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Preface

This book deals with demography and health issues with special attention on
population aging, mortality, and data analysis. Emphasis is done on the introduction
and use of quantitative methods and advanced data analysis methods in various
aspects of demography and health.

The quantitative methods, with the aid of informatics and computing, received
special attention in the last decades of the twentieth century and have further
developed and applied in the first part of the twenty-first century. These methods
already have done considerable changes in various scientific fields and of course in
estimating vital aspects of demography and health.

Mortality, population aging, and data analysis are further developed while the
tools used are friendly to end user. Accordingly, a large number of people are
“ready” to understand and apply the new tools, thanks to the fastgrowing literature
both theoretical and applied along with many “computer packages” and visual
support.

The interdisciplinary works are considered as an important task of the new era
along with the development of fields like Data Science and Big Data Analysis
important to handle large data sets familiar in international studies in demography
and health sciences. In a view the twenty-first century is already characterized by an
optimistic way of data analysis approaches. We have a large number of people
educated and trained to collect and store data sets and vast and expanded networks to
disseminate information. Demography and health have most benefited and more
developments are in progress.

Accordingly we have edited this book by selecting and providing the material in
order to support the quantitative data handling along with qualitative study and
analysis. This book covers very important topics on demography and health issues
organized in six chapters.

Chapter one focusses on Demography and Related Applications in Health Status
and the Lifespan Limit, including three papers on modeling and estimation of the
health state and the healthy life expectancy of a population and a paper on exploring
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the limits to human life span, a challenging subject renewed last years after several
publications in Nature.

Chapter two on Mortality Modeling and Applications includes four contributions
including the establishment and development of a mortality database for developing
countries, an application in Brazil, and two methodological papers for forecasting
mortality and evaluation of the health trends with application in Greece.

Chapter three on Statistical Models and Methods in Biostatistics and Epidemiol-
ogy includes a contribution on the cumulative rate of kidney cancer statistics in
Australia, a paper on the reliability of mortality shifts in the working population in
Russia, and a three-way data analysis applied to specific mortality trends. All papers
focus on important statistical methodologies and related applications.

As far as new methods and tools are introduced in demography and health issues,
the four papers included in Chapter four on Stochastic and Neuro-Fuzzy Methods
provide interesting information on handling and applying advanced methodologies.
Space-time variables, stochastic distance estimation, Monte Carlo methods in health
research, and attitude measurement by a neuro-fuzzy approach are analyzed and
applied.

Chapter five on Data Analysis in Demography includes six papers covering
important topics on data handling and related statistics. Data decomposition, statis-
tical analysis of health risks, an inference system for mortality data, a study on the
Jackson exponentiality test, intervention analysis, and special statistics are the main
topics studied.

Health Sciences, Demography, Risk, and Insurance is the topic presented in
Chapter six in the seven papers included. Risk factors and risk estimates, job
insecurity measurement, health estimates of some countries of the rapid developing
world, social capital, income inequality and the health of the elderly, retirement
scheme from the Italian mortality experience, and application of a Probit model for
analyzing the death clustering of the Tribes of Central and Eastern India are
presented and further analyzed.

We thank all the contributors and especially the authors of this book and of course
the Springer team for help and support.

Chania, Crete, Greece Christos H. Skiadas
Hanover, IN, USA
December 2017

Charilaos Skiadas
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Chapter 1
The Health Status of a Population
Estimated: The History of Health State
Curves

Christos H. Skiadas and Charilaos Skiadas

1.1 The Main Parts of the Stochastic Theory Needed

The Health State of an individual is a stochastic process by means that is highly
unpredictable in the time course while fluctuates from higher to lower values.
However, we have detailed and accurate data sets for deaths over time, that is we
know the distribution of people reaching the end (the death distribution of a
population) when the health state of an individual is reaching the zero level.

In a modeling approach the problem can be set as a first exit or hitting time
modeling of a stochastic process crossing a barrier. Technically the stochastic theory
was developed during last two centuries with the observation of the so-called
Brownian motion and proved experimentally by Jean Perrin while the mathematical
modeling of this classical stochastic process was due to several scientists including
Thorvald N. Thiele, James Clerk Maxwell, Stefan Boltzmann, Albert Einstein,
Marian Smoluchowski, Paul Lévy, Louis Bachelier. Mathematically the simple
stochastic process of the Brownian motion is presented as a Wiener stochastic
process in honor of Norbert Wiener. In nowadays the Wiener process is included
in the majority of computing devices and programs thus giving the opportunity to
generate stochastic paths and simulate processes as the health state of an individual.

So far after almost 150 years of quantitative works on stochastic theory the
problem remains unsolved in the microscopic level. It is not possible to know exactly
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the development of the health state of an individual in the course of time as it is not
possible to know the place and speed of a particle in a gas.

Fortunately that we have learned is that we can find “mean properties” of “large
ensamples”. We can estimate the pressure of a gas in a box, the temperature, the
“mean speed” of the molecules and so-on. Accordingly we can find the “health state”
or the “operational state” or the “viability” of a population as the “mean health state”
of the total number of individuals. That we know is the effect on the population when
the health state of an individual is zero that is the death distribution per age. The task
is to find the “mean health state” per age when we know the death distribution.

Finding the Mean Health State as a summation of the stochastic processes of
individuals could follow the lessons learned from the developments in Kinetic
Theory in Physics. However, several new findings are needed. Especially as in the
case of the human health, the data provided from the death distribution are produced
from the health stochastic paths of the individuals when for the first time hit the zero
health state barrier set at zero level or the X axis of a diagram.

That we search is first to find a distribution for the health state and then to estimate
the final distribution when the health state paths hit for the first time the zero barrier.
Then we can generate stochastic paths by stochastic simulations and verify the
validity of our estimates. Both the direct and inverse problems are important tools
to establish the Health State Theory.

1.2 The Health State Defined, Modeled and Estimated

That all people know by experience is that the health state is decreasing with age. By
questioning we can have a scale for the health state ranging from 0 to 10 or as a
percentage from 0 to 100. However, technically is simpler to accept the health state
ranging from 0 to 1, with 1 been the “mean health state” of a population in the first
years of the childhood and 0 at the age of the mean zero health of the population.
This is the point where the number of deaths to the right is analogues to the number
of deaths to the left of a graph.

An interesting comparison of the linear health state curve for the Mediterranean
Flies studied byWeitz and Fraser and the curved with a negative slope for the human
populations is also done along with stochastic simulations.

Torrance in the middle of 70s proposed a Health Status Index model suggesting
the level of functioning of the health state of an individual at 1 for the perfect health
state and lower values after injuries or diseases recovering after treatment to the
perfect level in the first period of the life span. Then the level of functioning or health
state is dropping down until the zero health level at the age of death (see Fig. 1.1).

Accordingly the health state of a population will be the average of a large
ensemble of individuals, usually the total population of a country or a territory.
Clearly this approach overcomes several shortcomings the main being the lack of a
health state or health status unit of measurement. He accepts unity as the measure of
the perfect health state for every individual. Clearly assuming unity as the maximum
health state of an individual is not correct. Instead the “mean health state” should be

4 C. H. Skiadas and C. Skiadas



expected to be at a unity level at maximum health state. The individual health state
levels are expected to be at higher at lower values as it was the case of our modeling
approach in 1995.

Fortunately, whereas the health state paths for the individuals is not possible to be
estimated, the mean health state for the population can be found if we know the
distribution of deaths that is the distribution that it is formed by counting the number
of deaths at every age (usually estimated in yearly time periods). Then the first exit
time theory of a stochastic process (expressing our health) crossing a barrier (here is
the X axis representing the zero health level) provides the mean health state curve
that is the health state of the population as a relatively smooth curve starting from a
low level at birth reaching a maximum level and then gradually declining until zero
(see Fig. 1.2). This was solved in 1995 by Janssen and Skiadas. In the same
publication the inverse problem was approached that is to find the death probability
density by generating a large number of stochastic paths by stochastic simulations.
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The general theory was developed in order to apply in the case of human mortality
data.

Few years later (2001) Weitz and Fraser applied the simpler first exit time model
to the death data provided by Carey in a publication in Science. The health state
curve for this case is a line starting from the level one and declining until the zero
level (see Fig. 1.3a). We have done stochastic simulations (see Fig. 1.3b) to
reproduce the data whereas we have estimated the parameters by fitting the model
to data.

The stochastic simulations for USA 2010 (females) are provided based on a
model published in 2010. In this model the simple linear case of the Weitz and
Fraser is expressed with c ¼ 1 whereas higher values for the exponent c account for
human mortality modeling (see Fig. 1.4a) to compensate for the repairing mecha-
nisms of the human body. While the linear decline with c ¼ 1 is acceptable for
medflies higher values for c are accepted for humans thus the mean health state tends
to follow a rectangular like form well known in demography as rectagularization.
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Fig. 1.3a Based on: Weitz,
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15,383 (2001)

Fig. 1.3b Our Simulations from the book “Skiadas, C.H. and Skiadas, C. Exploring the Health
State of a Population by Dynamic Modeling Methods, Springer, 2017”
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The very simple equation form (see Fig. 1.4b) for the mean health state versus age
x or operational state is: H(x) ¼ 1–(bx)c. The related distribution function for deaths
g(x) is included in Fig. 1.4b where σ stands for the standard deviation or the
stochastic parameter. This parameter is important to reproduce the stochastic paths
(see Figs. 1.3b and 1.5). Note that the derived distribution function is a new one
perfectly fitting to the human mortality datasets. Technically, given the death
distribution g(x) we fit the model to data by nonlinear regression to estimate the
parameters b, c and σ.

The main parts of the theory are illustrated in Fig. 1.5 presenting how starting
from the death distribution function (blue curve) we can estimate the Health State
parameters.

The figure includes the Health State Function expressed by the heavy magenta
curve, hitting the zero line at 85.49 years of age. This age is smaller to the modal age
at death that is the age year with the maximum number of deaths. The heavy dark
blue curve expresses the death density without the infant mortality cases.

Although the Survival Curve (cyan dashed curve) is known as long as the life
tables have introduced, the Health State Curve was calculated after the introduction
of the advanced stochastic theory of the first exit time.

The health state curve is illustrated by the heavy magenta line. The corresponding
survival curve for the related case is presented by the cyan curve. The blue curve
expresses the death distribution. The light curves with various colors are the sto-
chastic paths from the related simulation. The two dashed black curves express the
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confidence intervals. Further to the Health State and the Life Expectancy, the age at
mean zero health state is also estimated.

Figure 1.6a presents an alternative method to reproduce the death probability
density from stochastic paths and Fig. 1.6b provides the death probability density
simulated (see Skiadas and Skiadas 2010).

As it was expected the introduction of a new tool as the health state function
would lead to new advancement. The health state function estimated is a smooth
declining function as is presented for males and females in USA (2010). We have
estimated at which age the curvature is at maximum level. This is very important
because this point is related with the maximum level of the human deterioration
stage. In USA (2010) males this is achieved at 76.45 years of age and at 78.37 years
for females (See Fig. 1.7). The next graph illustrates the Health State Curve (red
line), the Survival Curve (cyan line) and several survival cases for various values of
the standard deviation σ. In the total rectangularization case the survival curve
approaches the ABDC blue line (See Fig. 1.7b).

Note that the deterioration function has the form of a non-symmetric distribution
function as in the above case for Italy (1950, females) rising slowly at the first ages
and exponentially from the middle ages with a maximum at high ages close to
80 years and then declining at very high ages with an asymptotic decay explaining
the Greenwood and Irwin (1939) argument for a late-life mortality deceleration or
the appearance of mortality plateaus at higher ages (See Fig. 1.8).

Another important point is to find the full form of the human health state (see the
figure for USA males the year 2000). The health state starts from a low level at birth
grows to the maximum level one at 12 year of age declines to a local minimum at
22 years of age; then a local maximum is reached at age 32 and a continuous decline
follows (See Fig. 1.9a). In Fig. 1.9b the two stage estimation is presented. The Health
State Simple model H(x) is illustrated by the dashed orange curve whereas the blue
curve represents the final form of the estimates (Note that in this case the Health State
is estimated for a model with σ ¼ 1).

The total health state is found by estimating the area under the health state curve
(see Fig. 1.10). The result is expressed as years of age that is 68.22 for males and

Fig. 1.5 Our Simulations
from the book “Skiadas,
C.H. and Skiadas,
C. Exploring the Health
State of a Population by
Dynamic Modeling
Methods, Springer, 2017”
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Fig. 1.8 Our estimations
from the book “Skiadas,
C.H. and Skiadas,
C. Exploring the Health
State of a Population by
Dynamic Modeling
Methods, Springer, 2017”
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Fig. 1.9 (a, b) Our estimations from the book “Skiadas, C.H. and Skiadas, C. Exploring the Health
State of a Population by Dynamic Modeling Methods, Springer, 2017”

Fig. 1.10 (a, b) Our estimations from the book “Skiadas, C.H. and Skiadas, C. Exploring the
Health State of a Population by Dynamic Modeling Methods, Springer, 2017”
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72.33 for females for USA 2010. The total health state (cyan curve) for females in
Sweden (1970–2010) is presented (See Fig. 1.10b) along with our estimates for the
healthy life expectancy (red curve) and the HALE estimates of the World Health
Organization (rhombus with confidence intervals).

After introducing the Health State Function for the human population a very
important point arises of finding a simple method to derive the probability density
function based on the simple Inverse Gaussian presented earlier in the application of
Weiss and Fraser for Medflies and already known from more than a century. A
detailed methodology based on the stochastic theory is already presented in our
publications mentioned above and in the references. The very simple transformation
comes from the above Fig. 1.11a where by moving the coordinate of the X axis to the
point of age x, the probability density function g(x) arises as a first approximation of
a simple linearization of the Health State Curve at point M where the curve is
replaced by the Tangent Line L(x) ¼ |H�xH0| that is by a linear part of H(x) in the
vicinity of the point M. Then the Inverse Gaussian applies for a small interval around
the point M thus obtaining the function presented in Fig. 1.11b. This is the extended
form we already have derived and applied for the health state of the human
population. The related part will be included in a book in progress to appear in
The Springer Series on Demographic Methods and Population Analysis.

Fig. 1.11a Derivation of
the Health State probability
density function from the
Inverse Gaussian
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1.3 Further Applications and Results

We have developed a method for estimating the Health State or the Viability of a
Population in a time period from the distribution of deaths by applying the stochastic
theory for the first exit time of a stochastic process. The theory developed is included
in our recently published book by Springer along with other interesting applications
as the estimation of the healthy life years lost to disability and the maximum human
life span. A part of the latter study is illustrated in Fig. 1.12 related to the female
supercentenarian deaths, fit and forecasts in USA. The fit and projections for the
1980–2014 female deaths in USA approach the maximum year of female
supercentenarian in USA at 119 years of age (IDL is the International Database on
Longevity).
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Chapter 2
Remarks on “Limits to Human Lifespan”

Christos H. Skiadas

2.1 Introduction

Following the debate emerged after the publication in Nature of the paper by Dong
et al. 2016 on “Evidence for a limit to human lifespan” many interesting remarks
came out for further investigating and exploring the supercentenarians population in
the time course (see Brown et al. 2017; De Beer et al. 2017; Hughes and Hekimi
2017; Lenard and Vaupel 2017; Rozing et al. 2017).

A part of the debate was related to the data handling, another on the methodo-
logical aspects of the statistical methods and techniques used whereas remarks from
cases from several scientific fields could also be considered along with beliefs and
personal opinions on the existence or not of a lifespan limit. Perhaps, sooner or later,
the studies on expanding the lifespan of simpler species will solve the problem. Until
then we have summarized in 12 points the main approaches we can handle with
today’s knowledge on theoretical and applied tools and methods (more details at
Janssen and Skiadas 1995; Skiadas and Skiadas 2010a, b, 2014, 2015, 2017).

1. The first we have noticed is that a clearer and “stronger” data handling is needed.
2. Perhaps we have to “see” the same data from a different viewpoint.
3. High dispersion data sets are not very well presented with a linear trend. Even

the nonlinear representation is not good as well.
4. Handling and applying Life Table data sets for over 90 years of age is dubious.
5. Simpler is to use the raw death data instead of the death probability data.
6. Next, a data transformation is important before to start more data handling. This

is the lesson learned from Gompertz days (Gompertz 1825). A visual inspection
in graphs could be more informative.
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7. Another important future is to inspect the distribution of deaths and especially
the tail at the right hand side (Skiadas and Skiadas 2017).

8. As the number of death cases in the tail sharply declines according to age the
case could be studied with one of the methods proposed under the term:
“extreme value distributions”.

9. By these methods relatively simpler logarithmic expressions replace the formu-
las for the distribution of deaths and are fitted to the data to the last periods of the
life span.

10. These distribution methods include a first and frequently a second logarithm of
the logarithm, when the decline in the tail is very sharp. Thus by starting the
study by first transforming the data in a logarithmic form the complexity of the
logarithmic equation form is reduced.

11. Another point is how to handle exceptional cases as that of Jeanne Calment
clearly lying at the very edges of Maximum Reported Age at Death (MRAD).

12. We search in the majority of cases that belonging to the normal trajectories with
a high probability. But how about the cases with very small probability as for
Jeanne Calment? In France with a total centenarians population of 38.712 in the
period 1990–2014 we need a thousand times larger population to have a MRAD
at 122 years of age. Or simpler the probability is only 1/1000 for the appearance
of one MRAD at this age.

2.2 Data Transformation and Application in United States

The very important point when we handle centenarian and supercentenarian data sets
is to bring into light the data from over 100 years of age that is data in the extreme
right of the death distribution. These data mainly disappear in the right tail of the
death distribution as is presented inside the red circle in the right hand side of
Fig. 2.1.

The upper part A of Fig. 2.1 illustrates the distribution of female deaths in USA
for the period 1990–1999. The data are provided by the Human Mortality Database
(HMD). The main part of particular interest for the centenarian and supercentenarian
case is located by a red circle. It includes the data sets from 100 to 110 years of age.
However, as the data for 110 years include all the data from 110 years of age and
higher, these figures are not used for the applications that follow. Instead the
applications and projections done allocate the data form 110 years and higher to
appropriate years of age based on the trend followed in the previous years from
100 to 109. The method used needs the transformation in logarithmic scale as
presented in the following.

The middle part B of Fig. 2.1 illustrates the same data presented in the A part but
in a logarithmic scale chart. The very important point here is that every level
presented by the horizontal lines in the B part of the graph characterizes the number
of persons dead at this age with the very important level one for the dead at the
higher age level. The clear advantage is the presentation of the critical part included

16 C. H. Skiadas



into the circle of the part A of the figure in a convenient form for fitting a model and
make projections until level one where the maximum reported age at death (MRAD)
is found. For the case studied here this is at year 118 (P118 point in the graph).

The lower part C of Fig. 2.1 presents the logarithms of the death data. This is
a simpler illustration with the MRAD of 118 years of age found at zero level on
the X axis.

Several models could fit to the total curve expressing the number of deaths.
However, for the last part to the right of the death curve a simple quadratic model
for the logarithm of the number of deaths could be more appropriate. This is in
accordance to the extreme value theory presented by Gumbel and others. The final
part of the curve to the right, as it is expressed by the logarithm in Fig. 2.1c, is a

Fig. 2.1 (a) Distribution of
deaths in USA (female,
1990–1999). (b) Deaths in
logarithmic scale in USA
(female, 1990–1999). (c)
Logarithm of deaths in USA
(female, 1990–1999)
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smooth graph with a small curvature that could be modeled by a function of the form
(where the quadratic term stands for the curvature).

log g xð Þð Þ ¼ a x� 100ð Þ2 þ b x� 100ð Þ þ c ð2:1Þ
We fit the above model to the 10 data points from 100 to 109 years of age. We

estimate the parameters of this model by a nonlinear regression analysis algorithm
and make the appropriate projections.

The parameters estimated are: a¼ �0.005348, b¼ �0.15905, c ¼ 4.651, where,
the quadratic parameter a stands for a negative curvature and the linear parameter
b for a negative slope.

The appearance of super centenarians is related to the number of deaths as is
illustrated in Table 2.1. The middle column includes the projections for the
supercentenarians for the period studied (1990–1999). The MRAD is found at
118 years of age. Note that this number should come from the following relation
0.5 < MRAD<1.5. The 100 years projection is given in the third column of
Table 2.1, by assuming that the death population follows the same pattern as for
the period 1990–1999. In this case a MRAD equal to 121 years of age is expected in
2100, whereas a MRAD equal to 116 years of age should be found for 1 year death
data selection (see the first column of Table 2.1).

These estimates could be correct for a continuing growth of the number of
supercentenarians following the growth of the number of centenarians. However,
the case of United States data in last decades do not support this argument as is
illustrated in Fig. 2.2. Five 10 year periods from 1960 to 2009 are selected from the
HMD and fit and projections are done.

It should be noted that by selecting 5 characteristic periods for the death distri-
bution in USA (female), fit to the data from 90 to 109 years of age and doing
projections an interesting MRAD point at 117 years is estimated for the 4 cases and
one MRAD at 118 years of age, the latter resulting from the 1990–1999 period. The
equation applied is analogous to the previous one:

Table 2.1 Supercentenarians
estimated

Age

Average of 10 years 1990–1999 2000–2100

1 year 10 years 100 years

110 34 335 3355

111 18 180 1796

112 9 94 938

113 5 48 478

114 2 24 238

115 1 12 115

116 1 5 55

117 3 25

118 1 11

119 5

120 2

121 1
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log g xð Þð Þ ¼ a x� 90ð Þ2 þ b x� 90ð Þ þ c ð2:2Þ
These results for United States females are in favor of the argument for a

stagnation of the MRAD development and for the maximum achieved MRAD
during 1990–1999 period of time, here found at 118 years of age whereas, a
MRAD at 117 years of age for the other periods studied is estimated.

The number of deaths of centenarians is increasing from 1950 and onwards
though the growth is slower from 1995 to 2014 as it is expressed in Fig. 2.3.
However, this growth could be compensated by the growing negative shift for the
logarithm of deaths during time presented in Figs. 2.2 and 2.4. It looks out to be a

Fig. 2.2 Fitting and comparing five deaths periods in USA (female)

Fig. 2.3 Number of deaths of centenarians from 1950 to 2014 (USA, female)
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very hard work to define a possible stable behavior for the MRAD during time. This
could lead to debates and conflicts looking at the high uncertainty of related
projections.

However, the argument for a limit to the human life span should need similar
stagnation trends for other countries of the world and especially for the large
population countries. As far as centenarian death data are not available from
China, India and Brazil, we can check the related data from France, Japan and
United Kingdom provided by the HMD. These three countries and USA were the
basis of the Dong et al. 2016 publication in Nature.

2.3 The Case of Japan

The Japan female deaths at 100 year of age steadily increase from 1950 and onwards
as is illustrated in Fig. 2.5 (the number of deaths is expressed in logarithmic scale).
This is a good result indicating a possible increase of the number of centenarians and
supercentenarians (aged 100þ years of age) and thus increasing the probability of
finding MRAD at higher ages. However, another indicator is needed to apply
coming from the MRAD trend over time. As for the USA case presented in
Fig. 2.2, five ten year time periods are selected and the model (2) is fitted to data.
The MRAD for each case is found by estimating the year where the projections line
crosses the X axis. The estimates for the 5 periods studied are 1970–1979
(MRAD ¼ 109.8), 1980–1989 (MRAD ¼ 111.3), 1990–1999 (MRAD ¼ 112.4),
2000–2009 (MRAD ¼ 115.3) and 2010–2014 (MRAD ¼ 116.3). See also Fig. 2.6
where the period 2010–2014 stands for a 5 year period. The linear model
MRAD ¼ 0.1774*YEAR-240.53 is fitted to the 5 MRAD data points (see
Fig. 2.7) with a fairly good R2 ¼ 0.991, and projections are done. Accordingly a

Fig. 2.4 Negative shift of parameter a
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MRAD at 118 years of age is expected by 2020, the 122 years of age should be
reached by 2045 and a MRAD at 125 years of age is expected by 2060.

Figure 2.6 illustrates and the female supercentenarians for Japan as are provided
by the IDL (1996–2005) and GRG (1998–2014) databases. For both databases (IDL
and GRG) the cases collected cover two different time periods, 1996–2005 for the
IDL database and a larger for the GRG database. For the latter the time period
1998–2014 was collected for our study. There is a 30 years period, 1966–1996, with
only 11 supercentenarian in 205 cases. We have excluded these figures keeping the
rest 194 instances from 1998–2014 for the study. This is clear from Fig. 2.8 that the
first period 1966–1996 should be excluded. The IDL data points for the 1996–2005

Fig. 2.5 Logarithm of Japan female deaths at 100 years of age

Fig. 2.6 Five year periods for the logarithm of deaths in Japan along with IDL and GRG data
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period are located between the trajectories for (1990–1999) and (2000–2009)
whereas, the GRG data points are close to the projected lines for the periods
(2000–2009) and (2010–2014). Especially for the GRG data providing a MRAD
at 116 years of age, the projected line for the period (2010–2014) fits perfectly to the
same point for MRAD.

2.4 The Case of France

The France case has similarities with Japan application as the trajectories for the
10 year periods studied tend to keep a parallel like movement to the right hand side
of the graph thus suggesting a growing process for the MRAD for the

Fig. 2.7 Fit and projections for MRAD in Japan (R2 ¼ 0.991)

Fig. 2.8 Supercentenarians in Japan (GRG database)
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supercentenarians. The GRG data corresponding to the period 1990–2014 are close
to the projections of the death data for this period (Fig. 2.9). That is far away from
any short of prediction is the single point for the world record MRAD at 122 years.
The trend for the deaths at 100 years of age in France steadily increases from 1950
and onwards in an exponential trend thus providing a linear trend for the logarithm of
the number of deaths (see Fig. 2.10). The logarithm for the number of deaths in 2110
is 6, corresponding to 1.000.000 persons and to a MRAD at 119 years of age (see the
related Fig. 2.9).

Fig. 2.9 France application for various time periods

Fig. 2.10 Logarithm of France female deaths at 100 years of age (fit and predictions)
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2.5 The Case of United Kingdom

Similar to France and Japan is the growing process for the supercentenarians in UK
presented in Fig. 2.11. Five female death periods from 1960 to 2009 of 10 years each
are selected from the HMD. Model (1) is fitted to the data from 100 to 109 years of
age and projections are done until crossing the X axis and define the MRAD. Very
important for estimating the future trends for MRAD are the last two trajectories for
the periods (1990–1999) and (2000–2009). In the case of UK both follow a parallel
like trend defining an increasing process for MRAD.

2.6 Comparing France, United Kingdom and Japan

That it is demonstrated from these 3 countries (see Fig. 2.12) the number of
centenarians is steadily growing while the supercentenarian trend is growing during
time as well leading to higher MRAD.

2.7 The IDL Application

Supercentenarian female death data from 15 countries are downloaded from the IDL
database as for 20 July 2017. Similar data are included in the Human Mortality
Database (HMD) in the death tables for the years 100þ and presented as a single
number for the deaths at 100 years of age and over. Though no further analysis is
given in these death tables the information for the number of supercentenarians per

Fig. 2.11 Centenarian and supercentenarian fit and projections for UK (female)
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country at specific time periods (the yearly data are available) is vital for the
calculations performed here. These death tables include all the age period from
zero age to 109. The last 10 data points from 100 to 109 are used to estimate a
trajectory for the future paths (projections) that define the supercentenarian trend per
year of age from 110 years and onwards.

IDL and HMD-data include completely different number of data points for the
supercentenarians as the IDL database covers the confirmed cases. Thus we have
found 598 supercentenarians in the IDL database and 3066 in the HMD-data the
latter providing more than five times (5.127) higher estimates. However, the
HMD-data supercentenarian data are very important because we can arrange these
data in the projection curve arising from the fit of a good model of the logarithmic
form of Eq. (2.1).

This model fits to the 10 data points from 100 to 109 almost perfectly with a
R2 ¼ 0.99998. The projection presented in the Fig. 2.13 provides the MRAD at
119 years of age that is exactly the age of the second supercentenarian after Jeanne
Calment. The next step is the find a trajectory appropriate for the IDL data in view
that these data could follow a parallel like path than that provided from HMD-data
for the same time period and for the same 15 countries selected. This is achieved
very easily by moving the HMD-data trajectory in a lower position by dividing its
element by an appropriate number so that to minimize the sum of squared errors. The
new position is illustrated in the figure as HMD-data adapted to IDL. Now the
trajectory for IDL provides a MRAD at 117 years of age. The IDL data points are
illustrated with red circles and are fairly well adapted to the related trajectory with
R2 ¼ 0.9906. For both cases the outsider, the point at 122 years of age is far away
from any estimate. It could be found with a probability 0.01 for the IDL case and
0.04 for the HMD-data case by means that we can find a MRAD for a population
100 times larger for the IDL case and 25 times larger for the HMD-data case. The
trajectory adapted to 122 years of age is presented in Fig. 2.13. The estimation results
are given in the next Table 2.2. Note that the MRAD will appear for a number 0.5 or

Fig. 2.12 France, UK and Japan comparisons for MRAD estimates
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higher by means that the logarithm should be approximately less than �0.3 thus
shortening the population needed for at least one MRAD. For the case of 122 years
of age the population needed is the half of that estimated to have exactly one in the
estimates.

The related death female data for the periods selected are downloaded from the
Human Mortality Database (HMD) and summarized as to form one unique database
termed here as HMD-data. The periods for collecting the data per country are found
from the explanatory details in the IDL database and are presented in parentheses as
follows: Australia (1990–2004), Belgium (1990–2002), Canada (1962–2002), Swit-
zerland (1993–2000), Germany (1994–2005), Denmark (1996–2000), Spain

Fig. 2.13 Fit and projections for supercentenarians (IDL and HMD data bases)

Table 2.2 Supercentenarians
estimated for IDL, HMD and
HMD* databases (HMD*
results from HMD-data
adapted to a MRAD at 122
years of age)

Age IDL HMD HMD*

110 308 1208 30,195

111 153 601 15,021

112 74 290 7257

113 35 136 3404

114 16 62 1551

115 7 27 686

116 3 12 295

117 1 5 123

118 0.51 2 50

119 0.20 1 20

120 0.08 0.30 7

121 0.03 0.11 3

122 0.01 0.04 1
Total 598 2345 58,613
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(1989–2007), Finland (1989–2006), France (1987–2003), UK (1968–2006), Italy
(1973–2003), Japan (1996–2005), Norway (1989–2004), Sweden (1986–2003) and
USA (1980–2003).

Both IDL and GRG databases (see Figs. 2.14 and 2.15) are similar until 2003 and
then the GRG database includes data until 2014.

Accordingly we use the IDL dataset for the applications that follow (see
Fig. 2.16). The IDL data base provides the super-centenarian data until 2003.

The IDL group of countries without USA includes 13 countries for various
periods of time. For the same periods we have downloaded the deaths from the
Human Mortality Database and summarized all data to form a unique death distri-
bution presented in Fig. 2.18 in continuous line. We fit the quadratic model to the
data from 100 to 109 years of age and then a projection is done. The estimated
MRAD is at 116.4 years of age. Similar are the results by applying the GRG data as
well (see the dark circles in Fig. 2.17).

The application for USA (female) includes fit to the HMD death data in logarith-
mic scale, projections and comparisons with the GRG (Fig. 2.18a) and IDL

Fig. 2.14 IDL and GRG
data series

Fig. 2.15 Supercentena-
rians in USA (female).
IDL and GRG data sets
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Fig. 2.16 Logarithm of
deaths from selected
countries, fit and
projections, and IDL data

Fig. 2.18 HMD data, fit and projections and GRG (a) and IDL (b) data sets for USA (female)

Fig. 2.17 HMD data for
countries selected, fit and
projections and IDL and
GRG figures

28 C. H. Skiadas



(Fig. 2.18b) data sets. The adaptation from GRG to HMD data base and IDL to HMD
data base and vise-versa provide enough evidence for the use of both data bases in
supercentenarian projection studies.

2.8 Summary

So far we have replied to the fundamental question regarding a limit to the human
life span by providing methods and tools and make related applications.

While a stagnation appears for USA, the data for France and Japan clearly
indicate a continuing growth for the level of supercentenarian trajectories and
accordingly for the level of MRAD the latter growing with time.

The expected MRAD is closely related to the number of centenarians. The latter is
growing fast in an exponential trend thus ensuring a quite large pull for the expected
supercentenarians.
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Chapter 3
Exploring the Health Status of a Population:
A Simple Health State Model vs
the Gompertz Model

Christos H. Skiadas

We present a method to formulate the Health State or Health Status curve of a
population from the Gompertz model thus providing a useful tool to demographers,
actuaries, policy makers, health people and organizations and sociologists. The
model is presented along with a simple first exit time model and another “Best
Fit” model. A method of finding the corrected health state or health status is also
presented.

3.1 Introduction

The Gompertz 1825 model is a quite reliable tool to express demographic indicators
related to the human life table. The corresponding probability density function g(t) of
a 3-parameter model is of the form:

g tð Þ ¼ e�kþbt�e�lþbt ð3:1Þ
Where b, k, l are parameters and t is the time or age of an individual or population.

The very interesting future of this model was that it is easily handled and fited to data sets
using logarithms, a technique very important in the days of Gompertz (he had proposed
the model in 1825). More important is that this model suggests a linear form for the
logarithm of mortality thus providing a very easy handling tool for actuaries. The model
provides good estimates for a relatively large part of the life span (in many cases covers a
range from 30 to 90 years of age as is illustrated in Fig. 3.1).
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3.2 How to Find the Health State Curve of the Gompertz
Model

The Health Status index of the population was proposed from the sixties and
seventies by Sanders (1964), Sullivan (1966, 1971), Torrance (1976) and others.
Sullivan proposed a method for estimating the health status index from information
related to disability data collected. Torrance proposed an estimate of the health status
of the population based on the summation of the health status of the individuals. Our
approach (Janssen and Skiadas 1995 and many studies by Skiadas 2011 and Skiadas
and Skiadas 2010a, b, 2013a, b, 2014, 2015 was to find the Health State or Health
Status from the outcome that is the distribution of deaths g(t). This approach based
on the advanced findings of the first exit or hitting time theory is difficult to handle
but it can estimate the health state H(t) of a population from g(t) and vice versa.
According to this theory simple or complicated models are proposed and applied to
life table data. The simpler model is an extension of the so-called Inverse Gaussian.
The probability density function g(t) is given by:

gðtÞ ¼ jlþ ðc� 1ÞðbtÞcjffiffiffiffiffiffiffiffiffi
2πt3

p e�
ðl�ðbtÞcÞ2

2t ð3:2Þ

Where b, l, c are parameters and c ¼ 1 for the Inverse Gaussian. The Health State
or Health Status Function H(t) is given by:

H tð Þ ¼ l� btð Þc ð3:3Þ
The model (3.2) is a special form of the more general model proposed by Jennen

(1985), Lerche (1986) and Jennen and Lerche (1981) of the following form

gðtÞ ¼ jH � tH
0 jffiffiffiffiffiffiffiffiffiffi

2π t3
p e�

ðHt Þ2
2t ð3:4Þ

Fig. 3.1 Mortality curves
for USA males (2000).
Continuous line (Gompertz
model fit), dotted line
(Simple model), dashed
curve (from Data)
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Following the above theory and applying models (3.1) and (3.2) and (3.5) to data
for USA males and females (1960 and 2000) we find the results presented in the next
Tables 3.1, 3.2, 3.3 and 3.4. The first two Tables include the estimated parameter
values for the same model (3.2) the “First exit time model-I”. This model provides
two distinct minima when fitted to data sets related to the first estimates for the
parameter l to start the non-linear regression analysis. Clearly the global minimum
accounts for the case including infant mortality as is illustrated in Fig. 3.1b, whereas
the local minimum accounts for a case not including infant mortality (IM). The sum
of squared errors (SSE) and the R2 are almost similar in recent years (USA 2000) and
differ considerably in the past when the infant mortality was high (USA 1960).

Table 3.1 Parameter estimates for first exit time model-I

First exit time model-I

b l k c SSE R2

Males

USA 1960 0.02922 13.914 0.3643 3.475 0.0010286 0.904

USA 2000 0.02198 13.119 0.3725 4.640 0.0001184 0.991

Females

USA 1960 0.02270 14.055 0.3670 4.523 0.0006195 0.954

USA 2000 0.02017 14.362 0.3768 5.065 0.0000859 0.994

Table 3.2 Parameter estimates for the first exit time model with infant mortality

First exit time model with infant mortality

b l k c SSE R2

Males

USA 1960 0.01948 0.03220 0.8394 5.259 0.0001456 0.986

USA 2000 0.01686 0.009105 0.8278 6.441 0.0000896 0.993

Females

USA 1960 0.01674 0.02574 0.8129 6.667 0.0001222 0.991

USA 2000 0.01536 0.00752 0.8233 7.432 0.0000651 0.996

Table 3.3 Parameter estimates for the Gompertz model

Gompertz

b l k c SSE R2

Males

USA 1960 0.07977 6.035 8.594 0.001001 0.907

USA 2000 0.09282 7.619 10.032 0.000151 0.988

Females

USA 1960 0.09708 7.937 10.320 0.000635 0.953

USA 2000 0.10344 8.963 11.267 0.000121 0.992
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However, the simple case without infant mortality gives similar results with the
Gompertz model and is very useful in our study. The IM version of the first exit time
model as it is illustrated in Table 3.2 shows relatively small values for the parameter
l and, in the limit, it is possible to reduce the model to the simpler 3 parameter form

g tð Þ ¼ c� 1ð Þ btð Þcj jffiffiffiffiffiffiffiffiffi
2πt3

p e�
btð Þ2c
2t ð3:5Þ

Of course we cannot model the infant mortality by applying this model. This is
the simplest 3-parameter first exit time model (Fig. 3.2a and b)

3.3 A Very Interesting Property of the Gompertz Function

That came to be a very serious reason for the popularity of the Gompertz model was
the simple but yet quite accurate modeling of the law of mortality for the ages from
30 to 90 years by the simple exponential function form mt ¼ exp(bt) or the simpler

Table 3.4 Parameter estimates for the first exit time model simple

First exit time model simple

b l k c SSE R2

Males

USA 1960 0.01960 0.8469 5.218 0.0010142 0.910

USA 2000 0.01688 0.8334 6.368 0.0001266 0.990

Females

USA 1960 0.01672 0.8171 6.622 0.0006314 0.955

USA 2000 0.01536 0.8266 7.382 0.0000975 0.994

Fig. 3.2 (a) Model without infant mortality (USA 1960, males). (b) Model with infant mortality
(USA 1960, males)
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logarithmic form ln(mt) ¼ bt providing a simple linear equation for the logarithm of
the human mortality and consequently a useful tool for actuaries, demographers and
policy planners.

From the other point of view the Gompertz model provided a probability density
function g(t) expressing the distribution of deaths over age for a population at a
specific period of time. So far we can construct the mt from g(t) or vice versa.

The next point is related to our knowledge that the probability density function g
(t) expresses the first exit time density of a stochastic process expressing the health
state or health status of a group of individuals or a population during the age
development (Skiadas and Skiadas 2013a, b, 2014).

The inverse of (3.4) will provide the unknown Health State or Health Status form.
Formula (3.4) cannot be solved directly for the unknown state function H(t) given g
(t). However, by adding a correction term ftwe can find an approximation of the form
(k is a constant):

gðtÞ ¼ kffiffiffiffiffiffiffiffiffi
2πt3

p e
�ðf tþHt Þ2

2t ð3:6Þ

Now, inversion of (3.6) yields immediately the following form

Ht þ f t ¼ � �2tln
gðtÞ

ffiffiffiffiffiffiffiffiffi
2πt3

p

k

 !1=2

ð3:7Þ

The estimation of H(t) from the last formula is presented in Skiadas and Skiadas
(2013a, b, 2015).

We can use the right hand part of (3.7) to compare the Health Status estimates
from Data, the Gompertz model and the Simple Mortality model proposed. Clearly
these estimates overestimate the Health State as it is presented in Fig. 3.3. As the
estimates based on the Simple Model provide a fair estimate for the middle stages of
the life span, we can use it as a basis of the estimates based on various models. We
expect that all the successful models have to provide similar figures in the area of the
maximum death rate corresponding to zero health state. In earlier works we have
presented a method of estimating the correction function based on stochastic simu-
lations and another based on analytic methods. Here we propose a relatively simple
method providing satisfactory results for smooth data sets. In almost all the contin-
uous models the nonlinear regression could provide acceptable smooth data from life
table data.

The method starts by estimating g(t) by nonlinear fitting of the selected model to
life table data sets. Then, we estimate the parameter k to fulfil the requirements set in
the right hand side of (3.7) that is continuity and negative values for the logarithm.
As we already have proved (Skiadas and Skiadas 2010a, b, 2013a, b, 2014, 2015,
2017) the only accepted value is given by
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k ¼ maxðgðtÞ
ffiffiffiffiffiffiffiffiffi
2πt3

p
Þ ð3:8Þ

Then with (3.7) and (3.8) we can estimate the uncorrected Hunc ¼ H(t) + f(t).
We proceed to find the correction parameter kcor from:

kcor ¼ max
gðtÞ

ffiffiffiffiffiffiffiffiffi
2πt3

p

jHunc � tH
0
uncj

 !

The approximation for H(t) is provided by the following formula

Ht ffi � �2tln
gðtÞ

ffiffiffiffiffiffiffiffiffi
2πt3

p

kcor

 !1=2

The resulting uncorrected health state of the Gompertz model is presented with
the dotted curve in Fig. 3.3 where the corresponding corrected health state is
illustrated with the dash-dotted curve. The corrected Gompertz curve, the best fit
curve and the Simple Model curve for the health state have a common point atH¼ 0
achieved at age t¼ 79 years. The corrected Gompertz model provides a maximum at
30 years of age. The best fit model provides the maximum health state at 34 years.
From the same model we estimate a local maximum at the age of 14 years and a local
minimum at 20 years of age.

As it is presented in Fig. 3.3 both corrected and uncorrected Gompertz model
cases provide an almost quadratic curve form for the health status of the population.
The health status starts from low levels at birth and gradually increases until a
maximum level in ages from 30 to 40 years and then continuously declines until
the end.

However, the above estimations cover partially the full form of the human health
state as underestimate the expected maximum health state at early years of age. The
correct form is presented in Fig. 3.4A for USA males the year 2000. The health state
starts from a low level at birth grows to the maximum level one at 12 year of age
declines to a local minimum at 22 years of age; then a local maximum is reached at
age 32 and a continuous decline follows. In Fig. 3.4B the two stage estimation is
presented. The Health State Simple model H(x) is illustrated by the dashed orange
curve whereas the blue curve represents the final form of the estimates (results and
figures from Skiadas and Skiadas 2017).

3.4 Conclusions

We provided a method for using the classical Gompertz model to express the health
state or health status of a population. The results were compared with findings from
other models. It is demonstrated that the Gompertz model expresses the growth and
decline of the health status of the population and can be used in simple applications.
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More accurate results are produced from the best fit model with the cost of more
parameters added in the models.

Appendix

After introducing the Health State Function for the human population a very
important point arises of finding a simple method to derive the probability density
function based on the simple Inverse Gaussian presented in the application of Weiss
and Fraser for Medflies and already known from more than a century. A detailed
methodology based on the stochastic theory is already presented in our publications
mentioned above and in the references. The very simple transformation comes from

Fig. 3.4 (a) and (b). Our estimations from the book “Skiadas, C.H. and Skiadas, C. Exploring the
Health State of a Population by Dynamic Modeling Methods, Springer, 2017”
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Fig. 3.3 Health State for USA, males (2000) from the Gompertz model, the corrected Gompertz
model, the Simple model and the Best Fit model
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the next Fig. 3.5 where by moving the coordinate of the X axis to the point of age x,
the probability density function g(x) arises as a first approximation of a simple
linearization of the Health State Curve at point M

H xð Þ ¼ 1� bxð Þc,
where the curve is replaced by the Tangent Line

LðxÞ ¼ jH � xH
0 j,

that is by a linear part of H(x) in the vicinity of the point M. Then the Inverse
Gaussian

g xð Þ ¼ j L xð Þ j
σ
ffiffiffiffiffiffiffiffiffiffi
2πx3

p e�
H2
x

2σ2x

applies for a small interval around the point M thus obtaining the function

gðxÞ ¼ j Hx � xH0
x j

σ
ffiffiffiffiffiffiffiffiffiffi
2πx3

p e�
H2
x

2σ2x

This is equivalent with (3.4) presented earlier. Note that in (3.4) σ ¼ 1.
This is the extended form we already have derived and applied for the health state

of the human population.
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Chapter 4
Estimation of the Healthy Life Expectancy
in Italy Through a Simple Model Based
on Mortality Rate

Christos H. Skiadas and Maria Felice Arezzo

4.1 Introduction

The debate in Europe is currently paying considerable attention on healthy life
expectancy (HALE), focusing on some important subpopulations like those of the
elderly and/or those of the females and males. Following the approach of the World
Health Organization (WHO), health should be considered as having a dynamic
nature, and should be taken into consideration in the context of life, as the ability
to fulfill actions or to carry out a certain role in society. This is the so-called
functional approach, taken by the WHO in the elaboration of the international
frame of reference on the matter.

The most suitable indicator to measure the state of health of a population is health
expectancy, which measures the length of life spent in different states of health.

There are several methods to estimate health expectancies. Among them the most
commonly used are the Sullivan and the multi-state, respectively based on classical
life table and longitudinal data.

The first method was pioneered by Wolfbein on the length of “working life”
(Wolfbein 1949) and is described in details in Sullivan (1971); as it is well known, it
combines the prevalence of disability obtained through a cross-sectional survey and
a period life table.

The second method, named multi-state tables, was pioneered by Rogers (1975)
and Willekens for migration and marital status (Willekens 1979; Hoem and Fong
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1976) for the multi-state table of working life and Brouard for the introduction of the
period prevalence of labor participation (Brouard 1980; Cambois et al. 1999; Giudici
et al. 2013). Multi-state models are based on the analysis of the transitions between
states in competition with the probabilities of dying from each state.

The information necessary for this type of analysis derives from longitudinal
surveys. The result, in this case, is the so called period (or stable) prevalence and can
be interpreted analogously to the stationary population of a period life table, as the
proportion of the disabled amongst the survivors of successive fictitious cohorts,
subject to the flows of entry on disability, recovery and death observed in the period
under examination.

Thus, the period health expectancy is the expected number of years to be spent in
the healthy state by this fictitious cohort.

In the classical life table analysis, the survivors of any age are supposed to be at
the same risk of dying. When taking heterogeneity into account, the simplest model
consists in considering two states (healthy vs unhealthy, enabled vs disabled), but
assuming that the population in each state is homogeneous over time, i.e. at each age
they are at the same risks of changing their status. This corresponds to the common
Markov hypothesis.

Starting from the late 80’s a Global Burden of Disease (GBD) study was applied
in many countries reflecting the optimistic views of many researchers and policy
makers worldwide to quantify the health state of a population or a group of persons.
In the time course they succeeded in establishing an international network collecting
and providing adequate information to calculate health measures under terms as Loss
of Healthy Life Years (LHLY) or Healthy Life Expectancy (HALE).

So far the process followed was towards statistical measures including surveys
and data collection using questionnaires and disability and epidemiological data as
well (McDowell 2006).

However, a serious scientific part is missing or it is not very much explored that is
to find the model underlying the health state measures. Observing the health state
measures by country from 1990 until nowadays it is clear that the observed and
estimated health parameters follow a rather systematic way. The lessons learned
during the last centuries were towards the introduction of models in the analysis of
health and mortality. The classical examples are Edmund Halley for Life Tables and
Benjamin Gompertz for the law of mortality and may others. Today our ability to use
mass storage tools as the computers and the extensive application of surveys and
polls to many political, social and economic activities directed the main health state
studies. In other words we give much attention to opinions of the people for their
health status followed by extensive health data collection. However, it remains a
serious question: can we validate the health status results? As it is the standard
procedure in science a systematic study as the Global Burden of Disease should be
validated by one or more models. Especially as these studies are today the main tool
for the health programs of many countries the need of verification is more important.
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4.2 Estimation with a Model

We test a simple model proposed by Skiadas (2015) and Skiadas and Skiadas (2017),
which we briefly describe in the following, using Italian data and compare the results with
those provided by the Italian National Institute of Statistics (ISTAT) and by the GBD.

The model is based on two parameters, b and T, and it is:

μx ¼
x

T

� �b

T represents the age at which μx ¼ 1 and b is a crucial health state parameter
expressing the curvature of μx. As the health state is improved b gets higher values.

Figure 4.1 represents a mortality diagram and illustrates the idea behind the
methods proposed.

The main task is to find the area Ex under the curve OCABO in the mortality
diagram (see Fig. 4.1) which is a measure of the mortality effect. This is done by
estimating the following integral:

Ex ¼
Z T

0

x

T

� �b
dx ¼ T

bþ 1
x

T

� �b:

The resulting value for Ex in the interval [0, T] is given by the simple form:

Emortality ¼ T

bþ 1

The total information for the mortality is the area provided under the curve μx and
the horizontal axis. The total area Etotal of the healthy and mortality part of the life

Fig. 4.1 Mortality diagram
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span is nothing else but the area included into the rectangle of length T and height
1 that is Etotal ¼ T. The health area is given by:

Ehealth ¼ T � Emortality ¼ bT

bþ 1

It then follows that:

b ¼ Ehealth

Emortality

This is the simplest indicator for the loss of health status of a population. Another
interesting and closely related estimator is in the form:

bþ 1 ¼ Etotal

Emortality

This indicator is more appropriate for the severe and moderate disability causes. It
provides larger values for the disability measures as the Etotal is larger or the
Emortality area is smaller by means that as we live longer the disability period
becomes larger.

This method suggests a simple but yet interesting tool for estimating the loss of
healthy life years (LHLY). A correction multiplier λ should be added for specific
situations so that the estimator is in the form:

LHLY ¼ Etotal

Emortality
¼ λ bþ 1ð Þ

4.3 Estimation Without a Model (Direct Estimation)

As the needed data sets in the form of mx or qx data are provided from the life tables,
we have developed a method of direct estimation of the loss of healthy life year
estimators directly from the life table by expanding the life table to the right.

b ¼ Etotal

Emortality
¼ xmxP x

0 mx

The only need is to estimate the above fraction from the life table data. A similar
indicator results by selecting the qx data from the life table and using the:

b ¼ Etotal

Emortality
¼ xqxP x

0 qx
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In both cases the results are similar. The estimates frommx are slightly larger than
from qx. In both cases the b estimators growth to a maximum at old ages and then
decline. The selected b indicator for the life years lost from birth is that of the
maximum value. A smoothing technique is used to avoid sharp fluctuations in the
maximum range area. Both the estimation of the b indicator by this direct method
and the method by using a model give similar results.

4.4 Applications

Our preliminary results for the Italian data are encouraging as shown in Fig. 4.2a, b.
For both cases we have estimated the Healthy Life Expectancy (HLE) by the Direct
Method (without a model) and by the Fit Method (with the simple model). Both
methods provide close estimates and mainly for the males case. The HALE estimates
(Salomon et al. 2012; Murray et al. 2016; WHO 2001, 2002, 2004, 2013, 2014) are
also close to ours especially for the latest years.

Three of the nearby countries with Italy are also studied in Fig. 4.3. For all
countries, Switzerland, France and Austria, the estimates are close to the related
HALE figures.

It should be noted that our methods based on the Life Table data sets are easy
to apply even for time periods when health and disease estimates are not col-
lected. Even more the needed second method to straighten the HALE estimates is
proposed and applied along with a third one to support the previous (Skiadas
2015, 2016). Another three parallel methods based on Gompertz, Weibull and a
Stochastic model (Skiadas and Skiadas 2010, 2014, 2015) provide similar and
supporting estimates.

Fig. 4.2 HLE estimates and HALE estimates and confidence intervals for Italian males (left) and
females (right)
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Part II
Mortality Modeling and Applications



Chapter 5
Using Child, Adult, and Old-Age Mortality
to Establish a Developing Countries
Mortality Database (DCMD)

Nan Li, Hong Mi, and Patrick Gerland

5.1 Introduction

Empirical data used in estimating life tables are collected from three types of
source: (1) death registration that counts deaths by sex and age in a certain
period, usually a calendar year; (2) census that enumerates the numbers of
population by age and sex at a certain time point, and sometimes also death by
age and sex during a period before the census time; and (3) sample survey that, in
principle, could collect data on both death and population but cover only a small
portion of the population in a country. Censuses are conducted in almost all the
countries of the world. Besides providing middle-year populations to compute
death rates for countries with reliable death registration, some developing coun-
tries rely also on census to obtain life tables directly. Since census interviewers
must visit every household in a country to enumerate the number of residents at a
certain time point, they could also ask just one more question about whether there
was a death, or were deaths, in the household in past year; and if yes what is the
gender and age of the death, or the genders and ages of the deaths (United
Nations Statistics Division (UNSD) 2008). Furthermore, using population data
of two successive censuses, some mortality indicators of the period between the
two censuses could be estimated, especially for old ages at which the effect of
migration is negligible (Li and Gerland 2013). For many countries, census data
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on population by age and sex can be found from the United Nations Demographic
Yearbook (e.g., UNSD 2013a). Occasionally, surveys using large sample size
could also provide life tables.

Typical sample surveys often collect information only from a small portion of the
population. Subsequently, they cannot produce life tables. This is because death
rates at some ages, for example 10–20 years, could be very low, and hence require a
large population to be estimated reliably. Nonetheless, sample surveys could provide
reliable indicators of mortality for certain age groups when death is not a rare event
or when the age group is wide enough. The most commonly sampled mortality
indicator is child mortality, which is the probability of dying between birth and age
5, and is often denoted as 5q0. The United Nations Children’s Fund (UNICEF) as part
of the United Nations Inter-agency Group for Child Mortality Estimation (IGME)
has been regularly collecting, analyzing, and publishing child mortality for most of
the countries back to the 1970s or earlier (see United Nations Children’s Fund 2013;
http://www.childmortality.org). Based on the same principles used to estimate child
mortality using birth histories, surveys such as the Demographic and Health Surveys
(DHS, http://www.measuredhs.com/) have been collecting sibling histories since the
1990s to measure adult mortality, allowing to derive the probability of dying
between age 15 and 50 or 60 years, namely 35q15 or 45q15, respectively, for an
increasing number of developing countries (Timæus 2013). Combining data of
surveys and other sources, Wang et al. (2012) at the Institute for Heath Metrics
and Evaluation (IHME) estimated adult mortality for 187 countries from 1970
to 2010.

Mortality databases have been established for developed countries (e.g., Human
Mortality Database (HMD) 2016) and effectively used for various purposes. For
developing countries of which the deaths counted 78% that of the world in
2010–2015 (United Nations Population Division (UNPD) 2015), however, reliable
life tables can hardly be found. Indirect estimates of life tables have been provided by
the UNPD (2015) and IHME (Wang et al. 2012) for developing countries, using
empirical data on child mortality (5q0) and adult mortality (45q15). But more than half
of all deaths already occurred at age 60 and higher in developing countries in
2010–2015. Thus, estimating old-age mortality (15q60), and using it together with the

5q0 and 45q15 estimated by the UNICEF and IHME mentioned above, to establish a
mortality database for developing countries is a relevant and urgent task. To fulfil this
task, this paper introduces two methods: (1) the Census Method that uses populations
enumerated in census to estimate 15q60, and (2) the three-input model life table that
utilizes 5q0, 45q15, and 15q60 to calculate life tables. Compared to using only child and
adult mortality, applying the two methods to the data of HMD after 1950, the errors of
fitting old-age mortality are reduced for more than 70% of all the countries. To be more
specific to developing countries, the errors are reduced by 17% for Chile, 48% for Japan,
and 17% for Taiwan, for two sexes combined, which are the three non-European-origin
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populations in Human Mortality Database. These results indicate that, in order to
establish a mortality database for developing countries, the methodology is adequate
and the empirical data are available.

5.2 Methods

The methods include the Census Method and the three-input model life table (three-
input MLT).

5.2.1 The Census Method

The Census Method utilizes populations enumerated from census to estimate 15q60,
and includes two models. The first is the Census Method with variable-r model
(Bennett and Horiuchi 1981; Li and Gerland 2013), which is more suitable when the
period between the two successive censuses is not close to 10 years; and the second
is the Census Method with survival model, which should work better when the
period is close to 10 years.

The Census Method with Variable-r Model

The variable-r model (Bennett and Horiuchi 1981) assumes zero migration and
evenly distributed enumeration errors over age. Let p(x, t) be the observed number
of population in age group [x,x + 5) enumerated from a census conducted at time t,
where x ¼ 60, 65, 70. The growth rates at age x are computed as

r xð Þ ¼ Log
p x; t2ð Þ
p x; t1ð Þ

� �
= t2 � t1ð Þ, x ¼ 60, 65, 70, ð5:1Þ

where t1 and t2 represent the date of the first and second census, respectively. And the
accumulated growth rates are

s 60ð Þ ¼ 2:5r 60ð Þ,
s 65ð Þ ¼ 5r 60ð Þ þ 2:5r 65ð Þ,
s 70ð Þ ¼ 5 r 60ð Þ þ r 65ð Þ½ � þ 2:5r 70ð Þ:

ð5:2Þ

Further, the middle-point population in age group [x,x + 5), N(x), are estimated as
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N xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p x; t1ð Þp x; t2ð Þ

p
, x ¼ 60, 65, 70: ð5:3Þ

Furthermore, the person-years lived in 5-year age group [x,x + 5), Lx, in the
underlying stationary population, are obtained as (Bennett and Horiuchi 1981).

Lx ¼ N xð Þexp s xð Þ½ �, x ¼ 60, 65, 70: ð5:4Þ
At old ages such as 60 and over, migrants are negligible comparing to deaths.

Thus, the zero-migration assumption is naturally satisfied. In developing countries,
however, the errors in enumerating population often occur unevenly across age. A
typical example is age heaping. When such errors are severe, the Lx resulted from
(5.4), would show implausible patterns of increasing with age, which cannot occur in
a stationary population. When such implausible situations occur, adjusting Lx is
necessary. Li and Gerland (2013) proposed such an adjustment as is shown in the
appendix A, which provides the adjusted bLx. After adjusting the age-reporting errors,
the number of survivors at age x, lx, can be estimated using nonlinear optimization
and a Gompertz model (Li and Gerland 2013), or it can be estimated locally linearly
as below:

l65 ¼
bL60 þ bL65

2:5

bL65�bL60 þ 2bL65 þ bL70
�,

l70 ¼
bL65 þ bL70

2:5

bL65�bL60 þ 2bL65 þ bL70
�,

l60 ¼
bL60

2:5
� l65,

l75 ¼
bL70

2:5
� l70:

ð5:5Þ

In (5.5), the
bL60 þ bL65

2:5
and

bL65 þ bL70

2:5
are the first-step estimates of l65 and l70,

which are linear interpolations between bL60, bL65 and bL70. The
bL65�bL60 þ 2bL65 þ bL70

� is
an adjustment that makes 2:5 � l60 þ l65ð Þ ¼ bL65. The last two lines in (5.5) are linear
formulas of calculating bL60 and bL70.

Finally, after estimating lx, 15q60 is obtained as

15q60 ¼ 1� l75
l60

ð5:6Þ
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The Census Method with Survival Model

When the period between the two successive censuses is close to 10 years, the
populations between the period of exactly 10 years can be reliably estimated
assuming over-time constant growth rates and using (5.1). Consequently, the
10-year survival ratio of the stationary population is estimated as

S ¼ L70
L60

¼ p 70� 74; t2ð Þ
p 60� 64; t1ð Þ : ð5:7Þ

Assuming that the over-age survival ratio is constant, the 1-year and 15-year
survival ratios are therefore S

1
10 and S

15
10, respectively. Subsequently, the 15-year

probability of death between age 60 and 75 can be estimated as

q ¼ 1� S
15
10: ð5:8Þ

The assumption of constant over-age survival ratio can be adjusted using the
United Nations general model life table (UNPD 1982), which leads to a more
accurate estimate of old-age mortality as

15q60¼ q � 1:021� 0:0002 � qþ 0:0002 � q2ð Þ,R2 ¼ 0:999, female,
q � 1:0153� 0:0003 � qþ 0:0002 � q2ð Þ,R2 ¼ 0:999,male:

�
ð5:9Þ

5.2.2 The Three-Input Model Life Table

The three-input model life table is an augmentation of the flexible two-dimensional
model life table (two-input MLT, Wilmoth et al. 2012), which is expressed as

log mxð Þ ¼ ax þ bx � log 5q0
� �þ cx � log 5q0

� �� 	2 þ vx � k, ð5:10Þ
where mx stands for the five-year age-specific death rates with x ¼ 0,1,5,10,. . .;
coefficient vectors ax, bx, cx, and vx are obtained from fitting mortality data of the
Human Mortality Database; and parameter k is flexible, which can be solved to fit an
additional 45q15. Obviously, the two-input MLT can be used to produce a life table
when 5q0 and 45q15 are used as two inputs.

How to utilize the estimated old-age mortality (15bq60)? A simple answer (Li 2014)
can be found by following the logic of the Logit transformation:
log xbq0=�1� xbq0�� 	 ¼ αþ βlog xq0= 1� xq0

� �� 	
, in which the standard xq0 is natu-

rally that of the two-input MLT, and level α and pattern β can be chosen to fit some
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function of observed probability of death (xbq0). When there is only15bq60, a customary
is to set β ¼ 1 and solve α to fit 15bq60 (see Preston et al. 2001, p. 200). The rationale
for using the Logit transformation is that log xq0= 1� xq0

� �� 	
would be close to linear

at all the ages. It is worth noting that, at old ages, log
�bmx

�
would be close to linear

according to the Gompertz law. Thus, at old ages, the linear relationship of the Logit
transformation can be simplified as:

log
�bmx

� ¼ αþ log mxð Þ: ð5:11Þ
Because

15bq60 � 1� exp �5 � �bm60 þ bm65 þ bm70
�� 	
, ð5:12Þ

α is solved by inserting (5.11) to (5.12):

α � log
log

�
1� 15bq60�

log 1� 15q60
� �" #

ð5:13Þ

where 15q60 is the old-age mortality of the two-input MLT. Subsequently, (5.10) is
augmented to the three-input MLT:

log mxð Þ ¼ bax þ bx � log 5q0
� �þ cx � log 5q0

� �� 	2 þ vx � k, ð5:14Þ

bax ¼ ax, x < 60,

ax þ log
log

�
1� 15bq60�

log 1� 15q60
� �" #

, x � 60,

8><>: ð5:15Þ

which will exactly fit the three inputs: child, adult, and old-age mortality.

5.3 Validations

We use the data of HMD to test whether or not the three-input MLT (with 5q0, 45q15,
and 15q60) can improve the performance of the two-input MLT with only 5q0and 45q15.
We choose the periods after 1950 to avoid the irregular effect of World War II, and
all the countries or areas except Israel, for which the Census Method could not work
because of territory change. In HMD, all ‘census’ dates are adjusted to January first.
Consequently, periods 1950–1959, 1960–1969, . . ., and 2000–2009, and the Census
Method with survival model, are chosen to carry out the validations. In real census,
there are undercounts. Nonetheless, these undercounts tend to cancel each other in
causing the errors of estimating mortality level, as is indicated in appendix B.

We first choose the observed 5q0 and 45q15 of a certain population in a certain
period as the inputs of two-input MLT, which will produce a life table that includes
an estimated 15~q60. This 15~q60 will differ from the observed old-age mortality, 15q60.
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We then use the ‘census’ populations at the two ends of each period to estimate the
values of old-age mortality, and use an exponential model to smooth them. The
results are denoted as 15bq60.

The purpose of two-input MLT is to use the 5q0 and 45q15to best describe the
corresponding life table, including particularly the 15q60, using the mortality patterns
of the HMD populations. Thus, 15~q60 is the best estimated 15q60 that the two-input
MLT could provide. We believe that for developing countries 15~q60 should also be
reasonable to some extent. Therefore, we use

15�q60 ¼ w � 15bq60 þ 1� wð Þ � 15~q60
� 	 ð5:16Þ

as the estimated old-age mortality of the three-input MLT, where the w stands for the
weight that can be determined flexibly, and is taken as 0.5 in all the validations here.
The values of 15�q60 are input to the three-input model life tables, which will have the
same 5q0 and 45q15 as that of two-input MLT. But the values of old-age mortality of
these life tables are 15�q60, which will differ from the observed 15q60.

For a given population, we use the root-mean-squared error (RMSE) to measure
errors. More specifically, we use RMSE2 to indicate the difference between 15~q60 and

15q60, and RMSE3 to show the distance between 15�q60 and 15q60. Let the ith estimates
be 15~q60 ið Þ and 15q60 ið Þ, and the total number of periods be n, there are

RMSE2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

15~q60 ið Þ � 15q60 ið Þ� 	2
=n

s
,

RMSE3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

15�q60 ið Þ � 15q60 ið Þ� 	2
=n

s
:

ð5:17Þ

If RMSE3 < RMSE2 for a given population, we conclude that the three-input
MLT fits this population better than does the two-input MLT, and vice versa.

The validations use HMD data. If reliable life tables for developing countries
were not rare, we would choose them to carry out the validation. For the 37 (exclud-
ing Israel) countries’ 74 populations by sex in HMD, the results of validation are
summarized in Fig. 5.1, in which the position of a population is marked by its
RMSE2 on the horizontal axis and RMSE3on the vertical axis. When the three-input
MLT improves the performance of two-input MLT for a given population, the
position of this population is below the equal line, and vice versa.

We see that the three-input MLT improved the performance of the two-input
MLT for most of the populations. To be more specific, the three-input MLT
improved the performance of the two-input MLT for 55 of the 74 populations. We
also see from Fig. 5.1 that the chance for the improvement to occur is bigger when
the RMSE2 is larger. Since the two-input MLT is based on the data of HMD of which
the populations are almost exclusively of European origin, we expect that for non--
European-origin populations the error of two-input MLT are more likely to be larger
and therefore improvements are more likely to occur. This expectation turned to be
true within the HMD populations. The errors are reduced by 17% for Chile, 48% for
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Japan, and 17% for Taiwan, which are the three non-European-origin populations in
HMD. Furthermore, since developing countries are all non-European origin, we
expect that the three-input should provide greater improvements than that in the
validations.

To see more details of the improvement, we choose Japanese women as an
example, and show the fittings of old-age mortality in Fig. 5.2. We see that the
three-input MLT performed slightly worse than did the two-input MLT for years
before 1980, but remarkably better later. Overall, the three-input MLT reduced the
errors of the two-input MLT by 49% (48% for both men and women).

Our final target is not only to better fit 15q60, but to improve the estimates of life
tables at old ages. To see how this target is reached, we choose Japanese women in
2000–2009 as an example, and show the result in Fig. 5.3. We see that the three-
input MLT remarkably improved the estimates of age-specific death rate at old ages.
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5.4 Summary

In 2010–2015, for example, the deaths at age 60 and older already reached 60% of all
deaths worldwide (UNPD 2015). Compared to the numbers of deaths at child and
adult ages, the number of deaths at old ages is the biggest and, ironically, also the
least reliable. This is because, for most developing countries, the numbers of old-age
deaths are not estimated on the basis of empirical data. They are extrapolations of
mortality at younger ages. This reality indicates that improving the estimates of
old-age mortality for individual developing countries is not enough, and that
establishing a mortality database for all developing countries, which utilizes the
improved estimations of old-age mortality, is necessary.

At old ages, migrants are rare comparing to deaths. Thus, census data on
population by age and sex could be used to estimate old-age mortality; and such
data are available for almost all the countries of the world. For example, among the
233 countries and areas (UNPD 2015), 220 have conducted the 2010-round census
between 2005 and 2014 (United Nations Statistics Division 2013b). Moreover, some
developing countries had surveys or censuses that collected information on old-age
mortality, which can be used as supplementary data to more reliably estimate old-age
mortality.

In recent years, new methodological developments have been made to use census
population to estimate old-age mortality, and extend one-input model life tables to
better utilize existing information. Furthermore, these methods are improved to work
better for old ages in recent years. In this paper, we described and organized these
methods as the three-input MLT; and we validated performance of the three-input
MLT using the HMD data. We found that the three-input MLT could improve the
performance of the previous methods for 55 of the 74 populations in HMD, and that
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the average improvement is 14%. To be more relevant to developing countries that
are non-European-origin populations, confirm this suggestion, improvements are
observed for all the non-European-origin populations in HMD, which are 17% for
Chile, 48% for Japan, and 17% for Taiwan.

This paper indicated that establishing a mortality database for developing coun-
tries is necessary, that the methodology is adequate, and that the empirical data are
available.
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Appendices

Appendix A. Adjusting Age Reporting Errors

It is hard to find a proper basis to adjust enumerating errors in a real population,
which is affected by historical fertility, mortality and migration. But a stationary
population is determined only by mortality. Thus, it is possible to find a proper basis
to adjust age errors for stationary populations. According to the United Nations
general model life table (United Nations Population Division 1982), there is a
common relationship between the survival ratios S60 ¼ L65

L60
and S65 ¼ L70

L65
among

model life tables, which is

S65 ¼ �0:29þ 1:27 � S60,R2 ¼ 0:998: ð5:18Þ
This relationship is called the model line. When the observed survival-ratio point,

S60; S65ð Þ, is above the model line, or when the survival ratio is abnormally rising
with age, the difference between the survival-ratio point and the model line is caused
mainly by age heaping. Accordingly, assuming that the heaping ratio at age 60 equals
to that at age 70, the adjustment is

bL60 ¼ L60 � L60
L70

Δ,bL65 ¼ L65 þ Δ,bL70 ¼ L70 � Δ,

ð5:19Þ

where

60 N. Li et al.



Δ ¼ �Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p

2A
,

A ¼ b� a
L60
L70

� L60
L70

,

B ¼ a L60 � L60
L70

L65


 �
þ 2bL65 þ L60 þ L60

L70
L70,

C ¼ L65 aL60 þ bL65ð Þ � L60L70,
a ¼ �0:29, b ¼ 1:27:

ð5:20Þ

On the other hand, when the survival-ratio point is below the model line, the
difference between the survival-ratio point and the model line is caused by
nonspecific errors. Accordingly, the adjustment is to move the survival ratio point
into the model line through minimal distance as

bS60 ¼ �abþ S60 þ bS65
1þ b2

,bS65 ¼ aþ bbS60: ð5:21Þ

bL60 ¼ w
L60 þ bS60L65 þ bS60bS65L70

1þ bS260 þ bS260bS265 þ 1� wð ÞL60,

bL65 ¼ wbS60 L60 þ bS60L65 þ bS60bS65L70
1þ bS260 þ bS260bS265 þ 1� wð ÞL65,

bL70 ¼ wbS65bS60 L60 þ bS60L65 þ bS60bS65L70
1þ bS260 þ bS260bS265 þ 1� wð ÞL70,

ð5:22Þ

where 0 � w � 1 is the weight, and is used as 0.5.

Appendix B. The Errors of Estimating Survival Ratio Using
Census Population

Let the net undercounting rates be u1 and u2 for the first and second censuses,
respectively. Neglecting intercensal migration, the estimated survival ratio (Se) is:

Se ¼ p 70� 74; t2ð Þ � 1� u2ð Þ
p 60� 64; t1ð Þ � 1� u1ð Þ ¼ S

1� u2ð Þ
1� u1ð Þ : ð5:23Þ

Subsequently, the relative error in estimating survival ratio is:

E u1; u2ð Þ ¼ Se� S

S
¼ 1� u2

1� u1
� 1 ¼ u1 � u2

1� u1
: ð5:24Þ
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It can be seen that the estimating error of survival ratio is determined only by
census undercounts. In addition, census undercounts tend to cancel each other in
causing the errors of estimating survival ratio, which would therefore be small in
general.
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Chapter 6
A Method for the Evaluation of Health
Trends in Greece, 1961–2013

Konstantinos N. Zafeiris and Christos H. Skiadas

6.1 Introduction

The period 1961–2013 is characterized by enormous developments in the economic,
political and social characteristics of Greece. After the political instability in the
1960s and the dictatorship of the Colonels (1967–1974), the country progressively
underwent a rapid democratization process; thus the progressive political stability
and the social and economic growth which occurred caused the rapid modernization
of Greece. During that course, the country rejoined NATO and became a full
member of the European Union at the beginning of the 1980s. In 2001 the Euro
was adopted as a national currency and the country organized the Olympic Games in
2004. However, after 2008 a vast economic crisis afflicted Greece and all the
socioeconomic indicators were burdened. Several austerity programs and cuts of
the social and health expenses as well as the downgrading of personal income and
the GDP of the country, left their clear marks on everyday life (see also Clogg 2002,
pp. 166–238 and Eurostat http://ec.europa.eu/eurostat/data/database).

The scope of this paper is to analyze the health trends of the Greek population,
separately for each gender during that period. The main question which arises deals
with the method which is suitable for that reason.

Of the several methods which have been proposed in the literature the most well-
known is that of the World Health Organization. In this method, the results of the
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Global Burden of Disease Study are combined with mortality data (see Murray et al.
2012, 2015) in order to calculate the number of years lost because of disability and
consequently the healthy life expectancy (see Vos et al. 2012; WHO 2013, 2014).
However, several limitations emanate from this method, among them its extremely
high complexity. Others are related to the lack of reliable data on mortality and
morbidity for several countries and the lack of comparability of self-reported data
from health interviews, which are included in the Global Burden of Disease Study
(see also Das and Smarasekera 2013).

Besides this method, Jansen and Skiadas (1995) applied the general theory of
dynamic models to life table data in order to evaluate human health. This kind of
process is defined by a parent stochastic process, which is the human health being
unpredictable, and a boundary, denoted by death (for the first exit time theory see
also Ting Lee and Whitmore 2006). Death comes when the human health falls below
that boundary. Based on that notion Skiadas and Skiadas (2010, 2012, 2014) and
Skiadas (2012a, b) were able to calculate the human health function and based on
that, to calculate the years lost either because of severe or because of severe and
moderate disabilities using only life table data. The relevant life expectancies were
calculated as the difference of life expectancy at birth with the years lost because of
the afore mentioned diseases. This method is based on less demanding data than the
previous one, though a shortcoming maybe the complexity of the calculations. For
that Skiadas has created an EXCEL sheet in order to facilitate the calculations (see
http://www.cmsim.net/id31.html).

However, a more parsimonious and less demanding solution was developed quite
recently which is based on the force of mortality (Skiadas and Zafeiris 2015). The
aim of the method is to express the health state of the population with one main
parameter. Thus, a model was proposed containing two parameters with one crucial
health parameter and with similar properties of the Gompertz. This model was tested
for several European countries against the two previous methods and gave very good
results (see Zafeiris and Skiadas 2015), and because of that it will be used in this
paper using the mortality data of Greece (1961–2013). If μx is the force of mortality
in age x, then it comes that:

μx ¼
x

T

� �b
ð6:1Þ

where T is the age at which μx ¼ 1 and b is a parameter expressing the curvature of
μx.

The main task is to calculate the healthy life years as a fraction of surfaces in a
mortality diagram (see Fig. 6.1). This idea, which originates from the First Exit Time
Theory and the Health State Function approach, is to estimate the area Ex under the
curve OCABO:

Ex ¼
Z T

0

x

T

� �b
dx ¼ T

bþ 1ð Þ
x

T

� �b

where dx represents the life table’s death distribution. The resulting value for Ex in
the interval [0, T] is given by:
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Emortality ¼ T

bþ 1ð Þ
It is also clear that the total area Etotal for the healthy and mortality part of the life

is the area included into the rectangle of length T and height 1, thus ETotal ¼ T. Then,
the healthy area is given by:

Ehealthy ¼ T � Emortality ¼ T � T

bþ 1ð Þ ¼
bT

bþ 1ð Þ
Obviously:

Ehealth

Emortality
¼ b

and

Etotal

Emortality
¼ bþ 1

These two indicators can describe the health status of the population, the second
one being compatible with the severe and moderate causes indicator of the health
state approach and thus it can be used as an estimator of the loss of healthy life years
(LHLY) in the form of:

LHLY ¼ λ bþ 1ð Þ
where λ is a correction multiplier, which for multiple comparisons can be set to be
one year. In that way similar results with the World Health Organization approach
are found.

Fig. 6.1 The mortality diagram used in the μx based method.μ∗x values correspond to the fitted ones
of μx according to formula (6.1)
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6.2 Data and Methods

Data come from the Human Mortality Database (www.mortality.org) for the years
1981–2013. Before 1981, they come from the Eurostat database (http://ec.europa.eu/
eurostat/data/database), because the Human Mortality Database has not uploaded
any data due to quality reasons (see also Agorastakis et al. 2015). In any case,
mortality data of the Greek population become of lower quality towards the past;
nevertheless, it should be used in order to examine any long or short term trends. For
that reason the Life Tables of males and females were used for the years 1961–1980.
However, because the open-ended open interval of the published Life Tables is the
85þ μx values were extrapolated until the age of 110 years by applying a cubic spline
to the ages 70–84 of the form (see also http://mathworld.wolfram.com/CubicSpline.
html):

bqi ¼ qx þ a xi � xð Þ þ b xi � xð Þ2 þ c xi � xð Þ3

where x ¼ 70 and xi is each age until the 84th year of human life.
Afterwards, the μx based method as described in the previous session was

applied. All the calculations were carried out in an EXCEL sheet.

6.3 Results

The results of the analysis indicate that a continuous and rather linear increase of life
expectancy at birth is observed in both genders between 1961 and 2014 (Fig. 6.2).

The healthy life expectancy (HLE) increases too, though the fluctuations which
are observed before 1981 must be mainly attributed to the quality of data, especially
for the older ages. In any case, females live longer and healthier lives than males;
however, for the last years of the study any improvements are halted. This could be
attributed to the effects of the economic crisis, though it must be stressed that longer
times series are needed in order for any effects to be accurately found and evaluated.

Fig. 6.2 Life expectancy at
birth (LE) and healthy life
expectancy (HLE). Greece
1961–2013
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Additionally, the gap of both life expectancy and healthy life expectancy is, with
one exception, positive, which means that the relevant values are higher in females
(Fig. 6.3). These gaps, despite the large fluctuations observed mainly in HLE until
1981, which have been discussed in the previous paragraph, tend to increase until the
onset of the economic crisis. Later on, in both indicators the among the two genders
differences tend to become lower. Of course, the gap of life expectancy is always
higher than the gap of healthy life expectancy.

Another important finding is seen in the scatter plots of Fig. 6.4. If the period
1961–1980, where several outliers are observed because of the quality of data is
omitted, it seems that as life expectancy increases the loss of healthy life years
increases too. It is quite obvious then that as long as mortality transition goes on and
the longevity of the people becomes higher, the number of years in which these
people live in burdened health increases too, a fact which must be taken into
consideration in the planning of social and pension systems in the country. It must
also be taken into consideration that the relationship between healthy life expectancy
and life expectancy at birth is not necessarily linear as is seen in Fig. 6.5, especially
in males. In female, after 1981 a more linear trend occurs.

Another, but still open question, is if these results are in accordance with
analogous results of other approaches. In Table 6.1 the findings of Murray et al.
(2015) concerning Greece are cited in comparison to the results of the analysis
undertaken in this paper.

A first observation concerning Murray et al. (2015) analysis is that the published
confidence intervals are high concerning the healthy life expectancy (HALE), about
5 years for males and 6 years for females, a fact which indicates the existing high
degree of uncertainty. The results of the analysis cited in this paper are within the
confidence intervals of Murray et al. (2015), especially the upper one in males while
in females they overtook them slightly. However, the temporal trends of healthy life
expectancy indentified by the two methods are almost identical. In males, according
to Murray et al. (2015) HALE increases between 1990 and 2005 by 1.48 years and
1.1 years between 2005 and 2013. HLE, according to the method used in this paper
increased by 1.38 and 1.77 years respectively. In females the analogous figures are

Fig. 6.3 The between the
two genders gap (females-
males) in life expectancy at
birth (LE) and healthy life
expectancy (HLE). Greece
1961–2013
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þ1.8 and þ0.53 years according to Murray et al. (2015) and þ1.88 andþ0.77 years
according to the method used in this paper. It seems then that the two methods are in
accordance with each other in describing the temporal trends of the healthy life
expectancy. The differences they have for each year of study, seem to be acceptable
giving the high degree of uncertainty of Murray et al. (2015) method.

Fig. 6.4 The lost healthy
life years (LHLY) and the
life expectancy at birth (LE).
Greece 1961–2013

Fig. 6.5 The healthy life
expectancy (HLE) and the
life expectancy at birth (LE).
Greece 1961–2013
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6.4 Conclusions

The findings of the study can be summarized as follows:

• The loss of healthy life years (LHLY) is always higher for females than for males
thus compensating for the extra years for females measured in life expectancy. As
we live longer the healthy life years lost are increasing: along with expanding the
life span we have to find ways to reduce the number of the healthy life years lost.
Also, the simple measures of the social security systems based on the life
expectancy should be improved taking the LHLY into serious consideration in
the related plans and programs.

• The healthy life expectancy (HLE) is also higher for females than for males and in
general in increasing order except for the last years in females. The gap of life
expectancy at birth between the two sexes is larger than the gap for the healthy
life expectancy.

• It is a challenge for health systems to adapt their support to the growing segment
of society which lives above the HLE age.

• By comparing the method of WHO as cited by Murray et al. (2015) with the one
cited in this paper similar results are found concerning the temporal trends of
healthy life expectancy.

• The method cited here is easier to apply as it is based only on mortality data, thus
it can serve positively in the understanding of past and contemporary trends of the
health level of a population and in fact in the evaluation of its demographic and
epidemiological transition.

Table 6.1 The healthy life expectancy at birth according to Murray et al. (2015) and to the method
used in this paper

Year

Males Females

LE HALE LE HALE

Murray et al. (2015)

1990 74.53
(74.38–74.68)

65.34
(62.70–67.63)

79.44
(79.29–79.59)

68.42
(65.15–71.20)

2005 76.40
(76.26–76.55)

66.82
(64.07–69.25)

81.47
(81.28–81.68)

70.22
(66.93–73.03)

2013 77.41
(76.77–78.07)

67.90
(65.13–70.44)

82.24
(81.67–82.75)

70.75
(67.46–73.67)

This paper

1990 67.04 71.22

2005 68.42 73.1

2013 70.19 73.87
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Chapter 7
A Method for the Forecasting of Mortality

Konstantinos N. Zafeiris

7.1 Introduction

Much effort has been made on mortality projections and forecasting during the last
few decades, used for a variety of reasons including social protection programs,
pension systems, health research, capital investment, estimation of the future popu-
lation trends etc. (see Murray and Lopez 1997; Mathers and Loncar 2006; Booth and
Tickle 2008; Stoeldraijer et al. 2013; Office of the Chief Actuary 2014; UNPP 2015
etc.).

Booth and Tickle (2008), in their review on mortality forecasting, distinguish
three main types of analytical approaches. In the extrapolative approach, which is
considered to be the most extensively used, an extrapolation of aggregate measures,
like life expectancy at birth, takes place, assuming that the future trends will
essentially be a continuation of the past. Several methods have been applied for
that reason like the Brass logit transformation (see Pollard 1987) or the Lee-Carter
model (1992). In the explanatory approach, structural or epidemiological models of
mortality are taken into consideration. These models are about certain causes of
death involving disease processes and known risk factors, thus they take into
consideration medical knowledge and behavioral and environmental changes. In
the third approach (the expectation), forecasts are based on the subjective opinions of
the experts involving varying degrees of formality: an assumed forecast or scenario
is specified, often accompanied by alternative high and low scenarios (Booth and
Trickle 2008).
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In any case, the measure that will be forecast may depend on the purpose of the
forecast and data availability. In most of the cases either the age specific mortality
rates or probabilities are forecasted. In others, only the future levels of life expec-
tancy at birth are estimated and the age specific pattern of mortality is applied with
the use of an appropriate life table. If the future number of deaths is in question, the
analysis is based on the forecasted mortality rates (see Booth 2006).

Quite often, mainly during the last few years, the mortality forecasts have a
probabilistic character. Two relevant examples which have been developed recently
are those of the United Nations’ Population Division and of the Wittgenstein Centre
for Population and Global Human Capital (WIC). The United Nations Population
Division (UNPP 2015) after estimating the mortality levels in the future (life
expectancy at birth) for females, by using a random walk model with drift, apply
an autoregressive model in order for life expectancy at birth for males to be
estimated. Afterwards an age pattern of mortality, which corresponds to the observed
mortality levels, is estimated for five year age groups by applying several methods
like an extension of the Lee-Carter method, the method of Andreev et al. (2013) or
on the basis of model life tables (see also Raftery et al. 2012, 2013; Li et al. 2013). In
the population projections of the Wittgenstein Centre for Population and Global
Human Capital (WIC), the future levels of mortality are estimated on the basis of life
expectancy at birth by a group of experts followed by several workshops. For each
area of the planet a process of σ-convergence (see Sala-I-Martin 1996) is assumed
between a country, which is considered to be the model one of that area, and the rest
of the surrounding countries (see Torri and Vaupel 2012; Garbero and Sanderson
2014). The future levels of life expectancy at birth are estimated firstly for the
females and afterwards for the males on the basis of the differences they had with
the other gender in the 2010 revision of the World Population Prospects (Samir et al.
2013). In both of these examples, the life expectancy at birth of females is considered
to be the main element of mortality forecasting and afterwards the relevant values for
males are estimated and an age pattern of mortality is assigned to each of the genders.

In this paper, an alternative method for forecasting mortality trends will be
presented. The analysis will not be focused on the estimation of future age specific
mortality rates, for the calculation of which many procedures may be used, as for
example seen in the Booth and Trickle publication (2008) and elsewhere. Instead,
the procedure which is proposed here, except for infant mortality 1q0, is based on the
death probabilities of large age groups specifically 9q1, 10q10, 15q20, 30q35 and 20q65,
where the number on the left of the letter q denotes the size of an age group in years
and the number on the right the first age at that group. These probabilities, which will
be considered to be known (their future levels are estimated in some way as said
before), will be expanded to one year probabilities of death in a full life table by
applying Kostaki’s relational method (2000, see also Kostaki 1991; Kostaki and
Lanke 2000; Kostaki and Panousis 2001). It must be stressed that the original
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method of Kostaki focuses on the calculation of full life tables on the basis of five
years age group abridged ones and actually it was not considered to be a method of
forecasting. The use of this method as a tool in the forecasting process is the first
innovation of the paper, the second one being the use of large age groups, which
facilitates its applicability. Afterwards, the one year probabilities of death will be
smoothed by applying a new combination of methods: the Heligman-Pollard (1980)
method as modified by Kostaki (1992) will be used up to an age and afterwards three
cubic splines will be applied.

However, a question is still open concerning the effectiveness of the method. In
order for this question to be answered this procedure will be applied on known data
and any discrepancies of the findings, if found, will be examined. The procedure that
was followed will be discussed later on in this paper.

7.2 The Relational Method of Kostaki

According to this method (Kostaki 2000, see also Kostaki 1991; Kostaki and Lanke
2000; Kostaki and Panousis 2001) an abridged life table is expanded to a full one in
relationship to another and known full life table, which is used as standard and is
denoted in the following formulas with the letter S. In an abridged life table the one
year death probabilities qx þ i (i ¼ 0. 1. 2. . .n�1) in each of its n years intervals are
equal to:

1� 1� q Sð Þ
xþi

� �nKx
ð7:1Þ

The term nKx equals to:

nKx ¼ ln 1� nqxð ÞPn�1

i¼0
ln 1� q Sð Þ

xþi

� � ð7:2Þ

Thus, if the values of nqx of an abridged life table as well as the one year
probabilities of death of the full standard life Table (S) are known, first the values
of nKx are calculated with 7.2 and afterwards the one year probabilities of death
which correspond to the abridged life table are calculated with 7.1. The following
property must be fulfilled:

1�
Yn�1

i¼1

1� qxþi

� � ¼ nqx
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7.3 The Modified 9 Parameters Heligman-Pollard Formula
and the Cubic Splines

After the estimation of the one year probabilities of death with the previous method,
results need to be smoothed and for that the modified 9 parameters Heligman-Pollard
formula was used. In its original form (Heligman and Pollard 1980) the formula is as
follows:

qx
px

¼ A xþBð ÞC þ De�E lnx�lnFð Þ2 þ GHx ð7:3Þ

where x is the age and A, B, C, D, E, F, G and H are parameters.
The term qx/px is the summation of 3 components (Fig. 7.1). The first component,

which includes the parameters A, B, and C, represents the fall in mortality during
early childhood as the child adapts to its new environment and gains immunity from
diseases from the outside world. The second component includes the parameters D,
E and F. It describes the accident hump between ages 10 and 40, which appears
either as a distinct hump in the mortality curve or at least as a flattening out of the
mortality rates. The third term corresponds to a Gompertz exponential which
represents the aging or the deterioration of the body.

Kostaki (1992) observed some systematic variations in the Heligman-Pollard
8 parameters formula concerning the spread of the accident hump. Thus, she
proposed that a better fit of the model is achieved if:

Fig. 7.1 The probabilities of death [log10(qx)] and the Heligman-Pollard formula. Greece,
females, 2010–2013. (Data Source: Human Mortality Database. www.mortality.org)
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qx
px

¼ A xþBð ÞC þ De�E1 lnx�lnFð Þ2 þ GHx, for x � F

A xþBð ÞC þ De�E3 lnx�lnFð Þ2 þ GHx, for x > F

(
ð7:4Þ

She proposed, then, that the parameter E which denotes the spread of the accident
hump should be replaced with the relevant E1 and E2, representing the spread of the
accident hump to the left and right of its top (its location denoted by the parameter F)
respectively.

However, the most important deviation is the one observed in the senescent
mortality (see Fig. 7.1), which cannot be described with the Gompertz law, at least
when it is applied to the modern Greek data. Because of that, an alternative project
was applied as follows. First of all, the Heligman-Pollard 9 parameters model (the
one with Kostaki’s modification) was applied up to the age of 40. After that age
3 cubic polynomials, known as cubic splines were used, each of them for 15 years
until the age of 84. These third order polynomials (see also http://mathworld.
wolfram.com/CubicSpline.html) were of the type:

bqi ¼ bqx þ ak xi � xð Þ þ bk xi � xð Þ2 þ ck xi � xð Þ3

where k ¼ 1. . .3 the number of spline, and xi the age and bqx is the fitted value for
x ¼ xi. Obviously the end of each spline is the beginning of the next one. After the
age of 84 the probabilities of death were extrapolated with the aid of the last spline.
EXCEL SOLVER was used in order for the Sum of Squared errors of the fit to be
minimized. For the 9 parameters formula the following term was chosen to be
minimized, as happened in the original paper of Heligman and Pollard (1980):

X
x

bqx
qx

� 1

� �2

where bqx is the fitted value for age x and qx is the observed one. A crude estimation of
the fit was given by the R2 estimator which tended to be 1 in both genders for all of
the years studied (see also Zafeiris and Kostaki 2017).

7.4 An Application with the Greek Data

In order to test for the validity and the effectiveness of the method the following
procedure was used:

1. The full life tables of the Greek population, separately for each gender, were
calculated for the years 2001, 2005, 2010 and 2014 using the Calot and Sardon
(2004) procedure (see also Calot and Franco 2001; Calot 1999) and the original
software which was developed by Calot himself. The analysis took place in the
Laboratory of Demographic and Social Analyses of the University of Thessaly
(Department of Regional Planning and Development). The analysis was based on
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the most recent available data from the National Statistical Authority of Greece
(November, 2015, ELSTAT).

2. For each of the genders the full life tables of the year 2001 were used as standards.
The probabilities of death per age of these life tables were smoothed as described
in session 3 of this paper and afterwards the life tables were recalculated.

3. The probabilities of death for the large age classes (except of the first one) 1q0,

9q1, 10q10, 15q20, 30q35 and 20q65 were calculated on the basis of the observed data
for the years 2005, 2010 and 2014. These probabilities were calculated with the
formula:

1�
Yn�1

i¼1

1� qxþi

� � ¼ nqx

as described in Kostaki (2000).

4. The relational method of Kostaki (2000), which is described in the session 2 of
this paper was used in order for the large age classes probabilities to be expanded
into one year of age probabilities, separately for each gender and year of study.

5. The estimated probability of death distributions were smoothed with the proce-
dure described in session 3 of this paper.

6. The results of the analysis were compared with the observed ones, that is the
known full life tables for each of the years 2005, 2010 and 2014.

7.5 The Results of the Analysis

The results of the analysis concerning the probabilities of death are shown in
Figs. 7.2 (males) and 7.3 (females). The forecasted probabilities are denoted as
“qx expansion” and the observed as “qx observed”. The term “qx fitted” denotes
the results of the smoothing procedure, as described in session 7.3 of this paper,
which has been applied to the observed probabilities of death. In both genders, it can
be seen that the method applied gave excellent results and, as a matter of fact, the
forecasted probabilities of death coincide with the observed ones in both genders.

Some minor differences which are found mainly at the very old ages for females
are not important at all and in fact they do not have an effect on the life expectancies
of differences ages as seen in Figs. 7.4 (males) and 7.5 (females). In these figures,
where the ex terms are defined in an analogous way with Figs. 7.2 and 7.3, it is seen
that life expectancies at all ages practically coincide.

Thus, the method applied here is very efficient in the forecasting of mortality
levels, while, at the same time, it is quite parsimonious in terms of calculations, a
property which further enhances its applicability.
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7.6 Conclusions

A new method for the forecasting of one year age specific probabilities of death was
demonstrated in this paper, with the aid of a relational method which was originally
developed by Kostaki (2000) in order for an abridged life table to be expanded into a
full one. The probabilities of death for large age groups are used in this paper. These

Fig. 7.2 The forecasted probabilities of death [log10(qx)] (qx expansion) and the relevant observed
values (qx observed and qx fitted). Greece, males 2005, 2010, 2014
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probabilities may be assessed with a variety of methods, though this process is not
demonstrated here. After the appliance of the relational method the age specific
probabilities of death were smoothed with the aid of a combination of the Heligman-
Pollard (1980) formula as modified by Kostaki (1992) and three subsequent cubic
splines.

Fig. 7.3 The forecasted probabilities of death [log10(qx)] (qx expansion) and the relevant observed
values (qx observed and qx fitted). Greece, females 2005, 2010, 2014
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This method, as tested with Greek data, gave excellent results fact which indicates
its applicability and effectiveness. One of the advantages of the method used is that it
is quite parsimonious in terms of calculations, thus its usefulness is enhanced
even more.

Fig. 7.4 The forecasted life expectancy (ex expansion) and the relevant observed values
(ex observed and ex fitted). Greece, males 2005, 2010, 2014
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Chapter 8
Prospective Scenarios on Coverage
of Deaths in Brazil

Neir Antunes Paes and Alisson dos Santos Silva

8.1 Introduction

The primary purpose of the projections in demography is to provide an estimate of
future population which is used as a common framework for national and regional
planning in a number of different fields. Mortality projections are an essential input
for projections of population, and also the financial development of pension
schemes. Governments and insurance companies all over the world rely on mortality
projections for counting its population and for efficient administration of their
pension commitments. They also need to have some idea about how patterns of
death (mortality) are likely to change so that they can plan for the future. Thus,
plausible projections of mortality are of chief importance to informing welfare and
public policy planning about future trends in population aging.

Mortality forecast in Brazil is officially produced by the Brazilian government
(IBGE 2005), which every single year has the commitment to review such statistics.
According to the government in 2042, the number of deaths in Brazil (more than 2.2
million) will exceed for the first time the number of births (2.1 million), and the
population (then of 228 million) will decrease.

The demographic models used in projecting mortality are usually based on
statistical modeling of historical data. However, mortality projections and its patterns
of deaths for the less developed regions are usually very hard to calculate because the
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uncertainties regarding the coverage of death in these regions. This is especially true
for the Northeast region of Brazil with a population of around 57 million in 2016,
where little has been known about the completeness of death, particularly in the
future.

Knowing about the completeness of death reporting is essential. First we need to
know how complete death reporting is so that we can take actions to improve the
quality of the original data. Second, when we know how complete death reporting is,
we can make the adjustments needed to permit us to use the death rates derived from
death registration in such demographic tasks as projecting future populations. The
age-and-sex-specific death rates used in these projections may be calculated when
registered data on deaths and on the corresponding population by age and sex are
available. Even when such data appear to be complete, however, they should not be
accepted blindly when being used for such purposes as constructing a 1ife table.

Before doing projections an important question to be answered is: is it the
coverage of deaths complete, and if not, what do demographers need to do to
estimate the coverage in the future? In another words, when the coverage of deaths
will be complete in the case to be incomplete?

Since mathematical methods may be applied for any region or country which
death coverage is not complete, the last question was the motivation for doing this
work for the Northeast region of Brazil. In this way is hoped to give a contribution to
the government, planners and scholars in this field.

8.2 Study Data and Methods

This study has an ecological time-trend design, which geographical unites are the
9 states (provinces) belonging to the Brazilian Northeast region and the region as
whole. A year-by-year longitudinal dataset from 1991 to 2011 was created. The data
used in this study refers to the coverage of death for both sexes estimated by RIPSA
(2012), organization vinculated to the Ministry of Health. Despite the criticism that
can be made, this longitudinal dataset is the only one available for the 27 states of the
country. The coverage of death values were calculated dividing the observed death
data by the estimated one. The calculation of the latter was based on projections of
the population made by IBGE (2005).

There are no specific methods for projecting coverage of death. However, the
literature provides mathematical models that can be adapted to situations of coverage
projections, as long as they do not violate the assumptions and criteria.

Two types of nonlinear modeling were used to estimate the year of full coverage
of death for Northeast states: Logistic Growth Model and Gompertz function. In
addition, the Holt Exponential Smoothing Model was used, which presupposes
linear growth trend of a series of data.
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8.2.1 Logistic Function (Bezerra 2008)

The logistic curve is part of the so-called saturation curves. It is applied to phenom-
ena in which the growth rate of its accumulated observations grows to a certain value
and, from that point, begins to fall with the same intensity of growth, tending to a
long-term stationary value. Thus, in the logistic adjustment, it is implicit that the rate
of increase in growth rates is equal to that of the decrease, which in the long run
hardly happens with the tendency of projections. The equation is given by

Y ¼ α

1þ e�γ x�βð Þ

where:

Y ¼ coverage of deaths;
e ¼ the natural logarithm base;
x ¼ time in years of coverage of deaths;
α ¼ the curve’s maximum value (indicating the stabilization value of the dependent

variable in relation to time);
β ¼ the x-value of the sigmoid’s midpoin (location parameter); and.
γ ¼ the steepness of the curve (curve growth rate measure).
α, β e γ are parameters, where α > 0 e γ > 0.

8.2.2 Gompertz Function (Souza et al. 2010)

A Gompertz curve or Gompertz function, named after Benjamin Gompertz, is a
sigmoid function. It is a type of mathematical model for a time series, where growth
is slowest at the start and end of a time period. The right-hand or future value
asymptote of the function is approached much more gradually by the curve than the
left-hand or lower valued asymptote, in contrast to the simple logistic function in
which both asymptotes are approached by the curve symmetrically. It is a special
case of the generalised logistic function. This Gompertz function is defined by

Y ¼ αe�eγ x�βð Þ

where, the meaning of each variable and parameter of the Gompertz function is the
same, as specified for the Logistic function.
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8.2.3 Holt Exponential Smoothing Model (Moretin and Toloi
2006)

Holt (1957) extended simple exponential smoothing to allow forecasting of data
with a trend. This method involves a forecast equation considering the level, trend
and residual with zero mean and constant variance:

Zt ¼ μt þ Tt þ at, t ¼ 1, . . . ,N,

where:

μtt denotes an estimate of the level of the series at time t;
Tt denotes an estimate of the trend of the series at time t;
at denotes the random error at time t.

The level and trend values of the series were estimated by

�Zt ¼ AZt þ ð1� AÞðẐt�1 þ T̂ t�1Þ, 0 < A < 1, t ¼ 2, . . . ,N,

T̂ t ¼ Cð�Zt � �Zt�1Þ þ ð1� CÞT̂ t�1, 0 < C < 1, t ¼ 2, . . . ,N,

A and C are the smoothing constants. The prediction of future series values for this
procedure is given by:

�ZtðhÞ ¼ �Zt þ hT̂t,8h > 0

That is, the forecast is made by adding to the basic value (Z¯t) the multiplicative
trend by the number of steps ahead that one wishes to predict (h).

8.2.4 Diagnostic and Residual Measures

In non-linear regression, the analysis of the residuals of a model is done to check the
plausibility of the assumptions involved (Thode 2002). For the verification of the
assumptions, a graphical analysis of the residues can be used, this being an informal
method of analysis that involves the graphs of residues in relation to the independent
variables and the predicted values, or through statistical tests. The latter is a more
objective way of analyzing the residues by providing a numerical measure for some
of the described discrepancies.

The Shapiro-Wilk statistical test was used to verify the normality assumption. To
measure the heteroscedasticity of the residues, the Breusch-Pagan test and the
graphic inspection of the residues were used against the estimated values to examine
whether the error variances are constant. The Durbin-Watson test was used to verify
the existence of first order autocorrelation.

The diagnostic measures were used for residue analysis, detection of outliers,
influential points, and colinearity. In addition, tests based on statistical hypotheses
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were carried out to verify the suitability of the Logistic and Gompertz model
adjustments (Bezerra 2008; Souza et al. 2010).

Two statistical tests for time series analysis applied to Holt’s exponential smooth-
ing model were used: the Dickey-Fuller and Wilcoxon tests (Moretin and Toloi
2006).

The Mean Square Error (MSE) was proposed as criterion for selecting the best
model. The MSE is defined by the sum of the squares of the differences between
estimated/predicted results and the observations (Keyfitz 1981).

In order to obtain the estimates from the application of the prediction methods and
the error measures, the R-3.3.1 free-access software was used.

8.2.5 Criteria for Selection of Full Coverage of Deaths

The year of optimal coverage was chosen for the first year whose estimate was
greater than or equal to 99% or when the maximum inflection point of the model
curve was reached.

Then, the criteria for selecting the range of forecast of full coverage of deaths
were:

1. When the estimates between the models did not exceed four years a range of
forecast of full coverage using both values was adopted;

2. In case the difference between forecasts was greater than four years, a four-year
forecast interval was considered based on the model with the lowest MSE;

3. The model with estimated full coverage below 2019 was discarded. In this case, a
two year interval was considered based on the selected coverage.

8.3 Results and Discussion

Among the nine states that compose this region, coverage of deaths in 2011 ranged
from 79% to 94%. In the beginning of the series, in 1991, the coverage ranged from
25% to 70% (Table 8.1).

There is no technique of correction of the coverage of deaths free of assumptions,
which are hardly fulfilled for any region of the world, and Brazil. In this way, errors
are allowed in any estimate. The greatest errors in RIPSA’s estimates (2012) are
related to the period from 1991 to 1999 that made use of the projections of deaths
which are part of the population projections elaborated by IBGE (2005). From 2000
onwards, the correction factors of the Active Search Project from the Ministry of
Health (Szwarcwald et al. 2011) were used which are considered more accurate.

From 1991 to 1999 Brazil had an increase of 8.3% and the Northeast of 10.5% in
the coverage of death. During 1999–2000 the increase in coverage of deaths in Brazil
was 5.1% and in the Northeast 17.7%. From 2000 to 2011 this difference was of
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3.3% in Brazil and 9.3% in the Northeast. However, the change in coverage levels
from 1999 to 2000 was not only due to a change in methodology in its estimates, but
also to other factors.

The evolution of coverage levels indicates that the year 2000 can be considered as
a milestone in time, after which an unprecedented rate of increase in the history of
death coverage in the Brazilian Northeast was triggered. The poor quality of
coverage before 2000 may be due to the enormous political and economic crisis
that directly affected investments in health and basic care in Brazil (Polignano 2004)
reinforced by the precarious training of health professionals regarding data collec-
tion and manipulation, and non-standardization of these tasks, which led to poor
quality and unreliability of information (Paes 2007; Mello Jorge et al. 2007, 2010).

The main factors that contributed to the great increase in coverage in the North-
eastern states particularly since the year 2000 were the technological development of

Table 8.1 Coverage of deaths in Brazil, Northeast and States of Northeast, 1991–2011

Year BR NE MA PI CE RN PB PE AL SE BA

1991 77.6 51.4 31.4 25.1 41.1 44.9 53.5 70.0 57.7 64.2 56.9

1992 78.6 51.9 31.2 32.6 41.0 46.2 51.0 68.7 56.7 73.9 57.8

1993 82.9 55.4 31.7 36.3 49.5 53.5 58.5 72.8 57.8 67.9 58.9

1994 83.4 55.2 28.2 35.9 52.7 52.5 56.5 70.6 55.7 68.7 61.3

1995 83.6 55.4 28.5 34.1 51.5 58.7 57.9 68.0 58.1 80.2 60.8

1996 84.6 55.6 27.3 30.7 53.6 57.3 56.1 70.2 55.5 74.0 62.9

1997 83.7 56.8 30.6 35.6 57.2 56.8 55.9 72.6 57.8 70.7 61.0

1998 85.8 60.8 34.6 39.0 58.7 59.9 58.0 77.0 67.5 78.4 65.3

1999 85.9 61.9 32.7 40.7 64.5 61.2 57.0 77.6 58.8 80.3 68.6

2000 91.0 79.6 55.2 73.1 80.6 77.7 82.1 91.7 87.1 88.2 77.7

2001 91.7 82.0 64.0 79.5 83.1 80.4 83.9 92.2 87.8 89.0 78.8

2002 92.5 83.9 69.1 82.7 84.7 81.0 85.8 92.7 89.0 89.7 81.1

2003 92.9 84.9 72.3 84.0 86.4 81.8 87.3 92.8 89.3 90.1 81.6

2004 93.1 85.1 73.5 84.7 86.5 81.5 88.2 92.7 89.2 90.3 81.9

2005 93.2 85.4 74.4 84.8 86.4 80.6 88.2 92.9 88.7 89.9 83.0

2006 93.3 85.5 74.2 85.5 86.1 80.4 88.4 93.0 89.7 89.8 83.2

2007 93.6 86.1 74.4 86.8 86.3 81.8 89.4 93.2 90.2 90.0 84.0

2008 94.0 87.2 76.5 87.3 87.9 84.8 89.8 93.3 91.5 91.8 84.9

2009 94.3 88.1 78.5 87.4 88.7 86.2 90.7 93.6 91.7 92.4 86.2

2010 94.2 88.9 78.8 88.2 90.0 87.9 91.1 93.6 92.3 92.5 87.4

2011 94.2 88.8 79.1 88.1 89.8 87.6 91.2 93.5 92.2 92.7 87.4

Minimum 77.6 51.4 27.3 25.1 41.0 44.9 51.0 68.0 55.5 64.2 56.9

Maximum 94.3 88.9 79.1 88.2 90.0 87.9 91.2 93.6 92.3 92.7 87.4

1991–1999 8.3 10.5 7.3 15.6 23.5 16.3 7.5 9.6 12.0 16.1 11.7

1999–2000 5.1 17.7 22.5 32.4 16.1 16.5 25.1 14.1 28.3 7.9 9.1

2000–2001 3.3 9.3 23.9 15.1 9.4 10.2 9.1 1.9 5.2 4.2 9.7

Note: BR-Brasil, NE-Northeast, MA-Maranhão, PI-Piauí, CE-Ceará, RN-Rio Grande do Norte,
PB-Paraíba, PE-Pernambuco, AL-Alagoas, SE-Sergipe e BA-Bahia
Source: Rede Interagencial de Informações para a Saúde no Brasil – IDB, 2012
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information, which has enabled a considerable leap in quality in the collection and
processing of data.

These actions were reinforced by the expansion of coverage of health services
through programs such as the Family Health Strategy, monitoring of the Death
Verification System (SVO), and increased awareness, supervision and vigilance by
physicians. The significant improvement in the quality of death records from the
Mortality Information System of the Ministry of Health can be further credited to the
addition of the hospitals in the collection of data, previously collected only in civil
registries offices (Mello Jorge et al. 2010; Lima and Queiroz 2014).

The standardized residuals versus the adjusted values for the Northeast and all
states indicated homogeneity of the variances that can be confirmed by the estimates
of the Breusch-Pagan statistic test. In it, the null hypothesis that the residues were
homocedastic was not rejected. Verifying the normality assumption the Shapiro-
Wilk test with p-values � 0.05 for the Logistic Model and the Gompertz model did
not reject the null hypothesis, indicating that the residues followed a normal distri-
bution. The Durbin-Watson test indicated that the residues were independent as
desired. The results of the application of these tests are presented in Table 8.2.

According to the estimates of the p-value of the Dickey-Fuller Test, the time
series discussed were stationary over time with a significance level of 5%. The
Wilcoxon test pointed to the presence of increasing trend and almost stationary
behavior in the series of data for all the regions, satisfying the requirements for the
application of the Holt model. The results are showed in Table 8.3.

According to Table 8.4 the deviations between the coverages with the use of the
EQM showed that the Holt model had the best performance for five states and the
Northeast as a whole. The Logistic model presented the smallest errors for four
states. These States are highlighted in Table 8.4.

Figures 8.1a and 8.1b show the time series of observed, and estimated death
coverage trend for the Northeast as a whole and the adjustment curves for each

Table 8.2 Estimates of the residual p-value of the Shapiro-Wilk, Breusch-Pagan e Durbin-Watson
tests according to Logistic and Gompertz model for Northeast and states of Northeast, Brazil

State/Region

Logistic Gompertz

Shapiro
Breusch-
Pagan

Durbin-
Watson Shapiro

Breusch-
Pagan

Durbin-
Watson

Maranhão 0.52 1.00 0.00 0.37 1.00 0.00

Piauí 0.19 1.00 0.00 0.20 1.00 0.00

Ceará 0.57 1.00 0.00 0.52 1.00 0.00

Rio G. Norte 0.62 1.00 0.00 0.64 1.00 0.00

Paraíba 0.25 1.00 0.00 0.29 1.00 0.00

Pernambuco 0.50 1.00 0.00 0.51 1.00 0.00

Alagoas 0.72 1.00 0.00 0.77 1.00 0.00

Sergipe 0.48 1.00 0.22 0.52 1.00 0.21

Bahia 0.76 1.00 0.00 0.73 1.00 0.00

Northeast 0.30 1.00 0.00 0.28 1.00 0.00
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model adopted. The estimated death coverage trend is also showed for all nine states
of the Northeast.

In general a better smoothing was observed for the Holt model. The Logistic
model and the Gompertz model did not show any differences in plotting the curve.
These patterns in the models for the Northeast were practically the same observed for
all states, with small variations in the pace for some states as showed in Figs. 8.1a
and 8.1b.

Estimates of Northeast coverage up to the year 1999 showed a steady but
fluctuating increase, with a sharp fall in the pace between 1999 and 2000. Then,
the rate of increase continues, but in a slower way reaching almost constant behavior
at the end of the series.

Two trends are evident, before and after this break. Prior to 2000, the pace of
increase was lower than the second, for almost all states, and the Northeast as a
whole.

Table 8.3 Estimates of the
residual p-value of the
Dickey-Fuller and Wilcoxon
tests for the application of the
Hold model for Northeast and
states of Northeast, Brazil

State/Region

P-values

Dickey-Fuller Wilcoxon

Maranhão 0.51 6.403E-05

Piauí 0.64 9.537E-05

Ceará 0.94 6.403E-05

Rio Grande do Norte 0.64 6.395E-05

Paraíba 0.60 6.403E-05

Pernambuco 0.73 6.395E-05

Alagoas 0.77 6.403E-05

Sergipe 0.92 9.537E-05

Bahia 0.47 6.403E-05

Northeast 0.65 6.403E-05

Table 8.4 Mean Square
Error of estimates with full
coverage of deaths, according
to the models for Northeast
states, Brazil

State/Region

Mean Square Error (MSE)

Logistic Gompertz Holt

Maranhão 52.28 58.44 29.37

Piauí 70.01 80.20 56.85

Ceará 17.82 19.91 16.49

Rio G. Norte 14.38 15.01 15.61

Paraíba 37.00 38.24 37.70

Pernambuco 17.53 18.01 13.14

Alagoas 41.97 43.48 46.04

Sergipe 10.38 11.01 29.03

Bahia 7.38 7.69 4.84

Nordeste 21.72 22.92 15.16

Note: The model with the lowest MSE is italicised
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Because the Gompertz model had a very similar behavior to the Logistic model
(Figs. 8.1a and 8.1b) and provided the worst accuracy errors for most states
(Table 8.4), it was discarded as a predictive model.

Table 8.5 shows the projections of the years when the full coverage of deaths for
the Northeast and states will be reached, using the Logistic and Holt’s model. The
final estimates are presented in forecast intervals, according to the established
criteria.

It was considered that maximum amplitude of four years in the forecast of the full
coverage to be reached by Northeast states is a reasonable variation in the results
generated by the models.

Attention is drawn to the fact that the models captured the behavior of the
coverage of deaths of a historical series, and that they are mathematical. Although
the coverage of deaths in the past is a reflection of the conditions of life in general
(Paes 2007; Mello Jorge et al. 2007, 2010) one may not be assured that living
conditions will be maintained in the future, and that they reproduce a pace of
evolution of the past. Thus, the forecast interval seeks to cover non-measurable
constraints, not captured by a mathematical model.
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Fig. 8.1a Modeling of death coverage according to the models for Northeast and states of
Northeast, Brazil
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Fig. 8.1b Modeling of death coverage according to the models for Northeast and states of
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8.4 Conclusions

In view of the established criteria, in general, the Holt model performed better (less
deviations in the coverage series) by adhering more to the behavior of the past
coverage series.

Obviously, the results should be viewed with caution, since the errors inherent in
any prediction must be taken into account. It should be noted that in order to verify
the suitability of the models, it is necessary to comply with certain assumptions. One
of them referred to the number of points (years) available in the time series, restricted
to 21 points. But they are the only ones available in the literature. This restriction
may have prevented full use of the application of the models, which should be
considered as indicators of the evolution of death coverage.

The final estimates showed three different groups regarding the universalization
of coverage of deaths: Alagoas, Paraíba and Pernambuco (2019–2023); these states
would be the first to reach full coverage of deaths regarding data quality. In a more
distant position were Maranhão and Bahia (2023–2030). And, in an intermediate
position, Ceará, Rio Grande do Norte, Sergipe and Piauí (2021–2026). It is estimated
that for the Northeast the full coverage of deaths will be reached around 2021–2025.

However, it must be acknowledged that, like any scenario, this outline reflects a
possibility considered plausible and that only the future can confirm these scenarios.
Nevertheless, it is expected that these scenarios may contribute to the planning
strategies, and to the evaluation of managers regarding the actions and policies to
be implemented on the performance of death statistics in the Northeast and in the
Country.

Table 8.5 Interval of prediction of the year with full coverage of deaths according to Logistic and
Holt models for the Northeast and states, Brazil

State/ Model

Model w/lowest MSE Criteria Interval of predictionRegion Logistic Holt

Maranhão 2030a 2028 Holt 1 2028–2030

Piauí 2032a 2016 Holt b 2022–2026

Ceará 2024a 2023 Holt 1 2023–2024

Rio G. Norte 2025a 2021 Logistic 1 2021–2025

Paraíba 2017 2020 Logistic 3 2020–2022

Pernambuco 2020 2023 Holt 1 2020–2023

Alagoas 2019 2018 Logistic 3 2019–2021

Sergipe 2026a 2022 Logistic 1 2022–2026

Bahia 2030 2023 Holt 2 2023–2027

Northeast 2035 2021 Holt 2 2021–2025
aInflection point of the curve below 100%
bAn interval of two years for plus and minus was considered based on the mean of the two
predictions models (2024)
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Chapter 9
Applications of the Cumulative Rate
to Kidney Cancer Statistics in Australia

Janelle Brennan, K. C. Chan, Rebecca Kippen, C. T. Lenard, T. M. Mills,
and Ruth F. G. Williams

9.1 Introduction

We define kidney cancer, which is also known as malignant neoplasm of kidney, as
the set of diseases classified as C64 according to the International Statistical Clas-
sification of Diseases and Related Health Problems, 10th Revision (ICD10) by
Australian Institute of Health and Welfare (2016).

The incidence of kidney cancer is the number of new cases diagnosed each year in
a given region, in this case Australia. For each year, the mortality of kidney cancer is
the number of deaths for which the primary cause of death is kidney cancer in
Australia. Incidence and mortality are whole numbers. Sometimes we may use the
terms “incidence” and “mortality” more broadly; we trust that this will not cause
confusion.
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The incidence of kidney cancer has been increasing in many parts of the world
(De et al. 2014; Li et al. 2015). The reason for this is unknown, especially as there are
marked geographic variations, both within the same country and between countries;
see, for example, the papers by De et al. (2014), Li et al. (2015) and Znaor et al.
(2015). Some of the increase in kidney cancer incidence has been attributed to the
increased use of modern diagnostic imaging methods such as ultrasound, comput-
erized tomography and magnetic resonance imaging, resulting in increased detection
of renal cell carcinoma (a common type of kidney cancer), and possibly down-ward
stage migration. However, over-detection does not entirely explain all of these
variations, especially in Europe where there exist variations within a single country
with a national health care system; see for example (Li et al. 2015). In addition, the
heterogeneity of kidney cancer incidence rates, which is well-known in clinical
circles, suggests the existence of modifiable risk factors and potentially unknown
genetic, infective, dietary, environmental or behavioural factors that influence prev-
alence. Detection at an earlier stage of the disease has also been observed in the last
two or three decades with more localised tumours being found more recently.
According to Tan et al. (2015), “[d]espite the frequent use of aggressive therapy,
mortality rates among elderly patients with kidney cancer have remained stagnant
over the past quarter century”.

It is important for Australia to have an initial framework for understanding the
current state of kidney cancer in our society. Examination of the trends in incidence,
mortality and survival may allow the identification of modifiable risk factors and also
guide future workforce planning. We know, for example, that there is considerable
variation in clinical patterns of the disease in Australia (Satasivam et al. 2014). A
starting point is to examine the historical Australian data in order to detect patterns
that, if they are statistically significant, may help our understanding of the epidemi-
ological differences of kidney cancer. This is particularly important given the
increasing incidence rate of kidney cancer with the associated increase in health
care costs.

The aim of this paper is to compare the impact of kidney cancer on various
sub-populations in Australia through incidence and mortality statistics.

There are two standard methods for making such comparisons. The first is by
using age-standardised rates, the second is to use cumulative risks. We have reser-
vations about both these methods.

Calculating age-standardised rates involves introducing an arbitrary, standard
population. This allows us to compare the incidence rates in two populations that
have different age structures. For example, the Australian Institute of Health and
Welfare (AIHW) (2016) provides age-standardised rates based on three, different,
standard populations: the Australian 2001 population, the Sergi world standard
population, and the WHO standard population and these three rates are quite
different from each other. For example, in 2012, the three age-standardised incidence
rates for kidney cancer were 12.4, 8.6, and 9.4 per 100,000 persons in Australia
respectively. This is confusing for policy makers, the media, and general readers,
and we should bear in mind that there is considerable interest in cancer statistics in
the community.
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Furthermore, if we want to compare the Australian incidence rate with the
incidence rate of another country, then we may have to re-calculate the rates for at
least one of the countries using a suitable common, standard population.

Finally, it is unlikely that, 100 years from now, we will still be using the
Australian 2001 population as a standard, and to make comparisons between then
and now will involve re-calculation.

The second standard method for making comparisons is based on the cumulative
risk by a certain age. For example, AIHW (2016) reports that the risk of being
diagnosed with kidney cancer by age 75 in Australia is 1 in 101. This measure is
open to misunderstanding. The model, on which the calculation of this risk or
probability is based, contains the assumption that the only cause of death is kidney
cancer. This issue has been pointed this out in (Day 1976, p. 443; Lenard et al. 2013)
and the underlying mathematical model has been explained in Lenard et al. (2014).

The age-standardised rate and the cumulative risk serve the same purpose:
namely, to enable comparing incidence (or mortality) rates in populations with
different age-structures. Both methods involve introducing assumptions that may
be misleading. The age-standardised rate is based on assuming that the populations
have an age-structure that they do not have. The cumulative risk is based on
assuming that the disease in question is the only cause of death.

The cumulative rate does not have these deficiencies, as will be explained below.
In this paper we compare the incidence and mortality of kidney cancer for various
sub-populations in Australia using the cumulative rate.

9.2 Methods

Historical data on the incidence and mortality of kidney cancer were obtained from
Australian Institute of Health and Welfare (2016). These data sets contain the
incidence of kidney cancer for 1982–2012, the mortality for kidney cancer for
1968–2013, and the population counts for those years. Data are strati ed. by age
group and sex. As a note of explanation, incidence data for cancer in Australia have
been collected since 1982 whereas mortality data for cancer is available for a much
longer period of time. Thus, the two time intervals for incidence and mortality are
different. This has no effect on the analysis below. The (estimated) cumulative
incidence rate by age 75 is calculated as follows.

a 75ð Þ ¼ 5∗
Xk¼15

k¼1

x kð Þ
n kð Þ ð9:1Þ

The cumulative incidence rate by age 75 is, essentially, the sum of the
age-specific incidence rates for each age from 0 to 75 (if we assume that the
age-specific incidence rate is constant throughout any particular 5-year age group).
Hence the name “cumulative incidence rate”. Notice that this calculation does not
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involve introducing an arbitrary standardised population, and it requires no special
assumptions as does the cumulative risk. Note that the cumulative rate and the
cumulative risk are approximately equal in value; if y is the cumulative rate by
age t, then 1 exp(y) is the cumulative risk by age t and these are approximately equal
if y > 0 is small (Lenard et al. 2014) (Table 9.1).

The 95% confidence interval for the cumulative rate by age 75 is given by
a(75) � 1:96 s(75) where

s 75ð Þ ¼ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk¼15

k¼1

x kð Þ
n kð Þ2

vuut ð9:2Þ

See (Chan et al. 2015; Lenard et al. 2014, 2015) for mathematical details.

9.3 Results

9.3.1 Incidence and Mortality

Figure 9.1 shows that the incidence of kidney cancer has been steadily increasing
since 1982. In 1982, there were 793 new cases of kidney cancer reported in
Australia; by 2012, there were 3082 new cases reported. This increasing incidence
leads to increased costs and increased demands on a highly specialised workforce.

Figure 9.2 shows that the mortality associated with kidney cancer has been
steadily increasing since 1968: note that the mortality does not necessarily increase
from 1 year to the next, but the trend is unmistakable. In 1968, there were 300 deaths
from kidney cancer in Australia; by 2013, there were 962 deaths reported.

It is not surprising that incidence and mortality are increasing: after all, the
population is increasing, and ageing. So, in the next sub-section, we consider the
cumulative rates to age 75. We have chosen the age 75 for several reasons. This
upper age limit was proposed by Day (1976) in his original paper. We are trying to
isolate the effects of kidney cancer on the population, and health issues become

Table 9.1 Data for
calculating cumulative rate by
age 75

Group Age group Population Incidence

1 [0;4] n(1) x(1)

2 [5;9] n(2) x(2)

⋮ ⋮ ⋮ ⋮
k [5k 5; 5k 1] n(k) x(k)

⋮ ⋮ ⋮ ⋮
15 [70;74] n(15) x(15)
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complex for people aged over 75. However, in other sections below, we will also
consider the cumulative rates for other ages as well, as part of our investigation of the
usefulness of cumulative rates.

9.3.2 Cumulative Rates to Age 75

Figure 9.3 shows the cumulative incidence rate of kidney cancer for males and
females up to age 75 since 1982 and the corresponding 95% confidence intervals.
The rates are increasing, and the rates for males are consistently higher than the rates
for females. Thus the increasing incidence of kidney cancer shown in Fig. 9.1 is not
simply due to an increasing, ageing population: there are also other forces at work.

Fig. 9.2 Mortality from kidney cancer in Australia, 1968–2013

Fig. 9.1 Incidence of kidney cancer in Australia, 1982–2012
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By contrast, Fig. 9.4 shows the cumulative mortality rate of kidney cancer for
males and females up to age 75 since 1968 and the corresponding 95% confidence
intervals. Again, the rates for males are consistently higher than the rates for females;
however both rates have been decreasing during the last 20 years or so.

9.3.3 Cumulative Rates to Age 40

Kidney cancer affects younger people as well as older people but not to the same
extent. We now consider cumulative rates to age 40.

Figure 9.5 shows the cumulative incidence rate of kidney cancer for males and
females up to age 40 since 1982 and the corresponding 95% confidence intervals.

Fig. 9.3 Cumulative incidence by age 75 of kidney cancer in Australia

Fig. 9.4 Cumulative mortality by age 75 of kidney cancer in Australia
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It is noticeable that, historically, there is no apparent difference between males
and females in the cumulative incidence rates to age 40 although Fig. 9.5 suggests
that such a difference may be emerging. Only time will tell.

By contrast, Fig. 9.6 shows the cumulative mortality rate of kidney cancer for
males and females since 1968 and the corresponding 95% confidence intervals.
Again we see that, historically, there is no apparent difference between males and
females in the cumulative mortality rates to age 40.

9.3.4 Cumulative Rates to Various Ages

Figure 9.7 shows the cumulative incidence rate of kidney cancer up to various ages
for four selected years 1982, 1992, 2002, 2012. The graphs are monotonic with
respect to the year. In other words, for just about all ages x, the cumulative incidence
rate to age x is monotonic increasing over time. Thus the incidence of kidney cancer

Fig. 9.5 Cumulative incidence by age 40 of kidney cancer in Australia

Fig. 9.6 Cumulative mortality by age 40 of kidney cancer in Australia

9 Applications of the Cumulative Rate to Kidney Cancer Statistics in Australia 103



is increasing among all age groups. Furthermore, the cumulative incidence rate is
considerably higher for higher age limits.

Figure 9.8 shows the cumulative mortality rate of kidney cancer up to various
ages for five selected years 1973, 1983, 1993, 2003, 2013. It is surprising that the
graphs are not monotonic with respect to the year. In other words, for many ages x,
the cumulative mortality rate to age x is not monotonic over time; however, the rate
is consistently considerably higher for higher age limits.

Fig. 9.7 Cumulative incidence rate for various ages of kidney cancer in Australia over several
years

Fig. 9.8 Cumulative mortality rate for various ages of kidney cancer in Australia over several years
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9.4 Conclusions

In this paper, we have illustrated the application of the cumulative rate to kidney
cancer statistics in Australia. The cumulative rate does not share the disadvantages of
the age-standardised rate or the cumulative risk. Furthermore, we have illustrated
how the analysis of cancer statistics can raise interesting questions about the disease
itself. For example, why is the incidence of kidney cancer higher among men than
women? Why are the cumulative mortality rate curves for all ages not monotonic
with respect to the year?

The recent clinical literature indicates that there is much to learn about kid-ney
cancers. We hope that our work contributes, in a small way, to improving our
understanding of kidney cancers, and promotes the use of the cumulative rate in
cancer epidemiology.
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Chapter 10
To Reliability of Mortality Shifts
in Working Population in Russia

Alla Ivanova, Tamara Sabgayda, Viktoria Semyonova,
and Elena Zemlyanova

10.1 Introduction

Russian population mortality during last 50 years appears to be widely studied
problem both in comparative European context (Shapiro 1995, Shkolnikov et al.
1996, Gavrilova et al. 2008, Semyonova et al. 2012, ets) and in relation to its internal
regional variation. Hypotheses regarding the factors determining the long-term
negative trends in mortality and its local changes have been repeatedly discussed
(Cornia 1996; Leon et al. 1997; Bobak et al. 1998; Brainerd 1998; Walberg et al.
1998; Shkolnikov et al. 2004; Ivanova and Semyonova 2006, ets). The reasons for
positive dynamics of mortality in the last decade caused the greatest debate. In this
connection, a spectrum of forecasts concerning the future of Russia’s mortality and
the steps to be taken for positive scenarios is extremely broad (Ivanova and
Semyonova 2006; Ivanova and Kondrakova 2008; Nikitina (2008, Demographic
prognosis up to 2030, 2012), Andreev et al. (2012) ets).

Working population during several decades occurs to be the key group determin-
ing life expectancy level in Russia, its regional variance, trends and projections.
Identification of patterns of mortality changes in different age groups of working-age
population will help to verify the forecast concerning the future of Russia’s
mortality.

The aim of the study is to analyze death causes structure of working population
(15–59 years) in Russia together with its regularities in ages, causes and gender as
well as to define the input of different ages and death causes in changes in life
expectancy on various stages of its dynamics.
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10.2 Methods and Data

The data from the Russian Mortality Database of the Federal State Statistics Service
were analyzed. In Russia, all death cases are subject to mandatory registration, so we
examine all registered deaths. On the base of official statistics we studies age and
gender peculiarities of mortality in working ages; structure of death causes and its
shifts at the stages of both negative dynamics and mortality reduction at 50 years
period (1965–2016). While dynamics analysis we used indicators recalculated with
consideration for population censuses results including 2010 population census.
Component analysis was used for determining of age groups and death causes
which defined mortality changes during periods of “soviet evolutionary life expec-
tancy reduction” (1965–1980); “opportunistic life expectancy growth as a result of
anti-alcohol campaign” (1980–1987); “crisis life expectancy decline at the stage of
shock socio-economic reforms” (1987–1994); “opportunistic life expectancy
changes during reforms’ stagnation” (1994–2005); “life expectancy growth at the
background of conduct appropriate policy” (2005–2016).

10.3 Periods of Mortality Dynamics in Russia

Long-term life expectancy dynamics of Russian population is well-known (Andreev
and Vishnevsky 2004; Shkolnikov et al. 2004; Semyonova 2005; Millet and
Shkolnikov 1996; Ivanova et al. 2009). That’s why lets cover the aspects which
are important for understanding of periods and their causes.

The middle of 1960s was selected as a starting point of research. At that moment
previous positive mortality dynamics which allowed Russia to catch up European
countries largely at life expectancy level was depleted (Fig. 10.1). Since the middle
of 1960s the negative trend took its shape and it continued till the edge of 1980s.
During that period male life expectancy decreased by 2.8 years, female life expec-
tancy – by 0.4 years. The majority of losses (2.5 years in males and 0.35 years in
females i.e. about 88% and 92%) were determined by age groups 15–59 years. The
causes which determined steady negative dynamics were comprehensively
discussed in scientific publications. To resume them briefly – ideological reasons,
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which determine the social politics, were principal and first of all – disrespect of life
value both at state and individual levels. This is testified by similarity of mortality
trends in the majority of socialist countries even levels of mortality could be rather
different (TI Zaslavskaya 2004; Savinov et al. 2010; Yastrebov and Krasilova 2012).

The beginning of 1980s was characterized by slight opportunistic fluctuations of
life expectancy that transformed into evident positive dynamics with the start of anti-
alcohol campaign. It’s well known that during the short period of hard-edged
antialcoholic measures the life expectancy increased essentially (Mesle and
Shkolnikov 1996; Shkolnikov et al. 2004; Andreev and Vishnevskiy 2004;
Semyonova 2005; Nemtzov 2011, ets). Up to 1987 losses during previous
15-years period were not only compensated but life expectancy exceeded maximum
of 1965 by 0.6 years in males and by 0.9 years in females. During 1980–1987 the
share of working population 15–59 years old accounted 2.8 and 0.8 years from 3.4
and 1.3 years in males and females correspondingly, i.e. 82% and 67% of overall life
expectancy growth.

Following gradual rejection of hard-edged measures limiting accessibility to
alcohol gradual mortality growth upraised and it accelerated since the beginning of
1990s at the background socio-economic reforms that led to sharp impoverishment,
losing of social waymarks and perspectives for the majority of Russian population.
In total, during 1987–1994 life expectancy losses estimated 7.2 years in males and
3.2 years in females; the share of 15–59 age group was 6.2 and 2.2 years or 80% and
63% in males and females correspondingly.

The period of the second half of 1990s and first half of 2000s was characterized of
sharp mortality fluctuations: partial recovery of life expectancy after collapse in the
middle of 1990s, new decline after economic crisis in 1998 and gradual way to
stabilization in 2002–2005. As a result, the situation with mortality of Russian
population occurred to be just slightly better than 10 years before – at the peak of
socio-economic crisis. Both in males and females life expectancy was high the level
of 1994 by 1.3 years. But this small gain was to minimal extent due to risk groups.
Age groups 15–59 years covered only 0.4 and less than 0.1 years in males and
females or 29% and 2% correspondingly. In other words, situation with mortality of
working population in 2005 was the same sharp as in catastrophic 1994.

New stage of Russian mortality dynamics started since the middle of new decade
when positive life expectancy trend developed. It was determined by the whole age
range, main death causes and the majority of regions (Demographic prognosis up to
2030, 2012). In general, life expectancy in males increased by 7.6 years, in females –
by 4.7 years for 2005–2016; and 5.4 and 2.0 years (or 71.1% and 46.8%) in males
and females were due to population in working ages. Thus, a decisive influence of
working population on the dynamics of life expectancy in Russia is maintained, but
its contribution is lower than in previous decades.

The question about the reasons formatting the positive trend of mortality remains
still controversial. Most of authors (Yakunin et al. 2007; Ulumbekova 2010; Kalash-
nikov et al. 2012; Shamilev 2013) tend to explain the positive trend only by an active
policy in the health sector which implemented since 2006. At the same time, the
point of view is also told that after 2005 the so-called “recovery growth” of life
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expectancy started as a part of long-term oscillatory trend, which has not a funda-
mentally new sources and does not assume the prospects (Vishnevsky 2015). Indeed,
to 2014 Russia for the third time almost returned to the levels of life expectancy,
already met in its history over the past 50 years: in 1987 and in 1965. In 2014, life
expectancy level was higher by only 1.3 years than in 1965 and by 0.9 years than
in 1987.

10.4 Age Groups and Death Causes that Determined Life
Expectancy Shifts at Stages of Its Growth and Decline

During 15 “soviet” years during 1965–1980 reduction of male life expectancy in
working ages was determined by all age groups from 15 to 59 years but one half of
all losses was due to 45–59 year-olds (Fig. 10.2).

Among causes the first place was occupied by traumas and poisonings (1.5 years
in age interval 15–59 years) and cardio-vascular diseases (0.88 years). It’s important
that aside from those causes the input into life expectancy losses was made by
respiratory diseases (0.2 years); digestive diseases (0.12 years) and partly – neo-
plasms (0.01 years). Only in class of neoplasms negative dynamics spread to
selected age groups (over 45 years). Other causes had determined losses at the
whole age range from 15 to 59 years. Only infections in the contrary to other main
causes of death didn’t participate life expectancy losses in men of working ages in
this period.

The situation with women in 1965–1980 was essentially different from men’s.
First, the losses were formed due to age group over 45 years; in young women
mortality trends from the majority of causes and in general were positive. Second,
female mortality from neoplasms decreased in all age groups; that’s why neoplasms
as well as infections didn’t participate in life expectancy losses in working ages of
females. At the same time, the similarity on formation of life expectancy losses in
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males and females was in prevalence of external causes and cardio-vascular diseases
as well as partial input of respiratory and digestive diseases.

During the period of essential life expectancy growth in 1980–1987 positive
dynamics was characteristic to all age groups and main death causes (Fig. 10.3).
Both in males and females equal input into life expectancy growth was made by age
groups 30–44 years and 45–59 years. That’s why the role of external causes in life
expectancy gain was critical: 1.91 from 2.8 years of total growth in 15–59 years old
males; and 0.42 from 0.84 years in females. In males the role of cardio-vascular and
respiratory diseases was relatively comparable (0.32 and 0.25 years); digestive
diseases – half as much (0.13 years). In females the role of cardio-vascular diseases
was half as much as traumas and poisonings (0.21 years); the role of other causes –
negligeable.

The special role as during the previous period was taken by neoplasms. In males
neoplasms continued their negative trend apart of sinuosity of anti-alcohol cam-
paign; and it affected ages over 45 years similarly to the previous period. The
reduction of female’s mortality from neoplasm continued in all age groups.

Life expectancy losses during 1987–1994 formed at the whole range of working
ages (Fig. 10.4) but the scales of losses were increasing with age and maximum was
observed in the group 45–49 years both in males (2.75 of 6.18 years) and females
(1.16 of 2.21 years).

About one half of losses in working ages were due to external causes: 3.31 and
1.0 years in males and females correspondingly; losses due cardio-vascular diseases
were twice less – 1.54 and 0.67 years in males and females correspondingly. In
contrast to the previous period mortality growth was registered in all death causes
and age groups. This emphasizes the universalism of effect of social processes on
health and mortality during that period.

The new phenomenon of that period was manifested in increase of mortality in
working ages from “Symptoms, signs and ill-defined conditions” which covered life
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expectancy losses in working ages comparable to losses from respiratory and
digestive diseases and higher than losses from infections.

Since the middle of 1990s till the middle of 2000s mortality dynamics became
very diverse; it broke previous uniformity in respect to population response to social
changes (Fig. 10.5). In men cumulative results occurred to be positive both for
young population groups (15–24 years) and older groups of working ages
(35–59 years). But the most active and productive groups (25–34 years) suffered
from negative trends. In females gain were achieved only in teenagers (15–19 years)
and groups over 40 years. Unfavorable ages covered wider age group than in males:
20–40 year olds.
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It is important that slight life expectancy increase during the decade was due to
reduction of mortality from traumas and poisonings as well as neoplasms and other
diseases apart from 7 main classes of death causes. Mortality from neoplasms
declined in all ages providing life expectancy increase in working ages by 0.24
and 0.10 years in males and females correspondingly. Mortality form traumas and
poisonings declined in males in all ages, in females – in all ages excluding age group
20–34 years. This provided life expectancy growth in working ages by 0.82 and
0.22 years correspondingly. Mortality from other causes was increasing.

Positive trends in external causes and neoplasms invite some questions but for
various reasons. As to external causes, driving forces of mortality reduction have no
explanation. There were no evident improvements in living standards of poor
population groups in the period under review, there were no implemented measures
concerning anti-alcohol policy, there was no special attention to healthy life styles.
This is supported by negative dynamics of mortality from causes being markers of
these problems – infections and digestive diseases. Characteristically, the mortality
from ill-defined conditions continued to rise against decrease in mortality from
external causes. It calls into question the progress achieved, as there are substantial
grounds for believing that the diagnosis of ill-defined death causes among working-
age population is a camouflage of external causes of death (Semyonova et al. 2005;
Ivanova et al. 2009; Semyonova and Fedotkina 2010).

In is necessary to make a special reference to neoplasms. Developed positive
dynamics of mortality from these causes both in males and females at the whole
working age range fell to the most difficult period for Russian health care –

protracted reforms at the background of chronic under-financing. It’s difficult to
find valid explanations for this phenomenon. Several authors pay attention to the
problems of diagnosis of cancer as a cause of death, which may explain the
underestimation of deaths from malignant neoplasms (Danilova 2003; Petrova
et al. 2010; Sabgayda et al. 2010).

The specific feature of that period was the age structure of mortality growth from
chronic non-infectious diseases and first of all from cardio-vascular diseases. Both in
males and females growth of mortality from cardio-vascular pathology was concen-
trated in young and middle ages. At the same time there was no growth in males over
45 years and there was even slight reduction in females. It is nonsense from the
medical-biological viewpoint. Quite a lot of research dedicated to the phenomenon
of rejuvenation of cardiovascular mortality in Russia, where the alcohol played a
significant role (Shkolnikov et al. 2002; Leon et al. 2007; Semyonova et al. 2010).
The influence of this factor is evident not only in provoking the deaths, but also
masking the real cause of death.

Despite of substantial differences of 1994–2005 decade from the previous period
it is possible to notice similarity of both decades characteristic to long-running stage
of transformation in socio-economic sphere in Russia. This refers to continuous
growth of mortality from infections and from “Symptoms, signs and ill-defined
conditions” covering whole range of working ages.

Since the middle 2000s we observe the new period of overcoming of negative
mortality trends and life expectancy growth in Russia (Fig. 10.6). Life expectancy
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increase was provided by all age groups with maximal input of ages over 40 years:
3.0 of 5.4 years in men and 1.3 of 2.0 years in women.

Life expectancy growth was provided by all main death causes excluding infec-
tions. In males, infections maintained their negative trends in age group 30–39 years
but the overall result in working ages was positive (0.091 year). In females, negative
trends of infections covered wider age interval 25–49 years and the overall result for
working ages occurred to be negative (�0.09 year).

According to younger age profile of life expectancy increase in males the main
input into life expectancy growth was made by external causes (2.56 years) and some
less by cardiovascular diseases (1.60 years). In females, significance of these causes
was almost identical: 0.76 and 0.79 years. The role of all other causes occurred to be
less evident.

It is necessary to note that age distribution of external causes input into life
expectancy increase in working ages was sufficiently proportional. At the same time,
the maximal gain from reduction of mortality from chronic non-infectious diseases,
first of all from cardio-vascular diseases was registered in ages over 40 years both in
females and males. Thus, cumulated substantial rejuvenation of mortality from
chronic non-communicable diseases was not affected yet.

Limitations The assessments of proportions of death causes in mortality for work-
ing population may have errors of measurement because namely for this age group
the problem of accuracy of death cause establishing is the most urgent in Russia.
However, these measurement errors will not affect the resulting conclusions, since
they do not exceed 5% (Sabgayda et al. 2010).

10.5 Discussion

Returning to the discussion of hypotheses to explain the causes of a significant
increase in life expectancy over the past decade, we must admit that none of the
hypotheses does not give a convincing answer.
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Attempts to explain the success in reducing deaths solely to measures in
healthcare are untenable since positive changes among most age groups of
working-age population (as it have been shown in the previous section) began in
previous period, since 2003 or earlier (Table 10.1).

The increase in mortality among young people aged 15–24 years ended by the
year 2000; the growth of mortality among men and women over 40 years old stopped
in 2003; and only among the 25–39-year-olds the increasing mortality lasted until
2005. Therefore, in 2006, when the first steps were taken in the framework of
priority National project “Health”, the positive dynamics among working-age pop-
ulation have been already formed. This does not mean that the policy pursued has not
given effect. In fact, it only strengthened the already established positive trend that
was initiated by improved living standards, reduction of unemployment, income
growth, a sense of positive social change.

The hypothesis of oscillatory dynamics of mortality in Russia based on a multiple
return of life expectancy to almost the same it’s levels, is also based on a superficial
analogy. Similar life expectancy levels in 1965, 1987 and 2014 are based on
fundamentally different picture of mortality and, consequently, on its different
driving forces and mechanisms.

By 2014 compared to 1987 and especially compared to 1965, the child death rate
(especially infant mortality) essentially decreased, which provided an increase in life
expectancy of 0.9 and 0.7 years and 1.5 and 1.3 years, respectively, for men and
women (Fig. 10.7). The progress in mortality dynamics among men over the age of
60 years and women over 50 years is undeniable. However, the mortality of modern
men and women of young and middle ages is above not only in comparison with the

Table 10.1 Dynamics of Russian mortality in some age groups (per 1000 persons of corresponding
sex and age)

Age groups (years)

15–19 20–24 25–29 30–34 35–39 40–44 45–49 50–54 55–59

Males

2000 2.12 4.95 5.99 7.02 9.12 12.70 17.86 24.42 33.36

2001 1.92 4.35 5.81 7.05 9.42 13.13 18.67 25.73 33.94

2002 1.83 3.96 5.66 7.27 9.87 13.93 19.55 26.91 34.69

2003 1.74 3.90 5.91 7.50 10.19 14.44 20.06 27.91 34.99

2004 1.68 3.91 6.12 7.78 10.21 14.21 19.54 26.78 34.41

2005 1.63 3.80 6.46 8.20 10.30 14.33 19.44 26.90 34.44

Females

2000 0.80 1.13 1.34 1.73 2.33 3.37 5.08 7.60 11.38

2001 0.75 1.12 1.36 1.81 2.43 3.50 5.33 8.01 11.65

2002 0.71 1.05 1.41 1.94 2.63 3.76 5.54 8.30 11.96

2003 0.69 1.05 1.51 2.05 2.80 3.95 5.74 8.63 12.10

2004 0.68 1.00 1.56 2.13 2.84 3.91 5.57 8.23 11.85

2005 0.69 1.03 1.61 2.21 2.94 4.03 5.56 8.13 11.78

10 To Reliability of Mortality Shifts in Working Population in Russia 115



period of a quarter century ago, but also in comparison with the period of a half
century ago.

It must be admitted that in the past decade it has been done much to reduce the
loss of life in high-risk groups, but it is premature to even talk about returning to the
previously achieved level of population health.

10.6 Conclusions

Summarizing 50-years of history of Russian mortality it is necessary to note several
important things.

In 2014 Russia for the third time almost returned to the levels of life expectancy,
already met in its history over the past 50 years: in 1987 and in 1965. In 2014, life
expectancy level was higher by only 1.3 years than in 1965 and by 0.9 years than in
1987. But this return is illusive as modern life expectancy formed by substantial
progress in children and older age groups, while mortality of young and middle age
groups is higher than 50 years ago.

The main source of both disadvantages and gains during all stages of nearly half
century dynamics is the population of working ages; in males cumulative losses due
to population of 15–59 years following the results of 1965–2014 occurred to be
1.2 years of life expectancy, in females – 0.01 years.

The resulting losses during working-life period are combined from 2 age groups:
30–44 year-olds and 45–59 year-olds – in males proportion of those 2 groups was
40% and 60%; in females reverse – 60% and 40%. Input of younger age groups both
in males and females occurred small (0.17 and 0.15 year) i.e. levels of mortality in
men and women 15–29 years old in 2014 and in 1965 did not differ significantly.

In the ages where resulting mortality during analyzed period didn’t change in
general, and in ages where it increased the structure of death causes visibly changed:
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• as to structure of mortality in young ages, input of respiratory and digestive
diseases as well as ill-defined conditions and plus infections and cardio-vascular
diseases in males the resulting mortality remained the same as in 1965 only due to
reduction of traumas and poisonings and neoplasms;

• as to structure of mortality in working ages over 30 years, input of main somatic
diseases (except neoplasms) and external causes increased which determined
growth of summarized mortality in these ages.

Altogether, conducted analysis rises following questions:

• reliability of reduction of mortality from external causes that started before
improvement of socio-economic situation in the country and implementation of
any measures in that sphere (during 1994–2005);

• reliability of growth of cardio-vascular mortality in middle and especially young
ages (15–29 years);

• reliability of diagnostics of somatic death causes in general including neoplasms.

After 2014, mortality in Russia continued to decline although the increase in life
expectancy by 2016 wasn’t not significant: 1.25 years for men and 0.58 years for
women. This result was achieved against the backdrop of economic crisis, rising
unemployment, falling incomes and reducing investment in the health care system.
Apparently, the accumulated positive potential, including in the healthcare system,
still provides an inertial reduction in mortality. However, without the resumption of
active efforts in the health sector supported by an improvement in socioeconomic
status of population, the positive inertia will be exhausted and the increase in
mortality may resume.
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Chapter 11
Three-Way Data Analysis Applied to Cause
Specific Mortality Trends

Giuseppe Giordano, Steven Haberman, and Maria Russolillo

11.1 Introduction

Mortality forecasts are traditionally based on forecasters’ subjective judgements, in
light of historical data and expert opinions. We focus on the Lee and Carter
(LC) method for modelling and forecasting mortality (Lee and Carter 1992). This
method reduces the role of subjective judgement, since takes into account standard
diagnostic and modelling procedures for statistical time series analysis. In
Kroonenberg et al. (2002) and Russolillo et al. (2011) the authors propose a three-
way analysis of mortality data. In the last one, the three-way decomposition is read in
the scope of the LC model as a natural extension of the original LC model to a three
mode data structure. The three-way LC model (3WLC) allows to enrich the basic LC
model by introducing a third mode in the analysis. For instance, the authors propose
to consider the death rates aggregated for time, age-groups and Countries. Starting
from that paper, we return to the original version of the LC model, but we make use
of the exploratory tools of multivariate data analysis to give a new perspective to the
demographic analysis supporting the analytical results with a geometrical interpre-
tation and a graphical representation.

The mortality rates are influenced by gender, countries, ethnicity, income, wealth,
causes of death and so on. According to the WHO a “right” recognition of the causes
of death is important for forecasting more accurately mortality. Aim of this
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contribution is to specify the 3WLC model to consider the specific causes of death.
The original contribution we propose is to investigate the main causes of death
affecting the upcoming human survival, throughout a Multi-dimensional Data Anal-
ysis approach to the LC model of mortality trends. In other words, we wish to test the
three-way model developed in Russolillo et al. (2011), by looking at the mortality
data aggregated according to three criteria: time, age class and causes of death.
Specifically, we refer to the Tucker3 decomposition method (Kroonenberg 1983).
The remainder of the article is organized as follows. Section 2 introduces the
“Mortality by cause of death” issue. In Sect. 3 we present the setting of Multi-
dimensional Data Analysis on which we develop the three-way Lee-Carter model.
Section 4 shows the numerical application where we furnish a proper interpretation
of the model components when the data structure deals with Time � Ages� Causes
of death.

11.2 The Framework

The “mortality by cause of death” issue covers areas of particular interest to
actuaries. These include the impact of specific causes of death on historical trends
in mortality, the use of “by cause” information in mortality projections, the avail-
ability and use of data suitable for underwriting, pricing and analysis of life assur-
ance and pensions business products (Ridsdale and Gallop 2010). The twentieth
century witnessed longevity improvements in many high-income countries. These
improvements were determined especially by the reduction in a few specific major
causes of death groups.

In order to obtain good population forecasts, in the last decades a wide variety of
models have been proposed for analyzing and projecting mortality for specific
groups of causes. Many of these projection methodologies are based on past
mortality developments and implicitly make assumptions about the persistence of
trends in “by cause” mortality. As it is well known, examination of past trends in
causes of death is helpful in understanding the overall mortality improvements in
populations. As stated by Gallop (2008), many of the available methodologies can
be applied either to aggregate mortality data or data by cause of death. Projecting
mortality by cause of death allows for providing insights into the ways in which
mortality is changing. However, there are also many drawbacks associated with this
approach. One of the most relevant is deaths from specific causes are not always
independent. Many models instead assume the independence between the different
causes of death. Moreover, the actual cause of death may be difficult to determine or
may be misclassified. Last but not least, changes in the diagnosis and classification
of causes of deaths can make analysis of trend patterns difficult. The ranking of
leading causes of death is affected by a periodic revision that produces structural
breaks in the mortality series. These discontinuities lead to a misinterpretation of
trends in mortality, problem which should be taken into account in the model
considered for projections.
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11.3 The Lee-Carter Model and Some Generalizations

Mortality projections depends on several factors among which the most relevant are
age, and then gender, geographical region, social class. The LC method is a powerful
approach to mortality projections which can be described as follows:

ln yij
� � ¼ αj þ κiβj þ εij i ¼ 1, � � �, I; j ¼ 1, � � �, J ð11:1Þ

where ln(yi,j) is the log of a time series of death rates yi,j for each age-specific x; αj is
the age-specific parameter, that is the mean of the ln(yij) for each j; ki is the time-
varying parameter’s vector reflecting the general level of mortality. The vector βj
holds the parameters showing how rapidly or slowly mortality varies at each
age-group. The term εi,j is the error term assumed to be homoscedastic.

We can state the demographic model also referring to the mean centred
log-mortality rates as:

~yij ¼ ln yij
� �� αj ¼ κiβj þ εij i ¼ 1, � � �, I; j ¼ 1, � � �, J ð11:2Þ

11.3.1 The LC Model in the Framework of MDA:
Two-Way Data

Following Lee and Carter, the parameters βj and ki in eq. 11.2 can be estimated
according to the Singular Value Decomposition (SVD) with suitable normality
constraints:

X

j

β2j ¼ 1;
X

i

ki ¼ 0 ð11:3Þ

Let us notice that the term on the left hand side is shaped as a two-way data
matrix:

~Y ¼
~y11 ~y12
~y21 ~y22

� � � ~y1J
� � � ~y2J

⋮ ⋮
~yI1 ~yI2

~yij ⋮
� � � ~yIJ

0

B@

1

CA ð11:4Þ

For major insight on the exploratory reading of the LC model as a two-way
decomposition model (see Russolillo et al. 2011).

The SVD of the matrix (4) can be written as the product of three matrices with
geometric and statistical interpretation.

In particular, the SVD model is stated as follows:

~Y I;Jð Þ ¼ U I;Hð ÞΛ H;Hð ÞV H;Jð Þ H � min I; Jf g ð11:5Þ
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The SVD approximation allows a graphical representation in a reduced subspace
of both rows and columns of the matrix. The geometric reading of such representa-
tion is carried out according to the Biplot graphical display (Gower and Hand 1996).
The biplot is a low-dimensional display of a rectangular data matrix, where the rows
and the columns are represented by points. The interpretation of the biplot is
consistent with the scalar products between row and column vectors as defined in
the SVD.

The SVD model can be rewritten as:

~Y ¼
Xn

m¼1
λmumv0m þ

XH

m¼nþ1
λmumv0m; ð11:6Þ

With 1 � n � (H � 1); H � min {I, J} and where the second term represents the
residual information not captured by the first p components of the SVD approxima-
tion. The correspondence of the two models arises by setting k ¼ λu, β ¼ v and
highlighting the role of the first component:

~Y ¼ λ1u1v01 þ
XH

m¼2
λmumv0m ¼ κ1β

0
1 þ E ð11:7Þ

Usually, in the actual use of LC-model some aspects are not considered, i.e. there
could be meaningful interactions between the elements k and β, which in the basic
LC model are not considered. Indeed, further factors could be considered as aggre-
gating criteria: Country, Ethnics as well as Causes of Death, for instance. In order to
face with both interactions terms and mortality data arranged according to Years,
Age-group and a further criteria, we introduced the three way extension of the LC
model (proposed in Russolillo et al. 2011) in order to describe and interpret the
demographic model and give a suitable statistical interpretation.

11.3.2 The Three-Way LC-Model

Sometimes the available data are disaggregated according to different criteria. Let us
consider different causes of death, so that the new specification of the LC model can
be written as follows:

ln yijl
� � ¼ αjl þ κiβjγl þ εijl i ¼ 1, � � �, I; j ¼ 1, � � �, J; l ¼ 1, . . . ,L ð11:8Þ

where j is the generic age group, i the generic year and l is the cause-specific death.
αjl is the age and cause-specific death parameter independent of time,αj while βj and
ki have the same interpretation as in the classical LC model. Finally, γl represents the
term associated to the causes of death.

We can state the model referring to the mean centered log-mortality rates:

�yijl ¼ ln yijl
� �� αjl ¼ κiβjγl þ εijl i ¼ 1, � � �, I; j ¼ 1, � � �, J; l ¼ 1, . . . ,L

ð11:9Þ
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The values of αjl are computed by averaging the log-mortality rates across the
n years, for each age-group j ¼ 1, 2,. . .,J and for each cause l ¼ 1,. . .,L. Different
choices of averaging could be taken into account: we may wish to derive the average
pure effect of Cause of Death, across Years and Age-groups, for instance.

In this framework, the singular value decomposition associated to the LC model
has to be reformulated to take into account the new data structure. In the literature, to
solve the decomposition problem several solutions are proposed which give rise to
different statistical methods (Multiple Factorial Analysis, STATIS, Generalized
Canonical Analysis, PARAFAC, Tucker’s Method). We proposed as natural exten-
sion of the SVD in the three-way framework, the Tucker3 model (Tucker 1964,
1966). This method can be seen as a generalization of the SVD. In the two-way
SVD, the singular values are arranged in a diagonal matrix (see eq. 11.5). In the
Tucker 3 model these values form a three-way array – the core array – (see
Fig.11.1). However, the relationships with the singular values of the various
two-way analysis are not so immediate. In Fig. 11.1 is shown the three-way
decomposition according to the Tucker 3 model. The three dimensional array ~Y is
decomposed into a three-way core array Λ and three matrices (K, B, G).

For further insights on the algorithms for estimating the model see Kroonenberg
and De Leeuw (1980).

1950 1953 1956 1959 1962 1965 1968 1971 1974 1977 1980 1983 1986 1989 1992 1995 1998 2001 2004 2007

Index

Kt per Causes
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Fig. 11.1 Individual patterns of Kt for different causes
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11.4 Numerical Application

11.4.1 The Case of England and Wales

We discuss the three-way LC model in view of an empirical case study. We consider
male central death rates for England and Wales, in 60 years from 1950 up to 2009
divided according to the following six causes of death: Circulatory system, Cancer,
Respiratory system, External causes, Infectious and parasitic diseases and Other
causes. Data are downloaded from the World Health Organization (World Health
Organization 2012) and represent the central death rates according to the underlying
cause of death for 5 years’ age-groups apart for the first two classes which are: 0 and
1—4, then 5—9, 10—14, up to 85—89 for a total of 19 classes. The central death
rates are the number of deaths divided by the mid-year population. Mid-year
population are used as an approximation to the exposure. The WHO database
classifies the causes of death according to the International Classification of Diseases
(ICD). The ICD changed three times between 1950 and 2010, from ICD-7 to
ICD-10, in order to take into account changes in science and technology and to
refine the classification. The ICD is revised periodically. The first draft of ICD-11
was expected in 2010, with publication following by 2014, but the deliverables have
not been as ready as expected. Thus our data are related to the ICD-10 adaptation,
due to the changes of the classification of the diseases over time.

11.4.2 Discussion of Results

In the present section, we introduce the results obtained by the application of the
methodology described in Sect. 3. Different kinds of auxiliary tools are used in
interpreting the results. We consider: Joint plots, Component scores and Core matrix
elements. With the Joint plots, every pair of components (years and age group) are
plotted together for each cause of death onto a factorial subspace. The Component
scores allow to give particular attention to the years’ score, useful to make forecasts.
Finally, the Core matrix elements play almost the same role of singular values in the
SVD, so its magnitude helps to understand the importance of each dimension.

In Fig. 11.1 are plotted the six kt, one for each cause of death and the global one
which is derived by the aggregate data. Their patterns are quite different and show
idiosyncratic trends. For instance, Infectious and parasitic cause kt trend (red line)
shows a sudden decrease till to the end of 70’s and then it is stable. However, it is
higher than all other trends after 1992.

Peculiar patterns are showed by Respiratory system (Cyan line) which is lower in
the 80’s, and by Other Causes which shows some peaks in the same period.
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This behavior shows as an aggregate estimate can hardly be representative for any
causes of death.

An exploratory data analysis has been carried out by decomposing the six
mortality tables thorough a Principal Component analysis of each of the 60 per
19 data tables. In Fig. 11.2 are plotted the first two principal components for each
cause of death. The points represent the patterns of the kt all along the 60 years. Once
again they show to have very different patterns suggesting that also the analysis in
two dimensions reveal the inconsistency of a unique trend extrapolated by aggre-
gated data and just one component.

This lead us to the use of three-way data analysis, looking for a general trend which
will be able to take into account all such peculiarities of the single causes of death.

The Tucker3 Analysis of the three-dimensional array (Years per Age-Groups per
Causes of Death) give raise to a Core components explaining the 95.23% of the
whole amount on variability in the data while retrieving the 2 � 2 � 2 components.

Looking at the core components in Table 11.1 it is evident how the most
important elements of the decomposition are the first two components along with

Fig. 11.2 PCA of mortality data table for each Causes of Death: Years Patterns – Kt on the first
2 components of PCA. Clockwise from the top-left: Infectious and parasitic disease, Cancer,
Circulatory System, Respiratory system, External Causes, Other Causes

Table 11.1 The core component array

Age1 � Causes1 Age2 � Causes1 Age1 � Causes2 Age2 � Causes2

Years l 0.67 0.00 0 0.10

Years 2 0.00 0.00 0.16 0.00
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Years and Causes. On the other side, only the first component of Age-group seems to
be relevant. Each entry in the core matrix is used to explain the percentage of
explained variance and the three-mode interaction measures.

Since our main interest is in exploring the Years component scores, we plot the
the Kt first component along the time (Fig. 11.3) and then the first two components of
the Kt (Fig. 11.4). Let us notice the peak at the observation index 33 (year 1982) in
Fig. 11.3, which shows the perturbation already observed in the Other Causes
Components plot (Fig. 11.2). Actually, in the two-dimensional plot it appears a
break in the trend for the observation labeled from 1983 to 1992. This is the period
already observed in Fig. 11.1 due to same irregularity in the individual patterns of the
causes of death and now captured by the three-way model.

Finally, in Fig. 11.5 it is showed the Joint-plot of Causes of Death versus
Age-groups. It is evident that the first Axis is correlated with the Age which
increases from left to right, so opposing on the left side younger people characterized
by External causes and Infectious and parasitic disease as causes of death. On the
right side we notice the opposition of Circulatory system and Other causes, both of
them are related to elderly people, but combining the information in Fig. 11.4 and in
Fig. 11.5, we can now establish that Circulatory system as cause of death charac-
terizes people died in more recent years.
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Fig. 11.3 Kt Plot of Tucker-3 model
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11.5 Conclusions

The LC-model has been extended in order to deal with disaggregated data. The
factor we examined are the causes of death, since we wish to explore how different
causes could lead to very different mortality patterns along with the years’ trend.

Fig. 11.4 Kt Plot of Tucker-3 model in two dimensions

Fig. 11.5 Causes of death Vs/ age-groups
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The decomposition of the three-way array produces a major insight into the
description of the data and about the interactions between years, age-groups and
causes of death. By exploring interactions between the different modes we can
produce more coherent mortality projections, specific for homogenous age-class or
specific causes of death. Also, an aggregate estimate for kt is derived as result of the
three-way decomposition, so it is able to better indulge with idiosyncratic patterns of
specific causes of death when they tend to show heterogeneous trends.
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Part IV
Stochastic and Neuro-Fuzzy Methods



Chapter 12
Measuring Latent Variables in Space and/or
Time: A Gender Statistics Exercise

Gaia Bertarelli, Franca Crippa, and Fulvia Mecatti

12.1 Introduction

Composite indicators have the advantage of synthesizing a latent, multidimensional
construct in a single number, usually included in the interval (0; 1). They can be
derived as a weighted sum of simple indexes, as it is often the case in social statistics,
specially when the set of indexes needs to stay unchanged in several geographic
areas and/or time periods. In complex settings, the synthetic indicator is conceivable
as a latent variable, typically estimated applying Structural Equation Models (SEM)
in order to obtain a single measure.

When the latent variable is thought to have a time and-or space dynamic of its
own, Multivariate Latent Markov Models (LMMs) may represent a valuable inno-
vation to the construction of composite indicators. LMMs are a particular class of
statistical models for the analysis of longitudinal data which assume the existence of
a latent process affecting the distribution of the response variables (see Bartolucci
et al. (2007); Zucchini and MacDonald (2009) for a general review). The rationale
of this methodology considers the latent process as fully explained by the observable
behaviour of some items, together with available covariates. The main assumption is
conditional independence of the response variables given the latent process, which
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follow a first order discrete Markov chain with a finite number of states. The model is
composed of two parts, analogously to SEM: the measurement model, concerning
the conditional distribution of the response variables given the latent process, and the
latent model, pertaining the distribution of the latent process. LMMs can account for
measurement errors or unobserved heterogeneity between areas in the analysis.
LMMs main advantage is that the unobservable variable is allowed to have its
own dynamics and it is not constrained to be time constant. In addition, when the
latent states are identified as different subpopulations, LMMs can identify a latent
clustering of the population of interest, with areas in the same subpopulation having
a common distribution for the response variables. Un-der this respect, a LMM may
be seen as an extension of the latent class (LC) model, in which areas are allowed to
move between the latent classes during the observational period. Available
covariates can be included in the latent model and then they may affect the initial
and transition probabilities of the Markov chain. When covariates are included in the
measurement model, the latent variables are used to account for the unobserved
heterogeneity and the main interest is on a latent variable which is measured through
the observable response variables (e.g., health status or gender inequalities) and on
the evaluation of this latent variable depending on covariates. We focus on an
extended model of the second type, as we are interested in ordinal latent states.

Very recently, Markov models for latent variables have contributed to in-depth
investigations in highly specific and therefore narrow topics [?]. Extensive analyses
of LMMs, both methodological and applicative, have been performed in the case of
small area estimation, taking also into account several points in time (Bertarelli
2015). Our viewpoint aims to adjust the LMMs approach to a wider area of synthetic
social indicators in different geographical areas and in time, namely for national
gender gap between countries. Gender statistics are de ned as statistics that ade-
quately reflect differences and inequalities in the situation of women and men in all
areas of life (United Nation n.d.). Composite gender indicators are usually computed
as weighted sum of simple indexes reflecting the multidimensionality of the phe-
nomena and they are periodically released by supranational agencies (see for
instance (Mecatti et al. 2012) for a comparative review).

We focus on gender gap as the latent status, since this construct is actually a latent
trait, measurable only indirectly through a collection of observable variables and
indicators purposively selected as micro-aspects that contribute to the latent
macrodimension, aiming to add sensitiveness and discrimination power with respect
to current indicators.

12.2 The Proposed Model

In this paper we use an extension of LMM proposed by Bertarelli (2015). The
existence of two process is assumed: an observed process ca be expressed as:
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Yjit, j ¼ 1, . . . , J, i ¼ 1, . . . , n and t ¼ 1, . . . ,T ð12:1Þ
where Yitj denote the response variable j for unit i at time t, and an unobservable
finite-state first-order Markov Chain

Uit, i ¼ 1, . . . , n and t ¼ 1, . . . ,T with state space 1; . . . ;mf g: ð12:2Þ
We assume that the distribution of Yjit depends only on Uit; specifically the Yjit

are conditionally independent given Uit.
We also denote by ~Uit ¼ Ujt; j2Gi� �

, where i is the set of the neighbours, the
latent states realisations in the neighborhood units.

In the measurement model we consider two Gaussian state-dependent
distributions:

Y1it j UiteN μ1; ν1ð Þ,
Y2it j UiteN μ2; ν2ð Þ: ð12:3Þ

The set of parameters of the structural model, corresponding to the latent Markov
chain, includes the vector of initial probabilities

π ¼ π1; . . . ; πu; . . . ; πmð Þ0, ð12:4Þ
where

πu ¼ P Ui1 ¼ uð Þ
is the probability of being in state u at the initial time for u ¼ 1;:::; m and the
elements of the transition probability matrix

Π ¼ πuj�u; �u; u ¼ 1; . . . ;m
� �

, ð12:5Þ
where

πuj�u ¼ P
�
Uit ¼ ujUi, t�1 ¼ �u

�

is the probability that unit i visits state u at time t given that at time t 1 it was in state
�u.

Considering spatial dependence is a crucial point in our field of application
(Fisher and Naidoo 2016). As in (Bertarelli 2015), we propose to handle spatial
dependence introducing a covariate in the structural model based on the information
from a neighboring matrix and depending on the latent structure itself. In this way,
the influence of spatial structure depends on the latent process, therefore it is not
fixed during the observation period.

For each unit i we know the number of neighbouring units, gi and their
corresponding labels which are collected in the sets Gi. Let ~Uit be the vector of
latent states at occasion t for the neighbours of unit i. We suppose to handle ordinal
latent states in order to model the severity of the gender gap. Let us consider a
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function ( ) that maps the gi-dimensional vector ~Uit onto a d-dimensional covariate,
the choice of depending on the nature of latent states (ordinal or not). Due to our
application context, we decide to work with the mean of neighbourhood latent states.
Then, this time-varying covariate affects the initial and transition probabilities
through the following multinomial logit parametrization:

log
p
�
Ui1 ¼ uj ~Ui1 ¼ ~ui1

�

p
�
Ui1 ¼ 1j ~Ui1 ¼ ~ui1

� ¼ β0u þ η
�
~ui1

�0
β1u for u � 2, ð12:6Þ

log
p
�
Uit ¼ ujUi, t�1 ¼ �u; ~Uit ¼ ~uit

�

p
�
Uit ¼ �ujUi, t�1 ¼ �u; ~Uit ¼ ~uit

� ¼ γ0u�u þ η
�
~uit
�0
γ1u�u,

for t � 2 and u 6¼ �u,

ð12:7Þ

where βu ¼ β0u; β
0
1u

� �0
and γu�u ¼

�
γ0u�u; γ

0
1u�u

�0
are vectors of parameters to be

estimated. An individual covariate has been introduced, accordingly both the
assumptions of local independence and of a first order latent process still hold.

12.3 Estimation and Inference

To estimate the proposed model we adopt the principle of data augmentation Tanner
et al. (Tanner and Wong 1987) in which the latent states are introduced as missing
data and augmented to the state of the sampler (Germain 2010). In this way we can
simplify the process of sampling from the posterior distribution: we can use a Gibbs
sampler for the parameters of the measurement model and we can estimate the initial
and the transition probabilities by means of a Random Walk Metropolis-Hastings
step. We then need to introduce a system of priors for the unknown model param-
eters. In particular, a system of Dirichlet priors is set on the initial and on the
transition probabilities, while for the vectors βu and γu�u we assume that they are a

priori independent with distribution N 0; σ2βI
� �

and N 0; σ2γI
� �

, respectively. The

choice for σ2β and σ2γ depends on the context of the application, typically
5 � σ2β ¼ σ2γ � 10. The prior distribution for the parameters of the measurement
model depends on the distribution assumed for the state-dependent distribution. We
choose a Gaussian distribution for the priors of μ1 and μ2 and inverse gamma
distributions for the variances ν1 and ν2.

The choice of the number of latent states of the unobserved Markov chain,
underlying the observed data, is part of the model selection procedure and is a
very important step of the estimation process. We adopt the Bayesian information
criterion (BIC) (Schwarz 1978) among a restricted set of models (m ¼ 3; 4; 5).
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12.4 LMMs Composite Indicators. A Gender Statistics
Exercise

Gender inequality – both in space and time – is indirectly measurable through a
collection of observable variables. Gender composite indicators are commonly
constructed as statistics indicators, i.e. linear combinations of a collection of simple
indexes, such as means and proportions, which represent observable items, aggre-
gated by means of a weighing system. The choice of both indexes and weight
introduce a certain level of arbitrariness. Their case-specific technical limitations
(Mecatti et al. 2012; Permanyer 2010) often lead to internal inconsistency since the
ranking of a single country can vary in relation to the indicator considered. More-
over, few simple indexes, as well as the weighing system, can outweigh the overall
results.

LMMs is liable to offer a sound methodology for estimating the latent trait,
i.e. the gender gap, in time and in space, resulting in a synthetic indicator. We
move from existing source, namely from supranational official statistics, providing
different indicators for all nations worldwide. In particular, we take into account the
Gender Inequality Index (GII) (United Nations Development Programme 2016) and
the Global Gender Gap Index (GGGI) (World Economic Forum 2015). The GII was
introduced by UNDP in 2010 and it measures gender inequalities in three aspects of
human development: reproductive health, empowerment and economic status. It
focus on inequality, therefore a balanced women/man situation is represented by a
zero value. The Global Gender Gap Index (GGGI)was introduced by the World
Economic Forum in 2006 with the aim of capturing the magnitude of gender-based
disparities. It comprises four dimensions: economic participation and opportunity,
educational attainment, health and survival, political empowerment. Perfect parity
leads to the value 1. Our applicative viewpoint intends to adapt the LMM approach
to Gender synthetic index. Gender Inequality Index (GII) and Global Gender Gap
Index (GGGI) are composite indicators which aim to capture differences between
man and woman in several areas of life. In our case, we focus on gender gap as the
latent status, both in space and time. The gap is in fact a latent trait, namely only
indirectly measurable through a collection of observable variables and indicators
purposively selected as micro-aspects contributing to the latent macro-dimension.
To make the interpretation of results easier and more accessible to non-statisticians,
we transformed the value ofβu ¼ β0u; β

0
1u

� �0
and γu�u ¼

�
γ0u�u; γ

0
1u�u

�0
in order to obtain

an unique set of initial and transition probabilities for all the countries and time
occasion. That is, our values represent a cross-national, inter-temporal synthesis.

Applying LMMs to n¼ 30 European countries, with respect to T ¼ 6 time points
(from 2010 to 2015), we investigate the unobservable latent gender gap summarizing
the GGGI and GII information in a single value and rearranging two distinct and
rather different ranking into a single one, as the multivariate latent Markov model
identities latent statuses of countries. According to the nature of the proposed
indicator, we consider the unit complementary of GGI. The model selects k ¼ 4
latent states, allowing us to organize countries in 4 ordinal latent statuses through the
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proposed multivariate spatial Latent Markov model with multinomial logit param-
etrization, where 1 reflects a situation relatively closest to equality and 4 denotes the
highest level of Gender Gap severity. The vector of estimated initial probabilities of
latent states at the first measurement occasion is

π ¼ 0:212; 0:483; 0:139; 0:167ð Þ:
These values can be interpreted as sort of relative frequency (Bartholomew 1973)

in the first year of observation. On the whole, European countries under consider-
ation are more likely to be in latent status 1 and 2, with a relatively low gender gap,
with initial probability status of 0.212 and 0.483 respectively. The higher imparity
condition, present in status 3 and 4 is less common, accounting for slightly more than
20%, i.e. 0.139 and 0.167 jointly considered.

The Transition Probabilities matrix for geographical areas is the following, where
the identified latent status are denoted S1 S4

to S1 to S2 to S3 to S4
from S1 0:98 0:02 0 0
from S2 0:1 0:9 0 0
from S3 0 0:14 0:85 0:01
from S4 0 0:3 0:2 0:4

ð12:8Þ

It is noticeable that we obtained a matrix close to diagonality, with more
sub-diagonal elements than over-diagonal. Such a matrix implies that on the whole
countries did not undergo relevant changes in the ten-year observational periods.
Probabilities of improving or worsening with respect to the gender gap are low,
except for latent status 4, whose diagonal value is equal to 0.4, meaning that 60% or
countries improved their gender gap since 2010. When moving, it is often to a better
condition, the probability of joining a worse latent status being limited to the shift
from latent status 1–2, with probability 0.02, and from latent status 2 to 3, with
probability 0.02. This reflects, on the one side, a relatively high starting point in
gender equality, under the constitutional rights perspective and under aspects such as
educational opportunities. On the other side, in so called developed countries, gender
disparities tend to stay, when not to worsen, even in the most advanced countries. To
this respect, some remarks can be posed on the basis of spacial results.

Figure 12.1 shows the geography of latent gap in Europe in 2010 and 2015 (at the
beginning and at the end of the observational time period we considered for our
exercise). The 4 latent statuses identified by our models are represented in darkening
shades of gray from status S1 to S4, meaning a worsened gender gap situation.

In 2010 we obtain the following distribution: (i) Latent status 4: Bulgaria, Greece,
Hungary, Italy, Malta, Turkey; (ii) Latent status 3: Ireland, Romania, Spain; (iii)
Latent status 2: Austria, Cyprus, Croatia, Czech Republic, Germany, Estonia,
France, Latvia, Lithuania, Luxembourg, Poland, Portugal, Slovenia; (iv) Latent
status 1: Belgium, Finland, Island, Netherlands, Norway, Sweden, Switzerland,
United Kingdom.
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Despite the almost diagonal transition matrix, some changes in latent status
structure are highlighted in 2015: (i) Latent status 4: Bulgaria, Hungary, Malta;
(ii) Latent status 3: Romania, Turkey; (iii) Latent status 2: Austria, Cyprus, Croatia,
Czech Republic, Estonia, France, Greece, Ireland, Italy, Latvia, Lithuania, Luxem-
bourg, Poland, Portugal, Spain, United Kingdom; (iv) Latent status 1: Belgium,
Finland, Germany, Island, Netherlands, Nor-way, Slovenia, Sweden, Swiss.

Latent status 2 becomes the most crowded. The ten-year span appears to have
allowed some countries, like Italy, Greece, Spain, to narrow the gap especially in the
educational and, to a lesser extent, in political representation. In the case of Slovenia,
the upward shift was impressive. The downward shift experimented by the United
Kingdom seems to reflect a general trend in economic conditions that cuts across all
European countries, even the ones that are regarded as the most socially fair, like
Norway, for instance. The overall change in time signals this aspect in a more
concise and sharp form by the transition matrix in time, as discussed below.

Fig. 12.1 Latent Gender
Gap Classification in 2010
and 2015
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Under a spacial point of view, then, a first relevant LMMs contribution can be
identified in the synthetic single ranking from the information in two different
preexisting ones, GGGI and GII respectively. The LMMs ranking establishes rela-
tions of equivalence and order that make a complex situation more accessible and
readable to the public. For instance, with reference to 2015, the first latent status
establishes that the relative best situation in terms of gender parity is reached with
GGGI values in the interval [0:861; 0:947] and GII values in [0:044; 0:076]. Within
this general framework, we gain a better understanding of individual countries
changes or stability. As aforementioned, Slovenia up-ward shift from latent status
2 in 2010 to latent status 1 in 2015 relates to a remarkable increase in GGGI, from
0.698 to 0.874, as well as in GII (1-GII), from 0.139 to 0.057. Table 12.1 shows
values for countries that changed their ordinal clustering ranking in the five-year
period.

Official statistics provide the two measure annually. With reference to time latent
states, LMMs estimation showed an overall stability of the gender gap in the
observational time, since the indicators transitional matrix (8) is almost diagonal.
On the first hand, the widespread, general access to education and health has been
experimented with different times and speed. Therefore, at the initial time point of
our investigation (2010) some countries see slower, if not almost nonexistent,
progress rates after 2010. On the other hand, (1-GII) has being decreasing far
more slowly since 2010 not only in countries with a longer record of high GII
values, like Switzerland, but also for countries that reached these goals more
recently, like Greece. Furthermore, GGGI trend is generally very modest (g.2) and
it has often come to a halt after 2008 in a specific dimension, Economic Opportunity
and Political Empowerment, as signaled by the World Economic Forum’s Global
Gender Gap Report 2016, that states that the gap in the economic pillar is currently
larger since 2008 (World Economic Forum 2016). Besides the disparities in oppor-
tunities and salary, a major critical issue is posed by the perspective need for women
to acquire Stem (Science, Technology, Engineering and Mathematics) skills, with
several implications for everyday social and personal lives (Fig. 12.2).

Table 12.1 GGGI, GII (1-GII) and latent status for countries with an upward shift in ordinal
clustering

Country
2010
GGGI

2010
(1-GII)

2015
GGGI

2015
(1-GII)

2010
status

2015
status

Germany 0,7449 0,117 0,7790 0,073 2 1

Greece 0,6662 0,179 0,6850 0,121 4 2

Ireland 0,7597 0,192 0,8070 0,135 3 2

Italy 0,6798 0,175 0,7260 0,085 4 2

Slovenia 0,6982 0,139 0,7840 0,057 x 1

Spain 0,7345 0,118 0,7420 0,087 3 2

Turkey 0,5828 0,564 0,6240 0,340 4 3

United
Kingdom

0,7402 0,206 0,7580 0,149 1 2
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12.5 Conclusion

LMMS have been recently applied to estimate latent traits in time and/or space in
social sciences, mainly to highly specific research areas that did not respond ade-
quately to other techniques. Adapting the model in (Bertarelli 2015) to a wider
context of social sciences, our proposal consist in the application of LMMS to a
more extensive and explored field, Gender Statistics. By means of an empirical
exercise, we showed how these models can provide a relevant contribution, since
they produced a latent ordinal classification of gender gap between 30 European
countries from 2010 to 2015 using two different social composite indicators. They
allowed us to obtain synthetic information from the transition matrix that, when
diagonal, expresses absence of change. In our exercise, the matrix was nearly
diagonal, with reduced margins of improvement for several countries and in time,
especially in the economic sector.

Given the complexity and the multidimensionality of social phenomena, LMMs
can contribute highly to a unitarian view. Their latent approach, both in space and in
time, can summarise information from different sources. As a matter of fact, both
space and time components proved valuable in our application. As far as the former
component is concerned, LMMs allowed to identify at a glance areas that are
homogeneous or different with respect to gender equality and, in case of differences,
permitted to set and order of such a divergence. With respect to the time component,
LMMS returned a valuable, concise measure the trend to stagnation that gender
parity is experimenting in western countries, due to the rigidness of the economic
sector, in particular of the labour market. These models provided also information of
national changes in time, i.e. if, how fast and how well some countries were able to
set women and men more equal.
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Fig. 12.2 GGGI trend from 2010 to 2016 in some European countries
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Further developments can focus on covariates, especially when expressing oppor-
tunities in everyday routines. The persistence of disparities in economic treatment, in
fact, can rarely be attributed to explicit law discriminations in western countries, but
they can be more often retrieved in availability and in simplification of services to the
person and to parenthood, as well as in customs and in mental habits.
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Chapter 13
Stochastic Distance Between Burkitt
Lymphoma/Leukemia Strains

Jesús E. García, R. Gholizadeh, and V. A. González López

13.1 Introduction

The Burkitt lymphoma occurs when the chromosome 8 (locus of gene MYC) is
broken, which produces a change in the cellular proliferation. The data used in this
paper corresponds to the most frequent variant, produced by the translocation
between chromosomes 8 and 14. It is known, so far, three variants of Burkitt
lymphoma, which are (i) endemic, (ii) sporadic, (iii) produced by immunodeficiency.
The first case is observed in children in Equatorial Africa and it is associated with
chronic Malaria infections. It does not exist until the moment and according to what
we know, a clear notion of the profile of the Burkitt lymphoma’s DNA. Considering
that it is natural to expect diversity between DNA strains, we will measure the
distance between 15 of them. We adopt a distance between the strains which is
conditioned to each possible common string s, where s is an element of the state
space. That is, suppose that xn11,1 and x

n2
2, 1 are the concatenations of elements a, c, g and

t of the DNA of two patients, say 1 and 2, ds(1, 2) will be the distance between the
sequences in relation to s some string of interest, for instance s¼ aggc. As there are a
variety of possible strings, which we should observe to measure the discrepancy
between the strains, we will compute the maximum of all: maxs{ds(1, 2)}, so as to
focus on the most extreme situation among them. This notion allows to identify
which of these strings can be considered more distant of the majority, and allows us
to select the strains which will be used to define the profile of the DNA. To
strengthen our conclusions, we compared the model constructed with the selected
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strains with the model constructed using the 15 available strains. This work is
organized as follows, first we introduce the notion of distance as well as the general
notation. Then we will describe the strains of the 15 patients, we will inform their
source. In the results we show the values calculated for the maximum distance
between strains two to two. We also show the model induced by this strategy.

13.2 Criteria

Let (Xt) be a discrete time (order o <1) Markov chain on a finite alphabet A. Let us
call S ¼ Ao the state space and denote the string amam + 1. . .an by a

n
m, where ai 2 A,

m � i � n. For each a 2 A and s2S, P ajsð Þ ¼ Prob Xt ¼ ajXt�1
t�M ¼ s

� �
. In a given

sample xn1 , coming from the stochastic process, the number of occurrences of s in the
samplexn1 is denoted by Nn(s) and the number of occurrences of s followed by a in the
sample xn1 is denoted by Nn(s, a). In this way Nn s;að Þ

Nn sð Þ is the estimator of P(a| s). In the

next paragraph, we give the notion of distance between two processes.

Definition 1 Consider two Markov chains (X1, t) and (X2, t) of order o, with finite
alphabet A and state space S ¼ Ao. With sample xnkk, 1, for k ¼ 1, 2 respectively; for
any s2S,

ds 1; 2ð Þ ¼ α

Aj j � 1ð Þ ln n1 þ n2ð Þ
X

α2A
Nn1 s; að Þ ln Nn1 s; að Þ

Nn1 sð Þ
� ��

þNn2 s; að Þ ln Nn2 s; að Þ
Nn2 sð Þ

� �

�Nn1þn2 s; að Þ ln Nn1þn2 s; að Þ
Nn1þn2 sð Þ

� ��

with Nn1þn2 s; að Þ ¼ Nn1 s; að Þ þ Nn2 s; að Þ,Nn1þn2 sð Þ ¼ Nn1 sð Þ þ Nn2 sð Þ, where Nn1

andNn2 are given as usual, computed from the samples xn11, 1 and x
n2
2, 1 respectively, with

α real and positive value. In this paper we use α ¼ 2, see García and González-
López (2017).

The most relevant properties of d are listed below. Both properties are conse-
quence of results derived from concepts introduced in García and González-López
(2017):

(i) The function ds(1, 2) is a distance between the Markov chains relative to the
specific string s2S. If (Xi, t), i¼ 1, 2, 3 are Markov chains under the assumptions
of definition 1, with samples xn11,1, i ¼ 1, 2, 3 respectively,
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ds 1; 2ð Þ � 0with equality , Nn1 s; að Þ
Nn1 sð Þ ¼ Nn2 s; að Þ

Nn2 sð Þ 8a2A,

ds 1; 2ð Þ ¼ ds 2; 1ð Þ,
ds 1; 2ð Þ � ds 1; 3ð Þ þ ds 3; 2ð Þ:

(ii) Local behavior of stochastic laws. If the stochastic laws of (Xi, t), i¼ 1, 2 in s are
the same, then ds 1; 2ð Þ ~min n1;n2ð Þ!1 0. Otherwise ds 1; 2ð Þ ~min n1;n2ð Þ!11.

13.3 DNA Data

The database is composed by 15 DNA sequences, available in the repository: https://
www.ncbi.nlm.nih.gov/nuccore/, coming from 15 patients with Burkitt lymphoma/
leukemia carrying the t(8;14)(q24;q32) with IgH-MYC fusion, breakpoint in the
joining region. The registers (genbank numbers) of the sequences are: AM2871z.1,
where z ¼ 39, 40, 41, 46, 50, 52, 57, 58, 59, 61, 62, 65, 76, 81, 87. For each
sequence, the concatenation of bases a,c,g,t observed in the code is the realization
denoted by xn1 . The size of each sequence is shown in Table 13.1.

13.4 Results

In Tables 13.2 and 13.3 we expose the dmax values between the DNA sequences,
where dmax i; jð Þ ¼ maxs2S ds i; jð Þf g, i 6¼ j, i, j ¼ AM2871z.1 with z ¼ 39, 40, 41,
46, 50, 52, 57, 58, 59, 61, 62, 65, 76, 81, 87. At the end of each column we record the
sum of the dmax values that is:

S ið Þ ¼
X

j

dmax i; jð Þ, for each sequence i ¼ AM2871z:1,

where z ¼ 39, 40, 41, 46, 50, 52, 57, 58, 59, 61, 62, 65, 76, 81, 87. Through ds we
have a criterion to rescue the greatest distance between two DNA sequences. From

Table 13.1 Sample sizes n of DNA sequences coming from 15 patients with Burkitt lymphoma/
leukemia, AM2871z.1; where z ¼ 39, 40, 41, 46, 50, 52, 57, 58, 59, 61, 62, 65, 76, 81, 87

z 39 40 41 46 50 52 57

n 3641 2965 4464 2731 5428 2475 3907

z 58 59 61 62 65 76 81 87

n 3636 4291 2642 3206 2906 2635 3608 3734
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the magnitudes found, we can affirm that the processes can be considered as coming
from the same stochastic law, dmax <1. We also verified the above statement from
the dendrograms constructed using the values recorded in Tables 13.2 and 13.3, see
Fig. 13.1.

13.4.1 The DNA Profile

The model we will apply in the data is extensively investigated in García and
González-López (2017). This is the most general model known to be used in finite
order Markov chains on a finite alphabet, since this model includes fixed order
Markov chains and the variable length Markov chains (VLMC). Essentially what

Table 13.2 dmax(i, j) values, i 6¼ j, i, j ¼ AM2871z.1 where z¼ 39, 40, 41, 46, 50, 52, 57, 58, 59,
61, 62, 65, 76, 81, 87

j \ i 39 40 41 46 50 52 57

40 0.23625

41 0.16160 0.25648

46 0.22578 0.24031 0.21857

50 0.20218 0.25847 0.17855 0.22644

52 0.19479 0.17870 0.21143 0.16253 0.33231

57 0.09777 0.24533 0.13885 0.22058 0.12481 0.19363

58 0.27729 0.21783 0.30105 0.25156 0.28312 0.23041 0.25738

59 0.12485 0.32050 0.09723 0.24232 0.15545 0.21165 0.09821

61 0.20229 0.10170 0.22626 0.20598 0.30120 0.12572 0.25328

62 0.32556 0.34309 0.35858 0.26633 0.47720 0.24569 0.32362

65 0.22234 0.15183 0.26545 0.15812 0.25339 0.29264 0.27469

76 0.19421 0.24629 0.20804 0.12923 0.23960 0.12786 0.19308

81 0.16363 0.17050 0.19272 0.16614 0.22817 0.17392 0.12994

87 0.26047 0.16796 0.24704 0.25130 0.41112 0.26425 0.22481

S(i) 2.8890 3.13523 3.06186 2.96519 3.67203 2.94553 2.77597

Table 13.3 dmax(i, j) values, i 6¼ j, i, j¼ AM2871z.1, where z¼ 39, 40, 41, 46, 50, 52, 57, 58, 59,
61, 62, 65, 76, 81, 87. In bold the lowest value of S, associated to the sequence with z ¼ 81

j \ i 58 59 61 62 65 76 81 87

59 0.30177

61 0.20284 0.32032

62 0.27748 0.34112 0.25478

65 0.25707 0.27412 0.21689 0.30528

76 0.13397 0.21109 0.13318 0.27990 0.21237

81 0.25801 0.14463 0.11904 0.23329 0.21155 0.15334

87 0.23089 0.24762 0.20658 0.37764 0.20689 0.23144 0.19405

S(i) 3.48067 3.09091 2.87007 4.40955 3.30265 2.69363 2.53891 3.52205
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this model proposes is to estimate the transition probabilities that describe the
process by identifying a partition ℒ ¼ {L1, . . ., L|ℒ|} in the state space S. The state
space is divided into parts Li, i¼ 1, . . ., |ℒ| which constitute a partition. The strings of
each part have in common the characteristic of sharing the same transition proba-
bility to any element of the alphabet. In practice, all strings included in the same part
of that partition will be used for the computation of the transition probability that
identities them. The identification of such partition is done using the Bayesian
Information Criterion (BIC), which also is the basis to the concept ds, previously
introduced.

Table 13.4 shows some general characteristics that are observed in the adjustment
of the model introduced in García and González-López (2017). We include progres-
sively (from top to bottom) the closest sequences, according to the criterion S. That
is, first using the sequence 81, second, using two sequences: 81 and 61 and so on. In
other words, we are increasing the sample size from one stage to the next, following
as inclusion criterion the magnitude of S. We can not state unequivocally that by
increasing the sample sizes we increase the parts of the estimated partition, but it
seems to be a trend, as seen in the Table 13.4. But this could also be the result of
incorporating in the model gradually the more distant sequences according to
criterion S. We apply in all the adjustments the agglomerative method, whose
performance is analyzed in García and Gonzalez-Lopez (2017), the memory used
in all the adjustments is equal to 4¼ blog|A|(2475)c � 1, with alphabet A¼ {a, c, g, t}
where 2475 is the smallest sample size reported in Table 13.1.

We describe in a comparative way the results when applying the model in: (i) the
7 closest sequences according to the criterion S, which are: AM2871z.1, where
z ¼ 39, 46, 52, 57, 61, 76, 81 (see Tables 13.5 and 13.6) and (ii) using the
15 sequences (see Tables 13.8 and 13.9). We note (see Table 13.6) that in relation
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Fig. 13.1 Dendrograms build through the dmax values (Tables 13.2–13.3), agglomeration method:
Average, on the left and Complete, on the right
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to the transition probabilities from part i to the elements of the alphabet, 3 of these
parts show their highest values in the transition to a, 10 parts expose their highest
values in the transition to c, 9 of those parts show their highest values in the
transition to g and 5 of those parts expose their greater probabilities in the transition
to t. In Table 13.7 we highlight the composition of the four parts 1, 16, 12 and 26 that
show the highest values of transition probability for a, c, g and t respectively. We
also emphasize in Table 13.7, the part 14 that joins all those strings whose transition
probability to c is zero. We list in Table 13.8 the elements of the partition obtained
using all the strains, and then we give their transition probabilities in Table 13.9.
According to Table 13.9, 7 parts exhibit their highest transition probability values for
the element a, 13 for the element c, 14 for the element g, and 8 for the element t. Note
that the parts recorded in the selection given in Table 13.7, where we use only 50%
of the nearest strains, are combinations of those listed in Table 13.10 with other
parts, in the latter case we use all the strains. We detail the connection in the
Table 13.11. We see that the listed parts (to the left of Table 13.11) are dispersed
in several parts of the model adjusted with all the sequences. In the case of the last
line, the strings listed in part 14 of Table 13.7 occur with nonzero frequencies, when
using all the sequences. This last aspect shows evidences of the natural dispersion
that is inserted to the model with only 50% of the sequences more near, when we use
all the sequences.

Table 13.4 Relation between
the sequences used in the
estimation and number of
parts of the estimated
partition, for AM2871z.1,
where z ¼ 39, 40, 41, 46, 50,
52, 57, 58, 59, 61, 62, 65, 76,
81, 87

z Sample size |S| |L|

81 3604 134 6

81,76 6235 193 13

81,76,57 10,138 241 18

81,76,57,61 12,776 249 21

81,76,57,61,39 16,413 255 27

81,76,57,61,39,52 18,884 255 28

81,76,57,61,39,52,46 21,611 255 27

81,76,57,61,39,52,46,41 26,071 256 31

81,76,57,61,39,52,46,41,59 30,358 256 33

81,76,57,61,39,52,46,41,59,40 33,319 256 31

81,76,57,61,39,52,46 36,221 256 34

41,59,40,65

81,76,57,61,39,52,46 39,853 256 37

41,59,40,65,58

81,76,57,61,39,52,46 43,583 256 39

41,59,40,65,58,87

81,76,57,61,39,52,46 49,007 256 40

41,59,40, 65,58,87,50

81,76,57,61,39,52,46 52,209 256 42

41,59,40,65,58,87,50,62
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13.5 Conclusion

In this paper we show how to use the measure d derived from concepts introduced in
García and González-López (2017) to establish a notion of proximity between
strains of Burkitt lymphoma/leukemia, over the alphabet A ¼ {a, c, g, t} we deal
with 15 strains. The state space is formed by strings that are concatenations of size
4 of elements coming from the alphabet, and the DNA sequences are identified with
Markov processes of memory 4. From d it is also possible to propose a strategy of

Table 13.5 Parts of the partition selected through the Bayesian Information Criterion, using
AM2871z.1, where z ¼ 39, 46, 52, 57, 61, 76, 81

i of part Li Strings

1 acgc, accg, ccag, gacg, acac, gcag, caat, atca

2 ccgc, cggt, cctc, agga, tcac, tagg, acca, gcac

3 gcgc, cgtg, ctat, tctc, cagg, cacc, taag, cgtt, ttct, cccc, ggct, gtca

ctct, agac, tctt, ctta, tgcc, atgc, gttt, tatc, gctt, cttg, agct

4 tcgc, gaca, tttc, ctgc, ttgt, gata, gtta

5 aggc, aaca, agtc, agca, attc, ttcg, aagt, taca, agcg, cagc, gtcc

6 cggc, cgct, tttg, atac, gccg, caga, ttat, ctaa, tagt, ctca, gaaa

7 gggc, gtct, aatt, ttgg, cctt, ttgc, tgga, ctgt, taat, tgta, ccat

tcct, ttca, ggaa, ctcg, tgtt, agaa, gtga

8 tggc, atct, gagt, gagc, aatc, tacg, ggcc, ggtt, agtg, cact, ataa

9 gtgc, gatc, catc, aaga, gctc, aaat, aata

10 actc, tgaa, acag, gtat

11 cgtc, tgtc, gtag, aggt, ttag, ttga, gtac, gcct

12 ggtc, gtaa, agtt, caaa, gttc, gaag, atag

13 cttc, taaa, ttta, catt, attt, aaag, ttaa, acat, aagc, cttt, aaac

14 caag, gcca, tgag, gcaa, aacg, acga, ccac

15 tcag, attg, agag, atcc, aact, cgat, cgta, catg, taga, tccc, ttcc, acaa

16 cgag, tccg, tcta, ggta, taac, acgg, gaga, cata

17 ggag, tgtg, tgct, tcca, tctg, tttt, ccca, ccga, ggca, gcgg, gtgg

tgat, gggg

18 ctag, tcgt, ctgg, aaaa, tcgg, gtgt, gggt, tggt, gatt

19 cacg, aagg, tcaa, cgcg, actg, cgca, tgcg, tcat, ccgt

20 cccg, ctac, atcg, aggg, aatg, ggcg, cggg

21 gtcg, atta, ggat, cgaa, gagg, ggac, tact, tgca, tata, agat, acct

gcga, tcga

22 ccgg, gatg, caac, cctg, atgg, tatt, tggg, tatg, accc, ggtg, cgac, atgt

gcta, ggga

23 gctg, gaat, gttg, acgt, tgac, gacc

24 gcat, gact, ccta, gcgt, caca, acta, gaac, ttac

25 atat, cgga, actt, atga, ccct, cagt, aacc, ccaa, agta, ctga

26 tacc

27 gccc, cgcc, ctcc, agcc
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selection of strains, for the construction of a model that allows to describe the way
the elements of the state space are organized. The measure d allows to select the
nearest strains to build the model whose represents the majority of the strains. We
estimate the transition probability of each string for any element of the alphabet A.
By the conception of the model it is possible to classify the strings into 27 categories,

Table 13.6 Transition
probabilities P(. | Li) with
i ¼ 1,...,27. For each part
i listed on the left column (see
Table 13.5), we indicate in
bold the highest transition
probability to the elements of
the alphabet

i of part Li a c g t

1 0.52430 0.24041 0.18670 0.04859

2 0.26705 0.53977 0.13636 0.05682

3 0.31714 0.25073 0.30718 0.12495

4 0.16245 0.27557 0.53791 0.02407

5 0.47689 0.07948 0.27542 0.16821

6 0.20235 0.17204 0.33822 0.28739

7 0.11628 0.31924 0.46564 0.09884

8 0.26162 0.34661 0.36122 0.03054

9 0.14495 0.11376 0.57982 0.16147

10 0.00487 0.42336 0.37226 0.19951

11 0.02754 0.11864 0.61441 0.23941

12 0.26225 0.08357 0.62824 0.02594

13 0.17198 0.23406 0.41527 0.17869

14 0.35484 0.00000 0.18894 0.45622
15 0.27907 0.22161 0.12996 0.36936
16 0.02667 0.72800 0.11200 0.13333

17 0.23476 0.35264 0.24390 0.16870

18 0.13996 0.43050 0.31757 0.11197

19 0.36605 0.38650 0.02658 0.22086

20 0.20380 0.51813 0.09845 0.17962

21 0.08753 0.43885 0.11631 0.35731

22 0.16603 0.35227 0.21136 0.27034

23 0.14469 0.25736 0.23303 0.36492
24 0.01155 0.33949 0.22864 0.42032
25 0.07393 0.47471 0.28664 0.16472

26 0.03922 0.05882 0.03922 0.86275
27 0.26437 0.04310 0.46264 0.22989

Table 13.7 Selected parts, from Table 13.5, which have the greater (on top)/null (on bottom)
transition probabilities to each element of the alphabet {a, c, g, t}

i of part Li Strings Probability

1 acgc, accg, ccag, gacg, acac, gcag, caat, atca P (a|L1) ¼ 0.52430

16 cgag, tccg, tcta, ggta, taac, acgg, gaga, cata P (c|L16) ¼ 0.72800

12 ggtc, gtaa, agtt, caaa, gttc, gaag, atag P (g|L12) ¼ 0.62824

26 tacc P (t|L26) ¼ 0.86275

14 caag, gcca, tgag, gcaa, aacg, acga, ccac P (c|L14) ¼ 0
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Table 13.8 Parts of the partition selected through the Bayesian Information Criterion, using all the
sequences AM2871z.1, where z ¼ 39, 40, 41, 46, 50, 52, 57, 58, 59, 61, 62, 65, 76, 81, 87

i of part Li Strings

1 acgc, accg

2 ccgc, gagt, acca, gagc, ggcg, cggt

3 gcgc, tacg, cgtg, ccca, gccg, ctat, cacc, ttat, ctaa, caga

4 tcgc, ggtt, aatc, ggcc, atca, agtg, ataa, tggc, atct

5 aggc, agtc, aaca, agca

6 cggc, cgct, tttg, atac

7 gggc, ctcg, gtct, cctt, gaca, tagc

8 atgc, gttt, cttg, tatc, ttgg, cttc, catt, taaa, gctt

9 ctgc, ctgt, gttc, tttc

10 gtgc, ggtc, gaag, atag, agtt, caaa, gtaa

11 ttgc, tgga, taat, aaac, ttca, aaag, ttaa, acat, aagc, ttta, cttt

12 catc, ctcc, gctc, aaga, gccc

13 gatc, aata, aaat, gtac, gtag, ttga, ttag, aggt

14 actc, agaa, cgga, atat, atga

15 cctc, tgcc, ggct, tcca, acac, ggag, tgat, tgtg, tgct, gcac, tctg, tttt, gtca

16 tctc, taag, cccc, cagg, ttct, ctct, tctt

17 cgtc, tgtc, gcct

18 attc, aagt, agct, taca, tagt, ctca, gaaa

19 caag, gcca, ccac

20 acag, gtat, tgaa

21 ccag, agac, agga, gcag, gacg, caat, cgtt

22 tcag, attg, aact, agag, catg, atcc, aatg, cgat, cgta

23 cgag, tccg

24 tgag, acga, gcaa, agcc, cgcc

25 ctag, ggga, accc, gctg, atgt, gaat, acgt, gttg, tgac, gacc

26 aacg, taga, acaa, tccc, ttcc

27 cacg, aagg, tcaa, cgca, actg, cgcg, tagg, tcac

28 cccg, ctac, aggg, atcg, gtcg, atta, cggg

29 agcg, cagc, gtcc, ttcg

30 tgcg, tcat, ccgt, acct

31 gagg, ggac, tgca, gcat, ttac, gact, gaac, caca, tata

32 acgg, agat

33 ccgg, gatg, tact, atgg, cctg, gcta, caac, tggg, tatg, ggtg, tatt, cgac, ggca, ccga

34 gcgg, gtgg, cact, ctta, attt, aaaa, gggg, cgaa

35 tcgg, actt, tggt, gggt, ctgg, tcgt, gatt

36 ccat, ggaa, tgta, tcct, aatt, gata, gtta, gtgt, tgtt, gtga

37 ggat, gcga, gaga, tcga

38 ccct, cagt, aacc, ccta, ccaa, agta, ctga

39 gcgt, acta

40 ttgt

41 cata, tcta, ggta, taac

42 tacc
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Table 13.9 Transition
probabilities P(�| Li) with
i ¼ 1,...,42. For each part i,
listed on the left column (see
Table 13.8), we indicate in
bold the highest transition
probability to the elements of
the alphabet

i of part Li a c g t

1 0.62162 0.17568 0.11824 0.08446

2 0.20141 0.52669 0.18127 0.09063

3 0.27795 0.22742 0.25900 0.23563

4 0.26518 0.31020 0.37473 0.04989

5 0.49296 0.03873 0.34859 0.11972

6 0.15173 0.17569 0.36646 0.30612

7 0.17982 0.28801 0.44956 0.08260

8 0.26409 0.22741 0.38224 0.12625

9 0.13973 0.20960 0.58923 0.06145

10 0.25732 0.09728 0.57741 0.06799

11 0.15512 0.23870 0.42244 0.18373

12 0.22067 0.08288 0.50377 0.19268

13 0.07543 0.16140 0.58475 0.17843

14 0.07708 0.49605 0.26383 0.16304

15 0.26020 0.34949 0.22874 0.16156

16 0.34054 0.25250 0.28011 0.12685

17 0.05213 0.06398 0.55450 0.32938

18 0.29789 0.14042 0.34416 0.21753

19 0.38671 0.04532 0.09970 0.46828
20 0.01037 0.41014 0.38134 0.19816

21 0.43774 0.26038 0.21384 0.08805

22 0.27390 0.29363 0.11684 0.31563
23 0.08333 0.82222 0.05556 0.03889

24 0.26710 0.05375 0.35668 0.32248

25 0.14725 0.28990 0.24258 0.32027
26 0.28553 0.14211 0.18027 0.39211
27 0.38189 0.38091 0.06102 0.17618

28 0.19352 0.51001 0.09724 0.19924

29 0.48899 0.11006 0.19654 0.20440

30 0.22482 0.37230 0.02698 0.37590
31 0.05018 0.35636 0.17236 0.42109
32 0.02055 0.66438 0.02740 0.28767

33 0.17956 0.35776 0.19200 0.27069

34 0.19475 0.34030 0.30463 0.16031

35 0.15342 0.42826 0.30464 0.11369

36 0.09625 0.36320 0.44644 0.09401

37 0.07349 0.48294 0.14961 0.29396

38 0.09836 0.36339 0.31785 0.22040

39 0.00339 0.35254 0.28136 0.36271
40 0.17865 0.31828 0.49281 0.01027

41 0.05017 0.63378 0.16890 0.14716

42 0.05970 0.10448 0.12687 0.70896
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where each category contains strings with the same transition probability to elements
of the alphabet, i.e. within each category, the strings are stochastically equivalent.
Comparing the model constructed from the closest strains to the model with all the
strains, we noticed that the categories practically double. An open question is to be
able to quantify with some level of significance the impact of the inclusion of each
strain (DNA sequence) on the model, as the quantity S increases. An answer in that
line would allow to classify the different possible models, given the 15 strains.
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Table 13.10 Selected parts,
from Tables 13.8 and 13.9,
which have the greater
transition probabilities to each
element of the alphabet {a, c,
g, t}

i of part Li Strings Probability

1 acgc, accg P (a|L1) ¼ 0.62162

23 cgag, tccg P (c|L23) ¼ 0.82222

9 ctgc, ctgt, gttc, tttc P (g|L9) ¼ 0.58923

42 tacc P (t|L42) ¼ 0.70896

Table 13.11 Relation between the parts listed in Tables 13.7 and 13.10. On left we display the
parts coming from the model using only 50% of the DNA sequences, on right the parts coming from
the model using all the DNA strains. In the same line, on the right we list the parts in which are
identified the elements into the part on the left

Index of part from Table 13.7 Indices of parts – Table 13.8

1 1,4,15,21

16 23,32,37,41

12 9,10

26 42

14 19,24,26
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Chapter 14
Monte Carlo Methods Applied in Health
Research

J. A. Pereira, L. Mendes, A. Costa, and T. A. Oliveira

14.1 Introduction

The present paper describes an application of Monte Carlo (MC) methods to
estimate the sample size under the framework of statistical power (SP) and accuracy
in parameter estimation (AIPE), for a multivariate regression analysis on oral health
research. The ultimate goal of our research is to create a model to assist in the
estimation of the risk of tooth loss due to periodontitis.

Over the past two decades has been established that Monte Carlo method is a very
useful tool to sample size planning for multivariate regression analysis in terms of SP
and AIPE. With the integration of the structural equation modeling (SEM) approach,
together with its implementation in R software language, the estimation of sample
size became easier. Muthén and Muthén (2002) showed how researchers can use a
Monte Carlo study to decide on sample size and determine power for SEM using the
Mplus program. To find sample size according with AIPE, Kelley and Maxewell
(2003) undertook a MC study in R/S-PLUS code within the framework of ordinary
least squares (OLS) multiple regression. Later on Maxewell et al. (2008) presented
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an extended review on sample size estimation and related topics. In this review
specific designs and analyses were considered, including the structural equation
modeling (SEM). Afterwards, Beaujean (2014) demonstrated how to use a MC
study to decide on sample size for a regression analysis using both power and
parameter accuracy perspectives under the SEM framework in R language.

The overall structure of this paper takes the form of three parts. The first provides
the medical context of our research and the methods to estimate the sample size and
related concepts. The second part describes the application of the statistical methods
to the considered data. And finally, the third part provides a brief summary and
discussion of the work.

14.2 Medical Context and Statistical Methods

14.2.1 Medical Context

Periodontitis is the most severe form of periodontal disease. It is characterized by the
destruction of tooth’s supporting tissues such as alveolar bone and periodontal
ligament (Fig. 14.1). Together with dental caries, it is the major cause of tooth loss
in adults (Hand et al. 1991) and has been shown to be related to adverse effects in
systemic health (Kim and Amar 2006). The bone level around the tooth is an
estimate of the amount of remaining/destroyed alveolar bone supporting the tooth,
reflecting the amount of attachment between tooth and alveolar bone (Yamamoto
et al. 2006). The amount of attachment is very important to model the diagnosis and
the clinical prognosis (Yamamoto et al. 2006) and it traditionally estimates the
percentage of intrabony root. This proportion is calculated from measurements
taken on x-ray images along the long axis of the tooth. Since the root shape is
approximately conic, the traditional approach seems to be a poor estimate of the
dental attachment. Alternatively, the quantification of periodontal destruction
through the lateral area of the root surface without bone support seems to be a better

Fig. 14.1 X-ray image of a
tooth periodontally affected
(A). The portion of the tooth
delimited by dashed lines
indicates the root portion
without bone support. The
tooth length and maximum
mesio-distal diameter of the
crown are represented by TL
and MDC respectively
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estimate of attachment loss, which can be estimated by subtracting the remaining
area of periodontal support to the total lateral area of the root.

In recent years, there is a growing interest in more realistic methods to quantify
the periodontal inflammation by the area of the periodontal pocket wall (Nesse et al.
2008). The extension of this concept to periodontal bone support lead us to formulate
our research question: “Can we model the total periodontal attachment area from
non-invasive measures?”. To answer this question we propose to model the total
periodontal attachment area by calculating the lateral surface area of the root (RSA)
from measures easily obtained in clinical set in a non-invasive way. Accordingly, the
tooth length (TL) and the maximum mesio-distal diameter of the crown (MDC) were
choosen (Fig. 14.1). The conceptual model assumes that RSA is a linear function of
MDC and TL and can be written as:

RSA ¼ β0 þ β1TLþ β2MDCþ ε ð14:1Þ
The data on RSA is obtained for each tooth by the method of division planimetry

applied to microtomographic slices of scanned second mandibular premolars
(Fig. 14.2). For each tooth TL and MDC are measured on pictures (Fig. 14.1).

Data Collection and Description

A sample of five second mandibular premolars, extracted for orthodontic treatment
purposes, selected at random from 5 Portuguese young adult males. The teeth
accomplished with the following selection criteria: absence of lesions of dental
hard tissues (carious, abfraction and erosion lesions), restorative dental treatments
(dental restorations or fixed prosthesis) and aberrant morphology of the dental roots
(incomplete apex and abnormalities of shape or number).

Fig. 14.2 Division planimetry method use to calcule RSA from microtomographic slices
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The teeth were scanned individually by an x-ray microtomograph system
SkyScan 1072 (SkyScan, Kontich, Belgium) with the resolution set to 19.13 μm
voxel size.

Data on tooth length (TL) and maximum mesio-distal diameter of the crown
(MDC) were obtained by measuring on the picture taken orthogonally at the scale
1:2. The measurements were made with the software Adobe® Acrobat® 9.0.

The lateral surface area of the dental root (RSA) was estimate by division a
planimetry as following: we started determining the lateral surface area of each
tomographic slice by multiplying its perimeter of each slice was multiplied by the
length of edge of the voxel, in this case, and second we added the lateral surface area
of all slices to obtain the total lateral surface area (Fig. 14.2).

14.2.2 Statistical Methods

The first challenge is to determine the minimum sample size to get regression
coefficients to operationalize our conceptual model. Thus, the number of teeth to
be scanned for estimation of root surface area must be just enough to ensure that β1
and β2 are different from zero, considering the true parameters of the population are
different from zero, and as close as possible to the respective true values of the
population. Thus, the sample size must be estimated within both statistical power
and accuracy frameworks.

Sample Size and Statistical Power

From the power analysis perspective the sample size is the number of observations
needed to reject the null hypothesis i.e. β be equal to zero (H0) whereas the alternate
state is that β do not conform to the null hypothesis. The power analysis involves
four quantities implied in statistical inference: significance level, statistical power,
effect size, and sample size, and with any of the three, we can determine the fourth.

The sample size is the unknown number of observations.
The confidence level or type I error (α), also known as “false positive” is the error

of rejecting H0 (β ¼ 0) when it is actually true or is the error of accepting Ha (β 6¼ 0)
when the results can be attributed to chance.

The power or one minus type II error which is also known as “false negative”
meaning not rejecting the H0 when Ha is true. That is, this is the error of failing to
accept Ha when you do not have adequate power. In this study we decided on type I
error of 0.05 and type II error of 0.2 (power ¼ 0.8).

The effect size refers to the magnitude of the effect under Ha and its nature varies
with the statistical procedure. In regression analysis it can be defined by the
proportion of the variance in the dependent variable that is explained by the
regression model and is often represented by R squared (R2). It needs to be estimated
from the correlations, regression coefficients of the variables and variance of the
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dependent variable (Cohen 1992). Because we have no knowledge from previous
studies conducted in this area, the effect size was estimated from data gathered from
a pilot study with a sample of 5 teeth. The methodology used to collect the data, and
the descriptive statistics are shown below in Table 14.1.

Sample Size and Parameter Accuracy

To know that a parameter is different from zero may be not enough, because do not
inform the researcher on its magnitude, which is a limitation of the research results.
Therefore, to find an accurate parameter is of the most importance for the researcher.

The accuracy can be defined as the extent that an estimate conforms to the true
population value and can be represented by the square root of the mean square error
that is expressed by the Eq. (14.2). It indicates how close the estimator is to the true
value (Walther and Moore, 2005).

REMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

�bβ � β
�2h ir

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bβ � �bβ�� �2

þ E
�bβ � β

�� �2
r

ð14:2Þ

Where:

β is the true parameter value for the population and bβ is an estimator,

E
�bβ � β

�
is the bias or systematic error

bβ � �bβ�� �
is the variance or random error which is the inverse of precision.

The bias is the difference between the expected value of the estimator (the mean
of the estimates of all possible samples that can be taken from the population) and the
true, unknown, population value. The variance is the difference between a sample
estimate and the mean of the estimates of all possible samples that can be taken from

the population. Thus, when an estimator is unbiased E
�bβ � β

�� �
¼ 0

� �
accuracy

coincides with precision.
The precision and likely accuracy is an interval estimate or confidence interval of

our bβ and is centered on β and extending a distance w either side of β, where w is
called the margin of error, which is based on the standard error (SE). The SE is
obtained from the standard deviation (SD) and from the size of the sample (n) being
SE ¼ SD=

ffiffiffi
n

p
and w is the product of SE by the critical value of the t statistic that

depends on our chosen value for confidence level (Cumming and Finch 2005).

Table 14.1 Descriptive
statistics of data

n Mean SD Median Max Min

Tl* 5 23.58 0.78 23.83 24.57 22.54

Mw* 5 7.68 0.46 7.89 8.17 7.04

RSA+ 5 283.74 22.18 284.62 315.38 254.09

*measured in mm; + measured in mm2; Max – maximum value
and Min – the minimum
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From the accuracy in parameter estimation (AIPE) perspective, sample size is
chosen such that the expected width of the confidence interval will be sufficiently
narrow, being the confidence interval defined by an estimated range of values with a
given high probability of covering the true population value. It is calculated as
described above, i.e. the goal of AIPE is to obtain parameter estimates that accurately
correspond to the population value they represent, see (Hays 1973; Kelley and
Maxwell 2003).

Monte Carlo Methods

Monte Carlo method consists on generating random data from a population of
interest, with plausible parameter values and distributional form. To obtain a sample
size an adequate statistical technique is implemented, and the simulation is repeated
a large number of times (m) with different sample sizes (n) until the minimum
sample size is achieved, where the particular goal is accomplished (Scott Maxwell
et al. 2008). In this study we aim to meet the quality criteria for simulated data that
was defined by Muthén and Muthén (2002). To estimate the parameters for a
multivariate regression, a model is fitted to each one of the numerous drawn samples.
Then the averages of the parameters and respective standard errors are calculated
over the samples, and the estimate relative parameter bias, relative standard error
bias, and coverage are assessed to decide on the sample size (Muthén and Muthén
2002).

The relative parameter estimate bias is defined as:

βbias ¼
bβ � βp

βp
ð14:3Þ

where βp is a plausible parameter for the population, bβ is the average parameter
estimate from the simulated samples.

The relative standard error bias as:

σbias ¼ bσβ � σbβ
σbβ

ð14:4Þ

where σbβ is the standard deviation of the parameter estimates and bσβ is the average of

the estimated standard errors for the parameter.
The coverage is the percentage of (1 � α)% confidence interval that covers

parameters underlying the data.
To have a sample with power close to 0.8 the parameter and standard error biases

must not exceed 10% for any parameter in the model, the standard error bias for the
parameter of interest does not exceed 5% and the coverage should be between 0.91
and 0.98 (Muthén and Muthén 2002).
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The power is the proportion of simulated samples for power is the proportion of
significant replications when testing whether the parameters are different from zero,
according with alpha level (Beaujean 2014).

Structural Equation Modeling Approach

To represent our model and make the simulation we use the structural equation
modeling (SEM) approach once SEM framework encompasses the traditional mul-
tivariate regression procedures with some advantages, such as the inclusions of
means, regression weights and, when visualized by a graphical path diagram,
makes evident the correlation between the predictor variables and the residual
error (Beaujean 2014). Furthermore, two of the three characteristics of SEM, namely
the estimation of multiple and the explanation of the entire set of relationships with
the definition of the model (Hair et al. 2012) made this approach more suitable for
Monte Carlo studies. Therefore, SEM enables the specification and estimation of
more complex path models.

Important aspects of the application of SEM are the following features of data:
verified association between the outcome and the predictor variables (Table 14.1),
the joint distribution multivariate normal (Table 14.3), and all univariate distribu-
tions should be normal (Table 14.4) (Ullman 2006).

14.3 Implementation of the Statistical Methods

The method applied to determine the sample size for a multivariate regression
analysis with Monte Carlo study can be described in seven critical steps as described
above:

1. Decide on regression model

The model to be studied is the conceptual model (Eq. 14.1) to respond to the
research question. Another way to state the interrelationship among variables is the
path diagram in Fig. 14.3.

2. Decide on population values for all parameters in the model, regression
coefficients, residual variance (1 – R2) and covariance among the predictors.
Confirm the covariance matrix

The effect size was estimate by the Eq. (14.5) and the standardized regression
coefficients by (14.6)

Effect size : R2 ¼ VXXb0YXbYX
σ2Y

¼ ρ0YXR
�1
XXρYX ð14:5Þ
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Standardized regression coefficients : b∗ ¼ R�1
XXρYX ð14:6Þ

where:

ρYX is the p � 1 vector of correlations between TL, MDC and RSA;
bYX is the p � 1 column vector of regression coefficients of TL, MW;
RXX is the p � p correlation matrix of TL and MDC;
VXX is the p � p covariance matrix of TL and MDC; and
σ2Y is the variance of RSA

The matrices ρYX, RXX, VXX and σ2Y are obtained with data from Table 14.2 and
bYX was calculated according to Eq. (14.6).

The population estimated values for effect size (R2) calculated with the Eq. (14.5)
is 0.496, the residual variance (1 � R2) is 0.504, standardized coefficients of TL and
MDC calculated with Eq. (14.6) are 0.63 and 0.69 respectively. The standardize
coefficients were used to annul the intercept of the model.

The conceptual model became the operational model with standardize coeffi-
cients. The model was treated as a structural equation model (SEM) (Nachtigall et al.
2003) to include all pertinent information. The data were checked for multivariate
and univariate normality (Tables 14.3 and 14.4), being the multivariate normality
Χ ¼ [TL,MDC, RSA]T written by ΧeN μ;Σð Þ,

where μ is the matrix of means μ ¼
23:58
7:68

283:74

2
4

3
5 and Σ is the covariance matrix

Σ ¼
0:61

�0:16
5:73

� 0:16
0:21
4:33

5:73
4:33

491:75:

2
4

3
5

Fig. 14.3 Path diagram for the conceptual model represented by Eq. (14.1)
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The R lavaan package (Rosseel 2012) was used to specify the SEM regression
model with all the information described in the parameterized path diagram
(Fig. 14.4).

3. Decide on simulation definitions for type 1 error rate (α), power (1 – β);
number of samples (m); sample size (n); random seed.

Table 14.2 Covariances and
correlations between variables

Predictors TL MDC RSA

TL Covariance 0.61 �0.16 5.73

Correlation 1 �0.43 0.33

MDC Covariance ● 0.21 4.33

Correlation ● 1 0.42

RSA Covariance ● ● 491.75

Correlation ● ● 1

Where:
ERSA - Error associated a RSA or residual variance (1–R2) and equals 0.
-0.43 – Correlation value between TL and MDC;
0.63 and 0.69 – Standardized coefficients of TL and MDC.

TL

MDC

RSA ERSA–0.43
1

1

1
0.504

0.63

0.69

Fig. 14.4 Path diagram with the parameter estimates for the population

Table 14.3 Results of
multivariate normality tests

Tests Statistic p-value

Mardia Skewness 11.913 0.290

Kurtosis 10.470 0.355

Henze-Zirkler 0.468 0.320

Royston 0.169 0.981

Mardia 11.913 0.290

Significance level at 5%

Table 14.4 Results of
Shapiro-Francia univariate
normality test

Predictors Statistic p-value

TL 0.963 0.929

MDC 0.930 0.628

RSA 0.960 0.906

Significance level at 5%
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The values considered for α, 1 – β, m, n, and randon seed are 0.05, 0.80, 1000,
300 and 565 respectively.

4. Short algorithm to simulate the m samples of the regression model from Step
2.

It was considered the simulation ran on simsem package (Pornprasertmanit et al.
2012) that accepts lavaan specifications. Two models were specified: the first
generates the samples and the second estimates the parameters from the replications.
The algorithm procedure and respective table of results are:

In the simulated data, check: Relative parameter and standard error biases;
Coverage; If the values are acceptable, examine the power or accuracy of the
parameters of interest; If the values are not high enough, repeat the simulation
with a bigger n.

As it can be observed from Table 14.5, the average parameters estimates in the
simulation with m ¼ 1000 and n ¼ 300 equal the plausible parameters for the
population, indicating that m and n values were large enough to get convergence. In
terms of accuracy the results showed that average parameters estimates are accurate
as suggested by the small values for the relative parameters biases, relative standard
error biases, and confidence intervals half-widths attaining the quality criteria set out
by Muthén and Muthén (2002) and Kelley and Maxwell (2003).

From the statistics, concerning the statistical power, we can realize in Table 14.5
that the coverage (meaning the percentage of the simulated samples for which the
95% confidence intervals) contains the estimated parameters, it was acceptable for
all parameters of interest, and in all simulations the parameters estimates were
statistically different from zero (Power ¼ 1).

Considering that the results met the quality criteria for the simulated data we then
proceed to step 5

5. Repeat Step 4 using a different random seed

The step 4 was repeated with a seed of 656 and same values for m and n

6. Compare results of simulated data from two random seeds
Procedure:

Table 14.5 Results of Monte Carlo simulation with m ¼ 1000 and n ¼ 300 and seed 565

Relative Bias

Predictor
(β)

Proposed
parameter

Average
parameter
estimate Parameter

Standard
error Coverage Power

95% CI
Half-
width

TL (β1) 0.63 0.63 0.003 0.019 0.96 1 0.089

MDC
(β2)

0.69 0.69 0.005 0.020 0.95 1 0.089

Criteria for Monte Carlo data quality* �0.1 �0.1 0.91a0.98 >0.8

*Values proposed by Muthén and Muthén (2002); Significance level at 5%
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If the results converge, no need for further simulations
If the results do not converge, repeat from Step 4 using different random seeds or

larger values of m

From the simulations of step 4 and 5 identical results were obtained (not shown)
and consequently the quality criteria for data were also met. Since the convergence
was observed we found no need to repeat the step 4 with different number of
samples.

7. Finding the sample size

To select the sample size, the variation of the power and the accuracy was
assessed by simulating samples varying from n ¼ 10 to 200 in steps of 10 and
m ¼ 1000.

The Fig. 14.5 provides the graphs presenting the variation of power and confi-
dence intervals half-width (accuracy) with the sample size for the relationships
between RSA and TL (β1) and MDC (β2). It can be observed that the power of 0.8
is reached with samples above 15, but the confidence intervals are too large to be
acceptable. As shown in the graphs, each increment in accuracy implies a much
stronger increase on sample sizes below 150 and from that point the confidence
intervals width became stable, which makes 150 the best sample size. Considering
the high costs of scanning 150 teeth, we decided to estimate the minimum sample
size that accomplishes with the quality criteria for simulated data.

From the graph of power we estimate that the maximum power is achieve for
samples above ap-proximately 40 and the confidence intervals width around 0.5,
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Fig. 14.5 Curves of power and accuracy for the regression coefficients: A and B power curves for
β2 and β1; and C and D curves of accuracy for β2 and β1
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however we do not have information on the estimate relative parameter bias, relative
standard error bias, and coverage. To find those values a simulation was ran with
m ¼ 1000 and n varying from 35 to 45, and the quality criteria was met for n ¼ 37.

To confirm the last finding a simulation with n ¼ 37, m ¼ 100 and a seed of
565 was carried out. The results are presented in Table 14.6.

14.4 Discussion and Conclusions

The calculation of the number of observations to include in a statistical sample is a
step of the research design that can condition the feasibility of the project, its exact
calculation assumes increasing importance as the cost, and the time of gathering the
data increases. In this study the scanning by x-ray microtomography and the image
processing were both costly and time consuming, therefore a method to obtain a
precise sample size from the power and accuracy in parameter estimation perspec-
tives was adopted. The methodology to find the sample size, proposed by Beaujean
(2014), proved to be useful and simple to apply to our data. The sample of 5 teeth
that was used to estimate the population parameters allowed to characterize the joint
distribution and the relationships of the variables and to test the applicability of this
sample size estimation method to our line of work, serving as a starting point for
further research in this field.

The variables selected can be easily obtained in any clinic, MDC can be measured
in mouth or in x-ray images, whereas TL is necessarily measured in x-ray images
that usually present different grades of distortion, thus the estimates of root length
must be pondered for distortion. The RSA was estimated beyond the first cervical
2 mm of root, because, usually, are not periodontal ligament attached in this area.

The second lower pre-molar was selected, because its x-ray images present less
distortion and, having only one and approximately conic root, is easier to model than
other tooth types.

The number of independent variables was minimal as possible to get a simpler
and rational model (Forster 2001).

Table 14.6 Results of Monte Carlo simulation with m ¼ 1000 and n ¼ 37 and seed 565

Relative Bias

Predictor
(β)

Proposed
parameter

Average
parameter
estimate Parameter

Standard
error Coverage Power

95% CI
Half-
width

TL (β1) 0.63 0.63 0.008 0.088 0.93 0.995 0.253

MDC(β2) 0.69 0.69 0.002 0.081 0.93 0.995 0.255

Criteria for Monte Carlo data quality* �0.1 �0.1 0.91a0.98 >0.8

*Values proposed by Muthén and Muthén (2002); Significance level at 5%
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The simulations were ran with various random seeds and in different occasions
and the consistency of the results was verified, although small differences were
observed and the rounding of values.

The R software environment showed a great versatility and information to better
use the packages of interest and is available online open access.
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Chapter 15
A Neuro-Fuzzy Approach to Measuring
Attitudes

Maria Symeonaki, Aggeliki Kazani, and Catherine Michalopoulou

15.1 Introduction

The present paper develops a neuro-fuzzy technique for measuring an attitude. Many
definitions have been provided in the literature as to what constitutes an attitude. For
example in Hoog and Vaughan (2008) an attitude is defined as ‘a relatively enduring
organization of beliefs, feelings, and behavioural tendencies towards socially sig-
nificant objects, groups, events or symbols’. According to Eagly and Chaiken (1993)
an attitude is ‘a psychological tendency that is expressed by evaluating a particular
entity with some degree of favour or disfavour’. In psychology, an attitude is a
psychological construct, it is a mental and emotional entity that inheres in, or
characterizes a person (Perloff 2016). How to measure attitudes has also been an
issue of utmost importance in social sciences and numerous rating scales have been
suggested in the past for that reason. The most commonly used rating scale is the
Likert scale developed in 1932 (Likert 1932) by the American psychologist Rensis
Likert. It is composed of third-person items/questions and it rates the respondents by
asking them to place themselves on a scale of favour/disfavour with a neutral
midpoint. Therefore a respondent is asked to select between several response
categories, indicating various strengths of agreement and disagreement. The
response categories are assigned scores and the respondents’ attitudes are measured
by their total score, which is the sum of the scores of the categories the respondents
have chosen for each item-question.

When this traditional type of methodology is used the respondent’s attitude is
assessed by examining the response categories he/she chooses in a number of items/
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questions. In this study we provide a hybrid expert system that classifies respondents
into levels of xenophobia. The focus is on the development of a neuro-fuzzy system
that will measure the specific attitude, taking into account a number of important
factors such as age, level of education, gender, political and religion beliefs and
finally the way each question is answered by the respondent. The proposed system
evaluates the answers for each respondent and distinguishes between questionable
and non-questionable answers. The intelligent system put forward in the present
paper simulates the respondent’s final score when the answers are not questionable
and takes into account a number of other crucial factors when the answers are
questionable so as to classify the respondents into xenophobic levels, reducing
therefore the uncertainty.

This approach is an extension of the methodology suggested in Symeonaki and
Kazani (2012) and it can be used in every real problem where researchers would like
to classify respondents with the aid of Likert scales to different levels of belief,
feeling or opinion towards a specific object.

Recently, there have been attempts to combine expert systems with attitude
scaling. In Symeonaki et al. (2011) a fuzzy system based on factor analysis is
proposed whereas in Symeonaki and Michalopoulou (2011) cluster analysis and
fuzzy k-means is used in order to produce a more reliable final scale. Moreover, in
Symeonaki et al. (2015) and in Symeonaki and Kazani (2011) a fuzzy system that
measures xenophobia in Greece is suggested. In addition, Lalla et al. (2005) pro-
posed a fuzzy system to analyse qualitative ordinal data produced by a course-
evaluation questionnaire and Gil and Gil (2012) provided a guideline to design
questionnaires allowing free fuzzy-numbered response format.

The paper has been organized in the following way. Section 15.2 provides some
information concerning the data and the methodology used in the present study and
the respective results. The following Section discusses the validation of the proposed
neuro-fuzzy approach, whereas Sect. 15.4 discusses the results and provides con-
cluding remarks and aspects of future work.

15.2 Data, Methodology and Results

The Likert scale studied in the following sections is included in the questionnaire of
a large-scale survey conducted under the auspices of the National Centre for Social
Research1 that was designed in order to measure xenophobia in Greece
(Michalopoulou et al. 1999). More specifically, the following questions were
given (see Symeonaki et al. 2015):

1. Foreigners who live in our country must have equal rights with us.
2. Many of the foreigners who live in our country are responsible for the increase

in the crime rate.

1www.ekke.gr
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3. Foreigners must have lower wages even when they do the same job as we.
4. The foreigners in our country increase unemployment for Greeks.
5. The local authorities must organize events so we get to know the foreigners who

live and work here.
6. I would never marry a foreigner.
7. I would never work for a foreigner.
8. We should facilitate foreigners who want to settle in our country.
9. Foreigners who work in our country do harm to our economy.

10. The state must organize programmes of further education to help those for-
eigners who live in our country.

11. The more foreigners arrive, the lower the wages get.
12. We must create reception departments in our schools for the foreigners’

children.
13. Only as tourists should foreigners come.
14. Work permits must be given to foreigners who want to live here.
15. We must close our borders to foreigners who come to work here.

The units had 5 response categories, ranging from total agreement to total disagree-
ment. The sample of the survey was 1200 individuals, aged 18–80 years, residents of
Macedonia and Northern Greece during the time of the fieldwork.

Let us now provide a very brief introduction to the theory of Fuzzy Logic
presented by L. A. Zadeh (1965) in 1965 and the theory of artificial neural networks.

In fuzzy set theory when A is a fuzzy set and x is a relevant object, the statement,
x is a member of A, is not necessarily either true or false, but it may be true only to
some degree represented by the membership function of the fuzzy set A, mx(A). A
membership function is a curve that defines how each point in the input space is
mapped to a membership value in [0,1]. Fuzzy systems are systems in which vari-
ables have as domain fuzzy sets encoding structured, heuristic knowledge in a
numerical framework.

Fig. 15.1 Typical form of
an artificial neuron
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The operation of an artificial neural network is based on a recurrent interconnec-
tion of simple processing units, called the neurons. Each neuron receives an input, a
vector x and produces an output y (Fig. 15.1) through the equations:

U ¼ f x;wð Þ � θ
y ¼ α uð Þ

where θ represents the activation threshold and f(x,w) is called the transfer function
that relates the input information x with the weights w that are stored in the neuron.
In most cases it is of the form:

f x;wð Þ ¼
Xm

i¼1

wi xi

The function α is called the activation function and it generally takes values
according to:

α uð Þ ¼ 1, if u > 0 and α uð Þ ¼ 0, if u < 0:

Neural networks are in fact a mass of interconnected simple units and the way the
interconnection is carried out defines the network’s structure and therefore the way it
operates. In order to describe the structure of a network, the nodes (i.e. the neurons)
are assumed to be laying in different layers and the basic architecture consists of
three types of neuron layers: input, hidden, and output. The nodes that belong to the
same layer are being evaluated simultaneously. Another significant matter of artifi-
cial neural network modeling is its ability of learning, its ability of adopting and
changing its elements in order to simulate a given behaviour.

Our objective here is to develop a neuro-fuzzy system that classifies respondents
into xenophobic levels. We denote by:

• m: the number of questions (here m ¼ 15)
• Qj: the j-the question j ¼ 1,2,. . .,m
• qj(i): the answer of the i-th respondent to the Qj question, i.e.,
• qj(i) ¼ 1,2,3,4 or 5, 8I ¼ 1,2,. . .,1200, 8j ¼ 1,2,. . .,m.
• x(i): the response vector of the i-th respondent to items-questions Q1, Q2,. . ., Qm,

i.e. x(i) ¼ [q1(i), q2(i),. . ., qm(i)].

A first step would be to distinguish between questionable and non-questionable
answers. We assume that non-questionable answers are those based on which we can
classify the respondent to different levels of xenophobia without uncertainty. For
example, if the response vector of the i-th respondent is x(i) ¼ [1,1,. . .,1] then the
respondent’s score is equal to 15 and he/she is classified into the category denoting a
non-xenophobic person, without uncertainty. Let us now examine what could be
defined as questionable answers. Those answers include a series of responses that
lead to a questionable outcome, where the respective respondents cannot be classi-
fied to xenophobic levels with certainty. Consider, a respondent that answers that
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he/she would be willing to marry a foreigner and generally holds a non-xenophobic
attitude if one looks at the answers he/she provides, but strongly disagrees with
working for a foreigner or believes that only as tourists should foreigners come.
His/her response vector would look like x ¼ (1,1,1,1,1,1,5,1,1,1,1,1,5,1,1) and we
could say that there is an ambiguity as to the level of xenophobia that he/she holds.
There exist, therefore, certain sets of responses that may lead to an uncertain
classification. In those cases there are more factors that need to be taken into account.

Now, for the purpose of this study a statistical analysis was performed on the data
with the aid of IBM Statistics SPSS 24.0. The values of all negatively worded items
were reversed in order to achieve correspondence between the ordering of the
response categories. Summing up the response categories that they have chosen
and dividing by the number of the questions estimates the mean scores for each

respondent, i.e. xen ¼
Pm

i¼1
qj ið Þ
m

, where m denotes the number of questions.

Definition 2.1 The i-th respondent’s answer x(i) is said to be questionable at level d
if ∃j : qj ið Þ � xen

�� �� � d.

Definition 2.2 The i-th respondent’s answer x(i) is said to be non-questionable at
level d if =∃j : qj ið Þ � xen

�� �� � d.

We denote questionable answers at level d by QA-d, whereas NQA-d denotes the
non-questionable answers at level d. For the purpose of this analysis we consider
QA-3 and NQA-3 answers. This means that we define questionable answers to be
those for which there exists at least one answer (response category chosen by the
respondent) whose absolute difference to his/her mean xenophobic score is equal or
greater to 3. For example if the i-th respondent’s response vector is x
(i) ¼ [5,1,1,. . .,1], then his/her response vector would be identified as questionable
since there exists a j ¼ 1 : q1 ið Þ � xenj j ¼ 5� 1:26j j ¼ 3:73 �. The sample was
split into two categories: respondents providing non-questionable answers (N¼ 928)
and respondents providing questionable answers (N ¼ 160). The artificial neural
network system determines the classification of the respondents in the case of NQA-
3. For the case of the QA-3 we develop two fuzzy systems, since there exist several
factors that need to be considered and the classification is not ambiguous. The first
fuzzy system takes into account a set of rules and determines the degree of belief
(TRUST) about the xenophobic level of the respondent that will determine the way
this answer will be scored. The second fuzzy system determines the xenophobic
level, considering the degree of belief (TRUST), which is the output of the first fuzzy
system and the score of the respondent. Subsequently, a final level is provided for
each respondent based on the results (outcomes) of all systems. The neural network
that was implemented was a three-layer Back Propagation network (Fig. 15.2). The
structure of the proposed intelligent classification system is shown in Fig. 15.3 and a
part of the NQA-3 is revealed in Table 15.1.

For non-questionable answers the Neural Network Toolbox of MATLAB
R2014a was used and the xenophobic levels were determined. For validation the
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Fig. 15.2 The structure of
the implemented artificial
neural network

Questionnaire

Classification of answers

QA

Fuzzy system determining Trust

Fuzzy system determining Xenophobic level

N-Q A

Neural Netwark determining a 
xenophobic level

Results merging

Determination of 
Xenophobia

Statistical analysis on 
Respondents' answers

Fig. 15.3 The structure of the proposed system

Table 15.1 An excerpt of
non questionable answers and
their classifications to levels of
xenophobia

Non questionable answers Level of Xenophobia

x ¼ (1, 1, . . ., 1) 1

x ¼ (2, 1, . . ., 1) 1

x ¼ (2, 2, . . ., 2) 2

x ¼ (2, 2, . . ., 1) 2

x ¼ (3, 3, . . ., 3) 3

x ¼ (2, 2, . . ., 3) 2

x ¼ (4, 4, . . ., 4) 4

x ¼ (4, 4, . . ., 5) 4

x ¼ (5, 5, . . ., 5) 5

x ¼ (5, 5, . . ., 4) 5
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analysis was repeated with the Neural Network analysis provided by IBM Statistics
SPSS 24.0 and the same results were given as outcomes with very slight differences.

For the questionable answers we firstly develop the following system that has five
inputs and one output. The inputs are factors that determine xenophobia: Age,
Education, Sex, Politics and Religious Practice. The output is the degree of belief
or trust that the specific respondent is of an increased level of xenophobia. Fig-
ure 15.4 provides the inputs and output of the first system whereas Fig. 15.5 presents
the fuzzy partitioning of Age, Education, Sex, Politics and Religious Practice.

Age is measured in years, Education in one of the categories from 1 ¼ Illiterate/
has left primary school to 7 ¼ Postgraduate degree, Gender is either Male (1) or
Female (2), Politics is a variable that takes values from 1 (Left wing) to 10 (Right
wing) and Religious practice (how often do you go to church) takes values from
Every Sunday or more often (1) to Never (5). Therefore, a possible input for the first
fuzzy system would be input ¼ [23,4,1,4,3]. The fuzzy partition of the output of the
first fuzzy system is presented in Fig. 15.6.

An excerpt of the fuzzy rule base for TRUST, which consists of 28 inference rules
of the canonical form, i.e. IF-THEN rules, is the following:

1. IF (Age, Education, Gender, Politics, ReligiousPractice) IS (Young, High, Male,
LeftWing, Rarely), THEN Trust IS Low.

2. IF (Age, Education, Gender, Politics, ReligiousPractice) IS (Young, High,
Female, LeftWing, Rarely), THEN Trust IS Low.

3. IF (Age, Education, Gender, Politics, ReligiousPractice) IS (Old, Low, Female,
RightWing, Frequently), THEN Trust IS High, etc.

Table 15.2 provides a selection of the respondents’ socio-demographic charac-
teristics (those who provided the questionable answers) and their output (trust in
being xenophobic (values from 0 to 1)).

We then proceed with the development of the second system that has two inputs
(the respondent’s score (RespondentScore) and the degree of belief (Trust)) and

Age

Trust

(mamdani)

Trust

Education

Sex

Politics

Religious Practice

Fig. 15.4 Input and output of the first fuzzy system
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Fig. 15.5 Fuzzy partitioning of age, education, sex, politics and religious practice
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provides as an output the xenophobic level of the respondent (XenophobiaLevel).
The inputs and the output of the system are presented in Fig. 15.7.

A possible input for the first fuzzy system would be input ¼ [0.52 29]. The fuzzy
partition of Trust and Respondent Score can be seen in Fig. 15.8.

An excerpt of the fuzzy rule base for XenophobiaLevel, which consists of
IF-THEN inference, is now provided:

1. IF (Trust, RespondentScore) IS (Low, Low), THEN XenophobiaLevel IS Low.
2. IF (Trust, RespondentScore) IS (Medium, Medium), THEN XenophobiaLevel IS

Medium.
3. IF (Trust, RespondentScore) IS (High, High), THEN XenophobiaLevel IS High,

etc. (Fig. 15.9)

1

0.5

Medium High

0

0 0.1

Low

0.2 0.3 0.4

output variable “Trust”

0.5 0.6 0.7 0.8 0.9 1

Fig. 15.6 The fuzzy partition of the variable Trust

Table 15.2 An excerpt of the respondents’ socio-demographic characteristics (QA-3) and their
output (trust in being xenophobic)

Respondent Age Education Gender Politics Religious practice Degree of belief

4 31 4 1 3 3 0.14

15 30 5 1 3 4 0.15

18 60 3 2 3 1 0.48

24 59 4 1 2 4 0.19

34 32 4 1 5 3 0.61

35 43 1 2 5 2 0.65

37 28 3 2 2 4 0.15

60 36 4 2 1 1 0.17

64 78 4 1 5 3 0.48

65 63 3 1 4 1 0.48
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15.3 Validation

In order to validate the suggested method, the neuro-fuzzy scores were correlated
with five single items that are considered in the literature as indicators of xenophobia
(Eurobarometer 1989). The same procedure was used in order to validate the
proposed method in Symeonaki et al. (2015) where a fuzzy set theory solution to
combining Likert items into a single overall scale (or subscales) was presented. A

Fig. 15.7 Input and output of the second system

Fig. 15.8 Fuzzy partition of trust and RespondentScore
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combination of four of these items was used as an indicator of xenophobia
(Michalopoulou et al. 1999). These indicators measure xenophobia based on the
perception of the number of ‘others’ (of another nationality or religion) and the
disturbance caused by their presence. Table 15.3 provides the reader with the
combined results (QA-3 and NQA-3) for 56 respondents.

The indicators used are given in Table 15.4, whereas Table 15.5 exhibits the
correlation analysis results between xenophobia neuro-fuzzy and crisp and all
xenophobia indicators. As expected xenophobia crisp and neuro-fuzzy are highly
correlated. As shown neuro-fuzzy scores are higher correlated with all xenophobia
indicators, thus obviously producing a more accurate measurement of xenophobia
(Table 15.6).

15.4 Conclusions

Central to attitude measurement in social survey research is Likert scaling theory.
The present paper puts forward an intelligent system that simulates the respondent’s
final score when the answers are not questionable and takes into account a number of
other crucial factors when the answers are questionable in order to classify the
respondents into xenophobic levels reducing therefore the uncertainty. The proposed
methodology is illustrated using raw data of a survey designed to measure xeno-
phobia but it can be applied in Likert scaling in general. The presented methodology,
moreover suggests that semantic information, usually available by the experts of the
attitude domain, must also be taken into account, together with results of the
statistical analysis produced by the current or previous studies and therefore can
handle the uncertainty introduced to attitude measurement in social survey research.
The findings show that the measurement of xenophobia levels produced is valid and
more accurate since correlation analysis revealed that (a) xenophobia scores (neuro-
fuzzy and crisp) are highly correlated and more importantly, (b) neuro-fuzzy scores
are higher correlated with a number of xenophobia indicators.

Fig. 15.9 Fuzzy partition of XenophobiaLevel
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Table 15.3 Levels of xenophobia (classical (C) and Neuro-fuzzy approach (NF)) for
56 respondents

Respondent
Level of
xenophobia C

Level of
xenophobia NF Respondent

Level of
xenophobia C

Level of
xenophobia
NF

1 3 2.63 32 3 3.03

2 3 3.1 33 1 1.14

3 3 3.53 34 5 4.35

4 1 1.78 35 5 4.35

5 2 2.08 36 3 3.17

6 4 3.61 37 1 1.65

7 4 4.1 38 4 3.55

8 4 4.41 40 2 1.59

9 4 3.72 41 2 1.82

10 3 3.29 44 1 1.22

11 3 3.12 45 3 2.91

12 2 2.11 46 1 1.17

13 2 2.35 47 3 2.88

15 1 1.65 49 2 2.24

16 2 2.17 51 2 2.23

18 5 4.12 52 4 3.99

19 3 2.57 54 3 3.3

20 3 3.46 55 2 2.19

21 2 1.62 56 1 1.14

22 2 2.19 57 2 2.26

24 1 1.65 60 1 1.65

25 1 1.19 61 1 1.22

26 3 2.87 62 2 2.03

27 3 3.26 63 3 3.26

28 4 3.53 64 4 4.12

29 2 2.48 65 5 4.12

30 5 4.91 66 2 2.13

31 2 2.25 67 4 3.97

Table 15.4 Indicators of xenophobia

Indicator Question

1 During the last years individuals from other countries which are not members of the
European Union have come to live and work in Greece. According to your opinion,
these foreigners who live today in Greece are too many, many but not too many, not
too many.

2 How do you feel about the presence of individuals of another nationality? Disturbing
or not disturbing?

3 How do you feel about the presence of individuals of another religion? Disturbing or
not disturbing?

4 In your opinion these individuals of another nationality are too many, many but not
too many or not too many.

5 In your opinion these individuals of another religion are too many, many but not too
many or not too many

6 Combination of indicators 2–5
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Table 15.5 Pearson’s correlation coefficients, Xenophobia (classical (C) and neuro-fuzzy
approach (NF))

Xenophobia (NF) Xenophobia (C)

Xenophobia (NF) 0,936

Xenophobia (C) 0,936

*Note: N ¼ 1088, p < 0.001

Table 15.6 Spearman’s rho
correlation coefficients

Indicator Xenophobia (NF) Xenophobia (C)

1 �0,239 �0,238

2 �0,438 �0,434

3 �0,384 �0,367

4 �0,219 �0,215

5 �0,218 �0,204

6 0,456 0,434
*Note: N ¼ 1088, p < 0.001
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Part V
Data Analysis in Demography



Chapter 16
Differences in Life Expectancy by Marital
Status in the Czech Republic After 1990
and Their Decomposition by Age

Tomas Fiala and Jitka Langhamrova

16.1 Introduction

Demographic studies usually analyze mortality by age and gender. However, mor-
tality also depends on many other factors. One such factor is marital status, which is
also one of the very important demographic criteria determining the demographic
behavior of the population. Single people have different demographic behavior than
married, divorced or widowed people. Therefore, marital status is considered an
important social indicator that differentiates the population based on their link to
family and marriage. Changes in marital status (marriage, divorce, widowhood) are
considered very important demographic events. Marital status also provides indirect
information about the lifestyle and status of an individual in society. Social status
can sometimes depend on, or be partly determined by, marital status. There is a
statistical correlation between marital status and death rate.

The mortality of married people is lower than that of single, divorced or widowed
people. This is what William Farr, an epidemiologist, physician and statistician of
the General Register Office for England and Wales, (mostly known as the founder of
medical statistics and the first classification of death causes) already claimed in the
nineteenth century (1858). Based on the analysis of specific mortality rates by age,
he showed that the mortality of single people is considerably higher than the
mortality of married people of the same age and that the mortality of widowed
people is even higher (Parker-Pope 2010).

The differences in mortality by marital status were confirmed by many other
studies. Their explanation is based on many theories and hypotheses that can be
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divided into two basic groups. The first one, the so-called causality theory (protec-
tion theory), is based on the hypothesis of a “protective” effect of marriage and its
positive influence on health and a longer life. On the other hand, the second theory,
the so-called selection theory, is based on the hypothesis that those who get married
are healthier on average, and thus their mortality is lower.

The causality theory emphasizes that marriage is an important social institution.
Based on this theory, a better quality of life in wedlock stems from the fact that the
spouses support each other emotionally and socially. They overcome life problems
better and more easily and usually have more social contacts and thus can find
necessary support or help from friends more easily in case of any problems. The
causality theory also points out the fact that life in wedlock promotes a healthier
lifestyle, married people have fewer bad habits, such an excessive alcohol consump-
tion and smoking, and suffer from depression and anxiety less often. Married
couples also usually keep track of each other’s health condition and thus are more
likely to see a physician earlier in case of any medical problem. Women in particular
make sure that all family members have preventive checkups and take care of their
spouse if he becomes seriously ill. Married people also have a better financial
situation and usually a higher standard of living since they have joint funds and
share some expenses. If one of the spouses loses work, the other spouse can
financially support him or her as long as necessary. According to the causality
theory, the longer a marriage lasts, the more benefits it provides (Hamplová 2012,
pp. 738–739).

The question is whether marriage is as beneficial for men as for women, or
whether marriage provides more advantages to men or women. This issue was
researched by Jessie Bernardová, who concluded that marriage provided more
advantages to men than to women. According to her, married women are not actually
happier, but adjust their answers in different surveys to expected social norms that
assume that married women are happier (Hamplová 2009, p. 133).

An interesting question is whether marriage positively affects men about the same
as women, or whether men or women benefit from marriage more. Based on some
studies, marriage has a bigger impact on men because the differences in mortality
between single and married men are bigger than those between single and married
women. However, other studies show that women benefit from marriage more than
men, or that men and women benefit from marriage about the same but in different
areas. Marriage has a positive impact on men by protecting them against depression
and on women by protecting them against alcoholism. It is pointed out that men have
better psychological health regardless of marital status than women. A life crisis,
such as divorce or widowhood, affects men and women differently. These crises
affect men much more than women.

On the other hand, the selection theory assumes that people marry or do not
marry, or remain in wedlock for a shorter or longer period of time, mostly based on
their personality traits. According to this theory, the mortality of married men and
women is not lower because they are married. This theory stresses a favorable
selective impact of marriage on mortality, e.g. people with a serious illness or a
physical handicap usually do not marry, and also assumes that people with certain
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personality traits, e.g. temperament, optimism, etc., are better preconditioned for
creating and maintaining long-term relationships, which is also positively reflected
in their lower mortality. On the other hand, people suffering from depression, ill
people or alcoholics, etc. (i.e. people whose mortality exceeds the average) have less
chance to marry and their risk of divorce is higher.

Nevertheless, Hamplová (2009, pp. 131–132), mentions three reasons why the
selection theory has been called into question lately. The first reason is that the
measurements of physical and psychological health either do not confirm the
selectivity effect or show only a very weak selectivity effect. The second reason is
that the mortality of the widowed (who were married for a rather long time) is higher
than that of people who are still married, i.e. marriage decreases mortality. The third
fact that calls the selection theory into question is based on the conclusions of
medical research confirming that single people die more often due to their different
lifestyle rather than due to their genetically conditioned illness.

The number of marriages in the Czech Republic and many European countries
has currently gone down and more and more couples live together out of wedlock.
This fact should also be analyzed and researched to see whether or not living out of
wedlock has the same positive impact on mortality as marriage. However, the
problem is that there are usually no reliable data about the number, gender and age
of people living together out of wedlock and mostly that this fact is not investigated
in the deceased.

16.2 Differences in Mortality byMarital Status in the Czech
Republic

Pechholdová and Šamanová (2013) provide a very detailed analysis of the correla-
tion between mortality and marital status in the Czech Republic for the years the
population census was carried out starting in 1960. In all analyzed years, the life
expectancy of married men and women aged 30 is higher than the life expectancy of
unmarried men and women, and the difference is higher in men than in women.

The trends during the socialist regime (1961–1990) and the post-socialist era
were quite different. The differences in the mortality of the married and the unmar-
ried doubled and even tripled during the 1960s, 1970s and 1980s as compared to the
year 1961 (Srb and Boris 1990). During the entire analyzed time period, the
mortality of single women was the highest and the mortality of widows the lowest
from among unmarried women, although the mortality of divorced and widowed
women gradually approximated. In the case of men, the situation was different at
first. In the years 1961, 1971 and 1981, the mortality of divorced men was the
highest and the mortality of single men the lowest from among unmarried men. This
trend changed in 1991 where (similarly to women) the mortality of single men was
the highest and the mortality of widowers the lowest (Table 16.1).
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In her analysis of comparative indexes of mortality in individual years during
1982–1993, Rychtaříková (1998) shows that the mortality of single men practically
did not change, while mortality in other marital status categories decreased, in
particular in married men. The mortality of women in all marital status categories
decreased, but considerably less in single women.

16.3 Trends of Life Expectancy Development by Marital
Status in 1990–2014

After the year 1989, the behavior of the Czech population in terms of marriage rather
considerably changed. People got married at an older age, the marriage rates dropped
and the percentage of children born out of wedlock went up. For instance, while
almost 79% of men and over 83% of women were married at the age of 30–39 in the
year 1991, only about 50% of men and slightly over 60% of women were married at
the same age in the year 2010 (Pechholdová and Šamanová 2013, Tab. 2).

This chapter provides the results of the analysis of the trend in the mortality of
men and women by marital status and analyzes life expectancy at birth by marital
status. This life expectancy was calculated in a usual way based on complete
mortality tables by marital status, using the Czech Statistical Office’s data containing
the number of the deceased and the number of population in the individual years of
the analyzed time period classified by gender, age unit and marital status.

Specific death rates for people under the age of 16, when it is not possible to
marry, were considered to be the same for all marital status categories (equal to death
rates regardless of marital status). Death rates were differentiated based on marital
status after the age of 16, but only if the mid-period population of the given age and
marital status was higher than 100. In the case that the mid-period population of the

Table 16.1 Differences in life expectancy at birth by marital status
Reference category: married

Year 1961 1970 1980 1991 2001 2010

Males

Single �3.08 �5.11 �6.59 �9.15 �8.76 �9.58

Divorced �3.63 �5.58 �7.34 �8.24 �7.47 �7.65

Widowed �3.54 �5.39 �7.44 �7.16 �7.24 �5.73

Females

Single �3.26 �4.67 �5.50 �6.65 �7.57 �7.70

Divorced �2.46 �3.12 �3.49 �4.77 �4.67 �4.99

Widowed �1.31 �1.64 �2.39 �3.21 �4.04 �4.69

Source: Pechholdová and Šamanová (2013), Tab. 1
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given age and marital status was lower, the mortality of all people of the given age
was used, regardless of marital status.

The life expectancy of men and women kept going up more or less linearly during
the entire analyzed time period (Fig. 16.1). The life expectancy of all men went up
(regardless of their marital status) from not quite 67.6 years to 75.7 years, i.e. by
3.9 months a year. The increase in the life expectancy of married men was slightly
lower (by 3.8 months), but higher in the case of other categories of men (the average
increase in the life expectancy of single men was 4.4 months a year, of divorced men
5.3 months a year and of widowers 5.7 months a year). Therefore, the differences of
married and unmarried men lessened, while the differences of widowed, divorced
and single men increased.

The increase in the life expectancy of women, regardless of marital status, was
lower (by 3 months a year on average), from 75.5 in the year 1990 to 81.7 in the year
2014 (Fig. 16.2). When taking into consideration marital status, the increase was also
lower in women than in men. The life expectancy of married women during the
analyzed time period went up by 2.4 months a year on average, while the life
expectancy of single women went up by 3.1 months a year, of divorced women by
3.3 months a year and of widows by 3.2 months a year. Similarly to men, the
differences in the life expectancy of married and unmarried women lessened.

Fig. 16.1 Life expectancy at birth by marital status – males
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The trend in life expectancy, taking into account marital status, shows much
bigger random deviations from the linear trend since especially the number of people
of a certain marital status is very low in particular in some age groups. In order to
eliminate these deviations, life expectancy for the individual five-year periods of
1990–1994, 1995–1999, . . ., 2010–2014 were calculated as well. Since the goal of
the trend analysis is not really the trend in life expectancy but rather the trend in life
expectancy differences by marital status, married men and women were chosen as a
reference category and the differences in life expectancy in this reference category
and in the individual categories of unmarried people (i.e. single, divorced and
widowed people) were analyzed.

The basic trends are the same for both men and women (Figs. 16.3 and 16.4). In
all analyzed time periods, the life expectancy of single people differed from the life
expectancy of married people the most, while the life expectancy of widowed people
differed the least. The difference for females was approximately 1 to 4 years less than
in the relevant category of men during the same time period.

While all differences were bigger during 1995–1999 than in the previous time
period, they started lessening after 2000 and were smaller in the last analyzed time

Fig. 16.2 Life expectancy at birth by marital status – females
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Fig. 16.3 Differences in life expectancy at birth by marital status – males (reference category –

married)

Fig. 16.4 Differences in life expectancy at birth by marital status – females (reference category –

married)
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period of 2010–2014 than in the time period of 1990–1994. This may be caused by
the gradual drop in the marriage rate, the higher percentage of single people in the
population and thus the lower selective effect of marriage on mortality (Fiala and
Langhamrová 2016).

16.4 Decomposition of Life Expectancy Differences by Age

From a demographic standpoint, it is important to analyze not only the difference in
overall life expectancy but also the contribution of individual age groups to this
overall difference. For these purposes, the method which decomposes differences in
life expectancy to the contribution of each age group is often used. This is why the
decomposition of the overall difference of life expectancy by ten-year age intervals
was calculated for each analyzed time period and each category of unmarried people.
Of course, there cannot be any difference in the age group of 0–9, and the differences
in the age group of 10–19 and 90–99 are insignificant. This is why these age groups
are not shown in the following figures.

When comparing with married men and women, the biggest contributions to the
difference in life expectancy at birth come mostly from men in the age groups of
50–59 and 60–69 and usually from women in the age of 60–69 and 70–79. However,
the contributions differ, depending on marital status. During the first analyzed five-
year time periods, the biggest contribution of men aged under 60 comes from single
men, while the biggest contribution of men over 60 comes from divorced or
widowed men. One of the main reasons may be the fact that young single men die
more due to their irresponsibility, unhealthy lifestyle or some medical reason (which
may also be why they did not get marry), while older single men are psychologically
more stable than divorced or widowed men, some of whom may have a hard time
dealing with the dissolution of their marriage or with the death of their long-time
spouse. However, this was not the case during the past ten years, and in all age
groups of men, single men contribute to the difference in life expectancy the most
and widowed men the least, which corresponds to the overall difference in life
expectancy at birth. The trend in women is more regular and, with some exceptions,
single women always contribute the most and widows the least. See Figs. 16.5, 16.6,
16.7, 16.8, 16.9, 16.10, 16.11, 16.12, 16.13, and 16.14.
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Fig. 16.6 Decomposition by age in life expectancy at birth by marital status – 1990–1994 females
(reference category – married)

Fig. 16.5 Decomposition by age in life expectancy at birth by marital status – 1990–1994 males
(reference category – married)
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Fig. 16.7 Decomposition by age in life expectancy at birth by marital status – 1995–1999 males
(reference category – married)

Fig. 16.8 Decomposition by age in life expectancy at birth by marital status – 1995–1999 females
(reference category – married)
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Fig. 16.9 Decomposition by age in life expectancy at birth by marital status – 2000–2004 males
(reference category – married)

Fig. 16.10 Decomposition by age in life expectancy at birth by marital status – 2000–2004 females
(reference category – married)
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Fig. 16.11 Decomposition by age in life expectancy at birth by marital status – 2005–2009 males
(reference category – married)

Fig. 16.12 Decomposition by age in life expectancy at birth by marital status – 2005–2009 females
(reference category – married)
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Fig. 16.13 Decomposition by age in life expectancy at birth by marital status – 2010–2014 males
(reference category – married)

Fig. 16.14 Decomposition by age in life expectancy at birth by marital status – 2010–2014 females
(reference category – married)
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16.5 Conclusions

The life expectancy of men in the Czech Republic went up by more than 8 years and
that of women by more than 6 years between 1990 and 2014. After the year 1990, the
mortality of married people was lower than the mortality of single, divorced and
widowed people, which corresponds to European trends.

The biggest differences are between the life expectancy of married people and
single people; the smallest difference is between the mortality of married people and
widowed people. The difference is always bigger in men than in women. These
differences were bigger in the 1990s, but this gradually changed after 2000. In
2010–2014 in particular, the differences in life expectancy by marital status were
significantly smaller than during the previous five-year time period and smaller than
in 1990–1994. This is also proven by the fact that the overall increase in the life
expectancy of unmarried men during the analyzed period was slightly higher than
that of married men and that the life expectancy of unmarried women increased more
than the life expectancy of married women.

The main reason may be the lower marriage rate and thus a lower percentage of
married people and a higher percentage of single people. This lessens the selective
effect of marriage. While some physical or psychological handicap or an irrespon-
sible lifestyle, which could also be the cause of the higher death rate of single people,
used to often be the reason why people did not marry, nowadays there is probably a
higher percentage of healthy and responsible people with an average or above-
average death rate among single people.
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Chapter 17
Air Pollution and Health Risks: A Statistical
Analysis Aiming at Improving Air Quality
in an Alpine Italian Province

Giuliana Passamani and Matteo Tomaselli

17.1 Introduction

In recent years much more attention has been devoted to health risks caused by air
pollution. The World Health Organization (WHO), using data collected by the
Global Health Observatory (GHO), has estimated that air pollution caused 6.5
million deaths in 2012, with different estimated average values across the six
WHO regions1: the highest value of 133.5 deaths (per 100,000 population) in the
Western Pacific (Democratic People’s Republic of Korea and China the worst
country averages), and the lowest value of 20.3 deaths in the Americas. Europe
shows an estimated average value of 64.2 deaths, with an estimated value of 35.2
deaths in Italy, while the Eastern European countries show very high estimated
values. As WHO states: “The lower the levels of air pollution, the better the
cardiovascular and respiratory health of the population will be, both long- and
short-term”.2

Among all the estimated deaths associated with air pollution, WHO underlines
that 3.1 million premature deaths every year are estimated as a result of exposure to
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ambient air pollution, while the remaining are associated with household exposure to
smoke3. The Organization points to key ambient air pollutants that pose health risks:
particulate matter (PM), ozone (O3), nitrogen dioxide (NO2) and sulphur dioxide
(SO2). They are atmospheric aerosols and greenhouse gases which may also interact
physically and chemically in the atmosphere, in such a way to make much more
difficult forecasting their future variations in air pollution. The problem of ambient
air pollution is widely recognized by the population, and it is particularly alarming
when rainfalls are scarce for a prolonged period. The scientific community is active
in monitoring ambient air pollution, both at the soil level through dedicated moni-
toring sites, and at the aerospace level through, for instance, the Copernicus Atmo-
sphere Monitoring Service4 promoted by the European Space Agency (ESA).

It has been shown in the specialized literature that air pollution undoubtedly
effects human health, especially in large cities and in areas affected by heavy traffic
roads, with undeniable negative consequences on the cardiovascular and respiratory
systems (see Brunekreef and Holgat 2002; Kampa and Castana 2008). It is now
widely accepted that air pollution is closely related to climate change, which may
also effect human health through different pathways, thus increasing the overall
negative balance of ambient pollution (Haines et al. 2006). One of the main aspects
that characterises air pollution is its intrinsic temporal heterogeneity (mainly
influenced by the meteorological conditions that determine long-term trends and
cyclical behaviours, see Milionis and Davies 1994), and its spatial heterogeneity. For
this reason, empirical analyses have recently adopted spatial regression models to
assess the association between mortality and air pollution (see, for instance, Jerrett
et al. 2005; Van der Wal and Janssen 2000; Burnett et al. 2001), thus accounting for
spatial autocorrelation when more than one location in the geographic area under
analysis is taken into consideration5. Other adopted approaches model the
intertemporal dynamics through time-series regressions (Milionis and Davies
1994; Salcedo et al. 1999), hazard models (Hoek et al. 2002) or spline and other
non-linear models (Dominici et al. 2002; Chelani and Devotta 2006).

When the emphasis of the analysis is on short-term health effects and on the
observations of changes in repeated outcome variables, the commonly adopted
technique is to use panel models (Yu et al. 2000; Janes et al. 2008). Recent
developments have introduced heterogeneity in panel models, and, in fact, this is
the approach that we adopt in this paper and that is described in Sect. 17.3.

Since it is not possible to review the whole literature here, we invite the interested
reader to read O’Neill et al. (2003) and Dominici et al. (2003), and the compelling
overview of air pollution consequences on health given by WHO (2013).

3http://www.who.int/airpollution/en/
4See https://atmosphere.copernicus.eu/
5By and large, not considering spatial autocorrelation does not substantially changes effect esti-
mates. Moreover, spatial autocorrelation models can possibly underestimate standard errors. See
Hoek et al. (2002) and Burnett et al. (2001)
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This brief introduction has highlighted the importance of a comprehensive
analysis of air quality and its determinants.

Our focus will be at local level, given the availability of information provided by
the Provincial Environmental Protection Agency (APPA) of the Province of Trento,
whose purpose is monitoring ambient quality. Even though we are not exploring,
from a scientific point of view, their sources and characteristics, how they are formed
and removed, we aim to understand the temporal evolution of the gaseous and
aerosol pollutants, how they statistically interact among themselves and with atmo-
spheric factors, such as temperature, wind and rain. We assume that a better
comprehension of the dynamics of air pollutants and of the impact that meteorolog-
ical variables have on them, possibly using stochastic models that can then be used
for simulation, can surely help in deciding future local policy interventions aiming to
reduce the pollution levels and to improve the quality of air.

Our data set is made up of daily time series observations on the main pollutants
and meteorological variables registered at seven monitoring sites within the alpine
province of Trento, which is located in the north-eastern part of Italy. It is mainly a
mountainous area characterised by valleys, rivers and lakes of different dimensions.
It is also intersected by two important trunk roads: the Brenner motorway, that
crosses the province from north to south in the direction of Austria, and the
Valsugana highway, that links Trento to the eastern part of Italy. The largest
towns are located along the Brenner motorway and in the Valsugana valley. Though
the air quality of the province may be considered overall good with respect to other
provinces, it is indeed affected by important sources of pollution, above all in the
valleys, where much of the population live. Therefore, pollution has a direct impact
on the lives of the majority of the inhabitants of the area. Understanding pollution
behaviour may thus be the first step towards the adoption of appropriate local policy
measures, in order to limit pollution and its negative consequences on health.

The rest of the paper is organised as follows. First, we describe our data set and
the air pollution levels for each monitoring site. Second, for each of them we
compute the pollution factor, on which we then base our empirical analysis. The
latter is divided into two parts: in the first, using an estimated panel data model, we
remove the part explained by the weather variables from the pollution factors, while
in the second part we study how the three main pollutants affect the unexplained part
of the pollution factors. On this component, in fact, policy makers should focus.

17.2 Descriptive Analysis of Data and Possible Health Risks

The empirical analysis is based on daily data on air pollutants and meteorological
variables collected and provided by the Trentino Environmental Protection Agency
(APPA). Due to the availability of data, only two years, 2014 and 2015, and seven
monitoring sites within the province of Trento are considered: Trento PSC (Trento
1 henceforth) and Rovereto, as urban and residential areas; Borgo Valsugana and
Riva del Garda, as sub-urban sites, but with quite different climates, as the latter is
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mitigated by the winds coming from lake Garda, the largest Italian lake; Monte Gaza
and Piana Rotaliana, as rural areas, and Trento VBZ (Trento 2 henceforth) which is
an urban area afflicted by heavy traffic.

From a first descriptive analysis of the observed pollutants across the monitoring
sites, we can detect the diverse characteristics of the distributions of the three
pollutants that we consider: PM10, NOx, and O3. The relative data are obtained
from continuous measurements of each pollutant, the unit of measurement being μg/
m3. The first picture of Fig. 17.1 refers to vertical box-plot representations of the
observed daily average values of PM10, the particles with a diameter between 2.5 and
10 micrometres, which are produced by cars engines and other combustion pro-
cesses. As expected, the calculated percentiles show that the distributions are
asymmetric with quite a few large outliers. It’s to be noted that, according to the
European Environment Agency (EEA) air quality standards6, values larger than
50 μg/m3 put at risk people with respiratory disease. As can be seen from
Table 17.1, the lowest sample average level is observed for Monte Gaza, the
mountain area, and the highest is observed for Trento 2, the heavy traffic area.
However, an average level as high as Trento 2 is also observed for Borgo Valsugana.
The other monitoring sites show intermediate comparable average levels of PM10.
Therefore, it is straightforward to deduce a first raw relationship between the
locations and the PM10 levels: the higher the traffic levels, the higher the PM10

levels.
The second picture of Fig. 17.1 refers to vertical box-plot representations of the

observed daily maximum hourly average values of NOx, nitrogen oxides, given by
the combination of NO and NO2, mainly originated by combustion processes.
Again, the calculated percentiles show that the distributions are asymmetric with
many very large outliers, except for Monte Gaza. According to EEA, hourly
concentrations of NO2 should not go above 200 μg/m3 for more than 18 hours in
any year and their annual average should not be greater than 40 μg/m3. As we can
observe, the most polluted area is Trento 2 where an increasing likelihood of
respiratory symptoms and breathing discomfort in active children, the elderly, and
people with lung disease such as asthma, and of possible respiratory effects in
general population can be detected. As reported in Table 17.1, sample average levels
of NOx above 40 μg/m3 are registered also for Trento 1, Rovereto, Borgo Valsugana
and Piana Rotaliana.

The third picture of Fig. 17.1 refers to vertical box-plot representations of the
observed daily maximum hourly average values of O3, ozone, a pollutant that is
originated by the action of daylight UV rays on the other pollutants, especially those
produced during combustion processes. The box-plots show similar distributions for

6http://ec.europa.eu/environment/air/quality/standards.htm
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the monitoring sites7, with the only exception of Monte Gaza, a site characterized by
somewhat higher levels of O3. This is not surprising because the location of this site
records high solar radiation levels throughout the year, which are the primary
responsible for the generation of the ozone and hence for the unusual O3 levels
(for more details, see the Air Quality Reports, APPA 2014, 2015). The registered
levels of ozone are such that, according to EEA, they do not seem to adversely effect
human health.

Therefore, the pollutant for which most exceedances are registered is NOx.
An analysis using the inverse distance weight spatial interpolations (without

Monte Gaza) for the three pollutants, and depicting them in a spatial form where
darker colours indicate relatively higher pollution levels, confirms the results
emerged from the box-plot representations: Fig. 17.2 shows that, for what concern
PM10 and NOx, the rural and sub-urban areas are effectively less polluted than the
traffic and urban areas (with the already recognized exception of Borgo Valsugana
for the PM10 levels), while, for O3 levels, the exposure to solar radiation is far more
relevant than the distinction between urban or rural location, as the rural area Piana
Rotaliana and the suburban area Riva del Garda are more polluted than the urban
area Trento 1.

Finally, Fig. 17.3 shows the dynamics of the time series and their trend8 for each
monitoring site. Beyond the three air pollutants, we graph the dynamics of the daily
average weather variables that we will consider for the analysis: temperature (�C),
rain (mm), solar radiation (W/m2), humidity (%), dew point (�C), wind run9 (km),
and atmospheric pressure (bar). With the understandable exception of rain that
depends on local atmosphere phenomena especially in summer, all the variables
exhibit comparable seasonal dynamics. Moreover, as expected, O3 shows a behav-
iour that follows the dynamics of temperature and of solar radiation, in contrast with
the behaviour of PM10 and NOx.

With the available time series, we construct a slightly unbalanced panel data set
including the daily average data for each monitoring site in which shorter periods of
missing observations are filled through linear interpolation (longer periods of miss-
ing data are left blank). We also exclude the last five days of observations for 2015,
since data are not available for all the monitoring sites. This data set represents the
starting point of the following econometric empirical analysis.

7O3 data are not available for Trento 2.
8The trend was obtained by applying the Hodrick and Prescott filter to each time series.
9Wind speed (km/h) has been excluded because it is strongly correlated with wind run.
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17.3 An Unobserved Factor as Air Quality Indicator

Not having available an index measuring the short-term air quality situation as a
whole at each monitoring site10, we suggest a procedure for the estimation of a single
unobserved common component that we consider an air pollution indicator for each
site. Therefore, in order to compare air pollution levels across the different sites of
the province of Trento, we look for a variable that summarizes the three pollutants in
an indicator.11

To this purpose it is possible to adopt a methodology called Principal Component
Factor Analysis (PCFA), which aims to extract meaningful linear combinations by
decomposing the correlation matrix of a set of observed variables that may jointly
explain a certain phenomenon, and provides the so-called common factors and the
corresponding factor loadings. The common factors are thus latent variables which
are described through their relationship with the variables of interest, while the factor
loadings show the weight of each variable in explaining the factors. In details, for
each site, given the observation ytj on the j-th variable relative to time t, the common
factors ztq, for the same time t, contribute to explain it through the following
relationship:

ytj ¼ zt1λ1j þ zt2λ2j þ . . .þ ztqλqj þ utj ð17:1Þ

where λqj is the factor loading, and utj is a unique component proper of the j-th
variable.

The appropriate number q of unobserved factors, smaller than the number of
observed variables, depends on their observed correlations, and can be chosen either
on the basis of the eigenvalues obtained from the decomposition of the correlation
matrix, or on the basis of the percentage of explained variance.

To avoid misleading results determined by “extreme” locations, two monitoring
sites are excluded from the econometric empirical analysis: Monte Gaza and Trento
2, the first because it is located in a mountain area, and the second because it is
devoted to the study of traffic pollution and of the specific pollutant CO which is not
recorded at the other sites. For the remaining sites, the three considered air pollutants
display well determined patterns (see Sect. 17.2) and high correlation coefficients:
PM10 and NOX are strongly and positively correlated for all the sites, as NOX and O3

are strongly but negatively correlated; PM10 and O3 are also negatively correlated for
each site, but the magnitude of the coefficient is lower (Table 17.2).

10We could have followed the procedure used by EEA which takes measurements of up to five key
pollutants supported by modelled data and determines the index level that describes the current air
quality situation at each monitoring station. The single index level would correspond to the poorest
index level for any of five pollutants.
11Principal component factor analysis (see Passamani and Masotti 2016; Fontanella et al. 2007;
Forni et al. 2000 for some applications) and principal component regression models (see Kumar and
Goyal 2011 for an application) are techniques that are used to summarise the available information
into one or more factors.
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Given the small number of observed pollutants and their correlation structure, it is
reasonable to expect that a single latent factor explains a high percentage of the
observed variables variability, according to the following model:

yt ¼ λzt þ ut ð17:2Þ
where yt represents the (3� 1) vector of dependent variables, the three pollutants for
each site, zt the unobservable common factor, λ the (3 � 1) vector of factor loadings
and ut the (3 � 1) vector of disturbances. The results, in fact, give evidence of one
factor zt that we consider as an indicator of air pollution levels for each monitoring
site as suggested by Passamani and Masotti (2016). By employing the PCFA
discussed above, the indicator “summarises a complex situation in a single variable
whose evolution can be compared in time and in space” (Passamani and Masotti
2016, p. 787)12. The dynamics of the pollution factor, or PF, for each site is shown in
Fig. 17.4, where we can notice that it is characterised by a clear seasonal behaviour.

17.4 The Effect of Meteorological Variables on Air Quality

As weather is an important air pollution contributor in determining air quality, in the
following we first aim to study the impact of the variables characterising weather,
before focusing the attention on how to improve air quality.

A first aspect characterising our data is the seasonality, which affects both the
pollution factors and the meteorological variables. Consequently, we could even
detect a seasonal variation in the effects of air quality on health. The observation of
seasonal patterns in Figs. 17.3 and 17.4 indicate that the winter season is
characterised by higher volatility than the summer season. The heating systems
and the higher usage of cars in cold days are probably the primary responsible for
this phenomenon.

Another aspect that should be included into the analysis is the intrinsic
intertemporal nature of pollution: today’s pollutant levels directly affect tomorrow’s
levels and are determined by yesterday’s levels. Therefore, a dynamic approach is
essential to study the evolution of the pollution factor.

Finally, a last aspect that affects our data set and that has already emerged above
is undoubtedly heterogeneity. The monitoring sites are remarkably different in terms
of location, and this is responsible for the different levels observed throughout the
period of analysis. This fact clearly emerges if we use a scatterplot for representing
each pollution factor versus each meteorological variable, and show the different

12While Passamani and Masotti (2016) suggests a dynamic approach, for the purpose of this work
we adopt a static principal component factor approach.
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slopes for the partial relationships between them13. All these aspects are taken into
consideration by the adopted panel estimation technique: the Dynamic Common
Correlated Effects (DCCE).14

In the following of our analysis we adopt the DCCE panel time series estimation
approach proposed by Pesaran (2004) which deals with all the aspects described in
the previous paragraph. This estimator is implemented in Stata 13 by the command
xtdcce2 and it allows:

• the specification of a dynamic model;
• either homogeneous or heterogeneous slopes, thus fully considering the intrinsic

heterogeneity characterising the monitoring sites;
• controlling for cross-sectional dependence, an aspect that we do not

consider here.

Given the dependent variable zit and the vector of explanatory variables xit, where
i indicates the cross-section unit and t the time unit, the stochastic model is:

zit ¼ ρizit�1 þ β0ixit þ εit
εit ¼ γif t þ eit

ð17:3Þ

where ρi is a heterogeneous coefficient measuring the effect of the lagged dependent
variable, βi is a vector of heterogeneous panel coefficients, ft is an unobserved factor
common to all the observed cross-section units and γi is a heterogeneous factor
loading. Model (3) is estimated through:

zit ¼ ρizit�1 þ β0ixit þ
Pp

k¼0 δ
0
i,k �wt�k þ εit

�wt ¼
�
�zt; �zt�1 ; �xt

� ð17:4Þ

where the bar indicates the cross-section means and p ¼ ffiffiffiffi
T3

p
, as suggested by

Chudik and Pesaran (2015). The mean-group panel estimations are then computed
as a simple mean of the heterogenous estimations:

bπMG ¼ 1
N

XN

i¼1

bπ i ð17:5Þ

where bπ i ¼
�
bρi ; bβi

�
.

To study the general within-province relationship between air pollution and atmo-
spheric variables including all data provided by the monitoring sites, we make use of the
DCCE technique, where zit corresponds to the value of the unobserved factor estimated
at time t for each monitoring site i, and discussed in the previous section. In the vector of
explanatory variables xit, at time t for each monitoring site i, we include the meteoro-
logical variables that are commonly assumed to influence air pollution: temperature

13The graphs are available upon request.
14Stata package xtdcce2, see Ditzen(2016).
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(TOut), wind run (WRun), rain (R), solar radiation (SR), humidity (Hum) and atmo-
spheric pressure (Press)), the square of temperature, wind run and rain to capture the
non-linear relationship emerged from analysing the aforementioned scatterplots, and
three seasonal dummies to capture the seasonal impact of winter (S1), spring (S2) and
autumn (S3). We checked the correlations between all these weather variables in order to
avoid problems of multicollinearity in the estimation. The strongest correlation is
between Hum and Dew and is equal to 0.77, whereas the other values are lower in
absolute value. Therefore, by excluding Dew, it is plausible to exclude the problem of
multicollinearity.

This approach estimates a coefficient for each monitoring site, then it provides the
panel mean group estimates. Estimation results are shown in Table 17.315. The first two
columns are referred to the pooled-panel (homogeneous) model, while the third and the
fourth columns are referred to the heterogeneous model described by Eq. (17.3).

Aggregate mean estimates of the heterogeneous model show significant values
for each variable with the only exception of the seasonal dummies. Therefore, the
level of the pollution factor depends positively on the previous-day level (while the
second lag was not significant) and, as expected, it is negatively but not linearly
affected by wind and rain, that directly reduce air pollution, while humidity and
pressure have both a positive effect. This sign is, however, less easy to interpret. The
temperature and the solar radiation are also negatively related to the pollution levels,
since higher values may represent favourable conditions to avoid using cars and
heating systems.

The pooled-panel model shows comparable coefficients, but the standard errors
are somehow different (notably, WRun and the squared term WRun2 are not signif-
icant). The largest difference is, however, in the R2: the adjusted R2 of the hetero-
geneous model is 0.86, while the adjusted R2 of the pooled model is 0.15, a result
that stresses the importance of considering heterogeneous slopes.

The next section aims to study the component of the pollution factor that is unexplained
by the atmospheric variables, namely the residuals of the panel model in Table 17.3.

17.5 The Effect of the Pollutants on Air Quality

Atmospheric processes are quite complicated and they can lead to dispersion or
concentration of air pollutants, thus affecting air quality. Even though we know that
pollution at global level affects the evolution of weather and climate, at local level
we cannot control the meteorological conditions and we can just measure their

15Estimations do not account for cross-sectional dependence, that emerges as a consequence of the
common dynamics of the meteorological variables. When we attempted to deal with this it by
implementing the correction allowed by the DCCE technique, residuals were still affected by cross-
sectional dependence and, at the same time, results did not change much. As a consequence, the
specification of the model should be improved in future analyses in order to cope with this problem.
Nonetheless, it does not affect the analysis of the residuals (see the next section).
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impact on air quality: this was the purpose of the previous section. In the following
we aim to understand how we could improve air quality controlling for gases and
particles in the atmosphere. Therefore, considering the estimated residuals bεit, of the
panel data analysis, as that part of pollution due mainly to human behaviour, the
question is: “How can we reduce air pollution by reducing the pollutant levels?”

As can be seen in Fig. 17.5, the variability of the residuals differs from site to site,
is not homoscedastic and it can be analysed in order to understand how it can be
explained and controlled. To this purpose, for each site we regress the panel residuals
obtained in the previous section, on the three main pollutants, as follows:

bεt ¼ α0yt þ et ð17:6Þ
obtaining the results showed in Table 17.4.

As expected, the coefficients associated to the pollutants are positive and signif-
icant and they are much higher when the levels of the pollutants are lower, which
means that reducing by a certain amount the single pollutant the effect on reducing
the level of pollution is larger for the sites with lower levels of the same pollutant,
keeping the other pollutants constant. These results could be used for simulating the
effects on air pollution of adopting policies imposing any reduction in the limits of
pollutant emissions.

17.6 Conclusions

Moving from the acknowledged fact that air pollution poses health risks and that
being able to understand how to improve air quality is an important tool for
informing public policy decisions, with our work we aim to suggest a statistical
analytical procedure that can be used for a better understanding of the whole process.
The procedure has been developed, first, to estimate a model able to describe the
intertemporal relationship between air pollution and the available meteorological
variables within the alpine province of Trento, and second, to examine the
unexplained part of this relationship, which represents that part of the overall air
pollution due to human behaviour and, therefore, could be controlled.

The province of Trento is characterised by heterogeneous landscapes, with a
majority of rural areas and a relevant minority of urban and traffic areas. As
expected, the panel data analysis shows that rain and the strength of wind are the
main responsible of a (non-linear) decline in the air pollution levels, as well as the
temperature. The impact of humidity and of solar radiation are, instead, less clear and
probably reflect a seasonal effect.

For what concerns the component of air pollution unexplained by the atmospheric
conditions, the empirical analysis shows the estimated effects on improving ambient
air quality that can be obtained by reducing the levels of the pollutants.

Even though the positive consequences on health are very hard to be assessed,
nevertheless, what we indicate is that air quality can be improved, because a part of it
depends on population behavioural choices.
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Appendix

Fig. 17.1 Percentiles of the empirical distribution for each pollutant: boxplots with outliers
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Table 17.1 Air pollutants: sample averages and standard deviations

PM10 NOx O3

Mean SD Mean SD Mean SD

Borgo 23.7643 12.8861 57.4694 48.7014 37.6219 25.7096

Piana Rotaliana 18.0970 9.42676 43.1551 43.7226 43.6120 30.7884

Monte Gaza 8.7599 7.2129 5.7444 2.6747 97.7400 24.5914

Riva del Garda 19.6321 11.6479 44.2184 27.6082 45.8782 32.6563

Rovereto 19.5082 10.1885 58.7943 54.7562 46.6496 33.2752

Trento 1 20.4828 10.1521 71.3097 63.4170 41.3936 31.9458

Trento 2 24.1767 12.7727 119.6250 96.8155 – –

Fig. 17.2 Inverse distance weight interpolation for each pollutant, without Monte Gaza
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Fig. 17.3 Pollutants and meteorological variables: temporal dynamics and trend for each moni-
toring site
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Fig. 17.3 (continued)
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Fig. 17.3 (continued)
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Fig. 17.4 Pollution factors (PF): dynamics for each monitoring site

Table 17.2 Air pollutants:
correlations

PM10, NOX PM10, O3 O3, NOX

Borgo 0.6646 0.3962 0.6995

Piana 0.5100 0.1579 �0.6540

Riva 0.5478 0.2238 �0.7010

Rovereto 0.5488 0.2246 �0.7058

Trento 1 0.5116 0.2309 �0.7200
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Table 17.3 Panel estimation (robust standard errors in parentheses; ***, ** and * indicate
statistical significance at 1%, 5% and 10% level)

Dep. Var.

Pooled model Heterogeneous model

PF PF

PF(�1) 0.4882*** (0.0178) 0.4670*** (0.0106)

TOut �0.0742*** (0.0040) �0.0803*** (0.0043)

Tout2 0.0017*** (0.0002) 0.0018*** (0.0002)

WRun �0.0984 (0.1414) �0.2510*** (0.0470)

WRun2 0.0038 (0.0092) 0.0134*** (0.0048)

R �0.5013*** (0.1093) �0.4055*** (0.1281)

R2 0.1645*** (0.0446) 0.1564** (0.0620)

SR �0.0014*** (0.0002) �0.0012*** (0.0003)

Hum 0.0085* (0.0051) 0.0039*** (0.0009)

Press 0.0183*** (0.0030) 0.0134*** (0.0009)

S1 �0.0366 (0.0623) �0.0333 (0.0552)

S2 �0.0141 (0.0180) �0.0271 (0.0223)

S3 0.0427 (0.0454) 0.0453 (0.0373)

Cons. / / �12.7663*** (1.0864)

N 3620 3620

Adj. R2 0.15 0.86
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Fig. 17.5 Residuals from panel model for each monitoring site
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Chapter 18
AR Dynamic Evolving Neuro-Fuzzy
Inference System for Mortality Data

Gabriella Piscopo

18.1 Introduction

In the last century the improvements in standards of living, the progress in medicine
and the economic enhancements have driven human population to live better and
longer. From an actuarial point of view, the decreasing trends in global mortality
represent risk for insurers, which price their products on the basis of the historical
mortality tables, and for governments, which have to plan health and pension
policies. In this context, the so called longevity risk derives from improvements in
mortality trend with systematic deviations of the number of the deaths from its
expected values. In order to capture this trend and produce accurate mortality fore-
casts, stochastic models have been introduced. The most used is the Lee-Carter
(LC) model (Lee and Carter 1992), whose main statistical tools are the least square
estimation through the Singular Value Decomposition of the matrix of the log age
specific mortality rate and the Box and Jenkins modelling and forecasting for time
series. The LC is fitted to historic data and used to forecast long term mortality.
However, strong structural changes have occurred in mortality patterns and several
extensions have been proposed to overcome the limits of the model due to extrap-
olation based on the past data. Recently, Neural network (NN) and fuzzy inference
system (FIS) have been introduced in the context of mortality data by Atsalaki et al.
(2008). They implement an Adaptive Neuro-Fuzzy Inference System (ANFIS)
model based on a first order Takagi Sugeno (TS) type FIS (Takagi and Sugeno
1985). They predict the yearly mortality in a one step ahead prediction scheme and
use the method of trial and error to select the type of membership function that
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describe better the model. The least-squares and the backpropagation gradient
descent methods are used for training the parameters of the FIS. They show that
the ANFIS produces better results than the AR and ARIMA models for mortality
projections. D’Amato et al. (2014) produce a comparative analysis between classical
stochastic models and ANFIS implementing them on the Italian mortality dataset.
Piscopo (2017) proposes an Integrated Dynamic Evolving Neuro-Fuzzy Inference
System (DENFIS) for longevity predictions. DENFIS is introduced by Kasabov and
Song (2002) for adaptive learning of dynamic time series predictions. It is an
adaptive intelligent system where the learning process is updated thanks to a
preliminary clusterization of the training data. The Evolving Clustering Method
(ECM) is used to subdivide the input set and determine the position of each data
in the input set. Kasabov and Song (2002) show that DENFIS effectively describes
complex data and outperforms some existing methods. Wei et al. (2011) describe a
fusion DENFIS model. In this paper we use an integrated AR-DENFIS model to
produce mortality forecasts with an application to the Italian population and compare
the results with the classical LC. The paper is organized as follows: in Sect. 18.2 we
present the dynamic evolving neuro fuzzy procedure; in Section 18.3 we briefly
describe the LC; in Sect. 18.4 we show a comparative application to Italian mortality
dataset; final remarks are offered in Sect. 18.5.

18.2 The Dynamic Evolving Neuro Fuzzy System

The Dynamic Evolving Neuro Fuzzy System is an adaptive learning fuzzy system
for dynamic time series prediction. It differs from the ANFIS because the fuzzy rules
and parameters are dynamically updated as new informations come in the system;
both use a TS architecture to implement learning and adaptation. Jang (1993)
introduce the ANFIS: the procedure learn information from the data and Fuzzy
Logic computes the membership function parameters that best allow the associated
fuzzy inference system to track the given input/output data. A first order TS
architecture is described in Fig. 18.1.

Let us assume that the FIS has two input x and y and one output z. A first order TS
fuzzy model has the following rules:

Rule 1: if x is A1 and y is B1 then f1 ¼ p1x þ q1y þ r1
Rule 2: if x is A2 and y is B2 then f2 ¼ p2x þ q2y þ r2

The procedure follows the steps:
Let Oi,l be the output of the node i in the layer l

1. Layer 1: Every node in this layer is an adaptive one with a node function

O1, i ¼ μAi
xð Þ for i ¼ 1, 2, or

O1, i ¼ μBi�2
xð Þ for i ¼ 3, 4

ð18:1Þ

where the typical membership functions depend on the premise parameters ai,bi,ci,.
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2. Layer 2: The output of each node is the product of all the incoming signals:

O2, i ¼ wi ¼ μAi
xð Þ � μBi

yð Þ, i ¼ 1, 2 ð18:3Þ

3. Layer 3: the outputs of this layer are the normalization of the incoming signals:

O3, i ¼ �wi ¼ wi

w1 þ w2
, i ¼ 1, 2 ð18:4Þ

4. Layer 4: each node in this layer is an adaptive node with a node function

O4,1 ¼ �wif i ¼ �wi px þ qiyþ rið Þ ð18:5Þ
pi,qi,ri, are the consequent parameters.

5. Layer 5: the ith output of this layer is computed as the summation of the all

incoming signals
X

i
�wif i

In the hybrid learning algorithm the consequent parameters are identified by the
least square estimation while the premise parameters are updated by gradient
descent.

The DENFIS uses TS model where the fuzzy rules are created dynamically and
the learning process is driven by the ECM procedure. The ECM is introduced to
create a partition of the input space. Once a threshold value Dthr is set, a first cluster
of inputs from the training data is extracted and its radius is set equal to zero. Another
sample is extracted: if the distance between its centre and that of the existing cluster
is less than the value of the parameter Dthr then the vector extracted is incorporated
in the first cluster and the centre is updated and the radius increased; otherwise
another cluster is created. A cluster will not be modified anymore when its radius

Fig. 18.1 Takagi- Sugeno Architecture
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becomes equal to Dthr. We refer to (Kasabov and Song 2002) for a detailed
description of the ECM algorithm.

Once the clusters are created, the fuzzy rules of DENFIS are generated and
updated within the partitioned input space using a TS model. The steps of the
DENFIS are the following:

1. Define the training data set
2. Apply the ECM to the training data set
3. For each cluster create the fuzzy rule through the triangular membership function

μ xð Þ ¼ mf x; a; b; cð Þ ¼ max min x� að Þ= b� að Þ; c� xð Þ=c� bð Þð Þ, 0� ð18:6Þ
where x is the input vector, b is the cluster centre, a¼ b� d�Dthr, c¼ bþ d�Dthr,

d is a parameter of the width of the triangular function.

4. The consequent parameters of the TS procedure are calculated through a
weighted least square estimation. In particular, the weighs are represented by
1 � dj where dj is the distance between the j-th sample and the corresponding
cluster centre.

5. The fuzzy rules and the parameters are updated when a new cluster is created or
the existing clusters are modified. When the ECM stops, the output of the system
is generated according to the TS procedure.

18.3 The Lee Carter Model

In order to model the mortality separately for each i population without considering
dependence between groups, the widely used Lee Carter Model (LC) describes the
mortality rates at age x and time t as follows:

mxt, i ¼ exp αx, i þ βx, ikt, i þ uxt, i
� � ð18:7Þ

where mxt, i is the sum of an age specific parameter independent of time αx, iand a
component given by the product of a time-varying parameter kt, i, reflecting the
general level of mortality and the parameter βx, i, representing how rapidly or slowly
mortality at each age varies when the general level of mortality changes. The model
is fitted to historical data through the Singular Value Decomposition of the matrix of
the observed mortality rates. The estimated time varying parameter is modelled as a
stochastic process; standard Box and Jenkins methodology are used to identify an
appropriate ARIMA model according which kt, i are projected.
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18.4 An Application to Mortality Dataset

In this work we apply AR-DENFIS to mortality forecasts and compare the results
with the LC.

In order to define the number of inputs of the DENFIS in the mortality dataset, we
firstly apply an AR scheme; then we compare the results of mortality forecasts
obtained by the LC and AR-DENFIS. The data used are taken from the Human
Mortality Database (2008). We work on the mortality rates mt for the Italian males
aged 50, collected from t ¼ 1940 up to t ¼ 2012. The data, considered by single
calendar year, are split into training dataset from 1940 up to 1993 and test dataset
from 1994 up to 2012. The AR is fitted to the whole time serie and the order equal to
2 is chosen minimizing the Akaike Information Criterion; consequently, in our
DENFIS we introduce two input variable x1 and x2 (mortality one and two years
before) and one output y (mortality one step ahead).

Firstly, we implement the DENFIS on the training dataset, setting the value of
Dthr equal to 0.1, the maximum number of iteration equal to 10, the parameter d
equal to 2, the step size of the gradient descent equal to 0.01. Once the DENFIS is
created, the mortality rate is projected on the testing period and the results are
compared with the realized mortality.

In the second step of our application, we implement the LC. We fit the model on
the male population aged between 0 and 100, considering years between 1940 and
1993; the parameter kt is derived and shown in Fig. 18.2; a random walk model is
fitted on the serie of kt and is projected from 1994 up 2012 through a Monte Carlo
simulation with n ¼ 1000 paths. Finally the value of projected mortality rates for
male aged 50 are derived using Eq. (18.7).

Fig. 18.2 The fitted
parameter kt of the LC
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The MSE of the LC and DENFIS are compared. The results are shown in
Tables 18.1 and 18.2.

18.5 Final Remarks

In this paper we have applied an integrated AR-DENFIS procedure to forecasts
mortality and have compared the results with the standard LC. The backtesting
procedure highlights the improvements in mortality forecasts moving from LC to
DENFIS: the mean square error decreases and the projected mortality trend appears
more similar to the realized trend. In particular, the DENFIS catches the improve-
ments in mortality realized in the last years better than the LC. This feature makes it
attractive to handle with the longevity risk.

Table 18.1 The mortality
rates realized vs projected
through LC and DENFIS

T Realized DENFIS LC

1994 0.00461 0.004458675 0.005083814

1995 0.00413 0.004593811 0.005004209

1996 0.00409 0.004354364 0.004934666

1997 0.00388 0.004143083 0.004868312

1998 0.00390 0.004003856 0.004802357

1999 0.00371 0.003933489 0.004728343

2000 0.00359 0.003829500 0.004659374

2001 0.00359 0.003684567 0.004591524

2002 0.00316 0.003637632 0.004525431

2003 0.00334 0.003384584 0.004462271

2004 0.00312 0.002780000 0.004403274

2005 0.00305 0.002780000 0.004347287

2006 0.00297 0.002780000 0.004286747

2007 0.00304 0.002780000 0.004222623

2008 0.00294 0.002780000 0.004164231

2009 0.00292 0.002780000 0.004100000

2010 0.00278 0.002780000 0.004049956

2011 0.00288 0.002780000 0.003990748

2012 0.00286 0.002780000 0.003937622

Table 18.2 RMSE in the LC
and DENFIS

MSE

LC DENFIS
1.219046e-06 5.726724e-08
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Chapter 19
Empirical Power Study of the Jackson
Exponentiality Test

Frederico Caeiro and Ayana Mateus

19.1 Introduction

Let X be a continuous random variable with distribution function (df)

F xð Þ ¼ P X � xð Þ ¼ 1 exp �λxð Þ, x > 0: ð19:1Þ
Then X has exponential distribution with parameter λ> 0 and we will use the

notation Exp (λ) to refer to this distribution. Note that if X � Exp(λ), then λX � Exp
(1). The exponential distribution is the adequate model for the time between two
consecutive events in a Poisson process with intensity λ. This is a very simple
mathematical model with a lot of useful statistical properties. Many of those
properties are summarized in Ahsanullah and Hamedani (2010); Balakrishnan and
Basu (1995); Johnson et al. (1994), among others.

The problem of testing exponentiality against other alternatives has received in
the last decades a lot of attention from different researchers (see Alizadeh Noughabi
and Arghami 2011; Brilhante 2004; Doksum 1984; Henze and Meintanis 2005;
Kozubowski et al. 2009; Stephens 1986 and references therein). Possible alternative
models, which extend the exponential distribution, are the gamma distribution, the
Weibull distribution, the generalized Pareto distribution and the Tsallis or
q-exponential distribution.

In this paper we revisit the Jackson statistic used to test exponentiality against a
general alternative. In Sect. 19.2 we introduce the Jackson statistic test and we
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review several exact and asymptotic properties. For statistical power comparison,
Lilliefors exponentiality test is also considered in this work. In Sect. 19.3 we present
and discuss the empirical power of the Jackson test, computed for different alterna-
tive distributions.

19.2 Testing Exponentiality

Suppose X1, X2, . . .Xn are independent and identically distributed random variables
with common unknown continuous distribution. We wish to test the null hypothesis

H0 : X � Exp λð Þ
for some unspecified parameter λ> 0, against H1: the distribution of X is not
exponential. In what follows we will focus on the Jackson exponentiality test. For
the statistical comparison we will also consider Lilliefors exponentiality test.

19.2.1 Jackson Exponentiality Test

Jackson test was introduced in Jackson (1967) and discussed in Caeiro et al. (2016).
The test is based on the statistic

Jn ¼
Pn

i¼1 miX ið ÞPn
i¼1 Xi

, ð19:2Þ

with X(i) the i-th ascending order statistic and

mi ¼ λE X ið Þ
� � ¼ Xi

j¼1

n� jþ 1ð Þ�1, i ¼ 1, . . . , n:

Since this statistic test can be expressed as a function of the scaled random
variables λXi, the null distribution of Jn does not depend on the value of the
parameter λ. With some algebra, Eq. (19.2) could be expressed in terms of the
standardized spacings Si ¼ (n � i þ 1)(X(i) � X(i � 1)), i ¼ 1, . . ., n with X0 � 0, that
is,

Jn ¼
Pn

i¼1 ciSiPn
i¼1 Si

,
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with ci ¼ 1 þ mi � 1, i ¼ 1, . . ., n (m0 � 0). The statistic test, Jn, can take values
between c1 ¼ 1 and cn~γ þ ln n, where γ denotes the Euler-Mascheroni constant.
Without prior knowledge about the alternative distribution, the critical region for
Jackson test is two-tailed. The exact null df was presented in Jackson (1967) and is
given by

PðJn � xÞ ¼
Xn
k¼1

ðx� ckÞn�1Ið0,1½ðx� ckÞQn
j¼1, j6¼k

ðcj � ckÞ
, 1 < x < cn, ð19:3Þ

where IA denotes the indicator function on the set A(IA(x) ¼ 1 if x 2 A and IA(x) ¼ 0
otherwise). This df was implemented in R programming language (R Core Team,
2015) and the computer code is available in Caeiro et al. (2016). Unless we use a
arbitrary precision package to compute the df in Eq. (19.3), we can obtain inaccurate
values for n > 100, due to floating-point inaccuracy in R software. In Table 19.1 we
provide several quantiles of probability p from the df in (19.3). Table 19.1 extends
Table 1 from Caeiro et al. (2016).

The limit distribution of
ffiffiffi
n

p
Jn � 2ð Þ is the standard normal distribution (Jackson

1967). Since the rate of converge of
ffiffiffi
n

p
Jn � 2ð Þ to the limit distribution is slow,

Caeiro et al. (2016) studied a more a accurate approximation for the df, for nite
sample sizes. The approximation, based on Edgeworth expansion (Abramowitz and
Stegun 1972), is

P Jn � xð Þ � Φ zð Þ � ϕ zð Þ γ1
z2 � 1

6
þ γ2 � 3ð Þ z

3 � 3z
24

þ γ21
z5 � 10z3 þ 15z

72

� �

where z ¼ (x � μ)/σ, ϕ and Φ are the density function and the df of the standard
normal distribution and σ2 ¼ μ2 ¼ μ02 � μ2, γ1 ¼ μ3=σ

3 and γ2 ¼ μ4/σ
4 with μ3 ¼ μ03

�3μμ02 þ 2μ2 and μ4 ¼ μ04 � 4μμ03 þ 2μ2 and

μ ¼ μ01 ¼
Pn

i¼1 ci
n

, μ02 ¼
Pn

i¼1 c
2
i þ

Pn
i¼1 ci

� �2
n nþ 1ð Þ ,

μ03 ¼
2
Pn

i¼1 c
3
i þ 3

Pn
i¼1 ci

� �Pn
i¼1 c

2
i þ

Pn
i¼1 ci

� �3
n nþ 1ð Þ nþ 2ð Þ ,

μ04 ¼ 6
Pn

i¼1 c
4
i þ 8

Pn
i¼1 ci

� �Pn
i¼1 c

3
i þ 3

Pn
i¼1 c

2
i

� �2 þ 6
Pn

i¼1 ci
� �2 Pn

i¼1 c
2
i þ

P n
i¼1 ci

� �4
n nþ 1ð Þ nþ 2ð Þ nþ 3ð Þ :
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19.2.2 Lilliefors Exponentiality Test

To be able to compare the power of the Jackson exponentiality test, we also
considered the Lilliefors test (Gibbons and Chakraborti, 2011; Lilliefors, 1969),
which is a Kolmogorov-Smirnov type test. The test statistic is

Dn ¼ sup
x

j Fn xð Þ � F0 xð Þ j , ð19:4Þ

with F0 xð Þ ¼ 1� exp
��x=�x

�
, x > 0 the exponential df in (19.1) and λ estimated by

1=�x, where �x denotes the sample mean and Fn(x) is the empirical distribution
function. The test statistic in Eq. (19.4) is equivalent to

Dn ¼ max Dþ
n ;D

�
n

� �
,

with

Dþ
n ¼ max

1�i�n

i

n
� Yi

	 

,D�

n ¼ max
1�i�n

Yi � i� 1
n

	 


andYi ¼ 1� exp �X ið Þ= �X
� �

. The test rejects the null hypothesis of exponentiality, at
the significance level α, if Dn is greater than a critical value with P(Dn > crit.
value) ¼ α. Since the parameter λ of the exponential distribution is estimated, the
critical values for the Kolmogorov-Smirnov test are no longer valid. Lilliefors
(1969) made a Monte Carlo simulation study, based on 5000 runs, to compute
critical values for the test statistic Dn in (19.4). Since those critical values were
computed from a small number of runs and values for even sample sizes were
interpolated, we also conducted a monte carlo simulation study, based on 100,000
runs, to compute critical values for the statistic Dn in (19.4) with a smaller standard
error. In Table 19.2 we present the simulated critical values for Dn for n¼ 3(19.1)20
and n ¼ 25(19.5)100 at the significance levels α ¼ 0.20, 0.10, 0.05, 0.025, 0.02,
0.01, 0.005. The values presented in Table 19.2 were computed in R language, with
the computer code:

# Function to compute critical values for Lilliefors
Exponentiality test ksexp.crit <- function(n, runs=10^5,
alpha=0.05){

lambda <- 1

sim.ks <- replicate(runs, {x <- rexp(1000, rate=lambda)[1,n];

ks.test(x,”pexp”,rate=1/mean(x))$statistic} )

return(quantile(sim.ks, probs=1-alpha))

}
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Remark: To be able to reproduce the critical values, the command set.seed (19.1)
must be used before ksexp.crit.

Table 19.2 Critical values for Dn at the significance level α and sample size n

α 0.20 0.10 0.05 0.025 0.02 0.01 0.005

3 0.451 0.511 0.551 0.578 0.585 0.601 0.612

4 0.401 0.445 0.485 0.522 0.532 0.559 0.582

5 0.361 0.405 0.442 0.474 0.484 0.512 0.537

6 0.332 0.373 0.408 0.440 0.449 0.475 0.500

7 0.310 0.348 0.381 0.412 0.421 0.447 0.470

8 0.292 0.327 0.359 0.387 0.396 0.421 0.444

9 0.276 0.311 0.341 0.367 0.376 0.401 0.423

10 0.263 0.296 0.324 0.350 0.358 0.381 0.403

11 0.251 0.283 0.311 0.336 0.343 0.365 0.386

12 0.242 0.272 0.299 0.323 0.330 0.351 0.371

13 0.233 0.262 0.288 0.311 0.318 0.339 0.359

14 0.224 0.253 0.278 0.301 0.308 0.328 0.347

15 0.217 0.245 0.270 0.292 0.298 0.317 0.337

16 0.211 0.237 0.261 0.283 0.289 0.310 0.329

17 0.205 0.230 0.254 0.274 0.280 0.300 0.319

18 0.199 0.224 0.247 0.267 0.273 0.292 0.309

19 0.194 0.219 0.240 0.261 0.267 0.285 0.302

20 0.189 0.213 0.234 0.254 0.260 0.277 0.295

25 0.170 0.192 0.211 0.228 0.233 0.249 0.263

30 0.156 0.175 0.193 0.209 0.214 0.228 0.243

35 0.145 0.163 0.179 0.195 0.199 0.213 0.225

40 0.136 0.153 0.169 0.182 0.187 0.199 0.212

45 0.128 0.145 0.159 0.172 0.176 0.188 0.200

50 0.122 0.137 0.151 0.164 0.168 0.179 0.190

60 0.111 0.126 0.139 0.150 0.154 0.164 0.174

70 0.103 0.116 0.128 0.139 0.143 0.153 0.162

80 0.097 0.109 0.120 0.130 0.133 0.142 0.151

90 0.091 0.103 0.113 0.123 0.126 0.134 0.142

100 0.087 0.098 0.108 0.117 0.120 0.127 0.135
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19.3 Power Comparison and Conclusions

19.3.1 Methodology

We present in this section the simulated Power values of the Jackson and Lilliefors
tests. Results are based on a Monte Carlo simulation study with 100,000 samples of
size n ¼ 5, 10, 20, 50 and 100. The level of significance considered was α ¼ 0.05.
We considered the two following alternatives to the exponential distribution: the
gamma and Weibull distributions with density function given respectively by,

f xð Þ ¼ λθxθ�1

Γ θð Þ exp �λxð Þ, x > 0 θ > 0; λ > 0ð Þ ð19:5Þ

and

f xð Þ ¼ λθ λxð Þθ�1exp � λxð Þθ
n o

, x > 0 θ > 0; λ > 0ð Þ: ð19:6Þ

n = 10 , X ~ gamma n = 20 , X ~ gamma
1.0 1.0 ●
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● Jackson● ●   ● ●   
●

0.0 Lilliefors 0.0 Lilliefors

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
θ θ

n = 50 ,  X ~ gamma n = 100 ,  X ~ gamma
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Fig. 19.1 Simulated Power curve for the statistic tests Jn and Dn and α ¼ 0.05, for the gamma
model
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When θ ¼ 1 those models reduce to the exponential distribution with parameter λ.
Thus testing the exponential hypothesis is equivalent to test the null hypothesis
H0 : θ ¼ 1. For the power study, we considered λ ¼ 1 and θ ¼ 0.1(0.1)2.

Although we considered the models in (19.5) and (19.6) we assume to have no
knowledge of the alternative distribution. Therefor the critical region for Jackson test
is two-tailed and for Lilliefors test is one-tailed. The critical values used in the
simulation study are the ones available in Tables 19.1 and 19.2.

19.3.2 Results and Conclusions

In Figs. 19.1 and 19.2 and in Tables 19.3 and 19.4 we present the simulated power
values at a significance level α ¼ 0.05. Results for n ¼ 5 are only available in the
tables. Results of this simulation study indicated that both exponentiality tests
exhibit a similar statistical power, almost identical when the alternative hypothesis
was nearly exponential (θ close to 1). The studied tests have a reasonable power, for

n = 10 ,  X ~ Weibull

n = 50 ,  X ~ Weibull

n = 20 ,  X ~ Weibull
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Fig. 19.2 Simulated Power curve for the statistic tests Jn and Dn and¼ 0:05, for the Weibull model
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Table 19.3 Simulated power of the tests for the gamma alternative

θ
n ¼ 5 n ¼ 10 n ¼ 20 n ¼ 50 n ¼ 100

Jn Dn Jn Dn Jn Dn Jn Dn Jn Dn

0.1 0.736 0.770 0.943 0.985 0.998 1.000 1.000 1.000 1.000 1.000

0.2 0.518 0.499 0.762 0.853 0.949 0.991 1.000 1.000 1.000 1.000

0.3 0.357 0.316 0.556 0.627 0.800 0.906 0.987 0.999 1.000 1.000

0.4 0.247 0.202 0.383 0.414 0.597 0.707 0.909 0.980 0.995 1.000

0.5 0.173 0.134 0.254 0.257 0.405 0.471 0.722 0.855 0.935 0.990

0.6 0.122 0.093 0.166 0.159 0.254 0.280 0.480 0.595 0.744 0.883

0.7 0.090 0.068 0.108 0.098 0.151 0.155 0.272 0.327 0.453 0.581

0.8 0.067 0.055 0.076 0.067 0.091 0.088 0.138 0.151 0.214 0.260

0.9 0.058 0.052 0.058 0.054 0.061 0.058 0.071 0.071 0.088 0.093

1.0 0.049 0.050 0.051 0.052 0.049 0.051 0.050 0.050 0.050 0.050

1.1 0.047 0.051 0.051 0.054 0.053 0.056 0.062 0.067 0.078 0.082

1.2 0.049 0.057 0.055 0.061 0.068 0.072 0.102 0.110 0.158 0.176

1.3 0.050 0.062 0.065 0.076 0.091 0.100 0.163 0.181 0.283 0.322

1.4 0.055 0.069 0.077 0.088 0.121 0.132 0.245 0.269 0.433 0.499

1.5 0.062 0.078 0.095 0.107 0.158 0.171 0.336 0.374 0.584 0.670

1.6 0.066 0.084 0.110 0.125 0.197 0.211 0.433 0.478 0.715 0.804

1.7 0.075 0.095 0.129 0.144 0.238 0.255 0.527 0.584 0.819 0.895

1.8 0.080 0.102 0.152 0.168 0.286 0.306 0.622 0.682 0.894 0.950

1.9 0.090 0.113 0.174 0.191 0.333 0.357 0.701 0.765 0.940 0.979

2 0.097 0.121 0.194 0.212 0.381 0.405 0.767 0.828 0.968 0.992

Table 19.4 Simulated power of the tests for the Weibull alternative

θ
n ¼ 5 n ¼ 10 n ¼ 20 n ¼ 50 n ¼ 100

Jn Dn Jn Dn Jn Dn Jn Dn Jn Dn

0.1 0.899 0.938 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.2 0.768 0.785 0.968 0.989 0.999 1.000 1.000 1.000 1.000 1.000

0.3 0.618 0.600 0.885 0.928 0.992 0.999 1.000 1.000 1.000 1.000

0.4 0.470 0.423 0.743 0.782 0.946 0.976 1.000 1.000 1.000 1.000

0.5 0.336 0.279 0.563 0.571 0.824 0.865 0.992 0.998 1.000 1.000

0.6 0.227 0.176 0.382 0.361 0.618 0.637 0.924 0.956 0.997 0.999

0.7 0.148 0.108 0.233 0.203 0.385 0.369 0.706 0.733 0.929 0.956

0.8 0.094 0.070 0.131 0.108 0.197 0.172 0.377 0.365 0.613 0.628

0.9 0.063 0.054 0.073 0.062 0.087 0.075 0.130 0.115 0.200 0.187

1.0 0.049 0.050 0.050 0.050 0.050 0.051 0.051 0.049 0.050 0.048

1.1 0.047 0.054 0.053 0.059 0.065 0.070 0.099 0.098 0.159 0.151

1.2 0.053 0.065 0.074 0.082 0.118 0.119 0.253 0.235 0.467 0.430

1.3 0.064 0.080 0.107 0.116 0.201 0.196 0.480 0.435 0.794 0.744

1.4 0.081 0.098 0.152 0.159 0.313 0.290 0.708 0.644 0.955 0.927

1.5 0.099 0.119 0.208 0.210 0.440 0.397 0.872 0.810 0.995 0.986

1.6 0.119 0.141 0.270 0.265 0.571 0.508 0.956 0.915 1.000 0.998

1.7 0.143 0.167 0.339 0.324 0.691 0.614 0.989 0.967 1.000 1.000

1.8 0.169 0.195 0.414 0.386 0.792 0.708 0.998 0.989 1.000 1.000

1.9 0.197 0.223 0.490 0.448 0.870 0.788 1.000 0.997 1.000 1.000

2.0 0.226 0.251 0.565 0.507 0.923 0.850 1.000 0.999 1.000 1.000



sample sizes n � 50. Lilliefors test is usually more powerful for the gamma
alternative and θ not close to 1. For the Weibull alternative and θ > 1, Jackson test
is more powerful.
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Chapter 20
An Intervention Analysis Regarding
the Impact of the Introduction of Budget
Airline Routes to Maltese Tourism
Demographics

Maristelle Darmanin and David Suda

20.1 Introduction

Intervention analysis looks for dynamic changes in a time series following an
intervention. The seminal paper related to intervention analysis is that by Box and
Tiao (1975). This intervention, in actual practice, could take the form of an event,
procedure, law or policy intended to change a particular trend. Transportation and
tourism time series are time series which are expected to be impacted by external
events that are known to have occurred at a particular point in time. By understand-
ing the extent of the impact of an intervention on a time series, policy makers would
be able to quantify the extent of the impact and adjust policy to cater for inferred
change. Intervention analysis has often been used to study the effects of policy,
procedure or other events on transportation and tourism. In (Vaziri et al. 1990), the
impact of fare and service changes on transportation in Kentucky during the period
1975-1985 is studied. In (Park et al. 2016), the impact on passenger ridership of the
opening of a new railway line in Soeul is investigated. A study from a tourism
perspective is found in (Min et al. 2011), where the impact of SARS in 2003 on
Japanese tourism to Taiwan is assessed.

The relatively small size of the Maltese islands means that changes in policies and
interventions may prove to have a significant effect on the economy. Tourism is an
important pillar of the Maltese economy, and the impact of the introduction of low
cost carriers, which have been introduced in 2006, to Maltese tourism has never
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before been studied. In this paper we look at how the introduction of these new
routes has impacted on the volume and pro le of tourists visiting Malta during the
above mentioned period. The analysis is based on variables derived from the
Tourstat survey (https://nso.gov.mt/en/nso/Sources and Methods/Unit C3/Popula
tion and Tourism Statistics/Pages/Inbound-Tourism.aspx) carried out by the
National Statistics Office in Malta. This is a tourism survey carried out monthly
using a two-stage sampling technique consisting of clustering and systematic sam-
pling stages. The survey is carried out at departure terminals at randomly picked
time-intervals, and tourists visiting Malta are selected systematically and
interviewed as they are entering the departures lounge towards the end of their
stay. The results from this survey are then projected for the whole tourist population.
For the analysis, we consider the period 2003-2012 on a monthly basis. We shall be
looking at two interventions – the introduction of low cost routes to Pisa and London
in October 2006, and a considerable addition of new routes (namely Bologna,
Marseille and other European airports in Spain, Denmark and Poland) in March
2010. Due to numerous time series data sets at our disposal, from here onwards we
shall only present those series where intervention eventually proved to be significant.

When carrying out intervention analysis, the following assumptions will be taken
into consideration. First of all, apart from the noise of the series, the only exogenous
impact shall be presumed to be that of the event or the intervention itself. Secondly,
the temporal delimitations of the intervention are presumed to be known, such as the
time of onset, the durations and the time of termination of the input event. Lastly, it is
ensured that a sufficient number of observations in the series should be available
before and after the onset of the event for the researcher to separately model the
pre-intervention time series and the post-intervention time series.

20.2 Building the Intervention Model

Building an intervention model typically follows these steps. A model is constructed
for change, which describes what is expected to occur given knowledge of the
known intervention (or interventions). Data analysis is then worked out appropri-
ately based on that model. A pre-intervention model is first obtained, based on the
data prior to the first intervention. A SARIMA (seasonal autoregressive moving
average) model is typically used at this stage, but not exclusively. This is then
followed by an analysis on the whole data set including the intervention. This is
usually chosen after the selected model is used to generate forecasted values for the
period after the intervention, and the differences between the actual values after the
intervention and the forecasted values are visually analysed. The typical intervention
model is given by

Yt ¼ f θ; I; tð Þ þ Nt ð20:1Þ
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where Y is the original or appropriately transformed series, f represents the dynamic
model for the intervention effects and is a function of the parameter set θ, the
intervention variables I and the time t, and N represents the underlying time series
with no intervention, which may either be completely random or modeled by some
time series model of endogenous variables. Diagnostic checks are then carried out on
the fitted model, and if serious deficiencies are uncovered, the model needs to be
modified. The diagnostic checking which occurs at this stage is the testing of the
significance of model parameters, where one also includes post-intervention data,
and analysis of residuals. In this paper we shall assume that N is modeled by
SARIMA. A SARIMA ( p, d, q) (P,D,Q)s with no constant term is given by the
equation

1� Bð Þ 1� Bsð Þϕ Bð ÞΦ Bsð ÞNt ¼ θ Bð ÞΘ Bsð ÞZt ð20:2Þ
where B is the backward operator, Z is a white noise process and:

1. ϕ(z) ¼ 1 � ϕ1z � . . . � ϕpz
p

2. Φ(z) ¼ 1 � Φ1z � . . . � ΦPz
P

3. θ(z) ¼ 1 þ θ1z � . . . � θqz
q

4. Θ(z) ¼ 1 þ Θ1z � . . . � ΘQz
Q

If we include the constant term, we replace Nt in (20.2) with ~Nt � Nt � μ for
non-zero constant term μ. We now look into possible ways of modeling intervention.

20.2.1 Dynamic Models for Intervention

A model for intervention can contain both single and multiple interventions. For a
single intervention, the dynamic model in (20.1) is given by

f θ; I; tð Þ ¼ χt ¼
ω Bð Þ
δ Bð Þ It ð20:3Þ

where

1. ω(z) ¼ 1 � ω1z � . . . � ωrz
r

2. δ(z) ¼ 1 � δ1z � . . . � δsz
s

3. ω(z) and δ(z) have roots outside the unit circle
4. χt represents the dynamic transfer from a single intervention I
5. θ ¼ (ω1. . .,ωr, δ1. . ., δs)

Furthermore, we call the term ω zð Þ
δ zð Þ in (20.3) the transfer function, as it relates the

exogenous input It with the observed process Yat timet. The generalisation of (20.3)
for multiple interventions is given by
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f θ; I; tð Þ ¼
Xk
j¼1

χtj ¼
Xk
j¼1

ωj Bð Þ
δj Bð Þ I

jð Þ
t ð20:4Þ

where

1. ωj zð Þ ¼ 1� ω1jz� . . .� ωrjjz
rj

2. δj zð Þ ¼ 1� δ1jz� . . .� δsjjz
sj

3. for all j, ωj(z) and δj(z) have roots outside the unit circle
4. I ¼ (I(1), . . ., I( j ))
5. χtj represents the dynamic transfer from the jth intervention I( j)

6. θ ¼ ω11; . . . ;ωrkk; δ11; . . . ; δskkð Þ
The two most common types of intervention variables I jt are the step intervention

and the pulse intervention. The step intervention S(T, j ) represents an intervention at
time T that remains in effect thereafter, hence causing a permanent change in state. In
this case:

S T ;jð Þ
t ¼ 0, t < T

1, t � T

�
ð20:5Þ

The pulse intervention P(T, j ), on the other hand, represents an intervention at time
Twhose change in state is only temporary. In this case

P T ;jð Þ
t ¼ 0, t 6¼ T

1, t ¼ T

�
ð20:6Þ

Sometimes, however, the intervention effect may also be seasonal. This is likely
to cause model misspecification if not catered for. Specifically devised for our
purpose, we shall also consider a periodic pulse intervention to model one of our
time series. Denoting it by P(d, t, j), we de ne this as follows

P d;T ;jð Þ
t ¼ 1, t ¼ T þ jþ bd

0, t 6¼ T þ jþ bd

�
ð20:7Þ

where a 2 {0, 1, d� 1} and b 2 ℤ+. To cater for multiple periodic pulse intervention
effects, one can consider these within the context of a multiple intervention model of
the type (4).

We next discuss the polynomial terms in (20.3) and (20.4). The ωj-polynomials
are responsible for the delay in the effect of the intervention variable, while the δj-
polynomials are responsible for the type of change in the mean after the effect of the
intervention. For example, if ωj zð Þ ¼ eω, then the effect of the intervention of the
mean is immediate, while ifωj zð Þ ¼ eωzk for k > 0, then the effect of the intervention
is delayed byk. On the other hand, δj(z) ¼ 1 suggests an abrupt change in mean after
the effect of the intervention, δj zð Þ ¼ 1� eδz where eδ2 0; 1ð Þ suggests a gradual
change in mean after the effect of the intervention, while δj(z) ¼ 1 � z suggests a
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linear increase/decrease without bound. For illustrations of the different effects to the
mean level for different combinations of ωj -polynomials and δj -polynomials
applied to interventions of the type (5) and (6), see (Box 1975), Sect. 2. For
interventions of the type (7), we shall only apply ωj zð Þ ¼ eωj, due to the fact that
the intervention effect for a particular month will only be expected to occur in that
month. On the other hand, in the denominator, we shall assume either that δj(z) ¼ 1,
δj zð Þ ¼ 1� eδjzd or δj(z)¼ 1� zd. In the latter, we allow for gradual change along the
seasonal streaks of the intervention. The forms for ωj(z) and δj(z) mentioned in this
paragraph are the only ones we shall consider moving forward (Fig. 20.1).

Preliminary analysis for deciding which intervention model is most appropriate is
not unique. One approach for selecting an adequate intervention model is through
plots of the differences between the actual values after intervention and the fore-
casted values. We opt to use moving average plots which have smoothed out the
noise and seasonal effects, hence bringing to the fore the underlying patterns of the
data. This will be elaborated on in Sect. 3. Ultimately, these are just graphical
indications, and the resulting model may not correspond to what one expects from
preliminary analysis.

20.2.2 Inference for the Intervention Model

We now discuss estimation for the intervention model in (20.1). Given a time series
of length N + d + sD, the likelihood may be obtained in terms of an N-dimensional
vector W whose tth element is given by

Wt ¼ 1� Bð Þd 1� Bsð ÞD Yt � f θ; I; tð Þð Þ
where

Fig. 20.1 The response to a periodic pulse intervention with d ¼ 4 for the following transfer

functions: (a)ω zð Þ ¼ eω, δ zð Þ ¼ 1, (b) ω zð Þ ¼ eω, δ zð Þ ¼ 1� z4 and (c) ω zð Þ ¼ eω, δ zð Þ ¼ 1� eδz4
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Wt ¼ θ Bð ÞΘ Bsð Þ
ϕ Bð ÞΦ Bsð Þ

� �
Zt

is stationary. Let β be the vector SARIMA and intervention parameters in 1. Then the
likelihood function is

L β; σ2z jW
� � ¼ 2πσ2z

� ��N
2 Mj j12exp � S βð Þ

2σ2z

� �

where σ2zM
�1 is the covariance matrix of W and

S βð Þ ¼ W0MW ¼
XN
t¼0

E ZtjW; β½ �

Least squares estimation may be applied as a good alternative when MLE becomes
infeasible to implement because of the model’s strong non-linearity. Furthermore,
two alternative approaches to estimation are suggested by (Box 1975). The first
approach uses the same parameters obtained at pre-intervention stage and just
estimates the intervention parameters. In this case we would be looking at a quasi-
likelihood or quasi-least squares problem. This appears to be less ideal but may
sometimes lead to more manageable optimisation, however this was never necessary
in our case. The second approach, on the other hand, will apply maximum likelihood
estimation or least squares estimation (typically non-linear least squares estimation)
to the whole model. When the intervention is abrupt or gradual, i.e. δ zð Þ ¼ 1, δ zð Þ
¼ 1� eδzorδ zð Þ ¼ 1� eδzd , maximum likelihood may be used by applying a number
of available software packages. When δ(z) ¼ 1 � z or δj(z) ¼ 1 � zd, estimating
(20.1) becomes a restricted least squares problem. For the purpose of restricted least
squares estimation, (20.1) may be rewritten as

1� Bð Þd 1� Bsð ÞD ϕ Bð ÞΦ Bsð Þ
θ Bð ÞΘ Bsð Þ

� �
Yt � f θ; I; tð Þð Þ ¼ Zt ð20:8Þ

Methods for transforming (20.8) into regression form can be found in (Cryer and
Chan 2010), Chap. 11, and the parameters are then estimated via the usual non-linear
least squares techniques.

20.2.3 Goodness of Fit Measures and Residual Diagnostics

The following goodness of fit measures are used to select the best intervention
model. In the following, we denote by bY t the one-step ahead predictor of Yt.

1. Mean absolute error MAEð Þ : MAE ¼ 1
T

XT

t¼1
j Yt � bY t j;
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2. Mean absolute percentage error (MAPE): MAPE ¼ 100
T

XT

t¼1
j Yt � bY t

Yt
j;

3. Maximum absolute error (MaxAE): MaxAE ¼ maxt j Yt � bY t j;
4. MaxAPE (MaxAPE): MaxAPE ¼ 100maxt j Yt � bY t

Yt
j;

5. Normalised BIC(NBIC) : NBIC¼ p ln T� 2 ln L, where L is the model likelihood
and p is the number of parameters to be estimated. When the likelihood is not

known, we can approximate this by NBIC ¼ ln (MSE) þ p ln (T ), where MSE

¼ 1
T

XT
t¼1

�
Yt � bY t

�2
For independent identically distributed normal disturbances,

the two are equivalent.

Furthermore, one can also apply the Ljung-Box test or other tests for serial correla-
tion on the error terms to ensure that the white noise hypothesis is satisfied.

20.3 Results

The limitation with intervention analysis is that it is based on the assumption that the
model specification is correct and no other exogenous occurrences have influenced
the data. Furthermore, the size of the pre-intervention and post-intervention data set
may also hinder a proper specification of the model. A more detailed discussion of
the limitations of intervention analysis can be found in e.g. (Yaffee and McGee
2000). We shall therefore perform preliminary analysis on the data to identify some
characteristics of the data after the noise and seasonality have been smoothed, to
avoid having gross misspecifications in the model and erroneous identification of the
intervention.

20.3.1 Preliminary Analysis Using Moving Averages

We shall plot prior moving averages of order 12 over the French tourism series,
package tourism series and Italian tourism series – three series that we have
identified to be influenced by the mentioned interventions. We opt for prior moving
averages rather than centred ones, as these are better for identifying the exact
occurrence of the intervention effect. From Fig. 20.2, we can see from the moving
average that the French tourism model appears to show a linear and unbounded
increase in tourism following the addition of new routes, including Marseille, in
March 2010. The package tourism moving averages, after the March 2010 interven-
tion, shows a gradual increase which quickly reaches a plateau. The Italian tourism
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model, on the other hand, also appears to show an increase which reaches a plateau
after a few years.

Despite the characteristics evident in Fig. 20.2, the modeling aspect may lead us
to different models altogether. Sometimes, what appears to be the ideal model ends
up not being estimable. Furthermore, there are instances where it may be di cult to
capture all features, and we may be forced to opt for some features rather than others.
Nonetheless, in this paper we present intervention models where the white noise
hypothesis via the Ljung-Box test is not rejected at the 0.05 level of significance and,

Fig. 20.2 Original series (black solid line) and prior moving average of order 12 (grey solid line)
for the following tourism series: French (top left), package (top right) and Italian (bottom). Black
vertical line denotes the time of the intervention
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furthermore, we shall ensure that the SARIMA part of the model is causal and
invertible after first order and seasonal differencing.

20.3.2 Model Fitting and Diagnostics

In this section we discuss models and their diagnostics for the aforementioned series
where this was estimable. We select the model with the best good-ness of t criteria
which satisfies the required model assumptions. Due to the permanent nature of our
interventions, we have not considered the pulse interventions in (20.5), but the step
interventions in (20.4) failed, we applied the periodic pulse interventions in (20.6)
for each month. When implementing an intervention model of the type (4), we have
attempted estimation for ω zð Þ ¼ eωzk for various lags k and δ(z) for all the afore-
mentioned forms. We take k ¼ 0, 1, 2, 3 when δ(z) ¼ 1 and k ¼ 0, 1 otherwise. For
some cases, the parameters for the models could not be estimated due to numerical
instability. For an intervention model of the type (6), we have considered ω zð Þ ¼ eω
in conjunction with δ zð Þ ¼ 1, δ zð Þ ¼ 1� eδzd and δ(z) ¼ 1 � zd. We have also
allowed for multiple interventions, however none of the time series considered found
more than one intervention to be significant. The time series where intervention was
deemed to have a significant impact were monthly French tourist numbers, monthly
package tourist numbers and monthly Italian tourist numbers. For the French tourism
series and package tourism series, the step intervention model was sufficient and the
significant intervention was the one occurring in March 2010. This was expected for
the French tourism time series, as this corresponded to the intervention where the
Marseille route was introduced. On the other hand, for the Italian tourist time series,
the periodic pulse intervention model was found to be more appropriate and the
significant intervention was the one occurring in October 2006. This means that the
introduction of the Pisa route in October 2006 left an impact on Italian tourism
volumes, but the introduction of the Bologna route in March 2010 does not appear to
have had a significant impact. The fitted models and the results are the following.

We first look at the step intervention model for French tourism time series. With
reference to the model in (20.1), N is represented by a SARIMA (0, 0, 0)(1, 1, 0)12. On
the other hand, we take ω(z) ¼ ωz and δ(z) ¼ 1 � z. The two coefficients that need
estimating Φ, and eω, we obtained through non-linear least squares estimation after
transforming (20.7) into regression form. The parameters, standard errors and
corresponding 95% confidence intervals are found in Table 20.1.

The goodness of fit statistics for this model are MAE ¼ 1120.74, MAPE ¼ 14.9,
MaxAE ¼ 4903.4,MaxAPE ¼ 92.92, NBIC ¼ 14.46 and R2 ¼ 0.86. The Ljung-Box
statistic for the 18th lag is 18.898 and the p-value is 0.4. Fitting a similar model but
with ω zð Þ ¼ eω was unsuccessful. Models with ω zð Þ ¼ eωzk for k ¼ 0, 1, . . .3 and
δ(z) ¼ 1 were also successfully fitted, but the Ljung-Box test was rejected at 0.05
level of significance in all cases, with p-values extremely close to zero.
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The next series we shall look into is the package tourism time series, again
applying the step intervention model. With reference to the model in (20.1), N is
represented by a SARIMA (1, 0, 0)(1, 1, 0)12. On the other hand, we take ω zð Þ ¼ eωzk
for k ¼ 0, 1, 2, 3 and δ(z) ¼ 1. Other types of intervention models were also
attempted but the model fitting was unsuccessful. There are three coefficients that
needed estimating: ϕ, Φ and eω. These are obtained via maximum likelihood
estimation. To select the optimal k, we look at the goodness of t statistics for various
k ¼ 0, 1, 2 in Table 20.4 when maximum likelihood estimation is applied.

In Table 20.2, the superior goodness of t statistics are marked in bold. Since the
intervention model at k ¼ 2 had the best MAE and MAPE, and the joint best R2,
MaxAPE and NBIC with other models having different k, we opt for this model. The
parameters, standard errors and p-values for the intervention model at k¼2 are found
in Table 20.3.

We finally look at the Italian tourism time series. The first attempt was to t
intervention models with ω zð Þ ¼ eωzk and all possible δ(z). While the models were

Table 20.1 Parameter estimates for the French tourism intervention model

Estimate Standard Error 95% Lower Bound 95% Upper Bound

�0.45 0.09 �0.62 �0.27

656.79 132.33 394.04 919.53

Table 20.4 Parameter
estimates for the Italian
tourism intervention model

Parameter Estimate Standard Error p-value

μ 10734.55 1173.76 0

ϕ 0.52 0.09 0

Θ �0.52 0.11 0eω7 8335.69 2253.92 0eω8 12271.77 3510.25 0eδ8 0.51 0.18 0.01

eω9 4743.29 2241.27 0.04

Table 20.2 Goodness of t tests and Ljung-Box statistic for the package tourist intervention model
at k ¼ 0, 1, 2, 3

k R2 MAE MAPE MaxAE MaxAPE NBIC Ljung-Box

0 0.93 5166.58 9.63 18642.62 40.4 17.81 16.44 (p ¼ 0:42)

1 0.94 5128.23 9.53 18462.64 40.68 17.81 18.29 (p ¼ 0:31)

2 0.94 5075.65 9.44 18741.43 40.4 17.79 17.31 (p ¼ 0:37)

3 0.94 5111.37 9.51 18542.7 40.87 17.79 18.62 (p ¼ 0:29)

Table 20.3 Parameter
estimates for the package
tourism intervention model at
k ¼ 2

Parameter Estimate Standard Error p-value

ϕ 0.57 0.08 0

Φ �0.46 0.09 0eω 4686.06 2028.95 0.02
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estimable when δ(z) ¼ 1 and δ(z) ¼ 1 � Z, these led to residuals with significant
short term correlation. An analysis of raw monthly pre-intervention and post-
intervention means led us to suspect that seasonality in the intervention effect was
the issue. The post-intervention increase in the raw mean for the month of July was
8402.58 (the highest) in comparison to the pre-intervention raw mean, while the
increase for February was 3283. We therefore implement the periodic pulse inter-
vention model, and we shall assign a periodic pulse to each month of the year. Hence
we have a model of the type (1), where the dynamic model is of the multiple type in
(20.3). We consider combinations of the cases where ωj zð Þ ¼ eωj, and δj(z) is either
equal 1, 1� eδjz12 or 1 � z12. Hence, we look at an intervention model of the form

f θ; I; tð Þ ¼
X12
j¼1

eωj

δj zð ÞP
12;T ;jð Þ
t

where T corresponds to October 2006, the 46th data point. With reference to the
model in 1, N is represented by a SARIMA(1; 0; 0) (0; 0; 1)12 with constant term. On
the other hand, the best model is obtained when ω zð Þ ¼ eω and δ(z) ¼ 1 for July and

September, while δ zð Þ ¼ 1� eδz12 for August. We use maximum likelihood estima-
tion to estimate μ, ϕ, Θ1,Θ2 , the eω0

js and δ8 The periodic pulse interventions for July,
August and September were found to be significant. The significant parameters,
standard errors, and p-values are found in Table 20.4. The goodness of t statistics for
this model are MAE ¼ 2572.57, MAPE ¼ 29.77, MaxAE ¼ 18175.44,
MaxAPE¼ 165.56, NBIC¼ 16.92 and R2¼ 0.77. The Ljung-Box statistic for the 18
th lag is 13.17 and the p-value is 0.66.

Based solely on the obtained model fits, we deduce the following. French tourism
has increased linearly after removing the SARIMA dynamics of the model, at an
estimated rate of 656.79 every month. The response to the intervention appears to
have occurred with a delay of one month, as k¼1 for the dynamic model explaining
intervention. On the other hand, after removal of the SARIMA dynamics, package
tourism appears to have increased by an estimated 4686.06 in the post-intervention
months. Indeed, package tourism appeared to have been on the decline for quite a
few years prior to the 2010 intervention. The response to the interventions appears to
have happened with a two month lag (k¼2). What we may be seeing here is the
response of the tourism industry to the introduction of a significant number of low
cost routes in March 2010, by offering more worthwhile deals to the potential
Maltese tourism market. It is also likely that package deals have now been making
use of inexpensive routes created by the competition to lower their prices. Finally,
for the Italian tourism market, the periodic pulse intervention was found to be
significant for the months of July, August, and September. We have a sudden
estimated increase of 8115.29, on removal of the SARIMA effect, in the post-
intervention July months. For September, the sudden estimated increase is of
4571.45. On the other hand, for August, the post-intervention effect is increasing
asymptotically to 25044.43. A plot of the original series, fitted values of one-step
predictors and lower/upper 95% confidence levels can be seen in Fig. 20.3.
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20.4 Conclusion

Intervention analysis is a useful way of assessing the impact of policy on time series.
In this paper, we have presented three cases where the introduction of new routes
was found to have a significant impact, either on the intended tourism market or on
other areas. Intervention was found to be significant for French and Italian tourism,
where an increase in tourists from this country is detected, and package tourism,
where the tourism industry appears to have responded to the introduction of low cost
airlines. Furthermore, we see that the intervention did not affect Italian tourism

Fig. 20.3 Original series (black dashed line), fitted series (black solid line), lower and upper 95%
confidence levels (lower and upper grey solid lines) for the following tourism series: French (top
left), package (top right) and Italian (bottom). Black vertical line denotes the time of the intervention
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equally for all months – only the effects for the months of July, August and
September were found to be significant. Interestingly, intervention was not found
to have led to a significant increase in British tourists in 2006, or a significant
increase in tourists from other EU countries in 2010, despite the addition of new
routes from Spain, Denmark and Poland.

Intervention analysis is not without its pitfalls. The amount of data available
pre-intervention and post-intervention may affect both model selection and estima-
tion. A complex transfer function may also complicate the estimation problem.
Indeed, sometimes we may need to settle for simpler and less informative models.
Furthermore, we need to be careful not to falsely attribute changes in the dynamics of
a time series to intervention effects. These are all issues we have encountered when
performing the analysis. A careful exploratory analysis of the data and being well
informed about the context that one is dealing with may help avoid these mistakes.
Nonetheless, intervention analysis is an effective and important tool for detecting
effect of a sudden change, whether intended or unintended, and is also capable of
influencing future policy and decision-making.
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Chapter 21
Investigating Southern Europeans’
Perceptions of Their Employment Status

Aggeliki Yfanti, Catherine Michalopoulou, Aggelos Mimis,
and Stelios Zachariou

21.1 Introduction

In all large-scale sample surveys, demographic and socio-economic variables are
included as background variables which “in addition to providing general contex-
tual/collateral information, they are used as independent variables, as socio-
economic covariates of attitudes, behavior, or test scores, etc. and in all sorts of
statistical models, in particular, as exogenous factors in causal analysis” (Braun and
Mohler 2003: 101). Furthermore, background variables have been and will continue
to be used in order to assess the quality of the realized sample by carrying out
detailed comparisons of their distributions to the more recent available respective
census data (Braun and Mohler 2003), since “it is only sound practice to test a
theoretical result empirically” (Stephan and McCarthy 1958: 134). In the case of the
employment status, i.e. one of the occupational background variables, because of its
great overtime variability, the census data available for such comparisons is most of
the time outdated. Recognition of this fact “leads us to consider alternatives,
especially the possibility of comparing the results obtained by one sample survey
on such . . . [a variable] with the results obtained by other sample surveys” (Stephan
and McCarthy 1958: 156). In this respect, the more appropriate “other [such] sample
survey” that provides updated information is the Labour Force Survey (LFS) and, in
this instance, the European Union Labour Force Survey (EU-LFS). However, the
measurement of the employment status as a background variable included in all
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large-scale sample survey and the census is defined on the basis of how people
perceive it, whereas the EU-LFS measurement of the employment status is based on
a synthesized economic construct computed using a number of variables according
to the ILO conventional definitions that classify the population of working age
(15 years or more) into three mutually exclusive and exhaustive categories:
employed, unemployed and inactive. These two measurements are not comparable
and their results will differ since a composite economic construct would normally
deviate from people’s perceptions.

In the literature, the debate on the definition or concept especially of unemploy-
ment is of long standing (see for a review Yfanti et al. 2017). As Gauckler and
Körner (2011: 186) pointed out, “measuring the ILO employment status in house-
hold surveys and censuses is challenging in several respects. . .The ILO defines
employment in the broadest term, whereby one hour per work counts as being
employed. A small job of one hour per week is enough. Such a definition will
sometimes be in conflict with the respondent’s everyday life perception.” Eurostat
(2009: 58), presenting an extensive analysis on whether the ILO definitions capture
all unemployment and meet current and potential user needs, concluded that “there is
no need for a revision of the ILO labour force concept when it is looked at from an
economic perspective or when it is considered for international comparability. . .
However, there is a point to make concerning the ILO definition of unemployment. It
intends to capture only a restricted part of the whole labour reserve, i.e. the one
showing a strong attachment to the labour market. It is not meant to measure the
entire labour reserve. Jones and Riddell (1999), based on their results that indicated a
substantial heterogeneity within the non-employed and a distribution of degrees of
labour force attachment to be separated into distinct groups that displayed different
behaviour, proposed that additional information appears necessary to identify activ-
ities such as “wait unemployment.” Furthermore, Brandolini et al. (2004), discussing
the heterogeneity of the labour market groups and the difficulty of a single definition
of unemployment, pointed out the existence of large differences not only among
countries, but also among socio-demographic groups within the same country.

All these “grey areas” of labour force attachment make the analysis difficult as the
ILO conventional definitions do not reflect individuals’ situation in the labour
market as they perceive it. It is in this respect that Eurostat decided in 2006 to
include the self-perceived employment status as a supplementary indicator to the
ILO concepts intended to capture all these complexities. In 2011, de la Fuente (2011)
briefly discussed the coverage problems of self-perceived unemployment and the
three new Eurostat indicators that were introduced as supplementary to the unem-
ployment rate based on the results of EU-LFS for 2010. Gauckler and Körner (2011)
investigated the comparability of the employment status measurement in the German
LFS and Census of 2011. The purpose of this paper is, by obtaining a demographic
and social “profile” of agreement and disagreement between Southern Europeans’
declared self-perceptions of their employment status and the ILO conventional
definitions, to investigate whether or not conflicting and coinciding perceptions
differ overtime within-nations and cross-nationally.
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21.2 Method

21.2.1 Prerequisites for Comparability

The EU-LFS is a set of independent national multipurpose large-scale sample
surveys conducted by the respective statistical offices of the member countries,
providing quarterly and annual results on labour participation and those outside
the labour force. The survey population is defined centrally as all persons aged
15 years or more living in private households, excluding persons in compulsory
military or community service and those residing in collective dwellings. Therefore,
the survey population overtime within-nations and cross-national comparability is
ensured (Kish 1994).

The self-perceived employment status included in the EU-LFS is an optional
variable for the participating countries, provided only in the annual datasets. It is
available for most countries with the exception of Germany, UK and Norway.
Although this variable was first introduced in 2006, Eurostat (2008) changed the
reference period in 2008 and consequently there is an issue of comparability. In this
respect, it was decided to base the analysis on the 2008–2014 datasets for the
following Southern European countries: Greece, Italy, Portugal and Spain.

Also, the Eurostat (2008) instruction that, “this question shouldn’t in any case
precede the questions on the labour status according to the ILO definition or the
questions on the registration at the public employment office” has to be considered
for comparability. Because this is a perception question, i.e. sensitive to its place-
ment in the questionnaire (Stephan and McCarthy 1958), the questionnaires of the
four countries under investigation complied with this instruction allowing for over-
time within-nations and cross-national comparability. Furthermore, it was decided to
report the results for the age group 15–74 so as to allow for comparability with the
ILO conventional definition of unemployment (Fig. 21.1; see also de la Fuente
2011).

21.2.2 The ILO Conventional Definitions of the Employment
Status

Figure 21.1 presents the detailed EU-LFS measurement of the employment status
based on a number of variables according to the ILO conventional definitions.

The variable WSTATOR measures the labour status during the reference week
for all respondents aged 15 years or more according to the conventional definitions
that were adopted by the ILO as agreed at the 13th and 14th International Conference
of Labour Statisticians (Hussmanns et al. 1990). This variable takes the value one
(1) when respondents did any work for pay or profit for one hour or more, including
family work during the reference week. The second value (2) refers to respondents
who despite of having a job or business did not work during the reference week
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because they were temporarily absent. The third value (3) is assigned to respondents
who were not working because of lay-off. The fourth value (4) indicates the
respondent who was a conscript on compulsory military service or community
service. Value five (5) designates respondents who did not work nor had a job or
business during the reference week. As shown in Fig. 21.1, the definition of the

Fig. 21.1 The ILO conventional definitions of the employment status used in the EU-LFS.
Reproduced from “EU Labour Force Survey database user guide,” by Eurostat, 2016: 55
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unemployed applies only to respondents aged 15–74 years. Also, a number of
variables is used that define whether respondents were seeking employment, the
methods for doing so and their availability to start work immediately within two
weeks (see for a detailed description, Eurostat 2016).

21.2.3 The EU-LFS Self-Perceived Employment Status
Definition

In Table 21.1, the question measuring the self-perceived employment status is
presented as is the case in all large-scale sample surveys and the census which
differs from the ILO multivariate definition.

As shown, this is a perception question that gives the respondents the chance to
identify they own employment status. The implementation rules for this variable
(MAINSTAT) as defined by Eurostat (2008) specify that the main activity status
represents self-perception regarding the respondents’ activity status. For instance,
students with small jobs will in general present themselves as students. The eighth
response category (value 8) includes also respondents who cannot say whether they
were “carrying out a job or profession” and those who do not fit into other categories
or were on an extended leave from work (Eurostat 2008: 109). The instruction for the
deliverance of this question according to the Eurostat good practices rules is that the
interviewers have to read out the question and all the response categories.

21.2.4 Statistical Analyses

In order to ensure measurement overtime within-nations and cross-national compa-
rability, all measures-variables have to be standardized (Kish 1994). In this respect,

Table 21.1 The EU-LFS self-perceived employment status definition (all respondents aged
15 years or more)

Carries out a job or profession, including unpaid work for a family business or holding,
including an apprenticeship or paid traineeship, etc.

1

Unemployed 2

Pupil, student, further training, unpaid work experience 3

In retirement or early retirement or has given up business 4

Permanently disabled 5

In compulsory military service 6

Fulfilling domestic tasks 7

Other inactive person 8

Not applicable (child less than 15 years) 9

No answer ^
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the variable measuring self-perceived employment status is first recoded into the
three categories of the employed, unemployed and inactive according to the ILO
conventional definitions. Then, the recoded variable is cross-tabulated with the ILO
variable that is computed as presented in Fig. 21.1. The diagonal defines the
“agreement” group, i.e. people’s perceptions coinciding with the ILO conventional
definitions. The off diagonal cases define the “disagreement” group, i.e., people’s
perceptions in conflict with the ILO conventional definitions. Then a demographic
and social “profile” of both groups is obtained based on their demographic and social
characteristics: gender (male, female), age (15–24, 25–34, 35–44, 45–54, 55–64 and
65–74), marital status (single, married, and other, i.e. widowed, divorced or legally
separated) and highest level of educational attainment (primary, secondary and
tertiary). Note that, initially, extensive checks were carried out for each category
and based on these results it was decided to combine coinciding and conflicting
perceptions into the before mentioned two groups.

21.3 Results

In Table 21.2, Southern Europeans’ overall perceptions of their employment status
as they compare to the ILO conventional definitions are presented.

As shown, more than 90% of Southern Europeans perceptions coincide overall
with the ILO conventional definitions: 96.1–97.6% (Greece); 92.3–93.7% (Italy);
90.0–95.0% (Portugal); 97.1–97.8% (Spain). However, the number of people with

Table 21.2 Southern Europeans’ overall perceptions of their employment status as they agree or
disagree to the ILO conventional definitions (15–74; N in 000s)

Country 2008 2009 2010 2011 2012 2013 2014

Greece

Agree % 97.6 97.3 97.3 96.7 96.2 96.1 96.1

Disagree % 2.4 2.7 2.7 3.3 3.8 3.9 3.9

N 8,328 8,303 8,305 8,308 8,313 8,184 8,135

Italy

Agree % 93.9 93.7 93.4 93.2 93.1 92.5 92.3

Disagree % 6.1 6.3 6.6 6.8 6.9 7.5 7.7

N 45,337 45,563 45,685 45,800 45,866 45,556 45,626

Portugal

Agree % 95.0 94.7 94.8 91.7 90.6 90.0 90.9

Disagree % 5.0 5.3 5.2 8.3 9.4 10.0 9.1

N 8,140 8,141 8,123 8,116 8,060 7,907 7,860

Spain

Agree % 97.8 97.6 97.6 97.1 97.6 97.5 97.7

Disagree % 2.2 2.4 2.4 2.9 2.4 2.5 2.3

N 34,650 34,809 34,673 34,683 34,494 34,602 34,477
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conflicting perceptions amounts to a considerable total ranging from 4,143,000 to
5,543,000: 202,000–319,000 (Greece); 2,759,000–3,499,000 (Italy);
407,000–791,000 (Portugal); 775,000–934,000 (Spain).

In Table 21.3, Southern Europeans’ perceptions of their employment status
coinciding with the ILO conventional definitions of the employed, unemployed
and inactive are presented.

As shown, more than 98.8% of Southern Europeans agree with the ILO conven-
tional definition in perceiving themselves as employed: 98.9–99.4% (Greece);
99.7–99.8% (Italy); 99.7–100.0% (Portugal); 98.8–99.3% (Spain). Also, more than
88% agree in perceiving themselves as inactive: 96.9–97.4% (Greece); 96.9–97.7%
(Italy); 88.0–92.1% (Portugal); 97.5–97.8% (Spain). However, they do disagree
with the ILO conventional definition in perceiving themselves as unemployed:
81.5–87.5% (Greece); 40.8–49.8% (Italy); 66.0–74.1% (Portugal); 87.6–93.8%
(Spain). Italians disagree more remarked in perceiving themselves as unemployed
than the Portuguese people, Greeks and Spaniards.

These findings indicate that a thorough investigation of the demographic and
social characteristics of the “agreement” and “disagreement” groups is necessary in
order to assess whether or not their distributions differ. In Tables 21.4, 21.5, 21.6 and
21.7, the demographic and social “profile” of Southern Europeans’ coinciding and
conflicting perceptions with the ILO conventional definitions is presented for
Greece, Italy, Portugal and Spain, respectively.

The investigation of the “agreement” and “disagreement” groups for 2008–2014
(Tables 21.4, 21.5, 21.6, 21.7) shows that they do differ in terms of their demo-
graphic and social “profile”: Greeks with conflicting perceptions are mainly women

Table 21.3 Southern Europeans’ (aged 15–74) perceptions coinciding with the ILO conventional
definitions of the employed, unemployed and inactive (%)

Country 2008 2009 2010 2011 2012 2013 2014

Greece

Employed 99.4 99.3 99.2 99.0 98.9 99.1 99.2

Unemployed 81.5 82.7 85.7 85.4 87.1 87.5 86.6

Inactive 97.3 96.9 97.4 97.4 96.9 96.8 97.0

Italy

Employed 99.8 99.8 99.7 99.8 99.8 99.8 99.8

Unemployed 40.8 43.2 43.7 42.6 49.0 49.4 49.8

Inactive 96.9 97.2 97.4 97.7 97.4 97.7 97.7

Portugal

Employed 99.9 100.0 99.9 99.7 99.7 99.7 99.8

Unemployed 67.0 70.6 74.1 66.0 67.3 65.4 62.5

Inactive 92.1 91.8 91.8 88.0 86.5 86.6 88.3

Spain

Employed 99.3 99.2 99.2 98.9 98.9 98.8 99.0

Unemployed 87.6 90.6 91.8 91.3 93.8 93.6 93.8

Inactive 97.5 97.7 97.6 97.5 97.7 97.7 97.8
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Table 21.4 The demographic and social “profile” of coinciding and conflicting perceptions with
the ILO conventional definitions: Greece (%)

Variable 2008 2009 2010 2011 2012 2013 2014

Gender

Agree

Male 49.6 49.6 49.6 49.6 49.7 49.2 49.3

Female 50.4 50.4 50.4 50.4 50.3 50.8 50.7

Disagree

Male 41.6 42.9 43.2 46.9 45.9 43.9 43.8

Female 58.4 57.1 56.8 53.1 54.1 56.1 56.2

Age*

Agree

15–24 13.6 13.2 13.1 13.0 12.8 13.5 13.4

25–34 19.3 18.8 18.5 18.2 17.7 17.6 17.1

35–44 20.2 20.4 20.6 20.7 20.6 20.1 20.1

45–54 18.1 18.4 18.5 18.7 19.0 18.9 19.2

55–64 15.6 16.0 16.2 16.3 16.4 16.3 16.4

65–74 13.3 13.2 13.1 13.2 13.4 13.7 13.8

Disagree

15–24 22.1 22.3 19.4 16.9 15.5 16.3 14.3

25–34 25.0 28.1 26.6 25.4 23.1 23.4 24.2

35–44 19.1 17.9 19.4 21.3 23.1 23.4 22.6

45–54 14.7 14.3 16.7 17.6 19.0 18.8 18.8

55–64 11.3 10.7 11.3 12.5 13.6 13.4 15.0

65–74 7.8 6.7 6.8 6.3 5.7 4.7 5.1

Marital status

Agree

Single 31.5 30.8 30.7 31.3 31.8 32.9 33.2

Married 60.9 61.3 61.2 60.5 59.8 58.7 58.5

Other 7.6 7.9 8.1 8.3 8.3 8.4 8.3

Disagree

Single 43.1 45.5 41.0 39.3 38.0 39.4 38.1

Married 51.0 48.2 51.4 53.7 56.6 54.4 54.9

Other 5.9 6.3 7.7 7.0 5.4 6.3 7.0

Education

Agree

Primary 28.8 28.4 27.6 26.0 24.6 23.6 22.4

Secondary 52.9 53.1 52.9 53.2 54.0 54.1 54.4

Tertiary 18.3 18.4 19.5 20.8 21.3 22.3 23.1

Disagree

Primary 27.2 24.1 25.7 26.6 22.4 21.0 21.0

Secondary 55.9 57.6 58.6 57.2 59.9 59.6 59.7

Tertiary 16.8 18.3 15.8 16.2 17.7 19.4 19.4

*All the results are at significant at p < 0.001.
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Table 21.5 The demographic and social “profile” of coinciding and conflicting perceptions with
the ILO conventional definitions: Italy (%)

Variable 2008 2009 2010 2011 2012 2013 2014

Gender

Agree

Male 49.7 49.5 49.4 49.3 49.4 49.2 49.2

Female 50.3 50.5 50.6 50.7 50.6 50.8 50.8

Disagree

Male 46.4 48.2 49.5 50.3 49.4 50.2 50.5

Female 53.6 51.8 50.5 49.7 50.6 49.8 49.5

Age*

Agree

15–24 12.8 12.8 12.8 12.7 12.7 12.7 12.7

25–34 17.0 16.4 16.0 15.5 15.3 14.5 14.3

35–44 21.2 21.2 21.1 21.0 20.7 20.2 19.9

45–54 18.3 18.7 19.2 19.6 20.0 20.4 20.8

55–64 16.3 16.5 16.7 16.9 16.8 17.0 17.0

65–74 14.4 14.4 14.3 14.3 14.6 15.1 15.3

Disagree

15–24 21.7 21.0 20.5 20.2 19.5 18.3 17.3

25–34 28.6 29.6 28.1 27.6 25.4 25.4 24.9

35–44 24.2 24.3 24.7 23.9 24.4 24.2 23.9

45–54 15.4 16.0 17.0 17.6 19.1 20.0 20.9

55–64 8.4 7.9 8.7 9.4 10.5 11.0 11.8

65–74 1.7 1.2 1.1 1.2 1.1 1.1 1.1

Marital status*

Agree

Single 31.0 31.2 31.3 31.6 32.3 32.5 32.9

Married 59.4 59.1 58.8 58.4 57.3 56.6 57.0

Other 9.6 9.7 9.8 10.0 10.4 10.8 10.1

Disagree

Single 48.5 49.2 49.0 49.7 48.2 48.9 48.4

Married 45.1 44.8 44.3 43.5 44.1 43.0 44.1

Other 6.5 6.1 6.7 6.9 7.7 8.1 7.5

Education*

Agree

Primary 18.9 17.9 16.9 15.8 14.9 14.2 13.0

Secondary 69.3 70.2 71.0 71.8 72.0 72.1 72.8

Tertiary 11.7 11.9 12.2 12.4 13.1 13.7 14.2

Disagree

Primary 13.1 11.8 11.6 11.1 10.6 9.8 8.9

Secondary 76.8 78.7 78.4 79.3 79.2 80.0 80.6

Tertiary 10.2 9.6 10.1 9.6 10.2 10.2 10.4

*All the results are at significant at p < 0.001.
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Table 21.6 The demographic and social “profile” of coinciding and conflicting perceptions with
the ILO conventional definitions: Portugal (%)

Variable 2008 2009 2010 2011 2012 2013 2014

Gender

Agree

Male 49.9 49.3 49.3 49.1 49.1 48.1 47.9

Female 50.6 50.7 50.7 50.9 50.9 51.9 52.1

Disagree

Male 40.0 42.7 42.1 47.3 48.4 48.2 48.3

Female 60.0 57.3 57.9 52.7 51.6 51.8 51.7

Age*

Agree

15–24 15.2 14.9 14.5 14.2 14.1 14.2 14.1

25–34 20.3 20.0 19.7 19.4 18.6 16.8 16.2

35–44 19.7 19.9 20.0 20.6 21.0 20.9 20.9

45–54 18.0 18.2 18.5 18.7 19.0 19.4 19.4

55–64 15.1 15.3 15.4 15.3 15.4 16.1 16.4

65–74 11.7 11.6 11.9 11.9 12.0 12.7 13.1

Disagree

15–24 11.0 10.0 10.2 12.6 13.0 13.1 13.2

25–34 15.0 15.0 14.0 13.7 13.3 12.8 12.2

35–44 13.7 14.6 14.9 13.1 14.0 14.8 14.0

45–54 15.9 15.7 16.8 17.7 17.2 17.4 18.2

55–64 21.3 21.3 21.3 22.6 23.1 23.5 23.8

65–74 23.0 23.4 22.7 20.2 19.4 18.3 18.5

Marital status

Agree

Single 27.3 27.4 27.4 32.7 33.8 34.1 33.6

Married 65.0 64.6 64.5 57.0 55.5 55.1 55.7

Other 7.7 8.0 8.1 10.3 10.7 10.8 10.7

Disagree

Single 21.4 20.1 19.4 28.4 30.5 31.5 32.0

Married 69.0 69.3 69.7 59.8 57.7 56.6 56.0

Other 9.6 10.6 10.9 11.8 11.8 11.9 12.0

Education*

Agree

Primary 52.0 49.6 47.7 42.9 40.7 39.0 36.7

Secondary 36.0 38.0 39.2 42.0 42.8 43.9 44.4

Tertiary 11.9 12.4 13.2 15.1 16.7 17.2 18.9

Disagree

Primary 71.5 70.4 70.9 63.2 59.8 56.6 53.8

Secondary 22.9 24.9 23.9 29.3 32.4 35.1 36.6

Tertiary 5.7 4.6 5.2 7.6 7.7 8.2 9.6

*All the results are at significant at p < 0.001.
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Table 21.7 The demographic and social “profile” of coinciding and conflicting perceptions with
the ILO conventional definitions: Spain (%)

Variable 2008 2009 2010 2011 2012 2013 2014

Gender

Agree

Male 50.2 50.1 50.0 49.9 49.7 49.9 49.8

Female 49.8 49.9 50.0 50.1 50.3 50.1 50.2

Disagree

Male 43.2 45.3 45.2 45.8 46.2 45.5 44.2

Female 56.8 54.7 54.8 54.2 53.8 54.5 55.8

Age*

Agree

15–24 13.0 12.8 12.4 12.1 11.9 11.7 11.5

25–34 22.0 21.5 20.9 20.0 19.2 18.3 17.4

35–44 21.6 21.8 22.1 22.3 22.5 22.7 22.7

45–54 17.9 18.3 18.7 19.2 19.6 20.1 20.4

55–64 14.5 14.5 14.7 14.9 15.3 15.2 15.5

65–74 11.0 11.2 11.2 11.4 11.6 11.9 12.4

Disagree

15–24 22.7 17.9 20.0 18.7 18.7 19.2 19.6

25–34 25.7 25.7 23.5 25.2 21.9 20.6 19.3

35–44 21.4 23.3 22.5 22.6 22.5 22.8 20.8

45–54 15.7 17.5 18.3 17.0 18.5 18.8 20.5

55–64 12.8 13.7 13.6 14.6 16.5 16.5 17.2

65–74 1.7 2.0 2.1 1.9 1.8 2.2 2.6

Marital status*

Agree

Single 33.7 33.9 33.9 34.0 34.4 35.7 36.1

Married 57.9 57.6 57.4 57.2 56.5 54.1 53.7

Other 8.4 8.5 8.7 8.8 9.0 10.1 10.3

Disagree

Single 46.5 41.6 43.1 43.1 43.6 45.1 46.0

Married 47.5 49.3 49.3 48.8 49.9 47.6 44.4

Other 6.1 9.1 7.6 8.0 6.5 7.3 9.6

Education*

Agree

Primary 25.2 24.7 23.8 22.3 20.7 19.7 16.4

Secondary 49.0 49.1 49.9 49.9 50.8 50.9 53.1

Tertiary 25.8 26.2 26.3 27.8 28.5 29.3 30.5

Disagree

Primary 20.0 23.6 21.6 21.6 20.2 18.3 15.3

Secondary 57.9 54.7 57.4 56.1 56.3 57.4 60.3

Tertiary 22.1 21.7 21.0 22.3 23.5 24.3 24.5

*All the results are at significant at p < 0.001.
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(53.1–58.4%), aged 25–34 years (23.1–28.1%), married (48.2–56.6%) with second-
ary education (55.9–59.9%); Italians with conflicting perceptions are mainly men
and women aged 25–34 years (25.4–29.6%), single (48.2–49.7%) with secondary
education (76.8–80.6%); Portuguese people with conflicting perceptions are mainly
women (51.6–60.0%), aged 65–74 (20.2–23.4%) in 2008–2010 and 55–64
(22.6–23.8%) in 2011–2014, married (56.0–69.7%) with primary education
(53.8–71.5%); Spaniards with conflicting perceptions are mainly women
(54.2–56.8%) aged 25–34 (23.5–25.7%) in 2008–2011 and 35–44 (20.8–22.8%)
in 2012–2014, married (44.4–49.9%) with secondary education (54.7–60.3%).

21.4 Conclusions

The surprisingly high percentages of Southern Europeans’ perceptions of their
employment status in agreement with the ILO conventional definitions indicate
that this question should precede and not follow the questions on the labour status
according to the ILO conventional definitions or the questions on the registration at
the public employment office as is the Eurostat instruction to participating countries.
It is common practice in social sample survey research to place perception questions
before concepts are made quite clear or as Oppenheim (1992) pointed out: “We try,
as much as possible, to avoid putting ideas into respondents’minds”. This result is in
line with Gauckler and Körner (2011) who proposed that the self-perceived employ-
ment status question should be asked first in their belief that this might provide
radically different results. These findings have to be taken into account, since as
Schwarz (1987) argued, cognitive issues raised from the questionnaire may have
important implications on questionnaire design and survey operations.

The demographic and social “profile” of conflicting perceptions in Greece and
Spain is quite similar (young married women with secondary education). In the cases
of Italy and Portugal, it differs as it is young single men and women with secondary
education and older married women with primary education, respectively. However,
within each country the pattern is in the main systematic overtime. These results
imply that there is some kind of “bias” introduced by the ILO conventional defini-
tions of the employed, unemployed and inactive and further research is required as
Gauckler and Körner (2011) carried out on the “main status effect”.
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Chapter 22
Risk Factors of Severe Cognitive
Impairment in the Czech Republic

Kornélia Svačinová Cséfalvaiová and Jitka Langhamrová

22.1 Introduction

Due to an expected increase of demented persons, another objective of the PhD
thesis is to find risk factors for the occurrence of dementia. In the event that is known
as risk factors associated with dementia, and medicine can find a way to delay
disease or prevented. The aim is to evaluate the applied statistics and draw conclu-
sions regarding the demographic and medical issues associated with dementia. It is
as important as the mathematical (theoretical) statistics. Application statistics trou-
bleshooting from another department is equally important for statistics, demography
and biomedicine. In the Czech Republic lacks an effective national measures in the
field of dementia and mental disorders – National Action Plan for Alzheimer’s
disease was accepted until the beginning of 2016.

In general, particular disease, e.g., diabetes, cardiovascular disease or poor
physical and mental condition, also increase the risk of occurrence. The situation
is complicated by the fact that the individual may suffer at the same time at more than
one simultaneously disease: diabetes, hypertension or heart disease. Equally impor-
tant is appreciated that not all AIDS patients with a given disease visit the practi-
tioner and are introduced into the statistics. Therefore, a number of diseases which
are characterized by, but not limited too course of the patient, e.g., Elevated blood
pressure, it can be seen only very roughly. One approach to solving this problem is to
try to model development morbidity from chronic disease on the basis of knowledge
of the risk factors.
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The source of data used is the SHARE database (The Survey of Health, Aging
and Retirement in Europe), which by its multidisciplinary nature provides a com-
prehensive picture of the aging process in Europe. The results in the dissertation are
of significance with respect to the issue of dementia useful material for future
analysis and professionals.

22.2 Data – The Survey of Health, Ageing and Retirement
in Europe (SHARE)

The aim of SHARE (The Survey of Health, Aging and Retirement in Europe) is
creating a longitudinal data set across Europe consisting of persons older than
50 years and their families.

Among the main topics of multidisciplinary research include demography,
family, education, physical and mental health, cognitive function, medical care
and risks, quality of life, employment and income, housing, income and con-
sumption of households, social support, etc. Data set SHARE provides full
advice socio-demographic variables, variables relating to lifestyle and physical
and mental health, which help to elucidate acting factors. The investigation so far
to the 5 waves in different European countries, including CR. It was on a panel
database of microdata from the area of the economic situation, health, social and
family bonds. It provides real-tracking data on a sample of 123,000 individuals
(more than 293,000 interviews) 27 European countries and Israel older than
50 years. Czech Republic was involved in the project in a second wave of
investigations in 2006. The variables characterizing the state of physical and
mental health and variables from which it was possible to calculate a variable
cognitive function, found only in the second, fourth and fifth wave investigation,
were therefore used in the dissertation data exclusively from these waves. One
drawback SHARE investigation that do not include people in social devices.
Estimates of the incidence of dementia seniorskej population differ. In
institutionalized senioroch it is always higher than in senioroch living alone
(Nikolai et al. 2013). As shown Jagger et al. (2000). The prevalence of dementia
is significantly increased in social and health devices as in households. Since
demented persons require intensive care, it is in a certain phase of the disease
necessary to have these persons transferred to social facilities (Hallauer 2002).
The most frequent group of respondents were consisted of age less than 60 years
(37.62%), followed by annual 60–69 (35.16%), annual 70–79 (19.23%), annual
80–89 (7.64%) and the smallest proportion represented persons older than
90 years (0.35%). The relative proportions of the age categories are shown in
Fig. 22.1.
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22.3 Determinants of Occurrence of Dementia

In the literature there exist several risk factors of dementia. From these results it can
be assumed that higher education and active lifestyle reduce the chance of develop-
ing dementia. Furthermore, some diseases such as diabetes and cardiovascular
diseases or poor physical and mental health should generally increase the chances
of developing dementia. The aim of this part is the analysis and identification of
factors that affect the risk of severe cognitive impairment in the Czech Republic.
Researchers question is whether there are any assumptions or risk factors, which
when exposed to a certain person more frequently, thereby increasing their chances
of developing a cognitive disorder? Admission variables related to socio-
demographic characteristics, physical and mental health and lifestyle were drawn
from the SHARE, which were described in Sect. 22.2.

Multi-dimensional analysis can exclude relationships that exist between the
explanatory variables. To determine associations between basic demographic char-
acteristics and other variables, and severe cognitive impairment model was
constructed logistic regression. Alltogether we constructed four models of logistic
regression.

After the analysis of risk factors for severe cognitive impairment and by looking
for associations between socio-demographic variables, variables of physical and
mental health, social characteristics and development of severe cognitive impairment
the fourth model was created that includes variables, which were in the previous
models confirmed as significant.

Fig. 22.1 Age structure of the respondents
Source: data SHARE (2015), own construction
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In all models, it was shown that the chances of developing severe cognitive
impairment increases rapidly with age. Also higher education positively affects
cognition. It is important to highlight the factors which appeared in most models
as significant (higher than e.g., education) and the family status (living with a
partner). Starting from a model there is about 6 times higher risk of dementia for
persons who live without a partner.

22.4 ROC Curve

To illustrate the discriminating capabilities of the model we used ROC curve
(Received Operation Characteristic Curve; see Fig. 22.2). ROC curve enables the
ability of the diagnostic assay depending on the sensitivity (sensitivity) and speci-
ficity (accuracy) and minimize the consequences of erroneous diagnostic decisions.
In a square of a unit we receive content: diagonal (and area under the diagonal size of
about 0.5), when the model has no ability to classify and units are classified into
groups randomly; a curve under the diagonal (defining the area of greater than 0.5)
for certain models with better or worse discrimination capability; ROC curve
confluent with the left upright and the upper horizontal side of the square in a
situation where model classifies perfectly and the quality is best expressed by the
entire unit area of a square (Hebák et al. 2015). The closer the ROC curve in the
upper left corner, the higher the overall accuracy of the test (Zweig and Campbell
1993). In case the model no discriminatory property and units are randomly assigned
to the given categories, the ROC curve has a diagonal shape (dashed line).

Value of McFadden’s pseudo R-square is in this case, it was 0.41, and the value
of Kendal tau is equal to 0.14. Statistics AUC value is 0.938 (see Fig. 22.3). By these
criteria, the best is the final model (see Fig. 22.3).
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22.5 Risk Factors of Dementia in the Literature

Due to the complexity of dementia syndrome, and factors that increase the risk of
disease, has heretofore been unambiguously identified relatively few risk factors.
Risk factors, such as e.g., Age, family history and inheritance can not be changed,
but recent investigations indicate that there are other risk factors that can be
influenced. Some factors are still debatable and others have been repeatedly con-
firmed in the existing studies. Jorm (1994) is under research and Short form of the
Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE): Develop-
ment and cross-validation discloses Down syndrome as a possible risk factors for
Alzheimer’s disease. During the 60s and 70s of the twentieth century the aluminum
appeared to be a possible risk factor causing Alzheimer’s disease. This suspicion led
to concerns about the everyday use of aluminum through Pot film beverage cans
antiperspirants. Since then, studies have not confirmed the statistical significance of
aluminum in the incidence of dementia and Alzheimer’s disease. Attention therefore
focuses scientists to other research and aluminum is now possible to exclude from
the list of risk factors of dementia.

Regardless of the form of dementia, personal, economic and societal conse-
quences of this disease can be devastating. The following portion provides a
comprehensive summary of the results of international studies of the risk factors of
dementia using statistical methods.
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22.6 Conclusions

Age was demonstrated (in accordance with literature) as the major risk factor of
severe cognitive impairment. The risk of severe cognitive impairment increases with
age, some studies have suggested that the highest age groups is slower increase.
Pliant factors, such as. Lifestyle, can prevent and slow down the development of
cognitive disorders. Lifestyle also affected by the presence of other diseases such as
hypertension, diabetes, heart attack, vascular disease of the brain which are also
associated with severe cognitive impairment. It can be concluded that healthy diet
reduces the risk of developing severe cognitive impairment, both directly and
indirectly. There is no direct correlation between the different pathologies and
pursued the development of severe cognitive impairment, but generally it can be
said that a combination of factors, the monitored increases the likelihood of its
development. A higher level of education and healthy lifestyle appear to be the
factors which delay disease incidence in the higher age group.

People with higher education had access i greater cognitive reserve and are able to
work longer and with a decrease in brain function. Interestingly finding that partner
coexistence indirectly protects against the development of dementia: it is well known
that persons in Partnership live longer, healthier, have more social bonds more
emotional stimuli aid like. Support partnerships may thus become one of the
instruments preventing dementia (and other chronic diseases in the elderly).

Aging of the population with particular emphasis on more than twofold increase
in the number of dementing and those with severe cognitive impairment in a
population must be understood as a call for the entire company and invites public
and private institutions to action. In addition to the necessary medical care must be a
target for aging society, increase the capacity of long-term care. The necessity of
social services depending on age and level of dependency has been discussed in the
first chapter of the thesis. The company must be aware of these changes that will
belong not only to increase the number of demented people and increased costs
associated with the care of patients and their treatments, but also the associated
problems, such as the varying structure of the population and the load, which will
represent for the family caregiver or pre-set institutional care.

Acknowledgments This article was supported by the Czech Science Foundation, No. GA ČR
15-13283S under the title “Projection of the Czech Republic Population According to Educational
Level and Marital Status.”
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Chapter 23
On the Measurement of Early Job
Insecurity in Europe

Maria Symeonaki, Glykeria Stamatopoulou, and Maria Karamessini

23.1 Introduction

The measurement of early job insecurity and labour market exclusion is not a
straightforward procedure, since ‘ideal’ indicators for early job insecurity don’t
actually exist. Different indicators though, such as the unemployment rate, the
youth unemployment rate, the youth to adult unemployment ratio, or the NEET
indicator can serve as useful tools, when comparing job insecurity in different
countries. When one wants to compare early job insecurity (EJI) among different
European countries or study the evolution of early job insecurity over time, it is
difficult, if not impossible, to take into account numerous indicators simultaneously.
Thus, there is a strong need to provide one single indicator of early job insecurity that
takes into account all possible indices connected to EJI for which we have reliable
data to depend on. In the present paper we provide a composite index of EJI based on
a number of indicators that we measure using raw data drawn from the EU-LFS, in
order to estimate and compare early job insecurity among European countries.

When it comes to measuring early job insecurity and patterns of school-to-work
transition, several methodological approaches have been proposed. In Karamessini
et al. (2015) and in Dingeldey et al. (2015) an attempt was made to provide a
definition of early job insecurity and to connect early job insecurity with school-to-
work transitions. Symeonaki et al. (2016a, b) studied the transition flows between
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labour market states for young individuals based on the EU-LFS and the EU-SILC
data. In Eurofound (2014) the labour market situation of young people in Europe is
presented, focusing in particular on the school-to-work transition, in terms of the
amount of time it takes to start the first job after education, while also monitoring the
more general transition to adulthood, the age at which young people leave the
parental home. In Brzinsky-Fay (2007) sequences of school-to-work transitions are
studied in ten European countries using the exploratory methods of optimal
matching and cluster analysis. The process of labour market entry is observed for
5 years after leaving school by examining monthly labour market statuses.
Christodoulakis and Mamatzakis (2009) applied a Bayesian approach that employed
a Monte Carlo integration procedure to expose the empirical posterior distribution of
transition probabilities from full-time employment to part-time employment, tem-
porary employment and unemployment and vice versa, in the EU 15. Additionally,
Alvarez et al. (2008) study the labour dynamics of the population by fitting a
stationary Markov chain to the Argentine official labour survey. On the other hand
Betti et al. (2007) describe some aspects of school-to-work transitions by analysing
the employment situation of individuals as a function of the time elapsed since the
completion of education and training, with a special focus on the patterns in
Southern European countries. Ward-Warmedinge et al. (2013) present information
on labour market mobility in 23 European countries, using the Eurostat’s Labour
Force Survey data over the period 1998–2008, whereas in Flek and Mysíková
(2015), the labour market flows, i.e. flows between employment, unemployment
and inactivity, are analysed using Markov transition systems in order to draw
conclusions on unemployment dynamics in Central Europe. Markov system analysis
is also used in Symeonaki and Stamatopoulou (2015) in order to analyse labour
market dynamics in Greece and in Karamessini et al. (2016) Markov systems are
used to estimate the school-to-labour market entry probabilities for a number of
European countries with raw data drawn from the EU-LFS datasets for 2013. Bosch
and Maloney (2007) discuss a set of statistics for examining and comparing labour
market dynamics based on the estimation of continuous time Markov transition
processes. They then use these to establish stylised facts about dynamic patterns of
movement with the aid of panel data from Argentina, Brazil and Mexico. Moreover,
the socio-economic background and the degree to which it affects the transition
process has also been studied in the literature, as individuals from poorer households
have lower job prospects, while educational background may postpone their first
entry in countries with strong family support system. Educational qualification and
skills also have a strong effect on transitions from school-to-work, as low educated
people hardly escape from spells of unemployment and inactivity, restricted mostly
on temporary contracts (Quintini et al. 2007). Additionally, Scherer (2005) shows
that compared to Germany and Great Britain, in Italy the parental educational
attainments has a negative effect on young people’s speed of entry, as the more
educated parents support their offspring in longer searches for better jobs. Gender
plays an important role in young people’s integration, since young women seem to
face more problems relating to their transition than their male counterparts, with
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higher probabilities of being inactive or in non-standard employment for longer
periods of time, while caring responsibilities also delay their entrance on labour
market (Sigle-Rushton and Perrons 2013; Plantenga et al. 2013). The methods most
commonly used to examine school-to-work transitions as a sequence and not as a
single event are the optimal matching method and the cluster analysis (McVicar and
Anyadike Danes 2002; Scherer 2001; Schoon 2001). Brzinsky-Fay (2014) presents
the main advantages and disadvantages of sequence analysis in comparison to event
history analysis.

Here, in order to capture the whole spectrum of early job and employment
insecurity we use indicators, referring to different aspects of EJI: indicators that
refer to labour market outcomes and to quality of job, indicators for employment
insecurity and for transition from school-to-work. These indicators, estimated for the
15–24 age group, should be considered as complementary rather than competing and
are combined into a single composite indicator of EJI. The results reveal that
courtiers differ when early job insecurity is considered and the values of the
proposed index vary between �0.84 for Switzerland (lowest early job insecurity)
to 1.01 for Greece (highest early job insecurity).

The paper is onganised in the following way. Section 23.2 provides the estima-
tions of the early job insecurity indicators for the European countries based on the
EU-LFS data of 2014. Section 23.3 presents the new composite index of EJI and
provides the results for these countries, sorting them from countries of low EJI to
countries with high EJI. Section 23.4 provides the reader with the conclusions of the
study and aspects of future work.

23.2 Indicators of Early Job Insecurity

As earlier mentioned, to capture the entire range of early job and employment
insecurity we use indicators, referring to distinctive traits of EJI: indicators that
refer to labour market outcomes and to quality of job, indicators for employment
insecurity and for transition from school-to-work. These indicators are estimated for
the 15–24 age group, from raw data drawn from the EU-LFS survey. Table 23.1
provides the indicators that are measured and their description, thus offering infor-
mation of how these were actually measured.

Typical indicators used for the measurement of early job insecurity provided in
the present analysis are the Youth Participation Rate (Ind1), the Youth Employment
Rate (Ind2), the Youth Unemployment Rate (Ind3), the Youth Unemployment Ratio
(Ind4), the incidence of long-term unemployment (Ind5) and the NEET (not in
Employment, Education or Training) indicator (Ind6).

Indicators, directly linked to the quality of jobs, are the incidence of temporary
and part-time employment (Ind7 and Ind8), the incidence of underemployed part-
time workers (Ind9) and working intensity measured as the distribution of employees
according to usual weekly hours worked (hour bands) (Ind10).

23 On the Measurement of Early Job Insecurity in Europe 277



Another important aspect is connected to the transition of young individuals from
school (education or training) to work. It is well accepted that young people’s
pathways from school to sustained work have become more and more rough and
irregular and the probability of someone who has completed full-time education to
move effectively into full-time occupation decreases, whereas the probability of
engaging into part-time or temporary employment increases. Therefore, it is impor-
tant to highlight useful indicators that fall into the category of measuring school-to-
work transitions. In this respect, we estimate the probability of an individual that has
concluded education or training to enter each one of the three labour market states:
employment (Ind11), unemployment (Ind12) and inactivity (Ind13). This part of
analysis will be handled with the aid of Markov system theory.

Two other useful indicators for measuring employment insecurity are the job
finding rate and the job separation rate. In the present paper, as is the case with

Table 23.1 Early job insecurity indicators, Ages: 15–29, EU-LFS, 2014

Indicators Description

Ind1 Youth Participation Rate Number of individuals in the labour force; aged 15�24
Total number of individuals; aged 15�24

Ind2 Youth Employment Rate Number of employed individuals; aged 15�24
Total Population; aged 15�24

Ind3 Youth Unemployment Rate Number of unemployed individuals; aged 15�24
Number of individuals in the labour force; aged 15�24

Ind4 Youth Unemployment Ratio Number of unemployed individuals; aged 15�24
Total population; aged 15�24

Ind5 Incidence of long-term
unemployment

Young unemployed (12 months or more) as % of
all young unemployed

Ind6 NEET rate The population not in employment, education or
training as a percentage of total population 15–24

Ind7 Incidence of temporary
employment

As % of all employees

Ind8 Incidence of part-time employment As % of all employed

Ind9 Underemployed part-time workers As % of total part-time workers

Ind10 Working time Distribution of employees according to usual
weekly hours worked (hour bands)

Ind11 Probability of entry to employment
from education and training

Markov system

Ind12 Probability of entry to unemploy-
ment from education and training

Markov systems

Ind13 Probability of entry to inactivity
from education and training

Markov systems

Ind14 Job finding rate Percent of unemployed at time t-1, who are
employed at time t

Ind15 Job separation rate Percent of employed in time t-1, who are not
employed at time t

Ind16 Youth to Total Unemployment
Ratio

Youth unemployment rate age:15-24ð Þ
Total unemployment rate age>15ð Þ

Ind17 Relative UR low skills/high skills UR of those ISCED<3 ðHATLEV¼1Þ
UR of those ISCED<3 HATLEV¼2 or 3ð Þ
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empirical studies (Hobijn and Sahin 2007), we will use the percent of unemployed
individuals at time t-1, who are employed at time t as the job finding rate (Ind14) and
the percent of employed individuals in time t-1, who are not employed at time t as the
separation rate (Ind15).

Moreover, two indicators regarding relative changes in unemployment rates are:
the Youth to Adult Unemployment Ratio (Ind16) and the Relative Unemployment
Rate of those individuals with low skills to those individuals with high skills (Ind17),
as it provides evidence of how education and training influences unemployment.

Table 23.2 provides the reader with the estimations of all indicators that relate to
labour market outcomes (Ind1 – Ind6), for all European countries, for 2014. In an

Table 23.2 Basic labour
market indicators, 2014

Country Ind1 Ind2 Ind3 Ind4 Ind5 Ind6

Austria 67.1 61.1 8.9 5.9 16.4 10.8

Belgium 49.6 41.5 16.4 8.1 40.1 14.9

Bulgaria 45.6 37.4 18.0 8.2 57.1 24.6

Croatia 51.4 34.8 32.3 16.6 51.6 22.3

Cyprus 57.5 42.5 26.2 15.1 37.2 19.7

Czech Republic 51.3 45.8 10.6 5.4 28.0 12.2

Denmark 67.4 59.7 11.4 7.7 11.8 10.3

Estonia 56.6 50.0 11.5 6.5 35.7 14.3

Finland 61.0 51.4 15.7 9.6 7.6 12.5

France 53.5 43.3 19.1 10.2 31.0 17.2

Germany 61.8 57.6 6.8 4.2 26.9 8.9

Greece 49.3 27.1 45.0 22.1 65.3 27.3

Hungary 47.3 40.8 13.9 6.6 35.9 17.2

Ireland 53.2 43.0 19.1 10.1 46.0 18.4

Italy 41.5 28.3 31.6 13.1 59.5 27.3

Latvia 58.7 50.3 14.4 8.4 27.7 15.8

Lithuania 51.8 44.2 14.7 7.6 28.2 13.2

Luxemburg 49.5 43.0 13.0 6.4 – 6.9

Netherlands 74.0 66.0 10.8 8.0 19.6 8.9

Norway 63.7 59.3 6.8 4.3 15.8 8.6

Poland 53.2 44.4 16.5 8.8 35.1 15.8

Portugal 52.3 39.0 25.4 13.3 41.8 16. 6

Romania 48.6 41.0 15.6 7.6 38.7 20.0

Slovakia 50.1 39.4 21.3 10.7 60.0 18.3

Slovenia 52.9 42.9 18.9 10.0 – 14.0

Spain 54.6 33.0 39.6 21.7 40.3 22.7

Sweden 65.9 55.0 16.7 11.0 8.4 10.4

Switzerland 75.8 70.1 7.6 5.7 21.9 8.8

UK 66.7 58.4 12.5 8.4 27.5 14.3

Notes: Not reliable results for IS. Small samples for LU, MT, SI
Sources: EU-LFS (2014)
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analogous way, Tables 23.3 and 23.4 present the values of the indicators regarding
the job quality for the same year and countries (Ind7 – Ind10). The probabilities that
can be used as indicators for school-to-work transition are given in Table 23.5
(Ind11 – Ind13), followed by Table 23.6, which reveals the indicators for
employment (in)security (Ind14 – Ind15). Finally, Table 23.7 provides indicators
concerning the relative changes in unemployment rates (Ind16 – Ind17).

Figure 23.1 displays the values of Job Finding Rates and Job Separation Rates for
the European countries.

Table 23.3 Basic labour
market indicators, 2014

Country Ind7 Ind8 Ind9

Austria 23.7 23.8 29.6

Belgium 22.1 20.2 39.4

Bulgaria 9.3 3.4 –

Croatia 40.1 7.1 62.9

Cyprus 27.1 18.3 75.7

Czech Republic 20.3 7.2 15.5

Denmark 19.3 51.4 17.1

Estonia 7.2 13.0 11.2

Finland 34.9 29.7 28.7

France 39.6 19.0 56.3

Germany 38.4 21.8 21.6

Greece 23.3 16.6 83.4

Hungary 17.9 5.6 46.0

Ireland 21.1 30.7 34.9

Italy 40.6 25.7 23.0

Latvia 5.1 7.1 –

Lithuania 4.9 9.6 27.4

Netherlands 47.3 64.2 25.2

Norway 22.8 42.3 25.4

Poland 53.6 9.7 49.7

Portugal 49.1 14.7 65.0

Romania 3.8 10.5 57.3

Slovakia 17.6 6.3 –

Slovenia 49.7 22.7 –

Spain 54.2 28.3 67.0

Sweden 42.1 36.8 35.7

Switzerland 36.3 27.0 34.7

UK 10.6 27.5 34.5

Notes: Not reliable results for IS, LU, MT. Concerning the indi-
cator of underemployed part-time workers, small number of part-
time workers for BG, HR, EE, HU, LV, LT
Sources: EU-LFS (2014)
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23.3 A Composite Index of Early Job Insecurity

In the present section we define the composite index of early job insecurity and
estimate its values for all European countries for which we have the necessary data
(variables).

Table 23.4 Working time
indicators, 2014

Country

Working time

1–19 20–29 30–34 35–39 40+

Austria 10.7 7.3 4.6 30.8 46.6

Belgium 7.2 10.2 6.7 49.7 26.1

Bulgaria 0.2 2.5 0.7 0.2 96.4

Croatia 0.9 3.0 1.2 0.5 94.5

Cyprus 3.6 7.5 5.1 20.1 63.6

Czech Republic 2.0 4.0 1.7 15.1 77.2

Denmark 41.4 6.9 6.1 41.5 4.0

Estonia 3.5 5.8 2.8 2.3 85.6

Finland 17.1 8.7 7.1 38.0 29.1

France 5.4 8.9 4.2 59.8 21.7

Germany 13.4 5.1 3.6 24.1 53.9

Greece 5.9 11.4 5.5 1.7 75.5

Hungary 0.7 3.4 1.7 0.5 93.8

Ireland 13.3 14.8 5.3 33.0 33.6

Italy 6.7 15.4 6.2 10.1 61.4

Latvia 0.9 4.1 2.1 0.7 92.2

Lithuania 1.3 7.7 1.4 2.2 87.5

Netherlands 41.5 12.7 10.8 13.3 21.7

Norway 28.0 8.0 6.1 51.3 6.6

Poland 2.0 4.9 2.2 1.6 89.3

Portugal 4.5 6.8 2.4 5.6 80.8

Romania – 0.6 0.3 0.2 98.9

Slovakia 2.1 4.5 0.7 11.4 81.3

Slovenia 6.5 8.5 3.1 1.1 80.7

Spain 11.8 15.0 6.4 9.7 57.1

Sweden 16.1 9.8 10.0 12.7 51.4

Switzerland 12.1 6.3 5.3 4.1 72.2

UK 15.4 9.7 5.4 26.4 43.1

Notes: Not reliable results for IS, LU, MT. Small samples for CY,
EE, LV
Sources: EU-LFS (2014)
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The composite index is defined as:

EJI ¼

Pd

i¼1
wdi �

Pdi

j¼1

wij�zIndij

Pdi

j¼1

wij

Pd

i¼1
wdi

, ð23:1Þ

where:

d: the number of dimensions (here d ¼ 5)
di: the number of indicators in the i-th dimension
wij: the weight of the j-th indicator in the i-th dimension
wdi : the weight of the i-th dimension
zIndij: the z-score of the j-th indicator in the i-th dimension.

Using Eq. (23.1) we estimate the values of EJI for the European countries.
The values are presented in Table 23.8.

Table 23.5 Indicators for transition from school to work, 2014

Country
School-to-Work
Transition Probability

School-to-Unemployment
Transition Probability

School-to-Inactivity
Transition Probability

AT 0.684 0.157 0.159

BE 0.566 0.257 0.177

BG 0.369 0.358 0.273

CH 0.784 0.079 0.137

CZ 0.657 0.324 0.019

DK 0.663 0.228 0.109

EE 0.600 0.185 0.215

EL 0.194 0.513 0.293

ES 0.224 0.377 0.399

FI 0.582 0.239 0.179

FR 0.583 0.310 0.107

HR 0.297 0.695 0.008

HU 0.500 0.343 0.157

IT 0.274 0.637 0.089

LT 0.643 0.217 0.140

LV 0.608 0.248 0.144

PL 0.535 0.340 0.125

PT 0.443 0.500 0.057

RO 0.358 0.528 0.114

SE 0.619 0.306 0.075

For the countries for which MAINSTAT and WSTAT1Y (or both) are EMPTY the respective
transition probabilities cannot b estimated.
Sources: Own Calculations, EU-LFS (2014)
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23.4 Conclusions

In the present paper we provided a composite index of EJI based on a number of
indicators that we measured using raw data drawn from the EU-LFS, in order to
estimate and compare early job insecurity among European countries. It is obvious
that early job insecurity differs among European countries. Countries with low EJI
can be identified (Switzerland, Denmark, Austria for example), whereas countries of
high EJI are also recognisable. Croatia, Italy, Spain and Greece are the countries

Table 23.6 Indicators for
employment (in)security

Country Job finding rate Job separation ratea

Austria 44.45 12.5

Belgium 32.05 9.35

Bulgaria 18.20 7.75

Croatia 25.35 12.85

Cyprus 41.80 12.3

Czech Republic 59.65 4.65

Denmark 48.10 13.40

Estonia 46.70 12.15

Finland 32.00 19.50

France 33.6 15.50

Germany – –

Greece 14.75 13.50

Hungary 44. 10 9.05

Italy 19.60 11.85

Latvia 51.90 14.90

Lithuania 47.35 7.80

Malta 43.75 14.25

Poland 32.65 9.15

Portugal 34.85 15.60

Romania 13.80 6.05

Slovakia 32.80 9.25

Slovenia 27.85 29.00

Spain 27.05 14.10

Sweden 42.80 19.10

Switzerland 53.55 14.6

For the countries for which MAINSTAT andWSTAT1Y (or both)
are EMPTY the respective rates cannot be estimated.
Sources: EU-LFS (2014)
aIn this report, we omit inactivity-unemployment flows and focus
only on employment-unemployment flows. See Shimer (2007)
and Barnichon (2009) for evidence supporting this choice
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facing worrying EJI. Countries can be categorised into four different clusters of
countries with low, moderate, considerable and high early job insecurity. Figure 23.2
provides the map of early job insecurity for 2014.

Early job insecurity can have multiple consequences: Systematic labour market
young people at the very beginning of their professional careers, the growing
discourses over the ‘threat of a lost generation’, accompanied by a multi-faceted
social malaise that includes among others high risks of poverty, precarity, social
exclusion, disaffection, insecurity, scarring, higher propensity towards offence and
crime, as well as (mental and physical) health problems, to name but a few.

Table 23.7 Relative changes in unemployment rates

Country Youth to total UR Relative UR, low skills/high skills

Austria 1.58 2.12

Belgium 1.92 2.49

Bulgaria 1.58 2.46

Croatia 1.87 2.01

Cyprus 1.63 1.25

Czech Republic 1.73 3.61

Denmark 1.73 1.55

Estonia 1.57 1.87

Finland 1.82 2.34

France 1.85 2.11

Germany 1.38 2.68

Greece 1.70 1.03

Hungary 1.80 2.59

Ireland 1.69 2.41

Italy 2.49 1.29

Latvia 1.32 2.26

Lithuania 1.37 2.74

Luxemburg 2.15 –

Netherlands 1.45 2.12

Norway 1.95 2.46

Poland 1.84 1.89

Portugal 1.82 1.27

Romania 2.29 1.00

Slovakia 1.61 2.78

Slovenia 1.95 1.47

Spain 1.62 1.54

Sweden 2.09 3.06

Switzerland 1.66 1.41

UK 2.04 2.43

Notes: Not reliable results for LU and CY
Sources: EU-LFS (2014)
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Therefore, it is very important to activate effective policies that can prevent the
unfavourable effects of early job insecurity and youth unemployment. In this paper
we have provided evidence based on empirical data that early job insecurity exists, it
can be measured and it must be tackled since it exhibits worrying trends for a lot of
European countries. Further research will be perused with the EU-LFS data for 2015.

Fig. 23.1 Job finding rates and job separation rates across European countries, 15–29, EU-LFS,
2014

Table 23.8 Early job
insecurity indicator, EU-LFS,
2014

Country Early job insecurity index

1. Switzerland �0.84

2. Denmark �0.79

3. Austria �0.68

4. Estonia �0.45

5. Lithuania �0.38

6. Finland �0.29

7. Czech Republic �0.41

8. Sweden �0.24

9. Belgium �0. 14

10. France �0.07

11. Hungary �0.01

12. Poland 0.01

13. Romania 0. 16

14. Portugal 0.25

15. Croatia 0.60

16. Italy 0.61

17. Spain 0.84

18. Greece 1.01
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Chapter 24
Health Estimates for Some Countries
of the Rapid Developing World

Konstantinos N. Zafeiris and Christos H. Skiadas

24.1 Introduction

It was a long ago when scientists from different scientific fields tried to study the health
of a population. Among the first was Chiang (1965), who introduced an “Index of
health”, based on data from the Canadian Sickness Survey, 1950–1951. Others used life
table techniques, like Sanders (1964) who tried to construct tables of “effective life
years”, as a measure of the current health of the population based on mortality and
morbidity rates. Sullivan (1966, 1971) calculated the expectation of life free of disability
and the expectation of disability. Torrance (1976) developed a health status index model
for the determination of the amount of health improvement created by a health care
program. In these methods, the combined use of mortality and survey data in order for
the health status of a population to be estimated was very common.

Today, one of the most important recent contributions to the problem of calcu-
lating the health status of a population is the one developed by the World Health
Organization (WHO), which is based on the aforementioned Sullivan’s (1971)
approach. In this method population data on health and disability are combined in
a life table (WHO 2014). For that the Global Burden of Disease Survey (GBD;
Global Burden of Disease Study 2012; Murray et al. 2012a, b) is conducted aiming
to quantify health loss from a high number of diseases, injuries and risk factors.
However, as WHO notes, several limitations exist in this method, because of the lack
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of reliable data on mortality and morbidity and of the comparability of self-reported
data from health interviews and the measurement of health-state preferences for such
self-reporting.

In another, however very efficient, approach the stochastic theory is applied. Such
a process is always described by a parent stochastic process and a boundary or
barrier indicating a stopping condition for the process under consideration (see Lee
and Whitmore 2006). In this case, human health is the stochastic and thus totally
unpredictable process but a person dies when their health falls below a barrier. The
problem then is how to model this process in order for the health status of a
population to be calculated. Skiadas and Skiadas (2012), Skiadas and Skiadas
(2014a, b, c) and Skiadas (2012a) have developed the relevant theory based only
on life table data. In a series of publications Skiadas (2012a), Skiadas and Zafeiris
(2015a) and Zafeiris and Skiadas (2015a, b) have tested this theory and showed its
validity in calculating the health status of a population or in providing accurate
measurements for inter-population comparisons.

Recently, another method was developed and is based on the force of mortality μx
(see Skiadas 2012b; Skiadas and Zafeiris 2015b; Zafeiris and Skiadas 2015c).

This approach is based on a two parameters Gompertz-like model:

μx ¼
x

T

� �b

where (x) is the age and μ(x) the relevant mortality rate. T represents the age at which
μ(x)¼ 1 and b is a parameter expressing the curvature of μ(x). Then, the main idea is
to divide the areas in the parallelogram OBAD (Fig. 24.1), into two segments - one
being the mortality effect and the other the healthy part of the population, an idea
which has emerged from the First Exit Time Theory approach that was described
above. Thus, the area Ex under the curve OCABO in the mortality diagram of
Fig. 24.1 is a measure of the mortality effect and can be estimated as follows:

Fig. 24.1 The mortality
diagram
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Ex ¼
Z T

0

x

T

� �b
dx ¼ T

bþ 1ð Þ
x

T

� �b

Based on the equation above, it is proven that the loss of healthy life years LHLY
can be estimated as LHLY¼ λ(b + 1), where λ is a correction multiplier which can be
set to 1 in order for different countries to be compared. Accordingly, healthy life
expectancy (HLE) is LEB-LHLY, where LEB is life expectancy at birth.

Then the problem of calculating healthy life expectancy with this method deals
with the accuracy and precision of life table data. However, until now all the
analyses done for such estimations are based on full life table data and in that way
in cases in which such data are either problematic or absent, a usual phenomenon for
many countries, this is not possible. The aim of this paper is to provide a method for
estimating healthy life expectancy for such countries based on abridged life
table data.

24.2 Methods and Data

Data come from the World’s Health Organization database (WHO, http://apps.who.int/
gho/data) in the form of abridged life tables. These tables contain information for the age
groups <1, 1–4 and for 5-years age intervals up to the age 100 which corresponds to the
open-ended one. The analysis was done for the so-called BRIICS countries: Brazil,
Russia, India, Indonesia, China and South Africa. They are rapid growth economies and
their population represent almost 3 billion people, nearly half the world’s population (see
http://www.oecd.org/tad/tradedev/globalisationandemergingeconomies.htm)/

In the analyses carried out in this paper two aspects need to be clarified further.
First the method used for the estimation of healthy life expectancy and second how
to expand the abridged life table into a full one.

The first aspect was confronted with the μx based method which was described in
the introductory section of this paper. Thus, the parameter b must be estimated. It
was found that an excellent estimation was made according to the following formula:

b ¼ xmxP x
0 mx

where x is the age.
The second aspect was confronted with the aid of the UNABR application of the

MORTPAK (vers. 4.3) application for Windows, of the software created by the
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United Nations (UN Population division) for the needs of mortality analysis. This
application is based on the Heligman and Pollard (1980) formula as follows:

1qx ¼ A xþBð ÞC þ De�E lnx�lnFð Þ2 þ GHx

1þ GHx ð24:1Þ

where x is the age and B, C, D, E, F, G and H parameters that should be estimated.
However, it must be noted that the Heligman-Pollard model has proven to be quite
problematic in the fitting process of mortality data (see Kostaki 1992; Zafeiris and
Kostaki 2017), but it was used here as it is a widely accepted software.

24.3 Results

The results of the analysis are seen in the diagrams 2–7. These results are also
compared with several publications from the World Health Organization’s point of
view, namely the World’s Health reports of 2000, 2001, 2002 and 2004 (World
Health Organization 2000, 2001, 2004) and Salomon et al. (2012) and Murray et al.
(2015) publications. The acronym used in that case is HALE, which also corre-
sponds to healthy life expectancy as estimated by the method applied in the time of
these publications.

Such comparisons bear many complications. One springs from the fact that data
used in this analysis are in their current and most revised form in comparison with
data used for the previous publications. Thus, deviations are expected to be found
because of that and also because of the differences in the methodologies used and
have been revised several times in the past. Thus, the results of the analysis should be
interpreted thoroughly. Also, the use of MORTPAK was quite problematic in many
cases. For example, for the year 2005 in Russian males the expansion procedure of
the abridged life table gave a life expectancy at birth of 81.68 years compared with
58.6 according to the estimations of the World Health Organization. But it is worth
noting that the life expectancy at birth published by WHO never coincided with the
estimations of MORTPAK software.

A glimpse of such problems is given by the examination of data from Brazil,
where significant deviances are found in the data used by WHO in the original
publications of 2000 and 2004 and the data published currently in the web page of
the organization. A general trend that describes these differences, as can be judged
by life expectancy at birth, is that they become larger for the first years of the study in
both genders. Thus, the estimations of WHO and related scientists are based on old
data. Instead in this paper, because we have used the most recent data for the
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calculations, healthy life expectancy is very close to the upper confidence interval of
the published estimations (Fig. 24.2).

Population health seems to have increased almost linearly in Russia (Fig. 24.3) in
both genders and the methods compared seem to be in accordance, especially in
males.

In India (Fig. 24.4), the revision of data led to about +2 years increase in life
expectancy for the majority of the calendar years studied, while in females it was
almost +2 years for the older calendar years and less than 0.6 for the rest. The
expanding procedure, concerning life expectancy at birth worked excellently, as the
differences between the published by WHO results and those calculated by
MORTPAK were less than 0.1 years for the majority of the calendar years studied.
Healthy life expectancy, as calculated in this paper, were very close to the upper limit

Fig. 24.2 HLE and HALE estimations, Brazil
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of the estimations of the World Health Organization, fact that can be attributed to the
revised data used in this paper.

For Indonesia (Fig. 24.5), data were revised mostly for the most recent years
(almost �2 years in life expectancy). However, the expanding process led to an
underestimation of life expectancy at birth from 0.4 to 2.1 years. In that scheme, the
estimation of healthy life expectancy does not differ much among the methods.

For the males from China (Fig. 24.6) the revised life table data gave a life
expectancy at birth which was 0.6–1.7 years lower than that calculated from the
original data. On the contrary, life expectancy at birth from the expanding process
was exactly the opposite. As a result, the healthy life expectancy calculated in this
paper is almost the same estimated with the other methods. The same happened with
females, though, healthy life expectancy in them is somewhat lower in the most
recent years studied.

Fig. 24.3 HLE and HALE estimations, Russia
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Finally, for South Africa (Fig. 24.7) the published results by WHO and the other
connected scientists have the peculiarity that HALE is increasing constantly during
the twenty-first century even though life expectancy at birth is low and remains
almost unchanged in females and decreasing in males until 2005. Instead according
to the methodology used in this paper, healthy life expectancy decreases up to 2005
and increases later following the temporal trends of life expectancy at birth.

Fig. 24.4 HLE and HALE estimations, India
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24.4 Conclusions

A method of calculating healthy life expectancy was applied in the BRIICS coun-
tries, based on abridged life table data from the World Health Organization. How-
ever, because the μx based approach described in this paper can be applied only to
full life table data, the original tables were expanded to full ones with the aid of the
UNABR application of the MORTPAK software, created by the Population Division
of the United Nations.

The analysis revealed that the MORTPAK software is not very suitable for this
purpose because significant deviations were observed in life expectancy at birth as
calculated by this software in comparison with the published results of the World
Health Organization. A further shortcoming was that the already published

Fig. 24.5 HLE and HALE estimations, Indonesia
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estimations of the World Health Organization and related agencies were made in old
data, thus the ability of comparing the results of this analysis with the previous ones
was problematic,

It is seen then that the μx based approach is quite efficient in estimating the
healthy life expectancy and its temporal trends, as it is based solely on life table data.
In that way, it is totally costless and its only limitation springs from the quality of
data. In any case, it seems that a more sensitive application is needed in order for
abridged life table data to be expanded and used by this method.

Fig. 24.6 HLE and HALE estimations, China
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Chapter 25
Social Capital, Income Inequality
and the Health of the Elderly

Maria Felice Arezzo

25.1 Introduction

Ageing is at the same time one of the greatest achievement and most difficult
challenge of our times. This explains why there is an ongoing debate among
researchers on this topic.

A main stream of research is around the social determinants on the healthy ageing
and therefore central to the discussion surrounding the extension of active lifespan is
the state of health of older adults, where “health” refers to the physical, mental and
social well being.

The European Union has recently stressed the importance of maintaining auton-
omy and independence for older people, as a key goal in the policy frame-work for
active ageing. While physical and mental health are crucial in this context, there are
numerous determinants of healthy and active ageing that lie beyond the health
system, having direct or indirect effects on health.

Recently, an explanation has begun to take hold: social capital (see below for the
definition of the concept) can be one of the key factor to understand why some
individuals are more exposed to disease and mortality than other, despite the
undoubted improvement of medicine and living conditions over time. As a conse-
quence the relationship between social capital (SC) and health is capturing the
attention of an increasing number of researchers (Andrew 2005; d’Hombres et al.
2010; Folland 2007; Hawe and Shiell 2000; Islam et al. 2006; Poulsen et al. 2011;
Rocco and Marc 2012; Szreter and Woolcock 2004; van Groezen et al. 2011).
However, the nexus is not fully proved: some studies provide empirical evidence
that these two concepts are connected (Lindstrm 2004), but there are others which
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report the absence of it (Greiner et al. 2004; Veenstra 2005; Ziersch and Baum
2004). Interestingly this association seems to hold for the population of the elderly.
An explanation is that older adults are considered to have higher degree of involve-
ment in their communities compared to other age groups (Lowe 2010). With
increasing age most social contacts fade away, bonds with non-kin decrease in
importance, while the bonds with children and close family members may increase;
older adults could be involved in new roles within the family or in the community.

A number of studies emphasize the association between social capital and health
among older people (Andrew 2005; Arezzo and Giudici 2017; Kondo et al. 2007;
Veenstra 2000). Recent studies attempted to prove that this relation could be more
than a simple statistical association (Arezzo and Giudici 2016; Rocco and Marc
2012) and established a causal path leading from social capital to health.

Recently, researchers pulled together the literature that explores the relation
between health and social capital to the one on socioeconomic inequality and health.
This is mostly done focusing on the distribution of income. The pioneer of this
stream of very recent literature was (Wilkinson 1996) who demonstrated that higher
income inequality is associated with lower life expectancy in wealthier countries.
Wilkinson’s results has awakened an enormous interest and many works have
followed ever since, some supporting (Kawachi and Berkman 2000; Marmot
2002; Subramanian and Kawachi 2004; Wilkinson and Pickett 2006), some refuting
(Lynch et al. 2001, 2004; Mackenbach 2002; Osler et al. 2002; Ross et al. 2000;
Shibuya et al. 2002) his findings.

The contribution of this work is to try to understand if the relationship between
social capital and income inequality with health exists for the population of the
European elderly. The rest of the paper is organized as follows: Sect. 25.2 provides
the definitions of social capital and recall some discussions around it; Sect. 25.3
illustrates the theoretical pathways from social capital to health and from income
inequality to health; Sect. 25.4 covers data, variables and the models used; Sect. 25.5
provides the results. The conclusions are reported in Sect. 25.6.

25.2 Social Capital

The first glimmer of social capital as a concept dates back to the beginning of the
twentieth century with the contribution of (Hanifan 1916, 1920), who emphasized
the importance of social structure to people with a business. In the last 20 years a
flourishing multidisciplinary literature on the topic serves to enrich and qualify the
concept of social capital.

There is widespread agreement among researchers that social capital is the
synthesis of three different points of view (Grootaert and van Bastelaer 2001): the
first, due to Putnam, defines social capital as those characteristics of social commu-
nities, such as networks of individuals and families together with norms that create
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externalities for the society as a whole; the second interpretation, referred to by
Coleman, defines social capital as a “variety of different entities which all consist of
some aspect of social structure and which facilitate certain actions of actors -whether
personal or corporate actors- within the structure”; the third is associated with Olson
and North and includes the social and political environment that shapes social
structure and allows for the development of norms.

Theoretical research identifies a structural and a cognitive aspect of social capital,
the first being related to actions of individuals and the second to their perception.
Structural aspects appear in rules and in specific behavior (such as networking or
volunteering activities), whereas cognitive aspects materialize as trust, shared
values, empathy and respect towards community. The former are more easily
measured objectively than the latter.

Another important distinction, particularly relevant to our research, can be drawn
between bonding and bridging social capital (Putnam 1995): the first refers to the
relations that an individual has within his/her “inner circle” whereas the second
relates to ties with people outside of the closest circle. In other words, bonding SC
refers to the trusting and co-operative strong relations among individuals who
recognize to be similar in terms of social identity (family ties are an important
example of this category); bridging SC comprises relations among people who
know they are not alike in some socio-demographic sense (Szreter and Woolcock
2004).

Another important issue discussed in theoretical literature is on the level of
relevance of its tenure and measurement: the sociologist Pierre Bourdieu defines
social capital as “the aggregate of the actual or potential resources which are linked
to possession of a durable network of more or less institutionalized relationships”
(Bourdieu 1985).

As argued by (Andrew 2005), Bourdieu’s conceptualization of social capital as a
durable network of relationships is consistent with the idea that social capital is a
resource which can be measured at an individual level. According to Bordieu “the
volume of social capital possessed by a given agent thus depends on the size of the
network of connections he can effectively mobilize and the volume of the capital
possessed by each of those to whom he is connected” (Bourdieu 1985).

Also according to (Lin 1999), who says that “social capital is captured from the
embedded resources in social networks”, social capital is more properly captured at
the individual level.

In other conceptualizations, social capital is considered in purely collective terms.
For example in (Kawachi and Berkman 2000) it is argued: “social capital inheres in
the structure of social relationships; in other words it is an ecological characteristic”
which “should be properly considered a feature of the collective (neighborhood,
community, society) to which an individual belongs”.

Although some authors consider social capital more relevant at an individual
level (Bourdieu 1985; Dayton-Johnston 2003; Pevalin 2003; Portes 1998; Veenstra
2000) whereas others at collective level (Kawachi and Berkman 2000; Lochner et al.
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1999; McKenzie et al. 2002; Szreter and Woolcock 2004) and the appropriate level
at which it should be measured remains uncertain, the literature on social capital and
health shows that differences in health could be better predicted by individual level
social capital (De Silva et al. 2005). We follow this approach and use an individual
level measurement of SC.

25.3 Theoretical Pathways from Social Capital and Income
Inequality to Health

The findings of an empirical association between social capital and income inequal-
ity with health require a deeper analysis highlighting the theoretical motivations and
the mechanisms underlying these nexuses.

25.3.1 Income Inequality and Health

Three mechanisms have been suggested to link income inequality and health
(Kawachi et al. 1994; Lynch and Kaplan 1997): (a) the disinvestment in human
capital; (b) the erosion of social capital; and (c) social comparisons.

On behalf of the first path, there is a strong evidence (Kaplan et al. 1996) that the
degree of income inequality at the state level and indicators of human capital
investment are negatively and significantly correlated. One reason why high income
inequality may translate into lower spending in education (and other social areas) is
that in countries with rising inequalities, the interests of the rich diverge profoundly
from those of the typical family. Paul Krugman said that: A family at the 95th
percentile pays a lot more in taxes than a family at the 50th, but it does not receive a
correspondingly higher benefit from public services, such as education. The greater
the income gap, the greater the disparity in interests. This translates, because of the
clout of the elite, into a constant pressure for lower taxes and reduced public
services (Krugman 1996).

Another mechanism through which income inequality may affect health is via the
crumbling of social capital; in fact as the gap between rich and poor increases, the
resulting social conflict leads to increasing mistrust between members of society.
Kawaki et al. (1997) showed that citizens living in states characterized by high
income inequalities are more mistrustful of each other.

The last pathway from income inequality to health is through social comparisons.
More specifically the comparison between individuals with very different economic
status and/or possibilities to have access to relevant resources, very typical in
unequal societies, results in a direct negative effect on health (Dressler 1996;
Dressler et al. 1998).
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25.3.2 Social Capital and Health

The theoretical literature identifies two major ways in which social capital influences
health (Veenstra 2005; Veenstra et al. 2005): the first, also known as “composi-
tional” health effect of social capital, is a direct pathway to individual health whereas
the second, the so called “contextual” health effect of social capital, exerts its
influence only indirectly.

On behalf of the first, durable networks impact people behavior through four
primary pathways: (1) social support; (2) social influence; (3) social engagement and
attachment; and 4) access to resources and material goods. These behavioral pro-
cesses have direct pathways to health status: (1) direct physiological stress
responses, (2) psychological states and traits (for example self-esteem, self-efficacy,
security), (3) health behaviors (for example they inhibit damaging habits like
tobacco or alcohol consumption and foster healthy behavior such as appropriate
health service utilization, medical adherence, and exercise) (Berkman et al. 2000).

Another interesting point of view that sheds lights on the compositional health
effect and that is particularly suited for our purposes is given by the Social Produc-
tion Function (SPF) theory applied to ageing (Ormel 2002; Ormel et al. 1999;
Steverink and Lindenberg 2006). The SPF theory identifies three basic social
needs: affection, behavioral confirmation, and status; the overall well being increases
as these three needs are satisfied. In particular, affection is fulfilled by relationships
that give the feeling of being loved, trusted and accepted; behavioral confirmation
results primarily from the feeling of doing the “right” thing in the eyes of relevant
others and oneself; and the need of status is fulfilled by relationships that give one
the feeling to be treated with respect, taken seriously etc. In the light of the SPF
theory, bonding social capital would benefit health because it fulfills affection
whereas bridging SC behavioral confirmation and/or status. The variables we
chose to measure SC, see Subsection 25.4.2, are consistent with this theory.

The second pathway, i.e. the “contextual” health effect of social capital, has an
impact on individual health indirectly through its influence on socio-economic and
environmental factors of the community as a whole. These elements are determi-
nants of health themselves. For example social capital is known to generate overall
economic prosperity and wealth (Woolcock 1998) and there is evidence for a link
between community wealth and health [see for example (Kaplan et al. 1996; Lynch
et al. 1998; Veenstra 2003; Wilson and Daly 1997)].

25.4 Methods

25.4.1 Data

Our study is based on the fourth wave of the survey on health and retirement in
Europe (SHARE). SHARE is a multidisciplinary and cross-national panel database
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of micro data on health, socio-economic status and social and family networks of
more than 85,000 individuals aged 50 or over. SHARE involves 18 European
countries plus Israel and aims at analyzing the process of population ageing in depth.

The fourth wave (2010–11) introduces for the first time a social network module
that allows for the computation of social capital and its dimensions. This is the
reason why we decided to base our study on the fourth wave.

Since we are interested in the ongoing mechanisms of the older adults, we
downsized the sample to the population older than 60. The countries analyzed are
Austria, Germany, Sweden, Netherlands, Spain, Italy, France, Denmark, Switzer-
land, Belgium, Czechia, Poland, Hungary, Portugal, Slovenia, Estonia.

Our results are based on a sample is of 35,391 individuals who live (i.e. are
nested) in 16 European countries and are older than 60 in 2011.

25.4.2 Variables

The dependent variable is the self-perceived health (SPH). The original five levels
variable (excellent, very good, good, fair and poor) was transformed into a dichot-
omous one (excellent/very good/good and fair/poor). If an individual perceive to be
in fair/poor health he/she is labeled with 1; otherwise it is 0. Dichotomization of self-
rated health is not a seldom practice among authors and is due to the fact that the
distribution of SPH is concentrated in the central values [Some examples are,
(Kawachi et al. 1999; Kim et al. 2006; Nieminen et al. 2010; Pirani and Salvini
2012)]. We decided to transform SPH in a binary variable to have results comparable
with other works on social capital and health.

Among the independent variables we considered age, gender, income, body mass
index (BMI), years of education and social capital. Income was measured using a
proxy: the ability to make ends meet. In particular, we created a binary variable
which assumed value 1 if to make ends meet is easy or fairly easy and 0 otherwise.

For the measurement of social capital we proceeded in two steps. First we
selected those questions from the survey relevant for our purpose; they are: fre-
quency of family contacts, number of individuals in family network, frequency done
charity or voluntary work in the last 12 months, frequency attended an educational or
training course in the last 12 months, frequency gone to a club in the last 12 months.
Second we performed a principal component analysis (PCA) and used the loadings
of the two factors extracted as the social capital variables. The variables with the
highest relative contributions to the first components are frequency of family con-
tacts and number of individuals in family network. We therefore named the first
factor as bonding social capital. The second component was named bridging social
capital.

Some descriptive statistics are reported in Table 25.1.
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25.4.3 Statistical Models

To take into account the clustered structure of the data (i.e. individuals nested into
countries), we used multilevel models (Hox 2010; Rabe-Hesketh and Skrondal
2008) and to evaluate how each component influence SPH we used a sequential
approach. In particular we fitted a series of four models. The first (Null Model) was
an intercept-only model and allows to see how much of the variance in SPH is due to
differences among countries. In the second model (Compositional Model) there are
all the individual level covariates but social capital (age, gender, income, BMI, years
of education). In the third (Social Capital Model) we added social capital and in the
last (Full Model) it is included the Gini index for the 16 countries. In all models the
intercept is random.

Formally, we write the generic model as:

logit πij
� � ¼ βXij þ γKj þ uj þ eij ð25:1Þ

with the distribution of the random components assumed to be normal:
eij � N 0; σ2e

� �
and uj � N 0; σ2u

� �
.

Where j indicates the countries, i the individuals, πij is the probability that the ith
individual who lives in jth country has a fair/poor self-perceived health, β, γ is a
vector of parameters to be estimated as well as σ2e and σ2u.

The model is a random intercept type and it assumes that each country has its own
effect on self-perceived health. Note that if σ2u ¼ 0 the model reduces to the ordinary
logistic regression, meaning that there is no need for setting a different intercept for
each country (i.e. no country specific effect).

Table 25.1 Descriptive statistics for individual and country level variables

N Mean Std. Dev Min Max Typea

Individual level variables

SPH 35,391 0.470 0.499 0 1 B

Years of education 35,391 10.062 4.320 0 25 D

BMI 35,391 26.945 4.634 1.469 76.125 C

Age 35,391 71.475 7.733 61 102 D

Bonding SC 35,391 0.001 1.246 �2.106 5.987 C

Bridging SC 35,391 �0.059 1.125 �3.145 6.791 C

Female 35,391 0.553 0.497 0 1 B

Ends meet

With some difficulty 35,391 0.290 0.454 0 1 B

Fairly easily 35,391 0.349 0.477 0 1 B

Easily 35,391 0.265 0.442 0 1 B

Country level variable

Gini indexb 35,391 28.375 3.040 23.800 33.700 C
aB Binary, D Discrete, C Continuous
bObtained from the OECD Regional well-being database
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25.5 Results

The results of all models are presented in Table 25.2. We will first comment on the
random component and then on the regression coefficients. The null model gives an
estimated standard deviation σ2u

� �
equal to 0.694. This indicates a substantial

variation in perceived health across countries: an individual in a country which is
one standard deviation above the mean have odds of perceiving a fair/poor health
that is almost double than a comparable individual in an average country [exp
(0.694) ¼ 2.002]. This standard deviation indicates a correlation of 0.174 in the
latent propensities to be in fair/poor self-perceived health of comparable individual

Table 25.2 Regression coefficients (standard errors in parentheses) of fitted multilevel models

Null
Model Coef.

Contextual
Model Coef.

Soc. Cap.
Model Coef.

Full
Model Coef.

Costant �0.139 �4.651 �4.495 �5.441

(0.423) (0.000) (0.000) (0.000)

Years of education �0.061 �0.051 �0.050

(0.000) (0.000) (0.000)

BMI 0.056 0.055 0.055

(0.000) (0.000) (0.000)

Age 0.060 0.056 0.056

(0.000) (0.000) (0.000)

Female 0.109 0.114 0.114

(0.000) (0.000) (0.000)

Ends meet (ref: With great difficulty)

With some
difficulty

�0.527 �0.491 �0.491

(0.000) (0.000) (0.000)

Fairly easily �0.935 �0.878 �0.878

(0.000) (0.000) (0.000)

Easily �1.203 �1.116 �1.116

(0.000) (0.000) (0.000)

Bonding SC �0.146 �0.146

(0.000) (0.000)

Bridging SC �0.208 �0.208

(0.000) (0.000)

Gini index 0.033

(0.413)

Random effect
estimate

0.694 0.589 0.537 0.526

Log-likelihood �24213.164 �20922.242 �20499.139 -20498.810

Chi2 3120.65*** 3380.48*** 3381.76***

(df ¼ 7) (df ¼ 9) (df ¼ 10)
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in the same country. The result follows from the fact that

ρ ¼ σ2u
σ2u þ π2=3

¼ 0:694
0:694þ 3:290

(Rabe-Hesketh and Skrondal 2008)1.

When we insert the control variables (contextual model), the standard deviation
decreases to bσ2

u ¼ 0:589. Adding up the social capital variables (social capital
model) lead to bσ2

u ¼ 0:537. That means that bridging and bonding social capital
are able to capture 8.83%2 of the unexplained variation of the model with only the
control variables. It certainly is a non-negligible percentage which testifies the
importance of social capital in explaining self-perceived health.

As for the full model, the standard deviation decreases to 0.526, meaning that the
introduction of the Gini index gives only a very small contribution to the reduction of
the unexplained health heterogeneity.

On behalf of the regression coefficients (top part of Table 25.2), we note that all
the individual level variables have a significant association with health and the sign
of the coefficients is consistent with the literature: it is well known that self-
perceived health worsens with age and is negatively influenced by bad physical
conditions captured by the BMI. Among all the variables considered the ability to
make ends meet easily appears to be the most important factor associated with self-
perceived health. People with economic difficulties are more likely to report being in
poor self-perceived health.

Looking at the estimates of the social capital model, we note first of all that both
components of SC have a strong significant association with self-perceived health. In
particular the higher the SC the lower the risk of having a poor perceived health.
Secondly, the greatest effect is exerted by the bridging component. A possible
explanation is that interaction with people not belonging to someone’s inner circle
triggers a psychological effect with positive consequences on self-perceived health.
A virtuous circle can be imagined: more bridging social capital, better perceived
health, more strength and willingness to interact with others, more social capital.

There is a possible existence of a reverse effect between social capital (especially
the bridging component) and health: people in bad health may not feel like having
contacts with others and be involved in activities. The existence of endogeneity, as
well known, leads to biased estimates of the parameters which doesn’t allow to
properly capture the effect of the variables in the model. Therefore some caution is
needed.

The regression coefficient associated with income inequality is not significant
proving the lack of effect. This is also confirmed by the small variation in the
estimated standard deviations passing from the social capital model to the full model.

1Here π ¼ 3:14.
2It is the relative change between the two models: (0.537- 0.589)¼0.589.
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25.6 Conclusions

There are three main results in our analysis: the first and most important is the strong
association between both bridging and bonding social capital and self-perceived
health: the higher the SC the lower is the risk of having a poor perceived health; the
second result is that we identify in the bridging component that with the highest
effect, suggesting a sort of virtuous circle linking health and social capital; the third
is that we find no significant effects of income inequality measured at country level.

Consistently with the literature on the determinants of health, we find that age,
lifestyle elements, the ability to make ends meet and education are also statistically
significant: overweight and difficulty to make ends meet are associated with fair/
poor health ratings; a high education and the facility to make ends meet are
associated with good to excellent health ratings.

Although the possibility of reverse causation in social capital claims for caution
when interpreting these findings, it is not out of place to say that improvements in
social capital give the potential to improve health quite considerably in Europe. In
fact it might well be, and the results of other researches point in that direction
(d’Hombres et al. 2010), endogeneity (Arezzo and Giudici 2016), that the nexus
between social capital and health could be found stronger once the reverse causation
is ruled out.

This gives room for some recommendations to policy makers. Sure enough the
policies that confront the multiple impacts of population ageing should be
multidimensional: they should regard labour market, social and health care, housing,
education, social protection and pension schemes. The traditional political answer to
the current demographic challenges mainly concerns pension and health systems, but
a more comprehensive approach on health issues, which includes family, housing
and other social policies is emerging. In this sense a brand new approach is the one
related to the build of social capital. States cannot intervene directly: social capital is
frequently a byproduct of religion, tradition, shared historical experience, and other
factors that lie outside the control of any government. But, as the literature has
suggested, the main objectives that policy makers should pursue in order to foster the
accumulation of social capital are the reduction of inequalities (which have an
impact on social capital accrual) and the accumulation of human capital. Regarding
the latter, the area where governments probably have the greatest direct ability to
generate social capital is education. Educational institutions do not simply transmit/
increase human capital, they also pass on social capital in the form of social rules and
norms.
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Chapter 26
Life Annuity Portfolios: Risk-Adjusted
Valuations and Suggestions on the Product
Attractiveness

Valeria D’Amato, Emilia Di Lorenzo, Albina Orlando, and Marilena Sibillo

26.1 Introduction

The current international regulations restate the managerial perspectives in the
insurance industry; as for other financial intermediaries, the managerial guide-lines
are based on the choice of performance indicators suitable for determining risk
capitals (cf. Dacorogna 2015).

Following the solvency approach, the identification and quantification of risk
factors should be captured by appropriate indicators and subsequently translated into
their implications in terms of capital. Internal models formulated for these purposes
are increasingly formalized according to the logic of Enterprise Risk Management
(ERM); within this context, all the risks should be recognized and treated throughout
a holistic managerial context (cf. Farrell and Gallagher 2015). Solvency assessing is
a compelling issue for insurance industry, also in light of the current international
risk-based regulations. Internal models have to take into account risk/profit indica-
tors in order to provide flexible tools aimed at valuing solvency.

The concept of performance measurement in the actuarial framework is becoming
more and more deepened within the business valuations, due to the increasing
importance of the communication of the business results at the same time synthetic
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and easy to be realized. This is the aim of the profitability ratios (cf. Easton and
Harris 2007), indices that can well describe the overall efficiency of a Company as a
whole or of a specific business line.

Insurance business bases on insurance and investment operations (cf. Swiss Re
2012), being the first or the second aspect predominant according to the kind of
offered product. The deferred life annuity and all its variations are strongly saving
products, differently from disability insurance, for example, offering a pure risk
protection. As consequence, analysing the risk sources in the case of life annuities
means to deepen the investment results and the premium calculation. To structure a
performance metric able to provide useful information to the management about the
product performance could be even more expressive if clear and easy to communi-
cate. This aspect is going to have an increasing importance in light of the commu-
nication outside (i.e. to the stakeholders) of the company’s financial results
(cf. Swiss Re 2012).

Considering a variable annuity (with profit participation), we deepen this topic by
means of a ratio, which properly captures both financial and demo-graphic risk
drivers.

The analysis is carried out in accordance with a management perspective, apt to
measure the business performance, which requires a correct risk control.

In the case of life annuity business, assessing solvency has to be framed within a
wide time horizon, where specific financial and demographic risks are realized. In
this order of ideas, solvency indicators have to capture the amount of capital to cope
with the impact of those risk sources over the considered period.

We present a study of the dynamics of such a ratio, measuring the policy surplus
in relation to its variations on fixed time intervals; these variations are restyled
according to a risk-adjusted procedure.

On the other hand, we further examine the insured’s point of view, measuring
their perception of the contract profitability within the expected utility approach.
Thanks to this analysis, it is possible to reconstruct a wider picture of the dynamics
of the contract over its lifetime, taking into account both the insurers profitability,
and as well as market attractiveness.

26.2 Variable Annuities with Participating Benefits

Insurance policies with profit participation are generally characterized by some contract
peculiarities as the guarantee of a minimum rate of return and annual bonus based on
return on investment. In the following we will consider life annuities with participation
level depending on the period financial result (cf. Cocozza et al. 2011; D’Amato et al.
2011); in particular the installments are increased by a percentage ρ (participation rate) of
the period financial result, when it reaches a predefined value at least. This structure
involves an embedded option.
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Let us consider a life annuity with deferment period T, premium payment at the
beginning of each year until the time τ(τ < T ) and annual installments ~bs due at the
beginning of year s(s � T ).

The structure of the contract is based on the exchange of the flow of premiums Ps,
paid by the insured during the deferment period, with the flow of variable benefits ~bs,
paid by the insurer if the insured is alive, during the annuitization period. The
benefits can be described basing on the quantity we indicate as the period financial
result.

To the aim of defining the period financial result Rt obtained in the time interval
(t � 1, t), we write the expression of the stochastic mathematical reserve at time t:

Vt ¼
X1
i¼t

~bi1 T�i�K xð Þð Þ � Pi1 i<τjK xð Þ>ið Þ
� �

v t; ið Þ: ð26:1Þ

where {v(t, s)} is the stochastic process describing the value at time t of one
monetary unit at time s. In formula (26.1) the indicator function 1(T � i � K(x))

takes the value 1 if T � i � K(x) (K(x) being the random curtate lifetime of an
annuitant aged x at the issue time of the contract), 0 otherwise, whilst the indicator
function 1(i < τ|K(x) > i) takes the value 1 if i < τ if the insured is alive, 0 otherwise.

The financial result Rt of the t-th accounting period is given by:

Rt ¼ Vt�1 þ Pt�11 t�1<τjK xð Þ>t�1ð Þ
� �

v t; t � 1ð Þ � �~bt þ Vt

�
1 T�t�K xð Þð Þ: ð26:2Þ

in which the indicator function takes the value 1 if the event at subscript happens,
otherwise takes the value 0.

When the period financial result Rt obtained in the time interval [t � 1, t], net of
the administrative expenses θ is positive, ρ(Rt � θ) is added to the provision
allocated in t, hence the benefits for the policyholders (cf. D’Amato et al. 2011)
are increased; otherwise only the basic installments bt are due to the insureds.

Without loss of generality, in the following we will assume that the additional
benefits are added to the future installments.

Summarizing, the benefit flow ~bt payable to the insureds can be expressed.
as:

~bt ¼ bt þ ρ Rt � θð Þ if Rt � θð Þ > 0
bt if Rt � θð Þ � 0

�
ð26:3Þ

synthetically written as:

~bt ¼ bt þ ρ Rt � θð Þþ

26 Life Annuity Portfolios: Risk-Adjusted Valuations and Suggestions on. . . 317



26.3 Internal Control Tools

Now we realize a risk adjusted performance measurement, aimed to evaluate the
period financial result, so obtaining tools the insurer can use in a solvency perspec-
tive. The index we propose is referred to the end of each time interval, i.e. each year,
and expresses the profit realized over the year on the overall surplus realized by the
insurer at that time. It is built as a stochastic entity in which the two risk drivers are
involved and gives the profit realized per unit of the total surplus of the contract at
that time:

I t þ 1ð Þ ¼ Rtþ1 � ρ Rtþ1 � θð ÞþP1
j¼0 Pj1 j<τjK xð Þ>jð Þ � ~bj1 T�j�K xð Þð Þ

h i
v t þ 1; jð Þ

ð26:4Þ

with Rt + 1 the financial result of the (t + 1)-th accounting period.
The denominator in formula (26.4) is the difference between the assets and the

liabilities valued at time t. In this way we obtain an useful information: I(t) provides a
measure apt to the purpose of evaluating the contract profitability and consequently,
in a wider perspective, assessing solvency.

To the aim of providing an example of the study of the indicator we propose, we
consider an immediate life annuity, issued to an insured aged 65, consisting in
10 annual anticipated unitary installments given by Eq. (26.3), where bt is equal to
1. The single premium is paid on the basis of the technical interest rate of 2%. The
survival probabilities are obtained by the Human Mortality Database web-site and
are referred to the American male population. The Company invests the premium in
the market and the global rate of return from investments is described by the Vasicek
process:

drt ¼ β α� rtð Þdt þ σdWt

with β (the long term mean), α (the reversion factor) and (the instantaneous volatil-
ity) positive constants and Wt a standard Wiener process.

We calibrated the process referring to the 3-month interest rate dataset collected
by the Federal Reserve. The temporal interval ranges from 4th January 1982 to 1st
December 2014, obtaining the values collected in Table 26.1.

The numerical application aims to quantify the index I(t) as expressed in formula
(26.4) providing its expected values. We will calculate them assuming the indepen-
dence of the financial and the demographic systematic risk drivers during the annuity
duration, according with the following formula:

E I tð Þ½ � ¼ E Rt½ � � ρmax E Rt½ � � θ; 0f g�Pτ�1
j¼0 Pjjpx �

P1
j¼T

~bjjpx
�
E
�
v t; jð Þ

h i ð26:5Þ

By way of an example, we pose the annual expenses equal to 0.02 and the
participation quota ρ equal to 0.2, 0.4, 0.6. The expected values of I(t) reported in
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Table 26.2, have been valued throughout the contract duration. They, as conceiv-
able, decrease as ρ increases and in particular show a hump behavior with a
maximum at time 4. In our example, the contract reveals itself to be efficient from
the point of view of the insurer’s solvability after the second year, following an
increasing trend maximum at time 3; then the index values decrease. In this case, the
weight of the future debt prevails on the fruitful power of the invested capital (single
premium paid at the issue time). After the first 2 years, the premium investment and
the liability lowering begin to get an ameliorative impact on the index, always
positive till the end of the contract. The best snapshot of the contract solvency status
corresponds to the third year: at this time, in our example, the contract displays the
best solvability performance.

26.4 The Insured’s Point of View

The safeguard of the consumer/policy holder covers a central role in the planning
and monitoring dynamics operated by the European commission aptly set up. It is
within this framework that product distribution profiles ought to be suitably exam-
ined, as well as contractual architectures, information transparency and the clients
degree of financial awareness. The matter, therefore, is extremely complex and
requires wider multi-disciplinary e orts. The problem is currently evident when it
comes to pension products, as highlighted by the recent report by the European
Insurance and Occupational Pension Authority (EIOPA) (cf. EIOPA 2016b). What
EIOPA itself emphatically argued (cf. EIOPA 2016a), then, should not come as a

Table 26.2 The profit index pattern over the annuity duration

Valuation time

Expected values of I(t)%

Rho ¼ 0.2 Rho ¼ 0.4 Rho ¼ 0.6

1 �3.44789 �3.44789 �3.44789

2 �3.44615 �3.44615 �3.44615

3 2.82076 2.54378 2.07664

4 2.82001 2.52981 2.06882

5 2.67980 2.49052 2.01885

6 2.54398 2.39007 2.00981

7 2.24599 2.12432 2.00329

8 2.01754 2.00962 1.54898

9 1.11983 1.03477 0.67761

10 1.07889 0.86545 0.63456

Table 26.1 The interest rate
parameters

3-month time series evaluation

Alpha Beta Sigma r(0)

0.071241 0.0440 0.5781 0.021
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surprise: Consumer protection is in the DNA of EIOPA. EIOPA wants to make sure
that all the activities under its remit will make a tangible difference to consumers
(. . .). Furthermore, EIOPA contributes to the achievement of a coordinated approach
to the regulatory and supervisory treatment of new or innovative financial activities.

In a nutshell, vigilance over products and a governance system for insurance firms
constitute a chief goal, as claimed by EIOPA Committee on Consumer Protection
and Financial Innovation (CCPFI) (cf. EIOPA 2016c). Current literature is paying
increasing attention to the problem outlined above; among others, Maurer et al.
presented in 2013 German participating life annuities (PLA) with guaranteed min-
imum benefits and participation in insurers surpluses, paying attention to the lifetime
utility of annuitants (cf. Maurer et al. 2013). Following the guidelines of Maurer
et al. (2013) we will consider the utility stemming from the contract considered in
Sect. 26.3, from the insureds point of view. We will adopt the CRRA utility function
proposed by Maurer et al. in order to obtain an equivalent fixed life annuity.

The utility expected by the benefit stream is given by:

U ¼ E
Xω�x�1

i¼1

ϕ i
i px

~bi
1� γ

 !
ð26:6Þ

with γ the relative risk aversion, ϕ the discount factor arising from the insured’s
subjective preferences. As suggested by Maurer et al. in (2013), we con-sider three
different value of ϕ, 0.98, 0.96, 0.94, in order to represent a patient/normal/impatient
individuals, conjointly with three different risk aversion levels, which represent,
respectively, low, medium and high risk aversion. Moreover, we x the participation
rate ρ equal to 0.40. Referring to the exemplifying contract of Sect. 26.2, in
Table 26.3 we collected the utility equivalent constant annuity obtained in the case
of a fixed interest rate i¼ 0.02, whilst in Table 26.4 the results obtained in the case of
stochastic interest rates as used for the values in Table 26.2.

Table 26.3 Utility-equivalent constant flow, i ¼ 2%

Utility-equivalent fixed annuity EA

Subjective discount
factor

Gamma ¼ 2 low
risk adverse

Gamma ¼ 5 medium
risk adverse

Gamma ¼ 10 high
risk adverse

phi ¼ 0.98 � patient 1,192,292 1,146,691 1,092294

phi ¼ 0.96 � normal 1,201,823 1,155,252 1,098241

phi ¼ 0.94 � impatient 1,211,607 1,164,214 1,104,566

Table 26.4 Utility-equivalent constant flow, Vasicek process

Utility-equivalent fixed annuity EA

Subjective discount
factor

Gamma ¼ 2 low
risk adverse

Gamma ¼ 5 medium
risk adverse

Gamma ¼ 10 high
risk adverse

phi ¼ 0.98 � patient 1,195,704 1,148,102 1,092461

phi ¼ 0.96 � normal 1,205,041 1,156,582 1,098383

phi ¼ 0.94 � impatient 1,214,601 1,165,446 1,104,679
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In both cases we observe that the constant installments decrease when the risk
aversion parameters increase; on the other hand, the constant installments increase
when the subjective patience levels decrease. The corresponding values in Tables 26.3
and 26.4 show rather small variances, maybe due to the time horizon length.

Finally in Fig. 26.1 the behavior of the expected life-time utility is shown, for
each considered value of α, when ϕ varies.

According with the application of formula (26.6), in Tables 26.3 and 26.4 the
constant installment equivalent to the variable one (consisting in the unit plus the
eventual result of the profit participation) has been valued, leveling the CRRA
utilities coming from the two contractual forms. The first observation is that the
constant installment the insured perceives as equivalent to the variable one, as
proposed in the participating contract, is higher than 1, as conceivable. The utility-
equivalent installment got in this way has been valued basing on detailed profiles,
depicting the different levels of risk aversion and impatience of the insured.

Looking at Tables 26.3 and 26.4, fixing the impatience level, when the risk
aversion increases, the constant installment considered equivalent to the participa-
tion contract decreases: the person with a high risk aversion will be satisfied with a
rather low installment, provided that it is certain, so avoiding the randomness
implied in the participating contract.

On the other hand, fixing the risk aversion level, it will be the less impatience
person that will be satisfied with a lower installment, provided that it is fixed. The
values of the fixed installment of the equivalent life annuity follow the same trends in
the case of fixed interest rate and Vasicek interest rates. Basically the values in the
case of a fixed interest rate are lightly lower than the corresponding ones in the
Vasicek case. The differences are stronger in the case of high risk aversion.

In Fig. 26.1 the expected utility trend is reported when the subjective dis-count
factor ϕ varies and for the three different levels of risk aversion, considered in the
application. The expected utility takes the highest value, for any level of risk
aversion, in the case of individuals characterized by a high degree of impatience,

Fig. 26.1 The expected life-time utility with ϕ varying
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that is by low values of the subjective discount factor. This means that the more the
insured is greedy, the higher his utility will be, apart from his risk aversion. When
becoming more patient, the differences arising by the different level of risk aversion
comes more evident. The insured preserving the highest level of utility that one
having the lowest risk aversion. The expected utility trend is strictly decreasing with
the subjective discount factor.

Furthermore, we observe that the annuitants choice could depend on the premium
amount, if they could be able to find an utility-equivalent certain annuity, consis-
tently with their risk aversion and impatience profile. But this may not be trivial
under “normal” market conditions and surely hard enough under increasingly large
market movements.

In Table 26.5 we collect, as an example, the premium amount, respectively, for
the participating life annuity, the life annuity with unitary constant installments, the
utility- equivalent constant annuity obtained with ϕ ¼ 0.9 and γ ¼ 5.

As further research line, it is interesting to develop the insureds point of view,
taking into account also behavioral considerations. This approach can be realized by
means of the increasingly used laboratory experiments, which offer much unex-
pected food for taught concerning “emotional” aspects and “mental perspectives”
(cf. Knoller 2016).
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Chapter 27
Flexible Retirement Scheme for the Italian
Mortality Experience

Mariarosaria Coppola, Maria Russolillo, and Rosaria Simone

27.1 Introduction

For National Social Security systems, it is of growing importance to account for
longevity risk in programming retirement schemes. Specifically, as the mean life
expectancy is increasing, at different rates for males and females and for different
cohorts, longevity risk should be dynamically managed over time.

In this framework it is clear the necessity of reforming pension systems projected
in the context of lower mortality rates. The dynamics of mortality for the industri-
alized countries over the last 50 years show: (1) an increase in life expectancy at old
ages (over 65 years); (2) an increase in the mode of the age of death distribution; (3) a
decrease in mortality rates at old ages. As consequence in terms of the shape of the
survival function we can observe: it tends to shift towards a rectangular shape (due to
the increasing concentration of deaths around the mode (at old ages) of the curve of
deaths) and it expands to the right, i.e. the mode of the curve of deaths moves
towards very old ages.

From a financial point of view, rectangularization and expansion have different
effects. The concentration of deaths around the mode reduces the variance of the
distribution and then the related risk. The expansion phenomenon, generating the
risk of systematic deviations of mortality from the assumed projected behavior,
together with the accelerating trend of mortality decline at old ages, increases risk
for the Social Security System (Visco 2006).
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From these considerations emerges the need of accurate mortality projections
based on stochastic analysis in order to provide reliable measures of mortality and of
its uncertainty which are essential for proper pension reforms.

In this vein, we propose a flexible retirement scheme based on the indexation of
the retirement age to reach a prescribed Expected Pension Period Duration (EPPD)
(Bisetti and Favero 2014). In particular, we test such approach considering two
stochastic projection mortality models: the classical Lee Carter Model (no cohort
effect) and the Renshaw–Haberman model specifying the cohort effect. We refer to
Italian male and female population. The aim is measuring the impact of the mortality
model selection on the retirement age settings by gender. The paper is organized as
follows: in Sect. 27.2 we introduce the stochastic mortality models that will be used
for our analysis. Section 27.3 describes the Italian pension system and discusses the
proposal of an indexed retirement mechanism. Section 27.4 is devoted to apply our
proposal to the Italian mortality experience. Concluding remarks on forthcoming
developments end the paper.

27.2 Stochastic Mortality Models

The aim of this contribution is to compare the impact that mortality projection for
males and females has on a flexible retirement scheme when different stochastic
mortality models are considered. In particular, we refer to the Lee-Carter model and
the Renshaw–Haberman model (RH), because the LCmodel has become a milestone
and it is largely used in the actuarial literature, whilst the RH model allows us to take
into account the cohort effect.

They both are two of the stochastic mortality models belonging to the GAPC
(Villegas et al. 2016) class. The unifying design for these models prescribes a
predictor ηx,t which is related to mortality rates according to a log or logit link,
generally. In this framework, the predictor structure proposed by Lee and Carter
(1992) is given by:

ηx, t ¼ αx þ βxkt

where αx denotes age effects, kt the period effects, βxthe age-period modulating
terms.

The LC model is widely used because of its simplicity and robustness despite its
inability to model specific cohort effects. In 2006, Renshaw and Haberman proposed
an extended version of the LC model by introducing one of the first stochastic
models for population mortality with a cohort effect to obtain the predictor:

ηx, t ¼ αx þ βxkt þ γt�x

where γt � x denotes the cohort effects.
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In order to project mortality, the time index kt and the extra parameter γt � x are
modelled and forecasted using ARIMA processes.

27.3 A Flexible Retirement Scheme

Societies across the world are ageing, with challenges for sustainable adequate
pension systems. Governments and pension funds have largely responded by post-
poning pension ages and by discouraging early retirement. In many countries, for
example, pension legislations have been reformed during the last decade, moving
from Defined Benefits (DB) to Notional Defined Contributions (NDC) system, the
latter highly relying on the rules to take into account life expectancies and their
changes in the pension formulae (Belloni and Maccheroni 2006). The Italian pension
system is composed by three pillars: (1) Public, compulsory and unfunded pay-as-
you-go system (PAYG); (2) The private, voluntary and collective funded system;
and (3) Private, voluntary and individual savings related to social security schemes.
The first pillar, the dominant one in Italy, passed through two main reforms during
the nineties. The first reform, introduced by Law 335/95, determined a shift from DB
to NDC scheme, in which notional accumulated contributions on individual
accounts were converted into an annuity at retirement. Unlike the previous method,
the latter takes into account the amount of contribution paid throughout the whole
working life accumulated at the expected GDP (Gross Domestic Product) growth
rate, the life expectancy of the pensioner at retirement age and the number of years
that a survivor’s benefit will be withdrawn by any widow or widower, according to
actuarial equivalence principle. The second reform, introduced by Fornero with Law
214/2011, had two directives: the rise of the pensionable age and the calculation of
the requirements for retirement on the basis of the number of years of social security
contributions made and no longer on the average salary earned in the last years
before retirement. In particular, among the others, the reform will see the retirement
age increased to 66 years and 7 months for both men and women in the public and
private sector by 2018; future retirement ages increasing in line with life expectancy
from next year. For all workers, in accordance with Law Number 122/2010, age and
service requirements will be periodically reviewed based on the actual increases in
life expectancy published by ISTAT, the Italian National Institute for Statistics.
Moreover, pensions calculated under the NDC system will be affected by the
application of periodically reviewed annuity conversion factors. In this framework,
we propose an indexing mechanism for retirement age based on the period life
expectancy e Mð Þ

x0,C at age x0 ¼ 65, for selected cohorts and the chosen stochastic
mortality model M. We consider cohorts of males/females born from 1952 to 2012,
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setting the cohort 1952 as benchmark. Those individuals will be aged 65 in 2017,
which was the retirement age prescribed by law until the Fornero Reform.

We follow an age-period approach in the sense that life expectancy is considered
as a function of the age x and the calendar year t. Specifically, let us consider an
individual belonging to the cohort C, aged x0 on the first of January of year t0, when
the expected lifetime provided by a given stochastic mortality model M is equal to
e Mð Þ
x0,C. Let us suppose that the pension system we refer to foresees that x0is the fixed
retirement age for all subsequent cohorts. The individual aged x0receives a constant
monthly payment B as long as he/she survives. We can say that e Mð Þ

x0,C represents the
Expected Pension Period Duration according to model M (EPPD(M )), that is the
expected number of years during which pension payments are due.

Then, for a fixed mortality model M and for each of the selected cohorts C, we
determine the age at which life expectancy equals the EPPD(M ). Specifically, we
evaluate e Mð Þ

x0þj,C for increasing age span j ¼ 1,2. . . ., and we index the retirement age

x0 by shifting it by the minimal amount s Mð Þ
C to reach the EPPD(M ), that is:

s Mð Þ
C ¼ min j : e Mð Þ

x0þj,C � EPPD Mð Þ
n o

: ð27:1Þ

In this way, the Social Security System will be obliged for an expected number of
years that does not exceed the fixed EPPD(M ) and will keep pension costs to
budgeted level.

27.4 Application: Italian Dataset

As aforementioned, we consider cohorts of individuals born from 1952 to 2012 for
ages from 55 up to 89 years. The data are downloaded from the Human Mortality
Database (2014) by single calendar year and by single year of age. We focus on ages
55–89 since we are interested in mortality dynamics at old ages. The numerical
application is performed considering the LC and RH mortality models according to
the following steps: we fit the selected models, assess goodness of fit, forecast
mortality and calculate the indexed retirement age both for males and females.

The goodness-of-fit of mortality models is typically analyzed by inspecting the
residuals of the fitted model.

In Figs. 27.1 and 27.2 scatter plots of residuals for the LC and RH models are
reported, respectively, by age, period and cohort for both males and females. As well
known, regular patterns in the residuals indicate the inability of the model to describe
all the features of the data appropriately. In our case the scatter plots of deviance
residuals show the inability of LC model to capture a not negligible cohort effect. On
the contrary the residuals of RH model look more reasonably random.
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The better performances of the RH model are supported also by pursuing model
selection on the basis of the BIC index, reported in Table 27.1 both for females and
males.

For mortality projections, we consider a forward time span of h ¼ 30 years. As
customarily, we assume that the period index ktfollow a random walk with drift and
the cohort index γt � x follows a univariate ARIMA process, independent of the
period indexes. Then, for each mortality model, the forecasting procedure is based
on the best ARIMA process fitting the observed data, as obtained from the auto.
arima() function of the R Package “forecast” (Hyndman et al. 2008). Table 27.2
reports the ARIMA(p,d,q) process that are assumed for the cohort effects both for
females and males.
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Fig. 27.1 Scatter plots of
deviance residuals for LC
and RH models fitted to the
Italian male population for
ages 55–89 and the period
1952–2012
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Fig. 27.2 Scatter plots of
deviance residuals for LC
and RH models fitted to the
Italian female population for
ages 55–89 and the period
1952–2012

Table 27.1 BIC index for
selected mortality models

Males Females

RH 27839.01 27584.65

LC 43772.54 29778.88

Table 27.2 Selected ARIMA
process for forecasting cohort
effect

Males Females

RH ARIMA (1,2,2) ARIMA(1,2,2)
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Table 27.3a Life expectancy
at age 65 for male cohorts for
the selected mortality models

Cohort LC RH

1952 12.97 12.80

1956 13.16 13.16

1960 13.42 13.31

1964 13.74 13.70

1968 14.22 14.37

1972 14.81 15.12

1976 15.47 15.63

1980 16.11 15.86

1984 16.73 16.61

1988 17.30 17.52

1992 17.82 18.55

1996 18.24 19.20

2000 18.59 19.89

2004 18.91 20.71

2008 19.23 21.40
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According to these forecasts, the central projections of death rates and the
expected residual life span at age 65 are computed for the two selected models and
gender (see Figs. 27.3a and b, 27.4a and b; Tables 27.3a and 27.3b).

The indexation mechanism will assume, for each mortality model M, the
expected life span for cohort 1952 as EPPD(M). Tables 27.4a and 27.4b report the
computed lag as the minimum forward shift that should be applied to the retirement
age (say, set at age 65), in order to reach the threshold EPPD(M). Results are
represented in Fig. 27.5a and b. Different patterns are observed for different genders.
Specifically, for females residual life expectancy is globally higher than for males,
although the specification of the cohort effects (which is supported by the data)
yields a steeper increase in expected lives for males than for females. This circum-
stance yields that in the case of RH model the lags requested for females are lower
than for males for younger generations. Finally, we note that the cohort effect is
stronger for the male population (lags are higher in case of RH model respect the LC
model for males), and also the RH more sharply improves the fitting performances
for males than for females.

27.5 Conclusions

The paper suggests a flexible pension scheme based on the expected residual life to
adjust the retirement age for keeping a constant Expected Pension Period Duration
(EPPD) and containing the pension costs to a fixed level. In this context the choice of
the stochastic mortality model is crucial. So, we applied the indexing mechanism to
the Italian male and female populations in case of the LC and RHmodels. In this way

Table 27.3b Life expectancy
at age 65 for female cohorts
for the selected mortality
models

Cohort LC RH

1952 15.90 15.76

1956 16.41 16.51

1960 16.97 16.98

1964 17.57 17.54

1968 18.22 18.28

1972 18.85 19.05

1976 19.47 19.56

1980 20.00 19.95

1984 20.47 20.58

1988 20.91 21.18

1992 21.32 21.88

1996 21.71 22.35

2000 22.08 22.80

2004 22.46 23.40

2008 22.84 23.86
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we show the impact of the selected models on the indexed retirement age when the
cohort effect is considered or not. Moreover results highlight different cohort effects
for males and females. The paper represents the first step of a work in progress.
Future developments will extend the mortality projection topic to the choice of the
best mortality model in terms of fitting and forecasts among the family of GAPC
models. Finally, we will measure the impact of different stochastic mortality pro-
jection models on the Social Security System costs introducing a suitable index,
while accounting for uncertainty of both estimation and prediction.

References

Belloni M., Maccheroni C. (2006). Actuarial neutrality when longevity increases: An application to
the Italian Pension System (CERP, Working Paper 47/06).

Bisetti, E., & Favero, C. A. (2014). Measuring the impact of longevity risk on pension systems: The
case of Italy. North American Actuarial Journal, 18, 1.

Human Mortality Database. (2014). University of California, Berkeley (USA), and Max Planck
Institute for Demographic Research (Germany). www.mortality.org

Hyndman, R. J., & Khandakar, Y. (2008). Automatic Time Series Forecasting: the forecast Package
for R. Journal of Statistical Software, 27(3).

Lee, R. D., & Carter, L. R. (1992). Modeling and forecasting U.S. mortality. Journal of the
American Statistical Association, 87(419), 659–671.

Renshaw, A., & Haberman, S. (2006). A cohort-based extension to the lee-carter model for
mortality reduction factors. Insurance: Mathematics and Economics, 38(3), 556–570.

Villegas, A. R., Kaishev, V., & Millossovich, P. (2016). Under review or revision. StMoMo: An R
Package for stochastic mortality modelling (38 p).

Visco I. (2006). Longevity risk and financial markets. https://www.bancaditalia.it/pubblicazioni/
interventi-vari/int-var-2006/visco_12_10_06.pdf

336 M. Coppola et al.

http://www.mortality.org
https://www.bancaditalia.it/pubblicazioni/interventi-vari/int-var-2006/visco_12_10_06.pdf
https://www.bancaditalia.it/pubblicazioni/interventi-vari/int-var-2006/visco_12_10_06.pdf


Chapter 28
Sibling Death Clustering Among the Tribes
of Central and Eastern India: An
Application of Random Effects Dynamic
Probit Model

Laxmi Kant Dwivedi and Mukesh Ranjan

28.1 Introduction

The Infant mortality rate (IMR) has been considered as a highly sensitive measure of
population health. This reflects the apparent association between the causes of infant
mortality and other factors that are likely to influence the health status of populations
such as their economic development, general living conditions, social wellbeing,
rates of illness, and the quality of the environment (Whitehouse 1982). There were
around 4.6 million deaths (74% of all under-five deaths) occurred within the first
year of life (WHO 2011). Globally, IMR has decreased from an estimated rate of
63 deaths per 1000 live births in 1990 to 34 deaths per 1000 live births in 2013
(UNICEF 2014).

One of the targets under United Nations Millennium Development Goals
(UNMDGs) is to reduce IMR by two-thirds between 1990 and 2015. For India, it
translates into a goal of reducing IMR from 88 infant deaths per thousand live births
in 1990 to the level of 29 infant deaths per thousand live births by 2015. The recent
figure of IMR for India, is 37 infant deaths per 1000 live births (Sample Registration
System (SRS) 2015). Hence, it clearly reflects that India lagged far behind in
achieving mortality related UNMDGs goal. In India, the issue of high IMR exists
with a lot of regional variations across the states. For example, among the bigger
states and UTs, IMR varies from 12 in Kerala to 50 in Madhya Pradesh (SRS 2015).
In view of these statistics, child survival in India needs sharper focus. This includes
better managing neonatal and childhood illnesses, improving child survival, partic-
ularly among vulnerable communities and we need a different approach to tackle the
IMR & under 5 mortality rate (U5MR). Survival risk remains a key challenge for the
disadvantaged who have little access to reproductive and child health services.
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Major states in the heartland of India fell significantly short of UNMDGs targets
related to infant mortality, by more than 20 points.

In the backdrop of high mortality situation prevailing in the developing nations
across the world including India, the situation of high mortality is not only an issue
of concern itself but it also have a strong linkages with the intra-family clustering of
deaths in a particular region. In other words, there may be a situation when there is a
high mortality in the region but deaths are not randomly distributed in the entire
exposed families of the area rather there are certain high- risk families which only
experiences deaths frequently and other families in the nearby in spite of sharing the
similar socio-cultural environment do not experience frequent child loss. This
situation is known widely among researcher as death clustering. This phenomena
was first highlighted by Das Gupta (1990) in her paper while studying child
mortality in rural Punjab. Since then it is on the research agenda while studying
infant mortality and also a new dimension of familial component got added and
entire research community has seen this phenomena as another important approach
for studying infant and child mortality.

Among various social groups, it has been found that on average, an Indian child
has 25 percent lower likelihood of dying under age five as compared to an Adivasi or
Tribal child (Das et al. 2010). According to the third round of the National Family
Health Survey (IIPS 2007), in rural areas where a majority of adivasi children live,
contributed about 11 percent of all births and almost one-fourth of all deaths under
the age of 5 years. Children born to women from scheduled castes (SCs) and
scheduled tribes (STs) have higher mortality rates than children born to women
from other backward classes and other than these classes (i.e., general/advanced
classes). A nationally representative study of India based on the 1981 census also
indicated that under-five mortality among STs and SCs was significantly higher than
non-tribal population (Das et al. 2014). The gap in infant mortality between tribal
and non-tribal populations was substantial in the early months after birth, narrowed
between the fourth and eighth months, and enlarged mildly afterwards (Ranjan et al.
2016). In a study on clustering of infant deaths in families in central and eastern
region of India, it was found that among SCs & STs, infant death clustering is mainly
affected by the scarring factor that is effect of previous infant deaths in families on
the survival status of index child in Jharkhand and Madhya Pradesh,while mother-
level unobserved factors were important in Odisha and both scarring and mother-
level unobserved factors were key factors in Chhattisgarh (Ranjan et al. 2018).

Tribes are varied in terms of their socio-economic and political development. The
term “Scheduled Tribes” refers to specific indigenous peoples whose status is
acknowledged by the Constitution of India. The tribal population in India, according
to the 2011 census, was 87 million and it constitutes around 8.2 percent of the total
Indian population. Around 80 percent of them found in central India and a large part
of the rest in the north-eastern states. The maximum share of tribal population is
contributed by Madhya Pradesh (14.7%), followed by Odisha (9.2%), Jharkhand
(8.3%) and Chhattisgarh (7.5%) to the India’s population. A majority of tribal
population living in these states are the Particularly Vulnerable Tribal Groups
(PVTGs) (Ministry of Tribal Affairs 2015). They are socially as well as
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economically backward in the sense that they have little access to the resources for
their development, low rate of literacy, relatively small population size, dwindling in
numbers and some of the groups are at the verge of extinction. They are distributed
in various ecological zones beyond the state boundaries with immense variation in
subsistence pattern, technological development, ways of living and contact with
outside world as well as with different worldviews in respect with neighborhoods
called mainstream population. Accordingly, the present research was undertaken to
investigate the extent of clustering of infant deaths among tribal families by rural-
urban in the central and eastern states of India. This paper also explores whether
infant deaths are uniformly distributed among tribal mothers across different states
of this region after adjusting the confounding variables using random effects
dynamic probit model. Lastly, the reduction in infant deaths will be worked out by
changing the level of scarring factor and literacy status of women.

28.2 Materials and Methods

In order to examine the family level infant death clustering bivariate analysis was
carried out and for capturing the linkages between survival prospects of siblings and
mother specific unobserved heterogeneity, the random effects dynamic probit model
was applied. The random effects dynamic probit panel data model has the advantage
of simultaneously capturing unobserved heterogeneity and the causal positive or
negative scarring mechanisms at the same time in the model. The model also
accounted for the endogeneity factor which arose due to the inclusion of previous
sibling-survival status in the model, thus avoiding the potential bias in previous
studies.

The potential problem which has been found in the empirical specification of the
earlier models include the problem of left truncation & endogeneity, measurement
error and time inconsistency (Bolstad and Manda 2001; Curtis et al. 1993; Guo
1993; Sastry 1997). It would be very important to understand these unaddressed
problems of the earlier models. First, left truncation is the problem associated with
retrospective data. It means an age cut-off is used to select the respondents. The
interviewees may be a representative sample at survey date, but they will not be so
for earlier years (Rindfuss et al. 1982).This non-representativeness of the sample
over the years along with the recall bias, a common practice in previous research has
been to discard information on children who were born before an arbitrarily selected
date, such as 10 or 15 years before the date of the survey (Bhargava 2003; Bolstad
and Manda 2001; Curtis et al. 1993; Guo 1993; Madise and Diamond 1995; Sastry
1997). This left truncation of the data by calendar time occurs at the different points
in the birth history, creating additional complications. Many studies have even
discarded the first-born child in every family. This will result in a severe loss of
information. Moreover, left truncation of the data, whether by calendar time or by
birth order of child, will lead to the problem that the start of the sample does not
coincide with the start of the stochastic process under study. The next issue is of
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measurement error as it can be seen that the risk of mortality among index child is a
function of the preceding child’s survival status. Positively correlated measurement
in these variables will tend to create an upward bias in the scarring coefficient that is
coefficient of previous child survival. This potential problem is addressed in the
present model. The other problem related with variables inconsistent with time has
been sorted out in the present model. It is usually seen that data in retrospective
surveys with regard to child, year of birth and death is available for the larger number
of years. In our case, information was available for more than 35 years before the
survey date. These surveys typically gather information on variables such as house-
hold assets, toilet facilities, electricity or access to piped water at the date of the
survey. The time inconsistency problem is that, in such cases, data that pertain to the
survey date are less informative. It means the information of certain predictors which
are though important one are not available for all the children under study. In the
present analysis, where the entire birth history of each tribal mother was used, the
problem was even more severe. We, therefore, did not include any currently dated
variables as explanatory variables in the model.

By ignoring these potential problems, bias will be created because previous
child’s survival status and its correlation with survival status of index child will
confound the causal interpretation of previous death in the family. In order to avoid
these biases, modelling of the initial condition (mortality risk for first-born children)
jointly with the dynamic mortality process for the second and higher-order births
need to be applied (Arulampalam and Bhalotra 2006, 2008; Heckman 1987; Manski
and McFadden 1981; Oettinger 2000; Wooldridge 2010). The present study used the
dynamic panel data model along with the initial condition to assess the death
clustering among tribes of central and eastern India. Model with such initial condi-
tion will estimate the scarring effect that is effect of previous death in families on the
survival status of the index child without bias and establish the true impact in
studying the death-survival relationship among siblings. The relative contribution
of social factors, that is, literacy status vis-à-vis biological factors, that is, survival
status of sibling is examined in explaining the infant deaths.

28.2.1 Data Source

The data used in the study is taken from National Family health Survey-3 which was
conducted in 2005–06. It interviewed 124,385 ever married women aged 15–49 at
the time of the survey. It has a complete retrospective history of births together with a
record of child deaths for each mother, for a period spanning more than 35 years
(1970–2006). Thus, it would give sufficient number of cases for analysis as well as
we would be able to construct (unbalanced) panel data for mothers. Further full
retrospective birth history has been used for all the statistical analysis in the study.
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28.2.2 The Empirical Model

The dependent variable that is infant death of index child and the main covariates
survival status of the preceding child (i.e. lagged variable) were both coded as binary
variables -one if a child died before the age of 12 months and zero otherwise. By
taking child specific and mother specific covariates along with preceding child
(lagged variable), the random effect dynamic probit model was applied. Children
who were younger than 12 months at the time of the survey were dropped from the
sample because they had not 12 months of exposure to mortality risk. When the
index child was not singleton but instead twins they were also dropped from the
model so that siblings should be identified properly.

28.2.3 Choice of Independent Variables

The predictors like, sex and birth order of the child, mother’s education, religion,
caste and place of residence, exposure to mass media, availability of toilet facility,
type of fuel used for cooking and standard of living, mother receiving tetanus
immunization during pregnancy and preceding birth interval were considered as
the main determinants of infant and child mortality for most of the Indian states
(Pandey and Tiwary 1993). Apart from the above factors, the tribal children, in fact,
face certain adverse realities like insufficient food intake, frequent infections, and
lack of access to health services. They also have the lack of awareness about
environmental sanitation and personal hygienic practices, proper child rearing,
breastfeeding and weaning practices (Pandey and Tiwary 1993; Reddy 2008).
Women’s autonomy, social class, mother’s education and quality care received by
the children has been cited as some of the reasons for clustering (Madise and
Diamond 1995). Causal factors that determine equality levels in the distribution of
mortality risks for children between families or between mothers may conveniently
be divided into two factors: Bio-demographic differentials and differentials in other
socioeconomic characteristics of the families (and/or the mother) (Zaba and David
1996). Bio-demographic factors include mother’s age, fertility levels, and birth-
spacing patterns, as well as inherited genetic disorders and the mother’s medical
condition and disease profile. Socioeconomic differentials includes characteristics of
the families like income, occupation, and social class, and level of education, as well
as factors relating to the wider environment of the child, such as the community, the
neighbourhood, and the family’s ecological and disease environment. The socio-
economic category also contains the much-discussed “maternal competence” factor
(breastfeeding behaviour and behaviours or attitudes that affect the child health).
Other authors have likewise stressed the connections among clustered mortality,
family size, and fertility patterns (Ronsmans 1995). Taking the idea that the death of
one child ‘scars’ the family, making the next child in that family more vulnerable
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(Arulampalam and Bhalotra 2006). Studies often attribute death clustering to socio-
demographic covariates: either a causal scarring effect (the previous sibling’s sur-
vival status being included as a covariate) or unobserved heterogeneity (with family
or community-specific effects) (Reddy 2008). Some studies included both, but
without accounting for the bias induced by potential correlation between the
unobserved heterogeneity and previous child’s survival-status (Bolstad and Manda
2001; Curtis et al. 1993; Ronsmans 1995; Sastry 1997). The present study is using
econometric dynamic panel data model which at the same time capture both the
unobserved heterogeneity and the causal positive or negative scarring mechanisms.
This model has also been used in few of the earlier studies referred to as ‘state
dependence’ if panel data are used (Arulampalam and Bhalotra 2006, 2008; Heck-
man 1987; Manski and McFadden 1981; Wooldridge 2010). This model accounts
for the endogeneity of previous sibling-survival status, thus avoiding the potential
bias in previous studies.

The child-specific covariates considered in the model are Sex of the index child,
Survival status of the previous sibling;

mother specific covariates in the model include Educational attainment, religion of
the mother, mother’s age at the birth of index child and wealth status of the
household; and community level variables are state of residence and place of
residence.

The educational attainment of respondent’s partner has been categorized into two
categories viz. literate and illiterate. Wealth status of the household has been divided
into three categories poor, middle &rich. Mother’s age at child birth was taken as
continuous variable as it will take into account both mother’s age and child’s birth
interval. Religion was taken in two categories hindus and others.

28.2.4 Statistical Model

The dynamic panel data model was:

Y∗
ij ¼ X∗

ij β þ γYij�1 þ αi þ uij ð28:1Þ

Let there be ni children of mother i. For child j (j ¼ 1,2. . .,ni) of mother i
(i ¼ 1,2,. . .,N), the unobservable propensity to experience an infant death, Yij * is
specified in Eq. (28.1). Where X is a vector of strictly exogenous observable child-
specific and mother-specific characteristics and β is the vector of coefficients asso-
ciated with X. The dynamic panel data model of Eq. (28.1) has the panel consisting
of a naturally time ordered sequence of siblings within mothers. A child is observed
to die when his or her propensity for death crosses a threshold; in this case Yij

* > 0.
The model has a random intercept αi, to account for time-invariant mother specific
unobserved characteristics. This picks up any correlation of death risks among

342 L. K. Dwivedi and M. Ranjan



siblings arising, for example, from shared genetic characteristics or from innate
ability of their mother.

The model also includes the observed survival status of the previous siblings,
Yij�1, the coefficient which picks up scarring. The estimated parameter γ should be
interpreted as the ‘average’ effect of scarring over the time period considered. In
models of this sort, the previous sibling’s survival status, Yij�1 is necessarily
correlated with unobserved heterogeneity, αi. In order to identify a causal effect,
we need to take account of this correlation in the estimation. This is referred to as the
‘initial conditions’ problem (Heckman 1987; Wooldridge 2010). We are thus able to
model the initial condition of the process as a natural extension of the model given in
Eq. (28.1). We specify the equation for the first-born child of each mother as

Y∗i1 ¼ Zi
0
λþ θ αi þ ui1 ð28:2Þ

i ¼ 1... N and j ¼ 1.
Where, Zi is a vector of strictly exogenous covariates. In general, Eq. (28.2) allows

the vector of covariates Z to differ from X in Eq. (28.1). However, we set the two vectors
of covariates to be the same given that we observe the process from the start. Eqs. (28.1)
and (28.2) together specify a complete model for the infant survival process. In this way,
the endogeneity of the ‘lagged dependent variable’, that is, the previous child’s survival
status is taken into account. The effect of unobservable mother’s characteristics in
Eqs. (28.1) and (28.2) to be correlated by specifying this unobservable as θαi. We
assume that uij is independently distributed as a logistic distribution, and that the mother
specific unobservable, αi, are independent and identically distributed as normal. Mar-
ginalizing the likelihood function with respect to αi, gives for mother i. Previous
analyses of dynamic models with unobserved heterogeneity have shown the potential
sensitivity of the estimates to the assumption made about the distributional form for
unobserved heterogeneity, αi (Heckman and Singer 1984). A weakness of the normality
assumption is that it may not be flexible enough to account for the fact that some families
never experience any child deaths and that, in some families, all children die (the mover-
stayer problem). Our sample does not contain any families in which all children die in
infancy. However, there are many families that experience no infant deaths, and this is
accommodated by allowing for a single (empirically determined) mass at minus infinity:
a very large negative value for αi gives a very small value for Yij

*, and hence a very small
probability of observing death of the index child (Narendranathan and Elias 1993). A
test ofH0:σ

2
α ¼0 is a test that there is no unobservable characteristics of the mother in the

model.
This can be tested by using a likelihood ratio test (or a standard normal test) but

the test statistic will not have a standard chi-square (or a standard normal) distribu-
tion since the parameter under the null hypothesis is on the boundary of the
parameter space. The standard likelihood ratio (normal) test statistic is 0.5 χ2

(1) (0.5 N(0, 1)) for positive values.
In addition to mother-specific unobserved heterogeneity, community level ran-

dom effects were included in the model to account for the sampling design, which
involved clustering at the community level. Failure to allow for community level
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unobserved heterogeneity in the likelihood maximization would provide consistent
parameter estimators but inconsistent standard errors (Deaton 1997). Although the
model is multilevel, we have chosen to treat the community level effect as a nuisance
parameter. This is because we cannot interpret a time invariant community level
effect in any meaningful manner. To the extent that families migrate or the infra-
structure of different communities develops at different rates, the assumption of a
time invariant community effect is restrictive: we expect that children of the same
mother, who are born at different dates, may experience different community level
effects. In any case, in this paper, the focus is not on estimation of the variance that is
associated with mothers versus communities but, rather, on robust estimation of the
scarring effect, which is captured in the parameter γ.

28.3 Results

28.3.1 Sample Characteristics of Tribal Mothers and their
Children

Table 28.1 shows the characteristics of 2494 sampled tribal mothers (or families) and
their 9069 children in the central and eastern region of India. From the table it is
observed that 70 percent families never experienced any infant deaths while rest 30
percent families experienced all infant deaths. Among 30 percent families, nearly 10
percent families experienced clustered of infant deaths (families with at least two
deaths) and rest 20 percent had only one infant death. Nearly 90 percent families
belong to Hindus. Of total families, most of them were illiterate (89%). Almost
substantial proportion (94%) of tribe mothers resides in rural areas. Nearly, 89
percent families were poor while less than 5 percent families falls in rich wealth
group. A majority of tribe mothers (96%) did not have improved sanitation facilities
and defecated in open or have unhealthy disposal of stool. Nearly 60 percent families
receive safe drinking water. The child characteristics shows that there were 9069
total children born during 1970–2006, nearly 12 percent died as infant. There were
10 percent such children whose sibling also died as infant. Of total births of central
and eastern regions, nearly 43 percent and 20 percent births took place in Madhya
Pradesh & Odisha, respectively. More than half of the children were male. Births
with first order contributed 27 percent of the total sampled children. Nearly 17
percent births born as second or higher order and the gap between two successive
births were less than 24 months while 56 percent births were of second or higher
order and had birth interval more than 24 months.
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Table 28.1 Sample characteristics of Tribal mothers & their children, central & eastern India,
2005–06

Mother/Family Characteristics # Percent Number

State
Jharkhand 19.2 464
Odisha 23.7 617
Chhattisgarh 18.8 696
Madhya Pradesh 38.3 717
Families with
No infant death 70.3 1782
One infant death 20.5 494
At least two infant death 9.2 218
Religion
Hindu 89.5 2226
Others 10.5 268
Mother’s education
Illiterate 80.8 1970
Literate 19.2 524
Place of residence
Urban 6.2 278
Rural 93.8 2216
Wealth index
Poor 88.6 2129
Middle 6.8 189
Rich 4.7 176
Sanitation Facility
Improved 3.6 151
Not improved 96.4 2343
Drinking water
Safe 59.9 1514
Unsafe 40.1 980
Total 100.0 2494
Child characteristics $ Percent N
Infant death
No 88.5 8045

Yes 11.5 1024

Previous infant death
No 10.0 896

Yes 90.0 8173

State
Jharkhand 18.5 1655

Odisha 21.1 2028

Chhattisgarh 17.9 2456

(continued)
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28.3.2 Distribution of Infant Deaths among Tribes by
Background Characteristics in Central and Eastern
India

Table 28.2 shows the distribution of 1024 infant deaths and 8045 births who
survived at least age 12 months among tribal families by selected background
characteristics in the central and eastern India. Of total infant deaths, Madhya
Pradesh experienced 45%, Odisha observed 20%, Chhattisgarh and Jharkhand
each contributed nearly 17% infant deaths. A majority of infant deaths took place
among Hindus. 87% tribal children who died during infancy had mothers as
illiterate. Most of the deaths took place in rural areas. Nearly 91% infant death
occurred in poor families. Among total infant deaths, 20% infant deaths also had a
prior sibling who died as infant.

28.3.3 Clustering of Infant Deaths among Families
in the Central and Eastern India

Tables 28.3a and 28.3b shows the clustering of infant deaths among tribal families
by region of residence in the central and eastern India. In urban areas it is noticed that
among 278 families who had one or more live births, nearly 78% families never
experienced any infant deaths while remaining 22% families experienced all infant
deaths. Of 22% families who have experienced any infant deaths, nearly 7% families
have contributed 52% clustered infant deaths (2 or more infant deaths). In the Rural
areas, of total 2216 families, nearly 85% families have given two or more births
which accounted for 96% of total 8179 children. Further, of total 938 infant deaths in
rural areas, there were 71% families who never experienced any infant deaths, 20%
families experienced exactly one infant deaths and had 48% of total infant deaths

Table 28.1 (continued)

Mother/Family Characteristics # Percent Number

Madhya Pradesh 42.5 2930

Sex of the child
Male 50.6 4616

Female 49.4 4453

Birth interval
Birth order 1 26.9 2494

BO> ¼ 2 & BI<24 months 17.0 1497

BO> ¼ 2 & BI> ¼ 24 months 56.1 5078

Total 100.0 9069

Note: # is based on sample of mother and $ is based on sample of children who born between 1970
and 2006
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while remaining 9% families experienced two or more infant deaths and the extent of
clustered infant deaths in such families was 52%.

28.3.4 Result of Random Effects Dynamic Probit Model &
Unobserved Heterogeneity

Table 28.4 shows the results of random effects dynamic probit model of infant deaths
among tribes in the central and eastern India. After adjusting for mother, child and
community level characteristics in the model, it is observed that infant deaths is more

Table 28.2 Distribution of births that not died as infant & Infant deaths among tribal families by
background characteristics, Central & eastern India, 2005–06

Variables Percent Number Percent Number

State
Jharkhand 17.0 173 18.7 1482

Odisha 20.4 221 21.2 1807

Chhattisgarh 17.7 277 17.9 2179

Madhya Pradesh 44.9 353 42.2 2577

Religion
Hindu 90.1 923 89.7 7188

Others 9.9 101 10.3 857

Mothers education
Illiterate 87.1 891 85.5 6773

Literate 12.9 133 14.5 1272

Place of residence
Urban 5.3 86 5.7 804

Rural 94.7 938 94.3 7241

Wealth index
Poor 91.2 908 89.3 6957

Middle 6.8 77 6.7 599

Rich 2.1 39 4.0 489

Previous infant death
Yes 80.0 817 91.3 7356

No 20.0 207 8.8 689

Sex of the child
Male 54.3 570 50.1 4046

Female 45.8 454 49.9 3999

Birth interval
Birth order 1 34.2 359 25.9 2135

BO> ¼ 2 & BI<24 months 29.4 294 15.4 1203

BO> ¼ 2 & BI> ¼ 24 months 36.5 371 58.7 4707

Total 100 1024 100.0 8045
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likely to occur in families who experienced prior infant deaths in comparison to those
families who never experienced any prior infant loss and result was statistically signif-
icant (p < 0.01). Infant deaths was more likely to occur in the states of Madhya Pradesh
in comparison to Jharkhand (p < 0.05). Mothers age at birth of index child was found to
be negatively associated with infant deaths and as mother’s age at child’s birth increases,
infant deaths is less likely and it is statistically significant (p < 0.01). Further, infant
deaths among female child was less likely to be seen in comparison with male child.
Religion, mother’s education, place of residence and household wealth was found to be
statistically not significant factors affecting infant deaths in this region. The value of intra
class correlation which represent intra mother correlation coefficient by value of theta
was found to be statistically not significant which represent that mother level
unobservable characteristics do not affect the child mortality outcome and the initial
condition problem was empirically unimportant in the region. This was further
supported by the fact that intra class correlation was not significant which also make
the estimated mother specific unobservable to be not significant as was depicted in the
model. Further, mother level unobserved factors was also found to be not significant in
all four states of the central and eastern India. The insignificant value of theta and mother
specific unobserved heterogeneity and similar significant value of coefficient of previous
death in both random effect dynamic probit model and the probit model suggest that
probit model was equally better model to capture infant deaths. So, we have used the
probit model based simulation to examine the effect of scarring and literacy on infant
deaths in the region and in its four states.

Table 28.3a Clustering of infant deaths among tribal families in urban areas of central& eastern
India, 2005–06

Total Children ever
born

Infant deaths per family Total
Families Children

%
Children0 1 2 3 5

1 45 2 0 0 0 47 47 5.3

2 58 7 0 0 0 65 130 14.6

3 55 5 2 0 0 62 186 20.9

4 34 12 4 1 0 51 204 22.9

5 13 7 4 1 0 25 125 14.0

6 7 3 2 0 0 12 72 8.1

7 3 1 1 0 1 6 42 4.7

8 1 4 2 0 0 7 56 6.3

9 0 1 0 1 0 2 18 2.0

10 1 0 0 0 0 1 10 1.1

Families 217 42 15 3 1 278 890
% families 78.1 15.1 5.4 1.1 0.4 6.8
Infant deaths 0 42 30 9 5 86
% infant deaths 0.0 48.8 34.9 10.5 5.8 51.2
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28.3.5 Probit Model based Simulation Results of Effects
of Scarring and Literacy on Infant Deaths in Central
& Eastern India

Table 28.5 shows the probit based simulation results of predicted probability of
infant deaths among tribes in the central and eastern India and its four selected states.

Table 28.4 Result of random effects dynamic probit model of infant death by selected background
characteristics among tribes, central & eastern India, 2005–06

Covariates Coefficient
95% Confidence
interval

Previous death
No ®

Yes 0.516*** 0.376 0.656

States
Jharkhand®

Odisha 0.112 �0.057 0.280

Chhattisgarh 0.113 �0.055 0.280

Madhya Pradesh 0.212** 0.048 0.375

Mothers age at child birth �0.020*** �0.029 �0.010

Sex
Male ®

Female �0.097** �0.183 �0.010

Religion
Hindu®

Others 0.156 �0.030 0.342

Education
Literate®

Illiterate 0.092 �0.049 0.234

Place of residence
Urban®

Rural 0.054 �0.128 0.235

Wealth
Poor®

Middle 0.070 �0.105 0.244

Rich �0.124 �0.373 0.126

Constant �1.165*** �1.504 �0.827
Rho 0.0447 0.0105 0.1716
Theta 2.384 0.5199 10.9325
Estimated variance of mother specific unobservable

0.154
N 9069

Note***p < 0.01; **p < 0.05;*p < 0.1; ® refers to reference category; The model also included
interactions of all regressors with a dummy for first-born child (not shown)
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It can be concluded that overall predicted probability of infant death was 0.113 for
central and eastern region but when we removed the clustering of deaths in families
the predicted probability reduced to 0.100 leading to a decline of 11%. It shows that
scarring contributed 11% decline in the family level clustering of infant deaths in the
central & eastern India. Similarly for states within this region scarring factor was
statistically significant for all states and the family level clustering of deaths attrib-
uted due to scarring factor was maximum in Chhattisgarh (16%) and Madhya
Pradesh (12%) respectively. In Jharkhand and Odisha, 7% and 8% clustering
could be reduced by eliminating the effect of scarring factor at family levels
respectively. As literacy was found to be a significant factor affecting infant deaths
so we have also predicted the situations where it is assumed illiterate women as
literate and examined the reduction in predicted probability of infant deaths. For
central & eastern Indian region, literacy led to a reduction of 13 infant death though
it was moderately significant (p < 0.1).On the other hand the states like Odisha and
Chhattisgarh experienced a 34% and 25% reduction in infant deaths only if we
would provide education to illiterate women.

28.4 Discussion & Policy Implications

In the present paper, an attempt has been made to examine the clustering of infant
deaths at family level for aboriginal’s (tribal population) living in the forested hill
tracts of peninsular India in four states of the central and eastern India. Most of these
tribes are the Particularly Vulnerable Tribal Groups. The challenge of inaccessibility
to health services and their health care seeking behaviour seem to dominate the
discourse in tribal health (Balgir 2006).

In the present research article, the discussion is primarily based on the findings
related to clustering of infant deaths from the study. We started examining the level
of infant death clustering where we have estimated the extent of death clustering

Table 28.5 Simulation results based on probit model of reduction in infant deaths among tribes of
infant deaths, Central and eastern India, 2005–06

States

Overall
Predicted
Probability
(a)

Predicted
Probability
when no
scarring (b)

Percent
reduction
(b-a/a)
*100

Predicted
Probability when all
mothers were
literate (c)

Percent
Reduction
(c-a/a)
*100

Central &
eastern India

0.113*** 0.100*** 11.5 0.098* 0.13

Jharkhand 0.105*** 0.097*** 6.9 0.117 12.24

Odisha 0.109*** 0.101*** 7.5 0.071** 34.68

Chhattisgarh 0.113*** 0.094*** 16.3 0.085* 24.84

Madhya
Pradesh

0.120*** 0.106*** 11.7 0.115 4.95

Note***p < 0.01; **p < 0.05;*p < 0.1
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among scheduled tribes by region of residence. It has been found that among various
caste groups, the scheduled tribes have the highest number of families with at least
two infant deaths (9%) where nearly more than half of the total infant deaths are
concentrated. State wise clustering of infant deaths in families suggest that Madhya
Pradesh has the highest level of clustered deaths as nearly 11% families experienced
57% of two or more infant deaths (table not shown) suggesting clearly the existence
of clustering in the central and eastern Indian region. Since most of the tribal families
are located in rural areas, so we have also examined the extent of clustering by region
of residence which suggest that for rural areas the clustering is more pronounced
than urban areas as the number of vulnerable families (those experienced two or
more infant deaths) were higher in rural areas.

The scarring effect (both positive as well as negative) has played an important
role in intra-family death clustering in all states. In the first model, random effects
dynamic probit model, obtained from the estimate for scarring by taking endogeneity
and mother specific unobserved heterogeneity into account which indicated the
positive influence of previous infant death in families on infant death of the index
child. In this model, mother specific unobserved heterogeneity did not influence the
child survival and the coefficient for previous death was almost same in both random
effect dynamic probit model and probit model. Insignificant mother level
unobserved factor suggests that the biological and other implicit characteristics of
women in the central and eastern India are homogeneous leading to no variation
between mother in terms of these characteristics. It clearly indicate that tribal women
constitute a homogenous group across different regions of India and follow the
similar socio-cultural practices. The simulation analysis suggests that for central and
eastern region, scarring factor alone can reduce the infant mortality by 12%. How-
ever, for the state like Odisha illiteracy plays a greater role than scarring. The infant
deaths in the state like Chhattisgarh is much influenced by scarring mechanism as it
has contributed maximum in reducing the infant deaths once the effect of scarring
has been eliminated. Eliminating illiteracy among tribal women in Chhattisgarh also
resulted into reduction in infant death but the effect is lesser than scarring.

The findings suggest that, in the states like Odisha and Chhattisgarh the infant
deaths among tribal families could be reduced to a significant level if we address
both education and previous deaths in families.

It’s a consequential findings from the study because, if we control the risk of
death for the children of first and second order, the experience gained by mother in
rearing of these two children would automatically help in reducing the risk of infant
death of the next child and this would reduce infant deaths significantly. The findings
of scarring effects suggest a higher pay-off to interventions designed to reduce
mortality than previously recognized. It is known as the activation of a social
multiplier (Manski 1999). So it indicates that reducing the risk of death of a child
automatically implies in reducing the risk of death of his or her succeeding siblings.
It is seen that once scarring effect is eliminated from the model, it would also
underestimate the mortality levels up to certain extent.

A study conducted by Monica Das Gupta on twentieth-century in rural Punjab,
demonstrated that families who had already experienced the loss of other children
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stood an increased chance of losing further children (Das Gupta 1990). This rela-
tionship applied to a child’s survival chances at all stages of childhood following the
neonatal period. It is understandable that, siblings share a large number of highly
relevant demographic characteristics of the mother, such as the mother’s age; her
breastfeeding patterns; and her level of fecundity, which strongly correlates with
length of birth interval. These factors are already well documented in previous
studies on infant and child mortality (Hobcraft et al. 1983). Arulampalam and
Bhalotra (2006) have argued that deaths may cluster in families not only because
of unobserved heterogeneity—because of siblings share certain traits—but also as a
result of a causal process driven by the scarring effects on mothers and families from
an earlier child death, making the next child in the family more vulnerable. One of
the ways in which interfamilial scarring occurs is when a mother quickly conceives
again after the death of an infant through either resumed fecundity or the wish to
replace the child that was lost. In addition, scarring may occur when an infant death
causes the mother to become depressed, which may also have serious deleterious
health effects on the next infant, either after its birth or in the womb. The mother
level, insignificant unexplained variation in all four states in the region can be
attributed due to homogeneity in culture, poverty and hazardous environmental
factors in all states. Income, occupation, “Maternal competence” factor which
concerns the mother’s breastfeeding behaviour or other attitudes and behaviours
that affect her children’s health, inherited genetic disorders and the mother’s medical
condition and disease profile may be other factors which explain the significant but
no inter-family unobserved heterogeneity. Some of the previous studies too shown
that the unexplained variation between families or mothers cannot always be found,
or, in some cases, it appears to be very modest (Das Gupta 1990; Guo 1993). Guo
(1993) also came out with the similar findings by conducting the study in a Latin
American developing country, Guatemala. that the variation between mothers was
only slight once family income level and mother’s educational attainment were
controlled for. Sastry (1997) too found that inter-family heterogeneity to be small
and unimportant in his study on Brazilian population, but only after controlling for
heterogeneity at the community level. Sastry, therefore, argued, much in line with
Guo that shared environmental conditions were more important determinants of
shared frailty than either parental competence or genetic and biological factors.

Scarring involves responsive behaviour which may be amenable as it is shown
that there is some causal process whereby frequent infant death in the family is
affected by the previous sibling’s death. If the causal process works through the
fecundity mechanism, policies that improve the uptake of contraception are likely to
reduce death clustering among the tribes. More specific policy insight depends on
identifying the mechanism underlying scarring. While unobserved heterogeneity
involves largely untreatable factors like genes or fixed behaviour and unalterable
family specific traits is central to the nature-nurture debate (Pinker 2003). There is a
need for systematic and comparative research in the different tribal communities at
different time periods to understand the role of scarring mechanisms and to examine
the conditions of appearance or disappearance of this hazards. In India, as in many
other developing countries, health services are made available largely in response to
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demand. If child deaths are heavily concentrated in some families, this would
suggest that substantial improvements in child mortality could be achieved by
adopting the more cost-effective techniques of focusing healthcare resources specif-
ically on the sub-group of families with a high risk of child death.

It can also be useful in targeting interventions at the most vulnerable households.
The government should not only try to reduce scarring mechanism among tribes, but
it should also promote education, awareness among tribes about modern health
facilities and infrastructure development in the tribal areas. The policy initiatives
should be pro tribe culture and it should be encouraging. Mass media based
information about government policies should be promoted.
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