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Chapter 1
Introduction

The question What is truth? has intrigued mankind for thousands of years and is
related in various senses to our everyday reality and to the disciplines of philoso-
phy, psychology and religion. Asked this question by Pontius Pilate, Jesus Christ
responded, Seek and you shall find.

In this book, we study truth from the following point of view: we are interested in
sentences that are true by some interpretation. The range of interpretation may cover
various objects in which interpretation can be realized. In particular, it can be an
algebra or a relational system. For classical propositional logic it is the two-element
Boolean algebra with an underlying set {0, 1}, where 1 is interpreted as true and 0 as
false, that is, negation of true. In other words, in classical logic, atomic propositions
are evaluated by either 1 or 0. Then any formula of classical logic is evaluated by
either 1 or 0, and the value is calculated in the two-element Boolean algebra. Thus
there is a one to one relation between classical logic and the two-element Boolean
algebra.

Łukasiewicz logic is a non-classical, many-valued logic, originally defined in the
early 20th century as a three-valued logic by Jan Łukasiewicz. It was later general-
ized into n-valued (for all finite n) as well as infinitely-many-valued variants, both
propositional and first-order. The infinite-valued version was published in 1930 by
Jan Łukasiewicz and Alfred Tarski. This logic belongs to the class known today as
t-norm fuzzy logics and substructural logics. Infinite-valued Łukasiewicz logic is a
real-valued logic, in which propositions of propositional calculus may be assigned
a truth value, not only 0 and 1 but also any real number in between. In other words,
we estimate a proposition by some degree of truth that is evaluated by some number
between 0 and 1. Łukasiewicz logic takes place in the Hájek framework for math-
ematical fuzzy logic, because fuzzy logics are based on continuous t-norms, and
because Łukasiewicz logic is based on the Łukasiewicz t-norm, although this fact
was discovered only several decades after Łukasiewicz’ original studies. The alge-
braic counterpart of infinite-valued Łukasiewicz logic are MV-algebras. To give an
algebraic proof of the completeness of Łukasiewicz infinite-valued sentential cal-
culus, C.C. Chang introduced MV -algebras in 1958 and gave them an equational

© Springer International Publishing Switzerland 2016
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2 1 Introduction

definition. All subvarieties of MV -algebras are known to be finitely axiomatizable
and, what is more, each of their axiomatization is also given.

Perfect MV -algebras are an interesting class of local MV -algebras. An MV -
algebra A is said to be perfect iff for every element a of A, exactly one of a and
its complement ¬a is of finite order; that is, in every perfect MV -algebra, for any
element a, the meet a∧¬a behaves as an infinitesimal. The infinitesimal elements of
perfectMV -algebras are very close to the falsum, 0. Such elements can be interpreted
as models of quasi falsum, a negation of quasi truth. The first example of a nontriv-
ial perfect MV -algebra, the algebra C, was introduced by C.C. Chang. The algebra
C is a notable example of a totally ordered, non-simple MV -algebra. A categorical
equivalence is known to exist between MV -algebras and Abelian �-groups with a
strong unit. Similarly, there is a categorical equivalence between Abelian �-groups
and perfect MV -algebras.

This book aims to study fuzzy-logic-related many-valued logics that are suitable
for formalizing the concept of quasi true. This suitability is demonstrated by giving a
comprehensive account of the basic techniques and results of particular logics and by
showing the pivotal role of perfect MV -algebras. These logics are special extensions
of Łukasiewicz infinite-valued propositional calculus. In particular, we are interested
in truth values that have four gradations. In other words, we have four truth values:
true, quasi true, quasi false, and false. Note that if a formula α is quasi true, then α�α

is also quasi true; and if a formula α is quasi false, then α⊕α is also quasi false. These
truth values have an algebraic origin. The algebras that enable us to introduce such
truth values are perfect MV -algebras, that is, MV -algebras that are not semisimple,
and whose intersection of maximal ideals (radical of the algebra) is different from
{0}. The non-zero elements of the radical are the infinitesimals. The variety generated
by all perfect MV-algebras is generated by a single chain MV -algebra, in fact, the
MV -algebra C defined by C.C. Chang.

Perfect MV -algebras are worth exploring for several reasons. To begin with, first
order predicate Łukasiewicz logic is known to be incomplete with respect to the
canonical set of truth values (see [1]); however, it is complete with respect to all
linearly ordered MV -algebras [2]. Since there are non-simple linearly ordered MV -
algebras, we can see that, in this case, the infinitesimal elements of an MV -algebra
are allowed to be truth values. In [3], another form of validity is considered for the
formulas of first order Łukasiewicz logic. In fact, roughly speaking, a formula α

is called quasi valid on a model M if for all M-interpretations the value of α is a
co-infinitesimal. Therein, it is proved, for a sentence, the equivalence of validity and
quasi validity, on all local models, that is, on all local MV -algebras. Moreover, the
importance of the class ofMV -algebras generated byMV -algebras and corresponding
to their logic becomes evident when we look at the role infinitesimals play in MV -
algebras and in Łukasiewicz logic. Indeed, as said above, pure first order Łukasiewicz
predicate logic is not complete with respect to the canonical set of truth values [0, 1].
However a completeness theorem is obtained if the truth values are allowed to vary
through all linearly ordered MV -algebras. On the other hand, the incompleteness
theorem entails the problem of the algebraic significance of true but unprovable
formulas. It is significant that the Lindenbaum algebra of first order Łukasiewicz
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logic is not semisimple, and that valid but unprovable formulas are precisely those
whose negations determine the radical of the Lindenbaum algebra, that is, the co-
infinitesimals of such algebra. Thus perfect MV -algebras, the variety generated by
them, and their logic are intimately related to a crucial phenomenon in first order
Łukasiewicz logic.

Secondly, we also stress the fact that in his unpublished note An MV-algebra for
Vagueness Petr Hájek, in response to some criticism about the logics of vagueness
making a sharp break between a true case (value 1) and borderlines cases (value< 1),
offered a fuzzy semantics based on a non-standard (non simple) linearly ordered
MV -algebra. In fact, for a valuation algebra, Hájek proposed the linearly ordered
MV -algebra constructed on the unit interval of the lexicographic product of the real
line by itself.

Third, considering the real unit interval [0, 1] as the structure over which to eval-
uate formulas of a sentential calculus, one has many possibilities. Let us start with
Łukasiewicz logic Ł and evaluate formulas by morphisms from the Lindenbaum
MV -algebra L to [0, 1]. We know that Ł is complete with respect to [0, 1]. A truth
value x ∈ [0, 1], x �= 1, can be considered as the value of a not-true formula. The
distance of x from 1 can be considered to express how close x is to be true. Dually, we
canmake similar considerations of the falsum 0. Starting from x, assuming v(α) = x,
where v(α) is the truth value of a formula α, then after a finite number of steps made
by the strong (bold) disjunction ⊕, such as

v(α), v(α ⊕ α), v(α ⊕ α ⊕ α), . . .

we obtain, for every evaluation v,

v(α ⊕ · · · ⊕ α) = 1

and, similarly using the strong (bold) conjunction �, also

v(α � · · · � α) = 0.

This cannot be a case of Łukasiewicz tautologies α. Indeed, we have v(α) = 1 and
v(α � · · · � α) = 1 for all evaluations v. All this is due to the simplicity of [0, 1]
and to the semisimplicity of L. Assume now to evaluate Ł over an ultrapower ∗[0, 1]
of [0, 1], and assume a formula α such that v(α) is infinitesimally close to 1. We
are interested in considering such formulas having a co-infinitesimal value for every
evaluation. For any of such formulas, their behavior must be intermediate between
that of tautologies and that of formulas evaluated into a real number in [0, 1]. It is
reasonable to consider such formulas as quasi true. Therefore, it is an interesting task
to explore how to formalize such concept of quasi truth and how to develop logics
that allow to generalize the concept of truth, that is, to some extent, develop a logic
of approximation.

Consequently, we are here looking for logics that are extensions of Ł having
an evaluation over a non-simple MV -chain. There are several such logics that in
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different ways concern quasi truth and that, as evaluating algebras, are based on
the algebra C or on perfect MV -algebras containing C. In fact, we will focus in
this book on several such logics that, roughly speaking, are logics of the concept
of quasi true or the concept of infinitesimally close to the truth. Notice that the
perfect MV -algebra C is a subalgebra of any perfect MV -algebra, which is different
from the two-element Boolean algebra; in other words, C is the smallest non-trivial
perfect algebra. For example, in the language of the new logic CL (and CL+ as well),
we include a new (constant) connective c, which is interpreted as quasi false, and
hence ¬c is interpreted as quasi true. Roughly speaking, the constant c is a common
representative of infinitesimals. Correspondingly, in the signature of the new algebras
will appear, beside the MV -algebra operations, a new constant c. Thus, in fact, we
have infinitely many constants besides 1 and 0: c, 2c, 3c, . . . , (¬c)3, (¬c)2,¬c. As
we see, the constant elements form an algebra that is isomorphic to Chang’s algebra
C. Therefore, the algebra of constant elements should be a subalgebra of all algebras
that are models of the logic CL or CL+.

Another type of logic that is evaluated over the perfect MV -chain C and that
we consider in this book is the one recently presented in [2], where such a logic is
developed in the context of Pavelka logic. The authors suggest, for example, that
logics with infinitesimal truth values are motivated to imitate human reasoning, and
they introduce the simplest version of Perfect Pavelka logic,PPL for short. In contrast
to Pavelka’s [0, 1]-value logic, the logic language of PPL contains only one new
truth constant, denoted by the symbol t and standing for quasi true. However, unlike
the original Pavelka logic on the real unit interval [0, 1], the simplest PPL cannot
solve the Sorite Paradox. However, introducing a general perfect MV-algebra-valued
Pavelka style logic would solve the problem.

This book requires someacquaintancewith classical logic, Łukasiewicz logic, uni-
versal algebra, topology, and MV -algebras. However, all the necessary concepts are
explained in Chaps. 2, 3, and 4. Chapter 5 deals with local MV -algebras, i.e. with the
MV-algebras with exactly one maximal ideal thus containing all infinitesimals. Per-
fect MV-algebras, a particular class of local MV -algebras, are introduced in Chap.6,
Chap. 7 focuses on the variety generated by perfect MV -algebras, and Chap.8 exam-
ines the representations of perfectMV -algebras. In Chap.9, we consider the logic LP,
which corresponds to the variety generated by perfect MV -algebras, and in Chap.10,
we introduce a new logic CL by enriching the language of Łukasiewicz logic with a
nullary connective interpreted as quasi false. Finally, in Chap. 11, we study Pavelka
style fuzzy logic where the set [0, 1] of truth values is replaced by the Chang algebra
C.

We are grateful to Mr. Inusah Abdulai, who carefully encoded the LaTeX code of
the manuscript according to our instructions. Of course, the authors are responsible
for any possible errors.
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Chapter 2
Basic Notions

2.1 Ordered Sets and Lattices

A binary relation R defined on a set A × A is a partial order on the set A if the
following conditions hold for all a, b, c ∈ A:

(i) aRa (reflexivity),
(ii) aRb and bRa imply a = b (antisymmetry),
(iii) aRb and bRc imply aRc (transitivity).

If, in addition, for every a, b ∈ A
(iv) aRb or bRa

then we say R is a total order on A. A nonempty set with a partial order on it is called
a Partially ordered set (poset for brevity), and if the relation is a total order then we
speak of a totally ordered set, or a linearly ordered set, or simply a chain. When we
have a partial order R we use the notation ≤ instead of R. In a poset A we use the
expression a < b to mean a ≤ b but a �= b.

Let A be a subset of a poset P . An element p ∈ P is an upper bound for A if
a ≤ p for every a ∈ A. An element p ∈ P is the least upper bound of A (l.u.b. of A),
or supremum of A (sup A) if p is an upper bound of A, and a ≤ b for every a ∈ A
implies p ≤ b (i.e., p is the smallest among the upper bounds of A). Similarly we
can define what it means for p to be a lower bound of A, and for p to be the greatest
lower bound of A (g.l.b. of A), also called the infimum of A (inf A). For a, b ∈ P
we say b covers a, or a is covered by b, if a < b, and whenever a ≤ c ≤ b it follows
that a = c or c = b. We use the notation a ≺ b to denote a is covered by b. The
closed interval [a, b] is defined to be the set of c ∈ P such that a ≤ c ≤ b, and the
open interval (a, b) is the set of c ∈ P such that a < c < b.

A poset L is a lattice iff for every a, b ∈ L both sup{a, b} and inf{a, b} exist
(in L).

© Springer International Publishing Switzerland 2016
A. Di Nola et al., Fuzzy Logic of Quasi-Truth: An Algebraic Treatment,
Studies in Fuzziness and Soft Computing 338, DOI 10.1007/978-3-319-30406-9_2
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2.2 Topological Spaces

A topological space is a pair consisting of a set X and some family Ω of subsets
of the set X satisfying the following conditions: ∅, X ∈ Ω; if U1, U2 ∈ Ω , then
U1 ∩ U2 ∈ Ω; if Γ ⊂ Ω , then

⋃
Γ ∈ Ω . The elements of Ω are named open

sets. The complements of open sets are called closed sets. The elements of Ω that
simultaneously are open and closed are called clopen. In a topological space, we
define two operations IA and CA as follows:

IA = ⋃{B : B is open subset of X and B ⊂ A} is called interior operator

CA = ⋂{B : B is closed subset of X and B ⊃ A} is called closure operator.

A class B of open subsets of X is said to be a basis of X if every open subset of X
is the union of some sets belonging to B. A class B0 of open subsets of X is said to
be a subbasis of X if the class B composed by the empty set ∅, the whole space X ,
and of all finite intersections B1 ∩ · · · ∩ Bn where B1, . . . , Bn ∈ B0, is a basis of X .

A topological space X is said to be compact if, for every indexed set {At }t∈T of
open subsets, the equation X = ⋃

t∈T At implies the existence of a finite set T0 ⊂ T
such that X = ⋃

t∈T0
At .

A topological space X is said to be T0-space if, for every pair of distinct points
x, y, there exists an open set containing exactly one of them. A topological space X
is said to be T1-space if, for every pair of distinct points x, y, there exist two open sets
A and B such that x ∈ A, y /∈ A and x /∈ B, y ∈ B, or equivalently, a topological
space X is T1-space if and only if any finite subset is closed. A topological space X
is said to be T2-space or Hausdorff space if, for every pair of distinct points x, y,
there exist two disjoint open sets A, B such that x ∈ A and y ∈ B and A ∪ B = X .

2.3 Universal Algebras

The main part of this section is taken from [1].
A language (or type) of algebras is a set F of function symbols such that a non-

negative integer n is assigned to each member f ofF . This integer is called the arity
(or rank) of f , and f is said to be an n-ary function symbol. The subset of n-ary
function symbols in F is denoted by Fn .

IfF is a language of algebras then an algebra of typeF is an ordered pair (A, F)

where A is a nonempty set and F is a family of finitary operations on A indexed by
the language F such that corresponding to each n-ary function symbol f in F there
is an n-ary operation f A on A. The set A is called the universe (or underlying set) of
(A, F), and the f A are called the fundamental operations of the algebra. We prefer
to write just f for f A and represent an algebra as its underlying set A. If F is finite,
say F = { f1, . . . , fk}we write (A, f1, . . . , fk). An algebra A is finite if |A| is finite,
and trivial if |A| = 1.
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Examples:
(1) Groups. A multiplicative group G is an algebra (G, ·,−1 , 1) with a binary, a

unary, and nullary operations in which the following identities are true:

G1. x · (y · z) = (x · y) · z,
G2. x · 1 = 1 · x = x,
G3. x · x−1 = x−1 · x = 1.

A group G is Abelian (or commutative) if the following identity is true:

G4. x · y = y · x .

A additive group G is an algebra (G,+,−, 0) with a binary, a unary, and nullary
operations in which the following identities are true:

G’1. x + (y + z) = (x + y) + z,
G’2. x + 0 = 0 + x = x ,
G’3. x + (−x) = −x + x = 0.

A group G is Abelian (or commutative) if the following identity is true:

G’4. x + y = y + x .

Groups are generalized to semigroups and monoids.
(2) Semigroups and Monoids. A semigroup is a groupoid (G, ·) in which (G1) is

true. It is commutative (or Abelian) if (G4) holds. A monoid is an algebra (M, ·, 1)
with a binary and a nullary operations satisfying (G1) and (G2).

In additive case, we have: a semigroup is a groupoid (G,+) in which (G’1) is
true. It is commutative (or Abelian) if (G’4) holds. A monoid is an algebra (M,+, 0)
with a binary and a nullary operation satisfying (G’1) and (G’2).

(3) Lattices. A lattice is an algebra (L ,∨,∧) with two binary operations which
satisfies the following identities:

L1. x ∨ y = y ∨ x, x ∧ y = y ∧ x ,
L2. x ∨ (y ∨ z) = (x ∨ y) ∨ z, x ∧ (y ∧ z) = (x ∧ y) ∧ z,
L3. x ∨ x = x, x ∧ x = x ,
L4. x = x ∨ (x ∧ y), x = x ∧ (x ∨ y).

(4)Bounded Lattices. An algebra (L ,∨,∧, 0, 1)with two binary and two nullary
operations is a bounded lattice if it satisfies:

BL1. (L ,∨,∧) is a lattice
BL2. x ∧ 0 = 0, x ∨ 1 = 1.

(5) Boolean Algebras. A Boolean algebra is an algebra (B,∨,∧,¬, 0, 1) with
two binary, one unary, and two nullary operations which satisfies:

B1. (B,∨,∧) is a distributive lattice,
B2. x ∧ 0 = 0, x ∨ 1 = 1,
B3. x ∧ ¬x = 0, x ∨ ¬x = 1.
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Also, we can define Boolean algebras in another signature. Namely, a Boolean
algebra is an algebra (B,∨,∧,¬) with two binary, one unary which satisfies:

B1. (B,∨,∧) is a distributive lattice,
B’2. x ∧ (y ∧ ¬y) = y ∧ ¬y, x ∨ (y ∨ ¬y) = y ∨ ¬y,
B’3. y ∨ ¬y = x ∨ ¬x, y ∧ ¬y = x ∧ ¬x .
In this case we denote x ∨ ¬x by 1, and x ∧ ¬x by 0.

(6) Heyting Algebras. An algebra (H,∨,∧,→, 0, 1) with three binary and two
nullary operations is a Heyting algebra if it satisfies:

H1. (H,∨,∧) is a distributive lattice,
H2. x ∧ 0 = 0, x ∨ 1 = 1,
H3. x → x = 1,
H4. (x → y) ∧ y = y, x ∧ (x → y) = x ∧ y,
H5. x → (y ∧ z) = (x → y) ∧ (x → z), (x ∨ y) → z = (x → z) ∧ (y → z).

(7) Gödel algebras. An algebra (G,∨,∧,→, 0, 1) with three binary and two
nullary operations is a Gödel algebra algebra if it satisfies:

GH1. (G,∨,∧,→, 0, 1) is a Heyting algebra,
GH2. (x → y) ∨ (y → x) = 1.

(8) BL-algebras. An algebra A = (A,∧,∨,� →, 0, 1) with four binary and
two nullary operations is an BL-algebra if it satisfies:

BL1. (A,∧,∨, 0, 1) is a lattice with the largest element 1 and the least element 0
(with respect to the lattice ordering ≤),
BL2. (A,�, 1) is a commutative semigroup with the unit element 1,
BL3. for all x, y, z ∈ A, x � y ≤ z iff x ≤ y → z,
BL4. for all x, y ∈ A, x ∧ y = x � (x → y),
BL5. for all x, y ∈ A, (x → y) ∨ (y → x) = 1.

(9) MV -algebras. An algebra A = (A, 0,¬,⊕) with one binary and one unary
and one nullary operations is an MV -algebra if it satisfies:

MV1. (A, 0,⊕) is an abelian monoid,
MV2. ¬¬x = x,
MV2. x ⊕ ¬0 = ¬0,
MV3. y ⊕ ¬(y ⊕ ¬x) = x ⊕ ¬(x ⊕ y).

We set 1 = ¬0 and x � y = ¬(¬x ⊕ ¬y). We shall write ab for a � b and an

for a � · · · � a︸ ︷︷ ︸
n times

, for given a, b ∈ A. Every MV -algebra has an underlying ordered

structure defined by
x ≤ y iff ¬x ⊕ y = 1.

Then (A;≤, 0, 1) is a bounded distributive lattice.
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Moreover, the following property holds in any MV -algebra:

xy ≤ x ∧ y ≤ x, y ≤ x ∨ y ≤ x ⊕ y.

(10) Wajsberg algebras. An alternative way to define MV-algebras is to start
from Wajsberg algebras. An algebra A = (A,→,∗ , 1) with one binary and one
unary and one nullary operation is a Wajsberg algebra if it satisfies:

W1. 1 → x = x,
W2. (x → y) → [(y → z) → (x → z)] = 1,
W3. (x → y) → y = (y → x) → x,

W4. (x∗ → y∗) → (y → x) = 1.

MV-algebras and Wajsberg algebras are in one-to-one correspondence: any MV-
algebra satisfies the Wajsberg axioms by stipulations ¬x = x∗, x ⊕ y = a∗ → x ,
0 = 1∗. Also the converse holds; by defining in a Wajsberg algebra x∗ = ¬x ,
x ⊕ y = x∗ → y, 0 = 1∗ we obtain an MV-algebra.

Let A and B be two algebras of the same type. Then B is a subalgebra of A if
B ⊂ A and every fundamental operation of B is the restriction of the corresponding
operation of A. Equivalently, a subalgebra of A is a subset B of A which is closed
under the fundamental operations of A, i.e., if f is a fundamental n-ary operation of
A and a1, . . . , an ∈ B we would require f (a1, . . . , an) ∈ B.

Assume f : An → A is an n-ary operation. The relation ∼ is a congruence if, for
all a1, . . . , an , b1, . . . , bn ∈ A, ai ∼ bi , i = 1, . . . , n implies
f (a1, . . . , an) ∼ f (b1, . . . , bn).
For A an algebra and a1, . . . , an ∈ A let θ(a1, . . . , an) denote the congruence

generated by {(ai , a j ) : 1 ≤ i ≤ j}, i.e., the smallest congruence such that a1, . . . , an

are in the same equivalence class. The congruence θ(a1, a2) is called a principal
congruence. For arbitrary X ⊂ A let θ(X) be defined to mean the congruence
generated by X × X .

Suppose A and B are two algebras of the same type. A mapping h : A → B is
called a homomorphism from A to B if

h( f (a1, . . . , an)) = f (h(a1), . . . , h(an))

for each n-ary f in F and each sequence a1, . . . , an from A. If, in addition, the
mapping h is onto then B is said to be a homomorphic image of A, and h is called an
epimorphism. An isomorphism is a homomorphism which is one-to-one and onto. In
case A = B a homomorphism is also called an endomorphism and an isomorphism
is referred to as an automorphism.

Let A and B be of the same type. A function h : A → B is an embedding of A
into B if h is one-to-one homomorphism (such an h is also called a monomorphism).
For brevity we simply say ‘h : A → B is an embedding’.We say A can be embedded
in B if there is an embedding of A into B.

Let f : A → B be a homomorphism. Then the kernel of f , ker( f ) defined
by ker( f ) = {(a, b) ∈ A2 : f (a) = f (b)} is a congruence on A. The set of all
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congruences of an algebra A forms a lattice Con A with the top element ∇ and the
bottom element �.

The mapping πi : A1 × A2 → Ai , i ∈ {1, 2}, defined by πi ((a1, a2)) = ai , is
called the projection map on the i th coordinate of A1 × A2.

An algebra A is (directly) indecomposable if A is not isomorphic to a direct
product of two nontrivial algebras.

We easily generalize the definition of A1 × A2 as follows. Let (Ai )i∈I be an
indexed family of algebras of the same type. The (direct) product A = ∏

i∈I Ai is
an algebra with universe

∏
i∈I Ai and such that for a n-ary fundamental operation f

and a1, . . . , an ∈ ∏
i∈I Ai

f (a1, . . . , an)(i) = f (a1(i), . . . , an(i))

for i ∈ I , i.e., f on A is defined coordinate-wise. As before we have projection maps

π j :
∏

i∈I

Ai → A j

for j ∈ I defined by
π j (a) = a( j)

which give surjective homomorphisms

π j :
∏

i∈I

Ai → A j .

An algebra A is a subdirect product of an indexed family (Ai )i∈I of algebras if
(i) A is a subalgebra of

∏
i∈I Ai and (ii) πi (A) = Ai for each i ∈ I . An embedding

h : A → ∏
i∈I Ai is subdirect if h(A) is a subdirect product of the Ai .

Proposition 2.1 [2] If θi ∈ Con A for i ∈ I and
⋂

i∈I θi = �, then the natural
homomorphism h : A → ∏

i∈I A/θi defined by h(a)(i) = a/θi is a subdirect
embedding.

An algebra A is subdirectly irreducible if for every subdirect embedding h : A →∏
i∈I Ai there is an i ∈ I such that πi ◦ h : A → Ai is an isomorphism.

Proposition 2.2 [2] (i) An algebra A is subdirectly irreducible iff A is trivial or
there is a minimum congruence in Con A − {�}.

(ii) A subdirectly irreducible algebra is directly indecomposable.
(iii) Every algebra A is isomorphic to a subdirect product of subdirectly irre-

ducible algebras (which are homomorphic images of A).

SupposeK is a class of algebras, and A, B ∈ K. TheK-coproduct of A and B is an
algebra A� B ∈ K with algebra homomorphisms i A : A → A� B, iB : B → A� B,
such that i A(A)∪ iB(B) ⊂ A � B generates A � B, satisfying the following universal
property: for every algebra D ∈ K with algebra homomorphisms f : A → D
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and g : B → D, there exists an algebra homomorphism h : A � B → D such that
h◦i A = f and h◦iB = g. If we change in the definition of coproduct the requirement
that the algebra homomorphisms to be injective, then we have the definition of free
product. The coproduct A � B coincides with free product if there is an algebra D
such that the algebras A and B can be jointly embedded into D [3].

An algebra A is simple if Con A = {�,∇}. A congruence θ on an algebra A is
maximal if the interval [θ,∇] of Con A has exactly two elements.

We introduce the following operators mapping classes of algebras to classes of
algebras (all of the same type):

A ∈ I (K) iff A is isomorphic to some member of K
A ∈ S(K) iff A is a subalgebra of some member of K
A ∈ H(K) iff A is a homomorphic image of some member of K
A ∈ P(K) iff A is a direct product of a nonempty family of algebras in K
A ∈ PS(K) iff A is a subdirect product of a nonempty family of algebras in K.

A nonempty class K of algebras of the same type is called a variety if it is closed
under subalgebras, homomorphic images, and direct products. If K is a class of
algebras of the same type let V(K) denote the smallest variety containing K. We say
that V(K) is the variety generated by K. If K has a single member A we write simply
V(A). A variety K is finitely generated if K = V(V) for some finite set V of finite
algebras.

Proposition 2.3 [2] If K is a variety, then every member of K is isomorphic to a
subdirect product of subdirectly irreducible members of K.

Let X be a set of (distinct) objects called variables. Let F be a type of algebras.
The set T (X) of terms of type F over X is the smallest set such that

(i) X ∪ F0 ⊆ T (X).
(ii) If p1, . . . , pn ∈ T (X) and f ∈ Fn , then f (p1, . . . , pn) ∈ T (X).

Given a term p(x1, . . . , xn) of type F over some set X and given an algebra A of
type F we define a mapping pA : An → A as follows:

(1) if p is a variable xi , then pA(a1, . . . , an) = ai for a1, . . . , an ∈ A, i.e., pA is the
i th projection map;

(2) if p is of the form f (p1(x1, . . . , xn), . . . , pk(x1, . . . , xn)), where f ∈ Fk , then
pA(a1, . . . , an) = f A(pA(a1, . . . , an), . . . , pA(a1, . . . , an)).

In particular if p = f ∈ F , then pA = f A, where pA is the term function on A
corresponding to the term p. (Often we will drop the superscript A).

Given F and X , if T (X) �= ∅ then the term algebra of type F over X has as its
universe the set T (X), and the fundamental operations satisfy

f T (X)(p1, . . . , pn) �→ f (p1, . . . , pn)

for f ∈ Fn and pi ∈ T (X), 1 ≤ i ≤ n. (T (∅) exists iff F0 �= ∅.)
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An identity (or equation) of type F over X is an expression of the form

p = q

where p, q ∈ T (X). Let I d(X) be the set of identities of type F over X . An algebra
A of type F satisfies an identity

p(x1, . . . , xn) = q(x1, . . . , xn)

(or the identity is true in A, or holds in A), abbreviated by

A |= p(x1, . . . , xn) = q(x1, . . . , xn),

or more briefly
A |= p = q,

if for every choice of a1, . . . , an ∈ A we have

pA(a1, . . . , an) = q A(a1, . . . , an).

A class K of algebras satisfies p = q, written

K |= p = g,

if each member of K satisfies p = g. If Σ is a set of identities, we say K satisfies
Σ , written

K |= Σ,

if K |= p = g for each p = q ∈ Σ . Given K and X let

I dK(X) = {p = q ∈ I d(X) : K |= p = g}.

LetΣ be a set of identities of typeF , and define M(Σ) to be the class of algebras A
satisfyingΣ . A class K of algebras is an equational class if there is a set of identities
Σ such that K = M(Σ). In this case we say that K is defined, or axiomatized, byΣ .

Proposition 2.4 [1] If V is a variety and X is an infinite set of variables, then
V = M(I dV(X)).

Let V be a variety. An algebra A ∈ V is said to be a free algebra over V, if
there exists a set A0 ⊂ A such that A0 generates A and every mapping f from
A0 to any algebra B ∈ V is extended to a homomorphism h from A to B. In this
case A0 is said to be the set of free generators of A. If the set of free generators
is finite, then A is said to be a free algebra of finitely many generators. We denote
a free algebra A with m ∈ (ω + 1) free generators by FV(m). We shall omit the
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subscript V if the variety V is known. We can also define the m-generate free algebra
A on the generators g1, . . . , gm over the variety K in the following way: the algebra
A is a free algebra on the generators g1, . . . , gm iff for any m variable identity
p(x1, . . . , xm) = q(x1, . . . , xm), the identity holds in the variety K iff the equation
p(g1, . . . , gm) = q(g1, . . . , gm) is true in the algebra A on the generators [2].

Note that T (X) is indeed generated by X and it is (absolutely) free algebra in the
class of all algebras of type F .

Let I be a set. Let (Su(I ),∪,∩, ′,∅, I ) be the Boolean algebra of all subsets of I .
A subset F ⊂ Su(I ) is said to be filter if: (1) I ∈ F , (2) if X, Y ∈ F then X ∩Y ∈ F ,
(3) if X ∈ F and X ⊂ Y then Y ∈ F . A filter F is proper if F �= Su(I ). A proper
filterU is called ultrafilter if it is a maximal proper filter with respect to the inclusion
between filters.

Let (Ai )i∈I be a nonempty indexed family of algebras of type F , and suppose
F is a filter over I . Define the binary relation θF on

∏
i∈I Ai by (a, b) ∈ θF iff

{i ∈ I : a(i) = b(i)} ∈ F .

Proposition 2.5 [1] For (Ai )i∈I and F as above, the relation θF is a congruence on
the algebra

∏
i∈I Ai .

Given a nonempty indexed family of algebras (Ai )i∈I of type F and a proper
filter F over I , define the reduced product

∏
i∈I Ai/F as follows. Let its universe∏

i∈I Ai/F be the set
∏

i∈I Ai/θF , and let a/F denote the element a/θF . For f an
n-ary function symbol and for a1, . . . , an ∈ ∏

i∈I Ai , let

f (a1/F, . . . , an/F) = f (a1, . . . , an)/F.

If K is a nonempty class of algebras of type F , let PR(K) denote the class of all
reduced products

∏
i∈I Ai/F , where Ai ∈ K.

A reduced product
∏

i∈I Ai/U is called an ultraproduct if U is an ultrafilter over
I . If all the Ai = A, then we write AI /U and call it an ultrapower of A. The class
of all ultraproducts of members of K is denoted PU (K).

A quasi-identity is an identity or a formula of the form (p1 = q1& . . .&pn =
qn) → p = q. A quasivariety is a class of algebras closed under I, S, and PR , and
containing the one-element algebras.

Proposition 2.6 [1] Let K be a class of algebras. Then the following are equivalent:

(a) K can be axiomatized by quasi-identities,
(b) K is a quasivariety,
(c) K is closed under I, S, P, and PU and contains a trivial algebra,
(d) K is closed under I S PR and contains a trivial algebra, and
(e) K is closed under I S P PU and contains a trivial algebra.

If K is a class of algebras of the same type let QV(K) denote the smallest quasi
variety containing K. We say that QV(K) is the quasi variety generated by K. If
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K has a single member A we write simply QV(A). A quasi variety K is finitely
generated if K = QV(V) for some finite set V of finite algebras.

Proposition 2.7 [4] Given algebras Ai , i ∈ I , of type F , if U is an ultrafilter over
I and � is any first-order formula of type F ∪ {=}, then

∏

i∈I

Ai/U |= �(a1/U, . . . , an/U )

iff

{i ∈ I : Ai |= �(a1(i), . . . , an(i))} ∈ U

Let V be any variety of algebras. An algebra A is said to be a retract of the algebra
B, if there are homomorphisms ε : A → B and h : B → A such that hε = I dA,
where I dA denotes the identity map over A. An algebra A ∈ V is called projective,
if for any B, C ∈ V, any onto homomorphism γ : B → C and any homomorphism
β : A → C , there exists a homomorphism α : A → B such that γα = β. Notice
that in varieties, projective algebras are characterized as retracts of free algebras.

A subalgebra A of FV(m) is said to be projective subalgebra if there exists an
endomorphism h : FV(m) → FV(m) such that h(FV(m)) = A and h(x) = x for
every x ∈ A.

2.4 Categories

A category C consists of the following data:

(i) A set Ob(C) of objects.
(ii) For every pair of objects a, b ∈ Ob(C), a set C(a, b) of arrows, or morphisms,

from a to b.
(iii) For all triples a, b, c ∈ Ob(C), a composition map C(a, b)×C(b, c) → C(a, c),

( f, g) �→ g f = g ◦ f .
(iv) For each object a ∈ Ob(C), a morphism 1a ∈ C(a, a), called the identity of a.

These data are subject to the following axioms:
Associativity: h(g f ) = (hg) f , for all ( f, g, h) ∈ C(a, b) × C(b, c) × C(c, d).
Identity: f = f 1a = 1b f , for all f ∈ C(a, b).
Disjointness: C(a, b) ∩ C(a′, b′) = ∅, if (a, b) �= (a′, b′) in Ob(C) × Ob(C).
We usually write f : a → b to indicate that a morphism f belongs to C(a, b). In

this case the object a is called the domain, or source, of f and written dom f , and b
is the codomain, or target, of f and written cod f .

The typical example is the category K of algebras, whose objects are the algebras
from K and morphisms are homomorphisms between algebras from K. The cate-
gories of algebras are examples of concrete categories, that is, categories in which
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objects are sets with additional structure, morphisms are structure-preserving func-
tions, and the composition law is ordinary composition of functions.

Amorphism f : a → b in a categoryC is an isomorphism if there exists g : b → a
such that f g = 1b and g f = 1a . Objects a and b are isomorphic if there exists an
isomorphism between them, in which case we write a ∼= b.

A subcategory of a category C is a subsetD of C that is closed under composition
and formation of domains and codomains. We write D ⊆ C to indicate that D is a
subcategory of D.

A morphism m in a category C is monic, or a monomorphism, if the equality
m f = mg implies that f = g, for all morphism f, g ∈ C . A morphism h is epi, or
an epimorphism, if f h = gh implies that f = g, for all f, g ∈ C. In other words,
monics are morphisms that are left cancellable, and epis are morphisms that are right
cancellable. In a concrete category, (i) injective ⇒ monic; (ii) surjective ⇒ epi.

If C and D are categories, a functor F : C → D consists of functions Ob(C) →
Ob(C) and Mor(C) → Mor(D), also denoted by F , such that (i) F : C(a, b) →
D(F(a), F(b)), for all a, b ∈ C; (ii) F(1a) = 1F(a), for all a ∈ C; (iii) F( f g) =
F( f )F(g), for all composable ( f, g).

A functor F : C → D is faithful if F : C(a, b) → D(F(a), F(b)) is injective
for all objects a, b ∈ C. The functor F is full if F : C(a, b) → D(F(a), F(b)) is
surjective for all a, b ∈ C. A functor is an embedding if it is faithful and is an injective
function on objects.

If C is a category, then the opposite category Cop has the same objects and mor-
phisms as C, but with Cop(a, b) = C(b, a), for all objects a and b, and if f : a → b
and g : b → c in C, then the composition f g in Cop defined to be the composition
g f in C.

We write f op for a morphism f → C(b, a) whenever we want to regard f as a
morphism in Cop, so that f op : a → b in Cop ⇔ f : b → a in C.

A contravariant functor from a category C to a categoryD is a functor Cop → D.
We use the notation F : C → D to denote contravariant, as well as ordinary

(covariant) functors. Hence, the statement “F : C → D is a contravariant functor”
means that F assigns an object F(a) to each object a in C, and F assigns to each
morphism f : a → b of C a morphism F( f ) : F(b) → F(a) of D, such that
F( f g) = F(g)F( f ), for all composable pairs of morphisms ( f, g) in C. When we
need to emphasize that a particular functor is not contravariant, we will call it a
covariant functor.

A functor F : C → D yields an equivalence of categories C and D if and only if
it is simultaneously:

(i) full; (ii) faithful; and essentially surjective (dense), i.e. each object d in D is
isomorphic to an object of the form F(c), for c in C.

If a category is equivalent to the opposite (or dual) of another category then
one speaks of a duality of categories, and says that the two categories are dually
equivalent.
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Chapter 3
Classical Sentential Calculus
and Łukasiewicz Sentential Calculus

3.1 Classical Sentential Calculus

Logic was established as a formal discipline by Aristotle (384-322 BCE), who gave
it a fundamental place in philosophy.

The classical sentential calculus, classical propositional calculus, or classical
propositional logic, as it was, and still often is called, takes its origin from antiquity
and are due to Stoic school of philosophy (344-262 BCE). The real development of
this calculus began only in the mid-19th century and was initiated by the research
done by G. Boole. The classical propositional calculus was first formulated as a
formal axiomatic system by G. Frege in 1879 [1].

The assumption underlying the formalization of classical propositional calculus
are the following:

We deal only with sentences that can always be evaluated as true or false. Such
sentences are called logical sentences or propositions. Hence the name propositional
logic or sentential logic.

The study of any logic L is begun with its languageL. The languageL of classical
propositional calculus contains a countable set Var(L) of propositional variables
p1, p2, . . ., logical connectives →,¬,∨,∧,↔ (read as ‘implies’, ‘not’, ‘or’, ‘and’,
‘if and only if’ respectively). Also, there are left and right brackets. The formulas
are defined as follows.

(i) A propositional variable is a formula.
(ii) If α and β are formulas, then so are (α → β), (¬α), (α ∨ β), (α ∧ β) and

(α ↔ β).
(iii) Any formula is given by the above rules.

We will omit some brackets for simplicity. Denote the set of all formulas by
Form(L).

Now we give some explanation about semantics of this logic. A formula of clas-
sical propositional logic is more than just a meaningless set of symbols; it can repre-
sent a logical combination of facts about the universe. We interpret the propositional

© Springer International Publishing Switzerland 2016
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Table 3.1 Truth tables

α β α → β ¬α α ∨ β α ∧ β α ↔ β

1 1 1 0 1 1 1

1 0 0 0 1 0 0

0 1 1 1 1 0 0

0 0 1 1 0 0 1

variables as basic statements. If we know whether the basic statements are true or
false, we can decide whether any logical compound of them is true or false. In such
a way we define semantics of classical propositional logic.

Any formula containing the propositional variables p1, . . . , pn can be used to
define a function of n variables, i.e. a function from the set {1, 0}n to {1, 0}, where
1 is understood as true and 0 as false. So, we define an evaluation to be a function
v from the set of formulas to the set {1, 0}. The evaluation maps each propositional
variable to a truth value, which we take to be the truth value of corresponding basic
proposition. We also have to specify how the evaluation behaves as formulas built
up. This is done by truth tables as given in Table 3.1. According to the principle of
truth functionality the truth-values of compounds of a formula uniquely determine
the truth value of a compound of the formula. This achieved by defining the truth
functions of corresponding logical connectives.

We denote the truth functions by the same symbol as logical connectives. Notice
that the set {0, 1} with the operations ∨,∧,¬(= ′), 0, 1 forms the two-element
Boolean algebra ({0, 1},∨,∧,¬, 0, 1). By means of the fundamental operations
∨,∧,¬ we can define operations →,↔, 0 and 1 in the following way: x1 → x2 =
¬x1 ∨ x2, x1 ↔ x2 = (x1 → x2) ∧ (x1 → x2), 0 = x1 ∧ ¬x1, 1 = x1 ∨ ¬x1. This
two-element Boolean algebra is the only simple Boolean algebra and any Boolean
algebra is a subdirect product of two-element Boolean algebras [2]. In other words
the two-element Boolean algebra generates the variety of all Boolean algebras.

We say thatα is a tautology if v(α) = 1 for all evaluations v, and is a contradiction
if v(α) = 0 for all evaluations v; and that α is a logical consequence of a set � of
formulas if every evaluation v which satisfies v(β) = 1 for all β ∈ �, also satisfies
v(α) = 1. It is easy to prove the following

Theorem 3.1 If the formulas α and α → β are tautologies, then β is a tautology.

Now we define the formal deduction system Cl for classical propositional logic.
For this, we use only the connectives¬ and→, since all the others can be expressed in
terms of these. Specifically, if we replace all occurrences of (α∨β) by ((¬α) → β),
occurrences of (α ∧ β) by (¬(α → (¬β))), and occurrences of (α ↔ β) by
(¬((α → β) → (¬(β → α)))), then the value assigned to the formula by any
evaluation is not affected.
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There are three ‘schemes’ of axioms, namely for any formulas α,β, γ:

(A1) (α → (β → α))

(A2) ((α → (β → γ)) → ((α → β) → (α → γ))

(A3) (((¬α) → (¬β)) → (β → α))

There is only one inference rule—Modus Ponens: from α and (α → β), infer β.
A proof in Cl is a sequence β1, . . . ,βk of formulas such that for each i , either βi

is an axiom of Cl or βi is a direct consequence of some of the preceding formulas in
the sequence by virtue of the rule of inference of Cl.

A theorem of Cl is a formula β of Cl such that β is the last formula of some proof
in Cl. Such a proof is called a proof of β in Cl.

A formula α is said to be a consequence in Cl of a set of � of formulas if and
only if there is a sequence β1, . . . ,βk of formulas such that α is βk and, for each i ,
either βi is an axiom or βi is in �, or βi is a direct consequence by the rule Modus
Ponens of some of the preceding formulas in the sequence.

When we write out a proof, we precede every formula by the symbol �, denoted
that it has been proved. If it is a proof from the set �, we write � � on the left.

In the study of a propositional logic L , the following construction is often impor-
tant: take the set of all formulas in the language L of L , and partition this set into
classes of L-equivalent formulas. In many cases, the set of L-equivalence classes has
a natural algebraic structure, which is called the Lindenbaum algebra for the logic
L . The set Form(L) of all formulas of a language L is an universal algebra

(Form(L),∨,∧,→,¬)

with three binary operations ∨,∧,→ and one unary operation ¬ —defined as
follows: the formulas (α ∨ β), (α ∧ β), (α → β), (¬α) are the results of the
operations∨,∧,→ applied on the formulas α,β, respectively. This algebra is called
the algebra of formulas of the language L.

The algebra (Form(L),∨,∧,→,¬) is free in the class of algebras

(A, f1, f2, f3, f4)

with three binary operations f1, f2, f3 and one unary operation f4 with all proposi-
tional variables Var(L) being the set of free generators [3].

By an evaluation of L in the algebra (A,∨,∧,→,¬) we shall understand a
mapping v : Var(L) → A.

Every formula α of k propositional variables in L uniquely determines an opera-
trionαA in A, namely amapping (algebraic polynomial)αA : Ak → A. To obtainαA

it suffices to interpret the signs ∨,∧,→,¬ in α as signs of the corresponding oper-
ations in A, and the propositional variables p1, . . . , pk in α respectively as variables
x1, . . . , xk ranging over in A.

Define an equivalence relation ≡ on Form(L) as follows: α ≡ β iff � α ↔
β. This equivalence relation is a congruence relation on the algebra of formulas
(Form(L),∨,∧,→,¬). Then the factor algebra
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(Form(L)/ ≡,∨,∧,→,¬)

is the Lindenbaum algebra for the logic L , where α/ ≡ ∨ β/ ≡ = (α ∨ β)/ ≡,
α/ ≡ ∧ β/ ≡ = (α ∧ β)/ ≡, α/ ≡ → β/ ≡ = (α → β)/ ≡, ¬(α/ ≡) =
(¬α)/ ≡.

The Lindenbaum algebra for classical propositional logic Cl is a Boolean algebra
[3], and it is the free Boolean algebra with free generators x1, x2, . . . where x1 =
p1/ ≡, x2 = p2/ ≡, . . . . The Lindenbaum algebra for classical propositional logic
Cl on n variables p1, . . . , pn is a Boolean algebra, and it is the free Boolean algebra
on n generators x1, . . . , xn . Notice that in the Lindenbaum algebra the element (α →
α)/ ≡ is the top element, which we denote by 1, and the element (¬(α → α))/ ≡
is the bottom element, which we denote by 0.

The main statements of logics are deduction theorem, soundness and complete-
ness.

Theorem 3.2 (Deduction Theorem) [4] If � is a set of formulas and α and β are
formulas, and � ∪ {α} � β, then � � α → β.

Theorem 3.3 (Soundness) If α is a theorem of Cl, then α is a tautology.

Proof The proof immediately follows from the Theorem 3.1 and the fact that every
axiom is a tautology. ��
Theorem 3.4 (Completeness) If α is a tautology, then α is a theorem of Cl.

Proof We give algebraic proof of this assertion. Let us suppose that α is not a theo-
rem of Cl. Then α/ ≡ = 1 in the Lindenbaum algebra (Form(L)/ ≡,∨,∧,→,¬)

which is a Boolean algebra. As we know any algebra, and the Lindenbaum algebra
(Form(L)/ ≡,∨,∧,→,¬) in particular, is a subdirect product of subdirectly irre-
ducible algebras. But the only subdirectly irreducible Boolean algebra is two-element
Boolean algebra. So, there exists a subdirect embedding h : Form(L)/ ≡→ ∏

i∈I Bi

such that h(Form(L)/ ≡) is a subdirect product of an indexed family (Bi )i∈I where
all Bi , i ∈ I , are isomorphic to two-element Boolean algebras. So, there exists an
element a ∈ ∏

i∈I Bi such that h(α/ ≡) = a = 1. It means that there exists a
projection map π j : ∏

i∈I Bi → B j for j ∈ I such that π j (a) = a( j) and a( j) = 1.
Therefore, we have an evaluation v = π j hg : Form(L) → B j , where g is the natural
homomorphism from Form(L) onto Form(L)/ ≡ such that v(α) = 1. From here
we conclude that α is not tautology. ��

3.2 Łukasiewicz Sentential Calculus

Łukasiewicz logicwasoriginally defined in the early 20th-centuryby JanŁukasiewicz
as a three-valued logic [5]. It was later generalized to n-valued (for all finite n) as well
as infinitely-many valued (ℵ0-valued) variants, both propositional and first-order [6].
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The ℵ0-valued version was published in 1930 by Jan Łukasiewicz and Alfred Tarski
[7]. It belongs to the classes of t-norm fuzzy logics [8] and substructural logics [9].

The propositional connectives of Łukasiewicz logic are implication →, negation
¬, equivalence ↔, weak conjunction ∧, strong conjunction �, weak disjunction ∨,
strong disjunction ⊕.

ForŁukasiewicz propositional logicŁwedealwith sentences that canbe evaluated
with some truth value being in closed interval [0, 1], or, roughly speaking, between
true and false. As in classical propositional logic the language L of Łukasiewicz
propositional calculus contains a countable set Var(Ł) of propositional variables
p1, p2, . . ., logical connectives implication →, negation ¬, equivalence ↔, weak
conjunction ∧, strong conjunction �, weak disjunction ∨, strong disjunction ⊕.
Also, there are left and right brackets. The formulas are defined as follows.

(i) A propositional variable is a formula.
(ii) If α and β are formulas, then so are (α → β), (¬α), (α ∨ β), (α ⊕ β), (α ∧

β), (α � β) and (α ↔ β).
(iii) Any formula is given by the above rules.

We will omit some brackets for simplicity. Denote the set of all formulas by
Form(Ł).

Now we give some explanation about semantics of this logic. A formula of
Łukasiewicz propositional logic is evaluated by some element of [0, 1]. We interpret
the propositional variables as basic statements. If we know whether the basic state-
ments are evaluated by some elements of [0, 1], we can decide whether any logical
compound of them is an element of [0, 1]. In such a way we define semantics of
Łukasiewicz propositional logic.

Any formula containing the propositional variables p1, . . . , pn can be used to
define a function of n variables, i.e. a function from the set [0, 1]n to [0, 1], where 1
is understood as absolutely true and 0 as absolutely false. So, we define an evalua-
tion function v from the set of formulas to the set [0, 1]. The evaluation maps each
propositional variable to a truth value, which we take to be the truth value of corre-
sponding basic proposition. We also have to specify how the evaluation behaves as
formulas built up. According to the principle of truth functionality the truth-values
of compounds of a formula uniquely determine the truth value of a compound of the
formula. This is achieved by defining the truth functions of corresponding logical
connectives.

The truth functions corresponding to logical connectives are defined as follows:

Implication: x → y = min{1, 1 − x + y}
Equivalence: x ↔ y = 1 − |x − y|
Negation: ¬x = 1 − x
Weak Conjunction: x ∧ y = min{x, y}
Weak Disjunction: x ∨ y = max{x, y}
Strong Conjunction: x � y = max{0, x + y − 1}
Strong Disjunction: x ⊕ y = min{1, x + y}.
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We say that Łukasiewicz formula α ∈ Form(Ł) is a tautology if v(α) = 1 for
all evaluations v : Form(Ł) → [0, 1], and is a contradiction if v(α) = 0 for all
evaluations v; and that α is a logical consequence of a set � of formulas if every
evaluation v which satisfies v(β) = 1 for all β ∈ �, also satisfies v(α) = 1. It easy
to prove the following

Theorem 3.5 If the formulas α and α → β are tautologies, then β is a tautology.

The truth function� of strong conjunction is the Łukasiewicz t-norm and the truth
function ⊕ of strong disjunction is its dual t-conorm. The truth function → is the
residuum of the Łukasiewicz t-norm. Since all these truth functions are operations
on [0, 1] we can convert the set [0, 1] with operations �,⊕,¬, 0, 1 into the algebra
([0, 1],�,⊕,¬, 0, 1) that is called standard MV -algebra for Łukasiewicz logic. The
type of this algebra is (2, 2, 1, 0, 0) like in Boolean algebras. In this algebra we have
the following identities:

(1) x → y = ¬x ⊕ y, x ⊕ y = ¬x → y,
(2) ¬¬x = x ,
(3) ¬(x ⊕ y) = ¬x � ¬y,
(4) ¬(x � y) = ¬x ⊕ ¬y,
(5) x ≤ x ⊕ y,
(6) x ⊕ y = y ⊕ x ,
(7) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z,
(8) x ∧ y = (x ⊕ (¬y)) � y,
(9) x ∨ y = (x � (¬y)) ⊕ y,
(10) x ⊕ (¬x) = 1, x � (¬x) = 0.

The original system of axioms for propositional infinite-valued Łukasiewicz logic
used implication and negation as the primitive connectives as for classical logic:

Ł1. (α → (β → α))

Ł2. (α → β) → ((β → γ) → (α → γ))

Ł3. ((α → β) → β) → ((β → α) → α)

Ł4. (¬β → ¬α) → (α → β).

There is only one inference rule—Modus Ponens: from α and (α → β), infer β.
For Łukasiewicz logic we have no deduction theorem in the form that we have

in classical logic Cl since in Ł the formula α ↔ αn is not a theorem of Ł, where
αn = α � . . . � α (n times).

Theorem 3.6 (Deduction Theorem) [8] For any α,β ∈ Form(L) and a set of for-
mulas �, � ∪ {α} �Ł β iff there exists a positive integer n such that � �Ł αn → β.

Theorem 3.7 (Soundness and completeness) [8, 10] A Łukasiewicz formula α is a
theorem of Łukasiewicz logic iff α is a tautology.



References 25

References

1. Frege, G.: Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen
Denkens. Halle: Nebert, L. (1879). Translated as Begriffsschrift, a Formula Language,Modeled
upon that ofArithmetic, for Pure Thought. InFromFrege toGdel, edited by Jean vanHeijenoort.
Harvard University Press, Cambridge (1967)

2. Birkhoff, G.: Lattice Theory. Providence, Rhode Island (1967)
3. Rasiowa, H., Sikorski, R.: The Mathematics of Metamathematics. PWN-Polish Scientific Pub-

lishers, Warszawa (1970)
4. Herbrand, J.: Recherches sur Ia Theorie de Ia Demonstration, Travaux de Ia Societe des Sci-

ences et des Letf1es de Varsovie, III, 33, 33–160 (1930). Logical Writings. Harvard University
Press and Reidel (1971)

5. Łukasiewicz, J.: O Logice trojwartociowej, Ruch filozoficzny 5, 170–171 (1920) (in Polish).
English translation: On Three-Valued Logic. In: Borkowski, L. (ed.) Selected Works by Jan
Łukasiewicz, North Holland, Amsterdam, pp. 87–88 (1970)

6. Hay, L.S.: Axiomatization of the infinite-valued predicate calculus. J. Symbol. Logic 28, 77–86
(1963)

7. Łukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül, Comp. Rend. Soc. Sci.
et Lettres Varsovie Cl. III 23, 30–50 (1930)

8. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)
9. Ono, H.: Substructural Logics and Residuated Lattices an Introduction. In: Hendricks, F.V,

Malinowski, J. (eds.) Trends in Logic, 50 Years of Studia Logica, Trends in Logic 20, pp.
177–212 (2003)

10. Chang, C.C.: Algebraic analysis of many-valued logics. Trans. Am. Math. Soc. 88, 467–490
(1958)



Chapter 4
MV -Algebras: Generalities

4.1 MV -Algebras

C.C. Chang introduced MV -algebras as algebraic models for Łukasiewicz logic to
give its algebraic analysis [1] and proved completeness of Łukasiewicz logic with
respect to the variety of all MV -algebras.We give the definition of MV -algebra given
originally byC.C.Chang in [1].An MV -algebra is a system (A,⊕,�,¬, 0, 1)where
A is a nonempty set of elements, 0 and 1 are distinct constant elements of A, ⊕ and
� are binary operations on elements of A, and ¬ is a unary operation on elements
of A obeying the following axioms.

Ax. 1. x ⊕ y = y ⊕ x . Ax. 1’. x � y = y � x
Ax. 2. x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z. Ax. 2’. x � (y � z) = (x � y) � z.
Ax. 3. x ⊕ ¬x = 1. Ax. 3’. x � ¬x = 0.
Ax. 4. x ⊕ 1 = 1. Ax. 4’. x � 0 = 0.
Ax. 5. x ⊕ 0 = x . Ax. 5’. x � 1 = x .
Ax. 6. ¬(x ⊕ y) = ¬x � ¬y. Ax. 6’. ¬(x � y) = ¬x ⊕ ¬y.
Ax. 7. x = ¬¬x . Ax. 8. ¬0 = 1.
In order to write the remaining axioms the following definition is given: x ∨ y =

(x � ¬y) ⊕ y, x ∧ y = (x ⊕ ¬y) � y.
Ax. 9. x ∨ y = y ∨ x . Ax. 9’. x ∧ y = y ∧ x .
Ax. 10. x ∨ (y ∨ z) = (x ∨ y) ∨ z. Ax. 10’. x ∧ (y ∧ z) = (x ∧ y) ∧ z.
Ax. 11. x ⊕(y ∧ z) = (x ⊕ y)∧(x ⊕ z). Ax. 11’. x �(y ∧ z) = (x � y)∧(x � z).
This definition is equivalent to the definition presented in Basic Notions on Uni-

versal algebras subsection.
With respect to the operations ⊕,�, and ¬ the distinguishing feature between an

MV -algebra (A,⊕,�,¬, 0, 1) and a Boolean algebra is the lack of the idempotent
law x ⊕ x = x , whereas with respect to the operations ∨,∧, and ¬ the difference
between the system (A,∨,∧,¬, 0, 1) and a Boolean algebra is the lack of the law
of the excluded middle x ∨ ¬x = 1.

A lattice-ordered abelian group (�-group) is an algebra (G,+,−, 0,∨,∧) such
that (G,+,−, 0) is an abelian group, (G,∨,∧) is a lattice, and + distributes over ∨
© Springer International Publishing Switzerland 2016
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and ∧. A totally-ordered abelian group (o-group) is an �-group in which the order is
total. A strong unit of the �-group G is an element u > 0 of G such that, for every
a ∈ G, there exists a natural number m with a ≤ mu.

Let (G, u) be an �-group equipped with a fixed strong unit u. Γ (G, u) is the
structure Γ (G, u) = ([0, u],⊕,¬, 0) defined as follows:

[0, u] = {a ∈ G : 0 ≤ a ≤ u}
a ⊕ b = (a + b) ∧ u
¬a = u − a
0 = the additive identity 0 of G.
Γ (G, u) is an MV -algebra. The construction of Γ (G, u) from (G, u) is due to

Chang [2] for the totally-ordered case, and to Mundici [3] for the general case. We
have the following

Proposition 4.1 [3] (i) the lattice-order induced by the MV -algebra operations in
Γ (G, u) coincides with the order inherited from G;

(ii) if h : (G1, u1) → (G2, u2) is an �-group homomorphism mapping u1 to
u2, then the restriction Γ h of h to [0, u1] is an MV -algebra homomorphism Γ h :
Γ (G1, u1) → (G2, u2);

(iii) Γ is a full, faithful, and dense functor (i.e., a categorical equivalence) between
the category of �-groups with strong unit and the category of MV -algebras. In
particular, for every MV -algebra A, there exists a unique �-group with strong unit
(G, u) such that A is isomorphic to Γ (G, u). If A is countable, then A is countable;

(vi) the ideals (i.e., kernels of homomorphisms) of (G, u) correspond bijectively
to the ideals of Γ (G, u) via the inclusion-preserving application I 	→ I ∩ [0, u],
whose inverse is I 	→ (ideal generated by I in G). If I = I ∩[0, u], then Γ (G, u)/I
and Γ (G/I, u/I) are isomorphic via a/I 	→ a/I.

Let A be an MV -algebra. For any x, y ∈ A we write x ≤ y iff¬x ⊕ y = 1. Then,
as proved by Chang [1], ≤ induces a partial order relation. Specifically, the order
endows A with a bounded distributive lattice structure, where the join x ∨ y and the
meet x ∧ y are given by x ∨ y = ¬(¬x ⊕ y) ⊕ y and x ∧ y = ¬(¬x ∨ ¬y).

4.2 Examples of MV -Algebras

The first and most important example of an MV -algebra is the Lindenbaum algebra
(Form(Ł)/ ≡,→,¬) obtained from Łukasiewicz propositional calculus Ł where
α ≡ β iff �Ł α ↔ β for any α, β ∈ Form(Ł) [1, 3].

The unit interval of real numbers [0, 1] endowed with the following operations:
x ⊕ y = min(1, x + y), x � y = max(0, x + y − 1),¬x = 1− x , becomes an MV -
algebra. It is well known that the MV -algebra S = ([0, 1],⊕,�,¬, 0, 1) generate
the variety MV of all MV -algebras, i.e. V(S) = MV.

Following [4], the MV -algebras Sm and Sω
m , for m ≥ 1, are defined as follows:

Sm = Γ (Z , m) Sω
m = Γ (Z ×lex Z , (m, 0)), where Z ×lex Z is the lexicographic

product of two copies of the o-group Z of the integers.
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Chang’s MV -algebra C [1], which is our main interest, is defined on the set

C = {0, c, ..., nc, ..., 1 − nc, ..., 1 − c, 1}

by the following operations (consider 0 = 0c): x ⊕ y =
• (m + n))c if x = nc and y = mc
• 1 − (m − n)c if x = 1 − nc and y = mc and 0 < n < m
• 1 − (n − m)c if x = nc and y = 1 − mc and 0 < m < n
• 1 otherwise;

¬x = 1 − nc if x = nc, ¬x = nc if x = 1 − nc.
The MV -algebraC is isomorphic to the algebra Sω

1 . Last but not least,we construct
Chang’s MV-algebra in a way which reflects the logical structure related to a Pavelka
style fuzzy logic, to be studied in Chap. 11; this construction is also easily visualized.
Recall [5] a Product algebra P is a BL-algebra which satisfies additional conditions

x∗∗ ≤ (y � x → z � x) → (y � z),

x ∧ x∗ = 0

for all x, y, z ∈ P , where x∗ stands for ¬x (another commonly used notation for
complement). A simple example is based on the product t-norm � on the real unit
interval [0, 1]; x � y = xy.

Fix an element t ∈ P, 0 < t < 1. Then the set T = {tn | n ≥ 0} is an infinite
decreasing chain

· · · < tn < · · · < t3 < t2 < t < t0 = 1.

In fact T is a cancellative lattice-ordered monoid. Now reverse the order and rename
the elements tn by f n as follows

0 = f 0 < f < f 2 < f 3 < · · · < f n < · · ·

Then the set F = { f n | n ≥ 0} is an infinite increasing chain. Assuming f n < tn

for any natural n ≥ 0, we construct the set F ∪ T

0 < f < f 2 < f 3 < · · · < f n < · · · · · · < tn < · · · < t3 < t2 < t < 1.

(Here the superscripts of t, f only index these elements, they do not mean any type
of power, repeated multiplication or �-operation). Notice that F ∩ T = ∅ and F ∪ T
is a lattice that is not complete as

∨
F and

∧
T do not exist in F ∪ T ; however, if a

supremum of a subset of the set F ∪ T exists, then it is the greatest element of this
subset (and conversely). Similarly, if an infimum of a subset of the set F ∪ T exists,
then it is the smallest element of this subset (and conversely). We now define the
operations ⊕ and ∗ on F ∪ T as follows: for any m, n ≥ 0, ( f n)∗ = tn, (tn)∗ = f n .

http://dx.doi.org/10.1007/978-3-319-30406-9_11
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Moreover,

f m ⊕ f n = f m+n,

tm ⊕ tn = 1,

f m ⊕ tn =
{

tn−m if n > m,

1 otherwise.

The product operation � obeys dual equations

tm � tn = tm+n,

f m � f n = 0,

tm � f n =
{

f n−m if n > m,

0 otherwise.

It is a routine task to show that by setting C = F ∪ T we obtain an MV-algebra that
is isomorphic to Chang’s MV-algebra. The MV-algebra C is a prototypical example
of a perfect MV-algebra; any element c ∈ C satisfies the equation

(c ⊕ c) � (c ⊕ c) = (c � c) ⊕ (c � c). (4.1)

4.3 Properties of MV -Algebras

In this subsection we give some identities which are consequence of MV -algebra
axioms.

Proposition 4.2 [1] (i) x ∨ 0 = x = x ∧ 1, x ∧ 0 = 0, x ∨ 1 = 1.
(ii) x ∨ x = x = x ∧ x.
(iii) ¬(x ∨ y) = ¬x ∧ ¬y, ¬(x ∧ y) = ¬x ∨ ¬y.
(iv) x ∧ (x ∨ y) = x = x ∨ (x ∧ y).
(v) If x ⊕ y = 0, then x = y = 0.
(vi) If x � y = l, then x = y = l.
(vii) If x ∨ y = 0, then x = y = 0.
(viii) If x ∧ y = 1. then x = y = 1.

Proposition 4.3 [1] Let B be the set of elements x ∈ A such that x ⊕ x = x. Then B
is closed under the operations ⊕,�, and ¬ where x ⊕ y = x ∨ y and x � y = x ∧ y
for x, y ∈ B. Furthermore, the system (B,⊕,�,¬, 0, 1) is not only a subalgebra
of A but is also the largest subalgebra of A which is at the same time a Boolean
algebra with respect to the same operations ⊕,�, and ¬.

By definition (i) 0x = 0 and (n +1)x = nx ⊕ x . (ii) x0 = 1 and xn+1 = (xn)� x .
The order of an element x , in symbols ord(x), is the least integerm such thatmx = 1.
If no such integer m exists then ord(x) = ∞.
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Proposition 4.4 [1] (i) If x ∨ y = 1, then xn ∨ yn = 1 for each n.
(ii) If ord(x � y) < ∞, then x ⊕ y = 1.
(iii) If ord(x) > 2, then ord(x � x) = ∞.

An MV -algebra A is simple if, and only if, every element of A different from
0 has a finite order. An MV -algebra A is linearly ordered if, and only if, for every
x, y ∈ A, either x ≤ y or y ≤ x .

Proposition 4.5 [1] (i) Every simple MV -algebra is linearly ordered.
(ii) If A is linearly ordered, then x ⊕ z = y ⊕ z and x ⊕ z �= 1 implies x = y.

Remark 4.6 If a �= 1, b �= 0 are elements of a linearly ordered MV-algebra (in
particular, Chang’s MV-algebra), then a ⊕ b > a.

4.4 Ideals, Filters, Congruence Relations

A subset I of an MV -algebra A is an ideal of A if, and only if, (i) 0 ∈ I , (ii) if
x, y ∈ I , then x ⊕ y ∈ I , and (iii) if x ∈ I and y ≤ x , then y ∈ I . An ideal I is said
to be proper if I �= A. Clearly an ideal I is proper if, and only if, 1 /∈ I .

Dually, a subset F of an MV -algebra A is a filter of A if, and only if, (i) 1 ∈ F ,
(ii) if x, y ∈ F , then x � y ∈ F , and (iii) if x ∈ F and x ≤ y, then y ∈ F . A filter
F is said to be proper if F �= A. Clearly a filter F is proper if, and only if, 0 /∈ F .

Let us denote by SpecA the set of all prime ideals of A. As it is well known,
SpecA equipped with set-theoretical inclusion is a root system.

Proposition 4.7 [1] (i) If f is a homomorphism of an MV -algebra A onto another
MV -algebra, then the set of elements x ∈ A such that f (x) = 0 ( f (x) = 1) is an
ideal (a filter) and the relation E defined by x Ey if and only if f (x) = f (y) is a
congruence relation.

(ii) If E is a congruence relation, then the set of elements of 0/E (1/E) is an
ideal (a filter).

(iii) If E is a congruence relation, then x Ey if and only if (¬x � y)⊕ (¬y � x)E0
((¬x ⊕ y) � (¬y ⊕ x)E0).

(iv) If E1 and E2 are congruence relations, then E1 = E2 if and only if 0/E1 =
0/E2 (1/E1 = 1/E2).

(v) If I (F)is an ideal (a filter), then the relation E defined by x Ey if and only if
(¬x � y)⊕ (¬y � x) ∈ I ((¬x ⊕ y)� (¬y ⊕ x) ∈ F) is a congruence relation. So,
there exists one-to-one correspondence between the set of ideals (filters) and the set of
congruences: if E is a congruence of the MV -algebra A, then E 	→ {x ∈ A : x E0}
(E 	→ {x ∈ A : x E1}); is I (F) is an ideal (filter) of A, then I 	→ {(x, y) ∈ A2 :
(¬x � y) ⊕ (¬y � x) ∈ I } (F 	→ {(x, y) ∈ A2 : (¬x ⊕ y) � (¬y ⊕ x) ∈ F}). The
equivalence class a/E we will denote as a/I (a/F) or a

I (or a
F , where I (F) is the

ideal (filter) corresponding to the congruence relation E.
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M is a maximal ideal (filter) of A if, and only if, M is a proper ideal (filter) and
whenever I (F) is an ideal (a filter) such that M ⊆ I ⊆ A (M ⊆ F ⊆ A), then
either M = I or I = A (M = F or F = A).

We say that P is a prime ideal (filter) of an MV -algebra A if, and only if, (i) P is
an ideal (a filter) of A, and (ii) for each x, y ∈ A, either ¬x � y ∈ P (¬x ⊕ y ∈ P)
or x � ¬y ∈ P (x ⊕ ¬y ∈ P). An ideal H of an MV-algebra A is called primary iff
a � b ∈ H implies an ∈ H or bn ∈ H for some integer n.

Proposition 4.8 [2]

If P is a prime ideal (filter) of A, then A/P is a linearly ordered MV -algebra.
If M is a maximal ideal (filter) of A, then A/M is a simple MV -algebra.

Proposition 4.9 [2] Every MV -algebra is a subdirect product of linearly ordered
MV -algebras.

For any MV -algebra A, the radical of A, denoted by Rad(A), is the intersection
of all maximal ideals of A.

Non zero elements of Rad(A) are called infinitesimal, indeed, x ∈ Rad(A) if
and only if for every n ∈ N, nx < ¬x . If x ∈ Rad(A) then x � x = 0 [6] and
ord(¬x) = 2.

Theorem 4.10 [7] Up to isomorphism, every MV-algebra A is an algebra of [0, 1]∗-
valued functions over Spec(A), where [0, 1]∗ is a ultrapower on the MV-algebra
[0, 1], depending only on the cardinality of A.
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Chapter 5
Local MV -Algebras

Local MV -algebras are MV -algebras with only one maximal ideal that, hence, con-
tains all infinitesimal elements. This class of algebras contains MV -chains and per-
fect MV -algebras.

An MV -algebra A is called local if it has only onemaximal ideal, coinciding with
Rad(A). If A is a local MV -algebra then A/Rad(A) is a simple MV -algebra, since
it does not have non-trivial ideals. We denote simply by ≡ the equivalence ≡Rad(A).

Proposition 5.1 An MV -algebra A is local if and only if for every x ∈ A, either
ord(x) < ∞ or ord(¬x) < ∞.

Proof Let A be a localMV-algebra and M themaximal ideal of A. Then for every x ∈
A, ord(x) = ∞ implies that x ∈ M . Hence, if we assume that ord(a) = ord(¬a) =
∞ for every a ∈ A, then a,¬a ∈ M , which is impossible. In consequence, ord(x) <
∞ or ord(¬x) < ∞, for every x ∈ A. Viceversa, assume that for every x ∈ A, either
ord(x) < ∞ or ord(¬x) < ∞. Let M be a maximal ideal of A. Suppose a /∈ M
for some a with ord(a) = ∞. Then for some n (¬a)n ∈ M . Thus ord((¬a)n) = ∞
and ord(na) < ∞. So ord(a) < ∞, which is impossible. Hence every element of
infinite order belongs to M , so M is a unique maximal ideal and A is local. ��
Proposition 5.2 Let A be an MV-algebra and H an ideal of A. Then A

H is local if
and only if H is primary.

Proof Suppose that A
H is local and that a � b ∈ H . Assume for all n, an /∈ H . Now

a
H � b

H = a�b
H = 0, thus a

H ≤ ¬b
H . For all n, ( a

H )n 	= 0, thus n(¬a
H ) 	= 1. Since A

H

is local, it follows that, for some m, m( a
H ) = 1. Hence m(¬b

H ) = 1 and so bm

H = 0,
i.e., bm ∈ H . Thus H is primary. Conversely, suppose H is primary. Let a

H ∈ A
H .

Since a � ¬a ∈ H , we know an ∈ H or (¬a)n ∈ H for some n. Thus ( a
H )n = 0 or

(¬a
H )n = 0, which implies n(¬a

H ) = 1 or n( a
H ) = 1. Hence A

H is local. ��
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34 5 Local MV -Algebras

Proposition 5.3 Let A be a local MV-algebra. Then for every a ∈ A and for every
P, Q ∈ Spec(A) (= the set of all prime ideals of A), we have

a
P

Rad( A
P )

=
a
Q

Rad( A
Q )

Proof For every P ∈ Spec(A),
A
P

Rad( A
P )

is simple, and then, up to isomorphism, is a

subalgebra of [0, 1]. Now, by contradiction, assume that there are r, s ∈ [0, 1], with
r < s, such that r = a

P

Rad( A
P )

and r = a
P

Rad( A
P )
. Then there is a simple term φ such that

φ(r) = 0 and φ(s) = 1. Hence

φ(
a
P

Rad( A
P )

) =
φ(a)

P

Rad( A
P )

= 0,

thus, φ(a)
P ∈ Rad( A

P ) while

φ(

a
Q

Rad( A
Q )

) =
φ(a)

Q

Rad( A
Q )

= 1

hence, ¬φ(a)
Q ∈ Rad( A

Q ). Thus, ord(φ(a)) = ∞ and ord(¬φ(a)) = ∞, in contrast
with the assumption that A is local. ��
Theorem 5.4 The class of all local MV-algebras is a universal class.

Proof Let A be a local MV-algebra. We claim that the following statement holds:

For ever y x ∈ A, x ≤ ¬x, or ¬x ≤ x or (d(x,¬x))2 = 0, (†)

where d(x, y) = (¬x � y) ⊕ (x � ¬y).
Indeed for every x ∈ A, if x ≡ ¬x does not hold, we have either x < ¬x or

¬x < x . In the case that x ≡ ¬x we have d(x,¬x) ∈ Rad(A), then (d(x,¬x))2 =
0. Hence (†) holds. Assume now that (†) holds. If x ≤ ¬x then ord(¬x) < ∞.
Analogously for¬x < x , then ord(x) < ∞. If (d(x,¬x))2 = 0, i.e., x2⊕(¬x)2)2 =
0, then for every prime ideal P of A we have the following cases:

(i) x
P ≤ ¬x

P ;
(ii) ¬x

P ≤ x
P .

Assuming (i), we get x
P � x

P = 0, and then (¬x
P )4 = 0. Hence ord( x

P ) ≤ 4. While,
assuming (i i), we get ord(x) ≤ 2. Hence, for every prime ideal P of A, ord( x

P ) ≤ 4.
This implies that ord(x) < ∞. Hence A is local. ��
Theorem 5.5 Every MV-algebra has a greatest local subalgebra.
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Proof Let A be an MV-algebra. Then for every prime ideal P of A, the algebra
x
P

Rad( A
P )

is simple, hence it is isomorphic to a subalgebra of [0, 1]. Let

L(A) = {x ∈ A | f or every P ∈ Spec(A),
x
P

Rad( A
P )

= rx ∈ [0, 1]}.

We can easily check that L(A) is a subalgebra of A. Let us prove that L(A) is

local. Let y ∈ L(A) such that
y
P

Rad( A
P )

= 0 for all P ∈ Spec(A). This is equivalent

to y
P ∈ Rad( A

P ), and
¬y
P ∈ ¬Rad( A

P ). Hence ord(¬y) < ∞. Assume now that
y
P

Rad( A
P )

= r ∈ (0, 1], for all P ∈ Spec(A). Then there exists n such that nr = 1, so
ny
P

Rad( A
P )

= 1 for all P ∈ Spec(A). This is equivalent to say that for every prime ideal

P , ¬y
P ∈ Rad( A

P ). Hence ord(ny) < ∞ and so ord(y) < ∞. Hence L(A) is local.
To show that L(A) is the greatest local subalgebra of A, let B be a local subalgebra
of A and suppose that there is an element b ∈ B\L(A), i.e.,

r P
b = (

b
P

Rad( A
P )

) 	= (

b
Q

Rad( A
Q )

) = r Q
b

for P, Q ∈ Spec(A), where r P
b , r Q

b ∈ [0, 1]. Then there is an MV-term f such
that f (r P

b ) = 0 and f (r Q
b ) = 1. It is easy to check that ord( f (r P

b )) = ∞ and
ord(¬ f (r Q

b )) = ∞. But this implies that ord( f (b)) = ∞ and ord(¬ f (b)) = ∞,
which is equivalent to ord(b) = ∞ and ord(ny) = ∞. This is in contradiction with
the assumption of B being local. ��

Let us give a class of examples of local MV -algebra. Let X be an arbitrary non
empty set, A an MV -algebra, and K (AX ) the subset of the MV -algebra AX defined
as follows:

K (AX ) = { f ∈ AX : f (X) ⊆ a/Rad(A) for some a ∈ A}.

Proposition 5.6 [1] K (AX ) is a local MV -algebra.

Proof The zero constant function f0 belongs to K (AX ), in fact f0(X) = {0} ⊆
Rad(A) = 0

Rad(A) . Assume f satisfies f (X) ⊆ a
Rad(A) for some a ∈ A. Then,

¬ f (X) ⊆ a
Rad(A) . Finally, let f, g ∈ K (AX ) be such that f (X) ⊆ a

Rad(A) for some

a ∈ A and g(X) ⊆ b
Rad(A) for some b ∈ A. Then ( f ⊕ g)(X) ⊆ (a⊕b)

Rad(A) . Hence

K (AX ) is a subalgebra of A. Let us show that K (AX ) is local. Take f ∈ K (AX ). If
f (X) ⊆ 0

Rad(A) then ¬ f (X) ⊆ 1
Rad(A) and ord(¬ f ) < ∞. If f (X) ⊆ 1

Rad(A) then

ord( f ) < ∞. Now, assume that ¬ f (X) ⊆ a
Rad(A) 	= 0

Rad(A) 	= 1
Rad(A) . Then for

every x ∈ X , f (x) ≡Rad(A) a and a /∈ Rad(A). Since A
Rad(A) is an MV-chain, we

have ord( f ) < ∞ and ord(¬ f ) < ∞. ��
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Any element f of an algebra K (AX ) from the above class will be called a quasi
constant function. The algebra K (AX ) will be called the full MV-algebra of quasi
constant functions from X to A. Using fullMV-algebras of quasi constant functions a
representation theorem for all local MV-algebras can be obtained, as we show below.

Theorem 5.7 Every local MV-algebra can be embedded into a full MV-algebra of
quasi constant functions.

Proof Let A be a local MV-algebra. Any element x ∈ A is a function from Spec(A)
into [0, 1]∗, hence for every P ∈ Spec(A), x

P ∈ [0, 1]∗. For any x ∈ A there

exists rx ∈ [0, 1] such that
x
P

Rad( x
P )

= rx . Since every A
P is embeddable in [0, 1]∗,

Rad( A
P ) is embeddable in Rad([0, 1]∗). Hence, for every P ∈ Spec(A), we have

x
P ⊆ rx

Rad([0,1]∗) , and so A is an algebra of quasi constant functions. ��
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Chapter 6
Perfect MV -Algebras

The aim of this section is to give an account of the class of Perfect MV -algebras.
Such a class is a full subcategory of the category of MV -algebras. In general, there
are MV -algebras which are not semisimple. Roughly speaking we can say that a
non semisimple MV -algebra A has non-zero radical. We call a non-zero element
from the radical of A an infinitesimal. A first example of non simple MV -chain
was given by Chang in [1], where the MV -algebra C is described. The algebra C
has remarkable properties that we will try to display through the following chapters.
Indeed it is easy to check that:

(1) C is generated by its radical
(2) C = Rad(C) ∪ ¬Rad(C)

(3) C/Rad(C) ∼= {0, 1}.
Hence C is just made by infinitesimal elements and co-infinitesimal elements. We
thenwould like to describe a class of MV -algebras containingC andwhose elements
share the above properties. Then we can think of such a class as the one made by
MV -algebras which are, up to infinitesimal elements, like the 2-elements Boolean
algebra {0, 1}. We say that an MV -algebra A is perfect if for each element x ∈ A,
ord(x) < ∞ iff ord(¬x) = ∞.

Proposition 6.1 Let A be a perfect MV -algebra. Then Rad(A) is the unique max-
imal ideal of A.

Proof It is clear that Rad(A) is an ideal. Let x, y ∈ A such that x ∧ y ∈ Rad(A).
Assume that x, y /∈ Rad(A), then ord(x) < ∞ and ord(y) < ∞. Hence 2x = 1,
2y = 1 and 2(x ∧ y) = 1. That is ord(x ∧ y) = 2, in contradiction with x ∧ y ∈
Rad(A). So either x ∈ Rad(A) or y ∈ Rad(A). Since any prime ideal of A cannot
contain any element of finite order, then we get that Rd(A) is the unique maximal
ideal of A. ��

We say that an ideal J of an MV -algebra A is perfect if for every x ∈ A, there is
an n ∈ N such that xn ∈ J iff (¬x)m /∈ J for all m ∈ N. Then we have
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Proposition 6.2 [2] An ideal J ⊆ A is perfect iff A/J is perfect.

Proposition 6.3 Let A be an MV -algebra, the following statements are equivalent:

(1) A is perfect,
(2) every ideal J ⊆ A is perfect.

Proof If all ideals of A are perfect, then {0} ideal is perfect, hence A ∼= A/{0} is
perfect. Conversely, let A be perfect and J an ideal of A. Assume x ∈ A and xn ∈ J .
Then ord(xn) = ∞ so ord(n(¬x)) < ∞ and then ord(¬x) < ∞. If for some m,
(¬x)m ∈ J , we similarly have ord(x) < ∞, which is impossible. So for no m do we
have (¬x)m ∈ J . Assume now that (¬x)m /∈ J for any m. Then (¬x)m 
= 0 for any
m, so mx 
= 1, for any m. Thus ord(x) = ∞ and ord(¬x) < ∞. Hence n(¬x) = 1
for some n, so xn = 0 ∈ J . So J is perfect. ��

For an MV -algebra A and an ideal I in A, let 〈I 〉 denote the subalgebra generated
by I . Then 〈I 〉 = I ∪ ¬(I ) where ¬(I ) = {x | ¬x ∈ I }.
Proposition 6.4 In an MV -algebra A, 〈Rad(A)〉 is a perfect subalgebra of A.

Proof Let x ∈ 〈Rad(A)〉. If x ∈ Rad(A), then x2 = 0 and ord(x) = ∞. So
2(¬x) = 1 and ord(¬x) < ∞. If x ∈ ¬(Rad(A)) then ¬x ∈ Rad(A). So
ord(¬x) = ∞ and ord(x) < ∞. ��
Proposition 6.5 Let A be a perfect MV -algebra. Then A = 〈Rad(A)〉.
Proof Clearly 〈Rad(A)〉 is a subalgebra of A. Since A is perfect, hence Rad(A) is
the unique maximal ideal of A and consists of all elements of infinite order. Thus
if x ∈ A and ord(x) = ∞, then x ∈ Rad(A). If x ∈ A and ord(x) < ∞ then
ord(¬x) = ∞ so ¬x ∈ ¬(Rad(A)). Thus A ⊆ 〈Rad(A)〉. ��
Proposition 6.6 Let A be an MV -algebra. Then the following are equivalent:

(1) A is perfect,
(2) A/Rad(A) = {0, 1}.
Proof Let A be perfect. Then the ideal Rad(A) is perfect and maximal. Thus
A/Rad(A) is perfect and simple. Hence A/Rad(A) = {0, 1}. On the other hand
assume A/Rad(A) = {0, 1}. Let x ∈ A, then x/Rad(A) = 0 or x/Rad(A) = 1.
That is x ∈ Rad(A) or x ∈ ¬(Rad(A)). So A = 〈Rad(A)〉, hence A is perfect. ��
Proposition 6.7 Let A be a perfect MV -algebra and f a homomorphism to an
MV -algebra. Then f (A) is a perfect MV -algebra.

Proof Let A be perfect. Then A = Rad(A) ∪ ¬(Rad(A)). Let x ∈ Rad(A). Then
for every integer n ≥ 0 we have nx ≤ ¬x , which implies n f (x) ≤ ¬ f (x).
Hence, f (x) ∈ Rad( f (A)) and f (Rad(A)) ⊆ Rad( f (A)). If x ∈ ¬Rad(A),
then, for every integer n ≥ 0, n(¬x ≤ x , and n(¬ f (x)) ≤ f (x). So we get
f (x) ∈ ¬Rad( f (A)) and f (¬Rad(A)) ⊆ ¬Rad( f (A)). Then we have that
f (A) = f (Rad(A)) ∪ f (¬Rad(A)) ⊆ Rad( f (A)) ∪ ¬Rad( f (A)) ⊆ f (A).
Thus f (A) = Rad( f (A)) ∪ ¬Rad( f (A)), that is f (A) is perfect. ��
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Let A be an MV -algebra and P a perfect subalgebra of A. Then P = 〈Rad(P)〉.
Now Rad(P) = P ∩ Rad(A) so we see that 〈Rad(P)〉 ⊆ 〈Rad(A)〉. Hence
〈Rad(A)〉 is a perfect subalgebra of A that contains all perfect subalgebras of A.
Call such perfect subalgebra of A the perfect skeleton of A, denoted by Perf(A).

Proposition 6.8 Let A be a non semisimple MV -algebra. Then A contains as a
copy of C as subalgebra, actually as a subalgebra of Perf(A).

Proof Since A is non semisimple, then Rad(A) 
= {0}. Let z be a non zero element
of Rad(A) and id(z) denote the ideal of A generated by z. Let φ be a map from C
to 〈id(z)〉 defined as follows: for every n ∈ N, φ(nc) = nz and φ(¬nc) = ¬nz. It is
easy to check that φ is an isomorphism between C and 〈id(z)〉. ��

For every MV -algebra A the perfect radical ideal of A is the ideal

√
p(A) =

⋂
{J | J is a perfect ideal of A}.

Proposition 6.9 Let A be an MV -algebra. Then

√
p(

A√
p(A)

) = 0.

Proof If A has no perfect ideals then
√

p(A) = A. Let I/
√

p(A) be a perfect ideal

in A√
p(A)

. Consider the map

( A√
p(A)

)

I√
p(A)

→ A

I
,

with
√

p(A) ⊆ I , given by
x√

p(A)

I√
p(A)

→ x

I
.

In order to prove that the above map is well-defined suppose that

x√
p(A)

I√
p(A)

=
y√

p(A)

I√
p(A)

so that d( x√
p(A)

, (
y√

p(A)
) ∈ I√

p(A)
. Then d(x,y)√

p(A)
∈ I√

p(A)
and since

√
p(A) ⊆ I we

have d(x, y) ∈ I so the map is well defined. It is easy to check that the map is an
epimorphism. As epimorphic image of perfect MV -algebras are perfect we see that

I√
p(A)

is perfect in A√
p(A)

, then I is perfect in A. ��
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Proposition 6.10 Let A be an MV-algebra and set

per(A) =
⋂

{J | J is a perfect ideal of A}.

Then per( A
par(A)

) = 0.

Proof If A has no perfect ideals then per(A) = A. Let I
per(A)

be a perfect ideal in
A

per(A)
. Consider the map

( A
per(A)

)

( I
per(A)

)
→ A

I
, wi th per(A) ⊆ I

given by
( x

per(A)
)

( x
per(A)

)
→ A

I . In order to prove that the above map is well-defined suppose

that
( x

per(A)
)

( x
per(A)

)
→ A

I
= (

y
per(A)

)

(
y

per(A)
)

→ A

I

so that d( x
per(A)

,
y

per(A)
) ∈ I

per(A)
. Then d(x,y)

per(A)
∈ I

per(A)
and since per(A) ⊆ I we

have d(x, y) ∈ I . So the map is well-defined. It is easy to check that the map is an
epimorphism. As epimorphic images of perfect MV-algebras are perfect we see that
if I

per(A)
is perfect in A

per(A)
, then I is perfect in A. ��

Call an MV-algebra A semi-perfect if per(A) = {0}. Thus if per(A) = {0}, then
A is a subdirect product of perfect MV-algebras and then A ∈ V (C).

6.1 The Category of Perfect MV -Algebras

A relevant fact concerning perfect MV -algebras is that each one of them is generated
by its infinitesimals. This turns out to induce a very special structure on the generated
algebra. Perfect MV -algebras can be seen as an extreme case of non-archimedean
MV -algebras. Thus, the role of perfect MV -algebras is important because it is
strictly linked with the role of infinitesimals. An important example of a perfect
MV -algebra can be found as a subalgebra S of the Lindenbaum algebra L of First
order Łukasiewicz logic. Indeed, the subalgebra S, which is generated by the classes
of formulas which are valid but non-provable is a perfect MV -algebra and coincides
with Perf(L). Hence perfect MV -algebras are directly connected with a very impor-
tant phenomenon in Łukasiewicz first order logic, namely, with the incompleteness
of such a logic.
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Perfect MV -algebras form a full subcategory of the category of all MV -algebras.
We denote the category of perfect MV -algebras by Perfect.

As it is well known, MV -algebras form a category which is equivalent to the
category of abelian lattice ordered groups (l-groups, for short) with strong unit. Let
us denote byΓ such an equivalence. This makes the interest in MV -algebras relevant
outside the realm of logic. Hence, we know that to each MV -algebra is associated
an abelian �-group G with a strong unit, so of course perfect MV -algebras share
this property with all MV -algebras. But more, we can functorially map each perfect
MV -algebra to an abelian �-group and vice versa, without the help of a strong unit.
Let A denote the category of abelian �-groups. Let G be an abelian �-group and
G+ = {x ∈ G | x > 0} be the positive cone of G. Let Z×lex G be the lexicographic
product of the additive �-group Z of integers by G. Give Z ×lex G the order unit
(1, 0); then the MV -algebra G(G) = Γ (Z×lex G, (1, 0)) is a perfect MV -algebra.
Each element d ∈ G(G) has either the form d = (0, g) for some g ∈ G+ ∪ {0},
or d = (1, g) for some g ∈ G− ∪ {0}, where G− = −G+. Thus we got a map G
from the category of abelian �-groups to the category of perfect MV -algebras, the
latter seen as a full subcategory of all MV -algebras. Hence we have the following
proposition:

Proposition 6.11 G is a functor from the category A to the category Perfect.

Proof Trivial. ��
Conversely, now to go back from Perfect to A let us start with a perfect

MV -algebra A. Since (Rad(A),⊕, 0) is a cancellative monoid, by [3], (Theo-
rem 1, Chapter XIV, Sect. 2), we define the abelian group D(A) = ((Rad(A) ×
Rad(A)/ν,⊕), where the binary relation ν is given by (x, y)ν(x

′
, y

′
) iff x ⊕ y

′ =
x

′ ⊕ y with x, x
′
, y, y

′ ∈ Rad(A)× Rad(A) and [x, y]⊕ [x ′
, y

′ ] = [x ⊕ x
′
, y ⊕ y

′ ],
and [., .] denotes a class of (Rad(A) × Rad(A) under ν. The neutral element of
D(A) is [0, 0] and the opposite element of [x, y] is −[x, y] = [y, x]. The relation
≤ define on D(A) by [x, y] ≤ [x ′

, y
′ ] iff x ⊕ y

′ ≤ x
′ ⊕ y turns out to be an order

relation.

Proposition 6.12 (D(A),⊕,≤) is an abelian �-group.

Proof The proof can be obtained by a direct verification. ��
For each MV -homomorphism between perfect MV -algebras f : A → A

′
letD( f ) :

D(A) → D(A
′
) be defined by (D( f ))[x, y] = [ f (x), f (y)].

Theorem 6.13 D is a functor from Perfect MV -algebras to the category of abelian
l-groups.

Proof Trivial. ��
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Theorem 6.14 The category of Perfect MV -algebras is equivalent to the category
of abelian l-groups.

Proof It can be directly verified that for every G ∈ A and A ∈ Perfect D(G(G)) ∼=
G and G(D(A)) ∼= A. Then, in the light of ([4], IV Theorem 1), we get the claimed
equivalence. ��
Proposition 6.15 The following statements hold:

(1) {0, 1} is a terminal and initial object of Perfect;
(2) Perfect has pull-backs;
(3) Perfect has arbitrary products;
(4) Perfect has the amalgamation property.

Proof (1) follows from the equivalence between Perfect and the category of abelian
�-groups. To prove (2), suppose we have morphisms in Perfect, f : A → X ← B :
g. Let 〈A, B〉 = {(a, b) ∈ A × B | f (a) = g(b)}. It is easy to see that this set is
a perfect MV -subalgebra of A × B. Suppose for some perfect MV -algebra Y we
have maps α : Y → A, β : Y → B such that f α = gβ. Define h : Y → 〈A, B)〉
by h(y) = (α(y),β(y)) Then π1h = f , π2h = g. It follows that 〈A, B〉 is the
pull-back of f along g. To prove (3), first observe that the direct product of two
or more perfect MV -algebras need not be perfect, but it always contains perfect
subalgebras. In particular there is, as a subalgebra of 〈A, B)〉, its perfect skeleton
Perf(〈A, B〉). It is straightforward to show that Perf(〈A, B〉) is indeed the product
in the category Perfect. Statement (3) is then proved. To prove (4), let A, B ′, B ′′ be
perfect MV -algebras and σ

′ : A ↪→ B
′
, σ

′′ : A ↪→ B
′′
embeddings. Then by [5] we

know that the variety of all MV -algebras has the amalgamation property, so we have
the following commutative diagram:

where ξ
′
and ξ

′′
are embeddings and D an MV -algebra. Since ξ

′
(B ′) and ξ

′′
(B ′′) are

perfect MV -algebras, then the following commutative diagram holds:
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��

6.2 Ultraproduct of Perfect MV -Algebras

Let I an index set and (Ai )i∈I be a family of perfect MV -algebras. Let A = ∏
i∈I Ai

be the usual product in the category MV of MV -algebras. The category Perfect
admits products too: the product of (Ai )i∈I in Perfect is the perfect skeleton of A,
Perf(A). Set A′ = Perf(A). The elements of A′ can be described as sequences (ai )

′
i∈I

such that ord(ai ) = ord(a j ) for all i, j ∈ I .
Let F be a non principal ultrafilter in 2I . In the category MV we have the usual

ultraproduct A/F which consists of equivalence classes of sequences:

[(ai )i∈I ] = [(bi )i∈I ] iff {i | ai = bi } ∈ F.

Since perfect MV -algebras are first order definable (see below), we get that A/F
is a perfect MV -algebra. On the other hand, we can consider the ultraproduct in
the category Perfect by taking A′/F as the set of equivalence classes [(ai )

′
i∈I ] of

elements (ai )
′
i∈I ∈ A′.

Proposition 6.16 The algebras A/F and A′/F are isomorphic perfect MV -
algebras.

Let A be a perfect MV -algebra. A is called locally archimedean whenever x, y ∈
Rad(A) and nx ≤ y for all positive integers n, then x = 0. A weak unit for A is a
w ∈ Rad(A) such thatw⊥ = {0}. A will be called principal if Rad(A) is a principal
ideal.
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Proof Since A′ is a subalgebra of A then A′/F is a subalgebra of A/F . We can
consider the inclusion map:

σ : [(ai )
′
i∈I ] ∈ A′/F ↪→ [(ai )

′
i∈I ] ∈ A/F

that is a monomorphism. In order to prove that σ is surjective, let [(ai )i∈I ] ∈ A/F .
If ord([(ai )i∈I ]) = ∞, then it is straightforward to prove that {i | ord(xi ) =
∞} ∈ A/F . Let ui = ai if ord(ai ) = ∞ and let ui = 0 if ord(ai ) < ∞. Then
(ui )i∈I ∈ A′ since ord(ui ) = ∞ for every i ∈ I , so [(ui )i∈I ] ∈ A′/F . Since
{i | ui = ai } = {i | ord(ai ) = ∞} ∈ F then σ([(ui )i∈I ]) = [(ui )i∈I ] = [(ai )i∈I ].

Similarly, if ord([(ai )i∈I ]) < ∞ we let ui = ai if ord(ai ) < ∞ and ui = 1
otherwise. Again, (ui )i∈I ∈ A′ and σ([(ui )i∈I ]) = [(ai )i∈I ]. Therefore σ is an
isomorphism. ��

From the categorical equivalence between perfect MV -algebras and abelian �-
groups, given by the functorsG andD it is reasonable to display the action ofG and
D focused on some special classes of perfect MV -algebras and abelian �-groups.
Indeed we consider the following subclasses of abelian �-groups:

(1) the class of archimedean �-groups (denoted by Arch);
(2) the class of archimedean �-groups with a distinguished weak unit (denoted by

Archw);
(3) the class of archimedean �-groups with a distinguished strong unit (denoted by

Archs).

The above classes of abelian �-groups suggest to define classes of perfect MV -
algebras reflecting, in the category of perfect MV -algebras, the role of the classes
Arch, Archw and Archs in the category of abelian �-groups.

Proposition 6.17 Let A be a perfect locally archimedean MV -algebra, and let a ∈
Rad(A). Then A/(a⊥) is locally archimedean.

Proof Suppose x, y ∈ Rad(A) and nx ≤ y(mod a⊥)) for all n. Thus for all n,
((nx)�¬y) ∈ a⊥. Therefore (n(x∧a))�¬y = 0 for alln. But (n(x∧a)∧na)�¬y ≤
(n(x∧a))�¬y∧na = 0, sowehave n(x∧a)�¬y) = 0 for all n. That is n(x∧a) ≤ y
for all n. Since A is locally archimedean we have x ∧ a = 0. Thus x ∈ a⊥, from
which it follows that A/(a⊥) is locally archimedean. ��
Lemma 6.18 Let A be an MV -algebra and w ∈ A. Then w⊥ = {0} iff for all
x, y ∈ A, x ∧ (y ⊕ w) = y implies x = y.

Proof Suppose for all x, y ∈ A, x ∧ (y ⊕w) = y implies x = y. Let x ∈ w⊥. Then,
x ∧ (0 ⊕ w) = x ∧ w = 0. Hence x = 0, so w⊥ = {0}. Conversely, let w⊥ = {0}.
Suppose we have x ∧ (y ⊕ w) = y. Then

0 = (¬y)� y = (¬y)� (x ∧ (y ⊕w)) = (¬y)� x ∧ (¬y)� (y ⊕w) = (¬y)� x ∧¬y ∧w.

Hence (¬y) � x ∧ ¬y = 0. Now (¬y) � x ≤ ¬y, so (¬y) � x = 0. Thus x ≤ yy
and x ≤ y ⊕ w. So x = x ∧ (y ⊕ w) = y. ��



6.2 Ultraproduct of Perfect MV -Algebras 45

Corollary 6.19 Let A be a perfect locally archimedean MV -algebra, and w a weak
unit of A. Then [(w, 0)] ∈ D(A) is also a weak unit.

Proof Suppose [(w, 0)] ∧ [(x, y)] = [(0, 0)]. Then x ∧ (y ⊕ w) = y, and by the
above lemma, x = y. So, [(x, y)] = [(0, 0)]. ��
Lemma 6.20 Let A be a locally archimedean perfect MV -algebra. Then D(A) is
archimedean.

Proof Let [(x, y)] ∈ D(A)+ and assume n[(x, y)] ≤ [(a, b)] for all positive integers
n. Then [(a, b)] is positive, so we have, for all n, n[(x � (¬y), 0)] ≤ [(a � (¬b), 0)].
Hence in A, n(x � (¬y)) ≤ a � (¬b) ∈ Rad(A), for all n. Thus x � ¬y = 0
and x ≤ y. Now [(x, y)] is positive in D(A) iff x ≤ y. So x = y and
[(x, y)] = [(0, 0)]. ��
Lemma 6.21 Let G be an abelian �-group with a weak unit w. Then (0, w) is a
weak unit for G(G).

Proof Sincew ∈ G+, (0, w) ∈ Rad(G(G)). Therefore, for all (0, x) ∈ Rad(G(G)),
if (0, w) ∧ (0, x) = (0, w ∧ x) = 0, then x = 0. So (0, w)⊥ = {0}. ��
Lemma 6.22 Let G be an archimedean �-group. ThenG(G) is locally archimedean.

Proof If n(0, x) ≤ (0, y) for all n, then nx ≤ y, for all n, whence x = 0. ��
Let Arch denote the full subcategory of Perfect whose objects are the locally

archimedean perfect MV -algebras. From The above we get that Arch is equivalent
to the full subcategory of abelian �-groups, whose object are the archimedean �-
groups. Now let Archw be the category whose object are the pairs (A, w), where A
is a locally archimedean perfect MV -algebra and w is a distinguished weak unit of
A, and whose morphisms are the maps f : (A, w) → (A′, w′), where f : A → A′ is
an MV -homomorphism and f (w) = w′. Also we can define the category AbArchw

whose objects are archimedean �-groups with a distinguished weak unit and whose
morphisms are �-groups homomorphisms preserving weak unit. Hence from above
lemmas, corollaries and propositions we have:

Theorem 6.23 The two correspondences

(A, w) �→ (D(A), [(w, 0)] and (G, u) �→ (G(G), (0, 0))

determine a categorical equivalence between Archw and AbArchw.

Also we can define the category Archs whose object are the pairs (A, p), where
A is a locally archimedean perfect MV -algebra and Rad(A) = id(p), and whose
morphisms are the maps f : (A, p) → (A′, p′), where f : A → A′ is an MV -
homomorphism and f (p) = p′. In an analogous way, as the theorem above we
get:
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Theorem 6.24 The two correspondences

(A, p) �→ (D(A), [(p, 0)] and (G, s) �→ (G(G), (0, s))

determine a categorical equivalence between Archw and AbArchs .

References

1. Chang, C.C.: Algebraic analysis of many-valued logics. Trans. Am. Math. Soc. 88, 467–490
(1958)

2. Belluce, L.P., Di Nola, A., Lettieri, A.: Local MV -algebras, Rendiconti del Circolo Matematico
di Palermo, Serie II. Tomo XLII, pp. 347–361 (1993)

3. Birkhoff, G.: Lattice Theory. Providence, Rhode Island (1967)
4. MacLane, S.: Categories for the Working Mathematicians. Springer, New York (1979)
5. Mundici, D.: The Haar theorem for lattice-ordered Abelian groups with order-unit. Discrete

Contin. Dyn. Syst. 21, 537–549 (2008)



Chapter 7
The Variety Generated by Perfect
MV -Algebras

We remark that the functor Γ maps a non-equational class of groups, the category
of abelian �-groups with strong unit, to an equational class, the variety of all MV -
algebras. On the other hand, the functor D maps an equational class of groups,
the category of abelian �-groups, to a non-equational class, the category of Perfect
MV -algebras. Also it is worth to remark that the class of perfect algebras does not
form a variety, so the problem of studying the proper subvariety of the variety of all
MV -algebras generated by all perfect MV -algebras arises.

Let V(Z) be the variety generated by the additive �-group Z of integers with
natural order, let V(Perf) be the variety generated by all perfect algebras, and V(C)

be the variety generated by Chang’s algebra C . Then the following theorem holds:

Theorem 7.1 V(C) = V(Perf)

Proof For every perfect MV -algebra A, let G = D(A) be its associated �-group.
Since the variety of abelian �-groups is generated by Z, then G ∈ V (Z). Hence there
exist an �-homomorphism f and an abelian �-group K such that f (K ) = G and
K ⊆ Z

I , for some set I , as an �-group. From the equivalence between �-groups and
perfect MV -algebras G(G) = G( f )(G(K )) and G( f ) is an MV -homomorphism.
Let the map ρ : G(ZI ) ↪→ [G(Z)]I be defined by ρ(0, (zi )i∈I ) = {(0, zi )}i∈I if
0 ≤ zi for every i ∈ I and zi ∈ Z; ρ(1, (zi )i∈I ) = {(1, zi )}i∈I if zi ≤ 0 for every
i ∈ I and zi ∈ Z. Then ρ is an embedding. Since G(Z) ∼= C , then G(K ) is, up to
isomorphism, a subalgebra of C I and thenG(K ) ∈ V(C). Hence,G(G) is a member
of V(C) because it is obtained, by a homomorphism, from a member of V(C). Since
G(G) = G(D(A)) ∼= A, it follows that A ∈ V(C) because it is obtained as a
homomorphic image of a member of V(C). Thus V(Perf) ⊆ V(C). From C ∈ Perf
we get also that V(C) ⊆ V(Perf). The theorem is now proved. ��
Theorem 7.2 An MV-algebra A is in the variety V(C) iff A satisfies the identity:

(x ⊕ x) 
 (x ⊕ x) = (x 
 x) ⊕ (x 
 x). (∗)
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Proof Let K denote the subvariety of MV -algebras defined by the identity (∗).
Trivially Sω

1 = C ∈ K. Now we are going to prove that for n ≥ 2, Sω
n /∈ K.

Indeed, if n is even, then the element 1
2 ∈ Sn does not satisfy the identity (∗). If n

is odd, the identity (∗) fails in Sω
n by the element

(n−1)
2
n . As a consequence we get

that Sω
n /∈ K for every n ≥ 2. By an application of ([1], Theorem4.11) we get that

K = V(C) = V(Sω
1 ). ��

Corollary 7.3 Let A be a perfect non-Boolean MV -chain. Then V(A) = V(Perf).

Proof We know that C ↪→ A, then V(C) ⊆ V(A) But A ∈ V(C), the V(A) ⊆
V(C) = V(Perf). ��
Theorem 7.4 Let A ∈ V(C). Then A is a subdirect product of perfect MV-chains.

Proof By Chang’s representation theorem A can be subdirectly embedded into∏
P∈Spec(A)(A/P). Let J be a prime ideal of A and M be a maximal ideal con-

taining J . Then for every x ∈ A we must have either ord(x/P) = ∞, or
ord((¬x)/P) = ∞. If x ∈ M then ord(x/P) = ∞, otherwise there is n ∈ N such
that¬(nx) ∈ P and then (¬x)n ∈ M , which is impossible, because from x ∈ M and
(¬x)n ∈ M we get ¬x ∈ M , in contradiction with x ∈ M . If x /∈ M , then ¬x ∈ M ,
and using the above argument, it is not hard to see that ord((¬x)/P) = ∞. There-
fore, for every x/P ∈ A/P either ord(x/P) = ∞, or ord((¬x)/P) = ∞. The fact
that A/P is an MV -chain yields that A/P is perfect. ��
Proposition 7.5 Let A be an MV -algebra. Then the following are equivalent:

(1) A ∈ V(C);
(2) For every maximal ideal M of A, A = M ∪ ¬(M).

Proof Let A ∈ V (C). Then, for every M ∈ Max(A), A
M = {0, 1}, that is for every

x ∈ A either x
M = 0 or x

M = 1, so x ∈ M or¬x ∈ M . Hence A = M ∪¬M . Assume
now that for every M , A = M ∪ ¬M . We claim that A is a subdirect product of
perfect MV-chains. Indeed, by Chang’s representation theorem A can be subdirectly
embedded into

∏
P∈Spec(A)

A
P . Let P ∈ Spec(A) and M the unique maximal ideal

of A containing P . Then for every x ∈ A, either ord( x
P ) = ∞ or ord(¬x

P ) = ∞.
If x ∈ M , then ord( x

P ) = ∞, otherwise there is n ∈ N such that ¬(nx) ∈ P
and (¬x)n ∈ M . Hence from x ∈ M and (¬x)n ∈ M it follows ¬x ∈ M , which
is absurd. If ¬x ∈ M , then ¬x ∈ M , and using the above argument, we get that
ord(¬x

P ) = ∞. Therefore, for every x
P ∈ A

P either ord( x
P ) = ∞ or ord(¬x

P ) = ∞.
Since A

P is totally ordered, we get that A
P is perfect. By Theorem 7.4, A ∈ V(C). ��

Let H be a proper ideal of an MV -algebra A and AH denote the subalgebra of A
generated by H . Then AH = H ∪ ¬H , see [2]. Let A0 = ⋂

M∈Max(A) AM . Then we
have:
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Proposition 7.6 Let A be an MV -algebra and B ∈ V(C) a subalgebra of A, then

(1) A0 ∈ V(C);
(2) B ⊆ A0.

Proof Let y ∈ A0 and M0 ∈ Max(A0). Then y ∈ AM for every M ∈ Max(A).
Let N ∈ Max(A) be such that M0 = N ∩ A0. Then y ∈ N ∪ ¬N and hence
y ∈ (N ∪ ¬N ) ∩ A0, i.e., y ∈ M0 ∪ (¬N ∩ A0) = M0 ∪ ¬M0. Hence y ∈ A0M0

and then A0 ⊆ A0M0 , i.e., A0 = A0M0 for every M0 ∈ Max(A0). This yelds (1). To
prove (2), let M ∈ Max(A) and N = B ∩ M . Then N is a maximal ideal of B. From
B ∈ V (C) we get that B = N ∪ ¬N and B = (M ∩ B) ∪ (¬M ∩ B) = AM ∩ B.
Thus, B ⊆ AM for every M ∈ Max(A). Hence B ⊆ ⋂

M∈Max(A) AM = A0. ��
Wecall A0 theV(C)-skeleton of A. An ideal I of an MV -algebra A is calledV(C)-

ideal if and only if for every maximal ideal M of A, I ⊆ M implies A = M ∪¬(M).

Theorem 7.7 Let A an MV -algebra and I and ideal of A. The following are equiv-
alent:

(1) A/I ∈ V(C);
(2) I is a V(C)-ideal of A.

Proof (1) implies (2). Let A/I ∈ V(C) and M ∈ Max(A) such that I ⊆ M . Then
M/I is maximal ideal of A/I . By hypothesis, A/I = (M/I ) ∪ (¬(M))/I ). Let
x ∈ A, then either x/I ∈ M/I or x/I ∈ (¬M)/I . Hence, we must either have
x ∈ M or x ∈ neg(M), whence A = M ∪ ¬(M).

(2) implies (1). Let M/I be a maximal ideal of A/I . Then I ⊆ M , and M ∈
Max(A). By hypothesis, A = M ∪ ¬(M), then A/I = (M/I ) ∪ (¬(M))/I ) for
every maximal ideal M/I of A/I . Therefore A/I ∈ V(C). ��
Corollary 7.8 Let A be an MV -algebra. Then the following are equivalent:

(1) each ideal of A is a V(C)-ideal;
(2) A ∈ V(C).

Proof Trivial. ��
Theorem 7.9 Let A be an MV -algebra. Then its V(C)-skeleton, A0, is generated
by the subset B(A) ∪ Rad(A) of A.

Proof Since Rad(A) ⊆ A0 and B(A) ⊆ A0, then 〈B(A) ∪ Rad(A)〉 ⊆ A0. A0 can
subdirectly be embedded into a direct product

∏
i∈I Ai , where Ai is a perfect MV -

chain, for each i ∈ I . So, every x ∈ A can be written as x = (xi )i∈I , xi ∈ Ai . Let 0i

and 1i denote the first and the last element of Ai , respectively. For every x ∈ A0 it
can be easily checked that:

(i) 2(x 
 x) ∈ B(A),
(ii) x ∧ ¬x ∈ Rad(A),

(iii) x = (2(x 
 x)) 
 (x ∧ ¬x) ⊕ (x 
 x) 
 (x ∨ ¬x).
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If xi ∈ Rad(Ai ), then by (i) and (ii) we get xi = ((2(x 
 x)) 
 (x ∧ ¬x) ⊕ (x 

x) 
 (x ∨ ¬x))i . In an analogous way it can be seen that if xi ∈ ¬Rad(Ai ) it is
xi = ((2(x 
 x)) 
 (x ∧ ¬x) ⊕ (x 
 x) 
 (x ∨ ¬x))i . Thus by (i), (ii) and (iii) it
follows that x ∈ 〈B(A) ∪ Rad(A)〉, and then A0 ⊆ 〈B(A) ∪ Rad(A)〉. ��

7.1 Quasi Variety Generated by C

In this section,we show that the quasi variety generated byChang algebraC coincides
with the variety generated by C .

Theorem 7.10 V(C) = QV(C).

To prove the previous theorem, we give some auxiliary results.

Lemma 7.11 Γ (Z ×lex Q, (1, 0)) ∈ QV(C).

Proof Let us suppose that A = Γ (Z×lex Q, (1, 0)). Suppose a quasi-identity p(x) =
0 → q(x) = 0 is false in A. We suppose p, q are polynomials in one variable (the
case of n variables is analogous). Then there is x such that p(x) = 0 and q(x) �= 0.
We can suppose x ∈ Rad(A) and x �= 0. But then x generates a copy of C . So, the
quasi-identity is false also in C . ��
Corollary 7.12 Γ (Z ×lex R, (1, 0)) ∈ QV(C).

Proof This follows by the density of the rationals in R. ��
Corollary 7.13 If ∗R is an ultrapower of the reals, then

Γ (Z ×lex ∗R, (1, 0)) ∈ QV(C).

Proof This follows from Los Theorem (Proposition 2.7) on ultraproducts. ��
Corollary 7.14 If G is any linearly ordered abelian group, then

Γ (Z ×lex G, (1, 0)) ∈ QV(C).

Proof This follows because every linearly ordered abelian group embeds in an ultra-
power of the reals. ��
Corollary 7.15 Every perfect MV chain is in QV(C).

Proof This follows because every perfect MV -chain has the form Γ (Z ×lex

G, (1, 0)). ��

http://dx.doi.org/10.1007/978-3-319-30406-9_2
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Now, let us return to the proof of Theorem7.10. ClearlyQV(C) ⊆ V(C). Conversely,
an MV -chain belongs to V(C) if and only if it is perfect, so every MV -chain belong-
ing to V(C) belongs toQV(C). But every element of V(C) is a subdirect product of
chains of V(C), andQV(C) is closed under subdirect products. So, V(C) ⊆ QV(C).
Hence V(C) = QV(C), and the proof is complete.
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Chapter 8
Representations of Perfect MV -Algebras

8.1 Gödel Spaces

In the sequel we denote by MV(C) the category of the class of objects coincides with
the variety V(C), generated by C , and morphisms are algebraic homomorphisms,
and the variety V(C). We extract from the variety MV(C) the subclass MV(C)G

generated by MV (C)-algebras Cn , 0 ≤ n < ω, by means of the operators of direct
products, subalgebras and direct limits. The category of Gödel spaces GS (with
strongly isotone maps as morphisms), which are dually equivalent to the category
of Gödel algebras, is transferred by a contravariant functor H into the category
MV(C)G. Conversely, the category MV(C)G is transferred into the category GS
by means of a contravariant functor P . Moreover, it is shown that the functor H is
faithful, the functor P is full and the both functors are dense. The description of
finite coproduct of algebras, which are isomorphic to Chang algebra, is given. Using
duality a characterization of projective algebras in MV(C)G is given.

Recall some notations: let C0 = Γ (Z , 1), C1 = C ∼= Γ (Z ×lex Z , (1, 0)) with
generator (0, 1) = c1(= c),Cm = Γ (Z ×lex ···×lex Z , (1, 0, . . . , 0))with generators
c1(= (0, 0, . . . , 1)), . . . , cm(= (0, 1, . . . , 0)), where the number of factors Z is equal
to m ≥ 1 and ×lex is the lexicographic product. Let us denote Rad(A) ∪ ¬Rad(A)

through R∗(A).
We are interested in the class LSP{Ci : i ∈ ω} of MV (C)-algebras which is

generated by the set {Ci : i ∈ ω} by the operators of direct products, subalgebras and
direct limits, where C0 is two-element Boolean algebra, C1 = C and Cn (n > 1) is
n-generated perfect MV -chain.

Let K be any variety of algebras. Then FK(m) denotes the m-generated free
algebra in the variety K.

Now we introduce the notion of weak duality between categories. Let A, B be
categories. We say that A and B are weakly dual (or that there is a weak duality
between A and B) if there are dense contravariant functors FA : A → B and FB :
B → A such that FA is faithful and FB is full.
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54 8 Representations of Perfect MV -Algebras

In this section, we give the description of m-generated free algebras in the vari-
ety MV(C) generated by perfect MV -algebras. We describe the category of Gödel
spaces, where anyGödel space is a special case of Priestley spaces.We alsowill prove
that there is a weak duality between the full subcategory MV(C)G(= LSP{Ci : i ∈
ω}) of the category MV(C) and the category of Gödel spaces GS. More precisely, we
construct the functors P : MV(C)G → GS, which is full, andH : GS → MV(C)G

which is faithful.
In the category theory, a functor F : E → D is dense (or essentially surjective)

if each object D of D is isomorphic to an object of the form F(E) for some object
E of E. The suggested functors P : MV(C)G → GS and H : GS → MV(C)G are
dense.

The categoryGS of Gödel spaces is dually equivalent to the categoryGA of Gödel
algebras. Hence, there exist two functors G : GA → GS and HS : GS → GA. So,
we also have two functorsHS ◦P : MV(C)G → GA andH◦G : GA → MV(C)G.
Moreover, HS ◦ P coincides with Belluce functor β [1] defined on the MV(C)G.

Using the weak duality we give a construction of a coproduct in the variety
MV(C)G which coincides with coproduct in MV(C). Moreover, we show that the
coproduct coincides with free product (using this weak duality). Free products in
various classes of �-groups were investigated in the frame of varieties of �-groups or
abelian �-groups by Holland and Scrimger [2], Martinez [3, 4], Powel and Tsinakis
[5], Mundici [6], Dvurecenskij and Holland [7], Di Nola and Lettieri [8]. Moreover,
D.Mundici in [6] has shown that coproduct coincides with free product in the variety
of MV -algebras.

We notice that in [9] it is established a duality between the category of finitely
generated MV (C)-algebras, having finite spectrum, and the category of finite dual
Heyting algebras which satisfy linearity condition.

A Boolean space is zero-dimensional, compact and Hausdorff topological space.
The category of Boolean spaces and continuous maps is denoted by B. A Priestley
space is a triple (X; R,Ω), where (X;Ω) is a Boolean space and R is an order
relation on X such that, for all x, y ∈ X with x R̄y, there exists a clopen up-set
V with x ∈ V and y /∈ V . A morphism between Priestley spaces is a continuous
order-preserving map. We denote the category of Priestley spaces plus continuous
order-preserving maps by PS. For details on Priestley duality see Priestley [10]
and Davey and Priestley [11]. Note that for simplicity sake we will often refer to a
Boolean or Priestley space by its underlying set X .

Priestley duality relates the category of bounded distributive lattices to the cate-
gory of Priestley spaces bymapping each bounded distributive lattice L to its ordered
spaceF(L) of prime filters, and mapping each Priestley space X to the bounded dis-
tributive lattice P(X) of clopen up-sets of X . When restricted to Heyting algebras
and Heyting spaces respectively, these mappings give the restricted Priestley duality
for Heyting algebras.

A Heyting algebra is an algebra (A,∨,∧,→, 0, 1) of type (2, 2, 2, 0, 0), where
(A,∨,∧, 0, 1) is a bounded distributive lattice and the binary operation →, which
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is called implication, satisfies

(∀a, b, x ∈ A)(x ∧ a ≤ b ⇔ x ≤ a → b).

The following facts are easily proved: (a) every finite distributive lattice is (the
underlying lattice of) a Heyting algebra, (b) every distributive algebraic lattice is a
Heyting algebra, (c) the lattice of all open subsets of a topological space forms a
Heyting algebra.

AHeyting space (or Esakia space, in other terminology) X is a Priestley space such
that R−1(U ) is open for every open subset U of X . (Recall that R−1(U ) = {y ∈ X :
(∃u ∈ U )y Ru} and that R−1{x} is abbreviated to R−1(x)). The sets R(U ) and R(x)

are defined dually.) A morphism between Heyting spaces, called a strongly isotone
map (or Heyting morphism in other terminology), is a continuous map ϕ : X → Y
such that ϕ(R(x)) = R(ϕ(x)) for all x ∈ X . The restricted Priestley duality for
Heyting algebras states that a bounded distributive lattice A is the underlying lattice
of a Heyting algebra if and only if the Priestley dual of A is a Heyting space, and that a
{0, 1}-lattice homomorphism h between Heyting algebras preserves the operation→
if and only if the Priestley dual of h is a Heyting morphism. We denote the category
of Heyting spaces plus Heyting morphisms by HS.

For any Priestley space (X, R) we define P(X) as the set of all clopen up-sets
of X . For any U, V ∈ P(X) define: U ∨ V = U ∪ V and U ∧ V = U ∩ V .
Then the algebra P((X, R)) = (P(X),∨,∧,∅, X) is a bounded distributive lattice.
Furthermore, for any morphism f : (X1, R1) → (X2, R2) in PS, F( f ) = f −1

is a {0, 1}-lattice homomorphism from P((X2, R2)) into P(X1, R1). On the other
hand, for each bounded distributive lattice L , the set F(L) of all prime filters of L
with the binary relation R on it,which is the inclusion between prime filters, and
topologised by taking the family of supp∗(a) = {F ∈ F(L) : a ∈ F}, for a ∈ L ,
and their complements as a subbase, is an object of PS; and for each {0, 1}-lattice
homomorphism h : L1 → L2, F(h) = h−1 is a morphism of PS. Therefore, we
have two contravariant functors F : D → PS and P : PS → D. These functors
establish a dual equivalence between the categories of bounded distributive lattices
D and Priestley spaces PS.

For any Heyting space (X, R) and U, V ∈ H(X)(= the set of all clopen up-sets
of X ) define:

U → V = X\(R−1(U\V ))

Then the algebra H((X, R)) = (H(X),∨,∧,→,∅, X) is a Heyting algebra. Fur-
thermore, for any morphism f : (X1, R1) → (X2, R2) in HS, H( f ) = f −1 is a
Heyting algebra homomorphism from H((X2, R2)) into H(X1, R1). On the other
hand, for each Heyting algebra A, the set F(A) of all prime filters of A with the
binary relation R on it,which is the inclusion between prime filters, and topologized
by taking the family of supp∗(a) = {F ∈ F(A) : a ∈ F}, for a ∈ A, and their
complements as a subbase, is an object ofHS; and for each Heyting algebra homo-
morphism h : A → B, F(h) = h−1 is a morphism of HS. Therefore, we have
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two contravariant functors F : HA → HS and H : HS → HA. These functors
establish a dual equivalence between the categories HA and HS.

A Heyting algebra A is said to be Gödel algebra (or L-algebra [12]) if it satisfies
the linearity condition: (a → b) ∨ (b → a) = 1 for all a, b ∈ A. Gödel algebras
represent the algebraic models for Gödel logic G. It is well known that the Heyting
spaces for Gödel algebras form root systems. A. Horn [13] showed that Gödel alge-
bras can be characterized among Heyting algebras in terms of the order on prime
filters (co-ideals). Specifically, a Heyting algebra is a Gödel algebra iff its set of
prime lattice filters is a root system (ordered by inclusion). So we can define a Gödel
space X as a Heyting space such that R(x) is a chain for any x ∈ X . The category
of Gödel spaces and strongly isotone maps is denoted by GS. Also, we denote the
category of Gödel algebras by GA.

8.2 M-Generated Free MV (C)-Algebra

Recall that an MV -algebra A = (A, 0,¬,⊕) is an abelian monoid (A, 0,⊕)

equipped with a unary operation ¬ such that ¬¬x = x , x ⊕ ¬0 = ¬0, and
y ⊕ ¬(y ⊕ ¬x) = x ⊕ ¬(x ⊕ y) [14]. We set 1 = ¬0 and x � y = ¬(¬x ⊕ ¬y)

[15]. We shall write ab for a � b and an for a � · · · � a︸ ︷︷ ︸
n times

, for given a, b ∈ A. Every

MV -algebra has an underlying ordered structure defined by

x ≤ y iff ¬x ⊕ y = 1.

Then (A;≤, 0, 1) is a bounded distributive lattice. Moreover, the following property
holds in any MV -algebra:

xy ≤ x ∧ y ≤ x ∨ y ≤ x ⊕ y.

The unit interval of real numbers [0, 1] endowed with the following operations:
x ⊕ y = min(1, x + y), x � y = max(0, x + y − 1),¬x = 1 − x , becomes an
MV -algebra. It is well known that the variety MV of all MV -algebras is generated
by the MV -algebra S = ([0, 1],⊕,�,¬, 0, 1), i.e. V(S) = MV.

The algebra C , with generator c ∈ C , is isomorphic to Γ (Z ×lex Z , (1, 0)),
with generator (0, 1). Recall also that the intersection of all maximal ideals of an
MV -algebra A, the radical of A, is denoted by Rad(A).

Theorem 8.1 An 1-generated free MV (C)-algebra FMV(C)(1) is isomorphic to C2

with free generator (c,¬c).

Proof Firstly, let us show that C2 is generated by (c,¬c). Indeed, 2((c,¬c)2) =
(0, 1) and (2(c,¬c))2 = (1, 0). Therefore, since c ( and ¬c, as well) generates C ,
we have that (c,¬c) generates C2.
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Observe that if we have a perfect MV (C)-chain A, then 1-generated subalgebra of
A is isomorphic to either Γ (Z ×lex Z , (1, 0)) or the two-element Boolean algebra S1.

Let K be a variety. An m-generated free algebra A on the generators g1, . . . , gm

over the variety K can be defined in the following way: the algebra A is a free
m-generated algebra on the generators g1, . . . , gm iff for any m-variable equation
P(x1, . . . , xm) = Q(x1, ..., xm), the equation holds in the variety K iff the equa-
tion P(g1, . . . , gm) = Q(g1, . . . , gm) is true in the algebra A (on the generators
g1, . . . , gm ∈ A) [16].

Now, suppose that one-variable equation P = Q does not hold in the variety
MV(C). It means that this equation does not hold in some 1-generated perfect
MV (C)-algebra A on some element a ∈ A. Then A is isomorphic either to C
or S1 (2-element Boolean algebra). Let us suppose that A is isomorphic to C . Iden-
tify isomorphic elements. Depending on the generator of A, the one belongs to either
Rad A or ¬Rad A, we use the projection either π1 : C2 → C or π2 : C2 → C ,
sending the generator (c,¬c) either to c ∈ C or to ¬c ∈ C . From here we conclude
that P = Q does not hold in C2. Now let us suppose that A is isomorphic to S1.
Notice that homomorphic image of C2 by Rad(C2) is isomorphic to one-generated
free Boolean algebra S2

1 . So, P = Q does not hold in C2. Hence, C2 is 1-generated
free MV (C)-algebra. ��

As we know the algebra Cn is generated by n generators c1, c2, . . . , cn ∈
Rad(Cn). In general, Cn is generated by n generators cϕi (1), cϕi (2), . . . , cϕi (n) for
any i ∈ {1, . . . , n!}, where ϕi : {1, . . . , n} → {1, . . . , n} is any bijection: the first
generator is cϕi (1), the second generator is cϕi (2) and so on, the n-th generator is cϕi (n).
Denote (cϕi (1), cϕi (2), . . . , cϕi (n)) by ai. As we see we have n! different sets of ordered
generators that generate Cn . Now let us consider the algebra Cn!

n and the subalgebra
Bn of the algebra Cn!

n generated by n generators bi = (πi (a1),πi (a2), . . . ,πi (an!)),
i = 1, . . . , n. Notice that the generators b1, . . . , bn belong to Rad(Cn!

n ). Therefore,
the algebra Bn is perfect. Moreover, any j-th factor ( j ∈ {1, . . . , n!}) π j |Bn is iso-
morphic to Cn , since π j |Bn (b1)(= π1(aj)),π j |Bn (b2)(= π2(aj)), . . . ,π j |Bn (bn)(=
πn(aj)) generate π j |Bn (Bn)(∼= Cn), where π j |Bn is the restriction of the projection
π j : Cn!

n → C j ( j = 1, . . . , n!) on the subalgebra Bn .
Let us consider the subalgebra Ak of the algebra Π∞

i=1D(k)
i , where D(k)

i
∼= Ck

(1 ≤ k < n), generated by d(k)
j = (u( j)

1k , u( j)
2k , u( j)

3k , ..., u( j)
ik , ...), j = 1, . . . , n where

u(1)
ik , . . . , u(n)

ik ∈ Rad(D(k)
i ) generate D(k)

i , (u(1)
ik , . . . , u(n)

ik ) �= (u(1)
jk , . . . , u(n)

jk ) for
i �= j .

Let B(n) be a subalgebra of Bn × A1 × · · · × An−1 generated by

g1 = (b1, d(1)
1 , . . ., d(n−1)

1 ), . . ., gn = (bn, d(1)
n , . . ., d(n−1)

n ).

Notice that the generators g1, . . . , gn belong to Rad(Bn × A1 × · · · × An−1).
Therefore, the algebra B(n) is perfect. Observe that B(n) is also generated by
gεi1
1 , . . . , gεin

n , where εi1, . . . , εin is any sequence of 1 and 0, 1 ≤ i ≤ 2n , and

xε =
{

x, i f ε = 1
¬x, i f ε = 0

. Hence we have
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Lemma 8.2 The algebra B(n)2
n

is generated by G1 = (gε11
1 , gε21

1 , . . . , gε2n1
1 ), G2 =

(gε12
2 , gε22

2 , . . . , gε2n2
2 ), . . . , Gn = (gε1n

n , gε2n
n , . . . , gε2n n

n ).

Proof Observe that gi ∈ Rad(B(n)) and¬gi ∈ ¬Rad(B(n)). Therefore (2gi )
2 = 0

and (2¬gi )
2 = 1. So, (2Gi )

2 is a 2n element sequence of 0 and 1which represents free
generators of n-generated free Boolean algebra 22n

. By means of this free Boolean
generators, we obtain all 2n-element sequence of 0 and 1. Taking into account that any
i-th factor of B(n)2

n
is generated by πi (G1), . . . ,πi (Gn), we conclude that B(n)2

n

is generated by G1, . . . , Gn . ��
Observe, that, according to the construction of the algebra B(n), if the chain

MV (C)-algebra A is generated by n generators from Rad(B(n)), then A is a homo-
morphic image of B(n) sending the generators of B(n) to the generators of A, since
B(n) contains as a factor all such kind of chains. So, we have

Lemma 8.3 If a chain MV (C)-algebra A is generated by n generators, then A is
a homomorphic image of B(n)2

n
, sending the generators of B(n) to the generators

of A.

Proof Let us suppose that A is n-generated chain MV (C)-algebra. Then A coincides
with some D(k)

i (∼= Ck), 1 ≤ k < n, generated by some u(1)
ik , . . . , u(n)

ik . But D(k)
i is a

homomorphic image of B(n)2
n
. ��

Theorem 8.4 The n-generated free MV (C)-algebra FMV(C)(n) is isomorphic to
B2n

with free generators
G1 = (gε11

1 , gε21
1 , . . . , gε2n1

1 ),
G2 = (gε12

2 , gε22
2 , . . . , gε2n2

2 ),

...

Gn = (gε1n
n , gε2n

n , . . . , gε2n n
n ).

Proof Weshouldprove that anyn-variable equation P(x1, . . . , xn) = Q(x1, . . . , xn)

holds in the variety MV(C) if and only if P(G1, . . . , Gn) = Q(G1, . . . , Gn) is true
in the algebra B(n)2

n
. It is obvious that if n-variable equation P(x1, . . . , xn) =

Q(x1, . . . , xn) holds in the variety MV(C), then P(G1, . . . , Gn) = Q(G1, . . . , Gn)

is true in the algebra B(n)2
n
.

Now let us suppose that n-variable equation P(x1, . . . , xn) = Q(x1, . . . , xn) does
not hold in the variety MV(C). It means that this equation does not hold in some
n-generated chain perfect MV (C)-algebra D on some element d1, . . . , dn ∈ D.
Then D is isomorphic to either S1, C1, . . . , Cn−1 or Cn , where S1 is two-element
Boolean algebra. Identify the isomorphic elements. According to Lemma 8.3,
there exists a homomorphism onto f : B(n)2

n → D from B(n)2
n
onto D

such that f (Gi ) = di . Since P(d1, . . . , dn) �= Q(d1, ..., dn) in D, we have that
P(G1, . . . , Gn) �= Q(G1, . . . , Gn) in B(n)2

n
. From here we conclude that B(n)2

n
is

n-generated free MV (C)-algebra with free generators G1, . . . , Gn . ��
Recall that an algebra A is subdirectly irreducible iff A is trivial or there is the

only atom in the lattice of all congruences Con A. In this case the least element is⋂
(Con A − {�}), a principal congruence [17], where � is the least element in the

lattice Con A.
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Lemma 8.5 If a totally ordered MV (C)-algebra A is finitely generated, then A is
subdirectly irreducible.

Proof Let A be a totally ordered n-generated MV (C)-algebra. It means that there
exist different elements b1, b2, . . . , bn ∈ A such that the elements generate A and
bi �= 1, 2bi = 1 for every i ∈ {1, . . . , n}. Let us suppose that b1 > b2 > · · · > bn .
Then there exists the sequence of proper principal filter [b1) ⊆ [b2) ⊆ · · · ⊆ [bn)

such that [bi ) �= {1} for every i ∈ {1, . . . , n}. Therefore ⋂n
i=1[bi ) = [b1) that means

that A is subdirectly irreducible. ��
The inverse of the Lemma 8.5 is not true. Indeed, let us consider the direct limitCω

of the direct system {Ci : i ∈ ω, εi j , i ≤ j}, where Ci � ck �→ εi j (ck) = ck ∈ C j

for k ≤ i . It is obvious that Cω is not finitely generated. Identifying isomorphic
elementswe have thatCω is generated by c1, c2, c3, .... NeverthelessCω is subdirectly
irreducible since

⋂
i∈ω[¬ci ) = [¬c1).

8.3 Spectral Duality

It is well known that the category D of bounded distributive lattices and bounded
lattice homomorphisms, and the category Spec of spectral spaces and spectral maps
(strongly continuousmaps) are dually equivalent. SinceD is dually equivalent to both
the category of spectral spaces and the category of Priestley spaces PS, it follows
that the categories Spec and PS are equivalent.

A topological space X is said to be an MV -space iff there exists an MV -algebra
A such that F(A) (=the set of prime filters of the MV -algebra A equipped with
spectral topology) and X are homeomorphic. It is well known that F(A) with the
specialization order (which coincides with the inclusion between prime filters) forms
a root system. Actually any MV -space is a Priestly space which is a root system.
An MV -space is a Priestley space X such that R(x) is a chain for any x ∈ X and
a morphism between MV -spaces is a strongly isotone map (or an MV -morphism),
i.e. a continuous map ϕ : X → Y such that ϕ(R(x)) = R(ϕ(x)) for all x ∈ X (for
details see [12, 18]). Hence, any MV -space forms a root system. We denote the
category of MV -spaces plus MV -morphisms by MVS.

We are interested in subcategory MVSC of the category MVS, the objects of
which are such kind of MV -spaces X for which there exist MV (C)-algebras A such
that M(A) ∼= X , where M(A) (= Spec(A)) is the set of all prime MV -filters.

Notice that the spectral spaces of �-groups (also with strong unit was investi-
gated in [19]), are root systems (or in other terminology, completely normal spectral
spaces). Not every completely normal spectral space is a spectral space of some
�-group. Notice, also, that there exists an �-group G (with strong unit) such that the
distributive lattice, corresponding to the spectral space Spec(G), is not dual Heyting
(or op-Heyting) algebra [19]. Taking into account that the category of MV -algebras
is equivalent to the category of �-groups with strong unit we conclude that not every
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MV -space is a Gödel space. So, more precisely, we are interested in the subcate-
gory of the categoryMVSC the objects of which are those MV (C)-algebras whose
spectral spaces are Gödel spaces.

8.4 Belluce’s Functor

On each MV -algebra A, a binary relation ≡ is defined by the following stipulation:
x ≡ y iff supp(x) = supp(y), where supp(x) is defined as the set of all prime
ideals of A not containing the element x . As proved in [1], ≡ is a congruence
with respect to ⊕ and ∧. The resulting set β(A)(= A/ ≡) of equivalence classes
is a bounded distributive lattice, called the Belluce lattice of A. For each x ∈ A
let us denote by β(x) the equivalence class of x . Let f : A → B be an MV -
homomorphism. Then β( f ) is a lattice homomorphism from β(A) to β(B) defined
as follows: β( f )(β(x)) = β( f (x)). We stress that β defines a covariant functor from
the category of MV -algebras to the category of bounded distributive lattices (see [1]).
In [1] (Theorem 20) it is proved that M(A) and P(β(A)) are homeomorphic.

Dually we can define binary relation ≡∗ by the following stipulation: x ≡∗ y
iff supp∗(x) = supp∗(y), where supp∗(x) is defined as the set of all prime filters
of A containing the element x . Then, ≡∗ is a congruence with respect to ⊗ and ∨.
The resulting set β∗(A)(= A/ ≡∗) of equivalence classes is a bounded distributive
lattice (whichwe also call theBelluce lattice of A) (β∗(A),∨,∧, 0, 1), whereβ∗(x)∧
β∗(y) = β∗(x⊗y), β∗(x)∨β∗(y) = β∗(x⊕y) = β∗(x∨y), β∗(1) = 1, β∗(0) = 0,
β∗(x) is the equivalence class containing the element x . Notice, that if some assertion
is true for the functor β, then the same is true for the functor β∗.

Let f : A → B be an MV -homomorphism. Then β∗( f ) is a lattice homomor-
phism fromβ∗(A) toβ∗(B) defined as follows:β∗( f )(β∗(x)) = β∗( f (x)).We stress
that β∗ defines a covariant functor from the category of MV -algebras to the category
of bounded distributive lattices (see [1]). M(A) and P(β∗(A)) are homeomorphic
([1] (Theorem 20)). So, in the sequel we will use notation P(A) instead of M(A).

Proposition 8.6 Let {Ai }i∈I be a family of MV (C)-algebras such that β∗(Ai ) is a
Gödel algebra for every i ∈ I . Then

β∗(
∏

i∈I

Ai ) ∼=
∏

i∈I

β∗(Ai ).

Proof A product of a family (Ai )i∈I of objects of a category is an object A together
with a family (πi )i∈I of morphisms πi : A → Ai such that for every object B and
every family (τi )i∈I of morphisms τi : B → Ai there exists a unique morphism
ξ : B → A such that πiξ = τi for i ∈ I .

It is known that the categorical product in the category of MV -algebras, and in
the category of distributive lattices as well, coincides with the direct product.
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Let A = ∏
i∈I Ai be the product of family (Ai )i∈I of MV (C)-algebras such that

β∗(Ai ) is a Gödel algebra for every i ∈ I . Let (πi )i∈I be morphisms (projections)
πi : A → Ai . Then β∗(πi ) : β∗(A) → β∗(Ai ) will be projections from β∗(A) onto
β∗(Ai ).

The set Fi = {x ∈ A : πi (x) = 1} is a filter of MV -algebra A such that
⋂

i∈I Fi =
{1} and what is more A/Fi

∼= Ai . β∗(Fi ) = {β∗(x) : β∗(πi )(β
∗(x)) = β∗(1)} is

a lattice filter of β∗(A) such that
⋂

i∈I β∗(Fi ) = β∗(1) = {1}. In other words A
(β∗(A)) is a subdirect product of Ai (β∗(Ai ). Notice that {1} is a filter for every
MV -algebra A. Moreover, β∗(1) = [1] = {1}.

Further, according to the construction of the filter Fi we have A/Fi
∼= Ai . So,

β∗(A/Fi ) ∼= β∗(Ai ) and β∗(A) is a subdirect product of β∗(Ai ).
Let us consider the direct product

∏
i∈I β∗(Ai ) of a family (β∗(Ai ))i∈I . Let σi :∏

i∈I β∗(Ai ) → β∗(Ai ) be the projection for every i ∈ I . We also have morphisms
β∗(πi ) : β∗(A) → β∗(Ai ). So, according to the definition of product there exists
a unique morphism ξ : β∗(A) → ∏

i∈I β∗(Ai ) such that σiξ = β∗(πi ). We should
show that ξ is an isomorphism.

The space Spec(A) of prime filters of A and the space Spec(β∗(A)) of β∗(A)

are homeomorphic. At the same time the space Spec(Ai ) of prime filters of Ai

is homeomorphic to the space Spec(β∗(Ai )) of prime filters of β∗(Ai ). Now take
a co-product

∐
i∈I Spec(Ai ) (in the category of Gödel spaces) which is homeo-

morphic to the
∐

i∈I Spec(β∗(Ai )). The
∐

i∈I Spec(Ai ) corresponds to the product∏
i∈I Ai (by duality) and

∐
i∈I Spec(β∗(Ai )) corresponds to the product

∏
i∈I β∗(Ai )

(by duality). It means that Spec(
∏

i∈I Ai ) is homeomorphic to Spec(
∏

i∈I β∗(Ai ).
So, the space of prime filters of A and

∏
i∈I β∗(Ai ) are homeomorphic. It means that

ξ is an isomorphism. ��
Corollary 8.7 Let {Ai }i∈I be a family of MV -algebras. If β∗(Ai ) is a Heyting lattice
(i.e. for every x, y ∈ Ai there exists x → y), then β∗(

∏
i∈I Ai ) is also Heyting lattice.

Proof Since β∗(Ai ) (i ∈ I ) is a Heyting lattice, we have that β∗(
∏

i∈I Ai ) (∼=∏
i∈I β∗(Ai )) is also Heyting lattice. ��

Proposition 8.8 [1] Let ε : A → B be an injective MV -homomorphism between
MV -algebras A and B. Then β∗(ε) : β∗(A) → β∗(B) is a distributive lattice
injective homomorphism.

Corollary 8.9 If A is an MV -subalgebra of MV -algebra B and β∗(B) is a Heyting
lattice, then β∗(A) is also Heyting lattice.

Proof Let ε : A → B is the injective homomorphism corresponding to the sub-
algebra A of B. Then by [12] (Lemma 13) there exists strongly isotone surjective
morphism P( f ) : P(B) → P(A). Therefore, since β∗(B) is a Heyting algebra,
and so P(B) is Heyting space, P(A) is Heyting space and hence A is Heyting
algebra. ��
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8.5 A Weak Duality

Theorem 8.10 β∗(FMV(C)(n)) is a Gödel algebra.

Proof As we know FMV(C)(n) ∼= B2n
, B is a subalgebra of Bn × A1 × · · · × An−1

generated by

g1 = (b1, d(1)
1 , . . . , d(n−1)

1 ), . . . , gn = (bn, d(1)
n , . . . , d(n−1)

n ),

Ak is a subalgebra of the algebraΠ∞
i=1D(k)

i , where D(k)
i

∼= Ck (1 ≤ k < n), generated
by d(k)

j = (u( j)
1 , u( j)

2 , u( j)
3 , . . . , u( j)

i , ...), j = 1, . . . , n where u(1)
i , . . . , u(n)

i generate

D(k)
i and (u(1)

i , . . . , u(n)
i ) �= (u(1)

j , . . . , u(n)
j ) for i �= j .

According toCorollary 8.7 and 8.9β∗(Bn) andβ∗(Ak) is aGödel algebra for every
k = 1, .., n−1. Since β∗ commutes with a direct product (Proposition 36), therefore,
β∗(Bn × A1 × · · · × An−1) is also Gödel algebra. Since B is embedded as MV (C)-
subalgebra into Bn × A1 × · · · × An−1, i.e. there exists injective homomorphism
f : B → Bn × A1 × · · · × An−1, according to Corollary 8.9, we have that β∗(B) is
a Gödel algebra. ��

Let MV(C)G = LSP{Cn : n ∈ ω} be the class of algebras generated from
{Cn : n ∈ ω} by the operators of direct products, subalgebras and direct limits. From
here we conclude that FMV(C)(n) ∈ MV(C)G. This class is a full subcategory of the
category of MV (C)-algebras MV(C). We can consider MV(C)G as the category
the objects of which are the algebras from MV(C)G. Taking into account that GA is
locally finite and any algebra can be represented as a direct limit of finitely generated
subalgebras, we have that GA = LSP{β∗(Cn) : n ∈ ω}.
Theorem 8.11 [12] (Theorem 16) If R1, R2 are finite root systems and f : R1 → R2

is a strongly isotone map, then there exist MV (C)-algebras A1, A2 ∈ MV(C)G and
an MV -homomorphism h : A1 → A2 such that P(Ai ) ∼= Ri i = 1, 2.

Theorem 8.12 There exist contravariant functor P : MV(C)G → GS and con-
travariant functor H : GS → MV(C)G such that H(P(A)) ∼= A for any object
A ∈ MV(C)G and P(H(X)) ∼= X for any object X ∈ GS, i.e. the functors P and
H are dense.

Moreover, the functor P : MV(C)G → GS is full, but not faithful and the functor
H : GS → MV(C)G is faithful, but not full.

Proof First of all recall that a spectral space of an MV (C)-algebra A is homeo-
morphic to the spectral space of the distributive lattice β∗(A). Let A be any algebra
from MV(C)G. Then A is isomorphic to the direct limit of a direct system of finitely
generated subalgebras {Ai ,ϕi j }, where Ai is a subdirect product of algebras from the
family {Cn : n ∈ ω} and ϕi j : Ai → A j is an injective homomorphism, i ≤ j (more
precisely Ai is a subalgebra of A j ). Identify A with its direct limit which is a direct
limit of the direct system {Ai ,ϕi j }. By Corollary 8.9 any β∗(Ai ) is a Gödel algebra.
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By [12] (Theorem 11) we know that β∗ preserves direct limits, so, β∗(A), which is
direct limit of the direct system {β∗(Ai ),β

∗(ϕi j )} of Gödel algebras, where β∗(ϕi j )

is a Heyting homomorphism, is also Gödel algebra. We associate the MV (C)-space
F(A) = F(β∗(A)) to the MV (C)-algebra A ∈ MV(C)G. Notice that P(β∗(A)) is
homeomorphic to F(β∗(A)). So, we have constructed contravariant functor P from
the category MV(C)G to the category of Gödel spaces : P : MV(C)G → GS.

Let (X, R) be Gödel space. So, a Heyting algebra H(X), corresponding to the
Gödel space (X, R), is a Gödel algebra, say G. It is known that the variety of Gödel
algebras is locally finite. Therefore, G is isomorphic to the direct limit of a direct
system of finite subalgebras {Gi ,ψi j }, where ψi j : Gi → G j is an injective homo-
morphism, i ≤ j (more precisely Gi is a subalgebra of G j ), i.e. G = lim−→{Gi ,ψi j }.
Identify G with its direct limit. According to the duality between the category of
Heyting algebras and the category of Heyting spaces, X = P(G) is the inverse
limit of inverse system {P(Gi ),P(ψi j )}, where P(Gi ) is finite root system and
P(ψi j ) : P(G j ) → P(Gi ) is a strongly isotone onto map. Then, by [12] (Theorem
15), there exists MV (C)-algebras Ai ∈ MV(C)G such that P(β∗(Ai )) ∼= P(Gi )

and injective MV -homomorphism fi j : Ai → A j such that β∗(Ai ) ∼= Gi for every
i ∈ I and P(β∗( fi j )) = P(ψi j ). So, we have a direct system of MV (C)-algebras
{Ai , fi j }, where fi j : Ai → A j is an injective homomorphism for i ≤ j . Let A
be the direct limit of this direct system. Then P(A) ∼= P(G) ∼= X . So, we have
constructed a contravariant functorH, such that for a given Gödel spaceH(X) = A.

From the construction of the functors P and H we conclude that H(P(A)) ∼= A
for any object A ∈ MV(C)G and P(H(X)) ∼= X for any object X ∈ GS, i.e. the
functors P and H are dense.

If we have strongly isotone map f : X1 → X2 between Gödel spaces X1 and
X2, then there exist algebras A1, A2 ∈ MV(C)G and MV -algebra homomorphism
h : A2 → A1 such that P(A1) = X1, P(A2) = X2 (up to isomorphism) and
P(h) : P(A2) → P(A1) is strongly isotone. So, P is full. Now, let us consider
two different MV -homomorphisms f1, f2 : C → C such that f1(c) = 2c and
f2(c) = 3c. Nevertheless, P( f1) = P( f2) : P(C) → P(C). So, P is not faithfull.
It is obvious that if we have two different morhisms g1 : X1 → X2 and g′

1 : X ′
1 →

X ′
2, then we have two different MV -homomorphismsH(g1) : H(X2) → H(X1) and

H(g′
1) : H(X ′

2) → H(X ′
1). So, H is faithfull. For the strongly isotone identity map

f : P(C) → P(C), we have identity MV -homomorphism from C to C . But for
non-trivial injective homomorphism h : C → C , such that h(c) = 3c, there is no
(not identity) strongly isotone map g : P(C) → P(C) such that H(g) = h. So, H
is not full. ��

The categoryGS of Gödel spaces is dually equivalent to the categoryGA of Gödel
algebras, i.e. there exist two functors G : GA → GS and HS : GS → GA. So, we
have a composition of two contravariant functors HS ◦ P : MV(C)G → GA and
H ◦ G : GA → MV(C)G.
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From the above, we have the following

Theorem 8.13 Covariant functors HS ◦P : MV(C)G → GA and H ◦ G : GA →
MV(C)G are dense. Moreover, HS ◦P coincides with Belluce functor β defined on
the MV(C)G.

8.6 Coproduct in MV(C)G

In this sectionwewill describe finite coproductC1�· · ·�C1 (m times) of algebrasC1.
Suppose V is a class of algebras, and A, B ∈ V. The V-coproduct of A and B is an
algebra A � B ∈ V with algebra homomorphisms i A : A → A � B, iB : B → A �B,
such that i A(A)∪ iB(B) ⊂ A � B generates A � B, satisfying the following universal
property: for every algebra D ∈ V with algebra homomorphisms f : A → D
and g : B → D, there exists an algebra homomorphism h : A � B → D such that
h◦i A = f and h◦iB = g. If we change in the definition of coproduct the requirement
that the algebra homomorphisms to be injective, then we have the definition of free
product. The coproduct A � B coincides with free product if there is an algebra D
such that the algebras A and B can be jointly embedded into D [20]. Since for any
MV (C)-algebras A and B there is an algebra D such that the algebras can be jointly
embedded into D, then the coproduct A � B in V coincides with free product. More
precisely we have

Theorem 8.14 In the class MV(C)G a coproduct coincides with free product.

Proof Let A, B be any algebras from MV(C)G. Then P(A), P(B), respectively,
corresponding to their Gödel spaces. So, since the functorP is contravariant we have
that P(A × B) = P(A) �P(B) where A × B is the direct product of A and B, and
P(A) � P(B) is disjoint union of P(A) and P(B). Let a be a maximal element of
P(A) and b a maximal element of P(B). There exist two different strongly isotone
surjective maps f A : P(A) �P(B) → P(A) and fB : P(A) �P(B) → P(B) such
that f A(x) = a for every x ∈ P(B), f A(x) = x for every x ∈ P(A) and fB(x) = b
for every x ∈ P(A), fB(x) = x for every x ∈ P(B). So, there exist two injective
homomorphisms εA : A → A × B and εB : B → A × B. From here we conclude
that the coproduct in MV(C)G coincides with free product. ��

Let us notice that the coproduct coincides with the free product in the variety of
abelian �-groups with strong unit [6].

Nowwe describe coproduct C1�C1. Recall that finitely generated totally ordered
MV (C)-algebras are sudirectly irreducible (Lemma 8.5) and observe that the totally
ordered MV (C)-algebras from MV(C)G are Cn , where n ∈ Z+. In its turn C1 is
generated by one element c1 ∈ C . Moreover, any element u( �= c1) from Rad(C1)

generates a proper subalgebrawhich is isomorphic toC1. So, there are infinitelymany
injective homomorphisms from C1 into C1 and for any injective homomorphism
h : C1 → C1 h(c1) = mc1 for some m ∈ Z+. So, if we have two injective
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homomorphisms h1 : C1 → C1 and h2 : C1 → C1 such that h1(c1) = mc1 and
h2(c1) = kc1, where m, k ∈ Z+, then h1(C1)∪ h2(C1) generates C1 only in the case
when m and k are coprime. Now, let us consider injective homomorphisms from C1

into C2 that generates C2. In this case we have only two possibilities i1 : C1 → C2,
i2 : C1 → C2 such that i1(c1) = c1, i2(c1) = c2, and j1 : C1 → C2, j2 : C1 → C2

such that j1(c1) = c2, j2(c1) = c1.
Now let us consider the algebra Rad(C2

2 ×∏∞
i=1 C (i)

1 )∪¬Rad(C2
2 ×∏∞

i=1 C (i)
1 ),

where C (i)
1

∼= C ( j)
1

∼= C1 for any i, j ∈ Z+. Let B(2) be the subalgebra of Rad(C2
2 ×

∏∞
i=1 C (i)

1 ) ∪ ¬Rad(C2
2 × ∏∞

i=1 C (i)
1 ) generated by g1 = (c1, c2, a1, a2, . . . , ai , ...)

and g2 = (c2, c1, b1, b2, . . . , bi , ...), where (c1, c2), (c2, c1) ∈ C2
2 , (a1, a2, . . . ,

ai , ...), (b1, b2, . . . , bi , ...) ∈ ∏∞
i=1 C (i)

1 , ai = mi c1, bi = ki c1 and mi and ki are
coprime. Notice that ai (= mi c1), bi (= ki c1) generate C1. Observe, that the algebra
B(2), which is a homomorphic image of FMV(C)(2), is the same (up to isomorphism)
which have described in the Sect. 8.3.

It is obvious that the subalgebra of B(2) generated by gi (i = 1, 2) is isomorphic to
C1. So, we have two injective homomorphisms i1 : C1 → B(2), sending the element
c1 to g1, and i2 : C1 → B(2), sending the element c1 to g2. It is obvious that i1(C1)∪
i2(C1) generates B(2). Let us suppose that we have algebra D ∈ MV(C)G such that
there exist homomorphisms f : C1 → D and g : C1 → D such that f (C1) ∪ g(C1)

generate D. So, D is generated by f (c1), g(c1) ∈ D. It is well known that any algebra
is (up to isomorphism) a subdirect product of subdirectly irreducible algebras. Notice
that any totally ordered finitely generated MV (C)-algebra is subdirectly irreducible.
As we know D is a subdirect product of totally ordered MV (C-algebras πi (D),
which are two-generated, where πi (D) is isomorphic either C2 or C1. Therefore,
πi (D) is generated by the set {πi ( f (c1)),πi (g(c1)). Hence, if πi (D) ∼= C1, then
πi ( f (c1)) = mc1, for some m ∈ Z+, and πi (g(c1)) = kc1, for some k ∈ Z+, and,
moreover, since mc1 and kc1 generate C1, we have that m and k are coprime. If
πi (D) ∼= C2, then either πi ( f (c1)) = c1 and πi (g(c1)) = c2, or πi ( f (c1)) = c2 and
πi (g(c1)) = c1. So, according to the construction of the algebra B(2), there exists a
surjective homomorphism τ : B → D such that τ ◦ i1 = f and τ ◦ i2 = g. From
here we arrived to the following

Theorem 8.15 The algebra B(2) is isomorphic to the coproduct C1 � C1.

We can extend this result on the coproduct C1 � · · · � C1 (m times). Let B be
MV (C)-algebra, which is a homomorphic image of FMV(C)(m), is the algebra that
have described in the Sect. 8.3. Then we have

Theorem 8.16 The algebra B(m) is isomorphic to the coproduct C1 � · · · � C1

(m times).

Now we show that C1 and C2 are projective algebra.

Theorem 8.17 The MV (C)-algebra C1 is projective.
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Proof Let us denote the Gödel space P(C1) by ({a, b},≤) where b < a. To distinct
two 2-element chains we provide the elements by indices. Aswe know one-generated
free algebra is isomorphic toC1×C1. Its Gödel spaceP(C1×C1) = P(C1)�P(C1)

is disjoint union of two 2-element chains, sayP(C1) = ({a1, b1},≤1), with b1 <1 a1,
and P(C1) = ({a2, b2},≤2) with b2 <2 a2. Then there exists the injective strongly
isotonemap ε : ({a, b},≤) → ({a1, b1},≤1)�({a2, b2},≤2) such that ε(a) = a1 and
ε(b) = b1; and there exists the surjective strongly isotone map h : ({a1, b1},≤1) �
({a2, b2},≤2) → ({a, b},≤) such that h(a1) = h(a2) = h(b2) = a and h(b1) = b.
So, it easy to check that hε = I d, i.e. that P(C1) is a retract of P(C1) � P(C1).
Therefore, according to the duality, there exist injective homomorphism H(h) :
C1 → C1 × C1 and surjective homomorphism H(ε) : C1 × C1 → C1 (which is
really projection) such that H(ε)H(h) = I dC1 . Hence C1 is projective algebra in
MV(C)G. ��

From this theorem, as a corollary we have

Corollary 8.18 The MV (C)-algebra C1 � · · · � C1 (m times) is projective.

Let B(2) = C1 � C1 and P(B(2))(= (X B(2), R)) its Gödel space. Since B(2) is a
perfect algebra, (X B(2), R) has a greatest element, which we denote by m. Moreover,
since B(2) contains infinitely many copies of C1, we have that (X B(2), R) contains
infinitely many copies of two-element chain up-sets, and two three-element chain
up-sets where one of them corresponds to the algebra C2 with generators g1 = c1
and g2 = c2, and the other corresponds to the algebra C2 with generators g1 = c2
and g2 = c1. (X B(2), R) is depicted in the Fig. 8.1. Notice that the filter Fm generated
by ¬g1 ∧ ¬g2 is a maximal prime filter. Moreover, supp∗(¬g1 ∧ ¬g2) = {Fm}.
Therefore, {Fm} is a clopen.

Let (X, R) be a poset and x ∈ X . A chain out of x is a linearly ordered subset
(i.e. for every y, z from the subset either y Rz or z Ry) of X with the least element x ;
the depth of x denotes the supremum cardinality of chains out of x .

Fm

b1 b2 b3 b4Fx1

Fx2

Fy1

Fy2

Fig. 8.1 Gödel space (X B(2), R) of the algebra B(2)
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Theorem 8.19 The MV (C)-algebra C2 is projective.

Proof Let us denote by Vi the set of all elements of X B(2) having the depth not more
than i , i.e. the chain R(x) has not more than i elements for any x ∈ Vi . The element
x ∈ X B(2) has the depth k if R(x) contains exactly k element. So, Fm ∈ X B(2) has
the depth 1.

Notice that cl(V2) = V2, where cl is the closure operator of the space X B(2).
Indeed, if cl(V2) �= V2, then V2 ⊂ cl(V2), which is a dense subset of cl(V2), con-
tains the elements of depth more than 2. But, according to the duality between
Gödel algebras and Gödel spaces, it is impossible, since, in this case, H(cl(V2))

is isomorphic to a subdirect product of three-element Gödel algebras, that does
not contain as a homomorphic image k-element totally ordered Gödel algebra for
k > 2. From here we conclude that V2 and V2 − {Fm}, as well, are clopen. So,
X B(2) − V2 = {Fx2 , Fy2} is also clopen. Let P(C2) = ({F1, F2, F3},⊂), where
F1 is the prime filter generated by ¬c2, F2 is the prime filter generated by ¬c1
and F3 is the prime filter generated by 1. It is obvious that F3 ⊂ F2 ⊂ F1. Let
ε : ({F1, F2, F3},⊂) → (X B(2), R) be the injective strongly isotone map that is
defined in the following way: ε(F1) = Fm, ε(F2) = Fx1 , ε(F3) = Fy1 and let
h : (X B, R) → ({F1, F2, F3},⊂) be the continuous surjective strongly isotone map
that is defined in the following way: h(Fm) = F1, h(x) = F2 for every x ∈ V2 − V1,
and h(x) = F3 for every x ∈ V3 − V2. It is easy to check that hε = I d, i.e.
({F1, F2, F3},⊂) is a retract of (X B(2), R). So, there exist surjective homomorphism
H(ε) : B(2) → C2 and injective homomorphism H(h) : C2 → B such that
H(ε)H(h) = I dC2 . So, C2 is a retract of C1 � C1, i.e. C2 is projective. ��

In the same manner, we can prove the following

Theorem 8.20 The MV (C)-algebra Bn = Rad(Cn!
n ) ∪ ¬Rad(Cn!

n ) is projective
for any n ∈ Z+.

Proof As in the proof of Theorem 8.19 we denote by Vi the set of all elements of
X B(= P(B)) having the depth notmore than i , i.e. the chain R(x) has notmore than i
elements for any x ∈ Vi . The element x ∈ X Bn has thedepth k if R(x) contains exactly
k element. So, the greatest element Fm ∈ X B , which ismaximal primefilter generated
by ¬g1 ∧· · ·∧¬gn , has the depth 1. Moreover, supp(¬g1 ∧· · ·∧¬gn) = {Fm} and,
hence, {Fm} is clopen.

cl(V2) = V2, where cl is the closure operator of the space X B . Indeed, if cl(V2) �=
V2, then V2 ⊂ cl(V2), which is a dense subset of cl(V2), contains the elements of
depth more than 2. But, according to the duality between Gödel algebras and Gödel
spaces, it is impossible, since, in this case, H(cl(V2)) is isomorphic to a subdirect
product of three-element Gödel algebras, that does not contain as a homomorphic
image a k-element totally ordered Gödel algebra for k > 2. From here we conclude
that V2 and V2 − V1, as well, are clopen. In the same manner we can prove that Vi

and Vi+1 − Vi are clopen for any i ∈ {1, . . . , n − 1}.
X B contains as up-set the Gödel spaceP(Bn). So there exists continuous injective

strongly isotone map ε : P(Bn) → X B . Identifying the corresponding elements, we
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have that F11(= Fm) is the greatest element ofP(Bn). Let us denote by Fk1, . . . , Fkn!
the elements of P(Bn) having the depth k, k = 2, . . . , n with Fki ≤ F(k−1)i . So,
Fk1, . . . , Fkn! ∈ Vk −Vk−1. Since X B is a Stone space, i.e. zero-dimensional, compact
and Hausdorff, there exists disjoint clopen subsets U21, . . . , U2n! ⊂ V2 − V1 such
that U21 ∪ · · · ∪ U2n! = V2 − V1 and F2 j ∈ U2 j for j = 1, . . . , n!. Let Uk j =
(Vk − Vk−1)∩ R−1(U2 j ) for j = 1, . . . , n!. Then the map f : X B → P(Bn) defined
in the following way: f (x) = Fki for every x ∈ Uki , will be continuous strongly
isotone. It is easy to check that f ε = I d. Therefore H(ε)H( f ) = I dBn . So, Bn is
projective. ��

It is easy to show that any homomorphic image of the projective algebra
Rad(Cn!

n ) ∪ ¬Rad(Cn!
n ) is a retract of Rad(Cn!

n ) ∪ ¬Rad(Cn!
n ), i.e. we have

Corollary 8.21 Any homomorphic image of the MV (C)-algebra
Bn = Rad(Cn!

n ) ∪ ¬Rad(Cn!
n ) is projective for any n ∈ Z+. In other words, the

algebra A = Cn(1) × · · · × Cn(k), where n(1), . . . , n(k) ≤ n are positive integers, is
projective.

Theorem 8.22 Let A ∈ MV(C)G. IfP(A) is finite, then A is projective in MV(C)G.

Proof Let A ∈ MV(C)G andP(A) is finite. ThenP(A) is anup-set ofP(FMV(C)G(n))

for some n ∈ Z+. Let X be arbitrary root fromP(FMV(C)G(n)),
i.e. X ∼= R−1(m) for some maximal element m ∈ P(FMV(C)G(n)). Notice, that

any root of P(FMV(C)G(n)) is clopen of P(FMV(C)G(n)). So, X ∩ P(A) is closed in
general, but the singleton containing the top element ofP(A) is clopen. Leta1, . . . , ak

are all elements of X ∩ P(A) having depth 2. Then there exist disjoint clopen sets
U1, . . . , Uk ⊂ V2 − V1 ⊂ X such that U1 ∪ · · · ∪ Uk = V2 − V1 and ai ∈ Ui

for i = 1, . . . , k. Now let ai cover the elements b1, . . . , bm . Then R−1(Ui ) ∩ V3

is a clopen and b1, . . . , bm ∈ R−1(Ui ) ∩ V3, and, as in the previous case for the
elements having the depth 2, there exist disjoint clopen sets W1, . . . , Wm such that⋃m

i=1 Wi − R−1(Ui ) ∩ V3 and bi ∈ Wi . The same procedure we make for elements
x ∈ P(A) having depth more than 3 and so on. Let y be a bottom element of P(A)

having the depth k and Y ⊂ Vk the clopen containing the element y. Let R−1(Y ) be
the class containing the element y. So, we have finite partition of P(FMV(C)G(n)) on
clopen classes such that for every x ∈ P(A) we have clopen, say Ux , and if x �= y,
then Ux �= Uy . Moreover, if V is an upper set of P(A), then

⋃{Ux : x ∈ V } is a
clopen upper set of P(FMV(C)G(n)). Let f : P(FMV(C)G(n)) → P(A) be the map
such that f (y) = x if y ∈ Vx , where Vx is an element of the partition containing the
element x . It is obvious that f is strongly isotone. So we have injective continuous
strongly isotonemap ε : P(A) → P(FMV(C)G(n)) and surjective continuous strongly
isotone map f : P(FMV(C)G(n)) → P(A) such that f ε = I dP(A). Therefore,
H(ε)H( f ) = I dA, i.e. A is projective. ��

Recall that an MV -algebra A is finitely presented iff A ∼= FMV(m)/[u) for some
principal filter generated by u ∈ FMV(m) [21, 22].
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Theorem 8.23 Any finitely presented algebra A ∈ MV(C)G is projective.

Proof Let A ∈ MV(C)G be finitely presented. Then it is n-generated for some
n ∈ Z+. Hence, it is a homomorphic image of FMV(C)G(n). Moreover, there exists
principal filter [u) for some u ∈ FMV(C)G(n) such that A ∼= FMV(C)G(n)/[u). It
means that there exists continuous strongly isotonemap ε : P(A) → P(FMV(C)G(n))

such that ε(P(A)) is a clopen of P(FMV(C)G(n)), which corresponds to the element
β∗(u) ∈ β∗(P(FMV(C)G (n))).

Notice that the root system P(FMV(C)G(n)) consists of 2n roots (that are iso-
morphic to each other). Partition every root on closed classes in such a way that
any class contains only one element from ε(P(A)). Let X be arbitrary root from
P(FMV(C)G(n)). Notice, that any root ofP(FMV(C)G(n)) is clopen ofP(FMV(C)G(n)).
So, X ∩P(A) is clopen. Since ε(P(A)) is a clopen of P(FMV(C)G(n)), we have that
V ′
2 = V2 ∩ ε(P(A)) is a clopen of X consisting of the elements of ε(P(A)) having

the depth 2. Let X − R−1(V ′
2) be the class (that is clopen) which contains the only

maximal element, say Fm , of X belonging to ε(P(A)) and, moreover, X − R−1(V ′
2)

is a clopen upset. Notice, that since ε(P(A)) is a clopen in P(FMV(C)G(n)), we have
that V ′

i = Vi ∩ ε(P(A)) ⊂ X is also clopen in P(FMV(C)G(n)). Therefore, the set
of minimal elements Min(ε(P(A))) of ε(P(A)) is also clopen in P(FMV(C)G(n)).
Now let us suppose that t ∈ ε(P(A)) is not minimal element of ε(P(A)) and have
depth k > 2. Let R−1(t) − V ′

k+1 be the class which contains the only element t from
ε(P(A)). It is clear that R−1(t) − V ′

k+1 is closed (clopen) if {t} is closed (clopen).
So, R−1(Min(ε(P(A)))) is clopen. The following classes of our needed partition are
R−1(t) for every minimal element t ∈ Min(ε(P(A))). Notice that if {t} is clopen,
then R−1(t) is clopen and if {t} is closed, then R−1(t) is closed. Moreover, the class
R−1(t) contains the only element t belonging to ε(P(A)). So, we have a correct
partition [12] of X and, hence, P(FMV(C)G(n)). It means that for any closed up-
set U of P(FMV(C)G(n)) the saturation E(U ) = ⋃

x∈U E(x) is also closed, and if
U is clopen of ε(P(A)), then E(U ) = ⋃

x∈U E(x) is clopen of P(FMV(C)G(n)),
where E is an equivalence relation corresponding to the constructed partition and
E(x) = {y : x Ey}.

From the above, we conclude that there exists surjective continuous strongly
isotone map f : P(FMV(C)G(n)) → P(A) such that f (x) = ε−1(y) where {y} =
E(x) ∩ ε(P(A)), i.e. y is the only element of E(x) belonging to ε(P(A)). It is easy
to check that f ε = I dP(A), i.e. P(A) is a retract of P(FMV(C)G(n)). From here we
deduce that H(ε)H( f ) = I dA and, hence, A is a projective algebra. ��

We selected the class MV(C)G from the variety MV(C) generated by perfect
MV -algebras. This class is formed by the operators of taking direct products, sub-
algebras and direct limits on the set {Ci : 0 ≤ i < ω}, where Ci is i-generated
perfect totally ordered MV -algebra. The class MV(C)G forms a full subcategory of
MV(C). It is well known that Gödel algebras, that is Heyting algebras with linearity
condition, are dually equivalent to the category GS of Heyting spaces of the Gödel
algebras.
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In this chapter, we constructed two functors P : MV(C)G → GS andH : GS →
MV(C) such that P is full andH is faithful, and both functors are dense. That is we
proved that the categories MV(C)G and GS are weakly dual.

Also the description of finite coproduct of Chang’s algebras is given, and using
the above weak duality, a characterization of projective algebras is given too.
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Chapter 9
The Logic of Perfect Algebras

As we know the MV -algebra C is the simplest MV -algebra with infinitesimals.
That is, any non semisimple MV -algebra contains a copy of C as subalgebra. C
is generated by an atom c, which we can interpret as a quasi false truth value. The
negation of c is a quasi true value. Now, quasi truth or quasi falsehood are vague
concepts. Hence, it is quite intriguing to explore such a logic of quasi true. About
quasi truth in an MV algebra, it is reasonable to accept the following propositions:

• there are quasi true values which are not 1;
• 0 is not quasi true;
• if x is quasi true, then x2 is quasi true (where x2 denotes the MV -algebraic product
of x with itself).

In C , to satisfy these axioms, it is enough to say that the quasi true values are the
co-infinitesimals.

By way of contrast, note that there is no notion of quasi truth in [0, 1] satisfying
the previous axioms (there are if we replace the MV product with other suitable
t-norms, e.g. the product t-norm or the minimum t-norm).

Recall that algebras from the variety generated by C will be called by MV (C)-
algebra. Also we recall that for an MV (C)-algebra A, its Boolean skeleton, B(A),
that is the greatest Boolean subalgebra of A, is a retract of A, via the radical ideal of
A, see [1]. Thus, roughly speaking, every MV (C)-algebra can be seen as a Boolean
algebra, up to infinitesimals.

Let L P be the logic corresponding to the variety generated by perfect algebras
which coincides with the set of all Łukasiewicz formulas that are valid in all perfect
MV -chains, or equivalently that are valid in the MV -algebra C . Actually, L P is
the logic obtained by adding to the axioms of Łukasiewicz sentential calculus the
following axiom: (x ⊕ x) � (x ⊕ x) ↔ (x � x) ⊕ (x � x), see [2]. Notice that the
above axiom is used in [3] to define an interesting class of Glivenko MT L-algebras
and that the Lindenbaum algebra of L P is an MV (C)-algebra.

© Springer International Publishing Switzerland 2016
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The importance of the class MV (C)-algebras and of the logic L P can be percieved
looking further at the role that infinitesimals play in MV -algebras and in Łukasiewicz
logic. Indeed the pure first order Łukasiewicz predicate logic is not complete with
respect the canonical set of truth values [0, 1] [4]. However a completeness theorem
is obtained if the truth values are allowed to vary through all linearly ordered MV -
algebra [5]. From the incompleteness theorem arises the problem of the algebraic
significance of the true but unprovable formulas. In [6] it is remarked that the Linden-
baum algebra of first order Łukasiewicz logic is not semisimple and that the valid but
unprovable formulas are precisely the formulas whose negations determine the rad-
ical of the Lindenbaum algebra, that is the co-infinitesimals of such algebra. Hence,
the valid but unprovable formulas generate the prefect skeleton of the Lindenbaum
algebra. So, perfect MV -algebras, the variety generated by them and their logic are
intimately related with a crucial phenomenon of first order Łukasiewicz logic.

As it is well known, MV -algebras form a category which is equivalent to the
category of abelian lattice ordered groups (�-groups, for short) with strong unit [7].
We denote byΓ the functor implementing this equivalence. In particular each perfect
MV -algebra is associated with an abelian �-group with a strong unit. Moreover, the
category of perfect MV -algebras is equivalent to the category of abelian �-groups, see
[1]. Among perfect MV -algebras the algebra C plays a very important role. Indeed
it is the generator of the variety MV(C), the logic L P is complete with respect to
C , and C corresponds to the Behncke-Leptin C∗-algebra A1,0 with a two-point dual,
via the composition of the functor Γ with K0, see [8].

From above it is clear that the class of MV (C)-algebras, far from being a quite
narrow and exotic class it deserves to be explored because of its several and fruitful
links with other areas of Logic and Algebra. Now we are going to focus on the logic
L P and especially on its derivability properties.

Derivable and admissible rules were introduced by Lorenzen [9]. A rule

ϕ1, . . . ,ϕn�ψ

is derivable if it belongs to the consequence relation of the logic (defined semantically,
or by a proof system using a set of axioms and rules); and it is admissible if the set
of theorems of the logic is closed under the rule. These two notions coincide for the
standard consequence relation of classical logic, but nonclassical logics often admit
rules which are not derivable. A logic whose admissible rules are all derivable is
called structurally complete.

Ghilardi [10, 11] discovered the connection of admissibility to projective formulas
and unification,which provided another criteria for admissibility in certainmodal and
intermediate logics (=extensions of intuitionistic logic), and new decision procedures
for admissibility in some modal and intermediate logics.

Moreover, followingGhilardi [12] defining unification problem in terms of finitely
presented algebras, and having our result that finitely generated finitely presented
algebras are precisely finitely generated projective algebras, we deduce that the equa-
tional class of all MV (C)-algebras has unitary unification type, i.e. L P has unitary
unification type.
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Now we give assertions concerning to the completeness of the logic L P which is
the logic corresponding to the variety generated by perfect algebras which coincides
with the set of all Łukasiewicz formulas that are valid in all perfect MV -chains.

Theorem 9.1 A well formed formula α of L P is valid in algebra C if and only if it
is a theorem of L P .

Proof Notice that the algebra C generate the variety MV(C) generated by all perfect
MV -algebras. So, we have C |= p = q if and only if MV(C) |= p = q for any
identity p = q. Any identity p = q for MV -algebras can be represented as the
equivalent one p ↔ q = 1. Therefore, considering any formula α as an algebraic
polynomial we can assert that C |= α = 1 if and only if MV(C) |= α = 1.
From here we conclude that α is valid in algebra C if and only if it is a theorem
of L P . ��
Let LindP denote the Lindenbaum algebra of the logic L P . Then we have the fol-
lowing completeness theorem (see [2]).

Theorem 9.2 A well formed formula of L P is valid on all prefect MV -chains if and
only if it is provable in L P .

Proof It is easy to see that if α is a theorem in L P then α is valid on all perfect
MV -algebras. Indeed axioms of L P are valid in all perfect MV -algebras and modus
ponens keeps this validity.

Conversely, LindP satisfies ([α]�[α])⊕([α]�[α]) = ([α]⊕[α])�([α]⊕[α]),
that is, LindP ∈ V(C). Now, let α be a wff of L P and suppose that α is valid on
all perfect MV -chains. Suppose that α is not provable in L P ; then [α] 	= 1, and
so [¬α] 	= 0. Since LindP is semi-perfect there is a prime ideal J such that [¬α]

J .

Moreover J is a perfect ideal. So in Lindp

J we have that [¬α]
J 	= 0 that is [α]

J 	= 1.
From this we may infer that α is not valid on the perfect MV-chain LindP

J via the
assignment v → [v]

J for each propositional variable v. ��
Corollary 9.3 The logic L P is complete with respect to all ultrapowers of Γ (Z ×lex

R, (1, 0)), i.e., to all perfect MV -chains of type ∗Γ (Z ×lex R, (1, 0)).

9.1 Finitely Generated Projective MV (C)-Algebras

Definition 9.4 A subalgebra A of FV(m) is said to be projective subalgebra if there
exists an endomorphism h : FV(m) → FV(m) such that h(FV(m)) = A and h(x) =
x for every x ∈ A.

Proposition 9.5 [13, 14] Let V be a variety and FV(m) an m-generated free alge-
bra of the variety V, and let g1, . . . , gm be its free generators. Then an m-generated
subalgebra A of FV(m) with the generators a1, . . . , am ∈ A is projective iff there
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exist polynomials p1(x1, . . . , xm), . . . , pm(x1, . . . , xm) such that

pi (g1, . . . , gm) = ai

and

pi (p1(x1, . . . , xm), . . . , pm(x1, . . . , xm)) = pi (x1, . . . , xm), i = 1, . . . , m,

hold in V.

From the Proposition we obtain that in FV(m) holds

pi (p1(g1, . . . , gm), . . . , pm(g1, . . . , gm)) = pi (g1, . . . , gm) = ai ,

i = 1, . . . , m, i.e. pi (a1, . . . , am) = ai in A. This suggests to consider the free
object FV(m,�) over the variety V with respect to the set of identities � =
{p1(x1, . . . , xm) = x1, . . . , p1(x1, . . . , xm) = xm}.
Proposition 9.6 [13, 15] (Lemmas 2, 3) An MV -algebra A is finitely presented
iff A ∼= FMV(m)/[u), where [u) is a principal filter generated by some element
u ∈ FMV(m).

Theorem 9.7 Let A be an m-generated MV (C)-algebra. Then the following are
equivalent:

1. A is projective.
2. A is finitely presented.

Proof 1 ⇒ 2. Since A is m-generated projective MV (C)-algebra, A is a retract
of FMV(C)(m), i.e. there exist homomorphisms h : FMV(C)(m) → A and ε : A →
FMV(C)(m) such that hε = I dA, h(gi ) = ai (i = 1, . . . , m), and moreover, according
to Proposition 8.8, there exist m polynomials p1(x1, . . . , xm), . . . , pm(x1, . . . , xm)

such that

pi (g1, . . . , gm) = ε(ai ) = εh(gi )

and

pi (P1(x1, . . . , xm), . . . , pm(x1, . . . , xm)) = pi (x1, . . . , xm), i = 1, . . . , m,

where g1, . . . , gm are free generators of FMV(C)(m).
Observe that h(g1), . . . , h(gm) are generators of A whichwe denote by a1, . . . , am

respectively. Let e be the endomorphism εh : FMV(C)(m) → FMV(C)(m). This endo-
morphism has the properties: ee = e and e(x) = x for every x ∈ ε(A).

Let us consider the set of identities � = {pi (x1, . . . , xm) ↔ xi = 1 : i =
1, . . . , m} and let u = ∧n

i=1(pi (g1, . . . , gm) ↔ gi ) ∈ FMV(C)(m), where x ↔

http://dx.doi.org/10.1007/978-3-319-30406-9_8
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y is abbreviation of (x → y) ∧ (y → x). Then, according to Proposition 9.5,
FMV(C)(m)/[u) ∼= FMV(C)(m,�). Observe that the identities from � are true in A
on the elements ε(ai ) = e(gi ), i = 1, . . . , m. Indeed, since e is an endomorphism

e(u) =
m∧

i=1

e(gi ) ↔ pi (e(g1), . . . , e(gm)).

But

pi (e(g1), . . . , e(gm)) = pi (p1(g1, . . . , gm), . . . , pn(g1, . . . , gm))

= pi (g1, . . . , gm)

= εh(gi )

= e(gi ), i = 1, . . . , m.

Hence e(u) = 1 and u ∈ e−1(1), i.e. [u) ⊆ e−1(1). Therefore there exists a homo-
morphism f : FMV(C)(m)/[u) → ε(A) such that the diagram

commutes, i.e. f r = e, where r is a natural homomorphism sending x to x/[u). Now
consider the restrictions e′ and r ′ on ε(A) ⊆ FMV(C)(m) of e and r respectively. Then
f r ′ = e′. But e′ = I dε(A). Therefore f r ′ = I dε(A). From here we conclude that r ′
is an injection. Moreover r ′ is a surjection, since r(ε(ai )) = r(gi ). Indeed e(gi ) =
pi (g1, . . . , gn) and gi ↔ pi (g1, . . . , gn) = gi ↔ e(gi ), where e(gi ) = εh(gi ). So
gi ↔ pi (g1, . . . , gm) ≥ ∧m

i=1 gi ↔ pi (g1, . . . , gm), i.e. gi ↔ pi (g1, . . . , gm) ∈ [u).
Hence r ′ is an isomorphism between ε(A) and FMV(C)(m)/[u). Consequently A(∼=
ε(A)) is finitely presented.

2 ⇒ 1. Let A be an m-generated finitely presented MV (C)-algebra. Then there
exists a principal filter [u) of m-generated free MV (C)-algebra FMV(C)(m) such
that A ∼= FMV(C)(m)/[u) (Proposition 2.3). Since FMV(C)(m) is a subdirect product
of finitely generated chain MV (C)-algebras, the element u ∈ FMV(C)(m) we can
represent as a sequence (ui )i∈I . Let J = {i ∈ I : ui 	= 1}. Let πJ be a natural
homomorphism such that πJ ((ai )i∈I ) = (ai )i∈J . On the other hand the subalgebra of
FMV(C)(m) generated by [u), which is a perfect MV -algebra [u)∪¬[u), is isomorphic
to πJ (FMV(C)(m)) ∼= FMV(C)(m)/[u) ∼= A. Notice, that if (xi )i∈I ∈ [u), then xi = 1
for i ∈ I − J ; and if (xi )i∈I ∈ ¬[u), then xi = 0 for i ∈ I − J . So, the set
A′ = {(xi )i∈J : (xi )i∈I ∈ [u)∪¬[u)} forms an MV (C)-algebra which is isomorphic
to [u) ∪ ¬[u). Let ε : A′ → FMV(C)(m) be the embedding such that ε((xi )i∈J ) =
(xi )i∈I ∈ FMV(C)(m), where xi = 1 if (xi )i∈J belongs to the maximal filter and
i ∈ I − J ; and xi = 0 if (xi )i∈J belongs to the maximal ideal and i ∈ I − J . Thus

http://dx.doi.org/10.1007/978-3-319-30406-9_2
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we conclude that πJ ε = I dA′ . From here we deduce that the MV (C)-algebra A is
projective. ��

Observe, that for �-groups, Baker [16] and Beynon [17] gave the following char-
acterization: An �-group G is finitely generated projective iff it is finitely presented.
For unital �-groups the (⇒)-direction holds [18] (Proposition 2.5). Theorem 8.23
establishes the equivalence for variety of MV (C)-algebras.

The algebra C is isomorphic to Γ (Z ×lex Z , (1, 0)), with generator c (=(0, 1)).
In another notation the algebra C is denoted by Sω

1 (= Γ (Z ×lex Z , (1, 0))). Recall
that MV(C) is the variety generated by perfect algebras.

Recall that a 1-generated free MV (C)-algebra FMV(C)(1) is isomorphic to C2

with free generator (c,¬c) (Theorem 8.1).

Theorem 9.8 The two-element Boolean algebra and the MV (C)-algebra C are
projective.

Proof It is obvious that the two-element Boolean algebra is projective. Indeed, as we
already stressed, the Boolean skeleton B(C2) is a retract of C2 [1]. So, the 4-element
Boolean algebra is projective. Since the 2-element Boolean algebra is a retract of the
4-element Boolean algebra, we have that the 2-element Boolean algebra is projective.
As we know C2 is the one-generated free MV (C)-algebra. As we have shown C is a
projective algebra (Theorem 8.16). But here we will give another proof of this fact.
Let us consider the following partition E of the algebra C2 the classes of which are:
for any k ∈ ω

‖(1, (¬c)k)‖ = {(nc, (¬c)k) : n ∈ ω} ∪ {((¬c)n, (¬c)k) : n ∈ ω},
‖(0, kc)‖ = {(nc, kc) : n ∈ ω} ∪ {((¬c)n, kc) : n ∈ ω}.
Notice that this partition is the congruence relation corresponding to the prime

filter ‖(1, 1)‖ = {x ∈ C2 : (0, 1) ≤ x ≤ (1, 1)}, and ‖(0, 0)‖ is the prime ideal
{x ∈ C2 : (0, 0) ≤ x ≤ (1, 0)}.

Let us consider the following homomorphisms:π2 : C2 → C , whereπ2((x, y)) =
y, and ε : C → C2, where ε(kc) = (0, kc), ε((¬c)k) = (1, (¬c)k) for every k ∈ ω.
Then, it is clear that π2ε = I dC . From here we conclude that C is projective. ��

9.2 Projective Formulas

Let us denote by Pm a fixed set x1, . . . , xm of propositional variables and by Φm

the set of all propositional formulas in L P with variables in Pm . Notice that the m-
generated free MV (C)-algebra FMV(C)(m) is isomorphic to Φm/ ≡, where α ≡ β
iff � (α ↔ β) and α ↔ β = (α → β) ∧ (β → α). Subsequently we do not
distinguish between the formulas and their equivalence classes. Hence we simply
write Φm for FMV(C)(m), and Pm plays the role of the set of free generators. Since
Φm is a lattice, we have an order ≤ on Φm . It follows from the definition of → that
for all α,β ∈ Φm , α ≤ β iff � (α → β).

http://dx.doi.org/10.1007/978-3-319-30406-9_2
http://dx.doi.org/10.1007/978-3-319-30406-9_8
http://dx.doi.org/10.1007/978-3-319-30406-9_8
http://dx.doi.org/10.1007/978-3-319-30406-9_8
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Let α be a formula of the logic L P and consider a substitution σ : Pm → Φm and
extend it to all ofΦm by σ(α(x1, . . . , xm)) = α(σ(x1), . . . ,σ(xm)). We can consider
the substitution as an endomorphism σ : Φm → Φm of the free algebra Φm .

Definition 9.9 A formula α ∈ Φm is called projective if there exists a substitution
σ : Pm → Φm such that � σ(α) and α � β ↔ σ(β), for all β ∈ Φm .

Notice that the notion of projective formula was introduced for intuitionistic logic
in [10].

Observe that we can rewrite any identity p(x1, . . . , xm) = q(x1, . . . , xm) in the
variety MV(C) into an equivalent one p(x1, . . . , xm) ↔ q(x1, . . . , xm) = 1. So, for
MV(C) we can replace n identities by one

n∧

i=1

pi (x1, . . . , xm) ↔ qi (x1, . . . , xm) = 1.

Now we are ready to show a close connection between projective formulas and
projective subalgebras of the free algebra Φm .

Theorem 9.10 Let A be an m-generated projective subalgebra of the free algebra
Φm. Then there exists a projective formula α of m variables, such that A is isomorphic
to Φm/[α), where [α) is the principal filter generated by α ∈ Φm.

Proof Suppose A is an m-generated projective subalgebra of Φm with generators
a1, . . . , am . Then A is a retract of Φm , and there exist homomorphisms ε : A → Φm ,
h : Φm → A such that hε = I dA, where ε(x) = x for every x ∈ A ⊂ Φm . Observe
that εh is an endomorphism ofΦm . We will show now that α = ∧m

j=1(x j ↔ εh(x j ))

is a projective formula, namely, that � εh(α) and α � β ↔ εh(β), for all β ∈ Φm .
Indeed, εh(

∧m
j=1(p j ↔ εh(p j ))) = ∧m

j=1(εh(x j ) ↔ εhεh(x j )), and since
hε = I dA, we have εh(

∧m
j=1(x j ↔ εh(x j ))) = ∧m

j=1(εh(x j ) ↔ εh(x j )). Thus
� εh(α). Further, for any β ∈ Φm , εh(β(x1, . . . , xm)) = β(εh(x1), . . . , εh(xm)),
and since α � x j ↔ εh(x j ), j = 1, . . . , m, we have α � β ↔ εh(β).

Since A is an m-generated projective MV (C)-algebra, according to the Proposi-
tion 9.5, there exist m polynomials p1(x1, . . . , xm), . . . , pm(x1, . . . , xm) such that

pi (x1, . . . , xm) = ε(ai ) = εh(xi )

and

pi (p1(x1, . . . , xm), . . . , pm(x1, . . . , xm)) = pi (x1, . . . , xm), i = 1, . . . , m.

Observe, that h(xi ) = ai . Since the m-generated projective MV -algebra A is
finitely presented by the equation

∧m
j=1(x j ↔ εh(x j )) = 1, we have that A ∼=

Φm/[α). ��
Theorem 9.11 If α is a projective formula of m variables, then Φm/[α) is a projec-
tive algebra which is isomorphic to a projective subalgebra of Φm.
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Proof Suppose that α is a projective formula of m variables. Then there exists a
substitution σ : Pm → Φm such that � σ(α) and α � β ↔ σ(β), for all β ∈ Φm .
Since σ is an endomorphism ofΦm , σ(Φm) is a subalgebra ofΦm . Nowwe will show
that σ(Φm) is a retract of Φm , i.e. σ2 = σ. Indeed, since α is a projective formula,
σ(α) = 1Φm , and α ≤ β ↔ σ(β) for all β ∈ Φm . But then σ(α) ≤ σ(β) ↔ σ2(β),
σ(β) ↔ σ2(β) = 1Φm , σ(β) = σ2(β), and σ2 = σ. Hence σ(Φm) is a retract of Φm .
So, σ(Φm) is isomorphic to Φm/[α). ��

Thuswe have the following correspondence between projective formulas and pro-
jective subalgebras ofΦm . To eachm-generated projective subalgebra ofm-generated
free MV (C)-algebra corresponds an m-variable projective formula and to two non-
isomorphic m-generated projective subalgebra of m-generated free MV (C)-algebra
correspond non-equivalent m-variable projective formulas. And two non-equivalent
m-variable projective formulas correspond two differentm-generated projective sub-
algebra of m-generated free MV (C)-algebra (but they can be isomorphic).

Therefore we arrive at the following

Corollary 9.12 There exists a one-to-one correspondence between projective for-
mulas with m variables and m-generated projective subalgebras of Φm.

9.3 Unification Problem

Let E be an equational theory. The E-unification problem is: given two terms s, t
(built from function symbols and variables), to find a unifier for them, that is, a
uniform replacement of the variables occurring in s and t by other terms that makes
s and t equal by modulo E . For detail information on unification problem we refer
to [10, 11, 19].

Let us be more precise. Let F be a set of functional symbols and let V be a set
of variables. Let TF (V ) be the term algebra built from F and V , and TFm (V ) be the
term algebra ofm-variable terms. Let E be a set of identities of type p(x1, . . . , xm) =
q(x1, . . . , xm), where p, q ∈ TFm (V ).

Let V be the variety of algebras over F axiomatized by the identities from E .
A unification problem modulo E is a finite set of pairs

E = {(s j , t j ) : s j , t j ∈ TFm (V ), j ∈ J }

for some finite set J . A solution to (or a unifier for) E is a substitution (or an
endomorphism of the term algebra TFm (V )) σ (which is extension of the map
s : Vm → TFm (V ), where Vm (= {x1, . . . , xm}) is the set of m variables) such
that the identity σ(s j ) = σ(t j ) holds in every algebra of the variety V. The problem
E is solvable (or unifiable) if it admits at least one unifier.
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Let (X,�) be a quasi-ordered set (i.e. � is a reflexive and transitive relation). A
μ-set [11] for (X,�) is a subset M ⊆ X such that: (1) every x ∈ X is less or equal
to some m ∈ M ; (2) all elements of M are mutually �-incomparable. There might
be no μ-set for (X,�) (in this case we say that (X,�) has type 0) or there might
be many of them, due to the lack of antisymmetry. However all μ-sets for (X,�), if
any, must have the same cardinality. We say that (X,�) has type 1,ω,∞ iff it has a
μ-set of cardinality 1, of finite (greater than 1) cardinality or of infinite cardinality,
respectively.

Substitutions are compared by instantiation in the following way: we say that
σ : TFm (V ) → TFm (V ) is more general than τ : TFm (V ) → TFm (V ) (written as
τ � σ) iff there is a substitution η : TFm (V ) → TFm (V ) such that for all x ∈ Vm we
have E � η(σ(x)) = τ (x). The relation � is quasi-order.

Let UE (E) be the set of unifiers for the unification problem E ; then (UE (E),�)

is a quasi-ordered set.
We say that an equational theory E has:

1. Unification type 1 iff for every solvable unification problem E , UE (E) has type 1;
2. Unification typeω iff for every solvable unification problem E ,UE (E) has typeω;
3. Unification type ∞ iff for every solvable unification problem E , UE (E) has type

1 or ω or ∞—and there is a solvable unification problem E such that UE (E) has
type ∞;

4. Unification type nullary, if none of the preceding cases applies.

Following Ghilardi [10], who has introduced the relevant definitions for E-
unification from an algebraic point of view, by an algebraic unification problem
we mean a finitely presented algebra A of V. In this context an E-unification prob-
lem is simply a finitely presented algebra A, and a solution for it (also called a unifier
for A) is a pair given by a projective algebra P and a homomorphism u : A → P .
The set of unifiers for A is denoted by UE (A). A is said to be unifiable or solvable
iff UE (A) is not empty. Given another algebraic unifier w : A → Q, we say that u is
more general than w, written w � u, if there is a homomorphism g : P → Q such
that w = gu.

The set of all algebraic unifiers UE (A) of a finitely presented algebra A forms a
quasi-ordered set with the quasi-ordering �.

The algebraic unification type of an algebraically unifiable finitely presented alge-
bra A in the variety V is now defined exactly as in the symbolic case, using the quasi-
ordering set (UE (A),�). If m-generated finitely presented algebra of an equational
class V is projective, then I dA will be most general unifier for A.

Theorem 9.13 The unification type of the equational class MV(C) is 1, i.e. unitary.

Proof The proof of the theorem immediately follows from Theorem 8.23. ��

http://dx.doi.org/10.1007/978-3-319-30406-9_8
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9.4 Structural Completeness

A logic L is structurally complete if every rule that is admissible (preserves the set
of theorems) should also be derivable. In a logic, a rule of inference is admissible in
a formal system if the set of theorems of the system does not change when that rule
is added to the existing rules of the system.

A Tarski-style consequence relation is a relation � between sets of formulas, and
formulas, such that

• α � α,
• if Γ � α, then Γ,� � α.

A consequence relation such that ifΓ � α, then σ(Γ ) � σ(α) for all substitutions
σ is called structural.

More precisely. If L is a logic, an L-unifier of a formula ϕ is a substitution σ such
that �L σ(ϕ). A formula which has an L-unifier is called L-unifiable. An inference
rule is an expression of the form Γ/ϕ, where ϕ is a formula, and Γ is a finite set
of formulas. An inference rule Γ/ϕ is derivable in a logic L , if Γ �L ϕ. The rule
Γ �L ϕ is L-admissible, if every common L-unifier of Γ is also an L-unifier of ϕ.

Wecan identify propositional formulaswith terms in the languageof MV -algebras
in a natural way. A valuation in an MV -algebra A is a homomorphism v from the
term algebra to A. If ϕ is a k-variable formula, (a1, . . . , ak) ∈ Ak , and v is the
assignment such that v(pi ) = ai , we also write ϕ(a1, . . . , ak) = v(ϕ). A valuation
v satisfies a formula ϕ if v(ϕ) = 1, and it satisfies a rule Γ/ϕ if v(ϕ) 	= 1 for some
α ∈ Γ , or v(ϕ) = 1. A rule Γ/ϕ is valid in an MV -algebra A, written as A |= Γ/ϕ,
if the rule is satisfied by every valuation in A. In other words, A |= Γ/ϕ if and only
if the open first-order formula

∧

α∈Γ

(α = 1) ⇒ ϕ = 1

is valid in A. Conversely, validity of open formulas (or equivalently, universal sen-
tences) in A can be reduced to validity of rules. Any open formulaΦ can be expressed
in the conjunctive normal form as Φ = ∧

i<k Φi , where each Φi is a clause: a dis-
junction of atomic formulas (i.e., equations) and their negations. Then A |= Φ iff
A |= Φi for each i < k, and a clause

∨

i<n

(ϕi = ψi ) ∨
∨

i<m

(ϕ′
i 	= ψ′

i )

is valid in A iff validates the rule

{ϕ′
i ↔ ψ′

i | i < m}/{ϕi ↔ ψi | i < n}.
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Łukasiewicz logic Ł is algebraizable, and the variety of MV -algebras is its equiv-
alent algebraic semantics, using the translation between propositional formulas and
identities described above. We thus have (cf. [20]):

Claim 9.14 [21] A rule Γ/ϕ is valid in all MV -algebras if and only if it is derivable
in Ł.

As another corollary to algebraizability of Ł, free MV -algebras can be described
asLindenbaumalgebras ofŁ: theLindenbaumalgebra consists of equivalence classes
of formulas using elements of generators X as propositional variables modulo the
equivalence relationϕ ∼ ψ iff�Ł ϕ ↔ ψ, with operations defined in the natural way.
Note that valuations in this Lindenbaum algebra correspond to substitutions whose
range consists of formulas using variables from X , and a formula ϕ is satisfied under
a valuation given by such a substitution σ if and only if �Ł σ(ϕ). We obtain the
following characterization of admissibility:

Claim 9.15 [21] For any rule Γ/ϕ, the following are equivalent:

(i) Γ/ϕ is admissible.
(ii) Γ/ϕ is valid in all free MV -algebras.

(iii) Γ/ϕ is valid in all free MV -algebras over finite sets of generators.

Let us note that we will have the same assertions if we change the Łukasiewicz
logic Ł with logic L P . Then we can reformulate the Claim 9.15 in the following way:

The logic L P is structurally complete iff the variety MV(C) coincides with the
quasi variety generated by all free MV (C)-algebras over finite sets of generators.

Let us formulate the following property for a logic L:

(SC) α � β ∈ T ⇔ (∀ϕ : Form(L) → Form(L))[ϕ(α) ∈ T ⇒ ϕ(β) ∈ T ],
where T is the set of all theorems of the logic L , ϕ is an endomorphism of the
algebra (F;→,¬, 0, 1) which is a free algebra in the class of algebras of the type
(2,1,0,0). Let us note that this condition is equivalent to the notion of a structural
completeness [22] in the sense of Pogorzelski, i.e. any structural admissible rule of
a logic is derivable.

(SCL) αn → β ∈ T, for some positive integer n, ⇔ (∀ϕ : F → F)[ϕ(α) ∈
T ⇒ ϕ(β) ∈ T ],

where T is the set of all theorems of the logic L ,ϕ is an endomorphism of the algebra
(F;→,¬, 0, 1) which is a free algebra in the class of algebras of the type (2,1,0,0).
Let us note that, since according to deduction theorem in Łukasiewicz logic: α � β
if and only if � αn → β for some positive integer n, the property is equivalent to
the notion of a structural completeness in the sense of Pogorzelski, i.e. any structural
admissible rule of a logic is derivable.
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In algebraic terms the property has the following formulation:

• αn → β = 1, for some positive integer n ⇔ (∀ϕ : Form(L) → Form(L))[ϕ
(α) = 1 ⇒ ϕ(β) = 1],

where ϕ is an endomorphism of the ω-generated free algebra (F;→,¬, 0, 1) in the
variety of MV -algebras.

Recall that L P is a logic corresponding to variety MV(C), i.e. L P is the extension
of Łukasiewicz logic by the Lukasievicz formula¬((¬α → α) → ¬(¬α → α)) ↔
((α → ¬α) → ¬(α → ¬α)), the theorems of which coincides with formulas that
is valid in all MV (C)-algebras.

Theorem 9.16 The logic L P is structurally complete.

Proof Let us suppose thatα → β ism variable term. It is evident that ifαn → β = 1,
then (∀ϕ : F → F)[ϕ(α) = 1 ⇒ ϕ(β) = 1].

Now suppose that αn → β 	= 1 for all positive integers n and ϕ : F → F
is an endomorphism such that ϕ(α) = 1. Therefore, there exists m generators
of MV (C)-algebra C where α > β on the generators a1, . . . , am ∈ C , i.e.
α(a1, . . . , am) > β(a1, . . . , am) and α(a1, . . . , am) belongs to a prime filter, say J ,
and, sinceαn(a1, . . . , am) > β(a1, . . . , am) for all positive integers n, β(a1, . . . , am)

does not belong to J . Observe that J is either the minimal prime filter {1} or
maximal filter {(¬c)k : k ∈ ω}. Then, C/J is a chain MV (C)-algebra such that
α(a1/J, . . . , am/J ) = 1 and β(a1/J, . . . , am/J ) 	= 1. According to Theorem 3.7,
C/J is projective, which is either two-element Boolean algebra or MV (C)-algebra
C . Hence, there exist homomorphisms h : F(m) → C/J and ε : C/J → F(m)

such that hε = I dC/J . Then εh : F(m) → F(m) is an endomorphism such that
εh(α) = 1 and εh(β) 	= 1.

Now we give another proof of this theorem. We show that the variety MV(C)

coincides with the quasi variety generated by all free MV (C)-algebras over finite
sets of generators. Indeed, since C is projective, C is a subalgebra of a free MV (C)-
algebras over finite sets of generators. But quasi variety QV(C) generated by C
coincides with the variety V(C). ��
Corollary 9.17 Among the extensions ofŁukasiewicz logics only classical logic and
the logic L P are structurally complete.

Proof Let L0 be a logic distinct from classical logic and the logic L P . The rule
(3(p ∧ ¬p))2/p is admissible. Indeed, there is no substitution σ such that �L0

(3(σ(p) ∧ ¬σ(p)))2. Only in the case when σ(p) has the value t , such that t ≤ 1/2
and 2t ≥ 1/2, the valuation of (3(σ(p) ∧ ¬σ(p)))2 has the value 1. But there is
no formula which is equivalent to constant t , since we have no constant t . So, the
rule (3(p ∧ ¬p))2/p is admissible. But (3(p ∧ ¬p))2 → p is not a theorem of L0,
because it is not logically true. At the same time the rule is derivable in classical
logic and the logic L P . ��

http://dx.doi.org/10.1007/978-3-319-30406-9_3
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Let us notice that the result of Corollary 9.17 was obtained by J. Gispert in [23].
Let us note that structural completeness for the logic of perfect algebras L P was
announced in [24–26].

We also mention related works on structural completeness and admissibility in
MV -algebras/Łukasiewicz logic [21, 27–29].
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Chapter 10
The Logic of Quasi True

10.1 Introduction

We introduce a new logic C L , which is an extension of the infinitely valued
Łukasiewicz logic Ł, the language of which enriched by 0-ary connective c that
is interpreted as quasi false, the algebraic counterpart of which are algebras from a
quasi variety of the variety generated by the perfect MV -algebras. For this aim we
introduce a new class CL of algebras which is a quasi variety and the algebras from
this quasi variety we name C L-algebras. Adding a new inference rule to the logic
C L , thereby increased a deducibility power, we introduce the logic C L+ and defin-
ing the notion of quasi true (q-true) formulas it is proved the completeness theorem
for this logic.

10.2 C L-Algebras

A C L-algebra A = (A, 0, c,¬,⊕) is an abelian monoid (A, 0,⊕) equipped with a
constant element c and a unary operation ¬ such that ¬¬x = x , x ⊕ ¬0 = ¬0, and
y ⊕ ¬(y ⊕ ¬x) = x ⊕ ¬(x ⊕ y). We set 1 = ¬0 and x � y = ¬(¬x ⊕ ¬y) [1].

The above assures that A = (A, 0,¬,⊕) is an MV -algebra. Additionally,

(i) 2(x2) = (2x)2,
(ii) 2c � ¬c = c,
(iii) c � (¬x ∨ x) ∧ (x ∧ ¬x) = 0,
(iv) c → ¬c = 1,
(v) x ∨ ¬c = 1 ⇒ x = 1.

Hereinafter we denote C L-algebra as (A, c), where A is an MV -algebra.

Comment. The identity (1) says that a C L-algebra is a member of the subvariety
V (C) (= the variety generated by all perfect MV -algebras) of the variety of all
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MV -algebras. The second (2) says that c �= c ∨ ¬c and c �= 1. (3) Says that c is
the atom in a totally ordered C L-algebra. (4) Says that c ≤ ¬c. (5) Says that c �= 0
and exclude the MV -algebra with constant (2 × C, (0, c)) (where 2 is two-element
Boolean algebra), since the quasi identity x ∨ ¬c = 1 ⇒ x = 1 does not hold when
x = (0, 1); indeed (0, 1) ∨ ¬(0, c) = (1, 1) and (0, 1) �= (1, 1). Denote the class of
all C L-algebras by CL. We assume that CL contains one-element C L-algebra. It is
obvious the following

Theorem 10.1 The class CL is a quasivariety.

Lemma 10.2 Let (A, c) be a totally ordered C L-algebra. There is no element x ∈ A
such that nc < x < (n + 1)c for some n ∈ Z+.

Proof Let us suppose that there exists an element x ∈ A such that nc < x < (n+1)c
for some n ∈ Z+. Then 0 < (¬c)n � x < c. Notice, that 0 < (¬c)n � x since
if 0 = (¬c)n � x , then nc ≥ x which contradicts to the initial condition nc < x .
But this contradicts to the condition that c is the atom in a totally ordered
C L-algebra. �
Corollary 10.3 The C L-algebra (C, c) is a subalgebra of every C L-algebra (A, c).

Let A be an MV -algebra and P ∈ F(A) where F(A) is the set of all prime filters of
A. We say that P is a Chang’s filter iff A/P is isomorphic to C , where C is Chang’s
algebra. We say that F is a C L-filter if it is an intersection of Chang’s filters. From
here we conclude that {1} is C L-filter. We can characterize Chang’s filters as follows

Lemma 10.4 Let (A, c) be an C L-algebra and P ∈ F(A), then the following
conditions are equivalent:

(1) P is a Chang’s filter,
(2) P does not contain ¬c and P is maximal filter with this condition (¬c /∈ P).

Proof (1) ⇒ (2). Let P ∈ F(A) be a Chang’s filter of aC L-algebra A. Then A/P is
isomorphic to C . Let us suppose that P ′ is a C L-filter such that P ⊂ P ′ and P �= P ′.
Since P ′ is a Chang’s filter, we have that P ′ = ⋂

i∈I Fi where Fi is a Chang’s filter
for every i ∈ I . Then A/P is a homomorphic image of A/Fi for some i ∈ I . It
means that A/P is not isomorphic to C which contradicts to the assumption. Any
Chang’s filter P does not contain ¬c and (¬c)n as well. Indeed, if (¬c)n ∈ P , then
(¬c)n ∼=P (¬c)m for any n, m ∈ Z+ that is impossible. (2) ⇒ (1). Let us suppose
that P does not contain ¬c and P is maximal filter with this condition (¬c /∈ P).
Then (¬c)n �P (¬c)m for any n, m ∈ Z+ such that n > m (or m > n). Indeed, if
(¬c)n ∼=P (¬c)m , then (¬c)n → (¬c)m = nc ⊕ (¬c)m = (¬c)n−m ∈ P . But it is
impossible. Taking into account that A/P is totally ordered, according to axioms (3)
and (5) we have that A/P ∼= (C, c). �
Lemma 10.5 Let (A, c) be C L-algebra. If a ∈ A and a � (¬c)n for any n ∈ Z+,
then there exists Chang’s filter P of A such that a /∈ P.
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Proof Let us consider a C L-filter of A which is maximal with respect to the property
that a /∈ F .We show that F is aChang’s filter. Let x, y ∈ A and assume that x∨y ∈ F
and x, y /∈ F . Thus theC L-filter generated by F and the element x would contain the
element a, i.e. a ≥ f x p for some f ∈ F and p ∈ Z+. Similarly, the filter generated
by F and y would also contain a, i.e., a ≥ f ′yq for some f ′ ∈ F and q ∈ Z+. Let
n = max(p, q). Then clearly f f ′ ∈ F and from the above we have a ≥ f f ′ � xn

and a ≥ f f ′ � yn . From here we get a ≥ ( f f ′ �xn)∨( f f ′ � yn) = f f ′ �(xn ∨ yn).
Thus a ≥ f f ′ which implies the conradiction that a ∈ F . Since F is a maximal
C L-filter, we have that F is Chang’s filter. �
From this lemma we immediately have

Corollary 10.6 The intersection of all Chang’s filters of (A, c) is equal to {1}.
Let (A, c) be a C L-algebra which is a product of copies of the algebra (C, c) and
B(A) the Boolean skeleton of the MV -algebra A. Let M be a filter of B(A). F is a
C L-filter of (A, c) if it is an MV -filter of A and F = [M) where M is a Boolean
filter of B(A), i.e. the filter F is generated by some Boolean filter M of B(A) and
denote this filter by F(M). From this definition we have that {1} is a C L-filter. So,
we conclude that a maximalC L-filter F of (A, c) is generated by amaximal Boolean
filter of F ∩ B(A). Let (A1, c) be a C L-subalgebra of the algebra (A, c). Then the
intersection F ∩ A1 of a prime C L-filter of (A, c) with the subalgebra A1 will be
also a prime (and maximal as well) C L-filter of the algebra (A1, c). So, the factor
algebra (A, c)/F by a Chang’s filter will be subdirectly irredusible which will be
totally ordered C L-algebra that is isomorphic to (C, c). Therefore

Theorem 10.7 Any C L-algebra (A, c) is represented as a subdirect product of
(A, c)/Fi , i ∈ I , where Fi is a Chang’s filter of (A, c) and (A, c)/Fi

∼= (C, c).

As in the variety of �-groups we can define the polar of a subset M ⊂ A of a
C L-algebra (A, c) as the set M⊥ = {a ∈ A : ∀x ∈ M x ∧ a = 0}.
Theorem 10.8 The polar of {c}⊥ = {0} for any C L-algebra (A, c).

Proof Assume that for a non-zero element x ∈ A, we have that c ∧ x = 0.
Then ¬c ∨ ¬x = 1. By Axiom 6 we have that ¬x = 1. That is x = 0, a
contradiction. �
We express next property by the following

Theorem 10.9 Let us suppose that A is a MV (C)-algebra and (A, c) is a C L-
extension of A. Such kind extension is unique.

Proof Let us assume that (A, z) is a C L-algebra too. Then by Axiom 3 we get for
x = z, (c �¬z)∧ z = 0. Checking the equality over a C L-chain, since z is non-zero
we have: (c � ¬z) = 0. This implies that c ≤ z. Symmetrically, we also have z ≤ c.
Hence c = z. �
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Theorem 10.10 The quasi variety CL is generated by the algebra (C, c). Moreover,
CL = SP(C, c), where S is the operator of taking a subalgebra and P is the operator
of taking a direct product.

Proof It is clear that CL is an axiomatized class. So, CL is SP(CL). But every
algebra from CL is a subdirect product of algebras that are isomorphic to (C, c).
Hence, CL = SP(C, c). �

10.3 Logics C L and C L+

In this section we define logic C L , the algebraic counterparts of which are C L-
algebras. The language of the logic C L consists of the propositional variables
p1, p2, p3, . . ., propositional constant c, logical connectives →,¬. The formulas
are defined as usual. The following formulas are axioms:

L1. α → (β → α),
L2. (α → β) → ((β → γ ) → (α → γ )),
L3. (¬α → ¬β) → (β → α),
L4. ((α → β) → β) → ((β → α) → α),
Lp. 2(α2) ↔ (2α)2,
CL. c → ¬c,
CL1. 2c � ¬c ↔ c,
CL2. (c → (¬α ∧ α)) ∨ (α ∨ ¬α).

Inference rules: MP. α, α → β ⇒ β, R1. α ∨ ¬c ⇒ α.
We say that α is q-true (or q-tautology) iff ¬α → α is a 1-true (or 1-tautology).

Semantically, we say that α is q-true if e(α) ∈ ¬RadC for every evaluation e :
V ar ∪ {c} → (C, c). It is hold the following

Theorem 10.11 �C L 2(¬c)n for any n ∈ Z+.

Proof From the axiom CL we have c → ¬c is a theorem of C L . But (c → ¬c) ≡
(¬c ⊕¬c). According to the Axiom Lp we have �C L 2((¬c)2))2) ↔ (2(¬c)2)2. So,
�C L 2(¬c)4 and so on by induction. �
Theorem 10.12 (Completeness theorem) α is 1-true iff �C L α.

Proof Notice, that any axiom of the logic C L is 1-tautology and the inference rules
preserves 1-tautology. So, if �C L α, then α is a 1-tautology. Now suppose that α is
not theorem of C L . Then [α] �= 1 in the Lindenbaum algebra L of the logic C L .
As we know L is a subdirect product of the copies of (C, c). Then in one of the
factors (C, c) for some projection πi : L → (C, c) we have πi ([α]) �= 1. So, a is
not 1-tautology. �
Theorem 10.13 If α is q-true, then �C L ¬α → α.
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Proof Let us suppose thatα isq-true. Itmeans that e(α) ∈ ¬RadC for any evaluation
e : V ∪ {c} → (C, c). Therefore 2e(α) = ¬e(α) → e(α) = 1 for any evaluation
e. It means that ¬α → α is 1-tautology. So, according to completeness theorem,
�C L ¬α → α. �
Corollary 10.14 If α is q-true, then �C L (¬α ∨ α) → α.

Proof Let us suppose that α is q-true. According to the Theorem 10.10 ¬e(α) ≤
e(α). Therefore, e(¬α)∨e(α) = e(α). So, (¬α∨α) → α is 1-tautology and, hence,
according to the Theorem 10.9, �C L (¬α ∨ α) → α. �

Now let us add to the inference rule of the logic C L the following rule: R2.
(α ∨ ¬α) → α ⇒ α and denote this new logic by C L+. As we see all q-true
formulas are deducible in C L+. So, we have

Theorem 10.15 (Completeness) If α is q-true, then �C L+ α.

Proof If α is q-true, then �C L (¬α ∨ α) → α (Corollary 10.6). Then by R4
�C L+ α. �
Theorem 10.16 (Soundness) If �C L+ α, then α is q-true.

Proof It is routine to check that any axiom of C L+ is 1-tautology and, hence, q-true,
and if any antecedent of any inference rule of C L+ is q-true, then the consequent is
q-true. So, �C L+ α implies α is q-true. �

Now we analyse what kind of balance exists between classical logic Cl and the
logic C L+. For this aim for every formula α of the logic C L+ define its translation
tr(α) into classical logic Cl as follows: (1) if α is a propositional variable p, then
tr(α) = α; (2) tr(c) = p ∧ ¬p; (3) tr(α → β) = tr(α) → tr(β); (4) tr(¬α) =
¬tr(α). It holds

Theorem 10.17 �C L+ α iff �Cl tr(α).

Proof It is obvious that if �C L+ α, then α is q-true. Therefore tr(α) will be classical
tautology and, hence, �Cl tr(α). If α is not a theorem of C L+, then α is not q-true.
Therefore tr(α) will not be classical tautology, and, hence, will not be a theorem of
classical logic Cl. �

It is easy to prove the following

Theorem 10.18 If �Cl α, then �C L+ α.
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Chapter 11
Perfect Pavelka Logic

11.1 Introduction

A conventional approach in mathematical propositional logic is, after defining a for-
mal language i.e. atomic formulas, logical connectives and the set of well-formed for-
mulas, to interpret semantically these formulas in a suitable algebraic structures. This
applies both to classical two valued logic and more general logics, e.g. Łukasiewicz
logic as we seen in previous chapters. In classical logic these algebraic structures
are Boolean algebras, in Hájek’s Basic Fuzzy Logic [1], for example, the suitable
structures are BL-algebras and in Łukasiewicz logic MV -algebras. Tautologies of a
logic are those formulas that obtain the top value 1 in all interpretations in all suitable
algebraic structures; for this reason tautologies are sometimes called 1-tautologies
to distinguish them from possible weaker notions of tautologies in fuzzy logics (a
detailed treatment of such alternatives can be found in [2]). For example, tautologies
in Basic Fuzzy Logic are exactly the formulas that obtain value 1 in all interpreta-
tions in all BL-algebras. The next step is to fix the axiom schemata and the rules of
inference: awell-formed formula is a theorem if it is either an axiomor obtained recur-
sively from axioms by using rules of inference finitely many times. Completeness
of the logic means that tautologies and theorems coincide; classical sentential logic,
Basic Fuzzy sentential logic and Łukasiewicz sentential logic are complete logics.

Many-valued logic can be understood also as a logic of partially provable or
partially true formulas. This is what Jan Pavelka inteded in his three seminal papers
Fuzzy Sentential Logic I, II, III [3–5]. Indeed, Pavelka intended to provide solid
grounds to Fuzzy Logic, understood as a particular many-valued logic. This meant
a generalization of classical logic in such a way that axioms, theories, theorems, and
tautologies need not be only fully true or fully false, but may be also true to a degree
and, therefore, giving rise to such concepts as fuzzy theories, fuzzy set of axioms,
many-valued rules of inference, provability degree, truth degree, fuzzy consequence
operation, etc. Pavelka was inspired by paper [6], where Goguen argued that the
algebraic structure of Fuzzy Logic should be a (complete) residuated lattice in the
same sense as Boolean algebra is the algebraic counterpart of Boolean Logic. Pavelka
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92 11 Perfect Pavelka Logic

defined his generalized concepts in a complete residuated lattice L and set a general
research problem (Q):

Do there exist a fuzzy set of logical axioms and a set of fuzzy rules of inference
such that for any fuzzy theory T and any formula α the degree to which α follows
from T equals exactly the degree to which α is provable from T ?

The answer depends on the set L of truth values; if it is affirmative then the
corresponding logic enjoys Pavelka-style completeness. Pavelka himself limited to
address the issue in the case L is a finite chain or the unit real interval [0, 1] and
proved (essentially) that this question has an affirmative answer if, and only if L is
equipped with Łukasiewicz operations, i.e. an MV -algebra. In this sense Pavelka’s
logic—assuming L is the standard MV -algebra—is an extension of Łukasiewicz
logic.

Our intention is to examine the issue when L is a perfectMV -algebra, in particular
Chang’s algebra. Since perfect MV -algebras are not complete we can have only
partial generalizations and results. In the following brief review of the main concepts
of Pavelka’s general logic framework we follow mainly [7].

11.2 The Language F of Perfect Pavelka Logic

We start by assuming that the set L of truth values is the Chang algebra C and con-
sider a zero order language with an infinitely countable set of propositional variables
p,q,r, . . ., and two truth constants 0, t. Propositional variables and the truth con-
stant constitute the set F0 of atomic formulas. The elementary logical connectives
are implication ‘imp’ and bold conjunction ‘and ’. The setF of all well formed for-
mulas (wffs) is obtained in the natural way: atomic formulas are wffs and if α, β are
wffs, then ‘α imp β’, ‘αandβ’ are wffs. Other logical connectives are introduced
as abbreviations; negation ‘not’ is defined by setting notα := α imp 0, where
0 is the truth constant representing (absolute) falsity, and bold disjunction ‘or’. is
defined by setting

α or β := (notα) imp β.

Another connective or called weak disjunction is an abbreviation αorβ := (αimp
β) imp β, and as usual, an equivalence is an abbreviation αequivβ := (α imp
β)and (β imp α). We will also introduce the following abbreviations; for reasons
that will reveal in the next chapter, also they will be called truth constants.

1 := not 0 , f := not t,
t2 := t and t , f2 := f or f,
...

tn := tn−1 and t , fn := fn−1 or f for all n > 2.
The truth constant 1 corresponds to (absolute) truth, while the truth constant t has an
intuitive meaning quasi true. Similarly the truth constant f has an intuitive meaning
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quasi false. Truth constants will be denoted by a, b, c. Usually logical connectives are
denoted by the same symbols than their algebraic counterparts. For example→ stands
both for logical connective ‘implication’ and for algebraic residuation. This may
cause something confusion and therefore our notation is close to the intuitivemeaning
of the logical connectives. However, to distinguish them fromnatural languagewords
we write them by tt-fonts.

11.3 Semantics: Valuations

Semantics in Perfect Pavelka’sLogic is introduced in the followingway: anymapping
v : F0 → C such that v(0) = 0, v(t) = t ∈ C can be extended recursively into the
whole F by setting

v(α imp β) = v(α) → v(β) and v(αandβ) = v(α) � v(β).

Such mappings v are called valuations. It is easy to see that for all valuations hold
v(α or β) = v(α) ⊕ v(β), v(notα) = v(α)∗, v(1) = 1, and for all natural n,
v(tn) = tn, v(fn) = f n. Obviously any valuation v is a bijective mapping between
the set of all truth constants a and elements a ∈ C; v(a) = a.

In Pavelka’s general setting, the truth degree of a wffα is the infimum of all values
v(α), that is

Csem(α) =
∧

{v(α) | v is a valuation},

whenever such an infimum exists in the truth value set L. However, in C this is not
always the case as C is not complete as a lattice. Anyhow, if Csem(α) exists and is
equal to a, we denote |=a α. In classical logic, (the axioms of) a theory is composed of
a set of wffs assumed to be true. In order to define a fuzzy theory, we take T ⊆ F and
associate to each α ∈ T a value T (α) determining its degree of truth. We consider
valuations v such that T (α) ≤ v(α) for all wffs α ∈ T . If such a valuation exists,
then T is called satisfiable and v satisfies T . We say that the corresponding formulas
α are the special axioms of the fuzzy theory T (called non-logical axioms of T in
[4, 7]). Then we consider values

Csem(T )(α) =
∧

{v(α) | v is a valuation, v satisfies T },

assuming such an infimum exists inC; if it exists and equals to a, we denote T |=a α.
Due to the linearity and discrete structure ofC weobserve that if the valueCsem(T )(α)
exists, then

Csem(T )(α) = min{v(α) | v is a valuation, v satisfies T } ∈ C.

Thus, if Csem(T )(α) = a, then there is a valuation v satisfying T with v(α) = a.
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11.4 Syntax: Axioms and Rules of Inference

The logical axioms in Perfect Pavelka’s Logic, denoted by A, are composed of the
following twelve forms of formulas (axiomatic schemata):

(Ax1) α imp α,
(Ax2) (α imp β) imp [(β imp γ) imp (α imp γ)],
(Ax3) (α1 imp β1) imp {(β2 imp α2) imp [(β1 imp β2) imp (α1 imp α2)]},
(Ax4) α imp 1,
(Ax5) 0 imp ,

(Ax6) (αand notα) imp β,
(Ax7) a imp b,
(Ax8) α imp (β imp α),
(Ax9) (1 imp α) imp α,
(Ax10) [(α imp β) imp β] imp [(β imp α) imp α],
(Ax11) (notα imp notβ) imp (β imp α),
(Ax12) [(α or α)and (α or α)]equiv [(αandα) or (αandα)].
It is easy to very that all the axiomatic schemata δ in (Ax1)–(Ax6) and (Ax8)–

(Ax12) are 1-tautologies, that is Csem(δ) = 1 and, for axioms (Ax7), Csem(aimpb) =
a → b ∈ C. A many-valued rule of inference is a schema

α1, . . . ,αn , a1, . . . , an

rsyn(α1, . . . ,αn) rsem(a1, . . . , an)

where the wffs α1, . . . ,αn are premises and the wff rsyn(α1, . . . ,αn) is the conclu-
sion. The values a1, . . . , an, rsem(a1, . . . , an) ∈ C are the corresponding degrees; for
this reason, Pavelka’s approach is sometimes called a logic with evaluated syntax.
In two valued logic the degrees would all be equal to 1 corresponding to true pre-
misses. The mappings rsem : Cn � C are assumed to satisfy isotonicity condition:
if ak ≤ bk , then

rsem(a1, . . . , ak, . . . , an) ≤ rsem(a1, . . . , bk, . . . , an) (11.1)

for each index 1 ≤ k ≤ n. Moreover, many-valued rules are required to be sound in
the sense that

rsem(v(α1), . . . , v(αn)) ≤ v(rsyn(α1, . . . ,αn))

holds for all valuations v. The following are examples of many-valued rules of
inference in any residuated lattice valued Pavelka style logic.

Generalized Modus Ponens (GMP):

α,α imp β , a, b
β a � b
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a-Consistency testing rules (a-CTR):

a , b
0 c

where a is a truth constant and c = 0 if b ≤ a and c = 1 otherwise.
a-Lifting rules (a-LR):

α , b
a imp α a → b

where a is a truth constant.
Rule of Bold Conjunction (RBC):

α,β , a, b
αandβ a � b

It is easy to see that also a Rule of Bold Disjunction (RBD, not included in the
original list of Pavelka)

α,β , a, b
α or β a ⊕ b

is a rule of inference in Pavelka’s sense in C-valued logic. Indeed, isotonicity of rsem

follows by the isotonicity of the MV -operation ⊕ and soundness can be verified by
taking a valuation v and observing that

rsem(v(α), v(β)) = v(α) ⊕ v(β)
= v(α or β)
= v(rsyn(α,β)).

These rules constitute a set R. An R-proof w of a wff α in a fuzzy theory T is a finite
sequence

α1 , a1
...

...

αm , am

where

(i) αm = α,
(ii) for each i, 1 ≤ i ≤ m, αi is a logical axiom or a special axiom of a fuzzy theory

T , or there is a many-valued rule of inference in R and well formed formulas
αi1 , . . . ,αin with i1, . . . , in < i such that αi = rsyn(αi1 , . . . ,αin),
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(iii) for each i, 1 ≤ i ≤ m, the value ai ∈ C is given by ai =
⎧
⎪⎪⎨

⎪⎪⎩

a → b if αi is the axiom (Ax7) a imp b,
1 if αi is some other logical axiom in A,
T (αi) if αi is a special axiom of a fuzzy theory T ,

rsem(ai1 , . . . , ain) if αi = rsyn(αi1 , . . . ,αin).

The value am is called the degree of the R-proof w. Since a wff α may have various
R-proofs with different degrees, we define the provability degree of a formula α to
be the supremum of all such values, i.e.,

Csyn(T )(α) =
∨

{am | w is anR -proof for α in the fuzzy theory T },

whenever such a supremum exists: we denote T 	a α if Csyn(T )(α) = a. Notice
that such a value may not exist in C. In particular, Csyn(T )(α) = 0 means that the
degree of any R-proof w of α is 0.

Again, due to the linearity and discrete structure of C we observe that if the value
Csyn(T )(α) exists, then

Csyn(T )(α) = max{am | am is the value of the R-proof w for α in T } ∈ C.

Consequently, if Csyn(T )(α) exists and is equal to a, then there is an R-proof w for
α with the value a.

Recall that Axiom Schemas (Ax8), (Ax2), (Ax10), (Ax11) are the axioms of
Łukasiewicz propositional logic whose only rule of inference is Modus Ponens.
Thus, all the formulas that are provable (it is the usual sense of the word, i.e. there
is a classical proof for them) in Łukasiewicz propositional logic are provable at the
highest degree also in the present logic.

Remark 11.1 a-Lifting Rules can be seen as particular instances of RBD. Indeed,
since nota stands for (a imp 0) and not a or α is an abbreviation for
notnota imp α, we have the following R-proof for (a imp α)

nota , a∗ , (Ax7)
α , b , Assumption
not a or α , a∗ ⊕ b , RBD
notnot a imp α , a∗ ⊕ b , Abbreviation
(notnot a imp α) imp (a imp α) , 1 , Łukasiewicz logic
(a imp α) , a → b , GMP, a → b = a∗ ⊕ b

On the basis of the choice of the axioms and by soundness condition of rules of
inference, a satisfiable fuzzy theory T is sound; if T 	a α and T |=b α hold, then
a ≤ b.
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We observe that any truth constant a has the following R-proof

(1 imp a) imp a , 1 , (Ax9)
(1 imp a) , 1 → a , (Ax7)
a , a , GMP

as 1 � (1 → a) = a in MV -algebras. In fact, in Pavelka’s logic any formula α is
provable, at least to a degree 0, this is denoted by T 	0 α. Indeed, any well formed
formula α has the following R-proof

0 imp [(α imp 0) imp 0] , 1 , (Ax8)
0 , 0 , (Ax7), (Ax9), GMP
(α imp 0) imp 0 , 0 , GMP
[(α imp 0) imp 0] imp α , 1 , Łukasiewicz logic
α , 0 , GMP

This leads us to the following

Definition 11.2 A fuzzy theory T is consistent if Csyn(T )(a) = a for all truth
constants a, otherwise T is inconsistent.

Then we have

Proposition 11.3 A fuzzy theory T is inconsistent iff T 	1 α holds for any wff α.

Proof Assume T is inconsistent. Then there is a truth constant a and an R-proof with
value b such that a < b = Csyn(T )(a). Then for any wff α we have

a , b , Assumption
0 , 1 , a-CTR
0 imp α , 1 , (Ax5)
α , 1 , GMP

We conclude that T 	1 α holds. Conversely, if T 	1 α holds for any wff α, then in
particular T 	1 0 and 0 
= 1. �

Proposition 11.4 A fuzzy theory T is inconsistent iff the following condition holds:

(C) There is awff α and R-proofsw, w′ with values a, b for α and

not α, respectively, such that 0 < a � b.

Proof Let (C) hold and β be an arbitrary wff. Then there is the following R-proof
for β in T .
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α , a , Assumption
notα , b , Assumption
notαandα , a � b , RBC
(notαandα) imp 0 , 1 , (Ax6)
0 , a � b , GMP
0 , 1 , 0-CTR
0 imp β , 1 , (Ax5)
β , 1 , GMP

If conversely T is inconsistent, then T 	1 α and T 	1 notα for any wff α. Thus
there are R-proofsw,w′ with values 1, 1 for α and notα, respectively, and trivially
0 < 1 � 1. �

Proposition 11.5 A satisfiable fuzzy theory T is consistent.

Proof Let v satisfy T and v(α) = c, where α is a wff. Then v(notα) = c∗. If
w,w′ are R-proofs with values a, b for α and notα, respectively, then by soundness
a ≤ c and b ≤ c∗. Therefore a � b ≤ c � c∗ = 0. Thus, T is not inconsistent and is
therefore consistent. �

Proposition 11.6 If T 	a α then T 	1 (a imp α).

Proof If T 	a α then there is the following R-proof in T :

α , a , Assumption
a imp α , 1 , a-LR

Therefore T 	1 (a imp α). �

11.5 T -complete Formulas in Perfect Pavelka Logic

Since perfect MV -algebras are not complete when considered as lattices, Pavelka’s
ideas cannot be applied as such in perfect MV -algebra framework. However, given
a fuzzy theory T which might not be complete in Pavelka’s sense, there are still
interesting formulas α that satisfy

Csyn(T )(α) = Csem(T )(α); (11.2)

call them T -complete formulas. We limit to strong fuzzy theories T ; the special
axioms are given in the form

T (α) = a and T (α imp a) = 1,

where α is a well-formed formula, a is a truth constant and a is the corresponding
value in the truth value set L. We give an affirmative answer to Pavelka’s a general
question (Q) with respect to strong satisfiable fuzzy theories and certain subsets of
formulas. The only new algebraic result needed is the following and presented in [8].
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Remark 11.7 The unique solution of a → x = b 
= 1, where a, b are elements of
an MV -algebra, is x = a � b.

Before considering Pavelka’s question (Q), we show that Lindenbaum-Tarski
algebra is available in Perfect Pavelka framework; we define on the set F of well-
formed formula a binary relation � by setting

α � β if, and only if T 	1 (α imp β).

By (Ax1), (Ax2) and GMP it is easy to show that � is reflexive and transitive, and
therefore, a quasi-order. Hence, by defining a binary relation ≡ via

α ≡ β if, and only if T 	1 (α imp β) and T 	1 (β imp α).

we obtain an equivalence relation on F . As usual, we denote by |α| the equivalence
class defined by α and the set of all equivalence classes by F/≡. The relation ≡ is
a congruence with respect to the logical connective imp. Indeed, assume α1 ≡ β1

and α2 ≡ β2. Then T 	1 α1 imp β1 and T 	1 β2 imp α2. Let

γ = [(β1 imp β2) imp (α1 imp α2)].

Then we have the following R-proof

(α1 imp β1) , 1 , Assumption
(α1 imp β1) imp [(β2 imp α2) imp γ] , 1 , (Ax3)
(β2 imp α2) imp γ , 1 , GMP
(β2 imp α2) , 1 , Assumption
γ , 1 , GMP

We conclude T 	1 (β1 impβ2)imp (α1 impα2). In a similar manner we prove that
T 	1 (α1 imp α2) imp (β1 imp β2). Therefore

(α1 imp α2) ≡ (β1 imp β2).

In particular, if α ≡ β, then notα ≡ notβ, since 0 ≡ 0 and notα = α imp 0 by
definition. Accordingly, the equations

|α| → |β| = |α imp β| and |α|∗ = |notα|

define a binary and unary operations, respectively, inF/≡. By (Ax5) and (Ax4), for
any equivalence class |α| holds |0| ≤ |α| ≤ |1|, where the order in F/≡ given by

|α| ≤ |β| if, and only if T 	1 (α imp β).
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We also observe

Proposition 11.8 T 	1 α if, and only if |α| = |1|.
Proof Indeed, if |α| = |1| then T 	1 1impα; use (Ax9) andGMP to obtain T 	1 α.
Conversely, if T 	1 α then, by Proposition 11.6, T 	1 1 imp α, hence |1| ≤ |α|
whence |1| = |α|. �

Proposition 11.9 For a consistent fuzzy theory T , the Lindenbaum-Tarski algebra
〈F/ ≡,→, ∗, |1|〉 is a Wajsberg algebra and, hence an MV -algebra. In fact, the
Lindenbaum-Tarski algebra is a perfect MV -algebra.

Proof Let α,β, γ be wffs. We observe that Wajsberg axioms hold in the algebra
〈F/≡,→, ∗, |1|〉:
1◦ by (Ax8) and (Ax9), |α| = |1| → |α|,
2◦ by (Ax2), (|α| → |β|) → [(|β| → |γ|) → (|α| → |γ|)] = |1|,
3◦ by (Ax10), (|α| → |β|) → |β| = (|β| → |α|) → |α|,
4◦ by (Ax11), (|α|∗ → |β|∗) → (|β| → |α|) = |1|.

Therefore 〈F/≡,→, ∗, |1|〉 can be seen as an MV -algebra; use (Ax12) to show
that Eq.4.1 is satisfied in F/≡. �

Nowwe return to Pavelka’s question (Q); we have the following partial solution.1

Theorem 11.10 (A Set of T -complete Formulas) Assume a strong fuzzy theory T
is satisfiable. Assume in all R-proofs of a formula α, in all instances where GMP is
used holds either a = b = 1 or b 
= 1. Then α is T -complete.

Proof For any valuation v that satisfies T holds a = T (α) ≤ v(α) and

1 = T (α imp a) ≤ v(α imp a) = v(α) → a ≤ 1.

Therefore v(α) ≤ v(a) = a and so v(α) = a. All the special axioms T (α) and
T (α imp a) have a trivial R-proof at the corresponding degree a and 1, respec-
tively. Similarly, all the logical axioms (Ax1)–(Ax6), and (Ax8)–(Ax12) have a
trivial proof at the degree 1 and they are 1-tautologies. Finally, by axioms (Ax7);
for all truth constants a,b a formula (a imp b) is an axiom of degree a → b and
satisfies v(a imp b) = a → b. By soundness, the completeness condition

Csem(T )(α) = Csyn(T )(α) (11.3)

holds for all logical and special axioms α.
Now it it easy to prove inductively that the completeness condition holds for all

well formed formulas α assuming that in all instances where GMP is used holds
either a = b = 1 or b 
= 1. Indeed, assume α and β have R-proof of degree a and

1In [9] there is another approach to Perfect Pavelka Logic. However, it seems that there is a gap in
the proof of Proposition 16.

http://dx.doi.org/10.1007/978-3-319-30406-9_4
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b, respectively and there is a valuation v such that v(α) = a and v(β) = b, then
using the rules RBC, RBD and a-CTR, respectively, α and β, α or β and 0 have
a R-proof of degree a � b, a ⊕ b and 0, respectively, and v(α and β) = a � b,
v(α or β) = a ⊕ b and v(0) = 0. Finally, assume α and α imp β have R-proof of
degree a and b 
= 1, respectively and there is a valuation v such that v(α) = a and
v(α imp β) = b, then using the rule GMP, β has a R-proof with a degree a � b and
v(β) = a � b. Obviously the claim holds if a = b = 1. The proof is complete. �

Notice that the Theorem above gives sufficient, and not necessary conditions;
there are satisfiable fuzzy theories T that are not strong and still (11.3) holds for
some formulas α.

11.6 Examples and New Rules of Inference

Consider the following realistic but invented
Problem Prolonged and constant hurry often leads to nervousness, and often

poor eating habits cause peritonitis. Gastric ulcer, in turn, is always caused by
nervousness or peritonitis. The severity of the disease increases with age; for an
elderly person gastric ulcer can be a fatal disease. Mr. A is constantly in a hurry and
he eats unhealthy. Will he contract gastric ulcer? If yes, will the disease be fatal?

Solution Let us consider the situation in Perfect Pavelka logic framework and
introduce the following entries
p stands for A is always in a hurry,
q stands for A is nervous,
r stands for A has poor eating habits,
s stands for A contracts peritonitis,
t stands for A contracts gastric ulcer,
w stands for A is old,
z stands for The illness is fatal.

Then construct a fuzzy theory T whose special axioms are
T (p) = 1,
T (r) = 1,
T (p imp q) = t3 (since the implication is often, but not always),
T (r imp s) = t3 (since the implication is often, but not always),
T ((q or s) imp t) = 1,
T (w imp (t imp z)) = 1,
T (w) = t5 (the degree by which Mr. A belongs to the fuzzy set Old person).

The first task is to check whether the fuzzy theory T meaningful, i.e. whether it
is satisfiable. After searching for a while, we find the following valuation v:

v(p) = v(r) = v(t) = 1, v(q) = v(s) = t3, v(w) = v(z) = t5.
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It is easy to see that this valuation satisfies T . Then we look for R-proofs for t,
consider the following

p , 1 , Special axiom
p imp q , t3 , Special axiom
q , t3 , GMP
r , 1 , Special axiom
r imp s , t3 , Special axiom
s , t3 , GMP
q or s , 1 , RBD
(q or s) imp t , 1 , Special axiom
t , 1 , GMP

Thus, the conclusion A contracts gastric ulcer is absolutely true. It remains to clarify
how fatal the disease is. Since we already found a valuation v that satisfies T and
v(z) = t5, the sentence The illness is fatal can be true and provable maximally at a
degree t5. We have the following R-proof for z

w , t5 , Special axiom
w imp (t imp z) , 1 , Special axiom
t imp z , t5 , GMP
t , 1 , Assumption
z , t5 , GMP

Weconclude that the sentencez is provable andvalid at the degree t5. Freely speaking,
Mr. A, a middle-aged man who is constantly in a hurry and has poor eating habits
will contract gastric ulcer. However, the disease will not be completely fatal.

In real life applications, finding an R-proof for some particular formula might be
difficult and time-consuming. One solution is to try find first a classical proof and
then extend it to a graded R-proof. This can be done without difficulties as Pavelka’s
general definition for a many-valued rule of inference and R-proof has a consequence
that any classical logic rule of inference has a many-valued counterpart and each
classical proof of a formula α has a graded proof. This of course does not mean
that a formula that is provable in classical would be 1-provable in Perfect Pavelka
Logic or even in the original [0, 1]-valued Pavelka logic. On the other hand, adding
new rules that satisfy Pavelka’s isotonic and soundness condition to a satisfiable
and hence consistent system does not expand the set of provable sentences nor does
it increase the provability degree of any well formed formula α. Next, we present
a wide range of isotone and sound rules of inference. We extend the definition of
R-proof correspondingly.

Proposition 11.11 In any MV -algebra valued Pavelka style Fuzzy Logic the fol-
lowing schemas are many-valued rules of inference.
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Generalized Modus Tollendo Tollens (GMTT):

notβ, (α imp β) , a, b
notα a � b

Generalized Hypothetical Syllogism (GHS):

(α imp β), (β imp γ) , a, b
α imp γ a � b

Generalized Commutative Law 1 GCL1:

αandβ , a
β andα a

Generalized Commutative Law 2 (GCL2):

α or β , a
β or α a

Generalized Equivalence Law 1 (GEL1):

αequivβ , a
α imp β a

Generalized Equivalence Law 2 (GEL2):

αequivβ , a
β imp α a

Generalized Equivalence Law 3 (GEL3):

(α imp β), (β imp α) , a, b
αequivβ a ∧ b

Generalized Simplification Law 1 (GSL1):

αandβ , a
α a

Generalized Simplification Law 2 (GSL2):

αandβ , a
β a
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Generalized Rule of Introduction of Double Negation (GIDN):

α , a
not(notα) a

Generalized Rule of Elimination of Double Negation (GEDN):

not(notα) , a
α a

Generalized De Morgan Law 1 (GDML1):

(notα)and (notβ) , a
not(α or β) a

Generalized De Morgan Law 2 (GDML2):

not(α or β) , a
(notα)and (notβ) a

Generalized De Morgan Law 3 (GDML3):

(notα) or (notβ) , a
not(αandβ) a

Generalized De Morgan Law 4 (GDML4):

not(αandβ) , a
(notα) or (notβ) a

Generalized Addition Law (GAL):

α , a
α or β a

Generalized Modus Tollendo Ponens (GMTP):

notβ, (α or β) , a, b
α a � b

Generalized Disjunctive Syllogism (GDS):

(α or β), (α imp γ), (β imp δ) , a, b, c
γ or δ a � b � c
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Generalized Rule of Introduction of Implication (GII):

notα or β , a
α imp β a

Generalized Rule of Elimination of Implication (GEI):

α imp β , a
notα or β a

Proof Isotonicity of the rules GMTT, GHS, GMTP, GDS and GEL3 follows from
the fact that the operations � and ∧ are isotone. The other rules are trivially isotone.
Soundness ofmost of these rules is a direct consequence fromproperties on valuation.
We establish here soundness of GMTT and GMTP. GDS is left as an exercise for the
reader. Assume v is a valuation. Then

rsem(v(notβ), v(α imp β)) = v(notβ) � v(α imp β)

= v(β)∗ � [v(α) → v(β)]
= [v(α) → v(β)] � [v(β) → 0]
≤ v(α) → 0

= v(notα)

= v(rsyn(notβ, [α imp β])).

Thus, GMTT is sound. For GMTP we have

rsem(v(notβ), v(α or β)) = v(notβ) � v(α or β)

= v(β)∗ � [v(α) ⊕ v(β)]
= v(β)∗ � [v(β)∗ → v(α)]
≤ v(α)

= v(rsyn(notβ, [α or β])). �

All these rules are graded generalizations of classical rules of inference, as is
already clear from their names. Here we give still three more.

New Rule 1:

α imp γ,α or β , a, b
γ or β a � b

New Rule 2:

0 or α , a
α a
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New Rule 3:
α imp γ,β imp γ , a, b
(α or β) imp γ a � b

Recall that α or β is an abbreviation for (α imp β) imp β and for any valuation v,
v(α or β) = v(α) ∨ v(β) holds.

The isotonicity of these rules follows by the isotonicity of � in any residuated
lattice. To prove that the New Rule 1 is sound, let v be a valuation. We reason

rsem(v(α imp γ), v(α or β)) = v(α imp γ) � v(α or β))
= [v(α) → v(γ)] � [v(α) ∨ v(β)]
= [(v(α) → v(γ)) � v(α)] ∨ [(v(α) → v(γ)) � v(β)]
≤ v(γ) ∨ v(β)
= v(γ or β)
= v(rsyn(α imp γ,α or β)).

Soundness of the New Rule 2 is obvious. To prove that the New Rule 3 is sound, let
v be a valuation. Then

rsem(v(α imp γ,β imp γ)) = [v(α) → v(γ)] � [v(β) → v(γ)]
≤ [v(α) ∨ v(β)] → v(γ)
= v((α or β) imp γ)
= v(rsyn(α imp γ,β imp γ)).

Problem Next consider another example originally taken from [10] in classical
logic context; the task is to study the validity of the following reasoning in classical
logic, in Perfect Pavelka Logic and in the original Pavelka’s [0, 1]-valued logic.

If there is no government subsidies of agriculture, then there are government
controls of agriculture. If there are government controls of agriculture, then there is no
agricultural depression. There is either an agricultural depression or overproduction.
As a matter of fact, there is no overproduction. Therefore, there are government
subsidies of agriculture.

Solution The special axioms of a corresponding crisp theory T are

T (notp imp q) = 1, T (q imp notr) = 1, T (r or s) = 1, and T (nots) = 1,

where p,q,r, and s abbreviate There is government subsidies of agriculture,
There are government controls of agriculture, There is agricultural depression,
and There is an agricultural overproduction, respectively. The formula p is provable
from the special axioms of T and classical logic (CL) as follows
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(notp imp q) imp [(q imp not r) imp (notp imp notr)] , 1 , Provable in CL
notp imp q , 1 , Special axiom
(q imp not r) imp (notp imp notr) , 1 , Modus Ponens
(q imp notr) , 1 , Special axiom
notp imp notr , 1 , Modus Ponens
(notp imp notr) imp (r imp p) , 1 , Provable in CL
r imp p , 1 , Modus Ponens
r or s , 1 , Special axiom
nots , 1 , Special axiom
r , 1 , MTP
p , 1 , Modus Ponens

where MTP stands for the classical inference rule Modus Tollendo Ponens. Now
assume the special axioms are true, but only to a degree, say T (not p imp q) = t3,
T (q imp not r) = t2, T (r or s) = t4 and T (not s) = t. Thus we have a fuzzy
theory in Perfect Pavelka Logic. The above classical proof can be transferred into an
R-proof for p as follows

(notp imp q) imp [(q imp notr) imp (notp imp notr)] , 1 , (Ax2)
notp imp q , t3 , Special axiom
(q imp notr) imp (notp imp notr) , t3 , GMP
(q imp notr) , t2 , Special axiom
notp imp notr , t5 , GMP
(notp imp notr) imp (r imp p) , 1 , (Ax11)
r imp p , t5 , GMP
r or s , t4 , Special axiom
nots , t , Special axiom
r , t5 , GMTP
p , t10 , GMP

where we used Generalized Modus Tollendo Ponens GMTP. We conclude that p
is provable at least to a degree t10. Since for a valuation v such that v(p) = t10,
v(q) = f 7, v(r) = t5, and v(s) = f satisfies v(notp imp q) = t10 ⊕ f 7 = t3,
v(q imp notr) = t7 ⊕ f 5 = t2, v(r or s) = t5 ⊕ f = t4, and v(nots) = t, we
conclude that the fuzzy theory T is satisfiable and CsemT (p) = CsynT (p) = t10.

We realize that from (at least partially) true premises the conclusion is also (at
least partially) true in Perfect Pavelka Logic. This is not the case in the original
[0, 1]-valued Pavelka Logic. Indeed, replace the special axioms by

T (not p imp q) = 0.7,T (q imp not r) = 0.8,T (ror s) = 0.6, and T (nots) = 0.9.

Then a valuation v such that v(p) = 0, v(q) = 0.7, v(r) = 0.5, and v(s) = 0.1
satisfies T and CsemT (p) = CsynT (p) = 0.
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11.7 What Can and What Cannot Be Expressed in Rational
or Perfect Pavelka Logic

One of the arguments for (some) fuzzy logics is that they admit to explain the Sorites
Paradox [11]. A fuzzy statement like ‘this person is not bald’ may be true at the
beginning; then its truth degree may decrease by small decrements and after many
repetitions, it may become false. The gradual true with a dense set of truth values
admits to model this phenomenon and overcome a paradox from classical logic.
Rational Pavelka logic, whose semantics is based on the standard MV -algebra, is
one of the fuzzy logics where this can be explained.

In contrast to this, Chang’s MV -algebra does not allow to explain the Sorites
Paradox. If the statement ‘this person is not bald’ is true at the beginning and its truth
degree decreases by small decrements (infinitesimals), it never reaches the value
false; the truth degree remains infinitesimally close to 1 unless it makes a ‘big jump’
into the degrees infinitesimally close to 0.

Despite this difference, Chang’s MV -algebra and infinitesmals have their role
in modeling human reasoning. Example, let us consider the task of traveling to an
airport. A truth degree should express how convenient the chosen way is. We may
optimize the way in terms of cost, time, choosing the route, etc. However, all these
improvements are negligible in comparison with the crucial question whether we
catch our flight or not. Any number of ‘small’ advantages cannot compensate the
big disadvantage when we miss the flight. Thus their representation by infinitesimals
is adequate. This does not mean that—as soon as we choose only from options in
which we catch the flight—we should ignore these small contributions, e.g., saving
cost by choosing among several sufficiently fast options.

Thus the adequacy of both models depends on the specifics of the situation.
Sometimes ‘many small contributions may compensate a big change’, sometimes
not. More exactly, the use of infinitesimals admits to express that some changes (of
a truth value) are nonzero, but infinitely many times smaller than others. The two
semantics studied here are two extremes: The standard MV -algebra does not admit
any infinitesimals, while the Chang’s MV -algebra contains only infinitesimals (and
their duals). As we have seen in this book, there are more general perfect MV -
algebras which combine infinitesimals and non-infinitesimals. The semantics based
on such MV -algebras could describe two types of changes of truth values—‘big’
ones which may model the Sorites Paradox and infinitesimal ones for which this
paradox applies (as in classical logic). We expect that a Pavelka-style logic could be
based on general perfect MV -algebras as well.

A typical example is the interval [(0, 0), (1, 0)] in the lexicographical product
M = Q×lexZ, where Q, resp. Z, is the set of all rational, resp. integer, numbers. The
MV -algebraic operations on M are defined as follows:
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0 = (0, 0),

1 = (1, 0),

(q, n)∗ = (1 − q,−n),

(p, k) ⊕ (q, n) = min((1, 0), (p + q, k + n)).

The set {(0, n)|n ∈ Z, n ≥ 0} is closed under ⊕, its elements are infinitesimals.
On the other hand, elements of the form (q, n), q > 0, are not infinitesimals; the sum
of � 1

q � such elements is 1 = (1, 0). The former elements have properties described
in Perfect Pavelka Logic. The latter elements have properties known from Rational
Pavelka Logic. We expect that the combination of both approaches could further
extend the possibility of modeling of the human reasoning based on graduate truth
values.
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