HðsÞ ¼
sþ 3

s2 � 2sþ 3
and KðsÞ ¼ 2 þ

3

s

The design specifications for the closed-loop system are

(a) Steady-state tracking error A ¼ 0
(b) Maximum peak magnitude M ¼ 2 of the sensitivity function SðsÞ
(c) Minimum bandwidth !�

B ¼ 0:2 rad/sec

Show that the closed-loop system satisfies the above performance specifications.
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7. Consider the feedback control system of Figure 15.13, with

HðsÞ ¼
sþ 3

s2 � 2sþ 3
; KðsÞ ¼ 3 �

4

s
; wmðsÞ ¼

3sþ 1

2sþ 10
;

wPðsÞ ¼
sþ 0:4

s

Show that the closed-loop system does not satisfy the robust performance
specification. Show that the same is true if the controller has the form KðsÞ ¼
7 (i.e., the form of a constant gain controller). Repeat the test with the controller
KðsÞ ¼ 1 þ 5=s, and verify that in this case the closed-loop system meets the
robust performance specification.

8. Consider the interval polynomial family with fixed degree

pðs; aÞ ¼ ½3; 4:5�s6 þ ½5; 8�s5 þ ½6; 8�s4 þ ½7; 11�s3 þ ½4; 5�s2 þ ½1; 5�sþ ½2; 13�

Construct the four Kharitonov polynomials related to this family. Is this poly-
nomial family robustly stable? Repeat the same test with the interval polynomial
family

pðs; aÞ ¼ ½2; 7�s5 þ ½8; 10�s4 þ ½4; 7�s3 þ ½4; 5�s2 þ ½3; 5�sþ ½9; 11�

9. Consider the interval plant family

Gðs; a; bÞ ¼
½2; 3�sþ ½1; 3�

s2 þ ½2; 4�sþ ½1; 2:5�

Show that the first-order compensator of the form

FðsÞ ¼
s� 1

s� 2

cannot robustly stabilize the given interval plant family. Show that the entire
family can be robustly stabilized by the use of a simple gain controller of the
form

FðsÞ ¼ K; K > 0

10. Consider the interval plant family

Gðs; a; bÞ ¼
½1; 2�sþ ½2; 3�

s2 þ ½2; 5�sþ ½2; 6�

Let a first-order compensator of the form

FðsÞ ¼
sþ K1

sþ K2

be connected to the given plant family, as suggested in Figure 15.17. Find the
ranges of K1 and K2 for which the closed-loop system is robustly stable. Show,
by using any two-variable graphic (e.g., the version provided by Matlab), that
the range of K1 and K2 has the form shown in Figure 15.20.
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16
Fuzzy Control

16.1 INTRODUCTION TO INTELLIGENT CONTROL

In the last two decades, a new approach to control has gained considerable attention.
This new approach is called intelligent control (to distinguish it from conventional or
traditional control) [1]. The term conventional control refers to theories and methods
that are employed to control dynamic systems whose behavior is primarily described
by differential and difference equations. Thus, all the well-known classical and state-
space techniques in this book fall into this category.

The term ‘‘intelligent control’’ has a more general meaning and addresses more
general control problems. That is, it may refer to systems which cannot be ade-
quately described by a differential/difference equations framework but require
other mathematical models, as for example, discrete event system models. More
often, it treats control problems, where a qualitative model is available and the
control strategy is formulated and executed on the basis of a set of linguistic rules
[2, 5, 10, 12, 14, 16, 33–36]. Overall, intelligent control techniques can be applied to
ordinary systems and more important to systems whose complexity defies conven-
tional control methods.

There are three basic approaches to intelligent control: knowledge-based expert
systems, fuzzy logic, and neural networks. All three approaches are interesting and
very promising areas of research and development. In this book, we present only the
fuzzy logic approach. For the interested reader, we suggest references [6] and [9] for
knowledge-based systems and neural networks.

The fuzzy control approach has been studied intensively in the last two decades
and many important theoretical, as well as practical, results have been reported. The
fuzzy controller is based on fuzzy logic. Fuzzy logic was first introduced by Zadeh in
1965 [33], whereas the first fuzzy logic controller was implemented by Mamdani in
1974 [17]. Today, fuzzy control applications cover a variety of practical systems, such
as the control of cement kilns [3, 19], train operation [32], parking control of a car
[27], heat exchanger [4], robots [23], and are in many other systems, such as home
appliances, video cameras, elevators, aerospace, etc.

In this chapter, a brief introduction to fuzzy control is presented (see also
Chap. 11 in [11]). This material aims to give the reader the heuristics of this approach
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to control, which may be quite useful in many practical control problems, but treats
the theoretical aspects in an introductory manner only. Furthermore, we hope that
this material will inspire further investigation, not only in the area of fuzzy control
but also in the more general area of intelligent control. For further reading on the
subject of fuzzy control, see the books [1–16] and articles [17–36] cited in the
Bibliography.

16.2 GENERAL REMARKS ON FUZZY CONTROL

A principal characteristic of fuzzy control is that it works with linguistic rules (such
as ‘‘if the temperature is high then increase cooling’’) rather than with mathematical
models and functional relationships. With conventional control, the decisions made
by a controller are a rigid ‘‘true’’ or ‘‘false.’’ Fuzzy control uses fuzzy logic, which is
much closer in spirit to human thinking and natural language than conventional
control systems. Furthermore, fuzzy logic facilitates the computer implementation of
imprecise (fuzzy) statements.

Fuzzy logic provides an effective means of capturing the approximate and
inexact nature of the real world. To put it simply, the basic idea in fuzzy logic,
instead of specifying a truth or falsehood, 0 or 1, etc., is to exert a gradual transition
depending on the circumstances. For example, an air conditioning unit using con-
ventional control recognizes room temperature only as warm, when the temperature
is greater than 218C, and cold, when the temperature is less than 218C. Using fuzzy
control, room temperature can be recognized as cold, cool, comfortable, warm, or
hot and, furthermore, if this temperature is increasing or decreasing. On the basis of
these fuzzy variables, a fuzzy controller makes its decision on how to cool the room.

In Figure 16.1a–c the fuzzy notion of cold, hot, and comfortable are presented
in graphical form. The magnitude of these graphical representations lies between 0
and 1. The whole domain of fuzzy variables referring to the notion of temperature
may be constructed by adding other variables such as cool, warm, etc., as shown in
Figure 16.1d.

16.3 FUZZY SETS

A nonfuzzy set (or class) is any collection of items (or elements or members) which
can be treated as a whole. Consider the following examples:

1. The set of all positive integers less than 11. This is a finite set of 10
members, i.e., the numbers 1; 2; 3; . . . ; 9; 10. This set is written as
f1; 2; . . . ; 9; 10g.

2. The set of all positive integers greater than 4. This set has an infinite
number of members and can be written as x > 4.

3. The set of all humans having four eyes. This set does not have any mem-
bers and is called an empty (or null) set.

In contrast to nonfuzzy (or crisp) sets, in a fuzzy set there is no precise criterion
for membership. Consider for example the set middle-aged people. What are the
members of this set? Of course, babies or 100-year-old people are not middle-aged
people! One may argue that people from 40 to 60 appear to be in the set of middle-
aged people! This may not, however, hold true for all people, in all places and at all
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times. For example, centuries ago, in most countries, the mean life expectancy was
around 50 (this is true today for certain underdeveloped countries). We may now
ask: are the ages 32, 36, 38, 55, 58, 60, and 65 members of the set of middle-aged
people? The answer is that the set ‘‘middle-aged people’’ is a fuzzy set, where there is
no precise criterion for membership and depends on time, place, circumstances, on
the subjective point of view, etc. Other examples of fuzzy sets are intelligent people,
tall people, strong feelings, strong winds, bad weather, feeling ill, etc.

To distinguish between members of a fuzzy set which are more probable than
those which are less probable in belonging to the set, we use the grade of membership,
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Figure 16.1 The fuzzy notion of the variable temperature.



denoted by �, which lies in the range of 0 to 1, meaning that as � gets closer to 1, the
grade of membership becomes higher. If � ¼ 1, then it is certainly a member and, of
course, if � ¼ 0, then it is certainly not a member.

The elements of a fuzzy set are taken from a universe. The universe contains all
elements. Consider the examples:

(a) The set of numbers from 1 to 1000. The elements are taken from the
universe of all numbers.

(b) The set of tall people. The elements are taken from the universe of all
people.

If x is an element of a fuzzy set, then the associated grade of x with its fuzzy set
is described via a membership function, denoted by �ðxÞ. There are two methods for
defining fuzzy sets, depending on whether the universe of discourse is discrete or
continuous. In the discrete case, the grade of membership function of a fuzzy set is
represented as a vector whose dimension depends on the degree of discretization. An
example of a discrete membership function, referring to the fuzzy set mid-
dle ¼ ð0:6=30; 0:8=40; 1=50; 0:8=60; 0:6=70Þ, where the universe of discourse repre-
sents the ages ½0; 100�. This is a bell-shaped membership function. In the
continuous case, a functional definition expresses the membership function of a
fuzzy set in a functional form. Some typical examples of continuous membership
functions are given below:

�ðxÞ ¼ exp �
ðx� x0Þ

2

2�2

" #
ð16:3-1Þ

�ðxÞ ¼ 1 þ
x� x0

�

� �2
� ��1

ð16:3-2Þ

�ðxÞ ¼ 1 � exp �
�

x0 � x

� ��� �
ð16:3-3Þ

where x0 is the point where �ðxÞ is maximum (i.e., �ðx0Þ ¼ 1Þ and � is the standard
deviation. Expression (16.3-1) is the well-known standard Gaussian curve. In expres-
sion (16.3-3) the exponent � shapes the gradient of the sloping sides.

To facilitate our understanding further, we refer to Figure 16.2, where the very
simple case of the fuzzy and nonfuzzy interpretation of an old man is given. In the
nonfuzzy or crisp case, everyone older than 70 is old, whereas in the fuzzy case the
transition is gradual. This graphical presentation reveals the distinct difference
between fuzzy and nonfuzzy (or crisp) sets. Next, consider the membership functions
given in Figure 16.3. Figure 16.3a presents the membership function �ðxÞ, defined as
follows:

�ðxÞ ¼
1; 6 
 x 
 10
0; otherwise

	
ð16:3-4Þ

The nonfuzzy (or crisp) membership function is unique. The corresponding fuzzy
membership function may have several forms: triangular (16.3b), bell-shaped curve
(16.3c), trapezoidal or flattened bell-shaped (16.3d), etc.
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In fuzzy sets, the variable x may be algebraic, as in relations (16.3-1)–(16.3-3),
or it may be a linguistic variable. A linguistic variable takes on words or sentences as
values. This type of a value is called a term set. For example, let the variable x be the
linguistic variable ‘‘age.’’ Then, one may construct the following term: {very young,
young, middle age, old, very old}. Note that each term in the set (e.g., young) is a
fuzzy variable itself. Figure 16.4 shows three sets: young (Y), middle age (M), and
old (O). Figure 16.5 shows four sets: young (Y), very young (VY), old (O), and very
old (VO). We say that the sets ‘‘young’’ and ‘‘old’’ are primary sets, whereas the sets
‘‘very young’’ and ‘‘very old’’ are derived from them.
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Figure 16.2 The fuzzy and nonfuzzy interpretation of an old man. In the nonfuzzy case,
anyone older than 70 is old; in the fuzzy case, the transition is gradual.

Figure 16.3 Graphical representation of the membership function (10.3-4): (a) crisp mem-

bership funciton; (b) triangular membership function; (c) bell-shaped membership function;
(d) trapezoidal membership function.



16.4 FUZZY CONTROLLERS

The nonfuzzy (crisp) PID controller has been presented in Chap. 9 (continuous-time)
and in Chap. 12 (discrete-time), where it was pointed out that this type of controller
has many practical merits and has become the most popular type of controller in
industrial applications. The same arguments hold true for the fuzzy PID controller
and, for this reason, we focus our attention on this controller. We will examine, in
increasing order of complexity, the fuzzy proportional (FP), the fuzzy proportional–
derivative (FPD), and the fuzzy proportional–derivative plus integral (FDP+I) con-
troller.

1 The FP Controller

Let eðkÞ be the input and uðkÞ be the output of the controller, respectively. The input
eðkÞ is the error

eðkÞ ¼ rðkÞ � yðkÞ ð16:4-1Þ

where rðkÞ is the reference signal and yðkÞ is the output of the system (see any closed-
loop figure in the book, or Figure 16.9 in Sec. 16.5 that follows). Then
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Figure 16.4 The membership curves of the three sets: young (Y), middle age (M), and old
(O).

Figure 16.5 The membership curves of the four sets: very young (VY), young (Y), old (O),
and very old (VO).



uðkÞ ¼ f ðeðkÞÞ ð16:4-2Þ

that is, the output of the controller is a nonlinear function of eðkÞ. A simplified
diagram of Eq. (16.4-2) is given in Figure 16.6. In comparison with Figure 12.32
of Chap. 12, where only one tuning parameter appears (the parameter Kp), for FP
controllers we have two tuning parameters, namely the parameters Ge and Gu, which
are the error and controller output gains, respectively. The block designated as ‘‘rule
base’’ is the heart of the fuzzy controller whose function is explained in Secs 16.5 and
16.6 below.

2 The FPD Controller

Let ceðkÞ denote the change in the error (for continuous-time systems, ceðkÞ corre-
sponds to the derivative of the error de=dt). An approximation to ceðtÞ is given by

ceðkÞ ¼
eðkÞ � eðk� 1Þ

T
ð16:4-3Þ

where T is the sampling time. The block diagram of the FPD controller is given in
Figure 16.7. Here, the output of the controller is a nonlinear function of two vari-
ables, namely the variables eðkÞ and ceðkÞ, i.e.,

uðkÞ ¼ f ðeðkÞ; ceðkÞÞ ð16:4-4Þ

Note that here we have three tuning gains (Ge;Gce, and Gu), as compared with the
crisp PI controller, which has only two (see Sec. 12.10).

3 The PFD+I Controller

It has been shown that it is not straightforward to write rules regarding integral
action. Furthermore, the rule base involving three control actions (proportional,
derivative, and integral) simultaneously becomes very large. To circumvent these
difficulties, we separate the integral action from the other two actions, resulting in
an FPD+I controller, as shown in Figure 16.8. In the present case the output of the
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Figure 16.6 The fuzzy proportional (FP) controller.

Figure 16.7 The fuzzy proportional–derivative (FPD) controller.



controller uðkÞ is a nonlinear function of three variables, namely the variables eðkÞ,
ceðkÞ, and ieðkÞ, i.e.,

uðkÞ ¼ f ðeðkÞ; ceðkÞ; ieðkÞÞ ð16:4-5Þ

where ieðkÞ denotes the integral of the error. Since the integral action has been
separated from the proprotional and derivative actions, relation (16.4-5) breaks
down to two terms:

uðkÞ ¼ u1ðkÞ þ u2ðkÞ ¼ f1ðeðkÞ; ceðkÞÞ þ f2ðieðkÞÞ ð16:4-6Þ

Note that here we have four tuning parameters (Ge;Gce;Gie, and Gu) as compared
with the crisp PID controller of Sec. 12.10, which has only three.

16.5 ELEMENTS OF A FUZZY CONTROLLER

A simplified block diagram of a fuzzy controller incorporated in a closed-loop
system is shown in Figure 16.9. The fuzzy controller involves four basic operations,
namely the fuzzification interface, the rule base, the inference engine, and the defuz-
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Figure 16.8 The fuzzy proportional–derivative and integral (FPD+I) controller.

Figure 16.9 Basic configuration of a closed-loop system involving an FLC, wherein the
fuzzy and crisp data flow is identified.



zification interface. A brief explanation of these four elements is given below. A more
detailed explanation is given in the next four sections.

1 Fuzzification Interface

Here, the crisp error signal eðkÞ is converted into a suitable linguistic fuzzy set.

2 Rule Base

The rule base is the heart of a fuzzy controller, since the control strategy used to
control the closed-loop system is stored as a collection of control rules. For example,
consider a controller with three inputs e1, e2, and e3 and output u. Then, a typical
control rule has the form

if e1 is A; e2 is B; and e3 is C; then u is D ð16:5-1Þ

where A, B, C, and D are linguistic terms, such as very low, very high, medium, etc.
The control rule (16.5-1) is composed of two parts: the ‘‘if’’ part and the ‘‘then’’ part.
The ‘‘if’’ part is the input to the controller and the ‘‘then’’ part is the output of the
controller. The ‘‘if’’ part is called the premise (or antecedent or conditon) and the
‘‘then’’ part is called the consequence (or action).

3 Inference Engine

The basic operation of the interference engine is that it ‘‘infers,’’ i.e., it deduces (from
evidence or data) a logical conclusion. Consider the following example described by
the logical rule, known as modus ponens:

Premise 1: If an animal is a cat, then it has four legs.
Premise 2: My pet is a cat.
_______________________________________________________

Conclusion: My pet has four legs.

Here, premise 1 is the base rule, premise 2 is the fact (or the evidence or the
data), and the conclusion is the consequence.

The inference engine is a program that uses the rule base and the input data of
the controller to draw the conclusion, very much in the manner shown by the above
modus ponens rule. The conclusion of the inference engine is the fuzzy output of the
controller, which subsequently becomes the input to the defuzzification interface.

4 Defuzzification Interface

In this last operation, the fuzzy conclusion of the inference engine is defuzzified, i.e.,
it is converted into a crisp signal. This last signal is the final product of the fuzzy
logic controller (FLC), which is, of course, the crisp control signal to the process.

The above four operations are explained in greater detail in the sections that
follow.

16.6 FUZZIFICATION

The fuzzification procedure consists of finding appropriate membership functions to
describe crisp data. For example, let speed be a linguistic variable. Then the set
T(speed) could be
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TðspeedÞ ¼ fslow, medium, fastg ð16:6-1Þ

On a scale from 0 to 100, slow speed may be up to 35, medium speed could be from
30 to 70, and high speed could be from 65 to 100. The membership functions for the
three fuzzy variables may have several shapes. Figure 16.10 shows some membership
functions for each of the three fuzzy variables.

Other examples of fuzzification of crisp data have already been presented in
Figures 16.1, 16.2, 16.3b–d, 16.4 and 16.5.

16.7 THE RULE BASE

The most usual source for constructing linguistic control rules are human experts.
We start by questioning experts or operators using a carefully prepared questionaire.
Using their answers, a collection of if–then rules is established. These rules contain
all the information regarding the control of the process. Note that there are other
types of sources for constructing the rule base, such as control engineering knowl-
edge, fuzzy models, etc. [20].

The linguistic control rules are usually presented to the end-user in different
formats. One such format has the verbal form of Table 16.1 which refers to the two-
input one-output controller of Figure 16.7 for the control of the temperature of a
room. Here, the controller inputs e and ce refer to the error and change in error,
respectively, whereas the variable u refers to the output of the controller. This format
involves the following five fuzzy sets: zero (Z), small positive (SP), large positive
(LP), small negative (SN), and large negative (LN). Clearly, the set of if–then rules
presented in Table 16.1 is an example of a linguistic control strategy applied by the
controller in order to maintain the room temperature close to the desired optimum
value of 218C.

In Figure 16.11 the graphical representation of the five fuzzy sets Z, SP, LP, SN,
and LN is given. Using Figure 16.11, the graphical forms of the nine rules of Table
16.1 are presented in Figures 16.12 and 16.13.

16.8 THE INFERENCE ENGINE

The task of the inference engine is to deduce a logical conclusion, using the rule base.
To illustrate how this is performed, we present three examples, in somewhat increas-
ing order of complexity.
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Figure 16.10 The membership function for the term set T(speed) ¼ fslow, medium, fastg.

(a) Slow speed (shouldered); (b) medium speed (triangular); (c) high speed (shouldered).



Example 16.8.1

Consider a simple one rule fuzzy controller, having the following rule:

Rule: If e1 is slow and e2 is fast, then u is medium

The graphical representation of the rule involving the membership functions of the
three members slow, fast, and medium is given in Figure 16.14a. Determine the fuzzy
control u.

Solution

To determine the fuzzy control u, we distinguish the following two steps:

Step 1

Consider the particular time instant k. For this time instant, let the fuzzy variable e1

have the value 25 and the fuzzy variable e2 the value 65, both on the scale 0–100.
Through these points, two vertical lines are drawn, one for each column, intersecting
the fuzzy sets e1 and e2 (Figure 16.14b). Each of these two intersection points (also
called triggering points) has a particular �, denoted as �k

ei ; i ¼ 1; 2. This results in the
following:

First column (fuzzy variable e1): �
k
e1
¼ 0:5

Second column (fuzzy variable e2): �
k
e2
¼ 0:2
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Table 16.1 Verbal Format of If–Then Rules

Rule 1 If ZðeÞ and ZðceÞ, then ZðuÞ
Rule 2 If SPðeÞ and ZðceÞ, then SNðuÞ
Rule 3 If LPðeÞ and ZðceÞ, then LNðuÞ

Rule 4 If SNðeÞ and ZðceÞ, then SPðuÞ
Rule 5 If LNðeÞ and ZðceÞ, then LPðuÞ
Rule 6 If SPðeÞ and SNðceÞ, then ZðuÞ

Rule 7 If SNðeÞ and SPðceÞ, then ZðuÞ
Rule 8 If SPðeÞ and SPðceÞ, then LNðuÞ
Rule 9 If LPðeÞ and LPðceÞ, then LNðuÞ

Figure 16.11 Graphical representation of the five fuzzy sets: zero (Z), small positive (SP),
large positive (LP), small negative (SN), and large negative (LN).
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Figure 16.12 Graphical forms of rules 1–5 of Table 16.1.



Next, determine the value of sk1, defined as follows:

sk1 ¼ min �k
e1
; �k

e2

n o
¼ minf0:5; 0:2g ¼ 0:2 ð16:8-1Þ

This completes the first step, i.e., the determination of the sk1. Note that sk1 is related
only to the ‘‘if’’ part of the rule. This step is depicted in Figure 16.14b. Clearly, when
e1; e2; . . . ; en variables are involved in the ‘‘if’’ part of the rule and there is a total of r
rules, then

skp ¼ min �k
e1
; �k

e2
; . . . ; �k

en

n o
; p ¼ 1; 2; . . . ; r ð16:8-2Þ

where p indicates the particular rule under consideration.
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Figure 16.13 Graphical forms of the rules 6–9 of Table 16.1.



Step 2

The second step is the most important step in the inference engine, since it deduces
the result of the rule for the particular instant of time k. One way to deduce this result
is to multiply the fuzzy variable u (third column) by sk1. The resulting curve is the
fuzzy control sought, and constitutes the result of the rule. This curve is the shaded
area depicted in Figure 16.14c.
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Figure 16.14 The inference procedure for Example 16.8.1. (a) Graphical representation of

membership functions; (b) determination of the triggering points and of the �min; (c) the result
of the rule; (d) compact representation of the three figures (a), (b), and (c).



To state this procedure more formally, let �1ðuÞ and �k1ðuÞ denote the member-
ship functions of the given output fuzzy set u (first row, last column of Figure 16.14)
and of the curve depicted in Figure 16.14c, respectively. Then, �k1ðuÞ is given by the
following expression:

�k1ðuÞ ¼ min
�
�k
e1
; �k

e2

h i�
�1ðuÞ

�
¼

�
sk1
��
�1ðuÞ

�
ð16:8-3Þ

For the general case, where n variables are involved in the ‘‘if’’ part of the rule and
there is a total of r rules, we have the following expression:

�kpðuÞ ¼ min
�
�k
e1
; . . . ; �k

en

h i�
�pðuÞ

�
¼

�
skp
��
�pðuÞ

�
; p ¼ 1; 2; . . . ; r ð16:8-4Þ

where p indicates the particular rule under consideration.
In practice, the above two steps are presented compactly, as shown in Figure

16.14d. Clearly, the two steps are repeated for all desirable instants of time k in order
to construct u for the particular time interval of interest.

Example 16.8.2

Consider a fuzzy controller that is to apply a control strategy described by the
following three if–then rules:

Rule 1: If e1 is negative and e2 is negative, then u is negative
Rule 2: if e1 is zero and e2 is zero, then u is zero
Rule 3: If e1 is positive and e2 is positive, then u is positive.

The graphical representation of the three rules involving the membership functions
of the three fuzzy members negative, zero, and positive is given in Figure 16.15. (To
facilitate the presentation of the method, the members positive and negative are
actually crisp. A fuzzy presentation is given in Figure 16.24 of Problem 2 of Sec.
16.12.). Determine the fuzzy control u.

Solution

Making use of the results of Example 16.8.1, we carry out the first two steps, as
follows:

Step 1

Consider the particular time instant k. For this time instant, let the fuzzy variable e1

have the value 25 and the fuzzy variable e2 also have the value 25, all in the scale 0–
100. Through these points, two vertical lines are drawn, one for each column. These
vertical lines intersect the fuzzy curves at different triggering points, having a parti-
cular �. This results in the following:

First column: in rule 1, �k
e1
¼ 1; in rule 2, �k

e1
¼ 0:5; and in rule 3, �k

e1
¼ 0

Second column: in rule 1, �k
e2
¼ 1; in rule 2, �k

e2
¼ 0:5; and in rule 3, �k

e2
¼ 0

Next, determine, skp, p ¼ 1, 2, 3, using definition (16.8-2) to yield:

For rule 1: sk1 ¼ min
�
�k
e1
; �k

e2


¼ minf1; 1g ¼ 1

For rule 2: sk2 ¼ min
�
�k
e1
; �k

e2


¼ minf0:5; 0:5g ¼ 0:5

For rule 3: sk3 ¼ min
�
�k
e1
; �k

e2


¼ minf0; 0g ¼ 0
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It is evident that only rules 1 and 2 have nonzero contribution on u, while rule 3
plays no part in the final value of u. Furthermore, rule 1 is seen to be dominant, while
rule 2 plays a seconday role.

Step 2

Now multiply skp of each rule with the corresponding curve of the third column, using
definition (16.8-4). The result of this product is a curve (shaded area) for each of the
three variables shown in the third column.

Since the present example involves more than one rule, as compared with
Example 16.8.1, the following extra step is needed.
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Figure 16.15 The inference procedure for Example 16.8.2. (a) Graphical representation of
rule 1; (b) graphical representation of rule 2; (c) graphical representation of rule 3.



Step 3

The above procedure is the implementation of each one of the rules 1, 2, and 3 via
their corresponding fuzzy curves of each of the elements appearing in each rule. The
next step is to take the result of each rule, which is the shaded area in the third
column, and ‘‘unite’’ them together, as shown in Figure 16.16a. A popular method to
construct the shaded area of Figure 16.16a is as follows. We take the union of the
three shaded areas of the third column of Figure 16.15. Then, the actual control of u
is the set (envelope) of these ‘‘united’’ (superimposed) areas, shown in Figure 16.16a.

Strictly speaking, the term ‘‘union’’ refers to two or more sets and is defined as
the maximum of the corresponding values of the membership functions. More spe-
cifically, if we let �kðuÞ be the membership function of the fuzzy control u depicted in
Figure 16.16, then �kðuÞ is evaluated as follows:

�kðuÞ ¼ max �k1ðuÞ; �
k
2ðuÞ; �

k
3ðuÞ

n o
ð16:8-5Þ

where �k1ðuÞ, �
k
2ðuÞ, and �k3ðuÞ are the membership functions of the result of each rule.

For the general case of r rules , Eq. (16.8-5) becomes

�kðuÞ ¼ max �k1ðuÞ; . . . ; �
k
r ðuÞ

n o
ð16:8-6Þ

Now consider another instant of time k: let both fuzzy variables in the first and
second column of Figure 16.15 have the value 75 on a scale from 0 to 100. Then,
following the same procedure, one may similarly construct the corresponding third
column of Figure 16.15. The resulting u for this second case is the shaded area in
Figure 16.16b.

Example 16.8.3

Consider a fuzzy controller that is to apply a control strategy described by the
following two if–then rules:

Rule 1: If e1 is positive and e2 is zero, then u is negative.
Rule 2: If e1 is zero and e2 is zero, then u is zero.
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Figure 16.16 Fuzzy control signal graphical construction for Example 16.8.2. (a) Actual
control signal u when triggering at 25; (b) actual control signal u when triggering at 75.



The graphical representation of the two rules involving the membership functions of
the three fuzzy members positive, zero, and negative is given in Figure 16.17.
Determine the fuzzy control u.

Solution

Using the results of examples 16.8.1 and 16.8.2, we have the following steps.

Step 1

Consider the particular time instant k. For this time instant, let the fuzzy variable e1

have the value of 60 and the fuzzy variable e2 have the value of 25. Through these
points, two vertical lines are drawn, one for each column. These vertical lines inter-
sect the fuzzy curves at different triggering points, having a particular �. This results
in the following:

First column: in rule 1, �k
e1
¼ 0:75 and in rule 2, �k

e1
¼ 0:5

Second column: in rule 1, �k
e2
¼ 0:4 and in rule 2, �k

e2
¼ 0:5

Next, determine skp, p ¼ 1, 2, using definition (16.8-2) to yield:

For rule 1: sk1 ¼ min
�
�k
e1
; �k

e2


¼ minð0:75; 0:4g ¼ 0:4

For rule 2: sk2 ¼ min
�
�k
e1
; �k

e2


¼ minf0:5; 0:5g ¼ 0:5

Step 2

Multiply skp of each rule with the corresponding curve of the third column, according
to defintion (16.8-4). The resulting curves are the fuzzy curves of the output u (third
column, shaded areas).
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Figure 16.17 The inference procedure for Example 16.8.3.



Step 3

Using definition (16.8-6), the envelope of the actual fuzzy control u is constructed by
superimposing the two shaded areas of the third column to yield the curve shown in
Figure 16.18.

Remark 16.8.1

We may now make the following remark, regarding the overall philosophy of an
FLC. To estimate the fuzzy control signal at each instant of time k, the FLC works
as follows. Each rule contributres an ‘‘area’’ (i.e., the shaded areas in the last column
in Figure 16.14 or 16.15 or 16.17). This area describes the output u of the controller
as a fuzzy set. All these areas are subsequently superimposed in the manner
explained above (see Figure 16.16 or 16.18), to give the fuzzy set of the ouput u.
The envelope of this total area is the final conclusion of the interference engine for the
instant of time k, deduced using the rule base. One can conclude, therefore, that the
end product of the inference engine, given in Figure 16.16 or 16.18, is a rule base
result, where all rules are simultaneously taken into consideration.

The very last action in an FLC is, by using Figure 16.16 or 16.18, to determine
the crisp values for the control signal, which will serve as an input to the process.
This is defuzzification, which is explained below.

16.9 DEFUZZIFICATION

There are several methods for defuzzification. A rather simple method is the center
of area method, which is defined as follows:

u ¼

X
i

�ðxiÞxiX
i

�ðxiÞ
ð16:9-1Þ

or
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u ¼

Ð
�ðxÞd dxÐ
�ðxÞ dx

ð16:9-2Þ

where u is the crisp function sought, xi is the member of the set, and �ðxiÞ is the
associated membership function. Clearly, expressions (16.9-1) and (16.9-2) corre-
spond to the discrete- and continuous-time cases, respectively.

Example 16.9.1

Consider the shaded area in Figure 16.16a. Calculate the center of area of this
shaded area using Eq. (16.9-1).

Solution

We have:X
i

�ðxiÞxi ¼ The shaded area in Figure 16.16a

¼ ð50Þ þ ð0:5Þð0:5Þð50Þ ¼ 50 þ 12:5 ¼ 62:5X
i

�ðxiÞ ¼ 1 þ 0:5 ¼ 1:5

Hence u ¼ 62:5=1:5 ¼ 41:66. Therefore, the defuzzification procedure yields the crisp
value of u, which is depicted in Figure 16.19.

There are other types of defuzzification, such as the mean of maximum, first of
maxima, last of maxima, etc. For more information on these techniques see [9, 20].

16.10 PERFORMANCE ASSESSMENT

Up to now, no systematic procedures for the design of an FLC have been proposed
(such as root locus, Nyquist plots, pole placement, stability tests, etc.). The basic
difficulty in developing such procedures is the fact that the rule base has no math-
ematical description. As a consequence, it is not obvious how the rules and gains
affect the overall performance of the closed-loop system.
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Figure 16.19 Defuzzified value of control signal.



The problem of stability of a closed-loop system incorporating an FLC essen-
tially remains an unsolved question, even though increasing research results have
appeared recently in the literature. For linear time-variant systems with a known
transfer function or state-space model, if the describing function approach is applied
and together with the Nyquist plot, one may reach some safe conclusions regarding
the stability margins of the systems.

To evaluate the performance of FLCs a theoretical approach has been pro-
posed, which yields a partial evaluation performance. This approach refers to the
integrity of the rule base and aims at securing the accuracy of the rule base. One way
to investigate integrity is to plot the input and output signal of the FLC controller.
Comparison of those two waveforms provides some idea of the integrity of the rule
base. Clearly, the objective of this investigation is to study the behavior of the
control system and, if it is not satisfactory, to suggest improvements.

16.11 APPLICATION EXAMPLE: KILN CONTROL

The kilning process in the manufacturing of cement has attracted much attention
from the control viewpoint and, indeed, was one of the first applications of fuzzy
control in the process industry [3, 19, 25]. The kilning process is one of the most
complex industrial processes to control and has, until the advent of fuzzy control,
defied automatic control; However, human operators can successfully control this
process using rules, the result of years of experience. These rules now form the basis
for fuzzy control, and there are many successful applications worldwide.

Briefly, in the kilning process a blend of finely ground raw materials is fed into
the upper end of a long, inclining, rotating cylinder and slowly flows to the lower
end, while undergoing chemical transformation due to the high temperatures pro-
duced by a flame at the lower end. The resultant product, clinker, constitutes the
major component of cement. A measure of the burning zone temperature at the
lower end of the rotary kiln can be obtained indirectly by measuring the torque of
the motor rotating the kiln, whereas a measure of the quality of the end product is its
free lime content (FCAO). These two quantities (or process output measurements)
are essential in specifying the fuel feed to the kiln (i.e., the control strategy).

The block diagram of Figure 16.20 is a simplified controller for the kilning
process. There are two inputs e1 and e2 and one output u, defined as follows [25]:

e1 ¼ change in kiln torque drive (DELTQUE or �TQUE)
e2 ¼ free lime content (FCAO)
u ¼ output fuel rate (DELFUEL or �FUEL)
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where � stands for change. The corresponding ranges of e1, e2, and u are ð�3; 0; 3Þ,
ð0:3; 0:9; 1:5Þ, and ð�0:2; 0; 0:2Þ, respectively, where the middle number indicates the
center of the fuzzy membership function.

The rule base is composed of nine if–then rules, as shown in Table 16.2. The
graphical representation of this rule base is shown in Figures 16.21 and 16.22, where
each row represents a rule. The first column represents the membership function for
the first input e1 ¼ change in kiln drive torque (DELTQUE or �TQUE), the second
column the membership function of the second input e2 ¼ free lime content
(FCAO), and the third column the membership function of the output u ¼ output
fuel rate (DELFUEL or �FUEL). Clearly, in this example we have three sets with
their corresponding members as follows:

First set: �TQUE (ZERO (ZE), NEGATIVE (NE), POSITIVE (PO))
Second set: FCAO (LOW (LO), OK (OK), HIGH (HI))
Third set: �FUEL (LARGE POSITIVE (LP), MEDIUM POSITIVE (MP),

SMALL POSITIVE (SP), NO CHANGE (NC), SMALL NEGATIVE (SN),
MEDIUM NEGATIVE (MN), LARGE NEGATIVE (LN)).

To determine the fuzzy controller output at some particular instant k, assume
that DELTQUE and FCAO are e1 ¼ �1:2%=hr and e2 ¼ 0:54%/hr, respectively.
Thus for the first controller input variable e1 (corresponding to the first column) a
vertical line centered at �1:2%=hr is drawn to intercept the fuzzy sets for the change
in kiln drive torque for every rule. Likewise a vertical line, centered at 0.54%/hr, is
drawn to intercept the fuzzy sets for the second input e2, free lime, for every rule.

To obtain the final fuzzy output u of the controller, for this particular instant
of time k, we follow the procedure presented in the examples of Sec. 16.8. We have:
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Table 16.2 The Nine If–Then Rules for the Kiln Process FLC

Rule 1 If DELTQUE is zero and FCAO is low,
then DELFUEL is medium negative

Rule 2 If DELTQUE is zero and FCAO is OK,

then DELFUEL is zero

Rule 3 If DELTQUE is zero and FCAO is high,
then DELFUEL is medium positive

Rule 4 If DELTQUE is negative and FCAO is low,
then DELFUEL is small positive

Rule 5 If DELTQUE is negative and FCAO is OK,

then DELFUEL is medium positive

Rule 6 If DELTQUE is negative and FCAO is high,
then DELFUEL is large positive

Rule 7 If DELTQUE is positive and FCAO is low,
then DELFUEL is large negative

Rule 8 If DELTQUE is positive and FCAO is OK,

then DELFUEL is medium negative

Rule 9 If DELTQUE is positive and FCAO is high,
then DELFUEL is small negative
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Figure 16.21 Graphical representation of the fuzzy logic interpretation of the control rules
1–5 (Table 16.2) for the kilning process.



Step 1

Using the relationship (16.8-2) for the case of a two-input controller with nine rules
at the kth time instant, we have that for each rule

skp ¼ min �k
e1
; �k

e2

n o
¼ min �k

DLTQUE; �
k
FCAO

n o
ð16:11-1Þ

As a result, the set of minima at this time instant, which is a measure of the strength
or contribution of each rule on the final decision, is

�
sk1; s

k
2; s

k
3; s

k
4; s

k
5; s

k
6; s

k
7; s

k
8; s

k
9


¼ f0:98; 0:63; 0; 0:29; 0:29; 0; 0; 0; 0g
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Figure 16.22 Graphical representation of the fuzzy logic interpetation of the control rules

6–9 (Table 16.2) for the kilning process. (Reproduced by the kind permission of FLS
Automation, Denmark.)



It is evident here that only rules 1, 2, 4, and 5 have a nonzero contribution, the
remainder playing no part in the final decision. Furthermore, rule 1 is seen to be
dominant, while rule 2 has a significant contribution. In contrast, rules 4 and 5 have
only a small contribution.

Step 2

To determine the contribution to u of each rule, i.e., to determine
�kpðuÞ; p ¼ 1; 2; . . . ; 9, we apply relation (16.8-4), i.e., the relation

�kpðuÞ ¼
�
skp
��
�pðuÞ

�
ð16:11-2Þ

As a result, the nine curves in the third column of Figures 16.21 and 16.22 are
produced.

Step 3

To determine the final fuzzy control u, simultaneously taking into account all nine
rules, we make use of Eq. (16.8-6) to yield

�kðuÞ ¼ max
�
�k1ðuÞ; . . . ; �

k
9ðuÞ


ð16:11-3Þ

The fuzzy set �kðuÞ is given in Figure 16.23.
Finally, we defuzzify �kðuÞ by obtaining the centroid of this resultant output

fuzzy set �kðuÞ. The final crisp output to the fuel actuator at this sampling instant is
the center of the area (COA) of the envelope of the resultant ouput fuzzy set �kðuÞ,
and is calculated to be (see Figure 16.23)

�FUELðkÞ ¼ �0:048 m3=hr

It is clear that this procedure must be repeated at every sampling instant k. The
sequence of these control decisions is then the desired rule-based control strategy.
For more details see [3, 25].
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Figure 16.23 The graphical representation of the control output u.



PROBLEMS

1. In Example 16.8.2, construct the curves of the third column for the case k ¼ k2,
where the fuzzy variables have the value 75.

2. Solve Example 16.8.2 when the graphical representation of the membership
functions of the three fuzzy members positive, zero, and negative are as in
Figure 16.24.

3. Solve Example 16.8.3 when the graphical representation of the membership
functions of the three fuzzy positive, zero, negative are as in Figure 16.25.

4. A fuzzy controller is to apply a control strategy described by the following three
if–then rules:

Rule 1: If the temperature is low and the pressure is zero, then the speed is low.
Rule 2: If the temperature is medium and the pressure is low, then the speed is

medium.
Rule 3: If the temperature is high and the pressure is high, then the speed is

high.

The ranges of the variables are: temperature of 0 to 1008C, pressure from 0 to
10 lb, and the speed from 0 to 100 m/sec.

(a) Describe the temperature, pressure, and speed by graphical representation
as fuzzy sets.

(b) Determine the three rules using the above fuzzy sets.
(c) For the instant of time k, the values of temperature and pressure are 308C

and 5 lb, respectively. Determine the fuzzy output (speed) set.
(d) Determine the crisp value by defuzzifying the above fuzzy output set.
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Figure 16.24 The membership functions for Problem 2.

Figure 16.25 The membership functions for Problem 3.
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Appendix A
Laplace Transform Tables
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Table A.1 Laplace Transform Properties and Theorems

Properties or theorems f ðtÞ FðsÞ

1 Definition of the Laplace
transform

f ðtÞ

ð1
0

f ðtÞe�st dt

2 Definition of the inverse
Laplace transform

1

2�j

ðcþj1

c�j!

FðsÞest ds FðsÞ

3 Linearity c1 f1ðtÞ þ c2f2ðtÞ c1F1ðsÞ þ c2F2ðsÞ

4 First derivative df ðtÞ

dt

sFðsÞ � f ð0Þ

5 Second derivative
d2f ðtÞ

dt2
s2FðsÞ � sf ð0Þ � f ð1Þð0Þ

6 nth derivative
dnf ðtÞ

dtn
snFðsÞ � sn�1f ð0Þ � � � � � f ðn�1Þ

ð0Þ

7 Integral

ðt
0

f ðtÞ dt
FðsÞ

s

8 Integral

ðt
�1

f ðtÞ dt
FðsÞ

s
þ
f ð�1Þ

ð0Þ

s

9 Double integral

ðt
�1

ðt
�1

f ðtÞðdtÞ2
FðsÞ

s2
þ
f ð�1Þ

ð0Þ

s2
þ
f ð�2Þ

ð0Þ

s

10 nth time integral

ðt
1

� � �

ðt
1|fflfflfflfflfflffl{zfflfflfflfflfflffl}

n times

f ðtÞðdtÞn
FðsÞ

sn
þ
f ð�1Þ

ð0Þ

sn
þ
f ð�2Þ

ð0Þ

sn�1
þ � � �

þ
f ð�nÞ

ð0Þ

s

11 Time scaling f ðatÞ
1

a
F

s

a

� �

(continued)
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Table A.1 (continued)

Properties or theorems f ðtÞ FðsÞ

12 Shift in the frequency

domain

e�atf ðtÞ Fðsþ aÞ

13 Shift in the time domain f ðt� aÞuðt� aÞ e�atFðsÞ

14 Multiplication of a function

by t
tf ðtÞ �

d

ds
FðsÞ

15 Division of a function by t
f ðtÞ

t

ð1
s

FðaÞ da

16 Multiplication of a function
by tn

tnf ðtÞ ð�1Þn
dn

dsn
FðsÞ

17 Division of a function by tn
f ðtÞ

tn

ðt
s

� � �

ðt
s|fflfflfflffl{zfflfflfflffl}

n times

FðsÞðdsÞn

18 Convolution

ðt
0

hðt� �Þuð�Þd� HðsÞUðsÞ

19 The initial value theorem lim
t!0

f ðtÞ lim
t!1

sFðsÞ

20 The final value theorem lim
t!1

f ðtÞ lim
t!0

sFðsÞ

Remark A.1.1 In the properties 8, 9, and 10, the constant fð�kÞð0Þ is defined as follows:

f ð�1Þð0Þ ¼
ð0
�1

fðtÞ dt; f ð�2Þð0Þ ¼
ð0
�1

ð0
�1

fðtÞdt2; etc.
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Table A.2 Laplace Transform Pairs

SN FðsÞ ¼ L½ f ðtÞ
 f ðtÞ ¼ L�1
½FðsÞ
 Remarks

1 1 �ðtÞ

2 s �ð1ÞðtÞ

3 sn �ðnÞðtÞ n is a positive integer

4
1

s uðtÞ

5
1

s2
t

6
1

sn
tn�1

ðn� 1Þ!
n is a positive integer

7
1

s1=2
1

ð�tÞ1=2

8
1

snþ1=2
2ntn�1=2

1 � 3 � 5 � � � ð2n� 1Þ � �1=2
n is a positive integer

9
1

sþ a e�at

10
1

ðsþ aÞ2
te�at

11
1

ðsþ aÞn
tn�1e�at

ðn� 1Þ!
n is a positive integer

12
1

s2 þ a2
1

a
sin at

13
1

ðs2 þ a2Þ2
1

2a3
ðsin at� at cos atÞ

14
1

s2 � a2
1

a
sinh at

15
1

ðsþ aÞðsþ bÞ
e�at

� e�bt

b� a

16
1

ðsþ aÞðsþ bÞðsþ cÞ
�ðc� bÞe�at

� ða� cÞe�bt
� ðb� aÞe�ct

ðb� aÞðc� bÞða� cÞ

17
ðsþ aÞ

ðsþ bÞðsþ cÞ
ða� bÞe�bt

� ða� cÞe�ct

ðc� bÞ

18
s

s2 þ a2 cos at

(continued)
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Table A.2 (continued)

SN FðsÞ ¼ L½ f ðtÞ
 f ðtÞ ¼ L�1
½FðsÞ
 Remarks

19
s

s2 � a2 cosh at

20
sþ a

ðsþ aÞ2 þ b2 e�at cos bt

21
b

ðsþ aÞ2 þ b2
e�at sin bt

22
1

s2ðsþ aÞ

1

a2
ðe�at

þ at� 1Þ

23
1

ðsþ aÞ2ðsþ bÞ

1

ðb� aÞ2
	
½ðb� aÞt� 1
e�at

þ e�bt



24
1

sðs2 þ a2Þ

1

a2
ð1� cos atÞ

25
s

ðsþ aÞðsþ bÞ
1

b� a
ðbe�bt

� ae�at
Þ

26
1

sðsþ aÞ2
1

a2
ð1� ðatþ 1Þe�at

Þ

27
1

sðsþ aÞðsþ bÞ
be�at

� ae�bt

abðb� aÞ
þ

1

ab

28
1

s2ðs2 þ a2Þ

1

a3
ðat� sin atÞ

29
1

s4 � a4
1

2a3
ðsinh at� sin atÞ

30
sþ b

s2 þ a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
a

sinðatþ �Þ
� ¼ tan�1 a

b

� �

31
s

ðs2 þ a2Þ2
t

2a
sin at

32
s2

ðs2 þ a2Þ2

1

2a
ðat cos atþ sin atÞ

33
sn

ðs2 þ a2Þnþ1

tn sin at

n!2na

34
sþ b

sðsþ aÞ2
b

a2
þ

a� b

a
t�

b

a2
e�at

 �

35
sþ c

sðsþ aÞðsþ bÞ

c� a

aða� bÞ
e�at

þ
c� b

bðb� aÞ
e�bt

þ
c

ab



Laplace Transform Tables 705

Table A.2 (continued)

SN FðsÞ ¼ L½ f ðtÞ
 f ðtÞ ¼ L�1
½FðsÞ
 Remarks

36
s2 � b2

ðs2 þ b2Þ2
t cos bt

37
s

ðs2 þ a2Þðs2 þ b2Þ
cos at� cos bt

b2 � a2
a 6¼ b

38
s

ðsþ aÞðsþ bÞðsþ cÞ

�
ae�at

ðb� aÞðc� aÞ
�

be�bt

ða� bÞðc� bÞ

�
ce�ct

ða� cÞðb� cÞ

39
s2

ðsþ aÞðsþ bÞðsþ cÞ

a2e�at

ðb� aÞðc� aÞ
þ

b2e�bt

ða� bÞðc� bÞ

þ
c2e�ct

ða� cÞðb� cÞ

40
s

ðsþ aÞðsþ bÞ2 �
ae�at

þ ðbða� bÞt� aÞe�bt

ða� bÞ2

41
s2

ðsþ aÞðsþ bÞ2
a2e�at

þ ðb2ða� bÞtþ b2 � 2abÞe�bt

ða� bÞ2

42
1

ðsþ aÞðs2 þ bÞ2
1

a2 þ b2
e�at

�
1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
sinðbtþ �Þ

 �
� ¼ tan�1 a

b

� �

43
s

ðsþ aÞðs2 þ b2Þ
�1

a2 þ b2
e�at

�
1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
sinðbtþ �Þ

 �
� ¼ tan�1 a

b

� �

44
s2

ðsþ aÞðs2 þ b2Þ

a2

a2 þ b2
e�at

�
b

a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
sinðbt� �Þ

 �
� ¼ tan�1 a

b

� �

45
1

s½ðsþ aÞ2 þ b2


1

a2 þ b2
1�

b

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
e�at sinðbtþ �Þ

 �
� ¼ tan�1 a

b

� �

46
1

s2½ðsþ aÞ2 þ b2


1

a2 þ b2
t�

2a

a2 þ b2
þ
1

b
e�at sinðbtþ �Þ

 �
� ¼ tan�1 a

b

� �

47
1

sðs2 þ a2Þ2
1

a4
ð1� cos atÞ �

1

2a3
t sin at

48
1

s4 � a4
1

2a2
ðcosh at� cos atÞ

49
s2

s4 � a4

1

2a
ðsinh atþ sin atÞ

(continued)
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Table A.2 (continued)

SN FðsÞ ¼ L½ f ðtÞ
 f ðtÞ ¼ L�1
½FðsÞ
 Remarks

50
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ a2
p J0ðatÞ J0: Bessel function

51
1

s� ln b bt

52 ln
sþ a

sþ b

1

t
ðe�bt

� e�at
Þ



Appendix B
The Z-Transform

B.1 INTRODUCTION

It is well known that the Laplace transform is a mathematical tool which facilitates
the study and the design of linear time-invariant continuous-time control systems
(see Chap. 2). The reason for this is that it transforms the differential equation which
describes the system under control to an algebraic equation. The corresponding
technique for the discrete-time systems is the Z-transform. Indeed, the Z-transform
facilitates significantly the study and the design of linear time-invariant discrete-time
systems since it transforms the difference equation which describes the system under
control to an algebraic equation. Since the study of an algebraic equation is much
easier than that of a difference equation, the Z-transform has been extensively used
as a basic study and design tool for discrete-time systems.

This appendix is devoted to the Z-transform, covering the basic theory
together with several examples. More specifically, we begin the appendix with the
definitions of certain basic discrete-time signals. Subsequently, we present the defini-
tions and some basic properties and theorems of the Z-transform. Finally, the
inverse Z-transform is defined and some illustrative examples are presented.

B.2 THE BASIC DISCRETE-TIME CONTROL SIGNALS

In this section we present the definitions of the following basic discrete-time signals:
the unit pulse sequence, the unit step sequence, the unit gate sequence, the ramp
sequence, the exponential sequence, the alternating sequence, and the sine sequence.
These signals are very important for control applications.

1 The Unit Pulse Sequence

The unit pulse sequence is designated by �ðk� k0Þ and is defined as follows:

�ðk� k0Þ ¼
1; for k ¼ k0
0; for k 6¼ k0

�
ðB:2-1Þ

The graphical representation of �ðk� k0Þ is given in Figure B.1.
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2 The Unit Step Sequence

The unit step sequence is designated by �ðk� k0Þ and is defined as follows:

�ðk� k0Þ ¼
1; for k � k0
0; for k < k0

�
ðB:2-2Þ

The graphical representation of �ðk� k0Þ is given in Figure B.2.

3 The Unit Gate Sequence

The unit gate sequence is designated by g�ðkÞ ¼ �ðk� k1Þ � �ðk� k2Þ and is defined
as follows:

g�ðkÞ ¼
1; for k1 � k � k2
0; for k < k1 and for k > k2

�
ðB:2-3Þ

Figure B.3 shows the graphical representation of g�ðkÞ. The unit gate sequence is
usually used to zero all values of another sequence outside a certain time interval.
Consider, for example, the sequence f ðkÞ. Then, the sequence yðkÞ ¼ f ðkÞg�ðkÞ
becomes

yðkÞ ¼ f ðkÞg�ðkÞ ¼
f ðkÞ; for k1 � k � k2
0; for k < k1 and for k > k2

�

4 The Ramp Sequence

The ramp sequence is designated by rðk� k0Þ and is defined as follows:

rðk� k0Þ ¼
k� k0; for k � k0
0; for k < k0

�
ðB:2-4Þ
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Figure B.1 The unit pulse sequence �ðk� k0Þ.

Figure B.2 The unit step sequence �ðk� k0Þ.



Figure B.4 shows the graphical representation of rðk� k0Þ.

5 The Exponential Sequence

The exponential sequence is designated by gðkÞ and is defined as follows:

gðkÞ ¼
ak; for k � 0
0; for k < 0

�
ðB:2-5Þ

Figure B.5 shows the graphical representation of gðkÞ ¼ ak. Clearly, when a > 1 the
values of gðkÞ increase as k increases, whereas for a < 1 the values of gðkÞ decrease as
k decreases. For a ¼ 1, gðkÞ remains constantly equal to 1. In this last case, gðkÞ
becomes the unit step sequence �ðkÞ.

6 The Alternating Sequence

The alternating sequence is designated by "ðkÞ and is defined as follows:

"ðkÞ ¼ ð�1Þk; for k � k0
0; for k < k0

�
ðB:2-6Þ

Figure B.6 shows the graphical representation of "ðkÞ.

7 The Sine Sequence

The sine sequence is defined as follows:

f ðkÞ ¼
A sin!0k; for k � 0

0; for k < 0

�
ðB:2-7Þ

Figure B.7 shows the graphical representation of f ðkÞ ¼ A sin!0k, with !0 ¼ 2�=12.

The Z-Transform 709

Figure B.3 The unit gate sequence g�ðkÞ ¼ �ðk� k1Þ � �ðk� k2Þ.

Figure B.4 The ramp sequence rðk� k0Þ.
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Figure B.5 The exponential sequence gðkÞ ¼ ak.

Figure B.6 The alternating sequence "ðkÞ.

Figure B.7 The sine sequence f ðkÞ ¼ A sin!0k.



B.3 THE Z -TRANSFORM

B.3.1 Introduction to the Z -Transform

The Z-transform of a discrete-time function f ðkÞ is designated by FðzÞ and is defined
as follows:

FðzÞ ¼ Z½ f ðkÞ	 ¼
X1

k¼�1

f ðkÞz�k
ðB:3-1Þ

If the discrete-time function f ðkÞ is causal, i.e., f ðkÞ ¼ 0 for k < 0, then the definition
(B.3-1) becomes

FðzÞ ¼ Z½ f ðkÞ	 ¼
X1
k¼0

f ðkÞz�k
ðB:3-2Þ

In practice, the discrete-time sequence is usually produced from a continuous-
time function f ðtÞ. The conversion of f ðtÞ to f ðkTÞ, where T represents the time
distance between two points of f ðkTÞ, is achieved through a sampler, as is shown
in Figure B.8. The sampler is actually a switch which closes instantly and with
frequency fs ¼ 1=T . The resulting output f ðkTÞ represents a discrete-time function
with amplitude equal to the amplitude of f ðtÞ at the sampling instants kT ,
k ¼ 0; 1; 2; . . . .

The following theorem refers to the criteria for choosing the sampling fre-
quency fs ¼ 1=T (this issue was first investigated by Nyquist, but Shannon gave
the complete proof of the theorem).

Theorem B.3.1

Let f1 be the highest frequency in the frequency spectrum of f ðtÞ. Then, for f ðtÞ to be
recovered from f ðkTÞ, it is necessary that fs � 2f1.

It is noted that the function f ðtÞ may be reproduced from f ðkTÞ using a hold
circuit (see Sec. 12.3) in series with a low-frequency filter which smooths out the form
of the signal.
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Figure B.8 The operation of a sampler.



Let �T ðtÞ denote the infinite sequence of unit pulse functions (or Dirac func-
tions) shown in Figure B.9. In addition, let f �ðtÞ be the following function:

f �ðtÞ ¼ f ðtÞ�T ðtÞ ¼
X1

k¼�1

f ðkTÞ�ðt� kT Þ where �T ðtÞ ¼
X1

k¼�1

�ðt� kTÞ

ðB:3-3Þ

When f ðtÞ is causal (and this is usually the case), Eq. (B.3-3) becomes

f �ðtÞ ¼
X1
k¼0

f ðkTÞ�ðt� kT Þ ðB:3-4Þ

The Laplace transform of Eq. (B.3-4) is

F�
ðsÞ ¼ L

�
f �ðtÞ

�
¼

X1
k¼0

f ðkT Þ

ð1
0

�ðt� kTÞe�stdt ¼
X1
k¼0

f ðkT Þe�kTs
ðB:3-5Þ

The Z-transform of f ðkTÞ is

FðzÞ ¼ Z½f ðkT Þ	 ¼
X1
k¼0

f ðkTÞz�k
ðB:3-6Þ

If we use the mapping

z ¼ eTs or s ¼ T�1 ln z ðB:3-7Þ

then

FðzÞ ¼ F�
ðsÞ

����
s¼T�1 ln z

ðB:3-8Þ

Equation (B.3-8) shows the relation between the sequence f ðkTÞ and the function
f �ðtÞ described in the z- and s-domain, respectively. A continuous-time system with
input f ðtÞ and output f �ðtÞ is called an ideal sampler (see, also, Sec. 12.3).

The inverse Z-transform of a function FðzÞ is denoted as f ðkTÞ and is defined
as

f ðkTÞ ¼ Z�1
½FðzÞ	 ¼

1

2�j

þ
FðzÞzk�1dz ðB:3-9Þ

Equations (B.3-6) and (B.3-8) constitute the Z-transform pair.
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Figure B.9 The Dirac functions �T ðtÞ.



B.3.2 Properties and Theorems of the Z -Transform

1 Linearity

The Z-transform is linear, i.e., the following relation holds:

Z½c1 f1ðkTÞ þ c2 f2ðkTÞ	 ¼ c1Z½ f1ðkTÞ	 þ c2Z½ f2ðkTÞ	

¼ c1F1ðzÞ þ c2F2ðzÞ ðB:3-10Þ

where c1 and c2 are constants and

FiðzÞ ¼ Z½ fiðkTÞ	; i ¼ 1; 2 ðB:3-11Þ

Proof

Apply the Z-transform definition (B.3-5) to relation (B.3-10) to yield

Z½c1 f1ðkTÞ þ c2 f2ðkTÞ	 ¼
X1
k¼0

½c1 f1ðkTÞz�k
þ c2 f2ðkTÞz�k

	

¼ c1
X1
k¼0

f1ðkT Þz�k
þ c2

X1
k¼0

f2ðkTÞz�k

¼ c1F1ðzÞ þ c2F2ðzÞ

2 Shift in the Time Domain

The discrete-time functions f ðkT � �TÞ and f ðkT þ �TÞ are actually the function
f ðkTÞ, shifted �T time units to the right and to the left, respectively. From definition
(B.3-6), we have

ðaÞ Z½ f ðkT � �TÞ	 ¼
X1
k¼0

f ðkT � �TÞz�k
¼

X1
m¼��

f ðmT Þz�mz��

¼ z��
X1
m¼0

f ðmTÞz�m
þ

X�1
m¼��

f ðmTÞz�m

" #

¼ z��FðzÞ þ
X�1
m¼��

f ðmTÞz�ð�þmÞ
ðB:3-12aÞ

ðbÞ Z½ f ðkT � �TÞ�ðkT � �TÞ	 ¼
X1
k¼0

f ½ðk� �ÞT 	�½ðk� �ÞT 	z�k

¼ z��
X1
k¼0

f ½ðk� �ÞT 	�½ðk� �ÞT 	z�ðk��Þ

" #

¼ z��
X1
m¼��

f ðmTÞ�ðmTÞz�m

¼ z��
X1
m¼0

f ðmT Þz�m

¼ z��FðzÞ ðB:3-12bÞ

The Z-Transform 713



ðcÞ Z½ f ðkT þ �TÞ	 ¼
X1
k¼0

f ðkT þ �TÞz�k
¼ z�

X1
k¼0

f ½ðkþ �ÞT 	z�ðkþ�Þ

¼ z�
X1
m¼�

f ðmT Þz�m

¼ z�
X1
m¼0

f ðmTÞz�m
�

X��1
m¼0

f ðmTÞz�m

" #

¼ z� FðzÞ �
X��1
m¼0

f ðmTÞz�m

" #

¼ z� FðzÞ �
X��1
k¼0

f ðkTÞz�k

" #
ðB:3-12cÞ

where in the last step, we have set m ¼ k.
From the foregoing equations, the following special cases are obtained:

Z½ f ðtþ TÞ	 ¼ zFðzÞ � z f ð0Þ ðB:3-13aÞ

Z½ f ðtþ 2TÞ	 ¼ z2FðzÞ � z2 f ð0Þ ¼ zf ðTÞ ðB:3-13bÞ

Z½ f ðt� TÞ	 ¼ z�1FðzÞ þ f ð�TÞ ðB:3-13cÞ

Z½ f ðt� 2TÞ	 ¼ z�2FðzÞ þ z�1f ð�TÞ þ f ð�2TÞ ðB:3-13dÞ

3 Change in the z-Scale

Consider the function at f ðtÞ. Then, according to definition (B.3-6), it follows that

Z½at f ðtÞ	 ¼
X1
k¼0

akT f ðkTÞz�k
¼

X1
k¼0

f ðkTÞ½a�Tz	�k
¼ Fða�TzÞ ðB:3-14Þ

4 The Z -Transform of a Sum

Consider the finite sum

Xk
i¼0

f ðiTÞ

This sum represents the summation of the first kþ 1 terms of the sequence f ðkTÞ.
Defining

gðkTÞ ¼
Xk
i¼0

f ðiTÞ; g½ðk� 1ÞT 	 ¼
Xk�1
i¼0

f ðiTÞ; . . .

the discrete-time function gðkTÞ may be described by the following difference
equation:

gðkT þ TÞ ¼ gðkTÞ þ f ðkT þ TÞ

Applying the Z-transform to this difference equation yields

z½GðzÞ � gð0Þ	 ¼ GðzÞ þ z½FðzÞ � f ð0Þ	
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where use was made of Eq. (B.3-13a). Since gð0Þ ¼ f ð0Þ, this relation becomes

GðzÞ ¼ Z
Xk
i¼0

f ðiTÞ

" #
¼

z

z� 1

h i
FðzÞ ðB:3-15Þ

5 Multiplication by k

Consider the discrete-time function f ðkTÞ. Then, the Z-transform of the function
kf ðkT Þ is

Z½kf ðkTÞ	 ¼
X1
k¼0

kf ðkTÞz�k
¼ z

X1
k¼0

f ðkTÞ½kz�k�1
	 ¼ �z

X1
k¼0

f ðkTÞ
dz�k

dz

¼ �z
d

dz

X1
k¼0

f ðkTÞz�k

" #
¼ �z

d

dz
FðzÞ ðB:3-16Þ

6 Convolution of Two Discrete-Time Functions

Consider the causal discrete-time functions f ðkT Þ and hðkTÞ. The convolution
between these two functions is designated by yðkT Þ ¼ f ðkTÞ � hðkT Þ and is defined
as follows:

yðkTÞ ¼ f ðkTÞ � hðkTÞ ¼
X1
i¼0

f ðiTÞhðkT � iTÞ ¼
X1
i¼0

hðiTÞ f ðkT � iTÞ

The Z-transform of the function yðkTÞ is

YðzÞ ¼ Z½ yðkTÞ	 ¼ Z½ f ðkT Þ � hðkTÞ	 ¼
X1
k¼0

X1
i¼0

f ðiTÞhðkT � iTÞ

" #
z�k

¼
X1
k¼0

X1
i¼0

hðiTÞ f ðkT � iTÞ

" #
z�k

Reversing the summing order, we have

YðzÞ ¼
X1
i¼0

hðiTÞ
X1
k¼0

f ðkT � iTÞz�k
¼

X1
i¼0

hðiTÞz�i
X1
k¼0

f ðkT � iTÞz�ðk�iÞ

¼
X1
i¼0

hðiTÞz�i

" # X1
m¼0

f ðmT Þz�m

" #

Since f ðmTÞ is a causal function, i.e., f ðmT Þ ¼ 0 for m < 0, it follows that

YðzÞ ¼
X1
i¼0

hðiTÞz�i

" # X1
m¼0

f ðmTÞz�m

" #
¼ HðzÞFðzÞ ðB:3-17Þ

7 Discrete-Time Periodic Functions

A discrete-time function f ðkTÞ is called periodic with period p if the following
relation holds:

f ðkTÞ ¼ f ðkT þ pTÞ for every k ¼ 0; 1; 2; . . .
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Let F1ðzÞ be the Z-transform of the first period of f ðkTÞ, i.e., let

F1ðzÞ ¼
Xp�1
k¼0

f ðkTÞz�k

Then the Z-transform of the periodic function f ðkTÞ is

Z½ f ðkTÞ	 ¼ FðzÞ ¼ Z½ f ðkT þ pTÞ	 ¼ z p FðzÞ �
Xp�1
k¼0

f ðkTÞz�k

" #

¼ z p
½FðzÞ � F1ðzÞ	

where relation (B.3-12c) was used. Hence

FðzÞ ¼
z p

z p � 1

� 
F1ðzÞ ðB:3-18Þ

8 Initial Value Theorem

The following relation holds:

f ð0Þ ¼ lim
z!1

FðzÞ ðB:3-19Þ

Proof

The Z-transform of f ðkTÞ may be written as

FðzÞ ¼
X1
k¼0

f ðkTÞz�k
¼ f ð0Þ þ f ðTÞz�1 þ f ð2TÞz�2 þ � � �

Taking the limits of both sides of the above equation, as z ! 1, we immediately
arrive at the relation (B.3-19).

9 Final Value Theorem

The following relation holds:

lim
k!1

f ðkTÞ ¼ lim
z!1

ð1� z�1ÞFðzÞ ðB:3-20Þ

under the assumption that the function ð1� z�1ÞFðzÞ does not have any poles outside
or on the unit circle.

Proof

Consider the Z-transform of f ðkT þ TÞ � f ðkTÞ:

Z½ f ðkT þ TÞ � f ðkTÞ	 ¼ lim
m!1

Xm
k¼0

½ f ðkT þ TÞ � f ðkTÞ	z�k

Using Eqs (B.3-6) and (B.3-13a), we obtain
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zFðzÞ � zf ð0Þ � FðzÞ ¼ lim
m!1

Xm
k¼0

½ f ðkT þ TÞ � f ðkTÞ	z�k

or

ð1� z�1ÞFðzÞ � f ð0Þ ¼ lim
m!1

Xm
k¼0

½ f ðkT þ TÞ � f ðkTÞ	z�k�1

Taking the limits on both sides of the above equation, as z ! 1, we obtain

lim
z!1

ð1� z�1ÞFðzÞ � f ð0Þ ¼ lim
m!1

Xm
k¼0

½ f ðkT þ TÞ � f ðkTÞ	

¼ lim
m!1

�
½FðTÞ � f ð0Þ	 þ ½ f ð2TÞ � f ðTÞ	

þ � � � þ ½ f ðmT þ TÞ � f ðmT Þ	
�

¼ lim
m!1

½�f ð0Þ þ f ðmT þ TÞ	 ¼ �f ð0Þ þ f ð1Þ

Hence

lim
k!1

f ðkTÞ ¼ lim
z!1

ð1� z�1ÞFðzÞ

All the foregoing properties and theorems are summarized in Appendix C.

Example B.3.1

Find the Z-transform of the impulse sequence �ðkT � �TÞ.

Solution

Using definition (B.3-6), we have

Z½�ðkT � �TÞ	 ¼
X1
k¼0

�ðkT � �TÞz�k
¼ z��

Example B.3.2

Find the Z-transform of the step sequence �ðkT � �TÞ.

Solution

Here

Z½�ðkT � �TÞ	 ¼ z��Z½�ðkTÞ	 ¼ z��
X1
k¼0

�ðkT Þz�k
¼ z��

X1
k¼0

ðz�1Þk

" #

¼ z�� 1

1� z�1

� 
¼

z��þ1

z� 1

where use was made of property (B.3-12c) and of the relation

X1
k¼0

zi ¼
1

1� z
; jzj < 1
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Example B.3.3

Find the Z-transform of the exponential sequence gðkTÞ ¼ akT .

Solution

Here

Z½gðkTÞ	 ¼
X1
k¼0

akTz�k
¼

X1
k¼0

ðaTz�1Þk ¼
1

1� aTz�1
¼

z

z� aT

for jaz�1j < 1

Example B.3.4

Find the Z-transform of the ramp sequence rðkT � �TÞ:

Solution

Here

Z½rðkT � �TÞ	 ¼ z��Z½rðkTÞ	 ¼ z��
X1
k¼0

rðkTÞz�k
¼ Tz��

X1
k¼0

kz�k

¼ Tz��
ð�zÞ

d

dz
Z½�ðkTÞ	 ¼ �Tz��þ1 d

dz

z

z� 1

h i
¼

Tz��þ1

ðz� 1Þ2

where use was made of the property (B.3-16).

Example B.3.5

Find the Z-transform of the alternating sequence "ðkTÞ ¼ ð�1ÞkT .

Solution

Here

Z½"ðkT Þ	 ¼
X1
k¼0

ð�1ÞkTz�k
¼

X1
k¼0

½ð�1ÞTz�1	k ¼
1

1� ð�1ÞTz�1
¼

z

z� ð�1ÞT

Example B.3.6

Find the Z-transform of the function yðkTÞ ¼ ebkT .

Solution

Setting a ¼ eb in Example B.3.3, we obtain

Z½ebkT 	 ¼
z

z� ebT

Example B.3.7

Find the Z-transform of the functions f ðkTÞ ¼ sin!0kT and f ðkTÞ ¼ cos!0kT :
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Solution

Here

Z½e j!0kT 	 ¼
z

z� e j!0T
¼

z

z� cos!0T � j sin!0T

¼
zðz� cos!0T þ j sin!0TÞ

ðz� cos!0TÞ
2
þ sin2 !0T

¼
zðz� cos!0TÞ

z2 � 2z cos!0T þ 1

� 
þ j

z sin!0T

z2 � 2z cos!0T þ 1

� 

Since e j� ¼ cos � þ j sin �, it follows that

Z½cos!0kT 	 ¼
zðz� cos!0TÞ

z2 � 2z cos!0T þ 1

Z½sin!0kT 	 ¼
z sin!0T

z2 � 2z cos!0T þ 1

Example B.3.8

Find the Z-transform of the function f ðkTÞ ¼ e�bkT sin!kT :

Solution

Setting a ¼ eb in Eq. (B.3-14), we have

Z½e�bkT f ðkTÞ	 ¼ FðebTzÞ

Using the results of Example B.3.7, we obtain

Z½e�bkT sin!0kT 	 ¼
zebT sin!0T

z2e2bT � 2zebT cos!0T þ 1

¼
ze�bT sin!0T

z2 � 2ze�bT cos!0T þ e�2bT

B.4 THE INVERSE Z -TRANSFORM

The determination of the inverse Z-transform (as in the case of the inverse Laplace
transform) is usually based upon the expansion of a rational function FðzÞ into
partial fraction expansion whose inverse transform can be directly found in the
tables of the Z-transform pairs given in Appendix C. It is noted that in cases
where the numerator of FðzÞ involves the term z, it is more convenient to expand
into partial fraction expansion the function FðzÞ=z, instead of FðzÞ and, subse-
quently, determine FðzÞ from the relation z½FðzÞ=z	.

It is also noted that there are several other techniques for the determination of
the inverse Z-transform, as for example the method of the continuous fraction
expansion, the direct implementation of the definition of the inverse Z-transform
given by Eq. (B.3-9), and others. The method of partial fraction expansion appears
to be computationally simpler over the other methods, and for this reason it is
almost always used for the determination of the inverse Z-transform.
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Example B.4.1

Find the inverse Z-transform of the function

FðzÞ ¼
�3z

ðz� 1Þðz� 4Þ

Solution

Expanding FðzÞ=z into partial fraction expansion, we obtain

FðzÞ

z
¼

�3

ðz� 1Þðz� 4Þ
¼

1

ðz� 1Þ
�

1

ðz� 4Þ

and hence

FðzÞ ¼
z

ðz� 1Þ
�

z

ðz� 4Þ

From the table of the Z-transform pairs (Appendix C), we find that

Z�1 z

z� 1

h i
¼ �ðkTÞ and Z�1 z

z� 4

h i
¼ 4k

where T ¼ 1.
Hence

f ðkTÞ ¼ Z�1
½FðzÞ	 ¼ �ðkT Þ � 4k ¼ 1� 4k

Example B.4.2

Find the inverse Z-transform of the function

FðzÞ ¼
zðz� 4Þ

ðz� 2Þ2ðz� 3Þ

Solution

Expanding FðzÞ=z into partial fraction expansion, we obtain

FðzÞ

z
¼

1

z� 2
þ

2

ðz� 2Þ2
�

1

z� 3

and hence

FðzÞ ¼
z

z� 2
þ

2z

ðz� 2Þ2
�

z

z� 3

Since for the case T ¼ 1

Z�1 z

z� 2

h i
¼ 2k; Z�1 2z

ðz� 2Þ2

� 
¼ k2k; and Z�1 z

z� 3

h i
¼ 3k

it follows that

f ðkTÞ ¼ Z�1
½FðzÞ	 ¼ 2k þ k2k þ 3k ¼ ðkþ 1Þ2k þ 3k
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Example B.4.3

Find the inverse Z-transform of the function

FðzÞ ¼
2z3 þ z

ðz� 2Þ2ðz� 1Þ

Solution

Expanding FðzÞ=z into partial fraction expansion, we obtain

FðzÞ

z
¼

9

ðz� 2Þ2
�

1

z� 2
þ

3

z� 1

and hence

FðzÞ ¼
9z

ðz� 2Þ2
�

z

z� 2
þ

3z

z� 1

Since for T ¼ 1

Z�1 z

z� 2

h i
¼ 2k; Z�1 z

ðz� 2Þ2

� 
¼ k2k�1; and Z�1 z

z� 1

h i
¼ 1

it follows that

f ðkTÞ ¼ Z�1
½FðzÞ	 ¼ 9k2k�1 � 2k þ 3

Example B.4.4

Find the inverse Z-transform of the function

FðzÞ ¼
z2

z2 � 2zþ 2

Solution

Examining the form of the denominator z2 � 2zþ 2 we observe that FðzÞ may be the
Z-transform of a function of the type e�akT

ðc1 sin!0kT þ c2 cos!0kTÞ, where c1 and
c2 are constants. To verify this observation, we work as follows. The constant term 2
is equal to the exponential e�2aT , in which case a ¼ �ðln 2Þ=2T . The coefficient �2 of
the z term must be equal to the function �2e�aT cos!0T , in which case cos!0T ¼

1=
ffiffiffi
2

p
and !0 ¼ �=4T . Consequently, the denominator of FðzÞ can be written as

follows:

z2 � 2zþ 2 ¼ z2 � 2z e�
� ln 2
2Tð ÞT cos

�

4T

� �
T þ e�2

� ln 2
2Tð ÞT

The numerator can be written as z2 ¼ ðz2 � zÞ þ z. Since

e�
� ln 2
2Tð ÞT cos

�

4T

� �
T ¼ e�

� ln 2
2Tð ÞT sin

�

4T

� �
T ¼ 1

it follows that the numerator ðz2 � zÞ þ z may be written as follows:

z2 ¼ z2 � ze�
� ln 2
2Tð ÞT cos

�

4T

� �
T

h i
þ ze�

�2
2Tð ÞT sin

�

4T

� �
T
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Hence, the function FðzÞ may finally be written as

FðzÞ ¼
z2 � z

z2 � 2zþ 2
þ

z

z2 � 2zþ 2

¼

z2 � ze�
� ln 2
2Tð ÞT cos

�

4T

� �
T

z2 � 2ze�
� ln 2
2Tð ÞT cos

�

4T

� �
T þ e�2

� ln 2
2Tð ÞT

þ

ze�
� ln 2
2Tð ÞT sin

�

4T

� �
T

z2 � 2ze�
� ln 2
2Tð ÞT cos

�

4T

� �
T þ e�2

� ln 2
2Tð ÞT

From the table of the Z-transform pairs (Appendix C), it follows that

f ðkTÞ ¼ Z�1
½FðzÞ	 ¼ e�

� ln 2
2Tð ÞkT cos

�

4T

� �
kT þ sin

�

4T

� �
kT

h i
¼ e

� ln 2
2 k cos

�k

4
þ sin

�k

4

� 
for T ¼ 1
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Appendix C
Z-Transform Tables

723

Table C.1 Properties and Theorems of the Z-Transform

Property or theorem f ðkTÞ FðzÞ

1 Definition of Z-transform f ðkTÞ
X1
k¼0

f ðkTÞz�k

2 Definition of the inverse
Z-transform

1

2�j

þ
FðzÞzk�1dz FðzÞ

3 Linearity c1 f1ðkTÞ þ c2 f2ðkTÞ c1F1ðzÞ þ c2F2ðzÞ

4 Shift to the left (advance) f ðkT þ �TÞ z� FðzÞ �
X��1

k¼0

f ðkTÞz�k

 !

5 Shift to the right (delay) f ðkT � �TÞ z��FðzÞ

6 Change in z-scale a�kT f ðkTÞ Fða�TzÞ

7 Change in kT-scale f ðmkTÞ Fðz�m
Þ

8 Multiplying by k kf ðkTÞ �z
d

dz
FðzÞ

9 Summation
Xm
k¼0

f ðkTÞ

z

z� 1
FðzÞ

10 Convolution f ðkTÞ 	 hðkTÞ FðzÞHðzÞ

11 Periodic function f ðkTÞ ¼ f ðkT þ pTÞ
z p

z p � 1
F1ðzÞ

12 Initial value theorem f ð0Þ lim
z!1

FðzÞ

13 Final value theorem lim
k!1

f ðkTÞ lim
z!1

ð1� z�1
ÞFðzÞ
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Table C.2 Z-Transform Pairs

SN f ðkTÞ
FðsÞ ¼

ð1
0

f ðtÞe�stdt FðzÞ ¼
X1
k¼0

f ðkTÞz�k

1 �ðkT � aTÞ e�aTs z�a

2 �ðkTÞ 1 1 or z�0

3 �ðkT � aTÞ
e�aTs

s

z�aþ1

z� 1

4 �ðkTÞ
1

s

z

z� 1

5 kT � aT
e�aTs

s2
Tz�aþ1

ðz� 1Þ2

6 kT
1

s2
Tz

ðz� 1Þ2

7
1

2!
k2T2 1

s3
T2zðzþ 1Þ

2ðz� 1Þ3

8
1

3!
k2T3 1

s4
T3zðz2 þ 4zþ 1Þ

6ðz� 1Þ4

9
1

m!
kmTm 1

smþ1 lim
a!0

ð�1Þm

m!

@m

@am
z

z� e�aT

� �

10 akT
1

s� T ln a

z

z� aT



Z
-T

ra
n

s
fo

rm
T

a
b

le
s

7
2
5

11 e�akT
1

sþ a

z

z� e�aT

12 kTe�akT
1

ðsþ aÞ2
Tze�aT

ðz� e�aT Þ
2

13
k2T2

2
e�akT

1

ðsþ aÞ3
T2e�aTz

2ðz� e�aT Þ
2
þ

T2e�2aTz

ðz� e�aT Þ
3

14
kmTm

m!
e�akT 1

ðsþ aÞmþ1

ð�1Þm

m!

@m

@am
z

z� e�aT

� �

15 1� e�akT
a

sðsþ aÞ
ð1� e�aT

Þz

ðz� 1Þðz� e�aT Þ

16 kT �
1� e�akT

a

1

s2ðsþ aÞ
T

ðz� 1Þ2
�

1� e�aT

aðz� 1Þðz� e�aT Þ

17
sin!0kT

!0

s2 þ !2
0

z sin!0T

z2 � 2z cos!0T þ 1

18 cos!0kT
s

s2 þ !2
0

zðz� cos!0TÞ

z2 � 2z cos!0T þ 1

19 sinh!0kT
!0

s2 � !2
0

z sinh!0T

z2 � 2z cosh!0T þ 1

20 cosh!0kT
s

s2 � !2
0

zðz� cosh!0TÞ

z2 � 2z cosh!0T þ 1

(continued)
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Table C.2 ðcontinuedÞ

f ðkTÞ
FðsÞ ¼

ð1
0

f ðtÞe�stdt FðzÞ ¼
X1
k¼0

f ðkTÞz�k

21 cosh!0kT � 1
!2
0

sðs2 � !2
0Þ

zðz� cosh!0TÞ

z2 � 2z cosh!0T þ 1Þ
�

z

z� 1

22 1� cos!0kT
!2
0

sðs2 þ !2
0Þ

z

z� 1
�

zðz� cos!0TÞ

z2 � 2z cos!0T þ 1

23 e�akT
� e�bkT

b� a

ðsþ aÞðsþ bÞ

z

z� e�aT
�

z

z� e�bT

24 ðc� aÞe�akT
þ ðb� cÞe�bkT

ðb� aÞðsþ cÞ

ðsþ aÞðsþ bÞ

ðc� aÞz

z� e�aT
�

ðb� cÞz

z� e�bT

25 1� ð1þ akTÞe�akT a2

sðsþ aÞ2
z

z� 1
�

z

z� e�aT
�

aTze�aT

ðz� e�aT Þ
2

26 b� be�akT
þ aða� bÞkTe�akT a2ðsþ bÞ

sðsþ aÞ2
bz

z� 1
�

bz

z� e�aT
þ
aða� bÞTze�aT

ðz� e�aT Þ
2

27 e�bkT
� e�akT

þ ða� bÞkTe�akT ða� bÞ2

ðsþ bÞðsþ aÞ2
z

z� e�bT
�

z

z� e�aT
þ
ða� bÞTze�aT

ðz� e�aT Þ
2

28 e�akT sin!0kT
!0

ðsþ aÞ2 þ !2
0

ze�aT sin!0T

z2 � 2ze�aT cos!0T þ e�2aT



Z
-T

ra
n

s
fo

rm
T

a
b

le
s

7
2
7

29 e�akT cos!0kT
sþ a

ðsþ aÞ2 þ !2
0

z2 � ze�aT cos!0T

z2 � 2ze�aT cos!0T þ e�2aT

30
e�bkT

� e�akT sec � cosð!0kT � �Þ;

where � ¼ tan�1 b� a

!0

� �
ða� bÞ2 þ !2

0

ðsþ bÞ½ðsþ aÞ2 þ !2
0�

z

z� e�bT
�
z2 � ze�aT sec � cosð!0T þ �Þ

z2 � 2ze�aT cos!0T þ e�2aT

31
1� e�akT sec � cosð!0kT þ �Þ;

where � ¼ tan�1
�

a

!0

� �
a2 þ !2

0

s½ðsþ aÞ2 þ !2
0�

z

z� 1
�
z2 � ze�aT sec � cosð!0T þ �Þ

z2 � 2ze�aT cos!0T þ e�2aT

32
b� be�akT sec � cosð!0kT þ �Þ;

where � ¼ tan�1 a2 þ !2
0 � ab

b!0

" #
ða2 þ !2

0Þðsþ bÞ

s½ðsþ aÞ2 þ !2
0�

bz

z� 1
�
b½z2 � ze�aT sec � cosð!0T þ �Þ�

z2 � 2ze�aT cos!0T þ e�2aT





Index

Acceleration (or parabolic) error constant,
172

Ackermann’s formula, 440

AC motors, 114

Active circuit realization, 402

Actuator, 119

Adaptive control, 603
with the gradient method, 605

model reference, 604
direct, 605
hyperstability design, 608
indirect, 605

A/D converters, 527

Adding poles and zeros to transfer
function, influence on Nyquist
diagram, 326

Addition of poles and the root locus, 296

Addition of zeros and the root locus, 299

Aircraft wing control system, 13

Algebraic control, 435

Algebraic criteria, 243

Algebraic stability criteria, 245

Alternating sequence, 709

Amplitude-phase theorem, 348

Analysis problem, 5

Analytical expression of time response,

147

A posteriori filtered plant-model error, 615

A priori adaptation error, 310

Arrival points, 275

Asymptotic stability, 149, 238, 239, 262,
540

Attenuation constant, 155

Augmented error, 619

Automatic piloting system for supersonic

airplanes, 285

Backward difference method, 530

Bandwidth, 307

Basic control signals, 27

Basic discrete-time control signals, 707

Basic structure of control systems, 4

Bass-Gura formula, 439

Bezout identity, 611

Bilinear transformation method, 532,
561

Block diagram, 93, 213
simplification of, 99

Block diagram rules, 94
blocks in cascade, 94
blocks in parallel, 94
construction of, 106

converting closed- to open-loop, 96
converting F(s) into unity, 97
converting open- to closed-loop, 97

definitions of, 105
moving a summation point, 98

Bode criterion, 245

Bode diagrams, 338, 563
and the transfer function, 339, 343

Bode’s amplitude-phase theorem, 348

Boiler-generator control system, 15

Boundary conditions, 483, 494

Bounded-input stability, 542
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Bounded-output stability, 542

Bridged T, 381

Canonical equation, 584, 586

Canonical Hamiltonian equations, 491,
494

Causality, 518

Cayley-Hamilton theorem, 55

Certainty equivalence principle, 613, 622

Change in the z-scale, 714

Characteristic equation, 52

Characteristic polynomial, 52
invariance of, 205

Chemical composition control system, 131

Classical control, 4
design methods of, 367, 371

Classical and discrete-time controller
design, 552

Classical optimal control methods, 418

Classical time-domain analysis of control
systems, 147

Closed-loop system, 5, 8

design using state observers, 463
specifications, 372

Command signal, 6

Comparing algebraic criteria and the
Nyquist criterion, 337

Comparing open- and closed-loop systems,
163

Compensator, 6

Completely controllable, 216

Computer-controlled system, 515

Constant amplitude loci, 351

Constant amplitude and phase loci,
Nichols charts, 354

Constant phase loci, 353

Continued fraction expansion criterion,
250

Control:
of economic systems, 20
of human respiratory system, 259

of large disk-storage devices, 257
of nuclear reactor, 283
of yaw in a fighter jet, 255

Controllability, 215, 216, 218, 223, 546,
548

index, 223
invariance of, 222
matrix, 216, 548

Controllability, observability, and transfer

function matrix, relation between,
223

Controllable, 216

Controller, 6

circuits, 374
bridged T, 381
other, 381
phase-lag, 376

phase lag-lead, 378
phase-lead, 374

derivative, 568

design based on frequency response, 561
design via root locus method, 557
fixed structure, 424

FP, 678
FPD, 679
FPD+I, 679
free structure, 419

elements of, 680
fuzzy, 678
integral, 567

output feedback, 436
PD, 385
PI, 389

PID, 391, 567
active circuit realization for, 402
three-term, 568

proportional, 567
state feedback, 436

Controlling thickness of metal sheets, 289,
336

Control problem, 465

Control signal, 5, 27

Control system components, 110

Conversion of differential state equations
to difference state equations, 535

Conversion of G(s) to G(z), 530

Convolution of two discrete-time

functions, 715

Correlation:
for first-order systems, 307
between frequency response and

transient response, 307
for higher-order systems, 310
for second-order systems, 308

Cost function, 479

quadratic, 493

Critically damped, 157

D/A converters, 527

Damped natural frequency, 155

Damping constant, 155

Damping ratio, 155, 158
and overshoot, 158
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DC motors, 110

Defuzzification, 691
interface, 681

Delay time, 154

Departure points, 275

Depth control system for submarines, 252

Description:
of linear systems via state equations, 80
of linear time-invariant discrete-time

systems, 518

Design:
in the case of known parameters, 611
with classical optimal control methods,

418
with phase-lag controllers, 411
with phase lag-lead controllers, 415

with phase-lead controllers, 403
with PID controllers, 384
of PID controllers using Ziegler-Nichols

methods, 396, 570
with proportional controllers, 382

Design methods, 367

Determination of state transition matrix,
194

Diagonal form, 205

Difference equations, 520

Differential equations, 70

Digital control, 515

Diophantine equation, 611

Direction, 106

Direct techniques, 552

Discrete-time:
controller design using indirect

techniques, 552
controllers derived from continuous-

time controllers, 552

control signals, 707
periodic functions, 715
system, 515
description of, 516

properties of, 517

Discretized systems, 517

Distinct real roots, 39

Disturbance rejection, 177

Disturbances, 8

Division of a function by t, 38

Dominant pole, 161

Dominant pole method, 161

Dynamic equations, 79

Economic systems, 20

Effect of disturbances, 165

Effects of addition of poles and zeros on
root locus, 296

Ending points, 275

Equilibrium point, 541

Equivalent state-space models, 92

Error constants, 171

Error detectors, 116

Estimation problem, 465

Euler-Lagrange equation, 483

Exact model matching, 454

Expert systems, 673

Exponential function, 30

Exponential sequence, 709

Fast mode, 162

Feedback, 8

Filtered error, 610

Final value theorem, 37, 716

First method of Lyapunov, 262

First-order systems, 154, 584

Forced response, 148, 198

Forgetting factor, 620, 627

Forward difference method, 532

Forward path, 106

Free response, 148, 195, 198

Frequency domain analysis, 305

Frequency response, 305

characteristics of, 307

Full-order observer, 458

Fuzzification, 681
interface, 681

Fuzzy control, 673

Fuzzy logic, 673

Fuzzy sets, 674

Gain, 106
margin, 330, 345

Gears, 117

General aspects of closed-loop control

design problem, 367

Generalized node, 105

General solution of state equations, 198

Grade of membership, 675

Gradient method, 605

Hamiltonian function, 490

H1-context, 645, 651

Heron of Alexandria, 2

Higher-order systems, 587

Historical review of automatic control, 2

Hold circuits, 528

Homogeneous solution, 148
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Human respiratory system, 259

Human speech control, 21

Hurwitz criterion, 249

Hydraulic actuator, 119

Hydraulic servomotor, 119

Hyperstability design, unknown
parameters, 613

Identification, 584, 590

Impulse response, 77, 83, 521

Indirect techniques, 552

Inference engine, 681, 682

Initial value theorem, 37, 716

Input node, 105

Input-output decoupling, 448
via output feedback, 454
via state feedback, 449

Input vector, 78

Instability, 239

Intelligent control, 673

Interval polynomials with lumped

uncertainty and fixed degree, 659

Invariant impulse response method, 532

Invariant step response method, 532

Inverse multiplicative uncertainty, 649

Jordan canonical form, 54

Kalman decomposition, 227

Kalman matrix, 495

Kharitonov polynomials, 659

Kharitonov’s theorem, 659, 660
for robust stability, 659

Knowledge-based expert systems, 673

Laplace transform, 31
definition of, 32
of the derivative of a function, 33

of the integral of a function, 34
inverse, 39
pairs, 703

properties and theorems, 33, 701
tables, 701

Large disk-storage devices, 257

Laser eye surgery control system, 19

Leverrier’s algorithm, 196

Linearity, 33, 518, 713

Linear state and output feedback laws,

436

Linear time-invariant discrete-time
systems, 518, 522

Linguistic variable, 677

Liquid-level control, 12

Liquid-level control system, 128

Loop, 106

Loss of controllability due to sampling,
551

Loss of observability due to sampling,
551

Lyapunov, 260, 263

Lyapunov criterion, 245

Lyapunov function, 263

Machine tool control system, 16, 18

Marginal stability, 239

Mason’s rule, 108

Mathematical model(s), 583
for control system components, 110
of practical control systems, 121

of systems, 67

Matrix:
addition, 48
calculation of the determinant of, 50

calculation of the inversion of, 51
column vector, 47
conjugate, 48

controllability, 216, 548
definition, 46
derivatives with respect to a vector, 49

determinant of, 50
diagonal, 47
eigenvalues, 51, 52
eigenvectors, 51, 54

Hermitian, 48
identity, 47
impulse response, 83

integration, 50
inverse of, 51
inversion lemma, 591

Kalman, 495
multiplication, 49
multiplying with a constant, 49

nonsingular, 47
nonsquare, 47
observability, 220
orthogonal, 48

Riccati differential equation, 495
row vector, 47
singular, 47

square, 47
state transition, 194
symmetric, 48

transfer function, 82
invariance of, 205
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[Matrix]

transpose of, 47, 49
triangular, 48
zero, 47

Maxima and minima:
of a functional with constraints, 487
of a functional without constraints, 482

using the method of calculus of
variations, 482

Maximum principle, 489, 491

Measurement problem, 5

Membership function, 676

Metal sheet thickness control system, 10

Minimum control effort problem, 480

Minimum dimension, 91

Minimum phase function, 320

Minimum time control problem, 480

Missile direction control system, 13

MIT rule, 605

Mixed node, 105

Model following, 607

Model reference adaptive control, 604

Model simplification, 159

Modern control, 4

Motor controlled by rotor, 112

Motor controlled by stator, 110

Multi-input–multi-output (MIMO)

systems, 81

Multi-input–single-output (MISO)
systems, 81

Multiplication of a function by t, 38

Multiplication by k, 715

Multiplicative uncertainty, 645

Natural response, 148

Natural undamped frequency, 155

Neural networks, 673

Nichols charts, 354

Nichols criterion, 245

Nichols diagrams, 351

Nominal performance, 651

Nondistinct real roots, 40

Nonminimum phase function, 320

Nuclear reactor control system, 14, 283

Numerical control tool machine, 333

Nyquist:

criterion, 245, 314, 318
diagram, 318, 566
construction of, 320

for first-order systems, 321
for second-order systems, 323

path, 318

[Nyquist]

theorem, 319
generalized, 320

Observability, 215, 219, 220, 223, 550
index, 223
invariance of, 222

Observer, 435, 457, 458, 461

Off-line identification, 584

Off-line parameter estimation, 584

On-line identification, 590
algorithm, 593

On-line parameter estimation, 590

Open-loop system, 5

Operational amplifier with resistors, 116

Optimal control, 479, 572

Optimal linear regulator, 492

Optimal regulator problem, 481

Optimal servomechanism problem, 480,

502

Optimal tracking problem, 480, 502

Order reduction, 161

Orientation control of a sun-seeker

system, 17

Orientation control system, 133

Output equation, 79

Output node, 105

Output vector, 78, 79
controllability, 218

Overdamped, 158

Overshoot, 553, 158

Paper-making control system, 14

Parameter estimation, 584, 590

Parameter variations (and their effect on
output):

in feedback transfer function, 165
in open-loop system, 164

Partial fractions expansion, 39

Particular solution, 148

Path, 106

Perfect model following, 607

Performance index, 479

Periodic functions, 38

Persistent excitation, 627

Phase canonical form, 205, 206

formula for, 440

Phase-lag, 376

Phase-lag controllers, 411

Phase lag-lead, 378

Phase lag-lead controllers, 415
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Phase-lead, 374

Phase-lead controllers, 403

Phase margin, 330, 331, 345

PID (proportional-integral-derivative)
controllers, 384

Pneumatic amplifier, 121

Pole placement, 438

via output feedback, 447
via state feedback, 438

Pole sensitivity to parameter variations,
168

Pole-zero matching method, 532

Position control system, 9, 123, 252, 443

Position servomechanism, 9

Position (or step) error constant, 171

Potentiometer, 116

Practical control systems, 121

Primary sets, 677

Problem of minimum dimension, 91

Problem of minimum number of
parameters, 91

Problem of realization, 91

Processed augmented error, 619

Properties of state transition matrix, 195

Proportional controllers, 382

Quadratic forms, 57

Ramp function, 29

Ramp sequence, 708

Rank, 48

Recursive identification, 590

Reduced-order observer, 458, 461

Reference, 6

Regression vector, 612

Regulator, 6

Regulator problem, 481

Relative stability, 314, 331

Remote robot control system, 15, 18

Residual, 459

Resonant frequency, 307

Resonant peak, 307

Response of first-order systems, 154

Response of second-order systems, 154

Riccati differential equation, 495

Rise time, 154, 554

Robots for welding, 256

Robust control, 637

Robust performance, 654

Robust performance in the H1- context,
651

Robust stability:

in the H1- context, 645

[Robust stability]
with inverse multiplicative uncertainty,

649
with multiplicative uncertainty, 645

Root locus, 158, 271
construction method of, 274

angles of departure and arrival, 28
asymptotes, 276
breakaway, 279
intersection of asymptotes, 278

intersection with imaginary axis, 280
number of branches, 276
real axis segments, 279

symmetry about real axis, 276
definition of, 274
of practical control systems, 281

theorems for constructing, 275

Root locus method for determining roots
of a polynomial, 294

Routh criterion, 246, 543
using Mobius transformation, 543

Rule base, 681, 682

Sampled-data systems, 517

analysis, 527, 538
description, 527

Satellite orientation control system, 133

Second method of Lyapunov, 263

Self-tuning regulators, 604, 621

explicit, 605, 622
implicit, 605, 622
pole-placement, 622
design with known parameters, 622

design with unknown parameters,
627

Sensitivity derivative, 606

Sensitivity function, 647
complementary, 647

Sensitivity to parameter variations, 166

Separation principle, 465

Servomechanism, 9

Servomechanism control systems, 123

Servomechanism problem, 480

Servomotor, 119

Settling time, 154, 155, 554

Shannon’s theorem, 711

Shift in frequency domain, 36

Shift in time domain, 36, 713

Ship stabilization, 17

Signal-flow graphs, 105, 213
summation point, 94

734 Index



Similarity transformations, 53

Single-branch loop, 106

Single-input–multi-output (SIMO)
systems, 81

Single-input–single-output (SISO) systems,
82

Sink node, 105

Sinusoidal function, 30

Sixteen-plant theorem, 662

Slow mode, 162

Source node, 105

Speech control, 21

Speed control system, 126, 252

Speed (or ramp) error constant, 172

Stability, 237
asymptotic, 238, 239, 540

basic theorems, 540
bounded-input, 542
bounded-output, 542

in the circle M, 239
criteria, 243, 543
Jury, 544
Routh, 543

definitions, 237, 540
limit method, 398
of linear time-invariant discrete-time

systems, 541
marginal, 239
of practical control systems, 251

relative, 314, 331
in the sense of Lyapunov, 260

of systems described by impulse

response matrix, 240
of systems described in state space, 238
of systems described by transfer

function matrix, 239

Stabilization of ships, 253

Starting point, 275

State equations, 78, 79, 80, 198
special forms of, 204

State observers, 463

State-space analysis of control systems,
193

State-space design methods, 435, 572
algebraic control, 435
observer, 435, 457

State-space equations, 521

State of a system, 78

State transition matrix, 194, 195, 196

State variables, 193

State vector, 79
controllability, 215

observability, 219

[State vector]

reconstruction using Luenberger
observer, 458

transformations, 204

Steady-state errors, 171, 570
with inputs of special forms, 173

Steady-state response, 149

Strictly equivalent, 92

Structure of a control system, 4

Structured singular value, 657

Submarine, 252

Sun-seeker system, 17

Supersonic airplanes, 285

Sylvester theorems, 57

Synchrosystems, 116

Synthesis problem, 5

System description, 67

System identification, 68, 583

System sensitivity to parameter variations,
167

System time response, 147

Tachometers, 115

Teaching, 22

Temperature control of chamber, 11

Temperature control system, 129

Terminal control problem, 480

Thickness of metal sheets, 289

Time-domain analysis of control systems,
147

Time-invariant system, 518

Time response, graphical representation
of, 153

Time scaling, 35

Trace, 48

Tracking problem, 480, 502

Transfer function, 74, 82, 520

Transfer function matrix, 223

Transformed state model, 205

Transient response, 149
method, 396

Transition:

from differential equation to transfer
function for SISO systems, 87

from an nth-order differential equation

to state equations, 211
from one mathematical model to

another, 87

from the phase canonical form to the
diagonal, 212
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from state equations to transfer function
matrix, 88

[Transition]
from transfer function to differential

equation for SISO systems, 88

from transfer function matrix to state
equations, 88

Trapezoidal method, 532

Tustin transformation method, 532
Type j system, 171
Types of mathematical models, 69
Types of systems, 171

Uncertainty, 638
additive, 640

division, 640
lumped, 639
multiplicative, 639

inverse, 640
neglected dynamics, 639
origins of, 638

parametric, 639
representation of, 639
set, 640
structured, 639

unmodeled dynamics, 639
unstructured, 639

Undamped, 156
Underdamped, 157

Underlying control problem, 621
Uniformly stable, 261
Unit gate function, 28

Unit gate sequence, 708
Unit impulse function, 28
Unit step function, 27

Unit step sequence, 708
Universe, 676

Voltage control systems, 122

Watt’s centrifugal speed regulator, 3
Weight function, 521

Wheelchair control, 20

Yaw of fighter jet, 255

Ziegler-Nichols methods, 396, 570
Z-transform, 707, 711

definition of, 711
inverse, 719
pairs, 724
properties and theorems, 713, 723

of a sum, 714
tables, 723
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