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Preface

The past decade has seen tremendous advances in our understanding of the basic
mechanisms that underlie living organisms. These advances have been motivated
by our ability to gather large amounts of data relating to the state of living systems
(chemical compositions, dynamic fluxes, binding states, etc.), modeling in ways that
lend themselves to powerful analyses techniques, and associated algorithms and
software. In contrast to traditional approaches that take a deconstructive view of
biological processes (scaling up from atomistic and molecular levels), systems biol-
ogy studies the organization and emergent properties of interacting units (typically
biomolecules). This poses profound challenges, as well as exciting opportunities
for new discoveries. This edited volume focuses on the computational challenges
associated with systems-level modeling of biological function and explores how
functional relationships among biomolecules are manifested in biological networks.

Systems-level (network) models of biological systems typically rely on graphs
with nodes corresponding to biological entities and edges corresponding to interrela-
tionships among these entities. Constructing such models from data, reasoning from
these models, characterizing their organization and function, and relating them to
the genotype/phenotype, pose complex modeling and algorithmic challenges. While
one may be tempted to view these as traditional graph algorithms, well studied
in computer science literature, the unique characteristics of biological interaction
data necessitates development of novel models and methods. These characteristics
include: (1) incomplete and noisy datasets, (2) highly skewed distributions, (3) need
for establishing statistical validity, (4) incorporating elements of space, time, and
scale, and (5) relating across disparate abstractions.

While there is tremendous ongoing research and development activity in this
area, there is an established core of results that provides the basis for future
development. This book provides a comprehensive overview of the state-of-the-art,
as it relates to modeling and analysis of living systems as interacting biological
units. By the nature of the underlying processes, the book intersects broad sub-
disciplines within biology, statistics, and computer science. It addresses methods
for data collection and curation, model inference, statistically grounded analyses,
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vi Preface

algorithms, software and frameworks, and validation. It also motivates a number of
open problems, which provide excellent avenues for continuing efforts in the area.

The book is the result of significant efforts on part of the contributing authors.
The editors would like to thank all of the authors for their outstanding contributions.

Cleveland, OH, USA Mehmet Koyutürk
West Lafayette, IN, USA Ananth Grama
La Jolla, CA, USA Shankar Subramaniam
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Chapter 1
Introduction to Network Biology

Mehmet Koyutürk, Shankar Subramaniam, and Ananth Grama

Abstract In the study of biological systems, complex interactions among
biomolecules are often abstracted using network models. Molecular networks
describe the organization of various biological processes, including cellular
signaling, metabolism, and genetic regulation. These networks are commonly
used for a system-level understanding and analysis of biological function. Indeed,
research and development efforts focused on such analyses have grown significantly
over the past few years. This edited volume provides a detailed description of current
models and methods focused on functional characterization of biological networks.
In this introductory chapter, we provide a broad overview of molecular network
models and their relation to biological function.

1 Systems Biology

At the core of our understanding of biological processes and underlying systems, is a
characterization of the function and interactions of their constituent parts. In medical
sciences, understanding the origin of functional anomalies holds the key to effective
diagnosis, treatment, and prognosis. In genetics, functional annotation of genetic
variability uncovers complex relationships between genotype and phenotype. In
evolutionary biology, functional differences between diverse organisms highlight
the evolutionary mechanisms that underlie the complexity of biological systems.
With the successful completion of the human genome project and recent technolog-
ical advances in biological data collection, it has become possible to study function
from a systems perspective. Today, systems biology is established as a fundamental

M. Koyutürk (�)
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2 M. Koyutürk et al.

interdisciplinary science that focuses on detailed studies of the complex mechanisms
that orchestrate the interactions between various biomolecules that compose life.

Systems biology is defined as the study of an organism as a “system.” Often,
this study is restricted to a single cell – aiming to characterize the structure and
dynamics of cellular function as a whole, in contrast to studying the structure and
function of individual components in isolation [27]. To this end, systems biology
focuses on understanding the organization of biological systems in terms of the
interconnectivity of cellular components (e.g., who interacts with whom?), as well
as the dynamics of these interactions (e.g., to what extent do these components
interact?). In doing so, systems biology takes into account the key characteristics of
complex systems, including emergence, robustness, and modularity.

In modeling complex systems, there is often a trade-off between the level of detail
and the scale of the model [10]. In other words, to comprehensively understand
the dynamics of a biological process, it is desirable to understand the dynamic
properties of its components, as a function of time, and in relation to each other (e.g.,
location of atoms, quantity of molecules). This requires a highly resolved model of
the structure and function. On the other hand, the complexity of a cell requires
modeling at a much coarser level. Scaling beyond a single cell to an entire organism
requires a higher level of abstraction. The number of protein-coding genes in the
human genome is estimated to be around 25 K; multiple levels of control, including
transcriptional control, alternative splicing, and post-translational modifications
greatly expand the space of possible states for individual molecules. Interactions
among these molecules further extend the space of cellular states combinatorially.
According to a recent survey, the human body is composed of about 1014 cells of
more than 200 different types [46]. The role of suitable models as we rise up through
this hierarchy is clearly indicated. While advances in biotechnology have enabled
generation of large amounts of data on biological systems, modeling these systems
with the desired level of detail and at the desired resolution remains a challenging
task. Network models offer a critically useful abstraction in this regard; they provide
comprehensive models of the wiring of cellular systems, while at the same time
serving as a template for more detailed dynamic models [51].

2 Molecular Interaction Networks

Cellular systems are organized hierarchically, from individual molecules (e.g.,
genes, mRNA, proteins, metabolites) to large scale molecular pathways [43]. In
this organization, interactions among molecules play an important role; interacting
molecules are organized into functional modules (aggregates that participate in
similar function), which in turn interact with each other to drive larger scale biolog-
ical processes [17]. Comprehensive maps of the interactions among biomolecules
provide an integrated view of the cell. While these interactions underlie dynamic
orchestration of cellular tasks as a system [27], information regarding the dynamics
of these interactions is often not readily available. The past decade has witnessed
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significant efforts aimed at modeling, identifying, organizing, and analyzing cellular
interactions. These efforts, grounded in significant advances in our understanding of
molecular biology, are enabled by high-throughput data collection and acquisition
techniques that are used to interrogate the states and interactions of biomolecules at
multiple levels.

In computational analysis of cellular interactions, graph models are commonly
used [29]. The wiring of biomolecules through pairwise, as well as multiway
interactions is abstracted using different network models. In general, network
models represent molecules by nodes, and their interactions by edges (links). These
links indicate interactions in different forms, including physical binding, regulatory
interactions, genetic interactions, and computationally predicted functional associ-
ation [60]. Common abstractions for molecular interactions include protein–protein
interaction (PPI) networks, gene regulatory networks, and metabolic networks.
The interactions modeled using these abstractions are closely interrelated and the
underlying components of the network cannot be viewed in isolation from each
other. However, individual models provide a simplified view of different modes of
interaction, facilitating efficient organization and analysis of these interactions.

2.1 Protein–Protein Interaction Networks

An important class of molecular interaction data is in the form of PPIs. Knowledge
of these interactions provides an experimental basis for understanding modular
organization of cells, as well as useful information for predicting the biological
function of individual proteins [59]. High throughput screening methods such as
yeast two-hybrid (Y2H) [22], mass spectrometry (MS) [20], and tandem affinity
purification (TAP) [14], provide large amounts of data on the interactome of an
increasing number of species. This data is organized into several public databases,
including Database of Interacting Proteins (DIP) [69], BioGrid [62], and Human
Protein Reference Database (HPRD) [48]. Availability of these databases allows a
broad range of scientists to analyze PPIs from a global network perspective.

The commonly used Y2H screening identifies interactions between pairs of
proteins by exploiting the modularity of the activating and binding domains of
eukaryotic transcription factors [22]. Namely, in Y2H, the activating and binding
domains of a specific transcription factor are separated. Subsequently, each of the
activating and binding domains is fused to one of the two (prey and bait) proteins
being assayed. Finally, the expression of a target (referred to as the reporter gene) of
the transcription factor is measured. Since the reporter gene would not be expressed
when the activating and binding domains of the transcription factor are separated,
the high expression of the reporter gene indicates an interaction between prey and
bait proteins. TAP, on the other hand, identifies interactions between a single bait
protein and multiple other proteins [14]. This is achieved by tagging the protein of
interest (referred to as the bait protein) and introducing it to the host. Once the bait
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Fig. 1.1 Graph models for molecular interactions: (a) Protein interaction networks, (b) Metabolic
pathways, (c) Gene regulatory networks

protein is retrieved, the proteins attached to the bait protein are identified using MS
and these proteins are considered as interacting partners of the bait protein.

Established PPI network models assume binary interactions between pairs of
proteins, which is naturally descriptive of the outcome of Y2H screening. These
pairwise interactions are modeled using simple undirected graphs in which nodes
represent proteins and an edge between two nodes represents the interaction
between the corresponding proteins, as shown in Fig. 1.1a. On the other hand,
multiple interactions identified by TAP are either modeled as hypergraphs in which
edges are replaced by hyperedges [42], or inserted into the binary network model as
either: (1) a star network around the bait protein (spoke model) or (2) a clique of all
proteins retrieved by the bait protein, including itself (matrix model) [55].

An important limitation of PPIs derived from high-throughput techniques is their
incomplete and noisy nature [11]. Furthermore, these interactions only represent a
snapshot of the dynamical organization of proteins in the cell; many interactions
may be transient and condition-dependent, while some others are permanent [23].
Currently available PPI datasets are also highly prone to ascertainment bias. Further-
more, high-throughput screening does not reveal the structural bases of identified
PPIs. Protein interactions may arise from interactions between structural domains,
which have relatively large interfaces, or domain-small polypeptide stretch inter-
actions with relatively low affinity, therefore, less likely to be detected [3]. Since
knowledge of structural bases of PPIs is useful in understanding their functional
bases, many computational methods have been developed to infer domain–domain
interactions (DDIs) from PPIs [16, 33, 53]. Comprehensive comparison of PPI and
DDI networks has shown that DDI networks provide more reliable information on
the functional relationships among biomolecules, as compared to PPI networks [59].

PPIs are also inferred using various computational techniques. These methods
use different sources of experimental data to assess the likelihood of functional
association between a pair of proteins. Common computational techniques used
for predicting PPIs include phylogenetic profiling [26, 47] and analysis of gene
expression [23,63], based on the premise that interacting proteins are likely to have
coevolved or be coexpressed, since their cooperative task would require existence
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of both proteins. Since protein interaction data obtained from high-throughput
screening is highly error-prone [65, 66], it is common to combine several ex-
perimental and computational sources of interaction data to obtain a reliable
set of putative interactions. Such consolidated interaction networks are modeled
using weighted graphs, where edge weights represent the likelihood of interaction
between proteins, estimated using various statistical models and techniques [4, 34].
Machine learning models are also useful in consolidating PPI networks [61].

2.2 Metabolic Networks

Metabolic networks comprise a historically well-studied abstraction for biological
networks. They characterize interconnected chains of chemical reactions that occur
in a living organism to maintain life. These chains of reactions can synthesize
larger molecules from simpler molecules (anabolism) or break down molecules
into simpler ones to release energy (catabolism). Traditionally, metabolic networks
are dissected into specific metabolic pathways, based on the products of each
group of reactions underlying a metabolic process. With recent developments in the
application of computational methods to cell biology, there have been successful
attempts at modeling, synthesizing [24], and organizing metabolic pathways into
public databases such as KEGG [41], MetaCyc [31], and EMP [56]. Enzyme
Nomenclature provides a unified view of metabolic reactions across species [64].

Metabolic pathways are chains of reactions, in which reactions are linked
to each other by chemical compounds (metabolites) through product–substrate
relationships. A natural mathematical model for metabolic pathways is a directed
hypergraph in which each node corresponds to a compound, and each hyperedge
corresponds to a reaction (or equivalently enzyme) [32]. The direction of a pin
of a hyperedge indicates whether the compound is a substrate or product of the
reaction. This model is illustrated in Fig. 1.1b. It is possible to replace this model
by a simpler directed graph if, for instance, we are only interested in relationships
between enzymes. In such a model, enzymes correspond to nodes of the graph and
a directed edge from one enzyme to another indicates that a product of the first
enzyme is a substrate of the second. Indeed, metabolic pathways are represented in
terms of various binary relations in KEGG [15].

While the pathway representation is useful in cataloging and organizing
metabolic processes, it is important to note that metabolic pathways are
interconnected. Indeed, global network representation of metabolic networks
enables the study of metabolic network dynamics from a systems perspective.
Metabolic flux models based on steady-state assumptions prove invaluable in this
regard [45]. While Michelis–Menten kinetics provides a mathematical foundation
for the kinetics of individual reactions and catalyzing enzymes, these reactions
form a system together, which is difficult to analyze in terms of the parameters
of Michelis–Menten kinetics. However, stoichiometric models provide a linear
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algebraic framework for dynamic analysis of metabolic networks as a system, based
on the assumption that metabolic concentration changes are much slower than
reaction kinetics.

2.3 Gene Regulatory Networks

The cell adapts to its environment by recognition and transduction of a broad
range of environmental signals, which in turn activate response mechanisms by
regulating the expression of proteins that take part in the corresponding processes.
Mechanisms of cellular signaling and genetic regulation also play key roles in cellu-
lar communication in multicellular organisms, including developmental processes.
A fundamental challenge in systems biology is, therefore, to reconstruct networks
that describe cellular signaling and regulation, with a view to deriving maps of
interconnectivity and functional relationships between molecules.

At the transcriptional level, gene expression is regulated through interaction of
regulatory proteins (e.g., transcription factors) with the DNA at specific locations.
The combinatorial relationship between transcription factors and their target genes
are organized into transcriptional regulatory networks, providing qualitative models
of genetic regulation at the level of transcription [2]. Transcriptional networks
can be reconstructed by detecting genes whose expression is coregulated, finding
common motifs in the neighborhood of these genes as potential candidates for their
promoters, and subsequently identifying specific protein–DNA interactions [35].

Besides transcriptional regulation, gene and protein expression is regulated in
other phases, including post-transcription [7], translation [19], and post-translation
control. While identification of all such regulatory mechanisms is a challenging
task, correlations between expression levels of genes provide valuable information
regarding regulatory interactions that extend beyond transcriptional regulation.
Gene regulatory networks, also referred to as genetic networks, provide an abstract
model of the regulatory effects of genes on each other, represented as directed (and
often annotated) interactions among two or more genes [18].

A simple and commonly used model for gene regulatory networks is the Boolean
network model [1]. In this model, the expression of each gene in the network is
represented by a binary variable and the regulatory effect of the genes on a particular
gene is represented as a Boolean function. In the basic representation of this model,
nodes correspond to genes and a directed edge from one gene to the other represents
the regulatory effect of the first gene on the second. Here, edges are labeled by the
mode of regulation, which may be one of up-, down-, or dual-regulation. This model
is illustrated in Fig. 1.1c.

Boolean networks provide simple, yet useful models of causal relationships in the
cell. They can be surprisingly powerful in predicting cellular behavior in various
contexts. However, they do not account for many important factors, including the
quantitative and asynchronous nature of cellular signaling and regulation, as well as
variables that are not measured. Bayesian networks utilize stochasticity to account
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for such factors, which are otherwise intractable [12]. Bayesian networks represent
the expression of a gene as a random variable and characterize the relationship
between a gene and its regulators in terms of the conditional probability distribution
of this random variable with respect to the expression of regulators.

2.4 Other Abstractions

There exist various other abstractions for modeling molecular interactions. These
include signal transduction pathways, which model the mechanisms for the cell
to receive, process, and respond to information through signal transfer between
proteins [9] and gene coexpression networks, which pack relations in complex
expression patterns into pairwise associations between genes [63]. In the Molecule
Pages database [37], proteins involved in cell signaling are represented in various
states and transitions between these states, as an important step in abstracting
cellular processes via state diagrams and eventually modeling the cell as a state
machine.

3 Molecular Networks and Biological Function

Graph-theoretic modeling of biological networks provides a framework for the
solution to various problems associated with understanding biological function [49].
Computational approaches that facilitate extraction of organized and annotated
functional information from molecular interaction networks range from simple
queries to more sophisticated analysis tasks.

Analysis of graph-theoretical properties of molecular networks reveal many
properties of the networks that hint on functional relationships among multiple pro-
teins. Fundamental observations on the relationship between basic graph-theoretical
features and functional coherence of molecular networks include the following:

• It has been repeatedly observed that functionally related (e.g., proteins in the
same pathway, proteins with similar molecular function, products of genes that
are implicated in similar diseases) are likely to reside close to each other in
molecular networks. Traditionally, the “distance” between two biomolecules in
a network of interactions is measured by the minimum number of interactions
that separate a given pair of proteins [50]. This measure is further extended to
random-walk based models, which capture the functional relationship between
proteins more accurately [59].

• It has been shown that the network centrality of a biomolecule (e.g., the number
of interactions) is correlated with its essentiality [6]. Furthermore, the distribution
of such measures as network degree or clustering coefficient also provides
insights on the robustness of the network [67].
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• Functionally correlated groups of biomolecules generally manifest themselves as
a densely connected sub-network in a network of molecular interactions [5].

More sophisticated computational analyses target identification of patterns that
exhibit certain interesting or unusual; hence, potentially functionally relevant
characteristics (e.g., in terms of frequency, density, or conservation), based on the
expectation that such unusual patterns reveal underlying functional requirements
and/or evolutionary pressure. Such analysis techniques include the following:

• Graph clustering targets identification of dense subgraphs in the network and is
commonly used for identification of functional modules and complexes [5, 30].
These algorithms are based on the notion that a group of functionally-related
entities are likely to densely interact with each other while being somewhat
separated from the rest of the network [54].

• Hierarchical decomposition methods rely on the observation that organization
of cellular processes can be modeled using hierarchical modularity [52]. These
methods use hierarchical clustering algorithms for identification of functional
modules [13].

• Motif finding is based on identification of specific topological motifs that are
observed significantly more often than they would be observed at random in a
network of interactions. These algorithms reveal common regulatory motifs and
coherent interaction patterns as putative building blocks of biological networks.
They also provide insights into the functional topology of interaction net-
works, facilitating compact modeling and reverse engineering of these networks
[7, 38, 68].

• Inferring function of individual proteins and assigning complex memberships
based on proximity, topological similarity, or other more detailed network
characteristics provides a useful computational tool for extracting information
from interaction data [4, 36, 59].

• Comparative network analysis aims to extract evolutionary information from
molecular interaction networks [57]. Comparison of networks across multiple
species provides understanding of conservation and divergence of the modularity
of cellular processes in an evolutionary framework for systems biology [39] and
facilitates projection of functional, structural, and modular annotation for model
organisms onto a diverse set of species[25, 28, 58].

• Integration of molecular network data with other omic datasets sheds light on
the mechanistic bases of phenotypic differences. In particular, in the context of
several diseases, molecular networks are successfully used to prioritize disease
genes, identify network signatures of disease, and improve classification of
phenotype [35, 40].

It should also be noted that combinatorial abstractions in computational network
analysis often overlook the dynamics of the cellular interactions and provide
a simplified picture of the organization. Consequently, for accurate modeling,
simulation, and engineering of cellular systems, it is necessary to combine these
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combinatorial models and the information gained from analysis of such models with
dynamic analysis techniques that target understanding of how a system behaves over
time under various conditions [27].

4 Functional Coherence of Molecular Networks

The chapters in this volume provide a detailed review of the relationship between
biological function and graph-theoretical characteristics of molecular networks.
These chapters are organized into three parts: (a) function, (b) evolution, and (c)
dynamics.

The next two chapters of this volume are devoted to the relationship between
molecular network topology and biological function. In Chap. 2, Milenković and
Pržulj investigate biological function from the perspective of molecular network
topology. They provide an overview of computational approaches to assessing the
meaning of network topology in relation to functional organization of biological
systems and provide surprising results on how simple wiring patterns can play a
key role in orchestration of cellular processes. In Chap. 3, Bogdanov et al. provide a
detailed review of computational methods that aim to infer function of individual
molecules based on molecular network data. These methods use principles that
are supported by various lines of empirical evidence. These principles range from
the observation that functionally associated proteins are likely to interact with each
other, to the observation that interacting partners of functionally associated proteins
are also likely to interact with each other.

The two subsequent chapters focus on functional evolution of molecular net-
works. In Chap. 4, Dao et al. discuss computational models for molecular network
evolution. These models provide significant insights into the origins of observed
functional characteristics of molecular networks and highlight key evolutionary
pathways into emergent properties of biological systems. Building on these models
that provide evolutionary insights into functional coherence of molecular networks,
Mohammadi and Grama provide a detailed review of computational methods for
comparative network analysis in Chap. 5. These methods include algorithms for
comparison of pairs of networks for identification of conserved interaction patterns,
as well as multiple network alignment and identification of orthologous proteins
based on network topology.

The last three chapters of the volume focus on network dynamics and phenotype.
In Chap. 6, Li et al. describe several algorithms for identifying common, as well as
differential patterns on multiple molecular networks, and show how these patterns
can be used for functional inference and genotype to phenotype mapping. In
Chap. 7, Koyutürk et al. provide a detailed review of network-based algorithms for
identification of disease-associated genes, proteins, as well as network signatures
of diseases. These algorithms often utilize molecular networks in conjunction of
other omic data sources, including sequence and expression data. Finally, in Chap. 8,
Bordbar and Palsson introduce mass action stoichiometric simulation, with a view
to providing genome-scale kinetic models for metabolic networks.
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Chapter 2
Topological Characteristics of Molecular
Networks

Tijana Milenković and Nataša Pržulj

Abstract We present currently available computational methods for graph-theoretic
analysis, modeling, and comparison of biological networks. Biological network
research is still in its infancy, since the current data is of low quality, and since the
existing methods for their analyses are relatively crude, owing to the computational
intractability of many graph theoretic problems. Nonetheless, the field has already
provided valuable insights into biological function, evolution, and disease. Further
systems-level analyses of cellular inter-connectedness have an enormous potential
to lead to new interesting biological discoveries and give novel insights into
organizational principles of life and therapeutics, thus potentially having huge
impacts on public health. The impact of the field of biological network research
is likely to increase with the growth of available biological network data of high
quality, as well as with improvements of network analysis and modeling methods.
The field is likely to stay at the forefront of scientific research in the years to come.

1 Biological Networks: Motivation, Data Sets, and Challenges

The definition of a network (also called a graph) is simple: it is a set of objects,
called nodes, and connections between the objects, called links or edges. Networks
are invaluable models for better understanding of complex systems and they
have been used to describe, model, and analyze an enormous array of real-world
phenomena in many research domains, including physical systems such as electrical
power grids and communication networks, social systems such as networks of
friendships or corporate and political hierarchies, or software systems such as call
graphs or expression and syntax trees. The field of computational and systems
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biology is no exception: biological networks provide an organized and elegant
framework to study and model complex events that emerge from interactions among
the individual constituents of the cell.

Different types of biological networks exist, depending on the type of a bi-
ological phenomenon that they model. Nodes in biological networks represent
biomolecules such as genes, proteins, or metabolites, and edges connecting the
nodes indicate functional, physical, or chemical interactions between the corre-
sponding biomolecules. An example are protein–protein interaction (PPI) networks,
in which nodes correspond to proteins and edges exist between pairs of nodes if the
corresponding proteins physically bind to each other (Fig. 2.1a). When all proteins
in a cell are considered, the resulting networks are quite large, containing thousands
of proteins and tens of thousands of interactions even for model organisms, such
as baker’s yeast Saccharomyces cerevisiae (Fig. 2.1b). In addition to PPI networks,
many other biological phenomena have been modeled with graphs, including tran-
scriptional regulation, cell signaling, functional associations between genes (e.g.,
synthetic lethality), metabolism, neuronal synaptic connections, protein structures,
and brain activity. Studying biological networks at these various granularities
could provide valuable insights about inner working of cells and lead to important
discoveries about complex diseases. Deep understanding of these networks is one
of the ultimate challenges of computational and systems biology [113, 114].

We have been witnessing the exponential growth of the amounts of available
biological network data, along with the development of computational approaches
for studying and modeling these data. High-throughput screens for interaction
detection, such as yeast two-hybrid (Y2H) assays [39,46,55,75,108,119,123,128],
affinity purification coupled to mass spectrometry (AP/MS) [44,45,53,67], genome-
wide chromatin immunoprecipitation, correlated m-RNA expression, and genetic
(synthetic-lethal) and suppressor networks [20, 127], have yielded partial networks
for many model organisms [45,46,50,55,67,75,98,127,128] and humans [108,123],
as well as for bacterial [72, 95, 106] and viral [17, 129, 134] pathogens. Numerous
biological network datasets are now publicly available in several databases, includ-
ing Saccharomyces Genome Database (SGD),1 the Database of Interacting Proteins
(DIP),2 Human Protein Reference Database (HPRD),3 and the Biological General
Repository for Interaction Datasets (BioGRID).4

Biological network research is an interdisciplinary and integral part of com-
putational and systems biology that offers many interesting and important op-
portunities for biological and computational scientists. Systems-level analyses of
inter-connectedness of the cell are promising to provide new insights into orga-
nizational principles of life, evolution, disease, and therapeutics, thus potentially
having huge impacts on public health. Unlike genetic sequence research, biological

1http://www.yeastgenome.org/.
2http://dip.doe-mbi.ucla.edu/.
3http://www.hprd.org/.
4http://www.thebiogrid.org/.

http://www.yeastgenome.org/
http://dip.doe-mbi.ucla.edu/
http://www.hprd.org/
http://www.thebiogrid.org/
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Fig. 2.1 (a) A schematic representation of a protein–protein interaction (PPI) network. (b) Baker’s
yeast PPI network downloaded from Database of Interacting Proteins (DIP) [142]. (c) The
adjacency matrix of the same network illustrating its sparsity. (d) An illustration of the “spoke”
and “matrix” models for defining PPIs in a pull-down experiment. The black node corresponds to
the bait, while white nodes correspond to preys

network research is still in its infancy. We have only begun collecting the biological
network data and we can hardly even describe the data mathematically, much less
understand it theoretically. Nonetheless, deep biological understanding has already
been obtained by studying biological networks. The ultimate expectation is that
network data will be at least as useful as the sequence data in uncovering new
biology. Since biological networks are very large and complex (e.g., see Fig. 2.1b),
it is not possible to understand them without computational analyses and modeling.

The emerging field of network biology faces considerable challenges. Currently
available biological network data sets are noisy and largely incomplete (Fig. 2.1c)



18 T. Milenković and N. Pržulj

with some parts being more dense than others, owing to the following. First,
experimental techniques are limited, as they are capable of extracting only samples
of interactions that exist in the cell. Second, the data sets incorporate biases
introduced by humans during data collection [19, 22, 23, 48, 49, 124, 135, 141]. An
example is a bias introduced by collecting more data in parts of networks that are
relevant for human disease due to increased interest and availability of funding.
Another example is a bias of adding noise to the data by using the “spoke” or the
“matrix” model to define interactions between proteins identified in a pull-down
AP/MS experiment. In the “spoke” model, interactions are assumed between the
bait and all of the preys, while in the “matrix” model, additional interactions are
assumed between all preys as well (Fig. 2.1c). Clearly, the spoke model introduces
fewer false positives than the matrix model, but it can miss true interactions. Despite
the incompleteness and noisiness of currently available biological network data,
the scientific community has begun analyzing and modeling the networks, since
they represent a rich source of biological information. This has led to interesting
but sometimes controversial discoveries [21, 27, 33–35, 56–58, 62, 122, 126]. The
controversies often resulted from a lack of understanding of the sampling properties
of the data, as well as from the use of computational techniques sensitive to noise
[23, 49, 124].

Moreover, analyzing, modeling, and comparing biological network data is
nontrivial not only because of the low quality of currently available biological
network data, but also due to provable computational intractability of many graph
theoretic problems. Modeling of biological networks is of particular importance,
since a good network model that reproduces a real-world phenomenon well can
help us understand the laws governing the phenomenon, and only with the help
of such laws we can make new predictions about the phenomenon. Finding a good
network model requires comparing the data with model networks, but exact network
comparisons are computationally infeasible. Hence, we must rely on approximate
solutions resulting from heuristic algorithms. However, even if computational
intractability was not a problem, arriving to exact graph theoretic solutions would
be inappropriate in biology due to biological variation. Hence, we want our methods
intentionally to be heuristic.

In this chapter, we introduce network analysis and modeling methods that are
commonly applied to biological networks. We mainly focus on PPI networks,
since it is the proteins that carry out almost all biological processes. However,
the same methods can easily be applied to other biological networks. This chapter
is organized as follows. In Sect. 2, we describe the main computational concepts
related to network analysis and introduce measures of network topology. In Sect. 3,
we present the commonly used network models and describe their biological
applications. In Sect. 4, we introduce existing approaches for network alignment and
explain how they can be used to transfer biological knowledge between species. In
Sect. 5, we present approaches linking network topology with biological function
and disease. Finally, in Sect. 6, we present some open problems in biological
network research and future expectations of the field, and we give some concluding
remarks.
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2 Network Analysis: Measures of Network Structure

Network analyses require contrasting different networks and finding their topolog-
ical (or structural) similarities and differences. For example, it would be useful
to compare networks of different species, since a lot is often known about a
network of a model organism, but very little about networks of other organisms.
Also, it would be useful to evaluate the fit of different models to the data.
Hence, network comparisons are essential for any network data analysis. However,
exact comparisons of large networks are computationally infeasible, owing to
the computational intractability of the underlying subgraph isomorphism problem,
which asks if a graph exists as an exact subgraph of another graph. More formally,
a graph isomorphism between two networks is a node bijection preserving the node
adjacency relation [139]. If two networks G and H are given as input, determining
whether G contains a subgraph isomorphic to H has mathematically been proven to
be NP-complete (meaning that no efficient way of finding a solution exists), since it
includes problems such as Hamiltonian path, Hamiltonian cycle, and the maximum
clique as special cases [43]. However, if graph G on nG nodes is input and graph H
on nH nodes is fixed, then the subgraph isomorphism can be tested in polynomial
time, O(nH! · n2

H · (nG
nH

)
), simply by iterating through all subsets of nH nodes

of G. Nonetheless, such exhaustive searches are computationally infeasible for
large biological (and other real-world) networks and hence approximate, heuristic
approaches are sought. Furthermore, as mentioned above, due to biological variation
and noise in the biological network data (i.e., missing edges, false edges, or both
[133]), subgraph isomorphism would be inappropriate in biology even if it was
computationally feasible. For this reason, we want our network comparison methods
intentionally to be more flexible, or approximate.

Easily computable approximate measures of network topology commonly used
to characterize a network and compare different networks are referred to as
network properties. Network properties are used, for example, to compare the
structure of real-world networks with the structure of model networks. Based on
such comparisons, network models have been proposed for cellular (and other
real) networks if their properties fit the properties of cellular networks (Sect. 3).
Network properties have traditionally been divided into two main groups: top-down
macroscopic global network properties (Sect. 2.1) and bottom-up microscopic local
network properties (Sect. 2.2). Additionally, various forms of node centralities have
been proposed, characterizing the “topological importance” of a node based on its
position in the network (Sect. 2.3).

2.1 Global Network Properties

Global properties of a network give an overall view of the network. They are
conceptually and computationally easy and thus, they have been extensively studied
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in biological networks. The most widely used global network properties are the
degree distribution, clustering coefficient, clustering spectrum, network diameter,
and spectrum of shortest path lengths [90]. They are defined as follows.

The degree of a node is the number of edges that the node touches. For example,
in the network presented in Fig. 2.1a, nodes C, D, and E have degree 1, node A
has degree 2, and node B has degree 3. The degree distribution of a network is
the distribution of degrees of all nodes in the network, measuring the percentage of
nodes in the network having degree k, for all degrees k in the network. Equivalently,
it is the probability that a randomly selected node of the network has degree k.
This probability is commonly denoted by P(k). Many biological networks have
skewed, asymmetric degree distributions with a tail that follows a “power-law”
given by the following formula: P(k) ∼ k−γ ,γ > 0. Networks with such degree
distributions are referred to as “scale-free” [7], and in these networks, the largest
percentage of nodes has degree 1, much smaller percentage of nodes has degree 2,
and so forth, but there exists a small number of high-degree nodes called “hubs.”
The clustering coefficient of a node v can be viewed as the probability that two
neighbors of the node v are connected; neighbors of v are nodes that share an
edge with v. Specifically, the clustering coefficient of node v is the percentage of
edges that exist amongst v’s neighbors out of the maximum possible number of
edges amongst the neighbors. The clustering coefficient of a network is simply the
average of clustering coefficients of all of its nodes. It measures the tendency of the
network to form highly interconnected regions called clusters. Clearly, it is always
between 0 and 1. The clustering spectrum of a network is the distribution of average
clustering coefficients of degree k nodes over all degrees k in the network. The
smallest number of links that have to be traversed to get from a node v to a node
u in a network is called the distance between nodes v and u and a path through
the network that achieves this distance is called the shortest path between nodes v
and u. The maximum of shortest path lengths over all pairs of nodes in a network
is the network’s maximum diameter that describes how “far spread” the network is.
The average of shortest path lengths over all pairs of nodes in a network is called the
network’s average diameter. PPI and other biological and real networks have high
clustering coefficients compared to completely random networks, as well as small
average diameters (of the order of O(logn), where n is the number of nodes in a
network); this is called the small-world property [138].

However, global network properties might not be constraining enough to capture
at a detailed level complex topological characteristics of large (biological) networks.
For example, networks with exactly the same value of a global network property
can have very different structure affecting their function [74, 100]. Figure 2.2a
presents such an example: network G, consisting of two 4-node cycles, and network
H, consisting of one 8-node cycle, have the same number of nodes and edges, as
well as the same degree distribution (each node in both networks has degree 2) and
clustering spectrum (each node in both networks has the clustering coefficient of 0);
however, their network structure is clearly very different. The same holds for other
global network properties [100]. Hence, more constraining measures of network
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Fig. 2.2 (a) Two networks, G and H, that have the same size, degree distribution, and clustering
spectrum, but different topology. (b) All the connected graphs on 2–5 nodes. When appearing as
induced subgraphs of a larger network, we call them graphlets. They contain 73 topologically
unique node types, called “automorphism orbits.” In a particular graphlet, nodes belonging to the
same orbit are of the same shade [99]. (c) An illustration of the “Graphlet Degree Vector” (GDV)
of node v. Graphlet G0 in panel (b) is just an edge, and the degree of a node historically defines
how man edges it touches. We generalize the degree (left) to a 73-component GDV that counts how
many times a node touches each of the 73 automorphism orbits, such as a triangle (middle), or a
square (right). For illustration purposes, the GDV of node v is presented in the table for orbits 0–14:
v is touched by 5 edges (orbit 0), end-nodes of 2 graphlets G1 (orbit 1), etc. (d) Illustration of GDV-
similarity measure: 2-deep network neighborhoods of proteins DDX6 (red node) and ZNF384
(blue node) that have high GDV-similarity of 97%

structure are needed for proper network comparisons. Furthermore, since currently
available biological networks are incomplete, their global network properties do not
tell us much about the structure of the entire real-world networks. Instead, they
describe the structure of “localized” sampled network parts that were produced
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by biased experimental techniques for interaction detection [23, 49, 124] (see the
discussion in Sect. 1). Thus, global statistics on incomplete real-world networks
may be biased as well and even misleading with respect to the currently unknown
complete networks. Since certain local neighborhoods of biological networks are
well-studied (e.g., network regions relevant for human disease), bottom-up local
network properties might be more appropriate to analyze and model the well-studied
network parts.

2.2 Local Network Properties

Local network properties include network motifs and graphlets [83,86,99,100,117].
Analogous to sequence motifs, network motifs are defined as subgraphs that appear
in a network at frequencies much higher than those in randomized networks
[85, 86, 117]. Equivalently, anti-motifs are subgraphs that appear in a network at
frequencies much lower than those in randomized networks. Network motifs are
partial subgraphs. A partial subgraph H of a network G is a subgraph whose
nodes and edges belong to G. An induced subgraph H of G is a subgraph of G
on subset V (H) of the set of nodes V (G), such that edges E(H) of H consists
of all edges of G that connect nodes of V (H). The following example illustrates
the difference between partial and induced subgraphs: a 3-node path is a partial
subgraph of a triangle, since all nodes and edges of a 3-node path belong to a
triangle. However, a 3-node path is not an induced subgraph of a triangle, since not
all edges that exist between the tree nodes in a triangle are present in a 3-node path;
the triangle has a single induced subgraph – the triangle. Hence, induced subgraphs
are more topologically constraining than partial subgraphs. Beside being partial
subgraphs, network motifs raise several additional issues. First, motif discovery
requires comparing real-world networks with random model networks. However, it
is not clear which random network model should be used for this purpose [5]. Using
an inadequate model may identify as over-represented subgraphs that otherwise
would not have been identified as motifs. (We discuss network models in more detail
in Sect. 3.) Second, when focusing on discovery and analysis of network motifs,
one ignores subgraphs with “average” frequencies. However, it is as important to
understand why certain network structures appear at average in the data as it is
to understand why some structures are under- and over-represented, if we are to
get a complete understanding of the underlying cellular processes. Despite these
drawbacks, network motifs have been very useful for finding functional building
blocks of transcriptional regulation networks, as well as for differentiating between
different types of real-world networks [2, 60, 61, 85, 86, 117]. Also, as partial
subgraphs, network motifs are appropriate for studying biological networks, since
not all interactions in real biological networks need to concurrently occur in a cell,
while they are all present simultaneously in their network representations that we
study.
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Unlike network motifs, graphlets are small induced subgraphs in a network
(Fig. 2.2b) [26, 82, 83, 99, 100]. Graphlet-based approaches have been proposed
that count the frequencies of occurrences of all graphlets in a network, not only
over-represented ones. As such, these approaches are free from the biases that motif-
based approaches have: graphlets are induced subgraphs and they can be identified
without the need to use any random graph model. That is, graphlets do not need to be
over-represented in a data network and this, along with being induced, distinguishes
them from network motifs. (Note that whenever the structure of a graph (or a graph
family) is studied, we care about induced rather than partial subgraphs [16].) We
currently deal only with graphlets with up to five nodes. Due to the small-world
nature of many real-world networks [138], and since the number of graphlets on n
nodes increases exponentially with n, we believe that using larger graphlets would
unnecessarily increase the computational complexity. There are 30 such graphlets,
denoted by G0, . . . ,G29 in Fig. 2.2b. We may further refine the graphlet idea by
noticing that in some graphlets, the nodes are topologically distinct from each other.
For example, in a ring (cycle) of four nodes (graphlet G5 in Fig. 2.2b), every node
looks the same as every other, but in a chain (path) of four nodes (graphlet G3 in
Fig. 2.2b), there are two end nodes and two middle nodes. These “symmetry groups”
within graphlets can be mathematically formalized by using the notion of graph
“automorphism orbits” [99]: for example, the middle node in G1 is topologically
distinct from the end nodes of G1. There are 73 topologically distinct orbits across
all 30 2-, 3-, 4-, and 5-node graphlets, labeled from 0 to 72 in Fig. 2.2b. In this way,
we greatly enhance the topological sensitivity of using graphlets to characterize
network structure and compare networks, without increasing the computational cost.

Graphlet-based systematic measures of local network structure have been pro-
posed that impose a large number of similarity constraints on networks being
compared [99, 100]. One approach compares the frequencies of appearance of
graphlets in two networks and provides a statistical characterization of their local
structural similarity independent of any random network model [100]. Another
approach generalizes the degree distribution, which measures the number of nodes
in a network having degree k, that is, “touching” k edges (an edge being the only
2-node graphlet), into the spectrum of 73 “graphlet degree distributions,” each of
which measures the number of nodes in a network touching k orbits of a given
type. Comparing 73 graphlet degree distributions of two networks gives a highly
constraining measure of agreement between their network topologies [99]. Similar
graphlet-based generalization can be applied to the clustering spectrum, where
each of the 73 graphlet clustering spectra would measure the average clustering
coefficient of all nodes in a network touching k orbits of a given type. Network
analysis and modeling software package called GraphCrunch5 implements graphlet-
based approaches for network comparison [81].

When comparing two networks, one of their network properties can tell us
that the networks are similar, while another can tell us that they are different.

5http://www.ics.uci.edu/∼bio-nets/graphcrunch/.

http://www.ics.uci.edu/~bio-nets/graphcrunch/
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For example, networks G and H in Fig. 2.2a are identical with respect to their
degree distributions (as well as with respect to their clustering spectra), but they are
different with respect to their graphlet frequencies. There exist approaches that try
to overcome such contradictions in the agreement of different network properties.
They do so by integrating the variety of global and local properties of a network
into the “network fingerprint” and feeding this fingerprint into different machine
learning classifiers to classify the network into a certain graph family (see [80] for
details).

2.3 Node Centralities

Another important concept is that of node centrality. Node centrality measures try
to determine the relative topological importance of a node based on its position
in the network. Several centrality measures have been proposed. Examples include
the following: (1) degree centrality, according to which nodes with high degree have
high centrality; (2) closeness centrality, according to which nodes with short paths to
all other nodes have high centrality; (3) betweenness centrality, according to which
nodes that occur in many of the shortest paths have high centrality; (4) eigenvector
centrality, according to which nodes have high centrality if their neighbors also
have high centrality (and vice versa); (5) subgraph centrality, defined as the sum of
closed walks of different lengths in the network starting and ending at the node in
question, with smaller lengths having higher importance, where each closed walk is
associated with a connected subgraph (closed walks of order n represent subgraphs
on n nodes). Hence, this measure counts the number of (partial) subgraphs that
a node participates in [25] and according to it, nodes that participate in a large
number of subgraphs have high centrality; and (6) graphlet degree centrality, that
generalizes the degree of a node, which counts the number of edges (i.e., orbits 0)
that the node touches, into the graphlet degree vector (GDV) of the node, that
counts how many of each of the 73 orbits for 2–5-node graphlets the node touches
(Fig. 2.2c). The GDV of a node thus has 73 elements and it describes the topology
of the node’s up to 4-deep neighborhood. A measure of similarity between GDVs
of two nodes, GDV-similarity is defined that quantifies the topological similarity
of extended neighborhoods of the two nodes [83] (Fig. 2.2d). Given the GDV of a
node, we can define a new centrality measure, graphlet degree centrality, according
to which nodes that touch many graphlets, that is, their orbits, have high centrality. It
represents the sum of the values of 73 coordinates of the GDV, weighted to account
for orbit “dependencies” (see [83] for details).

In Sects. 3–5, we discuss biological applications of different network properties
and node centrality measures, including identification of a good network model for
biological networks, design of an effective cost function for topological network
alignment, protein function prediction, and disease gene identification.
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3 Network Modeling

Biological networks are large and complex. To understand them, we must be
able to successfully reproduce them. This requires finding a good network model
that generates networks that closely replicate the structure of real-world networks.
Such a well-fitting model that precisely reproduces the network structure and laws
through which the network has emerged can help us understand and replicate the
underlying complex evolutionary mechanisms in the cell. Only with the help of
such laws, we can make predictions about the phenomenon at study that we may
want to further explore experimentally. For example, properties of a model can be
used for time- and cost-optimal interactome detection [73] and data denoising [70].

Finding models for biological networks is nontrivial, owing not only to incom-
pleteness and noisiness of the data, but also to computational intractability of many
graph theoretic problems: identification of a good network model requires compar-
ing the structure of real-world networks with the structure of model networks, and
network properties (described above) must be used to evaluate the fit of a model
to the data. Note that, it is the computationally hardness of many graph theoretic
problems that gives an additional motivation for finding a well-fitting model for
biological networks. Special graph classes often have well-known properties and
solving many problems on such classes is feasible even though it is infeasible for
graphs in general. Thus, finding an appropriate graph class (i.e., network model)
for biological networks could simplify their computational manipulation and enable
easier extraction of biological knowledge that is encoded in their network topology.

First, we describe the most commonly used network models (Sect. 3.1). Then,
we discuss how they can be used to learn new biology (Sect. 3.2).

3.1 Network Models

Various network (or random graph) models have been proposed for real-world
networks that have progressed through a series of versions designed to match certain
properties of real-world networks.

The earliest such model is Erdös–Rényi random graph model [24]. Erdös–Rényi
random graphs are based on the principle that the probability that there exists an
edge between any pair of nodes is distributed uniformly at random (Fig. 2.3a). Erdös
and Rényi have defined several variants of the model. The most commonly studied
one is denoted by Gn,p, where each possible edge in the graph on n nodes is present
with probability p and absent with probability 1− p. Many of the properties of
Erdös–Rényi random graphs are mathematically well understood [13]. Therefore, it
is a standard model to compare the data against, even though it is not expected to
fit the data well. Erdös–Rényi graphs have small diameters, “bell-shaped” Poisson
degree distributions, and low clustering coefficients, and thus do not provide a good
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Fig. 2.3 Examples of model networks. (a) An Erdös–Rényi random graph. (b) A small-world
network. (c) A scale-free network. (d) A geometric random graph

fit to real-world PPI networks which typically have small diameters, but power-law
degree distributions and high clustering coefficients. Hence, other network models
for real-world networks have been sought.

One such model is generalized random graph model. In these graphs, edges are
randomly chosen as in Erdös–Rényi random graphs, but the degree distribution is
constrained to match the degree distribution of the data [1, 87, 88, 91]. They can
be generated by using the “stubs method” [90]: the number of “stubs” (to be filled
by edges) is assigned to each node in the model network according to the degree
distribution of the real-world network; edges are created between pairs of nodes
picked at random; after an edge is created, the number of “stubs” left available at the
corresponding “end-nodes” of the edge is decreased by one. Thus, these networks
preserve the degree distribution and small diameters of PPI networks. However, they
fail to mimic well high clustering coefficients of the data.



2 Topological Characteristics of Molecular Networks 27

Another commonly used network model is that of small-world networks. These
networks are created from regular ring lattices by random rewiring of a small
percentage of their edges (Fig. 2.3b); in a regular ring lattice, nodes are placed on
a ring and connected to their ith neighbors on the ring for all i smaller than some
given number k. Designed in such a way, small-world networks have large clustering
coefficients and diameters that are an order of magnitude smaller than the number of
their nodes [92, 93, 138]. However, these networks still fail to reproduce power-law
degree distributions of real-world networks.

Scale-free networks are characterized by power-law degree distributions [7,8,15,
74,118] (Fig. 2.3c). Hence, many variants of scale-free network growth models have
been proposed for PPI networks. One such model is the Barabási–Albert preferential
attachment model [7], in which newly added nodes preferentially attach to existing
nodes with probability proportional to the degree of the target node. Other variants
focused on modeling PPI networks are based on biologically motivated gene
duplication and mutation network growth principles [47, 96, 131, 137]: networks
grow by duplication of nodes (genes), and as a node gets duplicated, the child node
not only inherits most of the interactions of the parent node, but also gains some new
interactions. Although scale-free networks have power-law degree distributions and
small average diameters, they typically still have low clustering coefficients, and
hence they fail to mimic high clustering coefficients of real-world networks.

High clustering coefficients of real-world networks are well reproduced by
geometric graphs (Fig. 2.3d), which are defined as follows. Nodes in a geometric
graph correspond to points distributed in a metric space and edges are created
between pairs of nodes if the corresponding points are close enough in the metric
space according to some distance norm [97]. For example, 3-dimensional Euclidean
boxes and the Euclidean distance norm have been used as a proof of concept
to model PPI networks [99, 100]. If the points are distributed in a metric space
uniformly at random, then this is a geometric random graph. Although this model
creates networks with high clustering coefficients and small diameters, it still fails
to reproduce power-law degree distributions of real-world PPI networks. Instead,
geometric random graphs have Poisson degree distribution. However, it has been
argued that power-law degree distributions in PPI networks are an artifact of noise
present in them [49,124]. Moreover, since geometric graphs seem to provide the best
fit to the currently available PPI networks [51, 68, 99, 100] and since genomes have
evolved through gene duplication and mutation events rather than at random, new
models that bridge the concepts of network geometricity with the evolutionary dy-
namics have been introduced [103]. These geometric gene mutation and duplication
models are based on the following observations. All biological entities, including
genes and proteins as gene products, exist in some multidimensional biochemical
space. Genomes evolve through a series of gene duplication and mutation events,
which are naturally modeled in the above mentioned biochemical space: when a
gene gets duplicated, the child starts at the same point in biochemical space as
its parent, and then natural selection acts either to eliminate one, or causes them
to separate in the biochemical space (via mutations). This means that the child
inherits some of the neighbors of its parent while possibly gaining novel connections
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as well. The further the child is moved away from its parent, the more different
their biochemical properties. Consequently, the further the child is moved away
from the parent, the smaller the number of their common interacting partners.
These processes can naturally be modeled by geometric graphs. Although motivated
by biological principles, these current geometric network models are quite crude
mathematical approximations of real biology and further refinements are necessary
for obtaining well fitting models for PPI networks.

Finally, biologically motivated stickiness network model is based on stickiness
indices, numbers that summarize node connectivities and thus also the complexities
of binding domains of proteins in PPI networks. The probability that there is an
edge between two nodes in a “sticky” model network is directly proportional to the
stickiness indices of nodes, that is, to the degrees of their corresponding proteins in
real-world PPI networks (see [102] for details). Networks produced by this model
have the expected degree distribution of a real-world network. Additionally, they
mimic well the clustering coefficients and the diameters of real-world networks.

Illustrations of networks of about the same size that belong to different network
models are presented in Fig. 2.3; even without computing any network property for
them, we can conclude that their structure is very different just by looking at them.
Network analysis and modeling software package called GraphCrunch6 is capable
of evaluating the fit of a series of network models to the data with respect to a variety
of global and local network properties [81].

Early studies that published largely incomplete Y2H PPI data sets and that
were based on the assumption that the degree distribution was one of the most
important network properties that a good network model should capture, tried to
model the data with scale-free networks. However, networks of vastly different
structure can have the same degree distribution (Fig. 2.2a), and hence it might
not be an appropriate measure of network structural similarity. As new biological
network data becomes available, we need to ensure that our models continue to fit
the data well. In the light of new PPI network data, several studies have started
questioning the wellness of the fit of scale-free models. New, more constraining
graphlet-based measures of local network structural similarity suggested that the
structure of newer and more complete PPI networks is closer to geometric graphs
[99, 100]. The geometricity of PPI networks has additionally been supported by
demonstrating that PPI networks can explicitly be embedded into a low-dimensional
geometric space [51]. The geometric graph model has further been refined to fit the
data by learning the distribution of proteins in that space [69]. Moreover, biological
reasons why PPI networks are geometric have been argued [103] (see above for the
description of geometric gene duplication and mutation models).

Note that different network models can be identified as the best-fitting to the
data with respect to different network properties. This raises the issue of which
property to trust when evaluating the fit of a model to the data. In general, local
network properties are more constraining measures of network structural similarity

6http://www.ics.uci.edu/∼bio-nets/graphcrunch/.

http://www.ics.uci.edu/~bio-nets/graphcrunch/
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than global ones (Sect. 2). Also, there exist approaches that try to find a consensus
between models suggested by different network properties [80]. They do so by
integrating a series of global and local network properties to evaluate the fit
of different models to the data using several machine learning classifiers, thus
increasing our confidence in the identified best-fitting model [80]. This integrative
approach has confirmed that structure of PPI networks is the most consistent with
the structure of geometric graphs [80].

3.2 Biological Applications

Despite the low quality of currently available PPI network data and the crudeness
and primitivity of existing network models, the models have already been used in
practical biological applications to address realistic problems.

As mentioned above, network models are crucial for discovery of network
motifs, which are believed to correspond to evolutionary conserved functional
building blocks of biological networks; recall that network motifs are defined
with respect to a random graph model [86, 117]. Similarly, network models are
essential when motifs are used to classify real-world networks into super-families
[85]. Furthermore, network models can be used as cost-effective strategies for
completing interaction maps, which is an active research topic (e.g., see [110]).
A scale-free network model was used in 2004 to guide biological experiments
for data collection in a time- and cost-optimal way, thus minimizing the costs of
interactome detection [73]. Recall that scale-free networks contain hubs. With this
in mind, pull-down experiments were designed to perform “optimal walk” through
the PPI network, so that hubs were preferentially chosen as baits. This strategy
would allow for time- and cost-optimal detection of most of the interactions with the
minimum number of expensive pull-down experiments; however, there is a danger
of using inadequate network models for such a purpose. At best, this would result
in unsuccessful discovery of the interactome and thus in wasted time and resources.
At worst, this could result in wrong identification of “complete” interactome maps,
since inadequate models might prevent us from ever examining certain parts of the
interactome. In addition to interactome detection, properties of a network model
were used to develop computationally easy algorithms for PPI networks that are
computationally intensive on graphs in general [101]. Specifically, geometric graph
model has been used for designing efficient algorithms for graphlet count estimation
[101]. Another application of geometric graph model is denoising of PPI network
data: this model has been used to assign confidence levels to existing interactions,
as well as to predict new interactions that were overlooked experimentally [70].
For these reasons, and the given above discussion about the scale-freeness of early,
incomplete PPI data sets and the geometricity of newer, more complete PPI data
sets, it is important to use as accurate models as possible, as well as to ensure that
the models keep to fit the data well as the data becomes more complete.
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Since discovering PPI and other biological networks is in its infancy, it is
expected that practical application of network models will increase and prove its
value in the future. The ultimate hope is that a good network model could provide
insights into understanding of biological function, disease, and evolution.

4 Network Alignment

Thus far, we discussed network comparison in the context of finding overall
similarity between the structure of two networks with respect to a given network
property. Another way to think about network comparison is to contrast two
networks by finding a mapping between their nodes, with the goal of “fitting” one
network into the other as well as possible and identifying topologically similar
and functionally conserved network regions. This type of network comparison is
referred to as network alignment (Fig. 2.4). In addition, there exist some other types
of network comparison, such as network integration and network querying (for
details, see [114]). The focus of this section is on network alignment. We briefly
discuss data (network) integration in Sect. 6.

Network alignment is expected to have at least as deep and valuable impact on
our understanding of evolution, biology, and disease as genomic sequence alignment
has had. The ability to compare biological networks of different species could
enable transfer of knowledge between species, since we may know a lot about
some nodes in one network and almost nothing about topologically similar nodes
in the other network. This could provide insights into, for example, conservation of
protein function or PPIs across species. Moreover, network alignments can be used
to measure the global similarity between biological networks of different species
and the resulting global network similarities can be used to infer phylogenetic
relationships, with the intuition that species with more similar network topologies
should be closer in the phylogenetic tree [68, 84]. Meaningful biological network
comparisons can be seen as one of the most prominent problems in evolutionary
and systems biology.

Unfortunately, unlike with the sequence alignment, the problem of network align-
ment is computationally infeasible to solve exactly, owing to the NP-completeness
of the underlying subgraph isomorphism problem. As mentioned above, even if
the subgraph isomorphism problem was feasible, it is unlikely that one biological
network would exist as an exact subgraph of another due to noise in the data [133]
and also due to biological variation. Hence, approximate algorithms for network
alignment need to be sought. In addition, since network alignment requires “fitting”
one network into another even if it does not exist as an exact subgraph of the other
one [114], it is not obvious how to measure the “goodness” of this fit, and heuristic
solutions are needed for this purpose as well.

Analogous to sequence alignments, there exist local and global network align-
ments. Local network alignments map independently each local region of similarity,
thus resulting in ambiguous one-to-many node mappings (Fig. 2.4a). On the other
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Fig. 2.4 An illustration of alignment of two networks: (a) local network alignment and (b) global
network alignment. In panel (a), nodes A, B, C, and D in the network on the left (green) are aligned
to nodes A’, B’, C’, and D’, respectively, in the network on the right (blue), as indicated by dashed
grey lines. At the same time, these nodes are aligned to nodes A”, B”, C”, and D”, respectively,
in the network on the right (blue), as indicated by dotted red lines. Thus, local network alignment
allows for one-to-many node mappings. Moreover, some of the nodes from the network on the
left (green) remained unaligned. In panel (b), with global network alignment, each node in the
network on the left (green) is aligned to a single (unique) node in the network on the right (blue),
as indicated by dashed grey lines

hand, global network alignments map uniquely each node in the smaller network
to only one node in the larger network, even though this may lead to suboptimal
matchings in some local regions (Fig. 2.4b). The majority of currently available
algorithms for aligning biological networks have focused on local alignments
[5, 9, 10, 40, 76].

4.1 Local Network Alignments

Local network alignments aim to identify small subnetworks that are believed to
represent biological pathways or protein complexes that have been evolutionary
conserved in PPI networks of different species [5, 9, 10, 40, 76]. The earliest such
algorithm is PathBLAST that searches for high-scoring alignments of pathways
between two PPI networks. It does so by taking into account the probabilities that
PPIs in a pathway are true PPIs rather than false-positives, as well as the homology
information derived from sequences of the aligned proteins, while allowing for
“gaps” (interacting proteins in one pathway being aligned with sequence-similar
proteins in the other pathway that do not interact directly) and “mismatches”
(aligned proteins not being sequence-similar) [5]. PathBLAST identified orthol-
ogous pathways between baker’s yeast and bacterium H. pylori. It also detected
substantial differences between PPI network of P. falciparum and PPI networks
of other eukaryotes [125]. PathBLAST was later extended into NetworkBLAST-M
to allow for identification of conserved protein complexes rather than pathways in
multiple species [116].
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Another approach for identifying conserved clusters, called Maximum Weight
Induced Subgraph (MaWISh), constructs a weighted global alignment graph and
tries to identify a maximum weight induced subgraph in it. It extends the concepts
of evolutionary events in sequence alignments to that of duplication, match, and
mismatch in network alignments, and it evaluates the similarity between network
structures through a scoring function that accounts for these evolutionary events
[66]. MaWISh was used to perform pairwise alignments of baker’s yeast, worm
C. elegans, and fruitfly D. melanogaster PPI networks. Graemlin, another local
network aligner, enables searching for dense networks of an arbitrary structure and
aligning multiple networks. It is a greedy seed-and-extend approach that gives a
score to a possibly conserved module by computing the log-ratio of the probability
that the module is subject to evolutionary constraints and the probability that the
module is under no constraints, while taking into account phylogenetic relationships
between species whose networks are being aligned [40]. It was applied to ten
microbial PPI networks and it successfully aligned known biologically functional
modules.

Since local network alignments are generally not able to identify large subgraphs
that have been conserved during evolution [5, 9], algorithms for global network
alignment have also been proposed [26, 41, 68, 84, 120, 121, 145].

4.2 Global Network Alignments

The earliest algorithm for global network alignment, IsoRank, uses spectral graph
methods and formulates an eigenvector problem to compute topological scores
for aligning nodes from different networks. It uses the intuition that two nodes
(one node from each network) should be topologically matched only if their
neighbors can also be topologically matched [120]. Next, IsoRank combines the
resulting topological node alignment scores with BLAST scores [3] quantifying
proteins’ sequence similarities. These combined node alignment scores are then
used to construct an alignment by the repetitive greedy strategy of identifying and
outputting the highest scoring pair and removing all scores involving any of the two
identified nodes. Hence, IsoRank combines topology with sequence information to
construct an alignment. IsoRank was able to identify functional orthologs between
baker’s yeast and fruitfly. Other algorithms focusing on aligning baker’s yeast and
fruitfly have been proposed that outperform IsoRank [145]. IsoRank was later
extended to perform local and global alignments of multiple networks [26,121]. The
most recent version, IsoRankN, relies on the notion of node-specific rankings and
uses a method similar to PageRank-Nibble algorithm [26]. Although it is a global
alignment algorithm in the sense that each node in the smaller network is aligned
to a node in the larger network, IsoRankN’s alignment contains sets of aligned
nodes, where no two sets overlap, but each set can contain more than one node
from each of the networks being aligned, thus allowing for many-to-many node
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mappings. IsoRankN was used to align PPI networks of five eukaryotic species:
baker’s yeast, fruitfly, worm, mouse, and human. Graemlin has also been extended to
allow for global network alignments. It uses a learning algorithm that takes as input
a training set of known network alignments, as well as phylogenetic relationships
between species whose networks are being aligned, to learn parameters for its
scoring function. Then, it automatically adapts the learned objective function to any
set of networks. Graemlin’s scoring function that incorporates seven evolutionary
events allows it to align multiple networks in linear time. It was used to align up to
six PPI networks of both eukaryotic and prokaryotic species.

4.2.1 Topological Network Alignments

Most of the existing network alignment methods incorporate some biological
information external to network topology. For example, they use some a priori
information about nodes, such as sequence similarities of proteins in PPI networks
[10, 120], or they use some form of learning on a set of “true” alignments [41].
Hence, network alignment approaches have been sought that rely solely and explic-
itly on network topology [68, 84] (see below). The development of such topology-
based methods is motivated by the following. First, sequence alignment algorithms
do not use biological information external to sequences to perform alignments and
neither should network alignment algorithms use biological information external
to network topology. Since sequence and network topology have been shown to
provide complementary insights into biological knowledge [79], and since network
topology describes an important part of biological information (as do sequences),
using sequence information could deter from finding biological information that
is encoded in network topology. And we believe that it is scientifically interesting
to ask how much biological information could be extracted from topology only.
Second, we need to ensure that high biological quality of an alignment (e.g.,
orthology between aligned proteins or conservation of biological function between
aligned subnetworks) is achieved by the alignment algorithm, and not by using
biological data sources external to network topology, such as protein sequence
information. It has been argued that only after reliable algorithms for purely
topological network alignments have been developed that result in alignments of
good biological quality, it would be beneficial to integrate them with other sources
of biological information to improve their quality [68]. We believe that we would
be able to exploit efficiently various sources of biological information only after
we have reliable topology-based network alignment algorithms. Hence, network
alignment algorithms based on topology only are expected to be of great importance.

GRAph ALigner (GRAAL) [68] and Hungarian algorithm-based GRAAL
(H-GRAAL) [84] rely on topology only rather than on both sequence and topology,
as do other algorithms. Hence, they can align networks of any type, not only
biological ones. This is important, since network alignment has applications across
an enormous span of domains. Both GRAAL and H-GRAAL are based on the
same node alignment cost function, namely GDV-similarity (Sect. 2.3). They differ
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as follows. GRAAL is a greedy “seed and extend” approach that, analogously to
the popular BLAST algorithm for sequence alignment, first chooses a “seed” node
pair (one node from each network) with high GDV-similarity and then expands
the alignment radially outward around the seed as far as is practical using a
greedy algorithm, with the goal of quickly finding approximate alignments [68].
On the other hand, H-GRAAL is a more expensive search algorithm that uses
Hungarian algorithm for solving the assignment problem [71, 139] to find optimal
alignments relative to the alignment cost function; the Hungarian algorithm [71] is
a combinatorial optimization algorithm for finding a maximum weight matching in
a weighted bipartite graph.

When applied to baker’s yeast and human PPI networks, GRAAL and H-GRAAL
expose regions of network similarity about an order of magnitude larger than
other algorithms, indicating that even distant species share a surprising amount of
network topology and potentially suggesting broad similarities in internal cellular
wiring across all life on Earth. In addition to such high topological quality of
their alignments, GRAAL and H-GRAAL also recover the underlying biological
function, in the sense that a large number of aligned yeast-human protein pairs and
subnetworks are involved in a same biological process. Hence, the two algorithms
are used to transfer biological function from annotated to unannotated parts of
aligned networks, and many of such functional predictions are validated in the
literature. Analogous to sequence alignments, they are also used to infer phylogeny
as follows [68, 84]. Metabolic networks of closely related species are aligned
with these algorithms and the resulting alignment scores, quantifying the level
of similarities between networks of different species, are used to infer species’
phylogeny, with the intuition that more similar networks should be closer in the
phylogenetic tree. Phylogenetic trees constructed from GRAAL’s and H-GRAAL’s
purely topological alignments for protists and fungi closely resemble those found by
sequence comparisons, indicating that network topology and network alignments
in general could potentially provide a new, independent source of biological and
phylogenetic information.

5 Interplay Between Network Topology and Biological
Function and Disease

Since proteins aggregate to perform a function instead of acting in isolation, and
since PPI networks model interactions between proteins, analyzing PPI network
topology is expected to uncover new biology. Therefore, it is not surprising that
numerous approaches attempting to link network topology with biological function
have been proposed. Network-based prediction of protein function [113] (Sect. 5.1)
and the role of protein networks in disease [115] (Sect. 5.2) have received much
attention in the postgenomic era.
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5.1 From PPI Networks to Biological Function

The earliest approaches attempted to link degrees of proteins in PPI networks
with their biological function. Initial studies observed good correlations between
proteins’ essentiality and their degree centralities in a PPI network of baker’s yeast
[57]. However, the controversy arose in the light of newer and more complete PPI
network data for which this correlation was not observed [107, 144]. It appears to
hold only for literature-curated [38] and smaller in scope Y2H [128] PPI networks,
possibly because these data sets are biased toward essential proteins [107].

Considering node degree as a measure of topological positioning of a protein in
a PPI network led to another controversy [27, 33–35]. High-degree nodes in a PPI
network, called “hubs,” have been studied in the context of expression correlation,
colocalization, evolutionary rates, and structural perturbation of a PPI network upon
deletion. However, the results could not be reproduced on literature-curated PPI
network data sets [34, 35]. Reasons for this controversy could be as follows. First,
degree alone might be a weak measure of network topology, as it captures limited
network topology, that is, only direct neighborhood of a node. Second, a distinction
between two types of hubs in a PPI network has been postulated: some of them are
“party” hubs whose genes are coexpressed with all of their neighbors’ genes over
many physiological conditions and are thus concurrently interacting with all of their
neighbors, while others are “date” hubs whose genes are coexpressed with only one
or few neighbors’ genes in each physiological condition and are thus consecutively
interacting with their neighbors [27,33]; the latter are thus not true hubs, since their
degrees are low and depend on the physiological state. Hence, the controversy may
have resulted from biases that different techniques for PPI network construction
impose on PPI network topologies [32, 133]. An example are the matrix and spoke
models [141] used to define PPIs in a protein complex pulled down in an AP/MS
experiment (Sect. 1 and Fig. 2.2d). The choice of a model has been shown to have a
strong impact on the PPI network topology [48].

Similar simple correlations between node degrees in a PPI network and protein
function were examined [104]. A variety of approaches have been relying on the
assumption that proteins that are closer in a network are more likely to perform the
same function [18, 113]. In the most simple form, this assumption has been used
to investigate the direct neighborhood of an unannotated protein and annotate it
with the most common functions among its annotated neighbors [111] (Fig. 2.5a).
Related approaches have analyzed a deeper n-neighborhood of a protein, defined as
a set of proteins that are at most at distance n from the protein [52], or assigned
weights to proteins at different distances from the protein of interest [18]. The
idea of shared network neighbors has been used: proteins that share many common
neighbors also have close functional associations [109] (Fig. 2.5a). Additionally, a
global optimization-based function prediction strategy has been proposed: any given
assignment of functions to the whole set of unclassified proteins in a network is
given a score, counting the number of interacting pairs of nodes with no common
function; the functional assignment with the lowest score maximizes the presence
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Fig. 2.5 Examples of approaches for protein function prediction. (a) In the network on the left,
nodes A, D, E, and F are annotated with function “red,” nodes C and G are annotated with function
“blue,”, and proteins B and H are unannotated (as denoted by grey node color). With the “direct
neighborhood” approach (the middle panel), node B gets annotated with “red,” since all of its
neighbors (D, E, and F) have function “red.” Similarly, H gets annotated with “red,” since the
majority of its neighbors (D and E) have function “red.” With the “shared neighbors” approach
(the right panel), node B gets annotated with “red,” since it shares the largest number of neighbors
with A, which has function “red.” However, with this approach, H gets annotated with “blue,” since
it shares the largest number of neighbors with G, which has function “blue.” (b) With cluster-based
approaches for protein function prediction, the network is first partitioned into clusters, denoted by
dashed grey circles (the left panel) and then each cluster gets a function based on the function of
its annotated members (the right panel)

of the same function among interacting proteins [132]. A network flow-based idea
has also been suggested: each functionally annotated protein in the network is
considered as the source of a “functional flow” and the spread of the functional
flow through the network is simulated over time; then, each unannotated protein is
assigned a score for having the function based on the amount of flow it received
during the simulation [89]. Also, functional homogeneity of groups of proteins that
show some type of “coherence” in the PPI network, called clusters, has been used for
protein function prediction [6,65,67,104,112] (Fig. 2.5b): the idea is to partition the
network into clusters and assign the entire cluster with a function based on the func-
tions of its annotated members. Due to the above mentioned controversies linked
to using overly simple measures of network topology, such as node degrees, more
recent studies have been relying on GDVs, a highly constraining measure of network
topology that is based on all 2–5-node graphlets and that captures up to 4-deep
network neighborhood of a node, compared to degree alone that is based on the
only 2-node graphlet and that captures only 1-deep neighborhood (Sect. 2.3). The
correlation between proteins’ GDV-similarities in a PPI network, that is, similarities
of their extended network neighborhoods, and the similarity of their biological func-
tion has been observed and used to predict function of unannotated proteins [26,83].
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5.2 PPI Networks in Disease and Pharmacology

Characterizing and identifying novel disease genes represents an opportunity for
therapeutic intervention, since these genes represent potential drug targets and could
thus lead to better drug design. An assessment of the number of drug targets, as
well as their identification, is crucial for the development of postgenomic research
strategies within the pharmaceutical industry [54]. Now that the size of the human
genome is known, it is interesting to consider just how many molecular targets
this opportunity represents. Out of all types of macromolecules with which small-
molecule therapeutic agents can interfere, the majority of successful drugs achieve
their activity by binding to, and modifying the activity of, a protein. The human
PPI network can assist in investigating network properties of disease genes and
identifying novel disease genes. Also, network-based analyses can help understand
the relationships between genetic disorders and genes causing the disorders, as well
as between drugs and their protein targets [115].

Inspired by the findings that essential yeast proteins tend to have high degrees
in PPI networks, several studies attempted to perform similar analyses on disease-
related genes. They examined whether disease-related genes (i.e., proteins as gene
products) could be distinguished based on their topological properties and position
in the PPI network. When only node degrees were used to measure topology, a
discrepancy was observed again in the sense that some groups reported that genes
(proteins) involved in disease tend to have high degrees in PPI networks [59, 136],
while others contradicted that conclusion by arguing that the observed correlation
between high degrees and disease genes was entirely due to the existence of essential
genes within the disease gene class [28]. Apart from this, general conclusions are
that disease genes have high connectivity, are closer together, and are centrally
positioned within the PPI network [115]. However, these results might be biased,
since disease proteins may exhibit these properties in a PPI network simply because
they have been better studied than nondisease proteins.

Given these central topological roles of disease-related proteins in the human
PPI network, a straightforward step was to identify candidate disease genes from
network topology. The key assumption of most such approaches is that a neighbor
of a disease-causing gene in a PPI network is likely to cause either the same or a
similar disease [115]. For example, Aragues et al. [4] started from the hypothesis
that proteins whose partners have been annotated as cancer genes are likely to be
cancer genes as well, constructed a cancer protein interaction network composed
of known cancer genes and their direct interacting partners, and demonstrated that
the “cancer linker degree” of a protein, that is, the number of its cancer-related
neighbors in this network, is a good indicator of the probability that the gene is a
cancer gene. Radivojac et al. [105] have tried to identify gene-disease associations
by encoding each gene in a PPI network based on the distribution of shortest path
lengths to all genes associated with disease or having known functional annotation.
Similarly, propagating the “flow” from disease-causing proteins to their neighbors in
the PPI network was used to score the strength of association of proteins and protein
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complexes with a disease [130]. Graphlets have also been used to relate proteins’
network topological characteristics to their involvement in disease [82, 83]: GDV-
similar proteins, that is, proteins with topologically similar network neighborhoods,
were grouped together and the resulting clusters were found to be statistically sig-
nificantly enriched in known cancer genes; as such, they were used to predict novel
cancer gene candidates [82]. In addition, by observing only the topology around
nodes in PPI networks and finding nodes that are topologically similar to nodes
that are known regulators of melanogenesis, novel regulators of melanogenesis
were identified in human cells and the predictions were phenotypically validated
by systems-level functional genomics siRNA screens [42, 82].

Moreover, PPI networks have been combined with the networks describing the
relationships between diseases and genes causing them [28]. The “diseasome,”
the combined set of all known associations between human genetic disorders and
the respective disease genes, was used to create: (a) a network in which nodes
are genetic disorders and two nodes are connected if the same disease gene was
implicated in both disorders; and (b) a network in which nodes are disease genes
and two nodes are connected if they are both implicated in the same disease. By
analyzing the former, it was shown that the genetic origins of most diseases were
shared with other diseases to some extent. By analyzing the latter and overlaying
it with the PPI network, genes that contributed to a common disorder showed an
increased tendency for their protein products to interact through PPIs, be expressed
together in specific tissues, display high coexpression levels, exhibit synchronized
expression as a group, and perform same biological function [28].

Similarly, PPI networks have recently been combined with the networks describ-
ing the relationships between drugs and their protein targets [31]. Such network-
based analyses of drug action are starting to be used as part of an emerging field of
systems pharmacology, which aims to understand drug action across multiple scales
of complexity, from cellular to tissue to organismal [11]. Multiple studies have
constructed network types that link biochemical interaction networks, such as PPI
networks, with networks of drug similarities or therapeutic indications. For example,
similar to the above “diseasome,” the combined set of all known associations
between drugs and their protein targets was used to generate: (a) a network in which
nodes are drugs and they are connected if they share a common target; and (b) a
network in which nodes are targets and they are connected if they are affected by a
same drug [31]. By analyzing the former and by taking into consideration the time
the drug was introduced, it was shown that there are relatively few drugs acting on
novel targets that enter the market. By analyzing the later and overlaying it with
the PPI network, drug targets showed the tendency to have higher degrees than
nontargets in the PPI network. However, as mentioned above, this observation might
be an artifact of disease-related parts of the PPI network receiving more attention.
For a survey of network-based analyses in systems pharmacology, see [11]. The drug
and drug-target data can be found in DrugBank [140], a comprehensive dual purpose
bioinformatics–cheminformatics database that brings together chemical, physical,
pharmaceutical, and biological data about thousands of well studied drugs and drug
targets.
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6 Future Prospects and Concluding Remarks

We have presented computational, graph-theoretic methods for analyzing, model-
ing, and comparing biological networks, as well as their biological applications that
have already given valuable insights into biological function, disease, and evolution.
Biological network research is young, and many advances are still to come; all of
the major advances that occurred for genetic sequence research can be envisioned
for biological network research as well. We believe that we have barely touched the
tip of the iceberg, as the field is still in its infancy, rich in many important but yet
unsolved problems.

A challenging open problem is that of network integration. Networks of different
types are becoming available, such as protein–protein, genetic, and protein–DNA
interaction networks, all of which cover different slices of biological information.
Integrating them would contribute to a comprehensive view of a cellular system.
It still remains unclear how to combine these different data types in a systematic
and biologically meaningful manner, and the development of efficient network
integration methods is necessary. Some pioneering approaches have been proposed
that combine networks of different interaction types defined on the same sets
of nodes, with the goal of identifying functional modules supported by multiple
interaction types. Most of them combine PPI with genetic interaction (GI) networks;
in GI networks, nodes correspond to genes and edges exist between two genes
if simultaneous mutations of the two genes cause change in cellular phenotype
(lethal or sick), while mutation of each individual gene (“null mutation”) results
in no phenotypic change [14]. PPI networks were integrated with the information
about viable, lethal, and GI mutants and it was suggested that alternate paths
exist that bypass viable nodes in PPI networks, which offered an explanation why
null mutations of these proteins are not lethal [104]. This was further supported
by an observation that GIs tend to bridge genes from redundant pathways rather
than within a single pathway [64]. Other related studies applied machine learning
methods to graph-theoretic properties of proteins in PPI networks to predict GIs
[94]. Also, dense clusters of interactions supported by several network types were
found more likely to correspond to protein complexes than dense clusters supported
by any one network [29]. Finally, integration of networks encompassing different
interaction types, as well as identification of “composite” network motifs arising
from such combined network data, was used for protein function and interaction
prediction [30, 36, 37, 78, 143]. For a review on methods for integration of PPI and
GI networks, see [12].

The field of biological network research is expected to bloom as larger amounts
of high-quality biological network data and more sophisticated methods for their
analysis become available. Also, to further advance this interdisciplinary field,
strong synergy must be formed between biological and computational scientists.
Thus far, this link has been relatively weak, which resulted in the use of quite
simple computational and mathematical methods for analyzing complex biological
network data, even though much stronger mathematical tools have been available.
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One example is the preferred use of simple measures of network topology, such as
node degrees, which often resulted in inconclusive or controversial results. Such
practices of using simple mathematical techniques and developing repulsion toward
new “complicated” methods and models could potentially lead to the emergence of
overly simplistic doctrines that could slow down the growth of the field and even be
misleading.

One example of such doctrines is the scale-free-centric view of biological
networks. Wide research community has been applying simple computational ap-
proaches, such as degree distributions, to early and noisy PPI networks, thus finding
a commonly accepted belief about scale-freeness of complex biological networks
[62]. However, the scale-free model has since been shown to be far too simplistic a
model for biological networks, clearly demonstrating the need to develop and apply
better algorithmic and mathematical tools. Another example is the genome-centric
view of biological systems. Genetic sequence research has undoubtedly revolution-
ized our biological understanding. Nonetheless, our biological understanding is still
incomplete and alternative scientific avenues might need to be taken to complement
the knowledge learned from sequence. Despite low quality of current PPI networks
and crudeness of mathematical methods for their analyses, a compelling evidence
has been presented that network topology represents such a complementary source
of biological information, as it can uncover new knowledge that often cannot be
uncovered by genetic sequence alone. Nonetheless, some members of the research
community have kept questioning the value of the network data and challenging the
relationship between network topology and biological function, even if supported by
biological validation. This has reached such worrisome proportions that a question
has been raised whether the community “should keep analyzing PPI network data”
at all. In addition, the sequence and network communities might also be playing an
unfair game. On one hand, the results demonstrating that networks uncover biology
complementary to that uncovered from sequence can be interpreted as being wrong
and thus get rejected, since they are not in agreement with the widely accepted
sequence-based beliefs. On the other hand, the network-based results that are in
agreement with sequence-based ones are often regarded as useless, since they only
confirm what sequences tell us. Hence, network-based analyses cannot win in such
an unfairly played game. The spread of such scientifically unjustified opinions could
negatively affect the availability of financial resources necessary for completing the
interactome maps and developing reliable and sophisticated computational tools for
solving computationally challenging but cutting edge scientific problems, such as
network alignment and network data integration.

Nonetheless, we believe that the research community cannot ignore the valuable
biological insights that have already been learned from biological networks and
that it is starting to realize the full potential of biological networks. Hence, we are
confident that the field of biological network research is likely to stay at the forefront
of scientific research in the years to come.
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Chapter 3
Function Annotation in Gene Networks

Petko Bogdanov, Kathy Macropol, and Ambuj K. Singh

Abstract Modern sequencing technology enables the discovery of new gene
products in an increasing number of organisms. However, the sequence on its
own does not provide sufficient information about cellular mechanisms and their
function. Efforts need to be directed toward genome characterization at the molec-
ular level. Wet-lab experiments in this direction are assisted by a variety of
computational methods that exploit the abundance of data.

The advent of high-throughput interaction detection methods has generated large
amounts of gene interaction data. This has allowed the construction of genome-wide
networks. Studying genomes in a networked setting has been beneficial for global
annotation in two ways. First, there has been an increasing number of network-
based function prediction methods. Second, networks have inspired the community
to revisit the definition of gene function. The original molecular characterization
of function has been extended to a multi-molecule function, termed biological
process [Gene ontology: Tool for the unification of biology. Nature, 2000] in
recently emerging annotation systems.

In this chapter, we present the current methods of automated annotation of pro-
tein functions. We describe existing annotation prediction methods and ontologies
used to define a gene’s function at the molecular and process level. We discuss
in detail the workings of a generalized framework for network prediction and
present experimental accuracy comparison of several popular methods within this
framework. We also discuss the use of networks from multiple species for annotation
enrichment in sparse genomes.
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1 Computational Function Prediction and Gene Networks

The rapid development of genomics and proteomics has generated an unprecedented
amount of data for multiple model organisms. As has been commonly realized, the
acquisition of data is but a preliminary step, and a true challenge lies in developing
effective means to analyze such data and endow them with physical or functional
meaning [54]. Annotation systems attempt to systematically characterize all relevant
gene aspects in a human-friendly and consistent manner that also enables automated
processing.

Traditionally, gene function has been associated with the molecular properties
of the sequence, such as catalytic activity, signalling activity, and others. The
established approach to infer such properties for newly discovered genes combines
sequence/structure homology and manual verification in the wet lab. The first step,
referred to as computational function prediction, facilitates the functional annotation
by directing the experimental design to a narrow set of possible annotations for
unstudied genes. The information that initial computational methods considered
was limited to the sequence and structure, independent of other molecules and gene
products that act jointly with the target sequence.

Recently, a different type of high-throughput data has been employed for the
automated annotation effort. Methods like microarray coexpression analysis and
yeast two-hybrid experiments have allowed the construction of large interaction
networks. An interaction network consists of nodes representing genes and edges
representing interactions between genes. Due to the inherent uncertainty of input
data sources, networks are often stochastic, with edges weighted by the probability
of interaction. There is more information in a network compared to sequence or
structure alone. A network provides a global view of the context of each gene.
Hence, the next challenge of computational function prediction is the use of a gene’s
interaction context within the network to predict its function.

With the realization that interactions encode functional dependencies, the notion
of function has been expanded to activities performed by multiple gene products in
conjunction. Annotation formats have been accordingly revised and new annotation
types have been added. The addition of genomic context and the abundant interac-
tion data repositories, as compared to sequence and structure data alone, has led to
a new paradigm of multi-level specificity and multi-modal gene annotations.

A node in an interaction network is annotated with one or more annotation terms.
Multiple and sometimes unrelated annotations can occur due to multiple active
binding sites or possibly multiple stable tertiary conformations of a corresponding
gene product [26]. The annotation terms are commonly based on an ontology.
A major effort in this direction is the Gene Ontology (GO) project [4]. GO char-
acterizes genes in three major aspects: molecular function, biological process, and
cellular localization. Biological process captures the higher level multi-molecule
functions, while molecular function describes the individual biochemical properties
of a sequence or a complex. Since the project initiation, GO has been widely used
for the annotation of studied genomes, as it addresses the limitations of previous
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Fig. 3.1 GO annotations in several model organisms. Numbers denote the total number of known
sequences for a given organism

annotation systems due to its explicit differentiation of processes from function and
the addition of cellular component as an intrinsic gene product feature.

The state of GO annotation availability as of May 2010 is presented in Fig. 3.1.
Approximately, 30% of worm gene products are uncharacterized, although it has
been one of the most popular model systems over the years. It is important to note
that even though the percentage of unknown gene products may seem small for some
genomes, this statistic is somewhat optimistic. First, there are gene products that
perform multiple molecular functions, participate in multiple processes or can be
found in different cell compartments. Hence, the existence of at least one annotation
for each yeast gene product does not mean that this genome is fully annotated.
Second, a significant number of genes are characterized by general terms belonging
to the first levels of the GO hierarchy. The specificity of a gene’s annotations
translates directly to the amount of knowledge about the actual function of the gene.
In this respect, many of the available annotations need to be improved by making
them more specific. The methods we discuss in the remainder of this chapter address
both of the above challenges.

The annotation of a gene’s function is an ongoing process and computa-
tional approaches are actively used to assist experimentation. The rate at which
interaction data is generated is growing steadily and this phenomenon has estab-
lished network-based annotation methods as a natural extension and complement
to homology-based annotation. To quantify this rapid growth, more than 1,000
microarray experiments (a prominent interaction inference source) were made
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publicly available through the Gene Expression Omnibus (GEO) repository in 2008,
and this number has been steadily growing since 2002. Note that this is only one of
the online repositories for microarray data, and microarray analysis is only one of
the multiple high-throughput methods traditionally used to infer interactions among
genes. Aggregating all available interaction data can only improve computational
annotation methods, relying on interaction networks.

In the following sections of this chapter, we discuss existing methods of network
composition and the specifics of annotation schemes with a focus on GO (Sect. 2).
Understanding network and annotation origins is a necessary preliminary step to
exploring the space of available network-based annotation approaches, since the
applicability and effectiveness of any approach is dependent both on the target
annotation type and the nature of the underlying interaction network. We map
the space of existing methods in Sect. 3. We generalize the problem of network-
based annotation in Sect. 4 and present performance comparison for several recent
methods in Sect. 5. Finally, we discuss ideas on tandem prediction using multiple
organism networks (Sect. 6) and homology information.

2 Network Synthesis and Annotation

Currently, a significant amount of data on gene product interactions are obtained
through the use of high throughput methods. Many of these diverse data sources
have been integrated to produce functional association networks [29, 30].

Protein–protein physical interactions, which reflect the functional associations
of their corresponding genes, can be inferred by a variety of methods. Yeast-two-
hybrid assays discover protein pairs that physically interact, based on transcriptional
activation. Another technique in this category is based on mass spectroscopy.
Analysis of molecule spectra provides an efficient tool for identifying proteins
composing a protein complex after purification. In both cases, the corresponding
interaction data contain false positives, and methods to assess the reliability of
interactions have been proposed [14].

Genetic interactions represent a different kind of gene association, traditionally
detected through genome-wide synthetic lethal screens [20]. A synthetic lethal
reaction between two genes occurs when mutations to the genes are nonlethal
separately, but result in cell death when occurring together. A synthetic lethal
reaction reveals a genetic interaction between the corresponding gene products.
Experimental detection of genetic interactions can be cumbersome and expensive,
depending on the model organism. Computational alternatives have been developed
for their inference [11, 51].

Another kind of gene association, termed functional interactions, may be discov-
ered from diverse sources such as microarray coexpression analysis, phylogenetic
profiling, literature mining, and others. Microarray datasets are publicly available
from repositories such as the GEO [2]. The correlation of expression levels for pairs
of genes from multiple experimental conditions is used as indicator signal of their
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functional linkage. Aggregating correlations from large number of coexpression
assays allows the building of a genome-wide functional interaction networks [50].
The resulting networks can be edge-weighted based on the strength of correlation
between the expression levels of the corresponding genes.

Besides microarrays, another source of functional interaction data is available
due to phylogenetic profiling [33]. This interaction inference approach detects joint
presence or absence of a pair of genes across multiple organisms to infer a functional
connection. Literature mining has also been employed to predict linkage between
genes [23]. Co-occurrence of gene names is used to estimate the likelihood that the
respective genes have a functional linkage.

There have been multiple functional annotation schemes introduced over the
years, with several used at present. Annotation terms corresponding to sequence
function are associated with gene products. Systematic application of these schemes
has resulted in the accumulation of organism-specific annotation databases that can
easily be analyzed and understood. In most systems, the annotations are arranged
as hierarchies, in which terms located higher refer to general functions, and ones
occupying lower levels refer to increasingly specific functions. The first such
extensive method, the Riley scheme [41], was introduced in 1993 to categorize
Escherichia coli genes. Multifun [42], a later modification to the approach, allowed
for the mapping of multiple functional categories per gene. FunCat [44] expanded
upon previous schemes by allowing hierarchical annotations to be applied to a
number of organisms [18, 38, 43, 45].

A recent system, which varies from the traditional tree structure, is the GO [4].
According to GO, annotation terms may have multiple parent terms, forming a
Directed Acyclic Graph (DAG). In addition, there are various relations associated
with every directed edge, such as “is a subset of” or “is a part of.” These additions
allow for greater flexibility in categorizing gene products.

GO defines three annotation domains: molecular function, biological process,
and cellular compartment. Molecular functions describe activities performed by
individual gene products at the molecular level. Biological processes describes
the operations with a defined start and end, performed by groups of interacting
gene products and pertinent to the functioning of cells, tissues, organs, and whole
organisms. GO is the first gene annotation ontology that distinguishes between
the two widely used and distinct notions of gene function: individual molecular
function, determined mostly by the sequence and structure, and group (global)
function, characterized by the interaction of multiple gene products and termed
process in GO. The third domain, cellular component, characterizes a specific
cellular or extracellular environment in which a gene product operates.

The GO annotation scheme has become widely used since its introduction. It has
been applied to 49 species at present and this number can only continue to grow
due to the generality of the categories and its inherent extensibility. There are over
30,000 GO annotation terms, with the majority of them (62%) belonging to the
biological process category [3].
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3 Techniques for Computational Annotation in Networks

Interaction networks provide a systematic view of whole genomes, and hence
the synthesis of the first genome-wide maps has been followed by attempts to
discover and predict function within the system as a whole. It is important to realize
that network-based prediction methods are highly dependent on the semantics and
uncertainty of the links. Most high-throughput interaction experiments contain noise
due to the nature of their method. Prediction methods should ideally take this into
account. In this respect, the interpretation of interaction data for the purposes of
network synthesis should be an obligatory first step when defining an annotation
prediction scheme.

Some interaction data sources are highly correlated with each other while others
are near orthogonal. The semantic of a physical interaction link, for example, is
quite different from that of a synthetic sick or lethal interaction. Recent genome-
wide studies have demonstrated that genetic interactions tend to run orthogonal
to physical interactions [11, 51]. Physical interactors complement each other in
performing a common biological process, while genetic interactors indicate genes
that partially overlap in functionality and can back up one another.

In this section, we describe the general concepts of annotation prediction
algorithms, grouped by their main hypothesis and the computational tools that
comprise them. We provide additional discussion on the interplay between network
synthesis and the prediction algorithms.

A study from 2007 [48] groups most original network-based prediction methods
into several groups: module-assisted, direct methods, and probabilistic methods.
Direct methods seek to transfer annotations along the network edges, module-
assisted ones detect network modules and transfer functions within them, while
probabilistic methods build a graphical model of the network that capture annotation
co-occurrences, later used for global prediction.

3.1 Direct Approaches

A common hypothesis among direct methods is that interacting genes have similar
annotations. This is why they are very successful in predicting biological processes
in physical and functional interaction networks. One of the earliest approaches
called Majority [47] predicts the prevailing annotations among the direct interactors
of a target gene. This idea has later been generalized to higher levels in the net-
work [22]. Both of these methods are effective when the interaction neighborhood
of the target gene is not sparse in annotations. The Functional Flow method [39]
simulates a network flow of annotations from annotated genes to target ones. Karaoz
et al. [24] propose an annotation technique that maximizes the number of edges
between genes with the same function.
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3.2 Module-Assisted Approaches

A second major group, called module-assisted methods, exploits the modularity
in biological networks, where modules correspond to cellular complexes. The
members of this group detect network modules and then perform module-wide
annotation enrichment [34], following the assumption that all genes within a
network module have the same annotation. Similar to direct methods, module-
assisted approaches are effective in predicting biological processes in physical
interaction maps.

Methods comprising the module-assisted group differ in the manner in which
they identify modules. Some use graph clustering [17, 35, 49, 55], while others
use hierarchical clustering based on network distance [6, 8, 34] and common
interactors [46]. The clustering approach by Macropol and colleagues [35] was
shown to outperform well-established clustering schemes in identifying known
protein clusters. Although the method was not proposed as a function prediction
technique, its superior cluster accuracy makes it an advantageous ingredient of a
module-assisted annotation technique.

A common premise of both direct and module-assisted methods is that genes
with similar annotations are always topologically close in the network. As Fig. 3.2
shows, the molecular function annotations in gene networks do not corroborate
this hypothesis. The direct methods are also limited to utilize information about
neighbors up to a certain level. Thus, their accuracy is dependent on the density of
annotations in the interaction context.

3.3 Probabilistic Approaches

A different group of techniques considers probabilistic models based on Markov
Random Fields [15, 16, 32, 53]. This set of predictors seeks to compute annotation
for all network nodes at once, while optimizing a global optimization criterion.
The main driving principle of these techniques is that a target gene annotation is
independent of all other genes, given its neighbors [48]. Estimates of prior and
conditional probabilities of annotations are first computed followed by the joint
likelihood of all target annotations. Probabilistic network analysis has also been
used for disease gene identification [28, 52].

All three groups discussed above associate genes that are direct or close
neighbors with similar annotations. While this is effective for biological process
prediction, genes of the same molecular function can be far from each other in
the network (Fig. 3.2). Furthermore, particular molecular functions are surrounded
by patterns of different molecular functions within a cellular module, as they
complement each other in performing a certain process.
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Fig. 3.2 Genes sharing annotations do not always interact in the filtered yeast interactome
(FYI) [19]. Similar functions are sometimes at large network distances. The summary is based
on all pairs of annotated genes

3.4 Pattern-Based Approaches

A recent body of work revolves around the idea of network patterns for func-
tion prediction. One approach that can be classified in this category is Indirect
Neighbor [12]. The authors’ hypothesis is that genes that share interaction neighbors
perform a similar function as well. The method distinguishes between direct and
indirect (second level) functional associations and applies an appropriate weighting
between the two. In a sense, this method is a mixture between a direct method and
a pattern-based approach.

A purely network pattern technique called LaMoFinder [10] predicts annotations
based on network structure motifs. An unannotated network is first mined for
conserved and unique structural patterns called motifs. Pairs of corresponding genes
in different motif occurrences are expected to have similar annotations. The method
is restricted to target genes that are part of unique and frequent structural motifs.
A less conservative approach for pattern extraction is proposed in [27]. According to
this method, a pattern is a rooted subgraph around a target gene. The authors define
a similarity measure between annotations of patterns and predict a target annotation
based on its most similar patterns. Both pattern-based approaches rely on exact or
relaxed topological matches of subgraphs. High-throughput interaction detection,
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Table 3.1 Type of network prediction methods and their corresponding underlying hypothesis

Methods Algorithm type Hypothesis

Majority [47], Hishigaki et al. [22], Karaoz
et al. [24], Functional flow [39]

Direct Annotation clustering

Macropol et al. [35], Dunn et al. [17], Zhang
et al. [55], Spirin et al. [49], Arnau et al. [6],
Brun et al. [8], Samanta et al. [46]

Module-assisted Annotation clustering

Deng et al. [15, 16], Letovsky et al. [32], SBIA [53] Probabilistic Annotation clustering
Indirect neighbor [12], LaMoFinder [10], Kirac

et al. [27], Bogdanov et al. [7]
Pattern-based Similar neighborhood

however, produces inherently uncertain data. Hence, probabilistic techniques are
needed to analyze the network topology and define network patterns.

A recent method [7] hypothesizes that the simultaneous activity of sometimes
functionally diverse functional agents comprise higher level processes in different
regions of the network. The authors refer to this hypothesis as Similar Neighborhood
and to the principle in all direct, module-assisted and probabilistic methods as
Annotation Clustering. Justification for Similar Neighborhood is provided in
Fig. 3.2, which reveals that genes of similar function may occur at large network
distances. Driven by this principle, the authors seek to predict unknown
annotations based on similar functional neighborhood patterns. Functional network
neighborhoods are first extracted from the interaction network and then used to train
an annotation classifier. We delve into the method in more detail in the next section.

To summarize, we categorize the existing network-based annotation predictors
in four groups: direct, module-assisted, probabilistic, and pattern-based. The first
three are motivated by the Annotation Clustering hypothesis, postulating that similar
annotations are more likely to interact than diverse ones. Different from this
premise, pattern-based approaches follow the Similar Neighborhood principle. The
accuracy of each of these methods in a prediction task depends on the type of input
network and the annotation type that is sought for prediction. A summary of the
discussed methods is presented in Table 3.1.

4 Network Annotation Prediction as a Framework

We generalize the process of network-based annotation prediction as a three step
framework: (1) interaction network synthesis (2) network feature extraction, and (3)
classification. The first step concerns the processing and interpretation of interaction
data for the purposes of building a genome-wide interaction map. The second step
summarizes relevant information for a target node which is then used to predict
annotations in the third step. Many of the approaches from Sect. 3 fit implicitly in
this three-step model, although the corresponding papers focus on some steps more
than others. The latter two steps were proposed by Bogdanov and colleagues [7].
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In this section, we will follow the development of the approach in [7] and will
provide additional discussion on how other methods can be structured according
to the three-step framework.

The proposed generalization has several advantages. First, it explicitly decouples
the tasks comprising a prediction method and thus allows for the possibility that
other kinds of network synthesis can be performed, other neighborhood features can
be extracted, and that other kinds of classifiers can be used. Second, the separation in
steps may enable combination of different known techniques and algorithms in any
of the phases, resulting in composite approaches. In addition, performance analysis
will be more comprehensive if each of the steps are assessed separately. Note that
the third step is a central problem in data mining, and hence any of the state of the
art classification schemes can be employed.

The method proposed by Bogdanov and colleagues [7] is based on the Similar
Neighborhood hypothesis. It uses functional networks, synthesized according to the
same principles as previous competing methods [39]. Given a network, the authors
summarize the functional context of a target gene in the neighborhood feature
extraction step. The method computes the steady state distribution of a Random
Walk with Restarts (RWR) from the gene. The steady state is then transformed
into a functional profile. In the third step, Neighborhood Patterns employs a
K-Nearest-Neighbors (KNN) classifier to predict the function of a target gene based
on its functional profile. As confirmed by the experimental results accompanying
the method, the desired trade-off between accuracy of prediction and coverage of
can be controlled by k, the only parameter of the KNN classification scheme.

4.1 Interaction Network Synthesis

Employing a single interaction source for annotation prediction is prone to false
positives and incomplete genome coverage due to high-throughput methods. To
overcome these limitations, aggregation and fusion of multiple interaction evidence
sources into a single network has been employed in a number of studies [29–31]. By
integrating the various methods discussed in Sect. 2, a more accurate and complete
picture of the interactome can be obtained.

To synthesize a combined functional network, all data sources may be probabilis-
tically combined. Every interaction discovered through a source adds strength to the
evidence of existence for the specific linkage. The resulting network is characterized
by a weight on every edge corresponding to the level of the confidence in the
interaction. There are several methods that propose to combine multiple sources
of interaction evidence. One such approach, developed in [29–31], assigns a log-
likelihood score to the interaction from any single data source. The score reflects the
probability of the linkage, and is calculated using a Bayesian method incorporating
prior knowledge from a gold standard. Log-likelihood scores are then combined
using a weighted sum to form the final genome-wide network.
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Fig. 3.3 Transformation of the neighborhood profile of node 1 into a functional profile. Node
2 is annotated with functions A and B and node 3 is annotated with functions B and C. The
neighborhood profile of node 1 is computed and transformed using the annotations on the nodes
into a functional profile

4.2 Network Feature Extraction

The authors of the method proposed in [7] extract network features in two steps.
First, the neighborhood of a target node is characterized with respect to all other
nodes in the network. Second, this node-based characterization is transformed to a
function-based one.

A gene’s neighborhood is first summarized by computing the steady state
distribution of a RWR. The trajectory of a random walker that starts from the target
gene and moves to its neighbors with a probability proportional to the weight of
each connecting edge is simulated. The random walker is kept close to the original
node to explore its local neighborhood, by allowing transitions to the original node
with a probability of r, the restart probability [9].

The network graph is represented by its adjacency matrix Mn,n. An element mi, j

of M encodes the probability of an interaction between genes i and j. The outgoing
edge weights of each gene are normalized. Let us term the steady state distribution
of node j as the neighborhood profile of gene j, and denote it as S j, j ∈ [1,n]. The
neighborhood profile is a vector of probabilities S j

i , i �= j, i, j ∈ [1,n]. Component
S j

i is proportional to the frequency of visits to node i in the RWR from j. Solving
for the stationary distribution can be done using a power iteration approach defined
as follows:

S j(t + 1) = (1− r)MT S j(t)+ rX . (3.1)

In the above equation, X is a size-n vector defining the initial state of the random
walk. In the above scenario, X has only one nonzero element corresponding to the
target node. S j(t) is the neighborhood profile after t time steps. The final neighbor-
hood profile is the vector S j when the iteration converges. One interpretation of the
neighborhood profile is that it defines an affinity vector of the target node to all other
nodes based solely on the network structure.

The next step in feature extraction is the transformation of a neighborhood profile
into a functional profile. The affinity S j

i of node j to node i can be treated as affinity
to the annotations of i. Figure 3.3 illustrates the transformation of a neighborhood
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profile to a functional profile. Assume that RWR performed from node 1 results in
the neighborhood profile (0.7,0.3), where 0.7 corresponds to node 2, and 0.3 to
node 3. Annotations on these two nodes are weighted by the corresponding values,
resulting in the vector (0.7,1.0,0.3) over functions A, B, and C, respectively. This
vector is then normalized, resulting into the functional profile (0.35,0.5,0.15).

More formally, based on the annotations of a gene, an annotation flag eia is set to
1 if gene i is annotated with function a and 0 otherwise. The affinity to each function
a in the neighborhood profile is then computed as:

S j
f (a) =

n

∑
i=1,i�= j

S j
i eia. (3.2)

Vector S j
f is normalized to yield the functional profile for node j.

The outlined approach for feature extraction represents one way to summarize
the interaction neighborhood of a gene. Interestingly, other methods, discussed in
Sect. 4 can also be thought of extracting features and further use those for annotation
prediction. Direct methods count annotations in direct or indirect neighbors;
module-assisted represent each gene as part of a network cluster based on its
connectivity; probabilistic methods compute conditional annotation probabilities
based on neighboring genes; and pattern-based approaches associate genes with
structural patterns in which they appear. All these signals can be interpreted as
network-based features associated with each gene.

4.3 Classification

The function extraction step above produces a functional profile for each gene,
summarizing a gene’s affinity to annotations. According to the Similar Neighbor-
hood hypothesis adopted in [7], genes with similar functional profiles are expected
to have similar annotations. The method proceeds by classifying genes using a k
Nearest Neighbor classifier and an Manhattan (L1) distance metric to quantify the
dissimilarity of two functional profiles.

The consensus set of predicted annotations is computed using weighted voting.
Annotations of a more similar neighborhood are weighted higher. The result is a set
of scores for each function where a function’s score is computed as follows:

F j
a =

k

∑
i=1

f (d(i, j))eia, (3.3)

where eia is an indicator value set to 1 if gene i is annotated with a, d(i, j) is the
distance between functional profiles of genes i and j and f (d(i, j)) is a function
that transforms the distance to score. A distance-decreasing function of the form
f (d) = 1

1+αd ,α = 1 is used for distance to score transformation.
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The classification step can be implemented using any classification algorithm
from the machine learning domain. In addition, this step is not limited to the
use of functional neighborhood features only. As we discussed in the previous
section, most existing methods compute a specific network-based representation of a
gene. The actual prediction in all methods is equivalent to performing classification
using the corresponding representation. Treating all approaches as classification
techniques opens the possibility of applying more elaborate algorithms in the
prediction phase as opposed to simple rule-based predictors.

5 Accuracy Comparison of Existing Methods

We next present performance evaluation, reported by Bogdanov and colleagues [7].
The authors compare a number of network-based methods on two yeast interaction
networks. One of the networks used for evaluation is a high-confidence interaction
network, termed Filtered Yeast Interactome (FYI) [19]. This network is synthesized
by using a collection of interaction data sources, including high-throughput yeast
two-hybrid, affinity purification and mass spectrometry, in silico computational
predictions of interactions, and interaction complexes from MIPS [37]. The second
yeast evaluation network is constructed by combining nine interaction data sources
with genetic interactions from the BioGRID repository [5]. The method of construc-
tion is similar to the ones used in [12, 36, 39].

In this specific evaluation study, the first step of network synthesis is fixed for
all competing techniques for the purpose of fair comparison. Note that for different
data sets the performance of some techniques might change.

The methods used for comparison include the technique proposed by Bogdanov
et al. [7], referred to as KNN in the experiments; two direct methods: Majority
(MAJ) [47] and Functional Flow (FF) [39]; two pattern-based approaches, namely
Indirect Neighbors (Indirect) [12] and PAP [27]; and a probabilistic method
called Statistically Based Iterative Algorithm (SBIA) proposed in [53]. The various
techniques are compared by performing leave-one-out validation experiments. Since
the competing techniques implicitly use all available annotations, leave-one-out
provides a fair comparison. In this setup, a target gene is held out (i.e., its annotations
are considered unknown) and a prediction is computed using the rest of the
annotation information in the network. All competing methods compute a score
distribution for every class. The scores are used to rank the candidate annotations
and the accuracy is analyzed for different ranks. An ideal technique would rank the
true (held-out) annotation(s) highest.

A true positive (TP) prediction is a gene predicted as its actual label or any of
the label’s ontological descendants according to GO. This is also known as the true
path prediction criterion and has been used in previous ontology-aware prediction
studies [13]. Only frequent enough annotations are considered for comparison and
the minimum threshold for the frequency is denoted as T .

Figure 3.4 presents the TP versus false positive (FP) comparison when predicting
genes of single known function. The KNN approach dominates the rest of the
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approaches, and all approaches are significantly better than a random predictor using
the frequency of annotations for prediction. The performance comparison on multi-
labeled genes is presented in Fig. 3.5. For this experiment, genes are grouped by the
cardinality of their label set and leave-one-out validation is similarly performed.

A comparison with the probabilistic method SBIA [53] is presented in Fig. 3.6.
SBIA is different from the above methods in that it performs collective classification.
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Multiple targets are classified simultaneously and an assignment that maximizes
the global likelihood is computed. It is compared with kNN using cross-validation,
where the folds are sampled uniformly from the single-label annotated nodes in the
network.

6 Annotation in Multiple Genome Networks

We next discuss the task of predicting annotations in sparsely characterized
genomes. There are currently more than 60 fully-sequenced organisms in the
Ensembl repository [1]. The curated annotations of novel model organisms are sig-
nificantly less than in established systems such as yeast, worm, and fly. A promising
direction for the annotation of such organisms is to attempt to exploit the available
annotation knowledge about well-studied (reference) organisms and transfer it to a
novel (target) organism at hand. In the presence of interaction networks for both the
reference and target organism, one can exploit the interaction information in tandem
with the traditional homology-based approaches [21].

In this section, we introduce three hypothesis, originally outlined in [7], that pro-
pose a combination of homology and interaction information for robust prediction
in sparse genomes. The hypotheses are illustrated schematically in Fig. 3.7a and
discussed and evaluated in the remainder of this section.

Fig. 3.7 (a) Hypotheses A – use of homology; B – prediction + homology; and C – prediction
based on ortholog’s profile. (b) Percentage of correct predictions for reference – yeast and
target – worm
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6.1 Hypothesis A: Orthologs Share Annotations

If the gene sequences constitute the only information about the target and reference
organisms, then based on Hypothesis A, a target sequence can be annotated by
directly transferring the functions of orthologous sequences from one or more well-
studied reference genomes. This approach of comparative annotation is widely
adopted and one recent representative study in this category by Hawkins et al. [21]
targets prediction of annotations from the GO hierarchy.

6.2 Hypothesis B: Orthologs Share Annotations
and Annotation Profiles

For cases in which there is an ortholog mapping but both the target and reference
sequences are missing annotation, one can predict the annotation in the reference
and transfer it along the ortholog link. Note that Hypothesis B allows for increased
utility of homologous relationships when the annotations are missing on both ends.

6.3 Hypothesis C: Similar Functional Profiles Imply
Shared Annotations

According to Hypothesis C, annotations can be transfered between sequences
across organisms when their annotation neighborhoods are similar. Note that this
hypothesis does not require a homology link to exist between the target and
reference sequences.

The utility of the above ideas are examined in [7] using two genomes: yeast
(reference) and C. elegans (target). The high confidence yeast network FYI is used
as a reference genome and an interaction network of C. elegans, based purely on
coexpression analysis [25], is used as a target genome. Worm’s genes of single
annotation are used as ground truth, and homology information is employed using
InParanoid [40]. The results are presented in Fig. 3.7b. The trace annotated A in
Fig. 3.7b illustrates the percentage of ortholog pairs that share molecular function
annotations. For Hypothesis B, the prediction accuracy for all possible ortholog
pairs is reported in trace B in Fig. 3.7b). Annotations of yeast orthologs are first
predicted by the kNN approach and then transferred to worm. To test whether similar
functions have similar neighborhoods across organisms, profiles computed in worm
are classified in FYI (trace C in Fig. 3.7b). To further shed light on the utility
of the three hypotheses, we estimate the predictive power of counterpart random
predictors: A-R, B-R and C-R corresponding to each of them.

Note that there are a number of challenges in performing cross-organism
classification. The set of GO terms used for annotating yeast and worm do not
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overlap completely and this could be due to the worm and yeast communities
using different levels of the vast GO ontology as well as due to organism-specific
functions. The above challenges result in somewhat pessimistic evaluation of
Hypotheses B and C. The significant dominance of their corresponding approaches
over random predictors is a promising outcome of this initial assessment of their
utility. Additional details and evaluation are available in [7].

7 Conclusion

We discussed the utility of interaction networks for the fundamental problem of
systematic genome annotation. Existing network annotation predicting techniques
are reviewed and categorized. We separated the building blocks of a generalized
network prediction algorithm: network synthesis, network feature extraction, and
annotation prediction using classification. A recent method that complies with this
generalized methodology was introduced together with a comparison evaluation
of diverse methods for the prediction task in a model organism. In addition, we
presented recent ideas of combining homology and interaction data for the purposes
of automated annotation in newly sequenced and sparse genomes using one or more
reference well-studied genomes.
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Chapter 4
Proteome Network Emulating Models

Phuong Dao, Fereydoun Hormozdiari, Iman Hajirasouliha, Martin Ester,
and S. Cenk Sahinalp

Abstract The proteome network (or protein–protein interaction (PPI) network) of
an organism represents each protein as a vertex and each pairwise interaction as an
edge. In the past 10 years, we witnessed a significant amount of effort going into the
development of the PPI networks and the computational tools for analyzing them.
In particular, there have been several attempts to capture the topological features of
PPI networks through random graph models, which have been successfully applied
to the emulation of “small-world” networks, which are sparse, but highly connected.
The available PPI networks have also been thought to have a small diameter with
power-law degree distribution thus “scale-free” network emulators such as the
Preferential Attachment Model have been investigated for the purposes of emulating
PPI networks. The lack of success in this direction led to the development of further
models, which either reject the “scale-freeness” of the PPI networks, such as the
Geometric Random Network Model or guarantee scale freeness through means of
expansion other than “Preferential Attachment” such as vertex (i.e., protein/gene
duplication) – as in the case of the Pastor-Satorras Model or the more recent
Generalized Duplication Model. In this study, we compare available PPI networks
of various sizes with those generated by the random graph models and observe that
the Generalized Duplication Model, with the “right” choice of the initial “seed”
network, provides the best alternative in capturing all network feature distributions.
One network feature distribution that remains difficult to capture, however, is the
“dense graphlet” distribution: all available PPI networks seem to include (many)
more dense graphlets such as cliques in comparison to the networks generated by
all available models.
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1 Proteome Network Emulation Models

The proteome network of an organism is typically modeled by a graph in which
each node represents a protein and each edge represents an interaction between
a pair of proteins. Significant amount of effort has been put toward developing
a better understanding of proteome network topology, which together with an
improved understanding of its dynamics would provide a deeper insight into the
inner working of a cell. The study of proteome network topology is also significant
in understanding the mechanisms through which known drugs work against complex
diseases and developing novel therapies.

The theoretical study of proteome network topology started about 10 years ago
with the now well-known observations on the structure of the Yeast proteome
network obtained through 2-hybrid assays [18, 37]:

1. The degree distribution of nodes (i.e., the proportion of nodes with degree k as
a function of k) approximates a power-law (i.e., is approximately ck−b for some
constants c,b) – this implies that the expected maximum degree in the graph is
proportional to n1/b.

2. The graph exhibits the small world effect: the shortest distance between a
randomly selected pair of nodes is “small.”

Small world phenomena and the power-law degree distribution with high max-
imum degree have previously been observed in a number of naturally occurring
graphs such as communication networks [12], web graphs [1, 3, 7, 9, 19, 20],
research citation networks [30], human language graphs [13], neural nets [39], etc.
These two properties cannot be observed in the classical random graph models
studied by Erdös and Rényi [31] in which edges between pairs of nodes are
determined independently. It is well known that on such a graph with fixed number
of vertices, n, between which the edges between a pair of vertices are placed
uniformly at random with probability p = avgdegree/n, the maximum degree is
expected to be logarithmically related to the number of vertices. On the other hand,
alternative random graph models, as will be described below, do have power-law
degree distributions and high maximum degree [3,7,38] – thus it has been tempting
to investigate whether these models agree with other topological features of the
proteome networks.

There are two well-known models that provide power-law degree distribu-
tions (see [4, 8, 9]). The Preferential Attachment Model [1, 7], was introduced
to emulate the growth of naturally occurring networks such as the web graph;
unfortunately, it is not biologically well-motivated for modeling proteome networks.
The Duplication Model, on the other hand [6, 26, 36], is inspired by Ohno’s
hypothesis on genome growth by duplication [24]. Both models are iterative in the
sense that they start with a seed graph and grow the network in a sequence of steps.

Another model that has been studied for the purposes of protein–protein interac-
tion (PPI) network emulation is the Geometric Random Graph Model [10, 21, 23].
The Geometric Random Graph Model is inspired by the fact that a protein can be



4 Proteome Network Emulating Models 71

described through a collection biochemical properties which can be represented
by a real-valued vector. Thus, proteins could be considered as points in some
�-dimensional Euclidean space. The Geometric Random Graph Model thus picks
n random points on some low dimensional Euclidean space (2-D or 3-D are most
common) each of which represents a vertex. Two vertices are then connected if their
distance is less than some given threshold r. The Geometric Random Graph Model
neither satisfy the small world property, nor provide a power-law degree distribution.

In what follows, we describe each of the above models in more detail. Later,
we discuss how well these models emulate available PPI networks with respect to
capturing their topological features.

1.1 Preferential Attachment Models

The Preferential Attachment Model dates back to Yule [41] and Simon [32]. It was
later reintroduced for purposes of modeling the world wide web by Barabási and
Albert [3], and was investigated more formally by Bollobás and Riordan [7]. As
mentioned above, the Preferential Attachment Model is an iterative model which
generates exactly one vertex per iteration. Let G(t) = (V (t),E(t)) be the graph
at the end of time step t, where V (t) is the set of nodes and E(t) is the set
of edges/connections. Let vt be the node generated in time step t. In step t, the
Preferential Attachment Model generates vt and connects it to every other node
vτ independently with probability c · dt−1(vτ)/2|E(t − 1)|, where c is the average
degree of a node in G; that is, vt prefers to connect itself to high degree nodes.

Bollobás and Riordan [7] showed that with high probability the diameter of
a graph constructed in this way was ∼ logt/loglog t; here, t stands for the time
step and thus (is approximately) the number of nodes. Subsequently, Bollobás
et al. [7] proved that the degree sequence of these graphs follow a power-law
distribution. Attention has also been given to models where the attractiveness of
vertices fades over time, for example [34]. More recently, Cooper and Frieze [9]
gave a general analysis of random graph processes revealing that many graphs
generated by Preferential Attachment exhibit power-law degree distributions. This
analysis, and those of [20, 29, 33]; obtained graphs with a power-law parameter
larger than 2 but smaller than 3 by using a graph generation model that allows edge
insertion between existing nodes.

1.2 Geometric Random Model

As mentioned earlier, representation of proteins with real-valued vectors (thus points
in Euclidean space) is suitable for certain applications. The Geometric Random
Graph Model [10, 21, 23] thus tries to build a random graph G = (V,E) in an
�-dimensional Euclidean space (� is typically 2,3 or 4). The model independently
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Fig. 4.1 K3,2 cannot exist in any two dimensional GRG: if A and B are in the same partition, their
distance must be at least r. Because C, D, E are in the same partition, each must be within distance
r to both A and B – thus they must be at the intersection of the balls centered in A and B, each
with radius r. However, that implies that the pairwise distances between C, D, and E cannot be all
greater than r – which implies a contradiction

picks some n points in the Euclidean space uniformly at random and assigns a
vertex to each such point. Two vertices are then connected if their (Euclidean)
distance is below some threshold value r. The value of r can be picked in a way
that the resulting graph ends up with the desired average degree, that is, that of the
emulated network [10] – on an � dimensional, unit Euclidean cube, r is in the order
of (avgdegree/n)1/�.

One of the limitations of the Geometric Random Model is that the resulting
graphs cannot contain certain subgraphs commonly observed in PPI networks such
as the complete bipartite graph (K3,2 for � = 2 and K3,3 for � = 3) [28]:

For � = 2, for example, consider a K3,2, where A, B are points of the “left”
partition and C, D, and E are points of the “right” partition. For a given point P, let
β (P) be the “ball” centered at P with predefined radius r. Points C, D, and E should
be at the intersection of two balls β (A) and β (B). However, this is impossible since
their distances must be greater than r as illustrated in Fig. 4.1.

It is interesting that in [28], it was conjectured that a geometric random graph
generated in �-dimensional space cannot contain a complete bipartite graph, K�+1,2.
This conjecture was later disproved (Oliver King, personal communication). In fact
K4,2 can be embedded to a geometric graph with 3 dimensions by embedding the
bigger partition on a square (each side length r) and the smaller partition on the two
sides of a line crossing the center of the square orthogonally, with distance r to each
other. However, emulations show that K4,2 (and other complete bipartite graphs) can
be produced by random geometric models very rarely.

Note that although a Random Geometric Model may not accurately capture the
topological features of a PPI network, it is possible to come up with a deterministic
geometric network – one whose vertices in the Euclidean space is derived from
the PPI network itself – that is highly similar to the PPI network in question. Such
an “embedding” of the PPI network to a low dimensional Euclidean space can be
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obtained as follows. Given a PPI network G = (V,E), let Di, j be the length of the
shortest path between a pair of vertices i and j, where the distance between vertices
connected through an edge is 1. Clearly, Di, j defines a metric. The embedding is a
bijection from vertices in the PPI network and vectors x1, . . . ,xn in Rm for a given m
(= 2,3, or 4) such that |xi − x j| ≈ Di, j for all i, j – thus the closer the two vertices
are in the PPI network, the closer they will be on the geometric network.

Since Di, j satisfies the triangle inequality, doubling and then centering the matrix
Di, j as per below produces a symmetric and positive semi-definite matrix A:

Ai j = −1
2

(

D2
i j −

1
n ∑

k

D2
ik −

1
n ∑

k

D2
k j +

1
n2 ∑

k
∑

l

D2
kl

)

Let λ1, . . . ,λt be the t positive eigenvalues of A ordered from the largest to the
smallest and u1, . . . ,ut be the corresponding eigenvectors. Let X ∈R

t×n be a matrix
such that XT X = A and X1, . . . ,Xn ∈ R

t be the columns of X , it can be shown that
‖Xi −Xj‖2 = Di j. Ideally, when m = t, the set of columns X1, . . . ,Xn is the set of
points x1, . . . ,xn in R

m that one would like to find:

X =
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In the case that m ≤ t, we find the matrix X̂ with rank m (X has rank t) such that
it is the closest matrix to X . More specifically, it is possible to minimize the matrix
norm (Frobenius norm) of X − X̂

(

∑
i

∑
j

(Xi j − X̂i j)
2

)1/2

and X̂ could be obtained by picking the m eigenvectors corresponding to m largest
eigenvalues of A
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1.3 Gene Duplication-Based Models

In a number of naturally occurring graphs with power-law degree distributions such
as proteome networks, peer to peer networks, and in a limited way the web graph,
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the mechanism underlying the growth process seems to be different from that in
Preferential Attachment models. Rather, these networks seem to grow via node
duplications. For example, Ohno’s theory of genome evolution [24] states that the
main driving force behind genome and thus proteome growth is gene duplication
followed by point mutations. In peer to peer networks, a new user typically chooses
the servers used by an existing node; similarly, new web pages tend to share content
with related web pages. Possibly, the first analysis of a duplication-based random
graph model is given in [20]; this model generates directed graphs with constant
outdegree. A more general version of this directed model was later analyzed in [9].
In both of these models, the (out)degree of the newly generated node is bounded by
a constant and does not depend on the degree of the duplicated node.

A less constrained duplication-based random graph model where the degree of
the newly generated node is not bounded by a constant was introduced in [6, 26, 36].
In this model, at each iteration t, one existing node is chosen uniformly at random
and is “duplicated” with all its edges. Then, in a “divergence” move, (1) each
existing edge of the new node is deleted with probability q and (2) a new edge
is generated between the new node and every other node with probability r/t. This
last step is referred to as “mutation” by some authors (e.g., [17]).

More specifically, the duplication model above, which we will denote as the
“Pastor-Satorras” Model, starts with an arbitrary connected network G(t0), of size
t0. For t > t0, let G(t −1) be the network at the end of time step t −1. At iteration t,
exactly one new node, denoted as vt , is added to G(t − 1) as follows:

A node w is picked uniformly at random from G(t − 1), and w is “duplicated”
to create the new node vt which is initially connected to all the neighbors Nt−1(w)
of w, but not to w itself. The edges initially incident to vt are then updated in the
following way:

Step 1. Duplication: Each edge e = (vt ,u), u ∈ Nt−1(w) is independently deleted
with probability q or retained with probability p = 1− q.

Step 2. Uniformly at random edge addition: Each node u of G(t − 1) indepen-
dently connected to vt with probability r/(t − 1), where r is a nonnegative constant
of the process, and any parallel edges created are merged.

The first analysis of the Pastor-Satorras Model [26] suggested that the degree
distribution of the resulting network is a “power-law with exponential cut-off.” This
means that fk, the fraction of nodes with degree k among all nodes, is independent of
time and is approximated by fk = ck−b ·a−k; here a,b,c are constants. However, the
analysis in [26] makes a number of simplifying assumptions to get this result. For
instance, it approximates the probability of generating a node with degree k by the
probability of duplicating a node with degree k + 1 only and subsequently deleting
one of its edges.

A later analysis of the Pastor-Satorras Model, by Chung et al. [8] for the special
case that r = 0 – which will be referred to as the “Pure Duplication Model” suggests
that the asymptotic tendency for the degree distribution is a standard power-law –
rather than one with a cut-off. More specifically, Chung et al. suggested that
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the fraction of nodes with degree k should asymptotically approach a power-law
distribution of the form fk = ck−b, where the value of b can be derived from
the equation 1 = bp− p + pb−1; note that it is possible to have b ≤ 2 for some
values of q.

A final analysis of the Pastor-Satorras Model by Bebek et al. [4] reveals that:

(1) the Pastor-Satorras Model in general produces many singletons, that is, nodes
which are not connected to any other node;

(2) in the Pure Duplication Model (r = 0), in particular when p = 1/2, all
but a logarithmic number of nodes will end up as singletons – in other
words the proportion of singletons to all nodes in the network asymptotically
approaches 1;

(3) for different values of p and r, the number of singletons generated by the
Pastor-Satorras Model is much higher than number of singletons in known PPI
networks.

As a result of the above observations, the Pure Duplication Model should
asymptotically satisfy f0 = 1 and fk = 0, for all k > 0. For the case q = 0.5, the
average degree of nodes in the Pure Duplication Model does not change over time.
Thus (1) the average degree of nonsingletons must increase in time and (2) there
is a single connected component of size o(t) with increasing average degree. It
is possible that this connected component of the network generated by the Pure
Duplication Model exhibits a power-law with parameter b ≤ 2; unfortunately, this
is difficult to establish analytically [4].

The above observations reveal that the Pastor-Satorras Model is not suitable for
emulating networks of interest and thus several modifications to the Pastor-Satorras
Model have been suggested [4, 5, 16]. Each of these models differ from the Pastor-
Satorras Model by having an extra edge generation step in each iteration. Note that it
is desirable for such a step to not only maintain that G(t) stays as a single connected
component, but also to restrict the number of the edges added to the network during
the uniformly at random step.

Version 1: Step 3. If vt has become a singleton at the end of the duplication move,
it is connected to a1 ≥ 1 uniformly chosen random nodes.

Version 2: Step 3. The node vt is connected to a2 ≥ 1 additional nodes chosen
uniformly at random. This occurs even if vt has not become a singleton at the end
of the duplication move.

Version 3: Step 3. If vt has become a singleton at the end of the duplication move,
it is deleted.

Bebek et al. show that in each of these versions of the “Generalized Duplication
Model,” (1) no singletons are generated, (2) the network stays connected, and (3) the
degree distribution of the nodes exhibit a power-law of the form fk = ck−b. Versions
i = 1,2 also ensure that the minimum degree of a node would be ai. However,
Version 3 is more powerful in the sense that the parameters of the model can be
picked in a way to ensure that the expected degree of a node stays as a user defined
constant [4] as will be demonstrated below.
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1.3.1 Parameter Selection in the Generalized Duplication Model

The deletion probability 1− p and the insertion probability r in Version 3 of the
Generalized Duplication Model can be chosen so as to maintain the expected (over
all executions of the model) average (over all nodes) degree of the network as a user
defined constant throughout the iterations. Let G(t) = (V (t),E(t)) be the network
generated by the Modified Duplication Model and let n(t)= |V (t)| and e(t)= |E(t)|.
Also, let nk(t) be the number of nodes in time step t with degree k and a(t) be the
average degree of nodes in G(t). Finally, let Pk(t) = nk(t)/n(t), the frequency of
nodes with degree k at time step t. We assume that Pt(k) is asymptotically stable,
that is, Pk(t) = Pk(t + 1) for all 1 ≤ k ≤ t for sufficiently large values of t. In other
words, we assume that Pk(t) = dk for some fixed dk. By definition

a(t) =
t

∑
k=1

k · nk(t)
n(t)

=
t

∑
k=1

k ·Pk(t) =
t

∑
k=1

k ·dk.

Now, we can calculate the average degree a(t + 1) under the condition that degree
frequency distribution is stable and a(t) = a, a constant.

Exp[e(t + 1)] = e(t)+
t

∑
k=1

k ·Pk(t) · p + r =
n(t) ·a(t)

2
+ p ·a(t)+ r.

Let Prs(t) be the probability that vt+1 ends up as a singleton.

Prs(t) =
t

∑
k=1

Pk(t) · (1− p)k ·
(

1− r
n(t)

)n(t)−k

≈
t

∑
k=1

dk · (1− p)k · 1
er .

Since this probability does not depend on t asymptotically, we can set Prs(t) = Prs.
Now, we can calculate the expected number of nodes and the expected number of
edges in step t + 1.

Exp[n(t + 1)] = Prs ·n(t)+ (1−Prs) · (n(t)+ 1).

Exp[e(t + 1)] = Exp

[
n(t + 1) ·a(t + 1)

2

]
=

a
2
·Exp[n(t + 1)]

Exp[e(t + 1)] =
a
2
· (Prs ·n(t)+ (1−Prs) · (n(t)+ 1)).

Comparing the above equation with the first equation for Exp[e(t + 1)], we get

a
2
· (Prs ·n(t)+(1−Prs) · (n(t)+1)) =

n(t) ·a(t)
2

+ p ·a(t)+ r =
n(t) ·a

2
+ p ·a+ r.

Solving the above equation results in a = 2r/(1−Prs−2p), where Prs is a function
of p,r, and dk only.
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The discussion above demonstrates that the two key parameters p and r of the
Generalized Duplication Model are determined by the degree distribution (more
specifically the slope of the degree distribution in the log–log scale) and the average
degree of the PPI network we would like to emulate. Perhaps due to the strong
evidence that the seed network does not have any effect on the asymptotic degree
distribution [5], the role of the seed network (the only free parameter remaining)
in determining other topological features of the Duplication Model has not been
investigated.

2 Assessing Network Evolution Models

There are several topological measures that can be used to test whether two networks
(e.g., a natural and an emulated network) are similar or not, starting from rigorous
measures such as Approximate Graph Isomorphism, to relaxed “measures” based
on topological characteristics, such as the degree distribution.

2.1 Graph Isomorphism

Two networks G(V,E) and G′(V ′,E ′) are called isomorphic if there exists a bijective
mapping f from the vertex set of G to the vertex set of G′, such that two vertices v
and w are connected in G if and only if f (v) and f (w) are connected in G′; the Graph
Isomorphism problem thus asks to computationally verify whether two graphs are
isomorphic. Similarly, the subgraph isomorphism problem asks whether graph G is
isomorphic to a subgraph of G′. The Graph Isomorphism problem has received a lot
of attention from the theoretical computer science community partially because it is
one of the very small number of problems which are neither known to be polynomial
time solvable, nor are NP-complete [14]. On the other hand, subgraph isomorphism
is a well-known NP-complete problem [14].

A more general version of the Graph Isomorphism problem is the Approximate
Graph Isomorphism problem, which can be defined as the minimum number of
(1) vertex deletions (together with all edges incident on a vertex), or alternatively,
(2) edge deletions as well as singleton (a vertex with no connections) deletions
from the two input graphs so that the resulting graphs are isomorphic. Approximate
Graph Isomorphism as defined above provides the ultimate measure for PPI network
similarity, however, because its polynomial time solution implies a polynomial time
solution to the subgraph isomorphism problem (for both variants), it is NP-hard.

2.2 Network Features

More relaxed means to assess the similarity of two networks may be based on
common topological features which are (1) easy to detect/quantify (it should not
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take “too much time” to detect/count these features) and (2) reasonably robust
(i.e., minor changes in the network topology should not change these features
substantially). We provide examples for such features below.

2.2.1 Degree Distribution

The first and foremost topological feature used to compare graphs (PPI networks,
communication networks, web graphs, or graphs generated by random models)
is the degree distribution, that is, the distribution of the number of nodes with
specific number of connections. Some natural networks such as the Internet physical
connection network, the web graph or many PPI networks all seem to have a degree
distribution in the form of a power-law [18, 37], that is, the frequency of nodes
with degree k is approximately ck−b for some constants c,b. This is in contrast with
the well-known Erdos–Renyi random graphs where each edge (between a pair of
vertices) is established randomly, independent from the remainder of the graph. In
the log–log scale, the power-law characteristics of a degree distribution is easy to
observe as it provides a straight line – compare this with the Erdos–Renyi graphs
where the frequency of the nodes with degree k is logarithmic with 1/k.

Note that the power-law nature of the degree distribution in some of these
networks have been disputed and the power-law like behavior has been attributed
to sampling issues, experimental errors, or statistical mistakes [11, 15, 21, 27, 35].

2.2.2 k-hop Reachability

Let V (i) denote the set of nodes in V whose degree is i. Given a node v, let its k-hop
degree, that is, the number of distinct nodes it can reach in at most k hops be denoted
by d(v,k). We define f (i,k), the k-hop reachability of V (i) as

f (i,k) =
1

|V (i)| ∑
w∈V,d(w)=i

d(w,k)

Thus, f (i,k) is the “average” number of distinct nodes a node with degree i can
reach in k hops; for example, f (i,1) = i by definition. As per the degree distribution,
the k-hop reachability provides a means for comparing the “connectivity” of two
networks.

2.2.3 Betweenness Distribution

The betweenness of a given node of a network measures the extent to which this
node lies “between” node pairs in the network G = (V,E). The formal definition of
betweenness is as follows. Let σx,y be the number of shortest paths from x ∈ V to
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G G’

H

Fig. 4.2 The two networks G and G′, each with six vertices, have identical degree and closeness
distributions. However, G includes two distinct subnetworks isomorphic to the triangle subgraph
H, whereas G′ includes none

y ∈V for all pairs of x,y ∈V (note that in undirected graphs σx,y = σy,x). Let σx,y(v)
be the number of shortest paths from x ∈V to y ∈V which goes through node v. The
betweenness Bet(v) of node v is thus defined as

Bet(v) = ∑
(i, j)∈V,i, j �=v

σi, j(v)

σi, j

2.2.4 Closeness Distribution

For all x,y ∈ V , we define dx,y as the length of the shortest path between x and y.
The closeness of a node v ∈V is defined as

Cls(v) =
|V |− 1

∑i∈V dv,i
.

2.2.5 Subgraph Frequency

The normalized number of occurrences of particular subgraphs in a given network
can provide alternative means of measuring similarity among networks. In Fig. 4.2,
for example, two networks G and G′ are far from being isomorphic; however, they
have not only the same degree distribution (there are only degree 3 vertices in
each) but also the same closeness distribution. Nonetheless, the number of particular
subgraphs in G and G′ are entirely different: for example, the triangle subgraph
(depicted as H) does not appear in G′ but occurs twice in G.

More specifically, a graphlet is a small connected and induced subgraph of a
large graph such as a triangle or a clique. The graphlet count of a given graphlet g
with r nodes in a given graph G = (V,E) is defined as the number of distinct subsets
of V (with r nodes each) whose induced subgraphs in G are isomorphic to g. Note
that an induced subgraph (more accurately, a vertex induced subgraph) of a network
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G is a subset of the vertices of G together with all edges whose endpoints are both
in this subset; that is, G′ is an induced subgraph of G if and only if for each pair
of vertices v′ and w′ in G’ and their corresponding vertices v and w in G, either
there are edges between both v′,w′ pair and v,w pair or there are no edges between
any of the pairs. If a subgraph G′ of G is not an induced subgraph (i.e., it does not
include all the edges in G that are present between node pairs in G′), then it is called
a noninduced subgraph of G.

Note that the problem of detecting an induced occurrence of an arbitrary (i.e.,
arbitrarily complex) subgraph in a network is NP-Complete (e.g., detecting the
presence of a clique of a given size is NP-Complete). However, given a graph
with n nodes, it is possible to not only detect the presence but also get an accurate
count of noninduced subgraphs especially those which are trees or have bounded
treewidth and have O(logn) vertices, in time polynomial with n [22, 25]; there
are also heuristics for counting subgraphs with “high” density [28] that work well
especially in sparse networks, including the PPI networks.

In a given graph G(V,E), the (treelet count) of a given tree T with k nodes is
defined as the number of distinct subsets of V (with k nodes) whose noninduced
subtrees in G are isomorphic to T . The motivation for considering noninduced
subtrees is that available PPI networks are far from complete and error free; the
interactions between proteins reported by these networks include both false positives
and false negatives. Thus, an occurrence of a specific subtree in one network may
include additional edges in its occurrence in another network and vice versa. It is
possible to get the treelet distribution of all tree topologies with O(logn) vertices
via the color coding-based algorithm of Alon et al. [22, 25]; this technique is
also applicable to subgraphs with bounded treewidth. Let the number of distinct
noninduced occurrences of treelet T of k vertices, in network G be denoted as
n(T,G). Given a fixed approximation factor ε the algorithm by Alon et al. returns in
2O(k)nO(1) time, a n′(T,G) such that (1− ε)n(T,G) ≤ n′(T,G) ≤ (1 + ε)n(T,G);
note that this is a randomized algorithm with success probability δ – and the
constants in the running time are implicitly dependent on the value of δ . Clearly
for k = O(logn), the algorithm has a polynomial running time.

Given a network G and a graphlet g, we denote by o(g,G) the number of induced
occurrences of g in G and by o′(g,G) the number of noninduced occurrences
of g in G. Note that the typical graphlets that are considered for noninduced
occurrence distributions are trees. For a list of graphlets L = {g1, . . . ,gk}, the vector
graphlet(L,G) = [o(g1,G), . . . ,o(gk,G)] denotes the “induced graphlet distribu-
tion” of G; similarly, the vector graphlet ′(L,G) = [o′(g1,G), . . . ,o′(gk,G)] denotes
the “noninduced graphlet distribution” of G. In case we are given a graphlet list
L′ = {t1, . . . , tk}, which includes all possible trees of a particular size, the vector
treelet(L′,G) = [ f (t1,G), . . . , f (tk,G)] denotes the “normalized noninduced treelet
distribution” of G where f (ti,G) = o′(tl ,G)/∑k

l=1 o′(tl ,G).
There are 141 possible unique graphlets/subgraph topologies with 3, 4, 5, and

6 nodes, as shown in Fig. 4.3. Furthermore, there are 106 possible unlabeled and
unordered tree topologies with ten vertices, an additional 47 trees with nine vertices,
and 23 trees with eight vertices, as shown in Fig. 4.4. In what follows, we will focus
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Fig. 4.3 List of all graphlets with 3,4,5, and 6 vertices and cliques with 7–10 vertices

on graphlet distributions for all induced graphlet topologies with 3,4,5, and 6 nodes
as well as distributions of cliques with 7,8,9, and 10 nodes. Later, we provide results
on normalized, noninduced treelet distributions with 8,9, and 10 nodes.

2.2.6 Robustness of Network Features

As explained earlier, it is of key importance for a chosen network feature to
be resilient to “minor” perturbations in the network for the purposes of network
comparison. On the other hand, the chosen feature should be fairly sensitive
to “major” changes in the network topology. To analyze the robustness of the
network features summarized earlier, we have to have a model for perturbating the
network. Here, we will focus on a simple model that alters the edges in a random
i.i.d. fashion – without changing the number of edges or vertices. More specifically,
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Fig. 4.4 List of all treelets with k = 8, . . .,10 vertices

the model deletes each edge, independently, with some fixed probability p and
for each deleted edge, places another one between a pair of vertices (which are
not already connected), chosen uniformly at random. To maintain connectivity, the
model treats the deletion of edges which are incident to a vertex with degree 1 (in
a connected network, an edge can be incident to at most one vertex with degree 1):
if such an edge is chosen for deletion, then the corresponding edge insertion will be
between the original vertex with degree 1 and another randomly chosen vertex.

The above network perturbation model allows us to quantify the proportional
perturbation in the network. We compare k-hop, betweenness, closeness, and
graphlet distributions of networks generated by random graph models with varying
levels of perturbations and the Yeast PPI network. For k-hop, betweenness, and
closeness values, we plot for each possible value x, the number of nodes whose
corresponding feature value is at least x. For the graphlets, we simply rank them
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with respect to robustness (higher indices imply lower robustness) and plot out the
number of induced or noninduced occurrences of each graphlet corresponding to
each index value.

As can been seen from Fig. 4.5, all the network features introduced earlier are
fairly robust. More specifically, when a minor proportion (i.e., 10–20%) of edges
are perturbed the “distribution” of the feature does not change significantly: see
Fig. 4.5 where the red plot represent the Yeast PPI network features, while green plot
represents the same network with a proportional perturbation of 10% and the blue
plot represents the network with a proportional perturbation of 20%. Furthermore,
the network features seem to be sensitive to considerable proportional perturbations
(i.e., 50% or more) as can be seen in Fig. 4.5; here, the red plot represents the Yeast
PPI network, the yellow plot represents 50% proportional perturbation, and the
black plot represents 60% proportional perturbation. As can be seen in this figure,
the distribution of all network features described earlier smoothly change as the
perturbation on the original PPI network increases. In fact, the higher the proportion
of the perturbations, the more “Erdos–Renyi like” the network becomes – as will
be demonstrated in the next section. Although this does not mean that each network
feature equally captures each alteration in the network equally well, we can expect
some changes in the distribution of each feature under significant alterations to the
network.

2.3 Emulating PPI Networks

As mentioned earlier, various random network generation models have been devised
to emulate natural PPI networks of the Yeast, E.coli, H.pylori, and other organisms.
Table 4.1 shows the number of vertices and edges of the PPI networks used in our
study from Database of Interacting Proteins [44]. Here, we consider only the largest
connected components of Yeast, H.pylori, and E.coli PPI networks. The models
considered here are the Erdös–Rényi Model, the Preferential Attachment Model,
the Random Geometric Model, and the Generalized Duplication Model (the version
which deletes a singleton as soon as it is generated).

We first compare five independent networks generated by the Erdös–Rényi
Model against the Yeast PPI network. As can be seen in Fig. 4.6, the Erdös–Rényi
Model does not emulate the Yeast PPI network well.

When the Yeast PPI network is compared against the Preferential Attachment
Model, the results are significantly better: the average degree of the Yeast PPI
network is 7, hence, we picked the Preferential Attachment parameters so as to
obtain an average degree of 7 – this simply requires that the value of c is 7.
See Fig. 4.7 for a comparison of five independently generated networks using the
Preferential Attachment Model against the Yeast PPI network.

The Random Geometric Model in 4-D Euclidean space provides significantly
poorer results when emulating the Yeast PPI network. Here, the parameter r is
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Table 4.1 Number of
vertices, edges, and average
degree in the PPI networks
studied here

Average
Network # Vertices # Edges degree

S. cerevisiae 2,345 5,609 4.78
E. coli 1,441 5,871 8.14
H. pylori 687 1,351 3.93

chosen in a way to achieve an average degree of 7 as per the Yeast PPI network.
Figure 4.8 compares five independent graphs generated by the Random Geometric
Model and the Yeast PPI network.

2.3.1 Generalized Duplication Model: The Importance of Seed
Network Selection

The Generalized Duplication Model is perhaps unique among the random network
generation models due to its “dependency” on the initial, seed network used.
As observed in [16], the seed network shapes the topology of the Generalized
Duplication Model and the distributions of all network features, perhaps with the
exception of the degree distribution, significantly.

A particularly promising way to pick a seed network is due to the following
observation [16]: the Duplication Model is unlikely to generate “large” cliques.1

On the other hand, the Yeast PPI network includes a clique with 10 nodes, which,
as a result, must be included in the seed network. There are other smaller cliques
in Yeast PPI network which may need to be represented in the seed graph – this is
achieved by adding to the network a single independent clique with 7 nodes. In [16],
these two cliques are highly connected in the seed network, which also includes a
few additional nodes sparsely connected to the two cliques (the total number of
nodes was 50) so that the normalized degree distribution of the Yeast PPI network
was similar to that of the seed graph. This “ensures” that the (normalized) degree
distribution of the Yeast PPI network as well as its clique frequency distribution
(which turns out to be an important determinant of the overall graphlet distribution)
are similar to that of the seed graph.

There are two additional parameters associated with the Generalized Duplication
Model: p, the edge maintenance probability and r, the edge insertion probability
to determine the (asymptotic) degree distribution and the average degree of the
generated network. In [16], these parameters are chosen to be p = 0.365 and
r = 0.12 so that the degree distribution of the Duplication Model matches that of
the Yeast PPI network. Here, we report on five independently generated networks
through the Generalized Duplication Model with these parameters, compared
against the Yeast PPI network (see Fig. 4.9). Under all these distributions, the
Yeast PPI network seems to be very similar to those produced by the Generalized
Duplication Model.

1By large cliques we mean its size should be bigger than 5 or 6 nodes.
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Fig. 4.7 The degree distribution, the k-hop reachability, the graphlet, closeness, and betweenness
distributions of the yeast PPI (red) network against five independent runs of the preferential
attachment model (blue)
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Fig. 4.8 The degree distribution, the k-hop reachability, the graphlet, closeness, and betweenness
distributions of the yeast PPI (red) network against five independent runs of the random geometric
model (blue)
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As it can be seen in Figs. 4.7–4.9, it is clear that the Generalized Duplication
Model with right choice of initial seed network gives results much closer to the real
Yeast PPI network.

2.3.2 Comparing PPI Networks of Varying Size

Comparing natural PPI networks or emulated networks of varying sizes is a
significant challenge: neither the graph isomorphism-based measures nor many of
the feature-based comparisons are useful in this context. It is of crucial importance
to “normalize” distributions of network features with the sizes of the networks
compared. One such attempt was presented by Hajirasouliha et al. [22] where PPI
networks of different organisms and networks generated by proteome emulation
models of different number of nodes and edges, were compared with respect to
the (normalized) treelet or normalized graphlet distributions as described earlier.
Here, the normalization is performed with respect to the total number of treelets or
graphlets of a particular size, and not with respect to the size of the network.

In this section, we compare the treelet distributions of the PPI networks of
three species: Yeast, E.coli, and H.pylori against both the Generalized Duplication
Model – which all seem to be quite similar to each other despite their highly varying
sizes. These networks are also compared against the Preferential Attachment Model,
which seems to be fundamentally different from the others (note that Geometric or
Erdos–Renyi type network models provide even more variations).

The algorithm for counting the noninduced occurrences of treelets was intro-
duced in [22] which is based on the color-coding technique [2] and was implemented
to count all tree topologies of up to ten vertices. The results, originally presented in
[22], are presented in Fig. 4.10, where for each treelet (again indexed with respect
to robustness of the treelets) the normalized number of occurrences in each network
is plotted.

2.4 PPI Network Emulation: Further Challenges

As demonstrated earlier, the Generalized Duplication Model seems to provide
the most accurate emulator of available PPI networks among all random graph
models. Unfortunately, even the Generalized Duplication Model does not provide
an ultimate answer for PPI network emulation. We have demonstrated earlier that
certain dense subgraphs (those involving many internal interactions, such as cliques)
cannot be captured that well by some of the random graph models introduced. For
example, K3,3 cannot exist in the networks generated by the 3-D Geometric Random
Model. Similarly, the seed networks used for the Generalized Duplication Model
need to be dense to emulate a PPI network that contains a large clique. In what
follows, we will have a closer look at the presence of dense subgraphs in networks
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Fig. 4.10 Treelet distribution of the yeast (red), H.pylori (blue), E.coli (green) PPI networks and
the preferential attachment model (pink), the generalized duplication model (cyan)

generated by random models in comparison to typical dense networks that not only
exist in natural PPI networks but also have functional significance.

Let d(G) denote the density of a connected graph G of n vertices which can be
defined as the ratio of the number of edges in G and the maximum possible number
of edges in a graph with n vertices (i.e., (n2 − n)/2). G is said to be α-dense if
d(G)≥α , and dense in general if α ≥ 1/2. Colak et al. [28] give an efficient method
to find all induced dense subgraphs in a (connected) network. This method runs in
time polynomial with the number of dense subgraphs in the network (of any size)
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Fig. 4.11 Total number of dense subgraphs (with density ≥ 0.85) with n nodes (n ∈ {3, . . . ,14})
as a function of n in the Yeast PPI network as well as networks generated by the geometric random
model and the gene duplication-based model. The parameters of the models are set to emulate
the Yeast PPI network. The specific colors used are the geometric random model (blue), the gene
duplication-based model (green), and yeast (red)

as well as the network size. The algorithm is based on the observation that each
dense graph with k vertices includes a dense subgraph with k − 1 vertices; thus
bigger dense subgraphs can be constructed inductively by adding to smaller dense
subgraphs, one new node at a time, and observing whether the network stays dense.

Figure 4.11 (originally presented in [28]) shows the total number of dense
graphlets (with density ≥0.85) with n nodes varying as a function of n (varying
between 3 and 14) – for the Yeast PPI network as well as the specific networks gen-
erated by the Geometric Random Model and the Generalized Duplication Model –
whose parameters were set to best emulate the Yeast PPI network. As shown in
Fig. 4.11, there is a large gap between the total number of dense graphlets in the
Yeast PPI network and the random networks generated by the Geometric Random
Model and the Gene Duplication-Based Model. Although the number of dense
graphlets for n = 6 is consistent with an earlier study, Fig. 4.11 shows substantial
difference for n > 6 between the Generalized Duplication Model and the Yeast PPI
network, especially for n ≥ 8, where there is a sevenfold difference. Furthermore,
there is a 50-fold (or more) difference between Geometric Random Graph Model
and the Yeast PPI network for n ≥ 8. More drastically, the Geometric Random
Model includes no dense graphlets with n = 12 nodes and the Gene Duplication-
Based Model includes no dense graphlets with n = 14 nodes. These figures implies
that no random graph generation model is suitable for emulating the growth of
PPI networks, at least for the purposes of capturing dense graphlet distributions.
It remains an open problem to modify, especially the seed network selection of,
the Duplication-Based Models so as to better capture the distribution of denser
graphlets.
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3 Discussion

Although it is tempting to emulate the topological features of the available PPI
networks through random network models, even testing or measuring the similarity
of two networks remains to be a challenging problem. The natural measure based on
approximate graph isomorphism is not only hard to compute but also is of limited
relevance when comparing networks of different sizes. Much of the literature on
comparing PPI networks and random network emulators thus relies on comparing
(distributions) of topological features such as the degree distribution, k-hop degree
distribution, betweenness, and closeness distributions. In addition, comparing the
(normalized) number of specific subgraphs, induced or noninduced, is gaining pop-
ularity. Although counting the occurrences of specific “graphlets” is a challenging
problem, newly emerging algorithms manage PPI networks reasonably well due to
their sparse nature. Based on available studies of these network feature distributions,
the Generalized Duplication Model seems to provide the best emulator among
all – with a caveat: no available random network generation model, including the
Generalized Duplication Model seems to capture the “dense” graphlet distributions
observed in available PPI networks. Thus, it remains an open problem to devise
random network generators that can produce sparse networks which include a
(significantly) larger number of dense subgraphs.
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Chapter 5
Biological Network Alignment

Shahin Mohammadi and Ananth Grama

Abstract Recent experimental approaches to high-throughput screening, combined
with effective computational techniques have resulted in large, high-quality
databases of biochemical interactions. These databases hold the potential for
fundamentally enhancing our understanding of cellular processes and for controlling
them. Recent work on analyses of these databases has focused on computational
approaches for aligning networks, identifying modules, extracting discriminating
and descriptive components, and inferring networks. In this chapter, we focus on
the problem of aligning a given set of networks with a view to identifying conserved
subnetworks, finding orthologies, and elucidating higher level organization
and evolution of interactions. Network alignment, in general, poses significant
computational challenges, since it is related to the subgraph isomorphism problem
(which is known to be computationally expensive). For this reason, effective
computational techniques focus on exploiting structure of networks (and their
constituent elements), alternate formulations in terms of underlying optimization,
and on the use of additional data for simplifying the alignment process. We present
a comprehensive survey of these approaches, along with important algorithms for
various formulations of the network alignment problem.

1 Introduction

The emergence of high-throughput screening techniques coupled with compu-
tational approaches to network reconstruction and inference, have resulted in
large databases of biochemical interactions. These interactions can be effectively
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analyzed to gain novel insights into cellular processes, and identify suitable
approaches to controlling these processes. One such analysis technique relies on
aligning multiple networks with a view to understanding the conserved functional
and organizational principles of biological systems.

The problem of network alignment takes as input one or more networks
and establishes correspondences between nodes in the network(s) that optimize
a given objective function. Here, the objective function is designed to reflect
the conservation of interactions across two or more species. Such analysis for
sequences (amino-acid or nucleotide sequences) has been used to great effect
in understanding the structure and function of biomolecules. The basic idea that
conserved subsequences are likely to share structure, function, and evolutionary tra-
jectories provides the basis for large classes of computational techniques. Network
alignment can similarly be used for identifying functionally coherent machinery –
“shared function is likely to reflect in aligned subcomponents,” and vice-versa.
This principle can be used to “project” or “transfer” interaction machinery across
organisms that share corresponding function, and to identify latent orthologies
among constituent elements. Building further on this premise, alignment can also
provide valuable insights into evolutionary trajectories and specialization. As more
interaction databases become available, network alignment provides an essential
tool for identifying descriptive (and discriminative) components corresponding to
the phenotype. Clearly, network alignment in its various forms discussed in this
chapter, is an important analysis tool for biochemical pathways.

Given extensive computational infrastructure for sequence alignment, it is natural
to examine the relationship between sequence and network alignment [1, 2]. In this
context, the two key questions relate to models and methods. Models provide a
formal framework for alignment problems – namely, they quantify the fitness of
an alignment (when one alignment is better than the other) and its significance
(how likely is an alignment to correspond to biologically relevant artifacts). Meth-
ods, on the other hand, use these models to arrive at desirable alignments and their
significance scores. For sequence analysis, BLAST is one of the most commonly
used alignment methods, which relies on statistical measures like p-values to
quantify significance of alignments. It is easy to see that sequences are special cases
of networks – networks with linear connectivity. It follows then that the problem
of alignment of general networks is at least as hard as sequence alignment (recall
that most formulations of multiple sequence alignment are classified into the family
of NP-Hard problems – problems for which subexponential time algorithms are not
known).

An instance of the network alignment problem for two networks (or a network
with itself) is the subgraph isomorphism problem. This problem relates to the
identification of the largest common subnetwork of the two given networks. The
subgraph isomorphism problem is known to belong to the class of NP-Hard prob-
lems as well. The consequent exponential time complexity of solving this problem
renders general combinatorial approaches to solving this problem intractable for
biochemical networks of interest. Consequently, the problem has motivated a rich
class of models and methods that rely on applications’ characteristics to solve the
problem.
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A second important aspect of the problem relates to quantification of significance
values associated with alignments. The significance of an alignment quantifies the
likelihood of obtaining the quality of an alignment by chance only. The smaller
the likelihood, the more significant (hence, more likely to be biologically relevant)
the alignment. Traditional approaches to quantifying significance rely either on ana-
lytical formulations or on simulations. The state-of-the-art in analytical modeling of
networks is in relative infancy. Simulation based methods, on the other hand, suffer
from slow convergence and high computational cost. Consequently, quantification
of significance poses intriguing challenges, that continue to be investigated.

In the rest of this chapter, we will provide an overview of models, methods,
validation techniques, and key data sources for alignment of biochemical networks.

2 Definitions and Notations

Biological networks are often modeled as graphs consisting of vertices (or nodes)
and edges (or arcs). Formally, a graph G is defined as G=(V,E), where V is a finite
set of vertices and E is a finite set of edges, such that E ⊆ (V ×V ). A graph can
be either directed or undirected. In an undirected graph, edges define a symmetric
relation among graph vertices, meaning that a relation between vertices vi and v j

also implies the same relation between v j and vi. In directed graphs, relations are
not implicitly symmetric. In a directed graph with an edge (vi,v j), we refer to vi

and v j as the source and sink of the edge, respectively.
Graphs can be represented in different ways (i.e., using different data structures).

While these representations are logically equivalent, depending on the operations
on the graph, some are more computationally efficient than others. One of the
commonly used representations is the node adjacency matrix – given a graph G with
n nodes, we construct a matrix A of dimension n× n, in which entry aij specifies
whether there exists an edge between nodes vi and v j in G.

In many applications, one also needs to encapsulate additional information about
vertices (entities) or edges (relations) of the input network. Attributed graphs allow
for embedding such information in the graphs. An edge attributed (also known as
edge colored) graph is the one in which the edges have additional information, while
the node attributed (also known as node colored) graph has additional information
about the nodes. Edge weighted graphs or simply weighted graphs are special cases
of edge attributed graphs, in which every edge has a real valued attribute (or weight).
These weights can be stored in the adjacency matrix of graph G by allowing aij to
store the weight of edge (vi,v j) ∈ E . Another way to encapsulate node (or edge)
attributes, which is especially useful if we have multiple attributes, is to attach
vectors to graph vertices and/or edges.

There are different kinds of biological data that are represented using graphs.
Protein–protein interaction (PPI) networks are often used in a variety of analyses
tasks. In these networks, each node represents a protein and each edge indicates a
physical interaction between a pair of proteins. A PPI network can be modeled using
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an undirected, weighted or unweighted, graph. In the former, the weight usually
indicates the probability or confidence of the PPI.

Metabolic networks are often used to understand chemical compositions and
reactions. There are two complementary representations of a metabolic network,
both of which rely on directed graphs. In the first one, each vertex represents a
chemical compound (substrate), and there is an edge between a pair of vertices if
they occur (either as substrates or products) in the same chemical reaction. In the
second representation, each vertex represents a chemical reaction catalyzed by an
enzyme Ei, and there is an edge between any pair of vertices i and j, representing
enzymes Ei and E j, respectively, if they share at least one chemical compound,
either as substrate or as product. In other words, if Ei catalyzes a reaction in which
compound A is produced, and E j takes A as a substrate.

Other data, relating to signaling, gene regulations, and lethal interactions are also
modeled as graphs. Cell signaling corresponds to the basic communication network
of a cell. It governs how a cell perceives and responds to its physio-chemical
environment, regulates basic processes such as development, growth and repair
(at the tissue level), response to stress, etc. Nodes in these networks correspond
to biomolecules (or complexes thereof) and edges correspond to signals. Nodes and
edges in these networks are typically labeled to indicate the spatial localization,
nature of signals, and type of biomolecules. Gene regulatory networks (GRNs)
represent the interactions between genes (through their respective products, which
are often not explicitly annotated in the network). Individual nodes correspond to
genes and edges correspond to their regulatory roles. An edge from node (gene)
i to j implies a regulatory relationship. Since a regulatory link may be positive
(up-regulation) or negative (down-regulation), edges are sometimes categorized into
up-or down-regulatory edges. GRNs are often modeled as networks of reactions –
each modeled using an ordinary differential equation (based on chemical kinetic
models). In such networks, rate constants are used to annotate edges. Other models
such as Boolean Networks (genes, or nodes are restricted to binary states, that is,
they can be on or off, and edges change the state of downstream nodes) and Bayesian
Networks (recognizing the stochastic nature of the regulation process).

More recently, data from synthetic genetic arrays have been represented as
networks coding synthetic lethality. Synthetic lethality refers to the observation that
a combination of two or more gene mutations leads to cell death, while a single
mutation to either of these genes does not. In synthetic lethality networks, nodes
correspond to genes and edges reflect the existence of a synthetic lethal interaction
between the two genes.

2.1 Network Alignment Problems

Given a set of graphs G ={G1,G2, . . . ,Gk}, an alignment corresponds to a proper
mapping between the nodes of input networks that maximizes the similarity between
mapped entities. The pairwise network alignment problem is a special case of this
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problem with two input networks. Network alignment, in its general form, is a
computationally hard problem, since it can be related to the subgraph-isomorphism
problem, which is known to be NP-complete. Effective techniques for solving this
problem rely on suitable formulations of the alignment problem, use of heuristics to
solve these problems, or on the use of alternate data to guide the alignment process.

At a high level, the network alignment problem can be classified as local
alignment or global alignment. The former is a relationship over a subset of the
nodes in V ={V1 ∪V2 . . .∪Vk}, while the latter is defined as partitioning all nodes
in V into disjoint subsets, also known as equivalence classes [2]. Global network
alignment can be further classified into one-to-one, in which every subset has
exactly n nodes, one from each input network, and many-to-many, in which the
subsets are not restricted to have exactly one node from each input network.

The biological interpretation of the local alignment problem is that each subset
of aligned nodes represents a conserved module. In a global one-to-one alignment,
nodes in each subset can be interpreted as functional orthologs, while in many-to-
many network alignment, each subset is a classification of all possible functional
orthologs in given species into an equivalence class.

We start by denoting the set of all possible alignments as A . It is common to
represent each network alignment A ∈ A using an alignment graph, GA =(VA,EA),
where every node in the alignment graph represents an equivalence class, while each
edge represents a relationship between a pair of equivalence classes. To define the
network alignment problem formally, we also need to define an alignment scoring
function, φ : A → ℜ, which assigns to each alignment A ∈ A , a real fitness value.
Given an alignment scoring function, the global network alignment problem is
formally defined as finding the maximum score global network alignment Aopt,
while the local network alignment problem is defined as finding a set of maximal
score local network alignments. The core of any alignment algorithm consists of an
alignment scoring function together with a search, or optimization method.

Before we discuss alignment algorithms, we also introduce a general form for the
node scoring function, S : {V1∪V2 . . .∪Vk}∗{V1∪V2 . . .∪Vk}→ ℜ, which assigns a
similarity score to each pair of nodes in the input networks. Different node similarity
functions have been proposed, based on the node attributes, as well as the local
network topology around each node. An example of the former case is the BLAST
score of the protein sequences corresponding to a pair of given nodes, while an
example of the latter case is the scoring function proposed by Kuchaiev et al. [3], in
which they use a vector representing the number of graphlets that each node takes
part, to compare the topological similarity around each node.

3 Algorithms and Methods

Alignment problems have been modeled as diverse optimization problems, based on
the underlying applications. In this section, we describe the mathematical models
underlying these variants of alignment problems and discuss algorithms for these
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problems. An important and difficult problem associated with these algorithms is
their validation. This difficulty stems from the noisy, incomplete, and statistically
skewed nature of underlying data. We conclude the discussion in this section with
an overview of validation techniques and databases available for analyses and
validation.

3.1 Local Alignment

Local alignment corresponds to a relationship defined over a subset of vertices in
the input networks. It is often used to extract conserved substructures (modules,
pathways, complexes) from a set of species. A number of algorithms have been
proposed for local alignment. We provide an overview of these methods in this
section.

3.1.1 The Blast Family: PathBlast, NetworkBlast, and NetworkBlast-M

PathBlast [4], proposed by Kelley et al. [5], was among the first attempts at network
alignment, with the goal of identifying conserved pathways in a pair of species.
The method identifies high-scoring alignments between pairs of pathways, one
from each input network, such that proteins in the first pathway map to their
putative homologs in the same order in the second pathway. To accomplish this,
PathBlast initially builds an alignment graph (see Sect. 2), where edges can be
either a match, gap, or a mismatch edge. Let v1

i and v2
i denote the nodes from

first and second species, respectively, in the equivalence class represented by node
vi in the alignment graph. A match edge occurs between nodes vi and v j in the
alignment graph when v1

i and v1
j are connected in the first species, and v2

i and v2
j are

connected in the second species. Otherwise, it can be either a mismatch, or a gap
edge. The former occurs when neither v1

i and v1
j , nor v2

i and v2
j are connected in their

corresponding species, and the latter occurs when only one of the protein pairs in
one of the species are connected.

The core of the PathBlast algorithm is a log probability score for evaluating each
pathway P in the alignment graph. This score is computed by decomposing the
pathway similarity score into a vertex scoring fraction and an edge scoring fraction.
More formally, the scoring function is defined as follows:

S(P)= ∑
v∈P

p(v)
prandom

+ ∑
e∈P

q(e)
qrandom

. (5.1)

Here p(v) represents the probability of true homology between the protein pair
from input networks represented by node v in the alignment graph. The quantity
q(e) represents the probability that interactions represented by e are real interaction,
not false positive interactions. Probabilities prandom and qrandom are evaluated as the
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expected values of p(v) and q(e), respectively. Using this scoring function, one can
find the optimal alignment as the one in which the pathway scoring function is
optimized over all pathways up to length L for networks of size n using randomized
dynamic programming. The method has an expected time complexity O(nL!), if the
input networks are acyclic (i.e., do not contain any cycle).

PathBLAST is available through a web-interface at http://www.pathblast.
org/. A user may specify a short protein interaction network for query against
a target PPI network from a network database. Protein interactomes of yeast
(Saccharomyces cerevisiae), the bacterial pathogen (Helicobacter pylori), bacterium
(Escherichia coli), nematode worm (Caenorhabditis elegans), fruit fly (Drosophila
melanogaster), mouse (Mus musculus), and human (Homo sapiens) are available as
target species. The program returns a ranked list of matching paths from the target
network along with a graphical view of these paths and the associated overlap.

Sharan et al. [6] extend the idea of PathBlast for extracting conserved protein
complexes from a pair of input networks. Their algorithm, NetworkBlast, allows
extraction of all conserved complexes across networks, as opposed to the single
query model of PathBlast. The resulting computational problem is more general
and difficult. NetworkBlast has also been generalized to NetworkBlast-M [7] for
identifying conserved networks among multiple networks.

Sharan et al. initially evaluate the reliability of PPI and build a weighted
network by assigning a confidence value to each interaction. They propose a logistic
regression model, based on the method proposed by Bader et al. [8], and use the
following three random variables to define their logistic distribution:

X1: Number of times an interaction between the proteins is experimentally observed
X2: Pearson correlation coefficient of expression measurements for the correspond-

ing genes
X3: Proteins’ small world clustering coefficient.

Using these random variables, the probability of a true interaction Tuv is defined as:

Pr(Tuv|X)=
1

1 + exp(−β0 −∑3
i=1 βiXi)

, (5.2)

where β0, . . . ,β3 are parameters of the distribution [6]. They then build an alignment
graph, in which each node corresponds to a group of k similar proteins, that is,
proteins from different species with BLAST E-values smaller than 10−7. Each edge
in the alignment graph represents a conserved interaction between the proteins that
occur in its end nodes. An edge is considered conserved if and only if one of the
following conditions is met:

• A pair of proteins directly interacts, and all other pairs include proteins with
distance at most two in their corresponding networks.

• All protein pairs have distance exactly two in their corresponding networks.
• At least max {2,k− 1} protein pairs directly interact.

http://www.pathblast.org/
http://www.pathblast.org/
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Finally, they devise a scoring scheme based on a likelihood model to fit the
subnetwork to the given structure. Given a subset U of the vertices, OU denotes the
collection of all observations on vertex pairs in U , and Ouv denotes the set of avail-
able observations on the proteins u and v, that is, the set of experiments in which an
interaction between u and v was, or was not, observed. Also, let Tuv denote the event
that two proteins u and v interact, and Fuv denote the event that they do not interact.

One may formalize the log-likelihood ratio of a subgraph under a conserved
subnetwork model, Ms, and under a null model, Mn, in a single species, as follows:

L(U)= log
Pr(OU |Ms)

Pr(OU |Mn)
= ∑

(u,v)∈U∗U

log
β Pr(Ouv|Tuv)+ (1−β )Pr(Ouv|Fuv)

puvPr(Ouv|Tuv)+ (1− puv)Pr(Ouv|Fuv)
,

(5.3)

where β is a high probability of interaction under the clique model, while puv is the
probability of interaction between proteins u and v under the null model (random
graph with the same degree distribution). To find the log-likelihood ratio of multiple
complexes across different species, one may sum the log-likelihoods for single
species.

Using this scoring function, the problem of identifying conserved subnetworks
reduces to one of finding high scoring subgraphs. This problem is known to be
NP-hard. Consequently, they adopt a greedy approach to this problem, which is
based on an extension of high scoring seeds, similar to the BLAST algorithm.
NetworkBlast is available via a web interface at http://www.cs.tau.ac.il/∼bnet/
networkblast.htm. It can also be downloaded as a stand-alone program from the
same website.

3.1.2 MAWISH: Alignment Based on Network Evolution Models

Koyutürk et al. [9,10] propose an evolution-based scoring function, which quantifies
the evolutionary distance of any pair of induced subgraphs in the input networks.
They use this scoring function to align the input networks (see Box 5.1 for a
detailed explanation of their scoring scheme). They reduce the local alignment
problem into a maximum weight induced subgraph problem (MAWISH). Noting
the NP-completeness of this problem by reduction from max-clique, they propose
a greedy approach to approximate the solution. They initially match the hub nodes
and iteratively expand the subgraph in the sparse product graph by adding nodes
that share a matching edge with these nodes, to maximize their scoring function.

Koyutürk et al. [14] extend their method to multiple networks, by contracting
the global alignment graph and then applying algorithms from frequent itemset
extraction. The MAWISH software is currently available for download from http://
compbio.case.edu/koyuturk/software/mawish.tar.gz.

http://www.cs.tau.ac.il/~bnet/networkblast.htm
http://www.cs.tau.ac.il/~bnet/networkblast.htm
http://compbio.case.edu/koyuturk/software/mawish.tar.gz
http://compbio.case.edu/koyuturk/software/mawish.tar.gz
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Box 5.1: MAWISH network evolution based scoring scheme

A common model of evolution that explains preferential attachment is the
duplication/divergence model, which is based on gene duplications [11–13].
According to this model, when a gene is duplicated in the genome, the node
corresponding to the product of this gene is also duplicated together with its
interactions. A protein loses many aspects of its functions rapidly after being
duplicated. This translates to divergence of duplicated (paralogous) proteins
in the interactome through elimination and emergence of interactions. Elim-
ination of an interaction in a PPI network implies the loss of an interaction
between two proteins due to structural and/or functional changes. Similarly,
emergence of an interaction in a PPI network implies the introduction of a new
interaction between two noninteracting proteins, caused by mutations that
change protein surfaces. Examples of duplication, elimination, and emergence
of interactions are illustrated in Fig. 5.1.

Using the duplication/divergence model, Koyutürk et al. [9, 10] propose
a novel evolution-based scoring function. Given PPI networks G1 =(V1,E1)
and G2 =(V2,E2), a protein subset pair P = {S1,S2} is defined as a pair of
protein subsets S1 ⊆ V1 and S2 ⊆ V2. Given a pair of graphs G1 and G2, any
protein subset pair P induces a local alignment A(G1,G2,P) = {M ,N ,D}
of G1 and G2 with respect to similarity score function S (see Sect. 2),
characterized by a set of duplications D , a set of matches M , and a set of
mismatches N . The biological analog of a duplication is the duplication of
a gene in the course of evolution. Each duplication is associated with a score
that reflects the divergence of function between the two proteins, estimated
using their similarity. A match corresponds to a conserved interaction between
two orthologous protein pairs, which is rewarded by a match score that reflects
our confidence in both protein pairs being orthologous. A mismatch, on the
other hand, is the lack of an interaction in the PPI network of one organism
between a pair of proteins whose orthologs interact in the other organism.
A mismatch may correspond to the emergence of a new interaction or the
elimination of a previously existing interaction in one of the species after the

u2 u3

u1 u1

u2 u3

u1p

insertion

u2 u3

u1pu1

duplication deletion

u1 u1p

u2 u3

Fig. 5.1. Evolutionary events, and their effects on network topology

(continued)
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Box 5.1 (continued)

split, or an experimental error. Thus, mismatches are penalized to account for
the divergence from the common ancestor. The formal definitions of these
three concepts are as follows:

Definition 5.1. Match, Mismatch, and Duplication Given protein inter-
action networks G1 =(V1,E1) and G2 =(V2,E2), and a pairwise similarity
function S, any protein subset pair P = (S1,S2), induces a local alignment
A(G1,G2,P) = {M ,N ,D}, where:

M =
{

u,v ∈V1,u
′,v′ ∈V2 : 0 < S

(
u,u′
)
, 0 < S

(
v,v′
)
,

(u,v) ∈ E1 ∧
(
u′,v′

) ∈ E2
)}

(5.4)

N =
{

u,v ∈V1,u
′,v′ ∈V2 : 0 < S

(
u,u′
)
, 0 < S

(
v,v′
)
,

(
(u,v) ∈ E1 ∧

(
u′,v′

)
/∈ E2

)∨ ((u,v) /∈ E1 ∧ (u′,v′) ∈ E2)
}

(5.5)

D = {u,v ∈V1 : 0 < S(u,v)} ∪{u′,v′ ∈V2 : 0 < S
(
u′,v′

)}
(5.6)

Matches M ∈ M , mismatches N ∈ N , and duplications D ∈ D are
associated with scores μ(M), ν(N), and δ (D), respectively. Using this formu-
lation of match, mismatch, and duplication, the evolutionary plausible scoring
function to evaluate each network alignment can be defined as follows:

Definition 5.2. Alignment Score Given PPI networks G1 and G2, the score
of alignment A(G1,G2,P) = {M ,N ,D} is defined as:

σ(A) = ∑
M∈M

μ(M)− ∑
N∈N

ν(N)− ∑
D∈D

δ (D). (5.7)

Equation (5.7) can be used to evaluate the evolutionary distance of any
given subset pair in the input networks.

3.1.3 Graemlin: Alignment with Equivalence Classes

Flannick et al. [2] propose an alternate method, Graemlin, which improves over
previous methods by using heuristics from sequence alignment. They propose a
formulation of network alignment, based on equivalence classes. In this model,
the network alignment problem is posed as follows: given a set of input networks,
a network alignment is defined as a set of subgraphs together with a symmet-
ric mapping between the corresponding (aligned) vertices. For the alignment to
be unique, this mapping should be transitive, meaning that A ↔ B,B ↔ C ⇒
A ↔ C; mathematically, such a symmetric-transitive relation is also known as
equivalence relation. This definition classifies the aligned vertices into disjoint
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groups (equivalence classes). Each equivalence class consists of proteins evolved
from a common ancestral protein, and unlike previous definitions, can contain
multiple proteins in same species, also known as paralogs. This formulation
allows them to modify the progressive alignment method adapted from sequence
alignment, and to be able to scale linearly in the number of the networks compared.
They also use a heuristic similar to seed extension in sequence alignment, to align
the input networks efficiently, and to be able to trade-off speed versus sensitivity.

Using this formulation, Flannick et al. propose a scoring function composed of
two parts, one to evaluate each equivalence class, and the other to evaluate each
edge in the alignment. The former is more straightforward, while the latter is more
involved, but provides the opportunity to search for arbitrary module structures.
The scoring scheme is similar in both: find the probability distribution defined for
two different models, namely the constrained alignment model M based on a given
module structure and random model R, and define the score function as the log-ratio
of two probabilities. Equation (5.8) presents the Graemlin scoring function.

S=Sc + Se, where

⎧
⎪⎨

⎪⎩

Sc = log
(

PM (c)
PR (c)

)

Se = log
(

PM (e)
PR (e)

) (5.8)

Scoring of equivalence classes is based on construction of the most parsimonious
ancestral history of the proteins in each equivalence class. This construction is based
on sequence mutations, insertions, deletions, duplication, and divergence among
proteins in each class. The probability of sequence mutations is estimated in a princi-
pled manner in their study; other events are determined heuristically. The alignment
model M is trained by sampling pairs of proteins from within the same COG
[15] group, while the random model R corresponds to picking random pairs in the
network (see Flannick et al. [2] supplementary material for a detailed description).

Scoring of alignment edges is based on the concept of an Edge Scoring Matrix
(ESM), a symmetric matrix defined over a set of alphabets, Σ , in which every entry
in the matrix is a probability distribution over edge weights. Graemlin first assigns
alphabets to each equivalence class, then it scores each alignment edge using the cell
in the ESM index by the labels assigned to two endpoints of the edge. This approach
extends the previous methods in that it is capable of searching for conserved
substructures with user-defined structure, not just pathways or complexes.

The next two steps use the score function to align a pair of networks, and to
extend this approach to multiple alignment. Graemlin mimics the seed extension
method, meaning that it tries to find a proper set of candidate seed vertices, and
then extends them greedily. Unlike MAWISH, the seed vertices are chosen in a way
that does not impose special topology (clique-like) on the subgraph structure. Seed
selection in Graemlin is based on the concept of d-clusters, it first selects d-clusters
for each node by finding d − 1 nearest neighbors, where the distance between
vertices is defined as the negative log of edge weights. It then finds the pairwise
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node similarity score of sample mappings between two d-clusters, one from each
species, and reports the highest score among them. The d-clusters with mapping
scores higher than the user defined threshold T are used as seeds. Parameters d and T
are adjustable parameters that can be used to trade-off speed versus sensitivity in the
algorithm. After computing the seeds, Graemlin greedily expands each equivalence
class by coalescing vertices in the frontier of each equivalence class.

An extension of this approach to multiple alignment using an analog of the
progressive alignment technique, commonly used in sequence alignment. Having
an extended phylogenetic tree with species on the leaves, the technique successively
aligns the closest pair of networks, and places three new networks in the parent
node: one for the alignment network, and two other networks for unaligned subsets
of the pair of networks.

Flannick et al. [2] construct ten weighted microbial PPI networks based on the
SRINI algorithm [16]. These are publicly available at http://graemlin.stanford.edu/
nets.tar.gz. Graemlin1.0 can be freely downloaded from http://graemlin.stanford.
edu/graemlin-1.0.tar.gz as a stand-alone application.

3.1.4 Information Theoretic Network Alignment

Yet another method, motivated by information theory, is recently proposed by Chor
et al. [17]. The fundamental idea in this method is to devise a computationally
tractable measure that computes the disparity between two uniquely labelled graphs
G1 and G2. This problem is then reduced to finding how many additional bits
do we need to encode a graph G2 given graph G1 (known as description length
of G2 given G1). To tackle this problem, Chor et al. impose the following key
assumptions:

• Shortest path conservation: If a pair of nodes u and v are common in the
vertex set of both networks, the length of the shortest path between them in the
underlying graph of G1 and G2 must be similar.

• Neighborhood conservation: If a pair of nodes u in G1 and v in G2 are similar
in some sense, like homolog proteins in PPI networks, but not identical, then the
level one neighborhood of u and v must be highly similar.

Using these assumptions, they developed a measure, D(G2|G1), which illustrates
the number of additional bits needed for encoding the adjacency list of graph
G2 given graph G1. This measure is not a distance metric, since it is clearly not
symmetric. To devise a metric, they proposed the notion of relative description
length as follows:

RDL(G1,G2)=
DL(G1|G2)

DL(G1)
+

DL(G2|G1)

DL(G2)
(5.9)

Armed with the RDL metric, which computes the distance between graphs using
an information theoretic method, they tackled the problem of finding conserved

http://graemlin.stanford.edu/nets.tar.gz
http://graemlin.stanford.edu/nets.tar.gz
http://graemlin.stanford.edu/graemlin-1.0.tar.gz
http://graemlin.stanford.edu/graemlin-1.0.tar.gz
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regions in networks. Conserved regions are defined as specific vertex-induced
subgraphs in each network. More precisely, they first extracted pairs of “similar”
nodes in networks, and then used this vertex set to induce subgraphs in correspond-
ing input networks. To find the set of conserved nodes, they started with the set of
common vertices, V ′=V1 ∩V2, and proceed by comparing the level d neighborhood
of each node v ∈ V ′ in networks G1 and G2 using RDL metric. Any node that the
RDL distance of its level d neighborhoods in G1 and G2 exceeds a threshold c will be
filtered out from V ′. Using V ′, edge sets E ′

1 and E ′
2 can be easily found by imposing

V ′ on G1 and G2, respectively, and finding the induced subgraph in each network.
Chor et al. [17] successfully apply their method to both metabolic pathways

extracted from KEGG database, and on a pair of PPI networks. Since PPI networks
do not have unique labeling among networks, they use a heuristic to label the nodes.
They define identical nodes in input networks as pairs of nodes in which the BLAST
scores of their corresponding proteins have E-value < e−10. This is similar in nature
to pruning the state space of mappings from beginning of the algorithm to a very
small subset of total possible mappings, namely the most promising ones.

3.1.5 Network Queries: A Supervised Approach to the Network
Alignment Problem

Network alignment and integration are focused on de novo discovery of biologically
significant regions embedded in a network, based on the assumption that regions
supported by multiple networks are functional. In contrast, a supervised approach to
conserved module detection relies on a query subnetwork that is previously known
to be functional. The objective of such methods is to identify subnetworks in a given
network that are similar to the query. Among these methods, MetaPathwayHunter
aims to identify metabolic pathways that match a query pathway in a database of
pathways [18]. Similarly, Narayanan and Karp [19] aim to find matching pathways
in PPI networks based on a match-and-split strategy. Bruckner et al. [20] propose a
novel method, named Torque (TOpology-free netwoRk QUErying), which unlike
most of the previous methods, does not restrict the topology of query network.
Finally, Banks et al. [21] propose an extension of regular expressions on strings
to networks, named network scheme.

3.2 Global Alignment

Global alignment algorithms aim to find a consistent relationship defined over all
vertices of the input networks. Global alignment is commonly used to establish
functional orthologs across species. A number of models and methods have been
proposed for global alignment of networks.
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3.2.1 Markov Random Field

One of the early efforts at global alignment of protein interaction networks is due to
Bandyopadhyay et al. [22]. This study aims at solving the ambiguity in Inparanoid
clusters with more than two proteins, to increase the accuracy of functional ortholog
prediction. It is based on the idea that early paralogous proteins (out-paralogs) are
more likely to change their interaction patterns and adopt new functions in the cell
(for more information, please see Sect. 4.1).

This method uses topological information in PPI networks to maximize the
number of conserved interactions to resolve ambiguity. The method relies on a
probabilistic model and assigns a binary random variable, zi to each node i in the
alignment graph (representing a pair of aligned nodes in the input graphs). The
variable indicates whether the corresponding protein pair represents true functional
orthologs or not. Two nodes in the alignment graph, zi and z j, are connected if at
least one of the protein pairs in the input graph (the protein pair represented by
either i or j) are connected, and the other one has a common neighbor (or is also
connected). The conditional probability distribution of Zi can be defined as:

P(Zi|ZN(i))=
1

1 + exp{−αi + ∑ j∈N(i) βijZ j} , (5.10)

where N(i) represents the neighbors of node i in the alignment graph. Simply
stated, this formulation implies that a pair of proteins represented by node i in
the alignment graph are more probable to be true functional orthologs when most
of their neighbors are functional orthologs as well. To verify this formulation,
one may observe that if we have only two proteins in the cluster, zi will be 1,
and for any pair of proteins in different clusters it is equal to 0. Bandyopadhyay
et al. use a training data set to estimate parameters α and β , and use Gibbs
sampling to evaluate the distribution function Z. Markov Random Field (MRF)
based methods are successfully applied to alignment of protein interaction networks
of yeast (S. cerevisiae) and fruit fly (D. melanogaster) (http://www.cellcircuits.org/
Bandyopadhyay2006/).

3.2.2 IsoRank Family: Pairwise IsoRank, IsoRank-M, and IsoRank-N

The basic idea of the IsoRank family of methods, as explained in detail in Box 5.2, is
to characterize the similarity of two nodes, vi in G1 and v j in G2, as a combination of
node similarity and topological similarity. This quantity, denoted rij, is computed for
all node pairs. The resulting similarity matrix, R, is used to align the input networks.

Singh et al. [23] propose a pairwise alignment technique based on similarity
matrix R. They use a well-known algorithm for graph matching to align a pair of
input graphs: they initially built a full weighted bipartite graph (nodes from G1

in one part, nodes from G2 in the other part, and edges representing similarity of
nodes in G1 to nodes in G2). They then compute a maximum weight bipartite match

http://www.cellcircuits.org/Bandyopadhyay2006/
http://www.cellcircuits.org/Bandyopadhyay2006/
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using Hungarian algorithm [24], to find the one-to-one global alignment. Since the
multiple graph matching problem, unlike bipartite graph matching, is known to be
NP-complete, Singh et al. [25] extend this result to multiple network alignment
by proposing heuristics for many-to-many alignment of input graphs based on the
following greedy approach:

Initialization: Select the edge (vk1
i ,vk2

j ) with the highest score, where vk1
i and vk2

j

are vertices in Gk1 and Gk2, respectively. Initialize a new equivalence class with vk1
i

and vk2
j as its initial members.

Expand to other species: In every other species, {G1, . . . ,Gk)}\{Gk1,Gk2}, if a
node l exists in species Gkx such that:

• R〈k1,kx〉
il and R〈k2,kx〉

jl are the highest scores between l and any node in Gk1 and Gk2,
respectively, and

• Both β1R〈k1,k2〉
ij ≤ R〈k1,kx〉

il , and β1R〈k1,k2〉
ij ≤ R〈k2,kx〉

jl

then, add it to the primary class. This step ensures that the equivalence class has at
most one node from each species.

Heuristic expansion: Add up to r−1 nodes from different parts of the graph to the
equivalence class. Suppose v (from Gky) is already in the equivalence class. Then,

node v′ (again from species Gky) is added to the class if β2R〈ky,kz〉
vw ≤ R〈ky,kz〉

v′w , for every
node w ∈ Gkz which is already in the equivalence class (w �= v).

Update Remaining: Remove from the alignment graph all of the nodes in the
constructed equivalence class, and their corresponding edges.

Here, parameters β1, β2 ∈ (0,1) and r are user-defined parameters. Also, R〈p,q〉
ij

represents the similarity between node vi from species p, and node v j from species q.
Liao et al. [26] propose an alternate heuristic for multiple alignment of net-

works. Their method, called IsoRankN (IsoRank-Nibble), is similar in concept
to PageRank-Nibble, which approximates the Personalized PageRank vector. This
approach constructs a full weighted k-partite graph with pairwise similarity scores
as the weight on edges, and use a method based on spectral clustering to cluster
the graph into low-conductance sets (similar to partitioning the graph into maximal
weight subgraphs). All versions of IsoRank are available for download from http://
groups.csail.mit.edu/cb/mna/.

3.2.3 Graemlin Family: Graemlin2.0

Flannick et al. [27] extend the concepts underlying Graemlin 1.0 by incorporating
a general scoring framework. This framework is based on a user defined feature
vector, and a weight function that can be learned from a set of true alignments.
They also propose a hill-climbing method in Graemlin 2.0 and use this scoring
function to align the input networks globally.

http://groups.csail.mit.edu/cb/mna/
http://groups.csail.mit.edu/cb/mna/
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Box 5.2: IsoRank Algorithm

The core of all IsoRank-based algorithms is a method for computing the
similarity matrix R, representing the functional similarity scores between any
pair of nodes in two input networks. To compute these similarity scores, Singh
et al. [23] propose an approach similar to PageRank. The method is based on
the notion that a pair of nodes (i, j) represent a good match if the sequences
corresponding to nodes i and j align well, and that their respective neighbors
are also good matches. This recursive definition leads to the following formal
definition of R:

Rij = ∑
vu∈N(vi),vw∈N(v j)

1
|N(vu)||N(vw)|Ruw, (5.11)

where N(vi) represents the neighbors of node vi in the input network. Using a
matrix notation, this equation can be rewritten as:

R = AR

A[i, j][u,v] =

{
1

|N(u)||N(v)| , if (i,u) ∈ E1 and ( j,v) ∈ E2;

0, otherwise.

This formulation describes an eigenvalue problem. Matrix A is a stochastic
matrix, with principal eigenvalue of 1. One can use the simple power
method for solving this problem. To incorporate sequence similarities into the
formulation, the normalized node similarity matrix (calculated from an all-to-
all BLAST bit scores) can be used. The corresponding modified eigenproblem
is as follows:

R=αAR +(1−α)E, (5.12)

where E is the normalized node similarity matrix and parameter α represents
the tradeoff between network and node similarity. Equation (5.12) is the base
equation for all IsoRank-based algorithms.

The approach to learning the weight function is based on the definition of loss
function L , defined as L : A ∗A → R+, which measures the distance of a given
alignment from the gold standard alignment used for training. Intuitively, the learned
weight vector should assign higher scores to alignments with smaller loss function
values, and a score of zero for the correct alignment. The loss function grows as
alignments diverge from the correct alignment.

To learn the weight function, Flannick et al. [27] use KEGG Ortholog (KO)
groups [28] as the training set. Each training sample contains networks from a set of

species, G(i) = G(i)
1 , . . . ,G(i)

n , with nodes that do not have a KO group removed; the
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correct alignment a(i) contains an equivalence class for each KO group. Let [x]a(i)

denote the equivalence class of x ∈ V (i) = ∪ j V (i)
j in a(i), and [x]a denote the

equivalence class of protein x under a. One possible definition for the loss function
is as follows:

L (a(i),a)= ∑
x∈V (i)

|[x]a\[x]a(i) |. (5.13)

Here, A\B represents the set difference between sets A and B. It counts the number
of nodes aligned in a that are not aligned in the correct alignment a(i). To learn the
weight function, the parameter learning problem is posed as the maximum margin
structured learning problem. Given a training set and the loss function, the learned
weight function, w, should score each training alignment a(i) higher than all other
alignments a by at least L (a(i),a). Formally we have the following definition:

∀i,a ∈ A (i),w.f(a)+L (a(i),a) ≤ w.f(a(i)), (5.14)

where A (i) is the set of all possible alignments of G(i). The optimal weight function
w is then computed using a subgradient descent method.

After finding the optimum w, Graemlin2.0 uses a hill-climbing method for
approximating the global alignment of input networks. It starts from an initial
alignment containing every node in a separate equivalence class. It then iteratively
updates the alignment by evaluating a series of local movements on vertices,
computing the alignment score before and after the move, and performing the move
that increases the score the most. There are four possible moves for each vertex
under consideration:

• Do nothing
• Create a new equivalence class containing only that node
• Move the node to another equivalence class
• Merge the container equivalence class of that node with another equivalence class

This process terminates when an iteration does not increase the alignment score.
Graemlin2.0 is available for download at http://graemlin.stanford.edu/graemlin-2.
01.tar.gz Datasets needed for training and testing Graemlin2.0 can be downloaded
from http://graemlin.stanford.edu/graemlin-2.0 test files.tar.gz.

3.2.4 Methods Based on Integer Quadratic Programming Formulations

The global alignment problem can be explicitly posed as an integer quadratic
programming (IQP) problem. Several approaches take this view to the global
alignment problem and aim to solve this problem. Before we introduce the IQP
formulation of the one-to-one global network alignment problem, we note that the
pairwise alignment of a pair of input networks, G1 =(V1,E1) and G2 =(V2,E2),
can be formulated as a bipartite graph matching problem. We construct a bipartite
graph as follows: let the vertices of the first part of the bipartite graph consist of

http://graemlin.stanford.edu/graemlin-2.01.tar.gz
http://graemlin.stanford.edu/graemlin-2.01.tar.gz
http://graemlin.stanford.edu/graemlin-2.0_test_files.tar.gz
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the vertices in V1, and the vertices in the second part consist of the vertices in V2.
Connect each node in the first part to every node in the second part, but not to
any of the vertices within the same partition. Formally, let us denote the bipartite
graph as GBi =(VBi,EBi), in which VBi ={V1 ∪V2} and EBi ={(vi,v j) ∈ V1 ∗V2}.
This graph is a complete bipartite graph, represented as Km,n. We claim that every
one-to-one network alignment between G1 and G2, is equivalent to a matching in the
constructed bipartite graph, since any one-to-one network alignment assumes that
each vertex in first network is mapped to at most one node in the second network,
and correspondingly any matching in the bipartite graph, is a subset of EBi such that
no two edges share the same endpoint. This is equivalent to the condition that each
node in the first graph should be aligned with at most one node in the second graph.

Following this bijection, one can extend the concept of matching to maximum
weight matching, to find an optimal one-to-one global network alignment. Having
set the appropriate edge weights in the bipartite graph, one may argue that the
maximum weight bipartite matching (which can be found using the Hungarian
algorithm [24] in O(max{m,n}3) time), is equivalent to the optimal one-to-one
network alignment. The pairwise IsoRank algorithm (see Sect. 3.2.2) is an example
of this class of problems – it defines the similarity score between nodes in input
networks, namely the R matrix, in a way that captures both the node-based and
topological similarities around each node, and uses this matrix to weight the edges
in the bipartite graph to find the alignment. Integer quadratic programming, on
the other hand, aims at explicitly finding the optimal matching and updating the
maximum scores of the alignments, in a way that maximizes the node similarity
score between matched nodes, as well as the conserved edges in a pair of networks.

Definition 5.3. Integer Quadratic Programming Formulation Given a pair of
unweighted graphs, G1 =(V1,E1) and G2 =(V2,E2), represented by their corre-
sponding adjacency matrices A=(aij)m∗m and B=(bij)n∗n, respectively, let the
matching variable xij be equal to one, if node vi ∈ V1 is matched to node v j ∈ V2.
The global network alignment can be formulated as an integer quadratic program as
follows:

MaximizeX{φ(G1,G2)} = λ
m

∑
i=1

n

∑
j=1

sijxij +(1−λ )

×
m

∑
i=1

n

∑
j=1

m

∑
k=1

n

∑
l =1

aikbjlxijxkl (5.15)

Subject to

⎧
⎪⎨

⎪⎩

∑n
j=1 xij ≤ 1, ∀i ∈ {1, . . . ,m};

∑m
i=1 xij ≤ 1, ∀ j ∈ {1, . . . ,n};

xij ∈ {0,1}, ∀i ∈ {1, . . . ,m} and ∀ j ∈ {1, . . . ,n}.

Here, parameter λ adjusts the relative importance of node similarity and edge
conservation. The first two constraints ensure that every node in each partition is
mapped to at most one node in the other partition, while the last constraint is the
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integer constraint for variables xij. This formulation can also be expressed in closed
matrix form. Denoting the matching variables xij and node similarity scores sij using
matrices X and S, respectively, the above definition can rewritten as:

MaximizeX{φ(G1,G2)} = λ XS+(1−λ )AXBT •X (5.16)

Subject to

{
X1m ≤ 1n,XT 1n ≤ 1m Matching constraints;

xij ∈ {0,1}, Integer constraint.

Here, • is the inner-product operator between matrices, and 1m and 1n are vectors
of all ones, of sizes m and n, respectively. To generalize the problem to arbitrary
bipartite graphs, (EBi does not correspond to a complete bipartite graph), we formu-
late the problem differently. Let vector Xυ , of size |EBi|= |V1| ∗ |V2|=m∗ n, denote
the vectorization of X , and vector Sυ of the same size denote the vectorization of S.
Let matrix C be a matrix of size |EBi| ∗ |EBi|, in which element Ce1,e2 =1, for any
e1 =(i1, j1),e2 =(i2, j2) ∈ EBi, if (i1, i2) ∈ E1 and ( j1, j2) ∈ E2, and zero otherwise.
An entry in matrix C indicates whether or not a pair of matchings, i1 → j1 and
j1 → j2, result in a conserved edge in the input networks. Finally, let matrix D,
of size |VBi| ∗ |EBi|, be the unoriented incidence matrix of the bipartite graph. The
general IQP can be written as follows:

MaximizeX{φ(G1,G2)} = λ ST
υ X +(1−λ )XT

υ CXυ (5.17)

Subject to : DXυ ≤ 1,x ∈ ({0,1}m∗n)T ,

where 1 is the vector of all ones, of size |VBi|= |V1|+ |V2|=m+ n.
Equation (5.15) was initially proposed by Li et al. [29], who showed that

the constraints in the formulation have a unimodular property. This implies that
the problem can be relaxed to quadratic programming with an integral solution
in the general case. Furthermore, they proved the sufficient conditions to ensure
that the quadratic programming will have an integer solution.

The associated algorithm, called MNAligner, is used to align PPI networks
of yeast (S. cerevisiae) and fruit fly (D. melanogaster) (from [22]), as well as
a pair of metabolic pathways for E. Coli and yeast (S. cerevisiae). To deal with
the computational complexity associated with large networks, Li et al. apply a
network clustering algorithm to input network first, and then apply their method to
identify conserved regions in the smaller subgraphs. Matlab code for the algorithm is
available from http://zhangroup.aporc.org/bioinfo/MNAligner or http://intelligent.
eic.osaka-sandai.ac.jp/chenen/software/MNAligner.

The closed form in (5.16) and (5.17) is first introduced by Bayati et al. [30].
They also show that IsoRank is an approximate solution of the integer quadratic
programming, that does not explicitly satisfy the constraints. They also propose a
modification of the IsoRank formulation by restricting the number of edges in the
bipartite graph by eliminating unpromising edges. This makes the algorithm more
suitable for large sparse graphs (where the number of nodes in input graphs are in

http://zhangroup.aporc.org/bioinfo/MNAligner
http://intelligent.eic.osaka-sandai.ac.jp/chenen/software/MNAligner
http://intelligent.eic.osaka-sandai.ac.jp/chenen/software/MNAligner
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order of hundreds of thousands). Their implementation in Matlab as well as test
cases are available for download at http://www.stanford.edu/∼dgleich/publications/
2009/netalign/.

Klau [31] proposes a similar formulation, albeit with different notation, and
a different relaxation technique. In this approach, the IQP is first transformed
into an equivalent linear integer program. A relaxation based on the Lagrangian
decomposition is then used to solve this problem. The violation of constraints,
together with their Lagrange multipliers, are integrated into the objective function.
It is known that the solution to the Lagrangian linear program is an upper bound
for the linear program, which itself is an upper bound for the network alignment
problem. A heuristic is developed for reducing the gap between the fractional upper
bound and integer solution. An implementation of this technique is available from
https://www.mi.fu-berlin.de/wiki/pub/LiSA/Natalie/natalie-0.9.tgz.

Zaslavskiy et al. [32,33] also use a similar formulation, and propose two different
methods for solving it. The first method, called GA, is based on the gradient descent
method. GA starts from an initial solution and searches the state space of matchings
for an optimal solution based on the gradient of the objective function φ . Like
all other local search methods, this approach is suitable if we can start from a
“good” initial solution that is close enough to the optimal solution. Otherwise,
it gets stuck in local minima. The second algorithm, called PATH, is based on
two relaxations of (5.17), one concave and one convex, over the set of doubly
stochastic matrices. PATH starts by solving the convex relaxation, using the Frank–
Wolfe method [34], and then iteratively solves a linear combination of convex and
concave relaxation by gradually increasing the weight of the concave relaxation and
following the path of the solutions thus created. This algorithm is implemented as
part of the Graph Matching (GraphM) package. This package aims to collect various
graph matching methods in a unified framework, and to organize them in a simple,
easily extendible software package. The package is freely available from http://cbio.
ensmp.fr/graphm/personal dir/graphm-0.5.tar.gz.

3.3 Multiple Network Alignment: Complexity and Scalability

Increasing amounts of network data requires methods that scale up from aligning
pairs of networks to multiple networks from different species. Existing methods
have serious limitations with respect to scalability to large numbers of networks and
most rely on heuristics. Trade-offs between computational cost of heuristics and
their solution quality remains an open and active area of research.

NetworkBlast, proposed by Sharan et al. [7], is applied to the alignment of up to
three networks. While this method is able to align multiple networks theoretically, in
practice the running time grows exponentially in the number of species, which limits
the number of graphs that can be simultaneously aligned. Kalaev et al. [35] improve
the running time of this method from O(nk) to O(n2k), where n denotes the number
of vertices and k denotes the number of networks. The intuition behind this method

http://www.stanford.edu/~dgleich/publications/2009/netalign/
http://www.stanford.edu/~dgleich/publications/2009/netalign/
https://www.mi.fu-berlin.de/wiki/pub/LiSA/Natalie/natalie-0.9.tgz
http://cbio.ensmp.fr/graphm/personal_dir/graphm-0.5.tar.gz
http://cbio.ensmp.fr/graphm/personal_dir/graphm-0.5.tar.gz
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is to prevent the creation of alignment graph directly, and to build it implicitly as
part of the algorithm. This avoids creation of nodes for every set of potentially
orthologous proteins (recall that the size of the alignment graph grows exponentially
in k). Note that the resulting algorithm still has exponential running time.

All IsoRank-based methods require a quadratic time complexity in the number of
input species, k, multiplied by the running time for computing similarities between
a pair of networks using the iterative procedure. IsoRank for aligning multiple
graphs, as proposed by Singh et al. [25] (see Sect. 3.2.2), takes pairwise similarity
matrices, and applies a greedy method to construct an alignment graph based on
them. IsoRank-N [26], on the other hand, uses a spectral clustering mechanism to
cluster the nodes in input networks based on the pairwise similarity matrices.

Flannick et al. [2] define equivalence classes for constructing the alignment
graph, and are able to mimic the progressive sequence alignment technique
to achieve linear runtime dependence in number of graphs. As mentioned in
Sect. 3.1.3, this approach initially links species using a phylogenetic tree, and
at each step merges the two closest networks to create a single alignment graph.
This method has been successfully applied to up to ten microbial networks. Note,
however, that this heuristic is sensitive to the quality of the phylogenetic tree used
to establish the relationship between species.

3.4 Validation Methods

An important problem associated with validating network alignment algorithms is
that assessment of the quality of an alignment is not straightforward. The basic
concept underlying comparative network analysis is one of transferring “knowl-
edge” from one species to other. This knowledge can be the functional annotation
of proteins, functional modules, disease/phenotype, etc. Consequently, before we
can evaluate a method, and its associated knowledge transfer, we need to define
a unified framework to describe the knowledge, annotate entities, and transfer
it among different species. Ontologies, which provide a hierarchical framework
of categorized consensus vocabularies, provide facilities for formally describing
the knowledge about various biological entities. This set of vocabularies can
change from context to context, and even in the same context we might have
several different frameworks. The most widely used vocabularies describing protein
function are the Gene Ontology (GO) [36], Enzyme Commission (E.C.) [37], and
MIPS Functional Catalogue (FunCat) [38].

GO consists of three individual, hierarchical ontologies containing terms that
describe molecular function (biochemical activity), biological process (pathway),
and cellular component (localization). GO terms associated with protein sequences
carry evidence codes that describe the experimental or computational evidence
for the annotation. E.C., which is commonly used for annotating enzymes in
KEGG pathways, is a four-level hierarchy of enzyme nomenclature, describing
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biochemical activity. MIPS FunCat is a six-level hierarchical scheme used for
genome annotation containing over 1,300 terms in 28 general categories [39]. There
are different ontologies for describing disease implicated genes, based on their
relation to different disease related pathways. As an example, NetPath [40], at this
time contains ten immune and ten cancer signaling pathways. OMIM [41] is a
frequently accessed database related to genetic variants associated with phenotypes.

Here, we primarily focus on methods for quality assessment in function pre-
diction using comparative analysis. Knowledge relating to annotations is partial
and one is interested in using methods such as network alignment to expand this
knowledge. This enhancement is hard to assess, especially since the available
knowledge is not reliable or even homogeneous. As an example, GO annotations
have different tags based on their annotating methodology, and GO annotations
tagged as IEA (electronic annotation), ISS (pure sequence-based annotation), or
ND (annotation without documented evidence) are known to be unreliable. This
heterogeneity and incompleteness in data makes it hard to define measures for
evaluating the quality of different methods. Furthermore, cellular entities typically
participate in different processes, and thus have multiple annotations. Considering
all of the aforementioned limitations, one must consider a gold standard, and
evaluate methods based on this gold standard.

Since there have been different methods proposed for evaluating the consistency
of functional annotation mappings, we briefly review different approaches. These
approaches are based on given mappings between nodes of the input networks.
Singh et al. [25] propose the following methodology for computing functional
coherence as their quality assessment measure: Given an ortholog list, they initially
extract equivalence classes that have at least a fraction k of their proteins with at
least one GO term, which they set k = 80% in their multiple alignment method
using IsoRank (see Sect. 3.2.2). Next, they collect all of the GO terms corresponding
to any protein in each remaining equivalence class (except those with ISS, IEA or
ND tags). To compare these GO term lists, they map each GO term into a standard
form, which they define as subset of GO terms that are at a distance of five from the
root of the GO tree, and each GO term t is mapped to its ancestor(s) at this level.
In this way, they not only map the annotation to a common level in the GO hierarchy,
but also eliminate functional annotations that are not specific enough. Having the set
of proteins in each equivalence class annotated with homogenized set of GO terms,
they proposed an intra equivalence class scoring, followed by averaging of scores
in different classes. To evaluate the functional coherence in each equivalence class,
Singh et al. first define the similarity score between any pair of GO terms used
to annotate proteins in each equivalence class as follows: let Si and S j be the set
of proteins in the equivalence class annotated by standardized GO terms ti and t j,
respectively. The pairwise similarity score between ti and t j is defined as:

sim(ti, t j)=
Si ∩S j

Si ∪S j
(5.18)
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Note that this similarity score is symmetric, and is bounded by 0 and 1. Next, to
find the functional coherence in each equivalence class, they find the median over
all possible pairwise combinations of GO terms in each equivalence class. Finally,
as mentioned earlier, they average over functional enrichments of all classes.

They propose different methods for evaluating IsoRankN (see Sect. 3.2.2) –
consistency and coverage. The former is defined as the mean entropy of the
predicted clusters. More formally, consistency of a given cluster S∗v is defined as:

H(S∗v)=H(p1, p2, . . . , pd)=
d

∑
i=1

pi log pi, (5.19)

where pi is the fraction of the proteins in S∗v with GO or KEGG group ID i.
They also propose a normalization of entropy scores by the cluster size as,
Hnorm(S∗v)= 1

logd H(S∗v). The coverage of an alignment method is measured by the
number of clusters containing proteins from at least k species, where k is an
adjustable parameter. An alternate definition for coverage is proposed by Kalaev
et al. [35] based on the enrichment of predicted groups with respect to known
ontologies derived from either GO or KEGG.

Flannick et al. [2] propose two different sets of measures to mimic sensitivity and
specificity, respectively. They assess the former by counting the number of KEGG
pathways in species that are aligned together correctly, meaning that at least three
proteins in each pathway are aligned with their counterparts in the other species. To
measure the specificity, they propose two methods. First, to compute the specificity
based on GO terms, they assign to each protein all of its annotations from level 8
or deeper in the GO hierarchy, and then calculate the alignment enrichment using
GO TermFinder [42]. The alignment is considered enriched, if the p-value of the
alignment is less than 0.01. Second, they measure the specificity based on the
fraction of nodes that have KEGG orthologs, but are aligned to any nodes other
than their KEGG orthologs.

An alternate method for assessing alignment methods, is to measure the number
of conserved edges. Conservation in this sense means that a pair of nodes v1

i and v1
j

are aligned to their orthologs v2
i and v2

j , and there is an edge both between v1
i and v1

j ,

as well as v2
i and v2

j , indicating that the alignment conserved those edges.

3.5 Databases

There are a number of databases for comparative network analysis. The first set
of sources contain interactomes of different species. One of the most commonly
studied interactomes, is the PPI network. The following databases are frequently
used for PPI data:

• Biomolecular Interaction Network Database (BIND) [43] is a database of full
descriptions of interactions, molecular complexes, and pathways. Development
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of the BIND 2.0 data model has led to the incorporation of virtually all
components of molecular mechanisms, including interactions between any two
molecules composed of proteins, nucleic acids, and small molecules. The BIND
database can be accessed through http://www.bind.ca/.

• The Database of Interacting Proteins (DIP) [44] catalogs experimentally deter-
mined interactions between proteins. It combines information from a variety of
sources to create a single, consistent set of PPIs. The data stored in DIP has
been curated, both manually, by expert curators, and automatically, using com-
putational approaches that utilize knowledge about the PPI networks extracted
from the most reliable, core subset of DIP data. In addition to the interaction
information, DIP includes additional data regarding the proteins participating in
PPI networks. This database is available on http://dip.doe-mbi.ucla.edu/.

• IntAct [45] provides an open framework for storing, presenting, and analyzing
protein interactions. The web interface provides both textual and graphical
representations of protein interactions, and allows exploration of interaction
networks in the context of the GO annotations of the interacting proteins. A web
service allows direct computational access to interaction networks in XML.
All IntAct services are accessible through http://www.ebi.ac.uk/intact.

• The Biological General Repository for Interaction Datasets (BioGRID) [46] is
another curated database of protein–protein and genetic interactions. It aims to
provide a comprehensive resource for protein-protein and genetic interactions
for all major model organisms, while attempting to remove redundancy, to
create a single mapping of interactions. It can be accessed from http://www.
thebiogrid.org/.

• The Molecular INTeraction database (MINT) [47] extracts, curates, and stores
experimental information about physical interactions between proteins from pre-
viously published results in peer-reviewed journals. This database is accessible
from http://mint.bio.uniroma2.it/mint/.

• MPact [48] is a PPI database that is targeted to yeast (S. cerevisiae). The complete
dataset, as well as user-defined subnetworks can be retrieved in the PSI-MI
format from http://mips.gsf.de/genre/proj/mpact.

DIP, IntAct, BioGRID, MINT, and MPact are participating databases in the
International Molecular Exchange Consortium (IMEx), a group of the major public
interaction data providers. The databases of IMEx work together to prevent dupli-
cations of effort, collecting data from nonoverlapping sources and sharing curated
interaction data. There are also several databases related to cellular pathways, which
are briefly reviewed here:

• Kyoto Encyclopedia of Genes and Genomes (KEGG) [28], which is publicly
available at http://www.genome.ad.jp/kegg/, is a collection of online databases of
genomes, enzymatic pathways, and biochemicals. The pathway database stores
networks of molecular interactions in the cells, and their variants specific to select
organisms. They cover different areas of interest including metabolism, genetics,
cellular processes, human diseases, and drug development. The database also
provides a standardized method for representing pathways that a protein takes
part in using the KEGG Orthology (KO).

http://www.bind.ca/
http://dip.doe-mbi.ucla.edu/
http://www.ebi.ac.uk/intact
http://www.thebiogrid.org/
http://www.thebiogrid.org/
http://mint.bio.uniroma2.it/mint/
http://mips.gsf.de/genre/proj/mpact
http://www.genome.ad.jp/kegg/
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• BioCyc [49] is a collection of databases publicly available at http://biocyc.org/.
Databases within BioCyc describe genome and pathway information for individ-
ual organisms. EcoCyc and MetaCyc are the two databases within BioCyc, which
are well curated from scientific literature.

• Netpath [40] is a curated resource of human signal transduction pathways,
which can be accessed at http://www.netpath.org/. It currently consists of ten
immune and ten cancer signaling pathways. These pathways contain information
pertaining to PPIs, catalytic reactions, translocation events, and genes that are
differentially regulated upon stimulation of receptors by their specific ligands.

• Reactome [50] is a curated, peer-reviewed resource of human biological pro-
cesses publicly available at http://www.reactome.org/. The largest set of entries
refers to human biology, however, it also covers a number of other organisms as
well. GO is used to describe the subcellular locations of molecules and reactions,
molecular functions, and the larger biological processes that a specific reaction
is part of.

• NCI-Nature Pathway Interaction Database (PID) [51] is a free biomedical
database of human cellular signaling pathways available at (http://pid.nci.nih.
gov/). The database contains information about molecular interactions and
reactions that take place in cells, with a specific focus on processes relevant to
cancer research and treatment.

In addition to interactome and pathway databases, there are several sequence-
related (genes/proteins) databases. Currently, UniProt [52], which is accessible at
http://www.uniprot.org/, is the universal protein database. It is a central repos-
itory of protein sequences that integrates Swiss-Prot, a reliable database from
European Bioinformatics Institute (EBI), and Swiss Institute of Bioinformatics
(SIB), TrEMBL, a less reliable database that covers a wider range of proteins, and
Protein Sequence Database (PSD), from Protein Information Resource (PIR). Three
major databases storing gene sequences are:

• DNA Data Bank of Japan (DDBJ) [53], which is maintained by National
Institute of Genetics (NIG) in the Shizuoka prefecture of Japan, which is publicly
available at www.ddbj.nig.ac.jp/.

• EMBL Nucleotide Sequence Database [54], which is maintained by the European
Bioinformatics Institute (EBI), available at http://www.ebi.ac.uk/embl.

• GenBank [55], maintained by National Center for Biotechnology Information
(NCBI) as part of the International Nucleotide Sequence Database Collaboration,
or INSDC, available at www.ncbi.nlm.nih.gov/genbank/.

These databases are the main repositories for gene sequences for all organisms,
and are members of The International Nucleotide Sequence Database (INSD). They
exchange newly submitted gene sequences frequently (daily) minimize inconsis-
tencies. There are also a number of species-specific databases. These databases
typically integrate information from different sources to construct a uniform
database of all the information specific to a species. Some well-known species-
specific databases include:

http://biocyc.org/
http://www.netpath.org/
http://www.reactome.org/
(http://pid.nci.nih.gov/)
(http://pid.nci.nih.gov/)
http://www.uniprot.org/
www.ddbj.nig.ac.jp/
http://www.ebi.ac.uk/embl
www.ncbi.nlm.nih.gov/genbank/
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• Flybase [56], accessible at http://flybase.bio.indiana.edu/, is an online database
of the biology and genome of the model organism fruit fly (D. melanogaster).
It contains a complete annotation of the D. melanogaster. It also includes a
searchable bibliography of research on Drosophila genetics.

• The Arabidopsis Information Resource (TAIR) [57] maintains a database of
genetic and molecular biology data for the model organism plant (Arabidopsis
thaliana), at http://www.arabidopsis.org/. Data available from TAIR includes the
complete genome sequence, along with gene structure, gene product information,
metabolism, gene expression, DNA and seed stocks, genome maps, genetic, and
physical markers.

• Mouse Genome Database (MGD) [58] is an integrated data resource for mouse
genetic, genomic, and biological information, at http://www.informatics.jax.
org/. MGD includes a variety of data, ranging from gene characterization and
genomic structures, to orthologous relationships between mouse genes and those
of other mammalian species, to maps (genetic, cytogenetic, physical), descrip-
tions of mutant phenotypes, characteristics of inbred strains, and information
about biological reagents such as clones and primers. Data is accessed via
search/retrieval Web forms and displayed as tables, text, and graphical maps,
with supporting primary data. A rich set of hypertext links is provided, such as
those from gene and clone information to DNA and protein sequence databases
(GenBank, EMBL, DDBJ, SWISS-PROT), from bibliographic data to PubMed,
from phenotypes to Online Mendelian Inheritance in Man (OMIM), and from
gene homology records to the genomic databases of other species.

• Rat Genome Database (RGD) [59], accessible at http://rgd.mcw.edu/, stores
genomic, genetic, functional, physiological, pathway and disease data for the
laboratory rat, as well as comparative data for rat, which is a major model
organism for the study of human disease.

• Saccharomyces Genome Database (SGD) [60] stores information about the
chromosomal features and gene products of the budding yeast S. cerevisiae,
which can be publicly accessed at http://www.yeastgenome.org/.

4 Applications

Network alignment has been successfully applied to a variety of problems, including
function prediction for unannotated proteins, investigating cellular machinery,
comparative analysis of evolutionary events, and integrating biological networks
with prior data sources for disease diagnoses.

4.1 Projecting Functional Annotations

While high-throughput methodologies for assessing protein function are emerg-
ing, computational methods are essential for complementing these experimental
techniques. Evolutionary events and analyses have been shown to be effective

http://flybase.bio.indiana.edu/
http://www.arabidopsis.org/
http://www.informatics.jax.org/
http://www.informatics.jax.org/
http://rgd.mcw.edu/
http://www.yeastgenome.org/
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in studying biomolecular functions across species. Comparative analyses across
evolutionarily close species, such as humans (H. sapiens) and mice (M. musculus),
and model organisms such as yeast (S. cerevisiae), nematode worm (C. elegans),
and fruit fly (D. melanogaster) (because of their short life cycle), have provided
critical insight into structure and function of various proteins [61].

Understating phylogenetic relationships among proteins can help in predicting
their structure and function. Two proteins with similar sequences are known to
be homologous. If a pair of homologous proteins have evolved from a common
ancestor by speciation event(s), they are referred to as orthologs. Proteins can also
be separated by duplication event(s) – such proteins are called paralogs. Paralogous
proteins, contrary to orthologous proteins, can, and usually do, diverge in their func-
tion after duplication. They can be classified into two different classes: in-paralogs
(also known as recent paralogs), in which pairs of proteins are duplicated after a
speciation event, and out-paralogs (also known as ancient paralogs), in which the
duplicated event precedes the speciation event. In the former case, proteins are more
likely to be true functional orthologs, since there is shorter distance between the
duplicated ancestor and its descendants.

Early computational methods for predicting protein functions are primarily
sequence-based. Sequences of proteins from different species are compared to
find homologous proteins. Two examples of sequence-based models are Clusters
of Orthologous Groups (COG) [15] and Inparanoid [62]. COG defines functional
orthologs using sets of proteins that contain best BLAST matches across a minimum
of three species. The Inparanoid approach is a sequence-based method for finding
functional annotation. It uses clustering to derive ortholog families, leaving some
of the orthology relations ambiguous. When the homology is not ambiguous,
especially in cases where the function is essential to the evolutionary fitness, the
pair of homologous proteins usually are functional orthologs, carrying the same set
of functions. On the other hand, when we have multiple homologous proteins in
different organisms, there is an ambiguity about the true functional orthologs, since
these may result from different evolutionary events.

An all-versus-all BLAST method for predicting protein functions is often
unable to distinguish between out-paralogs and in-paralogs, and thus results in
false-positives. Different methods have been proposed to remedy this problem.
Comparative network analysis is one of the most promising methods. The moti-
vation behind the use of comparative network analysis is that out-paralogs, which
are ancient, had more time to diverge in their patterns of interactions. One may use
these differences in interaction patterns to make a decision regarding the elimination
of out-paralogous proteins. Most of the global alignment methods discussed in
Sect. 3.2, are used to transfer functional annotations based on this hypothesis.

4.2 Conserved Functional Modules Across Species

Biological systems can often be decomposed into smaller subsets, known as
modules. Modules are a sets of cohesive entities that are loosely connected to the rest
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of the system [63]. Hartwell et al. [64] hypothesized that biological processes within
individual cells are carried out by such modules, also called “functional modules.”
These are discrete entities composed of various molecules, whose functions are
separable from others, and whose functions are manifested in their interaction
patterns.

It has been shown that most of cellular interactome, including PPI, metabolic,
and GRNs, have modular structure. Protein complexes in PPI networks [65, 66],
metabolic pathways in metabolic networks [67], and signal transduction pathways
in GRNs [68, 69], are examples of modules that have specific functions in their
corresponding networks. However, both decomposition and functional annotation
of the modules pose significant challenges from points of view of model and
method development. Comparative network analysis is known to be one of the most
powerful methods for decomposing networks of multiple species to extract their
common functional modules. These methods are based on the idea that conservation
of specific substructures across species implies their functional coherence (for a
brief overview of other methods, please see Sect. 5.1).

Most of the local alignment methods discussed in Sect. 3.1 can be used to
extract conserved substructures in the networks of multiple species, and to predict
functional modules. For example, the use of PathBLast [5] to align protein interac-
tion networks of two distantly related species, yeast (S. cerevisiae) and bacterium
(H. pylori), uncovers remarkable conserved pathways among them. It is also used
for aligning protein interaction networks of P. falciparum with other eukaryotes
(yeast (S. cerevisiae), fruit fly (D. melanogaster), and worm (C. elegans)) and yeast
(S. cerevisiae), and bacterium (H. pylori), to identify their conserved pathways
(please see Sect. 3.1.1 for more details). MAWISH [9, 10] and NetworkBlast-M
[7] are used to find conserved protein complexes, and to identify relationships
among different biological process in distinct organisms. Graemlin1.0 [2] is used
for transferring functional annotations of known modules in one species to another.
It used two approaches – the first one transfers functional annotation from a protein,
to other aligned proteins whose annotations are unknown. This is similar to sequence
based methods, however, network-based methods have been shown to be more
accurate since they rely on both sequence and interactions. The second approach is
specific to network alignment – it works on the thesis that the function of landmark
proteins is shared by other proteins in the alignment.

4.3 Studying Evolutionary Events

Evolution manifests itself in variations, for example, mutations on the genome
that impact structure and function of associated proteins [68]. These changes in
turn affect protein interactions, metabolic reactions, and genetic interactions [64].
Despite the key roles of these interaction networks in structural and functional
characterization, study of evolutionary trajectories remains an active area of inves-
tigation. The evolution of protein interaction networks depends on the modification
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of genes that produce proteins and the way the general structure of the network has
been impacted over the evolutionary history [71]. Phylogenetic analysis of protein
interaction networks is most commonly performed through network comparison,
based on the idea that a common ancestor is shared by all distinct organisms [1].

Network alignment can be used in different levels to uncover evolutionary
relations. At lowest level, each protein can be represented by its tertiary structure
graph, and the corresponding structures can be compared using network alignment.
As mentioned earlier, evolution affects cellular process by mutations on nucleotide
sequences. These result in changes in amino acid sequences and consequently in
their structure and function. Conversely, identifying similarities and differences in
protein structures can uncover their evolutionary history [72]. Comparative network
analysis can also be used to overcome the ambiguity problem among homolog
proteins that pure sequence-based methods often fail to do. As discussed in Sect. 4.1,
discriminating in-paralogs and out-paralogs, which is an important component of
finding the order of duplication/speciation events, can be efficiently performed using
network alignment of protein interactions of different species.

Comparative analysis can also be applied at a modular level to help understand
evolutionary events. For example, evolutionary biologists have extensively studied
genes related to aging, and on understanding mechanisms leading to cell death.
The role of biological networks in explaining the complex traits provides exciting
new avenues to extend current efforts focused on the study of individual genes.
Promislow [73] examined the subset of yeast proteins related to senescence, and
collates them with subsets of other traits. He found that proteins (and corresponding
genes) related to senescence have higher connectivity compared to other proteins;
four of five examined traits were unrelated to senescence, and they did not have
notable connectivity in comparison to those related to senescence. His final con-
clusion was that genes associated with aging produce proteins that are more highly
connected and have greater pleiotropy (are associated with multiple phenotypes that
seem completely independent from each other). Wagner et al. [74] illustrated that the
rate of evolution in highly connected nodes between modules is significantly higher
than the nodes found in a module. Finally, Yosef et al. [75] developed a framework
for investigating the evolutionary trajectory of protein complexes, besides the role
of the self-interacting protein’s duplication in complex evolution. In this study,
phylogenetic analysis is used to age the proteins in each complex, which were
identified by network alignment using NetworkBLAST (see Sect. 3.1.1) or network
clustering using MCL algorithms. They also investigate whether the members of a
protein complex evolve together. Their results show that complex proteins emerge
early in evolution, and evolve together over history.

Network alignment can also be used as a compare function between the
interactomes of different species. This in turn can be interpreted as the distance
in their cellular structure. From this point of view, network alignment can be used
as the pairwise distance of a set of species, to link them and reconstruct the
phylogenetic tree. Most of the previously mention methods, for example, IsoRank
and IQP-based methods (see Sect. 3.2), align the entire interactome as a single
object, and give a unique alignment score to each pair of networks. However,
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due to the computational cost of aligning large networks, all of these algorithms
must deal with intractable graph comparisons, besides the high degree of noise
in interaction data. Towfic et al. [76] propose an algorithm for aligning large
biological networks based on the alignment of their subgraphs, which are scored by
a graph kernel. The computed score of these alignments can be used for clustering
species and recovering phylogenetic information. Erten et al. [70] alleviate these
difficulties by designing a slightly different approach, named MOPHY, to extract
evolutionary trajectory based on conserved modules. The fundamental idea behind
MOPHY that cohesive interaction patterns have strong tendency to be conserved over
evolutionary history. MOPHY initially identifies the modular subgraphs in different
networks independently. It then maps these modules to networks of other species
to understand the conservation and divergence of different modular processes in
these networks. Finally, it uses these modules to compute overall phylogeny of the
networks by comparing the module maps together using feature vectors. Results
from this algorithm show that modularity based analysis can be used to gain deeper
insight into functional evolution, and phylogenetic analysis of individual module.

4.4 Disease Discovery

The availability of complete genomes, proteomic, and metabolic data combined
with phenotype characterization provide significant new avenues for understanding
and treating disease [77]. It has been shown that the function of a gene in disease
depends on the locus of its protein in protein interaction networks [78]. These
intricate relationships in cellular networks establish the role of network analysis.

Different classes of human diseases such as cancer types, autoimmune disorders,
hormone diseases, genetic disorders, infectious diseases, neurological disorders,and
mental illnesses are caused by defects in genetic structure or cellular metabolism.
This can be the result of the pathogen’s infection or genetic variations such as
missing, mutation, or extra copy of a gene. Understanding the genetic makeup of
diseases is the initial step toward analyzing different diseases and intervention.

A variety of biochemical networks have been shown to conform to a scale-
free structure. While robustness is one of the key attributes of scale-free networks,
targeted variations at specific loci and positions lead to dysfunctional behavior.
In fact, this characteristic of biological networks supports the observation that
several mutations must occur for the onset of a disease like cancer [80]. Studying
the structural changes to networks caused by diseases, is an essential component of
understanding underlying mechanisms, and consequently their cure.

Many of the methods described in this chapter are directly applicable to disease
discovery and characterization as well. As shown earlier, function prediction is
carried out by first annotating proteins in different networks that have known
GO or KEGG annotations, and then transferring (projecting) these annotations
to their putative orthologs after aligning networks. Similarly, one may annotate
proteins, genes, or other cell components in the networks by their known relations
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to different diseases, and transfer this knowledge to putative orthologs to predict
disease implicated genes. In a similar fashion, functional module discovery is
also readily extendable to disease discovery – one may annotate pathways, com-
plexes, and disease related modules in general, and transfer this knowledge to the
aligned substructures. Finally, network-based phylogenetic studies can be used for
understanding disease. Phylogenetic trees are useful in uncovering the evolution
of viral strains [81]. Such studies can be used to explain how some viruses, for
example, canine (a virus that transfers from cats to dogs), can jump from one
species to another. This analysis leads to a better understanding of viruses such
as avian influenza that can transfer to humans from other species such as birds
or pigs. Using phylogenetic methods to identify the relationships between HRV
(rhinovirus) strains, as the pathogen for common cold, may lead to novel therapies,
and more effective drugs, by elucidating structure, function, interactions, and
context [82]. Investigation of human tumor subtypes using phylogenetic methods
leads to identification of differentiation-related genes [83].

Understanding pathogens and uncovering the way they affect the normal cells
and turn them to infected cells is a fundamental challenge. Comparative network
analysis provides an important tool for such analysis. The single cell parasite
(P. falciparum), is responsible for one million deaths every year around the world
from malaria. One of the key challenges in dealing with malaria is that falciparum
becomes resistant to the anti-malarial drugs. Falciparum is a human parasite,
therefore it causes disruption of pathways active in falciparum without harming
normal functional human pathways. Consequently, pathways that are different
between the parasite and the human cell provide promising therapeutic targets.
Comparative network analysis can help in revealing conserved pathways between
falciparum and other eukaryotes, which implicitly help in finding the conserved
pathways of falciparum and human, and assist in drug design.

To find conserved pathways, Suthram et al. [84] aligned the protein interac-
tome of falciparum with the protein interactome of yeast (S. cerevisiae), worm
(C. elegans), fruit fly (D. melanogaster), and the bacterial pathogen (H. pylori),
using the PathBlast algorithm (see Sect. 3.1.1). Results from their study showed
that falciparum has just three conserved complexes with yeast and no conserved
complex with other species. However, yeast, fly, and worm have significant numbers
of conserved complex among each other. While this is preliminary research, it shows
that falciparum is significantly different from other model organisms and this poses
challenges.

Regulatory enzymes have essential roles in cellular metabolism. Among them,
phosphorylation is a key event in regulation. Phosphorylation sites are, however,
short and changeable, unlike proteins domains that are conserved over longer
periods of time. Investigating conservation of phosphorylation sites by sequence
similarity is too hard and inefficient. To overcome this problem, Heng et al. [85]
investigated the conservation of protein phosphorylation events at sequence, and
networks levels for a set of species – human (H. sapiens), yeast (S. cerevisiae),
nematode worm (C. elegans), and fruit fly (D. melanogaster). At sequence level,
they found core sites by identifying conserved phosphorylation sites that are
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positionally conserved between human and at least one target species. Among a
total of 23,977 human phosphorylation sites found across 6,456 phospho-proteins
encoded by 6,293 genes, they identify a subset of 479 core sites that are conserved
between human, and at least one target species in 344 proteins encoded by 337
human genes. However, phosphorylation sites are often positioned in disordered
regions, which are changeable. Therefore they cannot be used to show evolutionary
conservation at sequence level. Hung et al. constructed a kinase-substrate network
for target model organisms, and applied a network alignment method to extract
the conserved human kinase-substrate network, also known as core net. Among a
total 25,563 human interactions between 113 kinases and 5,515 substrates, 1,255
interactions between 27 human kinases and 778 substrates encoded by 759 genes
were found. In this study, 1,105 interactions (88% of interactions) and 698 substrates
were not found in core sites. Finally, they illustrated significant overlap between
human genes coding phospho-proteins and cancer-associated genes as well as
OMIM genes [41].

There have been several other studies relating heterogeneous networks – phe-
notypic and genotypic networks, and applying comparative network analysis to
investigate their structural similarities. Wu et al. [86] introduced AlignPI, a method
that exploits known gene-disease associations by aligning the phenotypic similarity
network with the human PPI network. To align these, human disease phenome
and interactome are modeled as graphs. In the former, nodes correspond to disease
phenotype and the latter is a network of genes with interaction between their proteins
products. In addition, these two networks are connected by the interactions between
their genes and related phenotype. The link between networks is constructed based
on the gene-phenotype relationships. Finally, they used NetworkBlast to identify
locally dense regions of the PPI network and their associated disease clusters. They
find that there is a conserved gene module in gene interactome for each known
disease module in human phenome. In other words, for each set of phenotypically
related diseases, there is a set of associated causative genes for these diseases.
Another important study in this area is the work of Goh et al. [87]. In this study,
the authors investigate three different networks – gene disease (network of disease
genes with links between the genes that are involved in one disorder), human disease
(network of human diseases with links between diseases that share a disease gene),
and diseasome (network of human disease and disease genes with link between
disease and its causal gene). They discovered high level relationships among human
disease and their related causal genes. Their result indicates that similar disorders
are usually caused by similar genes.

5 Related Efforts

In this section, we briefly overview the relationships between network alignment
and other well-known computational problems. We first study the relationship be-
tween network alignment and other network-related methods for finding functional
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modules, including network motifs, network clustering, and network querying.
We then discuss other problems that have similar principles and formulations as
the network alignment problem. This comparison is especially useful since there
are extensive studies in different fields that share similar goals.

5.1 Network Alignment and Other Network Analyses Problems

Network alignment, especially local network alignment, is a powerful technique
for finding conserved modules across species (see Sect. 4.2). The basic motivating
idea behind identification of conserved modules, is that the existence of specific
connected subgraphs that recur in a specific network or across networks is consistent
with the tenets of evolutionary theory. Each of these subgraphs, defined by a
particular pattern of interactions among vertices, may correspond to a molecular
machinery in which specific functions are achieved efficiently [88]. In addition to
network alignment, there are other methods for finding functional modules. These
methods often use alternate definitions for functional modules.

Modules are often defined independent of function and based on frequency of
occurrence. These connected vertex induced subgraphs, which occur at significantly
higher frequencies in networks (as compared to random networks), are also known
as network motifs. Network clustering is another approach used for identifying
functional modules. The network clustering problem is based on coupling graph
vertices in a single network, such that vertices in each group are tightly coupled
with each other, but are loosely coupled with other vertices. The underlying idea
is that functionally related proteins interact with each other, thus need to be in the
close proximity. Protein complexes in PPI networks are examples of this class of
functional modules.

The network alignment methods discussed in this chapter aim to find a functional
mapping between the nodes of the networks being compared. An alternate approach
to comparative network analysis is to directly compare the topological properties of
these networks. In an attempt to understand the topological characteristics of PPI
networks, Pržulj [89] used graphlet distributions across multiple species, where a
graphlet refers to a small subgraph with a specified topology. Extensive studies on
PPI networks of 14 eukaryotic species showed that this approach outperforms stan-
dard topological measures in understanding the functional relationships between
different PPI networks.

5.2 Network Alignment vs. Graph Matching

There are different formulations of similarity between two labeled graphs G1 =
(V1,E1) and G2 = (V2,E2), with adjacency matrices A and B, respectively. The most
restricted definition is graph isomorphism: G1 and G2 are called isomorphic, if there
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exists a mapping π : V1 → V2 that maps E1 to E2. More formally, two graphs are
isomorphic if there exists a permutation matrix P such that B=PAPT . This definition
is strict, and cannot be used if the number of vertices in the input graphs is not
equal. The subgraph isomorphism problem and maximum common subgraph are
two extensions of the graph isomorphism problem to a more general case where
the number of vertices is not equal. In the former, we aim to map the smaller
graph to a subset of larger graph, while in the latter, we aim to find a pair of
maximum subgraphs in input graphs that are isomorphic. We cannot readily use
these extensions because biological networks are usually noisy and contain false
positive/negative edges. A more flexible definition of graph similarity is needed.

If one can define the similarity between a pair of nodes in V1 and V2, the similarity
between G1 and G2 can be formulated as a graph matching problem. Formally, a
matching in graph G = (V,E) is defined as a subset of E without any common
vertices, which is also known as independent edge set in G. In other words, any
subset of edges in E defines a graph matching in G, if every vertex in V has degree 1
(for detailed definition of graph similarity scores and their relationships to graph
matching, please refer to [90]).

An alternate formulation is specifically useful in pairwise one-to-one network
alignment. To find the graph similarity between graphs G1 and G2, one needs to
construct a complete bipartite graph GBi = (VBi,EBi), in which VBi ={V1 ∪V2}, and
EBi ={(vi,v j) : ∀vi ∈ V1,v j ∈ V2}. With this bijection, each one-to-one network
alignment between the species, can be viewed as a matching in GBi, since each
alignment assumes that every vertex is at most mapped to one other node, and
correspondingly any matching in GBi, which is a subset of EBi, does not contain
any edges that share the same endpoint. There is a two way connection between
matchings and one-to-one network alignment: starting from a matching in GBi,
one can construct the corresponding network alignment of input networks and
vice versa. To see this, one may observe that each edge in GBi defines a potential
alignment between a pair of nodes in input networks, while the matching constraint
enforces these potential alignments to be one-to-one. This implies that each node is
aligned to one other node, at most, from each network.

Among all possible matchings in GBi (i.e., all pairwise network alignments
between G1 and G2), one is usually interested in an optimal matching. This is
usually achieved by appropriately weighting each edge in the bipartite graph GBi

based on node similarities, as well as local topological similarities, and finding the
maximum weight matching in GBi. There are both exact and approximate algorithms
for different versions of the graph matching problem. Among these is a well-known
exact polynomial algorithm, known as the Hungarian algorithm [24]. This algorithm
has time complexity O(max{V1,V2}3).

5.3 Network Alignment vs. Graph Kernels

Kernel methods are often used in pattern discovery. They can be applied to general
data types, including sequences and graphs to identify general relations, such as
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clustering, correlation, and classification. The core of any kernel method is a kernel
function for measuring the similarity of any given pair of input objects, by mapping
them into another space, named feature space. Computations in this space are
typically easier and input data is more separable. This mapping is defined implicitly,
by specifying a kernel function κ : X ∗X → ℜ, as the inner product for the feature
space. This is defined as κ(x1,x2)= < φ(x1),φ(x2)>, where φ(.) is the embedding
function. Note that one does not need to know the mapping φ(.) explicitly. It suffices
to be able to evaluate the kernel function, which is often much easier than computing
the coordinates of the points explicitly.

Kernel methods provide useful tools in the analysis of biological networks, since
they can be applied at various levels. At the lowest level, one is interested in a
kernel function kv over the set of vertices in a single graph. Defining such a kernel
function can help us in clustering nodes together based on their similarity. One
of the frequently studied examples of this class of problems is the prediction of
protein functions in a single network by assigning a kernel function to them that
captures both the similarity of the node attributes (amino acid sequences) and local
network structure. Diffusion kernels, which are based on random walks in the input
graph, are among the most well-known methods for assigning node similarities.
At the next level, one is interested in defining kv for vertices in multiple graphs.
To compute this kernel, the product graph of the input graphs can be constructed, and
the kernel function can be defined based on the random walks in the product graph.
The IsoRank method (see Sect. 3.2.2) is similar in nature to this class of problems.
At the next level, we aim to define graph kernels, instead of vertex kernels. Graph
kernels can be used to find the similarity between networks, and thus they can be
used as a tool for clustering different species based on their similarities. Graph
kernels also provide powerful methods for reconstructing phylogenetic trees based
on a hierarchical clustering.
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alignment uncovers biological function and phylogeny. Journal of The Royal Society Interface
(2010)

4. Kelley, B.P., Yuan, B., Lewitter, F., Sharan, R., Stockwell, B.R., Ideker, T.: PathBLAST: a tool
for alignment of protein interaction networks. Nucleic Acids Research 32(Web-Server-Issue)
(2004) 83–88



132 S. Mohammadi and A. Grama

5. Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R., Ideker, T.:
Conserved pathways within bacteria and yeast as revealed by global protein network alignment.
PNAS 100(20) (2003)

6. Sharan, R., Ideker, T., Kelley, B.P., Shamir, R., Karp, R.M.: Identification of protein complexes
by comparative analysis of yeast and bacterial protein interaction data. Journal of Computa-
tional Biology 12(6) (2005) 835–846

7. Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T., Karp, R.M.,
Ideker, T.: Conserved patterns of protein interaction in multiple species. Proceedings of the
National Academy of Sciences of the United States of America 102(6) (2005) 1974–1979

8. Bader, J.S., Chaudhuri, A., Rothberg, J.M., Chant, J.: Gaining confidence in high-throughput
protein interaction networks. Nature Biotechnology 22(1) (2003) 78–85

9. Koyutürk, M., Grama, A., Szpankowski, W.: Pairwise local alignment of protein interaction
networks guided by models of evolution. In: RECOMB. (2005) 48–65

10. Koyutürk, M., Kim, Y., Topkara, U., Subramaniam, S., Szpankowski, W., Grama, A.: Pairwise
alignment of protein interaction networks. Journal of Computational Biology 13(2) (2006)
182–199
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Chapter 6
Pattern Mining Across Many Massive
Biological Networks

Wenyuan Li, Haiyan Hu, Yu Huang, Haifeng Li, Michael R. Mehan,
Juan Nunez-Iglesias, Min Xu, Xifeng Yan, and Xianghong Jasmine Zhou

Abstract The rapid accumulation of biological network data is creating an urgent
need for computational methods on integrative network analysis. Thus far, most
such methods focused on the analysis of single biological networks. This chapter
discusses a suite of methods we developed to mine patterns across many bio-
logical networks. Such patterns include frequent dense subgraphs, frequent dense
vertex sets, generic frequent patterns, and differential subgraph patterns. Using the
identified network patterns, we systematically perform gene functional annotation,
regulatory network reconstruction, and genome to phenome mapping. Finally,
tensor computation of multiple weighted biological networks, which filled a gap
of integrative network biology, is discussed.

1 Introduction

The advancement of high-throughput technology has resulted in the rapid accumu-
lation of data on biological networks. Coexpression networks, protein interaction
networks, metabolic networks, genetic interaction networks, and transcription
regulatory networks are continuously being generated for a wide-range of organisms
under various conditions. This wealth of data represents a great opportunity, to
the extent that network biology is rapidly emerging as a discipline in its own
right [7, 40]. Thus far, most of the computational methods developed in this field
have focused on the analysis of individual biological networks. In many cases,
however, a single network is insufficient to discover patterns with multiple facets
and subtle signals. There is an urgent need for methods supporting the integrative
analysis of multiple biological networks.
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Biological networks can be classified into two categories: (1) physical networks,
which represent physical interactions among molecules, for example, protein–
protein interaction, protein–DNA interaction and metabolic reactions; and (2)
conceptual networks, which represent functional associations of molecules derived
from genomic data, for example, coexpression relationships extracted from microar-
ray data and genetic interactions obtained from synthetic lethality experiments.
While physical networks are still limited in size, the large amount of microarray
data allows us to infer conceptual functional associations of genes under various
conditions for many model organisms, thus providing a great deal of valuable in-
formation for studying the functions and dynamics of biological systems. Although
the methods and experiments described in this chapter are applicable to any type
of genome-wide network, we use coexpression networks throughout the chapter
due to their abundant availability. We transform each microarray dataset into a
coexpression network, where nodes represent genes and the edges can be either
weighted or unweighted. In a weighted coexpression network, the edge weights can
be coexpression correlations; in an unweighted network, two genes are connected
with an edge only if their coexpression correlation is higher than a given threshold.
Given k microarray datasets, we can construct k networks with the same node set
but different edge sets. We refer to this arrangement as a relation graph set, since
each network provides information on different relationships among the same set of
vertices. Note that in a coexpression network, each gene occurs once and only once.
The coexpression networks, therefore, have distinct node labels, and we avoid the
NP-hard “subgraph isomorphism problem.” We also note that our study is distinct
from the body of work on comparing biological networks across species [25, 28–
30, 42], where the nodes in different networks can have a many-to-many mapping
relationship. The methods described here focus on comparing networks from the
same species but generated under different conditions.

This chapter describes several types of patterns that can only be discovered
by analyzing multiple graphs, and a set of computational methods designed for
mining these patterns. First, we discuss algorithms to identify recurrent patterns
in multiple unweighted networks. Next, we define and mine differential patterns
in multiple unweighted networks. Finally, we introduce an advanced mathematical
model suitable for analyzing multiple weighted networks. We will also show how to
use the identified patterns to perform gene function prediction, transcription module
reconstruction, and transcriptome to phenome mapping.

2 Mining Recurrent Patterns in Multiple Networks

On account of the noisy nature of high-throughput data, biological networks contain
many spurious edges which may lead to the discovery of false patterns. However,
since biological modules are active across multiple conditions, we can easily
filter out spurious edges by looking for patterns that occur in multiple biological
networks. For example, we have demonstrated experimentally that recurrent dense
subgraphs in multiple coexpression networks often represent transcriptional and



6 Pattern Mining Across Many Massive Biological Networks 139

g

f

e

a

b

c

d

h

i

j

(1) (2) (3)

(4) (5) (6)

Summary
Graph

a

b

d

c

e

a

b

d

c

e
a

b

d

c

e
a

b

d

c

e

a

b

d

c

e
a

b

d

c

e

a

b

d

c

e

a b

Fig. 6.1 (a) Given six graphs with the same vertex set but different edge sets, we construct a
summary graph by adding the graphs together and deleting edges that occur fewer than three times.
The dense subgraph {a,b,c,d} appearing in the summary graph does not occur in any of the
original graphs. (b) The vertices e and f are shared by cliques {a,b,c,d,e, f } and {e, f ,h, i}.
The shared vertices can be assigned to both cliques only by approaches that are able to detect
overlapping dense subgraphs (cliques are the densest subgraphs of a network)

functional modules [23, 51]. In fact, even recurrent paths are likely to correspond
to functional modules [24]. In this section, we define and illustrate three types of
recurrent patterns in unweighted graphs, our data mining algorithms to discover
them, and their biological applications.

2.1 Coherent Dense Subgraphs

A straightforward approach to analyzing multiple networks is to aggregate these
networks together and identify dense subgraphs in the aggregated graph. However,
the aggregated graph can contain dense subgraphs that do not occur frequently, or
even exist at all, in the original networks. Figure 6.1a illustrates such a case with a
cartoon of six graphs. If we add these graphs together to construct a summary graph,
we may find a dense subgraph containing vertices a, b, c, and d. Unfortunately,
this subgraph is neither dense nor frequent in the original graphs. To overcome
this problem, we propose looking for Coherent Dense Subgraphs that satisfy two
criteria: (1) the nodes are densely interconnected, and (2) all of the edges should
exhibit correlated occurrences in the whole graph set. In the following, we provide
a formal definition of coherent dense subgraph and an algorithm to identify these
patterns in multiple networks.

2.1.1 Problem Formulation

Consider a relation graph set D consisting of n undirected simple graphs: D = {Gi =
(V,Ei)}, i = 1, . . .n,Ei ⊆ V ×V . All graphs in the set share a common vertex set V .
We denote the vertex set of a graph G by V (G), and the edge set by E(G). Let
wi(u,v) be the weight of an edge ei(u,v) in Gi. For an unweighted graph, wi(u,v)= 1
if there is an edge between u and v, otherwise wi(u,v) = 0.
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Definition 6.1 (Support). Given a relation graph set D = {G1,G2, . . . ,Gn}, where
Gi = (V,Ei), the support of a graph g is the number of graphs (in D) containing g
as a subgraph. This measure is written support(g). A graph is called frequent if its
support is greater than a specified threshold.

Definition 6.2 (Summary Graph). Given a relation graph set D = {G1,G2, . . . ,
Gn}, where Gi = (V,Ei), the summary graph of D is an unweighted graph Ĝ = (V, Ê)
containing only those edges present in at least k graphs of D. The parameter k is a
user-defined support threshold (see an example in Fig. 6.1a).

Definition 6.3 (Edge Support Vector). Given a relation graph set D={G1,G2, . . .,
Gn}, where Gi = (V,Ei), the support vector w(e) of an edge e is of length n. The ith
element of w(e) is the weight of edge e in the ith graph.

The support vector of edge (a,b) for the six graphs shown in Fig. 6.1a is
[1,1,1,0,0,0], while the support vector of edge (b,c) is [0,0,0,1,1,1]. Their support
vectors clearly show that edges (a,b) and (b,c) are not correlated in this dataset,
although both of them are frequent.

We use a special graph, the second-order graph S, to illustrate the co-occurrence
of edges in a relation graph set D. Each edge in D is represented as a vertex in S. Two
vertices u and v in S are connected if the edge support vectors w(u) and w(v) in D
are sufficiently similar. Depending on whether or not the edges in D are weighted,
the similarity measure could be the Euclidean distance or Pearson’s correlation.
Figure 6.2 (Step 3b) shows how to generate a second-order graph from a set of edge
support vectors. For example, the Euclidean distance between the support vectors
of edges (c,e) and (c, i) is only 1, so we create an edge between the vertices labeled
(c,e) and (c, i) in the second-order graph S. This process is shown in Fig. 6.2. To
contrast with the second-order graph, we term the original graphs Gi first-order
graphs. This use of the second-order graph is just one type of second-order analysis,
a concept proposed in one our previous publications [55].

Definition 6.4 (Second-Order Graph). Given a relation graph set D={G1,G2, . . .,
Gn}, where Gi = (V,Ei), the second-order graph is an unweighted graph
S = (V ×V,Es) whose vertex set is equivalent to the edge set of G. In S, an
edge is drawn between vertices u and v if the similarity between the corresponding
edge support vectors w(u) and w(v) exceeds a specified threshold.

If the first-order graphs Gi are large and dense, S will be impractically large. To
more efficiently analyze D, we construct second-order graphs S only for subgraphs
of the summary graph Ĝ.

Definition 6.5 (Coherent Graph). Given a relation graph set D = {G1,G2, . . . ,
Gn}, where Gi = (V,Ei), a subgraph sub(Ĝ) is coherent if all its edges have support
greater than k and if the second-order graph of sub(Ĝ) is dense.

Definition 6.6 (Graph Density). The density of a graph g, written density(g), is
2m

n(n−1) , where m is the number of edges and n is the number of vertices in g.
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The problem of mining coherent dense subgraphs can now be formulated as
follows: given a relation graph set D = {G1,G2, . . . ,Gn}, discover subgraphs g that
satisfy the following two criteria: (1) g is a dense subgraph of the summary graph,
and (2) g is coherent.

2.1.2 Algorithm

We have developed a scalable algorithm to mine coherent dense subgraphs [23]. It
is based on the following two observations concerning the relationship between a
coherent dense subgraph, the summary graph, and the second-order graph.

1. If a frequent subgraph of D is dense, then it must also exist as a dense subgraph in
the summary graph. However, the converse is not true. A dense subgraph of the
summary graph may be neither frequent nor dense in the original dataset (e.g.,
Fig. 6.1a).

2. If a subgraph is coherent (i.e., if its edges are strongly correlated in their
occurrences across a graph set), then its second-order graph must be dense.

These two facts permit the mining of coherent dense subgraphs with reasonable
computational cost. According to Observation 1, we can begin our search by
finding all dense subgraphs of the summary graph. We can then single out coherent
subgraphs by examining their corresponding second-order graphs. Our CODENSE
algorithm consists of five steps, as outlined in Algorithm 1 and illustrated in Fig. 6.2.
In Steps 2, 4 and 5, we employ a mining algorithm that allows for overlapping dense
subgraphs (see Fig. 6.1b).

Step 1. CODENSE builds a summary graph by eliminating infrequent edges.
Step 2. CODENSE identifies dense subgraphs (which may overlap) in the summary

graph. Although these dense subgraphs may not be frequently occurring
in the original graph set, they are a superset of the true frequent dense
subgraphs.

Step 3. CODENSE builds a second-order graph for each dense summary subgraph.
Step 4. CODENSE identifies dense subgraphs in each second-order graph. A high

connectivity among vertices in a second-order graph indicates that the
corresponding edges have high similarity in their occurrences across the
original graphs.

Step 5. CODENSE discovers the real coherent dense subgraphs. Although a dense
subgraph sub(S) found in Step 4 is guaranteed to have the co-occurrent
edges in the relation graph set, those edges may not form a dense subgraph
in the original summary graph. To eliminate such cases, we convert the
vertices in sub(S) back to edges and apply the overlapping dense subgraph
mining algorithm once more. The resulting subgraphs will satisfy both
criteria for coherent dense subgraphs: (1) they are dense subgraphs in many
of the original graphs, so all of their edges occur frequently; and (2) the
support vectors of the edges are highly correlated across the relation graphs.
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Algorithm 1: CODENSE

Step 1: build a summary graph Ĝ across multiple relation graphs
G1,G2, . . . ,Gn;
Step 2: mine dense summary subgraphs sub(Ĝ) in Ĝ using an overlapping
dense subgraph mining algorithm;
foreach each dense summary subgraph sub(Ĝ) do

Step 3: construct the second-order graph S;
Step 4: mine dense subgraphs sub(S) in S using an overlapping dense
subgraph mining algorithm;
Step 5: foreach each dense subgraph sub(S) do

convert sub(S) into the first-order graph G;
mine dense subgraphs sub(G) in G using an overlapping dense
subgraph mining algorithm;
output sub(G);

end
end

2.1.3 Experimental Study

We use coexpression networks derived from 39 yeast microarray datasets as a
testing system for CODENSE. Each dataset comprises the expression profiles of
6,661 genes in at least eight experiments. These data were obtained from the
Stanford Microarray Database [19] and the NCBI Gene Expression Omnibus [16].
The similarity between two gene expression profiles in a microarray data set is
measured by Pearson’s correlation. We transform Pearson’s correlation (denoted r)

into
√

(n−1)r2

1−r2 , and model the latter quantity as a t-distribution with n− 2 degrees
of freedom (Here, n is the number of measurements used to compute Pearson’s
correlation). We then construct a relation network for each microarray dataset,
connecting two genes if their Pearson’s correlation is significant at the α = 0.01
level. The summary graph Ĝ is then constructed by collecting edges with a support
of at least six graphs. At all steps where dense subgraph mining is performed (see
Algorithm 1), the density threshold is set to 0.4.

To assess the clustering quality, we calculated the percentage of functionally
homogeneous clusters among all identified clusters. Based on the Gene Ontology
(GO) biological process annotations, we consider a cluster to be functionally
homogeneous if (1) the functional homogeneity modeled by the hypergeometric
distribution [50] is significant at α = 0.01; and (2) at least 40% of its member genes
with known annotations belong to a specific GO functional category.

Within the hierarchical organization of GO biological process annotations, we
define specific functions to be those associated with GO nodes that are more than
five levels below the root. CODENSE identified 770 clusters with at least four
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Fig. 6.3 The edge occurrence profiles of a five-gene clique in the summary graph

annotated genes. Of these clusters, 76% are functionally homogeneous. If we stop
at Step 2 of the algorithm, obtaining dense subgraphs of the summary graph, only
42% are functionally homogenous. This major improvement in performance can be
attributed to the power of second-order clustering as a tool for eliminating dense
summary subgraphs whose edges do not show co-occurrence across the networks.
As an example, consider the five-gene clique in the summary graph, {MSF1, PHB1,
CBP4, NDI1, SCO2}, depicted in Fig. 6.3. The five genes are annotated with a
variety of functional categories such as “protein biosynthesis,” “replicative cell
aging” and “mitochondrial electron transport,” so the subgraph is not functionally
homogenous. As it turns out, although all edges of this clique occur in at least six
networks, their co-occurrence is not significant across the 39 networks (Fig. 6.3).
Analyzing the second-order clusters can reveal such pseudoclusters, providing more
reliable results.

The large set of functionally homogeneous clusters identified by CODENSE
provides a solid foundation for the functional annotation of uncharacterized genes.
Some of the clusters contain unknown genes, and if the dominating GO functional
category is significantly overrepresented (Bonferroni-corrected hypergeometric
p-value < 0.01), we can confidently annotate the unknown genes with that function.
To assess the prediction accuracy of our method, we employed a “leave-one-out”
approach: a known gene is treated as unknown before analyzing the coherent dense
subgraphs, then annotated based on the remaining known genes in the cluster. We
consider a prediction correct if the lowest common ancestor of the predicted and
known functional categories is five levels below the root in the GO hierarchy. Note
that the annotated yeast genes encompass 160 functional categories at level 6 of the
GO hierarchy. We predicted the functions of 448 known genes by this method, and
achieved an accuracy of 50%. With respect to truly unknown genes, we produced
functional predictions for 169 genes, covering a wide-range of functional categories.
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2.2 Frequent Dense Vertexset

Although CODENSE has been successfully applied to identify recurrent dense
subgraphs across multiple coexpression networks, its criteria are too stringent
to identify many potential recurrent coexpression clusters. CODENSE requires
coherency of edge recurrence; that is, the entire edge set of a pattern has to show
highly correlated recurrence across the graph set. However, edge occurrences in a
coexpression network can be distorted by measurement noise or by the correlation
threshold used to dichotomize the edges. In fact, any set of genes that is densely
connected in a significant number of networks is likely to form a functional and
transcriptional module, even if the edges differ from network to network. That is,
as long as a consistently large percentage (e.g., �60%) of gene pairs in a gene
set are connected in multiple networks, that gene set is considered as a recurrently
dense pattern and is worthy of attention. We denote such patterns “frequent dense
vertexsets” (FDVSs). In this section, we develop a method to efficiently and
systematically identify FVDSs.

2.2.1 Problem Formulation

Given a graph G = (V,E) and the subgraph induced by vertex set V ′ ⊆ V , written
G(V ′), we define the FDVS as follows,

Definition 6.7 (Frequent Dense Vertexset). Consider a relation graph set D =
{G1, G2, . . . ,Gn}, where Gi = (V,Ei) and each graph shares the vertex set V . Given a
density threshold δ and a frequency threshold θ , V ′ ⊆V is a frequent dense vertexset
if, among all induced graphs {Gi(V ′)}, at least θ |D| graphs have density �δ .

According to the above definition, a FDVS is a set of vertices, rather than a
classical graph with vertices and edges. This definition supports the concept of
approximate graph patterns, which need not have exactly the same edge set in
the supporting dataset. From a computational point of view, it could be hard to
enumerate all of the frequent graphs that satisfy the density constraint. Therefore,
we resort to an approximate solution that begins by aggregating the graphs into
a summary graph and identifying its dense subgraphs in a top-down manner. The
summary graph approach is straightforward, but suffers from two problems: (1) the
edges in a dense summary subgraph may never occur together in the original graphs;
and (2) noise in the graphs will also accumulate and may become indistinguishable
from signals that occur only in a small subset of the graphs. We devised two
techniques to overcome these problems. (1) Since similar biological conditions are
likely to activate similar sets of transcription/functional modules, we enhance the
signal of real patterns by partitioning the input graphs into groups of graphs sharing
certain topological properties. Such groups are more likely to contain frequent
dense vertexsets. Furthermore, by aggregating similar graphs the signal will be
enhanced more than the noise. (2) For each group of graphs, we construct a neighbor
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Fig. 6.4 The pipeline of our frequent dense vertexset mining algorithm (called NeMo). Step 1:
extract coexpression graphs from multiple microarray datasets by removing insignificant edges.
Step 2: partition the coexpression graphs into groups and construct a weighted summary graph for
each group. Step 3: cluster each summary graph to identify dense subgraphs. Step 4: refine/extract
frequent dense vertexsets from the dense subgraphs discovered in Step 3

association summary graph. This is a weighted graph, unlike the summary graph
used by the CODENSE method. The edges of this graph measure the association
between two vertices based on their connection strength with their neighbors across
multiple graphs. For example, given two vertices u and v, if many small FDVSs
include them, these two vertices are likely to belong to the same large FDVS.
Figure 6.4 depicts the pipeline of this graph mining methodology. In the next
subsection, we will examine this solution in detail.

2.2.2 Algorithm

Given n graphs, a frequent dense vertexset with density δ and frequency θ must
form a subgraph with density �δθn in the summary graph. According to this
observation, we can begin by mining the dense subgraphs of the summary graph.
The dense subgraphs are then processed to extract frequent dense vertexsets. This
method is outlined as follows:

1. Construct a summary graph: Given n graphs, remove infrequent edges and then
aggregate all graphs to form a summary graph S.

2. Mine dense subgraphs from the summary graph: Apply the overlapping dense
subgraph mining algorithm to S. This step yields a set of dense subgraphs M̂
satisfying some density constraint, for example, �δθn.

3. Refine: Extract true frequent dense vertexsets from each dense subgraph M̂.

For the refinement step, we adopt a heuristic process. Given a dense summary
subgraph M̂ with n′ vertices, we first calculate the weighted sum of the edges
incident to each vertex. Next, we sort these n′ vertices in ascending order of the
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weighted sum. Then, the vertices are removed from the list one by one until the
remaining vertices in M̂ form a frequent dense vertexset. This approach is referred to
as a “greedy” refinement process. More advanced search methods such as simulated
annealing can be applied as well. Starting from the dense subgraphs of a summary
graph significantly reduces the search space, and provides a good starting point for
the refinement process. On the other hand, it could generate false patterns. We offer
two improvements to remedy this problem: (1) divide the original graphs into groups
and formulate a series of summary graphs based on these groups of graphs. (2) Alter
the weights in summary graph to reduce the impact of noisy edges.

To implement the first solution (partitioning the original graph set), we actually
begin by mining each individual graph separately for dense subgraphs. The frequent
subgraphs are then taken as seed vertexsets to bootstrap the mining process. This
bootstrap process is as follows (see Fig. 6.4). (1) Extract dense subgraphs M̂
from each individual graph. Then, refine these subgraphs for true frequent dense
vertexsets M, using the greedy refinement process introduced above. (2) For each
frequent dense vertexset M, calculate its supporting graph set Dδ (M) ⊆ D. Take
Dδ (M) as one subset. (3) Remove duplicate subsets. (4) For each unique subset
Dδ (M), call the summary-graph-based approach introduced above to find frequent
dense vertexsets in Dδ (M).

To implement the second approach (reweighting the summary graph), we
introduce the concept of a neighbor association summary graph. Its intuition is
as follows: given two vertices u and v in a graph, if many small frequent dense
subgraphs contain both u and v, it is likely that u and v belong to the same cluster.
In other words, if a graph/cluster is dense, then its vertices will share many dense
subgraphs. Referring to the definition of a k-vertexlet provided below, let πu be the
set of frequent dense (k− 1)-vertexlets that contain vertex u, and let πu,v be the set
of frequent dense k-vertexlets that contain vertices u and v. We also define a scoring
function score(u,v) as follows,

score(u,v) =
|πu,v|

πu
(6.1)

Definition 6.8 (Vertexlet). Given a vertex set V , a k-vertexlet is a subset of V with
k vertices.

This scoring function is not symmetric: score(v,u) �= score(u,v). We take the
average of the two scores, which is symmetric, as the weight of the edge between u
and v. This new summary graph is called as the neighbor association graph because
it relies on more than one neighbor to determine the weight between two vertices.
This weighting method could increase the signal-to-noise ratio for identifying subtle
dense subgraphs. The workflow for computing the neighbor association summary
graph is outlined in Algorithm 1 of [51]. Once the neighbor association summary
graph has been built, we apply the mining routine described above. The entire
mining algorithm is named NeMo, for Network Module Mining.
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Fig. 6.5 Validation by ChIP-chip and GO data demonstrated that the likelihood of a coexpression
cluster being a transcription module and functional homogeneous module increases significantly
with its recurrence

2.2.3 Experimental Study

We selected 105 human microarray datasets, generated by the Affymetrix U133 and
U95Av2 platforms. Each microarray dataset is modeled as a coexpression graph
following the method introduced in Sect. 2.1.3. In this study, the most significant
correlations with p-values less than 0.01 (the top 2%) are included in each graph. We
applied NeMo to discover frequent dense vertexsets in these networks, and identified
4,727 recurrent coexpression clusters. Each cluster’s density is greater than 0.7 in at
least ten supporting datasets.

To assess the quality of the clusters identified by NeMo, we tested their member
genes for enrichment of the same bound transcription factor. The transcription fac-
tors to target gene relationships were ascertained through ChIP-Chip experiments,
which contain 9,176 target genes for 20 TFs covering the entire human genome.
A recurrent cluster is considered a potential transcriptional module if (1) >75% of
its genes are bound by the same transcription factor, and (2) the enrichment of the
particular TF in the cluster is statistically significant with a hypergeometric p-value
<0.01 relative to its genome-wide occurrences. Among the identified clusters,
15.4% satisfied both criteria. This is a high hit rate, considering we only tested for
1% of the approximately 2,000 transcription factors estimated to exist in the human
genome. On average, the permuted set of clusters was enriched only 0.2% for a
common transcription factor. This result demonstrates that our approach can reliably
reconstruct regulatory modules. The integrity of the clusters is further validated by
varying the threshold for density and recurrence. We find that as these criteria grow
stricter, the proportion of identified clusters that share a common bound TF also
increases (Fig. 6.5a).

The high quality of the clusters identified by NeMo is also supported by func-
tional homogeneity analysis. We define a cluster to be functionally homogeneous
if >75% of its member genes belong to the same Gene Ontology biological
process with a hypergeometric p-value <0.01. As the cluster density and frequency
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thresholds increase, the functional homogeneity of the clusters increases as well
(Fig. 6.5b). Among all identified clusters, 65.3% are functionally homogeneous
compared to 2.2% of the permuted clusters.

2.3 General Recurrent Network Patterns

In the previous two sections, we focused on identifying recurrent dense subgraphs
in multiple biological networks. Although such patterns often correspond to func-
tional/transcriptional modules, there also exist many biological modules whose
genes are not densely connected. Many types of relationships are possible among
functionally-related genes – some lying beyond our current knowledge. These
unknowns are exactly the reason why integrative analysis of multiple networks is
such a powerful tool. Let us again use coexpression networks as examples. When
we combine multiple expression networks, subtle signals may emerge that cannot
be identified in any of the individual networks. Such signals include recurrent
paths that may extend beyond simple coexpression clusters yet represent functional
modules. If we only consider a single coexpression network, it is difficult to stratify
functionally important paths from their complex network environment. However,
if a path frequently occurs across multiple coexpression networks, it is easily
differentiated from the background. In this section, we describe our method to
systematically identify recurrent patterns of any kind from multiple relation graphs.

2.3.1 Recurrent Network Pattern Discovery Algorithm

To identify frequently occurring network patterns, we design a data mining pro-
cedure based on frequent itemset mining (FIM) and biclustering methods. Given
n relation graphs, we wish to identify patterns that comprise at least four inter-
connected nodes and occur in at least five graphs. This is computationally very
difficult due to the large number of potential patterns. Our approach first searches for
frequent edge sets that are not necessarily connected, then extracts their connected
components. Conceptually, we formulate the n graphs as a matrix where each row
represents an edge (i.e., a gene pair), each column represents a graph, and each
entry (1 or 0) indicates whether the edge appears in that graph. In this framework,
the problem of discovering frequent edge sets can be formulated as a biclustering
problem that searches for submatrices with a high density of 1’s. This is a well-
known NP-hard problem.

We have developed a biclustering algorithm based on simulated annealing to
discover frequent edge sets. We employ simulated annealing to maximize the
objective function c′

mn+λ c , where c is the number of 1’s in the input matrix, c0, m
and n are the numbers of 1’s, rows and columns in the bicluster, respectively, and λ
is a regularization factor. Clearly, this objective function favors large biclusters with
a high density of 1’s. Note that the density is maximized (to unity) when c′ = mn,
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while the size of bicluster is maximized when c′ = c (i.e., the pattern is as large
as the input matrix). The regularization parameter λ controls the trade-off between
density and size. However, there is no theoretical result on suggesting an optimal
value for λ . In this study, we tried many heuristic choices of λ . The reported results
are based on λ = 0.2

max(1,log10(n1)) , where n1 is the number of edges in the initial
configuration (i.e., the seed).

Although this method performs well in our experiments, the enormous search
space (the edge/graph matrix has more than 1 million rows and 65 columns) has
to be restricted to discover hundreds of thousands of patterns in a reasonable time
frame. To address this problem and generate seeds for our biclustering algorithm,
we employ the FIM technique [20]. Below, we briefly describe FIM and related
concepts.

Let I = {i1, i2, . . . , in} be a set of items and let D be a database of m transactions.
Each transaction T is a set of items such that T ⊆ I. Supposing X is a set of items
X ⊆ I, a transaction T is said to contain X if and only if X ⊆ T . The itemset X
is called frequent if at least s transactions in the database contain X . The output
of a standard FIM algorithm is a list of all possible itemsets X which occur in at
least s transactions. In our case, we can regard an edge as a transaction and its
occurrence in a particular graph as an item. Given our frequency constraint, we need
only include edges occurring in at least five graphs in the transaction dataset. Note
that the frequent itemsets and their supporting transactions are actually submatrices
(biclusters) full of 1’s. These clusters with perfect density can serve as seeds for
our biclustering algorithm, which searches for larger biclusters that permit holes
(i.e., 0’s). The FIM algorithm may produce millions of itemsets which contain at
least four edges and occur in at least five graphs. These patterns should not be used
directly as seeds, however, because they overlap a great deal. This problem is well-
known in the data mining community. To improve the seed patterns and reduce
unnecessary computation in the biclustering algorithm, we first remove all FIM
patterns whose supporting transactions/edges are a subset of some other pattern.
Second, we merge two patterns if the resulting submatrix has a density larger than
0.8. This procedure is repeated until no additional merger can happen.

After this postprocessing, we will have about half a million patterns to feed our
biclustering algorithm. Given a FIM pattern with v genes, we generate a matrix
of all possible edges ( v(v−1)

2 ) and all datasets. This matrix serves as a seed for the
biclustering algorithm, and is also used as the initial configuration in the algorithm’s
simulated annealing procedure. Finally, we extract connected components from each
output bicluster produced by our algorithm.

2.3.2 Predicting Gene Functions from Recurrent Network Patterns

Given a network pattern, the most popular schemes for predicting gene function
employ the hypergeometric distribution to model the probability of genes function
based on neighborhood. However, this method ignores the network topology of the
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recurrent patterns, which is probably their most important aspect. To avoid this
problem, we have developed a new method of estimating gene function based on
random walks through the graph that can fully explore the topology of network
patterns. Our method is still based on the principle of “guilt by association.” In terms
of network topology, the degree of association between two genes can be measured
by how close they are (i.e., the length of the path between them) and how tightly
connected they are (i.e., the number of paths existing between them). Statistically,
they translate into the likelihood of reaching one gene from another gene in a
random walk. This probability can be approximated by matrix multiplication.

Given a network pattern consisting of v genes, let P be a stochastic matrix of
size v× v. The element Pi j is 1/ni if genes i and j are connected and 0 otherwise,
where ni is the number of neighbors of gene i. If we regard the genes as states
and Pi j as the probability of gene/state i transforming into j, then a random walk
through the graph can be thought of as a Markov process. From this perspective,
it is easy to see that each element of the matrix Pk is the probability that gene i
reaches gene j in a k-step random walk. The intuition behind our method is that
genes with similar functions are more likely to be well connected (i.e., gene i will
reach gene j with high probability in a random walk). Simply put, we expect the
probability Pk

i j to be large if genes i and j share the same function. Let o be the Gene
Ontology binary matrix, where element oi j is 1 if gene i belongs to category j and
0 otherwise. Then, the matrix M = Pko gives the network topology scores of genes
relating to functional categories. The higher this score, the more likely a gene has
that function. In practice, we choose k = 3 to confine our prediction to a local area of
network patterns. The function of each gene is estimated as the functional category
with the maximum score in the corresponding row of the score matrix M.

In an attempt to improve our method, we tried including attributes other than the
network topology scores of a network pattern in the final prediction. These attributes
are, recurrence, density, size, average node degree, the percentage of unknown
genes, and the functional enrichment of network modules. We use a random forest1

to determine whether function assignments based on the network topology score are
robust. In other words, the purpose of the random forest is to determine whether to
accept or reject a functional assignment based on the network topology score. The
random forest was trained using the assignments of known genes. The trained model
was then applied to classify unknown genes. We only keep the function assignments
that the random forest classified as “accept.”

2.3.3 Experimental Study

We collected 65 human microarray datasets, including 52 Affymetrix (U133 and
U95 platforms) datasets and 13 cDNA datasets from the NCBI Gene Expression
Omnibus [16] and SMD [19] databases (December 2005 versions). Each microarray

1A random forest is a collection of tree-structured classifiers [8].



152 W. Li et al.

dataset is modeled as a coexpression graph following the procedure introduced in
Sect. 2.1.3. The FIM and biclustering algorithms described above yield a total of
1,823,518 network patterns (modules) which occur in at least five graphs. After
merging patterns with similar network topologies and dataset recurrence, we are
left with 143,400 distinctive patterns involving 2,769 known and 1,054 unknown
genes. The sizes of the patterns vary from 4 to 180.

We define a module to be functionally homogenous if the hypergeometric p-value
after Bonferroni correction is <0.01. Among the identified network patterns, 77.0%
are functionally homogenous by this standard. In general, patterns that occur more
frequently are more likely to be functionally homogenous. This observation supports
our basic motivation for using multiple microarray datasets to enhance functional
inferences, namely that by considering pattern recurrence across many networks we
can enhance the signal of meaningful structures. We identify network modules with
a wide-range of topologies. In fact, 24% of the modules have connectivities <0.5.

To explore the relationships among the network members other than coexpres-
sion, we resort to the only available large-scale source: protein interaction data. We
retrieved human protein interaction information from the European Bioinformatics
Institute (EBI)/IntAct database [21] (version 2006-10-13). For each of the 143,400
detected patterns, we then tested whether protein interactions were overrepresented
in member genes compared to all human genes using the hypergeometric test to
evaluate significance. A total of 60,556 (22.44%) patterns were enriched in protein
interaction at a p-value of 0.001 level. This shows that genes belonging to a module
are much more likely to encode interacting proteins. Interestingly, many of the
protein-interaction-enriched network modules also fall into functional categories
such as protein biosynthesis, DNA metabolism, and so on. There are even many
cases where the interacting protein pairs are not coexpressed.

For each of the 143,400 recurrent network patterns, we identified the function
of each member gene with the maximum network topology score. We then trained
a random forest and made functional predictions for 779 known and 116 unknown
genes with 70.5% accuracy. It should be noted that the potential prediction accuracy
of this method is probably much higher; the rate of 70% is due to the sparse nature of
human GO annotations. Since GO annotations are based only on positive biological
evidence, it is likely that many annotated genes have undiscovered functions.
Furthermore, the GO directed acyclic graph structure is not perfect.

Since our approach allows a given gene to appear in more than one network
module, we are able to perform context-sensitive functional annotation. That is, we
can associate each gene multiple functions as well as the network environments in
which the gene exerts those functions. These contexts and relationships represent
valuable information, even if all of a gene’s function are already known. Among
our predictions, 20% of genes are assigned multiple functions. This rate is almost
certainly an underestimate, since for each network module, we only annotated genes
with a single functional category: the one associated with the highest network
topology score.
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3 Differential Network Patterns

Suppose that a set of biological networks is divided into two classes, for example,
those related to a specific disease and those obtained under normal or unrelated
conditions. It is then interesting to identify network patterns that differ significantly
between these two classes. In fact, it has become clear that many complex conditions
such as cancer, autoimmune disease, and heart disease are characterized by specific
gene network patterns. Recently, we designed an integrative approach to inferring
network modules specific to a phenotype [33]. A series of microarray datasets
modeled as coexpression networks is labeled with phenotypic information such
as the type of biological sample, a disease state, a drug treatment, etc. For each
phenotype, we can partition all microarray datasets into a positive class of datasets
appropriately annotated with that phenotype, and a background class containing
the rest of the datasets. We have designed a graph-based simulated annealing
approach [26] to efficiently identify groups of genes that form dense subnetworks
preferentially and repeatedly in a phenotype’s positive class. Using 136 microarray
datasets, we discovered approximately 120,000 modules specific to 42 phenotypes
and developed validation tests combining Gene Ontology, Gene Reference Into
Function (GeneRIF) and UMLS data. Our method is applicable to any kind of
abundant network data with well-defined phenotype associations, and paves the way
for a genome-wide atlas of gene network–phenotype relationships.

3.1 Problem Formulation

Consider a relation graph set D = {G1,G2, . . . ,Gn}, where each graph Gi = (V,Ei)
is annotated with a set of phenotypes. For each phenotype, we partition D into
a positive class DP consisting of graphs annotated with that phenotype and a
background class Dc

P = D \DP. Our problem is to identify groups of genes which
form dense subgraphs repeatedly in the phenotype positive class but not in the
background class. More specifically, we aim to satisfy three criteria: first, a gene
set must be densely connected in multiple graphs; second, the annotations of these
graphs must be enriched in a specific phenotype; and third, the gene set meeting
the first two criteria must be as large as possible. Put simply, this problem is to find
modules with three qualities: density, phenotype specificity, and size.

For the first criterion, we consider a gene set to be densely connected if its
density is larger than a hard threshold (typically 0.66). However, because we will
use simulated annealing as the optimization method (see Sect. 3.2), hard thresholds
are too restrictive. Rather, we want the algorithm to accept intermediate states that
may be unfavorable. We, therefore, design an objective function fdens with a soft
threshold, where unfavorable values of the density increase the cost exponentially.
This objective function is defined in (6.3) below. Similarly, the other two criteria
also use soft thresholds in their objectives. The second criterion (specificity) states
that given a phenotype, we wish to find dense gene sets that occur frequently
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in the positive class but infrequently in the background class. The specificity
objective function is defined in (6.4). It uses the hypergeometric test to quantify
the significance of phenotype enrichment and favors low p-values, again at an
exponential rate. For simplicity and computational considerations, we limited the
size of the module to 30 genes. We believe this to be an ample margin for
phenotypically relevant gene sets. Equation (6.2) shows the size objective function,
which contains both a linear component (first term) and an exponential component
(second term). The exponential component sets a strong preference for low sizes
(four to five vertices), but the linear component continues to reward size increases
above this soft threshold.

We supplemented the three main objectives with a fourth: the density differential
defined in (6.5). This term compliments the density and specificity objective
functions by comparing the average density of the cluster in the background
datasets to its density in the phenotype datasets. The rationale behind this term
is as follows. Since the specificity objective function only takes a state’s active
datasets as arguments, the transition to a neighboring state may yield a sudden
change in the specificity energy because its active datasets are different. However,
many neighboring states can have subtle changes in the density distribution among
the active and inactive datasets that is not captured by the density and specificity
functions alone. The density differential function is, therefore, designed to reward
these subtle density changes, helping direct the simulated annealing process toward
more phenotype-specific clusters. We found that using the density differential in
combination with the specificity and density allowed the algorithm to converge
faster and find better clusters than either option alone.

The individual objective functions that we designed take the following forms:

fsize(x) = exp

{
−α
( |x|

γ
− os

)}
(6.2)

fdens(x) = exp

{
−α
(

min
i∈DA

(δi(x))− oδ

)}
(6.3)

fspec(x) = log(P(Y ≥ |DA ∩DP|)) (6.4)

fdiff(x) =

⎛

⎝ 1
|Dc

P| ∑
i∈Dc

P

δi(x)− 1
|DP| ∑

i∈DP

δi(x)

⎞

⎠ (6.5)

where

DP is the set of graphs annotated with the current phenotype,
DA is the set of graphs in which the gene cluster is dense,
and Y ∼ hypergeometric(|DA|, |DP|, |Dc

P|).

The exponential components of these functions prevent the simulated anneal-
ing algorithm from settling on an extreme case with just one of the desired
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qualities (such as a very specific triangle, which is always very dense and small).
Improvements to such cases are always rewarded, however, and they are accepted
as intermediate steps with good probability. We selected the parameters α = 20,
γ = 30, oδ = 0.85, and os = 0.2 based on our simulation results comparing
biologically validated clusters with clusters arising from random chance.

We combined the four objective functions into a single function using a weighted
sum f (x) = w1 fsize(x)+ w2 fdens(x) + w3 fspec(x) + w4 fdiff. The key difficulty with
this approach is determining an appropriate set of weights. In previous studies, this
has been accomplished empirically [13]. We do the same, for the following reasons.
First, we are interested in finding a single optimal or near-optimal objective function,
rather than exploring the extremes of each term. Second, the overall effectiveness
of our algorithm turns out to be consistent for a wide-range of weights. Finally,
although we chose weights based on the algorithm’s performance with simulated
data, it also behaved well on real data. The weights for size, density and specificity,
and density differential are 0.05, 0.05, 5, and 50, respectively.

3.2 Differential Network Pattern Discovery Algorithm

As stated above, we use simulated annealing (SA) to identify differential patterns.
This well-established stochastic algorithm has been successfully applied many other
NP-complete problems [44]. Our specific design for the SA algorithm follows.

3.2.1 Search Space

A state is defined as a set of vertices, and the search space is the set of all
possible states. For simplicity and computational considerations, we limit the space
to sets with fewer than 30 vertices. We believe this to be an ample margin for
phenotypically relevant gene sets. Formally, we define the search space as S =
{x : x ⊂V, |x| ≤ 30, |x| ≥ 3}.

3.2.2 Differential Coexpression Graphs

To dramatically increase the probability of finding optimal modules across many
massive networks, we wish to narrow down the search space. We, therefore,
construct a weighted differential coexpression graph for each phenotype. This graph
summarizes the differences between gene coexpression networks in the phenotype
class and those in the background class. The differential coexpression graph is used
by the SA algorithm to create neighboring states (see Sect. 3.2.4).

The weighted differential coexpression graph GΔ = (V,EΔ ) contains only edges
(coexpression relationships) that are present frequently in DP but infrequently in
Dc

P. The specificity of a single edge can be measured by the significance p of
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a hypergeometric test comparing the abundance of the edge in DP to its overall
abundance in D. The vertex set V of GΔ is the same as that of D, and the weight of
an edge is − log(p). In this way, heavier edges in this graph represent pairs of genes
that exhibit elevated coexpression highly specific to DP.

3.2.3 Initial States

SA attempts to find a global optimum state. If we were to use random initial states
and run the algorithm for a long time, we will always arrive at approximately the
same final state: the largest vertex set having the most evidence for coexpression
and phenotype specificity. However, we are interested in finding many independent
vertex sets. We, therefore, designed a systematic way of generating initial states
(“seeds”) and restricted the SA search space to vertex sets containing these seeds.

We define a triangle as a set of three vertices that is fully connected in at least
one dataset. The hypothesis underlying our strategy is that if a set of genes is
coexpressed specifically in datasets annotated with the phenotype of interest, then
this set will include at least one triangle that appears frequently in the positive class
and rarely in the background class.

Therefore, for each phenotype we tested every triangle appearing in the positive
class for enrichment (using the hypergeometric test) with respect to the background
class. For each triangle with a hypergeometric p-value less than 0.01, we ran the SA
algorithm with the constraint that states must be supersets of the initial triangle.

3.2.4 Selection of Neighboring States

We define a neighbor of the current state as any state containing either one more or
one fewer vertex. We create neighboring states by first determining whether to add
or remove a vertex, then choosing the vertex based on an appropriate probability
distribution.

If a cluster has size 3, it consists only of the initial seed so a vertex must be added.
If a cluster has size 30 (maximum), a vertex must be removed. For intermediate
values, we proceed as follows.

Let x be the current state. We narrow the choice of vertices to be added by consid-
ering only those with at least one edge to a vertex in x in at least one of the phenotype
datasets. This criterion is easily justified, as no other vertices could possibly
contribute to x as a dense, phenotype-specific cluster, even as an intermediate step. It
can be shown that this set corresponds exactly to Nx = {g : g /∈x, ∑

h∈x
wΔ (g,h) > 0}

(See Sect. 3.2.2).
The probability of removing a vertex is given by prem = s0/|Nx|, where s0 is an

estimate of how many vertices will improve the state. This simple function allows
the SA process ample time to consider many neighbors before attempting to remove
a vertex, since the number of neighboring vertices vastly outnumbers the number
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of vertices in a cluster. We heuristically chose s0 = 20 as an appropriate average
number. In the future, an iterative estimation of s0 as the average size of the returned
clusters might improve the performance of the algorithm.

In the event that a gene is to be removed, it is chosen uniformly from the
cluster. When adding a gene, however, the probability of selecting vertex g ∈ Nx

is proportional to the summed weights of edges in the differential coexpression
graph leading from g to members of x. Formally, we have: P(ga is added) =

∑a∈x wΔ (ga,a)/∑b∈Nx ∑a∈x wΔ (a,b).

3.2.5 Annealing Schedule

We used the schedule Tk = Tmax/ log(k + 1), where k is the iteration number and Tk

is the temperature at that iteration [18]. The initial temperature for our study was 4.
This schedule form guarantees optimality for long run times. Although it might be
argued that long run times are impractical, we found that for an identical number
of iterations, this schedule resulted in lower-energy clusters than the oft-used
exponential schedule Tk+1 = αTk = αkTmax. We ran the algorithm for a maximum of
1,000,000 iterations or until the simulated annealing converged. In cases where the
maximum number of iterations was reached, we forced convergence to the best local
minimum by a near-greedy exploration of the neighborhood, achieved by decreasing
the temperature to near zero.

3.2.6 Postfiltering

Recall that we forced the initial seed triangle to be part of the final result. Clearly,
some of these seeds will result from noise alone, in which case the final output will
not be biologically significant. To remove these clusters, we discarded any vertex
set not meeting the following criteria: size greater than 6, density greater than 0.66,
and FDR-corrected phenotype specificity (p-value) less than 0.01. Moreover, the
cluster must be dense in at least three datasets related to the target phenotype. After
filtering, we merged redundant clusters with intersections/unions greater than 0.8.

3.3 Experimental Study

We selected microarray datasets from NCBI’s Gene Expression Omnibus [16] that
met the following criteria: all samples were of human origin, the dataset had at least
eight samples (a minimum for accurate correlation estimation), and the platform
was either GPL91 (Affymetrix HG-U95A) or GPL96 (Affymetrix HG-U133A).
Throughout this study, we only considered the 8,635 genes shared by both platforms
(and therefore all datasets). All 136 datasets meeting these criteria on 28 Feb 2007
were used for the analysis described herein.
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We determined the phenotypic context of a microarray dataset by mapping the
Medical Subject Headings (MeSH) of its PubMed record to UMLS concepts. This
process is more refined than scanning the abstract or full text of the paper, and
in practice results in much cleaner and more reliable annotations [9, 10]. UMLS
is the largest available compendium of biomedical vocabulary, with definitions and
hierarchical relationships spanning approximately one million interrelated concepts.
The UMLS concepts include diseases, treatments, and phenotypes at various levels
of resolution (molecules, cells, tissues, and whole organisms). To infer higher-order
links between datasets, we annotated each dataset with all matching UMLS concepts
and their ancestor concepts. The datasets received a total of 467 annotations, of
which 80 mapped to more than five datasets. Some of the latter were mapped to
identical sets of datasets; after merging these, we were left with 60.

For each dataset, we used the Jackknife Pearson correlation as a measure of
similarity between two genes (the minimum of the leave-one-out Pearson corre-
lations). To create the coexpression network, we selected a cutoff corresponding to
the 150,000 strongest correlations (0.4% of the total number of gene pairs:

(8,635
2

)≈
3.73× 107). This choice was motivated by exploring the statistical distribution of
pairwise correlations, which we do not detail here.

We applied our simulated annealing approach to all 136 microarray datasets
covering 42 phenotype classes. The phenotypes related to a wide-range of diseases
(e.g., leukemia, myopathy, and nervous system disorders) and tissues (e.g., brain,
lung, and muscle). The procedure described above identified 118,772 clusters that
satisfied our criteria for a concept-specific coexpression cluster. The number of clus-
ters found for a given phenotype increased with the number of datasets annotated
with that phenotype: most of the phenotypes with only a few associated datasets
yielded few clusters. The most strongly represented phenotype was “nervous system
disorders,” with 15 associated datasets and 22,388 clusters.

We used two different methods to evaluate cluster quality. First, we assessed
the functional homogeneity of a cluster by testing for enrichment for specific Gene
Ontology [14] biological process terms. If a cluster is enriched in a GO term with a
hypergeometric p-value less than 0.01, we consider it functionally homogeneous.
Of the 118,772 clusters derived from all phenotypes, 78.98% were functionally
homogenous. This validation demonstrates a key advantage of our approach: by
focusing on clusters specific to a phenotypically related subset of all datasets, we
are less likely to detect constitutively expressed clusters such as those consisting of
ribosomal genes or genes involved in protein synthesis.

While the GO database provides information on a gene’s functions, it fails to
describe its phenotypic implications. To map individual genes to phenotypes, we
used GeneRIF [34]. This database contains short statements derived directly from
publications describing the functions, processes, and diseases in which a gene is
implicated. We mapped the GeneRIF notes to UMLS metathesaurus terms (as with
the dataset MeSH headings), then annotated genes with the UMLS concepts. Similar
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Fig. 6.6 Cluster homogeneity by phenotype. For each phenotype, the proportion of clusters that
are significantly enriched (p-value <0.01) for a GO biological process (blue) or a GeneRIF UMLS
concept (gray). The dotted lines show the overall homogeneity for all clusters. The dendrogram
shows the distance between phenotypes in terms of dataset overlap

to our analysis of the GO annotations, we then assessed the conceptual homogeneity
of gene clusters in specific UMLS keywords with the hypergeometric test, enforcing
a p-value of 0.01 or less. The proportion of conceptually homogeneous modules
was 48.3%. Clusters are less likely to have conceptual homogeneity than functional
homogeneity, probably due to a dearth of GeneRIF annotations. In some situations,
however, GeneRIF performs better. For example, many cancer-related phenotypes
such as “Carcinoma,” “Neoplasm Metastasis,” and “Neoplastic Processes” are
more likely to have GeneRIF homogeneity. This effect could be attributed to the
abundance of related literature. The functional and conceptual homogeneity of
clusters derived from different phenotype classes is summarized in Fig. 6.6.

In addition to testing for functional and conceptual homogeneity, we assessed
whether the clusters were involved in the phenotype condition in which they were
found. Again, we used both GO and GeneRIF independently for this.

Recall that each functionally homogeneous module is associated with one or
more GO biological functions, and also with the phenotype in which it was found.
We summarize the GO functions by mapping them to “informative nodes,” a concept
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we introduced in our earlier work [54]. We then tested them for overrepresentation in
that phenotype class. This provided, for each of 33 phenotypes (out of 42 phenotypes
having at least one module), a list of gene module functions that are active in
that phenotype more often than expected by chance. Many of these GO functions
are clearly related to the phenotype in which they were found. For example, the
phenotype “Mental disorders” has three GO biological processes related to brain
function: “synaptic transmission” (2.3e–62), “neuron differentiation” (5.4e–42),
and “central nervous system development” (7.9e–25). Our approach also identifies
biological processes related to tissue phenotypes. For example, the “Skeletal muscle
structure” phenotype is significantly enriched with modules that are homogeneous
in the biological functions “muscle system process” (4.0e–221), “actin filament-
based process” (1.23e–150), and “skeletal development (1.53e–03).” The functional
association between a module’s GO function and the phenotype in which it is
active suggests that our clusters are indeed linked to the phenotype conditions
in which they were identified. In addition to GO informative nodes, we also
tested each phenotype for overrepresentation of UMLS concepts from GeneRIF.
This overrepresentation shows which diseases, tissues, and biological concepts are
significantly enriched in each phenotype. In Table 6.1, we highlight some of these
overrepresented functions and concepts.

The preceding analysis relies on our subjective evaluation of matches between
UMLS and GO terms. We can conduct a more objective analysis using the GeneRIF
data, which can be mapped directly to the same UMLS terms used to classify
phenotypes. We counted the modules that were conceptually homogeneous with
respect to the UMLS annotations that defined their respective phenotype classes.
Of the 42 phenotypes represented in our study, 26 had one or more matching
modules. The proportion of matching modules among total modules in these 26
phenotypes ranged from 0.04 to 33.6%. Although these numbers may not sound
impressive, these proportions are significantly larger than expected by chance. We
used a permutation test to assess the statistical significance of our analysis. We
randomly assigned existing clusters to one of the 47 phenotypes with at least one
cluster, while holding the number of clusters assigned to each phenotype constant.
One million of these permutations were generated. Thirteen of the phenotypes were
found to be significantly enriched with conceptually homogenous modules after
FDR correction. They are shown in Table 6.2. The high significance for many of
the phenotypes indicates that the low percentages are probably due to a dearth of
GeneRIF annotations. As GeneRIF becomes more comprehensive, we expect the
performance to improve in both the percentage of matching clusters and the number
of phenotypes that are significant. We also found that the UMLS text mining of
the GeneRIF database and the MeSH headers is not perfect, so improvements and
refinements in those areas should also improve our validation results.
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Table 6.2 Phenotypes for which the annotated clusters are consistent with the phenotype class
in which they were derived. The first column indicates a UMLS phenotype. The second column
displays the total number of clusters active in that phenotype class. The third and fourth columns
show the percentage of clusters annotated with that phenotype in the phenotype class and in
the background class, respectively. The fifth column shows the FDR-corrected p-value for the
difference between the classes. The statistical significance was calculated by permuting the clusters
across the dataset phenotypes 1,000,000 times. Concepts with a p-value less than 4.7e–6 were never
outperformed by the permutations

Total Matching Matching
clusters in clusters in clusters in
phenotype phenotype background

Phenotype class class (%) class (%) p-value

Mental disorders 791 3.12 0.17 <4.7e–06
Lymphoma 409 20.11 0.97 <4.7e–06
Myopathy 645 15.46 3.65 <4.7e–06
Musculoskeletal diseases 1,619 2.26 1.33 <4.7e–06
Genetic diseases, inborn 1,470 7.86 1.82 <4.7e–06
Neoplasms, nerve tissue 765 33.60 2.02 <4.7e–06
Neoplastic processes 794 9.08 4.19 <4.7e–06
Nervous system disorder 2,214 4.44 2.69 <4.7e–06
Skeletal muscle structure 154 0.94 0.18 <4.7e–06
Hemic and lymphatic diseases 1,129 1.17 0.65 1.3e–05
Bone marrow diseases 523 1.31 0.52 5.3e–03
Leukemia 460 0.55 0.36 2.9e–02
Muscle 483 1.03 0.31 3.5e–02

4 A Computational Model for Multiple Weighted
Networks: Tensor

In previous sections, we approached the analysis of multiple large networks through
a series of heuristic, graph-based, data mining algorithms. While useful, this class of
methods faces two major limitations. (1) The general strategy is a stepwise reduction
of the large search space, but each step involves one or more arbitrary cutoffs. In
addition, there is the initial cutoff that transforms continuous measurements (e.g.,
expression correlations) into unweighted edges. The ad hoc nature of these cutoffs
has been a major criticism directed at this body of work. (2) These algorithms cannot
be easily extended to weighted networks. Most graph-based approaches to multiple
network analysis are restricted to unweighted networks, partly because weighted
networks are often perceived as harder to analyze [36]. However, weighted networks
are obviously more informative than their unweighted counterparts. Generating an
unweighted network by applying a threshold to weighted edges invariably leads
to information loss [41]. Furthermore, if there is no reasonable way to choose the
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threshold, this loss cannot be controlled. Both problems justify the development of
an efficient computational framework suitable for mining patterns in many large
weighted networks.

Generally speaking, a network of n vertices can be represented as n×n adjacency
matrix A = (ai j)n×n, where each element ai j is the weight of the edge between
vertices i and j. A number of numerical methods for matrix computation have been
elegantly applied to network analysis, for example, graph clustering [12, 15, 31, 37]
and pathway analysis [5, 6]. In light of these successful applications, we propose a
tensor-based computational framework capable of analyzing multiple weighted and
unweighted networks in an efficient, effective, and scalable manner.

Simply put, a tensor is a multi-dimensional array and a matrix is a second-
order tensor. Given m networks with the same n vertices but different topologies,
we can represent the whole system as a third-order tensor A = (ai jk)n×n×m.
Each element ai jk is the weight of the edge between vertices i and j in the kth
network. By representing a set of networks in this fashion, we gain access to
a wealth of numerical methods – in particular continuous optimization methods.
In fact, reformulating discrete problems as continuous optimization problems
is a long-standing tradition in graph theory. There have been many successful
examples, such as using a Hopfield neural network for the traveling salesman
problem [22] and applying the Motzkin–Straus theorem to solve the clique-finding
problem [35].

Continuous optimization techniques offer several advantages over discrete pat-
tern mining methods. First, we may discover unexpected theoretical properties
that would be invisible in a purely discrete analysis. For example, Motzkin
and Straus’s continuous formulation of the clique-finding problem revealed some
remarkable and intriguing properties of cliques which directly benefit this work.
Second, when a graph pattern mining problem is transformed into a continuous
optimization problem, it becomes easy to incorporate constraints representing
prior knowledge. Finally, advanced continuous optimization techniques require
very few ad hoc parameters. Although tensor analysis has been productively
applied in the fields of psychometrics [11, 49], image processing and computer
vision [3,48], chemometrics [43], and social network analysis [1,27], this approach
has been explored only recently in large-scale data mining [17, 32, 45–47] and
bioinformatics [2, 4, 38].

In this section, we develop a tensor-based computational framework to analyze
multiple weighted networks by generalizing the problem of finding heavy subgraphs
in a single weighted network. A heavy subgraph (HS) is a subset of nodes which are
heavily interconnected. We extend this concept to multiple weighted networks. By
defining a recurrent heavy subgraph (RHS) as a subset of nodes which are heavily
interconnected in a subset of weighted networks with identical nodes but different
topologies. A RHS can be intuitively understood as HS that appears in multiple
networks. The nodes of the RHS are always the same, although the weights of the
edges may vary between networks (Fig. 6.7).
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Fig. 6.7 A collection of coexpression networks can be “stacked” together into a third-order tensor
such that each slice represents the adjacency matrix of one network. The weights of edges in the
coexpression networks and their corresponding tensor elements are indicated by the color scale to
the right of the figure. After reordering the tensor using the gene and network membership vectors,
it becomes clear that the subtensor in the top-left corner of the tensor (formed by genes A,B,C,D
in networks 1,2,3) corresponds to a recurring heavy subgraph

4.1 Problem Formulation and Optimization Algorithm

Given m networks with the same n vertices but different topologies, we can represent
the whole system as a third-order tensor A = (ai jk)n×n×m. Each element ai jk is the
weight of the edge between vertices i and j in the kth network. The genes and
networks forming an RHS are described by two membership vectors: (1) the gene
membership vector x = (x1, . . . ,xn)

T , where xi = 1 if gene i belongs to the RHS and
xi = 0 otherwise; and (2) the network membership vector y = (y1, . . . ,ym)T , where
y j = 1 if the RHS appears in the network j and y j = 0 otherwise. The summed
weight of all edges in the RHS is

HA (x,y) =
n

∑
i=1

n

∑
j=1

m

∑
k=1

ai jkxix jyk (6.6)

Note that only the weights of edges ai jk with xi = x j = yk = 1 are counted in HA .
Thus, HA (x,y) measures the “heaviness” of the network defined by x and y.

To identify a RHS of K1 genes and K2 networks intuitively, we should look
for the binary membership vectors x and y that jointly maximize HA under the
constraints ∑n

i=1 xi = K1 and ∑m
j=1 y j = K2. This cubic integer programming problem

is NP-hard [39]. We instead seek an efficient polynomial solution by reformulating
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the task as a continuous optimization problem. That is, we look for real vectors x
and y that jointly maximize HA . This optimization problem is formally expressed
as follows:

maxx∈Rn
+,y∈Rm

+
HA (x,y)

subject to

{
f (x) = 1
g(y) = 1

, (6.7)

where R+ is a nonnegative real space, and f (x) and g(y) are vector norms.
This formulation describes a tensor-based computational framework for the RHS
identification problem. By solving (6.7), users can easily identify frequent heavy
subgraphs consisting of the top-ranking networks (after sorting the tensor by y) and
top-ranking genes (after sorting each network by x). After discovering the heaviest
RHS in this manner, we can mask it with zeros and optimize (6.7) again to search
for the next heaviest RHS.

Two major components of the framework described in (6.7) remain to be
designed: (1) the vector norm constraints ( f (x),g(y)), and (2) a protocol for
maximizing HA (x,y). We explain our design choices below.

4.1.1 Vector Norm Constraints

The choice of vector norms will significantly impact the outcome of the optimiza-
tion. The norm of a vector x = (x1,x2, . . . ,xn)

T is typically defined in the form
‖x‖p = (∑n

i=1 |xi|p)1/p, where p� 0. The symbol ‖x‖p, called the “Lp-vector norm,”
refers to this formula for the given value of p. In general, the L0 norm leads to sparse
solutions where only a few components of the membership vectors are significantly
different from zero [52]. The L∞ norm generally gives a “smooth” solution where
the elements of the optimized vector are approximately equal.

In our problem, a RHS is a subset of genes that are heavily connected to
each other in as many networks as possible. These requirements can be encoded
as follows. (1) A subset of values in each gene membership vector should be
significantly nonzero and close to each other, while the rest are close to zero. To this
end, we consider the mixed norm L0,∞(x) = α‖x‖0 +(1−α)‖x‖∞ (0 < α < 1) for
f (x). Since L0 favors sparse vectors and L∞ favors uniform vectors, a suitable choice
of α should yield vectors with a few nonzero significant elements that are similar in
magnitude, while all other elements are close to zero. In practice, we approximate
L0,∞ with the mixed norm Lp,2(x) = α‖x‖p + (1−α)‖x‖2, where p < 1. (2) As
many network membership values as possible are nonzero and close to each other.
As discussed above, this is the typical outcome of optimization using the L∞ norm.
In practice, we approximate L∞ with Lq(y) where q> 1 for g(y). In our experiments,
we tested several different settings and finally settled on p = 0.8, α = 0.2, and q = 10
as effective choices for discovering a RHS.
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4.1.2 Multi-Stage Convex Relaxation Optimization

Our tensor framework requires an effective optimization method that can deal
with nonconvex constraints. It is well-known that the global optimum of a convex
problem can be easily computed, while the quality of the optimum for a nonconvex
problem depends heavily on the numerical procedure. Standard numerical tech-
niques such as gradient descent lead to a local minimum of the solution space,
and different procedures often find different local minima. Considering the fact that
most sparse constraints are nonconvex, it is important to find a theoretically justified
numerical procedure that leads to a reproducible solution.

We use our previously developed framework, known as Multi-Stage Convex
Relaxation (MSCR) [52, 53], to design the optimization protocol. MSCR has good
statistical properties, and has been proven to generate reproducible solutions even
for nonconvex optimization problems [52, 53]. In this context, concave duality will
be used to construct a sequence of convex relaxations that give increasingly accurate
approximations to the original nonconvex problem. We approximate the sparse
constraint function f (x) by the convex function f̃v(x) = vT h(x)+ f ∗h (v), where h(x)
is a specific convex function h(x) = xh (h � 1) and f ∗h (v) is the concave dual of
the function f h(v) (defined as f (v) = f h(h(v))). The vector v contains coefficients
that will be automatically generated during the optimization process. After each
optimization, the new coefficient vector v yields a convex function f̃v(x) that more
closely approximates the original nonconvex function f (x).

4.2 Experimental Study

We applied our methods to 129 microarray datasets generated by different platforms
and collected from the NCBI GEO. We used only datasets containing at least �20
samples, to ensure that correlations in the coexpression networks were very robust.
Each microarray dataset is modeled as a coexpression graph following the method
introduced in Sect. 2.1.3.

We identified 4,327 RHSs, each of which contains at least five member genes
and occur in at least five networks. The minimum “heaviness” of these patterns is
0.4. The average size is 8.5 genes, and the average recurrence is 10.1 networks. To
assess the quality of these RHSs, we evaluate the functional homogeneity of their
member genes using both Gene Ontology Analysis and KEGG pathway analysis.

For each RHS, we test its enrichment for specific Gene Ontology (GO) biological
process terms and GO cellular component terms [14]. To ensure the specificity of
GO terms, we removed from consideration any terms associated with more than 500
genes. If the member genes of a RHS are enriched in a GO term with a hypergeomet-
ric p-value less than 0.001, we declare the RHS to be functionally homogeneous.
Our results show that 59.7% of RHSs with �5 member genes, �5 recurrences,
and �0.4 heaviness were functionally homogenous. To highlight the significance
of this result, we generated random patterns with the same size distribution as
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Fig. 6.8 Evaluating the functional homogeneity of RHSs using three forms of enrichment
analysis. Each method is presented in two plots: the larger plot shows the difference between
enrichment results on RHSs and random patterns; while the smaller plot focuses on the results
of RHSs alone. It is obvious that the functional enrichments of RHSs are much greater than
those found in random patterns, and also that the quality of the RHSs increases significantly with
heaviness and recurrence

the RHSs. Only 9.3% of these patterns were functionally homogenous. The func-
tionally homogenous RHSs cover a wide-range of biological processes, including
translational elongation, mitosis, cell cycle, RNA splicing, ribosome biogenesis,
histone modification, chromosome localization, spindle checkpoint, posttranscrip-
tional regulation, and protein folding. Our statistical analysis also demonstrates that
the greater the heaviness and recurrence, the more likely it is to be functionally
homogenous. This relationship is shown in Fig. 6.8a,b.

We used KEGG human pathways2 to assess the degree to which RHS modules
represent known biological pathways. If member genes of a RHS are enriched in
a pathway with a hypergeometric p-value less than 0.001, we declare the RHS to
be “pathway homogeneous.” The results show that 43.5% of RHSs with �5 genes,
�5 recurrences, and �0.4 heaviness were pathway homogenous, compared to a
rate of 1.7% in randomly generated patterns (Fig. 6.8c). The RHSs are enriched in
a variety of pathways: oxidative phosphorylation, cell cycle, cell communication,
focal adhesion, ECM-receptor interaction, glycolysis, etc.

5 Conclusion

Biological network data are rapidly accumulating for a wide-range of organisms
under various conditions. The integrative analysis of multiple biological networks
is a powerful approach to discover meaningful network patterns, including subtle
structures and relationships that could not be discovered in a single network.

2http://www.genome.jp/kegg/.

http://www.genome.jp/kegg/
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In this chapter, we proposed several novel types of recurrent patterns and derived
algorithms to discover them. We also demonstrated that the identified patterns can
facilitate functional discovery, regulatory network reconstruction, and phenotype
characterization. Although we used coexpression networks as examples throughout
this work, our methods can be applied to other types of relational graphs for pattern
discovery. New challenges will arise as the quantity and complexity of biological
network data continue to increase. The wealth of biological data will certainly push
the scale and scope of graph-based data mining to the next level.
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Chapter 7
Molecular Networks and Complex Diseases

Mehmet Koyutürk, Sinan Erten, Salim A. Chowdhury, Rod K. Nibbe,
and Mark R. Chance

Abstract Many human diseases are based on a set of complex interactions among
multiple genetic and environmental factors. Recent developments in biotechnology
have enabled interrogation of the cell at various levels leading to many types of
“omic” data that provide valuable information on these factors and their interactions.
These data include (1) genomic data, which reveals possible genetic factors involved
in disease, (2) transcriptomic data, which reveals changes in regulation of gene
expression, and (3) proteomic data, which reveals irregularities in the amount
of functional proteins in affected tissues. While these data are very useful in
understanding differences between disease phenotypes, they provide information
at the level of a single molecular type. To integrate these disparate data types,
molecular network analysis is invaluable in uncovering the relations between
disparate molecular targets and understanding disease development and progression
at the systems level. This chapter provides an overview of current findings on
the systems biology of human diseases in the context of molecular networks and
outlines current computational approaches in network biology of human diseases.

1 Introduction

One of the major challenges in the postgenomic era is systems-level characterization
of complex human diseases, that is, diseases that result from the interplay between
multiple genetic and environmental factors. With significant advances in high-
throughput screening technologies, it is now possible to develop computational
techniques for driving studies aimed toward mechanistic understanding of disease
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Fig. 7.1 The organization of this chapter, illustrated in the context of the central dogma of
molecular biology. The composition of macromolecules in an organism can be interrogated at
different levels using various technologies. Protein interaction networks lie at the core of the
computational methods discussed in this chapter, and each section details current algorithmic
approaches to the integration of disparate -omic datasets to analyze of complex diseases

development and progression. An important source of information that is useful in
modeling functional relationships between multiple factors comes from networks
of protein–protein interactions (PPIs). Challenges associated with the development
of efficient computational methods for analyzing PPI networks in the context of
human diseases, though, are exacerbated by the static, incomplete, and noisy nature
of these network data. These challenges are further amplified by the difficulties
associated with studying dynamical systems via qualitative models. Yet, novel
computational methods for network-based disease analysis are rapidly emerging.
These methods aim to enhance the use of various -omic datasets in understanding
complex diseases, by grounding themselves on empirical evidence that provide
clues on the relationship between molecular signatures of disease and functional
topology of PPI networks. In this chapter, we discuss current findings on the systems
biology of human diseases in the context of molecular networks and outline current
computational approaches to integrating disparate -omic datasets in the study of
complex diseases.

The organization of this chapter is outlined in Fig. 7.1. In Sect. 2, we discuss how
genomic data is interpreted in the context of PPI networks and how network data is
used to refine the findings of genome-wide linkage and association studies (GWAS).
In Sect. 3, we discuss how PPI networks are used to discover network signatures of
transcriptional dysregulation and how these network signatures are used to enhance
diagnosis and prognosis of complex diseases. In Sect. 4, we discuss how protein
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expression data can be used to extract knowledge on the systems biology of complex
diseases through its integration with other -omic datasets within the framework of
PPI networks. Finally, in Sect. 5, we conclude with a discussion of open problems
in network-based analyses of complex diseases.

2 Genomics: Prioritizing Disease Genes

Characterization of disease-associated variations in the human genome is an impor-
tant step toward enhancing our understanding of the cellular mechanisms that drive
complex diseases, with profound applications in modeling, diagnosis, prognosis,
and therapeutic intervention [9]. Genome-wide linkage and association studies in
healthy and affected populations provide chromosomal regions containing hundreds
of polymorphisms that are potentially associated with certain genetic diseases [26].
These polymorphisms often span up to 300 genes, only a few of which probably
have a role in the manifestation of disease. Investigation of that many candidates via
sequencing is not always a feasible option. Consequently, computational methods
are primarily used to prioritize and identify the most likely disease-associated genes
by utilizing a variety of data sources such as gene expression [43,56] and functional
annotations [1, 14, 74]. However, the scope of methods that rely on functional
annotations is limited because only a small fraction of genes in the human genome
are currently annotated. Moreover, signals inferred from gene expression profiles
are not easily utilized, especially for diseases caused by multiple genes, where the
impact of each contributor gene can be minimal, while the sum of many genes
working in concert may be substantial. PPIs serve as an invaluable resource in this
regard, since they provide functional information in a network context and they can
be obtained at a large scale via high-throughput screening [22].

2.1 Interactions Among Disease Genes

Network-based analyses of diverse phenotypes demonstrate that products of genes
that are implicated in similar diseases are clustered together into “hot spots” in PPI
networks [27, 64]. Here, the similarity between diseases refers to the similarity in
clinical classification of diseases. In a systematic study using the Online Mendelian
Inheritance in Man (OMIM) Database, Goh et al. [27] show that the products of
as many as 290 of the 903 pairs of genes that are implicated in the same disease
class are also known to interact with each other (p < 10−6). Motivated by these
observations, many studies search the PPI networks for interacting partners of
disease-implicated genes to narrow down the set of candidate genes implicated by
GWAS [23, 35, 37, 43].



174 M. Koyutürk et al.

Let C denote the set of candidate genes that are within the linkage interval
identified by genome wide linkage analysis for a disease of interest, D. Let S denote
the set of genes that are likely to be associated with this disease based on existing
knowledge. The overall objective of network-based disease gene prioritization is to
use a human PPI network G = (V,E), to prioritize candidate genes c ∈ C based on
their likelihood of being associated with D. Here, V denotes the set of gene products
in the network and E denotes the set of interactions between these gene products,
where uv ∈ E represents an interaction between u ∈ V and v ∈ V . In this network,
the set of interacting partners of a protein v ∈V is denoted N(v) = {u∈V : uv ∈ E}.

In one of the pioneering studies on network-based disease gene prioritization,
Oti et al. [57] identify potential disease genes by qualitatively investigating the
interacting partners of the genes in S. Frank et al. [23] extend this idea in a
quantitative framework to score genes in C based on the number of interactions
between each candidate disease gene and genes likely to be associated with disease
based on existing knowledge. Lage et al. [43] further refine this framework to also
consider the information provided by the genes implicated in diseases similar to the
disease of interest, D. In other words, rather than limiting S to the genes that are
implicated in D, they also consider genes that are implicated in diseases that are
“similar” to D. Here, the phenotypic similarity between two diseases is assessed
in terms of the shared terms in the text and clinical synopsis parts of the OMIM
record for each disease. Given these phenotypic similarity scores, they compute a
score σ(s,D) for each gene s ∈ S, which reflects the similarity between D and the
diseases that are associated with s. Subsequently, the posterior probability of the
disease association of each candidate gene is computed using Bayes’ rule, based on
the level of association between the interacting partners of the candidate gene and
disease D. This method, illustrated in Fig. 7.2, is shown to rank 298 disease-causing
genes as the top candidates for 669 linkage intervals studied [43].

2.2 Information-Flow-Based Methods

While methods that consider direct interactions between disease genes and can-
didate genes are useful, they do not utilize knowledge of PPIs to their full
potential. In particular, they do not consider interactions among proteins that are
not coded by candidate genes, which might also be useful in understanding indirect,
but biologically important, functional relationships between candidate genes and
seed genes. For this reason, they are highly vulnerable to missing interactions.
Previous work shows that proteins that do not directly interact, but share interacting
partners or reside in close neighborhood of each other in the network, tend to have
similar biological functions and participate in common pathways [17,58]. However,
including these indirect relationships raises the problem of false positives, which are
known to exist in vast amounts in high-throughput PPI data.
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Fig. 7.2 Use of phenotypic similarity between diseases and knowledge of protein–protein in-
teractions to prioritize candidate genes. In this example, gene products are shown by circles,
diseases are shown by rectangles, available interactions between proteins are shown by solid lines,
phenotypic similarity of diseases are shown by the thickness of dashed lines, and available gene-
disease associations are shown by dotted lines. The disease of interest is denoted as D1 and the
candidate genes that are in the linkage interval associated with D1 are denoted as C = {g1,g2}.
The seed set consists of genes with disease association based on existing knowledge, that is,
S = {g3,g4,g5,g6,g7}. Based on the information shown, we can conclude that g1 is more likely to
be associated with D1 since its product interacts with the products of genes that are implicated in
diseases very similar to D1

Information-flow-based approaches to disease gene prioritization ground them-
selves on the notion that products of genes that have an important role in a
disease are expected to exhibit significant network crosstalk to each other in terms
of the aggregate strength of paths that connect the corresponding proteins. This
notion, which is illustrated in Fig. 7.3, is motivated by the following observations:
(1) multiple alternate paths between functionally-associated proteins are often
conserved through evolution, owing to their contribution to robustness against
perturbations, as well as amplification of signals [39, 45]; (2) consideration of
alternate paths accounts for missing data and noise in PPI networks [38,42]. Indeed,
information-flow-based models are also shown to be very effective in network-based
functional annotation of proteins [53].

2.2.1 Random Walk with Restarts

A powerful information-flow-based strategy to prioritize candidate genes is based
on random walk with restarts. This method simulates a random walk on the network
to compute the proximity between two nodes by exploiting the global structure
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Fig. 7.3 Motivating example for consideration of multiple paths in assessing the functional
association between proteins in the PPI network. Although the distance of proteins s and t is 2
in all the three hypothetical networks shown, s and t are more likely to be functionally associated
in (b) compared to (a), since there are two paths connecting s and t in (b). On the other hand, the
common neighbor in (c) is most likely a hub protein, thus the indirect path between s and t may
not imply any functional association between s and t since hub proteins most likely interact with
many proteins in many different functional contexts

of the network [47, 72]. It is used in a wide range of applications, including
identification of functional modules in biological networks [48] and modeling the
evolution of social networks [71]. Recently, it is also applied to candidate disease
gene prioritization [13, 14, 41].

In the context of disease gene prioritization, random walk with restarts is applied
as follows. A random walk starts at one of the nodes in S. At each step, the random
walk either moves to a randomly chosen neighbor u ∈ N of the current gene v or
it restarts at one of the genes in the seed set S. The probability of restarting at a
given time step is a fixed parameter denoted by r. For each restart, the probability of
restarting at s ∈ S is a function of σ(s,D), that is, the degree of association between
s and the disease of interest. After a sufficiently long time, the probability of being
at node s at a random time step provides a measure of the association between s
and the genes implicated in disease D [13,41]. Algorithmically, random-walk based
association scores can be computed iteratively as follows:

xt+1 = (1− r)PRWxt + rρ . (7.1)

Here, ρ denotes the restart vector with ρ(s) = σ(s,D)/∑s′∈S σ(s′,D) for s ∈ S
and 0 otherwise. PRW denotes the stochastic matrix derived from G, that is,
PRW(u,v) = 1/|N(v)| for vu ∈ E and 0 otherwise. For each v ∈ V , xt(v) denotes
the probability that the random walk will be at v at time t, where x0 = ρ . For
each gene v, the resulting random-walk based association score is defined as
αRW(v,D) = limt→∞ xt(v). Finally, the candidate genes in C are ranked according
to these association scores (a higher αRW indicating better likelihood of being
associated with the disease).

Figure 7.4 demonstrates the power of random walk with restarts in capturing the
functional association between proteins in a PPI network. As seen in the figure,
in comparison to shortest paths, association scores computed using random walks
exhibit higher correlation with the functional similarity among proteins [58].
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Fig. 7.4 Comparison of shortest paths and random walk with restarts in terms of their correlation
with the functional association of protein pairs, as computed based on an information-theoretic
measure of functional similarity using Gene Ontology [59]. OMIM pairs include all protein pairs
whose coding genes are associated with the same disease whereas all pairs is the set of all other
protein pairs in the PPI network

2.2.2 Network Propagation

In recent work, Vanunu et al. [77] propose a network propagation algorithm to
compute the association between candidate genes and genes that are likely to be
associated with disease based on existing knowledge. They define a prioritization
function which models simulation of an information pump that originates at the
proteins in the seed set. This idea is very similar to that of random walk with restarts,
with one key difference. Namely, in network propagation, the flow of information
is normalized by not only the total outgoing flow from each node, but also the total
incoming flow into each node. In other words, the matrix PRW is replaced by a matrix
PNP, in which each entry is normalized with respect to row and column sums. The
resulting propagation-based model can also be simulated iteratively as follows:

yt+1 = (1− r)PNPyt + rρ . (7.2)

Here, the propagation matrix PNP is computed as PNP(u,v) = 1/
√|N(u)||N(v)| for

uv ∈ E , 0 otherwise. For each v ∈V , yt(v) denotes the amount of disease association
information at node v at step t, where y0 = ρ . For each gene v, the resulting network
propagation-based association score is defined as αNP(v,D) = limt→∞ yt(v). In this
model, 0 ≤ r ≤ 1 is also a user-defined parameter that is used to adjust the relative
importance of prior knowledge and network topology. This method is shown to rank
the true causal gene first for 34% of the 1,369 diseases in OMIM [77].
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Fig. 7.5 The performance of information-flow-based methods depends on the number of available
interactions of the product of true disease gene. x-axis represents number of interactions of the
true disease gene, y-axis represents the average rank of true disease genes with the corresponding
degree, across all disease-gene pairs in OMIM

2.3 Role of Network Centrality

While being quite powerful in capturing network-based functional association
among proteins, information-flow-based methods are biased toward favoring highly
connected proteins. This observation is demonstrated in Fig. 7.5. In this figure, the
performance measure is the average rank of the true candidate protein (the target
protein) among other 99 candidate proteins (e.g., proteins whose coding gene is in
the same linkage interval with that of the target protein). As evident in the figure,
information-flow-based methods work very well in predicting highly connected
proteins, whereas they perform quite poorly for loosely connected proteins.

The dependency of performance on network degree can be understood by
carefully inspecting the formulation of random walk and network propagation
models. Random walk with restarts is actually a generalization of Google’s well-
known page-rank algorithm [8]. Indeed, for r = 0, α is solely a measure of
network centrality. Therefore, for any r > 0, α(v,D) contains a component that
represents the network centrality of v, in addition to its association with D. Network
propagation alleviates this problem by normalizing the incoming flow into a gene,
therefore, provides a slightly more balanced performance compared to random walk
with restarts. However, as evident in the figure, its performance is still influenced
heavily by node degrees. Motivated by these insights, Erten and Koyutürk [21]
propose statistical correction schemes that adjust the association scores computed
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Fig. 7.6 Demonstration of the power of statistical correction in improving the performance of
network-based disease gene prioritization algorithms. In this example, the disease of interest is
Microphthalmia. Products of genes associated with Microphthalmia or a similar disease are shown
by green circles, where the intensity of green is proportional to the degree of similarity. The true
disease gene that is left out in the experiment and correctly ranked first by DADA [21] is represented
by a red circle. The gene that is incorrectly ranked first for random walk with restarts and network
propagation is shown by a diamond. Other candidate genes that are prioritized are shown by yellow
circles

by information-flow-based algorithms based on a reference model that takes into
account the degree distribution of seed and candidate proteins. As demonstrated in
Fig. 7.6, the resulting algorithm, DADA (available at http://compbio.case.edu/dada/),
greatly improves the performance of information-flow-based algorithms for disease
gene prioritization. The case example in the figure focuses on Microphthalmia,
which has three genes directly associated with it in OMIM; namely SIX6, CHX10,
and BCOR. The figure shows the neighborhood up to two nodes away of the
products of SIX6, CHX10, and BCOR. In the experiment reported, SIX6 is removed
and network-based algorithms are used to predict the true disease gene based on
the network connectivity of candidate genes to CHX10 and BCOR, as well as
genes associated with diseases similar to Microphthalmia. As seen in the figure,
the random walk with restarts and network propagation methods fail to rank SIX6
as the first gene because the product of SIX6 is not a centralized protein (it has only
one known interacting partner in the PPI data used here). Thus, random walk with
restarts ranks this true disease gene as 26th and network propagation ranks it 16th
among 100 candidates. On the other hand, after statistical correction of random-
walk based score with respect to network degree, DADA correctly ranks this gene as
the top candidate. Both random walk and network propagation rank the gene AKT1
top among all candidates, which not surprisingly, is a high degree protein (78 known
interactions), also connected to other hub proteins.

http://compbio.case.edu/dada/
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2.4 Mechanistic Bases of Genetic Effects

Besides their use in enhancing discovery of novel disease genes, network models
are also useful in understanding the mechanistic bases of observed genotype-
phenotype relationships. Kelley and Ideker [39] demonstrate the use of PPI networks
in explaining genetic interactions by identifying network patterns that correspond
to within-pathway and between-pathway models of synthetic lethal interactions
in yeast. Namely, within-pathway models refer to the case where the proteins
coded by interacting genes also interact with each other physically. On the other
hand, between-pathway models refer to the case where two groups of physically
interacting proteins are linked to each other through genetic interactions between
their coding genes. Systematic analyses of yeast synthetic lethal interactions and
the yeast PPI network show that both within-pathway and between-pathway models
can explain different genetic interactions.

Recently, in the context of human diseases, systematic computational methods
are proposed to identify pathways that can (1) suggest a compact set of mutations
functionally linked to the disease and (2) provide mechanistic models of the effect
of genetic mutations on the development of disease. In one of these methods, Vandin
et al. [76] use an information-flow-based algorithm to detect significantly mutated
pathways in cancer. Based on an idea similar to that in disease gene prioritization,
this method aims to utilize network information to overcome the computational
challenges posed by the heterogeneous nature of somatic mutations in many cancers.
Similarly, Kim et al. [40] simultaneously identify causal genes and dysregulated
pathways in complex disease by integrating copy number variation and gene ex-
pression data within the framework of PPI networks, using an integer programming
formulation based on a model of current flow through the PPI network.

In the context of understanding specific human diseases, more detailed studies
focus on specific interactions and make use of human PPI data to derive a network
model of the crosstalk between genetically interacting proteins. For example, Patel
et al. [60] focus on the interaction between APC and CDKN1A in development of
colorectal cancer, which are known to be synergistic in tumorigenesis in mouse
models. By integrating human PPI data with other sources of -omic datasets, Patel
et al. identify a network of PPIs that connects APC and CDKN1A. Subsequently,
using measurements of protein and gene expression changes in intestinal epithe-
lial tissue of mice mutated individually at APC (Apc1638N+/−) or CDKN1A
(Cdkn1a−/−), they show that the predicted APC–CDKN1A network is significantly
perturbed at the mRNA-level by both single gene knockouts.

3 Transcriptomics: Discovering Dysregulated Subnetworks

Interrogation of genomic sequences in healthy and affected populations highlight
genetic variation that is potentially related to disease. However, to have a com-
prehensive understanding of the relationship between genotype and phenotype,



7 Molecular Networks and Complex Diseases 181

it is also useful to investigate how gene expression is affected during development
and progression of disease. Indeed, in the past decade, genome-wide monitoring
of gene expression, enabled by DNA microarray technology, has been commonly
used to interrogate the development and progress of complex diseases [69]. Today,
gene expression can be measured more reliably using whole transcriptome shotgun
sequencing (RNAseq) [80].

Differential analysis of gene expression facilitates identification of genes that
are dysregulated with respect to the disease of interest; that is, genes that exhibit
significant difference in the amount of mRNA transcripts present in a range of
disease and control samples (e.g., samples taken from cancerous vs normal tissues).
To date, systematic analyses of differential gene expression has led to identification
of genetic markers associated with many complex diseases, including leukemia [28],
lymphoma [2], breast cancer [62], lung cancer [6], and prostate cancer [44]. How-
ever, univariate analysis of differential expression has limited ability in uncovering
the mechanistic bases of complex diseases, since many complex diseases result from
the interplay among multiple interacting factors. To this end, molecular networks
prove invaluable in identifying groups of interacting proteins that are coordinately
dysregulated at the mRNA-level.

3.1 Integration of Gene Expression and Molecular Network Data

Molecular networks provide static and qualitative descriptions of the wiring of
cellular systems. Molecular expression data, on the other hand, provides quan-
titative information on the molecular composition of the system under different
conditions/samples, or over time. Consequently, it is natural to integrate these two
sources of data to gain insights on the dynamic organization of cellular systems.
Indeed, identification of groups of molecules with correlated expression profiles
and coherent network connectivity patterns is shown to enhance modularization
of networks [52, 78]. These approaches generally search for subnetworks with
high connectivity (for functional modules) [31, 67, 73, 75] or linear chains of
interactions/reactions (for signaling pathways) [4, 49, 63].

3.2 From Dysregulated Genes to Dysregulated Subnetworks

In the context of human diseases (or more generally phenotypic differences),
systematic studies of differential gene expression in certain phenotype classes show
that genes that are dysregulated with respect to the same phenotype likely interact
with each other in molecular networks [51, 64]. Motivated by this observation,
Ideker et al. [36] identify dysregulated subnetworks by searching for connected
subgraphs of the PPI network with high aggregate significance of differential mRNA
expression. Namely, for a given PPI network G = (V,E), let Ei( j) denote the
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expression of the gene coding for protein gi ∈ V in sample j. Assume that gene
expression data from m samples are available and Cj = 1 indicates that sample j
is a phenotype sample (e.g., taken from tumor tissue), while Cj = 0 indicates that
sample j is a control sample (e.g., taken from a normal tissue). Let zi denote the
z-statistic of the differential expression of gene gi ∈ V (i.e., zi is the standardized
difference between the mean expression of gi in phenotype and control samples).
Then, the dysregulation of a subnetwork S ⊆V is defined as

ΔU(S) = ∑
gi∈S

zi√|S| . (7.3)

Variations of this method are shown to be effective in identifying multiple genetic
markers in prostate cancer [30], melanoma [19], diabetes [46], and others [10,
61, 66]. However, these approaches are still limited in capturing the coordination
in the dysregulation of multiple genes, since they assess differential expression
individually for each gene. In other words, they cannot identify interacting genes
that do not exhibit significant differential expression when considered individually,
but exhibit significant differential expression when considered together.

3.3 Additive Coordinate Dysregulation

Chuang et al. [18] propose a multivariate formulation of subnetwork dysregulation
in the context of breast cancer metastasis. For this purpose, they introduce the notion
of subnetwork activity, defined as the aggregate expression of gene products in the
subnetwork in each sample, that is, the activity of subnetwork S ⊆V is defined as

E(S) = ∑
gi∈S

Ei√|S| . (7.4)

Assessment of differential expression with respect to subnetwork activity enables
identification of subnetworks that are coordinately dysregulated at a sample-specific
resolution; that is, groups of interacting proteins with collective mRNA-level differ-
ential expression. Namely, Chuang et al. define the dysregulation of subnetwork S as

ΔA(S) = I(E(S);C) = H(C)−H(C|E(S)). (7.5)

Here, I(E(S);C) denotes the mutual information of phenotype C and subnetwork
activity of C. In other words it is the reduction in the uncertainty of phenotype upon
observation of the aggregate expression of the genes in S. Uncertainty of phenotype
is quantified by entropy H(C) and the uncertainty after observation of subnetwork
activity is quantified by conditional entropy H(C|E(S)). In this chapter, we refer
to ΔA as additive coordinate dysregulation as it is based on additive assessment
of the coordination between multiple genes. Subsequently, Chuang et al. identify
subnetworks of the human PPI network that maximize ΔA(S) using a greedy
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algorithm and use subnetwork activity as features for classification. As compared
to single gene markers, these subnetwork markers are shown to provide better
classification performance in the predicting metastasis of breast cancer [18].

3.4 Coordinate Dysregulation and Cover

Additive coordinate dysregulation of a subnetwork can also be formulated in terms
of the number of phenotype and control samples discriminated by the genes in that
subnetwork (referred to as the cover of the subnetwork) [15]. To see the relationship
between coordinate dysregulation and cover, consider gene expression data from
paired samples. A gene gi is said to cover a sample s j positively/negatively if it is
up-regulated/down-regulated in the phenotype sample with respect to control (e.g.,
Êi( j) = H and Êi( j′) = L, where Êi( j) represents binarized expression of gene i in
sample j, H represents high expression, L represents low expression and j′ denotes
the control sample that is paired with phenotype sample j.) Subsequently, the set of
samples that are covered positively/negatively by gi is called the positive/negative
cover set of gi and denoted Pi/Ni. The concept of cover is illustrated in Fig. 7.7.
In this figure, Pi = {s1,s2}, that is, g1 covers samples s1 and s2 positively, since it
is up-regulated in the phenotype samples compared to the control samples. Based
on this formulation, it can be shown that ΔA({gi}) is a monotonically increasing
function of |Pi|− |Ni| [15].

Observe in Fig. 7.7 that, since g1 is dysregulated with respect to samples s1

and s2, it can be used to distinguish phenotype and control samples based on its
expression in a given sample. However, clearly, the statistical power (or reliability)
of g1 in distinguishing phenotype and control samples depends on the number
of samples that it covers. These observations suggest that interacting genes that
distinguish different sets of samples may complement each other in distinguishing
phenotype and control. In addition, the dysregulation of genes involved in similar
processes may have similar effects on phenotype. Furthermore, since such genes are
expected to be functionally related, they are likely to be in close proximity of each
other in a network of interactions. Motivated by these observations, the algorithm
NETCOVER [15] searches for subnetworks composed of genes that together cover
all samples consistently (i.e., either positively or negatively). Here, for a given sub-
network S ⊆V , the positive and negative cover sets of S are, respectively, defined as

P(S) =
⋃

gi∈S

Pi and N (S) =
⋃

gi∈S

Ni. (7.6)

In the context of human colorectal cancer, NETCOVER is shown to identify
subnetworks that provide better classification accuracy than subnetworks identified
by a greedy algorithm that aims to explicitly maximize additive coordinate dysregu-
lation [15]. Other cover-based approaches to dysregulated subnetwork discovery are
also shown to be effective in discovering network markers of various phenotypes,
including Huntington’s disease and breast cancer [75].
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Fig. 7.7 Cover-based formulation of coordinate dysregulation in complex phenotypes. Proteins
are shown by circles, interaction between proteins are shown by lines connecting interacting
proteins. Matrices near each protein shows its mRNA-level expression in phenotype (upper row)
and control (lower row) samples from s1 to s5. Dark red indicates high expression, light green
indicates low expression. The subnetwork composed of the grey proteins covers all samples
positively

3.5 Synergistic Dysregulation

Anastassiou [3] further delineates the concept of coordinate dysregulation by defin-
ing synergy of genes based on their collective differential expression in complex
phenotypes. For a given pair of genes gi and g j, the synergistic dysregulation of gi

and g j is defined as

ΔS({gi,g j}) = I({Êi, Ê j};C)− (I(Êi;C)+ I(Ê j;C)). (7.7)

Observe that, synergistic definition has two key differences from additive coordinate
dysregulation. First, the dysregulation of the subnetwork composed of gi and g j is
quantified in terms of the mutual information phenotype and the binary expression
state of the subnetwork, which is a two-dimensional binary vector. This is in contrast
to additive coordinate dysregulation, which quantifies coordinate dysregulation
in terms of the mutual information between phenotype and average expression
of the genes in the subnetwork. Second, the dysregulation of each individual
gene is subtracted from the overall dysregulation of the subnetwork, so as to
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capture the ability of the pair in distinguishing phenotype and control beyond what
the individual genes can provide. In this respect, if two genes are differentially
expressed in the same manner in phenotype samples, then their synergistic dysreg-
ulation will be negative. This is because the mutual information between phenotype
and expression state of the subnetwork will be equal to the mutual information
between phenotype and the expression of each individual gene. On the other hand,
if the two genes are complementary of each other in distinguishing phenotype
and control, that is, if I({Êi, Ê j};C) > I(Êi;C) and I({Êi, Ê j};C) > I(Ê j;C), then
synergistic dysregulation of gi and g j will be positive. Therefore, the concept of
synergy provides a measure for quantifying the complementarity and redundancy of
two genes in distinguishing phenotype and control.

The concept of synergistic dysregulation can be extended to a subnetwork
composed of multiple genes, by defining the expression state of subnetwork S of
m genes. In this formulation, the expression state FS = {Ê1, Ê2, ..., Êm} ∈ {L,H}m

is the random variable that represents the combination of binary expression states
of the genes in S. However, the number of operations required to compute the
synergy of m genes is exponential in m, since one has to consider all subsets of
S to compute the synergy of S. Consequently, computation of synergy for a given
subnetwork of arbitrary size becomes an intractable problem, let alone the problem
of identifying subnetworks with high synergy. For this reason, Watkinson et al. [81]
focus on systematically identifying synergistic pairs of genes and constructing a
synergy network by representing identified synergistic relationships as interactions
between genes.

3.6 Combinatorial Coordinate Dysregulation

To overcome the computational difficulties in computing the dysregulation but still
capture the combinatorial relationship of the dysregulation of multiple genes in a
subnetwork, Chowdhury et al. [16] define combinatorial coordinate dysregulation
of a subnetwork S as follows:

ΔC(S) = I(FS;C) = H(C)−H(C|Ê1, Ê2, ..., Êm). (7.8)

The difference between synergistic and combinatorial dysregulation is that com-
binatorial dysregulation does not account for the dysregulation of parts of the
subnetwork; it rather aims to identify subnetworks with expression states that can
distinguish phenotype and control regardless of whether or not the expression
states of parts of the subnetwork can distinguish phenotype and control. The differ-
ence between additive and combinatorial coordinate dysregulation is illustrated in
Fig. 7.8.

While computation of combinatorial coordinate dysregulation is straightforward,
identification of subnetworks with high combinatorial coordinate dysregulation is
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Fig. 7.8 Additive vs. combinatorial coordinate dysregulation. Genes (g) are shown as nodes,
interactions between their products are shown as edges. Expression profiles (E) of genes are
shown by colormaps. Dark red indicates high expression (H), light green indicates low expression
(L). None of the genes can differentiate phenotype and control samples individually. Aggregate
subnetwork activity (average expression) for each subnetwork is shown in the row below its gene
expression matrix. The aggregate activity of S1 can perfectly discriminate phenotype and control,
but the aggregate activity of S2 cannot discriminate at all. For each subnetwork S1 and S2, each
column of the gene expression matrix specifies the subnetwork state in the corresponding sample.
The states of both subnetworks can perfectly discriminate phenotype and control (for S2, up-
regulation of g7 alone or g5 and g6 together indicates phenotype; we say state functions LLH
and HHL are indicative of phenotype)

still intractable. Motivated by this consideration, Chowdhury et al. decompose the
combinatorial coordinate dysregulation of a subnetwork into individual subnetwork
state functions by defining

J( fS;C) = p( fS) ∑
c∈{0,1}

p(c| fS) log(p(c| fS)/p(c)), (7.9)

where

I(FS;C) = ∑
fS∈{H,L}m

J( fS;C). (7.10)

Here, fS ∈ {H,L}m denotes an observation of the random variable FS, that is, a
specific combination of the expression states of the genes in S and p(x) denotes
P(X =x), that is, the probability that random variable X is equal to x (similarly,
p(x|y) denotes P(X = x|Y = y)). In biological terms, J( fS;C) can be considered a
measure of the information provided by subnetwork state function fS on phenotype
C. Based on this definition, Chowdhury et al. develop an exhaustive, yet efficient
algorithm, CRANE, for identification of subnetworks and associated state functions
informative of phenotype (i.e., with high J( fS;C)). Subsequently, they train neural
networks to use identified subnetworks for classification. The performance of
subnetworks identified by CRANE in predicting colon cancer metastasis is shown
in Fig. 7.9.
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Fig. 7.9 Classification performance of subnetworks identified by CRANE in predicting colon
cancer metastasis, as compared to single gene markers and subnetworks identified by algorithms
that aim to maximize additive coordinate dysregulation. Subnetworks identified by CRANE are
used to train neural networks (NNs), while those identified by the additive algorithm are used
to train NNs, as well as support vector machines (SVMs). In the graphs, horizontal axes show
the number of disjoint subnetwork features (with maximum combinatorial or additive coordinate
dysregulation) used in classification, vertical axes show the precision and recall achieved by the
classifier

3.7 Subnetwork Markers Generate Novel Biological Insights

The power of network-based approaches in generating novel biological insights
is illustrated in Fig. 7.10. The figure displays a subnetwork identified by CRANE

as a subnetwork informative of metastasis in colorectal cancer. This subnet-
work contains TNFSF11, MMP1, BCAN, MMP2, TBSH1, and SPP1 and the
state function LLLLLH (in respective order) indicates metastatic phenotype with
J-value 0.33. The combinatorial dysregulation of this subnetwork is 0.72, while its
additive coordinate dysregulation is 0.37, that is, this is a subnetwork which would
likely have escaped detection by the additive algorithm. Using the proteins in this
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Fig. 7.10 Hypothesis-driver subnetwork – interaction diagram illustrating key interactions with
gene products from a subnetwork identified by CRANE as indicative of CRC metastasis. Shown
are the gene products in discovered subnetwork (red circles) and their direct interactions with other
proteins. Green lines represent an activating interaction, red lines indicate an inhibitory interaction.
Arrows indicate direction of interaction. Inset is the expression pattern of subnetwork proteins at
the level of mRNA

subnetwork as a seed, a well-annotated subnetwork in the neighborhood of these
proteins is created, with a view to more closely analyzing the post-translational
interactions involving these proteins. This is accomplished using Metacore, a
commercial platform that provides curated, highly reliable interactions. As seen
on the interaction diagram, SPP1 (Osteopontin) and TBSH1 (Thrombosponidin 1)
interact with a number of the integrin heterodimers to increase their activity (green
line). Integrin heterodimers play a major role in mediating cell adhesion and cell
motility. SPP1, up-regulated in metastasis, is a well-studied protein that triggers
intracellular signaling cascades upon binding with various integrin heterodimers,
promotes cell migration when it binds CD44, and when binding the alpha-5/beta-3
dimer in particular, promotes angiogenesis, which is associated with the metastatic
phenotype of many cancers [50]. MMP proteins are involved in the breakdown of
ECM, particularly collagen which is the primary substrate at the invasive edge of
colorectal tumors [79]. MMP-1 has an inhibitory effect on Vitronectin (red line),
hence, the loss of expression of MMP-1 may “release the brake” on Vitronectin,
which in turn may increase the activity of the alpha-v/beta-5 integrin heterodimer.
Likewise, MMP-2 shows an inhibitory interaction with the alpha-5/beta-3 dimer,
which may counteract to some extent the activating potential of SPP1, suggesting
that a loss of MMP-2 may exacerbate the metastatic phenotype. Taken together,
these interactions suggest a number of perturbation experiments, perhaps by
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pharmacological inhibition or siRNA interference of the integrin dimmers or MMP
proteins, to evaluate the role of these interactions, individually or synergistically, in
maintaining the metastatic phenotype. Note also that, alpha-v/beta-5 integrin does
not exhibit significant differential expression at the mRNA-level, suggesting that
the state function identified by CRANE may be a signature of its post-translational
dysregulation in metastatic cells.

4 Proteomics: Using Protein Expression Data Beyond Its Scale

As discussed in the previous sections, high-throughput biological data that relate
to different aspects of cellular processes enable detailed studies of the interplay
among multiple genetic and epigenetic factors that lead to complex diseases. At the
genomic level, GWAS provide insights on the interactions between multiple genetic
factors that underlie complex phenotypes [34]. At the functional level, genome-wide
assays of mRNA expression enable identification of gene targets that are dysregu-
lated with respect to phenotypes of interest, through cluster analysis, classification,
differential expression, and gene selection [69]. Proteomic measurements capture
functional activity more accurately, since they provide information at the post-
translational level [25]. However, established proteomic screening techniques (e.g.,
2D-PAGE, mass spectrometry) can only monitor the expression of a limited subset
of proteins in the cell at a time. For this reason, to utilize this valuable source of
information at genomic scale, it is very useful to integrate proteomic data with other,
more comprehensive, data sets. Molecular networks provide an excellent resource
that is structurally and functionally suited for this purpose.

4.1 Transcriptomic vs. Proteomic Data

Genome-wide screening of mRNA expression (i.e., transcriptome), enabled by
DNA microarray technology and more recently by deep sequencing, is commonly
utilized in identification of molecular signatures of complex diseases [69]. Basic
computational approaches to the analysis of differential mRNA expression range
from identification of differentially expressed genes to classification of samples
for diagnostic and prognostic purposes. Furthermore, as discussed in the previous
section, mRNA expression data has been increasingly employed in systems-level
studies of complex phenotypes. However, it is important to note that transcriptomic
data provides information on the abundance of mRNA transcripts in a sample.
While this information is useful as an approximation to the abundance of func-
tional proteins in the sample of interest, mRNA expression does not necessarily
capture protein expression accurately. This is because, after transcription, protein
expression is further regulated by various mechanisms of post-transcriptional
modification, including alternative splicing [11], mRNA degradation [7], and RNA
interference [32].
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Protein expression, monitored through a variety of experimental techniques (e.g.,
2D gel electrophoresis, mass spectrometry) captures post-transcriptional abundance
of proteins more accurately [25]. Note that, activity of proteins is further regulated
via post-translational modifications, therefore, the scope of protein expression is
also limited in terms of capturing the functional activity in the cell [5]. Techniques
such as flow cytometry and high-throughput phospho-proteomics offer detailed
information on the functional activity of proteins [65]. However, as of today, due to
various constraints on cost, scale, and practicality, they are not applied as widely
as transcriptomic and proteomic screening techniques in the study of complex
phenotypes.

While proteomic data proves useful in generating new insights into the systems
biology of complex phenotypes [82], dedicated computational methods that utilize
protein expression data are relatively scarce. This is probably because of the rela-
tively lower coverage provided by most proteomic screening techniques, although
novel proteomic methods that offer higher throughput (e.g., Reverse Phase Protein
Array (RPPA) [70]) are becoming available. However, studies on understanding
the relation between mRNA expression and protein expression reveal that, while
transcriptional and post-translational abundance of a protein is correlated across
diverse conditions, the strength of correlation is dependent on the underlying
biological process [12] and may be weaker than expected for many processes [20].
Furthermore, systematic analyses of tissue-specific regulation of metabolism show
that mRNA expression can account for the activity of metabolic pathways only to
a certain extent, suggesting that post-translational regulation plays an important
role in many metabolic processes [68]. Consequently, it has been increasingly
pronounced that mRNA expression and protein expression provide information that
are complementary to each other [29, 33].

4.2 Proteomics-Driven Discovery of Dysregulated Subnetworks

Based on the premise that changes in post-translational expression of a protein
may be associated with synergistic changes in the transcriptional expression of a
group of proteins in its neighborhood, Nibbe et al. [55] developed a proteomics-
driven approach to the identification of multiple gene targets in late stages of
human colorectal cancer (CRC). In this study, proteins that are differentially
expressed in metastatic cells are first identified through 2D Gel analysis followed by
mass spectrometry, using univariate statistics. Then, these proteins (to be precise,
67 differentially expressed proteins are discovered) are mapped on a curated
human molecular network (including all types of interactions; metabolic, PPI,
transcriptional, etc.) using Metacore, a commercial platform that provides curated
interaction data, as well as basic features for network analysis. Subsequently, by
identifying subnetworks that contain a significant number of these proteomic targets,
new candidate genes in these subnetworks are selected for further transcriptomic
analysis. Finally, combinations of these candidate genes are evaluated based on the
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significance of their coordinate mRNA-level dysregulation. For this purpose, the
additive formulation of coordinate dysregulation, discussed in Sect. 3 is used [18].
The basic premise here is that, small changes in mRNA expression may lead to
significant changes in the proteome. Consequently, one would expect to see sig-
nificant overall transcriptomic differential expression in the network neighborhood
of differentially expressed proteins. This approach is shown to be promising in
identifying multiple gene targets in that its results are reproducible on different data
sets.

Nibbe et al. [54] further elaborate this approach by utilizing public PPI data
and developing more sophisticated algorithms and statistical models to score
proteins based on their proximity to proteomic seeds. The overall proteomics-driven
framework for dysregulated subnetwork discovery is shown in Fig. 7.11. As seen in
the figure, the proteomics-driven procedure first identifies proteins with significant
differential expression with respect to the disease, via proteomic screening. Once
these targets, called proteomic seeds, are identified, they are mapped on the human
PPI network to identify proteins that are functionally and physiologically associated
with the proteomic seeds.

To score proteins in the human PPI network according to their crosstalk to
proteomic seeds, Nibbe et al. use a method that is very similar to the information-
flow-based method for network-based disease gene prioritization (Sect. 2). In
disease gene prioritization, the seed set contains the products of genes that are likely
to be associated with the disease of interest based on existing knowledge. Here, it
contains the proteins that exhibit significant differential expression in the disease of
interest. While the seed sets in the two problems have different biological meanings,
once the seed set is fixed, the computational problem of scoring other proteins in the
network is identical. Indeed, Nibbe et al. score all proteins in the network using a
random-walk based model with statistical correction.

Once individual proteins are scored with respect to their crosstalk to proteomic
seeds, the network is searched for implicated subnetworks; that is, subnetworks
composed of proteins with (1) significant crosstalk to proteomic seeds and (2)
coordinate/synergistic mRNA-level dysregulation with respect to the phenotype of
interest. For this purpose, two types of candidate subnetworks are considered:

• Interactor subnetworks: For each proteomic seed, the subnetwork induced by its
interacting partners in the network is considered a candidate subnetwork, based
on the hypothesis that significant changes in the expression of a protein may be
associated with synergistic changes in the transcriptional expression of proteins
in its neighborhood.

• Crosstalker subnetworks: For each proteomic seed, the subnetwork induced by
the proteins that interact with the seed and have significant adjusted crosstalk
scores with respect to the entire proteomic seed set is considered a candidate
subnetwork, based on the hypothesis that subnetworks composed of proteins
with significant crosstalk to the proteomic seeds (as opposed to solely interacting
with one proteomic seed) are likely to exhibit significant synergistic differential
expression.
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Crosstalker
subnetwork

Interactor
subnetwork

Proteomic
seed

Other
protein

Protein with
significant
crosstalk to all
proteomic seeds

Fig. 7.12 Candidate subnetworks in proteomics-driven discovery of dysregulated subnetworks.
An interactor subnetwork associated with a proteomic seed is composed of its interacting partners
in the network. A crosstalker subnetwork associated with a proteomic seed, on the other hand,
contains only the interacting partners that exhibit significant crosstalk to the entire set of proteomic
seeds

Fig. 7.13 Relationship between crosstalk to proteomic targets and coordinate mRNA-level dys-
regulation. Red diamonds represent subnetworks composed of interacting partners of a proteomic
seed with significant crosstalk to all proteomic seeds. Green squares represent subnetworks
composed of all interacting partners of a proteomic seed. The blue curve represents expected
coordinate dysregulation for random subnetworks of given size and bars indicate one standard
deviation above mean for this null distribution

Construction of interactor and crosstalker subnetworks is illustrated in Fig. 7.12.
The additive coordinate dysregulation of candidate subnetworks in human

colorectal cancer is shown in Fig. 7.13. As seen in the figure, ten unique interactor
subnetworks exhibit significant coordinate. For five of these subnetworks (CCT2,
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Fig. 7.14 Validation of select targets predicted to be post-transcriptionally dysregulated in TCP1
subnetwork. Immunoblot data are obtained from three (540, 534, 507) late-stage matched (N =
normal/T = tumor) patient tissue biopsies not used in the original proteomic screen by Nibbe
et al. [55]. Values are in kilodalton (kDa). GSE8671 and GSE10950 represent the ratio of the
mean mRNA value (tumor/normal) from the respective microarray. Fold change is determined by
densitometry

TCP1, SYNCRIP, HNRPF, and HNRPH1) the crosstalker version of the subnet-
works is found to have enhanced mRNA-level coordinate dysregulation. These
results demonstrate that significant functional association with proteomic targets
can indeed be an indicator of coordinated dysregulation at the level of mRNA
expression [54].

4.3 Post-Transcriptional Dysregulation of TCP1 Subnetwork
in Colorectal Cancer

Nibbe et al. [54] observe that several of the subnetworks generated using two
separate proteomic seed sets ([55] and [24]) contain proteins in common. In
particular, certain subunits of the TCP1 complex exhibit marked crosstalk in the
subnetwork induced by CCT2 with respect to proteomic targets discovered by Nibbe
et al. [55], and TUBA1B with respect to proteomic targets discovered by Friedman
et al. [24]. In addition, it is also shown [55] that certain subunits of this complex
(CCT3, CCT5, and CCT7) are also significant for the late-stage CRC phenotype.

TCP1 (or TCPa) is a hetero-oligomeric complex comprised of two stacked ring
structures, each composed of eight known subunits and plays a functional role in
maintaining the CRC phenotype. Specifically, it was shown to be required for the
proper biogenesis of PLK1, a kinase that has a critical role in cytokinesis. However,
other than their role as subunits in the formation of the TCP complex little is known
about the independent role, if any, of these subunits in CRC. Consequently, these
targets present an opportunity for follow-on mechanistic studies. For this reason,
Nibbe et al. [54] verify the protein expression of TCP1, CCT3, CCT5, CCT7, and
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PLK1 by western blot in a separate cohort of three patient sample pairs not used in
screening phase, and compared this to the average expression at the level of mRNA.
These results are shown in Fig. 7.14. Consistent with the hypothesis suggested by
the computational studies, the data not only indicate the coregulation at the level of
mRNA and protein, but also reveal the wide variability of expression of these targets
among individual patients. CCT3 and CCT7 are dramatically overexpressed in two
patients (507 and 534), but less so in patient 540, which is similar to the pattern for
PLK1.

5 Outlook

As demonstrated in this chapter, molecular networks are very promising for the
integration of various -omic datasets to study complex diseases. Such integrative
methods are likely to enhance utilization of omic data in personalized medicine
applications by extracting information from multiple types omic data that is beyond
the reach of a single type of omic data. In particular, researchers are increasingly
suggesting that use of molecular data is likely to enhance GWAS through prediction
of genetic interactions, as well as investigation of the mechanistic bases of identified
genetic associations. Furthermore, availability of next generation sequencing plat-
forms enables more reliable monitoring of gene expression, providing functional
data for detailed study of these mechanisms. As these mechanisms are investigated
more in detail, there will be more need for generation of proteomic, as well as high
quality interactomic data. If these data and novel algorithms are supported by novel
network modeling paradigms that can capture complex interactions more accurately,
integrative omics is likely to provide significant insights into the network dynamics
of complex diseases.
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Florian Fröhlich, Tobias C. Walther, and Matthias Mann. Comprehensive mass-spectrometry-
based proteome quantification of haploid versus diploid yeast. Nature, 2008.

21. Sinan Erten and Mehmet Koyutürk. Role of centrality in network-based prioritization of
disease genes. In Proceedings of the 8th European Conf. Evolutionary Computation, Machine
Learning, and Data Mining in Bioinformatics (EVOBIO’10), volume LNCS 6023, pages
13–25, 2010.

22. Rob M. Ewing, Peter Chu, Fred Elisma, Hongyan Li, Paul Taylor, Shane Climie, Linda
McBroom-Cerajewski, Mark D. Robinson, Liam O’Connor, Michael Li, Rod Taylor, Moyez
Dharsee, Yuen Ho, Adrian Heilbut, Lynda Moore, Shudong Zhang, Olga Ornatsky, Yury V.
Bukhman, Martin Ethier, Yinglun Sheng, Julian Vasilescu, Mohamed Abu-Farha, Jean-
Philippe P. Lambert, Henry S. Duewel, Ian I. Stewart, Bonnie Kuehl, Kelly Hogue, Karen



7 Molecular Networks and Complex Diseases 197

Colwill, Katharine Gladwish, Brenda Muskat, Robert Kinach, Sally-Lin L. Adams, Michael F.
Moran, Gregg B. Morin, Thodoros Topaloglou, and Daniel Figeys. Large-scale mapping of
human protein-protein interactions by mass spectrometry. Molecular systems biology, 3, 2007.

23. L. Franke, H. Bakel, L. Fokkens, E. D. de Jong, M. Egmont-Petersen, and C. Wijmenga.
Reconstruction of a functional human gene network, with an application for prioritizing
positional candidate genes. Am J Hum Genet, 78(6):1011–1025, June 2006.

24. D. B. Friedman, S. Hill, J. W. Keller, N. B. Merchant, S. E. Levy, R. J. Coffey, and
R. M. Caprioli. Proteome analysis of human colon cancer by two-dimensional difference gel
electrophoresis and mass spectrometry. Proteomics, 4(3):793–811, March 2004.

25. S. Ghaemmaghami, W. K. Huh, K. Bower, R. W. Howson, A. Belle, N. Dephoure, E. K.
O’Shea, and J. S. Weissman. Global analysis of protein expression in yeast. Nature,
425(6959):737–741, October 2003.

26. Anne M. Glazier, Joseph H. Nadeau, and Timothy J. Aitman. Finding Genes That Underlie
Complex Traits. Science, 298(5602):2345–2349, 2002.

27. Kwang-Il Goh, Michael E. Cusick, David Valle, Barton Childs, Marc Vidal, and Albert-
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Chapter 8
Moving Toward Genome-Scale Kinetic Models:
The Mass Action Stoichiometric
Simulation Approach

Aarash Bordbar and Bernhard Ø. Palsson

Abstract Kinetic models are used to describe cellular metabolism. Traditional
models are based on enzymatic information obtained from in vitro experiments.
In vitro data is inaccurate for in vivo modeling and is difficult to scale to large
metabolic networks. Due to the impeding availability of metabolomic and fluxomic
data types, we present an alternative kinetic modeling approach. Mass action
stoichiometric simulation (MASS) models are scalable kinetic models that detail
in vivo metabolic transformations. MASS formulation is a “middle-out” approach
involving the use of a genome-scale metabolic network as a scaffold to map
fluxomic and metabolomic measurements. Multiple binding states of enzymes can
be explicitly added to account for regulatory effects. There are practical challenges
with data completeness and quality of MASS models, but they do represent scalable
kinetic models that exhibit biological properties such as time scale decomposition
and account for regulation.

1 Introduction

Metabolism is a universal and complex biochemical process that provides the energy
and material resources for living organisms. Since the first whole genome-sequences
appeared in the mid 1990s, there has been interest in reconstructing large-scale
metabolic networks. Prior to this time, large-scale metabolic network reconstruction
existed as mosaics of metabolic capabilities found in multiple organisms. With
the availability of genome sequences for target organisms, such maps graduated
to genome-scale reconstructions that are organism specific. This process started
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with Haemophilus influenza [4]. Genome-scale metabolic reconstructions play an
integral part in systems biology and have proven to play an important part in
addressing biologically relevant problems [8, 18].

Due to the immense size and lack of kinetic parameter data for genome-scale
reconstructions, constraint-based reconstruction and analysis (COBRA) methods
have been mainly employed to characterize these networks [1]. COBRA methods
assume a steady state and utilize linear programming to analyze the biochemical
transformations in metabolism. Although this approach can be applied to bacterial
reconstructions under certain circumstances [9], biological processes are inherently
dynamic, especially in higher-order organisms.

Traditional biophysical approaches to model building have been limited to
models with a few dozen variables detailing specific enzymes or pathways
[12, 16, 17]. This approach does not scale easily. In this chapter, we present
a new, data-driven approach to building large-scale kinetic models. The mass
action stoichiometric simulation (MASS) approach utilizes metabolic network
reconstructions as a stoichiometric texture against which high-throughput (omics)
data is used to determine condition-specific pseudo-elementary rate constants
(PERCs). We outline the method to build these models, describe the challenges of
the modeling approach, provide a whole red blood cell model, and outline the future
of the MASS modeling approach.

1.1 Traditional Kinetic Modeling

Traditional kinetic modeling of metabolism involves analytically solving enzyme
rate equations, making key assumptions, and parameterizing the resulting rate law
using in vitro enzyme data. To characterize a metabolic pathway with multiple
enzymes, each reaction’s rate law is modularly solved and then combined. The
traditional modeling approach has difficulty in describing in vivo metabolism due
to the use of in vitro enzyme data and the lack of scalability.

MASS models are an alternative approach that uses emerging omics data sets to
determine kinetic parameters. The process uses in vivo data, is scalable, and can
explicitly represent regulatory interactions. The advantages and disadvantages of
traditional kinetic and MASS modeling is outlined in Table 8.1.

1.2 Entering the Omics World

We are entering a new-age of biological data. Omics is an emerging research
paradigm to generate large amounts of high-throughput data from a systems per-
spective. The ability to generate these large, biological data sets has helped push the
fields of bioinformatics and systems biology [23]. Terms like genomics, proteomics,
and transcriptomics are becoming common place in biology and other related fields.
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Table 8.1 Comparison of the advantages and disadvantages of the MASS and traditional approach
of enzyme kinetic modeling. Adapted from [15]

MASS models Traditional kinetic models

Model building Omics driven algorithmic approach Modularized enzyme approach
Protein activity

resolution
Explicit stoichiometric definition,

allows direct integration of
omics data from a networks
perspective

Requires quasi steady-state and
quasi-equilibrium assumptions
to account for inability to
describe enzyme intermediates
and protein–protein
interactions

Scalability Good, though must deal with more
variables

Difficult due to the case-by-case
treatment of additional
enzymes

Condition
specificity

Dependent on steady state due to
the lumping of many factors
into PERCs

Accounts for many details,
biophysical in nature making
the models global

Data quality In vivo data used, dependent on
quality of concentration and
fluxes measurements

Utilizes in vitro data

Data completeness Limited by coverage of emerging
omic data sets

Limited by inability to characterize
all enzymes and measure all
metabolites in vivo

MASS models attempt to utilize the information flowing out of this budding field
to build large-scale kinetic models. MASS models use three main types of omics
data: genomics, metabolomics, and fluxomics. In addition, transcriptomics and
proteomics are becoming important data sets to tailor MASS models. Throughout
the rest of this chapter, we will point out the use of omics data sets.

2 Building and Analyzing MASS Models

In this section, we provide a workflow for building and analyzing MASS models.
MASS model building involves a “middle-out” approach that combines a bottom-up
reconstructed metabolic network as a scaffold to map top-down data measurements
(Fig. 8.1). Using omics data, large-scale kinetic models can be properly parameter-
ized, simulated, and analyzed (Fig. 8.3).

2.1 Data Sources and Requirements

Before describing the dynamic properties, the network must first be established.
Whole genome-sequencing allows reconstructing genome-scale metabolic
networks. For a description for building high-quality genome-scale metabolic
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Fig. 8.1 An overview of MASS models construction and analysis. The MASS approach involves
a “middle-out” approach of combining a bottom-up reconstruction as a scaffold with top-down
data measurements to build a kinetic model. Once the dynamic mass balances have been defined,
dynamic simulations and dynamic analysis of the Jacobian help define the dynamic properties of
the network. Adapted from [15]

reconstructions, we refer you to the following protocol [21]. A stoichiometric matrix
(S) can be generated from the reconstruction. The rows of the stoichiometric matrix
represent the metabolites or “nodes” of the network, while the columns represent
the transformations or “links.” The stoichiometric matrix is used as a scaffold
for mapping data measurements. Three major data measurements are required
to properly characterize a dynamic MASS model: (1) steady-state metabolite
concentrations (xss), (2) steady-state reaction fluxes (vss), and (3) equilibrium
constants (Keq). Metabolite concentrations and reaction fluxes can be obtained
from metabolomic and fluxomic measurements, respectively. Equilibrium constants
are determined through literature search. The stoichiometric matrix derived from
the genome-scale metabolic reconstruction and the data measurements serve as the
building blocks of MASS models (Fig. 8.2).
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Fig. 8.2 The MASS
approach requires four omics
data types for construction.
Available genome sequences
combined with primary
literature can help define
reactions and metabolites to
build a genome-scale
reconstruction and
stoichiometric matrix.
Fluxomics and metabolomics
provide steady-state fluxes
and metabolite
concentrations, respectively

Fig. 8.3 Workflow of building MASS models. First, a stoichiometric matrix must be constructed
or adapted from an existing constraint-based genome-scale reconstruction. The null-space is used
to define n – r pathways for the system. Fluxomic data is used to weight the pathways and lay a
steady-state flux distribution on the network. Alongside the steady-state metabolite concentrations
and equilibrium constants, the pseudo-elementary rate constants are defined. At this point, the
model is fully parameterized. Ensuing rate laws and dynamic mass balances are calculated

2.2 Defining the Null Spaces and Setting the Steady State

We now present the workflow for building MASS models (Fig. 8.3). After building
the stoichiometric matrix and obtaining the proper omics data, the null spaces are
defined. The left null space contains information on the time-invariant concentration
(or “hard’) pools. We will discuss “hard” and “soft” pools later in this chapter. The
right null space details the basis vectors that make up the steady-state pathways, or
extreme pathways [19] of the network. The stoichiometric matrix has dimensions
m× n. Defining n− r pathways with known flux rates, where r is the rank of the
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matrix, allows calculation of a unique flux steady state of the entire network (vss).
This is done by left multiplying the extreme pathways (Nexpa) by the fluxomic
measurements (vflux) (8.1).

(vflux ·Nexpa)
T = vss (8.1)

The second component of the steady state is the metabolite concentrations. With
emerging metabolomic technologies and data, steady-state metabolite concentra-
tions can be mapped to the system.

2.3 Determining the Pseudo-Elementary Rate Constants

The steady-state concentrations, fluxes, and equilibrium constants provide the
necessary parameters to solve for the PERCs. The kinetic rate constants are called
“pseudo-elementary” because they are condition-dependent to the defined steady
state. Simple algebra solves for the PERCs. A prototypical example is shown below
to illustrate:

A + B ⇔C (8.2)

vss = k+

(
[A]ss[B]ss − [C]ss

Keq

)
(8.3)

k+ =
vss(

[A]ss[B]ss − [C]ss

Keq

) (8.4)

This process is repeated for all reactions in the stoichiometric matrix. Now, all
the necessary parameters are defined to write the rate laws for the reactions and
the dynamic mass balances for the metabolites. The dynamic mass balances are
generated automatically by using:

dx
dt

= S ·v, (8.5)

where v is a vector containing all fluxes pertaining to the stoichiometric matrix, S.
The dynamic mass balances, stoichiometric matrix, and steady-state data sets
combine to form the MASS model.

2.4 Aggregating Variables into Pools

With the proper definition of the system, several different analytical methods can be
used to characterize and probe the network dynamics of MASS models (Fig. 8.4).
We begin by describing the aggregation of concentrations into pools. Pools can be
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Fig. 8.4 Three analytical methods are used for characterizing the dynamic network properties
of MASS models. Pools are aggregates of metabolite concentrations which help temporally
decompose the network. Dynamic simulation is used to determine how the system responds to
perturbations. Dynamic analysis involves utilizing the gradient and Jacobian matrices to temporally
decompose the network and mathematically form aggregate variables

formed based on time scale hierarchy, chemical characteristics, and conservation.
First, biological systems are characterized by chemical transformations on multiple
time scales. The separation of time constants of reactions leads to the aggregation of
concentrations in a hierarchical fashion that can be physiologically significant. Such
pools are called “soft” and are time-variant and are usually formed through intuition.
However, “soft” pools can also be determined mathematically by temporal decom-
position of the Jacobian matrix [14], which will be discussed later. Second, “soft”
pools can be constructed by chemical characteristics. Such pools include quantities
of total inventory, such as high-energy phosphate bonds or redox equivalents. The
third type of pool is time-invariant and called “hard.” “Hard” pools are conserved
quantities in the MASS model and are determined by linear combinations of the
basis vectors of the left null space.

Pools serve two main purposes. First, the ability to aggregate concentrations
based on the time scale of chemical transformation is critical in understanding
the temporal hierarchy of network dynamics. As discussed earlier, physiological
functions occur at starkly different rates. Temporally pooling variables provides a
method to determine how biological events organize themselves by reducing the
dimensionality of the biochemical network.

Second, pools give insight to the metabolic state of the system. For example, a
typical pool used in MASS models is for the occupancy of high-energy phosphate
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bonds: 2ATP + ADP. A second pool is defined for the capacity of high-energy
phosphate bonds: 2(ATP+ ADP+ AMP). The ratio of the occupancy and capacity
provides the adenylate energy charge of the system, a physiologically important
quantity that provides insight on the state of the system. Other ratios, such as
detailing the redox potential of the system, can also be enumerated.

2.5 Dynamic Simulation

MASS models are composed of ordinary differential equations that constitute the
dynamic mass balances. The dynamic mass balances are simulated using numeric
solvers. Perturbations are done to the MASS model to investigate dynamic changes
and adaptations. The simulations provide an opportunity to characterize the dynamic
relationships between components within a network. Depletion of a cell’s ATP and
NADH reserves are common perturbations.

Ordinary differential equations are straightforward to solve using numeric
solvers. A potential difficulty arises with numerical simulation due to the dis-
parate magnitudes of time constants. The disparity makes the ordinary differential
equations stiff and potentially difficult to simulate. However, current commercial
ordinary differential equation solvers are adequate dealing with the numerical
intractability associated with disparate time constants. As MASS models approach
genome-scale and account for faster dynamics, such as enzymatic regulation and
phosphorylation, new ordinary differential equation solvers and analytical methods
are required to properly characterize MASS models.

Dynamic simulations are interpreted using appropriate graphical methods. Time
profiles and phase portraits are plotted for metabolic concentrations, reaction
fluxes, aggregate variables, and pool ratios. Time profiles provide the status of
the biochemical system throughout the simulation time range. Following the ratios
of pools through this time course provides physiological insight of the biological
network. Phase portraits relate the interactions of concentrations, fluxes, and pools
on a network scale and show a deeper temporal relationship of cause and effect.

2.6 Dynamic Analysis

Simulation tools are a powerful method for analyzing kinetic models. However,
dynamic simulations are not always scalable. Dealing with high numbers of metabo-
lites and reactions, and incorporating enzymatic regulation makes the ordinary
differential equations stiff. Numerical solution of such large and stiff networks
becomes computationally exhaustive. Analytical methods for dynamic properties
of networks are used. Unlike numerical solution results that are condition-specific
to the steady-state and chosen initial conditions, dynamic analysis methods can be
generalized.
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The Jacobian matrix (J) can be defined for the concentrations (8.7) and fluxes
(8.8) of biochemical networks through the left and right multiplication of the
gradient matrix (G) by the stoichiometric matrix, respectively. The gradient matrix
contains the kinetic properties of each individual link in the network and the
elements of G are defined as the partial derivative of the fluxes with respect to the
concentrations (8.6).

gij =
∂vi(x)

∂x j
(8.6)

Jx = SG (8.7)

Jv = GS (8.8)

The Jacobian matrices are related to the time derivative of the concentration (x′)
and flux (v′) deviation variables. A deviation variable is the difference between the
variable and its reference point. For MASS models, the reference point is the set
steady state. The network dynamics of a MASS model can be described from the
viewpoint of the two variables: concentrations (8.9) and fluxes (8.10).

dx′

dt
= Jxx′ (8.9)

dv′

dt
= Jvv′ (8.10)

Equation (8.9) can be used to study the temporal hierarchy of the biochemical
network. The concentration Jacobian is decomposed into (8.11), where Λ is a
diagonal matrix of the eigenvalues and M−1 is the modal matrix. The eigenvalues
represent the negative reciprocal of the time constants.

Jx = M Λ M−1 (8.11)

The rows of the modal matrix define aggregate variables, or pools, that are
dynamically independent from other variables. The pools are ordered from the
fastest timescale to the slowest in the modal matrix. The columns of the modal
matrix represent each moiety in the stoichiometric matrix. When two concentrations
are dynamically coupled, the two columns are correlated for the rows which they are
linked. Hence, pool formation can be mathematically determined by calculating the
angle between the columns of the modal matrix as:

Θ = cos(ϕij) =

(
M−1

)T
i · (M−1

)
j∣∣

∣(M−1)T
i

∣∣
∣
∣∣
∣(M−1) j

∣∣
∣
, (8.12)

where ϕij represents the angle between the ith and jth columns of the modal
matrix and the denominator terms are magnitudes of the modal matrix. As the
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angle approaches zero, the columns in question begin forming a pool. Using this
mathematical method for calculating dynamically aggregating variables does not
require specification of the time scales of interest, unlike dynamic simulation.

Though dynamic analysis is better scaled for large networks, the Jacobian
matrices can become ill-conditioned and difficult to analyze. An ill-conditioned
matrix has a very large condition number. The condition number of a matrix is
defined as the logarithmic ratio of the largest and smallest eigenvalues. The wide
range of time scales makes many MASS models ill-conditioned. Concentrations are
sometimes normalized and the PERCs are recalculated to avoid a large condition
number.

2.7 Enzymes

Small metabolites are not the only molecules that can be mechanistically modeled
using the MASS approach. Enzymes and their resulting complexes can be explicitly
represented as nodes in the stoichiometric matrix. Enzyme subnetworks are modular
in nature and can be integrated into the stoichiometric matrix (Fig. 8.5). Depending
on the available experimental data, different methods are used to define the biochem-
ical transformations and molecular concentrations. Proteomic and transcriptomic
data sets can be used to determine enzyme states and can be mapped onto MASS
models to add context to the network dynamics.

The typical enzyme mechanism used in MASS models involves a sequential
catalytic pathway with a steady-state flux matching the unregulated chemical
transformation ((8.13)–(8.17)) as well as inhibiting and activating mechanisms
in equilibrium ((8.18) and (8.19)). Activated enzymes have a similar catalytic
mechanism ((8.13)–(8.17)).

E + S1 ↔ ES1 (8.13)

ES1 + S2 ↔ ES1S2 (8.14)

ES1S2 ↔ EP1P2 (8.15)

EP1P2 ↔ EP1 + P2 (8.16)

EP1 ↔ E + P1 (8.17)

E + I ↔ EI (8.18)

E + A ↔ EA (8.19)

The use of enzymes and regulation in MASS models is a developing field. Few
examples exist of properly tailored enzymes, but we present a regulated red blood
cell MASS model with five enzyme modules later in this chapter.
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Fig. 8.5 A topological overview of the regulated red blood cell model. The reactions in the center
of the figure are the metabolic transformations of the red blood cell. The five boxes surrounding
this network are the enzyme modules that account for allosteric regulation. The modules are built
separately and then integrated with the final stoichiometric matrix. Adapted from [15]

2.8 QC/QA Procedures

There are three main quality control/quality assurance procedures to ensure validity
of the stoichiometric matrix and calculated PERCs. The first step in building MASS
models is to derive a stoichiometric matrix from genomic and bibliomic data.
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The procedure is mostly automated but manual curation is required to elementally
balance the biochemical transformations. The elemental matrix (E) is represented
with rows of elements and columns of metabolites. If network reactions are properly
elementally balanced, right multiplying the E matrix by the stoichiometric matrix
results in a zero matrix (8.20). When the steady-state pathways are calculated for
the network, the entire pathway should have the same result when right multiplying
by the E matrix.

E ·S = 0 (8.20)

Second, numerical checks are made that the calculated PERCs are all positive.
Though most reactions in cellular metabolism are from equilibrium, some reactions
are close enough that if the top-down measurements have error, negative PERCs
are calculated. Omics data from affected reactions are adjusted to ensure a positive
kinetic rate constant.

Finally, after the rate laws have been properly parameterized, a final check is
made (8.21). The steady-state metabolite concentrations are plugged into the rate
laws and right multiplied with the stoichiometric matrix to result in a zero vector.
The third step ensures that all parameters are specific to the steady state.

S ·v = 0 (8.21)

The MASS model must meet all three criteria before proceeding to aggregating
variables, dynamic analysis, and numerical simulation.

3 Challenges

Traditional kinetic models are largely inaccurate due to the lack of availability of
proper data. The MASS approach is able to side-step many of the challenges faced
by traditional methods. However, issues of omics data completeness and quality and
scalability are a challenge for further development of MASS models. In this section,
we highlight the potential challenges facing MASS models and some methods to
deal with these challenges.

3.1 Data Completeness and Quality

The major challenge facing all kinetic models is data completeness. Steady-state
concentrations and fluxes and equilibrium constants are the main data types required
for building MASS models. It is impossible to have all the required data for every
reaction for genome-scale metabolic networks.
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The most readily available data is emerging to be small metabolite concentra-
tions. Metabolomic studies of whole-cells are becoming available and will play an
important role in parameterizing MASS models.

Unlike small metabolites, it is currently not possible to measure the steady-
state concentrations of enzymes and their complexes under in vivo conditions. The
concentrations of all applicable complex states are estimated in MASS models.
The data usually available for metabolic enzymes include dissociation constants
and total enzyme concentration. Using this data, proper estimation of enzyme
complex concentrations is made. Enzyme concentrations in dead-end reactions,
such as inhibitory steps, are assumed to be at equilibrium. Enzyme concentrations in
catalytic linear pathways are analytically solved by estimating kinetic parameters.
New sampling methods are being developed to address the lack of enzymatic data.
The exact concentration of each enzyme complex is not quite important for MASS
models. Rather the ratio of active to inactive states is more pertinent and the current
estimation techniques described are adequate.

The steady-state flux state is the second top-down measurement required for
MASS models. Fluxomic experiments determine flux rates through key reactions
in cells. However, the flux state of all reactions in a metabolic network cannot
be determined. As described in (8.1), the flux-steady state is set by specifying
flux rates of only n – r extreme pathways. Picking proper pathways that cover
both the network as well as have available fluxomic data is critical to accurately
setting the flux steady state. Linear programming can be used to determine the best
combination of the two criteria in determining the extreme pathways used by first
assigning desirability weights to the reactions.

Futile cycles in networks are known as Type III pathways. These pathways carry
a zero net flux and cannot be properly characterized in MASS models. Monte Carlo
sampling methods that probe the solution space of the k-cone have been shown to
be promising for determining PERCs for these reactions [6].

There are data issues with the equilibrium constants as well. Equilibrium
constants are determined by perusing the literature. This process is manageable
for small networks but becomes cumbersome for networks approaching genome-
scale due to the lack of available data for less characterized enzymes. It is possible
to estimate the unavailable equilibrium constants but a bad estimation can result
in negative PERCs. If reliable metabolomic data is available, sampling of the
k-cone provides potential forward and reverse rate constants. The mean ratio of the
calculated rate constants can be used as a good estimate for the equilibrium constant.

Kinetic models, including MASS models, intrinsically have a layer of uncertainty
due to data incompleteness and quality that is estimated. A properly built model
minimizes the uncertainty by estimating parameters that have the least effect on
network dynamics. Steady-state parametric sensitivity analysis is crucial in deter-
mining which equilibrium constants, concentrations, and PERCs can be estimated.

Methods development for dealing with the data incompleteness and quality issue
should not be overlooked. New procedures must be developed to account for the
intrinsic uncertainty in kinetic parameters.
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3.2 Scalability

There are many hurdles for scaling the traditional kinetic approach to larger
metabolic pathways. Traditional kinetic models involve analytically deriving rate
laws and determining kinetic parameters using in vitro data. This is done case-by-
case for each enzyme in a pathway and then the enzymatic rate laws are combined.
The process is difficult and time-consuming.

MASS models are data-driven and many of the procedures in building large
networks are automated. Genome-scale metabolic reconstructions act as a scaffold
for MASS models. The reconstruction process is well-developed and many exist
for a variety of prokaryotes and eukaryotes [3, 5, 7, 10]. Metabolomic and fluxomic
techniques and data are becoming available for more metabolites and pathways,
respectively [2,24]. The scale-up of MASS kinetic models is more manageable than
the traditional approach. However, the increasing size of MASS models lead to a
few challenges.

First, central metabolic pathways are well characterized in high-throughput
data sets. As MASS models expand to less studied metabolic pathways, data
completeness and quality becomes a major issue. Second, computation becomes
an issue as the size of the networks increase. Large networks can have ordinary
differential equations and matrices that are stiff and ill-conditioned, respectively,
thus making large networks harder to dynamically simulate and analyze.

3.3 Condition Specificity

The MASS approach utilizes omics data to hurdle the scalability issues of traditional
kinetic modeling. Unlike traditional modeling, kinetic parameters of MASS models
are not based on first principles, and thus do not have absolute characteristics.
The MASS approach is relative to the steady state under which the omics data is
obtained. Potential users of the approach must be weary of this. In addition, there
are potential methods to hurdle this problem. Perturbations of the steady state and
recalculation of the PERCs can lead to determining kinetic constants that are robust
for multiple states and are not condition specific.

4 Red Blood Cell Metabolism

Up to this point in this chapter, we have outlined the reasoning, methodology, and
potential challenges of the MASS approach. We now present a full human red blood
cell metabolic MASS model in both an unregulated and regulated form adapted
from [15].
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Table 8.2 General properties and time-scale separation of the unregulated and
regulated red cell models

Regulated red cell
Red cell model model

S dimensions 36×42 92×94
Left null space dimensions 3 10
Right null space dimensions 9 12
G dimensions 42×36 94×92
Time-scale separation ∼ 20min–5h ∼< μs–10h

4.1 System Definition and Characteristics

The human red blood cell, or erythrocyte, is the most abundant human cell type. It
is derived from the hematopoietic stem cell line. Physiologically, erythrocytes take
up oxygen from the lungs and deliver it to the tissues. The most abundant protein
in erythrocytes is hemoglobin, which is the oxygen carrier molecule. Although the
erythrocyte has a crucial physiological role, its metabolism is much simpler to model
as compared to other human tissues and cells. Hence, we chose the representation
of human red blood cell metabolism as the first whole-cell MASS model. The work
accounts for glycolysis, pentose phosphate pathway (PPP), adenosine nucleotide
metabolism, the Rapoport-Luebering shunt, and membrane transports and pumps.
The size of the stoichiometric, gradient matrices, and null spaces are provided in
Table 8.2.

As described earlier in this chapter, the null space determines the steady-state
extreme pathways of the system. The pathways represent glycolysis, Rapoport-
Luebering shunt, PPP, and the pathways linking nucleotide salvage pathways with
PPP. The left null space contains three conserved moieties of the NAD, NADP, and
phosphate-containing compounds. This is due to the inability of these molecules
to flow in or out of the system. Dynamic analysis was performed to determine the
timescale separation in the network, resulting in chemical transformations occurring
between 20 min and 5 h.

4.2 Defining Enzyme Modules

The initial red cell model used metabolomic and fluxomic data to estimate PERCs
for all the enzymes in the different metabolic pathways. The model ignored
regulatory effects. A regulated MASS model was built by integrating five different
enzyme modules. The free enzymes and their complexes were added as nodes in
the stoichiometric matrix, similar to small metabolites. The mechanism for binding,
conversion, and release of substrates to products for all five enzymes was completed
similar to (8.13)–(8.19).
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The five key regulatory enzymes were hexokinase (HK), phosphofructokinase-1
(PFK), diphosphoglyceromutase (DPGM) and diphosphoglycerol phosphatase
(DPGase), glucose-6-phosphate dehydrogenase (G6PDH), and adenosine kinase
(AK). HK was modeled using a random-ordered sequential enzyme mechanism
accounting for inhibition by glucose-6-phosphate, 2,3-bisphosphoglycerate, and
free phosphate. PFK was modeled as a tetramer with the ability to be activated by
AMP and inhibited by ATP and magnesium ions. DPGM and DPGase are catalyzed
by the same enzyme, utilizing a sequential mechanism with no inhibitors. G6PDH
is also represented with a sequential catalytic mechanism. Finally, AK is modeled
sequentially with its product AMP as an activator. A schematic for each of the five
regulatory enzymes and their stoichiometric integration is shown in Fig. 8.5.

Association and disassociation constants were found in the literature for human
erythrocytes. In addition, total concentration for each of the enzymes was known
and the flux through the catalytic pathways was assumed to remain the same as the
unregulated model. Kinetic rate constants were estimated to be large and used to
analytically solve for the enzyme complex concentrations.

4.3 Unregulated vs. Regulated

The regulated and unregulated red blood cell MASS models exhibited starkly
different characteristics. First, the regulated model’s stoichiometric matrix is
much larger (Table 8.2) due to the explicit definition of the enzyme and complex
transformations (Fig. 8.5). The left and right null spaces are also affected. There are
seven more conserved moieties, corresponding to the enzymes and free magnesium
pools. There are three additional pathways, representing the added glycolytic
pathways by PFK.

The modal matrix was determined from the Jacobian. Timescale separation
for the regulated network is increased (<μs–10h). The slow modes represent the
metabolite-bound enzyme complexes. Enzyme modules with multiple intermediate
steps had the more dominant effect on the slower timescales. It is interesting to note
that the time scale separation seen in the regulated model fit closely to the traditional
kinetic model for red blood cell metabolism.

The ordinary differential equations for the regulated model were stiff due to the
small concentrations of enzyme complexes. Enzyme amounts were normalized and
the PERCs were recalculated for proper dynamic simulation. Loads on ATP and
NADPH were used to perturb the system for numerical simulation. The regulated
model had a more dampened response to pulsed load changes as compared to the
unregulated model (Fig. 8.6).
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Fig. 8.6 Dynamic responses of the unregulated and regulated red blood cell MASS models.
The first row represents a network response to pulsed energy load from t = 5–6h. The energy
charge, (2∗ATP + ADP)/(2∗(ATP + ADP + AMP)), time profile is shown. The second and
third row represent network responses to pulsed redox loads from t = 5–10h. Redox charge is
defined as NADPH/(NADPH+NADP). The regulated network has a dampened response to these
perturbations as compared to the unregulated model. Adapted from [15]

5 Conclusions and Future Outlook

Traditional kinetic modeling has been helpful in detailing cellular metabolism.
However, traditional methods rely on in vitro enzymatic data and are not scalable.
MASS models provide an alternative approach to traditional kinetic modeling
efforts of cellular metabolism. There has been advancement of holistically charac-
terizing living systems with high-throughput data sets. This new field, called omics,
provides the necessary data to parameterize MASS models.
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In this chapter, we provided an outline on how to use a metabolic network,
top-down measurements, and equilibrium constants to build dynamic mass balances
for kinetic metabolic networks on a large scale. A process was elucidated for
explicitly characterizing enzymes and allosteric regulatory effects within the MASS
framework. Analytical methods were introduced to reduce the dimensionality of the
network, determine the time-scale separation of the biochemical transformations,
and simulate the dynamics of the metabolic system dealing with perturbations.
Although the workflow for building and analyzing MASS models has been outlined,
some challenges still remain. Kinetic models, including MASS, cannot escape the
data incompleteness and quality issue. New methods need to be developed to deal
with uncertainty in kinetic parameters.

Full red blood cell metabolism can be modeled in the MASS framework. Enzyme
modules are defined and integrated with the metabolite stoichiometric matrix to
allow for explicit definition of allosteric regulation. The regulated model exhibited
time-scale separation reminiscent of traditional kinetic models. Building the full
red blood cell MASS model with regulation taught us a few things. First, the
MASS approach is scalable and more complex cellular models are possible. Second,
explicit definition of allosteric enzyme regulation in a modular format is feasible
and provides a better representation of dynamic metabolic properties. Third, new
methods are required to determine uncertainties in the network.

We see the MASS approach and its accompanying methods to follow a similar
path as COBRA based models and methods. MASS models are data-driven and can
be expanded to genome-scale. There are two key areas that need to be developed
side-by-side for the success of expanding MASS models.

First, more complex cells need to be modeled, including explicitly defining
and adding more regulatory enzymes to the network to account for regulation.
Phospho-proteomic data is now becoming available and allows accounting for the
phosphorylated states of enzymes. With emerging reconstructions of transcription
regulatory networks [11], transcription of enzymes can be explicitly modeled using
ordinary differential equations.

Second, building more complex networks will define many of the practical
issues of the MASS approach. We foresee parallel sampling of kinetic parameters
and unknown concentrations to be of great interest to MASS models. Other
areas that require attention include: estimating unknown equilibrium constants,
determining meaningful steady-state pathways from the null space, and dealing with
the computation of ill-conditioned matrices and stiff ordinary differential equations.

Metabolism plays an important role in a number of major human diseases
including cancer. Kinase deficiency has been shown to play a major role in
oncogenesis [22]. Constraint-based models have been helpful in understanding
some biochemical mechanisms of pathogens [13,20]. However, human metabolism
has an inherent dynamic behavior that cannot be accounted for in constraint-
based models. Enzyme states affected by allosteric ligands, phosphorylation, and
transcription are also ignored in constraint-based and traditional kinetic models.
The MASS approach is a scalable method to model cellular metabolism while
accounting for dynamic network properties and enzymes.
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traditional kinetic modeling, 202, 203
Mass spectrometry (MS), 3, 16, 61, 190
Matrix model, 17, 18
Maximum common subgraph, 130
Maximum weight bipartite matching, 114
Maximum weight induced subgraph

(MaWISh), 32, 104–106
Metabolic networks, 5–6
Metabolic pathway, 4, 5, 214
Metabolomics, 205
MetaCyc, 5, 121
Microphthalmia, 179
MIPS, 61, 118
Molecular function, 50, 51, 53, 55
Molecular INTeraction database (MINT), 120
Molecular interaction networks

gene regulatory networks, 6–7
metabolic networks, 5–6
protein–protein, 3–5
signal transduction pathways, 7

Molecular networks and complex diseases, 172
disease gene prioritization, 174–176, 179,

191
genomics

disease genes, interactions, 173–175
information-flow-based methods,

174–177
linkage interval, 174, 175
mechanistic bases, of genetic effects,

180
network centrality, role of, 178–179

omic datasets, 195
proteomics

dysregulated subnetworks, 190–194
TCP1 subnetwork, post-transcriptional

dysregulation of, 194–195
vs. transcriptomic, 189–190

transcriptomics, dysregulated subnetworks
additive coordinate dysregulation,

182–183
combinatorial coordinate dysregulation,

185–187
coordinate dysregulation and cover,

183, 184
differential expression, 182
dysregulated genes to, 181–182
gene expression and molecular network

data, integration of, 181
gene expression, differential analysis

of, 181
positive and negative cover set, 183
precision and recall, 187
subnetwork markers, biological

insights, 187–189
synergistic dysregulation, 184–185

MOPHY, 126
Mouse Genome Database (MGD), 122
MPact database, 120
mRNA degradation, 189
mRNA expression, 189, 190
Multiple genome networks, 63–65
Multiple network alignment, 116–117
Multi-stage convex relaxation (MSCR)

optimization, tensor, 166
Mus musculus, 103, 123
Mutual information phenotype, 184, 185

N
NCI-Nature Pathway Interaction Database

(PID), 121
Netpath database, 121
Network alignment, 30

global
GRAAL, 33
H-GRAAL, 33
IsoRank, 32

local
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Network alignment (cont.)
MaWISh, 32
PathBLAST, 31

Network analysis
global properties

clustering coefficient, 20
defined, 19, 20
degree distribution, 20
graphlets, 21
shortest path, 20
small-world property, 20

isomorphism, 19
local properties

graphlets, 23
network fingerprint, 24
network motifs, defined, 22

node centrality, 24
Network annotation prediction, as framework

advantages, 58
classification, 60–61
feature extraction

neighborhood profile, transformation
of, 59, 60

power iteration approach, stationary
distribution, 59

interaction network synthesis, 58
steps, 57

Network biology
molecular interaction networks

gene regulatory networks, 6–7
metabolic networks, 5–6
protein–protein, 3–5
signal transduction pathways, 7

molecular networks
and biological function, 7–9
functional coherence, 9

systems biology, 1–2
NetworkBlast, 103
Network centrality, 178–179
Network degree, 178, 179
Network feature extraction, 59–60
Network modeling

biological applications, 29–30
Erdös–Rényi random graph, 25
geometric random graph, 26
scale-free network, 26, 27
small-world network, 26, 27
stickiness network model, 28

Network motifs, defined, 22
Network propagation, 177
Network scheme, 109
Network topology, 9, 19, 33–38
Neural networks (NNs), 187
Noise, 18, 145

NP-complete, 19, 77, 80, 101
NP-hard, 98, 104, 138

O
Omics, 202–203
Online Mendelian Inheritance in Man

(OMIM), 118, 122, 173, 177–179
Orbits, 21, 23, 24
Orthologs, 64
Out-paralogs, 110, 123

P
2D-PAGE, 189
PageRank, 32, 111
Paralogs, 107, 123
Partial subgraph, 22
Pastor–Satorras model, proteome network, 74,

75
PathBlast, 31, 102, 103
Phospho-proteomics, 218
Phylogenetic tree, 34, 117, 127
Physical network, 138
Post-translational abundance, 190
Post-translational modifications, 2, 190
Power law, 20, 27, 70, 71, 74, 78
Preferential attachment model, proteome

network, 70, 83, 87
Protein expression, 189–195. See also

Proteomics
Protein Information Resource (PIR), 121
Protein–protein interaction (PPI) network. See

also Proteome network emulating
models

biological function
clusters, 36
hubs, 35
protein function prediction, 36

disease and pharmacology, 37–38
molecular interaction networks, 3–5

Protein Sequence Database (PSD), 121, 122
Proteome network emulating models, 93

geometric random graph model
embedding of, 72, 73
gene duplication-based models, 73–77
limitations of, 72
symmetric and positive semi-definite

matrix, 73
two dimensional, 72

network evolution models, assessment of
betweenness distribution, 78–79
challenges, 90–92
closeness distribution, 79
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degree distribution, 78
dense graphlets, 92
Erdös–Rényi model, topological

properties of, 83, 86
features, robustness of, 81–84
generalized duplication model, seed

network selection, 85, 89, 90
graph isomorphism, 77
graphlet, 79–81
k-hop reachability, 78
perturbation, 82, 83
sizes, comparison of, 90, 91
subgraph frequency, 79–81
treelets, 80, 82, 91
vertices, edges, and average degree,

number of, 85
yeast network, preferential attachment

model, 83, 87
yeast network, random geometric

model, 85, 88
preferential attachment models, 71
random graph models, 70
yeast, 2-hybrid assays, 70

Proteomics
dysregulated subnetworks

candidate subnetworks in, 193
colorectal cancer (CRC), 190
complex phenotypes, framework for,

191, 192
crosstalk, 191
crosstalker subnetworks, 191
interactor subnetworks, 191
proteomic seeds, 191, 193
proteomic targets and mRNA-level

dysregulation, 193
TCP1 subnetwork, post-transcriptional

dysregulation of, 194–195
vs. transcriptomic, 189–190

Pseudo-elementary rate constants (PERCs),
206

Q
Query subnetwork, 109

R
Random graph, 25, 26
Random graph model. See Geometric random

graph model, proteome network
Random walk, 131, 151
Random walk with restarts (RWR), 175–177
Rat Genome Database (RGD), 122
Reactome database, 121

Red blood cell metabolism, MASS approach
enzyme modules, 215–216
models, properties and time-scale

separation of, 215
system definition and characteristics, 215
unregulated vs. regulated, 216

dynamic responses of, 217
regulated model, topological overview

of, 211
Redundancy, of genes, 185
RNA interference, 189

S
Saccharomyces cerevisiae, 16, 115, 120, 124,

127
Saccharomyces Genome Database (SGD), 122
Seed graph, 70, 85
Signaling pathway, database, 121
Small world effect, 70
Spoke model, 18, 35
Stochastic matrix, 112, 151, 176
Stoichiometric matrix, 204–206, 211, 212
Subgraph centrality, 24
Support vector machines (SVMs), 187
Swiss-Prot, 121, 122
Synergistic dysregulation, transcriptomics,

184–185
Synergy, 184, 185
Synergy network, 185
Synthetic lethal interaction, 180
Systems biology, defined, 1–2
Systems pharmacology, 38

T
Tandem affinity purification (TAP), 3, 4
Tensor, multiple weighted networks

experimental study, 166–167
problem formulation and optimization

algorithm
multi-stage convex relaxation (MSCR)

optimization, 166
recurrent heavy subgraph (RHS), 164,

165
vector norm constraints, 165

Topological characteristics
biological networks

datasets, 16
modeling, 18
nodes, 15–16
PPI, 16–17

network alignment
global, 32–34
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Topological characteristics (cont.)
local, 31–32

network analysis
global properties, 19–22
local properties, 22–24
node centrality, 24

network modeling
biological applications, 29–30
models, network, 25–29

PPI networks, 35–36
biological function, 35–36
disease and pharmacology, 37–38

TOpology-free netwoRk QUErying (Torque),
109

Transcriptional regulation, 6
Transcriptomics, dysregulated subnetworks

additive coordinate dysregulation, 182–183
combinatorial coordinate dysregulation

vs. additive, 185, 186
CRANE, colon cancer metastasis, 187
individual subnetwork state functions,

186
coordinate dysregulation and cover, 183,

184
differential expression, 182
dysregulated genes to, 181–182
gene expression

differential analysis of, 181

and molecular network data, integration
of, 181

subnetwork activity, 182
subnetwork markers, biological insights

hypothesis-driver subnetwork,
interaction diagram, 187, 188

MMP proteins, 188
synergistic dysregulation, 184–185

Transcriptomic vs. proteomic data, 189–190

U
UMLS, 158, 160, 161

V
Vertexlet, 147
Vitronectin, 188

W
Within-pathway models, 180

Y
Yeast proteome network

2-hybrid assays, 70
preferential attachment model, 83, 87
random geometric model, 85, 88
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