

Lecture Notes in Computer Science 5475
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Patrick Eugster (Ed.)

Object-Oriented
Technology

ECOOP 2008 Workshop Reader

ECOOP 2008 Workshops
Paphos, Cyprus, July 7-11, 2008
Final Reports

13

Volume Editor

Patrick Eugster
Purdue University
Department of Computer Science
305 North University Street, West Lafayette, IN 47907, USA
E-mail: p@cs.purdue.edu

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.1.5, D.2.1, D.2.2, D.2.3, D.3.2, F.3.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-02046-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-02046-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12663040 06/3180 5 4 3 2 1 0

Preface

This volume presents the reports from the workshops held in conjunction with
the European Conference on Object-Oriented Programming (ECOOP 2008), tak-
ing place in its 22nd edition at Coral Beach in Paphos, Cyprus, July 7–11 2008.

As is customary, the workshops introduced the conference, taking place on
the first two days (July 7 and July 8 2008) prior to the main technical track.
The workshops were first chosen through a rigorous process with stringent selec-
tion criteria, carried out by the members of the Workshop Selection Committee.
This volume collects reports from the resulting high-quality workshops. The top-
ics covered span areas related to object-oriented programming and technology,
such as programming languages, aspects, parallel computing, formal techniques,
software engineering, tools, and applications. By summarizing the outcome of
these workshops, this volume provides readers with a comprehensive set of point-
ers into current trends and issues of intense investigation and debate in the field
of object-oriented technology. Following the tradition, the individual workshop
reports summarize the workshop goals, before providing an overview of the pre-
sentations and sometimes also a summary of the issues and findings of debates
fueled by the presentations. Some reports may also include a list of partici-
pants or contributed position papers. Several of the reports also contain a list of
references to relevant publications and websites, including the workshop home
page which usually offers the contributed position papers for download and may
present further material.

This workshop reader is the result of the contributions of many people to
whom we would like to express our gratitude, namely, all submitters of workshop
proposals and workshop contributions, the workshop organizers, the co-authors
of the reports, and the participants who contributed to the workshops directly
through presentations and discussions.

We are also very grateful to the members of the Workshop Selection Commit-
tee for devoting time and effort to ensure a workshop program covering a broad
range of exciting and timely topics and living up to the high-quality standards
of the ECOOP conference series. Last but not least, we wish to thank the local
organizers for their contributions toward the success of the workshop program
at ECOOP 2008.

November 2008 Patrick Eugster

Organization

ECOOP 2008 was organized by the Department of Computer Science of the
University of Cyprus, under the auspices of AITO (Association Internationale
pour les Technologies Objets), and in cooperation with ACM SIGPLAN and
SIGSOFT.

Workshop Organization

Workshop Co-chairs Patrick Eugster(Purdue University, USA)
Costas Pattichis (University of Cyprus,

Cyprus)

Workshop Selection Committee

Patrick Eugster Purdue University, USA
Benoit Garbinato University of Lausanne, Switzerland
Peter Müller ETH Zurich, Switzerland
Costas Pattichis University of Cyprus, Cyprus
Friedrich Steimann Fernuniversität Hagen, Germany

Sponsoring Organizations

Gold

Silver

Table of Contents

ECOOP 2008 Workshops: Final Reports

Lisp . 1
Didier Verna, Charlotte Herzeel, Christophe Rhodes, and
Hans Hübner

Multiparadigm Programming in Object-Oriented Languages: Current
Research . 7

Jörg Striegnitz and Kei Davis

Equation-Based Object-Oriented Languages and Tools 18
Peter Fritzson, David Broman, and François Cellier

Aliasing, Confinement, and Ownership in Object-Oriented
Programming . 30

Dave Clarke, Sophia Drossopoulou, Peter Müller, James Noble, and
Tobias Wrigstad

Implementation, Compilation, Optimization of Object-Oriented
Languages, Programs and Systems . 42

Eric Jul and Ian Rogers

Aspects, Dependencies and Interactions . 51
Frans Sanen, Katharina Mehner, Ruzanna Chitchyan,
Lodewijk Bergmans, Johan Fabry, and Mario Sudholt

Getting Farther on Software Evolution via AOP and Reflection 63
Manuel Oriol, Walter Cazzola, Shigeru Chiba, and Gunter Saake

Formal Techniques for Java-Like Programs . 70
Elvira Albert, Anindya Banerjee, Sophia Drossopoulou,
Marieke Huisman, Atsushi Igarashi, Gary T. Leavens,
Peter Müller, and Tobias Wrigstad

Quantitative Approaches in Object-Oriented Software Engineering 77
Giovanni Falcone, Yann-Gaël Guéhéneuc, Christian F.J. Lange,
Zoltán Porkoláb, and Houari Sahraoui

Academic Software Development Tools and Techniques 87
Roel Wuyts, Holger M. Kienle, Kim Mens,
Mark van den Brand, and Adrian Kuhn

Parallel/High-Performance Object-Oriented Scientific Computing:
Today’s Research, Tomorrow’s Practice . 104

Kei Davis and Jörg Striegnitz

Author Index . 117

Lisp

Report on the 5th Workshop ELW at ECOOP 2008

Didier Verna1, Charlotte Herzeel2, Christophe Rhodes3, and Hans Hübner4

1 EPITA Research and Development Laboratory, Paris, France
2 Programming Technology Lab, Vrije Universiteit, Brussel, Belgium

3 Goldsmiths College, University of London, United Kingdom
4 Berlin, Germany

Abstract. This report covers the activities of the 5th European Lisp
and Scheme Workshop. We introduce the motivation for a workshop
focusing on languages in the Lisp family, and mention relevant organiza-
tional aspects. We summarize the presentations and discussions, includ-
ing Mark Tarver and Rich Hickey’s keynote talks, and provide pointers
to related work and events.

1 Introduction

Lisp is one of the eldest computer languages still in use today. In the decades of
its existence, Lisp has been a fruitful basis for language design experiments as
well as the preferred implementation language for applications in diverse fields.

The structure of Lisp makes it easy to extend the language or even to imple-
ment entirely new dialects without starting from scratch. Common Lisp, with
the Common Lisp Object System (CLOS), was the first object-oriented program-
ming language to receive an ANSI standard and retains the most complete and
advanced object system of any programming language, while influencing many
other object-oriented programming languages that followed.

It is clear today that Lisp is gaining momentum: there is a steadily growing
interest in Lisp itself, with numerous user groups in existence worldwide, and in
Lisp’s meta-programming notions which are being transferred to other languages,
as for example in Aspect-Oriented Programming, support for Domain-Specific
Languages, and so on.

The theme of the workshop held at ECOOP 2008 was intentionally broad,
aimed at encouraging lively discussion between researchers proposing new ideas
and practitioners reporting on their experience with the strengths and limitations
of current Lisp technologies, with the intent to address the near-future evolution
of Lisp-based languages and Object-Oriented techniques in research, industry
and education.

2 Organization

This section describes the organizational aspects of the workshop. The sub-
mitted papers and workshop slides can be found at the workshop’s website:

P. Eugster (Ed.): ECOOP 2008 Workshop Reader, LNCS 5475, pp. 1–6, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 D. Verna et al.

http://elw2008.bknr.net/home. Note that we now have a centralized website
archiving all previous occurrences of the workshop: http://elw.bknr.net/

2.1 Organizers

Didier Verna, EPITA Research and Development Laboratory, Paris, France,
Contact Organizer, didier@lrde.epita.fr

Charlotte Herzeel, Programming Technology Lab, Vrije Universiteit, Brussel,
Belgium, charlotte.herzeel@vub.ac.be

Christophe Rhodes, Goldsmiths College, University of London, United Kingdom,
c.rhodes@gold.ac.uk

Hans Hübner, Berlin, Germany, hans.huebner@gmail.com (website)

2.2 Sponsors

Organizing the workshop would not have been possible without the help of our
sponsors: LispWorks Ltd[1], Franz Inc[2], the Association of Lisp Users[3], and
EPITA[4].

2.3 Call for Participation

... please don’t assume Lisp is only useful for Animation and Graphics,
AI, Bio-informatics, B2B and E-Commerce, Data Mining, EDA/Semicon-
ductor applications, Expert Systems, Finance, Intelligent Agents, Knowl-
edge Management, Mechanical CAD, Modeling and Simulation, Natural
Language, Optimization, Research, Risk Analysis, Scheduling, Telecom,
and Web Authoring just because these are the only things they happened
to list.

- Kent Pitman[5]

Potential attendees were invited to contribute a long paper (10 pages) pre-
senting scientific or empirical results about Lisp- and Scheme-based uses or new
approaches for software engineering purposes; a short essay (5 pages) defending
a position about where research and practice based on Lisp should be heading
in the near future; or a proposal for a breakout group describing an agenda for
discussion.

Suggested topics for presented papers included: new language features or ab-
stractions; experience reports or case studies; protocol meta-programming and
libraries; educational approaches; software evolution; development aids; persis-
tent systems; dynamic optimization; implementation techniques; innovative ap-
plications; hardware support for lisp systems; macro-, reflective-, meta- and/or
rule-based development approaches; and aspect-oriented, domain-oriented and
generative programming.

Lisp 3

2.4 Format

The workshop was held on the first day of ECOOP 2008. After a short opening by
Didier Verna, Mark Tarver gave a keynote entitled “Lisp for the 21st Century”.
The workshop continued with three of the four accepted papers (described in
section 3). In the afternoon, a second keynote was given by Rich Hickey: “A
Detailed Look at the Lisp Nature of Clojure”, and was followed by the last of
the four accepted papers. Didier Verna then concluded the workshop.

3 Presentations

There were four accepted papers for presentation at the workshop, along with
the invited keynote talks from Mark Tarver and Rich Hickey.

3.1 Invited Speakers

Lisp for the 21st Century Mark Tarver

As Lisp reaches its 50th anniversary, the talk looked at some of the
reasons why Lisp has not found a wider acceptance amongst the pro-
gramming community. Part of the reasons lie in a vicious cycle between
education and industry within which Lisp is trapped. One solution is the
L21 project – to produce a rationalized and revised update of Lisp for
the C21. Qi[6] fits many of the constraints of the L21 project. The talk
concluded on what needs to be done within Qi and the Lisp world to
bring Lisp to the center stage.

A Detailed Look at the Lisp Nature of Clojure Rich Hickey

The small essential core of Lisp makes dialects easy to define and imple-
ment. Most dialects are viewed skeptically by the community, as their
features can be realized via the extensibility mechanisms of Scheme or
Common Lisp. However, functional programming, interoperability, ex-
tensibility and concurrency objectives call for different decisions at many
Lisp design points. Meeting those objectives in a Lisp dialect testifies to
the continued vitality of the Lisp idea. This talk provided a rationale for
Clojure[7] as a substantive and unique dialect of Lisp, and details of its
design and implementation on the JVM.

3.2 Accepted Papers

Software Abstractions for Description Logic Systems. Michael Wessel
and Ralf Möller, Hamburg University of Technology, Institute for Software, Tech-
nology, and Systems (STS) Hamburg, Germany

4 D. Verna et al.

The basics of description logics[8] and tableau provers for reasoning with
them were explained. The implementation of tableau provers is a compli-
cated matter and demanding from a software engineering point of view.
Their implementation in Common Lisp was presented and discussed.
Some novel software abstractions for description logic system construc-
tion were also motivated and introduced. The MIDELORA toolkit /
framework was presented as a grounding example system for these ideas.

Using Data Parallelism in Lisp for Implementing a Quantum Sim-
ulator. Leonardo Uribe, Pascal Costanza, Charlotte Herzeel, Theo D’Hondt
Programming Technology Lab Vrije Universiteit Brussel, Belgium

This paper described two implementations of QLisp (a Lisp extension
to simulate quantum computations) in two different data-parallel exten-
sions of Lisp: *Lisp[9] and Paralation Lisp[10]. First, the basic concepts
of the languages and the quantum simulator were explained. Then, the
porting process was described and a comparative evaluation of the two
implementations was made. It was shown that data parallel languages
are well suited for parallelizing QLisp. Also, in the porting process, the
authors discovered some non-obvious differences between the different
data parallel languages.

Adaptive Libraries and Interactive Code Generation for Common
Lisp. Geoff Wozniak, Mark Daley and Stephen Watt, Department of Computer
Science / Biology, University of Western Ontario, London, Canada

The authors illustrated the use of a library for an abstract data type
whose instances represent the union of various data types and are spe-
cialized based on their use. The ADT can be used for a single collection
of data that is viewed in different ways in the program. A behavioral
analysis determines a specialized type that reflects the use of the data in
the program, as well as generating code to define and use the type. The
code generation is interactive in that it works in conjunction with a text
editor to determine where in the program the specializations are to take
place. The authors presented this as a technique for using evaluation
to disambiguate code representing many programs and argued that it is
useful for design exploration.

make-method-lambda Considered Harmful. Pascal Costanza and Charlotte
Herzeel Vrije Universiteit Brussel, Belgium

The CLOS Metaobject Protocol[11] (CLOS MOP) is a specification of
how major building blocks of CLOS are implemented in terms of CLOS
itself. This enables programmers to subclass meta-level classes and define
meta-level state and behavior in an incremental fashion. The benefits of
such a meta-level architecture for object systems in general and CLOS

Lisp 5

in particular are well documented. However, some parts of the CLOS
MOP are underspecified or impractical to use. The authors discussed
a particular dark corner of the CLOS MOP, the meta-level function
make-method-lambda, whose purpose is to influence the expansion, and
thus the semantics, of defmethod forms. They also made concrete sug-
gestions for an alternative design for achieving the functionality that
make-method-lambda provides, without any of its drawbacks.

4 Discussion

The 5th European Lisp Workshop was the third notable Lisp event in the year
2008: within a one month interval, both the European Common Lisp Meeting
(Amsterdam, April 20) and the First European Lisp Symposium (Bordeaux,
May 22–23) gathered an important number of contributions and a large audi-
ence. Given this context, it was quite a challenge to organize yet another Lisp
manifestation within the same period of time, but we succeeded: ELW’08 fea-
tured two invited keynote speakers on very “hot” topics, and four high-quality
scientific contributions.

Pessimists would probably qualify this occurrence of the workshop as a “small”
one: the audience was about half of what is usually expected. That was actually
the case for the whole ECOOP conference, so the workshop was only affected by
the same lack of audience as the rest of the conference. On the other hand, there
were very clear signs that Lisp continues to regain importance. During the main
conference (not even talking about the Dynamic Languages Symposium), the
name “Lisp” was mentioned several times by authors explicitly acknowledging
the Lisp heritage. To our knowledge, this had not happened in the past few years
at ECOOP. Another important sign was that in spite of the small size of the
conference, the totality of one of our sponsor’s flyers and evaluation CDs was
gone in a morning.

For all of these reasons, we think that there is no place for pessimism. The
fact that we were able to successfully organize three Lisp events in less than 4
months is a very clear sign that the European Lisp community is not only active,
but also attracting new people every day, which is also confirmed by the wide
range of applications demonstrated in the workshop’s accepted papers.

Along with the lines of being popular again, our two invited speakers gave
interesting while diverging views on how to reach that goal. According to Mark
Tarver, one way to make Lisp (specifically Common Lisp) popular again is to fill
its gaps in matters of practicality and missing features from the pure functional
world, like static typing. Rich Hickey, on the other hand, develops a new Lisp-
based language on top of the JVM, in the hope that people will gradually come
to like it (meaning come to like the features of Lisp, without necessarily knowing
that it is a Lisp in the first place), and all of this while staying in an environment
that feels like home. These two approaches are very interesting because when
put side-by-side, they look quite complementary.

6 D. Verna et al.

5 Related Events

There is an increasing scope for meetings organized around the broad theme
of Computer Science and Lisp technology. As mentioned previously, the fifth
European Lisp Workshop was the third Lisp event in a row, within a period of
a few months. 2009 will be a year full of Lisp event as well. Most notably:

– The International Lisp Conference will be held in Cambridge and celebrate
Lisp’s 50th anniversary.

– Given the success of the first European Lisp Symposium, the experience will
be reconducted in Milan, Italy, and the symposium team is now organized
in a steering committee.

– We are also confident that the European Lisp Workshop will continue to be
held as a satellite of ECOOP.

Meanwhile, Lisp user groups continue to thrive throughout the world, with fre-
quent meetings of varying levels of formality.

References

1. Sponsor (LispWorks Ltd.), http://www.lispworks.com/
2. Sponsor (Franz Inc.), http://www.franz.com/
3. Sponsor (ALU), http://www.alu.org/alu/home
4. Sponsor (EPITA), http://www.epita.fr/
5. Pitman, K.: Re: More lisp (2001),

http://interviews.slashdot.org/comments.pl?sid=23357&cid=2543265

6. Tarver, M.: Qi, http://www.lambdassociates.org/
7. Hickey, R.: Clojure, http://clojure.org/
8. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The De-

scription Logic Handbook - Theory, Implementation and Applications. Cambridge
University Press, Cambridge (2003)

9. Meglicki, Z.: The CM5 *Lisp Course, Centre for Information Science Research –
The Australian National University (1994)

10. Steele, G., Hillis, D.: Connection machine lisp: Fine-grained parallel symbolic pro-
cessing. In: Proceedings of the 1986 ACM Conference on LISP and Functional
Programming, pp. 279–297. ACM, New York (1986)

11. Kiczales, G.J., des Rivières, J., Bobrow, D.G.: The Art of the Metaobject Protocol.
MIT Press, Cambridge (1991)

http://www.lispworks.com/
http://www.franz.com/
http://www.alu.org/alu/home
http://www.epita.fr/
http://interviews.slashdot.org/comments.pl?sid=23357&cid=2543265
http://www.lambdassociates.org/
http://clojure.org/

Multiparadigm Programming in Object-Oriented

Languages: Current Research

Report on the Workshop MPOOL’08 at ECOOP 2008

Jörg Striegnitz1 and Kei Davis2

1 University Of Applied Sciences Regensburg 93053 Regensburg, Germany
joerg.striegnitz@informtik.fh-regensburg.de

http://homepages.fh-regensburg.de/striegnitz/people/striegnitz.html
2 Los Alamos National Laboratory, Los Alamos, NM 87545, USA

kei.davis@lanl.gov

http://www.ccs3.lanl.gov/~kei.html

Abstract. While OO has become ubiquitously employed for design, im-
plementation, and even conceptualization, many practitioners recognize
the concomitant need for other programming paradigms according to
problem domain. Nevertheless, the choice of a programming paradigm is
strongly influenced by the supporting programming language facilities.
In turn, choice of programming language is usually highly constrained
by practical considerations.

We seek answers to the question of how to address the need for other
programming paradigms, or even domain specific languages, in the gen-
eral context of OO languages.

It is clear that this field is active and fluid: novel, disparate approaches
and techniques are still being discovered or invented, and this very nov-
elty adds a significant element of intellectual entertainment. This article
describes the cross section of research efforts reported at the workshop
on Multiparadigm Programming in Object-Oriented Languages held at
the 2008 European Conference on Object-Oriented Programming.

1 Introduction

While OO has become ubiquitously employed for design, implementation, and
even conceptualization, many practitioners recognize the concomitant need for
other programming paradigms according to problem domain. We seek answers to
the question of how to address the need for other programming paradigms—or
even domain specific languages—in the general context of OO languages.

Can OO programming languages effectively support other programming
paradigms or the embedding of other languages? The answer seems to be af-
firmative, at least for some paradigms. For example, significant progress has
been made for the case of functional programming in C++.

Additionally, several efforts have been made to integrate support for other
paradigms as a front-end for OO languages (the Pizza language, extending Java,
is a well-known example).

P. Eugster (Ed.): ECOOP 2008 Workshop Reader, LNCS 5475, pp. 7–17, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://homepages.fh-regensburg.de/striegnitz/people/striegnitz.html
http://www.ccs3.lanl.gov/~kei.html

8 J. Striegnitz and K. Davis

The object-oriented paradigm is in fact well suited to implementation of,
and extension to include, other programming paradigms. Our previous years’
MPOOL workshops at ECOOP’01, ECOOP’02, OOPSLA’03, ECOOP’04,
ECOOP’07 and OOPSLA’05, and the DP-COOL workshop (Declarative Pro-
gramming in the Context of Object-Oriented Languages) at PLI’03, bore out our
hypothesis that there are many such efforts extant, including theoretical treat-
ments, language implementations, practical (application) implementations, even
long-extant (Budd) and new (Van Roy) textbooks on multiparadigm program-
ming, though these texts are not specific to the embedding of other paradigms
in an OO language.

As in the past the call for contributions generated sufficient response that a
mild deselection process was required to maintain relevance, focus, and quality.
This process was performed by the organizers who are recognized experts in
the field. At the workshop about half of the time was used for presentation, the
other half for discussion. This year we had presenters from academia, government
laboratories, the public sector, and private industry.

The home page for MPOOL’08, including the archive of papers and presen-
tations, is

http://homepages.fh-regensburg.de/~mpool/mpool08/programme.html

2 Presentations

Here we provide synopses of the contributions.

2.1 A Calculus of Evolving Objects (Mariangiola Dezani-Ciancaglini,
Paola Giannini and Oscar Nierstrasz)

There has been a recent re-emergence of interest in dynamic programming lan-
guages and the development of more dynamic features for mainstream languages
such as Java. Increasing numbers of applications require the ability for configura-
tions and even system behaviour to evolve at run-time. Furthermore, behaviour
may be context-dependent, and may need to adapt to the run-time platform,
the end user, service availability, or any number of environmental attributes.
To support these highly dynamic applications, programming languages need to
support a range of different object models, paradigms and language features.

Multi-dimensional dispatch is one example of a such a feature – instead of
dispatching purely on the receiver of a message, the behavior of an object might
depend on the sender, or even on contextual information such as the deploy-
ment platform, available services, desired quality of service, available versions
of components, or even the time of day. Another example is the use of fine-
grained components, such as traits, to statically or even dynamically extend the
behaviour of classes. These and other mechanisms entail the need for specialized
lookup mechanisms to adapt the behaviour of objects, even at run-time.

This paper presents an original calculus in which objects can adapt their be-
haviour at run-time. Both objects and environments are represented by first-class

http://homepages.fh-regensburg.de/~mpool/mpool08/programme.html

Multiparadigm Programming in Object-Oriented Languages 9

mappings between variables and values. Message sends are dynamically resolved
to method calls. Variables may be dynamically bound, making it possible to
model a variety of dynamic mechanisms within the same calculus. Despite the
highly dynamic nature of the calculus, safety properties are assured by a type
assignment system.

2.2 First Class Relationships for OO Languages (Stephen Nelson,
David J. Pearce, and James Noble)

Relationships have been an essential component of OO design since the 90s
but mainstream OO languages still do not support rst-class relationships. This
requires programmers to implement relationships in an ad-hoc fashion which re-
sults in unnecessarily complex code. Rather than simply tacking on relationship
support to existing language models we propose that existing language models
should be re-factored to support relationships as a primary metaphor. We have
developed a set of requirements with which to identify good relationship models,
and used these requirements to develop a new, three-layered model for the ob
ject-oriented paradigm which focuses on relationships rather than objects. In
addition, we present a prototype language based on this model. Our approach
offers benefits such as improved traceability between design and implementa-
tion, reduced boilerplate code, better program understanding by programmers,
and the opportunity for better paradigm integration between object-oriented
programs and the relational databases prevalent in modern systems.

2.3 Object State Querying for Optimisation (David J. Pearce and
James Noble)

The Java Query Language (JQL) provides a better separation between inter-
face and implementation than more traditional object-oriented languages. JQL
allows the system to optimise code across interface boundaries in sophisticated
ways, relieving the programmer from the burden of doing this by hand. The
key techniques employed are caching and incrementalisation; these allow previ-
ously computed values to be cached automatically for quick retrieval later on.
In our case, the values in question represent subsets of collections. Furthermore,
during execution, if these collections are changed in some way, the JQL system
automatically updates their cached values to reflect the new program state. An
interesting observation is that such optimisations are prevalent in the database
community, but have yet to make their way into main-stream programming.

2.4 Semantics-Driven Genericity: A Sequel to the Static C++
Object-Oriented Programming Paradigm (SCOOP 2) (Thierry
Geraud and Roland Levillain)

Classical (unbounded) genericity in C++03 [1] defines the interactions between
generic data types and algorithms in terms of concepts [2]. Concepts define the re-
quirements over a type (or a parameter) by expressing constraints on its methods

10 J. Striegnitz and K. Davis

and dependent types (typedefs). The upcoming C++0x standard will promote
concepts from abstract entities (not directly enforced by the tools) to language
constructs, enabling compilers and tools to perform additional checks on generic
constructs as well as enabling new features (e.g., concept-based overloading).

C++ template classes can be used to implement type transformations. Such a
transformation take its input (the type to be transformed) as a template parame-
ter, and the output is the instantiation of the template class with this parameter.
Concepts can be used to ensure type conformance (both for the input and the
output) and possibly drive some code specializations. However, they restrain the
interface and the implementation of the newly created type: specific methods
and associated types not mentioned in the concept of the input type will not
be part of the new type. The paradigm of concept-based genericity lacks the
required semantics to transform types while retaining or adapting their intrinsic
capabilities.

This paper presents a new form of semantically-enriched genericity allowing
static, generic type transformations through a simple form of type introspection
based on type metadata called properties. This approach relies on a new Static
C++ Object-Oriented Programming (SCOOP) paradigm [3], and is adapted to
the creation of generic and efficient libraries, especially in the field of scientific
computing [4, 5, 6, 7]. The exposed proposal uses a metaprogramming facility
built into a C++ library called Static, and doesn’t require any language exten-
sion nor additional processing (preprocessor or transformation tool).

References

1. ISO/IEC: ISO/IEC 14882:2003 (e). Programming languages - C++ (2003)

2. Gregor, D., Järvi, J., Siek, J., Stroustrup, B., Reis, G.D., Lumsdaine, A.: Con-
cepts: Linguistic support for generic programming in C++. In: Proceedings of the
2006 ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), pp. 291–310. ACM Press, New York (2006)

3. Burrus, N., Duret-Lutz, A., Geraud, T., Lesage, D., Poss, R.: A static C++ object-
oriented programming (SCOOP) paradigm mixing benefits of traditional OOP and
generic programming. In: Proceedings of the Workshop on Multiple Paradigm with
Object-Oriented Languages (MPOOL), Anaheim, CA, USA (October 2003)

4. The Cgal Project: Cgal, Computational Geometry Algorithms Library (2008),
http://www.cgal.org

5. Siek, J.G., Lee, L.Q., Lumsdaine, A.: The Boost Graph Library: User Guide and
Reference Manual, 1st edn. C++ In-Depth Series. Addison Wesley Professional,
Reading (2001)

6. Lombardy, S., Regis-Gianas, Y., Sakarovitch, J.: Introducing Vaucanson. Theoretical
Computer Science 328, 77–96 (2004)

7. Duret-Lutz, A.: Olena: a component-based platform for image processing, mixing
generic, generative and OO programming. In: Proceedings of the 2nd International
Symposium on Generative and Component-Based Software Engineering (GCSE)-
Young Researchers Workshop; published in Net.ObjectDays 2000, Erfurt, Germany,
October 2000, pp. 653–659 (2000)

http://www.cgal.org

Multiparadigm Programming in Object-Oriented Languages 11

2.5 Functional Programming at Work in Object-Oriented
Programming (with the C# Case) (Philippe Narbel)

This work presents a synthesis about why and how functional programming
(FP) can be practically helpful within mainstream object-oriented programming
(OOP). We first introduce criteria and rules to ensure that FP is actually ef-
fective within OOP. Next, we list and discuss the general techniques and design
effects of having FP capabilities in OOP, including code abstraction/factoring
at a function granularity level, generic iterator/loop implementations, operation
compositions, sequence comprehensions, partial application and currying, limi-
tations of the number of class definitions, name abstractions, and function-based
structural compatibilities. We also stress some of the difficulties in blending FP
and OOP by pointing out problems of design granularity mismatch, architecture
non-uniformity and datatype incoherences. Several classic OOP design patterns
are analyzed too, since FP techniques make alternative implementations possi-
ble: basic cases like Strategies, Commands and Observers, but also Proxies (using
functional-based evaluation control) and Visitors (using functional data-driven
programming). This synthesis is illustrated with C# 3.0 which offers effective
FP-oriented features through so-called delegates, but also by using comparisons
with other cross-paradigm languages.

Keywords: Object-oriented programming, functional programming, multi-
paradigm programming, design patterns, closures, function objects, delegates,
extension methods, open classes, C# 3.0, CLOS, Smalltalk, OCaml, Scala, Eif-
fel, Java 7.

References

1. Beck, K.: Smalltalk Best Practice Patterns. Prentice-Hall, Englewood Cliffs (1997)

2. Gamma, E., Helm, R., Jonhnson, R., Vlissides, J.: Design Patterns. Addison-Wesley,
Reading (1995)

3. Gabriel, R.P., White, J.L., Bobrow, D.G.: CLOS: integrating object-oriented and
functional programming. Commun. ACM 34(9), 29–38 (1991)

4. Kühne, T.: A Functional Pattern System for Object-Oriented Design. Verlag Kovac
(1999)

5. Meijer, E.: Confessions of a used programming language salesman. Getting the
masses hooked on Haskell. In: OOPSLA 2007: Proceedings of the 22nd annual ACM
SIGPLAN conference on Object oriented programming systems and applications,
pp. 677–694 (2007)

6. McNamara, B., Smaragdakis, Y.: Functional programming with the FC++ library.
J. Funct. Program. 14(4), 429–472 (2004)

7. Reynolds, J.C.: User-defined types and procedural data structures as complementary
approaches to data abstraction. In: Schuman, A. (ed.) New Directions in Algorithmic
Languages. IFIP Working Group 2.1 on Algol, pp. 157–168. INRIA (1975)

8. Wadler, P.: The expression problem. Java Genericity Mailing List (1998)

12 J. Striegnitz and K. Davis

2.6 Object Based Multiparadigm Concepts for Verification of
Functional Components (Máté Tejfel, Tamás Kozsik and Zoltán
Horváth)

Temporal properties are very useful for proving the correctness of (sequential or
parallel) object oriented programs. In the case of the correctness of components
written in a functional programming language, the practicability of temporal op-
erators is not so evident. In a pure functional language a variable is a value and
not an object that can change its value in time, viz. during program execution.
However, in some cases it is natural to express the knowledge about the com-
puted values of the program in terms of temporal logical operators. Moreover,
in the case of parallel, distributed and reactive functional programs or software
composed both from object oriented and functional components temporal prop-
erties are also well applicable and necessary. The object abstraction technique
can be used to identify expressions that the programmer considers the different
states of the same abstract object, and to identify the state transitions. If an
expression that is declared to be a state of a given abstract object depends on
another expression that is also declared to be a state of that abstract object, the
dependence is interpreted as a state transition. Temporal properties of abstract
objects are expressed with respect to the state transitions.

An important class of software systems uses mobile components: components
that are downloaded through the network and integrated into a running appli-
cation. The correctness of these applications depends on the properties of the
mobile components. In such cases the proof technique “composing specification”
is applicable, which makes it possible to reason about the correctness of a com-
pound system with respect to the properties of some of its components, even if
these components themselves are unknown or the system is merged from func-
tional, object oriented and other components. The Sparkle-T proof assistant
provides tool support for managing composed specifications. The constructed
proofs are represented in a machine processable form. As a consequence, not
only the program but also its proved temporal properties and the proofs them-
selves can be stored, transmitted or checked by a computer. This allows the
transmission of the code between two remote applications in a safe manner.

2.7 Implementation of JVM-Based Languages Support in IntelliJ
IDEA (Ilya Sergey)

This work presents several examples of usage of two languages, compilable to
Java byte-code, namely, Scala and Groovy. Author considers some functional and
dynamic language constructs they bring to standard process of Java application
development. For that purpose he appeals to the language analysis and IDE
development process as comprehensive examples demonstrating the benefits of
Scala and Groovy usage.

In fisrt part of present work author describes main stages of IDE development,
such as lexical analysis, syntactic analysis and further semantic verifications.
Some examples of replacing standard solutions in Java programming language

Multiparadigm Programming in Object-Oriented Languages 13

by their functional analogues written on Scala are considered. Among other
examples author describes LL(k) lexer implementaion using sequence compre-
hensions and implicit conversions, provided by Scala language. Unified approach
to processing of files of different kinds, such as source files with program code, or
compiled class-files, is also implemented using standard functional technics. Such
Scala constructions as pattern matching, so-called case classes and extractors are
used for that aim. Tree-like structures processing implementation in full mea-
sure uses power of higher order functions, such as foldLeft/Right, filter and map
for standard Scala sequences. Another described design pattern is replacing of
functions returning null value by others, which return instance of scala.Option[]
type.

Second part is concerned to Groovy programming language. Being dynami-
cal language, Groovy provides rich opportunities for testing. Author describes
implementation of well-known Builder design pattern via Groovy closures and
mechanism of delegate substitution. Such approach allows to create mocked ver-
sion of large objects, necessary for testing. Among other features ”safe derefer-
encing” and ”Groovy truth” concepts are considered as ways to decrease amount
of boilerplate code. Last example is using of dynamic properties invocation for
tuning in runtime some entities with big amount of settings. Both of considered
languages were used in the process of language plugins development for IntelliJ
IDEA. Source code of these projects is available for free download.

2.8 State-Oriented Programming (Asher Sterkin)

The traditional Object-Oriented approach, reflected in the State design pattern,
suggests extracting complex state-dependant behavior into one or more separate
objects and delegating to them decisions about which particular operations to
perform. This solution, however, does not scale well for a large number of poten-
tial states/transitions. The same happens with developing an Object-Oriented
solution for plain Final State Machines (FSMs): it is does not scale well for a
large number of states and transitions unless the FSM is built automatically
from some other formal description (e.g. regular expression).

Statecharts formalism suggests a scalable solution for state-dependent system
modeling and specification. The Statechart formalism significantly reduces both
the number of states and transitions by using hierarchical and parallel states,
special event handlers, and shallow and deep history. Originally, Statecharts were
associated with complex CAD tools such as iLogic Rhapsody or IBM/Rational
Rose Real-Time. The main problem with these tools is a substantial mental gap
between statechart diagrams and the code generated by the tool.

This paper introduces a new programming paradigm, called State-Oriented
Programming, where statecharts are implemented as an internal Domain-Specific
Language directly embedded into a mainstream Object-Oriented programming
language such as Java, Groovy, Ruby, etc.

Embedding a Statechart Domain Specific Language (DSL) within a General
Object-Oriented Programming Language (GOPL) turns out to be a complex
mapping problem where various elements of the Statechart formalism (states,

14 J. Striegnitz and K. Davis

transitions, guards, actions) need to be mapped onto different elements of the
hosting programming language (classes, methods, fields, templates, annotations
and aspects).

This article presents a Generic Statechart Library (GSL), which provides a
cost-effective implementation of an essential subset of Statechart formalism, suit-
able for user interface intensive and communication systems. Special attention
is paid to code readability and trying to make GSL constructs look as close as
possible to the hosting language.

Limitations of Java meta-programming capabilities are demonstrated. GSL
implementation in Groovy is presented and advantages of dynamic Object-
Oriented programming languages family (Groovy, Ruby) are discussed.

3 List of Participants

Oscar N. Nierstrasz
University of Berne, Switzerland
oscar@iam.unibe.ch

Asher Sterkin
NDS Israel
asterkin@nds.com

Ilya Sergey
SPBSU, Russia
ilya.sergey@jetbrains.com

Laurent Plagne
EDF R&D France
laurent.plagne@edf.fr

Zoltan Porkolab
Eötvös University, Budapest, Hungary
gsd@elte.hu

Zoltan Horvath
Eötvös University, Budapest, Hungary
hz@inf.elte.hu

Henrik Nilsson
University of Nottingham, UK
nhn@cs.nott.ac.uk

Thierry Geraud
EPITA R&D Lab, France
theo@lrde.epita.fr

Multiparadigm Programming in Object-Oriented Languages 15

Francesca Arcelli
University Milano-Bcocca, Italy
arcelli@disco.unimib.it

Paola Giannini
Università del Piemonte Orientale, Italy
giannini@mfn.unipmn.it

Markus Blatt
University Stuttgart, Germany
mblatt@gmx.net

Massimiliano Virdis,
Università di Cagliari
virdis@dsf.unica.it

Reza Ansari
University Paris Sud / LAL-Orsay, France
ansani@lal.in2p3.fr

Ramine Nikoukhah
INRIA, France
ramine.nikoukhah@inria.fr

David Pearce
Victoria University of Wellington, New Zealand
david.pearce@mcs.vuw.ac.nz

Stephen Nelson
Victoria University of Wellington, New Zealand
stephen@mcs.vuw.ac.nz

Peter Gottschling
TU Dresden, Germany
peter.gottschling@tu-dresden.de

4 The Organizers

Jörg Striegnitz, Chair, received his Diploma and Ph.D. in Computer Sci-
ence from University of Technology at Aachen, Germany. He is now working
as a professor for theoretical computer science and programming languages at
the University Of Applied Sciences in Regensburg, Germany. His research work
includes the integration of programming languages by means of partial evalua-
tion, the application of multiparadigm programming to real world problems, the
optimization of programs, and parallel/high performance scientific computing.

16 J. Striegnitz and K. Davis

He authored the FACT! and the EML C++ libraries, that allow for functional
programming style with C++.

Prof. Jörg Striegnitz
University Of Applied Sciences Regensburg
93053 Regensburg, Germany
joerg.striegnitz@informtik.fh-regensburg.de
http://homepages.fh-regensburg.de/~stj39817/people/striegnitz.html

Kei Davis, Co-chair, Ph.D. Computing Science (Glasgow), M.Sc. Computa-
tion (Oxford), is a research scientist at Los Alamos National Laboratory, U.S.A.
He has conducted research in object-oriented and functional language technol-
ogy for natural language processing, large system design and implementation,
scripting, signal processing, parallel discrete-event simulation, and parallel/high
performance scientific computing.

Dr. Kei Davis
Advanced Computing Laboratory, CCS-1
Los Alamos National Laboratory
Los Alamos, NM 87545, USA
kei.davis@lanl.gov
http://www.c3.lanl.gov/~kei

Gerald Baumgartner received a Diploma degree from the University of Linz,
Austria, and M.S. and Ph.D. degrees from Purdue University, all in computer
science. He is currently assistant professor in the Department of Computer Sci-
ence at Louisiana State University. His research interest includes the design
and implementation of object-oriented languages, search-based optimization al-
gorithms, domain-specific languages and tools for high-performance computing,
and testing tools for object-oriented programming and embedded systems pro-
gramming. His extension of C++ with structural subtyping has been publicly
available as part of the GNU C++ compiler, version 2.8. He is working on the
design and implementation of Brew, an extension of Java with support for func-
tional programming, multimethod dispatch, and retroactive abstraction.

Dr. Gerald Baumgartner Dept. of Computer Science
Louisiana State University
298 Coates Hall
Baton Rouge, LA 70803
Email: gb at csc.lsu.edu
http://www.csc.lsu.edu/~gb/

Zoltán Horváth OC Co-chair of ECOOP 2001, Member of AITO, Designer of
programming language concepts connecting distributed functional programming
with OO programming.

http://homepages.fh-regensburg.de/~stj39817/people/striegnitz.html
http://www.c3.lanl.gov/~kei
http://www.csc.lsu.edu/~gb/

Multiparadigm Programming in Object-Oriented Languages 17

Prof. Zoltán Horváth, PhD, habil.
Department of Programming Languages and Compilers
Faculty of Informatics
University Eötvös Loránd of Sciences, Budapest, Hungary
hz@inf.elte.hu
http://people.inf.elte.hu/hz

Jaakko Järvi is an assistant professor in the Department of Computer Science
at Texas A&M University. He has a Ph.D. in Computer Science from the Uni-
versity of Turku, Finland. His research interests include generic programming,
programming languages, and software construction in general. He actively par-
ticipates in the C++ standards committee and is a contributing member of the
C++ Boost community, where his previous work has included template libraries
that bring functional programming features to C++.

Dr. Jaakko Järvi
Department of Computer Science
Texas A&M University
College Station, TX 77843-3112, USA
Email: jarvi@cs.tamu.edu
http://faculty.cs.tamu.edu/jarvi

Herbert Kuchen received his Diploma, Ph.D., and Habilitation in computer
science from the University of Technology at Aachen, Germany. He is now work-
ing as a professor for computer science at the University of Münster, Germany.
He is interested in algorithmic skeletons for parallel programming and in the
integration of programming paradigms, in particular in the combination of func-
tional, logic, and object oriented programming, and he has been on many pro-
gram committees of corresponding conferences. Recently, he developed a C++
skeleton library.

Prof. Herbert Kuchen
University of Münster
Leonardo Campus 3
48149 Münster, Germany
kuchen@uni-muenster.de

Erik Meijer is an architect in the Data Programmability Team in SQL Server
where he works with the C# and Visual Basic teams on language and type-
systems for data integration in programming languages. Prior to joining Mi-
crosoft he was an associate professor at Utrecht University and adjunct professor
at the Oregon Graduate Institute. Erik is one of the designers of the Mondrian
scripting language, standard functional programming language Haskell98, and
Comega.

http://people.inf.elte.hu/hz
http://faculty.cs.tamu.edu/jarvi

P. Eugster (Ed.): ECOOP 2008 Workshop Reader, LNCS 5475, pp. 18–29, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Equation-Based Object-Oriented Languages and Tools

Report on the 2nd Workshop EOOLT at ECOOP 2008

Peter Fritzson1, David Broman1, and François Cellier2

1 Linköping University, Sweden
{davbr,petfr}@ida.liu.se

2 ETH Zurich, Switzerland
fcellier@inf.ethz.ch

Abstract. EOOLT’2008 was the second edition of the ECOOP-EOOLT work-
shop. The workshop is intended to bring researchers associated with different
equation-based object-oriented (EOO) modeling languages and different appli-
cation areas making use of such languages together. The aim of the workshop is
to explore common grounds and derive software design principles that may
make future EOO modeling languages more robust, more versatile, and more
widely accepted among the various stakeholders. At EOOLT’2008, researchers
with diverse backgrounds and needs came together to present and discuss four-
teen different concept papers grouped into the four topic areas of integrated
system modeling approaches; modeling for multiple applications; modeling lan-
guage design, and equation handling, diagnosis, and modeling.

1 Objectives and Call for Papers

Computer aided modeling and simulation of complex systems, using components
from multiple application domains, such as electrical, mechanical, hydraulic, control,
etc., have in recent years witnessed a significant growth of interest. In the last decade,
novel equation-based object-oriented (EOO) modeling languages, (e.g., Modelica,
gPROMS, and VHDL-AMS) based on acausal modeling using equations have ap-
peared. Using such languages, it has become possible to model complex systems cov-
ering multiple application domains at a high level of abstraction through reusable
model components.

The interest in EOO languages and tools is rapidly growing in the industry because
of their increasing importance in modeling, simulation, and specification of complex
systems. There exist several different EOO language communities today that grew out
of different application areas (multi-body system dynamics, electronic circuit simula-
tion, chemical process engineering). The members of these disparate communities rarely
talk to each other in spite of the similarities of their modeling and simulation needs.

The workshop is concerned with, but not limited to, the following themes:

• Acausality and its role in model reusability.
• Component systems for EOO languages.
• Database lookup and knowledge invocation.
• Discrete-event and hybrid modeling using EOO languages.
• Embedded systems.

 Equation-Based Object-Oriented Languages and Tools 19

• EOO language constructs in support of simulation, optimization, diagnostics,
and system identification.

• EOO mathematical modeling vs. UML modeling.
• Equation-based languages supporting DAEs and/or PDEs.
• Formal semantics of EOO related languages.
• Multi-resolution / multi-scale modeling using EOO languages.
• Numerical coupling of EOO simulators and other simulation tools.
• Parallel execution of EOO models.
• Performance issues.
• Programming / modeling environments.
• Real-time simulation using EOO languages.
• Reflection and meta-programming.
• Reuse of models in EOO languages.
• Table lookup and interpolation.
• Type systems and early static checking.
• Verification.

The EOOLT workshop series aims at bringing these different communities to-
gether to discuss their common needs and goals as well as language semantics, algo-
rithms, and tools that best support them.

The workshop is intended to become recurrent since this is an important and grow-
ing area of research and technology development.

The EOOLT Workshop addresses the current state of the art of EOO modeling lan-
guages as well as open issues that currently still limit the expression power and use-
fulness of such languages through a set of full-length presentations, short position
papers, and forum discussions.

Papers and contributions are welcome that offer presentations and discussions of
existing languages and tools, their capabilities and limitations; reports on practical
experience; demonstrations of languages, tools, ideas, and concepts; positions related
to relevant questions; and discussion topics.

Despite the fact that this is a not very established workshop series, there was a
good response to the call-for-papers. Thirteen papers out of fifteen submissions were
accepted to the workshop program. Additionally, there was an invited keynote presen-
tation and associated extended abstract on Multi-Paradigm Language Engineering and
Equation-Based Object-Oriented Languages. All papers were subject to at least three
reviews by the program committee, some received four to five reviews.

The workshop program started with a welcome and introduction to the area of
equation-based object-oriented languages, followed by paper presentations and dis-
cussion sessions after presentations of each set of related papers. EOOLT'2008 was
held in Paphos, Cyprus, in conjunction with the ECOOP'2008 conference.

2 Organizers

Peter A. Fritzson received his M.Sc. in engineering 1975 and Ph.D. in computer
science 1984, both from Linköping University. He is Professor and Director of the
Programming Environment Laboratory (Pelab), at the Department of Computer and
Information Science, Linköping University, Sweden. Peter Fritzson is vice chairman

20 P. Fritzson, D. Broman, and F. Cellier

of the Modelica Association, an organization he helped to establish, and during 1999-
2007 served as chairman of the Scandinavian Simulation Society, and secretary of the
European simulation organization, EuroSim. His main area of interest is software en-
gineering, especially languages, programming and debugging tools and environments;
during recent years with special emphasis on modeling and simulation, and is cur-
rently leading the OpenModelica modeling and simulation open source tool effort.
Professor Fritzson has authored or co-authored approximately 200 technical publica-
tions, including 14 books/proceedings. In 1994 he published a textbook “Principles of
Object-Oriented Modeling and Simulation with Modelica”, 939 pages, Wiley-IEEE
Press. He has served as chair of a number of international conferences and workskops,
and took the initiative to start the AADEBUG and EOOLT workshop series.

Prof. Dr.-Ing. Peter Fritzson
Programming Environment Laboratory (PELAB)
Linköping University
SE-581 83 Linköping
Sweden
Phone: +46(13)281484
Fax: +46(13)285899
Mobile: +46(708)281484
Email: petfr@ida.liu.se
URL: http://www.ida.liu.se/labs/pelab/

François E. Cellier received his BS degree in electrical engineering in 1972, his MS
degree in automatic control in 1973, and his PhD degree in technical sciences in 1979,
all from the Swiss Federal Institute of Technology (ETH) Zurich. Dr. Cellier worked
at the University of Arizona as professor of Electrical and Computer Engineering
from 1984 until 2005. He recently returned to his home country of Switzerland where
he assumed a position with ETH Zurich. Dr. Cellier's main scientific interests concern
modeling and simulation methodologies, and the design of advanced software systems
for simulation, computer aided modeling, and computer-aided design. Dr. Cellier has
authored or co-authored more than 200 technical publications, and he has edited sev-
eral books. He published a textbook on Continuous System Modeling in 1991 and a
second textbook on Continuous System Simulation in 2006, both with Springer-
Verlag, New York. He served as general chair or program chair of many international
conferences, and served recently as president of the Society for Modeling and Simula-
tion International.

Prof. Dr. François E. Cellier
Institute of Computational Science
CAB G82.1
ETH Zürich
CH-8092 Zürich
Switzerland
Phone: +41(44)632-7474
Fax: +41(44)632-1374
Mobile: +41(79)416-7546
Email: fcellier@inf.ethz.ch
URL: http://www.inf.ethz.ch/~fcellier/

 Equation-Based Object-Oriented Languages and Tools 21

David Broman is currently pursuing his PhD in computer science at Linköping Uni-
versity, Sweden, where he also received his Licentiate degree in 2008 and M.Sc. de-
gree in 2001. Before he started his PhD work, he worked as a software engineer and
technical project manager for a security company in Stockholm. David's current re-
search interest is focusing on language semantics and type systems of equation-based
object-oriented languages. He is a member of the Modelica Association and has been
active in the Modelica design group since 2005.

David Broman
Department of Computer and Information Science
Linköping University
SE-581 83 Linköping
Sweden
Phone: +46(0)13-285724
Fax: +46(0)13-285899
Mobile: +46(0)707-909075
URL: http://www.ida.liu.se/~davbr/

3 Participants

There were fourteen participants from eight different countries taking part of the sec-
ond EOOLT workshop.

Name Affiliation Country Email

David Broman Linköping
University

Sweden davbr@ida.liu.se

Francesco Casella Politecnico di
Milano

Italy casella@elet.polimi.it

François E. Cellier ETH Zurich Switzerland fcellier@inf.ethz.ch

Peter Fritzson Linköping
University

Sweden petfr@ida.liu.se

Alberto Jorrín University of
Valladolid

Spain albejor2002@hotmail.com

Malte Lochau TU Braunschweig Germany lochau@ips.cs.tu-bs.de

Loucas Louca University of
Cyprus

Cyprus lslouca@ucy.ac.cy

Masoud Najafi Inria France masoud.najafi@inria.fr

Ramine Nikoukhah Inria France ramine.nikoukhah@inria.fr

Henrik Nilsson University of
Nottingham

UK nhn@cs.nott.ac.uk

Olaf
Enge-Rosenblatt

Fraunhofer
Institute for
Integrated Circuits

Germany olaf.enge@eas.iis.fraunhofer.de

Victorino Sanz UNED, Madrid Spain vsanz @dia.uned.es

Hans Vangheluwe McGill University Canada hv@cs.mcgill.ca

Dirk Zimmer ETH Zurich Switzerland dzimmer@inf.ethz.ch

22 P. Fritzson, D. Broman, and F. Cellier

4 Contributions

All papers are published electronically by Linköping University Electronic Press and
available in the electronic proceedings at http://www.ep.liu.se/ecp/029/

All presentations (together with the papers) are also available at the EOOLT’2008
web site: http://www.eoolt.org/2008/

The workshop sessions are briefly described below. Each session started with pa-
per presentations, followed by a discussion related to the topic of that particular ses-
sion. Some discussion also took place during the paper presentations.

4.1 Integrated System Modeling Approaches

Session chair: François E. Cellier
This session grouped papers that especially emphasized integrated modeling tools for
complex systems and integrated modeling environments aimed towards the whole
development process.

In “Multi-Paradigm Language Engineering and Equation-Based Object-Oriented
Languages,” Hans Vangheluwe presented recent work on Multi-Paradigm Modeling
(MPM). Whereas EOO languages make it a point to not hard-encode physical knowl-
edge in their compilers, thereby providing the modeler with full flexibility in formulat-
ing models of different types of physical systems, they offer little in terms of helping the
modeler structure the facets of physical knowledge that are to be encoded. MPM
languages are located at a higher abstraction level. They support the modeler in formu-
lating facets of physical knowledge, and offer meta-tools to transform these models
algorithmically to a consistent framework, e.g. for use by an EOO environment.

In “Seamlessly Integrating Software & Hardware Modelling for Large-Scale Sys-
tem,” Toby Myers, Peter Fritzson, and Geoff Dromey presented a method of integrat-
ing the software engineering approach, Behavior Engineering, with the mathematical
modeling approach, Modelica, to address the software/hardware integration problem.
The environment and hardware components are modeled in Modelica and integrated
with an executable software model designed using Behavior Engineering. This allows
the complete system to be simulated and interactions between software and hardware
to be investigated early in development. A case study of the method was presented,
including a model and simulation of an integrated BE and Modelica model of a train
ATP system.

In “The Impreciseness of UML and Implications for ModelicaML,” Jörn Guy Süß,
Peter Fritzson, and Adrian Pop introduced ModelicaML as a meta-modeling environ-
ment for Whole Product Modeling. Modelica has been designed for mathematically
representing physical systems (hardware), which it does very well. The language is
not as powerful for dealing with mathematical descriptions of control actions (soft-
ware) on these models, partly because of the sequential nature of these control ac-
tions, and partly because of the need to translate these control actions separately for
downloading them into real-time controllers. Whereas UML is conceptually capable
of representing all models, the full UML language definition is so powerful that no
complete implementations exist at present. Furthermore, different subset implementa-
tions are incompatible with each other. The language specification is also ambiguous.

 Equation-Based Object-Oriented Languages and Tools 23

The paper proposed to limit the meta-modeling environment to a small subset of
UML that can be well and unambiguously implemented in ModelicaML.

The subsequent discussion focused primarily on the first paper of the session. In
particular, it was mentioned that ECOOP offers a separate workshop, MPOOL, on
multi-paradigm languages. In spite of the obvious synergies between the two work-
shop topics, the EOOLT and MPOOL communities are currently almost entirely dis-
joint. It might be useful to establish a dialog at the level of the organizers of these two
workshops to discuss how the synergies can be better exploited in the future.

In the context of meta-modeling, the question was raised how the correctness of
large multi-faceted models can be ascertained, especially across the barrier between
different modeling paradigms. Whereas a number of new tools were developed re-
cently in the context of EOO languages for model validation and simulation verifica-
tion purposes, there are no such tools available yet at the meta-modeling level. This
issue requires further investigations.

Another issue that was raised concerns the formulation of adequate error messages
following run-time exceptions. This issue is still problematic within the current gen-
eration of EOO languages, but will become even harder in the context of meta-
modeling environments.

4.2 Modeling for Multiple Applications

Session chair: David Broman
The session concerned different applications and approaches of using models beyond
the scope of simulation. Three papers were presented and discussed around the topic.

In “Multi-Aspect Modeling in Equation-Based Languages” Dirk Zimmer describes
how models in EOO-languages typically include several other model aspects besides the
physical model, such as system hints, 3D visualization, GUI-representation, and docu-
mentation. The need for and the current situation of handling these aspects are discussed
with focus on the Modelica language. An alternative approach of separating these as-
pects is proposed, by introducing four new language constructs in the research language
Sol. The need is also emphasized for a language to be able to extend itself concerning
these aspects, without requiring the redefinition of the language specification.

In “Beyond Simulation: Computer Aided Control System Design Using Equation-
Based Object-Oriented Modeling for the Next Decade” Francesco Casella, Filippo
Donida, and Marco Lovera, discuss the need for EOO-languages and tools to support
and focus on other usages than simulation. An overview of state-of-the-art of design-
ing advanced model-based control-systems based on EOO-models is given. This is
followed by a number of proposals for future development in the area, e.g., open
model exchange formats, automated model order reduction, automatic derivation of
linear fractional transformations (LFT) models, inverse models for robotic system,
and support for nonlinear model predictive control (MPC).

In “A Static Aspect Language for Modelica Models” Malte Lochau and Henning
Günther present a declarative language for specifying and evaluating quantified rules
for static properties of Modelica models. The language makes use of aspect oriented
programming (AOP) and the proposed framework is based on logic meta-
programming, where Prolog can serve as evaluation engine. Examples of application

24 P. Fritzson, D. Broman, and F. Cellier

areas were given and the balanced model requirement of Modelica 3.0 was proposed
as a case study for future work.

In the following discussion session, several questions were raised. One concern
discussed regarding control system applications, such as model reduction and optimi-
zation, was the extensive computational requirements. Another issue discussed and
agreed upon was the need of keeping the models for control application physical.

Another topic discussed concerning other model aspects than physical properties of
Modelica models, was the use of annotations. The problem of vendor specific annota-
tions was highlighted as a major portability issue. It was further discussed how
interfaces and specific built in language constructs could help in the situation of port-
ability. If interfaces are defined, but the semantics are left to the tool vendor, does not
this give the same problem as with annotations? It was concluded that this was proba-
bly inevitable.

A question was raised regarding how name bindings were handled in the static as-
pect oriented language given in presentation 3. It was concluded that this is a very
complex problem and regarded as future work.

To summarize, both the presentations and the following discussion showed a clear
need for further research in the area of other usages of EOO models than simulation.

4.3 Modeling Language Design

Session chair: Peter Fritzson
This session concerned papers on the topic of modeling language design, including
new language constructs, novel type systems and type analysis, and a description of
an existing language.

In “Higher-Order Acausal Models”, David Broman and Peter Fritzson presents the
idea of higher-order acausal models (HOAM), inspired by the concept of higher-order
functions in functional programming, but extended to acausal models. HOAM allows
models to take models as input, and generate models as results. This allows model
transformations including general model composition and recursion operations and
does not require data representation/reification of models as in traditional metapro-
gramming/metamodeling. Examples of using HOAMs within the electrical and me-
chanical domain are also presented.

In “Type-Based Structural Analysis for Modular Systems of Equations”, Henrik
Nilsson investigates a novel approach to a type system for modular systems of equa-
tions, i.e., composition of equation systems from acausal model fragments/modules
containing equations. Attributing a structural type to equation system fragments al-
lows aspects of insolvability such as over- and underdetermined system fragments to
be identified, without first having to assemble these into a full system of equations.
The main issue is handling abstraction of systems of equations, for which the paper
presents an algorithm for determining the best possible type. This is still work in pro-
gress, and the presented type system is not yet complete.

In “Introducing Messages in Modelica for Facilitating Discrete-Event System
Modeling”, Victorino Sanz, Alfonso Urquía, and Sebastián Dormido presents a lan-
guage extension to Modelica, with messages and mailboxes, to facilitate process-
oriented modeling of discrete-event based applications. The author’s found this to
be a difficult using current Modelica, which they have implemented in the libraries

 Equation-Based Object-Oriented Languages and Tools 25

ARENALib, SIMANLib, and DEVSLib. These libraries still have some problems
without a solution, like one-to-many connections in DEVSLib and polymorphism of
information transmitted at event instants. The proposed language extension should
handle these problems and facilitate discrete-event process-oriented modeling. A pos-
sible implementation for Modelica is also presented.

In “EcosimPro and its EL Object-Oriented Modeling Language” Alberto Jorrín,
César de Prada, and Pedro Cobas presents the EcosimPro modeling and simulation
environment with the EL (EcosimPro Language) acausal modeling language. The
presentation covers acausal object-oriented language features such as classes, compo-
nents, connections, inheritance, etc., very similar to an EOO language such as Mode-
lica, as well as the concept of experiment.

Regarding the first talk, one comment was that we need to be clear about the con-
cept of higher-order. Higher-order in traditional mathematical modeling means higher
order derivates, whereas in this paper and in functional programming higher-order
means the property of objects (or in HOAMs, models) being first-class entities in the
language, i.e., passed to models, returned from models, etc. Another question con-
cerned debugging of higher order models, will it be more complicated to detect an
error and correct it in a higher-order language than in a conventional language. To
summarize, the HOAM approach was considered general and powerful.

Regarding the second presentation, on type-based structural analysis, there were
questions about language restrictions to support better checking (as currently in the
Modelica design effort). Can this idea about type-based structural analysis be applied
to Modelica by enhancing the Modelica type system? Answer: this might be possible,
but would need additional work. For example, handling constructions such as in-
ner/outer. A general comment: both this approach and the constraint delta approach
are conservative approaches, using a type system to perform partial checking of equa-
tion system solvability.

The third talk was about new message primitives in Modelica, for better supporting
discrete-event process modeling. One question concerned declarativeness, will not
these extensions destroy the declarative properties of Modelica, since you rely on the
order of events and messages? The answer was that in process modeling, you want to
model such properties explicitly. However, there is of course the danger of misuse of
such language primitives. Another comment: if you are not careful, you will just re-
implement ARENA. Also, you have to be careful if you mix this with continuous-
time modeling. A follow-up comment: a different direction might be to change things
and translate into DEVS instead of using Modelica when? However, still symbolic
optimization would be needed. There is also the issue of performance. Another direc-
tion would be to come up with a declarative specification of a discrete-event system,
e.g. a logical formulation of discrete events? Another question: would it be meaning-
ful to solve event systems backwards? To specify outputs and solve for inputs? An
answer: diagnostic people do this, which leads to trees, i.e., not a unique solution.
This might make the situation worse.

The fourth talk was about the EcosimPro environment ant the EL language. A gen-
eral question: what is the difference compared to Modelica? The languages are rather
similar. No clear answer was given. Another question: Is EL really the official Euro-
pean Space Agency (ESA) language, since it is known that some parts of ESA are
using Modelica?

26 P. Fritzson, D. Broman, and F. Cellier

4.4 Equation Handling, Diagnosis, and Modeling

Session chair: François E. Cellier
This session presented four papers discussion different aspects of EOO languages and
tools.

In “Activation Inheritance in Modelica,” Ramine Nikoukhah presented an ambigu-
ity in the Modelica language concerning the handling of concurrent events. Some
events are concurrent, because they happen at the same time, although they are not
logically connected with each other; others occur simultaneously, because they are
logically related. The modeling language should offer means to distinguish between
these two types of synchronicity, and offered a proposed syntax that can take care of
the problem.

In “Selection of Variables in Initialization of Modelica Models,” Masoud Najafi
presented a GUI for initialization of variables as implemented in Scicos. Modelica
offers different ways of specifying initial conditions, but doesn’t offer much in terms
of support for helping the user specify a complete and linearly independent set of ini-
tial conditions. The GUI presented in this paper takes care of this problem.

The third paper of the session: “Supporting Model-Based Diagnostics with Equa-
tion-Based Object Oriented Languages,” by Peter Bunus and Karin Lunde was not
presented as neither of the two authors participated in the conference.

In “Towards an Object-oriented Implementation of von Mises' Motor Calculus Us-
ing Modelica,” Tobias Zaiczek and Olaf Enge-Rosenblatt presented an alternative
approach to the method embraced in the Modelica Standard Library (MSL) for mathe-
matically describing multi-body systems (MBS). In MBS dynamics, the modeler has a
choice of what state variables to use. The selection of the set of state variables influ-
ences strongly both the efficiency of the generated simulation code and the error
propagation during simulation. The MSL embraces the theory of order-n models,
whereas this paper advocates the use of another approach by Mises, an approach that
has been known for many years, but hadn’t been implemented in Modelica.

In the following discussion, regarding talk 1, Dirk Zimmer remarked that the han-
dling of synchronous simultaneous events doesn’t work correctly in Dymola as of
now. The event detection algorithm, as currently implemented in Dymola, depends on
the passing of time, and when zero time passes between one event and the next, the
second event is not detected. Ramine Nikoukhah also remarked that the semantics of
algorithmic sections outside of when clauses are not clearly defined. It matters in
which order they are being executed, yet the modeler has no control over this issue.

Regarding the second talk, François Cellier noticed that the GUI, as currently
implemented in Scicos, defeats the concept of object orientation. Francesco Casella
remarked that the initialization problem is always global. We don’t have a good ap-
proach yet to object-oriented initialization. François Cellier also observed that initiali-
zation happens not only at the beginning of the simulation, but after each event. The
GUI only looks at the original initialization problem.

Finally, regarding the third talk (fourth paper), François Cellier asked whether the
authors had already looked at the number of simulation equations generated when
using the Mises approach. The approach could only be competitive if the number of
simulation equations grows linearly with the number of bodies. Olaf Enge-Rosenblatt
answered that they hadn’t looked at this issue yet, but would do so in the future.

 Equation-Based Object-Oriented Languages and Tools 27

5 Discussion of Future Directions of EOOLT

The workshop ended with a general discussion about possible future directions of
EOO languages and tools, and the EOOLT workshop itself. The discussion was
roughly divided into the following three areas.

5.1 Which Are the Most Important Current Problems in EOOLT?

This is the list of the most important EOOLT current problems mentioned during the
discussion (in no particular order):

• Events in EOO, how to integrate EOO and events, e.g. DEVS, Synchronization,
etc.

• Functional approach, more functional programming ideas transferred into EOO,
also ideas from OO + functional integration.

• Systems engineering, integrating software and hardware modeling.
• Mapping execution back to source model, needed for traceability and debugging.
• Better tool interoperability and modularity (c.f. the Unix processes and pipe exam-

ple).
• More precise semantics, definitions, also including definition through meta-

programming/meta-modeling. Development of a canonical flattening form with
test suite.

• Applications of EOO not only for simulation, e.g. optimization, controllers, etc.
Meta-modeling and tools, also including scripting, for modular solutions.

5.2 Main Motivation for the Creation of the EOOLT Workshop Series

The participants reviewed the main motivations for the EOOLT workshop series,
which were still considered relevant:

• Be a common forum for several communities in Equation-Based Object-Oriented
Languages and Tools.

• Get more involvement and interest from computer scientists in EOO research.

5.3 Which Conference for the EOOLT Workshop to Associate with?

One of the main motivations for EOOLT is to try to get more joint interest with com-
puter science. Which is the best conference to be associated with?

Continue with ECOOP?

• Pros: Already ongoing co-location. ECOOP is a well-known language conference,
covering areas such as OO programming, type systems, OO parallelism.

• Cons: ECOOP people are not interested in modeling, they are mostly interested in
Java- or Smalltalk-like OO programming. The conference time is also a bit incon-
venient, during (Swedish/US/etc.) vacation time in July.

28 P. Fritzson, D. Broman, and F. Cellier

The model-driven conference ECMDA-FA (prev. MDAFA)
(www.fokus.fraunhofer.de/go/ecmda2008/)

• Pros: Model-driven development. Also industrial and Eclipse. Has workshops. In
Europe.

• Cons: Perhaps too much focus on the modeling environment Eclipse, compared to
modeling and modeling language issues.

Modeling conference MODELS (www.models.org)

• Pros: Well established software modeling conference. Tracks state-of-the-art.
Multi-paradigm modeling workshop has been successful. Meta-modeling, SysML,
model transformations.

• Cons: Too much UML? There might already be too many workshops at MOD-
ELS?

Systems Engineering Conference: INCOSE or SEA

• Pros: EOO is very important for systems engineering.
• Cons: Perhaps too few computer scientists? Perhaps too narrow focus?

6 Conclusions

The participants felt that this second EOOLT also was a successful workshop. The
area of equation-based object-oriented (EOO) languages and tools is of rapidly in-
creasing importance. It is still important to engage more computer scientists in this
area, which is one of the motivations of co-locating the workshop with ECOOP.

On the other hand, even though ECOOP and EOOLT have the topic of object ori-
entation in common, it was felt that there is too little overlap between EOOLT and
ECOOP. The usual ECOOP attendees seem to be primarily interested in object-
oriented programming, but not in modeling, even if it is object-oriented. Many
ECOOP people don’t even know about modeling. It was discussed whether to move
the workshop to be held in conjunction with another conference where people have
more interest in modeling. Candidates such as MODEL, ECMDA-FA, or system en-
gineering conferences were mentioned.

To conclude, it was felt that the papers and workshop discussions were good, and
that the workshop series should be continued. Some references are given below as a
background to this area.

References

[1] Accellera, Cadence: Verilog-AMS Language Reference Manual Version 2.2, Published
by: Accellera, 1370 Trancas Street, #163, Napa, CA 94558 (November 2004)

[2] Augustin, D.C., Fineberg, M.S., Johnson, B.B., Linebarger, R.N., Sansom, F.J., Strauss,
J.C.: The SCi Continuous System Simulation Language (CSSL). Simulation 9, 281–303
(1967)

[3] Birtwistle, G.M., Dahl, O.J., Myhrhaug, B., Nygaard, K.: SIMULA BEGIN. Auerbach
Publishers, Inc. (1973)

 Equation-Based Object-Oriented Languages and Tools 29

[4] Breunese, A.P.J., Broenink, J.F.: Modeling Mechatronic Systems Using the SIDOPS+
Language. In: Proceedings of ICBGM 1997, 3rd International Conference on Bond Graph
Modeling and Simulation, Phoenix, Arizona, vol. 29(1), pp. 301–306. SCS Publishing,
San Diego (1997), http://www.rt.el.utwente.nl/proj/modsim/modsim.
htm (January 12-15, 1997)

[5] Cellier, F.E.: Continuous System Modelling, 755 p. Springer, New York (1991)
[6] Cellier, F.E., Kofman, E.: Continuous System Simulation, 643 p. Springer, New York

(2006)
[7] Christen, E., Bakalar, K.: VHDL-AMS – A Hardware Description Language for Analog

and Mixed-Signal Applications. IEEE Transactions on Circuits and Systems II: Analog
and Digital Signal Processing 46(10), 1263–1272 (1999)

[8] Clabaugh, J., Tolsma, J.E., Barton, P.I.: Abacuss II: Advanced Modeling Environment
and Embedded Simulator, and Abacuss II Syntax Manual, Massachusetts Institute of
Technology, Chemical Engineering System Research Group (1999),

 http://yoric.mit.edu/abacuss2/abacuss2.html
[9] Elmqvist, H.: A Structured Model Language for Large Continuous Systems. Ph.D. thesis,

TFRT-1015, Department of Automatic Control, Lund Institute of Technology, Lund,
Sweden (1978)

[10] Ernst, T., Jähnichen, S., Klose, M.: The Architecture of the Smile/M Simulation Envi-
ronment. In: Proceedings 15th IMACS World Congress on Scientific Computation, Mod-
elling and Applied Mathematics, Berlin, Germany, vol. 6, pp. 653–658 (1997)

[11] Fritzson, P.: Principles of Object-Oriented Modeling and Simulation with Modelica 2.1,
940 p. Wiley-IEEE Press, Chichester (2004)

[12] Fritzson, P., Viklund, L., Fritzson, D., Herber, J.: High Level Mathematical Modeling and
Programming in Scientific Computing. IEEE Software, 77–87 (1995)

[13] Mattsson, S.-E., Andersson, M.: The Ideas Behind Omola. In: Proceedings of the 1992
IEEE Symposium on Computer-Aided Control System Design (CADCS 1992), Napa,
California, March 17-19, pp. 23–29 (1992)

[14] Oh, M., Pantelides, C.C.: A modelling and Simulation Language for Combined Lumped
and Distributed Parameter Systems. Computers and Chemical Engineering 20(6–7), 611–
633 (1996)

[15] Piela, P.C., Epperly, T.G., Westerberg, K.M., Westerberg, A.W.: ASCEND: An Object-
Oriented Computer Environment for Modeling and Analysis: The Modeling Language.
Computers and Chemical Engineering 15(1), 53–72 (1991)

[16] Sahlin, P., Sowell, E.F.: A Neutral Format for Building Simulation Models. In: Proceed-
ings of the Conference on Building Simulation, IBPSA, Vancouver, Canada, pp. 147–154
(1989)

[17] Sargent, R.W.H., Westerberg, A.W.: Speed-Up in Chemical Engineering Design. Chemi-
cal Engineering Research and Design 42a, 190–197 (1964)

[18] The Mathworks. Simulink – Simulation and Model-Based Design., http://www.
mathworks.com/products/simulink/ (last accessed: 6 March 2007)

[19] The Modelica Association. The Modelica Language Specification Version 3.0 (Septem-
ber 2007), http://www.modelica.org

[20] Tiller, M.: Introduction to Physical Modeling with Modelica, 368 p. Springer, New York
(2001)

[21] UML Homepage, http://www.uml.org
[22] van Beek, D.A., Man, K.L., Reniers, M., Rooda, J.E., Schiffelers, R.R.H.: Syntax, and

consistent equation semantics of hybrid Chi. The Journal of Logic and Algebraic Pro-
gramming 68, 129–210 (2006)

Aliasing, Confinement, and Ownership in

Object-Oriented Programming

Report on the Workshop IWACO’08 at ECOOP 2008

Dave Clarke1, Sophia Drossopoulou2, Peter Müller3, James Noble4,
and Tobias Wrigstad5

1 Katholieke Universiteit Leuven, Belgium
Dave.Clarke@cs.kuleuven.be

2 Imperial College, London, UK
sd@doc.ic.ac.uk

3 ETH Zurich, Switzerland
peter.mueller@inf.ethz.ch

4 Victoria University of Wellington, New Zealand
kjx@mcs.vuw.ac.uk

5 Purdue University, USA
wrigstad@cs.purdue.edu

Abstract. The power of objects lies in the flexibility of their intercon-
nection structure. But this flexibility comes at a cost. Because an object
can be modified via any alias, object-oriented programs are hard to un-
derstand, maintain, and analyze. Aliasing makes objects depend on their
environment in unpredictable ways, breaking the encapsulation necessary
for reliable software components, making it difficult to reason about and
optimize programs, obscuring the flow of information between objects,
and introducing security problems.

Aliasing is a fundamental difficulty, but we accept its presence. Instead
we seek techniques for describing, reasoning about, restricting, analyz-
ing, and preventing the connections between objects and/or the flow of
information between them. Promising approaches to these problems are
based on ownership, confinement, information flow, sharing control, es-
cape analysis, argument independence, read-only references, effects sys-
tems, and access control mechanisms.

1 Introduction

The aim of the IWACO workshop was to address the question how to manage
interconnected object structures in the presence of aliasing. In, particular the
following issues were covered:

– models, type and other formal systems, programming language, separation
logic, mechanisms, analysis and design techniques, patterns, tools and no-
tations for expressing object ownership, aliasing, confinement, uniqueness,
and/or information flow;

P. Eugster (Ed.): ECOOP 2008 Workshop Reader, LNCS 5475, pp. 30–41, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Aliasing, Confinement, and Ownership in Object-Oriented Programming 31

– optimization techniques, analysis algorithms, libraries, applications, tools,
and novel approaches exploiting object ownership, aliasing, confinement,
uniqueness, and/or information flow;

– empirical studies of programs or experience reports from programming sys-
tems designed with these issues in mind;

– novel applications of aliasing management techniques such as ownership
types, ownership domains, confined types, region types, and uniqueness.

History. IWACO 2008 was the fourth ECOOP workshop focusing on aliasing.
The previous workshops were IWACO 2007 [11], IWACO 2003 [10], and the
Intercontinental Workshop on Aliasing in Object-Oriented Systems (IWAOOS)
in 1999. The issues addressed in this workshop were first brought into focus with
the Geneva Convention on the Treatment of Object Aliasing [19].

Program. The workshop provided a forum for two invited talks, seven presen-
tations of submitted papers (including three position papers), four tool demos,
and ample discussions. It was organized in four sessions, which we summarize in
the following four sections.

2 Session 1: Invited Talk

The presentation of our first invited speaker, Jonathan Aldrich from Carnegie
Mellon University, was entitled “Define, don’t Confine”. It identified three major
challenges that need to be addressed in order to bring alias control into practice.

First, the community has to identify applications where the benefit of making
program structure explicit has a significant and immediate benefit. Two promis-
ing candidates are concurrency and verification. For both applications, it will
be necessary to make the annotations lightweight (possibly through inference)
and to improve the expressiveness in order to cover common program styles and
idioms.

Second, the community has to increase the adoptability of alias control by
reducing the annotation burden through inference and by providing support for
existing languages and programs.

Third, the community has to increase the applicability of alias control to be
able to handle more programs. Aldrich’s position here is that the community has
focused too much on restricting aliasing rather than documenting the aliasing in
programs and using this information for reasoning. He showed various examples
that support his position.

To the great satisfaction of the IWACO crowd, Aldrich’s final slide was entitled
“The Future of Alias Control is Bright”—provided that the three challenges will
be addressed successfully.

3 Session 2: Ownership

Two of the open challenges for type systems expressing ownership and related
properties are (1) determining what the type system should express and how it

32 D. Clarke et al.

should express it, and (2) type inference. The four talks in the second session
addressed one or both of these issues.

Expressiveness. A lot of research has gone into determining how to best ex-
press information such as ownership and immutability. As suggested in Aldrich’s
keynote, there needs to be shift more towards addressing what needs to be ex-
pressed, as directly extending existing type systems tends to intermingle the
policy with the mechanism of the type system. Nonetheless, work on improv-
ing the expressiveness of individual type systems still produces useful technical
machinery.

Yu David Liu presented Pedigree Types, joint work with Scott Smith. Pedigree
types aim to obtain the benefits of owner parameterization, as in in Ownership
Types [13], with the simple syntactic convenience of Universe Types [15].

Parameters are never explicitly stated on classes, and instead type inference is
used to fill in types and class parameters omitted by the programmer. Ownership
is described by adapting metaphors from human genealogy, which could aid
programmers in understanding and expressing the ownership structure in their
programs. Owners take the general form parenta.childb, describing a traversal
up the ownership tree, and then down again, under the constraints that a ≥ 0
and b ∈ {0, 1}. Existing owners can be described in a natural manner rep =
child, self = parent0.child0, sibling = peer = owner = parent.child,
along with new ones, such as parent, grandparent = parent2, and uncle =
parent2.child1. In principle, the types can also express owners not available and
expressible in the other systems, such as whenever the child’s index is greater
than 1 an encapsulation violation occurs. Classes are (implicitly) parameterized
by such indices, allowing classes to be used in different places with different
pedigrees within an ownership tree. A natural notion of pedigree subsumption
also exists, permitting the relationship self ≤ sibling, parent ≤ uncle =
parent2.child1, and, more generally, parenta.childb ≤ parenta+1.childb+1.
The type system presented in the paper is sound and decidable. It can express
deep ownership and has a natural runtime representation. Various extensions to
the system are also described in the paper, including opting-out.

Alex Potanin presented the position paper Towards Unifying Immutability
and Ownership, describing joint work with Paley Li, James Noble, and Lindsay
Groves. The paper called for the unification of immutability and ownership in
order to improve the expressiveness of each notion. The goal is not to merely put
the two notions together in the same language, but to really unify them. The
paper emphasized the need to avoid observational exposure [6], which requires
that mutations to an object are not observed by other objects—this is essentially
the difference between immutability and read-only. The paper presented three
possible ways of unifying the two mechanisms, leveraging the Generic Ownership
approach [29]. The three approaches were:

– direct combination of generic ownership and generic immutability—have sep-
arate parameter spaces representing ownership information and immutability
information;

Aliasing, Confinement, and Ownership in Object-Oriented Programming 33

– generic immutability and ownership—combine the ‘type’ hierarchies repre-
senting ownership and immutability into one, thereby requiring only a single
parameter space to represent them; and

– generic access rights for immutability and ownership—define, more or less,
a language of access rights, along the lines of Capabilities for Sharing [7].

Some debate arose suggesting that a fourth possibility, namely, annotating the
owners with write/read-only/immutable access modes, as in Joe3 [26], though
this needed external uniqueness [12] to work.

Nick Cameron presented the position paper Variant Ownership with Exis-
tential Types, joint work with Sophia Drossopoulou. The presentation described
various advantages and possibilities offered by existential types. The type system,
called Jo∃, outlined ideas from Java’s wildcards in the context of Generic Own-
ership, to gain expressiveness yet remain compatible with Java. Java’s wildcards
soften the subtyping relation by allowing variance in a generic type’s parame-
ters. The main research issue with this work is whether adding existential types
opens the door too far. That is, if existential types are used to forget ownership
information, will the constraints imposed by ownership and the benefits thereby
gained be lost? It was conjectured that type (ownership) bounds could be used
to retain the information required to enforce such constraints, though further
research is required to determine whether this is the case. An additional open
question is that of decidability of the type system.

Type Inference. Developing type inference systems for type systems expressing
ownership is crucial for their adoption, as they are required to add annotations
to library code and to reduce the volume of annotations in programmers’ code.
Two papers described various aspects of the inference process.

Yu David Liu’s work reduces type inference to the problem of finding suitable
parent and child indices; thus, type inference can be expressed as a constraint
problem over integers. With previous attempts at type inference in parameterized
ownership type systems, the number of parameters can grow in an unbounded
manner. This was handled by unifying different possible parameters whenever a
recursive occurrence of a class was encountered.

Ana Milanova’s presentation of Static Inference of Universe Types described
an algorithm for inferring Universe Types for Java programs. This work extends
her past research on inferring Ownership Types for Java programs [23]. The al-
gorithm was based on a points-to analysis and performed the following steps:
construct static object graph; compute dominance boundary of each object; as-
sign types to object graph edges; and assign types to fields and variables. The
approach aims to produce a deep tree, but whenever a write upwards in the tree
occurs, it forces a shallower ownership structure. The main challenge was that
there were many possible type assignments, and no precise notion of principal
assignment. Promising preliminary results were given.

An interesting open question is whether the two approaches can be combined.
That is, can the constraint-based approach be applied to Universe Types?

34 D. Clarke et al.

4 Session 3: Concurrency and Ownership Demos

Concurrency. Nicholas Matsakis presented joint work with Thomas Gross. They
describe a flow sensitive type and effects system that requires methods to declare
the partitions of the heap that are read or written, resp. Effect agreements can be
used to limit the conditions in which a method can be called. With this system,
multi-threaded programs follow safe conventions that guarantee the program is
free of data races.

A partition is a compile-time abstraction that identifies a distinct set of loca-
tions (object-field pairs) in the heap. Partitions are similar to data groups [21],
but have scope, which can be exploited to achieve, for example, thread-local
state. Methods are annotated with five kinds of effects that they have on parti-
tions: read, write, atomic read, atomic write, and intersection. Atomic read/write
indicates that the partition was accessed from within a block guaranteed to ex-
ecute atomically. An intersection effect records that two partitions were made
to intersect: this needs to be made explicit and trackable by analysis because
when two partitions intersect, data that is added to one must also be considered
added to the other.

In addition to being annotated with effects, a method may also be annotated
with a contract, known as an effect agreement, that constrains what can happen
before the method is called or after it returns. Effect agreements are always
in the negative, they describe what must not have occurred prior to invocation
(pre agreements), and what must not happen after the method has returned (par
agreements). A pre agreement is generally used to require that certain partitions
have not been intersected and are thus known to be disjoint. A par agreement
is used to indicate that the method has started a new thread and that certain
effects should not happen in parallel with that thread’s execution.

The discussion of this presentation focused on the relation with Dave Cun-
ningham’s work (to be presented at FTfJP the next day) as well as on some
possible variants of the proposed annotations, as e.g., in Java wildcards.

John Boyland argued that Java’s volatile fields are difficult to reason about in
a strictly linear fashion as found in concurrent separation logic [8] or fractional
permissions [5]. In these approaches, accesses to volatile fields can be modeled
using atomic blocks and auxiliary state, which Boyland finds unsatisfying be-
cause such a description is rather low-level. Instead, volatile fields are more easily
handled by using non-linear concepts such as immutability and ownership [9],
where they can be treated as loop holes, that is, accesses to volatile fields are not
checked by the system. Boyland argued that a combination of linear and non-
linear reasoning is highly desirable. He encourages research in how to formalize
ownership as a nonlinear subsystem in a mostly linear logic.

Ownership Demos. In the demo section of this session, Alex Potanin demon-
strated the type checkers for Ownership Generic Java (OGJ) [29] and Immutable
Generic Java (IGJ) [31]. Both systems build on Java generics to check the ad-
ditional properties. Peter Müller presented some of the ETH tools for Universe
Types, namely the type checkers for Generic Universe Types (GUT) [14] and

Aliasing, Confinement, and Ownership in Object-Oriented Programming 35

Universe Types with Transfer (UTT) [24]. Both Universe checkers are imple-
mented in the compiler for the Java Modeling Language (JML) [20].

5 Session 4: Verification

The final session began with a second invited talk from Dino Distefano, describ-
ing his jStar system, based on a paper (with Matthew Parkinson) that he will
present at OOPSLA later this year [17]. jStar’s key contribution is that it is
based on separation logic [28], rather than ownership, applying techniques from
earlier separation logic based checkers [2,16] to object-oriented programs.

Being based on separation logic from the outset gives jStar a number of imme-
diate advantages over ownership-based approaches such as JML [20] and Spec�
[22]. First, jStar does not impose any restrictions on the topology or use of
pointers in object-oriented programs: no “owners as dominators”, “owners as
modifiers”, or “owners cover invariants” discipline is required in program de-
sign. Second, because of this lack of an ownership discipline, programmers do
not have to annotate their programs to describe how particular classes use that
disciple. Third, the only annotations (method pre- and post- conditions) that
are required are much briefer than in ownership based systems, because a single
annotation language (separation logic) covers both the propositional content of
assertions and the framing required to deal with heap storage and delineate po-
tential aliasing. Fourth, using only stand-alone predicates and eschewing class
invariants means that many of the complexities of whether and when a class
is in a “valid state” can be replaced by instantaneously asserting particular
predicates [27]. On the other hand, of course, these advantages come at cost:
principally, that programmers must write assertions in separation logics, rather
than traditional computation logics.

The other advance embodied in jStar is the use of abductive reasoning for ab-
stract reasoning, particularly, it seems, regarding heap topologies. jStar includes
a set of inference rules that embody abstraction functions, taking lower level
heap states (e.g., sequences of cons nodes) up to more abstract data structure
(e.g., a list spine and its contents). This means that—compared with other sys-
tems, in some sense jStar performs something similar to “ownership inference”
as well as program proving based on the inferred heap properties. This infer-
ence is not general purpose (as inference must for an ownership type system)
but context specific: different sets of abstraction rules are required for signifi-
cantly different implementations of each abstraction. For example, one rule set
it seems can handle all kinds of singly-linked lists, but a doubly-linked list, or an
array-list would require a different set of rules. The ability to customize jStar to
handle different abstractions is clearly very powerful, and enables jStar to verify
programs without any annotations other than pre and post conditions. These
abstraction rules may turn out to be brittle in practice, or to need customizing
to suit each system being verified—more experimentation is clearly needed here,
but the demonstrated system was very promising!

At least for small examples, however, jStar provides a convincing argument
for the benefits of this approach. jStar provides “full automatic” verification of

36 D. Clarke et al.

a range of programs, even when incorporating examples that ownership-based
systems find very difficult to model, such as the Observer pattern, structure shar-
ing, and ownership transfer. As demonstrated, the performance of jStar doing
full verification did not seem much slower than a Java compiler running on the
same examples: raising the question of why bother with complex “intermediate”
systems such as ownership (or even language-level types) if a program prover
can verify programs without these annotations? On the other hand, it seems
as if ownership systems can avoid the need for these inference rules, because
programs’ abstractions are already structured via ownership.

The second presentation in this session, by Christian Haack and Clément
Hurlin, also used separation logic. Christian and Clément presented a series of
specifications for Iterators of various different kinds. This separation logic uses
a form of linear implication to represent state transitions (as well as heap sep-
aration) and includes Boyland-style fractional permissions [18]. These features
enable the system easily to encompass typestate-style modeling (e.g., an iterator
is ready for reading; has been accessed; or is at the end of the traversal) and to
distinguish between read-write, read-only, and immutable accesses to objects.

The key contribution of this work seems to be that the Iterator specifications
are parameterized. The final declaration of an Iterator interface is:

interface Iterator
/*@<perm p, boolean isdeep, Collection<isdeep> iteratee>@*/

with three parameters p, isdeep, and iteratee. (In this system, specifications
are given in extended comment syntax.) The iteratee parameter is the most
straightforward to explain; it is the collection to be iterated over. The p param-
eter is a fractional permission (thus perm) controlling access to the collection:
set to 1, the Iterator has exclusive (and thus read-write) access to the collection,
set to less than one, the Iterator has shared (read-only) access to the collection.
Finally the third parameter isdeep captures an ownership relation between the
container and its elements: a “deep” collection owns its elements while a “shal-
low” collection does not. (Note that distinction is similar to that between “full”
and “flexible” alias protection [25], although the alias protection schemes con-
trolled references, while the these separation-based schemes control only the
permission to read or write references.) Then, a single specification for an itera-
tor protocol can be configured in a number of different ways: an iterator over a
collection of immutable elements; as a set of concurrent read-only iterators; or
a shallow iterator over a mutable collection.

This presentation again demonstrated the utility of separation logic for de-
scribing complex and flexible structures, especially where structure sharing is
involved, and the parameterization mechanism clearly makes specifications more
concise, especially where families of related specifications are concerned. A par-
ticularly interesting feature of this work was the “isdeep” ownership parameter:
it is not clear whether this is an accident of the particular specification exam-
ples chosen, or illustrates some more essential role for ownership even in systems
where the underlying representation is separation logic.

Aliasing, Confinement, and Ownership in Object-Oriented Programming 37

The workshop was bookended with a tool demo by Jonathan Aldrich, who
also opened the workshop. He demonstrated the Plural tool, work carried out
with his student Kevin Bierhoff [4]. Plural is a practical typestate checker for
object-oriented programs, a successor to Rob DeLine and Manuel Fähndrich’s
Fugue [30] in that both systems model abstractions of objects’ state and check
that methods are only called on objects in permissible states. The key difference
between Plural and Fugue is that Plural’s analyses are based on permissions
(similar to Boyland’s capabilities for sharing [7] and fractional permissions [5]).
In contrast to Fugue, where an object could only change typestate while it was
unique, Plural’s permissions mean that typestate analysis is feasible in the pres-
ence of aliasing [3,1].

Plural is implemented as an Eclipse plugin, and can calculate permissions
across all references in entire programs via a flow-sensitive analysis. Then, meth-
ods specifications in terms of permissions and typestates can be checked against
the actual behavior of objects’ client code. For example, a file close method has
specification such as:

class File { ...
@Full{requires = "open", ensures = "close"}
public void close{};
}

The key contribution of this work is that its access permissions combine both
aliasing and typestate information. The annotation on the close() method
states both that a “@Full” permission is required—this reference may read and
write, other references may read (OIRWW̄ [7])—and that the method must be
called in the “open” typestate and changes the object to the “closed” types-
tate. (Note that Java annotations are used to encode specifications, rather than
extended comments.)

6 Future

It appears that the community working on aliasing and ownership has reached
critical mass, if the number of submissions, participants, and presentations are
any indication. Consequently, we plan to repeat the workshop in conjunction
with ECOOP 2009.

References

1. Beckman, N., Bierhoff, K., Aldrich, J.: Verifying correct usage of atomic blocks and
typestate. In: Kiczales, G. (ed.) Object-Oriented Programing, Systems, Languages,
and Applications (OOPSLA). ACM SIGPLAN Notices. ACM Press, New York
(2008) (to appear)

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic asser-
tion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006)

38 D. Clarke et al.

3. Bierhoff, K., Aldrich, J.: Modular typestate checking of aliased objects. In: Object-
Oriented Programing, Systems, Languages, and Applications (OOPSLA). ACM
SIGPLAN Notices. ACM Press, New York (2007)

4. Bierhoff, K., Aldrich, J.: PLURAL: Checking protocol compliance under aliasing.
In: Demonstration in ICSE Companion, pp. 971–972 (2008)

5. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

6. Boyland, J.: Why we should not add readonly to java (yet). Journal of Object
Technology 5(5), 5–29 (2006)

7. Boyland, J., Noble, J., Retert, W.: Capabilities for Sharing: A Generalization of
Uniqueness and Read-Only. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072,
p. 2. Springer, Heidelberg (2001)

8. Brookes, S.: A semantics for concurrent separation logic. Theor. Comput.
Sci. 375(1-3), 227–270 (2007)

9. Clarke, D.: Object Ownership and Containment. PhD thesis, University of New
South Wales (2001)

10. Clarke, D., Drossopoulou, S., Noble, J.: Aliasing, confinement, and ownership in
object-oriented programming. In: Buschmann, F., Buchmann, A., Cilia, M.A. (eds.)
ECOOP 2003. LNCS, vol. 3013, pp. 197–207. Springer, Heidelberg (2004)

11. Clarke, D., Drossopoulou, S., Noble, J., Wrigstad, T.: Aliasing, confinement, and
ownership in object-oriented programming. In: Cebulla, M. (ed.) ECOOP-WS
2007. LNCS, vol. 4906, pp. 40–49. Springer, Heidelberg (2008)

12. Clarke, D., Wrigstad, T.: External uniqueness is unique enough. In: Cardelli, L.
(ed.) ECOOP 2003. LNCS, vol. 2743, pp. 176–200. Springer, Heidelberg (2003)

13. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protection.
In: Object-Oriented Programing, Systems, Languages, and Applications (OOP-
SLA). ACM SIGPLAN Notices, vol. 33(10), pp. 48–64. ACM Press, New York
(1998)

14. Dietl, W., Drossopoulou, S., Müller, P.: Generic Universe Types. In: Ernst, E. (ed.)
ECOOP 2007. LNCS, vol. 4609, pp. 28–53. Springer, Heidelberg (2007)

15. Dietl, W., Müller, P.: Universes: Lightweight ownership for JML. Journal of Object
Technology (JOT) 4(8), 5–32 (2005)

16. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
238–252. Springer, Heidelberg (2006)

17. Distefano, D., Parkinson, M.J.: jStar: Towards practical verification for Java. In:
Kiczales, G. (ed.) Object-Oriented Programing, Systems, Languages, and Appli-
cations (OOPSLA). ACM SIGPLAN Notices. ACM Press, New York (2008) (to
appear)

18. Haack, C., Hurlin, C.: Separation logic contracts for a java-like language with
fork/Join. In: Meseguer, J., Roşu, G. (eds.) AMAST 2008. LNCS, vol. 5140, pp.
199–215. Springer, Heidelberg (2008)

19. Hogg, J., Lea, D., Wills, A., de Champeaux, D., Holt, R.: The Geneva Convention
on the treatment of object aliasing. OOPS Messenger 3(2), 11–16 (1992)

20. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P., Zimmerman, D.M.: JML reference manual. Department of
Computer Science, Iowa State University (2008), www.jmlspecs.org

21. Leino, K.R.M.: Data groups: Specifying the modification of extended state. In:
Object-Oriented Programing, Systems, Languages, and Applications (OOPSLA).
ACM SIGPLAN Notices, vol. 33(10), pp. 144–153 (1998)

www.jmlspecs.org

Aliasing, Confinement, and Ownership in Object-Oriented Programming 39

22. Leino, K.R.M., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M.
(ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491–516. Springer, Heidelberg (2004)

23. Liu, Y., Milanova, A.: Ownership and immutability inference for uml-based object
access control. In: International Conference on Software Engineering (ICSE), pp.
323–332. IEEE Computer Society, Los Alamitos (2007)

24. Müller, P., Rudich, A.: Ownership transfer in Universe Types. In: Object-Oriented
Programing, Systems, Languages, and Applications (OOPSLA), pp. 461–478. ACM
Press, New York (2007)

25. Noble, J., Vitek, J., Potter, J.: Flexible alias protection. In: Jul, E. (ed.) ECOOP
1998. LNCS, vol. 1445, pp. 158–185. Springer, Heidelberg (1998)

26. Östlund, J., Wrigstad, T., Clarke, D., Åkerblom, B.: Ownership, uniqueness, and
immutability. In: Paige, R., Meyer, B. (eds.) TOOLS Europe. LNBIP, vol. 11, pp.
178–197. Springer, Heidelberg (2008)

27. Parkinson, M.J.: Class invariants: the end of the road. In: IWACO (2007)
28. Parkinson, M.J., Bierman, G.: Separation logic, abstraction, and inheritance. In:

Principles of Programming Languages (POPL), pp. 75–86. ACM Press, New York
(2005)

29. Potanin, A., Noble, J., Clarke, D., Biddle, R.: Generic ownership for generic java.
In: Cook, W. (ed.) Object-Oriented Programing, Systems, Languages, and Ap-
plications (OOPSLA). ACM SIGPLAN Notices, vol. 41(10), pp. 311–324. ACM
Press, New York (2006)

30. DeLine, R., Fähndrich, M.: Typestates for objects. In: Odersky, M. (ed.) ECOOP
2004. LNCS, vol. 3086, pp. 465–490. Springer, Heidelberg (2004)

31. Zibin, Y., Potanin, A., Ali, M., Artzi, S., Kieżun, A., Ernst, M.D.: Object and
reference immutability using java generics. In: European software engineering con-
ference and foundations of software engineering (ESEC-FSE), pp. 75–84. ACM
Press, New York (2007)

40 D. Clarke et al.

A Participants

IWACO gathered 28 participants from 8 different countries.

Suad Alagic University of Southern Maine (USA)
Jonathan Aldrich Carnegie Mellon University (USA)
Anindya Banerjee Kansas State University (USA)
Frédéric Besson IRISA/INRIA (France)
John Boyland University of Wisconsin-Milwaukee (USA)
Nicholas Cameron Imperial College (UK)
Dave Clarke Katholieke Universiteit Leuven (Belgium)
David Cunningham Imperial College (UK)
Dino Distefano University of Cambridge (UK)
Sophia Drossopoulou Imperial College (UK)
Patrick Eugster Purdue University (USA)
Adrian Fiech Memorial University (Canada)
Christian Haack Radboud University Nijmegen (The Netherlands)
Clément Hurlin INRIA (France)
Yu David Liu The Johns Hopkins University (USA)
Nicholas Matsakis ETH Zürich (Switzerland)
Ana Milanova Rensselaer Polytechnic Institute (USA)
Peter Müller Microsoft Research (USA)
James Noble Victoria University of Wellington (New Zealand)
Johan Östlund Purdue University (USA)
Alex Potanin Victoria University of Wellington (New Zealand)
Jan Smans Katholieke Universiteit Leuven (Belgium)
Rok Strnisa University of Cambridge (UK)
Alex Summers Imperial College (UK)
Tiphaine Turpin IRISA/INRIA (France)
Jan Vitek Purdue University (USA)
Stefan Wehr University of Freiburg (Germany)
Tobias Wrigstad Purdue University (USA)

B Program Committee

Kevin Bierhoff Carnegie Mellon University (USA)
John Boyland University of Wisconsin-Milwaukee (USA)
Werner Dietl ETH Zurich (Switzerland)
Manuel Fähndrich Microsoft Research Redmond (USA)
Jeff Foster University of Maryland, College Park (USA)
Peter Müller (chair) Microsoft Research Redmond (USA)
David Naumann Stevens Institute of Technology (USA)
Matthew Parkinson University of Cambridge (UK)
Arnd Poetzsch-Heffter University of Kaiserslautern (Germany)
Mooly Sagiv Tel-Aviv University (Isreal)
Tobias Wrigstad Purdue University (USA)

Aliasing, Confinement, and Ownership in Object-Oriented Programming 41

C Organizers

Dave Clarke Katholieke Universiteit Leuven (Belgium)
Sophia Drossopoulou Imperial College (UK)
James Noble Victoria University of Wellington (New Zealand)
Tobias Wrigstad Purdue University (USA)

Implementation, Compilation, Optimization of

Object-Oriented Languages, Programs and
Systems

Report on the 3rd Workshop ICOOOLPS at ECOOP 2008

Eric Jul1 and Ian Rogers2

1 DIKU, Denmark
2 University of Manchester, UK

Abstract. ICOOOLPS’2008 was the third edition of the ICOOOLPS
workshop at ECOOP. ICOOOLPS intends to bring researchers and prac-
titioners both from academia and industry together, with a spirit of open-
ness, to try and identify and begin to address the numerous and very varied
issues of optimization. After two very successful editions, this third put a
stronger emphasis on exchanges and discussions amongst the participants,
progressing on the bases set previous years in Nantes and Berlin. The work-
shop attendance was relatively successful: There was about 20 attendees
which was good considering the remote location and that the general atten-
dance of ECOOP was much lower than expected. Some of the discussions
(e.g., much of the afternoon sessions) were so successful that they would
required even more time than we were able to dedicate to them. That is
one area we plan to further improve yet again for the next edition.

1 Objectives and Call for Papers

Programming languages, especially object-oriented ones, are pervasive and play
a significant role in computer science and engineering life. They sometime appear
as ubiquitous and completely mature. However, despite a large number of works,
there is still a clear need for solutions for efficient implementation and compi-
lation of OO languages in various application domains ranging from embedded
and real-time systems to desktop systems.

The ICOOOLPS workshop series thus aims to address this crucial issue of op-
timization in OO languages, programs and systems. It intends to do so by bring-
ing together researchers and practitioners working in the field of object-oriented
languages implementation and optimization. Its main goals are identifying fun-
damental bases and key current issues pertaining to the efficient implementation,
compilation and optimization of OO languages, and outlining future challenges
and research directions.

Topics of interest for ICOOOLPS include but are not limited to:

– implementation of fundamental OOL features:
• inheritance (object layout, late binding, subtype test...)
• genericity (parametric types)
• memory management

P. Eugster (Ed.): ECOOP 2008 Workshop Reader, LNCS 5475, pp. 42–50, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

ICOOOLPS 43

– runtime systems:
• compilers
• linkers
• virtual machines

– optimizations:
• static and dynamic analyses
• adaptive virtual machines

– resource constraints:
• real-time systems
• embedded systems (space, low power)...

– relevant choices and tradeoffs:
• constant time vs. non-constant time mechanisms
• separate compilation vs. global compilation
• dynamic loading vs. global linking
• dynamic checking vs. proof-carrying code
• annotations vs. no annotations

This workshop thus tries to identify fundamental bases and key current issues
pertaining to the efficient implementation and compilation of languages, espe-
cially OO ones, in order to spread them further amongst the various computing
systems. It is also intended to extend this synthesis to encompass future chal-
lenges and research directions in the field of OO languages implementation and
optimization.

Finally, as stated from the very beginning and the very first edition in Nantes
in 2006, ICOOOLPS is intended to be a recurrent workshop in ECOOP. Because
the feedback from first year attendants was very positive, and the second edition
was also a great success, this third edition was set up. We integrated most of the
suggestions for improvements made in 2006 and 2007, so as to further improve the
workshop. The main adaptation was that less time was given to presentations,
in order to free extra time for discussions.

To increase the background upon which the discussions could be based and to
keep them focused, each prospective participant was encouraged to submit either
a short paper describing ongoing work or a position paper describing an open
issue, likely solutions, drawbacks of current solutions or alternative solutions to
well known problems. Papers had to be written in English and their final version
could not exceed 8 pages in LNCS style (4 pages recommended).

2 Organizers

Olivier ZENDRA (chair), INRIA-LORIA, Nancy, France.
Email: olivier.zendra@inria.fr
Web: http://www.loria.fr/~zendra
Address: INRIA / LORIA

615 Rue du Jardin Botanique
BP 101
54602 Villers-Ls-Nancy Cedex, FRANCE

44 E. Jul and I. Rogers

Olivier Zendra is a full-time permanent computer science researcher at IN-
RIA / LORIA, in Nancy, France. His research topics cover compilation, opti-
mization and automatic memory management. He worked on the compilation
and optimization of object-oriented languages and was one of the two people
who created and implemented SmartEiffel, The GNU Eiffel Compiler (at the
time SmallEiffel). His current research topics and application domains are pro-
gram analysis, compilation, memory management and embedded systems, with
a specific focus on low energy.

Eric JUL (co-chair), DIKU, Copenhagen, Denmark.
Email: eric@diku.dk
Web: http://www.diku.dk/~eric
Address: DIKU

Universitetsparken 1
DK-2100 Kbenhavn , DANMARK

Eric Jul is Professor of Computer Science at the University of Copenhagen and
head of the Distributed Systems Group. He is one of the principal designers of
the distributed, object-oriented language Emerald. He implemented fine-grained
object mobility in Emerald. His current research is in Grid Computing. He is
currently Vice-President of AITO.

Roland DUCOURNAU, LIRMM, Montpellier, France.
Email: ducour@lirmm.fr
Web: http://www.lirmm.fr/~ducour
Address: LIRMM,

161, rue Ada
34392 Montpellier Cedex 5, FRANCE

Roland Ducournau is Professor of Computer Science at the University of Mont-
pellier. In the late 80s, while with Sema Group, he designed and developed the
YAFOOL language, based on frames and prototypes and dedicated to knowledge
based systems. His research topics focuses on class specialization and inheritance,
especially multiple inheritance. His recent works are dedicated to implementa-
tion of OO languages.

Richard JONES, University of Kent, Canterbury, UK.
Email: R.E.Jones@kent.ac.uk
Web: http://www.cs.kent.ac.uk/~rej
Address: Richard Jones, Reader in Computer Systems,

Computing Laboratory,
University of Kent at Canterbury,
Canterbury CT2 7NF, UK

Richard Jones is Reader in Computer Systems and Deputy Director of the Com-
puting Laboratory at the University of Kent, Canterbury. He leads the Systems

ICOOOLPS 45

Research Group. He is best known for his work on garbage collection: his mono-
graph Garbage Collection remains the definitive book on the subject. His mem-
ory management research interests include techniques for avoiding space leaks,
scalable yet complete garbage collection for distributed systems, flexible tech-
niques for capturing traces of program behaviour, and heap visualisation. He
was made a Distinguished Scientist of the Association for Computer Machin-
ery (ACM) in 2006 and awarded an Honorary Fellowship at the University of
Glasgow in 2005.

Mark van den BRAND, Eindhoven University of Technology
The Netherlands

Mark van den Brand is a full professor of Software Engineering and Technol-
ogy at the Eindhoven University of Technology (TU/e) in the Department of
Mathematics and Computer Science. Furthermore he is scientific director of the
research laboratory LaQuSo. His current research activities are on generic lan-
guage technology, source code analysis, and model driven engineering. He was
one of the architects of the ASF+SDF Meta-Environment (www.asfsdf.org), an
integrated development environment for writing (programming) language spec-
ifications. ASF+SDF is used in the fields of language prototyping and reverse
engineering.

Stephan DUCASSE, NRIA Lille - Nord Europe, France

He spent ten years co-leading the Software Composition Group of the University
of Bern with Prof. O. Nierstrasz. Since September 2007 he is research director at
INRIA-Lille. His fields of interests are: reflective systems, meta-programming,
meta-object protocols, reengineering of object-oriented applications, program
visualization, maintenance, dynamic languages, language design. He is involved
in the development of Squeak an open-source Smalltalk and he is the president
of the European Smalltalk User Group. He wrote a couple of fun books to teach
programming and other serious topics.

Ian ROGERS, University of Manchester, UK

Ian Rogers is a Research Fellow in the University of Manchester’s Advanced Pro-
cessor Technology research group. His PhD research work in to the Dynamite bi-
nary translator was exploited commercially and now forms part of many binary
translator products, including Apple’s Rosetta. His recent academic work has
been in to programming language design, runtime and virtual machine environ-
ments - in particular how to allow them to automatically create and efficiently
exploit parallelism. He is a leading contributor to the Jikes Research Virtual
Machine, where he serves as a core team member.

46 E. Jul and I. Rogers

Yannis SMARAGDAKIS, University of Oregon, USA.

Yannis Smaragdakis is an Associate Professor at the University of Oregon. His
interests are in the areas of applied programming languages and software en-
gineering. He got his B.S. degree from the University of Crete (Greece) and
his Ph.D. from the University of Texas at Austin. He is a recipient of an NSF
Career award, and ”best paper” awards at ASE’07, ISSTA’06, GPCE’04, and
USENIX’99. Yannis has authored numerous publications, and claims that ”some
of them are even good”.

3 Participants

ICOOOLPS attendance was limited to 30 people for technical reasons. Unlike in
the 2007 edition, it was mandatory for ICOOOLPS 2008 participants to submit a
paper. Attendance at ECOOP was down this year – perhaps due to the economic
situation, perhaps because of the remote location. A total of 18 people from 11
countries participated compared to the 2007 attendance of 27 people from 12
countries and the 2006 attendance of 22 people from 8 countries The attendees
are listed in table 1.

Table 1. ICOOOLPS 2008 list of attendees

First name NAME Affiliation Country

Yuji CHIBA Hitachi Japan
Iulian DRAGOS EPFL Switzerland
Roland DUCOURNAU LIRMM France
Eric JUL DIKU Denmark
Stein KROGDAHL Oslo University Norway
Alex HOLKNER RMIT University Australia
Matte LOCHAN TU Braunschweig Germany
Arne MAUS Oslo University Norway
Anders Bach NIELSEN University of Århus Denmark
Hridesh RAJAN Iowa State University USA
Ian ROGERS University of Manchester United Kingdom
Christophe SCHOLLIERS VUB Belgium
Jaroslav SEVIC University of Edinburgh United Kingdom
Muhammad Rabee SHAHEEN IMAG France
Mark VAN DEN BRAND TU Eindhoven The Netherlands
Jan VITEK Purdue University USA
Wieger WESSELINK TU Eindhoven The Netherlands
Xin ZHAN Intel USA

4 Contributions

Here are the main contributions for the sessions. More details (papers, presen-
tations slides, etc.) are available from http://icooolps.loria.fr. The notes

ICOOOLPS 47

are presented here in a lively an rather informal way, so as to keep some of the
spontaneity of the workshop, with of course extra organization. The notes were
taken by Ian Rogers.

4.1 Paper 1. Coloring in Incremental Compilation of
Object-Oriented Languages

Presentation by Roland Ducournau of the tradeoffs in implementing multiple
inheritance Colouring presented as a desirable technique, but how to handle
shared libraries and dynamic loading. Present approach to adapt technique with
at worst case quadratic space overhead.

4.2 Paper 2. Approaches to Reflective Method Invocation

Ian Rogers presents - no notes due to presenting.

4.3 Paper 3. Precomputing Method Lookup

Eric Jul presents Emerald, object-oriented language for distributed systems with
dynamic loading dynamic loading makes method lookup expensive, ideally would
precompute method dispatch at compile time AbCon (Abstract to Concrete)
mapping generated and copied by assignments. May add overhead for polymor-
phic objects, but in practice allows efficient dispatch.

Discussion: Method lookup, reflection and dispatch techniques No specific
discussion on any one subject, some discussion of projects like steamloom and
HotSpot were made.

4.4 Paper 4. Cast Elimination for Containers in Java

Yuji Chiba presents Moving Hitachi JRE from Java 1.5 to 1.6 was considered
too much work How to improve SpecJBB performance by 10Approach to create
specialised container classes. Questions/discussion: relationship to work with the
pizza compiler and comparison with generics and templates, can the approach
be applied within modules/globally.

4.5 Paper 5. The Use of a Pure Method Attribute in a Dynamic
Compilation Environment

Ian Rogers presents - no notes due to presenting.

4.6 Paper 6. Optimizing Higher-Order Functions in Scala

Iulian Dragos presented. The compilation of Scala was explained with details on
the inefficiencies. Optimizations that are specific to Scala were detailed Prelim-
inary benchmarks results were presented demonstrating a 3646

48 E. Jul and I. Rogers

4.7 Paper 7. C++ Move Semantics for Exception Safety and
Optimization in Software Transactional Memory Libraries

No presenter was available, some discussion about what the paper was about
was had.

4.8 Paper 8. Boot Image Layout for Jikes RVM

Ian Rogers presents - no notes due to presenting.

4.9 Discussion Session: Memory Management, Is It That
Important?

Define terminology, such as imprecise GC What is real-time GC? - Real-Time
Specification for Java (RTSJ) - based on regions. Real-time GC - does it work? -
worst case pause time can be 400ms, therefore twice as slow. Real-time problem
demo. Discussion of train algorithm for real-time GC. Disscussion of whether or
not we need defragmentation of the heap. Jan Vitek gives presentation of work
with Fil Pizlo:

– discussion of manual memory techniques for real-time.
– scoped memory - use of nesting, runtime checks, Sun’s use of RTSJ
– real-time shouldn’t kill performance.
– Jamaica VM - work based adding cost to allocate and read.
– Henrikson/Sun - slack based, needs preemptible GC - rollback on preemption

aborting copy, but can lead to priority inversion.
– Metronome - time based approach.
– rough IBM DK performance figures of 18x slowdown for scoped.

memory and 3x for time based approach. Discussion of how these systems are
used in an aeroplane? Run 3 times with worst-case analysis, how? Discussion
on what is the effect of stack allocation on real-time techniques? Discussion of
work on non-blocking concurrent collectors in PLDI ’08. Discussion on what is
the effect of multi-cores on GC.

4.10 Discussion Session: Java in Embedded Systems

Discussion of embedded systems and environments available, for example Lego
mindstorms nxt has virutal machine (originally with no GC), Scheme interpreter
for ARM, it’s possible to program in a C style on a Lego mindstorms. What is
embedded (mindstorms 256kb vs embedded Java ¡ 32MB)? Discussion of sensor
networks, reliability is important, SunSpots allow sensor networks with JVMs.
Discussion of possible static compilation routes for Java. Discussion of overheads
of Java for embedded devices, memory. footprint, power consumption, how to
access embedded registers.

ICOOOLPS 49

4.11 Discussion. Do Threads Make Sense?

Discussion of common sub-expression elimination being invalid with volatiles
How should concurrent code be created? Increased use of java.util.concurrent.
Discussion of co-routines in Simula. Discussion, what is Java missing for concur-
rency? Emerald has immutable/frozen objects, unfreezing (as in Ruby) wouldn’t
be desirable due to problems with semantics (as with the problem of finalizers
and weak references in Java).

5 Conclusion

This third edition of ICOOOLPS was a successful successor to the previous
two. Despite the reduced attendance at ECOOP, we still had our fair share of
participants – and enough to make for some very interesting discussion.

This clearly bides well for the future and the building of a small, informal,
community.

On a more scientific level, once again thanks to the skills of the speakers and
active participation of the attendants, the discussions were lively, open-minded
and allowed good exchanges. We had allocated more time for discussions than
last year, but it was barely enough.

Another encouraging aspect is that some discussions (garbage collection, Java
threads) recurred from 2006 and 2007, which shows there is interesting work to
be done in these areas.

As we had mentioned last year identifying the main challenges for optimiza-
tion is not that easy, if only because optimizations for object-oriented languages
come in variety of contexts with very different constraints (embedded, real-time,
dynamic, legacy...) hence different optimizations criteria (speed, size, memory
footprint, energy...). One thing that emerged more clearly in this third edition is
the fact that some of our concerns extend beyond object-oriented languages (to
functional languages, for example). Another important point is that to optimize,
it is difficult to consider separately implementation and language design, or at
least specifications.

6 Perspectives: ICOOOLPS Future

The ICOOOLPS PC members present held a short organization meeting after
the workshop.

Some concern over drop in attendance (consistent with drop in ECOOP 2008
attendance). Difficulties for PC members to come to Paphos (cost, inconvenient
travel) was cited. Difficulties due to the Chair, Olivier, was unable to attend –
Eric took over. One presenter had passport/visa problems and could not show
up. Ian Rogers volunteered to help in organizing the next edition – and was
promptly chosen as Chair – with support from Eric, who volunteered to be
co-chair.

50 E. Jul and I. Rogers

Like every year, we try to draw lessons from each edition to further improve the
following ICOOOLPS editions. This year, we noted several aspects to improve,
amongst which the main ones are:

– This year, we had shorter presentations and longer discussions than in 2006
and 2007. That was good. In 2009 we should devote at least as much time to
discussions as in 2008, with an emphasis on short presentations: the purpose
of a workshop is not papers, but brainstorming. Presentations should be 10
minutes max + 10 minutes for questions.

– We must be very strict with presentations times, and not hesitate to stop a
speaker who is exceeding her/his time.

– The papers do have to be available on the website before the workshop.
– Session report drafts should be written during a session (papers and talks)

and maybe briefly discussed at the end of each session (not after the work-
shop). Session scribes should be chosen beforehand.

– Prior registration with the workshop organizers, like in ICOOOLPS 2006, is
better. It helps keeping track of attendants, gathering their topics of interest,
etc.

– We had good experience with asking for a list of suggested discussion topics
at registration time, so that attendees can vote for them (or suggest new
ones).

Of course, some of these points put an increased burden on the organizers,
but are key to an even more successful and enjoyable workshop.

We also intend to selectively enlarge the audience to other — possibly non-
OO — communities who face the same kind of issues as the one we focus on in
ICOOOLPS.

7 Background

To provide a fixed access point for ICOOOLPS related matters, the web site for
the workshop is maintained at http://icooolps.loria.fr. All the papers and
presentations done for ICOOOLPS’2008 are freely available there.

Aspects, Dependencies and Interactions

Report on the 3rd Workshop ADI at ECOOP 2008

Frans Sanen1, Katharina Mehner2, Ruzanna Chitchyan3,
Lodewijk Bergmans4, Johan Fabry5, and Mario Sudholt6

1 K.U. Leuven, Leuven, Belgium
frans.sanen@cs.kuleuven.be

2 Siemens, Germany
Katharina.Mehner@siemens.com

3 Lancaster University, Lancaster, UK
rouza@comp.lancs.ac.uk

4 University of Twente, Enschede, The Netherlands
L.M.J.Bergmans@ewi.utwente.nl

5 Computer Science Department (DCC), University of Chile
jfabry@dcc.uchile.cl

6 Ecole des Mines de Nantes, Nantes, France
Mario.Sudholt@emn.fr

Abstract. The topics on aspects, dependencies and interactions are
among the key remaining challenges to be tackled by the Aspect-Oriented
Software Development (AOSD) community to enable a wide adoption of
AOSD technology. This third workshop, organized and supported by the
AOSD-Europe project, aimed to continue the wide discussion on aspects,
dependencies and interactions started at ADI 2006 and continued at ADI
2007.

Keywords: Aspects, dependencies, interactions.

1 Introduction

Interaction problems between different modules, program parts, units of spec-
ifications are a central challenge to many program structuring paradigms, in-
cluding Aspect-Oriented Software Development, feature-based programming and
component-based software engineering. Furthermore, interaction problems are
relevant to all phases of the software development life cycle: from requirements
through to implementation and often exert a broad influence on these concerns,
e.g. by modifying their semantics, structure and / or behavior. Such depen-
dencies often lead to both desirable and unwanted or unexpected behaviors of
large-scale applications. The workshop was focused on identifying, understand-
ing, and resolving all kinds of issues related to such dependencies and interac-
tions, by bringing together researchers and practitioners from across the whole
spectrum of software development activities and methodologies. The goal of this
third workshop was to continue the wide discussion on aspects, dependencies and

P. Eugster (Ed.): ECOOP 2008 Workshop Reader, LNCS 5475, pp. 51–62, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

52 F. Sanen et al.

interactions, started at ADI 2006 and continued at ADI 2007, thus investigating
the lasting nature of such dependency links across all development activities:

– starting from the early development stages (i.e., requirements, architecture,
and design), looking into dependencies between requirements (e.g., posi-
tive/negative contributions between aspectual goals) and interactions caused
by aspects (e.g., quality attributes) in requirements, architecture, and design;

– analyzing these dependencies and interactions both through modeling and
formal analysis;

– considering language design issues which help to handle such dependencies
and interactions;

– studying such interactions in applications.

In the rest of this workshop report, we present the main topics that were discussed
at the workshop, including a comparative overview of the main topics of the ac-
cepted papers, a summary of the keynote speech by James Noble on “We Demand
Rigidly Defined Areas of Doubt and Uncertainty!”, a summing-up of the debates
hold in the discussion breakout group and a synthesis of the panel chaired by Theo
D’Hondt on “Does Model Driven Engineering make Aspects Obsolete?”

2 Accepted Papers

Papers accepted to the workshop covered a broad spectrum of problems related
to aspects, dependencies and interactions. We have clustered these papers into
three sets, with each set briefly summarized below.

2.1 Architecture

This set of papers focuses mainly on architecture, namely the management of
aspect interactions using statically-verified control-flow relations and analyzing
layering violations in aspect-oriented software architectures.

In [10], the feasibility of a technique for managing control-flow interactions
in layered architectures is demonstrated. The technique proposes to document
aspects with policies that specify the expected control-flow relations between
different aspects or between aspects and the base application. The policies are
expressed as logic formulae that employ a set of predicates that represent relevant
control-flow situations. In order to verify these policies, the authors employ and
extend existing static analyses to produce interprocedural control-flow graphs of
an application with woven aspects. This graph then is traversed in a controlled
manner to characterize the realizable paths. The paper starts with the observa-
tion that although various aspect-oriented approaches provide support for the
management of aspect interactions, most techniques are only applicable when
the aspects share a common join point (e.g. [7,8,19]). However, De Fraine et
al. motivate that aspect interactions also occur on coarser levels based on two
example interactions between the following three aspects in a typical multi-tier
architecture: authorization, authentication and caching. E.g. caching should not

Aspects, Dependencies and Interactions 53

override the authorization behavior since the caching aspect can skip the normal
operation by returning a previous result from the cache instead of applying a
authorization check. Based on these example interactions, the authors identify
a need for expressing control-flow policies that are able to express control-flow
relations such as “occurs in all paths” or “cannot remove invocations of” be-
tween aspects or aspects and the base. To summarize, their integrated technique
to manage control-flow interactions consists of three steps: (1) static analysis of
application code with woven aspects to produce an abstraction of the possible
control-flow paths in the resulting application, (2) formal documentation of as-
pects with control-flow policies that specify the relations that aspects depend on
and (3) an algorithm to detect violations of control-flow policies in the abstract
paths produced as the result of the static analysis.

In [16], the authors present a study with the goal of analyzing the influence of
aspect-orientation on violations of the layered structure of software architectures.
They argue that existing metrics for layering violations do not appropriately ac-
commodate the notion of aspects. The need to extend the suite of metrics to
allow more precise quantative evaluations of layering violations when aspects
are involved is discussed. The paper observes the fact that although many as-
sessments of AOP have conducted in the last few years (e.g. [9,15]), only a small
number of studies addresses specifically its impact on the architecture of a soft-
ware system. The work that is described in the paper concerns a study on the
impact of AOP techniques on layered software architectures. The empirical study
targets five evolution scenarios of a real-life web-based information system, called
Health Watcher. The paper focuses its analysis on layering violations. Layering
violations are defined as situations when a layer is a client to another layer that
is not below it or not adjacent to it. The different categories of layering viola-
tions they distinguish are termed skip-call, back-call and cyclic dependency. In
their architectural layer violation measurement framework, they start with (au-
tomatically) identifying all the dependencies between modules (method calls,
field access, field assignment and exception handling). Next, a metrics collection
step is carried out to detect layering violations. This step works as follows: for
each dependency between a module A and B, the corresponding layer in which
they are located is determined. It then checks whether A’s layer is higher than
B’s layer and if A and B are adjacent. The paper finally presents some prelim-
inary numbers evaluating the architectural layering principles for the different
Health Watcher evolution scenariosw.

2.2 Types and Semantics

This set of papers looks at type restriction of around advice and aspect interfer-
ence on the one hand and formal semantics of distributed aspects and invasive
patterns based on labeled transition systems on the other hand.

In [14], a novel weaving mechanism is presented called type relaxed weaving.
Type relaxed weaving allows advice applications while preserving type safety.
The problem with statically typed AOP languages (e.g. AspectJ), where appli-
cations of around advice only are allowed to join points with conforming types,

54 F. Sanen et al.

is that they possibly prohibit applying useful advices. They clarify the problem
by using the notion of the most specific usage type of a value. The usage type
of a value is its static parameter or receiver type when that value is used as a
parameter or a receiver of a method respectively. The most specific usage type
of a value is a type T such that T is a subtype of any usage type of the value.
The basic idea behind the type relaxed weaving is that the original AspectJ rules
need to be extended with the rule “For each join point matching a pointcut P,
type T must be a subtype of its most specific usage type of its return value”.
The paper also discusses several design issues that need to be addressed in order
to realize the type relaxed weaving. For example, how to approach the usage
type of an overridden method call or what to do when usage types don’t match?
In addition, it is argumented that when aspects interact via advice declarations
that are applicable to the same join point, care must be taken about type safety.
Before the paper is concluded, a preliminary feasibility assessment is given.

In [17], two formal semantics based on labeled transition systems are pre-
sented for distributed aspects in AWED [18] and invasive patterns that should
enable the definition of interaction properties of aspects and pattern compo-
sitions. Invasive patterns are an extension of standard parallel and distributed
architectural patterns for complex distributed algorithms. After a short overview
of the AWED language, the pattern language is discussed. Basically, it uses a
pattern constructor patternSeq that takes as argument a list G1 A1 G2 A2 ...
Gn of alternating group and aspect definitions. Each triple Gi Ai Gi+1 in this
list corresponds to a pattern application that uses the aspect Ai to trigger the
pattern in a source group Gi and realizes effects in the set of target hosts Gi+1.
A group G is either defined as a set of host identifiers or through a pattern
constructor term itself. The language constructs are formally defined in terms
of labeled transition systems. These definitions can be analyzed with existing
model checkers. Finally, the authors show that these semantics can be used to
check certain liveness and safety properties.

2.3 Model-Driven Development

This set of papers addresses handling crosscutting concerns in model-driven soft-
ware development, thus investigating the combination of aspect-oriented and
model-driven software development approaches.

In [1], an approach to create model-driven software product lines is pre-
sented including fine-variations. Fine-variations of model-driven software prod-
uct lines correspond to characteristics that affect particular elements of models
involved in the model transformations. For example, it should be possible in
a domotics system to select light components that possess the functionality of
automatic lights on a per instance basis. In addition, these instances can be
configured individually (behave differently) based on different attributes (time
and infrared presence detection for instance). Such fine-grained variations are
an important activity in the SPL process, e.g. to derive a correctly customized
product. The proposed approach improves on the AO-MD-SPL approach as orig-
inally presented by Voelter et al. [21] and uses feature models, constraint models

Aspects, Dependencies and Interactions 55

(constraints being relations between features and metaconcepts to restrict spe-
cific choices for a product) and fine-feature configurations (expressed between
features and model elements). Hence, products are configured creating fine-
feature configurations and based on these configurations, model-driven software
product lines are created using aspect-oriented principles. The authors claim
that, as a result, their approach allows to derive products including fine-grained
details of configuration.

In [3], DiVA [6] is presented. DiVA’s goal is to provide a new tool-supported
methodology with an integrated framework for managing dynamic variability
in adaptive systems. In order to address this goal, aspect-oriented and model-
driven techniques will be combined in an innovative way. The idea behind this
combination is that models cope with complexity through abstracting over the
dynamic variability and that AO techniques are used to model the adaptation
concerns separately from other aspects of the system. On the one hand, DiVA
proposes to use models at two levels (i.e. design time and run time) in order to
manage dynamic variability. On the other hand, aspect-oriented modelling tech-
niques allows them to tackle the issue of the combinatorial explosion of variants.
The combination of these model-based abstractions and advanced separation of
concerns enables adaptations that can be easier designed, understood, validated
and evolved. DiVA uses industrial case studies from two different domains to val-
idate the proposed approach: crisis management at an airport and a customer
relationship management system.

In [12], a brief description is given of GReCCO, an aspect-oriented modeling-
based framework to promote and enhance the reuse of concerns. GReCCo sup-
ports (1) composition oblivousness by modelling concerns independently from a
concrete context in which they are going to be applied, (2) composition sym-
metry by treating all concerns (including the base concern) uniformly, and (3)
interdependency management by a coupling to the Concern Interaction Acqui-
sition (CIA) system [20]. The authors have developed a prototype composition
engine implemented in ATL that can be used to compose concern models speci-
fied in UML. W.r.t. (1), concern models are used to describe both structure and
behavior of concerns using UML class and sequence diagrams respectively. In
addition, a composition model describes how the source concern models should
be composed. In this composition specification, model elements can be added,
modified, removed, merged and instantiated. For overlapping behavior scenarios,
an ordering is derived. The output of the symmetric composition engine (2) is a
composed model from the input composition and the concern models.

3 Keynote Speech by James Noble on “We Demand
Rigidly Defined Areas of Doubt and Uncertainty!”

A key idea behind aspect-oriented software development is that software cannot
be described by tree structures such as OO designs, nested abstractions or layered
virtual machines. Unfortunately, this means that the topologies of the software
we build, and the interactions within those topologies, will be more complex than
we once hoped. The work presented in this keynote presented a philosophical

56 F. Sanen et al.

context for this analysis, showed how a range of research fits into in that context,
and attempted to outline some future directions. The keynote surveyed the work
of many and aimed explicitly at raising questions rather than providing answers.

The keynote started with an interesting observation of where the software en-
gineering community is at this point. This observation started with an example
where next to a functional concern also security, transactional and exception
handling issues were involved. In this example, the AOSD promise (offering an
alternative to the current state of low cohesion and implicit coupling in program-
ming due to tangled and scattered concerns) holds. In concreto, obliviousness can
increase cohesion and quantification typically decreases coupling (both together
referred to by the speaker as the mess we’re in). In what followed, Pascal’s
triangle (named after Blaise Pascal) was used to focus on interactions and de-
pendencies. Assuming every program can be represented as a tree (whatever
programming language is used), aspect-orientation programming can be seen as
factoring different crosscutting concerns out of such a hierarchical model, with
higher cohesion as a result. Dependencies and interactions then boil down to
the different relationships that exist and remain to be managed between these
aspects that are factored out. Should we pay every price to get a higher cohesion
in return was the open question that ended this starting observation.

In what followed, everything got placed in a broader philosophical perspec-
tive and the audience was referred to the notorious werewolf (i.e. personification
of failure in software projects), introduced by Brooks at the beginning of his
well-known No silver bullet article [4] on essential versus accidental complex-
ity. Essential complexity refers to a situation where all reasonable solutions to
a problem must be complicated (and possibly confusing) because the “simple”
solutions would not adequately solve the problem. Accidental complexity on the
other hand might arise purely from mismatches in the particular choice of tools
and methods applied in the solution. For decades, software construction con-
sisted of a sequence of refinement steps. In each step, a given task is broken
up into a number of subtasks and each refinement implies a number of design
decisions. In a more general context, these times of modernism and modernity
were characterized by the belief in a Grand Narrative, progress via abstraction,
regularity of structure and supremacy of science and history. However, post-
modernism brought an end to this: Grand Narratives collapsed, negotiation and
context gained tremendously in importance, different topologies emerged and
reuse became a laudable goal. In the mean time, small narratives had proven to
superbly allow for imaginative invention. Decisions rather are a result of a trial
and error process instead of a well-defined step-by-step process. During the trial
and error process, negotiation is needed between various narratives, the context
becomes more and more important and it’s possible that no single correct an-
swer exists. The speaker discussed a couple of examples that perfectly fit in this
postmodern mindset, such as for example design patterns [11]. Design patterns
are small stories that resolve a specific problem locally. As soon as one starts
putting different design patterns together, negotation becomes inevitable. The
philosophical context applied to AO gives poses the following interesting points:

Aspects, Dependencies and Interactions 57

– Objects are the basic components.
– Aspects are the crosscutting components. In addition, each aspect is a small,

independent part.
– Aspect interactions are essentially complex.
– Aspects negotiate to provide or overrule each other’s behaviour.

The last part of the talk concluded by stating that aspect dependencies and in-
teractions are one of the essential (not accidental) complexities in aspect-oriented
software engineering. Reasoning about dependencies and interactions therefore
should happen in a local, provisional way. Negotiation can then be used to con-
strain module configurations or module interactions (or both). In other words,
we need... rigidly defined areas of doubt and uncertainty.

4 Discussion Topics

One of the sessions of the workshop was devoted to a group discussion. This group
discussion is summarized below. We first present a high-level, overall summary
of the entire group discussion session. A detailed example is discussed below.

4.1 Overall Summary

During the group discussion session of the ADI 2008 workshop, we have talked
about a set of approaches proposed so far, that aim at discovering different kinds
of dependencies and interactions in AO programs such as [10,16,5,22,8]. We have
observed during our discussions that such approaches shared a set of common
characteristics, and adopted a very similar high-level structure.

1. They usually depend on a program representation - which can be the pro-
gram source code or bytecode or any other intermediate representation such
as for example the program control flow graph (CFG).

2. Next, they represent the set of relations they are interested in finding as a
set of rules - such rules can be represented in semi-structured languages such
as XML or logical expressions.

3. Finally, they traverse the program representation checking such rules. They
go through the program representation and perform a kind of pattern match-
ing algorithm looking for the relationships that may arise among the com-
ponents of which the program is composed.

4.2 Detailed Example

One of the works discussed was the work described in [5]. This work describes
a tool called SAFE (Static Analyser for the Flow of Exceptions) that mines the
interactions between aspects and classes in exception-aware systems. Most of the
current programming languages provide exception mechanisms as a means to as-
sist software developers building robust systems, allowing the separation between
the normal control flow of the program and the exceptional flow. The separation

58 F. Sanen et al.

between normal and exceptional flow of a program bares some consequences: for
instance, it creates new dependencies between the elements that compose the
system - more specifically, between the elements that signal exceptions and the
elements responsible for handling them. Such tool performs a static analysis of
AspectJ programs looking for the implicit and explicit dependencies that may
arise between the program abstractions (aspects and classes) caused by excep-
tion handling scenarios. An advice adding new functionality to the base code can
also bring new exceptional conditions due to the additional functionality. Such
exceptions will flow until they are handled somewhere in the code. This scenario
creates a dependency between the exception-signaling aspect and the elements
(on the base code or other aspects) on which the exception is handled. This
interaction-finding approache works on java bytecode, enables the user to define
which elements are responsible for signalling and handle exceptions in XML files
(i.e., a ser of rules), and than traverses the code finding the signaller-handler
relationships and checking whether the rules are obeyed by them.

5 Panel on “Does Model-Driven Engineering Make
Aspects Obsolete?”

The workshop hosted a panel that discussed the question “Does Model-Driven
Engineering Make Aspects Obsolete?”. The panelists were Stephan Herrmann,
Shigeru Chiba, Hidehiko Masuhara and Wolfgang De Meuter. The panel was
chaired by Theo D’Hondt. In what follows. we first elaborate concisely on the
different panel positions in which each of the four panelists presented his personal
view on the matter. Next, a short overview is given from the panel discussion
based on questions from the workshop attendants.

5.1 Panel Positions

Hidehiko Masuhara started by declaring that he is not really a model-driven
engineering (MDE) specialist. As a consequence, he preferred to take a rather
neutral position in this panel. Shigeru Chiba declared that aspects can be a
tool for implementing program transformations in MDE. Therefore, he proposed
to add a footnote to the title of the panel reflecting this: “For model-driven
engineering to be practical, AOP is a program transformation tool”. Stephan
Herrman pointed out that from a definition point of view, aspects are inferior
to MDE: the latter research community consists of the real experts in program
transformations that possibly are customizable to different domains. Aspects
originally were defined as a weaving technology, being only one kind of program
transformation. A final point he made in the beginning of the panel is that we
only need two hands for counting the problems that can be solved by aspects.
On the contrary, good frameworks exist that solve exactly these problems and
that can be used in combination with domain-specific languages to weave these
frameworks into the application. If we indeed assume that from a definition
point of view, MDE is superior, we should ask ourselves what can be saved from

Aspects, Dependencies and Interactions 59

aspects? Wolfgang De Meuter stated that he does not really believe in model-
driven engineering. He suggested that aspects are there and always will be. The
question that remains, according to him, is how we can and will realize them in
our programming languages.

5.2 Panel Discussion

Discussions were centered around two more specific topics: aspects versus mod-
els and the role of transformations. Summaries for both these discussions are
provided below.

Aspects versus models. The workshop participants agreed that they didn’t
experience aspects versus models as much competing as the panelists’s state-
ments might suggest. To start with, the audience pointed out that there still is
no really good, broadly acknowledged definition of an aspect. Definitions exist in
nearly all software development lifecycle phases and no single definition exists
where everybody agrees upon. Time seems to have proven that aspects are most
useful at an implementation level, while MDE rather focuses at the earlier life-
cycle phases. Stephan Herrmann repeated his thoughts about the context we are
in now: a context where a lot of code is already there as frameworks, libraries,
etc. Any MDE approach that generates code for such a platform of frameworks
and libraries leverages this wealth of existing software in a way that is not easily
accessible by using mainstream AOP. Shigeru Chiba referred back to the invited
speech of James Noble at the beginning of this workshop, in which the speaker
indicated that we are tired with tree structures. Hence, aspects can represent a
new way of thinking (and not only an implementation technique) and can serve
as a kind of abstraction.

In a lively discussion hereafter, the real contribution of MDE was discussed
upon. Is it the machinery of meta-modeling and easy tooling of transformations
and new modeling languages? An obvious contribution is that (in theory) one is
able, for each purpose, to use the most appropriate modeling mechanism and ma-
chinery that will produce code. For real software, a Turing complete programming
language is needed; does the same hold for the modeling language and can the lat-
ter become as complex as the programming language? Does MDE subsume every-
thing or in other words, can everything in AOP also be done in MDE, potentially
in a more convenient way? AOP needs rescuing? And if so, should we look where
MDE fails and can we use aspects to solve what remains to be done? How can we
capture a crosscutting concern in MDE and how can we compose it in such an ap-
proach? Are there any satisfactory ways of specifying where a crosscutting concern
is needed in one or more models yet? Does annotation-based weaving or a class di-
agram in combination with a table relating elements and mechanisms suffice?

The role of transformations. One of the panelists switched the focus of
ongoing discussions to the role of transformations by provoking the audience with
the following statement: “Maybe MDE generates the code that you don’t have
to write in a really good programming language”. “MDE being most valuable

60 F. Sanen et al.

when input languages significantly differ from output languages, i.e. when there
is a large representation gap to be filled” countered this. Are executable models
not a better alternative for the transformation obsession? Is the only price to
pay in this case the interpreter that is required to be written for an executable
model? What would be the exact differences between such an interpreter and
the well-known meta-model in an MDE approach?

Different ways exist to implement model transformations. Javassist [13] for
instance provides a way of describing Java bytecode transformations, but the
complexity of the tool is relatively high. AspectJ [2] on the other hand offers
easier, more declarative and more expressive mechanisms for expressing trans-
formations, but only for rather simple concerns such as logging and persistence.
A domain in which MDE has proven to be very useful is telecommunications.
One of the main reasons for this is that lots of behaviour can be modelled in
state charts and the developer actually does not see any code at all because it
is fully generated by the compiler.

Finally, most members of the audience agreed that aspects do not have to
defend their existence since they represent an advanced modularization technique
that is orthogonal and complementary to models. The AO community strongly
would benefit from some strong arguments where MDE falls short in comparison
with AO. An important sideremark also was made: transformations might not
be the fundamental part of a MDE process but rather an optimization.

6 Conclusion

This third workshop on Aspects, Dependencies and Interactions provided an
opportunity for presentations and lively discussion between researchers working
on AOSD, dependencies and interactions from all over the world. The workshop
continued the wide discussion on aspects, dependencies and interactions that was
started at ADI 2006 and continued at ADI 2007. It is our intention to continue
encouraging the challenging work on this topic by further organizing a number
of follow-up workshops.

7 Workshop Organizers and Participants

7.1 List of Organizers

The workshop organizing committee consisted of the following five members.

– Frans Sanen, K.U.Leuven, Belgium (co-chair)
Email: frans.sanen (at) cs.kuleuven.be

– Mario Sudholt, Ecole des Mines de Nantes, France (co-chair)
Email: mario.sudholt (at) emn.fr

– Ruzanna Chitchyan, Lancaster University, UK
Email: rouza (at) comp.lancs.ac.uk

– Lodewijk Bergmans, University of Twente, The Netherlands
Email: L.M.J.Bergmans (at) ewi.utwente.nl

Aspects, Dependencies and Interactions 61

– Johan Fabry, Computer Science Department (DCC), University of Chile,
Chile
Email: jfabry (at) dcc.uchile.cl

– Katharina Mehner, Siemens, Germany
Email: Katharina.Mehner (at) siemens.com

7.2 List of Attendees

The list of attendees officially registered for the workshop is presented alpha-
betically below. It should be noted that a number of unregistered attendees also
participated, but these are not listed here.

1. Shigeru Chiba (Tokyo Institute of Technology, Japan)
2. Roberta de Souza Coelho (Pontifical Catholic University of Rio de Janeiro,

Brazil)
3. Bruno De Fraine (Vrije Universiteit Brussel, Belgium)
4. Wolfgang De Meuter (Vrije Universiteit Brussel, Belgium)
5. Theo D’Hondt (Vrije Universiteit Brussel, Belgium)
6. Stephan Herrmann (Technische Universitat Berlin, Germany)
7. Viviane Jonckers (Vrije Universiteit Brussel, Belgium)
8. Uira Kulesza (Pontifical Catholic University of Rio de Janeiro, Brazil)
9. Hidehiko Masuhara (University of Tokyo, Japan)

10. James Noble (Victoria University of Wellington, New Zealand)
11. Angel Nunez (Ecole des Mines de Nantes, France)
12. Eline Philips (Vrije Universiteit Brussel, Belgium)
13. Frans Sanen (K.U.Leuven, Belgium)

References

1. Arboleda, H., Casallas, R., Royer, J.-C.: Using transformation-aspects for model-
driven software product lines. In: Proceedings of the Third International Workshop
on Aspects, Dependencies and Interactions (held at ECOOP), pp. 46–56 (2008)

2. AspectJ: Aspect-Oriented Java Extension, http://www.eclipse.org/aspectj/
3. Ayed, D.: Diva: Dynamic variability in complex adative systems. In: Proceedings

of the Third International Workshop on Aspects, Dependencies and Interactions
(held at ECOOP), pp. 57–61 (2008)

4. Brooks, F.P.: No silver bullet: Essence and accidents of software engineering. Com-
puter 20(4), 10–19 (1987)

5. Coelho, R., Rashid, A., Garcia, A., Ferrari, F.C., Cacho, N., Kulesza, U., von
Staa, A., de Lucena, C.J.P.: Assessing the impact of aspects on exception flows:
An exploratory study. In: Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 207–
234. Springer, Heidelberg (2008)

6. DiVA: Dynamic Variability in Complex, Adaptive Systems,
http://www.ict-diva.eu/

7. Douence, R., Fradet, P., Südholt, M.: A framework for the detection and resolution
of aspect interactions. In: Batory, D., Consel, C., Taha, W. (eds.) GPCE 2002.
LNCS, vol. 2487, pp. 173–188. Springer, Heidelberg (2002)

http://www.eclipse.org/aspectj/
http://www.ict-diva.eu/

62 F. Sanen et al.

8. Durr, P., Bergmans, L., Aksit, M.: Reasoning about semantic conflicts between
aspects. In: EIWAS 2005: The 2nd European Interactive Workshop on Aspects in
Software, pp. 10–18 (2005)

9. Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A.,
Soares, S., Ferrari, F., Khan, S., Filho, F.C., Dantas, F.: Evolving software product
lines with aspects: an empirical study on design stability. In: ICSE 2008: Proceed-
ings of the 30th International Conference on Software Engineering, pp. 261–270.
ACM, New York (2008)

10. Fraine, B.D., Quiroga, P.D., Jonckers, V.: Management of aspect interactions using
statically-verified control-flow relations. In: Proceedings of the Third International
Workshop on Aspects, Dependencies and Interactions (held at ECOOP), pp. 5–14
(2008)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley
Professional, Reading (1995)

12. Hovsepyan, A., Baelen, S.V., Berbers, Y., Joosen, W.: Grecco: Composing generic
reusable concerns. In: Proceedings of the Third International Workshop on Aspects,
Dependencies and Interactions (held at ECOOP), pp. 62–63 (2008)

13. Javassist: Java Programming Assistant, http://www.jboss.org/javassist/
14. Masuhara, H.: On type restriction of around advice and aspect interference. In:

Proceedings of the Third International Workshop on Aspects, Dependencies and
Interactions (held at ECOOP), pp. 15–25 (2008)

15. Molesini, A., Garcia, A.F., von Chavez Flach Garcia, C., Batista, T.V.: On the
quantitative analysis of architecture stability in aspectual decompositions. In:
WICSA 2008: Proceedings of the Seventh Working IEEE/IFIP Conference on
Software Architecture (WICSA 2008), Washington, DC, USA, pp. 29–38. IEEE
Computer Society, Los Alamitos (2008)

16. Monteiro, M., Moura, M., Soares, S., Filho, F.C.: Towards an analysis of lay-
ering violations in aspect-oriented software architectures. In: Proceedings of the
Third International Workshop on Aspects, Dependencies and Interactions (held at
ECOOP), pp. 26–35 (2008)

17. Navarro, L.D.B., Douence, R., Nunez, A., Sudholt, M.: Lts-based semantics and
property analysis of distributed aspects and invasive patterns. In: Proceedings of
the Third International Workshop on Aspects, Dependencies and Interactions (held
at ECOOP), pp. 36–45 (2008)

18. Navarro, L.D.B., Südholt, M., Vanderperren, W., Fraine, B.D., Suvée, D.: Explic-
itly distributed aop using awed. In: AOSD 2006: Proceedings of the 5th interna-
tional conference on Aspect-oriented software development, pp. 51–62. ACM, New
York (2006)

19. Pawlak, R., Duchien, L., Seinturier, L.: Compar: Ensuring safe around advice com-
position. In: Steffen, M., Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535,
pp. 163–178. Springer, Heidelberg (2005)

20. Sanen, F., Truyen, E., Joosen, W.: Managing concern interactions in middleware.
In: Indulska, J., Raymond, K. (eds.) DAIS 2007. LNCS, vol. 4531, pp. 267–283.
Springer, Heidelberg (2007)

21. Voelter, M., Groher, I.: Product line implementation using aspect-oriented and
model-driven software development. In: SPLC 2007: Proceedings of the 11th Inter-
national Software Product Line Conference, Washington, DC, USA, pp. 233–242.
IEEE Computer Society, Los Alamitos (2007)

22. Weston, N., Taiani, F., Rashid, A.: Interaction analysis for fault-tolerance in aspect-
oriented programming. In: Proceedings of the Third International Workshop on
Aspects, Dependencies and Interactions (held at ECOOP), pp. 36–45 (2008)

http://www.jboss.org/javassist/

Getting Farther on Software Evolution

via AOP and Reflection

Report on the 5th RAM-SE Workshop at ECOOP 2008

Manuel Oriol1, Walter Cazzola2, Shigeru Chiba3, and Gunter Saake4

1 Department of Computer Science,
University of York, York, United Kingdom

manuel@cs.york.ac.uk
2 DICo - Department of Informatics and Communication,

Università degli Studi di Milano, Milano, Italy
cazzola@dico.unimi.it

3 Department of Mathematical and Computing Sciences,
Tokyo Institute of Technology, Tokyo, Japan

chiba@is.titech.ac.jp
4 Institute für Technische und Betriebliche Informationssysteme,
Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany

saake@iti.cs.uni-magdeburg.de

Abstract. Following last four years’ RAM-SE (Reflection, AOP and
Meta-Data for Software Evolution) workshop at the ECOOP confer-
ence, the RAM-SE’08 workshop was a successful and popular event. As
its name implies, the workshop’s focus was on the application of re-
flective, aspect-oriented and data-mining techniques to the broad field
of software evolution. Topics and discussions at the workshop included
mechanisms for supporting software evolution, technological limits of the
aspect-oriented and reflective approaches to software evolution and tools
devoted to software evolution.

The workshop’s main goal was to bring together researchers working
in the field of software evolution with a particular interest in reflection,
aspect-oriented programming and meta-data. The workshop was orga-
nized as a full day meeting, partly devoted to presentation of submitted
position papers and partly devoted to panel discussions about the pre-
sented topics and other interesting issues in the field. In this way, the
workshop allowed participants to get acquainted with each other’s work,
and stimulated collaboration. We hope this helped participants in im-
proving their ideas and the quality of their future publications.

The workshop’s proceedings, including all accepted position papers
can be downloaded from the workshop’s web site and a post workshop
proceeding, including an extension of the accepted paper is planned to
be published by the University of Magdeburg.

In this report, we provide a session-by-session overview of the work-
shop, and then present our opinions about future trends in software
evolution.

P. Eugster (Ed.): ECOOP 2008 Workshop Reader, LNCS 5475, pp. 63–69, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

64 M. Oriol et al.

1 Workshop Description and Objectives

Software evolution and adaptation is a research area that offers stimulating chal-
lenges for both academic and industrial researchers. The evolution of software
systems, to face unexpected situations or just for improving their features, relies
on software engineering techniques and methodologies. Nowadays a similar ap-
proach is not applicable in all situations e.g., for evolving non stopping systems
or systems whose code is not available.

Features of reflection such as transparency, separation of concerns, and ex-
tensibility seem to be perfect tools to aid the dynamic evolution of running
systems. Aspect-oriented programming (AOP) can simplify code instrumenta-
tion whereas techniques that rely on meta-data can be used to inspect the system
and to extract the necessary data for designing the heuristic that the reflective
and aspect-oriented mechanism use for managing the evolution.

We feel the necessity to investigate the benefits brought by the use of these
techniques on the evolution of object-oriented software systems. In particular we
would determine how these techniques can be integrated with more traditional
approaches to evolve a system and the benefits we get from their use.

The overall goal of this workshop was that of supporting circulation of ideas
between these disciplines. Several interactions were expected to take place be-
tween reflection, aspect-oriented programming and meta-data for the software
evolution, some of which we cannot even foresee. Both the application of reflec-
tive or aspect-oriented techniques and concepts to software evolution are likely
to support improvement and deeper understanding of these areas. This workshop
has represented a good meeting-point for people working in the software evolu-
tion area, and an occasion to present reflective, aspect-oriented, and meta-data
based solutions to evolutionary problems, and new ideas straddling these areas,
to provide a discussion forum, and to allow new collaboration projects to be es-
tablished. The workshop was a full day meeting. One part of the workshop was
devoted to presentation of papers, and another to panels and to the exchange of
ideas among participants.

2 Workshop Topics and Structure

Every contribution that exploits reflective techniques, aspect-oriented program-
ming and/or meta-data to evolve software systems were welcome. Specific topics
of interest for the workshop have included, but were not limited to:

– aspect-oriented middleware and environments for software evolution;
– adaptive software components and evolution as component composition;
– evolution planning and deployment through aspect-oriented techniques and

reflective approaches;
– aspect interference and composition for software evolution;
– feature- and subject-oriented adaptation;
– unanticipated software evolution supported by AOSD or reflective tech-

niques;

Getting Farther on Software Evolution via AOP and Reflection 65

– MOF, code annotations and other meta-data facilities for software evolution;
– software evolution tangling concerns;
– techniques for refactoring into AOSD and to get the separation of concerns;
– early aspect evolution, i.e., to design evolution by evolving the design infor-

mation or the application in its early stages of development.

To ensure lively discussion at the workshop, the organizing committee has
chosen the contributions on the basis of topic similarity that will permit the
beginning of new collaborations. To grant an easy dissemination of the proposed
ideas and to favourite an ideas interchange among the participants, accepted
contributions are freely downloadable from the workshop web page:

http://homes.dico.unimi.it/RAM-SE08.html

The workshop was a full day meeting organized in three sessions. The morning
was devoted to scientific presentations with six refereed papers in the first session
and with a keynote speech by hidehiko Masuhara in the second session just before
lunch. In the afternoon the workshop became a working group lead by Shigeru
Chiba, this has permitted to exchange new ideas in a lively discussion with the
several people attending.

The workshop has been very lively, the debates very stimulating, and the high
number of participants (see appendix A) testifies the interest in the application
of reflective, aspect- and meta-data oriented techniques to software evolution as
well as software evolution in general.

3 Important References

The following publications are important references for people interested in learn-
ing more about the topics of this workshop:

– Pattie Maes. Computational Reflection. PhD thesis, Vrije Universiteit Brus-
sel, Brussels, Belgium, 1987.

– Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Pro-
gramming. In 11th European Conference on Object Oriented Programming
(ECOOP’97), LNCS 1241, pages 220–242, Helsinki, Finland, June 1997.
Springer-Verlag.

– The proceedings of the International Conference on Aspect-Oriented Soft-
ware Development (AOSD) from 2002 onward. See also http://aosd.net/
archive/index.php.

– Several tracks related to aspect-oriented software development and evolution
at the International Conference on Software Maintenance (ICSM) and the
Working Conference on Reverse Engineering (WCRE), from 2002 onward.

– The software evolution website at the Program Transformation wiki:
http://www.program-transformation.org/twiki/bin/view/

Transform/SoftwareEvolution

– The workshops proceedings of the USE workshop series:
http://www.informatik.uni-bonn.de/~gk/use/

http://homes.dico.unimi.it/RAM-SE08.html
http://aosd.net/archive/index.php
http://aosd.net/archive/index.php
http://www.program-transformation.org/twiki/bin/view/Transform/SoftwareEvolution
http://www.program-transformation.org/twiki/bin/view/Transform/SoftwareEvolution
http://www.informatik.uni-bonn.de/~gk/use/

66 M. Oriol et al.

4 Workshop Overview: Session by Session

RAM-SE Paper Presentation

The first morning session focused on presenting accepted papers. The session
was moderated by Manuel Oriol.

[1] A Case Study for Aspect Based Updating. Susanne Cech Previtali and
Thomas R. Gross (ETH Zurich, Switzerland).

Susanne Cech Previtali gave the presentation.
[2] Runtime Adaptations within the QuaD2-Framework. Steffen Mencke, Mar-

tin Kunz, and Mario Pukall (Otto von Guericke University Magdeburg, Ger-
many).

Mario Pukall gave the presentation.
[3] Modeling Context-Dependent Aspect Interference Using Default Logics.

Frans Sanen, Eddie Truyen, and Wouter Joosen (K.U. Leuven, Belgium).
Frans Sanen gave the presentation.
[4] Object Roles and Runtime Adaptation in Java. Mario Pukall (Otto von

Guericke University Magdeburg, Germany).
Mario Pukall gave the presentation.
[5] Exploring Role Based Adaptation. Sebastian Götz and Ilie Savga (Dresden

University of Technology, Germany).
Sebastian Götz gave the presentation.
[6] Annotations for Seamless Aspect Based SW Evolution. Susanne Cech Pre-

vitali and Thomas R. Gross (ETH Zurich, Switzerland).
Susanne Cech Previtali gave the presentation

Keynote on Toward Right Abstraction of Crosscutting
Concerns

In the second session, Hidehiko Masuhara gave a keynote talk moderated by
Walter Cazzola:

Toward Right Abstraction of Crosscutting Concerns.

Abstract. Abstraction mechanisms in programming languages are cru-
cial for modular software development, by drawing a clear boundary
among program entities, giving names to those bounded entities, and hid-
ing implementation details. Aspect-oriented programming (AOP) mech-
anisms can also be viewed as abstraction mechanisms for crosscutting
concerns, but differ from traditional ones in what details they hide. In
this talk, we discuss the properties of AOP mechanisms that are needed
to be right abstraction of crosscutting concerns.

Getting Farther on Software Evolution via AOP and Reflection 67

Matsuhara’s presentation gave elements on the definition of crosscutting ab-
straction as a boundary over the code. The main issue that aspects programmers
have to face is that this boundary is actually a very difficult thing to draw pre-
cisely. In practice, it is easy to express pointcuts that have a clear mapping into
the code, but more complex ones are almost inexpressible.

“Are we Doomed?” as Matsuhara asked. To help defining complex crosscutting
concerns it is possible to consider example-based pointcuts. In particular, test-
based pointcuts [7] can be of help. The idea is to use unit tests as the main
way of defining pointcuts by analysing static execution history. This has several
advantages, the main one being that if test cases are maintain, pointcuts should
evolve automatically with the application.

The keynote talk fostered further discussions which triggered the following
points:

– A boundary might not be the correct abstraction: what space/points can be
considered?

– As a lot of people in the workshop saw aspects like a tool for dynamic adap-
tation, boundaries were usually very easily drawn, but would it be possible
to create test-based pointcuts that would draw them?

RAM-SE’09? Towards the Future

The workshop ended with a session led by Shigeru Chiba on the future of the
RAM-SE workshop and fostered lively discussions. Chiba pointed out that dy-
namic adaptation was one of the main topics this year. It was mostly coded with
dynamic aspects and using dynamic aspects to allow adaptation in the future.
He also pointed out the fight between statically typed languages and dynam-
ically typed ones and wondered if we are statically typed dynamic languages
people. The remaining part of the session was dedicated to how we understand
systems that have been adapted over time. Do we need to do aspects refactoring?
Should we replace the whole system when adapting it? In the end, are aspects
just a tool that enables dynamic refactoring? While discussing all these topics,
some pointed out that object-orientation is already aspect-oriented due to mul-
tiple dispatch. Aspects are indeed a tool, but they are very good for producing
prototypes in a fast and convenient manner.

5 Tendencies in Reflection, AOP and Meta-data for
Software Evolution

This year, the main area of the workshop was runtime adaptation through as-
pects. This is a radical shift in the community. It seems that using aspects is
nowadays the easiest way to instrument code (at load-time). This meets last
year’s invited talk presented by Shigeru Chiba that pointed out that logging
and transactions were actually the killer-applications for aspects. One more ap-
plication seems to be the easy instrumentation of code. Because the workshop
is targeted at evolution, aspects and reflection, it is thus not too surprising that
contributions would focus on it this year.

68 M. Oriol et al.

One of the new adaptation proposed by Cech Previtali and Gross [1] consists
in writing updates as an aspect. The paper presents a feasibility study based on
the tomcat server and reveals that although all changes cannot be expressed as
aspects most of them can. In order to guide the aspect weaver, Cech Previtali
and Gross [6] even go as far as to propose annotations in the code so that
updates are actually easier to interpret. To achieve a similar goal, Pukall [4]
proposes a strategy based on object wrapping and the hotswap technology to
change implementation.

Götz and Savga [5] also cope with adapters for objects. They propose a role-
based mechanism to manage adapters that would reduce the code complexity.

Another aspect of dynamic adaptation is that adaptation can also be consid-
ered not as a timeline punctuated with versions, but rather as a potential for
quality of service. Mencke et al [2] detail such a system and state that the quality
of a combination of a components should govern the choice of components to
use.

Sanen et al [3] treat a more fundamental question for aspects: how to model
aspect interference by using default logic. This would allow developers to use
the information when the application evolves.

6 Final Remarks

The main goal of the workshop was to bring together researchers interested in
the field and have them communicate on their respective work. The workshop
lived up to its expectations, with high-quality submissions and presentations,
and lively and stimulating discussions. The vitality of the work as well as the
lively discussions that took place during the workshop show that the issues
addressed by the workshop are plainly relevant and need such a forum to be
discussed. We hope participants found the workshop interesting and useful, and
encourage them to finalize their position papers and submit them as full papers
to international conferences interested in the topics of this workshop.

Acknowledgements. We wish to thank all the researchers that have partici-
pated to the workshop.

We have also to thank the Department of Informatics and Communication of
the University of Milan, the Department of Mathematical and Computing Sci-
ences of the Tokyo institute of Technology, ETH Zurich and the Institute für Tech-
nische und Betriebliche Informationssysteme, Otto-von-Guericke-Universität
Magdeburg for their various supports.

References

1. Cech Previtali, S., Gross, T.: A case study for aspect based updating. In: Cazzola,
W., Chiba, S., Coady, Y., Oriol, M. (eds.) Proceedings of ECOOP 2008 Workshop on
Reflection, AOP and Meta-Data for Software Evolution (RAM-SE 2008), Paphos,
Cyprus (2008)

Getting Farther on Software Evolution via AOP and Reflection 69

2. Mencke, S., Kunz, M., Pukall, M.: Runtime adaptations within the QuaD2-
framework. In: Cazzola, W., Chiba, S., Coady, Y., Oriol, M. (eds.) Proceedings of
ECOOP 2008 Workshop on Reflection, AOP and Meta-Data for Software Evolution
(RAM-SE 2008), Paphos, Cyprus (2008)

3. Sanen, F., Truyen, E., Joosen, W.: Modeling context-dependent aspect interference
using default logics. In: Cazzola, W., Chiba, S., Coady, Y., Oriol, M. (eds.) Proceed-
ings of ECOOP 2008 Workshop on Reflection, AOP and Meta-Data for Software
Evolution (RAM-SE 2008), Paphos, Cyprus (2008)

4. Pukall, M.: Object roles and runtime adaptation in java. In: Cazzola, W., Chiba,
S., Coady, Y., Oriol, M. (eds.) Proceedings of ECOOP 2008 Workshop on Reflec-
tion, AOP and Meta-Data for Software Evolution (RAM-SE 2008), Paphos, Cyprus
(2008)

5. Götz, S., Savga, I.: Oexploring role based adaptation. In: Cazzola, W., Chiba, S.,
Coady, Y., Oriol, M. (eds.) Proceedings of ECOOP 2008 Workshop on Reflec-
tion, AOP and Meta-Data for Software Evolution (RAM-SE 2008), Paphos, Cyprus
(2008)

6. Cech Previtali, S., Gross, T.: Annotations for seamless aspect based software evolu-
tion. In: Cazzola, W., Chiba, S., Coady, Y., Oriol, M. (eds.) Proceedings of ECOOP
2008 Workshop on Reflection, AOP and Meta-Data for Software Evolution (RAM-
SE 2008), Paphos, Cyprus (2008)

7. Sakurai, K., Masuhara, H.: Test-based pointcuts for robust and fine-grained join
point specification. In: D’Hondt, T. (ed.) AOSD, pp. 96–107. ACM, New York (2008)

A Workshop Attendee

The success of the workshop is mainly due to the people that have attended it
and to their effort to participate to the discussions. The following is the list of
the attendees in alphabetical order.

Name Affiliation Country e-mail
Arcelli, Francesca University of Milano Bicocca Italy arcelli@disco.unimib.it
Bierman, Gavin Microsoft Research The Netherlands gmb@microsoft.com
Cazzola, Walter Università degli Studi di Milano Italy cazzola@dico.unimi.it
Cech Previtali, Susanne ETH Zürich Switzerland scech@inf.ethz.ch
Chiba, Shigeru Tokyo Institute of Technology Japan chiba@is.titech.ac.jp
de Roo, Arjan University of Twente The Netherlands a.j.deroo@ewi.utwente.nl
Figueiredo, Eduardo Lancaster University UK e.figueiredo@lancaster.ac.uk

Götz, Sebastian Technical University of Dresden Germany sebastian.goetz@mail.inf.tu-dresden.de
Guerra, Eduardo ITA - Brazil Brazil guerra@ita.br
Havinga, Wilke University of Twente The Netherlands havingaw@ewi.utwente.nl
Herrmann, Stephan Technical University of Berlin Germany stephan@cs.tu-berlin.de
Kakousis, Constantinos University of Cyprus Cyprus kakousis@os.ucy.ac.cy
Masuhara, Hidehiko University of Tokyo Japan masuhara@graco.c.u-tokyo.ac.jp
Oriol, Manuel ETH Zürich Switzerland moriol@inf.ethz.ch
Ostrowski, Krzystof Cornell University USA krzys@cs.cornell.edu
Pukall, Mario University of Magdeburg Germany pukall@iti.cs.uni-magdeburg.de
Sanen, Frans KULeuven Belgium frans.sanen@cs.kuleuven.be
Vandemonde, Yves KULeuven Belgium yves.vandemonde@cs.kuleuven.be

Formal Techniques for Java-Like Programs

Report on the 10th Workshop FTfJP at ECOOP 2008

Elvira Albert1, Anindya Banerjee2, Sophia Drossopoulou3,
Marieke Huisman4,�, Atsushi Igarashi5, Gary T. Leavens6,

Peter Müller7, and Tobias Wrigstad8

1 Complutense University of Madrid, Spain
2 Kansas State University, USA
3 Imperial College London, UK

4 University of Twente, Netherlands
5 Kyoto University, Japan

6 University of Central Florida, USA
7 ETH Zurich, Switzerland
8 Purdue University, USA

Abstract. This report gives an overview of the 10th Workshop on For-
mal Techniques for Java-like Programs at ECOOP 2008. It explains
the motivation for the workshop, and summarizes the presentations and
discussions.

1 Introduction

Formal techniques can help analyze programs, precisely describe program behav-
ior, and verify program properties. Newer languages such as Java and C# provide
good platforms to bridge the gap between formal techniques and practical pro-
gram development, because of their reasonably clear semantics and standardized
libraries. Moreover, these languages are interesting targets for formal techniques,
because the novel paradigm for program deployment introduced with Java, with
its improved portability and mobility, opens up new possibilities for abuse and
causes concern about security.

Work on formal techniques and tools for programs and work on the formal
underpinnings of programming languages themselves naturally complement each
other. This workshop aims to bring together people working in both these fields,
on topics such as: program verification, formal models and extensions of Java-like
languages, program analysis, and type systems.

The workshop was organized by Marieke Huisman (INRIA Sophia Antipolis,
France), Sophia Drossopoulou (Imperial College London, UK), Susan Eisenbach
(Imperial College London, UK), Gary T. Leavens (University of Central Florida,
USA), Peter Müller (Microsoft Research, Redmond, USA), Arnd Poetzsch-Heffter
(University of Kaiserslautern, Germany), and Erik Poll (Radboud University
Nijmegen, Netherlands). The selection of papers was done by a larger program
� Affiliated with INRIA Sophia Antipolis at the time of the workshop.

P. Eugster (Ed.): ECOOP 2008 Workshop Reader, LNCS 5475, pp. 70–76, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Formal Techniques for Java-Like Programs 71

committee chaired by Marieke Huisman. The committee members are listed at
the end of this report.

Around 40 people attended this full-day workshop. A representative list of
participants is given at the end of this report. A number of other participants
dropped by for specific presentations, to chat with particular speakers, etc. To
encourage cross-fertilization with related research areas, the IWACO and FTfJP
workshops organized a joint workshop dinner.

Overview of the presented papers. Sixteen research papers were submitted,
of which eleven were accepted for presentation at the workshop. The program
committee made its selection after a fruitful discussion. Besides quality of the
submission, also potential interest of the presentation for the workshop partici-
pants was used as a criterion.

The accepted papers are collected in informal proceedings that are available as
technical report ICIS-R08013 from the Radboud University Nijmegen, Nether-
lands, available at http://www.cs.ru.nl/~erikpoll/ftfjp/FTfJP08

The topics addressed by the presented papers are:

– program verification;
– formal models and extensions for Java-like languages;
– program analysis; and
– type systems.

For each topic, the sections below briefly describe the presentations and discus-
sions.

2 Program Verification

Jan Smans talked about joint research with Bart Jacobs and Frank Piessens
on the verification of implicit dynamic frames. Dynamic frames are a powerful
mechanism for modular verification. They propose a technique that avoids the
need to explicitly specify and verify frame conditions; these are replaced by ac-
cessibility predicates from which an upper bound on the set of locations that
may be modified can be inferred. The technique has been implemented in a tool
set, and Jan demonstrated how it could be used to verify several challenging
examples. The discussion following the presentation revolved around the simi-
larities with Banerjee et al.’s work on regional logic which was to be presented in
the following days as a part of ECOOP’s technical track. In regional logic, region
expressions can be used to explicitly specify read and write effects that, similar
to dynamic frames, needs to be checked at verification time. Implicit dynamic
frames do not require these explicit annotations but rely on inferring frame in-
formation from preconditions. Finally, the discussion also touched briefly on the
subject of patterns, in particular the application to examples involving more
layers of structure, e.g. the Composite pattern, which would be useful to test
the practical usability of the proposed tool set. However, this did not arrive at
any conclusion.

72 E. Albert et al.

Romain Bardou presented a way to reason about pointer arithmetic and mem-
ory separation for low-level languages, based on ownership systems. Because of
the low-level language features that are supported by his approach, the verifica-
tion technique can be applied to C programs. In the following discussion, Dino
DiStefano and others questioned whether the assumption of fresh pointer loca-
tions was sound in the presence of pointers and pointer arithmetic and that in
a C program, a newly allocated object may be given an address already pointed
to by preexisting variables. Currently, Bardou’s simple formalisation does not
model memory deallocation.

The last talk in this session was given by Dave Cunningham, who presented
joint work with Susan Eisenbach and Sophia Drossopoulou on the formalization
of a lock inference algorithm. A good way to structure concurrent programs
(and thus make them less error-prone) is the use of atomic sections. This is a
high-level primitive, which can be compiled into transactional memory accesses
or a locking schema. This paper discusses an efficient and precise algorithm that
infers locks from atomic sections. The algorithm is formalized in Isabelle/HOL
and proven correct. The discussion evolved around the possibility to combine
lock inference with partial program annotations.

3 Formal Models and Extensions of Java-Like Languages

John Boyland presented a new style operational semantics for a concurrent lan-
guage with fork-join parallelism, synchronization, and volatile fields. The op-
erational semantics introduces the notion of “write-key”, which simulates the
happens before order of relaxed memory models, i.e., it indicates whether a cer-
tain write could happen based on what happened before in the program. The
paper then shows that exhibiting a write-key error in the operational seman-
tics is equivalent to the program containing a data race. The advantage of this
approach is that write-key errors can be detected locally, whereas data races
cannot. The operational semantics and equivalence proof are formalized using
Twelf. The discussion mainly focused on issues about the correctness results.
There was one question which clarified that correctness holds for any possible
execution and not only for a given entry. Also, another question made clear that
there is no order required on the write-keys and neither are time-stamps.

Next, Gabriele Costa proposed an extension of Java’s security model that
would allow to specify, analyze, and enforce history-based security policies. This
is joint work with Massimo Bartoletti, Pierpaolo Degano, Fabio Martinelli, and
Roberto Zunino. Crucial to the approach is that the policies are local, which
makes them easier to enforce and allows for safe composition of programs and
their security requirements. This paper designs a run-time mechanism for the
enforcement of local history-based security properties, and then further optimizes
this, based on a static analysis that detects when a policy might be violated—
and thus allows one to discard checks that never fail. During the discussion,
Gabriele explained that the models which are obtained for the policies are finite
with respect to the number of states. He also clarified that the expressiveness of
their approach is comparable to other history-based approaches.

Formal Techniques for Java-Like Programs 73

The last paper in this session was presented by Tetsuo Kamina. He discussed
joint work with Tetuso Tamai on a small core language that formalizes key
concepts of object adaptability, i.e., the ability of an object to change its behavior
dynamically. The small core language is compared with the earlier proposed
Epsilon model for object adaptability, and it turns out to be an appropriate
formal base for this model .After the presentation, there were several suggestions
to improve this work by various workshop participants. One comment was how
to handle multiplicity by giving rules for valid multiplicity such that if they are
violated then the program is not valid. Another suggestion was to use a typed
execution model. Further the relation of this work with roles was discussed,
and also, how one could handle the situation where a role defined in a subclass
imposes constraints on roles as inherited from superclasses.

4 Program Analysis

The next session started with Elvira Albert presenting joint work with Puri
Arenas, Samir Genaim, and Germán Puebla on the handling of numeric fields
to automatically prove termination of programs written in a Java-like language.
Statistics have revealed that in the Java libraries for over 10% of the loops,
termination depends on the values stored in numeric fields. The presentation gave
an overview of different program patterns where termination depends on numeric
fields, and it sketched how termination proofs for these programs could be found
automatically. The discussion evolved on the precision of the analysis, the merits
of performing analysis at byte-code or source code level, and a comparison with
any optimizations performed by the Java compiler, in particular whether the
transformation of field accesses to local variables is already done by the Java
compiler.

Next, Rok Strnǐsa presented his work on the Java module system. He analyzed
and formalised the core of two JSRs that propose a new module system for Java
(which will be part of Java 7). The analysis revealed several shortcomings in
the proposal, w.r.t. module instantiations and class resolution. The presentation
further proposed clean solutions to these problems, that are also modeled for-
mally (using Isabelle/HOL). This allowed him to prove type soundness for the
corrected version of the module system. The discussion evolved on the modifi-
cations to the module system suggested by Rok, the practical ramifications of
the proposed solutions, and in particular in how far these modifications would
be agreeable to the Java community. We also discussed the role of the formal
model in discovering these shortcomings.

Last, Samir Genaim presented joint work with Fausto Spoto on the detection
of purity of method arguments, by means of an abstract domain where “con-
stancy” is defined as an abstract interpretation. The presentation concluded with
examples of how constancy information can be used to improve the precision of
other, existing static analyses. The discussion centered around the comparison
of static analyses based on constancy with effect systems based approaches to
constancy.

74 E. Albert et al.

5 Types

The last session started with Alexander Summers presenting joint work with
Sophia Drossopoulou and Peter Müller on a Universe-Type based verification
technique for static fields and methods. In particular, he discussed how the use of
Universe Types for the verification of invariants should be adapted for a language
that contains static fields and methods. This required to extend Universe Type
hierarchy such that each ownership tree is rooted in a class. This allows classes
to own object instances as their static fields. Furthermore, methods need to be
annotated by the classes whose static methods they may (directly or indirectly)
invoke. These annotations can be reduced by organizing classes in layers. The
presentation was followed by a discussion of whether the approach can be made
more lightweight by inferring the levels of classes, and the annotations. Also,
there was a question whether partial, instead of linear, orders could be used for
the partitions of classes; the authors conjectured partial orders could be used.

The last presentation of the workshop was given by Stefan Wehr, who pre-
sented joint work with Peter Thieman on subtyping existential types. Existential
types are often advocated as a powerful feature that can subsume Java’s inter-
face and wildcard types, and several proposals exist to extend Java-like languages
with existential types. However, Stefan showed that existential types do not min-
gle well with subtyping, and make type checking undecidable. He concluded with
some possible compromises that allow most of the features of existential types,
but keep the subtyping relation decidable. The following discussion centered
on the implication of the work on decidability for Java wildcards, and newer
applications of existential types into ownership types.

6 Conclusions

A special issue for FTfJP 2008 will appear in the Journal of Object Technology
(JOT).

This was the tenth workshop in the series, and the workshop is still going
strong. The focus of the workshop has shifted somewhat over time, as different
topics become more or less popular, or essentially resolved, while others have
gained importance. Moreover, the revival of IWACO (International Workshop
on Aliasing, Confinement and Ownership in object-oriented programming) has
also contributed to this shift. It is nice to observe that the workshop has helped
in raising some interesting topics for research, and to observe the way it has
contributed to fostering collaborations, all of which has resulted in good work
presented not just at this workshop but also at the main ECOOP conference.

The workshop has somewhat outgrown the standard workshop format, given
the number and quality of submissions it typically received, and the number of
people that want to participate. But the interest it generates and the audience
it attracts proves that it clearly serves a useful purpose and we look forward to
organizing another FTfJP workshop at next year’s ECOOP.

Formal Techniques for Java-Like Programs 75

Program Committee

Elvira Albert, Complutense University of Madrid (Spain)
Cyrille Artho, RCIS/AIST (Japan)
Anindya Banerjee, Kansas State University (USA)
Mike Barnett, Microsoft Research, Redmond (USA)
Amy Felty, University of Ottawa (Canada)
Paola Giannini, University of Eastern Piedmont (Italy)
Rene Rydhof Hansen, Aalborg University (Denmark)
Marieke Huisman (chair), INRIA Sophia Antipolis (France)
Atsushi Igarashi, Kyoto University (Japan)
Bart Jacobs, University of Leuven (Belgium)
Gerwin Klein, National ICT Australia (Australia)
Neelakantan R. Krishnaswami, Carnegie Mellon University (USA)
Matthew Parkinson, University of Cambridge (UK)
Arnd Poetzsch-Heffter, University of Kaiserslautern (Germany)
Tobias Wrigstad, Purdue University (USA)

List of Participants

Suad Alagic, University of Southern Maine (USA)
Elvira Albert, Complutense University of Madrid (Spain)
Jonathan Aldrich, Carnegie Mellon University (USA)
Anindya Banerjee, Kansas State University (USA)
Romain Bardou, INRIA Saclay (France)
Massimo Bartoletti, Universitá di Pisa (Italy)
Frederic Besson, IRISA/INRIA (France)
John Boyland, University of Wisconsin-Milwaukee (USA)
Nicholas Cameron, Imperial College (UK)
Dave Clarke, CWI (The Netherlands)
David Cunningham, Imperial College (UK)
Dino Distefano, University of Cambridge (UK)
Sophia Drossopoulou, Imperial College (UK)
Patrick Eugster, Purdue University (USA)
Adrian Fiech, Memorial University (Canada)
Samir Genaim, Technical University of Madrid (Spain)
Paola Gianini, Alessandria (Italy)
Christian Haack, Radboud University Nijmegen (The Netherlands)
Clement Hurlin, INRIA (France)
Atsushi Igarashi, Kyoto University (Japan)
Tetsuo Kamina, The University of Tokyo (Japan)
Gary T. Leavens, University of Central Florida (USA)
Yu David Liu, The Johns Hopkins University (USA)
Nicholas Matsakis, ETH Zurich (Switzerland)
Ana Milanova, Rensselaer Polytechnic Institute (USA)

76 E. Albert et al.

Peter Müller, Microsoft Research (USA)
James Noble, Victoria University of Wellington (New Zealand)
Johan Oetlund, Purdue University (USA)
Alex Potanin, Victoria University of Wellington (New Zealand)
Germán Puebla, Technical University of Madrid (Spain)
Jan Smans, Katholieke Universiteit Leuven (Belgium)
Rok Strnǐsa, University of Cambridge (UK)
Alex Summers, Imperial College (UK)
Tiphaine Turpin, IRISA/INRIA (France)
Jan Vitek, Purdue University (USA)
Stefan Wehr, University of Freiburg (Germany)
Tobias Wrigstad, Purdue University (USA)

Quantitative Approaches in Object-Oriented

Software Engineering

Report on the 12th Workshop QAOOSE at ECOOP 2008

Giovanni Falcone1, Yann-Gaël Guéhéneuc2, Christian F.J. Lange3,
Zoltán Porkoláb4, and Houari Sahraoui1

1 Lehrstuhl für Softwaretechnik,
Universität Mannheim, Germany

2 Department of Computer Science and Operations Research,
Université Montréal, Canada

3 Software Engineering and Technology Group,
Eindhoven University of Technology, The Netherlands

4 Department of Programming Languages and Compilers,
Eötvös Loránd University, Hungary

Abstract. The QAOOSE 2008 workshop has been held at ECOOP 2008
conference in Paphos, Cyprus on July 8th, 2008. This was the twelfth
of the series of QAOOSE workshops intended to bring researchers and
practitioners both from academia and industry together. The workshop
provided a forum to discuss the current state of the art and the practice
in the area of quantitative approaches in the fields related to object-
orientation. This report includes a summary of the technical presenta-
tions and the subsequent discussions. Six papers has been accepted by
the workshop organizers. The presentations were followed by vivid dis-
cussions.

1 Introduction

QAOOSE 2008 is a direct continuation of eleven successful workshops, held
during previous editions of ECOOP in Berlin (2008), Nantes (2006), Glasgow
(2005), Oslo (2004), Darmstadt (2003), Malaga (2002), Budapest (2001), Cannes
(2000), Lisbon (1999), Brussels (1998) and Aarhus (1995). The QAOOSE series
of workshops has attracted participants from both academia and industry that
are involved/interested in the application of quantitative methods in object-
oriented software engineering research and practice. Quantitative approaches
in the object-oriented field are a broad and active research areas that develop
and/or evaluate methods, practical guidelines, techniques, and tools to improve
the quality of software products and the efficiency and effectiveness of software
processes. The workshop is open to other technologies related to object-oriented
such as component-based systems, web-based systems, and agent-based systems.

This workshop provides a forum to discuss the current state of the art and
the practice in the area of quantitative approaches in the fields related to object-
orientation. A blend of researchers and practitioners from industry and academia

P. Eugster (Ed.): ECOOP 2008 Workshop Reader, LNCS 5475, pp. 77–86, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

78 G. Falcone et al.

is expected to share recent advances in the field success or failure stories, lessons
learned, and seek to identify new fundamental problems arising in the field.

2 The Workshop Program

09:00 - 09:15 Welcome and QAOOSE introduction
09:15 - 10:30 Session 1: Graph-based Assessment
09:15 - 09:45 Quantitative Comparison of MC/DC and DC Test Methods

Zalán Szűgyi and Zoltán Porkoláb
09:45 - 10:15 The AV-graph in SQL-Based Environment

Norbert Pataki, Melinda Simon, and Zoltn Porkolb
10:15 - 10:30 Session Discussion
10:30 - 10:45 Session Break
10:30 - 11:45 Session 2: Quality Assessment
10:30 - 11:00 Quantitative analysis of testability antipatterns on open source

Java applications
Muhammad Rabee Shaheen and Lydie du Bousquet

11:00 - 11:30 Evaluating Quality-in-Use Using Bayesian Networks
M.A Moraga, M.F. Bertoa, M.C. Morcillo, C. Calero, A. Vallecillo

11:30 - 11:45 Session Discussion
11:45 - 12:15 Coffee Break
12:15 - 13:30 Session 3: Metrics
12:15 - 12:45 Metrics for Analyzing the Quality of Model Transformations

M.F. van Amstel, C.F.J. Lange, and M.G.J. van den Brand
12:45 - 13:15 A Basis for a Metric Suite for Software Components

Giovanni Falcone and Colin Atkinson
13:15 - 13:30 Session Discussion
13:30 - 15:30 Lunch Break
15:30 - 17:00 Session 4

Discussions and/or Work on a common problem/project/paper

3 Presentations

3.1 Quantitative Comparison of MC/DC and DC Test Methods

Zalán Szűgyi and Zoltán Porkoláb
Department of Programming Languages and Compilers,
Eötvös Loránd University
Pázmány Péter sétány 1/C H-1117 Budapest, Hungary
{lupin, gsd}@elte.hu

Coverage refers to the extent to which a given verification activity has satis-
fied its objectives. There are several types of coverage analysis exists to check

Quantitative Approaches in Object-Oriented Software Engineering 79

the code correctness. Usually the less strict analysis methods require fewer test
cases to satisfy their requirements and the more strict ones require more. But
it is not clear how much is the ”more”. In this paper we concern to the Deci-
sion Coverage and the more strict Modified Condition / Decision Coverage [1].
The authors examined several projects used in the industry by several aspects:
McCabe metric, nesting and maximal argument number in decisions. The paper
discusses how these aspects are affected the difference of the necessary test cases
for these testing methods.

The authors analyzed several projects written in Ada programming language
and estimated the difference of the required test cases of Decision Coverage and
the more strict Modified Condition / Decision Coverage [2]. They found that the
difference is about five to ten per cent because the decisions in most subprograms
have only one argument and there are several subprograms which do not contain
decisions at all. If we exclude these subprograms we get a difference that is four
times larger. Most importantly, the maximum number of arguments in decisions
affects the difference. For those subprograms where there are decisions with more
than six arguments, almost twice as many MC/DC test cases are needed as DC.
But these subprograms are only less than one per cent of the whole project.
The authors’ intention for future work is to refine the analyzer program to do
a better estimation in some exceptional cases, and they plan to do this analysis
for some open source and other industrial projects too.

3.2 The AV-Graph in SQL-Based Environment

Norbert Pataki, Melinda Simon, and Zoltán Porkoláb
Department of Programming Languages and Compilers,
Eötvös Loránd University
Pázmány Péter sétány 1/C H-1117 Budapest, Hungary
{patakino, melinda, gsd}@elte.hu

Multiparadigm metrics can be used in various situations for various purposes.
This paper presents a description of the problem of a multi-paradigm environ-
ment and argues that the measurement of multiparadigm programs need to be
done using multparadigm metrics. SQL (Structured Query Language) is the
most common language defining and manipulating data in databases [3]. How-
ever, SQL is not an imperative language but a declarative one. In this paper the
authors analize the behavoiur of AV-graph, a multiparadigm software metrics
[4] that also can be used in SQL supported environment.

The paper informally introduces AV-graph and describes the meaning of AV-
graph in the SQL language. They extend the AV-graph metric to languages
supporting embedded SQL. The authors specificate the connection between the
metric and language in a sophisticated way and give some examples to check it
on real queries. Some open problems are defined too. Unfortunately, the paper
does not include any measurement for real-world artifacts yet, developing such
tools is the future plan of the authors.

80 G. Falcone et al.

3.3 Quantitative Analysis of Testability Antipatterns on Open
Source Java Applications

Muhammad Rabee Shaheen and Lydie du Bousquet
Laboratoire Informatique de Grenoble (LIG)
Universites de Grenoble (UJF)
B.P. 72 - F-38402 - Saint Martin dHéres Cedex - France
{muhammad-rabee.shaheen,lydie.du-bousquet}@imag.fr

Testability is a software characteristic that aims at producing systems easy to
test. Antipatterns is a factor that could affect negatively the testability of a
software. Dependency is the main idea that is found behind different studies
related to antipatterns. Testability antipatterns identify the existed weaknesses
in a design pattern. In this paper the authors introduce a quantitative analysis
to show some factors that lead to increase the antipatterns [5].

Testability is a software factor that could be used to detect the different weak-
nesses that could increase the difficulty of the test. Several metrics have been
proposed to evaluate the testability of object oriented programs [6]. Certain met-
rics were defined at representation facet other were defined at implementation
facet. Antipatterns are weaknesses that reduce the testability of a software. The
antipatterns could be detected early in the life cycle of software development.
The goal of the authors’ quantitative analysis was to find if there is any rela-
tionship between the occurrence of antipatterns and the characteristics of the
code.

This study is based on 14 open-source Java applications. The results presented
here show that about 50% of cycles are of size 2, and 20% of cycles are of size
3. On the other hand the analysis showed that 56.48% of classes that belong to
cycles are inner classes. As a result about 70% of cycles could be avoided if one
limits the use of cycles of size 2 and 3. And one can reduce the size of the cycles
by avoiding the number of inner classes that present more than 55%.

For the future work, authors are looking for other structural elements that
could increase the occurrence of the cycles i.e. inheritance, complexity.

3.4 Evaluating Quality-in-Use Using Bayesian Networks

M.A Moraga, M.F. Bertoa, M.C. Morcillo, C. Calero1, A. Vallecillo
Alarcos Research Group Institute of Information Technologies & Systems
Dept. Information Technologies & Systems Escuela Superior de Informtica
Universidad de Castilla-La Mancha, Spain
Dept. Lenguajes y Ciencias de la Computación
Universidad de Málaga, Spain
Dept. Estad́ıstica e Investigación Operativa.
Universidad de Málaga, Spain

This paper challenges the traditional approach for assessing the overall quality
of a software product, which is based on the assumption that, in ISO/IEC 9126
terms, a good external quality ensures a good quality-in-use. Here the authors

Quantitative Approaches in Object-Oriented Software Engineering 81

change the focus of the quality assessment, concentrating on the quality-in-use as
the driving factor for designing a software product, or for selecting the product
that better fits a user’s need. The authors propose a ”backwards” analysis of
the relationship between the external quality and the quality-in-use which tries
to determine the external quality sub-characteristics that are really relevant to
ensure the required level of quality in a given context of use, in order to avoid
superfluous costs or irrelevant features – which may unnecessarily increase the
final price of the product [7,8].

In this paper Bayesian Belief Networks is used to model such relationships,
and propose a method to build them for different contexts of use. It has been
shown how to build a BN for determining the influence of EQ sub-characteristics
on the overall QiU of a software product. Fenton et al. [9] have also used BNs to
predict some EQ characteristics from the internal quality of software products,
but without considering the QiU, and using a ”forward” prediction process. The
authors’ aim is, however, to focus on the QiU and use a backwards analysis for
predicting the minimum acceptance levels for EQ characteristics that ensure the
required QiU.

Of course, this is just the first step of a more complete line of work that
aims at providing users of given contexts of use with tool support for evaluating
software products (including, e.g., the selection of those products that better
suit their needs with the less possible costs).

There are several activities that the authors plan to address in the short
term. Firstly, they want to empirically validate the proposal by exercising the
BN in several contexts of use, adapting the BN to the specific peculiarities of
each context, and checking that it learns as it should for these contexts. The
final results of these tests will be a set of trained BNs that we expect to be
useful in these environments. The way to validate the results (conducting some
experimental validation exercises) is a research activity itself.

Secondly, the authors also want to refine this approach by combining it with
some Principal Component Analysis during the initial definition of the BN,
whereby they can confirm (and refine) the relationships between the EQ subchar-
acteristics and the QiU characteristics. Finally, they expect to provide a useful
input to the ISO Working Group defining the new SQUARE family of standards
based on their researches, not only confirming the existence of the influence of
EQ on QiU, but also quantifying it in some specific contexts of use; and, more
importantly, highlighting the primary role that QiU plays in the evaluation of
the quality of any software product as the driving force of the rest of the quality
views.

3.5 Metrics for Analyzing the Quality of Model Transformations

M.F. van Amstel1, C.F.J. Lange2, M.G.J. van den Brand
Department of Mathematics and Computer Science
Eindhoven University of Technology
Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{M.F.v.Amstel,M.G.J.v.d.Brand}@tue.nl

82 G. Falcone et al.

Federal Office for Information Technology
Barbarastrae 1, 50735 Cologne, Germany
mail@christian-lange.com

Model transformations become increasingly important with the emergence of
model driven engineering of, amongst others, object-oriented software systems.
It is therefore necessary to define and evaluate the quality of model transforma-
tions. The goal of this research is to make the quality of model transformations
measurable. This position paper presents the first results of this ongoing re-
search. It presents the quality attributes the authors have identified thus far and
a set of metrics to assess these quality attributes.

The main contribution is a set of eight quality attributes that can be used to
assess the quality of model transformations. To refine these quality attributes
and make them tangible, the authors have presented a set of metrics that can be
used to assess these quality attributes. The initial results are presented in this
position paper are a basis for future work in the direction of quality of model
transformations. To assess the quality of model transformations, a clear defini-
tion of quality is needed first. The authors presented the eight quality attributes
they identified thus far. They plan to extend this set of quality attributes and re-
late them in a quality model such as proposed in [10]. In this paper they focused
on ASF+SDF model transformations. They expect that our techniques can be
generalized and applied to other model transformation formalisms, such as ATL
as well. The intended quality model will be the same, but some metrics to assess
the quality attributes need to be adapted to the specifics of the transformation
formalism. Authors proposed the metric number of functions as a measure for
the size of a transformation created in ASF+SDF. For model transformations
created with ATL the number of transformation rules could be used to mea-
sure size. However, they expect that most metrics will be conceptually the same
for different transformation formalisms. They want to verify their approach by
means of empirical case studies. It is infeasible and inaccurate to extract metrics
from model transformations by hand. Therefore they have to implement a tool
that can automatically extract the values of all of the metrics from a model
transformation. Furthermore visualisation of the values of metrics in such a way
that outliers and striking values can easily be observed. Something similar has
been done for software designs [11].

Once the authors have identified quality problems in model transformations,
they can propose a methodology for improving their quality. This methodology
will probably consist of a set of guidelines which, if adhered to, lead to high-
quality model transformations.

3.6 A Basis for a Metric Suite for Software Components

Giovanni Falcone and Colin Atkinson
Chair of Softwareengineering, University of Mannheim, Germany
{gfalcone,atkinson}@informatik.uni-mannheim.de

Quantitative Approaches in Object-Oriented Software Engineering 83

Although software components have been used in software engineering for quite
some time, only a small number of metric suites have been designed to capture
the idiosyncrasies of components and the systems developed from them [12].
Moreover, these are rather limited because they treat components as if they
were objects in an object-oriented programming language. In this paper the au-
thors outline a more component-oriented metric suite which is based on four
distinct views of components – external, shallow, deep and complete. By mea-
suring the various properties of a component from these different viewpoints it is
possible to create metrics which capture the relative distribution of ”realization”
between the component’s own application logic, its nested components and its
external used components. These, in turn, are likely to be indicators of quality
characteristics such as reliability and maintainability.

In the paper the authors presented the idea behind a novel a metric suite
which is customized for software components. They have identified four funda-
mental views of components and used these to define a range of different metrics
based on the core structural and architectural properties of components. The
two final relative metrics in the previous are two of the most interesting from
their point of view since they will be strong indicators of important external
characteristics of a component. For example, authors suspect that the Propor-
tion External Cyclomatic Complexity (PECC) will be a good indicator of likely
dependability since it is the use of external functionality in component and ser-
vice based architecture which bears the highest risk. Similarly, authors believe
that the Proportion Delegated Cyclomatic Complexity (PDCC) will be a good
indicator of the maintainability of a component because it indicates how much of
functionality of the component needs to be maintained and how much is obtained
from used components.

Although the deep and complete metrics theoretically include information
about the nested and external components, the authors do not want to have to
examine them in detail to calculate the deep and complete metrics. Rather the
goal is to be able to calculate the deep and complete metrics for a component
using the corresponding shallow and deep metrics for its sub and external com-
ponents. This should be possible because with one exception the metrics would
appear to be additive. The one exception is when a component that is exter-
nal to a subcomponent is not external to its super component. The authors are
currently working on a strategy to address this issue. They also plan to focus
their investigation on how these metrics relate to quality characteristics like ef-
fort, reliability, maintainability, etc. Additionally they plan to analyze how these
metrics relate to other metrics suites like the OO metrics.

4 The Organizers

Giovanni Falcone
University of Mannheim, Germany
falcone@informatik.uni-mannheim.de

Giovanni Falcone is a PhD student at the Chair of Software Engineering, Uni-
versity of Mannheim, Germany. His PhD has the working title ”A metric suite

84 G. Falcone et al.

for hierarchical component based systems” and will be completed in 2009. His
research interests include high performance computing, hardware/software code-
sign, model driven architecture, object-oriented metrics, metrics for component
based systems, and software quality.

Yann-Gaël Guéhéneuc
University of Montreal, Canada
guehene@iro.umontreal.ca

Yann-Gaël Guéhéneuc is assistant professor at the Department of Informatics
and Operations Research (Software Engineering Group) of University of Mon-
treal. He holds a Ph.D. in software engineering from University of Nantes, France
(under Professor Pierre Cointe’s supervision) since 2003 and an Engineering
Diploma from cole des Mines of Nantes since 1998. His PhD thesis was funded
by Object Technology International, Inc. (now IBM OTI Labs.), where he worked
in 1999 and 2000. His research interests are program understanding and program
quality during development and maintenance, in particular through reverse en-
gineering and the identification of recurring patterns. He is also interested in
empirical software engineering and in software laws and theories. He has pub-
lished many papers in international conferences and leads the Ptidej team, which
develops a tool suite to evaluate and to enhance the quality of object-oriented
programs by promoting the use of patterns.

Christian Lange
Eindhoven, University of Technology, The Netherlands
mail@christian-lange.com

Christian Lange is a postdoctoral researcher in the Software Engineering and
Technology Group at the Eindhoven University of Technology (The Nether-
lands). In 2007 he finished his PhD titled ”Assessing and Improving the Quality
of Modeling: A Series of Empirical Studies about the UML”. His research in-
terests include empirical software engineering, quantitative approaches, software
quality, program comprehension, software architecture and software evolution.
He is the initiator of the EmpAnADa project for Empirical Analysis of Archi-
tecture and Design Quality at the TU Eindhoven. He is also the initiator of the
MetricView tool. Christian Lange has published more than 20 papers in inter-
national journals, conferences, and workshops such as: IEEE Software, ICSE,
MoDELS/UML, ICPC, HICSS, or QAOOSE. He has served in the organizing
committee of several international workshops, such as QAOOSE, Model Size
Metrics (MSM, co-located with MODELS, and the BENEVOL workshop for
research on software evolution in Belgium and the Netherlands.

Zoltán Porkoláb
Eötvös Loránd University, Hungary
gsd@elte.hu

Zoltán Porkoláb is associate professor at the Department of Programming Lan-
guages and Compilers, at the Faculty of Informatics, Eötvös Loránd University,

Quantitative Approaches in Object-Oriented Software Engineering 85

Budapest, Hungary, with almost 20 years of teaching experience both in the
higher education and in the form of industrial trainings. He has finished his PhD
in 2003 on the structured complexity of object-oriented programs. His research
area is generative programming and software complexity, especially the connec-
tions between metrics and software paradigms. He has published more than 60
papers in journals, conferences, and workshops. He has served in organizing com-
mittees, such ECOOP 2001, and programming committees, like GPCE 2007. He
is the main organizer of WGT, an ETAPS satellite workshop series.

Houari A. Sahraoui
University of Montreal, Canada
sahraouh@iro.umontreal.ca

Houari A. Sahraoui is associate professor at the Department of Computer Science
and Operations Research (SoftwareEngineeringGroup) of University of Montreal.
Before joining the university, he held the position of lead researcher of the software
engineering group at CRIM (research center on computer science, Montreal). He
holds an Engineering Diploma from the National Institute of Computer Science
(1990), Algiers, and a Ph.D. in Computer Science, Pierre and Marie Curie Univer-
sity LIP6, Paris, 1995. His research interests include the application of artificial
intelligence techniques to software engineering, object-oriented metrics, software
quality, software visualization, and software reverse- and re-engineering. He has
published around 100 papers in conferences, workshops, and journals and edited
two books. He served as steering, program and organization committee member
in several major conferences (ECOOP, ASE, METRICS, ICSM...) and as mem-
ber of the editorial boards of two journals. He was the general chair of the IEEE
Automated Software Engineering Conference in 2003.

References

1. Hayhurst, K.J., Veerhusen, D.S.: A Practical Approach to Modified Condi-
tion/Decision Coverage. In: 20th Digital Avionics Systems Conference (DASC),
Daytona Beach, Florida, USA, October 14-18, 2001, vol. 1, pp. 1B2/1-1B2/10
(2001)

2. Szűgyi, Z., Porkoláb, Z.: Necessary test cases for Decision Coverage and Modified
Condition / Decision Coverage. In: Proceedings of 6th CSCS Conference, July 2-5
(2008)

3. van den Brink, H., van der Leek, R., Visser, J.: Quality Assesment for Embedded
SQL. In: Proc. of Seventh IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM), pp. 163–170 (2007)

4. Porkoláb, Z., Sillye, Á.: Towards a multiparadigm complexity measure. In: 9th
ECOOP Workshop on Quantitative Approaches in Object-Oriented Software En-
gineering (QAOOSE 2005), pp. 134–142 (2005)

5. Baudry, B., Traon, Y.L., Sunyié, G.: Testability analysis of a uml class diagram. In:
8th IEEE International Software Metrics Symposium (METRICS 2002), Ottawa,
Canada, June 2002, p. 54 (2002)

6. Chidamber, R., Kemerer, C.F.: Towards a metrics suite for object oriented design.
In: OOPSLA, pp. 197–211 (1991)

86 G. Falcone et al.

7. Bertoa, M.F., Troya, J.M., Vallecillo, A.: Measuring the usability of software com-
ponents. Journal of Systems and Software 79(3), 427–439 (2006)

8. Moraga, M., Calero, C., Piattini, M.: Comparing different quality models for por-
tals. Online Information Review 30(5), 555–568 (2006)

9. Neil, M., Krause, P., Fenton, N.E.: Software Quality Prediction Using Bayesian
Networks. In: Software Engineering with Computational Intelligence, ch. 6. Kluwer,
Dordrecht (2003)

10. Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., Macleod, G.J., Merrit, M.J.:
Characteristics of Software Quality. North-Holland, Amsterdam (1978)

11. Lange, C.F.J., Chaudron, M.R.V.: Supporting task-oriented modeling using inter-
active UML views. Journal of Visual Languages and Computing 18(4) (2007)

12. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R.,
Muthig, D., Paech, B., Wüst, J., Zettel, J.: Component-based Product Line Engi-
neering with UML. Addison Wesley, Reading (2002)

Academic Software Development Tools and Techniques
Report on the 1st Workshop WASDeTT at ECOOP 2008

Roel Wuyts1, Holger M. Kienle2, Kim Mens3, Mark van den Brand4,
and Adrian Kuhn5

1 IMEC and KULeuven, Belgium
2 Department of Computer Science, University of Victoria, Canada

3 Département d’Ingénierie Informatique, Université catholique de Louvain, Belgium
4 Mathematics and Computer Science, Eindhoven University of Technology, Netherlands

5 Software Composition Group, University of Berne, Switzerland

Abstract. The objective of the 1st International Workshop on Advanced Soft-
ware Development Tools and Techniques (WASDeTT-1) was to provide inter-
ested researchers with a forum to share their tool building experiences and to
explore how tools can be built more effectively and efficiently. The theme for this
workshop did focus on tools that target object-oriented languages and that are
implemented with object-oriented languages.

This workshop report provides a brief overview of the presented tools and
of the discussions that took place. The presented tools, 15 in total, covered a
broad range of functionalities, among them: refactoring, modeling, behavioral
specification, static and dynamic program checking, user interface composition,
and program understanding. The discussion during the workshop centered around
the following topics: language independent tools, tool building in an industrial
context, tool building methodology, tool implementation language, and building
tools with external code.

1 Introduction

In this paper we report on the 1st Workshop on Academic1 Software Development Tools
and Techniques (WASDeTT-1) that was held at ECOOP 2008. WASDeTT is planned
as a workshop series that collocates with different conferences in the future; it is moti-
vated by the observation that tools and tool building play an important role in applied
computer science research. The tangible results of research projects are often embodied
in a tool. Even though tool building is a popular technique to validate research (e.g.,
proof-of-concept prototyping followed by user studies), it is neither simple nor cheap
to accomplish. Given the importance of tool building and the significant cost associated
with it, we have initiated this workshop that allows interested researchers to share their
tool building experiences and to explore how tools can be build more effectively and
efficiently.

1 In fact, the official title of the workshop was ‘Advanced Development Tools and Techniques’
but during the workshop discussions it became clear that a more dedicated focus on ‘academic’
tools would have been a better choice.

P. Eugster (Ed.): ECOOP 2008 Workshop Reader, LNCS 5475, pp. 87–103, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

88 R. Wuyts et al.

The workshop series aims to address general topics such as the following questions:

– Should tool building remain a craft?
– Should research prototypes be of commercial quality?
– How to integrate and combine independently developed tools?
– What are the positive lessons learned in building tools?
– What are the (recurring) pitfalls in tool building?
– What are the good practices and techniques?
– Are there architectures and patterns for tool building?
– How to compare or benchmark tools?

Thus, the workshop series devotes particular attention to academic software develop-
ment tools and tool building issues, where the term “development” is to be interpreted
in the largest sense possible to encompass not only software development per se, but
any subsequent evolution or maintenance activity.

The purpose of this workshop was not to focus on any specific kind of tool (say,
refactoring or program comprehension tools), but rather to gather researchers working
on a broad range of tools, with the goal of:

– providing a forum where tool builders—particularly, builders of experimental re-
search prototypes—can talk about common issues relevant to the community of
tool builders.

– providing a forum (workshop and associated journal) where researchers can present
and explain their tool and thus not only get feedback on it but also real scientific
credit.

Since this first edition was held at an object-oriented programming conference, all par-
ticipants were working on academic tools that support object-oriented software devel-
opment or tools that analyze, manipulate or reason about object-oriented source code.

Since the workshop has an interest in both tool-building issues and experimental
tools themselves, two different kinds of contributions were solicited from potential par-
ticipants:

1. either a traditional position paper with the participant’s vision on tool-related is-
sues;

2. or an actual tool submission where the participant will get the possibility of pre-
senting his or her tool and how it was built.

We deliberately did not put any restrictions on the kinds of tools that are eligible for
this workshop: the tools can be early prototypes, may have been around for years, or
may have recently undergone a drastic re-implementation. Nevertheless, we do have a
particular interest in experimental research tools (as opposed to commercial tools) and
tools that target the object-oriented software development paradigm.

In spite of our focus on experimental research tools, we explicitly solicited position
papers from software industrials as well. Not only will their participation in the work-
shop allow them to get a sneak preview of state-of-the-art research tools, their opinions
and visions would allow builders of research prototypes to learn more about the actual
needs of industry.

Academic Software Development Tools and Techniques 89

1.1 Origin of the Workshop and Related Workshops

The WASDeTT series builds on the experience and success of the earlier Workshop
on Object-Oriented Reengineering (WOOR) series of which seven editions were co-
located with ECOOP conferences. The 10th and last anniversary edition of WOOR was
organized at ECOOP 2007 [1]. In spite of its specific focus on reengineering issues,
WOOR traditionally gave a lot of attention to tools and tool building issues. In the last
WOOR a position paper on Must Tool Building Remain a Craft? [2] was presented as a
spring board for subsequent discussions on tool building issues in a breakout group. A
result of this discussion group was that tool building issues should be further pursued
within the context of a dedicated workshop series that is co-organized by the former
WOOR organizers and participants, resulting in WASDeTT.

In the past, there have been other workshop that have touched on tool building is-
sues. For example, the reverse engineering community has actively discussed tool in-
tegration in the Workshop on Standard Exchange Format2 (WoSEF) [3] at ICSE 2000,
the Dagstuhl Seminar 01041 on Interoperability of Reengineering Tools3 in 2001, and
the Workshop on Design Issues for Software Analysis and Maintenance Tools at ICSM
2005 [4]. Tool builders are increasingly leveraging external code in the form of off-
the-shelf components (cf. Section 3.5). Integration issues for components is the focus
of the International Workshop on Incorporating COTS-Software into Software Systems
(IWICSS) that was held in 2004 at ICCBSS4 and in 2007 at ICSE.5

Next to these series of workshops the journal Science of Computer Programming has
devoted several special issues to academic tools and tool building. Sofar, two special
issues of Experimental Software and Toolkits (EST) have been published, one in 2007
[5] and one in 2008 [6].

The observation that it is difficult to get software engineering tools adopted by in-
dustry has led to the Adoption-Centric Software Engineering (ACSE) workshop series
from 2001 to 2004 [7] and more recently to the Workshop on Technology Transfer in
Software Engineering 6 at ICSE 2006.

2 Accepted Papers

All submitted and accepted papers present academic research tools. These papers are
available on the workshop web site at

http://smallwiki.unibe.ch/wasdett2008/submissions/

The tools, 15 in total, cover a broad range of topics, among them: refactoring, mod-
eling, behavioral specification, static and dynamic program checking, user interface
composition, and program comprehension. In the following, we give a brief summary

2 http://www.ics.uci.edu/˜ses/wosef/workshop.html
3 http://www.dagstuhl.de/01041
4 http://www.tuisr.utulsa.edu/iwicss/
5 http://www.softwareml.com/IWICSS07/
6 http://web.cecs.pdx.edu/˜warren/wottse/

http://smallwiki.unibe.ch/wasdett2008/submissions/
http://www.ics.uci.edu/~ses/wosef/workshop.html
http://www.dagstuhl.de/01041
http://www.tuisr.utulsa.edu/iwicss/
http://www.softwareml.com/IWICSS07/
http://web.cecs.pdx.edu/~warren/wottse/

90 R. Wuyts et al.

of the tools. In the subsequent discussion (cf. Section 3) we will refer to the tools to
support our observations.

Churrasco: Supporting Collaborative Software Evolution Analysis [8].7 This tool aims
to support program comprehension of (distributed) development teams. It offers several
visualizations that allow team members to explore software structures via an interac-
tive web interface. Churrasco visualizes information obtained from FAMIX models,
Subversion and Bugzilla.

The MARPLE Project: A Tool for Design Pattern Detection and Software Architecture
Reconstruction [9].8 This tool supports two reverse engineering tasks that help program
comprehension, namely identification of design patterns as well as architecture recon-
struction. MARPLE is realized as an Eclipse plug-in and supports systems written in
Java.

Hopscotch: Towards User Interface Composition [10].9 Hopscotch is an application
framework and IDE of the Newspeak language. Newspeak is a dynamic language that
is influenced by Smalltalk, Self and Beta, and implemented within Squeak. Hopscotch
leverages Newspeak to realize a novel approach to interface composition.

Enforcing Structural Regularities in Software using IntensiVE [11].10 IntensiVE is a
tool suite for documenting structural source-code regularities (such as design patterns,
coding conventions, etc.) in object-oriented software systems and verifying their con-
sistency in later versions of those systems. Structural regularities are described in a
declarative manner with a logic-based language.

The mCRL2 toolset [12].11 mCRL2 is a behavioral specification language and toolset
for describing communication behavior of software systems and to reason about them.
The toolset has been used on a number of industrial case studies.

The Rigi Reverse Engineering Environment [13].12 This tool supports program compre-
hension of software structures via a collection of fact extractors, a repository in the form
of a domain-customizable exchange format, and an interactive graph visualizer. Rigi is
a mature tool that is still used in research and popular in teaching, but it is currently no
longer actively evolved and is in bug-fix mode.

TestQ: Exploring Structural and Maintenance [14].13 The TestQ tool allows software
developers to explore the structure and properties of the xUnit tests of their system with
the goal to detect test smells. Test are visualized with hierarchical polymetric views that
show metrics, so called smell flowers, and pie charts.

7 http://churrasco.inf.unisi.ch/
8 http://essere.disco.unimib.it/reverse/Marple.html
9 http://newspeaklanguage.org/

10 http://www.intensive.be
11 http://mcrl2.org
12 http://www.rigi.csc.uvic.ca/
13 http://code.google.com/p/tsmells/

http://churrasco.inf.unisi.ch/
http://essere.disco.unimib.it/reverse/Marple.html
http://newspeaklanguage.org/
http://www.intensive.be
http://mcrl2.org
http://www.rigi.csc.uvic.ca/
http://code.google.com/p/tsmells/

Academic Software Development Tools and Techniques 91

The Small Project Observatory [15].14 The Small Project Observatory (SPO) is a
visualization-based tool that supports the interactive exploration of super-repositories
(i.e., repositories that host a collection of project that are developed in the context of an
organization). The visualization expose relationships between projects such as devel-
oper collaborations and time-line information such a size and activity evolutions.

Developing a Modeling Tool Using Eclipse [16].15 The Primus modeling tool supports
the notion of architectural primitives (e.g., callback, layering, and push-pull) in software
systems design. It is an Eclipse-based tool that offers modeling in UML with component
diagrams enhanced with dedicated stereotypes and OCL constraints.

Compose*: A Language and Platform Independent Aspect Compiler for Composition
Filters [17].16 The Compose* framework is a compilation and execution platform for
composition filters, which is a new language concept that can be applied to any pro-
gramming language that supports the notion of message passing. Compose* currently
supports Java and .NET as well as C.

The Nix Build Farm: A Declarative Approach to Continuous Integration [18]. This tool
supports the idea of continuous integration or daily builds and is used for several large
projects, among them the Stratego/XT program transformation toolset. Nix features a
lazy functional language to describe the building and composition of packages.

Building a Refactoring Tool for Erlang [19].17 This paper describes two major versions
of a refactoring tool, called RefactorErl, for the Erlang language. The authors explain
features of Erlang that make fully automatic refactoring difficult or impossible (such as
dynamically constructed code), describe the supported refactorings, and distill a number
of tool building guidelines based on their experiences.

Runtime Checking Java Code Using ConGu [20].18 ConGu is an Eclipse-based tool that
allows developers to write algebraic specifications that can be then be checked during
the execution of the program. ConGu’s compiler takes Java class files and translates the
specifications to Java Modeling Language assertions.

CodeCity [21].19 CodeCity is a tool that visualizes software interactively in 3D, follow-
ing a city metaphor. The buildings within the city represent classes, which are placed
within districts that represent the packages. CodeCity uses building sizes, colors and
transparency to enhance comprehension.

CScout: A Refactoring Browser for C [22].20 CScout is a refactoring tool for C that
has also support for source code analysis. It allows renaming of identifiers, but also
provides hyperlinked code browsing, and form-based querying and metrics calculations

14 http://evo.inf.unisi.ch:8009/spo/go/
15 http://www.rug.nl/informatica/onderzoek/programmas/
softwareEngineering/PatternHB/tool/index

16 http://www.ohloh.net/projects/composestar
17 http://plc.inf.elte.hu/erlang/
18 http://gloss.di.fc.ul.pt/congu/
19 http://www.inf.unisi.ch/phd/wettel/codecity.html
20 http://www.spinellis.gr/cscout/

http://evo.inf.unisi.ch:8009/spo/go/
http://www.rug.nl/informatica/onderzoek/programmas/softwareEngineering/PatternHB/tool/index
http://www.rug.nl/informatica/onderzoek/programmas/softwareEngineering/PatternHB/tool/index
http://www.ohloh.net/projects/composestar
http://plc.inf.elte.hu/erlang/
http://gloss.di.fc.ul.pt/congu/
http://www.inf.unisi.ch/phd/wettel/codecity.html
http://www.spinellis.gr/cscout/

92 R. Wuyts et al.

on identifiers, functions, and files. CScout has been used on large software systems such
as the Linux kernel.

The presented tools cover the whole software life cycle, ranging from system model-
ing (Primus) and behavioral specification (mCRL2), to frameworks for novel program-
ming paradigms (Compose*) and user interface design (Hopscotch), to build support
for a software system (Nix), to checking of programs based on static analysis (Inten-
siVE) and run-time execution (ConGu), to refactoring of programs (RefactorErl and
CScout), and to program comprehension (Churrasco, MARPLE, Rigi, TestQ, SPO, and
CodeCity).

Tools for program comprehension were especially well represented at the workshop.
All of these tools offer visualizations that help to understand the structure and proper-
ties of a software system. Traditionally, program comprehension tools have extracted
static dependencies of a single snapshot of a target system. This is the case for both
Rigi and MARPLE. Program comprehension tools have extended functionalities in var-
ious directions. For example, they mine source code for particular code patterns or bad
smells (MARPLE and TestQ), they extract information from more diverse sources such
as bug-tracking systems (Churrasco), they look at multiple snapshots and track the evo-
lution of a system over time (SPO and CodeCity), and they broaden their scope from a
single system to super-repositories (SPO).

3 Workshop Structure and Outcomes

The workshop featured presentations of all 15 tools. In order to allow sufficient time for
discussion, three tools were selected for longer presentations of 20 minutes each (i.e.,
IntensiVE, Churrasco, and Hopscotch) while the other tools were discussed in 7 minute
lighting talks (a.k.a. “blitz” presentations). The longer presentations allowed room for
a formal tool demo and were chosen because they seemed promising to give rise to
interesting interactions and discussions.

Presenters were instructed that they should introduce their tool in a nutshell (i.e., its
purpose, its strength and its main weaknesses) and to then focus on tool builder issues
(i.e., lessons learned that are of interest for fellow tool builders). Each talk was followed
by a short round of discussion that allowed for a few questions.

After the talks a short plenary discussion took place in order to plan the interactive
part of the workshop. The following topics were proposed by organizers and partici-
pants:

(i) language independent tools: How can we build tools that work across multiple
languages?

(ii) tool building in an industrial context: How to build tools that get accepted in in-
dustry?

(iii) data interoperability among tools: How to exchange data between tools and how
to process this data?

(iv) maturation of tools: How to grow a tool from an early prototype into a mature
tool or framework?

(v) tool building methodology: How—and to what degree—can we adopt established
software engineering techniques for building research tools?

Academic Software Development Tools and Techniques 93

(vi) tool building in teams: How to build tools in larger—and possibly distributed—
teams?

(vii) tool implementation language: How does the choice of a programming language
impact the building of a tool, its usability, and the context in which the tool can be
applied?

It was decided to pick the four most popular topics from the above list by vote, and
to allocate about 25 minutes for discussion for each topic. Each of the organizers did
introduce and moderate one topic. The selected topics were (i), (ii), (v) and (vii) and the
discussions are summarized in Sections 3.1–3.4, respectively.

By polling the audience we found that nearly everybody was actively engaged in
tool building or had concrete tool building experiences. This high level of expertise was
reflected by engaging and lively discussions.

During the decision on the topics a discussion ensued about the observation that a
significant number of tools depend on external code in the form of other tools, libraries,
or frameworks. This discussion is summarized and expanded upon in Section 3.5.

3.1 Language Independent Tools

Language independence is an important feature for a tool. It is equally important for
tool users as well as tool developers. From a user perspective, a tool that can be applied
to a portfolio of languages can be an important incentive because once the general
principles of a tool are understood, it can be applied to a larger variety of different
software systems. From a developer perspective, deciding on the target language(s) is
an important research decision that also can have a significant impact on the design and
architecture of the tool.

To better understand the issue of language independence, it is instructive to look
at the history of reverse engineering tools. Many reverse engineering tools, especially
the ones developed in the late 80s and early 90s, supported only a single programming
language (e.g., MasterScope for Lisp, FAST for Fortran, and Cscope for C [23]). Since
these tools consisted of a single front end, there was often a tight coupling between the
targeted language and the rest of the system [24]. This rather tight coupling was often
not intentional and thus not realized by the tool builders. Adding of a new front end
for a different language, which should have been a conceptually simple task, proved
in practice to be quite difficult or infeasible. This observation led to the proposal of a
clean separation between extraction and analysis by means of a language-independent,
general representation that captures the semantics of multiple source languages [24].21

Language independent representations enable a decoupling of the processing for dif-
ferent source languages from subsequent analyses. The vision here is that analyses can
operate across all of the source languages without modification. But can we come up
with a (intermediate) language that we can use to represent and reason about all lan-
guages? One approach to tackle this question is based on the observation that it depends

21 Note the similarity to the domain of compiler construction. For instance, UNCOL was an
attempt to define a unified, executable intermediate representation for diverse programming
languages.

94 R. Wuyts et al.

on the purpose of the language and the tools that leverage the language. Important con-
siderations are for instance:

– semantic rigor of the language elements
– granularity of the language elements
– abstractions that generalize over elements of different languages
– characteristics and diversity of the targeted languages

The more semantic precision we demand from a language, the more difficult it be-
comes to define and describe such a language. Semantic rigor is needed if the tool has
to support sound analyses (such as fully automated code transformations). In this case,
the language needs to be fine grained (i.e., allowing to express information at the level
of abstract syntax trees and control flow graphs). Examples of such tools are IntensiVE,
ConGu, and CScout. In contrast, there are tools that do neither require sound analy-
ses nor fine-grained information. This is the case for program understanding and re-
verse engineering tools that provide abstractions over the target language such as Rigi,
TestQ, and CodeCity. For such kinds of tools language independent representations
seem
feasible.

The FAMIX meta-model of the Moose tool provides a language-independent rep-
resentation of object-oriented features, the core model, which can be extended with
language-specific information via subclassing. FAMIX’s core model consists of entities
to represent classes, methods, attributes, method invocations, field accesses, and inher-
itance relationships. A weak approach to language independence is provided by Rigi’s
exchange format, called RSF. RSF enables to define a meta-model via attaching types in
the form of labels to nodes and arcs. Multiple meta-models can be shared by following
naming conventions on the type names. However, both FAMIX and RSF are so-called
“middle-level” representations; they have not been designed for the representation of
fine-grained information and as a consequence are not suitable for this purpose.

To achieve language independence it is necessary to find suitable abstractions that
generalize over multiple languages. In this respect, the challenge for a suitable language
independent representation is to find appropriate abstractions that preserve the needed
semantic rigor over multiple languages. The IntensiVE tool for example provides ab-
stractions in the form of intentions over properties of the source code. Another example
of abstraction are intermediate representations such as Java bytecode and .NET CIL
that are targeted by a number of diverse languages.

However, finding suitable abstractions can be difficult or may turn out to be infea-
sible. This leads to the observation that language independence should not be pursued
at all cost. From a research perspective, language independence is often not a crucial
requirement. For example, validation of a novel research idea with a tool prototype can
focus typically on a single language. From an economic perspective, it may be more
cost effective to re-implement functionality for a new source language instead of ex-
pending the effort of first redesigning the system for language independence to then
benefit from the reuse of the language independent code. An approach to simplify re-
targeting for a new language is model-driven development. The authors of the Refactor-
Erl tool follow this approach and describes it as follows: “This is a declarative approach
which maintains the refactoring-specific lexical, syntactical and static semantical rules

Academic Software Development Tools and Techniques 95

of the investigated language as data. Modifying these data should result in the (as far
as possible) automatic adaptation of the code of all the components of the refactoring
tool” [19].

It seems important that researchers clarify the term language independent because it
has different meanings. For example, language independence could mean that the tool
is designed in such a manner that it is feasible to support a new language. Depending
on the language, this may require more or less effort. In practice, this often means that
it is only feasible to add a language that has certain characteristics; for instance, the lan-
guage may have to support a certain paradigm such as object-oriented or procedural as
opposed to functional, or it may have to be statically typed as opposed to dynamically
typed. Furthermore, language independence could also mean that the tool works on any
or most kinds of languages because it abstracts away from language-specific features.
This approach is pursued by lexically-based clone detection tool such as CCFinder.
Last, language independence could also mean that the tool targets systems that are
composed of multiple (programming) languages. One approach to effectively support
multiple languages is to integrate them into a common meta-model (e.g., GUPRO [25]
and the ASF+SDF Meta-Environment [26]).

From a practical engineering point of view, it may be better to focus on implement-
ing full support for one language first, and then to add support for multiple languages
later on. However, language independence should be taken into account as an important
requirement from the start when designing and architecting the tool.

3.2 Tool Building in an Industrial Context

Transforming academic tools into commercial tools involves quite some effort. The best
way is to do this outside the academic environment, in a so-called spin-off company.
There are quite a number of success stories but also quite a number of failures. The
Software Improvement Group 22 is an example of a very successful spin-off company.
This company made a commercial product of the DocGen tooling [27] and applied
this tooling to quite a number of large-scale projects. The original idea of selling the
DocGen tooling was transformed into selling consultancy based on the DocGen tooling.
The advantage of this way of working is that the requirements on the DocGen tooling
were less severe since the users are always (in-house) experts.

RefactorErl [19] is an example of a tool that was built for an industrial partner (in
this case Ericsson) on demand. This a very fortunate situation which is established via a
long lasting cooperation between this company and the university. Such an opportunity
enables a quick transformation of research ideas into a commercially relevant tooling.
However, the risk is that the university is transformed into a company. Furthermore, it
puts some responsibility on the developers with respect to maintenance of the tooling.

The application of academic tools in an industrial context is in general not trivial.
There are two main reasons for this phenomena. The most important one is the level of
maturity of the academic tools. In most cases the academic tools are prototypes and ap-
plication on industrial scale usually involves quite some effort. In some cases it means a
complete reimplementation of the tooling. Second, the industry wants guarantees about
support, maintenance, documentation, training, etc. Commercial tools and tool vendors

22 http://www.sig.nl

96 R. Wuyts et al.

can and will offer this support whereas in an academic setting quite often one is de-
pending on a small-scale development team.

In a recent large-scale research project, ”Ideals,” 23 one of the goals was to use
industry-as-laboratory. The tools and methodology developed in this research project
had to be deployed at the industrial partner ASML 24, a company which builds and
sells high-tech products (waffersteppers). They have a huge code base and the scope
of this research project was to improve the maintainability of the code base. Besides
performing research the goal of the project was to transition the developed technology
as fast as possible to the company. The encountered problems were in the area of find-
ing managers who wanted to participate in applying this new technology, furthermore
the maturity of tooling, development of documentation and development of teaching
material were considered as problematic. Eventually, one or two research results were
transferred to ASML.

In the middle of the 90’s ASF+SDF [26] was used to prototype a domain specific
language for describing financial products [28]. This work was done in cooperation
with a Dutch bank and a large software company. The specifications and generated C-
code was transferred to both the bank and software company. This software company
sold this product to another Dutch bank. Around 2005 a small problem in the software
was detected and this triggered some maintenance on the specification. Fortunately, we
had still the original specifications because the software company had thrown away the
specifications and only kept the generated C-files. The reason for this was that they did
not understand the specifications and thought they were not important.

These examples show that transferring academic tooling to industry is a huge effort
that should not be underestimated. The success of the transfer depends on many factors
but the most important ones are commitment of the company and commitment of the
researchers involved.

3.3 Tool Building Methodology

The developers of research tools in computer science are quite often also involved in
teaching courses on programming and software engineering. The traditional software
engineering courses address topics like, requirements engineering, design, architecture,
coding (standards), testing, software process, etc. Do we apply (some of) these tech-
niques when developing our academic software? Only a few participants indicate that
they have used, or should use some of the established software engineering techniques.
Of course, the underlying hypothesis is that the quality of the software and the efficiency
of development increases when applying software engineering techniques, which leaves
more time for writing (scientific) papers.

There are examples of dedicated processes that have been proposed for industrial
researching and academic tool building. Extreme Researching (XR) is a process specif-
ically designed for applied research and development in a distributed environment that
has to cope with changing human resources and rapid prototyping [29]. It is an adap-
tation of Extreme Programming (XP) and has been developed by Ericsson Applied

23 http://www.esi.nl/Ideals
24 http://www.asml.com

Academic Software Development Tools and Techniques 97

Research Laboratories to support distributed telecommunications research. XR is based
on several core principles taken from XP (short development cycles, test-driven devel-
opment, collective ownership, and discipline) and encodes them in a set of activities
(e.g., remote pair programming, unit testing, collective knowledge, coding standards,
frequent integration, and metaphor). Dedicated tool support is available for XR with
a web-based portal. Notably, the authors of XR estimate, based on three projects, that
their process has yielded an increase of output of around 24% and reduced project-
overrun time on average by half. Kienle and Müller explore the current state of tool
building practices in academia with the aim to improve upon the state-of-the-art [30].
Based on a literature survey, they propose a number of desirable characteristics for a
process in academia. Such a process should be feedback-based (soliciting of input from
users), iterative (as opposed to waterfall), prototype-based, lightweight (minimizing of
artifacts), and adaptive (to accommodate changing project requirements). Based on the
identified requirements, they introduce a tailorable process framework based on work
products. The work products address issues such as tool requirements (both functional
and non-functional), prototyping (technical and user interface prototype), and tool ar-
chitecture. A tailorable framework is needed because “the individual [tool] projects
seem too diverse to be accommodated by a single, one-size-fits-all process” [30].

It appears that modern software engineering techniques, such as agile development
principles, are more frequently applied by researchers when building their tooling. A
considerable number of participants indicate that they use (unit) testing and everybody
uses version management systems. One of the reasons not to use traditional software
engineering techniques is related to the domain: you do not know what you will need
to do, so it is hard to write a requirements document up-front. So you start with a vague
idea, a prototype, and you extend it. So agile development works better in a research
context: you discover more of the exact problem domain as you go with your research.
In a research context even a full-fledged agile development methodology (let alone a
heavier process) can even be too structured specially when developing prototypes to
support (scientific) papers, however as soon as a tool becomes increasingly popular and
is used by other researchers, a more structured approach to software development is
needed.

In this context, the following question is of interest: Do universities rather produce
people that are good developers or good researchers? In order to perform good research—
especially in the domain of software engineering—it may be necessary to develop good
software. Furthermore, is the difference between industry and academia that big? Quite
often industry applies agile software development even when the official policy is a heavy
software process. The freedom in academic software development is also relative. If your
tool becomes a success, the freedom in development is gone. In this case, you have pres-
sure to provide architectural descriptions and good documentation, and you even may
have to freeze interfaces or features. User want to have stable tooling and fellow devel-
opers want to have a stable architecture. But it is also important to have well-defined and
stable interfaces, so that other developers and researcher can develop their own compo-
nents. It is not bad to start with a small quick-and-dirty prototype for a paper, but when
do you decide that it makes sense to set up Bugzilla, write architectural documentation,
introduce coding standards, etc. If you start introducing more formality into your tool

98 R. Wuyts et al.

development too early, it may end up being a waste of time and unnecessarily bogging
down the rapid prototyping of tool functionality; if you introduce it too late you may
waste time and resources as well because the tool architecture, interfaces and the code
have to go through a major restructuring in order to stabilize further development.

The overall conclusion is that application of rigorous software engineering principles
is not (always) possible, but some agreement on principles, architecture, and tooling can
safe a lot of time and energy. So, everybody needs to use the techniques that fits for them
best—as long as they are made explicit.

3.4 Tool Implementation Language

Perhaps most importantly, never forget why you are building your prototype. If it is
built for the sole purpose to validate a research idea then you can create your tool as a
prototype in whatever language that allows you to be most productive so that you can
focus on your research contribution and not your tool. For example, the implementation
of SOUL was done in Smalltalk, which was an appropriate approach because the goal
was to demonstrate how a logic language can be integrated with an object-oriented lan-
guage, and how the logic language can then be used as a meta-programming language
for that object-oriented language. In this context, there was no benefit in implementing
SOUL in a more efficient language such as C++ or more popular language such as Java.
Note also that if industry decides to pick up research ideas embodied in your prototype,
regardless of the language it is implemented in, it will be rewritten anyway.

Certain language features can be quite helpful for tool design. For example, C++
generics in combination with the Standard Template Library (STL) can simplify the
experimentation with different strategies or algorithms. For example, the authors of
mCRL2 say that “primary motivations for the choice of C++ were advanced language
facilities for creating library interfaces, the availability of the C++ Standard Library,
and facilities for generic programming. Generic programming not only reduces the du-
plication of code, it also makes it easier to adapt algorithms” [12]. On the downside,
the author of CScout reports that the use of STL complicates debugging with gdb be-
cause “gdb provides a view of the data structures’ implementation details, but not their
high-level operations” [22].

Another ingredient when selecting the implementation language can be the principle
of “eating your own dog food.” The ASF+SDF Meta-Environment [26] is an environ-
ment for developing language descriptions, both syntax as well as semantics. A number
of components (e.g., parse table generator, compiler, and well-formedness checker of
SDF definitions) in this system are developed using ASF+SDF itself. This approach
enables the immediate checking of functionality and expressiveness of the underlying
formalism.

The choice of the implementation language is of course also influenced by education.
If the students are mostly or exclusively introduced to Java in their courses, it is likely
that when they become researchers they will develop their software in Java as well.
This can be a drawback. The first version of the ASF+SDF Meta-Environment was
implemented in Lisp, a very popular language in the 80’s for prototyping. Researchers
that joint the project later on were not so familiar with Lisp and this caused quite some
problems when doing maintenance.

Academic Software Development Tools and Techniques 99

Table 1. The presented tools and the components that they are leveraging

Tool Leveraged Components

Churrasco FAMIX (meta-model), MOOSE (fact extraction), GLORP (repository),
SVG (visualization)

MARPLE Eclipse: JDT (Java fact extraction), GEF (visualization), Glassfish (dis-
tributed computing), Weka (clustering)

Hopscotch Smalltalk
IntensiVE Eclipse JDT (Java fact extraction), javaconnect (interoperability from

Smalltalk to Java), SOUL (querying), Mondrian (visualization), Star
Browser (user interface)

mCRL2 ATerms (repository), Boost (utility), C++ Standard Library (utility)
Rigi Yacc (C fact extractor), Tk (user interface), GraphEd (graph layout)
TestQ Fetch toolchain: Source Navigator (fact extraction), CDIF2RSF (format

transformation), pmccabe (C/C++ metrics), JavaNSCC (Java metrics),
Crocopat (querying), Guess (visualization)

SPO MOOSE (fact extraction), Seaside (user interface), SVG (visualization)
Primus Eclipse: OCL (modeling support), UML2 (user interface), UML2Tools

(visualization)
Nix Build Farm ATerms (term rewriting)
RefactorErl XML (configuration), Emacs (user interface)
ConGu Eclipse (user interface)
CodeCity FAMIX (meta-model), MOOSE (Smalltalk fact extraction), iPlasma

(Java/C++ fact extraction), MSE exchange format (repository),
Jun/OpenGL (visualization)

CScout BtYacc (C fact extractor), STL (utility), mySQL (repository and query-
ing), dot (visualization)

3.5 Building Tools with External Code

It seems that researchers are increasingly leveraging components to assemble their tools
instead of building them from scratch. In fact, this is reflected by most of the presented
tools. Table 1 shows the workshop’s tools along with examples of the components that
they are leveraging in order to realize the tools’ functionalities. We use the term com-
ponents to denote external code that is packaged in such a way that reuse is facilitated.
In this context, a suitable working definition of a component is given by Meyer, who
characterizes it as “an element of software that can be used by many different appli-
cations” [31, page 1200]. Leveraging components for tool building has been dubbed
component-based tool development (CBTD) [32].

There are many examples of suitable components that can be used for tool building.
Drawing from the components in Table 1, we can classify components according to
standard functionalities as follows:

repository: Tools typically need to store information in some form or another. This
can be accomplished with exchange formats such as Moose’s MSE[33] (CodeCity),
ATerms [34] (mCRL2), the Rigi Standard Format (RSF), CDIF (TestQ), or XML
(MARPLE); alternatively, tools can leverage relational databases (CScout uses
mySQL and PostgreSQL) or object-relational database mappers (Churrasco uses

100 R. Wuyts et al.

GLORP25). An advantage of using repository components is that they often have
some form of modeling support and also come with a query and/or transformation
language. For example, support for modeling of information about source code is
provided by FAMIX26 and Rigi.

fact extraction: Tools for software engineering have to extract information about the
target system. Almost all presented tools extract static information from source
code (as opposed to dynamic information collected during program execution).
Since the building of extractors for complex languages such as C++ is a time-
consuming and error-prone task, many tools rely on external fact extractors. For
example, TestQ relies on SourceNavigator. CodeCity uses MOOSE for Smalltalk
and iPlasma27 for C++ and Java code. MARPLE and IntensiVE query the parse
tree of the Eclipse JDT. One can also use parser generators to simply the construc-
tion of a custom extractor. Rigi has a parser for C that is based on Yacc (no longer
supported), and CScout’s parser is based on BtYacc.28

user interface and visualization: Tools have to provide some form of visualization
and user interface to show and manipulate information. Several tools offer user
interfaces based on web technology. CScout has a simple HTML-based interface
while Churrasco and SPO have more sophisticated Web 2.0 like interfaces. Both
Churrasco and SPO use Scalable Vector Graphics (SVG) with JavaScript for in-
teractive visualizations. SPO also uses the Seaside29 web application framework.
Another popular strategy is to integrated the tool with an IDE. Several tools are
realized as Eclipse plug-ins (MARPLE, Primus, and ConGu), while RefactorErl
leverages Emacs. To visualize software structures several tools use interactive graph
editors. IntensiVE is based on the Mondrian30 visualization engine, TestQ is based
on GUESS,31 and MARPLE uses the Eclipse Graphical Editing Framework (GEF).
In contrast, CScout provides static graphs based on dot.

data structures and algorithms: General utility libraries for data structures and algo-
rithms can reduce implementation effort for tools. Both mCRL2 and CScout are
implemented in C++ and use its Standard Library extensively.

An interesting question that should be further pursued is to what extent CBTD differs
from implementing tools from scratch, and what are the potential benefits and draw-
backs of both development approaches? The developers of the Primus tool report sev-
eral lessons learned of building their tool on top of Eclipse [16]. For example, plugin-in
develop can be challenging because of lack of in-depth documentation and code exam-
ples. Available plug-ins can vary considerably in their maturity and immature plug-ins
may evolve rapidly and have unstable APIs. Also, APIs of plug-ins may not be power-
ful or flexible enough. For example, the OCL editor plug-in does not provide sufficient

25 http://www.glorp.org
26 http://www.iam.unibe.ch/˜famoos/FAMIX/
27 http://loose.upt.ro/iplasma/
28 http://www.siber.com/btyacc/
29 http://www.seaside.st/
30 http://moose.unibe.ch/tools/mondrian
31 http://graphexploration.cond.org/

http://www.glorp.org
http://www.iam.unibe.ch/~famoos/FAMIX/
http://loose.upt.ro/iplasma/
http://www.siber.com/btyacc/
http://www.seaside.st/
http://moose.unibe.ch/tools/mondrian
http://graphexploration.cond.org/

Academic Software Development Tools and Techniques 101

detail about query errors for Primus’ purposes. On the positive side, the Eclipse online
community is active and responsive.

4 Conclusion and Outlook

The first WASDeTT turned out to be a stimulating event with 15 presentations that cov-
ered a variety of software engineering tools, formal tool demos as part of several pre-
sentations, and thought-provoking discussions among the participants. The discussed
topics—language independent tools, tool building in an industrial context, tool building
methodology, tool implementation language, and tool building with external code—
showed that tool building issues are of interest to many researchers. This workshop
generated first promising results, but it seems worthwhile to further pursue these dis-
cussion topics in subsequent workshops. Indeed, the 2nd WASDeTT32 was already held
(collocated with ICSM 2008), which had a special focus on tool building in an industrial
context with four invited talks.

We already made the point that one important goal of this workshop series is to en-
able researchers to publish about their tools so that they can get scientific credit for their
tool building efforts. To further this goal, a selection of the best tool submissions will
be published in a special issue on Experimental Software Toolkits (EST) of Elsevier’s
Science of Computer Programming journal [5]. Two organizers of this workshop (Mark
van den Brand and Kim Mens) will act as the editors of this EST issue.

Acknowledgments

Many thanks to the workshop presenters and participants. We also gratefully acknowl-
edge the dedicated work of the program committee.

References

1. Demeyer, S., Guéhéneuc, Y.G., Mens, K., Wuyts, R., Ducasse, S., Gall, H. (eds.): Proceed-
ings of the ECOOP 2007 Workshop on Object-Oriented Re-engineering (WOOR 2007) –
10th anniversary edition (2007), http://smallwiki.unibe.ch/woor2007/

2. Kienle, H.M.: Must tool building remain a craft? In: Demeyer, S., Guéhéneuc, Y.G., Mens,
K., Wuyts, R., Ducasse, S., Gall, H. (eds.) Proceedings of the ECOOP 2007 Workshop on
Object-Oriented Re-engineering (WOOR 2007) – 10th anniversary edition (2007)

3. Sim, S.E., Koschke, R.: WoSEF: Workshop on standard exchange format. IEEE Software
Engineering Notes 26(1), 44–49 (2001)

4. Jin, D.: Design issues for software analysis and maintenance tools. In: IEEE International
Workshop on Software Technology and Engineering Practice (STEP 2005), pp. 115–117
(2005)

5. van den Brand, M.: Guest editor’s introduction: Experimental software and toolkits (EST).
Science of Computer Programming 69(1–3), 1–2 (2007)

6. van den Brand, M.: Guest editor’s introduction: Second issue of experimental software and
toolkits (EST). Science of Computer Programming 71(1–2), 1–2 (2008)

32 http://wasdett2.wikispaces.com/

http://smallwiki.unibe.ch/woor2007/
http://wasdett2.wikispaces.com/

102 R. Wuyts et al.

7. Balzer, B., Litoiu, M., Müller, H., Smith, D., Storey, M., Tilley, S., Wong, K.: 4th Interna-
tional Workshop on Adoption-Centric Software Engineering (ACSE 2004), pp. 1–2 (2004)

8. D’Ambros, M., Lanza, M.: Churrasco: Supporting collaborative software evolution analysis.
In: Mens, K., van den Brand, M., Kuhn, A., Kienle, H.M., Wuyts, R. (eds.) 1st International
Workshop on Academic Software Development Tools and Techniques (WASDeTT-1) (2008)

9. Arcelli, F., Tosi, C., Zanoni, M., Maggioni, S.: The MARPLE project: A tool for design
pattern detection and software architecture reconstruction. In: Mens, K., van den Brand, M.,
Kuhn, A., Kienle, H.M., Wuyts, R. (eds.) 1st International Workshop on Academic Software
Development Tools and Techniques (WASDeTT-1) (2008)

10. Boykov, V.: Hopscotch: Towards user interface composition. In: Mens, K., van den Brand,
M., Kuhn, A., Kienle, H.M., Wuyts, R. (eds.) 1st International Workshop on Academic Soft-
ware Development Tools and Techniques (WASDeTT-1) (2008)

11. Brichau, J., Kellens, A., Castro, S., D’Hondt, T.: Enforcing structural regularities in soft-
ware using IntensiVE. In: Mens, K., van den Brand, M., Kuhn, A., Kienle, H.M., Wuyts, R.
(eds.) 1st International Workshop on Academic Software Development Tools and Techniques
(WASDeTT-1) (2008)

12. Groote, J.F., Keiren, J., Mathijssen, A., Ploeger, B., Stappers, F., Tankink, C., Usenko, Y.,
van Weerdenburg, M., Wesselink, W., Willemse, T., van der Wulp, J.: The mCRL2 toolset.
In: Mens, K., van den Brand, M., Kuhn, A., Kienle, H.M., Wuyts, R. (eds.) 1st International
Workshop on Academic Software Development Tools and Techniques (WASDeTT-1) (2008)

13. Kienle, H.M., Müller, H.A.: The Rigi reverse engineering environment. In: Mens, K., van
den Brand, M., Kuhn, A., Kienle, H.M., Wuyts, R. (eds.) 1st International Workshop on
Academic Software Development Tools and Techniques (WASDeTT-1) (2008)

14. Breugelmans, M., Rompaey, B.V.: TestQ: Exploring structural and maintenance characteris-
tics of unit test suites. In: Mens, K., van den Brand, M., Kuhn, A., Kienle, H.M., Wuyts, R.
(eds.) 1st International Workshop on Academic Software Development Tools and Techniques
(WASDeTT-1) (2008)

15. Lungu, M., Lanza, M.: The small project observatory. In: Mens, K., van den Brand, M.,
Kuhn, A., Kienle, H.M., Wuyts, R. (eds.) 1st International Workshop on Academic Software
Development Tools and Techniques (WASDeTT-1) (2008)

16. Kamal, A.W., Kirtley, N., Avgeriou, P.: Developing a modeling tool using Eclipse. In: Mens,
K., van den Brand, M., Kuhn, A., Kienle, H.M., Wuyts, R. (eds.) 1st International Workshop
on Academic Software Development Tools and Techniques (WASDeTT-1) (2008)

17. de Roo, A., Hendriks, M., Havinga, W., Durr, P., Bergmans, L.: Compose*: A language and
platform independent aspect compiler for composition filters. In: Mens, K., van den Brand,
M., Kuhn, A., Kienle, H.M., Wuyts, R. (eds.) 1st International Workshop on Academic Soft-
ware Development Tools and Techniques (WASDeTT-1) (2008)

18. Dolstra, E., Visser, E.: The Nix Build Farm: A declarative approach to continuous integration.
In: Mens, K., van den Brand, M., Kuhn, A., Kienle, H.M., Wuyts, R. (eds.) 1st International
Workshop on Academic Software Development Tools and Techniques (WASDeTT-1) (2008)

19. Horváth, Z., Lovei, L., Kozsik, T., Kitlei, R.: Building a refactoring tool for Erlang. In: Mens,
K., van den Brand, M., Kuhn, A., Kienle, H.M., Wuyts, R. (eds.) 1st International Workshop
on Academic Software Development Tools and Techniques (WASDeTT-1) (2008)

20. Vasconcelos, V.T., Nunes, I., Lopes, A., Ramiro, N., Crispim, P.: Runtime checking Java
code using ConGu. In: Mens, K., van den Brand, M., Kuhn, A., Kienle, H.M., Wuyts, R.
(eds.) 1st International Workshop on Academic Software Development Tools and Techniques
(WASDeTT-1) (2008)

21. Wettel, R., Lanza, M.: CodeCity. In: Mens, K., van den Brand, M., Kuhn, A., Kienle, H.M.,
Wuyts, R. (eds.) 1st International Workshop on Academic Software Development Tools and
Techniques (WASDeTT-1) (2008)

Academic Software Development Tools and Techniques 103

22. Spinellis, D.: CScout: A refactoring browser for C. In: Mens, K., van den Brand, M., Kuhn,
A., Kienle, H.M., Wuyts, R. (eds.) 1st International Workshop on Academic Software De-
velopment Tools and Techniques (WASDeTT-1) (2008)

23. Chen, Y., Nishimoto, M.Y., Ramamoorthy, C.V.: The C information abstraction system. IEEE
Transactions on Software Engineering 16(3), 325–334 (1990)

24. Reubenstein, H., Piazza, R., Roberts, S.: Separating parsing and analysis in reverse engineer-
ing. In: 1st IEEE Working Conference on Reverse Engineering (WCRE 1993), pp. 117–125
(1993)

25. Kullbach, B., Winter, A., Dahm, P., Ebert, J.: Program comprehension in multi-language
systems. In: 5th IEEE Working Conference on Reverse Engineering (WCRE 1998), pp. 135–
143 (1998)

26. van den Brand, M., Bruntink, M., Economopoulos, G., de Jong, H., Klint, P., Kooiker, T., van
der Storm, T., Vinju, J.: Using The Meta-environment for Maintenance and Renovation. In:
Proceedings of the 11th European Conference on Software Maintenance and Reengineering
(CSMR 2007), pp. 331–332. IEEE Computer Society Press, Los Alamitos (2007)

27. Deursen, A., Kuipers, T.: Building documentation generators. In: Proceedings International
Conference on Software Maintenance, pp. 40–49. IEEE Computer Society, Los Alamitos
(1999)

28. van den Brand, M., van Deursen, A., Klint, P., Klusener, S., van den Meulen, E.: Industrial
applications of ASF+SDF. In: Wirsing, M., Nivat, M. (eds.) AMAST 1996. LNCS, vol. 1101.
Springer, Heidelberg (1996)

29. Chirouze, O., Cleary, D., Mitchell, G.G.: A software methodology for applied research: eX-
treme Researching. Software—Practice and Experience 35(15), 1441–1454 (2005)

30. Kienle, H.M., Müller, H.A.: Towards a process for developing maintenance tools in
academia. In: 15th IEEE Working Conference on Reverse Engineering (WCRE 2008), pp.
237–246 (2008)

31. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Englewood Cliffs
(1997)

32. Kienle, H.M.: Component-based tool development. In: Frontiers of Software Maintenance
(FoSM) at ICSM 2008 (2008)

33. Kuhn, A., Verwaest, T.: FAME, a polyglot library for metamodeling at runtime. In: Workshop
on Models at Runtime, n. 10 (2008)

34. van den Brand, M., de Jong, H., Klint, P., Olivier, P.: Efficient Annotated Terms. Software,
Practice & Experience 30, 259–291 (2000)

Parallel/High-Performance Object-Oriented

Scientific Computing: Today’s Research,
Tomorrow’s Practice

Report on the 7th POOSC Workshop, ECOOP 2008

Kei Davis1 and Jörg Striegnitz2

1 Los Alamos National Laboratory, Los Alamos, NM 87545, USA
kei.davis@lanl.gov

http://www.ccs3.lanl.gov/~kei/
2 University Of Applied Sciences Regensburg 93053 Regensburg, Germany

joerg.striegnitz@informtik.fh-regensburg.de

http://homepages.fh-regensburg.de/~stj39817/

Abstract. While object-oriented programming has been embraced in in-
dustry, particularly in the form of C++, Java, and Python, its acceptance
by the parallel scientific programming community is for various reasons
incomplete. Nonetheless, various factors practically dictate the use of lan-
guage features that provide higher level abstractions than do C or older
FORTRAN standards. These include increasingly complex physics mod-
els, numerical algorithms, and hardware (e.g. deep memory hierarchies,
ever-increasing numbers of processors, and the advent of multi- and many-
core processors and heterogeneous architectures). Our emphases are on
identifying specific problems impeding greater acceptance and widespread
use of object-oriented programming in scientific computing; proposed and
implemented solutions to these problems; and new or novel frameworks,
approaches, techniques, or idioms for parallel/high-performance object-
oriented scientific computing.

Keywords: Parallel computing, high-performance computing, scientific
computing, object-oriented computing.

1 Introduction

We start by motivating the appropriateness of an ongoing workshop series on
parallel/high-performance object-oriented scientific computing, giving a brief
history of the workshop series, and stating our current working purview via
the current abstract.

1.1 Motivation

Ever-increasing compute capability has enabled scientific programming to reach
an unprecedented degree of sophistication and complexity. Complex algorithms,

P. Eugster (Ed.): ECOOP 2008 Workshop Reader, LNCS 5475, pp. 104–115, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.ccs3.lanl.gov/~kei/
http://homepages.fh-regensburg.de/~stj39817/

Parallel/High-Performance Object-Oriented Scientific Computing 105

a wide range of hardware environments, and an increasing demand for software
system modularity, portability, and fault tolerance have shown that language-
level abstraction must increase. At the same time, because the achievable capa-
bility of the highest-end machines defines the achievable limits of size and fidelity
of scientific simulations, performance cannot be compromised.

Concurrently with entering the petaflop era we are experiencing an
unprecented growth in the use of computational accelerators and heterogeneous
architectures, currently including field-programmable gate arrays (FPGAs),
graphics processing units (GPUs), ClearSpeed floating point accelerators, and
IBM’s Cell Broadband Engine, among others. Most programming for these de-
vices is ‘at the metal,’ and much research is being conducted to provide pro-
ductive and performant abstractions of the low-level models these architectures
present.

Work presented at previous POOSC workshops has shown that the OO ap-
proach provides an effective means for the design of highly complex scientific
systems, and that it is possible to design abstractions and applications that ful-
fill strict performance requirements. However, OO isn’t fully embraced in high
performance computing, and there is still demand for, and interest in, active
research in this field. Previous POOSC workshops have proven that a work-
shop is an ideal venue for communicating active research activities, that new
approaches and techniques are constantly being developed, and that researchers
and developers are keen to share these in a live, interactive setting.

1.2 History

The current organizers, with various changes in personnel over the years, have
organized successful POOSC workshops several times, once at OOPSLA’01 and
the others at previous ECOOP conferences. Response to the CFP has always
been sufficiently good that a formal reviewing and selection process needed to
be imposed. The workshops themselves have been lively forums for debate and
discussion and have resulted in a number of new collaborations.

2 Summary of Call for Participation

While object-oriented programming is being embraced in industry, particularly
in the form of C++ and to an increasing extent Java and Python, its acceptance
by the parallel scientific programming community is still tentative. In this latter
domain performance is invariably of paramount importance, where even C++ is
considered suspect, primarily because of real or perceived loss of performance.
On the other hand, various factors practically dictate the use of language features
that provide higher level abstractions than do C or older FORTRAN standards.
These include increasingly complex physics models, numerical algorithms, and
hardware–deep memory hierarchies, exponentially-increasing numbers of pro-
cessors, and the advent of multi- and many-core processors and heterogeneous
architectures.

106 K. Davis and J. Striegnitz

This workshop seeks to bring together practitioners and researchers in this
growing field to present and discuss their work. The emphasis is on identifying
specific problems impeding greater acceptance and widespread use of object-
oriented programming in scientific computing; proposed and implemented so-
lutions to these problems; and new or novel approaches, techniques or idioms
for scientific and/or parallel computing. Presentations of work in progress are
welcome.

Specific areas of interest include, but are not limited to:

– tried or proposed programming language alternatives to C++;
– performance issues and their realized or proposed resolution;
– issues specific to handling or abstracting parallelism, including the handling

or abstraction of heterogeneous architectures;
– specific points of concern for progress and acceptance of object-oriented sci-

entific computing;
– existing, developing, or proposed software;
– frameworks and tools for scientific object-oriented computing;
– schemes for user-level fault tolerance;
– grand visions (of relevance).

The workshop will consist of a sequences of presentations each followed by a
discussion session. The workshop will conclude with an overall discussion. We
expect the majority of the participants to give presentations.

3 Participants and Presentation Topics

This section briefly describes each of the presentations, and attempts to put each
in a larger context motivating the problems to be solved.

Réza Ansari. presented the SOPHYA class library, a collection of C++ classes
designed for intensive numerical and physics data analysis. SOPHYA provides a
comprehensive set of data containers, such as multi-dimensional arrays, vectors,
matrices, histograms, and tables, covering common areas of scientific simulation
and data analysis. Transparent and efficient memory management are among the
salient features of the library. Indeed, in order to avoid expensive data copies,
SOPHYA classes managing large objects implement automatic reference sharing
and memory management. Significantly, the SOPHYA memory management and
reference sharing services are thread-safe.

Persistence and efficient data import/export are among the important services
provided by SOPHYA. SOPHYA provides data import/export, through delegate
classes, in a format (FITS) widely used in the astronomical community. SOPHYA
was shown to perform efficiently compared to low level coding or similar libraries.

Also showcased was the spiapp multi-threaded interactive data analysis tool,
built on top of SOPHYA library, a C++ graphics and GUI object library (PI)
and an extendable object framework (PIext) encapsulating the library data ob-
jects. Spiapp is able to execute C++ code fragments via PIext services, in par-
ticular in-the-fly code compilation and linking.

Parallel/High-Performance Object-Oriented Scientific Computing 107

Markus Blatt. Large-scale parallel codes typically require data to be decom-
posed among the set of processes active in the computation. A given data decom-
position usually implies a recurring communication scheme. Typical examples are
parallel data decomposition methods and finite element computations on unstruc-
tured grids.

Markus Blatt presented Generic C++ Components for Data-Parallel Compu-
tations, which introduces generic template classes in C++ for describing (pos-
sibly overlapping) data decompositions. Once the decomposition is set up, the
needed communication schemes can be created automatically and be used to
communicate values from containers of various types. Even containers with a
varying number of values associated with an entry are possible. In effect, the
framework abstracts the decomposition information and the communication in
the client code from the eventual parallel paradigm choice.

Charlotte Herzeel. presented a case that a programming model is needed in
which sequential programs are implicitly parallelized by default, but also offers
the flexibility of explicit parallelism on demand. Controlling Dynamic Paral-
lelization through Layered Reflection (Charlotte Herzeel, Pascal Costanza, Theo
D’Hondt) proposes a layered programming model in which reflective program-
ming techniques can be used to customize the default parallelization strategies.

The authors are currently designing such a layered programming model. As
a test case, they are implementing a layered version of a subset of Lisp. In
its implementation, loops are parallelized by splicing the different iterations on
separate, concurrent threads. To deal with the data races that are potentially
created, a dynamic solution based on techniques from software transactional
memories is employed. The goal is to provide a reflective interface that makes it
possible for a Lisp programmer to specialize this transactional implementation.

The current state of the effort was described, and the initial design ideas, as a
position statement, especially with regard their focus on a dynamic compilation
instead of static compilation techniques, were presented.

Francisco Igual-Peña. As their programmability increases, graphics processors
(GPUs) are being increasingly used as computational accelerators for scientific
computations. In Out-of-Core Solution of Linear Systems on Graphics Processors
(Maribel Castillo, Francisco D. Igual, Rafael Mayo, Enrique S. Quintana-Ort, Gre-
gorio, Quintana-Ort, Rafael Rubio, Robert van de Geijn), Francisco Igual-Peña
described a tool to develop codes for dense linear algebra operations, with ma-
trices stored on disk, with execution on a GPU. The tool enables rapid develop-
ment of object-oriented codes, implemented as MatlabM-scripts, for linear algebra
operations.

Combined with an implementation of BLAS for a graphics processor, the
proposed interface allows the solution of large-scale out-of-core dense linear al-
gebra problems on this class of architectures. The interpreted nature of Matlab
code and the usual operation mode of single-precision floating point on graph-
ics hardware introduces penalties that stand in the way of high performance.
They described ongoing work including the development of a similar interface

108 K. Davis and J. Striegnitz

for the C programming language and the adaption of the API to new GPUs with
double-precision capabilities.

Olaf Lenz. Many physical systems of interest are too large to be simulated using
classical all-atom molecular dynamics software packages. Instead, coarse-grained
models are introduced to reduce the number of degrees of freedom and make
it possible to simulate such large systems. An increasing number of very differ-
ent methods for simulating coarse-grained models have been developed during
the last decades, for example Particle-Mesh Algorithms or the Fast Multipole
Method for electrostatic interactions, Lattice-Boltzmann for hydrodynamic in-
teractions, or r-RESPA for multiple timestep integration, to name just a few.
Often, several of these methods must be combined to solve a specific problem.
The abstraction and generalization of coarse-grained many-particle simulations
is complicated by the great variability of the methods as well as the specifities of
certain methods. Therefore, although the increasing complexity of the methods
makes it hard for a researcher to implement an efficient, parallelized simulation
program from scratch, this is still common practice in the research community.

ESPResSo (Extensible Simulation Package for Research on Soft Matter), de-
veloped at the Max Planck Institute for Polymer Research in Mainz, Germany,
attempted to bridge this gap, and has been successfully applied to many prob-
lems in soft matter research. However, the procedural approach of the C program-
ming model proved to be too inflexible to cope with the recent developements
in the field.

Olaf Lenz described a joint project of the MPIP and the Fraunhofer Institute
for Algorithms and Scientific Computing (SCAI) in Sankt Augustin, Germany,
to reimplement the ESPResSo software in the C++ programming language.
Their system, ESPResSo++, a free, open-source, parallelized, object-oriented
simulation software system that may be employed to perform physico-chemical
molecular dynamics simulations of soft matter systems such as polymers, liquid
crystals, colloidal suspensions and biosystems (e.g. biomembranes).

Its open, object-oriented design will give the package the required flexibil-
ity to meet the variability of the different methods as well as their specifities,
plus the extensibility to cope with future challenges. Furthermore, the design
is intended to enable scientists to use ESPResSo++ as a research platform for
their own methodological developments, which at the same time allows the soft-
ware to grow and to acquire the most modern methods. For maximal freedom,
the users will control the program via the object-oriented scripting language
Python. ESPResSo++ is targeted for high performance supercomputers as well
as desktop workstations.

Michelangelo Puliga, Gianni Mula, and Massimiliano Virdis. presented
The SCORE (Scientific Open Software Repository) Project (Michelangelo Puliga,
Massimiliano Virdis, Enrico Fois, Alessandro Chessa, Andrea Bosin, Gianni
Fenu, Gianni Mula). The fundamental motivation of the SCORE project is to
make available, for users not strongly skilled in the field of code development or
maintenance, a large pool of scientific simulation software. SCORE can be seen
as a complement to the well known CCA (Common Component Architecture)

Parallel/High-Performance Object-Oriented Scientific Computing 109

approach. In fact CCA, a DOE-funded research project that aims to enable
component-based high-performance scientific application development, is very
powerful and especially conceived for high performance computing. However, it
has proven to be unsuitable for many would-be users because of its high learning
curve. This is why, despite much good work, its goal of moving toward a plug-
and-play environment for high-performance computing is still largely unrealized.

In contrast, the SCORE project is based on a minimalist approach in which
everything can be regarded as a component, provided it can be executed from
the command line in a batch-like mode, and no information is needed about
its internal structure. Likewise, simulation chains can be built by connecting
various components with the use of a glue code that is kept as independent as
possible from the internal structure of the components. The extensive use of
virtualization technology allows the simultaneous use of different OS’s (Linux,
BSD, Microsoft Windows) and of different versions of the same software.

As a case study, a tight-binding molecular dynamic simulation was given,
stressing the ability of the SCORE approach to encourage code reuse and to
foster the growth of a community of scientists who share their stable codes with
other researchers. The ability to run even old simulation codes in virtual machine
environments, and the provision of standard facilities for community oriented
tools (forums, blogs and IM instant messaging) should be further incentives for
newcomers to the field to visit its site (www.cybersar.it) and to try the available
SCORE project tools.

Peter Gottschling (1). Object-oriented software development is a broadly
used programming paradigm that is successfully applied to a huge number of
large-scale software systems, including many scientific HPC applications. Generic
programming, on the other hand, is able to relieve unnecessary interface restric-
tions, thus allowing for lifting applicability to a potentially infinite number of
types. At the same time, conceptual specialization enables algorithmic special-
ization at compile time leading to optimal performance.

Both paradigms expose many parallels and are simultaneously orthogonal in
many aspects. Although their combination does not create a theoretical con-
tradiction, the integration of OO and generic software exposes some technical
limitations and is accompanied with several technical difficulties. In presenting
Integrating Object-Oriented and Generic Programming Paradigms in Real-World
Software Environments: Experiences with AMDiS and MTL4 (Peter Gottschling,
Thomas Witkowski, Axel Voigt), Peter Gottschling demonstrated the relevant
problems on the real-world example of integrating the generic linear algebra
library MTL4 (Matrix Template Library) into the OO finite element software
AMDiS (Adaptive Multi-Dimensional Simulations). Solutions for these problems
were shown and the benefits presented in terms of improved generality and in-
creased performance.

Peter Gottschling (2). Recursive algorithms, like quicksort, and recursive
data structures, like trees, play a central role in programming. In the context
of scientific computing, recursive algorithms and memory layouts are studied to
provide good cache and TLB locality independent of the platform. With Generic

110 K. Davis and J. Striegnitz

Support of Algorithmic and Structural Recursion for Scientific Computing (Pe-
ter Gottschling, David S. Wise, Adwait Joshi), Peter Gottschling showed how
generic programming and OO allow the abstraction a multitude of dense-matrix
memory layouts ranging from conventional row-major and column-major lay-
outs over Z- and I-Morton orders to block-wise combinations of them. All are
provided by a single class that is based on their new matrix abstraction.

The algorithmic recursion is supported in generic fashion by classes model-
ing the new Recursator, an analog of the STL iterator. Although this concept
supports recursion in general, matrix operations were again the focus. Results
were presented for matrix multiplication, on both conventional and tiled repre-
sentations, using both homogeneous and heterogeneous matrix representations.
Reaching about 60% peak performance in portable C++ code establishes com-
petitive performance in the absence of explicit prefetching and other platform-
specific tuning. Comparisons with the manufacturers’ libraries show superior lo-
cality. These new techniques are embedded in the the Matrix Template Library,
Version 4 (MTL4).

René Heinzl. Techniques for library-centric application design have already
proven to be very useful in the past. The current gain in computer performance
is shifted towards the utilization of multi-core processors which extends the im-
portance of this type of application design in the field of scalable application
design for scientific computing but also poses new difficulties. René Heinzl pre-
sented Parallel Library-Centric Application Design by a Generic Scientific Sim-
ulation Environment (René Heinzl, Philipp Schwaha, Franz Stimpfl, Siegfried
Selberherr), describing a parallel generic scientific simulation environment that
has been developed to ease the transition from single-core to multi-core systems
without additional development effort. They argue that library-centric design
not only eases the development of applications significantly by providing build-
ing blocks centralized in a generic environment, but also that the evolution of
single-processing applications into parallel applications suitable for multi-core
processors is significantly supported by parallel components, thereby simplify-
ing development, scalability, stabilization, further support, and parallelization.

Anton Pegushin. Intel Threading Building Blocks (TBB) is a C++ runtime
library that supports scalable parallel programming for shared memory mul-
tiprocessors. The library encapsulates all of the complexity of threading with
native threads and only exports a Task interface and a set of generic scalable
parallel algorithms built over tasks. The user’s job is to split the whole appli-
cation into a set of tasks that can be executed in parallel and the library maps
tasks onto worker threads, and in an optimal way: automatically balancing the
load, controlling the granularity of the parallelism, and making effective use of
cache. By doing so, Intel TBB greatly simplifies parallel programming for appli-
cation developers and transparently enables support for nested parallelism. Intel
TBB is a cross-platform library working on Microsoft Windows, Linux, and Ap-
ple MacOS, and is an open-source project, which means that support for other
platforms can be added by any member of open-source community. Anton Pe-
gushin gave an overview of TBB’s basic functionality: the task scheduler, generic

Parallel/High-Performance Object-Oriented Scientific Computing 111

parallel algorithms, memory allocation mechanisms, and concurrent containers.
He described in more detail a newly added feature: task cancellation and ex-
ception safety. Details of implementation of parallel-break for the parallel-for
algorithm, and its use cases, were presented.

Peter Schwaha. The challenging art of multi-paradigmatic application develop-
ment, which only few languages currently support, greatly aids the development
of highly efficient and reusable software components. Philipp Schwaha presented
Synergies in Scientific Computing by Combining Multi-paradigmatic Languages
for High-Performance Applications (Philipp Schwaha, René Heinzl, Franz Stimpfl,
Siegfried Selberherr), describing a link of two such languages, Python and C++,
which automatically makes data structures and algorithms realized in C++ using
even features such as compile-time meta-programming available to the run-time
world of Python. Several generic components and modules for applicationdesign in
the area of scientific computing were presented. Compile times and run-times were
presented to show the proposed combined advantages of both languages. They
posited that the employed concepts are not limited to their case study, but are also
easily applicable to the wide range of STL standard containers and algorithms, and
in particular, for scientific computing.

Gisela Widmer. Efficiency is ever of concern in scientific computing. Adap-
tive methods may reduce actual computational work at the expense of associated
overhead. Gisela Widmer explored these tradeoffs in her presentation Towards
an Efficient Object-Oriented C++-Code for Radiative Transfer. The goal was to
design an efficient radiative transfer solver based on the idea of reducing of the
number of degrees of freedom in the discretization of the high-dimensional radia-
tive transfer equation. With the sparse tensor product approximation used, the
number of degrees of freedom is (up to logarithmic terms) reduced to the number
of grid points in space only. However, in order to obtain an overall computational
cost that is proportional to the number of grid points in space, special data struc-
tures and algorithms, for which no libraries are available, were required. If the
sparse tensor product approximation is combined with an adaptive a-posteriori
reduction of degrees of freedom, software design for these algorithms is an even
more challenging task.

The presentation focused on the a-posteriori adaptive sparse tensor product
approximation, where the relevant degrees of freedom are selected in an iterative
process, and discussed some key issues for the implementation of the solver, in
particular efficient matrix-vector multiplication and preconditioning techniques
for iterative solvers.

The advantage of the method is the adaptivity with respect to space as well as
solid angle which allows for a large reduction in the number of degrees of freedom
for different regimes of radiative transfer. Disadvantages are that the approach
suffers from a considerable implementation overhead and many time-consuming
runtime decisions.

112 K. Davis and J. Striegnitz

4 An Ongoing Debate

An ongoing discussion regards the appropriateness of a POOSC workshop in
general, and the most fitting venues for the workshop.

4.1 Continue as a Workshop?

Regarding POOSC as a workshop, there is some sentiment that it could, and
perhaps should, grow beyond workshop to full conference status. It is gener-
ally understood, however, that some broadening of scope would necessarily be
entailed. A subset of the organizers and participants are investigating this possi-
bility. In the meantime, as an annual or biannual workshop it remains successful.

4.2 Which Venues Are Appropriate?

To date they have been held at ECOOP with two exceptions: in 2001 a POOSC
workshop was held at OOPSLA (Object-Oriented Programming, Systems, Lan-
guages, and Applications), and in 2002 at OOPSLA where it was coalesced with
JavaGrande.

The essence of the argument is whether the workshop is more appropriate to
a computer science/languages conference, or a computational science/software
frameworks conference. Some computational scientists present deemed the work-
shop interesting and worthwhile, but found the ECOOP conference as a whole
too far out of field to be of interest. The computer scientists, in contrast, revel
in both the content and atmosphere of ECOOP.

One previous participant has since organized a software frameworks workshop
at an applied mathematics conference, and this branching is not unwelcome: it
provides a venue for those not interested in the programming language aspects
of parallel object-oriented scientific computing.

ECOOP remains an excellent venue for POOSC. With the discontinuation of
JavaGrande at OOPSLA, it may be time to propose it again for that venue as
well.

5 Conclusions

The POOSC workshop remains an attractive venue for both computer scientists,
and to a lesser extent computational scientists, to showcase and discuss their cur-
rent research, as evidenced by the level of contribution and participation. The
field is active, with significant progress being made on numerous problematic
fronts, and specifically on many of those enumerated in the call for papers. With
the era of new microprocessor architectures upon us (e.g. multi-core, heteroge-
neous many-core), the need for new and better abstractions, via programming
languages and systems, becomes only more urgent.

Parallel/High-Performance Object-Oriented Scientific Computing 113

6 Organizers

Dr. Kei Davis–Chair
Performance and Architecture Laboratory
Computer Science for High Performance Computing
Los Alamos National Laboratory
CCS-1, MS B287
Los Alamos, NM 87545, U.S.A.
kei.davis@lanl.gov
http://www.c3.lanl.gov/~kei

Prof. Dr. rer. nat. Jörg Striegnitz–Co-chair
Fachhochschule Regensburg
University Of Applied Sciences
Faculty of Computer Science and Mathematics
Postfach 12 03 27
93025 Regensburg, Germany
joerg.striegnitz@informatik.fh-Regensburg.de
http://homepages.fh-regensburg.de/~stj39817/people/striegnitz.html

Dr. Wolfgang Bangerth
bangerth@ices.utexas.edu
Department of Mathematics
Mailstop 3368
Texas A&M University
College Station, TX 77843-3368, USA
bangerth@math.tamu.edu
http://www.ices.utexas.edu/~bangerth

Prof. Hans Petter Langtangen
Department of Scientific Computing
Simula Research Laboratory
P.O. Box 134
NO-1325 Lysaker, Norway
hpl@simula.no
http://www.simula.no/~hpl

Dr.-Ing. Bernd Mohr
Forschungszentrum Juelich
Juelich Supercomputing Centre
52425 Juelich
Germany
b.mohr@fz-juelich.de
http://www.fz-juelich.de/jsc/JSCPeople/mohr_b

http://www.c3.lanl.gov/~kei
http://homepages.fh-regensburg.de/~stj39817/people/striegnitz.html
http://www.ices.utexas.edu/~bangerth
http://www.simula.no/~hpl
http://www.fz-juelich.de/jsc/JSCPeople/mohr_b

114 K. Davis and J. Striegnitz

Prof. Dr.-Ing. Joerg Nolte
Chair for Distributed Systems/Operating Systems
Faculty 1: Mathematics, Natural Science and Computer Science
Brandenburg University of Technology
P.O. Box 10 13 44
D-03044 Cottbus, Germany
jon@informatik.tu-cottbus.de
http://www-bs.informatik.tu-cottbus.de/index.php?id=59&L=1

Dr. Laurent Plagne
Electricité de France (EDF) Research and Development
1, Avenue du General de Gaulle
BP 408 92141 Clamart CEDEX
France
laurent.plagne@edf.fr

7 Workshop Participants

The following reflects the voluntary sign-in sheet and may not include all atten-
dees.

Réza Ansari <ansari@lal.in2p3.fr>
University Paris-Sud

Oved Cohen <oved101@gmail.com>
Israel

Thierry Geraud <theo@lrde.epita.fr>
EPITA Research and Development Lab

Charlotte Herzeel <charlotte.herzeel@vub.be>
Vrije Universiteit Brussel

Olaf Lenz <lenzo@mpip-mainz.mpg.de>
Max Planck Institut für Polymerforschung, Mainz

Gianni Mula <gianni.mula@dsf.unica.it>
University of Cagliari–Cosmolab

Laurent Plagne <laurent.plagne@edf.fr>
EDF France

Ilya Sergey <ilya.sergey@jetbrains.ca>
St. Petersburg State University

http://www-bs.informatik.tu-cottbus.de/index.php?id=59&L=1

Parallel/High-Performance Object-Oriented Scientific Computing 115

Massimiliano Virdis <gianni.mula@dsf.unica.it>
University of Cagliari–Cosmolab

René Heinzl <heinzl@iue.tuwien.ac.at>
Technische Universität Wien

Philipp Schwaha <schwaha@iue.tuwien.ac.at>
Technische Universität Wien

Krzysztof Ostrowski <krzys@cs.cornell.edu>
Cornell University

Markus Blatt <mblatt@gmx.net>
Universität Stuttgart

Gisela Widmer <widmerg@math.ethz.ch>
ETH Zurich

Francisco Igual-Peña <figual@icc.uji.es>
University Jaume I, Spain

Damian Rouson <rouson@sandia.gov>
Sandia National Laboratories, Livermore

Michelangelo Puliga <michelangelo.puliga@dsf.unica.it>
University of Cagliari–Cosmolab

Peter Gottschling <peter.gottschling@tu-dresden.de>
Technische Universität Dresden

Anton Pegushin <anton.pegushin@intel.com>
Intel

Author Index

Albert, Elvira 70

Banerjee, Anindya 70
Bergmans, Lodewijk 51
Broman, David 18

Cazzola, Walter 63
Cellier, François 18
Chiba, Shigeru 63
Chitchyan, Ruzanna 51
Clarke, Dave 30

Davis, Kei 7, 104
Drossopoulou, Sophia 30, 70

Fabry, Johan 51
Falcone, Giovanni 77
Fritzson, Peter 18

Guéhéneuc, Yann-Gaël 77

Herzeel, Charlotte 1
Huisman, Marieke 70
Hübner, Hans 1

Igarashi, Atsushi 70

Jul, Eric 42

Kienle, Holger M. 87
Kuhn, Adrian 87

Lange, Christian F.J. 77
Leavens, Gary T. 70

Mehner, Katharina 51
Mens, Kim 87
Müller, Peter 30, 70

Noble, James 30

Oriol, Manuel 63

Porkoláb, Zoltán 77

Rhodes, Christophe 1
Rogers, Ian 42

Saake, Gunter 63
Sahraoui, Houari 77
Sanen, Frans 51
Striegnitz, Jörg 7, 104
Sudholt, Mario 51

van den Brand, Mark 87
Verna, Didier 1

Wrigstad, Tobias 30, 70
Wuyts, Roel 87

	front-matter
	fulltext
	Lisp
	Introduction
	Organization
	Organizers
	Sponsors
	Call for Participation
	Format

	Presentations
	Invited Speakers
	Accepted Papers

	Discussion
	Related Events

	fulltext_3
	Multiparadigm Programming in Object-Oriented Languages: Current Research
	Introduction
	Presentations
	A Calculus of Evolving Objects (Mariangiola Dezani-Ciancaglini, Paola Giannini and Oscar Nierstrasz)
	First Class Relationships for OO Languages (Stephen Nelson, David J. Pearce, and James Noble)
	Object State Querying for Optimisation (David J. Pearce and James Noble)
	Semantics-Driven Genericity: A Sequel to the Static C++ Object-Oriented Programming Paradigm (SCOOP 2) (Thierry Geraud and Roland Levillain)
	Functional Programming at Work in Object-Oriented Programming (with the C# Case) (Philippe Narbel)
	Object Based Multiparadigm Concepts for Verification of Functional Components (Máté Tejfel, Tamás Kozsik and Zoltán Horváth)
	Implementation of JVM-Based Languages Support in IntelliJ IDEA (Ilya Sergey)
	State-Oriented Programming (Asher Sterkin)

	List of Participants
	The Organizers

	fulltext_4
	Equation-Based Object-Oriented Languages and Tools
	Objectives and Call for Papers
	Organizers
	Participants
	Contributions
	Integrated System Modeling Approaches
	Modeling for Multiple Applications
	Modeling Language Design
	Equation Handling, Diagnosis, and Modeling

	Discussion of Future Directions of EOOLT
	Which Are the Most Important Current Problems in EOOLT?
	Main Motivation for the Creation of the EOOLT Workshop Series
	Which Conference for the EOOLT Workshop to Associate with?

	Conclusions
	References

	fulltext_5
	Aliasing, Confinement, and Ownership in Object-Oriented Programming
	Introduction
	Session 1: Invited Talk
	Session 2: Ownership
	Session 3: Concurrency and Ownership Demos
	Session 4: Verification
	Future
	Participants
	Program Committee
	Organizers

	fulltext_6
	Implementation, Compilation, Optimization of Object-Oriented Languages, Programs and Systems
	Objectives and Call for Papers
	Organizers
	Participants
	Contributions
	Paper 1. Coloring in Incremental Compilation of Object-Oriented Languages
	Paper 2. Approaches to Reflective Method Invocation
	Paper 3. Precomputing Method Lookup
	Paper 4. Cast Elimination for Containers in Java
	Paper 5. The Use of a Pure Method Attribute in a Dynamic Compilation Environment
	Paper 6. Optimizing Higher-Order Functions in Scala
	Paper 7. C++ Move Semantics for Exception Safety and Optimization in Software Transactional Memory Libraries
	Paper 8. Boot Image Layout for Jikes RVM
	Discussion Session: Memory Management, Is It That Important?
	Discussion Session: Java in Embedded Systems
	Discussion. Do Threads Make Sense?

	Conclusion
	Perspectives: ICOOOLPS Future
	Background

	fulltext_7
	Aspects, Dependencies and Interactions
	Introduction
	Accepted Papers
	Architecture
	Types and Semantics
	Model-Driven Development

	Keynote Speech by James Noble on ``We Demand Rigidly Defined Areas of Doubt and Uncertainty!''
	Discussion Topics
	Overall Summary
	Detailed Example

	Panel on ``Does Model-Driven Engineering Make Aspects Obsolete?''
	Panel Positions
	Panel Discussion

	Conclusion
	Workshop Organizers and Participants
	List of Organizers
	List of Attendees

	fulltext_8
	Getting Farther on Software Evolution via AOP and Reflection
	Workshop Description and Objectives
	Workshop Topics and Structure
	Important References
	Workshop Overview: Session by Session
	Tendencies in Reflection, AOP and Meta-data for Software Evolution
	Final Remarks
	Workshop Attendee

	fulltext_9
	Formal Techniques for Java-Like Programs
	Introduction
	Program Verification
	Formal Models and Extensions of Java-Like Languages
	Program Analysis
	Types
	Conclusions

	fulltext_10
	Quantitative Approaches in Object-Oriented Software Engineering
	Introduction
	The Workshop Program
	Presentations
	Quantitative Comparison of MC/DC and DC Test Methods
	The AV-Graph in SQL-Based Environment
	Quantitative Analysis of Testability Antipatterns on Open Source Java Applications
	Evaluating Quality-in-Use Using Bayesian Networks
	Metrics for Analyzing the Quality of Model Transformations
	A Basis for a Metric Suite for Software Components

	The Organizers

	fulltext_11
	Academic Software Development Tools and Techniques
	Introduction
	Origin of the Workshop and Related Workshops

	Accepted Papers
	Workshop Structure and Outcomes
	Language Independent Tools
	Tool Building in an Industrial Context
	Tool Building Methodology
	Tool Implementation Language
	Building Tools with External Code

	Conclusion and Outlook

	fulltext_12
	Parallel/High-Performance Object-Oriented Scientific Computing: Today's Research, Tomorrow's Practice
	Introduction
	Motivation
	History

	Summary of Call for Participation
	Participants and Presentation Topics
	An Ongoing Debate
	Continue as a Workshop?
	Which Venues Are Appropriate?

	Conclusions
	Organizers
	Workshop Participants

	back-matter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

