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Preface to the Third Edition

In the interval between the second edition of this book in 2009 and this new, third edition,
there have been immense advances in both the science and the clinical practice of hepato-
cellular carcinoma (HCC). The advances are already being built upon to enlarge our under-
standing of this complex and heterogeneous disease, which is increasing in some parts of the
world and decreasing in others. As a result, the original chapters have been updated and more
than a dozen new chapters were added, on the following topics: molecular profiling, molecular
mechanisms in hepatocarcinogenesis, genomic phenotypes, miRNAs, gene signatures of risk
factors, gut microbiota, microenvironment, tumor heterogeneity, circulating tumor cells,
immune system and therapy, inflammation, obesity and NASH, staging systems, CT and
bioenergetics. Many of the previous chapters have been completely rewritten, including those
on local ablation, resection, transplantation, and the final summary chapter. The general scope
of these advances is as follows:

1. The introduction into clinical practice of FDA-approved and effective drugs for HCV, with
sustained virological responses obtainable for both HBV and HCV, together with high
cure rates for HCV.

2. Initial clinical studies showing that the high tumor recurrence rates postresection can be
reduced, not by anti-tumor therapy but, by treating underlying virus hepatitis. If con-
firmed, they will have major conceptual implications for our ideas about HCC therapy and
antivirus therapy will be viewed as part of HCC therapy.

3. The underlying cirrhosis (non-HCC part of the liver) is increasingly being seen as not just
a comorbid disease (although it is), but also as a source of prognostic information and
determinant of HCC biology. Like items #1 and 2, it indicates that the microenvironment
is a source of many HCC influences, including immunological, inflammatory, neovas-
cular, cytokine and growth factor actions.

4. Systemic inflammation has become an important and independent prognosticator for many
tumor types, including HCC and the simple 2-parameter Glasgow score and its variations
are incorporated into clinical practice.

5. Molecular profiling is being used to identify HCC phenotypes, lineage subsets and
hopefully, will support rational therapy selection (for example, Met-expressing tumors for
Met inhibitor therapies). Furthermore, the increasing commercial availability of kits for
purifying tumor cells or free tumor DNA in the blood circulation may provide a safe way
of obtaining specific HCC information without the hazards of biopsy, as well as an easy
and safe way to provide samples for molecular profiling at various phases of the HCC
clinical course in the same patient.

6. Immune checkpoint inhibitors are taking center stage for therapy of many cancer types,
with promising early results in HCC.

7. Extended criteria for transplanting larger HCCs and identification of prognostic subtypes
are gaining traction.

8. 90Yttrium microspheres regional therapy is being recognized as a safer alternative to
TACE in the presence of portal vein invasion.
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9. Several large phase III trials of new non-sorafenib (multi-)kinase inhibitors failed to meet
their expected goals. However, many new targeted agents are currently being evaluated in
clinical trials. Furthermore, trials are in progress that examine the combinations of either
targeted therapies such as sorafenib with regional therapies (TACE or 90Yttrium micro-
spheres), or two or more therapies that target different pathways. In addition, ways of
enhancing sorafenib effects or decreasing resistance to its actions are under investigation.

10. We are seeing the development of drugs against new, nongrowth signaling targets,
including putative tumor stem cells, dendritic cells, tumor invasiveness proteins,
growth-antagonizing microRNAs; the development of tumor vaccines and novel nuclides
for internal radiation, such as 166Holmium and 188Rhenium, intensity modulated radiation
and proton beam therapy.

11. There is a considerable increase in obesity-associated HCC and its different pathogenesis
from virus-mediated HCC. This may supplant hepatitis as a cause of HCC in the Western
world. The interplay of several factors in many HCC patients, such as HBV and alcohol,
HBV and aflatoxin B1 dietary exposure.

12. There has been a proliferation of proposed staging systems from several countries. Some
systems are seemingly more applicable to patients in certain regions of the world than
other systems.

13. The sorafenib phase III SHARP trial highlighted the discrepancy between tumor responses
and patient survival, as shown by the minimal number of partial objective tumor responses
(tumor size change) on the one hand and the finding of significant sorafenib survival
benefits on the other. This has consequences for our thinking about the relevance of tumor
size change in HCC (especially mediated by cytotoxic chemotherapy) and how we assess
useful clinical endpoints for future HCC therapy trials. One result is a reconsideration
of the value of ‘stable disease’ as a desirable endpoint in HCC management.

14. The pace of discovery is quickening, as is the interplay of the basic science and clinical
applications. Perhaps the most profound changes have resulted from the availability of an
effective vaccine against HBV or primary prevention (though not yet against HCV), and
the new effective treatments for both HBV (non-curative) and HCV (curative). Thus,
primary, secondary, and tertiary prevention are now available: primary prevention, by
vaccination (HBV only); secondary prevention, by treatment of chronic carriers and
decreasing the probability of developing cirrhosis and subsequent HCC; and tertiary
prevention, by anti-hepatitis therapy resulting in the suppression or eradication of the
hepatitis infection, with resultant decreases in postresection HCC recurrences.

Thus, the most significant recent translational advance has been in the area of hepatitis
prevention (HBV) and treatment (HBV and HCV), with profound effects on the incidence
and likely the biology of HCC caused by hepatitis B or C.

The book is divided into three parts: I, Causes, Biological and molecular basis; II,
Diagnosis; III, Therapies. The final chapter provides an overview of current therapy.

November 2015 Brian I. Carr
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Preface to the Second Edition

You are not obliged to complete the task,
Nor are you free to stop trying.

—Talmud, Avot

Hepatocellular carcinoma (HCC) used to be regarded as a rare disease. The increasing
numbers of chronic HCV carriers in the USA and subsequent increased incidence of HCC
seen in most large medical centers mean that it is no longer an uncommon disease for
gastroenterologists or oncologists to encounter, and its incidence and epidemiology are
changing (new chapter). This has been enhanced by the appreciation that obesity (NASH or
NAFL)-associated cirrhosis is also a cause of HCC, as are many metabolic syndromes (new
chapter), in addition to carcinogens in the environment (new chapter), hepatitis B (new
chapter), and hepatitis C (new chapter). Associated with this has been a clearer understanding
of the many mechanisms involved in carcinogenesis of the liver (new chapter). During the
period when liver resection and systemic chemotherapy were the only real therapeutic
modalities available, the outcomes were generally dismal, especially since most patients
presented with advanced-stage tumors. Several recent factors seem to have changed this. They
include the more frequent use of aggressive surveillance by ultrasound and CT scanning in
patients who have chronic hepatitis or cirrhosis from any cause and thus are known to be at
risk for subsequent development of HCC in order to detect tumors at an earlier and thus more
treatable stage. Advances in CT scanning, particularly the introduction of multihead fast
helical scans, mean that these vascular tumors can often be detected at an earlier stage or
multiple lesions can now be appreciated, when only large single lesions were formally seen, so
that unnecessary resections are not performed. Helical CTs have also largely replaced the more
invasive CT arteriography. Furthermore, advances in MRI scanning (new chapter) have started
to measure changes in tumor blood flow as a result of anti-angiogenic therapies (new chapter);
so has dye-enhanced ultrasonography (new chapter). Liver transplantation has had a profound
effect on the therapeutic landscape. There have always been two hopes for this modality,
namely to eliminate cirrhosis as a limiting factor for surgical resection and also to extend the
ability of the surgeon to remove ever-larger tumors confined to the liver. The organ shortage
for patients with HCC who could be transplanted has been alleviated in part by two new
factors. They are the MELD criteria, which give extra points to patients with small tumors, and
the introduction of live donor transplants (new chapter), which obviate the need for long waits
for a cadaveric donor. Regional chemotherapy and hepatic artery chemoembolization have
been around for a long time and have been practiced mainly in the Far East and in Europe.
There has not been a consensus on which drug or drug combinations are best or even whether
embolization is important, and if so, what type and size of embolizing particle might be
optimal. While there is still no consensus on these matters, it has recently become clear from
two randomized controlled clinical trials that hepatic artery chemoembolization for unre-
sectable, nonmetastatic HCC seems to bestow a survival advantage compared with no treat-
ment. The high recurrence rates after resection have led numerous investigators to evaluate
preresection and postresection chemotherapy in the hope of decreasing recurrence rates. Only
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recently have clinical trials begun to provide evidence of enhanced survival for multimodality
therapy involving resection with added chemotherapy or 131I lipiodol. The introduction of 90Y
microspheres (Theraspheres) appears to offer the promise of relatively nontoxic tumoricidal
internal radiotherapy to the liver and appears to be a major therapeutic addition to our treat-
ment choices, and its role alone or in combination with other therapies is just beginning to be
explored. The advent of multiple clinical trials for new agents that inhibit either the cell cycle
or angiogenesis or both (new chapter) has diminished enthusiasm for chemotherapy, since
these agents appear to be less toxic and may enhance survival, even for advanced disease.
Some of these agents are taken orally, which makes them even more attractive. In addition, we
are beginning to enter the phase of genomics (new chapter) and proteomics (new chapter) as
applied to many tumor types, including HCC. This raises the possibility of being able to
categorize patients into prognostic subsets, prior to any therapy. We are just at the beginning
of the age of cell cycle modulating factors including hormones, growth factors, and growth
factor receptor antagonists and agents that specifically alter defined aspects of the cell cycle.
Since the mechanisms of many of these agents are known, we are entering the era of per-
sonalized medicine and the rational selection of suitable treatment drugs for an individual
patient. For all these reasons, it seemed reasonable to us to produce a book that presents much
of current therapy and current thinking on HCC. This is an exciting time to be in the field of
HCC basic science as well as clinical management, as so many changes are simultaneously
occurring at multiple levels of our understanding and management of the disease, and sud-
denly there are many new choices of therapy to offer our patients. All the original chapters
have also been updated and enhanced.

Philadelphia, PA Brian I. Carr
March 2009

x Preface to the Second Edition



Preface to the First Edition

You are not obliged to complete the task,
nor are you free to desist from trying.

—Talmud, Avot

Hepatocellular carcinoma (HCC) used to be regarded as a rare disease.
The increasing numbers of chronic hepatitis C virus carriers in the United States and

subsequent increased incidence of HCC seen in most large medical centers means that it is no
longer an uncommon disease for most gastroenterologists or oncologists to encounter.

During the times when liver resection or systemic chemotherapy were the only real ther-
apeutic modalities available, the outcomes were generally dismal, especially because most
patients presented with advanced-stage tumors. Several recent factors seem to have changed
this. They include the more frequent use of aggressive surveillance by ultrasound and com-
puted tomography (CT) scanning in patients who have chronic hepatitis or cirrhosis from any
cause (and thus are known to be at risk for subsequent development of HCC) to detect tumors
at an earlier and therefore more treatable stage. Advances in CT scanning, particularly the
introduction of multihead fast helical scans, mean that this vascular tumor can often be
detected at an earlier stage, or multiple lesions can be diagnosed when only large single lesions
were formerly seen, so that unnecessary resections are not performed.

During the times when liver resection or systemic chemotherapy were the only real ther-
apeutic modalities available, the outcomes were generally dismal, especially because most
patients presented with advanced-stage tumors. Several recent factors seem to have changed
this. They include the more frequent use of aggressive surveillance by ultrasound and com-
puted tomography (CT) scanning in patients who have chronic hepatitis or cirrhosis from any
cause (and thus are known to be at risk for subsequent development of HCC) to detect tumors
at an earlier and therefore more treatable stage. Advances in CT scanning, particularly the
introduction of multihead fast helical scans, mean that this vascular tumor can often be
detected at an earlier stage, or multiple lesions can be diagnosed when only large single lesions
were formerly seen, so that unnecessary resections are not performed.

Liver transplantation has had a profound effect on the therapeutic landscape. There have
always been two hopes for this modality: namely, to eliminate cirrhosis as a limiting factor for
surgical resection and also to extend the ability of the surgeon to remove ever-larger tumors
confined to the liver. Regional chemotherapy and hepatic artery chemoembolization have been
around for a long time and have been practiced mainly in the Far East and Europe.

There has not been a consensus for which drug or drug combination is best or whether
embolization is important and, if so, what type and size of particle are optimal. Although there
is still no consensus on these matters, it has recently become clear from two randomized
controlled clinical trials that hepatic artery chemoembolization for unresectable nonmetastatic
HCC seems to bestow a survival advantage compared to no treatment. The high recurrence
rates after resection have led numerous investigators to evaluate preresection and postresection
chemotherapy in the hope of decreasing recurrence rates. Only recently have clinical trials
begun to provide evidence of enhanced survival for multimodality therapy involving resection
and either chemotherapy or 131I-lipiodol. The introduction of 90Yttrium microspheres, which
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appear to offer the promise of relatively nontoxic tumoricidal therapy to the liver, appears to be
a major therapeutic addition to our treatment choices, and its role alone or in combination with
other therapies is just beginning to be explored.

In addition, we are beginning to enter the phase in which proteomics is applied to many
tumor types, including HCC. This raises the possibility of being able to categorize patients into
prognostic subsets, prior to any therapy. We are also just at the beginning of the age of cell
cycle modulating factors including hormones, growth factors, and growth factor receptor
antagonists and agents that specifically alter defined aspects of the cell cycle.

For these reasons, it seemed reasonable to produce a book that represents much of the
current therapy and thinking on HCC. Admittedly, there is a bias toward expressing the
experience of one center, the Liver Cancer Center at the University of Pittsburgh Starzl
Transplant Institute, in which over 250 new cases of HCC have been seen each year for the last
15 years. This is an exciting time to be in the field of HCC basic science as well as clinical
management because so many changes are simultaneously occurring at multiple levels of our
understanding and management of the disease.

Brian I. Carr, MD, FRCP, Ph.D.
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1.1 Global Incidence of Hepatocellular
Carcinoma

1.1.1 Overview

Primary liver cancer or hepatocellular carcinoma (HCC) is
the fifth most common cancer worldwide, with liver cancer
accounting for 9.1 % of global cancer mortality [1]. In 2012,
there were an estimated 782,000 incident HCC cases. Given
an almost equally high number of deaths, 746,000, the
mortality-to-incidence ratio is 0.95. Across time periods,
regions and genders, liver cancer typically occurs in
middle-aged and older adults. However, the burden of HCC
is not evenly distributed throughout the world (Fig. 1.1). It
also disproportionately impacts males (Fig. 1.2), with HCC
the second leading cause of cancer mortality in men and the
ninth leading cause in women [2].

Globally, the vast majority of HCC cases occur (>83 %)
in less developed regions, particularly in Eastern and
South-Eastern Asia and sub-Saharan Africa. China alone
account for 50 % of all HCC cases, with an age-standardized
incidence rate (ASR) of 22.3/100,000 person-years in 2012
[1]. However, four other countries have even higher ASRs—
Mongolia (78.1/100,000), Lao People’s Democratic Repub-
lic or Laos (52.6/100,000), The Gambia (25.8/100,000), and
Egypt (25.6/100,000). Some typical rates from medium rate
countries (i.e., HCC ASRs between 5 and 20/100,000)
include Italy (7.6/100,000) and Spain (5.9/100,000). Nota-
bly, increasing numbers of countries that were formerly low
rate (ASRs < 5/100,000) even a decade ago have now
become medium rate countries, including the U.S. which had
an ASR of 6.1/100,000 in 2012 (Fig. 1.3). Some rates from
typical low rate countries include those from Argentina with
an ASR of 3.3/100,000 and Israel with an ASR of 2.3 [1].

HCC accounts for between 85 and 90 % of primary liver
cancers in adults [3]. One noteworthy exception is the Khon
Kaen region of Thailand, which has one of the world’s
highest rates of liver cancer. However, due to endemic
population infection with liver flukes, the major type of liver
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cancer in this region has historically been intrahepatic
cholangiocarcinoma (ICCA) rather than HCC [4]. Mass drug
administration and public health education campaigns that
began in the early 1980s have resulted in a dramatic
decreased prevalence of liver fluke infection in the popula-
tion from 80 to 15 to 20 % by 1997 and remaining stable
through 2013 [5]. This has led to subsequent substantial
declines in ASRs for ICCA in this region with ASRs of
67.6/100,000 in males and 27.3/100,000 in females for the
period 2004–2006, [6] levels already showing reductions
from reported historical levels ranging between of 85–
90/100,000 in males and between 32–39/100,000 in females
[5]. Overall, ICCA remains the second most common pri-
mary hepatic malignancy worldwide, with over 750,000
million people residing in areas endemic for liver flukes and
thus at ongoing exposure risk (e.g., Poland, Germany,
Russia, Kazakhstan, and Western Siberia for O. felineus;
Korea, China, Taiwan, and Vietnam for C. Sinensis, and
North East Thailand, Laos, Cambodia for O. Viverrini) [7, 8]
with an estimated 56.2 million persons globally infected
with foodborne trematodes in 2005 [9].

Overall encouraging trends in HCC incidence have been
seen in some high-rate areas. For example, between 1978
and 1982 and 1993 and 1997, decreases in incidence were
reported among Chinese populations in Hong Kong,
Shanghai, and Singapore [3] (Fig. 1.3). These rates continue
to decline (e.g., China/Hong Kong ASR: 23.6/100,000 in
2001 vs. 18.9/100,000 in 2011) [1]. In addition to these

areas, Japan also began to experience declines in incidence
rates among males for the first time between 1993 and 1997.

Many high-rate Asian countries now vaccinate almost all
newborns against hepatitis B virus (HBV) and the effect on
HCC rates has already become apparent. In Taiwan, where
government mandated national newborn vaccination began
in 1984, HCC rates among children aged 6–14 years
declined significantly over a short period from ASR:
0.70/100,000 in 1981–1986 to ASR: 0.36/100,000 in 1990–
1994, [10] an effect that was presumed to be to vaccination.
However, a national cohort analysis to evaluate the relative
importance of age, time trend (period), and vaccination
(cohort) on HCC incidence and mortality in Taiwanese
children suggests HCC rates were already notably declining
in boys and especially in girls in the 1980s prior to HBV
vaccination, and that the first substantial vaccine-related
decline in HCC rates was seen in boys starting 2000–2004
(i.e., a 15 year time lag) [11]. It is too soon yet for HBV
vaccination to have had a substantial effect on adult rates
which are highest in middle-aged and older adults, but other
public health measures have likely contributed to declines in
HCC incidence in high-risk areas of China. A Chinese
government program started in the late 1980s to shift the
staple diet of the Jiangsu Province from corn to rice reduced
exposure to known hepatocarcinogen aflatoxin B1 (AFB1)
in this area [12]. Similarly, another Chinese public health
campaign initiated in the early 1970s to encourage drinking
of well water rather than pond- or ditch water may have

Fig. 1.1 Global map of age-standardized rates (ASR) of HCC in 2012
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Fig. 1.2 Gender-specific and
age-standardized HCC incidence
and mortality rate by region and
development status in 2012

Fig. 1.3 Recent changes in the
incidence of HCC. The incidence
of HCC has been declining in
some “high incidence” areas,
such as China and Hong Kong.
On the other hand, HCC
incidence in several “low and
intermediate incidence” areas has
been increasing. Modified from
McGlynn et al
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decreased consumption of microcystins, blue-green algae
(cyanobacteria) produced compounds demonstrated to be
hepatocarcinogenic in experimental models [13].

In contrast, registries in a number of low- and medium
rate areas reported sizable and continuing increases in HCC
incidence between 1978–1982 and 1993–1997 [14]
(Fig. 1.3). Included among these registries are those in the
United States, the United Kingdom, and Australia. Reasons
for both the decreased incidence in historically high-rate
areas and the greatly increased incidence in formerly lower
rate areas are not completely understood, suggesting that
each will be an important case study. It has, however, been
widely hypothesized that most of the increased incidence in
many lower rate areas with ongoing low rates of HBV
infection is due to the rapid aging of their hepatitis C virus
(HCV) cohorts combined with substantial increasing rates of
obesity and diabetes over the last few decades.

1.1.2 Race/Ethnicity

HCC incidence rates can vary greatly among different pop-
ulations living within the same region. For example, in the
United States at all ages and among both genders,
age-standardized rates (ASRs) of liver cancer, expressed, per
100,000 are higher in Asians and Pacific Islanders (13.1)
than in Hispanics (11.0), African-Americans (8.0), or Whites
(4.5) [15]. The reason(s) for this interethnic variability likely
include differences in prevalence and time of exposure for
major risk factors for liver disease as well as for HCC, and
potentially, in prevalence of salient genetic polymorphisms
(e.g., the much lower prevalence among individuals of
African ancestry of the highly favorable IL28B allele for
HCV). Interestingly, liver cancer rates can also vary con-
siderably individuals of the same race/ethnic group living
across large geographical expanses, e.g., ASRs (expressed
per 100,000) for Chinese males residing in China (Bejing):
16.7; Hong Kong: 26.7; Malyasia (Penang): 10.5; U.S. (Los
Angeles): 18.4 [16] or even within the same country (e.g.,
very high ASRs in Mekong area including Khon Kaen in
northern Thailand vs. considerably lower rates in Bangkok
in southern Thailand). The reasons for this intra-ethnic
variability likely include differences in exposure to and/or
acquisition time of other liver disease risk factors (e.g., liver
flukes, dietary aflatoxins, obesity, and alcohol use). How-
ever, they may also be impacted by relative differences in
underlying population structure (e.g., age and gender)
as well.

1.1.3 Gender

In essentially all populations, males have higher reported
HCC rates than females, with male-to-female ratios usually
averaging between 2:1 and 4:1 (Figure 1.2). As of 2012,
some of the largest discrepancies in rates (>3.5:1) are found
in medium rate European populations. Typical among these
ratios are those reported in registries in Volume X of Cancer
in Five Continents: Biela, Italy (3.9:1); Munich, Germany
(3.6:1); Geneva, Switzerland (4.4:1) [17]. Among the 11
French registries, nine reported male:female ratios > 5:1.
The gender ratio in the U.S., which is also medium risk, is
lower (3.3:1). In contrast, typical gender ratios currently seen
in high-rate populations are generally lower and include
those of Qidong, China (3.0:1); Osaka, Japan (2.9:1); and
Harare, Zimbabwe (1.2:1). Registries in Central and South
America report some of the lowest sex ratios for liver cancer.
Typical ratios in these regions are reported by Pasto,
Colombia (1.2:1), and Costa Rica (1.6:1).

The reasons for higher rates of HCC in males may relate
to gender-specific differences in exposure to risk factors.
Men are more likely to be infected with HBV and HCV,
consume alcohol, smoke cigarettes, and have visceral adi-
posity. Yet there are several compelling reasons to believe
that sex-based biological differences (e.g., genetic, sex hor-
mone levels) may also contribute to this pervasive dimor-
phism: dimorphism persists after adjustment for
gender-based differences in other known risk factors, is
observed in human children, and is evident in animal mod-
els. Further, use of some sex hormone modifying medica-
tions including androgenic anabolic steroids and earlier high
dose formulations of oral contraception have been associated
with young onset HCC in some case reports. However, the
role that normal variation in sex hormone signaling plays in
the substantial unexplained interindividual variability among
individuals of the same gender and with similar major risk
factors for HCC is not known.

The global age distribution of liver cancer varies by
region, incidence rate, gender and, possibly, by etiology
[18]. HCC overwhelmingly occurs in adulthood, most often
as HCC arising in the background of one or more environ-
mental or behavioral exposures known to increase liver
cancer risk. Although the overwhelming majority of HCC
are sporadic or have no similarly affected first-degree rela-
tive, family clusters [19] and also significant additional
increases in HCC risk even after accounting for hepatitis
status have been reported [20]. In contrast, the most common
liver cancer in children is hepatoblastoma (*2–3 cases/per

6 D.L. White et al.



million persons) that arises in the background of a geneti-
cally determined disorder like Beckwith–Wiedemann syn-
drome, glycogen storage disease type I, or Tyrosinemia in
infancy thru early childhood (most occurring within the first
18 months).

In adults, female HCC rates typically peak in the age group
5 years older than the peak age observed in comparablemales.
In low- andmedium-risk populations (e.g., Canada, theUnited
Kingdom, and theUnited States), the highest age-specific rates
occur among persons aged 75 and older [18]. A similar pattern
is seen among most high-risk Asian populations (e.g., Hong
Kong, Shanghai). In contrast, male HCC rates in high-risk
African populations (e.g., The Gambia, Mali) tend to peak
between ages 60 and 65 before declining, while female rates
peak between 65 and 70 before declining. These variable
age-specific patterns are likely related to differences in the
dominant hepatitis virus in the population, the age at viral
infection and the existence of other risk factors. Notably,while
most HCV carriers become infected as adults, most HBV
carriers become infected at very young ages.

A historical exception was Qidong, China, where HCC
rates are among the world’s highest and where age-specific
incidence rates among males rose until age 45 and then
plateaued, while among females, rose until age 60 and then
plateaued. The reasons for this unusually early onset are
unclear, but could be due to existence of other hepatocar-
cinogenic exposures or differences in dose and timing of
known hepatocarcinogens like dietary aflatoxin. However, by
2005–2008 the age of onset for the first time had increased to
over 50 years, an effect hypothesized to be largely attribu-
table to public health prevention measures in the region
particularly dietary shift to prevent aflatoxin exposure [12].

1.1.4 HCC in the United States

Research conducted using the National Cancer Institute’s
(NCI) population-based Surveillance Epidemiology and End
Results (SEER) registry data which cover >13 % of the U.S.
population showed that overall annual age-adjusted HCC
incidence rates (per 100,000) doubled from 1.4 in 1975–
1977 to 4.8 in 2005–2007 [18] (Fig. 1.4) with large
increases in incidence observed among Hispanics and the
overall population aged 50–60 years old [21]. Rates con-
tinue to rise though not as dramatically, with an annual
*4 % increase in overall incidence observed between 2003
and 2012. This dramatic increase in rates is likely attribu-
table to several factors including rising incidence of cirrhosis
particularly due to HCV [22]; substantial recent increases in
rates of obesity and thus metabolic syndrome associated

complications like NAFLD and diabetes; population aging
particularly among the HCV-infected; and a general
improvement in survival among cirrhosis patients.

Overall, between 15 and 50 % of cirrhosis and HCC
patients in the United States do not have a historically
established risk factor like viral or autoimmune hepatitis, a
genetic disorder, or an alcohol use disorder [14]. Most of
these cryptogenic cases do, however, have some metabolic
syndrome features like diabetes or obesity, and thus its
hepatic manifestation, nonalcoholic fatty liver disease
(NAFLD), is usually the presumptive underlying risk factor
[23].

The overall epidemiological profile of incident HCC in
the U.S. in 2012 based upon nationwide United States
Cancer Statistics (USCS) registry data demonstrated: 73 %
of all cases are male; 61 % are White (non-Hispanic); the
55–59 year old age-group has the largest number of incident
HCC diagnoses (20 % of total); 89 % of cases are diagnosed
at ages 50 and older; and the highest overall
age-standardized incident rates (ASR), expressed per
100,000, are found in males who are Hispanic (17.8) closely
followed by males who are Asian or Pacific Islanders (17.7).
The burden of HCC in the U.S. is also not uniform, with
most states with HCC rates in the upper quartile located in
southwestern and western regions (Fig. 1.5). In 2012, Texas
and Hawaii both reported the highest ASRs 13.7 [15]. Over
the last decade, the largest age-specific increases in inci-
dence have been in the 55–59 and 60–64 year old age
groups (Fig. 1.6). The NCI’s SEER data-based projections
for the U.S. in 2015 are that 35,660 individuals in an inci-
dent diagnosis in 2015 at a median age of 63 years old, with
current estimated overall 5-year survival based upon data
from 2005 to 2011 of 17.2 % [24].

Fig. 1.4 Differences in age-standardized HCC rates by race/ethnicity
in the U.S. by time period
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1.2 Risk Factors for Hepatocellular
Carcinoma

HCC is unique in that it largely occurs within an estab-
lished background of cirrhosis (� 70–90 % of all detected
HCC cases) (Fig. 1.7). The two major causes of cirrhosis
and thus HCC globally include hepatitis B (Fig. 1.8) and
hepatitis C (Fig. 1.9) virus infection, which collectively
occur in close to 80 % of all HCC cases [25]. Other
established as well as emerging risk factors include: alcohol
and tobacco use; aflatoxin exposure; obesity, diabetes, and

nonfatty liver disease; and diet. The distribution and impact
of HCC risk factors often varies considerably across
regions, populations and time periods. The epidemiological
data linking these specific risk factors to HCC in particular
is overviewed below. Our overview when sufficient data
exists focuses primarily on findings reported in cohort
studies, particularly those that are population-based and
prospective and on meta-analyses of these prospective
studies as this is considered the strongest direct observa-
tional epidemiologic data in support of a potential causal
association.

Fig. 1.5 Geographic distribution
of age-standardized HCC rates in
the U.S. in 2012

Fig. 1.6 Age-specific incidence
rate of U.S. cancer registry
reported HCC in the U.S. (2000–
2012)
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1.2.1 Hepatitis B Virus

Globally, HBV is the leading cause of HCC. An estimated 1
in 3 persons worldwide has been infected by HBV, and
although only 5 % of these become chronic carriers, 25 % of
chronic carriers develop serious liver disease like cirrhosis
and HCC. Most HBV-related HCC cases occur in Asia and
sub-Saharan Africa (Fig. 1.8), with China alone accounting
for 73 % of the world’s HBV-related HCC cases [2].
Chronic HBV infection affects an estimated 240 million
persons worldwide, with more than 780,000 dying annually,
primarily due to HBV-related liver disease [26].

In Asia, where HBV is endemic, infection is largely
acquired by maternal–child transmission, while
sibling-to-sibling transmission at young ages is more com-
mon in sub-Saharan Africa [27]. In these areas, up to 90 %
of infected infants/children follow a lifelong chronic course.
The pattern is different in areas with low endemicity, where
HBV is typically acquired in adulthood through sexual and
parenteral routes (horizontal transmission) and where with
>90 % of acute infections in adults resolve spontaneously.

Epidemiological studies have demonstrated that chronic
HBV carriers have a 5- to 15-fold increased risk of HCC
compared to the general population. The great majority of
HBV-related HCC (70–90 %) develops in a background of
cirrhosis. A recent meta-analysis of 57 studies with treatment
naïve HBV-infected cohorts found much higher annual HCC
incidence in cirrhotics (3.16 vs. 0.10/100 person-years in
cirrhotics vs. non-cirrhotics, respectively) [28]. It also found
that although HCC incidence among HBV-related cirrhotics
varied according to factors like gender, that it was largely
similar in European and Asian populations.

Several other factors have been reported to increase HCC
risk among HBV carriers including: male gender; older age
(or longer duration of infection); Asian or African race;
cirrhosis; family history of HCC; exposure to aflatoxin,
alcohol, or tobacco; or coinfection with HCV or HDV. HCC
risk is also increased in patients with higher levels of HBV

Fig. 1.8 Distribution of chronic hepatitis B virus (HBV) infection—worldwide, 2006. Source CDC. Travelers’ health; yellow book. Atlanta, GA:
U.S. Department of Health and Human Services, CDC; 2008. Available at http://wwwn.cdc.gov/travel/yellowbookch4-HepB.aspx

Fig. 1.7 Estimated progression rates to cirrhosis and hepatocellular
carcinoma in hepatitis C infection
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replication, as indicated by presence of HBeAg and high
HBV DNA levels. In addition, it has been suggested in
Asian studies that genotype C is associated with more severe
liver disease than is genotype [29].

In the natural history of chronic HBV infection, sponta-
neous or treatment-induced development of antibodies
against HBsAg and HBeAg leads to reduced HCC risk.
A meta-analysis of 12 studies with 1187 patients who
received interferon and 665 untreated patients followed for
5 years found lower cumulative HCC incidence in treated
than untreated patients (1.9 % vs. 3.2 %, respectively),
although this difference was not statistically significant [30].
However, statistically significant reduction in HCC risk was
shown with use of the more recently available reverse tran-
scriptase inhibitor medication Lamivudine, which reduced
the risk of treated to untreated (odds ratio (OR) = 0.48).
However, there was still notable HCC incidence during the
median 43-month follow-up period among the treated
(1.3/100 person-years in the treated vs. the untreated). These
results are largely paralleled by results reported for other

studies of single or combined use these medications and are
evident in a more recent single cohort study with up to 8
years follow-up [31].

Another consideration is that that HBV DNA can persist
as “occult HBV infection” for decades among persons with
serological recovery (HBsAg negative). Occult HBV is
associated with anti-HBc and/or anti-HBs [32]. However, in
a significant proportion of individuals, neither anti-HBc nor
anti-HBs can be detected. A recent meta-analysis of 8
prospective studies (6 in Asian populations) demonstrated
significant increased HCC risk with occult infection com-
pared to no infection (OR = 2.86) [33]. There was no
association between occult HBV and HCC risk in the large
HALT-C trial in HCV-related cirrhotics though a substantial
number of cohort members had evidence of prior HBV
infection.

The public health initiative in endemic countries to
institute wide-scale vaccination of newborns for HBV star-
ted in the 1980s and is projected to dramatically lower
HBV-associated HCC rates as that birth cohort, the eldest

Fig. 1.9 Map of the global prevalence of chronic hepatitis C virus infection. Source Averhoff FM, et al. Clinical Infectious Diseases. 2012; 55:
S10–S15
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now in their early 30 s, begins to age into higher risk ages
for HCC onset. However, suboptimal vaccination rates
and/or acquisition of immunity reported in some endemic
countries or regions like Laos [34] suggests that without a
viral cure, HBV-related HCC will continue to persist, albeit
at dramatically lower rates, in the postvaccine generation
pending discovery of a viral cure.

1.2.2 Hepatitis C Virus

HCV is the second leading cause of HCC worldwide, with
most HCV-related HCC cases arising in Asia and North
Africa (Fig. 1.9). Global HCV prevalence has grown over
the last 15 years to over 185 million infected (*2.8 %
global prevalence) [35], with recent estimated global
prevalence of 46.2 % for genotype 1 (83.4 million,
approximately one-third in East Asia) and 30.1 % for
genotype 3 (54.3 million) [36]. The highest reported HCV
prevalence in North Africa is in Egypt (*18 %) and in Asia
in Mongolia (*10 %). It is also estimated that up to a
million people die annually of HCV-related liver disease
[37].

In contrast to HBV, vertical and early childhood infection
is rare, and almost all new HCV infections arise in early
adulthood. (Egypt is a notable exception; there were >5000
cases of vertical transmission in 2008 alone) [38]. Also in
contrast to HBV, most infected adults (up to 80 %) develop
chronic infection.

In Japan, in contrast to other high HCC rate Asian
countries like China, HCV is the predominant viral cause of
HCC. HCV was largely introduced there (as in Egypt)
iatrogenically via use of intravenous antischistosomal ther-
apy and began to widely disseminate shortly after World
War II [39]. Consequently, HCV-related HCC rates began to
sharply increase in Japan in the mid-1970s onward, although
recent data suggest that the peak may already have been
reached [40].

It has been estimated that HCV began to infect large
numbers of young adults in North America and in South and
Central Europe in the 1960s and 1970s, predominantly as a
result of intravenous drug use [41]. The virus then moved
into national blood supplies and circulated until a screening
test was developed in 1990, after which time rates of new
infection dropped dramatically. Consequently, most indi-
viduals in these chronically HCV-infected populations from
developed countries have been infected for several decades
and are rapidly graying into peak ages for liver disease onset.
Accordingly, evidence-based model simulations suggested a
peak incidence of HCV-related cirrhosis by 2020 with
associated continued increases in HCC over the following
decades [42]. These estimates, however, were made a few
years prior to advent of highly efficacious direct acting

antiviral (DAA) drug regimens that are interferon free, the
first of which (sofosbuvir) became available for use the U.S.
in 2014. Yet, given the very high cost of these new medi-
cations, combined with lack of awareness of underlying
infection in almost all individuals with HCV infection until
they are diagnosed with liver disease, their impact on the
projected magnitude and timing of peak HCV-related HCC
incidence rates in the U.S. (and globally) is not yet known.

HCV infection is consistently associated with substan-
tially increased HCC risk in prospective and retrospective
studies. For example, in a meta-analysis of 21 case-control
studies in which second-generation enzyme immunoassay
tests for anti-HCV were used, HCC risk was increased
17-fold in HCV-infected patients compared with
HCV-negative controls. However, the likelihood of devel-
opment of HCC among HCV-infected persons is difficult to
determine due to the paucity of adequate long-term cohort
studies; the best estimate is from 1 to 4 % after 30 years
(Fig. 1.9). HCV increases HCC risk by promoting fibrosis
and eventually cirrhosis, with rates of cirrhosis up to 30 %
[43]. after several decades of infection [44]. Once cirrhosis is
established, HCC develops at an annual rate of 2–5 % [45].
However, rates up to 7 % have been reported in Japan, with
the historically highest incidence among recipients of con-
taminated blood or blood products (14 and 1 per 1000
person-years for cirrhosis and HCC, respectively) and in
hemophiliacs (5 and 0.7 per 1000 person-years, respec-
tively), and the lowest in women who received a one-time
contaminated anti-D immune globulin treatment (1 and 0 per
1000 person-years, respectively).

In HCV-infected patients, factors related to host and
environment/lifestyle appear to be more important than viral
factors in determining progression to cirrhosis. Some of the
key factors include: older age; older age at the time of
infection; longer duration of infection; male gender; heavy
alcohol intake (>50 g/day); obesity, diabetes, and fatty liver
disease; and coinfection with HBV or HIV (with*16–33 %
coinfected in the U.S.) [46]. Although there is no strong
evidence for an effect of most viral factors like viral load or
quasispecies in HCC risk, our recent cohort based research
in 111,000 chronically HCV-infected veterans using VA
healthcare between 2002 and 2009 demonstrated 80 %
excess HCC risk among those infected with genotype 3 in
comparison to genotype 1 (HR = 1.80, 95 % CI: 1.61–2.03)
[47]. We also found evidence suggestive of potential racial
differences in risk of HCV-related progression within this
VA cohort, with significantly increased HCC risk observed
in Hispanics and significantly decreased risk among African
Americans (HRs = 1.28 and 0.58, respectively) [48]. Glob-
ally, the most prevalent HCV genotypes are types 1 and 3,
representing 46.2 % and 30.1 % of all cases, respectively.
The less common genotypes (2, 4, 5 and 6) are dispropor-
tionately found in less developed countries [35].
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In the U.S. a recently reported estimate of the population
attributable fraction (PAF) or proportion for of HCC cases
that would be eliminated with removal of HCV as risk factor
is 22.4 % among individuals aged � 68 years using
SEER-Medicare data for 1994–2007 [49]. The PAF is an
important measure of the burden of a given risk factor within
a population as it incorporates information on both strength
as well as prevalence of exposure; although they may indi-
vidually sum to more than 100 % with risk factor overlap. In
this case although the population prevalence of chronic HCV
is low (<2 %), HCV is by far the strongest HCV risk factor
(ORs = 39.9, 11.2, 4.1, and 2.5 for HCV, HBV, alcohol, and
diabetes/obesity, respectively, all p-values < 0.05) [49].

Prior to the DAA era, very few chronically HCV-infected
patients were successfully treated, i.e., were eligible to
receive and tolerate treatment and to achieve a sustained
virological response (SVR). There is enhanced recent
interest in the longer term outcomes in these “SVR cohorts”
as they likely provide the best available estimates of the
potential benefit of obtaining SVR via treatment with costly
new medications. The imperfect HCC risk reduction with
DAA, in conjunction with high treatment costs and lack of
awareness of HCV among populations globally, has led to
the call for multipronged approaches to effectively prevent,
as well as treat, HCV infection and thus its associated seri-
ous sequalae like HCC.

1.2.3 Alcohol

Heavy alcohol intake, defined as ingestion of >50–70 g/day
for prolonged periods, is a well-established HCC risk factor,
with IARC determining there was sufficient evidence to label
it a human hepatocarcinogen in 1988 [50]. Although chronic
heavy intake is strongly associated with development of
cirrhosis, there is little evidence of a strong direct carcino-
genic effect of alcohol alone.

The association between alcohol use and HCC risk has
been evaluated in numerous studies. Although higher levels
of alcohol intake and alcohol abuse disorders are typically
associated with increased HCC risk in most prospective
cohort research particularly in general population cohorts,
the magnitude of reported excess risk varies across popula-
tions and classification of alcohol use. For example, in the U.
S. in the NIH-AARP cohort study of almost 495,000 general
community participants, those with highest regular alcohol
consumption had significant approximate twofold increased
risk in multivariable analyses (HR = 1.92, 95 % CI 1.42–
2.6) [51], while strong excess risk was observed in an Italian
cohort of >8500 hospital discharge diagnosed alcoholics in
comparison with risk based on age and gender-specific
Italian population norms (standardized incidence rate

ratios = 6.9 (4.5–10.0) and 5.9 (0.1–32.6) in male and
female alcoholics respectively) [52].

There is also evidence suggestive of potential synergistic
increases in HCC risk among those with both heavy alcohol
ingestion and several other established risk factors like
obesity and viral hepatitis. For example, in a cohort study in
almost 24,000 Taiwanese residents (half male) from 7
townships who were followed for 11.6 years reporting an
overall HR for obesity or BMI > 30 = 3.82 (95 % CI 1.94–
7.52), that was substantially higher (HR = 7.19) among
those with BMI > 30 and whom also were alcohol users, but
that was not elevated (HR = 1.06) among obese nondrinkers
[53].

Globally the prevalence of alcohol drinking varies con-
siderably across countries, with highest per capita con-
sumption found in more highly developed western countries
especially in the Northern Hemisphere and is lowest in
countries in sub-Saharan Africa and the Middle East.
Approximately 11.5 % of all alcohol users worldwide have
heavy drinking episodes weekly, with men outnumbering
women 4:1 [54]. These large population differences in
alcohol exposure are apparent in calculation of PAFs. For
example, in the U.S. SEER-Medicare cohort (1973–2007),
presence of an alcohol-related disorder was the 2nd leading
single risk factor (PAF 23.5 %); though this varied by
race/ethnic group (e.g., 25.6 % in White, 18.5 % in African
Americans, 15.2 % in Asian, and 30 % in Hispanic males)
and gender (e.g., 27.8 % and 15.4 % in males and females
overall) [49]. However, although PAFs for alcohol-related
HCC are universally lower in women globally, there is
reason for ongoing vigilance and investigation in women
given ongoing dramatic recent increases in drinking among
women in many parts of the world in the last few decades
along with some experimental and clinical data suggesting
that females may be more susceptible to alcohol-associated
liver damage than males.

1.2.4 Aflatoxin

Aflatoxin B1 (AFB1) is a ubiquitous mycotoxin produced by
the Aspergillus fungus. Several staple crops, including cereal
grains, tree nuts, legumes (principally peanuts), and most
especially maize, are particularly susceptible to aflatoxin
contamination, especially under unfavorable crop (e.g., high
humidity, drought, insect infestation) and storage/processing
(e.g., suboptimal harvest, drying and storage) conditions.
Animal experiments have demonstrated that AFB1 is a
powerful hepatocarcinogen, leading the International
Agency for Research on Cancer (IARC) to classify it as
carcinogenic [16]. Once ingested, AFB1 is metabolized to an
active intermediate, AFB1-exo-8,9-epoxide, which can bind

12 D.L. White et al.



to DNA and cause damage, including producing a charac-
teristic mutation in the p53 tumor suppressor gene (p53
249ser) [55].

Over the last two decades, strong evidence that AFB1 is a
risk factor for HCC in human populations has been supplied
by multiple person-specific epidemiological research studies
using direct biomarker assessment performed [12, 56–60].
These studies were made possible by development of assays
for aflatoxin metabolites in urine and AFB1-albumin adducts
in serum and by assays for detection of a signature aflatoxin
DNA mutation in tissues. For example, this mutation has
been observed in 30–60 % of HCC tumors in endemic areas.

Several of these studies also reported evidence of syner-
gism between AFB1 and other known liver disease factors in
promotion of HCC risk. For example, in prospective cohort
research conducted in Shanghai, China, urinary excretion of
aflatoxin metabolites was associated with fourfold increased
HCC risk, while HBV infection risk was increased seven-
fold. However, individuals who both excreted AFB1
metabolites and were also HBV carriers had a dramatic
60-fold syngergistic increased HCC risk [61]. AFB1 expo-
sure has also been found to synergistically increase HCC
risk in conjunction with other known risk factors like HCV,
obesity, alcohol and smoking, although these synergistic
effects were not as strong as those reported with HBV.
However, a more than additive, rather than a multiplicative,
synergism with HBV has recently also been suggested.

Although most substantial AFB1 exposure is presump-
tively related to dietary intake, a recent case-control study in
China found over half of sugar warehouse and paper pro-
duction factory workers (1993–2004) had detectable urinary
AFB1 DNA adducts compared to only 12 % of non-factory
worker controls [56]. In addition, workers with highest
adduct levels had over a fivefold significant HCC risk
compared to those with lower levels (OR = 5.24; 95 % CI:
2.77–9.88; P = 0.00).

Globally, it is estimated that up to a quarter of all agri-
cultural products are aflatoxin contaminated. However, the
likelihood of dietary aflatoxin intake above maximum
guideline-recommended levels is predominantly concen-
trated in southeastern Asia and sub-Saharan Africa, largely
overlapping areas where HBV is also endemic. Efforts to
reduce aflatoxin exposure via a variety of methods like
switching from maize to less AFB1 susceptible crops, public
health education, and government regulation began in the
early 1980s in multiple high regions including in China,
Taiwan and Africa [13].

In bothChina andTaiwan, these efforts have already reaped
notable dividends. Reduced HCC risk has been observed,
particularly among birth cohorts antedating government-
mandated neonatal HBV vaccination: a 1.9-fold risk reduc-
tion among 25–29 years olds in 1990–1993 compared to

1980–1983 and a 1.4-fold reduced risk among 40–44 year
olds in 2005–2008 compared to 1980–1983 in Qidong City,
China and an estimated overall 65 % reduction in primary
liver cancer due to government initiated switch from maize to
rice [12, 62]. There has also been substantial reduction in PAF
for HCC conveyed by AFB1 in HBV + Taiwanese popula-
tions from 31 % in 1980s to 12 % by 1990s [63]. However, in
many areas, including in Africa and in more rural areas of
China, AFB1 exposure is still problematic; e.g., 78 % preva-
lence of serum AFB1-lysine among 500 randomly selected
individuals from a nationally representative cross-sectional
survey across Kenya in 2007 [58]. A recent systematic and
meta-analysis suggested that in these areas the PAF for HCC
from AFB1 exposure is 17 % overall (14–19 %), and is syn-
ergistically higher (21 %) in populations with HBV compared
to those without (21 % HBV + -AFB1 + vs. AFB1 + HBV-
populations, respectively) [64]. The lack of success in
reduction of AFB1 exposure in some high-risk regions (par-
ticularly in Africa) [65, 66] has been attributed to a variable
range of factors, including lack of regulation and/or enforce-
ment, cultural practices, lack of knowledge about risks,
inadequate public health infrastructure, and costs [67]. How-
ever, the ongoing high burden of HCC in these areas, com-
bined with other known deleterious impacts of AFB1 intake,
including growth retardation, suggests the need for enhanced
efforts to reduce exposure risk.

In contrast to Asia and Africa, AFB1 is not considered to
be a risk factor in developed nations in Western Europe and
North America which have strict enforcement and regulation
of food production and acceptable AFB1 thresholds which
are applied to food both domestically produced and imported
foods [68]. It is estimated that current standards reduce risk
of a dietary consumption from primary AFB1 source, pea-
nuts, are sufficient to limit AFB1-associated HCC occur-
rence to 1 in 10,000 persons [69].

However, a recent study in Bexar County, Texas, which
is close to the Mexican border and which has among the
highest HCC rates reported in the U.S., found 21 % of
healthy participants had detectable AFB1-albumin adducts.
In earlier research, 23 HCC patients, predominantly
non-Hispanic Caucasians from Texas and Louisiana, were
seen (1986–1994) at the MD Anderson Cancer Center
(Houston, Texas). In half without evidence of viral hepatitis,
detectable levels of AFB1-DNA adducts were found in three
of 19 tumors tested, with 2 of 3 in males without evidence of
viral infection. These data, combined with largely unexam-
ined role of AFB1 as a potential primary or secondary
contributor to HCC in the U.S., suggests the need for
additional surveillance and research in the U.S., particularly
among subgroups that may potentially have or had elevated
AFB1 exposure (e.g., rural residence, agricultural produc-
tion, recent immigration from AFB1 high-risk regions).
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1.2.5 Diabetes

Diabetes, particularly type II, has been proposed to be a risk
factor for HCC, particularly via its close association with
NAFLD and cirrhosis [70]. Specifically, diabetes is known
to contribute to hepatic steatosis, with increasing levels of
steatosis associated with more severe necroinflammatory
activity and fibrosis. There is also experimental evidence that
diabetes can promote HCC risk more directly, for example
by favoring formation of hepatic DNA damage from reactive
oxygen species generated by diabetes-associated increases in
levels of inflammatory cytokines like IL-6 and TNF-a [71]
and from advanced glycation end products [72]

Across diverse epidemiologic designs (case-control,
cross-sectional, and cohort), settings (clinical and commu-
nity) and populations, almost all studies report that type 2
diabetes is associated with excess risk, most in the moderate
range (1.5–3.5-fold excess). A recent meta-analysis, syn-
thesizing results from 21 prospective cohorts studies repor-
ted through fall 2013, calculated a pooled 86 % increase in
relative HCC risk among diabetics, an effect consistent with
the reported pooled estimate from retrospective case-control
and cross-sectional studies (1.86; 95 % CI:1.49–2.31) [73].

Although the consistency and strength of these prospec-
tive cohort findings are supportive of diabetes being a
potential etiopathogenic risk factor, the findings of these
studies may be influenced by a potential reverse causation
bias, given the liver’s role in glucose metabolism. Specifi-
cally, liver disease itself negatively impacts host glucose
metabolism, favoring increased insulin resistance; therefore
diabetes may be both a result of, as well as a cause of,
advanced liver disease. This problem is particularly relevant
in evaluating diabetes as an HCC risk factor because 10–
20 % of patients with cirrhosis have clinically diagnosed
diabetes, with a much larger percentage having impaired
glucose tolerance.

Further complicating this picture, in the case of HCV
infection, our earlier meta-analysis of prospective cohort
studies suggests that HCV infection itself also independently
increases risk of diabetes [74], a finding also consistent with
much experimental research. However, moderate excess
diabetes-associated risk persists among most prospective
cohort studies that adjusted for baseline level of liver disease
determined by biopsy or serological marker.

Additional data suggestive of a potential etiopathogenic
role for diabetes comes from multiple pharmacoepidemiol-
ogy case-control and cohort studies that found use of the
antidiabetic medication metformin was associated with
moderate to strong significantly decreased (decreased) HCC
risk [75–79]. These results appear to raise the intriguing
possibility that metformin, a widely used antidiabetic with a
generally benign side effect profile, may have potential

benefit as a chemopreventive agent in subgroups at high
HCC risk. However, there are several reasons for cautious
interpretation of the pharmacoepidemiological data currently
available. In addition to the limited total number of studies
(particularly of large directly measured prospective cohorts),
most had methodological limitations, like failure to account
for differences in individual patient propensity to receive
metformin, not accounting for medication adherence (e.g.,
via calculation of a medication possession ratio) and inad-
equately accounting for time window, time lag, and/or dose
duration of medication use that could systematically bias
results. Nonetheless, the consistency of these findings with
several experimental reports of anti-HCC tumor effects of
metformin [80] supports the need for additional research on
its potential value as a HCC chemopreventive.

A few pharmacoepidemiological studies have also eval-
uated use of hyperglycemics insulin and sufonlyureas; a
recent meta-analysis including both prospective and
case-control studies reported 1.6-fold excess HCC risk with
sufonlyurea use (n = 8 studies) and 2.6-fold increased risk
with insulin use (n = 7 studies) [81]. However, as these
medications are indicated for use in individuals with more
advanced diabetes, unmanaged by other means including
diet or metformin, it is unclear whether this excess risk is
due only to a potential reverse causation bias or whether
these medications may also convey additional independent
HCC risk.

Overall, it is estimated, based on SEER-Medicare data
1973–2007, that the elimination of diabetes and related
metabolic syndrome features like obesity in countries like
the U.S., which has among the highest global obesity rates
but low rates of viral infection, would have a greater impact
on HCC reduction than that of other strong, though less
prevalent, risk factors like HCV (e.g., estimated PAF =
36.6 % diabetes/obesity vs. PAF = 22.4 % HCV in U.S)
[49].

1.2.6 Obesity

Obesity, particularly abdominal or visceral, is closely cor-
related with increased insulin resistance and Type 2 diabetes
risk. Like diabetes, it has been posited to increase HCC risk
predominantly by promoting development and progression
of hepatic fibrosis. However, experimental research suggests
it may also increase HCC risk by other diverse mechanisms,
for example, by increasing epigenetic aging in hepatocytes
[82] and by promoting gut microbial changes that favor
formation of hepatotoxins [83].

Numerous case-control and cross-sectional studies have
evaluated the association between phenotypic adiposity, most
typically assessed using BMI-based measures, and HCC risk
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(Fig. 1.10). Obesity when defined as BMI > 30 has almost
uniformly been associated with elevated incidence rates in
large population cohort studies, whether conducted in low,
medium or high-risk cohorts. A recent meta-analysis of 11
prospective cohort studies reported a significant overall
1.89-fold excess risk (95 % CI: 1.51–2.36) with obesity and
lower though significant pooled 1.17-fold increased risk
(95 % CI: 1.02–1.34) with overweight [84]. There is
increasing epidemiological evidence that the presence of
obesity with another established risk like alcohol, HBV or
HCV infection, AFB1, and/or smoking results in particularly
elevated HCC risk. However, the underlying explanatory
mechanisms for this interaction or synergism are not known.

There is less data on the association between other
anthropometric measurements of obesity. A single nested
case-control study conducted in the European EPIC cohort
study found that the waist-to-height ratio (WHtR) was the
strongest anthropometric HCC risk factor; in multivariable
analysis, individuals with WHtR in the highest versus the
lowest tertile had a relative risk (RR) = 3.5 (95 % CI: 2.09–
5.87; p-trend < 0.00010) [85]. Weight gain in adulthood was
also associated with significant 2.5-fold excess risk when
comparing the highest to lowest tertiles in the EPIC cohort
[85].

Weight loss has been found in biopsy-based studies of
obese patients with nonalcoholic steatohepatitis to improve
histopathology, with significant improvements seen even
with modest weight loss and dramatic reversals in many
bariatric surgery patients. Yet there is limited data on the
association between substantial weight loss among the obese
and subsequent HCC risk, with a single-center study of 14
obese Australian patients with incidental cirrhosis diagnosed

at time of laparoscopic gastric banding reporting that two
incident cases of NAFLD-related HCC arose during the
median 64.5 month follow-up period [86]. However, lack of
a comparison group coupled with the small sample size,
limit inferences on the potential impact of obesity on HCC
risk within even this single study population.

There is also limited data on the potential impact of
childhood obesity. Although HCC occurs almost exclusively
in late middle-aged and older adults, case reports of pre-
sumptive obesity-associated HCC have been reported in
young adults and recently in a 7-year-old obese child [87].
A single population-based cohort study of >285,000 Danish
school children aged 7–13 years old, born 1930–1980 and
followed through 2008, assessed the association between
childhood BMI and HCC risk. It found similar significant
excess HCC risk among both boys and girls with increasing
BMI, whether using BMI whether measured at ages 7 or 13
[88]. However, the applicability of these findings to other
populations, particularly those with different racial/ethnic
composition and with much higher rates of childhood obe-
sity is unknown. Given the escalating global childhood
obesity pandemic, however, its potential association with
adult HCC risk bears further systematic investigation.
Finally, although the full impact of increasing childhood
obesity on HCC rates within specific populations will likely
not be fully understood for several decades, it may well be
evident first in Western populations where childhood obesity
rates rose first, fastest, and most substantially.

Overall, the PAF or proportionate reduction in HCC cases
among adults � 68 years with removal of obesity + dia-
betes in the U.S., estimated using SEER-Medicare cancer
registry data, is 36.6 % [49]. This is not a surprising finding,

Fig. 1.10 Association between BMI and relative risk of HCC reported in prospective cohort studies in Asian and White Populations (adapted
from Rui et. al 2012)
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given high age-adjusted population prevalence rates of
obesity in U.S., *68.5 % with BMI � 25 reported by the
CDC in 2015. However, even in high HCC rate countries
like China and South Korea where the proportion of adults
with BMI � 25 is much lower than in the U.S. (34.4 % in
China and 33.5 % in South Korea based on 2010 WHO
estimates), the impact of obesity reduction on HCC burden is
still likely substantial, because obesity similarly increases
HCC risk in Asian as in White populations based on
meta-analysis of prospective cohort studies (Fig. 1.10), and
because of the observed synergism between obesity and
HBV which is more prevalent in many Asian populations.
Finally, even though the absolute lifetime risk of HCC
associated with obesity particularly in the absence of other
known risk factors is low, and the potential causal mecha-
nisms are less clear, given global obesity rates continue rapid
increase, the proportion of HCC cancers that are obesity and
metabolic syndrome-associated is projected to continue to
rise worldwide over the coming decades.

1.2.7 Nonalcoholic Fatty Liver
Disease (NAFLD)

A substantial and growing minority of HCC cases reported
in the epidemiological literature has been attributed to
NAFLD or to cryptogenic disease, which is often pre-
sumptively NAFLD-related given the high associated
prevalence of metabolic syndrome features. NAFLD is
characterized by excess triglyceride accumulation in liver
cells (steatosis) in the absence of excessive alcohol intake. It
is posited as the hepatic manifestation of the metabolic
syndrome, and as such is closely associated with diabetes,
obesity, dyslipidemia and hypertension. Although typically a
nonprogressive condition, at least 20–30 % of NAFLD
patients progress to nonalcoholic steatohepatitis (NASH)
which is characterized by liver cell injury, inflammation and
fibrosis, and can result in cirrhosis in 10–20 % of cases [89].

We previously performed a systematic review to assess
the association between NAFLD, NASH, and cryptogenic
cirrhosis presumed to be NASH-related, and the risk of
HCC. We analyzed data from a total of 17 cohort studies (6
U.S., 6 Europe/Australia/multi-Western countries, 5 Japan)
and found that NAFLD or NASH cohorts with few or no
cases of cirrhosis cases at baseline had a minimal risk for
HCC (cumulative HCC mortality of 0–3 % for study periods
up to 20 years, most reporting 0–1 %) [23]. In contrast,
cohorts with NASH and cirrhosis at baseline had a consis-
tently higher reported risk (cumulative incidence ranging
from 2.4 % over 7 years to 12.8 % over 3 years). However,
reported risk estimates for HCC in fatty liver
disease-associated cirrhosis cohorts were considerably lower
than those reported in similar HCV-related cirrhosis cohorts.

We also found in our parallel review of 18 case-control and
cross-sectional studies (8 in Asia, 6 in Europe, and 4 in the
U.S.) that prevalence of cirrhosis among HCC cases attrib-
uted to NAFLD/NASH was variable, ranging between 36
and 90 %, with three-quarters reporting rates � 70 % [23].

More recently, a large U.S. population-based cohort study
utilizing the NCI’s SEER-Medicare registry reported that
14.1 % of HCC cases were NAFLD-related, with an average
annual 9 % increase in rate of NAFLD-related HCC between
2004 and 2009 [90]. These findings are consistent with
reported doubling of NAFLD prevalence in the general
population over the last two decades to *30 % [91], with
NAFLD now the leading cause of chronic liver disease [92]
and the fastest rising cause of cirrhosis in the U.S. [93, 94].

Historically, NAFLD has been considered a disease that
predominantly afflicted developed Western countries like the
U.S. However, notable and also increasing prevalence of
NAFLD has also been reported in diverse populations across
North, South and Southeast Asia, with typical recent preva-
lence estimates between 15 and 20 % [95, 96]. In spite of
several crucial developments that have or are projected to
substantially reduce the global burden from viral hepatitis,
like national neonatal HBV vaccination and the advent of
highly efficacious DAAs for HCV, the growing global obesity
pandemic suggests that NAFLD-related HCC will increase
and also represent an increasingly large proportion of HCC
cases in many populations worldwide in coming decades.

1.2.8 Tobacco

The IARC found sufficient evidence to classify tobacco
smoking as a cause of human HCC in 2004, while the U.S.
Surgeon General classified smoking as a probable cause in
2014. Results from a recently reported meta-analysis of 27
cohort studies (many performed since 2000) offer further
support for that designation, with significant pooled HRs for
HCC risk of 1.45 (95 % CI 1.33–1.59) and 1.22 (95 % CI
1.11–1.34) for current and former smokers, respectively,
compared to nonsmokers. A dose–response effect was also
evident with a significant 7.1 % increase in HCC risk for
each ten additional cigarettes smoked daily. Although only a
minority of these studies specifically reported gender-
stratified results, all demonstrated that smoking-associated
excess risk was greater in women than in men. However, the
extent to which this difference reflects true underlying bio-
logical sex-based differences in susceptibility to tobacco-
induced liver injury versus reflects the combined effects of
much lower background risk for HCC and much lower
prevalence of smoking among women is not well-
understood.

There is also evidence suggesting that smoking may be
associated with markedly elevated excess HCC risk in
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conjunction with some other established risk factors. For
example, a large study (35,784 participants from four
population-based cohort studies, subjects recruited 1977–
1993 and followed through 1998) found cumulative HRs for
HCC risk of 7.53 (95 % CI: 2.93–19.35) for obese heavy
smokers, 3.90 (95 % CI: 1.55–9.80) for obese light smokers,
and 2.21 (95 % CI: 1.18–4.15) for obese nonsmokers
compared to non-obese nonsmokers, respectively [97].
Additionally, more than additive synergism between smok-
ing and HBV and more than multiplicative synergism
between smoking and HCV on HCC risk was demonstrated
in a recent meta-analysis of prospective cohort studies [98].
The exact mechanisms underlying these large joint effects,
including why the synergism with smoking may be stronger
with some risk factors compared to others, are not
established.

According to World Health Organization (WHO) data,
36 % of males and 7 % of females aged 15 and over smoked
tobacco in 2012. The global burden of smoking, however, is
not evenly distributed, with 80 % of all smokers living in
low and middle-income countries and with many of these
countries having smoking rates that have substantially
increased over the last two decades. Currently, the highest
estimated PAF for HCC conveyed by smoking is in Europe
(47.6% based upon the EPIC cohort study) [99]. This is not
surprising given the moderate to high rate of smoking among
males in many European countries (e.g., Germany 34 %,
France 31 %, Greece 53 %), that Europe has the highest
reported prevalence of smoking among women worldwide
(19 % overall, with smoking rates in women in many
European countries only modestly lower than those in
males), and the generally low prevalence of chronic HCV
and HBV infection.

However, as many countries that have the highest rates of
viral hepatitis infection also have high and increasing rates
of smoking, smoking represents a substantial preventable
cause of smoking among males. In China, for example,
where the WHO estimated prevalence of smoking in males is
*44 %, the estimated attributable fraction or proportion of
HCC cases that would be avoided if smoking was removed
is 18.7 % [100]. For women in China, the estimated 1 %
PAF for smoking predominantly reflects the low rate of
smoking in Chinese women overall (*1.9 %). However,
this may well be an underestimate of the smoking-associated
HCC burden in women, given they may well be exposed to
substantial amounts of second-hand smoke, with the high
prevalence of smoking among males, and given that smok-
ing rates in younger Chinese women have also risen sub-
stantially in recent years.

1.2.9 Oral Contraceptives

Given the pronounced gender difference in HCC incidence
between men and women, the role of exogenous estrogen
exposure from oral contraceptives (OC) has been raised. Use
of OCs is a well-recognized risk factor for hepatocellular
adenomas (HCAs), benign liver tumors. Although the IARC
in 1999 classified the (early) high dose OC as a causative
factor for liver cancer, based on experimental animal data
and results from the few case reports and results of some
(though not all) of the few epidemiology studies of women
from the 1970s through the early 1980s (and probably out of
an abundance of caution), that conclusion has been, and
remains, the subject of much debate. In the interim, OC
formulations have changed substantially and studies have
been contradictory; in fact, a more recent meta-analysis of
some of the same data used initially by IARC reported the
data to be inconclusive [101]. Recently, the largest
prospective study, which included almost 800,000 U.S.
women in 11 cohorts, reported neither strong nor significant
excess risk of HCC with OC use (HR = 1.12, 95 % CI =
0.82–1.55) [90, 102]. The only hormone-related factor
significantly associated with HCC in this study was early
bilateral oophorectomy (ovary removal), which resulted in
significant 2.6-fold excess risk. The same finding, including
the same significant 2.6-fold excess risk, was also found in
an earlier study of HCC + Taiwanese women [103]. That
study reported a statistically nonsignificant decreased risk of
HCC with use of OCs. Interestingly, however, it also
reported a significant decreased risk (multivariate-adjusted
OR 0.46; 95 % CI, 0.27–0.79) from use of postmenopausal
hormone replacement therapy (HRT). It therefore appears
that further study of the type and timing of exogenous
estrogenic compounds could be helpful in understanding the
role of female hormones in HCC risk.

1.2.10 Coffee, Tea, and Other Dietary Intake

Coffee: Coffee is the most frequently studied customary
dietary factor, with most individual studies reporting modest
to moderate though variably significant decreased risk.
A 2013 meta-analysis of 16 studies demonstrated that coffee
drinkers overall had a significant moderate 0.6-fold reduc-
tion in relative HCC risk compared to non-coffee drinkers
based on eight pooled cohort study findings, and a highly
similar 0.56-fold reduction based on eight pooled
case-control findings [104] (Fig. 1.11). More recent reports
from several large population-based prospective cohort
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studies further suggest that moderate to strong reductions in
relative HCC risk is primarily found in individuals with high
levels of daily coffee consumption. In the Singapore Chinese
Health Study, cohort members drinking 3 or more cups of
coffee daily had significant 0.56-fold reduced risk compared
to non-coffee drinkers after adjusting for other liver disease
risk factors [105], while in the European EPIC cohort,
members with daily coffee consumption in the highest
quintile had significant 0.28-fold risk reduction compared to
those in the lowest quintile) [106].

In contrast, decaffeinated coffee has been consistently
found to not be associated with decreased risk in most
research conducted in large and prospectively followed
cohorts [106, 107]. Whether this indicates that the reduced
HCC risk observed with regular coffee is predominantly
caffeine-related, or whether it is partially (or even predom-
inantly) due to one of the hundreds of other known chemical
constituents of coffee, like chlorogenic acid (a known
antioxidant and a major phenol in coffee) or diterpenes (like
cafestol) that might also be adversely impacted by the
decaffeination process, is unclear.

A recent biomarker-based coffee-HCC mediation analysis
performed within a nested case-control study of 125 HCC
cases and 250 matched controls from the EPIC cohort sug-
gests that the observed coffee-associated reduction in HCC
risk with high daily intake is predominantly explained by the
significant relationship between the amount of coffee con-
sumed and circulating levels of six biomarkers, including
inflammatory/immune response related IL-6 and
hepatocellular/cholestatic injury related GLDH, ALT, AST,
GGT, and bilirbubin [108]. All were independently associ-
ated with HCC risk (e.g., each cup of daily coffee consumed
was associated with b = −0.18 decrease in IL-6 levels for
each additional cup of coffee consumed, p = 0.04).

The strength and consistency of epidemiological findings
for coffee have led some to consider whether coffee is ready
to be actively prescribed by physicians as a functional food
or chemopreventive for HCC. However, others have called
for a more cautious and qualified approach [109], including
additional research to address important unanswered ques-
tions and concerns including: (1) what is an optimally
effective and yet minimum dose of coffee necessary for

Fig. 1.11 Meta-analysis results
for study-specific and summary
RRs for HCC risk in coffee
drinkers versus nondrinkers
(adapted from reported results in
Bravi et al. 2013)
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reduced risk and how do differences in coffee preparation
(e.g., espresso, filtered, or instant; roasting; type of coffee
bean) influence “dosing”; (2) what is the optimal timing and
minimum duration of coffee drinking necessary to convey
benefit, including whether coffee consumption that begins
only after liver disease is well-established still conveys
substantial benefits, and (3) potential barriers to prescribed
use of coffee in some patients and populations based on
clinical concerns, tolerability, economic feasibility in some
populations, and other cultural dietary considerations.

Tea: Meta-analyses that have compared tea drinkers to
nondrinkers have reported no association with risk. How-
ever, these analyses combined all types of tea (e.g., green,
black, herbal) [110, 111]. The most extensively studied is
green tea intake in Asian populations. A meta-analysis
pooling results of 11 prospective Asian cohort studies
reported that highest daily green tea intake was associated
with modestly decreased HCC risk, although the risk
reduction was stronger as well as significant only in women
(OR = 0.78, p < 0.05 and OR = 0.89, p = 0.05 for highest
vs. low/no daily green tea intake in women and men,
respectively) [112].

However, concern has arisen that green tea intake in
chronic HBV patients may not be beneficial, and may in fact
be harmful, based on findings from a recent biomarker-based
nested case-control study performed within the large
Shanghai Cohort Study population. Specifically, it found
that individuals who were both HBV surface antigen posi-
tive and had higher baseline urinary levels of epigallocate-
chin (ECG) had significantly increased risk of developing
HCC (p-value for trend with increasing consump-
tion < 0.01), and that this ECG-associated excess risk was
significant and particularly strong among individuals who
also had lower serum retinol levels at baseline (OR = 2.62;
95 % CI 1.25–5.51) for chronic HBV individuals with
detectable ECG and low retinol versus chronic HBV but
non-detectable urinary ECG and normal retinol levels) [113].
Given green tea is the major dietary source of ECGs, addi-
tional biomarker-based research on the association between
green tea intake and HCC risk, particularly in HBV-infected
cohorts in Asia where levels of green tea consumption are
highest, appears to be warranted.

Other Dietary Intake—Vegetables and fruits are among
the most extensively studied other dietary factors in associ-
ation with HCC risk. A 2014 meta-analysis of 19 studies that
included a total of 1.29 million participants and in which
3912 incident HCC cases arose found that with each 100 g
increase in daily vegetable intake there was significantly
decreased risk of developing HCC (e. g., [113] OR = 0.92,
95 % CI: 0.88–0.95 among cohort studies) [114]. In con-
trast, increased fruit intake was not associated with HCC risk
in pooled analyses of either cohort or case-control studies
[114]. Red meat intake has also been examined in several

case-control and cohort studies, with variable and typically
nonsignificant associations reported, and with a recent
meta-analysis pooling results from nine studies finding
higher red meat intake was not associated with either strong
or significant excess HCC risk (OR = 1.10, 95 % CI 0.85–
1.42 for individuals with highest daily red meat intake
compared to the lowest) [115]. In contrast, both higher daily
white meat and fish intake were associated with significantly
decreased HCC risk in recent meta-analyses (OR = 0.69,
95 % CI: 0.58–0.81 based upon 10 studies and OR = 0.78,
95 % CI: 0.67–0.90 based upon 7 studies for highest vs.
lowest daily white meat and chicken intake, respectively)
[115]. Almost all individual studies also reported decreased
risk. Daily dietary fat intake (although variably classified)
has also been examined in several recent large
population-based prospective cohort studies. Some key
findings include: a significant 1.9-fold excess HCC risk in
individuals with higher baseline daily saturated fat intake
and 1.5-fold excess risk with higher omega-6 polyunsatu-
rated fatty acid (PUFA) intake reported in the U.S.
NIH-AARP cohort study (n = 495,006) [116]; that increased
total fat intake was associated with significantly reduced risk
(per 10 g/day, HR = 0.80, 95 % CI: 0.65–0.99)—though
this effect was predominantly accounted for by high levels of
monounsaturated fat intake reported in the European EPIC
cohort study, [117] and significant *0.6-fold reduced HCC
risk in individuals with highest intake of n-3 PUFAs (EPA,
DPA and DHA) reported in a population-based cohort of
90,296 Japanese adults [118]. Dietary soy intake has been
evaluated in a few large prospective studies, all conducted in
Asian populations, with mixed reported results. For exam-
ple, higher dietary intake of both miso soup and tofu were
associated with significant 0.5-fold reduction in relative
HCC risk in univariable analyses, although neither associa-
tion remained significant in multivariable analysis in a nes-
ted decedent case-control study of 176 biopsy confirmed
HCC cases diagnosed 1964–1988 and 560 controls dying
from non-liver causes from among a cohort of >120,000
residents of Hiroshima and Nagasaki in 1945 (the
REFR LSS cohort) [119]; while highest miso soup intake
(� 2 bowls/day) was not associated with risk in the large
Japan Collaborative Cohort Study for Evaluation of Cancer
(JACC) study (HRs = 1.08 and 0.95 for men and women,
respectively) [120]. Of particular concern, therefore, are
results from a population-based Japan Public Health
Center-based Prospective Study Cohort (JPHC) of almost
20,000 adults aged 40–69 recruited between 1990 and 1993,
with dietary data collected at baseline, and with median
11.8 year follow-up, that reported that in women that soy
isoflavones genistein and daidzein dose dependently
increased risk HCC risk after adjusting for other risk factors
for liver disease including viral hepatitis, with HRs for
highest versus lowest levels of 3.19 (95 %CI = 1.13–9.00, p
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(trend) = 0.03) and 3.90 (95 % CI = 1.30–11.69, p
(trend) = 0.01), respectively [121]. In contrast to women,
soy isoflavones were not associated with HCC risk. Addi-
tional prospective research studies with adequate sample size
to similarly perform multivariable analyses accounting for
other HCC risk factors like viral hepatitis are needed to
replicate and further investigate the potential association of
soy and HCC. Finally, recent and prospective data on the
association between use of supplemental vitamins and HCC
risk is sparse. However, use of supplemental vitamins E and
C as well as of multivitamins was examined in the combined
132,837 adults from the Shanghai Women’s Health Study
Cohort (recruited 1997–2000) and Shanghai Men’s Health
Study Cohort (recruited 2002–2006), the largest study per-
formed to date [122]. Results for vitamin E, whether from
supplemental vitamin E use or from dietary sources, con-
sistently indicated higher levels significant reduced risk (e.g.,
HR = 0.52, 95 % CI 0.30–0.90 for supplemental vitamin E)
with reduced risk evident both in those with and without a
self-reported history of liver disease or a family history of
liver cancer. In contrast, use of supplemental vitamin C or of
multivitamins was associated with significantly increased
risk in those with a self-reported liver disease or family
history of liver cancer, whereas increased vitamin C intake
from dietary sources was not associated with liver cancer
risk. These findings suggest the importance of additional
research on use supplemental vitamin E and C and multi-
vitamins and HCC risk in other populations, both to replicate
the findings in other high-risk Asian populations and to
assess is similar are found in other populations where risk
factors like obesity and diabetes are more prevalent and
HBV prevalence is low.

1.3 Summary

The epidemiology of HCC suggests it is an unusual disease
as it is favored under conditions of economic deprivation
(e.g., AFB1, HBV, HCV) and affluence and economic
development (e.g., obesity, smoking). Because the strongest
HCC risk factors are viral, it is currently most similar to
cancers with a single primary infectious cause (e.g., stomach
cancer and H. pylori) in that the global burden is over-
whelmingly concentrated in less developed countries and
among disadvantaged subgroups within more affluent popu-
lations. Yet particularly as it relates to risk from behavioral
causes like obesity, HCC is more like colorectal cancer in that
it historically first and disproportionately occurred in more
developed westernized societies. In more affluent societies,
HCC also is a disease of disparity as it disproportionately
impacts disadvantaged populations, who typically have
highest levels of both viral and nonviral risk factors.

This is an exciting era particularly as it relates to the
potential prevention of new HBV infections worldwide and
successful viral cure for HCV and adequand adequate sup-
pression of HBV. However, given the daunting economic and
logistical barriers to successful universal use coupled with the
absence of either a vaccine for HCV prevention or curative
medications for HBV, both are likely to continue contributing
substantially to global HCC burden for years to come.
However, even if HBV and HCV were successfully eradi-
cated worldwide, a substantial number of HCC cases would
still arise, both in countries where viral hepatitis prevalence is
low like the U.S. where HCC rates have tripled over the last
30 years and an estimated *30 % of cases are not virally
related and in countries where viral hepatitis rates were
highest given greater risk of exposure to known environ-
mental risk factors (e.g., AFB1 in sub-Saharan Africa) cou-
pled with rapid large recent increases in rates of behavioral
risk factors (e.g., smoking, obesity in Asia). Together this
suggests the growing global obesity pandemic may ultimately
supplant viral hepatitis as the most important driver of HCC
trends worldwide in coming decades, with HCC continuing to
be a disease impacted by both relative levels of societal
affluence and deprivation, yet disproportionately impacting
more disadvantaged populations and subgroups worldwide.
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2.1 Introduction

Collectively, liver cancer, including hepatocellular carci-
noma (HCC) and cholangiocarcinoma, accounts for 9.1 % of
all reported cancer deaths and is the second most common
cause of cancer mortality worldwide [1]. The incidence of
liver cancer varies enormously globally and unfortunately
the burden of this nearly always fatal disease is much greater
in the less economically developed countries of Asia and
sub-Saharan Africa (Fig. 2.1) [2]. HCC is also the most
rapidly rising solid tumor in the US and Central America and
is overrepresented in minority communities, including
African-Americans, Hispanic/Latino-Americans, and Asian-
Americans [1, 3, 4]. Overall, there are more than 750,000
new cases each year and more than 300,000 deaths annually
in the People’s Republic of China (PRC.) alone [2]. In
contrast with most common cancers in the economically
developed world where over 90 % of cases are diagnosed
after the age of 45, in high-risk regions for liver cancer onset
begins to occur in both men and women by 20 years of age
and peaks between 40–49 years of age in men and between
50–59 years of age in women [5–7]. This earlier onset of
HCC might be attributable to exposures that are both sub-
stantial and persistent across the life span. Gender differ-
ences in liver cancer incidence have also been well described
and worldwide the number of cases among men were
554,000 and 228,000 among women in 2012 [8]. These
epidemiologic findings are also reflected in experimental
animal data for one potent liver carcinogen linked to human
HCC, aflatoxin, where male rats have been found to have an
earlier onset and higher incidence of cancer compared to
female animals [9]. Thus, the consistency of the experi-
mental animal and human data points to the important role
that, environmental exposures play in gender differences in
HCC risk.

This chapter will review the significant data that links
exposures to specific environmental carcinogens and the
development of HCC in many parts of the world. These
epidemiologic studies have been made possible by devising
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biomarkers reflective of exposure and risk. The translation of
these basic science findings to an understanding of the eti-
ology of HCC has also provided guidance for the develop-
ment of preventive interventions in high-risk populations.
We will review a number of these major investigations to
provide an overview of this very active field of research.

2.2 Molecular Biomarkers for Environmental
Carcinogens

Molecular biomarkers are typically used as indicators of
exposure, effect, or susceptibility for both individuals and
populations. A biomarker of exposure refers to measurement
of the specific compound of interest, its metabolite(s), or its
specific interactive products in a body compartment or fluid,
which indicates the presence and magnitude of current and
past exposure. A biomarker of effect indicates the presence
and magnitude of a biological response from exposure to an
environmental agent. Such a biomarker may be an endoge-
nous component, a measure of the functional capacity of the
system, or an altered state recognized as impairment or
disease. A biomarker of susceptibility is an indicator or a
metric of an inherent or acquired ability of an individual to
respond to the challenge of exposure to a specific toxicant.
Such a biomarker may be the unusual presence or absence of
an endogenous component, or an abnormal functional
response to an administered challenge [10]. Measures of

these biomarkers through molecular epidemiology studies
have great utility in addressing the relationships between
exposure to environmental agents and development of clin-
ical diseases, and in identifying those individuals at high risk
for the disease. The aflatoxin/liver cancer work is an
exemplar of this strategy [11]. These data also help to inform
the risk assessment process, where the effectiveness of reg-
ulations and policy can be tested against biological mea-
surements of exposure and effect.

The validation of any biomarker-effect link requires
parallel experimental and human studies [12]. Following the
development of a hypothesis of an exposure disease linkage,
there is the need to devise the analytical methodology nec-
essary to measure these biological markers in human and
experimental samples. Conceptually, an appropriate animal
model is often used to determine the associative or causal
role of the biomarker in the disease or effect pathway, and to
establish relations between dose and response. The putative
biomarker can be validated in pilot human studies, where
sensitivity, specificity, accuracy, and reliability parameters
can be established. Data obtained in these studies can then
be extended to assess intra- or interindividual variability,
background levels, relationship of the biomarker to external
dose or to disease status, as well as feasibility for use in
larger population-based studies. To fully interpret the
information that the biomarker provides, prospective epi-
demiological studies may be necessary to demonstrate the
role that the biomarker plays in the overall pathogenesis of

Fig. 2.1 Age-standardized mortality of liver cancer in men and women worldwide [13, 165]
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the disease or effect. Ultimately, these biomarkers can be
translated as intermediate endpoints in interventions in both
experimental models and high-risk human populations to
optimize agent selection, dose and schedule, and other
parameters influencing efficacy.

2.3 Environmental Etiology of HCC

As described above, HCC is among the leading causes of
cancer death in most parts of the economically developing
world. The unequal distribution of this disease is depicted by
the map in Fig. 2.1 drawn from the IARC cancer data [1, 8,
13]. Since the burden of HCC is also coincident with regions
where aflatoxin exposure is high, many efforts that started
over 40 years ago examined this possible association [14].
These initial studies were hindered by the lack of adequate
data on aflatoxin intake, excretion and metabolism in people,
the underlying susceptibility factors such as diet and viral
exposure, as well as by the incomplete statistics on world-
wide cancer morbidity and mortality. Despite these defi-
ciencies, early studies did provide data illustrating that
increasing HCC rates corresponded to increasing levels of
dietary aflatoxin exposure [15]. The commodities most often
found to be contaminated by aflatoxin were common human
food staples including peanuts, cottonseed, corn, and rice
[16]. The requirements for aflatoxin production are relatively
nonspecific since molds can produce these toxins on almost
any foodstuff and the final levels in the grain product can
vary from micrograms to tens of milligrams [17]. Indeed, in
a case of aflatoxin-related deaths in rural villages in Kenya,
daily exposures were estimated to be over 50 mg [18].
Because contamination of foodstuffs is so heterogeneous, the
measurement of human exposure to aflatoxin by sampling
foodstuffs or by dietary questionnaires is extremely impre-
cise [19]. The development and validation of specific afla-
toxin biomarkers represent a significant advance for accurate
assessment of exposure in biofluids such as urine and blood.

Concurrent with the early aflatoxin research were a series
of studies describing a role for the hepatitis B virus (HBV) in
HCC pathogenesis. A number of investigations found that
chronic carriers of HBV, as indicated by sequential hepatitis
B surface antigen (HBsAg) positivity at six month intervals,
were at increased risk of developing HCC [2, 20]. Further,
the age of initial infection was directly related to develop-
ment of the chronic carrier state and subsequent risk for
HCC. Approximately 90 % of HBV infections acquired in
infancy or early childhood become chronic, whereas only
10 % of infections acquired in adulthood become chronic,
and less than 50 % of chronic carriers progress to HCC [21–
24]. The global burden of HBV infection varies widely and
China, Southeast Asia, and sub-Saharan Africa have some of
the highest rates of chronic HBV infection in the world, with

prevalence of over 10 % [25]. The public health significance
of HBV as a risk factor for HCC is staggering with
the consideration that there are over 400 million viral car-
riers and between 10–25 % of these individuals are likely to
develop HCC [22, 26, 27]. The biology, mode of transmis-
sion, and epidemiology of this viral infection continues to
be actively investigated and has been recently reviewed
[25, 26, 28].

To date, the significant etiological factors associated with
development of HCC in the economically developing world
are infection in early life with HBV and lifetime exposure to
high levels of aflatoxin B1 (AFB1) in the diet [29, 30].
Indeed, the multiplicative interaction between HBV and
AFB1 has been documented in two separate cohorts at high
risk for HCC [31–33]. Over the past 25 years, an apprecia-
tion for the role of the hepatitis C virus (HCV) has also
emerged. HCV is contributing to HCC being the most
rapidly rising solid tumor in the US and Japan [34]. Detailed
knowledge of the etiology of HCC has spurred many
mechanistic studies to understand the pathogenesis of this
nearly always fatal disease [29, 35, 36]. Fortunately, the
successful development and deployment of some highly
effective new drugs that cure HCV infection is a major
advance and will hopefully diminish the role of this virus in
liver cancer [37, 38].

A number of other environmental exposures have been
epidemiologically associated with HCC [39]. Vinyl chloride
exposure in occupational settings has been associated with
the onset of HCC in workers and there are the classic studies
associating vinyl chloride exposure with angiosarcomas in
the liver [40–42]. Studies have reported a multiplicative
interaction between vinyl chloride exposure in the workplace
and alcohol consumption in the enhancement of HCC [43].
Finally, a synergistic interaction between vinyl chloride
workplace exposure and HBV status has been reported in a
cohort in Taiwan [44].

Alcohol is a recognized human carcinogen and has been
causally linked to HCC. Alcoholic cirrhosis and heavy
alcohol use have been repeatedly associated with an increase
in HCC risk [45]. However, it is unclear if alcohol use in the
absence of cirrhosis influences HCC development [46].
Several studies have demonstrated an increased risk of HCC
up to fivefold with consumption of more than 80 g of
alcohol per day or approximately 6–7 drinks per day [45].
The risk of HCC ranges from borderline significant to
doubled with chronic alcohol consumption of less than
80 g/day [45]. A synergism between alcohol, and HBV and
HCV infections has also been described [45, 47].

Cigarette smoke is a recognized human carcinogen;
however, a causal role in HCC is unclear [48]. For example,
a hospital-based case-control study in Italy found no inde-
pendent effect for tobacco and HCC risk [49]. However, a
composite analysis of tobacco exposure and cancer risk
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consistently shows a risk for liver cancer and smoking [2,
50]. Finally, the role of hormones in the development of
HCC is unclear; however, in some studies, an increase risk
of HCC was observed among users of oral contraceptives
[51–53]. Collectively, these hormonal-related increases in
HCC are only seen in low incident countries, where expo-
sures to the other major risk factors for this cancer are rare.

In addition to the association of alcohol and HCC, in
economically developed countries the dramatic rise in
overweight and nonalcoholic fatty liver disease has also been
related to increased HCC [54–56]. Of major concern for the
future are the role that obesity, diabetes, and general
underlying fatty liver disease will play in the development of
liver cancer [57–59]. While the historic risk factors for liver
cancer described above are addressed through a spectrum of
prevention methods, these new etiologic factors portend an
increasing trajectory in the incidence of this disease. Both

therapeutic and pre-disease interventions will need to be
deployed now to blunt the impact of these risk factors in the
decades to come.

2.4 Methods for Biomarker Measurement

In the case of AFB1, the measurement of the DNA and
protein adducts are of major interest because they are direct
products of (or surrogate markers for) damage to a critical
cellular macromolecular target. The chemical structures and
metabolic pathways leading to the formation of the major
aflatoxin macromolecular DNA and protein adducts were
known (Fig. 2.2) [14, 60, 61]. The finding that the major
aflatoxin–nucleic acid adduct AFB1-N

7-Gua excreted
exclusively in urine of exposed rats spurred interest in using
this metabolite as a biomarker of both exposure and risk.

Fig. 2.2 Structures of aflatoxin biomarkers
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This adduct; however, has a short half life in the body
(*8 h) [62]. The serum aflatoxin–albumin adduct was also
examined as a biomarker since the longer half life of albu-
min (*3 weeks) integrates exposures over longer time
periods. Studies in experimental models found that the for-
mation of aflatoxin–DNA adducts in liver, excretion of the
urinary aflatoxin–nucleic acid adduct, and formation of the
serum albumin adduct were highly correlated [63].

Many different analytical methods are available for
quantitation of chemical adducts in biological samples [64–
66]. Each methodology has unique specificity and sensitivity
and, depending on the application, the user can choose
which is most appropriate. For example, to measure a single
aflatoxin metabolite, a chromatographic method can resolve
mixtures of aflatoxins into individual compounds, providing
that the extraction procedure does not introduce large
amounts of interfering chemicals. Antibody-based meth-
ods often are more sensitive than chromatography, but
immunoassays are less selective because the antibody may
cross-react with multiple metabolites. An interlaboratory
collaboration used identical serum sample sets to analyze for
aflatoxin–albumin adducts by ELISA, high-performance
liquid chromatography (HPLC) with fluorescence detection
(HPLC-f), and HPLC with isotope dilution mass spectrom-
etry (IDMS). Overall, this study showed an excellent cor-
relation between these three independent methodologies
conducted in different laboratories [67].

An immunoaffinity clean-up/HPLC procedure was
developed to isolate and measure aflatoxin metabolites in
biological samples [68–70]. With this approach, we per-
formed initial validation studies for the dose-dependent
excretion of urinary aflatoxin biomarkers in rats after a
single exposure to AFB1 [71]. A linear relationship was
found between AFB1 dose and excretion of the AFB-N

7-Gua
adduct in urine over the initial 24 h period of exposure. In
contrast, excretion of other oxidative metabolites, such as
AFP1 showed no linear association with dose. Subsequent
studies in rodents that assessed the formation of aflatoxin
macromolecular adducts after chronic administration also
supported the use of DNA and protein adducts as molecular
measures of exposure [72, 73]. Studies using isotope dilution
mass spectrometry with liquid chromatography separation
have demonstrated an increase in sensitivity of at least
1000-fold over technologies used for the detection of afla-
toxin biomarkers 15 years ago [74–76]. Further, repeated
analysis of serum collected in 1983 from aflatoxin-exposed
people has demonstrated that the aflatoxin–lysine adduct in
albumin is stable under a range of temperature storage
conditions [77].

An area of considerable importance, that has received far
less attention than it should, has been in the area of internal
standard development. All quantitative measurements
require the use of an internal standard to account for sample

to sample variations in the analyte recoveries. In the case of
mass spectrometry, internal standards generally employ an
isotopically labeled material that is identical to the chemical
being measured. Obtaining such isotopically labeled mate-
rials requires chemical synthesis, if they are not commer-
cially available, and has impeded the application of internal
standards in many studies. In the case of immunoassays,
internal standards pose a different challenge since the addi-
tion of an internal standard that is recognized by an antibody
results in a positive value contribution. The dynamic range is
usually less than 100 in immunoassays, and therefore great
care must be taken to spike a sample with an internal stan-
dard so one can obtain a valid result. In contrast, most
chromatographic methods result in dynamic ranges of
analyses that can be over a 10,000-fold range of levels. The
mass spectrometry methods are not only applicable for the
quantitation of small molecules such as aflatoxin, but it has
also been extended for use to measure mutations in DNA
fragments found circulating in plasma that are mechanisti-
cally linked to the etiopathogenesis of HCC, such as p53
[78–81].

2.5 Validation of Biomarkers
of Environmental Carcinogens

Over the past several decades, studies to identify effective
chemoprevention strategies for aflatoxin carcinogenesis have
been explored. The hypothesis was that reduction of afla-
toxin–DNA and other macromolecular adduct levels by
chemopreventive agents would be mechanistically related to
and therefore predictive of cancer preventive efficacy. Initial
data with a variety of established chemopreventive agents
demonstrated that after a single dose of aflatoxin, levels of
DNA adducts were reduced [82]. A more comprehensive
study using multiple doses of aflatoxin and the chemopre-
ventive agent ethoxyquin was carried out to examine the
relationships between levels and rates of DNA adduct for-
mation and removal and hepatic tumorigenesis in rats. Three
months after aflatoxin treatment, it was observed that
cotreatment with ethoxyquin had reduced both area and
volume of liver occupied by presumptive preneoplastic foci
by >95 %. This same protocol also dramatically reduced
binding of AFB1 to hepatic DNA, from 90 % initially to
70 % over the course of a 2 week carcinogen dosing
period [72].

The experiment was then repeated with several different
chemopreventive agents and in all cases aflatoxin-derived
DNA and protein adducts were reduced; however, even
under optimal conditions, the reduction in the macromolec-
ular adducts always underrepresented the magnitude of the
diminution in tumor burden [83, 84]. These macromolecular
adducts can track with disease outcome on a population
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basis, but in the multistage process of cancer the absolute
level of adduct provides only a necessary but insufficient
measure of tumor formation.

Experimental validation of the role of human HBV in
HCC etiopathogenesis has been compromised by the very
restricted nature of the number of species that can become
infected with this virus. The chimpanzee and tree shrew can
be infected by human HBV but nether has proven to be a
cost-effective model for extensive investigation, while the
woodchuck and duck can be infected with similar yet dis-
tinct HBV strains [85–87]. Transgenic mouse models have
also been developed that generate a 100 % probability of
developing HCC [88]. These transgenic mice have been
used to explore the interaction of the HBV transgene with
AFB1 [89]. Collectively, these models are extremely valu-
able for the study of the underlying molecular pathways in
the virally induced cancers but they have to date been of
limited value in recapitulating the more complex etiology of
human HCC.

Using the chemopreventive agent oltipraz, Roebuck et al.
[83] established correlations between reductions in levels of
AFB1-N

7-Gua excreted in urine and incidence of HCC in
aflatoxin-exposed rats. Overall, reduction in biomarker
levels reflected protection against carcinogenesis, but these
studies did not address the quantitative relationship between
biomarker levels and individual risk. Thus, in a follow-up
study, rats dosed with AFB1 daily for 5 weeks were ran-
domized into three groups: no intervention; delayed-
transient intervention with oltipraz during weeks 2 and 3
of exposure; persistent intervention with oltipraz for all
5 weeks of dosing [90]. Serial blood samples were collected
from each animal and the integrated level of aflatoxin–al-
bumin adducts over the exposure period decreased 20 and
39 % in the delayed transient and persistent oltipraz inter-
vention groups, respectively, as compared with no inter-
vention. Similarly, the total incidence of HCC dropped
significantly from 83 to 60 % and 48 % in these groups.
Overall, there was a significant association between inte-
grated biomarker level and risk of HCC. When the predictive
value of aflatoxin–serum albumin adducts was assessed
within treatment groups, however, there was no association
between integrated biomarker levels and risk of HCC. These
data clearly demonstrated that levels of the aflatoxin–albu-
min adducts could predict population-based changes in dis-
ease risk, but had no power to identify individuals destined
to develop HCC. Because of the multistage process of car-
cinogenesis, in order to determine individual risk of disease,
a panel of biomarkers reflecting different stages will be
needed.

In the most recent investigation, the synthetic oleanane
triterpenoid 1-[2-cyano-3-12-dioxooleana-1,9(11)-dien-28-
oyl]imidazole (CDDO-Im), a powerful activator of Keap1-
Nrf2 signaling, was found to protect against AFB1-induced

HCC. A lifetime cancer bioassay was undertaken in F344
rats dosed with AFB1 (200 lg/kg rat/day) for 4 weeks and
receiving either vehicle or CDDO-Im (three times weekly),
one week prior to and throughout the exposure period.
CDDO-Im completely protected (0/20) against AFB1-
induced liver cancer at 2 years of age compared to a 96 %
incidence (22/23) observed in the AFB1 group. With
CDDO-Im treatment, integrated level of urinary AFB1-N

7-
guanine was significantly reduced (66 %) and aflatoxin-
N-acetylcysteine, a detoxication product, was consistently
elevated (300 %) after the first AFB1 dose. The remarkable
efficacy of CDDO-Im as an anticarcinogen is established
even in the face of a significant aflatoxin adduct burden.
Consequently, the absence of cancer requires a concept of a
threshold for DNA damage for cancer development [91].

2.6 Biomarkers in Human Investigations

Extensive cross-sectional epidemiologic studies have been
conducted in high-risk groups for HCC, this concept is
diagramed in Fig. 2.3. The HBV biomarkers were developed
and validated using the HBsAg biomarker. This work
directly led to the research that resulted in a vaccine effective
against HBV. Indeed, this vaccine has been reported to
reduce HCC in a cohort of young children in Taiwan [92].
Further, the serology of HBV has been extensively described
and developed [28]. The work on AFB1 exposures and its
role in HCC etiology has taken a far longer time period to
come to fruition. Initial studies in the Philippines [93]
demonstrated that an oxidative metabolite of aflatoxin could
be measured in urine and thus had potential to serve as an
internal dose marker. Subsequent work conducted in the
People’s Republic of China and The Gambia, West Africa,
determined that the levels of urinary aflatoxin biomarkers
showed dose-dependent relationships with aflatoxin intake.
Gan et al. [94] and Wild et al. [95] also monitored levels of
aflatoxin–serum albumin adducts and observed a highly
significant association between intake of aflatoxin and level
of adduct.

Biomarker development in HCC has been further
advanced by the molecular biological studies on the TP53
tumor suppressor gene, the most common mutated gene
detected in human cancer [96, 97]. Many studies of p53
mutations in HCC occurring in populations exposed to high
levels of dietary aflatoxin have found high frequencies of
guanine to thymine transversions, with clustering at codon
249 [98, 99]. In contrast, no mutations at codon 249 were
found in p53 in HCC from Japan and other areas where
there was little exposure to aflatoxin [100, 101]. The
occurrence of this specific mutation has been mechanisti-
cally associated with AFB1 exposure in experimental models
including bacteria [102] and through demonstration that
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aflatoxin-8,9-epoxide could bind to codon 249 of p53 in a
DNA plasmid in vitro [103]. Mutational analysis of the p53
gene in human HepG2 cells and hepatocytes exposed to
AFB1 found preferential induction of the transversion of
guanine to thymine in the third position of codon 249 [104]
[105, 106]. In summary, studies of the prevalence of codon
249 mutations in HCC cases from patients in areas of high or
low exposure to aflatoxin suggest that a G-T transition at
the third base is associated with aflatoxin exposure and
in vitro and mutagenesis data would seem to support this
hypothesis [107].

Although useful, cross-sectional epidemiological studies
have limited power to relate an exposure to disease outcome
since these studies only provide a view during a short time
frame. Data from the cross-sectional aflatoxin biomarker
studies demonstrated short-term dose-response effects for a
number of the aflatoxin metabolites, including the major
nucleic acid adduct, serum albumin adduct, and AFM1. This
information could then be used in follow-up studies to test a
number of hypotheses about risk to individuals having high
exposures, the efficacy of exposure remediation and inter-
ventions and mechanisms underlying susceptibility.

Longitudinal studies are extremely important in the
development and validation process for biomarkers. These
investigations permit an understanding of the stability in
storage and the tracking potential of each biomarker, which
are essential for the evaluation of the predictive power of the
biomarker. While long-term stability of many of the HBV
markers have been well-established [108], we needed to
know whether the aflatoxin metabolites were stable over the
long term. Aflatoxin–albumin adducts, as described above,

in human sera were found to be stable for at least 25 years
when stored at −20 °C [77].

An objective in development of any biomarker is to use
them as predictors of past and future exposure status in
people. This concept is embodied in the principle of track-
ing, which is an index of how well an individual’s biomarker
remains positioned in a rank order relative to other indi-
viduals in a group over time. Tracking within a group of
individuals is expressed by the intraclass correlation coeffi-
cient. When the intraclass correlation coefficient is 1.0, a
person’s relative position, independent of exposure, within
the group does not change over time. If the intraclass cor-
relation coefficient is 0.0, there is random positioning of the
individual’s biomarker level relative to the others in the
group throughout the time period. The tracking concept is
central to interpreting data related to exposure and biomarker
levels and requires acquisition of repeated samples from
subjects. Unfortunately, data on the temporal patterns of
formation and persistence of aflatoxin macromolecular
adducts in human samples are very limited. Obviously,
chemical-specific biomarkers measured in cross-sectional
studies cannot provide information on the predictive value or
tracking of an individual’s marker level over time. In con-
trast to the aflatoxin situation, the HBV biomarker tracking
has been well characterized and forms the basis for defining
chronic infection status [108].

Tracking is important in assessing exposure and this
information is essential in the design of intervention studies.
In all these situations, it is critical to know how many bio-
marker samples are required and when they should be
obtained. For example, if exposure remains constant and the

Fig. 2.3 Mechanistic-based
biomarkers of aflatoxin and HBV
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tracking value for a marker changes over time, it might be
assumed that the change in tracking is due to a biological
process, such as an alteration in the balance of metabolic
pathways responsible for adduct formation. On the other
hand, lack of tracking can be attributable to great variance in
exposure. Therefore, to determine unequivocally the con-
tributions of intra- and interindividual variations to bio-
marker levels, experiments must assess tracking over time.

Many published case-control studies have examined the
relation of aflatoxin exposure and HCC. Compared with
cohort studies, case-control studies are both cost- and
time-effective. Unfortunately, case-control studies are often
initiated long after exposure has occurred and it cannot be
assumed that the exposure has not appreciably changed over
time. Also, such studies involve assumptions in the selection
of controls, including that the disease state does not alter
metabolism of aflatoxin. Thus, matching of cases and con-
trols in a specific biomarker study is much more difficult
than in a case-control study involving genetic markers [14].

Data obtained from cohort studies have the greatest
power to determine a true relationship between an exposure
and disease outcome because one starts with a healthy
cohort, obtains biomarker samples, and then follows the
cohort until significant numbers of cases are obtained.
A nested study within the cohort can then be designed to
match cases and controls. An advantage of this method is
that causation can be established (due to the longitudinal
nature of cohort studies, there is no temporal ambiguity) and
selection bias is minimized. A major disadvantage, however,
is the time needed in follow-up (often years) to accrue the
cases, especially for chronic diseases such as HCC. This
disadvantage can be overcome in part by enrolling large
numbers of people (often tens of thousands) to ensure case
accrual at a reasonable rate.

Two major cohort studies with aflatoxin biomarkers have
demonstrated the important role of this carcinogen in the
etiology of HCC. The first study, comprising more than
18,000 men in Shanghai, examined the interaction of HBV
and aflatoxin biomarkers as independent and interactive risk
factors for HCC. The nested case-control data revealed a
statistically significant increase in the adjusted relative risk
(RR) of 3.4 [95 % CI: 1.1–10.0] for those HCC cases where
urinary aflatoxin biomarkers were detected. For
HBsAg-positive people only the RR was 7 [95 % CI: 2.2–
22.4], but for individuals with both urinary aflatoxins and
positive HBsAg status the RR was 59 [95 % CI: 16.6–212.0]
[31, 32]. These results strongly support a causal relationship
between the presence of the chemical and viral-specific
biomarkers and the risk of HCC.

Subsequent cohort studies in Taiwan have substantially
confirmed the results from the Shanghai investigation. Wang
et al. [33] examined HCC cases and controls nested within a
cohort and found that in HBV-infected people there was an

adjusted odds ratio (OR) of 2.8 for detectable compared with
nondetectable aflatoxin–albumin adducts and 5.5 for high
compared with low levels of aflatoxin metabolites in urine.
In a follow-up study, there was a dose–response relationship
between urinary AFM1 levels and risk of HCC in chronic
HBV carriers. Similar to the Shanghai study, the HCC risk
associated with AFB1 exposure was more striking among the
HBV carriers with detectable AFB1-N

7-gua in urine.
Many studies across the globe have explored the rela-

tionship between HBV infection and HCC and the risk
estimates range from 3 to 30 in case-control studies and from
5 to 148 in cohort studies [52]. In the nested case-control
study cited above, the risk of HCC was 7.3 times higher
among HBsAg-positive individuals compared to HBsAg-
negative individuals, controlled for smoking and aflatoxin
exposures [32]. A small hospital-based case-control study
from Northeast Thailand showed an adjusted OR of 15.2 for
the presence of HBsAg among HCC patients [109]. An
adjusted OR of 13.5 was reported from a case-control study
in The Gambia [25]. The risk of HCC among HBsAg-
positive individuals in Korea from a prospective cohort
study of government workers, was 24.3 among men and
54.4 among women, adjusted for age, smoking, alcohol use,
and diabetes [110]. A similar prospective study from Taiwan
found men positive for HBsAg were 223 times more likely
to develop HCC than men HBsAg negative [23].

The contribution of HBV to the pathogenesis of liver
cancer is multifactorial and is complicated by the identifi-
cation of mutant variants in HBV that modulate the car-
cinogenesis process [111, 112]. The HBV genome encodes
its essential genes with overlapping open-reading frames;
therefore, a mutation in the HBV genome can alter the
expression of multiple proteins. In many cases of HCC in
China and Africa a double mutation in the HBV genome, an
adenine to thymine transversion at nucleotide 1762, and a
guanine to adenine transition at nucleotide 1764 (1762T/
1764A) has been found in tumors [113–115]. This segment
of the HBV genome contains an overlapping sequence for
the base core promoter and the HBV X gene; therefore, the
double mutation in codon 130 and 131 of the HBV X gene
reported in human HCC is identical to the 1762 and 1764
nucleotide changes [116]. The increasing occurrence of
these mutations have been also associated with the increas-
ing severity of the HBV infection and cirrhosis [114, 115].
This acquired mutation following HBV integration into
hepatocytes was originally characterized in HBV e antigen
negative people [117]. The 1762T/1764A double mutation
occurs more frequently in people infected with the genotype
C strains of HBV, which is the most common genotype
found in East Asian patients [118–120]. This double muta-
tion tracks with an increased inflammatory response that
becomes stronger as the progression of liver damage transits
through chronic hepatitis and into a cirrhosis stage [121].
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The underlying mechanism of the effects of HBV e antigen
on the biology of inflammation and cirrhosis are still unclear,
but there are substantial data that point to modulation of the
immune surveillance system and immune tolerance in the
presence and absence of this protein [121–123]. The 1762T/
1764A double mutation has also been demonstrated to affect
an increase in the rate of HBV genome synthesis in cellular
models [111, 112]. In cellular studies, the 1762T/1764A

double mutation increased the replication of the viral gen-
ome twofold and in the case of some of rarer triple muta-
tions, an eightfold increase in genome replication was found
[111, 123]. Recent data have also shown that there is a
sequential accumulation of these mutations in people during
the course of the progression to cancer [124].

Recently, a matched case-control investigation of 345
men who died of HCC and 625 controls were nested within a
cohort of male HBsAg carriers from Qidong, China. Mat-
ched preserving odds ratios (ORs) were used as a measure of
association and 95 % confidence intervals (CIs) as a measure
of precision. A total of 278 (81 %) of the cases were positive
for the HBV 1762T/1764A mutation compared with 250
(40 %) of the controls. The matched preserving OR of 6.72
(95 % CI: 4.66–9.68) strongly indicated that cases were
significantly more probably than controls to have the
mutation. Plasma levels of DNA harboring the HBV muta-
tion were on average 15-fold higher in cases compared with
controls (P < 0.001). Most strikingly, the level of the
mutation in the 20 controls which later developed and died
of HCC were on average 274-fold higher than controls
which did not develop HCC. Thus, within this cohort of
HBsAg carriers at high risk of developing HCC, individuals
positive for the HBV 1762T/1764A mutation at enrollment
were substantially more probably to subsequently develop
HCC, with a higher concentration of the mutation in plasma
enhancing predisposition for cancer development [125].

2.7 Intervention Trials Using Aflatoxin
Biomarkers

Clinical trials and other interventions are designed to trans-
late findings from human and experimental investigations to
public health prevention. Both primary (to reduce exposure)
and secondary (to alter metabolism and deposition) inter-
ventions can use specific biomarkers as endpoints of effi-
cacy. Such biomarkers can be applied to the preselection of
exposed individuals for study cohorts, thereby reducing
study size requirements. They can also serve as short-term
modifiable endpoints [126]. In a primary prevention trial, the
goal is to reduce exposure to aflatoxins in the diet. Inter-
ventions can range from attempting to lower mold growth in
harvested crops to using trapping agents that block the
uptake of ingested aflatoxins. In secondary prevention trials,

one goal is to modulate the metabolism of ingested aflatoxin
to enhance detoxification processes, thereby reducing for-
mation of DNA adducts and enhancing elimination.

The use of aflatoxin biomarkers as efficacy endpoints in
primary prevention trials in West Africa has been reported
[127]. This study assessed postharvest measures to restrict
aflatoxin contamination of groundnut crops. Six hundred
people were monitored and in control villages mean afla-
toxin–albumin concentration increased postharvest (from
5.5 pg/mg [95 % CI 4.7–6.1] immediately after harvest to
18.7 pg/mg [17.0–20.6] 5 months later). By contrast, mean
aflatoxin–albumin concentration in intervention villages
after 5 months of groundnut storage was much the same as
that immediately postharvest (7.2 pg/mg [6.2–8.4] vs.
8.0 pg/mg [7.0–9.2]). At 5 months, mean adduct concen-
tration in intervention villages was less than 50 % of that in
control villages (8.0 pg/mg [7.2–9.2] vs. 18.7 pg/mg [17.0–
20.6], p < 0.0001). Thus, primary prevention maybe an
effective means to reduce HCC burden, especially in areas
where single foodstuffs such a groundnuts are major com-
ponents of the diet.

Chemoprevention is another strategy for the secondary
prevention of cancer. This approach entails the use of drugs,
dietary supplements or functional foods to retard, block, or
reverse the carcinogenic process. These strategies serve to
alter cell fate, by either preventing cells from acquiring
carcinogenic genetic damage or by impeding proliferation of
preneoplastic cells or, alternatively, accelerating their
apoptosis. One successful strategy for cancer chemopre-
vention is modulation of drug-metabolizing enzymes, lead-
ing to facilitated inactivation or elimination of endogenous
and environmental carcinogens. Inducers of conjugating
enzymes such as dithiolethiones and sulforaphane inhibit
tumorigenesis of environmental carcinogens in various ani-
mal models [83, 128]. Increasing lines of evidence show that
the Keap1-Nrf2 complex is a key molecular target of these
chemopreventive enzyme inducers. The transcription factor
Nrf2 is a member of the basic leucine-zipper NF-E2 family
and interacts with the antioxidant response element (ARE) in
the promoter region of detoxifying enzymes. A cytoplasmic
actin binding protein, Keap1, is an inhibitor of Nrf2 that
sequesters it in the cytoplasm and facilitates its ubiquitina-
tion and subsequent degradation. Inducers disrupt this pro-
cess, allowing Nrf2 to accumulate and translocate to the
nucleus [129]. Experimental disruption of the Nrf2 gene in
mice leads to enhanced sensitivity to carcinogens and the
loss of chemopreventive efficacy by inducers [130, 131].

1,2-Dithiole-3-thiones were reported in the 1950s to be
constituents of cruciferous vegetables in Czechoslovakia
[132], although a more recent study failed to find the
unsubstituted 3H-1,2-dithiole-3-thione in cabbage in the
United States [133]. Oltipraz, a substituted 1,2-dithiole-
3-thione, was originally developed by the pharmaceutical
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industry as a possible treatment for schistosomiasis and was
extensively evaluated in clinical trials in the early 1980s. In
extensive preclinical evaluation by the National Cancer
Institute and others, oltipraz was found to be effective as an
anticarcinogen in nearly a score of animal models [134].

Aflatoxin biomarkers (Fig. 2.2) were used as intermediate
endpoints in a Phase IIa liver cancer chemoprevention trial
of oltipraz in Qidong, People’s Republic of China [135,
136]. This was a placebo-controlled, double-blind study in
which participants were randomized to receive placebo or
125 mg oltipraz daily or 500 mg oltipraz weekly. Urinary
aflatoxin M1 levels were reduced by 51 % compared with
the placebo group in persons receiving the 500 mg weekly
dose. No significant differences were seen in urinary afla-
toxin M1 levels in the 125-mg group compared with placebo.
This effect was thought to be due to inhibition of cytochrome
P450 1A2 activity. Median levels of aflatoxin–mercapturic
acid (a glutathione conjugate derivative) were elevated six-
fold in the 125-mg group, but were unchanged in the
500-mg group. Increased formation of aflatoxin–mercapturic
acid reflects induction of aflatoxin conjugation through the
actions of glutathione-S-transferases (GSTs). The apparent
lack of induction in the 500-mg group was thought to reflect
masking caused by diminished aflatoxin-8,9-epoxide for-
mation for conjugation through the inhibition of CYPlA2
seen in this group. This initial study demonstrated for the
first time that aflatoxin biomarkers could be modulated in
humans in a manner that would predict decreased disease
risk.

Although the oltipraz clinical trial demonstrated the proof
of principle for increasing pathways leading to aflatoxin
detoxication in humans, the practicality of using a drug-
based method for prevention in the economically developing
world is limited. Not only is there a potential for adverse
health effects from any long-term exposure to a drug, but
also the expense of this type of intervention may make the
intervention cost-prohibitive for these populations. There
may also be culture-based aversion to the use of drugs.
Fortunately, oltipraz is not the only agent that affects enzyme
changes through the Nrf2-Keap1 pathway. Sulforaphane has
been extensively examined for its chemopreventive proper-
ties and is a potent activator of the Nrf2-Keap1 pathway
leading to increased expression of carcinogen detoxifying
enzymes [131, 137]. Many foods have high levels of these
enzyme inducers [138, 139]. In a recent chemoprevention
trial in humans, a beverage formed from hot water infusions
of 3-day-old broccoli sprouts, containing defined concen-
trations of glucosinolates (a stable precursor of the anticar-
cinogen sulforaphane), was evaluated for its ability to alter
the metabolic disposition of aflatoxin. In this study, 200
healthy adults drank infusions containing either 400 or <3
lmole glucoraphanin nightly for 2 weeks. Urinary levels of
aflatoxin-N7-guanine were similar in individuals in the two

intervention arms. However, measurement of urinary levels
of dithiocarbamates (sulforaphane metabolites) indicated
striking interindividual differences in bioavailability. This
outcome may reflect individual differences in the rates of
hydrolysis of glucoraphanin to sulforaphane by the intestinal
microflora of the study participants. Accounting for this
variability, a significant inverse association was observed for
excretion of dithiocarbamates and aflatoxin-N7-guanine
adducts in individuals receiving broccoli sprout glucosino-
lates [140]. This preliminary study illustrates the potential
use of an inexpensive, easily implemented, food-based
method for secondary prevention in a population at high risk
for aflatoxin exposures. A follow-up intervention designed
to minimize the interindividual variability in the pharma-
cokinetics of the glucoraphanin precursor is currently in
progress.

Many studies have demonstrated that green tea
polyphenols (GTP) inhibit various chemically induced can-
cers in experimental animals, and epidemiological studies
also point to the potential benefit of these compounds [141,
142]. Qin et al. [143] studied the effects of GTP in drinking
water for two or four weeks to protect against the develop-
ment of AFB1-induced hepatocarcinogenesis in the rat.
Results revealed that aflatoxin–DNA binding in the liver was
significantly (20–30 %) inhibited in animals pretreated with
green tea and that the burden of preneoplastic lesions was
also significantly inhibited by 60–70 %. The experimental
data on GTP provided the impetus to translate this strategy
to human clinical trials. In an initial study in an aflatoxin-
exposed high-risk group in Guangxi, People’s Republic of
China, the effects of GTP was assessed by analysis of blood
and urine samples collected from a randomized, double-
blinded, placebo-controlled Phase IIa chemoprevention trial
[144]. Blood serum of all participants contained aflatoxin–
albumin adducts at the outset. They were then required to
ingest capsules containing GTP at doses of 500 or 1000 mg,
or a placebo daily for 3 months. Analyses were done on
blood and urine samples collected during this period to
evaluate the efficacy of GTPs in modulating aflatoxin
biomarkers [145]. Levels of albumin adducts at baseline
were comparable for all three dose groups and no significant
differences were observed in adduct levels in the placebo
group over the 3 month period. However, reductions in
albumin adduct levels were observed in both groups
receiving GTPs over the 3 month intervention period. An
analysis using a mixed-effects model indicated that the
reduction in aflatoxin–albumin adduct levels over time was
dose- and time-dependent. Reductions in median aflatoxin
M1 levels, as compared with the placebo, were found in both
GTP groups at 3 months of the intervention, while signifi-
cant elevations in median aflatoxin–mercapturic acid levels
were observed in both GTP groups compared with the pla-
cebo group at 1 and 3 months of intervention. These results
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indicate that GTPs effectively modulate aflatoxin metabo-
lism and metabolic activation, as had been previously
observed with oltipraz in Qidong.

2.8 DNA Mutations Measured in Human
Plasma and HCC

The development and validation of biomarkers for early
detection of disease or for the identification of high-risk
individuals is a major translational effort in cancer research.
a-Fetoprotein is widely used as a HCC diagnostic marker in
high-risk areas because of its ease of use and low cost [146].
However, this marker suffers from low specificity due to its
occurrence in diseases other than liver cancer. Moreover, no
survival advantage is seen in populations when a-fetoprotein
is used in large-scale screening [147]. Such inadequacies
have contributed to the need to identify other molecular
biomarkers that are possibly more mechanistically associated
with HCC development, including hypermethylation of the
p16 gene, p15 gene, GSTP1 promoter regions and codon
249 mutations in the p53 gene [148–151]. Results from
investigations of p16, p15, GSTP1 promoter hypermethy-
lation and p53 mutations indicate that these markers are
prevalent in HCC, but there is as of yet limited information
on the temporality of these genetic changes prior to clinical
diagnosis.

Several studies have now demonstrated that DNA iso-
lated from serum and plasma of cancer patients contains the
same genetic aberrations as DNA isolated from an individ-
ual’s tumor [79, 152, 153]. The process by which tumor
DNA is released into circulating blood is unclear but may
result from accelerated necrosis, apoptosis, or other pro-
cesses [154]. While the detection of specific p53 mutations
in liver tumors has provided insight into the etiology of
certain liver cancers, the application of these specific muta-
tions to the early detection of cancer offers great promise for
prevention [155]. In a seminal report, Kirk et al. [156]
reported the detection of codon 249 p53 mutations in the
plasma of liver tumor patients from The Gambia; however,
the mutational status of the tumors were not known. These
authors also reported a small number of cirrhosis patients
having this mutation and given the strong relation between
cirrhosis and future development of HCC, raised the possi-
bility of this mutation being an early detection marker.
Jackson et al. [79], used short oligonucleotide mass analysis
(SOMA), in lieu of DNA sequencing for analysis of specific
p53 mutations in HCC samples. Analysis of 20 plasma and
tumor pairs showed 11 tumors containing the specific
mutation, six of the paired plasma samples exhibited the
same mutation.

The temporality of the detection of this mutation in
plasma before and after the clinical diagnosis of HCC was

facilitated by the availability of longitudinally collected
plasma samples from a cohort of 1638 high-risk individuals
in Qidong, PRC., that have been followed since 1992 [157].
The results showed that in samples collected prior to liver
cancer diagnosis, 21.7 % of the plasma samples had
detectable levels of the codon 249 mutation. The persistence
of this pre-diagnosis marker was borderline statistically
significant. The codon 249 mutation in p53 was detected in
44.6 % of all plasma samples following the diagnosis of
HCC. Collectively these data suggest that nearly one-half of
the potential patients with this marker can be detected at
least 1 year and in one case 5 years prior to diagnosis.

Using a novel internal standard plasmid, plasma con-
centrations of p53 codon 249-mutated DNA were quantified
by SOMA in 89 HCC cases, 42 cirrhotic patients, and 131
nonliver diseased control subjects, all from highly
aflatoxin-exposed regions of The Gambia [81]. The HCC
cases had higher median plasma concentrations of the p53
mutation (2800 copies/mL; interquartile range: 500–11,000)
compared with either cirrhotic (500 copies/mL; interquartile
range: 500–2600) or control subjects (500 copies/mL;
interquartile range: 500–2000. Levels of >10,000 copies of
p 53 codon 249 mutation/mL plasma were also significantly
associated with the diagnosis of HCC (OR, 15; 95 % con-
fidence interval, 1.6–140) when compared with cirrhotic
patients. Potential applications for the quantification of this
alteration of DNA in plasma include estimation of long-term,
cumulative aflatoxin exposure, and selection of appropriate
high-risk individuals for targeted intervention.

2.9 Summary

HCC is a slowly developing process involving progressive
genetic insults and their resulting genomic changes. The
advances in modern DNA sequencing technologies have
been used on a wide number of human liver cancers with a
range of etiological factors that reveal a very complete pic-
ture of driver and passenger mutational changes in these
tumors [158–160]. These data will hopefully form a foun-
dation for new therapies and early detection screening
methods. Further, as these sequencing methods become
extended to characterize microRNAs and proteomic methods
help characterize the molecular phenotype of liver cancers,
these collective data will help define the preclinical period of
tumor development. This will be very valuable for our
mechanistic understanding of HCC up to 30 years after
chronic infection with HBV, HCV and/or aflatoxin exposure
prior to clinical diagnosis. These studies may also reveal
insights into chronic hepatitis and cirrhosis since 70–75 %
of all HCC is accompanied by cirrhosis [113, 158].

The molecular epidemiology investigations of aflatoxin,
HBV, and HCC probably represent one of the most
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extensive data sets in the field of environmental carcino-
genesis and this work serves as a template for future studies
of the role of other environmental agents in human diseases
with chronic, multifactorial etiologies. The development of
these biomarkers has been based upon the knowledge of the
biochemistry and toxicology of aflatoxins gleaned from both
experimental and human studies. These biomarkers have
subsequently been utilized in experimental models to pro-
vide data on the modulation of these markers under different
situations of disease risk. This systematic approach provides
encouragement for design and successful implementation of
preventive interventions.

Recent data utilizing the cancer registry in Qidong, China
has provided some very exciting insights into the role of
aflatoxin in liver cancer. Utilizing the availability of serum
samples collected over a 20-year period, aflatoxin exposure
patterns have been documented. In China, major agricultural
reforms in the 1980s led to diminished maize consumption, a
major source of aflatoxin contamination. The population-
based cancer registry in Qidong, China has documented a
more than 50 % reduction in HCC mortality rates occurring
across birth cohorts from the 1960s to the 1980s for
Qidongese less than 35 years of age although all were born
before universal vaccination of newborns. Median levels of
the aflatoxin biomarker decreased from 19.3 pg/mg albumin
in 1989 to undetectable (<0.5 pg/mg) by 2009. A population
attributable benefit of 65 % for reduced PLC mortality was
estimated from a government-facilitated switch of dietary
staple from maize to rice; 83 % of this benefit was in those
infected with HBV. Food policy reforms in China thus

resulted in a dramatic decrease in aflatoxin exposure, which,
independent of HBV vaccination, reduced liver cancer risk.
The extensive HBV vaccine coverage now in place augurs
even greater risk reductions in the future [161].

Finally, in an attempt to place the extent of global
exposures to aflatoxin across different populations, with
varying health endpoints, we have determined the aflatoxin–
albumin adduct levels shown in Fig. 2.4. These samples
were from studies in Nepal, Bangladesh, Kenya during an
acute toxic event and China [67, 161–163]. We note that a
1 lg per day exposure results in a 0.7 pg/mg albumin adduct
level and this increases linearly using adduct formation data
gleaned from human exposure studies [164]. Thus these
findings provide for the first time a guidepost for relating
daily exposure levels to acute and chronic disease outcomes
and using biomarkers the efficacy of policy and regulation
can be objectively measured.
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3.1 Introduction

Hepatocellular carcinoma is a highly heterogeneous disease
for different reasons. First, there are multiple and highly
variable etiological factors including viruses with a DNA
(HBV) or RNA (HCV) genome, chemicals (alcohol and
aflatoxins), and inborn and acquired metabolic diseases.
Second, these cancers might originate either from mature
hepatocytes or from progenitor cells. Third, like other can-
cers, HCC undergoes a dynamic process changing mor-
phology and molecular features as it advances. Therefore,
molecular mechanisms of hepatocellular carcinogenesis may
vary depending on different factors and this is probably why
a large set of mechanisms have been associated with these
tumors. Among many different mechanisms described, we
review here those that we believe are the most prominent
ones including loss of cell cycle control, escape from
senescence control, resistance to cell death, phenotypic
plasticity, motility, invasion, and metastasis.

3.2 2-Loss of Cell Cycle Control

One of the common features observed in all tumorigenic
cells is the loss of cell cycle control, which leads to an
elevated proliferative capacity, hyperplasia, and eventually
tumor formation [1]. The alterations of the core cell cycle
machinery genes are not among the frequently observed
driver mutations in hepatocellular carcinoma [2]. Neverthe-
less, loss of cell cycle control due to alterations in molecular
pathways that either upregulate genes or activate proteins
promoting cell cycle entry and progression; or downregulate
genes or inhibit proteins regulating this process, are common
events in HCC [3].
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3.2.1 Cell Cycle Regulation in Hepatocytes

Hepatocytes of a normal liver predominantly exist in the
quiescent phase (G0) of the cell cycle and do not routinely
divide. However, they retain the capacity to proliferate and
following the reception of mitogenic signals they are able to
enter the cell cycle and execute the sequence of events in
order to complete the cell division. The best example
demonstrating the proliferative potential of hepatocytes is
the surgical removal of 70 % of the liver mass by partial
hepatectomy upon which the remaining cells do compensate
the lost tissue mass by completing roughly two rounds of
divisions per cell [4, 5]. The general molecular machinery
and mechanisms regulating the progression of hepatocytes as
well as other proliferating cells through different phases of
the cell cycle are well conserved [6].

Progress through the different phases of the eukaryotic
cell cycle (G0/G1, S, G2, and M) is regulated by the con-
certed actions of cyclin-dependent kinases (Cdk) and their
partner/activator cyclins. Each of the Cdk/cyclin complexes
operates during a specific phase of the cell cycle and is
responsible for the execution of certain events such as ini-
tiation of DNA replication, chromosome condensation, etc.
Nevertheless, there is a wide degree of compensation
between Cdk/cyclin complexes [7], with only the
Cdk1/cyclin B1 complexes being essential for the comple-
tion of the mitotic cell cycle [8].

In quiescent hepatocytes, entry into the cell cycle is ini-
tially promoted by cytokines and growth factors that result in
expression of cyclin D1 gene [9–11]. De novo-expressed
cyclin D1 forms complexes with Cdk4 and Cdk6, which
phosphorylate the retinoblastoma protein (pRb) [12] causing
a conformational change. This in turn results in the release of
E2F transcription factors and transcription of cell cycle
genes such as cyclins E, A and B and Cdk1. Resulting
Cdk2/cyclin E complexes further phosphorylate and inacti-
vate the pRb protein, promoting the cell cycle progression
[13, 14]. Cdk2/cyclin E complexes initiate, and Cdk2/cyclin
A complexes maintain and complete DNA replication.
Association of Cdk1, first with cyclin A and then cyclin B
results in phosphorylation of a vast number of substrates and
entry into mitosis [6].

Several regulatory pathways prevent quiescent hepato-
cytes from entering cell cycle and proliferating freely. As
mentioned above, pocket proteins including pRb, p107, and
p130 bind to and sequester E2F transcription factors in order
to repress its transcriptional activity directed at cell cycle and
proliferation genes [15, 16]. Ink4 family inhibitors (p15,
p16, p18, and p19) prevent entry into the cell cycle by
binding to Cdk4/6 kinases and preventing complex forma-
tion with cyclin D [17]. On the other hand, the Cip/Kip

family inhibitory proteins p21, p27, and p57 inhibit cell
cycle progression by binding and inactivating all Cdk/cyclin
complexes [18].

3.2.2 Cell Cycle Regulatory Pathway
Aberrations in HCC

3.2.2.1 Cyclin D1
Comparison of gene expression profiles of HCC samples and
surrounding non-tumor liver tissues has identified a “pro-
liferation cluster” that includes cell cycles genes including
Cdks and cyclins displaying an increased expression levels
[19, 20]. The reason behind this observation is not specific
genomic alterations that lead to increased expression of these
genes, but rather the presence of an abundant population of
highly proliferative tumor cells that express cell cycle genes.

Nevertheless, chromosomal loci harboring the cyclin D1
and cyclin E1 genes are amplified in 10–20 % of HCC [21–
23]. Other causes of the high-level expression of the cyclin
D1 protein in many HCC samples are the mitogenic path-
ways that control its transcription, translation, and degrada-
tion. Several signaling pathways that are altered during HCC
development, such as Ras/MAPK, Wnt/b-catenin, result in
increased expression of cyclin D1 [24, 25]. Another poten-
tial reason for the elevated cyclin D1 expression could be
downregulation of microRNAs miR-195 and miR-520 in
some HCC samples, as both of them target Cyclin D1
expression when overexpressed in HCC cell lines [26, 27].
Although mutant forms of b-catenin activate transcription
from the cyclin D1 leading to increased expression in colon
cancer cells [28], there is no consistent positive correlation
between cyclin D1 and b-catenin protein levels in HCC [29,
30]. Chronic overexpression of cyclin D1 gene in transgenic
mice results in development hepatocellular carcinoma in
30 % of the animals, however it takes 17 months [31]. This
suggests that genomic alterations increasing cyclin D1
expression could in principle trigger HCC development.

3.2.2.2 p16 (CDKN2A)
As the p16/pRb pathway control entry into cell cycle, any
aberrations that reduce the expression levels of these genes
or interfere with the protein functions are potentially
tumorigenic. Aberrant expression of the pRb is quite com-
mon in HCC [32], with half of the tumors showing no
expression at all [33]. Alterations in the pRb pathway are
covered in detail in this chapter (see Sect. 3.3 escape from
senescence control) and therefore will not be further elabo-
rated here.

Expression of p16 (CDKN2A) is often down-regulated
via hypermethylation of its mutual promoter with p14 [34,
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35]. Hepatitis B virus X protein increases the expression of
DNA methyl transferases (DNMT1 and DNMT3A) in HCC
resulting in hypermethylation of the p16 gene locus and
leading decreased gene expression [36, 37]. Germ-line or de
novo mutations that prevent p16-Cdk4/6 interactions also
exist but are much less frequent [38, 39].

3.2.2.3 CIP/KIP Family: p21 and p27
CIP/KIP family member proteins p21 and p27 inhibit
Cdk/cyclin complex activity and therefore act as brakes on
cell cycle progression. Their expression levels are often
found to be decreased in human HCC samples [40–42],
however this is not a general rule as contradictory studies
that found increased expression of p21 and p27 also exist in
literature [41, 43].

Loss of p53 function due to mutations or deletions results
in absence of p21 transcription in HCC [44]. In addition to
p53, HCV core protein can alter the expression level of p21
in a p53 dependent manner, with its immature and mature
forms having positive and negative effects, respectively, on
p21 expression [45, 46]. Another potential way of regulation
is miR-345 expression through mature HCV core protein as
it has been shown to result in downregulation of p21
expression in human hepatoma cells [47].

p27 is another regulator of cell cycle progression whose
expression level can be decreased via different mechanisms
in HCC [48, 49]. p27 deficient transgenic mouse models
display an increased hepatocyte density in their livers in
parallel with hyperplasia in multiple organs ([50, 51];
Nakayama et al. 1996), however they do not spontaneously
develop HCC unless their livers are chronically injured [52].
Loss of p27 function in hepatocellular cancers generally
occurs either posttranscriptionally or posttranslationally. p27
mRNA is targeted for destruction by miR-221, whose
expression is increased in majority of HCC samples [53].
Posttranslational regulation of p27 function can be either via
ubiquitin-mediated degradation or cytosolic sequestration
through phosphorylation [54]. The former is achieved by
Skp2, which targets p27 as well as p21 and p57 for
ubiquitin-mediated degradation; and is expressed at higher
levels in HCC due to deregulation of its transcription [55,
56]. Although phosphorylation of p27 by Cdk2 targets it for
ubiquitin-mediated degradation, phosphorylation at Thr157
by PKB/Akt kinase prevents its nuclear localization and
causes cytosolic sequestration [57] and worsens the prog-
nosis in HCC [58].

3.3 Escape from Senescence Control

Cellular senescence is a form of irreversible growth arrest
associated with well-defined morphological changes in cell
culture [59]. It has long time been considered as a cellular

mechanism that limits the number of cell divisions [or
population doublings (PDs)] in response to progressive
telomere shortening that occurs in proliferating normal
somatic cells because they lack efficient telomerase activity.
This form of senescence is now recognized as replicative (or
telomere-dependent) senescence. Telomere-dependent
senescence occurs as a result of progressive telomere
shortening in cell culture [60]. Telomeres are regions which
contain repetitive DNA elements with variable length (5–
20 kb) and telomere-binding proteins at the ends of chro-
mosomes. Telomeric DNA has a structure called “t-loop”
formed as a result of invasion of the single-stranded G-rich
sequence into the double-stranded telomeric tract. Telom-
eres, with telomere-binding proteins, prevent genomic
instability and the loss of essential genetic information by
“capping” chromosome ends. They are also indispensable
for proper recombination and chromosomal segregation
during cell division. Telomeres become shorter in every cell
division in somatic cells, because of the inability of repli-
cation complex to copy the ends of linear DNA which makes
them a “cell cycle counter” for a cell [61]. Telomeres are
added to the end of chromosomes with a complex containing
an RNA template called telomerase RNA component
(TERC) and a reverse transcriptase called telomere reverse
transcriptase (TERT) enzyme [62]. Most somatic cells lack
telomerase activity because the expression of TERT is
repressed, in contrast to TERC. The lack of sufficient TERT
expression in somatic cells is the main cause of telomere
shortening during cell replication [62].

Senescence-like changes can be induced in young pro-
liferating cells in response to different forms of cellular stress
such as DNA damage and oncogenic stimuli, in the absence
of telomere shortening [60]. Many forms of
senescence-inducing stresses have in common the ability to
affect cellular DNA integrity. Therefore, one of the main
purposes of senescence response appears to block the pro-
liferation of cells with damaged DNA.

The major pathways leading to characteristic morpho-
logical changes in senescent cells are still ill-defined, but the
main pathways controlling their proliferation status are
known. Proliferation arrest in senescent cells is often
accompanied with accumulation of cells at G1. As stated
earlier, the transition from G1 to S phase requires the release
of E2F factors from their inhibitory partner pRb. The
senescence arrest is mediated by inhibition of pRb phos-
phorylation by p16 and p21 acting on cyclin-dependent
kinases. The p16 is transcribed from the INK4a/ARF locus
which also encodes transcripts for another protein named
p14ARF [60]. p16-dependent senescence arrest appears to
be more important for telomere-dependent senescence,
whereas p21-dependent arrest is involved in both
telomere-dependent and telomere-independent senescence
arrest. The accumulation of p16 in telomere-dependent
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senescence was linked to BMI1 component of polycomb
complex [63, 64]. Recently, the ability of the BMI1 to
repress the INK4a/ARF locus was shown to depend on
EZH2-containing polycomb-repressive Complex 2 [63].
EZH2 is downregulated in senescent cells, while it is over-
expressed in tumors, including HCC [65, 66]. p21-
dependent pathway mediates p53-dependent, but also some
p53-independent signals for senescence arrest.

The p53 protein is the major player of senescence arrest
as it may be upregulated by both telomere-dependent and
telomere-independent pathways. The p14ARF protein which
can be induced by the derepression of INK4/ARF locus [63]
or during oncogene-induced senescence leads to p53 accu-
mulation via inhibition of MDM2 protein [60]. p53 is also
induced by DNA damage, independently from p14ARF by
MDM2-dependent and MDM2-independent mechanisms via
DNA damage checkpoint proteins [67, 60]. p53 accumula-
tion in senescent cells induces cell cycle arrest via its tran-
scriptional target p21. p21-dependent pathway also appears
to play a role in p53-independent senescence induction, as
shown in cancer cells [68, 69].

Both p16 and p21-dependent senescence arrests must
play major anticancer functions in mammalian cells, since
many components of this senescence pathways undergo
genetic and epigenetic alterations in cancer cells which are
quite often resistant to senescence arrest [60].

3.3.1 Replicative Senescence of Hepatocytes

Hepatocytes in the adult liver are renewed approximately
once a year, as estimated by telomere loss which is 50–
120 bp per year in healthy individuals [70]. However, the
liver has an extremely powerful regenerative capacity, as
demonstrated experimentally in rodents, and as observed in
patients with chronic liver diseases [71]. This regenerative
capacity is due mostly to the ability of mature hepatocytes to
proliferate in response to a diminution of total liver mass
either experimentally, or following exposure to viral and
nonviral hepatotoxic agents. In addition, adult liver seems to
harbor hepatocyte-progenitor cells that are able to restore
liver hepatocyte populations [72]. However, hepatocytes,
like any other somatic cells, do not have unlimited replica-
tive capacity, due to the lack of telomerase activity that is
needed to avoid telomere shortening during successive cell
divisions. This is best exemplified by decreasing hepatocyte
proliferation in liver cirrhosis stage of chronic liver diseases
[73], providing in vivo evidence for exhaustion of hepato-
cyte proliferation capacity.

As stated earlier, limited proliferative capacity of somatic
cells is controlled by replicative senescence [74]. However,
our knowledge of hepatocyte replicative senescence is
highly limited. In contrast to in vivo conditions, mature

hepatocytes are extremely resistant to cell proliferation in
cell culture. Usually, more than 99.9 % of adult liver hep-
atocytes do not divide in cell culture and can only be
maintained in culture for a few weeks. A small
progenitor-type cell population (so-called small hepatocytes)
has been shown to proliferate in vitro, but they usually stop
growing at passages 5–7, with an ill-defined senescence-like
phenotype [72]. Fetal hepatocytes display better proliferation
capacity in culture. A few studies have shown that these fetal
cells enter replicative senescence, as shown by
senescence-associated b-galactosidase assay (SABG) at
population doubling (PD) 30–35 [75]. This is accompanied
by progressive shortening of telomeres down to *6 kbp, as
these cells like adult hepatocytes lack telomerase activity.
Fetal hepatocytes can be immortalized by stable expression
of TERT [75].

3.3.2 In Vivo Senescence in Liver Tissue

The liver is one of the rare tissues where in vivo telomere
shortening and replicative senescence have been convinc-
ingly and independently demonstrated by different investi-
gators [76]. Telomere shortening in normal human liver and
its stepwise exaggeration in chronic hepatitis, cirrhosis, and
HCC has been described more than a decade ago [77], and
confirmed by many studies [78, 79]. Both p21 and p16
expression was found to be high in cirrhosis, as compared to
normal liver, as well as malignant lesions [80], suggesting
that these major senescence-inducing proteins accumulate in
cirrhotic liver, in support of the hypothesis that cirrhosis
represents a stage of in vivo hepatocyte senescence.

The relevance of replicative senescence to liver tissue
aging has been demonstrated experimentally using
TERC-deficient mice. Late generation mice with
TERC-deficiency display critically shortened telomeres in
liver whose regenerative response to partial hepatectomy is
impaired. A subpopulation of telomere-shortened hepatic
cells display impaired proliferative capacity that is associ-
ated with SABG activity [81]. In addition, experimentally
induced telomere dysfunction was shown to induce
p53-dependent senescence in mice expressing a
dominant-negative mutant TRF2 protein [82].

3.3.3 p53 and Retinoblastoma Pathways
in Hepatocellular Carcinoma

p53 and retinoblastoma (RB) pathways play a crucial role in
senescence arrest that appears to mark cirrhosis stage in
chronic liver diseases. HCC rarely develops in liver tissues
in the absence of chronic liver disease. More than 80 % of
these cancers are observed in patients with cirrhosis. As the
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appearance of proliferating malignant cells from this senes-
cence stage requires the bypass of senescence, the status of
both p53 and RB pathways in HCC is of great importance in
terms of molecular aspects of hepatocellular carcinogenesis.

Tumor suppressor gene TP53 (p53) is mutated or inac-
tivated in various types of human cancers with a mutation
frequency of more than 50 %, independent of tissue origin
and etiology. There are five hotspots scattered in
DNA-binding domain (amino acid residues 175, 248, 249,
273, and 282) of p53 protein frequently affected by muta-
tions [83]. HCC is one of the major tumors displaying fre-
quent p53 mutations [84]. The overall p53 mutation
frequency in HCC is around 30 %. However, both the fre-
quency and the spectrum of p53 mutations show great
variations between tumors from different geographical areas
in the World. This appears to reflect the relative contribution
of different etiologic factors showing high variation among
different continents. Aflatoxin exposure is confined to some
parts of Africa and East Asia, where hepatitis B is also
prevalent. In other continents, hepatitis B, hepatitis C, and
alcoholism are more prominent factors for hepatocellular
carcinogenesis. The highest rates of p53 mutations are
observed in aflatoxin-contaminated areas of Africa and East
Asia which fluctuate between 50 and 80 % of reported cases.
This high frequency is due almost exclusively to an HCC
specific hotspot mutation at codon 249 (AGG ! AGT)
leading to an arginine to serine substitution (R249S). As
G ! T transversions are major mutation products of
aflatoxins in experimental systems, this led to a hypothesis
that the codon 249 mutation of p53 in HCC is induced by
aflatoxins [84]. The detection of the same mutation in
normal-appearing liver tissues in people at high risk for
aflatoxin exposure supports the hypothesis that aflatoxins
have a causative and probably early role in HCC. In coun-
tries in which aflatoxin is not a known etiological factor, the
rate of p53 mutations is low and the spectrum of mutations is
scattered within the DNA-binding domain, codon 249
mutations being detected only occasionally [84]. Several
studies reported that p53 could be inhibited by hepatitis viral
proteins also [85–87].

Senescence arrest mediated by p53 involves upstream and
downstream proteins of p53 pathway. Among upstream
molecules, Mdm2 promoter SNP309 was found to be a risk
factor for HCC [88]. Promoter methylation of p14ARF was
identified in 19 % of HCCs associated with HBV and in
39 % of HCCs associated with alcohol, respectively [89].
The expression of p21 gene which is a common intermediate
between p53 and RB pathways was reported to be down-
regulated in 73 % of HCCs [90]. Similarly, Weinmann et al.
reported a decreased expression of p21 in HCC lesions, as
compared to cirrhotic hepatocytes [79]. However, the

biological significance of these observations is presently
unknown.

Two main players of RB pathway involved in senescence
arrest are pRb and p16. Mutations of these genes are
uncommon in HCC. The loss of heterozygosity was reported
to occur in retinoblastoma gene (RB1), but its mutational
inactivation in HCC has not been demonstrated. On the other
hand, the gankyrin, which promotes proteosomal degrada-
tion of pRb protein was found to be overexpressed in HCC
[91]. The only consistent mutation affecting the RB pathway
in HCC is the homozygous deletion of INK4a/ARF locus,
but this occurs at a frequency of less than 10 % [39, 92]. On
the other hand, epigenetic silencing of p16 gene by promoter
methylation is highly frequent in HCC (see Ozturk [84]). In
a combined study [89], retinoblastoma pathway alterations
(p16, p15INK4b or RB1 genes) were present in 83 % of
HCCs, whereas p53 pathway alterations (p53 or p14ARF
genes) were detected in only 31 % of these tumors. Alter-
ations in both RB and p53 pathways were present in 30 % of
HCCs. Thus, it appears that either the RB and/or the p53
pathway is affected in the majority of HCCs, and that both
pathways are affected in at least one third of these tumors.

3.3.4 Telomerase Reactivation
and Immortality in Hepatocellular
Carcinoma

The cause–effect relationship between cirrhosis and HCC is
so evident that the cirrhosis is considered as a common
etiological factor of these cancers. As cirrhosis is dominated
by telomere-dependent senescence arrest in hepatocytes,
HCC development requires a bypass by reactivation of
TERT, the enzyme missing in normal hepatocytes. There-
fore, it is not surprising that strong telomerase activity was
detected in 80–90 % of HCCs [93–95]. A recent study
provided experimental evidence for the presence of thou-
sands of senescence- and immortality-associated genes with
differential expression between liver cirrhosis and HCC [96].
As expected, genes overexpressed in cirrhosis are those that
are induced during senescence, whereas many genes over-
expressed in HCC are induced in immortal or immortalized
cells. Thus, there is ample evidence that a phenotypic switch
from senescence to cellular immortality must occur during
the initiation of HCC, in particular those observed in cir-
rhotic patients [96].

The mechanisms of hepatocellular immortalization are
not completely understood. It is clear that one key mecha-
nism involved in this process is the reactivation of TERT in
order to prevent telomere shortening during successive
proliferation cycles. The TERT reactivation in cancer cells
remained as an enigma until very recently. Initial findings
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with HCC showed that HBV DNA can integrate into the
TERT gene and found as one of the paths to increase
telomere length in these cancers [97–99]. However, this
occurs quite rarely, and many HCCs are not related to HBV.
Recently, many groups reported the presence of two frequent
mutations in TERT promoter region in different tumors,
including HCC [100–105]. These promoter mutations are
claimed to upregulate the TERT transcription by creating a
binding site for ETS (E-twenty six) [101] and ternary
complex factor (TCF) transcription factors [100]. TERT
promoter mutation frequencies of the reported for HCC
varied between 24 and 59 % depending on geographical
locations [102, 106, 107]. We recently reported that the
TERT mutations (C228T and C250T) were more frequent in
African HCCs, when compared to non-African tumors. We
also found a weak inverse correlation between TERT pro-
moter mutations and MDM2 SNP 309 TG polymorphism
[106]. Overall, these studies revealed that one of the most
frequently mutated genes in HCC is TERT gene.

The timing of TERT mutations during hepatocellular
carcinogenesis was studied in detail by Nault et al. [107].
No TERT mutation was found in cirrhosis and hepatocel-
lular adenoma. However, TERT mutation was the earliest
genetic change observed in cirrhotic macronodules with or
without dysplasia. A similar study further indicated that
TERT mutation frequencies displayed a stepwise increase
during hepatocellular carcinogenesis, i.e., 6 % of low grade
dysplastic nodules, 9 % of high grade dysplastic nodules,
61 % of early HCCs, and 42 % of small and progressed
HCC. Thus, the TERT mutation is likely to mark the
beginning of an overtly malignant state (i.e., early HCC)
during hepatocellular carcinogenesis [108].

3.3.5 Experimental Induction of Senescence
in Hepatocellular Carcinoma

Critical senescence bypassing events that are frequently
observed in HCC strongly suggest that experimentally
induced senescence arrest my serve as a powerful strategy to
revert HCC malignancy. Treatment of HCC cell lines with
5-aza-20-deoxycytidine induced the expression of p16,
hypophosphorylation of pRb and G1 arrest associated with
positive SABG staining [109]. Xue et al. [110] expressed
H-ras oncogene and suppressed endogenous p53 expression
in mouse hepatoblasts which produced massive HCCs upon
implantation into livers of athymic mice. However, these
tumors regressed rapidly upon restoration of p53 expression.
Tumor regression was associated with differentiation and
massive senescence arrest followed by immune-mediated
clearance of senescent cells. Overexpression of c-Myc in
liver-induced HCC that reversed completely upon c-Myc
inactivation. Tumor cells lacking c-Myc activity displayed

differentiation into mature hepatocytes and biliary cells, as
well as senescence response [111], and regressed progres-
sively by massive apoptosis [112].

We tested whether transforming growth factor-b (TGF-b)
could serve as a potential senescence inducer in HCC.
Five HCC cell lines with intact TGF-b signaling
(Smad-targeted gene activation by TGF-b) displayed also a
strong senescence response which was p53- and
p16-independent. Senescence was associated with
Nox4-mediated ROS accumulation and was both p21- and
p15-dependent. Moreover, when induced in vivo,
TGF-b-dependent senescence was a strong inhibitor of HCC
tumor growth [113]. Thus, tumor regression by senescence
induction appears to be an efficient anti-HCC therapy
method, at least experimentally.

3.4 Resistance to Cell Death

Many factors such as alcohol, viruses, toxic bile acids, fatty
acids, drugs, and immune response cause cell death in liver.
Cell death in nontransformed hepatocytes stimulates con-
tinuous cell turnover that provides a platform for
cancer-initiating mutations and alterations in the composi-
tion of hepatic microenvironment acting as a tumor-
promoting mechanism, mediated by increased compen-
satory regeneration, fibrogenesis, and inflammation. After
malfunction of the death machinery by mutations, tumor
cells often undergo a selection process that allows them to
successfully evade cell death [114].

3.4.1 Hepatocyte Cell Death

Hepatocyte cell death during liver injury was classically
viewed as either programmed (apoptotic), or accidental,
uncontrolled (necrotic) cell death. In addition to these clas-
sical modes of cell death, several other forms of hepatic cell
death have been described, including autophagic cell death
and necroptosis. Apoptosis, a highly organized and geneti-
cally controlled process, is the most investigated and best
defined form of programmed cell death. Apoptosis is initi-
ated by either membrane receptors (extrinsic pathway) or
intracellular stimuli (intrinsic pathway) and both pathways
result in the activation of effector caspases 3 and 7, which
execute the final apoptotic changes [115, 116]. Autophagy is
a catabolic process controlled by the autophagy-related
(Atg) proteins to mediate cellular homeostasis under basal
and stressed conditions. To avoid confusion, the Nomen-
clature Committee on Cell Death (NCCD) reintroduced the
term ‘autophagic cell death’ to describe cell death that is
suppressed by inhibition of the autophagy pathway. There
are molecular overlaps between regulation of autophagy and
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apoptosis such as interaction of the BH3 domain of the
Beclin 1 autophagy protein with the anti-apoptotic proteins,
Bcl-2 and Bcl-XL. The autophagy may play a dual role in
the development and promotion of HCC, as it may act as a
promoter of tumorigenesis or as a tumor suppressor event
[117]. Necroptosis is induced by the same death receptors
that activate the extrinsic apoptotic pathway, namely
TNF-R1, TNF-R2, and Fas. Upon interaction of receptor
protein kinases 1 and 3 (RIP1 and RIP3), and in the absence
of activated caspase 8, a cell death that morphologically
resembles necrosis occurs [118]. Necrosis is an accidental
form of cell death with fatal consequences. Cellular oxygen
deprivation whereby the generation of reactive oxygen
species (ROS) may lead to mitochondrial dysfunction and a
drop in ATP levels below the threshold required to maintain
cellular integrity, resulting in necrosis [115]. Morphologi-
cally, necrosis is characterized by cellular swelling, forma-
tion of membrane blebs lacking cellular organelles, and
finally cell membrane rupture with the release of cellular
contents [119].

3.4.2 Dysregulation of Apoptotic Cell Death
in Hepatocellular Carcinoma

Apoptotic cell death is induced via membrane receptors and
intracellular stress (Fig. 3.1). Both of apoptotic routes acti-
vate a variety of proteases, mainly the group of proteases
called caspases (cysteinyl aspartate-specific proteases), and
endonucleases, which finally degrade cellular components.
Apoptotic events in hepatocytes are regulated by different
stimuli that bind to death receptors in the cell membrane,
such as Fas ligand (FasL), tumor necrosis factor-alpha
(TNF-a) or TNF-related apoptosis-inducing ligand (TRAIL),
which activate the extrinsic pathway. Furthermore, other
factors, particularly the transforming growth factor-beta
(TGF-b), do not bind to death receptors, but its intracellular
signals may stimulate the apoptotic machinery through
activation of the intrinsic pathway [116]. Binding of FasL,
present in natural killer cells and cytotoxic T lymphocytes,
or inflammatory cytokines, such as TNF-a, to their corre-
sponding death receptors (Fas, TNF-R1) induces the
recruitment of several adapter proteins and proenzymes
(procaspase- 8 and 10) at the intracellular domain of the
receptor to form the so-called death-inducing signaling
complex (DISC). The signal generated at DISC by activated
caspases leads to cell death, which, depending on the cell
type, may or may not require the involvement of mito-
chondria for its execution [116]. TRAIL is a member of the
TNF superfamily that can initiate apoptosis through the
activation of their death receptors. It is regulated by two
death receptors, TRAIL receptors 1 and 2 (TRAIL-R1 and
TRAIL-R2), and two other decoy receptors. Because

experimental evidence indicates that TRAIL induces apop-
tosis in liver cancer cells but not in healthy hepatocytes,
TRAIL has been discussed as a promising alternative or
additive therapeutic strategy [120]. However, the role of the
TRAIL system in the pathogenesis of HCC is not clear yet.

The intrinsic pathway is triggered by different extra- or
intracellular signals that induce mitochondrial dysfunction,
resulting in altered membrane permeability and mitochon-
drial proteins being released into the cytosol, including
proapoptogenic factors such as cytochrome c,
SMAC/DIABLO (second mitochondria derived activator of
caspases/direct IAP binding protein with low pI),
apoptosis-inducing factor (AIF) or endonuclease G, among
others. The release of cytochrome c from mitochondria
promotes the formation of a complex between APAF-1 and
caspase-9 in a caspase-activating structure known as the
apoptosome [118] (Fig. 3.1). Several intracellular proteins
are involved in the mitochondrial-mediated regulation of
apoptosis, in particular, the Bcl-2 family of proteins, which
includes at least 20 members of both pro- and anti-apoptotic
effects, being one of the most important regulators of the
intrinsic pathway (examples of anti-apoptotic proteins are
Bcl-2 and Bcl-XL; examples of proapototic members are
t-Bid, Bax and Bak). These proteins exert their effects
upstream of the mitochondria integrating death and survival
signals. The balance between pro- and anti-apoptogenic
members and their interactions determine the intrinsic
pathway initiation.

3.4.2.1 The Death Receptor Pathway
Hepatocellular carcinoma cells show resistance to apoptosis
mediated by several death receptors. Themajority of theHCCs
show one or more alterations in the Fas pathway molecules,
which inhibit Fas-mediated apoptosis. Loss of response to Fas
in HCC cells and/or tissues is produced either by downregu-
lation of Fas expression, concomitant with decreased
expression of downstream molecules, such as FADD or
FLICE or overexpression of cellular FLICE/caspase-8-
inhibitory protein (cFLIP), or by upregulation or overactiva-
tion of molecules that counteract its pro-apoptotic effect,
including nuclear factor-kappaB (NF-jB), Bcl-2 or Bcl-XL
[121, 122]. Recently, it was shown that TRAIL expression is
reduced significantly in about two-thirds of HCCs and this is
correlated with tumor size and stage, recurrence after resec-
tion, and patient survival rate [123].

3.4.2.2 Apoptotic Regulatory Proteins
It is well known that there is an imbalance in the expression of
pro- and anti-apoptotic members of the Bcl-2 family in HCC.
Bcl-XL and Mcl-1 are overexpressed while pro-apoptotic
members of the family, such as Bax or Bcl-XS are downreg-
ulated in HCC. Furthermore, some pro-apoptotic members of
theBH-3-only family, such asBid, showdecreased expression
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in HCC related to hepatitis B virus X protein or hepatitis C
virus polyprotein (reviewed as Ref. [124]). Shi et al. 125
showed that nearly 90 % of clinical tumors from advanced
HCC patients express high levels of X-linked
inhibitor-of-apoptosis protein (XIAP), a well-known inhi-
bitor of caspases and patients with XIAP-positive tumors have
a significantly increased risk of relapse.

3.4.2.3 TGF-b Pathway and Apoptosis
TGF-b is normally produced by stellate cells and exerts its
effects by limiting the growth of hepatocytes in response to
injury by inhibiting DNA synthesis, blocking cell cycle
progression and inducing apoptosis. The TGF-b family of
cytokines plays also essential roles in cell migration and
invasion, extracellular matrix remodeling and immune sup-
pression, being involved in the maintenance of tissue
homeostasis. Two types of catalytic receptors (TbRI and
TbRII) have been described; they both contain and extra-
cellular binding domain and intracellular serine/threonine
kinase domain. TGF-b is first activated by proteolytic
cleavage and then binds to TbR-II, which in turn recruits and
trans-phosphorylates TbR-I. Transcription factors SMAD2
and SMAD3 are recruited to the activated receptor complex
and activated by phosphorylation, being released from the
complex and heterodimerizing with the mediator SMAD4,
followed by translocation to the nucleus. Once in the
nucleus, the activated SMADs and SMAD4 regulate
transcription-forming complexes with other transcriptional
coregulators [126] (Fig. 3.1).

The ability of TGF-b to induce or suppress programmed
cell death varies greatly depending on the cell type [127]. In
hepatocytes, it has been suggested that TGF-b induces the
expression of the death-associated protein kinase
(DAP-kinase) as an immediate SMAD-dependent early
response (Jang et al. 2002). The adaptor protein DAXX has
been also implicated as a mediator of TGF-b apoptotic
signals because it physically associates with TbR-II, facili-
tating Jun amino-terminal kinase (JNK) activation (Perlman
et al. 2001). The apoptosis induced by TGF-b also has been
linked to an oxidative stress process, which is required for
bcl-XL downregulation and mitochondria-dependent cell
death [126]. This process might be associated with activation
of TIEG (TGF-b-inducible early-response gene) and induc-
tion of a NAD(P)H oxidase-like gene, in particular NOX4
[126]. NOX family has emerged in the past years as an
important source of ROS in liver pathologies. Interestingly,
NOX proteins mediate some TGF-b actions in liver cells,
such as regulation of hepatocyte growth and death, as well as
activation of hepatic stellate cells to myofibroblasts, key
executers of the fibrotic process. Furthermore, TGF-b
impairs survival signaling events (such as PI3K/AKT path-
way and c-IAPs), through activation of phosphatases and/or
caspase-mediated proteolysis, respectively [128]. These
various components of the TGF-b apoptotic programme
ultimately couple the signal to the main components of the
cell-death machinery (Fig. 3.1).

The disruption of the TGF-b signaling pathway occurs in
HCC and might cause dysregulation of apoptosis.

Fig. 3.1 Extracellular factors
and intracellular signals
controlling apoptotic cell death in
hepatocytes
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Overexpression of SMAD3 reduces the susceptibility to
develop HCC by sensitizing hepatocytes to apoptosis
through downregulation of Bcl-2 [129]. HCC cells might
also overexpress a specific set of microRNAs (miRNAs) that
would allow the escape from TGF-b-induced apoptosis
[130]. Furthermore, it has been indicated that TGF-b might
play a dual role in controlling apoptosis in hepatocytes and
hepatoma cells. On one hand, it induces cell death, but on
the other it could activate anti-apoptotic signals, the epi-
dermal growth factor receptor (EGFR) being required for
this effect. Indeed, EGF is an important survival signal for
TGF-b-induced apoptosis in hepatocytes. The enzyme
phosphatidylinositol 3-kinase (PI3K) mediates the effect of
EGF on TGF-b-induced death by acting upstream to the
mitochondrial changes, probably counteracting TGF-b-
induced oxidative stress [131]. The autocrine loop of
EGFR activated by TGF-b in hepatoma cells would require a
high activity of TACE/ADAM17, the metalloprotease
responsible for shedding of the pro-tumor necrosis factor
(proTNF-a) that it is also necessary for shedding of
the EGF family of growth factors. Overexpression of
TACE/ADAM17 might confer an advantage on HCC cells
by impairing TGF-b-induced apoptosis through transacti-
vation of the EGFR [132].

3.4.2.4 NF-jB Pathway and Apoptosis
NF-jB suppresses apoptosis by inducing the expression of a
number of genes whose products inhibit apoptosis, including
IAPs, cFLIP, TNF receptor associated factor 1 (TRAF1),
and TRAF2. Two typical prosurvival NF-jB targets are Bcl-
XL, an anti-apoptotic member of Bcl-2 family, and XIAP, a
member of the caspases inhibitor, which are frequently
overexpressed in HCC [133]. Interestingly, the NF-
jB/Bcl-XL/XIAP axis potently counteracts the
TGF-b-induced apoptosis and exerts a general cytoprotec-
tive role on preneoplastic hepatocytes. Recent results also
linked NF-jB to the increase in the autocrine expression of
EGF receptor ligands, such as TGF-a, in hepatocytes and
hepatoma cells [134].

Different studies have implicated members of the
NF-jB/Rel family in both HBV- and HCV-induced neo-
plastic development of the liver [133]. Several mechanisms
have been proposed for activation of NF-jB by the hepatitis
virus. Overall, inflammatory hepatitis might activate NF-jB
by the concerted action of cytokines, such as TNF-a,
chemokines or interleukins, and viral proteins, which likely
will promote cell survival of precancerous hepatocytes [133,
134]. In summary, overactivation of the NF-jB pathway
might generate resistance to apoptosis in HCC cells through
different mechanisms.

3.5 Phenotypic Plasticity

Vertebrate embryo development requires an orchestrated
cellular differentiation program associated with differential
cell adhesion and tight regulation of dynamic cell contacts.
E-cadherin regulated cell adhesion is a well-known process
that affects both cell morphology and dynamic cellular
interaction. Dynamic demands and plasticity require a tight
regulation of the E-cadherin gene, CDH1. During key
events, like epithelial-mesenchymal transition (EMT) and
the reverse process of mesenchymal-epithelial transition
(MET), the CDH1 locus is shut down (EMT) and reactivated
(MET). These processes are fundamental for normal devel-
opment but are also exploited by tumor cells including HCC
cells for dissemination and colonization during cancer
progression.

3.5.1 Epithelial to Mesenchymal Transition

The process of EMT is utilized during embryogenesis at
many key steps, such as neural crest delamination, heart
valve formation, palatogenesis, and myogenesis (type I)
[135]. Similarly, EMT becomes activated during fibrosis and
wound healing (type II) and cancer (type III) [136].
Cytoskeletal rearrangements and modulation of the expres-
sion of many different genes, including cell adhesion
molecules are common features of EMT. The key event of a
bona fide EMT is the downregulation of E-cad that leads to
loss of cell polarity, an adherent morphology and of the
epithelial gene signature [137, 135]. In exchange, they
acquire a mesenchymal unpolarized morphology combined
with increased cell motility and a mesenchymal gene sig-
nature including the switching from cytokeratins to vimentin
expression, increased fibronectin expression and activation
of the PDGF/PDGFR autocrine loop allowing degradation of
the ECM and thus promoting invasion [138]. Furthermore,
activation of the expression of N-cadherin [137] among
other cell surface proteins like CD44 [139] and integrin b6
[140] is thought to be important for the migratory phenotype.

Induction of EMT is integrated by many different
developmental signaling pathways such as TGF-b, Wnt and
Notch signaling [141]. In particular, the TGF-b signaling
pathway has been described as the major inducer of EMT
because of its direct activation of the core EMT regulators
like Snail, Slug, Twist, Zeb1, Zeb2, and others [135, 142]. In
agreement with a required fast downregulation of
E-cadherin, all of these transcription factors are in fact
repressors of E-cadherin expression and they all bind to
several evolutionary conserved E-boxes present in the
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proximal promoter [143–149]. Beside their role in the
repression of E-cadherin expression, the EMT core regula-
tors exert their effect on a multitude of levels ensuring a
successful EMT. For example, Snail and Zeb family mem-
bers have been shown to repress other adhesion molecules
such as Claudins and ZO-1 [150, 151]. Similarly, Twist1 is
able to orchestrate two events of EMT, it activates the
expression of Snail2 ensuring the repression of Cdh1 [152],
and also induces the expression of PDGFR which in turn
activates Src, promoting invadopodia formation [138]. The
complexity of coordinating the progress of EMT is a
reflection of not only the complexity of the transcriptional
networks orchestrating it [153], but also the complexity of
the pathways inducing and governing EMT.

3.5.2 TGF-b Pathway and Cellular Plasticity

As mentioned above, TGF-b signaling pathway is consid-
ered as the major regulator of EMT. In healthy tissues,
TGF-b plays a critical role in several cellular functions such
as proliferation, differentiation, and apoptosis both in adult
as well as in embryonic stages [154]. Beside the Smad
proteins, TGF-b can also transduce its signals via other
pathways such as PI3K and MAPK [155]. During tumori-
genesis, cellular responses to TGF-b are different as the
potent induction of EMT facilitates cell motility, invasion,
and metastasis [156]. During EMT, the loss of E-cadherin
expression results in the accumulation of b-catenin in the
cytoplasm and eventually in the nucleus, leading to the
activation of Wnt target genes [153] thus enhancing the Wnt
signaling. This upregulation of Wnt pathway and the accu-
mulation of nuclear b-catenin as a result of aberrant TGF-b
signaling causes a proliferation of liver progenitor cells,
which correlates with higher vascular invasion grades and
increased recurrence of HCC [157, 158]. In HCC cells,
inhibition of TGF-b signaling results in the upregulation of
E-cadherin leading to the stabilization of an epithelial state
with a lower migratory potential [159], suggesting the
potential of developing novel therapeutic drugs targeting
TGF-b [160].

3.5.3 b-catenin/Wnt Signaling Pathway
and Plasticity

The canonical Wnt signaling pathway is an essential regu-
lator of several cellular mechanisms such as proliferation and
survival in adult cells and also plays an important role during
embryonic development by regulating several developmen-
tal processes such as patterning, neurogenesis, and mor-
phogenesis [161]. The b-catenin is considered as a key
component of the canonical Wnt signaling pathway, in the

absence of Wnt ligand, b-catenin is in a complex with
E-cadherin at adherens junctions bridging adhesion mole-
cules with the cytoskeleton, thus maintaining cellular
polarity. Excess b-catenin is targeted for ubiquitination and
degradation following phosphorylation by GSK3b, a mem-
ber of the destruction complex that also includes Axin and
APC. Upon binding of the ligand (Wnt) to the receptor
(Frizzled) b-catenin escapes the destruction complex due to
the destabilization of Axin, eventually inhibiting GSK3b
activity, resulting in the accumulation of b-catenin, which
then translocates to the nucleus where it activates the
expression of Wnt target genes by modulating the activity of
the TCF/LEF transcription factors [161].

Mutations and aberrant expression of several components
of the Wnt signaling pathways have been reported in HCC
patients leading to the activation of b-catenin, these include,
but not limited to, b-catenin, Axin and APC mutations, as
well as the overexpression of Frizzled and Wnt3 [162].
b-catenin mutanr mice do not develop liver cancer [163], but
deregulated Wnt signaling may cooperate with other onco-
genic pathways promoting HCC development [164]. The
current scientific evidence favors the hypothesis that muta-
tions of b-catenin are late events in HCC and thus may
promote tumor progression rather than tumor initiation
[162]. Many reports addressed the relationship between Wnt
signaling and EMT, accumulation of nuclear b-catenin was
shown to repress E-cadherin expression by either the tran-
scriptional activation of the core EMT regulators Slug and
Twist, or by the stabilization of Snail [165].

3.5.4 Notch Pathway and Plasticity

The notch pathway plays a critical role in several processes
both in development and in adult cells. It is a key regulator
of stem cell self-renewal, differentiation, and cell fate deci-
sion. In addition, Notch has been shown to be involved in
proliferation, apoptosis, and EMT [166]. The activation of
Notch signaling begins with the binding of the ligand (Delta
or Jagged) to the Notch receptor. This binding causes the
cleavage of the extracellular C terminal peptide, followed be
cleavage of the intracellular domain (NICD), which then
translocates to the nucleus where it activates the expression
of Notch target genes [167].

Notch pathway has been shown to be involved in a
variety of cancer types, such as breast, colorectal, pancreatic,
and liver cancers [168]. In addition, Notch is well-known
inducer of EMT, this is accomplished by the activation of
Snail and Slug gene expression, resulting in the downregu-
lation of E-cadherin and the initiation of EMT [169]. Recent
evidence suggests a dual role of Notch signaling, depending
on the cellular context it could promote oncogenic or tutor
suppressive functions [170]. In HCC cells, the forced
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expression of an active Notch results in growth inhibition
due to cell cycle arrest, Notch 1 was shown to decrease the
expression of several cell cycle modulators such as
Cyclin A, Cycline D1, and Cyclin E. Moreover, increased
Notch expression resulted in an increased expression of p21
and p53 [171].

3.5.5 Mesenchymal to Epithelial Transition

The reverse process of EMT, the mesenchymal to epithelial
transition (MET) is a fundamental embryonic program as
well [172, 173]. Here, mesenchymal cells acquire epithelial
characteristics including loss of N-cadherin and activation of
E-cadherin expression [135, 136, 142] and regaining of the
polarized adherent morphology. The spatiotemporal reacti-
vation of E-cadherin expression is critical for the progression
of MET, forced silencing of Cdh1 expression during the
onset of MET is sufficient to completely block the cells in a
mesenchymal state [174]. This suggests the need for an
immediate activation of the Cdh1 locus during MET, a
process which can only in part be explained by the down-
regulation of the core EMT regulators and their release from
Cdh1 promoter [175, 176]. Recent evidence suggests that
E-cadherin expression during MET is initiated by intronic
enhancers and is a dynamic process involving several tran-
scriptional regulators such as Grhl2 [177], Grhl3 and Hnf4a
and p300 [174]. In addition to orchestrating morphogenetic
events during embryogenesis, the process of MET is also
utilized by disseminating tumor cells required for coloniza-
tion and formation of metastasis at distant sites [135, 142].

3.6 Motility, Invasion, and Metastasis

Metastasis is a hallmark of cancer and the occurrence of
intrahepatic and extrahepatic tumor cell metastasis is the
primary factor causing mortality in patients with HCC [178].
Due to the dense hepatic vasculature and cirrhotic back-
ground, HCC shows intrahepatic multiple occurrence and
intrahepatic metastasis. Tumors are multifocal within the
liver 75 % of the time and extrahepatic metastasis of HCC
occurs in about 30–50 % of patients in the late stages of the
disease. The site of extrahepatic metastasis of HCC is most
often the lungs and less often the lymph nodes and bones
[179, 180].

Tumor metastasis is a multi-step program, and enhanced
cell motility and invasion is a common feature of tumor
metastasis. Tumor microenvironment is very important for
tumor invasion and metastasis and is dramatically remodeled
during tumor progression [181]. In this section, the key
differences between the types of migration and invasion, the

role of collective-amoeboid, mesenchymal-amoeboid, and
amoeboid-mesenchymal transitions, as well as the signifi-
cance of different tumor factors and stromal molecules in
invasion and metastasis of HCC will be discussed.

3.6.1 Mechanisms of Cell Invasion

Both in vitro and in vivo studies have revealed a great
diversity in the morphologies of invading cells and the way
of cell migration. During cancer progression, a variety of
tumor cells display morphological and phonotypical chan-
ges, and this plasticity enables tumors to adapt to microen-
vironmental conditions [182, 183]. Tumor cells invade the
stroma either by moving as single cells or collectively and,
conversions between collective to single-cell transition or
vice versa has been described in tumor metastasis [183–
185].

3.6.1.1 Single Cell Migration
This is characterized by the loss of cell–cell interactions and
cells can migrate individually via two modes:
mesenchymal-type and amoeboid-like [183, 185, 186]. Each
pattern of cell migration that is observed in tumor invasion
displays specific morphological features and the underlying
molecular mechanisms of cell migration. The microenvi-
ronment plays a significant role in determining the mor-
phology and migration mode of tumor cells, and depends on
molecular changes in tumor cells [187, 181]. Like other solid
tumors, HCC cells are capable of activating the mechanisms
for changing their shape, creating conditions for moving, as
well as remodeling surrounding tissues for migration [188].

Mesenchymal (Fibroblast-like) Cell Migration
Since malignant cells lose epithelial polarity and gain elon-
gated spindle-shaped fibroblasts, the invasion of this type is
called “fibroblast-like” migration [186, 183]. This motile
phenotype of tumor cells occurs in a process called
epithelial-mesenchymal transition or EMT [182, 189]. The
mesenchymal mechanism of invasion is believed to be the
consequence of EMT, when active dedifferentiation of a
malignant epithelial tumor occurs, and multicellular groups
start to divide into single tumor cells, gaining a mesenchy-
mal phenotype [185, 186]. A spindle-shaped cell body and
long protrusions are the characteristics of the mesenchymal
phenotype [182].

Based on the suppression of the expression of the relevant
genes using small interfering RNAs, the specific activity of
GTPases Rac1 and Cdc42 was demonstrated to be the main
characteristics of the mesenchymal type of invasion. Sup-
pression of GTPase Rac1 through signaling activation of
GTPase RhoA and its effector, ROCK kinase, leads to the
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blockage of the mesenchymal migration of tumor cells.
In HCC, the importance of Rho GTPases in the prediction of
tumor metastasis was reported [190].

Recent literature indicated that the behavior of tumor cells
during individual migration depends on the surrounding
matrix stiffness [183, 185, 187]. Therefore, the key points of
the fibroblast-like migration mechanism are the strong
adhesion forces on both poles of the cell as well as between
cells and extracellular matrix (ECM) components. The
molecules, such as lysyl oxidase 2, that modify ECM stiff-
ness is involved in the creation of a favorable microenvi-
ronment for tumor cells by activating fibroblasts and
endothelial cells, and the activation of growth factors sig-
naling in liver [191].

Amoeboid Cell Migration
The amoeboid-type cell migration of single tumor cells is
one of the most efficient mechanisms of invasive growth.
This type of migration has been described in circulating stem
cells (CTCs), leukocytes, and certain types of tumor cells
including HCC cells [182, 192]. In the case of amoeboid
migration, malignant tumor cells have been demonstrated to
have a round cell body phenotype and to differ the activity of
their protrusions. Although amoeboid cells might have
several variations, they are characterized by a round or
elliptical shape, the development of “bleb-like” protrusions
of the cell membrane, the fast deformability, the adaption of
their shapes to existing structures of the surrounding extra-
cellular matrix, and the penetration through them via narrow
spaces in a compressed form [182, 183, 186]

Changes in the cell shape are generated by the reorga-
nization of the actin cytoskeleton and controlled by the small
GTPase RhoA and its effector, ROCK kinase [185]. It has
been reported that activating the RhoA/Rho pathway
increases amoeboid migration of HCC cells and the
expression level of RhoA, which is directly correlated with
the poor prognosis of HCC patients [190]. The activation of
Hepatocyte Growth factor (HGF)/c-Met signaling induces
the small GTPase system (Cdc42, Rac, RhoA, RhoC) that
regulates the motility of tumor cells [185].

It has been reported that, in addition to the changes in cell
shape, the shape of the nucleus and its orientation, and
position relative to other internal organelles change during
amoeboid migration of tumor cells [185]. Since tumor cells
have to move through narrow spaces and pores, nuclei inside
single migrating tumor cells move forward toward the
leading edge. In contrast to the mesenchymal movement,
amoeboid or a non-proteolytic model of migration prevails
when the surrounding matrix is characterized by relatively
low stiffness [185, 193].

The amoeboid mechanism is also characterized by a weak
interaction between cells and the surrounding matrix, as well

as a lack of, or weak, focal contacts. It was reported that
integrins are not important in this type of invasive growth.
Furthermore, the absence of proteolysis at the sites of cell–
matrix interactions and the lack of expression of proteolytic
enzymes and movement at the highest speed in cultures are
main characteristics of amoeboid migration [185].

Due to the need to adapt to microenvironmental changes,
a “shift” from one migration type to the other (amoeboid-
mesenchymal and mesenchymal-amoeboid transitions) is
possible. The expression and/or activation levels of pro-
teases and protease inhibitors; the interaction levels of
integrin receptors with surrounding ECM molecules; and the
balance between the Rac and RhoA activity are important for
these transitions [183, 185].

3.6.1.2 Collective Cell Migration
It can occur when groups of firmly interconnected tumor
cells are migrating. Invading tumor cells in vivo typically
preserve cell–cell contacts, leading to collective migration of
cancer cells. It has been reported that the transition from
individual to collective migration is an important step toward
increasing the invasive and metastatic potential of malignant
neoplasms [182, 184, 185].

Collective cell migration results from the establishment
and maintenance of collective polarization, and is charac-
terized by groups of cells that contain cell–cell adhesions and
move as epithelial sheets or detached clusters. It is known as
the slowest mode of cancer migration. Three hallmarks are
reported to characterize collective cell migration: presence of
intact cell–cell junctions during movement (including
adherence, tight and gap junctions as well as desmosomes;
multicellular coordination of cytoskeletal activity and polar-
ity and the reorganization of ECM [185, 186].

Recent studies have shown that clusters of circulating
tumor cells (CTCs) and circulating tumor microemboli
(CTM) are present in the circulation of patients with meta-
static cancers [192]. Circulating cells in the bloodstream or
in the lymphatic system are representing a collective
migration. It is also concluded that cells in the CTM arise
from collectively migrating cells, rather than the aggregation
of cancer cells [182, 184, 192, 194]. There are a few studies
regarding the significance of CTCs or CTM in patients with
HCC. These studies indicate that CTCs and/or CTM con-
tribute to HCC recurrence, and may therefore serve as an
important therapeutic target for the treatment, recurrence,
and metastasis of HCC [195, 196].

In vivo data and pathology studies showed that cancer
cells display epithelial or mesenchymal morphology, and
that tumor cells within a single tumor can simultaneously
move both collectively and individually. Migrating tumor
cells (regardless of movement type) are more resistant to
chemotherapy and radiotherapy than nonmoving cells [185].
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Involvement of the same signaling pathways in cell migra-
tion and the development of tumor resistance to therapy were
also reported [185, 197]. This might be related to the tem-
porary loss of division ability in migrating cells. It may also
be related to the increased activity of anti-apoptotic genes in
moving tumor cells, which causes resistance to chemother-
apeutic drugs aimed at the induction of programmed cell
death. Recent data indicates strong association between
collective migration and resistance to radiotherapy and
chemotherapy in HCC cells [198].

During cancer metastasis, a variety of tumor cells show
changes their plasticity by morphological and phenotypical
conversions, including the epithelial to mesenchymal tran-
sition (EMT), the mesenchymal to epithelial transition
(MET), the collective to amoeboid transition (CAT), and the
mesenchymal to amoeboid transition (MAT) [182, 185, 186].

As mentioned previously in this chapter, EMT plays an
important role in the progression of HCC. During HCC
progression, a variety of tumor cells show changes in their
plasticity by morphological and phenotypical conversions
[195, 189]. In principle, EMT is characterized by a loss of
epithelial characteristics and gain of mesenchymal motility
[185]. Furthermore, EMT is described to maintain stem cell
properties, to prevent apoptosis and senescence, to suppress
immune reactions, and to acquire chemoresistance [185,
199]. It is believed that EMT is activated by the factors in the
tumor microenvironment including growth factors, hypoxia,
and ECM components [188, 189].

EMT is a transient state that allows cancer cells to dis-
seminate. However for metastasis that has to be reverted by
MET at the metastatic site. MET, much less characterized at
the molecular level, restores the specific epithelial identity.
MET is also described as individual to collective transition
and is important for colonization at secondary sites
[186, 200].

The microenvironment in HCC is a complex mixture of
tumor cells in ECM, combined with stromal cells and the
proteins they secrete. Since HCC develops in chronically
damaged tissue that contains fibrosis, inflammation, and
angiogenesis, the role of the ECM in the initiation and
progression in HCC is critical. Hepatic stellate cells and
macrophages are important for the secretion of ECM com-
ponents and growth factors that promote migration, inva-
sion, neovascularization, and fibrosis [187, 188]. Liver
fibrosis is characterized by an excess of ECM production
and reduced ECM turnover. Deregulation of collagen
crosslinking and ECM stiffness is important for integrin
signaling [201]. Deregulation of ECM homeostasis and
activation of integrin signaling lead to an excessive depo-
sition of collagen types I and II and fibronectin in liver and
activate several growth factors including TGF-b1, HGF, and
EGF [202].

TGF-b is mostly expressed in stromal cells rather than
malignant epithelial cells and is increased in HCC. At the
microenvironment level, TGF-b is a key mediator of EMT,
cell invasion, and angiogenesis in HCC. TGF-b also gen-
erates a favorable microenvironment for tumor growth [188].
While TGF-b1 treatment in HCC cells causes the down-
regulation of epithelial and hepatic markers (such as
E-cadherin and albumin), it causes the upregulation of
mesenchymal genes (such as vimentin and alpha-SMA) and
an increase in motility and invasion [189].

HGF is another important mediator of EMT in HCC cells,
as well as in fetal and adult hepatocytes [189]. It plays an
important role in HCC tumor progression by promoting EMT,
invasion, and cancer metastasis in cooperation with other
pathways [203]. HGF/c-Met activation induces well-known
EMT markers such as TWIST1, Snail, Slug, and ZEB1/2,
which result in the disruption of strong cadherin junctions and
the activation of cell migration and proteolysis of extracel-
lular matrix components [189]. Many studies have shown that
the overexpression of c-Met is correlated with a poor prog-
nosis, including a risk of tumor recurrence and short [189].
We and others have reported that the overexpression of c-Met
in HCC is linked to an unfavorable clinicopathological status,
including a low degree of differentiation, vascular invasion,
and metastasis [203, 204].

Several evidences strongly indicate that hypoxic
microenvironment in liver promotes invasion and metastasis
of HCC through inducing EMT [187, 189]. The possible
associated molecular mechanism is that HIF-1 interacts with
HREs in promoting Snail and upregulating the expression of
Snail to indirectly affect expressions of E-cadherin,
N-cadherin, and Vimentin [205]. In addition, HIF-1a acts as
a transcription factor to upregulate the expression of matrix
metalloproteinases (MMPs), especially MMP-2 and MMP-9
[187, 188].

Hypoxia also induces VEGR expression and activates
VEGF signaling which is a most important pro-angiogenic
factor in the progression of HCC. The increased expression
of VEGF correlates with HCC aggressiveness. Fibroblast
growth factor (FGF) acts synergistically with VEGF to
induce angiogenesis. Platelet-derived endothelial cell growth
factor (PDGF) is involved in new vessel maturation. Other
important mediators in tumor angiogenesis are integrins and
cadherins, which mediate cell–matrix and cell–cell interac-
tions, respectively, to establish contacts required for new
vascular tube formations [187, 188].

Chemokines are important regulators of cell trafficking
and endothelial cell migration in the tumor microenviron-
ment. Injured hepatocytes, oval cells, biliary epithelial cells,
sinusoidal endothelial cells, tumor-associated leucocytes,
and HCC cells can release CXCL12. CXCL12 activates
CXCR4-expressing cells, such as HCC cells, lymphocytes or
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endothelial cells in an autocrine or paracrine manner.
CXCL12/CXCR4 axis promotes angiogenesis and acting
synergistically with VEGF. Tissues expressing high levels of
CXCL12 attract malignant HCC cells expressing CXCR4.
CXCR4 expressing HCC cells can migrate through CXCL12
gradient in target tissues, supporting a chemotactic role for
this axis in the development of metastases [206].

Evidences of the role of CXCL12/CXCR4 on chemotaxis
in HCC tumor progression have been provided by several
reports showing high levels of CXCR4 in HCC tissues, but
not in normal hepatic tissues [187, 207, 208]. The majority
of studies show correlations between high CXCR4 expres-
sion and aggressive tumor behavior, metastasis develop-
ment, and poor prognosis [207, 208]. Expression of the
CXCR4 ligand, CXCL12, has been reported in tumor ascites
fluid and detected in HCC lymph node metastases, whereas
undetectable in HCC and normal hepatic tissues [207].
Furthermore, the importance of the CXCL12-CXCR4 axis in
cell growth, migration, and invasion of HCC cells has been
reported [206].

Tumor metastasis is a multifactorial process. Combina-
tion of tumor microenvironment, stromal network, and
genetics determinants of tumor cells are important for tumor
metastasis. Further studies are needed to understand the
basic biology of tumor metastasis with the underlying cel-
lular and molecular mechanisms. In particular, understand-
ing the mechanisms of transition between collective,
mesenchymal, and amoeboid mechanisms of cell invasion
will help the development of novel strategies to combat
metastasis.

3.7 Conclusion

Molecular mechanisms involved in hepatocellular carcinoma
indicate that these tumors are characterized by a deregulation
of mechanisms controlling the number and the phenotype of
hepatocytes and/or their progenitors (Fig. 3.2). Deregulated
cell cycle control, escape from senescence arrest, as well as
resistance to cell death promote overall cell proliferation.

Fig. 3.2 Overview of molecular mechanism involved in hepatocellular carcinoma
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Interestingly some of these changes can be explained by
acquired genetic mutations in HCC such as p53 and p16
mutations, and TERT promoter mutations. However, many
other aberrations are not presently linked to any known
mutation. Future challenge will be the deciphering of non-
mutational causes of cell growth anomalies in these tumors.
Another major mechanism of malignancy is the loss of
phenotypic stability observed in mature hepatocytes.
Many HCC cells display a phenotypic plasticity allowing
them to gain for example epithelial or mesenchymal mor-
phologies depending on their needs. Another character is
their increased motility that may help them to move from
their resident space to other parts of the liver, even of the
body. This faculty of changing morphology and behavior
depending on environmental conditions may confer great
survival and expansion advantage to HCC cells. Molecular
changes associated to different phenotypic stages of HCC
cells are well known. However, the mechanisms by which
these tumor cells are able to modulate their phenotype are
poorly known. Thus, another future priority in HCC research
will probably be the mechanisms of phenotypic plasticity.
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4.1 Introduction

The biology of the liver, the biological processes involved in
cancer development, and the etiological factors involved in
liver cancer development provide a focus on the early pro-
cesses and signaling pathways important in primary liver
cancer development. Perhaps, the most important point to
consider is the cell population at risk for initiation of the
cancer process in the liver. Since most hepatocytes are in G0
phase, first proliferation must be stimulated. Under normal
conditions, single cell death is followed by replacement of
that hepatocyte. One hypothesis is that cancer stem cells are
bipotential and can be stimulated to proliferate [4]. Their
(oval cells) outgrowth can occur under situations where a
large percentage of the liver is damaged. The stem cells then
differentiate into hepatocytes or cholangiocytes depending on
the degree and duration of damage. Agents that cause
extensive damage to the liver can result in neoplastic changes
that are fetal in nature. A second hypothesis is that mature
hepatocytes are the cell population at risk for early preneo-
plastic changes [5]. Mature hepatocytes can develop into
focal areas of proliferation that in turn can become nodular
areas of hyperplasia. In this case, both poorly differentiated,
small cell lesions (that are primarily diploid) and large cell,
more highly differentiated (tetraploid or higher ploidy)
lesions develop [6]. Understanding the etiology, proliferative
and differentiation cues for the liver, and the mechanisms of
the carcinogenesis process in the liver is key to understanding
the role of chemicals in the development of HCC.

Chemical, biologic, and physical agents can contribute to
cancer development. Perturbations in single cells lead to the
focal outgrowth of putatively preneoplastic lesions. The
altered areas can evolve into nodular hyperplasia, focus in
nodule pathology, and areas of frank malignancy [6]. To
determine the contributions of chemicals to the carcinogenic
process in the liver, a variety of animal models have been
developed. Since the liver is the primary site for cancer
induction in the bioassays used for carcinogen testing, there
is a need for extrapolation of animal of neoplasms that arise
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at this site to man. The utility of defining common
biomarkers for the conversion of benign to malignant tran-
sition will assist in developing appropriate inter-species
extrapolation. The analysis of early lesions will permit
assessment of the early changes that occur prior to the onset
of clinically detectable disease to our understanding of HCC.

4.2 Liver Cancer Is an Important
Biological Problem

Liver cancer is an important form of cancer worldwide
ranking in the top ten in both incidence and mortality [7, 8].
Hepatocellular carcinoma (HCC) is the primary form of liver
cancer. Primary liver cancer is the sixth most common form
of cancer (750,000 cases/year) in terms of incidence [9]. In
addition, it is the third most common cause of death
(725,000 deaths/year) from cancer [10], with eighty percent
of cases (and deaths) resulting from hepatitis B and/or C
infection and occurring in developing countries. Surveillance
Epidemiology and End Results [11], the National Cancer
Institute’s statistical unit, estimate that 35,000 new cases of
liver and intrahepatic bile duct cancer were diagnosed and
nearly 24,000 people will die from this disease in the US in
2015 [11]. Understanding the processes that contribute to the
cancer development process is an important component of
determining how and where certain compounds contribute to
liver cancer development and progression. Environmental
influences, including carcinogen exposure, are believed to
contribute to the distinct geographical distribution pattern of
primary liver cancer [12]. Another important cause of pri-
mary liver cancer in humans is viral with both HCV and
HBV infection contributing to its incidence. According to
NHANES 3, the number of individuals with chronic HCV
infection is greater than 2 million in the part of the US
population sampled [13, 14]. Chronic infection with hep-
atitis C virus (HCV) is known to be a major risk factor for
development of HCC. In general, HCC develops only after 2
or more decades of HCV infection and in those with
advanced fibrosis [14, 15]. Cirrhosis is also an important
factor associated with the development of primary liver
cancer and hence is an important control for liver cancer
biomarker development, most liver cancer arises in the
context of cirrhosis. In the US, less than 30 % of HCC is
viral in etiology. Excess alcohol use and diabetes mellitus
are independent risk factors for liver cirrhosis and are
associated with liver cancer development in the US [16]. In
addition, smoking may contribute to the risk of liver cancer
development. The residual 10 % of attributable risk of HCC
may be due to or influenced by hereditary metabolic disease
factors (such as hemochromatosis). Although rare genetic

disorders can contribute to liver cancer development, ethanol
and dietary factors are known to contribute to its incidence
and progression [2, 3]. The prevalence of liver cancer and its
high mortality rate indicate the need for appropriate animal
models of this disease in order to develop treatment and
intervention strategies. In addition, the pathogenesis of pri-
mary liver cancer development for different etiologies needs
to be better delineated. The influence of genetic background
and environmental factors on neoplastic development is
readily studied in rodent models of this disease.

4.3 Chemical Carcinogens

Carcinogenesis can be induced by physical, biological or
chemical means. Agents that act to increase the incidence
of cancer in appropriate organisms compared with con-
current and/or historic controls are considered carcinogens.
The identification of a carcinogenic potential for an agent
delineates the conditions of exposure (dose, time and
duration) under which the agent may induce cancer. Ani-
mals are surrogate models of humans since they possess
similar physiology and biochemistry. This similarity is not
absolute; hence any hazard detected must be examined in
the context of human relevance in order to understand the
conditions of exposure that may pose a plausible risk to
humans. Each human HCC is detected at different points
along the pathogenesis continuum and is the result of
distinct etiologies and pathogenesis. Several factors are
important for cancer development including a loss of nor-
mal growth control with contributions from inhibition of
apoptosis and enhanced but altered proliferation control
[17]. In addition, an altered differentiation status can con-
tribute to cancer development and progression. The mor-
phology and certain aspects of the natural history of rodent
and human cancer are coincident although the etiology and
the exact molecular pathogenesis may diverge between
rodents and man. Although several parallel pathways may
be induced, the pathway for cytogenetic alterations
observed in a specific cancer type is similar in rats, mice,
and men. The latency period between initiation of early
precancer changes in a single cell and their selection for
malignant growth comprises the reversible stage of tumor
promotion. In the human, exposure to dietary contaminants
such as aflatoxins, as well as calorie overload, ethanol over
use, and methyl deficiency can contribute to the risk of
primary liver cancer. Certain metals (iron and copper) have
been associated with an increased risk of primary liver
cancer. Thus, a number of classes of chemical agents can
increase the incidence of hepatic neoplasms depending on
their dose and duration of exposure.
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4.3.1 Genotoxic Carcinogens

Chemically induced carcinogenesis has been examined
experimentally for nearly 100 years [18, 19]. Initial studies
provided the compounds typically in the diet for extended
periods of time. For example, the studies of Sasaki and
Yoshida [20] demonstrated that chemicals could cause hep-
atic neoplasms in animals. Provision of o-aminoazotoluene in
the diet led to liver neoplasms in rats. Similarly, Kinoshita
[21] demonstrated that feeding 4-dimethylaminoazobenzene
to rats resulted in liver neoplasms. These findings suggest
that agents can be carcinogenic at sites distant from their
initial application. Importantly, analogues of these agents
have also been examined allowing some structural informa-
tion to be gathered about the properties of agents that have a
carcinogenic potential [22]. There is some tissue specificity
for carcinogenic action as polycyclic aromatic hydrocarbons
are not typically carcinogenic to the liver (except in some
circumstances during the neonatal period), while they are to
the skin [23]. Similarly, certain azo dyes, while carcinogenic
to the liver, do not have this activity in the skin [24]. The
agent 2-acetylaminofluorene but not its related regioisomer,
4-acetylaminofluorene, is carcinogenic in the rodent liver
[25]. However, dialkyl nitrosamines and several analogs are
cytotoxic to the liver and are carcinogenic in rodents and
many other mammals [26]. These activities are dose depen-
dent and high doses induce acute toxicity, while lower doses
are tolerated but can result in neoplasms if the dose and
duration of exposure is sufficient. Similarly, aflatoxin pro-
duced by the fungus Aspergillis flavus is acutely cytotoxic.
This agent is also carcinogenic in all species examined,
although the mouse is relatively resistant to its carcinogenic
action [27]. A variety of other agents in food can also be
carcinogenic to the liver including certain mycotoxins [28] in
addition to aflatoxin (fumonisin in rodents) and pyrrolizidine
[29] alkaloids (found in comfrey and riddelline). In addition,
a dearth of antioxidants and a lack of lipotropes [30, 31] can
lead to cancer development in the rodent.

4.3.1.1 DNA Adducts
This initial class of agents is capable of altering the genetic
material either directly, through one of its metabolites, or
through perturbation of the processes controlling its actions.
Agents that modify the DNA can initiate the carcinogenic
process [32]. Many of these agents can be metabolized to
form DNA adducts or may directly form them. Alternatively,
such agents can alter the methylation status of the DNA. In
each case, the DNA is modified in a manner that results in
heritable changes. In the case of DNA adducts when they are
coupled with cell proliferation mutations can result [33].
Such mutations can alter the function of selected genes, in
some cases inactivating them and in other cases enhancing

their activity [33]. The dose and duration of exposure of an
agent is an important contributing factor to understanding
the carcinogenic risk of an agent at doses to which humans
are exposed. Many agents with a carcinogenic potential can
be metabolized to an electrophilic form. These reactive
metabolites can bind to cellular nucleophiles including
DNA, RNA, proteins, and lipids [24]. The biological con-
sequences of these actions differ. Early studies by Miller and
Miller [34] demonstrated that certain carcinogenic agents did
not directly bind to proteins, but that following incubation of
the compound with tissue extract, the compound or some
derivative could be found bound to protein in normal liver
but not in the resulting neoplasm. This metabolic activation
or reactive metabolite formation would lead to the determi-
nation that the cell could metabolize some compounds to a
reactive form. For example, AAF is metabolized by ring
hydroxylation [35] and by N-hydroxylation [36]. The N-
hydroxy metabolite is more carcinogenic than the parent
AAF [24]. The N-hydroxy AAF is further metabolized by
esterification with glucuronyl, acetyl, and sulfate groups.
Although conjugation can lead to inactivation of reactive
metabolites, in certain cases it can result in more reactive
agents with facile leaving groups. This is the case for some
esters of N-hydroxy AAF [24]. In addition to the formation
of reactive metabolites, certain agents can form free radicals
[37]. Free radicals have no charge, but have an unpaired
electron that makes them reactive. This process can be
facilitated by the presence of free iron or copper. Endoge-
nous processes can form free radicals and metabolism of
certain carcinogenic agents can also lead to their generation
[38]. Many agents with a carcinogenic potential can be
metabolized to reactive forms providing a mechanism to
understand species differences and individual risks. Under-
standing the structural basis for metabolic activation permits
the prediction of agents that are likely to be directly geno-
toxic or that can be metabolized to a genotoxic form. In
addition, it generates a physicochemical basis for under-
standing mutagenesis at specific sites in the DNA and in
specific tissues. Careful analyses of structures of agents that
are positive in rodent bioassays have yielded reactive groups
that yield structural alerts for carcinogenic risk [39, 40].

4.3.1.2 Mutations and Their Consequences
The reaction of electrophilic substances with the DNA results
in physicochemical changes in the DNA. The high prevalence
of cancer in individuals with an inability to remove DNA
adducts in DNA repair deficiencies indicate the important role
of DNA damage in cancer induction [41]. Similarly, the high
incidences of mutations in selected genes in animal models of
cancer further demonstrate that DNA damage is the basis of
early cancer development [42]. Alkylation of DNA can occur
by carcinogenic agents that can be metabolized to reactive
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forms. In this case, the reactive metabolite can covalently
adduct to the DNA [43]. For example, aflatoxin B1 can be
metabolized to 8,9 epoxide of AFB1, which then binds to N7
guanosine leading to mutations [44]. Mutation of G to T can
occur at multiple sites, most notably at 249Ser of P53 [45].
Methylation, ethylation, and other alkylations can occur with
each of the bases as well as the sugar and phosphate backbone
[46, 47]. Direct acting electrophiles can bind to the N7 of
guanine, while softer electrophiles can bind to the ring oxy-
gens of the bases. Formation of bulky adducts can occur on
the purine ring, while small alkylations can occur more
ubiquitously. At lower exposures, selective alkylation can
occur, which may or may not be repaired. The presence of
DNA adducts and the repair of these lesions can result in
mutation. As the adduct burden increases with increased
dose/duration of exposure, the repair can be more extensive
and over a greater span of the DNA. In addition, as
dose/duration increases more cell types may become involved
as metabolism shifts and conjugation reserves are depleted.
Repair can outpace adduct conversion to mutations under
some circumstances. When the lesion is repaired, either the
base is removed or a larger segment of DNA is removed. Each
of these processes can have different rates and consequences
and each is dose dependent.

Point mutations, frameshift mutations, chromosome
aberrations, and aneuploidy can occur following chemical
administration. Because the degree of adduct formation, the
site of adduct formation, the ability of adducts to be repaired,
and the degree of metabolism to reactive forms, differential
activity can be seen in individual cells, tissues, organisms and
species. One consequence of the presence of DNA adducts is
cell death. Apoptosis is observed at lower concentrations
followed at higher exposures and degrees of damage by
necrosis. Direct-acting carcinogens are reactive without
requiring metabolic activation and are often carcinogenic at
the sites of exposure in multiple species [48]. Methylation or
ethylation of DNA can lead to base mispairing [46, 49].
Because these simple alkylations are similar to or can result
from endogenous processes, they are not as actively repaired.
In part, the more persistent DNA adducts/lesions are the ones
that have an important mutagenic consequence. For example,
ethylating agents can adduct at O6 alkylguanine and O4
alkylthymidine. The O6 adduct is readily repaired, while the
O4 adduct is more persistent leading to base mispairing with
different consequences for both lesions [50, 51].

The consequence of bulky adduct presence is to block
DNA synthesis resulting in noncoding [47]. However, the
DNA synthetic machinery can bypass such lesions placing in
its stead the most abundant nucleotide, generally an adenine
[52]. Since bulky adducts typically occur at guanines, this is a
useful endogenous strategy that can however result in more
marked consequences when more than one base is affected or
the adduct was not at guanine. Using 2-AAF as an example,

the parent is not mutagenic, but it can be metabolized to the
sulfate ester that is highly reactive; binding to the N7 of
guanine as well as the N3 of guanine [24]. In contrast to the
formation of a covalent bulky adduct by 2-AAF that distorts
the DNA structure, 2-aminofluorene, which also forms bulky
adducts at the same sites, sits outside of the helix and does not
distort it. As a consequence, 2AF can induce point mutations,
while 2AAF can lead to frameshift mutations [53]. Biological
consequence of the presence of DNA adducts is a function of
their persistence in the DNA [54] and impacts their tissue and
species specificity. The persistence of DNA adducts in viable
cells has consequences when cell proliferation occurs to fix
the mutation before repair can occur [33]. Once the mutation
is fixed, its location in the genome, the expression of that
DNA and the importance of the affected gene in that stage of
the differentiation of the cell, both impact its consequent
mutation and the ultimate consequence of a given adduct.
Although susceptibility to cancer induction can be modified
by polymorphisms in DNA repair genes [41], carcinogen
metabolism [55], and immune system [56] differences, genes
that regulate cell growth and proliferation are more fre-
quently the targets of carcinogens. Both protooncogene and
tumor suppressor gene function can be altered by carcinogen
exposure [57–59]. For example, oncogenes such as Ha-ras
can be activated by a single point mutation [60]. Activation of
Ha-ras is an important mechanism of HCC induction and
development in the mouse [42, 61], but not in rats or humans
[19]. In the liver, activation and mutation of b-catenin (and
possibly axin) is an important aspect of some types of liver
cancer [62, 63]. Similarly, mutations in HNF1 can result in
loss of differentiation status as evidenced by loss of expres-
sion of a number of drug metabolizing genes in the neoplasm.
Although mutations have been observed in a number of genes
in HCC development and progression, only a few genes have
been described with non-random mutations. Etiologic agents
have been examined with respect to the resulting mutations
observed in specific genes including p53, b-catenin and
HNF1. There appear to be multiple pathways that can lead to
HCC initiation and progression [63].

Endogenous DNA modifications can be perturbed and
this perturbation can contribute to chemical carcinogenesis.
Hydroxylation of DNA bases can also occur both through
endogenous processes and by certain DNA damaging agents
[64]. Repair processes for oxidative damage are pervasive in
most cell types nonetheless oxidized bases can persist [65].
Although all of the DNA bases can be oxidized, the most
common are 8-hydroxy deoxyguanosine [66] and
5-hydroxymethylthymine [67]. These oxidative bases likely
arise through endogenous processes [68] and they are readily
repaired. The most prevalent endogenous modification of
DNA is methylation of deoxycytidine [69, 70]. Chemical
carcinogens can perturb this process by adduct formation,
altered one-carbon pools, single strand break formation, or
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inactivation of the enzymes involved in the methylation
process [71]. Diets deficient in lipotropes can result in
marked steatosis followed in time by HCC formation in
rodents [31]. Methyl deficient diets can result in DNA
hypomethylation. Global hypomethylation results in
re-expression of genes in general, while hypermethylation
results in their silencing [72]. Perturbation of nucleosomes,
of minor and major groove protein binding, and the DNA
repair process can likewise lead to DNA perturbations. The
presence of a DNA adduct does not mean that a mutation
will occur, but it does increase the probability. Both
endogenous and exogenous derived DNA alterations can
result in cancer initiation [64].

4.3.1.3 The Role of Cell Proliferation in Cancer
Initiation

The presence of DNA adducts coupled with cell proliferation
can lead to mutation. This process is called fixation wherein
the mutation is fixed when an adduct or other DNA alter-
ation persists through a cycle of DNA synthesis [33]. Thus,
the rate of cell proliferation and DNA synthesis can impact
DNA damage [73]. In situations where repair processes are
normal, high rates of cell proliferation can still lead to
mutations. Inherited defects in DNA repair lead to an
increased risk of neoplasia [47] in many cell types especially
in the GI tract with its high rate of exposure to potentially
mutagenic agents and its high rate of proliferation. Hepato-
cytes turn over slowly by comparison except in circum-
stances of persistent inflammation induced by hepatitis
(viral, alcohol, or drug induced). DNA polymerases are not
completely faithful in their replication of the DNA [74, 75].
Since a variety of types of DNA damage can occur, many
processes exist to remedy their activity. Excision repair can
remove either a modified base or nucleotide. The presence of
an adduct will result in excision and repair with more bases
removed and potentially misrepaired for nucleotide excision
compared with base excision repair. Single strand breaks are
readily repaired. The repair of double strand breaks is more
problematic [76] and a nonhomologous end joining process
is used that is error prone [77]. Mismatch repair can occur
when bases are mispaired or when it appears that they are
mispaired due to the presence of a DNA modification [78].
Perturbation of the mismatch repair process can result in
mutations. Larger DNA damage including amplifications,
deletions, and aneuploidy can occur. Agents that lead to
these lesions contribute to the carcinogenesis process by
altering gene dosage of critical genes and/or perturbing their
expression. Although mutations alone do not lead directly to
neoplasia, they can contribute to the process when they
occur in genes critical for cell survival, proliferation, apop-
tosis, and differentiation status.

4.3.2 Non-genotoxic Mechanisms of Chemical
Carcinogenesis

A variety of compounds other than mutagenic agents can
contribute to liver cancer development. These agents have in
common the ability to alter cell survival either by increasing
cell proliferation or decreasing apoptosis. Agents that have
this activity include those that cause cytotoxicity and those
that perturb signaling pathways associated with growth
factors, some of which act through nuclear receptors [19,
79]. Certain agents are cytotoxic at either high doses or with
chronic administration [80]. These agents such as chloro-
form do not pose a risk when exposure occurs below the
threshold for cytotoxicity [81]. For example, chronic high
dose ethanol consumption results in high levels of
acetaldehyde generation [82]. Aldehydes can covalent
adduct to proteins through Schiff base reactions and with
other cellular components. In addition, CYP2E1 that gen-
erates acetaldehyde is loosely coupled to oxidoreductase
resulting in the generation of reactive oxygen species.
Acetaldehyde can result in exocyclic etheno DNA adducts
[83]. The resulting oxidant damage and lipid peroxidation
can lead to chronic hepatitis. In addition, the marked
steatosis that can occur in conjunction with excess alcohol
consumption may perturb the insulin/IGF1 signaling path-
way of cell survival in the liver [83]. Similarly, the one
carbon cycle with eventual folate/choline depletion can
contribute to cancer development [84]. Ethanol over con-
sumption in conjunction with HCV increases the risk of
cancer development [85]. In addition, alcohol abuse in the
context of hemochromatosis increases both cirrhosis and
HCC risk [86]. In part this may be due to increased oxidant
stress in the presence of both increased lipid deposition and
increased iron. Low alcohol intake does not appear associ-
ated with an increased risk of HCC, while higher levels are
associated with an increase in risk of both cirrhosis and HCC
[87]. In some parts of the world, alcohol is made with moldy
food staples containing other liver toxins that can compound
the problem. Similarly, intake of high levels of iron in
conjunction with alcohol can similarly exacerbate the oxi-
dant stress in the liver leading to cirrhosis. Since cirrhosis is
associated with more than 60 % of HCC in the human [8],
this is an important pathway through which ethanol con-
tributes to primary liver cancer development.

Studies in animal models indicate that agents that act
through selected nuclear receptors are associated with the
ability to regulate cell proliferation/survival, apoptosis, and
differentiation can promote tumor development [18, 19, 79].
Such agents can promote the outgrowth of cells with genetic
damage into preneoplastic lesions and hence can under
certain circumstances of exposure increase the incidence of
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hepatic neoplasia in rodents and humans. Tumor promoting
agents are believed to alter the balance between proliferation
and apoptosis in initiated cells relative to the normal sur-
rounding cells [88, 89]. Studies with prototypical hepatic
tumor promoting agents including phenobarbital, PPARa
agonists, and ethinyl estradiol indicate that a generalized
mitosuppression of non-focal hepatocytes is an early and
sustained activity of such agents. In addition, reversible
alteration of gene expression is associated with tumor pro-
motion. Furthermore, tumor promotion is reversible and
exhibits a threshold for the selction of initiated cells [27].

4.3.2.1 Phenobarbital
Phenobarbital and related agents are not genotoxic, yet they
can result in the development of cancer in susceptible
organisms [90]. While selected mouse strains can develop
neoplastic lesions following chronic exposure to Phenobar-
bital or related agents, certain rat strains can develop ade-
nomas and rarely adenocarcinomas after chronic exposure.
At therapeutic doses, man does not appear susceptible to liver
tumor development with chronic Phenobarbital administra-
tion (c.f. [91]). Initiation-promotion studies indicate that
Phenobarbital has a promoting action [92]. Importantly, a
dose dependent promoting activity is observed that exhibits a
threshold [92, 93]. Interestingly, phenobarbital and related
agents can increase the background proliferation rate tran-
siently in the liver [94]. Specifically, Phenobarbital increases
the focal relative to the non-focal hepatic labeling index [95].
Importantly, Phenobarbital promotes eosinophilic, but not
basophilic lesions [96]. In addition, a mitosuppression can be
observed in the non-focal hepatocytes [97], while the discrete
focal hepatocytes have an increased rate of proliferation
compared with control hepatocytes or the surrounding nor-
mal appearing ones [98, 99]. Phenobarbital increased DNA
synthesis and decreased apoptosis in hepatocytes in vitro [99,
100]. Studies with Phenobarbital showed that only the pro-
moting dose resulted in changes in gene expression associ-
ated with apoptosis suppression and cell proliferation, while
dose dependent changes in selected drug metabolizing agents
was observed [100]. It has been suggested that the increased
growth rate of the eosinophilic lesions compared with the
surround is due to the decreased responsiveness of the altered
focal cells to TGFb family members that are responsible for
apoptosis [101, 102]. IGF2R modulates cell proliferation in
response to insulin and IGF family members and apoptosis in
response to TGFb. The expression pattern is altered in focal
compared with non-focal areas of the liver for IGF2R and
TGFbR [102, 103]. Phenobarbital can promote those initiated
cells with a low level of TGFbR, while increasing ligand
expression in surrounding hepatocytes [102–104]. TGFb is a
potent mitoinhibitor of hepatocytes and phenobarbital
increases this ligand in non-focal hepatocytes and TGFb is

increased at the protein level during mitosuppression induced
by Phenobarbital exposure [103, 104].

Previous work has demonstrated that Phenobarbital-like
compounds cause the increase in gene expression of a
number of genes including CYP2B1/2 [105] and is tran-
scriptionally regulated [106]. The tumor promoting action of
this type of agent is correlated with the induction of CYP2B1
[107]; therefore, the mechanism underlying tumor promotion
by phenobarbital and related compounds has been associated
with the mechanism of CYP2B1 induction. Since a struc-
turally diverse group of compounds act in a similar manner, it
has been under consideration as to whether a receptor was
responsible for this action. The constitutive androstane
receptor (CAR) plays a role in the induction of CYP2B
family members [108]. Agents that act to alter the metabo-
lism of testosterone derivatives, specifically androstenedione,
can alter endogenous activation of the CAR receptor [109].
There are two forms of CAR and Phenobarbital can displace
the ligand from CARb [109]. Agents such as phenobarbital
activate the CAR receptor to perturb gene expression [110–
113]. Studies in knock-out mice indicate that certain genes
are expressed or repressed when the CAR receptor is present
while a separate set is affected when it is not present [113,
114]. It is clear that CAR is associated with the gene
expression acutely associated with phenobarbital exposure,
but how this is associated with tumor promotion is unclear.
CAR knock-out mice have been used to confirm that CYP2B
expression is dependent on CAR [112]. Nonetheless, CAR
knock-out mice are resistant to Phenobarbital induced hepatic
tumor promotion [114]. Interestingly, chronic Phenobarbital
administration results in DNA hypomethylation that is
CAR-dependent [115]. The mouse strain susceptible to
spontaneous and chemical carcinogenesis is sensitive to
promotion by Phenobarbital, while the resistant strain
C57B6l6 is resistant. The tumors arising spontaneously in
C3H mice are Ha-ras-mutation positive [116], lack CAR, and
are not promoted by phenobarbital [117]. These tumors lack
CAR, but express b-catenin and are promoted by phenobar-
bital [117, 118].

Nuclear receptors are frequent targets of drugs and of
environmental chemicals. The function of these ligand
activated transcription factor receptors is to regulate
endogenous metabolism; hence, homeostasis can be per-
turbed when their function is modulated. Drugs and envi-
ronmental chemicals can alter the effects of multiple nuclear
receptors due to their broad and overlapping substrate
specificity. The interaction of nuclear receptors with coac-
tivators and corepressors provides another level of control of
their function within cells. The CAR is a nuclear receptor
that regulates the expression of drug metabolizing enzymes
[110–113]. CAR is an important regulator of many genes
involved in drug metabolism including a number of P450s,
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phase 2 enzymes, and transporters. Species specificity in
response to CAR agonists have been detected although that
of Phenobarbital (PB) is only 1.5 fold (the human is less
sensitive) and human CAR is not sensitive to the same bile
acids as mice [119]. The mode of action of phenobarbital for
hepatic tumor promotion has been reviewed [120].

4.3.2.2 Estrogenic Agents
In the human, certain estrogenic formulations can result in
adenoma development and rarely in carcinomas. Estrogenic
agents can be carcinogenic to rat liver, but tend to inhibit
cancer development in the mouse liver. Estrogenic agents are
clearly promoting toward the rat liver, but the basis for this
action is unknown [121–126]. Estrogenic agents can increase
cell proliferation in the rat liver and can induce focal prolif-
eration with mitosuppression in the surrounding hepatocytes
[127, 128]. Examination of altered gene expression during
the mitosuppression observed with chronic ethinyl estradiol
treatment demonstrated an increase in TGFb and
IGF2R/M6PR without a change in myc or CEBPa levels
[129, 130]. The increase in TGFb leads to CKI induction that
may lead more directly to the mitoinhibition [131]. Similarly,
EE exposure induces TGFb1 expression. Hepatocytes with
decreased levels of TGFbR are at a selective growth advan-
tage compared to cells without this characteristic [102].
Hepatocytes that survive TGFb exposure have decreased
HNF4a activity, but increased fos, jun, myc, and ras levels
[132]. Oncogene expression can confer tumor characteristics
that TGFb responsiveness can limit [133]; thus, loss of TGFb
responsiveness is permissive to acquisition of the tumor
phenotype. In certain, hepatocarcinogenesis protocols
administration of tamoxifen results in the regression of a
component of the lesions suggesting an estrogen- (and
estrogen receptor-) dependence for those lesions [134–136].

Sustained estrogen receptor activation is known to
increase the incidence of liver neoplasms in animals and
humans [137–140]. An increase in adenomas was observed
in young women taking an early form of oral contraceptives
(with a higher dose and different formulation to the current
available forms). Rarely, HCC were observed in women
taking early formulations of estrogens for oral contraceptive
purposes [90, 137]. Estrogenic agents are effective tumor
promoting agents in the rat liver and their action to initiate
cells through catechol estrogen formation [138] or induction
of aneuploidy [139] needs to be assessed at physiological
concentrations. For example, certain estrogenic agents can
cause a burst of increased proliferation in the rodent liver
[140]. This transient increase in cell proliferation is associ-
ated with stimulation of the estrogen receptor [124, 128].
There is a mitosuppression in the normal appearing hepa-
tocytes, while the focal, putatively, preneoplastic hepato-
cytes have a sustained increase in proliferation [128, 129,
141]. Although the incidence of HCC in humans following

chronic (greater than 5 years) estrogen exposure is low, the
incidence is definable and permits one to anchor the inci-
dence in rats where a clear carcinogenic response to high
dose, potent carcinogens is observed under defined exposure
conditions. This observation permits more accurate risk
assessment from animal hazard identification studies.
Extrapolation of potential for risk across species could be
performed using the low incidence human tumor data as an
anchor for the calculations.

Estrogenic agents have a carcinogenic potential at several
sites including the mammalian liver [90]. Estrogenic agents
are known liver tumor promoting agents in the rat [122, 123,
135] and in the human [142]. There is an apparent threshold
for promoting action [142–144]. The mechanism of tumor
promotion is not known although an increase in focal pro-
liferation and a decrease in focal apoptosis have contributing
roles. Although tamoxifen has an estrogenic action in the
liver that may contribute to its promoting action, the phe-
notypes of the liver lesions that arise with mestranol and
tamoxifen treatment differ [145]. In addition, tamoxifen can
inhibit the development of mestranol promoted lesions
indicating a divergent mechanism of action [124, 135]. The
mechanism of estrogenic/antiestrogenic action for tamoxifen
is only incompletely understood. While this action may in
part be due to an interaction with the estrogen receptor, other
factors may also be involved. For example, antiestrogens
bind to sites other than the estrogen receptor including
covalent binding to P450s [146], tubulin [147], and other
interactions with “antiestrogenic binding sites” [148]. In
addition, antiestrogens inhibit protein kinase C and
calmodulin activity [149]. In addition, antiestrogens alter the
production of several peptide growth factors including TGFa
[150], TGFb [151], and IGF1 [152], and affect some calcium
dependent processes [153]. Estrogenic and antiestrogenic
agents additionally alter cholesterol metabolism [148].
Tamoxifen appears to promote the diploid hepatocyte pop-
ulation [154], similar to ethinyl estradiol [155]. The triph-
enylethylene antiestrogens have differential effects on the
hepatic proliferative rate in the rat [156, 157]. In the liver
itself, triphenylethylene antiestrogens have an estrogenic
action; however these drugs are mixed agonist/antagonists in
a species, strain, tissue, gene, and hormone status basis.

Mestranol is a synthetic steroidal estrogen that is
metabolized [158] to the potent rat liver tumor-promoting
agent, ethinyl estradiol [150]. Mestranol use in oral contra-
ceptives was associated with an increased incidence of
hepatic adenomas and a few HCCs in young women [90,
159–161]. Studies in rats indicate that mestranol and its
active metabolite ethinyl estradiol promotes the development
of previously initiated liver cells through induction of ele-
vated cell proliferation levels. Mestranol does not have a
marked effect on P450 profiles in the liver [162], but it can
cause cholestasis [163] and clearly enhances liver growth
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[162]. Chronic administration of ethinyl estradiol results in
mitosuppression of liver cells with selection of resistant
hepatocytes for outgrowth [127, 128] and this in combina-
tion with its ability to increase cell proliferation [124, 164];
is believed responsible for its tumor promoting properties
[121–124, 127, 128, 144, 165, 166]. Tumor promotion by
ethinyl estradiol is effected through the estrogen receptor,
since it can be inhibited by tamoxifen [135, 136]. At low
doses and for short durations of administration, ethinyl
estradiol can increase hepatic hypertrophy and a transient
increase in cell proliferation [124, 164], while with chronic
administration a mito-inhibition is observed [124, 127].

4.3.2.3 PPAR Agonists
The peroxisome proliferators activated receptors (PPARs)
are members of the steroid/retinoid receptor superfamily.
Three mammalian nuclear receptors of the PPAR class have
been isolated including PPAR alpha, delta, and gamma
[167]. The PPAR alpha receptor is a ligand activated nuclear
transcription factor that is responsible for the regulation of
lipid catabolism [168]. The PPARa receptor and the retinoid
X receptor nuclear receptor (RXR) can heterodimerize and
bind to peroxisome proliferator response elements (PPRE) to
alter the transcription of genes including those that are
involved in lipid metabolism [169–171]. Peroxisome pro-
liferators include structurally diverse chemicals that can
activate the PPARa receptor including industrial chemicals,
plasticizers, herbicdes, and some lipid lowering drugs [171–
173]. Agonists of PPARa induce peroxisome proliferation
[173, 174], hepatomegly [173, 175], cell proliferation [173,
176, 177], and liver neoplasms in rodents [171, 177, 178].
Although numerous theories exist regarding the mechanism
of hepatocarcinogenesis in the rodent following chronic
exposure to PPARa agonists, the mechanism is not fully
understood. In general, PPARa agonists are not genotoxic
and demonstrate a promoting activity [179]. Similar to other
receptor-mediated, non-genotoxic rodent carcinogens,
PPARa agonists, including WY14, 643, methylclofenapate,
Nafenopin and clofibric acid increase the TGFb1 ligand,
while these agents excluding clofibric acid increase expres-
sion of the IGFII/Man6P receptor [180]. Sustained PPARa
receptor activation is required for induction of liver tumors,
since PPARa knock-out mice do not develop hepatic neo-
plasms even after a one year exposure to a PPARa agonists
[181]. Similarly, peroxisome proliferation and gene expres-
sion regulated by PPARa are not altered by exposure to
PPARa agonists in the knock-out mice [181]. The lack of
carcinogenic action in the human relative to the rodent has
been explored with human PPARa receptor knock-in mice
[182]. Although the precise mechanism of the hepatocar-
cinogenesis of PPARa agonists in rodents is not fully
understood, it appears dependent upon PPARa receptor
activation [183–185]. Thus, PPARa agonists are

non-genotoxic carcinogens that function through receptor
activation [186] and appear to be carcinogenic in the rodent,
but not in primates.

4.3.2.4 AhR Agonists
The aryl hydrocarbon receptor (AhR) is structurally distinct
from the nuclear receptors, and contains a bHLH-PAS
domain [187–189]. The ligand bound receptor interacts with
arnt and this dimerization partner regulates the expression of
specific genes. The ligand-binding domain of AhR is within
the PAS domain. The PAS domain of AhR binds ligand,
binds to a repressor (probably hsp90) and has some of the
interaction function with arnt. The function of excess AhR
ligand may be to block the function at the other sites of arnt
binding. The low affinity allele of AhR found in some mouse
strains is similar to that observed in humans [190–192]. In
addition, the transactivation domain part of AhR is highly
divergent with only a 60 % identity between rat and human
[192]. This suggests that human gene expression in response
to an AhR ligand will differ qualitatively as well as in mag-
nitude from that in rats and mice containing the high affinity
AhR allele.

TCDD and related agents can induce a range of toxicities
that may be mediated by AhR [187]. Dioxin lacks any
genotoxic activity, yet increases the incidence of hepatic
neoplasms in rats [193]. Dioxin can cause marked cytotox-
icity at higher doses and this may contribute to its tumor
promoting activity. Activation of arylhydrocarbon receptor
(AhR) by 2,3,7,8 tetrachlorodibenzoparadioxin (TCDD) and
related compounds of the furan and PCB classes results in
alterations in gene expression including an induction of
CYP1A1 [194]. Although the role of CYP1A1, if any, in
tumor promotion is unclear, CYP1A1 expression is a useful
marker for ascertaining exposure to this class of compounds.
Over 100 genes may be regulated by AhR activation [195].
Genetic differences between mouse strains have been used to
demonstrate that TCDD-mediated liver tumor promotion is
AhR dependent [196]. Transgenic mice overexpressing a
constitutively active AhR are more sensitive to
diethylnitrosamine-initiation resulting in a higher yield of
preneoplastic lesions than the genetically matched control
animals [197]. Knock-out animals have been generated
[198–200]. The gene expression patterns [201] and toxicity
[202] have been examined after acute but not chronic
administration of TCDD to the knock-out animals. The
genetic background of the animal is important for its
potential to develop neoplasms in response to TCDD
administration. Since a selection for neoplastic clones
resistant to the toxic insult that permits their outgrowth
occurs, Ha-ras mutated hepatocytes might be resistant to
AhR dependent toxicity. Liver tumors from TCDD treated
mice have a high incidence of Ha-ras mutations [203] sug-
gesting that the C3H background would be exquisitely
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sensitive to TCDD induced tumor promotion [119]. When
IL1-like knock out mice are generated on an AhR knock-out
background, hepatic tumor induction by TCDD is decreased
[203] similar to the dual receptor dependence on the IL1R
and AhR receptor for TCDD-induced hepatotoxicity.

Initiation-promotion studies in the rat [204, 205] indicate
that there is a threshold for the promoting action of TCDD
and related compounds. A variety of studies indicate that
TCDD causes a generalized mitosuppression in the liver
[206, 207]. However, an increased cell turnover in focal
lesions was noted relative to the surrounding liver [208,
209]. The initiated cell population is resistant to apoptosis
[209, 210]. Interestingly, the AhR null hepatocytes both
secrete TGFb ligands and are quite sensitive to the apoptosis
induced by TGFb [210], indicating that AhR deficiency
leads to increased TGFb ligand production wherein selection
for resistance to its apoptotic effects would permit promo-
tion. Perhaps, TGFbR or processing of TGFb through
IGF2R would confer selective growth advantage to AhR−/−
mouse hepatocytes that secrete TGFb ligands. The AhR null
mice have been used to demonstrate that the gene induction
profile associated with AhR activation are altered [201] and
the acute toxicities associated with AhR activation are
diminished [202]. For example CAR is increased by AhR
activation [211], while growth hormone receptor and janus
kinase 2 are decreased [212]. Future studies should address
the question of carcinogenicity in mice with AhR overex-
pressing and null alleles on different mouse strain back-
grounds. In the human, exposure to TCDD has been
associated, but not causally linked to an increased cancer
risk [213, 214]. In part, the human AhR receptor is less
sensitive to activation by AhR ligands [192] and in part, the
exposure level in humans has been below that required to
cause sustained tumor promotion [214]. Other agents in the
class including certain of the polychlorinated biphenyls and
the tetrachlorofurans may act in part through an
AhR-dependent mechanism. Each agent has a unique con-
tribution of AhR, CAR, and ER-dependent activity, as well
as other actions including cytotoxicity that may contribute to
its carinogenicity in rodents and provide a potential risk to
the human. Certain exposures to mixtures of PCBs and
furans have been associated with an increased risk of human
liver disease and cirrhosis [215], but a causal link has not
been made to cancer. Even in worker populations, the low
incidence and lack of consistent dose trend prohibits the
conclusion of causality [216]. The risks at high dose expo-
sure differ from the risks posed by ambient exposures, sine
multiple modes of action occur at the higher exposures.

4.3.2.5 Ethionine
Ethionine is an antimetabolite of the amino acid methionine
when administered in the diet for extended periods can result
in the development of liver cancer in rats [30]. This was the

first example of direct interference with the metabolism of a
normal metabolic constituent, resulting in the development of
cancer. Ethionine induces marked steatosis that progresses to
NASH, cirrhosis and HCC [31, 217]. Its ability to disturb
one-carbon pools (rats are ten times more sensitive than
humans to choline deficiency), folate metabolism, and to
induce steatosis is similar to alcohol-induced changes that
progress to cirrhosis and ultimately to HCC. This compound
interferes with methylation causing hypomethylation upon
chronic administration [217]. This agent is not used in the
human.

4.4 Pathogenesis of HCC

The pathogenesis of human HCC has been examined
extensively [6–8, 218]. Generally, the neoplasms are detec-
ted at late stage when many concurrent genetic changes are
apparent. Tracing the earliest genetic changes in clinical
samples has been limited. Studies using CGH arrays and
gene expression analysis indicate that multiples pathways
and multiple mechanisms lead to HCC development and
progression due in part to different etiologies and time dur-
ing pathogenesis of clinical detection. Primary liver cancer
associated with cirrhosis evolves from precancerous lesions.
Dysplastic nodules have variable degrees of atypia and can
exhibit a focus or nodule in nodule appearance that can
range from normal appearing to neoplastic in appearance.
The formation of dysplastic nodules is not required for HCC
development. Large cell dysplasia appears to be a response
to injury and is not strictly a preneoplastic lesion although it
is associated with an increased risk of HCC in a cirrhosis
background of more than 3 fold [6]. On the other hand, small
cell dysplasia seems more characteristic of preneoplastic
change with greater than a 6 fold risk [6]. These small cell
dysplastic cells are more diploid and less differentiated in
character than the large cell dysplasias.

4.4.1 Rodent Models of Hepatocarcinogenesis

Examination of the epidemiology of liver cancer in humans
indicates that both genetic and environmental factors are
involved in the etiology and evolution of this disease.
Studies in rodents can provide insight into the various fac-
tors involved in liver carcinogenesis. Early studies on
rodents exposed to carcinogens indicated that male rodents
are more likely to develop liver tumors [219, 220]. Rats,
although relatively resistant to the spontaneous induction of
liver neoplasms, will develop hepatic tumors later in life
with a sex-bias in incidence that differs between strain and
study [221]. This compilation of strain background effects
on spontaneous liver tumors in rats suggests that females
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have a slightly higher rate in Charles River CD,
Osborne-Mendel, and Fischer rats and the incidence in males
being marginally greater in the Wistar strain. Hepatic tumors
can be readily induced in the rat by a variety of carcinogenic
agents, with the male generally more sensitive than the
female. The cancer bioassay is performed in 2 species of
rodent, the rat and mouse. The sex specificity of liver tumor
induction is, however, carcinogen specific due in large part
to the sex dependence of the metabolic pathways.

4.4.2 Rat Models

The rat liver has been used extensively as a model of the
carcinogenic process [5, 17]. Three basic protocols with
numerous variations have been described including resistant
hepatocyte model, neonatal rat model, and the partial hepa-
tectomy model. These models couple carcinogen adminis-
tration with a period of rapid cell proliferation due to the
intrinsic growth of the tissue in the neonate, the wave of
proliferation that occurs following surgical resection, or the
extensive necrosis induced by excessive carcinogen admin-
istration. These studies can be used to examine very early
changes in the pathogenesis of preneoplasia in the rat liver.
The initiation-promotion-progression (IPI) model [222], the
Solt-Farber model [223], and transgenic [224] rat models can
be used to analysis later focal hepatic lesions, adenomas and
carcinomas. The utility of the rodent as a model lies in the
ability to assess the changes associated with early premalig-
nant changes that would not be detected in clinical samples
that present late in the progression process. In addition,
rodents can be used to model gene-environment interactions
in a controlled manner. Thus, the early premalignant changes,
as well as the initial stages and pathways in progression of
primary liver cancer are tractable in rodent models, while
human cases are more amenable to analysis of later
progression.

The rat has been used extensively as a model in which to
examine the process of liver cancer development and to
ascertain which compounds can influence cancer develop-
ment in the liver. Studies by Bannasch [225] indicate that
two pathways that evolve toward HCC in the rat are thy-
roidmimetic and insulinmimetic (insulin signaling pathway)
with resulting glycogen accumulation phenotype). With
progression, a shift from anabolic to catabolic glucose uti-
lization occurs in the insulin dependent signaling pathway.
Similarly in humans, diabetes mellitus predisposes to HCC
development as an independent risk factor [16]. This effect is
observed in livers of rats treated with Phenobarbital and
related types of agents that promote eosinophilic lesions,
while a thyroid like effect is observed for the basophilic
lesions that arise with PPARa agonist administration [225].
Although PGST has been used as a marker of putatively

preneoplastic lesions in the rat and is increased in expression
in single cells following carcinogen exposure, in focal
lesions with promotion, and in some neoplastic nodules and
neoplasms, a deficiency of glucose 6-phosphatase expression
may be more representative of hepatic lesions that will
progress to neoplasia [225, 226].

Analysis of the gene expression changes across the car-
cinogenesis process and especially in preneoplastic lesions
or following carcinogen exposure can illuminate the pro-
cesses impacted by carcinogens. Recently, gene expression
analysis has been applied to gain a clearer understanding of
the changes that accompany liver cancer development in the
rat. Many of these studies have been performed using vari-
ations on the Solt-Farber selection model for rat liver cancer
induction [223]. Preneoplastic lesions have a higher level of
expression of genes that are anti-apoptotic (p53, NK-kB and
Bcl-2 pathways) and pro-proliferation [226]. Proliferation
gene changes are also common in liver tumors, while
apoptosis was decreased [227, 228]. Early nodules demon-
strate a decrease in both growth hormone receptor and
growth hormone binding proteins [229]. Specifically, IGF2
is expressed during liver cancer development, while IGF1 is
decreased during liver cancer development [230]. These
more fetal-like gene expression patterns are observed during
early tumor development [231]. The increased expression of
TGFa and HGF and their respective receptors, EGFR and
met, observed in early nodules is lost with neoplastic pro-
gression [232]. Gene expression analysis demonstrates many
genes in common between neoplastic nodules and HCC with
only a few genes uniquely observed in HCC [226, 232].

4.4.2.1 Multistage Nature of Cancer
Development

Molecular analysis of the pathogenesis of the natural history
of liver cancer induction and progression has been exten-
sively examined in the rodent. In the rat, single hepatocytes
aberrantly expressing glutathione S transferase P (GSTP)
can be observed within two days of carcinogen exposure
[233–238]. Under many conditions, GST expression has
been suggested to represent a population of initiated hepa-
tocytes in the rat liver [235, 236, 238]. This is true for
several types of genotoxic carcinogens including diethylni-
trosamine [233, 238], an alkylating agent, aflatoxin B1 [233]
that results in the formation of bulky DNA adducts, and
choline deficient diet that result in depletion of methyl pools
[237]. Single GSTP expressing hepatocytes are found in a
dose-dependent manner following carcinogen administration
[233]. Some subset of these cells will grow into colonies of
hepatocytes also expressing GSTP. These findings suggest
that the single GSTP expressing cells are precursors of those
that form colonies and by definition of some of those that
will progress into hepatic neoplastic nodules and HCC.
Single hepatocytes expressing GST have the characteristics
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associated with initiated liver cells; namely, dose dependent
induction with carcinogen administration, rapid appearance
after carcinogen treatment, enhanced intrinsic proliferation
compared with surrounding apparently normal hepatocytes,
and response to the selective growth pressure exerted by a
promoting agent [233]. Expression of genes at the single cell
level has been inadequately characterized, but GSTP and
GGT are increased in certain hepatocytes following car-
cinogen administration.

4.4.2.2 Promotion
The promotion stage of cancer development has been oper-
ationally defined as the clonal expansion of the initiated cell
population. The growth kinetics of GST expressing hepato-
cytes can be followed over time through the analysis of the
size and volume fraction of the liver occupied by GST
expressing hepatocytes [233]. The hepatocytes within AHF
during promotion are primarily diploid [239, 240] and
additionally lack demonstrable karyotypic changes [240].
Promoting agents stimulate the growth of the focal hepato-
cytes in a reversible manner and this can be determined by
assessment of the size of the observed (GST expressing)
hepatic lesions and by determination of focal increase in the
expression of cell proliferation markers [234]. The net
growth rate of GST expressing hepatocyte colonies can be
determined from the volume fraction occupied by such
lesions as a function of time. The net growth rate thus reflects
the balance between the birth and death rate within this
population in relation to that observed in the surrounding
apparently normal cells. While many of the GSTP expressing
lesions will regress, the nodules that concurrently express
GSTP and gamma glutamyltranspeptidase (GGT) appear to
be the ones that progress. The loss of expression of glucose
6-phosphatase has also been associated with progression, but
it is unclear whether this is through a different mechanism
than for GSTP expressing lesions. Gene expression has been
examined in these early putatively preneoplastic lesions that
precede nodule-in nodule of HCC.

4.4.2.3 Progression
The stage of progression encompasses the spectrum of
changes that occur in the conversion of preneoplastic cells
into malignant neoplasia [32]. There is not as yet a validated
method for the quantitation of hepatocytes in the stage of
progression. This stage is characterized by an evolving
karyotypic instability and aneuploidy indicating the necessity
of understanding alternative pathways in progression of liver
neoplasia. Morphologically, the focus in nodule configura-
tion is the earliest endpoint for detection of progression in the
liver [32, 222, 241, 242]. Interestingly, gene expression dif-
ferences between resistance and sensitivity of rat strains to
liver cancer progression have been described [243].

4.4.3 Mouse Models

Certain mouse strains are more susceptible to spontaneous
[244] and chemically induced [245] hepatic tumors than
other strains. An upregulation of c-jun may mark single
altered cells in the mouse liver [246] analogous to the
increased GSTP expression in the rat. The focal areas of
change can be detected in frozen sections by the loss of
expression of glucose 6Phosphatase. Alternatively, H&E
stained sections demonstrate the presence of two distinct
lesion types (A and B). Discussions by Schwartz indicate
that one class contains Ha-ras mutations, while the other
class contains b-catenin mutations. The C57Bl/6 (resistant)
and the C3H (sensitive) strains differ in their susceptibility to
spontaneous and chemically induced liver cancer develop-
ment [247]. The hepatocarcinogenesis susceptibility allele
(Hcs) is autosomal and is inherited in a semi-dominant
manner with the F1 between the sensitive and resistant strain
demonstrating an intermediate phenotype. This phenotype is
believed to be cell autonomous factor [248]. In a study
performed by Drinkwater et al. [249], BXH (RI strains
developed from a cross between C57Bl/6 (B) and C3H
(H) mice were subjected to neonatal ENU administration.
BXH strains 6, 14, and 10 were resistant, while BXH strains
8, 9, 7, and 3 were sensitive to ENU induced increases in
liver tumor multiplicity. A number of susceptibility gene loci
have been described genetically for mouse liver cancer
development. These cancer modifier loci have been mapped
to specific chromosomal locations based on the Mendelian
inheritance patterns in inbred mouse strains that are sensitive
and resistant to cancer development [250]. Strain differences
in sensitivity to liver cancer development were described by
Andervont [244] indicating a genetic component to the
spontaneous development of liver cancer in mice. A few of
these genes have been identified by positional cloning
approaches. In addition, human homologues of cancer sen-
sitivity and resistance alleles have been proposed. The C3H
strain is susceptible to spontaneous and carcinogen induced
liver cancer development, while the C57/Bl6 mouse is by
comparison resistant. The hepatocarcinogenesis sensitivity
(HCS) and resistance (HRS) alleles have been defined for the
mouse. A hepatic susceptibility locus on mouse chromosome
1 accounts for 85 % of the variance between these two
mouse strains [247, 251]. Studies with other mouse strains
and other carcinogens have also been performed [252].

The National Toxicology Program assesses cancer risk in
the B6C3 F1 mouse that carries the dominant susceptibility
allele for liver cancer development. The most common
experimental cancer assessment tool is the neonatal mouse
model [253] as first described by Vessilinovitch [254].
Numerous models of human liver diseases exist. Many of
these are developed as a complicated toxin or carcinogen
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regimen [18]. In addition, genetically modified mice have
been made against signaling pathway members believed
important in liver cancer development [224]. These rarely
are a complete recapitulation of the human disease, but are
nonetheless useful for modeling one component of the dis-
ease [224]. The challenge is to couple etiologic agents, with
pathway perturbations and disease models to unravel com-
ponents of the pathogenesis of human primary liver cancer
[18, 224, 255]. Analysis of early and progressive lesions that
arise in the mouse, rat, and human will provide a mechanism
by which to develop models of human liver cancer devel-
opment, pathogenesis, and progression.

4.5 Etiology in the Human

Patients at risk for HCC include those with chronic hepatitis
B virus (HBV) and/or HCV infection [14, 256], certain
metabolic liver diseases, such as hereditary hemochromato-
sis [257], Wilson’s disease, a-anti-trypsin deficiency, and
porphyria cutanea tarda [7, 8]. Individuals with cirrhosis are
at risk of HCC [7, 258]. Heavy alcohol consumption is also a
common major risk factor for developing HCC [7, 8, 83, 85,
258]. Other predisposing factors include gender (males are
times more likely to develop HCC than females), smoking,
and diabetes [258]. Environmental influences, including
carcinogen exposure and viral hepatitis prevalence, are
believed to contribute to its distinct geographical distribution
pattern [8]. Specifically, chronic infection with HBV and
exposure to aflatoxin in the diet contribute to high-risk levels
of HCC [259]. Thus, primary liver cancer is a product of
environmental exposures with genetic consequences. In the
US, the largest cross-sectional study of HCC identified
infection with HCV and/or HBV as the most common risk
factor for HCC (47 % HCV, 15 % HBV, 5 % both)
Approximately, 33 % of primary liver cancer in the US are
not associated with HBV or HCV) [8]. The incidence of
HCC is increasing in the US primarily due to an increase in
HCV infection [8]. It has also been proposed that the rising
incidence of obesity, type 2 diabetes, and non-alcoholic liver
disease contributes to this increased incidence of HCC [120].

4.5.1 Cirrhosis

Individuals with cirrhosis, regardless of its etiology are at
risk for HCC [7, 258]. Fibrosis of the liver can result as a
response to liver injury or as a component of selected genetic
diseases [260, 261]. Cirrhosis is the endstage of fibrotic
disease. Cirrhosis of the liver can occur during the pro-
gression of alcoholic hepatitis, non-alcoholic steatohepatitis
(NASH), viral hepatitis, and cholestatic liver diseases [262].
Viral hepatitis (HBV and HCV) and alcohol are the primary

causal factors in liver cirrhosis, while NASH, certain genetic
diseases (e.g. hemochromatosis), and immune-mediated
damage provides other contributing factors [7, 8]. There is
an increased risk of primary liver cancer in individuals with
hepatitis C associated cirrhosis and diabetes mellitus [263].
In some conditions, cirrhosis can progress to HCC.

4.5.2 Non-alcoholic Steatohepatitis (NASH)

Nonalcoholic fatty liver disease (NAFLD) is the most
common cause of elevated serum enzymes indicative of liver
injury and may be due to many etiologies [264–269]. An
independent diagnostic test or disease marker is not available
for NAFLD. The NAFLD disease continuum, which has a
worldwide prevalence of 20 %, is defined to exclude viral
hepatitis, autoimmune diseases, metabolic changes due to
hemochromatosis, alpha 1 antitrypsin, and ceruloplasmin
changes, and alcoholic liver disease despite the similarities
of disease presentation. Steatosis appears to be a benign
condition, but steatohepatitis is progressive [264, 265, 267].
Essentially all morbidly obese individuals have NAFLD and
approximately 25–50 % exhibit steatohepatitis. For NASH
patients (prevalence of 1–5 % in the general population)
approximately 20 % will progress to cirrhosis, with a small
percentage of these progressing to HCC. Approximately
10 % of individuals with NASH will die of liver related
diseases [265, 266]. NASH is common in type two diabetes
and has a prevalence of 60 % [265–267, 269, 270]. Morbid
obesity is another risk factor for NASH. Approximately, 2–
3 % of lean individuals exhibit NASH, while 15–20 % of
obese individuals have steatohepatitis at non-liver initiated
autopsies. Individuals that have insulin resistance are sus-
ceptible to the development of steatosis (fatty liver) and its
progression to NASH. In some individuals, steatohepatitis
can progress to cirrhosis and in a limited number of cases
can progress to primary liver cancer [270]. Recently animal
models of NAFLD and NASH have been developed, but
these do not completely recapitulate the pathogenesis of the
related diseases and do not progress to cirrhosis or HCC
without additional provocation [271, 272]. Current trends
suggest that the NAFLD continuum is not as benign as once
thought and that progression to NASH, cirrhosis, and
potentially HCC can occur depending on the interaction of
genetic, environmental factors and underlying disease
including diabetes, HFE, among others [273–276].

4.5.3 Viral Hepatitis

Chronic infection with HBV or HCV is the predominant risk
factor for development of HCC, accounting for up to 80 %
of liver cancer cases in geographic regions of high incidence
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of the disease [7, 8, 277]. Although much of the HCC
incidence is attributable to chronic HBV infection, only a
low percentage of individuals that are infected with HBV go
on to develop progressive liver disease even though 80 % or
more develop chronic infection. Approximately one third of
individuals with chronic infection will develop cirrhosis and
HCC develops in less than 5 % of those that develop cir-
rhosis [278]. Carriers of HBV have100 fold risk of devel-
oping HBV [14] that has been suggested to be closer to 5–15
fold in case control studies with a lifetime risk of 10–25 %.
The annual incidence in HBV carriers is less than 1 % [14].
It increases to greater than 1 % in those with hepatitis and to
2–3 % in those with cirrhosis. Although rates of infection
with the viruses are similar in men and women, there is some
evidence that progression of the disease is more likely to
occur in men [7]. Among chronic carriers of hepatitis B
surface antigen (HBsAg) in Taiwan, the ratio of men to
women was 1.2 for asymptomatic individuals, but there were
six times as many men as women among patients with
chronic liver disease [279] in concert with the greater
prevalence of chronic hepatitis and cirrhosis in men [279].
A prospective study of liver cancer development among men
in Taiwan has indicated a relationship between serum
testosterone levels and risk for HCC [279, 280]. Men, whose
testosterone levels was in the highest tertile (>5.7 ng/ml),
had a relative risk of 2 for development of HCC when
compared with men having lower testosterone levels. When
other risk factors, including HBsAg carrier status, anti-HCV
positivity, and alcohol consumption, were take into account,
the relative risk for men with high testosterone levels was 4
[14, 278]. However, this difference may have been due to a
higher proportion of HBsAg carriers among the liver cancer
cases. In developed countries, HCV infection is a more
prevalent risk factor for HCC. HCV infection results in a 15–
fold increase in risk of HCC compared with uninfected
individuals. Approximately, 90 % of HCV carriers develop
hepatitis, while 20 % of HCV carriers develop cirrhosis.
Cirrhotic HCV patients develop HCC at a rate of 1–4 % per
year [7, 8, 5 286]. The high rate of cirrhosis development
results in a risk of HCC over the lifetime of 1–3 %. The risk
of HCC is further increased in HCV carriers for alcohol
excess and HFE carriers [14, 278].

4.5.4 Aflatoxin and Other Dietary
Carcinogens

A number of dietary factors have been associated with HCC
risk including exposure to aflatoxin (a fungal product of
Aspergillus flavus and related species. The risk of HCC is
exposure (dose and duration) dependent [27, 281]. The risk
is heightened in those with HBV [282]. This toxic substance
is produced by certain strains of the mold Aspergillus flavus.

Aflatoxin B1 is one of the most potent hepatocarcinogenic
agent known and has produced neoplasms in rodents and
primates [27]. This agent is a potential contaminant of many
farm products (the common food staples, grain and peanuts)
that are stored under warm and humid conditions for some
time. Aflatoxin B1 and related compounds may cause some
of the toxic hepatitis and hepatic neoplasia seen in various
parts of Africa and the Far East [283]. Thus, an important
environmental and experimental hepatocarcinogenic agent is
aflatoxin B1. Other products of molds and fungi are poten-
tially carcinogenic in humans and animals including fumo-
nosins [284]. Other fungal [285, 286] and microbial products
[287] may similarly be associated with HCC risk. Certain
alkaloids are cytotoxic to the liver and may be associated
with an increased risk of liver cancer. A number of plants,
some of which are edible, also contain chemical carcino-
genic agents whose structures have been elucidated [288].
These include the pyrrolizidine alkaloids are found in
comfrey, and riddeline [289]. The use of Senecio, Crotalaria,
Heliotropium, and Synphytum species can result in
veno-occlusive disorder. Acute toxicity can occur with high
dose exposure, but lower doses and longer durations of
treatment can result in chronic disease. While these agents
are used as teas and herbal remedies, they have been asso-
ciated with acute toxicity and when there is a genotoxic
metabolite in addition to cytotoxicity the combination of
DNA adduct formation and cell proliferation permits muta-
tion induction and fixation. Similarly, a low intake of reti-
noids, selenium, Vitamin E and other antioxidants may also
be associated with an increased risk when combined with
other risk factors [290–294].

4.5.5 Alcohol and Tobacco

Alcohol abuse has been associated with HCC development
that occurs in a background of hepatitis and cirrhosis [258,
295]. Alcohol abuse can potentiate HCV and HBV to
increase the incidence of HCC [87]. This incidence is
markedly increased in individuals with high AFP levels,
high cell proliferation index, and in uncompensated patients
with atypical macroregenerative nodules. In those with
compensated liver fibrosis, the risk of HCC is 3 % [87, 296,
297]. Both case-control and prospective studies have indi-
cated that excessive alcohol consumption increases the risk
of liver cancer development by up to 3-fold, a result likely
due to the induction of liver cirrhosis [296, 298, 299]. Liver
cirrhosis due to excessive alcohol intake is an important risk
factor in countries with a low incidence of HCC. Since
chronic alcohol abuse is more prevalent among men than
women, this risk factor may also contribute to the higher
incidence of HCC in men than women [300]. Alcohol abuse
may be an independent risk factor for HCC in areas of
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endemic HBV or HCV infection with an attributable risk of
approximately 20 % in one study [299]. Alternatively,
associations between gender and lifestyle-associated risk
factors, including smoking and alcohol consumption, have
been suggested as potential determinants of the sex differ-
ence in HCC risk resulting in a male bias in the prevalence
of this disease. There is a positive impact of cigarette
smoking on HCC risk [301–307] and a higher rate of HCC
are observed in heavier smokers when all other risk factors
were taken into account [307]. Thus, the lifestyle factors of
smoking and alcohol intake contribute to the induction and
progression of HCC in a dose dependent and synergistic
manner in both high and low risk geographical areas [304,
305]. Alcohol abuse can increase the risk of HCC in hep-
atitis virus carriers at least 2 fold [87].

4.5.6 Steroids

The factors underlying the sex difference in human risk of
developing liver cancer have not been determined. However,
the geographical and ethnic diversity in the populations at
risk indicate that sex hormone-related factors may underlie
the higher incidence of liver cancer development in men.
Similarly elevated levels of testosterone result in an
increased incidence of hepatic adenomas [308]. In men
taking anabolic steroids, an increased incidence of liver
adenomas has also been observed [309–311] and these
lesions may or may not regress upon cessation of androgen
therapy [312, 313]. Oxymetholone, methyltestosterone, and
danazol administration were associated with hepatic neo-
plasms in certain cases. HCC were associated with oxy-
metholone and methyltestosterone in some patients, while
adenomas were associated with danazol exposure [311].
These studies support the potential for elevated testosterone
levels to contribute to the development of HCC development
[259, 279]. Significant associations have been observed
between polymorphisms in three hormone related genes and
HCC. These include androgen receptor, 5 alpha reductase,
and cytochrome P450 17 alpha [259].

Exposure to either anabolic steroids or certain oral con-
traceptive formulations has been associated with the
increased incidence of hepatic adenomas and in rare
instances with HCC development in humans. The earliest
report of an association between liver cancer induction and
exposure to exogenous sex hormones described seven cases
of benign hepatomas in young women with a history of oral
contraceptive use [314]. Women of child-bearing age appear
to be sensitive to the induction of benign hepatic adenomas
and the induction of these liver tumors is enhanced by
exposure to oral contraceptives. These tumors respond to
hormonal manipulations such that they regress upon cessa-
tion of hormonal administration [142] and grow or progress

upon continued administration of these agents. While a dose
(estrogenic potency) and duration effect is seen for oral
contraceptive use and adenoma development, the association
with carcinoma induction is very low and only detectable
with greater than 8 years of exposure [315]. Several inves-
tigators reported that the relative risk for adenoma devel-
opment increased sharply beyond 5 years of oral
contraceptive use [142, 316]. While formulations containing
mestranol and ethinyl estradiol have led to equivalent risks,
the incidence of liver cancer among women using high
potency oral contraceptives was significantly greater than
that for users of low potency formulations. Oral contracep-
tive use has also resulted in an increased risk for malignant
liver cancer [317]. Case-control studies in the United States,
Britain, and Italy demonstrated a 5-fold increased risk for
HCC among women with more than 5 years use of oral
contraceptives relative to women with exposures of shorter
duration [315, 317–319]. In contrast, estrogen replacement
therapy does not increase the risk for HCCs [315]. Thus,
excess exposure to hormonally active agents can increase the
risk of HCC.

4.5.7 Genetic Disorders

A number of metabolic diseases have been associated with
an increased risk of HCC [7, 8]. These include hemochro-
matosis, tyrosinemia, citrullinemia, porphyrias, and a1
antitrypsin. Individuals with cirrhosis and genetic
hemachromatosis have a markedly increased rate and
shortened time until HCC development that is exacerbated
by viral infection and alcohol abuse [273, 279]. Other
metabolic diseases can increase the risk of HCC but to lesser
degree. These include Wilson’s disease, fructose intolerance,
and type I and III glycogen storage disease. Thus, the variety
of the underlying disease base that contributes to HCC
demonstrates the multifactorial risk profile for primary liver
cancer development.

4.5.7.1 Metal Overload Disorders
Iron overload [257, 320, 321] has been associated with
hepatic fibrosis, cirrhosis, and HCC. Hereditary disturbances
in iron uptake [322–324] and metabolism results in one form
of iron overload and dietary ingestion excess [325] a second.
A variety of iron overload conditions have been associated
with HCC even in the absence of cirrhosis including sider-
oblastic anemia and thalassemia [320, 326]. In certain areas
of sub-Saharan Africa, the natives ingest drinks with con-
centrated iron. These individuals have an increased inci-
dence of both cirrhosis and HCC [325]. Porphyrias occur
due to defects in the heme biosynthetic pathway. Both acute
intermittent porphyria and porphyria cutanea tarda have been
associated with an increased risk of HCC [324]. The
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mechanism is unknown, but the presence of free iron in the
tissue may be a contributory factor. In combination with
HBV infection, HCV infection, alcohol cirrhosis, iron
overload induced an increase in lipid peroxidation and the
rate of progression to steatohepatitis, cirrhosis and HCC [86,
258]. Underlying liver disease including cholestasis,
steatosis, and cirrhosis can impact the degree and latency to
disease onset and progression with iron overload syndromes.

Hereditary hemochromatosis was first described as a
hereditary disease associated with HLA linkage and a form
of pigment associated cirrhosis typically associated with
diabetes. A prevalent gene mutation [323] was found to
underlie hereditary hemochromatosis (HFE) and a knock-out
mouse [327]. Although several genetic factors can be
involved in iron overload, the most common is in HFE (85–
90 %). Although several polymorphisms exist, the most
prevalent is C282Y (85–100 % attribution to HFE). The
prevalence is 1 in 250 with an allelic frequency of 5 %. The
second polymorphism allele that is common in HFE is
H63D. Carriers of this allele comprise 15–20 % of the
American population, but the consequence of this allele is
not known [323]. The HFE is an MHC class 1 molecule that
is associated with b2 microglobulin (B2M) and the major
polymorphism C282Y prohibits this interaction. Studies in a
B2M knock-out mouse demonstrate an iron overload syn-
drome [328]. In the HFE knockout mouse, periportal iron
deposition in conjunction and elevated transferrin saturation
[327]. Interestingly, HFE and B2M are in a complex with
transferrin receptor HFE results in an increase in intestinal
iron absorption. HFE mutation carriers cannot facilitate iron
update by transferrin receptor resulting in an upregulation of
the iron responsive gene dimetal transporter 1 that enhancing
iron uptake [329, 330]. Transferrin receptor Ser142 alleles
are increased in liver cancer cases and in addition, TfR
expression is increased in hepatic preneoplasia and in HCC
[330]. The odds ratio for C282Y allele carriers with
TFR142Ser alleles for HCC is 17.2, while it is 62.8 in those
with cirrhosis for HCC development demonstrating the
contribution of TfR to risk of HCC [321].

The long term consequences of iron overload on the liver
include fibrosis and cirrhosis that can be exacerbated by the
presence of underlying liver disease [257, 320]. The inci-
dence of HCC in HH is increased over 100X relative to a
comparative control population [257, 320]. Outcomes in
heterozygotes for HFE seem similar to wildtype, except for
those 1–2 % individuals who are compound heterozygotes
with C263Y/H63D [331, 332]. The odds ratio of HCC in
HFE C282Y carriers or homozygotes is 3.5, while it is 7 in
those with cirrhosis indicating that HFE is a risk factor for
HCC [332]. The HCC population is enriched for C282Y
carriers than is found in the general population indicating a
possible risk factor for its development and progression
[331–333]. The increased risk from HFE alleles is found in

alcoholic cirrhosis and some cases of HCV viral hepatitis,
but not HBV viral hepatitis patients [331, 333]. Animal
models of liver disease in combination with iron overload
also demonstrate an increase in disease progression [334].
For example, transgenic mice overexpressing the HCV
polyprotein fed a diet enriched in iron develop microvesic-
ular steatosis indicative of mitochondrial damage and
impaired energy use with fatty acid retention and earlier
onset of HCC than their littermates similar to those humans
that develop fatty liver with HCV infection [334]. A wide
range of hepatic tumor phenotypes is observed in human
HFE [335]. Interestingly, a high incidence of p53 mutations
has been observed in one series of HCC from HFE patients
[336]. Importantly, epigenetic defects are observed in liver
tissue from 75 % of the HFE patients examined prior to the
onset of cirrhosis with hypermethylation and hence gene
expression decreases [337].

Wilson’s disease or inherited copper-overload disease can
result in cirrhosis, hepatitis, and HCC. Wilson’s disease is
found in 1:30000 with a carrier rate of 1:250 [338]. Cerru-
loplasmin is decreased in the serum of Wilson’s disease
patients. This autosomal recessive disorder is due to a
mutation in the P-type ATPase responsible for biliary copper
excretion (ATP7B) located in the trans golgi network [339].
The most prevalent mutation, H1069Q, is observed in 30 %
of Wilson’s patients of European decent. Other mutations of
the ATP7B gene exist and can also result in Wilson’s disease
[338]. In addition, modifier genes that impact the severity of
the disease also exist. Copper is normally ingested and
absorbed through the GI tract and excreted through the bile.
Copper is transported in the serum bound to histidine.
Copper binds to glutathione or metallothionein, and cerru-
loplasmin. It is excreted into the bile in part through a
secretory pathway involving ATP7B. The Long Evans
Cinnamon rat is susceptible to non-viral hepatitis with sub-
sequent formation of liver neoplasms, the male is more
susceptible to the development of liver tumors [340, 341].
The LEC rat is a model of Wilson’s disease that develops a
non-viral hepatitis due to copper overload. These rats also
have disturbances in iron metabolism. Those animals that
survive the hepatitis will develop HCC. The toxic milk
mouse has a mutation in M1356 V and G712D have defects
in copper transport [342] and a knock out mouse (ATP7B)
has also been generated [343]. If intracellular copper accu-
mulates beyond the ability of the hepatocyte to buffer it, then
hepatic damage will ensue with copper release into the cir-
culation and its accumulation in other tissues.

4.5.7.2 Alpha-1 Anti-trypsin
Alpha-1 Anti-trypsin (AAT) is a prevalent protease inhibitor
(Pi) found in the plasma [344]. The most prevalent mutation
is a Glu342Lys caused by a G to A transition called the Z
mutation [345, 346]. Adult males that are homozygous for
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the Z mutation (PiZZ) may have an increased risk of cir-
rhosis and HCC [345–347]. Alpha 1 antitrypsin results in an
increased risk of HCC in the absence of cirrhosis in
homozygotes [347]. Carriers (PiZ) are also believed to be at
an increased risk for HCC [348] especially in combination
with other risk factors [349, 350]. While the mechanism of
a1AT alleles on disease etiology is unclear, the altered
protein structure may induce the unfolded protein response.
Alternatively, this acute phase serum protein, which acts as
an inhibitor of elastase and is synthesized by the liver and
macrophage is retained in the liver resulting in a plasma
insufficiency. Retention in the liver and consequent poly-
merization can result in cirrhosis and to HCC [345, 346].

4.5.7.3 Hereditary Tyrosinemia
Tyrosinemia is an autosomal recessive disorder that can lead
to HCC. This inborn error of metabolism results [351] from
inactivation of fumaryl acetoacetate hydrolase (FAH) result-
ing in the buildup of its substrate fumarylacetoacetate
(FAA) and malylacetoacetate (MAA). As a consequence,
these individuals excrete high levels of succinylacetone into
the urine [352]. MAA and more specifically FAA have
multiple effects on liver cells including apoptosis, ER stress
response, redox balance including GSH depletion, and cell
cycle arrest. Since the last step in the catabolism of tyrosine
is blocked, tyrosine is elevated in the serum. These patients
have a rapid conversion from micro to macronodular cir-
rhosis and later conversion to dysplasia and HCC. Without
pharmacological (nitisinone) treatment or now surgical
intervention, the prognosis was poor with acute liver failure
predominant, followed by HCC [352, 353]. A mouse model
has been developed in which FAH is knocked out [354].
This mutant recapitulates the pathogenesis of human
hereditary tyrosinemia type 1 and can be protected by
nitisinone [355]. Intervention with nitisinone does not
reverse gene expression changes associated with tyrosinemia
[356]. Thus, pharmacological treatment can delay, but may
not prevent HCC development. Genetic manipulation
reversal of double mutant FAH mice formed through ENU
mutagenesis do not develop preneoplastic lesions or HCC,
suggesting that the lack of complete reversal of the pheno-
type by pharmacological intervention is due to incomplete
blockage of the formation of toxic intermediates [357].

4.5.7.4 Citrullinemia
The inborn errors of disease associated with the urea cycle
[358, 359]; namely, mutation of arginosuccinate results in
acute liver toxicity [360]. Citrullinemia type I is an autoso-
mal recessive disorder that is caused by a deficiency in the
rate limiting enzyme in the urea cycle, argininosuccinate
synthetase (ASS1). In severe cases, a hyerammonia can
occur that is fatal neonatally. An argininosuccinic aciduria
with an increase in citrulline and ammonia in the serum is

observed. Since citrulline is essential in nitrogen home-
ostasis, disruption of ammonia removal results in toxicity to
the liver. There is a broad mutational pattern and each
genotype has different phenotypes [360]. A knock out mouse
has been generated that has high citrilline blood levels and a
severe hyperammonemic phenotype [361, 362]. The
aspartate-glutamate carrier (AGC), SLC25A13, gene muta-
tions result in citrin deficiency [363] and may develop
hepatic steatosis and steatohepatitis [364]. These type 2
citrullinemia patients have an increased level of pancreas
derived trypsin inhibitor and are associated with pancre-
atistis [363]. A decrease in this mitochondrial ACG, citrin,
results in hepatic apoptosis through a caspase pathway in
which the bax to bcl2 ratio is inverted [357]. A knock-out
model has been described, but does not recapitulate all of the
pathologies associated with adult onset type 2 citrullinemia
[363]. The citrin/mitochondrial glycerol-3-phosphate dehy-
drogenase double knock-out mutant is a better model for
type 2 citrullinemia [365]. Urea cycle disruption and per-
turbations of nitrogen removal can have adverse effects on
the liver as exemplified by citrullinemia.

4.5.8 Genomic Landscape of HCC

The genomic landscape of cancer has evolved as a concept in
cancer to account for the many genetic changes observed in
neoplasms [366–368]. It has been suggested that primary
hepatocarcinoma has an average of 6 mutations per megabase
of DNA [369]. This high number may in part due to the late
stage of life in which the cancer is detected as well as the late
stage of its lifecycle when it is detected. The genetic changes
observed in cancer especially liver cancer are considered to
have an environmental and lifestyle component reflected in
the genetic and epigenetic changes observed [370]. The recent
ability to deeply sequence whole exomes or entire sequences
as compared with single genes has emphasized this point.
While many genetic signatures have been detected in neo-
plasms [366–368], six have been demonstrated in liver cancer
using COSMIC [369; http://cancer.sanger.ac.uk/cosmic].
Specifically, the genetic landscape of hepatocellular adeno-
carcinoma has been associated with the etiology of the dis-
ease, while the stage of disease has been more correlated with
the expression and pathway alterations although these two
factors and sets of changes are interdependent. One of the
primary genetic signatures present in HCC (COSMIC signa-
ture 1B) is that of C > T that has been associated with aging.
This may in fact reflect oxidative stress that is prevalent in
cirrhosis and in viral and alcohol induced liver cancer and
which can be found in aflatoxin excess. In this situation, a
helix-distorting adenine adducts at GpCpN on the transcribed
strand are contributory. Similarly, diseases such as
NAFLD/NASH and hemochromatosis also have ongoing
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oxidative stress and damage that would contribute to this type
of genetic signature and to HCC development. A second
signature (COSMIC signature 5) has a similar, albeit less
prominent pattern of C > T changes that in this case are
associated with dinucleotide mutation and strand synthesis
bias. In the third signature (COSMIC signature 6), interstitial
deletions at nucleotide repeats are common. This microsat-
telite instability is associated with mismatched repair defi-
ciency resulting in high C > T, lower C > A, and even lower
levels of T > C. The fourth identified gene mutation pattern
for HCC (this is COSMO signature 4) is associated with the
transcribed strand and has not been associated with a single
predominant mutation, but rather may be associated with the
infidelity of the polymerase and of transcription-coupled
repair. In the fifth signature associated with HCC (COSMIC
signature 16), a high level of T > C is observed and has been
associated with transcription-coupled repair. In addition, a
high level of T to C transversions is associated with the
presence of G adducts as are frequently observed following
polyaromatic hydrocarbon exposure as observed, although
not exclusively, with tobacco smoke and exposure to other
combustible products. A final predominant signature associ-
ated with HCC has a high level of T > G and a medium
amount of T > C changes (COSMIC signature 17). The
genetic landscape of a cancer reflects the cumulative envi-
ronmental exposure, the impact of underlying liver disease,
the etiology of the neoplasm, and its pathogenesis. This has
been examined extensively in liver cancer for p53 and ras loci,
but has now been extended across the genome. This whole
genome examination has been instrumental in deciphering the
complexity and heterogeneity of HCC. Genomewide analysis
is now possible with the combined development of deep
sequencing and big data based bioinformatics approaches.
Besides mutations, insertions, deletions and amplifications,
copy number variants and other factors that alter gene
expression. In addition, mechanisms that impact gene dosage
are important in liver cancer development and progression.

With respect to gene expression, a number of kinases and
potentially phosphatases are of importance in altered gene
expression in the liver and with liver cancer development
[370, 371]. Specifically, Met, EGFR, and IGFR families
have been implicated in liver cancer development and pro-
gression. Other receptors including VEGF2, PDGF, and
FGF have roles in HCC pathogenesis. In addition, down-
stream signaling pathways (MAPK and AKT) and tran-
scription factors (ras, mTOR, and have been implicated in
HCC development and progression. One of the most
important signaling pathways associated with HCC is the
WNT pathway [370, 371]. An inflammatory mechanism is
associated with some HCC and may be associated with
estrogen-dependent regulation of IL6, NFkB and other
mechanisms including those that signal through JAK/STS
and TGFb. Recent, studies of mutations in HCC have

confirmed the incidence of mutations in p53 and
beta-catenin. Furthermore, the many mutations have been
mapped against pathways and network to reveal the impor-
tance of proliferation, apoptosis, tumor microenvironment,
neural signaling, metabolic pathways, and circadian path-
ways [371]. These pathways include cell cycle, p53 signal-
ing, Wnt, MAPK, PI3 K/AKT and apoptosis, but also
calcium signaling and Hippo pathways based on TGAC
analysis. While these pathways are associated in general
with HCC, their association with etiology, pathogenesis, and
prognosis requires additional analysis. Additionally, chro-
matin- remodeling genes are altered in HCC. These include
ARIAD1a/d, ARID2, MLL, MLL3, TERT among others
[372]. The advent of deep sequencing as applied to the
whole genome or all exons in conjunction with improved
bioinformatics tools and well characterized sample banks of
well defined pathology samples and their accompanying
metadata have enabled important insights into the genomic
landscape of liver cancer as demonstrated with the TGAC
and COSMIC databases [373, 374].

4.5.9 Summary

Chemicals from a variety of chemical classes can initiate,
promote, and lead to the development or progression of HCC.
The effects of chemical agents occur on the background of a
variety of genetic alterations and disease backgrounds. Ani-
mal models have proven invaluable in the assessment of the
early pathogenesis of primary liver cancer by chemicals. The
late stage neoplasms analyzed from the human demonstrate
that multiple etiologies, molecular pathways, and genetic
changes accompany neoplastic development in the liver.
Combinations of genetic factors, environmental exposures,
and background liver disease will be modeled in increasing
complex ways in the future to better recapitulate the role of
chemicals in HCC development and progression. Systems
biology tools as applied to the pathogenesis of HCC will be
informative about the pathways that chemicals disregulate in
different genetic and disease backgrounds to lead to HCC
development and progression.

References

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jeml A.
Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–
108.

2. www.cancer.org.
3. Harris CC. Solving the viral-chemical puzzle of human liver

carcinogenesis. Cancer Epidemiol Biomarkers Prev. 1994;3
(1):1–2.

4. Sell S, Leffert HL. Liver cancer stem cells. J Clin Oncol. 2008;26
(17):2800–5.

4 Chemically-Induced Hepatocarcinogenesis 81

http://www.cancer.org


5. Pitot H. Altered hepatic foci: their role in murine hepatocarcino-
genesis. Annu Rev Pharmacol Toxicol. 1990;30:465–500.

6. Rochen C, Carl-McGrath S. Pathology and pathogenesis of
hepatocellular carcinomas. Dig Dis. 2001;19:269–78.

7. McGlynn KA, London WT. Epidemiology and natural history of
hepatocellular carcinoma. Best Pract Res Clin Gastroenterol.
2005;19(1):3–23.

8. El Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemi-
ology and molecular carcinogenesis. Gastroenterology. 2007;132
(7):2557–76.

9. GLOBOSCAN. 2002.
10. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics,

2002. CA Cancer J Clin. 2005;55(2):74–108.
11. http://seer.cancer.gov/statfacts/html/livibd.html.
12. Shields P, Harris CC. Molecular epidemiology and the genetics of

environmental cancer. JAMA. 1991;66(5):681–7.
13. Ditah I, Ditah F, Devaki P, Ewelukwa O, Ditah C, Njei B,

Luma H, Charlton M. The changing epidemiology of hepatitis C
virus infection in the US: national health and nutrition examina-
tion survey 2001–2010. J Hepatol. 2014;60:691–98.

14. El-Serag H. Epidemiology of viral hepatitis and hepatocellular
carcinoma. Gastroenterology. 2012;142(6):1264–73.

15. Hoofnagle JH. Course and outcome of hepatitis C. Hepatology.
2002;36(5 Suppl 1):S21–9.

16. Steba L, Vere C, Rogoveanu I, Streba C. Nonalcoholic fatty liver
disease, metabolic risk factors, and hepatocellular carcinoma: an
open question. World J Hepatology. 2014;21(14):4103–10.

17. Hanahan D, Weinberg RA. The hallmarks of cancer: the next
generation. Cell. 2011;144(5):646–74.

18. Pitot HC. Animal models of neoplastic development. Dev Biol
(Basel). 2001;106:53–7.

19. Köhle C, Schwarz M, Bock KW. Promotion of hepatocarcino-
genesis in humans and animal models. Arch Toxicol. 2008;82
(9):623–31.

20. Sasaki T, Yoshida T. Experimentelle erzeugung des lebercarci-
nomas durch futterung mit o-aminoazotoloul. Virchows Arch
Abt A Pathol Anat. 1935;295:175–200.

21. Kinoshita R. Researches on the cancerogenesis of the various
chemical substances. Gann. 1936;30:423–6.

22. Heidelberger C. Chemical carcinogenesis, chemotherapy: cancer’s
continuing core challenges. Cancer Res. 1970;30:1549–69.

23. Pullman A, Pullman B. Electronic structure and carcinogenic
activity of aromatic molecules. New developments. Adv Cancer
Res. 1955;38:117–69.

24. Miller J, Miller E. The carcinogenic amino azo dyes. Adv Cancer
Res. 1978;1:339–96.

25. Miller E. Some current perspectives on chemical carcinogenesis in
humans and experimental animals. Cancer Res. 1978;38:1479–96.

26. Preussmann R. Carcinogenic N-nitroso compounds and their
environmental significance. Naturwissenscaften. 1984;71:25–30.

27. Dragan Y, Pitot H. Aflatoxin carcinogenesis in the context of the
multistage nature of cancer In: The toxicology of aflatoxins:
human health, veterinary and agricultural significance, New York:
Academic Press; 1994. p. 179–206.

28. Schoental R. Trichothecenes, zearalenone, and other carcinogenic
metabolites of Fusarium and related microfungi. Adv Can Res.
1985;45:217–74.

29. Wiessler M. DNA adducts of pyrrolizidine alkaloids, nitroimida-
zoles and aristolochic acid. IARC Sci Publ. 1994; 125: 165–77.

30. Farber E. Ethionine carcinogenesis. Adv Cancer Res.
1963;7:383–474.

31. Mikol Y, Hoover K, Creasia D, Portier L. Hepatocarcinogenesis
in rats fed methyl deficient amino acid defined diest. Carcino-
genesis. 1983;4:1610–29.

32. Pitot HC. Adventures in hepatocarcinogenesis. Annu Rev Pathol.
2007;2:1–29.

33. Columbano A, Rajalakshmi S, Sarma D. Requirement of cell
proliferation for the initiation of liver carcinogenesis. Cancer Res.
1981;41:2079–83.

34. Miller E, Miller J. The presence and significance of bound
aminoazo dyes in the livers of rats fed
p-dimethylaminoazobenzene. Cancer Res. 1947;7:468–80.

35. Weisburger E, Weisburger J. Chemistry, carcinogenicity, and
metabolism of 2-fluorenamine and related compounds. Adv
Cancer Res. 1958;5:331–431.

36. Miller J, Cramer J, Miller E. The N- and ring-hydroxylation of
2-acetylaminofluorene during carcinogenesis in the rat. Cancer
Res. 1960;20:950–62.

37. Nagata C, Kodama M, Ioki Y, Kimura T. Free radicalsproduced
from chemical carcinogens and their significance in carcinogen-
esis. In: Floyd R, editor. Free radicals and cancer. New York:
Marcel Dekker; 1982. p. 1–62.

38. Eling T, Thompson G, Foureman G, et al. Prostaglandin H
synthetase and xenobiotic oxidation. Annu Rev Pharmacol
Toxicol. 1990;30:1–45.

39. Tennant R, Ashby J. Classification according to chemical
structure, mutagenicity to Salmonella and level of carcinogenicity
of a further 39 chemicals tested for carcinogenicity by the US
National Toxicology Program. Mutat Res. 1991;257:209–27.

40. Ashby J, Paton D. The influence of chemical structure on the
extent and sites of carcinogenesis for 522 rodent carcinogens and
55 human carcinogen exposures. Mutat Res. 1993;287:3–74.

41. Friedberg E. Xeroderma pigmentosa, Cockayne’s syndrome,
helicases and DNA repair: what’s the relationship? Cell.
1992;71:887–9.

42. Anderson M, Reynolds S, You M, Maronpot R. Role of
protooncogene activation in carcinogenesis. Environ Health
Perspect. 1992;98:13–24.

43. Essigmann J, Wood M. The relationship between the chemical
structures and mutagenic specificities of the DNA lesions formed
by chemical and physical mutagens. Toxicol Letts. 1993;67:29–
39.

44. Loeschler E. Adduct-induced base shifts: a mechanism by which
the adducts of bulky carcinogens might induce mutations.
Biopolymers. 1989;28:909–27.

45. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53
mutations in human cancers. Science. 1991;253(5015):49–53.

46. Singer B. O-alkyl pyrimidines in mutagenesis and carcinogensis:
occurrence and significance. Cancer Res. 1986;46:4879–85.

47. Friedberg E. DNA repair: looking back and peering forward.
BioEssays. 1994;16:645–9.

48. Vaino H, Coleman M, Wilbourn J. Carcinogenicity evaluations
and ongoing studies: the IARC databases. Environ Health
Perspect. 1991;96:5–9.

49. Pegg A, Perry W. Alkylation of nucleic acids and metabolism of
small doses of dimethylnitrosamine in the rat. Cancer Res.
1981;41:3128–32.

50. Pegg A. Methylation of the O6 position of guanine in DNA is the
most likely initiating event in carcinogenesis by methylating
agents. Cancer Invest. 1984;2:223–31.

51. Swenberg J, Dyroff M, Bedell A, et al. O4 ethyldeoxythymidine
but not O6 ethyldeoxyguanosine accumulates in hepatocyte DNA
of rats exposed continuously to diethylnitrosamine. Proc Natl
Acad Sci. 1984;81:1692–5.

52. Shearman C, Loeb L. Effects of depurination on the fidelity of
DNA synthesis. J Mol Biol. 1979;128:197–218.

53. Bichara M, Fuchs R. DNA binding and mutation spectra of the
carcinogen N-2 aminofluorene in Escherichia coli: a correlation

82 Y.P. Dragan

http://seer.cancer.gov/statfacts/html/livibd.html


between the conformation of the premutagenic lesions and the
mutation specificity. J Mol Biol. 1985;183:341–51.

54. Neumann H. Role of extent and persistence of DNA modifications
in chemical carcinogenesis by aromatic amines. Recent Results
Cancer Res. 1983;84:77–89.

55. Bishop J. Viral oncogenes. Cell. 1985;42:23–38.
56. Levine A. The tumor suppressor genes. Annu Rev Biochem.

1993;62:623–51.
57. Hunter T. Cooperation between oncogenes. Cell. 1991;64:249–70.
58. Nebert D. Role of genetics and drug metabolism in human cancer

risk. Mutat Res. 1991;247:267–81.
59. Muller H. Recessively inherited deficiencies predisposing to

cancer. Anticancer Res. 1990;10:513–8.
60. Hall A. A biological function for ras at last. Science.

1994;264:1413–4.
61. Rumsby P, Barrass N, Phillimore H, Evans J. Analysis of the

Ha-ras oncogene in C3H/He mouse liver tumors derived spon-
taneously or induced with diethylnitrosamine or phenobarbitone.
Carinogenesis. 1991;12:2331–6.

62. Kim Y, Sills R, Houle C. Overview of the molecular biology of
hepatocellular neoplasms and hepatoblastomas of the mouse liver.
Toxicol Pathol. 2005;33:175–80.

63. Laurent-Puig L, Zucman-Rossi J. Genetics of hepatocellular
tumors. Oncogene. 2006;25:3778–86.

64. Swenberg J, Lu K, Moeller B, Gao L, Upton P, Nakamura J,
Starr T. Endogenous versus exogenous DNA adducts: their role in
carcinogenesis, epidemiology, and risk assessment. ToxSci.
2011;120(S1):S130–45.

65. Shapairo R. Damage to DNA caused by hydrolysis. In: Seeberg E,
Kleepe K, editors. Chromosome damage and repair. New York:
Plenum Press; 1981. p. 3–18.

66. Floyd R. Role of oxygen free radicals in carcinogenesis and brain
ischemia. FASEB J. 1990;4:2587–97.

67. Srinivasan S, Glauert H. Formation of 5-hydroxymethyl-2’-
deoxyuridine in hepatic DNA of rats treated with g-irradiation,
diethylnitrosamine, 2-acetylaminofluorene, or the peroxisome
proliferator ciprofibrate. Carcinogenesis. 1990;11:2021–4.

68. Ames B, Shigenaga M, Gold L. DNA lesions, inducible DNA
repair, and cell division: three key factors in mutagenesis and
carcinogenesis. Environ Health Perspect. 1993;93:35–44.

69. Holliday R. A different kind of inheritance. Sci Am.
1983;260:60–73.

70. Michalowsky L, Jones P. DNA methylation and differentiation.
Environ Health Perspect. 1989;80:189–97.

71. Riggs A, Jones P. 5-methylcytosine, gene regulation and cancer.
Adv Cancer Res. 1983;40:1–30.

72. Wilson M, Shivapurkar N, Poirier L. Hypomethylation of hepatic
nuclear DNA in rats fed with a carcinogenic methyl-deficient diet.
Biochem J. 1984;218:263–86.

73. Cohen S, Ellwein L. Genetic errors, cell proliferation, and
carcinogenesis. Cancer Res. 1991;51:6493–505.

74. Hanawalt P. Transcription coupled repair and human disease.
Science. 1994;266:1957–8.

75. Sancar A. Mechanisms of DNA excision repair. Science.
1994;266:1954–6.

76. Kaufmann W. Pathways of human cell post replication repair.
Carcinogenesis. 1989;10:1–11.

77. Van Dyck E, Stasiak A, West S. Binding of double strand breaks
in DNA by human Rad52protein. Nature. 1999;398:728–31.

78. Fishel R, Kolodner R. Identification of mismatch repair genes and
their role in the development of cancer. Curr Opin Genet Dev.
1995;5:382–95.

79. Holsapple MP, Pitot HC, Cohen SM, Boobis AR, Klaunig JE,
Pastoor T, Dellarco VL, Dragan YP. Mode of action in relevance

of rodent liver tumors to human cancer risk. Toxicol Sci. 2006;89
(1):51–6.

80. Andersen ME, Meek ME, Boorman GA, Brusick DJ, Cohen SM,
Dragan YP, Frederick CB, Goodman JI, Hard GC, O’Flaherty EJ,
Robinson DE. Lessons learned in applying the U.S. EPA
proposed cancer guidelines to specific compounds. Toxicol Sci.
2000;53(2):159–72.

81. Tan YM, Butterworth BE, Gargas ML, Conolly RB. Biologically
motivated computational modeling of chloroform cytolethality
and regenerative cellular proliferation. Toxicol Sci. 2003;75
(1):192–200.

82. Bartsch H, Nair J. Chronic inflammation and oxidative stress in
the genesis and perpetuation of cancer: role of lipid peroxidation,
DNA damage, and repair. Arch Surg. 2006;391:499–510.

83. Lieber C. Alcoholic fatty liver: its pathogenesis and mechanism of
progression to inflammation and fibrosis. Alcohol. 2004;34:9–19.

84. Boffetta P, Hashibe M. Alcohol and cancer. Lancet Oncol. 2006;7
(2):149–56.

85. Lieber C. Alcohol and hepatitis C. Alcohol Res Health.
2001;25:245–54.

86. Fletcher L, Dixon J, Pude D, Powell L. Excess alcohol greatly
increases the prevalence of cirrhosis in hereditary hemochro-
matosis. Gastroesterology. 2002;122:281–9.

87. Donato F, Tagger A, Gelatti U, et al. Alcohol and hepatocellular
carcinoma: the effect of lifetime intake and hepatitis virus
infections in men and women. Am J Epidemiol. 2002;155:323–
31.

88. Boutwell R. Function and mechanism of promoters of carcino-
genesis. CRC Crit Rev Carcinog. 1974;2:419–43.

89. Pitot H. The role of receptors in multistage carcinogenesis. Mutat
Res. 1995;333:3–14.

90. International Agency for Research on Cancer. Overall evaluations
of carcinogenicity: an updating of IARC Monographs volumes 1
to 42. In: IARC working group on the evaluation of carcinogenic
risks to humans. Lyon: IARC Press; 1987. Suppl 7, p. 1–440.

91. Whysner J, Ross PM, Williams GM. Phenobarbital mechanistic
data and risk assessment: enzyme induction, enhanced cell
proliferation, and tumor promotion. Pharmacol Ther. 1996;71
(1–2):153–91.

92. Weisburger JH, Madison RM, Ward JM, Viguera C, Weis-
burger EK. Modification of diethylnitrosamine liver carcinogen-
esis with phenobarbital but not with immunosuppression. J Natl
Cancer Inst. 1975;54(5):1185–8.

93. Goldsworthy T, Campbell HA, Pitot HC. The natural history and
dose-response characteristics of enzyme-altered foci in rat liver
following phenobarbital and diethylnitrosamine administration.
Carcinogenesis. 1984;5(1):67–71.

94. Peraino C, Fry RJ, Staffeldt E. Reduction and enhancement by
phenobarbital of hepatocarcinogenesis induced in the rat by
2-acetylaminofluorene. Cancer Res. 1971;31(10):1506–12.

95. Barbason H, Rassenfosse C, Betz EH. Promotion mechanism of
phenobarbital and partial hepatectomy in DENA hepatocarcino-
genesis cell kinetics effect. Br J Cancer. 1983;47(4):517–25.

96. Ward JM, Ohshima M. Evidence for lack of promotion of the
growth of the common naturally occurring basophilic focal
hepatocellular proliferative lesions in aged F344/NCr rats by
phenobarbital. Carcinogenesis. 1985;6(9):1255–9.

97. Andersen ME, Mills JJ, Jirtle RL, Greenlee WF. Negative
selection in hepatic tumor promotion in relation to cancer risk
assessment. Toxicology. 1995;102(1–2):223–37.

98. Dragan YP, Hully J, Crow R, Mass M, Pitot HC. Incorporation of
bromodeoxyuridine in glutathione S-transferase-positive hepato-
cytes during rat multistage hepatocarcinogenesis. Carcinogenesis.
1994;15(9):1939–47.

4 Chemically-Induced Hepatocarcinogenesis 83



99. Kolaja KL, Stevenson DE, Walborg EF Jr, Klaunig JE. Dose
dependence of phenobarbital promotion of preneoplastic hepatic
lesions in F344 rats and B6C3F1 mice: effects on DNA synthesis
and apoptosis. Carcinogenesis. 1996;17(5):947–54.

100. Kinoshita A, Wanibuchi H, Morimura K, Wei M, Shen J,
Imaoka S, Funae Y, Fukushima S. Phenobarbital at low dose
exerts hormesis in rat hepatocarcinogenesis by reducing oxidative
DNA damage, altering cell proliferation, apoptosis and gene
expression. Carcinogenesis. 2003;24(8):1389–99.

101. Reisenbichler H, Chari RS, Boyer IJ, Jirtle RL. Transforming
growth factor-beta receptors type I, II and III in
phenobarbital-promoted rat liver tumors. Carcinogenesis.
1994;15(12):2763–7.

102. Mansbach JM, Mills JJ, Boyer IJ, De Souza AT, Hankins GR,
Jirtle RL. Phenobarbital selectively promotes initiated cells with
reduced TGF beta receptor levels. Carcinogenesis. 1996;17
(1):171–4.

103. Jirtle RL, Meyer SA. Liver tumor promotion: effect of phenobar-
bital on EGF and protein kinase C signal transduction and
transforming growth factor-beta 1 expression. Dig Dis Sci.
1991;36(5):659–68.

104. Jirtle RL, Hankins GR, Reisenbichler H, Boyer IJ. Regulation of
mannose 6-phosphate/insulin-like growth factor-II receptors and
transforming growth factor beta during liver tumor promotion
with phenobarbital. Carcinogenesis. 1994;15(8):1473–8.

105. Atchison M, Adesnik MA. cytochrome P-450 multigene family.
Characterization of a gene activated by phenobarbital adminis-
tration. J Biol Chem. 1983; 258(18):11285–11295.

106. Pike SF, Shephard EA, Rabin BR, Phillips IR. Induction of
cytochrome P-450 by phenobarbital is mediated at the level of
transcription. Biochem Pharmacol. 1985;34(14):2489–94.

107. Rice JM, Diwan BA, Hu H, Ward JM, Nims RW, Lubet RA.
Enhancement of hepatocarcinogenesis and induction of specific
cytochrome P450-dependent monooxygenase activities by the
barbiturates allobarbital, aprobarbital, pentobarbital, secobarbital
and 5-phenyl- and 5-ethylbarbituric acids. Carcinogenesis.
1994;15(2):395–402.

108. Kodama S, Negishi M. Phenobarbital confers its diverse effects by
activating the orphan nuclear receptor car. Drug Metab Rev.
2006;38(1–2):75–87.

109. Forman BM, Tzameli I, Choi HS, Chen J, Simha D, Seol W,
Evans RM, Moore DD. Androstane metabolites bind to and
deactivate the nuclear receptor CAR-beta. Nature. 1998;395
(6702):612–5.

110. Wei P, Zhang J, Egan-Hafley M, Liang S, Moore DD. The nuclear
receptor CAR mediates specific xenobiotic induction of drug
metabolism. Nature. 2000;407(6806):920–3.

111. Yoshinari K, Sueyoshi T, Moore R, Negishi M. Nuclear receptor
CAR as a regulatory factor for the sexually dimorphic induction
of CYB2B1 gene by phenobarbital in rat livers. Mol Pharmacol.
2001;59(2):278–84.

112. Kawamoto T, Sueyoshi T, Zelko I, Moore R, Washburn K,
Negishi M. Phenobarbital-responsive nuclear translocation of the
receptor CAR in induction of the CYP2B gene. Mol Cell Biol.
1999;19(9):6318–22.

113. Maglich JM, Stoltz CM, Goodwin B, Hawkins-Brown D,
Moore JT, Kliewer SA. Nuclear pregnane x receptor and
constitutive androstane receptor regulate overlapping but distinct
sets of genes involved in xenobiotic detoxification. Mol Pharma-
col. 2002;62(3):638–46.

114. Yamamoto Y, Moore R, Goldsworthy TL, Negishi M, Maron-
pot RR. The orphan nuclear receptor constitutive
active/androstane receptor is essential for liver tumor promotion
by phenobarbital in mice. Cancer Res. 2004;64(20):7197–200.

115. Phillips JM, Yamamoto Y, Negishi M, Maronpot RR, Good-
man JI. Orphan nuclear receptor constitutive active/androstane
receptor-mediated alterations in DNA methylation during pheno-
barbital promotion of liver tumorigenesis. Toxicol Sci. 2007;96
(1):72–82.

116. Buchmann A, Bauer-Hofmann R, Mahr J, Drinkwater NR,
Luz A, Schwarz M. Mutational activation of the c-Ha-ras gene
in liver tumors of different rodent strains: correlation with
susceptibility to hepatocarcinogenesis. Proc Natl Acad Sci USA.
1991;88(3):911–5.

117. Aydinlik H, Nguyen T, Moennikes O, Buchmann A, Schwarz M.
Selective pressure during tumor promotion by Phenobarbital leads
to clonal outgrowth of b-catenin mutated mouse liver tumors.
Oncogene. 2001;20:7812–6.

118. Stahl S, Ittrich C, Marx-Stoelting P, Köhle C, Altug-Teber O,
Riess O, Bonin M, Jobst J, Kaiser S, Buchmann A, Schwarz M.
Genotype-phenotype relationships in hepatocellular tumors from
mice and man. Hepatology. 2005;42(2):353–61.

119. Choi HS, Chung M, Tzameli I, Simha D, Lee YK, Seol W,
Moore DD. Differential transactivation by two isoforms of the
orphan nuclear hormone receptor CAR. J Biol Chem. 1997;272
(38):23565–71.

120. Elcombe C, Peffer R, Wolf D, Bailey J, Bars R, Bell D, Cattley R,
Ferguson S, Geter D, Goetz A, Goodman J, Hester S, Jacobs A,
Omiecinski C, Schoney R, Xie W, Lake B. Mode of action and
human relevance analysis for nuclear receptor mediated liver
toxicity: a case study with phenobarbital as a model constituitive
androstane receptor (CAR) activator. CRC Toxicol. 2014;44
(1):64–82.

121. Wanless IR, Medline A. Role of estrogens as promoters of hepatic
neoplasia. Lab Invest. 1982;46(3):313–20.

122. Taper HS. The effect of estradiol-17-phenylpropionate and
estradiol benzoate on N-nitrosomorpholine-induced liver carcino-
genesis in ovariectomized female rats. Cancer. 1978;42(2):462–7.

123. Yager JD Jr, Yager R. Oral contraceptive steroids as promoters of
hepatocarcinogenesis in female Sprague-Dawley rats. Cancer Res.
1980;40(10):3680–5.

124. Yager JD, Roebuck BD, Paluszcyk TL, Memoli VA. Effects of
ethinyl estradiol and tamoxifen on liver DNA turnover and new
synthesis and appearance of gamma glutamyl
transpeptidase-positive foci in female rats. Carcinogenesis.
1986;7(12):2007–14.

125. Yager JD, Campbell HA, Longnecker DS, Roebuck BD,
Benoit MC. Enhancement of hepatocarcinogenesis in female rats
by ethinyl estradiol and mestranol but not estradiol. Cancer Res.
1984;44(9):3862–9.

126. Yager JD Jr. Oral contraceptive steroids as promoters or complete
carcinogens for liver in female Sprague-Dawley rats. Environ
Health Perspect. 1983;50:109–12.

127. Yager JD, Zurlo J, Sewall C, Lucier G, He H. Growth stimulation
followed by growth inhibition in livers of female rats treated with
ethinyl estradiol. Carcinogenesis. 1994;15:2117–23.

128. Dragan YP, Singh J, Pitot HC. Effect of the separate and
combined administration of mestranol and phenobarbital on the
development of altered hepatic foci expressing placental form of
glutathione S-transferase in the rat. Carcinogenesis. 1996;17
(9):2043–52.

129. Chen J, Schwartz DA, Young TA, Norris JS, Yager JD.
Identification of genes whose expression is altered during
mitosuppression in livers of ethinyl estradiol-treated female rats.
Carcinogenesis. 1996;17(12):2783–6.

130. Chen J, Gokhale M, Schofield B, Odwin S, Yager JD. Inhibition
of TGF-beta-induced apoptosis by ethinyl estradiol in cultured,

84 Y.P. Dragan



precision cut rat liver slices and hepatocytes. Carcinogenesis.
2000;21(6):1205–11.

131. Koff A, Ohtsuki M, Polyak K, Roberts JM, Massagué J. Negative
regulation of G1 in mammalian cells: inhibition of cyclin
E-dependent kinase by TGF-beta. Science. 1993;260
(5107):536–9.

132. Sánchez A, Alvarez AM, López Pedrosa JM, Roncero C,
Benito M, Fabregat I. Apoptotic response to TGF-beta in fetal
hepatocytes depends upon their state of differentiation. Exp Cell
Res. 1999; 252(2): 281–91.

133. Houck KA, Michalopoulos GK, Strom SC. Introduction of a
Ha-ras oncogene into rat liver epithelial cells and parenchymal
hepatocytes confers resistance to the growth inhibitory effects of
TGF-beta. Oncogene. 1989;4(1):19–25.

134. Kohigashi K, Fukuda Y, Imura H. Inhibitory effect of tamoxifen
on diethylstilbestrol-promoted hepatic tumorigenesis in male rats
and its possible mechanism of action. Jpn J Cancer Res. 1988;79
(12):1335–9.

135. Mishkin S, Farber E, Ho R, Mulay S, Mishkin S. Evidence for the
hormone dependency of transformation after exogenous 17b
estradiol and tamoxifen. Hepatology. 1983;3:308–16.

136. Sumi C, Yokoro K, Matsushima R. Inhibitory effect of antiestro-
gen on hepatic tumorigenesis in WF rats treated with diethyl-
stilbesterol alone and in combination with N-nitrosobutylurea.
J Natl Cancer Inst. 1984;72:949–53.

137. International Agency for Research on Cancer. Hormonal contra-
ception and post-menopausal hormone therapy. In: IARC mono-
graphs on the evaluation of carcinogenic risk to humans. Lyon:
IARC; 1999; vol. 69. p. 49–565.

138. Yager JD, Liehr JG. Molecular mechanisms of estrogen carcino-
genesis. Annu Rev Pharmacol Toxicol. 1996;36:203–32.

139. Tsutsui T, Maizumi H, McLachlan JA, Barrett JC. Aneuploidy
induction and cell transformation by diethylstilbestrol: a possible
chromosomal mechanism in carcinogenesis. Cancer Res. 1983;43
(8):3814–21.

140. Mayol X, Neal GE, Davies R, Romero A, Domingo J. Ethinyl
estradiol-induced cell proliferation in rat liver. Involvement of
specific populations of hepatocytes. Carcinogenesis. 1992;13
(12):2381–8.

141. Pitot H, Goldsworthy T, Moran S, et al. A method to quantitate
the relative initiating and promoting potencies of hepatocarcino-
genic agents in their dose response relationship to altered hepatic
foci. Carcinogenesis. 1987;8:1491–9.

142. Edmondson HA, Reynolds TB, Henderson B, Benton B. Regres-
sion of liver cell adenomas associated with oral contraceptives.
Ann Intern Med. 1977;86(2):180–2.

143. Dragan Y, Pitot H. The instability of tumor promotion in relation
to human cancer risk. In: McClain M, Slaga T, LeBouef R,
Pitot H, editors. Growth factors and tumor promotion: implica-
tions for risk assessment. Progress in Clinical and Biol Res. New
York: Wiley; 1995; vol. 391. p. 21–38.

144. Kitano M, Ichihara T, Matsuda T, Wanibuchi H, Tamano S,
Hagiwara A, Imaoka S, Funae Y, Shirai T, Fukushima S. Presence
of a threshold for promoting effects of phenobarbital on
diethylnitrosamine-induced hepatic foci in the rat. Carcinogenesis.
1998;19(8):1475–80.

145. Dragan YP, Xu YD, Pitot HC. Tumor promotion as a target for
estrogen/antiestrogen effects in rat hepatocarcinogenesis. Prev
Med. 1991;20(1):15–26.

146. White IN, De Matteis F, Gibbs AH, Lim CK, Wolf CR,
Henderson C, Smith LL. Species differences in the covalent
binding of [14C]tamoxifen to liver microsomes and the forms of
cytochrome P450 involved. Biochem Pharmacol. 1995;49
(8):1035–42.

147. Epe B, Hegler J, Metzler M. Site-specific covalent binding of
stilbene-type and steroidal estrogens to tubulin following meta-
bolic activation in vitro. Carcinogenesis. 1987;8(9):1271–5.

148. Payré B, de Medina P, Boubekeur N, Mhamdi L, Bertrand-Michel
J, Tercé F, Fourquaux I, Goudounèche D, Record M, Poirot M,
Silvente-Poirot S. Microsomal antiestrogen-binding site ligands
induce growth control and differentiation of human breast cancer
cells through the modulation of cholesterol metabolism. Mol
Cancer Ther. 2008;7(12):3707–18.

149. de Médina P, Favre G, Poirot M. Multiple targeting by the
antitumor drug tamoxifen: a structure-activity study. Curr Med
Chem Anticancer Agents. 2004;4(6):491–508.

150. Yager JD, Shi YE. Synthetic estrogens and tamoxifen as
promoters of hepatocarcinogenesis. Prev Med. 1991;20(1):27–37.

151. Gong Y, Zhang M, Minuk GY. Regulation of transforming
growth factor-beta1 gene expression and cell proliferation in
human hepatocellular carcinoma cells (PLC/PRF/5) by tamoxifen.
J Lab Clin Med. 1999;134(1):90–5.

152. Fournier B, Gutzwiller S, Dittmar T, Matthias G, Steenbergh P,
Matthias P. Estrogen receptor (ER)-alpha, but not ER-beta,
mediates regulation of the insulin-like growth factor I gene by
antiestrogens. J Biol Chem. 2001;276(38):35444–9.

153. Weiss DJ, Gurpide E. Non-genomic effects of estrogens and
antiestrogens. J Steroid Biochem. 1988;31(4B):671–6.

154. Dragan YP, Shimel RJ, Bahnub N, Sattler G, Vaughan JR,
Jordan VC, Pitot HC. Effect of chronic administration of
mestranol, tamoxifen, and toremifene on hepatic ploidy in rats.
Toxicol Sci. 1998;43(2):129–38.

155. Mayol X, Neal G, Davies R, Romero A, Domingo J. Ethinyl
estradiol induced cell proliferation in rat liver. Involvement of
specific cell populations of hepatocytes. Carcinogenesis.
1992;13:2381–8.

156. Carthew P, Martin EA, White IN, De Matteis F, Edwards RE,
Dorman BM, Heydon RT, Smith LL. Tamoxifen induces
short-term cumulative DNA damage and liver tumors in rats:
promotion by phenobarbital. Cancer Res. 1995;55(3):544–7.

157. Carthew P, Nolan BM, Edwards RE, Smith LL. The role of cell
death and cell proliferation in the promotion of rat liver tumours
by tamoxifen. Cancer Lett. 1996;106(2):163–9.

158. Kappus H, Bolt H, Remmer H. Demethylation of mestranol to
ethylestradiol in vitro and in vivo. Acta Endocrinol. 1972;71:374–
84.

159. Gindhart TD. Liver tumors and oral contraceptives: pathology and
pathogenesis. Ann Clin Lab Sci. 1978;8(6):443–6.

160. Nissen ED, Kent DR, Nissen SE. Role of oral contraceptive
agents in the pathogenesis of liver tumors. J Toxicol Environ
Health. 1979;5(2–3):231–54.

161. Pasquale SA. Oral contraceptives: significance of their effects in
man and relationship to findings in animal models. Toxicol
Pathol. 1989;17(2):396–400.

162. Ochs H, Dusterberg B, Gunzel P, Sculte-Hermann R. Effect of
tumor promoting contraceptive steroids on growth and drug
metabolism enzymes in rat liver. Cancer Res. 1986;46:1224–32.

163. Kraek M, Peterson R, Sleisenger M, Jeffries G. Effects of
ethinylestradiol induced cholestasis on bile flow and biliary
excretion of estradiol and estradiol glucuronide by the rat. Proc
Soc Exp Biol Med. 1969;131:646–50.

164. Mayol X, Pérez-Tomás R, Culleré X, Romero A, Estadella MD,
Domingo J. Cell proliferation and tumour promotion by ethinyl
estradiol in rat hepatocarcinogenesis. Carcinogenesis. 1991;12
(6):1133–6.

165. Cameron R, Imaida K, Tsuda H, Ito N. Promotive effects of
steroids and bile acids on hepatocarcinogenesis initiated by
diethylnitrosamine. Cancer Res. 1982;42:2426–8.

4 Chemically-Induced Hepatocarcinogenesis 85



166. Campen D, Maronpot R, Lucier G. Dose-response relationships in
promotion of rat hepatocarcinogenesis by 17 alpha-
ethinylestradiol. J Toxicol Environ Health. 1990;29(3):257–68.

167. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G,
Umesono K, Blumberg B, Kastner P, Mark M, Chambon P,
Evans RM. The nuclear receptor superfamily: the second decade.
Cell. 1995;83(6):835–9.

168. Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear recep-
tors and lipid physiology: opening the X-files. Science. 2001;294
(5548):1866–70.

169. Desvergne B, Michalik L, Wahli W, et al. Be fit or be sick:
peroxisome proliferator activated receptors are down the road.
Mol Endocrinol. 2004;18:1321–32.

170. Lee S, Pineau T, Drago J, Lee E, Owens J, Kroetz D,
Fernandez-Salguero P, Westphahl H, Gonzalez F. Targeted
disruption of the alpha isoform of the peroxisome proliferator
activated receptorgene in mice results in the abolishment of the
pleitropic effects of peroxisome proliferators. Mol Cell Biol.
1995;15:3012–22.

171. Issemann I, Green S. Activation of a member of the steroid
hormone receptor superfamily by peroxisome proliferators.
Nature. 1990;347:645–50.

172. Corton JC, Anderson SP, Stauber A. Central role of peroxisome
proliferator-activated receptors in the actions of peroxisome
proliferators. Annu Rev Pharmacol Toxicol. 2000;40:491–518.

173. Klaunig JE, Babich MA, Baetcke KP, Cook JC, Corton JC,
David RM, DeLuca JG, Lai DY, McKee RH, Peters JM,
Roberts RA, Fenner-Crisp PA. PPARalpha agonist-induced
rodent tumors: modes of action and human relevance. Crit Rev
Toxicol. 2003;33(6):655–780.

174. Reddy JK, Krishnakantha TP. Hepatic peroxisome proliferation:
induction by two novel compounds structurally unrelated to
clofibrate. Science. 1975;190(4216):787–9.

175. Reddy JK, Moody DE, Azarnoff DL, Tomarelli RM. Hepatic
effects of some [4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio]
acetic acid (WY-14,643) analogs in the mouse. Arch Int
Pharmacodyn Ther. 1977;225(1):51–7.

176. Moody DE, Rao MS, Reddy JK. Mitogenic effect in mouse liver
induced by a hypolipidemic drug, nafenopin. Virchows Arch B
Cell Pathol. 1977;23(4):291–6.

177. Reddy JK, Rao MS, Azarnoff DL, Sell S. Mitogenic and
carcinogenic effects of a hypolipidemic peroxisome proliferator,
[4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio]acetic acid (Wy-14,
643), in rat and mouse liver. Cancer Res. 1979;39(1):152–61.

178. Reddy JK, Rao MS. Malignant tumors in rats fed nafenopin, a
hepatic peroxisome proliferator. J Natl Cancer Inst. 1977;59
(6):1645–50.

179. Reddy JK, Rao MS. Enhancement by Wy-14,643, a hepatic
peroxisome proliferator, of diethylnitrosamine-initiated hepatic
tumorigenesis in the rat. Br J Cancer. 1978;38(4):537–43.

180. Rumsby PC, Davies MJ, Price RJ, Lake BG. Effect of some
peroxisome proliferators on transforming growth factor-beta 1
gene expression and insulin-like growth factor
II/mannose-6-phosphate receptor gene expression in rat liver.
Carcinogenesis. 1994;15(2):419–21.

181. Peters JM, Cattley RC, Gonzalez FJ. Role of PPAR alpha in the
mechanism of action of the nongenotoxic carcinogen and
peroxisome proliferator Wy-14,643. Carcinogenesis. 1997;18
(11):2029–33.

182. Morimura K, Cheung C, Ward JM, Reddy JK, Gonzalez FJ. Dif-
ferential susceptibility of mice humanized for peroxisome
proliferator-activated receptor alpha to Wy-14,643-induced liver
tumorigenesis. Carcinogenesis. 2006;27(5):1074–80.

183. Gonzalez FJ, Peters JM, Cattley RC. Mechanism of action of the
nongenotoxic peroxisome proliferators: role of the peroxisome

proliferator-activator receptor alpha. J Natl Cancer Inst. 1998;90
(22):1702–9.

184. Peters JM, Cheung C, Gonzalez FJ. Peroxisome
proliferator-activated receptor-alpha and liver cancer: where do
we stand? J Mol Med. 2005;83(10):774–85.

185. Gonzalez FJ, Shah YM. PPARalpha: mechanism of species
differences and hepatocarcinogenesis of peroxisome proliferators.
Toxicology. 2008;246(1):2–8.

186. Peters J, Shah Y. Gonzolez F The role of peroxisome proliferator
activated receptors in carcinogenesis and chemoprevention. Nat
Rev Cancer. 2012;12(3):181–5.

187. Gu YZ, Hogenesch JB, Bradfield CA. The PAS superfamily:
sensors of environmental and developmental signals. Annu Rev
Pharmacol Toxicol. 2000;40:519–61.

188. Schmidt JV, Bradfield CA. Ah receptor signaling pathways. Annu
Rev Cell Dev Biol. 1996;12:55–89.

189. Swanson HI, Bradfield CA. The AH-receptor: genetics, structure
and function. Pharmacogenetics. 1993;3(5):213–30.

190. Connor KT, Aylward LL. Human response to dioxin: aryl
hydrocarbon receptor (AhR) molecular structure, function, and
dose-response data for enzyme induction indicate an impaired
human AhR. J Toxicol Environ Health B Crit Rev. 2006;9
(2):147–71.

191. Harper PA, Wong JY, Lam MS, Okey AB. Polymorphisms in the
human AH receptor. Chem Biol Interact. 2002;141(1–2):161–87.

192. Okey AB, Franc MA, Moffat ID, Tijet N, Boutros PC,
Korkalainen M, Tuomisto J, Pohjanvirta R. Toxicological impli-
cations of polymorphisms in receptors for xenobiotic chemicals:
the case of the aryl hydrocarbon receptor. Toxicol Appl Pharma-
col. 2005;207(2 Suppl):43–51.

193. Kociba RJ, Keyes DG, Beyer JE, Carreon RM, Wade CE,
Dittenber DA, Kalnins RP, Frauson LE, Park CN, Barnard SD,
Hummel RA, Humiston CG. Results of a two-year chronic
toxicity and oncogenicity study of
2,3,7,8-tetrachlorodibenzo-p-dioxin in rats. Toxicol Appl Phar-
macol. 1978;46(2):279–303.

194. Poland A, Glover E. Chlorinated biphenyl induction of aryl
hydrocarbon hydroxylase activity: a study of the structure-activity
relationship. Mol Pharmacol. 1977;13(5):924–38.

195. Frueh FW, Hayashibara KC, Brown PO, Whitlock JP Jr. Use of
cDNA microarrays to analyze dioxin-induced changes in human
liver gene expression. Toxicol Lett. 2001;122(3):189–203.

196. Beebe LE, Fornwald LW, Diwan BA, Anver MR, Anderson LM.
Promotion of N-nitrosodiethylamine-initiated hepatocellular
tumors and hepatoblastomas by
2,3,7,8-tetrachlorodibenzo-p-dioxin or Aroclor 1254 in
C57BL/6, DBA/2, and B6D2F1 mice. Cancer Res. 1995;55
(21):4875–80.

197. Moennikes O, Loeppen S, Buchmann A, Andersson P, Ittrich C,
Poellinger L, Schwarz M. A constitutively active dioxin/aryl
hydrocarbon receptor promotes hepatocarcinogenesis in mice.
Cancer Res. 2004;64(14):4707–10.

198. Fernandez-Salguero P, Pineau T, Hilbert DM, McPhail T, Lee SS,
Kimura S, Nebert DW, Rudikoff S, Ward JM, Gonza-
lez FJ. Immune system impairment and hepatic fibrosis in mice
lacking the dioxin-binding Ah receptor. Science. 1995;268
(5211):722–6.

199. Schmidt JV, Su GH, Reddy JK, Simon MC, Bradfield CA.
Characterization of a murine AhR null allele: involvement of the
Ah receptor in hepatic growth and development. Proc Natl Acad
Sci USA. 1996;93(13):6731–6.

200. Lahvis GP, Bradfield CA. AhR null alleles: distinctive or
different? Biochem Pharmacol. 1998;56(7):781–7.

201. Yoon CY, Park M, Kim BH, Park JY, Park MS, Jeong YK,
Kwon H, Jung HK, Kang H, Lee YS, Lee BJ. Gene expression

86 Y.P. Dragan



profile by 2,3,7,8-tetrachlorodibenzo-p-dioxin in the liver of
wild-type (AhR+/+) and aryl hydrocarbon receptor-deficient
(AhR-/-) mice. J Vet Med Sci. 2006;68(7):663–8.

202. Fernandez-Salguero PM, Hilbert DM, Rudikoff S, Ward JM,
Gonzalez FJ. Aryl-hydrocarbon receptor-deficient mice are resis-
tant to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxicity. Tox-
icol Appl Pharmacol. 1996;140(1):173–9.

203. Kennedy G, Nukaya M, Moran S, Glover E, Weinberg S,
Balbo S, Hecht S, Pitot HC, Drinkwater N, Bradfield C. Liver
tumor promotion by 2,3,7,8-Tetrachlorodibenzo-p-dioxin is
dependent on the arylhydrocarbo receptor and TNF/IL-1 recep-
tors. ToxSci. 2014;140(1):135–43.

204. Watson MA, Devereux TR, Malarkey DE, Anderson MW,
Maronpot RR. H-ras oncogene mutation spectra in B6C3F1 and
C57BL/6 mouse liver tumors provide evidence for TCDD
promotion of spontaneous and vinyl carbamate-initiated liver
cells. Carcinogenesis. 1995;16(8):1705–10.

205. Pitot HC, Goldsworthy TL, Moran S, Kennan W, Glauert HP,
Maronpot RR, Campbell HA. A method to quantitate the relative
initiating and promoting potencies of hepatocarcinogenic agents
in their dose-response relationships to altered hepatic foci.
Carcinogenesis. 1987;8(10):1491–9.

206. Buchmann A, Stinchcombe S, Körner W, Hagenmaier H,
Bock KW. Effects of 2,3,7,8-tetrachloro- and 1,2,3,4,6,7,8-
heptachlorodibenzo-p-dioxin on the proliferation of preneoplastic
liver cells in the rat. Carcinogenesis. 1994;15(6):1143–50.

207. Schrenk D, Schäfer S, Bock KW. 2,3,7,8-
Tetrachlorodibenzo-p-dioxin as growth modulator in mouse
hepatocytes with high and low affinity Ah receptor. Carcinogen-
esis. 1994;15(1):27–31.

208. Münzel P, Bock-Hennig B, Schieback S, Gschaidmeier H,
Beck-Gschaidmeier S, Bock KW. Growth modulation of hepato-
cytes and rat liver epithelial cells (WB-F344) by
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Carcinogenesis.
1996;17(2):197–202.

209. Bock KW, Köhle C. Ah receptor- and TCDD-mediated liver
tumor promotion: clonal selection and expansion of cells evading
growth arrest and apoptosis. Biochem Pharmacol. 2005;69
(10):1403–8.

210. Stinchcombe S, Buchmann A, Bock KW, Schwarz M. Inhibition
of apoptosis during 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated
tumour promotion in rat liver. Carcinogenesis. 1995;16
(6):1271–5.

211. Patel RD, Hollingshead BD, Omiecinski CJ, Perdew GH.
Aryl-hydrocarbon receptor activation regulates constitutive
androstane receptor levels in murine and human liver. Hepatol-
ogy. 2007;46(1):209–18.

212. Nukaya M, Takahashi Y, Gonzalez FJ, Kamataki T. Aryl
hydrocarbon receptor-mediated suppression of GH receptor and
Janus kinase 2 expression in mice. FEBS Lett. 2004;558(1–3):96–
100.

213. International Agency for Research on Cancer. Polychlorinated-
dibenzo-dioxins. In: IARC monographs on the evaluation of
carcinogenic risk to humans. Lyon: IARC; 1997; vol. 69, 33–343.

214. Bertazzi PA, Bernucci I, Brambilla G, Consonni D, Pesatori AC.
The Seveso studies on early and long-term effects of dioxin
exposure: a review. Environ Health Perspect. 1998;106(Suppl
2):625–33.

215. Yu ML, Guo YL, Hsu CC, Rogan WJ. Increased mortality from
chronic liver disease and cirrhosis 13 years after the Taiwan
“yucheng” (“oil disease”) incident. Am J Ind Med. 1997;31
(2):172–5.

216. Prince MM, Hein MJ, Ruder AM, Waters MA, Laber PA,
Whelan EA. Update: cohort mortality study of workers highly
exposed to polychlorinated biphenyls (PCBs) during the

manufacture of electrical capacitors, 1940–1998. Environ Health.
2006;5:13.

217. Sharma OK, Kuchino Y, Borek E. Mechanisms of ethionine
carcinogenesis. Adv Enzyme Regul. 1977;16:391–405.

218. Kanduc D, Ghoshal A, Quagliariello E, Farber E. DNA
hypomethylation in ethionine-induced rat preneoplastic hepato-
cyte nodules. Biochem Biophys Res Commun. 1988;150(2):739–
44.

219. McKillop I, Moran D, Jin X, Koniaris L. Molecular pathogenesis
of hepatocellular carcinoma. J Surg Res 2006; 136: 125–135.

220. Reuber MD. Influence of hormones on
N-2-fluorenyldiacetamide-induced hyperplastic hepatic nodules
in rats. J Natl Cancer Inst. 1969;43(2):445–52.

221. Newberne P, Newberne J. Rat strain and chronic bioassay; 1998.
222. Dragan YP, Sargent L, Xu YD, Xu YH, Pitot HC. The

initiation-promotion-progression model of rat hepatocarcinogen-
esis. Proc Soc Exp Biol Med. 1993;202(1):16–24.

223. Solt DB, Medline A, Farber E. Rapid emergence of
carcinogen-induced hyperplastic lesions in a new model for the
sequential analysis of liver carcinogenesis. Am J Pathol. 1977;88
(3):595–618.

224. Newell P, Villanueva A, Friedman SL, Koike K, Llovet JM.
Experimental models of hepatocellular carcinoma. J Hepatol.
2008;48(5):858–79.

225. Bannasch P. Hormonal and hormone-like effects eliciting hepa-
tocarcinogenesis. Folia Histochem Cytobiol. 2001;39(Suppl
2):28–9.

226. Mazzantini R, de Conti A, Moreno F. Persistent and remodeling
hepatic preneoplastic lesions present differences in cell prolifer-
ation and apoptosis, as well as in p53, Bcl-2 and NF-kappaB
pathways. J Cell Biochem. 2008;103(2):538–46.

227. Xu C, Zhang S, Chen X, Rahman S. Correlation analysis of liver
tumor-associated genes with liver regeneration. World J Gas-
troenterol. 2007;13(24):3323–32.

228. Ogawa K, Asamoto M, Suzuki S, Tsujimura K, Shirai T.
Downregulation of apoptosis revealed by laser microdissection
and cDNA microarray analysis of related genes in rat liver
preneoplastic lesions. Med Mol Morphol. 2005;38(1):23–9.

229. Levinovitz A, Husman B, Eriksson L, Norstedt G, Andersson G.
Decreased expression of the growth hormone receptor and growth
hormone binding protein in rat liver nodules. Mol Carcinog.
1990;3(3):157–64.

230. Norstedt G, Levinovitz A, Möller C, Eriksson L, Andersson G.
Expression of insulin-like growth factor I (IGF-I) and IGF-II
mRNA during hepatic development, proliferation and carcino-
genesis in the rat. Carcinogenesis. 1988;9(2):209–13.

231. Tellgren A, Wood T, Flores-Morales A, Torndal U, Eriksson L,
Norstedt G. Differentially expressed transcripts in neoplastic
hepatic nodules and neonatal rat liver studied by cDNA microar-
ray analysis. Int J Cancer. 2003;104(2):131–8.

232. Pérez-Carreón J, López-García C, Fattel-Fazenda S, Arce-Popoca
E, Alemán-Lazarini L, Hernández-García S, Le Berre V, Sokol S,
Francois J, Villa-Treviño S. Gene expression profile related to the
progression of preneoplastic nodules toward hepatocellular car-
cinoma in rats. Neoplasia. 2006;8(5):373–83.

233. Dragan Y, Hully J, Nakamura J, Mass M, Swenberg J, Pitot HC.
Biochemical events during initiation of rat hepatocarcinogenesis
by diethylnitrosamine. Carcinogenesis. 1994;5:1451–8.

234. Sato K, Kitahara A, Satoh K, Ishikawa T, Tatematsu M, Ito N.
The placental form of glutathione S-transferase as a new marker
protein for preneoplasia in rat chemical hepatocarcinogenesis.
Gann. 1984;75(3):199–202.

235. Moore MA, Nakagawa K, Satoh K, Ishikawa T, Sato K. Single
GST-P positive liver cells–putative initiated hepatocytes. Car-
cinogenesis. 1987;8(3):483–6.

4 Chemically-Induced Hepatocarcinogenesis 87



236. Cameron RG. Identification of the putative first cellular step of
chemical hepatocarcinogenesis. Cancer Lett. 1989;47(3):163–7.

237. Yokota K, Singh U, Shinozuka H. Effects of a choline-deficient
diet and a hypolipidemic agent on single glutathione S-transferase
placental form-positive hepatocytes in rat liver. Jpn J Cancer Res.
1990;81(2):129–34.

238. Satoh K, Hatayama I, Tateoka N, Tamai K, Shimizu T, Tatem-
atsu M, Ito N, Sato K. Transient induction of single GST-P positive
hepatocytes by DEN. Carcinogenesis. 1989;10(11):2107–11.

239. Saeter G, Schwarze PE, Nesland JM, Seglen PO. Diploid nature
of hepatocellular tumours developing from transplanted preneo-
plastic liver cells. Br J Cancer. 1989;59(2):198–205.

240. Sargent L, Xu YH, Sattler GL, Meisner L, Pitot HC. Ploidy and
karyotype of hepatocytes isolated from enzyme-altered foci in two
different protocols of multistage hepatocarcinogenesis in the rat.
Carcinogenesis. 1989;10(2):387–91.

241. Scherer E. Relationship among histochemically distinguishable
early lesions in multistep-multistage hepatocarcinogenesis. Arch
Toxicol Suppl. 1987;10:81–94.

242. Pitot HC, Campbell HA, Maronpot R, Bawa N, Rizvi TA,
Xu YH, Sargent L, Dragan Y, Pyron M. Critical parameters in the
quantitation of the stages of initiation, promotion, and progression
in one model of hepatocarcinogenesis in the rat. Toxicol Pathol.
1989;17(4 Pt 1):594–611.

243. Frau M, Simile M, Tomasi M, Demartis M, Daino L, Seddaiu M,
Brozetti S, Feo C, Massarelli G, Solinas G, Feo F, Lee J-S,
Pascale R. An expression signature of phenotypic resistance to
hepatocellular carcinoma identified by cross-species gene expres-
sion analysis. Cell Oncol. 2012;35(3):163–73.

244. Andervont H, Dunn T. Transplantation of spontaneous and
induced hepatomas in inbred mice. J Natl Cancer Inst. 1952;13
(2):455–503.

245. Drinkwater N. Genetic control of hepatocarcinogenesis in C3H
mice. Drug Metab Rev. 1994;26(1–2):201–8.

246. Nakano H, Hatayama I, Satoh K, Suzuki S, Sato K, Tsuchida S.
C-Jun expression in single cells and preneoplastic foci induced by
diethylnitrosamine in B6C3F1 mice: comparison with the
expression of pi-class glutathione S transferase. Carcinogenesis.
1994;15:1853–7.

247. Drinkwater N, Bennett LM. Genetic control of carcinogenesis in
experimental animals. In: Homburger F, editor, Progress in
experimental tumor research. Cambridge: Karger Publishers;
1991. p. 1–20.

248. Bugni JM, Poole TM, Drinkwater NR. The little mutation
suppresses DEN-induced hepatocarcinogenesis in mice and
abrogates genetic and hormonal modulation of susceptibility.
Carcinogenesis. 2001;22(11):1853–62.

249. Drinkwater NR, Hanigan MH, Kemp CJ. Genetic determinants of
hepatocarcinogenesis in the B6C3F1 mouse. Toxicol Lett.
1989;49(2–3):255–65.

250. Dragani TA, Canzian F, Manenti G, Pierotti MA. Hepatocarcino-
genesis: a polygenic model of inherited predisposition to cancer.
Tumori. 1996;82(1):1–5.

251. Bilger A, Bennett LM, Carabeo RA, Chiaverotti TA, Dvorak C,
Liss KM, Schadewald SA, Pitot HC, Drinkwater NR. A potent
modifier of liver cancer risk on distal mouse chromosome 1:
linkage analysis and characterization of congenic lines. Genetics.
2004;167(2):859–66.

252. Manenti G, Galvan A, Falvella FS, Pascale RM, Spada E,
Milani S, Gonzalez Neira A, Feo F, Dragani TA. Genetic control
of resistance to hepatocarcinogenesis by the mouse Hpcr3 locus.
Hepatology. 2008;48(2):617–23.

253. McClain RM, Keller D, Casciano D, Fu P, MacDonald J, Popp J,
Sagartz J. Neonatal mouse model: review of methods and results.
Toxicol Pathol. 2001;29(Suppl):128–37.

254. Vesselinovitch SD. Infant mouse as a sensitive bioassay system
for carcinogenicity of N-nitroso compounds. IARC Sci Publ.
1980;31:645–55.

255. Leenders MW, Nijkamp MW, Borel Rinkes IH. Mouse models in
liver cancer research: a review of current literature. World J
Gastroenterol. 2008;14(45):6915–23.

256. Liang TJ, Heller T. Pathogenesis of hepatitis C-associated
hepatocellular carcinoma. Gastroenterology. 2004;127(5 Suppl
1):S62–71.

257. Kowdley KV. Iron, hemochromatosis, and hepatocellular carci-
noma. Gastroenterology. 2004;127(5 Suppl 1):S79–86.

258. Fattovich G, Stroffolini T, Zagni I, Donato F. Hepatocellular
carcinoma in cirrhosis: incidence and risk factors. Gastroenterol-
ogy. 2004;127(5 Suppl 1):S35–50.

259. Yu MC, Yuan JM. Environmental factors and risk for hepatocel-
lular carcinoma. Gastroenterology. 2004;127(5 Suppl 1):S72–8.

260. Rosenberg WM. Rating fibrosis progression in chronic liver
diseases. J Hepatol. 2003;38(3):357–60.

261. Lee Y, Wallace M, Friedman S. Pathobiology of liver fibrosis: a
translational success story. Gut. 2015;64(5):830–41.

262. Iredale JP. Cirrhosis: new research provides a basis for rational
and targeted treatments. BMJ. 2003;327(7407):143–7.

263. Moscatiello S, Manini R, Marchesini G. Diabetes and liver
disease: an ominous association. Nutr Metab Cardiovasc Dis.
2007;17(1):63–70.

264. Powell EE, Cooksley WG, Hanson R, Searle J, Halliday JW,
Powell LW. The natural history of nonalcoholic steatohepatitis: a
follow-up study of forty-two patients for up to 21 years.
Hepatology. 1990;11(1):74–80.

265. Falck-Ytter Y, Younossi ZM,Marchesini G,McCullough AJ. Clin-
ical features and natural history of nonalcoholic steatosis
syndromes. Semin Liver Dis. 2001;21(1):17–26.

266. Khan F. Perumpzil. Wong R, Ahmed A. Advances in hepato-
ceullar carcinoma:non-alcoholic steatohepatitis related hepatocel-
lular carcinoma. World J Hepatol. 2015;7(18):2155–61.

267. Erickson SK. Nonalcoholic fatty liver disease (NAFLD). J Lipid
Res. 2008 (December 12).

268. Maculuso F, Maida M, Petta S. Genetic background in nonalco-
holic fatty liver disease: a comprehensive review. World J
Gastroenterol. 2015;21(39):11088–111.

269. Puchakayala B, Verma S, Kanwar P, Hart J, Sanivarapu R,
Mohanty S. Histopathological differences utilizing the nonal-
coholic fatty liver disease activity score criteria in diabetic
(type 2 diabetes mellitus) and non-diabetic patients with
nonalcoholoic fatty liuver disease. World J Hepatol.
2015;7:2610–8.

270. Chitturi S, George J. Interaction of iron, insulin resistance, and
nonalcoholic steatohepatitis. Curr Gastroenterol Rep. 2003;5
(1):18–25.

271. Larter CZ, Yeh MM. Animal models of NASH: getting both
pathology and metabolic context right. J Gastroenterol Hepatol.
2008 (August 21).

272. Nakagawa H. Recent advances in mouse models of obesity and
nonalcoholic steatohepatitis-associated hepatocarcinogenesis.
World J Hepatol. 2015;7(17):2110–8.

273. El-Zayadi AR. Hepatic steatosis: a benign disease or a silent
killer. World J Gastroenterol. 2008;14(26):4120–6.

274. Schreuder TC, Verwer BJ, van Nieuwkerk CM, Mulder CJ. Non-
alcoholic fatty liver disease: an overview of current insights in
pathogenesis, diagnosis and treatment. World J Gastroenterol.
2008;14(16):2474–86 (April 28).

275. Delgado JS. Evolving trends in nonalcoholic fatty liver disease.
Eur J Intern Med. 2008;19(2):75–82.

276. Guzman G, Brunt EM, Petrovic LM, Chejfec G, Layden TJ,
Cotler SJ. Does nonalcoholic fatty liver disease predispose

88 Y.P. Dragan



patients to hepatocellular carcinoma in the absence of cirrhosis?
Arch Pathol Lab Med. 2008;132(11):1761–6.

277. Beasley RP, Hwang LY. Hepatocellular carcinoma and hepatitis
B virus. Semin Liver Dis. 1984;4(2):113–21.

278. But DY, Lai CL, Yuen MF. Natural history of hepatitis-related
hepatocellular carcinoma. World J Gastroenterol. 2008;14
(11):1652–6.

279. Yu MW, Chen CJ. Elevated serum testosterone levels and risk of
hepatocellular carcinoma. Cancer Res. 1993;53(4):790–4.

280. Yu MW, Yang YC, Yang SY, Cheng SW, Liaw YF, Lin SM,
Chen CJ. Hormonal markers and hepatitis B virus-related
hepatocellular carcinoma risk: a nested case-control study among
men. J Natl Cancer Inst. 2001;93(21):1644–51.

281. Smela ME, Currier SS, Bailey EA, Essigmann JM. The chemistry
and biology of aflatoxin B(1): from mutational spectrometry to
carcinogenesis. Carcinogenesis. 2001;22(4):535–45.

282. Groopman JD, Johnson D, Kensler TW. Aflatoxin and hepatitis B
virus biomarkers: a paradigm for complex environmental expo-
sures and cancer risk. Cancer Biomark. 2005;1(1):5–14.

283. Wogan GN. Aflatoxins as risk factors for hepatocellular carci-
noma in humans. Cancer Res. 1992;52(7 Suppl):2114s–8s.

284. Schoental R. Trichothecenes, zearalenone, and other carcinogenic
metabolites of Fusarium and related microfungi. Adv Cancer Res.
1985;45:217–90.

285. Gelderblom WC, Abel S, Smuts CM, Marnewick J, Marasas WF,
Lemmer ER, Ramljak D. Fumonisin-induced hepatocarcinogen-
esis: mechanisms related to cancer initiation and promotion.
Environ Health Perspect. 2001;109(Suppl 2):291–300.

286. Ueno Y, Iijima K, Wang SD, Sugiura Y, Sekijima M, Tanaka T,
Chen C, Yu SZ. Fumonisins as a possible contributory risk factor
for primary liver cancer: a 3-year study of corn harvested in
Haimen, China, by HPLC and ELISA. Food Chem Toxicol.
1997;35(12):1143–50.

287. Harada K, Oshikata M, Uchida H, Suzuki M, Kondo F, Sato K,
Ueno Y, Yu SZ, Chen G, Chen GC. Detection and identification
of microcystins in the drinking water of Haimen City, China. Nat
Toxins. 1996;4(6):277–83.

288. Hirono I. Natural carcinogenic products of plant origin. Crit Rev
Toxicol. 1981;8(3):235–77.

289. Prakash AS, Pereira TN, Reilly PE, Seawright AA. Pyrrolizidine
alkaloids in human diet. Mutat Res. 1999;443(1–2):53–67.

290. Polesel J, Talamini R, Montella M, Maso LD, Crovatto M,
Parpinel M, Izzo F, Tommasi LG, Serraino D, La Vecchia C,
Franceschi S. Nutrients intake and the risk of hepatocellular
carcinoma in Italy. Eur J Cancer. 2007;43(16):2381–7.

291. Talamini R, Polesel J, Montella M, Dal Maso L, Crispo A,
Tommasi LG, Izzo F, Crovatto M, La Vecchia C, Franceschi S.
Food groups and risk of hepatocellular carcinoma: a multicenter
case-control study in Italy. Int J Cancer. 2006;119(12):2916–21.

292. Yu MW, Horng IS, Hsu KH, Chiang YC, Liaw YF,
Chen CJ. Plasma selenium levels and risk of hepatocellular
carcinoma among men with chronic hepatitis virus infection.
Nutrients intake and the risk of hepatocellular carcinoma in Italy.
Am J Epidemiol. 1999;150(4):367–74.

293. Yuan JM, Gao YT, Ong CN, Ross RK, Yu MC. Prediagnostic
level of serum retinol in relation to reduced risk of hepatocellular
carcinoma. J Natl Cancer Inst. 2006;98(7):482–90.

294. Yu MW, Chiang YC, Lien JP, Chen CJ. Plasma antioxidant
vitamins, chronic hepatitis B virus infection and urinary aflatoxin
B1-DNA adducts in healthy males. Carcinogenesis. 1997;18
(6):1189–94.

295. Flemming, JA, Yang JD, Vittinghoff E, Kim WR, Terrault NA.
Risk prediction of hepatocellular carcinoma in patients with
Cirrhosis: the ADRESS-HCC risk model. Cancer. 2014;120
(22):3485–3493.

296. Naccarato R, Farinati F. Hepatocellular carcinoma, alcohol, and
cirrhosis: facts and hypotheses. Dig Dis Sci. 1991;36(8):1137–42.

297. Farinati F, Fagiuoli S, de Maria N, Zotti S, Chiaramonte M,
Salvagnini M, Naccarato R. Risk of hepatocellular carcinoma in
alcoholic cirrhosis. Liver. 1991;11(3):190–1.

298. Seitz HK, Simanowski UA, Osswald B. Gastrointestinal carcino-
genesis: ethanol as a risk factor. Eur J Cancer Prev. 1992;1(Suppl
3):5–18.

299. Miyakawa H, Sato C, Tazawa J, Izumi N, Hattori K, Ebata A,
Maeda M, Ikeda T, Hirata R, Mae S, et al. A prospective study on
hepatocellular carcinoma in liver cirrhosis: respective roles of
alcohol and hepatitis C virus infection. Alcohol Alcohol Suppl.
1994;29(1):75–9.

300. Yu MW, You SL, Chang AS, Lu SN, Liaw YF, Chen CJ. Asso-
ciation between hepatitis C virus antibodies and hepatocellular
carcinoma in Taiwan. Cancer Res. 1991;51(20):5621–5.

301. Franceschi S, Montella M, Polesel J, La Vecchia C, Crispo A, Dal
Maso L, Casarin P, Izzo F, Tommasi LG, Chemin I, Trépo C,
Crovatto M, Talamini R. Hepatitis viruses, alcohol, and tobacco in
the etiology of hepatocellular carcinoma in Italy. Cancer
Epidemiol Biomark Prev 2006;15(4):683–9.

302. Yu MC, Yuan JM, Lu SC. Alcohol, cofactors and the genetics of
hepatocellular carcinoma. J Gastroenterol Hepatol. 2008;23(Suppl
1):S92–7.

303. Hassan MM, Spitz MR, Thomas MB, El-Deeb AS, Glover KY,
Nguyen NT, Chan W, Kaseb A, Curley SA, Vauthey JN,
Ellis LM, Abdalla E, Lozano RD, Patt YZ, Brown TD,
Abbruzzese JL, Li D. Effect of different types of smoking and
synergism with hepatitis C virus on risk of hepatocellular
carcinoma in American men and women: case-control study.
Int J Cancer. 2008;123(8):1883–91.

304. Marrero JA, Fontana RJ, Fu S, Conjeevaram HS, Su GL, Lok AS.
Alcohol, tobacco and obesity are synergistic risk factors for
hepatocellular carcinoma. J Hepatol. 2005;42(2):218–24.

305. Wang LY, You SL, Lu SN, Ho HC, Wu MH, Sun CA, Yang HI,
Chien-JenC.Risk of hepatocellular carcinoma and habits of alcohol
drinking, betel quid chewing and cigarette smoking: a cohort of
2416 HBsAg-seropositive and 9421 HBsAg-seronegative male
residents in Taiwan. Cancer Causes Control. 2003;14(3):241–50.

306. Austin H. The role of tobacco use and alcohol consumption in the
etiology of hepatocellular carcinoma. In: Tabor E, DiBisceglie A,
Purcell R, editors. Etiology, pathology and treatment of hepato-
cellular carcinoma in North America, vol. 13., The Wood-
landsTexas: Portfolio Publishing Company; 2007. p. 57–70.

307. International Agency for Research on Cancer (IARC). Mono-
graphs on the evaluation of carcinogenic risks to humans: tobacco
smoke and involuntary smoking. Lyon: IARC, 2004; vol 83.
p. 83161–176.

308. Grangé JD, Guéchot J, Legendre C, Giboudeau J, Darnis F,
Poupon R. Liver adenoma and focal nodular hyperplasia in a man
with high endogenous sex steroids. Gastroenterology. 1987;93
(6):1409–13.

309. Westaby D, Ogle SJ, Paradinas FJ, Randell JB, Murray-Lyon IM.
Liver damage from long-term methyltestosterone. Lancet. 1977;2
(8032):262–3.

310. Gorayski PM, Thomas AC, Thompson CH, Subhash HS. Hepa-
tocellular carcinoma associated with recreational anabolic steroid
use. Br J Sports Med. 2008;42(1):74–5.

311. Velazquez I, Alter BP. Androgens and liver tumors: Fanconi’s
anemia and non-Fanconi’s conditions. Am J Hematol. 2004;77
(3):257–67.

312. Carrasco D, Prieto M, Pallardó L, Moll JL, Cruz JM, Muñoz C,
Berenguer J. Multiple hepatic adenomas after long-term therapy
with testosterone enanthate. Review of the literature. J Hepatol.
1985;1(6):573–8.

4 Chemically-Induced Hepatocarcinogenesis 89



313. McCaughan GW, Bilous MJ, Gallagher ND. Long-term survival
with tumor regression in androgen-induced liver tumors. Cancer.
1985;56(11):2622–6.

314. Baum JK, Bookstein JJ, Holtz F, Klein EW. Possible association
between benign hepatomas and oral contraceptives. Lancet.
1973;2(7835):926–9.

315. Tavani A, Negri E, Parazzini F, Franceschi S, La Vecchia C.
Female hormone utilisation and risk of hepatocellular carcinoma.
Br J Cancer. 1993;67(3):635–7.

316. Rooks JB, Ory HW, Ishak KG, Strauss LT, Greenspan JR,
Hill AP, Tyler CW Jr. Epidemiology of hepatocellular adenoma.
The role of oral contraceptive use. JAMA. 1979;242(7):644–8.

317. Forman D, Doll R, Peto R. Trends in mortality from carcinoma of
the liver and the use of oral contraceptives. Br J Cancer. 1983;48
(3):349–54.

318. Henderson BE, Preston-Martin S, Edmondson HA, Peters RL,
Pike MC. Hepatocellular carcinoma and oral contraceptives. Br J
Cancer. 1983;48(3):437–40.

319. Fiel MI, Min A, Gerber MA, Faire B, Schwartz M, Thung SN.
Hepatocellular carcinoma in long-term oral contraceptive use.
Liver. 1996;16(6):372–6.

320. Deugnier Y, Turlin B. Iron and hepatocellular carcinoma.
J Gastroenterol Hepatol. 2001;16(5):491–4.

321. Tan M, Kumarasiginghe M, Wang S, Ooi L, Aw S, Hui K.
Modulation of iron-regulatory genes in human hepatocellular
carcinoma ans its physiological consequences. Exp Biol Med.
2009;234:693–702.

322. Wallace DF, Subramaniam VN. Co-factors in liver disease: the
role of HFE-related hereditary hemochromatosis and iron.
Biochim Biophys Acta. 2008 (September 20).

323. Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA,
Basava A, Dormishian F, Domingo R Jr, Ellis MC, Fullan A,
Hinton LM, Jones NL, Kimmel BE, Kronmal GS, Lauer P,
Lee VK, Loeb DB, Mapa FA, McClelland E, Meyer NC,
Mintier GA, Moeller N, Moore T, Morikang E, Prass CE,
Quintana L, Starnes SM, Schatzman RC, Brunke KJ, Drayna DT,
Risch NJ, Bacon BR, Wolff RK. A novel MHC class I-like gene is
mutated in patients with hereditary haemochromatosis. Nat Genet.
1996;13(4):399–408.

324. Cassiman D, Vannoote J, Roelandts R, Libbrecht L, Roskams T,
Van den Oord J, Fevery J, Garmyn M, Nevens F. Porphyria
cutanea tarda and liver disease. A retrospective analysis of 17
cases from a single centre and review of the literature. Acta
Gastroenterol Belg. 2008;71(2):237–42.

325. Mandishona E, MacPhail AP, Gordeuk VR, Kedda MA, Pater-
son AC, Rouault TA, Kew MC. Dietary iron overload as a risk
factor for hepatocellular carcinoma in Black Africans. Hepatol-
ogy. 1998;27(6):1563–6.

326. von Delius S, Lersch C, Schulte-Frohlinde E, Fend F, Dobritz M,
Schmid RM, Eckel F. Hepatocellular carcinoma associated with
hereditary hemochromatosis occurring in non-cirrhotic liver.
Z Gastroenterol. 2006;44(1):39–42.

327. Zhou XY, Tomatsu S, Fleming RE, Parkkila S, Waheed A,
Jiang J, Fei Y, Brunt EM, Ruddy DA, Prass CE, Schatzman RC,
O’Neill R, Britton RS, Bacon BR, Sly WS. HFE gene knockout
produces mouse model of hereditary hemochromatosis. Proc Natl
Acad Sci USA. 1998;95(5):2492–7.

328. Miranda CJ, Makui H, Andrews NC, Santos MM. Contributions
of beta2-microglobulin-dependent molecules and lymphocytes to
iron regulation: insights from HfeRag1(-/-) and beta2mRag1(-/-)
double knock-out mice. Blood. 2004;103(7):2847–9.

329. Gross CN, Irrinki A, Feder JN, Enns CA. Co-trafficking of HFE, a
nonclassical major histocompatibility complex class I protein,
with the transferrin receptor implies a role in intracellular iron
regulation. J Biol Chem. 1998;273(34):22068–74.

330. Beckman LE, Hägerstrand I, Stenling R, Van Landeghem GF,
Beckman L. Interaction between haemochromatosis and transfer-
rin receptor genes in hepatocellular carcinoma. Oncology.
2000;59(4):317–22.

331. Blanc JF, De Ledinghen V, Bernard PH, de Verneuil H,
Winnock M, Le Bail B, Carles J, Saric J, Balabaud C,
Bioulac-Sage P. Increased incidence of HFE C282Y mutations
in patients with iron overload and hepatocellular carcinoma
developed in non-cirrhotic liver. J Hepatol. 2000;32(5):805–11.

332. Hellerbrand C, Pöppl A, Hartmann A, Schölmerich J, Lock G.
HFE C282Y heterozygosity in hepatocellular carcinoma: evidence
for an increased prevalence. Clin Gastroenterol Hepatol. 2003;1
(4):279–84.

333. Fracanzani AL, Fargion S, Stazi MA, Valenti L, Amoroso P,
Cariani E, Sangiovanni A, Tommasini M, Rossini A, Bertelli C,
Fatta E, Patriarca V. Brescianini 335. S, Stroffolini T. Association
between heterozygosity for HFE gene mutations and hepatitis
viruses in hepatocellular carcinoma. Blood Cells Mol Dis.
2005;35(1):27–32.

334. Furutani T, Hino K, Okuda M, Gondo T, Nishina S, Kitase A,
Korenaga M, Xiao SY, Weinman SA, Lemon SM, Sakaida I,
Okita K. Hepatic iron overload induces hepatocellular carcinoma
in transgenic mice expressing the hepatitis C virus polyprotein.
Gastroenterology. 2006;130(7):2087–98.

335. Morcos M, Dubois S, Bralet MP, Belghiti J, Degott C, Terris B.
Primary liver carcinoma in genetic hemochromatosis reveals a
broad histologic spectrum. Am J Clin Pathol. 2001;116(5):738–43.

336. Vautier G, Bomford AB, Portmann BC, Metivier E, Williams R,
Ryder SD. p53 mutations in british patients with hepatocellular
carcinoma: clustering in genetic hemochromatosis. Gastroenterol-
ogy. 1999;117(1):154–60.

337. Lehmann U, Wingen LU, Brakensiek K, Wedemeyer H,
Becker T, Heim A, Metzig K, Hasemeier B, Kreipe H, Flem-
ming P. Epigenetic defects of hepatocellular carcinoma are
already found in non-neoplastic liver cells from patients with
hereditary haemochromatosis. Hum Mol Genet. 2007;16
(11):1335–42.

338. Iwadate H, Ohira H, Suzuki T, Abe K, Yokokawa J, Takiguchi J,
Rai T, Orikasa H, Irisawa A, Obara K, Kasukawa R, Sato Y.
Hepatocellular carcinoma associated with Wilson’s disease. Intern
Med. 2004;43(11):1042–5.

339. Sugeno H, Takebayashi Y, Higashimoto M, Ogura Y,
Shibukawa G, Kanzaki A, Terada K, Sugiyama T, Watanabe K,
Katoh R, Nitta Y, Fukushima T, Koyama Y, Inoue N,
Sekikawa K, Ogawa K, Sato Y, Takenoshita S. Expression of
copper-transporting P-type adenosine triphosphatase (ATP7B) in
human hepatocellular carcinoma. Anticancer Res. 2004;24
(2C):1045–8.

340. Sawaki M, Enomoto K, Takahashi H, Nakajima Y, Mori M.
Phenotype of preneoplastic and neoplastic liver lesions during
spontaneous liver carcinogenesis of LEC rats. Carcinogenesis.
1990;11(10):1857–61.

341. Wu J, Forbes JR, Chen HS, Cox DW. The LEC rat has a deletion
in the copper transporting ATPase gene homologous to the
Wilson disease gene. Nat Genet. 1994;7(4):541–5.

342. Theophilos MB, Cox DW, Mercer JF. The toxic milk mouse is a
murine model of Wilson disease. Hum Mol Genet. 1996;5
(10):1619–24.

343. Buiakova OI, Xu J, Lutsenko S, Zeitlin S, Das K, Das S,
Ross BM, Mekios C, Scheinberg IH, Gilliam TC. Null mutation
of the murine ATP7B (Wilson disease) gene results in intracel-
lular copper accumulation and late-onset hepatic nodular trans-
formation. Hum Mol Genet. 1999;8(9):1665–71.

344. Billingsley GD, Walter MA, Hammond GL, Cox DW. Physical
mapping of four serpin genes: alpha 1-antitrypsin, alpha

90 Y.P. Dragan



1-antichymotrypsin, corticosteroid-binding globulin, and protein
C inhibitor, within a 280-kb region on chromosome I4q32.1.
Am J Hum Genet. 1993;52(2):343–53.

345. Fairbanks KD, Tavill AS. Liver disease in alpha 1-antitrypsin
deficiency: a review. Am J Gastroenterol. 2008;103(8):2136–41.

346. Eriksson S. Alpha 1-antitrypsin deficiency. J Hepatol. 1999;30
(Suppl 1):34–9.

347. Eriksson S, Carlson J, Velez R. Risk of cirrhosis and primary liver
cancer in alpha 1-antitrypsin deficiency. N Engl J Med. 1986;314
(12):736–9.

348. Zhou H, Fischer HP. Liver carcinoma in PiZ alpha-1-antitrypsin
deficiency. Am J Surg Pathol. 1998;22(6):742–8.

349. Elzouki AN, Eriksson S. Risk of hepatobiliary disease in adults
with severe alpha 1-antitrypsin deficiency (PiZZ): is chronic viral
hepatitis B or C an additional risk factor for cirrhosis and
hepatocellular carcinoma? Eur J Gastroenterol Hepatol. 1996;8
(10):989–94.

350. Smanadhikorn P, Pongpaew P, Srivatanakul P, Tungtrongchitr R,
Supanaranond W, Schelp FP, Migasena P. alpha 1-antitrypsin
phenotype PiMZ, a risk factor for liver cirrhosis but not for liver
cancers in Thailand. Southeast Asian J Trop Med Public Health.
1995;26(2):240–2.

351. Lindblad B, Lindstedt S, Steen G. On the enzymic defects in
hereditary tyrosinemia. Proc Natl Acad Sci USA. 1977;74
(10):4641–5.

352. Santra S, Baumann U. Experience of nitisinone for the pharma-
cological treatment of hereditary tyrosinaemia type 1. Expert Opin
Pharmacother. 2008;9(7):1229–36.

353. Grompe M, al-Dhalimy M. Mutations of the fumarylacetoacetate
hydrolase gene in four patients with tyrosinemia, type I. Hum
Mutat. 1993;2(2):85–93.

354. Grompe M, al-Dhalimy M, Finegold M, Ou CN, Burlingame T,
Kennaway NG, Soriano P. Loss of fumarylacetoacetate hydrolase
is responsible for the neonatal hepatic dysfunction phenotype of
lethal albino mice. Genes Dev. 1993;7(12A):2298–307.

355. Grompe M, Lindstedt S, al-Dhalimy M, Kennaway NG, Papa-
constantinou J, Torres-Ramos CA, Ou CN, Finegold M. Phar-
macological correction of neonatal lethal hepatic dysfunction in a
murine model of hereditary tyrosinaemia type I. Nat Genet.
1995;10(4):453–60.

356. Al-Dhalimy M, Overturf K, Finegold M, Grompe M. Long-term
therapy with NTBC and tyrosine-restricted diet in a murine model
of hereditary tyrosinemia type I. Mol Genet Metab. 2002;75
(1):38–45.

357. Nakamura K, Tanaka Y, Mitsubuchi H, Endo F. Animal models
of tyrosinemia. J Nutr. 2007;137(6 Suppl):1556S–60S.

358. Lee B, Goss J. Long-term correction of urea cycle disorders.
J Pediatr. 2001;138(1 Suppl):S62–71.

359. Scaglia F, Brunetti-Pierri N, Kleppe S, Marini J, Carter S,
Garlick P, Jahoor F, O’Brien W, Lee B. Clinical consequences of
urea cycle enzyme deficiencies and potential links to arginine and
nitric oxide metabolism. J Nutr. 2004;134(10 Suppl):2775S–82S.

360. Engel K, Höhne W, Häberle J. Mutations and polymorphisms in
the human argininosuccinate synthetase (ASS1) gene. Hum
Mutat. 2008 (November 12).

361. Patejunas G, Bradley A, Beaudet AL, O’Brien WE. Generation of
a mouse model for citrullinemia by targeted disruption of the
argininosuccinate synthetase gene. Somat Cell Mol Genet.
1994;20(1):55–60.

362. Ye X, Whiteman B, Jerebtsova M, Batshaw ML. Correction of
argininosuccinate synthetase (AS) deficiency in a murine model
of citrullinemia with recombinant adenovirus carrying human AS
cDNA. Gene Ther. 2000;7(20):1777–82.

363. Komatsu M, Yazaki M, Tanaka N, Sano K, Hashimoto E,
Takei Y, Song YZ, Tanaka E, Kiyosawa K, Saheki T, Aoyama T,
Kobayashi K. Citrin deficiency as a cause of chronic liver disorder
mimicking non-alcoholic fatty liver disease. J Hepatol. 2008;49
(5):810–20.

364. Saheki T, Kobayashi K. Mitochondrial aspartate glutamate carrier
(citrin) deficiency as the cause of adult-onset type II citrullinemia
(CTLN2) and idiopathic neonatal hepatitis (NICCD). J Hum
Genet. 2002;47(7):333–41.

365. Saheki T, Iijima M, Li MX, Kobayashi K, Horiuchi M,
Ushikai M, Okumura F, Meng XJ, Inoue I, Tajima A,
Moriyama M, Eto K, Kadowaki T, Sinasac DS, Tsui LC,
Tsuji M, Okano A, Kobayashi T. Citrin/mitochondrial
glycerol-3-phosphate dehydrogenase double knock-out mice
recapitulate features of human citrin deficiency. J Biol Chem.
2007;282(34):25041–52.

366. Vogelstein B, Papadopoulos N, Velculescu V, Zhou S, Diaz L,
Kinzler K. Cancer Genome Landscapes. Science 2013;339:1546–
1558.

367. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR,
Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A,
Børresen-Dale A-L, Boyault S, Burkhardt B, Butler AP,
Caldas C, Davies HR, Desmedt C, Eils R, Eyfjörd JE,
Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T,
Imbeaud S, Imielinsk M, Jäger N, Jones DTW, Jones D,
Knappskog S, Kool M, Lakhani SR, López-Otín C, Martin S,
Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaem-
manuil E, Paradiso A, Pearson JV, Puente XS, Raine K,
Ramakrishna M, Richardson AL, Richter J, Rosenstiel P,
Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y,
Tutt ANJ, Valdés-Mas R, van Buuren MM, van’t Veer L,
Vincent-Salomon A, Waddell N, Yates LR, Australian Pancre-
atic Cancer Genome Initiative, ICGC Breast Cancer Consor-
tium, ICGC MMML-Seq Consortium, ICGC PedBrain,
Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Mey-
erson M, Grimmond SM, Siebert R, Campo E, Shibata T,
Pfister SM, Peter J. Campbell, Michael R. Stratton. Signatures
of mutational processes in human cancer. Nature. 2013;500
(7463):415–21.

368. Alexandrov Ludmil B, Nik-Zainal Serena, Wedge David C,
Campbell Peter J, Michael R. Stratton deciphering signatures of
mutational processes operative in human cancer. Cell Rep. 2013;3
(1):246–59.

369. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N,
Boutselakis H, Ding M, Bamford S, Cole C, Ward S, Kok CY,
Jia M, De T, Teague JW, Stratton MR, McDermott U, Campbell,
PJ. COSMIC: exploring the world’s knowledge of somatic
mutations in human cancer Nucleic Acids Res. 2015;43(Database
issue):D805–D11.

370. Liu M, Jiang L, Guan X-Y. The genetic and epigenetic alterations
in human hepatocellular carcinoma: a recent update. Protein Cell.
2014;5(9):673–91 (September).

371. Kan Z, Zheng H, Liu X, Li S, Barber TD, Gong Z, Gao H, Hao K,
Willard MD, Xu J, Hauptschein R. Whole-genome sequencing
identifies recurrent mutations in hepatocellular carcinoma.
Genome Res. 2013;23:1422–33.

372. Zhang Y, Qiu Z, Wei L, Tang R, Lian B, Zhao Y, He X, Xie L.
Integrated analysis of mutation data from various sources
identifies key genes and signaling pathways in hepatocellular
carcinoma. PLoS One. 2014;9(7):e100854.

373. Fujimoto A, Totoki Y, Abe T, Boroevich KA, Hosoda F,
Nguyen HH, Aoki M, Hosono N, Kubo M, Miya F, Arai Y.
Whole-genome sequencing of liver cancers identifies etiological

4 Chemically-Induced Hepatocarcinogenesis 91



influences on mutation patterns and recurrent mutations in
chromatin regulators. Nat Genet. 2012;44:760–4.

374. Lee Ju-Seog. The mutational landscape of hepatocellular carci-
noma. Clin Mol Hepatol. 2015;21(3):220–9 (September).

375. Christensen JG, Gonzales AJ, Cattley RC, Goldsworthy TL.
Regulation of apoptosis in mouse hepatocytes and alteration of
apoptosis by nongenotoxic carcinogens. Cell Growth Differ.
1998;9(9):815–25.

376. Ueda A, Hamadeh HK, Webb HK, Yamamoto Y, Sueyoshi T,
Afshari CA, Lehmann JM, Negishi M. Diverse roles of the
nuclear orphan receptor CAR in regulating hepatic genes in
response to phenobarbital. Mol Pharmacol. 2002;61(1):1–6.

377. Zaher H, Fernandez-Salguero PM, Letterio J, Sheikh MS, For-
nace AJ, Roberts AB, Gonzalez FJ. The involvement of aryl
hydrocarbon receptor in the activation of transforming growth
factor-b and apoptosis. Mol Pharmacol. 1998;54(2):313–21.

378. Fracanzani AL, Conte D, Fraquelli M, Taioli E, Mattioli M,
Losco A, Fargion S. Increased cancer risk in a cohort of 230
patients with hereditary hemochromatosis in comparison to
matched control patients with non-iron-related chronic liver
disease. Hepatology. 2001;33(3):647–51.

379. Sawada S, Kinjo T, Makishi S, Tomita M, Arasaki A, Iseki K,
Watanabe H, Kobayashi K, Sunakawa H, Iwamasa T, Mori N.
Downregulation of citrin, a mitochondrial AGC, is associated
with apoptosis of hepatocytes. Biochem Biophys Res Commun.
2007;364(4):937–44.

380. Sinasac DS, Moriyama M, Jalil MA, Begum L, Li MX, Iijima M,
Horiuchi M, Robinson BH, Kobayashi K, Saheki T, Tsui LC.
Slc25a13-knockout mice harbor metabolic deficits but fail to
display hallmarks of adult-onset type II citrullinemia. Mol Cell
Biol. 2004;24(2):527–36.

92 Y.P. Dragan



5Molecular Profiling of Human Hepatocellular
Carcinoma

Anuradha Budhu and Xin Wei Wang

Contents

5.1 Hepatocellular Carcinoma: Clinical Concerns.................. 93

5.2 Molecular Profiling: Technologies and Platforms ............ 93
5.2.1 Molecular Platforms .................................................... 94
5.2.2 Computational Analysis .............................................. 95

5.3 Tumor Signatures ................................................................. 96
5.3.1 Tumor-Based Diagnostic HCC Signatures ................. 96
5.3.2 Tumor-Based Prognostic Signatures ........................... 98

5.4 Microenvironment Signatures ............................................. 100

5.5 Tumor Heterogeneity and Subclassification ...................... 100

5.6 Stem Cell-Based Signatures................................................. 102

5.7 Future Directions .................................................................. 102
5.7.1 Sequencing................................................................... 102
5.7.2 Circulating Tumor Cells .............................................. 103
5.7.3 Data Integration ........................................................... 104

5.8 Summary ............................................................................... 105

References ...................................................................................... 107

5.1 Hepatocellular Carcinoma: Clinical
Concerns

The wide heterogeneity of HCC and the complexity of its
diagnostic and prognostic assessment (dependent upon
tumor grade/residual liver function contributed by various
etiological factors) have interfered with clinical recommen-
dations and progress. Despite many studies of HCC, the
specific changes associated with its development remain
ill-defined and there is no clear consensus on which of the
many different staging systems introduced around the world
is best [1–6]. Although individuals at high risk for HCC
development are routinely screened by ultrasonography and
serum alpha-fetoprotein (AFP), most patients are diagnosed
at advanced disease stages. AFP evaluation however, can be
nonspecific, vary significantly between ethnic groups and is
only observed in a HCC subgroup with small tumors [7].
Although several additional serum proteins have been sug-
gested to improve HCC diagnosis, they lack sensitivity and
specificity and await confirmatory studies or development of
quantitative methods to evaluate their utility [8–10]. It is
possible that a single marker may not be sufficient to diag-
nose HCC and as such, it may be important to test combi-
nations of markers to improve diagnostic performance. HCC
diagnosis with the AFP marker therefore remains the gold
standard and improvement of the current screening system is
an imperative goal. Liver function impairment and the
expression of multidrug resistance genes renders HCC
treatment especially difficult [11]. Since most HCC patients
are diagnosed at an advanced stage, they are often excluded
from potentially curative therapies such as resection and
liver transplantation. Eligibility for resection (relatively good
liver function and small tumors) or transplantation (Milan
criteria/limited donor livers/long waiting list) is also quite
slim and postsurgical survival is complicated by a predom-
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inant occurrence of tumor recurrence/metastasis [12–14].
Methods to improve survival include percutaneous ethanol
injection, radiofrequency ablation, and transarterial
chemoembolization (TACE) [15, 16].

The current status of HCC emphasizes the importance of
understanding the underlying biology of this disease and the
development of new screening and treatment stratification
programs to refine diagnosis and improve patient outcome.
Relevant biomarkers to assist HCC diagnosis and prognosis
are particularly essential at early HCC stages and can be
used as novel therapeutic agents. The identification of such
biomarkers in a high-throughput fashion is now possible
through the advent of global molecular profiling.

5.2 Molecular Profiling: Technologies
and Platforms

The gene expression profile of a particular cell type or tissue
has been analyzed in earlier years using multiple technologies
including differential screening of cDNA libraries, subtrac-
tive cDNA hybridization, differential display of RNA, and
serial analysis of gene expression (SAGE). More recently,
global expression profiling studies have been conducted
using platforms consisting of genes (cDNA/OLIGO
microarrays), noncoding RNA, proteins (proteome arrays),
tissues (tissue microarray), metabolites (metabolomics), and
genetic aberrations (array CGH/methylation) [17–19]. In
addition, sequencing on the DNA and RNA level has also
increased our capacity to identify the mutation landscape of
HCC [20–22]. Although previous methodologies to study
HCC have advanced the field, molecular profiling of clinical
samples from HCC patients and HCC-related cell lines have
enriched the breadth of HCC knowledge and have allowed
researchers to begin to tackle some of the key disease-related
concepts that still remain.

5.2.1 Molecular Platforms

Microarrays provide genomic information and insight into
biological processes on a genome-wide scale. Their minia-
turized ordered arrangement of targets (nucleic
acids/proteins/tissues) located at defined positions on a solid
support (platform) enables high-throughput parallel analysis
of many targets by specific hybridization. The composition
of an array platform can be global (an entire genome on a
slide) or specific (pathways, cell/tissue type) and allows for
the characterization of multiple layers of signaling

information including the genome, epigenome, transcrip-
tome, proteome, and metabolome. A brief overview of
widely used array platforms is provided below.

5.2.1.1 Genomic Profiling (aCGH, Methylation,
Sequencing)

Array Comparative Genomic Hybridization

An important method of identifying driver genes involved
in HCC is to detect genomic regions that undergo frequent
alterations or are modified. Several types of alterations are
present in the liver including changes in gene copy number,
mutations, and chromosomal rearrangements. Array Com-
parative Genomic Hybridization (aCGH) using the
BAC-based (Bacterial Artificial Chromosome) and
oligonucleotide-based CGH enables high-resolution multi-
loci mapping of small genomic regions with copy number
changes, such as amplification or deletion [23, 24]. BAC
aCGH is limited by costly, time-consuming, low-yield clone
production and noisy data due to nonspecific hybridization
of repetitive sequences. Oligonucleotide aCGH allows for
flexibility in probe design, greater genomic coverage, and
higher resolution (*50 kB). Tiling BAC arrays however,
(where each BAC overlaps with its contiguous BAC) can
increase resolution, signal intensity, and more accurately
define the boundaries of genomic aberrations, but requires a
high concentration of high-quality BAC DNA for good array
performance [25, 26]. Recently, genome-wide approaches,
such as the single nucleotide polymorphism (SNP) 6.0
arrays, have allowed for global analyses of copy number
alterations in HCC. Using these methods, numerous ampli-
fied and deleted genes have been observed in HCC.

Methylation

A few CGH array studies have been followed by bisulfate
DNA sequencing or methylation-specific PCR to identify
HCC-related epigenetic changes [27–29]. Since HCC
develops against a background of chronic liver damage, the
extent of genetic and epigenetic alterations is essential for
our understanding of this cancer. In particular, methylation
at CpG sites in gene promoters can affect the transcription of
important genes in cancer. In fact, several hypermethylation
events have been observed in tumor suppressor genes, sug-
gesting a role for carcinogenesis promotion via this disrup-
tion of normal transcriptional events and induction of
chromosomal instability. Indeed, certain methylation events
have been associated with HCC patient survival and
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recurrence and targeting of the epigenetic machinery has
been the basis of some trials for HCC therapy [30, 31].
Methylation events can occur in several sites, including gene
promoters, gene bodies, repetitive sequences, and intergenic
regions, however the functional importance of specific
alterations currently remains unclear. The induction of
methylation events is also largely unknown, although some
studies have shown that hepatitis viral infections, as well as
nonalcoholic fatty liver disease can induce changes in
methylation [32, 33]. Comprehensive methylation profiles of
HCC are now readily studied by array-based platforms such
as the Human Methylation 450 Bead Array and
next-generation sequencing technology [34]. Our under-
standing of the HCC epigenetic code may allow for the
development of novel diagnostic and therapeutic approaches
for HCC.

Sequencing

High-resolution assessment of the liver cancer genome is
now possible through advances in next-generation
sequencing technologies [35]. An in-depth exploration of
the liver genome has recently been employed through whole
exome sequencing. This method is based on the capture or
enrichment of DNA fragments containing the exonic region
followed by massively parallel sequencing to determine
somatic mutations [36–38]. Using this technology, several
somatic alterations in the protein-coding region have been
identified in HCC. To further identify somatic drivers in
HCC, efforts have also been made to sequence the entire
liver genome. This is referred to as whole genome
sequencing whereby structural rearrangements, substitutions
in noncoding regions, and viral integration sites can be
explored. These methods however, look at rather short
lengths of DNA sequences and thus, the identification of
large genomic alterations is still rather limited. Although
several key molecules have been indentified or validated by
these methods, there seem to be a large number of passenger
mutations present, which makes the identification of key
driving genes in HCC a more complex problem.

RNA sequencing meanwhile, has added to our capacity
for transcriptome profiling by allowing us to explore rear-
rangements in transcripts, noncoding RNAs, and splicing
events. This highly sensitive method provides a more
accurate tool for measuring expression across the transcrip-
tome. Transcript abundance is quantifiable using this
method, along with the identification of both known and
novel features in the coding and noncoding transcriptome.
Overall quality of starting samples, sequencing libraries,
sequencing coverage, as well as time and cost parameters
can have a significant impact on the sensitivity of detection
and data quality in these types of experiments. These

comprehensive genomic analyses however, are enabling
researchers to examine the liver cancer genome at a much
higher resolution with potentially impactful findings that
could advance clinical management of this disease.

5.2.1.2 Transcriptomic Profiling
(CDNA/OLIGO/Noncoding RNA)

The cDNA microarray reports differences in gene expression
levels between samples and functions on the basis of specific
and high-affinity molecular recognition between comple-
mentary cDNA strands (PCR-derived cDNA or 20–60mer
OLIGO fragments) representing exonic regions of the gen-
ome [39]. Multiplexed target profiling of hundreds of tran-
scripts is also readily available through newer applications
such as Nanostring [40]. In addition, the regulation of
mRNAs can be analyzed using noncoding arrays (e.g.,
microRNA, pre-microRNA, snoRNA), which globally
interrogate the expression of small endogenous (21–35 nt)
RNA species. Platforms that detect mature and precursor
forms of >2000 miRNAs are now commercially available
[41–43].

5.2.1.3 Proteomic Profiling (Proteome/Tissue)
Although mRNAs are transcribed, they may not be trans-
lated and thus mRNA copy number may not reflect the
number of functional protein molecules in a cell. Thus,
proteome arrays may provide a better view to understand
gene function. Protein function or protein detecting arrays
involve immobilization of antibody probes to detect antigens
in a sample, or vice versa. These arrays can be used to
quantify proteins, determine posttranslational modifications,
and correlate proteins with disease advancement or with
certain treatments/environments [44]. Tissue microarrays
(TMA) allow tissue-based profiling using small cylinders of
formalin-fixed tissues arrayed in a single paraffin block [45].
Protein arrays are limited by the protein concentration range
required for direct detection within a given sample and
current instrumentation allows for only a fraction of the
proteome to be examined. The measurement of low abun-
dance targets also remains a challenge, but high-affinity
probes, such as SELEX (systematic evolution of ligands by
exponential enrichment) aptamers may help to resolve this
problem [46]. Comprehensive proteomic characterization
has been performed for certain cancer types, such as colon
and rectal, however there is currently a lack of such studies
for HCC [47].

5.2.1.4 Metabolomic Profiling
Cancer metabolite profiling (metabolomics) is a promising
new approach to understand the biological mechanisms
underlying cancer development and progression. Metabo-
lomics provides a global view of metabolites, the
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biochemical end products of cellular processes, enabling the
characterization of cancer through metabolic changes, whose
regulation are tightly linked with a certain pathological state
[48]. In fact, metabolites are the best molecular indicators of
cell status, since metabolic fluxes can change in a matter of
seconds versus the comparatively slower turnover of mRNA
and proteins [49, 50]. Thus, metabolic alterations are an
extremely sensitive measure of cellular phenotype. Although
genomics-based studies have been performed to extensively
profile human tumors [51–56], relatively little is known
about the global metabolite alterations that characterize
cancer and how all of these events are intertwined as a
network leading to aggressive disease and poor outcome.
A systematic assessment of the pathways in which these
genes and biochemical molecules contribute may lead to a
more precise set of alterations that may serve as key
biomarkers or drug targets for clinical interrogation in cancer
patients suffering dismal prognosis.

5.2.2 Computational Analysis

Methodologies for analysis of large-scale omics data can be
either unsupervised or supervised [57, 58]. Unsupervised
methods attempt to characterize the components of a dataset
without a priori input or knowledge of a training set. Internal
structure or relationships in datasets are found by feature
determination which groups genes/molecules with interest-
ing properties (principal component analysis), cluster
determination which groups genes or samples with similar
patterns of gene/molecule expression or abundance (nearest
neighbor clustering, self-organizing maps, k-means cluster-
ing, and one- and two-dimensional hierarchical clustering),
and network determination which graphs gene–gene or
gene–phenotype interactions (Boolean networks, Bayesian
networks, and relevance networks). On the other hand,
supervised methods are used to determine molecular features
that fit a predetermined pattern [59]. This technique finds
genes/molecules with expression or abundance levels that
are significantly different between groups of samples (e.g.,
cancer classification) and can be used to find
genes/molecules that accurately predict a characteristic of
that sample (e.g., survival or metastasis). The significance
found by supervised methods has been evaluated using
parametric, nonparametric, and analysis of variance proce-
dures which involve permutations, random partitioning of
the studied dataset, and false discovery limits. These meth-
ods are employed to assess the validity of signatures asso-
ciated with a tested feature and to rule out the identification
of a signature by random chance.

Several criteria exist for determining differential expres-
sion or abundance, including absolute or ratio of expression
or abundance levels across samples and subtractive degree of

change between groups. These methods include the nearest
neighbor approach, decision trees, neural networks, and
support vector machines. Corrective statistics are also used
when identifying genes/molecules of interest, to account for
multiple testing in large datasets, including adjusted p-value,
false discovery cutoffs, and Bonferroni corrections [60]. Due
to the high complexity and sheer magnitude of current
datasets, such as those ensuing from sequencing studies, new
techniques and methods are constantly being explored,
updated, and created to adequately analyze data. Many of
these methods rely on algorithms and codes, most based on
the R programming language, and in-house or stand-alone
software associated with new technologies. A gold standard
has been proposed for analysis of array studies which
involves the use of a training dataset to initially identify a
signature, a test dataset to assess its predictive/classification
capacity, and an independent set for validation studies [61–
63]. Importantly, biomarkers and signatures of interest need
to not only be tested in retrospective cohorts, but also in
prospective studies and in context of therapeutic strategies
for HCC.

5.3 Tumor Signatures

Array studies have provided vast amounts of information
concerning the genes, proteins, metabolites, and genomic
changes that occur in HCC-related disease. These investi-
gations have revealed changes that occur across the spectrum
of cirrhosis, HCC tumors, the HCC microenvironment, HCC
subtypes, epigenetic alterations, and progressive phenotypes
(metastasis/recurrence). A general overview of these studies
along with a synopsis of emerging perspectives gleaned
from these analyses is provided in this section.

5.3.1 Tumor-Based Diagnostic HCC
Signatures

5.3.1.1 Tumor Biomarkers (Tumor Vs.
Nontumor)

Array studies have enhanced our understanding of how the
HCC process alters the regulatory network of genes, pro-
teins, metabolites, and epigenetic effects, in a way that dif-
fers from the respective normal tissue or disease-free
samples. For example, cDNA analysis of HCC versus nor-
mal samples have found 38 differentially expressed genes
while HBV-related cell lines revealed signatures (356 genes)
composed of upregulated ribosomal-related genes [64, 65].
TIPUH1, a regulator of transcription and RNA processing of
growth control genes has also been shown to be upregulated
in HCC by cDNA array [66]. It has also been shown that five
genes (GPC-3, PEG10, MDK, SERPINI1 and QP-C) are
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elevated in HCC samples, even in those with low AFP status
compared to normal tissue [55]. A cDNA array of
non-HBV/HCV-infected HCC versus normal tissues
revealed 61 differentially expressed genes [67]. A number of
studies have also found alterations in genes involved in
protein synthesis, growth factors, oncogenesis, stress,
inflammation, cell proliferation, transcription, protein
degradation, p53, Wnt/b-catenin, metabolism, and tumori-
genesis pathways in HCC [68–70]. Integrin and Akt/NFKB
signaling were also upregulated in HCC along with a serum
biomarker (CSTB) using cDNA arrays [71, 72]. Similar
studies have shown that activators of neutrophils, anti-
apoptotic genes, interferon response genes and proteins
related to cell differentiation or development are differen-
tially expressed in HCV-HCC [73]. OLIGO arrays have
shown that p53-related genes (n = 83) are affected by HCV
infection and alter immune response, transcription, transport,
signal transduction, and metabolism in tumors [74]. Several
of these pathways, along with growth factor alterations were
found in cDNA arrays comparing HBV or HCV-positive
tumor versus nontumor tissue [75]. A clear distinction was
found between HBV and HCV samples, where HBV affec-
ted genes involved in apoptosis, p53 and the G1/S transition
while HCV affected genes were more heterogeneous. In a
separate cDNA array study, upregulation of
mitosis-promoting genes was observed in the majority of
HBV or HCV tumors versus nontumor while differentially
expressed genes between HBV and HCV tumors encoded
enzymes that metabolize carcinogens and/or anticancer
agents associated with malignant/invasive phenotype,
apoptosis, or immune regulation [76].

Proteomic and TMA arrays have also been used to
address the differences that occur following tumor forma-
tion. A proteomic analysis of human HCV-related HCC
found alterations in glycolysis enzymes, mitochondrial
b-oxidation pathways, and cytoskeletal proteins when
compared to nontumor tissue [77]. Other HCC-related pro-
tein classifiers include those involved in heat shock
response, glycolysis, fatty acid transport and trafficking,
amino acid metabolism, cell cycle regulation and cell stress,
and metabolism related enzymes [78–80]. Other upregulated
genes in HCC include insulin growth factor II, metallopro-
teases, signal transducers and activators of transcription
(STAT), suppressors of cytokine signaling and cyclin D1
while collagens and SMAD pathways were downregulated
[81]. Quantitative proteomics revealed that the SET complex
is associated with HCC [82], while complement C3a was
suggested as a HCC biomarker in HCV-HCC [83]. Serum
monocyte chemoattractant protein-1 and prolactin have also
been identified as potential tumor markers in HCC [84].
A TMA study of HCC versus nontumor found HCC-specific
expression of the transcription repressor Zinc fingers and

homeoboxes 2 (ZHX2) protein expression which correlated
with differentiation stage [85].

Multiple studies have aimed to determine HCC-related
regions of genetic gain or loss. Most studies have found
similar regions of gain (1p, 4q, 8p, 13q, 16q, and 17p) and
loss (1q, 6p, 8q) in HCC [86, 87]. In addition, a study of 120
HCC samples found LOH at 6q and 9p in small,
well-differentiated tumors [88]. A comparison of tumor
versus nontumor HCC samples using BAC aCGH included
frequent DNA copy number gains of 20q, and found that
high Jab1 levels correlated with chromosome 8q gain in
HCC [87]. In a study of 20 HCC cases, oncogenes were
amplified in 1q, 8p, and 11q regions while loss occurred at
13q and 4q [89]. A study of HCV-HCC revealed that
increases of DNA copy number were frequent at 10p while
decreases were frequent at 10q [86]. These authors found
increases in copy numbers of the LAMC2, TGFB2, and
AKT3 genes (located on 1q) and decreases in copy numbers
of FGR/SRC2 and CYLD (located on 1p and 16q, respec-
tively) in tumors. In a study of HBV-HCC, gains on 1q, 6p,
8q, 9p were observed while losses in 1p, 16q, and 19p
occurred in most patients [90]. Midorikawa et al. showed a
frequent gain of 1q, 8q, 12q, 17q, and 20q as well as a loss
of 4q, 8p, 13q, and 17p in HCC [91]. Gains in regions
encoding MET, c-myc, and FGF4 were also found in a CGH
study of HCC while a separate study identified narrow
regions of frequent amplification on chromosome 1p, fre-
quent deletion on 17q, and alterations in 7q21 encoding
Paternally expressed 10 (PEG10) [92, 93].

miRNAs have recently been utilized as potential HCC
diagnostic markers. Expression profiling studies have
defined the liver-specific miR-122 to be highly downregu-
lated in HCC tumors and cell lines [94, 95]. miRNA array
studies have also demonstrated that miR-21 can contribute to
HCC growth and spread by modulating PTEN [96]. In other
miRNA-based studies, mir-224, a 16-miRNA set, and a
novel mRNA-like noncoding RNA named highly upregu-
lated in liver cancer (HULC) were found to be significantly
upregulated in HCC [97–99]. In another study comparing
HCC samples and adjacent nontumor, 8 miRNAs were
shown to be significantly altered, 5 of which were down-
regulated in HCC and could predict HCC with 97 % accu-
racy [100]. More recently, microRNAs present in the
circulation have also been identified as potential biomarkers
for HCC [101, 102].

DNA methylation-based prognosis and epidrivers for
HCC have also been studied. Villaneuva et al. identified a
signature of 36 DNA methylation markers that predicts HCC
patient survival and harbor mRNA signatures of tumors with
progenitor cell features [103]. Deng et al. applied methylated
DNA immunoprecipitation to identify 15 genes preferen-
tially methylated in HCV-HCC [104]. Using a 27 K
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Infinium array, thousands of differentially methylated genes
in HCC were found, several of which could be assayed in
plasma [34]. Tumor from nontumor specimens could be
readily indentified in a methylation study of HCC using a
450 K array. Methylation events in p53, CTNNB1, GSTP1,
MGMT, RASSF1A and in promoter CpG islands of
CDKN2A have also been identified in HCC [105–108].

Array-based comparisons have also been made between
early neoplastic stages (fibrosis/cirrhosis) and HCC. A study
of 59 preneoplastic chronic liver diseases (CLDs) including
hepatitis, autoimmune hepatitis, primary biliary cirrhosis
found genes associated with high or low risk of HCC
development [109]. This 273-gene signature was validated
in three independent cohorts and included 12 secretory genes
in the top geneset. In separate cDNA array-based studies, 25
cirrhosis-specific genes were identified that were related to
inflammatory status of adjacent HCC tissue and 129 genes
were altered in HCC compared to liver cirrhosis samples
[110]. In an OLIGO array-based study of fibrosis, carbohy-
drate metabolism genes were elevated in HCC patients when
compared to cases with F3–4 fibrosis [111]. In a comparison
of HCC with CLD (either HBV or HCV positive) or HCC
without CLD in an OLIGO array, genes involved in tran-
scription, metabolism, and cell growth were differentially
expressed [112]. An RT-based study of cirrhosis versus
HCV-HCC showed that eight genes were significantly
altered (GPC3, TERT, Survivin, XLKD1, and CDH1) [113].
MiRNA platforms have also demonstrated that 35 miRNAs
including let7 and miR-181 family members differ between
HCC and cirrhosis [114]. Circulating microRNAs have also
been shown as important modulators in early stage HCC
[115]. aCGH of 63 HCCs found etiology-dependent copy
number gains, including 8q24 and MYC overexpression in
viral and alcohol-related HCCs [116]. The use of compre-
hensive proteomic profiling of sera to differentiate HCC
from CLD found 250 significantly different proteins, while
an 11-peak SELDI profile or 4-peptide panel could distin-
guish HCC from HCV-related cirrhosis and was an inde-
pendent predictor of HCC [117, 118]. In other studies, and
CD5L and Annexin A2 were found as discriminative can-
didates in HCC [119, 120].

5.3.1.2 Tumor Biomarkers (Epigenetic
Signatures)

HCC development is thought to be a multistep process, not
only involving accumulation of genetic changes, but also
epigenetic changes, such as methylation, which can rever-
sibly alter regulatory genes. Several studies have begun to
address the epigenetic changes that occur in HCC. In a
cDNA/bisulfite PCR study, the demethylating agent
5-Aza-dC was used to identify hepatocyte growth factor
(HAI-2/PB) as a frequent hypermethylated gene in HCC
[121]. In another cDNA array and bisulfite PCR study,

insulin-like growth factor binding protein was found to be
hypermethylated and downregulated in HCC [122]. An
OLIGO-based analysis of human HCC cell lines showed that
treatment with 5-Aza-dC resulted in a decrease of the tissue
factor pathway inhibitor TFPI-2 [123]. In addition, Pang
et al. found a loss of an unmethylated 6q allele in HCC
encoding a putative tumor suppressor gene [124]. However,
in a study of 60 primary HCCs using aCGH and
methylation-specific PCR a causal relationship was not
observed between the methylation status of nine CpG
islands, including p16, COX2, and APC, and patient out-
come [125]. A promoter methylation study of 30 HCC
tumors showed that they exhibit specific DNA methylation
signatures associated with major risk factors and tumor
progression stage, with potential clinical applications in
HCC diagnosis [126].

Thus, numerous array studies have shown that multiple
tumor-specific alterations occur during hepatocarcinogene-
sis. A detailed exploration of these changes may offer new
insight regarding HCC biology and provide avenues for
diagnostic advances. Across platforms however, marker sets
are quite different from one another, despite a similarity in
comparison groups which could be due to platform makeup,
sample heterogeneity, etiological differences, or ethnicity
among samples. In addition, many of these studies lack
validation and are only drawn from relatively small datasets
and therefore further studies will be needed to determine
whether the identified changes can be widely useful for
diagnostic or HCC classification purposes. In sum, these
studies clearly demonstrate that measurable changes occur
during HCC development that may be useful for early
detection.

5.3.2 Tumor-Based Prognostic Signatures

Metastasis and recurrence are major factors affecting the
outcome of patients with HCC. Understanding the mecha-
nisms involved in the process of tumor invasion and
metastasis is a major challenge. Biomarkers related to these
processes may have clinical prognostic utility. Important
questions related to metastasis involve initiation, the rela-
tionship between primary and metastatic tumors and whether
these metastatic changes are inherent to the cell or are
acquired through time and/or environmental status. The
current metastasis model suggests a multistage carcinogenic
process initiated by rare genetic alterations in a single cell,
followed by clonal selection and population expansion
[127]. In HCC however, such stepwise and specific
progression-related genetic changes have not been
illustrated.

The transcriptome, proteome, and genome of metastatic
HCC cells have been studied using array technology.
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Comprehensive cDNA analysis of HCV-related HCCs has
identified 35 genes involved in portal vein invasion
(PVI) including the inhibitor of DNA binding 2 (ID2),
encoding a liver-rich dominant-negative helix-loop-helix
protein which was validated by qRT-PCR, western blot
analyses, and in an independent set [128]. A 91-gene vas-
cular invasion signature was also found in a separate cDNA
study and 90 clones were correlated with intrahepatic
metastasis in a study of 22 HCC foci [129, 130]. A cDNA
array was also employed to profile gene expression patterns
in two subtypes of HCC, solitary large HCC (SLHCC) and
nodular HCC (NHCC), which differ significantly in meta-
static incidence [131]. A significant decrease in RhoC
expression in SLHCC compared to NHCC was strongly
correlated with HCC metastasis, implicating RhoC as a
potential prognosis marker and therapeutic target for HCC
[132]. Another cDNA study of HCC found 217 genes
associated with differentiation status and metastasis,
including ANXA2 [133]. Another cDNA-based study found
that HCC with high expression of ubiquitin-cojugating
enzyme Ube2c, displayed PVI and poor disease-free survival
rates while 906 genes were found to differ between HCC and
surrounding tissue, generating clusters (A and B) that were
associated with patient survival [134, 135]. OLIGO array
studies have also shown that MAPK pathway and angio-
genesis factors such as VEGF and HGF are associated with
HCV-HCC while 39 genes were significantly correlated with
metastasis, including Cortactin, a cortical actin-associated
protein substrate of Src [136, 137]. cDNA arrays have also
been used to show that intrahepatic metastatic lesions are
indistinguishable from their primary HCC while primary
metastasis-free HCC was distinct from primary HCC with
metastasis [53]. These data indicate that primary HCC with
metastatic potential is an inherent quality of the primary
tumor rather than a capability acquired over time through
mutation. The 153-HCC metastasis gene signature, whose
lead gene was osteopontin (OPN), could accurately classify
metastatic HCC. It has also been investigated whether cer-
tain miRNAs are associated with HCC metastasis [138]. We
identified a unique 20-miRNA metastasis signature that
could significantly predict (p < 0.001) primary HCC tissues
with venous metastases from metastasis-free solitary tumors.
A survival risk prediction analysis revealed that a majority of
the metastasis-related miRNAs were associated with sur-
vival. Furthermore, the 20-miRNA tumor signature was
validated in 110 additional cases as a significant independent
predictor of survival (p = 0.009) and was significantly
associated with survival and early stage HCC. These 20
miRNAs may provide a simple profiling method to assist in
identifying HCC patients who are likely to develop
metastases/recurrence.

TMAs and aCGH have also been used to study HCC
metastasis. The clinical significance of FGF3 overexpression

was studied by TMA in 60 pairs of primary/metastatic HCCs
and showed that overexpression of FGF3 was significantly
associated with HCC metastasis and recurrence (p < 0.01)
[139]. ZHX2, described earlier as a possible HCC diagnostic
marker was also found by TMA to be expressed significantly
higher in primary lesions with metastasis than in those
without this phenotype [85]. A significant overexpression of
clusterin (CLU) was found in metastatic HCC in a paired
tissue study (n = 104) and Id-1 (inhibitor of
differentiation/DNA synthesis) as well as Rac and VEGF,
key angiogenic factors in cancer progression, were corre-
lated with HCC metastasis by TMAs [140, 141]. Meanwhile,
aCGH array analysis of early and advanced components of
nodule-in-nodule HCC found that genetic inactivation of the
APC gene played a significant role in the progression of
sporadic HCC, possibly through activation of the
Wnt/beta-catenin pathway [142]. Another study revealed
that loss of 17p13.3 and 8q11 were independent prognostic
indicators of poor HCC patient survival [143]. LOH has also
been observed at 16q and 17q in HCC and occurred more
frequently in metastatic lesions [144]. The authors suggest
that upregulation of PFTK1, in particular, may confer a
motile phenotype in malignant hepatocytes that correlates
with metastasis. Proteomics has also been applied to
understand HCC progression. Tan et al. recently used
comparative proteomics to identify proteins to differentiate
patients who relapse from those who do not [145]. Pro-
teomics has also been used to identify Talin-1 upregulation
to be associated with HCC prognosis [146].

Tumor recurrence complicates resection in a large per-
centage of cases due either to true metastases or develop-
ment of de novo tumors. Vascular invasion, multinodularity,
and degree of differentiation are the major predictors of
recurrence. Kurokawa et al. identified a 20-gene signature
using a PCR-based platform that could predict recurrence
with 70 % accuracy in an independent cohort of 40 patients
[147]. A cDNA-based study of 18 HCCs found a 14-gene
signature that differed between vascular invasion status and
could predict postresection recurrence [148]. cDNA array of
HCCs identified claudin-10 expression level to be associated
with disease recurrence and was validated by qRT-PCR and
associated with survival in multivariate Cox regression
analysis [149]. Meanwhile, a 12-gene OLIGO array-based
signature has also been shown to predict recurrence within 1
year postsurgery with 93 % accuracy [150]. A recent
follow-up study showed that 3 of these 12 genes
(HLA-DRA, DDX17, and LAPTM5) could predict early
intrahepatic recurrence with 81 % accuracy and was an
independent risk factor associated with recurrence in a
multivariate analysis [151]. Another OLIGO study identified
a 57-gene signature that could predict recurrent disease at
diagnosis with 84 % accuracy and was validated in an
independent test set [152]. In addition, cDNA analyses
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found gene sets linked to early intrahepatic recurrence
including a downregulation of immune response-related
genes encoding MHC class II antigens (HLA-DRA,
HLA-DRB1, HLA-DG, and HLA-DQA) [153, 154]. cDNA
arrays have also been used to identify a 46-gene signature
associated with extrahepatic recurrence [155]. The
20-miRNA metastasis signature identified was also signifi-
cantly associated with recurrence in early stage HCC [138].

Metastasis and recurrence continue to plague HCC
patient outcome. Array profiling methods have identified
many alterations that occur in HCC metastasis, some
involving well-known metastasis associated factors such as
the angiogenesis-related VEGF and others identifying novel
players related to this phenotype. In addition, permissive
microenvironments have also been shown to influence HCC
metastasis. These metastasis signatures have broadened our
knowledge of the biological pathways that are affected
during this process and have highlighted particular
biomarkers that may be useful to identify HCC patients who
are prone to metastasis/recurrence and are tools that can be
used to stratify patients for adjuvant therapy. However, the
signatures discussed above are largely nonoverlapping,
suggesting a significant heterogeneity. Although some of
these markers have been associated with outcome, future
validation and functional/mechanistic studies will be needed
to assess their prognostic significance.

5.4 Microenvironment Signatures

Studies have suggested that while tumor cells affect meta-
static capacity, the organ microenvironment can also con-
tribute to this phenotype [156–158]. To determine the role of
the hepatic microenvironment in HCC metastasis, the cDNA
profiles of noncancerous surrounding hepatic tissues
(n = 115) from HCC patients with venous metastases, ter-
med a metastasis-inclined microenvironment (MIM) sample
to those without detectable metastases, termed a metastasis-
averse microenvironment (MAM) sample were compared
[54]. A unique change in the gene expression profiles
associated with a metastatic phenotype was identified which
was refined to 17 immune-related genes. This signature was
inherently different from a signature found in HCC tumor
tissues and was validated in an independent cohort (n = 95).
The nontumor signature could successfully predict venous
and extrahepatic metastases by follow-up with >92 %
overall accuracy and was a superior and independent prog-
nostic indicator when compared to other available clinical
parameters for determining patient survival or recurrence.
Dramatic changes in cytokine responses, favoring an
anti-inflammatory microenvironmental condition, occur in
MIM samples, where a predominant Th2-like cytokine
profile, favoring a humoral response, was associated with

MIM cases. Colony-stimulating factor-1 (CSF1) may be one
of the cytokines overexpressed in the liver milieu that is
responsible for this shift. Gene expression profiling of
nontumor specimens from HCC patients was also used to
identify a molecular signature from formalin-fixed
paraffin-embedded tissues. This poor prognosis signature
was related to impaired liver function and inflammation,
particularly interleukin-6. In addition, Hoshida et al.
demonstrated that profiles of the surrounding nontumoral
liver tissue were highly correlated with survival among
Japanese, US, and European patients with HCC [159, 160].
These findings help to solidify the role of the field effect,
whereby environmental exposures may play a role in tumor
development and progression.

It has also been demonstrated that the expression levels of
certain small RNAs, termed microRNAs, are altered in HCC
metastasis. In a follow-up study, this 20-microRNA signa-
ture was validated and the role of a particular microRNA,
let-7g in HCC progression, was determined [161]. It was
confirmed that the level of let-7g was significantly lower in
metastatic compared to nonmetastatic HCC and was pre-
dictive of poor survival. Functional studies indicated that
let-7g could significantly inhibit cell migration and cell
growth through targeting of soluble collagens. These results
suggest that let-7g may suppress HCC metastasis through
targeting collagen and that let-7g could be used as a tool to
predict poor survival.

Given the predominant underlying fibrotic and cirrhotic
conditions of the liver in those individuals prone to HCC and
its recurrence, alterations of components of the inflammatory
milieu have been suggested as factors which propel the
formation and advancement of HCC. In particular, the
activity of hepatic stellate cells (HSC), key features of
fibrosis and cirrhosis, have been suggested as contributors to
the HCC-prone microenvironment. A HSC-specific gene
expression signature among tissue specimens of 319 HCC
patients was recently identified and validated that is signif-
icantly and independently associated with HCC recurrence
and survival [162]. Further computational analyses and
immunohistochemical validation in a cohort of 143 HCC
patients showed that the majority of alterations in patients
with poor prognosis defined by HSC status were associated
with peritumoral, rather than tumoral tissues. Furthermore,
coculture studies demonstrate that HSCs preferentially affect
monocyte populations, particularly CD14+ cells, within the
microenvironment, that are related to a Th2-cytokine pro-
moting shift in their inflammatory state. The interactions
between HSCs and monocytes induce protumorigenic and
progressive features of HCC cells by enhancing cell prolif-
eration, migration, and tumor sphere formation. In sum,
these results show that HSCs play a significant role in pro-
moting HCC progression via interaction with and alteration
of monocyte activities within the liver microenvironment.
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Another hepatic stellate cell signature was recently identified
in hepatitis C patients and was validated retrospectively in
HCC patients to identify those with poor prognosis [163].
Thus, disrupting the interactions and signaling events
between the inflammatory milieu and components of the
microenvironment may be useful therapeutic strategies for
preventing HCC tumor relapse. In addition, Tao et al. ana-
lyzed hepatocytes isolated from HBV-HCC cases on a 27 K
array and identified hypermethylated genes. Overall, these
studies highlight the significant role of the field cancerization
effect to initiate and drive cancer progression [164]. More
recently, other factors, such as the diet and the microbiome,
are being studied to determine their roles in influencing the
liver microenvironment [165].

5.5 Tumor Heterogeneity
and Subclassification

Tumor heterogeneity may result from different cells of ori-
gin, range in patient ethnicity, etiology, underlying disease,
and diversity of genomic and epigenomic changes which
drive tumor development. Molecular differences between
tumors from different patients, intertumor heterogeneity, and
between different areas of an individual tumor, intratumor
heterogeneity, have been recognized, possibly emanating
from the presence of cancer stem cells or selection by clonal
evolution. Cancer genomic heterogeneity thereby results in
varying degrees of clinical presentation and tumor biology,
which impedes treatment options and poses a significant
challenge to cancer management [166]. An emerging chal-
lenge in HCC clinical management is intratumor hetero-
geneity, whereby distinct cell populations within a given
tumor may result in poor response or resistance to therapy
[167]. Some initial attempts have been made to characterize
the extent of intratumor heterogeneity in HCC. In a recent
study of 120 tumor areas from 23 HCC, intratumor hetero-
geneity measured by morphology, imunohistochemistry,
and/or gene mutation status was found in the majority of
specimens [168]. A comprehensive omics approach geared
toward this feature of tumor biology is necessary for
improving HCC clinical management. Findings of this type
indicate that single tumor biopsies and the data collected
from such specimens may not provide the entire portrait of
alterations occurring in a given tumor. This nonuniformity of
molecular changes currently represents a significant chal-
lenge in the development of targeted therapy for HCC.

Several HCC array studies have also compared HCC
tumors to identify subtypes or to compare various tumor
stages or nodular status to understand the changes that occur
between early and late tumorigenesis. In a cDNA study of
HCC and HCC cell lines, two subgroups of HCC were
identified that were either related to IFN-associated

inflammation or apoptosis while another cDNA study com-
posed of 19 HCC cell lines, found two subtypes that were
correlated with AFP expression [169, 170]. In a comparison
of multinodular and solitary HCC, cDNA arrays revealed
230 genes that were specific to multinodular recurrence,
while only 36 were commonly expressed [171]. A separate
cDNA study of HCCs from 10 patients found several genes
related to histological subtype [172]. In an OLIGO study of
well-differentiated HCC versus hepatocellular ademonas, 63
genes were found to be differentially expressed, demon-
strating molecular differences despite similarities in mor-
phology [173]. Another OLIGO study identified 31 genes
that differed between early and advanced HCV-HCCs [174].
In other OLIGO-based studies analyzing nodule-in-nodule
HCC, dysplastic nodules, and HCCs, the authors found 40
genes involved in the transition from dysplasia to early stage
tumors and 240 genes that could accurately classify tumors
according to histological grade [175, 176]. TMA has also
been applied to identify tumor subgroups. Recently, Tan
et al. applied comparative proteomics to HCC tumor tissues
and identified a three-protein panel (HSP70, ASS1, and
UGP2) that could stratify HCC patients into two groups
[145]. A miRNA-based classification of three subclasses of
HCC has also recently been proposed [177]. Among the
proliferation class, miR-517a is an oncogenic miRNA that
promotes tumor progression. Thus, there is a rationale for
developing therapies that target miR-517a for patients with
HCC.

We recently hypothesized that AFP+ and AFP− HCC
tumors differ biologically. Using global microRNA profil-
ing, we found that miR-29 family members were signifi-
cantly downregulated in AFP+ tumors with a significant
inverse correlation between miR-29 and DNMT3A gene
expression [178]. We also showed that AFP+ and AFP−

HCC tumors have distinct global DNA methylation patterns,
with an increased DNA methylation in AFP+ HCC. AFP
expression induces protumorigenic features along with
miR-29a inhibition and DNMT3A induction. AFP also
inhibited transcription of the miR-29a/b-1 locus via c-MYC
binding to the miR-29a/b-1 transcript. Further, AFP
expression promotes tumor growth of AFP− HCC cells in
nude mice. Thus, tumor biology differs considerably
between AFP+ HCC and AFP− HCC and that AFP is a
functional antagonist of miR-29, which may contribute to
global epigenetic alterations and poor prognosis in HCC.

Recent attempts have been made to utilize profiling data
to molecularly classify HCC in order to identify common
homogenous subgroups of this disease which may respond
more preferably to certain types of treatment. Studies indi-
cate that aberrant activation of signaling pathways involved
in cellular proliferation (e.g., epidermal growth factor and
RAS/mitogen-activated protein kinase pathways), survival
(e.g., Akt/mechanistic target of rapamycin pathway),
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differentiation (e.g., Wnt and Hedgehog pathways), and
angiogenesis (e.g., vascular endothelial growth factor and
platelet-derived growth factor) are present in particular
groups of HCC tumors [179, 180]. These cancer genes are
thus ideal targets for biotherapies, underscoring the impor-
tance of tumor biology to medicine.

5.6 Stem Cell-Based Signatures

The heterogeneic nature of HCC and variability of its
prognosis suggests that this disease may comprise several
distinct biological subtypes. As discussed, microarrays have
aided in characterizing separate HCC subtypes with distinct
molecular features. Differences in HCC subtypes may arise
from activation of different oncogenic pathways during
tumorigenesis and/or from different cell origins. Microarray
analysis can aid in determining the characteristics of separate
HCC subtypes that can provide insight into the cellular
origin of the tumor.

Recent studies suggest that HCC may arise from liver
stem cells or cells with stem cell-like features which are
capable of cellular plasticity, dynamic cell motility, and
integral interaction with the microenvironment and are
associated with poor outcome. Integrated gene expression
data from fetal hepatoblasts and adult hepatocytes with HCC
from human and mouse models found that individuals with
HCC who shared a gene expression pattern with fetal hep-
atoblasts had a poor prognosis [52]. The gene subset inclu-
ded markers of hepatic oval cells, suggesting that HCC of
this subtype may arise from hepatic progenitor cells and
analyses of gene networks revealed an activation of AP-1
transcription factors. cDNA arrays were used to identify a
HCC subtype with features of hepatic stem cells that
expresses AFP and a cell surface hepatic stem cell marker,
EpCAM [56, 181]. EpCAM-positive cells from this subtype
have self-renewal and differentiation traits and can initiate
highly invasive HCC in NOD/SCID mice [182]. The
Wnt/b-catenin signaling pathway is augmented in this sub-
type suggesting that therapeutic approaches geared toward
Wnt/b-catenin signaling inhibitors may impact the survival
of HCC patients with this stem cell-like subtype.

It was also recently found that miRNAs are associated
with this stem cell-like HCC subtype, suggesting that tar-
geting miRNA pathways may alleviate the poor prognosis of
HCC patients [183]. A global microRNA microarray
approach was used to explore whether certain microRNAs
were associated with HCC stem cells. It was found that the
conserved microRNA-181 family members were upregu-
lated in HCC stem cells. Inhibition of microRNA-181 led to
a reduction in number and tumor initiating activity of HCC
stem cells while addition of microRNA-181 led to an
enrichment of this cell type. In further studies,

microRNA-181 could directly target transcriptional regula-
tors of differentiation in the liver and an inhibitor of
Wnt-beta-catenin signaling. In addition, Wnt/beta-catenin
signaling transcriptionally activates microRNA-181s in
HCC [184]. These results suggest a novel regulatory link
between microRNA-181 family members, Wnt/beta-catenin
signaling, and liver cancer stem cells and implies that
molecular targeting of microRNA-181 or Wnt/beta-catenin
signaling may eradicate hepatocellular carcinoma (HCC).

Studies have also recently explored whether specific
microRNAs exist in hepatic cancer stem cells (CSCs) that
are not expressed in normal hepatic stem cells by assessing
the microRNA transcriptome of HCC specimens by small
RNA deep sequencing [185]. It was found that miR-150,
miR-155, and miR-223 were preferentially highly expressed
in EpCAM+ HCC cells and their gene surrogates were
associated with patient prognosis. Further studies showed
that suppressing miR-155 resulted in reduction of EpCAM
+ HCC cells, reduced HCC tumorigenicity, and shortened
overall survival and time to recurrence of HCC patients.
Thus, miR-155 was highly elevated in EpCAM1 HCC cells
and might serve as a molecular target to eradicate the
EpCAM+ CSC population in human HCCs.

While EpCAM seems to be a positive marker of HCC
CSCs, others have shown that HCC cells may also be pos-
itive for CD133 or CD90, indicating that these antigens are
also features of cancer stem cells [186, 187]. Thus, it appears
that hepatic cancer stem cells may also be heterogeneous. It
has yet to be determined whether such heterogeneity is due
to transformation of different types of stem/progenitor cells
or dedifferentiation of mature cells.

Recent studies have identified stem cell-like/progenitor
cell-like subtypes of HCC that are associated with poor
outcome. A clear understanding of these HCC subtypes may
identify specific factors that determine more aggressive
HCC. Biomarkers associated with these subtypes may help
to refine treatment options by allowing more sensitive HCC
subtype classification. Furthermore, functional/mechanistic
follow-up studies of these stem cell-related biomarkers will
aid the generation of novel therapeutic approaches to block
pathways associated with poor outcome and thus help to
alleviate dismal prognosis.

5.7 Future Directions

5.7.1 Sequencing

Recently, a more comprehensive view of the genome has
been made through the use of sequencing technology. We
are now able to define specific mutations in the
protein-coding region (exome), the whole genome, and
various RNA transcripts. These approaches have led to the
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discovery of novel genes in HCC. For example, whole
exome sequencing has identified alterations of ARID1A,
RPS6KA3, IRF2, NFE2L2-KEAP1, KMT2A in HCC [20,
188]. In addition, ARID2 has been implicated in
HCV-associated HCC by whole exome sequencing, while
CTNNB1 was found to have a pivotal role in HBV-HCC
[189, 190]. This method has also been used to identify
important genes associated with HCC metastasis, including
CUL9, FGD6, KDM6A, AKAP4, and RNF139 [191].

The identification of genomic alterations in the full gen-
ome has also been attempted to understand the alterations
occurring in noncoding regions and by structural rear-
rangements of the genome (Table 5.1). Several thousand
somatic mutations and numerous chromosomal alterations
were found by whole genome sequencing of a single
HCV-HCC case by Totoki et al. In a study of mainly
HBV-HCC, the JAK/STAT and WNT/Bcatenin pathways
were found to be important drivers [192]. Recently, this
work has been expanded in over 500 liver cancer cases,
uncovering 30 candidate driver genes and 11 core pathways
including metabolic enzymes, chromatin remodelers, and
TERT as a central and ancestry-independent node in HCC
[193]. In addition, DNA mismatch repair genes and chro-
matin regulators, including ARID1A, ARID2, and MLL3
were mutated in a study of HCC including both HBV and
HCV patients [21]. In an exome sequencing study by
Schulze et al., TERT promoter mutations were identified as
early events in HCC, while TP53, CTNNB1, CDKN2A and
FGF family members were related to more advanced HCC
stages [194]. Whole genome sequencing has also allowed for
the identification of viral integration sites caused by the
DNA virus, HBV, and genomic aberrations that occur near
those sites. Important integration sites include TERT,
MLL4, FN1, and CCNE1 [22, 195]. Retrotransposon
insertions and repetitive sequences have also been explored
by whole genome sequencing. Two long interspersed

nuclear element-mediated somatic changes in MCC and
ST18 have recently been described in HCC [196].

RNA sequencing, meanwhile, provides an extension of
transcriptomic profiling by allowing for the assessment of
translocation and inversions of transcripts, noncoding RNAs,
and splicing events. Splicing variants for several genes have
been reported in HCC including TCF4, KLF6, p73, and
LLGL1 [197]. RNA editing events have also been explored
by this methodology and have identified a gain of function
activity in the AZIN1 gene in HCC along with RNA editing
roles of BLCAP [198–200]. These studies are rather small in
sample number and await further exploration in larger
datasets.

5.7.2 Circulating Tumor Cells

Although hepatic resection and liver transplantation are the
main modalities of curative HCC treatment, approximately
40 % of hepatectomy patients and 10 % of transplant
patients develop postoperative recurrences. One factor that is
thought to underlie this outcome is the presence of circu-
lating tumor cells (CTCs) which may be released from the
primary tumor or metastatic lesions. In the last decade, effort
has been placed on identifying and improving technology
and methods to detect CTCs, understand their role in tumor
biology and usefulness as tumor biomarkers. These include
enrichment methods based on physical characteristics and/or
immunological markers, microfilters, density gradient cen-
trifugation, and microfluidic chips [201, 202]. Once enriched
and isolated, various methods are used to characterize CTCs
including nucleic acid analysis, cytometric analysis, and
functional analysis. The characterization and enumeration of
CTCs may be a significant advance in our understanding of
tumor heterogeneity, patient stratification for treatment or
treatment response, and risk of relapse.

Table 5.1 A summary of HCC DNA sequencing studies

Platform* Sample size Candidate driver genes Study/year References

Whole genome 147 ATM, CTNNB1, ARID1A, IGSF10, TP53, Fujimoto et al. (2012) [218]

Whole genome 88 CTNNBI, LRP1B TP53 Kan et al. (2013) [22]

Whole genome 608 CTNNB1, TERT, TP53 Totoki et al. (2014) [193]

Whole exome 149 ARID1A, AXIN, CTNNB1, RPS6KA3, TP53 Guichard et al. (2012) [219]

Whole exome 11 TERT Woo et al. (2014) [190]

Whole exome 110 ARID1A, TP53 Huang et al. (2012) [191]

Whole exome 87 CTNNB1, TP53 Cleary et al. (2013) [188]

Whole exome 235 ALB, ARID1A, AXIN1, CTNNB1, TERT, TP53 Schulze et al. (2015) [194]
*Manuscripts were selected based on the use of next-generation sequencing methods in human cohorts. Candidate driver genes are presented in
alphabetical order and represent those genes found at greater than 10 % frequency in the noted study
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A few studies have been published regarding CTC
detection and characterization in HCC. The clinical useful-
ness of CTC counts was reported in a preliminary study by
Vona et al. in 44 HCC patients showing association of CTCs
with later disease stage and shorter survival [203]. Detection
of CD45(−)CD90(+)CD44(+) or EpCAM(+) cells have also
been employed to predict HCC recurrence and metastasis
[204–206]. Current strategies are focused on further char-
acterizing CTCs and understanding their modes of release
and circulation in order to prevent or reduce the risk of
recurrence, metastasis, and improve survival rates.

Our ability to define specific CTCs by single markers or
overlap of specific markers will also aid in understanding the
pools of CTCs that may be present in a given tumor or tumor
subtype that could allow us to better identify and stratify
HCC patients for effective treatment, etc. This may also lead
to strategies for targeting and/or eliminating CTCs in order
to prolong patient survival. Although the amount of data and
evidence concerning CTCs are growing in the HCC field,
currently there is still a lack of definitive evidence that the
detected cells are specific to HCC, capable of stem-like
abilities and initiate metastasis or recurrence. In addition,
current CTC capture techniques will need to be improved in
order to increase the purity of isolated cells and their yield.
Overall, CTCs represent an important new strategy to
identify markers for patient relapse and poor survival and
may be targetable populations to reduce these outcomes.

5.7.3 Data Integration

While array-based technologies have allowed us to define
molecular alterations at various levels of the genome, it is
important to note that these factors do not act on their own,
but rather, make up complex networks that span several
levels of genomic and genetic signaling. In this vein, it is
important for us to be able to understand how these factors
interact and/or are affected by one another to produce the
final phenotype that is observed. Thus, many researchers
involved in high-throughput genomics have begun to
explore signaling networks, rather than single molecules, as
methods of defining important molecular nodes and drivers
of HCC. Such integrated approaches are thought to be an
improved strategy of resolving the important and key
molecules that cause HCC and allow it to progress
(Table 5.2).

We have also recently used integrative approaches to
identify HCC driver genes. For example, we have combined
high-resolution, array-based comparative genomic
hybridization, and transcriptome analysis of HCC samples to
identify and validate a 10-gene signature associated with
chromosome 8p loss and poor outcome [207]. Functional
studies demonstrated that three gene products among the
10-gene signature have tumor suppressive properties. Inte-
grated genomics has also recently been used to identify
YY1AP1 as an oncogenic driver in stem-like HCC [208]. In

Table 5.2 A summary of HCC integrated omics studies

Integrated platforms* Sample
size

Candidates/signatures Study/year References

Double platform integration

Transcriptome + Metabolomics 356 SCD1 (lipid signature) Budhu et al.
(2013)

[210]

Transcriptome + aCGH 61 Metastasis genes Roessler et al.
(2015)

[220]

Transcriptome + aCGH 76 PROSC, SH2D4A, and SORBS3 (tumor suppressors) Roessler et al.
(2012)

[207]

Transcriptome + aCGH 380 YY1AP1 (metastasis/stem cell) Zhao et al. (2015) [208]

miRNA + mRNA 100 miR-148-ACVR1/BMP Li et al. (2015) [209]

RNA Seq + DNA Seq 2 BLCAP (RNA editing) Hu et al. (2015) [199]

Methylation + Transcriptome 71 SMPD3, NEFH (tumor suppressors) Revill et al.
(2013)

[213]

Methylation + Transcriptome 128 CFH, MYRIP, PSRC1, MRE11A and MYO1E (tumor
recurrence)

Yang et al.
(2011)

[214]

Triple platform integration

RNA Seq + DNA Seq + SNP 174 TTK (mitotic checkpoint) Miao et al. (2014) [217]

Methylation + Transcriptome + aCGH 63 PER3, IGFALS, protein Z (tumor suppressors) Neumann et al.
(2012)

[216]

Methylation + Transcriptome + SNP
array

49 COL1A1 (survival) Hayashi et al.
(2014)

[215]

*Manuscripts were selected based on the integration of two or more omic platforms and the use of human cohorts
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an integration study of miRNA and mRNA profiles, the
miR148a-ACVR1/BMP circuit was useful in defining a stem
cell-like aggressive subtype of HCC [209]. Metabolite and
mRNA profiles have also been integrated to define key
signaling events that can alter the fitness of EpCAM+ AFP
+ HCC cancer stem cells [210]. Our analysis revealed
tumor-specific and stem cell-like-specific metabolites linked
to patient survival along with correlating significant genes in
the stem cell-like tumor subgroup. In particular, stearoyl
CoA desaturase (SCD), a key enzyme involved in fatty acid
biosynthesis, and its related metabolites were highly elevated
in stem cell-like HCC and are associated with HCC survival
and may functionally contribute to HCC stemness and
aggressiveness. We have also recently compared and con-
trasted global metabolic profiles between liver, breast, and
pancreatic cancer tissues and found that metabolites are
principally unique to each tissue and cancer type. Thus,
metabolic profiling could be applied as cancer classification
tools to differentiate tumors based on tissue of origin [211].

To aid in the integration of multiple omics data, we have
proposed an integrative subgraph mining approach, called
iSubgraph to discover patterns of miRNA-gene networks
which could be used for patient stratification in HCC [212].
This algorithm could detect cooperative regulation of miR-
NAs and genes with highly stable class predictions.
The HCC subgroups identified by the algorithm have dif-
ferent survival characteristics with key roles of specific
genes in HCC subgroups. Thus, our method can integrate
various omics data derived from different platforms and with
different dynamic scales to better define molecular tumor
subtypes.

Integrative genomic analysis of genome-wide methyla-
tion and gene expression data identified possible key targets
in HCC. Recently, using this method, the tumor suppressive
roles of SMPD3 and NEFH have been demonstrated in HCC
[213]. Evidence was provided that SMPD3 is a potent tumor
suppressor gene that could affect tumor aggressiveness,
while a reduced level of SMPD3 is an independent prog-
nostic factor for early recurrence of HCC. This method was
also used to identify genes associated with HCC recurrence,
including CFH, MYRIP, PSRC1, MRE11A, and MYO1E
[214]. Triple-combination array analysis of expression
arrays, SNP array, and methylation array successfully iden-
tified COL1A1 as a candidate survival-related gene in
HCCs. Epigenetic downregulation of COL1A1 mRNA
expression might have a role as a prognostic biomarker of
HCC [215]. A combination of genome-wide methylation,
array CGH, and gene expression was also used to identify
PER3, IGFALS, protein Z as HCC tumor suppressors [216].
Whole genome sequencing has been integrated with tran-
scriptome sequencing and SNP genotyping to identify a
dual-specificity protein kinase, TTK as a prognostic indica-
tor of HCC [217].

Integration among various levels of omics signaling may
help to further define the key players that promote HCC and
affect its progression. For clinical application, it is also
useful to integrate omic information with current clinical
triage methods, including tumor staging and pathology, to
further refine patients into risk groups. This combined
information can then be applied to stratify patients for the
most appropriate and likely to be most effective treatment
regimens. This strategy underlies the topic of precision
medicine, whereby a more individualistic approach based on
the combination of science and medicine is used to manage
patient care.

5.8 Summary

The advent of array technology has provided a
high-throughput methodology to assess the genome-wide
changes that occur during hepatocarcinogenesis and its
progression. Using multiple sample types, array platforms
and data analysis methods, the mechanisms related to HCC
carcinogenesis can be elucidated and related to disease
pathogenesis and clinical measures. The definition of
molecular markers from these studies has the potential to
revolutionize the diagnosis and prognosis of patients with
HCC.

Arrays have steadily become more comprehensive and
stable, not only increasing the number of elements that can
be arrayed but also expanding with regard to the types of
material that can be analyzed. Despite advances in stability
and composition of arrays, several fundamental issues still
remain to be resolved. These include multiple sources of
variation (among samples, within arrays, mixed cell types,
user-related error, etc.) which may lead to overinterpretation
or spurious functional gene associations. In addition, the
need for physical destruction of cells/tissues limits conse-
quential assays conducted on the same material. Advanced
technique such as laser capture microdissection and
automation has somewhat improved these challenges. The
overall quality and amount of starting material is a major
challenge and is limited by the amount and complexity of the
sample as well as user-related handling. In addition, many
oncogenic processes are not accounted for by array analysis
since they are regulated posttranscriptionally. Therefore,
elements such as protein localization and modification are
important elements to be included in HCC profiling. Diffi-
culties in data comparison and integration must also be
addressed which ensues from the use of multiple array
platforms and data algorithms among published studies as
well as frequent updates of genomic databases. Such prob-
lems may be alleviated by setting adherence guidelines for
array statistical analysis and reporting such as those estab-
lished by the International Microarrays Gene Expression
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Data group, the REMARK guidelines, or incorporation of
proper study design that is suitable for array-based biosta-
tistical analyses (227–229). Resolution range is a large
limitation in array analysis, whereby important changes may
not be assessed or studied due to the cutoff criteria in the
analysis. Lastly, each array can only provide information
concerning the targets that are included in that array. Thus,
integrative analysis of multiple platforms may be required in
order to define the exact cancer-related molecular changes
on multiple biological levels and to distinguish the key
players from their downstream effects. Advancement in
statistical methods to integrate multiple platforms will also
be required to make such assessments. Recently, systems
have been developed that offer whole genome analysis using
a massive parallel sequencing that is useful for discoveries in
genomics, epigenomics, gene expression, and
protein-nucleic acid studies. Such systems offer an extremely
high-throughput method to complete large-scale global
studies in a cost-effective and accurate manner and may

allow for ease in cross-platform-type analyses since an
enormous multilevel dataset can be achieved with a rela-
tively small amount of the same starting material. Overall,
integrating global molecular profiling data along with
mechanistic/functional studies may improve the diagnosis,
treatment, and prognosis of HCC patients.

Although multiple publications have identified and vali-
dated diagnostic and/or prognostic HCC markers, critical
challenges in translating the findings to clinical practice
remain. To reach clinical applicability, the measurement of
biomarkers must be reproducible, reliable, and easily
accessible by noninvasive methods. In addition, the bio-
marker sets will need to be refined to a smaller number of
informative biomarkers to be useful for clinical interroga-
tion. Large prospective studies will need to be performed to
assess appropriate sample size for accurate diagnostics and
appropriate validation cohorts will be needed to incorporate
gender, race, and underlying etiological differences among
HCC patients. Nonetheless, the biomarkers that have been

Fig. 5.1 Functional and integrated omic profiling for biomarker
identification, validation, and clinical utility. Widescreen genomic
profiling of hepatocellular carcinoma (HCC) has identified multiple
biomarkers on the gene, protein, and genomic scale. These biomarkers
are useful for understanding HCC biology and clinical application. The
mechanistic and clinical information gleaned from genomic profiling

studies can be combined using computational strategies to identify
promising novel therapeutic markers for diagnosis, treatment, and
prognosis of HCC. Such methods will allow progression toward
precision medicine encompassing new and selective therapeutics and
preventative therapy
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identified through gene profiling, particularly those expres-
sed in serum, are an unprecedented advance toward useful
clinical application.

Overall, molecular profiling studies have become pow-
erful methods to incorporate global genomic readouts with
biological effects and are conduits for the discovery of
biomarkers with potential clinical application (Fig. 5.1). The
HCC-related genomic expression studies presented in this
chapter along with future studies and advances in array
technology, experimental design, and statistical analyses will
undoubtedly lead to crucial and important progress in our
understanding of the molecular mechanisms and biology of
HCC. Moreover, these studies have revealed molecular
markers that provide the framework toward predictive and
personalized care for HCC patients. We are now at the brink
of clinically implementing biomarkers identified from global
array profiling to improve HCC diagnosis, treatment, and
outcome.
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The main risk factors of HCC (infections by hepatitis B or C
viruses, high alcohol consumption, metabolic genetic dis-
eases or obesity) predispose to chronic liver disease leading
to cirrhosis development, a major pre-cancerous stage for
cancer initiation [1, 2]. HCCs occur in 90 % of the cases in
cirrhotic patients and its occurrence increased with the
severity of cirrhosis. However, in 10 % of the remaining
cases, HCC are discovered in non-cirrhotic patients mainly
in HCC related to metabolic syndrome, HBV infection or
without known etiology [3]. In these latter patients, we can
hypothesize that exposure to additional risk factors and/or
genetic predisposition could contribute significantly to the
development of HCC [4]. Overall, specific risk factors can
influence the process of hepatocarcinogenesis and this is
particularly important for environmental factors [5].

6.1 Genomic Alterations Related to Early
Hepatocarcinogenesis

HCC, as other solid tumors, is a disease of the genome [6].
Their development results from the accumulation of genetic
and epigenetic alterations in hepatocytes that gives a selec-
tive proliferative advantage [5, 7] (Fig. 6.1). As in all cells of
the body, these mutations are accumulated randomly during
life since birth, however, hepatocytes are also major targets
for genotoxic agents because of the key role of liver in
detoxification [5]. Exposure to genotoxic agents damages the
genome of hepatocytes and increases the number of somatic
mutations accumulated in the cells [4, 8]. In most of the
cases, random mutations occur in intergenic regions and
have no functional consequences on cell biology. However,
when mutations occur within a cancer driver gene it can
initiate or promote [9] the mechanism of tumorigenesis. As a
result of this process, in each HCC, a mean number of 40
mutations altering the function of different genes are iden-
tified [10–12]. Moreover, the pattern of mutations could give
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several clues to understand the underlying mutagenic pro-
cess and identify new risk factors of HCC development [9,
13].

6.1.1 Exposure to Genotoxic Agents

Exposure to Aflatoxin B1 (AFB1) in subtropical countries is a
prototype of genotoxicity in the liver [14]. Aspergillus Flavus
fungi, that colonize food in subtropical countries, produce
Aflatoxin B1 [14]. AFB1 metabolites are genotoxic accu-
mulated in the liver, they form adducts to DNA and induce
nucleotide transversions with a recurrent specific mutation
identified in TP53 gene at codon 249 [15, 16]. AFB1 coop-
erates with HBV infection and GSTM1 polymorphism to
increase the risk of HCC development [17, 18]. Recent
sequencing of HCC genome identified a specific pattern of
mutation thorough the genome related to AFB1 exposure in
HCC developed in patients from African subtropical area
[11]. This pattern of mutations is characterized by C>A
transversions with a transcriptional DNA strand bias (Signa-
ture 24). Aristocholic acid is the product of Aristolochia plants
used in Chinese herbal remedies that induces nephrotoxicity
but also urothelial carcinoma of the upper urinary tract [19].
Moreover, specific mutational signature A:T-to-T:A
transversions with a bias on the non transcribed strand have
been identified in urothelial carcinomas of the upper urinary
tract but also in rare cases of HCC. It links exposure to aris-
tocholic acid with HCC development [20, 21].

Analysis of the mutational signature in HCC showed that
accumulation of gene mutation is also related to the age of
the patients suggesting that it is a progressive process during
life [11]. During the development of chronic hepatitis and
cirrhosis, hepatocytes are exposed to oxidative stress,
inflammation and cell senescence whatever the risk factor
[22]. These processes can also induce a “genotoxic stress”
and promote the accumulation of genomic defects [8]. Also,
tobacco smoking, which is recurrently identified as a risk
factor participating to HCC development, could induce

specific mutational signature in the genome of HCC [11].
Finally, genotoxic agents at the origin of specific mutational
signature remain to be identified and future epidemiological
studies combined to molecular analysis of the tumor are
promising to help to better understand the contribution of
various environmental exposures in HCC development.

6.1.2 Viral Infections Inducing Insertional
Mutagenesis in Hepatocytes

HBV is a DNA virus with a genome of 3,300 bases that plays a
key role in hepatocarcinogenesis [23]. HBV infection and
expression of viral proteins like Hbx increase chromosome
instability and promote cell proliferation. HBV integrations
into the genome of infected hepatocytes can activate or inac-
tive the function of the targeted genes by insertions, deletions
or rearrangements [24, 25]. This phenomenon known as
insertional mutagenesis promotes clonal proliferation of
tumor hepatocytes and is supposed to be an early genetic event
in viral induced tumorogenesis [25, 26]. Insertional mutage-
nesis is a direct viral oncogenic mechanism that explains the
occurrence of HCC on normal liver in patients with chronic
HBV infection [27]. Recently, using next generation
sequencing technics, a large number of insertion sites were
identified [28, 29]. Several insertion sites of HBV were
recurrent in HCC and the most frequent events occurred in
TERT promoter activating telomerase or in MLL4 [28, 30].

Recently, sequencing a series of HCC revealed clonal
insertions of the adeno-associated virus type 2 (AAV2) in 11
tumors mainly developed in young patients without signifi-
cant liver fibrosis and known risk factors [31]. AAV2 is a
DNA virus that persists in a latent form inserted in human
DNA. It was considered previously as a non-pathogenic [32,
33]. The viral insertions were identified in HCC within
cancer driver genes and lead to activate their expression using
an insertional viral mutagenesis similar to that observed with
HBV in HCC. Common genes are targeted by HBV and
AAV2 insertions at TERT promoter, MLL4, CCNA2 and

Fig. 6.1 Hepatocarcinogenesis
is a multistep process with a
progressive accumulation of
genomic alterations in tumor
hepatocytes. In each HCC, a
mean number of 40 functional
damaging mutations are
accumulated
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CCND1 activating cyclin A2 and E1 [28, 31, 34]. These
events of AAV2 insertion in oncogenes promoting HCC
development are exceptional since HCC developed in normal
liver are very rare. In contrast, AAV2 asymptomatic infection
is highly frequent in the general population since 60 % of the
individual are infected by AAV2 during life [35]. This
paradox between a frequent viral infection and the develop-
ment of a rare subtype of cancer is also found with EBV
infection inducing Burkitt lymphoma or in Merkel Cell
Carcinoma, a rare aggressive skin cancer associated with
Merkel cell polyomavirus (MCV) infection [35, 36].

Finally, both HBV and AAV2 are “genotoxic” DNA
viruses in hepatocytes since they can modify the genome of
the host cells altering cancer driver genes [37, 38]. Up to
now, AAV2 is the 8th virus associated with cancer devel-
opment after HBV, HCV, HPV, MCV, EBV, HTLV1 and
HHV8 [31, 35]. The reasons why only a small subset of the
individuals is developing tumors after this infection remain
to be elucidated.

6.1.3 Somatic Mutations in the Telomerase
Promoter Is the Earliest Recurrent
Genomic Alteration

Malignant transformation of hepatocytes occurring in cir-
rhosis is a multistep process with defined histological
sequence of lesions and the successive occurrence of

low-grade dysplastic nodules (LGDN), then high grade
dysplastic nodules (HGDN) that are at higher risk of
malignant transformation in early HCC that progress in
small and progressed HCC and advanced HCC [39, 40].
Telomerase complex that control the length of the telomeres,
the repeated sequences that protect chromosome extremities
from erosion, play a key role in cirrhosis pathogenesis and
malignant transformation of hepatocytes [41–43] Reexpres-
sion of telomerase is observed in more than 90 % of HCC
and allow an unrestrained proliferation of tumor hepatocytes.
[44]. Activation of telomerase, by somatic TERT promoter
mutation, is the earliest and the most frequent somatic
genomic alteration occurring in the mechanism of HCC
development occurring in cirrhotic or non-cirrhotic liver [45,
46]. TERT promoter mutations were first identified in 70 %
of melanoma [47–49]. In HCC, mutations occur at two hot
spots in TERT promoter located 126 and 144 nucleotides
upstream the traduction initiation codon of the telomerase
gene [50]. These mutations generate a “CCGGAA”
sequence, a binding site for transcription factors of the ETS
family as GABP that activate TERT transcription [51, 52].

TERT promoter mutations are not observed in cirrhosis,
but its frequency increase progressively during hepatocar-
cinogenesis since they are identified in 6 % of low-grade
dysplastic nodule, in 19 % of high grade dysplastic nodules
and in around 60 % of early, small and progressed HCC [46]
(Fig. 6.2). TERT promoter mutations are also identified in
HCC developed in non-cirrhotic liver. Moreover, it is a

Fig. 6.2 Somatic TERT promoter is the earliest recurrent somatic mutation in HCC developed in cirrhotic and non-cirrhotic liver. Adapted from
Nault et al. [45, 46], Pilati et al. [53]
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Fig. 6.3 Major pathways altered in HCC. Frequency of gene mutations are indicated in oncogenes (gene in red) or tumor suppressor genes (in
blue) according to Guichard et al., [10], Totoki et al. [12], Schulze et al. [11], Zucman-Rossi {Zucman-Rossi 2015 #4499}
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major genomic event, in association with activating muta-
tions of CTNNB1, involved in the malignant transformation
of hepatocellular adenoma (HCA) in HCC [45, 53, 54]
(Fig. 6.2).

6.2 Genomic Alterations in Progressed
HCC

Activation of telomerase, by TERT promoter mutation, is the
earliest and the most frequent alteration occurring in the
mechanism of HCC development (60 % of mutations in
progressed HCC) [45], then, additional mutations are accu-
mulated during HCC progression. Recurrent activating
mutations of CTNNB1 (11–37 %) activating ß-catenin are
the second alterations the most commonly observed in HCC
frequently associated with alcohol intake and HCV infection
(Figs. 6.3 and 6.4) [11, 55, 56]. Inactivating mutations in
TP53 are also highly frequent (20–52 %), more predominant
in HBV-related HCC and associated with poor prognosis
[10, 15, 57, 58]. Notably, alterations in CTNNB1 and TP53
are usually exclusive from each other; they define two dif-
ferent subgroups of HCC with different genes dysregulated

at the genomic level [11, 59, 60]. Several genes encoding
chromatin remodeling factors and histone methyltransferase
are also frequently mutated in HCC [5]. Among them,
ARID1A and ARID2 are the genes the most recurrently
inactivated in HCC cohorts around the world (8–17 %) [10–
12, 61]. Somatic mutations in several additional cancer
drivers have been also identified (see Fig. 6.3).

Recurrent copy number alterations (CNA) leading to
losses and gains of large chromosome regions were identi-
fied [60, 62]. Recurrent homozygous deletions inactivating
tumor suppressor genes or recurrent focal amplifications
activating oncogenes were described (included in Fig. 6.3)
[10]. Integrating CNA and frequent mutations in 161 puta-
tive cancer driver genes, pointed out frequent alterations of
major oncogenic pathways involved in telomere mainte-
nance, Wnt signaling, PI3 K/mTOR pathway, p53 pathway,
MAP kinase pathway, hepatic differentiation, epigenetic
regulation, chromatin remodeling, oxidative stress,
JAK/STAT pathway, and TGFß signaling [11, 12]. Never-
theless, noticeable differences are observed among HCC
cohorts, reflecting heterogeneity related to geographical and
risk factor distributions (Fig. 6.4) [11, 63]. The identification
of the major driver genes recurrently mutated in progressed

Fig. 6.4 Enrichment in gene mutations according to the different risk
factors. HBV-related tumors are enriched in P53 and MLL4 alterations;
alcohol related tumors in CTNNB1, TERT promoter, ARID1A and
SMARA2 mutations; HCC with unknown etiology more frequently

associated with IL6ST mutations whereas no specific pattern of gene
mutations were identified in HCV, hemochromatosis and metabolic
syndrome related HCC [11]
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HCC is the first step to develop biotherapy tailored to
genomic alterations [7, 64].

Conclusion: HCC is a heterogenous disease and the nat-
ural history of HCC development is related to various
molecular subtype of HCC and genotoxic exposure.
Molecular diversity of HCC is at least partly driven by the
different risk factors and the underlining chronic liver dis-
ease that predispose to tumor development. The develop-
ment of next generation sequencing offers a unique
opportunity to better understand the relationship between
exposure to risk factors and the mechanisms of carcino-
genesis in the liver.

References

1. Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet.
2012;379:1245–55.

2. El-Serag HB. Hepatocellular carcinoma. N Engl J Med.
2011;365:1118–27.

3. Nault JC. Pathogenesis of hepatocellular carcinoma according to
aetiology. Best Pract Res Clin Gastroenterol. 2014;28:937–47.

4. Marquardt JU, Andersen JB, Thorgeirsson SS. Functional and
genetic deconstruction of the cellular origin in liver cancer. Nat Rev
Cancer. 2015;15:653–67.

5. Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. The genetic
landscape and biomarkers of hepatocellular carcinoma. Gastroen-
terology. 2015;149(5):1226–1239.

6. Stratton MR, Campbell PJ, Futreal PA. The cancer genome.
Nature. 2009;458:719–24.

7. Pinyol R, Nault JC, Quetglas IM, Zucman-Rossi J, Llovet JM.
Molecular profiling of liver tumors: classification and clinical
translation for decision making. Semin Liver Dis. 2014;34:363–75.

8. Nik-Zainal S, Kucab JE, Morganella S, Glodzik D, Alexandrov LB,
Arlt VM, Weninger A, et al. The genome as a record of
environmental exposure. Mutagenesis. 2015;30:763–70.

9. Helleday T, Eshtad S, Nik-Zainal S. Mechanisms underlying
mutational signatures in human cancers. Nat Rev Genet.
2014;15:585–98.

10. Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L,
Maad IB, Calderaro J, et al. Integrated analysis of somatic
mutations and focal copy-number changes identifies key genes
and pathways in hepatocellular carcinoma. Nat Genet.
2012;44:694–8.

11. Schulze K, Imbeaud S, Letouze E, Alexandrov LB, Calderaro J,
Rebouissou S, Couchy G, et al. Exome sequencing of hepatocel-
lular carcinomas identifies new mutational signatures and potential
therapeutic targets. Nat Genet. 2015;47:505–11.

12. Totoki Y, Tatsuno K, Covington KR, Ueda H, Creighton CJ,
Kato M, Tsuji S, et al. Trans-ancestry mutational landscape of
hepatocellular carcinoma genomes. Nat Genet. 2014;46:1267–73.

13. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S,
Biankin AV, Bignell GR, et al. Signatures of mutational processes
in human cancer. Nature. 2013;500:415–21.

14. Gouas D, Shi H, Hainaut P. The aflatoxin-induced TP53 mutation
at codon 249 (R249S): biomarker of exposure, early detection and
target for therapy. Cancer Lett. 2009;286:29–37.

15. Bressac B, Kew M, Wands J, Ozturk M. Selective G to T mutations
of p53 gene in hepatocellular carcinoma from southern Africa.
Nature. 1991;350:429–31.

16. Hsu IC, Metcalf RA, Sun T, Welsh JA, Wang NJ, Harris CC.
Mutational hotspot in the p53 gene in human hepatocellular
carcinomas. Nature. 1991;350:427–8.

17. Hsia CC, Kleiner DE Jr, Axiotis CA, Di Bisceglie A, Nomura AM,
Stemmermann GN, Tabor E. Mutations of p53 gene in hepatocel-
lular carcinoma: roles of hepatitis B virus and aflatoxin contam-
ination in the diet. J Natl Cancer Inst. 1992;84:1638–41.

18. Wang B, Huang G, Wang D, Li A, Xu Z, Dong R, Zhang D, et al.
Null genotypes of GSTM1 and GSTT1 contribute to hepatocellular
carcinoma risk: evidence from an updated meta-analysis. J Hepatol.
2010;53:508–18.

19. Moriya M, Slade N, Brdar B, Medverec Z, Tomic K, Jelakovic B,
Wu L, et al. TP53 Mutational signature for aristolochic acid: an
environmental carcinogen. Int J Cancer. 2011;129:1532–6.

20. Poon SL, Pang ST, McPherson JR, Yu W, Huang KK, Guan P,
Weng WH, et al. Genome-wide mutational signatures of aris-
tolochic acid and its application as a screening tool. Sci Transl
Med. 2013;5:197ra101.

21. Hoang ML, Chen CH, Sidorenko VS, He J, Dickman KG, Yun BH,
Moriya M, et al. Mutational signature of aristolochic acid exposure
as revealed by whole-exome sequencing. Sci Transl Med.
2013;5:197ra102.

22. Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis:
from genes to environment. Nat Rev Cancer. 2006;6:674–87.

23. Arzumanyan A, Reis HM, Feitelson MA. Pathogenic mechanisms
in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev
Cancer. 2013;13:123–35.

24. Brechot C. Pathogenesis of hepatitis B virus-related hepatocellular
carcinoma: old and new paradigms. Gastroenterology. 2004;127:
S56–61.

25. Neuveut C, Wei Y, Buendia MA. Mechanisms of HBV-related
hepatocarcinogenesis. J Hepatol. 2010;52:594–604.

26. Brechot C, Pourcel C, Louise A, Rain B, Tiollais P. Presence of
integrated hepatitis B virus DNA sequences in cellular DNA of
human hepatocellular carcinoma. Nature. 1980;286:533–5.

27. Dejean A, Bougueleret L, Grzeschik KH, Tiollais P. Hepatitis B
virus DNA integration in a sequence homologous to v-erb-A and
steroid receptor genes in a hepatocellular carcinoma. Nature.
1986;322:70–2.

28. Sung WK, Zheng H, Li S, Chen R, Liu X, Li Y, Lee NP, et al.
Genome-wide survey of recurrent HBV integration in hepatocel-
lular carcinoma. Nat Genet. 2012;44:765–9.

29. Jiang Z, Jhunjhunwala S, Liu J, Haverty PM, Kennemer MI,
Guan Y, Lee W, et al. The effects of hepatitis B virus integration
into the genomes of hepatocellular carcinoma patients. Genome
Res. 2012;22:593–601.

30. Paterlini-Brechot P, Saigo K, Murakami Y, Chami M, Gozuacik D,
Mugnier C, Lagorce D, et al. Hepatitis B virus-related insertional
mutagenesis occurs frequently in human liver cancers and recur-
rently targets human telomerase gene. Oncogene. 2003;22:3911–6.

31. Nault JC, Datta S, Imbeaud S, Franconi A, Mallet M, Couchy G,
Letouze E, et al. Recurrent AAV2-related insertional mutagenesis
in human hepatocellular carcinomas. Nat Genet. 2015;47:1187–93.

32. Atchison RW, Casto BC, Hammon WM. Adenovirus-associated
defective virus particles. Science. 1965;149:754–6.

33. Goncalves MA. Adeno-associated virus: from defective virus to
effective vector. Virol J. 2005;2:43.

34. Berasain C, Patil D, Perara E, Huang SM, Mouly H, Brechot C.
Oncogenic activation of a human cyclin A2 targeted to the
endoplasmic reticulum upon hepatitis B virus genome insertion.
Oncogene. 1998;16:1277–88.

35. Moore PS, Chang Y. Why do viruses cause cancer? Highlights of
the first century of human tumour virology. Nat Rev Cancer.
2010;10:878–89.

118 J.-C. Nault and J. Zucman-Rossi



36. Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a
polyomavirus in human Merkel cell carcinoma. Science.
2008;319:1096–100.

37. Russell DW, Grompe M. Adeno-associated virus finds its disease.
Nat Genet. 2015;47:1104–5.

38. Donsante A, Miller DG, Li Y, Vogler C, Brunt EM, Russell DW,
Sands MS. AAV vector integration sites in mouse hepatocellular
carcinoma. Science. 2007;317:477.

39. Di Tommaso L, Sangiovanni A, Borzio M, Park YN, Farinati F,
Roncalli M. Advanced precancerous lesions in the liver. Best Pract
Res Clin Gastroenterol. 2013;27:269–84.

40. Kojiro M, et al. Pathologic diagnosis of early hepatocellular
carcinoma: a report of the international consensus group for
hepatocellular neoplasia. Hepatology. 2009;49:658–64.

41. Urabe Y, Nouso K, Higashi T, Nakatsukasa H, Hino N, Ashida K,
Kinugasa N, et al. Telomere length in human liver diseases. Liver.
1996;16:293–7.

42. Satyanarayana A, Manns MP, Rudolph KL. Telomeres and
telomerase: a dual role in hepatocarcinogenesis. Hepatology.
2004;40:276–83.

43. Gunes C, Rudolph KL. The role of telomeres in stem cells and
cancer. Cell. 2013;152:390–3.

44. Nakayama J, Tahara H, Tahara E, Saito M, Ito K, Nakamura H,
Nakanishi T, et al. Telomerase activation by hTRT in human
normal fibroblasts and hepatocellular carcinomas. Nat Genet.
1998;18:65–8.

45. Nault JC, Mallet M, Pilati C, Calderaro J, Bioulac-Sage P,
Laurent C, Laurent A, et al. High frequency of telomerase
reverse-transcriptase promoter somatic mutations in hepatocellular
carcinoma and preneoplastic lesions. Nat Commun. 2013;4:2218.

46. Nault JC, Calderaro J, Di Tommaso L, Balabaud C, Zafrani ES,
Bioulac-Sage P, Roncalli M, et al. Telomerase reverse transcriptase
promoter mutation is an early somatic genetic alteration in the
transformation of premalignant nodules in hepatocellular carci-
noma on cirrhosis. Hepatology. 2014;60:1983–92.

47. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA.
Highly recurrent TERT promoter mutations in human melanoma.
Science. 2013;339:957–9.

48. Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A,
Kadel S, et al. TERT promoter mutations in familial and sporadic
melanoma. Science. 2013;339:959–61.

49. Vinagre J, Almeida A, Populo H, Batista R, Lyra J, Pinto V,
Coelho R, et al. Frequency of TERT promoter mutations in human
cancers. Nat Commun. 2013;4:2185.

50. Nault JC, Zucman-Rossi J. TERT promoter mutations in primary
liver tumors. Clin Res Hepatol Gastroenterol. 2015.

51. Borah S, Xi L, Zaug AJ, Powell NM, Dancik GM, Cohen SB,
Costello JC, et al. Cancer. TERT promoter mutations and
telomerase reactivation in urothelial cancer. Science.
2015;347:1006–10.

52. Bell RJ, Rube HT, Kreig A, Mancini A, Fouse SD, Nagarajan RP,
Choi S, et al. Cancer. The transcription factor GABP selectively
binds and activates the mutant TERT promoter in cancer. Science.
2015;348:1036–9.

53. Pilati C, Letouze E, Nault JC, Imbeaud S, Boulai A, Calderaro J,
Poussin K, et al. Genomic profiling of hepatocellular adenomas
reveals recurrent FRK-activating mutations and the mechanisms of
malignant transformation. Cancer Cell. 2014;25:428–41.

54. Nault JC, Bioulac-Sage P, Zucman-Rossi J. Hepatocellular benign
tumors-from molecular classification to personalized clinical care.
Gastroenterology. 2013;144:888–902.

55. de La Coste A, Romagnolo B, Billuart P, Renard CA, Buendia MA,
Soubrane O, Fabre M, et al. Somatic mutations of the beta-catenin
gene are frequent in mouse and human hepatocellular carcinomas.
Proc Natl Acad Sci USA. 1998;95:8847–51.

56. Nault JC, Zucman-Rossi J. Genetics of hepatobiliary carcinogen-
esis. Semin Liver Dis. 2011;31:173–87.

57. Fujimoto A, Totoki Y, Abe T, Boroevich KA, Hosoda F,
Nguyen HH, Aoki M, et al. Whole-genome sequencing of liver
cancers identifies etiological influences on mutation patterns and
recurrent mutations in chromatin regulators. Nat Genet.
2012;44:760–4.

58. Woo HG, Wang XW, Budhu A, Kim YH, Kwon SM, Tang ZY,
Sun Z, et al. Association of TP53 mutations with stem cell-like
gene expression and survival of patients with hepatocellular
carcinoma. Gastroenterology. 2011;140:1063–70.

59. Boyault S, Rickman DS, de Reynies A, Balabaud C, Rebouissou S,
Jeannot E, Herault A, et al. Transcriptome classification of HCC is
related to gene alterations and to new therapeutic targets. Hepa-
tology. 2007;45:42–52.

60. Ahn SM, Jang SJ, Shim JH, Kim D, Hong SM, Sung CO, Baek D,
et al. Genomic portrait of resectable hepatocellular carcinomas:
implications of RB1 and FGF19 aberrations for patient stratifica-
tion. Hepatology. 2014;60:1972–82.

61. Li M, Zhao H, Zhang X, Wood LD, Anders RA, Choti MA,
Pawlik TM, et al. Inactivating mutations of the chromatin
remodeling gene ARID2 in hepatocellular carcinoma. Nat Genet.
2011;43:828–9.

62. Laurent-Puig P, Legoix P, Bluteau O, Belghiti J, Franco D, Binot F,
Monges G, et al. Genetic alterations associated with hepatocellular
carcinomas define distinct pathways of hepatocarcinogenesis.
Gastroenterology. 2001;120(7):1763–73.

63. Huang J, Deng Q, Wang Q, Li KY, Dai JH, Li N, Zhu ZD, et al.
Exome sequencing of hepatitis B virus-associated hepatocellular
carcinoma. Nat Genet. 2012;44:1117–21.

64. Llovet JM, Villanueva A, Lachenmayer A, Finn RS. Advances in
targeted therapies for hepatocellular carcinoma in the genomic era.
Nat Rev Clin Oncol. 2015;12:408–24.

6 Genomic Signatures of Risk Factors and Molecular Identification … 119



7MicroRNAs and Hepatocellular Carcinoma

Aldo Cavallini

Abbreviations
AAV Adenoviral vector
ADAM9 ADAM metallopeptidase domain 9
AFP a-fetoprotein
ALT Allograft transplantation
AMO Anti-miRNA antisense oligomer
CEA Carcinoembryonic antigen
DGCR8 DiGeorge syndrome chromosomal region 8
Dicer Ribonuclease III
Drosha Double-stranded-RNA-binding protein
5-FU 5-fluorouracil
ITBLs Ischemic-type biliary lesions
LT Liver transplantation
miRNA MicroRNA
mRNA RNA messenger
OLT Orthotopic liver transplantation
OncomiR miRNA with oncogene role
OT Operational tolerance
pre-miRNA Preliminary miRNA
pri-miRNA Primary miRNA
RISC Multiprotein RNA induced-silencing complex
RNAi RNA-mediated interference
siRNA Small interfering RNA
snRNA Small noncoding RNA
TACE Transcatheter arterial chemoembolization
TS miR Tumor Suppressor miRNA
UTR Untranslated region
XPO5 Exportin 5
ZEN N,N-diethyl-4-(4-nitronaphthalen-1-ylazo)-phenylamine

A. Cavallini (&)
Laboratory of Cellular and Molecular Biology, Dept. Clinical
Pathology, IRCCS, Saverio de Bellis, Castellana Grotte, BA, Italy
e-mail: aldo.cavallini@irccsdebellis.it

© Springer International Publishing Switzerland 2016
B.I. Carr (ed.), Hepatocellular Carcinoma, Current Clinical Oncology,
DOI 10.1007/978-3-319-34214-6_7

121



Contents

7.1 Introduction........................................................................... 122

7.2 miRNA Biogenesis and Action ............................................ 122

7.3 Up- and Down-Regulated miRNAs in HCC...................... 122

7.4 Circulating miRNAs as Diagnostic or Prognostic Tool
in HCC................................................................................... 123

7.5 Therapies and miRNAs........................................................ 125
7.5.1 Surgery Therapy .......................................................... 126
7.5.2 Radiotherapy................................................................ 128
7.5.3 Transcatheter Arterial Chemoembolization (TACE) .. 128
7.5.4 Drug Treatment and miRNAs ..................................... 128
7.5.5 miRNAmimics and Anti-miRNAs as Drugs............... 129

References ...................................................................................... 130

7.1 Introduction

Genomic studies have demonstrated that many portions of the
human genome do not encode conventional protein-coding
genes but encode biologically active noncoding RNA species.
One class of such small noncoding RNA is microRNA
(miRNA), comprised of a group of well-conserved, small
RNA molecules (21–23 nucleotides) that can up- or
down-regulate gene expression in normal and abnormal cel-
lular activities by base pairing with 3′ untranslated regions (3′
UTRs) of target messenger RNA (mRNA) [1].

In addition, miRNAs can function both as tumor sup-
pressor (TS-miR) or oncogene (oncomiR) based on the
combination of different target RNA messengers (mRNAs).
When a miRNA prevents cancer formation in healthy cells,
this miRNA is called TS-miRNA. The miRNAs that are
increased in neoplastic tissues, that usually promote tumor
development by negatively inhibiting tumor suppressor
genes and/or genes that control cell differentiation or apop-
tosis, are called oncomiRs.

miRNAs were discovered for the first time in 1993 by
Lee’s group [2] and, after two decades, thousands of miR-
NAs have been identified in human.

About 3 % of genes encode 2000 different miRNAs in
human, and have been shown to play critical roles in normal
cellular functions, such as growth, development, differenti-
ation, and reproduction [3–6].

Since miRNAs affect the development of tumors,
including hepatocellular carcinoma (HCC), via dysregula-
tion of their biogenesis and gene expression, several exper-
imental studies have discovered increasing numbers of
aberrantly expressed miRNAs which are involved in
molecular mechanism of HCC progression.

In this chapter, we focus on clinical applications of miR-
NAs in HCC and on recent advances of miRNAs as drugs.

7.2 miRNA Biogenesis and Action

The generation of mature miRNAs is a multistep process that
starts with the initial transcription of their genes by RNA
polymerase II. In the nucleus RNA polymerase II transcribes
the primary miRNA (pri-miRNA), a double strand of about
1000 base pair (bp). Subsequently, pri-miRNAs are pro-
cessed to an miRNA precursor (pre-miRNA) of 60–100 bp
by a protein complex (Drosha–DGCR8). Then, pre-miRNAs
are transported from the nucleus to the cytoplasm by
exportin-5 (XPO-5) and further cleaved (21–24 bp) by
another protein complex (Dicer). These two strands are
separated and one strand is degraded, while the second
strand, that represents the mature strand, binds to
RNA-induced silencing complex (RISC). Finally, mature
single-stranded miRNA by RISC recognizes the target
mRNA. The miRNA–mRNA interaction usually causes
translational repression by imperfect pairing with mRNA
and/or mRNA cleavage by perfect pairing with the target
mRNA. In both cases the final result is the reduction of the
protein output.

For more details see paper by Wahid et al. [7].

7.3 Up- and Down-Regulated miRNAs
in HCC

The first association between miRNAs and cancer was
identified by Croce et al. [8] when the miR-15a-16-1cluster
was implicated as a putative tumor suppressor gene mapping
to chr 13q14, a small genomic region frequently deleted or
translocated in chronic lymphocytic leukemia.

Subsequently, the abnormal expression of miRNAs has
been demonstrated in a variety of cancers considering that in
biological processes of a tumor are involved different path-
ways, such as proliferation, apoptosis, invasion, migration,
and metastasis.

An investigation has also added indirect support that
miRNA changes are causal, rather than consequential, of
cellular transformation [9].

It is well known that cancer is associated with very
complex genetic alternations in oncogenes and tumor sup-
pressors, and several evidences suggest that also miRNAs
can function as oncogenes or tumor suppressors [10].

In oncogenesis, some miRNAs expression is decreased in
cancerous cells and these types of miRNAs are considered
tumor suppressor genes. Tumor suppressor miRNAs role is
usually to prevent tumor development by negatively
inhibiting oncogenes and/or genes that control several
metabolic pathways, such as proliferation or apoptosis. On
the contrary, those miRNAs whose expression is increased
in tumors may be considered as oncogenes. These oncogene
miRNAs, called “oncomirs,” usually promote tumor
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development by negatively inhibiting tumor suppressor
genes. Many of these miRNAs have been found that are
significantly over-expressed in different cancers, including
HCC [11, 12].

The mechanisms of both tumor suppressor miRNA and
oncomir are depicted in Fig. 7.1.

Altered microRNA expression are differentially expres-
sed in diverse human liver diseases, from chronic liver dis-
eases with different etiology to HCC through cirrhosis [13]

Here, we address on miRNA profile in HCC. The results
obtained from numerous studies show a total of 80
down-regulated and 79 up-regulated miRNAs (Table 7.1).

Moreover, experimental data by in vitro and in animal
models have also identified the mRNA target for each
miRNA. Discovery of the miRNA role in various human
pathological processes has further shed light to the possible
applications of the miRNAs in molecular diagnostics,
prognostic and therapy for HCC.

7.4 Circulating miRNAs as Diagnostic
or Prognostic Tool in HCC

Studies suggest that miRNAs are not only localized within
the cell or in tissue environmental, but are also present in
circulation. Extracellular circulating miRNAs can be found

in lipid or lipoprotein complexes or packed into microvesi-
cles, known as exosomes. These miRNAs provide an asso-
ciation between their serum levels and specific organ
dysfunction. Therefore, this suggests that circulating miR-
NAs may represent a new class of prognostic and diagnostic
cancer biomarkers [115–117].

In addition, serum-derived miRNA biomarkers would be
advantageous compared with the examination of HCC tumor
tissue due to the noninvasive nature of the sampling and the
possibility of repeated sampling. Moreover, since many
studies have demonstrated that miRNA expression profiles
in HCC and non-tumor tissue are significantly different,
serum miRNAs can reflect the level of tissue miRNAs and
thus potentially be used as HCC markers.

With the aim of identifying new and specific biomarkers
for HCC, Koberle et al. [118] report a prognostic potential of
miR-1 and -122 in sera of HCC patients.

Serum miR-1 and -122 concentrations did not differ
significantly between patients with HCC and liver cirrhosis,
whereas both miRNAs were associated with overall survival
(OS) in HCC patients. miR-1 serum levels did not correlate
with clinical chemistry liver parameters, whereas serum
miR-122 strongly correlated with the serum ALT, AST, and
GGT levels.

The explanation is that miR-122 is a liver-specific, mul-
tifunctional RNA that controls several metabolic pathways,

Fig. 7.1 Biogenesis of a miRNA
as oncogene or tumor suppressor
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Table 7.1 Up- and down-regulated miRNAs in HCC

Up-regulated Down-regulated

miRNA Ref. miRNA Ref. miRNA Ref. miRNA Ref.

miR-9-3p [14] miR-210 [42] Let-7a [64] miR-152 [87]

miR-10a [15] miR-213 [21] Let-7b [83] miR-181 [46]

miR-10b [16] miR-216a [43] Let-7c [65] miR-185 [17]

miR-16 [17] miR217 [44] Let-7d [64] miR-194 [17]

miR-17-5p [18] miR-221 [45] Let-7e [46] miR-195 [88]

miR-18a [19] miR-222 [28] Let-7f-1 [64] miR-198 [30]

miR-19b [20] miR-224 [47] Let-7g [66] miR-199a-3p [89]

miR-20a [20] miR-294 [21] miR-1 [67] miR-199a-5p [90]

miR-21 [21] miR-301a [48] miR-7 [68] miR-199b-3p [91]

miR-22 [22] miR-324 [14] miR-10a [15] miR-200a [92]

miR-23a [23] miR-362 [28] miR-10b [69] miR-200b [93]

miR-24 [17] miR-373 [49] miR-15a [70] miR-200c [94]

miR-25 [24] miR-374 [14] miR-21 [51] miR-203 [95]

miR-26a [25] miR-376a [21] miR-26a/b [95] MiR-206 [96]

miR-27a [20] miR-378 [28] miR-29a [71] miR-214 [97]

miR-30d [26] miR-382 [28] miR-29b [72] miR-215 [27]

[miR-33 [27] miR-423 [51] miR-29c [73] miR-219-5p [98]

miR-92-3p [20] miR-429 [63] miR-34a [74] miR-223 [99]

miR-92-5p [24] miR-485-3p [52] miR-99a [75] miR-224 [100]

miR-93 [28] miR-490-3p [53] miR-100 [76] miR-292-3p [94]

miR-96 [29] miR-491 [28] miR-101 [77] miR-338 [17]

miR-100 [30] miR-494 [54] miR-122a [78] miR-365 [28]

miR-106b [31] miR-495 [52] miR-124a-3p [79] miR-363-3p [101]

miR-107 [32] miR-500 [50] miR-125a-5p [80] miR-375 [102]

miR-127-3p [28] miR-515-3p [55] miR-125b [80] miR-376a [103]

miR-130b [33] miR-515-5p [55] miR-126-3p [17] miR-422a [28]

miR-132 [46] miR-517a [56] miR-128 [17] miR-422b [28]

miR-135a [34] miR-518a-3p [55] miR-130a [17] miR-424 [28]

miR-137 [35] miR-519d [58] miR-132 [46] miR-429 [104]

miR-143 [36] miR-520f [55] miR-139-5p [81] miR-449 [105]

miR-151 [37] miR-525-3p [55] miR-140-5p [82] miR-450a [106]

miR-155 [38] miR-527 [28] miR-141 [83] miR-520e [107]

miR-181b [39] miR-550a [57] miR-142 [46] miR-520c-3p [28]

miR-182 [29] miR-590-5p [59] miR-129-5p [17] miR-612 [108]

miR-183 [40] miR-615-5p [60] miR-126-3p [84] miR-637 [109]

miR-186 [40] miR-657 [61] miR-146a [32] miR-1271 [110]

miR-200 [41] miR-664 [52] miR-136 [46] miR-708 [111]

miR-205 [17] miR-1323 [62] miR-145 [85] miR-16-1 [70]

miR-207 [17] miR-148a [86] miR-129 [113]

miR-208-3p [112] miR-150 [27] miR-431 [114]

124 A. Cavallini



such as lipid and cholesterol biosynthesis, bilirubin and iron
metabolism, oxidative stress-response and hepatic
necroinflammation [119].

Although miR-122 expression decreases in HCC, Qi et al.
[120] reported elevated levels of serum miR-122 in HCC
patients, either in HBV-derived HCC or in HCV-derived
HCC patients as compared to patients without HCC.

It is important to underline that miR-122 levels are ele-
vated in inflammation by hepatitis C virus (HCV), because
there are four miR-122 binding sites in the HCV genome and
miR-122 may promote viral replication [121].

In HBV-related HCC patient, Meng et al. [122] found
high serum levels of miR-24-3p.

The serum miR-24-3p were significantly greater in HCC
patients than healthy controls and patients with chronic liver
disease (CLD) discriminating HCC from CLD patients.
Moreover, the combination of serum miR-24-3p and
a-fetoprotein (AFP) improves the diagnostic accuracy for
HCC prediction compared to each biomarker alone.

Tomimaru et al. described the usefulness of plasma
miRNA-21 as a biochemical marker for HCC by comparing
the miR-21 expression in patients with HCC and control
patients. The authors demonstrated the superiority of the
differentiating power of a single measurement of plasma
miRNA-21 compared with AFP and, in addition, the com-
bination of plasma miRNA-21 and AFP was significantly
stronger than AFP alone [123].

Some previous studies have observed that high levels of
serum miR-222 (62), -21, -122, -223 may also be helpful in
diagnosis or prognosis of patients with HCC and/or chronic
hepatitis [124, 125].

In a retrospective analysis conducted using sera from 105
HCC patients, 107 CLD patients, and 71 normal control
subjects, Qu et al. [126] found that serum levels of miR-16
and miR-199a were significantly lower in HCC than in CLD
patients or control subjects. Moreover, as a single marker,
miR-16 had the highest sensitivity for HCC and the com-
bination of miR-16, AFP, AFP-L3 %, and DCP yielded the
optimal combination of sensitivity (92.4 %) and specificity
(78.5 %) for HCC.

More recently, Tan et al. in a large cohort of participants
(261 HCC patients, 233 cirrhosis patients, and 173 healthy
controls) identified and validated 8 serum miRNAs
(miR-206, -141-3p, -433-3p, -1228-5p, -199a-5p, -122-5p, -
192-5p, and -26a-5p) in order to obtain a miRNA set that
provided high diagnostic accuracy for HCC [127]. The
authors were also able to differentiate HCC patients from
healthy and cirrhosis patients, as compared to previous
results obtained from other authors [126].

Wen et al. identified 8 miRNAs (miR-20a-5p, -25-3p, -
30a-5p, -92a-3p,-132-3p, -185-5p, -320a, and -324-3p), as
well as another 3 miRNAs (miR-192-5p, -21-5p, and -375)
in their previous paper [129] as potential markers for early

HCC detection [128]. However, after meta-analysis, only 4
miRNAs (miR-20a-5p, miR-320a, miR-324-3p, and
miR-375) could be used as preclinical biomarkers for HCC.

Lin et al. [130] in a recent paper assess the performance
of circulating miRNAs as biomarkers for early diagnosis in
HCC patients. A total of 1416 serum samples were divided
in five groups: inactive HBsAg carriers, patients with
chronic HBV infection, patients with HBV-related cirrhosis,
HCC patients, and healthy controls. Seven miRNAs
(miR-29a, -29c, -133a, -143, -145, -192, and -505) were
analyzed to detect HCC. This set of miRNAs was validated
in two cohorts contained about 500 patients. The seven
miRNAs had higher accuracy to identify individuals with
HCC from controls as compared to AFP levels. The authors
subsequently did a nested case-control study to assess the
capacity of this set of miRNAs to detect preclinical HCC in
patients with HBV. The results showed that the set of
miRNAs detected eight (30 %) cases of HCC at 12 months
before diagnosis, whereas AFP20 detected only two cases
(7 %). In conclusion the author argues that the selected
miRNAs could be valuable to detect preclinical HCC, pro-
viding patients with a chance of curative resection and
longer survival.

Though the miRNAs evaluated by Lin et al. offers
promising diagnostic accuracy and constitutes the proof of
concept that miRNA profiling could be an accepted strategy
for early diagnosis, Forner believes that further studies are
required before its acceptance into surveillance programmes
for HCC [131].

Recently, Li et al. have identified circulating miRNAs as
novel potential biomarkers for HCC detection by a systematic
review and meta-analysis. In the 17 included studies, three
circulating miRNAs (miR-21, miR-122, and miR-223) were
repeatedly reported three times or more in both HCC patients
versus healthy controls and versus other hepatitis or cirrhosis
patients. Among them, miR-21 seems to have a highest level
of diagnostic efficiency for detection of HCC [132].

Although some miRNAs seem to have greater specificity
and sensitivity than traditional diagnostic tests for HCC,
additional studies are underway to evaluate the optimal
biomarkers.

7.5 Therapies and miRNAs

The treatment of an HCC patient is dependent on several
factors, such as stage, size, and grade of the tumor, as well as
there are large gaps in our understanding on the molecular
mechanisms involved in the pathogenesis of HCC. The
elucidation of these diverse mechanisms could help to
develop efficient treatment strategies.

In this contest, the miRNAs can be successfully employed
to gain further biological and mechanistic understanding of
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metabolism-related HCC, discovering potential biomarkers
and identifying novel drug targets.

A number of studies have identified deregulation of
miRNA levels during therapy for HCC (Fig. 7.2) and to
date, the research has demonstrated that miRNAs are linked
to different therapy approaches, such as percutaneous abla-
tion, transcatheter arterial chemoembolization (TACE),
conventional chemotherapy, and radiotherapy.

7.5.1 Surgery Therapy

Among different surgery therapies, liver transplantation
(LT) remains the best option for patients with HCC even if
there is a limited supply of good-quality deceased donor
organs. In the allograft transplantation (ALT), the rejection of
the organ transplant is a life-threatening complication, while
in orthotopic liver transplantation (OLT), the tumor recur-
rence is main potential cause for the poor outcome. Since
there are no established molecular-based standards regarding
the preoperative evaluation and selection of HCC patients for
LT, Barry et al. [133] have studied the miRNA profile in the
formalin-fixed paraffin embedded (FFPE) samples of 40
patients with recurrent HCC within 3 years of transplant and
29 patients without recurrent disease within 3 years to define
a miRNA biomarker that reliably distinguishes patients with
and without HCC recurrence after liver transplant.

The authors found 67 miRNAs distinguishing patients
with and without HCC recurrence after LT. However, they
do not propose these miRNAs as biomarkers in clinical
adjunct to Milan criteria and suggested further study on this
topic.

Han et al. [134] have identified recurrent-related miRNAs
in HCC following LT.

The authors suggest a different miRNA expression pat-
tern between HCC samples of patients with recurrence and
those with nonrecurrence, proposing six miRNAs (miR-19a,
-886-5p, -126, -223, -24, and -147) as biomarkers for
prognosis of HCC patients following OLT. Considering
Milan criteria, the six miRNAs were also able to predict the
patients’ OS with 86.7 % of sensitivity and 82.3 % of
specificity. Moreover, the metabolic pathway analysis
showed important roles of these miRNAs in cell cycle, dif-
ferentiation, apoptosis, cell migration, angiogenesis and
MAPK signaling pathway.

In animal LT model, murine ALT showed miR-146a, -
15b, -223, -23a, -27a, -34a, and -451 up-regulated as com-
pared to the expression observed in the syngeneic grafts. In
contrast, miR-101a, -101b, and -148a were down-regulated
[135].

Outcome after LT is often compromised as a result of
various causes such as inadequate graft selection and con-
sequent delayed graft function, recurrence of disease,
ischemic cholangiopathy, and usage of immunosuppressive

Fig. 7.2 List of miRNAs up-
and down-regulated after therapy
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drugs [136]. Therefore, the need for noninvasive biomarkers
to monitor graft quality before, during, and after LT remains.

Farid et al. [137] have analyzed three miRNAs (miR-122,
-148a and -194) in serum samples from healthy controls and
LT recipients and peri-transplant liver allograft biopsy
samples.

The miR-122 and -148a expression in liver tissue was
significantly reduced with prolonged graft warm ischemia
times, while the serum levels of three miRNAs were elevated
in patients with liver injury and positively correlated with
aminotransferase levels.

Since the ischemic-type biliary lesions (ITBLs) are the
second most common cause of graft loss after LT, Verho-
even et al. [138] have studied miRNA profile in perfusates
(graft preservation solutions) and in liver biopsies collected
at the end of cold ischemia. The authors demonstrated that
cholangiocyte-derived miRNAs (miR-during graft preser-
vation) is predictive of the development of ITBL after LT.

In addition, Lankisch et al. [139] found that the concen-
trations of miRNA- 517a, -892a, and -106a in bile were
increased in patients with ITBLs versus patients with anas-
tomotic strictures or bile duct stones.

Operational tolerance (OT) in liver transplant patients
occurs much more frequently than OT of other transplanted
organs, however, the rate of OT varies with a range from 5 to
15 % of the LT [140].

The phenomenon of spontaneous immune tolerance
without immunosuppressant was first reported by Qian et al.
[141] in murine model.

In a recent paper and in an animal model, Wang et al.
[142] found that increased levels of murine miR-142-3p, -
155 and -152 down-regulated the transcription of IL-6,
TGF-Beta-Activated Kinase 1-Binding Protein 2 (TAB 2)
and Ca2+/calmodulin-dependent protein kinase (CaMK II)
mRNAs involved in tolerance induction.

Another surgery therapy is liver resection. Liver resection
is limited to HCC patients with one or two small (5 cm or
less) tumors confined to the liver with no invasion of the
blood vessels. However, only 5–15 % of HCC patients are
currently eligible for this surgical intervention with high rate
of metastasis and recurrence. Yang et al. [143] examined the
miRNA expression profiling from HCC patients who have
had surgical resection to identify recurrence-related miR-
NAs, using a microarray technique. They found that 32
miRNAs are differentially expressed in tumors of HCC
patients with different postoperative survival.

A major obstacle for the treatment for HCC is the high
frequency of tumor recurrence even after curative resection
and liver transplantation that limits overall survival [144].

Causes of deaths after LT include recurrent HCC in 12 %
of patients, recurrent HCV in 4.5 %, whereas 19.5 % of

patients died from causes that are to HCV- or HCC-
unrelated.

The optimal treatment strategy for patients with recurrent
HCC after LT remains unclear, as well as specific
biomarkers at the time of surgery that reliably define patients
with recurrent HCC after LT have not been identified.
Unlike conventional protein-based cancer biomarkers, such
as carcinoembryonic antigen (CEA) and a-fetoprotein
(AFP), circulating miRNAs packed in microvesicles, called
exosomes, possibly have biological and physiological
functions in cancer progression, as well as serve as simple
biomarkers [145].

Sugimachi et al. found that miR-718 showed significantly
different expression in the serum exosomes of HCC cases
with recurrence after LT compared with those without
recurrence.

Decreased expression of miR-718 was associated with
HCC tumor aggressiveness and Homeobox Protein Hox-B8
(HOXB8) seem to be the potential target gene of miR-718,
and miR-178 up-regulation was associated with poor prog-
nosis [146].

In acute rejection of LT, Hu et al. [147] found that serum
miR-122, -192, and -146a was significantly up-regulated in
an animal model, supporting the potential use of miRNAs as
noninvasive markers for monitoring graft function since they
are noninvasive, stable and easily detected in the blood.

In addition, Wei et al. [148] showed a differential
expression of miRNAs in acute rejection between allogeneic
and syngeneic solid liver grafts. Of the 226 rats mature
miRNAs examined, 46 miRNAs were significantly changed
in allogeneic liver grafts as compared to syngeneic liver
grafts with increase of miR-204, -210 and -142-3p, and
decrease expression of let-7b, -122, -200a and -31. These
results demonstrate that miRNAs differentially expressed in
liver allografts during acute rejection may play important
roles in liver dysfunction post-transplant. Further, the same
authors suggest that, the miRNAs, such as miR-142-3p that
are expressed in all organ grafts, were associated with
lymphocyte alloimmunity during rejection because a major
pathological feature of acute rejection after OLT is graft
infiltrating lymphocytes (GILs).

Some studies have also proposed the evaluation of the
miRNA expression, in association with other methods, such
as AST-to-platelet ratio index (APRI), fibroSURE and
FibroSCAN, in disease recurrence in the post-liver
transplant.

Since hepatitis C infection in immunosuppressed liver
transplant recipients is characterized by an accelerated
fibrogenesis and faster decompensation of allograft cirrhosis,
a set of 9 miRNA signatures associated with progression of
fibrosis were differentially expressed and have been
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recognized [149]. Three were up-regulated (miR-155, -34a,
and -222) and six were down-regulated (miR-23b, -361, -
455, -30b, -30c, and -27b).

Joshi et al. [150] analyze liver miRNA expression in
carefully matched cohorts of individuals who previously had
undergone transplantation for HCV-related liver disease,
comparing those with slow versus rapid fibrosis progression,
individuals with acute cellular rejection, and control subjects
without viral hepatitis. The miRNA expression patterns were
seen for all 4 groups.

The miRNA analysis showed increased intra-graft
expression of miRNA-146a, -19a, -20a, and let-7e in slow
progressors versus fast progressors. In addition, miRNA-19a
and miRNA-20a were also specifically detected in the serum
of slow progressors. Changes in the miRNA expression
regulating fibrogenic, apoptotic, inflammatory, and angio-
genic pathways were associated with fast HCV progression.
Moreover, the comparison between individuals with rapid
fibrosis progression and subjects with acute rejection also
revealed different miRNA expression with changes in
insulin-like growth factor 1 receptor (IGF-1R) expression and
pro-angiogenic pathways associated with vascular endothe-
lial growth factor A (VEGFA) expression, respectively.

Also miRNA expression profiles related to HCV infection
and antiviral therapy in adult liver transplant recipients
revealed distinct HCV-related miRNA expression, with
significant dysregulation of those miRNAs potentially tar-
geting mRNAs of HCV receptors [151].

In conclusion, Amrouche et al. [152] argue that, although
the miRNAs still need to be validated in larger patient
cohorts, they are not far from being used in transplant clinical
practice as usefulness biomarkers. Ongoing multicenter trials
should help to further define the clinical utility of miRNA
profiles as biomarkers of allograft status and outcome.

7.5.2 Radiotherapy

While the curative treatment for HCC is surgical resection
and liver transplantation, most patients are in advanced
stage, and lose the chance of surgery and other palliative
treatments, such as radiotherapy, transarterial embolization,
and chemotherapy, are used.

Since the activation of the PI3 K/Akt pathway is associ-
ated with radioresistance, Liu et al. have investigated whether
the PI3 K inhibitor, BKM120, can enhance the radiosensiti-
zation of HCC cell lines (Huh7 and BNL). The results
showed that BKM120 mediated its effect on HCC cells by
inhibiting radiation-activated PI3 K/ Akt signals [153].

More recently, Zhang et al. [154] have investigated on the
role of miR-20a in HCC cell line subjected to radiation and
they showed that miR-20a induced HCC cell radioresistance
by activating the PTEN/PI3 K/Akt pathway.

7.5.3 Transcatheter Arterial
Chemoembolization (TACE)

Zhan et al. [155] report that serum miR-210 may represent a
novel biomarker for predicting efficacy of TACE and overall
survival for patients with HCC.

El-Halawany et al. described that in HCC patients treated
with TACE using doxorubicin and cisplatin regimen, iden-
tified a panel of 12 miRNAs that were significantly dereg-
ulated in patients’ group of responders compared to
nonresponders. Therefore, profiling of these miRNAs in
HCC patients prior to treatment may serve as a predictive
tool of patients’ prognosis [156].

7.5.4 Drug Treatment and miRNAs

Chemotherapy, together with surgery and radiotherapy, has
been a main approach for cancer treatment and it has been
used as first-line therapy. However, in about 90 % of
unsuccessful chemotherapy treatments in advanced cancer
patients are present the drug resistance.

The mechanisms of chemotherapeutic drug resistance still
remain largely unknown despite extensive investigation and
miRNAs could be involved.

Among chemotherapy agents, epirubicin, cisplatin,
5-fluorouracil (5-FU), etoposide, interferon-a (IFN-a), dox-
orubicin, and their combinations are used in conventional
chemotherapy for HCC.

Tomimaru et al. [157] report that the miR-21 in HCC cell
lines and clinical HCC samples is a significant modulator of
the anti-tumor effect of IFN-a and 5-FU because rend HCC
cells sensitive to these drugs.

miR-146a seems to be responsible of the sensitivity of
HCC cells to the cytotoxic effects of IFN-a through
SMAD4, protein involved in signal transduction of the
Transforming growth factor-beta (TGFb) superfamily [158].

More recently, Ma et al. demonstrated that let-7b binds
and represses B-cell lymphoma-extra large (Bcl-xl) mRNA,
that is an anti-apoptotic member of the (Bcl-2) family, This
phenomenon leads to increased sensitivity of the HCC cells
to 5-FU treatment [159].

HCC cells are more resistant to cisplatin, one of the
commonly used chemotherapeutic drugs for the HCC treat-
ment, when miR-182 increases during therapy [160].

Also miR 133a and miR 326 contribute to increase the
5-FU and cisplatin sensitivity in HCC cells having as target
Bcl-xl, anti-apoptotic protein [161].

Prior to the arrival of sorafenib, doxorubicin was rou-
tinely used as a single drug for advanced HCC, but has
shown inefficacy, with a response rate of about 15–20 %.

Evaluating the cell resistance to doxorubicin, Fornari’s
group showed that miR-122, through down-regulation of
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cyclin G1, can trigger apoptosis and increase sensitivity of
HCC cell lines to doxorubicin [162].

More recently, the same authors report that in HCC cell
lines the miR-199a-3p modules the cell cycle and invasion
capability by mTOR and c-Met inhibition thus responding to
doxorubicin treatment [163].

By sequencing analysis, Zhang et al. found a total of 269
known miRNAs significantly differentially expressed, of
which 23 were up-regulated and 246 were down-regulated,
in HCC cell lines treated with doxorubicin, indicating that
part of these miRNAs might be involved in the development
of doxorubicin resistance [164].

Since HCC is frequently resistant to conventional
chemotherapy, clinical development of novel therapeutic
agents against HCC has begun in earnest. Thus far, a series
of adjuvant therapies for HCC have emerged, including
small molecular target agents, monocolonal antibodies,
multikinase inhibithors. Some agents such as sorafenib have
shown an advantage in prolonging the overall survival time,
and has been approved by Food and Drug Administration for
the treatment of advanced HCC.

Using miRNA microarray, Zhou et al. found that sor-
afenib alter the expression of 14 miRNAs in HCC cells and
among them, miR-1274a could be significantly up-regulated
after adding sorafenib and greatly reduce ADAM metal-
lopeptidase domain 9 (ADAM9) expression. ADAM9, pre-
sent in HCC tissue, claves heparin-binding epidermal growth
factor [165].

Bai et al. [166] demonstrated that miR-122, abundantly
expressed in hepatocytes but barely detectable in human
HCC cells, inhibited tumorigenic properties of
miR-122-expressing HCC cells and sensitized these cells to
sorafenib.

Patients with lower miR-34a expression had significantly
poorer overall survival because miR-34a represses the Bcl-2
mRNA translation, an anti-apoptotic factor. The restoration
of miR-34a reduced cell viability, promoted cell apoptosis
and potentiated sorafenib-induced apoptosis [167].

On the contrary, up-regulation of miR-182 increases sor-
afenib resistance and enhances HCC tumorigenicity [168].

Secretory miR-423-5p was up-regulated in patients trea-
ted with sorafenib promoting autophagy. The increase of this
miRNA was also correlated to positive response to ther-
apy in 75 % of patients that showed partial remission or
stable disease after 6 months from the beginning of therapy
[169].

Therefore, miR-423-5p could predict the response to
sorafenib therapy in patients with HCC [170].

Moreover, it is possible to evaluate miRNA expression
patterns from HCC tissue biopsies as potential biomarkers in
patients under sorafenib treatment [171].

Today, the current therapies for HCC are challenged and
new molecular therapies for HCC, including erlotinib,

cetuximab, bevacizumab, and sunitinib, have been tested in
clinical trials for HCC. In addition, primary and/or acquired
resistance in the tumor could be overcome by novel com-
binational therapies. RNA interference-mediated gene inac-
tivation, alone or in combination with other current
therapies, provides novel promising therapeutics that can
improve cure rate and overcome resistance mechanisms to
conventional therapeutics.

The expression of miR-146a is down-regulated in HCC
tissues compared to the adjacent noncancerous hepatic tis-
sues and Huang et al. [172] explore the effect of miR-146a
mimic, similar endogenous mature miR-146a, with and
without cetuximab in an in vitro model. The miR-146a
mimic alone decelerated the cell growth in all HCC cell lines
tested, but when it was combined with cetuximab, a stron-
gest effect was obtained (synergistic effect). Therefore, the
authors conclude that the application of miR-146a mimic
might thus be a promising approach to HCC therapies in the
future [173].

To investigate whether the cooperative activity of erloti-
nib and miR-34a has utility in HCC, Zhao et al. [174] probed
this combination in cell models of HCC. Liver cancer was
chosen as test platform because erlotinib is moderately
effective in patients with advanced liver tumor as a single
agent and failed to prolong overall survival and
time-to-progression in combination with sorafenib. More-
over, miR-34 levels are low or undetectable in liver cancer
cells. Data showed a strong synergy between erlotinib and
miR-34a mimic (also called MRX34) in all HCC cell lines
tested and an enhanced efficacy with erlotinib-miR-34a
combination where erlotinib alone was insufficient.

Moreover, since MRX34, a liposomal nanoparticle loa-
ded with synthetic miR-34a mimics, has recently a phase 1
clinical trial [175], clinical testing of the erlotinib-miR-34a
combination could be quickly initiated.

7.5.5 miRNAmimics and Anti-miRNAs as Drugs

Generally, the therapeutic application of miRNAs involves
two strategies. These include inhibition strategy and
replacement strategy.

miRNA replacement, involves the reintroduction of a
tumor suppressor miRNA mimic to restore a
loss-of-function. However, to date, few tumor suppressor
miRNAs have been discovered for which the proof of con-
cept of miRNA replacement therapy has been demonstrated
in preclinical animal models of cancer.

The inhibitory approach is more commonly accepted and
conceptually follows rules that also apply to small molecule
inhibitors and short interfering RNAs (siRNAs). These
miRNA antagonists are oligonucleotides with sequences
complementary to the endogenous miRNA (called
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anti-miRNA antisense oligomer or AMO). The aim is to
inhibit oncogenic miRNAs, generally increased in tumor
tissues, using these miRNA antagonists [176, 177].

Among the various forms of AMOs, antagomiR that has
its end conjugated with a cholesterol moiety has demon-
strated most impressive effectiveness against target miRNAs,
intracellular stability, particularly for in vivo applications
[178].

However, modification to stabilize AMOs to nuclease
degradation and improve affinity for target miRNAs are
necessary for their miRNA-antagonizing activities in cell
culture and animals.

There have been several generations of AMO designs.
The first generation utilized 2′-O-Methyl RNA nucleotides
with phosphorothioate internucleotide linkages positioned at
both ends of AMO to prevent exonuclease attack. Another
chemical manipulation is 2′-sugar-AMOs. A recent study
discovered a compound, N,N-diethyl-4-(4-
nitronaphthalen-1-ylazo)-phenylamine (ZEN), that blocked
exonuclease degradation and created a new generation called
ZEN-AMO with an improved effectiveness [179].

Delivery of AMOs requires in vitro transfection or in vivo
uptake into target cells and this appears to be one of the most
important factors influencing the activity of the miRNA.

At present, there are difficulties with conventional meth-
ods of transfection that result in low delivery efficiency. In
order to increase the effectiveness of AMO delivery a
functionalized gold nanoparticles was proposed. The gold
nanoparticles increase delivery efficiency by conjugating
with a cargo DNA that anneals to the AMO using comple-
mentarity. Another in vivo method for delivery supported by
results in mice is the injection of AMOs intravenously or
intratumoral tissue, as well as viral vector-based delivery or
exosomes [177].

In a HCC mouse model, strategies for miRNA replace-
ment therapies have been developed using miR-26a, miR-
122, and miR-124 [79, 180, 181].

In contrast, inhibition of miR-221 lengthened survival,
reduced the nodule number and retarded tumor development
[182].

Using mouse Myc-induced liver tumors, Kota et al.
identified that compared with other miRNAs, miR-26a
demonstrated the most notable change in expression. Fur-
thermore, the restoration of miR-26a expression using an
adenoviral vector (AAV) delivery system in the same model
inhibited proliferation and promoted cancer cell apoptosis,
but did not induce apoptosis in the nonmalignant hepato-
cytes [183].

As inhibition strategy, a study by Park et al. [184]
revealed that the intravenous administration of a
cholesterol-modified isoform of anti-miR-221 oligonu-
cleotide, into an orthotopic mouse model of liver cancer,

reduced tumor cell proliferation and increased markers of
apoptosis.

This suggested that the targeted inhibition of miRNA
contributed to the successful treatment of HCC.

An in vitro study by Ma et al. revealed that the
up-regulated expression of miR-122 in metastatic Mahlavu
and SK-HEP cells inhibited intrahepatic metastasis, and led
to a decreased rate of tumorigenesis and angiogenesis [185].

Therefore, the development of miRNA-based therapies
could be of potential value for future HCC treatment
regimens.

The biological function of miR-99a deregulation in HCC
remains unknown and Li et al. [75] inhibited significantly
tumor growth and reduced the AFP level in hepatocellular
carcinoma-bearing nude mice by intratumoral injection of
cholesterol-conjugated miR-99a mimics.

On the contrary, miRNA-21 has been shown to be
up-regulated in HCC and Wagenaar et al. have developed
potent and specific single-stranded oligonucleotide inhibitors
of miR-21 (anti-miRNAs) and used them to interrogate
dependency on miR-21 in a panel of liver cancer cell lines.
Robust induction of caspase activity, apoptosis, and necrosis
was noted in anti-miR-21-treated HCC cells. Furthermore,
ablation of miR-21 activity resulted in inhibition of HCC cell
migration and suppression of clonogenic growth [186].

In conclusion, the miRNA revolution has provided the
industry with multiple new opportunities for the identifica-
tion of new drug targets. These revelations, coupled with
recent advances in anti-miR chemistries, suggest that the
regulation of miRNAs may be the next innovation in phar-
maceutical research. [187]
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8.1 Introduction

Liver cancer, mainly hepatocellular carcinoma (HCC), is the
second leading cause of cancer death worldwide, and its
prognosis is still dismal (5-year overall survival rate gener-
ally below 15 %) (GLOBOCAN 2012, globocan.iarc.fr). In
the United States, the incidence of HCC has significantly
increased over the past 30 years and it is currently the fastest
rising cause of cancer-related mortality [1]. In parallel, the
advent of high-throughput molecular technologies in bio-
medicine has opened new paths in oncology research. For
instance, the measurement of biomarkers, defined as an
objectively measured characteristic that describes a normal
or abnormal biological state in an organism [2], may allow to
measure the risk of developing cancer in a specific tissue or,
alternatively, may measure risk of cancer progression or
potential response to therapy. A framework for the devel-
opment of biomarkers has been described from biomarker
discovery to their validation and clinical implementation [3].
In recent years, such efforts have been encouraged, for
example, by the precision medicine initiative, that includes
an investment of $70 million to the National Cancer Institute
(NCI), to “scale up efforts to identify genomic drivers in
cancer and apply that knowledge in the development of more
effective approaches to cancer treatment” [4].

However, these novel approaches come with new chal-
lenges, such as high biostatistical/computational require-
ments, and the need for novel validation strategies due to the
high number of candidates generated. One author has aptly
summarized these novel challenges by coining the expression
“$1000 genomic test [but] $100,000 genomic analysis”
emphasizing the computational challenges at analyzing and
making sense of such high level data [5]. Despite an increased
understanding of the carcinogenic steps leading to the HCC
development, there remains a significant dearth in character-
izing non-HCC clinical factors associated withHCConset and
prognosis [6]. Herein, we will provide a broad overview of
non-HCC clinical and molecular factors associated with its
development and outcome.
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8.2 Factors Associated
with the Development of a First HCC

Even in subjects with full-blown cirrhosis, the risk of HCC
development varies widely from 2.4 % in 7 years to 21 % in
5 years depending on different factors including etiology of
liver disease [7]. Clinical practice guidelines [8, 9] recom-
mend HCC surveillance with abdominal ultrasound every
6 months in at risk populations. Recent studies further
suggest how surveillance may improve HCC outcomes [10].
However, implementation is still a major issue with only
12 % of hepatitis C virus (HCV) cirrhotics having routine
surveillance in one US Veterans Affairs series, and only 2 %
of HCV patients who developed HCC had previous appro-
priate surveillance [11, 12]. In addition to measures aimed at
improving implementation of surveillance programs, the
development of additional risk biomarkers, less operator-
dependent, could potentially increase success rates of
surveillance in certain areas.

8.2.1 Clinical Prognostic Factors

A number of clinical-based systems have been proposed to
assess risk of HCC development in the setting of liver disease
(Table 8.1). Most of them include variables related to the
underlying liver dysfunction and/or the degree of portal
hypertension. More recently, two factors have emerged as
significantly associated with hepatocarcinogenesis: obesity
and insulin resistance. There is increasing evidence of an
association between obesity and multiple types of cancer,
including liver cancer. For instance, in a large cohort of more
than 900,000 US adults, body mass index (BMI) was associ-
ated with death from multiple cancers and a BMI over
40 kg/m2 led to an increase of cancer death rates of 52–62 %
[13]. As a result, the American Society of Clinical Oncology
stated that “Obesity is amajor under-recognized contributor to
the nation’s cancer toll and is quickly overtaking tobacco as
the leading preventable cause of cancer” [14]. In this study,
liver cancer was associated with the highest increase in cancer

Table 8.1 Examples of clinical risk scores associated with development of HCC

Risk score Etiology of liver disease Cirrhosis (%) Variables Reference

ADRESS-HCC HCV (46 %)
Alcohol (18 %)
NASH (18 %)
HBV (3 %)

100 % Age, diabetes, race, etiology of cirrhosis, sex, and
severity of liver dysfunction (Child-Pugh score)

[78]

Velazquez et al. Alcohol (59 %)
HCV (29 %)
HBV (7.5 %)

100 % Age, anti-HCV positive, prothrombin time and
platelet count

[79]

UM regression
model

HCV (47 %)
Cryptogenic (19 %)
Alcohol (15 %)

100 % AFP and gender [80]

GAG-HCC HBV 15 % Age, gender, HBV DNA, core promoter mutations,
cirrhosis

[81]

CU-HCC HBV 38 % Age, albumin, bilirubin, HBV DNA, and cirrhosis [82]

LSM-HCC HBV 31 % Liver stiffness, age, albumin, HBV DNA [83]

REACH-B HBV 0 % discovery cohort,
18 % validation cohort

Sex, age, ALT, HBeAg status, and serum
HBV DNA level

[23]

Risk index HCV after SVR 10 % Age, AST, platelet count [29]

scoreHCC HCV after SVR 30 % Age, AFP level, low platelets and advanced fibrosis [27]

Chang et al. HCV after therapy 45 % fibrosis stage 3–4 Age, male sex, AFP level, low platelet, advanced
fibrosis, HCV genotype 1b, and non SVR

[84]

El-Serag et al. HCV 100 % AFP, ALT, platelets, interaction terms, and age [85]

HALT-C
model

HCV 41 % Age, race, alkaline phosphatase, esophageal varices,
ever smoked, and platelet count

[25]

REVEAL-HCV HCV 4 % Age, ALT, AST/ALT ratio, HCV RNA, cirrhosis,
and HCV genotype

[86]

Liver stiffness
measurement

HBV 50 % Liver stiffness measurement [87]

FIB-4 HBV 10 % FIB-4 (AST, ALT, platelets, age) [88]

BCLC, Barcelona clinic liver cancer; CLIP, Cancer of the liver Italian program; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HCV,
hepatitis C virus; JIS, Japan Integrated Staging score; MELD, model for end-stage liver disease; MELD-Na, model for end-stage liver
disease-sodium, SLICER, Singapore Liver Cancer Recurrence; UM, University of Michigan
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death inmen according toBMI [13].A systematic reviewof 11
cohort studies observed that the risk of developing HCC was
17 % higher in overweight and 89 % higher in obese indi-
viduals. It remained unclear whether this was mediated
through nonalcoholic fatty liver disease (NAFLD) or through
other obesity-specific mechanisms such as activation of
pro-oncogenic pathways in a context of low-grade inflam-
mation [15]. Insulin resistance and type 2 diabetes (T2D) have
also been associated with cancer development, in particular
HCC. For instance, in a systematic review including 13 cohort
studies, diabetes was associated with the development of HCC
(pooled risk ratio 2.5) independent of alcohol use or viral
hepatitis [16]. In another study, diabetes was associated with a
2–3 fold increase in HCC risk, regardless of the presence of
other major risk factors although the effect of NAFLDwas not
adequately addressed in this study [17]. A proposed mecha-
nistic link includes insulin resistance and hyperinsulinemia
leading to increased levels of Insulin-like growth factor 1 and
subsequent signaling inducing cellular proliferation and
apoptosis inhibition [18]. Interestingly, the association
between diabetes and HCC has been called into question by a
recent systematic review of all published meta-analyses,
where T2D was linked to intrahepatic cholangiocarcinoma
and three other cancers but not HCC. Authors used stringent
quality criteria for study selection, allowing the inclusion of
only 6/27 (22 %) meta-analyses and potentially limiting the
generalization of their findings [19].

The degree of liver fibrosis has also been repeatedly
associated with the development of HCC across all etiologies
of liver disease. HCC development in cirrhosis is a decade
long stepwise process in the setting of an inflammatory,
fibrogenic, and carcinogenic tissue microenvironment in the
liver [20]. The occurrence of HCC in the absence of cirrhosis
is well described in hepatitis B virus (HBV) due to direct
oncogenic viral mechanisms including DNA integration of
HBV components. However, in recent years, a growing
number of reports have underlined that HCC may also occur
without cirrhosis in patients with NAFLD. For instance a
recent large cohort study including 1500 Veterans with HCC
confirmed that patients with NAFLD or metabolic syndrome
had more than five times the risk of developing HCC in the
absence of cirrhosis compared with HCV-related HCC [21].
This is even more worrisome in the context of the rapidly
increasing NAFLD/obesity epidemic. A recent estimate
suggests that NAFLD represents the third most prevalent
etiology of HCC in the United States [22]. With a 9 % annual
increase in NAFLD-related HCC cases in the US, it is likely
that NAFLD may shortly overtake HCV and alcohol as the
main etiologic factors for HCC development [22].

Multiple other clinical factors have been found to be
associated with the development of HCC and have been
integrated into a wide range of clinical scores, mostly in the
context of hepatitis-related HCC (Table 8.1). In patients with

HBV, age, viral parameters (e.g., high HBV DNA, core
promoter mutations, HBeAg status), degree of liver dys-
function and inflammation have been consistently shown to
be associated with risk of HCC development (Table 8.1).
A study enrolling 3584 HBV Asian subjects without cirrhosis
identified sex, age, ALT, HBeAg status, and serum
HBV DNA levels as factors associated with HCC develop-
ment, and developed a 17-point risk score predicting HCC
risk at 3, 5, and 10 years with a 5-year probability of
developing HCC ranging from 0 to 47 % [23]. However most
of these studies were derived and validated in Asian popu-
lations, where the predominant HBV genotypes are B and C.
These risk scores have been shown to underperform in
Caucasians, particularly in subjects treated with antivirals
[24]. These findings underscore the need for better tools to
refine HCC risk prediction, particularly in subjects receiving
antiviral therapy. In HCV patients, variables, such as age,
portal hypertension, and presence of cirrhosis and ALT levels
have all been shown to be significantly associated with HCC
risk (Table 8.1). Results from the large Hepatitis C Antiviral
Long-Term Treatment Against Cirrhosis (HALT-C) trial that
enrolled 1005 subjects reported age, race, platelet count,
serum alkaline phosphatase, esophageal varices, and smok-
ing as significantly associated with HCC development [25].
The impact of direct-acting antiviral (DAA) in the epidemi-
ology of HCV-related HCC is still to be determined, but it
will likely significantly reduce the burden of HCV-related
HCC in Western populations. A controversial area is the risk
of HCC development in HCV patients that cleared the virus.
Different attempts have failed to identify clear risk factors in
these patients [26–30] although one proposal, the scoreHCC,
found that old age, high a-fetoprotein (AFP), low platelet
counts and fibrotic stage was associated with development of
HCC [27]. In addition, whether the absolute and relative
reduction of HCC risk seen after interferon-based therapy for
HCC will be reproduced after SVR post non-interferon-based
therapy is still unknown.

Although numerous clinical factors have been shown to
be associated with risk of development of HCC, especially in
HCV and HBV-related HCC, the rapidly shifting epidemi-
ological landscape of HCC development has underlined the
important limitations inherent to this approach. As discussed
below, there is a hope that assessing molecular-based
biomarkers will allow cross-etiology improved risk stratifi-
cation and ultimately better selection of high-risk patients for
chemoprevention and surveillance trials.

8.2.2 Molecular Prognostic Factors

A biomarker is an objectively measured characteristic that
describes a normal or abnormal biological state in an
organism by analyzing biomolecules, such as DNA, RNA,
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protein, peptide, or biomolecule chemical modifications [2,
31]. More specifically in terms of clinical utility, a cancer
biomarker may measure the risk of developing cancer in a
specific tissue or, alternatively, may measure risk of cancer
progression or potential response to therapy. Theoretically,
any type of biomolecule can be used as a biomarker although
advantages and limitations are associated with each type of
biomarker. DNA structural alterations such as somatic gene
mutations are relatively easy to test because of stability of
DNA molecule and the nature of the measurement; however,
assessment of the consequence of each individual mutation
remains challenging. RNA expression profiling has been
most extensively investigated to identify signatures able to
capture the biological state of a given specimen [32, 33].
However, measures can be largely affected by experimental
variation such as differences in assay protocol and platform.
Although, gene-expression signatures of cancer risk devel-
opment are not yet currently available in the clinic, there are
a few examples of gene-expression signature prognostic tests
for breast cancer recurrence, such as Mammaprint, based on
the measurement of 70 genes to predict breast cancer
recurrence after chemotherapy [34] or the Oncotype Dx
Breast Cancer Assay measuring 21 genes predicting breast
cancer recurrence in women with invasive breast cancer [35,
36]. The 21-gene expression assay for breast cancer was
recently validated in a large prospective trial of more than
10,000 women with breast cancer identifying a favorable
risk subgroup of patients with very low 5-year recurrence
rates with endocrine therapy alone [37]. Similar tests are also
available for colon and prostate cancer, all of which analyze
gene expression in tumor tissue [38, 39]. In fact, overlap of
signature genes defined in independent datasets is very small
even if the signatures are identified from a similar study
design [33]. Despite the low concordance of signature gene
membership, one interesting property of gene-expression
signatures is their ability to capture similar biological char-
acteristics across patient cohorts, assay technologies, or even
species [40]. In fact, poor prognosis predictions made by
multiple independent signatures in HCC generally overlapped
despite distinct selected genes [41]. Similarly, in breast can-
cer, one report found that four out of five gene expression
prognostic profiles showed significant agreement in outcome
prediction despite little overlap in gene identity [42].

A number of molecular biomarkers have been developed
predicting the risk of a first HCC in subjects with liver
disease (Table 8.2). A 186-gene expression signature,
derived from nontumoral liver tissues of subjects undergoing
hepatic resection for HCC, has proven prognostic not only
for HCC recurrence but also for liver disease progression,
HCC development and overall survival in subjects with early
stage HCV cirrhosis [43–45]. The signature was present in
the liver of rodent models of fibrosis/cirrhosis-driven HCC,
and the poor prognosis pattern of the signature was reversed

in association with the HCC chemopreventive effect of an
FDA-approved EGFR inhibitor, erlotinib [46], which is now
being tested in a phase one trial with the gene signature as a
companion biomarker (ClinicalTrials.gov, NCT02273362).
Similarly, liver tissue-derived transcriptome signatures have
been associated with multicentric HCC development and late
recurrence after curative HCC treatment attributable to de
novo HCC development [47–49]. A prognostic index
including a 122-gene stellate cell gene signature, derived by
comparing multiple tissue transcriptomic profiles was asso-
ciated with multiple clinical outcomes, including develop-
ment of HCC and liver disease progression [50].

Several germline single nucleotide polymorphisms
(SNP) were reported to be associated with increased HCC
risk and other liver disease-related outcomes (Table 8.2)
although few of them are replicated in independent patient
series/cohorts [51]. One of the most studied SNP associated
with HCC in this setting is a variant in patatin-like phos-
pholipase domain-containing 3 (PNPLA3). A number of
reports have underlined that the PNPLA3 I148 M variant
leads to an accumulation of lipids in hepatocytes through
increased triglyceride lipogenesis and impaired hydrolysis
[52]. One systematic review of individual data of European
patients showed that a variant (rs738409 C > G, encoding for
I148 M) in the PNPLA3 gene was strongly associated with
the development of HCC, in particular in the setting of
alcoholic liver disease although the association was also
significant for HCV-related HCC [53]. Another systematic
review confirmed the known association of PNPLA3 poly-
morphism with fibrosis severity but also identified an asso-
ciation with an increased risk of HCC although the
association was restricted to NAFLD or alcohol-related cir-
rhosis in subgroup analysis and not other etiologies of cir-
rhosis [54]. Another SNP, the EGF 61*G allele was
associated with HCC risk in a prospective cohort of patients
with HCV-related advanced fibrosis (39 % cirrhotic) [55,
56]. Despite diverse allele frequency across patient popula-
tions, association between the EGF genotype and HCC risk
remains significant and independent of patient race [57].
Interestingly, EGF ranks among the top up-regulated genes in
the 186-gene signature associated with HCC risk in early
stage HCV-cirrhosis [43, 45]. Multiple genome wide asso-
ciation studies (GWAS) have identified other SNPs associ-
ated with HCC risk, in particular in the context of viral
hepatitis. One intronic SNP in the DEPDC5 locus was
associated with HCC risk in HCV-infected patients even after
adjustment for other risk factors [58]. The key role of the
immune response in the development of HCC was underlined
by the finding that three susceptibility loci within the class
II MHC complex were associated with HCC in hepatitis B
and C Asian patients, as well as a variant within a PTEN
homolog TPTE2 [59]. Yet another GWAS in hepatitis B
identified variants in KIF1B, UBE4B, and PGD to be
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identified with HBV-induced HCC [60] whereas another
report found that a risk allele in the MICA gene was associ-
ated with progression to HCC in HCV-infected subjects [61].
A SNP in an antioxidant enzyme (i.e., MPO) was associated
with HCC risk in a prospective study in HCV-cirrhosis [62].
Excess iron deposition in hepatocytes may be a consequence
of genetic causes, such as C282Y HFE mutation leading to

genetic hemochromatosis, or acquired causes such as viral
hepatitis or excess alcohol use [63]. The association between
liver iron overload and ALD-HCC risk was well character-
ized in a cohort of 301 cirrhotic subjects including 162
subjects with ALD [64]. In this study, hepatic iron overload,
as assessed by hepatic histology and C282Y HFE mutation
were both associated with the development of HCC in ALD

Table 8.2 Non-HCC molecular parameters associated with HCC development and tumor recurrence

Tissue Method Platform Risk score Number
of patients

Dominant
etiology

Outcomes Type of
samples

Cirrhosis
rate (%)

Reference

Non-tumoral
liver tissue

Gene
expression

DNA
microarray
assay
(Illumina)

186-gene
signature

216 HCV Overall death,
progression to
advanced
cirrhosis, HCC

FFPE
liver
needle
biopsy

100 [43–45]

DNA
microarray
assay
(Illumina)

223-gene
signature
(HIR
signature)
65-gene
signature

396 HBV (89 %) Late recurrence
(223-gene
signature), early
recurrence
(65-gene
signature)

Frozen
hepatic
tissue

78 [48]

ABI PRISM
7700

Immune
response
signature

115 HBV (96 %) Recurrence, poor
survival

Frozen
hepatic
tissue

91 [66]

cDNA
microarray
(Agilent
Human 1)

36-gene
signature

40 HCV Multicentric
occurrence

Frozen
hepatic
tissue

43 [47]

cDNA
microarray
(Affymetrix
U133A
array)

Activated
HSC
signature

319 HBV (92 %) HCC recurrence
and survival

Frozen
hepatic
tissue

87 [72]

DNA
microarray
assay
(Illumina)

HSC
signature

82 HCV Overall survival FFPE
liver
needle
biopsy

100 [50]

miRNA
profiling

miRBase 56 miRs 73 HCV Late recurrence Frozen
hepatic
tissue

51 [71]

Peripheral
blood

SNP EGF 816 HCV 6-year HCC risk Blood 39 [56]

PNPLA 3 532 Alcohol
(52 %), HCV
(48 %)

6-year HCC risk Blood 100 [89]

MPO 205 HCV HCC risk Blood 100 [62]

CAT 205 HCV HCC risk Blood 100 [62]

HFE 301 Alcohol
(54 %), HCV
(46 %)

HCC risk Blood 100 [64]

DEPDC5 212 HCV HCC risk Blood NA [58]

TPTE2
DDX18

386 HBV, HCV HCC risk Blood NA [59]

KIF1B 355 HBV HCC risk Blood NA [60]

MICA 721 HCV HCC risk Blood NA [61]
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but not HCV-related liver disease underlining the importance
of this risk factor, especially in populations with a high
prevalence of HFE mutations.

8.3 Molecular Markers of HCC Progression

Although clinical-based scores have allowed stratifying HCC
patients based on their recurrence risk, there is compelling data
suggesting that molecular-based tools may accurately capture
the complexity of the disease and help predict its outcome.
Indeed, gene-signatures—using high-throughput technologies
and hence, interrogating comprehensive panels of genes-are
able to predict HCC recurrence along with other clinical
variables [41]. Most prognostic gene signatures reported so far
were generated using so-called “convenience samples” from
surgically resected patients [65]. This provides the lowest level
of evidence in biomarker studies [3]. Also, the fact that specific
radiological features allow for a confident HCC diagnosis
results in a significant reduction of tissue availability for bio-
marker studies. This is particularly problematic in patients at
more advanced stages, where molecular targeted therapies are
recommended, and in whom gene-signatures may be of par-
ticular relevance for stratification purposes. These are limita-
tions that could negatively impact the implementation of gene
expression signatures in clinical practice, and somehow justi-
fies the relative low amount of studies exploring nontumoral
molecular markers of progression.

8.3.1 Signatures Derived from Adjacent
Nontumoral Liver

As previously discussed, a 186-gene signature generated from
nontumoral liver tissue of patients undergoing curative

resection for HCC highly correlated with survival [45], but
also with progression to cirrhosis and to HCC occurrence in
patients with HCV [43, 44]. Analysis of the HCC environ-
ment also identified gene-signatures predicting tumor dis-
semination and survival, underlying a Th1/Th2 inflammatory
signal shift [66]. It is then likely that genomic information
coded in the adjacent nontumoral tissue may contribute to
both, early and late recurrences. As depicted in Fig. 8.1, there
are two patterns of recurrence after liver resection: early
recurrence (<2 years), also known as “true metastasis” and
late recurrence (� 2 years), mainly de novo tumors [67].
While signatures derived from tumoral tissue were initially
able to predict true metastasis [68, 69], signatures capturing
de novo HCC development were mostly derived from non-
tumoral tissue [48, 70, 71]. In addition to the 186-signature, a
recent multicentric study including 396 HCC patients iden-
tified a 233-gene signature significantly associated with late
recurrence [48]. In addition to mRNA, there are a number of
studies using miRNA profiling as a source for biomarker
discovery. Consistent with gene expression, miRNAs from
the tumor tended to better predict early recurrence, whereas
those from the adjacent tissue more accurately predicted de
novo carcinogenesis [71]. Similarly, a specific
gene-expression signature in the surrounding liver was cap-
able of reflecting the risk of multicentric HCC [47], further
suggesting its involvement in identifying a favorable
microenvironment for metastatic tumor spread. Since acti-
vated hepatic stellate cells (A-HSCs) are key players in the
pathogenesis of liver fibrosis, their contribution in HCC
occurrence has been recurrently suggested. Two genomic
studies have recently addressed this issue reaching similar
conclusions. One study developed a 122-gene signature,
specific to HSC, that when tested in different cohorts of
patients was able to predict risk of HCC development and
patient’s survival [50]. Similarly, another report found a

Fig. 8.1 Overview of non-HCC prognostic factors in the context of
the natural history of HCC. A number of clinical (Table 8.1) and
non-tumoral molecular markers (Table 8.2) have been shown to be
associated with the development of HCC across a wide variety of
etiologies. Once HCC develops, distinct clinical and molecular markers

are associated with recurrence following surgical resection (blue
arrows) or progression after palliative treatment options such as
transarterial chemoembolization or sorafenib (red arrows). Reference
numbers of selected molecular risk factors linked to progression are
highlighted
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37-gene signature specifically reflecting A-HSCs and
associated with postoperative recurrence and survival [72].

Minimally invasive approaches are currently under
development aiming at overcoming the need for tissue
biopsies to generate molecular-based predictors. The
molecular analysis of tumor’s byproducts released into body
fluids, namely “liquid biopsy” may offer a wide range of
opportunities to interrogate the genomic profile of tumors,
via a simple blood test [73]. In addition, noninvasiveness of
radiological imaging techniques may also offer similar
advantages. Specific radiological features of the tumor may
be regarded as surrogate markers of gene-expression signa-
tures. A study showed how the combination of 28 computed
tomography (CT) traits could reproduce 78 % of the global
gene-expression profile in HCC samples [74]. Similarly, a
recent study identified a subgroup of HCC whose radio-
logical characteristics on magnetic resonance imaging cor-
related with differentiation level and gene-expression [75].

8.4 Conclusion

Clinical parameters alone are probably still insufficient to
accurately stratify patients based on their risk for HCC devel-
opment or recurrence/progression following conventional
treatments. In terms of early HCC detection, adequate imple-
mentation of surveillance programswith abdominal US is still a
major issue, despite being recommended in clinical practice
guidelines [76]. Additional challenges lie ahead with the
shifting etiological landscape of liver diseases and the advent of
novel direct-acting antivirals against the hepatitis C virus
(HCV) leading to over 90 % sustained virological response
(SVR) rates [77]. However, it has become clear that subjects
with SVR are still at risk of developing HCC, albeit at a lower
rate. Risk factors in this population are still under scrutiny [28].
In addition, the current surge in NAFLD incidence has also
uncovered a potential risk of HCC arising on the background of
non-cirrhotic liver although definitive estimates are still lacking
[18]. Facing these significant unmet needs,molecular tools such
as gene signatures could improve currently available prognostic
models. Hopefully, these new approaches will contribute to
improve outcomes of HCC patients by improving selection
methods, better allocation of resources and enable tailored
medical interventions.
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9.1 Gut Microbiota

The term microbiota, mainly coined by Nobel prize-winning
molecular biologist Joshua Lederberg, describes “the eco-
logical community of commensal, symbiotic, and pathogenic
microorganisms that literally share our body space” [1]. The
human gut microbiota consists of about 100 trillion microbial
cells including bacteria, viruses, protozoa and other organ-
isms. The total number of genes aggregated in these cells is
believed to surpass the number of human genes by the factor
of 100 [2, 3]. Strict anaerobes represent the majority of gut
microbiota with Bacteroidetes and Firmicutes being the most
prevalent phyla [4]. The localization of the intestinal micro-
biota is not homogenous. Starting with 101 cells/g in the
stomach, the number and diversity of microbial cells
increases up to a maximum of 1012 cells/g in the colon [3].
Microbiota perform a wide range of vital functions essential
to health maintenance, including metabolic functions such as
food processing or synthesis of vitamins as well as structural
functions. Furthermore, it secretes a number of biologically
active metabolites with various functions like the metabolism
of toxic compounds or the inhibition of pathogens via the
secretion of IgA or antimicrobial factors [5].

9.2 Gut Microbiota in Liver Disease

From a historical viewpoint, the connection between micro-
biota and the development of diseases dates back to ancient
Egypt when physicians presumed that putrefaction of the
stools associated with an absorption into the general circu-
lation leads to fever and the formation of pus [6]. In the
nineteenth and early twentieth century, biomedical and bac-
teriologic studies suggested that the degradation of protein in
the colon by anaerobic bacteria generates toxic amines.
Metchnikoff, one of the foremost proponents of autointoxi-
cation hypothesized that intestinal toxins may shorten life
span and Sir Arbuthnot Lane even suggested colectomy as
the only “cure” for mental health disorders related with
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autointoxication and focal infections [7, 8]. The first firm
scientific evidence for a role of gut microbiota in liver disease
was published in the 1950s when Philips et al. were able to
show a linkage between the absorption of nitrogenous sub-
stances from the intestine and the development of hepatic
coma in patients suffering from liver cirrhosis [9]. These
findings were followed by the analysis of the bacterial con-
tent of the small intestine in normal and cirrhotic patients and
the first attempt of using antibiotic treatment as a therapy for
hepatic encephalopathy in the 1950s [10, 11]. From today’s
point of view, many of the underlying disease-causing con-
nections between gut microbiota and the development of
hepatic diseases are still not fully understood but various
scientific findings from the last decades have led to the
establishment of different explanatory approaches.

It has been shown that chronic liver disease is associated
with an augmented translocation of intestinal bacteria which
leads to increased bacterial infections such as spontaneous
bacterial peritonitis (SBP), urinary tract infections, and
pneumonia [12, 13]. Bacterial translocation to mesenteric
lymph nodes was observed in rodents as well as patients with
advanced liver cirrhosis [12, 14, 15]. However, it seems that
the translocation of bacterial components, termed
pathogen-associated molecular patterns (PAMPs), is even
more important than translocation of viable microorganisms.
The liver receives about 70 % of its blood supply from the
gut through the portal vein system and is thereby decisively
affected by translocated PAMPs such as lipopolysaccharide
(LPS) from the intestinal microflora. Seki et al. demonstrated
a crucial role for gut-driven portal LPS as a requirement for
developing liver fibrosis during chronic liver disease [16].
Antibiotic treatment of mice resulted in a reduced increase of
plasma LPS after bile duct ligation and histological analysis
of liver samples showed a reduced infiltration of macro-
phages. Consequently, these animals were protected from
developing liver fibrosis and cirrhosis, indicating a substan-
tial role of intestinally derived LPS in hepatic disease [16].
These findings were corroborated by observations made by
Gómez-Hurtado and colleagues, who directly linked gut
microbiota dysbiosis and liver inflammation due to bacterial
translocation with hepatic fibrosis in CCl4-treated mice [17].

Furthermore, clinical and experimental data revealed
different underlying pathogenic factors unveiling a particular
importance of gut microbiota in hepatic disease. First, gut
motility seems to be a decisive factor in disease develop-
ment, as several studies have shown a reduced gastroin-
testinal motility in patients suffering from liver cirrhosis [18–
20]. Various underlying causes have been proposed,
including autonomic dysfunction, bowel wall edema, altered
concentration of intestinal active peptides as well as changes
in intestinal myoelectrical activity [21–23]. Small intestinal
bacterial overgrowth (SIBO), which is causatively related to
reduced gut motility and diminished gastric acid secretion, is

another extensively studied condition that intensifies the
influence of microbiota to liver disease [24]. SIBO is defined
as a bacterial population in the small intestine exceeding 105

to 106 organisms/mL and shows a very high prevalence of
35–61 % in patients with cirrhosis [21, 24–27]. Chen et al.
demonstrated a compositional change of intestinal bacteria
in cirrhotic patients, showing a reduced proportion of Phy-
lum Bacteroidetes, whereas the presence Proteobacteria and
Fusobacteria were significantly increased [28]. Finally,
changes in intestinal tight junctions integrity as well as
impaired antimicrobial defence mechanisms, involving
intestinal Paneth cells, contribute to an increased transloca-
tion of bacterial PAMPs and thus lead to the amplification of
liver inflammation [29, 30].

9.3 Gut Microbiota and Hepatocellular
Carcinoma

It has been well established that chronic hepatic inflamma-
tion followed by liver fibrosis and cirrhosis precedes hepa-
tocarcinogenesis [31–33]. Having seen how gut microbiota
affects the hepatic microenvironment in terms of a
proinflammatory implication, a causal association between
the development of hepatocellular carcinoma and the
intestinal microbiota is rather obvious.

A growing number of animal models confirmed the
assumed pathophysiological involvement of gut microbiota
in the formation of hepatocellular carcinoma. Yu et al.
analyzed the effects of microbial-driven endotoxins in a
model of diethylnitrosamine (DEN)-induced hepatocarcino-
genesis [34]. They observed decreased endotoxin levels as
well as a subsequently significantly reduced tumor growth
and multiplicity of HCC nodules in rats which received a
bactericidal pretreatment with polymyxin B and neomycin or
in mice which underwent genetic ablation of Toll-like
receptor 4 (TLR 4). Conclusively, the group suggested that
activation of TLR4 signaling by LPS in Kupffer cells of
mice subjected to DEN treatment produces paracrine-acting,
tumor-promoting cytokines that are not only capable of
causing inflammation but also of stimulating the prolifera-
tion of adjacent premalignant hepatocytes [34]. Previous
studies have identified IL-6 and TNF-a as major Kupffer
cell-produced factors that amplify the growth of surviving
DEN-initiated hepatocytes [34, 35].

These data were confirmed by the findings of Dapito et al.
demonstrating that gut sterilization leads to a reduction of
tumor number and size in mice subjected to a combination of
DEN and the hepatotoxin carbon tetrachloride (CCl4) [36].
Furthermore, the group demonstrated similar effects in mice
that were kept in germ-free conditions and thereby excluded
the notion that direct effects of antibiotics on the liver were
responsible for HCC reduction. Conversely, long-term
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treatment with low-dose LPS led to a significant increase in
HCC development. Looking at the molecular level, Dapito
et al. [36] once more substantiated the determining role of
TLR4 signaling. The study provides evidence that hepato-
carcinogenesis in its early stage is particularly driven by
TLR4-mediated secretion of growth factors such as epireg-
ulin by hepatic stellate cells (HSC) [36]. Previous studies
have shown the promotion of tumor development and
growth factor signaling in an ECM-rich environment [37,
38], indicating that ECM and growth factors produced by
HSC in the setting of hepatic inflammation are likely to
synergize in tumor promotion [36]. NF-jB, a downstream
molecule of TLR4 signaling, was found to be downregulated
in all groups of mice being protected from HCC develop-
ment by gut sterilization, genetic TLR4 inactivation, or
germ-free status. Consequently, the number of
cleaved-caspase 3-positive cells as a marker for apoptosis
were increased in these mice [36]. Interestingly, the group
only described a significant difference in tumor number and
size between TLR4 mutant and TLR4 wild-type mice but did
not manage to show a change in tumor incidences as it had
been proclaimed previously by Yu et al. [34, 36].

Summarizing these findings, TLR4 signaling seems to be
one of the major pathways in LPS-induced hepatocarcino-
genesis. Toll-like receptors are a class of protein receptors
that are involved in the recognition of PAMPs and play a
major role in the regulation of inflammation [39, 40]. It is
known that both Kupffer cells and HSC as well as hepato-
cytes express TLR4 and might thus function as the cellular
link between microbiota-driven LPS and HCC development
[41, 42]. Contrarily, Dapito and colleagues showed that only
HSC and hepatocytes but not Kupffer cells are capable of
mediating the tumor-promoting effects of LPS-induced TLR4
signaling, whereas Yu et al. demonstrated an essential role of
hepatocytes and Kupffer cells in TLR4-dependent HCC
development. Consequently, further studies are needed to
finally elucidate the precise cellular and molecular mecha-
nism of gut-driven LPS-induced hepatocarcinogenesis.

Sung and colleagues proclaimed recently that composi-
tional changes in the gut microbiota may induce an enhanced
induction of TH17-cells through secretion of IL-23 by den-
dritic cells (DC) in the intestinal lamina propria [43].
Although the role of TH17 cells in tumor immunity is still
not fully understood, there are several lines of evidence
suggesting a tumor-promoting role in HCC. An increase of
TH17-cells has been observed in tumor tissue [44, 45] and in
peripheral blood [46] of patients suffering from HCC and
TH17 levels are correlated with poor disease prognosis
[44–47]. Therefore, gut microbiota might be a potential
source for tumor-associated TH17 cells and could play a
decisive role in modifying the local tumor environment by
the secretion of IL-17, eventually leading to tumor pro-
gression [43].

Looking at the precise composition of gut microbiota,
Helicobacter hepaticus has especially been associated with
the induction and progression of hepatocellular carcinoma.
In a murine model, Fox and colleagues were able to show
that the intestinal colonization by H. hepaticus is sufficient to
promote aflatoxin- and HCV transgene-induced HCC. H.
hepaticus seems to incite transcriptional responses in the
lower bowel and liver that converge on NF-jB-signaling and
the activation of innate and Th1-type adaptive immunity
without the requirement for bacterial colonization of the liver
or the induction of hepatitis [48, 49]. On the other hand, a
study published by Huang et al. demonstrated the presence
of Helicobacter spp. in human liver samples from patients
with primary hepatocellular carcinoma while being absent
from healthy control samples [50]. Furthermore, Yang and
colleagues reported a significantly higher rate of H. hepati-
cus infections in patients with primary HCC using serolog-
ical and molecular biological detection [51].

As the prevalence of obesity in most developed countries
has increased dramatically during the last decades and
overweight in both adults and children has become one of
the major public health burden of the twenty-first century,
potential impacts on HCC development need to be consid-
ered. Different studies have shown that overweight and
obesity are highly associated with the risk of cancer devel-
opment [52–54]. Moreover, obesity seems to be accompa-
nied by compositional alterations of intestinal microbiota
and as a consequence might represent a major pathogenic
factor for HCC development [55–57]. Yoshimoto et al.
investigated the role of gut microbiota in an obesity related
model of hepatocarcinogenesis. They demonstrated that
reducing gut bacteria by the administration of antibiotics or
blocking deoxycholic acid (DCA) production prevents the
occurrence of HCC in obese mice after exposure to a
chemical carcinogen [58]. DCA is a gut bacterial metabolite
known to cause DNA damage and on this account has been
associated with the pathogenesis of gastrointestinal cancer
[59]. On a molecular level, the group showed that increased
levels of DCA as a result of obesity-induced alterations of
gut microbiota provoke a senescence-associated secretory
phenotype (SASP) in hepatic stellate cells via the entero-
hepatic circulation of DCA, which in turn secretes various
inflammatory and tumor-promoting factors in the liver such
as IL-6 or PAI-1 [58]. Consistent with these results, the
group showed that prolonged treatment of mice with DCA
promotes HCC development in lean mice [60]. SASP is a
cell-condition in which a senescent cell, originally deter-
mined to function as a barrier to tumorigenesis, turns into a
proinflammatory cell with the ability to promote tumor
progression [61, 62]. To summarize, an altered DCA-SASP
axis in HSC due to adiposity-related changes in gut micro-
biota seems to play an essential role in obesity-induced HCC
development.
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9.4 Therapeutic Options and Future
Directions

Having seen the distinct involvement of gut microbiota in
the pathogenesis of hepatocellular carcinoma by creating a
LPS-dependent proinflammatory hepatic microenvironment,
possible therapeutic treatment options in human disease need
to be evaluated. As TLR4-signaling appears to be one of the
key components of microbiota-associated hepatocarcino-
genesis, a potential therapeutic approach in this signaling
cascade is reasonable. Eritoran tetrasodium (E5564) binds to
MD-2 [63, 64], a co-receptor of TLR4, thus inhibiting the
activation of downstream signals and has been shown to
limit inflammation induced by LPS and to improve survival
in a model of sepsis [65, 66]. TAK-242 (resatorvid), a
small-molecule inhibitor of the intracellular domain of
TLR4, significantly decreased cytokine levels in mice
undergoing LPS-injection and protected them from
LPS-induced lethality [67]. So far, none of these potential
therapeutic candidates have been tested in the setting of
HCC prevention and therefore further evaluation in animal
and clinical studies is needed. Furthermore Bortezomib,
which prevents NF-jB nuclear localization and thereby
could also diminish hepatocarcinogenic signaling, did not
show any relevant activity in patients with unresectable
hepatocellular carcinoma [68]. Attention should be paid to
the fact that systemically antagonizing the innate immune
signaling pathways might lead to an extended bacterial
dysbiosis and could also result in enhanced proinflammatory
gene expression. Thus, a general inhibitory modulation of
TLR4 signaling should not be used without restrictions.

A more causative therapeutic approach is the targeted
focused reductionof gut-driven proinflammatory stimuli to the
liver. There are different therapeutic attempts to modify the
composition of gut microbiota in order to reconstitute the
altered intestinal microbial flora and restore the “leaky gut”
state in chronic hepatic disease in order to diminish the amount
of gut-driven proinflammatory stimuli to the liver. Probiotic
microorganisms are known to restore the microbial

equilibriumof the intestinalwall in patients with liver cirrhosis
[69]. Zhang et al. observed a massively attenuated dysbacte-
riosis and intestinal inflammation as well as a decreased liver
tumor growth andmultiplicity in rats treated with the probiotic
mixture VSL#3 [70]. Other probiotics such as various Lacto-
bacilli strains [71, 72] or Bifidobacterium CECT 7765 [73]
were shown to reduce endotoxemia and inflammatory liver
damage in different liver diseases such as NAFLD and alco-
holic liver disease and thus might act as a future option to
prevent HCC development in patients suffering from chronic
hepatic disease. More specifically, probiotics seem to be cap-
able of controlling the previously mentioned priming of TH17
cells by DCs in the intestinal mucosa and thereby could
diminish the tumorigenic microenvironment in the liver cre-
ated by TH17 after translocation to the liver [43].

Fecal microbiota transplantation (FMT) could also
become a possible option for preventing or treating HCC.
Shown to be an effective treatment option in severe and
relapsing Clostridium difficile colitis, recent data demon-
strated a broader applicability of FMT in metabolic diseases
including NAFLD which is highly associated with hepato-
carcinogenesis [74, 75].

Antibiotic gut sterilization seems to be an effective option
to significantly reduce HCC tumor size and multiplicity in
different rodent experimental models [34, 36]. Although the
applied combination of antibiotics in these animal studies are
not suitable for long-term treatment due to known side
effects, rifaximin, a nonabsorbable antibiotic drug which is
used to treat hepatic encephalopathy in patients with
advanced liver disease [76], might be a potent candidate for
HCC prevention as well. Dapito et al. showed a borderline
significant reduction of tumor numbers without a significant
reduction in tumor size in mice treated with rifaximin,
suggesting only a moderate effectiveness of an antibiotic
monotherapy. Thus, further studies are required to assess
possible antibiotic combinations with reasonable side effects
to reliably reduce HCC occurrence in patients with chronic
hepatic disease (Figure 9.1).

b Fig. 9.1 The role of microbiota in the development of hepatocel-
lular carcinoma. Different structural and functional changes such as
reduced gut motility, compositional changes in gut microbiota as well
as small intestinal bacterial overgrowth (SIBO), impaired intestinal
defence mechanisms and an increased intestinal permeability due to
dysfunctional tight junction integrity lead to an enhanced bacterial
translocation through the portal vein into the liver. LPS and other
PAMPs produced by intestinal bacteria are capable of activating
hepatic stellate cells and Kupffer cells, most likely by a TLR4 and
NF-jB-dependent pathway. The activation of these cells results in the
secretion of proliferative and proinflammatory chemokines causing
severe hepatocyte injury and a tumorigenic hepatic microenvironment

that enables HCC development. Furthermore, increased levels of
deoxycholic acid as a result of obesity-induced alterations of gut
microbiota provoke a senescence-associated secretory phenotype in
hepatic stellate cells via the enterohepatic circulation of DCA, which in
turn secretes various inflammatory and tumor-promoting factors in the
liver. Possible future treatment options are displayed in the red boxes
(IL-1ß/6: Interleukin-1ß/6, PAI-1: Plasminogen activator inhibitor-1,
TNF-a: Tumor necrosis factor alpha, HCC: Hepatocellular carcinoma,
SASP: senescence-associated secretory phenotype, DCA: Deoxycholic
acid, LPS: Lipopolysaccharide, TLR4: Toll-like receptor 4, NF-jB:
nuclear factor “kappa-light-chain-enhancer” of activated B-cells)
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10.1 Introduction

The prevailing theory of cancer attributes its primary causes
to mutations of nuclear DNA, such as oncogenes and tumor
suppressor genes, [45]. Standard chemotherapeutic treat-
ments in medical oncology are based in part on this
assumption. However, this theory, which is often presented
as dogma in textbooks of oncology, is in crisis [36].
Building even more elaborate genetic models of carcino-
genesis has been linked to adding epicycle models to the
pre-Copernican Ptolemaic paradigm of planetary motion in
order to explain discrepancies in astronomical data without
postulating that the earth revolves around the sun. The
description of the motion of each newly discovered planetary
body had to be retrofitted to Ptolemy’s theory of “planetary
perfection” [3]. A change of paradigm, from the genetic
theory of cancer origin to a new theory, is now needed.

10.2 Prevailing Theories of Cancer

Many tentative theories of cancer have been suggested over
the years and researchers have often developed unlikely and
artificial divisions and grouping. Theories of cancer can be
divided in many ways, e.g., in five groups or models (mu-
tational, genome instability, non-genotoxic, Darwinian, tis-
sue organization) [42] or in six groups (mutational, genome
instability, Darwinian, epigenetic, tissue organization field
theory, based on ontophylogenesis) [7]; or in three groups
(tissue organization field theory, cancer stem cell theory,
intrinsically disordered proteins) [39]. However, a simple
division into two main groups [38, 40] can summarize all
these different point of view:

A. Cellular theories of cancer.
B. Tissue theory of cancer.

The cellular theories include different subgroups that are
updates of the initial somatic mutation theory of cancer, and
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are determined by new research findings: mutational stan-
dard theory, selection theory of cancer cell (Darwinian the-
ory of cancer), mutator genes—chromosomal instability
theory, epigenetic theory. The original mutational theory of
cancer states that very few driver mutations in somatic cells
are able to generate a cancer cell, and was initially based
mainly on epidemiological and experimental studies [15],
then supported by molecular biology studies with the dis-
covery of oncogenes and cancer suppressor genes [45]. This
theory has been modified to explain the heterogeneity of
cancer cells, not only between different types of tumors or
the same type of tumor between patients, but even within the
same tumor in the same patient [9, 17]. To the somatic
mutation theory of cancer pathogenesis (mutations generated
in many different ways: X-rays, chemical substances, viru-
ses, etc.) was added the concept of selection of the cancer
cells that were most fit to compete with other cells to adapt
to the environment [8]. Then, a new update of the somatic
mutation theory was determined by the arrival of genomic
data on cancer that showed that mutations in cancer cells are
not few, but actually a huge number, so the theory was
changed to include the concept of “mutator phenotype”
resulting in a heterogeneous cell population), cells that have
mutated genes that cause many contemporaneous or suc-
cessive mutations, with chromosomal instability as a variant
of this theory [4]. Finally, there has been another change of
the somatic mutation theory, known as the epigenetic theory
of cancer. This theory was proposed after the discovery that
there are cancers without genetic mutations, which had only
variation of intensity of gene expression or gene silencing,
caused by the methylation or acetylation of histones or direct
methylation of nuclear DNA [16].

A different theory is the tissue organization field theory,
in which the cause of cancer is proposed to be a disturbed
communication between different types of cells within their
tissue of residence, caused above all by chronic inflamma-
tion [37, 41]. The theory of the pathogenesis of cancer cell as
a consequence of a stem cell that does not evolve [35] can be
considered in a certain way, as a subgroup of the field theory
of cancer, or a compromise between field theory and somatic
mutation theory. The updates to the somatic mutation theory
and to the field theory, signal the fact that both theories
probably are incomplete descriptions of cancer pathogenesis
and a new theory is needed to explain cancer. There are
certain cancer facts that are not explained by these theories
of carcinogenesis, indicated as paradoxes in carcinogenesis
[3], the most important of them being the cases of sponta-
neous regression of cancer. Furthermore, there are the find-
ings from nuclear to cytoplasm transfer experiments that
contrast with the somatic mutation theory of cancer origin
[27]. We think that both the somatic cell mutation theory and
the tissue organization field theory of carcinogenesis can be
included in a new theory, a systemic evolutionary theory of

the pathogenesis of the cancer cell that can better explain the
conundrum of data on this disease.

10.3 Fundamentals for a New Theory
of Cancer

There are some concepts from cellular evolution and systems
biology that can be very useful to build a new theory of
carcinogenesis.

10.3.1 Cellular Evolution

It is now clear that the formation of the eukaryotic cell is an
exceptional event, due to the endosymbiosis of an archaea
and a prokaryote more than 2 billions years ago [21, 24, 26].
These two very different types of bacteria started to collab-
orate, the archaea engulfing the prokaryote. The collabora-
tion became so strict at a certain point that most of the genes
of the prokaryote were transferred to the DNA of the
archaea, saving a lot of energy of the primitive eukaryote
[24]. The archaea (genetic material and cytoplasm) were able
to metabolize glucose to pyruvate by anaerobiosis, generat-
ing a small amount of energy as ATP. However, the
prokaryote (mitochondrion) was able to metabolize pyruvate
to H2O and CO2, producing a major increase in quantity of
energy per gene than the original pre-eukaryote, utilizing
chemio-osmotic coupling and oxygen [23, 43]. What is
really important about this endosymbiosis is not only the
enormous increase of energy production per gene, that
allowed increase of genome, synthesis of proteins (energet-
ically more expensive than gene reproduction), and cellular
evolution, but also the efficient elimination of metabolic
waste. Instead of the lactic acid produced by the primitive
archaea, the eukaryote produced the easily eliminable H2O
and CO2, a very efficient way to eliminate the waste gen-
erated by an increased consumption of energy, a wonderful
system design of the eukaryote cell that could also allow for
multicellularity [5].

10.3.2 Systems Biology

The eukaryote can be conceptualized [28] as an emergent
system made by two subsystems. One subsystem produces
information and little energy (the old archaea, now the
nucleus and cytoplasm), while the other one produces
energy and little information (the old prokaryote, now
mitochondrion) with the waste of the first subsystem (lac-
tate) managed by the second subsystem to become CO2 and
H2O, in an almost perfect system design [5]. This way to
look at the cell from the systemic point of view, using the
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concepts of boundaries, hierarchy of systems and emer-
gence, is quite different from the concept of a cell as a
network (a reductionist way to think of systems) shown in
many textbooks of systems biology of the cell. This sys-
tems thinking is more like the systems approach in the area
of the theory of carcinogenesis [31], but applying systems
thinking to tissues, while our new theory starts from the
cell itself before considering tissues. The two subsystems of
the eukaryote, the informative and the energetic one work
in series, even though the energetic subsystem is made by
many copies of the same unit (the mitochondrion) that
work in parallel to safeguard the energy production for the
cell. However, the plurality of mitochondria can be con-
sidered as a single subsystem with its own boundary from
our modeling point of view. The eukaryotic cell as a
complex adaptive dynamical system emerges from the
symbiogenesis (endosymbiosis) of these two subsystems,
the archaea and the prokaryote, in a new boundary (the cell
membrane). This endosymbiosis generates a nonlinear
change of the merged activities: information concentrates,
energy multiplies, and wastes are more manageable from
the environmental point of view. All these characteristics
open the way to the evolution of the primitive eukaryote to
a complex adaptive dynamical system, completely different
from the previous single archaea and prokaryote, even
though including them.

10.4 A Systemic Evolutionary Theory
of Cancer

The systemic evolutionary theory of cancer pathogenesis
states that cancer is generated by the de-emergence of the
eukaryotic cell system and by the reappearance of its archaea
and prokaryotic subsystems, with autonomous, or at least
uncoordinated, behaviors, a hypothesis suggested by very
few authors [2, 10]. This de-emergence of the eukaryote
generates problems at cell and tissue level, and eventually it
can threaten the survival of the whole organism. A first step
in cancer pathogenesis is a decrease in coordination between
the two subsystems of the eukaryotic cell, the archaea (nu-
clear DNA and cytoplasm) and the prokaryote (mitochon-
dria) that begin to work independently. This decreased
coordination can be caused by a change in the organization
of the eukaryote environment, mainly inflammation [6]; a
damage to mitochondrial DNA and/or to its membrane
composition [33] determined by viruses, chemicals, hydro-
genated fatty acids in foods, etc.; a damage to nuclear DNA
that control mitochondria energy production or metabolic
pathways like glycolysis [44]. In all these cases, the final
result is the de-emergence of the eukaryote, with the reap-
pearance of its old subsystems, the archaea and the
prokaryote, which now work separately. This systemic

change allow the de-emerged cell to survive, but at the
expense of the surrounding cells and the organization of the
tissue, and at the end, of the whole organism. There are
quantitative and qualitative changes in the de-emerged
eukaryote, mainly in its way of producing energy, elimi-
nating waste, and interacting with other cells [1], that make
the cell assume “atavistic” characteristics. These phenotypic
changes can be determined by the somatic mutation of single
genes in series, one after the other, or by the simultaneous
change of many genes caused by a driver-mutator gene.
However, this change of functions (reappearance of old gene
organizations present in the ontophylogenesis of the organ-
ism) is better determined by the simultaneous and coordi-
nated change of many gene networks under the pressure of
the de-emerged eukaryotic cell struggling to survive in a new
cell organization and/or environment. The hallmarks of
cancer [18], the Warburg effect [34], cancer glutaminolysis
[11], the adaptations of the cells surrounding the cancer cell
metabolizing lactic acid, a sort of eso-symbiosis to substitute
the failed endosymbiosis [32] are all characteristics of the
cancer cell. This could be reinterpreted in the light of the
de-emergence of the eukaryotic cell (in the light of evolu-
tion) and its association with changes in many nuclear gene
networks. They are consequences of the uncoordinated
functioning within the cell membrane boundary of the
nucleus-cytoplasm (archaea) subsystem and of the mito-
chondria subsystem (prokaryote).

The second step of cancer pathogenesis, including dis-
semination of cancer cells (metastasis) may be supported by
a decrease in mitochondrial functionality below a certain
threshold, in association with a simultaneous increase in the
activity of the anaerobic part of the eukaryotic cell: the
nucleus-cytosol [25, 46]. Nuclear and mitochondrial genetic
mutations and tissue inflammation can determine the neo-
plastic transformation of the eukaryotic cell, but the real
explanation for the pathogenesis of cancer is a systemic
change at the cellular level: the de-emergence of the
eukaryote cell, and its division into the old archaea and
prokaryote within the same boundary, with consequent
changes in the management of energy and waste, and rela-
tionship with other cells. These cellular changes cause
modifications at the tissue level [19], and then at the
organism level. It is this de-emergence of the eukaryotic cell
which is the primary cause of cancer and that makes many
gene networks change at the same time. Only a systemic
evolutionary theory of cancer can explain the transformation
of a normal cell, a complex adaptive dynamical system, in a
cancer cell, another complex adaptive dynamical system, but
selfish and uncoordinated with the other cells in the tissue of
origin. The proliferation of cancer cells can be stimulated
(promoted) by the modern diets, rich in carbohydrates and
animal proteins that feed anaerobic glycolysis with sugar and
mitochondrion with proteins [13].

10 Hepatocellular Carcinoma as a Paradigm … 159



10.5 Hepatocellular Carcinoma
as an Application Model
to the Systemic Theory of Cancer

Hepatocellular carcinoma (HCC) is estimated to become the
third leading cause of cancer-related deaths by 2030 in the
United States [30]. But incidence and epidemiology apart
(illustrated exhaustively elsewhere: El-Serag and Rudolph
[14]), HCC is an excellent model for studying the pathobi-
ology of cancer. This is because HCC normally develops in a
liver with chronic disease, generally hepatitis and/or cirrhosis.
Therefore, HCC is an example of a multistep pathogenesis of
cancer where determinant risk factors such as inflammation,
regeneration, and fibrosis represent the background for HCC
development. The fact that hepatocarcinogenesis is strongly
related to chronic liver disease has also been largely shown by
epidemiological studies [20]. HCC development requires
several steps leading to the acquisition of tissue, cellular, and
molecular alterations necessary for cell transformation. The
natural history of disease usually involves a chronic hepatitis
(often viral), which represents an important risk factor. The
evolution of this condition to a fibrotic or cirrhotic liver, with
alteration of the hepatic tissue architecture and vasculature,
predispose to dysplastic or pre-neoplastic areas and nodules.
These are the hotbeds where HCC develops. This is accom-
panied or associated with genetic (generally, the frequency of
replication errors is low in HCC whereas there is a high
prevalence of chromosome abnormalities) or epigenetic (that
seems to have a predominant role during the long
pre-neoplastic stage and the early phases of HCC develop-
ment) modifications. However, little attention has been paid
on the plasticity of hepatocytes (as an integrated cellular
system) during the long and stepwise process of carcinogen-
esis considering, for example, the availability of energy
and/or oxygen in the hepatocyte during cancer transforma-
tion. In other words, when do the two subsystems, the archaea
and the prokaryote (see above) work as a coupled system?
This question offers an important starting point on why hep-
atocarcinogenesis is a valuable model to support the systemic
evolutionary theory of cancer. The availability of energy is a
suggestive explanatory link between the multistep develop-
ment of HCC and the aforementioned theory, because the
chronic damage to the liver may offer an interesting model to
the depletion of energy [12]. Here, we propose that an energy
package is constantly required by the hepatocyte to maintain
its differentiated status. Normally, in the absence of tissue
alterations, this is constantly guaranteed. In particular, we
postulate that in normal conditions, when the energy flow
works properly, the two subsystems (the archaea and the
prokaryote) are perfectly integrated and there is no prevalence
of one system on the other. As a consequence, the hepatocyte
maintains its differentiated status. As soon as injury is applied
and the liver becomes damaged, the flow of energy is

restricted, but is still in a condition to recover if the liver
damage does not last long. However, if the damage lasts long
(i.e., chronic inflammation), then the energy package (amount
of energy) necessary to maintain the cell differentiation can be
reduced in level and this may overtime cause the gradual
decoupling of the two subsystems. When the energy package
becomes constantly insufficient the two subsystems get
completely uncoupled, with the “prokaryote” subsystem
becoming predominant. In the cirrhotic liver, this process can
be favored by the alteration of the oxygen availability due to
the altered vasculature and the fibrotic barrier. The prevalence
of the “prokaryote” subsystem may explain the metabolic
alterations (i.e., glucose, other metabolic pathways) seen in
neoplastic cells as well as the capacity for proliferation and
invasion, especially toward areas of major oxygen availability
(i.e., alteration of blood vessel architecture, arterialization of
portal vein, etc.). The scenario proposed here may also
explain why tissue integrity is essential to constantly guar-
antee the availability of a given amount of energy required for
maintaining the status of differentiated cell. Thus, tissue
integrity is essential for the proper flow and availability of
energy, and therefore, for the maintenance of cellular home-
ostatic functions. When integrity is not maintained over time,
the balance is broken and the two subsystems become
imbalanced in favor of the prokaryote. In the process of
neoplastic transformation this becomes particularly evident
and could be one of the mechanisms that supports
hepatocarcinogenesis.

10.6 Conclusions

The systemic evolutionary theory of cancer pathogenesis can
open the way to new cancer treatments. One of these new
treatments could be a ketogenic diet [29], controlling mainly
the archaeal subsystem of the cancer cell, the uncontrolled
self-reproducing nucleus and the cytoplasmic aerobic gly-
colysis. Intracellular antibiotics could be added to this type
of diet (i.e., macrolides) to control the prokaryotic compo-
nent, the still working mitochondria [22]. This new thera-
peutic approach to cancer treatment could be also a test of
the systemic evolutionary theory of cancer pathogenesis, the
de-emergence of the eukaryote as a primary cause of cancer.
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11.1 Causes of HCC

HCC typically arises on the basis of a chronically inflamed
liver, most often due to cirrhosis. The commonest causes are
HBV, HCV, alcoholism, nutritional mycotoxin exposure
(Aflatoxin B1), obesity or a combination of them. Thus,
most HCC patients have two diseases of the liver simulta-
neously: cirrhosis (from many causes), which is potentially
hepatocarcinogenic (pre-malignant), as well as HCC.

11.2 Gene Expression Profiles in the Tumor
and Surrounding Tissues

The idea that the chronically inflamed, cirrhotic liver is not
only a precursor and predictor of risk for HCC, but also may
influence the biology of HCC, is relatively new. Several
studies have shown that the non-HCC liver has prognostic
significance and may also predict recurrence after primary
treatment and begun to identify HCC phenotype subclasses
[1–11]. These studies show that although genetic studies of
the tumors identified various HCC subtypes and their asso-
ciated tumor biologies, the non-tumor underlying liver does
so even more. This has focused attention on the composition
of the tumor and specifically the HCC microenvironment,
and also on the role of the microenvironment on influencing
HCC behavior and aggressiveness (tumor mass, multifocal-
ity, portal vein invasion, metastasis), and the mechanisms
underlying these processes. Furthermore, this
tumor/microenvironmental cross-talk [12] has been found to
be reciprocal with each influencing the other (reviews: [13–
16]).
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11.3 Composition and Actions
of the Microenvironment
in Presence of HCC

The above observations of the interaction of HCCs and their
surrounding tissue (microenvironment), coupled with the
growing awareness that the neovascularity was a require-
ment for supporting increased tumor growth in size beyond a
minimal point, focused attention to the composition of the
microenvironment and its functions, with respect to HCC
growth, invasion, and metastasis. The microenvironment can
be broadly viewed as having a cellular and a noncellular
composition (Fig. 11.1).

The cellular components include stromal cells, endothe-
lial cells, tumor-associated macrophages (TAMs), immune
cells, neutrophils, and platelets, amongst others. Stromal
cells (carcinoma-associated fibroblasts or CAFs, hepatic
stellate cells or HSCs) produce stromal collagen through the
effects of stromal cell derived factor 1 and CXCL12, which
in turn contribute to HCC growth tumor angiogenesis. It is
also becoming clear that microenvironmental factors are
involved, both in the normal liver immunity, and in the
suppression of that immunity that permits HCC growth. The
inflammatory microenvironment, both consequent on
chronic hepatitis or other causes of cirrhosis, or in response
to the growth of the HCC, has recently been shown to be
important in influencing HCC biology and patient prognosis

[15–18]. So has systemic inflammation [19]. Furthermore,
attempts to decrease inflammation appear to be associated
with decreased HCC in those at risk [20]. In fact inflam-
mation scores correlate with prognosis in many tumors,
including HCC [21].

11.4 Microenvironmental Platelets and HCC
Growth

Cirrhosis is often associated with portal hypertension,
dependent on the degree of hepatic fibrosis, with consequent
splenomegaly and thrombocytopenia. This thrombocytopenia
has even been used as a surrogate for providing evidence of
cirrhosis [22]. It has been shown that thrombocytopenia-
associated HCCs tend to be small in size [23, 24]. By contrast,
thrombocytosis is associated with more aggressive tumors in
general [25, 26], and with larger sized HCC [27, 28]. Exper-
imental evidence supports the idea that platelets may play a
direct role in the growth of larger size HCCs [29], likely due to
their a granules containing the growth factors EGF, PDGF,
IGF-1, serotonin, and FGF, all of which have been previously
shown to be HCC mitogens, in addition to their content of
inflammatory cytokines. Furthermore, inhibitors of platelet
action, aspirin and clopidogrel (inactivator of the
ADP-receptor P2Y12) have been shown to antagonize
experimental hepatocarcinogenesis in vivo [30, 31].

Fig. 11.1 HCC and its microenvironment
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11.5 Microenvironmental Platelets
and Modulation of Effects
of Anti-tumor Drugs

It has recently been shown that human platelet lysates
antagonized the inhibitory effect mediated by Sorafenib or
Regorafenib on cell growth and motility in several HCC cell
lines [32]. The molecular pathways involved in this inter-
ference were explored and it were found to include an
increase by platelet actions in p-ERK levels, as well as the
phosphorylation levels of its downstream targets p38 and
STAT3, thus antagonizing the growth inhibitory effects
mediated by Sorafenib or Regorafenib. These kinases are
considered to be important molecules in mediating cell
proliferation, but they are also involved in the modulation of
anti-apoptosis mediators such as Bcl-XL and surviving.
Platelets were also found to counteract the drug-mediated
induction of apoptosis by decreasing the levels of
pro-apoptotic BIM and Bax. Experiments designed to elu-
cidate the role of platelet lysates in the modulation of
migration and invasion, showed that they antagonized mul-
tikinase inhibitor-mediated inhibition of cell motility [30].
Furthermore, platelets were found to modulate the cytotoxic
chemotherapy effects of doxorubicin on HCC cells [33].
Increased levels of P-JNK and P-p38 were found in HCC
cells exposed to platelet lysates, in comparison to the levels
of the same molecules in doxorubicin-treated cells. Both of
these signaling kinases could be considered mediators of the
protective role exerted by platelets; however, they can also
be considered to be pro-survival mediators, depending on
cell line and drug [34]. Others have shown in other tumor
types that platelet alterations and microenvironmental alter-
ations can modulate sensitivity or resistance to anti-cancer
therapy [35–38]. There are many mechanisms that might
mediate this modulation of drug sensitivity [39]. One
mechanism derives from the many growth factors in plate-
lets. Recent findings in HCC indicate that both EGF and
IGF1 [39–41] have the ability to increase dug resistance. The
opposite should still be also true, namely that growth factor
inhibitors and platelet inhibitors may well increase the sen-
sitivity of cancer cells to anti-cancer therapies (review: [42]).
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12.1 General

Hepatocellular carcinoma (HCC) is the fifth most frequent
cancer in men and the seventh in women worldwide, and the
incidence is rising, with roughly 700,000 cases diagnosed
globally in 2012 alone [104, 177]. HCC usually occurs in
the setting of liver cirrhosis developed during a long process
of inflammation and fibrosis, because of chronic hepatitis B
virus (HBV) or hepatitis C virus (HCV) infections, heavy
alcohol consumption, nonalcoholic steatohepatitis, exposure
to aflatoxin B1, obesity associated with fatty liver disease,
primary biliary cirrhosis, or alpha1-antitrypsin deficiency
[29, 50, 146]. HCC is also one of the most aggressive can-
cers, and currently listed as the third leading cause of
cancer-related death. If the tumor cannot be completely
removed, the disease is ultimately fatal within 3–6 months
[29, 146]. In carefully selected patients diagnosed at an early
stage, surgical resection, liver transplantation, and local
ablation are potentially curative for HCC, with 5-year sur-
vival rates of 60–80 % for resection, 53–73 % for trans-
plantation, and 40–70 % for ablation [29, 50, 112, 113].
However, surgical resection, liver transplantation, and
ablation are associated with postoperative recurrence rates of
50 % at 3 years, 18 % at 3 years, and 70 % at 5 years,
respectively [27–30, 50, 106, 112, 113, 123], that jeopardize
overall survival in these patients, and finally lead to death in
almost all patients. In liver transplantation for HCC, the most
common site of an early posttransplant recurrence is the
transplanted allograft [112, 113, 123]. This fact strongly
suggests that cancer cells in the peripheral blood circulation
are really an active source of HCC recurrence or metastasis.
Tumor cells that are shed into the bloodstream from solid
tumor origin are referred to as circulating tumor cells (CTCs)
[211]. Animal experiments with human HCC xenografts
have shown that CTCs are continuously released from the
primary tumor into the bloodstream [52, 155, 156]. CTCs
may spread to and deposit in multiple distant organs and
initiate metastases. In the case of liver resection or trans-
plantation, they may return to the liver remnant or the newly
implanted healthy liver and initiate intrahepatic recurrence.

Although CTCs were discovered more than a century ago
[12], research on CTCs has only recently become a very
active field largely because they can now be efficiently iso-
lated. CTCs bear an especially great potential to improve our
understanding of steps involved in the metastatic cascade,
starting from intravasation of tumor cells into the circulation
until the formation of clinically detectable metastasis. As a
novel biomarker for the metastatic disease process, CTCs
essentially provide a readily accessible and real-time liquid
biopsy of tumors to replace biopsies of metastatic tissue. The
enumeration and characterization of CTCs hold great pro-
mise for the diagnosis of patients with early cancer or early
recurrence, the identification of patients at a high risk for

local or systemic relapse, the stratification of patients to
specific therapies, and the monitoring of response or resis-
tance to therapeutics [13, 76, 131]. This chapter describes
recent discoveries related to the biology of CTCs that illus-
trate how they are involved in hematogenous spread, dis-
cusses the role of CTCs as a minimally invasive liquid biopsy
for real-time identification of specific markers, outlines their
potential clinical utility, reviews the current state-of-the-art
on different techniques or strategies available for the detec-
tion and isolation of CTCs (with a special focus on HCC
CTCs), primarily introduces recent progress obtained from
clinical studies on detection of CTCs and circulating cancer
stem cells (CCSCs) in HCC patients, proposes some strate-
gies targeting CTCs for the management of HCC aiming to
prevent postoperative recurrence and metastasis, and finally
presents upcoming challenges and future perspectives on
CTCs as a biomarker in precision therapy for HCC.

12.2 The Biology of CTCs

Solid tumors vary widely in their ability to shed CTCs into
circulation. CTC levels are different across tumor types,
even with a given tumor type [13, 76, 131, 211]. It appears
that only a very small fraction of CTCs gives rise to distant
metastases, a phenomenon regarded as “metastatic ineffi-
ciency” [39, 193]. However, the biology of CTCs remains
poorly understood. For example, how CTCs disseminate,
survive in circulation, and avoid apoptosis and host immu-
nity, and home to different distant organs as sites for
potential metastasis have yet to be elucidated.

12.2.1 Epithelial–Mesenchymal Plasticity

The metastatic process is comprised of the following steps:
local invasion; intravasation; hematogenous survival and
transport; extravasation; and colonization [38, 80, 173] (see
Fig. 12.1, [98]). Cancer cells are of epithelial origin.
Epithelial–mesenchymal transition (EMT) in cancer cells is a
highly complex dedifferentiation program, and thought to be
responsible for various steps in the metastatic cascade.
Acquisition of the EMT phenotype by cancer cells enhances
their migratory and invasive properties, and thereby enables
them to enter the circulation by traversing the basement
membrane, interstitial spaces, and blood vessels. Dur-
ing EMT, typical epithelial markers such as epithelial cell
adhesion molecule (EpCAM) and E-cadherin are downreg-
ulated, keratin expression is altered, and finally, mesenchy-
mal markers such as vimentin are upregulated [142, 173,
203]. The characterization of CTCs demonstrated the pres-
ence of a number of cells with EMT phenotype in certain
tumor types.
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Once inside the bloodstream, CTCs face several natural
obstacles caused by exposure to the poor survival environ-
ment that hinder the metastatic process. For instance, blood
flow generates the enormous mechanic shearing forces and
collisions with blood cells, which dramatically decrease the
number of viable cancer cells. Compared to epithelial tumor
cells, CTCs that underwent EMT seem to be more resistant
against these forces [120]. Experimental data also suggest a

continuum development of CTCs, ranging from pure
epithelial to pure mesenchymal phenotypes, or to a partial
EMT state, thus being able to switch between epithelial-like
and mesenchymal-like cells [142, 173]. The population of
cells with this “phenotypic plasticity” is characterized by
stem cell-like properties and increased resistance to
chemotherapy and targeted therapy, thus being determinant
of aggressive behavior and more dangerous than cells in

Fig. 12.1 The role of the epithelial–mesenchymal transition
(EMT) and the mesenchymal–epithelial transition (MET)-targeted
therapy during the individual steps of tumor metastasis. Metastasis is
presented as a contiguous and complex process that depends on
(1) local invasion, (2) intravasation, (3) hematogenous survival and
transport, (4) extravasation, and (5) colonization. Circulating tumor
cells (CTCs) represent an essential bridge for the metastatic cascade.
EMT is involved not only in the generation of CTCs, by enhancing
migratory and invasive properties of cancer cells, but also in their

survival in the bloodstream. Subsequent activation of MET is
responsible for extravasation of CTCs and colonization in distant
organs, which ultimately forms the metastatic lesion. Therefore, the
potential to effectively target EMT/MET processes during the individ-
ual steps of tumor metastasis may represent a promising approach to
alleviate cancer metastasis and inhibit recurrence. In addition, detection
of EMT phenotype-based subsets of CTCs in cancer patients may serve
as a novel diagnostic tool for prognosis and individualized treatment.
Reproduced from Liu et al. [98]. Permission from Springer
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pure epithelial or pure mesenchymal states [142, 173]. The
mesenchymal phenotype of CTCs that underwent EMT
promotes motility, but does not favor growth [37, 72].
Recent experimental studies have provided evidence for the
functional requirement of EMT reversal in CTCs for the final
step in the metastatic cascade. Cancer cells must undergo a
reverse process, known as mesenchymal-epithelial transition
(MET), to reacquire the ability to proliferate and thus
colonize after they have settled down in the secondary
organs [19, 171].

In summary, as shown in Fig. 12.1 [98], acquisition of
the EMT phenotype by cancer cells not only facilitates their
abilities of migration and invasion, thereby promotes their
infiltration of the vascular endothelium and migration into
the circulation, and finally generates CTCs, but also
enhances their survival in the bloodstream and extravasation
out of the circulatory system and invasion into proximal
tissues. In distant organs, MET activation enables CTCs to
grow and recolonize in the new microenvironment, ulti-
mately forming a metastasis [173]. Therefore, the subset of
CTCs switching between epithelial and mesenchymal phe-
notypes is thought to be an optimal target for precision
medicine research, offering new hope for alleviating cancer
metastasis and recurrence.

12.2.2 Circulating Cancer Stem Cells (CCSCs)

Increasing studies provided evidence that human cancers
contain a small population of cancer stem cells (CSCs) with
cancer initiation capacity. So CSCs, also known as
cancer-initiating cells (CICs), may thus represent the major
target of new drugs in clinical trials [142]. Given that CTCs
arise from the tumor and contribute to metastasis, one could
speculate that CTCs may comprise a minor subset of
CCSCs. “Metastatic inefficiency” is an ancient concept, and
has been in part demonstrated through experimental studies
that only approximately 0.01 % of cancer cells injected into
the circulation form metastatic foci [193]. Accordingly,
several clinical studies have revealed that aggressive cancers
release thousands of cancer cells into the bloodstream each
day [5, 14, 124, 193], but most patients develop only few
metastases, also suggesting a highly inefficient process of
metastasis. For aggressive cancer cells, leaving a tumor
appears to be relatively easy. “Not all detected cells are bad
and not all bad cells are detected” [195] implies that
although directly involved in the metastatic cascade, not all
subpopulations of CTCs are likely to have the same meta-
static potential, and only few CTCs are characterized by
metastatic potential and high biological aggressiveness. This
very small fraction of CTCs is supposed to be composed of
CCSCs, and also renamed “metastasis-initiating cells”
(MICs) [18]. In fact, accumulating evidence shows that a

majority of CTCs with a stem phenotype circulate in blood
of patients with various types of cancer and are potentially
the most dangerous, with the capabilities of self-renewal,
multipotency, and relapse or metastasis initiating. For
example, CTCs in HCC that displayed an ICAM-1(+) or
EpCAM(+) or CD90(+) surface phenotype possess CSC
features such as tumor induction and sphere-forming
capacities [101, 168, 205, 206]. Therefore, the characteri-
zation and eradication of these CCSCs should become one of
the main goals in CTC research.

CSCs might be derived from either differentiated pro-
genitor cells or somatic stem cells. Two hypotheses have
been proposed to understand the origin of CCSCs. One is
that CCSCs may arise from fully differentiated cancer cells
that acquire migratory and invasive properties due to the
activation of EMT pathways [23]. Another possibility is that
cancerous somatic stem cells underwent EMT, also called
mesenchymal CSCs, and migrate from the primary tumor
into the blood circulation. When undergoing MET, they
become epithelial stem cancer cells [145]. Whatever is the
way, CCSCs are directed toward a niche through interme-
diary cells with an increased epithelial–mesenchymal plas-
ticity and mobility [19, 72, 171]. Actually, data from
multiple studies show that a small subpopulation of CTCs
bears the variety of epithelial, mesenchymal, and stem
cell-like markers, and are endowed with stemness charac-
teristics following the EMT [2, 8, 90, 134, 137, 208].
Therefore, it is likely that the so-called MICs arise from
CCSCs with an EMT phenotype [23, 145, 195], and will be
a valuable therapeutic target for the eradication of cancer.

12.2.3 Anoikis

When dissipating from their tissue origin, cells from solid
tissue are normally programmed to undergo anoikis, a kind
of programmed cell death induced by loss of substrate
adhesion or by inappropriate cell adhesion. Anoikis has
functions to maintain the balance between proliferative
potential of normal cells to ensure tissue integrity [133]. For
aggressive cancer cells, leaving a tumor appears to be rela-
tively easy, and a large number of cancer cells are released
into the bloodstream each day [5, 14, 124, 193]. After
leaving the primary location and intravasating into the cir-
culatory system, cancer cells should survive in a complete
absence of extracellular matrix (ECM). However, CTCs are
fragile, and most in the circulation may die. The half-life of
CTCs in the bloodstream is only 1–2.4 h [116]. One of the
main causes of their fragility is their susceptibility to anoikis
[31]. It is not surprising that a high proportion of CTCs
originating from various types of cancer show signs of
apoptotic cell death [6, 79, 150, 151, 163, 165]. Thus,
anoikis is a potential barrier to their metastasis. In order to
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survive during the circulation and spread, cancer cells must
establish mechanisms or signaling pathways for anoikis
resistance [21, 68].

12.2.4 Circulating Tumor Microemboli (CTM)

CTCs can be present in the circulatory system in various
forms, such as simple cells and cell clumps. The latter may
be composed of at least 2 cancer cells up to large
microemboli with more than 50 CTCs and have also been
referred to as circulating tumor microemboli (CTM) or
clusters of CTCs [56, 67, 86]. The generation of CTM is
supposed to be resulted from intravasation of cancer cell
clusters via a leaky vessel in the primary tumor or from their
aggregation in circulation due to their collective migration
and adhesion [1, 41, 66]. In order to maintain the cell-cell
contact, CTM may contain accessory host cells besides
cancer cells, such as platelets, leukocytes, cancer-associated
fibroblasts, endothelial cells, and pericytes [86, 88]. This
configuration of clusters not only leaves the innermost cells
protected from anoikis, immune surveillance, and the stres-
ses of circulation, but also presents a favorable microenvi-
ronment for cancer cells to crosstalk and survive [66, 67].
The significance of CTM has been debated for a long time,
and even the question has been discussed that such clusters
may be merely artifacts of sample processing. However, the
role of CTM in metastasis development was recently
emphasized. An animal study showed that CTM were indeed
cancer cell clumps breaking off from the primary tumor, and
derived from oligoclonal groupings of primary cancer cells
held together through plakoglobin-dependent intercellular
adhesion, not from intravascular aggregation events [1].
When intravenously injected in vivo, cell clusters had a
higher tendency to seed distant metastases than single cell,
and larger sized CTM could form more metastatic foci than
an equal number of smaller CTM [1, 88, 174, 176]. In
clinical studies, several groups have observed CTM in the
circulation of patients with several types of advanced cancer
and absence of apoptotic cells within CTM. Moreover, the
presence of CTM was significantly associated with a worse
prognosis [25, 34, 56, 66, 82, 110, 121, 167, 185]. In liver
cancer, patients with CTM displayed significantly shorter
survival than patients without CTM [185]. The possible
explanations for the increased metastatic potential of CTM
include: (1) Larger CTM are more easily trapped in narrow
blood vessels than individually CTCs, thus favoring
extravasation into distant organs; and (2) CTM provide a
favorable “their own soil” for cancer cell survival.

Collectively, the current knowledge for CTM is incom-
plete due to their extremely low abundance. Further studies
require sensitive and specific methods for detection of CTM,
thereby we can identify the cell composition and

microenvironmental effect, and explore whether CTM are a
better biomarker for increased metastatic potential than
single CTCs.

12.2.5 Tumor Self-Seeding by CTCs

CTCs not only can seed metastases in distant organs, but can
also preferentially return to and grow in the primary tumor.
This phenomenon was described in a landmark study by
Kim et al. [84] and termed “tumor self-seeding by CTCs.”
The mechanisms underlying this process are less well
understood. In the study of Kim et al. [84], inflammation
was identified as a major driver of tumor self-seeding by
CTCs, as evidenced by that the tumor-derived interleukin-6
(IL-6) and interleukin-8 (IL-8) acted as attractants for CTCs,
and “infiltrative” genes expressed by the attracted CTCs,
such as collagenase-1/metalloproteinase-1 as well as the
actin cytoskeleton component fascin-1, acted as mediators of
their infiltration into primary tumors.

After primary tumor surgery, patients may have a con-
stant population of CTCs, and tumor self-seeding by CTCs
likely also occurs at remote metastatic sites. Taking liver
cancer for an example, even though a localized lesion is
completely resected, a new cancerous lesion may recur in the
original site after a period of time. Besides, after liver
transplantation, tumor reseeding may still occur in the
explants (implanted grafts). For instance, in 60 patients with
liver transplantation, about 5.7 % of them had a tumor
recurrence in explants within 40 months [183]; and in 7 out
of 22 patients, their donor liver transplantation were char-
acterized with microvascular invasion within 3 years [55].
These data indicate that CTCs can self-seed and grow
preferentially at regions or in the vicinity from their primary
tumor. These sites may represent specific metastatic niches
for a CTC where, presumably, stromal cell types, extracel-
lular matrix proteins, and diffusible signals that support the
survival and self-renewal of reseeded CTCs. Thus, it is
required to further explore the mechanisms for reseeding by
CTCs after tumor resection or orthotopic liver transplanta-
tion, thereby promoting the development of new strategies
for the prediction and prevention of postoperative
recurrence.

12.2.6 Heterogeneity of CTCs

Cancer is a heterogeneous disease. The same tumor mass can
contain genetically distinct cell populations with indepen-
dent tumor propagating capability, but significantly different
phenotypic and functional characteristics [43]. There is now
increasing studies that demonstrated a significant discrep-
ancy in molecular expression between primary tumor and

172 Z. Yin



corresponding distant metastatic sites, as well as among
multiple metastatic sites [131, 166, 181]. This heterogeneity
might be explained by genomic instability in cancer and
selective pressure against different tumor cell clones under
various systemic therapies [85]. The genotypic variation
between primary cancer and CTCs was also demonstrated
[40, 85, 166, 199]. Additionally, emerging evidence exists
regarding high heterogeneity of CTCs, even within one
histological distinct tumor type, as well as within one patient
[13, 40, 61, 85, 148, 166, 199]. Recent studies have shown
that the markers in CTCs may also change over the course of
therapy [59, 74, 148, 189]. Single cell analysis may further
reveal tremendous cell-to-cell variability.

Biological and clinical relevance of CTC heterogeneity is
still under investigation. At least, heterogeneity of CTCs
could limit their metastatic potential in the blood circulation,
for example, by “diluting” the effect of platelets [49, 160].
The latter are known to act as EMT inducers [102] and as
protectors for immune-mediated lysis [9]. Technically,
heterogeneity of CTCs represents a challenge for the
development of CTC measurements. An ideal CTC assay
would require the isolation of all types of CTCs without any
loss, but heterogeneity of CTCs highlights the difficulty of
using antibodies or cocktails of antibodies to capture and
identify all types of CTCs due to a lack of specific markers
expressed in all populations of CTCs and not in nontumor
cells. In a word, as a biological characteristic of CTCs and a
challenge for the development of CTC tests, heterogeneity of
CTCs enforces the need for a broader range of markers in
order to isolate and target the rare subset of CTCs with
increased metastatic potential.

12.3 CTCs as a Liquid Biopsy

The development of personalized precision therapies for
cancer patients depends on efficiently obtaining representa-
tive tumor specific information by the identification of the
molecular drivers of their disease. Currently, tumor biopsy
samples are most often used to identify biomarkers for
prediction of therapy response, and usually obtained only at
time of initial diagnosis. However, obtaining a tissue sample
by image-guided needle biopsy or tumor excision is an
invasive procedure with associated risks and distressing to
subjecting patients, and certain locations (e.g., liver, lung or
brain) are especially difficult to access and not always fea-
sible. In addition, biopsies frequently yield poor quality
and/or insufficient quantity, and therefore provide only
limited information about the genetic content of cells. Owing
to profound intratumor heterogeneity, single-site biopsies are

unlikely to capture the complexity of the genomic landscape
of a patient’s tumors. Due to the presence of multiple
metastatic foci or anatomically challenging, metastatic
cancer samples are usually not available or readily obtain-
able in the clinic. Furthermore, cancer is continually
evolving at the molecular level, or its genomes are unstable
and prone to changes under selection pressures such as the
application of therapies, whether a diagnostic biopsy sample
originally from primary tumor truly represents the patient’s
disease status is questionable. Following tumor evolving or
metastatic development, the treatment often continues to be
based on molecular characterization of the primary tumor
despite discordance between the primary and metastatic
lesions or between various metastatic tumors in the same
patients. So repeat biopsies are often needed for serial
monitoring of tumor molecular profile status to ensure that a
given targeted therapy is still “hitting the target” or to
identify new predictive biomarkers for emerging secondary
drug resistance and disease relapse. Collectively, the
translation of laboratory findings to the clinical setting has
been hampered by the inability to obtain adequate material
for serial monitoring of tumor genotypes. Thus, there is a
pressing need for a much less invasive and cost-effective
alternative approach able to easily and serially access tumor
tissue at various time points during a disease course. Since
CTCs are released into the blood circulation from multiple
sites of primary and metastatic lesions, and might likely
better represent the overall heterogeneity of tumor than any
single tumor biopsy at the time of necessary intervention,
they are often referred to as a “liquid biopsy.” As a mini-
mally invasive alternative to tissue biopsy, the real-time
tests of CTCs are not only reduced patient risk and lower
costs, but also informative for serial monitoring of the
genetic changes in any situation, particularly useful in cases
where relapsed tumors are very different from the original
primary ones, or in assessing liver, lung, or brain cancer
where it is hard for an ordinary biopsy.

12.4 Potential Clinical Applications of CTCs

CTCs in the bloodstream play a critical role in establishing
metastases. The ideas about their clinical applications have
changed with time. Research on CTCs is now a very active
field, and the clinical value of CTCs as a biomarker has been
widely explored in recent year. Potential clinical utilities of
CTCs may span from disease diagnostic biomarkers for early
cancer detection, to prognostic biomarkers for monitoring
therapy response, and predictive biomarkers for choosing
therapeutic drugs.
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12.4.1 Early Diagnosis for Subclinical
Cancers

Cancer invasion and hematogenous spread can be an early
event in the natural history of carcinogenesis, implicating
that a primary tumor and a metastatic lesion could grow in
parallel [48, 85]. Current screening methods are unable to
detect this early spread, and small invasion lesions that are
detectable in patients by current imaging procedures usually
contain more than 109 tumor cells. The ultrasensitive diag-
nostic detection of CTCs could provide a tool for an early
diagnosis of invasive cancers or undetectable metastatic
relapse in subclinical stage before they become detectable by
imaging, for demonstration of the presence of a malignancy,
and for potential establishment of the tissue of origin. In fact,
CTCs are frequently detected in early stage cancer patients.
However, the enumeration of CTCs has not been clinically
adopted as a screening or primary cancer diagnostic assay.

12.4.2 Assessing Individual Prognosis

CTCs have been proposed to assess individual prognosis of
cancer patients, and then stratify the patients at risk to
specific adjuvant therapies. Identification of a subset of
CTCs with metastatic potentials would provide clinicians a
more complete picture of their patient’s high risk for relapse,
amenable for making a decision about the most appropriate
treatments for each patient. Currently, the assessment of
CTC counts is included in more than 400 clinical trials
registered at www.ClinicalTrials.gov, most focusing mainly
on prognostic biomarkers for breast, melanoma, lung, rectal,
colorectal, prostate, and some other types of cancer [3, 132].
A growing number of clinical studies show a close con-
nection between elevated CTC counts and worse prognosis
of patients with various types of cancer, suggesting that
CTCs are either surrogates of metastatic activity or causally
involved in the promotion of metastasis [14, 24, 109, 204].

12.4.3 Guiding the Individual Therapeutic
Decisions

Since cancers caused by specific genetic mutations respond
well to certain medications, molecular analyses of CTCs
have great potential to provide predictive information on
response to a specific therapy, and thereby determine which
targeted drugs to give a patient. In case of primary resis-
tance, initial therapy response should be assessed as soon as
possible. Clearly, such analysis can be repeated to spot any
new mutations, allowing an early detection of resistance,
primary or secondary, to therapies and potentially driving

the switch to another, more effective, targeted drug, or a
more appropriate alternative treatment.

12.4.4 Monitoring Treatment Response

Due to changes in cancer biology and response to treatment
over time, longitudinal predicting and monitoring therapy
response and disease progression is crucial for cancer man-
agement. Currently, imaging modalities, e.g., computer
tomography (CT), magnetic resonance imaging (MRI),
positron emission tomography (PET) or combinations are
routinely done to monitor therapy response. Unfortunately,
these modalities in general are not suited for detection of
early therapy response due to lack of sensitivity. For targeted
therapy, a reduction in tumor size associated with tumor
response is not necessarily measurable, and in addition, an
associated active inflammatory response may hide tumor
response [57]. As the patient’s blood contains a sufficient
number of CTCs, the enumeration has been shown to enable
monitoring of therapy response by performing reliable
statistics to analyze an increase or a reduction in CTC counts
[100]. Sequential measurements of CTCs at multiple time
points along a patient’s cancer journey may enable analyzing
dynamic changes in CTCs and determining the treatment
response or resistance during the course of therapy. As
cancer can develop resistance against a given therapy and
may then recur or spread, molecular characterization of
CTCs beyond counting such as the timely identification of
secondary mutations for biologic determinants of emerging
drug resistance is of utmost importance allowing for pur-
suing more active agents for continuing therapy.

12.5 Current Technologies
for the Isolation
and Detection of CTCs

12.5.1 An Ideal Platform for CTCs and its
Challenges

Over the past few years, there has been a lot of interest in the
field of CTCs with rapid growth of developing new
biotechnologies to identify CTCs. Ideally, a typical platform
for isolating and detecting CTCs should have the following
characteristics [13]:

(1) high sensitivity (or recovery rate): ability to isolate or
detect the smallest number of CTCs per sample. This is
particularly important for the early diagnosis of the primary
tumor and metastasis with low number of CTCs in the
peripheral blood; (2) high specificity (or purity rate): no
false positives; (3) reproducibility: an acceptable intra-
operator or inter-operator variability; (4) great purity: high
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ratio of isolated or detected CTCs to all detected or isolated
cells from a sample; (5) intactness and viability: high-purity
isolation of viable CTCs is very important for propagation of
CTCs and exploitation of their potential, such as drug effi-
cacy test in culture or in xenograft models; (6) high
throughput: the sample is processed in a relatively short
period of time; (7) low cost for patients.

However, two main factors make the isolation and
detection of CTCs formidable technical and analytical
challenges [13, 76]:

(1) CTCs are extremely rare in the peripheral blood of
cancer patients relative to hematological cells, typically
comprising only a few CTCs per milliliter of whole
blood, which contains *7 � 106 white blood cells,
*5 � 109 red blood cells, and *3 � 108 platelets.
Mature erythrocytes can be easily removed from blood
since they have distinct biological, chemical, and
physical properties. However, leukocytes and CTCs
share many common properties, so effective separation
of CTCs from leukocytes is quite difficulty.

(2) There is no one marker that can reliably and efficiently
distinguish these CTCs from other bloodborne cells.
CTCs do not universally express specific tumor mark-
ers. Moreover, CTCs are inherently heterogeneous.

12.5.2 Enrichment Methods

Due to their rarity, most CTC isolation and detection tech-
niques are preceded by an initial enrichment step. The
enrichment step typically removes the majority of unwanted
hematopoietic cells from the sample and improves the rela-
tive concentration of CTCs. The enrichment includes a large
panel of technologies based on the different biochemical and
biophysical properties of CTCs compared with normal
hematopoietic cells. Biochemical properties generally
involve surface biochemical antigens of cells, allowing for
marker-labeling separation. Biophysical properties involve
cell size, density, shape, electrical polarizability, deforma-
bility, viscosity, or stiffness (associated with a different
cytoskeletal structure of cancer cells), allowing for bio-
physical label-free separation that may avoid the problem of
the epithelial antigen bias by existing biochemical methods.
Furthermore, due to no modification, cells isolated using
physical separation processes can be used for a wider range
of analyses, especially those requiring viable cells. Common
methods for sample enrichment include density gradient
centrifugation, red blood cell lysis, size-based filtration, and
positive or negative immunomagnetic separation.

12.5.2.1 Density Gradient Centrifugation
Based on the particular lower density of the tumor cells,
epithelial cells, platelets, and low-density leukocytes, these
cells of similar density can be separated from other leuko-
cytes and erythrocytes by using a density gradient medium.
Density gradient centrifugation is now used widely as an
enrichment step prior to detection method. To generate
density gradients, layer after layer of gradient media is
placed in a tube with the heaviest layer at the bottom and the
lightest at the top in either a discontinuous or continuous
mode. The cell fraction to be separated is placed on top of
the layer and then centrifuged. Common issues by this
method are the mixing of blood with the gradient medium
and the entrapment of CTCs within red blood cells (RBCs)
during the procedure, both of which may result in non-
specific loss of desired cells. Many efforts have been made to
improve the efficacy of the enrichment. For example, by
placing a porous membrane on top of the gradient media to
prevent the mixing, the issue of the mixing of blood with the
gradient medium has been partly addressed (e.g., Onco-
Quick®, Greiner BioOne, Frichenhausen, Germany).
Another variation of this method is enabled by RosetteSep™
(STEMCELL Tech., BC, Canada), which uses a mixture of
antibodies specifically crosslinking RBCs to each other and
to white blood cells (WBCs), resulting in the formation of
cell rosettes consisting of multiple RBCs and WBCs and
effective separation of CTCs from the higher density of these
clusters [215].

12.5.2.2 Microfiltration
Microfiltration methods permit smaller hematopoietic cells to
pass through pores of varying geometries but retain larger
CTCs. The microfilters can be categorized into three basic
types of structures: weir structures consisting of microchan-
nels with a sudden decrease in the channel cross section,
pillar structures consisting of an array of microposts spaced
appropriately to form constrictions to capture target cells, and
pore structures consisting of a membrane perforated with a
two-dimensional (2D) or three-dimensional (3D) array of
small holes. The fluid flow rate and the cross-sectional
opening of the constrictions are the key design parameters in
these microfilters. The combination of the two determines the
threshold size, shape, and deformability of target cells that
can be captured by the filter [96]. Isolation by size of
epithelial tumor cells (ISET) (RareCells, Paris, France)
through a polycarbonate membrane with calibrated pores
8 lm in diameter was developed as an early filter for the
isolation of tumor cells [186]. Currently, several commercial
microfilters with pore structures have been introduced,
including the ClearCell®, Rarecells®, and ScreenCell®

devices. However, since cell size varies considerably not just
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between different types of cancer, but also between different
cells of the same cancer, small CTCs can be lost during this
process. In particular, EMT-related CTCs may not be stiffer
than leukocytes and might therefore not be retained by these
filters. Furthermore, these microfilters have the potential for
clogging when large numbers of cells are processed, which
can cause unpredictable variations in flow rate and conse-
quently in the force applied to squeeze cells through each
constriction. Another problem of filtration is a possible
adsorption of cells onto the filter membrane, which leads to
difficultly detach for further analysis.

12.5.2.3 Immunological Enrichment
Immunological enrichment is usually achieved by magnetic
activated cell sorting (MACS), a method depending on
antibody-based capture with magnetically labeled antibod-
ies. MACS can be used for positive or negative enrichment
with the antibodies targeted against cell surface markers of
tumor cells or hematopoietic cells.

12.5.2.4 Positive Selection
Positive selection captures target cells by using antibodies
that bind to the surface of cells expressing specific antigens.
Among cell surface markers for positive selection, EpCAM
has been widely applicable to various different cancer types
[13, 76]. With immunomagnetically labeled EpCAM anti-
bodies, CTCs expressing EpCAM are positively enriched
from whole blood. Several techniques have been commer-
cially applied for positive enrichment, such as MagSweeper
[170] and AdnaTest (AdnaGen AG, Laggenhagen, Ger-
many) [10]. The CellSearch system (Veridex, LLC, Warren,
NJ, USA), an available technology approved by the US
Food and Drug Administration (FDA) for use in a clinical
setting, also immunomagnetically enriches cells expressing
EpCAM [118]. To circumvent the limitation that rare CTCs
are detected in a small amount of blood, GILUPI GmbH has
designed an EpCAM-coated wire (CellCollector™) to cap-
ture CTCs directly in vivo [154]. This medical wire is
positioned through a cannula into the peripheral arm vein of
a cancer patient. It is estimated that for a duration of 30 min,
up to 1.5 L of blood flows over the detector, thus increasing
the yield of detectable CTCs. However, isolation of CTCs
based on positive enrichment is limited to the targets chosen.
Using EpCAM as a target, only cells expressing EpCAM are
isolated, and CTCs that have undergone EMT and no longer
express EpCAM or expressing non-epithelial phenotypes are
not captured. Alternatively, negative enrichment targeting
hematopoietic cells could deplete all cells from blood sam-
ples, except CTCs, probably combating these obstacles.

12.5.2.5 Negative Enrichment
Negative selection is highly advisable as an unbiased
enrichment step prior to the detection analysis since it has

several other advantages including potential time/cost-
efficiency and improved sample yield and purity [13, 76,
211]. Depletion of CD45(+) leukocytes is a preferred
approach widely used to enrich CTCs lacking adequate
EpCAM expression. Using this approach, viable tumor cells
have been cultured [13, 131]. To improve the yield and to
displace unwanted erythrocytes, CD45 depletion is usually
combined with other label-independent methodologies such
as density gradient centrifugation or red blood cell lysis [76,
211]. However, both methods may lead to false-negative
results due to a loss of tumor cells. Another example of
negative enrichment is the RossetteSep (StemCell Tech-
nologies, Vancouver, BC, Canada), which uses a mixture of
antibodies specifically targeted against hematopoietic cells
and crosslinks unwanted cells in whole blood to multiple
RBCs and WBCs, forming cell rosettes and effective sepa-
ration of CTCs from the higher density of these clusters.
When centrifuged over a buoyant density medium such as
Ficoll-Paque, the formation of immunorosettes increases the
density of the unwanted cells and causes them to pellet along
with the free RBCs [42, 114]. The depletion procedure
probably leads to non-specific cell loss, and needs to be
performed carefully.

12.5.3 Detection Methods

Following enrichment, CTCs can be detected and molecu-
larly characterized by using nucleic acid or cytometric
techniques.

12.5.3.1 Nucleic Acid-Based Molecular
Detection

Many genomic techniques could be applied for analysis of
genetic alternation in isolated CTCs focusing either on DNA
level or on mRNA level, such as gene microarray for gene
expression profiling; comparative genomic hybridization
(CGH) or array CGH (aCGH) for whole genome screenings
for chromosomal gains at losses; fluorescence in situ
hybridization (FISH) for the presence or absence of specific
DNA sequences on chromosomes, known gene amplifica-
tions, mutations, deletion, copy number alterations, or chro-
mosomal abnormalities; single nucleotide polymorphisms
(SNP) chip for SNP combination patterns; microRNA array
for microRNA expression profiles; and methylation array for
genome-wide DNA methylation mapping. Among them,
FISH is currently proposed as a valid method for further
genotyping of isolated CTCs although it is labor-intensive,
and requires a high skill level [54, 92, 111, 130, 169].

Reverse transcription quantitative polymerase chain
reaction (RT-qPCR) can sensitively quantified nucleic acids
and has been commonly used to identify CTCs by analysis
of cell- or tissue-specific mRNA makers. The specificity of
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these assays for CTCs depends on the assumption that
normal tissue cells do not circulate, unless they become
tumorous. The mRNA markers usually used for the identi-
fication of CTCs from peripheral blood mononuclear cells
are the tumor-associated, organ-specific, or epithelial-
specific markers, such as cytokeratins (CKs) 19 and 20 for
colorectal cancer, prostate-specific antigen (PSA) for pros-
tate cancer, telomerase reverse transcriptase (TERT) for
gastric cancer, MUC-1 and human epidermal growth factor
receptor-2 (HER2) for breast cancer, carcinoembryonic
antigen (CEA) for colorectal cancer, and alpha-fetoprotein
(AFP) for primary liver cancer [76, 136, 211]. However, due
to its high sensitivity, RT-PCR may not be suitable for
analyzing CTCs in cell preparations with a high number of
contaminating non-target cells. Normal blood cells also
express many transcripts at low levels, so PCR-based assays
are required to validate cut-off values to overcome the
problem of false positives. Moreover, target transcripts might
be downregulated in CTCs, multiplex PCR targeting the
numerous tumor-associated mRNA transcripts favor over-
coming the problem of false negatives. Another limitation is
that once the cell is lysis and no longer viable, further
cell-based analysis such as enumeration, cell culture, or
sensitivity assays could not be performed.

12.5.3.2 Protein-Based Molecular Detection
Currently, the expression of epithelial markers (EpCAM,
CKs) and the absence of the leukocyte marker CD45 are
widely accepted as definition of CTCs. It has been applied to
the CellSearch system for enumeration of CTCs in blood of
patients with metastatic breast, colorectal, and prostate can-
cers [118]. The captured CTCs are stained with a combina-
tion of anti-CK8/18/19, anti-CD45 fluorescently conjugated
dyes, and the nuclear dye 4′,6-diamidino-2-phenylindole
(DAPI). Based on positive staining for CKs and DAPI,
negative staining for CD45, cell size, shape, and the
nucleus-plasma relation that might be disturbed by atypical
enlarged nuclei in CTCs, enumeration of rare CTCs is
accomplished by immunofluorescence [13, 118, 124]. In
addition, CTCs can also be defined based on the expression
of mesenchymal markers (e.g., vimentin), or stem cell
markers (e.g., CD133, CD44) [103, 139, 141]. Since CTCs
are detected by using immunofluorescence, enrichment and
purity only need to be good enough for the output cells to be
imaged and identified in a reasonable amount of time.
However, blood samples may contaminate epithelial cells,
and CTCs have undergone EMT and no longer express CKs,
CK-based immunocytochemistry methods therefore carry a
risk of false positive and false negative results.

12.5.3.3 Flow Cytometry
Another widely used cytometric technique for CTC detec-
tion is flow cytometry, which is based on fluorescence-

activated cell sorting (FACS). Because multiple parameters
can be simultaneously measured, flow cytometry separates
a specific population of cells with high purity. A limitation
to flow cytometry is throughput; since each cell must be
sorted individually, limited amount of cells can be ana-
lyzed. To address this issue, in vivo flow cytometry has
been investigated to detect and enumerate CTCs directly in
the bloodstream of murine cancer models [52, 62, 126], or
to monitor the dynamics of CTCs continuously. Since the
entire blood volume is potentially used as the specimen,
such methods have higher detection sensitivity. Fan et al.
[52] combined in vivo flow cytometry with a
green fluorescent protein (GFP)-transfected HCC ortho-
topic metastatic tumor model for real-time monitoring of
CTC dynamics. However, efficient in vivo labeling of
CTCs and potentially toxicity of fluorescence used to label
cells to human body remain the main challenges in this
approach.

12.5.4 Function-Based Detection

Function-based assays potentially specifically detect viable
CTCs and secreted proteins by CTCs. The epithelial
immunospot (EPISPOT) assay (University of Mountpellier,
Mountpellier, France), an adaptation of the enzyme-linked
immunospot assay (ELISPOT), is a functional cell culture
assay, allowing for counting CTCs by observation of
immunospots resulted from enough secreted specific marker
proteins (CKs, MUC1, PSA, etc.) after short-term culture
[4]. Another functional detection method is the collagen
adhesion matrix (CAM) assay. Based on the ability of tumor
cells to digest and invade into the connective tissue-like
material, the assay allows for a function separation of more
invasive and aggressive type of CTCs [105]. In this method,
whole blood is incubated in a special blood collection tube,
and CTCs adhere to the internal coating of CAM. After
non-adhered cells are washed away, CAM is then broken
down by collagenase treatment to release CTCs. TelomeS-
can (Oncolys BioPharma Inc., Tokyo, Japan), a telomerase-
specific replication-selective adenovirus expressing green
fluorescent protein, is used to infect and visually detect live
CTCs among millions of peripheral blood leukocytes [87].
The specificity is achieved by making adenovirus replication
only possible in the presence of telomerase activity, which
has been identified as a relevant marker of cancer cells.
These techniques allow a functional separation of viable,
protein-excreting, more aggressive CTCs without relying on
epithelial markers. In theory, viable cells have more clinical
relevance than apoptotic cells as they should still be capable
of forming metastases. Furthermore, these new techniques
may be especially used for drug development. However,
these function-based assays could not detect some CTCs
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because they may not survive during the transition from the
bloodstream to in vitro culture.

12.5.5 Combined Enrichment and Detection
of CTCs

In addition to the above-mentioned ISET, AdnaTest, Cell-
Search system, and EPISPOT, current assays combining
both enrichment and detection also include the Ariol system
(Leica Micorsystems, Bufalo Grove, IL, USA) and the
CTC-Chip. The Ariol system combines both image capture
and quantitative panel analysis [45]. Whole blood is first
lysed to remove RBCs, and the enriched cells are then
subjected to immunocytochemistry using the same detection
approach as the CellSearch system. CTC-Chips are based on
a unique microfluidic device with antibody-coated microp-
osts, which allow the mixing of blood cells through the
generation of microvortices to significantly increase
the number of target cell-surface interactions with the
antibody-coated chip surface under precisely controlled
laminar flow conditions [45, 60, 153]. Such an approach
enables selective and efficient capture of viable CTCs in a
single step from whole blood samples without the need for
an initial enrichment step. Several EpCAM-based micro-
fluidic chips have been tested for highly efficient capture of
CTCs. Furthermore, a number of versatile label-free micro-
fluidic biochips coupled with pinched flow dynamics have
been developed to effectively separate CTCs from both
epithelial and non-epithelial cancers via their distinctively
different physical properties such as deformability and size.
Another novel CTC-iChip combines a size-based filtration
with an affinity-based enrichment strategy by a series of the
tumor membrane epitope-dependent or independent steps,
thus enhancing the chance of systematic removal of
peripheral blood mononuclear cells (PBMCs) and RBCs,
and being applicable to isolate both EpCAM(+) and EpCAM
(−) CTCs virtually in all epithelial and non-epithelial cancers
[81, 129]. To date, however, many devices have been tested
only with simple, low complexity samples.

12.5.6 Drawbacks of Current Detection
Methods

Although many analytical techniques and approaches for
isolation, detection, and characterization of CTCs have been
developed in the past decades, no ideal method is currently
available. Each individual methodology has its own advan-
tages and disadvantages. By combining two methods, the
disadvantages can only be partially overcome. In spite of a
number of improvements, there are still many limitations for
the standardization, automation, quality control, and

accreditation of analytical methods that hinder the use of
CTCs in the clinical setting. Different isolation and detection
approaches may result in a substantial variability in the rates
of positive samples, even in the same patient [64, 182].
Since most current methods of CTCs, such as
EpCAM-based isolation methods and CK-based detection
methods, are based on epithelial markers, they cannot detect
CTCs with EMT phenotype and likely miss some of
aggressive CTCs with a non-epithelial phenotype. This
subtype of cells probably has experienced EMT and is more
capable of causing metastasis [13, 131, 211]. The bias
against such tumor cells can be corrected by using a
broad-spectrum specific cocktail of epithelial and mes-
enchymal markers on cell surface covering all potential
phenotypes of CTCs. This cocktail, however, would lead to
false-positive results because that could increase the chance
for cross-reaction of some of these markers with blood cells
and/or other circulating non-tumor cells [78, 108]. Addi-
tionally, CTCs from a single blood sample harbor different
genetic aberrations [61, 148], thus molecular characteriza-
tion of CTCs could provide clinicians with more information
beyond simple enumeration. Moreover, most of current
separation methods do not keep cells viable. Therefore, we
can see a great need to develop more gentle and compre-
hensive techniques for detecting all subtypes of CTCs and
keeping cells viable to be used for determination of their
metastatic potential. Finally, in order to evaluate their quality
and validity, all the analytical methodologies should be
validated in appropriately sized clinical trials.

12.6 Other Emerging Technologies
for the Analysis of CTCs

12.6.1 Single Cell Analysis

Advances in single-cell molecular analysis will enhance our
ability to explore mechanisms of metastasis. Sequencing
technology is a powerful tool for the analysis of specific
genomic aberrations, especially in the setting of cancer. With
regards to CTC analysis, sequencing tends to be applied more
frequently at the level of RNA; however, several studies have
also interrogated CTCs at the DNA level [10, 74, 118, 154]. In
general, for processing at the RNA level, total RNA or mRNA
is extracted from CTCs following enrichment. Isolated RNA
is then reverse transcribed into cDNA and PCR amplified
using primers that are specific to the mutant/target region.
Amplified mutations can be detected using either gel elec-
trophoresis for known length transcripts, and/or analyzed with
one of the several commercially available sequencing plat-
forms. For processing at the DNA level, instead, total DNA is
extracted from CTCs, whole genome amplified using
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commercially available kits, and subsequently amplified via
PCR using specific primers.

Sequencing techniques also have several marked disad-
vantages including: (1) limitations with regards to sensitivity
that make single cell analysis difficult, with many groups
reporting the need for a minimum of 50 or more CTCs for
adequate results [74, 114]; and (2) leukocyte contamination
and the inability to visually confirm the source of amplified
transcripts can lead to false positive/negative results. How-
ever, several groups have attempted to utilize single cell
micromanipulation (selecting for CTCs based on
immunofluorescent staining prior to the collection of
DNA/RNA) [10] and/or adapted PCR protocols (e.g., nested
PCR) [74] to combat these issues with promising results.

12.6.2 Culture of CTCs

Characterization of fixed CTCs provides relatively little data
about their metastatic potential and functional capability.
The option to isolate viable CTCs for genotyping and
functional characterization is a tremendous potential of
CTCs. Therefore, after isolation of CTCs by the different
methods, culture of CTCs is required for functional studies
such as drug sensitivity or resistance test, and for the prop-
agation of a larger pool of cells allowing for the performance
of genomic and correlative work. Another intriguing possi-
bility is the ex vivo manipulation of CTCs for cellular
therapy of cancer. Theoretically, if enough CTCs could be
expanded, we could use them to develop personalized cancer
immunotherapy. To this end, improved methods including
specific culture media and appropriate culturing conditions
for the growth of unmanipulated CTCs, but not for the other
epithelial or non-epithelial cells, have to be developed
through experiments. However, culture of CTCs is a much
more complex procedure than culture of primary tumor cells
from a primary tumor or from another cell population, and
mimicry of the tumor microenvironment in vitro is particu-
larly difficult. In addition to a very limited number, CTCs are
not relatively protected from cell death and the harsh envi-
ronment and shear stresses of the vascular circulation, and
can lose their derive and original markers. So the develop-
ment of technologies for CTC culture is highly challenging
and extremely promising.

Currently, primary CTCs isolated from blood samples of
cancer patients on different platforms are expandable in vitro
[36, 71, 135]. Paris et al. [135] have shown that isolated
CTCs from patients with prostate cancer can be expanded in
culture for up to 14 days. Similar work has been conducted
with CTCs isolated from lung cancer, breast cancer, and
urinary bladder cancer patients [36, 71].

Recently, several studies have introduced newmethods for
in vitro cultivation ofCTCs frompatientswith various types of
cancer. In a proof-of-concept study [36, 71, 207], CTCs from
patients with metastatic breast cancer proliferated best as
tumor spheres when cultured in serum-free media supple-
mented with epidermal growth factor (EGF) and basic
fibroblast growth factor (bFGF) under hypoxic conditions.
The proliferation of cultured CTCs as non-adherent spheres
appeared to be critical for establishment of long-term oligo-
clonal CTC cultures, which could be sustained in vitro for
more than 6 months, and were tumorigenic in mice. Cayre-
fourcq et al. [35] have established a permanent cell line from
CTCs of one patient with colon cancer. This cell line induces
in vivo tumors after xenografting in immunodeficient mice,
resembles characteristics of the original tumor cells in the
patient with colon cancer, and displays a stable phenotype
characterized by an intermediate epithelial/mesenchymal
phenotype, stem cell-like properties, and an osteomimetic
signature, indicating a bone marrow origin. As for HCC, we
recently used a 3D cancer model (spheroid formation on
Matrigel culture) for drug evaluation to assess the sensitivity
of isolated HCC CTCs to sorafenib, a multitargeted,
small-molecule tyrosine kinase inhibitor approved for the
treatment of advanced HCC [94].

Cancer cell therapy has a promising future, which is
largely dependent on tumor antigens. Another intriguing
possibility is the ex vivo manipulation of CTCs for cellular
therapy of cancer. The rate-limiting step in this approach is
the low yield associated with many CTC platforms. In the-
ory, if enough CTCs could be obtained and expanded, they
could be used as a platform for the development of per-
sonalized tumor immunotherapy.

12.6.3 Experimental Models for CTCs

Over decades, different mouse tumor models have been
developed. CTCs were looked for in some of these animal
models. Taking HCC for an example, an experimental model
of human orthotopic HCC transplantation in immunodeficient
mice allows the continuous generation of CTCs [155, 156].
During tumor development, tumor cell spreading is an early
event. The number of CTCs was correlated with the tumor
size, and decreased dramatically after resection of the tumor
[47, 180]. Similar work has been performed by Fan et al. [52].
In the orthotopic HCC model, CTC dynamics were correlated
with tumor growth, the number and size of distant metastases
correspond to CTC dynamics, and the number of CTCs and
early metastases decreased significantly after the resection.

However, these studies used cell lines to develop mouse
tumor models, and may not entirely unravel some aspects of
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CTC biology. Alternatively, xenotransplantation of primary
CTCs into immunodeficient mice is an active area of
research, because the use of xenograft models may gain
further insights into the biology of CTC release and may test
responses to newly designed therapies. In small cell lung
cancer, captured CTCs from blood of patients grew into
tumors after transplanted subcutaneously into immune-
compromised mice. These tumors histologically resemble
the primary malignancy, and mirror the donor patient’s
response to chemotherapy [65]. In a study by Yang et al.
[205, 206], CD90(+)CD45(−) cells from blood samples of
HCC patients generated tumor nodules in immunodeficient
mice. Serial transplantation of CD90(+) cells from tumor
xenografts generated tumor nodules in a second and subse-
quently a third batch of immunodeficient mice. In another
study by Sun et al. [168], after three months following
xenotransplantation, 50 % of the mice injected with EpCAM
(−)CD45(−) cells isolated from blood of HCC patients
developed subcutaneous nodules, while none developed
from EpCAM(−)CD45(−) cells.

12.7 Advances in Detection
and Molecular
Characterization of CTCs
in HCC Patients

12.7.1 Detection of CTCs in HCC Patients

It was initially suspected that recurrence and metastasis
following the treatment of HCC was caused by incomplete
surgical resection, and therefore expanded radical resections
were employed. However, this approach was generally
unsuccessful, leading to new hypotheses that either the
intrahepatic dissemination of tumor cells through the portal
vein branches or de novo tumorigenesis are the cause. Yet,
these hypotheses fail to explain why early tumor recurrences
commonly occur at the site of transplanted allograft in cases
of liver transplantation [115], and thus CTCs as an alterna-
tive source of tumorigenic tissue were proposed.

By using PCR-based method for detection of liver-
specific or tumor-associated gene expressions in peripheral
blood mononuclear cells, HCC CTCs have been demon-
strated to be present in circulating peripheral blood. These
gene mRNA markers include AFP, albumin, TERT, Snail,
and insulin-like growth factor-binding protein 1 (IGFBP1)
[119, 128, 136, 187]. Among them, only AFP is a
well-established HCC marker [210]. However, AFP is not a
HCC-specific marker, and a large percentage of HCC cases
are negative for AFP [210]. Microfilters were also used for
CTC detection in patients with HCC [186], and enabled
visualization and counting of liver-derived tumor cells and
microemboli. By using the ISET technique, for example,

Vona et al. [186] identified � 1 CTCs/7.5 mL blood in 23 of
44 (52 %) patients, with a range of 3–33 CTCs/7.5 mL
blood, and Morris et al. [122] also identified � 1
CTC/7.5 mL blood in 19 of 19 (100 %) samples, with a
range of 13–158 CTCs/7.5 mL blood.

As mentioned, EpCAM-based methods have been widely
applicable to detection of CTCs in various different cancer
types. Robust evidence revealed that the patterns of EpCAM
expression in the liver are different from that in other
epithelial organs although the liver is also an epithelial
organ, and contains two major differentiated cell types: the
hepatocyte and the bile ductule cell. In the embryonic liver,
EpCAM is expressed in the majority of hepatocytes, while in
the adult liver, EpCAM is expressed only in bile duct
epithelium, but not in hepatocytes [44, 157]. In the cirrhotic
liver, EpCAM is expressed in proliferating bile ductules
derived from hepatic progenitor cells [44]. EpCAM is also
expressed in both hepatic stem cells and fetal hepatoblast
cells [157]. In liver neoplasia, almost all cholangiocarcino-
mas express EpCAM, whereas only a small percentage of
HCC cases are positive for EpCAM [44, 143, 144, 194].
These observations definitely suggest that EpCAM-based
strategies, including the CellSearch system, will miss most
HCC CTCs. Consistent with these results, indeed, the low
number of CTCs was generally detected in patients with
HCC using the CellSearch system. For instance, in 7.5 mL
blood, Sun et al. [168] detected � 2 CTCs (range, 1–34
CTCs) in 41 % (51/123) preoperative HCC patients, Schulze
et al. [158] detected � 1 CTC (range, 1–5 CTCs) in 31 %
(18/59) patients with HCC across a range of disease stages,
and Morris et al. [122] detected � 1 CTC in 28 % (14/50)
patients (range, 1–8 CTCs). In contrast, a parallel test using
the ISET technique conducted by Morris et al. detected � 1
CTC in 100 % (19/19) samples (range, 13–158 CTCs),
indicating as anticipated poor concordance between EpCAM
(+) CTCs and HCC CTCs. Collectively, EpCAM-based
strategies are not unsuitable for detection of CTCs in HCC
patients, and it is required to develop a special method to
capture CTCs in HCC patients.

It has been known that the asialoglycoprotein receptor
(ASGPR) is an abundant transmembrane receptor exclusively
expressed on the surface of hepatocytes, and can recognizes
and internalize glycoproteins that have exposed terminal
galactose and N-acetylgalactosamine residues [11, 164]. By
using glycosylated macromolecules as vehicles to be selec-
tively recognized by ASGPR, liver-targeting systems for
genes and drugs have been developed [138, 172, 188, 190].
Therefore, we developed a unique method to magnetically
separate CTCs in HCC patients, mediated by the interaction
of the ASGPR with its ligand or antibody [93, 200]. Briefly,
following an initial step of density gradient centrifugation for
whole blood, enriched HCC cells were captured by biotiny-
lated asialofetuin, an ASGPR ligand, and subsequently
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labeled by anti-biotin antibody-coated magnetic beads (a
ligand-receptor binding assay) or captured by ASGPR anti-
body (an antibody-antigen binding assay). The isolated HCC
cells by magnetic separation were then identified by
immunofluorescence staining by using the hepatocyte-
specific antibody Hep Par 1 or CKs or their combination.
Given the generally accepted absence of normal hepatocytes
in circulation, blood cells labeled with the ASGPR ligand or
antibody are thus considered to be circulating HCC cells. The
ligand-receptor binding assay has an advantage that captured
CTCs are alive and could be readily released with
ethylene diamine tetraacetic acid (EDTA) from biotinylated
ligand, allowing their culture for functional studies or single
cell sequence. However, it has its own limitations:
(1) Because the reaction is dependent on calcium ions, only
heparin but not EDTA and sodium citrate can be used as
anticoagulants for the blood sample. Addition of heparin was
reported to cause gelling of cell suspensions in the purifica-
tion of lymphocytes [7]. During the process of magnetic
separation, due to gel formation, mononuclear cell suspen-
sions from whole blood in heparin may slowly flow over a
magnetic separator, probably affecting CTC separation effi-
ciency. (2) The CTCs must be alive for the ligand-receptor
binding assay, which requires more rigorous methods to
properly collect, preserve, transport, and process specimens.
(3) Various microenvironmental factors may change cell
surface receptor activity. For example, calcium could induce
a conformational change in the ligand binding domain of the
receptor, and pH may regulate receptor function by altering
the amount of calcium bound to the receptor [46, 197, 214].
Alternatively, these disadvantages could be avoided or
reduced by the antibody–antigen binding assay.

We detected CTCs in blood samples from 85 HCC
patients at various clinical stages by using the ligand-
receptor binding-based approach [200]. CTCs were detected
in 69 of 85 (81 %) HCC patients, even in those at early stage
or with a tumor size < 2 cm. The number of CTCs detected
ranged 0–125/5 mL, with an average of 19 ± 24 (mean ±

SD). Either the positivity rate or the number of CTCs in
patients with portal vein tumor thrombus (PVTT) was higher
than that in patients without PVTT (Ps < 0.001), suggesting
PVTT as an active source of systemic spread of CTCs.
Furthermore, either the positivity rate or the number of
CTCs was highly correlated with tumor-node-metastasis
(TNM) staging, ranging from 66 % in stage I to 100 % in
stage IV (P = 0.003), and from 3 ± 4 in stage I to 67 ± 35
in stage IV (P < 0.001), respectively. Both the positivity rate
and the number of CTCs in patients beyond Milan criteria
were higher than those in patients with in Milan criteria
(Ps < 0.01), a most widely used criteria for the selection of
candidates for liver transplantation [113], suggesting that

detection of CTCs may have potential applications in
selecting HCC patients for liver transplantation. Finally,
both the positivity rate and the number of CTCs were also
correlated with Edmondson-Steiner grading (Ps < 0.05), an
authorized and extensively used histological classification
[213]. Later, Li et al. [95] used the same method to detect
CTCs in the peripheral blood obtained from 60 HCC
patients, and confirmed our above-mentioned results. Fur-
thermore, 31 HCC patients who received resection of liver
cancer or hepatic artery chemoembolization were followed
up for a minimum of 1 year, and the patients with CTC
positive had a significantly higher rate of recurrence or
metastasis (88.0 %) and a significantly higher rate of mor-
tality (64.0 %) than the patients with CTC negative (16.7 %,
P = 0.002; and 0.0 %, P = 0.007). Therefore, the authors
suggest that CTCs may be used as a valid indicator to
evaluate the progression and prognosis of HCC.

However, ASGPR-based capture strategy does not detect
HCC CTCs that lack expression of ASGPR because the
expression of ASGPR is heterogeneous in human HCC, and
not all HCC tissues and human liver cancer cell lines express
ASGPR [73, 161, 179]. We recently improved the detection
method of HCC CTCs, which involves an initial depletion of
CD45(+) leukocytes from the sample, followed by detection
of CTCs with a combination of two antibodies against
liver-specific markers, ASGPR, and carbamoyl phosphate
synthetase 1 (CPS1) (Fig. 12.2) [99].

CPS1 is a mitochondrial urea cycle enzyme, a newly
identified protein for Hep Par 1 [32]. Due to its detection
only in hepatocytes, Hep Par 1 stain is commonly used as
definitive proof of the hepatocellular origin of neoplasms in
diagnostic surgical pathology. However, heterogeneous
expression of CPS1 was also found in human HCC [93, 97,
99, 162, 175, 188, 190]. For example, Timek et al. [175]
reported that 17/18 small tissue biopsy specimens of HCC
were positive for Hep Par 1, but only 19/29 fine-needle
aspiration biopsy specimens were positive. To increase
detection of cells that may express only one of the two
markers, we used an antibody cocktail against liver-specific
antigens (ASGPR and CPS1). This method was specific for
HCC CTCs, since other types of cancer cells such as breast
cancer cells were not detected. The results showed that the
improved system detected a higher count of CTCs in almost
all patients examined than did the previous system [99],
indicating that our previous methods underestimated
HCC CTC population. Collectively, negative depletion
enrichment combined with identification using a mixture of
two antibodies against ASGPR and CPS1 not only increases
sensitivity for CTC enrichment, but also provides high
specificity for CTC detection in HCC patients, thereby
minimizing false negative/positive results.
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12.7.2 Detection of So-Called “CCSCs”
in HCC Patients

Accumulating research suggests that human cancers contain
a small population of self-renewing cancer stem cells (CSCs)
or CICs, which are proposed to be responsible for tumor
origin, maintenance, and resistance to treatment. CSCs may
disseminate from the primary tumor to distant sites
through the circulatory system. Moreover, during EMT,
CTCs seem to acquire more aggressive and stem-like traits,
and have an increased ability to migrate into the bloodstream
and display more resistance to anoikis [2, 208]. Thus, CTCs
may contain a minor subset of CCSCs.

Over the past few years, several groups have made an
effort to examine the existence of CCSCs in HCC patients by
detecting CSC markers in CTCs, and assess their clinical
relevance. For example, based on the suggestion that CD90
and CD44 are potential markers for CSCs, a research team
detected circulating CD90(+)CD45(−) cells and circulating
CD90(+)CD44(+)CD45(−) cells in HCC patients by using
flow cytometry [51, 205, 206]. CD90(+)CD45(−) cells were
detected in more than 90 % of blood samples from HCC
patients but none from normal subjects or patients with
cirrhosis [97, 205, 206]. The number of circulating CD90(+)
CD45(−) cells was significantly positive related with that of
CD90(+)CD45(−) cells [205, 206]. Later, the same group

Fig. 12.2 Improved detection of circulating tumor cells (CTCs) from
patients with hepatocellular carcinoma (HCC). Immunofluorescence
staining of CTCs (white arrow) detected in blood from HCC patients
with antibodies against asialoglycoprotein receptor (ASPGR) and/or

carbamoyl phosphate synthetase 1 (CSP1) (red), and CD45 (green)
with nuclear DAPI staining (blue) (magnification �400). Reproduced
from Liu et al. [99]. Permission from American Association for Cancer
Research
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conducted a prospective follow-up study [51] on 82 HCC
patients who underwent partial hepatectomy for HCC, and
whose blood was collected on the day before the operation.
The results showed that after a median follow-up period of
13.2 months (range, 1.3–57.1 months), 41 patients (50 %)
had recurrence. Compared to patients without recurrence,
patients with recurrence had a higher median level of CCSCs
(0.02 % vs. 0.01 %). CCSCs > 0.01 % could predict both
intrahepatic and extrahepatic recurrence. Compared to
patients with � 0.01 % CCSCs, patients with > 0.01 %
CCSCs had a lower two-year recurrence-free survival rate
(22.7 % vs. 64.2 %) and overall survival rate (58.5 % vs.
94.1 %). On multivariable analysis, CCSCs > 0.01 %,
tumor size, and tumor stage were all independent factors for
prediction of recurrence-free survival. The authors con-
cluded that CCSCs could accurately predict recurrence in
posthepatectomy HCC patients [51]. Recently, Bahnassy
et al. [16] also used flow cytometry to enumerate circulating
CD90(+) cells, and suggested their important roles in the
development and progression of hepatitis C virus (HCV)-
associated HCC. Similar work on EpCAM(+) CTCs in HCC
patients has been reported by Sun et al. [168].

As mentioned, EpCAM-based strategies are not unsuit-
able for detection of CTCs in HCC patients. Interestingly,
EpCAM has been identified as a potential marker of liver
CSCs [201], that stands in sharp contrast to that found in
other types of the epithelial cancers [15], where CSCs or
CTCs may downregulate EpCAM due to EMT [2, 23, 76,
131]. Consequently, EpCAM(+) HCC cells has been pro-
posed to be tumor initiating cells with stem/progenitor cell
features. Therefore, another approach to study of CCSCs in
HCC patients is to detect EpCAM(+) CTCs in peripheral
blood from HCC patients using the CellSearch system. Sun
et al. [168] investigated the prognostic significance of
EpCAM(+) CTCs in 123 HCC patients undergoing curative
resection. CTCs in 7.5 mL of blood were present in 66.67 %
of patients, with the cell counts ranged from 1–34. 51 pa-
tients had � 2 CTCs preoperatively, and these patients
developed tumor recurrence earlier than those with < 2
CTCs (P < 0.001). A preoperative CTC count of � 2 was
an independent prognostic factor for tumor recurrence
(P < 0.001). On 1 month after resection, CTC-positive rates
and CTC counts were significantly decreased (66.67 % vs.
28.15 % and 2.60 ± 0.43 vs. 1.00 ± 0.36, Ps < 0.05).
Patients with consistent CTCs < 2 had lower recurrence
rates than those with � 2 CTCs (15.5 % vs. 87.50 %,
P < 0.001). These results indicate that a preoperative CTC
count of � 2 is an independent predictor for recurrence in
HCC patients after surgery. EpCAM(+) CTCs may serve as
a real-time parameter for monitoring treatment response and
a therapeutic target in HCC recurrence. The same group [58]
later used qRT-PCR for detection of EpCAM mRNA in
peripheral blood mononuclear cells from HCC patients, as

determined by 76.7 % consistency with the CellSearch
system, and further suggested prognostic significance of
pretreatment CTC level in HCC patients treated with cura-
tive resection, transcatheter arterial chemoembolization
(TACE), and radiotherapy (Ps < 0.050). Coincidentally,
Huang et al. [69] recently demonstrated CTC counts mea-
sured by the CellSearch system as an important prognostic
parameter for postoperative TACE on HCC recurrence.

Almost at the same time, Schulz et al. [158] also used the
CellSearch system to investigate the prognostic relevance of
EpCAM(+) CTCs in 59 patients with HCC. 18/59 (30.5 %)
HCC patients had � 1 CTC/7.5 mL, and 9/18 (50.0 %)
CTC-positive HCC patients had > 1 CTC = 7.5 mL. The
CTC-positive cohort had a significant shorter overall survival
(460 vs. 746 days) (P = 0.017). At various Barcelona clinic
liver cancer (BCLC) stages, CTC detection rates were sig-
nificantly different: BCLC stages A 1/9, B 6/31, and C 11/19
(P = 0.006). 10/18 patients (55.6 %) with macroscopic vas-
cular invasion and 10/16 patients (62.5 %) with microscopic
vascular invasion exhibitedCTC-positive findings (P = 0.004
and P = 0.006). These data also demonstrate frequent pres-
ence of EpCAM(+) CTCs in patients with advanced HCC and
its prognostic value in terms of overall survival.

With the same purpose, Kelley et al. [83] recently used
the CellSearch system to enumerate circulating EpCAM(+)
epithelial cells in metastatic HCC patients. EpCAM(+)
CTCs � 2 were detected in 7/20 HCC (35 %), and
CTCs � 1 was significantly associated with high alpha-
fetoprotein (P = 0.008) and the presence of vascular inva-
sion (P = 0.009). Their findings corroborated the prognostic
value of circulating EpCAM(+) CTCs in the previous studies
[158, 168], supporting CTCs as a poor prognostic factor in
metastatic HCC.

12.7.3 Molecular Characterization of CTCs
in HCC Patients

Since CTCs are considered as direct triggers of cancer
adaption, the current operative CTC definition becomes
inadequate. Addition of stemness or EMT markers to criteria
of CTC positivity seems to improve their biological rele-
vance. To date, several studies have reported the feasibility
of molecular profiling of isolated CTCs in HCC.

The Wnt/beta-catenin pathway is involved in the patho-
genesis of HCC, and a significant subset of HCC has point
mutations or deletions in the beta-catenin gene [140].
By DNA sequence analysis of the PCR product, Vona et al.
[186] examined genetic mutations of beta-catenin exon 3 in
60 single CTCs and microemboli isolated from blood of 10
HCC patients, and found that two CTCs and one microem-
boli derived from three different patients had a beta-catenin
mutation. These results suggested that cells carrying a beta-
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catenin gene mutation were not specifically selected in CTCs
spread from the primary liver tumor.

The functions of TP53 gene, one of the most famous
tumor suppressor genes, plays a central role in regulation of
apoptosis and cell growth via mediating transcriptional
activation of crucial growth regulatory gene. TP53 or its
upstream/downstream pathways are frequently inactivated in
almost all types of cancers, including HCC [26]. HER2/neu
(erbB-2), one of the most famous oncogenes, encodes a
receptor-like tyrosine kinase, p185HER2, that has been
extensively investigated because of its potent oncogenic
activity in several human carcinomas when overexpressed
[149]. Trastuzumab, a monoclonal antibody against HER2,
has become an important therapeutic option for patients with
HER2 amplification [149]. By FISH using probes for HER2
and TP53 genes, and centromere sequence for chromosome
17, that contains HER2 and TP53, we analyzed both HER2
and TP53 in HCC CTCs isolated from 11 patients with five
or more CTC counts [200]. The results (Fig. 12.3) showed
that six patients (6/11) had TP53 gene deletion, and 2
patients had chromosome 17 gain in apparent triploid
background, both with biallelic deletion of TP53; two
patients had HER2 amplification, both having more than 50
of CTC counts. Among six patients with TP53 gene dele-
tion, one had HER2 amplification. These genetic abnor-
malities were not detected in CTC samples from four

patients. The results suggest that CTCs from various HCC
patients or even from one HCC patient possess different
genetic characteristics, and analysis of HER2 in CTCs may
have a potential in selecting patients for treatment with
anti-HER2 mAb because of a frequency of amplification for
HER2 in CTCs.

In another study by Li et al. [95], triple-
immunofluorescence staining was performed to examine
the existence of EMT in CTCs from 46 patients with HCC,
and their clinical relevance was analyzed. The expression of
ZEB1, ZEB2, and snail could also be partially detected in
CTCs, and E-cadherin and slug expression was absent in all
CTCs. Of the 46 patients, 39 (84.8 %) had twist expression in
CTCs, 37 (80.4 %) had vimentin expression, and 32
(69.6 %) had both coexpression. Either twist or vimentin
expression in CTCs was significantly correlated with PVTT
and TNM staging, vimentin expression in CTCs was signif-
icantly correlated with tumor size, and coexpression of both
was highly correlated with PVTT, TNM staging, and tumor
size. The results suggest that twist and vimentin expression in
CTCs may serve as promising biomarkers for evaluating
metastasis and prognosis in HCC patients.

Nel et al. [127] also used multi-immunofluorescence
staining to detect CTCs with expression of mesenchymal
markers such as vimentin and N-cadherin, and analyze their
relationship with survival in HCC patients. The patients with

Fig. 12.3 Fluorescence in situ hybridization (FISH) on CTCs from
patients with hepatocellular carcinoma. a The normal FISH signals in a
CTC from patient 2 compared with the normal leukocyte from the same
sample. HER2 (red), TP53 (orange), and the reference 17 centromere
probe (green) are all present in 2 copies. b Monoallelic deletion of
TP53 seen as a single orange signal, with other probes showing normal

copy number in this cell. c HER2 amplification in a CTC from patient 8
with normal signals of both TP53 and chromosome 17. d Biallelic
deletion of TP53 and chromosome 17 gain (3 copies) are present in
patient 11, with 4 orange signals of HER2 and a HER2/CEP 17 ratio of
1.3. Reproduced from Xu et al. [200]. Permission from Baishideng
Publishing Group Inc
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a vimentin(+)/CK(+) ratio of > 0.5 had a longer median TTP
(1 vs. 15 months; P = 0.03) whereas the patients with a
N-cadherin(+)/CK(+) ratio of < 0.1 had a shorter TTP (1 vs.
15 months; P = 0.03), suggesting a significant correlation
between the shift from mesenchymal to epithelial cell pro-
files and shortened TTP in HCC patients.

Next-generation sequencing technologies can now
sequence very small amounts of input DNA with high
accuracy. Kelley et al. [83] performed targeted ion semi-
conductor sequencing on whole genome-amplified DNA
from CTCs, PBMCs, and tumor specimens in HCC patients,
and identified 86 variants overall from all of the CTC and
tumor samples combined. Approximately 54 % variants
were low-frequency, among which 93 % were from CTC
samples (P < 0.001). Characteristic mutations in cancer
(TP53, PTEN) were detected in CTC-derived DNA from two
HCC cases. In one HCC case with matched CTCs, PBMCs,
and tumor DNA, 8 SNPs were present and concordant in
both PBMCs and tumor DNA; 5 of these (63 %) were
identified in the CTC DNA.

Sorafenib is a multitargeted drug with multiple antitumor
effects, and can improve the survival of patients with
advanced HCC. However, not all patients respond equally
well to sorafenib, and the response rate is relatively low [22,
33]. A number of studies have indicated that the inactivation
of Ras/Raf/extracellular signal-regulated kinase (ERK) path-
way and the activation of the phosphoinositide 3-kinase
(PI3K)/protein kinase B (Akt)/mammalian target of rapa-
mycin (mTOR) pathway play a critical role in the resistance
to sorafenib [33]. Recently, we investigated if phosphory-
lated ERK (pERK)/pAkt phenotyping of CTCs (Fig. 12.4)
can be used as a biomarker to provide predictive information
on response to sorafenib therapy [94]. After two weeks of
sorafenib treatment, the counts of CTCs exhibited a shaper
decline in patients with pERK(+)/pAkt(−) CTCs (P < 0.01).
Disease control rates were significantly different between
patients with pERK(+)/pAkt(−) CTCs (73.3 %) and those
without (29.5 %) (P < 0.05). Univariate and multivariate
analysis showed pERK(+)/pAkt(−) CTCs as an independent
predictive factor of progression-free survival (PFS) (hazard
ratio = 9.389; P < 0.01). PFS correlated with the proportion
of pERK(+)/pAkt(−) CTCs (r = 0.968, P < 0.01), and was
higher in patients with � 40 % pERK(+)/pAkt(−) CTCs
compared to those with < 40 % (8.4 vs. 1.3 months;
P < 0.05) (Fig. 12.5). In a validation set of 20 HCC patients,
CTCs from patients with � 40 % pERK(+)/pAkt(−) CTCs
had significantly higher inhibition rates of spheroid forma-
tion compared to those with < 40 % (61.2 vs. 19.8 %;
P < 0.01) (Fig. 12.6). These finding suggested that in HCC
patients treated with sorafenib, pERK(+)/pAkt(−) CTCs are
most sensitive to sorafenib and an independent predictive
factor of PFS.

12.8 Targeting of HCC CTCs
for Prevention
of Postoperative Recurrence
and Metastasis

The current curative therapies for HCC are limited to the
surgical removal of tumors or liver transplantation. How-
ever, postoperative recurrence and metastasis are common
complications [27–30, 50, 106, 112, 113, 123, 146]. Many
studies have associated the presence of either preoperative or
postoperative CTCs with an increased risk for HCC recur-
rence, and CTCs are increasingly recognized as the main
source [178, 209, 211, 212]. Clinicians must therefore be
aware of this when treating patients with HCC and should
collaborate with other researchers to develop and employ
novel therapeutic techniques that target HCC CTCs in dif-
ferent stages throughout the course of treatment to prevent
and reduce the postoperative recurrence and metastasis. To
this end, a personalized, comprehensive, and multidisci-
plinary strategy should be considered [209, 212].

12.8.1 CTCs as an Indication for Curative
Surgery in HCC

Aside from the contraindication of extrahepatic metastasis,
no uniform screening criterion has been established for
surgical resection. Based on tumor size, nodule number, and
degree of vascular invasion, HCC patients are selected for
liver transplantation. Because these criteria cannot accurately
define the rational distribution of the donor liver and predict
the prognosis of the patient, there is controversy over which
of these are most appropriate and feasible [113]. It is
therefore necessary to incorporate more objective and reli-
able laboratory indexes beyond the clinicopathologic criteria
for HCC. If a high preoperative level of CTCs can predict
the true benefit of curative treatment and a prognosis, it may
prove to be a reasonable candidate index for surgical indi-
cations. To this end, intensive cooperation among worldwide
leaders in this field should be encouraged to verify whether
CTCs can be used as an objective indicator or contraindi-
cation for curative hepatectomy, as well as to reach a con-
sensus on assays and result reporting.

12.8.2 Reduction of Basal CTC Levels
with Preoperative Neoadjuvant
Therapy

Early detection of metastatic spread provides an opportunity
for perioperative administration of therapeutic agents.
However, due to the underlying liver disease present in
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almost all patients and the insensitivity of HCC cells to
chemotherapy drugs, adjuvant therapy in HCC represents a
great challenge, and thereby currently is no standard of care

for preoperative neoadjuvant therapy [29, 50, 146]. Sor-
afenib, as a multikinase inhibitor for treatment of advanced
HCC, has provided promising results. Some of clinical

Fig. 12.4 Detection of phosphorylated extracellular signal-regulated
kinase (pERK) and protein kinase B (pAkt) in circulating tumor cells
(CTCs) of hepatocellular carcinoma (HCC). A CTCs stained for
pan-cytokeratin (P-CK) (yellow), pERK (green), pAkt (red), and
contained with 4′,6-diamidino-2-phenylindole (DAPI) (blue)

(magnification �400). B Coexistence of CTCs with various patterns
of pERK/pAkt in the same field of view detected by multicolor
immunofluorescence staining (magnification �200). a pERK(+)/pAkt
(+); b pERK(+)/pAkt(−); c pERK(−)/pAkt(+); d pERK(−)/pAkt(−).
Reproduced from Li et al. [94]
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studies indicate that as a preoperative neoadjuvant therapy,
sorafenib was shown to downstage HCC, likely providing
opportunities for curative treatment [17, 75, 196]. For HCC
patients waiting for liver transplantation, sorafenib is
cost-effective [184]. We recently investigated the effect of
sorafenib on CTC levels, and found that all patients showed
a decrease in CTC counts after two weeks of sorafenib
monotherapy [94]. Since the risk of postoperative recurrence
increases with the level of preoperative CTCs, preoperative
neoadjuvant therapy for elimination of CTCs could theo-
retically reduce the risk. Therefore, clinical studies on sor-
afenib and other neoadjuvant therapies preoperatively

targeting CTCs are needed to evaluate their effects on the
risk of postoperative recurrence and metastasis.

12.8.3 Proper Surgical Techniques
for Minimizing
the Intraoperative Release
of CTCs

An important principle of surgical oncology is that preven-
tion of postoperative recurrence and metastasis requires
eliminating iatrogenic tumor cell seeding during the surgical

Fig. 12.5 Phosphorylated extracellular signal-regulated kinase
(pERK)(+)/protein kinase B (pAkt)(−)/total circulating tumor cells
(CTCs) [pERK(+)/pAkt(−)/CTCs] as a potential predictive factor of
patients with (HCC) receiving sorafenib therapy. a Progression-free
survival after sorafenib treatment in patients (n = 15) according to

pERK(+)/pAkt(−)/CTCs. b Progression-free survival in patients with
� 40 % (n = 10) or < 40 % (n = 5) of CTCs identified as pERK(+)/
pAkt(−), and those without pERK(+)/pAkt(−) CTCs (n = 44). c Sur-
vival curves of patients with � 40 % (n = 10) or < 40 % (n = 49) of
CTCs identified as pERK(+)/pAkt(−). Reproduced from Li et al. [94]
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operation, when cancer cells are more easily found in sur-
rounding blood circulations, especially in the venous blood
from the tumor. As a result, a preoperative absence of CTCs
can be converted into a postoperative presence. Improper
surgical manipulation such as squeezing or traction of the
liver tumor may promote the dissemination of cancer cell
into the blood circulation. For example, due to moving the

liver, the conventional posterior approach to hepatic lobec-
tomy likely results in squeezing of the liver and the release
of cancer cell. By contrast, the anterior approach to a right
hepatic lobectomy, without lifting and squeezing of the liver
likely reduces or avoids the release of CTCs. This free-tumor
technique was first devised by Lai et al. [89] and later
modified by Belghiti et al. [20], thereby developing the liver

Fig. 12.6 Sensitivity of
circulating tumor cells (CTCs) to
sorafenib. CTCs isolated from
patients with hepatocellular
carcinoma (HCC) (n = 20) were
tested by spheroid formation
assay. a CTCs from two patients
formed spheroids at day 7 in
culture with or without sorafenib.
b Formation of spheroids of
CTCs treated with or without
sorafenib. c Spheroid formation
inhibition rates from patients with
� 40 % or < 40 % of CTCs
identified as pERK(+)/pAkt(−).
Reproduced from Li et al. [94]
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hanging maneuver for hemihepatectomy. Retrospective or
prospective studies have demonstrated that this surgical
modality is a practical and can effectively reduce postoper-
ative recurrence [77, 198]. Likewise, during liver trans-
plantation, the “no-touch” technique should also be
advocated for removal of the diseased liver. In a word,
surgical oncologists should avoid any improper surgical
procedures and minimize hematogenous metastasis of cancer
cells during surgery.

12.8.4 Postoperative Adjuvant Therapy
for Elimination of Residual CTCs

The results of studies on CTC dynamics in orthotopic HCC
models revealed that the numbers of CTCs and early
metastases decrease significantly after resection [52, 155,
156], and clinical studies also indicated similar results [16,
51, 58, 95, 158, 168, 200]. However, radical hepatectomy or
liver transplantation cannot eliminate all preoperatively
existing CTCs. Obviously, surgical intervention should not
be considered the treatment endpoint, and postsurgical tar-
geting of CTCs should thus be addressed. A study in an
orthotopic mouse model showed that postoperative use of
sorafenib suppressed the development of intrahepatic
recurrence and abdominal metastasis, prolonging postoper-
ative survival [53]. Results from a pilot study of HCC
patients also indicated that adjuvant therapy with sorafenib
prevented early postoperative recurrence [192]. Another
single-center experience showed that adjuvant sorafenib did
not decrease tumor recurrence, but significantly reduced
mortality and prolonged overall survival of HCC
patients after curative resection [209, 212]. However, a
randomized phase 3, double-blind, placebo-controlled study
of sorafenib as adjuvant treatment after potentially curative
therapy for HCC showed no significant treatment effect with
sorafenib, with regard to recurrence-free survival (RFS),
time to recurrence, or overall survival [28, 30]. For liver
transplantation, treatment of a rodent HCC model with sor-
afenib effectively inhibited recurrence and metastasis, with-
out a negative influence on the immune balance [202].
Furthermore, a clinical study also suggested that sorafenib
delayed or reduced posttransplant recurrence and prolonged
patient survival [70].

In spite of these results, further clinical studies should be
conducted on the therapeutic targeting of CTCs as a post-
operative adjuvant therapy. It should be noted that some of
CTCs may remain in a nondividing state for a long period of
time, or may never divide, and are thus insensitive to
chemotherapy or molecular targeted therapy. Therefore,
targeting of CTCs by using antibody-based immunotherapy
probably represents a promising avenue for future research.

12.8.5 Dynamic Postoperative Monitoring
of CTCs for Guiding
the Therapeutic Decisions

Since CTCs could be released during surgical operation, it is
also important to accurately assess their levels after removal
of the tumor load. A close follow-up of patients for early
signs of recurrence and metastasis allows for early treatment
intervention. Theoretically, CTCs should be therapeutically
targeted in advance. For patients treated with chemotherapy
and/or radiotherapy, CTCs could be regularly monitored to
assess therapeutic outcome. In addition, CTCs can be used to
identify the targets of sorafenib before making a decision
about administration, as well as to detect resistance to sor-
afenib during administration. In this respect, we recently
present a unique platform to provide quantitative informa-
tion concerning sorafenib-related targets in CTCs, define the
molecular subtypes of HCC to identify patients particularly
susceptible to sorafenib, and predict drug response and
efficacy [94]. As a result, patients most likely to benefit
could be selected, ultimately increasing the success of sor-
afenib treatment, while preventing unnecessary treatments,
serious side effects, and high costs.

12.9 Future Perspectives

12.9.1 Detection Techniques of CTCs

In order to translate the detection of HCC CTCs into the
clinic, the refinement of existing technologies or the inno-
vation of multiplexing approaches will be required to create
high-throughput, reliable, and cheap platforms. However, we
will continue to face major technical challenges. The
development of novel strategies for CTC capture is a par-
ticularly important aspect. If a specific marker is used for
that, it would ideally be expressed on the surface of every
cancer cell. In fact, such a biomarker is unavailable so far,
and as a result, current marker-based CTC capture approa-
ches may lead to lower yield and purity. So it is imperative
to find novel markers, biological or physical, that can
specifically detect all subpopulations of HCC CTCs.

It should be noted that there has been much confusion
about how to identify a CTC. CTCs are considered highly
heterogeneous and also probably undergoing apoptosis. The
marked heterogeneity exists even within a distinct or same
histological tumor type [13, 159], that makes it difficult to
precisely define CTCs. There is currently no single param-
eter sufficient to define the “true” CTCs, such as size,
cytomorphology, and pathology stains; the used parameters
may show overlap with normal controls or leukocytes. In
addition, due to the lack of a detectable characteristic such as
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EpCAM, CKs, and AFP, some of CTCs may escape existing
technologies [191]. Perhaps importantly, sensitivity and
specificity may not be just technical but biological as well.
Not all detected cells are bad, and not all bad cells are
detected [195]. Therefore, different definitions for CTCs
may lead to different results of CTC enumeration with
varying clinical relevance. Clearly, a “single” or “standard”
definition for CTCs is clinically important.

12.9.2 Clinical Relevance of CTCs or CCSCs

Over the past decade, CTCs has gained considerable atten-
tion. Some studies [16, 51, 58, 95, 158, 168, 200] have been
conducted on CTCs or so-called “CCSCs” in HCC patients,
and indicate that CTCs or CCSCs correlate with poor
prognosis in patients with HCC, and may contribute to
postoperative recurrence and metastasis, thereby serving as
an important therapeutic target. These results look encour-
aging. However, the analyses were limited by small sample
sizes, short follow-up time, and data from a single study
center, as discussed by the authors of these studies. There-
fore, a clinical trial including a larger number of patients
from multicenter as well as prospective long-term follow-up
data is needed to demonstrate and validate the clinical utility
of these “CCSCs” in HCC, especially EpCAM(+) CTCs.

Another limitation is probably that these studies used
different CCSC definitions (CD90(+)CD44(+) cells and
EpCAM(+) cells [51, 58, 158, 168, 205, 206], and detected
different numbers of CCSCs. Even using the same method of
the CellSearch system, Sun et al. [168] identified � 1 CTC
in 82/123 (66.67 %) patients, with a range of 1–34 CTCs,
whereas Morris et al. [122] identified � 1 CTC in 14/50
(28 %) patients, with a range of 1–8 CTCs. Furthermore,
definitive liver CSC markers remain controversial. CSCs
enriched by different methods exhibit phenotypic and
genetic heterogeneity including expression of different
stemness markers but share similar CSC properties [107,
152, 201]. Finally, the overlap among most markers is very
low, and liver CSCs do not exclusively express a single
marker [23, 117]. Thus, in order to develop technologies
capable of reliably isolating and characterizing liver CCSCs,
it is necessary to identify additional specific markers for
putative liver CSCs, or to further validate CD90 or CD44 or
EpCAM as a definitive liver CSC marker.

It remains to be seen whether there is a “one-fits-all”
marker for CSCs in HCC, or how much overlap there is
between various markers that have been used for CCSCs in
HCC [63]. Therefore, considerable attention should then be
paid to identify mesenchymal and stem-like cells, and MICs
among HCC CTCs, including optimization of methods for

CTC detection with EMT- or stemness-related markers,
colony formation assay, xenotransplantation of the pheno-
typically selected and in vitro expanded CTCs into experi-
mental models, isolation of enough CSCs clonally derived
from primary tumor without in vitro propagation for differ-
entiation and lineage tracking experiments, and identification
of deregulated signal transduction pathways [63]. In a word,
in order to develop technologies capable of reliably isolating
and characterizing liver CCSCs, it is necessary to identify
additional specific markers for putative liver CSCs, or to
further validate CD90 or CD44 or EpCAM as a definitive
liver CSC marker. The knowledge from these studies will
open up new avenues for the development of new targeted
therapies aimed at those highly aggressive cells.

12.9.3 Molecular Characterization of CTCs

HCC is often a heterogeneous and multifocal disease. Evi-
dence is accumulating that CTCs are also highly heteroge-
neous, and different subpopulations of CTCs might exhibit
different properties [147]. “Just”, enumeration of CTCs
cannot detect the ability of a cancer cell to invade, prolif-
erate, and cause a metastasis. Therefore, it would be of great
value to functionally characterize them beyond enumeration
[195]. Molecular characterization of CTCs will address the
following issues: Whether genetic alterations in CTCs more
truly reflect the situation of particular metastatic tumors?
Whether early disseminated CTCs acquire new genomic
aberrations allowing for their growth? Which characteristics
of CTCs may contribute to metastatic properties, or affect
clinical outcome? What changes in the genotype of CTCs
have occurred over the course of therapy? The insights from
these studies will improve our knowledge about the biology
and mechanisms of recurrence and metastases in HCC
patients, and probably promote the identification of one or
more new and ideal markers that can hopefully be used to
design more effective anticancer drugs, select effective tar-
geted therapies and unravel resistance mechanisms. So far,
only limited markers have been analyzed on isolated CTCs
by several methods. Certainly, detail characterization of
CTCs will depend on more sophisticated analytical approa-
ches. Recent advances in biotechnology have allowed the
comprehensive analysis of the whole-gene or protein
expression profile from hypocellular samples. Particularly,
developments in next-generation sequencing and whole
genome amplification have enabled genomic analyses of
single cells. As for single-cell sequencing, sequencing
mutations or genomic profiling of copy number in CTCs will
be one of the major clinical applications, and the results may
identify thousands of potentially aberrant cancer genes from
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a fuller picture of a single-cell genome, such as deletions of
tumor suppressors and genomic amplifications of oncogenes,
thereby providing clinicians with the information necessary
to direct precise therapy or monitor disease over time [125].

12.10 Conclusions

HCC is one of the most aggressive cancers. Surgery for HCC
has been performed for more than 100 years, including a
40-year history of liver transplantation [91]. However, the
outcome of surgical therapy alone has not improved. Similar
to CTCs from other cancer types, HCC CTCs are increasingly
recognized as the main source for postoperative recurrence
and metastasis. In the case of tumor removal or liver trans-
plantation, CTCs may return to the liver remnant or the newly
implanted healthy liver and initiate intrahepatic recurrence.

CTCs hold promise as a research tool to improve our
knowledge of multiple metastatic steps and identify novel
therapeutic targets, and as a minimally invasive, real-time
“liquid biopsy” for the identification of biomarkers to aid in
detecting early cancer, predicting prognosis, monitoring
therapy response, and selecting drugs for patients. During
the last decades, isolation and detection of CTCs has
attracted increasing interest and has led to a wide range of
laboratory and commercial technologies. However, the
translation of CTCs to a routine clinical test is hindered by
the lack of validation and qualification of these multiple
different technologies. Although the CellSearch system has
been approved for clinical practice as a useful prognostic
biomarker, EpCAM-based methods of CTC isolation may
cause some bias against some tumor cells. Therefore, efforts
now need to focus on development of more sensitive tech-
nologies to accommodate CTC heterogeneity. Recently, the
field has expanded beyond enumeration and a lot of work is
focused on further detection of CTC subpopulations
including CTM, mesenchymal and stem-like CTCs, and
MICs in order to investigate their functional biology and
metastatic potential. Thus, more flexible methods for func-
tional characterization of CTCs, including single CTC
analysis and their ex vivo expansion and xenotransplantation
are also needed.

Since only a small percentage of HCC cases are positive
for EpCAM, EpCAM-dependent strategies are not unsuit-
able to capture CTCs in HCC patients. Probably for this
reason, not a few studies on CTCs have so far been con-
ducted in HCC patients, and knowledge about clinical rel-
evance of HCC CTCs is lagging behind other major types of
cancer, such as breast, prostate, colon, and lung cancer.
Fortunately, some interesting and encouraging achievements
have been made in this field, and the situation has started to
change for HCC. Clinicians must pay attention to CTCs

when treating HCC patients. In this chapter, we proposed
some HCC CTC-based strategies for the management of
HCC according to the recent literature. In order to prevent
and reduce the postoperative recurrence and metastasis,
intensive collaboration with other researchers is currently
needed to develop and employ novel and effective thera-
peutic techniques that target CTCs. We believe that the
application of appropriate diagnostic and therapeutic
approaches targeting HCC CTCs in different stages over the
entire clinical course or at least throughout the course of
treatment may represent a major breakthrough in preventing
the postoperative recurrence and improving the therapeutic
outcome of HCC.
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13.1 The Immune System and Development
of HCC

Chronic hepatitis represents a common pathway shared by
most HCCs [1]. This chronic inflammation of the liver com-
prises many cells and molecules of the immune system that
actively contribute to the development of HCC [2]. This could
be clearly demonstrated in murine models. For example, if
immune cells from HBV-vaccinated mice were transferred
into mice expressing the surface antigen of HBV (HBSAg) in
the liver, this was sufficient to induce HCC in the absence of
HBV infection or replication [3]. Even more strikingly, hep-
atic overexpression of the cytokine lymphotoxin-b (LT-b)
alone was sufficient to promote the development of HCC in
mice [4]. Recent work could also demonstrate that the
occurrence of HCC in a murine model of nonalcoholic
steatohepatitis (NASH) is dependent on activation of and
cytokine secretion by CD8+ T cells and natural killer T
(NKT) cells [5].

The situation is clearly more complex in affected patients.
Here, tumorigenesis occurs over a much longer period and is
likely multifactorial. Accordingly, several pathways have
been demonstrated to affect the development of HCC. Many
inflammatory cell types of the immune system, such as
macrophages/Kupffer cells, monocytes, or granulocytes can
produce reactive oxygen and/or nitrogen species (ROS/
RNS). ROS/RNS can have potent antimicrobial effects but
they can also directly damage hepatocytes and their genetic
material, inducing mutagenesis [6]. Indeed, intrahepatic
oxidative stress after clearance of HCV by interferon (IFN)-
based therapy has been shown to be an independent prog-
nostic factor for the development of HCC in these patients
[7]. This increased oxidative stress not only damages cells
but also affects molecules in their environment. Molecules
modified by ROS/RNS may trigger pattern-recognition
receptors (PRR) of the innate immune system, which usu-
ally have an important role in sensing the presence of
pathogens and providing appropriate “danger” signals to
induce an immune response. Continued activation of PRR
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by ROS/RNS promotes inflammation and thus leads to a
further increased generation of ROS/RNS, resulting in a
vicious cycle of chronic inflammation [8].

PRR such as Toll-like receptors (TLR) have been
described to directly promote hepatocarcinogenesis. Recent
work performed in a murine model of HCC could demon-
strate that lipopolysaccharide (LPS) derived from the
intestinal microbiota acts via TLR4 on hepatocytes [9]. Gut
sterilization by high-dose antibiotic treatment resulted in a
reduced number and size of HCC lesions, mediated by a loss
of antiapoptotic effects of TLR4 signaling. TLR4 signaling
may also promote generation of cancer stem cells as well as
epithelial–mesenchymal transition (EMT) and thus metas-
tasis of HCC [10, 11]. However, the picture of TLR in HCC
appears to be more complex. TLR represent a family of
receptors where individual members may have distinct roles.
One study described TLR3 expression to correlate with
increased apoptosis and reduced proliferation, vasculariza-
tion, and invasiveness of human HCC [12]. Another study
described an increased development of HCC in TLR2−/−

mice [13]. While TLR as a major component of innate
immunity have a complex role in HCC, further research is
clearly required.

The antiapoptotic properties of TLR signaling mainly
depend on activation of the transcription factor nuclear
factor-jB (NF-jB) in hepatocytes [14, 15]. While activation
of NF-jB in acute inflammation protects hepatocytes from
ROS and inflammation-induced damage, its prolonged acti-
vation during chronic inflammation results in hepatocar-
cinogenesis, e.g., by impairing clearance of damaged
hepatocytes by apoptosis [4, 16]. NF-jB also has an indirect
role in driving the development of HCC. Death of hepatocytes
can result in the release of interleukin-1a (IL-1a), which is a
potent activator of NF-jB in surrounding immune cells, e.g.,
Kupffer cells or tumor-associated macrophages (TAM) [16,
17]. In these cells, NF-jB activation drives the production of
other proinflammatory cytokines, most importantly IL-6. In
patients with chronic HBV and HCV infection, serum IL-6
levels were significantly correlated with the risk of HCC [18,
19]. Notably, males typically exhibit higher serum levels of
IL-6 at baseline as well as in HCC compared to females,
providing a mechanistic explanation for the higher frequency
of HCC in males [20]. IL-6 can directly promote growth of
HCC by activation of another important pathway in hepato-
cytes, signal transducer, and activator of transcription-3
(STAT3) [16]. Early HCC precursors were shown to highly
depend on IL-6-mediated STAT3 activation [21]. In addition,
the IL-6/STAT3 axis appears to particularly promote cancer
stem cells, also in later tumor stages [22, 23]. Other cytokines
such as transforming growth factor-b (TGF-b) are also
important players. TGF-b has a dual role in HCC, promoting
carcinogenesis in early stages but suppressing proliferation in
established HCC [2]. TGF-b also exerts indirect effects by

induction of a special population of TAM that express T-cell
immunoglobulin-domain and mucin-domain containing
molecule-3 (Tim-3). Tim-3-expressing TAM in turn promote
HCC growth by secretion of IL-6 [24]. TAMwere also shown
to enhance EMT and invasiveness of human HCC by secre-
tion of CCL22 and IL-8 [25, 26]. They can also increase
cancer stem cell proliferation by TGF-b [27]. Hence, intra-
tumoral TAM have been shown to correlate with a poor
prognosis [26].

Together with IL-6, TGF-b also promotes production of
IL-17 by cluster of differentiation 4 (CD4)+ T helper cells,
the central regulators of adaptive immunity, and CD8+

cytotoxic T cells [28]. These TH17 and TC17 cells are
strongly proinflammatory T-cell subsets that are important
for clearing extracellular bacteria but have also been sug-
gested to contribute to control of fungi. Human monocytes
that were incubated with supernatants from HCC cell lines
were highly efficient in inducing TH17 and TC17 cells
[29, 30]. Despite their strong proinflammatory role,
tumor-infiltrating IL-17 producing cells are associated with
poor survival of HCC patients [31]. Multiple factors con-
tribute to this pro-tumorigenic role of TH17 and TC17 cells.
IL-17 producing cells function in the early stages of adaptive
immune responses to recruit granulocytes to the site of
inflammation, a process that is recapitulated in HCC in a
chronic fashion. Here, the occurrence of peritumoral neu-
trophilic granulocytes is associated with the occurrence of
IL-17 producing cells [32]. These peritumoral neutrophils
function by remodeling the surrounding tissue in a manner
that favors motility and thus invasion as well as spread of
HCC. They may also induce angiogenesis, as suggested by
the effects of neutrophils in in vitro co-culture systems [32,
33]. This pathway is most likely also relevant in vivo, since
the density of IL-17 producing cells correlates with
microvessel density in human HCC [31]. In addition to these
indirect effects, TH17 cells can also produce other cytokines
such as IL-22. Similar to IL-6, IL-22 can promote the acti-
vation of STAT3 in hepatoma cells and thus directly pro-
mote tumor growth [34]. Interestingly, a recent study could
describe the occurrence of a specialized CD4+ T-cell subset
producing IL-22 but not IL-17, termed TH22 cells, specifi-
cally in the tumor of HCC patients [35]. The frequency of
these cells was increased in later stage tumors and in intra-
hepatic metastases, in line with their likely role in promoting
tumor growth. Even though a mechanistic role of IL-22 was
not investigated in this study, it appears likely that these cells
may also promote HCC growth by IL-22-mediated activa-
tion of STAT3.

Altogether, the described work has demonstrated that
several components of the immune system have a direct role
in promoting the development and progression of HCC.
Even though several pathways have been elucidated,
research is still ongoing and needed to deepen our
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understanding of the inflammation-induced development of
HCC and the role of different elements of the immune sys-
tem in this process. However, the immune system also has
the potential to limit the growth of HCC. This other side of
the immune system’s dual role in HCC will be discussed in
the following section.

13.2 Success and Failure of Immune Control
in HCC

Several lines of evidence support an antitumor role of the
immune system in HCC. A lymphocytic infiltrate in human
HCC lesions correlates with tumor cell apoptosis and
reduced recurrence of HCC after hepatic resection and liver
transplantation, respectively [36–38]. Especially, the occur-
rence of tumor-infiltrating effector CD8+ T cells that produce
the cytokine IL-33 as well as cytotoxic molecules was
shown to correlate with improved patient survival [39].
Additionally, work in murine models of HCC has shown that
the immune system can remove malignantly transformed
cells in the liver before they develop into HCC lesions, a
process often termed immunosurveillance [40, 41].
Immunosurveillance has been shown to be mediated either
by the action of T cells or by macrophages that are activated
by CD4+ T helper cells, depending on the model used.
Macrophages were found to be particularly important in a
model relying on hydrodynamic tail-vein injection of plas-
mids encoding a mutant form of the proto-oncogene n-Ras to
promote hepatocyte transformation [40]. However, this
method only generates very weak CD8+ T-cell responses if
plasmids encoding viral proteins are used and may hence
underestimate the contribution of CD8+ T cells to
immunosurveillance in HCC [42]. This is important to note
since CD8+ T cells are the main effector cells of
cell-mediated adaptive immunity. They recognize peptides
derived from intracellular proteins, which are presented on
the surface of all somatic cells on major histocompatibility
complex (MHC) proteins and can perform multiple effector
functions including secretion of cytokines, such as IFN-c, as
well as cytotoxic lysis of target cells, e.g., by release of
granzyme B and perforin [43]. To avoid destruction of
healthy tissues, the activation of CD8+ T cells is tightly
regulated and requires professional antigen-presenting cells
(APCs), such as dendritic cells (DCs). These APCs have to
be activated by strong inflammatory signals and/or CD4+ T
helper cells. Additionally, CD8+ T cells recognizing “self”
peptides presented on MHC molecules are deleted during
their development to prevent autoimmunity. CD8+ T cells
are nevertheless capable of recognizing malignantly trans-
formed cells because these express special tumor-associated
antigens (TAA) [44]. TAA comprise proteins that are either
mutated or grossly overexpressed in tumors compared to

healthy, adult tissues and hence not or only partially subject
to CD8+ T-cell tolerance. Various TAA could be identified
in HCC as well as other types of cancer, including
a-fetoprotein (AFP), glypican-3, human telomerase-reverse
transcriptase (hTERT), or New York-esophageal squamous
cell carcinoma-1 (NY-ESO-1) [44]. Subsequent comparative
studies indicated that the frequency of CD8+ T-cell respon-
ses to individual TAA is quite variable, depending on the
cohort analyzed and the MHC molecules presenting the
TAA-derived epitopes [45–47]. Importantly, co-expression
of multiple TAA in HCC lesions has been found to correlate
with improved overall survival of HCC patients [48]. In
addition, the occurrence of TAA-specific CD8+ T-cell
responses is also associated with improved recurrence-free
survival in HCC patients [47, 49]. In line with this apparent
antitumor effect in HCC patients, expression of perforin
ex vivo and cytotoxic capacity after in vitro expansion could
be demonstrated for CD8+ T cells specific for the TAA
melanoma-associated gene-A3 (MAGE-A3) in some HCC
patients [50, 51].

Despite their potent effector functions, CD8+ T cells fail
to clear HCC in most patients. Accordingly, several studies
have reported a dysfunction of TAA-specific CD8+ T cells in
patients with HCC, indicated by a reduced production of
cytokines such as tumor necrosis factor (TNF) or IFN-c [47,
52]. This was reflected by a decreased expression of the
stimulatory molecules CD3f and CD28 and a concomitantly
increased activity of proapoptotic caspase-3 in peripheral
T cells from HCC patients [53]. In mice bearing
virus-induced HCC, failure of HCC-specific CD8+ T-cell
immunity has been linked to expression of the inhibitory
receptor programmed death-1 (PD-1) on CD8+ T cells [54].
PD-1 can inhibit CD8+ T-cell functionality after engagement
by one of its ligands, most prominently programmed
death-ligand 1 (PD-L1) [55]. In patients, the expression of
PD-1 on CD8+ T cells as well as the expression of PD-L1 on
tumor cells is linked to an increased risk of HCC progression
[56, 57]. Next to PD-1/PD-L1, other inhibitory receptors
have also been shown to affect CD8+ T cells in HCC
patients. Tim-3 expression on tumor-infiltrating T cells is
increased and correlates with reduced patient survival [58].
Furthermore, the inhibitory receptor lymphocyte activation-
induced gene-3 (Lag-3) has been shown to suppress the
function of tumor-infiltrating, HBV-specific CD8+ T cells in
chronically HBV-infected patients with HCC [59].

In addition to inhibitory receptors, CD8+ T-cell extrinsic
mechanisms also regulate the function of CD8+ T cells, as
briefly mentioned above. This is also reflected in HCC,
where multiple additional pathways may also contribute to
CD8+ T-cell dysfunction. One important aspect may be a
dysregulation of DCs in HCC patients. Indeed, several
studies report a reduced expression of IL-12 by DCs from
HCC patients [60, 61]. IL-12 is particularly important for the
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initial activation (priming) of CD8+ T cells [43]. While the
production of IL-12 in DCs is reduced, the expression of
several inhibitory molecules, such as IL-10 or indoleamine-
2,3-dioxygenase (IDO), is conversely increased in patients
with HCC [60, 62]. The stimulatory capacity of these DCs
from HCC patients was accordingly reduced. One of the
HCC-derived factors contributing to the observed changes in
DCs may be AFP, which is secreted in large amounts by
many HCCs [63]. This effect has been shown to depend on a
tumor-specifically altered glycosylation pattern of AFP,
explaining differences to earlier studies that did not observe
any effects of normally glycosylated AFP on DCs [64].

For their proper activation, DCs require stimulation by
CD4+ T helper cells, as mentioned above. In HCC patients,
tumor-specific CD4+ T-cell responses appear to be of very
low frequency [65, 66]. Alternatively, tumor-specific CD4+

T cells may be functionally diverted and thus provide
insufficient support to DCs and CD8+ T cells. Indeed, a
group of CD4+CD25+Forkhead box P3 (FoxP3)+ regulatory
T cells (Treg) has been described. Treg may exert suppressive
effects by different mechanisms such as secretion of inhibi-
tory molecules, cytotoxic T lymphocyte angiten-4
(CTLA-4)-mediated reduction of the costimulatory capac-
ity of APCs, direct cytotoxicity against effector T cells, or
metabolic inhibition of these cells [67]. An increase in Treg

frequencies has been observed in the tumor and liver of HCC
patients, in some studies also in the periphery [47, 68, 69].
Treg infiltration has also been linked to suppression of CD8+

T cells and correlated to reduced overall and progression-
free survival of HCC patients [70, 71]. Treg may be induced
indirectly in HCC by myeloid-derived suppressor cells
(MDSC), a population of immature cells derived from the
bone marrow that is expanded in patients with HCC as well
as other cancers and possesses immunosuppressive capa-
bilities [72]. Depletion of Treg can enhance proliferation of
tumor-specific CD8+ T cells from HCC patients in vitro [47,
73]. Co-depletion of MDSC, Treg, and PD-1+CD4+ T cells
even resulted in a restoration of granzyme B production by
CD8+ T cells from HCC patients [74]. Thus, Treg and other
factors may be a central part of the immunosuppressive
environment inhibiting tumor-specific CD8+ T-cell
responses.

Next to CD8+ T cells, other cells of the immune system
also have the ability to attack HCC, such as natural killer
(NK) cells. NK cells constitute a major population in the
liver and also have direct antihepatoma effects in vitro [75].
NK-cell activation is controlled by a balance of signals
derived from a variety of activating and inhibitory receptors
on the cell surface. Due to changes in the balance of signals
from both types of receptor, NK cells can for example lyse
cells that have lost MHC class I expression to escape CD8+

T-cell responses [76]. In many HCCs, a reduced expression
of ligands for activating NK-cell receptors has been

observed, which correlates with increased recurrence of
HCC [77, 78]. Similar to CD8+ T cells, NK cells can also be
suppressed by the action of IDO [79]. A direct suppression
of NK cells by MDSC could also be demonstrated [80].
Finally, TAM are capable of inducing a transient activation
of NK cells that results in their deletion and depends on
CD48-2B4 interactions [81].

One very prominent effector mechanism of NK cells is
antibody-dependent cell-mediated cytotoxicity (ADCC).
ADCC depends on the antibody-receptor CD16 on NK cells
and permits them to destroy antibody-coated target cells.
While there is currently no information available regarding
ADCC in HCC, it is tempting to speculate about its poten-
tial, since tumor-specific antibodies have been detected in
HCC patients [82]. Furthermore, a loss of CD4+ follicular
helper T (TFH) cells that are especially important for anti-
body generation, is associated with reduced patient survival
in HCC [83]. Thus, further research regarding the role of
antibodies, B cells, and ADCC is clearly required to improve
our understanding of the immune response to HCC.

Altogether, the interactions between HCC and the
immune system are highly complex (Fig. 13.1). HCC
engages multiple mechanisms to suppress immune responses
exerted by a variety of cell types. A better understanding of
these pathways and their interactions might help to establish
novel, immune-based therapies to improve the outcome of
patients with HCC. Based on the role of the immune system,
the final two sections will discuss potential avenues for
immunotherapy in HCC - on their own and in combination
with current standard therapies.

13.3 Potential for Immunotherapy of HCC

Many immune-based mechanisms contribute to hepatocar-
cinogenesis but also immunosuppression in HCC. Accord-
ingly, several approaches are currently under investigation to
block them. In line with the role of some TLR in HCC, one
early study could show that blocking TLR7 and 9 limits the
growth of hepatoma cell lines in vitro and after transplan-
tation into immunodeficient mice [84]. In contrast, triggering
TLR7/8 successfully activated NK cells in vitro. These NK
cells limited the growth of HCC xenografts after transfer into
mice [85]. Thus, it will be important to analyze the respec-
tive effects of TLR blockade and activation in immunosuf-
ficient models of HCC where effects on both, tumor and
immune system can be assessed. Another major player in
progression of HCC is activation of STAT3. One study
analyzed the inhibition of STAT3 in an immunosufficient
model and surprisingly identified immune-mediated effects
mediated by a reduced activity of Treg in animals receiving
STAT3 blockade which resulted in enhanced NK
cell-mediated lysis of HCC [86].

202 T. Flecken and R. Thimme



Despite the potent cytotoxicity that can be exerted by NK
cells, induction of a tumor-specific CD8+ T-cell response
remains a major goal of immunotherapy due to the poten-
tially lower risk of off-target toxicities. Notably, an early
study demonstrated that tumor-specific CD8+ T cells could
be expanded from the peripheral blood of HCC patients by
using autologous tumor lysate. Reinfusion of this cell pro-
duct resulted in an encouraging antitumor effect, in mice as
well as in five of fifteen treated patients [87]. In the mean-
time, several trials have confirmed that human CD8+ T cells
specific for AFP and other TAA can be activated in vitro by
tumor-free antigen, forming the basis for vaccination trials
[88, 89]. In mice, vaccination with a vaccinia virus-based
vector expressing murine AFP (mAFP), resulted in genera-
tion of weak mAFP-specific T-cell responses and partial
regression of established HCC lesions [90]. In HCC patients,
most studies performed to date used a double vaccination
consisting of a plasmid (DNA prime) followed by vaccina-
tion with an adenoviral vector (AdV boost). In this way,
CD8+ T-cell responses against AFP, hTERT, and multidrug

resistance-associated protein 3 (MRP3) could be induced in
HCC patients [91–93]. Only two patients were vaccinated
against AFP. Even though both showed AFP-specific
immune responses after vaccination, the tumors eventually
progressed in both patients [91]. Vaccination against MRP3
and hTERT was performed in larger cohorts and induced
CD8+ T-cell responses in 70–75 % of patients. Tumor pro-
gression was observed in only 2/12 patients vaccinated
against MRP3; however, there was no clear correlation with
immunological response to vaccination [92, 93]. An earlier
phase I/II study of hTERT-specific vaccination after
chemotherapeutic preconditioning to lower Treg frequencies,
did not result in measurable immune responses against
hTERT, indicating that optimization of vaccination protocols
will be important to obtain optimal results [94]. While
TAA-specific CD8+ T-cell responses can be induced by
relatively simple vaccination strategies, these appear to have
a variable outcome and limited clinical benefit. Thus, more
complex strategies may be required for successful
immunotherapy of HCC [95].

Fig. 13.1 Immune network of hepatocellular carcinoma. The
malignant transformation of hepatocytes gives rise to hepatocellular
carcinoma (HCC; orange arrows) and involves several components of
the immune system. Toll-like receptors (TLR) can directly promote
development and growth of HCC. However, TLR may also activate
dendritic cells (DC; dashed arrow) and may thus have a dual role. The
development of HCC is further modulated by tumor-associated
macrophages (TAM) and Kupffer cells, as well as the activity of
CD4+ T helper cells producing IL-17 and/or IL-22 (TH17, TH22),
respectively. In contrast, CD8+ cytotoxic T cells and natural killer (NK)

cells can control HCC by destruction of malignantly transformed cells
(blue arrows). The function of CD8+ T cells and NK cells in HCC
patients is usually impaired by several mechanisms, as displayed.
Insufficient activation of DC and type 1 CD4+ T helper cells (TH1), as
well as negative signals delivered by CD4+ regulatory T cells (Treg),
myeloid-derived suppressor cells (MDSC), and inhibitory receptors
impair the function of CD8+ T cells in HCC patients. MDSC and
TAM/Kupffer cells also directly impair the function of NK cells, as
does the decreased expression of ligands for activating NK-cell
receptors in HCC
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A recent development in HCC is the direct introduction of
CD8+ T cells that are genetically modified to express a
tumor-specific TCR into a patient with HCC. A TCR specific
for AFPwas identified in HCC patients and then transferred as
transgene into primary human T cells [96]. These cells
showed antitumor effects in vitro and in immunodeficient
mice. A similar study was performed with a TCR directed
against an epitope from glypican-3 [97]. Here, the authors
isolated the TCR from a donor who did not naturally express
the relevant MHC molecule in order to avoid a loss of highly
performant TCR clonotypes by negative selection during
T-cell development. However, no comparison to a “conven-
tional” TCRwas performed. Thus, it remains unclear whether
the concerns regarding TCR performance were justified.
Finally, a case report was published, where CD8+ T cells
transduced with a HBV-specific TCR were infused into a
patient who had metastasized HCC expressing HBV antigens
[98]. This patient had previously undergone liver transplan-
tation and was free of circulating HBV DNA, indicating that
HBV antigens were mostly expressed by metastasized tumor
cells rather than hepatocytes replicating HBV. A decline of
circulating HBV antigens by 90 % was observed one month
after immunotherapy. However, the patient was already in
a terminal stage of disease and developed brain metastases
two weeks after T-cell transfer which ultimately resulted in
the patient’s death. Even though the results are preliminary,
they show that TCR-transgenic CD8+ T cells may effectively
lyse target cells in terminal HCC patients, even under
immunosuppressive therapy. This demonstrates the potential
of TCR-transgenic CD8+ T-cell therapies, if appropriate
TCRs can be identified to effectively target the tumor.

Much research has been focused on using in vitro gen-
erated autologous DCs to improve the generation of
tumor-specific immune responses. With antigen-loaded
autologous DCs, immune responses against AFP,
MAGE-A1, and glypican-3 could be induced in HCC
patients [99, 100]. One of the two studies also reported a
stabilization of HCC growth in one of five treated patients
[100]. To broaden the repertoire of antigens presented by the
DCs, other studies relied on the use of tumor lysates to load
DCs with antigen. These tumor lysates were either derived
from autologous tumor material or a hepatoma cell line
grown in vitro [101, 102]. The two studies may indicate a
superiority of using autologous tumor lysate, since a
disease-control rate of 67.7 % was observed in the 31 treated
patients, compared to 28 % in the 25 patients treated with
DCs loaded with hepatoma cell line lysate. However, the
patients treated with DCs loaded with autologous tumor
lysate were divided into two groups, one of which received
monthly booster infusions after initial DC vaccination. This
group of patients with late stage HCC had a 1-year-survival
of 63.3 % compared to 10.7 % in patients not receiving
booster vaccinations [101]. Thus, the apparently higher

success rate of this study compared to the one using hep-
atoma cell line lysate may be related to differences in pro-
tocol rather than source of antigen. These encouraging
studies nevertheless provide initial evidence for further trials
addressing optimizations in antigen choice and treatment
protocol.

Another approach for the boosting of HCC-specific
immunity is the interruption of inhibitory mechanisms lim-
iting autologous antitumor immune responses. Since Treg

appear to have a prominent role in HCC, several studies
have addressed potential ways to limit their function. An
unmasking or an increased proliferation of TAA-specific
CD8+ T cells after Treg-depletion in vitro has been reported
[47, 73]. Similarly, depletion of Treg in HCC patients by
treatment with low-dose cyclophosphamide resulted in an
unmasking of AFP-specific CD4+ T-cell responses [103].
This indicates that depletion of Treg may benefit antitumor
immunity. Finally, two studies suggested an increased
expression of glucocorticoid-induced tumor necrosis factor
receptor (GITR) by Treg in HCC patients [73, 104]. Addition
of the activating ligand of GITR, GITRL, decreased func-
tionality of Treg and concomitantly improved cytokine pro-
duction by CD4+ non-Treg in vitro [104]. Targeting GITR
may thus be a simple approach to modulating Treg activity in
HCC patients.

Finally, a novel approach that has come into focus for
therapy of cancers is the blockade of inhibitory receptors on
CD8+ T cells by administration of specific antibodies. This
approach has resulted in FDA approval for several of these
drugs, termed checkpoint inhibitors, for treatment of mela-
noma and other tumors [105]. In HCC, different in vitro
studies observed very heterogeneous effects of inhibitory
receptor blockade on CD8+ T-cell function. For example,
blockade of PD-L1 was described to improve proliferation
but not polyfunctionality of TAA-specific CD8+ T cells from
HCC patients in one study, whereas others did not observe
any consistent changes [45, 47]. Blockade of Tim-3 was
suggested to improve proliferation and cytokine production
of intratumoral T cells [58]. Since polyclonal stimulation
was used in this study, the observed effect may be mediated
by bystander T cells that are not tumor-specific but this
nevertheless warrants further investigation. Based on the
expression of Tim-3 on TAM, blockade of Tim-3 may also
have a distinct antitumor effect by limiting the capability of
TAM to boost HCC growth, even though this remains to be
tested [24]. Finally, mixed results were described for
blockade of CTLA-4, which improved TAA-specific CD8+

T-cell responses, but only in single cases [46].
Importantly, the effects of blocking CTLA-4 were also

analyzed in a pilot study in patients with HCC and chronic
HCV infection [106]. The anti-CTLA-4 antibody Tremeli-
mumab was administered in 90-day intervals unless limited
by toxicity or tumor progression. A drop in HCV viral load

204 T. Flecken and R. Thimme



was observed together with a disease-control rate of HCC
reaching 76.4 %; however, the mean progression-free sur-
vival was below 7 months. Thus, while initial results are
indicating biological activity of checkpoint inhibitors in
HCC, additional work is still needed and ongoing to eluci-
date the best approaches. Several clinical trials currently
analyze the effects of antibodies against PD-1/PD-L1 and
CTLA-4 in patients with HCC [105]. Despite the so far
limited effect of checkpoint inhibitors on CD8+ T cells from
HCC patients in vitro, initial results from a phase I/II study
of the anti-PD-1 antibody Nivolumab demonstrated highly
encouraging results. In this study, 62 % of terminal HCC
patients receiving Nivolumab were still alive after one year,
compared to 30 % of controls treated with Sorafenib [107].
Of note, despite the typically strong side effects of check-
point inhibitor therapy, no special safety issues arose in
chronically HBV- or HCV-infected patients, demonstrating
that checkpoint blockade can be both effective and safe in
patients with virus-induced HCC. Further studies testing
different checkpoint inhibitors and addressing the possibili-
ties of combining them are ongoing. Especially in light of
recent findings that indicate a higher efficacy of combined
checkpoint inhibition in melanoma patients, this may further
enhance therapeutic success, even though safety will have to
be carefully assessed in this setting [108]. Finally, first
studies are on their way to analyze the use of checkpoint
inhibitor treatment in an adjuvant setting in patients under-
going standard therapies [105]. We will further discuss
adjuvant immunotherapy of HCC in the following section.

13.4 Role of the Immune System in Current
Standard Therapies

Adjuvant immunotherapy may be a new way to increase the
efficacy of current standard therapies. Since many of the
currently available therapies for HCC rely on the destruction
or surgical removal of tumor masses, this may also result in a
concomitant reduction of the immunosuppression exerted by
the tumor. This reduced immunosuppression may facilitate
immunotherapy and in turn help to limit recurrence rates of
currently available standard therapies. First trials of adjuvant
immunotherapy were already conducted more than 20 years
ago. In one important pilot study, adjuvant infusion of
in vitro activated autologous lymphocytes after resection of
HCC was assessed in a randomized cohort of 150 patients
and resulted in a reduction of recurrences by 18 %, as well
as an increase in recurrence-free patient survival [109].
A smaller, nonrandomized study recently utilized a similar
protocol extended by the injection of autologous DCs pulsed
with autologous tumor lysate in addition to lymphocytes.
The authors reported encouraging increases in patient sur-
vival and time to recurrence [110].

Similar studies were also conducted in HCC patients
undergoing radiofrequency ablation (RFA). A recently
published phase III study applying an immunotherapy pro-
tocol relying on activated autologous lymphocytes demon-
strated an increase of recurrence-free survival by almost
50 % compared to controls [111]. Indeed, RFA may act as
immunotherapy on its own. The necrotic cell death induced
by RFA may trigger inflammation and the release of TAA
[112]. Extracts from RFA-treated HCC lesions can augment
the function of APC [113]. This has also been observed
in vivo as a transient increase of DC activation in HCC
patients after RFA and can result in activation of
tumor-specific CD8+ T cell responses [114, 115]. Further-
more, activation of NK cells after RFA was also observed
[116, 117]. Thus, RFA is already associated with immune
activation and further activation of the immune response
appears beneficial. Less data exists for patients undergoing
transarterial chemoembolization (TACE). However, two
studies demonstrated an increase of tumor-specific CD8+

T-cell responses in patients undergoing TACE [47, 118]. An
expansion of effector-like CD8+ T cells after TACE has also
been reported [119]. Similar to results obtained in the setting
of RFA, infusion of DC during TACE could improve
recurrence-free survival of HCC patients [120].

As discussed, NK cells occur at high frequency in the
liver and can have strong cytotoxic effects. One study thus
investigated, whether it might be feasible to obtain NK cells
from donor liver perfusates to apply them as adjuvant to
prevent recurrence after liver transplantation [75]. A human
NK-cell product generated in this way showed significant
antihepatoma cell line cytotoxicity in vitro while not
attacking partially MHC-mismatched, healthy cells derived
from the transplant recipients. However, more research
regarding the safety of this approach is required before it
may enter the clinical setting of heterologous liver trans-
plantation for HCC.

Finally, immunomodulatory roles have also been sug-
gested for Sorafenib. This data has been generated in murine
models of HCC, where Sorafenib inhibited Treg, boosted
NK-cell responses, and normalized the phenotype of TAM
[121–123]. One study analyzed the role of Sorafenib on
CD4+ T cells [124]. Here, Sorafenib was shown to boost
effector T-cell responses and to inhibit Treg, but only at
subtherapeutic doses. At therapeutic levels, Sorafenib
inhibited effector CD4+ T cells. Nevertheless, low-dose
Sorafenib in combination with other therapies such as
RFA or TACE may be an interesting approach to boost the
immune response in HCC patients, since Sorafenib is readily
available and already approved for HCC. Finally, Sorafenib
may be combined with other immunotherapeutic approaches
to yield synergistic effects. As recently demonstrated in a
murine model of Sorafenib-treated HCC, co-blockade of
C-X-C-motif chemokine receptor 4 (CXCR4) and the
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inhibitory receptor PD-1 by a small molecule inhibitor and
an antibody, respectively, resulted in marked inhibition of
tumor growth [125]. In this model, CXCR4 inhibition lim-
ited the recruitment of immunosuppressive cells into the
tumor microenvironment and thus supported the
immunoactivating effect of PD-1 blockade as well as
Sorafenib.

As summarized in this chapter, immunotherapy holds
promise to augment the efficacy of currently available ther-
apies, especially by lowering recurrence rates. This might
reveal synergistic effects since several currently available
therapeutic regimens for HCC already boost antitumor
immunity and might thus help to overcome the immuno-
suppressive capacities intrinsic to HCC.

Taken together, the immune system has a major role in
both, the development but also the control of HCC
(Fig. 13.1). Multiple pathways are involved in these pro-
cesses, resulting in a high complexity that may open multiple
avenues for therapeutic intervention. While complex
immunotherapeutic procedures relying on generation of
autologous cell products have demonstrated promising
antitumor effects, their complexity and cost limits their
application. Simpler vaccination strategies have been met
with only limited success, possibly due to immunoinhibitory
mechanisms. Notably, checkpoint inhibitors are both easy to
apply and very promising for therapy of HCC. Checkpoint
inhibitors may be used as monotherapy as well as adjuvant
therapy to support current standard therapies. This might
lead to synergistic effects since several standard therapies
have been shown to possess immunostimulatory effects.
However, the effects of checkpoint inhibitors could so far
not be readily reproduced in in vitro systems using
patient-derived material. Clearly, immunotherapy is a
promising new technique that has the potential to greatly
enhance therapeutic options available for patients with HCC
but further research is required to better understand its
mechanisms of action.
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14.1 Introduction

Cancer heterogeneity is an important attribute and a clini-
cally significant factor of tumor progression. At the same
time, cancer heterogeneity represents a real medical chal-
lenge because it plays a crucial role in tumor invasion,
metastasis, and recurrence, and influences the effectiveness
of targeted treatment and chemo- and radiotherapy.

The problem of cancer heterogeneity has become more
evident in recent years due to significant progress in
next-generation sequencing and single-cell analysis, which has
yielded an abundant amount of data regarding the genetic
complexity of tumors. However, the first mentions of the
heterogeneity of cancer were presented at the dawn of cancer
research. The vast heterogeneity within tumors was detected by
“the first tumor pathologist,” Johannes Muller, who first
applied microscopy to human tumor samples in 1833. His
assistant, Rudolf Virchow, described “intratumoral pleomor-
phism of cancer cells” and Virchow’s assistant, David von
Hansemann, found that “many cases of tumor have different
appearances in different areas (intra-tumoural morphological
heterogeneity” and showed “the degree of manifestation (i.e.,
de-differentiation) of an underlying tumorous process (i.e.,
anaplasia)… can in fact vary from area to area in either the
original tumor or the metastasis” [1]. In 1914, Theodor Boveri,
in his book, “On the Problem of The Origin of Malignant
Tumors,” reported that phenotypic differences of tumor cells
can be related to chromosomal aberrations [2]. In the 1950s,
histological grading in breast cancer prognosis was suggested
based on the assessment of tumor heterogeneity, including the
degree of structural differentiation, variations in size, the shape
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and staining of the nuclei, and the frequency of hyperchromatic
and mitotic figures [3]. Almost 40 years later, Nowell [4]
published a key manuscript highlighting a core conception of
cancer research: “Tumor initiation occurs by an induced change
in a single previously normal cell which makes it ‘neoplastic’
and provides it with a selective growth advantage over adjacent
normal cells. Over time, there is sequential selection by an
evolutionary process of sublines which are increasingly
abnormal, both genetically and biologically.”

Currently, it is well known that the majority of cancers,
including hepatocellular carcinoma, show both intertumor
(interpatient) and intratumor heterogeneity, while tumor cells
not only clonally evolve from a single cell of origin to more
“fit” cells, but also exhibit branched evolution (like the
Darwinian “evolution tree”), generating multiple distinct
subclones within tumors [5, 6].

14.2 Intertumor Heterogeneity

Intertumor heterogeneity is recognized as being any type of
biological difference that categorizes tumors of different
patients into different subtypes with specific biological
behaviors and, as a consequence, clinical treatment courses
[5]. The mechanisms of intertumor heterogeneity have been
hypothesized to involve either different genetic or epigenetic
mutations occurring within the same cell of origin and
resulting in different tumor phenotypes and/or different
tumor subtypes arising from distinct cells within the tissue
[7]. However, the factors and causes underlying intertumor
heterogeneity are most likely identical to the ones involved
in the origin of intratumor diversity and are reviewed below.

14.3 Intratumor Heterogeneity

14.3.1 Definition of Intratumor Heterogeneity

Intratumor heterogeneity is represented by any type of bio-
logical difference between tumors of the same origin or
tumor cells within the same tumor in individual patients [5].
Importantly, the term “intratumor heterogeneity” can be
applied to designate the diversity of endothelial, stromal, and
inflammatory cells in the tumor microenvironment.
Approximately, 10 biological properties underlie inter- or
intratumor heterogeneity and are summarized as follows:
activation of signaling pathways, evasion of antitumor
immunity, induction of senescence, production of secreted
factors, migration, metastasis, angiogenic capacity, genetic
makeup, response to anticancer agents, and activation of
metabolic pathways [8]. In fact, tumor cells within one
tumor or different tumors can exhibit varying degrees of
differences in regard to each of these features [8].

To date, it is well established that intratumor hetero-
geneity is represented by the presence of distinct cell pop-
ulations, which can occupy specific microenvironmental
niches, behave as communities, and substantially interact
with each other and cells of the tumor microenvironment [9].
Such interactions can be both negative (from competition to
cannibalism) and positive (mutualism, synergism etc.) and
can significantly influence cancer progression and therapy
efficiency [9, 10]. For example, the subspecialization of
tumor cell functions was suggested to support cancer inva-
sion and metastasis [9, 11], whereas cell cannibalism may be
a survival strategy for tumor cells or metastases in unfa-
vorable microenvironmental conditions [12, 13]. Intratumor
heterogeneity varies dynamically throughout the disease
course and has a tendency to increase as the tumor grows [6,
14]. In particular, the tumor population structure can be
modulated by chemotherapy, which can either completely
eradicate the tumor cell population or eliminate
drug-sensitive tumor cells providing conditions for the
development of drug-tolerant cells or change the tumor
phenotype [15–17].

Thus, a heterogeneous tumor is now considered a
dynamic and evolving ecosystem with a population struc-
ture, which varies based on changes in the selective pressure
of the microenvironment, the immune system, hypoxia,
therapy, etc. [5, 9, 18].

14.3.2 Types of Intratumor Heterogeneity

Intratumor heterogeneity may exist between different geo-
graphical regions of the same tumor (spatial heterogeneity)
and between the primary tumor and a subsequent local or
distant recurrence in the same patient (temporal hetero-
geneity) [19]. Spatial heterogeneity results from the fact that
there are distinct microenvironmental niches in the primary
tumor providing resources for the independent evolution of
tumor subclones [14]. This notion is supported by the data of
Gerlinger and coauthors [20] and contradicts a recent study
indicating the possibility of the intermixing of tumor cells
within tumor tissue [16].

Depending on the nature of the differences between tumor
cells, intratumor heterogeneity can be conditionally classi-
fied as one of three types: genetic, epigenetic, and pheno-
typic. A major cause of genetic heterogeneity is genomic
instability, resulting in an increased mutation rate and the
generation of diverse tumor cell populations with specific
gene mutations and chromosomal abnormalities [14, 21].
Different factors and mechanisms have been found to con-
tribute to the origin of genomic instability, which are com-
prehensively reviewed in Gerashchenko et al. [5]. Epigenetic
heterogeneity appears due to changes in chromatin structure
(DNA methylation and histone modification), the expression
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patterns of noncoding regulatory RNAs, and the deregula-
tion of cellular network dynamics [22]. These alterations can
result in the formation of distinct tumor cells with unique
epigenetic profiles. Importantly, genetic and epigenetic
heterogeneities mutually contribute to the clonal evolution of
cancer. Epigenetic changes allow populations of tumor cells
to dynamically modify networks in the same mutation pool
and switch cellular phenotypes [23]. Modifications in the
epigenetic landscape can promote or suppress various
genetic alterations originating in the process of tumor evo-
lution [23]. Phenotypic heterogeneity arises among tumor
cells, which differ in size, shape, receptor status, differenti-
ation, invasion patterns, etc. Typically, phenotypic hetero-
geneity occurs as a result of genetic and epigenetic
alterations [24], although there are data that show that
variations in phenotypes are not always related to gene
and/or chromosomal mutations [25, 26]. In addition, tumor
cell phenotype depends on the microenvironmental differ-
ences in tumors and seems to be plastic and reversible,
which is confirmed, for example, by the transition between
epithelial and mesenchymal states in tumor cells [24, 27].

14.3.3 The Mechanisms of Intratumor
Heterogeneity

Variations in the environmental landscape, the distinct
availability of resources within a tumor, and tumor-tumor
and tumor–microenvironment interactions can be driving
forces that generate intratumor diversity. At least five
hypotheses were suggested to model the origin of hetero-
geneity within tumors [28], two of which, the hypothesis of
cancer stem cells (CSC) and the hypothesis of clonal evo-
lution, were described in detail. According to the CSC
hypothesis, also known as the hierarchical hypothesis, tumor
growth is similar to a normal physiological process, such as
the development or repair of a tissue, but is initiated by
genetic alterations in the stem cell. Such CSCs have
increased proliferative potential and the capability to asym-
metrically divide, resulting in the generation of stem cells as
well as different tumor subclones [5, 29]. The model of
clonal evolution, as mentioned above, was first proposed by
Nowell in 1976 [4]. According to this model, tumors can
arise from one cell, and cancer progression is caused by an
increase in genomic instability as well as the appearance and
survival of more aggressive clones under conditions of
selective pressure. The clonal evolution suggests that tumor
origin and intratumor heterogeneity are determined by
genetic changes in somatic cells. According to this theory,
the appearance of a functionally significant mutation (“dri-
ver” mutation) is favorable for divergence of the tumor clone
and the generation of an evolutionarily new subclone. The
intratumor genetic heterogeneity occurs due to “passenger”

mutations, which are believed to be stochastic and possibly
neutral or negative [5, 30]. Tumor mutations can also be
classified as “background” (ancestral) or “foreground”
(polymorphic). Background mutations are shared by all
tumor cells in a tumor, likely to maintain cell proliferation
and increase the mutation rate. Foreground mutations are
responsible for the generation of tumor subclones, present
only in these tumor cells, and may be involved in the tran-
sition from the least proliferative to the more aggressively
growing cells [31, 32]. Background and foreground muta-
tions can act as drivers or passengers, depending on the
mutation’s functional effect and penetrance.

14.3.4 Somatic Mosaicism as a Cause
of Intratumor Heterogeneity

Previous hypotheses considered the development of intra-
tumor heterogeneity within the context of the monoclonal
evolution of cancer. However, if tumors are of polyclonal
origin, for example originating from “field cancerization”
[33], the initial heterogeneity of (normal) somatic or stem
cells may contribute to the intratumor diversity. The phe-
nomena of genetic, epigenetic, and phenotypic heterogeneity
of normal somatic cells within the same tissue have been
named “somatic mosaicism” [34]. The old paradigm of the
genetic identity of all somatic cells in an organism has
shifted after the widespread increase in genome sequencing
research. It has been found that a cell has numerous genetic
differences from others in the same organism [34–36]. The
sources of somatic cell variability include errors in DNA
replication, incomplete and incorrect DNA repair, abnor-
mality of chromosome structure and segregation [35, 36].
The frequency of genomic changes in somatic cells is rela-
tively high [34] and can be of great importance in different
physiological and pathological processes, including tumor
growth. For example, individuals with increased numbers of
mosaic events were found to demonstrate an increased risk
of developing cancer, while high levels of mosaicism in
apparently normal matched tissues were linked to poorer
prognosis in cancer patients [36]. Moreover, it is probable
that mutations arise in non-malignant cells, while tumor cells
merely inherit these properties. Another relation of somatic
mosaicism to tumors may be the fact that the level of
genomic instability in somatic cells may also be inherited by
tumor cells. Therefore, the genetic instability of tumor cells
and the speed of tumor progression could correlate with the
level of cell mosaicism in surrounding non-malignant tissue.

However, the study of the contribution of somatic
mosaicism to tumor progression encounters challenges [36].
First of all, it is impossible to estimate the mutation status of
the cell genome before malignant transformation. Never-
theless, searching for tumor “driver mutations” in normal
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tissues of cancer-bearing and healthy persons may be ben-
eficial for the understanding of tumor progression. For
example, it could help to explain the phenomenon of the
extraordinary malignant behavior of some tumors in their
early development.

14.4 Heterogeneity in Hepatocellular
Carcinoma

Hepatocellular carcinoma (HCC) is a structurally complex
system undergoing different molecular and phenotypic
changes during tumor development [37]. These changes can
be represented by gene mutations and chromosomal and
microsatellite instability and can operate together with
nongenetic events such as alterations in the tumor cell epi-
genome and tumor microenvironment [37, 38]. HCCs are
genetically heterogeneous diseases with characteristic mor-
phology, growth rates, and prognosis. The presence of
considerable differences within hepatocellular tumors causes
uncertainty in the use of single biopsies that do not provide
complete and objective information regarding tumor geno-
type and phenotype. It is clear that tumor heterogeneity
contributes to cancer growth, metastasis, recurrence, and
response to chemotherapy. Accordingly, understanding
tumor diversity and the possibility of its assessment are
important steps toward improving the clinical management
and treatment of HCC.

14.4.1 Intertumor Heterogeneity in HCC:
Insight into Molecular
Classification

HCC demonstrates extremely high intertumor heterogeneity,
leading to significant differences in the spectrum of mor-
phological, immunohistochemical, and genetic features
between tumors of different individuals and, as a conse-
quence, to the presence of distinct histological and molecular
cancer subtypes with specific prognoses and therapy
responses [39, 40]. For example, fourteen hepatic stem/
progenitor cell markers (cytokeratins 7 and 19, EpCAM etc.)
have been found to be heterogeneously expressed in differ-
ent HCCs. No patient expressed all of these biomarkers, and
only 17.8 % of patients displayed the simultaneous expres-
sion of more than three markers [41].

At present, it is well known that HCC is represented by
different histotypes: fibrolamellar HCC, clear cell HCC,
scirrhous (sclerosing), combined hepatocellular/
cholangiocellular carcinoma, and sarcomatoid HCC [42].
Histological classification is the gold standard for the diag-
nostic histopathology of HCC and is widely used in clinical
practice for adequate treatment.

With the rapid development of whole-genome and tran-
scriptome profiling technologies, including expression
microarrays and next-generation sequencing platforms,
molecular profiling has become a powerful tool with which to
characterize the tumor landscape; identify new therapy tar-
gets, predictive and prognostic markers; and classify tumors
into biologically and clinically relevant groups. The first
molecular classification of HCCs was suggested by
Laurent-Puig et al. [43] in 2001, who stratified tumors into
two groups according to chromosome stability status. The first
group included large hepatitis B virus (HBV) negative and
chromosome stabile tumors possessing mutations in the
CTNNB1 gene (encodes b-catenin) and losses on 8p. HCCs of
the second group demonstrated chromosome instability and
different chromosomal aberrations, among which losses on
1p, 4q, 6q, 9p, 13q, 16p, 16q, and 17p were the most com-
mon, as well as frequent mutations in AXIN1 and TP53 genes.
This group was usually associated with HBV infection, while
TP53 mutations, 17p, 13q losses, and a high value of the
fractional allelic loss index were associated with poorly dif-
ferentiated tumors independently of risk factors [43]. Subse-
quently, there were many important studies that demonstrated
different molecular stratifications of HCC [44–52], which are
summarized in Table 14.1. Overall, they were successful in
distinguishing recurrent and frequent subtypes, such as pro-
liferating, b-catenin-activated, interferon-related, progenitor-
and hepatocyte-like subtypes, as well as less common
molecular forms such as polysomy of chromosome 7-related
HCC (Fig. 14.1).

Proliferating HCCs, described previously as the second
group, cluster A, Met+ group, subgroups G1–G3, “prolif-
eration” class, subclass S2, and cluster C, were found to
show overexpression of the proliferation gene cluster, acti-
vation of the PI3K/Akt signaling pathway, and chromosome
instability as well as being associated with poor prognosis.
Patients with this subtype display high serum levels of
a-fetoprotein (AFP) and have large tumors with frequent
local and vascular invasion and poor differentiation [44, 46,
48, 49, 51–53].

Beta-catenin-activated tumors are distinguished based on
mutations in the CTNNB1 gene and the activation of the
Wnt/b-catenin pathway. Several reports indicate the induc-
tion of TGF-b signaling, downregulation of CDH1
(E-cadherin) and biotic stimuli/immune response genes, and
chromosome stability in HCCs in this subtype [48, 49, 51–
53]. These tumors are usually related to the origin of satellite
lesions and vascular invasion [48, 51]. Hoshida et al. [51]
also showed that the b-catenin-activated subtype is associ-
ated with a significantly greater risk of earlier recurrence.

Interferon-related HCCs have previously been identified
by Chiang et al. in 2008 [49] and Toffanin et al. in 2011
[52], who demonstrated the high expression of
interferon-response related genes in these tumors. HCCs of
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Table 14.1 Molecular classifications of hepatocellular carcinoma

Reference Subtypes Frequency
(%)

Biological features Clinical features

Chromosome
aberrations/gene
mutations/gene (protein)
overexpression

Other genetic features

Laurent-Puig
et al. [43]

Chromosome
instability
(pathway I)

Losses on 1p, 4q, 6q, 9p,
13q, etc./AXIN1, TP53/–

CIN HBV, poor prognosis, poor
differentiationa

Chromosome
stability (pathway
II)

Losses on 8p/CTNNB1/– Large tumor, non HBV
infected

Lee et al. [44,
45]

A versus B 44 versus
56

–/–/proliferation, cell
cycle control,
ubiquitination, histone
modification,
antiapoptotic, hypoxia
genes

CIN? Poor overall survival

HB versus HC –/–/hepatoblast stem,
AP-1 transcription
factors and target genes,
JUN and FOS signaling
target genes

Poor recurrence and overall
survival

Kaposi-Novak
et al. [46]

Met+ versus Met− 40 versus
60

–/–/Met signaling target
genes (cell motility,
angiogenesis etc.)

Poor overall survival,
vascular invasion,
microvessel density

Katoh et al.
[47]

A (A1, A2, A3)
versus B (B1, B2,
B3)

55 versus
45

Pronounced
chromosomal alterations
(gains on 1q, 6p, 8q, etc.,
losses on 8p, 13q, etc.)/
–/–

CIN Poor overall survival,
frequent intrahepatic
metastasis, high serum level
of AFP, HBV

Boyault et al.
[48]

G1 9 –/AXIN1/AKT signaling
target genes

CIN Women, young, high serum
level of AFP, HBV

G2 9 –/TP53, AXIN1,
PIC3CAb/AKT signaling
target genes

CIN Hemochromatosis, HBV,
local, and vascular invasion

G3 12 –/TP53/cell cycle
control, nucleus transport
genes

CDKN2A methylation,
CIN

G4 38 –/TCF1b/– Heterogeneous group

G5 17 –/CTNNB1/Wnt
signaling target genes

CDH1
downregulation biotic
stimuli and immune
response gene
downregulation

G6 12 CDH1
downregulation

Satellite nodules

Chiang et al.
[49]

CTNNB1 32 –/CTNNB1/liver-specific
genes

Tumors >3 cm

Proliferation 31 –/–/proliferation genes CIN Macrovascular invasion

Interferon 25 –/–/interferon-stimulated
genes

Tumors <3 cm

Poly 7 12 Polysomy of chr 7/-/chr 7
genes

No 8q gains EGFR
amplificationd

Yamashita
et al. [50]

22–26 –/–/hepatoblast stem
genes, Wnt signaling

High level of VEGFc Poor prognosis, young,
advanced TNM stages,

(continued)

14 Inter- and Intratumor Heterogeneity in Hepatocellular Carcinoma 215



this subtype displayed a smaller size (<3 cm) compared with
other molecular forms.

The progenitor-like subtype is comprised of the
hepatoblast-like subtype (HB) described by Lee et al. [45] as
well as the hepatic stem cell- and hepatocytic progenitor-like
subtypes identified by Yamashita et al. [50]. HCCs within
this subtype show an enriched expression of hepatoblast and
hepatic stem cell genes and are aggressive tumors with poor
prognoses. Patients with these tumors usually display
advanced TNM stages, portal vein invasion, high
microvessel density, and poorer survival rates [45, 50, 54]. It
is probable that bile duct epithelium-like HCCs also refer to
the progenitor-like subtype due to the presence of EpCAM
expression, which was found to be attributed to
tumor-initiating cells with stem/progenitor cell features, as
well as the overexpression of stem/biliary epithelial genes

(CK7 and CK19) [50, 55]. Interestingly, duct epithelium-like
tumors show early TNM stages, low portal vein invasion,
and good prognoses [50].

The hepatocyte-like subtype has been defined by the
overexpression of hepatocyte function-related genes in
hepatocellular tumors and the absence of EpCAM and AFP
expression, which likely indicates that they originate from
mature hepatocytes. These tumors tend to be
well-differentiated and correlate to early TNM stages, low
venous invasion, and intermediate prognosis in comparison
with other HCC subtypes [50, 51, 54].

Polysomy of chromosome 7-related HCCs are distinguished
by polysomy of chromosome 7 and the concomitant overex-
pression of multiple genes (e.g. EGFR) along this chromosome
[49, 56]. Most of these tumors lacked 8q gains, which are the
second most frequent chromosomal alterations in HCC [49].

Table 14.1 (continued)

Reference Subtypes Frequency
(%)

Biological features Clinical features

Chromosome
aberrations/gene
mutations/gene (protein)
overexpression

Other genetic features

hepatic stemcell–
like (EpCAM
+AFP+)

target genes, EpCAM,
AFP

CK19, c-Kit
expression

portal vein invasion, higher
microvessel densityc

Bile duct
epithelium-like
(EpCAM+AFP−)

15–21 –/–/stem or biliary
epithelial genes, EpCAM

No expression of AFP Good prognosis, young,
early TNM stages, low
portal vein invasion

Hepatocytic
progenitor-like
(EpCAM−AFP+)

20–22 –/–/hepatic stem genes,
AFP

No expression of
EpCAM

Poor prognosis, advanced
TNM stagesb

Mature
hepatocyte–like
(EpCAM−AFP−)

31–40 –/–/mature
hepatocyte-specific genes

No expression of
EpCAM, no
expression of AFP

Intermediate prognosis,
elder, early TNM stages

Hoshida et al.
[51]

S1 37 –/–/Wnt signaling target
genes

TGF-b activation Earlier recurrence, vascular
invasion, satellite lesions

S2 19 –/–/MYC and AKT
signaling target genes

High AFP

S3 44 –/–/hepatocyte
function-related genes

Low grade

Toffanin et al.
[52]

Cluster A (the
wingless-type
MMTV
integration site)

36 –/CTNNB1/–

Cluster B
(interferon-related)

33 –/–/interferon-response
related genes

Small tumors (mean
diameter 2.8 cm)

Cluster C
(proliferation):
C1
C2
C3

31
17
9
6

C1: –/–/AKT signaling
target genes
C2: –/–/AKT and Met
signaling target genes
C3: –/TP53/AKT
signaling target genes

miR-26a and miR-26b
downregulation (C1,
C2), up-regulation of
C19MC miRNA
cluster (C2)

Poor survival (C1, C3),
vascular invasion (C1, C3),
poor differentiation (C2),
high AFP (C3), large tumor
size (C3)

CIN, chromosome instability; HBV, hepatitis B virus; AFP, a-fetoprotein; atumors with TP53 mutations, 17p, 13q losses, and a high value of the
fractional allelic loss; brare events; cShan et al. [54]; dKeng et al. [56]
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Recently, Zucman-Rossi et al. [57] suggested dividing
HCCs into two major molecular classes. The proliferation
class is characterized by an expression profile related to cell
proliferation and cell-cycle control and is generally associ-
ated with more aggressive disease. Proliferating and
progenitor-like subtypes likely make up this class. The
non-proliferation class generally retains molecular features
resembling normal hepatic physiology and includes the
b-catenin-activated, interferon-related, hepatocyte-like and
polysomy of chromosome 7-related subtypes.

Interestingly, intertumor molecular heterogeneity is
common not only for HCC in general but also for specific
histological types. For example, Cornella et al. recently
suggested three different molecular classes of fibrolamellar
HCC, which is a rare primary hepatic cancer that is often
seen in younger individuals and is not associated with
underlying liver diseases. The proliferation class

demonstrated changes in the gene expression involved in the
regulation of cell proliferation and the mTOR signaling
pathway. The inflammation class included tumors with an
altered expression of genes that regulate inflammation and
cytokine production. The third “unannotated” class was
characterized by a gene expression profile not previously
associated with liver tumors. Surprisingly, these molecular
classes were not related to survival [58].

Thus, despite a dramatic intertumor genetic heterogeneity
of HCC, several prognostically distinct molecular subtypes
have been distinguished that likely require specific thera-
peutic interventions. At present, there are many drugs that
target specific molecules and are successfully applied for the
treatment of different cancers. These drugs can likely be
effective in the treatment of HCC because the signaling
pathways involved in the development of other cancers are
often seen in liver carcinogenesis (Fig. 14.2).

Fig. 14.1 Molecular subtypes of hepatocellular carcinoma. The recur-
rent subtypes: proliferating, b-catenin-activated, interferon-related,
progenitor-like, hepatocyte-like, and polysomy of chromosome

7-related subtypes are given, which include previously identified HCC
groups, subgroups, clusters, etc.
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14.4.2 Intratumor Genetic Heterogeneity
in HCC: Insight into Cancer
Evolution

Significant genetic diversity within hepatocellular tumors
was reported as early as the 1980s and 1990s. Kuo et al. [59]
showed that DNA distribution patterns within a tumor were
different only in 12 % of HCC patients. In the case of
multiple HCCs, different DNA profiles in two distinct
tumors of the same patient were evident in 29 % of cases.
Interestingly, polyploid cells were more often detected in
metastatic and recurrent lesions than in the corresponding
primary HCCs. Another study demonstrated a heterogeneity
of DNA content in 46 % of multiply synchronous HCCs,
which may indicate their different clonal origin [60]. Mul-
ticlonal (polyclonal) development of multiple HCCs has also
been confirmed by Sirivatanauksorn et al. [61], who
described the polymorphic genomic heterogeneity between
different nodules within same tumor and suggested that each
nodule can be distinguished by a specific DNA fingerprint.
Intratumor heterogeneity was also observed for mutations of
TP53 and CTNNB1 genes [62–64], which are well known to
be highly mutated in HCC (Fig. 14.3c).

As with others cancers, HCC is a disease of the genome.
Different recurrent genetic alterations affecting tumor sup-
pressor genes and oncogenes (TP53, CTNNB1, TERT etc.),
as well as chromosome regions; gains at 5p, 8q, and 11q and
losses at 13q and 17p are involved in hepatocellular car-
cinogenesis [39, 57, 65] and can act as driver mutations by

either transforming normal hepatocytes into ones with
malignant potential or contributing to the generation of new
tumor subclones with selective advantages. Twenty-five
years ago, it was suggested that a minimum of five genetic
alterations are required for normal cells to become truly
cancerous [66]. Quite recently, Tao et al. [31] traced the
tumor evolution in one case with HCC. The whole-genome
sequencing of six different samples from the primary tumor,
two recurrent samples and seven specimens of
tumor-adjacent tissue led to the identification of three fore-
ground mutations, two of which affected the CCNG1 and
p62 genes and one created an indel/fusion gene in chro-
mosome 5q. Foreground mutations were responsible for
divergent cell lineages and resulted in the origin of new
tumors and recurrent subclones. In total, more than 90 % of
point mutations identified here were common for different
tumor regions in HCC. These mutations were classified as
“background.”.Twenty-four background mutations defined
the common mechanisms of tumor growth, such as inflam-
mation, cell proliferation, and migration. Thus, tumor evo-
lution in HCC in general and intratumor genetic
heterogeneity in particular have been determined to result
from a long process of accumulation of background muta-
tions and the further rapid generation of a relatively small
number of foreground mutations [31]. Similar results have
been previously demonstrated by Saeki and coauthors, who
studied genetic differences between two regions of a single
HCC nodule in six patients. They showed that while the
majority of chromosomal changes were common for both

Fig. 14.2 Potential targets and
therapeutic drugs in molecular
subtypes of hepatocellular
carcinoma
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compartments of each HCC and likely represented a genetic
basis for developing tumors, each tumor region also acquired
additional independent mutations. Meanwhile, intratumor
genetic heterogeneity was higher in tumor regions from
advanced HCC compared to small homogeneous HCC [67].

Interestingly, the study by Tao et al. [31] did not confirm
the key role of genes (TP53, CTNNB1, and TERT) that were
previously found to be highly mutated in liver carcinogen-
esis [65, 68]. In particular, the frameshift mutation in the
TP53 gene detected in different tumor regions and recur-
rence samples was designated as a “background” mutation,
whereas aberrations in the CTNNB1 and TERT genes have
not been identified at all [31]. These data are in agreement
with the recent study conducted by Friemel et al. [37]. The
authors analyzed cell and tissue morphology, the expression
of the liver cell markers CK7, CD44, AFP, EpCAM, and
glutamine synthetase, along with the mutations of CTNNB1
and TP53 in 120 tumor areas in 23 cases of HCC. The
intratumor heterogeneity of at least one feature was observed
in 87 % of HCC cases, whereas heterogeneity in the muta-
tional status of CTNNB1 and TP53, seen in 22 % of HCC
cases, were more frequently seen in tumors with higher
tumor stages (T2 and T3) and larger tumor sizes >4 cm.

Importantly, CTNNB1 mutations were not uniformly detec-
ted in all tumor regions within the same tumor. Mutations in
the TP53 gene were detected in only 2 out of 23 HCC cases,
were absent in small hepatocellular tumors, and were not
common within the tumor of one patient [37]. Given these
results, it is possible that mutations in the CTNNB1 and
TP53 genes represent late events in hepatocarcinogenesis
and are not related to the malignant transformation of liver
cells [37]. Moreover, these molecular events, particularly in
the TP53 gene, can result in clonal expansion, for example
through the formation of lower differentiated tumor cells
populations [62]. Moreover, intratumor heterogeneity in the
mutational status of the CTNNB1 and TP53 genes has
clinical importance because both genes are used in the
molecular classification and prognostication of HCC [37, 48,
52, 53].

In addition to the above-mentioned studies, the phe-
nomenon of clonal evolution in HCC has been demonstrated
by Colombo et al. [69]. Using different approaches for cell,
genome, and transcriptome analyses, as well as xenotrans-
plantation, the authors characterized three long-term cultured
cell lineages (hcc-1, hcc-2, and hcc-3) obtained from a pri-
mary hepatocellular tumor. Under identical culture

Fig. 14.3 Intratumor heterogeneity in hepatocellular carcinoma.
a Microphotograph of hepatocellular carcinoma (hematoxylin and
eosin staining). b Intratumor morphological heterogeneity represented
by trabecular, solid, and pseudoglandular (acinar) structures in the
tumor. c Intratumor genetic heterogeneity reflected in the variability of
gene mutations (e.g. TP53 alterations as shown in figure) across the

tumor. d Intratumor immunohistochemical heterogeneity manifested in
differences of protein expression (e.g. b-catenin) between tumor cells of
the same tumor. e Tumor microenvironment heterogeneity arising from
variations in the distribution of stromal and immune cells (e.g.
macrophages) within the tumor
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conditions, these lineages were phenotypically and genetically
distinct. The hcc-1 clone contained two distinct subpopula-
tions (clone 1/7 and 1/8) with differing growth and mor-
phology, whereas hcc-2 and hcc-3 were identical to their
mother cell populations. All of the cell populations displayed
common chromosomal aberrations (translocation t(1:8) and
the gain of 1q), which are most likely to be early events and
involved in the origin of ancestral clones. In addition, specific
chromosomal abnormalities (losses of 8p and 13q) were
determined to be likely associated with tumor progression and
the differing origin of these cell populations. Phylogenetic
analysis confirmed the branched evolution of the oldest hcc-3
clone and the earliest hcc-2 and hcc-1 populations, including
clones 1/7 and 1/8, which diverged from the ancestor of
hcc-1. Clonal evolution resulted in differences in the expres-
sion profile and phenotypic drift of cell clones, which likely
explains their chemoresistant and tumorigenic potentials. For
example, the hcc-1 clone displayed the expression of both
epithelial and mesenchymal markers, greater resistance to
sunitinib, and higher tumorigenicity than hcc-3, while clone
1/7 tended to have a liver progenitor phenotype (EpCAM,
CK19 etc.), and hcc-2, clone 1/8 had a phenotype of epithe-
lial–mesenchymal (EMT) transition (Thy-1, CD105, and
S100A4). Interestingly, the authors suggested that clonal
cooperation between epithelial and mesenchymal cells in the
hcc-1 clone is an additional factor contributing to chemore-
sistance. Additionally, CSCs have been hypothesized to be
localized to cell lineages and to maintain/promote tumor
progression and intratumor heterogeneity together with clonal
evolution [69].

It is hypothesized that clonal evolution in HCC may be
triggered by the HBV, which is involved in the etiology of
this cancer [70]. HBV frequently integrates into the genome
of liver cancer cells [71]. The consequences of such integra-
tion are quite different and usually comprise the following
genetic alterations: direct gene disruption, viral
promoter-driven human transcription, viral-human transcript
fusion, and DNA copy number alteration [71]. Interestingly,
HBV integrates in both tumor and non-cancerous hepatocytes,
while clonal expansion is characteristic of only virus-
integrated tumor cells [71]. Therefore, HBV integration can
be used as a marker for tracing tumor evolution. Using this
approach combined with genomic aberrations, Miao et al. [72]
recently demonstrated the evolutionary history of multifocal
HCCs in two patients and differentiated the multicentric
occurrence from intrahepatic metastasis (recurrence).

Taken together, we can conclude that clonal evolution
fueled by CSCs, sometimes triggered by external factors
(e.g., HBV) and assisted by the accumulation of mutations
with different functional effects (drivers or passengers,
foreground or background), leads to the generation of
genetically and phenotypically distinct subclones with
independent tumor-propagating capability and differing

capacities for response to therapy and, as a consequence, to
the development of intratumor heterogeneity in HCC.

14.4.3 Intratumor Phenotypic Heterogeneity
in HCC

HCC shows considerable intratumor morphological and
immunohistochemical heterogeneity (Fig. 14.3b, d). The
first is usually designated by the variability in the architec-
tural growth patterns of individual tumor areas. In particular,
trabecular, solid, and pseudoglandular (acinar) structures are
accepted as distinguishing hepatocellular tumors, according
to the 2009 WHO classification [73]. There is little data
demonstrating that such morphological heterogeneity can be
associated with larger tumor size and higher tumor stage
[37]. Immunohistochemical heterogeneity is comprised of
differences in protein expression (e.g., receptor status)
between tumor cells within the same tumor.

The significance of morphological heterogeneity results
from the fact that highly invasive tumor cells do frequently
have three types of structures: trabecular, solid, and alveolar
[74]. In addition, such morphological as well as immunohis-
tochemical diversities in HCC usually correlate to genetic
changes in tumor cells. For example, there is data that shows
that TP53 mutations are more often detected in the tumor cells
of trabecular structures of patients from Mozambique than in
cases from South Africa [75]. Pseudoglandular structures are
frequently seen in tumor areas containing mutations in the
CTNNB1 gene [37]. One of the striking manifestations of
morphological heterogeneity in HCC is the observation of
tumor areas with two or more histological differentiation
grades within one tumor in almost half of the cases. Such
heterogeneity was more considerable in tumors with sizes
between 3 and 5 cm than in smaller tumors (<2 cm) [76].
Subsequently, intratumor heterogeneity with respect to the
histological grade has been reported in 26.8 % of cases with
small HCC (<3 cm) [64]. In the study by Friemel et al. [37],
such heterogeneity was detected in one fourth of HCC cases.
Importantly, HCC not only displays structural (architectural)
but also cytologic heterogeneity within a tumor. The different
HCCs are distinguished depending on the cytological fea-
tures, such as clear cell aspect, fatty and small cell change,
pleomorphic cells, spindle cells, giant cells, and biliary dif-
ferentiation. It is suggested that cytologic heterogeneity
should be taken into account in the development of the
molecular classification of HCC [77].

Intratumor immunohistochemical heterogeneity in HCC
has been demonstrated in several studies and actually indi-
cates the phenotype and the state of tumor cells in different
tumor areas. For instance, EpCAM, a well-known prognostic
marker of HCC, was found to be expressed in ductular
reaction hepatobiliary cells within noninvasive nodules but
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to be inactive in the cells located in invasive tumor regions.
Furthermore, EpCAM expression in ductular reaction hepa-
tobiliary cells was related to a higher overall survival rate and
lower early recurrence rate [78]. EpCAM+ cells are also seen
more frequently in association with HBV [79]. A heteroge-
neous expression of EpCAM in HCC tissues may be attrib-
uted to the presence of CSCs arising from normal liver
stem/progenitor cells, which have various names, such as
“hepatobiliary cells,” “ductular hepatocytes,” “atypical duc-
tular proliferation,” and “oval cells” (described in rodents)
[55, 80, 81]. Increased osteopontin expression has been
shown to be related to HCC metastasis [82], while
osteopontin-positive tumor cells are often localized to the
periphery of HCC nodules, which likely indicates the more
active interaction of these cells with the tumor stroma [83].
B-catenin, which is an important player in hepatocellular
carcinogenesis, was found to be heterogeneously expressed in
tumor regions containing various histological grades and also
in tumor regions with the same grade [64]. Other key markers
(AFP, glutamine synthetase, lysyl oxidase, etc.) related to
HCC growth, invasion, and metastasis have been found to be
heterogeneously expressed in tumors [84–87].

In the literature, intratumor heterogeneity has mainly
been described for HCC in general without referring to the
histological type of tumor. Meanwhile, the presence of dif-
ferent histotypes of HCC is a striking manifestation of
intertumor heterogeneity, which is related to cancer prog-
nosis. Therefore, it is advisable to specify the histotype of
HCC for which intratumor heterogeneity is investigated. In
the available literature, there are few similar studies. For
example, scirrhous HCC was shown to demonstrate con-
siderable intratumor morphological and immunohistochem-
ical heterogeneity. This type of HCC contained a
subpopulation of small tumor cells with stem cell features,
located at the periphery of tumor cell nests. Tumor cells in
the central parts of tumor nests were phenotypically
heterogeneous, showing variable expression of
hepatocyte-specific antigen HepPar1, neural cell adhesion
molecule (NCAM), and CK7 [88].

Importantly, the same hepatocellular tumor can simulta-
neously display variability in the genotype and phenotype of
tumor cells. According to a recent study by Friemel et al.
[37], overall intratumor heterogeneity was detectable in
87 % of HCC cases. However, morphological variations
were characteristic in only 26 % of patients, combined
morphological and immunohistochemical diversity in 39 %,
and simultaneous heterogeneity of morphological,
immunohistochemical, and genetic features in 22 %.

Similar to morphological heterogeneity, immunohisto-
chemical variations within a tumor can reflect different
genetic alterations and/or dynamic and reversible phenotypic
tumor cell plasticity without any changes in genotype [37].
Moreover, intratumor heterogeneity in general likely

provides evidence of the presence of distinct tumor cell
populations within the same tumor, which complicates the
classification, prognostication, and successful therapy of
HCC. For instance, Villanueva et al. [89] demonstrated that
gene expression signatures between the center and periphery
of the tumors differed in 20–27 % of HCC patients. In this
case, the use of multiple biopsies or the development of
approaches for the quantitative assessment of intratumor
heterogeneity could acquire more complete information
regarding the tumor genetic and phenotypic landscape and
prescribe the correct treatment.

14.4.4 Somatic Mosaicism as a Source
of Intratumor Heterogeneity
in HCC

The contribution of somatic mosaicism to the development of
HCC has rarely been studied. However, there is some infor-
mation on the heterogeneity of hepatocytes in normal livers
and its relationship with cancer development. It is known that
the livers of humans and some laboratory rodents (mice, rats)
have foci of cells with unusual phenotypes [42, 90–92].
Hepatocytes of these foci have abnormal hyaline-granular,
basophilic, eosinophilic, or clear cytoplasm, observed in the
routine staining of histological specimens. The foci of abnor-
mal cells have a distinct border with the surrounding liver
tissue. Such foci are remarkably frequently observed in indi-
viduals with an inherited susceptibility to HCC or in animals
treated with mutagenic substances or hepatocarcinogens [90–
96]. Notably, the cells in the clear foci are morphologically
and histochemically similar to the cells of clear cell HCC [42,
90–92]. Therefore, it may be presumed that the origin of clear
cell HCC is related to abnormal foci in normal livers. Another
unusual feature of cells in abnormal (basophilic) hepatocyte
foci located in the portal liver lobule region is invasive growth
through the portal vessel wall without metastasis [90]. Addi-
tionally, the intravascular invasion of noncancerous cells likely
indicates the activation of genes, resulting in the aggressive
behavior of cancerous hepatocytes. A notable example of
somatic heterogeneity has been demonstrated in the enzymatic
activity in hepatocytes from preneoplastic foci. Estadella et al.
studied the patterns of three enzymes—glucose-6-phosphatase,
adenosine-5’-triphosphatase, and 5’-nucleotidase—in 1746
hyperplastic foci (hepatocyte islands) during liver carcino-
genesis induced by diethylnitrosamine in combination with
phenobarbital. The authors found a clear trend toward the
faster growth of cells with more deviated enzyme patterns
compared with less deviated clones [97]. In addition, somatic
mosaicism was found in normal liver tissues adjacent to
hepatocellular tumors. A third of HCC patients have been
shown to demonstrate a loss of heterozygosity or somatic
mosaicism in the d(CA) dinucleotide patterns in the Cyr61
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promoter in either tumors, tumor-adjacent normal liver tissues
or both [96]. Cyr61 (CCN1) is a secreted protein that mediates
diverse functions, including extracellular matrix formation,
differentiation, cell proliferation, adhesion, migration, and
survival, as well as angiogenesis and tumorigenesis [96].
Finally, mosaicism in liver tissue was described in some
noncancerous diseases [98, 99]. Unfortunately, identification
of other phenotypic or genetic variations in noncancerous liver
cells is much more difficult. Consequently, the role of many
hepatocytic properties in cancer development has not yet been
studied.

Somatic mosaicism might influence the carcinogenic
effects of viral hepatitis B and C infection to some extent. If
individuals have various somatic mutations in susceptibility
genes for hepatitis viruses, the probability of liver cancer
development (especially of its multifocal forms) and poly-
clonality of malignant tissue would also be different, because
hepatitis viruses are mutagenic agents [71, 100] and might
increase the genetic heterogeneity and hepatocyte mosaicism.

Taken together, although there is not much data con-
cerning the role of somatic mosaicism in the development of
HCC and the origin of intratumor heterogeneity, it seems to
be a prospective area for future studies.

14.4.5 Tumor Microenvironment Heterogeneity
in HCC: The Role in Cancer
Progression

HCC is a typical inflammation-related cancer characterized
by the close relationship between the tumor microenviron-
ment and tumor cells. Chronic low-grade inflammation
influences both innate and adaptive immune responses,
resulting in a tolerogenic environment, which leads to
tumorigenesis and further tumor progression [101]. In the
majority of cases, HCC develops after persistent chronic
liver diseases caused by hepatitis B or C infections. These
viruses induce chronic inflammation, which may result in the
malignant transformation together direct oncogenic viro-
logical activity [102]. In particular, viruses play a crucial role
in modulating the accumulation and activation of both cel-
lular components (immune cells and fibroblasts) and non-
cellular components (cytokines and growth factors) of the
microenvironment, markedly influencing disease progres-
sion and prognosis [103]. Thus, the immune system is very
involved in HCC pathogenesis, but the intrinsic mechanisms
of immune system-tumor interrelationship are not com-
pletely understood [101].

The tumor microenvironment consists of several cell
types, including hepatic stellate cells (HSCs, or
myofibroblast-like cells), fibroblasts, and immune (effector
and regulatory lymphocytes, macrophages etc.) and
endothelial cells that actively contribute to tumor initiation,

progression, and dissemination. In turn, the tumor itself
induces stromal cells to create microenvironmental condi-
tions to maintain tumor growth and metastasis [101]. Dif-
ferent distributions of HSCs and inflammatory cells were
previously observed in HCC tumors (Fig. 14.3e) and were
related to cancer prognosis. For example, a high density of
macrophages, activated HSCs and mast cells as well as a
high expression of macrophage colony-stimulating factor/its
receptor and placental growth factor, Th1/Th2-like cytokine
shift, inflammation-related signature have been found to be
associated with late recurrence [104].

HSCs are important players in the tumor microenvironment
and are closely related to HCC prognosis. Many data support
the protumor function of activated HSCs. The heterogeneous
distribution of HSCs in HCC tumors is a known phenomenon.
In a study by Liao et al. immunohistochemical analysis
showed various distributions and expression intensities of the
most prominent HSCs markers, including a-SMA, glial fib-
rillary acidic protein (GFAP), desmin, vinculin, and vimentin,
which likely result in the different biological behaviors of these
cells and the cellular responses to injurious stimuli in HCC
progression. In particular, it has been demonstrated that
peritumoral-activated HSCs were poor prognostic factors for
resected HBV-related HCC, especially in the early-recurrence
and AFP-normal subgroups. Moreover, researchers have
shown for the first time the expression of fibrogenesis- and
hepatocarcinogenesis-related genes in peritumoral HSCs. It is
most likely that all of these changes in the HSC phenotype
reflect different cell states and are potential targets of HCC
therapy [105].

Tumor infiltrating lymphocytes (TIL) are part of the
tumor surveillance system. TILs not only function as part of
the defense system, but also as regulators of immune toler-
ance. Tumor infiltration by lymphocytes has been demon-
strated to vary in different regions of tumor tissue. In HCC,
lymphocytes were found to be localized around the tumor,
while CD4+ T cells such as helper or regulatory cells were
concentrated in the peritumoral region. Previously, it was
suggested that CD4+ T cell infiltration may be a sign of
tumor adaptation, known as tumor enhancement [106]. In
the tumor itself, the infiltration was represented by CD8+
cells. The CD20+, TIA-1+, and CD56+ cells of the innate
immune system were practically absent. Histogenetic origin
(intertumor heterogeneity) did not influence the TIL patterns
in tumors. Interestingly, researchers did not find any corre-
lations between the distribution of TILs and the clinico-
pathological data [107]. In another study, CD4+ CD25+ T
regulatory cells were shown to be more prevalent than CD8+
T cells in HCC tumors compared with adjacent benign tis-
sue; this predominance of Treg cells is associated with a
worse prognosis. Functionally, Treg cells impair cytotoxic
CD8+ T cell proliferation, activation, degranulation, and the
production of granzyme A, granzyme B, and perforin [108].
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In addition, increasing Treg cell prevalence has been shown
to strongly correlate with advancing stages of HCC pro-
gression [109].

Zhou et al. [110] investigated peritumoral and intratu-
moral hepatic tissues of patients with HCC after curative
resection to see whether inflammatory cytokines are corre-
lated with prognosis. It was shown that higher levels of IL-2
and IL-15 in peritumoral liver tissues, but not in tumor tis-
sues, are significantly associated with a decreased incidence
of recurrence of intrahepatic tumor and prolonged overall
survival. Similarly, Zhu et al. [111] showed a significant
association between peritumoral expression of macrophage
colony-stimulating factor and the poor prognosis of HCC. It
is important that the prognostic values of IL-2 and IL-15 did
not depend on any clinicopathological factors and were
confirmed for early stages of HCC, making them promising
markers for disease prognosis [110].

It is known that the imbalance of Th1/Th2-like cytokines
influences inflammatory conditions within the tumor, deter-
mining the malignant phenotype of HCC. Peritumoral levels
of Th1/Th2-like cytokines are useful for stratifying patients,
even those with early-stage HCC, into subgroups with dif-
ferent prognoses following curative resection [112]. For
example, treatment with Th1 cytokine IFN-a after curative
resection prevented early recurrence and improved the
overall survival of HBV-related HCC possibly by correcting
the imbalances [112, 113].

The heterogeneity in the immune microenvironment
within HCC tumors and its association with disease prog-
nosis were also described by Chew et al. In particular,
proliferating immune cells, mainly NK and T cells, were
present in areas without proliferating tumor cells and were
linked with longer survival. NK and CD8(+) T cell densities
appeared to be positively correlated with the apoptosis of
tumor cells and negatively with tumor cell proliferation
[114].

Tumor-associated macrophages (TAMs) are considered
to promote tumor growth and metastasis. To date, there is no
general agreement regarding the influence of TAMs and
their numbers on HCC progression [115]. Recently, a two-
fold decrease in the number of TAMs (CD68+) between
intratumoral and peritumoral territories in HCC was found.
TAMs were predominantly seen in peritumoral areas, likely
pointing to their location at the tumor invasion front. The
number of TAMs was not associated with clinicopatholog-
ical signs. However, the increased number of peritumoral
TAMs in primary tumors was associated with better prog-
noses, whereas the lower number of TAMs in intratumoral
areas was related to the tumor cell microenvironment [115].
The low number of TAMs in the intratumoral area was
suggested to be linked to the negative effects of tumor cells,
namely tumor cell-induced macrophage apoptosis [115]. The
data obtained are rather difficult to analyze due to serious

limitations related to the lack of macrophage subtype
detection. CD68 could not distinguish between M1 and M2
subtypes. M1 macrophages activated mainly by bacterial
lipopolysaccharides and immune stimuli such as interferon-g
(IFN-g) have antitumor roles due to the elimination of tumor
cells, antigen presentation, T cells, and the synthesis of
numerous proinflammatory cytokines [116–118]. M2 mac-
rophage differentiation results from the contact with Th2
cells or after stimulation by cytokines (e.g., interleukin (IL)-
4, IL-10, IL-13) and growth factors, such as TGF-b [117,
119]. Because only the basic identification of macrophages
has been performed by Avadanei et al., future studies should
assess the roles of the M1 and M2 subpopulations of mac-
rophages in HCC.

In the literature, there are several reports regarding the
role of M2 macrophages in HCC pathogenesis. Yeung et al.
[120] showed that all macrophage-associated receptors
(CD14, CD68, CD163) were more highly expressed in the
peritumoral region than in the intratumoral region, indicating
elevated numbers of macrophages in the tumor peripheral
area. In addition, this study provided the new insight that
only peritumoral M2 macrophages significantly contribute to
HCC progression. In particular, high levels of peritumoral
M2 receptors (CD163 and SA) were associated with poor
survival and increased rates of intrahepatic recurrence. In
this case, the assessment of M2 macrophages in the peritu-
moral region after hepatectomy could be useful for the
identification of patients with a high risk of HCC recurrence.
Increased levels of peritumoral M2 macrophages were also
associated with advanced tumor stages, multiple nodules,
and venous infiltration, which indicate their potential roles in
facilitating tumor cell dissemination and invasion. Notably,
in vivo and in vitro experimental results confirmed the M2
protumor functions in HCC, showing their stimulated effect
on tumor growth and migration. CCL22/CCR4 signaling has
been shown to markedly contribute to enhanced HCC
invasiveness due to EMT activation [120]. Thus, the clinical
value of M2 macrophages as an independent prognostic
indicator for poor prognosis in HCC has been demonstrated.
Interestingly, researchers demonstrated that tumor cells can
induce the production of CCL22 in M2 macrophages, which
in turn enhanced tumor migration capacities via EMT acti-
vation. In accordance with these results, the authors sug-
gested that CCL22-related tumor invasiveness is explained
by the CCR4-assisted migration of HCC cells toward the
peritumoral regions, where CCL22-producing M2 macro-
phages predominantly reside [120].

Wang et al. [121] presented unique data concerning the
role of the microenvironment in spontaneous HCC regres-
sion. They examined a patient with spontaneous regression
of HCC, as detected by histological and immunohisto-
chemical exam, and compared this case to 20 cases of
nonspecific HCC. Microscopically, the tumor was an almost
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completely necrotic nodule with inflammatory cell infiltra-
tion and was encapsulated by a fibrotic capsule. Many
inflammatory cells within the periphery of the tumor were
found, while only a minority of them infiltrated the central
zone of the tumor. CD68+ single macrophages were local-
ized both to the central zone of surviving portion of the
tumor and the fibrous capsule of the periphery of tumor.
Meanwhile, the level of CD163+ cells was higher in partially
surviving tumors than in the fibrous capsule and peritumoral
liver tissue. It is important to note that CD163+ cells in the
surviving tumors were larger in size and were likely acti-
vated, whereas small peritumoral CD163+ cells seemed to
be dormant. Based on these data, the authors concluded that
highly activated macrophages (CD163+) in tumors con-
tributed to the spontaneous regression of HCC [121].
However, it is not possible to state whether HCC regression
is related to M2 macrophages because, as the authors con-
cluded [121], CD163 alone cannot differentiate between
activated and inactivated macrophages, for which the
involvement of additional M2 markers (e.g., stabilin-1 [122],
mannose receptor [123] and some others) is necessary.

B cells are abundantly present in tumors, while the role of
these cells in cancer pathogenesis remains unclear. Recently,
it has been demonstrated that chemokine (C-X-C motif)
receptor 3-positive (CXCR3+) B cells constitute almost half
of the B-cell infiltrate in HCC and that their levels are
positively correlated with the early recurrence of HCC [124].
These cells selectively accumulate at the invading front in
HCC tumors, undergoing further somatic hypermutation and
differentiation in plasma cells. Moreover, CXCR3+ B cells,
but not their CXCR3− counterparts, may induce the polar-
ization of regulatory macrophages (M2b) in HCC via
immunoglobulin G-dependent pathways. The significant
suppression of M2b polarization and the protumorigenic
activity of tumor-associated macrophages were evident
when B cells were abrogated. This finding points to the idea
that blocking CXCR3+ B-cell migration or function may be
considered to be a potential target for cancer therapy [124].

Thus, the tumor microenvironment in HCC has been
described as heterogeneous. Several studies found that
heterogeneity in the HCC environment is not a random event
and is associated with tumor growth, invasion, and metas-
tasis, and, as a consequence, contributes to the prognosis and
survival of patients. Moreover, immune cells located pre-
dominantly in peritumoral regions and related to poor
prognosis could be attractive targets for HCC therapy.

14.5 Summary

HCC has been characterized as a complex disease that
demonstrates considerable inter- and intratumor heterogeneity
involved in tumor growth, invasion, and metastasis. The

phenomenon of intertumor heterogeneity has been well studied
in terms of genetics, histology, and impact on the clinical
manifestation of HCC. In particular, the histological and
molecular classifications of HCCs have been suggested based
on an analysis of the morphological, genomic, and molecular
features of tumors. Different HCC subtypes demonstrate
specific clinicopathological characteristics and have distinct
potential against cancer progression. The implications of these
classifications in clinical practice make it possible to predict
prognosis and, as a result, to choose a better mode of treat-
ment. However, it must be noted that the molecular classifi-
cation of HCC is not adequately validated in terms of the
clinical behavior of tumors and sensitivity/resistance to ther-
apy. Meanwhile, the accurate analysis of the available results
regarding the molecular mechanisms of intertumor hetero-
geneity and the investigation of genetic or phenotypic vari-
ability within certain histological forms of HCC could be used
to develop a more adequate classification, though its effec-
tiveness should be clinically validated.

Despite abundant data concerning the nature and mecha-
nisms of intratumor heterogeneity in HCC, routine qualitative
and quantitative criteria are not thought to accurately capture
the complete genomic landscape of cancer or to assess the risk
of cancer progression and predict therapy response. The use of
multiple biopsies is not always possible and is associated with
clinical risk, patient choice, technical and ethical problems. The
most sensitive and accurate genomic technologies, such as deep
sequencing, which can detect sequences or mutations occurring
at very low frequencies, and, as a consequence, observe minor
tumor cell populations, remain sufficiently expensive and
complicated, and may miss important information regarding the
genetic landscape due to inadequate sampling.

In this regard, the simplest targets for assessing intratu-
mor heterogeneity are the morphological features of tumors,
which can be easily detected by histological analysis and act
as a routine method of clinical diagnosis. For example, we
previously showed the presence of five types of distinct
morphological structures in breast tumors, which were
associated with different risks of cancer metastasis and
chemoresistance [125]. In a series of studies, molecular
genetic analysis was performed to clarify the possible
mechanisms contributing to the biological behavior of breast
tumors with a prevalence of those or other morphological
structures [126, 127]. According to this view, further studies
are needed to reveal effective criteria for assessing the
clinical significance of intratumor morphological hetero-
geneity in HCC. Future research would make it possible, on
the one hand, to identify pathogenetically significant alter-
ations, which determine phenotype and behavior of mor-
phologically distinct patterns of tumor, and, on the other
hand, to validate their value for clinical practice. It should be
noted that this approach may be used to establish the clinical
relevance of heterogeneity in the tumor microenvironment,
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whereby not only prognostic and predictive markers but also
therapeutic targets may be identified both in tumor cells and
stromal-inflammatory infiltrate.

Another promising method for the analysis of intratumor
heterogeneity in clinical practice could be imaging, which
allows one to assess the spatial variation in the architecture and
function of individual tumors via the quantification of basic
biophysical parameters, such as density or MRI signal relax-
ation rate, through measurements of blood flow and volume,
hypoxia, metabolism, cell death, and other phenotypic features,
as well as through the mapping of the spatial distribution of
biochemical pathways and cell signaling networks [6]. Imaging
can also assess the receptor status of whole tumors at multiple
sites and at several time points [128]. In addition, the radiomic
signature capturing of intratumor heterogeneity has been shown
to be associated with cancer prognosis and underlying gene
expression patterns [129]. Thus, medical imaging can identify
different phenotypes and possibly distinct cell populations
existing within a tumor and represents a routine method for
quantifying intratumor heterogeneity in clinical diagnostics.
However, future radiogenomic studies are required to establish a
correlation between different genetic phenotypes of tumor cells
(including prognostically important molecular changes) and
radiomic signatures.

Finally, the detection of circulating tumor DNA or tumor
cells in liquid biopsies can be an effective prognostic and
predictive method that overcomes the problem of intratumor
heterogeneity. The use of this approach allows the detection of
known genetic changes and/or the elucidation of new molec-
ular aberrations to obtain timely information regarding the
origin of new clones in tumors and to choose accurate and
adequate therapies. Nevertheless, some issues remain: (a) there
is no comprehensive data regarding the types and numbers of
driver mutations in different cancers; (b) it is unknown to which
level of change in driver mutations the therapy should be
modified; and (c) the degree of the heterogeneity of the targets
for targeted therapy has not yet been determined.

Taken together, all available evidence indicates that fur-
ther studies are needed to clarify the mechanisms and clin-
ical significance of intratumor heterogeneity and to identify
new prognostic, predictive markers, and therapeutic targets.
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15.1 Introduction

The relationship between inflammation and cancer is
embedded within the foundations of cellular pathology itself,
when the German pathologist Rudolf Virchow first postu-
lated that the immune infiltrate commonly found adjacent to
most neoplastic tissues could be more than an innocent
bystander but rather an active player in the tumorigenic
process [1]. Hepatocellular carcinoma (HCC), is the third
most lethal solid tumour worldwide [2], and represents one
of the malignancies where inflammation plays a critical
pathogenic role, given that at least 80 % of hepatocellular
tumours arise as part of a continuum where chronic liver
disease culminates into malignant transformation through
liver fibrosis [3].

While it is recognised that each risk factor for HCC can
promote hepatocarcinogenesis through different molecular
pathways, inflammation has emerged as a unifying mecha-
nism across most aetiologies: from hepatotropic viral
infection [4] to alcohol-related fibrosis [5] and non-alcoholic
steatohepatitis [6]. The activation of pro-inflammatory
pathways represents a substantial part of the inter-cellular
cross talk between tumour cells and diverse cellular subsets
including angiogenic, immune, and cancer-associated
fibroblastic cells globally termed as the “tumour microen-
vironment” [7]. Persistent and unopposed cytokine release
accompanies the transition between fibrosis to carcinoma,
with a few distinct molecular mediators including inter-
leukins (IL) and chemokines exerting a well-defined pro-
moting role [8]. While initially focusing on the pathogenesis
of HCC, more recent studies have established a clear prog-
nostic role of inflammation and the clinical course of the
disease.

Evidence from gene expression profiling studies demon-
strate a Th-1 to Th-2 cytokine shift within the peritumoral
tissue that can significantly affect the probability of recur-
rence and mortality following radical resection of HCC [9].
Similarly, a wide range of single candidate based studies
illustrate that unopposed local or systemic release of
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pro-inflammatory mediators can predict for an adverse
course of the disease. In the case of IL-2 and IL-15, for
instance, elevated peritumoral expression predicts for early
recurrence and shorter survival after resection [10], while in
the case of IL-10, elevated secretion tends to associate with
immune dysfunction, with impaired dendritic cell maturation
[11] and an increased proportion of myeloid derived sup-
pressor cells (MDSC), a constellation of molecular traits that
links inflammation with the molecular progression of
HCC [12].

Other studies have linked a pro-inflammatory tumour
microenvironment to enhanced angiogenesis, such as in the
case of IL-17 rich tumours, where recruitment of IL-17
producing T-helper cells can adversely influence patients’
prognosis through fostering angiogenesis [13].

In aggregate, these studies have provided in-depth
mechanistic insight into how inflammation can drive the
progression of HCC as a result of the complex interaction
between several domains of cancer biology (i.e. angiogen-
esis, unrestrained proliferation, immune dysregulation) in a
dynamic cross-talk between the tumour itself, its immedi-
ately surrounding microenvironment and the host’s immune
response.

A significant number of studies have investigated the
prognostic role of a number of inflammation-based signatures
in HCC either by measuring inflammatory biomarkers in
tumours, surrounding liver tissue or in the systemic circula-
tion, with none however completing the transition from being
a scientifically interesting trait to a clinically useful test.
Barriers to tissue based and immunological approaches reside
in the poor accessibility and costs involved in applying
standardized genomic analysis of tissue samples. While
potentially more accessible, quantification of circulating
cytokines may prove a suboptimal prognostic tool for a
number of reasons. Firstly, the abundance of candidates
combined with the pleiotropic and redundant nature of cyto-
kine signalingmakes a combination of molecular actors rather
than one single cytokine the likely driver of cancer-related
inflammation. Secondly, peripheral blood cytokine mea-
surement may not necessarily mirror the local
pro-inflammatory milieu responsible of adverse clinical out-
comes. Thirdly, the paucity of studies confirming the prog-
nostic role of circulating cytokines and their improved
accuracy over routinely measured prognostic markers in HCC
makes it difficult to draw conclusions as to which candidate
should be taken forward for routine clinical evaluation.

In recent years, research into inflammation-driven changes
in routinely available peripheral blood parameters has pro-
vided further insight into cancer-related inflammation inHCC.
Several studies have identified a number of inflammation-
related traits in the peripheral blood of patients affected by
HCC including leucocytosis [14], thrombocytosis [15],

relative lymphopaenia [16], increased levels of C-reactive
protein (CRP) [17], hypoalbuminaemia [18], hyperferriti-
naemia [19] and elevated plasma fibrinogen levels [20].

Consolidated evidence emerging from a growing number
of clinical studies shows that the combination of the diverse
acute phase reactants can be used to derive composite,
inflammation-based prognostic scores. These include the
neutrophil-to-lymphocyte (NLR) and platelet-to-lymphocyte
ratio (PLR), the prognostic nutritional index (PNI), derived
from a nomogram based on hypoalbuminaemia and lym-
phopaenia (albumin in g/dL � 10 + 0.005 � total lympho-
cyte count), the Prognostic Index (PI), calculated using
leukocytosis (>11.000/ll) and elevated CRP (>1 mg/dL)
[21] and lastly the modified Glasgow Prognostic Score
(mGPS)—recently renamed as inflammation based index
(IBI) in the context of HCC—which combines hypoalbu-
minaemia (<35 g/L) and elevated CRP (>1 mg/dL)
(Table 15.1) [22].

In the last decade, the expansion of studies investigating
the prognostic power of inflammation based indices in solid

Table 15.1 Computation of inflammation-based prognostic index in
HCC

Inflammation based prognostic index Score

Inflammation based index/mGPS

CRP < 10 mg/L 0

CRP > 10 mg/L + Albumin � 35 g/L 1

CRP > 10 mg/L + Albumin < 35 g/L 2

GPS

CRP < 10 mg/L + Albumin � 35 g/L 0

CRP > 10 mg/L + Albumin < 35 g/L 1

CRP > 10 mg/L + Albumin < 35 g/L 2

PI

CRP < 10 mg/L + WCC < 11.000/lL 0

CRP < 10 mg/L + WCC > 11.000/lL 1

CRP > 10 mg/L + WCC < 11.000/lL 1

CRP > 10 mg/L + WCC > 11.000/lL 2

PNI

Albumin (g/dL) � 10 + 0.005 � lymphocyte
count � 45

0

Albumin (g/dL) � 10 + 0.005 � lymphocyte count < 45 1

Neutrophil-to-lymphocyte ratio

Total neutrophil count/total lymphocyte count
Different cut off values used: 3:1, 5:1

0/1

Platelet-to-lymphocyte ratio
Total platelet count/total lymphocyte count
Different cut off values used:

<300:1/>300:1 0/1

<150:1/150–300:1/>300:1 0/1/2
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tumours has been unprecedented, with more than 60 studies
having explored the prognostic value of the NLR across
>37.000 patients with solid tumours [23], and similar figures
applying to the evaluation of the GPS and mGPS [24]. The
prognostic qualification of inflammation-based indices has
more recently extended to HCC, where an increasing num-
ber of studies have assessed each biomarker either individ-
ually or in comparison both in the curative as well as in the
palliative setting.

In this chapter we summarize the current body of
knowledge around the use of inflammation-based indices in
HCC and their positioning in the routine prognostic assess-
ment of HCC with respect to established staging systems and
current treatment algorithms. Secondly, we aim to summa-
rize the knowledge gathered around the biologic foundations
supporting the prognostic deterioration observed in patients
with deranged inflammatory scores. Thirdly, we explore
whether suppression of cancer-related inflammatory
response may serve as a therapeutic strategy against HCC.
Lastly, we discuss the criticalities surrounding optimal
clinical application of inflammation-based indices in HCC
and the open questions around their use.

15.2 Inflammation-Based Indices: Biologic
Qualification of Their
Prognostic Role in HCC

15.2.1 NLR

In the context of an acute phase response, the relative ratio
between neutrophils and lymphocytes within the total white
cell count changes from a normal proportion of 50–60 and
30–40 % respectively to reflect a condition of peripheral
blood neutrophilia and relative lymphopenia, causing the
ratio to abnormally increase above its normal value of 2.

It has been shown that granulocyte recruitment and acti-
vation is in part directly fostered by solid tumours through
the activation of oncogenes such as RAS and MYC with the
aim to render the tumour microenvironment a cytokine-rich
background able to facilitate angiogenesis and tumour pro-
gression [25]. Mounting evidence suggests that the process
of granulocyte recruitment and activation is largely
cytokine-driven and reflects at least in part a paracrine and
endocrine effect stemming from hypoxic and frankly
necrotic tumourous tissue as part of an ongoing
pro-angiogenic signaling cascade. Activation of the hypoxic
response pathways with release of pro-angiogenic cytokines
represents a recognized mechanism of neutrophil chemotaxis
to the peritumoral stroma [26].

In addition, the progression from hypoxia to anoxia
within the tumour with the emergence of necrosis may fur-
ther trigger the innate immune response via the release of

damage-associated molecular pattern molecules (DAMPs),
activation of the complement cascade, and release of opso-
nins, resulting in an overall increase in the absolute neu-
trophil count [27]. It has been shown that local release of
pro-angiogenic cytokines including IL-17 is crucial to this
process in HCC [28]. More recent evidence has linked
CXCL5 with neutrophil infiltration and shorter time to
recurrence, confirming a prognostic role for neutrophil
infiltration in dictating the natural course of the disease in a
large series of resected specimens [29].

Sustained angiogenesis is not the sole mechanism
underlying neutrophil-mediated tumour promotion [27]. The
inflammation-driven generation of reactive oxygen species
as part of the oxidative burst may have an influence on
tumour progression by facilitating genomic instability. Sec-
ondly, interaction with the extracellular matrix through the
release of proteases and activation of Hepatocyte Growth
Factor (HGF) signaling pathways are neutrophil-facilitated
strategies underlying the acquisition of an invasive pheno-
type [30].

While initially thought as terminally differentiated innate
immune effector cells, neutrophils are now recognized to
have some degree of plasticity in their response, allowing for
contextual changes in the pattern of sensitivity and response
to different cytokines, which adds a further layer of com-
plexity in understanding their role in cancer-related inflam-
mation [31]. Tumour-derived secretion of Transforming
Growth Factor-b (TGF-b), a cytokine that has been impli-
cated in the progression and metastatic dissemination of
HCC [32], has emerged as a key cytokine capable of
polarizing neutrophil responses from an anti-tumoural “N1”
to a pro-tumoural “N2” phenotype. Such coordinated
response does not happen as a result of an exclusive inter-
action with the tumour but is part of a more complex net-
work of inter-cellular interactions involving other actors of
the tumour microenvironment including macrophages, stro-
mal cells, and lymphocytes. Interestingly, a recent study by
Mano and coworkers revealed that HCC patients with an
elevated NLR had a higher proportion of macrophage peri-
tumoral infiltrate and worse prognosis after curative resec-
tion [33]. While the functional background behind this
association was not clarified, growing evidence suggests an
immunosuppressive role for tissue macrophages through
various mechanisms: TGF-b overexpression [34], which
promotes N2 polarization, expression of PD-1 ligand 1
(PD-L1), which suppresses the cytotoxic function of
PD-1-expressing CD8+ T cells [35], or by secretion of
immune-suppressive cytokines such as IL-10 [36]. Accu-
mulating evidence suggests that the differentiation of resi-
dent tumour associated macrophages (TAMs) into an
immune-regulatory, pro-tumourigenic “M2” phenotype is
crucial in governing the fate of circulating immune cells
including neutrophils and lymphocytes in the tumour
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microenvironment [37]. In parallel, a similar immunologic
network can promote the emergence of myeloid derived
suppressor cells (MDSC), an immature population of innate
immune cells that can influence tumour progression by
inhibiting antitumour CD8+ T cell as well as NK cell
responses [38].

While an increasing number of studies across a wide
range of malignancies have established that the cross-talk
between the local immune response and systemic inflam-
mation is the result of a causal relationship rather than a
simple epiphenomenon [39], the molecular and immuno-
logical drivers responsible for such parallelism have not
been yet fully elucidated in HCC and warrant further clari-
fication in adequately powered clinical studies.

15.2.2 PLR

During acute inflammation, reactive thrombocytosis is a
systemic response aimed at facilitating the resolution of tis-
sue injury by promoting local haemostasis and wound heal-
ing through the focal release of a wide range of
platelet-derived humoral signals. There is evidence to sug-
gest that in cancer, such response is subverted by the presence
of systemic cytokine release that acts on platelets to achieve
an autostimulatory loop and increase platelet-secreted medi-
ators such as Platelet-derived growth factor (PDGF), Vas-
cular endothelial growth factor (VEGF) and others [40].

In the context of HCC, platelet counts are influenced by
the presence of underlying cirrhosis, which, in a significant
proportion of patients, induces thrombocytopaenia through
hypersplenism secondary to portal hypertension [41].
A number of studies have combined absolute platelet counts
with other biomarkers of liver function to generate combined
prognostic scores such as for instance the aspartate amino-
transferase (AST)-to-platelet ratio index (APRI). Increasing
evidence suggests an independent prognostic role for APRI
in defining the risk of HCC recurrence after primary ablation
or resection, especially in hepatitis B virus (HBV)-related
HCC [42–44].

More recent studies however highlight a correlation
between thrombocytosis and adverse clinico-pathological
features suggesting platelet count may also identify a more
aggressive neoplastic phenotype, independent of liver
function [41, 45]. Mechanistic studies have shown that
platelet lysates can promote tumour cell proliferation [46]
and antagonize the effects of sorafenib-mediated cytotoxicity
in vitro, suggesting that platelet activation may oppose
treatment efficacy in patients receiving systemic treatment
for HCC [47]. Further research has shown that platelets may

exert a more complex immunopathologic role in HCC,
modulating the hepatic accumulation of virus-specific CD8+
lymphocytes and enhancing local necro-inflammatory dam-
age, which in turn predisposes to the onset and progression
of HCC [48].

An adverse prognostic role for inflammation-driven
reactive thrombocytosis has been described in HCC, with a
strong correlation observed with infiltrative pattern of growth
[49]. While the PLR seems to hold inferior prognostic ability
compared to other inflammation based scores in HCC [22,
50], recently published evidence has shown that combination
of platelet counts with other bone-marrow derived parameters
of inflammation including peripheral blood neutrophilia and
lymphocytosis in an algorithm termed systemic immune
inflammation index (SII) identifies a subset of early HCCs
with higher circulating tumour cells at diagnosis and shorter
survival following resection [51]. With the association
between thrombocytosis and more aggressive clinical course
of HCC being strengthened from independent studies [45],
further mechanistic research is warranted to clarify whether
such link is truly causative or rather represents an epiphe-
nomenon in the course of HCC progression. The wide
availability of antiplatelet agents in the clinic makes a
stronger case for such stream of research to be prioritized.

15.2.3 Inflammation-Based Index (mGPS)

When acute tissue injury occurs, local recruitment and
activation of cells pertaining to innate immunity including
resident macrophages and neutrophils is facilitated by
chemotactic mediators, which mainly act in both a paracrine
and autocrine fashion to promote and sustain a local
inflammatory response. Some of these mediators, including
IL-6 and IL-1, have well-described endocrine effects, which
include, for instance, thermoregulation (IL-1) and systemic
modulation of complex biosynthetic processes [52]. An IL-6
peaks very early after acute tissue injury and, amongst other
systemic effects, down-regulates albumin biosynthesis and
induces the secretion of CRP [53]. CRP is a soluble acute
phase reactant belonging to the pentraxin family and is a
positive systemic regulator of the inflammatory response
[52], modulating tumour microenvironment and promoting
angiogenesis. Besides its recognized indirect role as a reg-
ulator of the tumour microenvironment, it is not completely
understood whether CRP can directly impact on cancer
progression. In a recent paper, a somatic mutation in the
CRP locus was found to correlate with Wnt mutations in
colorectal cancer cells, however the functional correlation
and the significance of this is presently unknown [54]. On
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the other hand, other pentraxin family members like
Pentraxin-3 (PTX3), have shown to facilitate tumour cell
invasion in pancreatic cancer, suggesting novel mechanistic
insights into inflammatory mediators as direct modulators of
solid tumours progression [55] (Fig. 15.1).

The combination of hypoalbuminaemia and elevated CRP
levels were utilized to derive the GPS, which has undergone
subsequent modifications (mGPS) to improve its prognostic
accuracy in patients with early as well as advanced stage
cancers [24].

Interestingly, studies of large cohorts of patients have
demonstrated mGPS to be a stage-independent prognostic
predictor, associated with poor performance status (PS) [56].

While hypoalbuminaemia is notoriously determined at
least in part by the underlying liver dysfunction that
accompanies HCC, recent studies have shown that systemic
inflammation plays an equally relevant role in influencing
albumin levels [22], with anticancer therapies exerting a
positive effect on albumin levels through modulation of the
underlying inflammatory response [57]. The individual
mechanistic role of CRP, the second component of the
mGPS is not entirely understood. Given the redundancy of
cytokine network signaling, it is not clear whether increased
CRP is a bystander downstream effect of systemic cytokine
excess or whether CRP secretion drives cancer progression.
It is however clear that raised CRP levels are associated with
poor prognosis of HCC both in the curative and palliative
setting, and a recent study confirmed the inflammation based
index (IBI) as a stage independent prognostic marker with
superior accuracy to other inflammatory markers [22], with
its dynamic changes following loco-regional therapies pre-
dicting for disease modulating effects and survival benefit in
patients with intermediate stage HCC [57].

15.3 Inflammation-Based Prognostic
Indices in the Curative Setting

According to the Barcelona clinic liver cancer (BCLC)
algorithm, patients who present with unifocal asymptomatic
HCC in the context of preserved liver function should be
offered radical treatment in form of either percutaneous
radiofrequency ablation (RFA) or hepatectomy [58]. Despite
achievement of complete response, the predicted 5-year
survival rates following resection for early stage HCC varies
between 17 and 53 % [59]. Patients who have been radically
treated for HCC have an overall lifetime risk of recurrence
that approaches 70 % and it is felt that this percentage
incorporates the risk emerging from primary progression of
micrometastatic foci originating from the primary tumour as
well as the establishment of new neoplastic clones stemming
from the underlying cirrhosis [60].

As shown in Table 15.2, compelling evidence has
demonstrated the NLR as an accurate predictor of OS and
DFS following resection in patients with early stage HCC. In
a large study including 958 patients, analysis of a subset of
150 resected tumour specimens revealed an elevated NLR to
correlate with higher CD-163 positive peritumoral immune
infiltrate, providing an insightful link between local and
systemic inflammatory response [33]. Similar conclusions
can be drawn for the NLR in the context of RFA, where
deterioration of the score after treatment may anticipate early
recurrence and subsequent mortality [61, 62]. Interestingly,
most of the studies in early stage disease employed lower
cut-off values in the NLR for prognostic stratification com-
pared to advanced disease, raising the question as to whether
the NLR can reflect a progressive, stage-dependent intensity
and severity of the systemic inflammatory response and

Fig. 15.1 The biologic
relevance of the systemic
inflammatory response in the
prognosis and management of
HCC
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Table 15.2 Summary table of the studies investigating the prognostic role of the neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte
ratio (PLR) in patients with HCC

Study Biomarker Clinical setting N Comments

Gomez et al.
(2008)

NLR Resection 96 NLR � 5 predicted worse DFS and OS

Halazun
et al. (2009)

NLR OLT 150 NLR � 5 predicted worse DFS and OS

Bertuzzo
et al. (2011)

NLR OLT 219 NLR � 5 predicted worse DFS and OS

Huang et al.
(2011)

NLR
NLR
changes

TACE 145 NLR � 3.3 pre-TACE predicted for worse OS. NLR increase 3 days
post-TACE predicted for improved OS

Wang et al.
(2011)

NLR OLT 101 NLR � 3 predicted for worse DFS and OS

Wang et al.
(2011)

NLR OLT 76 NLR � 2.5 predicted for worse DFS and OS

Chen et al.
(2012)

NLR
NLR
changes

RFA 158 NLR analysed as continuous explanatory variable predicted for worse OS
but not DFS
Elevated post-RFA NLR predicted for shortened DFS and OS

Pinato et al.
[22]

NLR
NLR
changes

TACE 54 NLR > 5 at baseline predicted for worse OS
Dynamic changes of NLR after TACE predict for OS advantage following
TACE

Dan et al.
[61]

NLR
NLR
changes

RFA 178 Post-RFA NLR worsening predicted for poorer OS and DFS

Fu et al.
(2013)

NLR Resection 282 NLR > 2 predicted for worse DFS and OS

Harimoto
et al. (2013)

NLR Recurrent HCC post OLT 167 NLR � 4 predicted for worse OS

Limaye et al.
(2013)

NLR OLT 160 NLR � 5 predicted for worse DFS and OS

Mano et al.
[33]

NLR Resection NLR � 2.81 predicted for worse OS and DFS and associated with higher
peritumoral macrophage infiltrate

McNally
et al. (2013)

NLR
NLR
changes

TACE 103 NLR > 5 at baseline predicted for worse OS
Dynamic changes of NLR after TACE predict for OS advantage following
TACE

Motomura
et al. (2013)

NLR OLT 158 NLR � 4 predicted for DFS associated with higher IL-17 peritumoral
expression

Oh et al.
(2013)

NLR
NLR
changes

Mixed stages (37 % TNM I–II) 318 NLR > 2.3 predicted for worse OS and dynamic changes following
treatment (mostly TACE) associated with radiologic tumor response

Xiao et al.
(2013)

NLR OLT 280 NLR � 4 predicted for worse DFS and OS

Yoshizumi
et al. (2013)

NLR OLT 152 NLR > 4 predicted for worse DFS

Yoshizumi
et al. (2013)

NLR Salvage OLT in recurrent HCC
after primary resection

104 NLR > 4 predicted for worse DFS after achieving complete response
following salvage OLT

Zheng et al.
[81]

NLR Advanced HCC 65 NLR > 4 predicted for worse PFS and OS during treatment with
Sorafenib

Liaso et al.
(2014)

NLR Resection 256 NLR > 2.31 predicted for worse DFS and OS

Shindoh
et al. [69]

NLR OLT 124 NLR > 2.4 predicted for worse DFS but with inferior accuracy (AUC
0.62) compared to AFP (0.88) and DCP (0.76)

Sullivan
et al. (2014)

NLR Mixed stages (15 % surgical
candidates)

75 NLR measured as continuous variable did not associate with short term
OS

234 D.J. Pinato and R. Sharma



whether this should be accounted for by using different
cut-off values across the diverse stages of HCC.

Similar figures have emerged from the study of
albumin/CRP based prognostic algorithms in HCC, where

derangement of these parameters prior to surgery predict for
increased risk perioperative complications [63], longer
operating times [64] as well as worse OS and DFS [65]
(Table 15.3).

Table 15.3 Summary table of the studies investigating the prognostic role of the GPS and IBI/mGPS in patients with HCC

Study Biomarker Clinical setting N Comments

Fujiwara
et al. [63]

GPS Resection 66 GPS associated with perioperative complications

Ishizuka
et al.
(2010)

hGPSa Resection 300 hGPS associated with postoperative mortality

Ishizuka
et al.
(2011)

GPS Resection 398 GPS predicted for worse OS

Kinoshita
et al. [50]

NLR
PLR
GPS
mGPS
PI
PNI

Mixed stages (55 %
TNM I–II)

150 All inflammation-based indices emerged as univariate predictors of
OS. GPS preserved independent prognostic power on MVA with
greater accuracy established using AUC for predicting OS at 6, 12 and
24 months. The cut-off for NLR was � 5 while for PLR was <150,
� 150 and � 300

Morimoto
et al. [80]

GPS Advanced HCC 81 GPS predicted for OS in patients treated with sorafenib

Pinato
et al. [22]

PNI Mixed stages—mostly
intermediate/advanced
HCC

112 training set
(BCLC-A
15 %)
68 validation
set

PNI emerged as independent predictor of OS in both cohorts

Pinato
et al. [22]

IBI
NLR
PLR

Mixed stages 112 training set
(BCLC-A
15 %)
466 validation
set
(BCLC-A
56 %)

IBI emerged as most accurate predictor of OS
Combination of IBI and CLIP resulted in improved prognostic
accuracy

Horino
et al. [64]

GPS Resection 352 GPS predicted for perioperative complications and OS

Kinoshita
et al. [20]

GPS Mixed stages
(prospective study)

150 GPS predicted for worse OS

Huang
et al.
(2014)

NLR
GPS
mGPS
PI
PNI

Resection 349 GPS emerged as most accurate predictor of OS. Combination of GPS
and CLIP resulted in improved prognostic accuracy

Pan et al.
(2014)

GPS Resection 171 GPS predicted for worse OS and DFS

Pinato
et al.
(2014)

IBI
IBI
dynamic
changes

TACE 64 training set
577
retrospective
validation setb

76 prospective
validation set

IBI and its dynamic changes following TACE predict for
treatment-induced OS benefit
The effect on patient’s survival was validated prospectively

ahGPS was calculated using high sensitive CRP with a cutoff of 0.3 mg/dL
bIn the Japanese sub-cohort IBI was calculated using high sensitive CRP with a cutoff of 0.3 mg/dL
CLIP Cancer of the Liver Italian Program score; NLR Neutrophil-to-lymphocyte ratio; PLR Platelet-to-lymphocyte ratio; GPS Glasgow prognostic
score; mGPS Modified glasgow prognostic score; IBI Inflammation based index; PI Prognostic index; PNI Prognostic nutritional index; BCLC
Barcelona Clinic Liver Cancer system; TNM Tumor node metastasis system; TACE Trans-arterial chemoembolization; RFA Radiofrequency
ablation; OLT Orthotopic liver transplantation; OS Overall survival; DFS, Disease-free survival; PFS Progression-free survival; MVA Multivariate
analysis of survival; DCP Des-gamma-carboxyprothrombin; AUC Area under curve
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A number of studies have assessed the role of inflam-
mation based indices in patients treated with orthotopic liver
transplantation (OLT), a context where OS approaches 75 %
at 4 years [66] and recurrence occurs in 8–15 % of all graft
recipients fulfilling Milan criteria [67, 68]. Strikingly, the
NLR emerged as a consistent and reproducible biomarker of
shorter DFS and OS across a wide range of studies involving
both Eastern and Western populations where the diverse
selection criteria for OLT may exert a significant impact on
survival outcomes. In one study by Shindoh et al., the
accuracy of NLR employed with a cutoff of 2.4 emerged as
independent predictor of DFS, albeit with inferior accuracy
than alpha-fetoprotein (AFP) and des-gamma-carboxy-
prothrombin (DCP) [69]. While promising and validating
across different studies, the prognostic link between deran-
ged inflammatory scores and survival in early stage disease
mostly emerges from retrospective, single institution-based
studies, which obviously limits clinical applicability in
routine practice.

If validated in large, multi-institutional prospective stud-
ies, these findings may exert an impact on the management
of HCC in the context of graft allocation and preoperative
risk assessment of patients with resectable disease who, as a
result of ongoing systemic inflammation, are at higher risk of
perioperative complications and mortality.

Despite the plethora of studies investigating inflammation-
based indices in early stage disease, only a minority has
investigated the biologic background underlying a sustained
systemic inflammatory response. Given the initial evidence
suggesting that treatment-induced modulation of the cancer-
related inflammatory response correlates with positive anti-
tumour effects, dissecting the molecular foundations of such
response may represent a source of targets to enable
inflammation-based adjuvant treatment strategies in HCC.

15.4 Inflammation-Based Prognostic
Indices in Advanced Disease

Patients with unresectable HCC have highly heterogeneous
survival outcomes, ranging from 14 to 45 months in inter-
mediate stage disease to [70], <3 months in BCLC-D [71].
Prognostication of intermediate stage HCC has been at the
focus of intense research efforts, partly because of the
inability of the BCLC algorithm to predict for survival
benefit following trans-arterial chemo-embolization (TACE),
the recommended treatment for patients with liver confined
tumours and preserved liver function [72]. A number of
prognostic algorithms have been proposed to guide the
provision of TACE, none of which, however, have been
validated or entered the clinical arena [73–75].

Interestingly, some of the proposed strategies rely on the
measurement of CRP, which emerged as a strong prognostic

determinant [17] and enabled the formulation of composite
prognostic scores incorporating liver function and radiologic
response to identify patients who should not undergo repeat
TACE [76].

To further sustain the hypothesis that cancer related
inflammation is a meaningful prognostic domain in HCC, a
number of studies have shown that the dynamic changes in
the NLR [77] and IBI [57] following TACE may reflect
disease-modulating effects from treatment. Interestingly,
normalization of inflammatory biomarkers post TACE
reflect prolonged survival and better radiological response,
therefore sustaining the hypothesis that suppression of a
systemic inflammatory response may act as a surrogate
biomarker for chemoembolization failure. With the excep-
tion of the IBI, whose prognostic role has been prospectively
validated in diverse patient cohorts across Europe and Asia,
other scores including the NLR have not undergone formal
validation.

Following the observation that a single measurement of
CRP at diagnosis predicts long term outcome in patients
with HCC [17], a composite prognostic model incorporating
baseline CRP as well as other variables to reflect radiologic
response to TACE and progressive liver dysfunction has
been proposed as a selection criterion (START strategy) to
identify patients with intermediate stage HCC who are
unsuitable for repeat TACE [76]. The ideal positioning of
inflammation-based scores in the selection process of TACE
candidates remains however unclear and deserves further
evaluation in future studies, especially due to the emergence
of recently qualified alternative prognostic models [73, 78,
79].

The prognostic qualification of inflammation-based indi-
ces in advanced disease has confirmed GPS and NLR as
predictors of OS during treatment with Sorafenib [80, 81].
The studies, which included a relatively small number of
patients, all collected retrospectively, have left the question
of a comprehensive comparative analysis of all the utilized
scores still unanswered, making it difficult to make recom-
mendations for clinical use. In addition, the relationship
between a pro-inflammatory status and toxicity from sys-
temic treatment, a notion that has emerged from animal
studies showing inflammation-driven repression of drug
metabolism [82], remains unexplored in advanced HCC.

15.5 Inflammation as a Potential
Therapeutic Target in HCC

On the basis of the association between systemic inflam-
mation and HCC progression, pharmacologic manipulation
of cancer-related inflammation is now hypothesized as a
viable therapeutic strategy, with potential for integration
with other systemic or loco-regional anticancer therapies.
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15.5.1 Aspecific Modulation of the Systemic
Inflammatory Response

Amongst the candidate anti-inflammatory strategies, only
some have clearly identified targets or mechanisms of action
to explain their antitumour effect, ranging from broad-
spectrum approaches including corticosteroids, non-steroidal
antiinflammatory drugs (NSAIDs), to more selective com-
pounds that interact with specific molecular pathways.

Recent evidence suggests that treatment with dexam-
ethasone, a widely used corticosteroid preparation prescribed
as anti-inflammatory and to counteract cancer-related
cachexia and anorexia in patients with advanced malignan-
cies, may exert direct antitumour effects in animal models of
HCC by inducing a metabolic switch from glycolysis to
gluconeogenesis through regulation of 18b-hydroxysteroid
dehydrogenase [83], a finding that warrants further clinical
evaluation in prospective trials.

Aspirin has emerged as both a chemopreventative as well
as a direct anticancer treatment as justified by both robust
retrospective evidences [84]; the use of and a plethora of
prospective randomized trials across a wide range of tumour
types [85]. It remains unknown whether the anticancer
properties of aspirin rely more on its antiplatelet effect,
which in turn reduces T cell-mediated liver
necro-inflammation [86], or rather on sustained cyclooxy-
genase (COX) inhibition, an increasingly relevant thera-
peutic target in HCC whose expression within the tumour
microenvironment is harbinger of adverse prognosis [87].
Active repression of the NFjB-signaling pathway, which
governs both tumour cell proliferation and inflammation and
strongly relates to the pathogenesis and progression of HCC
[88] is a putative target justifying the use of aspirin as well as
other NSAIDs as disease-modulating agents [89].

15.5.2 Molecularly Targeted Modulation
of Cancer-Related Inflammation

A number of targeted anti-inflammatory approaches have
been under investigation in a wide range of metastatic
malignancies including HCC and these include selective
inhibition of specific pro-inflammatory pathways including
IL-6, Tumour Necrosis Factor-a as well as chemokine
receptors. These approaches have been comprehensively
reviewed elsewhere [39], however none of these has trans-
lated into significant clinical improvement in the manage-
ment of HCC.

Amongst the most promising therapeutic targets in HCC
is the JAK/STAT pathway [90]. JAK is a well characterized
intracellular kinase that is recruited to the active cytoplasmic
domain of a number of growth factor tyrosine-kinase

receptors and signals downstream via STAT protein dimer-
ization and nuclear migration [91]. Selective inhibition of
JAK is now clinically achievable and a recent trial of rux-
olitinib, an oral JAK-1 and 2 inhibitor administered in
combination with capecitabine has demonstrated a signifi-
cant PFS and OS advantage in a subset of pre-treated pan-
creatic cancer patients with evidence of ongoing systemic
inflammatory response as measured by the mGPS at study
baseline. The preliminary results of this trial suggest that
inflammation-based stratified therapies yield the potential to
optimize drug development and clinical outcomes in patients
with advanced malignancies [92].

Targeting TGF-b related signaling is regarded as another
encouraging focus of therapeutic development in HCC due
to the potential of this pathway to modulate both tumour
progression and the surrounding microenvironment by
altering neoangiogenesis as well as restoring the immune
cell dysfunction that accompanies the molecular progression
of HCC [32]. A number of selective inhibitors of TGF-b
signaling are in clinical development and act on the pathway
either by ligand deprivation (monoclonal antibodies) or by
selective inhibition of the TGF-b receptor intracellular
kinase domain [93]. Metelimumab and lerdelimumab are
recombinant human IgG4 antibodies that respectively bind to
TGF-b1 and 2 isoforms, while amongst the intracellular
kinase inhibitors, the TGF-bRI inhibitor galunisertib
(LY2157299) has emerged as a lead compound following
completion of first time in man evaluation [94], having been
now prioritized for proof-of-concept studies across a wide
range of solid tumours including HCC.

15.5.3 Immunotherapy

A significant consequence of systemic inflammation is rep-
resented by the progressive suppression of anti-tumour
specific immunity. The recent advances of immunotherapy
in advanced-stage melanoma have extended the clinical
evaluation of immune checkpoint inhibitors to HCC. The
rationale behind the use of immune-modulating agents in
HCC, including anti-cytotoxic T lymphocyte associated
antigen 4 (CTLA-4) antibodies like ipilimumab or
PD-1/PD-L1 antagonists such as nivolumab or pem-
brolizumab, stems from the observation that HCC originate
from a background of chronic inflammation, rich in
tumour-associated antigens. It is therefore hoped that mod-
ulation of the adaptive T cell response against the HCC
neo-epitome may improve clinical outcomes of patients with
advanced disease [95]. The clinical development of immune
checkpoint inhibitors is still at its earliest phases in HCC,
with one initial phase I study of Tremelimumab, an
anti-CTLA-4 antibody; producing disease control in 76 % of
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a small group of 20 patients with hepatitis C related HCC
[96]. With more immune-modulating compounds enriching
the pipeline of HCC drug development [95], a number of
challenges will accompany the full development of immune
checkpoint inhibitors within the specific context of HCC.
Unlike melanoma, the concurrent presence of chronic hep-
atotropic viral infections may pose a potential risk of hep-
atitis flares, which could potentially worsen pre-existing
liver dysfunction. Secondly, the emergence of potentially
life-threatening immune-mediated complications from
checkpoint inhibitors might discourage their use in specific
subsets of patients with autoimmune comorbidities [97].
Thirdly, patient selection based on molecular prediction of
response is an anticipated need for PD-L1 directed therapies,
where greater benefit seems to be anticipated in PD-L1
expressing tumours, a point which might reshape the clinical
need for a tissue-based diagnosis, a largely abandoned
practice in advanced disease due to the increased accuracy of
radiologic criteria.

15.6 Conclusion

While the interplay between local, systemic inflammation
and the progression of HCC is now a consolidated concept
in determining the pathogenesis and prognosis of the dis-
ease, a number of key questions still remain unanswered.

From a clinical standpoint, the use of inflammation-based
biomarkers, although inexpensive and universally available,
competes with other prognostic algorithms. In conjunction
with the lack of prospective validation that applies to most of
the studied indices, the routine clinical use of inflammatory
biomarkers is hindered by their perceived limited potential to
inspire clear changes in the management of patients with
HCC. A strong indication that inflammation-based indices
may yield practice-changing information comes from the
results of the RECAP trial (NCT01423604) [92], where
patient stratification by pre-treatment mGPS was able to
detect treatment-induced changes in patients’ survival not
otherwise captured when analysing the whole
intention-to-treat population, paving the way for further
phase III studies in advanced pancreatic cancer (Janus 1 trial
NCT02117479).

In the specific context of HCC, a patient subpopulation
where inflammation-based indices might be most useful is
the intermediate or BCLC-B stage, where survival outcomes
are highly variable as a result of a varying grade of tumour
burden and liver dysfunction [98]. The identification of
patients who are less likely to benefit from locoregional
treatments has emerged as a clinical priority; hence an

accurate, prospective comparison of inflammatory markers
with other available clinical scores is warranted [99].

Advanced HCC is a further area of clinical development of
inflammatory scores. Firstly, documented evidence of
deranged inflammatory indices at initiation of planned treat-
ment or their worsening over time may provide an objective
measure to rationalize the provision of Sorafenib to patients
depending on its predicted efficacy, an important aim in
advanced HCC where pharmaco-economic implications have
been a pressurizing issue across several healthcare systems.

In addition, a number of published reports now empha-
size the relationship between systemic inflammation and
toxicity from systemic anticancer treatments, which stems
from modifications in pharmacokinetic parameters including
volume of distribution direct hepatic repression of cyto-
chrome P450 metabolism, a major detoxification pathway
involved in Sorafenib clearance [82, 100]. Whether or not an
inflammatory diathesis may prelude excessive toxicities
from Sorafenib it remains to be ascertained.

While research addressing the role of systemic inflam-
mation is expanding, an improved understanding of its role
in the natural history of HCC is expected to aid clinicians
and scientists to deconstruct the molecular portrait of HCC,
with positive implications in the routine prognostic assess-
ment, management planning as well as in drug development,
facilitating the provision of personalised medicine in the
context of early as well as more advanced stage HCC.
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16.1 Introduction

Hepatocellular carcinoma (HCC) is ranked as the fifth most
common malignant neoplasm in the world [1], and the third
most common cause of cancer death worldwide [2]. HCC’s
global incidence is approximately 600,000 new cases
annually, almost 85 % of these in developing countries. In
fact, it is the third most commonly diagnosed cancer among
males in developing countries and the second leading cause
of death among that population. The vast majority of deaths
from HCC occur in East Asia, and 50 % are estimated to
occur in China alone. Current data indicate that hepatitis B
virus (HBV) and hepatitis C virus (HCV) are the most sig-
nificant hepatocarcinogens for the majority of HCCs in the
world [3, 4]. Although less common in developed countries,

it is still a major cause of morbidity and mortality. Globally,
about 80 % of HCC is considered to be causally associated
with chronic infection with HBV [5, 6].

16.2 Hepatitis B Virus

16.2.1 Background

HBV is a double-stranded DNA virus belonging to the
Hepadnaviridae (hepatotropic DNA virus) family, and is
classified as hepadnavirus type 1. The intact virus consists of
an outer coat component of hepatitis B surface antigen
(HBsAg) and an inner core component of hepatitis B core
antigen (HBcAg) [7–9]. Hepatitis B e antigen (HBeAg), that
is also a product of the C gene, circulates in the blood during
periods of high replication [10, 11].

The hepatitis B viral genome is approximately 3200 base
pairs in length, is partially double-stranded, and uses a
retroviral mode of replication [12, 13]. The viral genome
contains genes that code for HBsAg, HBcAg, and DNA
polymerase [9, 14]. An additional X gene codes for hepatitis
B x antigen (HBx), a protein that is capable of transacti-
vating the transcription of both viral and host genes [15, 16].

HBV predominantly infects hepatocytes, but reservoirs of
the virus were found in extra hepatic sites including lymph
nodes, bone marrow and circulating lymphocytes, explain-
ing recurrence after liver transplantation [17, 18]. Infection
of hepatocytes is by specific binding of the envelope viral
protein (specifically the preS1 domain) to a bile salt trans-
porter sodium taurocholate co-transporting polypeptide
(NTCP) [19].

Eight genotypes of HBV have been identified (A–H),
classified by the subtype-specific antigens on the HBsAg,
and their distribution varies geographically. Genotype A is
more prevalent in Europe, North America, and Africa, while
genotypes B and C are dominant in China and East Asia,
where vertical transmission is more common [20, 21].
Genotype D is found most commonly in Europe and
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Mediterranean countries, genotype E predominates in West
Africa, and Genotype F in Central and South America. The
specific HBV genotype is associated with clinical charac-
teristics such as disease progression and response to inter-
feron therapy. Genotype B, for instance, appears to be
associated with a less rapidly progressive liver disease and a
lower likelihood or delayed appearance of HCC [22–25], as
opposed to genotype C [26], while patients with genotype A
are more likely to respond to interferon therapy [27, 28].

HBV is carried in blood as well as other body fluids. The
main routes of transmission are sexual intercourse, perinatal
transmission, and parenteral exposure. Perinatal transmission
occurs from chronically infected mothers or during acute
infection at the third trimester or early postpartum, and is
more common in developing countries. The precise mode of
perinatal transmission is unknown but most probably occurs
at the time of delivery. Risk for infection correlates with
viral activity, as 85 % of HBsAg-positive mothers who are
HBeAg-positive will transmit the virus to their offspring,
whereas mothers who are positive for anti-HBe do so much
less frequently (31 %) [29]. Additionally, maternal HBsAg
titers correlate with the risk for transmission [30].

The natural history of hepatitis B infection differs by the
age of acquisition of the infection. Nearly 90 % of exposed
newborns will become chronic carriers, compared to 50 %
during infancy and 20 % during early childhood [11, 31–
33]. Among healthy adults exposed to HBV infection, 90–
99 % have a full recovery, 0.1–1 % develop acute fulminant
hepatitis and 1–10 % become chronic carriers (Fig. 16.1). In
chronic carriers, the rate of spontaneous HBsAg clearance is
approximately 0.5 % per year [34–36].

The natural evolvement of chronic infection can be
divided into four phases—immune tolerant phase, charac-
terized by HBeAg (+), high levels of HBV DNA, normal
serum aminotransferases and minimal or no inflammation on

liver biopsy; immune active/clearance phase, which mani-
fests with elevated serum aminotransferases and active
inflammation on liver biopsy; low-replicative phase (inactive
carrier), with seroconversion from HBeAg (−) to anti-HBe
(+), low serum HBV DNA and normal aminotransferase
levels, and finally the HBeAg (−) hepatitis phase (HBV
reactivation) which presents high serum HBV DNA and
active inflammation [33, 37]. Seroconversion from HBeAg
to anti-HBe rates differ by patient age and are approximately
10 % per year for adults but <5 % for patients with peri-
natally acquired infection [33, 34].

Although chronic HBV carriers have been infected for
extended periods of time, most do not have symptoms.
Many patients are found to have chronic hepatitis B inci-
dentally during routine screening. Among 139 incidentally
identified HBsAg (+) Korean Americans, 11 % were found
to have cirrhosis and 42 % to have active hepatitis on
complete evaluation including liver imaging studies and
liver functions [38].

15–30 % of chronic hepatitis B patients will develop
serious sequelae including HCC during their lifetimes. For-
tunately, the lengthy interval between the infection and the
development of HCC provides an advantage for clinicians to
intervene and delay the progression of the disease.

16.2.2 HBV Epidemiology

Hepatitis B is a common infection worldwide, with
approximately one third of the world population having
serological evidence of past/present infection. At least 350–
400 million are chronic HBV carriers worldwide [4] and
globally, there are around 4.5 million new infections per
year [39].

Hepatitis B Infection 
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Liver 

Transplant 
Death 

Recovery 
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1% 90-99% 1-10% 

0.5% 
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90

Fig. 16.1 Natural history of
HBV infection
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The prevalence of hepatitis B differs by geographical
region, and countries are divided into high (>8 % preva-
lence), intermediate (2–7 %) and low (<2 %) endemicity for
the virus (Fig. 16.2). Areas considered highly endemic
include central and southeast Asia and sub-Saharan Africa.
Regions of intermediate prevalence include parts of South-
ern and Eastern Europe, the Middle East, Japan, the Indian
subcontinent, much of the former Soviet Union, and
Northern Africa. Regions of low prevalence include North
America, Western Europe, certain parts of South America,
and Australia [40, 41].

The skewed distribution of HBV infection is most likely
due to the different modes of transmission. In the hyper-
endemic regions, perinatal transmission and horizontal
spread among children are the major sources of infection.
On the other hand, in the low endemic regions, horizontal
transmission through sexual activity among young
adults and parenteral exposure are the major modes of
transmission [31].

16.2.3 Treatments for HBV

Management of chronic hepatitis B is aimed at HBsAg loss
and decrease of active virus replication. Treatment for HBV
has come a long way in the past decades, changing the
prognosis of chronic hepatitis B carriers. Currently, there are
seven FDA-approved antiviral therapies, six of them used
routinely (interferon treatment was replaced by pegylated
interferon) (see Table 16.1).

Interferon-a was the first approved treatment for chronic
hepatitis B. In IFN responders, a hepatitis-like flare, pre-
sumably due to immune activation, accompanies HBeAg
seroconversion. Nowadays, pegylated-IFN is used in clinical
practice. This drug is given by injection weekly, and is more
effective as well as more convenient for patients compared to
regular IFN. Despite its proven efficacy it is relatively poorly
tolerated because of its side effect profile and mode of
administration. HBeAg seroconversion after 1 year is
achieved in *30 % of patients.

Fig. 16.2 Prevalence of chronic hepatitis B virus infection among adults
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Nucleoside analogues (NUC) are oral medications that
suppress viral replication by inhibiting reverse-transcriptase
activity. They are well tolerated and effective in viral sup-
pression. HBeAg seroconversion after 1 year is achieved in
*20 %, 30 % after 2 years, and 50 % after 5 years. One of
the major problems of NUCs is development of resistance,
which can be combatted by adding on or switching to a
different NUC.

16.3 HBV and HCC

Half of the world’s population lives in the regions of high
incidence for HCC, which also coincide with endemic
regions for HBV infection. Worldwide, HBV accounts for
54 % of HCC cases, and in Asia and Africa it accounts for
70 % of cases [42].

A large number of epidemiologic studies [43–47] docu-
mented the causal association of HCC with HBV. In 1981,
the landmark study by Beasley et al. [48] lucidly demon-
strated the relationship between HBV and HCC.

During the past decades, the incidence ofHCChas decreased
in some areas in East Asia such as in Taiwan, Korea and
Thailand, as well as other highly endemic areas such as Alaska
[49–53]. It is believed that effective HBV vaccination programs
have contributed to the reduction (see below). However, the
opposite phenomenon was reported in some countries in Eur-
ope, North America and Oceania [6, 54]. This increasing inci-
dence of HCC is attributed toHCV and non-alcoholic fatty liver
disease (NAFLD)-associated cirrhosis and also the immigration
of HBV carriers from endemic regions.

Increasing incidence of HCC in the United States is
clearly illustrated by the HCC incidence in California, the
state that has the largest Asian American population. As
shown in Table 16.2, liver cancer is one of the five most
common cancers for Asian American males. This high
incidence of HCC among Asian Americans is attributed to
the high prevalence rate of HBV infection among them [55].

Although Asian Americans constitute only 4.5 % of the total
USA population, they constitute nearly half of the total HBV
chronic carriers in the U.S.A [55–57].

Asian immigrants in the U.S.A show high HBV carrier
rates reminiscent of their homelands, and accordingly have
high risk for sequelae of chronic hepatitis B infection, such
as cirrhosis and HCC. In fact, the HBV carrier rate among
first generation immigrants is similar to that of people living
in their native lands [38, 58, 59].

Currently, the estimated prevalence rate of chronic HBV
carriers ranges between 5–13 % among Asian Americans. In
contrast, HBV carrier rate for the general U.S. population is
less than 0.3 % [60].

Tong and Hwang conducted a prospective study of 207
HBsAg (+) Asian American patients with chronic hepatitis
[55]. During an average follow-up period of 3.3 years, eight
patients developed HCC; the calculated incidence of HCC in
these Asian American patients with chronic hepatitis B was
3865/100,000. This is much higher than those reported in
Taiwan by Beasley (495/100,000) [3] and those by Liaw
et al. [61] (826/100,000 for all ages and 2768/100,000 for
patients older than 35 years of age). Nonetheless, it is
important to point out that Beasley followed asymptomatic
carriers, and Tong et al. and Liaw et al. followed patients
with active hepatitis. Most HCC occur in patients that are
between 40 and 60 years of age [5] although there are some
exceptions including childhood HCC described in Taiwan
[62] and in native Americans in Alaska [53].

16.3.1 Pathogenesis of HCC in HBV

HCC is strongly associated with chronic liver disease, and is
uncommon in the absence of inflammation and fibrosis [63].
Hepatic carcinogenesis is a long term, multistage disease
process encompassing multiple genetic alterations, including
activation of cellular oncogenes and inactivation of tumor
suppressor genes [64, 65].

16.3.1.1 Risk Factors for the development
of HCC in Chronic HBV carriers

HBV infection carries an increased risk of developing HCC.
Several risk factors confer higher risk in HBV carriers
(Table 16.3).

Although HBV-associated HCC does not always progress
through cirrhosis [66], patients with cirrhosis are at the highest
risk for developing HCC. Earlier studies in Japan found that
prevalence of overt cirrhosis among patients with
HBV-related HCC was 50–60 % [67, 68], but a later study by
Yang et al. [69] found that most patients with HBV-related
HCC have evidence of cirrhosis (73.4 %when using stringent
clinical criteria and 93.8 % using the most inclusive criteria).
Interestingly, all Caucasian patients had cirrhosis, compared

Table 16.1 Antiviral agents currently in use for HBV therapy in the
U.S.

Drug FDA approval

Interferon (IFN)

(regular) IFN-a 1992

Pegylated interferon 2005

Nucleoside analogues (NUCs)

Lamivudine 1998

Adefovir 2002

Entecavir 2005

Telbivudine 2006

Tenofovir 2008
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to a smaller proportion of Asian patients. A systematic review
by Fattovich et al. [70] estimated the rates of HCC in
East-Asian countries among inactive carriers (HBsAg (+),
anti-HBe (+), normal ALT) to be 0.5 per 100 person years, 0.6
per person years in patients with chronic hepatitis but without
cirrhosis, and 3.7 per 100 person years in patients with
compensated cirrhosis. Importantly, rates were lower in
developed countries—0.02 per 100 person years in inactive
carriers, 0.3 per person years in patients with chronic hepatitis
but without cirrhosis, and 2.2 per 100 person years in patients
with compensated cirrhosis.

Earlier age at infection with HBV is associated with
higher risk for HCC [71], in correlation with evidence sug-
gesting that it takes 20–40 years to develop HCC from the
time of infection [48]. Patients from areas of high HBV
endemicity are at higher risk for HCC, presumably because
they were likely infected early in life and thus had a longer
duration of chronic infection or cirrhosis [63, 70].

Family history of HBV infection has also been found to
be a unique risk factor for early onset of HCC [72]. Males
have a higher incidence rate for HCC among HBV carriers
with a 4:1 male to female ratio [2, 73]. The biologic basis for
the gender difference in the risk for HCC is not well
understood; however, male hormones [74], differences in
body iron storage [75], and additional risks, such as alcohol
consumption [76, 77] and smoking [77, 78], have been
considered to be contributory factors. Older age is also
considered a risk factor, since HCC occurs most commonly
later in life [5].

Iron has long been considered a factor contributing to hep-
atic damage and inflammation via generation of reactive oxy-
gen species (ROS).A sustained serum ferritin level greater than
300 ng/ml was shown to confer a higher risk for HCC. In a
longitudinal follow-up study of 249 Korean patients with
chronic hepatitis B and cirrhosis, Hann et al. [75] observed that
chronic hepatitis B infected males with sustained serum ferritin
>300 ng/ml had a 50 % chance of developing HCC compared
with 20 % risk for HCC for those with lower serum ferritin
levels. Further studies by the same group clearly demonstrated
the tumor enhancing effects of iron [79–82].

Multiple studies have shown that increased viral activity
[83] and a persistently high level of viral DNA is a strong
predictor for HCC development [84–86]. Chen et al. con-
ducted a large-scale longitudinal study of 3653 HBV carri-
ers. During the 12-year follow-up period, 164 persons
developed HCC. Their extensive analysis led to the con-
clusion that the most important risk factor for the develop-
ment of HCC is an increased serum level of HBV DNA
>10,000 copies/ml regardless of the HBeAg status, alanine
aminotransferase (ALT) levels or the presence of cirrhosis.
The incidence of HCC correlated with serum HBV DNA

Table 16.2 Five most common cancers in males by race/ethnicity, California, 2007–2011

Rank

1 2 3 4 5

Asians

Laotians Liver Lung Colorectal Prostate Stomach

Vietnamese Lung Liver Prostate Colorectal Lymphoma

Chinese Prostate Lung Colorectal Liver Lymphoma

Korean Prostate Colorectal Lung Stomach Liver

Filipino Prostate Lung Colorectal Lymphoma Liver

Non-Asians

White Prostate Lung Colorectal Melanoma Bladder

Hispanic Prostate Colorectal Lung Lymphoma Kidney

Black Prostate Lung Colorectal Kidney Bladder

American-Indian/Alaska native Prostate Lung Colorectal Liver Kidney

California Cancer Facts and Figures 2014, American Cancer Society [222]
Bold represents liver cancer

Table 16.3 Risk factors of HCC among HBV carriers

Host-related

Cirrhosis

Age >40 years

High-endemicity areas

Male sex

Serum ferritin >300 ng/ml

Alcoholism

Family history of HBV infection

Viral-related

Genotype

" Serum HBV DNA
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level at entry in a dose-response relationship ranging
from 108/100,000 person years for an HBV DNA level of
<300 copies/ml to 1152/100,000 person years for an
HBV DNA level of � 1,000,000 copies/ml.

16.3.1.2 Molecular Biology of HCC associated
with HBV

Recent advances in molecular techniques have markedly
improved our understanding of HBV-associated hepatic
carcinogenesis. The effects of HBV on HCC development
can be divided to direct oncogenic mechanisms and indirect
effects, via chronic liver inflammation and cirrhosis [87, 88].

Many of the pathogenic mechanisms of the virus are
mediated by hepatitis B x protein (HBx), which is a small
154 amino acid protein with transcriptional regulatory
activity [89]. The important role of HBx in HBV infectivity
was realized when woodchucks injected with HBx-deficient
viruses did not develop infection [90, 91]. Furthermore, HBx
expression is abundant in the livers of patients with chronic
liver disease [92, 93], and expression levels correlate with
progression of liver inflammation and cirrhosis [94]. There is
accumulating evidence that HBx is important in supporting
virus replication and in the pathogenesis of chronic inflam-
mation and HCC [95]. HBx augments viral replication and
thus, by maintaining high viral DNA levels it contributes to
hepatic carcinogenesis [96].

Hepatitis B and Fibrosis
A salient aspect of chronic liver disease is the develop-

ment of fibrosis. There is increasing evidence that HBx
expressing hepatocytes contribute to pro-fibrotic signaling.
For example, HBx has been shown to up-regulate the
expression of transforming growth factor beta 1 (TGF-b1) in
HBx transgenic mice [97] and in liver cell cultures stably
transfected with HBx [98]. In the normal liver, TGF-b1
signals through a group of proteins known as Smads, which
inhibit hepatocellular growth and maintain homeostasis [99].
TGF-b1 has long been implicated in promoting fibrosis via
activation of hepatic stellate cells, transforming them into
myofibroblasts [100]. Additionally, in the presence of HBx,
Smad protein transcriptional activity was enhanced, espe-
cially in activation of genes involved in extracellular matrix
(ECM) production [101]. Besides altering Smad signaling
directly, HBx activates other signaling molecules, such as
NF-jb, PI3K, AP-1, and ras/raf/MAPK, among others [102,
103] that override negative growth regulation. Importantly,
up-regulated expression of TFG-b1 stimulates expression of
platelet derived growth factor (PDGF), constitutively acti-
vating b-catenin, which may act as an oncoprotein [104].

Immune Response to HBV Infection and Necro-
inflammation

HBV is a non-cytopathic virus [105]. Damage to infected
hepatocytes is in large part immune-mediated, mostly via
CD8+ cytotoxic T cells [106]. HBV clearance is regulated

by the adaptive immune system, with CD4+ and CD8+ T
cells mediating immune clearance and B cells supplying
protective immunity by generation of neutralizing antibodies
[107, 108]. In those patients with chronic infection, immune
response is inadequate for viral clearance but still causes
liver injury [109]. The factors governing immune clearance
versus immune tolerance are not fully understood. One
suspected mechanism in chronic infection is faulty modu-
lation of regulatory T cells, which causes down regulation of
T cell cytotoxicity [110–112]. Additionally, HBV disrupts
toll-like receptor (TLR) signaling, disrupting the response of
the innate immune system [113]. Another suggested mech-
anism of immune-resistance is by up-regulation of URG7
(up-regulated gene, clone 7) via HBx trans-activation, which
was shown to confer resistance to Fas and tumor necrosis
factor alpha (TNFa) mediated apoptosis [114, 115]. Further
analysis showed that URG7 blocked apoptotic signals at the
level of caspase 8, which is shared by Fas and TNFa sig-
naling pathways.

In the presence of persistent infection and a chronic but
ineffective immune response, the liver’s unique regeneration
ability causes repeated compensatory proliferation, eventu-
ally leading to cirrhosis and HCC [116].

Direct Oncogenic Effects of HBV and HBV Genome
Integration

As mentioned above, patients with chronic hepatitis B are
at risk for HCC even in the absence of cirrhosis [66], thus
presenting the direct tumorogenic effects of the virus [117].

HBx was shown to localize to mitochondria [118], where
it triggers oxidative stress [119] and production of ROS.
Generation of ROS causes endoplasmic reticulum stress,
which in turn compromises protein-folding ability leading to
apoptosis and liver damage.

There is evidence that HBx modulates the integrity of
ECM by stimulating expression of selected matrix metallo-
proteinases and tissue inhibitors of metalloproteinases that
are capable of breaking down ECM, thereby promoting
metastasis during tumor progression [120–124].

Another direct oncogenic mechanism of HBV affects
regulation of cell growth. During chronic infection, frag-
ments of HBV DNA integrate into the human genome at
multiple sites [125, 126]. HBV DNA integration can also
occur in occult infection [127]. Most of these integrated
fragments span the HBx gene of HBV [128, 129].

HCC was shown to harbor mutations that may affect
multiple cellular processes. These include inactivating tumor
suppressor pathway components, activating oncogenes,
and/or blocking DNA repair.

For example, p53 is a tumor suppressor gene that is acti-
vated during cellular stress to allow cell cycle arrest and ini-
tiation of DNA repair mechanisms [130]. It was shown that
HBx binds to and functionally inactivates p53 [131–133], thus
blocking p53 dependent transcription coupled repair [132] and
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inhibiting nucleotide excision repair [134]. Disruption of
cellular repair mechanisms leads to the accumulation of
mutations, with those commonly found in HCC including
inactivating point mutations of p53 [135, 136] and activating
point mutations in b-catenin [137] which then acts as an
oncogene in HCC. HBx is also implicated in constitutively
activating other genes that appear to contribute to multi-step
hepatocarcinogenesis, such as those encoding cyclin D1 [138,
139], URG4 [140] and URG11 [141]. Additionally, HBx
down-regulates transcription of p21WAF1/SDI1/CIP1 [142], a
senescence factor that also inhibits cell cycle progression.
Finally, HBx has been shown to overcome RAS oncogene
induced senescence [143]. An emerging mechanism in HBV
pathogenesis, including carcinogenesis, is by microRNAs
(miRNA) [144]. HBV-related HCC cells have decreased
expression of miRNAs that are known to regulate genes
related to cell death, and increased expression of miRNAs that
down-regulate inflammation [145].

HBx also has epigenetic effects on gene expression in
liver cells. HBx activates expression of DNA methyltrans-
ferase 1 (DNMT1), in addition to other DNMTs, resulting in
altered DNA methylation patterns in the chronically infected
liver and in HCC [146, 147]. In this context, HBx activation
of DNMT1 has been shown to promote hypermethylation of
the promoter encoding E-cadherin, effectively suppressing
E-cadherin expression [148, 149]. Since E-cadherin is an
important cell adhesion molecule, loss of E-cadherin resulted
in enhanced cell migration in vitro and enhanced metastasis
in vivo, thereby promoting tumor progression.

In a study by Boyault et al. [64] HCC’s were classified to
6 groups (G1-6) according to transcriptome analysis.
HBV-related HCC’s were molecularly distinct from other
HCC’s, and were classified in groups G1-2. Clinically, G1
tumors were characterized by low HBV DNA levels, high
serum a-fetoprotein (AFP), younger age and African origin.
Frequent AXIN1 mutations were also seen. These tumors
had genes expressed during development. G2 tumors were
related to HBV infection with high HBV DNA levels, and
frequent local and vascular invasion. Additionally there were
frequent mutations in p53. Both G1 and G2 tumors had AKT
pathway activation, in G1 via over expression of insulin
growth factor 2 (IGF2) and in G2 via PIK3CA mutations.

A later study by Amaddeo et al. [150] further character-
ized genomics of HBV-related HCC’s. A high frequency of
p53 mutations was found compared to HCC’s of other eti-
ologies. Interestingly, more than 70 % of tumors harbored
inactivation mutations in HBx gene, in contrast to non-tumor
liver tissues. Among HBV-infected patients with additional
risk factors, molecular characteristics were different, sug-
gesting an alteration in carcinogenic mechanisms.

16.4 Prevention of HCC Related to HBV

As hepatitis B infection accounts for more than 50 % of all
HCC cases worldwide [42], targeting HBV is an effective
way to reduce global HCC burden. The targeted approach to
prevent HBV-related HCC is aimed at 3 populations. Pri-
mary prevention in uninfected individuals, secondary pre-
vention in chronic hepatitis B infected individuals, and
tertiary prevention for HBV carriers who have already
developed HCC [151].

16.4.1 Primary Prevention of HCC

Primary prevention of HCC aims to prevent HBV infection
altogether among uninfected individuals, thereby reducing
the risk for HCC development. This is accomplished by
universal vaccination.

The first active vaccine was introduced in the 1980s
[152], and was initially offered only to high-risk populations
[153]. In 1991 the World Health Organization (WHO) rec-
ommended universal vaccinations in all countries [154,
155]. As of 2013, HBV vaccination is part of the vaccination
schedule in 183 countries.

The impact of the universal vaccination plans on HCC
development was significant [156, 157]. Initially, reduction of
prevalence rates was seen in endemic countries, and later the
effects on long-term morbidity and mortality were also doc-
umented. In Taiwan, where a universal vaccination plan was
implemented in 1984, the prevalence of HBsAg among per-
sons younger than 15 years decreased from 9.8 to 0.7 % after
15 years [158]. In Gambia, a study comparing HBV carrier
status between vaccinated and unvaccinated 9-year-old chil-
dren showed prevalence of 0.6 and 10 %, respectively [159].
Studies in China andKorea had similar findings [49, 160]. The
benefits of universal vaccination programswere proven also in
low or intermediate endemicity regions such as Italy [161].

In accordance with the decrease in chronic HBV carrier
status, there has been a decrease in HCC prevalence fol-
lowing implementation of universal vaccination. Studies in
Taiwan showed a decrease in incidence of HCC among
children born after the implementation of the vaccination
program compared to those born before, from 0.7 per
100,000 children to 0.36 [50, 51]. Similar findings were
shown in studies in Korea, Thailand and Alaska [49, 52, 53],
and in the latter elimination of HCC and acute Hepatitis B
were achieved [162].

For unvaccinated patients who are exposed to hepatitis B,
post-exposure prophylaxis is implemented using HBIG and
the standard active vaccine.
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16.4.2 Secondary Prevention of HCC

Secondary prevention of HCC is aimed to prevent HCC in
the 400 million patients who are chronic HBV carriers. This
is accomplished by effective antiviral treatment to reduce
viral replication, thereby reducing the risk for HCC, and by
surveillance programs to detect tumors at early stages when
curative treatments are optional.

The first important step is to identify all HBV carriers.
Current recommendations for groups who should be
screened are summarized in Table 16.4 [163, 164].

16.4.2.1 Antiviral therapy
As mentioned above, one of the major risk factors for HCC
in HBV carriers is a persistently high viral load. This sug-
gests that treatment aimed to reduce viral load may decrease
the risk for long-term sequelae, including HCC.

Current treatments to reduce viral replication include
pegylated interferon, nucleotide (zide) (NUC) analogues and
combination therapies. Studies that assessed the effect of IFN
treatment on prevention of HCC yielded mixed results. Some
showed significant reduction of HCC risk with IFN treatment
[165–168] while others showed minimal or no effect [169–
172]. One long-term, randomized controlled study reported
treatment with natural lymphoblastoid interferon-alpha
(IFN-anl), recombinant IFN-a2a and placebo [173]. HCC
was detected in 1.5 % of the IFN-anl group, 3.7 % of the
IFN-a2a group and 14.7 % of the control group (p < 0.05).
In another long-term study that followed 411 chronic hep-
atitis B patients, of whom 208 were treated with IFN-a and
203 were controls, 4.3 and 1.0 % of patients in the IFN group
and controls, respectively, developed complications of cir-
rhosis and HCC, but without statistically significant

differences between the groups (p = 0.062) [169]. To over-
come the variability in response seen in multiple small
studies, a number of meta-analyses were performed. One
such meta-analysis in 2001 did not show an effect for IFN in
preventing HCC in several European studies [174]. In con-
trast, a few newer meta-analyses found significant risk
reductions with IFN treatment [175–177]. Although some
controversy remains, the overall conclusion is in favor of IFN
treatment for viral suppression and reduction in HCC risk, in
accordance with current treatment guidelines.

The majority of studies on NUC treatment have shown
beneficial effects in prevention of HCC [178]. Prospective and
retrospective studies of large numbers of chronic HBV
patients with advanced liver disease have demonstrated that
treatment with lamivudine (LAM) both delays disease pro-
gression and reduces HCC incidence. In a randomized con-
trolled trial (RCT) by Liaw et al., 651 chronic hepatitis B
patients with advanced fibrosis and cirrhosis were randomized
to receive antiviral agents, LAM or placebo (2:1). Within
3 years, treatment with LAM not only delayed disease pro-
gression but also reduced the incidence of HCC [179].

Case-control studies demonstrated similar beneficial
effects. Matsumoto et al. [180] in a retrospective study of
2795 individuals with chronic hepatitis B assessed the
effectiveness of LAM in preventing HCC. 657 patients
received LAM and the remaining 2138 served as controls.
The mean follow-up period was 2.7 years for the LAM
group and 5.3 years for the controls. Annual incidence of
HCC in the LAM group was 0.4 %/patient/year compared to
2.5 %/patient/year in controls (p < 0.001). Yuen et al. [181]
compared a group of HBeAg (+) individuals without cir-
rhosis treated with LAM to controls, with significantly lower
rates of HCC and cirrhosis among the LAM-treated partic-
ipants. In another study by Eun et al. [182] 872 chronic
hepatitis B patients treated with LAM were compared to
699 historical controls that were not treated. The annual
incidence of HCC was 0.95, 2.18, 5.26, and 4.10 % in
patients with sustained viral suppression, viral break-
through, suboptimal response, and the control group,
respectively. A retrospective study from Greece compared
201 LAM-treated patients, of whom 79 of 109 without
virological remission received adefovir as rescue therapy,
with 209 patients treated with IFN-a and 195 untreated
patients [183]. The liver-related survival in LAM-treated
patients was significantly better compared with untreated
patients or non-sustained responders to IFN-a, and similar
compared with IFN-a sustained responders. Beneficial
effect of LAM treatment was found in additional studies in
Italy [184] and a recent study from Japan [185].

Newer NUCs show even more promising results. A large
case-control study from Japan compared the incidence of
HCC in entecavir (ETV)-treated patients, LAM-treated
patients (with no rescue therapy) and non-treated historical

Table 16.4 Populations recommended for HBV screening

High and intermediate endemicity regions

All people

Low endemicity

Immigrants or adopted children from intermediate or high-endemicity
regions

Household and sexual contacts of HBsAg-positive persons

Persons who have ever injected drugs

Persons with multiple sexual partners or history of sexually
transmitted disease

Men who have sex with men

Inmates of correctional facilities

Individuals with chronically elevated ALT or AST

Individuals infected with HCV or HIV

Patients undergoing renal dialysis

All pregnant women

Persons needing immunosuppressive therapy
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controls. The cumulative HCC incidence rates in cirrhotic
patients at 5 years were 7, 22.2 and 38.9 %, respectively
[186]. Additional studies comparing ETV-treated patients to
untreated controls showed similar results [187, 188].

In a meta-analysis by Sung et al. [175] five studies
comparing NUCs to placebo were analyzed. The use of
NUCs (mostly with LAM, with some patients receiving
adefovir rescue) reduced HCC development from 11.7 % in
controls to 2.5 % in the treatment groups. In subgroup
analysis the protective effect applied to patients with cir-
rhosis (3.9 % in treated patients and 22.4 % in controls),
patients without cirrhosis (1.8 % in treated patients and 8 %
in controls), and patients with drug resistance (3.3 % in
treated patients and 6.4 % in controls).

It is important to stress that although antiviral treatment
reduces the incidence of HCC, the risk is not completely
eliminated even in the face of adequate viral suppression and
undetectable viral DNA [189–191].

16.4.2.2 Surveillance for HCC
Patients with HCC usually present at late stages when
curative treatment is not optional. Therefore, surveillance of
patients at increased risk for HCC is recommended. Current
guidelines recommend screening for HCC in all cirrhotic
patients of all etiologies. In addition, non-cirrhotic chronic
HBV patients with active hepatitis or family history of HCC
should be under surveillance [42].

Surveillance recommendations are based on an RCT by
Zhang et al. [192] that compared biannual screening with
ultrasonography and AFP to a control group that received no
screening. The screened group completed 58.2 % of the
screening tests offered. 9 % of patients in the screening group
were diagnosed with HCC compared to 7 % in the control
group. 46.5 % in the screened group underwent resection
versus 7.5 % in the un-screened population. 1-, 3-, and 5-year
survival rates were 65.9, 52.6, 46.4 % versus 31.2, 7.2, 0 %,
respectively. The benefits of periodic surveillance have been
shown in additional studies [193–196].

In the past few years, the efficacy of AFP testing as a
surveillance tool has been questioned. A population-based
observational study among chronic hepatitis B carriers in
Alaska showed benefit in survival with AFP screening [197],
while a randomized controlled study in China showed earlier
diagnosis of HCC, but without a reduction in overall mor-
tality [198]. Another study in China found that only 6–8 %
of cases not previously identified by ultrasonography were
detected with AFP [199], and a later meta-analysis by Singal
et al. [200] found no additional benefit to ultrasonography at
all with AFP screening. Thus, it was deemed that AFP
testing is suboptimal as a surveillance tool. One of the rea-
sons for limited usefulness is that elevation of AFP levels
may reflect viral hepatitis flares as well as HCC develop-
ment, as was found in a trial among HCV carriers [201].

Another problem is that only 10–20 % of early stage HCCs
present with abnormal AFP levels [42].

Due to these reasons, current European and American
guidelines recommend periodic ultrasonography alone at
6-month intervals [42, 202]. The European Association for
the Study of the Liver (EASL) guidelines recommend con-
sidering AFP testing when cost is an issue or ultrasonogra-
phy is not available. The Asian Pacific Association for the
Study of the Liver (APASL) guidelines continue to recom-
mend both AFP screening and ultrasonography [203, 204].

A major obstacle in HCC screening lies with patient
adherence. A community-based study in California found
that 40 % of patients received poor or no screening, with
worse screening in non-cirrhotic patients, possibly due to
more regular clinic visits among cirrhotics [205]. A system-
atic review identified nine studies with a pooled surveillance
rate of 18.4 %, with better rates among patients followed-up
in gastroenterology clinics compared to primary care clinics
(51.7 versus 16.9 %, respectively) [206]. Explanations
offered for under-surveillance include lack of provider rec-
ommendations and failure to identify at-risk individuals
[207]. These issues should be the first targets when
attempting to improve patient surveillance.

16.4.3 Tertiary Prevention

When patients with chronic HBV develop HCC, they
undergo treatments based on tumor staging. However,
without elimination of the virus, new HCCs may develop de
novo or recur in one or more sites in the liver. Even after
successful curative therapy, the majority of patients (ex-
cluding transplanted patients) eventually die of multi-focal
intrahepatic HCCs and/or of metastasis [208, 209].

Recurrence of HCC is differentiated to two groups—early
recurrence (<2 years after surgery) and late recurrence [210].
Variables associated with early recurrence are microvascular
invasion and non-anatomical resection. Variables associated
with late recurrence are higher grade of hepatic inflammatory
activity, multiple tumors and higher viral load, suggesting de
novo mechanisms [211, 212]. And so, tertiary prevention in
HBV patients aims to reduce late recurrence by decreasing
viral load and inflammation [213].

Several studies examined the effects of IFN treatment on
HCC recurrence, with conflicting results [151].

With the arrival of NUCs, the survival of patients that
underwent resection of HCC, including those with untreated
HBV diagnosed with small HCCs, has significantly improved.
A study by Piao et al. [214] compared 30 patients after HCC
treatment (by different modalities) that received LAM to 40
matched controls that did not receive antiviral treatment. The
LAM-treated patients had improved Child-Pugh scores while
no such improvement was seen in the controls. There was no
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difference in recurrence of HCC, but a significant improvement
was seen in liver function and inmortality due to liver failure in
the LAM-treated group. Similar results were seen in a retro-
spective study by Kuzuya et al. [215]. These studies attributed
the longer survival of LAM-treated HCC patients to improve-
ment of liver functions. Other studies demonstrated improved
tumor-free survival as well [216–220]. Zhou et al. [221] con-
ducted ameta-analysis to assess the impact ofHBVDNA levels
and NUC therapy on HCC recurrence after resection. Twenty
studies were included, and pooled analysis showed that high
viral load was significantly associated with risk of recurrence,
poorer disease-free survival, and poorer overall survival. NUC
therapy significantly decreased the recurrence risk (RR: 0.69,
p < 0.001) and improved both disease-free survival (RR: 0.70)
and overall survival (RR: 0.46).

16.5 Summary

HBV remains a major cause of liver disease, cirrhosis and
HCC, especially in Asia and Africa. Molecular mechanisms
implicated in HBV-related HCC include direct viral hepa-
tocarcinogenesis and indirect effects via chronic fibrosis,
cirrhosis and inflammation.

For HBV-related HCC, primary prevention of HCC is
vaccination for all uninfected individuals. Secondary pre-
vention of HCC focuses on those who are already infected
and is aimed at suppression of viral replication, and
improving surveillance, thus enabling curative treatments.
Future treatments to eradicate the virus in chronic carriers
will potentially further reduce the incidence of HBV-induced
HCC. Tertiary prevention targets patients with HCC and
aims to improve survival and reduce recurrence.

Better understanding of molecular pathways involved in
HBV-induced carcinogenesis suggests that we are now on
the verge of designing new anti-HBV/HCC drugs that will
target these pathways, thus reducing the incidence of this
deadly cancer.
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17.1 Introduction

Hepatocellular carcinoma (HCC), one of the most common
cancers worldwide [1], usually develops in a liver already
chronically damaged, often from cirrhosis. The etiology of
liver disease, and consequently that of HCC, differs geo-
graphically. In most areas, chronic viral hepatitis due to
either hepatitis B virus (HBV) or hepatitis C virus (HCV) is
the main cause of HCC [2–5]. In this chapter, we focus on
HCC among patients with hepatitis C.

17.2 Epidemiology

HCV infection has shown rapid worldwide expansion in
recent years [6]. HCV is transmitted as a blood-borne
infection, although it is much less infectious than HBV
(Table 17.1). Mother-neonate transmission and horizontal
sexual transmission are uncommon with HCV. Therefore,
the recent rapid spread of HCV must be associated with
some artificial change in the environment. Epidemiological
studies have shown that viral spread began in the United
States in the mid-1960s, mainly among intravenous drug
users, and then began to decline by the 1990s, when general
concern regarding human immunodeficiency virus
(HIV) infection increased substantially. Indeed, in the Uni-
ted States, the transmission route of HCV overlapped that of
HIV. This led to a serious medical problem, HCV/HIV
coinfection, in which liver damage progresses more rapidly
due to comorbid immunosuppression. Currently, approxi-
mately one-tenth of all patients with HCV infection in the
United States are also infected with HIV. With improved
treatment for HIV, HCV-related disease is currently the

primary cause of mortality in patients with HIV/HCV
coinfection [7]. In contrast, in Egypt, where the estimated
prevalence of HCV infection is 10 % or higher, the virus is
thought to be transmitted via a peculiar iatrogenic route due
to parenteral antischistosomal therapy using serum from
infected donors, which was widely practiced from the 1960s
to the early 1980s [8]. This resulted in the predominance of
HCV genotype 4a, which is unique to Egypt.

In Japan, HCC-related mortality has more than tripled
since the mid-1970s. The emerging cases of HCC were
typically negative for HBV and developed in patients with
so-called non-A non-B hepatitis, which was later revealed to
be almost entirely equal to chronic hepatitis C [9]. Presently,
HCV infection is responsible for 75–80 % of the cases of
HCC in Japan, while HBV is responsible for 10–15 % [10].
About 40 % of HCV-related HCC patients in Japan have a
history of blood transfusion, typically within the 1950s and
1960s. At that time, the supply of blood for transfusion in
Japan was dependent upon paid blood donors, many of
whom were also intravenous drug users, mainly metham-
phetamine, among whom HCV is thought to have spread
first in Japan after the end of World War II. In addition, the
routine reuse of syringes and needles in medical practice at
that time may have contributed to further viral spread.
Commercial blood banks were abolished by 1969 in Japan
and replaced by the Japanese Red Cross Society, which is
fully dependent upon voluntary blood donation. Syringe and
needle reuse were also strongly discouraged in the 1970s.
Consequently, viral spread in Japan began to decline in the
1970s, although HCV transmission through blood transfu-
sion continued until the advent of a sensitive HCV detection
system in the early 1990s. In Japan, there was an interval of
at least 30 years between peak HCV spread and peak inci-
dence of HCV-related HCC. Considering the interval of
20 years between the peak viral spread in Japan versus the
United States, and the fact that it takes 20 years or longer
from HCV infection to HCC development, a further increase
in the incidence of HCC in the United States appears to be
inevitable [11, 12].

Genotyping HCV has been important for at least two
major reasons in clinical practice: from an epidemiological
perspective and because of the predictive value in antiviral
therapy. Epidemiological studies have revealed the geo-
graphical distribution of HCV genotypes worldwide [13].
From a clinical viewpoint, subtyping HCV is very useful for
predicting the likelihood of a treatment response and, in
many cases, determines the duration of treatment [14–16]. In
addition, there are several reports that genotype 1b is asso-
ciated with an increased cytopathic effect. According to
Silini et al. [17], HCV genotype 1b infection is very rarely
found in patients with minimal chronic liver disease, which
is associated with persistently normal alanine
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aminotransferase (ALT) and slow disease progression. Feray
et al. [18] reported that the recurrence of hepatitis with
genotype 1b after liver transplantation was more severe and
progressive than for other genotypes.

17.3 Pathology

HCV, a positive-stranded RNA virus, is a major causative
agent of HCC worldwide. However, the molecular mecha-
nisms of HCV-induced hepatocarcinogenesis remain
unclear. HCV is distantly related to the flaviviruses and
pestiviruses of family Flaviviridae. There have been no
reports that flaviviruses or pestiviruses are integrated into the
human genome, so it may be impossible for HCV to exert its
oncogenecity through integration into the host genome.
HCV has an approximately 10-kilobase genome containing a
large open reading frame encoding a polyprotein precursor
of around 3000 amino acids and untranslated regions

(UTRs) at the 5′- and 3′-ends of the genome (Fig. 17.1). The
putative organization of the HCV genome includes (from the
5′- to 3′-end), the 5′-UTR, three or four structural proteins
(core, E1, E2/p7), six nonstructural (NS) proteins (NS2,
NS3, NS4A, NS4B, NS5A, and NS5B), and the 3′-UTR
[19–21]. It is thought that continuous inflammation, apop-
tosis or necrosis, and hepatocyte regeneration caused by
HCV infection may increase the chance of gene alteration
and cause hepatocarcinogenesis. However, accumulated data
suggest that HCV proteins are directly involved in regulating
hepatocyte proliferation. In fact, HCV proteins have various
functions other than HCV replication in host cells, some of
which may be directly or indirectly related to hepatocar-
cinogenesis (Table 17.2) [22].

Recently, it was shown that HCV infection enhances
DNA damage and the mutation of cellular genes, including
proto-oncogenes [23–25]. In addition, the expression of the
core protein impairs DNA repair in human hepatoma cells
[26]. The resulting accumulation of mutations in cellular
genes may lead to cell transformation. Moreover, iron
overload is reported to induce mitochondrial injury and
increase the risk of HCC development in transgenic mice
expressing HCV polyprotein [27].

HCV proteins regulate the transcription of cellular genes,
including p53 and p21, activate signal transduction path-
ways, and suppress apoptosis. These functions of HCV
proteins may lead to hepatocyte proliferation and transfor-
mation. To clarify the molecular mechanisms of
HCV-induced hepatocarcinogenesis, comprehensive func-
tional analyses of HCV proteins are needed. The recently

Table 17.1 Epidemiology of chronic HBV or HCV infection in Japan

Virus HBV HCV

Vertical
transmission

Common until
early 1980s

Rare

Horizontal
transmission

Rare in
adulthood

Common until 1990 Ta
(Peaked in 1950s–1960s)

Prevalence 0.8 % 1.5–2.0 %

Etiology in
HCC

10–15 % 75–80 %

Fig. 17.1 a, b Structure of
hepatitis C virus
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developed HCV subgenomic replicon [28] and robust HCV
infection systems [29–31] will facilitate analyses of the
effect of not only HCV proteins, but also HCV replication.

17.4 Primary Prevention of HCC

HCC is a unique malignancy in that known acquired factors
(i.e., chronic viral hepatitis B and C) are the predominant
causes of carcinogenesis, which is of enormous clinical
importance [32, 33]. By screening for HBV/HCV infection,
we can identify patients at high risk of HCC and perform
cost-effective surveillance. Screening policies should be
based on the prevalence of each viral infection in specific
geographic areas. This will result in the secondary preven-
tion of HCC through early detection and treatment. Fur-
thermore, the primary prevention of HCC (i.e., reducing its
risk factors) is possible by controlling virus infection. In fact,
HBV vaccination has been shown to be effective in
decreasing HBV-related HCC and the awareness of the
control of blood-borne infection in both medical practice and

the general population has apparently curbed further prop-
agation of HCV infection. Antiviral therapy for patients
already infected is another aspect of primary prevention.

The primary prevention of HCV-related HCC includes
strategies for the prevention of HCV infection and for viral
eradication. Regarding the former, novel HCV transmission
in the general population has been declining in many
countries, as evidenced by the lower prevalence of HCV
infection among younger generations. Viral transmission
through blood transfusion can be prevented by screening
donor blood using sensitive assays. Although campaigns
against blood-borne viral transmission, including both HCV
and HIV, should be sustained vigorously, effort can now be
focused on viral eradication in patients who have already
been infected with HCV.

The effect of interferon (IFN) therapy on the prevention
of HCC is controversial. Studies performed in the United
States have failed to show a reduction in the incidence of
HCC after IFN therapy. In contrast, many clinical studies
performed in Japan have clearly demonstrated that the
incidence of HCC was reduced among IFN-treated patients
showing a sustained virologic response (SVR) [34, 35]. The
resolution of cirrhosis was also noted following a SVR [36].
These beneficial effects are expected to be enhanced by the
advent of combined PEG-IFN and ribavirin therapy [14, 15].
The discrepancy in the preventive effect of IFN therapy on
HCC between Japanese and American studies may result
from different patient characteristics, such as the ages of
HCV-infected patients; further investigation is required.

In the recent progress of direct-acting antiviral agents
(DAAs) against HCV, IFN-free treatments are now available
for compensated or decompensated cirrhosis [37–39]. DAAs
combination therapies now offer SVR rates greater than
90 % for treatment-naive and experienced patients with
genotypes 1 through 4. In patients with compensated cir-
rhosis, sofosbuvir-including regimens for 12 weeks could
lead to more than 90 % SVR rates [40]. Recent studies
showed the usefulness of sofosbuvir plus ledipasvir for
12 weeks against HCV genotype-1 patients with decom-
pensated cirrhosis. In patients with cirrhosis and moderate or
severe hepatic impairment, 86–89 % SVR12 rates were
achieved [38]. These treatments have less adverse events
during therapies or shorter duration of treatment than
IFN-including treatment. Limitations still exist in the current
agents, with suboptimal outcomes for genotype 3 and limited
data in genotypes 5 and 6.

Eradication of HCV could bring better reserve liver
function in patients with cirrhosis and HCV infection
although it is unknown whether the occurrence or recurrence
of HCC would be reduced in cirrhotic patients [41]. Further
studies are needed.

Table 17.2 Function and oncogenic potentials of proteins

Protein Function Oncogenic potentials

Core Nucleocapsid Cell transformation
Carcinogenesis in
transgenic mice
Transcriptional regulator
Anti-apoptosis
Activation of
proto-oncogenes
Repression of tumor
suppressor genes
Impairment of DNA repair

E1 Envelope Unknown

E2 Envelope Unknown

P7 Ion channel Unknown

NS2 Metalloprotease Unknown

NS3 Serine protease
Helicase

Cell transformation
Anti-apoptosis
Repression of tumor
suppressor genes

NS4A Serine protease cofactor Unknown

NS4B Unknown Cell transformation

NS5A Unknown Cell transformation
Anti-apoptosis
Repression of tumor
suppressor genes
Induction of chromosome
instability

NS5B RNA-dependent RNA
polymerase

Repression of tumor
suppressor genes
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17.5 Surveillance

Ultrasonography (US) and tumor marker tests play important
roles in HCC surveillance in patients with chronic liver
disease and are widely used. However, there is insufficient
evidence to suggest that such surveillance improves the
prognosis of patients with HCC or increases the effective-
ness of local therapies, such as resection and local ablation
therapy, or indeed radical treatments, such as liver trans-
plantation. Similarly, the usefulness of computed tomogra-
phy (CT) or magnetic resonance imaging (MRI) in HCC
surveillance remains unclear.

The primary objective of screening and HCC surveillance
should be to reduce mortality as much as possible in patients
who actually develop cancer, in an acceptable, cost-effective
fashion. To attain this objective, two distinct issues deserve
meticulous consideration: the target population and mode of
surveillance.

17.5.1 Target Population

HCC shows significant regional clustering [4]. HBV, HCV,
and other environmental factors may play important roles in
the development of HCC, with the relative importance of
individual factors varying widely according to geographic
area [3, 5, 42, 43]. In Japan, HCV infection is responsible for
about 80 % of the cases of HCC, whereas HBV infection is
responsible for 10 % and alcohol for about 5 % [44, 45].
These values may differ substantially in other countries. For
example, in China, where the prevalence of HBV infection is
much higher, HBV infection is by far the predominant eti-
ologic factor for HCC. In the United States, nonalcoholic
steatohepatitis (NASH) is reportedly a major factor in HCC.

Given the low incidence of HCC in individuals without
risk factors, surveillance is not recommended for the general
population. A commonly accepted rate that requires
surveillance is greater than 0.2 % per year. Therefore, the
first step in screening for HCC is to screen patients at risk of
developing HCC. Because chronic viral hepatitis due to
either HBV or HCV may be asymptomatic, mass screening
for hepatitis virus infection, either HBV or HCV, is justified
if the prevalence of infection is reasonably high in a region.
Indeed, in Japan, the general population over 40 years of age
has undergone mass screening for HBV and HCV infection
since 2002, although the cost-effectiveness of this program
remains to be evaluated.

Persistent HBV infection is a major risk factor for HCC.
HBV carriers have a 223-fold higher risk of developing
HCC than noncarriers [46]. Among HBV carriers, HBe
antigen-positive patients are at a higher risk of HCC than
HBe antigen-negative patients (relative risk, 6.3-fold) [47,

48]. Recently, the results of a large-scale, long-term cohort
study conducted in Taiwan showed that the serum
HBV DNA level is the strongest risk factor for both the
progression to cirrhosis and the development of HCC among
HBV-positive patients, independently of serum HBe
antigen/antibody status or ALT levels [49]. Together with
the advent of reliable quantitative assays, the determination
of HBV DNA levels may replace the determination of HBe
antigen/antibody status as a risk indicator for HCC.

While the prevalence of chronic HBV infection is high in
some geographic areas, such as East and Southeast Asia and
sub-Saharan Africa, the prevalence of chronic HCV infec-
tion has recently increased in some developed countries,
including Japan, southern European countries, and the
United States. In chronic hepatitis C patients, the risk of
developing HCC increases with the progression of liver
fibrosis (Table 17.3) [34, 50], and chronic hepatitis C
patients with cirrhosis have a very high risk of HCC [51]. In
European countries and United States, annual incidence rate
of HCC is reported to be 0.5–5 % [52]. The reason of this
difference is not well known, but maybe related to the dif-
ference in the age of patients. Ethnic difference maybe also
involved. In Japan, HCV infection spread nationally mainly
in the 1950s and 1960s and is currently, after several dec-
ades required for progression to cirrhosis, the predominant
cause of HCC. Peak viral spread in the United States
occurred two decades later, and the incidence of
HCV-related HCC is now increasing rapidly [2, 53]. In
addition to the degree of liver fibrosis, male gender, older
age, and heavy alcohol consumption are the known risk
factors for HCV-related HCC.

Cirrhosis due to etiologies other than chronic viral hep-
atitis also confers a risk of developing HCC. Major etiolo-
gies include alcoholic liver disease and NASH [54–56]
whose relative importance may differ geographically.
Schoniger-Hekele et al. [57] reported that alcoholic liver
disease accounted for 32 % of all HCC cases in an Austrian
cohort. In the United States, the approximate annual hospi-
talization rate for HCC related to alcoholic cirrhosis is
8–9/100,000 compared to approximately 7/100,000 for
hepatitis C [58]. NASH is a chronic liver disease that is

Table 17.3 Incidence of HCC according to histological fibrosis stage
reported from Japan

Fibrosis
stage

Annual Incidence
of HCC

Risk Ratio (95 % CI)

F0/1 0.5 % (3/160) 1

F2 2.0 % (11/164) 4.431 (1.704–11.522)

F3 5.3 % (13/59) 13.097
(5.194–33.021)

F4 7.9 % (32/107) 24.011
(9.638–59.815)
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gaining increasing significance due to its high prevalence
worldwide and its potential progression to cirrhosis, HCC,
and liver failure. Although NASH has been described in
cohorts of HCC patients [59, 60], the incidence of HCC in
cirrhosis due to NASH is unclear. Aflatoxin may play a role
in certain areas.

In brief, the evaluation of the degree of liver fibrosis is of
paramount importance in assessing the risk of HCC in
patients with chronic liver disease of any etiology. Histo-
logic evaluation of liver biopsy samples has been considered
the gold standard for assessing liver fibrosis. However, the
invasiveness of a liver biopsy limits its clinical feasibility. In
clinical practice, repeated assessment of liver fibrosis is often
required because a non-cirrhotic liver may become cirrhotic
over time, sometimes rather rapidly. Consequently, the
noninvasive evaluation of liver fibrosis is one of the main
areas of interest in hepatology.

One such noninvasive method, transient elastography,
correlates well with the histological stage of liver fibrosis
[61–65]. The reported cut-off value for the diagnosis of
histological cirrhosis was 12.5–14.9 kPa. Higher values of
liver stiffness may require proper attention regarding
decompensation and HCC development [66]. The FibroTest
is based on the age and gender of patients combined with
five biochemical markers (total bilirubin, haptoglobin,
c-glutamyl transpeptidase, alpha-2 macroglobulin, and
apolipoprotein A1) [67]. An index of 0–0.10 had a 100 %
negative predictive value, while an index of 0.60–1.00 had a
greater than 90 % positive predictive value for a Metavir
score of F2 to F4. APRI is the aspartate aminotransferase
(AST) level/upper limit of normal divided by the platelet
count (109/L) multiplied by 100 [68]. For a hypothetical
patient with an AST of 90 IU/L (upper limit of normal 45)
and a platelet count of 100 (�109/L), the APRI is 2.0, which
means the patient has a 41 % likelihood of advanced fibrosis
and 5 % chance of having minimal or no fibrosis. The
applicability of these methods in surveillance requires
evaluation in future prospective studies.

Patients who are considered to be at a nonnegligible risk
of HCC development should be subjected to a surveillance
program, as discussed below. Possible exceptions may
include those with severe liver dysfunction who would not
receive any treatment if diagnosed with HCC, or those with
other life-threatening illnesses.

17.5.2 Surveillance Methodology

Traditionally, two methodologies have been used for HCC
surveillance in high-risk patients: tumor marker determina-
tion and diagnostic imaging. Serum alpha-fetoprotein

(AFP) concentration is representative of the former and
liver ultrasonography (US) of the latter. The usefulness of a
surveillance program should be evaluated based on the ben-
eficial effects on the outcome of HCC patients diagnosed via
these modalities relative to cost. However, few prospective
randomized trials have compared the outcome of HCC
patients in or outside a surveillance program. Therefore, the
currently available evidence regarding the effects of surveil-
lance on decreasing overall or disease-specific mortality has
come mostly from retrospective or case-control studies.

17.5.2.1 AFP
AFP is a glycoprotein with a molecular weight of 72 kDa.
The main physiological function of AFP appears to be the
regulation of fatty acids in fetal and proliferating adult liver
cells [69]. Since 1968, AFP has been used as a serum marker
for human HCC [70]. As a marker, AFP reportedly has a
sensitivity of 39–65 %, a specificity of 76–94 %, and a pos-
itive predictive value of 9–50 % [71–76]. Studies assessing
the usefulness of AFP in HCC screening have varied widely
in their design and in the characteristics of targeted patients in
terms of etiology, severity of background liver disease, and so
forth. Moreover, specificity and sensitivity inevitably depend
upon the cut-off level selected for diagnosis.

An intrinsic disadvantage of AFP as a tumor marker is the
fact that the serum AFP levels can increase in patients
without HCC when hepatitis is active, partly due to accel-
erated cellular proliferation in regeneration. Because serum
AFP rarely exceeds 20 ng/mL in healthy subjects, this value
is often adopted as the upper limit of normal for serum
AFP. However, values slightly above this level may not be
indicative of HCC among patients with chronic hepatitis,
whereas adopting a low cut-off value results in low speci-
ficity. AFP levels exceeding 400 ng/mL can be considered
almost definitively diagnostic of HCC, but sensitivity
inevitably decreases with higher cut-off levels. An additional
disadvantage of AFP as a tumor marker is that small HCC
tumors, the detection of which is the primary objective of
surveillance, are less likely to be AFP-producing, and serum
AFP level may not reach the diagnostic limit even if they are
AFP-producing.

It has been proposed that AFP determination should be
used as a screening test only when US is either unavailable
or of such poor quality that lesions smaller than 2 cm in
diameter will not be detected. One such case is HCC
screening in Alaskan hepatitis B carriers, among which AFP
testing allowed the detection of tumors at an earlier, treatable
stage [77]. Although the screened subjects had an increased
survival compared to historic controls, this must have been
affected by the lead-time and length-time bias inherent to
retrospective studies on screening.
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17.5.2.2 US
US became available for identifying intrahepatic lesions in
the early 1980s [78]. This imaging modality is appealing
because it is almost completely noninvasive. The ribs and air
in the lungs and gastrointestinal tract surrounding the liver
may hinder ultrasound imaging, but imaging of the liver has
been facilitated by improvements in devices and techniques.
The reported sensitivity of US for detecting HCC nodules is
highly variable, ranging from 35 to 84 % [79], depending
upon the expertise of the operator and the ultrasound
equipment used. Indeed, more sophisticated ultrasound
instruments can produce images with much better resolution,
improving the detectability of small intrahepatic lesions.
Note, however, that ultrasound diagnosis is heavily operator
dependent. A high level of skill and experience is required to
record high-quality images and make an accurate diagnosis.
In addition, an ultrasound diagnosis may not be possible due
to the patient’s physical condition, such as severe obesity.

The reported sensitivity of US for HCC detection is as
low as 20.5 % [80], based on the pathology of explanted
livers that were removed from patients who underwent liver
transplantation. Small HCC nodules less than or equal to
2 cm in diameter constituted 85 % of the lesions that were
not detected ultrasonographically [81]. The ultrasound
detectability of HCC nodules depends on tumor size: nod-
ules >5.0, 3.1–5.0, 2.1–3.0, and 1.0–2.0 cm in diameter had
detection rates of 92, 75, 20, and 13.6 %, respectively [80].

Although these data are rather disappointing, other
reports indicate that the detectability of intrahepatic nodules
with US is almost comparable to that of CT [82–85]. In a
study of nodules that were � 2 cm in diameter in patients
with chronic hepatitis, the detection capability of US
exceeded that of CT or MRI for nodular lesions, and US was
superior for the detection of adenomatous hyperplasia and
well-differentiated HCC [86]. Overall, US is indispensable
in the screening of HCC, as it is noninvasive and less
expensive. However, the definitive diagnosis of HCC
depends upon the evaluation of its vascularity, which is not
possible via conventional US. Instead, CT or MRI with
contrast enhancement is required when a suspected lesion is
identified via US.

US, when conducted by less-experienced operators, has
several shortcomings. Moreover, the resolution may not be
satisfactory in cirrhosis patients with rough echo patterns in
the background liver. Therefore, effective HCC detection
requires combined US with CT or MRI. However, there are
few reports on HCC surveillance that actually used CT or
MRI, and its cost-benefit ratio remains unclear.

Recently, several contrast enhancement materials have
been developed for US. These materials are very useful in
the differential diagnosis of intrahepatic nodules or the
demarcation of intrahepatic lesions before percutaneous

ablation. However, their role in HCC screening is yet to be
defined.

17.5.2.3 Combined AFP and US in HCC
Surveillance

Although serum AFP measurement is generally less sensi-
tive than US, their specificities may be comparable when
using appropriate cut-off values. HCC screening via com-
bined US and AFP may lead to improved detection, although
previous reports have been generally negative [72, 87–89].
However, in a nonrandomized study of patients with cir-
rhosis, the sensitivity of detection was reported to be
increased using both US and AFP measurements, as com-
pared to either alone [87].

Recently, a randomized trial evaluated HCC screening
using AFP and US every 6 months compared to no
screening in over 18,000 Chinese patients with HBV
infection [90]. More cases of HCC were diagnosed in the
screened group than in the non-screened group (86 vs. 67)
and overall survival was higher in the former group (65.9,
52.6, and 46.4 % at 1, 3, and 5 years, respectively) than in
the latter (31.2, 7.2, and 0 % at 1, 3, and 5 years,
respectively).

A retrospective study assessed HCC screening in 367
patients of 70 years of age or older, with AFP measurements
and US every 6 or 12 months. The screening allowed more
frequent diagnosis of HCC at an early stage, increased the
proportion of patients who could receive a curative treat-
ment, and improved their prognoses compared to unscreened
patients. The apparent survival benefit was restricted to the
first 3 years after the detection of HCC, probably because of
the shorter life expectancy of elderly people [91].

17.5.2.4 New Serum Markers and New Methods
Recent developments in gene expression microarrays, pro-
teomics, and tumor immunology permit thousands of genes
and proteins to be screened simultaneously. In the next
decade, new biomarkers should be established for cancer
screening, including HCC. To establish a formal framework
to guide biomarker evaluation and development, a five-phase
program was adopted by the Early Detection Research
Network (EDRN) of the National Cancer Institute [92].
Currently, several new markers appear promising, includ-
ing des-gamma-carboxyprothrombin (DCP), AFP-L3,
glypican-3, insulin-like growth factor (IGF)-1, and hepato-
cyte growth factor (HGF). These markers are to be further
evaluated in phase 2 studies to determine their ability to
detect early-stage HCC, followed by phase 3 studies that will
retrospectively determine whether they can detect preclinical
disease. Pending these results, phase 4 studies will be per-
formed to assess prospectively their ability to detect early
HCC and phase 5 studies will be performed to confirm that
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surveillance using these markers reduces morbidity and
mortality from HCC.

Although recent developments identifying serum markers
for HCC hold great promise, advances in genomic analysis
propelled by new techniques for high-throughout sequencing
are likely to further advance the field [93]. Totoki et al.
demonstrated the feasibility of sequencing the entire genome
of a primary hepatitis C virus-induced HCC [94]. This
analysis identified novel mutation patterns and chromosomal
abnormalities. Studies such as this will identify specific
targets likely to prove useful in both the detection and
treatment of HCC.

The detection sensitivities of dynamic CT and dynamic
MRI are both high for hypervascular HCC. Because patients
with HCC undergo repeated imaging examinations and the
diagnostic capabilities of dynamic CT and MRI are similar,
dynamic MRI, which does not involve exposure to X-rays,
may be superior to CT. However, MRI systems that allow
high-quality dynamic studies are not yet as widely used as
high-speed CT systems. Institutions without access to
dynamic MRI may instead rely upon high-speed dynamic
CT, such as helical CT, or even more advanced systems,
such as multi-detector CT (MDCT). The development of
MDCT has dramatically accelerated scan acquisition in liver
CT [95]. With MDCT, high-speed volume coverage of the
entire liver is possible in 4–10 s, which allows the acquisi-
tion of two separate series of scans in the arterial phase,
termed early arterial and late arterial phase scans [96, 97].
With fluorodeoxyglucose positron emission tomography
(FDG-PET), tumor cells with active glucose metabolism
take up and specifically accumulate 18F-FDG, blocking the
metabolic pathway. In a study evaluating the diagnosis of
HCC using a quantitative standardized uptake value (SUV),
the SUV for HCC was lower than that of metastatic liver
cancer [98]. In general, FEG-PET is not recommended for
the diagnosis of HCC because it is expensive and not
superior to conventional diagnostic imaging techniques,
such as CT and MRI.

17.6 Standardized Recall Procedures

Once patients are identified via an abnormal surveillance
test, they need to be recalled for subsequent evaluation.
However, despite various recall algorithms described in the
literature, none has been tested in a prospective fashion.
Furthermore, recall procedures should differ based on
abnormal AFP versus US findings. Increases in serum AFP
need to be interpreted against background liver disease.
Reactivated chronic hepatitis B is often accompanied by
increased AFP levels. Pregnancy may cause temporary ele-
vation of AFP levels, sometimes together with an increase in
the proportion of the L3 fraction. Therefore, patients with

increased serum AFP levels require a detailed clinical
evaluation to determine the cause of the increase.

When a low-echoic lesion is newly detected with US in
the liver of a patient at risk of HCC, a complete evaluation is
required. Typically, this involves CT or MRI with contrast
enhancement and the presence of hyperattenuation in the
arterial phase with washout in the late phase can be con-
sidered as a definitive sign of HCC [99]. In ambiguous cases,
a needle tumor biopsy under ultrasound guidance is rec-
ommended. However, it is controversial whether all suspi-
cious nodules should be subjected to liver tumor biopsy
because of concerns regarding potential tumor seeding.

17.7 Screening Interval

Because the risk of HCC development does not usually
decrease spontaneously in patients who are targets for HCC
screening, an HCC surveillance program should consist of
repeated screenings at a determined interval. US is superior to
CT in this regard because it is noninvasive and cost-effective.
The guidelines of the American Association for the Study of
Liver Diseases (AASLD) propose ultrasound surveillance for
patients at high risk of HCC at an interval of 6 months. The
guidelines explicitly indicate that the surveillance interval
should depend not on the risk of HCC, but exclusively on
tumor doubling times, to detect cancer nodules while they are
small enough for curative treatments.

In contrast, in Japan, ultrasound surveillance at a shorter
interval of 3–4 months is encouraged for extremely high-risk
patients, whereas an interval of 6 months is recommended
for high-risk patients [100]. Chronic hepatitis C patients with
cirrhosis in Japan have HCC incidence rates of 6–8 % per
year, constituting an extremely high-risk group. Theoreti-
cally, shorter surveillance intervals lead to tumor detection at
smaller sizes. However, it is unknown whether the difference
in detected tumor size, if any, is large enough to affect the
prognosis in a cost-effective fashion. Although there is no
prospective comparison of different schedules, one retro-
spective study of cirrhosis patients and a mathematical
model applied to hepatitis B virus careers suggested that a
longer screening interval is as effective as a 6-month interval
in terms of survival.

It is controversial whether AFP determination should be
included in HCC surveillance programs. However, if AFP is
to be measured, it should be measured repeatedly and an
abnormal AFP level must be interpreted not by simple
comparison with a given cut-off value, but in the context of
the temporal series. An abrupt elevation of serum AFP levels
in the absence of exacerbation of hepatitis may indicate the
development of HCC, even if US is apparently negative, and
further evaluation with contrast-enhanced CT or MRI should
be considered.
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17.8 Cost-Effectiveness

According to a decision analysis model, the
cost-effectiveness ratio for screening European patients with
Child-Pugh class A liver disease ranged between $48,000
and $284,000 USD for each additional life year gained
[101]. However, this study did not consider liver trans-
plantation as a treatment option. In a group of patients who
could anticipate excellent survival, the cost-effectiveness
ratio ranged between $26,000 and $55,000. In another study
of 313 Italian patients with cirrhosis undergoing serum AFP
analysis and liver US every 6 months, the cost per case of
treatable HCC was $17,934, and the cost per year of life
saved was $112,993 [75]. In the United States, the cost for
each quality-adjusted life-year (QALY) gained through
surveillance was estimated to range from $35,000 to $45,000
[101]. HCC screening in patients waiting for liver trans-
plantation has been associated with a cost per year of life
saved ranging from $60,000 to $100,000, depending upon
the screening modality used [102].

It must be emphasized that the cost-effectiveness of HCC
screening has been assessed via retrospective analyses or
using decision models. While retrospective studies suffer
from selection bias, decision analysis models are based on a
simulation of costs and health outcomes and results may
vary greatly according to different assumptions, such as the
incidence of HCC in the screening population, the screening
interval, the modality of diagnosis, the type of treatment
after diagnosis, the doubling time of tumors, and the tumor
recurrence rate. In particular, there must be a feasible treat-
ment modality that favorably affects prognosis if screening is
to be cost-effective.

17.9 Prevention of Recurrence

The short-term prognosis of HCC patients has greatly
improved due to recent advances in early diagnosis and
treatment. However, the long-term prognosis remains far
from satisfactory, as indicated by the fact that the overall
survival 10 years after apparently curative treatment of HCC
is as low as 22–35 % [103, 104]. In HCC patients, the slope
of a typical cumulative survival curve does not level out over
time after treatment. In contrast, in most other malignancies,
the slope of the cumulative survival curve levels out in about
5 years after relatively curative treatment. In other words,
HCC is rarely treated curatively, and the primary reason for
this is the frequent recurrence of HCC, even after apparently
curative treatment involving either local ablation or surgical
resection [105]. Unlike liver transplantation, these locore-
gional therapies do not remove microscopic lesions in the
remaining liver. However, this does not explain the fact
specific to HCC that the risk of recurrence does not decline

over time. In fact, recurrent HCC continues to develop at an
annual rate of 10–20 %. This continual recurrence of HCC
after initial treatment is thought to be mostly due to multi-
centric de novo carcinogenesis. In this respect, liver trans-
plantation is superior to locoregional therapy.

At least theoretically, however, strategies similar to those
used in primary prevention may be applicable to HCC
recurrence due to multicentric carcinogenesis. Recently, the
number of HCC patients undergoing resection after IFN
therapy has increased. Kubo et al. evaluated the tumor-free
and cumulative survival rates for patients who underwent
IFN therapy before and/or after curative resection of HCC
[106]. The tumor-free and cumulative survival rates of
patients who showed a SVR or biochemical response
(BR) were significantly higher than those of patients who
were classified as nonresponders or who did not undergo
IFN therapy. The proportion of patients who died of HCC
was significantly lower in the SVR/BR group than in the
NR/non-IFN group. In addition, neither SVR nor BR
patients died of decompensation. HCV antiviral medications
already cure more than 90 % of the HCV population
including patients with HIV-HCV, decompensated cirrhosis,
and posttransplant [38, 107, 108]. Thus, in patients who
undergo liver resection for HCV-related HCC, long-term
survival can be expected if antiviral therapy is further
improved.

Needless to say, early diagnosis and complete removal of
primary HCC lesions are requisite for antiviral therapy. In
other cases, safe, effective chemotherapeutic agents would
be useful as adjuvant therapy for relatively advanced HCC
where undetectable intrahepatic metastases are suspected.
However, conventional chemotherapeutic agents are not
satisfactorily effective against HCC, nor safe enough for
protective long-term use. Hasegawa et al [109] reported that
the administration of uracil-tegafur (UFT) as an adjuvant
chemotherapy for hepatic resection offered no evidence of
potential benefit and overall survival appeared to be worse in
the treatment group. The authors suggested that the adverse
effects of UFT on liver function were responsible for poor
survival in the treatment group. Some agents appear
promising in terms of safety, but their effects remain to be
confirmed [110, 111]. The prevention of the recurrence of
HCC, or tertiary prevention, is currently one of the most
challenging tasks in hepatology.
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18.1 Introduction

Nonalcoholic fatty liver disease (NAFLD) describes a
spectrum of liver diseases with pathology resembling liver
damage induced by alcohol abuse but occurs in individuals
who consume little or no alcohol. Histologically, the scope
of NAFLD ranges from instances of simple fat accumulation
in the liver to nonalcoholic fatty liver (NAFL) with isolated
steatosis and mild nonspecific inflammation, to nonalcoholic
steatohepatitis (NASH) [1–3]. NAFL is largely considered to
be a benign condition whereas NASH is considered the more
progressive subtype of NAFLD often characterized by dif-
fuse hepatocellular injury which can progress to show evi-
dence of necroinflammation, cirrhosis, and fibrosis and in
some instances advance to hepatocellular carcinoma (HCC).
NAFLD represents approximately 47 % of chronic liver
diseases in the US surpassing hepatitis B, hepatitis C, and
alcoholic liver disease as the fastest growing cause of
chronic liver disease in adults [4]. NASH-associated cir-
rhosis is the third most common cause of death in NAFLD
patients and is predicted to surpass alcoholic liver disease
and hepatitis C virus (HCV) to become the leading indica-
tion for liver transplantation in the U.S. over the next
decade [5].

18.2 Incidence/Prevalence/Risk Factors

NAFLD was first described in 1980 and has since become
the most common cause of chronic liver disease worldwide.
Few studies include long-term follow up of NAFLD
patients. Thus the exact natural history of NAFLD is difficult
to ascertain. The global prevalence of NAFLD is however
rapidly increasing over time and is currently assumed to
range from 20 to 45 % in Western countries and 5–18 % in
Asia depending on the studied population and method of
diagnosis [5–8]. In the United States, NAFLD is thought to
affect approximately 34 % of adults and 20 % of children

C.L. Robertson � A.J. Sanyal
Department of Internal Medicine, Virginia Commonwealth
University, Richmond, VA, USA
e-mail: Chadia.Robertson@vcuhealth.org

A.J. Sanyal
e-mail: arun.sanyal@vcuhealth.org

D. Sarkar (&)
Department of Human and Molecular Genetics, Virginia
Commonwealth University, Richmond, VA, USA
e-mail: devanand.sarkar@vcuhealth.org

© Springer International Publishing Switzerland 2016
B.I. Carr (ed.), Hepatocellular Carcinoma, Current Clinical Oncology,
DOI 10.1007/978-3-319-34214-6_18

275



with an incidence running in parallel to the increased inci-
dence of obesity and diabetes [7, 9, 10].

The global incidence of NASH is estimated to be between
3 and 5 %. Few noninvasive modalities exist which can
differentiate NAFLD from NASH. However,
population-based studies surveying levels of aminotrans-
ferases indicate that NASH affects between 6 and 8 % of
adults in the US [11]. A recent study suggests that the fre-
quency of NASH varies significantly with ethnicity with
significantly higher incidence in Hispanics (58.3 %) com-
pared to Caucasians (44.4 %) and African Americans
(35.1 %) [7]. A close link has been identified between the
metabolic syndrome and NAFLD. The metabolic syndrome
can be defined by the presence of three or more of the fol-
lowing conditions: visceral obesity, hypertension, type 2
diabetes or elevated fasting plasma glucose, or dyslipidemia
including hypertriglyceridemia or low high-density
lipoprotein levels. Thus many consider NAFLD to be the
hepatic component of the metabolic syndrome (Fig. 18.1).

18.2.1 Obesity

The worldwide incidence of obesity has been rapidly pro-
gressing and is now described by the World Health Orga-
nization as a global epidemic. Recent studies suggest that

there are 1.6 billion overweight and 500 million obese
adults globally [12]. The prevalence of NAFLD is increased
up to 80–90 % of obese adults and 60 % in hyperlipidemic
adults [1, 13]. Approximately 69 % of adults and 32 % of
children in the United States are currently considered over-
weight or obese. This translates to close to 100 million
possible cases of NAFLD in the US alone [14, 15]. Recently,
a prospective study reported improved clinical, metabolic,
and biological outcomes in patients one year after bariatric
surgery [16]. Following bariatric surgery, NASH had dis-
appeared in 85.4 % of the study group suggesting that the
deleterious metabolic effects of NASH may in fact be
reversible [16].

18.2.2 Insulin Resistance

Insulin resistance has been identified with an astounding
frequency in individuals with NAFLD and is now thought to
play an integral role in its pathogenesis. There appears to be
a direct correlation between the degree of insulin resistance
and the severity of NAFLD in patients and higher serum
insulin levels are found in patients with NASH and fatty
liver [17–19]. Furthermore, insulin resistance is consistently
found in subjects with NAFL or NASH, even in the absence
of diabetes [20]. Similar levels of insulin resistance have

Fig. 18.1 Systemic and liver
specific mechanisms involved in
the pathophysiology of NAFLD
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been observed in both overweight and lean patients with
fatty liver suggesting that insulin resistance, not simply
excess body fat, is essential to the pathogenesis of fatty liver
disease [19].

The primary functions of adipose tissue are to store lipids,
which can be burned to meet the energy needs of the body
and to protect from excesses in circulating glucose by storing
triglycerides produced by the liver from sugars. Ectopic fat
accumulation describes the scenario wherein lipid accumu-
lation has occurred in a site other than adipose tissue such as
the liver, pancreas, or other organs not designed to accom-
modate excessive lipids loads [21, 22].

The two primary issues that induce ectopic fat accumu-
lation are (1) an excess in energy intake as compared to
expenditure, and (2) defects in mechanisms that control the
proper shuttling of excess energy as lipids to adipose tissue.
NAFLD is an example of ectopic fat accumulation. Hepatic
lipid accumulation creates an insult to the liver which
induces increased secretion of hepatokines, increased glu-
coneogenesis, decreased glycogen synthesis, and inhibition
of insulin signaling [21, 23]. Excess fatty acids not only
induce hepatic insulin resistance but also impair insulin
clearance [24, 25].

18.2.3 Diabetes

Type 2 diabetes (T2DM) and NAFLD are closely associated
and NAFLD incidence is elevated in 69 % of patients with
type 2 diabetes mellitus. Studies show that type 2 diabetics
have a 2- to 4-fold increase in serious liver disease and are
at increased risk of mortality from cirrhosis, and hepato-
cellular carcinoma [26–30]. Family history of diabetes and
or insulin resistance also increases the risk of cirrhosis and
fibrosis in diabetics and nondiabetic NAFLD/NASH
patients alike [31, 32]. It has been documented that sus-
tained elevation of plasma FFA levels over time can impair
insulin secretion in lean, nondiabetic subjects who are
genetically predisposed to T2DM [25]. A convincing body
of evidence exists in support of the link between NAFLD
and T2DM. Most estimates of T2DM in NAFLD have been
based largely on medical history or the less sensitive plasma
fasting glucose or A1c levels. Therefore, there is a need for
well-controlled long-term prospective studies on the natural
history of NAFLD in T2DM using more accurate methods
of analysis.

There are also data suggesting that hypothyroidism,
hypopituitarism, hypogonadism, sleep apnea, and polycystic
ovary syndrome independent of obesity are important risk
factors for the incidence of NAFLD [33–41]. Further
investigation is warranted to determine if each of these
factors truly influence the natural history of NAFLD or exist
simply as comorbidities.

18.3 Pathophysiology

18.3.1 Disease Progression

Fatty liver (steatosis) is the more common subtype of the
fatty liver diseases and has long been considered as benign.
NASH, seen in 10–25 % of NAFLD cases, has been con-
sidered the more progressive disease state. Recent findings
have prompted a shift in this paradigm. Where previous
studies reported that NAFL may be benign, with little to no
risk for progression to a more advanced disease, more recent
studies provide evidence that progressive fibrosis can
develop in both NASH and NAFL patients [42, 43]. In
addition, it must be considered that NAFL can progress to
NASH with fibrosis indicating that NAFL must also be
considered a progressive disease [43]. Estimating the true
incidence of NAFLD including NASH has been extremely
challenging for many reasons including variability within
study groups and lack of accurate noninvasive diagnostic
techniques. Tracking the progression from one NAFL to
NASH remains a challenge and the factors which may
potentially cause progression from NAFL to NASH are still
largely unknown.

The progression from non alcoholic steatohepatitis to
cirrhosis and advanced fibrosis is a process that has been
frequently studied [44–46]. NASH is a complex disease
characterized by hepatocyte ballooning, macrovesicular
steatosis, inflammation, and pericellular fibrosis. 15–20 % of
NASH cases progress to cirrhosis and the 5-year incidence
of HCC in individuals with cirrhotic NASH is approximately
11 % [47–49]. Hepatic fibrosis develops in 40–50 % of
patients with NASH [27]. The presence of advanced hepatic
fibrosis is a key contributor to the development of HCC and
a key predictor of all-cause and disease-specific mortality in
NASH patients [50, 51]. Therefore, the presence of NASH
may in and of itself be considered a risk factor for hepato-
cellular carcinoma. Recent studies indicate that the meta-
bolic impact of obesity in nonalcoholic fatty liver disease
may vary widely even among patients with a similar body
mass index (BMI) [52, 53]. Therefore when describing the
pathogenesis of NAFLD, it is important to consider that
numerous factors contribute to its onset and progression.
Based on current research, the disease can be attributed to
any combination of genetic, dietary, inflammatory, and
environmental factors (Fig. 18.2), which will be further
discussed here.

18.3.2 Molecular Mechanisms

18.3.2.1 Contribution of Insulin Resistance
There appears to be a direct correlation between the degree
of insulin resistance and the severity of NAFLD. It is now
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clear that adipose tissue dysfunction and inflammation play
an integral role in the insulin resistance associated with
NAFLD pathogenesis. Adipocytes protect the body from
excess energy supply and excess ectopic triglyceride accu-
mulation by activation of several inflammatory pathways.
The activation and infiltration of adipose tissue macrophages
incite adipocyte dysfunction, adipose tissue insulin resis-
tance, release of excess free fatty acids into the circulation,
and ectopic fat deposition [54, 55]. There are two distinct
classes of macrophages, which include: The “classically
activated” (M1) macrophages and the “alternatively acti-
vated” (M2) macrophages. M1 macrophage activation is an
essential component of humoral immunity stimulated by
microbial products, and proinflammatory cytokines (ex.
IFNc, TNF a). Upon activation, M1 macrophages secrete
large amounts of proinflammatory factors including nitric
oxide (NO) and reactive oxygen species intermediate
(ROI) in addition to numerous proinflammatory cytokines
(TNF-a, IL-1, IL-6, IL-12) [56]. By contrast, alternative/M2
macrophage activation is characterized by little to no
secretion of proinflammatory cytokines, increased secretion
of antiinflammatory cytokines, and enhanced scavenging of
cellular debris [56, 57]. Stimulated by the presence of IL-4, -
10 and 13, the M2 macrophage response is often associated
with tissue remodeling and repair. Obesity generates a state
of low grade inflammation and adipose tissue macrophage
infiltration often associated with insulin resistance [58, 59].
A systemic increase in the number of M1 relative to M2
macrophages is characteristic of human obesity and animals
fed a high-fat diet [54, 57].

Insulin resistance develops when macrophages invade
visceral adipose tissue stimulating an inflammatory cascade
that includes adipokine secretion [60]. Adiponectin and
leptin are adipokines that decrease insulin resistance, while

TNF-a, IL-6 and resistin, enhance insulin resistance.
Reduced levels of adiponectin and elevated TNF-a and IL-6
are often synonymous with the NAFLD phenotype. Factors
implicated in the initial genesis of adipose tissue inflam-
mation, include relative ischemia and production of the
hypoxia inducible factor-1, specific gut microflora, and
microflora-dependent inflammatory responses and hormones
such as leptin [60]. The combination of high circulating
insulin levels and high plasma FFAs stimulates hepatic sterol
regulatory element binding protein 1c (SREBP-1c) which in
turn induces hepatic lipogenesis and oversecretion of
very-low-density lipoprotein (VLDL) [24, 25, 61]. Increased
lipid synthesis results in increased production of intermedi-
ates. By-products of this process include di-acylglycerols
(DAG), di-palmitoyl phosphatic acid (Di-P PA), and cer-
amides [62–65]. DAG in particular is a known contributor to
hepatic insulin resistance and is also involved in promoting
hepatic inflammation [66, 67]. Elevated hepatic VLDL
secretion lowers high-density lipoprotein levels and increa-
ses intrahepatic triglyceride accumulation [25, 61, 65].
Together these factors contribute to both chronic liver
inflammation and hepatic insulin resistance. Several signal-
ing pathways are known to be involved in this response. The
c-Jun N-terminal kinase/activator protein 1, cyclic adenosine
monophosphate responsive element binding protein H
(CREB-H), the Janus kinase (JAK)/signal transducer and
activator of transcription (STAT) pathway, and the nuclear
factor jB (NFjB) pathways have been implicated in this
process [68, 69]. These pathways are activated in response to
elevated levels of fatty acids and lipid by-products. Excess in
energy intake as compared to expenditure, as observed in
obesity, may expose cells to toxic lipids, thereby activating
cellular stress pathways. In addition, saturated fatty acids are
known to disrupt endoplasmic reticulum (ER) homeostasis
inducing ER stress and apoptosis in hepatocytes [70, 71].
This type of cellular stress originates from the accumulation
of unfolded or misfolded proteins in the ER and often
prompts an adaptive response including activation of the
aforementioned pathways ultimately resulting in the release
of reactive oxygen species and proinflammatory cytokines
such as TNFa and IL-6 [54, 57, 60]. The metabolic conse-
quence of this state is recognized as insulin resistance. Taken
together it is clear that in addition to the hepatic milieu there
is also a systemic syndrome. As such, the adipose tissue
dysfunction and subsequent adipose tissue macrophage
activation precede Kupffer cell activation.

18.3.2.2 Contribution of the Gut Microbiota
Several studies have provided evidence suggesting that
dysbiosis of the gut microbiota may play a significant role in
regulating intrahepatic metabolic and inflammatory path-
ways that contribute to the development and progression of

Fig. 18.2 Precursors and modifiers that contribute to the onset of
NAFLD and its progression NASH and HCC

278 C.L. Robertson et al.



NAFLD. The mechanisms responsible for this process are
not completely understood but the increased intestinal
absorption of multiple bacterial products, such as short-chain
fatty acids, lipopolysaccharide (LPS), and endotoxins are
thought to be involved [72]. Studies examining fecal
microbiota in NAFLD and NASH patients have yielded
interesting results. These studies reveal that the microbiota
of patients with NAFLD or NASH have a lower proportion
of members of the Ruminococcaceae family than healthy
subjects [73–75]. Studies have shown that NASH patients
have a higher prevalence of small intestinal bacterial over-
growth with elevated expression of TLR-4 and release of
IL-8 [76]. A link between the percentage of gram-negative
bacteroidetes and the presence of NASH has also been
identified [77]. Furthermore, an increase in the abundance of
alcohol-producing bacteria has been observed in NASH
patients suggesting that these strains in particular may play a
role in NASH pathogenesis [75]. Intestinal permeability and
bacterial overgrowth correlate with severity of steatosis, but
not fibrosis or hepatic inflammation. However, sustained
exposure to these inflammatory mediators does promote
the generation of various profibrogenic and apoptotic
factors [78].

Changes in bacterial metabolites have been associated
with obesity, and fatty liver disease. Notably, deficiency in
the metabolite choline has been implicated in the patho-
genesis of NAFLD and NASH. Diets high in fat and
cholesterol promote the formation of intestinal microbiota
that converts dietary choline into methylamines [79]. This
process results in reduced circulating plasma levels of
phosphatidylcholine. Phosphatidylcholine is required for
assembly and secretion of VLDL and without it an accu-
mulation of triglycerides is inevitably observed in hepato-
cytes [79]. Many of the complications of cirrhosis such as
hepatic encephalopathy and infections have been linked to
dysbiosis of the intestinal microbiome. Increased levels of
endotoxin, systemic inflammation, and production of bac-
terial by-products such as ammonia contribute to patho-
genesis. The products of hepatocyte injury and the cytokine
milieu combine with systemic factors to promote inflam-
mation within the liver creating a clear progression from
fatty liver disease to steatohepatitis. The identification of
pathogenic pathways linking the status of the gut to liver
function has been eye opening. It is believed that these
pathways are driven by dietary changes that could possibly
induce gut dysbiosis potentiating hepatic inflammation and
ultimately promoting hepatocarcinogenesis [77, 80, 81].

18.3.2.3 Contribution of Genetic Factors
The progression from NASH to end-stage liver disease, i.e.,
cirrhosis, and HCC is relatively infrequent. This suggests
involvement of genetics factors influencing variables such
as; hepatic innate immune function, lipid metabolism,

extracellular matrix architecture, and cellular transformation
resulting in the onset and progression of liver disease.
Genome-wide association (GWAS) and candidate-gene
studies have provided invaluable insights into the genetic
contribution to NAFLD pathogenesis. The patatin like
phospholipase 3 (PNPLA3) or adiponutrin gene was the first
bona fide NAFLD-related gene to be identified using such
methods [82, 83]. Individuals harboring the rs738409 C > G
single-nucleotide polymorphism (SNP), encoding the Ile
148Met variant protein of PNPLA3 more frequently develop
NASH [82]. The rs7384 mutation of PNPLA3 is not only
associated with NASH, but also with the severity of
necroinflammatory changes independent of metabolic fac-
tors and fibrosis [84, 85]. Subsequently, carriers of this
mutation are at a threefold higher risk for NASH and 12-fold
greater risk of HCC in comparison to noncarriers [86, 87].
The mechanisms underlying the role of PNPLA3 in liver
disease are not well understood however the expression of
the rs738409 variant is thought to interfere with lipoprotein
export shifting the balance in favor of lipogenic activity over
lipase activity, leading to hepatic fat accumulation [88–90].
Modifications of PNPLA3 remain the most verified genetic
factor in the progression of NAFLD however the contribu-
tions of other genetic factors have been described.

Of note, a multi-ancestry, population-based exome-wide
association study recently identified a nonsynonymous SNP
in the transmembrane 6 superfamily member 2 (TM6SF2)
gene producing a glutamate to lysine amino acid substitution
at residue 167 (Glu167Lys) [91]. The TM6SF2 rs58542926
SNP (c.449 C > T, p.Glu167Lys) SNP is associated with
increased hepatic triglyceride content and is highly con-
served across mammals [91]. The TM6SF2 variant encoding
p.Glu167Lys results in lowering of the levels of low-density
lipoprotein cholesterol (LDL-C), triglycerides, and alkaline
phosphatase in 3 independent populations. Carriage of the
TM6SF2 minor allele is associated with NAFLD in general
and advanced hepatic fibrosis/cirrhosis in particular and thus
with increased risk of progression to NAFLD–HCC [92].
Most convincing perhaps was the reported gene-dosage
effect, wherein the incidence of NAFLD increased with the
number of minor alleles possessed [92]. The fact that hepatic
triglyceride accumulation has not been directly linked to
hepatotoxicity indicates that more research is required to
determine the exact mechanism through which TM6SF2
drives NAFLD-associated hepatic fibrosis.

18.4 Diagnosis

Non alcoholic fatty liver disease is largely asymptomatic
particularly in its early stages. In some instances, patients
report nonspecific symptoms such as fatigue and fewer still,
report pain in the right upper quadrant. Currently, there are
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no defined symptoms of NAFLD or physical examination
findings which clearly indicate the presence of the disease
[93]. Abnormal liver function tests or incidental observa-
tions in patients undergoing thoracic and abdominal imaging
for reasons other than liver symptoms, often lead to the
diagnosis of NAFLD. Three distinct parameters are impor-
tant for the diagnosis of NAFLD. These factors include
evidence of hepatic steatosis by imaging or histology and the
absence of competing etiologies for hepatic steatosis or
significant alcohol consumption [13]. There are some clini-
cal indicators that have been associated with NAFLD and
associated disease. For instance, acanthosis nigricans
resulting from insulin resistance is often associated with
advanced disease, and the presence of a dorso-cervical hump
has been linked to nonalcoholic steatohepatitis in some
patients [93, 94]. Clinical manifestations including palmar
erythema, spider angiomata, gynecomastia, or prominent
upper abdominal veins may also be observed in patients
following the onset of cirrhosis [93]. Cirrhosis is described
as a progressive disease which starts with an initial asymp-
tomatic or compensated phase and progresses to a more
advanced decompensated phase marked by portal hyper-
tension and liver dysfunction. Progression from compen-
sated cirrhosis to decompensated cirrhosis is associated with
a host of pathologies, such as ascites, jaundice, splenome-
galy, and asterixis [93].

18.4.1 Liver Biopsy

Liver biopsy remains the gold standard for identifying
patients with NAFLD as it provides a definitive assessment
of hepatic steatosis, hepatocellular injury, inflammation, and
fibrosis. Numerous limitations are associated with biopsy
including patient discomfort, procedure-related complica-
tions, sample variability, and observer variability [95].
Despite these limitations, liver biopsy remains the most
consistent method of diagnosing and staging NASH. Iden-
tification of nonalcoholic steatohepatitis on an initial liver
biopsy is a warning sign for the development of liver fibrosis
[96]. The progression of liver fibrosis is a key predictor of
all-cause and disease-specific mortality in NASH patients
[51, 97]. Therefore, early diagnosis of nonalcoholic steato-
hepatitis and cirrhosis is essential from a treatment and
management standpoint. Despite its clear utility, performing
liver biopsy on every patient suspected of NAFLD would be
impractical and it is thus essential to identify accurate and
specific noninvasive methods to diagnose NASH. Several
methods currently in use are described in the following
section.

18.4.2 Transaminases

While mildly elevated transaminases [alanine aminotrans-
ferase (ALT) > aspartate transaminase (AST)] and/or
gamma-glutamyltransferase (GGT) may be observed in
some patients with NAFLD, over 50 % of patients with
advanced disease have normal liver enzyme levels [98, 99].
Additionally, ALT is an unreliable predictor of both steatosis
and fibrosis in individual patients [98, 100].

18.4.3 Imaging

Recent innovations in imaging technology have shown
potential to change how we both diagnose and monitor liver
fat content. Ultrasound is an example of a low-cost, low-risk,
and widely available diagnostic tool that may be utilized for
qualitative assessment of hepatic disease. In the past, ultra-
sound was associated with numerous diagnostic limitations
including an inability to distinguish NASH from NAFL and
poor sensitivity for steatosis below 30 % [101]. A newer
quantitative ultrasound technology (QUS) has recently been
developed to better characterize tissue microstructure by
measuring fundamental acoustic parameters. Improvements
on the previous ultrasound technique include the ability to
more accurately measure liver fat even in the morbidly
obese, and to the ability to identify the presence of steato-
hepatitis [102]. Potential issues are that results are operator
dependent and interpreted qualitatively, therefore open to
variability and subjectivity. With continued validation, this
method shows promise as a noninvasive method to quantify
hepatic steatosis. More studies are required to determine the
efficacy of this method in assessing advanced liver disease.

Another imaging modality that can be used to detect
hepatic fat is magnetic resonance imaging (MRI), including
magnetic resonance spectroscopy. Recent data suggest that
magnetic resonance imaging and MRS may be a superior to
histological evaluation in assessing longitudinal changes in
liver fat content. This method detects the presence of hepatic
fat greater than 5.56 % with close to 100 % accuracy [103].
And numerous studies evaluating the diagnostic perfor-
mance of magnetic resonance MRI modalities for assessing
hepatic steatosis and tracking effects of treatments in patients
with NAFLD have shown great promise [104, 105].
Unfortunately, though this is both a sensitive and specific
method of quantifying liver fat and steatosis, it is also
expensive and not widely available. Efforts to increase the
availability of MRI modalities will no doubt move us closer
to the development of noninvasive determination of NAFLD
that identifies the population at risk of worse outcomes and
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disease progression, tracks disease progression, and assess
response to therapy.

18.4.4 Predictive Models

Several low-cost, noninvasive predictive panels have been
developed for the assessment of fibrosis in chronic liver
disease. The NAFLD fibrosis (NFS) and fibrosis score 4
(FIB-4) stand out as the most commonly used [106–108].
The FIB-4 score scoring system was originally developed as
a predictive measure for advanced fibrosis in HIV patients
also infected with hepatitis C [109]. Using this method age,
AST, platelet counts, and ALT are evaluated and assessed as
predictors of fibrosis. The NAFLD fibrosis score is consid-
ered the most validated and best performing predictive panel
for evaluation of liver-related outcomes. When calculating
the NFS, metabolic risk factors such as age, body mass
index, and fasting glucose are evaluated alongside readily
available clinical data including platelet count, albumin
level, and the ratio of AST to ALT. Thus, NFS may offer a
more comprehensive evaluation to identify patients at risk
for severe disease. Using the NFS model, advanced fibrosis
can be excluded in patients with a score below the low
cut-off score of −1.455 (with 75 % sensitivity and 58 %
specificity). Conversely, an NFS above 0.676 is an indicator
of the presence of advanced fibrosis (with 33 % sensitivity
and 98 % specificity) [110–112]. Thus, NFS may be utilized
as a low-cost, noninvasive panel to aid in the identification
of patients with liver disease who may benefit most from
liver biopsy.

18.4.5 Biomarkers of NAFLD

In recent years, a number of biomarkers have been identified
which are associated with NASH, such as cytokeratin-18
(CK-18) and terminal peptide of procollagen III (PIIINP).
However, no single broadly validated biomarker has been
found which can accurately and consistently diagnose
NASH.

MicroRNAs (miRNA) are known to play an essential role
in a variety of biological processes and have also been
implicated in the progression of NAFLD [113]. A number of
studies suggest that NAFLD has a distinguishing circulating
miRNA profile that may be exploited for diagnostic pur-
poses. MicroRNA-122 is perhaps the most well-
characterized liver-associated miRNA as it is the most
abundant miRNA found in the liver [114]. Closely linked to
metabolic homeostasis, miR-122 has been shown to indi-
rectly modulate the expression of genes involved in hepatic
cholesterol and lipid metabolism [115–118]. Studies indicate
that serum levels of miR-122 along with miRNAs 192, 375,

and 19 were significantly elevated in patients with NAFLD
as compared to healthy controls [119–122]. Furthermore,
serum levels of miR-122 were shown to successfully dis-
tinguish NASH from simple steatosis and to identify liver
fibrosis [122]. Based on these studies, circulating miR-122
might be useful as a biomarker for diagnosing fatty liver
disease and monitoring the progression of histological
changes, during therapeutic intervention.

18.5 Treatment

18.5.1 Lifestyle Intervention

18.5.1.1 Diet
Individuals with NAFLD often have a diet high in saturated
fat and cholesterol and may partake in overconsumption
leading to energy imbalance and an overweight or obese
phenotype. Studies indicate that even relatively moderate
weight loss (as low as 10 % of body weight) can improve
hepatic insulin resistance and significantly reduce liver fat
accumulation [123, 124]. In addition, massive weight loss
following bariatric surgery can induce the disappearance of
NASH and the partial reversal of cirrhosis in the liver [16,
125, 126]. Thus, it is clear that dietary intervention is an
important component in treating NAFLD patients. Caloric
restriction drives weight loss, visceral adiposity, subcuta-
neous fat, and liver fat reduction. Thus, reducing calories
appears to be the most significant component of dietary
intervention [127]. Also of importance to NAFLD progres-
sion, is the quality of dietary fat, as evidenced by the ben-
eficial effects of mono and polyunsaturated fatty acids on
fatty liver disease [128, 129]. As such, the Mediterranean
diet which is rich in mono and polyunsaturated fatty acids
has proven effective in reducing liver fat and improving
hepatic insulin sensitivity even in the absence of significant
weight loss [130–132].

18.5.1.2 Exercise
It is not entirely clear if exercise exerts independent benefits
in patients with NAFLD. The benefits of exercise in
improvement of cardiovascular heath and reduction of the
risks of the metabolic syndrome are, however, widely
known. Fitness affects the response to calorie reduction;
thus, improvement of cardiorespiratory fitness may reduce
liver fat with diet-induced weight loss [133]. Resistance
exercise has been shown to reduce liver fat, improve insulin
sensitivity, and promote fatty acid oxidation in NAFLD
patients [134]. Improvement of overall fitness may improve
the resolution of NAFLD. The intensity and frequency of
exercise required to realize improvements in NAFLD is
poorly defined; thus, no specific recommendations can be
made in this area.
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18.5.2 Pharmacological Agents

18.5.2.1 Insulin Sensitizers
Insulin resistance is nearly universal in NAFLD patients and
plays an important role in its pathogenesis by inducing
peripheral lipolysis, de novo lipogenesis, and ectopic lipid
accumulation. Hence, insulin sensitizers make for an
attractive target for the treatment of NAFLD. Pioglitazone is
the most well-studied pharmacological agent used for treat-
ment of NASH and belongs to the class of drugs known as
thiazolidinediones (TZDs). TZDs upregulate adiponectin,
promote differentiation of insulin-sensitive adipocytes,
enhance fatty acid uptake in adipose tissue, shuttle nones-
terified free fatty acids toward adipocytes, and reduce ecto-
pic fat accumulation. Treatment with pioglitazone has been
shown to resolve steatohepatitis with the improvement of all
individual histological features except for fibrosis. Glita-
zones use has been associated with a number of side effects,
particularly weight gain, which is not always reversible upon
discontinuation. Pioglitizone has also been associated with
postmenopausal bone loss and instances of congestive heart
failure [135, 136].

18.5.3 Hepatoprotective Agents

18.5.3.1 Vitamin E
Vitamin E is a fat-soluble compound that is present in the
phospholipid bilayer of cell membranes, the rationale for
investigating the use of vitamin E in a NASH patient is
based on the role of oxidative stress in NASH progression.
Vitamin E is an antioxidant that prevents liver injury by
protecting against free radicals and mitochondrial toxicity
[137]. Vitamin E has shown moderate efficacy in improving
inflammation and ballooning in NASH patients [138]. While
generally considered benign, there have been reports of side
effects with long-term use of vitamin E which include
increased risks of prostate cancer and hemorrhagic stroke
[139, 140].

18.6 Conclusion

Nonalcoholic fatty liver disease has become a worldwide
heath issue. NASH-associated cirrhosis is the third most
common cause of death in NAFLD patients and is pre-
dicted to surpass alcoholic liver disease and hepatitis C
virus (HCV) as the leading indication for liver transplan-
tation in the U.S. over the next decade. Although NAFLD
patients with cirrhosis are at the highest risk of developing
hepatocellular carcinoma, we now know that HCC can
occur in NAFLD patients in the absence of cirrhosis.
Another issue of concern is the increased risk of

cardiovascular disease that has been observed in NAFLD
patients. Cardiovascular disease is now the leading cause of
death in NAFLD patients followed by cancer of the liver.
Early detection of patients with nonalcoholic steatohepatitis
is of paramount importance if we are to improve patient
outcomes through interventional treatment. To that end
improvements in diagnostic modalities and drug develop-
ment are essential.
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19.1 Introduction

Hepatocellular carcinoma is the most common cause of
primary liver cancer accounting for more than 80 % of cases
[1, 2]. It is only second in frequency to all forms of meta-
static cancers to the liver combined (colon, stomach, pan-
creas, breast, lung) as a cause of liver cancer. More than
1 million deaths each year occur as a result of hepatocellular
carcinoma, and it accounts for one-third of all the
cancer-related deaths occurring annually worldwide [3, 4].
The ratio of hepatocellular cancer deaths occurring annually
to the incidence of new hepatocellular carcinomas in the
population ranges between 0.85 and 0.90 with increasing
tendency in some areas of the world [5, 6] and documents
the severity of the disease process once identified [7, 8].

The risk factors for hepatocellular carcinoma vary geo-
graphically and include cirrhosis of any cause, chronic
hepatitis (especially HBV and HCV [9–11]), toxin induced
liver diseases, alcohol and aflatoxin playing the mayor role
[12, 13]. While it was not mentioned as possible cause of
hepatocellular carcinoma no longer than 10 years ago [14]
metabolic liver disease [15] is an increasingly important
group to recognize and, as a result, to screen for the devel-
opment of hepatocellular carcinoma. Furthermore, drugs and
other toxins such as pesticides [16] could also lead to
development of liver cancer.
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If identified early, liver transplantation cures not only the
hepatic cancer but also the metabolic abnormality and the
cirrhosis present in these cases.

Other risk factors for hepatocellular carcinoma include
male gender, increasing age at the time of HBV or HCV
infection, obesity, diabetes mellitus, nonalcoholic fatty liver
disease, especially nonalcoholic steatohepatitis, and chronic
cholestasis [12, 17]. Each of these factors can coexist in an
individual with a metabolic liver disease and affect the dis-
ease outcome and potentially enhance the risk for hepatic
cancer [12]. Despite the impressive evidence for the pre-
vention and control of HBV infection occurring as a con-
sequence of childhood vaccination programs and current
antiviral therapies, the incidence of hepatocellular, at least in
the western world, is increasing rather than decreasing (2–5).
This increase in hepatocellular carcinoma cancer is primarily
due to the increase in cases associated with HCV infection,
nonalcoholic steatohepatitis, cryptogenic cirrhosis, obesity,
and diabetes mellitus, all of which except HCV are com-
ponents of the metabolic syndrome [18, 19]. It is interesting
to consider the potential role of being heterozygous for
genes associated with genetic hemochromatosis, alpha 1
antitrypsin deficiency, methylenetetrahydrofolate reduction
deficiency, and other genetic disease in rare cases with a
newly recognized hepatocellular carcinoma. The vast
majority of such cases manifest biochemical evidence of
insulin resistance which is characterized by an increased
insulin level relative to the plasma glucose level or by an
increased glucose level together with normal or even
increased serum insulin levels. It may well be that insulin
resistance per se may be the underlying factor responsible
for the development of hepatocellular carcinoma in most of
these cases of hepatocellular cancer. Certainly, growth fac-
tors including insulin are recognized as playing at least some
role in the pathogenic mechanisms culminating in the
development of hepatocellular carcinoma [20]. On the other
hand, increased serum insulin levels without the corre-
sponding increase of the c-peptide serum concentration can
be the result of the metabolic changes taking place within the
liver [21].

Hepatocellular carcinomas are heterogeneous in their
morphology, growth rates, and potential for metastasis. The
possible precursor(s) of the different phenotypes are still
unknown. These differences may arise in part as a result of
the many different cells from which a given hepatocellular
carcinoma may occur. These include first mature (or divid-
ing) hepatocytes, oval cells (periductular cells) (stem cells
found adjacent to the ducts of Hering), and potentially stem
cells of bone marrow origin present within the liver. More-
over, it is possible that in individuals with multifocal or
asynchronous hepatocellular tumors each tumor may have a
different cellular origin which can account for their different
morphogenesis and biologic characteristics.

Essentially, all hepatic cancers arise as a consequence of a
chromosomal aberration that can arise during cellular pro-
liferation, when cell damage and death have occurred. The
specific disruption involved in any particular case or time
can vary depending on the presence of one or more epige-
netic or genetic abnormalities that are present and disrupt the
normal regeneration process.

Under normal conditions, the cell cycle is tightly regu-
lated by various phosphorylating enzymes and is promoted
by a variety of proteins termed cyclins which when com-
bined with a phosphorylated kinase form a complete cat-
alytic complex that controls cellular regeneration at various
points in the cell cycle. Other proteins regulate programmed
cell death (apoptosis) which limits cellular regeneration and
proliferation.

Inflammation induces cellular injury on one side and
cytokine production and secretion that can result in an
enhancement of cellular regeneration on the other side.
Moreover, normal control mechanisms that regulate the cell
cycle [19] may be disturbed by repeated inflammatory flairs.
Regardless of the specific etiology, hepatocellular carcinoma
only develops when the control mechanisms regulating cell
cycling and renewal or death are disrupted. These disruptions
are multiple and include both epigenetic and genetic effects.
The various epigenetic effects that can lead to an increased
transcription of an oncogene or its promotion are either an
increased transcription or a reduced degradation of a cyclin,
DNA, RNA, or regulatory protein as a consequence of either
hyper- or hypomethylation of DNA or RNA and free-radical
injury (peroxidation) as a consequence of a reactive oxygen
(ROS) or nitrosyl (RNS) species that occurs as a consequence
of oxidative stress. Ultimately, epigenetic processes lead to
genetic defects that result in cell cycle disruption [17].

The principal mechanism by which a nonviral metabolic
liver disease progresses to cirrhosis and ultimately hepato-
cellular carcinoma is a result of oxidative stress induced as a
result of cell injury, inflammation, followed by disturbed
cellular regeneration and proliferation or reduced apoptosis.

19.2 Oxidative Stress

ROS and RNS are unstable short-lived molecules generated
by oxygen-utilizing cells. They are produced in either the
mitochondria or the endoplasmic reticulum as a consequence
of stress along an oxygen-utilizing metabolic pathway which
contains an electron transport chain or as a result of meta-
bolism involving either a cytochrome P450 enzyme system,
xanthine oxidase, nitrous oxide synthesis, lipoxygenase,
cyclooxygenase, or NADPH oxidase. Mitochondria, because
of their role in energy (ATP) production, are a major source
of ROS which are generated at two sites within mitochon-
dria: complex I (NADH/ubiquinone oxidoreductase) and
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complex III (ubiquinone/cytochrome oxidoreductase). Of
these two sites, the more important is complex I where
molecular oxygen (O2) is converted to singlet oxygen (O−)
by the mitochondria P450 cytochrome system in the liver,
kidney, and to a lesser degree muscle resulting in the gen-
eration of ROS when stressed by either an excessive meta-
bolic load (substrate requiring oxidation by mitochondria) or
as a result of a reduced antioxidant (particularly glutathione)
supply within mitochondria. When glutathione levels are
inadequate, the catabolism of hydrogen peroxide (H2O2)
within mitochondria is reduced as mitochondria do not
contain catalase, the enzyme principally responsible for
metabolizing H2O2. As a result, the unmetabolized H2O2

reacts with ferrous (Fe+2) to produce the highly toxic
hydroxyl (OH−) radical. Singlet oxygen (O−) can react with
ROS and RNS activating cell-signaling pathways associated
with kinase-linked receptors resulting in phosphorylation of
growth-regulating pathways [22]. They also oxidatively alter
proteins, DNA, RNA, and lipids which can alter enzyme
activity, alter both transcription and translation mechanisms,
induce DNA strand breaks, and alter lipid structure and
function. Each of these mechanisms disrupts normal cellular
function. Moreover, each of these disruptions of critical
cellular molecular mechanisms occurs not just in isolation in
one cell but rather all together under conditions of oxidative
stress amplifying the resultant cellular disruption that occurs.
Under such conditions “pathological polyploidization” may
occur; the number of hepatocytes with a single polyploid
nucleus may then increase dramatically [23].

The transition metals (iron and copper) which are abundant
in liver cells accelerate the generation of ROS and RNS and
activate the conversion of lipid peroxides into alkoxyl- and
peroxyl-radicals which are highly reactive and have a longer
half-life than the primary ROS and RNS. These same metals
accumulate excessively in many liver disease conditions
(hemochromatosis, Wilson’s disease, alcoholic liver disease,
nonalcoholic fatty liver disease, and nonalcoholic
steatonecrosis, and any disease process associated with
chronic cholestasis) and can contribute, at least in part, to the
summation of events leading to the development of hepato-
cellular carcinoma in individuals with a metabolic liver dis-
ease as it happens when continuous toxic exposure takes place
such as under continuous aflatoxin intake with the food.

19.3 Alcoholic Liver Disease
and Hepatocellular Carcinoma

Alcohol consumption is very popular around the world and
has become very problematic in younger people in many
countries around the world. It can be affirmed that in many
countries alcoholic beverages are components of diet. The
impact of the consumption of alcoholic beverages in liver

diseases can therefore only be roughly estimated. This
should be kept in mind when risk factors for liver diseases
are considered. In fact, most of the patients presenting with
viral liver diseases did not know about carrying the virus
until they became sick and of being informed that their life
style has to be modified. It also has to be considered that
quantification of consumption of alcoholic beverages is
totally dependent on the information given by the patients.
Every day experience of physician dealing with patients with
liver diseases tell us, however, that patients tend to hide the
attitude of regular intake of alcoholic beverages. Neverthe-
less, it has been published that two third of American adults
drink some alcohol [13]. While the risk of cirrhosis devel-
opment increases with a daily intake of more than 30 g/day
of alcohol, 10–40 g/day of alcohol is considered to be
compatible with the diagnosis of nonalcoholic liver disease
(NAFLD) [24]. Alcoholic liver disease is composed of a
spectrum of histological pathologies ranging from
macrovesicular steatosis (fatty liver) to alcoholic hepatitis
(fat, inflammation with polymorphonuclear leukocytes, a
characteristic sinusoidal fibrosis, and the presence of Mal-
lory bodies in ballooned hepatocytes) to alcoholic hepatitis
plus cirrhosis and hepatocellular carcinoma occurring in
cases with cirrhosis with or without alcoholic hepatitis [25].
Individuals with each of these histopathologic conditions
can be either asymptomatic or symptomatic. In general, the
liver injury tests in alcoholic liver disease are characterized
by an AST level greater than that of the ALT value. The
alkaline phosphatase levels are highly variable depending on
the severity of injury, presence of cirrhosis, and presence of
bile duct injury/destruction.

Hepatic cancer develops most frequently in those with
cirrhosis with or without associated alcoholic hepatitis.
Approximately 10–15 % of alcoholics develop cirrhosis and
HCC occurs in 15–20 % of these cases at a rate of 3–4 %
per year. However, HCC can also develop in individuals
consuming daily amounts of alcohol without apparent
development of cirrhosis.

The role of chronic hepatitis C, and to a much lesser
degree the presence of chronic hepatitis B (either evident or
occult) in the pathogenesis of primary hepatic cancer in
individuals with alcoholic liver disease, remains unclear but
may well account for many of the cases of hepatocellular
carcinoma in this population. This, however, does not negate
the role of alcohol per se in initiating various metabolic
changes that contribute to the pathogenesis of hepatic cancer
in individuals with alcoholic liver disease. The pathogenetic
mechanisms responsible for the development of primary
hepatic cancer in cases of HBV and HCV are presented in
other chapters and the reader is referred to those chapters for
details. These mechanisms are likely to be additive and
potentially synergistic to those due to alcohol abuse occur-
ring in cases with alcoholic cirrhosis alone. Alcohol
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consumption may be responsible for a part of liver cancers
which develop in patients who eliminated the HCV after
successful treatment [26].

As a consequence of ethanol and acetaldehyde oxidation,
an oxidative stress is induced in the liver which, if excessive
and/or continuous as is the case in alcoholic individuals,
results in mitochondrial and endoplasmic reticular injury,
resulting in reduced ATP production and cell as well as
organelle membrane disruption. These cellular and organelle
changes occur in part as a consequence of membrane
phospholipids and protein oxidation manifested as lipid
peroxidation, protein carbonyl formation, the production of
1-hydroxyethanol radical, and other alkyl-free radicals
[27, 28].

Alcohol is not a carcinogen per se but acts as carcinogenic
promoter as a consequence of the oxidative stress it induces
and the downstream effects of the oxidative stress on cellular
lipids, proteins, signaling pathways, DNA and RNA, and
subsequent transcription and translation mechanisms [29].
Alcohol-induced reductions in tissue folate levels enhance
these effects by impairing transmethylation pathways [30].
A reduction in the level of cellular pyridoxaldol 5-phosphate
induced by alcohol abuse is also important [31, 32]. Each of
these effects results in enhanced DNA hypomethylation and
upregulated gene expression particularly of proto-oncogenes
and subsequently activated oncogenes [33–36].

DNA methylation occurs predominantly at the fifth car-
bon atom of cytosine–guanine pairings [37]. This dinu-
cleotide pairing frequently occurs within the promoter region
of genes. Hypermethylation silences gene expression while
hypomethylation which can occur as a result of alcohol
abuse and its effect on folate, pyridoxine, and methionine
metabolism is enhanced or unregulated gene expression.
This enhanced gene expression and/or enhanced promoter
activity enables enhanced binding of transcription factors to
DNA and ultimately increased gene transcription [38, 39].

Methionine adenosyltransferase (MAT) is the enzyme
responsible for the synthesis of S-adenosyl methionine
(SAMe). SAMe is the principal biological methyl donor and
a precursor of aminopropyl groups utilized in polyamine
synthesis and eventually DNA and RNA [40]. As such, it is
an active participant in biochemical reactions essential for
normal cellular proliferation. SAMe is also a precursor of
glutathione, a major tissue antioxidant. MAT exists in two
isoforms—MAT-1 and MAT-2 [41, 42]. MAT-1 is expressed
primarily in the liver of adults while MAT-2 is expressed
predominately in fetal liver. MAT-2 expression is enhanced
in alcoholic liver disease and in human hepatoma and is
associated with a reduction in MAT-1 [43, 44]. This
enhanced MAT-2 expression is due to hypomethylation of
the cytosine–guanine dinucleotide pair present in the MAT-2
promoter. This same promoter region has binding sites for
heat-shock transcription factor, a STAT (signal transducer

and activator of transcription), c-Myb, v-Myb, and GATA
consensus binding sites, all of which enhance MAT-2
expression and upregulation of cellular proliferation [45,
46]. As a result of the different kinetic characteristics of
MAT-1 and MAT-2, liver cells rich in MAT-2, have an
overall greater MAT activity at physiologic concentrations of
methionine and enhanced proliferative activity, critical fac-
tors in the progression from a dysplastic to a neoplastic cell
and ultimately the pathway to hepatocarcinogenesis [47, 48].

Each of these consequences of alcohol abuse (folate and
B6 deficiency, oxidative stress, MAT-2 induction, and many
as-yet unrecognized adverse cellular events of alcohol abuse
occurring in a cirrhotic) contributes to the pathogenesis of
hepatocellular carcinoma in the alcoholic cirrhotic. As in the
case of the synergism between alcohol and viruses, syner-
gism can take place between alcohol and other substances
contained in alcoholic beverages or alcohol and toxins like
aflatoxin.

19.4 Nonalcoholic Fatty Liver Disease
(NAFLD), Nonalcoholic
Steatonecrosis (NASH)
and Heptocellular Carcinoma
(HCC)

NASH was described by Ludwig and associates in 1980
[49]. In this initial report, the presence of obesity and type II
diabetes mellitus as frequent comorbid conditions was rec-
ognized. Subsequently, the entire spectrum of NAFLD was
recognized to include simple fatty liver, NASH, cirrhosis,
and HCC. NAFLD per se is believed to be an innocuous
health problem without sequelae, albeit an important and
possibly the earliest clinical manifestation of the metabolic
syndrome. As a result of the increasing prevalence of obesity
over the past two decades, NAFLD has become recognized
as the most frequently recognized clinical hepatic disease in
the western world being present in up to 20 % of the adult
population [50]. NAFLD can progress to NASH which is not
an innocuous process but has the potential to progress to
cirrhosis with NASH or cryptogenic cirrhosis [51], both of
which can develop HCC [52] without any residual histologic
evidence of NAFLD. NASH is reported to be present in 3 %
of the adult population in the United States, a rate twice than
that of chronic hepatitis C (HCV) [53]. As a result, NAFLD
and NASH are the two most common hepatic diseases
occurring in adults in the United States and Western Europe.
Most disturbing is the increased recognition of both NAFLD
and NASH in children and adolescents [54, 55].

Whether this increase in NAFLD and NASH in children
will lead to an earlier age of onset of hepatoma in the adult
population in the future remains to be determined. The
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development of NASH in adults is clearly associated with an
increased risk of hepatocellular cancer [56, 57].

The metabolic syndrome is characterized by the presence
of three or more of the following disease components:
NAFLD, type II diabetes mellitus, hypertension, hyperlipi-
demia, especially hypertriglyceridemia, obesity, coronary
artery disease, hyperuricacidemia, sleep apnea, and poly-
cystic ovarian disease [58].Typically, more than three of
these disease processes exist in an individual with the
metabolic syndrome. Obesity occurs in 30–100 % of cases;
type II diabetes mellitus occurs in 10–75 % of cases; and
hyperlipidemia in 2–50 % in both adults and children with
the syndrome.

Coronary artery disease, hypertension, hyperuri-
cacidemia, and polycystic ovarian disease can occur in
children and adolescents with NAFLD/NASH but do so
considerably less frequently than in adults. It should be
noted that NAFLD and NASH can occur in lean individuals,
with 3 % of documented cases occurring in this population
[59]. The obesity in individuals with the metabolic syndrome
and NAFLD and/or NASH is typically truncal in character.

The recognition of the association between NASH and
HCC appears to account in large measure for the observed
increase in HCC rates in the United States particularly if
cases with HCV disease and HCC are excluded from the
calculation. Not only is NASH independently associated
with HCC but it appears to enhance the risk of HCC
development in cases of HCV associated cirrhosis [60, 61].
The rate at which HCC develops in NASH is not known but
can be expected to parallel that seen in alcoholic liver dis-
eases. The pathophysiologic mechanisms that account for
the development of NAFLD and its progression to NASH as
well as the downstream complications of cirrhosis and HCC
are not entirely clear but appear to be a consequence of a
putative two hit processes [62]. The first hit is most likely an
increase in hepatic fat as a consequence of hypertriglyc-
eridemia. The opposite may be the result of insulin resis-
tance. Insulin resistance is known to result in a diffuse
reduction in tyrosine phosphorylation [63, 64] and a resul-
tant disruption in cellular pathways affecting cell growth and
differentiation. Triglycerides and fatty acids in the liver
induce lipid peroxidation mechanisms as a result of an
induction of P450 2E1 and 4A; a disruption of mitochondrial
production of ATP; the induction, production, and secretion
of inflammatory cytokines (IL-6, IL-8, TNF alpha); and
enhanced lipopolysaccharide (LPS) hepato-toxicity [65–68].
Each of these events contributes to a state of considerable
oxidative stress [69]. As a result of the combination of lipid
peroxidation, the production of ROS, and reactive nitrosyl
species (RNS), a reduction in hepatic and particularly
mitochondrial antioxidants especially glutathione and ulti-
mately a loss of mitochondrial energy production manifested
by a loss of ATP production occurs. The latter event

dramatically impairs endogenous attempts at cellular injury
repair mechanisms. As a net result of this oxidative stress,
both genetic and epigenetic mechanisms that contribute to
carcinogenesis become manifested.

Importantly the risk of HCC in NASH-affected individ-
uals appears to be limited to those with cirrhosis with or
without concurrent NASH. As a result, screening for HCC is
indicated only in those with cirrhosis. In such cases, the
additional clinical findings of portal hypertension compli-
cated by splenomegaly and thrombocytopenia (<75,000/µL)
mandates surveillance for hepatic cancer and should be
repeated at 6–12 month intervals utilizing hepatic ultrasound
or triple-phase CT scanning procedures. In cases with either
iodine or an intravenous contrast allergy, an annual MRI
with an iron-containing contrast agent can be substituted for
the triple-phase CT scan.

19.5 Hemochromatosis and Wilson’s
Disease and HCC

Both iron and copper have the potential to be mutagenic as a
result of oxidative stress [70]. An abundance of DNA
adducts has been identified in the hepatic tissue of individ-
uals with hemochromatosis and Wilson’s disease [71]. DNA
damage of hepatocytes exposed to iron has been demon-
strated in vitro and most probably also occurs with copper
exposure [72–75]. Classic hemochromatosis is an autosomal
recessive disorder that occurs at a rate of 1/1000 and is
associated with the presence of abnormal alleles for HFE
expression. These are C282Y, H63D, and S65C. The latter
two alleles are very weakly associated with clinical iron
storage and hepatic disease.

About 10 % of the C282Y homozygous with serum fer-
ritin levels above 1000 µg/L develop the disease, while
those with a serum ferritin level below 1000 µg/L are at low
risk of developing hemochromatosis [76]. The low pene-
trance of the hereditary hemochromatosis phenotype
strongly suggests that other factors are crucial for the
development of the clinical disease. The synergistic effects
between increased hepatic iron storage and other co-factors,
e.g., alcohol [77, 78] have to be excluded before specific
therapy is started.

While increased mortality has been reported for hospi-
talized patients with HH homozygous, the C282Y mutation
C282Y individuals identified by population screening or
among blood donors do not show any reduction of life
expectancy. HH-patients identified in an outpatient service,
however, are younger and do not show a relevant increase of
the mortality risk as it was found to be the case for their
relatives [79]. Other causes of “hemochromatosis” include
juvenile hemochromatosis (a defect in hemojuvelin), trans-
ferrin receptor deficiency, and congenital atransferrinemia.
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Wilson’s disease is also an autosomal recessive disorder that
occurs at a rate of 1/30,000. It is due to a defective gene for a
P-type ATPase. More than 100 different mutations for this
disorder have been identified. The disease can present as an
acute hemolytic process with fulminate liver failure, chronic
hepatitis, cirrhosis with portal hypertension, or as a
psychiatric/neurologic disorder [80].

As noted in an earlier section of this chapter, mitochon-
drial production of ROS and RNS occurring as a conse-
quence of oxidative stress represents a prime source of
reactive species in the liver of individuals with either
hemochromatosis or Wilson’s disease. In both diseases,
biochemical (functional) and histological disruption of
mitochondria can be demonstrated and contribute to an
increased rate of apoptosis, enhanced cellular replication,
and unbalance in all cycle functioning.

In Europeans with hemochromatosis, an increased fre-
quency of the p53 tumor suppressor mutation has been
reported and contributes to reduced hepatic DNA repair,
further enhancing the development for a hepatic cancer [81,
82].

Hepatocellular carcinoma is reported in 7.5–30 % of
cases of hemochromatosis [83–86]. Almost all the cases
have been reported in cirrhotics but at least two cases have
been reported in noncirrhotics [87]. Age > 55, the presence
of concomitant diabetes mellitus, HbsAg, and alcohol abuse
each increases the risk of cirrhosis and hepatocellular car-
cinoma in individuals with hemochromatosis. Iron reduction
therapy was not been associated with a reduced risk of
hepatocellular carcinoma in cirrhotics. Hepatocellular car-
cinoma was found to occur in cirrhotic livers denied of iron
at the time of autopsy. Effective iron reduction therapy
prevents cirrhosis and therefore also reduces the risk of HCC
in individuals with hemochromatosis and most certainly
contributes to the lower risk of HCC reported in more recent
large cohorts of individuals with hemochromatosis [84, 85,
87].

The development of diabetes mellitus in individuals with
hemochromatosis and the observation of macrovascular fat
and hyperglycogenation in individuals with Wilson’s disease
suggest that many, if not all, of the mechanisms that con-
tribute to HCC in individuals with NASH may also be
contributory mechanisms to the development of hepatocar-
cinogenesis in both hemochromatosis and Wilson’s disease
[72–87].

19.6 Aflatoxin-Associated HCC

Aflatoxin ingestion is high in areas of Southeast Asia and
sub-Saharan Africa where grains and rice are a primary food
source. The same is the case in China. These same areas
typically store grains for prolonged periods and as a result

the grain often becomes contaminated with fungi that pro-
duce aflatoxins. These same geographic regions have high
rates of HCC wherein a specific p53 mutation (624 gt) is
found [88].

Aflatoxin is metabolized to a potential mutagenic inter-
mediate, aflatoxin 8, 9-epoxide, which is normally detoxified
by microsomal peroxide hydrolyses and glutathione
S-transferase [88]. Failure to detoxify this mutagenic inter-
mediate has been known to be associated with the identical
p53 mutation found in individuals with HCC within these
same geographic areas.

Moreover, individuals in these geographic regions have
an increased rate of inherited isoforms of both microsomal
peroxide hydrolyses and glutathione S-transferase with
either reduced or no activity of these two enzymes [88].

Finally, it needs to be pointed out that these same geo-
graphic areas have very high rates of HBV infection. Thus,
an interaction between the mechanisms leading to hepato-
carcinogenesis in individuals with HBV infection described
elsewhere in this textbook and those reported for p53 inac-
tivation by aflatoxin and its metabolite may contribute to the
increased development of HCC in these regions of the world.

19.7 Alpha 1 Antitrypsin Deficiency
and HCC

Alpha 1 antitrypsin deficiency is an autosomal recessive
disorder resulting from a single gene defect wherein a
defective gene, with either a Z, S, F, or a null allele, occurs
in either a homozygous or a compound heterozygous state
resulting in reduced plasma serine protease activity. As a
result, circulating levels of the serine protease, alpha 1
antitrypsin protein, are reduced to 15–60 % of normal [89]
and the protein accumulates in the endoplasmic reticulum of
the liver [90, 91]. In addition, mitochondria dysfunction and
autophagy occur and contribute to the overall hepatic dys-
function and resultant disease progression [92]. The under-
lying pathophysiology is that of an abnormal folding of the
protein and its subsequent accumulation in the endoplasmic
reticulum that induces an oxidative stress within both the
endoplasmic reticulum and mitochondria. The oxidative
stress reaction appears to be a consequence of activation of
NF-kB, endoplasmic reticular caspase B cell receptor-
associated protein 31, and organelle autophagy.

Most clinical cases of alpha 1 antitrypsin deficiency occur
in childhood and are manifested as either a transient acute
liver failure or a progressive hepatitis resulting in cirrhosis. It
is also seen in adults with late onset of portal hypertension
and hepatic synthetic dysfunction [93–98].

Hepatocellular carcinoma is common in adults with alpha
1 antitrypsin deficiency after age 50 where it occurs in 31–
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67 % of all cases having cirrhosis with evidence of overt
portal hypertension.

More prevalent than homozygous alpha 1 antitrypsin
deficiency is the occurrence of the heterozygous state with
either a single Z, S, or F allele and a normal allele. This
situation is not directly associated with liver disease but
appears to act as a potentiating factor for liver disease and
liver disease progression as well as HCC when it occurs in
association with any of a number of other liver disease
processes such as HBV, HCV, alcohol, and NASH.

The combination of these various other hepatocarcino-
genic mechanisms in patients with alpha 1 antitrypsin defi-
ciency may act together and lead to the development a
hepatic cancer. As is the case with NAFLD, hemochro-
matosis, and Wilson’s disease, HCC only occurs in those
cases that are cirrhotic.

Thus, screening and surveillance for HCC need not be
instituted until clinical evidence of cirrhosis is present.

19.8 Familial Intrahepatic Cholestasis

Each of these diseases is a result of an autosomal recessive
disorder resulting in defective hepatocyte canalicular mem-
brane transport.

(A) Progressive familial intrahepatic cholestasis type I was
originally described by Byler and has been termed
Byler’s disease as a result [99]. It is a mutation in the
FIC-1 gene (ATP8B1) and results in a spectrum of liver
diseases ranging from a benign condition with inter-
mittent pruritus with or without jaundice termed benign
recurrent intrahepatic cholestasis (BRIC) to severe
intractable pruritus, jaundice, and liver failure.
Genotype/phenotype correlations have documented
more severe mutations in individuals manifesting the
PFIC-1 phenotype syndrome than those manifesting the
BRIC phenotype, which is characterized by more
missense mutations [100]. With advanced cholestasis
HCC can occur in these cases.

(B) Bile salt export protein (BSEP) deficiency is a result of
an autosomal recessive disorder in bile salt secretion
due to a defective bile salt export protein which is liver
specific unlike that occurring in PFIC-1 [101]. Specif-
ically, the disease is due to a mutation in an adenosine
triphosphate-binding cassette transporter gene
(ABCB11), the principal canalicular transporter of bile
acids into bile. Disease severity varies inversely as a
function of the degree of BSEP expression. In severe
cases, the disorder is termed PFIC-2 and in less severe
cases it is termed BRIC-2. Cases of HCC have been
reported in the severe forms of BSEP deficiency [102].

(C) Multidrug resistance-3 (MDR-3) deficiency or PFIC-3
is a consequence of a mutant class III multidrug
resistance p-glycoprotein identified as MDR-3
(ABCB4) which is responsible for canalicular phos-
pholipid transport [103]. Its clinical manifestation is
highly variable with clinical onset of disease occurring
between ages 1 month to 20 or more years.

Unlike the proceeding two conditions that have low
levels of gamma-glutamyl transpeptidase despite cholestasis,
this disorder is characterized by an elevated gamma-
glutamyl transpeptidase level. Hepatic cancer can occur in
this disorder but its frequency is much less than in the other
two forms of familial cholestasis.

19.9 Bile Acid Synthetic Disorders
and Hepatocellular Carcinoma

Nine distinct genetic disorders of bile acid synthesis have
been identified and characterized clinically [104]. All are
inherited as an autosomal recessive disorder. They occur as a
result of either a specific enzyme deficiency that is unique
for normal bile acid synthesis or a disruption in peroxisomal
function.

Those due to a defect in bile acid synthesis can be treated
medically, but if unrecognized or untreated can progress to
cirrhosis and liver failure [105]. Liver cancer can occur in
these cases but is unusual as liver failure leads to an early
death in untreated cases, and autopsies which are likely to
identify HCC have rarely been performed in these cases.

The hydrophobic bile acids that accumulate as a result of
cholestasis of any cause are known to enhance apoptosis by
activating caspases and disrupting the balance between cell
cycle renewal and apoptosis. Bile acids also enhance
mitogen-activated protein kinase (MAPK) activation
dependent on epidermal growth factor receptor activation
which enhances cellular regeneration/proliferation mecha-
nisms. The net effect of these two different bile acid-induced
mechanisms in individuals with metabolic disease, particu-
larly those metabolic diseases with cholestasis, positively
affects cell cycle regulation, enhancing cell proliferation and
the opportunity for the development of a hepatocellular
carcinoma. Both macrophages and neutrophils present in
inflammatory tissue can produce ROS and have a cytosolic
myeloperoxidase that produces hydrochloride, a powerful
oxidant. These cells accumulate within the liver of individ-
uals with various hepatic diseases including essentially every
metabolic liver disease and contribute to the overall oxida-
tive stress experienced by the liver.

No therapy exists for those with defective peroxisomal
dysfunction. The liver disease in this subset of cases is only
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a part of the overall disease process where in the manifes-
tations occur and involve the nervous system, adrenal
glands, as well as the liver.

19.10 Defects in Carbohydrate Metabolism

19.10.1 Galactosemia

This disorder is characterized by a deficiency of
galactose-1-phosphate uridyl transferase. Several different
alleles for this disorder have been identified but most cases
are due to a single common mutation (Q188R) [106]. The
enzymatic defect blocks the metabolism of galactose-1-
phosphate and causes hemolysis, jaundice, liver disease,
lactic acidosis, renal tubular acidosis, failure to thrive, hep-
atosplenomegaly, cataracts, and Escherichia coli sepsis
particularly in neonates. A single report of HCC in a child
with this disorder, who had a transplant, has been be treated
medically, and if treated appropriately with a galactose-free
diet clinical liver disease should not occur [107].

19.10.2 Hepatic Glycogen Storage Disease

Five different hepatic glycogen storage disorders have been
characterized and specifically identified. These are glycogen
storage diseases type I, III, IV, VI, and IX. The latter two
tend to be mild while the first three, types I, III, and IV, are
progressive and can be severe leading to a requirement for
liver transplantation [108]. Hepatic adenomas and cancer
have been reported in types I, III, and IV [108–112]. Tumor
detection in each disorder is dependent on imaging
procedures.

(i) Glycogen Storage Disease I (GSD-I) is an autosomal
recessive disorder with a prevalence of 1/20,000–
1/225,000. Glucose 6-phosphate deficiency charac-
terizes GSD-I. The enzyme is expressed on the inner
surface of the endoplasmic reticulum. Two distinct
enzymatic defects account for this disease. A defi-
ciency of the catalytic compound of the enzyme
produces GSD-Ia while a deficiency of the transporter
component is responsible for GSD-Ib. The metabolic
consequences of the two are identical with the
exception that neutropenia occurs with GSD-Ib.
Molecular genetic studies are used currently to make
the diagnosis and have replaced the older enzymatic
activity assays. It is important to note that the latter
method of diagnosis can result in a misdiagnosis
(failure to identify) of GSD-Ib as a result of using
frozen tissue that enables the catalytic activity of the

endoplasmic reticulum to be assayed and detected
resulting in a false normal result.
Chronic liver disease does not occur in cases of
GSD-I but poor metabolic control can result in the
development of hepatic adenomas that occasionally
degenerate into HCC.
Liver transplantation has been used to treat GSD-I
with poor metabolic control with medical measures or
as a result of the development of either a hepatic
adenoma or a HCC.

(ii) Glycogen Storage Disease-III (GSD-III)
Defective glycogen debrancher enzyme characterizes
GSD-III. It tends to be milder than type I but also
involves muscle and in adults can be manifested with
either a severe skeletal myopathy or a cardiomyopathy.
It is an autosomal recessive disorder with a prevalence
of 1/20,000–25,000. As was the case with GSD-I, two
forms of GSD-III occur. GSD type A involves muscle
and liver and represents 85 % of the cases. GSD type B
accounts for only 15 % of cases and involves only the
liver.
Cirrhosis can develop in GSD-III unlike type I and liver
tumors have been reported in cases with advanced
fibrotic liver disease.

(iii) Glycogen Storage Disease IV (GSD-IV)
GSD-IV is an autosomal recessive disorder caused by
a deficiency of the glycogen branching enzyme
occurring at a rate of 1/20,000–25,000 and results in
the accumulation of unbranched glycogen in the liver,
heart, muscle, skin, intestines, and nervous systems
(both central and peripheral). It typically presents as
infantile cirrhosis. HCC has been reported in these
cases [110–112].

19.11 Tyrosinemia Type I

Tyrosinemia type I or hepatorenal tyrosinemia is an auto-
somal recessive disorder due to a defect in fumarylacetoac-
etate hydrolase which results in an accumulation of
fumarylacetoacetate and maleylacetoacetate [113]. It has a
prevalence of 1/100,000 worldwide but occurs in specific
geographic regions at an increased rate approximately of
1/2000. It presents as acute hepatitis, acute liver failure, or
cirrhosis often with a HCC. Apoptosis of hepatocytes is a
characteristic feature of the disease [114]. The apoptotic
signal in tyrosinemia type I appears to be fumarylacetoac-
etate [114]. Both fumarylacetoacetate and malylacetoacetate
are alkylating agents that can cause DNA damage. Thus, the
development of HCC in cases of tyrosinemia type I is due to
a combination of DNA and RNA mutagenesis occurring as a

294 D.H. Van Thiel et al.



consequence of oxidative stress and nucleic acid alkylation
[115–121]. The oxidative stress is a result of the consump-
tion of antioxidants by malylacetone, fumarylacetone, and
succinylacetic acid and succinyl acetone.

The introduction of 2-(2-nitro-4-trichloromethylbenzol)-
1,3-cyclohexendrome (NTBC) which blocks tyrosine
degradation at 4-hydroxyphenylpyruvate prevents the for-
mation of the alkylating agents fumarylacetoacetate and
malylacetoacetate and has greatly altered the natural history
of the disease [122]. Unfortunately, some 10 % of cases of
tyrosinemia type I do not respond to NTBC therapy and
require liver transplantation prior to age 2 if HCC is to be
prevented.

19.12 The Porphyrias

(A) Acute intermittent porphyria (AIP) is an autoso-
mal dominant disorder resulting from a half nor-
mal level of porphobilinogen deaminase. It is
characterized by increased plasma and urinary
levels of delta amino levulinic acid and porpho-
bilinogen as well as clinical episodes of recurrent
visceral, autonomic, and central neuropathy with
abdominal pain.
It occurs at a rate of 1/20,000 and is the most
common form of porphyria.

(B) Congenital intrahepatic porphyria (CIP) is a very
rare autosomal recessive disorder characterized
by markedly reduced uroporphyrinogen III syn-
thetase. It has a highly variable age at the time of
clinical onset and is characterized by red brown
teeth, frequent bacterial infections, and a deposi-
tion of iron in the liver and spleen.

(C) Porphyria cutanea tarda (PCT) is an autosomal
dominant disorder characterized by reduced
levels of uroporphyrinogen decarboxylase. Three
different types of the disease are recognized.
These are
(1) sporadic (worldwide) occurring at a rate of

1/25,000 in the United States wherein the
liver alone is enzyme deficient

(2) familial (autosomal dominant) form that
involves enzyme deficiency in the liver and
bone marrow

(3) familial (rare autosomal recessive) form that
occurs in the liver characterized by sun
exposure-induced blistering, dermal scar-
ring, hypo- and hyper pigmentation, hir-
sutism, and an accumulation of porphyrins
in the liver, plasma, and urine. Uropor-
phyrinogen decarboxylase enzyme activity in

the liver can be reduced by iron dependent
oxidative stress induced by alcohol, HCV
infection, HIV infection, smoking, and a HFE
gene mutation.

(D) Hepatoerythropoietic porphyria (HEP) type
II PCT is due to a markedly reduced uropor-
phyrinogen decarboxylase expressed in liver and
RBC.

(E) Hereditary coproporphyria (HCP) is autosomal
dominant due to reduced activity of copropor-
phyrinogen oxidase and is characterized by signs
and symptoms similar to acute intermittent por-
phyria but with sun sensitivity manifested by
increased urinary coproporphyrins.

(F) Variegate porphyria (VP) in an autosomal domi-
nant disorder characterized by hepatic deficiency
of protoporphyrinogen oxidase (PPO).
Characterized by neurologic and cutaneous signs
and symptoms similar to AIP, it is associated with
episodes of severe hyponatremia during attacks.

(G) (H) Erythropoietic protoporphyria (EPP) is an auto-
somal dominant disorder of ferrochetalase defi-
ciency. It is the third most common form of
porphyria. Skin changes are universal with this
condition consisting of dermal lichenification and
blistering. Protoporphyrins accumulate in the
liver and induce a form of biliary cirrhosis.

HCC has been reported to occur in AIP, CIP, PCT, VP,
and HEP but not in EPP [123–131].

19.13 Cystic Fibrosis

Cystic fibrosis is an autosomal recessive disorder that results
in the development of abnormal chloride channels and an
inability to secrete thin watery secretions in the tracheo-
bronchial tree, intestine, and biliary system. It occurs almost
exclusively in Caucasians at a rate of 1/2000–3000 live
births.

The hepatic manifestations of cystic fibrosis are focal
biliary cirrhosis that can become panlobular. The hepatic
disease is characterized by cholestasis and inflammation
often complicated by episodes of recurrent biliary sepsis.

With progressive disease, toxic bile acids accumulate and
induce epigenetic alterations that result in defective cell
cycle regulation and in rare cases, hepatic cancer in a liver
with advanced biliary cirrhosis [132].

The hydrophobic bile acids that accumulate as a result of
cholestasis of any cause are known to enhance apoptosis by
activating caspases and disrupt the balance between cell cycle
situation and apoptosis. Bile acids also enhance MAPK
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activation dependent on epidermal growth factor receptor
activation enhancing cellular regeneration/proliferation
mechanisms. One net effect of these two bile acid mecha-
nisms in individuals with metabolic diseases particularly
those metabolic diseases with cholestasis can affect cell cycle
regulation enhancing the opportunity for the development of a
hepatocellular carcinoma. Both macrophages and neutrophils
can produce ROS and a myeloperoxidase that produces
hypochlorite, a powerful oxidant. One or both of these cells
accumulate within the liver of individuals with various hep-
atic diseases including metabolic liver diseases and contribute
also to the next oxidant stress experienced by a liver with a
metabolic disease.

19.14 Alagille’s Syndrome

Alagille’s syndrome is an autosomal recessive disorder due
to a defect in JAG-1 that results in a paucity of bile ducts and
a biliary cirrhosis that can lead to the development of HCC
[133]. It is characterized by a triangular face, embrotoxin
abnormality of the eye, butterfly vertebrae, peripheral pul-
monary artery stenosis, and resultant pulmonary hyperten-
sion as well as chronic cholestasis.

19.15 Linked Sideroblastic Anemia

This disease occurs as a result of a deficient activity of
Δ5-aminolevulinic synthetase in the mitochondria of ery-
throid cells.

As a result ineffective erythropoiesis iron accumulation
occurs in the mitochondria of the erythroid cells of the
marrow, liver, heart, and joints. The clinical manifestations
of the disease include hepatomegaly, cirrhosis and HCC,
diabetes, hypogonadism, and skin changes similar to
hereditary hemochromatosis [134, 135].

19.16 Fanconi Anemia

This is an autosomal recessive disorder characterized by dif-
fuse congenital anomalies, bone marrow failure, and malig-
nancy [136–139]. The carrier frequency is 0.5 %. Affected
individuals are highly sensitive to cross-linking agents and
develop numerous chromosomal breaks. The most frequent
extra hematologic abnormalities are radial ray defects affect-
ing the distal radius, thumb, hip, vertebrae and knee abnor-
malities, insulin resistance, and short stature. Liver tumors are
common. The roles of androgen therapy, insulin resistance,
and DNA repair dysfunction coupled with reduced apoptosis
presumably account for the tumorigenesis in this disorder.

19.17 Type II Diabetes Mellitus

This is a common disorder accounting for >85 % of all cases
of diabetes mellitus typically seen in adults but it also occurs
frequently in children especially those manifesting various
components of this metabolic syndrome (obesity, hyperten-
sion, dyslipidemia, sleep apnea, polycystic ovaries, and
gout).

Excessive insulin results in increased growth factor
receptor binding protein 2, RAS, RAF, MEK, MAK acti-
vation as well as PDK-1 and p70–56 K activation, all of
which increase cell proliferation.

These events occurring in conjunction with the adverse
effects of hepatic steatosis and the oxidative stress associated
with hypertriglyceridemia and free fatty acid increases in the
liver and plasma probably account for the mutagenesis
which results in the development of hepatocellular carci-
noma [140–144].

19.18 Hereditary Fructose Intolerance

Individuals with hereditary fructose tolerance, who survive
the neonatal period, can, with repeated fructose challenges,
develop fibrosis liver disease and rarely a hepatocellular
carcinoma [145].

19.19 Hereditary Hemorrhagic
Telangiectasia

This disorder is characterized by vascular lesions in the skin,
intestine, and solid organs to include the liver, spleen, kid-
ney, heart, and brain. Typically the disorder presents as
recurrent epistaxis. Cardiac failure can occur with large solid
organ artero-venous fistulae. After epistaxis, the major
problem is recurrent bleeding necessitating iron and other
transfusion therapy. As a result of years of transfusion, the
development of a blood-borne infection is likely and can
result in liver disease and HCC. A rare hepatoma has been
reported in patients with this disorder in the absence of a
history of hepatitis [146].

19.20 Adenosine Deaminase Deficiency

The disorder is a very rare autosomal recessive disorder that
results in a severe combined immunodeficiency in children
and adolescents. A delayed adult form has been recognized
recently and is associated with autoimmune disorders and
hepatic dysfunction as well as hepatoma [147–154].
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19.21 Steroid-Induced HCC

Estrogens and androgens have both been reported to induce
adenomas and hepatomas in the liver. Estrogens are used for
the purpose of oral contraception and typically produce
adenoma and rarely HCC [155, 156].

Androgens are used for their anabolic activity and more
often than estrogens produce HCC [157–161].

19.22 HCC in Extrahepatic Chronic
Inflammatory Diseases

Occurrence of cases of hepatocellular carcinoma has been
described in systemic lupus erythematosus [162], and in
systemic sarcoidosis (Fig. 19.1) [163–165] and in Crohn’s
disease [166, 167] but not in rheumatoid arthritis [168]. In
most of the cases, the liver was not affected by the chronic
inflammation. Especially, patients with sarcoidosis should be
regularly checked for liver cancer development. The role of
the therapeutic agents used in those patients in liver cancer
development has not been determined so far.

19.23 Summary

This chapter discusses the most widely recognized metabolic
disorders that are associated with hepatic carcinogenesis.
The authors make no assertion that it is all inclusive; rather it

presents those that are reasonably well characterized. Other
disorders may have random hepatic cancers or liver
disease-associated cancers that have yet to be recognized as
a frequent occurrence in the disorder as a result of rarity of
the metabolic disorder and the low rate of HCC that can
occur in them. Thus, the recognition of a linkage between
the two is very difficult to recognize and quantify.

In all of the disorders recognized and presented herein,
the basic metabolic defect includes either a state of oxidative
stress or an alteration in cell proliferation or cell death as a
downstream consequence of the metabolic defect.
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20.1 Introduction

The pathologic analysis of hepatocellular carcinoma
(HCC) is updated almost daily by advances at the molecular
level. However, contextual assessment of these advances is
dependent upon the proper diagnosis of HCC and its dis-
tinction from other malignant or benign tumors that may
involve the liver. Tissue diagnosis is not necessary in every
patient, but problematic tumors require pathologic exami-
nation for definitive diagnosis; in addition, tissue samples
provide a valuable resource for directed studies that may
provide prognostic or therapeutic (theranostic) information.
In the United States, pathologic evaluation of the explanted
liver in transplant recipients previously diagnosed with HCC
is mandated by the OPTN/UNOS as a quality control mea-
sure to monitor the performance of transplant programs.

This chapter categorizes hepatocellular neoplasms and
relevant non-neoplastic growths following established
pathologic headings. Detailed molecular analysis is provided
elsewhere; however, selected aspects of these features are
incorporated into this discussion, particularly in cases where
the relevant protein is detectable in tissue and can be
exploited for diagnostic, prognostic, or therapeutic purposes.

20.2 Focal Nodular Hyperplasia

20.2.1 Clinical Aspects

Focal nodular hyperplasia (FNH) is a benign mass lesion
that may be single or multiple and arises from a hyperplastic
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response to locally malformed vasculature and resultant
increase in regional blood flow [1–3]. FNH can occur in
either sex and at any age, although it is most common in
women of reproductive age. Estrogen use is not considered
to be directly causative but may be associated with lesion
growth [2]. However, Rifai et al. [4] followed a series of 20
pregnant women with FNH and found no significant growth
or complications due to this lesion during this time interval.
Rapid growth of FNH in the absence of estrogen use has also
been reported [5]. FNH has been associated with other
conditions characterized by local vasoformative anomalies
such as hepatic hemangiomas, hereditary hemorrhagic
telangiectasia [6] and congenital portosystemic shunts [7].
Increased frequency of FNH has been reported after
anti-neoplastic therapy, where it has been suggested that the
increase may relate to vascular injury associated with such
treatment [8]. Masetti et al. found hematopoietic stem cell
transplantation to be an important risk factor in this setting
[9]. The radiographic appearance of typical FNH is diag-
nostic and most cases are detected incidentally during
abdominal radiographic examination for other conditions.
The lesion may contain fat which in some cases can cause
concern for hepatocellular adenoma (HCA) and require
biopsy to resolve [10]. FNH is usually a clinically benign
condition and in many cases it can be followed without
surgical intervention. Rarely, larger lesions can undergo
significant hemorrhage [11] or cause other symptoms such
as pain [12]. Exceptionally, HCC has been observed to arise
within these hyperplasias [13].

20.2.2 Macroscopic Aspects

FNH presents as a discrete unencapsulated mass lesion with
a lobulated appearance accentuated by bands of fibrosis.
These fibrous septa typically radiate from the center of the
lesion, where they coalesce into a larger central scar
(Fig. 20.1). This characteristic feature facilitates radio-
graphic diagnosis in most cases. Variations include eccentric
scars and multiple smaller fibrous scars. Importantly from a
diagnostic perspective, HCC may on occasion also contain a
central scar and must be distinguished from FNH [14].

A dystrophic vasculature is a ubiquitous feature of FNH
and this may be macroscopically detectable in some cases as
isolated and enlarged vessels within or at the periphery of
the growth. In the recent past, some liver masses charac-
terized by an excess of vasculature with minimal fibrosis
were referred to as telangiectatic FNH; however, clonal
studies have unambiguously redefined these tumors as
variants of HCAs, and they are discussed in that section
(below).

Many but not all FNH are solitary and small. In a recent
series, 80 % of FNH were under 5 cm, 18 % between 5 and

10 cm, and 2 % greater than 10 cm in diameter [15]. In
approximately 20 % of cases, multiple FNH coexist. Com-
posite FNH and HCA has been described [16]. Further, a
diagnosis of FNH in one lesion does not ensure that all other
lesions are identical, as concurrent HCC may also occur in
livers harboring FNH [17, 18].

20.2.3 Microscopic and Immunocytochemical
Aspects

The microscopic appearance of typical FNH is dominated by
architectural distortion produced by a central area of fibrosis
from which individual fibrous septa radiate and circumscribe
complete and incomplete nodules of normal-appearing
hepatocytes (Fig. 20.2). When the entire lesion is resected
it is not difficult to delineate FNH from the surrounding
parenchyma despite both the absence of a pseudocapsule and
the bland appearance of hepatocytes.

The fibrous septa contain the dystrophic artery branches
that supply the lesion. These vessels are characterized by
asymmetric-appearing muscular layers due to irregularly
distributed but benign-appearing areas of muscular hyper-
plasia throughout their lengths. The recognition of these
vessels is of diagnostic importance. Of similar diagnostic
import is the absence of bile ducts that normally accompany
artery branches. On occasion a portal tract may be enveloped
within an area of the lesion, but for the most part bile ducts
are absent from FNH. In contrast, bile ductular overgrowth is
common at the interface between fibrous bands and hepa-
tocyte trabeculae. This may be prolific in some areas and
absent in others, possibly related to microenvironmental
differences in blood and bile flow within the lesion. The
change is similar to the so-called “biliary interface hepatitis”

Fig. 20.1 Focal nodular hyperplasia arising in a non-cirrhotic liver.
The nodule has centrally depressed areas corresponding to the central
fibrous scar. The background liver shows chronic passive congestion
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seen with biliary outflow compromise. This similarity
extends to the fact that hepatocytes in this area may be
swollen due to retained bile salts (cholate stasis). Further,
localized increase in copper (and copper binding protein)
may occur here and is diagnostically useful as a point in
favor of the diagnosis of FNH over other lesions such as
HCA. We have seen rare examples of the latter condition (as
well as HCC) producing a positive copper stain, however,
and the diagnosis must take the entire appearance of the
lesion into account.

A needle biopsy may be performed for those cases in
which the diagnosis is ambiguous by radiographic exami-
nation. Several pitfalls may arise in this circumstance. First,
if the fibrosis is heavily sampled, a diagnosis of cirrhosis
may be entertained. This error can be compounded by the
presence of ductular proliferation, in which a biliary etiology
might be suggested. Knowledge of the presence of a mass
lesion is helpful, and a search for true bile ducts adjacent to
artery branches will demonstrate that normal portal tracts are
absent. This task can be difficult if some areas do show true
ducts. In that case, the likelihood that both normal and
abnormal areas of liver have been sampled should be con-
sidered. Examination of the vessels themselves may disclose
dystrophic change in some but not other areas and this is a
helpful finding.

With knowledge that the biopsy has been performed for
diagnosis of a hepatic mass, the differential diagnoses of
HCA or well-differentiated HCC often arise, particularly in
needle biopsies in which ductular proliferation is absent.
Immunocytochemical stain for glutamine synthetase is often
the single most useful stain to distinguish among the alter-
natives. FNH shows an irregular expansion of glutamine
synthetase uptake in a so-called “map-like” pattern. This

feature is diagnostic of FNH but can at times be difficult to
discern, particularly in small fragmented biopsies where the
possibility of a fragment of diffusely staining lesion (sug-
gestive of HCC) may occur. Limitations in the use of this
stain have recently been addressed by Joseph et al. [19]. In
practice, a panel of stains addressing the possibilities of
HCA and HCC are also usually employed as dictated by the
histologic appearance and a conclusion can be reached in
almost all cases in which an adequate sized tissue sample is
provided.

20.2.4 Molecular Aspects

FNH is considered to represent a polyclonal process,
although some studies have detected a clonal component [2].
Genetic mutations have not been described.

20.3 Hepatocellular Adenoma

20.3.1 Clinical Aspects

HCA represents a final common pathway of several separate
causes of autonomous hepatocyte growth with varying ten-
dencies toward superimposed malignant evolution. Most
commonly it is a benign liver tumor arising in women of
childbearing age and with a history of oral contraceptive use
[20]. In one early study [21], HCA occurred at a rate of 0.1
per 100,000 women per year in the absence of a history of
oral contraceptives, rising to 3.4 per 100,000 per year with
long-term use of these agents. More recent low-dose for-
mulations do not appear to be associated with this high level
of risk. Anabolic steroid use is also associated with HCA,
and an example of this lesion arising in conjunction with
growth hormone therapy for Turner’s syndrome has been
reported [22]. Use of the antiseizure medication oxcar-
bazepine has been associated with HCA in mice and in a
single recent clinical case report [23]. An association of liver
cell adenoma and various genetic metabolic disorders such
as glycogen storage diseases types I, III, or IV, galactosemia,
and tyrosinemia have been reported. Maturity-onset diabetes
of the young, type III (MODY III) and familial adenomatous
polyposis are two additional predisposing conditions that
have a special relationship with molecular alterations present
in HCA and these are considered below.

Many cases are first detected during abdominal scan [24]
for low-grade symptoms, feeling of fullness, or other con-
ditions. Intratumoral hemorrhage or rupture with hemoperi-
toneum may occur, particularly with larger tumors. A study
of 124 adenomas found a mean size of 10.5 ± 4.5 cm in
ruptured tumors, with no rupture in any tumor less than 5 cm
in diameter [25]. However, Bieze et al. [26] more recently

Fig. 20.2 Focal nodular hyperplasia. The open spaces in the center
represent vessel lumens in a fibroinflammatory area. Proliferative bile
ductules are at the interface between fibrous tissue and
normal-appearing hepatocytes
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concluded that the risk for bleeding was increased in tumors
3.5 cm or larger. Additional risk factors for rupture include
increasing tumor size, recent hormone use, exophytic growth
and location in liver segments II and III [25, 26]. The pos-
sibility that HCA may regress if hormonal stimulation is
withdrawn has also been noted [27]. An overall 4.2 % fre-
quency of malignant transformation was reported by Stoot
et al. in a systematic review of 1617 published cases [28].

20.3.2 Macroscopic Aspects

Hepatocellular adenoma characteristically appears as a
well-circumscribed, non-lobulated lesion or lesions within a
non-cirrhotic liver (Fig. 20.3). Adenomas can range from 1
to over 30 cm but most are between 5 and 15 cm in diam-
eter. Typically adenomas occur in subcapsular locations and
in the right lobe. The tumor may be pedunculated [29]. The
term adenomatosis had previously been used to define the
existence of 10 or more tumors. However, this is not a
discrete condition, but occurs preferentially with certain
adenoma subtypes [30] (below). HCAs vary in color from
yellow to tan and can be variegated due to a combination of
intratumoral hemorrhage, infarction, and fatty changes [31,
32]. The tumors are usually unencapsulated.

20.3.3 Microscopic Aspects

Hepatocellular adenomas are comprised of normal-appearing
hepatocytes arranged in a trabecular architecture ranging
from one to three cells thick (Fig. 20.4a). There are no

normal portal tracts and therefore normal hepatic
microanatomical relationships are lacking. The hepatocyte
nuclei are small, round, and uniform with inconspicuous
nucleoli and few to no mitoses. Cytoplasm can be pale,
eosinophilic or steatotic. Cholestasis is not uncommon.
Occasionally the tumoral hepatocytes may contain
PAS-positive, diastase-resistant hyaline globules [33, 34],
Mallory’s hyaline [35], or degenerate-appearing hyperchro-
matic nuclei [36]. The normal reticulin pattern is well pre-
served and Kupffer cells exist in their usual locations. An
inflammatory component may be present. Small venous and
arterial branches occur throughout the tumor (Fig. 20.4).
Occasional larger vessels are seen and may also appear as
“feeding” vessels adjacent to the tumor. Sinusoids may
appear normal, ectatic or even peliotic and on occasion
dystrophic blood vessels can be seen [20]. Rarely, extra-
cellular myxoid change without evidence of intracellular
mucin has been described [37].

Distinction of HCA from well-differentiated HCC may be
difficult or impossible by histology alone. The clinical con-
text is important in this regard, and the diagnosis of hepatic
adenoma outside of the setting of a young woman taking
oral contraceptives should be viewed with suspicion.
Investigations should focus on suspicious-looking areas that
are characterized by a clonal appearance (referring to a focus
of cells that has a distinctly different look from the sur-
rounding adenoma). This may be due to cytologic or to
architectural differences such as solid growth or formation of
pseudoacini. Micchelli et al. [38] noted cytologic atypia in
the form of enlarged and hyperchromatic nuclei as a back-
ground change in two of three HCAs harboring foci of HCC.
However, background atypia was also observed in several
adenomas in which a malignant component was not
demonstrated, and the authors concluded that additional
studies were necessary to confirm this possible association.

20.3.4 Hepatocellular Adenoma Subtypes
and Ancillary Studies

Recognition of specific subtypes of HCAs is based on the
Bordeaux classification developed by Bioulac-Sage and
associates [39–41]. This system recognizes four categories
with distinguishable molecular and immunocytochemical
features, partially separable clinical contexts, and differing
malignant predispositions.

Inflammatory (inflammatory/telangiectatic) HCAs com-
prise the most frequent subtype, accounting for at least half
of all adenomas. These lesions show variable degrees of
inflammation and/or sinusoidal ectasia and may contain a
steatotic component. In some cases the presence of a duc-
tular reaction may simulate FNH [2]. They tend to arise in
the setting of obesity or alcohol use and may be single or

Fig. 20.3 Hepatocellular adenoma arising in a non-cirrhotic liver.
This 9.5 cm tumor occurred in a middle-aged woman with a long
history of oral contraceptive use. The dark areas are due to hemorrhage
that led to pain, which represented the presenting symptom of this
benign tumor
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multiple. Several molecular alterations have been described
in subsets of this category, all leading to STAT3 activation.
These include mutation of STAT3 itself, activating somatic
mutations of the IL6 receptor IL6ST (gp130) [2], JAK1,
GNAS, [42] or the src-like kinase FRK [43].

Approximately 10 % of inflammatory adenomas also
contain mutations of the b-catenin gene that appears to be a
secondary event and is associated with an increased risk of
malignant transformation, the extent of which is presently
undefined. In one series, 10.6 % of telangiectatic adenomas
contained foci of HCC which did not necessarily correspond
to b-catenin mutation [44].

Diagnosis of inflammatory HCA is facilitated by the
immunohistochemical demonstration of the inflammatory
proteins C-reactive protein (Fig. 20.4b) or serum amyloid-
associated protein in a diffuse pattern. Stat-3 activation can
also be detected by antibody specific for phospho-stat-3.

HNF1a-mutated HCA constitute the second largest class,
approximately 35–40 % of tumors. These lesions tend to be
markedly steatotic and have a tendency toward multiplicity.
Indeed, there may be a family history of multiple hepatic
adenomas (adenomatosis). It occurs predominantly in
females and there may be a history of diabetes, in particular
maturity-onset diabetes of the young, type III. The molecular
defect consists of an inactivating mutation of the HNF1a
gene and the absence of liver fatty acid binding protein, the
product of a target gene of HNF1a, serves as an immuno-
histochemical marker of this subtype. Bioulac-Sage et al.
have observed that the actual number of these tumors in a
given patient tends to be underestimated, and small fatty foci
in the background liver will also frequently show absence of

fatty acid binding protein, indicating that they represent
nascent adenomas [39, 40]. Although multiple tumors in this
setting most often reflect multiple HNF1a-mutated HCA,
rarely they may coexist with other subtypes [45].

HCA with mutations in the b-catenin gene represent the
least common defined subgroup, constituting between
10–15 % of HCA. These occur preferentially, although not
exclusively, in males and show an association with andro-
genic steroids, glycogenesis, and familial adenomatous
polyposis [40]. This subgroup has the highest risk of
evolving into HCC, particularly in males [39]. These HCA
do not usually show the steatosis associated with
HNF1a-related tumors but are more likely to contain cellular
atypia. b-catenin mutation can be evidenced immunohisto-
chemically by demonstrating nuclear translocation of this
protein. Diffuse uptake of glutamine synthetase, the protein
product of a b-catenin target gene, is also presumptive evi-
dence of this subtype [40] (Table 20.1).

The remaining HCA do not contain evidence of muta-
tions in known associated genes or express inflammatory
proteins and likely comprise a heterogeneous group that
awaits additional study.

The evolution of HCA into HCC continues to be defined
by Zucman-Rossi and associates. In adenomas, an activating
CTNNB1 mutation is thought to occur first, followed by
telomerase reverse transcriptase (TERT) promoter mutation
in conjunction with global hypomethylation and associated
chromosomal aberrations as a final step toward malignant
transformation, whereas TERT promoter mutation occurs at
an earlier stage in the dysplasia to carcinoma sequence that
occurs in the cirrhotic liver [46].

Fig. 20.4 a: Hepatocellular adenoma. The tumor is comprised of
normal-appearing hepatocytes in unremarkable trabecular architecture.
Isolated arteries (arrows) are typical but can also occur in other
conditions. (200�). b. Needle biopsy of separate hepatocellular

adenoma immunostained for C-reactive protein. Heavy staining of the
adenoma (left) with relative sparing of background liver parenchyma
(right) supported a diagnosis of inflammatory subtype of hepatocellular
adenoma (100�)
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20.4 Hepatocellular Dysplasia

Cirrhosis is a preneoplastic condition that provides the
background for the stepwise development of HCC through a
process of dysplasia. Histopathologic concepts diagramming
this progression were put forth in 2009 by an International
Consensus Group [47] and our understanding of the
molecular events underpinning this sequence has also
increased in recent years [46].

The small preneoplastic and neoplastic nodules that can
be histologically distinguished include low-grade and
high-grade dysplasia, early HCC and classic or progressed
HCC. Although these represent sequential steps in the pro-
gression to cancer, it is not certain that each nodule will
advance to the next stage, nor is it clear that HCC must
necessarily pass through all stages.

Low-grade dysplasia is a nodular lesion that can contain
portal tracts within its substance, a feature that it shares with
the benign large regenerative nodule. However, an increased
arterial vasculature that will eventually provide the sole
blood source to HCC commences at this stage, evident as
occasional unpaired arteries. Hepatocytes remain bland on
both a cytologic and architectural basis, though a mild
increase in cell density may be seen.

High-grade dysplasia retains features of low-grade lesions
such as continued presence of intralesional portal tracts and
scattered isolated arteries, the latter likely more frequent on a
statistical basis. However, there are now superimposed
alterations of the hepatocytes themselves. These consist of
nuclear changes such as hyperchromasia and mild irregu-
larities of the nuclear membrane in addition to a variety of
potential cytoplasmic changes that may impart a different
appearance to the nodule compared to surrounding liver.
These can include steatosis, increased or decreased iron

deposition, and/or basophilia. The overall nuclear to cyto-
plasmic ratio is often increased to twice or more that of
surrounding liver and the architecture can have features such
as pseudogland formation, irregular trabeculae, or intrale-
sional expansile nodules (“nodule in nodule”).

These attributes increase in degree with the onset of early
HCC and the point at which a set of features qualifies as
cancer can be extremely difficult to ascertain. However, one
feature that can be used to define the onset of early HCC,
which has a macroscopic vaguely nodular appearance, is that
of stromal invasion (Fig. 20.5a, b). This refers to the infil-
trative presence of lesional hepatocytes within either the
fibrous tumor pseudocapsule or within intralesional portal
tract stroma. Since the liver is a three-dimensional structure,
this must be distinguished from oblique sectioning that may
simulate stromal invasion and can be accomplished by the
use of cytokeratin 19 stain. The interface of hepatocytes and
fibrous stroma typically contains cholangiolar cells that are
cytokeratin 19 positive and these cells are lost in the setting
of true invasion. Interestingly, some early HCC have
extremely well-differentiated tumor cells, such that they may
appear on cursory examination to be less worrisome than
high-grade dysplastic nodules. This raises the possibility of
an alternative process that bypasses typical high-grade
dysplasia.

On a molecular level, telomerase reactivation is highly
correlated with the development of early HCC [44]. This is
due to promoter mutations, HBV insertion into the promoter,
or amplification of TERT. Such changes can also be seen in a
small minority of low- and high-grade dysplastic nodules.
However, the marked rise in frequency seen in early HCC
remains stable throughout later stages of this cancer and
precedes the multiple genetic abnormalities that characterize
individual fully developed HCC. In this regard TERT can be

Table 20.1 Immunophenotypic features of hepatocellular adenomas and other forms of hepatocellular nodules

FNH HCA-H HCA-I HCA-B Dysplastic
nodule

(Early) HCC

Glutamine
synthetase

Positive “map-like”
pattern

Focal to
absent

Focal to absent, positive if beta catenin
mutated

Positive
diffuse

Absent to diffuse, not map-like

Beta catenin
(nuclear)

No No 10 % positive, usually negative Yes Variable

LFABP Present Absent Present Present No data

SAA/CRP Focal Focal Diffuse Focal Variable

Glypican 3 Negative Negative Negative Negative May be positive; suspicious for
HCC

CD34 Heterogeneous Heterogeneous or diffuse Diffuse

CK7 Positive Negative Positive (some) Negative Negative (most)

CK19 Positive Negative Negative Negative Negative Negative
(most)

Phospho-STAT 3 Negative Negative Positive (*60 %) Negative No data

Stromal invasion Negative Positive
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considered as a gatekeeper gene, with reactivation allowing
the cells to escape from senescence and continue to prolif-
erate. As a corollary, early HCC is genetically closer to
dysplastic nodules than it is to typical clinically evident HCC.

From a diagnostic standpoint, Di Tommaso et al. [48]
described the utility of immunohis- tochemistry in separating
hepatocellular dysplasia from early HCC. Using an antibody
panel consisting of glypican-3, glutamine synthetase, and
heat shock protein 70, they found that positivity for any two
antibodies yielded a 72 % sensitivity and 100 % specificity
for the diagnosis of HCC over dysplastic nodules. However,
these stains may individually be positive in a minority of
dysplastic lesions and diagnosis at present requires attention
to both histologic and immunocytochemical features.

Progressed or typical HCC presents no difficulty in
diagnosis, appearing as a distinctly nodular lesion and rep-
resenting a fully developed, albeit small, cancer with all of
the features typically described for this tumor.

20.5 Hepatocellular Carcinoma

20.5.1 Clinicopathologic Comments

Approximately 85 % of HCC arise in the setting of cirrhosis,
which provides a field effect predisposing to neoplasia.
Thus, exposure to agents leading to cirrhosis as well as
genetic polymorphisms that may predispose to enhanced
injury in an agent-specific manner increase the risk of can-
cer. Such HCC evolve in a stepwise fashion through the
dysplastic process described above. The requirement for
cirrhosis and superimposed evolution of dysplasia may
account in part for the fact that the median age of diagnosis
in the US is 64 years [49]. Greater exposure to common risk
factors such as alcohol or hepatitis C virus [50] in males, as
well as the reported protective effect of estrogen [51], may
contribute to the 3:1 male:female ratio of HCC.

Fig. 20.5 a. Stromal invasion. This immunostain for cytokeratin 19
shows a nest of epithelial cells (star) within fibrous stroma in the absence
of an intervening cytokeratin 19-positive border. The epithelial cells
represent malignant hepatocytes invading the fibrous stroma, supporting

a diagnosis of early HCC. b. Representative partial section through a
hepatic nodule for comparison. This benign collection of hepatocytes
(star) represents the edge of a cirrhotic nodule and shows the expected
cytokeratin 19 positive peripheral distribution of ductular cells
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A separate pathway exists via malignant transformation
of HCA. High- and low-risk variants exist (above) with
direct emergence of HCC in the apparent absence of an
intermediate dysplasia process.

20.5.2 Macroscopic Aspects

The majority of HCCs arise in cirrhotic livers and most
frequently involve the right lobe. The tumors are typically
soft, vary in color from gray-green-yellow to light brown,
are occasionally bile-stained or fatty, and often contain foci
of hemorrhage or necrosis. Rarely they may contain a central
scar mimicking FNH [14]. The tumors can be single or
multiple and range from less than 1 to over 30 cm with a
tendency toward larger size at diagnosis in the setting of
non-cirrhotic liver [52, 53]. A variety of macroscopic pat-
terns exists but has few clinical correlates. The traditional
classification of Eggel [54] distinguishes three patterns of
HCCs: multinodular, massive, and diffuse. Multinodu-
lar HCC is typically associated with cirrhosis and is char-
acterized by multiple tumor nodules scattered throughout the
liver [53, 55]. In the massive pattern a solitary tumor mass
occupies much of the liver and may coexist with smaller
satellite nodules. This pattern has been associated with
non-cirrhotic livers. The diffuse pattern is the least common
and is characterized by numerous widespread small nodules
that mimic cirrhotic nodules; these may virtually replace the
liver. In cirrhosis, clinically advanced liver disease has been
associated with the diffuse or multinodular patterns of HCC
[55, 56]. Rarely, HCC may be pedunculated, possibly
reflecting origin from an accessory lobe [57]. In one study it
was concluded that pedunculated HCC has an unfavorable
prognosis if appropriate surgical procedures are not per-
formed during early development [58].

In more recent macroscopic classifications, HCCs are
further subdivided into two main patterns based on growth
characteristics: Expanding or expansive tumors have distinct
borders that push aside the adjacent liver, and spreading or
infiltrative tumors have poorly defined borders that micro-
scopically invade the adjacent liver [59].

Portal vein thrombosis occurs in a high proportion of
advanced cases [60] with a lower frequency in small HCC
[61]. It has been proposed that curative resection may be
possible in the presence of portal vein invasion if the pri-
mary tumor is small, i.e., early stage [62].

Less frequently, HCC may involve the main hepatic
veins, the inferior vena cava or right atrium and it can also
extend into the large bile ducts. The clinical consequences of
those involvements include Budd–Chiari syndrome, biliary
obstruction, and hemobilia [63–66].

Tumor stage is the primary macroscopic determinant of
prognosis, and additional visible tumor features provide
further information only to a limited degree. For example, a
diffuse growth pattern makes it less likely that the tumor will
be detected at an earlier stage, and, by definition, growth
patterns such as diffuse or massive are synonymous with
advanced disease and associated poor prognosis [55, 56]. He
et al. [67] found the infiltrative growth pattern to be asso-
ciated with shorter disease-free and overall survival fol-
lowing hepatectomy. Periportal tumor location is a risk
factor for recurrence following radio frequency ablation [68]
and serosal invasion a risk for recurrence following curative
resection in some series.

20.5.3 Staging of Hepatocellular Carcinoma

The International Union against Cancer and the American
Joint Committee on Cancer (AJCC/UICC) published the
Tumor-Node-Metastasis (TNM) pathologic classification for
HCC in 1987 with the most recent update in 2010 [69]. Most
revisions were related to categorization of the primary
tumor, i.e., T stage. A T1 tumor includes solitary tumors of
any size without vascular invasion, and a T2 tumor includes
solitary tumors of any size with vascular invasion or multiple
tumors, individually 5 cm or less in size. Multiple tumors
exceeding 5 cm in individual size are staged as T3a. T3b
consists of one or more tumors that involve a major branch
of the portal vein (right or left portal, does not include
sectoral or segmental involvement) or hepatic vein (right,
left or middle branches). T4 consists of tumors that perforate
the visceral peritoneum or direct invade adjacent organs
other than the gallbladder.

It is important to note that the AJCC TNM system is based
on examination of the pathological resection specimen and is
not equivalent to the OPTN staging system [70] that is used
to qualify potential liver recipients in the US for additional
MELD points while on the liver wait list. The OPTN system
is based on the Milan criteria [71] and allows for additional
MELD points in the case of a T2 tumor, which is defined as
one tumor greater than 2 cm and no more than 5 cm in size,
or 2–3 tumors at least 1 cm but no more than 3 cm in size.

A number of clinical or clinicopathologic staging systems
have been proposed over the years for more precise prog-
nostic subgrouping for HCC patients. The Barcelona Clinic
Liver Cancer (BCLC) Staging System[72] is widely used in
the West and uses the Child–Pugh score, tumor morphology,
alpha-fetoprotein level, and portal vein thrombosis as inde-
pendent predictive survival factors and to guide therapy [73].
Additional staging systems continue to be proposed as
improvements over this approach [74]. An overview of the
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current status of HCC staging is provided in a recent edi-
torial by Sherman [75].

20.5.4 Microscopic Aspects

Hepatocellular carcinomas encompass varied microscopic
appearances, most of which recapitulate aspects of normal
hepatocyte cytology and architecture. Well-differentiated
HCC may be difficult or histologically impossible to distin-
guish from HCA [76, 77] and it may likewise be difficult to
precisely establish the interface between tumor and normal
liver. In contrast, poorly differentiated examples of HCC may
betray only minor evidence of their hepatocellular origin.
A number of specific histologic variants exist (fibrolamellar,
clear cell, scirrhous, sarcomatoid, lymphoepithelioma-like
and combined HCC-cholangiocarcinoma) and are considered
separately (below).

The most common architectural pattern is an arrangement
that caricatures the hepatic trabeculae (Fig. 20.6a). Normal
trabeculae are 1–2 cells thick, evenly arranged, bordered by
a well-developed reticulin network, and separated by sinu-
soids without prominent endothelial cells. In contrast, neo-
plastic pseudotrabeculae vary from 2 to over 20 cells in
thickness, are irregularly arrayed, generally but not always
have a reduced to absent reticulin framework, and are sep-
arated by a vascular network lined by endothelial cells and
containing isolated arterial/arteriolar branches. The extent of
microvessel density is considered to represent a negative
prognostic indicator [78].

Other growth patterns of HCC are variations on this basic
theme. A pseudoglandular (pseudoacinar) pattern arises from
either dilatation of the bile canaliculi or from central lytic

degeneration of solid trabeculae. The gland-like spaces can
be empty or contain PAS-positive cellular debris, lipid-laden
macrophages, or bile. Complex pseudoglandular formations
can result in pseudopapillary structures with the appearance
of “islands” of tumor cells, usually surrounded by a lining of
endothelial cells [79]. A compact or solid pattern results
when malignant cells closely appose one another, rendering
sinusoidal or vascular spaces inapparent. It has been sug-
gested that HCCs with a compact growth pattern have a better
prognosis as compared with trabecular and acinar patterns
[80]. Conversely, rare HCCs may display extensive peliotic
change [81, 82], requiring distinction from peliosis hepatis or
from normal hepatic response to vascular flow compromise.
Another rare occurrence is the presence of isolated extra-
cellular myxoid change in the absence of any evidence of
biliary differentiation [37], a condition in which mixed
HCC-cholangiocarcinoma should be carefully excluded.

Tumor cells typically have more irregular nuclear mem-
branes, coarser and more irregularly distributed heterochro-
matin, and a slightly higher nuclear: cytoplasmic ratios than
do their benign counterparts. Mitotic and apoptotic activities
are increased in the tumor cell population. As HCC
approaches moderately to poorly differentiated appearance
there is a corresponding exaggeration of all of these features,
with an increase in cell-to-cell heterogeneity and the emer-
gence of giant or bizarre tumor cells in some cases
(Fig. 20.6b). Different degrees of differentiation can be seen
within a single tumor.

A variety of cytologic modifications may occur within a
given case of HCC. In general these have no prognostic
relevance, but can be useful clues for the diagnostic
histopathologist. In some cases clear cells may predominate
due to glycogen or lipid accumulation. Macrovesicular

Fig. 20.6 Hepatocellular carcinoma. a. Well-differentiated HCC con-
tains neoplastic cells forming small gland-like structures (pseudoacini).
Nuclei show only slight variability. b. Poorly differentiated HCC. The

tumor contains a bizarre giant cell (center of photomicrograph) with a
large abnormal mitotic figure nearby. The architecture does not show
the orderly arrangement of well-differentiated HCC

20 Aspects of Hepatocellular Tumor Pathology 313



steatosis may be diffuse or focal and appears to be a more
frequent finding in small HCC. Frankly steatohepatitic fea-
tures such as ballooning degeneration have also been
described in this context [83].

Bile pigment is noted in about 20 % of HCCs. Bile within
neoplastic cells or bile canaliculi is an indicator of hepato-
cellular origin. A variety of other intracellular inclusions can
be identified in individual cases. Dense eosinophilic globular
bodies may be intra- or extracellular. These are usually
PAS-positive and can contain various proteins including
alpha-fetoprotein, alpha-1-antitrypsin, alpha-1
anti-chymotrypsin, albumin, fibrinogen, and/or ferritin.
Pale bodies are lightly staining, eosinophilic, intracytoplas-
mic inclusions that correspond to dilated rough endoplasmic
reticulum and contain mainly fibrinogen, probably reflecting
defective protein transport [84]. Pale bodies may simulate
“ground glass” inclusions related to hepatitis B virus infec-
tion, but unlike true ground glass inclusions, they do not
contain viral components [85, 86]. It has been suggested that
proteins expressed in intracytoplasmic bodies might in some
cases contribute to the malignant phenotype, since in one
case p62, an IGF2 mRNA-binding protein associated with
aggressive HCC phenotype, was identified as the major
component of such inclusions [87, 88]. Mallory bodies occur
in about 20 % of HCCs, regardless of underlying disease
[89, 90]. Megamitochondria, enlarged lysosomes, myelin
deposits, abnormal accumulations of glycogen, and degen-
erative material are occasionally seen and can be identified
ultrastructurally. Copper, copper-related protein, and Dubin–
Johnson-like pigment have all been described in tumor cells.
The latter may impart a black macroscopic appearance to the
tumor [91]. Rarely extramedullary hematopoiesis and gran-
ulomas can be detected. Kupffer cells are present but
quantitatively reduced in HCCs, with more prominent
decreases noted in larger and less well-differentiated tumors
[92]. However, small, well-differentiated HCC may contain
Kupffer cells in nearly normal numbers. Reduced Kupffer
cell function and cytokine production have been suggested
as possible augmenters of HCC progression in an experi-
mental animal model [93].

The stroma of HCC is usually scanty. In some cases there
can be a fibrous background and differentiation from
other forms of adenocarcinoma or from mixed HCC-
cholangiocarcinoma may become problematic and require
immunohistochemical studies (below).

Distinct fibrous capsules frequently surround tumor
nodules, and septum formation can be observed during the
development of HCC. The capsule consists primarily of
Type III collagen with Type I collagen facing the tumor in
well-developed examples [94–96]. Well-developed encap-
sulation is more common in small HCCs. The capsule and
septa are mainly formed by alpha-smooth muscle

actin-positive mesenchymal cells and can result from inter-
actions between tumor and host liver parenchyma. Presence
of a capsule may represent a manifestation of host defense
that can interfere with the growth and invasiveness of HCC
[94, 96]. It has been suggested that tumor infiltration of the
peritumoral capsule or of the surrounding parenchyma cor-
relates with a higher frequency of portal vein invasion and
intrahepatic metastases [55].

Microscopic angiolymphatic invasion is not uncommon
and should be specifically sought, as it represents a negative
prognostic indicator. Less commonly, intrabiliary involve-
ment on either a macroscopic or microscopic level may
occur and has similar implications [97].

A four-tiered histologic grading system for HCC was
originally put forth by Edmondson and Steiner [98].
Although pathologists universally claim to use this system,
which relies on six characteristics stressing architectural and
cytoplasmic features in addition to nuclear changes, in
reality they use the Ishak modification [99] that relies
exclusively on nuclear alterations. In this system, Grade I
tumors contain cells with nuclei that closely simulate those
of normal liver and diagnosis is dependent upon architectural
features such as stromal or vascular invasion and/or aberrant
trabeculae. Grade II cells have rounded to ovoid nuclei with
a regular pattern of mild nuclear abnormalities including
hyperchromatism and nuclear membrane irregularities.
Grade 3 HCC has greater nuclear pleomorphism with the
presence of angulated nuclei and more variability among
cells, and Grade 4 HCC shows marked pleomorphism and
hyperchromatism, usually with coexisting anaplastic giant
cells. The AJCC currently provides the option of using a 2,
3, or 4 grade system and the pathologist should specify
which system is being applied. Tumor grade correlates with
the gross morphology, DNA content, proliferation markers,
metastases, and AFP production and has been shown to
represent an independent prognostic indicator for both
survival and for tumor recurrence following resection
[100, 101].

20.6 Immunocytochemical Aspects
of Hepatocellular Carcinoma

Immunocytochemical studies are an important diagnostic
adjunct and in some cases the detected antigens also have
prognostic significance. Application of this technique for
therapeutic guidance is not a part of routine evaluation since
potential biomarkers are limited and have not been validated
at this time. Each of these aspects will be considered.

Diagnostic immunocytochemical assessment of HCC
may be necessary to answer one of several questions,
depending upon the clinicopathologic circumstance: (A) is
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the malignant tumor of hepatocellular versus metastatic
origin? (B) if the tumor is of obvious hepatocellular origin,
does it represent a carcinoma or other hepatocyte-derived
lesion such as adenoma or high-grade dysplasia? (C) if the
tumor is shown to be HCC, is there evidence for a mixed
(cholangiocarcinoma) component?

To answer the first question requires establishing a hep-
atocellular phenotype. A number of antibodies are in use for
this purpose, each with their own strengths and limitations.
For this reason a panel approach is usually employed.
Individual approaches vary but typically employ some
combination of polyclonal carcinoembryonic antigen, CD10
(neprilysin), HepPar-1 and arginase-1. Antibodies to
glypican-3 and alpha-fetoprotein also can be employed as
first-line diagnostic reagents.

Immunostaining with the polyclonal anti-
carcinoembryonic antigen (CEA) antibody highlights a bile
canalicular pattern due to cross-reactivity with biliary gly-
coprotein in 60–90 % of HCC and was estimated in one
series to be 79 % sensitive and 97 % specific for these
tumors [102]. The antibody also detects normal bile canali-
culi and cannot be used to distinguish benign from malignant
status. Adenocarcinomas and cholangiocarcinomas will
often show cytoplasmic staining, a pattern that is less com-
mon in HCC. Further, these other tumors can also react with
the more specific monoclonal anti-CEA antibodies, which do
not detect HCC. One caveat in our experience is that some
commercially available monoclonal CEA antibodies do
retain biliary glycoprotein cross-reactivity, and this possi-
bility should be evaluated for the clone in use at a particular
center. Ascertainment of what constitutes a “canalicular”
pattern is also operator dependent. In well-differentiated
tumors where adjunct studies are of marginal importance, a
canalicular pattern is usually evident. In less well-
differentiated tumors it may manifest as an incomplete
membrane pattern with little resemblance to the well-ordered
canaliculi of the non-neoplastic liver.

A canalicular pattern of staining in benign and malignant
hepatocytes can also be demonstrated with antibody to CD10
(neprilysin) [103, 104]. In one study this antibody showed
68 % sensitivity and 100 % specificity for the differential
diagnosis of HCC. The use of both polyclonal anti-CEA and
anti-CD10 is recommended since an individual tumor may
show positive uptake of only one of these two markers [105].

HepPar 1 [106] is a monoclonal antibody that detects the
intramitochondrial urea cycle enzyme carbamoyl phosphate
synthetase 1 [107]. It detects both benign and neoplastic
liver cells and is not rigorously specific for the hepatocyte
phenotype, as it may rarely be expressed in other cell and
tumor types [108, 109]. However, one study showed

HepPar1 to have 82 % sensitivity and 90 % specificity for
the detection of HCCs [102]. When used as a part of a
diagnostic panel its diagnostic accuracy is enhanced [102,
110–112]. HepPar-1 is more likely to be expressed in well
differentiated as opposed to poorly differentiated tumors, a
feature that limits its utility in problematic cases.

Arginase-1 is an intracytoplasmic enzyme that catalyzes
the last step of the urea cycle, cleaving arginine to form
ornithine and urea. Interestingly, immunocytochemistry
shows the frequent presence of this enzyme in hepatocyte
nuclei as well as cytoplasm. Arginase is reported to have a
higher sensitivity and specificity than HepPar-1 for the
diagnosis of HCC and the combined use of these reagents
has been suggested [113, 114]. Arginase positivity does not
appear to be dependent upon the differentiation grade of the
tumor and has been suggested in a panel with glypican-3 to
be of high sensitivity and specificity for distinguishing HCC
from other carcinomas [115].

Glypicans are a family of six heparan sulfate proteogly-
cans that are mainly expressed in a stage- and tissue-specific
manner during development [116]. One form, glypican-3, is
highly transcribed in HCC [117] and can serve as a marker
for this tumor. It is not specific for HCC, with expression
seen in about half of the cases of squamous cell lung car-
cinomas, liposarcomas, and nonseminomatous germ cell
tumors [118] and in approximately 80 % of melanomas
[119], all of these representing tumors that only rarely enter
into the differential diagnosis. Glypican 3 is more sensitive
in the detection of poorly differentiated as opposed to
well-differentiated HCC [118]. It can rarely be detected in
high-grade dysplastic nodules.

Detection of alpha-fetoprotein expression is a classical
approach to the diagnosis of HCC. The specificity of AFP is
as high as 97 %, but its sensitivity is low. Expression is often
patchy and weak, and it has been suggested that AFP posi-
tivity correlates with size and differentiation of the tumor;
small, well-differentiated HCCs are less positive than poorly
differentiated ones. This association also extends to a
lectin-reactive fraction of AFP (AFP-L3). Several studies
have shown that serum AFP-L3-positive HCC patients have
less well-differentiated tumors than do patients negative for
this marker [120, 121]. AFP-L3 along with des-gamma-
carboxyprothrombin (DCP) have recently been cleared by
the FDA in the US as serum biomarkers for risk assessment
of HCC development. Advantages and pitfalls of these
assays have recently been reviewed by Li and Satomura
[122]. In contrast to AFP, immunohistochemical staining for
DCP has not been of high value in distinguishing benign
from malignant hepatocyte nodules, as it was expressed in
background liver [123].
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A bewildering number of immunohistochemical markers
have been proposed as being of prognostic significance in
the analysis of HCC. In general, the studies are retrospective
and examine a limited number of tissue markers, correlating
them to disease-free or overall survival or the risk of tumor
recurrence following therapy. However, independent vali-
dation by external groups, which represents one of the cri-
teria of the European Association for the Study of the Liver
(EASL) [124], has not been performed and no single
immunohistochemical marker or group of markers has been
widely accepted as a prognostic or therapeutic (theranostic)
criterion in clinical practice. This task is further complicated
by the fairly large number of potential driver and passenger
genes in individual tumors, the role of adjacent liver tissue
on tumor development and behavior, and the variety of
conditions that may evolve to HCC with differing molecular
alterations, impeding identification of potential oncogene
addiction [125].

The underlying molecular biology of HCC is covered
elsewhere in this book and is only briefly discussed here.
Zucman Rossi et al. [46] have recently divided HCC into
two broad molecular classes, namely a proliferation and a
nonproliferation class. The proliferation class encompasses
those tumors with enrichment of activated signals within
pathways associated with cell proliferation, survival, histone
modification and ubiquitination [126] and incorporates
tumors with enhanced markers for progenitor cells. These
tumors correlate with poor histologic differentiation status,
vascular invasion, high AFP levels, are aggressive and
associated with poor prognosis. The nonproliferation tumors
show frequent presence of classical Wnt signaling, overex-
pression of EGF receptor and show evidence of immune
signaling. These show better levels of histologic differenti-
ation, lower AFP levels and better prognosis. Genomic
profiling of either tumor [126] or tumor and adjacent tissue
[127] supports these divisions. Nault et al. developed a
5-gene score to predict survival after liver resection, appli-
cable to both proliferation and nonproliferation classes
[128]. Molecular profiling has not yet been incorporated into
clinical decision-making. However, it appears likely to do
so, and the door remains open that progress made in
molecular profiling will translate into a simple panel of
correlative protein markers with the potential to refine cur-
rent clinicopathologic patient stratification. One such
example is the ability of immunocytochemistry to identify an
active Wnt/bcatenin pathway by the nuclear translocation of
bcatenin. A second potential role for immunocytochemistry
may lie in identification of patient subgroups amenable to
specific therapies, such as c-MET [129] or immune check-
point inhibitors [130, 131], dependent upon the ability to
demonstrate improved outcomes with such treatments.

20.6.1 Pathologic Variants of Hepatocellular
Carcinoma

20.7 Fibrolamellar HCC

Fibrolamellar hepatocellular carcinoma (FL-HCC) is sepa-
rable from ordinary HCC on the basis of macroscopic, his-
tologic, ultrastructural and molecular features [132]. This
distinctive variant of HCC occurs predominantly in young
patients (90 % under 35 years of age) without cirrhosis
[133]. El-Serag and Davila [134] found this variant to
comprise 13.4 % of all primary liver cancers in patients
under 40 years of age and 0.85 % above this age. There
appears to be predominance in whites [134], with relative
rarity in Asia [135], although it may be becoming more
commonly recognized in that region [136].

The clinical presentation is typically vague, with com-
ponents of abdominal pain, malaise, and weight loss [132].
Less common presentations include biliary obstruction,
thrombophlebitis [137], or metastatic spread [138].

The tumors are solitary in 90 % of cases, on average from
9 to 14 cm at time of presentation [132]. This neoplasm is
unique among hepatocellular tumors in that the majority
arises in the smaller left hepatic lobe [104]. The fibrous
component of FL-HCC often forms a central scar demon-
strable by radiological techniques [139]. The fibrous com-
ponent also provides increased firmness to the tumor in
comparison to typical HCC and may undergo calcification.
The pattern of scar formation may superficially mimic that
seen in FNH.

Microscopically, there is usually a compact architectural
growth pattern but trabecular or acinar patterns can be
observed. The neoplastic cells are larger than normal hepa-
tocytes (Fig. 20.7), polygonal in shape, and possess abun-
dant granular, eosinophilic cytoplasm, a so-called
“oncocytic” appearance, due to numerous swollen mito-
chondria [140]. Nuclei are vesicular, rounded, and have
prominent nucleoli, the latter representing a characteristic
diagnostic feature of this tumor. Mitoses are usually sparse;
pleomorphism and multinucleation are infrequent. Tumor
cells contain pale bodies reactive for fibrinogen and hyaline
globular inclusion bodies may be present [141]. Intracellular
bile production, fat, glycogen, copper and copper-associated
protein can be detected [142]. Pseudoacinus formation may
be seen, but the typical small glandular pattern associated
with cholangiocarcinoma is not part of the normal spectrum
of fibrolamellar HCC. Nevertheless, rare cases exist of
fibrolamellar HCC combined with cholangiocarcinoma
[143] or more typical HCC [144, 145]. Clear cell changes
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have been described in a case of otherwise typical fibro-
lamellar HCC [146]. Concomitant presence of conventional
HCC and macroscopic vascular invasion have been associ-
ated with decreased survival in some series [147].

A prominent collagenous fibrous stroma that is arranged
in thin parallel bands (lamellae) is a characteristic feature of
fibrolamellar HCC but may be sparse or even absent in some
tumors. Diagnosis is not absolutely dependent upon
demonstration of the fibrous component. The collagen is
predominantly composed of types I, III, and V [148]. It has
been suggested that lamellar fibrosis might be due to the
production of collagen by stromal cells which in turn are
stimulated by transforming growth factor-b (TGF-b) pro-
duced by tumor cells [149].

Tumor cells are positive for HepPar-1 [150], hepatocyte
cytokeratins 8 and 18 and also contain biliary cytokeratins 7
and 19 [151] as well as CD68, typically associated with
macrophages [152]. The tumor cells are usually reactive with
antibodies to polyclonal CEA, alpha-1-antitrypsin, ferritin,
and C-reactive protein. Alpha-fetoprotein is present in only
occasional cases [153], and prominent AFP positivity, par-
ticularly when combined with elevated serum levels, sug-
gests that a search for areas of more typical HCC should be
undertaken [154]. Glypican-3 immunopositivity was seen in
64 % of fibrolamellar HCC in one small series [155], and in
some cases uptake was patchy.

The discovery of a novel fusion transcript, DNAJB1-
PRKACA specifically in fibrolamellar HCC represents a
major advance in molecular dissection of this tumor [156].
DNAJB1 is a member of the heat shock 40 protein family and
PRKACA encodes cAMP-dependent protein kinase A cat-
alytic subunit alpha. The fusion protein retains kinase activity
and is thought to be expressed in 79–100 % of tumors

[157, 158]. It is currently unknown whether this is a primary
driver oncogene in this tumor, if it is secreted in the circu-
lation or it represents a therapeutic target [159]. Diagnostic
in situ hybridization has been performed to detect this RNA
and successfully distinguished fibrolamellar from scirrhous
HCC, a tumor that also can contain significant fibrosis [160].

Although no other recurrent genomic alterations have yet
been identified, transcriptomic analysis of a fibrolamellar
HCC cell line reveals a number of other genetic alterations
that differ from those seen in typical HCC [158]. These
studies also led the authors to conclude that fibrolamellar
HCC represents a single disease and not a collection of
different tumor types. Further, the upregulation of some
neuroendocrine-associated genes was felt to represent an
epiphenomenon, arguing against older interpretations that
this tumor had a neuroendocrine origin.

Pure fibrolamellar HCC has a better prognosis than typ-
ical HCC primarily because it often presents as a surgically
resectable lesion. For this reason, aggressive surgical man-
agement has been advocated for this tumor [161–164].
Resectability is an important prognostic variable [165, 166],
and Katzenstain et al. [167] concluded that resectability, not
the fibrolamellar pattern, is the primary prognostic criterion,
with patients presenting with an initially resectable lesion
having a good prognosis regardless of histologic subtype.
More recently, Darcy et al. [168] also found resectability to
be an important factor for prolonged survival.

20.8 Clear Cell HCC

Clear cell HCC is comprised of malignant hepatocytes, the
majority of which contain clear or empty-appearing cyto-
plasm reflecting accumulation of intracellular glycogen or
lipid [169]. The tumor typically arises in a background of
cirrhosis and has only rarely been reported in a non-cirrhotic
setting [170]. Liu et al. [171] found an association of clear
cell change with hepatitis C virus infection in an Asian
series, and individual associations with non-alcoholic
steatohepatitis [169], hypoglycemia and hypercholes-
terolemia [172] and tyrosinemia [173] have also been
reported.

One source of diagnostic difficulty lies in the possible
histologic confusion with other tumors that may present as
clear cell neoplasms, in particular renal cell carcinoma and
adrenal cortical tumors. Immunohistochemical studiesmay be
of aid in defining a hepatocellular phenotype of these lesions
[174]. One complication arises from rare reports of concurrent
clear cell primary hepatic and renal tumors [175], underscor-
ing the necessity of phenotyping individual tumors when they
occur in different sites. Adrenal tumors or adrenal rests may
also cause difficulty as these may give a positive result with

Fig. 20.7 Fibrolamellar HCC. Tumor cells contain a generous amount
of cytoplasm and show variably prominent nucleoli. Intervening
fibrosis has an orderly stacked or lamellar configuration (200�)
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HepPar-1 antibody, leading to an erroneous diagnosis of clear
cell HCC [176]. Arginase-1 is negative in adrenal lesions, and
use of this antibody in conjunction with adrenal markers such
as CD56 or MART-1 circumvents this problem.

Several series [177, 178] found no difference in overall
clinical behavior between clear cell and typical HCC. In
contrast, Clayton et al. [179] found clear cell morphology to
be associated with more favorable outcomes in hepatomas
that diffusely infiltrated the liver (“cirrhotomimetic” pattern).
Liu et al. [171] reported more frequent presence of a tumor
capsule and lower rate of vascular invasion in clear cell
tumors. Jeon et al. [180] report a remarkable case of an
elderly male who experienced spontaneous regression of a
large clear cell HCC with metastases.

One study [177] uncovered a clear cell HCC with
microsatellite instability in contrast to other clear cell HCC
in that series and concluded that clear cell HCC represents a
heterogeneous entity. Orsatti et al. [181] also pointed to
subtypes within this category. They showed that nondiploid
clear cell HCC were more pleomorphic and had a higher
mitotic rate than diploid tumors and suggested that such
differences might account in part for differing opinions
regarding the behavior of clear cell HCC.

20.9 Scirrhous (Sclerosing) HCC

Scirrhous HCC is a rare variant of HCC that usually occurs
in older age groups. It is reportedly associated with hyper-
calcemia in cases occurring in the United States but not in
those reported from Japan [182]. Parathyroid
hormone-related protein was detected by immunohisto-
chemical means in tumor cells of one case and this was
suggested as the cause of tumor-associated hypercalcemia
[183]. The margin is often ill-defined on CT scan [184].
Macroscopically, the mass is usually large, firm, and
gray-white in color. The characteristic histological features
of the sclerosing HCC are non-lamellar, extensive fibrosis
(Fig. 20.8) that extends from the sinusoidal areas [185] and a
pseudoacinar formation of the tumor cells. Tumor capsule
formation is seen in about 30 % of cases or less [184, 186],
and in one series vascular involvement was more common
than in typical HCC [184]. Origin within a dysplastic nodule
has been described [185].

The hepatocellular component of the tumor shows lower
expression of HepPar-1 than ordinary HCC [232]. Krings
et al. [187] found HepPar-1 uptake in only 26 % of scirrhous
tumors in comparison to arginase-1 which detected 85 % of
cases and glypican-3, positive in 79 %. The combined use of
arginase-1 and glypican-3 allowed them to establish the
correct diagnosis in 100 % of cases.

The sclerotic stroma, together with the occasional pseu-
doglandular pattern assumed by the tumor cells, may lead

the diagnostic histopathologist to an incorrect diagnosis of
cholangiocarcinoma. Markers typically associated with bil-
iary phenotype such as cytokeratins 7 and 19 and epithelial
cell adhesion molecule (EpCAM) may also be expressed
[187]. Okamura et al. [188] demonstrated that the stroma of
scirrhous HCC lacks laminin-5 expression and shows only
low levels of tenascin-C, both of which are highly expressed
in cholangiocarcinoma. Further, stromal cells of scirrhous
HCC are strongly alpha-smooth muscle actin positive,
whereas those of cholangiocarcinoma reportedly have a
more prominent glial fibrillary acidic protein-positive pop-
ulation [188]. Presence of intracellular mucin would also
favor cholangiocarcinoma (or metastatic adenocarcinoma).

An increase in fibrous stroma of HCC has been associated
with an increased degree of stem cell phenotype [189] and
expression of such markers as cytokeratin 19, EpCAM, or
CD133 is associated with more aggressive biological
behavior. In one study, scirrhous HCC was associated with a
greater tendency for portal vein invasion as well as more
frequent occurrence in non-cirrhotic liver compared to usual
HCC [190]. Despite this, no difference in clinical outcome
has been documented between scirrhous versus typical HCC
[184, 190].

20.10 Combined Hepatocellular
Cholangiocarcinoma

Combined hepatocellular/cholangiocellular carcinoma is the
least common type of primary epithelial liver cancer,
accounting for approximately 2 % of such tumors with
reported frequencies ranging from 0.4 to 14.2 % [191].
The WHO recognizes this as a specific tumor type, whereas

Fig. 20.8 Sclerosing HCC. The tumor cells do not contain the
abundant cytoplasm of fibrolamellar HCC and do not typically exhibit
prominent nucleoli. Fibrosis is well developed but does not show the
exaggerated orderly pattern of fibrolamellar HCC (200�)
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the AJCC stages it as a cholangiocarcinoma. It has been
associated with risk factors of HCC, such as HBV, HCV and
alcohol use [192] and is considered to have a worse prog-
nosis than standard HCC [193, 194] or even intrahepatic
cholangiocarcinoma [195]. In a review of the SEER data-
base, Garancini et al. [195A] found inferior survival for
combined HCC-CC following liver transplantation as com-
pared to HCC.

The tumor typically contains elements of both hepato-
cellular and cholangiocellular appearance (Fig. 20.9) and
must be distinguished from rarely described synchronous and
separable HCC and cholangiocarcinoma [197, 198]. It is
thought that the divergent phenotypes of the combined tumor
arise from a common stem or progenitor cell [199] and earlier
studies did disclose shared features of both components. For
example, Imai et al. [200] found similar p53 and RB-1 locus
mutations in both hepatocellular and cholangiocellular
components of mixed HCC/CC and a cell line derived from a
human HCC/CC showed features of one or the other cell
component dependent upon growth conditions [201].
Gil-Benso et al. [202] were also able to derive in vitro rat
hepatocellular, cholangiocellular, and oval type cell lines
from a single founder cell line derived from a rat HCC/CC.

The tumor exhibits clinical behavior typical of either
tumor type, such as vascular invasion as seen in HCC and
lymph node metastases as occurs with cholangiocarcinoma.
For that reason surgical intervention often employs lymph
node dissection.

Pathologic diagnosis of the classic form of combined
HCC-CC is dependent upon recognition of cellular and
architectural features of both cell compartments. For this

reason core biopsy is preferred over fine needle aspiration.
The hepatocellular component is recognized by morphology
and by features such as bile production. Immunohisto-
chemical markers such as HepPar-1, arginase-1, or a
canalicular pattern of staining with anti-polyclonal CEA or
with CD10 are helpful in this regard. Alpha-fetoprotein is
also positive to a lesser extent.

The cholangiocellular component is detectable with
markers of biliary differentiation such as cytokeratins 7 or 19
and EpCAM (MOC31). Attention to the morphology of the
cells being stained is important, since otherwise typical HCC
may on occasion express either of these markers.

A second tumor category recognized by the WHO is that
of combined HCC-CC with stem cell features. The putative
stem cells are small undifferentiated intermediate or oval-like
cells on the basis of both light and electron microscopy
[203]. These cells also typically express positivity for
cytokeratins 7 and 19 along with CD56, EpCAM, and c-kit,
which are considered stem cell markers in this context. This
category is further divided into several subtypes that are
pathologically distinguishable but have no known clinical
differences. The combined HCC-CC typical subtype con-
tains nests of mature appearing neoplastic hepatocytes sur-
rounded by smaller cells that represent the stem cells.
A second group, the intermediate cell subtype, is comprised
of nests or cords of cells intermediate between hepatocytes
and cholangiocytes and showing markers of both cell types.
C-kit expression is particularly frequent. The final subtype is
the cholangiolocellular form, in which the cells form irreg-
ular tubules within a fibrous stroma, resembling cholangi-
oles, and express stem cell markers.

Shafizadeh and Kakar [204] have proposed a spectrum of
lesions that range from typical HCC to typical cholangio-
carcinoma. The series in order includes HCC, CK19-positive
HCC, scirrhous HCC, HCC with stem cell features, com-
bined HCC-CC with stem cell features, classical type com-
bined HCC-CC, (here we would add cholangiolocellular
subtype) and finally cholangiocarcinoma. This is useful in
conceptually organizing the various forms of these tumors
but does not imply progression of one to another nor is it
meant to suggest a parallel spectrum of molecular changes.

20.11 Sarcomatoid HCC

Sarcomatoid HCC is a rare variant of HCC that may contain
spindle-shaped cells with features of any of a variety of
sarcomas including fibrosarcoma, leiomyosarcoma, rhab-
domyosarcoma, osteosarcoma, and others [205, 206]. The
sarcomatoid component is considered to represent a form
of tumor progression, “dedifferentiation” or epithelial-
mesenchymal transformation of the epithelial component,
as attested to by the demonstration of hepatocyte keratin

Fig. 20.9 Mixed HCC-cholangiocarcinoma. Compare the size of
nuclei on the left side of the photomicrograph with those on the right
to more easily appreciate the two different cell phenotypes present in
this tumor. The more crowded cells on the left form glands and
represent the cholangiocarcinoma component, whereas the cells with
larger nuclei on the right appear to have a more solid arrangement and
showed hepatocellular features by immunohistochemistry (400�)
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subtypes or alpha-fetoprotein positivity reported in the sar-
comatous elements in some cases [206, 207]. Haratake et al.
[207] suggest the keratin 8 positivity in the sarcomatoid
element may be diagnostically helpful in distinguishing
these tumors from true intrahepatic sarcomas.

Osteoclast-like cells may also be seen. These were pre-
viously thought to represent histiocytes on the basis of
immunohistochemical studies [208] but more recently Dahm
[209] showed that these cells co-expressed both macrophage
markers (CD68) and HepPar-1, consistent with origin from
the malignant hepatocytes.

Sarcomatoid change can also occur in mixed hepatocel-
lular–cholangiocellular tumors [203, 210, 211] and the
relationship between those tumors and sarcomatoid HCC is
currently undefined. Sarcomatoid change has also been
described following chemotherapy [212].

Given the rarity of this variant, most conclusions
regarding survival are based on single case reports or small
series and appear to follow the course expected of a
high-grade malignancy.

20.12 Lymphoepithelial HCC

Lymphoepithelioma-like HCC is a rare variant characterized
by significant numbers of tumor-infiltrating lymphocytes. It
can occur in cirrhotic [213] or non-cirrhotic [214] liver and
may be more common in females [214]. The inflammatory
infiltrate appears to be T cell predominant, with both CD4
and CD8-positive cells demonstrable [214]. No association
with Epstein–Barr virus has been demonstrated [213, 214].
Patient outcome compared to typical HCC is thought to be
either favorable [213] or similar [214]. In contrast, a recent
case report documented a patient who had rapid progression
of a similar tumor [215]. Data are limited by the small
numbers of studies, but it appears likely that the common
denominator of large numbers of inflammatory cells may
mask more complex or dissimilar host: tumor immune
interactions in individual cases. Indeed the patient reported
by Quist [215] failed to show significant caspase-3 uptake,
indicative of apoptosis, in tumor cells despite the large
number of infiltrating immune cells. Assessment of immune
checkpoint inhibitors such as PD-L1 would be of interest in
future cases.

20.13 Hepatoblastoma

20.13.1 Clinical Aspects

Hepatoblastoma is a rare tumor but represents the most
common liver cancer in childhood. Risk factors include
prematurity and low birth weight [216] and it can be

associated with a number of inherited conditions including
hemihypertrophy, Beckwith–Wiedemann syndrome, familial
colonic polyposis, cardiac and renal malformations, Noonan
syndrome, and glycogen storage disease type IA [217–222].

Clinically, an enlarging upper quadrant mass, vomiting,
and/or fever are frequent presenting signs and symptoms.
Serum alpha-fetoprotein is elevated in approximately 90 %
of patients and an absence of this is associated with an
aggressive course.

20.13.2 Macroscopic Aspects

Macroscopically, the tumor usually presents as a single,
well- circumscribed, large mass up to 25 cm. The gross
tumor appearance may be heterogeneous due to any com-
bination of necrosis, hemorrhage, calcification, and cystic
degeneration. The presence of a mesenchymal component in
some tumors may also contribute to this variability.

20.13.3 Microscopic Aspects and Ancillary
Studies (Fig. 20.10)

Hepatoblastomas are thought to arise from a hepatocyte
precursor cell and can have epithelial, mesenchymal and
undifferentiated components. The Children’s Oncology
Group (COG) recently proposed an International Pediatric
Liver Tumors Consensus Classification to standardize
histopathologic diagnosis, particularly in the setting of
international collaborative studies [223] (Table 20.2). This
serves a different purpose than the Pretreatment Extent of

Fig. 20.10 Hepatoblastoma, fetal subtype. This well-differentiated
tumor has no mitotic activity and consists of cells with abundant
cytoplasm, round uniform central nuclei, and no apparent nucleoli
(�400, image courtesy of Dr. S. Ranganathan, Children’s Hospital
Pittsburgh PA)
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Disease (PRETEXT) which is used to stage the tumor prior
to therapy and is predictive of event-free survival (reviewed
in [224]).

Of the epithelial subtypes, the pure fetal form (Fig. 20.10)
is a well-differentiated tumor comprised of medium sized
bland malignant hepatocytes with varying amounts of intra-
cytoplasmic lipid and glycogen. Mitotic activity is sparse and
the tumors express alpha-fetoprotein. This is associated with
a good prognosis and may be curable by surgery alone [225];
however, diagnosis requires extensive sampling of tumor
which is typically not possible prior to chemotherapy.

Mitotically active fetal subtype (Fig. 20.11) is a second
variant resembling and often coexisting with more

well-differentiated fetal cells but exhibiting a higher nuclear
to cytoplasmic ratio (hence the synonym “crowded fetal”),
less cytoplasmic lipid or glycogen, more prominent nuclei,
and mitotic activity in excess of 2 per 10,400� microscopic
fields. These areas are also highlighted by coarser texture of
glypican-3 stain relative to well-differentiated areas.

The pleomorphic epithelial variant remains recognizable
as hepatocellular in origin but shows more nuclear vari-
ability with large nucleoli. Such changes are most commonly
found after chemotherapy.

The embryonal variant (Fig. 20.12) usually does not
represent a pure growth pattern but typically occurs in
conjunction with a fetal subtype. These cells have little
cytoplasm and do not contain lipid or glycogen. Nuclei are
enlarged and hyperchromatic. The cells may arrange in solid
aggregates or form glands.

Small cell undifferentiated (SCUD) form of hepatoblas-
toma (Fig. 20.13) is the second example of a histologic
pattern with clinical import, in this case signifying an
aggressive behavior. These cells have small bland round to
oval nuclei with inapparent nucleoli and little cytoplasm.
The may occur in sheets or be mixed with other epithelial
types. Coexistence of keratin and vimentin positivity is
consistent with their undifferentiated status and they do not
express alpha-fetoprotein.

SCUD tumors have been further subclassified on the
basis or absence of INI1 (SMARCB1). This is a core subunit
of the SWI/SNF complex that participates in transcriptional
regulation and chromatin remodeling [226]. It is thought to
act as a tumor suppressor, and inactivation of INI1, which
can easily be detected by immunohistochemistry, is associ-
ated with a wide variety of tumors that typically, but not

Table 20.2 Children’s Oncology Group (COG) Classification of
Hepatoblastomas [223]

1. Epithelial variants

a. Pure fetal with low mitotic activity

b. Fetal, mitotically active

c. Pleomorphic, poorly differentiated

d. Embryonal

e. Small cell undifferentiated

i. INI1-negative

ii. INI1-positive

f. Epithelial mixed (any/all above)

g. Cholangioblastic

h. Epithelial macrotrabecular pattern

2. Mixed epithelial and mesenchymal

a. Without teratoid features

b. With teratoid features

Fig. 20.11 Hepatoblastoma, fetal subtype, mitotically active. Nuclei
are larger with more prominent nucleoli and more than 2 mitoses per 10
high power microscopic fields (�400, image courtesy of Dr. S. Ran-
ganathan, Children’s Hospital Pittsburgh PA)

Fig. 20.12 Hepatoblastoma, embryonal variant. This tumor contains
larger cells compared to fetal subtype and also shows an increased
nuclear to cytoplasmic ratio with oval to angulated nuclei, variable
nucleoli and frequent mitoses (�400, image courtesy of Dr. S. Ran-
ganathan, Children’s Hospital Pittsburgh PA)
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invariably, contain a subset of large cells termed rhabdoid
cells that have a superficial resemblance to rhabdomyoblasts
[227]. SCUD tumors lacking INI1 have been suggested to
have a better prognosis than INI1-positive tumors [228], and
it has been suggested that these patients may be better served
with therapy designed for malignant rhabdoid tumors [223].

Cholangioblastic tumors have a component of cells that
resemble biliary epithelial cells and may form duct or duc-
tular structures. These are identifiable with the biliary
cytokeratins 7 and 19 and have not been shown to have
independent clinically prognostic significance.

In contrast to the other subtypes, the macrotrabecular
variant is not defined by cell type, but by an architectural
arrangement in which thickened trabeculae at least 5 and up
to greater than 20 cells wide is observed. This can occur with
varying cell types, and the significance of this pattern, if any,
is not yet clarified [223].

Slightly less than half of hepatoblastomas additionally
have mesenchymal elements, most commonly osteoid and
fibrous tissue. Teratoid features refer to the presence of
additional complex elements of endoderm or neuroectoder-
mal origin or to the presence of tissue components such as
striated muscle. The full clinical significance of this remains
to be defined.

The majority of hepatoblastomas have Wnt pathway
signaling abnormalities, often due to b-catenin mutations
[229] and demonstrable in tissue sections by nuclear
translocation of b-catenin. Telomerase activation also
occurs, and TERT can stimulate Wnt signaling independent
of intrinsic Wnt pathway mutations. This is consistent with
previous studies that found nuclear accumulation of

b-catenin in the absence of beta catenin mutation [230, 231].
In a more recent study, Ueda et al. [232] found that patients
with Wnt mutations were more responsive to therapy than
those in whom Wnt activation was associated with TERT
overexpression alone. MYC represents a separate Wnt target
gene and has been associated with more aggressive behavior
in an experimental setting [233, 234]. Incorporation of val-
idated molecular assessments into the clinical setting is
eagerly awaited.
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21.1 Introduction

It has been accurately stated that ‘Tremendous efforts have
been made over the past few decades to discover novel
cancer biomarkers for use in clinical practice. However, a
striking discrepancy exists between the effort directed
toward biomarker discovery and the number of markers that
make it into clinical practice’ [19]. This is certainly true of
the situation with regards hepatocellular carcinoma (HCC).

Reviews of biomarkers for HCC have conventionally
focused on serum biomarkers and their role in diagnosis,

particularly in the setting of surveillance. However, their role
in assessment of prognosis and in monitoring response to
therapy is also now starting to attract attention. The need for
such biomarkers is well documented. Radiological/imaging
approaches are increasingly recognised to have serious limi-
tations. For example, ultrasound (US) examination which is
widely used to ‘screen’ patients with chronic liver diseasewith
a view to early diagnosis of HCC such that curative treatment
can be applied has limited sensitivity. In the most detailed
meta-analysis, the pooled figure for sensitivity was 63 %
overall, rising to 70 % when screening was undertaken every
six months as opposed to annually [43]. Current AASLD
guidelines acknowledge that ‘performance characteristics (of
US) have not been well defined in cirrhotic livers’ and that
‘some patients, particularly the obese, are not good candidates
(for surveillance) despite their risk’ [7]. Issues also surround
variability of equipment quality and US is very
operator-dependent making good quality control difficult to
achieve and document.

Herein, we describe some of the protein-based blood tests
that have been proposed to fulfil the above roles, most likely in
conjunction with US, and then describe how we have used the
best described of these, combined where necessary, with other
clinical features and liver function tests, to develop more
accurate and entirely objective diagnostic and prognostic
models. The overall performance of the biomarkers in question
is reported as the area under the receiver operator curve
(AUROC) supported by estimates of sensitivity and specificity.

21.2 Some Serum-Based HCC Biomarkers

21.2.1 Alpha-Fetoprotein (AFP)

Alpha-fetoprotein (AFP) is a foetal protein analogous to
albumin in the adult. It almost disappears after birth as
albumin secretion takes over and is only re-expressed in
certain pathological conditions. One of these is HCC and
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since its discovery in the 1960s [1, 46] the extent to which it
can be used as a diagnostic biomarker for HCC has been the
source of great controversy [17, 32, 41]. The controversy
surrounds the fact that about 30 % of HCC cases are ‘AFP
negative’ and AFP levels may be raised in patients with
chronic liver disease alone (i.e. not complicated by HCC).
These observations clearly impact on the sensitivity of the
test in a surveillance setting [36]. However, as a result of
several reviews and meta-analyses the underlying figures are
now fairly clear. The AUROC is between 0.8 and 0.85
(supported by two meta-analyses with pooled sensitivities of
about 0.6) [48, 50]. Nonetheless the evidence that adding
AFP to routine (US) examination increases the sensitivity of
detection of early HCC is weak [43]. The figures in early
disease (BCLC 0 and A) are, however, the really important
ones and in the most detailed and careful analysis, Marrero
et al. showed that these remained in this range for BCLC 0
and A, (AUROC 0.8 and sensitivity 0.65) [32]. There would
thus appear to be a strong evidence-based case for AFP to
act as a basis/backbone for surveillance and diagnosis, whilst
recognising that some further source of sensitivity is likely to
be required. This might take the form of new or other,
non-related, biomarkers.

21.2.2 Des-gamma-Carboxy-Prothrombin
(DCP)

Des-gamma-Carboxy-Prothrombin (DCP), also known as
protein induced by vitamin K absence or antagonist-II
(PIVKA-II) is an immature form of prothrombin [28, 45].
Elevated DCP values (� 7.5 ng/ml) have been shown to be
associated with a fivefold increased risk of developing
HCC and on this basis DCP has received FDA approval.
Based on a literature review of 20 publications, the overall
sensitivity was 67 %, specificity 92 % and AUROC 0.89
[20] (Table 21.1). DCP and AFP are not closely correlated
[6] and elevated levels of DCP occur in about 30 % of AFP
negative cases making the case for the potential utility of a

combination of the two [3, 10, 23]. Furthermore there have
been intriguing suggestions that DCP levels can start to
increase well before (up to 1 year) HCC is detected by
conventional imaging techniques [3].

21.2.3 AFP-L3

AFP-L3 is a glycoprotein normally produced by foetal liver.
There are three AFP glycoforms that can be separated on the
basis of their lectin binding characteristics [39], most readily
with Lens culinaris agglutinin (LCA). The structural varia-
tion of these glycoforms depends on the degree and siting of
fucosylation of the N-acetylglucosamine-linked sugar
chains. AFP-L3, the glycoform found in individuals with
HCC, is characterised by binding to LCA with high affinity
[27, 34, 39]. In adults, an increase in AFP-L3 appears more
specific for HCC than total AFP [5, 22, 33, 39, 52]. It is
usually presented as a percentage of the total AFP with a
reference range of <10 %. Elevated levels have been shown
to be associated with a sevenfold increased risk of devel-
oping HCC within the next 21 months. It is to be noted that
the percentage is more significant than the absolute amount
of AFP-L3, i.e. [AFP] � [AFP-L3].

21.2.4 Osteopontin

Osteopontin (OPN) is an integrin-binding glycophospho-
protein involved in many cellular functions, including
invasion and metastasis. HCCs consistently express OPN at
higher levels than normal tissue [40, 42]. It is found in the
serum of healthy subjects and in patients with several dif-
ferent cancers including carcinomas of colon, pancreas and
in multiple myeloma. In single centre analyses [8, 48], its
performance was equal to or better than AFP among HCV
positive patients and these findings have been confirmed in a
recent meta-analysis [48] (Table 21.1).

Table 21.1 Test performance for some of the most intensively studied potential HCC biomarkers

AUROC Sensitivity Specificity Number of Publications assessed Reference

AFP (1) 0.52 10

AFP (2) 0.87 0.66 0.86 7 Wan et al. [48]

AFP-L3 0.76 0.48 0.92 12 Yi et al. [52]

DCP 0.89 0.67 0.92 20 Gao et al. [20]

Glypican-3 0.88 0.56 0.89 17 Liu et al. [30]

Glypican-3 0.82 0.53 0.77 12 Liu et al. [29]

Osteopontin 0.92 0.86 0.86 7 Wan et al. [48]

Golgi protein 7 0.86 0.77 0.91 11 Yang et al. [51]
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21.2.5 Golgi Protein 73

This is a 73 Kd 400 amino acid transmembrane protein nor-
mally expressed on biliary epithelium but in pathological con-
ditions it is expressed on the surface of hepatocytes, particularly
malignant hepatocytes, and can be excreted into the circulation.
Several studies suggest that it has the potential to be a sensitive
serologicalmarker forHCC [31, 37]with a performance similar
to that of AFP [51].

21.2.6 Glypican-3

Glypican-3 (GPC3) is a proteoglycan attached to the cell
surface by a glycosyl-phosphatidylinositol anchor [44]
which is expressed by most HCCs but not in normal or
cirrhotic liver. Immunostaining of GPC3 is widely used to
confirm HCC diagnosis in diagnostic pathology [9]. Tar-
geting of GPC3 might offer a new target for the treatment of
HCC and clinical trials are ongoing [53]. GPC3 has been
proposed as a serological marker [9, 16, 26] for HCC and in
recent meta-analyses the pooled sensitivity was 56 %
specificity 89 % and the AUROC 0.88 [29, 30].

21.3 Biomarker Combination

The general conclusion of the above, albeit selected studies,
is that no individual marker, on its own, is likely to achieve
the sensitivity and specificity required to have broad utility
for diagnosis and surveillance, and we shall need either a
new biomarker or a combination of existing biomarkers.
Specifically, the evidence that adding AFP alone to routine
(US) examination increases the sensitivity of detection of
early HCC is weak [43]. Several groups have combined
various biomarkers and, in general, shown improved per-
formance [15, 21, 25, 49].

We have taken a purely practical approach in that any
‘new’ markers would require many years of study to become
widely available and technically validated. In contrast, AFP
has already undergone extensive studies such that there is a
routinely available and well-validated assay. Further we
believe that its performance in early disease is now con-
vincingly demonstrated to the extent that it should represent
the ‘backbone’ of any combinatorial serum-based model.
Several groups have attempted to combine other markers,
usually with AFP, and shown improved performance. Two
other markers (AFP–L3 and DCP) are already commercially
available on the same platform as AFP and both have been
approved by the FDA for risk assessment of HCC. We now
describe how we have combined these three biomarkers into
statistical models for diagnosis, surveillance and prognosis. In
current staging systems, continuous data (such as biomarkers)

are regularly categorised for the purpose of simplicity. Such
dichotomization of continuous variables is associated with
loss of information, statistical power and introduction of bias
in multiple regression procedures [14, 38]. It has also been
shown that when a normally distributed variable is dichot-
omized at the median, it leads to loss of a third of the data
[38]. In logistic regression analysis, categorization of contin-
uous variables is associated with inflation of the type I error
rate [2]. In the following examples we have used statistical
approaches that maximises information extraction by using
data in its continuous form.

21.3.1 THE GALAD Score

Based on a prospectively collected cohort of patients with
HCC and a control group with chronic liver disease without
HCC, we undertook a case-control study that aimed to develop
a statistical model capable of predicting the probability of
HCC in patients with chronic liver disease. Predictive variables
associated with the presence of HCC were identified using a
logistic regression with a parsimonious forward–backward
stepwise approach and keeping variables significant at the 1 %
level. The resulting model comprised Gender, Age and the
three biomarkers AFP, AFP-L3 and DCP hence, the acronym
GALAD. The model was then validated on a further cohort
prospectively accrued from the same institution and then on an
external dataset from another UK institution [4, 25].

The GALAD mode uses the equation

Z ¼� 10:08þ 0:09� ageþ 1:67� sexþ 2:34 log AFPð Þ
þ 0:04� AFP� l3þ 1:33� log DCPð Þ

ð20:1Þ
where sex = 1 for males, 0 for females.
The linear predictor (Z) is used to estimate the probability

of HCC in an individual patient (ranging from 0 to 1) using
the following equation:

HCCð Þ ¼ exp Zð Þ= 1þ exp Zð Þð Þ ð20:2Þ
The score can be calculated from Eq. 20.1 and then trans-
lated into a risk (from 0 to 1) from Eq. 20.2. This can be
accomplished in a simple spreadsheet. Table 21.2 shows
such a spreadsheet with several clinical scenarios.

The key performance characteristics for the model are
shown in Table 21.3 and Fig. 21.1 (modified from Johnson
et al. [25]. Our initial study showed that the model performed
well in smaller tumours (<5 cm), Table 21.3 but subsequent
studies have shown that the model is virtually uninfluenced
by tumour size at least down to 2 cm. Preliminary analysis of
our subsequent studies have suggested that the model per-
forms equally well in other countries and is independent of
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etiology or tumour size. Furthermore, the model, is not
influenced in cases of chronic viral hepatitis C, by whether or
not sustained virological response (SVR) has been achieved
or in the case of chronic hepatitis B virus infection, whether
or not patients are treated with antiviral agents.

21.3.2 The BALAD Score

The BALAD score was originally developed by Toyoda et al.
[47] to assess prognosis in HCC. It has been externally vali-
dated by Chan et al. [11]; the acronym refers to Bilirubin,
Albumin, AFP-L3, AFP and DCP. These authors developed
the model empirically based on the application of conven-
tional cut-off points. When the same data set was assessed
using rigorous statistical methodology (specifically using the
data in a continuous format) the same individual parameters
were identified. The performance of the model [18] that was

built upon these variables (BALAD-2) was very similar,
paying testament to the power of clinical intuition/experience.
The model can be used to place HCC patients in one of four
classes that define prognosis (Fig. 21.2).

With appropriate recalibration the model proved appli-
cable to the UK population (figures—as above). Subse-
quently, we validated the model in a larger number of
patients and in other countries where the spectrum of etiol-
ogy is dissimilar from those in which the model was built
and validated. We have also shown that the model offers
clear discrimination at different disease stages from early to
advanced cases. The accuracy of the BALAD score is
plausibly explained if the ‘LAD’ reflects prognosis attribu-
table to tumour related factors and the ‘BA’ reflects the
prognosis attributable to the associated chronic liver disease
(Fig. 21.3). This contention has been substantiated in a
recent study that established a new score for liver disease
amongst patients with HCC.

Table 21.3 Performance of model on early and late stage patients (reproduced from [25])

Max. sensitivity Max. specificity Max. both

Cut-off = −1.36 Cut-off = 0.88 Cut-off = −0.63

Staging system/ Criteria for early or late disease Number of Patients Sensitivity

Treatment type

BCLC

Early 0 and A 42 93 55 86

Late B, C and D 327 96 83 94

Tumour size

Early � 5 cm 169 92 67 88

Late >5 cm 166 99 92 98

Treatment intent

Early Curative 61 85 56 75

Late Palliative 252 98 86 98

Abbreviations: BCLC Barcelona Clinic Liver Cancer Classification

Table 21.2 Scenarios from a spreadsheet that automatically delivers the GALAD score (‘Z’) and the probability of HCC according to the
biomarkers that are fed in

ID Gender (0 = female, 1 = male) Age (years) AFP-L3 (%) AFP (ng/ml) DCP (ng/ml) Z HCC probability

Reference row 1 55 9 500 5 4.145 0.984

A 1 65 9 55 24 3.708 0.976

B 1 50 50 20 7 2.258 0.905

C 1 55 4 1 3 −2.665 0.065

D 1 55 1 5 2 −1.384 0.200

E 0 70 4 65 3 1.257 0.778

F 0 45 1 2 1 −5.286 0.005
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21.3.3 The ALBI Score

As noted elsewhere in this book, most patients who develop
HCC do so, on the basis of underlying chronic liver disease
that has often progressed to the stage of cirrhosis by the time
HCC presents. This is of crucial importance in the man-
agement of HCC since it appears to be an independent factor
influencing survival both directly and indirectly by limiting
some of the potentially curative treatments such as surgical
resection.

Conventionally the Child-Pugh score/grade (CPS) has
been used to assess liver function despite the fact that it was
not designed for this application [12, 35]. Furthermore, it

relies on assessment and quantification of ascites and
encephalopathy that are both highly subjective, a concern
which is amplified by the numerous (>30) versions of the
CPS which are described in the literature. Some of these
offer different scoring for the same degree of dysfunction
(for example ‘moderate’ ascites may score I point in some
versions and 2 points in others). Such inherent inconsisten-
cies of the CPS are important since the difference of one
point can move a patient from one class to another and may
impact on their subsequent treatment.

For all these reasons we undertook a detailed analysis of
the factors influencing survival in HCC and identified those
that were independently associated with measures of liver
(dys) function and survival. In the event the two major
liver-related factors were serum albumin (AL) and bilirubin
(BI), hence ALBI. This result was plausible as these two
factors have been identified as those most closely associated
with prognosis in cirrhosis [13].

The model is easy to apply using a heat map [24] and
entirely objective. It is important to recognise that the model
is not claimed to be a prognostic model for HCC; it is for
assessment of ‘liver function’. Further it is not claimed to be
superior to the CPS but rather equivalent. The ‘benefit’ is
reflected in several aspects:

• The CPS relies on five variables, whereas the ALBI score
gives at least equivalent discriminations but only relies
on two of these. It also suffers from all the limitations
referred to previously of analyses that treat continuous
variables in a categorical manner.

• The ALBI score shows that the two highly subjective
variables of ascites and encephalopathy are redundant.

• The ALBI score has been extensively validated and
performs well irrespective of the stage of disease. By
convention CPS is only applied to patients with cirrhosis.

Fig. 21.2 Kaplan Meier curves depicting actual (solid line) and
predicted (dashed line) survival using BALAD-2 model. Figure repro-
duced from [18]

Fig. 21.1 Performance of the GALAD model compared to that of
a individual contributing biomarkers and confined to b patients with
‘small’ tumours (defined as maximum diameter <5 cm). Reproduced
from [25]
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• The ALBI score correlates closely with indocyanine
green clearance, the closest test we have to a ‘gold
standard’ for liver function.

• ALBI permits differentiation within individual CPS
stages [24] (Fig. 21.4).

• ALBI gives much ‘finer’ reporting of liver function such
that it can be monitored in relation to different treatments.

21.4 Conclusions

The models described offer simple, quantitative and objec-
tive approaches to the diagnosis and assessment of prognosis
in HCC that are evidence-based. The utilisation of biomarker
data in its continuous form rather than categorisation/di or
tri-chotomisation according to cut-off points clearly results
in a richer extraction of information that leads to improve-
ment in test performance (Table 21.4).
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22.1 Introduction

The global incidence and mortality rates of hepatocellular
carcinoma (HCC) overlap worldwide, a fact that clearly
indicates that majority of patients are identified with an
advanced cancer that almost invariably prevents potentially
curative treatments, thereby resulting in an average survival
of 1 year from diagnosis [1–4]. The only hope for a cure, in
fact, rests on early diagnosis as it may be obtained through
surveillance of patients at risk, an end-point that unfortu-
nately is achieved in a minority of patients, most clustering
in the developed world [5]. Yet, population-based studies
indicate that even in economically developed regions only a
minority of patients with an HCC will ultimately undergo
regular screening and curative treatments, despite most
doctors and patients are fully aware of the benefits of
screening for such a potentially lethal disease as HCC [6, 7].
This clearly underlines the existence of barriers to screening
like limited or outdated knowledge, lack of financial incen-
tives, limited access to appropriate testing and treatment,
which altogether work against screening effectiveness. This
is no surprise, since surveillance involves more than simply
a screening test, whereas it is framed in a program where
tests, recall policies, and quality control procedures are
standardized, with significant economic consequences [8].

22.2 Target Population

HCC is unique in that it develops in the context of
well-known and readily identifiable environmental risk fac-
tors. Indeed, majority of HCCs occur in patients with
chronic liver disease including cirrhosis caused by chronic
infection with the hepatitis B (HBV) and C (HCV) viruses
and excess of alcohol intake [9, 10]. More recently, meta-
bolic diseases related to insulin resistance, including diabetes
and obesity, have been recognized to be causally related to
HCC as well, in most patients bridging HCC to the
histopathological diagnosis of non-alcoholic steatohepatitis
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(NASH) [11–14]. Since the decision to enter a patient into a
surveillance program is driven by the level of risk for HCC
(Table 22.1), the incidence of HCC is generally taken as a
starting point to select the target population to be screened.
In the absence of experimental data to indicate what level of
risk or what incidence of HCC should trigger surveillance
[15], decision analysis/cost models have extensively been
used to identify the incidence cut-off of HCC at which
surveillance is worth [16]. While any intervention is con-
sidered effective whenever it provides an increase in long-
evity of about 100 days, the same intervention is considered
cost-effective if achieved at a cost of less than US
$50,000/year of life gained [16]. In Caucasian patients with
Child–Pugh A cirrhosis, a 1.5 %/year incidence of HCC has
been associated to about 3 month increase in longevity in a
patient population lacking access to liver transplantation
[17], whereas in a similar analysis including liver trans-
plantation in a population of hepatitis C patients with cir-
rhosis, surveillance with either computed tomography
(CT) scan alone or CT scan plus ultrasound (US) became
cost-effective at HCC incidence rates of more than 1.4 %.
Mitigating however the clinical impact of these models
where the performance characteristics of CT scan being
evaluated in diagnostic studies, not in the context of
screening programs [18]. While biannual surveillance com-
bining alpha-fetoprotein (AFP) with US was deemed
cost-effective regardless of HCC incidence, by others [19].
Therefore, with all the caveats of data obtained through
modeling, it seems reasonable to offer semiannual surveil-
lance to patients with cirrhosis of varying etiology whenever
the risk of HCC is 1.5 %/year or greater [8, 20].

Owing to the fact that cost-effectiveness analyses were
restricted to cirrhotic populations, there are only sparse data
on whether surveillance is worth in cirrhosis-free patients
with chronic viral hepatitis. To our knowledge there is one
cost-effectiveness analysis of surveillance for hepatitis B
carriers using US and AFP levels only, which suggested
cost-effectiveness of surveillance every 6–12 months in
populations with an incidence of HCC exceeding 0.2 %/year
(J. Collier and M. Sherman, unpublished observations).
Currently, the American (AASLD) and the European
(EASL) Associations for the Study of the Liver recommend
surveillance for patients with cirrhosis of any etiology and
for selected hepatitis B carriers using abdominal US at
6-month intervals, whereas the use of serum AFP as a
surveillance test is discouraged [8, 20]. It should be
acknowledged, however, that real-life studies of surveillance
of patients with compensated cirrhosis of any etiology have
highlighted high rates of non-HCC-related mortality that fuel
the argument of cost-effectiveness of screening for liver
cancer in the cirrhotic population [21]. Arguments are likely
to be boosted by EASL recommendation of screening also
hepatitis C patients with bridging fibrosis in addition to those
with histological or clinical evidence of cirrhosis, since the
transition from advanced fibrosis to cirrhosis could not be
accurately documented in all patients [20]. The Asian Pacific
Association for the Study of the Liver (APASL) endorses
surveillance for cirrhotic patients with HBV and HCV
maintaining the combination of US and AFP every 6 months
[22]. Finally, surveillance for HCC is not endorsed at all by
the National Cancer Institute which in fact questions the
robustness and limited generalizability of data obtained so

Table 22.1 Groups for whom HCC surveillance is recommended or in whom the risk of HCC is increased, but surveillance benefit is incertain [8]

Threshold incidence for efficacy of
surveillance (>0.25 LYG) (%/year)

Incidence of HCC

Surveillance recommended

Asian male hepatitis B carriers > 40 years 0.2 0.4–0.6 %/year

Asian female hepatitis B carriers > 50 years 0.2 0.3–0.6 %/year

Hep B carriers with family history of HCC 0.2 Higher incidence than without family history

African/North american blacks with hep B 0.2 HCC occurs at a younger age

Cirrhotic hep B carriers 0.2–1.5 3–8 %

Hep C cirrhosis 1.5 3–5 %

Stage 4 primary biliary cirrhosis 1.5 3–5 %

Genetic hemocromatosis and cirrhosis 1.5 Unknown, but probably > 1.5 %/year

Alpha 1 antitrypsin deficiency and cirrhosis 1.5 Unknown, but probably > 1.5 %/year

Other cirrhosis 1.5 Unknown

Surveillance benefit uncertain

Hep B carriers younger than 40 (males) or 50 (females) 0.2 0.2 %/year

Hep C and stage fibrosis 3 1.5 <1.5 %/year

Non-cirrhotic NAFLD 1.5 <1.5 %/year
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far to elaborate the current guidelines, arguing on the lack of
evidence that HCC mortality is decreased by surveillance
[23]. This position is shared by others in the USA [24].

22.2.1 HBV Carriers as Target

The annual incidence of HCC in patients with chronic hepatitis
B ranges from 2 to 5 %, in strict correlation with the histo-
logical stage of the underlying liver disease [25]. In Europe,
HBV-related HCC is associated with cirrhosis in the majority
of the patients [26, 27], whereas this is not true in Asia and
Africa where the tumor is common also among carriers with
mild hepatic fibrosis, likely as a consequence of long-standing
infection that is often acquired perinatally [28–30]. Recently, it
has been clearly demonstrated that also Asian carriers with
inactive hepatitis, i.e., those with persistently normal ALT and
serum HBV DNA < 2000 IU/ml develop HCC, yet at lower
rates compared to patients with elevated viremia [26, 27, 31,
32]. In HBV patients, HCC risk may be modulated by addi-
tional risk factors like age, co-infection with hepatitis C or
HIV, alcohol abuse, or co-presence of metabolic liver diseases.
According to AASLD and EASL, surveillance is recom-
mended independently on the level offibrosis and ethnicity, to
all adults with active hepatitis B. The REVEAL study and
other population studies have clearly shown the existence of a
direct relationship between the risk of developing HCC and
viral load, even when this predictor was measured years before
tumor diagnosis [32, 33]. This was clearly anticipated by
prospective studies of cohorts of carriers from Europe and
Asia in which the presence of serum HBeAg and high levels of
HBV DNA were found to independently predict the subse-
quent development of cirrhosis and HCC [32, 34–37]. The fact
that most carriers in Far East likely acquired HBV infection
perinatally and had a mean age at enrollment of 40 years,
drove the attention towards high levels of HBV replication
persisting for more than 4 decades as a predictor of increased
HCC risk [38, 39]. An intriguing finding of some studies,
however, was the persistence of HCC risk in aged patients
following HBsAg seroconversion, supporting both the car-
cinogenic role of occult infection with HBV and the need for
continued surveillance of these patients [40, 41]. This is not
the rule in Caucasian patients who were successfully treated
with antivirals, in whom a decline of HCC risk following
HBsAg seroconversion was annotated, likely reflecting dif-
ferences in HBV epidemiology and modality of infection
between Asian and Caucasian populations [42–45] (by cour-
tesy of WR Kim, Stanford University). The fact that the yearly
risk of HCC in male carriers in Southeast Asia starts to exceed
0.2 % at the age of 40 years, irrespectively of liver disease
activity (J. Collier and M. Sherman, unpublished observa-
tions), led AASLD to endorse screening of Asian men from
the age of 40 onwards. On the other hand, surveillance is

recommended for 50 year-old Asian women due to their lower
incidence of HCC compared to men. In patients with a family
history of HCC, surveillance should be offered at a younger
age, although the preferred age cut-off is not established [28,
46]. Since in African carriers HCC develops at a younger age
compared to Caucasians, surveillance in these populations is
deemed necessary at younger age than elsewhere. This is not
the case for blacks born outside Africa [29, 30].

The HBV genotype has been implicated as a driver of
cancer risk, probably as a consequence of genotype-related
differences in duration and severity of HBV-related hepatic
inflammation over time. Studies from Asia involved the
genotype B in anticipated HBeAg seroconversion, higher
rates of sustained remission after HBeAg seroconversion,
less active hepatic necroinflammation, slower progression to
cirrhosis, and lower rates of HCC development compared to
genotype C of HBV [47–52]. Growing evidence suggests
that genotype A infections have a generally more favorable
outcome than genotype D infections in the West [53, 54].
With all the caveats due to a bias of patient selection, studies
in Asia and West recognized that long-term administration
of nucleo(s)tide analogs prevents the onset of HCC in
patients with chronic hepatitis B, not in cirrhosis where the
rates of cancer are lower than in untreated patients [55–57].
All liver societies, therefore, recommend continuing
surveillance in treated patients including cirrhosis achieving
HBsAg seroclearance.

22.2.2 HCV Carriers as Target

AASLD, EASL, and APASL, all endorse screening for
patients with hepatitis C-associated cirrhosis. While the
incidence of HCV-related tumors is declining in southern
Europe and Japan, HCC is on the rise in other geographical
areas including United States and northern Europe, all these
changes being related to a modification of population expo-
sure to viral hepatitis and alcohol [55]. Several retrospective
and prospective studies indicate a wide range of HCC inci-
dence in patients with hepatitis C-related cirrhosis which in
fact spans from 2 to 8 % [58–60]. Conversely, there is a
single prospective population-based study evaluating the risk
of HCC in patients with chronic hepatitis C [61]. That study
carried in 12.008 serum anti-HCV-positive men, demon-
strated a 20-fold increased risk of HCC compared to
anti-HCV negative subjects, without showing any correlation
with presence or absence of cirrhosis. The HALT C study,
originally designed to test the efficacy of chronic interferon
dosing in patients with a previous failure to antiviral therapy,
did confirm the occurrence of HCC in non-cirrhotic patients
with chronic hepatitis C (5-year risk of 4.8 %), providing also
the opportunity of constructing a risk score for HCC by
combining factors like older age, African-American
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ethnicity, lower platelet count, high alkaline phosphatase
activity, and presence of esophageal varices [62].

Studies carried out in the West and Asia demonstrated that
the risk of HCC is attenuated in cirrhotic patients with a
response to interferon-based regimens [63]. However, since
viral eradication does not completely eliminate the risk of
HCC in older patients and those with advanced fibrosis,
surveillance is worth to be continued in patients with cirrhosis
following interferon related clearance of HCV-RNA [8, 20].
Liver cancer has been reported in fact to occur years after
treatment completion, in some studies at a rate between 0.66
and 1.24 per 100 person years [46, 64], in others at rates
between 0.6 and 2.5 % per year [65, 66]. In a French single
center cohort study [55] and in many retrospective studies [64,
65] in cirrhosis, liver-related complications, including HCC
occurred even after achievement of an SVR, reflecting the
carcinogenic effect of the extensive architectural changes of
the cirrhotic liver that may persist following an SVR. Another
prospective Japanese study confirmed these results [67]. The
similar cumulative incidence rates of HCC in patients with
bridging fibrosis and those with cirrhosis highlight the need to
treat HCV patients before the stage of bridging fibrosis. In one
study [68] HCC after SVR was seen in patients with persis-
tence of cirrhosis, not in those in whom cirrhosis reverted
following antiviral therapy. In a retrospective study of more
than 800 SVR patients in Japan occurrence of HCC was
associated to a more severe liver disease score composed by
age, platelet count, liver fibrosis, and AFP [69]. As the risk of
HCC is high in HCV-cirrhotics who fail to achieve an SVR to
interferon-based therapy [63, 64, 70–72], alternative treatment
regimens have been explored. The administration of a long
course of low dose of PegIFNa2a provided no benefit to the
overall population, even though a small benefit in terms of
HCC reduction was seen in patients classified as cirrhotics at
baseline compared to those with advanced fibrosis (cumulative
HCC incidence: 6.8 % vs. 15.5 %, p = 0.01) [73]. However, a
similar study with PegIFNa2b failed to demonstrate any HCC
prevention in both patients with cirrhosis and those with
advanced liver fibrosis [74].

22.2.3 HIV and Viral Hepatitis as Target

In HIV infected patients liver-related morbidity and mor-
tality significantly increased during the HAART era as a
consequence of an important reduction in HIV-related
complications, making co-infection with HBV (6–14 %)
and HCV (25–30 %), to emerge as hepatotoxic factors in
addition to excessive alcohol consumption, non-alcoholic
fatty liver disease, and drug-induced liver injury [75].

While the MORTAVIC study in 2001 indicated HCC to
be responsible for 25 % of all liver deaths, in the HAART
era studies suggest that HCC developing in co-infected

patients is more aggressive, presents at an earlier age and is
less frequently curable than HCC in HCV mono-infected
patients [76, 77]. If confirmed, these observations might lead
to shortening of the interval between US examinations or
extending the surveillance programs to all HIV co-infected
patients, regardless of liver disease stage. Currently, the
criteria for entering HIV co-infected patients into programs
for HCC screening are the same as for mono-infected
patients, i.e., based on the stage of liver disease as previously
discussed.

22.2.4 Cirrhosis of Non-viral Etiology
as Target

The incidence of HCC in cirrhosis caused by diseases other
than viral hepatitis is—with some exceptions—poorly
defined. Chronic consumption of more than 80 g of ethanol
per day for more than 10 years increases the risk for HCC by
approximately fivefold, not to forget, however, that alcohol
consumption of 10 g/day in women is associated with a
24 % increase of HCC risk [78]. Alcohol abuse in patients
with chronic hepatitis C doubles the risk for HCC as com-
pared with the risk in teetotaler carriers of HCV, since there
may be a synergism between alcohol and hepatitis C in
anticipating HCC onset or causing more severe histological
pattern of tumor [79]. In a HCC cohort in Austria, alcoholic
liver disease was the likely cause of HCC in 35 % of sub-
jects [10], whereas in the United States, the hospitalization
rate for HCC-related to alcoholic cirrhosis is 8–
9/100,000/year compared to about 7/100,000/year for hep-
atitis C [11]. Altogether, this data indicates patients with
alcoholic liver disease to warrant surveillance for HCC, as
recommended by AASLD [8]. However, this may not be the
case in other geographical areas like northern European
countries where mortality in alcoholics is mainly related to
acute on chronic liver failure rather than to HCC, a fact that
discourages surveillance of cirrhotic alcoholics in terms of
cost-effectiveness [80].

In the last two decades NASH has been increasingly
recognized as a cause of cirrhosis and HCC, whereby many
patients can progress to liver cancer without histological
evidence of advanced fibrosis or cirrhosis [81, 82]. A recent
analysis of patients referred for liver transplant evaluation at
Clifford Hospital demonstrated a yearly cumulative inci-
dence of HCC in 2.6 % of patients with NASH compared to
4.0 % of those with HCV over a median follow-up time of
3.2 years [83]. Older age at the time of cirrhosis diagnosis
and any alcohol consumption were independently associated
with the development of HCC in NASH-cirrhosis popula-
tion, suggesting that alcohol intake, even in socially accep-
ted amounts, may potentially increase the risk of HCC
development both in NASH- and HCV-cirrhotic patients.
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Findings from a SEER based reanalysis, suggested that
diabetes is an independent risk factor for HCC being asso-
ciated with a two- to threefold increase in the risk of HCC,
regardless of the presence of other major HCC risk factors
[14]. In parallel, a case control study in Italy provided further
evidence that obesity and diabetes are either jointly or
independently associated with an increased risk of HCC,
likely accounting for a relevant number of HCC cases
among subjects lacking markers of HBV/HCV infection
[84]. Several large-scale epidemiological studies have
associated the increasingly overweight prevalence and obe-
sity among the general population with a higher risk of HCC
[85, 86]. In a cohort of 900,000 American adults, the risk of
dying from liver cancer was 4.5 times higher in men with a
body mass index of 35 kg/m2 or above compared to the
reference group with a normal body mass index (18.5–
24.9 kg/m2) [85]. A meta-analysis of case control and cohort
studies concluded that the relative risk of liver cancer was
1.17 for overweight subjects and 1.89 for the obese patients
[87]. Major systemic and liver-specific molecular mecha-
nisms like insulin resistance, hyperinsulinemia, increased
tumor necrosis factor signaling pathways, and lipotoxicity
all together drive the development of HCC in this set of
metabolic diseases. As a matter of fact, both metformin and
PPAR (Peroxisome proliferator-activated receptor)-gamma
agonists that are active components of oral treatment of
diabetes, have been associated with lower risk and improved
prognosis of HCC [88]. Notwithstanding the benefits of
surveillance in non-cirrhotic patients with NASH have been
questioned by AASLD [8]. Conversely, surveillance is rec-
ommended by AASLD in patients with other metabolic
diseases like cirrhotic patients with genetic hemochromatosis
who have a 20-fold relative risk developing HCC, with an
annual incidence of about 3–4 % [89, 90] or patients with
stage-4 primary biliary cirrhosis who have about the same
incidence of HCC as HCV-cirrhotics [91]. The incidence of
HCC in autoimmune hepatitis with cirrhosis is quite low
(about 1.1 %/year), not quite making the cut-off of 1.5 % at
which HCC surveillance becomes cost-effective [92]. No
recommendation was therefore made regarding surveillance
in this group and in patients with alpha 1-antitrypsin defi-
ciency, for whom there are insufficient data to accurately
assess HCC incidence [93, 94].

22.2.5 Patients on the Liver Transplant
Waiting List

Surveillance is endorsed by both AASLD and EASL for
Child-Pugh C patients on transplant waiting list with the aim
to early detect and manage tumor progression and to help
defining priority policies for transplantation.

22.3 Screening Strategy

AASLD, EASL, and APASL share common recommenda-
tions for the semiannual surveillance with US of all patients
at risk [8, 20, 21]. The choice of APASL of adding AFP as a
screening test is not shared by the other associations which
consider AFP of inadequate sensitivity and specificity for
effective surveillance of HCC and the many small HCCs that
do not secrete AFP [95–97]. Indeed, a few early tumors
present with abnormal AFP serum levels, including those
with the molecular signature of aggressiveness like tumors
expressing the epithelial cell adhesion molecule EpCAM
[90, 98, 99]. Another important reason for dropping AFP as
a surveillance test is the lack of a standardized recall policy
for patients without a liver node who have an abnormal AFP
test. Finally, cholangiocarcinoma, the second most common
primary liver cancer, with a completely different manage-
ment and prognosis than HCC, may secrete AFP too [91,
92]. However, AFP could maintain a role in the surveillance
of selected populations, one above all HBV patients under
suppression with nucleotide analogs where confounding due
to hepatitis flares is eliminated by effective antiviral therapy
(Lampertico et al., unpublished observations).

Alternative serological markers of HCC like descar-
boxyprothrombin (DCP), glycosylated AFP (L3 fraction to
total AFP, alpha fucosidase, glypican 3 (GPC-3), heat-shock
protein 70 and DR-70 immunoassay have no added value as
screening tests than AFP [100–115]. One possible exception
is osteopontin that has been reported to be a more accurate
predictor of HCC than AFP; however these observations
need to be externally validated [116].

US is the most accurate and widely used test for surveil-
lance. A small HCC on US may take on one of several dif-
ferent appearances, none of which is specific: the smallest
lesions may be echogenic, because of the presence of fat in
the tumor cells; other may be hypoechoic or show a “target
like lesion” appearance. The US sensitivity is between 65 and
80 % with a specificity greater than 90 % when used as a
screening test [117]. The widespread popularity of US relies
on the absence of risks, non-invasiveness, good acceptance by
patients, and relatively moderate cost [115–117]. However,
the performance characteristics of US are not ideal in obese
individuals with fatty liver disease and cirrhosis. This
notwithstanding, US is superior to any serological test and no
alternative strategy for surveillance has been adequately tes-
ted. Finally, combined use of AFP and US increases detection
rate by 6–8 % only, however at the expenses of a substantial
increase in costs (80 %) and false-positive rates. Indeed, the
false-positive result rates that are 2.9 % for US and 5.0 % for
AFP alone, reach 7.5 % for the combination [118].

At variance with AASLD, EASL and APASL, the Japanese
Association of the Liver recommends intensified screening
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every 3 or 4 months in men with viral cirrhosis or chronic viral
hepatitis of increasing age, or with a history of alcohol abuse,
since these patients are considered at very high risk of HCC
[119]. However, the strategy of intensified screening contrasts
with the paradigm that the intervals of screening are not dic-
tated by the level of HCC risk, which may range from 1 to
more than 3 % per year, but by the growth rate of the tumor
only, which takes 6 months to double its volume, on average
[3]. While it is crystal clear that intensified screening aims to
identify liver cancer at the smallest size possible in order to
optimize treatment, the effectiveness of this policy is largely
questioned. In a recent study in France in patients with cir-
rhosis (mostly alcoholic) who were randomly allocated to
standard (6 months) versus intensified (3 months) intervals of
screening for HCC [120], during a median period of
47 months the 2 groups of study showed similar rates of
cumulative 5-year incidence of HCC nodules (10.0 % vs.
12.3 %), cumulative incidence of HCC � 20 mm and
30 mm in diameter, access to curative treatments (62 % vs.
58 %) and liver-related mortality (85 % vs. 86 %). However,
the fact that the 5-year cumulative incidence of liver nodules
was higher in the 3-month arm (41 % vs. 28 %), clearly her-
alds a greater economic burden to reach a final diagnosis,
which might negatively impact on morbidity and cost utility
ratio of intensified screening.

22.4 The Recall Policy

Recall policies consist of a defined algorithm to be activated
whenever a surveillance test shows an abnormal result. Any
nodule not seen on a prior study should be considered
abnormal as an enlarging or changing echo pattern mass, even

if previously considered to be benign. The nodular cirrhotic
liver poses problems in US interpretation because early HCC
can be difficult to distinguish from background nodularity.
While a number of cirrhotic nodules can be as large as 2 cm,
the majority of nodules smaller than 1 cm are not HCC [121].
Recall is intimately intertwined with the process of making a
diagnosis. An accepted rule is to consider any small nodule as
an abnormal screening result warranting further investigation
[18]. These new nodules should trigger the recall strategy for
diagnosis with either non-invasive or invasive (biopsy) cri-
teria. According to both AASLD and EASL guidelines, cir-
rhotic patients and patients with chronic hepatitis B with a
nodule less than 1 cm in diameter detected by US should
receive an US examination every 4 months the first year and
every 6 months thereafter, until the nodule grows to the point
to be diagnosed by either non-invasive criteria or biopsy
(Fig. 22.1). CT scan and magnetic resonance imaging
(MRI) serve the purpose to demonstrate early arterial
enhancement of the nodule and washout of contrast in the
portal/venous and delayed phases of the exam [122], which
are the radiological hallmarks of HCC. Since US microbub-
bles are confined to the intravascular space as opposed to
iodinated contrast-CT or gadolinium-based MR imaging,
where contrast agents are rapidly cleared from the blood pool
into the extracellular space, contrast enhancement US (CEUS)
may increase the rate of false-positive diagnosis of HCC in
patients with an intrahepatic cholangiocarcinoma (ICC),
without serving as a staging technique. Thus, CEUS has been
dropped from the diagnostic algorithm of HCC endorsed by
AASLD and EASL. Along this line, the European Federation
of Societies for Ultrasound in Medicine and Biology
(EFSUMB) which suggested the typical enhanced pattern for
ICC to be a rim-like enhancement (or non-enhancement)

Fig. 22.1 Very early versus early: 5-year survival after resection of
93 % versus 54 %. According to both AASLD and EASL guidelines,
cirrhotic patients and patients with chronic hepatitis B with a nodule
less than 1 cm in diameter detected by US should receive an US
examination every 4 months the first year and every 6 months

thereafter, until the nodule grows to the point to be diagnosed by
either non-invasive criteria or biopsy. Very early HCC has an indistinct
nodular pattern, escapes detection with contrast imaging and has a
better prognosis than early HCC. Permission from Elsevier
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during the arterial phase followed by hypo/non-enhancement
during the portal and delayed phases [123] and APASL
endorse dynamic MRI and CEUS for the diagnosis of HCC.
Nodular lesions showing an atypical imaging pattern, such as
iso- or hypo-vascular in the arterial phase or arterial hyper-
vascularity alone without portal-venous washout, can be
better diagnosed by Sonazoid- or Levovist-enhanced US
(a second generation contrast enhanced US) and/or SPIO-
enhanced MRI to investigate the hepatospecific pattern of the
nodules [22].

The AASLD algorithm for investigating nodules between
1 and 2 cm endorses the sequential use of a single imaging
technique demonstrating the radiological hallmark of HCC,
which has been demonstrated to reduce the need for FNB
procedures for the final diagnosis of HCC, without affecting
the sensitivity and specificity rates of the recall policy [124–
126] (Fig. 22.2). However, the radiological diagnosis of
HCC is frequently challenged by false-positive results

generated by artero-venous shunts and macroregenerative
nodules with dysplastic liver cells. In a retrospective study
conducted by Yu et al. [127] in cirrhotic patients with a liver
nodule who underwent liver transplant a specificity of 96
and 87 % was found for CT and MRI, respectively, with
false-positive imaging results including macroregenerative
or dysplastic nodules and non-hepatocellular neoplasms like
intrahepatic cholangiocarcinoma (ICC). A lower specificity
rate of both imaging techniques was reported in a prospec-
tive study of patients under surveillance; because the “typ-
ical” vascular pattern was seen in the whole set of high grade
dysplastic nodules, whereas a majority of these nodules
rapidly progressed toward HCC during the follow-up, out-
lining the importance of a prompt identification and treat-
ment [128]. Patients with a radiologically undiagnosed liver
nodule are indicated to a US guided liver biopsy, which in
many instances will disclose the presence of grade-1 HCC
endowed with the best prognosis [129]. The strategy of

Fig. 22.2 Algorithm for investigation of small nodules found on
surveillance in patients at risk for hepatocellular carcinoma [8].
The AASLD algorithm for investigating nodules between 1 and 2 cm
endorses the sequential use of a single imaging technique demonstrat-
ing the radiological hallmark of HCC, which has been demonstrated to

reduce the need for FNB procedures for the final diagnosis of HCC,
without affecting the sensitivity and specificity rates of the recall policy.
AASLD 2010; Bruix and Sherman. Management of Hepatocellular
carcinoma: an update. Hepatology 2011. Permission from Elsevier
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restricting a liver biopsy only to hyper-enhanced nodules or
in the presence of synchronous typical HCC to improve the
cost utility ratio of screening is questioned by many [130].
Undoubtedly, nodules not diagnosed by radiology require a
tight follow-up every 4 months as well as a second biopsy.
The risk of seeding should be considered before performing
a liver biopsy: in 41 papers specifying the total number of
patients biopsied, the median risk of seeding was 2.9 %
(range 0–11 %), being lower (0.61–1.4 %) in patients
undergoing therapeutic percutaneous procedures [131]. The
importance of a liver biopsy rests on its ability to discrimi-
nate between HCC and dysplastic macronodules by the
exclusion of microscopic stromal invasion [132]
(Table 22.2). Immunostaining for GPC-3, and structural and
functional analysis of the genetic profile of the nodules may
also distinguish between macronodules and HCC but all
these approaches likely work better in resected nodules than
in tissue cores obtained through a liver biopsy [132].
Immunohistochemistry of more markers may serve the
purpose to differentiate HCC from dysplastic nodules, like
staining for clathryn heavy chain (CHC) used in addition to
HSP70, GPC3 and GS despite the fact that pre-test proba-
bility of HCC diagnosis is already high in the set of focal
lesions where it was detected [133]. Falsely negative nodules
at contrast imaging may account for approximately 20 % of
all 1–2 cm in size HCCs [138].

22.5 Efficacy of Surveillance

Surveillance aims to detect small HCCs that are amenable to
receive curative treatments, resulting in a significant reduc-
tion in liver-specific mortality compared to patients carrying
a symptomatic HCC [139–143]. In a meta-analysis of 23
studies in patients with cirrhosis, surveillance for HCC
resulted in a 19 % reduction of 3-year mortality [142]. In a
retrospective cohort study of 680 patients with a HCC in
Taiwan, the receipt of routine or opportunistic (for incidental
or non-hepatic purposes) US was associated with a 63 %
reduction in mortality compared to the diagnosis of a
symptomatic tumor [143]. In the last decade, more than
50 % of all patients in Japan have been diagnosed with a

TNM I/II tumor compared to the 1980s, when <10 % of the
patients with a HCC was diagnosed at an early stage [144].
In Alaska, a surveillance program of semiannual determi-
nations of serum AFP in HBV carriers led to the identifi-
cation of curable HCC in 40 % of the affected population, a
fact that was perceived as beneficial since prior to AFP
screening program the case-fatality rate for HCC in Alaskan
natives was 100 %, with an average survival of 3 months
only [145]. A randomized controlled study in Shanghai
using abdominal US and serum AFP every 6 months to
screen individuals with chronic hepatitis and other risks for
HCC showed a reduction of the mortality rates in screened
versus unscreened population of 83.2 versus 131.5 per
100,000 inhabitants [146]. However, the proportion of
patients with cirrhosis was unknown, transplantation was not
included among the radical therapies and the compliance of
the population to the program was suboptimal (58 %).
Notwithstanding all these limitations, the Shanghai study is
the only randomized controlled trial to confirm the impor-
tance of early diagnosis for improving HCC-related mor-
tality. In Milan, a reanalysis of 112 cirrhotic patients with a
HCC detected during a hospital-based surveillance program
showed the survival rates to be improved in patients who
were treated for a liver cancer detected during the last
5 years of surveillance compared to previous intervals (90 %
vs. 55 %, p = 0.0009) [147]. Increased survival was attrib-
uted to a significant reduction in the mortality rates of treated
patients (from 34 to 5 %, p = 0.003), due to wider appli-
cation of curative treatments and improved selection of
patients undergoing surgical or ablative treatments. In Tai-
wan between 1989 and 1998, there was a significant increase
in survival among 3345 patients with a HCC during the last
5 years (from 29 to 35 %), that was only in part (34 %) due
to advancement in medical care, but mostly (66 %) attribu-
table to early detection [148].

The positive results reported by these observational
studies must be interpreted in the context of almost
unavoidable potential biases such as lead time bias, i.e., the
apparent improved survival that comes from the diagnosis
being made earlier in the course of a disease than when the
disease is diagnosed because of the development of symp-
toms or length bias, i.e., the apparent improvement in

Table 22.2 The Importance of Liver Biopsy to Discriminate HGDN from Early HCC

Diagnostic approach Etiology HGDN versus HCC Reference

Histology Reticulin HBV/HCV Stromal invasion (−) versus (+) Kojiro et al. [132]

Immunostatin GPC3, HSP70, GS, CHC Mixed At least 2: 50 % sens. 100 % spec. Di Tommaso et al. [133]

PCR 13 genes Mixed 98 % accuracy Paradis et al. [134]

GPC-3 survivin LYVE-1 HCV 94 % accuracy Llovet et al. [135]

Microarray 120 genes HBV 100 % accuracy Nam et al. [136]

93 genes HCV 100 % accuracy Wurmbach et al. [137]
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survival that occurs because surveillance preferentially
detects slow growing and better treatable cancers.

These potential biases notwithstanding, surveillance for
HCC is considered a standard of care, not a clinical option.
This is clearly perceived by majority of informed patients
who believe surveillance to be the only practical approach to
improve prognosis of HCC as reported by a survey in cir-
rhotic patients carried out in three academic centers in Sid-
ney, Australia, who were asked to enter a randomized
control trial of surveillance for HCC [149]. Despite appre-
ciating the relevance of a randomized controlled study to
determine the applicability, efficacy, and cost-effectiveness
of HCC screening, the vast majority of informed responders
(98 %) preferred surveillance. One reason for declining
randomization is fear of the arbitrary nature of the process
and also patients desire to have a more active role in medical
decision-making, suggesting that a randomized controlled
study of HCC surveillance is nowadays unfeasible in
informed patients with a disease like cirrhosis known to
predispose to liver cancer. Apparently, cost-effectiveness of
screening was less than an issue among patients than it was
among physicians, yet most of them (74 %) reported to
routinely screen all cirrhotic patients. This contrasts with a
population-based study in the USA where 6.6 % of 3903
Medicare patients with HCC were shown to receive regular
surveillance prior to diagnosis, only [6], a finding which
replicates the low rate of screening uptake (12 %) among
hepatitis C infected veterans with cirrhosis [7]. Interestingly,
the fact that gastroenterologists, hepatologists, or physicians
with an academic affiliation were more likely to perform
surveillance than practitioners involved in community-based
practices suggests that barriers to screening like limited or
outdated knowledge, lack of financial incentives, limited
access to appropriate testing and treatment, altogether work
against screening effectiveness.

Thus, despite benefits of surveillance for HCC are
appreciated by most physicians and patients, surveillance for
HCC is not a consolidated practice as it should, even in
resource-rich countries. To bridge the chasm of screening for
HCC, educational programs advocating screening in risk
populations should be implemented targeting both patients
and stakeholders in the field, while waiting for a break-
through in the strategy of screening to occur, which may
lead to a switch of screening programs from hospitals to the
community, with the aim to improve population’s access.

22.6 The Economic Consequences
of Surveillance

While the benefits are intuitive, the economic consequences
of HCC surveillance strategies are generally poorly appre-
ciated, due to the lack of randomized trials evaluating

moderators of treatment outcome like compliance, hetero-
geneity of liver disease and treatment effectiveness that, in
addition to tumor incidence, impact on cost–utility ratio of
surveillance. The never-ending argument of cost–utility ratio
of surveillance has been analyzed by Markov modeling;
moreover in the frame of epidemiological and interventional
assumptions which do not necessarily reflect real-life prac-
tices. This further underscores the chasm between efficacy
and effectiveness of screening for HCC, which may also be
inflated by a priori decision to measure cost–utility ratios at
less than US$50,000 for quality adjusted life year (QALY)
saved. This assumption may conflict with policies of
equitability while being influenced by the trends of econ-
omy, worldwide [150]. The review and economic analysis
published by Coon et al. [151] modeled a population with a
diagnosis of compensated cirrhosis who were also eligible to
enter a surveillance program. Based on the assumptions used
in the model, the most effective surveillance strategy uses a
combination of AFP testing and ultrasound at 6-month
intervals. Compared with no surveillance, this strategy is
estimated to more than triple the number of people with
operable HCC tumors at time of diagnosis, and almost half
the number who die from HCC. This is a result of the
identification of over ten times as many small HCC tumors
(less than 2 cm in diameter) and over twice as many
medium-sized tumors (between 2 and 5 cm in diameter).
Consequently, more tumors are suitable for surgical inter-
vention. Under the conditions of the model, this surveillance
strategy would lead to an increase in the percentage of liver
transplantations performed for known HCC (as opposed to
decompensated cirrhosis) from 8 to 28 %, compared with no
surveillance. A cost–utility analysis done in parallel indi-
cates that adding US to 6-month AFP surveillance led to a
cost–utility ratio of US$60,000 for QALY gained. Surveil-
lance appeared to be more cost-effective in individuals with
hepatitis B-related cirrhosis, potentially due to the younger
age at diagnosis of cirrhosis.

22.6.1 How to Optimize Surveillance?

To improve cost-effectiveness of HCC screening, strength-
ening prediction at individual level through pre-treatment
patient stratification by clinical or histological scores has
been attempted, yet with uncertain benefits. In a study in
Spain, 463 patients were prospectively and randomly
included in a program for early diagnosis of HCC [152]
based on abdominal US and measurement of AFP levels
every 3 or 6 months. In the multivariate analysis, develop-
ment of HCC was predicted by age 55 years or older,
anti-HCV positivity, prothrombin activity 75 % or less, and
platelet count less than 75 � 103/mm3. Using these vari-
ables to construct a clinical-biological predictive score, two
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groups of patients at low (2.3 %) and high risk (30.1 %) of
developing HCC in 4 years, were identified.

22.6.1.1 Viremic Patients
Based on a mix of demographic, virological, and clinical
features, propensity scores were generated in the NUC era in
patients with chronic hepatitis B and therefore they could be
used to optimize selection of screenees in HBV hyperen-
demic areas.

These scores, however, differ from each other in terms of
applicability in real life, since REACH-B [153] stands as the
only score developed in a community of non-cirrhotic pop-
ulation; conversely, GAG [154] and CU-HCC [155] were
obtained in hospital patients, both including the diagnosis of
cirrhosis, but only REACH-B and CU-HCC were externally
validated.

From a clinical standpoint the three scores shared the
merit to accurately identify patients who had remained
HCC-free during a surveillance period of 3 years (NPV of
98 %), suggesting their safe use as negative predictors to
optimize surveillance programs in an hyperendemic area like
China. However, when REACH-B was tested in patients
with cirrhosis in the validation study, its prognostic accuracy
resulted affected. To overcome the burden of cirrhosis
diagnosis, liver stiffness measured by fibroscan was incor-
porated in CU-HCC, leading to 100 % negative predictive
power of the score in a 3-year surveillance period [156].
Unfortunately, all these scores did not optimally perform in
non-Chinese populations: when applied to a North American
population with HBV, REACH-B was the only model to
show a robust negative predictive value for HCC during the
first years of surveillance [157].

As expected, risk scores for HCC have been developed in
patients with chronic hepatitis C, as well. A score based on
age, gender, platelets and AFP was developed more than
10 years ago in Japanese patients with HCV-related cirrhosis
and externally validated, providing a frame for stratifying
patients into very low, intermediate and high risk groups of
developing cancer in a 5 and 10 year period [158]. Unfor-
tunately, the lack of a robust negative predictive power
renders this propensity score unfit for optimizing patient
selection for screening programs whereas the level of risk
does not predict the growth rate of HCC, which in fact is the
only parameter to dictate the optimal intervals of screening.
More recently, a score has been developed and validated
using the REVEAL cohort of asymptomatic anti-HCV sub-
jects in Taiwan, which combines age with laboratory and
virology features and diagnosis of cirrhosis [159]. The score
succeeded in stratifying subjects in three risk levels inde-
pendently on viremia, however with an unacceptable 5 %
risk of developing HCC in the low risk category. Other
scores based on demography, portal hypertension and AFP
have been developed in patients with chronic hepatitis C, yet

without any external validation, and for this reasons these
scores cannot be considered for real-life practice.

22.6.1.2 Non-viremic Patients
Since antiviral therapy does not eliminate the risk of HCC in
patients who are chronically infected with HBV while it is
an important HCC risk modifier, propensity scores validated
in viremic patients need to be separately evaluated in
patients with NUC-suppressed viremia to see whether they
maintain a robust prediction power, too.

In a comparative study by Wong and associated, all three
propensity scores developed in Asia did perform as negative
predictors of HCC as they did in viremic patients. In addi-
tion, patients with improved GAG and CU-HCC at year two
of entecavir therapy had a 50 % reduced risk of developing a
HCC during the same time period [160]. This is an important
data to refine strategies of surveillance, considering that
HCC can only be prevented in two-thirds of patients
undergoing 5 years of NUC therapy who were aligned by
these scores. In two studies in European patients, the per-
formance of these three Chinese scores was suboptimal,
likely consequence of the epidemiological differences
existing between Caucasian and Chinese patients with HCC
[161, 162]. While the importance of these propensity scores
relies on their practicality, we should not forget that in HBV
patients undergoing NUC therapy HCC was predicted by
patient age, presence of cirrhosis, and diabetes mellitus,
suggesting that development of liver cancer in virally
infected populations is multifactorial [163]. In the Western
world the retrospective analysis of 1666 patients who were
long treated with NUCs showed an association between
cancer risk and patient age, platelets and liver status. Com-
bining patient age, gender, and platelet count it was possible
to elaborate a propensity score named PAGE-B for Cau-
casian patients under NUC therapy whereby a group of
patients with 0 risk of developing liver cancer in a 5-year
period of surveillance, could be identified [164].

A propensity score has been developed also to predict
HCC in patients with chronic hepatitis C who achieved an
SVR to pegIFN based therapy. Using a score based on age,
platelet count, AFP, and advanced fibrosis, Chang and
co-workers were able to stratify patients into low risk,
intermediate risk and high risk of developing liver cancer
groups [69]. Unfortunately, the low risk group was burdened
by 1.4 % residual risk of developing HCC over a 5-year
period of surveillance, a fact that frankly discourages tuning
of surveillance strategies by this predictive score system.
However, the use of demographic and laboratory criteria
makes this propensity score user-friendly and circumvents
the need of detecting residual cirrhosis with either
non-invasive or invasive procedures.

Currently, none of the propensity scores developed thus
far in patients with chronic hepatitis B or C has been
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enriched by genetic predictors of tumor susceptibility, pos-
sibly because none of studies based on genetic polymor-
phisms or molecular signatures could identify robust
predictors for a molecularly heterogeneous cancer like HCC
in at risk populations [165–167].

Propensity scores have been developed to assess HCC
risk in both virus etiologies with the aim of optimizing
intervals of screening in patients with a robust negative
prediction of HCC in a short time period. While prediction is
of overwhelming importance to optimize hospital-based
surveillance programs with abdominal US, these findings
raise the argument whether it can ethically be accepted to
deny screening to patient at low risk of cancer therefore
jeopardizing patient access to effective radical therapies.
Moreover, there is an urgent need to identify HCC predictors
in the general population, independently on liver disease
etiology that would allow to bring screening for HCC from
hospital-based facilities among the community. Such a
switch of surveillance strategy might, in fact, improve
patient access to screening, thereby resulting in greater
survival benefits provided by expanding the number of
patients identified with an early HCC.

22.7 Conclusions

A recent study in SEER-13 registries [1] highlighted the
emergence of a bounce of epidemiological HCC-related
encouraging findings, like the incidence rates of
localized-stage HCC increasing faster than rates of regional-
and distant-stage HCC combined (8 % vs. 4 % per year).
The incidence rates of reported first-course surgery or tumor
ablation increased faster than incidence rates of HCC with-
out receiving such treatments (11 % vs. 7 %). Finally
between 1975–1977 and 1998–2007, 5-year cause specific
HCC survival increased from 3 to 18 %. While this data
suggests that HCC survival is improving as a consequence of
more patients being diagnosed and treated at early stages,
additional progress may be possible through educational
programs advocating screening in risk populations while
waiting for a breakthrough in the strategy of surveillance to
occur which leads to a switch of screening programs from
hospitals to the community, with the aim to improve popu-
lation’s access. Finally, although survival benefits of
screening are not evidence based, surveillance of patients at
risk stands as the only practical approach to reduce
HCC-related mortality owing to the remarkable improve-
ment of treatment outcome in patients with early detected
tumors compared to those with late discovered, incidental
tumors.
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Accurate detection, characterization, and staging of hepato-
cellular carcinoma (HCC) are the most difficult challenges
facing by radiologists and other physicians who caring pat-
ients with chronic liver disease. Most HCCs occur within the
cirrhotic liver and the diffuse and focal abnormalities that
characterize the cirrhotic liver are often difficult to differ-
entiate by any imaging test. Nevertheless, cross-sectional
imaging modalities (sonography, computed tomography, a-
nd magnetic resonance imaging) are applied frequently in
the evaluation and surveillance of patients with chronic liver
disease and much has been learned about the relative merits
and accuracy of these tools. There are substantial variations
among investigations in their recommendations for the ch-
oice and timing of imaging studies, many of which reflect
the relative geographic prevalence of HCC and the avail-
ability and expense of imaging tests, as well as the enthus-
iasm and expertise of the interpreting physicians. In this
chapter, we will review the current knowledge and published
recommendations for imaging surveillance of chronic liver
disease.

23.1 Monitoring the Cirrhotic Patient

A variety of clinical and biochemical parameters are used to
follow the progression of cirrhosis, including serum tests of
liver function and tumor markers, such as a fetoprotein
(AFP) and PIVKA II (protein induced by vitamin K absence
or antagonist). The role of imaging is to measure and char-
acterize the morphologic manifestations of cirrhosis (liver
size, scarring, etc.), evaluate the hepatic and extrahepatic
vasculature, assess the effects of portal hypertension, and
detect and characterize focal hepatic masses.

23.2 Focal Lesions in the Cirrhotic Liver

23.2.1 Fibrosis

Fibrosis is present in all cirrhotic livers but uncommonly is
visualized as a discrete structure on cross-sectional imaging.
Fibrosis imparts the coarse, heterogeneous echo pattern that
is the typical ultrasound appearance of the cirrhotic liver.
When fibrosis forms thick septa or a confluent mass, it is
detectable by CT or MR. Confluent fibrosis can be mistaken
for a mass lesion [1, 2], but has a characteristic set of features
that allow confident diagnosis in most cases. Based on the
recent report, confluent hepatic fibrosis is most commonly
occurred in the middle hepatic venous drainage area or at the
boundary between the medial and anterior segment [3]. On
unenhanced CT it is hypodense to liver. In
contrast-enhanced CT, the fibrotic area shows progressive
and prolonged enhancement and evidence of volume loss of
the affected part of the liver, resulting in crowded vessels
and hepatic capsular retraction (Fig. 23.1). MR shows sim-
ilar morphologic features, including delayed persistent
enhancement with IV gadolinium contrast material. More
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intense enhancement on arterial or portal venous phase
images (CT or MR) may make it difficult to distinguish
confluent fibrosis from an infiltrative neoplasm such as HCC
or cholangiocarcinoma.

23.2.2 Regenerating Nodules

The regenerating nodules of the cirrhotic liver include
macronodular (typical in chronic hepatitis B) and micron-
odular lesions (more common in other causes of cirrhosis).
Most regenerating nodules are not detected as discrete
masses by cross-sectional imaging because they are too
small or are too similar to surrounding liver parenchyma in
terms of echogenicity (ultrasound), density or attenuation
(CT), or intensity (MR).

Ultrasoundmaysuggestaregeneratingnoduleasarelatively
hypoechoic lesion relative to the surrounding hyperechoic
fibrotic cirrhotic liver; however, ultrasound cannot distinguish
accuratelybetweenregeneratingnodulesandmalignantmasses.
Almostallsonographicallydetectedfocalhepaticlesionswithina
cirrhotic liver require further evaluation by CT or MR and/or
percutaneousimage-guidedbiopsy.

CT detects regenerating nodules when they are sur-
rounded by fibrosis (with the fibrotic bands being hypodense
on unenhanced CT) or when they contain iron deposits,
so-called siderotic nodules. Regenerating nodules are typi-
cally hyperdense to liver on nonenhanced CT and are iso-
dense to liver (undetectable) on hepatic arterial phase and
portal venous phase CT images [4] (Fig. 23.2).

MR detects more regenerating nodules than CT, though it
may depict only the larger or more siderotic nodules. Most
regenerating nodules are isointense to liver on both T1- and
T2-weighted images. Siderotic nodules have characteristic
imaging features including decreased signal intensity on
T2-weighted pulse sequences and “blooming” (appearing
larger and more prominent) on gradient echo sequences with
longer echo times [4] (Fig. 23.3).

Regenerating nodules usually enhance to the same or a
lesser degree than the surrounding liver, a feature that makes
them less apparent on contrast-enhanced CT or MR exams,
but which serves as a useful distinguishing feature from other
focal lesions. Some cirrhotic nodules, however, demonstrate
definite enhancement, making them impossible to distinguish
from dysplastic nodules or even HCC in some cases.

Fig. 23.1 Confluent hepatic fibro-
sis. a Unenhanced CT shows a
hypodense lesion (arrow) bridging
the anterior and medial segments of
the liver. b Portal venous phase
image shows iso-density to the cor-
responding area (arrow). Note the
overlying retraction of the hepatic
capsule indicating volume loss of
this part of the liver. The lesion was
isodense to the liver (invisible) on
enhanced CT scans

Fig. 23.2 Regenerating nodules.
a Unenhanced CT demonstrates
dozens of hyperdense rounded
lesions throughout the liver. Most
are about 1 cm in diameter.
b Enhanced CT (portal venous
phase). The nodules become
isodense with the liver and can
not be detected
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23.2.3 Dysplastic Nodules

Sakamoto et al. and other Japanese investigators have pro-
posed that HCC frequently develops from preexisting
regenerating nodules that have undergone metaplastic or
dysplastic change [5, 6]. In 1995, the International Working
Party proposed “Terminology of Nodular Hepatocellular
Lesions” [7]. Hepatocellular nodules were classified as fol-
lows: regenerative nodule, low-grade dysplastic nodule
(L-DN), high-grade dysplastic nodule (H-DN), and HCC.
Analogous to a colonic adenoma evolving into a colonic
carcinoma, this theory proposes that some overt HCCs are
the end result of a multistep evolution of regenerating nodule
to an L-DN than an H-DN and subsequently into HCC.
Accordingly, dysplastic nodules are considered premalig-
nant. Dysplastic nodules are found in 11–25 % of explanted
livers at transplantation [8–10]. It is reported that cumulative
HCC development rates at the first, third, and fifth year were
46.2, 61.5, and 80.8 % for H-DN; 2.6, 30.2, and 36.6 % for
L-DN; 3.3, 9.7, and 12.4 % for regenerative nodule,
respectively [11].

Unfortunately, dysplastic nodules are difficult to recog-
nize on imaging and may have features in common with
regenerating nodules or HCC. Dysplastic nodules are
reported to show homogeneous low echogenicity and, on
Doppler sonography, continuous afferent waveform signals
that reflect their portal venous supply, rather than pulsatile
arterial flow [12]. In contrast-enhanced ultrasound, dys-
plastic nodules show arterial hypovascularity in the arterial
phase followed by portal perfusion in portal venous phase

and isouptake in Kupffer phase [13]. However, we have
rarely diagnosed or even correctly suggested the presence of
a dysplastic nodule by sonography. Bennett et al. [14]
detected only 1.6 % of dysplastic nodules within cirrhotic
livers by sonography compared with thin-section explanted
liver pathologic results.

Becausee dysplastic nodules receive predominantly portal
venous flow, they usually do not demonstrate bright
enhancement on arterial phase CT or MR. Therefore, marked
arterial phase enhancement should suggest HCC rather than
dysplastic nodule, although well-differentiated HCCs often
show substantial portal venous rather than arterial enhance-
ment [10, 15]. A diagnosis of dysplastic nodule can be
suggested based on a CT finding of a small nodule (� 2 cm)
that is non-encapsulated and hypodense to surrounding liver
on enhanced CT scan. However, CT is quite limited in
diagnosing dysplastic nodules, with reported sensitivity of
10–34 % [8, 10] and poor specificity as well.

MR offers the most promise in diagnosing dysplastic
nodules which are reported to demonstrate iso- or hyperin-
tensity on T1-weighted images and hypointensity on
T2-weighed images, quite in contrast to typical findings for
HCC [16] (Fig. 23.4). Arterial phase bright enhancement
should suggest development of a focus on HCC within a
dysplastic nodule, so-called “nodule-in-nodule appearance”
(Fig. 23.5). Liver-specific gadolinium contrast agent, includ-
ing gadobenate dimeglumine and gadoxetic acid disodium as
we see later in this chapter, can offer an additional information
for the development of HCC within a dysplastic nodule.
Dysplastic nodules show iso-intensity on hepatobiliary phase

Fig. 23.3 Regenerating nodules.
a Out-of-phase T1-weighted
gradient-echo (TE = 2.2 msec)
image shows faint low intensity
representing siderotic nodules in
segment VI. b In-phase
T1-weitghted image (4.2 msec)
demonstrates darker
(hypointense) and blooming
subcentimeter lesions to
corresponding area.
c T2-weighted image shows the
same lesion is also hypointense to
liver
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using liver-specific contrast agent, whereas development of
HCC typically appears hypointensity [17].

In an excellent study comparing MR with explanted livers
among transplantation recipients, however, Krinsky et al.
were able to detect only 15 % of dysplastic nodules on
pre-transplant MR studies [9]. Moreover, 4 of 59 dysplastic
nodules demonstrated arterial phase enhancement and were

mistaken for HCC. Finally, some non-dysplastic regenerat-
ing nodules were hyperintense on T1 and hypointense on
T2-weighted images, further limiting the specificity of MR
for this diagnosis.

The typical CT and MR findings that may be helpful in
distinguishing among various nodular lesions in the cirrhotic
liver are summarized in Table 23.1.

Fig. 23.4 Dysplastic nodules. a T1-weighted MR demonstrates 3.0 cm (arrow) nodule that is slightly hyperintense to surrounding liver.
b T2-weighted MR shows the same lesion is slightly hypointense to liver. c Gadoxetic acid enhanced hepatobiliary phase image shows the same
lesion is isointense to liver

Fig. 23.5 “Nodule-in-nodule appearance” of HCC. a Arterial phase MRI shows faint enhancement (curved arrow) within the larger hypointense
nodule (arrow). b Portal venous phase MRI shows the entire nodule as iso-intense to liver (arrow)
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23.3 Hepatocellular Carcinoma

Detection of any mass lesion is dependent on its size and the
“contrast difference” between the mass and the surrounding
liver. Distinguishing a small nodular HCC within the cir-
rhotic liver is challenging, especially since the “background”
liver is usually heterogeneous due to varying amounts of
fibrosis, necrosis, fat, regenerating nodules, etc. Almost all
imaging tests rely on intravascular administration of contrast
media to increase the conspicuity of mass versus liver, as well
as to characterize the hemodynamic features of the mass.

Ultrasonography is often used as a screening modality for
high-risk patients and is repeated at frequent intervals.
A small HCC may be hypo-, hyper-, or isoechoic on
sonography, the latter is detectable only if set off by a
peripheral halo or pseudocapsule [12]. Contrast-enhanced
sonography are useful in demonstrating heterogeneous
hypervascularity and Kupffer cell function within HCC and
may increase the sensitivity and specificity of sonography in
diagnosing HCC [18, 19]. HCC is never diagnosed by
sonography alone; percutaneous biopsy, usually preceded by

CT and MR, is routine. Moreover, even in the small adult, it
is difficult to avoid sonographic “blind spots” in the liver due
to overlying ribs or bowel gas or excessive fibrosis or fat that
attenuates the ultrasound beam.

In most institutions, multidetector row CT (MDCT) and
newer MR pulse sequence including three-dimensional fat
suppressed T1-weighted gradient echo have been the main-
stay in imaging surveillance of the cirrhotic liver and allow
efficient breath-held scanning through the liver prior to
contrast administration, as well as during the arterial phase,
portal venous phase, and delayed or equilibrium phases of
the circulating IV bolus of contrast material [20]. It warrants
emphasis to state that a CT or MR scan performed without
multiple phases of imaging or without the rapid IV bolus
administration of contrast medium will miss most small
(treatable) HCCs and is nearly useless as a screening test.

CTallows thedetectionandcharacterizationofmosthepatic
masses more than 2 cm in diameter. Common benign lesions
such as cysts, hemangiomas, and focal fat should be identified
with confidence (Fig. 23.6), and there is ample documentation
of the reliability of CT findings in this setting [21, 22].

Table 23.1 Nodular lesions in cirrhosis

CT MR

NC HAP PVP Delay T1 HAP PVP T2

Regenerative nodule — or " — — — — or " — — — or #
Dysplastic nodule — or " — or " — — — or " — or " — — or #
Well-diff HCC — or # — or # # # — or " — or " — or " "
Mod-diff HCC — or # — or " — or # # — or # " — or " "
— = Not seen (isodense, isointense)
" = Hyperdense (-intense) to liver
# = Hypointense (-intense) to liver
HAP = Hepatic arterial phase
PVP = Portal venous phase

Fig. 23.6 Small cavernous
hemangioma. a Unenhanced CT.
b Arterial phase enhanced CT.
c Delayed phase CT. A 1.5 cm
nodule (arrow) in the medial
segment is isodense with blood
vessels on all 3 phases identifying
it as an hemangioma rather than
HCC

23 Use of Imaging Techniques to Screen Hepatocellular Carcinoma 359



HCCs can have a variety of appearances on CT, but the
morphology and hemodynamic characteristics of this tumor
are well depicted. Large tumors are heterogeneous, often
multifocal, and frequently obstruct or invade intrahepatic bile
ducts or the hepatic or portal veins (Fig. 23.7). Large tumors
such as these are relatively easy to detect and stage by CT but
are not curable and, as such, represent a failure of screening.

Aggressive screening should result in the detection ofmuch
smaller HCCs that are often amenable to treatment, whether
for palliation or cure. Small well-differentiatedHCCsmay still
receive predominantly portal venous flow and, therefore,
appear relatively hypo- to isodense to liver on the nonen-
hanced and arterial phase images, and distinctly hypodense to
liver on portal venous and delayed phase images [10, 15, 23]
(Fig. 23.8). Most HCCs, even when small, develop increased
arterial flow through tumor vessels and are best detected on the
arterial phase CT images as a homogeneous or slightly
heterogeneous hyperdense mass with rapid washout of con-
trast resulting in a slightly hypodensemass on portal venous or
delayed images (Fig. 23.9). The delayed or equilibrium phase
of imaging can be helpful as an added sequence; some HCC
will have a capsule or small foci of fat while regenerating and
dysplastic nodules do not.

Caution is necessary to avoid mistaking certain perfusion
abnormalities of the liver for hypervascular tumor. A small
peripheral wedge-shaped area of increased density seen only
on the arterial phase of imaging is a transient hepatic

attenuation difference (THAD) and is usually due to arteri-
oportal shunts or aberrant venous drainage [24, 25]. Other
researchers have described several kinds of non-neoplastic
lesions that are seen as early enhancing foci during the
hepatic arterial phase, potentially mimicking hypervascular
neoplasms; the causes include non-neoplastic arterioportal
shunting [26, 27], portal vein obstruction [28], cystic venous
drainage [29], or compression effect [30]. Larger segmental
or even lobar enhancement differences should prompt close
scrutiny for portal venous occlusion or invasion which may
result from HCC.

Well-differentiated HCC often contains microscopic or
macroscopic deposits of fat which imparts characteristic
imaging features. Intralesional fat renders the HCC hypere-
choic on sonography, hypodense on noncontrast CT, and
hypointense on fat suppressed T1-weighted MR (Fig. 23.8).
Some HCCs are surrounded by a complete or partial “cap-
sule” that may be fibrotic and visible as hypodense on
nonenhanced CT (and T1-weighted MR) but become
hyperdense on delayed enhanced CT (or MRI) images.

HCC can be variably intense on T1-weighetd MR (35 %
hyper-, 25 % iso-, 40 % hypointense), but almost all are
hyperintense on T2-weighted images [31]. Multiphasic
imaging following bolus administration of IV contrast
medium is just as essential for MR evaluation of HCC as for
CT. The usual intravenous agent is gadolinium (Gd-DTPA,
gadopentetate dimeglumine, and gadoxetic acid disodium).

Fig. 23.7 Hepatocellular
carcinoma (HCC). a Arterial
phase CT shows a hypervascular
7 cm tumor (arrow). b Portal
venous phase CT shows the HCC
as slightly hypodense to liver
(arrow). c Coronal reformatted
portal venous phase CT. The
middle hepatic vein are occluded
by progressive tumor (arrow)
continuing to right atrium (curved
arrows)
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Arterial, portal venous, and delayed phase imaging demon-
strate the same hemodynamic tumor characteristics as
detailed for CT [31, 32].

Liver-specific MR contrast agent is useful in evaluation
of masses within the cirrhotic liver. Gadoxetate disodium

(Eovist or Primovist) is a new MRI contrast agent which
offers perfusion and hepatoselective properties. It works as
an extracellular contrast agent for the first few minutes fol-
lowed by as a hepatobiliary agent for several minutes [33,
34]. The overt HCC can appear bright enhancement on

Fig. 23.8 Fat-containing well-differentiated HCC. a In-phase T1-weighted image shows little signal difference corresponding to the mass
(arrow). b Out-of-phase T1-weighted image. The mass (arrow) shows markedly hypointensity indicating signal suppression due to lipid content of
the HCC. c Fat suppressed T2-weighted image. The mass shows the same mass is slightly hyperintense to liver. d Gadoxetic acid-enhanced hepatic
arterial phase image barely detects the mass. e Gadoxetic acid-enhanced portal venous phase image shows the same mass is slightly hypointense to
liver. f Gadoxetic acid-enhanced hepatobiliary phase image shows the same mass is markedly hypointense to liver

Fig. 23.9 Surveillance for HCC.
a Arterial phase CT shows
slightly heterogeneous
hyperdense mass (arrow).
b Portal venous phase CT shows
the same tumor (arrow) is
hypodense to liver. c Delayed
phase CT. The mass is slightly
hypodense to liver
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arterial phase, washout on portal venous or late-dynamic
phase, homogeneous or heterogeneous hypointensity on
hepatobiliary phase image (Fig. 23.10). Hepatobiliary phase
image offers the best contrast between hypointense HCC and
hyperintense surrounding liver tissue. It should be noted that
“early HCC” is the current concept introduced by Interna-
tional Consensus Group for Hepatocellular Neoplasms in
2009 [35]. Early HCC is defined as small well-differentiated
HCC of vaguely nodular and has a higher 5-year-survival
rate compared with progressed HCC. Although most of the
early HCCs cannot be detected by CT or MRI using con-
ventional extracellular contrast agent, gadoxetic
acid-enhanced MRI is a sole modality to visualize these as
hypointense nodules on hepatobiliary phase image without
arterial enhancement (Fig. 23.11).

23.4 Accuracy of Sonography, CT, and MR
as Screening Modalities

Many reports claim accuracy, sensitivity, and specificity of
over 90 % for CT and MR in diagnosis of HCC, and only
slightly less for sonography. Most of these are retrospective
studies, report predominantly on large tumors that were
known or suspected prior to imaging, lack a gold standard of
proof, and suffer from numerous sources of bias. The most
reliable reports are based on investigations comparing the
imaging test with pathological exam of the explanted liver or
with a combination of sophisticated imaging tests, resection,
biopsy, and clinical follow-up. We will focus on several
studies that meet these criteria.

Fig. 23.10 The overt HCC on gadoxetic acid-enhanced MRI.
a Gadoxetic acid-enhanced arterial phase MR shows a huge hypervas-
cular HCC (arrow) and faint tiny enhancement (curved arrow).
b Gadoxetic acid-enhanced portal venous phase MR shows the same

huge mass (arrow) is hypointense to liver. c Gadoxetic acid-enhanced
hepatobiliary phase MR shows the same huge mass (arrow) is clearly
hypointense to liver. Note that tiny hypointense nodule (curved arrow)
is clearly demonstrated compared to arterial enhancement on A

Fig. 23.11 The early HCC on gadoxetic acid-enhanced MRI. a–
c Gadoxetic acid-enhanced arterial (a), portal venous (b), and delayed
(c) phase MR barely detect the mass. d Gadoxetic acid-enhanced

hepatobiliary phase MR clearly detects the hypointense mass (arrow).
e Gadoxetic acid-enhanced hepatobiliary phase MR obtained after 6
months. The mass (arrow) has increased in size
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Bennett et al. [14] correlated pre-transplant sonography
results with explant pathology in 200 patients. Ultrasound
detected tumors in only 30 % of patients; individual lesion
detection sensitivity was 21 %.

Addley et al. [36] studied 39 patients who had
triple-phase MDCT prior to liver transplantation; 29 of these
patients had 46 HCC nodules found in the explanted liver.
These investigators demonstrated 65–75 % sensitivity for
detection of overall HCCs but the sensitivity decreased to
48–57 % for the lesions of size � 20 mm.

Kakihara et al. [37] performed gadoxetic acid-enhanced
MRI in 15 patients, including 36 HCC nodules, who had
living related-liver transplantation and pathological correla-
tion of the explanted liver with the MR interpretation.
Although these investigators included relatively small HCCs
in their study (size range, 0.5–6.3 cm; median size, 1.3 cm),
sensitivity, specificity, and accuracy for the detection of HCC
are 47–61, 98–99, and 83–86 %, respectively.

Reporting exclusively on patients with HCC who have
had transplantation probably underestimates the accuracy of
CT and MR for several reasons, including the close scrutiny
for small lesions in the explanted liver that may not have
otherwise come to clinical attention. In addition, many
patients are excluded from transplantation because CT or
MR demonstrates advanced HCC, removing them from the
study population. Higher sensitivity and specificity can be
achieved in patient populations that include larger tumors or
those which are symptomatic or associated with markedly
elevated serum tumor markers.

23.5 Why, When, and How to Screen

It is clear that detection of curable or treatable HCC by
imaging is challenging but newer therapeutic options make
this a worthwhile goal. Small HCCs are amenable to
resection or various ablation techniques, such as alcohol
injection or radio-frequency coagulation, and surgical

treatment for smaller tumors has resulted in improved 5-year
survival [38] (Fig. 23.12). Liver transplantation is an
appropriate option for patients with small tumors, with
reports of recurrence-free survival rate of 85 % following
transplantation in patients with early stage HCC (one
lesion <5 cm or up to three lesions � 3 cm) [39, 40].

The European Association for the Study of the Liver
(EASL) convened a panel of experts on HCC in Barcelona in
September 2000 and has published their findings and rec-
ommendations for surveillance and management of HCC
[41]. They note that the prevalence and etiology of HCC
vary markedly throughout the world but the most significant
risk factor is the presence of cirrhosis, regardless of its eti-
ology. Once cirrhosis is established, the main predictors of
HCC are male gender and increased levels of a fetoprotein
(AFP). However, AFP is not a very good screening test since
it has a sensitivity of 39–64 %, a specificity of 76–91 %, and
a positive predictive value of 19–32 % [42, 43].

The Barcelona panel recommended ultrasonography as
the preferred surveillance tool but noted that sonography is
highly operator dependent and requires specific training and
interest to acquire the skills necessary to detect early HCC.
The European group has recommended that sonography be
repeated every 6 months along with serum AFP levels. If the
AFP becomes elevated or if a liver nodule is detected by
sonography, they recommend 4-phase dynamic CT or MRI
for further evaluation.

Recommended intervals between surveillance tests are
based, in part, on estimates of tumor growth rate. The
doubling time of HCC lesions less than 2 cm has been
estimated at 2–12 months [44, 45]. The Barcelona panel has
set a goal of detecting tumors below 3 cm in diameter and
recommends surveillance at 6-month intervals, while Japa-
nese consensus guideline are much more aggressively rec-
ommending sonography and tumor marker measurements
every 3–4 months, dynamic CT or MRI 6–12 months, and
gadoxetic acid-enhanced MRI if the abnormality was
detected by prior examination [46]. This surveillance

Fig. 23.12 Small HCC treated with radio frequency ablation. a Arterial phase CT shows a 1 cm hypervascular nodule (arrow). b Following
percutaneous RF ablation under ultrasound guidance the ablation defect is shown (curved arrow), with no viable tumor on enhanced CT
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protocol is applied to patients with established cirrhosis; for
patients with chronic hepatitis without established cirrhosis,
sonography and tumor marker measurement are recom-
mended every 6 months in this guideline.

It is clear that some modification of these screening
protocols may be necessary for applicability to a North
American setting for several reasons. In spite of recent
increases in the prevalence of chronic hepatitis in this
country, the prevalence of HCC is still much lower than in
Asia or Southern Europe making the disease and its mani-
festations less familiar to American physicians. For a
surveillance program to work properly, patients must be
evaluated in their own community; referral to specialized
centers usually occurs only after a disease process is docu-
mented and treatment is initiated. In the American Associ-
ation for the Study of Liver Disease (AASLD) also
recommends that sonography will be a cost-effective
screening tool. Since American cirrhotic patients are also
more likely to be larger and to have hepatic steatosis, factors
which further limit the accuracy of sonography, 4-phase
dynamic CT or contrast-enhanced MRI are preferable for
further examination.

MR imaging is less appealing as a routine screening test
because it is less widely available, more expensive, and less
acceptable to many patients. There are considerable techni-
cal differences between individual MR scanners, making it
difficult to apply specific imaging protocols or to obtain
reproducible results from one setting to another. Neverthe-
less, MR, with extracellular or liver-specific contrast agent,
may be the single most accurate imaging test assuming
optimized technique and expert interpretation.

CT is likely to remain the predominant imaging modality
for detection and staging of HCC in North America. Tech-
nical improvements, especially the rapid emergence of
multidetector row (multislice) CT, have resulted in improved
accuracy that rivals that of more expensive and invasive
studies such as CT catheter angiography and portography.
The frequency with which CT should be employed for
surveillance is likely to remain controversial. We believe
that the Barcelona recommendations are too restrictive in the
use of CT. It is noteworthy that many Japanese investigators
employ CT and more invasive studies very liberally in spite
of their enthusiasm for ultrasonography. Ultimately, the
choice and timing of screening tests will depend on many
factors including the etiology and stage of chronic liver
disease, level of serum tumor markers, and local expertise
and availability of high-quality imaging. The rapid devel-
opment of innovative contrast media and improved ultra-
sound, CT, and MR scanners makes it mandatory for all
physicians involved in the care of patients with chronic liver
disease to stay abreast of new developments and to imple-
ment these into their own practices.
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24.1 Introduction

The noninvasive diagnosis of hepatocellular carcinoma
(HCC) relies heavily on imaging-based primarily on
sequential changes in the intranodular blood supply during
the process of hepatocarcinogenesis [1]; regenerative nod-
ules (RN) show similar blood supply to normal liver, bor-
derline lesions show wide variations of blood supply [2] and
typical HCC are supplied by abnormal neoplastic arteries
alone. Once a focal hepatic nodule is detected during HCC
surveillance typically with ultrasound (US), a diagnostic
imaging test is performed. While contrast-enhanced CT or
MRI is most commonly selected as the diagnostic test,
contrast-enhanced ultrasound (CEUS) using a microbubble
contrast is an excellent choice that has several advantages
over CT or MRI including a real-time demonstration of
continuous hemodynamic changes of liver tumors, a purely
intravascular contrast material, availability in patients with
renal failure, excellent patient compliance, and repeatability
in short intervals.

Management strategy for HCC is often decided in mul-
tidisciplinary consensus meetings including physicians from
several different specialties. The role of imaging in the
diagnosis and staging for HCC is crucial to determine the
management plan. Recent practice guidelines for HCC pro-
vide recommendations for the diagnostic algorithm for
newly detected nodules at HCC surveillance [3–5]. The
application of the imaging test varies depending on the size
of the nodules. For very small lesions (<1 cm in size),
follow-up with US scan is usually recommended in
3 months as further imaging tests may not be reliable for the
diagnosis. For lesions of 1 cm or larger, multiphasic
contrast-enhanced CT, MRI or CEUS is usually performed
as a diagnostic test. As the imaging diagnosis of small
nodules of 1–2 cm in size can be particularly challenging, a
multimodality approach is often needed [6]. Borderline
lesions, i.e., high-grade dysplastic nodule (DN) and
well-differentiated HCC, often show indeterminate imaging
findings and imaging may not be reliable to differentiate
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between the two [2]. Biopsy is performed only when
imaging findings are indeterminate.

A large number of CEUS examinations are also per-
formed to characterize small indeterminate focal liver lesions
seen on CT or MR scans, producing satisfactory results [7].
CEUS is particularly useful for detecting arterial-phase
hypervascularity of HCC utilizing the real-time evaluation of
the lesion perfusion. CEUS is an excellent modality to assess
post-ablative therapy for HCC. CEUS is also useful to dif-
ferentiate between malignant and benign venous thrombosis
in patients with HCC [8], which is often critical to determine
the management plan.

In this chapter, we review the CEUS techniques and
typical CEUS imaging features of HCC and other
cirrhosis-related nodules. We also discuss the role of CEUS
in the algorithms for the diagnosis and staging of HCC and in
monitoring therapeutic responses to local ablation therapy.

24.2 Contrast-Enhanced Ultrasound
Techniques

US contrast agents consist of microbubbles of perfluorocar-
bon gas stabilized by a protein, lipid, or polymer shell. The
microbubbles are sufficiently small and stable to traverse the
pulmonary and cardiac circulations following peripheral
venous injection. The microbubbles disappear as the gas
diffuses through the thin shell, with a typical half-life of a few
minutes in blood and there is no renal excretion. There are a
few different types of microbubble contrast agents that are
commercially available. Presently, Definity (Lantheus Med-
ical Imaging, Billerica MA) and SonuVue (Bracco, Milan,
Italy) are most widely used. Microbubbles are approximately
the same size as red blood cells and cannot move through the
vascular endothelium into the interstitium; therefore, they are
true blood pool agents [9]. Sonazoid (Daiichi), which is most
actively used in Japan, shows similar vascular enhancement
but is taken up by Kupffer cells in the late phase [10]. In our
experience of using Definity for over 12 years, patient
acceptance has been very high and there have been no serious
adverse events. A large retrospective study from Europe
using SonoVue reported 0.0086 % incidence of serious
adverse events without any fatality among 23,188 examina-
tions [11]. Microbubble contrast agents are approved for
radiologic use in more than 50 countries, including the
European Union, Canada, and many Asian countries.

Definity and Sonovue are both approved for cardiac use
in the United States, and on April 2016, the FDA approved
Sonovue for liver mass characterization for adults and chil-
dren. Sonovue is marketed as Lumason in the USA. CEUS
requires a contrast imaging mode that is available on most
high-end commercially available ultrasound systems. Low

mechanical index (MI) contrast-specific mode is used to
visualize the microbubbles continuously while suppressing
signals from tissue. A dual-imaging mode (Fig. 24.1), which
enables simultaneous real-time display of contrast-specific
mode and the gray-scale mode, is essential for scanning
small liver lesions. Typically, the contrast agent is injected
manually through a three-way stopcock, followed by a 5-mL
saline solution flush. Continuous scan with video acquisition
is performed in the arterial phase (usually <30 s after saline
flush) to evaluate the real-time enhancement pattern of the
liver lesion. Then the liver lesion is intermittently scanned
typically every 30 s for 4–5 min to minimize inadvertent
microbubble destruction. Sweeping of the entire liver can be
performed in the late phase to detect any additional washout
lesions. Slightly higher MI along with a larger amount of
microbubbles can be used for deep seated lesions or lesions
within an attenuating fatty liver.

The first injection usually includes a stationary field of
view to include the lesion of interest and the adjacent liver,
both observed for 4–5 min. Subsequent injections concen-
trate on arterial phase vessel morphology and enhancement
as well as sweeps of the entire liver in the portal phase to
look for any further abnormalities. Injections are typically
repeated 2–3 times to obtain images of the same lesion or to
evaluate a different lesion. Each injection is separated by 3–
5 min. High MI frames can be used to disrupt microbubbles
and evaluate the pattern of refilling of the microbubbles in
the scanning plane. This may be optimized by using bubble
tracking technology which is called maximum-intensity
projection, most optimally used to show the filling pattern
and vascular morphology of hypervascular liver tumors
(Fig. 24.2) [12].

24.3 Differential Diagnosis of Nodules
in Liver Cirrhosis

Typical HCC are supplied by abnormal neoplastic arteries
alone and show hyperenhancement relative to the liver in the
hepatic arterial phase (hypervascularity) and hypoenhance-
ment in the late phase (washout) (Fig. 24.3) [13–15]. There
are irregular dysmorphic arteries within the tumor often
visualized in large HCC at the early arterial filling phase
(Fig. 24.2). Arterial-phase enhancement pattern of HCC is
usually homogeneous in small lesions (Fig. 24.3) and tends
to be heterogeneous in large lesions with or without
non-enhancing areas representing necrosis (Fig. 24.2).
Peripheral rim-like enhancement is uncommon in HCC.
A nodule-in-nodule pattern is occasionally seen when there
is a hypervascular HCC focus developing within an under-
lying DN or well-differentiated HCC (Fig. 24.4) [2, 16]. The
hypervascular focus in HCC usually shows washout and
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Fig. 24.1 Well-differentiated HCC in a 73-year-old man with hepatitis
C. a A dual-imaging mode CEUS displays contrast-specific mode on the
left and gray-scale mode on the right simultaneously. There are two
hypoechoicmasses (short arrows) in the liver on gray-scalemode that are

slightly hypoechoic (hypovascular) relative to the liver (long arrows) on
contrast-specific mode in the arterial phase. b In the portal venous phase,
the hypoechoicmasses (short arrows) on gray-scalemode are not seen on
contrast-specific mode as they are isoechoic to the liver at 2 min
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should not be confused with a nodular enhancement in
hemangioma, which progresses centrally over time and
shows sustained enhancement without washout.

Detection of arterial-phase hypervascularity is crucial to
make a noninvasive diagnosis of HCC. CEUS allows a
real-time assessment of arterial-phase enhancement, elimi-
nating the issue of inappropriate arterial-phase timing. CEUS
often detects arterial-phase hypervascularity when CT or

MRI fails to show this because of incorrect arterial-phase
timing [17]. One of the most common indications of CEUS
is to evaluate small, indeterminate, non-hypervascular nod-
ules seen on CT or MRI. CEUS is often able to diagnose
HCC by detecting hypervascularity in some of these lesions
(Fig. 24.5), preventing an invasive biopsy [17–19]. It is
often difficult to assess arterial-phase hypervascularity in
markedly hyperintense nodules on unenhanced T1-weighted

Fig. 24.2 HCC in a 83-year-old woman with hepatitis B. a CEUS
scan in the arterial phase shows a large hypervascular mass in the liver
with heterogeneous enhancement and non-enhancing areas representing
necrosis. b, c Two maximum-intensity projection CEUS images after

microbubble disruption by using high MI frames demonstrate irregular,
dysmorphic, neoplastic arteries within the mass that are not seen on
regular CEUS image (a)
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MR images, especially when there is an iron overload in the
underlying liver with marked hypointensity (Fig. 24.6).
CEUS can be used as a problem-solving method as the
nodules are completely anechoic on contrast-specific mode
before microbubble injection.

Hypoenhancement or “washout” in the late phase is also
an essential imaging feature for diagnosing HCC as typical
HCC lack portal venous supply. Washout is more

consistently seen on CEUS than CT or MRI due to the dif-
fering characteristics of the contrast material. CT or MRI may
not show washout in malignant tumors with large extracel-
lular space and high vascular permeability as the contrast
material leaks and accumulates into the tumor interstitium,
whereas microbubbles in CEUS are purely intravascular and
show washout (Fig. 24.7) [17]. The intensity of enhancement
of HCC in the late phase, however, generally decreases more

Fig. 24.3 Typical hypervascular HCC with late, mild washout in a
70-year-old man with hepatitis C. a US scan shows a hypoechoic, solid
mass in the liver. The liver is cirrhotic with a nodular surface and there
is a large amount of ascites. b CEUS scan in the arterial phase at 20 s

shows homogeneous hypervascularity of the mass (arrow). c The mass
(arrow) is isoechoic to the liver CEUS scan at 3 min. d The mass
(arrow) shows mild washout at 5 min
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slowly than cholangiocarcinoma or metastasis. Washout in
HCC often begins later than 90 s after injection (Figs. 24.3
and 24.5) whereas metastases or intrahepatic cholangiocar-
cinomas consistently show rapid washout beginning before s
60 s (Fig. 24.8) [20–22]. In our study of 115 hypervascular
HCC [23], only 50 % showed washout by 90 s. Extended
evaluation over 4–5 min is important to characterize HCC by
demonstrating “eventual” washout (Figs. 24.3 and 24.5).

Washout timing is related to the pathologic differentiation of
HCC: well-differentiated HCC tends to show later washout or
no washout, whereas poorly differentiated HCC tends to
show more rapid washout [23]. Therefore, no washout for 4–
5 min should not be considered for a diagnostic finding of a
benign lesion (Fig. 24.9). In fact, most new hypervascular
nodules on CEUS detected during HCC surveillance are
HCC regardless of washout if the nodules do not show the

Fig. 24.4 HCC with nodule-in-nodule pattern in a 60-year-old man
with hepatitis B. a US scan shows a hypoechoic mass (short arrows)
with a slightly hyperechoic focus (long arrow) in the liver. b CEUS
scan in the arterial phase at 8 s shows hypovascularity of the mass

(short arrows) with a hypervascular focus (long arrow), a
nodule-in-nodule pattern. c The mass is not seen because of
isoechogenicity at 90 s. d Focal washout (arrow) is only seen at
3 min where a hypervascular focus was seen in the arterial phase (a)
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appearance of hemangioma [24]. However, a biopsy is nee-
ded to confirm HCC for hypervascular nodules without
washout.

There is a small subset of HCC with no arterial-phase
hypervascularity, including particularly those that are well
differentiated. In our study of 112, HCC that were evaluated
with CEUS, 23/112 (21 %) were well-differentiated and

9/23 (39 %) were not hypervascular [23]. These lesions
occasionally show a transient hypoenhancement in the
arterial phase followed by gradual enhancement and the
lesions become isoechoic relative to the normal liver in the
late phase (Fig. 24.1). These hypovascular HCC cannot be
reliably differentiated from DN by imaging findings alone,
requiring biopsy for confirmation.

Fig. 24.5 HCC in a 65-year-old
woman with hepatitis C. a CT
scan in the arterial phase shows a
subtle hyperattenuating lesion
(arrow) in the left lobe of the
liver. b The lesion is not seen in
the delayed phase. CT findings of
the liver lesion are indeterminate.
c CEUS scan in the arterial phase
at 15 s shows a hypervascular
mass (arrows) in the liver. d The
mass is not seen due to
isoechogenicity to the liver at
150 s. e The mass (arrows) shows
clear washout at 270 s. CEUS
findings are diagnostic of HCC
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Liver cirrhosis related to viral hepatitis is also identified
as a risk factor for development of intrahepatic cholangio-
carcinoma (CC) although the incidence of CC is much lower
than that of HCC. Therefore, small CC is infrequently
detected during HCC surveillance. Accurate imaging dif-
ferentiation between CC and HCC, however, is important
because the treatments for the two conditions are different.

On CEUS, small CC usually shows arterial-phase hyper-
vascularity and washout similar to HCC [25]. However, the
diagnosis of intrahepatic CC can be suggested by CEUS in
most cases, by demonstrating rim-like arterial-phase
enhancement (Fig. 24.10) and/or rapid washout (<60 s)
and/or a punched-out appearance of the washout at its first
observation (Fig. 24.8) [20–22, 26]. Punched-out washout is

Fig. 24.6 HCC in a 43-year-old
man with thalassemia and
secondary hemochromatosis.
a Unenhanced T1-weighted MR
scan shows a brightly
hyperintense nodule (arrow) in
the liver. Underlying liver is
diffusely hypointense due to
hemochromatosis. b, c The
nodule (arrow) is hyperintense in
the arterial-phase (b) and delayed
phase (c) MR images. The
findings are indeterminate as the
evaluation of arterial-phase
hypervascularity and washout is
challenging. d US scan shows a
slightly hyperechoic nodule with
thin hypoechoic halo (arrow).
e The nodule (arrow) is
hypervascular in the arterial phase
at 7 s on CEUS. f The nodule
(arrow) shows slight washout at
135 s
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not commonly seen in HCC and, if observed, follows an
initial observation of weak washout. Combined CC and
HCC in a single liver mass is rare and the clinical and
imaging findings are determined by the dominant proportion
of the histological component [27]. CEUS findings can be
similar to CC when the CC component is dominant. Hepatic
capsular retraction near the liver mass (Fig. 24.11) is a

suggestive finding of CC [28] as it is rarely seen in HCC.
Biopsy should be performed when these unusual enhance-
ment patterns for HCC are observed on CEUS.

RN form the essential component of a cirrhotic liver and
are small and usually do not stand out on imaging. On
grayscale US, numerous RN in cirrhotic livers are typically
seen as coarse and heterogeneous liver with a nodular

Fig. 24.7 HCC in 56-year-old
man with hepatitis B. a MR scan
in the arterial phase shows an
exophytic hypervascular nodule
(arrow) in the liver. b The nodule
(arrow) is isointense to the liver
in the delayed phase without
washout. c The nodule (arrow) is
hypervascular in the arterial phase
of CEUS. d The nodule (arrow)
is isoechoic at 3 min. e The
nodule (arrow) shows washout at
5 min, confirming the diagnosis
of HCC
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surface. Most RN are isoechoic to the parenchyma during all
phases on CEUS. As DN have more histological atypia,
abnormal arteries increase while normal arterial and portal
supply decrease. The arterial and portal supplies to DN,
therefore, are variable and inconsistent [29] (Fig. 24.12). As
there is significant overlap of vascular supply between
high-grade DN and well-differentiated HCC, imaging dif-
ferentiation between the two is challenging and often unre-
liable [2]. Biopsy is often performed for the differentiation;

however, the differential diagnosis in small needle biopsy
specimens can be also challenging due to histological
heterogeneity within the nodules. In the setting of a com-
peting potentially fatal disease (i.e., cirrhosis), imaging
follow-up instead of invasive biopsy is often applied for
evaluating small borderline liver lesions [30].

Hemangiomas are frequently detected during HCC
surveillance. In our study [31], 43/184 (23 %) of newly
detected nodules at HCC surveillance were hemangiomas.

Fig. 24.8 Intrahepatic CC in a 58-year-old man with hepatitis B.
a CEUS scan in the arterial phase at 17 s shows a mass (arrow) with
diffuse arterial-phase hypervascularity. b CEUS scan at 28 s still in the

arterial-phase time frame shows washout (arrow). c CEUS scan at
280 s shows marked washout with a punched-out appearance (arrow)
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Diffuse hyperechogenicity on gray-scale US is a well-known
typical finding of hemangioma. However, diffuse hyperechoic
nodules are not specific for hemangioma in the setting of liver
cirrhosis as DN or HCC with fatty metamorphosis can show
similar findings (Fig. 24.13) and further evaluation should be
performed [32]. Immediate performance of CEUS at the time
of detection of such a nodule can achieve a diagnosis of

hemangioma by demonstrating the characteristic enhancement
pattern that includes peripheral nodular enhancement, gradual
central fill-in, and sustained enhancement. This can avoid
further imaging tests such as CT or MRI and reduces patient’s
additional hospital visits and anxiety as well as medical cost [7,
33]. CEUS is also useful to demonstrate the characteristic
enhancement pattern in fast filling hemangiomas which often

Fig. 24.9 HCC with no washout in a 53-year-old woman with
hepatitis C. a CT scan in the arterial phase shows a hypervascular
nodule (arrow) in the liver. b The nodule is not seen due to
isoattenuation to the liver in the delayed phase. c CEUS scan in the

arterial phase at 15 s shows a hypervascular nodule (arrows) in the
liver. d. The nodule (arrow) remains hyperechoic on CEUS scan at
250 s. No washout is seen in either CT or CEUS
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show a nonspecific homogeneous enhancement in the arterial
phase of CT or MRI (Fig. 24.14). Slow filling hemangiomas,
on the other hand, can be seen as nonspecific hypoattenuating
masses on multiphasic CT scan. CEUS can diagnose a
hemangioma in those cases by utilizing highly sensitive
detection of contrast enhancement and prolonged observation
(Fig. 24.15) [34].

Nontumorous arterioportal shunting is a common mim-
icker of malignancy in a cirrhotic liver and is frequently seen
on multiphasic CT or MRI [35, 36]. It is typically
wedge-shaped, peripherally located, and homogeneously
hypervascular in the arterial phase. The lesion becomes
isointense to the liver in the late phase and never shows
washout. This potentially creates a pseudolesion as the

Fig. 24.10 Intrahepatic CC in an 80-year-old man with liver cirrhosis
related to primary sclerosing cholangitis. a CEUS scan in the arterial
phase at 14 s shows a mass (arrows) with rim-like hyperenhancement
in the periphery. b The enhancing rim (arrows) becomes thicker and

slightly more hyperechoic compared to adjacent normal liver at 21 s. c,
d Washout (arrows) is seen at 40 s (c) and progresses to a punched-out
lesion (arrows) at 3 min (d)
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differentiation of arterioportal shunting from HCC without
washout is difficult. Nontumorous arterioportal shunting is
not seen on gray-scale US as it is not a real parenchymal
liver lesion. Therefore, CEUS is excellent to resolve this
dilemma showing no abnormality in the presence of shunt-
ing. By comparison, if an HCC is present, ultrasound will
show a nodule with appropriate CEUS characteristics [22].

24.4 Role of CEUS in HCC Diagnosis
and Staging

Surveillance for HCC in high-risk patients is widely practiced
particularly in endemic regions of hepatitis B and C, such as
East Asia. Surveillance generally includes US at 6 month
intervals. Further contrast-enhanced diagnostic imaging tests

Fig. 24.11 Combined HCC and
CC in a 36-year-old man with
hepatitis B. a CT scan in the
arterial phase shows a
hypervascular mass (arrows) in
the left lobe of the liver. b The
mass (arrows) shows washout in
the delayed phase. Note hepatic
capsular retraction (short arrow)
near the mass. c CEUS scan in the
arterial phase at 10 s shows
heterogeneous hypervascularity
in the mass (arrows). d The mass
(arrows) shows rapid washout at
40 s, which is unusual for HCC.
e Washout progresses and the
mass (arrows) is markedly
hypoechoic at 180 s
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are performed when there is any new liver nodule 1 cm or
larger found at surveillance US. The diagnosis of HCC can be
made without biopsy when the nodules show typical findings
on diagnostic imaging tests. Recent practice guidelines define
a typical enhancement pattern of HCC as hypervascularity of
the lesion in the arterial phase and negative enhancement
(washout) of the lesion relative to the hepatic parenchyma in
the portal venous or delayed phase [3–5].

There has been a controversy on the use of CEUS in
international guidelines with exclusion in the most recent
AASLD guidelines because of the claim that intrahepatic CC
can mimic HCC with resultant misdiagnosis [3, 25]. How-
ever, subsequent rebuttal suggests that intrahepatic CC is
relatively rare in liver cirrhosis and CEUS can depict typical
findings of CC including arterial-phase rim enhancement
(Fig. 24.10), rapid washout (<60 s), and/or a punched-out

Fig. 24.12 Dysplastic nodule in a 39-year-old man with hepatitis B.
a US scan shows a slightly hyperechoic nodule (arrows) in the liver.
b CEUS scan in the arterial phase at 13 s shows decreased

arterial-phase vascularity (hypovascular) within the nodule (arrows)
relative to the liver. c The nodule is not seen due to isoechogenicity at
120 s
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appearance in the late phase (Fig. 24.8) [20–22, 26, 37]. In
fact, CEUS is still actively used as one of the diagnostic tests
for HCC in other jurisdictions (for example, Italy, Japan, and
Canada) and in large academic institutions where CEUS is
available. CEUS is very well accepted by clinicians as it
often plays a crucial role in diagnosing indeterminate nod-
ules on CT or MRI and in diagnosing liver nodules in
patients with renal failure (Fig. 24.16) [33]. Recently a

CEUS working group has been formed in Liver Imaging
Reporting and Data System (LI-RADS) by the American
College of Radiology. LI-RADS aims to reduce imaging
interpretation variability and errors to optimize diagnosis of
HCC [38].

Multiphasic CT or MRI are proper staging techniques for
HCC and should be performed once the diagnosis of HCC is
made. There are occasional cases, however, where critical

Fig. 24.13 HCC in a 75-year-old man with hepatitis B. a US scan
shows a homogeneously hyperechoic nodule (arrow) in the liver, which
mimics the gray-scale appearance of hemangioma. b CEUS scan in the
arterial phase at 27 s shows homogeneous hypervascularity within the

nodule (arrow). c The nodule is not seen due to isoechogenicity at
125 s. d The nodule (arrow) shows washout at 240 s, confirming the
diagnosis of HCC
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staging information such as tumor thrombosis within the
portal or hepatic vein is unclear on CT or MRI. The presence
of malignant thrombus of portal or hepatic veins in patients
with HCC is a critical determinant of tumor staging and
prognosis as it directly influences treatment strategy [39, 40].
Bland thrombus can be found in 4.5–26 % of patients with

chronic liver disease and up to 42 % of patients with HCC
[41]. Moreover, malignant venous thrombus can occur in the
absence of primary parenchymal HCC, either as an
intravascular growth of this neoplasm [42] or after treat-
ments such as ablation or chemoembolization, as a first
indicator of recurrence.

Fig. 24.14 Hemangioma in a
60-year-old woman with hepatitis
B. a Contrast-enhanced
T1-weighted MR scan in the
arterial phase shows a slightly
heterogeneous hyperenhancing
nodule (arrow) in the liver. b The
nodule (arrow) is homogenously
hyperintense in the delayed
phase. MR findings are
indeterminate as the arterial-phase
enhancement pattern is
nonspecific and there is no
washout. c–e CEUS scans at 9
(b), 10 (c), and 35 (d) seconds
after injection of the contrast
material show peripheral nodular
enhancement with subsequent
central fill-in in the nodule
(arrows), which is diagnostic of
hemangioma
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CEUS is excellent in the differentiation of tumor throm-
bosis and benign thrombosis in the portal or hepatic veins.
Tumor thrombi invariably show heterogeneous enhancement
and linear, irregular feeding vessels after injection of the
microbubbles in the arterial phase (Fig. 24.17), whereas
benign thrombi are avascular (Fig. 24.18). In our study of 50
HCC patients with 38 malignant and 13 benign venous

thrombosis, the area under the curve (AUC) at receiver
operating characteristic (ROC) analysis was 0.947 and 0.958
by two independent blind readers. Demonstration of arterial
flow within the thrombi is specific for malignant thrombosis;
however, it is important to be aware that recanalized benign
thrombosis may show enhancement in the portal venous
phase [8].

Fig. 24.15 Hemangioma in a 41-year-old woman with non-alcoholic
steatohepatitis. a CT scan in the arterial phase shows a subtle
hypoattenuating mass (arrow) in the liver. b The mass (arrow) is
hypoattenuating in the delayed phase. CT findings are indeterminate. c,

d CEUS scans at 15 (c) and 100 (d) seconds after injection of the
contrast material show peripheral nodular enhancement with subse-
quent central fill-in in the nodule (arrows), which is diagnostic of
hemangioma
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24.5 Post-treatment Monitoring of HCC

Local ablative therapy such as radiofrequency (RFA) or
microwave ablation has become one of the main treatment
modalities for patients with small HCC. RFA is also fre-
quently performed as a bridge therapy for patients on the
waiting list for liver transplantation. Real-time gray-scale US
scan is most frequently used for the guidance of RFA

procedures; however, there are uncommon cases with poor
visibility on US scan. CEUS can be extremely helpful in
these situations to localize the lesion by demonstrating the
arterial-phase hypervascularity and washout. The use of a
dual-imaging mode, which displays gray-scale imaging and
contrast-specific imaging side-by-side, is critical to visualize
the lesion and the needle simultaneously [43]. A routine use
of pre-procedure CEUS can reduce the number of

Fig. 24.16 HCC in a 52-year-old man with hepatitis C cirrhosis and
renal failure. a US scan shows a slightly hypoechoic nodule (arrow) in
the liver. Contrast-enhanced CT or MRI could not be performed due to
renal failure. b CEUS scan in the arterial phase at 24 s shows

homogeneous hypervascularity within the nodule (arrow). c The
nodule (arrow) shows washout at 90 s, confirming the diagnosis of
HCC
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incomplete or erroneous RFA significantly. Fusion imaging
techniques that can coordinate the CEUS images with
CT/MRI images are also helpful to localize difficult lesions
and reduce the overall procedure time [44]. One of the
unique advantages of CEUS in RFA is that the microbubbles
can be repeatedly injected over short intervals as necessary.
For example, CEUS can be performed just before the
placement of the ablation needle and repeated after the

needle placement to ensure its proper location. CEUS can be
also performed after ablation to determine the completeness
of the therapy. Repeat ablation can be immediately per-
formed if there is any residual enhancing tumor [45, 46].

Multiphasic CT or MRI is typically performed in 1 month
after ablative therapy for HCC in our institution. CT or MRI
is an appropriate restaging modality as it provides informa-
tion on the rest of the liver, vascular invasion, lymph nodes,

Fig. 24.17 Tumor thrombosis in the portal vein in a 70-year-old man
with HCC and hepatitis C. a US scan shows a hypoechoic tubular
lesion (arrows) in the liver, representing thrombosis within the portal
vein. b CEUS scan in the arterial phase at 15 s shows strong,

homogeneous enhancement within the portal venous thrombi (arrows).
c There is mild washout (arrows) at 200 s, confirming the diagnosis of
tumor thrombosis in the portal vein
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and any extrahepatic metastasis better than CEUS. CEUS is
a useful alternative modality when the patient has renal
failure with contraindication for CT or MRI contrast agent.
One of the limitations of CEUS is that it is not possible to
scan the whole liver in the arterial phase. Repeated sweep-
ings through the entire liver in the late phase should be
routinely performed to detect any unexpected recurrent HCC
which is not detected on gray-scale US. While CT or MRI is

useful for restaging HCC after ablation, there are occasional
challenging cases with difficulty of indeterminate imaging
findings. CEUS is an excellent problem-solving method in
these cases [43]. Subsequent follow-up after therapy is
variable and may include CEUS and/or MRI.

Hypervascular abnormalities adjacent to the ablation zone
are common and can be residual HCC or benign perfusion
abnormalities related to the ablation procedures [47]. These

Fig. 24.18 Benign thrombosis in the portal vein in a 66-year-old man
with hepatitis C and history of liver transplantation for HCC. a US scan
shows a hyperechoic thrombosis (arrow) within the portal vein near the

hilar hilum in the liver. b, c There is no contrast enhancement within
the thrombus (arrow) on CEUS scans at 10 s (b) and 30 s (c),
confirming the diagnosis of benign thrombosis in the portal vein

386 T.K. Kim et al.



benign perfusion abnormalities adjacent to the ablation zone
are frequently seen and may persist several months after the
RFA procedure. The differentiation between benign perfu-
sion abnormalities and recurrent HCC can be difficult when
washout is not clearly seen on CT or MRI. Benign perfusion
abnormalities are not seen on gray-scale US as they are not
real lesions. Marginal recurrence of HCC is usually seen as a

focal gray-scale abnormality adjacent to the ablation zone on
unenhanced ultrasound. Subsequent CEUS shows hyper-
vascularity followed by washout, confirming the presence of
recurrent HCC and its exact location on grayscale US, which
is extremely helpful for repeat ablation therapy (Fig. 24.19).

Recurrent HCC adjacent to the ablation zone is occasion-
ally non-hypervascular on CT or MRI due to mistiming of the

Fig. 24.19 Marginal tumor recurrence in a 63-year-old man who
underwent radiofrequency ablation for HCC. a US scan shows a
hyperechoic ablation zone (asterisk) and an adjacent mixed-echo lesion
(arrows) in the liver. b CEUS scan in the arterial phase shows
hypervascularity (arrows) within the mixed-echo lesion adjacent to the

ablation zone (asterisk). c CEUS scan at 70 s shows washout (arrows),
confirming the presence of marginal tumor recurrence adjacent to the
ablation zone (asterisk). Repeat radiofrequency ablation was performed
under CEUS guidance (not shown)
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arterial phase. Subtle hypervascularity of recurrent HCC can
also be obscured by adjacent perfusion changes. CEUS is
useful to further assess hypoattenuating/hypointense abnor-
malities adjacent to the ablation zone on CT or MRI. CEUS
can often show the presence of hypervascularity of the lesion,
utilizing the advantage of real-time assessment of lesion per-
fusion (Fig. 24.20) [43].

24.6 Conclusion

CEUS is an excellent imaging technique with several unique
advantages over CT or MRI for the imaging of nodules in a
cirrhotic liver. These advantages in the arterial phase include
the real-time depiction of specific features of benign hepatic
nodules, resolution of arterioportal shunts, resolution of

Fig. 24.20 Recurrent HCC in a 68-year-old man who underwent
radiofrequency ablation for HCC. a CT scan in the arterial phase shows
a subtle hypoattenuating lesion (arrow) medical to the ablation zone
(asterisk). b The lesion (arrow) is hypoattenuating in the delayed

phase. CT findings are indeterminate. c CEUS scans in the arterial
phase at 12 s shows a focal hypervascular lesion (arrow). D The lesion
(arrow) shows washout at 125 s, confirming the diagnosis of recurrent
HCC
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absent enhancement on mistimed CT and MR scan, and sen-
sitive demonstration of hypervascularity in HCC. Absence of
washout of suspect HCC on CT or MR scan may also be
resolved by CEUS. Therefore, CEUS can be effectively used
as one of the diagnostic tests for HCC, differentiation between
benign and malignant venous thrombosis, immediate diag-
nosis of hemangioma, and pre- or post-RFA evaluation for
HCC. Added to this is the absence of nephrotoxicity of CEUS
as well as the standard benefits of US including absence of
ionizing radiation, and excellent patient compliance.
Nonetheless, CEUS is operator-dependent and the perfor-
mance of liver CEUS requires extensive hands-on experience.
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25.1 Introduction

Patients with cirrhosis are at a risk for developing HCC.
MRI and other radiologic imaging methods are often able to
diagnose HCC in high-risk populations often before eleva-
tion in serum alpha-fetoprotein and other nonimaging signs
[1, 2]. Additionally, the use of radiologic imaging for
screening high-risk patients can expedite the treatment for
suspicious lesions without confirmative biopsy [3]. Earlier
detection allows for earlier treatment with the goal of
detecting malignancy prior to extrahepatic spread.

This chapter considers the role of MRI in HCC detection.
The chapter will focus mainly on current MRI protocols and
imaging features used to evaluate liver lesions. Of particular
importance, the current standardization of imaging reporting
using Liver Imaging Reporting and Data Systems
(LI-RADS) will be discussed.

25.2 Nonmalignant Focal Findings
in Chronic Liver Disease

The cirrhotic liver has an abnormal shape and contour due to a
combination of atrophy, hypertrophy, and scarring in different
areas of the liver. Often times a focal finding in a cirrhotic liver
may appear as a suspicious mass, but in fact just represents
normal liver parenchyma surrounded by diseased tissue. This
section discusses some of the common benign findings specific
to chronic liver disease including confluent fibrosis, regener-
ative nodules, and dysplastic nodules. Other common benign
liver findings such as cysts and hemangiomas will not be
covered as they are not specific to cirrhosis. Malignant find-
ings, primarily HCC, are discussed later in this chapter.

Confluent fibrosis develops in severely cirrhotic livers and
contains very few if any hepatocytes. Confluent fibrosis is
typically mildly T2 hyperintense relative to the background
liver and can demonstrate delayed contrast enhancement,
similar to fibrosis in other parts of the body. Confluent fibrosis
is best distinguished from HCC by its shape, which is
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geographic rather than round. Another distinguishing feature is
retraction of liver contour, rather than expansion [4].

As cirrhosis progresses the remaining normal liver par-
enchyma essentially consists of regenerative nodules sur-
rounded by fibrous septae. Regenerative nodules are
therefore benign consisting of normal functioning liver
parenchyma. They demonstrate no abnormal enhancement
and appear similar to normal background liver in all phases
of dynamic contrast. Regenerative nodules can have varying
appearance on T1-weighted imaging include T1 hyperin-
tensity in cases of cholestatic nodules. Siderotic nodules
represent a subtype of regenerative nodules with increased
iron and therefore are T2 hypointense.

Dysplastic nodules represent an intermediary between
regenerative nodules and HCC. They demonstrate dysplastic

features such as nuclear atypia on histology but do not meet
criteria for overt malignancy [5, 6]. Dysplastic nodules cannot
always be definitively differentiated from HCC by imaging,
especially in the case of high grade dysplasia. MRI features
that favor dysplastic nodule over HCC include T1 hyperin-
tensity, T2 hypointensity, and arterial phase hypointensity
[7]. However, due to the poor differentiation of dysplastic
nodules from HCC, the term is no longer routinely used.

Though some lesions are definitively benign based on
imaging such as confluent fibrosis, cysts, or hemangiomas,
other lesions can exist on a spectrum from benign to malignant
as in the case of dysplastic nodules and HCC. For this reason,
the LI-RADS was created to standardized the reporting of
suspicion based on imaging features (Fig. 25.1). LI-RADS is
more extensively discussed throughout this chapter.

Fig. 25.1 LI-RADS algorithm version 2014. This algorithm depicts the decision-making pathway when reporting suspicion of hepatocellular
carcinoma for liver observations
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25.3 HCC MR Imaging Guidelines

25.3.1 Background

Advancements in treatment for HCC now include a variety
of locoregional options in addition to surgery and liver
transplant. Varying methods of imaging utilization are
advocated based on different organizations including the
American Association for the Study of Liver Diseases
(AASLD), European Association for the Study of the Liver
(EASL), Organ Procurement and Transplantation Network
(OPTN), as well as others. The AASLD criteria have been
prospectively verified and categorize imaging diagnoses as
negative, indeterminate, or positive [3, 8–12].

Guidelines from the AASLD, EASL, and OPTN refer to
imaging features of HCC including “arterial phase hyper-
enhancement” and “washout” without consensus from the
groups regarding the exact definitions of these terms. The
American College of Radiology gathered a panel of radiol-
ogists in 2008 to standardize criteria for the imaging diag-
nosis of HCC. This panel defined terminology and created a
diagnostic imaging algorithm. LI-RADS was created by this
panel in 2011 and has since been updated by radiologists,
surgeons, hepatologists, and pathologists. The following
information regarding this standardized system is based on
LI-RADS v2014, which is fundamental to the current
understanding of noninvasive imaging approaches to the
diagnosis of HCC with emphasis on MRI in this particular
chapter. Of particular note is the current lack of prospective
validation of LI-RADS unlike that of AASLD guidelines.

LI-RADS applies only to patients with high risk of HCC
which mostly includes patients with chronic liver disease or
Hepatitis B. Definitely benign observations are categorized
as LR-1, which is similar to the AASLD negative category.
The AASLD category of indeterminate was expanded to
three tiers in LI-RADS including probably benign (LR-2),
intermediate (LR-3), and probably HCC (LR-4). Those
observations that are definite HCC are categorized as LR-5,
which is similar to the AASLD positive category. LIRADS
includes an LR-M categorization for observations that are
probably malignant but not specific to HCC, LR-5V when
definite tumor is identified in a vein, and LR-Treated for
lesions with previous locoregional treatment.

Category LR-1 and LR-2 have very broad overlap and
commonly includes cysts, hemangiomas, vascular anoma-
lies, perfusion alterations, confluent fibrosis, and focal scar.
LR-2 is used for observations that may have slightly atypical
features but are likely to represent one of these benign
diagnoses. Additionally, LR-2 also includes regenerative
nodules without suspicious major or ancillary imaging fea-
tures, which are further described below [13].

The AASLD diagnosis of indeterminate leaves a broad
range of uncertainty and can complicate the decision-
making regarding imaging follow up, biopsy, or treatment
recommendations when a lesion may be of low suspicion
but not definitely benign. The expansion of the AASLD’s
indeterminate diagnosis to three tiers in LI-RADS (LR-2,
LR-3, and LR-4) aids in relaying the radiologist’s suspicion
of an observation that is neither definitely benign nor def-
initely HCC. LI-RADS does not make category-based
recommendations for imaging follow up, biopsy, or treat-
ment. Rather, the clinical and diagnostic management of
each patient is dependent on imaging evaluation combined
with clinical status and available resources on an individual
patient basis.

25.3.2 MRI Protocol

The minimum sequences recommended by both the OPTN
and LI-RADS are in-phase/opposed-phase imaging,
T2-weighted imaging, and T1-weighted gradient echo
sequences with dynamic contrast enhancement including a
precontrast sequence [13, 14]. LI-RADS further suggests but
does not require diffusion weighted imaging, post-processing
dynamic contrast subtraction, and mulitplanar acquisitions.
The utility of these minimum required MRI sequences as well
as the suggested technique of diffusion weighted imaging is
described in this section.

25.3.2.1 In-Phase/Opposed-Phase Images
The detection of iron or microscopic/intralesional fat can be
important in the evaluation of a focal liver lesion and is
further described later in this chapter regarding ancillary
imaging findings of HCC [15]. In-phase/Opposed-phase
imaging utilizes T1-weighted dual echo gradients to exploit
the miniscule difference in the precession frequency of
hydrogen protons in water and fat in MRI. The two TEs
(time to echo) are chosen such that signal from water and fat
are at one point aligned (in-phase) and at the other time point
are 180° apart (opposed-phase).

A drop in signal intensity in the opposed-phase compared
to in-phase images is seen when fat and water are within the
same imaging voxel. This is seen in hepatic steatosis or in
primary hepatocyte containing liver lesions including HCC.
A drop in signal intensity in the in-phase compared to the
opposed-phase imaging is due to T2* dephasing as long as
the TE of the in-phase image is longer than that of the
opposed-phase imaging. This dephasing can be seen with
susceptibility from metal artifacts or from increased iron
content in states of iron overload.
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25.3.2.2 T2-Weighted Images
T2-weighted images are commonly acquired utilizing mod-
erate and heavy weighting. Moderately T2-weighted images
are useful for showing both benign and malignant liver
lesions with free or bound water. Lesion conspicuity is
increased with fat suppression to null the inherent signal
from fat.

Heavy T2-weighting is useful for showing lesions pre-
dominantly composed of free water such as benign hepatic
cysts. Lesions comprised of free water have high signal
intensity on T2-weighted images due to the long T2 of free
water. Tumors as well as other benign lesions often show
moderate T2 hyperintensity that is less prominent or not seen
on heavily T2-weighted images due to the relatively lower
T2 of bound water compared to free water within these
lesions. Consequently, HCC demonstrates a mild or mod-
erate T2 hyperintensity that may be visualized on moderately
T2-weighted images. Of particular note is the infiltrative
type of HCC, which is sometimes most conspicuous on
moderately T2-weighted images even compared to dynamic
post-contrast imaging.

25.3.2.3 Dynamic Contrast Images
Dynamic contrast imaging using extracellular fluid gadolinium-
based agents is the workhorse in detection of HCC with MRI
with the timing of each phase in this multiphase technique is
important for optimizing the detection of HCC.Aminimumof
four phases of contrast should be obtained including unen-
hanced, late arterial, portal venous/blood pool (*20 s after
arterial phase), and delayed (*3–5 min). The late arterial
phase is when the arteries and portal venous system are both
enhanced without hepatic vein enhancement.

HCC is fed predominantly from an arterial supply,
whereas the normal liver parenchyma is fed from a pre-
dominately portal venous supply. This difference is exploi-
ted with dynamic multiphase contrast imaging because HCC
will typically be high signal intensity relative to background
liver in the late arterial phase but low signal relative to
background liver in the portal venous phase [16].

Gadolinium-based contrast agents with partial hepatobil-
iary excretion such as gadoxetate disodium and gadobenate
dimeglumine are newer contrast agents that are now
becoming more commonly available. Approximately 20 min
after contrast injection, the normal liver parenchyma will
demonstrate uniform T1 hyperintensity due to the T1
shortening effects of the gadolinium-based contrast agent
uptake by anion-transporting peptides in hepatocytes. This
time period is referred to as the hepatobiliary phase. Signal
intensity in the hepatobiliary phase can be used to determine
the presence of functioning hepatocytes within observations
in the liver. HCC and other malignancies typically do not
containing functioning hepatocytes and will appear hypoin-
tense to normal liver parenchyma in the hepatobiliary phase.

25.3.2.4 Diffusion Weighted Imaging
LI-RADS suggests, but does not require, diffusion weighted
imaging. Contrast in diffusion weighted imaging is depen-
dent on differences in microscopic water motion. Malignant
tumors tend to be highly cellular compared to benign lesions
and will consequently demonstrate restricted diffusion,
opposed to free bulk water motion.

25.4 HCC Imaging Features
and Reporting Guidelines

25.4.1 Major Imaging Features

LI-RADS categorization of LR-3, LR-4, and LR-5 is based on
the number of major features that are present as seen in
Fig. 25.1. The major features include arterial phase hyper-
enhancement, size, washout appearance, capsule appear-
ance, and threshold growth. Arterial phase hyperenhancement
requires signal intensity greater than liver as well as the par-
enchyma surrounding the observation (Fig. 25.2d). Size is
measured as the diameter of the observation in the single
longest dimension. Washout appearance is the relative
decreased signal intensity of the observation compared to
background liver (Fig. 25.2e). Note that this is a relative fea-
ture and not based on quantitative analysis. Capsule appear-
ance refers to portal venous or delayed phase enhancement
around the periphery of an observation (Fig. 25.2f). This does
not necessarily correspond to a capsule or pseudocapsule seen
on histopathology. Threshold growth is defined as greater than
50 % growth in less than 6 months or greater that 100 %
growth in greater than 6 months. Also, threshold growth is
considered positive for any new observation greater than
10 mm. LR-5 (definitely HCC) can only be assigned to
observations with arterial phase hyperenhancement as seen on
the algorithm in Fig. 25.1 [13].

25.4.2 Ancillary Imaging Features

Ancillary features are features that can favor benignity or
malignancy and may be used secondarily to alter the final
category assigned to an observation (Tables 25.1 and 25.2).
However, ancillary features cannot be used to upgrade a
lesion to LR-5. This maintains the high specificity for HCC
in LR-5 to remain in agreement with OPTN. Also, it is
important to note that the ancillary features that favor
malignancy are not necessarily specific for HCC but may
represent any malignancy [13].

Those features which are more specific for HCC include
nodule-in-nodule appearance, mosaic architecture, and in-
tralesional fat. Nodule-in-nodule appearance describes a T2
hyperintense nodule within an T2 hypointense nodule. This
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characteristic is a relatively specific sign of the malignant
degeneration of a dysplastic nodule [17]. It is important to
note that the nodule-in-nodule appearance is only described
on T2-weighted imaging and not in reference to contrast

Fig. 25.2 Typical MRI features
of HCC. a In-phase image shows
HCC as nearly isointense to
background liver. b Out-of-phase
image shows HCC signal drop
out relative to the In-phase image
due to microscopic lipid.
c Fat-suppressed T1-weighted
precontrast image shows HCC as
slightly hypointense to
background liver.
d Fat-suppressed T1-weighted
early arterial phase contrast shows
HCC as hyperenhancing relative
to background liver.
e Fat-suppressed T1-weighted late
arterial phase image shows HCC
as hypointense relative to
background liver consistent with
washout appearance.
f Fat-suppressed T1-weighted
delayed phase image shows HCC
with delayed enhancing capsule
appearance

Table 25.1 Benign ancillary features

Benign ancillary features

Homogenous marked T2 hyperintensity or hypointensity

Follows dynamic blood pool enhancement

Decreased size or stability over 2 years

Hepatobiliary phase isointensity

Ancillary features favoring benignity are used to decrease the level of
suspicion for malignancy by adjusting the LI-RADS category to a
lower level

Table 25.2 Malignant ancillary features

Malignant ancillary features

Mosaic architecture*

Nodule-in-nodule appearance on T2 weighted imaging*

Intralesional fat*

Mild/moderate T2 hyperintensity

Lesional fat/iron sparing

Blood products

Hepatobiliary phase hypointensity

Ancillary features favoring malignancy can upgrade the level of
suspicion for malignancy up to LR-4, but not LR-5. Those labeled with
an asterisk (*) are considered more specific for hepatocellular
carcinoma over other malignancy
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enhancement characteristics. Mosaic architecture, however,
describes either multiple nodules with varying levels of
enhancement or internal enhancing septae. Intralesional fat is
best visualized as a drop in signal intensity on opposed-phase
compared to in-phase sequences (Fig. 25.3a, b) [13].

Diffusion restriction is an ancillary finding that favors
malignancy in LIRADS but is not specific for HCC
(Fig. 25.3a). HCC diagnosis accuracy is improved with
combination of dynamic contrast MRI with diffusion
weighted imaging [18–20]. However, diffusion weighted
imaging is not considered a major imaging feature due to its
lack of sensitivity and specificity [21]. Diffusion weighted
imaging is also not routinely available on all MRI systems,
and therefore, is not currently part of the required MRI
protocol by LIRADS as outlined above [13].

Hepatobiliary phase hypointensity using gadolinium-
based contrast agents with partial hepatobiliary excretion is
another nonspecific ancillary feature that favors malignancy
(Fig. 25.3d) [1, 13]. HCC, cholangiocarcinoma, and meta-
static masses will typically not uptake the hepatobiliary-
specific contrast due to lack of expression of the
anion-transporting peptide and will consequently be

hypointense compared to the background liver. However,
10–15 % of HCC can uptake the contrast and appear
isointense or hyperintense in the hepatobiliary phase.
Advanced cirrhosis can also cause heterogeneous signal
intensity in the hepatobiliary phase which decreases sensi-
tivity for HCC detection [22].
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26.1 Introduction

Contrast-enhanced computed tomography (CT) is the pri-
mary imaging technique for the study of the cirrhotic liver
and hepatocellular carcinoma (HCC). CT allows an accurate,
noninvasive diagnosis of HCC nodules, and can differentiate
HCC nodules from other benign lesions such as heman-
gioma, and malignant lesions such as cholangiocarcinoma
and metastasis. Pretreatment CT influences the selection of
HCC treatment option by defining HCC number, size,
location, and relationship with surrounding structures, along
with the evaluation of hepatic vascular anatomy and patency
[1]. For instance, HCC multifocality and invasion of major
vessels can contraindicate surgical treatment, while sub-
stantial portal vein thrombosis precludes TACE because of

the increased risk of liver failure due to hepatic ischemia [1].
Post-treatment CT evaluates HCC response to therapy and
detects new HCCs.

In this chapter, we will review the CT protocol for the
cirrhotic liver, the CT features of HCC before and after
treatment, and the CT features of portal vein thrombosis.

26.2 CT Protocol

The use of state-of-the-art equipment and of a tailored pro-
tocol is crucial for optimal HCC detection and staging.
Eight-detector row CT scanner and 5-mm slice thickness are
considered the minimal technical requirement to obtain
high-quality images [1, 2]. Intravenous, bolus injection (4–
5 cc/s) of an iodinated contrast material is mandatory to
characterize focal liver lesions and to evaluate hepatic ves-
sels. The minimum iodine concentration of intravenous
contrast material should be 300 mg per ml [2]. The injection
of a saline solution is strongly recommended because it
reduces the dose of contrast material remaining in the dead
space, and the arrival time of contrast material in the hepatic
arteries [3]. The bolus-tracking technique and use of an
automated power injector are recommended to obtain a
properly timed hepatic arterial phase [2].

The complete CT protocol for a cirrhotic liver includes
unenhanced phase, late hepatic arterial phase, portal venous
phase, and 3-min delayed phase (Fig. 26.1). Nevertheless,
the acquisition of unenhanced images is sometimes consid-
ered optional [2], and most centers do not routinely acquire
unenhanced phase to reduce patient exposure to ionizing
radiations. This is because unenhanced images do not sig-
nificantly improve HCC detection [4]. Unenhanced phase is
helpful to evaluate Lipiodol distribution in HCC treated with
TACE. Moreover, it ensures that calcifications and siderotic
regenerative nodules (RNs) that appear of greater attenuation
than the liver are not mistaken for enhancing nodules on
hepatic arterial phase.

Late hepatic arterial phase is acquired 35 s after contrast
injection or, when bolus-tracking technique is used, 18 s
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after the trigger threshold (120–150 HU) is reached at the
level of the suprarenal abdominal aorta. Moderate
enhancement of the intrahepatic portal vein branches and
absent enhancement of hepatic veins suggests an appropriate
timing [5]. Hepatic arterial phase is crucial to evaluate HCC
enhancement and hepatic arterial anatomy. The portal
venous phase is acquired approximately 60–70 s after con-
trast injection. At this time, the portal and hepatic veins
show simultaneous enhancement, and the liver parenchyma
shows maximal enhancement [5]. Portal venous phase is
crucial to detect HCC venous wash-out and evaluate patency
of portal venous system and hepatic veins. On 3-min delayed
phase, the liver parenchyma attenuation decreases, while the
portal and hepatic veins remain enhanced but to a lesser
degree than in portal venous phase. These findings reflect
contrast diffusion into extracellular compartments, and start
of urinary excretion [6]. Delayed phase acquisition is useful
to detect wash-out in some of those cases where HCC is still
isoattenuating on portal venous phase.

Multiplanar reformation (MPR) and three-dimensional
reconstruction with maximum intensity projection (MIP) can
help radiologists to evaluate hepatic vascular anatomy and
HCC relationship with surrounding structures.

26.3 Cirrhotic Nodules

HCC is usually the result of multistep carcinogenesis, from
RN, to dysplastic lesions (dysplastic foci and dysplastic
nodule (DN)—low and high grade), followed by early and
progressed HCC [7, 8]. During this process, blood supply
changes: the intranodular portal flow gradually decreases,
while the arterial flow gradually increases [9, 10]. Hence, CT

differentiation of HCC from non-malignant RN and DN is
based mainly on the evaluation of tumor vascularity [9, 10].
Less commonly, HCC can develop without intermediate
histologically identifiable steps (“de novo hepatocarcino-
genis”) [11].

26.3.1 Regenerative Nodules

Regenerative nodules are a localized proliferation of normal
hepatocytes surrounded by fibrous septa [12]. Typically,
RNs are innumerable, and measure less than 5 mm in
diameter [12]. RNs contain one or more portal tracts. Newly
formed (unpaired) arteries are not present [12]. Although
RNs are present in all cirrhotic livers, they are rarely diag-
nosed at CT [13]. At unenhanced CT, RNs usually show an
attenuation similar to that of the surrounding liver [13].
Uncommonly, RNs can show hyperattenuation due to iron
content (siderotic nodules). RNs do not enhance on hepatic
arterial phase, and are typically occult on contrast-enhanced
CT images [14]. The detectability of RNs on contrast-
enhanced CT images is predominantly related to the size of
the nodules and the degree of enhancement of surround-
ing fibrosis, the so called “lace-like hepatic fibrosis”, thus
RNs are clearly identifiable only in advanced and macron-
odular cirrhosis [14].

26.3.2 Dysplastic Nodules

Dysplastic nodules are distinct or vague parenchymal nod-
ules composed of hepatocytes with evidence of dysplasia
[15]. DNs are typically larger than RNs, and can be single or

Fig. 26.1 Contrast-enhanced CT protocol of the liver. a Unenhanced
phase shows hypoattenuation of intrahepatic portal vein branches
(dotted arrow) and hepatic veins (arrows). b. Hepatic arterial phase
image shows moderate enhancement of intrahepatic portal vein
branches and absent enhancement of hepatic veins. c. Portal venous

phase image shows simultaneous enhancement of portal and hepatic
veins, and maximal enhancement of the liver parenchyma. d. Delayed
phase image shows a decreased attenuation of the portal and hepatic
veins, and the liver parenchyma
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multiple [15, 16]. Histologically, there are two types of DNs:
low grade DNs and high grade DNs [15]. The former do not
show cytological and architectural atypia, and are morpho-
logically similar to RNs [15]. The latter show cytological
and architectural atypia but no definite malignant changes
[15]. Detection of high grade DNs is important for the
management of cirrhotic patient because of the risk of
malignant transformation. DNs are usually isoattenuating to
the liver on unenhanced CT.

Siderotic DNs can show hyperattenuation on unenhanced
CT. DNs are typically iso or hypoenhancing to the liver [17].
Less commonly, DNs show arterial enhancement [17]. The
enhancement pattern reflects intranodular blood supply: DNs
represent an intermediate step in multistep hepatocarcino-
genis, and are supplied by both residual portal tracts (con-
taining the portal vein and normal hepatic artery) and
unpaired arteries [15, 17].

26.3.3 Nodule-in-Nodule

The “nodule-in-nodule” appearance represents a small HCC
within a larger DN. During the multistep hepatocarcino-
genesis process, one or more tiny foci of HCC can develop

within a high grade DN. The foci of HCC grow rapidly, and
replace completely the surrounding DN [18]. CT can occa-
sionally detect these foci of HCC. The “nodule-in-nodule”
appearance represents a small hypervascular subnodule
(representing the HCC) within a hypovascular nodule (rep-
resenting the DN) (Fig. 26.2). These findings support the
multistep hepatocarcinogenesis theory in vivo.

26.3.4 Hepatocellular Carcinomas

HCCs are malignant tumors composed of cells with hepa-
tocellular differentiation [12]. HCCs are pathologically
classified as early and progressed. Early HCCs represent the
incipient stage of hepatocarcinogenesis [15]. Early HCCs
measure less than 2 cm in diameter, and are composed of
well-differentiated neoplastic cells [15]. Early HCCs contain
few unpaired arteries, and retain some portal tracts [15].
Progressed HCCs represent the final stage of hepatocar-
cinogenesis. Progressed HCCs have a distinct nodular
appearance, are usually moderately differentiated, and
may invade the vessels; the latter finding differentiates them
from early HCCs. Blood supply is almost exclusively from
unpaired arteries, and the size is variable. Progressed HCCs

Fig. 26.2 Hepatocellular
carcinoma with nodule-in-nodule
appearance in a 61 year-old man
with HBV-related hepatic
cirrhosis. a–b On
contrast-enhanced CT scan the
dysplastic nodule (arrow) shows
iso to hypoattenuation on hepatic
arterial phase (a) and
hypoattenuation on portal venous
phase (b). Hepatic arterial phase
CT scan eight months after a-b
shows an enhancing nodule
(arrowhead) within a bigger
hypoenhancing nodule (arrow),
consistent with nodule-in-nodule
appearance
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are classified into small (� 2 cm in diameter) and large
(>2 cm in diameter). Imaging appearance depends on HCC
size and grade of differentiation. HCCs are usually iso or
hypoattenuating to the liver on unenhanced phase. After
intravenous contrast administration, HCCs typically
show moderate arterial enhancement and venous wash-out
[1] (Fig. 26.3). Arterial enhancement (hypervascularity) is
defined as hyperattenuation of a lesion compared with the
surrounding liver on arterial phase [5]. The basis of arterial
enhancement is well understood: HCCs are predominantly
perfused from newly formed arteries, while the surrounding
liver is perfused by both the hepatic artery (25 % of blood
supply) and the portal vein (75 % of blood supply) [17, 19].
Arterial enhancement is homogeneous in small HCCs and
heterogeneous in large HCCs. Venous wash-out is defined as
hypoattenuation of a lesion on portal venous and/or delayed
phase compared with the surrounding liver [5]. The mecha-
nism underlying venous wash-out is multifactorial, and
results from a combination of early venous drainage through
perinodular hepatic sinusoids and portal veins, HCC
decreased portal supply, and progressive enhancement of
cirrhotic liver [20]. Venous wash-out is more frequently
appreciated on delayed phase than on portal venous phase
[21]. The combination of arterial enhancement and venous
wash-out has high diagnostic accuracy for the diagnosis of
HCC in at high risk patients [22]. The sensitivity and
specificity are approximately 100 % for large HCCs, and are
lower in smaller HCCs (the bigger the HCC, the higher the
diagnostic accuracy). Thus, most current guidelines recom-
mend that a noninvasive, imaging-based diagnosis of HCC
can be made in at risk patients if a lesion shows arterial
enhancement and venous wash-out. Western HCC guidelines

require a minimum lesion diameter of one cm [1, 23], while
asian guidelines do not take into account lesion size [23].
Because most guidelines are based only on evaluation of
tumor vascularity, most early HCCs and small progressed
HCCs are underdiagnosed [24]. The former posses a low
number of unpaired arteries, and are essentially hypovascular
lesions. The latter have an increased number of unpaired
arteries, but retain portal tracts, and, therefore, can enhance
on hepatic arterial phase, but lack venous wash-out [24].

A peritumoral capsule is typically observed in progressed
HCCs [25], and is considered a characteristic feature of
HCC [5]. Peritumoral capsule is composed of an inner thin
layer containing fibrous tissue, and an outer thick layer
containing small vessels and biliary ducts [26]. Peritumoral
capsule is considered as a positive prognostic factor of HCC:
encapsulated HCCs exhibit a lower recurrence rate after
hepatic resection and a better response to trans-arterial
chemioembolization (TACE), compared to nonencapsulated
HCCs of similar size and grade [27, 28]. At CT, the capsule
shows iso to slight hypoattenuation on unenhanced phase,
and progressive enhancement from arterial to delayed phase
[26]. Ancillary features for the diagnosis of HCC include
intralesional fat, mosaic appearance, nodule-in-nodule
appearance, and corona enhancement [5]. Ancillary fea-
tures do not allow a definitive diagnosis of HCC, but can
help radiologists to characterize indeterminate cirrhotic
nodules. Intralesional fat is a common finding of early HCC,
and becomes infrequent with increasing tumor diameter and
histologic grade [15, 29]. However, as intralesional fat can
be also detected in high grade DNs and, occasionally, in low
grade DNs, it should be used with caution to confirm the
diagnosis of HCC [15, 30]. The term corona enhancement

Fig. 26.3 HCC with typical CT
features in a 77-year-old man
with HCV-related cirrhosis. CT
scan shows an HCC (arrow) with
enhancement on hepatic arterial
phase (a) and wash-out (arrow)
on portal venous phase (b). HCC
is surrounded by a capsule that
enhances on portal venous phase
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indicates a ring-like arterially enhancing area at the periph-
ery of an arterially enhancing HCC, which fades on portal
venous and delayed phases [31, 32]. This area corresponds
to HCC draining area [31, 32]. Mosaic appearance is char-
acteristically observed in large HCCs and is due to internal
areas with different composition (hemorrhage, calcifications
and necrosis), and enhancing septa [2]. Infiltrative or diffuse
type HCC accounts for up to 20 % of HCCs and consists of
innumerable, minute HCC nodules, which spread into mul-
tiple hepatic segments with an infiltrative growth pattern
[33]. Infiltrative HCC shows minimal or no enhancement on
hepatic arterial phase, and a slight hypoattenuation on portal
venous and delayed phases [34]. Portal vein invasion is a
common finding [34].

26.4 Portal Vein Thrombosis

Portal vein thrombosis is defined as a partial or complete
filling defect within the vascular lumen [35]. Portal vein
thrombosis occurs as a complication of portal hypertension
(bland thrombus) or HCC (neoplastic thrombus). Portal vein
neoplastic thrombosis indicates HCC macrovascular inva-
sion, and render a patient ineligible to liver transplantation
[2]. Neoplastic thrombi show similar enhancement to HCC,
and, occasionally, direct HCC extension into the portal vein
can be observed [35] (Fig. 26.4). Additional findings that
increase the confidence for diagnosis of neoplastic throm-
bosis are enlargement of vascular lumen, and presence of
multiple striated arterial vessels within the thrombus (“thread
and streaks sign”) [35, 36]. Bland thrombi are usually
hypoattenuating on portal venous phase, and do not enhance

on hepatic arterial phase [35] (Fig. 26.5). In more severe
cases, portal vein narrowing, calcifications and cavernous
transformation are observed [35, 36]. Benign portal vein
thrombosis is not an absolute contraindication to liver
transplantation, but it renders the procedure more difficult,
and increases the risk of graft loss and perioperative mor-
tality [37, 38].

Fig. 26.4 Malignant portal vein thrombosis in a 71-year-old woman
with HCV-related cirrhosis and HCC. Hepatic arterial phase CT scan
shows a heterogeneously enhancing thrombus (arrow) within the right
portal vein, and a large HCC in right hepatic lobe (asterisk)

Fig. 26.5 Benign portal vein
thrombosis in a 58-year-old man
with HCV-related cirrhosis.
Hepatic arterial (a) and portal
venous (b) phase CT scan shows
a non occlusive, hypoattenuating,
non enhancing thrombus within
(arrow) the main portal vein

26 Computed Tomography of HCC 403



26.5 Treated HCC

The scope of HCC treatment is to improve patients’ survival
and preserve health-related quality of life. Hepatic resection
is the preferred treatment modality for HCC, and can be
offered to patients with well-preserved liver function (Child–
Pugh class A and B) [1]. When hepatic resection is unfea-
sible (e.g., multiple HCCs with bilobar distribution) or
unsafe (e.g., severely impaired hepatic function),
image-guided procedures, including radiofrequency ablation
(RFA), percutaneous ethanol injection (PEI), and
trans-arterial therapies can be considered as a first-line
treatment [1]. Targeted therapies are indicated in patients
with advanced HCC stage or with progression after treat-
ment, in which hepatic resection and image-guided proce-
dures are not possible [1]. Residual and recurrent disease
after HCC treatment, however, is not rare. Thus, CT
surveillance plays a crucial role in treatment monitoring.
Post-treatment is usually performed at one, 3 and 6 months
after treatment, and every 6 months thereafter [38].
One-month follow-up is crucial to detect residual disease
and potential post-procedural complications [38]. Later
follow-up studies are crucial to detect tumor recurrence,
defined as the occurrence of viable tumor in a HCC that has
been previously considered completely necrotic at imaging
[38]. Evaluation of treatment response is primarily based on
the detection of viable tumor rather than changes in tumor
size [39]. As a general rule, arterially enhancing areas are
presumed to be viable tumor, while absence of arterial
enhancement typically means necrotic tumor [38]. CT find-
ings of treated HCC depend on treatment modality [38].

26.5.1 Radiofrequency Ablation

RFA induces HCC coagulative necrosis by placing one ormore
electrodes within the tumor [40]. RF-ablated area should be
larger than the preexisting tumor [40]. RF-ablated area remains
stable in size or shrinks with time [41]. Absence of arterial
enhancement within the treated area indicates a successful RFA
[42].A circumferential, thin, arterially enhancing rim, however,
can be sometimes observed along themargins of the treated area
[42]. This rim is due toRFA-induced inflammatory reaction and
usually disappears with time [43]. Viable tumor must be sus-
pected if arterially enhancing area is nodular or irregular and the
treated area does not encompass the preexisting tumor [42]
(Fig. 26.6). Treatment-related complications include abscess
within the treated area, wedge-shaped arterially enhancing area
in proximity of the treated area due to iatrogenic arteriovenous
shunts, portal vein thrombosis, and tumor seeding [42].

26.5.2 Percutaneous Ethanol Injection

PEI induces tumor coagulative necrosis by percutaneous
injection of ethanol in the HCC [44]. A successful treated
HCC does not enhance on hepatic arterial phase, and shows
hypoattenuation on contrast-enhanced images [44]. Similarly
to RF-ablated HCC, successfully treated area remains stable
in size or shrinks with time. PEI results in a lower treatment
response, as compared with RFA [45, 46]. Treatment-related
complications (e.g., abscess within the treated area, bile
ducts dilatation due to biliary injury, peritoneal bleeding and
tumor seeding) are extremely rare [44].

Fig. 26.6 Recurrent HCC after
RFA in a 66-year-old man with
HCV-related hepatic cirrhosis.
a Pre-RFA hepatic arterial phase
CT scan shows an enhancing
HCC (arrow). b Hepatic arterial
phase CT scan obtained five
months after RFA shows an
enhancing nodule (dotted arrow)
along the margins of the
RF-ablated area
(arrow) representing recurrent
disease
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26.5.3 Trans-arterial Therapies

Traditional trans-arterial chemoembolization (TACE) con-
sists of trans-arterial infusion of chemotherapeutic agents
mixed with Lipiodol (Andre Guerbet, Aulnay-sous-Bois,
France) into HCC feeding vessels [47]. The treated area has
the same size of the preexisting HCC, and remains stable in
size or shrinks with time. CT assessment of TACE efficacy
relies on the evaluation of Lipiodol uptake and vascular-
ization [48]. Specifically, any HCC portion, which retains
Lipiodol is considered to be necrotic tissue, while any area
within the HCC or along its margins, which shows arterial
enhancement and venous wash-out, is considered to be
viable tissue [48] (Fig. 26.7). As Lipiodol shows sponta-
neous hyperattenuation, its uptake is primarily evaluated on
unenhanced phase. Lipiodol uptake, however, can cause
beam-hardening artifacts that make difficult the detection of
enhancing viable tumor [49]. Treatment-related complica-
tions include hepatic abscess, wedge-shaped arterially

enhancing area, liver infarction, and iatrogenic dissection of
the celiac trunk [50].

TACE with drug-eluting microspheres and 90Y
radioembolization represent two emerging alternative tech-
niques to traditional TACE [47]. Drug-eluting microspheres
embolize HCC feeding arteries, and release the chemother-
apeutic agents into the HCC in a sustained and controlled
manner, thus reducing the systemic effects related to the
administration of chemotherapeutic agents [47]. The absence
of Lipiodol-related beam-hardening artifacts helps detect
viable arterially enhancing HCC and evaluate treatment
response, compared with traditional TACE [49]. Radioem-
bolization consists of injection of embolic particles loaded
with a radioisotope into HCC feeding arteries. Similarly to
HCC treated with drug-eluting microspheres,
Lipiodol-related beam-hardening artifacts are absent [51].
A peritumoral edema and a thin, arterially enhancing rim can
be sometimes observed along the margins of the treated
HCC immediately after treatment and disappear with time

Fig. 26.7 Residual HCC after
TACE in a 74-year-old woman
with HCV-related hepatic
cirrhosis. a Pre-TACE hepatic
arterial phase CT scan shows an
enhancing HCC (arrow). b–d. On
CT scan obtained one month after
TACE the residual viable tumor
(dotted arrow) shows defective
Lipiodol retention on unenhanced
phase (b), enhancement on
hepatic arterial phase (c) and
wash-out on delayed phase (d),
while the necrotic tumor (arrow)
shows homogeneous Lipiodol
retention on unenhanced phase,
and no enhancement on hepatic
arterial phase
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[51]. Radioembolization can cause atrophy of the treated
lobe [51].

26.5.4 Targeted Therapies

Targeted therapies such as Sorafenib inhibit HCC neoan-
giogenesis and growth, but do not necessarily cause HCC
necrosis [52]. The primary effect of targeted therapies is a
decrease in HCC vascularity [52] (Fig. 26.8). Thus, the
traditional WHO and RECIST criteria based on evaluation of
tumor size can underestimate the real response rate [53].
Assessment of treatment response relies on evaluation of the
viable HCC burden, defined as the portion of the HCC that
shows arterial enhancement and venous wash-out [39].
Response evaluation criteria include the modified RECIST
(mRECIST) criteria and modified Choi criteria. The former
evaluate the sum of the diameters of the viable portions of
target lesions, while the latter evaluate the changes in hepatic
arterial phase attenuation of the target lesions before and
after therapy [39, 54].
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27.1 Introduction

Hepatocellular carcinoma (HCC) is the most common form
of liver cancer. It is the fifth most common cancer worldwide
and the third most common cause of cancer-related death
globally. Most cases of HCC (approximately 80 %) are
associated with chronic hepatitis B virus (HBV) or hepatitis
C virus (HCV) infections [1]. Although HCC has historically
been more common in the developing world, its incidence in
developed countries has almost tripled since the early 1980s,
largely as a result of the increased incidence of liver cirrhosis
[2, 3]. This incidence is increasing because of the long-term
consequences of HCV infection, the obesity epidemic and
non-alcoholic steatohepatitis (NASH)-associated cirrhosis,
as well as better diagnostic modalities. An estimated 1
million new cases of HCC are diagnosed annually.

HCC is rarely seen during the first 4 decades of life,
except in populations where HBV infection is
hyper-endemic such as in South East Asia and Sub-Saharan
Africa [4]. The mean age at diagnosis with HCC is 63–
65 years in Europe and North America. HCC is predominant
among men, with the highest male: female ratios in areas of
South East Asia [1].

Eighty to ninety percent of patients with HCC have
underlying chronic liver disease and cirrhosis. Approxi-
mately 1–8 % of these patients will develop HCC per year
depending on etiology, with the highest risk seen in patients
with HCV-associated cirrhosis (3–8 % yearly) [5].
Advanced liver disease, as manifested by platelet count of
less than 100,000, presence of esophageal varices, ascites
and encephalopathy, in addition to older age and male
gender, correlates with a higher risk to develop HCC in
cirrhotic patients [6]. Studies have shown that liver cancer
incidence increases in parallel to portal hypertension as
measured by hepatic venous pressure gradient (HVPG) [7]
or to the degree of liver stiffness as measured by transient
elastography [8, 9].
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The clinical presentation of HCC is variable and can
range from an asymptomatic presentation to tumor rupture
with a catastrophic hemoperitoneum [10]. Hence, screening
and surveillance is of utmost importance in “at-risk” popu-
lations to diagnose early HCC and offer potentially curative
treatments.

Diagnosis and management of HCC in cirrhotic patients
is complex, and requires astute clinical decision-making. It
relies primarily on imaging modalities, serum markers, and
histology. Patients with HCC are unique, because they
combine the complexity of the underlying cirrhosis and that
of the malignancy. Clinicians play a pivotal role in per-
forming diagnostic testing and in both the primary and the
secondary chemoprevention of HCC and require advanced
knowledge of both hepatology and oncology.

This chapter will discuss various clinical presentations of
HCC, offer an approach to screening and diagnostic testing,
debate the pros and cons of histologic evaluation, and
finally, illustrate primary and secondary chemopreventive
strategies that may be employed by the doctors taking care
of patients with HCC.

27.2 Clinical Features

27.2.1 Asymptomatic HCC

Most cases of HCC appear in the setting of cirrhosis; hence,
presenting symptoms will be similar to those observed in
patients with advanced liver disease. Partially due to
screening programs for cirrhotic patients and also to the wide
spread use of ultrasonography (US), some tumors are now
being detected at an asymptomatic stage. These tumors tend
to be small and therefore are more amenable to potentially
curative therapies such as resection, transplantation, and
tumor ablation [11].

27.2.2 Symptomatic HCC

The classical triad for presentation of HCC, though
uncommon in clinical practice, includes right upper quadrant
abdominal pain, weight loss, and hepatomegaly (see
Table 27.1). The pain is frequently described as a dull,
continuous ache that intensifies late in the course of the
illness and my radiate to the shoulder. This occurs due to
involvement of Glisson’s capsule. Firm, often massive
hepatomegaly is also a feature of symptomatic malignant
liver tumors. Systemic symptoms such as weight loss, fati-
gue, and anorexia are common in patients with advanced
disease.

27.2.3 Hepatic Decompensation Due to HCC

Any patient with known cirrhosis can present with acute
hepatic decompensation due to a new HCC. These patients
can develop new-onset ascites, variceal hemorrhage, pro-
gressive encephalopathy, or jaundice. Although hepatic
decompensation may be due to “natural” progression of the
underlying liver disease, any of the above features should
raise the suspicion for new HCC in the differential diagnosis.

27.2.4 Portal Vein Thrombosis

Portal vein thrombosis (PVT) is a common complication of
HCC, complicating 34–50 % of cases and has a markedly
deleterious effect on prognosis. To distinguish PVT occur-
ring due to malignant spread into the portal vein, it is also
called portal vein tumor thrombus (PVTT) [13]. Untreated
patients with PVTT have a life expectancy of less then
3 months. In a treated patient the prognosis is heteroge-
neous, depending on patient and tumor characteristics [13].

Table 27.1 Symptoms and signs of hepatocellular carcinoma

Symptoms Frequency (%) Sign Frequency (%)

Abdominal pain 59–95 Hepatomegaly 54–98

Weight loss 34–71 Hepatic bruit 6–25

Weakness 22–53 Ascites 35–61

Abdominal swelling 28–43 Splenomegaly 27–42

Nonspecific gastrointestinal symptoms 25–28 Jaundice 4–35

Jaundice 5–26 Wasting
Fever

25–41
11–54

Reprinted from Kew [12], p. 1578
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Diagnosis is based on imaging that may show vascular
enhancement of the thrombus with occasional traversing
blood vessels. Differentiating PVT from PVTT is crucial
because liver transplantation is contraindicated with
macrovascular invasion. A few reports suggest using
Endoscopic US (EUS) guided Fine Needle Aspiration
(FNA) from PVTT for HCC pathologic diagnosis [14].

27.2.5 Gastrointestinal Hemorrhage

Approximately 10 % of patients with HCC will present with
some form of gastrointestinal bleeding as their first mani-
festation of the tumor. About 45 % of these patients will
have esophageal variceal hemorrhage. Although not neces-
sarily associated with HCC, this may occur due to PVTT
from direct tumor invasion causing elevated portal pressure.

Peptic ulcer disease, portal hypertensive gastropathy, and
other causes for gastrointestinal bleeding account for the
remaining 55 % of cases [15]. Rarely, the tumor may invade
directly into the gastrointestinal tract and cause significant
bleeding at presentation [16].

27.2.6 Tumor Rupture/Hemoperitoneum

HCC can manifest as an “acute abdomen” when the tumor
ruptures, causing a hemoperitoneum. Tumor rupture may
occur spontaneously or with minor blunt abdominal trauma.
Spontaneous tumor rupture is one of the most severe com-
plications of HCC. The clinical presentation is that of severe
abdominal pain, vascular collapse, and signs of peritoneal
irritation. Rupture is mainly a consequence of increased
tension from tumor progression, central necrosis, or lique-
faction [17]. It was suggested that increased intratumoral
pressure occurs due to progressive or sudden occlusion of
the hepatic veins by tumor invasion causing venous con-
gestion. Computed Tomography (CT) findings may include
the following: hemoperitoneum, HCC with surrounding
perihepatic hematoma, active extravasation of contrast
material, tumor protrusion from the hepatic surface with
focal discontinuity, or the “enucleation sign” with findings
of a low attenuated mass with peripheral rim enhancement
[18].

The following findings are associated with an increased
risk of rupture: a large HCC, a contour protrusion, and PVT
[18].

Hemostasis is the primary concern and resection of the
tumor is secondary [19]. In hemodynamically stable patients,
one-stage hepatectomy has shown better results. However, in
hemodynamically unstable patients, transarterial emboliza-
tion (TAE) and surgical hemostasis are the first choice of
action followed by two-stage tumor resection in a stabilized

patient, pending a careful evaluation of functional liver
reserve, coagulopathy, tumor size, and location [19].

Sometimes the presentation of tumor rupture is more
insidious and is suspected upon discovery of hemorrhagic
ascites. Hemorrhagic ascites can occur spontaneously and
from other causes, but is most commonly caused by HCC.
Patients with hemorrhagic ascites have higher rates of
spontaneous bacterial peritonitis, acute kidney injury, and
are more likely to require hospitalization in an intensive care
unit. They have higher mortality rates than patients with
non-hemorrhagic ascites [20].

27.2.7 Paraneoplastic Syndromes

These systemic presentations result, directly or indirectly,
from synthesis and secretion of biologically active sub-
stances such as hormones or hormone-like substances by the
tumor. Physical findings associated with hormonal over-
secretion in a cirrhotic patients, should raise a clinical sus-
picion of a paraneoplastic syndrome and merit a search for
HCC (see Table 27.2).

Paraneoplastic syndromes associated with HCC are
exceedingly rare, with limited literature coming from mostly
isolated case reports and will be discussed briefly.

Two types of Hypoglycemia (<5 % of patients) can be
seen in HCC patients. Type A hypoglycemia occurs with
rapidly growing tumors in markedly emaciated patients with
significant muscle wasting. The mechanism is attributed to
the inability of the liver, largely replaced by a tumor, to
satisfy glucose demands of the tumor and other tissues.

Table 27.2 Paraneoplastic syndromes associated with HCC

Hypoglycemia

Polycythemia (erythrocytosis)

Hypercalcemia

Sexual changes: isosexual precocity, gynecomastia, feminization

Systemic arterial hypertension

Watery diarrhea syndrome

Carcinoid syndrome

Osteoporosis

Hypertrophic osteoarthropathy

Thyrotoxicosis

Hypercholesterolemia

Thrombophlebitis migrans

Polymyositis

Neuropathy

Cutaneous manifestations: pityriasis rotunda, Leser–Trelat sign,
dermatomyositis, pemphigus foliaceus, porphyria cutanea tarda

Adapted from Kew [12], p. 1579
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These patients have suppressed insulin and c-peptide levels
and increased glucagon, which is due to
hypoglycemia-induced counter-regulatory mechanisms.
Type B hypoglycemia, which represents only 5–13 % of
paraneoplastic hypoglycemia in HCC, manifests as severe
hypoglycemia early in the course of the disease. It results
from defective processing of the precursor to IGF2 (pro
IGF2) by the hepatocytes. IGF2 circulates as smaller parti-
cles, which transfer more easily through capillary mem-
branes and have more access to IGF1, IGF2, and insulin
receptors, thereby causing increased glucose uptake [21].
Polycythemia (<10 % of patients) is caused by synthesis of
an erythropoietin-like substance by malignant hepatocytes
[22]. Patients with HCC, especially the sclerosing variety,
may present with hypercalcemia in the absence of osteolytic
metastases. This is caused by production of parathyroid
hormone-related peptide (PTHrP) by tumor cells [23].
Arterial hypertension complicating HCC is the result of
ectopic synthesis of angiotensinogen by malignant hepato-
cytes [24]. Feminization, results from the tumor’s conver-
sion of circulating dehydroepiandrosterone to estrone, and,
to a lesser extent, estradiol [25]. Hypercholesterolemia is the
result of autonomous de novo synthesis of cholesterol by the
tumor [26]. Watery diarrhea, which may be severe and
intractable, is probably related to secretion of a peptide that
promotes intestinal secretion, e.g., vasoactive intestinal
peptide (VIP), gastrin, and prostaglandins [27].

27.2.8 Cutaneous Manifestations

Several cutaneous manifestations have been described in
association with HCC; however, none is pathognomonic.
These include dermatomyositis, pemphigus foliaceus, sign
of Leser–Trelat, pityriasis rotunda, and porphyria cutanea
tarda [28]. Pityriasis rotunda may be a useful marker of HCC
in black Africans. The rash consists of single or multiple,
round or oval, hyperpigmented, scaly lesions on the trunk
and thighs that range in diameter from 0.5 to 25 cm [29].

27.2.9 Other Rare Manifestations

HCC can cause fever of unknown origin. This is possibly
due to the release of pyrogenic cytokines either directly from
tumor cells or from macrophages reacting to the tumor.
Suspected culprits include interleukin (IL)-1, IL-6, and
tumor necrosis factor (TNF)a. Other substances include
prostaglandin E2 which acts on the hypothalamus, causing a
change in the thermostatic set point [30].

Massive tense ascites resulting from hepatic vein spread
(Budd–Chiari syndrome) [31] and obstructive jaundice

resulting from bile duct compression are complications of
locally advanced tumor.

27.2.10 Metastatic HCC

Metastatic spread is uncommon in HCC. Most cases of
metastatic spread occur in patients with advanced intrahep-
atic HCC. The lung and lymph nodes are the most common
sites for metastatic spread accounting for 47 and 45 %
accordingly, followed by musculoskeletal disease in 37 %
and adrenal involvement in 12 % [32]. The brain is a rare
site for metastatic spread, accounting for only 2 % of
metastatic disease [33].

27.3 Screening for HCC

In 70–90 % of all cases, HCC develops against a back-
ground of chronic liver disease with inflammation and cir-
rhosis [34]. Major causes of cirrhosis are HBV, HCV,
NASH, and alcohol, which account for the vast majority of
HCC cases world wide.

Less common causes of HCC include hereditary
hemochromatosis (HH)-induced cirrhosis, in which the
incidence of HCC is 8–10 % and the tumor accounts for as
many as 45 % of deaths [35]. Cirrhosis associated with other
chronic liver diseases such as autoimmune hepatitis, alpha-1
antitrypsin deficiency, and primary biliary cholangitis
(PBC) has also been associated with the development of
HCC. There are no large prospective studies to determine the
incidence of HCC among patients who have cirrhosis from
such less prevalent conditions, but their risk is significantly
higher than that of the normal population. A recent study has
shown that Wilson’s disease, even in a setting of cirrhosis, is
not associated with an increased risk for HCC [36].

In Asia and Africa, exposure to dietary aflatoxin is an
important risk factor for HCC, both as an independent risk
and as a cofactor in chronic HBV infection [37]. In
Sub-Saharan Africa, human immunodeficiency virus infec-
tion is recognized as a frequent cofactor that increases the
risk of HCC in patients with chronic HBV or HCV infection
[38]. The risk of HCC is higher in males, patients older than
50 years and with increased a-fetoprotein (AFP) concentra-
tion. Smoking slightly increases the oncogenic risk [39],
whereas coffee consumption seems to reduce the risk [40].

HCC surveillance is associated with significant
improvement in early tumor detection and receipt of curative
therapies [41]. Unfortunately, screening programs have not
been successful in increasing overall survival in this deadly
cancer. In a recent review, El-Serag et al. assessed the
probabilities of various assumptions in a surveillance
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algorithm. Independent probabilities in HCC screening
include: HCV or HBV diagnosis rates (80 %), access to
surveillance (80 %), recommendation for surveillance
(80 %), acceptance by patients (80 %), adherence to rec-
ommended intervals (80 %), proper follow-up (80 %), and
availability of diagnostic and therapeutic options (80 %). If
these probabilities are multiplied and considering the esti-
mated efficacy of HCC surveillance in clinical trials is 35 %,
the resulting effectiveness could be as low as 6 % [42].
A survey of 436 HBV-infected Korean participants, showed
that only 27 % were up to date with HCC screening and
more than half (52.9 %) have never been screened [43].
Even more alarming results were published in a study
assessing the prevalence of HCC surveillance among
HCV-infected patients with cirrhosis in the Veterans Affairs
health care facilities in the United States. In this retrospec-
tive cohort study of 126,670 patients with HCV, 10 % had
cirrhosis, approximately 42.0 % of patients with cirrhosis
received one or more HCC surveillance test within the first
year after diagnosis; a decline in the rates of surveillance was
observed in the following 2–4 years. Routine surveillance
occurred in 12.0 %, inconsistent surveillance in 58.5 %, and
no surveillance in 29.5 % [44].

Cost-effectiveness studies indicate that US alone or in
association with AFP is the most cost-effective surveillance
method. Screening should be implemented to detect HCC at
an early stage of cirrhosis and it is likely to be cost inef-
fective as the liver disease progresses limiting the ability to
treat, or after liver transplantation, where the risk markedly
declines [45]. Surveillance may be associated with a modest
gain in quality-adjusted life years at acceptable costs. A re-
cent study demonstrated that optimal adherence to
HCC screening would increase life expectancy by
31 months and decrease HCC mortality at 5 years by 20 %
in patients with compensated HCV-related cirrhosis [46].

Surveillance is recommended in target populations of
cirrhotic patients and non-cirrhotic chronic HBV carriers
(see Table 27.3). The efficacy and cost-effectiveness of
surveillance in non-cirrhotic HCV carriers are unclear.
A recent study from the United States pointed out that HCC
can occur in patients with chronic HCV and bridging fibrosis
in the absence of cirrhosis (Metavir F3) [6]. Whether it is
cost-effective for these subjects to undergo routine surveil-
lance has not been determined, but on the basis of prior
cost-effectiveness analyses they would fall below the 1.5 %/
year incidence threshold for initiation of surveillance in an
“at-risk” population.

The fact that the transition from advanced fibrosis to
cirrhosis cannot be accurately defined led the European
Association for the Study of the Liver (EASL) to expand its
recommendation of surveillance to include HCV patients
with F3 fibrosis. Japanese guidelines extend this

recommendation to all patients with chronic viral hepatitis
and nonviral cirrhotic patients [4, 47, 48].

The American Association for the study of Liver Disease
(AASLD) practice guidelines for HCC screening in high risk
populations were updated in 2011 (see Table 27.3) [47].
According to these guidelines surveillance was deemed
cost-effective if the expected HCC risk exceeds 1.5 % per
year in patients with HCV and 0.2 % per year in patients
with HBV.

Surveillance recommendations are based on a seminal
randomized controlled trial conducted in China that included
nearly 19,000 individuals with chronic HBV infection.

Table 27.3 Group for whom HCC surveillance in recommended or
in whom the risk of HCC is increased, but in whom efficacy of
surveillance has not been demonstrated

Surveillance recommended

Population group Threshold incidence
for efficacy of
surveillance
(>0.25 LYG) (%/year)

Incidence of HCC

Asian male hepatitis
B carriers over age
40

0.2 0.4–0.6 %/year

Asian female
hepatitis B carriers
over age 50

0.2 0.3–0.6 %/year

Hepatitis B carrier
with family history
of HCC

0.2 Incidence higher
than without
family history

African/North
American blacks
with hepatitis B

0.2 HCC occurs at a
younger age

Cirrhotic hepatitis B
carriers

0.2–1.5 3–8 %/year

Hepatitis C cirrhosis 1.5 3–5 %/year

Stage 4 primary
biliary cirrhosis

1.5 3–5 %/year

Genetic
hemochromatosis
and cirrhosis

1.5 Unknown, but
probably > 1.5 %/
year

Alpha 1-antitrypsin
deficiency and
cirrhosis

1.5 Unknown, but
probably > 1.5 %/
year

Other cirrhosis 1.5 Unknown

Surveillance benefits uncertain

Hepatitis B carriers
younger than 40
(males) or 50
(females)

0.2 <0.2 %/year

Hepatitis C and stage
3 fibrosis

1.5 <1.5 %/year

Non-cirrhotic
NAFLD

1.5 <1.5 %/year
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Patients were randomized to screening or routine follow-up.
The study reported that surveillance with US and AFP tests,
repeated at 6-month intervals, reduced HCC-related mor-
tality rates by 37 % [49].

Numerous studies, most of them in HCV patients [50,
51], have tried to assess the optimal interval of surveillance,
mostly concluding that semiannual and annual screening
programs were comparable. One study, in HBV patients,
demonstrated improved survival with 6 months surveillance
intervals compared to 12 months [52]. Therefore, rather than
making separate recommendations for patients with HBV or
HCV, the AASLD issued a single recommendation that
surveillance be undertaken at 6 monthly intervals.

27.4 Diagnostic Approach

If HCC is suspected either clinically or because of abnormal
screening results, further investigation by imaging tech-
niques and/or biopsy is required. There are two categories
for diagnostic tests: serologic and radiologic. Serologic tests
include AFP and other more novel markers, while radiologic
diagnosis relays on contrast-enhanced imaging.

27.4.1 Serologic Markers

The most commonly used serologic test to detect HCC is
AFP. Produced by the yolk sac and the liver during fetal
development, the AFP levels drop after birth. In adults AFP
levels may rise in patients with HCC, germ cell tumors and
liver metastasis. Studies that combined data on liver US and
measurements of serum AFP levels found that approxi-
mately 20 % of HCC cases are detected based on isolated
increase in AFP level, with a nondiagnostic US [53].

Despite this finding, recent AASLD guidelines recom-
mend omitting AFP in HCC surveillance since it lacks
sensitivity and specificity. Thus, according to the recom-
mendations the diagnosis of HCC should rely on radiolog-
ical appearances and when necessary on histology [47].

A recent review challenges this recommendation. The
authors argue that measurements of AFP levels have several
advantages; Assays for serum levels of AFP are inexpensive,
simple to perform, well standardized, and widely available.
The authors also claim that AFP test performance, including
reproducibility is high, and has been evaluated in random-
ized trials, population-based and cohort studies. In contrast,
US is operator-dependent, with high inter-observer vari-
ability and also lacks sensitivity [54]. Several international
societies have not joined the AASLD and EASL and have
left AFP part of the surveillance protocol [55, 56].

Des-carboxyprothrombin (DCP) has been evaluated as
another serum biomarker for the detection of HCC. Its role

in screening has not been validated, but it was shown as a
predictor of prognosis in patients with PVT and candidates
for living-related liver transplantation (LRLT) [57–59].
A large follow-up study in HCV patients confirmed the lack
of efficacy of AFP and DCP as surveillance tests, even when
used in combination [53].

Other markers that have been assessed for screening
include: the ratio of glycosylated AFP (L3 fraction) to total
AFP, alpha fucosidase, glypican 3, and HSP-70 [47].

Novel technologies such as genome-wide DNA
microarray, qRT-PCR and proteomic studies have been used
in an attempt to identify markers of early diagnosis of HCC,
however, to date no such biomarker is available [4].

27.4.2 Radiologic Diagnoses

Given the fact that serologic biomarkers have not had the
expected results, HCC surveillance and diagnosis is based on
imaging. The radiological test most widely used for
surveillance is US. Surveillance US has a sensitivity of 44 %
and specificity of 91 %, for the detection of HCC. A recent
prospective study, published after the AASLD published
their recommendations, suggests that sensitivity is signifi-
cantly improved to 90 %, with minimal loss in specificity
(83 %) when combined with AFP [60].

A small HCC on US may take several appearances. The
smallest lesions may be hyperechoic. Other lesions may be
hypoechoic, or show a “target lesion” appearance. None of
these appearances is specific [47]. If HCC is suspected,
advancing to another, more sensitive diagnostic modality is
needed.

Diagnostic imaging tests used to detect HCC are either
triple/quadruple-phase helical CT or a triple-phase dynamic
contrast-enhanced magnetic resonance imaging (MRI). The
most common diagnostic feature of HCC during CT scan or
MRI is the presence of an arterial-enhancing lesion followed
by delayed hypointensity of the tumor in the portal venous
phase, so-called the “washout phase” [61]. Recent technical
advances have enabled MRI to evaluate tumor cellularity with
diffusion-weighted imaging (DWI), tumor vascularity with
dynamic subtraction imaging, and the function of nor-
mal hepatocytes using hepatocyte-specific contrast agents
[62]. Gadolinium-ethoxybenzyl-diethylenetriamine (Gd-EOB-
DTPA)-uptake by HCC decreases in parallel with the degree
of HCC differentiation [63]. It has also been reported that HCC
tends to show a higher signal and lower mean apparent dif-
fusion coefficient value on DWI as the histopathological grade
rises [64].

Per-lesion sensitivities, stratified by size, can reach 100 %
for both modalities for nodular HCCs larger than 2 cm, are
around 45 % for 1–2-cm HCCs and 29–43 % (MR imaging)
and 10–33 % (CT) for HCCs smaller than 1 cm [65, 66]. CT
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is widely available, rapid, robust, and compared with MR
imaging needs less expertise to perform and to interpret.
Disadvantages include radiation exposure and relatively low
soft-tissue contrast [66].

Contrast-enhanced US (CEUS) is a relatively new
imaging modality and has been debated as a diagnostic tool
in HCC. The AASLD guidelines did not recommend CEUS
as an imaging modality for HCC owing to low specificity.
Despite this recommendation it is note worthy that CEUS
has been extensively used for more than 10 years for liver
imaging in many European and Asian countries with marked
success [67].

Current imaging techniques allow detection of liver
nodules as small as 0.5 cm on 4 phase multidetector CT or
dynamic contrast-enhanced MRI. Noninvasive diagnostic
modalities are accurate for the diagnosis of HCC, with a
specificity of up to a 100 % in a single modality [68].
Unfortunately, such an absolute specificity has its downside,
a low sensitivity [4]. Assessment of tumor extension is
critical for defining staging and treatment strategy. Yet
underestimation of 25–30 % is expected even with the best
state-of-the-art technology [4, 69, 70]. Bone scintigraphy
should be used for evaluating bone metastases. PET-based
imaging is not accurate to stage early tumors; however,
recent data suggests that it may be important in identifying
patients with aggressive tumor biology [71].

Masses detected on surveillance require further investi-
gation. Lesions <1 cm should be followed closely with
imaging every 3 months in order to detect growth. If there is
lack of growth over a period of more than 1–2 years, then
routine surveillance should resume at 6-month intervals.
Typically appearing lesions above 1 cm in diameter, by
either dynamic MRI or multiphase CT require no further
investigation for the diagnosis of HCC. If the appearance is
atypical for HCC, a second imaging study (complementary
CT or MRI) should be performed. If the appearance is typ-
ical, the diagnosis of HCC is confirmed. Alternatively, an
atypical study merits histological evaluation [47] (see
Fig. 27.1).

27.4.3 Staging Systems and Survival
Predicting Models

Different staging systems and survival prediction models
have been suggested for HCC, mainly to ensure appropriate
treatment allocation. The most widely used is the Barcelona
Cancer Liver Clinic (BCLC) staging system.

This system (Fig. 27.2) was developed based on the
combination of data from several independent studies rep-
resenting different disease stages and/or treatment modali-
ties. It includes variables related to tumor stage, liver

Fig. 27.1 Diagnostic algorithm
for suspected HCC. CT
Computed tomography; MDCT
Multidetector CT; MRI Magnetic
resonance imaging; US
Ultrasound. Reprinted with
permission from John Wiley and
Sons: Bruix J, Sherman M.
Management of hepatocellular
carcinoma: An update.
Hepatology, 2011
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functional status, physical status, and cancer-related symp-
toms [47, 72]. The main advantage of the BCLC staging
system is that it links staging with treatment modalities and
with an estimation of life expectancy that is based on pub-
lished response rates to the various treatments. It identifies
those patients with early HCC who may benefit from cura-
tive therapies, those at intermediate or advanced disease
stage who may benefit from palliative treatments, as well as
those at end stage with a very poor life expectancy.

Other staging systems are less frequently used. Some
offer only clinical staging with no prognostic value while
others are very population specific and not applicable for all
HCC patients. These systems and their shortfalls include:
The oncologic tumor-node-metastasis (TNM) staging
requires pathological information to assess microvascular
invasion, available only in patients undergoing surgery.
Thus, is nonapplicable in many HCC patients.

Okuda system includes tumor size and severity of cir-
rhosis (assessment of ascites, serum albumin, and bilirubin
levels). It is a clinical score that does not stratify patient by
vascular invasion or metastasis.

Cancer of the Liver Italian Program (CLIP) score is a
prognostic scoring system for HCC. Tumor-related features
are combined (macroscopic morphology, AFP level, and
presence of PVT) with an index of cirrhosis severity

(Child-Pugh classification) to determine prognosis. It was
mostly assessed in Western populations.

The Japanese Integrated Staging Score (JIS score) com-
bines the Child-Pugh grade and the TNM stage. Patients are
classified into six groups based on the sum of these scores.
Unlike the CLIP score (where no difference between high
score group survival is seen), the JIS score offers statistically
significant survival difference between almost all JIS scores
[73].

Staging systems aim to direct patients to different treat-
ment arms, ensuring optimal utilization of resources. One of
the most effective treatments of HCC patients is liver
transplantation. In a seminal study Mazzaferro et al. [74]
showed that 5-year survival of early stage HCC patients
undergoing liver transplantation exceeds 70 %. This estab-
lished early HCC as a clear indication for liver transplanta-
tion in conventional clinical practice. Excellent results could
be achieved in patients with solitary HCC < 5 cm or up to 3
nodules smaller than 3 cm (these characteristics are known
as the Milan criteria). The results from Mazzafero’s study
and later validations prompted the integration of the Milan
criteria into staging systems; transplant indications, and
prioritization policies worldwide [75]. There is an ongoing
debate in the literature concerning Milan criteria expansion.
Studies have shown that a small subset of patients with

Fig. 27.2 The BCLC staging system and treatment allocation. Reprinted with permission from John Wiley and Sons: Bruix J, Sherman M.
Management of hepatocellular carcinoma: An update. Hepatology, 2011
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tumors outside the Milan criteria have a 50 % 5-year sur-
vival rate [76–78], suggesting that the Milan criteria is too
strict. Alternative models that have been suggested include
the San Francisco [79], Kyoto [80], up-to Seven [81],
Metroticket [82] and others [83]. Recent AASLD and EASL
guidelines have not yet endorsed Milan expansion and both
societies express concern that listing of patients using
expanded criteria will cause reduction in survival rates.

Listing of HCC patients for transplantation required
adjustments of current prioritization models. The most
widely used model for predicting short-term mortality in
liver disease is the model for end stage liver disease
(MELD). The MELD was designed to predict mortality in
persons with alcoholic liver disease undergoing a tran-
sjugular intrahepatic portosystemic shunt (TIPS) procedure.
MELD uses the patients’ values for serum bilirubin, serum
creatinine, and the international normalized ratio for pro-
thrombin time (INR) to predict 90-day mortality, and scores
range from 6 (less ill) to 40 (gravely ill). The score is now
widely used for allocation of organs for liver transplantation;
however, it cannot predict mortality in HCC [84]. Patients
with HCC and compensated liver disease typically have low
calculated MELD scores, and may thus dropout from the
waiting list or die from tumor progression prior to reaching
liver transplantation. To address this waiting list dropout, the
United Network of Organ Sharing (UNOS) and Organ
Procurement and Transplantation Network (OPTN) policy
allocate priority points for candidates with HCC that are
within the Milan criteria, equating the risk of tumor pro-
gression with the risk of death in patients with chronic liver
disease without HCC [85]. Patients with HCC meeting
Milan criteria are allocated 22 MELD points and the score
increases in a stepwise fashion (equivalent to additional
10 % increase in candidate mortality). Repeated imaging is
performed to ensure that tumors do not progress beyond the
Milan criteria and that no macrovascular invasion or
metastases has occurred.

27.5 Role of Liver Biopsy

Pathological diagnosis of HCC is based on the definitions of
the International Consensus Group for Hepatocellular Neo-
plasia [86] and is recommended for all nodules occurring in
non-cirrhotic livers, and for those cases with inconclusive or
atypical imaging appearance in cirrhotic livers. Sensitivity of
liver biopsy depends upon location, size, and expertise, and
might range between 70 and 90 % for all tumor sizes. In
patients with negative biopsy findings, HCC cannot be
definitely ruled out, despite the high negative predictive
values (NPV) (up to 90 % in some studies) [87].

HCC typically form masses with a heterogeneous
macroscopic appearance, with foci of hemorrhage or

necrosis. There are three main histological patterns:
Trabecular pattern—tumor hepatocytes arranged in plates
and separated by sinusoid vascular spaces. Acinar pattern
showing dilatation of the canaliculi between tumor cells and
solid pattern composed of thick trabeculae compressed into
a compact mass [88].

On cytology, tumor hepatocytes are polygonal, with an
eosinophilic granular cytoplasm, rounded nuclei and
prominent nucleoli [88].

27.5.1 Importance of Liver Biopsy

Several biopsy procedures have been developed to obtain an
adequate tissue sample; these include image-guided, blind or
US guided percutaneous needle core biopsy, and tran-
sjugular needle core biopsy.

Optimal biopsy size is debatable. For the evaluation of
cirrhosis and for staging and grading viral hepatitis a long
and wide biopsy specimen is desired (an ideal size is 3 cm
long after formalin fixation obtained with a 16 gage needle).
Diagnosis of malignancy can be made with narrower
(smaller than 18 gage) biopsy needle [89].

Patients with inconclusive biopsy results should undergo
enhanced surveillance or a second liver biopsy. Rates of
false negative results are higher in patients with nodules
located in the posterior and superior segments of the liver
(segments 4b, 7, and 8) [90].

Results of a pre-transplantation biopsy may help address
the important issue of tumor differentiation and vascular
invasion. There is growing evidence that tumor grade has a
marked effect on survival after both resection and liver
transplantation [91]. The risk of recurrence is higher in
patients with moderately or poorly differentiated tumors
compared with those with well-differentiated tumors.
Despite their possible effect on transplantation, preoperative
biopsies are not common in clinical practice.

27.5.2 Pitfalls of Liver Biopsy

Although considered the gold standard for diagnosis, biop-
sies of small lesions (<2 cm) may not be reliable. When the
lesion is small, needle placement may be difficult and one
cannot be certain that the sample did indeed originate from
the lesion.

Another common problem is dysplastic nodules that are a
common finding in cirrhotic livers. High-grade dysplastic
nodules bear a high risk for advancing to HCC. These
nodules may show unpaired arteries and a reduced portal
supply on imaging studies. Unfortunately, even with a
needle biopsy, the hallmark features that distinguish a
high-grade dysplastic nodule from HCC, namely stromal
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invasion, may not be detected [47]. A study comparing
contrast-enhanced CT to US guided liver biopsy for dys-
plastic nodules in cirrhosis showed that diagnosis of HCC
occurred more frequently in high-grade than low-grade
dysplastic nodules (32.2 % vs. 9.3 % per year) and non
contrast-CT pattern predicted neoplastic transformation of
dysplastic nodules [92].

In addition to morphological features, several histological
characteristics help distinguish HCC from dysplastic tissue.
These include positive stains for glypican 3 [93], heat shock
protein (HSP) 70, and glutamine synthetase [94]. A recent
study prospectively validated the above panel, showing a
slight increase in the diagnostic accuracy in an expert setting
[95]. Staining for vascular endothelium with CD34 is
strongly positive in HCC; this is because unpaired arteries
are more clearly identified, whereas in benign tissue the
sinusoidal epithelium stains only weakly with this antibody.
Cytokeratin stains for biliary epithelium (CK 7 and CK 19)
should be negative, and a positive biliary cytokeratin stain
makes HCC less likely [96]. Given the difficulty of making a
positive diagnosis in tissue from small lesions, the AASLD
recommends that pathologists use the full panel of stains
listed above to help distinguish high-grade dysplastic nod-
ules from HCC.

Percutaneous biopsy of HCC carries a potential risk of
tumor seeding along the needle tract. Rarely, there may be
peritoneal dissemination distant from the site of puncture.
Needle tract seeding can also occur in the
post-transplantation period, after the recipient’s own liver
has been removed. A systematic review showed that the risk
of tumor seeding was 2.7 % (0–11 %) and the median time
between biopsy and tumor appearance was 17 month [97,
98]. Risk factors for needle tract seeding have not been
clearly identified. There is no evidence that the size of the
needle, number of punctures, location of the tumor (sub-
capsular), or poor differentiation represent important risk
factors. One small study involving 32 patients suggested that
the risk of seeding could be increased up to 12 % after
radiofrequency ablation due to the larger diameter of the
needle [99]. However, increased risk has not been confirmed
by another larger study that involved 1314 patients under-
going radiofrequency ablation [100]. Until now, there has
not been clear evidence that pre-transplantation biopsy
increases the risk of post-transplantation recurrence, inde-
pendent of needle tract seeding.

27.6 Primary and Secondary
Chemoprevention of HCC

The prognosis of HCC is very poor if diagnosed in the
symptomatic stage with most studies reporting a 5-year
survival of less than 5 %. Primary HCC prevention includes

universal vaccination for HBV, antiviral therapy of patients
with chronic HBV or HCV, weight reduction, decreased
alcohol consumption, minimizing food contamination with
aflatoxins, etc.

For patients with genetic diseases such as pre-cirrhotic
hemochromatosis, there is a potential for HCC prevention by
identifying affected family members at risk. Reduction of
iron overload by phlebotomy in this selected group of
patients has been shown to eliminate the progression of
hemochromatosis and hence prevent cirrhosis and HCC.
Preventative measures therefore should have a major impact
on the incidence of HCC in patients with acquired and
inherited liver disease. The prevention of local recurrence or
the development of new HCC lesions in patients after suc-
cessful surgical or nonsurgical HCC treatment (secondary
prevention) is also of paramount importance and can sig-
nificantly improve disease-free and overall patient survival.

27.6.1 Primary Prevention

Chronic infection with HBV is the most common global
cause of HCC, affecting more than 350 million individuals
(6 % of world population) [101]. Thus, vaccination against
HBV is the most efficient primary prevention measure cur-
rently available to reduce HCC incidence and mortality
globally [102]. Population-based universal infant vaccination
for HBV has been shown to be effective in preventing
neonatal HBV infection from infected mothers (vertical
transmission) [103]. The world’s first nationwide HBV uni-
versal vaccination program for infants was launched in Tai-
wan in 1984. Seroprevalence of hepatitis B surface antigen
(HBsAg) declined from 9.8 % (pre-vaccination period) to
0.6 % in children in Taiwan in the next 20 years following
program initiation. In line with the decrease of chronic HBV
infection, the incidence of HCC also decreased from
0.52/100,000 for those born between 1974 and 1984 to 0.13
for those born between 1984 and 1986 [104].

A similar program was launched in Alaska that had the
highest rates of acute and chronic HBV and HCC in the
United States. Since its initiation, the incidence of HCC in
persons <20 years decreased from 3/100,000 in 1984–1988
to zero in 1995–1999 and no cases have occurred since 1999
[105]. The Qidong HBV Intervention Study from China
demonstrated similar results [106].

In HCV, primary prevention of new infections should be
the goal by rigorous implementation of infection control
practices to prevent nosocomial and iatrogenic HCV trans-
mission and prevention of HCV person-to-person transmis-
sion through counseling and needle exchange programs
[107]. Screening all “high risk” individuals for HCV infec-
tion is now recommended in many countries. These popu-
lations include persons that received blood donation prior to
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initiation of blood bank screening, and persons that have
ever used intravenous drugs.

The risk of HCC decreases after cessation of alcohol use
by 6–10 % a year; after several years the risk becomes equal
to that of the general population [108]. Elimination of afla-
toxin (AFB1) from the food supply in areas where agricul-
tural products are stored under conditions that favor the
growth of Aspergillus flavus and Aspergillus parasiticus is
also needed [101]. AFB1 exhibits remarkable synergistic
hepatocarcinogenic effect with HBV [109]. The risk of liver
cancer in individuals exposed to chronic HBV infection and
aflatoxin is up to 30 times greater than the risk in individuals
exposed to aflatoxin alone [109].

27.6.2 Treatment of HBV
and Prevention of HCC

While both HBV and HCV are linked to HCC, risk of cancer
differs between the two viruses. About 10 % of
HBV-associated cancers occur in patients without cirrhosis
(dependent on selection criteria), whereas HCCmostly occurs
in the presence of cirrhosis in HCV infection. HCC risk is
increased in those who are hepatitis B e antigen (HBeAg)
positive or have detectable HBV DNA. Data from a
population-based prospective cohort study of more than 3500
patients from Taiwan, has shown that the progression to cir-
rhosis in HBV-infected patients is correlated strongly with the
level of HBV DNA [110] and that elevated HBV DNA level
(>10,000 copies/mL) is a strong predictor of HCC develop-
ment, independent of HBeAg, serum alanine aminotrans-
ferase level, and liver cirrhosis [111]. The risk of HCC
increases with the level of HBV DNA inferring that sup-
pression of viral replication with antiviral therapy may
decrease the risk of cancer. Two therapeutic approaches for
viral suppression are available for patients infected with HBV:
Pegylated interferon provides patients with a finite duration of
treatment. However, the drug is associated with multiple side
effects. Characteristics indicating a favorable response to
interferon include low HBV DNA levels, high levels of ALT,
presence of the HBV genotype A or B, and lack of advanced
liver disease [112]. The other approach is use of oral nuclos(t)
ide analogs. These agents are usually given for prolonged
periods, but require a single, once daily administration and
have a favorable safety profile with minimal side effects.
International guidelines currently recommend the use of the
newer nuclos(t)ide analogs, entecavir and tenofovir as first
line therapy for patients with HBV because of their high
resistance barrier. Their use is recommended depending on
viral load, HBeAg status, level of hepatic inflammation and
clinical condition (i.e., decompensated cirrhosis).

A series of studies suggested that interferon therapy may
decrease the risk of HCC development [113–115]. It was
later also shown that nucleos(t)ide analog treatment reduces
the incidence of HCC. Lamivudine, a first generation
nuclostide, reduced the risk of HBV-related HCC from 7.4
to 3.9 % (hazard ratio 0.49) in a prospective trial enrolling
651 Taiwanese patients, and from 13.3 to 1.1 % in a retro-
spective survey of 2795 Japanese patients [116, 117]. This
strongly suggests that there is a significant benefit of viral
suppression in reducing risk of HCC development in patients
with chronic HBV infection.

27.6.3 Treatment of HCV
and Prevention of HCC

Development of HCC occurs almost exclusively in the set-
ting of cirrhosis with HCV infection. In the HALT-C study
[6], the 5-year risk of patients with bridging fibrosis and
cirrhosis to develop HCC was 5.0 %. The study assessed
viral suppression in patients that did not achieve sustained
virological response (SVR). Interferon was not shown to
reduce the rate of disease progression and there was no
significant difference in the incidence of HCC compared to
placebo [118]. However, in subgroup analysis of long-term
HALT-C follow-up, patients with cirrhosis at baseline who
were assigned to treatment did have a lower incidence of
HCC [119].

A later meta-analysis by Morgan clearly showed that
achieving SVR in HCV-infected patient is associated with a
marked relative risk (RR) reduction for HCC (RR 0.23,
95 %CI 0.18–0.31) [120].

Another recent review by van der Meer et al. [121]
clearly shows that eradication of HCV is associated with
regression of liver fibrosis, reduction of portal pressure and
lower risk of HCC and liver failure. SVR has been repeat-
edly associated with improvements in health-related quality
of life, hepatic inflammation and fibrosis, and reduction in
portal pressure, as well as with a reduced occurrence of solid
clinical endpoints such as HCC, liver failure and death.
Collectively, this strongly argues that SVR is a
patient-relevant endpoint and reasonably likely to predict
clinical benefit.

Even with HCV eradication, the initiation of carcinogenic
mechanisms has likely occurred many years before viral
clearance, and so the threat of HCC remains even if fibrosis
decreases. Therefore, patients with advanced
fibrosis/cirrhosis who clear HCV should remain under
surveillance. Patients that eradicated the virus prior to
developing cirrhosis have a very low likelihood of devel-
oping HCC and probably do not warrant surveillance [120].
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27.6.4 Secondary Prevention

Recent studies have shown marked benefits of HBV or HCV
antiviral therapy in reducing the risk of recurrent HCC after
initial therapy (resection, transplantation, or ablative thera-
pies). A Japanese study comparing 29 patients with primary
HCV-related HCC (stage I/II), receiving combination ther-
apy with PEG-IFN a-2b and RBV after treatment of HCC
(hepatic resection, transplantation, RFA, and TACE), to 25
patient who did not receive treatment, has shown 1- and
3-year cumulative survival rates of 100.0 and 90.2 % in the
treatment group, and 96.0 and 61.2 % in the non treatment
group, respectively [122]. A Taiwanese study demonstrated
reduction in HBV-related post resection HCC recurrence in
patients treated with nucleoside analogs [123]. As of 2015
there are no consensus recommendations to treat chronic
HCV/HBV infection in treated HCC patients to prevent
recurrence. However, as the data on recurrence risk reduc-
tion accumulates, it seems reasonable to start antiviral
treatment for patients undergoing curative intervention for
HCC.

27.7 Conclusions

HCC is a deadly cancer occurring on the background of
chronic liver disease. In this chapter, we discussed the piv-
otal role clinicians play in recognizing the various clinical
manifestations of HCC; in meticulously screening the pop-
ulation at risk; and in directing the further evaluation of
patients with positive diagnostic findings. Early diagnosis
represents a major prognostic benefit. There is strong evi-
dence to support screening and there is a well-defined pop-
ulation at risk and low cost, noninvasive, and effective
diagnostic tools. It is of paramount importance to diagnose
patients with HCC at a stage where a curative approach can
still be adopted rather than one of palliation.

The clinician also plays a crucial role in preventing this
malignancy. The most important step is primary prevention,
through vaccination, dietary, and life style modifications and
other treatments of the underlying liver disease. For patients
diagnosed with early HCC curative treatments exist which
can provide excellent long-term survival.

Patients with HCC are unique, because they combine the
complexity of the underlying liver disease and that of the
malignancy. Only through better knowledge of the under-
lying mechanisms in both hepatology and oncology, will we
be able to improve survival in patients with this deadly
malignancy.
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28.1 Introduction

Hepatocellular carcinoma (HCC) is the fifth most common
cancer, the third most common cause for cancer death in the
world [1]. Because of the high recurrence rate and poor
prognosis, the prognostic assessment and selection of treat-
ment strategy in HCC patients are quite important [1–3], and
a precise stratification system for the prognosis of HCC
patients is required.

In patients with HCC, the prediction of prognosis is
complex compared with most solid tumors. It is well known
that the prognosis and treatment of HCC depend on the
tumor burden in addition to patient’s underlying liver disease
and liver functional reserve [4, 5]. However, the latter is not
integrated in the tumor lymph node metastasis (TNM) stag-
ing system, which is generally accepted as a standard
approach for prognostication in many cancer clinical staging
systems. Therefore, staging systems based on information
regarding both tumor factors and host factors such as liver
function have been required to accurately classify HCC
patients undergoing various therapeutic options [4–7].

An accurate staging system could contribute to prog-
nostication, guiding management decision, comparing dif-
ferent treatment modalities, and comparing treatment
outcomes among different institutions [4]. Nowadays, many
staging and scoring systems based on both tumor factors and
host factors have been proposed for the classification and
prognosis of patients with HCC [6–9].
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However, there is no consensus on which is the best
prognostic staging system for HCC until now, because there
is considerable geographic and institutional variation in both
risk factors attributable to the underlying liver diseases and
the management of HCC. For example, most of HBV-related
HCC patients are particularly prevalent in Africa and Asia,
in contrast, most of HCV-related HCC patients are prevalent
in western countries, Taiwan and Japan [10, 11]. Other
strong risk factors exist, such as alcohol, metabolic syn-
drome. The characteristics of HCC and screening program
which can increase the chance of curative treatment and
improve survival also vary with geographic location.

The aim of this review is to focus on the currently
available staging systems which integrated tumor factors and
host factors for assessing the prognosis of HCC, their uses
and limitations.

28.2 Staging Systems of HCC

Generally, the TNM staging that include the extension of the
tumor burden in the original primary organ and its spread
throughout the body is exhaustive for most solid tumors.
Currently, the TNM staging which proposed from the Liver
Cancer Study Group of Japan (LCSGJ) and from the
AJCC/International Union Against Cancer (UICC) are
available for HCC [12–14]. Both of them were developed
based on the analysis of patients who received hepatic
resection. In 1983, the LCSGJ first introduced an HCC Tumor
Node Metastasis (TNM) scheme, which has subsequently
been revised, most recently from 5th to the 6th edition in 2015.
On the other hand, Vauthey et al. [15] developed a simplified
staging system for HCC in 2002, which was adopted as the
TNM staging system of AJCC/UICC after minor changes. It
has been revised and now, 7th edition was available. These 2
staging systems have some similarities; for example, patients
with distant metastasis are assigned to the highest stage, and
those with hepatic lymph node metastasis are assigned to the
second highest stage. In contrast, the major differences
between LCSGJ TNM and AJCC/UICC TNM are the cutoff
value for tumor size and its application in prognostic classi-
fication [14].

Both the LCSGJ-stage and the AJCC-stage were devel-
oped based on a survival analysis of patients who underwent
hepatic resection. Although these TNM staging systems are
appropriate for patients who will undergo hepatic resection,
however, many authors have noted that TNM staging dose
not accurately predict outcome for HCC patients undergoing
various therapeutic options, because it does not consider
liver function status [9].

Thus, nowadays, many staging and scoring systems based
on both tumor factors and host factors such as liver function
have been proposed for the classification and prognosis of

patients with HCC (Table 28.1). In this review, these staging
systems are conveniently divided into four categories.

1. Conventional staging systems

These were very famous and pioneering staging systems
which attempted to combine tumor factor and liver function,
however, not suitable at the present day. Okuda staging and
the Groupe d’Etude et de Traitement du Carcinome Hépa-
tocellulaire (GRETCH) staging belong to this category.
These often made way to the development of more accurate
staging systems and functions as the standard for
comparison.

2. Staging systems for treatable condition

The staging systems classified into this category are con-
sidered to be suitable for estimating the prognosis of HCC
patients who are in treatable condition such as surgery or
other locoregional therapy. In this category, the Cancer of
the Liver Italian Program (CLIP) score and the Japan Inte-
grated Staging (JIS) score are well-known staging systems,
and many staging and scoring systems have been proposed
for the classification and prognosis of these population.

3. Staging systems for advanced condition

These staging systems are applicable for advanced HCC
who were not amendable to surgery or locoregional therapy.
Chinese University Prognostic Index (CUPI) and Advanced
Liver Cancer Prognostic System (ALCPS) belong to this
category. The advent of effective systemic treatment options
are needed for this population with such advanced HCC.

4. Staging systems for treatment recommendation

These staging systems provide treatment algorisms. The
Barcelona clinic liver cancer (BCLC) staging is well known
and provides treatment algorisms and recommendations, and
the prognostic value has been externally validated in many
countries. Very recently, the Hong Kong Liver Cancer
(HKLC) classification was constructed to developed treat-
ment guidance for Asian patients.

These categories and components of each staging system
are showed in Table 28.2.

28.3 Statistical Approach for Comparison
of the Staging Systems

To compare the prognostic ability of each staging system
with different numbers of parameters, statistical analyses
were used in many literatures. The area under the receiver
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operating characteristic curve (AUC) [16–22], linear trend
chi-square score [17, 21, 23–29], likelihood ratio chi-square
score [8, 17, 23–36], and Akaike information criteria within
a Cox proportional hazards regression model were used to
compare the predictive ability of each staging system in
many literatures [8, 22–26, 28–45]. Recently, Harrell’s
C-index was also used in several reports [22, 32, 39, 40, 43,
46].

28.4 Conventional Staging Systems

28.4.1 Okuda Staging System (Table 28.3)

The staging system proposed by Okuda et al. (Okuda) in
1985 is the first attempt to successfully combine the
anatomical features of the tumor to the degree of the
underlining liver disease [47]. It incorporates the tumor size
(� or >50 % of the entire liver), presence or absence of
ascites, serum albumin level (� or >3.0 g/dL), and serum
bilirubin level (� or >3.0 mg/dL), in which patients are

classified into three stages based on these variables.
Although the Okuda system was the first integrated system
for classifying HCC patients, tumor burden which is eval-
uated by only tumor extension (� or >50 % of the entire
liver) was too rough, considering recent developments in
imaging modality and the use of adequate surveillance
programs. Therefore, the Okuda system often makes way to
the development of more accurate staging systems and
functions as the standard for comparison.

28.4.2 The Groupe D’Etude et de Traitement
Du Carcinome Hépatocellulaire
(GRETCH) System (Table 28.4)

The GRETCH system was proposed by the French group
Goupe d’Etude et de in 1999 [48]. This system is derived
from the finding of a prospective cohort of 761 HCC patients
(516 training cohort, 255 validation cohort) treated at 24
Western medical centers. On the basis of a multivariate Cox
model in validation cohort, five prognostic factors were

Table 28.1 Current HCC staging systems

Model Author Country Year Case
number

Patient population Treatment modality

Curativea/noncurativeb/palliative

Okuda Okuda [85] Japan 1985 850 All 157/464/229

CLIP CLIP investigators
[49]

Italy 1998 435 All 150/97/182 (6 cases unknown)

GRETCH Chevret [48] France 1999 761 All 83/277/401

BCLC Llovet [80] Spain 1999 c All –

CUPI Leung [78] China 2002 926 All 96 (surgical)/289 (non surgical)/
541

JIS Kudo [57] Japan 2003 722 All n.d.

JIS family

Modified
JIS

Nanashima [60] Japan 2004 101 Surgery 101/0/0

SLIDE Omagari [64] Japan 2004 177 All 71/92/14

bm-JIS Kitail [66] Japan 2008 1924 All 892/934/98

Tokyo Tateishi [67] Japan 2005 403 Radiotherapy,
surgery

403/0/0

BALAD Toyoda [74] Japan 2006 2600 All 1473/959/168

ALCPS Yau [79] China 2008 1470 Advanced 0/632/838

TIS Hsu [68] Taiwan 2010 2030 All 927/769/334

HKLC Yau [85] China 2014 3856 All 1489/1611/756

MITS Tokumitsu [77] Japan 2015 234 Surgery 234/0/0

CLIP The Cancer of the Liver Italian Program, GRETCH The Groupe d’Etude et de Traitement du Carcinome Hépatocellulaire, BCLC The
Barcelona Clinic Liver Cancer, CUPI Chinese University Prognostic Index, JIS The Japan Integrated Staging, bm-JIS biomarker-JIS, ALCPS
Advanced Liver Cancer Prognostic System, TIS The Taipei Integrated Score, HKLC The Hong Kong Liver Cancer, MITS The Mathematical
Integrated model for Tumor Staging, n.d not described
aCurative: surgical resection, liver transplantation and local ablation
bNoncurative: transarterial therapy, Radiation therapy, and systemic therapy such as Sorafenib
cDerived from the results of a study of the outcomes of radical therapy and/or the natural history of untreated HCC patients
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selected: Karnofsky index, serum bilirubin, serum alkaline
phosphatase, serum alpha-fetoprotein, and ultrasonographic
evidence of portal obstruction. Patients are classified into
three risk groups according to these factors, and the author
reported that the overall survival differs markedly for the
three groups in both training and validation cohort. How-
ever, half of the patients (401/761, 53 %) in this study
received no specific therapy, therefore, this score may not be
suitable for predicting the survival of HCC patients nowa-
days, considering recent developments in treatment modality
and the use of adequate surveillance programs. Thus, it is not
a well validated or a widely used staging system.

28.5 Staging Systems for Treatable
Condition

28.5.1 The Cancer of the Liver Italian Program
(CLIP) Score (Table 28.5)

The CLIP score was derived in 1998 from a retrospective
evaluation of 435 Italian patients with HCC treated at 16
Italian institutions [49] for the purpose of producing a more
sensitive prognostic index than the Okuda staging system. It
includes four variables as the Child-Pugh stage, Tumor
morphology, AFP level, Portal vein thrombosis. Subse-
quently, the same group externally validated the CLIP score
in 196 HCC patients enrolled in a randomized clinical trial
and confirmed the greater predictive accuracy of this score

compared with the Okuda staging system [50]. After that,
the CLIP score was developed using an appropriate method
and has been externally validated over the world [16–18, 30,
37–41, 51, 52]. It is generally accepted that the CLIP score is
suitable for use in HCC patients with intermediate-advanced
tumors or those receiving non-surgical treatments. In fact,
investigators from Korea [53], Canada [51], Italy [17, 30],
France [37], Taiwan [38, 52], the United States [54], and
Germany [39] recently demonstrated that the CLIP score
provides better prognostic value than other staging systems
in HCC patients who received specific treatment modalities,
including TACE or radioembolization, systemic
chemotherapy with intermediate-advanced tumors. Although
studies from Japan [18] and Taiwan [16] have shown that the
CLIP score provides a superior predictive value compared to
other staging systems for HCC patients undergoing surgical
resection, however, there were HCC patients with large size
advanced tumor or those receiving major hepatectomy.
Therefore, this score may not be suitable for predicting the
survival of the early stage HCC, which are susceptible to
percutaneous or minor hepatectomy.

28.5.2 CLIP Family

Staging systems based on the CLIP score are conveniently
classified into “CLIP family” in this review. In recent years,
Kaseb et al. [55] proposed the VEGF-CLIP (V-CLIP) score
based on the VEGF, which was the major mediator of
angiogenesis in the setting of HCC. The authors integrated
the VEGF into the CLIP score, and they reported that the
V-CLIP score provides superior predictive accuracy com-
pared to the conventional CLIP score. The same group
proposed the insulin-like growth factor-1 (IGF-1) CLIP
(I-CLIP) [56] score based on findings demonstrating that the
IGF-1 value, which reflects the synthetic function of the
liver. The authors added the IGF-1 to the CLIP score and
created the V-CLIP score. They also reported that the I-CLIP
score provides superior predictive accuracy compared to the
conventional CLIP score.

28.5.3 The Japan Integrated Staging
(JIS) Score (Table 28.6)

Kudo et al. [57] originally proposed the JIS score, which is
defined by the LCSGJ TNM stage and the Child-Pugh
classification. It is derived from a cohort of 722 HCC
patients treated at two Japanese institutions. Patients with a
Child-Pugh grade A, B, and C status are allocated a score of
0, 1, and 2, respectively, and patients with the TNM stage by
LCSGJ of stage I, II, III, and IV are allocated to score of 0,
1, 2, and 3, respectively. Subsequently, patients are classified

Table 28.3 Okuda staging system

Score

0 1

Tumor size � 50 % of the liver >50 % of the liver

Albumin (g/dL) � 3 <3

Bilirubin (mg/dL) <3 � 3

Ascites Absent Present

Table 28.4 GRETCH score

Score

0 1 2 3

Karnofsky index � 80 % <80 %

Bilirubin
(lmol/L)

<50 � 50

ALP <2 � ULN � 2 � ULN

AFP (lg/L) <35 � 35

Portal vein
thrombosis

Absent Present

GRETCH The Groupe d’Etude et de Traitement du Carcinome
Hépatocellulaire, ALP alkaline phosphatase, AFP alpha-fetoprotein
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into six groups (0–5) based on the sum of these scores.
Using 4525 patients with HCC at five institutions, the same
group validated the JIS score as a good prognostic staging
system than the CLIP score [31]. Other studies from Japan
have also demonstrated that the JIS score to be the best
prognostic model in HCC patients who receive various
treatment modalities [8, 16, 32, 44]. Toyoda et al. [44]
showed that the JIS system was the most suitable after 1990,
when early detection and early treatment of HCC became
common, although the CLIP staging systems proved to be
more suitable before 1991. After 1990, surveillance of
patients at high risk for development of HCC caused by
chronic viral hepatitis or cirrhosis and early detection of
HCC were very common in Japan, because of development
of various scanning modality as well as indication of highly

sensitive tumor markers [58, 59]. The discriminating power
of JIS system is, therefore, particularly suitable for countries
such as Japan, where many small HCC are detected and
diagnosed at early stages and treated with radical therapies.
However, it has not been well validated in countries outside
of Japan, especially in a western patient population.

28.5.4 JIS Family (Table 28.7)

Integrated staging systems based on the Japanese TNM stage
by LCSCJ are conveniently classified into “JIS family” in
this review.

28.5.4.1 Modified JIS Score
Nanashima et al. [60] proposed m-JIS score, which com-
bined TNM staging system by LCSGJ and the degree of the
liver damage (Table 28.8) instead of Child-Pugh classifica-
tion, and reported that this system was better predictor of
prognosis than JIS score in HCC patients who underwent
hepatic resection [45]. Ikai et al. [61] validated this system
using the records of 42,269 patients diagnosed with HCC
that were registered between 1992 and 1999 in a nationwide
Japanese database. This suggested that the degree of liver

Table 28.6 JIS score

Score

0 1 2 3

TNM stage by LCSGJ I II III IV

Child-Pugh classification A B C

JIS The Japan Integrated Staging, TNM tumor node metastasis, LCSGJ
Liver Cancer Study Group of Japan

Table 28.7 JIS family

Score

0 1 2 3

Modified JIS score

TNM stage by LCSGJ I II III IV

Liver damage classification A B C

SLiDe score

TNM stage by LCSGJ I II III IV

Liver damage classification A B C

DCP (mAu/mL) <400 � 400

bm-JIS score

TNM stage by LCSGJ I II III IV

Child-Pugh classification A B C

No of elevated tumor marker (AFP, AFP-L3, DCP) 0 1 2–3

JIS The Japan Integrated Staging, TNM tumor node metastasis, LCSGJ Liver Cancer Study Group of Japan, AFP alpha-fetoprotein, AFP-L3 Lens
culinaris agglutinin-reactive alpha-fetoprotein, DCP des-gamma-carboxy prothrombin

Table 28.5 CLIP score

Score

0 1 2

Tumor morphology Uninodular and extension � 50 % Multinodular and extension � 50 % Massive or extension >50 %

Child-Pugh classification A B C

AFP (ng/mL) <400 � 400

Portal vein thrombosis Absent Present

CLIP The Cancer of the Liver Italian Program, AFP alpha-fetoprotein
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damage could evaluate and classify liver function more
precisely than the Child-Pugh classification for early HCC or
surgical population. The degree of liver damage classifica-
tion was proposed by the LCSGJ, and incorporates the
ICGR15 test, which is an estimation of indocyanine green
clearance, instead of encephalopathy in the Child-Pugh
classification system. ICGR15 test has been widely used in
the field of surgery in Japan as a useful marker of hepatic
function [62, 63]. However, ICGR15 are not routinely
assessed in other parts of the world, thus, the m-JIS score has
not been validated in countries outside of Japan.

28.5.4.2 SLiDe Score
Omagari et al. [64] proposed SLiDe score, which combined
TNM staging system by LCSGJ, the degree of the Liver
damage and DCP (SLiDe). They showed that there was clear
discrimination among the survival curves plotted for patients
with different SLiDe scores, and this system could predict
the outcome of HCC patients more precisely than the CLIP
and JIS scoring systems in these population. Nanashima
et al. [65] validated this system in 207 HCC patients who
undergone hepatic resection. However, SLiDe score does
not seem to be very suitable for worldwide use at present,
because it uses some parameters that are not routinely
assessed in other parts of the world such as ICGR15 test and
DCP. Therefore, this classification should be further vali-
dated in other large study populations.

28.5.4.3 Biomarker-JIS Score
The JIS staging classification was further modified by Kitai
et al. [66]. They proposed biomarker-combined JIS (bm-JIS)
which combined TNM staging system by LCSGJ, the
Child-Pugh classification, and three tumor markers for HCC,
namely AFP, lens culinaris agglutinin-reactive AFP
(AFP-L3), and des carboxyprothrombin (DCP). They vali-
dated the bm-JIS score as a good prognostic staging system
than the conventional JIS sore [33, 34, 66], BALAD score
[33], and BCLC system [34]. Although this scoring system
validated in a relatively large population of HCC patients in
Japan, this system has now been externally validated from

but still requires validation in a western patient population,
because measuring all of these three tumor markers in rou-
tine clinical practice are uncommon worldwide.

28.5.5 TOKYO Score (Table 28.9)

Tateishi et al. [67] proposed the Tokyo score would provide
a prediction of prognosis for patients who were candidates
for radical therapy, such as percutaneous ablation or surgical
resection. A total of 403 patients with HCC treated by per-
cutaneous ablation were used as the training sample to
develop the Tokyo Score and validated by 203 independent
patients who underwent hepatectomy at the same institution
and demonstrated that the predictive ability of the Tokyo
score is equal to that of the CLIP score and better than that of
the BCLC classification.

Investigators from Taiwan [29] reported that the Tokyo
score was the most informative staging system in a large
cohort (n = 2010) of HCC patients with predominant HBV
infection who underwent surgical resection or transarterial
chemoembolization. However, the Tokyo score has not been
validated in a Western population. Further, external valida-
tion of the Tokyo classification in different patient popula-
tions is needed.

28.5.6 The Taipei Integrated Score
(TIS) System (Table 28.10)

The Taipei Integrated Score System (TIS) was proposed by
Hsu et al. [68] in 2010. This system is derived from the
investigation of a cohort of 2030 HCC patients undergoing

Table 28.8 Liver damage classification by LCSGJ

Item Liver damage grade

A B C

Ascites None Controllable Uncontrollable

Bilirubin (mg/dL) <2.0 2.0–3.0 >3.0

Albumin (g/dL) >3.5 3.0–3.5 <3.0

ICG R15 (%) <15 15–40 >40

Prothrombin activity
(%)

>80 50–80 <50

LCSGJ Liver Cancer Study Group of Japan, ICGR15 indocyanine
green retention rate at 15 min

Table 28.9 Tokyo score

Score

0 1 2

Albumin (g/dL) >3.5 2.8–3.5 <2.8

Bilirubin (mg/dL) <1 1–2 >2

Tumor size (cm) <2 2–5 >5

Number of nodules � 3 – >3

Table 28.10 TIS

Variable Score

0 1 2 3

Total tumor volume
(cm3)

<50 50–
250

250–
500

>500

Child-Pugh
classification

A B C

AFP (ng/nL) � 400 >400

TIS Taipei integrated system, AFP Alpha-fetoprotein
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different treatment modalities at a single institution in Tai-
wan. The authors adopted the calculated total tumor volume
(TTV) as a surrogate marker of the tumor burden. TTV was
defined as the sum of the volume of each tumor
[(4/3) � 3.14 � (radius of tumor in cm)3]. Subsequently,
they combined the TTV with four cirrhosis-associated
models (Child-Pugh grade, MELD, MELDNa and
MELD-Na) and/or tumor factors (serum AFP levels and
vascular invasion) to create the TTV-based staging system
and the prognostic ability of the TTV-based staging system
and the four current systems, including the BCLC, CLIP,
JIS, and Tokyo score was examined. They reported that the
TTV-CTP-AFP model [i.e. The Taipei Integrated Score
System (TIS)] provided the best prognostic ability among
them and the model was validated in Taiwanese population
[35, 36]. The TTV and TTV-based staging systems are also
evaluated to predict recurrence of HCC after liver trans-
plantation in many countries [69–73]. However, the TTV
value may not be accurate in tumors which are not typically
spherical, such as infiltrative or numberless type, because the
TTV is estimated based on the assumption that all tumors are
spherical.

28.5.7 BALAD Score (Table 28.11)

BALAD score was constructed by Toyoda et al. in 2006 for
the purpose of providing a simple and objective staging
system that requires no imaging studies or pathological or
clinical evaluations [74]. There were five variables in the
BALAD score: The Bilirubin, Albumin, Lens culinaris
agglutinin-reactive alpha-fetoprotein (AFP-L3), AFP, and
DCP Score. This score is derived from the findings of a
cohort of 2600 HCC patients treated at five Japanese insti-
tutions. The authors adopted three tumor markers
(AFP-L3 > 15 %, AFP > 400 ng/dL, DCP > 100 mAU/

mL) as factors reflecting tumor progression and also used
two serum markers (serum bilirubin and albumin) as factors
indicating the liver functional reserve. They reported that the
discriminative ability of the BALAD score was comparable
to that of the CLIP score and JIS score. The BALAD score is
a simple and objective tool that requires the use of only a
serum sample, without imaging, pathological, or clinical
assessments. Although it was considered that measuring the
AFP-L3 and DCP values in routine clinical practice world-
wide were uncommon, however, this system was externally
validated in recent years in countries outside of Japan
[75, 76].

28.5.8 The Mathematical Integrated Model
for Tumor Staging (MITS) Score
(Table 28.12)

More recently, we developed a novel predictive system
based on mathematical product of tumor number and size of
largest tumor (N � S factor) for prognosis of Japanese HCC
patients after hepatectomy [77]. We found that cutoff value
of N � S factor at 4 and 9 had high accuracy in predicting
recurrence of HCC. Given that the N � S factor and the
degree of Liver Damage classification by LCSGJ were
independent risk factors for HCC prognosis by multivariate
analysis, we constructed the mathematical integrated model
for tumor staging (MITS) score by combining the
N � S factor with the degree of Liver Damage classification.
In this population, we showed that the MITS score was more
predictable for the prognosis of HCC patients than any of the
six well-known clinical staging systems [TNM (LCSGJ),
TNM (UICC), JIS score, modified JIS score, CLIP score,
and the Tokyo Score]. We found that the N � S factor-based
staging system had high accuracy in predicting HCC
prognosis.

There were several limitations in this study: First, it was a
retrospective single-center study that enrolled only patients
who underwent curative hepatectomy. Second, HCC patients
with invasion of major portal or hepatic vein branch were
excluded in this study. Third, MITS score integrates the
degree of Liver damage classification which incorporates the

Table 28.11 BALAD score

Score

0 1 2 3

Albumin (g/dL) >3.5 2.8–
3.5

<2.8

Bilirubin (mg/dL) <1 1–2 >2

Bilirubin-albumin score* A B C

No of elevated tumor marker (AFP,
AFP-L3, DCP)

0 1 2 3

*Liver function was categorized by the sum of these 2 points (i.e.,
bilirubin and albumin) as scores A (0–1 points), B (2–3 points), and C
(4 points)
AFP alpha-fetoprotein, AFP-L3 lens culinaris agglutinin-reactive
alpha-fetoprotein, DCP des-gamma-carboxy prothrombin

Table 28.12 MITS score

Score

0 1 2

Mathematical product of tumor number and size
(N � S factor)

<4 4–
9

>9

Liver damage classification A B

MITS The Mathematical Integrated model for Tumor Staging
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ICGR15 test instead of Child-Pugh classification system,
and ICGR15 are not routinely assessed in other parts of the
world or non-surgical populations even in Japan. In this
regard, further studies will be needed to evaluate whether the
robustness of the N � S factor-based staging system which
may integrate Child-Pugh classification in predicting prog-
nosis could be maintained in a cohort in which the majority
of the subjects were HCC patients who received non-surgical
treatment.

28.6 Staging Systems for Advanced
Condition

28.6.1 Chinese University Prognostic Index
(CUPI)(Table 28.13)

The Chines University Prognostic Index (CUPI) was pro-
posed by a Hong-Kong group in 2002 [78]. This score is
derived from the results of a cohort of 926 HCC patients
treated at a single Hong-Kong hospital. In that study, 19
potential prognostic factors were evaluated in a multivariate
analysis using a Cox regression model among 926 Chinese
patients, mostly with HBV-associated HCC. Subsequently,
five prognostic factors (total bilirubin, presence of ascites,
alkaline phosphatase, alpha fetoprotein, and asymptomatic
disease on presentation) were selected and added to the
TNM, in order to set up 3 classes of risk with highly sig-
nificant differences in survival. Moreover, the authors
demonstrated that the CUPI system is more discriminant in
predicting survival than the conventional TNM staging
system, Okuda system, or CLIP score. In this study, the
cohort was composed of a large proportion of patients who
received only best supportive care (58.4 %, vs. resection
10.4 %). Hence, this system is not preferable for assessing
patients who undergo curative treatment and several

validation studies were performed in Asian population with
advanced stage of HCC [28, 40, 43, 46]. In recent years,
Chan et al. [78] reported an international validation of the
CUPI. They reported that the CUPI was demonstrated to be
optimal for those undergoing palliative treatment in both
Eastern and Western HCC patient population, and they
concluded that a more precise staging system for early-stage
disease patients is required.

28.6.2 Advanced Liver Cancer Prognostic
System (ALCPS) (Table 28.14)

The Advanced Liver Cancer Prognostic System (ALPCS)
was constructed by Yau et al. [79] in 2008 for the purpose of
creating an optimal staging system for classifying advanced
HCC patients who were not amendable to surgery or
locoregional therapy. This system was derived from the
analysis of a cohort of 1470 advanced HCC patients (1109
training set and 361 validation set) treated at a single center
in Hong Kong, and developed using 11 prognostic factors
with different weights on basis of a multivariate Cox model.
They reported that the ALCPS stratified patients in both
training and validation sets to different prognostic groups
with significant difference in three-month overall survival.

Table 28.13 CUPI

Variable Weight

TNM stage I and II −3

III −1

IV 0

Bilirubin (lmon/L) <34 0

34–51 3

� 52 4

Ascites 3

AFP (ng/mL) >500 2

ALP (IU/L) >200 IU/L 3

Asymptomatic disease on presentation −4

CUPI Chinese University Prognostic Index, TNM tumor node
metastasis, AFP alpha-fetoprotein, ALP alkaline phosphatase

Table 28.14 ALCPS

Characteristics Points

Ascites Yes/no 2/0

Abdominal pain Yes/no 2/0

Weight loss Yes/no 2/0

Child-Pugh
classification

A/B/C 0/2/5

ALP (IU/L) >200/� 200 3/0

Bilirubin
(mmol/L)

>50/33–50/� 33 3 1/0

Urea (mmol/L) >8.9/� 8.9 2/0

Portal vein
thrombosis

Yes/no 3/0

Tumor size Diffuse/>5 cm/� 5 cm 4/3/0

Lung metastasis Yes/no 3/0

AFP (ng/mL) >400/� 400 4/0

Prognosis Score 3-mo survival rate

Good 0–2/3–6/7–8 >0.81/0.72–
0.8/0.66–0.69

Intermediate 9/10–12/13–14/15 0.63/0.51–
0.59/0.42–0.47/0.38

Poor 16/17–19/20–22/� 23 0.33/0.21–0.29/0.1–
0.17/< 0.1

ALCPS Advanced liver cancer prognostic system, ALP Alkaline
phosphatase, AFP Alpha-fetoprotein
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Moreover, the score showed significantly better predictive
power in known three-month survival status than Okuda
score and CLIP score in the validation set.

Although investigators from China demonstrated the
ALCPS system to be the prognostic model in advanced HCC
patients [21, 41], however, this score has not yet been val-
idated in a Western population. In addition, many prognostic
factors are included in this system (n = 11), calculating the
total score somewhat complicated in daily clinical practice.

28.7 Staging Systems for Treatment
Recommendation

28.7.1 The Barcelona Clinic Liver Cancer
(BCLC) Staging (Fig. 28.1)

The Barcelona Clinic Liver Cancer (BCLC) classification
was first proposed by the Barcelona Clinic Liver Cancer
group in 1999 [80]. This staging system includes an inte-
grated assessment of liver disease, tumor extension, and
presence of constitutional symptoms. This model is derived
from the results of a study of the outcomes of radical therapy

and/or the natural history of untreated HCC patients, and
might be an appropriate classification system for a patient
population evenly distributed among early, intermediate, and
advanced stages of the disease. The notable feature of the
BCLC system is the assignment of treatment recommenda-
tions for each stage based on the best treatment options
currently available, and this system has been updated
according to the results of investigations that have incor-
porated strong evidence. The BCLC staging system and
treatment allocation is summarized in Fig. 28.1. In 2003, the
system incorporated the concept of very early stage (BCLC
0) that included patients with HCC 2 cm with well-preserved
liver function [10]. With the description of several cohort
studies showing the efficacy of ablation in these patients, the
scheme was updated again recognizing ablation as first
treatment option. In 2008, the positive results of two ran-
domized controlled trial in advanced HCC, allowed the
acknowledgment of sorafenib as the first-line treatment
option for stage C (advanced stage) patients [3, 81].

Currently, the BCLC classification is endorsed as the
standard system for HCC management by the American
Association for the Study of Liver Disease, American Gas-
troenterology Association, European Association for the

Fig. 28.1 The Barcelona Clinic Liver Cancer (BCLC) staging system
for Hepatocellular carcinoma. M metastasis classification; N node
classification; PST performance status; RF radiofrequency ablation;

PEI percutaneous Ethanol Injection; TACE transarterial chemoem-
bolization. Permission obtained from Elsevier © European Association
for the Study of the Liver [88]. Permission from Elsevier
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Study of Liver, and the European Organization for the
Research and Treatment of Cancer, and it is currently the
most used in Western countries [5].

The prognostic value of BCLC staging system has been
externally validated in many countries [19, 20, 23–27, 42].
Several investigators from Italy [27] and China [42] have
shown that the BCLC classification is the best prognostic
model in HCC patients receiving curative therapy. In con-
trast, studies from Italy [19, 23, 26, 30], the United States
[24], Spain [25], South Korea [20] have shown that the
BCLC classification provides the best prognostic value in
HCC patients with early to advanced stage tumors treated
with various modalities. These results indicate that the pre-
dictive accuracy of the BCLC classification is highly stable.
With regard to treatment allocation, a large-scale trial from
Taiwan [82] (n = 3892) showed that the treatment schedules
determined according to the BCLC classification are both
reasonable and beneficial for survival in patients with HCC.

However, the BCLC classification has some limitations.
Although the BCLC treatment schedule recommends that
resection be applied only for those very early stage patients
without portal hypertension and normal bilirubin levels,
however, portal hypertension which is defined as the pres-
ence of a hepatic venous pressure gradient >10 mmHg is
invasive and not routinely carried out in daily practice
worldwide [67]. It might be easier and simpler to use clinical
portal hypertension, including esophageal varices or sple-
nomegaly with a platelet count [80]. Indocyanine green
retention rate at 15 min as the criteria in selection of the best
candidates for resection is also useful [82]. Moreover, BCLC
stage B (intermediate stage) includes a considerable
heterogeneous population of HCC patients with varying
degree of tumor extension, liver functional reserve, and
disease etiology, thus resulting in prognostic heterogeneity
[83, 84].

28.7.2 The Hong Kong Liver Cancer (HKLC)
Staging (Fig. 28.2)

Very recently, the HKLC classification [85] was constructed
by a Hong Kong group to developed treatment guidance for
Asian patients with HCC. This system is derived from the
results of a large cohort of 3856 HCC patients predomi-
nantly infected by hepatitis B virus (HBV). ECOG PS,
Child-Pugh grade, liver tumor status, and presence of
extrahepatic vascular invasion or metastasis were selected
while developing the system by using the 1968 training set
according to a multivariate analysis. Patients are classified
into five main stages and nine substages (stages I–Vb) based
on these prognostic factors. Subsequently, the HKLC clas-
sification was compared with the BCLC classification in
terms of discriminatory ability and effectiveness of treatment

recommendation in 1888 test set. They demonstrated that the
HKLC system had significantly better ability than the BCLC
system to distinguish between patients with specific overall
survival times. Notably, the HKLC classification is able to
better stratify patients in the BCLC B and C stages into
distinct groups, with better survival outcomes based on more
aggressive treatment recommendations than that observed in
the BCLC treatment algorithm. The HKLC system appears
to have a greater impact on the current BCLC classification,
addressing the problems with the heterogeneity of the
BCLC B and C stages and rigidity of treatment allocation.
Yan et al. [22] reported that the HKLC system was more
suitable for predicting prognosis in a Chinese cohort of 668
HCC patients than the BCLC classification. External vali-
dation in Western population and/or elsewhere is needed.

28.8 Summary of Staging Classifications

It is currently difficult to establish the staging system that is
suitable for all patient populations universally. The best
staging system to use may differ according to the detection
and treatment conditions of HCC. The validation and com-
parative studies of each staging system are showed in
Table 28.3. Each existing staging system may have been
characterized by the patient population based on which it
was constructed [10]. For example, the incidence of HCC
varies considerably with the geographic area because of
differences in the major causative factors. Hepatitis B, which
is endemic in developing geographic regions such as Eastern
Asia and Sub-Saharan Africa, is the main cause of new HCC
cases in such areas. Hepatitis C is the predominant cause of
HCC in area such as Southern Europe and Japan. In
Northern Europe and the USA, HCC is often related to other
factors such as alcoholic liver disease. Several studies have
shown that HCC patients with HCV infection or alcoholic
liver disease exhibit poorer outcomes than those with HBV
infection. This is because HCC patients with HBV infection
generally have a better liver functional reserve than those
with HCV infection or alcoholic liver disease.

Usefulness of the staging systems will differ depending
on distribution of HCC stage at diagnosis. For example,
CUPI score and ALCPS were suitable staging systems for
advanced stages of the disease and validated in a large
cohort of HCC patients in China, these are not suitable in
country where the early detection and early treatment of
HCC are common. In western patient populations, the BCLC
staging system appears to be superior based on findings in
several studies (two conducted in Italy, one in Taiwan, and
one in North America). The JIS score, the JIS family, and the
Tokyo score are the suitable staging systems in Japan, where
many smaller tumors are detected based on the established
screening system for HCC [13, 86]. However, it is the
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problem that few validation studies of these Japanese staging
systems were reported outside Japan (Table 28.15).

Usefulness of the staging systems will also differ
depending on the distribution of patients with HCC
according to the period. As mentioned above, Toyoda et al.
[44] reported that the CLIP staging systems proved to be
more suitable before 1990, however, the JIS system was the
most suitable after 1990, when early detection and early
treatment of HCC became common. When early detection of
HCCs becomes more common in many countries, it could
lead to the predominance of early-stage HCC patients and
Japanese staging systems such as the JIS and the JIS family
may become more suitable over the world.

Although the JIS score and JIS family based on the TNM
by LCSGJ for HCC were useful in Japan, however, there are
some limitations. First, although the Japanese TNM for HCC
has been generally accepted as a standard approach for
prognostication in Japan, however, it is not always used all
over the world. Second, the model included established
classifications such as the case for TNM staging can be
modified in the future, and different versions may be con-
fused. Third, discrepancies between pre- and postoperative

diagnoses in the TNM and the TNM-based staging systems
often caused by microvascular invasion detected in resected
specimens after hepatectomy. In the first place, the TNM
staging was developed based on a survival analysis of surgical
patients and their pathological findings, thus, these postop-
erative histopathological staging systems are appropriate for
patients who are scheduled to undergo surgical resection [12,
14]. Although, vascular invasion, one of the TNM staging
components, is considered as a prognostic factor, however,
peripheral vascular invasion is usually obtained as
microvascular invasion in resected specimen and underesti-
mated preoperatively. Thus, pre/postoperative staging dis-
crepancy in the TNM and the TNM-based staging system (the
JIS and JIS family) often caused by accompanying newly
detected microvascular invasion in the resected liver. In this
regard, there is still room for development of novel tumor
factor which is simple, robust, and not needed the information
on pathological vessel involvement, and the N � S factor,
which consists of mathematical product of tumor number and
size of largest tumor, could solve these problems.

One of the goals of staging systems today is to provide an
evidence-based treatment guide [80]. All staging

Fig. 28.2 The Hong Kong Liver Cancer (HKLC) prognostic classi-
fication scheme. EVM, extrahepatic vascular invasion/metastasis. Early
tumor: 5 cm, 3 tumor nodules and no intrahepatic venous invasion;
Intermediate tumor: (1) 5 cm, either >3 tumor nodules or with
intrahepatic venous invasion, or (2) >5 cm, 3 tumor nodules and no

intrahepatic venous invasion; and Locally advanced tumor: (1)
5 cm, >3 tumor nodules and with intrahepatic venous invasion, or
(2) >5 cm, >3 tumor nodules or/and with intrahepatic venous invasion,
or (3) diffuse tumor. Modified from Yau et al. [85]. Permission from W.
B. Saunders Company
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Table 28.15 The validation and comparative studies of each staging system

Suitable model Country Year Case number Treatment modality Comparator staging systems

Cura/Non-curb/Palliative

CLIP Levy [51] Canada 2002 257 ALL 95/29/133 Okuda

Giannini
[30]c

Italy 2004 81 ALL 25/43/13 Okuda, BCLC, GRETCH

Chen [16]c Taiwan 2007 382 Surgery (major
hepatectomy)

382/0/0 Okuda, TNM, BCLC, CUPI, JIS
MELD

Camma [17] Italy 2008 406 ALL 115/63/228 BCLC, GRETCH

Collete [37] French 2008 538 Advanced 0/122/416 Okuda, BCLC

Cho [53] Korea 2008 131 TACE 0/131/0 Okuda, BCLC, JIS, Child

Lin et al.
[52]

Taiwan 2009 3668 ALL 662/1768/1438 –

Noda [18] Japan 2009 46 Surgery
(HCC > 10 cm)

46/0/0 TNM, JIS

Hsu et al.
[38]

Taiwan 2010 1713 ALL 797/655/261 TNM, BCLC, JIS, Tokyo

Op den
Winkel [39]

German 2012 405 ALL 95/263/47 JIS, Okuda, GRETCH, TNM, BCLC,
Child

Shao et al.
[40]c

Taiwan 2012 157 Advanced 0/157/0 GRETEC, CUPI, Okuda, Tokyo, JIS,
BCLC, CIS, AJCC

Lin et al.
[41]c

Taiwan 2012 156 Advanced 0/0/156 TNM, Okuda, CUPI, JIS, Tokyo,
ALCPS

Memon [54] USA 2014 428 TARE 0/428/0 Okuda, BCLC, GRETCH, CUPI, JIS

GRETCH Giannini
[30]c

Italy 2004 81 ALL 25/43/13 Okuda, BCLC, CLIP

BCLC Cillo [23] Italy 2004 187 ALL 119/40/28 Okuda, CLIP, GRETCH, CUPI

Giannini
[30]c

Italy 2004 81 ALL 25/43/13 Okuda, CLIP, GRETCH

Grieco [19] Italy 2005 268 Early to
intermediate

146/103/19 Okuda, CLIP

Marrero [24] USA 2005 244 ALL 107/66/71 Okuda, TNM, CLIP, GRETCH,
CUPI, JIS

Pascual [25] Spain 2006 115 ALL 38/39/38 Okuda, CLIP, BCLC,GRETCH,
MELD, Child

Cillo [26] Italy 2006 195 ALL 175/9/11 Okuda, CLIP, TNM, JIS,

Wang [82] Taiwan 2008 3892 ALL 631/1796/1465 –

Guglielmi
[27]

Italy 2008 112 RFA 112/0/0 Okuda, TNM, CLIP, GRETCH,
CUPI, JIS

Kim [20] Korea 2012 1717 ALL 357/1188/172 JIS, Tokyo, CLIP, CUPI, GRETCH

Zhao [42] China 2015 743 Surgery 743/0/0 TNM, JIS, Tokyo, CLIP, CUPI,
Okuda

CUPI Chan [43] China 2011 595 ALL 83/206/306 BCLC, CLIP, TNM, Okuda

Shao [40]c Taiwan 2012 157 Advanced 0/157/0 GRETCH, CUPI, Okuda, Tokyo, JIS,
BCLC, CIS, AJCC

Zhang [28] China 2014 196 Non-surgical
treatment

6/114/76 BCLC, CLIP, JIS, CIS, Okuda, TNM

Chan [46] China 2014 517 ALL 92/224/201 BCLC, CLIP

Chan [46] UK 2014 567 ALL 228/235/104 BCLC, CLIP

(continued)
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classifications have been designed to predict prognosis,
many staging systems lack optimal treatment allocation
except for BCLC and HKLC. However, BCLC treatment
recommendations were not suitable in all situations. For
example, some prognostic factors, such as the presence of
portal hypertension is contraindications, because there are
evidences which suggest that hepatic resection can be per-
formed successfully even in patients with portal hyperten-
sion and multiple hepatic lesions in highly selected cases. In
addition, this algorithm also does not provide indications
concerning second-line therapies, retreatment choices, or
combined treatments. Furthermore, there are several differ-
ences in indication of Liver transplantation for HCC among
countries. In Japan, it is considered that the therapeutic
algorithm in the Japanese guidelines for the management of
liver cancer is established and superior to the BCLC

treatment algorithm in Japanese population [4]. HKLC from
China needs further evaluations. Among these countries,
treatment situations and options are various in some part,
thus, it seems to be currently difficult to establish the unified
staging system which provides both optimal treatment rec-
ommendation and prediction prognosis for worldwide.

Another goal of staging systems is to develop a globally
applicable staging classification [87].

There is currently no globally accepted system for HCC,
and thus no common language on which to base treatment
decisions and guide research. For practical purposes, staging
systems should be simple and based on data that are easily
obtainable. Our novel N � S factor and N � S factor-based
staging system are very simple and obtained anywhere and
easily in daily practice, and it may potentially become one of
a common score in many countries.

Table 28.15 (continued)

Suitable model Country Year Case number Treatment modality Comparator staging systems

Cura/Non-curb/Palliative

JIS Kudo [31] Japan 2004 4525 ALL 2023/2306/196 CLIP

Toyoda [44] Japan 2005 1508 ALL 598/632/288 CLIP, BCLC

Kondo [32] Japan 2007 235 Surgery 235/0/0 CLIP, BCLC, GRETCH, CUPI, mJIS,
Tokyo

Chung [8] Japan 2008 290 ALL 208/58/24 BCLC, Tokyo

Chen [16]c Taiwan 2007 382 Surgery (minor
hepatectomy)

382/0/0 Okuda, CLIP, TNM, BCLC, CUPI,
JIS, MELD

m-JIS Nanashima
[45]

Japan 2006 230 Surgery 230/0/0 TNM, JIS CLIP

Ikai [61] Japan 2006 42269 ALL 24,421/13,868/3,980 m-CLIP

SLIDE Nanashima
[65]

Japan 2009 207 Surgery 207/0/0 –

bm-JIS Kitai [33] Japan 2008 1173 ALL 663/470/36 JIS, BALAD

Kitai [34] Japan 2014 4649 ALL 2995/1455/199 JIS, BCLC

Tokyo Chen [29] Taiwan 2009 2010 ALL 984/518/478 JIS, CLIP, BCLC, Okuda, TNM

BALAD Fox [75] UK 2014 319 ALL 16.1 %/83.9 % (non cur
+ palliative)

–

Chan [76] China 2015 198 ALL 37/87/74 BCLC

ALCPS Lin [41]c Taiwan 2012 156 Advanced 0/0/156 TNM, Okuda, CLIP, CUPI, JIS,
Tokyo

Li [21] China 2013 208 Advanced 0/10/198 JIS, TNM, CLIP, GRETCH

TIS Hsu [35] Taiwan 2012 2203 ALL 1017/1186/0 CLIP, BCLC, JIS

Chen [36] Taiwan 2015 467 RFA 467/0/0 BCLC, CLIP, JIS

HKLC Yan [22] China 2015 668 ALL 453/205/10 BCLC

RFA radiofrequency ablation, TACE transarterial chemoembolization, TARE transarterial radioembolization, TNM Tumor Node Metastasis, CLIP
The Cancer of the Liver Italian Program, GRETCH The Groupe d’Etude et de Traitement du Carcinome Hépatocellulaire, BCLC The Barcelona
Clinic Liver Cancer, CUPI Chinese University Prognostic Index, JIS The Japan Integrated Staging, bm-JIS biomarker-JIS, ALCPS Advanced Liver
Cancer Prognostic System, TIS The Taipei Integrated Score, HKLC The Hong Kong Liver Cancer, MELD Model for End stage Liver Disease, CIS
China integrated staging
aCur: surgical resection, liver transplantation, and local ablation
bNoncur: transarterial therapy, radiation therapy, and systemic therapy such as Sorafenib
cThe same literature
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28.9 Conclusion

As mentioned above, many staging systems and scoring
systems have been established and refined. However, there is
currently no globally accepted system for assessing HCC
patients, due to regional differences in tumor extension and
underlying liver disease, which affects the patient prognosis,
thus, a staging classification needs to be validated in both
western and Asia-Pacific patient populations. Although the
prognosis of HCC patients is complex for various reasons,
simple staging systems available anywhere are needed at
first to compare the differences of the prognosis of HCC
patients among the nations.

In conclusion, further research efforts are needed for us to
gain a full understanding of the factors that affect the
prognosis of patients with HCC, and it will allow us to refine
staging classifications and improve our therapeutic approach.
Growing evidence of tumor biology and development in
imaging techniques and treatment modalities against both
HCC and liver disease will result in the proportion of better
staging systems in the future.
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29.1 Introduction

Percutaneous ablation therapies (PATs) of hepatic neo-
plasms are performed using an image-guided approach
through the liver parenchyma. PATs may be based on the
use of means capable of destroying the tissue chemically,
such as ethyl alcohol (PEI) or acetic acid (PAI), or physi-
cally, as with laser (ILP), radio frequency (RF) or micro-
wave (MW). PEI, the first of PATs to be proposed, was
independently conceived at the University of Chiba in Japan
and at the Vimercate Hospital (Milan) in Italy. The first
study in an international journal appeared in 1986 [1]. On
the basis of its rationale and the results obtained, the other
techniques were subsequently designed [2–5]. The range of
indications for PATs is currently wider compared to its
initial use. Indeed, whereas for some years only patients with
up to three small (max 3 cm in size) or single (max 5 cm in
size) lesions were treated, with the introduction of the
“single-session” procedure under general anesthesia [6],
even patients with lesions greater in number or larger in size
could have been treated. This chapter considers the princi-
ples, the techniques, the results of PEI, and its current
indications compared to those of RF, which is now consid-
ered the gold standard.

29.2 Principles and Techniques

PEI is generally performed under ultrasound (US) guidance,
because real-time control allows faster execution, precise
centering of the needle into the target, continuous monitoring
of ethanol distribution, and determination of the appropriate
amount of ethanol to be injected each time. The material to
perform the procedure is very poor, consisting of a siring, a
multi- hole 22 G needle and a phial of 95° ethanol
(Fig. 29.1). Alcohol acts by two mechanisms. The first is due
to its diffusion within the cells, which causes immediate
dehydration of cytoplasmic proteins with consequent coag-
ulation necrosis followed by fibrosis. The second is due to its
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entrance in the circulation, which induces necrosis of
endothelial cells and platelets aggregation with consequent
thrombosis of small vessels followed by ischemia of the
neoplastic tissue. Two characteristics of HCC favor the toxic
action of ethanol: hypervascularization and difference in
consistence between neoplastic and cirrhotic tissue. Since the
neoplastic tissue of HCC is softer than the surrounding cir-
rhotic tissue, ethanol diffuses within it easily and selectively,
whereas at the same time hypervascularization facilitates its
uniform distribution within the rich network of neoplastic
vessels. On the contrary, ethanol diffusion can be impaired in
presence of septa or even impossible in presence of satellites
because of the interposition of cirrhotic tissue [7].

Conventional PEI is performed in multiple sessions on
outpatient setting or, when the tumor is more advanced, in a
“single session” under general anesthesia with the patient
being hospitalized. The former technique is generally used
for single HCC <4–5 cm in diameter or for multiple HCC
with 2–3 nodules � 3 cm in diameter. The number of ses-
sions is approximately twice the lesion diameter of the lesion
in centimeters [8]. The latter technique is adopted for more
advanced HCC, single or multiple, that do not involve more
than 30 % of the hepatic volume and with no neoplastic
thrombosis in the main portal branches or in the hepatic
veins [9]. PEI can be also performed in selected patients with
segmental or subsegmental portal thrombosis, injecting 1–
3 ml of ethanol directly into to the thrombus [10]. More
detailed technical information about the procedures are
available in several studies [7–12].

Recently the use of a multipronged needle to treat med-
ium to large HCC has been proposed. However, there is
concern about its safety as inserting this kind of needle is
more technically demanding compared to the conventional
one and placing any of its tines outside the tumor can cause
alcohol spill, increasing the risk of complications [13].

29.3 Evaluation of Therapeutic Efficacy

To evaluate the therapeutic response, that is to determine
whether the tumor has become completely necrotic or whe-
ther areas of neoplastic tissue are still present, a combination
of investigations and serum assays for tumor markers is used.
They are the same as those adopted during initial staging and
controls. Since there are many investigations and some of
them are comparable, we prefer to routinely use only
contrast-enhanced US (CEUS) and spiral multi-slice CT
(Fig. 29.2) with the triphasic technique (4–5 ml/s, 30, 70 and
120 s after the injection of contrast medium). We use other
imaging techniques (angiography, MR, PET) or biopsy only
in rare cases, if there is a doubt whether the response is partial
or complete. If the areas of viable tissue are very small,
beyond the present powers of resolution, they will obviously
not be recognizable on the images at the end of the treatment.
However, they will be easily identified at follow up if they are
evidenced as zones of enhancement at CT or CEUS. The
response is considered complete when CT and CEUS scans
shows the total disappearance of enhancement within the
neoplastic tissue and when the same picture is confirmed at
scans performed at successive controls.

The absence of enhancement means the absence of blood
flow due to necrotic and fibrotic modifications. Even with
such characteristics, the necrotic area does not disappear and
remains visible in place of the tumor even if reduced in size
to different extents.

CEUS is particularly useful [14, 15] during multi-session
treatment as it permits to evaluate before each session if
there is persistence of any viable area. The following
instillation of ethanol can be therefore selectively performed
in the tumoral tissue (Fig. 29.3).

As tumor markers, we use alpha-fetoprotein (AFP) and
des-gamma-carboxy-prothrombin (DCP), which are often
complementary. Nevertheless, their assay is useful only if they
were abnormal before treatment. When the imaging techniques
show a complete response not followed by normalization of
AFP or DCP levels, it means that neoplastic tissue not detected
or not yet detectable is growing elsewhere. Moreover, an
increase in levels during follow up always suggests a local
recurrence or the appearance of new lesions. The control with
CEUS and/or CT is carried out according to the procedure used.
If the multi-session procedure is performed, the control is made
when the treatment is presumed to be complete. If the “single
session” procedure is performed, the control is made the day
after treatment. After that, these imaging examinations and
serumassay of tumormarkers are performed every 4–6 months.

Fig. 29.1 Material used to perform PEI
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29.4 Complications

Mortality related to conventional treatment is negligible,
because only few anecdotal cases were reported in thousands
of patients treated. In a review study with 1066 patients
treated in 8118 sessions, one death (0.09 %) occurred [16].
Major complications are rare, ranging from 1.3 to 2.4 %, and
usually treated conservatively (intraperitoneal hemorrhage,
cholangitis, jaundice secondary to injury of main bile ducts,
liver abscess, hemobilia, arterioportal shunt, shock, seg-
mental hepatic infarction).

With the “single session” technique, where larger vol-
umes of ethanol are administered, the mortality (0.9 %) and
the complication rate increase (4.5 %), and other major
complications can occur (transient worsening of portal
hypertension with risk of hemorrhage from esophageal
varices, liver decompensation, transient alcohol intoxication)
[9].

A particular and late type of complication is seeding, that
may occur despite the use of small needles and injecting
alcohol down the track. In a recent study [17] with a large
cohort of patients, the authors registered five case of seeding
out of 270 patients (1.8 %).

A review article [18] evaluated all the cases of seeding
following PEI without prior biopsy reported between Jan-
uary 1983 and February 2007. A total of 16 papers
describing 26 cases of seeding were found. The most com-
mon site of seeding was intraperitoneal and the median time
from PEI to detecting seeding was 6 months.

29.5 Results

29.5.1 Survival Studies

Numerous long-term survival curves have been published.
The more important studies in terms of quality and quantity
were conducted in Italy and in Japan [7, 8]. Their 5-year
survival, in patients with single HCC � 5 cm or with � 3
nodules � 3 cm, ranged from 43 to 63 %. Recently, two
papers from Japan reported 20-year outcome and prognostic
factors related to 270 and 685 consecutive case series,
respectively. Ebara, in patients with HCC with � 3 nodules
� 3 cm, obtained an overall 3- and 5-year survival rates of
81.6 and 60.3 %, respectively, with 0 % of treatment mor-
tality and 2.2 % of major complications. The rates were

Fig. 29.2 Transverse CT scans
showing a HCC of 2 cm in the
right lobe treated with
multi-session PEI. a, b Before
treatment the tumor shows
hypervascularity during the
arterial phase and wash-out in the
portal phase. c, d The arterial and
portal phase CT scans the day
after treatment show a completely
necrotic lesion because of
absence of enhancement. Very
small bubbles of gas due to recent
necrosis are detectable inside the
treated area
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higher, i.e., 87.3 % at 3 and 78.3 % at 5-year, in Child A
patients with a solitary tumor � 2 cm in diameter [17].
Shiina obtained a complete ablation in 98.5 % of cases
(99 % in tumors <2 cm), while the treatment mortality was
0.06 %. In patients with HCC with � 3 nodules � 3 cm the
overall survival was similar, i.e., 59.5 % [19].

In all the studies main pretreatment factors influencing
survival resulted liver function, tumoral markers (AFP,
DCP) level, number and size of tumors. A post-treatment
prognostic factor is the complete response to PAT [20]. The
main cause of death in Child’s A patients was progression of
neoplastic disease due mainly to the appearance of new
lesions, while in Child’s C patients the cause of death was
hepatic insufficiency, questioning the useless of treatment in
these patients.

The incidence of appearance of new lesions at 5 years
ranged from 64 to 87 %, i.e., the same rates showed after
surgery. The incidence of local recurrences ranged from 4 to
17 %.

Following these results, the European and the American
Associations for the Study of the Liver included PEI among
the treatments considered effective for early stage disease
[21].

29.5.2 Comparison to Other Therapies

In all the randomized controlled trials (RCTs), RF showed
better local efficacy and required fewer treatment sessions
compared to PEI, but PEI presented a minor rate of adverse
events [22, 23]. In particular, in tumor <3 cm in size, RF
obtained a complete ablation in nearly the totality of cases,
while PEI obtained approximately 10 % less. Successively,
RF was compared to PEI for long-term results. In all the
RCTs, RF was superior to PEI with respect to local recur-
rence, overall survival and cancer free survival [24–26].
Another RCT on 184 patients with HCC � 3 cm found that
RF was superior to PEI and PAI with respect to local

Fig. 29.3 Contrast-enhanced US
scans showing a HCC nodule
treated with multi-session PEI.
a Vital hypervascularized tissue
remains present after the first
session. b After the second
treatment, targeted using contrast
enhanced US as guidance, the
lesion is completely treated
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recurrence, overall survival, and cancer free survival rates,
even if RF caused more major complications (4.8 % vs.
0 %). No statistical significant difference was reported
between PEI and PAI [27].

For explaining the difference regarding these parameters,
it is important to remember that also at the earliest stages,
different degrees of tissue differentiation are possible.
Histopathologic studies have revealed that, while nodules
measuring 1.5 cm or less (considered the early stage for
pathologists) are uniformly well-differentiated, those
between 1.5 and 2.0 cm in diameter often contain zones of
less differentiated tissue with more intense proliferative
activity (considered the small advanced-stage for patholo-
gists) [28–30]. The less differentiated areas give rise to portal
microinvasion in 10 % of the cases, and to microsatellites in
3 % of the cases, usually within 1.0 cm of the main tumor
[29–32]. Better long-term results of RF are due to the fact
that termoablation in most cases of early stages is able to
obtain a 0.5–1.0 cm safety margin around the tumor,
reducing the appearance of possible microsatellites during
the follow up. However, a recent study selecting 254 patients
with single HCC � 2 cm for propensity score matching
analysis, demonstrated that PEI and RF were substantially
effective in terms of 5-year survival, 64.7 and 72.9 %,
respectively, despite higher cumulative and local recurrence
rates of PEI [33]. As expected, RF resulted superior to PEI
also in tumor of medium and large size [34].

Some retrospective studies comparing PEI and hepatic
resection (HR) showed 5-year survival rates broadly equiv-
alent, with an approximate rate of 50 % for both [35–38].
These data were confirmed by the only RCT which com-
pared patients with one or 2 nodules � 3 cm in size, which
did not find any statistical difference for recurrence rate and
survival [39].

29.5.3 Combined Therapies

Combined therapy with PEI and RF for large HCC has been
proposed demonstrating that the two techniques cause a
synergistic necrotizing effect, with coagulation volumes lar-
ger than those usually obtained with PEI or RFA alone [40,
41]. The combination of repeated single-session PEI and
trans-arterial-chemo-embolization (TACE) has been com-
pared to repeated single-session PEI in patients with unre-
sectable HCC [42]. The combination of TACE and PEI was
associated with a longer survival (1, 3, 5-year survival: 90,
52, and 43 %) compared to PEI treatment alone (1, 3, and
5-year survival: 65, 50, and 37 %). Validity of this combi-
nation was recently confirmed by a meta-analysis of ten
RCTs including 595 patients with unresectable HCC. The
pooled result showed that TACE plus PEI compared with that
of TACE alone improved the 3-year overall survival [43].

29.6 Conclusions and Current Indications

HCC usually coexists with an underlying hepatic chronic dis-
ease. According to the stage, one disease will prevail over the
other. For such reason, therapies should not worsen liver
function. HCC is an organ pathology, so the first nodule
detected is only a prelude to others. A study on resected patients
demonstrated that multi-centricity is already present in 50 % of
early stages and that 93 % of patients with single minute HCC
presented other nodules within 5 years [44]. Being
multi-centric over time, HCC needs multistep treatments.

Therefore, HR (or PATs) can offer a palliative cure,
achieving only a local control of the disease. In fact,
according to a Japanese nationwide survey, only 1.6 % of all
resected patients presenting intrahepatic recurrence was
re-resected [44].

Although it is understood that HR assures the highest
possibility to completely ablate the tumor and the possible
satellites, different comparative studies based on historical
results [36–38] and the recent RCTs comparing HR and
PATs demonstrated roughly equivalent results [39, 46, 47].
The explanation is probably due to a balance between
advantages and disadvantages of the two therapies, the most
important advantages of PATs being repeatability, no loss or
damage of non-neoplastic tissue and lower complication
rates. Moreover, the overall results of both therapies were
hampered and flattened by an incorrect selection of the
patients, part of them being treated even though they had
adverse prognostic factors for that specific treatment. For
instance, the Liver Unit of Barcelona reported the usual, i.e.,
the mean rate reported by most studies, 5-year overall sur-
vival rate around 50 % after HR [48]. However, when the
patients were divided according to two simple adverse
prognostic factors, i.e., portal hypertension and abnormal
bilirubin, a rate of 74 % was obtained (the best so far
reported) in patients with normal values and a rate of only
25 % in the worst candidates. The fact that the survival of
this second group of patients was comparable with recently
reported survival rates from two series of untreated patients
(20 and 16 % respectively), even though with a more
adverse profile [49, 50], questions the indication for surgery
in such patients, that are probably more eligible for PATs.

These considerations suggest that the best strategy has to
be tailored according to the individual presentation of the
disease. In single operable nodule <3 cm there is no clear
evidence to establish the best treatment. Accordingly, each
referral centre follows a personal algorithm for such bor-
derline patients. Currently, RF is becoming the gold standard
for nodules <2 cm [51], while for nodules between 2 and
3 cm the choice is reached according to individual factors.

As RF is actually considered the gold standard ablation
technique, the current place of PEI has to be determined. Of
course where RF is not available PEI remains a valid
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treatment for HCC, especially for health care systems with
limited economical resources as studies related to the total
cost of treatment reported an average of only 700–1000 $ for
PEI [8, 52].

Moreover in all those cases in which RF is considered to
be at risk for complications, PEI is a valid alternative, i.e., in
case of lesions adjacent to main biliary ducts (because of the
risk of stenosis) or to intestinal loops (Fig. 29.4) (above all
when fibrotic adhesions between the hepatic capsule and
intestinal wall are suspected, because of the risk of perfo-
ration). Combined therapies have been also proposed for
these kinds of lesions [53, 54]. PEI is also useful to treat
lesions closed to large vessels, as it is not affected by the
so-called sink effect. PEI remains a good indication to treat
segmental portal thrombosis [10]. PEI is also used for
downstaging patients with an advanced HCC exceeding the
UCSF/Milan criteria for liver transplantation [55]. In our
experience, we downstaged a patient with alcoholic cirrhosis
Child B class, exceeding the Milan criteria because carrier of
eight nodular HCC <2 cm in size. Under general anesthesia,
six of the nodules were treated with RF and two with PEI
because at risk for RF. Because CT examination showed a
complete response the patient was transplanted, and the
histological examination confirmed the complete ablation.

In our department we consider PEI and RF, and also
selective TACE, complementary, and use them according to
the presentation of the disease, i.e., size, number, location,
and presence of satellites or portal thrombosis. A multifocal
HCC can be treated with only one or with all the techniques,
during a single hospital stay or over the years [56]. Our
longest survivor, currently free of disease, was initially
treated 19 years ago with PEI and when new lesions
appeared during follow up, he was treated with RF, selective
TACE and again PEI. Otherwise, the same lesion can also be
treated with the combination of different techniques, when
the first has resulted unsatisfactory.

References

1. Livraghi T, Festi D, Monti F, Salmi A, Vettori C. US-guided
percutaneous alcohol injection of small hepatic and abdominal
tumors. Radiology. 1986;161:309–12.

2. Rossi S, Buscarini E, Garbagnati F, et al. Percutaneous treatment of
small hepatic tumors by an expandable RF needle electrode. AJR
Am J Roentgenol. 1998;170:1015–22.

3. Murakami R, Yoshimatsu S, Yamashita Y, et al. Treatment of
hepatocellular carcinoma: value of percutaneous microwave coag-
ulation. AJR Am J Roentgenol. 1995;164:1159–64.

Fig. 29.4 Transverse CT and
US scans showing a HCC of
4.2 cm located in segment VI,
close to the bowel, treated with
single-session PEI because of its
at risk location. a At the baseline
the lesion appears well
vascularized at arterial phase CT
scan. b US scan at the end of the
procedure shows the hyperechoic
zone of ethanol filling the tumor.
c At the arterial phase CT scan
one month after treatment no
enhancement is visible within the
tumor

450 T. Livraghi et al.



4. Masters A, Steger AC, Lees WR, Walmsley KM, Bown SG.
Interstitial laser hyperthermia: a new approach for treating liver
metastases. Br J Cancer. 1992;66(3):518–22.

5. Ohnishi K, Ohyama N, Ito S, Fujiwara K. Small hepatocellular
carcinoma: treatment with US-guided intratumoral injection of
acetic acid. Radiology. 1994;193:747–52.

6. Livraghi T, Lazzaroni S, Pellicanò S, et al. Percutaneous ethanol
injection of hepatic tumors: single-session therapy with general
anesthesia. AJR Am J Roentgenol. 1993;161:1065–9.

7. Shiina S, Tagawa K, Unuma T, et al. Percutaneous ethanol
injection therapy for hepatocellular carcinoma: a histopatologic
study. Cancer. 1991;68:1524–30.

8. Livraghi T, Giorgio A, Marin G, et al. Hepatocellular carcinoma
and cirrhosis in 746 patients: long-term results of percutaneous
ethanol injection. Radiology. 1995;197:101–8.

9. Livraghi T, Benedini V, Lazzaroni S, et al. Long term results of
single session percutaneous ethanol injection in patients with large
hepatocellular carcinoma. Cancer. 1998;83:48–57.

10. Livraghi T, Grigioni W, Mazziotti A, Sangalli G, Vettori C.
Percutaneous alcohol injection of portal thrombosis in hepatocel-
lular carcinoma: a new possible treatment. Tumori. 1990;76:394–7.

11. Lencioni R, Pinto F, Armillotta N, et al. Long-term results of
percutaneous ethanol injection therapy for hepatocellular carcinoma
in cirrhosis: a European experience. Eur Radiol. 1997;7:514–9.

12. Ebara M, Ohto M, Sugiura N, et al. Percutaneous ethanol injection
for the treatment of small hepatocellular carcinoma. Study of 95
patients. J Gastroenterol Hepatol. 1990;5:616–26.

13. Ho CS, Kachura JR, Gallinger S, et al. Percutaneous ethanol
injection of unresectable medium-to-large-sized hepatomas using a
multipronged needle: efficacy and safety. Cardiovasc Interv Radiol.
2007;30:241–7.

14. Youk JH, Lee JM, Kim CS. Therapeutic response evaluation of
malignant hepatic masses treated by interventional procedures with
contrast-enhanced agent detection imaging. J Ultrasound Med.
2003;22:911–20.

15. Cioni D, Lencioni R, Bartolozzi C. Percutaneous ablation of liver
malignancies: imaging evaluation of treatment response. Eur J
Ultrasound. 2001;13:73–93.

16. Di Stasi M, Buscarini L, Livraghi T, et al. Percutaneous ethanol
injection in the treatment of hepatocellular carcinoma. A multicenter
survey of evaluation practices and complication rates. Scand J
Gastroenterol. 1997;32:1168–73.

17. Ebara M, Okabe S, Kita K, et al. Percutaneous ethanol injection for
small hepatocellular carcinoma: therapeutic efficacy based on
20-year observation. J Hepatol. 2005;3:458–64.

18. Stigliano R, Marelli L, Yu D, et al. Seeding following percutaneous
diagnostic and therapeutic approaches for hepatocellular carci-
noma. What is the risk and the outcome? Seeding risk for
percutaneous approach of HCC. Cancer Treat Rev. 2007;33:
437–47.

19. Shiina S, Tateishi R, Imamura M, et al. Percutaneous ethanol
injection for hepatocellular carcinoma: 20-year outcome and
prognostic factors. Liver Int. 2012;32:1434–42.

20. Sala M, Llovet JM, Vilana R, et al. Initial response to percutaneous
ablation predicts survival in patients with hepatocellular carcinoma.
Hepatology. 2004;40:1352–60.

21. Bruix J, Sherman M. Management of hepatocellular carcinoma.
Hepatology. 2005;42:1208–36.

22. Ikeda M, Okada S, Ueno H, Okusaka T, Kuriyama H. Radiofre-
quency ablation and percutaneous ethanol injection in patients with
small hepatocellular carcinoma: a comparative study. Jpn J Clin
Oncol. 2001;31:322–6.

23. Livraghi T, Goldberg SN, Lazzaroni S, et al. Small hepatocellular
carcinoma: treatment with radio-frequency ablation versus ethanol
injection. Radiology. 1999;210:655–61.

24. Lin S, Lin C, Lin C, Hsu C, Chen Y. Radiofrequency ablation
improves prognosis compared with ethanol injection for hepatocel-
lular carcinoma < or = 4 cm. Gastroenterology. 2004;127:1714–23.

25. Lencioni RA, Allgaier H, Cioni D, et al. Small hepatocellular
carcinoma in cirrhosis: randomized comparison of radio-frequency
thermal ablation versus percutaneous ethanol injection. Radiology.
2003;228:235–40.

26. Omata M, Tateishi R, Yoshida H, Shiina S. Treatment of
hepatocellular carcinoma by percutaneous tumor ablation methods:
Ethanol injection therapy and radiofrequency ablation. Gastroen-
terology. 2004;127(Suppl 1):S159–66.

27. Lin S, Lin C, Lin C, Hsu C, Chen Y. Randomised controlled trial
comparing percutaneous radiofrequency thermal ablation, percuta-
neous ethanol injection, and percutaneous acetic acid injection to
treat hepatocellular carcinoma of 3 cm or less. Gut. 2005;54:1151–6.

28. Kojiro M, Nakashima O. Histopathologic evaluation of hepatocel-
lular carcinoma with special reference to small early stage tumors.
Semin Liver Dis. 1999;19:287–96.

29. Kanai T, Hirohashi S, Upton MP, et al. Pathology of small
hepatocellular carcinoma. A proposal for a new gross classification.
Cancer. 1987;60:810–9.

30. Sasaki Y, Imaoka S, Ishiguro S, et al. Clinical features of small
hepatocellular carcinomas as assessed by histologic grades.
Surgery. 1996;119:252–60.

31. Nakashima Y, Nakashima O, Tanaka M, et al. Portal vein invasion
and intrahepatic micrometastasis in small hepatocellular carcinoma
by gross type. Hepatol Res. 2003;26:142–7.

32. Okusaka T, Okada S, Ueno H, et al. Satellite lesions in patients
with small hepatocellular carcinoma with reference to clinico-
pathologic features. Cancer. 2002;95:1931–7.

33. Pompili M, De Matthaeis N, Saviano A, et al. Single hepatocellular
carcinoma smaller than 2 cm: are ethanol injection an radiofre-
quency ablation equally effective? Anticancer Res. 2015;35:
325–32.

34. Livraghi T, Goldberg SN, Lazzaroni S, et al. Hepatocellular
carcinoma: radio-frequency ablation of medium and large lesions.
Radiology. 2000;214:761–8.

35. Yamamoto J, Okada S, Shimada K, et al. Treatment strategy for
small hepatocellular carcinoma: comparison of long-term results
after percutaneous ethanol injection therapy and surgical resection.
Hepatology. 2001;34:707–13.

36. Livraghi T, Bolondi L, Buscarini L, et al. No treatment, resection
and ethanol injection in hepatocellular carcinoma: a retrospective
analysis of survival in 391 patients with cirrhosis. Italian Coop-
erative HCC Study Group. J Hepatol. 1995;22:522–6.

37. Kotoh K, Sakai H, Sakamoto S, et al. The effect of percutaneous
ethanol injection therapy on small solitary hepatocellular carcinoma
is comparable to that of hepatectomy. Am J Gastroenterol.
1994;89:194–8.

38. Ryu M, Shimamura Y, Kinoshita T, et al. Therapeutic results of
resection, transcatheter arterial embolization and percutaneous
transhepatic ethanol injection in 3225 patients with hepatocellular
carcinoma: a retrospective multicenter study. Jpn J Clin Oncol.
1997;27:251–7.

39. Huang G, Lee P, Tsang Y, et al. Percutaneous ethanol injection
versus surgical resection for the treatment of small hepatocellular
carcinoma: a prospective study. Ann Surg. 2005;242:36–42.

40. Shankar S, vanSonnenberg E, Morrison PR, Tuncali K, Silver-
man SG. Combined radiofrequency and alcohol injection for
percutaneous hepatic tumor ablation. AJR Am J Roentgenol.
2004;183:1425–9.

41. Kurokochi K, Watanabe S, Masaki T, et al. Combined use of
percutaneous ethanol injection and radiofrequency ablation for the
effective treatment of hepatocelluar carcinoma. Int J Oncol.
2002;2:841–6.

29 Percutaneous Ethanol Injection 451



42. Dettmer A, Kirchhoff T, Gebel M, et al. Combination of repeated
single-session percutaneous ethanol injection and transarterial
chemoembolisation compared to repeated single-session percuta-
neous ethanol injection in patients with non-resectable hepatocel-
lular carcinoma. World J Gastroenterol. 2006;12:3707–15.

43. Wang W, Shi J, Xie WF. Transarterial chemoembolization in
combination with percutaneous ablation therapy in unresectable
hepatocellular carcinoma: ameta-analysis. Liver Int. 2010;30:741–9.

44. Nakashima O, Kojiro M. Recurrence of hepatocellular carcinoma:
multicentric occurrence or intrahepatic metastasis? A viewpoint in
terms of pathology. J Hepatobiliary Pancreat Surg. 2001;8:404–9.

45. Arii S, Teramoto K, Kawamura T, et al. Characteristics of recurrent
hepatocellular carcinoma in Japan and our surgical experience.
J Hepatobiliary Pancreat Surg. 2001;8:397–403.

46. Lu M, Kuang M, Liang L, et al. Surgical resection versus
percutaneous thermal ablation for early-stage hepatocellular carci-
noma: a randomized clinical trial. Zhonghua Yi Xue Za Zhi.
2006;86:801–5.

47. Chen M, Li J, Zheng Y, et al. A prospective randomized trial
comparing percutaneous local ablative therapy and partial hepate-
ctomy for small hepatocellular carcinoma. Ann Surg.
2006;243:321–8.

48. Bruix J, Castells A, Bosch J, et al. Surgical resection of
hepatocellular carcinoma in cirrhotic patients: prognostic value of
preoperative portal pressure. Gastroenterology. 1996;111:1018–22.

49. Llovet JM, Brú C, Bruix J. Prognosis of hepatocellular carcinoma:
the BCLC staging classification. Semin Liver Dis. 1999;19:329–38.

50. Villa E, Moles A, Ferretti I, et al. Natural history of inoperable
hepatocellular carcinoma: estrogen receptors’ status in the tumor is
the strongest prognostic factor for survival. Hepatology.
2000;32:233–8.

51. Livraghi T, Meloni F, Di Stasi M, et al. Sustained complete
response and complications rates after radiofrequency ablation of
very early hepatocellular carcinoma in cirrhosis: is resection still
the treatment of choice? Hepatology. 2008;47:82–9.

52. Seror O, N’Kontchou G, Htar MTT, et al. Ethanol versus
radiofrequency ablation for the treatment of small hepatocellular
carcinoma in patients with cirrhosis: a retrospective study of
efficacy and cost. Gastroenterol Clin Biol. 2006;30:1265–73.

53. Kurokochi K, Watanabe S, Masaki T, et al. Combination therapy of
percutaneous ethanol injection and radiofrequency ablation against
hepatocellular carcinomas difficult to treat. Int J Oncol.
2002;21:611–5.

54. Wong SN, Lin C, Lin C, et al. Combined percutaneous radiofre-
quency ablation and ethanol injection for hepatocellular carcinoma
in high-risk locations. AJR Am J Roentgenol. 2008;190:187–95.

55. Yu CY, Ou HY, Huang TL, et al. Hepatocellular carcinoma
downstaging in liver transplantation. Transpl Proc. 2012;44:412–4.

56. Livraghi T, Meloni F, Morabito A, Vettori C. Multimodal
image-guided tailored therapy of early and intermediate hepato-
cellular carcinoma: long-term survival in the experience of a
referral radiologic center. Liver Transpl. 2004;10:S98–102.

452 T. Livraghi et al.



30Thermal Ablative Treatments
for Hepatocellular Carcinoma

Antonio Facciorusso and Michele Barone

Contents

30.1 Introduction....................................................................... 453

30.2 Indication to Treatment ................................................... 453

30.3 Mechanism of Action and Equipment for Radiofre-
quency Ablation ................................................................ 453

30.4 Survival Outcomes After RFA for HCC ....................... 455

30.5 Prevention of Recurrence After RFA ............................ 455

30.6 Adverse Events of RFA ................................................... 456

30.7 RFA in Pretransplant Setting ......................................... 456

30.8 RFA Versus Liver Resection for HCC .......................... 456

30.9 RFA Versus Percutaneous Ethanol Injection
(PEI) in Early HCC Patients .......................................... 457

30.10 Combined Treatment ....................................................... 458

30.11 Other Thermal Ablation Techniques ............................. 459
30.11.1 Microwave Ablation ............................................ 459
30.11.2 High-Intensity Focused Ultrasound Ablation ..... 460
30.11.3 Laser Ablation ..................................................... 460
30.11.4 Cryoablation......................................................... 461

30.12 Summary ........................................................................... 461

References ...................................................................................... 462

30.1 Introduction

Hepatocellular carcinoma (HCC) represents the third most
common cause of cancer-related death and the leading cause
of mortality among patients with cirrhosis [1, 2]. Thanks to
recent improvements in surveillance protocols and diag-
nostic tools, early HCC diagnosis is currently feasible in 30–
60 % of cases [3].

Local ablation is considered the first-line treatment option
for patients at early stage, who are not amenable to surgery
or orthotopic liver transplantation (OLT). Among ablative
treatments, thermal ablative therapies have gained an
increasing role in the last decade due to their efficacy in
preventing local recurrence as well as in prolonging overall
survival (OS). Thermal ablative treatments are classified as
hyperthermic (heating of tissue at 60–100 °C), such as
radiofrequency ablation (RFA), microwave ablation
(MWA), high-intensity focused ultrasound (HIFU) or laser
therapy, or hypothermic (freezing of tissue at −20 °C up to
−60 °C), such as cryoablation.

These procedures are usually performed by means of a
percutaneous approach but in particular conditions (for
instance in cases of nodules in “at-risk” location) laparo-
scopic ablation may be recommended.

In this chapter, we aim to provide a comprehensive
overview on the main thermal therapies for HCC with the
up-to-date data on their efficacy and safety.

30.2 Indication to Treatment

Thermal ablative treatments represent the standard of care
for unresectable HCC in very early/early stage according to
Barcelona Clinic Liver Cancer (BCLC) system [2, 4]. The
term “unresectable” covers a broad spectrum of pathological
conditions, from single nodule in a deep location (therefore
not easy to treat by surgery) to multinodular disease in
patients with deteriorated liver function. Therefore, percu-
taneous therapies are a valuable option in nonoptimal
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candidates to surgery due to tumor size, number, location,
liver function, or comorbidities.

Another indication to thermal treatment is the pretrans-
plant setting, where RFA has been proved to be effective
both as downstaging and bridging therapy [5–7].

Main absolute and relative contraindications to thermal
treatments are described in Table 30.1. Absolute con-
traindications, shared with other locoregional treatments, are
the presence of extrahepatic liver disease, altered mental
status, active infection, tumor abutting a major hepatic duct,
impaired liver function (particularly in presence of ascites);
relative contraindications are more than four nodules or at
least one lesion >5 cm, severe cardiopulmonary disease, and
refractory coagulopathy [8].

30.3 Mechanism of Action
and Equipment
for Radiofrequency Ablation

RFA has been the most widely adopted thermal therapy
because of its well-proven effectiveness and relative safety,
with a 5-year survival rate of 40–70 % in early stage HCC
patients [9, 10].

However, the best outcomes have been reported in HCCs
classified as BCLC stage 0 (i.e., single nodule � 2 cm) for
which RFA has demonstrated a competitive efficacy even
with respect to surgery in terms of OS (see below) [11, 12].

The mechanism of action of RFA relies on the destruction
of tumoral tissue by the radiofrequency-generated heat. In
particular, the injury is due to frictional heat produced by the

ionic agitation of particles within tissue as a consequence of
the application of alternating current [13].

The electrical alternating current in the radiofrequency
range (200–1200 MHz) is delivered by a needle electrode
under imaging guidance (usually ultrasonography) and the
electrical circuit is completed through grounding pads
attached to the thighs or back of the patient. The needle is
partially insulated and presents an activated tip that is not
insulated. This tip varies in length with the most common
size being 3 cm long. Tips may be singular and straight or
consisting of an array of expandable tines that form an
umbrella fully encompassing the nodule when deployed.

Table 30.2 describes main advantages of each device,
although definitive evidence of a superiority of one device
over the others in determining coagulation necrosis is still
lacking [14]. Unlike the previously mentioned LeVeen
electrodes, cooled needle is internally perfused by chilled
water during ablation, cooling adjacent tissue, and prevent-
ing charring around the electrode tip [15, 16]. In fact, tissue
boiling and charring around the electrode acts as electrical
insulator and limits the ablation area through increased
impedance. To overcome this inherent limitation, several
devices, described in Table 30.2, have been developed, each
with its own advantages and disadvantages.

An important aim of the treatment should be to ensure
thermal destruction not only of the tumoral nodule but also
of a surrounding margin about 1 cm long in order to ablate
eventual microsatellites, thus preventing local recurrence.

In order to reach this target, multiple overlapping abla-
tions or simultaneous application of multiple electrodes can
further enlarge the ablation zone, thus allowing ablation of
nodules up to 4–5 cm.

Another aspect to be considered is the “heat sink effect,”
namely the dissipation of the thermal output by blood
flowing through adjacent vessels decreasing the efficacy of
the procedure [17]. This is the reason why nodules close to
major vessel are considered a suboptimal target and consti-
tute a relative contraindication for RFA.

The procedure is usually performed under sedation when
the percutaneous approach is preferred. In cases of laparo-
scopic RFA, to be considered in cases of nodules close to the
liver capsule or other organs, general anesthesia is needed.

At our Center, we usually perform RFA with a 150 W
generator connected to an expandable 15–14-gauge

Table 30.1 Contraindications for thermal ablative treatments

Absolute contraindications

1. Extrahepatic disease
2. Altered mental status
3. Active infection
4. Tumor abutting a major hepatic duct
5. Liver decompensation (particularly in presence of ascites)

Relative contraindications

1. Lesions >5 cm
2. More than four lesions
3. Severe pulmonary or cardiac disease
4. Refractory coagulopathy

Table 30.2 Equipments used in radiofrequency ablation

Company System name Electrode Mechanism Advantages

AngioDynamics StarBust XL® Deployable tines Expands once inside the tumor Larger area of necrosis

RadioTherapeutics RF Ablation System® Deployable tines Expands once inside the tumor Larger area of necrosis

Radionics Cool-tip RF System® Straight needle No expansion Minimal tissue charring

Berchtold Elektrotom 106 HFTT® Straight needle No expansion Minimal tissue charring
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electrode with a 2.0-cm-long exposed tip (expandable by
means of seven hooks). After administration of analgesia
(50–60 mg of propofol and 0.05–0.1 mg of fentanyl) as well
as local anesthesia (5–15 mL of 1 % lidocaine) by an
anesthesiologist, we insert RFA needle into the tumor
placing the electrode into the center of the lesion and
maintaining the temperature of the needle tip at 80–100 °C
for 10–12 min. After ablation, the needle is retracted main-
taining its tip hot in order to prevent, by thermal coagulation,
seeding, or hemorrhage along the electrode track. For
medium and large nodules, different applicator positions are
usually adopted to create overlapping coagulation zones. No
antibiotic prophylaxis or anti-inflammatory drugs are
administered prior to therapy [18].

For follow-up, it is our practice to obtain CT scan at 2 and
6 months after the procedure in addition to alpha-fetoprotein
(AFP) measurement in case of elevated pretreatment values
of this marker and liver function tests assessment.

30.4 Survival Outcomes After RFA
for HCC

A large number of studies have confirmed the efficacy of
RFA in early HCC patients suggesting this procedure as
viable therapeutic option in unresectable early stage. Con-
sidering the state of art of the literature, RFA provided
5-year survival rates of 40–70 % and beyond in HCC series
[9, 10].

A recent Chinese study reported overall survival rates of
96.6, 60.2, and 27.3 % at 1, 5, and 10 years [19], similar to
those reported by Kim et al. [20] which were 95.5, 59.7, and
32.3 %, respectively. These results are concordant with
other recent Western studies conducted in patients within
Milan criteria (87.0–99.0 % at 1 year, 60.0–87.4 % at 3
years, and 42.3–74.8 % at 5 years) [21, 22].

Several studies pointed out different predictors of sur-
vival, such as Child-Pugh (CP) score, initial response, serum
ferritin, number or size of nodules, and AFP levels [22–24].

Our group has recently analyzed predictors of
post-recurrence survival (PRS) after RFA, namely the sur-
vival time elapsed after tumor recurrence [21]. We found, in
line with other studies, baseline CP score, AFP levels, and
Performance Status (PS) as predictors of OS in multivariate
analysis. However, analysis of PRS showed that in addition
to CP score and PS, also tumor burden at the time of
recurrence and recurrence pattern had a significant influence
on PRS [21]. On the other hand, AFP level, a major prog-
nostic variable for OS at baseline, became not significant
when assessed at recurrence, demonstrating that factors
affecting OS evaluated at baseline are different from those at
tumor relapse [21].

It is noteworthy that the occurrence of local recurrence
(LR) had no significant influence on survival in our study
[21] as well as in other reports [20, 24, 25], probably due to
the frequent multifocality of distant recurrences that makes
more difficult the therapeutic approach, while local recur-
rences, even when multifocal, are confined in one liver
segment (namely the same as that previously treated) and
may be more easily treated with RFA or a single selective
transarterial chemoembolization (TACE) session.

Unlike OS, reported rates of LR after RFA are not uni-
vocal ranging from 3.2 to 27 % at 5 years [19–24], maybe
because of different etiologies of HCC in the published
series, different strategies for coping with an insufficient
ablative margin, use of combined treatment with TACE and,
above all, different definition of radiologic tumor recurrence
at imaging. As expected, tumor features such as nodules
number, size, histopathological grading, and AFP have been
found to be predictors of recurrence [19–24]. Moreover, an
insufficient ablation margin after the treatment appears to be
an important prognostic factor for LR [26, 27].

Intrahepatic distant recurrences occur very frequently,
from 68 to 74 % at 5 years [19–22, 24], and are usually
associated to poorer prognosis. This type of recurrence is
predominantly related to underlying hepatic disease and is
often observed after 2 years, which is the time point con-
sidered able to differentiate between real recurrences from de
novo tumors occurred in the pro-tumorigenic milieu of liver
cirrhosis [28].

Therefore, because of their high frequency and aggressive
behavior, distal recurrences are a major determinant of
patient survival.

30.5 Prevention of Recurrence After RFA

In the last years there has been an increasing interest in
adjuvant drugs able to decrease the high rates of tumor
recurrence observed after RFA.

Despite the promising results of some pilot reports [29,
30] and the theoretical advantages of sorafenib (Nexavar®,
Bayer, Leverkusen, Germany) in adjuvant setting, a broad
multicenter randomized controlled trial [Sorafenib as Adju-
vant Treatment in the Prevention Of Recurrence of Hepa-
tocellular Carcinoma (STORM)], enrolling 1114 HCC
patients after resection or RFA, failed to find a significant
improvement in recurrence-free survival [Hazard Ratio
(HR): 0.940, 95 % Confidence Interval (CI): 0.78–1.13,
p = 0.26] and OS (HR 0.99, 95 %CI 0.76–1.30, p = 0.48)
[31]. This disappointing result was partly related to the high
discontinuation rate of therapy (24 % vs. 7 % of placebo)
and consent withdrawal (17 % vs. 6 %) in the sorafenib arm,
mainly because of severe adverse events [31].
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Likewise, other drugs, such as interferon, provided dis-
cordant results in the adjuvant setting due to their high cost
and narrow therapeutic window [32, 33].

Therefore, most of the recent research in this field has
focused on other drugs. On the basis of the well-described
pro-tumorigenic and profibrogenic properties of angiotensin
II, due to the induction of vascular endothelial growth factor
(VEGF) and transforming growth factor-beta 1 (TGF-b1)
release [34, 35], broad clinical reports have found signifi-
cantly decreased HCC recurrence rates after RFA when
angiotensin converting enzyme inhibitor (ACE I) were used
in combination with other agents such as branched-chain
amino acids or vitamin K [36–38]. However, ACE I was
effective in monotherapy and, above all, no significant dif-
ference in overall survival was observed in comparison to
the control arm [36–38].

Our group has recently published a retrospective report
conducted in 153 HCC patients treated with RFA, finding a
significant benefit both in terms of recurrence and OS in
hypertensive subjects in treatment with angiotensin II type 1
receptor blockers (sartans) as compared to those under
ACE I therapy and to non-hypertensive subjects [39]. The
apparent superiority of sartans over ACE I may be due to the
selective inhibition of angiotensin II receptor 1, responsible
of the profibrogenic and proangiogenic activity of angio-
tensin, while proapoptotic and antitumorigenic activity of
receptor 2 is preserved and even enhanced in patients
administered sartans unlike ACE I which prevents the
binding of angiotensin II to both receptors [40]. However,
these preliminary results still need further confirmation.

In conclusion, in spite of the great amount of published
reports and in absence of broad RCTs, clear evidence in
favor of an adjuvant treatment after RFA is still lacking.

30.6 Adverse Events of RFA

In a recent systematic review of 9531 patients treated with
RFA, treatment-related severe adverse events were regis-
tered in 4.1 % of cases with a mortality rate of 0.15 % [41].

Adverse events include gastrointestinal tract injury
with/without perforation (0.06–0.3 %), diaphragm injury
(0.03 %), pleural effusion (0.2–2.3 %), bile duct stricture
(0.06–0.5 %), biloma (0.06–0.96 %), gallbladder injury
(0.0–0.1 %), and hepatic infarction (0.03–0.06 %) caused by
vascular injury or thrombosis. Other complications, related
to direct mechanical injury, are tumor seeding (0.27 %),
tumor rupture (0.3 %), hemoperitoneum (0.3–1.6 %), and
hemo/pneumothorax (0.15–0.8 %). Events not related to
mechanical or thermal injury to the liver are hepatic abscess
(0.1 %), grounding pad burn (0.6 %), and vasovagal reflex
(0.1 %) [42]. However, considering the low incidence of all
these complications, RFA can be considered a safe

procedure in high-volume centers when proper indications to
treatment are followed.

30.7 RFA in Pretransplant Setting

In the recent years, RFA has gained increasing interest either
as bridging or as downstaging therapy prior to transplanta-
tion in HCC patients. A number of studies have reported
complete tumor necrosis rates at pathological evaluation of
the explanted liver up to 47–75 % [5–7, 43, 44].

In particular, complete necrosis rate ranges between 50
and 78 % in nodules within 3 cm and between 13 and 43 %
in larger neoplasms [5–7, 43, 44] versus 27–57 % of TACE
in Milan-in patients [45, 46].

Safety concerns previously raised by some authors due to
the theoretical risk of tumoral seeding, reported to occur in
about 3 % of cases [47], have been recently overcome [48].
Therefore, although TACE remains the most used treatment
before OLT, RFA has to be preferred in cases of single
nodules under 3 cm as provides higher complete necrosis
rates and lower risk of recurrence after transplantation [49].

30.8 RFA Versus Liver Resection for HCC

Surgical resection is the first-line option in very early/early
patients who do not fulfill transplant criteria [2–4]. However,
no more than 10–35 % of patients are actually suitable to
surgery due to tumoral burden, inadequate hepatic reserve,
or overall poor clinical status [2, 4]. These patients may be
offered RFA as viable option because of its proven efficacy.

The aforementioned excellent clinical outcomes of RFA
have recently opened debates on whether RFA can replace
resection as a first-line therapy, particularly in very early
patients (namely, those with a single nodule less than 2 cm).
To answer this question, many investigators have performed
cohort studies or randomized controlled trials (RCTs) that
directly compared the two methods.

Table 30.3 reports the main characteristics of the three
RCTs comparing the two treatments published so far. In the
RCT by Chen et al., enrolling 71 patients submitted to RFA
and 90 submitted to resection with single HCC <5 cm, no
difference was observed between the two groups either
according to 3-year overall survival (71.4 % vs. 73.4 %) and
to disease-free survival (DFS) (64.1 and 69.0 %) [50].
Authors stated that these findings were confirmed even when
stratifying by tumor size but did not provide survival out-
comes nor p values [50].

Huang et al. conducted a RCT in 230 Milan-in HCC
patients reporting significantly lower 5-year overall survival
rate (54.8 % vs. 75.7 %, p = 0.001) and recurrence-free
survival rate (28.7 % vs. 51.3 %, p = 0.017) after RFA with
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respect to surgery [51]. The benefit of resection was main-
tained when patients were stratified by tumor size and
number (Table 30.3).

On the other hand, the trial by Feng et al., enrolling 168
patients with up to 2 nodules less than 4 cm, showed a
3-year overall survival rate of 67.2 % after ablation and
74.8 % after surgery (p = 0.342), whereas the corresponding
3-year recurrence-free survival rates were 49.6 and 61.1 %,
respectively (p = 0.122) [52]. No stratification for tumor
stage was provided in this study.

Thus, the available RCTs report discordant results with
the sole study by Huang et al. demonstrating a superiority of
hepatic resection over RFA [51]. However, the different
proportions of nodules beyond the very early stage are likely
to be responsible of these conflicting results, since it is
known that ablation beyond this stage is less able to achieve
complete tumor necrosis.

None of the aforementioned RCTs restricted their anal-
ysis to single nodules � 2 cm, while there are five obser-
vational studies on this specific setting [53–57].
Unfortunately, most of these retrospective studies suffer
from selection bias as RFA patients tended to be older and to
present more deteriorated liver function than surgical ones,
while larger nodules were more likely to be treated with
resection. Thus, results in terms of both patient survival and
recurrence rate can be biased by covariate distribution. Two
of these studies, which tried to obviate to such a bias by
means of propensity score one-to-one match, reported better
DFS in surgical patients (p = 0.031 and p < 0.001) but
discordant results with regard to overall survival (p = 0.296
and p = 0.034, respectively) [54, 57]. However, several
concerns have been raised on the rigorousness of the sta-
tistical procedure adopted, hence such findings require fur-
ther confirmation [58]. The low level of evidence impairs the

findings of several meta-analyses published in this field,
which mostly support the superiority of hepatic resection
over RFA in early stage without significant differences in
single nodules less than 2 cm [59, 60].

An interesting study conducted by the Bologna group,
based on a Markov model and a Monte Carlo probabilistic
sensitivity analysis, demonstrated that in a 10-year per-
spective RFA provided similar life expectancy and
quality-adjusted life expectancy at a lower cost than resec-
tion in very early HCC patients, hence it was the most
cost-effective therapeutic strategy for this stage [61]. In the
presence of two or three nodules � 3 cm, life expectancy
and quality-adjusted life expectancy were very similar
between the two treatments, but cost-effectiveness was again
in favor of RFA [61]. Therefore, the authors concluded that
RFA is more cost-effective than resection for very early
HCC and in the presence of two or three nodules � 3 cm,
while surgical resection remains the best strategy for single
larger early stage HCCs [61].

In conclusion, as supported by a decision-making anal-
ysis performed by the same group, the superiority or
equivalence of a treatment over the other is strictly depen-
dent on the nonlinear relationship among tumor number,
size, and liver function, with RFA to be preferred in cases of
smaller tumors and impaired liver function [62].

30.9 RFA Versus Percutaneous Ethanol
Injection (PEI) in Early HCC
Patients

PEI is a well-established technique for the treatment of small
HCCs and induces coagulative necrosis as a result of cellular
dehydration and protein denaturation. However, ethanol

Table 30.3 Randomized controlled trials comparing radiofrequency ablation and surgery in hepatocellular carcinoma patients

Study Liver function Tumor features Treatment 3-year SR (%) 5-year SR (%) 3-year DFS (%) 5-year DFS (%)

Chen [50] CP A
ICG-R15 < 30 %
PLT > 40,000/mm3

Single < 5 cm HR 90
RFA 71

73.4
71.4

NA
NA

69
64.1

NA
NA

Huang
[51]

CP A/B
ICG-R15 < 20 %
PLT > 50,000/mm3

Within MC HR 115
RFA 115

92.2
69.6

75.7
54.8

60.9
46.1

51.3
28.7

Single � 3 cm HR 45
RFA 57

95.6
77.2

82.2
61.4

NA
NA

NA
NA

Single 3–5 cm HR 44
RFA 27

95.5
66.7

72.3
51.5

NA
NA

NA
NA

Multifocal <3 cm HR 26
RFA 31

80.8
58.1

69.2
45.2

NA
NA

NA
NA

Feng [52] CP A/B
ICG-R15 < 30 %
PLT > 50,000 mm3

Up to 2 nodules <4 cm HR 84
RFA 84

74.8
67.2

NA
NA

61.1
49.6

NA
NA

Abbreviations: SR survival rate; DFS disease-free survival; CP child-pugh; ICG-R15 indocyanin green retention at 15 min; PLT platelets; HR
hepatic resection; RFA radiofrequency ablation; NA not available; MC milan criteria
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diffusion is likely to be impaired by intratumoral fibrotic
septa in cases of nodules larger than 2 cm.

In fact, the efficacy of such a technique in early stage
(namely, multiple nodules or single nodule larger than 2 cm)
is considerably inferior as compared to RFA with a complete
necrosis rate of 70 % in nodules of 2–3 cm and 50 % in
those between 3 and 5 cm [63, 64]. On the other hand, RFA
showed a significantly higher necrosis rate, up to 71 % in
noninfiltrating medium-size (i.e., between 3 and 5 cm)
nodules [65]. In our recently published experience, overall
complete necrosis rate after RFA was 84.4 % in a series
whose median tumor size was 3 cm [21, 23].

However, even if it is widely recognized the superiority
of RFA over PEI in medium-size and large nodules, a clear
advantage in term of survival in small HCCs (less than
3 cm) is still unclear.

In fact, a recent meta-analysis including 8 RCTs, found
better survival outcomes (HR: 0.67, 95 %CI: 0.51–0.87,
p < 0.001) and a lower 3-year LR rate [Risk ratio (RR) 0.41,
0.30–0.57, p < 0.01] after RFA as compared to PEI [66].
However, but sensitivity analysis confirmed the superiority
of RFA only in Asian studies [67–71] while the three
included Italian studies [72–74] found only a nonsignificant
trend in favor of RFA as for survival (HR 0.82, 95 %CI
0.56–1.20, p = 0.30) [66]. Table 30.4 summarizes the main
findings of the aforementioned trials. Quite interestingly,
RFA provided similar if not better results as compared to
PEI requiring a significant lower number of sessions
(Table 30.4). This aspect has to be taken into account since,
although a single PEI treatment has significantly lower costs

than RFA, the higher number of PEI sessions reduces this
benefit and increases the risk of tumoral seeding.

The above-described results are in agreement with
another systematic review including four RCTs comparing
the two techniques in small HCCs under 3 cm which,
however, found RFA associated to higher major complica-
tion rates and to be more costly than PEI [75].

In conclusion, although the fact that RFA leads to better
survival rates than PEI in small HCCs is still matter of
debate, the lower local recurrence rate stands for a wider
application of RFA in hepato-oncology.

30.10 Combined Treatment

There is increasing evidence that combining RFA to TACE
may increase the therapeutic benefit in larger HCCs. In fact,
the two techniques may exert a synergistic effect on inducing
nodule necrosis: occlusion of the tumor arterial supply by
TACE would increase the area of coagulation necrosis
obtained by RFA minimizing heat loss whereas the
heating-related reactive hyperemia induced by RFA would
concentrate the chemotherapeutic agent released during
TACE in the peripheral residual viable neoplastic tissue and
would reduce cell resistance to the drug [76].

A recent meta-analysis of eight RCTs [77–84] including
598 patients indicated that RFA plus TACE determines a
significantly higher 3-year overall survival rate [Odds Ratio
(OR): 2.65, 95 %CI: 1.81–3.86, p < 0.001] and 3-year RFS
rate (OR: 3.00, 95 %CI: 1.75–5.13, p < 0.001) than RFA

Table 30.4 Randomized controlled trials comparing radiofrequency ablation and percutaneous ethanol injection in hepatocellular carcinoma
patients

Study Region Patients
n

Nodules
n(1/> 1)

Tumor size, cm Number of sessions Complete
response (%)

3-year
survival (%)

3-year
recurrence (%)

Lin [67] Taiwan RFA (52)
PEI (52)

38/14
40/12

2.9 ± 0.8
2.8 ± 0.8

1.6 ± 0.4
6.5 ± 1.6

96.0
88.0

74
50

18
45

Lin [68] Taiwan RFA (62)
PEI (62)

49/13
49/13

2.5 ± 1.0
2.3 ± 0.8

1.3 ± 0.3
4.9 ± 1.3

96.1
88.1

74
51

14
34

Shiina [69] Japan RFA (118)
PEI (114)

72/46
60/54

NA
NA

2.1 ± 1.3
6.4 ± 2.6

100.0
100.0

81
66

1.7
11

Wang [70] China RFA (49)
PEI (49)

NA
NA

2.4 ± 1.2
2.3 ± 1.4

NA
NA

93.8
77.5

NA
NA

NA
NA

Azab [71] Egypt RFA (30)
PEI (30)

NA
NA

NA
NA

1.45
7.68

85.0
75.0

NA
NA

NA
NA

Giorgio [72] Italy RFA (128)
PEI (143)

128/0
143/0

2.3 ± 0.4
2.2 ± 0.5

5
8

100.0
100.0

83
78

7.8
9.4

Lencioni [73] Italy RFA (52)
PEI (50)

40/12
31/19

2.8 ± 0.6
2.8 ± 0.8

1.1 ± 0.5
5.4 ± 1.6

91.0
82.0

NA
NA

21
59

Brunello [74] Italy RFA (70)
PEI (69)

54/16
54/15

2.4 ± 0.5
2.2 ± 0.5

NA
NA

95.7
65.6

59
56

NA
NA

Abbreviations: RFA radiofrequency ablation; PEI percutaneous ethanol injection; NA not available
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alone, with no difference in major complications (OR: 1.20,
95 %CI: 0.31–4.62, P = 0.79) [85]. Subgroups analysis
revealed that most of this benefit was obtained in patients
with intermediate- and large-size HCCs, which are likely to
be the optimal setting for the combined treatment [85].
These results should be considered with caution as all the
included studies had been conducted in Asia with conven-
tional TACE (see Table 30.5), hence the applicability of
such findings in the West is still unclear, although a recent
small Italian retrospective report confirmed the superiority of
RFA combined to drug-eluting beads TACE over RFA alone
in single HCCs beyond 3 cm [86].

30.11 Other Thermal Ablation Techniques

30.11.1 Microwave Ablation

Microwave ablation (MWA) aims to induce tumor necrosis
using high frequency (>900 MHz, usually 2450 MHz)
electromagnetic energy which determines continuous rota-
tion of dipole molecules in the microwave’s oscillating
electric field. This vigorous movement of dipoles (mainly
water molecules) generates friction and heat, thus inducing
tissue death via coagulation necrosis [87].

In comparison to RFA, MWA has several theoretical
advantages: it induces a broader zone of active heating,
leading to higher temperatures within the targeted area in a
shorter treatment time as it is not impaired by tissue desic-
cation and charring [88]; it is less affected by heat sink effect,
because the cooling effect of blood flow is more pronounced

within the zone of conductive rather than active heating [89];
multiple antennae can be simultaneously activated without
the electrical interference phenomena observed in RFA, thus
allowing more rapid treatment of large or multifocal tumors
[89]. On these premises, MWA mostly shares the applica-
tions of RFA, with the above-cited advantages in larger
nodules and/or close to blood vessel.

Three cohort studies demonstrated a complete ablation
rate of 89–94 % and a 5-year survival rate of 51–57 % in
predominantly Child-Pugh class B cirrhosis [90–92].

The safety concerns raised on the risks of the procedure,
due to the broader and less predictable necrosis areas
induced by MWA, have been recently overcome by a large
multicenter Italian study conducted in a series of 736
patients, of which 522 with HCC, where MWA determined a
major complication rate of 2.9 % with a periprocedural
mortality rate of <0.01 % [93].

There are actually seven studies (of which one RCT)
directly comparing MWA and RFA in HCC patients (94–
100, Table 30.6). Unfortunately, the sole RCT published did
not report long-term survival data but only complete necrosis
rates, which were similar in the two treatment groups (89 %
for MWA vs. 96 % for RFA) [94]. Retrospective studies
reported heterogeneous results, particularly with regard to
local recurrence probably because of different follow-up
time length or radiologic criteria adopted (Table 30.6).

The sole meta-analysis published so far in this field
reported no difference in local recurrence rates between RFA
and MWA (OR: 1.01, 95 %CI 0.67–1.50, p = 0.9), as well
as in complete ablation, 3-year overall survival and major
adverse events (p > 0.05 for all) [101]. In subgroup analysis,

Table 30.5 Randomized controlled trials comparing transarterial chemoembolization combined to radiofrequency ablation versus radiofrequency
ablation alone in hepatocellular carcinoma patients

Study Region Patients
n

Tumor size, cm CP A/B/C 3-year survival (%) 3-year recurrence (%)

Peng [77] China TACE + RFA (69)
RFA (70)

� 5.01
–

60/9/0
59/11/0

69
47

45
18

Cheng [78] China TACE + RFA (96)
RFA (100)

� 7.5
–

NA
NA

55
32

NA
NA

Yang [79] China TACE + RFA (24)
RFA (12)

6.6 ± 0.6
5.2 ± 0.4

NA
NA

NA
NA

NA
NA

Shibata [80] Japan TACE + RFA (16)
RFA (13)

1.7 ± 0.6
1.6 ± 0.5

32/14/0
33/10/0

84.8
84.5

48.8
29.7

Morimoto [81] Japan TACE + RFA (19)
RFA (18)

3.6 ± 0.7
3.7 ± 0.6

12/7/0
16/2/0

93
80

NA
28

Kang [82] China TACE + RFA (19)
RFA (18)

6.7 ± 1.1
6.2 ± 1.2

12/7/0
12/6/0

36.8
16.7

NA
NA

Shen [83] China TACE + RFA (18)
RFA (16)

5.6 (2.2–15.8)
5 (2.3–12.3)

4/14/0
6/10/0

73.3
20.4

50
18.7

Zhang [84] China TACE + RFA (15)
RFA (15)

4.6 (2.3–7.1)
4.1 (2.4–6)

NA
NA

NA
NA

NA
NA

Abbreviations: CP child-pugh; TACE transarterial chemoembolization; RFA radiofrequency ablation; NA not available
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MWA outperformed RFA in terms of LR for treatment of
larger tumors (OR: 1.88, 95 %CI 1.10–3.23, p = 0.02)
[101]. However, these findings should be interpreted with
caution as this systematic review included duplicate studies
conducted by the same group while did not consider two
more recent non-Asian studies [99, 100] which were not
available at the time of the publication of this meta-analysis
[101]. Moreover, such results may not be applicable to
actual series as the included studies used a previous gener-
ation MWA system while a new-generation cooled-shaft
system recently became available.

Therefore, whether MWA ability to generate a larger
ablation zone will translate into a survival gain remains
unknown.

30.11.2 High-Intensity Focused Ultrasound
Ablation

High-intensity focused ultrasound (HIFU) ablation aims to
elevate tissue temperature by focusing high energy ultra-
sound (US) waves into one small spot [42]. The main
advantage of HIFU ablation is the safety and the less inva-
siveness with, on the other hand, the limitation of a longer
procedure time and acoustic shadowing by the rib cage,
which may also cause thermal injury of the overlying soft
tissue as a result of high US absorption by the bony cortex
[42]. This drawback has been partially overcome by later
generation systems using a larger transducer to spread the
US beams out, thus reducing energy at the surface level, or a
multielement phased-array transducer able to selectively
activate only elements that correspond to the intercostal
spaces [102]. There are actually few studies on HIFU,
mainly conducted in advanced or recurrent cases for

palliative purposes. Chan et al. retrospectively compared
HIFU ablation and RFA for recurrent HCCs and reported no
significant 3-year survival difference (69.8 % vs. 64.2 %,
p = 0.19) [103]. The same group compared the outcomes of
HIFU ablation to those of TACE as bridging therapy before
OLT and found comparable percentages of tumor necrosis in
excised livers (p = 0.35) [104]. The authors concluded that
HIFU ablation was safe even for HCC patients with
Child-Pugh C disease and its adoption increased the per-
centage of patients receiving bridging therapy from 39.2 to
80.4 % [104].

In our opinion, because of the scarce data currently
available and in attendance of further reliable results in the
clinical setting, HIFU represents a promising option to be
performed in highly experienced centers and in selected
cases.

30.11.3 Laser Ablation

Among the available ablative therapies, laser ablation
(LA) is one of the least investigated.

Laser devices transform electrical energy into light
energy, which interacts with tissue to produce heat and cause
cell death [105]. Because laser light is coherent and
monochromatic, it can be highly collimated and focused and
large amounts of energy can be transmitted over long dis-
tances without significant losses. Light is delivered via
multiple flexible quartz fibers which have flat or cylindrical
diffusing tips. The use of water-cooled laser application
sheaths enables a higher laser power output (up to 50 W
compared with 5 W of previous devices) while preventing
carbonization, thus allowing ablative zones of up to 80 mm
diameter [106].

Table 30.6 Studies comparing radiofrequency ablation and microwave ablation in hepatocellular carcinoma patients

Study Arm
(N)

Study design Region CP
(A/B/C)

Tumor size (cm) Number nodules 3-year
survival (%)

Local tumor
recurrence (%)

Shibata [94] RFA (36)
MWA [36]

RCT Japan 21/15/0
19/17/0

1.6 (0.7–2)
1.7 (0.8–2)

1.08
1.14

NA
NA

8.3
17.4

Lu [95] RFA (53)
MWA (49)

R China 49/4/0
39/10/0

2.6 (1–6.1)
2.5 (0.9–7.2)

1.35
2

37.6
50.5

20.9
11.8

Ohmoto [96] RFA (34)
MWA (49)

R Japan 20/11/3
31/14/4

1.6 (0.7–2)
1.7 (0.8–2)

1.08
1.14

49
70

9
19

Ding [97] RFA (85)
MWA (113)

R China 49/36/0
75/38/0

2.38 (1–4.8)
2.55 (0.8–5)

1.15
1.15

77.6
82.7

5.2
10.9

Zhang [98] RFA (78)
MWA (77)

R China 78/0/0
77/0/0

NA
NA

1.24
1.36

64.1
51.7

11.8
10.5

Abdelaziz [99] RFA (45)
MWA (66)

R Egypt 24/21/0
25/41/0

2.95 ± 1.03+

2.9 ± 0.97
1
1

NA
NA

13.5
3.9

Vogl [100] RFA (25)
MWA (28)

R Germany NA
NA

NA
NA

1.28
1.28

72
79

9.4
8.3

Abbreviations: CP child-pugh; RFA radiofrequency ablation; MWA microwave ablation; RCT randomized controlled trial; R retrospective
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Several retrospective cohort studies have shown that LA
is a safe and feasible procedure for the treatment of HCC
with a complete response rate ranging from 82 to 97 %
[106–109].

In an Italian multicenter restrospective study, 5-year
cumulative survival was 41 %, median survival times were
65 and 68 months in patients with tumor size � 3 and
� 2 cm, respectively, while median time to recurrence was
24 months [110].

In a recent RCT including 140 Milan-in patients, complete
response was observed in 97.4 % of patients treated with
RFA and 95.7 % with LA and mean time to local progression
and overall survival were comparable between the two study
groups (p = 0.129 and 0.693, respectively) [111]. The
authors concluded that LA resulted non-inferior to RFA and
therefore it should be considered as a valuable alternative for
thermal ablation of small HCC in cirrhotic patients [111].

However, in spite of the apparently excellent results in
terms of safety and efficacy, the low experience available
worldwide currently restricts LA application to a limited
number of high-volume centers.

30.11.4 Cryoablation

Cryoablation induces cytotoxicity based on cyclic applica-
tions of extremely low temperatures (−20 to −40 °C) within
the tumor [42]. Multiple cryoprobes of 2–3 mm in diameter
are inserted into the target lesion via a dilation catheter to
ensure the rapid freezing of the nodule. Cryotherapy is
delivered by means of multiple cycles and between two
consecutive cycles the cryoprobes are rewarmed by a heating
system.

Despite being widely used in various other cancers, the
application of percutaneous cryoablation in HCC was spar-
sely reported. Compared to RFA, cryoablation endows
several unique advantages including larger ablative zones,
more clearly discernible treatment margin, less pain, and
good visualization by imaging [112, 113]. However, there
are also disadvantages: [1] the ablation zone of each indi-
vidual probe is generally smaller than other techniques, thus
requiring multiple cryoprobes applications; [2] the zone of
complete lethality lies a variable distance (4–10 mm or
more) inside the ice ball, therefore a larger amount of sur-
rounding hepatic parenchyma must be frozen to ensure a
sufficient safety margin; [3] there is concern over the risk of
complications such as massive hemorrhage due to ice ball
fracture, cold injury to adjacent organs, and cryoshock
syndrome [114, 115].

Nevertheless, with the recent improvements in technol-
ogy and the increasing experience acquired worldwide,
cryoablation represents a promising therapeutic tool in the
field of HCC ablation.

An Asian series of 866 patients within Milan criteria who
underwent percutaneous cryoablation was recently analyzed:
complete response was achieved in 96.1 % of patients with a
major complication rate of 2.8 % and no treatment-related
mortality [116]. Five-year local tumor recurrence rate was
24.2 % and 5-year survival rate was 59.5 % [116].

A recent meta-analysis including 4 retrospective studies
comparing the effect of cryoablation and RFA on hepatic
neoplastic lesions concluded that RFA was significantly
superior in terms of safety and local recurrence [117].
However, these studies referred not only to HCC but also to
other liver malignancies, used several different equipments
as laparoscopic or even surgical cryoablation [117] and were
mostly conducted several years ago when experience with
cryoablation was still low. In a multicenter Asian RCT
enrolling 360 patients with one or two HCC lesions � 4 cm,
cryoablation proved superior to RFA according to 3-year
local tumor progression (7 % vs. 11 %, p = 0.043) while
5-year overall survival was similar between the two groups
(40 % vs. 38 %, P = 0.747) [118]. Major complications
occurred in seven patients (3.9 %) following cryoablation
and in six patients (3.3 %) following RFA (p = 0.776)
[118]. These results have been confirmed in an interesting
retrospective study comparing cryoablation and RFA com-
bined to microwave coagulation therapy, where hypothermal
therapy proved superior to combined regimen as for 2-year
local recurrence-free survival (HR 0.3, 95 %CI 0.1–0.9;
p = 0.02) with no difference in safety outcomes [119].

Although further RCTs are needed in order to confirm
these promising results, appropriate use of cryoablation
could represent a valuable therapeutic option in early stage
HCC patients.

30.12 Summary

Ablative treatments, particularly RFA, currently represent
the first-line option for early stage unresectable HCC
patients. Main indications to ablative treatments are BCLC
0/A patients not suitable to surgical therapies, namely liver
resection and OLT, and bridging/downstaging setting before
transplantation. Contraindication based on size, number, and
location of nodules are quite variable in literature and strictly
dependent on local expertise.

Among ablative therapies, RFA has gained a pivotal role
due to its efficacy and safety. In fact, considering the state of
art of the literature, RFA provided 5-year survival rates of
40–70 % and beyond in HCC series and, although survival
rates are similar to PEI, the lower local recurrence rate stands
for a wider application of RFA in hepato-oncology.

Moreover, RFA seems to be even more cost-effective
than resection for very early HCC (single nodule � 2 cm)
and in the presence of two or three nodules � 3 cm.
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Prognostic factors for patient survival after RFA are
rather variably reported in the literature, including CP score,
initial response, serum ferritin, number or size of nodules,
and AFP levels. Local recurrences (those occurring in the
same segment as the primary tumor), unlike distant ones, did
not prove to have a significant influence on survival, prob-
ably because they may be more easily treated.

Unlike overall survival, reported rates of local recurrence
after RFA are not univocal ranging from 3.2 to 27 % at
5 years, maybe because of different baseline characteristics
in the published series. On the other hand, intrahepatic dis-
tant recurrences occur very frequently, from 68 to 74 % at
5 years, and are usually associated to poorer prognosis. This
type of recurrence is predominantly related to underlying
hepatic disease and is often observed after 2 years, which is
the time point considered able to differentiate between real
recurrences from de novo tumors occurred in the
pro-tumorigenic milieu of liver cirrhosis.

In the last years, a number of drugs have been tested as
adjuvant treatment, such as sorafenib, ACE I and interferon,
in order to decrease the high recurrence rate after RFA but
no agent proved effective in this specific setting. Some
promising results have been recently presented with regard
to sartans but further confirmation is needed.

MWA aims to induce tumor necrosis using high fre-
quency electromagnetic energy which generates tissue death
via coagulation necrosis. In comparison to RFA, MWA has
several theoretical advantages such as a broader zone of
active heating, higher temperatures within the targeted area
in a shorter treatment time, and it is not impaired by heat
sink effect. The safety concerns raised on the risks of this
procedure, due to the broader and less predictable necrosis
areas, have been recently overcome. However, whether
MWA ability to generate a larger ablation zone will translate
into a survival gain remains unknown.

Other treatments, such as HIFU, LA, and cryoablation,
are less investigated but showed promising results in early
HCC patients and could be a valuable therapeutic option in
the next future.
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31.1 Introduction

Hepatocellular carcinoma (HCC) is one of the most common
malignancies worldwide. Surgery is the mainstay of HCC
treatment. Liver resection and liver transplantation are con-
sidered the only curative treatment modalities, and achieve
the best outcomes in properly-selected candidates, with
5-year survival of 60–80 % [1, 2]. Liver resection is accepted
as the first line treatment in non-cirrhotic patients with HCC,
as well as in cirrhotic patients with well-preserved liver
function, and no signs of clinically significant portal hyper-
tension. Unfortunately, the majority of patients presenting
with HCC cannot undergo curative resection due to either
impaired liver function, presence of portal hypertension, or
tumor stage, and only 10–20 % are considered surgical
candidates [3, 4]. In recent years perioperative mortality has
decreased to 3–5 % in the majority of large-volume centers.
This is attributed to refined surgical technique, improved
patient selection, and optimization of postoperative man-
agement. The oncological principle of anatomic resection
aimed to completely remove the involved segments with
wide surgical margins, in cases that do not jeopardize suffi-
cient function of the remnant liver is associated with
improved outcome. Recently, the implementation of mini-
mally invasive surgery in patients with HCC was shown to be
safe and associated with decreased rates of blood transfusion,
clamping time, postoperative complications, and ascites [5,
6], with similar long-term oncological results.

There is an ongoing debate regarding expanding criteria
for resection in HCC patients previously considered unre-
sectable. Current guidelines proposed by the Barcelona
Clinic Liver Cancer (BCLC) group recommend resection in
patients with solitary small tumors, well preserved liver
function and no clinically-significant hypertension. However,
the limited efficacy of alternative treatment modalities, and
the improved outcomes of liver resections in high-volume
centers, has caused increased interest in implementation of
liver resection in highly selected patients with advanced
tumor, multifocal HCC, presence of gross vascular invasion,
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or portal hypertension. The role of resection in such patients
is controversial, due to increased perioperative mortality, and
decreased long-term outcome. Well-designed prospective
randomized trials examining the survival benefit are needed
for expansion of resection criteria.

Despite improved outcome, recurrent tumor remains a
major problem, and is reported in up to 75 % of patients at
5 years post resection. Recurrence may represent either
metastasis from the original primary, or de novo tumor due
to predisposition of the cirrhotic liver. The best therapeutic
options for recurrent HCC remains poorly defined.

31.2 Indications for Resection

Liver resection is the accepted treatment for patients with
early-stage HCC and normal liver function. The choice of
treatment modality in patients with cirrhosis, who comprise
the majority of patients with HCC, requires assessment of
liver function, presence of portal hypertension, and tumor
extension.

Assessment of liver function reserve is commonly done
using the Child-Pugh score, and resection is accepted only in
patients who are Child-Pugh class A. Bilirubin lever above 1
is generally considered a relative contraindication for liver
resection. In Asia, indocyanine green retention rate at
15 min (ICG 15) is commonly used to assess liver function
reserve [7, 8]. Assessment for presence of clinically signif-
icant portal hypertension can be done in several ways,
including platelet count (cutoff level 100,000–150,000),
presence of splenomegaly, presence of esophagogatric
varices on endoscopy, or direct measurement of hepatic
venous pressure gradient (HVPG, cutoff level 10 mmHg).
The BCLC group has shown that 5-year survival in patients
undergoing liver resection with bilirubin <1 and no evidence
of portal hypertension is 70 %, compared with 50 % in
patients with both risk factors [1]. Unfortunately, selection
of patients with HVPG < 10 mmHg or absence of indirect
signs of portal hypertension leads to resectability rate of only
10 % [4]. The impact of portal hypertension on perioperative
morbidity and mortality in patients undergoing liver resec-
tion has been demonstrated in previous studies [9, 10].
However, some authors still recommend surgical resection in
selected patients with portal HTN, as it may achieve better
long-term outcome when compared to non-surgical treat-
ment alternatives [11]. Prospective studies comparing sur-
gery verses non-operative modalities in selected patients
with portal hypertension are needed before expansion of the
currently accepted resection criteria.

Intrahepatic tumor extension is assessed using modern
axial imaging modality, either MDCT or MRI. In the
guidelines of the American Association for the Study of
Liver Diseases (AASLD), as well as the European

Association for the Study of the Liver (EASL), resection is
not recommended for patients with multifocal HCC, and
patients with evidence of gross vascular invasion of large
vessels [12]. However, reports from high-volume centers
have shown that like in the case of portal hypertension,
presence of multiple tumors or gross vascular invasion is
associated with worse prognosis. Nonetheless, resection may
still achieve better long-term outcome when compared to the
non-surgical alternatives [11, 13]. In a recently-published
randomized controlled study, patients with multifocal HCC
undergoing resection had better overall 5-year survival
compared with patients undergoing TACE [14].

Presence of extrahepatic hematogenous or lymphatic
metastasis, main portal vein or inferior vena cava (IVC) in-
volvement are generally accepted as absolute contraindica-
tions for liver resection.

31.3 Preoperative Assessment

Prior to selection of patients with HCC for resection, pre-
operative assessment is required to assure the following
objectives: (1). Surgery needs to be performed with curative
intent, i.e. complete tumor resection, preferably with resec-
tion of the entire tumor vascular territory, and no evidence of
extrahepatic tumor extension; (2). Liver functional reserve is
adequate and the likelihood of postoperative liver decom-
pensation is low; (3). Operative risk due to general condi-
tion, nutritional status, and comorbidities is reasonably low.

31.3.1 Evaluation of Tumor Extent

Lung metastases need to be ruled out with chest CT.
Abdominal CT is used to evaluate for presence of enlarged
metastatic lymph nodes, adrenal metastases, or peritoneal
spread. Some centers recommend routine Technetium bone
scan to rule out bony metastases, although in asymptomatic
patients the yield is low. Symptoms suggestive of bony or
brain metastases should be thoroughly evaluated. FDG-PET
scans have a sensitivity of 76 % in detecting extrahepatic
metastases in patients with HCC, with higher yield in those
with advanced or high grade tumors [15, 16].

Assessment of extent of tumor burden including location,
size, number of lesions, and proximity to major structures, is
done with either MDCT, or contrast-enhanced MRI. The
newer hepatocyte-specific contrast agents, such as gadolin-
ium ethoxybenzyl diethylenetriemine pentaacetic acid
(Gd-EOB-DTPA), have shown increased sensitivity and
specificity in the diagnosis, and detection of additional tumor
nodules, in patients with HCC [17]. The appearance of
typical hyperintense lesion on arterial phase, followed by
washout on the portal phase, and hypointensity on the
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delayed hepatobiliary phase, are diagnostic for HCC in the
presence of an underlying liver disease, and obviate the need
for preoperative biopsy, which carries a small but definite
risk for tumor rupture, bleeding and spread.

Tumor size is not a contraindication for liver resection,
and reasonable short and long-term outcomes have been
reported in patients undergoing resection for tumors larger
than 10 cm [13, 18]. HCC invasion of major portal, hepatic
venous, and biliary structures needs to be assessed. Patients
with gross involvement of vascular or biliary structures have
a very limited life expectancy, in the range of 3–4 months,
and are classified by the BCLC staging system as stage C.
The recommended treatment for such patients is sorafenib,
and these patients have a median survival of 8 months [19].
Several series reported results of TACE for HCC with gross
vascular invasion. The median survival in these studies
ranged between 4 and 6 months [20, 21]. Multiple studies
have reported the outcome of liver resection in such cir-
cumstances, with median survival of 6–20 months, and
5-year survival of 0–40 % [22–25]. Generally, invasion of
main portal vein, IVC, or common bile duct are considered a
contraindication for surgery, while involvement of such
structures within the liver segment or lobe to be resected is
not.

Patients with more than one tumor nodule have a very
high likelihood of recurrence following resection. Patients
that have a limited tumor burden, within the Milan criteria
should be considered for liver transplantation. Patients that
are beyond Milan criteria, are classified as stage B according
to the BCLC staging system, and the recommended treat-
ment for these patients is TACE. However, there are mul-
tiple retrospective studies reporting results of liver resection
for multifocal HCC, with survival rates that are better than
those reported following TACE [11, 13]. A recent random-
ized, controlled study has shown that liver resection offers
better long-term outcome compared to TACE in patients
with multifocal HCC outside the Milan criteria [14], there-
fore liver resection is a valid option in this setting provided
complete tumor removal can be safely performed.

31.3.2 Evaluation of Liver Function Reserve

This involves determining the functional residual liver vol-
ume after resection, assessment of liver function, and
severity of portal hypertension.

Future Liver Remnant (FLR) can be calculated using
volumetry based on high resolution CT. In normal livers,
FLR as low as 20 % can be tolerated. In patients with liver
fibrosis or cirrhosis, higher volumes are needed, and FLR of
40 % is considered the lower limit in Child A cirrhosis.
Functional liver volume needs to be estimated, by

subtracting the tumor volume from the total liver volume.
This is important mainly in patients with bulky tumors.
Patients with smaller tumors, in whom the resected liver is
largely made of normal parenchyma, have a higher likeli-
hood of developing postoperative liver failure, when com-
pared to patients with large tumors, in whom the resected
liver is mostly non-functioning tumor tissue.

Liver function status can be assessed using clinical
staging systems such as the CTP score. Resection is gener-
ally considered only in patients with CTP A cirrhosis.
Patients with CTP B or C do not tolerate resection well, and
should be considered for either liver transplantation, or
alternative non-surgical treatment modalities, such as
loco-regional therapies or medical therapy. Recently, the
MELD score has also been shown to correlate with the risk
of postoperative liver failure, and most studies report higher
risk in patients with a MELD score of >=9 [26, 27]. In Asia,
indocyanine green retention at 15 min (ICG15) is used to
measure liver function. A normal cutoff value predictive of
safe major and minor resections are 15 and 22 %, respec-
tively [28, 29]. However, it should be remembered, espe-
cially when planning major resections, that this test does not
provide information on the relative function of the FLR.

Preoperative portal vein embolization (PVE) is a
well-described method for preoperative modulation of liver
volumes in patients with small FLR. Multiple studies have
shown improved perioperative outcomes in patients under-
going major hepatic resections for HCC following PVE [31,
32]. However, patients with liver cirrhosis often have
reduced capacity for hypertrophy following PVE, compared
to normal livers. In a way, PVE can be used as a ‘stress test’
to evaluate the liver regenerative capacity. Absence of early
hypertrophy following PVE is considered a failed ‘stress
test’, and a relative contraindication for liver resection [33].
Additional, less conventional options to improve regenera-
tion of the FLR include sequential TACE-PVE [34], hepatic
vein embolization [35], and high dose lobar radioem-
bolization using Y90 spheres [36].

Presence of significant portal hypertension is an extre-
mely important variable in determining risk of surgical
resection. Presence and severity of portal hypertension can
be assessed using direct, and indirect measures. Presence of
esophagogastric varices on upper endoscopy, collaterals and
enlarged spleen on cross sectional imaging, and thrombo-
cytopenia (cutoff level, 100,000/ll) are indirect signs of
clinically significant portal hypertension. The gold standard
for assessing portal hypertension is HPVG, a measure of the
pressure gradient between the wedged hepatic venous pres-
sure, which estimates the portal pressure, and the free hep-
atic venous pressure. A pressure gradient above 10 mmHg is
considered portal hypertension, and is associated with poor
outcomes following liver resection [10].
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31.3.3 Evaluation of Operative Risk

Additional factors that need to be evaluated and determine
the ability of the patient to tolerate major surgery include
age, general functional status, nutritional status, and pres-
ence of comorbidities. Specifically, age > 70, American
Society of Anaesthesiologist (ASA) score > 3, and chronic
renal failure, are considered significant risk factors in
patients undergoing liver resection for HCC [37, 38].

31.4 Principles of Surgical Resection

There has been significant improvement in the perioperative
results following liver resection, mainly due to techniques
that help reduce blood loss during the operation. Liver
resection for HCC should be performed in high-volume
centers. Such centers should be capable of offering the full
scope of treatment modalities for patients with HCC,
including liver transplantation, percutaneous ablative
modalities, and transarterial therapies.

Extent of liver resection required in HCC for optimal
oncologic results is still controversial. HCC has a
well-described propensity to invade portal structures and
send metastases via the portal circulation. Indeed, most
recurrences following liver resection for HCC occur in the
liver, and presence of both microvascular, and macrovas-
cular portal invasion were shown to be powerful predictors
of both recurrence and survival [39–41]. On this basis, the
rationale for anatomically removing the entire segment or
lobe bearing the tumor, would be to remove undetectable
tumor metastases along with the primary tumor. The main
concern with anatomic resection, specifically in patients with
impaired liver function, is that removal of a significant
portion of functional liver tissue would result in postopera-
tive liver failure. Several retrospective studies and
meta-analyses have shown that anatomical resections are
safe in patients with HCC and liver dysfunction, and may
offer a survival benefit [42, 43]. It should be noted, that most
studies are biased, as non-anatomical resections are more
commonly performed in patients with more advanced liver
disease, which affects both recurrence and survival. It
therefore remains unclear whether anatomical resections
have a true long-term survival benefit in patients with HCC.
Some authors have suggested that anatomical resections may
provide a survival benefit in tumors between 2 and 5 cm
[44]. The rational is that smaller tumors rarely involve portal
structures, and in larger tumors presence of macrovascular
invasion and satellite nodules would offset the effect of
aggressive surgical approach. Another important predictor of
local recurrence is margin status. Generally, a tumor-free
margin of 1 cm is considered necessary for optimal onco-
logic results. A prospective randomized trial on 169 patients

with solitary HCC demonstrated that a resection margin
aiming at 2 cm, safely decreased recurrence rate and
improved long-term survival, when compared to a resection
margin aiming at 1 cm [45]. Therefore, wide resection
margins of 2 cm is recommended, provided patient safety is
not compromised.

Intraoperative ultrasound (IOUS) is an extremely impor-
tant tool when performing liver resections, specifically for
patients with HCC and compromised liver function. IOUS
allows for localization of the primary tumor, detection of
additional tumors, satellite nodules, tumor thrombus, and
define relationship with bilio-vascular structures within the
liver. Contrast-enhanced ultrasound, used mainly in eastern
countries, provides additional information mainly on small
nodules. Finally, intraoperative US-guided injection of dye,
such as methylene-blue, to portal branches can clearly define
the margins of the segment supplied by the portal branch and
facilitate safe anatomical resection.

The anterior approach to liver resection is a technique
aimed at limiting tumor manipulation to avoid tumoral dis-
semination, decrease potential for blood loss caused by
avulsion of hepatic veins, and decrease ischemia of the
remnant liver caused by rotation of the hepatoduodenal
ligament [46, 47]. This technique is described for large
HCCs located in the right lobe, and was shown in a
prospective, randomized trial to reduce frequency of massive
bleeding, number of patients requiring blood transfusions,
and improve overall survival in this setting [47]. This
approach can be challenging, and can be facilitated by the
use of the hanging maneuver [48].

Multiple studies have demonstrated that blood loss and
blood transfusion administration are significantly associated
with both short-term perioperative, and long-term oncolog-
ical results in patients undergoing resection for HCC [49].
This has led surgeons to focus on limiting operative blood
loss as a major objective in liver resection. Transfusion rates
of <20 % are expected in most experienced liver surgery
centers. Inflow occlusion, by the use of the Pringle maneuver
represents the most commonly performed method to limit
blood loss. Cirrhotic patients can tolerate total clamping time
of up to 90 min, and the benefit of reduced blood loss out-
weighs the risks of inflow occlusion, as long as ischemia
periods of 15 min are separated by at least 5 min of reper-
fusion [50]. Total ischemia time of above 120 min may be
associated with postoperative liver dysfunction [51]. Addi-
tional techniques aimed at reducing blood loss include total
vascular isolation, by occluding the inferior vena cava
(IVC) above and below the liver, however, the hemody-
namic results of IVC occlusion may be significant, and this
technique has a role mainly in tumors that are adjacent to the
IVC or hepatic veins. Anesthesiologists need to assure
central venous pressure is low (below 5 mmHg) by limiting
fluid administration, and use of diuretics, even at the expense
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of low systemic pressure and use of inotropes. After com-
pletion of the resection, large amount of crystalloids can be
administered to replenish losses during parenchymal
dissection.

In recent years, there had been significant advances with
the use of laparoscopy for liver resections. Laparoscopic
liver resections were shown to provide benefits of reduced
surgical trauma, including a reduction in postoperative pain,
incision-related morbidity, and shorten hospital stay. Some
studies have demonstrated reduced operative bleeding with
laparoscopy, attributed to the increased intra-abdominal
pressure which reduces bleeding from the low-pressured
hepatic veins [52, 53]. Additional potential benefits include a
decrease in postoperative ascites and ascites-related wound
complications, and fewer postoperative adhesions, which
may be important in patients undergoing salvage liver
transplantation. There has been a delay with the use of
laparoscopy in the setting of liver cirrhosis, due to difficulties
with hemostasis in the resection planes, and concerns for
possible reduction of portal flow secondary to increased
intraabdominal pressure. However, several recent studies
have suggested that laparoscopic resection of HCC in
patients with cirrhosis is safe and provides improved out-
comes when compared to open resections [53, 54]. Resec-
tions of small HCCs in anterior or left lateral segments are
most amenable for laparoscopic resections. Larger resec-
tions, and resection of posterior-sector tumors are more
challenging and should only be performed by very experi-
enced surgeons. Long-term oncological outcomes of
laparoscopic resections was shown to be equivalent to open
resections on retrospective studies [53, 55], but prospective
studies are needed to confirm these findings. In recent years,
robotic-assisted liver resections are being explored (*).
Feasibility and safety of robotic-assisted surgery for HCC
has been demonstrated in small non-randomized studies
[56], but more experience is needed, and long-term onco-
logic results need to be studied, before widespread use of
this technique will be recommended.

As noted in the previous part of this chapter, one of the
main limiting factors to major liver resections in patients
with HCC is the amount and quality of the FLR. The
pre-operative options for inducing atrophy of the resected
part and hypertrophy of the FLR, mainly PVE, were
described earlier. Associating Liver Partition with Portal
vein ligation for Staged hepatectomy (ALPPS) is another
surgical option aimed to induce rapid hypertrophy of the
FLR in patients with HCC. This technique involves a 2-stage
procedure. In the first stage splitting of the liver along the
resection plane and ligation of the portal vein is performed,
and in the second stage, performed at least 2 weeks fol-
lowing the first stage, completion of the resection is per-
formed. Patient safety is a major concern, and some studies
have reported increased morbidity and mortality with the

procedure. Few reports exist of this procedure in the setting
of liver cirrhosis [57]. Currently, the role of ALPPS in the
setting of HCC and liver dysfunction needs to be better
delineated before more widespread use is recommended.

Another strategy available for patients with multifocal
HCC is combined resection and radiofrequency or micro-
wave ablation (RFA or MWA). Resection of a large tumor,
not amenable to ablative treatments, and ablation of addi-
tional small tumors in the FLR can be performed safely. This
can allow complete local control of the liver tumors, and
preservation of sufficient liver parenchyma thereby main-
taining patient safety [58].

31.5 Results of Liver Resection

31.5.1 Perioperative Outcomes

The perioperative mortality of liver resections for HCC has
decreased significantly in past years from 15 % in the 1980s
to less than 5 % in most of the large liver centers, with some
reporting mortality <1 % [59]. As discussed previously,
predictors of perioperative mortality are mainly related to the
degree of liver dysfunction, presence of portal hypertension,
and extent of resection.

Amount of blood loss and requirements for blood trans-
fusion administration have repeatedly been reported to cor-
relate with both increased perioperative mortality, and poor
long-term outcome. Techniques aimed at reducing operative
blood loss are discussed above, and probably have an
important role in the reduced operative mortality and
improved long-term outcome reported in recent years. Cur-
rently, rate of blood transfusion is less than 10 % in most
reports.

Overall, and major morbidity rates following liver
resection for HCC are as high as 60 and 30 %, respectively
[60, 61], and higher than those observed after liver resection
for other pathologies, such as colorectal liver metastases.
Most frequent complications include ascites, pulmonary
complication such as pleural effusion and pneumonia, and
bile leak. Less common, but life threatening complications
include liver failure, bleeding, and portal vein thrombosis
(PVT). Postoperative liver failure (PLF) is defined as the
inability of the remaining liver parenchyma to maintain
adequate function. PLF is often accompanied, and exacer-
bated by sepsis. Aggressive workup for identification and
treatment of the source of infection, such as an infected
biloma, infected ascites, or extra-abdominal sites, is crucial.
Postoperative bleeding requiring re-laparotomy for
hemostasis is a rare, but life-threatening complication, with
associated mortality of up to 40 % [62]. Perfect hemostasis
needs to be assured at the completion of the hepatectomy to
prevent this serious and avoidable complication. Use of
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fibrin sealant agents on the cut-surface of the liver has been
introduced in recent years, and can lead to improved
hemostasis [63]. Postoperative PVT may occur in up to 3 %
following liver resection [64]. Risk factors for development
of PVT include large resections, and prolonged inflow
occlusion [64]. Clinical signs are variable, ranging from
asymptomatic incidental finding, to rapid deterioration of
liver function and mortality. Early diagnosis with routine
postoperative ultrasound-Doppler is advocated by some
centers. Treatment options include administration of anti-
coagulants, and surgical thrombectomy.

31.5.2 Long-Term Results

Recurrence of HCC after resection is common, and develops
in up to 85 % of patients at 5 years post resection [1, 65]. By
far, the most common site of recurrence is the liver, and may
be the result of either metastases from the original tumor, or
de novo tumors related to the underlying liver disease.
Distinguishing between metastases and de novo disease may
have important prognostic and clinical implications, specif-
ically regarding eligibility for salvage liver transplantation,
and can theoretically be done using molecular markers.
Practically, as most true recurrences appear within 2 years of
the resection, this has been adopted as the cut-off to distin-
guish true tumor recurrence from new tumor development.
Predictors of true HCC recurrence include presence of vas-
cular invasion, tumor grade, tumor size, number of tumors,
presence of satellites, alpha-feto protein level, administration
of blood transfusion during the operation, type of surgical
resection (anatomic verses nonanatomic), and surgical mar-
gin status. Presence of vascular invasion is probably one of
the most important tumor-related features predicting both
survival and recurrence. Degree of vascular invasion is also
important, and gross vascular invasion is a stronger predictor
than microscopic vascular invasion. Pathological features of
microscopic vascular invasion used to grade the degree of
vascular involvement, such as the number of cells within the
invaded vein, distance between the invaded vessel and the
tumor nodule, and size of the invaded vessel, also correlate
with recurrence and survival post resection [41]. Features
that are associated with de novo tumor development fol-
lowing resection of HCC include degree of liver fibrosis, and
etiology of liver disease (HCV more than HBV- 66).

Postresection overall survival rates are influenced mostly
by operative mortality, tumor recurrence, and progression of
the underlying liver disease. The ability to control progres-
sion of liver disease, for example by the use of antiviral
medications in the case of HBV and HCV, can improve
long-term survival post resection [65, 67, 68]. Reported
survival rates range from 80–90 % at 1 year, 60–85 % at
3 years, and 40–75 % at 5 years post resection [1, 65, 69,

70]. Ten-year survival after liver resection for HCC can be
expected in approximately 15 % of patients [71].

31.6 Adjuvant Treatment

The value of several adjuvant therapies aimed at reducing
recurrence following liver resection were explored. The
heterogeneity of patients that need to be evaluated in the
adjuvant setting due to variability of etiology of liver dis-
ease, degree of liver dysfunction, and tumor characteristics,
renders the designing of randomized controlled studies that
can be used to promote clear conclusions challenging.
Several trials have looked at the value of modalities
including preoperative [72] and postoperative TACE [73], as
well as chemotherapy [74], and these were not shown to
improve survival. The recently reported STORM trial
demonstrated in a placebo controlled randomized trial that
sorafenib is not effective in the adjuvant setting for HCC
following resection or ablation [75].

The only adjuvant therapy of proven value is treatment of
the underlying liver disease. In patients with HBV related
liver disease, use of antiviral treatment with nucleoside
analogues has been shown to halt progression of liver dis-
ease, and reduce development of new HCCs [65, 67]. Sim-
ilarly, treatment of HCV with interferon-based therapies
following liver resection was proved to reduce recurrence of
HCC [68]. This effect is likely to be greater with the use of
the newer HCV medications.

31.7 Treatment of Tumor Recurrence

As discussed previously, recurrence of HCC after liver
resection remains a significant problem. Recurrence rate
after resection approaches 80 % at five years, and in 65–
80 % of cases the liver is the only site of disease [76].
Potentially curative treatments in patients with liver-only
recurrence following resection include a second resection,
liver transplantation, and percutaneous ablation. Repeat
resection is currently considered the treatment of choice in
patients with resectable disease, preserved liver function,
and no signs of portal hypertension. Thus, only 15–20 % of
patients with recurrence are considered candidates for repeat
resection [77, 78]. Oncologic outcome following repeat
resection for HCC recurrence in well-selected patients is
reasonable, with reported 5-year survival of 31–67 % [77,
79–81]. Short disease-free interval between resection of the
primary tumor and diagnosis of recurrence, as well as
presence of macroscopic vascular invasion on the second
hepatectomy were identified as poor prognostic factors in
patients undergoing repeat resection. Up to 60 % of patients
with HCC recurrence following resection are within the
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Milan Criteria and are therefore eligible for liver transplan-
tation [82]. Transplantation in the setting of previous liver
resection can be challenging, especially in patients with
significant portal hypertension. 5-year survival after such
‘salvage transplantation’ was 70 % [82].

In patients with unresectable disease that are beyond the
Milan criteria, TACE is the most widely used treatment
modality. Results are comparable to those reported in BCLC
stage B patients. Management of extrahepatic recurrence after
hepatectomy is not well studied. Small retrospective studies
suggest that selected patients with limited extrahepatic disease
may benefit from aggressive surgical treatment [83].

31.8 Conclusions

Improvements in surgical technique, patient selection, and
perioperative care has resulted in significant improvements
in perioperative and long term outcomes in patients under-
going liver resection for HCC. Liver resection is currently
considered the first-line treatment in patients with single
tumors and normal liver function, as well as patients with
CTP A cirrhosis and no portal hypertension. With the dra-
matic improvements in perioperative outcomes, and lack of
better therapeutic options, surgery is also considered in more
controversial scenarios, such as multifocal HCC, gross
vascular invasion, and presence of portal hypertension.
Minimal invasive techniques, such as laparoscopy, and
robotic-assisted liver resections are feasible and have the
potential to further reduce morbidity and expand resection
criteria. The major factors limiting long-term survival fol-
lowing liver resection for HCC are progression of liver
disease, and recurrence of the primary tumor. The only
adjuvant treatments shown to improve long-term survival
and reduce recurrence are those that deal with the etiology of
liver disease, e.g. treatment of hepatitis B or C. In cases of
recurrence limited to the liver, repeat resection and salvage
liver transplantation are valid therapeutic options.
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Hepatocellular carcinoma (HCC) is a major health problem
worldwide because of the association of HCC with chronic
liver injury and inflammation due to viral, non-viral and
genetic etiologies [1]. While historically HCC was often
considered for palliative therapy, new curative alternatives
have emerged such as liver resection, loco-regional therapies
and liver transplantation (LT). With respect to any other
available treatment, LT has the highest potential to cure both
the seeded tumor and the underlying liver disease at once.
Prior to 1996, constraints on LT for HCC were more liberal
which resulted in disappointing high recurrence rates (>50 %)
and discouraging 5-year overall survival results ranging from
10 to 35 % [2]. Since it appeared obvious that the success of
LT for HCC depends on tumor load, strict selection criteria
were introduced with regard to size and number of tumor
nodules (Milan criteria (MC): any solitary HCC � 5 cm or up
to 3 cm each, without macrovascular invasion or metastasis)
[3]. These criteria resulted in 5-year transplant survival near
70 % with recurrence appearing in less than 10 %. These
post-transplant survival outcomes match those from most
other liver transplant indications. Hence, the last 2010 inter-
national consensus conference recommended using the Milan
criteria as the benchmark not only for selecting HCC patients
for LT, but also for future comparisons of expanded selection
criteria and refinements [4].

This evolution is mainly due to improvement of imaging
techniques and surveillance programs, which have been
widely introduced. As a result HCCs are being detected
earlier at a stage at which effective treatment is feasible. In
this context, LT for HCC currently represents 20–30 % of
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the indications for LT in Europe and in the US, respectively
[5, 6] (Fig. 32.1). The need to obtain the optimal benefit
from the limited number of organs that are available, has
prompted the maintenance of selection criteria in order to list
only those patients with early HCC who have the highest
likelihood to survive after LT. However the indications for
LT and organ allocation system led to many controversies
around the use of LT in HCC patients.

The aim of this chapter is to give an updated overview
about developments of LT for HCC focusing on selection
criteria, prognostic factors, treatment on the waiting list, role
of living donor liver transplantation (LDLT), adjuvant
therapy and impact of immunosuppression on HCC recur-
rence after LT.

32.1 How Far Can the Selection Criteria Be
Extended?

The possibility of extending selection criteria for transplan-
tation has to be seen as a triangulation of organ availability,
waiting list survival and recipient outcome after liver
transplantation. Shortage of donor organs can also prolong
the time on the waiting list, increasing the risk of waiting list
dropout due to tumor progression.

According to studies based on Markov models using data
from the USA [7], patients listed for transplantation with HCC
would need to achieve 5-year survival of 60 % or higher to
prevent a substantial decrement to the life-years available to
the entire population of candidates for liver transplantation.
Any decision by a center to expand criteria should take into
account the current mortality on the waiting list, and should
only be done if a low mortality will not be substantially
increased by additional expanded criteria cases [4].

Thus to this day the Milan criteria (single HCC nodule of
<5 cm or up to three nodules of <3 cm without macrovas-
cular invasion) are the benchmark for selecting patients with
HCC to be listed for liver transplantation [3]. Within these
criteria excellent 5-year survivals up to 78 % have been
reported [8]. Recent studies however report comparable
results in patients beyond the Milan criteria. The group from
UCSF—one tumor <6.5 cm, or two or three nodules
<4.5 cm with total tumor diameter <8 cm—demonstrated a
tumor recurrence rate of 11 % with a comparable 5-year
survival rate of patients displaying T1/T2 tumors (72 %) and
those with T3 tumors (74 %) [9].

Over a period of 5 years, they prospectively validated
these results based on pre-transplant imaging in a cohort of
168 patients, including 38 patients with HCC exceeding the
Milan criteria [10]. The 1-and 5-year recurrence-free prob-
abilities were 96 and 91 % and the survival without recur-
rence was 92 and 81 %, respectively. Other studies
including transplanted HCC patients within the UCSF cri-
teria achieved comparable outcomes [11, 12]. Noteworthy,
except for one study where 40 % (n = 185) of HCC patients
were outside the Milan criteria but within the UCSF criteria
[11], the use of the latter criteria resulted in only a modest
expansion of the number of eligible patients by 5–10 %.

Asan Medical Centre in Seoul, South Korea also could
show comparable 5-year overall survival of 76 % within
their Asan criteria—largest tumor � 5 cm, number of nod-
ules � 6, and no gross vascular invasion—in a population
mainly transplanted from living donors [13]. A recent
analysis comparing Milan, UCSF and Asan criteria in a
long-term follow up found that expansion of eligible patients
was somewhat higher compared to UCSF when using Asan
criteria (26 % vs. 15 %). After a median follow-up of
70 months, patients exceeding MC but fulfilling Asan cri-
teria had comparable 5-year overall survival and disease-free
survival to patients fulfilling MC (p = 0.17; p = 0.29).
Patients exceeding UCSF but fulfilling Asan criteria had
comparable 5-year overall survival and disease-free survival
to patients fulfilling UCSF criteria (p = 0.26; p = 0.32).
Number of nodules, macrovascular invasion, capsular inva-
sion, and exceeding Asan criteria predicted recurrence in
multivariate analysis [14].

The connection between size and number of tumors as
well as presence of vascular invasion has been well descri-
bed in the “Metroticket concept” (the farther you go in
expansion of HCC staging criteria for selection for LT, the
more you have to pay in terms of higher recurrence rates and
poorer survival) [15]. This model, based on the analysis of
1556 patients transplanted at 36 centers, provides a linear
correlation between tumor diameter and recurrence
throughout the observed range. The survival was directly
correlated with the size of the largest tumor, number of
tumors and presence of microvascular invasion (MiVI) at

Fig. 32.1 Total amount of liver transplantations (light grey) from
2003 to 2012 in Europe in comparison to liver transplantations for HCC
(dark grey) from the same area. Based on European Liver Transplan-
tation Registry (ELTR) data as of October 31, 2015
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explant pathology examination. Patients who were within
the “up to 7 criteria” (HCC with 7 as the sum of the largest
tumor diameter in cm and number of tumors and without
MiVI), achieved a 5-year overall survival of 71 %. These
“up to 7 criteria” were compared with Milan and UCSF
criteria in a pathological study [16]. “The Metroticket”
performed the best as a staging system with a 5-year
recurrence rate of 4 % in patients within and 51 % in
patients beyond those “up to 7 criteria”. However, this
staging system is difficult to use in practice since the MiVI
cannot be accurately assessed by any preoperative work-up.

Based on the current literature presented here an expan-
sion of selection criteria beyond Milan is feasible under
careful consideration of available donors, center specific
wait list mortality and postoperative outcomes.

32.2 Which Biomarkers Should Be
Considered for Clinical Decision?

Measurement of tumor biomarkers is an important tool for
clinical management in HCC patients. Besides
alpha-fetoprotein (AFP), Lens culinaris agglutinin
A-reactive fraction of alpha fetoprotein (AFP-L3) and
des-gamma-carboxy prothrombin (DCP) have been estab-
lished as HCC specific tumor markers [17]. While the
association between tumor size and vascular invasion seems
established, currently incorporation of biological tumor
markers into organ allocation is under debate and
well-defined cut-offs are being assessed [18]. Merani et al.
showed in a cohort from the US including 6817 HCC
patients listed for LT that patients downstaged to AFP values
� 400 ng/mL immediately before LT showed better
intent-to-treat survivals compared to cases in which their
values could not be reduced (81 % vs. 48 % 3-year overall
survival; p < 0.001) [19]. The results were also comparable
to those patients having stable AFP values � 400 ng/mL
(74 %; p = 0.14). Further they found that only the last
pre-transplant AFP independently predicted survival.
Another group from Canada defined a composite score
combining tumor volume and AFP. Patients with a total
tumor volume (TTV) >115 cm3 and AFP >400 ng/mL
showed survivals inferior to 50 % at 3-years after liver
transplantation [20]. When compared to the Milan and
UCSF criteria, the combined TTV/AFP score provided the
best prediction of outcome.

Chinese and Italian groups associated tumor diameter
larger than 8 cm and a cut-off of AFP >400 ng/mL to
inferior survival [21, 22]. A recent analysis from the United
Network for Organ Sharing in patients undergoing locore-
gional therapy before LT showed that peak AFP value
>400 ng/mL and AFP at LT >400 ng/mL were associated
with poor outcomes [23]. Despite the common theme, a

variety of smaller series suggest lower AFP cut-offs between
100 and 300 ng/mL as a predictive factor for oncological
outcomes after LT [24–26]. Others found that dynamic
changes in AFP levels of >15 ng/mL/month while waiting
for LT is the most relevant preoperative predictor of recur-
rence and overall survival after OLT [27].

Duvoux et al. recently proposed a model incorporating
tumor size and AFP in a large retrospective series [28]. This
study is particularly interesting as they were able to show
that in a group outside MC patients with AFP <100 ng/mL
had a very low 5-year risk of recurrence rate at 14 % vs.
48 % in the group with AFP >100 ng/mL. Further in the
group within MC, patients with AFP levels >1000 ng/mL
were exposed to high risk of recurrence (37 %). They con-
clude that addition of AFP improves the assessment of eli-
gible candidates for LT. Similar results were described by
Hameed et al. in a cohort of 211 patients within MC where
AFP >1000 ng/mL was significantly associated with a
higher recurrence rate after 5 years and with vascular inva-
sion [29].

A very recent analysis of 313 patients from the Mayo
Clinic concluded that AFP >250 ng/mL and DCP
>7.5 ng/mL were associated with a 5 fold risk for tumor
recurrence [30]. This strong association between AFP and
DCP was also shown in a Japanese series of 124 LDLT
recipients as well as in patients undergoing liver resection
for HCC [31, 32].

While there is some evidence that assessment of (one or
more) biological markers might improve allocation,
biomarkers other than AFP are not yet used for clinical
decision making regarding liver transplantation for HCC [4].
More information is needed to define specific cut-offs.

32.3 Do Patients Benefit from Bridging
Therapies on the Waiting List?

Bridging strategies are defined as locoregional tumor treat-
ment (LRT) in patients on the waiting list until they receive a
graft [33]. Pretransplant LRTs include transarterial modali-
ties (transarterial chemoembolization (TACE), transarterial
radioembolization), percutaneous thermal ablative strategies
(radio frequency ablation (RFA), microwave ablation) and
surgery and have been widely adopted by transplant pro-
grams to bridge and/or downstage HCC recipients before LT
[34]. LRTs are effective by achieving pathologic tumor
necrosis, with reported rates of complete response in up
60 % of patients after TACE [35, 36] and up to 75 % after
ablative regimens as RFA [37–39]. Although LRT does
reduce the risks of tumor progression and dropout, [35–40]
data on its effectiveness in reducing posttransplant HCC
recurrence and improving posttransplant survival are limited
and controversial [41–45].
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A retrospective case control study investigated the results
of TACE on outcome after LT [45]. In this study, there was
no difference in the 5-year survival rate (69 % with TACE
vs. 64 % without TACE) but recurrence was less frequent
after TACE (13 % vs. 23 %). A small single center study on
104 patients from the US was able to show that the absolute
number of TACE treatments was not associated with sur-
vival. Interestingly patients with only a single TACE
application were more likely to show recurrence. They
concluded that when feasible TACE application can be
repeated during waiting time [44].

In pathological studies, the results of RFA appear to be
superior to TACE in terms of local tumor control [39, 46].
Mazzaferro et al. showed in patients who underwent RFA as
a bridge treatment to LT, that tumor size >3 cm or the
presence of large abutting vessels results in a decrease in the
rate of complete tumor necrosis to 50 % or less [38]. RFA
appears then to be safe as a bridging therapy for HCC less
than 3 cm in size. However, its ability to decrease the dropout
rates still needs to be proven in further prospective trials.

Radioembolization represents 5–10 % of bridging LRT in
the organ procurement and transplantation network registry,
but data available on its impact are scarce and further
experience is needed [33]. In a retrospective analysis looking
at the radiopathological effects on HCC treated with internal
radiation using yttrium-90 microspheres, all targeted lesions
had some histologic necrosis and 60 % of them showed
complete necrosis [46]. A recent large single center series of
501 patients listed and transplanted for HCC in the US found
that no viable tumor on last examination, lowering in AFP
between LRT and LT, labMELD decrease and longer time
from LRT to LT were predictive factors for complete
pathological response. Most interesting in this context was
that complete pathological response to LRT was a strong
predictor for recurrence-free survival [47].

In HCC patients with compensated cirrhosis listed in
centers with an expected waiting time longer than 1 year,
tumor resection followed by listing for LT could be an
option [33, 48]. Careful assessment of liver function as well
as size and location of the tumor determine the feasibility of
a surgical option. Cherqui et al. showed that liver resection
for small solitary HCC in compensated cirrhosis yields an
overall survival rate comparable to LT. Despite the high
significant recurrence rate, close surveillance after liver
resection allows salvage LT in two thirds of the patients with
recurrence in intent-to-treat analysis [49]. Fuks et al. eval-
uated liver resection for HCC as first-line treatment in
transplantable patients within MC followed by salvage LT in
case of recurrence comparing them to a group of patients
within MC who underwent primary liver transplantation
[50]. In both groups, 5-year overall and disease-free sur-
vivals were similar (60 % vs. 77 % and 56 % vs. 40 %,
respectively). The predictive factors for dropout due to

recurrence beyond Milan criteria after liver resection inclu-
ded microvascular invasion, satellite nodules, tumor size
>3 cm, poor differentiation, and liver cirrhosis. It can be
concluded that salvage LT should be restricted to patients
with favorable oncological factors found on the specimen of
liver resection. In other words, in case of poor prognostic
factors (poor differentiation, MiVI, absence of capsule), a
pre-emptive LT could be advised (i.e. before recurrence but
after sufficient observation). If the tumor does not show any
risk factors for recurrence, LT may be postponed and offered
only in cases of tumor recurrence (salvage procedure).

Bridging strategies with locoregional treatments are
beneficial in patients when a long waiting time is likely
because it decreases dropout rates without impairing
post-transplant outcomes. If successful, post-transplant
recurrence-free survival has been shown to be significantly
higher [47]. Overall bridging therapy seems to be indicated
for T2 tumors (solitary tumor with vascular invasion or
multiple tumors none more than 5 cm) and patients likely to
wait longer than 6 months. Pathological studies suggest that
there is a marginal advantage for RFA in terms of local
ablation [4, 39].

Newer strategies combining TACE and RFA or using
yttrium-90 may be promising. Finally, liver resection fol-
lowed by salvage LT in case of recurrence should be
restricted to patients with favorable oncological findings.

32.4 Role of Downstaging Before LT

Tumor downstaging is a process involving expanded criteria
for listing and the effects of LRT. Per definition LRT is
specifically used to meet acceptable criteria for transplanta-
tion. Rather than altering tumor biology it serves as a tool to
identify patients with a high probability for beneficial out-
comes [51]. There has been consensus that current goal for
downstaging patients should be equally effective as patients
without downstaging [4]. The literature reports successful
downstaging rates of up to 90 % with significant hetero-
geneity in protocols [52].

At the moment, there is no well-defined upper limit for
size and number of lesions as eligibility criteria for down-
staging, although the presence of macrovascular invasion
and extrahepatic disease are generally considered absolute
contraindications [4]. The UCSF group recently published
their long-term results on 118 patients downstaged to within
Milan [53]. While there is a higher dropout rate at 1 year in
the downstaged group (24 % vs. 20 %), in multivariate
analysis factors predicting drop out were AFP >1000 ng/mL
and Child B cirrhosis but not tumor size or number. After LT
5-year overall survival in the downstaged group was 78 %
(vs. 81 %), meeting the recommendation of the last inter-
national consensus conference [4].
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This study was also included in a recent systematic
review and pooled analysis of thirteen studies (11 retro-
spective and 2 prospective) including 950 patients [54].
Overall downstaging rate in this study was 54 % and overall
HCC recurrence rate was 16 %. No difference between
TACE and radio-embolization with Yttrium 90 was repor-
ted. Of note, the success of downstaging was higher in the
prospectively conducted studies, most likely related to
stricter patient selection, mandatory waiting time and higher
consistency in the downstaging procedures. The authors
could not aggregate post-LT survival due to the inconsistent
assessment of outcome criteria and further limitations
reporting inclusion criteria and downstaging protocols.

There is still a debate about how best to assess successful
downstaging. The European Association for the Study of the
Liver (EASL) guidelines suggest that such assessment
should be exclusively based on the amount of viable tumor,
as differentiated from necrosis by contrast CT or MRI [55].
Most available reports have used the Milan criteria to define
successful downstaging [53, 56–58], with few data available
on downstaging to “up-to-seven criteria” [59]. Some groups
also combine serum AFP levels for assessment of down-
staging, [23] comparable data however are scarce [52, 54].

In the future, hepatic resection may play a more pre-
dominant role in downstaging as well as in curative
approach since fewer patients progress to cirrhosis due to
newly available antiviral drugs for HCV [52].

Downstaging HCC in the setting of liver transplantation
seems feasible. Standardized methods and data assessment
across studies are needed in order to ultimately determine the
place of downstaging. Furthermore studies are mandatory to
address whether there is an upper limit for lesions and
whether liver resections may have a role in downstaging.

32.5 What Is the Role of Living Donor Liver
Transplantation for HCC?

As the need for donor livers exceeds organ availability in most
countries, living donor liver transplantation (LDLT) has been
suggested as an alternative to organ shortage and increasing
waiting lists [60]. In this setting, donor safety is a priority
knowing that the incidence of operative mortality and mor-
bidity ranges between 0.15–0.50 % and 30–40 %, respec-
tively when using the right hemi-liver for adult-to-adult
LDLT [61]. This explains why LDLT has never exceeded
more than 5 % of the total LT in the United States [6].

LDLT would likely shorten recipients’ time to surgery,
thereby preventing disease progression, which might occur
while waiting for a deceased organ. One strong argument in
favor of LDLT is that living liver donors, by reducing the
number of recipients on the deceased donor waiting list,
potentially advantage patients remaining on the waiting list.

However patients with HCC beyond the accepted criteria for
LT raise some ethical concerns. In order to analyze the
appropriateness of LDLT, the concept of double equipoise
could be used [62]. It describes the balance between the
recipient’s survival benefit with or without a live donor
transplant and the probability of donor mortality risk [63–
66]. This balance should be explicitly defined and agreed
upon by all parties, including the recipient, donor, surgical
team, and society.

Previous studies have reported conflicting results with
respect to recurrence rates and overall survival after LDLT.
Several studies comparing deceased donor liver transplan-
tation (DDLT) and LDLT for HCC and 2 meta-analyses
were published in the last decade [67–74]. Despite higher
recurrence rates in three studies, the overall survival rates of
LDLT for HCC compared to DDLT in all studies were not
inferior. One could argue that this difference would even-
tually translate into a lower long-term survival in the LDLT
groups. Given that LDLT is offered on a faster track than
DDLT, it is conceivable that many LDLT recipients did not
have sufficient waiting time to declare the biologic behavior
of their HCC. In contrast, patients who await DDLT and
who have a biologically aggressive HCC are likely to pro-
gress and then to dropout from the waiting list, leaving only
patients with less aggressive HCC having access to DDLT.
Of note, neither the waiting time, nor the type of graft
(DDLT vs. LDLT) was identified as risk factors for HCC
recurrence.

The first meta-analysis evaluated outcomes including
patient survival, recurrence-free survival, and recurrence
rates at defined time points in patients with HCC receiving a
LDLT or a DDLT [73]. Seven studies with a total of 1310
patients were included in this study. For both LDLT and
DDLT recipients, there was no significant difference in terms
of overall survival rates (1 year, OR = 1.03, 95 % CI =
0.62–1.73; 3 years, OR = 1.07, 95 % CI = 0.77–1.48; and
5 years, OR = 0.64, 95 % CI = 0.33–1.24) and
recurrence-free survival rates (1 year, OR = 0.86, 95 %
CI = 0.54–1.38; 3 years, OR = 1.04, 95 % CI = 0.69–1.58;
and 5 years, OR = 1.11, 95 % CI = 0.70–1.77). Moreover,
there was also no significant difference regarding 1-, 3- or
5-year recurrence rates between LDLT and DDLT recipients
(1 year, OR = 1.55, 95 % CI = 0.36–6.58; 3 years, OR =
2.57, 95 % CI = 0.53–12.41; and 5 years, OR = 1.21,
95 % CI = 0.44–3.32). A subgroup analysis revealed similar
outcomes for patients with HCC meeting the MC. These
findings demonstrate that for HCC patients (especially those
within the MC), LDLT represents an acceptable option that
does not compromise patient survival or increase HCC
recurrence in comparison with DDLT.

The second meta-analysis included 16 studies, which
were heterogeneous, non-randomized, and mostly retro-
spective [74]. The combined hazard ratio was 1.59 (95 %
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CI = 1.02–2.49; I2 = 50.07 %) for disease-free survival after
LDLT vs. DDLT for HCC, and 0.97 (95 % CI = 0.73–1.27;
I2 = 5.68 %) for overall survival. This analysis provided
evidence of lower disease-free survival after LDLT com-
pared with DDLT for HCC. However, one contributing
factor may be that HCC patients selected for LDLT may
have worse tumor biology than DDLT. In the adult-to-adult
living donor liver transplant study (A2ALL) there was a
trend toward LDLT recipients having worse tumor charac-
teristics but the type of graft (LDLT vs. DDLT) was a pre-
dictive factor of recurrence [75].

Then the question arises whether LDLT should be offered
to HCC patients in whom tumor stage prevents the use of
DDLT. Offering LDLT only to selected patients with
advanced HCC cases is based on respect for the principles of
donor autonomy and fairness. Since other listed patients are
not adversely affected by this process, the required “ac-
ceptable” survival may be lower than the expected survival
for other deceased donor indications. Such policy requires
rigorous safeguards to ensure the pressure to treat recipients
does not result in donor coercion, increased risk-taking by
the donor surgical team, or donor depression after a poor
LDLT outcome; and a minimum survival expectation needs
to be established. On this difficult question, the jury of the
2010 international consensus conference on LT for HCC
stated that there are currently no high-quality data to endorse
or ban the use of different criteria for DDLT and LDLT for
HCC [4]. Centers choosing to use different LT criteria for
HCC in living donor liver transplants must carefully weigh
respect for donor autonomy with the responsibility to protect
the donor. Each center should explicitly state its policy
regarding living donation for HCC patients with a poorer
prognosis [76].

32.6 Is There a Place for Adjuvant Therapy
After Liver Transplantation
for HCC?

Efforts to decrease posttransplant liver recurrence rates and
to further improve overall survival have included antitu-
moral adjuvant treatment after LT for HCC. Adjuvant ther-
apy may achieve this goal through the elimination of
undetectable micrometastases present at the time of the
transplantation. However, because of possible adverse
effects, the potential benefits of adjuvant therapy must be
weighed against the risks. Furthermore it should be kept in
mind that the use of frequent combined neoadjuvant or
intraoperative therapies makes the assessment of the post-
transplant adjuvant therapy more difficult. For instance,
some patients may receive chemoembolization or a local
treatment such as radiofrequency ablation before LT.

Taking into consideration these limitations, 8
non-randomized studies suggested a very modest benefit
from adjuvant chemotherapy [77–84]. Four RCTs assessing
adjuvant monotherapy or combined chemotherapy failed to
demonstrate any benefit [85–88]. As listed in Table 32.1,
two randomized studies using the single-agent doxorubicin
during LT did not demonstrate any significant benefit [86,
87]. In the RCT from Li et al. [85], epirubicin was admin-
istrated in both groups and an adenovirus-mediated delivery
of herpes simplex virus thymidine kinase therapy injected in
the peritoneum in the experimental group was evaluated.
Epirubicin alone did not show any survival benefit in
advanced HCC patients. Interpretation of the results of the
virus-mediated thymidine kinase therapy in such a patient
population and with a very small sample size is very diffi-
cult. Similarly Folfox did not show any benefit on 3-year

Table 32.1 Randomized controlled trials assessing adjuvant therapies after liver transplantation for HCC

Authors (year) Treatment Treated
patients/controls
(n)

Follow-up
(year)

Disease-free
survival
(treated
patients/controls)

Overall survival
(treated
patients/controls)

Pokorny et al.
(2005)[86]

Doxorubicin 34/28
(outside Milan)

5 43/53 % (NS) 38/40 % (NS)

Söderhahl et al.
(2006)[87]

Doxorubicin 19/27
(outside Milan)

3 63/50 % (NS) 63/70 % (NS)

Li et al. (2007)
[85]

Epirubicin in both groups + Thymidine
kinase in peritoneum

23/22
(outside Milan)

3 43/9 %
(p = 0.001)

69/20 %
(p = 0.001)

Xu et al. (2007)
[89]

Licartin 30/30
(outside Milan)

1 57/27 %
(p = 0.017)

82/62 %
(p = 0.001)

Zhang et al.
(2011)[88]

FOLFOX 29/29
(outside Milan)

3 48/51 % (NS) 79/62 % (NS)

FOLFOX: Oxaliplatin+leucoverin+fluorouracil
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disease-free or overall survival in HCC patients beyond MC
[88]. Licartin, a 131I-radiolabeled murine monoclonal anti-
body that specifically binds to HCC cells expressing an
HCC-specific molecule (HAb18G/CD147), was tested in a
small placebo-controlled, randomized, double blind study in
China [89]. Only a small number of HCC patients beyond
MC were included and the 1-year follow-up was short.
However, the benefit on recurrence rate and overall survival
is encouraging but need to be confirmed at long-term. In
summary, results from controlled studies are mixed, nega-
tive, inconclusive or requiring confirmation. As recom-
mended by the last international consensus conference on
LT for HCC, the current evidence does not justify the routine
use of adjuvant antitumor therapy after LT for HCC outside
of a controlled clinical trial [4].

Some hope has been placed in sorafenib, a multitargeted
tyrosine-kinase inhibitor, which was shown to have an
anti-tumoral effect in patients with advanced unresectable
HCC [90]. A group from China designed a RCT of patients
undergoing LT for HCC outside the MC and compared
sorafenib with capecitabine to prevent recurrence after LT
[91]. Thirty patients were randomized, with their follow-up
ranging from 6 to 34 months. Treatment was started 1 month
after LT and was discontinued 18 months later if no recur-
rence occurred or if there were severe adverse reactions.
Although disease-free survival was longer in the sorafenib
group, this was not significantly different compared with the
capecitabine group. On the other hand, overall survival was
significantly longer in the sorafenib group than in the
capecitabine group. The authors concluded that for patients
with HCC exceeding the MC, sorafenib may prolong sur-
vival with tolerable side effects. A case control study from
Taiwan compared sorafenib as an adjuvant treatment or as a
treatment for tumor recurrence in comparison with best
supportive care [92]. Only 17 patients were considered, and
all were beyond the MC. Patients in the adjuvant group
received adjuvant sorafenib within the first 6 weeks after LT
and, in the case of recurrence, until disease progression.
Disease-free survival and overall survival were significantly
longer for patients who received adjuvant sorafenib but
overall survival was not significantly different between the
recurrence and control groups. The authors suggested that
adjuvant sorafenib could extend overall survival for HCC
patients beyond the MC but that it is not effective as a
palliative treatment after recurrence. These clinical data are
supported by one experimental study in a transplant HCC rat
model [93]. Sorafenib was administered after LT for 3
weeks, and it was highly effective in inhibiting cancer
recurrence and metastasis without influencing the immune
balance after LT for HCC. Because all these data are pre-
liminary and suffered from small sample size and method-
ological biases, no conclusions on efficacy can be drawn.

Furthermore these positive results have been recently
mitigated by the results of the STORM multicenter phase
3-trial, which tested sorafenib as adjuvant therapy after
surgical resection, or local ablation of HCC [94]. Patients
(n = 1114) were randomized either for sorafenib or placebo
and the median follow-up for recurrence-free survival was
8.5 months (IQR 2.9–19.5) in the sorafenib group and 8.4
months (2.9–19.8) in the placebo group. There was no dif-
ference in median recurrence-free survival between the two
groups (33.3 months in the sorafenib group vs. 33.7 months
in the placebo group (HR = 0.940; 95 % CI 0.780–1.134,
p = 0.26). These data indicate that sorafenib is not an
effective treatment in the adjuvant setting for hepatocellular
carcinoma following resection or ablation. Similarly, there
was no significant treatment effect on the secondary end-
points of time to recurrence and overall survival.

32.7 What Is the Impact
of Immunosuppression on HCC
Recurrence After Liver
Transplantation?

Despite the careful selection of HCC patients for LT, 10–
20 % of liver transplant recipients who have HCC in the
native liver develop tumor recurrence after transplantation-
mainly within the first 2 years [5, 95]. In this setting, the
main concern comes from immunosuppression therapy,
which inhibits the tumor suppressive properties of the
immune system and therefore, may increase the likelihood of
HCC recurrence after LT. Indirect evidence of a favoring
effect of immunosuppressant on tumor genesis comes from
the observation that the incidence of malignancies is sig-
nificantly higher in organ recipients than in the general
population [96]. Besides the calcineurin inhibitors (CNIs),
namely cyclosporine and tacrolimus, a newer category of
immunosuppressant drugs called m-TOR (mammalian target
of rapamycin) inhibitors raised a high degree of interest.
Indeed these drugs are associated with strong immunosup-
pressant activity, due to the blocking of IL-2 stimulation of
lymphocyte proliferation, and have a potential anti-cancer
effect, which has been demonstrated in the experimental
setting. The anti-cancer effect is mainly related to the
impairment of vascular endothelial growth factor (VEGF)
production and the blockage of VEGF-induced vascular
endothelial cell stimulation [97, 98].

Experimental data provided good evidence that CNIs
promote cellular growth of malignant cells by enhancing
cancer cell invasions and by inhibiting DNA repair [99,
100]. On the other hand, mTOR inhibitors like sirolimus
(SRL) inhibit hepatoma cell proliferation in vitro and
down-regulates vascular endothelial growth factor
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expression. In animal models, rats receiving SRL had
significantly longer survival and developed smaller
tumors, fewer extrahepatic metastases compared to controls
[101, 102].

In the last decade, clinical studies investigated whether
mTOR inhibitors may affect the posttransplant recurrence
rate of HCC [103–108]. As reported in Table 32.2, these
studies showed significant benefit on HCC recurrence rates
after LT in patients receiving SRL as immunosuppressant.
However, because none of these studies were randomized,
there is a significant potential for selection, treatment or
reporting bias towards more positive findings of SRL.

In 2011, a first meta-analysis was conducted to determine
if using SLR based regimens as immunosuppression after
LT for HCC improves survival and recurrence [109]. Five
studies with a total of 2950 patients were included [103,
105–108]. The pooled results showed that in comparison
with SRL-free regimens, SRL-based regimens decreased
tumor recurrence (OR = 042, 95 % CI = 0.21–0.83) and
improved 5-year overall survival (OR = 2.47, 95 % CI =
01.72–3.55). However, as stated by the authors themselves,
since none of the included studies performed a statistical
analysis of the etiology of death, this meta-analysis could not
determine whether the survival improvement was due to
SRL itself or the CNI reduction in the protocol considering
the nephrotoxicity and other side effects of CNIs. Other
limitations of this meta-analysis are the lack of randomized
controlled trials resulting on a potential selection bias, the
lack of subgroup analyses based on potential confounding
factors, and the fact that the analysis of each endpoints were
based on only 2 or 3 included studies because of missing
data. In 2013, an updated meta-analysis [110] included 5
studies with a total of 474 patients who underwent LT for
HCC [103, 104, 106, 108, 111]. The tumor recurrence rate
was lower in SRL group (4.9–12.9 %) in comparison with
CNIs (17.3–38.7 %). The 1-, 3- and 5-year recurrence-free
survival was 93–96, 82–86 and 79–80 % for SRL group,
which was higher in comparison with the CNIs (70–78, 64–
65 and 54–60 %, respectively). Similarly, 1-, 3- and 5-year
overall survival was better in SRL group (94–95, 85 and

80 %) in comparison with CNIs (79–83, 66 and 59–62 %)
respectively. This meta-analysis demonstrated lower recur-
rence (OR = 0.30, 95 % CI = 0.16–0.55, p < 0.001), lower
recurrence-related mortality (OR = 0.29, 95 % CI = 0.12–
0.70, p = 0.005) and lower overall mortality (OR = 0.35,
95 % CI = 0.20–0.61, p < 0.001) in the SRL group. More
recently, a systematic review compared Everolimus (another
mTOR inhibitor) and SRL with CNI use on post-LT recur-
rence of HCC [112]. It included 42 studies with 3.666
HCC LT recipients. CNI use was associated with higher
rates of HCC recurrence compared to mTORs (13.8 vs. 8 %,
p < 0.001), although patients treated with CNIs had lower
rates of microvascular invasion and a higher proportion of
HCC within MC. A subgroup analysis demonstrated that
although patients taking Everolimus had shorter follow-up
data, overall HCC recurrence post-LT was less frequently
observed compared to SRL use (4.1 % vs. 10.5 %,
p = 0.02).

Although retrospective and uncontrolled studies favor the
use of mTOR inhibitors in LT for HCC patients, confirma-
tory data from a hypothesis-driven RCT are still missing. Up
to now, no recommendation can be made for choosing any
type or dose of immunosuppressant to influence the inci-
dence or the prognosis of HCC recurrence after LT. The
Silver 05 multicenter RCT studying the potential benefits of
SRL use in this setting will definitely help to answer this
question and is estimated to be completed in 2018 [113].

32.8 Conclusion

In the past 20 years LT for HCC rapidly developed as one of
the most successful treatments in oncology. Undoubtedly an
increasing number of HCC patients will have access to LT
thanks to the acceptance of extended selection criteria, ear-
lier tumor detection, control of tumor load while patients
wait for a graft, use of living donors, tailored immunosup-
pression and adjuvant therapies. Some efforts should be
made to better understand the tumor biology and prognostic
factors in order to optimally select HCC patients who can

Table 32.2 Studies investigating on HCC recurrence after liver transplantation in patients receiving sirolimus as immunosuppression

Authors Year Type of study Patients (n) Outcomes

Zhou et al. [107] 2008 Retrospective cohort 73 6-month recurrence rate: 4 % vs. 20 %a

Zimmerman et al. [108] 2008 Retrospective cohort 97 5-year DFS: 79 % vs. 54 %a

Chinnakotla et al. [103] 2009 Case control 227 5-year DFS: 80 % vs. 59 %a

Toso et al. [104] 2007 Retrospective cohort 70 Recurrence 6 % for Milan vs. 17 % over Milan

Vivarelli et al. [106] 2010 Matched cohort 62 3-year DFS: 86 % vs. 56 %a

Toso et al. [105] 2010 Retrospective cohort 2491 Patient survival: hazard ration = 0.53
aPatients treated with sirolimus versus calineurin inhibitors; DFS Disease-free survival
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benefit from LT. In the context of organ shortage, the suc-
cess of LT for HCC is not without ethical problems with
respect to end stage liver disease patients and should prompt
us to increase the pool of organs.
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33.1 Principles

33.1.1 Clinical Presentation

The principles underlying medical management of HCC are
based on an understanding of the clinical setting, the tumor
characteristics, and the underlying biology. Reviewing our
patient population, we found that 81 % of patients had cir-
rhosis and 19 % had no evidence of cirrhosis by biopsy or CT
scan (Table 33.1). The male:female ratio was 2.5:1 with
72 % of our patients being Caucasian. Interestingly, 24 % of
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our patients had no symptoms at all, but were diagnosed
either by the finding of elevated liver function tests on routine
physical examination or as an incidental finding, such as a
work-up for some unrelated disease. A further 17 % of
patients were diagnosed because of a planned surveillance
CT scan screening because of a known history of hepatitis B
or C and/or cirrhosis. 18 % of patients had the symptoms of
cirrhosis, that included ankle swelling, abdominal bloating,
increased girth, pruritis, encephalopathy, or a GI bleed, and a
full 40 % of patients presented with abdominal pain. This
appeared to be the most common presenting symptom in our

patient population. We also found that a significant propor-
tion of our patients had weight loss, general malaise or
weakness and loss of appetite. We have recently found that
more than 80 % of patients report loss of sexual function or
desire within the proceeding 12 months of the diagnosis
(Chap. 24). This appears to be a sensitive but nonspecific
correlate of our cancer patients, and was found on analysis of
our systematic study of Quality of Life questionnaires. The
tumor characteristics tend to display interesting patterns. In
our experience, HCC is typically a multifocal and bilobar
tumor (Table 33.1, tumor characteristics), and is thus often
not a surgeon’s disease. In addition, portal vein invasion of
either the main portal or main branch portal vein, as judged
by occlusion of flow or expansion of the vein on CT scan,
occurred in 75 % of our patients (Table 33.2).

33.1.2 The Underlying Liver Disease

Metastatic cancer that spreads to the liver from organs such as
the breast, colon, or lung, spread to a normal liver. By contrast,
most patients with hepatocellular carcinoma (HCC) typically

Table 33.1 Clinical presentation of HCC, University of Pittsburgh,
Liver Cancer Center, n = 547 (1989–2001)

Symptom Patient
number

(%)

No symptom 129 (24)

Abdominal pain 219 (40)

Other (work-up of anemia and various
diseases)

64 (12)

Routine physical exam finding, elevated LFTs 129 (24)

Weight loss 112 (20)

Appetite loss 59 (11)

Weakness/malaise 83 (15)

Jaundice 30 (5)

Routine CT scan screening of known cirrhosis 92 (17)

Cirrhosis symptoms (ankle swelling,
abdominal bloating, increased girth, pruritis,
encephalopathy, GI bleed)

98 (18)

Diarrhea 7 (1)

Tumor rupture 1

Patient characteristics

Mean age (year) 56 ± 13

Male:Female 205:1

Ethnicity

Caucasian 72 %

Middle Eastern 10 %

Asian 13 %

African American 5 %

Cirrhosis 81 %

No cirrhosis 19 %

Tumor characteristics

Hepatic tumor numbers

1 20 %

2 25 %

3 or more 65 %

Portal vein invasion 75 %

Unilobar 25 %

Bilobar 75 %

Table 33.2 Treatment options for hepatocellular carcinoma

Potentially curative options

1. Liver resection

2. Liver transplantation

3. Ablative therapies: cytoreductive therapies

Palliative resection

Cryosurgery

Microwave ablation

Ethanol injection

Acetic acid injection

Radiofrequency ablation

4. Transcatheter hepatic artery treatments

Transarterial chemotherapy

Transarterial embolization

Transarterial chemoembolization (TACE)

Transarterial radiotherapy
90Y microspheres (Sirspheres or Theraspheres)
131I Lipiodol, 66Ho, 188Re

Gene therapies

5. External beam conformal radiation

6. Systemic therapies

Chemotherapy
Molecularly targeted therapies

Immunotherapy

Hormonal therapy

Growth factor or antibody control of cell cycle

7. Supportive (Palliative) care
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have a diseased underlying liver aswell as the cancer. Although
this varies from country to country, between 60 and 90 % of
HCC patients have underlying cirrhosis [1]. The cause of this
may vary, but the most common factors are hepatitis B virus
(HBV), hepatitis C virus (HCV), chronic alcohol consumption,
chronic exposure to mycotoxins, such as aflatoxin B1 in Africa
and Asia and obesity (NASH) as has been recently appreciated.
This has major implications for therapy, since the cirrhosis
limits the ability of the surgeon to safely resect liver mass
without risk of liver failure in the remaining liver, and it limits
the ability of the chemotherapist to deliver cytotoxic drugs
without risk of liver failure, due to additional damage to the liver
that is already damaged due to chronic disease.

33.1.3 HCC Is a Multifocal Disease

Since HCC typically arises on the basis of cirrhosis, and
there are millions of cirrhotic nodules in an individual liver,
HCC is often multifocal and bilobar (Table 33.1, tumor
characteristics). Although countries with screening programs
are able to diagnose earlier and smaller HCCs, its natural
history includes the development of multiple “satellite”
lesions in both lobes of the liver over time. The cause of this
is two-fold. First, studies with HBV integration sites show
that multiple distinct primary tumors can arise in different
parts of the liver either synchronously or metachronously.
Second, a clonal HCC can spread throughout the liver via
portal vein invasion or arterial–venous connections. In
addition, the evidence from liver transplant indicates that
HCC is commonly a whole organ disease.

33.1.4 HCC Is a Vascular Tumor

A characteristic of HCC, which distinguishes it from most
metastases to the liver, is that it is a highly vascular tumor. This
is typically found on the arterial phase of triple phase helical
CAT scans (Fig. 33.1) or on hepatic angiography (Figs. 33.2,
33.3, 33.4 and 33.5). This is in contrast to metastases from

colon cancer, which are typically hypovascular. This vascu-
larity provides an opportunity for selective delivery of drugs to
the tumor, since the vascular supply to HCC typically arises
from hepatic arteries, whereas the delivery of 90 % of the
oxygenated blood to the underlying nontumorous liver is
mainly from the portal vein. This provides a partial basis for
intrahepatic chemoembolization or intrahepatic chemother-
apy, which permits a relatively selective delivery of
chemotherapy to the tumors in the liver via the tumor neo-
vasculature that typically grows in response to the presence of
an HCC. The other reason is that vascular slowing leads to an
increase in the hepatic dwell time of infused chemotherapy.

33.1.5 Portal Vein Invasion: A Key
Prognostic Characteristic
of HCC

The tendency of HCC to invade the portal vein is a char-
acteristic of HCC and distinguishes it from most metastases
to the liver. It is manifested clinically as thrombosis of a
major portal vein, or a major portal vein branch (Fig. 33.1)

Fig. 33.1 CAT scan showing a vascular HCC and portal vein
thrombosis (PVT)—arrow

Fig. 33.2 CAT scans showing a
vascular response to TACE
(chemoembolization) without size
response (a pre-therapy;
b post-therapy)
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seen as occlusion and/or expansion of the portal vein on
CAT scan, or microscopically, as presence of HCC in the
walls or lumens of normal hepatic vessels. It is also probably

the most important negative prognostic factor in the evalu-
ation of the HCC patient for any form of surgery, but par-
ticularly for liver transplant. Since the portal vein is
thrombosed, it can be safely biopsied by a percutaneous
needle and this provides proof for the malignant nature of
portal vein thrombosis in the presence of HCC [2, 3]. It is
currently deemed to be a major contraindication for liver
transplant. Portal vein thrombosis has previously been
thought to be a contra-indication for hepatic artery
chemotherapy, because if the portal vein is blocked by tumor
and the hepatic artery is embolized for therapeutic purposes,
then that lobe of the liver is thought to undergo necrosis,
with resultant liver failure. However, as shown below, most
of our patients with advanced HCC have portal vein
thrombosis, at least of a major branch, and most of them are
unresectable. Despite this, most of them have been treated
with intrahepatic chemoocclusion with little deleterious
effect on the underlying liver, provided certain precautions
are observed (below). These include: treating only one lobe
of the liver at any single chemotherapy session, as well as
using subocclusion but never complete embolization of the
treated hepatic artery.

33.1.6 HCC Is Relatively Resistant
to the Toxic Effects of Most
Chemotherapeutic Agents

It has been known for more than 70 years since the experi-
ments of Haddow [4] that the liver that has been damaged by
carcinogenic or other toxic chemicals and which then recov-
ers, becomes remarkably resistant to a subsequent challenge
by a variety of toxic agents [5]. Most other cancers such as
breast cancer adapt to chemotherapy by developing “acquired
resistance” to the toxic effects of the chemotherapy. It is
thought that most HCC arises ab initio as a drug-resistant
tumor. This was most clearly demonstrated in the drug

Fig. 33.3 CAT scan showing both size responses (tumor shrinkage)
and vascular responses-change from hypervascular to hypo vascular
lesions (upper pre-therapy; lower post-therapy)

Fig. 33.4 CAT scans showing
partial response (PR) in tumor
size and vascular response of the
same mass (a pre-therapy;
b post-therapy)
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resistance/growth inhibition model of rodent carcinogenesis
first described by Solt and Farber, but many other studies have
shown the carcinogen-altered liver to be remarkably resistant
to toxicity by a variety of poisons [6] or cancer chemotherapy
agents [7]. The clinical consequence of this is that most clin-
ical trials of phase II and phase III chemotherapy drugs have
shown responses to single drugs in less than 20 % of the
patients and have no beneficial effect on survival (Table 33.3).

33.1.7 Hepatic Artery Chemotherapy

However, when the same drugs are given by the hepatic artery
route, they have been found to result in tumor shrinkage and
“partial responses” (PR) in 30–70 % of the patients, usually in
association with some form of hepatic artery occluding agent
(Tables 33.4 and 33.7). Hepatic artery occlusion alone does
not appear to impact the tumor, as the results of hepatic artery
ligation showed long ago. Several recent randomized trials
have shown the benefits of TACE in causing tumor shrinkage
(partial responses) as seen in Table 33.5, but only recently
have two randomized clinical trials comparing TACE to no
therapy as a control arm, convincingly shown a survival
advantage for TACE therapy (Table 33.6), using cisplatin [8]
or doxorubicin [9], respectively.

33.2 Special Considerations
for the Oncologist

HCC arises on the basis of a diseased liver, which is more
sensitive to toxic damage by chemotherapeutic agents than
normal liver. In addition, cirrhosis causes portal hyperten-
sion, which poses additional hazards for the chemotherapist.
These are:

1. Myelosuppression
Portal hypertension is associated with splenomegaly and
associated leukopenia and thrombocytopenia. Unlike the
myelosuppression that results from systemic chemother-
apy and can be attributed to chemotherapy-mediated
damage to the cells of the bone marrow, leukopenia’s and
thrombocytopenia’s consequent to splenomegaly is
thought to be the result of sequestration of blood cells in
the spleen, in the presence of a normal marrow. Although
the starting values of WBC and platelets in the patient
with cirrhosis are typically lower than are permitted in
most cancer clinical chemotherapy trials, it is our expe-
rience that patients rarely come to any harm from
chemotherapy with a starting WBC greater than 3000/L,
or platelet count greater than 40,000/ml. The recent
introduction of granulocyte colony stimulating factors
(CSFs), such as pegfilgastrim (Neulasta) into clinical
practice, means that the WBC can be restored to safe
levels by the oncologist at will.

2. GI bleeding
Portal hypertension is associated with esophageal and
gastric variceal bleeding in addition to colonic bleeding.
This is a hazard for the cancer chemotherapist to con-
sider, since the consequence of the chemotherapy is often
a decrease in platelet counts. Our experience is that
preventive banding or sclerosing of varices does not
appear to make any difference compared to treating the
varices only after there is a bleed.

3. The cirrhotic liver has decreased xenobiotic metabolizing
capacity
The decreased metabolic capacity and particularly the
ability to detoxify xenobiotics, results in increased half
life of many of the common chemotherapeutic agents.
This can result in life-threatening prolongation in the
myelosuppression. Careful dose adjustment to the

Fig. 33.5 Hepatic angiogram
showing change in tumor
vascularity
postchemoembolization (TACE)
(a pre-therapy; b post-therapy)
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individual tolerance of the patient needs to be taken into
account by the experienced oncologist. Whereas most
patients tolerate cisplatin, doxorubicin or FUDR, pro-
longed and frightening thrombocytopenia can result from
use of mitomycin C.

4. Decreased liver synthetic activity associated with portal
hypertension
An increased prothrombin time from decreased synthetic
capacity of the liver, poses hazards for the vascular
interventional radiologist. We typically treat patients with

fresh frozen plasma or platelet transfusions for a platelet
count below 50,000/L prior to femoral artery puncture,
but any chemotherapy delivered with a baseline INR
above 1.5, risks hepatocellular failure, in our experience,
due to the failure of the diseased liver. A low serum
albumin level, especially when associated with more than
minimal ascites, is a poor prognostic sign, in our
experience.

33.3 Hepatic Artery Chemotherapy
and Chemoembolization

Hepatic artery drug delivery as a semi-selective means for
delivering high concentrations of drugs to the tumor

The hepatic artery delivery of drugs such as chemother-
apeutic agents is done with two aims. First, since the HCC is
supplied mainly by hepatic arterial blood in contrast to the
portal delivery of blood to the underlying liver, this offers a
semi-selective means for delivering drug to the tumor rather
than to the underlying liver. In clinical practice, the resulting
transient elevation of several of the liver function tests
suggests that the underlying liver is not really spared. Sec-
ond, delivery of many drugs into the liver via the hepatic
artery appears to result in much higher hepatic extraction of
drug compared with systemic delivery. As a consequence,
since most HCCs are vascular, quite high concentrations of
drugs can be delivered to individual HCC tumor masses.

33.3.1 Commonly Used Drugs

Chemotherapeutic agents that have been commonly used in
many centers include cisplatin or cisplatin (Platinol), dox-
orubicin (Adriamycin), 5-FUdR, mitomycin C, in addition to
themuch lower experiencewith neocarzinostatin (SMANCS),
and, gemcitabine (Gemzar) (Table 33.5). They have been
used as single agents and in combinations, with (usually) or
without some form of embolizing agent to produce
chemoembolization or chemoocclusion. However, there is
little data or agreement of the number of agents to be infused,
with one is the same as more than one agent, and which agent
(s) is superior. Until this can be resolved, the evidence favors
use of either cisplatin [8] or doxorubicin [9] (Table 33.6). The
most commonly used agent in addition to chemotherapy is
Lipiodol (Ethiodol), which is an oily radio-opaque material
that produces an emulsion with the injected drugs. This
emulsion is believed to keep the drugs in longer contact with
the tumor. There is also some evidence to suggest that higher
response rates and prolonged survival are associated with use
of higher doses of cisplatin, compared to lower doses [10, 11]
(Table 33.7).

Table 33.3 Selected recent studies of chemotherapy

Partial
response rate

Investigations Drug (%)

Systemic chemotherapy

Sciarrino et al.
1985 [78]

Doxorubicin 0

Chlebowski et al.
1984 [79]

Doxorubicin 11

Ihde et al. 1977 [80] Doxorubicin 15

Falkson et al. 1984 [81] Doxorubicin, 5-fluorouracil,
methyl-CCNU

19

Falkson et al. 1984 [82] Neocarzinostatin 8

Ravry et al. 1984 [83] Doxorubicin, bleomycin 16

Cavalli et al. 1981 [84] VP-16 13

Melia et al. 1983 [85] VP-16 18

Melia et al. 1981 [86] Cisplatin 1

Ravry et al. 1986 [87] Cisplatin 0

Falkson et al. 1987 [88] Cisplatin 17

Falkson et al. 1987 [88] Mitoxantrone 8

Colleoni et al. 1993 [89] Mitoxantrone 23

Chao et al. 1998 [90] Paclitaxel 0

Patt et al. 2003 [91] 5-FU + IFN 18

Patt et al. 1999 [92] 5-FU + IFN + Cisplatin +
Doxorubicin

20

Bobbio-Pallayicini et al.
1997 [93]

Epirubicin + VP-16 39

Okada et al. 1999 [94]
Guan et al. 2003 [95]
Taïeb et al. 2003 [96]
Lee et al. 2004 [97]
Ikeda et al. 2005 [98]
Zhu et al. 2005 [99]
Zhu et al. 2006 [100]
Kim et al. 2006 [101]
Park et al. 2006 [102]
Louafi et al. 2007 [61]
Li et al. 2007 [103]
Uhm et al. 2008 [104]
Asnacios et al.
2008 [105]

Cisplatin, mitoxantrone + 5-FU
Gemcitabine
Gemcitabine, oxaliplatin
Doxorubicin, cisplatin
5-fluorouracil, mitoxantrone,
cisplatin
Epirubicin, thalidomide
Gemcitabine, oxaliplatin,
bevacizumab
Epirubicin, cisplatin, UFT,
leucovorin
Doxorubicin, cisplatin,
capecitabine
Gemcitabine, oxaliplatin
Gemcitabine, oxaliplatin
Oxaliplatin, doxorubicin
Gemcitabine, oxaliplatin,
cetuximab

33
2
19
19
27
0
20
17
24
18
2
16
20

Yeo et al. [21]
Reviews [106–113]

PIAF, platinum, interferon,
adriamycin, fluorouracil

21
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33.3.2 Hepatic Arterial Occlusion

Various agents have been introduced into the hepatic artery
together with chemotherapy, in order to cause vascular
slowing (occlusion) or embolization (TACE, transarterial
catheter embolization). These include Gelfoam (a degradable
gelatin sponge—our favorite), Ivalon (polyvinyl alcohol
which is irreversible and more dangerous, in our experience),
autologous blood clots, degradable starch microspheres
(Spherex, a relatively safe and attractive product), micro-
capsules, collagen (Angiostat), and steel coils. Recently,
particles of defined size ranges have been introduced, such as
Embogold compressible microspheres (Biospheres) with
particle sizes of 40–120, 100–300, and 300–500 microns.
A study done in 47 patients showed higher responses, mea-
sured by the decrease in tumor size and vascularity, for the
100–300 µm particles compared to the other two particle
sizes [12]. Our main experience has been with Gelfoam,
Spherex starch spheres, and Biospheres, since the first two
are all degradable and they all appear to be minimally hep-
atotoxic and cause only transient vascular occlusion, allow-
ing further chemotherapy sessions after several weeks.
Lipiodol (Ethiodol) has been widely used, particularly in
Europe and Japan. We have not noticed any particular added
effect of Lipiodol to chemotherapy in terms of tumor
response [13]. In addition, it often obscures the subsequent
interpretation of CAT scans. We have therefore abandoned
its use. A recent meta-analysis confirmed the lack of evidence
for the use of Lipiodol in TACE [14]. There was also a
suggestion in the meta-analysis that polyvinyl alcohol parti-
cles may be better than the other agents used in TACE. But
the analysis did not show any difference between the various
chemotherapy agents. The hepatic artery approach is based
on two considerations. First, since the hepatic artery supplies
more than 90 % of oxygenated blood to the HCC, but the
portal vein does similar for the underlying liver, this permits a
selective drug delivery. Second, as the hepatic arterial flow
rate is reduced by use of an embolizing agent, enhanced
hepatic uptake has been shown 166 for many cancer
chemotherapy drugs, especially FUDR, doxorubicin, and
cisplatin, for which 10-fold to 100-fold increases in regional
drug delivery have been shown, as arterial flow decreases.

33.3.3 Protocol for Chemoocclusion Therapy
of HCC

Our largest experience has been with cisplatin. This is based
upon the fact that it has moderate tumor shrinking ability and
has minimal myelosuppressive activity compared with most

Table 33.4 Intrahepatic artery chemotherapy for hepatocellular
carcinoma

Investigation Agents Response
rate (%)

Sasaki et al. 1987 [114] Platinum—gelatin sponge 65

Kasugai et al. 1989 [115] Platinum—ethiodized oil 38

Ohnishi et al. 1984 [116] MMC—microcapsules 32

Lin et al. 1988 [117] 5-FU—Ivalon 32

Fujimoto et al.
1985 [118]

5-FU/MMC—starch 68

Audisio et al. 1990 [119] MMC + microcapsules 43

Kobayashi et al.
1986 [120]

Doxorubicin + ethiodized oil 42

Kanematsu et al.
1989 [121]

Doxurubicin + ethiodized oil 47

Shibata et al. 1989 [122] Platinum + ethiodized oil 47

Konno et al. 1983 [123] SMANCS + ethiodized oil 90

Pelletier et al. 1990 [124] Doxorubicin + gelatin sponge 17

Carr et al. 1991 [125] Doxorubicin/cisplatin 50

Venook et al. 1990 [126] Doxorubicin/cisplatin/MMC + gelatin
sponge

24

Ohnishi et al. 1987 [127] MMC + microcapsules 28

Ohnishi et al. 1987 [127] MMC + gelatin
sponge + microcapsules

57

Beppu et al. 1991 [128] Cisplatin + ethiodized oil + aclarubicin
microspheres

50

Trinchet et al. 1995 [129] Cisplatin + ethiodized oil versus 0 16

Chang et al. 1994 [130] Cisplatin + gelfoam + ethiodized oil
versus gelfoam + ethiodized oil

68a

67a

Stuart et al. 1993 [131] Doxorubicin, ethiodized oil + Gelfoam 43

Bruix et al. 1994 [132] Gelfoam, no chemotherapy 81

Carr et al. 1997 [133] Doxorubicin, cisplatin + Spherex 63

Carr et al. 1993 [134] Doxorubicin, cisplatin + ethiodized oil
versus doxorubicin + cisplatin

57
47

Carr et al. 2002 [135] Cisplatin 58

Ngan et al. 1993 [136] Cisplatin, ethiodized oil, gelfoam 41

Yamamoto et al.
1993 [137]

IL-2

Kawai et al. 1994 [138] Epirubicin + gelfoam versus
doxorubicin + gelfoam

a

Yoshimi et al. 1992 [139] Resection versus TAE a

Epstein et al. 1991 [140],
[141]

Cisplatin + hepatic radiation 48

Rougier et al. 1993 [141] Doxorubicin + gelfoam 41

Onohara et al. 1988 [142] Cisplatin 55

Kajanti et al. 1986 [143] Cisplatin 40

Nagasue et al. 1986 [144] Epirubicin 15

Carr et al. 1996 [10]
Lin et al. 2004 [145]
Jang et al. 2004 [146]
Carr 2006 [147]

Cisplatin dose escalation
Cisplatin, mitomycin C, 5-FU and
leucovorin
5-FU and cisplatin
Gemcitabine

50
28
29

5-FU 5-fluorouracil; MMC Mitomycin C; SMANCS Styrene maleic acid conjugates of
neocarzinostatin and mitomycin C; IFN Interferon
aSimilar survival
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other agents. This is a useful property in the setting of portal
hypertension. It is also relatively well tolerated by the cir-
rhotic liver. It is usually given at a starting dose of 125 mg
per meter squared (125 mg/m2) of body surface area (BSA).
This dose is essentially tolerated by everyone with a
bilirubin of less than 1.5 mg/dL, a normal INR and without
gross ascites. Patients who tolerate this well, without change
in their blood count or increase in their liver functions,
typically have the dose increased after 2 or 3 cycles to
150 mg/m2 and then to 175 mg/m2. The cisplatin is given in
100 ml of normal saline and infused into the hepatic artery
over 30 min, together with dexamethasone 20 mg (to limit
hepatic inflammation), morphine sulfate 5 mg (for pain), as
well as intravenous antibiotics (Ancef or Vancomycin) given
prior to TACE. A pressure pump is used to deliver the drug.
250 ml of 3 % saline is given intravenously at the same
time. In addition, the patients are aggressively given intra-

venous hydration. This is done using D51=2 normal saline or
just 1/2 normal saline with 20 mg KCl per L at 250 ml/h for
a minimum of 3 h. Once the patient is in the vascular pro-
cedure room, the fluid rate is increased to 2 L over 2 h
immediately prior to the cisplatin infusion, together with

Table 33.5 Some randomized clinical trials involving transhepatic artery chemoembolization versus other chemotherapy for HCC

Author Year Agents 1 Agents 2 Effects on survival

Kawai [148] 1992 Doxorubicin + embo Embo None

Kawai [149] 1997 Epirubicin + embo Doxorubicin + embo None

Watanabe [150] 1994 Epirubicin + embo Doxorubicin + embo None

Chang [130] 1994 Cisplatin + embo Embo None

Hatanaka [151] 1995 Cisplatin, doxorubicin + Embo Same + lipiodol None

Uchino [152] 1993 Cisplatin, doxorubicin + oral FU Same + tamoxifen None

Madden [153] 1993 Cisplatin + ADMOS 5-epi-doxorubicin None

Chung [154] 2000 Cisplatin + 1FN Cisplatin None

Lin [117] 1988 Embo Embo + IV FU None

Yoshikawa [155] 1994 Epirubicin + lipiodol Epirubicin None

Kajanti [156] 1992 Epirubicin + FU IV Epirubicin + FU None

Tzoracoleftherakis [157] 1999 Doxorubicin IV Doxorubicin None

Bhattachariya [158] 1995 Epirubicin + lipiodol 131I-Lipiodol None

Table 33.6 Randomized clinical trials involving transhepatic arterial chemoembolization (TACE) chemotherapy versus no treatment controls

Author Year Agents Effects on survival

1. Pelletier [124] 1990 Doxorubicin + gelfoam None

2. Trinchet [129] 1995 Cisplatin + gelfoam None

3. Bruix [159] 1998 Coils and gelfoam None

4. Pelletier [160] 1998 Cisplatin + lipiodol None

5. Lo [8] 2002 Cisplatin + lipiodol Yes

6. Llovet [9] 2002 Doxorubicin + lipiodol Yes

7. Reviews [14, 108, 109, 161]

Table 33.7 Effects of hepatic arterial cisplatin dose intensity [10, 11]

Patients treated: 57

Cisplatin alone n = 26

Cisplatin + Gelfoam = 31

A. Responses (PR): cisplatin alone 11/26 (42 %)

Cisplatin + Gelfoam 18/31 (58 %)

B. Effects of response on median survival (mo) ± SE:

Cisplatin alone Cisplatin + Gelfoam

Responders 29.0 ± 3.5 25.5 ± 1.7

Nonresponders 11.1 ± 1.5 15.6 ± 3.1

p < 0.0001 p < 0.003

C. Effect of treatment type on median survival (mo) ± SE:

Cisplatin alone Cisplatin + Gelfoam

19.53 ± 6.3 30.73 ± 0

p < 0.137

D. Effect of dose density on median survival (mo) ± SE:

Cisplatin alone Cisplatin +Gelfoam

Dose = or < 125 mg/m2/mo 9.9 ± 1.66 16.4 ± 2.8

Dose = > 125 mg/m2/mo 19.5 ± 7.2 30.7 ± 0

p < 0.07 p < 0.69
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immediate intravenous infusion of the diuretics 12.5 g of
Mannitol and 40 mg of Furosemide during the cisplatin
infusion. This diuretic regimen is designed to prevent cis-
platin from being retained in the kidney and causing
nephrotoxicity. Aggressive triple antiemetics consisting of a
combination of Reglan, Benadryl (or Kytril), or Anzamet
and Dexamethasone are all given repetitively for the next
24 h. Prior to cisplatin, we give a single intravenous dose of
Kytril 1 mg (Granisetron) or Zofran 32 mg (Ondansetrone),
together with dexamethasone (Decadron) 4 mg. After cis-
platin, we give intravenous Reglan 2 mg/kg (Metoclo-
pramide), Benadryl 25 mg and Decadron 4 mg every 3 h for
the next 12 h. Zofran is continued at 10 mg IV every 8 h, or
Anzamet or Kytril. In addition, we give an intravenous bolus
of sodium thiosulfate 9 g/m2 immediately before the
chemotherapy and a 6 h intravenous infusion of 1.5 g/m2/h
afterward. This has resulted in essential disappearance of
cisplatin-mediated ototoxicity and neurotoxicity. Intra-
venous hydration at 150 ml/h is continued postchemother-
apy until the patient is discharged from hospital. Patients are
typically hospitalized overnight and discharged the follow-
ing morning. However, whether they need to be kept as an
inpatient overnight is not really clear. Most patients require
some form of bolus intravenous morphine sulfate, typically
2 mg or 5 mg injections, every 3–4 h for 2 or 3 adminis-
trations after the vascular occlusion. The pain of the
postembolization syndrome is likely due in part to arterial
spasm. Lab work is rechecked the morning following treat-
ment for electrolyte imbalances or potassium or magnesium
losses that need to be replaced, as needed.

Gelfoam sponge particles (not powder), which are made
by cutting up Gelfoam sponge sheets with scissors and then
autoclaved, are typically injected hepatic-arterially at the
beginning of the administration of chemotherapy, half way
through and again at the end of the cisplatin administration.
The idea is to cause vascular slowing but never complete
occlusion. We thus do not actually perform complete
embolization. This has resulted in a much greater safety
margin for our protocol. The arterial flow is monitored
during the chemotherapy by regular bolus injections of
angiographic dye, to check the vascular flow. Gelfoam
powder is thought to be too toxic and is not used in our
institution. Similarly, Ivalon is not given because of its
hepatotoxicity and irreversibility, limiting the ability to give
future doses of chemotherapy. Details of the angiography are
presented in Chap. 21.

The chemotherapy (Trans Arterial Chemo Embolization,
TACE) is typically repeated every 8–12 weeks, depending
upon the hepatic tolerance, the tumor response and recovery
of the WBC, platelets, liver transaminases or bilirubin, and
on the time period for clinical patient recovery. The main
toxicity appears to be tiredness and loss of appetite for 7–
10 days posttreatment. We have found with this regimen of

intravenous triple antibiotic and intra-arterial morphine sul-
fate, that nausea and vomiting are minimal and hepatic pain
is also limited. The patients thus do not typically fear their
repeated treatments.

33.4 Safety Considerations of Hepatic
Artery Chemoocclusion

33.4.1 Unilobar Treatments Are Typically
Given at Any Single Therapy
Session

It is possible to safely give chemotherapy to the whole liver
through the proper hepatic artery to an entirely normal liver
with metastatic cancer. It is also possible to do this with
multifocal bilobar HCCs with completely normal liver
function and no ascites and in the complete absence of portal
vein thrombosis, hepatitis, or cirrhosis. However, our
experience is that the chemoocclusion is much safer when
only one lobe of the liver is given TACE treatment at any
one treatment session. This is now our standard operating
procedure. The lobe of the liver with the maximum amount
of tumor is normally selected for initial treatment and several
treatments are given to this lobe until tumor control is
achieved. Then, the other liver lobe is treated on subsequent
treatment sessions.

33.4.2 Vascular Slowing Is Performed
Without Complete Occlusion

Chemotherapy is given with regular pulses of embolizing
materials, to achieve vascular slowing, but complete occlu-
sion of the arterial blood flow is avoided, to minimize sub-
sequent hepatotoxicity.

33.4.3 Drug Doses Are Tailored to Each
Individual

Almost all patients with a bilirubin of less than 1.5 mg/dL
tolerate cisplatin 125 mg/m2. Doses on subsequent treat-
ments can be escalated (Table 33.7) through 150–
175 mg/m2, although few patients can tolerate the last.
A completely normal blood count and no change in liver
function tests is used as the basis for increasing the dose of
cisplatin by one dose level on a subsequent treatment. By
contrast, prolongation of a prothrombin time or elevation of
the bilirubin to above normal levels is normally used to
decrease the cisplatin to 100 mg/m2 on a subsequent treat-
ment, or down one dose level if a higher dose than the
starting dose level has been used. A nadir WBC above
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2000 � 103/Ll or nadir platelet count above 40,000 � 109/
Ll rarely requires a decrease in the dose of cisplatin on
subsequent treatments. The timing of repeated treatments is
somewhat arbitrary. A newly diagnosed patient is typically
put on a schedule of repeat treatments every 6 or 8 weeks for
the first 2 or 3 treatments, until some form of tumor response
can be seen. After this point, the time between treatments is
rapidly increased up to a maximum of 12 weeks, in order to
decrease the risk of liver damage by chemotherapy in the
presence of cirrhosis. We think that extending the
intertreatment intervals beyond 12 weeks is associated with
increasing likelihood of tumor growth. However, it is our
experience that tumors that decrease by more than 50 % of
their size can stabilize without repeat treatments for many
months, without regrowth.

33.5 Results of Hepatic Artery
Chemotherapy
and Chemoembolization

We have evaluated the results of treating a large number of
patients with cisplatin-based chemoembolization (TACE) and
have evaluated them based upon prolonged survival, greater
than 24 months, poor survival, less than 4 months, or inter-
mediate between these two (Tables 33.8, 33.9, and 33.10).We
found that cirrhosis alone was not a good predictor of poor
survival, as plenty of patients with cirrhosis were also in the
best survival category. However, poor liver function, as
judged by an elevated bilirubin, low albumin, or prolonged
prothrombin time (INR) were all strongly associated with the

poor survival category (Table 33.8). The main tumor char-
acteristics that appeared to be important in HCC patient sur-
vival after TACE were portal vein invasion and very high
alpha-fetoprotein (Table 33.9). Tumor size or numbers of
tumors did not appear to be important in our series. By con-
trast, any form of partial response to chemotherapy, as judged

Table 33.8 Cisplatin hepatic artery chemoembolization: prognostic
factors for survival (n = 155)

Patient characteristics (% pts)

Patient survival

>24 mo 4–24 mo <4 mo

n = 49 n = 80 n = 26

Liver disease

Cirrhosis 73 84 88

HBV 28 29 31

HCV 30 36 35

Alcohol 12 15 19

Labs

Bilirubin < 1.6 mg/dL 96 71 42

Albumin > 3.4 g/dL 76 47 35

No ascites 92 90 38

INR < 1.2 80 60 31

Platelets > 150 � 109/L 71 55 27

Portal HT (CT) 35 45 85

Table 33.9 Cisplatin hepatic artery chemoembolization: prognostic
factors for survival (n = 155)

Tumor characteristics (% pts)

Patient survival

>24 mo 6–24 mo <6 mo

n = 49 n = 80 n = 26

Tumors

Unilobar tumors 29 15 8

Bilobar tumors 71 85 92

>3 tumors 78 83 85

PV invasion 41 56 73

Vascular tumors 90 80 42

Any tumor > 5 cm 76 83 85

Metastases (except LNs) 6 17 15

AFP > 100 K ng/ml 12 30 46

Response to chemotherapy

Chemo responses (PR) 84 69 8

Tumor stability 16 25 4

Table 33.10 Cisplatin hepatic artery chemoembolization

Factors associated with tumor responses (n = 155)

PR Stable Progress

n = 98 (63 %) n = 29 (19 %) n = 28 (18 %)

Survival

<6 months 2 (2.0 %) 1 (3 %) 23 (82 %)

6–24 months 55 (56 %) 20 (69 %) 5 (18 %)

>24 months 41 (42 %) 8 (28 %) 0

Cirrhosis

No 34 (35 %) 10 (34 %) 6 (21 %)

Yes 64 (65 %) 19 (66 %) 22 (79 %)

Tumor vasculature

− 5 (5 %) 1 (3 %) 14 (50 %)

± 10 (10 %) 5 (17 %) 2 (7 %)

++ 83 (85 %) 23 (79 %) 12 (43 %)

PV thrombus

− 51 (52 %) 17 (58 %) 4 (14 %)

+ 47 (48 %) 12 (41 %) 24 (86 %)

Number No Correlation

Maximum size No correlation
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by tumor shrinkage or decreased tumor vascularity on a
triple-phase helical CT scan was strongly associated with the
prolonged survival group (Table 33.9). Examples of this are
shown in the CT scans and angiograms in Figs. 33.1, 33.2,
33.3, 33.4, and 33.5. It appears that there are two types of HCC
response to chemotherapy. These are formal tumor shrinkage
(WHO and RECIST criteria) as noted with other types of
cancer (Figs. 33.3 and 33.4), as well as a decrease in tumor
vascularity [15, 16] (Fig. 33.2). Since response to
chemotherapy appeared to play such an important part in
enhanced survival in our large TACE patient experience, we
retrospectively examined those patient or tumor characteris-
tics that correlated with response to chemotherapy
(Table 33.10). We found that the presence of cirrhosis was
much higher in those patients who did not respond to any
chemotherapy (79 %), although plenty of patients who did
respond to chemotherapy also had some degree of cirrhosis
(64 %). An important consideration was tumor vasculature,
since only 5 % of patients with tumors were hypovascular on
CT scan, but 85 % of patients whose tumors were hypervas-
cular on CT scan had responses to treatment, as judged by
tumor shrinkage (Table 33.10). Portal vein thrombosis was
also important, since 86 % of the patients whose tumors
progressed on TACE had main portal vein thrombus, com-
pared with only 48 % in the response category. As in survival,
tumor numbers or maximum tumor size appeared to have no
correlation with response or failure to respond to TACE
(Table 33.10). The new era of kinase inhibitors and antian-
giogenic agents, is forcing a re-evaluation of the significance
of a decrease in tumor size (response byCT orMRI scan). This
is both because responses in HCC correlate poorly with sur-
vival, as well as because the newer agents such as sorafenib
enhance survival with minimal associated scan tumor
responses [17]. Effort is now ongoing to develop semiquan-
titative algorithms for clinical measurement of changes in
HCC vascularity (tumor blood flow), using dynamic
contrast-enhanced MRI and dye-enhanced ultrasonography.

33.5.1 TACE Using Drug Eluting Beads

Drug eluting beads (DEB) can deliver the chemotherapeutic
agent gradually over a period of time. This has the potential
to achieve better tumor response rates and decrease in vas-
cularity. Majority of the studies have been done only with
doxorubicin-containing DEB with an occasional study using
epirubicin [18]. The results seem to be promising with
response rates anywhere from 50 to 81 %, similar to TACE,
and with a good safety profile. The PRECISION V trial
demonstrated improved outcomes (higher rates of complete
response (CR), objective response and disease control at
6 months) for TACE with doxorubicin DEB compared to
conventional TACE. The above-mentioned outcomes were

achieved with less liver toxicity and doxorubicin-associated
side effects [19]. A recent meta-analysis by Huang et al.
demonstrated that DEB-TACE had a better objective tumor
response rate than conventional TACE without any overall
survival benefit. There was no significant difference in the
toxicity profile between the two arms [20]. Large random-
ized control trials in the future will be needed to give us
definitive answers regarding the efficacy of these agents.

33.6 Systemic Therapy

33.6.1 Chemotherapies

A huge number of randomized and nonrandomized studies
have been performed with various single agents and some
combinations of chemotherapeutic agents (Table 33.3). In
Table 33.3 there are also several reviews. The bottom line is
that the typical response rates appear to be no greater than
30 % of patients, nor is there a survival benefit for any single
agent thus far tested. Similarly, claims of enhanced responses
up to 20 % for some combinations such as PIAF [21] are
associated with enhanced toxicity but without a survival
benefit. For this reason, much of the recent literature has
focused on regional chemotherapy, to try and enhance tumor
exposure to the cytocidal effects of higher doses of
chemotherapy. The use of tyrosine kinase inhibitors like sor-
afenib, sunitinib, and erlotinib in advancedHCC are discussed
in Chap. 22. Despite the promising data with these newer
classes of agents, systemic chemotherapy may still have a role
in combination with these newer agents, or in treatment of
patients whose tumors progress on tyrosine kinase inhibitors.

33.6.2 Sorafenib

Two phase III randomized trials demonstrated the benefit of
sorafenib in advanced HCC. The SHARP trial conducted in
North America and Europe demonstrated a median overall
survival benefit of 10.7 months for sorafenib compared to
7.9 months for placebo [17]. The time to progression was
5.5 months with sorafenib compared to 2.8 months with the
placebo. A similar study was conducted in Asia and the median
overall survival for patients on sorafenib was 6.5 months
compared to 4.2 months with a placebo [22]. Some of the
important side effects include diarrhea, rash/desquamation,
hand-foot skin reaction, hypertension, and hypoalbuminemia.
TheGIDEONphase IV trial evaluated the safety of sorafenib in
the real-world setting [23]. An interim analysis in 2011
demonstrated that Child Pugh A patients had a median survival
of 10.3 months compared to 4.8 months for Child Pugh B
patients. The STORM trial evaluated the benefit of sorafenib in
the adjuvant setting. The findings were reported at ASCO 2014
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by Bruix et al. There was no difference in the recurrence-free
survival, time to recurrence, or overall survival between sor-
afenib and placebo in this trial.

33.7 Other Systemic Therapies

A variety of hormonal therapies have been assessed for their
usefulness in shrinking HCCs or enhancing of the survival in
HCC patients. This has been based upon the known gender
bias, in which HCC has been found to be a predominantly
male disease and in which antigen receptors have been found
in many HCC tumors. As a consequence, both Tamoxifen
and LHRH antagonists have been evaluated, as well as
Megesterol (Megace) for their tumor-shrinking abilities
(Table 33.11). Despite initial reports of responses to
Tamoxifen, subsequent controlled randomized trials have
essentially shown no survival benefit for Tamoxifen, LHRH
antagonists such as Luprolide or Flutamide, or Megesterol.
A similar large number of studies have investigated the
effects of interferons, both because they have an antiangio-
genic action as well as an antihepatitis activity. Although
there are conflicting reports of benefit or no benefit to tumor
shrinkage or survival, the consensus is there is no survival
benefit for the use of interferon at any dose level including
huge doses of interferon that would not normally be tolerated

by Western patients. Vitamin K or its analogs are a very
attractive therapy, since a biochemical hallmark of HCC is a
defect in vitamin K metabolism, resulting in elevated levels
of immature prothrombin or des-gamma-carboxy prothrom-
bin (DCP or PIVKA-2), which is one of the more useful HCC
serum tumor markers [24–26]. Although vitamins K1 and K2
appear to be almost nontoxic in adult humans, they have
fairly weak antitumor activity, as judged by tumor responses,
even given at supratherapeutic doses. However, two recent
randomized trials from Japan show that oral K vitamins can
decrease postresection recurrences, as well as decrease the
incidence of HCC in HCV carriers [27–29].

The concept, however, is attractive and it may only be a
matter of time before more potent K vitamin analogs are
introduced into clinical testing for the treatment of HCC.
Cetuximab which is an epidermal growth factor antibody did
not show any single agent activity in advanced HCC. Min-
imal to no activity was found in studies involving single
agent thalidomide, octreotide, or arsenic trioxide
(Table 33.11).

Although HCC is thought to be in general a radio-resistant
tumor, there is some evidence of antitumor activity with
radioactively administered agents delivered into the hepatic
artery, including 131I-Lipiodol, 188Re-Lipiodol, 166Ho, and
32P. These agents have only mild activity so far. 90Yttrium
glass spheres, either imbedded in a resin or in glass beads
(Therasphere), have been used in the Treatment of HCC. The
main attraction of the pure beta-emitting agent with a 1 cm
maximum path length and 62 h half-life, is that very high
doses of radiation can be given to vascular tumors with
minimal hepatotoxicities so far [30]. In addition, only very
small numbers of treatment applications are required, the
tolerance is high and the side effects are low. Thus, patients
appear to have promising quality of life during such treat-
ment. Figure 33.6 shows a CT scan demonstrating a CR with
this therapy and Fig. 33.7 shows survival, arranged by CLIP
score in a single institution trial. We have recently completed
the analysis of 99 patients who received this treatment
modality for their advanced HCC and the results were com-
pared to a similar cohort of 691 patients receiving repetitive
TACE [31]. The survival benefit with single dose 90Yttrium
was equivalent to repetitive TACE and further 90Yttrium had
the added benefits of lower toxicity and single-dose admin-
istration. The survival data is shown in Fig. 33.8. A ran-
domized comparison of 90Yttrium (Therasphere or
Sirspheres) with intrahepatic chemotherapy will be needed to
determine whether one treatment or the other is associated
with prolonged survival and increased quality of life.

Table 33.11 Various recent medical treatments evaluated for unre-
sectable HCC

A. Systemic

Tamoxifen [162]

LHRH agonists [163, 164]

Interferon [165]

Sandostatin [166]

Megestrol [167, 168]

Vitamin K [25, 169]

Thalidomide [170]

EGFR antibody [171]

Arsenic trioxide [172]

IL-2 [137]

Antiangiogenesis strategies [173]
Immunotherapy [174]

B. Hepatic arterial
131I-Lipiodol [175]
131I-Ferritin [176]
90Yttrium microspheres [30]
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33.8 Treatments for Metastatic HCC

33.8.1 Immunotherapy

Different forms of immunotherapy have been tested in HCC
with few and conflicting results.

Interferon alfa—an immunomodulatory cytokine/its anti
tumoral activity have been demonstrated in a subset of
patients mainly with metatstatic melanoma. Small series

describing mainly good tolerability are available. Three
small randomized trials tested its efficacy in metastatic HCC.
In one of the trials IM daily recombinant alpha 2 interferon
(rIFN) was randomized versus ADR in 75 Chinese patients.
rIFN showed higher tumor regression with less toxicity [32].
A second promising trial compared INFa versus best sup-
portive care (BSC) in 71 Chinese patients demonstrating an
improved survival with relatively little toxicity [33]. How-
ever, a similarly designed European trial investigated 58

Fig. 33.6 CAT scan showing
complete tumor disappearance or
complete response
(CR) post-Theraphere 90Yttrium
therapy, together with right
hepatic lobe atrophy (left
pre-therapy; right post-therapy)

Fig. 33.7 Survival analysis after
Theraphere 90Yttrium therapies,
according to Okuda stage I (upper
curve Median 628 days) or stage
II (lower curve Median 281 days)
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patients randomized to INFa given three times a week versus
BSC failed to show any advantage and side effects lead to
treatment discontinuation in 13 out of 23 patients [34].

33.8.2 Anti-programmed Death-1 (PD-1)

In 2011, tumor immune evasion mechanisms were added to
our understanding of the multistep development of human
tumors in the “hallmark of Cancer” pivotal paper [35]. PD-1
is a cell surface receptor that plays an important role in down
regulating the immune system. PD-1 binds to two ligands,
PD-L1 and PD-L2. Anti-PD1/PDL1 antibodies are currently
extensively researched in solid tumors and have demon-
strated significant efficacy in melanoma, lung cancer, and
renal cell carcinoma. In HCC, several evasive mechanisms
utilizing PD-1 have been described including upregulation
of PD-1 expression on effector-phase CD8+ T cells and
PD-L1 expression on Kupffer cells [36].

Recently, a phase II study of nivolumab, a fully human
IgG4 monoclonal anti-PD1 was presented at ASCO 2015
[37]. Forty-one patients Child-Pugh � B7 who and pro-
gressived, were intolerant or refused sorafenib were enrol-
led, 39 were evaluable. Two CR (5 %) were demonstrated
with an additional 18 % partial response. Duration of
response reached 14–17+ months for CR patients. Overall
survival rate at 6 months was 72 %. Anti-PD1s are con-
sidered well tolerated and in this study no maximum tol-
erated dose was defined in any cohort. The role of anti-PD1
agents is still premature to determine and phase III trials are
now ongoing.

33.8.3 Multikinase Inhibitors

33.8.3.1 Sorafenib/Nexavar
This has become the standard therapy for extra-hepatic HCC
metastases and the only FDA-approved oral therapy for
HCC. It is prominently discussed in section F(2) above and
in Chap. 36: Multikinase Inhibitors for HCC.

33.8.3.2 Antivascular Endothelial Growth
Factor

Most of the available data are with trials testing Beva-
cizumab which is an antiangiogenic, anti-VEGF monoclonal
antibody. Its efficacy has been demonstrated in several solid
tumors but was proved only when combined with
chemotherapy. In metastatic HCC, some single agent
activity was suggested [38, 39]. Bevacizumab was tested
with several combinations. Bevacizumab and Erlotinib, an
EGFR TKI, showed promising synergism in 2009 in a group
of 59 patients when 25 % confirmed RR was seen [40]. An
Asian trial with 51 patients showed a 16-week PFS 35.3 %
[41], both trials with good tolerability. However, the com-
bination failed to show any efficacy in sorafenib refractory
patients in a trial that was closed after 10 patients for futility
[42]. Bevacizumab was tested with another antiangiogenic
agent temsirolimus in 28 patients with 19 % RR [43].

Combination of Bevacizumab with chemotherapy was
also tested. Efficacy of Bevacizumab with single agent
capecitabine in 45 patients was 9 % with disease control rate
of 52 % [44]. The combination with gemcitabine and
oxaliplatin (GEMOX) was tested on 33 patients with RR of
20 % and an additional 27 % of patients with stable disease.
Toxicity was predictable for combination chemotherapy
181. The antiangiogenic effects were confirmed when this
combination effect was examined with perfusion CT and a
significant decrease tumor perfusion parameters were seen in
responding patients [45]. No confirmation randomized trials
are available for any of the regimens.

Another antiangiogenic monoclonal antibody rested is
Ramucirumab which binds to VEGFR2. A phase II trial of
42 in naïve patients a 9.5 % was demonstrated [46]. Efficacy
of ramucirumab was tested following failure of sorafenib
versus placebo in a large phase III trial (the REACH trial)
incorporating 565 patients. The trial failed to show a sta-
tistically significant advantage in this large set of patients.
However, some survival advantage was suggested in a
subset of patients with AFP > 400 ng/mL and a phase III
testing this specific subset is ongoing [47].

33.8.3.3 Antiepidermal Growth Factor
Some data is available for the role of anti-EGFR TKI in meta-
static HCC. This specified earlier on and is discussed further in

Fig. 33.8 Survival curves for 2 consecutive patient cohorts treated
with either Theraphere 90Yttrium therapy (upper curve) or chemoem-
bolization (TACE, lower curve). Therasphere-treated patients had
longer survival, p = 0.0146
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the chapter devoted to TKIs. Cetuximab, an anti-EGFR mon-
oclonal antibody was tested in combination with GEMOX. In
45 naïve patients, a confirmed RR was 20 % and disease sta-
bilization was achieved in 40 % of patients [48].

33.9 Systemic Chemotherapy

33.9.1 Single Agent Chemotherapy

Doxorubicin (ADR) is the most extensively studied single
agent chemotherapy. Results have ranged from complete
futility to almost 80 % response. Only one sufficiently large
phase III trial is available from an Italian group, which
randomized 445 patients to ADR or nolatrexed. Survival
with ADR reached 32.3 weeks and only 22.3 weeks with
nolatrexed (P = 0.0068) [49].

Toxicity profile in most series was not favorable with
high rates of neutropenia, septicemia, and cardiotoxicity
questioning the worthiness of ADR in this setting.

ADR-related agents such as epirubicin, mitoxantrone, or
pegylated liposomal doxorubicin show similar low efficacy
[50–53]. Other systemic agents which were tested and
showed very low activity, included 5-FU, capecitabine,
gemcitabine, and irinotecan.

33.9.2 Combination Chemotherapy

Attempts to improve efficacy of chemotherapy by adding
combinations of doublets, triplets, or more showed at times
an increase in response but no real improvement in OS. Very
few phase III trials are available and most data is from small
phase II studies.

Doublets—Attempts to improve doxorubicin was
attempted with several options. Cisplatin plus ADR showed
RR ranging from 20 to 50 % [54]. Cisplatin plus capecitabine
showed RR of 6 and 20 % in two studies [55, 56]. A more
modern version of this combination uses oxaliplatin as the
platinum backbone. A phase II trial combining oxaliplatin
with capecitabine (XELOX) in 50 patients resulted in only
6 % RR [57]. A large Asian-based phase III trial randomized
371 patients to oxaliplatin and continuous infusion 5FU
(modified FOLFOX4) versus single agent ADR. A small
increase in OS was seen 4.97 months–6.4 months, which did
not reach significance (P = 0.07) [58].

Gemcitabine-based doublets were explored with ADR,
and reported RR of 20 % or less [59]. A phase trial II of 41
patients combined gemcitabine to liposomal doxorubicin.
RR was 28 % with three patients reaching CR [60, 61]. No
phase III data is available on the combination. The

combination of GEMOX is considered standard of care in
metastatic biliary cancer. A large retrospective analysis of
204 consecutive patients treated with GEMOX demonstrated
22 %RR and 66 % disease control rate [62]. Again no phase
III data is available.

Triplets and more—The combination of three agents or
more generally did not demonstrate a numerical increase
in responses as compared to doublets. Numerous small
single arms were published. A promising combination
was of cisplatin/interferon alpha-2b/doxorubicin/fluorouracil
(PIAF), especially in phase II. However, a phase III study
compared PIAF to single agent ADR. RR increased from
10.5 to 20.9 %, respectively, but at the cost of increased
toxicity with no statistically significant increase in OS [63].
A more recent retrospective publication of a modified PIAF
regimen, reported a RR of 36 %; conversion to curative
surgery in 33 % and a median OS of 21.3 months, but based
on only 33 patients [64].

33.10 What Is Needed Next?

33.10.1 Improvements in Therapy
of Unresectable HCC

The greatest need is the development of newer, more active
drugs that have minimal hepatotoxicity. The antiangiogenics
and the cell-cycle regulatory drugs appear to be attractive
candidates.

33.10.2 Earlier Diagnosis

Given that survival by surgery is significantly enhanced for
lower stage HCC compared to advanced stage HCC,
screening programs resulting in earlier diagnosis with lower
stage disease would be predicted to result in enhanced sur-
vival after treatment. Any screening program is predicated
on knowledge of the etiological or predisposing factors for
HCC development, as well as a long time interval between
the action of such factors and the development of the tumor
(as used in screening for carcinoma of the cervix uteri). Both
of these criteria are satisfied for HCCs that develop on the
basis of chronic HCV, chronic HBV, or cirrhosis from any
cause, since 1–2 decades typically occur between infection
and tumor development. Annual screening of patients by
ultrasound or CT scan, together with tumor markers
(alpha-fetoprotein and DCP) might be expected to result in
the diagnosis of tumors at an earlier stage of disease in these
known to have predisposing risk factors, than most of the
tumors currently presenting at our center.

33 Medical Therapy of HCC 503



33.10.3 Liver Transplantation Is Still Needed

Even if chemotherapy is completely successful in eradicat-
ing or inhibiting the growth of HCCs after diagnosis, more
than 80 % of the patients still have another chronic disease,
namely cirrhosis. Since this probably plays a large part in the
limited survival of patients with advanced stage HCC [65],
some form of liver replacement therapy is still needed for the
treatment of HCC that is based upon cirrhosis. Whether this
is based upon cadaveric donor liver transplantation,
living-related donor liver transplantation, partial liver trans-
plantation, hepatocyte transplantation, stem cell transplan-
tation or the ability to biologically reverse the fibrosis in a
cirrhotic liver, these are all possibilities for the future total
care of patients with HCC.

33.10.4 HCC Primary Prevention

The ideal long-term advance in HCC management would be
cancer prevention entirely. This is feasible, given that we
know the etiological cause in such a high percentage of these
patients. Two obvious strategies are immediately available,
and include vaccination and prevention of hepatitis or the
treatment of chronic carriers of hepatitis, as well as refrig-
eration of stored food grains and peanuts (substrates for
growth of fungi producing carcinogenic mycotoxins, Chap. 2
) in the Third World. In those Third World countries where
HCC is most common, most of the population is agrarian
and most food staples such as rice are stored in unrefriger-
ated village silos. After the monsoons, the high humidity
encourages the growth of carcinogenic fungi, of which
Aspergillus flavus-producing Aflatoxins are only the best
studied. The provision of refrigerated granaries for stored
grains is expected to go a long way to reducing the condi-
tions under which such carcinogen-producing organisms can
flourish, and thus decrease the exposure and the risk of the
population to hepatocarcinogens.

33.10.5 Causes of Death in HCC Patients

Why do patients with unresectable HCC die? It may seem
obvious that they die because their growing tumors physi-
cally destroy the underlying liver. But most of these patients
also have cirrhosis, which is a cause of death from liver
failure even without presence of a tumor. Also, TACE is
hepatotoxic, and several clinical trials have reported
decreased survival in some patients after TACE therapy. In a
recent analysis of our HCC patients’ deaths, we gave our-
selves the rule that if the CAT scan did not worsen or the
alpha-fetoprotein did not increase in the 6 months prior to
death, then the patient probably did not die only of cancer.

On that basis, 42 % of our patient deaths were not attribu-
table to cancer growth [65].

The field of primary prevention (HBV vaccination,
Chap. 19), early detection (surveillance screening of people
at risk-cirrhosis), and the newer therapies (chapters on
90Yttrium, growth modulators, antiangiogenics) have
brought renewed excitement to the field of HCC manage-
ment, in which multiple ongoing clinical trials of newer
therapies (including gene therapy) are already in progress.

33.10.6 Quantitation of Tumor Vascularity

The rapid incorporation into routine clinical practice of
antiangiogenic and kinase inhibitor agents that decrease
tumor vascularity, often without much change in tumor size,
is leading to radiological efforts to provide at least semi-
quantitative new imaging measures or adaptations of CT,
MRI, and ultrasound techniques that will hopefully become
generally available in the next year or two. Multiple con-
ference presentations have been made and standardization
and validation of these newer clinical measurements are in
progress.

33.10.7 Genomics and Proteomics of HCC

The rapidly expanding fields of both blood and tissue pro-
teomics profiling and gene micro-arrays (Chaps. 5, 6, 7, and
8) are permitting molecular classification of patients into
differing prognostic groupings, who are otherwise clinically
and pathologically similar. Especially with the use of
cell-cycle kinase inhibitors and antiangiogenic agents,
identification of the relevant activated pathway in tumor
biopsies, or presence of elevated blood levels of growth
factors or their receptors for growth or angiogenesis, is
expected to permit more rational choice of therapeutic agent,
and perhaps permit stratification of patients with differing
gene expression profiles, to more properly analyze future
clinical trials.

33.11 Future Directions

33.11.1 Needs for TACE Standardization

There are many published reports of TACE and its methods.
No trial has ever shown the superiority of 2, 3, or 4 drugs
over one. Nor is it clear which agent is best. Perhaps several
drugs, such as cisplatin and doxorubicin are equivalent. We
also need to know whether two or three agents in combi-
nation are superior to one (in general in medical oncology,
combining agents requires dose lowering of each
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component, to minimize additive toxicities). Furthermore,
although most published series involve embolization, some
series use either bland embolization without chemotherapy,
or chemotherapy infusion without embolization, In addition,
several products have been used for the embolization or
vascular occlusion process, including gelfoam and bio-
spheres—the most popular, but also blood clot and a range
of particle materials and sizes. Although most published
reports use ethiodol (Lipiodol), this is based mainly on usage
rather than evidence. One study even shows no added benefit
for lipiodol [13]. In addition to agreement on the drug(s) to
be used, there is little standardization of the doses, which
range from the therapeutic to the homeopathic. Given that
two published RCTs showed a survival advantage for single
agent cisplatin or doxorubicin when used for TACE [8, 9], it
would seem that either should represent the current TACE
standard for future trials.

33.11.2 Combinations of TACE
or Radioembolization
with Kinase Inhibitors

There are currently two sets of standards for therapy of
unresectable HCC. They are single agent cisplatin or dox-
orubicin TACE (above), which produce both tumor shrink-
age (responses) and minor survival advantage on the one
hand, and oral kinase inhibitors, such as sorafenib, that
produce minimal tumor shrinkage, but up to median
2.5 months survival advantage. Results for just-published
Bevacizumab plus erlotinib look even more exciting [22,
66].

Given the different modes of action between these classes
of agent, it seems reasonable to evaluate the combination of
these two classes of agents together, such as cisplatin-TACE
plus sorafenib, or doxorubicin-TACE plus sorafenib, or
intra-arterial 90Yttrium plus sorafenib, or TACE plus beva-
cizumab and erlotinib. These combinations might result in
the benefits of both tumor shrinkage as well as enhanced
survival.

33.11.3 Adjuvant and Neo-adjuvant
Therapies

The results of adjuvant chemotherapy trials for resection
have been disappointing, apart from use of 131I-lipiodol.
A recent adjuvant trial with Sorafenib (STORM trial) had
disappointing results. In part, this may have been due to
sub-therapeutic chemotherapy doses that were used in
otherwise cancer-free patients. It may be that the new kinase
and angiogenesis inhibitors will offer a better therapeutic
margin and be useful in the adjuvant setting. As the criteria

for liver transplantation get pushed towards offering this
modality for multifocal tumors, there is a need for RCTs in
the pre- or posttransplant setting. None have ever been
published, even with chemotherapy. However, since only
transplantation has the potential to simultaneously cure both
the underlying liver disease as well as the tumor, there is a
need for RCTs of chemotherapy, kinase inhibitors or
antiangiogenics in the setting of liver transplantation. The
need seems even greater for live-donor transplants, where
the rules have been more generous and patients with more
advanced tumors have been transplanted.

33.11.4 Newer Clinical Trials

340 clinical trials for HCC are listed on www.clinicaltrials.
gov, of which 170 studies are currently recruiting HCC
patients. They include the combination of TACE with sor-
afenib, 90Yttrium microspheres, and new combinations of
chemotherapies or chemotherapy plus biologics, such as
capecitabine and oxaliplatinum, octreotide-LAR, TACE
with lobaplatin and mitomycin C, everolimus, mapatu-
mumab (TRAIL-1R Ab) plus sorafenib, cetuximab, beva-
cizumab, gemcitabine plus oxaliplatinum plus bevacizumab,
TACE plus bevacizumab, 90Yttrium (Sirspheres) plus sor-
afenib, gemcitabine, cisplatin plus sorafenib, some newer
oral kinase inhibitors, new brachytherapies (32P and 192Ir),
doxorubicin DEB, bevacizumab plus everolimus, brivanib,
IGF1 receptor antibody, and several other newer agents in
early phases of evaluation. A rich harvest of new drugs and
combinations of chemotherapies, biologics, or chemothera-
pies plus biologics, is opening a field where few promising
agents existed up to 5 years ago. This rapidly developing
area will likely result in a different therapeutic landscape
5 years hence.

33.12 Medical Therapy Summary

Liver resection, transplantation or tumor ablation represent
the only current therapies with potential for cure. Most HCC
patients however, are not candidates for these three therapies
at the time of diagnosis because of portal hypertension, poor
liver function, tumor multifocality, portal vein tumor
invasion/thrombosis (PVT) and/or comorbidities. TACE is
the most commonly used nonsurgical treatment modality for
these patients. It is the standard of care for patients with
multiple lesions and well-preserved liver function, with or
without branch PVT [67] and absence of metastasis. There is
no tumor size limitation. Doxorubicin or cisplatin are
well-studied, tolerated and partially effective chemotherapy
agents in this setting. A bilirubin of <2 mg/ml and absence
of ascites or minimal ascites seem to offer the safest
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conditions. Drug-eluting beads can also be used, but have
not yet been shown to result in superior survival to con-
ventional TACE. The chemotherapy is often mixed in an
emulsion with or without [68] Lipiodol (Ethiodol) and
commonly used embolization materials include gelatin
sponge particles (Gelfoam) or defined-size microspheres
(Embosphere Microspheres), which are typically given as
100–300 lm spheres (and larger for shunting). Injecting the
chemoembolization mixture as close to the artery feeding the
tumor(s) as feasible, is thought to be associated with maxi-
mal antitumor effect and least hepatic parenchymal toxicity.
Repeat treatments are typically given every 2–4 months,
depending on blood counts, liver function tests and tumor
size response and vascular responses on follow-up CAT
scans. TACE in association with RFA has been reported to
yield better outcomes than RFA alone. Tumor stabilization is
likely a useful outcome and not a cause to switch therapy.
By contrast, growth of tumor in a previously treated area of
the liver is considered a treatment failure and cause for
change of therapy. Typically, the choices at that point are
radioembolization or Sorafenib.

90Yttrium spheres regional therapy can be delivered by
use of Theraspheres (Nordion) (a pure radiotherapy) or
Sirspheres (Sirtex) (radioembolization or TARE, which
offers lower radiation dose but greatly increased number of
spheres per treatment). The two agents have not been
directly compared, nor are survival results available for
comparisons of 90Yttrium spheres regional therapy with
TACE. However, TACE needs to be used with caution in the
presence of major branch PVT and not at all in presence of
main stem PVT. By contrast, several papers have shown the
relative safety of 90Yttrium spheres in the presence of PVT.
This is likely to make this therapy a first choice in presence
of PVT. Thus, for patients with tumor progression following
TACE, the choice is 90Yttrium spheres or oral therapy with
Sorafenib, since there is no trial data to indicate which is the
superior choice [69]. For patients failing first line 90Yttrium
spheres therapy, the second line choice is Sorafenib.

Recently, external beam radiation therapy (EBRT) has
been offered to patients who are surgically unresectable and
cannot have other local therapy, such as major branch PVT,
with encouraging response and safety data. However, this is
in early phases of evaluation.

Patients failing TACE or 90Yttrium spheres therapy or
Sorafenib and who have good performance status, or who
have metastasis, are often offered clinical trial enrollment
with new agents, if their general performance status is sat-
isfactory. Similarly, if they would otherwise have been
offered TACE or 90Yttrium spheres therapy or Sorafenib, but
a clinical trial comparing any of those with a new agent is
available, then enrollment in the trial may be reasonable,
since none of those three modalities is curative in this set-
ting. Further Reading, see Refs. [67–77].
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Over the past 30 years, researchers have claimed victory in
the war against cancer several times. Advances in molecular
biology have led to an increased understanding of the dis-
crete cellular pathways that promote or reduce cell division,
cell survival, apoptosis, and angiogenesis. With the
increased comprehension of the molecular etiology of cancer
and these pathways, the era of rational therapy—the design
of molecularly targeted agents that could modulate these
cellular pathways (reactivate apoptosis and decrease cell
growth, cell survival, and angiogenesis) to stabilize or halt
the progress of cancer—began. Only in the past few years
has this new knowledge and approach led to the production
of pharmacologic agents that not only target a pathway but
also produce clinical benefits.

Understanding molecular pathways can lead to the
development of new drugs or improved drug regimens.
Molecular pathways associated with hepatocarcinogenesis
that modify apoptosis, cell division, cell survival, and
angiogenesis include the rat sarcoma/rat sarcoma-activated
factor/mitogenactivated protein kinase/extracellular regu-
lated kinase (Ras/Raf/MAP/ERK) pathway, the phos-
phatidylinositide 3-kinase/protein kinase B/mammalian
target of rapamycin (PI3K/Akt/mTOR) pathway,
Wnt/b-catenin, and the Janus kinase/signal transducers and
activators of transcription (JAK/STAT) pathway [1]. These
pathways are the targets of rational drug design, with the
objective of modulating them to prevent progression or
worsening of hepatocellular carcinoma (HCC).

34.1 Molecular Pathways

34.1.1 Growth Factor Receptors

Growth factor receptors, such as epidermal growth factor
receptor (EGFR), insulin-like growth factor receptor (IGFR),
stem cell growth factor receptor (c-KIT), hepatocyte growth
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factor and its respective receptor (HGF/c-MET), and the
cytokine transforming growth factor-b (TGF-b1) receptor
bind to their ligands and form receptor dimers. Dimerization
initiates autophosphorylation of intracellular receptor
domains, which then leads to the phosphorylation of intra-
cellular second-messenger proteins [1, 2].

Mutations in growth factor receptor pathways have been
found in tumors from patients with HCC. EGFR mRNA is
upregulated in tissue samples from patients with HCC.
Likewise, an increase in the amount of EGFR ligands that
can activate these receptors, such as transforming growth
factor alpha (TGF-a), has been found in HCC cell lines.
Constitutively, activated growth factor receptors are another
type of mutation associated with hepatocarcinogenesis; thus,
even in the absence of ligand, the pathway can be activated
[3].

34.1.2 Ras/Raf/MAP/ERK Pathway

WhenRas, aGTPase, is covalentlybound toaprenylgroup, it is
localized to and associateswith the plasmamembrane,where it
couples with extracellular growth factor receptors [4, 5].
Binding of the extracellular receptor to the ligand induces
receptor homodimerization or heterodimerization and
autophosphorylation of intracellular receptor domains. Ras
then undergoes a conformational change from an inactivated
state, Ras- GDP, to an active state, Ras-GTP [4, 6]. The con-
formational change induces a series of intracellular phospho-
rylations: Ras phosphorylates Raf, which then phosphorylates
MAP, andMAP phosphorylates numerous proteins, including
ERKand several transcription factors, such as c-myc and c-jun
[4, 6, 7]. PhosphorylatedERK translocates into the nucleus and
activates several transcription factors [4, 7].

The Ras/Raf/MAP/ERK pathway has been implicated in
numerous cancer types; 15–30 % of all cancers have Ras
mutations [7–9]. Some cancer types, such as HCC, demon-
strate an even greater vulnerability to mutations in this
pathway. Tumor biopsies from patients with HCC were
analyzed for c-raf-1 gene and Raf-1 protein expression; the
overexpression of the c-raf-1 gene was observed in 50 % of
samples and overactivity of Raf-1 was observed in 100 % of
samples [10]. Furthermore, Raf mutations are frequently
associated with hyperphosphorylated downstream effectors.
Raf mutations associated with cancer were transfected into
cell lines, and the majority of the various Raf mutations
(82 %) had hyperphosphorylated ERK in the transfected
cells [11].

The Ras pathway can also be controlled through inhibi-
tors such as RASSF1A and NORE1A. The amount of these
inhibitors is associated with the presence of HCC and dis-
ease status. RASSF1A was significantly decreased in the
liver samples from patients with HCC (both good and poor

prognosis) compared with liver samples from healthy
patients. NORE1A, on the other hand, was decreased only in
liver samples from patients with HCC and poor prognosis;
there was no difference between the amount of NORE1A in
the liver samples of healthy patients and patients with HCC
and good prognosis, suggesting NORE1A may be a target to
prevent worsening of HCC [12].

34.1.3 JAK/STAT Pathway

When growth factor receptors bind to their ligands, the
receptors undergo dimerization and autophosphorylation of
the intracellular cytoplasmic domains. JAK proteins are
phosphorylated and JAK phosphorylates the cytoplasmic
protein STAT. Phosphorylated STAT forms homodimers,
and the STAT dimer translocates into the nucleus and acts as
a transcription factor. STAT dimers are quickly inactivated
by inhibitors of STAT, suppressors of cytokine signaling
(SOCS) [13].

In tumors from patients with HCC, JAK and STAT were
hyperphosphorylated; the phosphorylation levels of JAK1,
JAK2, STAT3, and STAT5 were significantly higher in the
liver samples from patients with HCC than in patients with
normal livers. Mutations were found in many of the STAT
inhibitors, such as SOCS1, SOCS2, and SOC3 [12].

34.1.4 The PI3K/Akt/mTOR Pathway

PI3K associates with the intracellular domain of many
growth factor receptors. Upon binding of ligands to a growth
factor receptor, the growth factor receptors form dimers, and
intracellular domains of the growth factor receptors are
phosphorylated. When the PI3K/Akt/mTOR pathway is
activated, PI3K cleaves phosphatidylinositol (4,5)-bispho-
sphate (PIP2) to phosphatidylinositol (3,4,5)-trisphosphate
(PIP3) [6]. The accumulation of PIP3 induces a series of
intracellular events, including the activation of Akt, and Akt
in turn phosphorylates mTOR, a serine/threonine kinase
[13–15]. Activated mTOR promotes the expression of c-
myc, cyclin D, and other genes involved in cell proliferation
and angiogenesis. Mutations that induce the constitutive
activation of Akt, which then increase the activity of mTOR,
have been found in several types of cancers [1]. Approxi-
mately half of the cases with HCC had overactivation of the
PI3K/Akt/mTOR signaling pathway [16].

34.1.5 Wnt/b-Catenin

Wnts are secreted glycoproteins that bind to the extracellular
receptors frizzled, LRP5, and LRP6. In the absence of the
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ligand, some of the intracellular protein b-catenin forms a
complex with E-cadherin, a complex responsible for cell–cell
adhesion. b-Catenin also forms a complex with GSKb, which
is then degraded by a proteasome. Upon binding of Wnt to
extracellular receptors, a downstream effector phosphorylates
b-catenin. Phosphorylated b-catenin dissociates from many
of the protein complexes, and this induces other cellular
activities. When b-catenin dissociates from E-cadherin, cell
motility is enhanced. When b-catenin is phosphorylated and
free from the GSKb complex, it translocates into the nucleus
and acts as a coactivator to stimulate the transcription of
genes, such as c-myc, c-jun, and cyclin D2 [1, 3]. Approxi-
mately half of the cases with HCC had activation of the
Wnt/b-catenin signaling pathway [17].

34.1.6 Transcription Factors

Transcription factors that induce the transcription of genes
that promote cell division, cell survival, angiogenesis, or that
inhibit apoptosis can lead to cancer. Nuclear factor-kappa B
(NF-jB) is a transcription factor known to be associated
with hepatocarcinogenesis that induces the transcription of
anti-apoptotic genes [1].

In the inactive form, NF-jB remains in the cytoplasm and
is bound to an inhibitory protein, inhibitory kappa B (IjB).
There are several mechanisms that can remove IjB and, in
turn, activate NF-jB. For example, inhibitor kappa kinase can
phosphorylate IjB, and phosphorylated IjB dissociates from
NF-jB. IjB can also be removed by a specialized proteasome
degradation pathway. When no longer associated with IjB,
NF-jB translocates into the nucleus and functions as a tran-
scription factor [6, 18]. The PI3K/Akt pathway can also
activate NF-jB; Akt phosphorylates numerous proteins and
can also activate NF-jB [19]. Constitutively, active NF-jB
has been found in some forms of cancer and has been asso-
ciated with hepatocarcinogenesis [1, 20].

34.1.7 Proteasome

Cells remove intracellular proteins by a specialized protea-
some degradation pathway. The protein to be degraded is
covalently linked to ubiquitin molecules by ubiquitin ligases.
The chain of ubiquitin molecules bound to the protein ‘tags’
the protein for a special degradation pathway, and the pro-
teasome destroys the ubiquitinated protein. Proteasomes are
essential for the regulation of cellular activities, such as cell
division and gene expression. Cyclins, protein regulators of
the cell cycle, are degraded at key steps by proteasomes; in
this manner, the cell progresses to the next stage of the cell

cycle. Gene expression is also controlled by proteasomes.
For example, proteasomes degrade IjB, an inhibitor of
NF-jB. In this manner, NF-jB is activated and can then
function as a transcription factor [6, 21].

34.1.8 Angiogenic Targets: VEGFR,
PDGFR, and FGFR

Activation of vascular endothelial growth factor receptors
(VEGFRs), including VEGFR1 (FLT-1), VEGFR2
(FLK1-KDR), and VEGFR3 (FLT4), or platelet-derived
growth factor receptors (PDGFR)-a or -b, promotes angio-
genesis. Activation of VEGFR2 on endothelial cells in partic-
ular promotes a strong mitogenic, survival, and angiogenic
signal. The intracellular molecular pathway is similar to that of
growth factor receptors. Upon binding to the ligand, VEGFR
forms dimers and activates the intracellularRas/Raf/MAP/ERK
and PI3/Akt/mTOR pathways (Fig. 34.1: Angiogenic Signal-
ing Pathways) [3]. VEGF levels have been found to correlate
with the amount of angiogenesis and poor prognosis. When
tumor samples from patients with HCC were collected and
analyzed, VEGF levels correlated with the amount of angio-
genesis. Furthermore, higher preoperative VEGF serum levels
correlated with shorter disease-free survival and overall sur-
vival [22].

Therapies that abrogate VEGFR signaling initially slow
tumor growth and inhibit angiogenesis. Continuous treatment
with anti-VEGFR agents, however, promotes the upregula-
tion of activation of other proangiogenic signaling pathways,
namely, PDGF/PDGFR and fibroblast growth factor ligands
and receptors (FGF and FGFR) [23–26]. The FGF signaling
pathway, which is comprised of 4 receptors (FGFR1-4) and
over 20 ligands (FGF1-20), exerts activity via the intracel-
lular Ras/Raf/MAP/ERK and PI3K/AKT/mTOR pathways.
Dysregulation of the FGF/FGFR pathway has been impli-
cated in promoting neoangiogenesis, therapy resistance, and
disease recurrence [23–26].

34.1.9 Extracellular Matrix Changes

hanges in the extracellular matrix (ECM) can lead to tumor
invasion, metastasis, and the worsening of HCC. HCC tissue
has been found in association with overexpression of several
types of matrix metalloproteinase (MMP) enzymes, such as
MMP-2, MMP-7, and MMP-9, which digest ECM proteins.

In addition, changes in the expression of integrins,
receptors that mediate cell–cell and cell–ECM adhesion,
have been found in tissue from patients with many types of
cancer, including HCC [1, 21, 27].
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34.1.10 Apoptosis

Anti-apoptotic transcription factors activated by the
second-messenger systems, such as the activation of growth
factor receptors and the Ras/RAF/MEK/ERK pathway [13],
can lead to inhibition of apoptosis.

Another protein that is essential to prevent cancer is the
p53 gene. This protein can induce apoptosis [22]. Similarly,
p53 plays an essential role in HCC; p53 gene mutations are
associated with 30–50 % of biopsies from patients with
HCC. Furthermore, correlations between p53 mutations and
shorter survival time have been observed [21, 28, 29].

34.1.11 Immune Checkpoints

An optimally functioning immune system maintains a bal-
ance between tolerating normal cells with self-antigens, and
eliminating pathogens and damaged cells [30, 31]. Cancer
tumors modulate the signaling cascades of helper T cells to
evade detection by the immune system [30, 31].

Understanding the signaling cascade can provide potential
targets to reactivate the immune system and eradicate tumors.

Immune checkpoints that inhibit the immune system
upon activation and that have been identified as targets for
HCC includes the T lymphocyte associated antigen 4
(CTLA-4) and programmed cell death protein 1 (PD1)
receptor with its respective ligands, programmed cell death 1
ligand 1 (PD-L1) and PD-L2. CTLA-4 and PD1 are
expressed on helper T cells, and tumor cells express PD-L1
and PD-L2 [31–33].

34.1.12 Inflammation

Epidemiological studies suggested that use of
anti-inflammatory agents, such as aspirin, lowers the risk of
developing HCC versus nonuse [34, 35]. Elucidating the
inflammatory pathways might lead to the development of
novel therapies. Cyclooxygenase (COX) enzymes have been
implicated in inflammation and hepatocarcinogenesis;
aspirin inhibits COX-1 and COX-2, COX-2 is expressed at

Fig. 34.1 Angiogenic signaling pathways for VEGFR, PDGFR, and FGFR
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low levels in normal tissue, and COX-2 is upregulated and
overexpressed in HCC [36].

34.1.13 Challenges to the Modification
of These Pathways for
the Treatment of HCC

Although researchers now understand many of these molec-
ular pathways and have identified factors that could induce
mutations that lead to intracellular changes, several challenges
still exist. HCC is molecularly heterogeneous; in other words,
the underlying pathology that leads to the development of
HCC may be different from patient to patient, and a pharma-
cologic agent may only exhibit efficacy in a subgroup of
patients. Another challenge is that some mutations with a
constitutively active protein potentiate not one but several
intracellular pathways. For example, dysregulation of the
PI3K/Akt/mTOR signaling cascade correlated with overac-
tivity of other signaling pathways, such as EGFR, in over half
the HCC cases [16]. If a pharmacologic agent targets either the
receptor or the point of signal transduction, then treatment
necessitates a therapeutic agent that targets several pathways
or the use of a combination of agents that target several
pathways. Another challenge is that there is cross talk among
many of these intracellular pathways. Therefore, successful
modification of one pathway could lead to an increase or
decrease in the activity of another pathway or even cause
changes that lead to resistance of the pharmacologic agent [1].
For example, therapeutic inhibition of the VEGFR pathway
in vitro leads to increased activation of the FGF/FGFR path-
way, and ultimately, resistance to anti-VEGFR agents
[23–26].

34.2 Rational Therapies

34.2.1 Targeting Growth Factor Receptors

Inhibiting or preventing the activation of growth factor
receptors has been a strategy to prevent activation of intra-
cellular molecular pathways, such as Ras/Raf/MEK/ERK
and P13/Akt/mTOR.

34.2.1.1 Targeting EGFR
There are several pharmacologic agents in development that
target one growth factor receptor in particular: EGFR. The
two strategies that target the EGFR include antibodies that
bind to an extracellular domain of the receptor and EGFR
tyrosine kinase inhibitors.

Monoclonal anti-EGFR antibodies include cetuximab
(Erbitux), a monoclonal IgG1 chimeric antibody, and

panitumumab (Vectibix), a monoclonal IgG2 antibody. Both
of these antibodies bind to a ligand-binding site on the
extracellular domain of the EGFR and reduce activation of
the EGFR [19, 37]. Although both cetuximab and panitu-
mumab are antibodies, they have differing mechanisms of
action. Cetuximab has been proposed to stimulate antibody-
dependent cell-mediated cytotoxicity, whereas panitumumab
is believed not to activate antibody-dependent cell-mediated
cytotoxicity [19, 37, 38]. Another difference is the final
destination of the receptors that bind to the antibodies.
Cetuximab binds to receptors and stimulates endocytosis, but
the antibodies are later returned to the cell surface, whereas
receptors bound to panitumumab undergo endocytosis but
are then degraded [19, 37]. Gefitinib (Iressa) and erlotinib
(Tarceva) are EGFR tyrosine kinase inhibitors, which com-
pete with the ATP intracellular domain of EGFR inhibitors
and prevent activation of the intracellular cascade [37].
Other EGFR tyrosine kinase inhibitors in clinical develop-
ment include lapatinib (Tykerb) and AC480.

Because some of the agents that target EGFR, such as
gefitinib, erlotinib, and cetuximab, are approved for other
cancer types, agents that similarly target EGFR are thought to
have the potential to treat HCC. However, agents that target
EGFRhavemixed results in the treatment of other tumor types.
Some patients do not respond to anti-EGFR therapy and other
patients who initially respond develop resistance [39]. Thus,
many current and recently completed clinical trials evaluate
the efficacy and safety of anti-EGFR pharmacologic agents
alone or in combination for patients with HCC [1]. Erlotinib
was recently evaluated in a phase III study, and will be further
discussed in the polypharmacy section of this chapter.

34.2.1.2 Targeting HGF/c-MET
Agents that target the c-MET signaling pathway are also in
development. One of the more exciting potential therapies
for HCC within the last few years is tivantinib, a c-MET
tyrosine kinase inhibitor that abrogates downstream Ras/Raf/
MEK/ERK and P13/Akt/mTOR signaling pathways [40,
41]. Preliminary findings from a phase II clinical study
suggest that biomarkers can potentially identify patients who
are most likely to be responsive to tivantinib [42–44].
Patients (n = 107) who had experienced disease progression
and/or intolerance to sorafenib or sunitinib were randomized
into a tivantinib (360 mg twice a day) or placebo arm at a
2:1 ratio [43]. Notably, patients with MET-high tumors
exhibited improved median overall survival with tivantinib
versus placebo (7.2 vs. 3.8 months, respectively; hazard
ratio = 0.38; P = 0.01). There was no statistically significant
difference in overall survival between the tivantinib and
placebo arms for patients with MET-low tumors (5.0 vs.
9.0 months, respectively; hazard ratio
= 1.33, P = 0.50) [42, 43]. Although these preliminary
findings suggest the use of c-MET as a predictive marker of
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responsiveness to tivantinib, patients with MET-positive
tumors need to be prospectively enrolled in phase III studies.
There are 2 phase III clinical studies that are recruiting
patients with diagnostically c-MET-high tumors; these
studies will evaluate the efficacy and safety of tivantinib in
the second-line setting [45].

Other therapies that target the HGF/c-MET pathway are
in development and being evaluated in clinical trials, such as
emibetuzumab, a monoclonal anti-MET antibody that targets
the extracellular receptor. [24, 45–47]. Unlike tivantinib,
however, biomarkers are not being integrated into these
studies [45]. Other agents that target c-MET in addition to
other signaling pathways will be further discussed in the
multitargeted kinase inhibitors section.

34.2.1.3 Targeting Other Growth Factors
Other agents in development target IGF-1R, such as
anti-IGF-1R antibodies (i.e., cixutumumab, BIIB002); these
agents are currently being evaluated in phase I studies in
combination with other therapies [45]. A therapy that targets
TGF-b1R (i.e., galunisertib) is also in development [48].

34.2.2 Targeting Ras/Raf/MAP/ERK

Numerous therapies that abrogate the intracellular
Ras/Raf/MAP/ERK signaling cascade are in development.
For example, donafenib, a ras inhibitor, is currently being
evaluated in phase I/II studies [45]. The downstream MAP
protein is an important target to evaluate. For example, even
in the absence of a Ras or Raf mutation, constitutively acti-
vated MEK has been reported in HCC cases [47, 49]. MEK
inhibitors in development include selumetinib (AZD6244),
refametinib (BAY 86-9766), and trametinib, and are under
evaluation in phase II clinical trials [28, 45, 50].

34.2.3 Targeting PI3K/Akt/mTOR

Several pharmacologic agents targeting the PI3K/Akt/mTOR
pathway have been developed. Although some of the agents
that inhibited the activity of PI3K (e.g., wortmannin and
LY294002) were initially promising in tumor xenograft
models, later studies demonstrated that they would not be
appropriate as clinical agents because their pharmacokinetic
properties were not favorable [51]. Other therapeutic agents
in early clinical development, such as alkylphospholipid
perifosine, target Akt [52].

There are many agents in development that block the
downstream effector, mTOR. The mTOR inhibitors in
development include everolimus, temsirolimus, and sir-
olimus [1, 19, 53]. Everolimus and temsirolimus are cur-
rently approved for other tumor types. There are several

phase I/II trials evaluating temsirolimus, either administered
alone or in combination with other therapies [45].

The mTOR inhibitor that has reached the most advanced
stage of development is everolimus, which was recently
evaluated in a phase III study in a second-line setting [54].
Although sorafenib has provided benefit by extending the
median overall median survival of patients with advanced
HCC by approximately 2–3 months, sorafenib has been
unable to extend survival to 1 year [55, 56]. There is an
unmet need for additional therapies for advanced HCC in the
second-line setting; after patients experience disease pro-
gression with sorafenib, there are no currently approved
targeted therapies to slow or halt disease progression.
Moreover, approximately 30 % of patients discontinued
therapy because of sorafenib-associated adverse events [57].
Therefore, safe and effective therapeutic options to be
administered in the second-line setting are an unmet need in
the management of advanced HCC. The efficacy and safety
of everolimus was assessed in a phase III study
(EVOLVE-1) (n = 546) [54]. After treatment failure with
sorafenib, patients were randomized into an everolimus
(everolimus at 7.5 mg/day plus best supportive care) or
placebo (placebo plus best supportive care) arm at a 2:1
ratio. The primary end point, improved overall survival, was
not achieved; there was no statistically significant difference
in median survival between the everolimus and placebo arms
(7.6 vs. 7.3 months, respectively, hazard ratio = 1.05;
P = 0.68). The most common severe (grade 3) and
life-threatening (grade 4) adverse events in the everolimus
arm were anemia (7.8 %), asthenia (7.8 %), and decreased
appetite (6.1 %) [54]. Everolimus is still being evaluated in a
phase II clinical study, although it will be evaluated in
combination with sorafenib [45].

34.2.4 Targeting Wnt/b-Catenin

Pharmacologic agents in development that target the
Wnt/b-catenin signaling pathway are in preclinical devel-
opment. These include anti-Wnt antibodies, which disrupt
activity of the downstream Wnt effector, b-catenin, and
promote apoptosis in cancer cell lines [1, 58–62]. Other
therapies in development include ICG-001 and PMED-1;
these agents disrupt the interaction between b-catenin and
the transcription regulator CREB-binding protein, and ulti-
mately inhibit downstream signaling [52, 59, 63].

34.2.5 Proteasome Inhibitors

In preclinical studies, proteasome inhibitors demonstrated
efficacy when delivered with other agents; bortezomib was
given as a pretreatment to cells followed by a tumor necrosis
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factor-related apoptosis-inducing ligand (TRAIL) [64].
Apoptosis was induced only in HCC cells, whereas
non-HCC hepatocytes did not exhibit apoptosis [64].
Proteasome inhibitors in development include bortezomib
and oprozomib [65]. Proteasome inhibitors, in combination
with other therapies, are under evaluation in phase II clinical
studies [45].

34.2.6 Targeting Angiogenic Pathways:
VEGFR, PDGFR, and FGFR

Because VEGFR and PDGFR stimulate proangiogenic
pathways, pharmacologic agents that target these receptors
can inhibit this process. A pharmaceutical agent in devel-
opment is bevacizumab, an anti-VEGF antibody; by
removing the VEGF ligand, the proangiogenic VEGFR
signaling pathway should not be activated [21]. Although
bevacizumab as a single agent exhibited activity in a phase II
study evaluated patients with advanced HCC (i.e., a 13 %
objective response rate was achieved), there are currently no
plans for further development of bevacizumab as a single
agent in phase III studies [47, 66]. The efficacy and safety of
bevacizumab in combination with other therapies, however,
is still under evaluation in ongoing phase II studies [45].

Ramucirumab (IMC-1121B), a fully human
anti-VEGFR-2 monoclonal antibody, was recently evaluated
in a phase III clinical study the second-line setting (REACH)
[67, 68]. Patients (n = 565) were randomized at a 1:1 ratio
into a ramucirumab (intravenous ramucirumab at 8 mg/kg
plus best supportive care) or placebo (placebo plus best
supportive care) arm in the second-line setting (i.e., experi-
enced disease progression and/or intolerant to sorafenib)
[68]. Patients in the ramucirumab arm failed to achieve the
primary end point, improved overall survival; there was no
statistically significant difference in survival between the
ramucirumab and placebo arm (9.2 vs. 7.6 months, respec-
tively; P = 0.14). The most common grade 3/4 adverse
events in the ramucirumab arm included liver injury or
failure (19 %), hypertension (12 %), and malignant neo-
plasm progression (6 %) [68]. Although ramucirumab alone
failed to achieve improved survival as a single agent in a
second-line setting, the efficacy and safety of ramucirumab
in combination with other therapies is being investigated in
ongoing clinical studies [45].

Other therapies that target proangiogenic signaling path-
ways include axitinib, a VEGFR-1,-2,-3 kinase inhibitor,
and dovitinib, an FGFR3 kinase inhibitor [19, 45, 69, 70].
Therapies in development that target multiple proangiogenic
signaling pathways will be discussed further in the multi-
targeted kinase inhibitors section.

Antiangiogenic therapies are shown in Fig. 34.2. Thera-
pies that target other pathways are shown in Fig. 34.3.

34.2.7 Targeting Immune Checkpoints

Therapies that target the CTLA-4 and PD1/PD-L1 immune
checkpoints are in development for HCC. Some of these
agents have already exhibited efficacy against other malig-
nancies; both ipilimumab (Yervoy), an anti-CTLA-4 anti-
body, and nivolumab (Opdivo), anti-PD-L1 antibody, have
been approved by the FDA for melanoma [31, 71].

Antibodies that target CTLA-4 or PD1 abrogate activation
of the inhibitory immune pathway. Anti-CTLA-4 antibodies
(i.e., tremelimumab, ipilimumab) are currently under evalu-
ation in clinical trials for HCC [31, 70]. The most advanced
therapy for HCC that targets an immune checkpoint is
nivolumab. In a recently reported phase I/II clinical study,
nivolumab exhibited activity as assessed by reduction in
tumor size in patients with HCC [72]. A phase III trial to
evaluate the efficacy and safety of nivolumab in HCC has
been registered [45].

34.2.8 Multitargeted Kinase Inhibitors

To date, the only multitargeted kinase agent to be FDA
approved for the management of HCC is sorafenib. Over the
last 5 years, other multitargeted kinase agents (i.e., sunitinib,
linifanib, brivanib), have been evaluated; these agents failed
to improve overall survival in phase III studies, and will be
discussed in more detail below.

34.2.8.1 Sorafenib
Sorafenib (Nexavar) inhibits the Ras/Raf/MAP/ERK pathway,
VEGFR-2 and -3, PDGFR-b, KIT, RET, and Flt-3 receptor
tyrosine kinases [73–75]. In addition to blocking multiple
pathways, sorafenib is the first systemic agent that has provided
clinical benefit to patients with HCC. In a phase III trial
(SHARP trial), 602 patients predominantly from Europe,
Australia, and the United States and diagnosed with advanced
HCCwere randomized to receive either placebo or sorafenib at
400 mg twice a day. Patients in the placebo arm had an overall
survival of 7.9 months, whereas patients in the sorafenib arm
had an overall survival of 10.7 months (hazard ratio = 0.69;
P < 0.001) [56]. Sorafenib was generally well tolerated. The
most common (any grade) drug-related adverse events reported
in 10 % ormore of the sorafenib arm included diarrhea (39 %),
fatigue (22 %), hand–foot skin reaction (21 %), rash/
desquamation (16 %), alopecia (14 %), anorexia (14 %), and
nausea (11 %) [56]. The most common grade 3/4 adverse
events were hand–foot skin reaction (8 %) diarrhea (8 %),
fatigue (3 %), hypertension (2 %), weight loss (2 %), and
abdominal pain (2 %) [56]. Based on the improvements in
health outcomes, such as overall survival, demonstrated in
patients administered sorafenib in this phase III trial, sorafenib
was granted FDA approval. Sorafenib is the first molecularly
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targeted agent to reach the clinic for the treatment of HCC.
Sorafenib has been integrated into the National Comprehensive
Cancer Network (NCCN) guidelines; for patients who are not
candidates for resection or a liver transplant, sorafenib is a
treatment option [76]. Sorafenib is the only approved therapy
for patients with metastatic HCC [76]. Moreover, within this
treatment algorithm, sorafenib has a category 1 recommenda-
tion (i.e., high-level evidence and consensus among the NCCN
panel members) for patients with Child-Pugh Class A [76].

Although this trial demonstrated that sorafenib signifi-
cantly improved overall survival, it should be noted that
96 % of the patients in this trial were Child–Pugh class A.
Thus, more studies are needed to evaluate the efficacy and
safety of sorafenib in patients with Child–Pugh classes B
and C [52]. Consensus guidelines by the NCCN reflect the
need for future studies to assess the safety of sorafenib in
patients with Child–Pugh class B and C status. The guide-
lines suggest that patients with inoperable HCC and either
Child–Pugh class A or B status receive sorafenib, with the
caveat that patients with Child–Pugh class B status be

administered the drug with caution, because there are only
limited safety data available with Child–Pugh class B status
[76]. To further explore the role of sorafenib for patients
with Child–Pugh class B, approximately 320 patients with
Child–Pugh class B are being recruited to participate in a
phase III study to evaluate the efficacy and safety of sor-
afenib [45].

The benefit of sorafenib has also been validated in
another large (n = 226) randomized, placebo-controlled,
phase III trial [55]. This trial was conducted in the
Asia-Pacific region and many patients (73.0 %) had hepatitis
B virus. Patients were randomized into a sorafenib or pla-
cebo arm at a 2:1 ratio [55]. Overall survival significantly
improved among patients receiving sorafenib (P = 0.014);
patients in the placebo arm had a median overall survival of
4.2 months, whereas patients in the sorafenib arm had a
median overall survival of 6.5 months. Drug-related adverse
events (any grade) reported by 10 % or more of the sor-
afenib arm included hand–foot skin reaction (45 %), diar-
rhea (26 %), alopecia (25 %), fatigue (20 %), rash (20 %),

Fig. 34.2 Antiangiogenic therapies
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hypertension (19 %), anorexia (13 %), and nausea (11 %)
[55]. The most common grade 3/4 adverse events in the
sorafenib arm included hand–foot skin reaction (10.7 %),
diarrhea (6 %), fatigue (3.4 %), and hypertension (2 %)
[55].

Managing sorafenib-associated adverse events remains
challenging, and minimizing the toxicity of sorafenib might
further improve the therapeutic index. Hypertension (any
grade) was reported at an incidence of 19 % of the sorafenib
arm in the pivotal phase III study [55], and grade 3/4
hypertension was reported at an incidence of 2 % of the
sorafenib arms of both phase III pivotal sorafenib studies
[55, 56]. Within the first few weeks of treatment with sor-
afenib, sorafenib-associated hypertension can occur [77].
Patients receiving sorafenib should be monitored weekly for
hypertension [78]. Moreover, patients who develop hyper-
tension should be managed with typical antihypertensive
agents and if hypertension persists, sorafenib should be
discontinued, either temporarily or permanently [78]. Hand–
foot skin reaction is one of the most common (any grade)
adverse events associated with sorafenib and is a

dose-limiting toxicity [55, 56, 78, 79]. Hand–foot skin
reaction typically occurs within the first few weeks of sor-
afenib therapy [78, 80]. Although suggestions have been
made to reduce the likelihood of developing hand–foot skin
reaction by minimizing exposure of a patient’s hands and
feet to hot water or excessive friction, and using topical
agents if hand–foot skin reaction develops, there are no
consensus guidelines or clinical trials to evaluate the man-
agement of hand–foot skin reaction [81, 82]. Severe hand–
foot skin reaction may necessitate dose modification and/or
discontinuation of therapy [78]. Approximately 30 % of
patients have needed to discontinue therapy due to
sorafenib-associated adverse events [57].

34.2.8.2 Sunitinib
Sunitinib (Sutent) inhibits VEGFR-1 and -2, PDGFR-a and -
b, stem cell factor receptor c-KIT, and the FLT3 and RET
kinases [2]. The efficacy and safety of sunitinib versus sor-
afenib was evaluated in an open-label phase III trial
(n = 1074); overall survival was the primary end point [83].
Patients were randomized at a 1:1 ratio to receive sunitinib at

Fig. 34.3 Therapies with other molecular targets
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37.5 mg once a day or sorafenib at 400 mg twice a day.
Patients in the sorafenib arm achieved superior overall sur-
vival; median overall survival in the sunitinib arm was
7.9 months overall, whereas the median overall survival for
patients in the sorafenib arm was 10.2 months (hazard
ratio = 1.30; one-sided P = 0.9990, two-sided P = 0.0014)
[83]. The majority of adverse events reported in both study
arms were mild (grade 1) to moderate (grade 2) in severity.
A higher proportion of patients in the sunitinib arm (82.1 %)
versus the sorafenib arm (74.2 %) had grade 3/ 4 adverse
events. The most common grade 3/4 adverse events in the
sunitinib arm included thrombocytopenia (29.7 %), neu-
tropenia (25.7 %), and hand-food syndrome (13.3 %),
whereas in the sorafenib arm this included hand-food syn-
drome (21.3 %) [83]. Due to lack of efficacy and safety
concerns, the study was terminated early [83].

34.2.8.3 Linifanib
Another multitargeted kinase inhibitor in development is
linifanib (ABT-869), a VEGFR and PDGFR tyrosine kinase
inhibitor [13, 47].

In an open-label phase III study (LIGHT) (n = 1035), at a
1:1 ratio, patients were administered linifanib at 17.5 mg per
day or sorafenib at 400 mg twice a day [84]. Linifanib failed
to achieve the primary end point, overall survival; patients in
the linifanib had a median overall survival of 9.1 months and
patients in the sorafenib arm had a median overall survival of
9.8 months (hazard ratio = 1.046) [84]. Patients in the lini-
fanib versus sorafenib arm had a higher frequency of
grade � 3 adverse events (85.3 % vs. 75.0 %, respectively;
P < 0.001) and adverse events leading to drug discontinua-
tion (36.3 % vs. 25.4 %, respectively; P < 0.001). The most
common grade 3/4 adverse events experienced by patients in
the linifanib arm included hypertension (20.8 %),
palmar-plantar erythrodysesthesia syndrome (13.7 %), AST
increased (12.2 %), and diarrhea (12.0 %), whereas the most
common grade 3/4 adverse events experienced by patients in
the sorafenib arm included palmar-plantar erythrodysesthe-
sia syndrome (14.8 %), AST increased (12.5 %), and
hypertension (10.6 %) [84].

34.2.8.4 Brivanib
Another multitargeted kinase inhibitor in development for
HCC includes brivanib (AEE788)—an inhibitor of the
FGFR-1, PDGFRb, and VEGFR-2 pathways [21, 85, 86].

In a phase III noninferiority study (BRISK-FL study), at a
1:1 ratio, brivanib versus sorafenib was evaluated in the
first-line setting [87]. Patients (n = 1150) were administered
brivanib at 800 mg once a day or sorafenib at 400 mg twice a
day [87]. Brivanib failed to achieve the primary endpoint,
noninferior overall survival; the median overall survival of
patients in the brivanib arm was 9.5 months versus
9.9 months in the sorafenib arm (hazard ratio = 1.06, with

the prespecified margin upper limit for HR � 1.08) [87].
The most common grade 3/4 adverse events experienced by
patients in the brivanib arm included hyponatremia (23 %),
AST increased (15 %), fatigue (14.5 %), hypertension
(13.3 %), and hyperbilirubinemia (12 %), whereas the most
common grade 3/4 adverse events in the sorafenib arm
included AST increased (17 %) and hand–foot skin reaction
(15 %) [87].

In a phase III study (BRISK-PS trial), the efficacy and
safety of brivanib in a second-line setting was evaluated
[88]. Patients who experienced disease progression with
sorafenib or were intolerant to sorafenib (n = 395) were
enrolled and randomized at a 2:1 ratio to a brivanib (brivanib
at 800 mg per day plus best supportive care) or a placebo
(placebo plus best supportive care) arm [88]. Patients
receiving brivanib failed to achieve the primary end point,
improved median overall survival; the median overall sur-
vival for patients in the brivanib arm was 9.4 and 8.2 months
in the placebo arm (hazard ratio, 0.89; P = 0.3307) [88]. The
most common grade 3/4 adverse events experienced by
patients in the brivanib arm included hypertension (17 %),
fatigue (13 %), and hyponatremia (11 %) [88].

34.2.8.5 Other Multitargeted Kinase Inhibitors
Other multitargeted kinase inhibitors in earlier stages of
clinical development for HCC include the following: vata-
lanib, a VEGFR, PDGFR, and c-KIT tyrosine kinase inhi-
bitor; cediranib, a VEGFR-1,-2, and -3 and PDGFR-a and -b
kinase inhibitor; pazopanib, a VEGFR-1,-2,-3, PDGFR-a,-b,
FGFR-1,-3, and c-kit inhibitor; and orantinib, a PDGFR,
FGFR, and VEGFR inhibitor [13, 45, 47, 69, 89–91].

Other multitargeted kinase inhibitors, which are currently
being evaluated in phase III studies, include the following:
Regorafenib, a VEGFR-1, -2,-3, FGFR-1,-2, PDGFR, RET,
kit, RAF-1, BRAF, and BRAFv600 inhibitor; cabozantinib,
a VEGR2 and c-MET inhibitor; and lenvatinib, a
VEGFR-1,-2,-3, FGFR-1,-2,-3,-4, PDGFR, RET, and kit
inhibitor [45, 47, 92].

The mechanisms of action of the various molecularly
targeted agents in development are summarized in
Table 34.1.

34.2.9 Polypharmacy

Another strategy under evaluation to improve survival in
advanced HCC is polypharmacy. Even if a molecular sig-
naling pathway is successfully abrogated, because of cross-
talk, other signaling pathways can be dysregulated; for
example, inhibiting the VEGF/VEGFR signaling pathway
activates the PDGF/PDGFR and FGF/FGFR proangiogenic
pathways [23–26]. Therefore, to improve outcomes in HCC,
combination therapies that can abrogate more than one
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Table 34.1 Overview of mechanisms of action of pharmacologic agents

Agent Mechanism of action

VEGF VEGFR PDGFR FGFR EGFR mTOR MEK c-MET Ras c-kit

AC480 (BMS-599626) •

Axitiniba,s (AG-013736, Inlyta) •

Bevacizumabb (Avastin) •

Brivanib (BMS-582664)s • • •

Cabozantinibc (XL184, Cometriq) • •

Cediranib (Recentin)s • •

Cetuximabd (Erbitux) •

Donafenib •

Dovitinib •

Emibetuzumab (LY2875358) •

Erlotinibe (Tarceva) •

Everolimusf (Certican, Zortress,
Afinitor, RAD001)

•

Gefitinibg (Iressa) •

Lapatinibh (Tykerb) •

Lenvatinibi (E7080, Lenvima)s • • • •

Linifanib (ABT-869)s • •

Nintedanib (BIBF 1120, OFEV) • • •

Orantanib (TSU-68)s • • •

Panitumumabj (Vectibex) •

Pazopanibk (Votrient)s • • • •

Ramucirumabl (IMC-112B,
Cyramza)

•

Refametinib (BAY 869766,
BAY86-9766)

•

Regorafenibm (Stivarga)s • • • •

Selumetinib (AZD6244) •

Sirolimus (Rapamune) •

Sorafenibs,n(Nexavar) • • • •

Sunitinibs,o (Sutent) • •

Temsirolimusp (Torisel) •

Tivantinib (ARQ197) •

Tivozanib •

Trametinibq (Mekinist) •

Vatalanib (PTK787) • • •

Vandetanibr,s (Zactima, Caprelsa) • •
aApproved for advanced renal cell carcinoma after failure of one prior systemic therapy
bApproved for the following: metastatic colorectal cancer; non-squamous non-small cell lung cancer; metastatic renal cell carcinoma; glioblastoma;
and persistant, recurrent, or metastatic carcinoma of the cervix; platinum-resistant recurrent epithelial ovarian, fallopian, or primary peritoneal
cancer
cApproved for progressive, metastatic medullary thyroid cancer
dApproved for squamous cell carcinoma of the head and neck and EGFR-expressing, K-Ras mutation-negative metastatic colorectal carcinoma
eApproved for non-small cell lung cancer and pancreatic cancer
fApproved for the following: advanced hormone receptor-positive, HER2-negative breast cancer; neuroendocrine tumors of pancreatic origin
(PNET); advanced renal cell carcinoma after failure of treatment with sunitinib or sorafenib; renal angiomyolipoma and tuberous sclerosis complex
gApproved for first-line treatment of patients with metastatic non-small cell lung cancer whose tumors have epidermal growth factor receptor
(EGFR) exon 19 deletions or exon 21 (L858R) substitution mutations as detected by an FDA-approved test
hApproved for HER2-positive breast cancer
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signaling pathway is being explored in clinical studies.
Another rational for combination therapy is that together,
two or more therapies might work synergistically to modu-
late signaling pathways [83, 84]. For example, interferon-a
(IFN-a) activates the JAK1/STAT1 pathway and induces
apoptosis in HCC models. But when IFN-a is used in
combination with aspirin, significantly more STAT1 is
activated and more apoptosis is induced [93].

Because sorafenib is the first agent to reach the clinic and
improve overall survival in patients with HCC, clinical trials
are currently in progress to evaluate whether the benefits of

sorafenib can be improved. Post-transarterial chemoem-
bolization (TACE) has been associated with an activation of
proangiogenic signaling pathways, such as an upregulation
and increase in VEGF and FGF levels [94, 95]. Strategies
under evaluation to improve outcomes include administering
sorafenib after TACE. In a phase III study, patients were
randomized into a sorafenib or placebo arm at a 1:1 ratio
after TACE. Sorafenib failed to improve survival after
TACE; the investigators attributed this failure to an inade-
quate dose of sorafenib and/or a delay in the initiation of
sorafenib therapy [96]. A high proportion of patients in the

iApproved for locally recurrent or metastatic radioactive iodine-refractory differentiated thyroid cancer
jApproved for EGFR-expressing metastatic colorectal carcinoma
kApproved for renal cell carcinoma and soft tissue sarcoma
lApproved for advanced gastric or gastro-esophageal junction adenocarcinoma, metastatic non-small cell lung cancer, and metastatic colorectal
cancer
mApproved for metastatic colorectal cancer and gastrointestinal stromal tumor
nApproved for HCC and renal cell carcinoma
oApproved for renal cell carcinoma, pancreatic neuroendocrine tumors, and gastrointestinal stromal tumor after disease progression on or
intolerance to imatinib
pApproved for advanced renal cell carcinoma
qApproved for melanoma with BRAF V600E or V600K mutations as detected by an FDA-approved test
rApproved for medullary thyroid cancer
sMultitargeted tyrosine kinase inhibitor

Table 34.2 Ongoing phase II and III clinical evaluating single therapies

Pharmacologic
agent

Mechanism of action Phase N End points

Axitinib VEGFR-1,-2,-3 inhibitor II 29 OS, PFS, QoL, safety, response

Brivanib Multitargeted TKI; VEGFR-2; FGFR-1; PDGFRb III 414 OS, TTP, response, DCR, DOR,
DCR, safety

Cabozantiniba VEGFR-2, c-MET inhibitors III 760 OS, PFS, response

Donafenib Ras inhibitor I/II 106 TTP, safety

Gefitinib TKI; EGFR inhibitor II 40 Recurrence-free survival,
biomarkers, safety

Lenvatinib Multitargeted TKI: VEGFR-1,-2,-3; FGFR-1,-2,-3,-4;
PDGFR; RET, kit

III 954 OS, PFS, TTP, response, QoL

Nintedanib FGFR, VEGFR, and PDGFR inhibitor I/II 134 TTP, MTD, OS, PFS, response,
safety

Nintedanib FGFR, VEGFR, and PDGFR inhibitor II 124 TTP, MTD, OS, PFS, response,
safety

Nivolumab Anti-PD-L1 antibody III 726 TTP, OS, PFS, response

Regorafeniba VEGFR-1,-2,-3; FGFR-1,-2; PDGFR, RET, kit, RAF III 560 OS, TTP, PFS, DCR, response

Tivantinib c-MET inhibitor III 160 PFS, OS

Tivantinib c-MET inhibitor III 346 PFS, OS, safety

Temsirolimus mTOR inhibitor I/II 50 MTD, PFS, response, safety, DOR

Temsirolimus mTOR inhibitor II 25 Safety, response, circulating tumor
cells

Tivozanib VEGFR inhibitor I/II 49 PFS, OS, response, safety

DCR disease control rate; DOR duration of response; OS overall survival; MTD maximum tolerated dose; PFS progression-free survival; QoL
quality of life; TTP time to progression
aAgents will be evaluated in the second-line setting
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sorafenib arm (73 %) required sorafenib dose reduction.
Moreover, the median daily dosage of sorafenib in the
TACE study was lower than the median dosage of sorafenib
in the pivotal SHARP and the Asia-Pacific studies [55, 56,
96]. Patients in the TACE study received a median daily
dosage of 386 mg sorafenib, whereas patients in the sor-
afenib arms of SHARP and the Asia-Pacific study received a
median daily dosage of 797 and 795 mg sorafenib, respec-
tively [55, 56, 96]. Further confounding the findings of this
study, approximately 60 % of patients in the sorafenib arm
of the TACE study did not initiate sorafenib until 9 weeks or
more post TACE [96]. Administering sorafenib with TACE
will continue to be evaluated, although different scheduling
strategies will be used. For example, patients are being
recruited for a phase III to evaluate the use of sorafenib after
TACE, and sorafenib will be administered within 72 h of
randomization. In another ongoing phase III study, TACE
will be initiated within 2 weeks of receiving a stable dose of
sorafenib [45].

Another strategy to improve outcomes was the adminis-
tration of sorafenib post resection or ablation in patients with
an intermediate-to-high recurrence risk, which was evaluated
in a phase III study (STORM) [82]. Patients (n = 1114) were
randomized into a sorafenib (400 mg twice/daily) or placebo
arm at a 1:1 ratio [82]. The primary endpoint, recurrence-free
survival, was not achieved; recurrence-free survival was
similar between the sorafenib and placebo arm (33.4 months
vs. 33.8 months, respectively; P = 0.26) [82]. Similarly,
there was no statistically significant difference between
treatment arms for time to recurrence and OS [82]. Dis-
continuation rates due to AEs were much higher in the
sorafenib versus placebo arm (i.e., 24 % vs. 7 %, respec-
tively) [82].

In a phase III trial (SEARCH study) (n = 720), patients
were randomized into a sorafenib plus placebo arm or

sorafenib plus erlotinib arm at a 1:1 ratio [97]. Median
overall survival was similar across the sorafenib and sor-
afenib plus erlotinib arms (9.5 months vs. 8.5 months,
hazard ratio = 0.929; P = 0.18). The most common grade
3/4 adverse events in the sorafenib versus sorafenib plus
erlotinib arms, respectively, included fatigue (17.5 % vs.
17.7 %), hand–foot skin reaction (17.5 % vs. 10.2 %),
diarrhea (11.8 % vs. 19.3 %), AST (11.8 % vs. 13.8 %), and
hyperbiliruminemia (11.5 % vs. 11.9 %) [97].

A strategy under evaluation to reduce HCC involves the
use of vaccines against hepatitis B virus in populations at
high risk for acquiring this virus; preventing infection with
hepatitis B virus (HBV) would reduce the likelihood of
developing HCC [98]. Among patients who develop both
HBV and HCC, a strategy to reduce the risk of recurrence
has included the use of antiviral agents. Among patients
seropositive for HBV, postoperative treatment with an
antiviral regimen (adefovir dipivoxil plus lamivudine or
entacavir) reduced HCC recurrence [99].

There are numerous ongoing studies evaluating the effi-
cacy and safety of sorafenib in combination with other
chemotherapeutic agents or other targeted therapies [33].

34.3 The Future

Although the last 5 years have been disappointing, with
novel, targeted agents evaluated in phase III studies for HCC
failing to meet their primary endpoint, OS, in both the
first-line (i.e., sunitinib, linifanib, erlotinib plus sorafenib,
brivanib) or second-line setting (brivanib, everolimus,
ramucirumab) [54, 68, 83, 84, 87, 88, 97], there is hope to
further improve outcomes in HCC. Notably, there are
numerous ongoing clinical trials evaluating single
(Table 34.2) and combination therapies (Table 34.3).

Table 34.3 Ongoing phase II and III combination trials with targeted therapies

Treatment Phase N End points

Aspirin + lamivudine after surgery III 112 Recurrence-free survival, OS, safety

Bevacizumab + erlotonib II 44 PFS at 16 weeks

Bevacizumab + erlotonib (vs. sorafenib) II 120 Response, safety, OS

Bevacizumab + floxuridine + dexamethasone II 55 Response, safety

Brivanib + TACE III 870 OS, TTDP, safety

Galunisertib (LY2157299) + nivolumab I/II 100 MTD, PFS, DOR, OS, response

Ipilimumab + SBRT I/II 100 MTD, response

Ramucirumab + Emibetuzumab (LY2875358) I/II 70 Response, safety

Sorafenib + capecitabine + oxaliplatin II 52 PFS, OS, tumor response, safety

Sorafenib + doxorubicin II 170 TTP, OS, response, QoL, biomarkers

Sorafenib + doxorubicin III 480 OS, TTP, PFS, response

(continued)
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To improve the outcomes of patients with advanced
HCC, the underlying genetic and molecular signaling path-
ways needs to be further defined and elucidated. Although
some aberrant signaling pathways promote the initiation of
tumors, other signaling pathways associated with oncogene
addiction sustain the tumor; identifying and abrogating a
signaling pathway that sustains the tumor would be more
likely to achieve optimal tumor reduction [48, 100].

It is essential to conduct a biomarker analysis in clinical
trials to assess whether biomarkers might identify subsets of
patients more likely to respond to therapy, and prospectively
enroll these patients into a clinical study. Unfortunately,
recently reported phase III studies evaluating new treatments
for HCC did not incorporate or report findings from a bio-
marker analysis [43, 100]. Despite this shortcoming, the
promising preliminary findings from the responsiveness of
patients with MET-high tumors to tivantinib is promising
[43]. Although this suggests that personalized medicine may
finally enter HCC treatment algorithms, the initial findings
need to be verified by prospectively enrolling patients with
MET-high tumors into phase III studies.

With the integration of biomarkers and the continued
evaluation of targeted therapies, over the next few years, it is
expected that the knowledge gained from advances in
molecular biology will finally translate to real victories in the
war against cancer and provide pharmacologic agents that
can provide benefit to the patient, such as improved survival,
better management of symptoms, and preservation of quality
of life.
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35.1 Overview

There are many factors that have over time, contributed to
the limited use of ionizing radiation in treating hepatocel-
lular carcinoma. Primarily, it is due to the fact that delivery
of tumorcidal doses of radiation to a tumor will exceed
tolerance of the normal surrounding liver. X-rays produce
nondiscriminatory cell killing in the already diseased liver of
HCC patients. In the past, radiation beams could only be
delivered in the simplest of geometric arrangements, which
could not avoid enough normal liver tissue from X-rays to
deliver doses of radiation to control solid tumors. Only in the
past 15 years technological advancements in Radiation
Oncology and Diagnostic Radiology allowed for innovative
approaches in both external beam and brachytherapy for
treatment of liver malignancies. Concurrent with hardware
upgrades such as megavoltage linear accelerators, have been
powerful software programs, which enable conversion of CT
or MRI datasets into three-dimensional “virtual” patients.
With accurate 3D models of the patient to work from, and
estimates in real time of radiation dose deposition within the
patient, Radiation Oncologists can attempt to deliver the
higher doses of radiation, which have a chance to control
tumor, while sparing the nonmalignant hepatocytes. Most
solid malignancies are successfully treated with combination
therapy, and for years, it has been the desire to apply these
approaches to HCC. The technology described is now
widely available in all Cancer Centers, and explains in part,
why the interest now to treat HCC within multidisciplinary
hepatic oncology groups and ongoing clinical trials is
increasing. Radiobiologic protectants are now in clinical
trials, which may in the future allow for selective sparing of
the normal liver cells found within the radiation beam. It is
the intent of this chapter to summarize the main techniques
historically and currently available in delivering ionizing
radiation to HCC, and describe interesting new approaches.
Clinical experience over the past century suggests radiation
dose parameters, above which serious and possibly fatal
liver dysfunction occurs. Moreover, this occurs when the
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whole liver (i.e., all functional units of the organ) receives
external beam radiation in excess of 30 Gy. State-of-the-art
radiotherapy techniques can treat small portions of the liver
to cumulative doses of 90 Gy or more as will be discussed
later, but the number of patients suitable for this approach is
few. Placing radiation directly in the tumor (brachytherapy)
holds the promise of success as it can deliver very large
doses of radiation selectively to the tumor (80–300 Gy)
while sparing surrounding normal liver parenchyma, which
will be reviewed later in the microsphere section.

35.2 Physics of Radiation Therapy

35.2.1 External Beam Radiation Therapy

Radiation that is of sufficient energy to cause ionization of
cellular contents is used therapeutically, and is either an
electromagnetic or particulate energy form. Electromagnetic
energy, photons, can be produced naturally by decay of
radioactive isotopes (gamma rays) or by an electrical device
accelerating electrons, which abruptly stop in a target,
releasing energy (X-rays). Particulate energy most com-
monly is electrons (charge −1, mass = 0.511 meV), but
others in limited use for cancer therapy include protons
(charge +1, mass = 2000 � electrons), alpha particles (he-
lium ions), and neutrons (same mass as proton, no charge).

External beam radiotherapy is what is most commonly
employed for nearly all cancers, using X-rays. Photons,
which are discrete packets of electromagnetic energy, cause
cell damage or cell death via apoptosis, via collision with a
cell, transferring some of its energy to the cell. This inter-
action exchanges some energy to the cell, and the photon will
be deflected itself with a reduction in its energy. The energy
absorbed by the cell will possibly create damage to the DNA
leading to cell death. Photons are linear in direction, their
course cannot be altered in the liver except by collision with
tissue, therein lies the key disadvantage in treating hepatic
tumors, as the normal tissues above and below a tumor will
be in the path of the photon beam, and receive similar radi-
ation dose. The rate of energy loss as a function of depth in
tissue is well known for every level of photon energy, with
higher energy beams penetrating deeper into the body while
giving up less energy in the first few centimeters of soft
tissue. In the 1960s through early 1980s, external beam
radiation was actually delivery of photons from radioactive
decay of 60Cobalt. Although it yielded photon energies with
sufficient penetrating power for most tumors, it could not be
used for deep abdominal or pelvic tumors without delivering
a much higher dose more superficially in normal tissues. In
addition, the physical radiation beam itself had a relatively
wide beam edge or penumbra, which made precise targeting
impossible even at shallow depths of tissue. Over the past

20 years, linear accelerators have replaced 60Cobalt machi-
nes virtually everywhere, and generate photons by acceler-
ating electrons near to the speed of light before they strike a
target, converting kinetic energy and mass into electromag-
netic energy—photons. They generate photons of much
higher energy than 60Cobalt, and are thus able to reach any
deep tumor in the body of most patients, without excessive
“hot spots” or doses higher than that of the tumor along the
photon path in the body. In absolute numbers, 60Cobalt can
deliver gamma rays (photons) of two energies, 1.17 meV
(million electron volts) and 1.33 meV, while some acceler-
ators are capable of maximum photon energies of between 4
and 25 meV, most centers use 6–18 meV, which can easily
safely reach the deepest parts of the liver in nearly any
patient. Linear accelerators also can produce electron beams,
which differ from photon beams, in that electrons are parti-
cles with mass and charge, and thus have a finite range of
tissue penetrance, allowing for treatment of more superficial
tumors, while significantly sparing deeper normal tissues.
Electron beam therapy may be appropriate in treating a mass
in the liver, which is only 1–2 cm deep to the surface. The
dose 4 cm below the tumor could be nearly zero if the
appropriate energy was chosen, compared to a dose of 80 %
of the tumor dose at that depth, if photons were used. Protons
can be used similarly to electrons, but with a much deeper
penetration if required (see later in chapter).

35.2.2 Radiation Dose

Dose of ionizing radiation absorbed by the liver, solid tumor,
or other tissues is a cornerstone of clinical trial design. Older
reports used the term roentgen (R), which described ion-
ization in air, i.e., exposure, of gamma rays. Newer
nomenclature uses the SI unit for absorbed dose in tissue
[1 J/kg = 1 gray (Gy) = 100 rads = 100 cGy (centigray)],
as the basic unit of measurement. Conversion of older lit-
erature values listed as R is approximately 1 R = 0.01 Gy,
for gamma. It is less well known how to convert beta radi-
ation doses, which are low dose, constant release radio-
therapy, into equivalent external beam doses due to the
differences in biologic response due to dose rate, fractiona-
tion, and activity [1]. Thus brachytherapy doses are recorded
as Gy, but these doses are not likely to be equivalent to the
same dose Gy given as daily fractionated external beam
doses of X-rays. This is an area of active investigation.

35.2.3 Three-Dimensional Conformal
Radiation Therapy (3D-CRT)

Advances in software allow radiation oncologists to recreate
volumetric models of patients using the latest and most
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detailed diagnostic images from CT or MRI. Typically CT
datasets are used, and many cancer centers have dedicated
spiral CT scanners in the radiation oncology department,
hardwired to the treatment planning computer system.
Two-dimensional treatment planning had been the only
method prior to the mid-1990s, of planning how to arrange
radiation beams targeting the tumor. This approach was
limited to simple beam arrangements such as opposed beams,
or those at 90° from each other (coplanar) and were designed
from the standpoint of treating extra normal tissue so as to
minimize the frequency of geometric miss of the target by the
beam. With precise targeting and tumor delineation as seen
on CT volume sets, complex and innovative beam arrange-
ments can be utilized with significant reduction in the need to
include extra normal tissue as a margin. These noncoplanar
beams can be at virtually any angle, although the linear
accelerator and patient position will make some angles
unusable. This approach also benefits from powerful new
radiation dose calculations, which speed up the process of
comparing alternate treatment plans by displaying nearly
real-time dose maps. Enhancements also include the ability to
more accurately calculate dose from beams that pass through
less-dense tissues, (inhomogeneity corrections) such as lung,
in targeting the right lobe of liver [2].

35.2.4 Fourth Dimension Conformal
Radiation Therapy (4D-CRT)

The ability of real-time images taken during the delivery of
radiation to a tumor (portal imaging or external imaging) has
enabled further improvements in tumor targeting. Software
algorithms that detect the tumor or fudicial markers placed
near the tumor can control when the radiation beam is on or
off. When treating in a part of the body (i.e., lung or liver
tumors) that change position during respiration, the photon
beam is interrupted when breathing causes the target to move
out of the beam—termed “gaiting” or “respiratory gaiting.”
It does not depend upon rigid immobilization of the patient
as in some forms of treatment.

35.2.5 Intensity Modulated Radiotherapy
(IMRT)

Intensity modulated radiation therapy is a specialized
application of 3D-CRT that allows radiation to be more
exactly shaped to fit the tumor by varying the amount of
radiation delivered to portions of the radiation field. The
radiation beam can be subdivided into many “beamlets,” and
the intensity of each beamlet can be adjusted individually.
Using IMRT, it has been possible to further limit the amount
of radiation that is received by healthy tissue near the tumor.

Most notably IMRT can spare salivary glands from perma-
nent damage when treating head and neck malignancies, and
reduce bladder and rectal complications in prostate cancer
treatment. In some situations, this may also allow a higher
dose of radiation to be delivered to the tumor, potentially
increasing the chance of a cure.

35.2.6 Stereotactic Body Radiotherapy (SBRT)

Stereotactic radiotherapy is a technique of delivering fewer
than normal fractions (hypofractionation) but each fraction is
much larger than standard (2–3�). If given in a single dose it
is considered “radiosurgery” which is reserved for CNS
tumors and the skull is rigidly fixed to a frame. Liver tumors
are treated in 3–5 fractions with the body immobilized from
chest to pelvis in specialized forms that are often custom
fitted to the patient.

35.2.7 Image-Guided Radiation Therapy
(IGRT)

IGRT involves conformal radiation treatment guided by
imaging, such as CT, ultrasound, or X-rays, taken in the
treatment room just before the patient is given the radiation
treatment. All patients first undergo a CT scan as part of the
planning process. The imaging information from the CT
scan is then transmitted to a computer in the treatment room
to allow a real-time comparison just before treatment to
determine if the patient’s position needs to be adjusted. This
allows correction of patient positioning changes day to day,
minute to minute, and any tumor changes over time.

35.2.8 Brachytherapy

It was not long after Dr. Wilhelm Conrad Roentgen dis-
covered X-rays in 1895 that the Lancet reported its use in
January 1896 for medical use [3]. Shortly after the turn of
the century, it was suggested by Alexander Graham Bell that
radioactive isotopes be applied directly to tissues, and thus
brachytherapy was born—from the Greek “brachy” mean-
ing “short range.” The French coined the term endocuri-
etherapy, Greek “endo,” meaning “within.” Radioactive
isotopes such as iridium (192Ir), cesium (137Cs), and iodine
(125I and 131I) have been used extensively since the early
1900s as primary therapy, and in addition to external beam
radiation as a “boost” to the tumor. Brachytherapy attempts
to spare normal regional tissues by delivering a high dose
locally in the tumor, and although gamma radiation photons
are used mostly, there is relatively low dose at a distance
from the tumor of several centimeters. The dose rate of
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radiation delivery via a brachytherapy isotope (50 cGy/h) is
much lower than photons delivered by an accelerator,
(100 Gy/min). Radioactive decay from an isotope that pro-
duces electrons (charge −1) is termed “beta decay.” These
particles are used in such products as radiolabeled antibodies
used in hematologic malignancies, or in higher energies, for
bone metastases and thyroid malignancies. Currently, there
is significant clinical use of pure beta emitting isotopes (no
gamma photons emitted), yttrium and strontium (90Y, 90Sr)
in brachytherapy in liver lesions (see microsphere section)
and in coronary artery brachytherapy. An advantage and
potential disadvantage of beta sources is that most of the
effective radiation is delivered within 2–4 mm of the source,
with virtually no radiation dose effect >1 cm away. Because
there are no gamma rays, nuclear medicine detectors cannot
readily image pure beta sources, making localization of
implanted sources problematic. Brachytherapy sources can
be implanted via blood infusion, needle applicator, directly
applied and sutured into place as a permanent implant, or
placed temporarily (minutes to hours) within a catheter that
is removed from the body.

35.3 Radiobiology

An understanding of radiation effects in living tissues began
at the turn of the century with observations of skin reaction,
primarily erythema, and breakdown [3]. Since then clinical
experience has produced observations regarding normal and
malignant tissue response and repair to ionizing radiation.
The target of efficient cell killing is the DNA, with the
majority of cell death by irradiation resulting from unrepaired
or misrepaired genomic injury, and loss of reproductive
ability. It has been estimated that in the presence of sufficient
oxygen tension (>10 mm Hg) [3, 4] any form of radiation
(X-rays, gama rays, charged or uncharged particles) will be
absorbed and potentially interact directly or indirectly with
the DNA. Approximately 75 % of the damage to the DNA is
indirect, with a photon striking a water molecule (water
composes 80 % of the cell) within 4 nm of the DNA strand.
Kinetic energy from the incident photon is transferred to an
orbital electron of the water molecule, ejecting it, now called
a secondary electron. It can interact with a water molecule
forming a free radical, which is highly reactive and breaks
bonds in one of the DNA strands nearby. There can also be
interaction of the secondary electron directly on the DNA
strand causing damage, referred to as direct action [3].

35.3.1 Modifiers of Radiation Response

The presence of oxygen is the single most important biologic
modifier at the cellular/molecular level [1, 5]. Oxygen “fixes”

or makes permanent DNA damage caused by free radicals,
but in low oxygen tensions, this damage can be repaired more
readily. A term is used “oxygen enhancement ratio—OER”
to describe the ratio of radiation doses without and with
oxygen to produce the same biologic effect. For X-rays it is
estimated to be between 2 and 3, i.e., a given X-ray will be 2–
3 times as damaging in the presence of oxygen in that tissue
than if hypoxia exists [3]. This has significant implications
clinically as many HCC patients are considered for
embolization procedures, which can produce a relative
hypoxic environment within the tumor making them less
susceptible to radiation therapy. Other factors can affect
tumor sensitivity to radiation, including repair of radiation
damage, reassortment of cells into more or less sensitive
portions of the cell cycle (S phase most radioresistant, G2-M
most sensitive), and repopulation, during a course of radia-
tion, which is seen in rapidly dividing tumor populations.
Repopulation can also become an issue after surgical resec-
tion, chemoembolization, cryotherapy or radiofrequency
ablation, where hepatic hypertrophy in the regional normal
cells is stimulated. These normal clonogens are more sus-
ceptible to radiotherapy damage in this phase, limiting the
use of radiation, which may allow for residual malignant cells
to repopulate [6]. Repair of radiation damage or “sublethal
damage repair” is enhanced in low oxygen environments and
with fractionation of radiation doses. The break between
fractions in external beam radiotherapy provides opportunity
to repair DNA strand breaks in normal and malignant cells.
Brachytherapy differs in this regard with continuous radia-
tion, without a discrete “fraction” of radiation, but it delivers
continuous lower dose rate of radiation continually.

35.4 Radiation Effects in the Liver

Acute and late effects of ionizing radiation to the liver have
been described in the literature since the early 1960s [7, 8].
During radiotherapy, acute or transient effects are often
reported as elevation of liver enzymes, and depending upon
the treated volume, hematologic effects such as neutropenia
and coagulapathy can occur. However, permanent effects
can be produced, occurring weeks or months after radiation
(“late effects”) such as fibrosis, persistent enzyme elevation,
ascites, jaundice, and rarely, radiation-induced liver disease
(RILD) and fatal veno-occlusive disease (VOD) [6, 9–11].
RILD is often what is called “radiation hepatitis” and clas-
sically was described as occurring within 3 months of ini-
tiation of radiation, with rapid weight gain, increase in
abdominal girth, liver enlargement and occasionally, ascites
or jaundice, with elevation in serum alkaline phosphatase.
The clinical picture resembled Budd–Chiari syndrome, but
most patients survived, although some died of this condition
without proven tumor progression. It was described that the

534 A.S. Kennedy



whole liver could not be treated with radiation above 30–
35 Gy in conventional fractionation (1.8–2 Gy/day, 5 days
per week) or else RILD or VOD was likely to occur.
Interestingly, VOD can also occur without radiotherapy in
patients receiving high-dose chemotherapy in hematologic
malignancies, alkaloids, toxic exposure to urethane, asphe-
namine and long-term oral contraceptives, [12] as well as
patients receiving radiation combined with chemotherapy or
radiation alone. The clinical presentation can differ between
RILD and chemotherapy + radiation liver disease, but the
common pathological lesion associated with RILD is VOD.
The pathologic changes in VOD can affect a fraction of a
lobe, or the entire liver. It is best observed on low power
microscopy, which demonstrates severe congestion of the
sinusoids in the central portion of the lobules with atrophy of
the inner portion of the liver plates (zone 3) [6, 12]. Foci of
yellow necrosis may appear in the center of affected areas. If
the affected area is large, it can produce shrinkage and a
wrinkled granular capsule. The sublobular veins show sig-
nificant obstruction by fine collagen fibers, which do not
form in the larger veins and (suprahepatic and cava) which is
a distinction between RILD and Budd–Chiari syndrome [6,
12]. Most livers heal and will display chronic changes after
6 months with little congestion, but distorted lobular archi-
tecture with variable distances between central veins and
portal areas. These chronic liver changes are typically
asymptomatic but are reproducibly seen on liver biopsies as
late as 6 years after presentation. Further investigation of the
pathogenesis of VOD is difficult as most animals do not
develop VOD in response to radiation [12].

35.5 Clinical Studies

35.5.1 EBRT

Because of the tolerance issues of normal liver to radiation as
discussed earlier, there has been little activity regarding
radiation alone for HCC.With improvements in targetingwith
3DCRT however, there is renewed interest in combining
radiation with chemotherapy and other modalities. Most
radiation oncologists use external beam radiation in the liver
for palliation of symptoms such as pain secondary to capsular
stretching from tumor expansion, or intratumoral hemorrhage.
Definitive therapy attempts in unresectable HCC using radi-
ation have only recently been published with the appearance
of toxicity data from carefully done clinical studies using
CT-based 3DCRT. Seminal work by Lawrence and col-
leagues at the University ofMichigan over the past decade has
significantly increased our understanding of liver tolerance to
radiotherapy and combined chemoradiotherapy [6, 10, 11,
13–22] With extensive clinical experience using 3DCRT in
daily and twice daily radiation fractions, and combined with

hepatic artery infusion of different chemotherapy agents, a
clearer understanding now exists as to the limits of this
approach, and predictivemodels of RILD created to design the
next generation of clinical trials [10, 23–25].

Mornex [26] reported a phase II trial of 27 patients that
included both Child-Pugh A and B cirrhotic patients with
small-size HCC (1 nodule < or = 5 cm, or 2 nod-
ules < or = 3 cm) not candidates for curative treatments.
High-dose (66 Gy, 2 Gy/fraction) 3D-CRT was used for all
patients. In the 25 assessable patients, tumor response was
observed for 23 patients (92 %), with complete response for
20 patients (80 %), and partial response for 3 patients (12 %).
Stable disease was observed in two patients (8 %). Grade 4
toxicities occurred in 2 of 11 (22 %) Child-Pugh B patients
only. Child-Pugh A patients tolerated treatment well, and
3/16 (19 %) developed asymptomatic Grade 3 toxicities [26].

Predictive models of normal tissue complication proba-
bility (NTCP) use clinical outcomes from partial liver radio-
therapy and chemoradiotherapy experiences, based on
quantified volumes of the liver that received a specific dose of
radiation, which lead to RILD or other toxicity. They incor-
porate the entire treatment plan, and can describe dose–vol-
ume relationships of the liver between inhomogeneous dose
distributions [10]. Dose escalation trials reported by Dawson
have shown safety and tumor regression in HCC and other
hepatobiliary cancers with doses between 28.6 and 90 Gy in
combination with concurrent hepatic artery infusion of
fluorodeoxyuridine [19]. A response rate of 68 % was
achieved, with only one case of RILD, grade 3, which was
reversible, and no treatment-related deaths. The team saw, not
surprisingly, a dose-response advantage in progression-free
survival for the 70–90 Gy cohorts. No MTD has been
reached, and radiation dose escalation in ongoing [19].

Multicenter cooperative group trials have only been
attempted by the Radiotherapy Oncology Group (RTOG)
which predated 3DCRT and NTCP modeling, which now
enable partial liver doses >90 Gy. The first, RTOG 83-19,
tested the addition of 131I antiferritin monoclonal antibodies
to doxorubicin plus 5-fluorouracil to patients that had first
had entire liver radiotherapy to 21 Gy in large daily fractions
of 3 Gy [27]. This study is very different in design to current
liver radiotherapy practice, which uses smaller fractions bid
or daily, partial liver volumes, and hepatic artery infusion
chemotherapy and/or transarterial chemembolization
(TACE). Single fraction doses above 2 Gy per day are
known to increase late effects in the end organ, such as
fibrosis, whereas small fractions given twice daily are
believed to spare the organ from late injury, i.e., RILD [3].
The outcome of the RTOG experience was negative with
131I antiferritin, and the successor trial (RTOG 88-23) was
also negative, with the same radiotherapy components, but a
chemotherapy change using cisplatin, which suggested some
activity to the combination [28].
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35.5.1.1 External Beam Radiation (3D-CRT/IMRT)
and TACE

External beam radiation therapy (EBRT) was used for unre-
sectable HCC, in total doses greater than 35 Gy with TACE,
for salvage of initial TACE failures [29–31]. Seong et al. [29]
reported the use of 3D-CRT (mean tumor dose 44 Gy + 9.3
Gy) in combination with chemoembolization with doxoru-
bicin and lipiodol in 30 patients with unresectable HCC. In
this small group, a 63.3 % objective response was noted, and
median survival of 17 months without a treatment-related
death [29]. In a subsequent report, Seong delivered (mean
tumor dose 51.8 + 7.9 Gy) external beam radiation to 24
patients with unresectable HCC, who had progressed after
TACE with lipiodol–adriamycin mixture. He noted an
encouraging response rate of 66.7 %, 3-year survival rate of
21.4 %, and no treatment-related deaths [30]. In an update on
both previously reported groups, and additional patients
treated to a total of 158 (107 patients concurrent with TACE,
51 as salvage), Seong analyzed prognostic factors for
response rate and overall survival. On univariate analysis,
tumor size, portal vein thrombosis, and radiation dose were
significant, but only radiation dose was significant on multi-
variate analysis. The mean radiation dose to the tumor for the
entire cohort was 48.2 Gy + 7.9 Gy at 1.8 Gy/day [31]. Park
et al. [30, 31] studied the same patient cohort as Seong, and
determined a dose–response relationship existed, with dose
groupings of <40 Gy, 40 Gy to 50 Gy, and >50 Gy. An
autopsy study of seven patients after radiotherapy for HCC
suggested viable tumor remained despite doses of 50–70 Gy
[32, 33]. Using two-dimensional treatment planning to deliver
external beam X-rays with TACE, Guo [33] reported the
result in 107 patients with unresectable HCC. This retro-
spective study also found increasing radiation dose to be a
prominent factor in objective tumor response, as well as
number of tumors. The radiation dose range was 22–55 Gy in
1.6–2.0 Gy/day fractionation using moving strip technique to
treat the entire liver in 78 patients.

Guo et al. [34] conducted a comparison of 76 patients
with large unresectable HCC treated with TACE followed by
external beam irradiation and a control group of 89 patients
with large HCC, who underwent TACE alone during the
same period. Clinical features, therapeutic modalities, acute
effects, and survival rates were analyzed and compared
between TACE plus irradiation group and TACE alone
group. Multivariate analyses of nine clinical variables and
one treatment variable (irradiation) were performed
employing the Cox proportional hazards model. The clinical
features and therapeutic modalities, except irradiation
between the two groups, were comparable (P > 0.05). The
objective response rate (RR) in TACE plus irradiation group
was higher than that in TACE alone group (47.4 % vs.
28.1 %, P < 0.05). The overall survival rates in TACE plus
irradiation group (64.0 %, 28.6 %, and 19.3 % at 1 year,

3 years, 5 years, respectively) were significantly higher than
those in TACE alone group (39.9, 9.5, and 7.2 %, respec-
tively, P = 0.0001). Cox proportional hazards model anal-
ysis showed that tumor extension and Child grade were
significant and were independent negative predictors of
survival, while irradiation was an independent positive pre-
dictor of survival. The authors concluded that TACE com-
bined with radiotherapy is more effective than TACE alone,
and is a promising treatment for unresectable large HCC.

Zeng et al. [35] retrospectively studied 203 patients who
received TACE for unresectable HCC. None of the patients
had tumor thrombus, lymph node involvement, or extrahep-
atic metastasis based on computed tomography (CT) scans of
the chest and abdomen. Among these patients, 54 patients
also received combination therapy with EBRT. Tumor RR,
survival, and failure patterns were analyzed and compared
between the two groups. Objective responses—complete
response (CR) and partial response (PR)—on CT study were
31 and 76 % without radiotherapy and with radiotherapy,
respectively. Overall survival rates in the radiotherapy group
were 71.5 %, 42.3 %, and 24.0 % at 1 year, 2 years, and
3 years, respectively, improved over the non-radiotherapy
group rates of 59.6 %, 26.5 %, and 11.1 % at 1 year, 2 years,
and 3 years, respectively. Intrahepatic failure was lower in
the radiotherapy group than in the non-radiotherapy group,
but the difference was not significant. Side effects from
radiotherapy were common, but rarely severe.

35.5.1.2 External Beam Monotherapy
Challenges in the use of EBRT for HCC are many; however,
successes are being realized with the use of image-guided
radiotherapy (IGRT) to assist in the delivery of 3D-CRT,
IMRT, and stereotactic body radiotherapy (SBRT), along
with respiratory motion compensation and tumor visualiza-
tion [36, 37].

Kim et al. [38] used 3D-CRT to treat unresectable HCC
patients where TACE was ineffective or unsuitable, and to
determine whether tumor response and PVT response to
treatment were prognostic factors for overall survival. From
July 2001 to June 2005, 70 unresectable HCC patients were
treated; PVT was present in 41 patients. Fraction size was 2–
3 Gy daily through the use of X-rays to a total dose of 44–
54 Gy. Follow-up CT evaluations showed primary tumor
responses: complete response in 4 (5.7 %) patients, partial
response in 34 (48.6 %) patients, no response in 28 (37.1 %)
patients, and progressive disease in 4 (8.6 %) patients. Of 41
patients with PVT, the PVT responses were CR in 4 (9.7 %)
patients, PR in 12 (29.3 %) patients, NR in 20 (48.8 %)
patients, and PD in 5 (12.2 %) patients. The median survival
times were 18.0 and 20.1 months in the primary tumor and the
PVT responders (CR + PR), respectively, were longer than
the 6.8 and 7.2 months in the primary tumor and the PVTNRs
(NR + PD), respectively. An overall 54.3 % objective
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response rate for primary tumors and a 39.0 % objective
response rate for PVT were seen. Both primary tumor and
PVT responses were prognostic factors for overall survival.
The authors concluded that 3D-CRT is a practical treatment
option in HCC patients where TACE is ineffective or
unsuitable.

Liu et al. [39] also used 3D-CRT for patients who had
either failed with or were unsuited for TACE. A total of 44
patients with unresectable HCC underwent 3D-CRT. The
mean age was 62 years, ranging from 34 to 88 years. Eastern
Cooperative Oncology Group (ECOG) performance status
was 0 in 10 patients, 1 patient in 19 patients, and 2 patients in
15 patients. Child-Pugh classificationwasA in 32 patients and
B in 12 patients, with 14 patients having main PVT. Tumor
size was <5 cm in 16 patients, 5–10 cm in 16 patients, and
>10 cm in 12 patients. Thirty-two patients had tumors of
confluent type. The remaining patients presented a single
hepatic tumor. An objective response was observed in 27
patients of 44 patients, yielding a response rate of 61.4 %. The
survival rates at 1 year, 2 years, and 3 years were 60.5 %,
40.3 %, and 32.0 %, respectively. A significant impact on
survival was found for several factors including total dose of
radiotherapy.

The use of proton beam radiotherapy represents a dif-
ferent type of energy than photons that, by physical char-
acteristics, can achieve superior dose deposition compared to
3D-CRT [40, 41].

35.5.1.3 External Beam Radiotherapy for Portal
Vein Thrombosis

Several investigators have used 3D-CRT and SBRT suc-
cessfully to treat PVT tumors and not the primary HCC
lesions. Overall the response rate is approximately 80 %
with very few side effects.

Potentially transplantable patients can benefit from RT as
a bridge to transplant while on the wait list. In stages B and
C, RT has efficacy in situations where TACE has been
ineffective or is unsuitable. This is particularly important in
patients with PVT where TACE is contraindicated, and
where transarterial radioembolization (TARE) may not be
possible or is ineffective [36, 37].

35.5.1.4 Proton (External Beam) Radiotherapy
Proton beam radiation therapy (PBT), referred to as “pro-
tons,” has been used with success for treatment of HCC as
reported in most published data from Japan. A fundamental
difference between X-rays of traditional EBRT, and protons,
is that protons carry a charge, have mass, and can be
delivered into deep tissues with lower radiation deposition
above and below the target. X-rays, where photons are
electromagnetic waves and have no charge or mass, release
nearly all of their energy within the tumor. Because of
increased control of radiation dose deposition at any depth in

the body, there has been intense interest in using PBT for
treatment of HCC.

Currently, proton accelerators are of limited availability
(about 20 total) in the United States and the same number
outside the US because of the enormous cost of constructing
the accelerators ($100 million USD per facility). A proton
accelerator requires a cyclotron onsite. Clinical use of pro-
tons is mostly for pediatric tumors, and adult CNS, spinal
cord, ocular, skull base, head and neck and prostate tumors.
Protons have similar efficacy to X-rays in destroying tumor
cells, but more normal tissue can be spared due to its
physical dose deposition characteristics [42].

Between 1983 and 2000, the Proton Medical Research
Center at the University of Tsukuba, treated more than 236
patients with HCC. The dose/fraction was 4.5 Gy daily to a
total dose of 72 CGE in 3.2 weeks. Dose is quoted in CGE
to denote the dose in Gy multiplied by the radiation biologic
effectiveness unit, 1.10 (X-rays are 1.0). For small HCC
tumors, Tokuuye et al. [43] reported a 3-year actuarial local
control rate of 93 %. Matsuzaki et al. [44] reported the use
of protons for 24 patients failing TACE for HCC, and found
tumor response in >90 % of these lesions.

It is not known whether SBRT or PBT is superior or
equivalent in outcomes of HCC patients [45]. Currently,
only one 2a evidence exists that supports any form of radi-
ation in HCC; however, combined with the retrospective
reports of hundreds of patients, there is a significant amount
of evidence supporting the use of RT in all stages of HCC
[40, 41]. PBT may become more common as new facilities
currently planned worldwide become operational.

35.5.1.5 Stereotactic Body Radiotherapy (SBRT)
Studies

A strong interest in pursuing SBRT for treatment of HCC is
apparent due to the increased ability of SBRT to spare
normal liver tissue from receiving tolerance doses of radia-
tion. Four prospective studies and four retrospective reports
are available from 2006 to 2011 that involve a range of 80
patients to 60 patients. The positive outcomes in all stages of
HCC are proven with a wide array of fraction sizes and total
doses. Three of the studies used at least five different frac-
tionation schedules adjusted for Child-Pugh A or B classes.
One-year survival ranged from 48 to 79 % in these hetero-
geneous groups [46–48].

SBRT was studied in a phase I/II trial of mixed neoplasia
in the liver, which included one HCC patient. Herfarth et al.
[49] demonstrated feasibility of the technique to deliver 14–
26 Gy in a single fraction to the liver (with the 80 % isodose
surrounding the planning target volume) to 60 tumors in 37
patients.

Wu et al. [50] used SBRT combined with TACE in 94
patients with cirrhosis and HCC. A total 63 patients had
Okuda stage I lesion and 31 patients had stage II lesion. The
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median tumor size was 10.7 cm (range 3.0–18 cm). There
were 43 cases of class A and 51 cases of class B. TACE
contained lipiodol, 5-fluorouracil, cisplatin, doxorubicin
hydrochloride, and mitomycin, followed by gelatin sponge
cubes. Fifty-nine patients received a single TACE delivery
while the remaining patients received two or three TACE
procedures. Radiotherapy began 3 weeks to 4 weeks after
the last TACE procedure. All patients were irradiated with a
stereotactic body frame and received 4–8 Gy single
high-dose radiation, 8–12 times at the isocenter during a
period of 17–26 days (median 22 days). The median
follow-up was 37 months (range 10–48 months) after diag-
nosis. The response rate was 90.5 % and overall survival
rate at 1 year, 2 years, and 3 years was 93.6 %, 53.8 %, and
26.0 %, respectively, with the median survival of
25 months. In univariate and multivariate analyses age,
tumor size, and radiation dose (P = 0.001) were significant
prognostic factors for survival.

Tse et al. [51] completed a phase I study of individualized
SBRT for unresectable HCC and intrahepatic cholangio-
carcinoma (IHC) not suitable for standard therapies. Six
fractions of SBRT were delivered over 2 weeks, with total
radiation dose dependent on the volume of liver irradiated
and the estimated risk of liver toxicity based on a normal
tissue complication model (NTCP). Toxicity risk was esca-
lated from 5 to 10 % and 20 %, within three liver
volume-irradiated strata, provided at least three patients were
without toxicity at 3 months after SBRT. Forty-one patients
with unresectable Child-Pugh A HCC (n = 31) or IHC
(n = 10) completed six-fraction SBRT. Five patients (12 %)
had grade 3 liver enzymes at baseline. The median tumor
size was 173 mL (9–1913 mL). The median dose was
36.0 Gy (24.0–54.0 Gy). No radiation-induced liver disease
or treatment-related grade 4 or grade 5 toxicity was seen
within 3 months after SBRT. Seven patients (5 HCC, 2 IHC)
deteriorated in liver function from Child-Pugh class A to B
within 3 months after SBRT. Median survival of HCC and
IHC patients was 11.7 months (95 % CI, 9.2–21.6 months)
and 15.0 months (95 % CI, 6.5–29.0 months), respectively.

35.5.2 Brachytherapy

35.5.2.1 131I-lipiodol
Most commonly, brachytherapy for HCC has been accom-
plished by hepatic artery infusion of 90Y-embedded micro-
spheres, or 131I-lipiodol (131I). The rationale for hepatic
artery infusion is anatomic observation that tumors receive
>80 % of their blood supply from the hepatic artery, as
opposed to normal hepatic triads, which receive the converse
80 % supply of nutrients from the portal system. With the
tumor/normal tissue ratio thus favorable from the hepatic
artery, lipiodol, used for years in nonradiation embolic

therapy in the liver, containing 38 % iodine by weight was a
logical choice to add a radioisotope. In animal studies, 131I
had a significantly longer half-life in tumor as opposed to
normal liver parenchyma. 131I is a pure beta emitter with
limited range penetration of electrons, thereby sparing nor-
mal liver adjacent to the tumor from significant dose. In an
excellent review of clinical studies using 131I by Ho, there
were 14 studies between 1985 and 1997, with more than 400
patients having received this therapy [52, 53]. Most patients
with unresectable HCC were treated for amelioration of
symptoms; response rates were 25–70 % in uncontrolled
studies. Raoul et al. [53, 54] reported a multicenter ran-
domized study of patients with PVT from HCC who
received 10–100 Gy in 1–5 injections and had better sur-
vival than the control (untreated) group. In a separate
prospective trial of 142 patients with unresectable HCC,
randomization was to 131I versus chemoembolization with
cisplatin (70 mg). There was no difference in survival or
tumor response between the two therapies; however, toxicity
was less with 131I.

131I was tested in the postoperative adjuvant setting in a
prospective randomized trial by Lau et al. [55], which was
stopped early. Randomized patients after resection in the
experimental arm received 131I (1850 MBq in a single dose)
or no further therapy (control group). Interim analysis of 21
treated patients and 22 control patients showed a statistically
significant decrease in recurrence (28.5 % vs. 59 %), and
improved median disease-free survival (57.2 months vs.
13.6 months) for the treated patients.

Lau et al. [55] updated long-term results from a
prospective randomized trial of postoperative adjuvant
intra-arterial iodine-131-labeled lipiodol in HCC. Early
results after closing the trial showed that 1 dose of
intra-arterial 131I given after curative resection significantly
decreased the rate of recurrence, and increased disease-free
and overall survival. Patients who underwent curative
resection for HCC and recovered within 6 weeks were ran-
domly assigned one 1850 MBq dose of 131I or no further
treatment (controls). Comparison of rates of recurrence, and
long-term disease-free and overall survival (primary end-
points) between the two groups, by intention-to-treat, was
completed on 43 patients totally (21 radiation group, 22
controls). 131I had no significant toxic effects. During a
median follow-up at 66 months, (range, 3–198 months)
there were 10 (47.6 %) recurrences among the 21 patients in
the adjuvant treatment group, compared with 14 (63.6 %)
recurrences in the control group (P = 0.29). The actuarial
5-year disease-free survival in the treatment and control
groups was 61.9 and 31.8 %, respectively (P = 0.0397). The
actuarial 5-year overall survival in the treatment and control
groups was 66.7 and 36.4 %, respectively (P = 0.0433). The
actuarial 7-year disease-free survival in the treatment and
control groups was 52.4 and 31.8 %, respectively
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(P = 0.0224). The actuarial 7-year overall survival in the
treatment and control groups was 66.7 and 31.8 %, respec-
tively (P = 0.0243). The actuarial 10-year disease-free sur-
vival in the treatment and control groups was 47.6 and
27.3 %, respectively (P = 0.0892). The actuarial 10-year
overall survival in the treatment and control groups was 52.4
and 27.3 %, respectively (P = 0.0905). The authors con-
cluded that the use of adjuvant intra-arterial 131I after cura-
tive liver resection provides a survival benefit of disease-free
survival and overall survival, although the difference became
statistically insignificant 8 years after randomization.

35.5.2.2 90Y Microspheres (Yttrium-90)
Radioembolization (RE) is a form of brachytherapy during
which microspheres containing Yttrium-90 (90Y) are
implanted into hepatic tumors via the hepatic artery. The
radiation is permanently bound to the microspheres, which do
not migrate out of the liver tumors. Almost pure beta radiation
is delivered within an effective range of only 2.5 mm from the
microsphere, thus sparing normal adjacent liver tissue from
damage. The half-life is 64 h with all of the effective radiation
delivered by 14 days post implant [56–58].

The rationale for microsphere treatment with infusion of a
sphere charged with 90Y is that 90Y will undergo beta decay
with energetic electrons thereby penetrating only 2–8 mm,
over a half-life of 64 h. Microspheres, which range in diam-
eter from 20 to 40 microns, will become embedded within the
tumor vasculature, but because the end arterioles are <10
microns in diameter, the microspheres will not pass into the
venous circulation. The lungs are the next arteriole bed, which

would capture the spheres (Figs. 35.1 and 35.2). Pulmonary
tolerance to radiation is roughly half (<20 Gy) that of the liver
and unintentional deposition of microspheres with 90Y led to
deaths in past trials [59, 60]. Arteriovenous shunts in the liver
that would allow free passage of microspheres into the venous
system and then to the lungs were not readily apparent on
angiogram. Therefore, patient screening involves detailed
hepatic angiographic mapping coupled with nuclear imaging
using albumin tagged with a gamma emitter technecium-99,
(99mTc-MAA) injected into the hepatic artery. It is then pos-
sible to calculate the percentage of shunting of 99mTc in the
lung compared with the known amount infused into the liver.
Typically, if >10 to 15 % of the dose appears in the lungs, a
dose reduction of microspheres is attempted, or the procedure
is aborted [61–79]. Infusion of the entire liver can be
accomplished in a single infusion; however, this procedure
will increase toxicity versus a sequential lobar approach, with
a 4-week interval between infusions [61].

There is recent evidence that it is safe to add 90Y as
treatment for PVT cases in situations where TACE is con-
traindicated. As part of a single center, prospective longi-
tudinal cohort study, Salem et al. [62] treated 291 HCC
patients with 90Y to assess clinical outcomes. RR and TTP
were determined using World Health Organization
(WHO) and European Association for the Study of the Liver
(EASL) guidelines. Five hundred twenty-six treatments with
90Ywere administered (mean: 1.8, range: 1–5). Toxicities
included fatigue (57 %), pain (23 %), and nausea/vomiting
(20 %); 19 % exhibited grade 3/4 bilirubin toxicity. The
30-day mortality rate was 3 %. Survival times differed

Fig. 35.1 Illustration of the
arterial plexus of abnormal
vessels recruited by
hepatocellular cancers and the
route 90Y-microspheres take to
embed into the tumor. The beta
radiation emitted only penetrates
3–4 mm from each microsphere
sparing the adjacent normal liver
tissue beyond the tumor
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between Child-Pugh A and B patients (A:17.2 months,
B:7.7 months, P = 0.002). Child-Pugh B patients with PVT
survived 5.6 months (95 % CL:4.5–6.7). The results showed
that Child-Pugh A patients, with or without PVT, benefited
most from 90Y treatment. Sangro et al. [63] conducted a
multicenter analysis to evaluate the main prognostic factors
driving survival after RE using 90Y microspheres in patients
with HCC. Three hundred twenty-five patients were
administered 1.6 GBq infusion between September 2003
and December 2009. Patients were Child-Pugh class A
(82.5 %), who had underlying cirrhosis (78.5 %), and had
good ECOG performance status; however, many had
multinodular disease (75.9 %) invading both lobes (53.1 %)
and/or PV occlusion (13.5 % branch; 9/8 % main). Over
half of the patients had advanced Barcelona Clinic Liver
Cancer (BCLC) staging (BCLC C, 56.3 %) and one-quarter
had intermediate staffing (BCLC B, 26.8 %). The median
overall survival was 12.8 months (95 % confidence interval,
10.9–15.7), which varied by disease stage (BCLC A,
24.4 months [95 % CI, 18.6–38.1 months]; BCLC B,
16.9 months [95 % CI, 12.8–22.8 months]; BCLC C,
10.0 months [95 % CI, 18.6–38.1 months]). Survival varied
by ECOG status, hepatic function (Child-Pugh class, ascites,
and baseline total bilirubin), tumor burden, and presence of
extrahepatic disease. Overall survival diminished in patients
with PV occlusion (branch or main) compared with those
with patent vessels (10.0 months: 95 % CI, 6.5–11.8 vs.
15.3 months; 95 % CI, 12.4–18.4; P = 0.003), with no
significant difference in survival between patent portal vein
and branch occlusion (P = 0.124). Data from both studies
describe 90Y as a potential treatment option to patients with
HCC. Although sorafenib is currently the standard of care

for advanced HCC, these studies demonstrate that the anti-
tumoral effect of 90Y should be further studied.
Advanced HCC patients with PVT may represent a select
cohort where combinatorial therapy of 90Y with sorafenib
therapy may significantly improve outcome.

The most common nonsurgical approaches for the treat-
ment of localized hepatocellular carcinoma remain TACE and
TARE [45]. TARE has no macroembolic effect [65], can be
safely applied to patients with PVT, and offers a median
survival in thee range of 6–11 months [65–68]. Similar results
(6.5–10.7 months) were also produced in phase III clinical
trials of sorafenib with the same group of patients [70, 71].
Interestingly, HCC patients with PVT (branch or segmented),
survival increased, 10–14 months [64–66]. With a potential
to induce intense tumor responses, TARE has moved to the
forefront of therapy to reduce tumor burden within acceptable
limits for liver transplantation, to render nonoperable patients
operable, or to simplify surgery. The United Network for
Organ Sharing (UNOS) downsizing from T3 to T2 was
realized more with TARE than with TACE (58 % vs. 31 %,
P = 0.023). [74] Radiation lobectomy—contralateral lobe
hypertrophy as a result of injection of a high activity of 90Y in
a lobar hepatic artery—and atrophy of the irradiated lobe after
TARE may be a valuable contribution to resectability [75].
Inarrairaegui et al. [76] reported that in a group of 21 UNOS
T3 stage patients, 29 % were moved to forefront surgical
treatment or transplantation with a 3-year survival rate of
75 %, comparable with the survival in patients with early
stage disease who are treated radically at the time of diagnosis.
Chow et al. [77] conducted a multicenter, open-label, single
arm, Phase II study (NCT0071279) to evaluate the safety and
efficacy of sequential TARE-sorafenib in patients with HCC

Fig. 35.2 A full dose of 90Y
microspheres about to be
delivered intra-arterially via the
hepatic artery. A small volume
(2 cc) of microspheres is resting
at the bottom of a vial, with the
vial contained in an acrylic case
to protect the staff from receiving
radiation exposure
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not amenable to curative therapies. Sorafenib 400 mg, twice
daily, was initiated 14 days post TARE with 90Y micro-
spheres given as a single procedure. Twenty-nine patients
with BCLC stage B (38 %) or C (62 %) HCC received a
median of 3.0 GBq 90Y followed by sorafenib (median
dose/day, 600.0 mg; median duration, 4.1 months).
Twenty-eight patients experienced � toxicity; 15 (52 %)
grade � 3. Disease control was 100 and 65 % in BCLC
stage B and stage C, respectively. Two patients (7 %) had
sufficient response to enable radical therapy.Median survivals
for BCLC stage B and stage C were 20.3 months and
8.6 months, respectively. In the multicenter SORAMIC trial,
Ricke et al. [78] randomized 40 patients to TARE with 90Y
microspheres followed by sorefenib (n = 20) or sorefenib
only (n = 20). Eligible patients were stratified by presence or
absence of a PVT and randomly assigned in a 11:10 ratio to
receive either sorafenib in combination with 90Y micro-
spheres or sorafenib alone. Patients were followed at 2-month
intervals for a minimum of 24 months or until death. Sor-
afenib was given continuously until tumor progression or the
emergence of drug-related adverse events (AEs), which
required discontinuation after two dose reductions. All
patients randomized to the 90Y microspheres arm had a pre-
treatment assessment 1 to 2 weeks earlier to plan the selective
delivery of the 90Ymicrospheres in each liver lobe. This study
represented the first formal prospective assessment of the
toxicity of a combined treatment regimen of 90Ymicrospheres
and sorafenib. Data from the study indicated that sorafenib
initiated 3 days after the last radioembolization procedure was
generally well tolerated compared with sorafenib alone.

This ever-expanding body of level 2 evidence has vaulted
TARE into the guidelines of the European Society for
Medical Oncology (ESMO), the European Society of
Digestive Oncology (ESDO), and the National Compre-
hensive Cancer Network (NCCN); however, not yet in the
guidelines of the European Association for the Study of the
Liver (EASL), the European Organization for Research and
Treatment of Cancer (EORTC), or the American Association
for the Study of the Liver Diseases (AASLD).

A consensus panel [80] provided category 2a consensus
evidence and guidelines for employing internal liver radio-
therapy with radioactive microspheres. One of its purposes
was to standardize the indications, techniques, multimodality
treatment approaches, and dosimetry to be used for 90Y
microsphere hepatic brachytherapy. Members of the
Radioembolization Brachytherapy Oncology Consortium
(REBOC) comprised an independent group of experts in
interventional radiology, radiation oncology, nuclear medi-
cine, medical oncology, and surgical oncology that identified
areas of consensus and controversy and issued clinical
guidelines for 90Y microsphere brachytherapy. A total of 14
recommendations were made by REBOC with key findings
including sufficient evidence that exists to support the safety

and effectiveness of 90Y microsphere therapy. A meticulous
angiographic technique is required to prevent complications.
Resin microsphere prescribed activity is best estimated by the
body surface area method. By virtue of their training, certi-
fication, and contribution to 90Y microsphere treatment pro-
grams, the disciplines of radiation oncology, nuclear
medicine, and interventional radiology are all qualified to use
90Ymicrospheres. REBOC strongly advocated the creation of
a treatment registry with uniform reporting criteria. Initiation
of clinical trials to further define the safety and role of 90Y
microsphere in the context of currently available therapies is
needed. Also included was a summary of HCC trials of 90Y
microspheres, which showed a favorable toxicity profile,
response rate, and overall survival in a difficult group of
patients.

Ariel and Simon [81–83] were the first investigators to
perform microsphere clinical trials in humans. During the
early 1960s, most patients had metastatic carcinoid or col-
orectal cancers. The pioneering work of Ariel and Simon was
with composite spheres and 90Y but their treatment proce-
dures for screening, infusion, and posttreatment imaging are
largely intact in modern clinical practice [61, 84–93]. Two
microsphere devices are available in the US: the glass
microsphere (TheraSphere®) and resin-based sphere
(SIR-Spheres®). Both are similar in size, and isotope (90Y),
but have some important differences in delivery and physical
characteristics [94] (Table 35.1). Both began in clinical trials
in the late 1980s and have been used in thousands of patients
since, mostly with colorectal metastases, but sufficient HCC

Table 35.1 Comparison of radioactive microsphere agents

Parameter Glass Resin

Size (median) 25 microns 32 microns

Isotope 90Y 90Y

Number of
spheres in
standard dose

4 million
(range 2–8 million)

40 million
(range 30–80 million)

Total activity
infused in typical
treatment

5 GBq
(range 3–20 GBq)

1.8 GBq
(range 0.8–3.0 GBq)

Activity per
microsphere for
typical treatment

2500 Bq 50 Bq

Indication(s) HCC (USA)
HCC and colon
(Canada)

Colon (USA)
All tumor types
(Europe, Asia)

Regulatory status
(United States
FDA)

Humanitarian
device exemption
(HDE) HCC only

Premarket approval
(PMA)
Colorectal cancer liver
metastases

Limitations on
treatment

High radiation dose
in cirrhotic patients

High risk of embolic
complications due to
large number of
microspheres
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patients have been treated to make some observations [59, 69,
85, 88, 89, 95–113].

Carr et al. [98, 105] presented a report of a phase II trial
of glass microspheres via lobar approach, with a nominal
target dose of 135 Gy and a quality of life companion study
[99, 114]. Carr also statistically compared survival of pub-
lished untreated Okuda I and II patients [115–117] to his
study cohort [99, 105]. Tumor reductions were documented
in 42 patients (64.6 %) via decreased vascularity, with 25
patients (38.4 %) having a partial response by CT. Median
survival for Okuda stage 1 (42 patients) was 649 days (360–
1012 days) compared to historical median of 244 days. The
advantage was even more pronounced in those with Okuda
stage II (23 patients) with a median survival after micro-
spheres of 302 days (166–621) versus a historical median
survival of 64 days. Toxicity and quality of life were good,
with only one patient judged to have died related to micro-
sphere therapy. The quality of life report of this patient
group compared hepatic artery infusion with cisplatin versus
microspheres, revealing a small advantage to microsphere
therapy. Toxicity and survival in a group of 14 patients with
unresectable HCC by Kennedy, [118] and 16 patients by
Soulen [119] were very similar to those reported by Carr,
with elevated enzymes, nausea, and fatigue the most fre-
quent common toxicity grade 2 or grade 3 findings. The dose
delivered was different in all three studies; Kennedy [118]
delivering median dose of 149 Gy (128–174 Gy) to the
whole liver with a 9-month survival of 75 %, Soulen [117] a
mean of 128 Gy (97–182 Gy), and Carr at 133 Gy [99].

35.5.2.3 Additional Phase I-II 90Y-Microsphere
Trials in HCC

Lau et al. [96] reported a phase I study of resin microspheres
in 18 patients with inoperable HCC via an arterial port
placed during laparotomy. The radiation doses to the liver
and tumor were determined intraoperatively with a beta
probe and liquid scintillation counting of multiple liver
biopsies. The treatment was well tolerated without major
complications. Response by tumor marker occurred in all
patients and ranged from 41 to 0.2 % of the pretreatment
level. Tumor regression was correlated with radiation dose.
Progressive or static disease occurred in a higher proportion
of patients whose tumors received <120 Gy (P = 0.005).
Survival was improved if tumors received >120 Gy (median
survival = 55.9 weeks) compared to lower doses (median
survival = 26.2 weeks) which was significant (P = 0.005).

Lau et al. [95] reported a phase II study involving 71
patients with HCC that had not had prior TACE or radiation
therapy. Microspheres were infused into the hepatic artery at
the time of hepatic angiography or through an implanted
arterial portacatheter under fluoroscopy. Repeated treatments
were given for residual or recurrent tumor. Response to
treatment was monitored by serum alpha-fetoprotein or

ferritin levels, together with serial CT scans. Of the 71
patients, 20 patients were treated for postoperative recur-
rence. Activity of 90Y for the first treatment ranged from 0.8
to 5.0 GBq (21.6 mCi to 135.1 mCi) with a median of
3.0 GBq (81.1 mCi). There was a 50 % reduction in tumor
volume in 19 (26.7 %) patients after the first treatment.
However, the overall objective response in alpha-fetoprotein
levels was 89 % (PR 67 % plus CR 22 %) among the 46
patients with elevated pretreatment levels. The serum ferritin
level in the other 25 patients dropped by 34–99 % after
treatment. Treatment was repeated in 15 patients with the
maximum number of treatments in an individual patient of 5
and the maximum total activity delivered in a single patient
was 13.0 GBq (351.4 mCi) over 3 treatments. The estimated
radiation doses to normal liver ranged from 25 to 136 Gy
(median 52 Gy) in the first treatment and the highest total
radiation dose was estimated to be 324 Gy. Tumor doses
were 83–748 Gy (median 225 Gy) in first treatments and the
highest cumulative dose reached was 1580 Gy. The residual
tumors were resected in four patients and in two of these
patients no residual tumor was found and in the remaining
two patients only occasional viable tumor cells were found
in the necrotic centers of the tumors. The median survival of
the 71 patients was 9.4 months (range 1.8–46.4 months).
Treatment was well tolerated without serious adverse events,
RILD, or radiation pneumonitis.

Dancey et al. [59] reported a phase II trial of glass
microspheres for unresectable HCC of 22 patients, with only
20 receiving treatment. The median age was 62.5 years and
overall performance status was ECOG 0-3. A planned dose
of 100 Gy was delivered through a femoral catheter
approach to the hepatic artery. Nine patients were Okuda
stage I, and eleven were Okuda stage II. The median dose
delivered was 104 Gy (range, 46–145 Gy). All treated
patients experienced at least one adverse event. Of the 31
(15 %) serious adverse events, the most common were ele-
vations in liver enzymes and bilirubin and upper GI ulcer-
ation. The response rate was 20 %. The median duration of
response was 127 week; the median survival was 54 week.
Multivariable analysis suggested that a dose greater than
104 Gy (P = 0.06), tumor-to-liver activity uptake ratio
greater than 2 (P = 0.06), and Okuda stage I (P = 0.07) were
associated with longer survival. The authors concluded that
significantly higher doses of radiation can be delivered to a
HCC tumor by intrahepatic arterial administration of
90Y-microspheres than by external beam radiation, although
they did not test external beam radiation in their study [48].

Kulik et al. [120] reported results of a phase II trial of
glass microspheres completed at two centers involving 108
patients with unresectable HCC with and without portal vein
thrombosis. Patients treated were stratified by Okuda,
Child-Pugh, baseline bilirubin, tumor burden, Eastern
Cooperative Oncology Group (ECOG), presence of cirrhosis
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and portal vein thrombosis (PVT) (none, branch, and main).
Clinical and biochemical data were obtained at baseline and
at 4-week intervals following treatment to 6 months. Tumor
response was judged from CT scans. Thirty-seven (34 %)
patients had PVT, 12 (32 %) of which involved the main
PV. The cumulative radiation dose for those with and
without PVT was 139.7 and 131.9 Gy, respectively.
Radiographic response using WHO criteria was partial in
42.2 %. Using EASL, the response rate was 70 %. The AEs
were highest in patients with main PVT and cirrhosis. There
were no cases of radiation pneumonitis. Kaplan–Meier sur-
vival varied depending on the location of PVT and presence
of cirrhosis; with no PVT group median survival of
15.6 months (P = 0.0052) was superior compared to all
other patients. The best survival was in the noncirrhotic,
non-PVT patients with a median survival of 27.1 months
(P = 0.027) versus all others.

Estimating dose delivered in the tumor versus normal
liver is problematic in microsphere therapy, [121–125] but it
is clear from the literature that for the doses commonly used
today and reported in either glass or resin spheres, the tox-
icity profile is fairly low, and responses by imaging, and
tumor markers, consistently good, and in agreement between
various researchers. With the widespread availability of this
modality in Europe, North America, and Asia, increasing
numbers of centers are beginning treatment protocols using
microspheres alone, or in combination with chemotherapy.
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36.1 Psychosocial Evaluation
and Treatment of Distress
in Oncology

The National Comprehensive Cancer Network (NCCN) has
deemed “psychosocial distress” as the sixth vital sign and
has recently developed guidelines for management of dis-
tress in people diagnosed with cancer and their families [1].
According to the National Cancer Institute (NCI), distress
may be defined as “extreme mental or physical pain or
suffering” [2]. Evidence continues to accumulate regarding
the prevalence of psychological distress in patients diag-
nosed with cancer. Zabora et al. [3] found in a sample of
over 4000 cancer patients that 25–43 % reported significant
distress. Liver cancer was reported to have the third highest
level of distress [3]. Due to the current pressures within the
healthcare system, distress often goes unrecognized by
health care providers. Fallowfield et al. [4] found that only
29 % of oncology patients who exceeded the cut-off score
on a distress instrument were identified by their physicians
as being distressed. As a result of the increasing recognition
of distress in people diagnosed with cancer, the Institute of
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Medicine (IOM) released a report that recommended the
comprehensive screening, evaluation, and treatment of psy-
chosocial needs of cancer patients and their families [5].
Cancer centers across the country are now implementing
programs to begin to meet these recommendations.

The objective of this chapter will be to provide a frame-
work to facilitate the goals of the IOM recommendations in
patients diagnosed with hepatocellular carcinoma (HCC).
The chapter will provide clinicians with (1) information
regarding modifiable risk factors in the development of HCC;
(2) tools to facilitate the evaluation of psychosocial distress
and cancer-related symptoms in HCC; (3) a brief introduction
of the emotional responses commonly expressed in patients
with HCC; (4) frequently presenting psychological disorders
in patients diagnosed with HCC; (5) common cancer-related
symptoms in which behavioral methods can be employed to
complement conventional medical treatment; and (6) special
issues associated with HCC including caregiving, caring for
children and adolescents, cultural and religious factors in the
treatment of HCC, end of life issues, and alternative and
complementary medicine. Due to the paucity of psychosocial
research that has been conducted in HCC, the research that
will be presented in this chapter will rely primarily on pre-
vious research with other cancer populations as well as
research conducted by our team. The evaluation and treat-
ment of psychosocial problems is critical as unmet psy-
chosocial needs or distress can increase morbidity and
mortality in patients diagnosed with HCC [6, 7].

36.2 The Role of Behavior
in the Development of HCC

HCC is the sixth most common cancer world [8] Increasing
evidence suggests that the development of cancer is likely a
result of an interaction between genes, environment, and/or
behavior [9–16]. As with HCC, not all individuals with
known risk factors develop HCC. At this time genetic pre-
disposition of HCC is not likely to be modified; however, the
behavioral or environment risk factors associated with HCC
may be prevented or modified.

The primary risk factors of HCC include hepatitis B and
C (HBV and HCV); alcohol-related liver disease (ALD);
nonalcoholic steatohepatitis (NASH; which is often associ-
ated with obesity, type II diabetes, dyslipidemia, and insulin
resistance); and to a lesser extent congenital diseases such as
hemochromatosis, alpha-l-antitrypsin deficiency, glycogen
storage disease, porphyria cutanea tarda, tyrosinemia,
aflatoxins and Wilson disease, and in rare cases, biliary
cirrhosis [8, 17–25]. The majority of cases of HCC world-
wide are secondary to HBV and HCV infection followed by
NASH and alcohol abuse, which are modifiable risk factors.
Increasing evidence suggests that in the next decade NASH

will be the primary risk factor for HCC in North America
and Europe [26, 27].

Some factors that contribute to the development of HCC
(e.g., substance abuse) may also contribute to more rapid
disease progression and medical complications once diag-
nosed with HCC [28–30]. Primary prevention in the form of
education regarding risk factors and modes of transmission
and interventions to reduce the incidence of risk behavior
(e.g., substance abuse) may be instituted to reduce the risk of
developing HCC. Nonalcoholic steatohepatitis is increasing
in incidence and is expected to be the leading cause of HCC
in North America [26, 27]. In the last decade, the rate of
obesity has doubled in adults and tripled in children [31].
Increased body mass index (BMI) leads to hyperlipidemia,
hypertension, and diabetes [32–39]. Prevention through the
improvement of health behaviors (increased fruits and veg-
etables and physical activity) as well as the treatment of
hyperlipidemia and diabetes may reduce the risk of
NASH-related HCC.

Although less studied, environmental and/or occupational
exposure and substances such as tobacco may play a role or
have a synergistic effect in the development of HCC [40–49].
Tobacco use has been demonstrated to be associated with
increased risk of cancer [50–52]. Alcohol and tobacco, as well
as infection with HCV, been found to have a synergistic effect
in the development of HCC [41, 44, 46, 47, 53]. In two
studies, the combination of alcohol and tobacco increased risk
for HCC 5.6–7.2 times when compared to cirrhotic patients
without these risk factors [41, 46]. Studies from Taiwan and
Japan have also replicated these results [53, 54].

The most common environmental risk factor is the
exposure to aflatoxins. Aflatoxins, formed by certain
Aspergillus species, are frequent of improperly stored grains
and nuts. In parts of Africa, the high incidence of HCC in
humans may be related to ingestion of foods contaminated
with aflatoxins [55–57]. Limited evidence is available for
other environmental risk factors; however, research suggests
that both arsenic [58, 59] and radiation exposure [60] may be
associated with the development of HCC. Prevention pro-
grams including smoking cessation as well as further research
and education regarding the role of environmental and/or
occupational factors that may lead to HCC are critical in the
prevention of this cancer.

36.3 The Role of Inflammation and HCC

Inflammation is a hallmark of immunological responses to
invading microbes, but has been implicated in a number of
major diseases, including inflammatory bowel disease,
obesity, diabetes mellitus and several cancers. Chronic
inflammation has been linked with specific types of cancer,
particularly those associated with viral infection or an
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inflammatory response, including hepatitis- and NASH-
associated HCC. Although some chronic diseases have long
been acknowledged to increase the risk of malignancies,
only more recently has chronic inflammation been hypoth-
esized to be a key factor in their development. There is
increasing evidence that psychosocial factors directly con-
tribute to the development and maintenance of chronic
inflammation. While depression may contribute to increase
levels of circulating pro-inflammatory cytokines, inflamma-
tion conversely may itself act on the brain to induce
depressive symptomatology. Thus, interventions targeting
the depressive symptoms associated with HCC may also
disrupt the chronic inflammatory cycle and its resultant
disease processes.

Virchow hypothesized in 1863 that tumors originated at
sites of chronic inflammation within the human body and
identified the role of inflammation in carcinogenesis when he
noticed the presence of leucocytes in neoplastic tissue and
suggested that the “lymphoreticular infiltrate” reflected the
origin of malignancies where inflammatory processes
occurred [61, 62]. His claim was not investigated for more
than a century. Recently, researchers have begun examining
the hypothesized relationship and studying the connection
between chronic inflammation and cancer. Epidemiological
studies have demonstrated that chronic inflammation pre-
disposes individuals to a variety of cancers [61, 62]. About
25 % of all deaths from cancer worldwide are attributable to
underlying infections and inflammatory responses [63].
Chronic infection and inflammatory responses are known to
have associations with the development of certain cancers,
such as the human papilloma virus (HPV) and its relation-
ship to cervical cancer, or the infection of hepatitis B and C
viruses leading to HCC [64]. Increased risk of tumor growth
is associated with chronic inflammation caused by various
microbial infections and autoimmune diseases (e.g.,
inflammatory bowel disease and the risk of colon and col-
orectal cancers) [65]. Chronic inflammation contributes to a
tumor-promoting environment through various avenues that
may include cellular transformation, proliferation and sur-
vival of malignant cells, development of angiogenesis and
metastasis, reduction of adaptive immune responses, as well
as tumor responses to chemotherapeutic drugs and hor-
mones. The inflammatory response and resultant tumors may
be conceptualized as wounds that do not heal [66].

The role of chronic inflammation in the development of
cancer involves the contributions of various inflammatory
cells, mediators, and signaling pathways in cancer genesis and
inflammatory mediators which include chemokines and
cytokines in tumor tissues, tissue remodeling, and angiogen-
esis. The prime endogenous promoters include transcription
factors such as nuclear factor-kappa B (NF-kB) and signal
transducer activator of transcription-3 (Stat3), as well as major
inflammatory cytokines, such as interleukin beta (IL-1b),

interleukin 6 (IL-6), interleukin 23 (IL-23), and tumor
necrosis factor alpha (TNFa) [67–70]. TNFa was the first
factor isolated as an anticancer cytokine. At dysregulated
levels within the immune system, its presence mediates a
variety of diseases and has also been demonstrated to be a
major predictor of inflammation [71, 72]. Several
pro-inflammatory cytokines have been related to tumor
growth, indicating that inflammation is associated with car-
cinogenesis [61, 73]. These include IL-1, IL-6, IL-8, and
IL-18 and are involved in different steps of tumor initiation
and growth. Specifically, Negaard et al.demonstrated that
individuals with hematological malignancies have increased
bonemarrowmicro-vessel density aswell as elevated levels of
IL-6 and IL-8, possibly contributing to the malignant pheno-
type [74]. Chemokine proteins play several roles in cancer
progression, including angiogenesis, inflammation, and cell
recruitment and migration and play a central role in leucocyte
recruitment to sites of inflammation. Most tumors produce
chemokines of two major groups: alpha and beta [61]. Evi-
dence from murine models and human tumors propose that
beta chemokines contribute vastly to macrophage and lym-
phocyte infiltration in tumors [75, 76]. A key molecular link
between inflammation and tumor promotion and progression
is transcription factor NF-kB, which regulates TNFa, inter-
leukins, chemokines, and other molecular factors [77].
AlthoughNF-kB is inactive inmost cells, there is an activation
state that is induced by a wide variety of inflammatory stimuli
and carcinogens that, in turn, mediate tumorigenesis [78].

36.3.1 Relationship Between Depression
and Inflammation

The relationship between the brain and the peripheral
organs, often referred to as the “mind-body” connection, is
based on alterations in the endocrine and immune systems
that lead to the chemical changes that occur in clinical
depression. Pro-inflammatory cytokines, particularly IL-6,
have been found to occur in greater quantities in depressed
patients [79]. It has also been shown that about 45 % of
patients being treated medically with pro-inflammatory
cytokine interferon-alpha (IFNa) developed symptoms of
depression that reversed once the treatment ended [80].
Inflammation is not only a contributing factor in depression
but also in many domains of medical illness. Among patients
diagnosed with major depression, there is evidence to sug-
gest that relationships exist between severity and duration of
depression and increased prevalence of other disease pro-
cesses, such as cardiovascular disease, type-2 diabetes, a
variety of autoimmune diseases, and cancer [81]. Major
depressive disorders (MDD) are also more prevalent in
patients who suffer from illnesses that lead to chronic
inflammation than healthy people [82]. While the presence
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of an inflammatory disease may initiate depressive symp-
toms in patients without pre-existing psychological disor-
ders, inflammation also occurs in depressed patients who are
not suffering from concurrent inflammatory disorders [83].

The brain is influenced by the peripheral immune system
where molecules such as cytokines, chemokines, and glu-
cocorticoids originating in the peripheral organs can affect
the neuronal pathways implicated in depression [79, 84].
Recently, it has been shown that symptoms of illness (fa-
tigue, decreased appetite, social withdrawal, disturbed sleep
cycles, anhedonia and mild cognitive impairment), and the
normal bodily response to infection are triggered by
pro-inflammatory cytokines, including IL-1a and b, TNFa,
and IL-6 [79]. These cytokines are responsible for devel-
oping the body’s inflammatory (local and systemic) response
to invading microbes. In doing so, they also impact neural
circuitry within the brain, resulting in the behavioral symp-
toms of illness. Such illness characteristics are remarkably
similar to the symptoms of clinical depression. It is generally
the role of anti-inflammatory cytokines to regulate the
duration of these illness symptoms, possibly by inhibiting
pro-inflammatory cytokine production and interfering with
pro-inflammatory cytokine signaling [85].

Despite evidence to support the mechanisms by which
pro-inflammatory cytokines act on the brain, the direction-
ality of the inflammation–depression relationship is as yet
unclear. As mentioned above, there is also research to sug-
gest that depression may predispose people to developing
illness. One study attempting to examine the directionality of
the inflammation–depression relationship found that baseline
depression scores of healthy (no medical illness) patients
independently predicted change in IL-6. In contrast, IL-6 did
not predict change in depression score [86]. The implication
of those findings suggests that depression in previously
healthy people may lead to inflammation and inflammation
may be the mechanism through which depression potentiates
chronic illness [87–89].

36.3.2 Relationship Between Obesity, Type-2
Diabetes, and Inflammation

The prevalence of obesity is increasing significantly in the
U.S. and it is estimated that nearly two thirds of the popu-
lation is overweight or obese [31]. Obesity is associated with
a chronic, low-grade inflammation and can itself be viewed
as an inflammatory condition since weight gain activates
inflammatory pathways [90]. Serum levels of
pro-inflammatory cytokines, including IL-6, TNFa, and
C-reactive protein (CRP) are generally all elevated in indi-
viduals with obesity and insulin resistance [91].

Thus, the adipocyte is an active participant in the gen-
eration of the inflammatory state in obesity. Increased levels

of cytokines lead to hepatic production and secretion of
CRP, plasminogen activator inhibitor-1 (PAI-1), amyloid-A,
alpha1-acid glycoprotein, and haptoglobin, which are all
inflammatory markers that appear in the early stages of
type-2 diabetes and increase as the disease progresses [92].
Obesity may stimulate inflammation through oxidative
stress, which can result either from high levels of free radical
production, a decrease in endogenous antioxidant defenses,
or both [93]. The oxidative stress activates the
pro-inflammatory transcription factor, NF-kB, continuing to
promote low-grade chronic inflammation [94].

Several epidemiological studies have demonstrated that
elevated weight and obesity, defined by a BMI higher than
25, result in significant increase for risk of cancer [95]. Park
et al. examined how obesity enhanced cancer risk and
development by studying HCC in mice and showed that
dietary and genetic obesity promoted the growth of liver
tumors [96]. There was a direct association between
obesity-promoted HCC development and enhanced produc-
tion of the tumor-promoting cytokines IL-6 and TNFa, both
of which cause hepatic inflammation and activate the
oncogenic transcription factor STAT3. The data suggest that
inflammatory mechanisms may mediate the association
between obesity and cancer development.

36.3.3 Inflammation and Treatment
Considerations

Recent work has addressed whether psychological inter-
vention can disrupt chronic inflammation and its resultant
carcinogenic processes. A few promising studies have
attempted to shed light on the answer by targeting depressive
symptoms in patients diagnosed with cancer. Another
approach has been the pharmacological treatment of
depression, particularly with regard to selective
serotonin-reuptake inhibitors (SSRIs) and tricyclics.
Researchers have found that activation of the serotonin
5-hydroxytryptamine (5-HT) 2A receptor, known for its role
in brain neurotransmission, results in inhibition of
TNFa-mediated inflammation [97, 159]. One clinical trial
that involved SSRI treatment of patients with major
depression demonstrated a significant decrease in TNFa and
CRP [98, 160]. CRP blood level has recently been shown to
be an important and independent predictor of clinical HCC
prognosis [99]. Other studies found that among patients with
major depression treated with an SSRI, IL6, IL1b and TNFa
levels were significantly lower post treatment and it has been
demonstrated that the presence of serotonin is required for
expression of the inflammatory markers IL-6 and TNFa [98,
100].

The interaction between psychological distress and
chronic inflammation is of great interest. While the
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directionality of this relationship remains unclear, and there
is even evidence supporting bi-directionality, data suggest
that psychological factors such as major depression, anxiety,
chronic and daily life stress and anger suppression may
trigger an inflammatory response. Unregulated, and often
aggravated by the contribution of behavioral factors (dietary
obesity, smoking, sedentary lifestyle), such inflammatory
responses often develop into chronic disease. Thus, psy-
chosocial factors are of critical importance, as they are often
modifiable and such psychological interventions may alter or
even prevent the course of chronic diseases associated with
cancer development.

36.4 Evaluation of Psychiatric
and Cancer-Related Symptoms

According to the IOM, screening, assessment and treatment
of psychosocial problems is now recommended as the
standard of care in any oncology practice [5]. With the sixth
vital sign being deemed “distress” the NCCN has developed
the “Distress Thermometer” to screen for psychosocial
problems in the oncology setting [1]. Although the distress
thermometer has been described as having limitations [101],
the instrument has been implemented in cancer centers
across the country. For centers which have limited resources
and would like to employ the distress thermometer in clinics
treating HCC, we have modified this instrument to include
additional psychosocial issues and symptoms specific for
patients with HCC (see Table 36.1).

Furthermore, an additional, but not exhaustive, list of
recommended instruments has been compiled to provide
clinicians and researchers with a variety of methods to assess
common presenting problems in HCC. Table 36.2 provides
information regarding the number of items, scales, response
scales, time frame, cut-off scores, and information regarding
the reliability and validity of the instrument.

Table 36.3 provides questions that may facilitate the
assessment of cancer-related symptoms such as pain, fatigue,
or nausea and vomiting. Understanding the specific details of
the onset, duration, and frequency of symptoms as well as
factors that improve or worsen symptoms facilitates the
clinician’s ability to understand the potential symptom eti-
ology and provide the most effective treatment. For mental
health professionals working with HCC, Table 36.4 pro-
vides interview questions that may be useful in the evalua-
tion of patients diagnosed with HCC.

The most challenging aspect of diagnosis of a psychiatric
disorder in cancer patients is the differential diagnosis of
psychiatric symptoms that may be a result of the cancer, other
comorbid medical conditions, or medications. A careful
medical history including a thorough understanding of the
patients’ current medication regimen is necessary.

Differentiating psychiatric symptoms from symptoms asso-
ciated with the cancer, liver disease, comorbid medical con-
ditions, and medication side effects or interactions is
imperative to make appropriate diagnosis and treatment
recommendations. Recommendations from a mental health
professional may not result in a psychiatric diagnosis but
further medical work-up to rule out medical or
medication-related symptoms.

36.5 Psychosocial Distress

A significant proportion of patients who are diagnosed with
cancer have some level of psychiatric distress [101]. Patients
diagnosed with liver cancer have been reported to have the
third highest level of distress after lung and pancreatic
cancer when compared to 14 other types of cancer [3].
Psychosocial distress as defined above would be expected
when diagnosed with a potentially life-threatening illness
such as cancer. Distress levels can vary depending on the
diagnosis (e.g., lung or liver cancer) or expectations of
treatment, which may be toxic, painful, and impair social,
occupational/educational, cognitive, and/or physical func-
tioning. HCC carries with it a poor prognosis and although
new treatments have become available and have promising
results (e.g., Nexavar), the benefits of treatment remain
modest [102, 103].

Not all patients express distress at the time of diagnosis.
Some patients have excellent coping strategies and some
patients may not present with observable levels of distress
that impairs functioning. Lack of distress may also be a
result of the lack of understanding of the severity of the
diagnosis. Furthermore, some patients and/or caregivers may
be in denial or use avoidant coping at the time of diagnosis.
Denial or avoidance, if short-lived, can be effective until a
person can muster the resources to manage their emotions
and begin to understand their options [104]. However, if a
patient maintains denial and avoidant coping strategies for a
long period of time, treatment may be delayed and the dis-
ease may progress as observed in other cancer types [105–
107]. Due to the risk factors associated with development of
HCC (e.g., substance abuse), some patients may express
feelings of guilt as in other cancer types in which behavioral
factors may have contributed to the development of the
disease [108]. In addition, family caregivers of patients with
HCC may have higher levels of anger and resentment when
caring for these patients if they feel the “cause” of the cancer
is a result of the patients’ behavior. Although this has not
been studied in HCC, research in other cancer types has
discussed the role of anger in caregiving for patients diag-
nosed with cancer [109, 110]. Patients may also express
regrets for prior behaviors that lead to the development of
their cancer. It is also not uncommon for childhood and
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Table 36.2 Interview questions to assess cancer-related symptoms

When did the symptom begin

Have there been any changes in the symptom over time

How long does the symptom last once it begins

How frequently does the symptom occur

What factors improve the symptom

What factors worsen the symptom (e.g., activity, inactivity)

What meaning does this symptom or side effect have for you (e.g.,
pain means my disease is progressing)

How severe are the symptoms (does it impair social or functional
status, mood)

Have any medications improved or worsened the symptom

Changes in appetite or weight associated with this symptom

Do symptoms of anxiety or depression contribute to the exacerbation
of this symptom

Table 36.3 Interview questions for psychosocial assessment

Problem Question

History

Sociocultural
background

Where was the patient born and raised
Did the person emigrate from another country (if
so, from where and at what age)
What ethnic or racial background patient identifies
self
If the patient emigrated from another country, what
is their level of acculturation
What is the cultural meaning of their diagnosis or
presenting problems
How would symptoms be treated in your culture

Family Family of origin
Parents (past and current medical and

psychiatric history, living or deceased)
Siblings (past and current medical and

psychiatric history, living or deceased)
Current family (if applicable)

Number of marriages
Spouse/partner (medical, psychiatric history)
Children (biological, step, foster, psychiatric and

medical history, living with patient)

Education and
occupation

Highest grade completed
Difficulties or testing for developmental delays
College or professional school
Past and current occupations

Medical Childhood or adolescent illness, surgeries,
disabilities
Adult illnesses, surgeries, disabilities
Understanding of current illness and treatment

Current
symptoms

Current symptoms
Severity
Frequency
Duration
Interference with social, occupational, or
educational functioning
Interference in specific situations
Anything that improves or worsens symptoms
Medications currently prescribed for symptoms,
adherence, response

(continued)

Table 36.3 (continued)

Problem Question

History

Belief about
symptoms and
illness

Beliefs regarding symptoms
Understanding of illness, severity, prognosis.
Treatment plan

Personal and
family history
of
psychological
disorders

Family history of psychiatric symptoms or
disorders
Personal history of psychiatric symptoms or
disorders
Pharmacological or psychological treatments
Hospitalizations

Current context

Recent life
events

Negative and positive events in life (home, work,
school, relationships)
Coping strategies used to manage stressors

Physical
condition

Symptoms reflect current diagnosis

Drug and
alcohol use

Past and current drug (recreational and
prescription)
Past and current tobacco use (cigarettes, pipes,
chew)
Past and current alcohol use
Frequency, duration, fluctuations in use, treatment
and response if indicated

Intellectual
and cognitive
functioning

Intellectual strengths and deficits
Mental status (see below for mini-mental status)

Coping style Adaptive or maladaptive coping strategies
Coping successful in managing stress
Short- versus long-term coping mechanisms

Sense of self
and emotional
expression

Feelings of self-worth\self-efficacy
Expressed emotion

Religion and
spirituality

Religious or spiritual affiliation or practice
Is religious or spiritual practice important
Does spiritual or religious affiliation provide
support

Resources and barriers

Individual
resources

Factors the person views as integral to self
Strengths s/he possesses
How many strengths be used in treatment
Which weakness/strengths interfere with treatment

Social
resources
(friends,
family and
school/work)

Support
Family
Friends
Work/school
Quantity and quality of support
Support increase or decrease stress

Community
resources

Community resources available
Community resources utilized
Barriers to utilizing community resources
Contributions to community

Behavior
change

Stage of behavior change
Barriers to behavior change (financial, educational,
social)
Beliefs about change in behavior (benefits,
consequences)

Logistic
factors

Problems with transportation, finances, caregiving?
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adolescent issues (e.g., abuse, neglect) that may have con-
tributed to the onset of risk behaviors to surface at the time
of diagnosis or over the course of treatment, as the patient
may become increasingly vulnerable and dependent on
health care professionals and family caregivers [111].

The popular press has exaggerated the benefits of
“fighting spirit” and as a result, some patients diagnosed
with cancer present to their health care professionals with a

fear of expressing negative emotions (e.g., sadness, anger) as
the patient believes it will result in progression of their
cancer. It is critical for clinicians working with patients
diagnosed with cancer to clarify the messages found in the
popular media and to help them understand the benefits of
expressing both positive and negative emotions and to nor-
malize the experience of expressing positive and negative
emotions in response to a diagnosis of cancer [112–146].

Benefit finding or posttraumatic growth (PTG) has gained
increased attention in oncology and may be defined as “a
positive cognitive process that is initiated to cope with
traumatic events that extract an extreme cognitive and
emotional toll” [115]. In hepatobiliary carcinoma, 50 % of
patients report positive changes in their life after a diagnosis
of cancer [116]. These results are consistent with previous
research in other cancer types in which approximately half of
the samples of patients reported positive as well as negative
changes after a diagnosis of cancer [115, 117]. However,
patients with hepatobiliary carcinoma reported a lower mean
PTG score than breast cancer patients [116] which may be
secondary to differences in prognosis or gender differences
observed in HCC versus breast cancer. A 2:1 gender ratio
(male to female) exists in HCC whereas the majority of
patients with breast cancer are female. Prior research has
demonstrated that females tend to have higher PTG scores
than males [115, 116, 118]. Patients diagnosed with HCC
who reported higher levels of PTG were also found to have
better immune system functioning [119]. Further research is
warranted in understanding the construct (definition), pro-
cess, and health outcomes associated with PTG.

36.6 Common Presenting Problems in HCC

36.6.1 Psychiatric Disorders and Treatment
Recommendations

In addition to the emotional and psychiatric reactions to the
diagnosis of cancer as described in the previous section,
persistent psychiatric distress may exacerbate previous psy-
chiatric disorders in remission and a diagnosable disorder
may develop. Secondary to the primary risk factors associ-
ated with HCC (substance abuse), patients with a diagnosis
of HCC may have a greater likelihood of presenting with
psychiatric distress or comorbid psychiatric disorders such
as mood or anxiety disorders. In a minority of patients,
psychiatric symptoms/disorders may develop for the first
time with the stress of the diagnosis, treatment, and poor
prognosis often associated with HCC. Below is a brief
introduction to some of the most common presenting psy-
chiatric disorders patients with HCC. The chapter will pro-
vide a brief overview of the diagnosis and treatment of these
disorders for both the medical and mental health

Table 36.4 Sleep hygiene practices for cancer patients

Keeping the patient’s skin clean and dry

Giving back rubs and/or massaging areas of the body to bring comfort
to the patient (e.g., bony prominences, head and scalp, shoulders,
hands, and feet)

Keeping bedding and/or surfaces of support devices (chairs and
pillows) clean, dry, and wrinkle-free

Ensuring adequate bedcovers for warmth

Regulating fluid intake to avoid frequent awakening for elimination

Encouraging bowel and bladder elimination before sleep

Promoting optimal bowel function (increased fluids, dietary fiber, and
use of stool softeners and laxatives)

Using a condom catheter for nocturnal incontinence

Providing a high-protein snack 2 h before bedtime (e.g., milk, turkey,
or other foods high in tryptophan)

Avoiding beverages with caffeine and other stimulants, including
dietary supplements that promote metabolism changes and appetite
suppression

Encouraging the patient to dress in loose, soft clothing

Facilitating comfort through repositioning and support with pillows as
needed

Encouraging exercise or activity no less than 2 h before bedtime

Encouraging the patient to keep regular bedtime and awakening hours

Minimizing and coordinating necessary bedside contacts for
inpatients

Keeping the patient's skin clean and dry

Giving back rubs and/or massaging areas of the body to bring comfort
to the patient (e.g., bony prominences, head and scalp, shoulders,
hands, and feet)

Keeping bedding and/or surfaces of support devices (chairs and
pillows) clean, dry, and wrinkle-free

Ensuring adequate bedcovers for warmth

Regulating fluid intake to avoid frequent awakening for elimination

Encouraging bowel and bladder elimination before sleep

Promoting optimal bowel function (increased fluids, dietary fiber, and
use of stool softeners and laxatives)

Using a condom catheter for nocturnal incontinence

Providing a high-protein snack 2 hours before bedtime (e.g., milk,
turkey, or other foods high in tryptophan)

Avoiding beverages with caffeine and other stimulants, including
dietary supplements that promote metabolism changes and appetite
suppression

Encouraging the patient to dress in loose, soft clothing
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professional. Since a paucity of research exists in regard to
psychosocial issues in HCC, majority of the research refer-
enced will be in regard to research that has been conducted
in cancer patients more broadly.

36.6.2 Adjustment Disorder

Adjustment disorder is the most frequently diagnosed psy-
chiatric disorder in cancer patients [1]. Adjustment disorder,
according to the Diagnostic and Statistical Manual of Mental
Disorders IV may be defined as the “development of emo-
tional or behavioral symptoms in response to an identifiable
stressor(s) occurring within three months of the onset of the
stressor(s)” [120]. The symptoms must develop within
3 months of the onset of the stressors and cause marked
distress which is considered in excess of what would be
expected, and also result in significant social, occupational,
or education functioning [120]. In a study of a mixed sample
of cancer patients, 15 % of patients (49 % of all psychiatric
diagnoses) met the DSM-5 criteria for Adjustment Disorder
with depressed or anxious mood and Adjustment Disorder.
Although there have been mixed results regarding the pre-
dictors of Adjustment Disorder, a combination of factors
including disease (e.g., stage of cancer) and
treatment-related factors (e.g., chemotherapy), awareness of
diagnosis and prognosis, and social support have been
reported [104]. At diagnosis, patients with HCC often have
advanced disease (stage III and IV) and poor prognosis and
therefore may have greater distress than other cancer types
[3]. Treatment recommendations for adjustment disorder
with symptoms of depressed mood and/or anxiety are similar
to recommendations outlined below for the treatment of
MDD and Generalized Anxiety Disorder (GAD).

36.6.3 Major Depressive Disorder

Depression has received the greatest attention in regard to
research in patients diagnosed with cancer. It is difficult to
reach definitive conclusions regarding the prevalence of
depression in cancer patients due to the variation in the
definition and measurement of depression, and timing of
assessment across studies. A recent review suggested that 0–
50 % of patients diagnosed with cancer may meet the
DSM-5 criteria for MDD [121]. An additional 20 % may
meet the criteria for depression spectrum disorders [121].
For a complete review, Massie [121] provides a summary of
the prevalence rate according to cancer type, method of
measurement, and timing of assessment.

MDD should be differentiated from an Adjustment
Disorder with depression. In MDD, the number of symptoms
required (5 or more) and the duration of these symptoms

(2 weeks or longer for MDD) differs from Adjustment
Disorder. Symptoms of MDD may include (1) depressed
mood; (2) significant weight loss when not dieting or weight
gain or decreased appetite; (3) insomnia or hypersomnia;
(4) psychomotor agitation or psychomotor retardation;
(5) feelings of worthlessness or excessive inappropriate
guilt; (6) diminished ability to think or concentrate, or
indecisiveness; (7) recurrent thoughts of death (not fear of
dying), recurrent suicidal ideation without a specific plan, or
suicide or attempt or specific plan for committing suicide;
(8) fatigue or loss of energy; and (9) markedly diminished
interest or pleasure in activities. These symptoms must occur
most days, or nearly every day, as indicated by either sub-
jective report or observation made by others [120].

The treatment of depression in cancer is critical as several
studies have now reported a link between depressive
symptoms and increased cancer-related mortality [7, 122–
130]. A recent study of patients diagnosed with HCC
observed that 37 % of patients reported depressive symp-
toms in the clinical range of the Center for Epidemiological
Studies-Depression (CES-D) scale at the time of diagnosis
[7]. Moreover, elevated depression scores on this measure
predicted reduced survival. Patients who had vascular
invasion with high depression levels survived 5.2 months
compared to an average of 11 months survival in patients
with lower depression scores [7]. Among patients without
vascular invasion, those with elevated scores survived
17 months, versus 27 months for those with lower depres-
sion scores [7]. See Table 36.5.

Furthermore, two studies have now suggested that bio-
logical changes associated with the cancer may contribute to
the development of depressive symptoms even before the
cancer is diagnosed [131, 132]. Research is underway
regarding the role of underlying biological mechanisms that
may be associated with depression and other cancer-related
symptoms (e.g., pain, fatigue) in HCC. It is likely that there
are at least two different types of depression in people
diagnosed with HCC. Depression may be a part of a cluster
of symptoms characterized by “sickness behavior” which
includes feelings of malaise, social withdrawal, fatigue, pain,
difficulty sleeping, and decreased intake of food and liquids.
This type of depression may be associated with biological
changes (e.g., hormones, cytokines) that may be a result of
the tumor growth. Upon evaluation, predominance of
somatic symptoms may be observed (e.g., changes in
appetite, sleep, fatigue), whereas a second type of depression
may result from an accumulation of stressors and lack of
resources (e.g., social support, effective coping strategies).
Depression in this type of patient may be characterized by
the report of greater emotional (e.g., sadness) and/or cog-
nitive symptoms (e.g., difficulties concentrating, suicidal
ideation) associated with depression.
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As with depression in a psychiatric setting, the most
effective treatment for depression in medically ill populations,
including cancer, includes a combination of pharmacological
treatment and psychotherapy [133, 134]. To reduce the risk of
relapse of depressive symptoms, a minimum of 6 months of
treatment is recommended. To prevent recurrence in patients
who report two or more episodes in five years, long-term
antidepressant medication may be recommended [135, 136].
Psychosocial interventions are also being developed to reduce
distress and depression in patients with cancer [137–140].

36.6.4 Anxiety Disorders and Phobias

Like depression, anxiety is also an important factor in cancer
treatment, as these symptoms can affect adherence to medical
treatments [141]. Studies have previously found that

approximately 44 % of patients reported some level of anxiety
and 23 % of patients reported significant anxiety that impaired
functioning [142, 143]. The most common anxiety disorder
observed in patients with cancer may be Generalized Anxiety
Disorder (GAD). Generalized anxiety disorder is defined as
excessive worry occurring more days than not for a period of at
least 6 months [120]. A person with GAD has difficulty con-
trollingworry, and it is often associatedwith three ormoreof the
following symptoms: (1) edginess or restlessness; (2) tiring
easily or being more fatigued than usual; (3) impaired con-
centration or mind going blank; (4) irritability; (5) increased
muscle tension or soreness; and (6) difficulties sleeping (e.g.,
trouble falling asleep, staying asleep, restlessness at night, or
unsatisfying sleep). The anxietymust causemarked impairment
in social, occupational, or educational functioning [120].

Anxiety may be related to both cancer and non-cancer
related cognitions that may be affected by the disease and

Table 36.5 Cox regression analysis of sociodemographic, disease-specific variables, and depressive symptoms affecting survival (N = 101)

Variable B (SE) Wald p level 95 % CI

Lower Upper

Diagnosis

HCC
CCC
NET
METS

−0.001 (0.465)
−0.021 (0.876)
−0.575 (0.943)

0.488
0.001
0.001
0.371

0.92
0.99
0.98
0.54

0.402
0.176
0.280

2.491
4.454
11.286

Gender

Male/Female −0.417 1.355 0.24 0.752 3.066

Age

<50
>50

−0.046 (1.131)
−0.072 (1.115)

0.009
0.002
0.004

0.99
0.97
0.95

0.104
0.105

8.761
8.278

Ethnicity

Caussian/non −0.219 (0.434) 0.256 0.61 0.289 3.567

Hepatitis

B and/or C/none −0.129 (0.330) 0.152 0.70 0.460 1.680

Cirrhosis

Present/Absent −0.569 (0.330) 2.333 0.13 0.272 1.275

Tumor size

<5 cm/>5 cm 0.295 (0.332) 0.789 0.38 0.700 2.576

Lesion number

<3/> 3 lesions −0.205 (0.266) 0.595 0.44 0.483 1.373

Vascularity

Hyper or mixed/hypol −0.216 (0.399) 0.292 0.59 0.368 1.763

Vascular invasion

Present/Absent 1.409 (0.337) 17.517 0.001 2.116 7.918

CES-D

<16/>16 0.648 (0.297) 4.771 0.029 1.069 3.422

HCC Hepatocellular carcinoma; CCC Cholangio carcinoma; NET Neuroendocrine carcinoma of the liver; METS Colorectal carcinoma with liver
metastases; HIA Hepatic
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treatment. Cognitions that can contribute to anxiety may
include fear of recurrence, apprehension regarding receipt of
results concerning their response to treatment (e.g., CT scan
results), anxiety regarding painful or uncomfortable medical
procedures, and fear of death and symptoms at the end of
life. In addition, patients may also have other non-cancer
related worries that should be identified and treated (e.g.,
finances, caregiving, child care, transportation difficulties).

Posttraumatic stress disorder (PTSD) is defined as an
extreme traumatic event that includes actual or perceived
threat to life or serious injury. An individual must experience
intense fear, helplessness, or horror as a result of the event and
meet the criteria for three categories of symptoms following
the event including re-experiencing, avoidance, and physio-
logical arousal. The symptoms must persist for at least one
month and result in a marked impairment in social, occupa-
tional, or educational functioning. The prevalence of PTSD in
cancer patients has been found to range from 16 to 32 % [144,
145]. Limitations of previous research include the lack of
assessing traumatic events and PTSD prior to the diagnosis of
cancer. Veterans may be overrepresented in this population
due to the risk factors associated with HCC and therefore are
more likely to present with a current or past history of PTSD
when compared to other cancer types [146–148].

In other cancer types, predictors of PTSD include disso-
ciative symptoms, greater distress at the time of diagnosis,
prior negative life stressors [149], a history of psychological
problems, female gender [150], younger age at diagnosis
[151, 152], lower socio-economic status [151], lower edu-
cation [151, 153], avoidant coping style [154], low social
support [154, 155], and reduced physical functioning [153].
Although the treatment of PTSD in other populations has
been extensively reported [156–160], no study to our
knowledge has tested the efficacy of interventions to treat
PTSD in patients diagnosed with cancer.

Panic disorder may be characterized by a series of intense
periods of extreme anxiety and somatic symptoms including
shortness of breath, tachycardia, dizziness, chest pain,
trembling, chills, and fear of dying or going crazy [120]. The
attacks may last a few minutes to hours and often come on
suddenly. To meet the DSM-5 criteria, the person must have
had at least one attack in the past month and continue to
have (1) persistent concern about additional attacks,
(2) worry about the implications of the attacks or the con-
sequences of the attacks, or (3) significant behavior change
related to the attacks [120].

If panic attacks develop in the context of a diagnosis of
HCC, it is often secondary to an exacerbation of a previous
history of panic disorder that may or may not have been
treated. Slaughter and colleagues reported that the preva-
lence of panic attacks was approximately 20 % in a sample
of hospitalized cancer patients [161]. The stress associated
with the life-threatening disease and the nature of treatment

may exacerbate panic disorder that may have been in
remission or exacerbate the frequency of attacks. The
symptoms include: (1) palpitations, pounding heart, or
accelerated heart rate; (2) sweating; (3) trembling or shaking;
(4) sensations of shortness of breath or smothering;
(5) feeling of choking; (6) chest pain or discomfort;
(7) nausea or abdominal distress; (8) feeling dizzy, unsteady,
lightheaded, or faint; (9) chills or heat sensations;
(10) paresthesia (numbness or tingling sensations); (11) de-
realization (feelings of unreality) or depersonalization (being
detached from oneself); (12) fear of losing control or going
crazy; and (13) fear of dying. People with panic disorder also
report agoraphobia (fear of places or situations from which
escape may be difficult or embarrassing or in which help
may not be available). Agoraphobia itself may have a sig-
nificant effect on the ability of a patient to remain in medical
treatment if the panic attacks and agoraphobia are untreated.

Finally, common fears and phobias that did not previ-
ously interfere with functioning may become problematic if
not identified and treated. Fears and phobias, particularly of
needles, or claustrophobia may result in delayed or early
termination of treatment. A diagnosis of a specific fear
includes marked and persistent fear that is excessive or
unreasonable and may be cued by the presence or anticipa-
tion of the specific object or situation [120]. The phobic
stimulus is often avoided or endured with great anxiety. The
avoidance or anxious anticipation often interferes with the
individual’s social, occupational, or educational functioning
[120]. Research has been conducted in regard to
stress-reducing medical devices (e.g., butterfly needles)
which have been demonstrated to be effective in pediatric
and adult patients undergoing chemotherapy [162].

36.6.5 Substance Abuse

The DSM-5 has redefined alcohol abuse according to
symptoms and also the severity. The presence of at least two
of the following symptoms indicates Alcohol Use Disorder
(AUD) and the severity is defined by mild (presence of 2–3
symptoms), moderate (4–5 symptoms) or severe (presence
of 6 more symptoms): (1) had times when you ended up
drinking more or longer than intended; (2) more than once
wanted to cut down or stop drinking but tried and could not;
(3) spent a lot of time drinking or being sick or getting over
the after effects; (4) wanted to drink so badly you could not
think of anything else; (5) found that drinking or being sick
from drinking often interfered with taking care of home or
family or caused problems at school or work; (6) continued
to drink even if it caused trouble with family or friends
(7) given up or cut back on activities that were important or
interesting to you or brave your pleasure in order to drink;
(8) more than once got into situation while or after drinking

36 Psychosocial Issues in Hepatocellular Carcinoma 561



that increased your chances of getting hurt (e.g., driving,
swimming, unsafe sex); (9) continued to drink even though
it was making you feel depressed or anxious or adding to a
health problem or after having had a memory blackout;
(10) had to drink much more than you once did to get the
effect you want or found that your usual number of drinks
had much less effect than before; and (11) found that when
the effects of alcohol were wearing off, you had withdrawal
symptoms such as trouble sleeping, shakiness, or a seizure or
sensed things were not there.

Whether the individual currently uses drugs or if they
have a distant history of drug abuse, continued evaluation
and treatment of substance use when indicated is imperative
secondary to the high relapse rates observed in substance
abuse [163, 164]. Persons who have a history of alcohol or
drug abuse have the risk of relapse, particularly when facing
major life stressors [165, 166]. All patients with chronic liver
disease (CLD), not only those with alcohol-related HCC,
should be evaluated for current drug and alcohol use, as
alcohol and drugs have also been found to have a synergistic
effect on the development of cirrhosis and may increase the
rate of disease progression [167].

Identifying whether a patient is diagnosed with substance
abuse is critical to the immediate care of the patient. If the
patient has an active alcohol abuse disorder, assistance with
addiction counseling may be essential to their initial stabi-
lization and their ability to participate in treatment planning
and adhere to the cancer therapy regimen. The clinician’s
efficacy in assisting the patient will largely depend on the
stage of contemplation and insight of the patient, whether
they acknowledge their addiction problem and are willing to
seek treatment and have recruited a stable support system of
family and friends. Consultation by a mental health profes-
sional can establish the correct psychiatric diagnosis and
provide recommendations for appropriate treatment options.
In addition to the immediate benefits of abstinence, if the
patient plans to undergo surgical treatment options for the
cancer (e.g., resection, radiofrequency ablation, or trans-
plantation), active alcohol use has been demonstrated to
result in surgical complications including cognitive impair-
ment [168], increased rates of pulmonary complications [28,
169–171], and infection [169, 170, 172]. Effective inter-
ventions for excessive alcohol consumption have been
reported and tailored interventions have been effective prior
to elective surgery [173].

Approximately 55 % of the general population has a
lifetime history of tobacco use [120]. Tobacco use has been
found to be high in patients diagnosed with HCC [174]. For
patients diagnosed with lung cancer that continued smoking
after diagnosis, increased mortality and reduced response to
chemotherapy were reported [50–52]. If surgical interven-
tion is indicated, smoking cessation prior to surgery is rec-
ommended as tobacco use has been found to be associated

with a number of surgical complications including increased
risk for infection [175], slowed wound healing [176, 177],
pneumonia [171], poor outcomes after transplantation [29,
178], pulmonary complications [28, 179], and vascular
complications [30]. Smoking cessation at least 6–8 weeks
prior to surgery has been suggested to improve immune
functioning and wound healing and reduce overall periop-
erative morbidity [180–184].

36.7 Cancer-Related Symptoms
and Treatment
Recommendations

The National Institutes of Health (NIH) consensus statement
of 2002 concluded that the three most common and
untreated cancer-related symptoms were pain, fatigue, and
depression [185]. Approximately 40 % of patients at the
time of diagnosis reported pain, 15 % reported weakness or
malaise [174], and 37 % depressive symptoms [7, 174].
These cancer-related symptoms, as well as others, if left
untreated can significantly impair a patient’s quality of life
and may delay or prevent treatment. Increasingly, the
co-variation of cancer-related symptoms is being studied in
regard to the common underlying biological mechanisms
[186]. Novel treatments are currently being tested to treat
symptom clusters rather than each symptom independently
[186]. Although patients diagnosed with HCC may experi-
ence numerous symptoms and side effects from treatment,
we will review the most common symptoms and side effects
that impair psychosocial functioning in patients with HCC
and provide a brief overview of pharmacological and
behavioral treatments recommendations.

36.7.1 Fatigue

Fatigue is one of the most common and debilitating symptoms
for people diagnosed with cancer. Fatigue can be associated
with the disease as well as treatments for HCC. According to
the National Cancer Institute (NCI), fatigue occurs in 14–96 %
of people with cancer [187–190]. Fatigue is one of the most
difficult disease-related side effects to treat and can be acute or
chronic. The etiologies include biological (e.g., anemia, tumor
necrosis factor, chemotherapy or radiation, changes in meta-
bolism or hormones), psychological (e.g., depression, stress),
and/or behavioral factors (e.g., sleep disturbance, pain) and are
often difficult to disentangle [187, 191–197]. Patients often
report that fatigue results in higher levels of distress than pain
due to the impairment of occupational, educational, and inter-
personal functioning as well as financial losses. Treatment of
fatigue depends on the underlying etiology. Based on the
contributing factor(s), different interventions may include
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changes in medication regimens, red blood cell transfusions,
increasing physical activity, treating depressive symptoms,
treatment of anemia or administration of psychostimulants
[198–215]. Behavioral interventions such as improved nutri-
tion as well as energy conservation and restoration activities
may also be recommended [216–219].

36.7.2 Pain

Approximately 40 % of patients diagnosed with HCC report
upper quadrant abdominal pain and/or pain in their shoulder
at the time of diagnosis [174]. Chemoembolization or sur-
gery can result in transient pain and may be treated effec-
tively with opioids. In advanced stages of the disease, ascites
can cause pain and discomfort. Although not all patients
report pain associated with the disease or treatment, for
patients who do report these symptoms, evaluation and
appropriate treatment is warranted as the pain often signifi-
cantly interferes with functioning. Pain is assessed through
self-report and/or interview methods. Several standardized
instruments that are useful in measuring pain in a clinical or
research setting, including the most commonly employed
measure of pain are mentioned in Table 36.1.

Pharmacological interventions are often the first line of
treatment in cancer-related pain due to the severity, partic-
ularly in HCC. However, behavioral strategies can also
complement the management of pain with medications.
Managing pain in the patient with CLD is challenging for
several reasons. A large percentage of patients may have a
history of substance abuse making both patients and health
providers reluctant to prescribe narcotics which are often the
treatment of choice for cancer-related pain [220–224]. With
increased regulation of narcotics, health care providers have
become increasingly reluctant to prescribe narcotics and as a
result patients’ pain is often undertreated [225–231] Fur-
thermore, use of narcotics as well as other medications in the
context of cirrhosis should be prescribed cautiously, as
research has demonstrated that there are differences in
metabolism of these drugs in the cirrhotic liver [232, 233]. It
is recommended that medication be taken on a regular
schedule to maintain a therapeutic dose, as pain becomes
more difficult to reduce if the pain reaches high levels. It
should also be noted that long-term treatment of pain with
narcotics will result in increased tolerance and that the health
care provider should be aware that patients will request
higher doses over time, and that this should not be recog-
nized as drug seeking. Unfortunately, as doses are increased
the side effect profile also may worsen (e.g., increases in
nausea, constipation, or changes in mental status) and
patients may have increasing difficulties managing the side
effects which may also result in other symptoms (e.g., con-
stipation and pain).

For long-term treatment of pain, it has been recom-
mended to change medication occasionally to decrease tol-
erance [234–237]. Multiple delivery systems (e.g., orally, as
suppositories, and intravenously) have been developed to
ensure effective management of pain independent of other
symptoms or side effects (e.g., nausea/vomiting) or at the
end of life, when oral medication may not be tolerated.
The role of the mental health professional often includes the
evaluation of the pain and feedback to the health care pro-
fessionals involved in the pharmacological management of
the pain as well as how a patient’s prior history may affect
patient or health care provider perceptions associated with
pain management. Understanding the meaning the patient
attributes to the pain is also important, as some individuals
may view the pain as a response to treatment while others
view the pain as a sign of disease progression.

In addition to pharmacological interventions for pain,
several behavioral strategies may also be employed to alle-
viate pain. First, the treatment of depression and/or anxiety
has been demonstrated to reduce the perception or sensation
of pain [238–242]. Relaxation techniques such as progres-
sive muscle relaxation or autogenic are most often employed
to treat pain [243–247]. Heat or cold packs are also used to
decrease pain as well as massage, pressure, and vibration
[248]. In some instances, exercise and/or frequent changes of
position may be recommended based on the type of pain the
patient presents [248]. If the pain persists, invasive treat-
ments including nerve blocks and surgical interventions are
available to patients.

36.7.3 Sleep Problems

While sleep disorders occur in 12–25 % of the general
population it is estimated that 45 % of cancer patients
experience sleep disturbance [197, 249–253]. In a sample of
patients diagnosed with hepatobiliary carcinoma, 59 % of
patients reported poor sleep quality; 43 % reported sleep-
ing <6 h and 2 % >10 h [254]. After adjusting for factors
known to contribute to survival, a curvilinear relationship
was observed between sleep duration and mortality; short
and long sleep durations were associated with increased
mortality [254]. We observed that IL-2 was significantly
associated with survival and when IL-2 was added to the
model sleep duration, it was no longer significant demon-
strating mediation using the Baron and Kenny mediational
modeling [254].

Several factors may contribute to insomnia including
anxiety at diagnosis, fear of recurrence, pain, hospitalization,
fatigue and disturbance of sleep–wake cycle as a result of
treatment and/or side effects, and changes in gastrointestinal
and genitourinary functioning [251, 255]. Medication
including vitamins, corticosteroids, neuroleptics, stimulants,
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sedatives and hypnotics, anticonvulsants, and sympath-
omimetic may result in sleep disturbances [255]. Poor sleep
quality results in poor day time functioning and performance
and increased risk for developing delirium, anxiety, and
depression and reduced ability to manage stress [255–257].

Evaluation and treatment of sleep disorders may include
screening by a health care professional and, if necessary,
follow-up with a specialist at a sleep disorders center if a
sleep disorder is suspected. If the sleep disturbance is
amenable to behavioral intervention (e.g., change in wake–
sleep schedule, improve sleep hygiene) or changes in phar-
macological regimen (e.g., decrease dose of pain medication,
eliminate medication causing insomnia), the need for further
evaluation may not be necessary. However, if the insomnia
persists or if is suspected that the patient may have sleep
apnea, restless legs syndrome, or other sleep disorders (e.g.,
REM sleep disorder) a referral to a sleep disorders center
may be recommended.

Although benzodiazepines are often prescribed to treat
insomnia, in patients with cirrhosis the difference in the
metabolism of these drugs suggest that the patient should be
started on a reduced dose [232, 233]. For any patient, the use
of benzodiazepines for more than two weeks is not recom-
mended due to psychological or physical dependence [250,
251]. However, the advantages and disadvantages of using
sleep aids should be weighed as sleep deprivation may also
have negative health and psychological consequences [256,

258, 259]. Behavioral interventions for insomnia include
stimulus control and sleep hygiene techniques, [251, 260–
266] relaxation techniques, [260] as well as
cognitive-behavioral strategies to reduce anxiety or fears
may also be effective in decreasing insomnia [260].
Table 36.6 provides recommendations from the NCI
regarding sleep hygiene strategies specifically for patients
diagnosed with cancer [261].

Sleep apnea can be classified into central and obstructive
sleep apnea. Central sleep apnea may be diagnosed when the
central nervous system fails to send the appropriate signals
to the breathing muscles to initiate respiration. Obstructive
sleep apnea is a result of the lack of air flow into or out of the
person’s nose or mouth [267, 268]. Obstructive sleep apnea
is more common and the person is often reported by others
to snore or gasp for breath during sleep. These periods of
lack of breath can occur hundreds of times per night and
cause excessive daytime sleepiness. Although a higher rate
of sleep apnea has been observed in head and neck cancer
patients as a result of anterior mandibulectomy, the preva-
lence of sleep apnea may be higher than the general popu-
lation in HCC, particularly in NASH-related HCC, in which
obesity is often comorbid with HCC. As a result, careful
evaluation of sleep and wake disturbances and appropriate
referral to a sleep disorders center is recommended.

Restless legs syndrome is an uncomfortable sensation in
the legs that is often described as a crawling, tingling,

Table 36.6 Meta-analysis of interventions for patients diagnosed with cancer

Outcome Citation Effect (95 % CI) N p-value

Depression (CBT) Random combined 0.42 (−0.452–0.536) 66 0.663

0.096 (−0.131–0.322) 303 0.405

0.493 (−0.340–1.327) 26 0.212

1.829 (1.324–2.335) 89 0.000

3.424 (2.754–4.095) 89 0.000

1.424 (0.767–2.081) 48 0.000

1.206 (0.217–2.194) 621 0.017

Anxiety (CBT) Random combined 3.060 (2.277–3.843) 59 0.000

0.027 (−0.200–0.252) 303 0.817

0.528 (−0.064–1.120) 48 0.069

2.342 (1.573–3.110) 48 0.000

3.516 (2.564–4.468) 48 0.000

2.709 (1.887–3.531) 48 0.000

1.999 (0.692–3.306) 554 0.003

Pain (Education) Random combined 0.610 (0.110–1.110) 67 0.014

0.242 (−0.380–0.565) 43 0.426

0.232 (−0.373–0.837) 45 0.433

0.060 (−0.274–0.395) 140 0.721

0.243 (−0.005–0.490) 295 0.055
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pulling, or twitching sensation that occurs when a person is
sitting or lying down. The individual often has the urge to
move to relieve the sensation. The symptoms usually worsen
in the evening and may be painful. It is estimated that one in
ten persons is affected by this syndrome. Although, to the
authors’ knowledge, no study has been conducted in patients
with HCC, restless legs syndrome is observed clinically, but
it is not clear if there are higher rates in patients diagnosed
with HCC than in the general population. If restless legs
syndrome is suspected, a referral to a sleep disorders clinic
may be recommended [269].

36.7.4 Nausea and Vomiting

Nausea may be defined as an unpleasant wavelike feeling at
the back of the throat or in the stomach that may involve the
forceful elimination of the contents of the stomach [270].
For patients diagnosed with HCC, loss of appetite and
nausea may be associated with the disease. In addition,
several of the chemotherapy agents utilized to treat HCC
(e.g., Cisplatin, Gemzar, Oxaliplatin) have varying levels of
emetic effects [271–273]. Immediate treatment of nausea and
vomiting is imperative as it can greatly interfere with the
patient’s ability to receive treatment and can result in other
medical complications (e.g., dehydration, Mallory Weiss
tear, broken bones, and electrolyte imbalance) [274, 275].
Nausea and vomiting can be classified into four different
categories including acute, delayed, anticipatory, and
chronic.

Mental health professionals can facilitate the assessment
of nausea and vomiting through their contact with patients
between visits with health care providers but also intervene
behaviorally to facilitate the response to the anti-emetics that
are given prophylactically as well as subsequent to treat-
ment. The mental health professional can also assess the type
of nausea the patient may be experiencing as well as the
potential predictors (e.g., constipation, anxiety). In the case
of anticipatory nausea and vomiting, the mental health pro-
fessional may play a greater role, as the nausea is a condi-
tioned response that may be treated with behavioral
intervention [276–280]. Anticipatory nausea is the condi-
tioned response of an odor, food, setting, or event in which
the person experiences chemotherapy-related nausea. The
pairing of chemotherapy-induced nausea and the stimulus
results in the conditioned response of nausea and vomiting to
the new stimulus (e.g., food, setting). When the patient is
presented with the stimulus in the absence of the
chemotherapeutic agent, s/he will develop nausea and even
vomiting.

Predictors of anticipatory nausea may include (1) being
younger than 50 years of age; (2) female; (3) severity of
nausea and vomiting after the last chemotherapy session;

(4) feeling warm or hot after the last chemotherapy session;
(5) a history of motion sickness; (6) feeling dizzy or light-
headed after chemotherapy; (7) sweating after the last
chemotherapy session; (8) experiencing weakness after the
last chemotherapy session; (9) having a high level of anxi-
ety; and (10) having morning sickness during pregnancy.
Systematic desensitization is one of the most effective
treatments for anticipatory nausea and vomiting [281–283].
In regard to the other types of nausea, behavioral treatments
may facilitate the effectiveness of the anti-emetic medication
but only the results of behavioral intervention have received
mixed results in regard to their effectiveness with immediate,
delayed, or persistent nausea and vomiting [284, 285].

36.7.5 Sexual Dysfunction

Sexual problems have been studied in patients with cancer of
the reproductive organs and found to be higher than the
general population [286–289]. Although little research has
been conducted regarding sexual dysfunction in HCC, a
recent study reported the prevalence of sexual dysfunction to
be approximately 25 % [290]. Andersen et al. [291], in an
excellent review, found that individual self-schema (image
of self), psychiatric and medical symptoms,
psychological/behavioral status, and extent of disease and
treatment, contributed to increased rates of sexual dysfunc-
tion in people diagnosed with cancer. People diagnosed with
HCC would be expected to report higher levels of sexual
dysfunction secondary to (1) neuroendocrine changes that
result from the disease and/or treatment; (2) changes in body
image associated with gynecomastia, cachexia, and ascites;
(3) high level of comorbid medical conditions that may
result in increased sexual morbidity (e.g., diabetes);
(4) medications that result in sexual side effects (e.g., nar-
cotics, antidepressants, benzodiazepines, hypertension med-
ication); (5) cirrhosis; and (6) comorbid psychological
symptoms (e.g., depression, anxiety) [290].

Zifroni et al. [292] reported that men with CLD and a
Child-Pugh score of B or C reported higher rates of sexual
dysfunction and significant reductions in free testosterone
levels. In a recent study with patients diagnosed with HCC,
no difference was found in those men who had Child’s
Pugh B or C scores and rates of sexual dysfunction when
compared to those who had a Child’s A score in both
patients with HCC and CLD [290]. No demographic or other
disease-specific variables including age, ethnicity, etiology
of disease, or cirrhosis were found to be associated with
increased rates of sexual dysfunction in HCC [290]. The
high rates of sexual dysfunction in HCC patients were found
to be secondary to medical conditions and medications
associated with increased sexual morbidity [290]. Patients
with HCC and CLD had a number of medical conditions
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including hypertension, diabetes, cardiovascular disease and
depression, in which the disease and treatments are com-
monly known to cause sexual problems.

Serum testosterone levels have been found to be reduced
in patients receiving chronic opioid therapy [293]. Neu-
roendocrine changes that may be associated with the disease
and/or treatment of hepatobiliary disease may also contribute
to the increased sexual morbidity in these populations
including changes (1) in metabolic clearance rates; (2) in
plasma production and total and free levels of testosterone;
(3) reduced testosterone responses to human chronic gona-
dotrophin stimulation; (4) in estradiol and luteinizing and
follicle stimulating hormones levels; and (5) in binding
capacities of sex steroid binding globulin [294–298].

Psychiatric symptoms such as anxiety, depression, and
substance abuse may be associated with sexual dysfunction
[3]. Van Lankveld and Grotjohann concluded that people
reporting a sexual problem have higher rates of lifetime
depression and anxiety [299]. Furthermore, chronic alcohol
use has been associated with male erectile dysfunction [300].
In the recent study of patients with HCC, individuals who
reported a sexual problem and/or met the criteria for a
DSM-5 diagnosis for a sexual disorder had a lower emo-
tional well-being [301]. It is not known whether the
increased psychological distress was a result of the sexual
dysfunction or whether the psychological distress con-
tributed to the sexual problems. The study concerning sexual
dysfunction in patients with HCC, however, does suggest
that patients with sexual dysfunction have lower
health-related quality of life (HRQL) than patients without
sexual dysfunction and warrants treatment.

Patients have differing levels of interest in regard to the
evaluation and treatment of sexual dysfunction in the context
of cancer. For some patients (and partners), continued sexual
activity is important for their relationship while for others
sexual activity may not be considered important and despite
impairment in sexual functioning, are not interested in pur-
suing evaluation or treatment. If evaluation is recommended,
both the patient and sexual partner are involved in the
diagnosis and treatment. Treatment of sexual dysfunction
involves the differential diagnosis of the etiology which may
include disease-, treatment-related or psychiatric factors. It is
recommended to rule out medical causes of sexual dys-
function prior to treatment of psychiatric factors that may be
contributing to the impairment. Although the scope of the
book does not permit a full description of each of the
potential treatment options for the numerous male and
female sexual dysfunctions (e.g., dyspareunia, erectile dys-
function), excellent resources are available from the NCI and
HRQL[302–304]. A comprehensive evaluation by a spe-
cialist (e.g. urologist, gynecologist) may be recommended to
facilitate appropriate diagnosis and treatment.

36.7.6 Cognitive Impairment

Delirium may be defined as “a disorder of global cerebral
dysfunction characterized by disordered awareness, atten-
tion, and cognition” [305]. Delirium may be transient and
fluctuate over the course of the day and can be classified as
hyperactive, hypoactive, or mixed [306, 307]. Understand-
ing the underlying etiology of the delirium is essential for
appropriate treatment. Risk factors may include comorbid
illness, advanced age, prior dementia, hypoalbuminemia,
infection, azotemia, and/or medications [308–310]. The
prevalence of delirium in patients with cancer ranges from
28 to 48 % [311–313] and approximately 90 % of patients
will experience delirium hours before death [311, 314, 315].
In HCC, delirium and even coma may result from increased
levels of ammonia over the course of the disease but par-
ticularly at the end of life [316]. Appropriate assessment and
differential diagnosis is critical in treating cognitive impair-
ment in patients with HCC. Education and support can also
be provided to the family caregivers, as they are often the
first to recognize the changes in mental status, to facilitate
the treatment of the symptoms.

36.8 Special Issues

36.8.1 Interpersonal Context of HCC

The patient is often not alone when facing diagnosis and
treatment of HCC. The patient’s social environment includes
family, friends, and work colleagues, all of whom can be
affected by the diagnosis and treatment of cancer. The
immediate “family” is most likely affected as they often
provide immediate care to the patient. Whether the patient is
married or cohabitating with a partner, disruption of the
relationship is not uncommon. The diagnosis of cancer can
increase stress and in a relationship that already is strained,
the additional stress associated with the diagnosis and
treatment may result in further discord which may be
reflected in problems with communication, caregiving, and
maintenance of the relationship [109, 317–323].

An entire literature has been devoted to understanding
and ameliorating caregiver stress across chronic diseases and
specifically cancer [324, 325]. Increasing evidence has
suggested that some family caregivers may experience as
much or greater levels of stress than patients who are suf-
fering from a chronic illness such as cancer [323, 326–328].
Several studies have reported that caregivers have increased
levels of stress, depression, and decrements in quality of life
when compared to persons who are not caregiving [323,
327, 328]. As a result of the stress associated with care-
giving, suppression of immune system functioning
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[329–331] and increased risk of cardiovascular disease and
mortality have been reported [332–334].

Psychosocial support of families should be incorporated
into overall care of the patients, as family caregivers perform
a majority of the caregiving responsibilities today, and this is
likely to increase in the coming years [335]. Family care-
givers often not only need to care for the patient but often
learn new roles and skills they may have not previously
possessed. Caregivers may also have their own medical
problems and/or stressors in addition to caregiving
responsibilities.

Health care professionals may facilitate the support of
caregivers. Encouraging self-care including diet, exercise,
and sleep are critical, particularly if the caregiving extends
over a long period of time [336]. Requesting assistance from
other family members and/or organizations that provide
support is recommended. The patient may not initiate dis-
cussions regarding their own death or the caregiver’s future
after their death and caregivers may find it difficult to discuss
these issues as they do not want the patient to feel they are
giving up hope or wishing they would die. The health care
professional may want to initiate these discussions with the
caregiver if appropriate, individually and possibly together
with the patient if appropriate.

Assisting the caregiver in finding ways to bring closure on
their relationship and facilitating the opportunity for the
patient to share his/her hopes and dreams and for their loved
one to help him/her carry those dreams out after his/her death
may enhance the relationship [337, 338]. Some caregivers
prepare videos, scrapbooks, or recordings of the person
diagnosed with cancer to help them maintain a legacy after
their death. Dignity therapy is a novel intervention that is
currently being tested in patients at the end of life [339, 340].

Anticipatory grief, which is similar to the grief loved one’s
may experience after the death of their family member, but is
experienced before an individual’s actual death. Often an
individual will experience some of the feelings that accom-
pany the stages or phases of grief that have been extensively
studied [341, 342]. Each person will grieve differently in
regard to the intensity and duration. It is important to note the
cultural differences that exist in regard to anticipatory and
actual grief reactions as this may influence the outward
expression of the grief reaction [343, 344]. The predictors of
complicated bereavement have not been extensively studied;
mixed results suggest that anticipatory grief may benefit the
caregiver in preparation for the patient’s death [345–347].

Complicated bereavement was seen in the past as severe
depression after the loss of a loved one. More recently, it is
recognized that complicated bereavement may be charac-
terized as the absence, inhibited, or delayed reaction of grief.
Complicated grief can also be conflicted (mixed emotions)

or chronic (grief reaction is longer than the cultural norm).
These complicated grief reactions can result in MDDs,
substance abuse, and/or PTSD. The most serious conse-
quence of complicated bereavement is suicide. The lack of
psychosocial support of caregivers after a patients’ death is
unrecognized and future research concerning interventions
to evaluate and treat complicated bereavement in caregivers
is warranted.

36.8.2 Patients with Children and Adolescents

People diagnosed with cancers that are caring for children or
adolescents may have additional challenges associated with
the ongoing demands of being a parent while undergoing
treatment for their cancer. A child or adolescent’s func-
tioning can be impaired as a result of the parent’s diagnosis
and treatment of cancer. Often difficulties in adjustment are
manifested behaviorally and difficulties in school, social
withdrawal, or symptoms of oppositional or conduct disor-
der may be observed. In some cases, children may become
anxious, depressed, or experience anticipatory grief in
reaction to their parent’s diagnosis.

Developmentally appropriate communication of the par-
ent’s illness and treatment is essential for adjustment. The
American Cancer Society and the NCI have excellent
resources that provide information regarding communication
of the diagnosis of cancer to children and adolescents at
different developmental stages [348, 349]. Several local and
national organizations provide individual and group therapy
for children and adolescents whose parents have been
diagnosed with cancer, often free of charge.

36.8.3 Cultural, Ethnic, and Religious Factors
Affecting the Care of the Patient
with HCC

As with all cancers, cultural and/or ethnic background as
well as religion are important to recognize in regard to the
treatment of HCC; although the cultural factors cannot be
generalized to all persons from a particular ethnic or cultural
background due to variations in acculturation [350, 351].
Culture and/or religious affiliation is important to recognize
in regard to the role beliefs, attitudes, and behaviors these
factors may play in the diagnosis and treatment of cancer.
For example, family members (particularly those interpreting
for their parents) from the Middle East and Asia may not
want the patient to know their diagnosis [352, 353]. Some
cultures or religions may believe that taking an individual’s
blood may be construed as taking their “life” or “energy”

36 Psychosocial Issues in Hepatocellular Carcinoma 567



and therefore may not adhere to recommendations for
weekly frequent blood work during treatment. Although the
scope of this book does not allow a full discussion of this
topic, several authors have provided excellent reviews of
cultural and religious factors that are important in the diag-
nosis and treatment of cancer [354].

36.8.4 End of Life Issues
and Existential/Spiritual Issues

Patients and their family members have varying degrees in
which they are ready to accept their diagnosis and eventual
death from HCC. For some patients, they are prepared to
discuss end of life issues at the time of diagnosis while others
are never prepared. Issues related to living wills and DNR
orders may be addressed in a matter of fact method at the time
of diagnosis or early in the treatment process. At this time, the
patient may be able to think more objectively about what s/he
wishes for at the end of their life rather than during a crisis as
death approaches. It is recommended that these types of
questions be addressed early in treatment to prevent unnec-
essary distress for the patient, family, and health care pro-
viders later when the patient may experience cognitive
impairment and be unable to make decisions or the family
caregiver is under strain from caregiving responsibilities and
distress secondary to the patient’s impending death.

The most common clinical problems that arise as a
patient’s disease progresses are issues related to disability,
change of roles, and increased dependence. The process is
often rather personal and working with the family caregivers
is recommended as these issues often affect the caregiver.
The patient may have difficulty discussing these issues with
their loved ones and some patients may express difficulties
with acceptance through increased irritability, sadness, or
increased interpersonal conflict.

Spiritual or existential issues also often arise at the time of
diagnosis or as the disease progresses. Individuals may
experience spiritual growth or decline depending on a
number of factors, often pre-existing before the diagnosis of
cancer [117, 355–361]. Some individuals have an increased
sense of closeness to their belief in a “higher power” while
others feel anger or resentment [355]. It is important to
recognize that an individual may have mixed emotions
regarding their spiritual or existential beliefs. Utilization of
the hospital’s chaplain services or referral to the individual’s
own spiritual leader (e.g., priest, rabbi) is recommended to
facilitate the patient’s ability to address these issues.

Hospice care is often initiated late in the dying process. It
is frequently difficult for the patient and health care provi-
ders to stop active treatment and essentially give up hope for
a cure or controlling the tumor growth. Hospice care in the
U.S. often provides patients with a range of services that

provide greater comfort at the end of life with professionals
trained specifically to assess and treat psychological and
physical symptoms at the end of life. Involvement of the
palliative care and hospice teams are strongly recommended
in the care of HCC patients.

36.8.5 Alternative or Complementary Medicine
in HCC

A high percentage of patients with CLD and HCC seek out
alternative or complementary interventions to treat their
disease. Although milk thistle is one of the only herbal
supplements which is known for its benefits on liver func-
tioning [362–366], no clinical trials in HCC have been
published [366]. No other herbal supplements have been
tested in clinical trials and demonstrated to be efficacious or
safe. Nonetheless, it is recommended that clinicians query
patients about the use of herbal supplements and remain
open to discussing these treatments with patients and care-
givers. The inability to openly discuss these issues decreases
the opportunities to educate patients and caregivers regard-
ing: (1) regulations regarding dose/active ingredients in
herbal supplements; (2) a paucity of clinical trials that have
been conducted regarding the safety, efficacy and interac-
tions with other medications or treatments; and (3) lack of
available information regarding metabolism of the drugs in
the liver, particularly the cirrhotic liver. Encouraging dialog
and providing further information (e.g., National Institute of
Health’s Institute on Complementary and Alternative Med-
icine) is recommended as criticism or lack of discussion will
likely result in continued use without the disclosure to the
medical team.
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37.1 Prevention

This can only be rationally approached if the predisposing
factors or causes are known. Fortunately, most causes of
HCC are known (Chaps. 1, 2, 4, 16–19) and strategies are
available for treating hepatitis B (HBV) and hepatitis C
(HCV) and counseling for alcoholism and obesity, as well as
for limiting aflatoxin B1 contamination of foodstuffs.

For HBV, three phases of prevention can now be dis-
cerned—primary, secondary, and tertiary. Primary preven-
tion can be accomplished by vaccination, usually in the
neonatal period. Secondary prevention can be accomplished
by treatment of chronic carriers with the new suppressive
HBV drugs and curative HCV drugs, to prevent disease
progression to either cirrhosis or HCC (with or without
cirrhosis). Tertiary prevention seems to be recently obtain-
able by use of these new therapies in carriers who have had
resection and are at risk for HCC recurrence. New evidence
is suggesting that such therapies can lower the recurrence
rates. If this is supported by further and prospective clinical

trials, then hepatitis therapy will need to be also considered
as part of cancer therapy. For HCV, the new curative drugs
seem capable of being effective in secondary and possibly in
tertiary prevention, though primary prevention vaccines are
not yet available.

The storage of village rice and peanuts in refrigerated
granaries is likely to be helpful in suppressing growth of the
carcinogenic fungi that contaminate stored grains in tropical
and humid environments found in the third world. The
mechanisms by which these risk factors might mediate HCC
development (carcinogenesis) are discussed in Chaps. 2–4,
11, 13, 15, 18, and 19.

37.2 Surveillance

A primary purpose of surveillance is to diagnose the tumor
at an early stage when there is the possibility of curative
therapy (Chaps. 22 and 23). Much has been written on the
subject of screening for HCC, including the usefulness of
alpha-fetoprotein as a marker and the most reliable, simplest,
and cheapest radiologic modality, especially in developing
countries. There have been several papers showing that the
cost/benefit of screening has not been proven, as judged by
the cost for screening large populations that are known to be
at risk compared to the small numbers of tumors that are
detected at a treatable stage, as well as the false positive
outcomes. Without prejudice to the outcome of this ongoing
debate, a patient in the USA that has chronic HBV or HCV,
or is known to be cirrhotic from any cause, is at risk for
subsequent development of HCC. Cirrhosis is thus a pre-
malignant condition. Considering that we know the cause of
so few cancers of adult humans, it seems that the physician
has an obligation to follow up on patients with these dis-
eases, who are known to be at risk, in the hope of early
diagnosis and therefore finding the HCC at a treatable stage.
It is our practice therefore, to do twice yearly ultrasound
scans and alpha-fetoprotein measurements, even though the
latter are elevated in only 50 % of HCCs and there is no
clear linearity between tumor size and alpha-fetoprotein
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measurement. Given that the published figures for devel-
opment of HCC in a patient with cirrhosis are between 2 and
5 % per annum, it might be expected that routine annual or
semi-annual screening of patients with cirrhosis is likely to
detect a reasonable number of HCCs at a treatable stage. All
this needs to be weighed against the cost of managing
patients who are diagnosed at advanced tumor stage. An
ongoing conundrum is the fairly large number of patients
who have diagnosis at advanced tumor stage, with or with-
out prior screening.

37.3 Current Therapy

The treatment decisions for HCC depend on A. The extent of
the tumor size, site of the tumor with respect to major vessels
within the liver, number of tumor nodules, and the presence
and extent of portal vein thrombosis/invasion (PVT); and B,
the degree of associated liver fibrosis and damage
(Fig. 37.1).

– Liver resection is a primary treatment option for patients
without cirrhosis and for those with mild degrees of
cirrhosis (Child-Pugh A), patients without portal hyper-
tension and with normal plasma bilirubin levels. More
recently, several studies have shown its safety and
effectiveness even in the presence of branch PVT and
well-preserved liver function (Chap. 31). More recently,
laparoscopic liver resection, radiofrequency ablation, or
microwave ablation have gained favor (Chaps. 30 and 31
). The high recurrence rates in the years after resection
have not been decreased by adjuvant chemotherapies, so
far. However, recent reports using the more potent and
effective anti-HBV (and likely HCV) therapies, suggest
that in carriers of those diseases, antiviral therapy may
turn out to be important in decreasing HCC recurrence in
the postresection/ablation period. TACE, 90Yttrium, or
Sorafenib (failed STORM trial) have not thus far been
shown to be useful in the adjuvant setting.

– Liver transplant is offered for patients who are not suit-
able for cure by resection, usually based on their liver

Fig. 37.1 Treatment decision
algorithm. From figure 2 of
Kokudo et al. [4], Copyright
license approval #
3744900665218 obtained from
John Wiley and Sons. Child-Pugh
score, reflects the degree of liver
damage
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reserve, and who have tumors within the benchmark
Milan criteria (one tumor <5 cm diameter or a maximum
of three tumors, each with maximum diameter � 3 cm.
This is the preferred treatment in presence of Child-Pugh
grade B cirrhosis. However, extended (UCSF) criteria are
offered in increasing numbers of centers (Chap. 32).
Increasingly, transplantation is being considered in
selected patients with tumors that initially presented
beyond the usual transplant criteria, but which are then
successfully downstaged after local regional therapy.
Liver resection, transplantation, or tumor ablation (PEI,
RFA, MWA) represent the only current therapies with
potential for cure (Chaps. 29–32). Most HCC patients,
however, are not candidates for these therapies at the
time of diagnosis because of portal hypertension, poor
liver function, tumor multifocality, PVT, and/or comor-
bidities (most often due to advanced tumor stage at
diagnosis).

– Chemoembolization or TACE (transarterial chemoem-
bolization) is the most commonly used nonsurgical
treatment modality for these patients who cannot be
offered ‘curative’ therapies (Chap. 33), although
90Yttrium spheres regional therapy is increasingly pop-
ular (Chap. 35). However, there are not yet direct com-
parisons between TACE and 90Yttrium spheres to guide
choice of therapy modality. TACE is the standard of care
for patients with multiple lesions and well-preserved liver
function, with or without branch PVT and absence of
metastasis. There is no tumor size limitation. Doxoru-
bicin or cisplatin are well-studied, tolerated, and partially
effective chemotherapy agents in this setting. A bilirubin
of <2 mg/ml and absence of ascites or minimal ascites
seem to offer the safest conditions. Chemotherapy is
often mixed in an emulsion with Lipiodol (Ethiodol) and
commonly used embolization materials include gelatin
sponge particles (Gelfoam) or defined-size microspheres
(Embosphere Microspheres). Repeat treatments are typ-
ically given every 2–4 months, depending on blood
counts, liver function tests, and tumor size response and
vascular responses on follow-up CAT scans. TACE in
association with RFA has been reported to yield better
outcomes than RFA alone. Tumor growth in a previously
treated area of the liver is considered a treatment failure
and cause for change of therapy. Typically, the choices
are then 90Yttrium spheres regional therapy (radioem-
bolization with either Theraspheres or Sirspheres) or
Sorafenib (Chaps. 33–35). Single large tumors in
Child A or B cirrhosis that are unresectable and beyond
transplant criteria can be treated with TACE or 90Yttrium
spheres.

– TACE needs to be used with caution in the presence of
major branch PVT and not at all in presence of main stem

PVT. By contrast, several papers have recently shown the
relative safety of 90Yttrium spheres in the presence of
PVT. This is likely to make 90Yttrium spheres, or Sor-
afenib, a first choice of therapy in presence of major
branch PVT. For patients with tumor progression fol-
lowing TACE, the choice is 90Yttrium spheres or oral
Sorafenib therapy, since there is no trial data to indicate
which is superior after TACE failure. For patients failing
first-line 90Yttrium spheres therapy, the second-line
choice is Sorafenib.
Recently, external beam radiation therapy (EBRT) has
been offered to patients who are surgically unresectable
and cannot have other local therapy, such as major
branch PVT, with encouraging response and safety data.
However, this is in early phases of evaluation.

– Patients failing TACE or 90Yttrium spheres therapy or
Sorafenib and who have good performance status, or who
have metastasis, are typically offered clinical trial
enrollment with new agents, if their performance status is
satisfactory. Similarly, if they would otherwise have been
offered TACE or 90Yttrium spheres therapy or Sorafenib,
but a clinical trial comparing any of those with a new
agent is available, then enrollment in the trial may be
reasonable, since none of those three modalities is cura-
tive in this setting.

37.4 The Multidisciplinary Team

It follows from the need for multiple specialists to be
involved in diagnosis (primary care physician, hepatologist,
radiologist, pathologist), in therapy (liver surgeon, liver
transplant surgeon, radiologist, interventional radiologist,
radiotherapist/nuclear medicine physician, amongst others),
and in daily patient management (nurse coordinators, social
worker, clinical psychologist) that comprehensive
decision-making at both initial patient evaluation and as new
treatments are needed, require a multidisciplinary team, that
functions best when representatives of each of these spe-
cialties are together in the same room, evaluating not only
the total patient physical and laboratory test results, radiol-
ogy and pathology results, but also the patient home setting,
upon which each patient depends for coping with the ple-
thora of tests, appointments, and treatment toxicities, in
addition to the heavy emotional burden on both patient and
family. Optimal decision-making for total disease manage-
ment and patient care thus requires a whole team, as well as
an identifiable single physical or surgeon to integrate the
results of all the tests across specialities, and who guides the
patient through the complex medical maze of tests and
procedures and in decision-making at each step. A ‘contact’
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nurse or coordinator, who is present at these discussions and
who is accessible to the patient, is normally of profound
importance in getting the patient through this medical/
surgical maze. It is increasingly clear that patients are often
in a state of anxiety at the beginning of the treatment eval-
uation process and may or may not hear or remember what
team members advise. Therefore, a family member/friend is
also extremely important for accompanying the patient at
both Consultations and clinic follow-up appointments.

37.5 Some New Concepts and Controversies

A. The role of tumor biopsy. In solid tumor oncology,
biopsy of the tumor is essential for proof of diagnosis
and thus a prerequisite for therapy. In recent years, this
has not been used by many hepatologists, though still
used by oncologists, since, when there is a combination
of a vascular lesion in a cirrhotic liver with elevated
blood alpha-fetoprotein, then the diagnosis of HCC has
such high probability in these circumstances (see
Table 37.1, diagnosis). However, two recent circum-
stances oblige a reconsideration of biopsy. First, the new
targeted therapies often are expected to work in the
presence of their target in the tumor (e.g., Met inhibitors
in the presence of Met protein, Chap. 34). Second, the
new transcriptomics are providing molecular signatures
for prognostication. In this regard, the underlying,
non-HCC liver seems also to be particularly important
(Chaps. 5–8 and 12). Thus, both tumor biopsy and liver
biopsy seem to be increasingly important in the molec-
ular medicine of HCC. However, the increasing ability
to enrich for and thus sample circulating tumor cells and
free tumor DNA in the circulation, may further enhance
the ease of “liquid biopsy,” as well as offering a safe
prospect for sequential tumor sampling during the
changing course of an individual patient’s tumor (Chaps.
5, 7, and 12), as well as the possibility for examining
tumor heterogeneity within an individual’s tumor nodule
(Chap. 14). As liquid biopsy becomes standardized, it
will offer the possibility of regular molecular sampling
of an individual patient’s tumor as it evolves during the
course of the disease.
It is our practice always to do a biopsy before treatment,
whenever practical. We believe that this is important,
since it gives us confidence that we have the correct
diagnosis and the correct tumor histological type; and
second, as we enter the age of molecular proteomics and
molecular diagnostics, there is an increasing number of
tests that are starting to permit us prognostic subgroup

stratifications, that require tissue for either special stains,
in situ hybridization, or gene expression. It has been
argued that percutaneous needle biopsy is associated
with a risk of spread by needle tracking. Although this
has been reported, in our experience of 1300 needle
biopsies for confirmation for the presence of HCC, we
have seen this only in seven cases, and all of them have
been in the track of the needle, typically the chest wall,
and therefore easily treated. As with everything in
medicine, there is a risk/reward calculation that needs to
be made. We believe that the benefit or reward of getting
a correct tissue diagnosis and tissue for prognostication,
hugely outweighs the very low risk of needle tracking,
the even rarer risk of tumor bleed or other rarer com-
plications associated with the presence of ascites, or the
risk of not treating an HCC because a benign lesion is
thought to be present.

B. Molecular HCC classification. The increasing evidence
that patterns of gene expression are capable of predicting
HCC biology (recurrence probability post resection,
general prognosis or sensitivity to specific targeted
therapies (Chaps. 5–8, 12, and 34) is likely sooner rather
than later to become part of new HCC evaluation.
Although right now these are research tools, ongoing
clinical trials are attempting to validate them for use in
clinical practice.

C. The biobank. In light of the above findings, it is
becoming clearer that the routine development and use
of tumor tissue, nontumor liver tissue, and blood
biobanking will be needed to be incorporated into clin-
ical practice, as specific patterns of molecular signatures
come to be associated with prognostic use and the
requirements for rational selection of therapeutic agents
that work on specific cellular targets.

D. Significance of tumor stability and responses to
medical therapy. Conventional clinical oncological
practice uses changes in tumor size by CT or MRI scan,
to measure response to chemotherapy or radiotherapy
(including TACE and 90Yttrium microspheres). How-
ever, it has become recently clear that changes in vas-
cular intensity without decreased tumor size (‘vascular
response’) are also a valid index of HCC response to
therapy, and are thus acknowledged as part of the
mRECIST response criteria. However, quantitative
radiological means of assessing HCC vascular changes
are still in need of standardization. In addition, stable
tumor (unclear whether vascular response is required in
this context), may also be clinically very useful for
enhanced survival, as the SHARP phase III trial of
Sorafenib versus placebo showed only 2 % radiological
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Table 37.1 Summary of recommendations for HCC prevention, diagnosis, and therapies

Prevention

1. Hepatitis B vaccination is recommended for all newborns and for high-risk individuals (HBsAg-negative and anti-HBs-negative)

2. General preventive measures include the following: prevention of HBV/HCV transmission, avoidance of alcohol abuse, and control of
metabolic disorders such as obesity and diabetes

3. Antiviral therapy as secondary prevention of HCC should follow guidelines for the management of chronic hepatitis B/C

4. Antiviral therapy should be considered after curative treatment for chronic viral hepatitis-related HCC in order to reduce the risk of recurrence

Diagnosis

1. HCC is diagnosed on the basis of either pathology or clinical criteria in case of the high-risk group (HBV/HCV positive or cirrhosis)

2. When HCC is suspected during surveillance in a high-risk patient, dynamic contrast-enhanced CT/MRI should be performed for diagnosis

3. In the high-risk group, HCC can be diagnosed for nodules � 1 cm in diameter if one or two of the above-mentioned imaging techniques show
typical features of HCC (for the diagnosis of nodules 1–2 cm in diameter, two or more imaging modalities are required if a suboptimal imaging
technique is used). Typical features of HCC include arterial phase enhancement with washout in the portal or delayed phase

4. Nodules <1 cm in diameter can be diagnosed as HCC in high-risk patients when all of the following conditions are met: typical features of
HCC in two or more of the above-mentioned imaging modalities and continuously rising serum alpha fetoprotein with hepatitis activity under
control (C1)

5. Pathological diagnosis should be considered when the clinical criteria are not met or typical features of HCC are not present. The presence of
indeterminate nodules despite imaging workup or pathologic examination needs to be followed up with repeated imaging and serum tumor
marker analysis. Limitation of radiation exposure in diagnosis and staging is not considered relevant in patients with HCC. CT is essential for
diagnosis and follow-up in HCC patients
This guideline adopts the modified Union for International Cancer Control stages as a primary staging system, with the Barcelona Clinic Liver
Cancer staging system serving as a complementary system

Treatment

1. Surgical resection is the first-line treatment for patients with intrahepatic single-nodular HCC and well-preserved liver function classified as
Child-Pugh class A, without portal hypertension or hyperbilirubinemia. Limited resection can be selectively applied to HCC patients with liver
function of Child-Pugh class A or superb B and with mild portal hypertension or mild hyperbilirubinemia. HCC resection can be considered in
patients with three or fewer intrahepatic tumors without macrovascular portal or hepatic vein invasion, if hepatic function is well preserved.
Laparoscopic resection can be considered for HCC located in the lateral section of the left lobe or in the anterolateral segment of the right lobe

2. RFA provides survival comparable to that of resection in patients with single-nodular HCCs � 3 cm in diameter. RFA is superior to PEI in
terms of anticancer effect and survival. For HCCs � 2 cm in diameter, PEI can be considered if RFA is unfeasible, because the outcomes of both
modalities are similar. Survival outcome can be improved by combining TACE and RFA compared to RFA alone in patients with tumors 3–5 cm
in diameter if resection is unfeasible

3. Deceased donor liver transplantation is the first-line treatment for patients with single-nodular HCC <5 cm in diameter or three or fewer
nodules � 3 cm in diameter (Milan criteria), which are not suitable for resection. Locoregional therapies (local ablation or TACE) are
recommended if the timing of transplantation is not predictable (bridge to transplant). Downstaging (e.g., with TACE) can be considered for
HCCs exceeding the criteria for transplantation. Living donor liver transplantation is an effective alternative to deceased donor transplantation.
An expanded indication for transplantation beyond the Milan criteria can be considered in HCC cases without clear vascular invasion or
extrahepatic spread if other effective treatment options are inapplicable. Salvage transplantation can be indicated for recurrent HCC after
resection according to the same criteria as for first-line transplantation

4. TACE or 90Yttrium microspheres therapy is recommended for patients with good performance status without major vascular invasion or
extrahepatic spread who are ineligible for surgical resection, liver transplantation, RFA, or PEI. TACE should be performed through
tumor-feeding vessels using selective/superselective techniques to maximize antitumor activity and minimize hepatic damage

5. In case of portal vein invasion, TACE can be considered for patients with localized tumor and well-preserved liver function, but 90Yttrium
microspheres appear safer, probably with comparable efficacy. External beam radiation therapy (EBRT) can be considered for HCC patients with
portal macroscopic vein invasion. So can sorafenib

6. Sorafenib is indicated for HCC patients with very well-preserved liver function (Child-Pugh class A and excellent B), good performance
status, and regional lymph node or extrahepatic spread or for patients with tumor progression on other therapies

7. Cytotoxic chemotherapy can be considered for HCC patients with advanced tumors who have with well-preserved liver function and good
performance status, in whom sorafenib therapy has failed. Adjuvant TACE, sorafenib, or cytotoxic chemotherapy are not recommended for HCC
patients treated with curative resection, as there is no evidence for their adjuvant benefit, at the time of writing

8. Preemptive antiviral therapy is recommended for HBV carriers undergoing any cytotoxic chemotherapy to prevent reactivation

Adapted from Table 2, summary of the recommendations of the 2014 KLCSG-NCC Korea practice guidelines for the management of
hepatocellular carcinoma. Korean Liver Cancer Study Group (KLCSG) et al. [5]
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responses in the Sorafenib arm, yet patients in this arm
had significantly enhanced survival.

E. Advances in nonsurgical therapies. There is a huge
cornucopia of new agents (drugs, antibodies, chemical
inhibitors) that target various steps in growth-related
cellular pathways, most of which are in current clinical
trials as either first-line (in comparison to sorafenib), or
second-line therapy (after failure of sorafenib or other
therapies such as TACE or 90Yttrium microspheres). As
sorafenib resistance is increasingly recognized, many
newer clinical trials will follow the path of the last
many years of chemotherapy and will be combined,
especially those targeting parallel growth pathways or
agents with nonoverlapping toxicities. In addition, a
large number of newer agents are being developed and
clinically tested that do not target specific growth
pathways, such as modulators of tumor stem cells,
differentiation-inducing drugs, or newer immune mod-
ulators (much current excitement over the possibilities
of the PD-1 immune checkpoint modulators), such as
Nivolumab (Opdivo®) or Pembrolizumab (Keytruda®).
Many new clinical trials are also evaluating the com-
bination of the new targeted therapies in conjunction
with the older cytocidal therapies (TACE or 90Yttrium
microspheres).

F. Inflammation and microenvironment. The recent
appreciation of the Glasgow index (albumin and
C-reactive protein) as an independent risk factor in the
prognosis of many tumors, including HCC (Chap. 15),
has drawn attention to the non-HCC factors in tumor
biology and prognosis (Chaps. 5, 6, and 11), in addition
to the gene expression profiles mentioned in sections A
and B, above. It is also becoming increasingly clear that
many factors in the tumor environment (Chap. 11), both
cellular (immune system, Chap. 13), as well as vascular
endothelial cells and the noncellular components of the
microenvironment, such as growth factors and inflam-
matory cytokines, and extracellular matrix proteins, all

influence HCC biology, including sensitivity to Sor-
afenib (3). Seemingly also does the microbiota (Chap. 9).
A future edition of this book will likely include this topic
of microenvironment in depth.

G. HCC prevention and early diagnosis. Perhaps the two
most important factors to influence prognosis are (1) the
new availability of approved and potent hepatitis B and C
inhibitors and (2) the fact that most HCCs are still
diagnosed too late for “curative” therapies. Prevention
and aggressive early detection strategies are clearly key
to the latter. Prevention includes hepatitis vaccination
(HBV) or therapy (HBV and HCV), clean water supplies
in rural Asia and Africa (Aflatoxin B1 contamination),
refrigerated granaries in Asia and Africa (carcinogenic
mycotoxins including Aflatoxin B1), alcohol consump-
tion counseling and therapy, and a massive obesity-
prevention program (NASH, Chaps. 1, 2, 18, and 19) will
be important in combating rich-world trends.
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