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Preface

The numerous attempts over the last 15–20 years to define a quantum Lie algebra
as an elegant algebraic object with a binary “quantum” Lie bracket have not been
evidently and widely accepted. Nevertheless, the q-deformations of the enveloping
algebras introduced independently by Drinfeld and Jimbo have profoundly impacted
the development of both the modern theory of quantum groups and the much older
mathematical theory of Hopf algebras. Although the definition of the Drinfeld–
Jimbo quantization is not simple, a clear common property unites all of these
quantizations, as well as those that appeared later in different multiparameter
versions articulated by Reshetikhin, Costantini, Varagnolo, Chin, Musson, and
Benkart, with the universal enveloping algebras. Especially, these quantizations as
Hopf algebras are generated by skew-primitive semi-invariants. This book is mainly
concerned with Hopf algebras possessing this property. Because the action on a
semi-invariant is defined by a character, we call such Hopf algebras character Hopf
algebras.

We treat the character Hopf algebras as universal enveloping algebras of
“quantum Lie algebras.” The quantum Lie algebra must be an algebraic object
located inside a character Hopf algebra. The Cartier–Kostant theorem asserts a
category equivalence between Lie algebras (in characteristic zero) and connected
co-commutative Hopf algebras. Given this equivalence, a Lie algebra corresponds
to the space of primitive elements. This correspondence provides a clear idea to treat
the space spanned by skew-primitive elements as a quantum Lie algebra.

To maintain the Cartier–Kostant category equivalence in characteristic p > 0;

one must consider an additional unary operation x 7! xp on the Lie algebras.
Thus, we must consider not only binary operations (brackets) but also operations
involving one or various variables. In this manner, we develop the notion of quantum
Lie operation, a polynomial in noncommutative skew-primitive variables with
skew-primitive values. We thus consider the space spanned by the skew-primitive
elements and equipped with the quantum Lie operations as a quantum analog of a
Lie algebra.

vii



viii Preface

There are many reasons motivating the extension of research to operations
that replace the Lie bracket but that depend on greater numbers of variables,
for example, operations of n-Lie algebras introduced by V.T. Filippov and then
independently appearing under the name “Nambu–Lie algebras” in theoretical
research on generalizations of Nambu mechanics.

Another group of problems requiring the generalization of Lie algebras corre-
sponds to research on skew derivations of noncommutative algebras. A noncommu-
tative version of the fundamental Dedekind algebraic independence lemma states
that the algebraic structure of a Lie algebra and operators with “inner” action
define all algebraic dependencies in ordinary derivations. This result was extended
to the field of skew derivations by Chen-Lian Chuang. His fundamental theorem
may be interpreted in the same manner, i.e., the algebraic structure and operators
with “inner” action define all algebraic dependencies in skew derivations. Hence,
the following question arises: Which algebraic structure corresponds to the skew
derivation operators? This question requires the consideration of n-ary operations
irreducible to bilinear operations.

A third group of problems concerning multivariable generalizations of the
Lie bracket appeared in nonassociative algebra. P.O. Miheev and L.V. Sabinin
demonstrated that a simply connected local analytic loop is determined by an
algebraic system consisting of a series of multilinear operations. These systems are
now called Sabinin algebras.

This book is intended as an introduction to the mathematics behind the phrase
“quantum Lie algebra.” Despite the complexity of the subject, we have attempted
to make this exposition accessible to a wide audience. We assume a standard
knowledge of linear algebra and some rudimentary knowledge of representation
theory. Most of the text will be accessible to graduate students in mathematics who
have completed an introductory course in linear algebra.

Chapter 1 is introductory in nature. It contains many basic definitions related to
noncommutative algebra that are used in subsequent chapters. Starting with Gauss
polynomials and Lyndon–Shirshov standard words, we discuss the foundations of
Gröbner–Shirshov theory, which is the basic tool for investigating noncommutative
algebras specified by generators and defining relations. In this “combinatorial
paradigm,” the Poincaré–Birkhoff–Witt theorem obeys an elegant proof, whereas
the concepts of a skew group ring and crossed product can be perfectly analyzed.
We then introduce the braid monoid and the permutation group and consider the
set of shuffles as a transversal of a direct product of symmetric subgroups. Although
representation theory is not used intensively in this book, we formulate the theorems
of Maschke and Wedderburn as initial statements without proofs. The concept of a
character Hopf algebra is central to this monograph. In the combinatorial paradigm,
the free character Hopf algebra plays a crucial role. The notion of a combinatorial
rank appears in the analysis of generators for Hopf ideals, which are the defining
relations for Hopf algebras. We develop the bracket technique as an important tool
for performing calculations that allows one to preserve and apply the intuition of the
Lie algebra machinery. Coordinate differential calculi, filtered and associated graded
spaces, and specific fundamental concepts from P.M. Cohn theory are developed
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as tools for further applications. We conclude the chapter with notes that provide
the reader with an opportunity to learn more about the subjects we review in the
introductory chapter. We have constructed this chapter to be as self-contained as
possible. Some arguments are new, and the remaining chapters have not previously
appeared in book form.

In the second chapter, we demonstrate that every character Hopf algebra has
a PBW basis. Our proof intensively uses the coalgebraic structure, distinct from
the known Lusztig’s method, which uses the algebraic structure only. Because the
coproduct may not differ between a polynomial with a zero value and a polynomial
with a skew-primitive value, in establishing linear independence, we automatically
obtain important information regarding the skew-primitive polynomials.

In the third chapter, we review possible quantum deformations of the universal
enveloping algebras of Kac–Moody algebras. To this end, we associate a class A
with a given Kac–Moody algebra g: The class A consists of all character Hopf
algebras defined by the same number of relations and with the same degrees as
g has. A contains all known quantizations of g: We demonstrate that Hopf algebras
from A have the so-called triangular decomposition as coalgebras. If the generalized
Cartan matrix A of g is indecomposable, then up to a finite number of exceptional
cases, the algebraic structure is solely defined by one “continuous” parameter q
related to the symmetrization of A and one “discrete” parameter m related to the
modular symmetrizations of A:

In the fourth chapter, consistent with the main concept of the book, we treat the
skew-primitive polynomials as quantum Lie operations. We discuss linearization
and specialization processes and criteria for a polynomial to be classified as a
quantum Lie operation. We also classify multilinear quantum Lie operations in two,
three, and four variables. Although generally a bilinear bracket there does not exists
as an operation, a binary bracket exists that is an important and effective tool for the
investigation. Specifically, all quantum Lie operations can be expressed in terms of
that bracket. The bracket becomes a quantum operation only if characters that define
the action of group-like elements satisfy a multiplicative skew-symmetry condition.
In this case, the quantum Lie algebra transforms into a color Lie algebra.

The fifth chapter focuses on multilinear quantum Lie operations involving more
than four variables. We establish a necessary and sufficient existence condition
and the number of linearly independent operations that may exist and define the
principle n-linear operation which by permutations of variables spans the space of
all n-linear operations. The symmetric operations pose an opposite property, namely,
in the context of permutations of variables, they do not change their values up to
a scalar factor. We deduce that there are precisely .n � 2/Š linearly independent
symmetric generic quantum Lie operations and at least one principle generic n-
linear operation. Although this chapter does not require specialized knowledge, it
demands persistence from the reader.

The main goal of the sixth chapter is a detailed construction of free braided Hopf
algebra and shuffle braided Hopf algebra on the tensor space of a given braided
space. We define a Nichols algebra as a subalgebra of the shuffle braided Hopf
algebra generated by the given braided space. All calculations are performed within
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the braid monoid but not in the braid group; therefore, the constructions remain valid
for a noninvertible braiding. We then consider braided Hopf algebras that appear in
the Radford decomposition of character Hopf algebras and discuss filtrations.

As previously mentioned, numerous definitions had been proposed for the
binary quantum analog of a Lie algebra. It is likely that only the Gurevich–Manin
generalization up to Lie �-algebras represents a completely successful definition.
In the seventh chapter we consider this generalization and its particular cases,
specifically, Lie superalgebras and color Lie algebras. The PBW theorem for Lie
�-algebras transforms into a coalgebra isomorphism between universal enveloping
algebras of Lie �-algebras defined within the same braided space. We establish a
�-Friedrichs criterion and consider subalgebras of free Lie �-algebra.

In the field of nonassociative algebras, there are known generalizations of Lie
algebras with nonassociative envelopes. Many of these well-known generalizations
involve only one or two operations. In the eighth chapter, we consider nonassociative
primitive polynomials as operations for nonassociative Lie theory similar to how we
considered skew-primitive polynomials as operations for quantum Lie theory. I.P.
Shestakov and U.U. Umirbaev discovered infinitely many independent operations
of that type. The proof constructed in this chapter demonstrates that Shestakov–
Umirbaev primitive operations together with the commutator form a complete set
of nonassociative Lie operations.

I am grateful to all who have offered suggestions or made corrections to
the manuscript. I am pleased to express my thanks to Ivan Shestakov, Cristian
Vay, Ualbai Umirbaev, Zbigniew Oziewicz, Robert Yamaleev, Mayra Lorena Díaz
Sosa, David Tinoco Varela, José Luis Garza Rivera, Alma Virginia Lara Sagahón,
Angélica Espinoza Godínez, Rodolfo Alvarado Cervantes, Alejandro Andrade
Álvarez, and Ricardo Paramont Hernández García for valuable discussions and
comments. Finally, I offer a special expression of thanks to my advisor, Leonid
Bokut’, who initiated me on the path toward understanding modern noncommutative
algebra.
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FES-Cuautitlán, project VC06, UNAM, México.
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Chapter 1
Elements of Noncommutative Algebra

Abstract The first chapter contains many basic definitions and proves related to
noncommutative algebra that are used in subsequent chapters. Starting with Gauss
polynomials and Lyndon-Shirshov standard words, we discuss the foundations of
Gröbner–Shirshov theory, which is the basic tool for investigating noncommutative
algebras specified by generators and defining relations. In this “combinatorial
paradigm,” the Poincaré-Birkhoff-Witt theorem obeys an elegant proof, whereas
the concepts of a skew group ring and crossed product can be perfectly analyzed.
We then introduce the braid monoid and the permutation group, and consider
the set of shuffles as a transversal of a direct product of symmetric subgroups.
The concept of a character Hopf algebra is central to this monograph. In the
combinatorial paradigm, the free character Hopf algebra plays a crucial role. The
notion of a combinatorial rank appears in the analysis of defining relations for Hopf
algebras. We develop the bracket technique as an important tool for performing
calculations that allows one to preserve and apply the intuition of the Lie algebra
machinery. Coordinate differential calculi, filtered and associated graded spaces,
and specific fundamental concepts from P.M. Cohn theory are developed as tools for
further applications. Although representation theory is not used intensively in this
book, we formulate the theorems of Maschke and Wedderburn as initial statements
without proofs. We conclude the chapter with notes that provide the reader with an
opportunity to learn more about the subjects we review in the introductory chapter.

This chapter contains the basic definitions and proves related to noncommutative
algebra that are used in sequel. We discuss Gauss polynomials, Lyndon-Shirshov
standard words, and the foundations of Gröbner–Shirshov theory, which is the
basic tool for investigating noncommutative algebras specified by generators and
defining relations. We then introduce the braid monoid and the permutation group.
The concept of a character Hopf algebra is central to this monograph. In the
combinatorial paradigm, the free character Hopf algebra plays a crucial role. The
notion of a combinatorial rank appears in the analysis of defining relations for Hopf
algebras. Coordinate differential calculi, filtered and associated graded spaces, and
specific fundamental concepts from P.M. Cohn theory are developed as tools for
further applications. Although representation theory is not used intensively in this
book, we formulate the theorems of Maschke and Wedderburn. We conclude the
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2 1 Elements of Noncommutative Algebra

chapter with notes that provide the reader with an opportunity to learn more about
the subjects we review in the introductory chapter.

1.1 Gauss Polynomials

Let x and y be variables subject to the relation yx D qxy; where q is a variable with
values in the ground field k. For future applications, we need to compute the powers
of x C y: Expanding .x C y/n; we see that the monomials in the expansion are all
scalar multiples of monomials of the form xkyn�k: Therefore, for all n > 0 we have

.xC y/n D
nX

kD0

�
n

k

�

q

xkyn�k; (1.1)

where

�
n

k

�

q

; 0 � k � n are integer polynomials in q; called Gauss polynomials. We

have yxk D qkxky; k � 0: Using these commutation rules, we may write

.xC y/

 
nX

kD0

�
n

k

�

q

xkyn�k

!
D

nX

kD0

�
n

k

�

q

xkC1yn�k C
nX

kD0

�
n

k

�

q

yxkyn�k

D xnC1 C
nX

kD1
.

�
n

k�1

�

q

C qk

�
n

k

�

q

/xky.nC1/�k C ynC1:

This equality and definition (1.1) with n  n C 1 imply the following recurrence
relation, called the first q-Pascal identity:

�
nC1

k

�

q

D
�

n

k�1

�

q

C qk �
�

n

k

�

q

;

�
nC1

0

�

q

D
�

nC1

nC1

�

q

D 1: (1.2)

Similarly, starting with the decomposition .xC y/nC1 D .xC y/n � .xC y/;we obtain
the second q-Pascal identity:

�
nC1

k

�

q

D
�

n

k�1

�

q

� qn�kC1 C
�

n

k

�

q

: (1.3)

The Gauss polynomials have the following rational representation

�
n

k

�

q

D qŒn�qŒn�1� � � � qŒn�kC1�

qŒ1�qŒ2� � � � qŒk� ; (1.4)
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where by definition, qŒs� D 1C qC � � �C qs�1, qŒ0� D 0. To prove (1.4), it suffices to
demonstrate that those rational functions satisfy recurrence relations (1.2).

We have qŒnC1� D qŒk� C qk � qŒn�kC1�: Therefore, qŒnC1�=qŒk� D 1 C .qk �
qŒn�kC1�=qŒk�/: This relationship implies the required decomposition:

qŒnC1�qŒn� � � � qŒn�kC2�

qŒ1�qŒ2� � � � qŒk� D qŒn�qŒn�1� � � � qŒn�kC2�

qŒ1�qŒ2� � � � qŒk�1� .1C qk � qŒn�kC1�

qŒk�
/

D qŒn�qŒn�1� � � � qŒn�kC2�

qŒ1�qŒ2� � � � qŒk�1� C qk � q
Œn�qŒn�1� � � � qŒn�kC1�

qŒ1�qŒ2� � � � qŒk� :

Future applications will require certain additional information about Gauss
polynomials when qŒn� D 0: By multiplying the latter equality by q � 1; we obtain
qn D 1: Hence, q is a primitive mth root of 1; and m is a divisor of n: The case
m D 1 is also possible if the characteristic l of the ground field k is positive. Thus,
we consider 1 to be a primitive 1st root of 1:

Lemma 1.1 If q is a primitive mth root of 1 and m is a divisor of n; then

�
n

k

�

q

D 0; 1 � k < m:

Proof In the rational representation (1.4), all factors qŒi�; 1 � i � k of the
denominator have nonzero values because qi ¤ 1; 1 � i < m by the definition of m:
Each numerator has a factor qŒn�: Let n D m � s: We have qŒn� D qŒms� D .qm/Œs� � qŒm�:
If m ¤ 1; then qŒm� D 0: If m D 1; then there is nothing to prove. ut
Lemma 1.2 Let q be a primitive mth root of 1; and let n D mlk; where l D 1 or
l D char k > 0: If x; y are variables subject to the relation yx D qxy; then

.xC y/n D xn C yn:

Proof Due to the above Lemma and (1.1), we have .x C y/m D xm C ym: In this
case ymxm D qm2xmym D xmym: Hence we may apply the ordinary Newton binomial
formula .xm C ym/l

k D xmlk C ymlk D xn C yn: ut

1.2 Lyndon — Shirshov Words

Let X D fxi j i 2 Ig be a set of variables. Assume that on X an order � is fixed such
that X is a well-ordered set (every nonempty subset has a least element). Consider
the set X to be an alphabet. On a set X� of all words in this alphabet, define the
lexicographical order: two words v and w are compared by moving from left to
right until the first distinct letter is encountered. Otherwise, if one of the words is
the beginning of another word, then the shorter word is assumed to be greater than
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the longer word. For example, all words of length at most two in two variables
x1 > x2 respect the following order:

x1 > x21 > x1x2 > x2 > x2x1 > x22: (1.5)

The lexicographical order is stable under left concatenations and unstable under
right ones. Nevertheless, if u > v and u is not a beginning of v, then the inequality
is preserved under right concatenations, even by different words: uw > vt for all
w; t:

Even if the alphabet is finite, there exist infinite ascending and infinite descending
chains of words (in particular, X� is not a well-ordered set):

x1 > x1x2 > x1x
2
2 > : : : > x1x

m
2 > : : : I (1.6)

x2 < x1x2 < x21x2 < : : : < xm
1 x2 < : : : ; (1.7)

provided that x1 > x2: These chains make it impossible to perform induction (neither
direct nor downward) on words using only the lexicographical order. Nevertheless,
it is possible to perform induction based on two parameters, for example, the length
of a word and its lexicographical position among words of the same length.

1.2.1 Standard Words

Definition 1.1 A word u is called standard (or a Lyndon-Shirshov word) if, for
each decomposition u D u1u2; where u1 and u2 are nonempty words, the inequality
u > u2u1 holds. For example, in (1.6), (1.7) all words are standard, whereas in (1.5),
three words are standard: x1, x1x2, and x2.

If u D xi1xi2 � � � xim is a word, then the set of all possible words u2u1; where
u D u1u2; is precisely the set of all cyclic permutations of u;

xi1xi2 � � � xim ; xi2xi3 � � � ximxi1 ; : : : ; xim xi1xi2 � � � xim�1 : (1.8)

Therefore, the word u is standard if and only if it is greater than each cyclic
permutation of it. If the word u is not periodic, u ¤ vh; h > 1; then all words
in (1.8) are different. Hence, there is precisely one standard word among the cyclic
permutations of u: If the word u is periodic, u D vh with the maximal h > 1; then
each cyclic permutation u 0 in (1.8) is periodic: u 0 D .v 0/h; where v 0 is a cyclic
permutation of v: In this case, the set of all cyclic permutations contains no standard
words but has precisely h words of the form wh with a standard w; whereas w is the
standard cyclic permutation of v:

Lemma 1.3 Let u D sv be a standard word. If s; v ¤ ;; then v is not a beginning
of u.
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Proof Suppose u D vs 0. By definition, sv D vs 0 > s 0v, i.e., s > s 0. Similarly,
vs 0 D sv > vs, hence s 0 > s which is a contradiction. ut
Lemma 1.4 A word u is standard if and only if it is greater than each of its proper
endings.

Proof If the word u is standard and u D vv1 then vv1 > v1v: According to
Lemma 1.3, the word v1 is not the beginning of vv1; hence, u D vv1 and v1v
differ already in their first l.v1/ letters, where by definition l.w/ is the length of a
word w: Therefore, u > v1. Conversely, if u D u1u2 and u > u2; then u is not the
beginning of u2; so the inequality u > u2 holds when the right side is multiplied
by u1: ut
Lemma 1.5 Let u and v be standard words. If u > v, then uh > v.

Proof If u is not the beginning of v; then u > v can be multiplied from the right by
different words. Suppose that v D ukv 0 and that v 0 does not begin with u. If k � h;
then uh > v as the beginning. If k < h then v 0 is nonempty, and v 0 < v < u. It
follows that v D uk � v 0 < uk � u � uh�k�1 D uh. ut
Lemma 1.6 If u; v are different standard words and un contains vk as a sub-word,
un D cvkd; then u contains vk as a sub-word, u D bvke:

Proof Without loss of generality, we may suppose that l.c/ < l.u/; otherwise, n can
be diminished. In this case, u D cvs t; s � 0: If s < k; then t is the beginning of
v; v D t t 0; and the ending of u: Then, according to Lemma 1.4, either u > t > v

or t is empty. In the latter case, u > v because v is the ending of u: In turn, t 0 is the
beginning of un�1I that is, t 0 D ur t 00; r � 0: Here, t 00 is the ending of v and the
beginning of u: Lemma 1.4 implies that either v > t 00 > u or t 00 is empty. In the
latter case v > u because u becomes the ending of v: We note the contradiction that
u > v > u: ut
Lemma 1.7 Let u and u1 be standard words such that u D u3u2 and u2 > u1. Then

uu1 > u3u1; uu1 > u2u1: (1.9)

Proof First we demonstrate that u2u1 > u1. If u1 does not begin with u2, then the
inequality follows immediately from u2 > u1. Assume that u1 D uk

2 � u 0
1 and that u2

is not the beginning of u 0
1. Since u1 is standard, it follows that uk

2u
0
1 > uk�1

2 u 0
1, i.e.,

u2u 0
1 > u 0

1. Hence, u2u1 D uk
2 � u2u 0

1 > uk
2 � u 0

1 D u1. Multiplying this inequality from
the left by u3 yields the first required inequality. Consider the second inequality.
Because u is a standard word, u3u2 > u2 according to Lemma 1.4. As u3u2 is not
the beginning of u2, we can multiply the latter inequality from the right by u1. ut
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Lemma 1.8 If u; v are standard words, and u > v; then uv is a standard word.

Proof Using Lemma 1.4, it is sufficient to demonstrate that uv D wt; w; t ¤ ;
implies uv > t:

If l.w/ < l.u/; then u D wt 0; t 0v D t: According to Lemma 1.4, we obtain
u > t 0: The word u is not the beginning of t 0 because l.u/ D l.w/C l.t 0/: Therefore,
u > t 0 may be multiplied from the right by v: Thus, uv > t 0v D t:

If l.w/ � l.u/; then w D ut 0 and t 0t D v: Applying Lemma 1.4, we obtain v � t;
which implies that u > v � t: The inequality u > t implies that uv > t provided
that u is not the beginning of t: Otherwise, t D ut 00 implies that v D t 0t D t 0ut 00:
Lemma 1.4 states that v > t 00: Hence uv > ut 00 D t: ut
Theorem 1.1 Each word u has a unique decomposition

u D wn1
1 � wn2

2 � : : : � wnm
m ; (1.10)

where wi; 1 � i � m are standard words and w1 < w2 < : : : < wm:

Proof The initial letter of u is a standard word of length one. Let v1 be the longest
beginning of u that is a standard word, u D v1 � u1: Let v2 be the longest beginning
of u1 that is a standard word, u1 D v2 � u2; and so on. In this manner, we find a
decomposition u D v1 �v2 � : : : �vi � : : :with standard vi; i � 1: In this decomposition,
v1 � v2 � : : : � vi � : : : because, due to Lemma 1.8, the inequality vi > viC1
implies that viviC1 is a standard beginning of ui of length greater than l.vi/:

If v 0
1 � v 0

2 � : : : � v 0
i � : : : and u D v 0

1 �v 0
2 � : : : �v 0

i � : : : is another decomposition
with standard factors, v 0

1 ¤ v1; then v 0
1 is a proper beginning of v1: In particular,

v1 D v 0
1 � : : : �v 0

i ti;where i � 1 and ti is a non-empty beginning of v 0
iC1: The standard

word v1 is greater than its ending ti and less than its beginning v 0
1: In turn, v 0

iC1 is
less than or equal to its beginning ti: Thus, we have a contradiction:

ti < v1 < v
0
1 � : : : � v 0

i � v 0
iC1 � ti:

ut
Corollary 1.1 Every standard word w of length greater than one has a decomposi-
tion w D uv; u > v with standard u; v:

Proof Let u be the longest proper standard beginning of w; w D uv: By
Theorem 1.1, the word v has a decomposition v D v1 � : : : � vm with standard
vi; 1 � i � m and v1 � : : : � vm: If m > 1; then uv1 is a proper beginning of
w: Therefore, uv1 is not standard. By Lemma 1.8, this statement implies u � v1:

In this case, we have two different decompositions, i.e., w D u � v1 � : : : � vm and
w D w; that satisfy the conditions of Theorem 1.1. Thus, m D 1; and v is a standard
word. ut
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1.2.2 Nonassociative Standard Words

The proven corollary and Lemma 1.8 make it possible to find all standard words
step-by-step. First, all words of length one are standard. Next, if all standard words
of length < l are known, then every pair of different standard words u; v of length
i and l � i; respectively, 1 � i < l; defines a standard word uv (if u > v) or vu (if
v > u). In this way, all standard words appear.

In this process, certain standard words may appear several times. For example,
if x1 > x2 > x3; then x1x2x3 D x1 � x2x3 and x1x2x3 D x1x2 � x3: Recall that a
nonassociative word is a word in which Œ ; � are somehow arranged to show how the
multiplication applies. We see that in the above process, a particular construction of
a given standard word u is equivalent to an alignment of brackets.

Definition 1.2 If u is a standard word, then Œu� denotes a nonassociative word where
the brackets are arranged by the following inductive algorithm. The factors v and
w in the nonassociative decomposition Œu� D ŒŒv�Œw�� are standard words such that
u D vw; and v has the minimal possible length. The nonassociative word Œu� is
called a nonassociative standard word.

For example, if x1 > x2 > x3; then the words

x1x2x3; x1x
2
2; x32x3; x1x2x3x2; x2x3x2x3x4; x1x2x

2
3x2

are standard, and they define the following nonassociative standard words:

Œx1x2x3� D Œx1Œx2x3��; Œx1x22� D ŒŒx1x2�x2�; Œx32x3� D Œx2Œx2Œx2x3���;
Œx1x2x3x2� D ŒŒx1Œx2x3��x2�; Œx2x3x2x3x4� D ŒŒx2x3�Œx2Œx3x4���;
Œx1x2x

2
3x2� D ŒŒx1ŒŒx2x3�x3��x2�: (1.11)

Proposition 1.1 Let u > u1 be standard words and Œu� D ŒŒu3�Œu2��: Then, ŒŒu�Œu1��
is a standard nonassociative word if and only if u2 � u1:

We prove this statement in two steps.

Lemma 1.9 If ŒŒu�Œu1�� is a standard nonassociative word, then u2 � u1.

Proof If u2 > u1; then u2u1 is a standard word, and we have a decomposition uu1 D
u3 � u2u1 where the length of the first factor is less than the length of uu1 D u3u2 � u1:
Hence, ŒŒu�Œu1�� is not standard. ut
Lemma 1.10 If ŒŒu�Œu1�� is not a standard nonassociative word then u2 > u1.

Proof We perform induction on the length of uu1: Let X1 D fx1; x2; : : : ; xng be the
set of all letters that occur in the word uu1; and assume that x1 > x2 > : : : > xn:

Consider a set Y D fy1; y2; : : : ; yn�1g of new symbols. On the set .X1 [ Y/� of all
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words in the alphabet X1 [ Y, define the lexicographical order such that

x1 > y1 > x2 > y2 > : : : > yn�1 > xn: (1.12)

For every word W in X1[ Y; let �.W/ denote a word in X that results from W under
the substitution yi  xixn; 1 � i < n: We note that the map � W .X1 [ Y/� ! X�

1 is
an homomorphism of ordered monoids:

�.VW/ D �.V/�.W/; V < W ” �.V/ < �.W/: (1.13)

The former equality is evident. The latter condition follows from the fact that �
preserves the order of letters: x1 > x1xn > x2 > x2xn > : : : > xn�1xn > xn:

A word W 2 .X [ Y/� is standard if and only if �.W/ is standard as a word in X
because each cyclic permutation of �.W/ either starts with the smallest letter xn or
has the form �.W 0/ where W 0 is a cyclic permutation of W:

A decomposition U D V �W of a standard word U satisfies the conditions of the
algorithm given in Definition 1.2 if and only if �.U/ D �.V/ � �.W/ satisfies the
same conditions as a decomposition of a word in X: Indeed, if �.U/ D v1 � w1; and
v1; w1 are standard words such that v1 has the minimal possible length, then either
v1 D �.V1/; w1 D �.W1/ for a suitable decomposition U D V1 � U1; or w1 starts
with xn: Because w1 is a standard word, in the latter case, w1 D xnI however, in this
case, the length of v1 is greater than the length of �.V/:

If w is a standard word in X1; then it does not start with the smallest letter xn

unless w D xn: Let �.w/ be a word in X1[Y that appears from w under replacements
of all sub-words xixn; with yi; 1 � i < n: Of course, we have

�.�.w// D w:

If w D w1w2 is a decomposition in the product of standard words, then

�.w/ D �.w1/�.w2/ (1.14)

provided that w2 ¤ xn: Equality (1.14) is still valid if w2 D xn and w1 ends with xn:

Let us note that if u2 D xn; then u3 ends with xn: Indeed, Œu� D ŒŒu3�xn� is
a standard nonassociative word. If Œu3� D ŒŒu4�Œu5��; then by Lemma 1.9, we have
u5 � xn which is possible only if the standard word u5 equals xn: This note and (1.14)
imply

�.u/ D �.u3/�.u2/:

Similarly, we have

�.uu1/ D �.u/�.u1/
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because otherwise either the required condition, u2 > u1; holds, in which case we
have nothing to prove, or u2 D u1 D xn: In the latter case, (1.14) still applies.

Although the word �.u3/�.u2/�.u1/ is a word in a new alphabet, its length is less
the length of uu1: Applying the induction hypothesis to the nonassociative word

[[Œ�.u3/� Œ�.u2/�] Œ�.u1/�];

we obtain �.u2/ > �.u1/; whereas condition (1.13) implies u2 > u1: ut
Remark 1.1 The induction of the above lemma provides a dual algorithm of the
alignment of brackets in a standard word w that results with the same standard
nonassociative word Œw�: first, we put the brackets on all sub words Œxixn�; 1 �
i < n; and we then consider these bracketed sub-words as new letters yi with
ordering (1.12). Next, we repeat the first step. This procedure is an alignment
of brackets “from the bottom”, while the algorithm given in Definition 1.2 is an
alignment “from the top”.

1.2.3 Deg-Lex Orders

As mentioned above, the lexicographic order does not satisfy either ACC nor DCC,
see (1.6), (1.7), which makes it impossible to perform induction. To overcome this
obstacle, one may introduce additional stratification of all words in groups so that
each group has a finite number of words.

The simplest stratification is one given by the length. In this case, there appears
the Hall ordering of words: u <h v if l.u/ < l.v/; or l.u/ D l.v/ and u < v: The
Hall ordering is compatible with the concatenation product of words: If u <h v;

then wut <h wvt for all words w; t:
Another stratification is one given by the natural degrees. Let us assign natural

degrees to the letters of the alphabet, deg xi D di; i 2 I: As usual, the degree of
a word is the sum of the degrees of its letters (normally, such a degree is called a
formal degree with deg xi D di). In this way, there appears the so called Deg-Lex
ordering of words: u <d v if deg u < degv; or deg u D degv and u < v: The
Deg-Lex ordering is also compatible with the concatenation product. Certainly, if
all di equal 1, then the Dex-Lex order coincides with the Hall order.

If the alphabet is finite, then the set of words of fixed degree (or of fixed length)
is finite. However, if the alphabet is infinite, than that set may be infinite. Therefore,
it is useful to employ a more precise stratification by constitution.

Definition 1.3 A constitution of a word u in X D fxi j i 2 Ig is a family of
nonnegative integers fmi j i 2 Ig such that u has mi occurrences of xi: The number
mi has a notation mi D degi u; which is called the degree of u with respect to xi: In
this terminology, the constitution of u is nothing more than the multidegree of u:
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A constitution of a word has only a finite number of nonzero components.
Therefore, the set of all words of a given constitution is finite. In fact, the order
related to the stratification by constitution is precisely the Deg-Lex order if, instead
of the natural degrees, we assign to the variables positive degrees from the free
additive (commutative) monoid � generated by X:

This monoid consists of the formal finite linear combinations
P

i2I nixi; where
each ni is a natural number or zero. Respectively, deg xi D 1 �xi and deg u DPmixi;

where fmi j i 2 Ig is the constitution of u:
The monoid � is a well-ordered monoid with respect to the order

m1xi1 C m2xi2 C : : :C mkxik > m 0
1xi1 C m 0

2xi2 C : : :C m 0
kxik (1.15)

provided that the first nonzero number from the left in

.m1 � m 0
1;m2 �m 0

2; : : : ;mk � m 0
k/

is positive, while xi1 > xi2 > : : : > xik in X:
The Deg-Lex order of words in X is compatible with the concatenation product:

If deg u < degv; then deg wut D deg wC deg uC deg t < deg wC degvC deg t D
deg wvt: If deg u D deg v; then v is not a beginning of u; and u < v implies wut <
wvt for all words w; t:

1.3 Gröbner–Shirshov Systems of Defining Relations

In this section, we discuss the combinatorial representation of associative algebras
by means of generators and relations. The crucial problem is that there does not
exist a general algorithm to verify whether two polynomials are equal in the quotient
algebra k hXi=J (i.e., the equality problem for associative algebras is undecidable).
Nevertheless, there is an algorithm that allows resolution of the equality problem
and even the problem of the construction of a basis, provided that the system
of defining relations satisfies an additional property (is closed with respect to
the compositions). This algorithm is based on the Composition Lemma by A.I.
Shirshov.

1.3.1 Composition Lemma

Let X be a set of variables, and let k hXi be the free associative algebra freely
generated by X: The free algebra k hXi consists of noncommutative polynomials,
the formal linear combinations

P
k ˛kwk of words in the alphabet X; with the

concatenation product. By definition, the algebra defined by the generators X and
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relations Fi D 0; i 2 I; is the quotient algebra k hXi=J;where J is the ideal of k hXi
generated by Fi; i 2 I:

We fix a well order � on the set of words X� such that u � v implies wut � wvt
for all words w; t 2 X�: For example,�may be the Hall order or one of the Deg-Lex
orders described above.

Definition 1.4 A leading word of a polynomial F D P
k ˛kwk 2 k hXi; ˛k ¤ 0 is

the greatest word w of the finite set fwkg:
Without loss of generality, we may assume that the coefficient at the leading word of
each defining relation is equal to one. In this case, the relation Fi D 0 is equivalent
to the relation wi D fi; where wi is the leading word of Fi; so that fi is a linear
combination of lesser than wi words, Fi D wi � fi: Consider a system of relations

wi D fi; i 2 I: (1.16)

Lemma 1.11 The set˙ of all words that have none of wi; i 2 I as sub-words spans
the algebra A defined by relations (1.16).

Proof We must demonstrate that in A; each word is a linear combination of words
from ˙: Let w be the minimal word that is not such a linear combination. In this
case, w … ˙; and w has a sub-word wi for a suitable i 2 II that is, w D uwiv; where
u; v 2 X�: In the algebra A; we have w D ufiv: The leading term of the polynomial
ufiv is less than w because all words of fi are less than wi; which implies that all
words of ufiv are the required linear combinations. A contradiction. ut
Definition 1.5 A system of relations (1.16) is said to be closed with respect to the
compositions if the following conditions are met:

1. None of wi contains ws; i ¤ s 2 I as a sub-word;
2. For each pair of words (not necessarily different) wi; ws such that some non-

empty end of wi coincides with a beginning of wsI that is, wi D w 0
i v; ws D vw 0

s ;

the difference fiw 0
s �w 0

i fs; called a composition, has the following representation
in the free algebra k hXi:

fiw
0
s � w 0

i fs D
X

k;t

˛ktaktFkbkt; akt; bkt 2 X�; ˛kt 2 k; aktwkbkt � w 0
i vw 0

s :

(1.17)

We stress that the first condition does not provide an essential restriction on the
system of defining relations: if ws is a sub-word of wi; say, wi D awsb; a; b 2 X�;
then we may replace the relation Fi with Fi � aFsb; diminishing the leading word.

Remark 1.2 Traditionally, a system of relations closed with respect to the com-
positions is called a Gröbner–Shirshov basis of the ideal generated by the Fi’s.
However, the word “basis” here is not perfect because some of the defining relations
in a Gröbner-Shirshov “basis” may follow from the others. Additionally, this term
sometimes leads to confusion between the set of relations (1.16) and the basis ˙
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of the algebra defined by these relations, especially when instead of “the Gröbner–
Shirshov basis of an ideal,” they use “the Gröbner–Shirshov basis of the algebra”
(defined by that ideal). For this reason, the term “Gröbner-Shirshov system of
relations” seems to be more precise, at least in the context of this book.

Theorem 1.2 (Composition Lemma) If system (1.16) is closed with respect to the
compositions, then the set ˙ of all words that have none of wi; i 2 I as a sub-word
is a basis of the algebra A defined by the relations (1.16).

Proof Let us show that the leading word of each polynomial F 2 J has a sub-word
wi for a suitable i 2 I: The polynomial F 2 J has a representation in the free algebra

F D
X

i;k

˛ik aik Fi bik; (1.18)

where aik; bik 2 X�; 0 ¤ ˛ik 2 k; but of course this representation is not unique.
Among all representations, we consider only ones that share no similar terms:
for each i; if k ¤ s; then the pairs .aik; bik/ and .ais; bis/ are different. Let w be
the maximal word among all words aik wi bik: The word w is related to the given
representation (1.18), and, of course, it may be different from the leading word of
F: Among all representations (1.18) without similar terms, we choose one with the
minimal possible word w: Our aim is to show that in this case, the word w (which
contains the sub-word wi) is the leading word of F:

The leading word of the term aik Fi bik is the word aik wi bik because � is stable
under multiplications: u � wi implies aik u bik � aik wi bik:

Let ˘ be the set of all pairs .i; k/ such that w D aik wi bik: We shall perform
induction on the number of pairs in˘: If˘ has only one pair, then all terms of (1.18)
corresponding to other pairs are linear combinations of lesser than w words. Hence
w is the leading word of F:

Assume that˘ has more than one pair: w D aik wi bik D ast ws bst; .s; t/ ¤ .i; k/:
Consider the following two cases.

(a) The sub-words wi and ws of the word w have no intersection, say, w D awsdwib;
where a; d; b 2 X�: In this case, aik D astwsd; bst D dwibik: Let us modify the
sum of two terms of (1.18) corresponding to the pairs .i; k/ and .s; t/:

˛ikaik Fi bik C ˛stast Fs bst D .˛ik C ˛st/aikFibik � ˛stastFsd.Fi � wi/bik

C ˛stast.Fs � ws/dFibik:

All words that appear in the decomposition of the second and third summands
are less than w; for Fi � wi D �fi; Fs � ws D �fs: Hence, the set ˘ for the
modified representation (1.18) diminishes by one, if ˛ikC˛st ¤ 0; or by two, if
˛ik C ˛st D 0: The set ˘ for the modified representation is non-empty, because
otherwise, the word w for the modified representation is less than for the initial
one.
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(b) The sub-words wi and ws have a non-empty intersection. Because neither of the
words wi; ws is a sub-word of the other, some proper end of one of them equals
a proper beginning of the other, say, wi D w 0

i v; ws D vw 0
s ; whereas

w D aikw 0
i vw 0

s bst and aikw 0
i D ast; w 0

sbst D bik:

In this case, we modify (1.18) as follows:

˛ikaik Fi bik C ˛stast Fs bst D .˛ik C ˛st/aikFibik C ˛staik.w
0
i Fs � Fiw

0
s/bst

D .˛ik C ˛st/aikFibik � ˛staikŒfiw
0
s � w 0

i fs�bst:

If we replace the resulting composition according to (1.17), then the set ˘ for the
modified representation (1.18) diminishes by one, if ˛ik C ˛st ¤ 0; or by two,
if ˛ik C ˛st D 0: Again, the set ˘ for the modified representation is non-empty
because otherwise, the word w for the modified representation is less than for the
initial one.

Thus, we have demonstrated that the leading word of each polynomial F 2 J has
a sub-word wi for a suitable i 2 I: The leading term of any linear combination F 0 of
words from˙ belongs to ˙ I hence, F 0 … J: ut
Definition 1.5 does not provide an algorithm for how to check whether there
exists a representation (1.17) for a given composition. The following statement
demonstrates that the natural diminishing process always gives an answer.

Lemma 1.12 A system of relations (1.16) is closed with respect to the compositions
if and only if, first, none of wi contains ws; i ¤ s 2 I as a sub-word and, second,
each composition fiw 0

s � w 0
i fs can be reduced to zero in the free algebra through a

sequence of one-sided diminishing substitutions wt  ft; t 2 I:

Proof Through the substitutions wt  ft; t 2 I we may reduce any polynomial
to a linear combination of words from ˙ because each substitution diminishes the
words. The value in A of a composition is zero, as fiw 0

s � w 0
i fs D �.Fiw 0

s � w 0
i Fs/

and the substitutions wt  ft; t 2 I do not change the value of a polynomial
in A: If (1.16) is closed with respect to the compositions, then the resulting linear
combination of words from ˙ must be empty because according to Theorem 1.2,
the values of words from˙ form a basis of A:

Conversely, a substitution wt  ft transforms a word awtb to the linear
combination of lesser words aftb; and we have aftb D awtb� aFtb: If a polynomial
P reduces to zero through one sided substitutions wt  ft; then in the free algebra,
we have the equality 0 D P �Pik aikFibik; where aikwibik are the words to which
the substitutions were applied. Because all words of the composition are less than

w0
dfD w 0

i vw 0
s ; the new words appearing in the process are still less than w0: Hence

P DPik aikFibik is the required representation. ut
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Remark 1.3 We stress that the succession of substitutions is not important: in
any case, the diminishing process leads to the linear combination of words
from the set ˙: Nevertheless, the shortest way to verify that a composition has
representation (1.17) may include increasing steps, aub  a.u � ˛�1Fk/b; when
awkb � w 0

i vw 0
s and the monomial u � wk occurs in Fk with the coefficient ˛ ¤ 0:

Example 1.1 Denote by AC
2 an algebra generated by variables x1 and x2 and defined

by relations x21x2 C ˛x1x2x1 C ˇx2x21 D 0 and x1x22 C ˛x2x1x2 C ˇx22x1 D 0; where
˛; ˇ are arbitrary elements from the ground field. If we fix the order x1 > x2; then
the words of length three obey the lexicographical order:

x31 > x21x2 > x1x2x1 > x1x
2
2 > x2x

2
1 > x2x1x2 > x22x1 > x32:

Consequently, the defining relations in the form (1.16) are:

x21x2 D �˛ � x1x2x1 � ˇ � x2x21I (1.19)

x1x
2
2 D �˛ � x2x1x2 � ˇ � x22x1: (1.20)

In other words, we have w1 D x21x2; w2 D x1x22; and f1 D �˛ � x1x2x1 � ˇ � x2x21;
f2 D �˛ � x2x1x2 � ˇ � x22x1:

To apply Theorem 1.2, we shall analyze all possible compositions. The word w2
has the endings x2; x22: Certainly, no one of them is a beginning of w1 or w2: The
word w1 has the endings x2; x1x2: One of them, v D x1x2; is also a beginning of
w2: Hence, we have only one composition, which corresponds to the relation of the
leading words,

x21x2 � w0
2 D w0

1 � x1x22;

with w0
1 D x1; w0

2 D x2:

f1w
0
2 � w0

1f2 D �˛ � x1x2x1x2 � ˇ � x2x21x2 C ˛ � x1x2x1x2 C ˇ � x1x22x1:

The first and the third terms cancel each other, whereas the words of the second and
fourth ones contain (underlined) subwords w1 and w2: Applying the diminishing
substitutions w1  f1; w2  f2; we obtain

� ˇ � x2.˛ � x1x2x1 C ˇ � x2x21/� ˇ � .˛ � x2x1x2 C ˇ � x22x1/x1 D 0:

By Lemma 1.12, the system of relations (1.19), (1.20) is closed with respect to the
compositions. Theorem 1.2 implies that the set ˙ of all words containing not one
of the subwords x21x2; x1x22 forms a basis of AC

2 ; whereas the natural diminishing
process provides a decomposition of words (and polynomials) in that basis. It is
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easy to see that

˙ D fxm
2 .x1x2/

nxk
1 jm; n; k � 0g:

Remark 1.4 If the diminishing process of the verification of a composition ends
with a nontrivial linear combination QFis of words from ˙; then we may add the
relation QFis D 0 to system (1.16). Then, the very composition we start with has a
required representation with respect to the extended system of relations, but many
compositions with the new relation may appear. If we are lucky, some number of
such extensions will result with a system of relations closed with respect to the
compositions, which allows us to find a basis of the algebra A:

Example 1.2 Let us consider a more complicated example of a two-parameter
family of algebras. Denote by BC

2 an algebra generated by variables x1 and x2 and
defined by relations

x21x2 C ˛x1x2x1 C ˇx2x
2
1 D 0I (1.21)

x1x
3
2 C �x2x1x

2
2 C ıx22x1x2 C "x32x1 D 0; (1.22)

where

ˇ D �2; � D ˛ C �; ı D ��; " D �3; (1.23)

and ˛;� are arbitrary nonzero elements from the ground field. If we fix the order
x1 > x2; then the above defining relations in the form (1.16) are:

x21x2 D �˛ � x1x2x1 � ˇ � x2x21I (1.24)

x1x
3
2 D �� � x2x1x22 � ı � x22x1x2 � " � x32x1I (1.25)

that is, we have w1 D x21x2; w2 D x1x32; and f1 D �˛ � x1x2x1 � ˇ � x2x21;
f2 D �� � x2x1x22 � ı � x22x1x2 � " � x32x1:

Let us analyze all possible compositions. The word w2 has the endings x2; x22; x32:
Certainly no one of them is a beginning of w1 or w2: The word w1 has the endings
x2; x1x2; and v D x1x2; is a beginning of w2: Hence, we have only one composition,
which corresponds to the relation of the leading words,

x21x2 � w0
2 D w0

1 � x1x32;

with w0
1 D x1; w0

2 D x22:

f1w
0

2 � w0

1f2 D �˛ � x1x2x1x22 � ˇ � x2x21x2x2 C � � x1x2x1x22 C ı � x1x22x1x2 C " � x1x32x1:
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The words of the second and fifth terms contain (underlined) subwords w1 and w2:
Applying the diminishing substitutions w1  f1; w2  f2; we obtain

� .� � ˛/x1x2x1x22 C ˇx2.˛ � x1x2x1 C ˇ � x2x21/x2 C ıx1x22x1x2
� ".� � x2x1x22 C ı � x22x1x2 C " � x32x1/x1
D .� � ˛/x1x2x1x22 C ˇ˛ x2x1x2x1x2 C ˇ2x22x21x2 C ı x1x

2
2x1x2

� "� x2x1x
2
2x1 � "ı x22x1x2x1 � "2x32x21:

The word of the third term contains (underlined) subword w1: Applying the
diminishing substitution w1  f1; we may continue

� .� � ˛/x1x2x1x22 C ˇ˛ x2x1x2x1x2 C ı x1x
2
2x1x2

�"�x2x1x
2
2x1 � ."ı C ˛ˇ2/ x22x1x2x1 � ."2 C ˇ3/x32x21: (1.26)

None of the remaining words contains w1 or w2 as a subword. Consequently, due to
Lemma 1.12, the system of relations (1.24), (1.25) is not closed with respect to the
compositions.

The polynomial that appears in (1.26) is a relation of the algebra BC

2 : If we add
that relation,

x1x2x1x
2
2 D ���1ˇ˛ x2x1x2x1x2 � ��1ı x1x

2
2x1x2 C ��1"�x2x1x

2
2x1

C ��1."ı C ˛ˇ2/ x22x1x2x1 C ��1."2 C ˇ3/x32x21 dfD f3; (1.27)

� D ��˛; to the two initial defining relations, then obviously the composition (1.26)
reduces to zero after the diminishing substitution x1x2x1x22  f3. We must analyze if
the extended system (1.24), (1.25), (1.27) is closed.

In this case, there appeared a new leading word, w3 D x1x2x1x22: The endings
of this word are x2; x22; x1x22; x2x1x22: Among them, x1x22 is a beginning of w2: The
beginnings of w3 are x1; x1x2; x1x2x1x2: Among them, x1x2 is an ending of w1: That
is, we have to analyze two more compositions.

1. x1x2x1x22 � x2 D x1x2 � x1x32, w0

2 D x2; w0

3 D x1x2: We have

f3w
0

2 � w0

3f2 D ���1ˇ˛ x2x1x2x1x
2
2 � ��1ı x1 x2

2x1 x2
2 C ��1"� x2x1x

2
2x1x2„ ƒ‚ …

C ��1."ı C ˛ˇ2/ x22x1x2x1x2 C ��1."2 C ˇ3/x32x21x2;

C � � x1 x2
2x1 x2

2 C ı � x1x32x1x2 C " � x1x32x2x1:

The second and the sixth terms are similar, whereas the first, fifth, seventh, and
eighth terms have leading words w3;w1;w2 as subwords. Applying the diminishing
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substitutions, we obtain

���1ˇ˛ x2x1x2x1x
2
2 � .��1ˇ˛/2 x22x1x2x1x2 C ˇ˛��2ı x2x1x

2
2x1x2„ ƒ‚ …

���2ˇ˛"� x22x1x
2
2x1 � ˇ˛��2."ı C ˛ˇ2/ x32x1x2x1

���2ˇ˛."2 C ˇ3/x42x21I
��1."2 C ˇ3/ � x32x21x2 � ���1."2 C ˇ3/˛ � x32x1x2x1 � ��1."2 C ˇ3/ˇ � x42x21

ı � x1x32x1x2 � �ı� � x2x1x22x1x2„ ƒ‚ …
�ı2 � x22x1x2x1x2 � ı" � x32x21x2I

" � x1x32x2x1 � �"� � x2x1x32x1 � "ı � x22x1x22x1 � "2 � x32x1x2x1:

Further,

�ı" � x32x21x2 � ı"˛ � x32x1x2x1 C ı"ˇ � x42x21;

and

�"� � x2x1x32x1 � "�2 � x22x1x22x1 C �"ı � x32x1x2x1 C �"2 � x42x21:

Using values ˇ D �2; � D ˛ C �; ı D ��; " D �3 of the coefficients given
in (1.23), we may find coefficients at the remaining six words.

x1 x2
2x1 x2

2 W ���1ı C � D ���1��C � D 0I
x2x1x

2
2x1x2„ ƒ‚ …

W ��1"� C ˇ˛��2ı � ı� D ��1�3� C ˛�� � ���

D ��.�C ˛ � �/ D 0I

x22x1x2x1x2 W ��1."ı C ˛ˇ2/C .��1ˇ˛/2 � ı2 D ��1.�3��C ˛�4/C ��2�4˛2

� �2�2 D �2.��C ˛�C ˛2 � �2/ D �2.˛ C �/.�C ˛ � �/ D 0I
x22x1x

2
2x1 W ���2ˇ˛"� � "ı C "�2 D "�.�˛ � �C �/ D 0I

x42x
2
1 W ���2ˇ˛."2 C ˇ3/ � ��1."2 C ˇ3/ˇ C ı"ˇ C �"2

D �6.�2˛ � 2�C 2�/ D 0I
x32x1x2x1 W �ˇ˛��2."ı C ˛ˇ2/� ��1."2 C ˇ3/˛ � "2 C ı"˛ C �"ı

D �4.�˛.� C ˛/� 2�˛ � �2 C �˛ C �2/
D �4.�˛2 � 2�˛ � �2 C �2/ D 0:
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Thus, the first additional composition reduces to zero in the free algebra by
diminishing substitutions. Similarly we consider the second additional composi-
tion.

2. x1 � x1x2x1x22 D x21x2 � x1x22, w0

1 D x1; w0

3 D x1x22:

f1w
0

3 � w0

1f3 D �˛ � x1x2x1x1x2x2 � ˇ � x2x1x21x2x2 C ��1ˇ˛ x1 x2 x1 x2 x1 x2

C ��1ı x21x2x2x1x2 � ��1"�x1x2x1x
2
2x1

� ��1."ı C ˛ˇ2/ x1x
2
2x1x2x1 � ��1."2 C ˇ3/x1x32x21:

The first, second, fourth and sixth terms have the leading words w1;w3; and w2 as
subwords. Applying the diminishing substitutions, we obtain

�˛ � x1x2x21x2x2 � ˛2 � x1 x2 x1 x2 x1 x2 C ˛ˇ � x1x22x21x2
�ˇ � x2x1x21x2x2 � ˇ˛ � x2x21x2x1x2 C ˇ2 � x2x1x2x21x2
��1ı x21x2x2x1x2 � ���1ı˛ � x1 x2 x1 x2 x1 x2 � ��1ıˇ � x2x21x2x1x2I

���1"�x1x2x1x
2
2x1 � ��2"�ˇ˛ x2x1x2x1x2x1„ ƒ‚ …C�

�2"�ı x1x
2
2x1x2x1

���2"2�2 x2x1x22x
2
1 � ��2"�."ı C ˛ˇ2/ x22x1x2x

2
1

���2"�."2 C ˇ3/x32x31I
���1."2 C ˇ3/ � x1x32x21 � ��1."2 C ˇ3/� � x2x1x22x

2
1 C ��1."2 C ˇ3/ı � x22x1x2x21

C��1."2 C ˇ3/" � x32x31:

Four of the new terms contain the leading words as subwords:

˛ˇ � x1x2x2x21x2 � �˛2ˇ � x1x22x1x2x1 � ˛ˇ2 � x1x32x21
ˇ˛ � x2x21x2x1x2 � �ˇ˛2 � x2x1x2x21x2 � ˇ2˛ � x22x1x21x2:

ˇ2 � x2x1x2x21x2 � �˛ˇ2 � x2x1x2x1x2x1„ ƒ‚ …�ˇ
3 � x2x1x22x

2
1

���1ıˇ � x2x21x2x1x2 � ��1ıˇ˛ � x2x1x2x21x2 C ��1ıˇ2 � x22x1x21x2;

and five more appearing terms admit the diminishing substitutions:

�˛ˇ2 � x1x32x21 � ˛ˇ2� � x2x1x22x
2
1 C ˛ˇ2ı � x22x1x2x21 C ˛ˇ2" � x32x31I

�ˇ˛2 � x2x1x2x21x2 � ˇ˛3 � x2x1x2x1x2x1„ ƒ‚ …Cˇ
2˛2 � x2x1x22x

2
1 I
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�ˇ2˛ � x22x1x21x2 � ˇ2˛2 � x22x21x2x1 C ˇ3˛ � x22x1x2x21I

��1ıˇ˛ � x2x1x2x21x2 � ���1ıˇ˛2 � x2x1x2x1x2x1„ ƒ‚ …��
�1ıˇ2˛ � x2x1x22x

2
1 I

��1ıˇ2 � x22x1x21x2 � ���1ıˇ2˛ � x22x21x2x1 � ��1ıˇ3 � x22x1x2x21:

Finally,

ˇ2˛2 � x22x21x2x1 � �ˇ2˛3 � x22x1x2x21 � ˇ3˛2 � x32x31
���1ıˇ2˛ � x22x21x2x1 � ��1ıˇ2˛2 � x22x1x2x21 C ��1ıˇ3˛ � x32x31:

Now, we are ready to calculate coefficients at the remaining six words using
values ˇ D �2; � D ˛ C �; ı D ��; " D �3 fixed in (1.23).

x1 x2 x1 x2 x1 x2 W ��1ˇ˛ C ˛2 � ��1ı˛ D �˛ C ˛2 � �˛ D .�C ˛ � �/˛ D 0I
x1x

2
2x1x2x1 W ���1."ı C ˛ˇ2/C ��2"�ı � ˛2ˇ D �2.��� � ˛�C �2 � ˛2/

D �2.� C ˛/.��C � � ˛/ D 0I
x2x1x2x1x2x1„ ƒ‚ … W �

2"�ˇ˛ � ˛ˇ2 C ˇ˛3 � ��1ıˇ˛2

D �2˛.� � ˛/.�� � �2 C ˛2 � �˛/
D �2˛.� � ˛/.� � � � ˛/ D 0I

x2x1x22x
2
1 W ���2"2�2 C ��1."2 C ˇ3/� C ˛ˇ2� � ˇ3 C ˇ2˛2 � ��1ıˇ2˛

D �4.��2 C 2�� C ˛� � �2 C ˛2 � �˛/
D �4.�.� � �/2 C ˛2/ D 0I

x22x1x2x
2
1 W ���2"�."ı C ˛ˇ2/C ��1."2 C ˇ3/ı C ˛ˇ2ı C ˇ3˛
� ��1ıˇ3 � ˇ2˛3 C ��1ıˇ2˛2

D �4.���2 � ��˛ C 2�2� C �˛� C �2˛ � �2� � ˛3 C �˛2/
D �4.���2 C �2� C �2˛ C ˛2.�˛ C �//
D �5.��2 C �� C �˛C ˛2/
D �5.� C ˛/.�� C �C ˛/ D 0

x32x
3
1 W ���2"�."2 C ˇ3/C ˛ˇ2"� ˇ3˛2 C ��1ıˇ3˛ C ��1."2 C ˇ3/"
D �6.�2�� C ˛� � ˛2 C �˛ C 2�2/
D �6.�2�� C ˛�C .�˛ C �/˛ C 2�2/
D 2�7.�� C ˛ C �/ D 0:
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Because both additional compositions reduce to zero, Lemma 1.12 implies
that the system of relations (1.24), (1.25), (1.27) is closed with respect to the
compositions. Theorem 1.2 implies that the set ˙ of all words containing none of
the subwords x21x2; x1x32; x1x2x1x22 forms a basis of BC

2 ; and the natural diminishing
process provides a decomposition of polynomials on that basis. It is easy to see that

˙ D fxm
2 .x1x2x2/

n.x1x2/
kxs
1 jm; n; k; s � 0g:

Remark 1.5 If instead of the free algebra k hXi;we consider the polynomial algebra
k ŒX�; the free commutative algebra, then in this way, each system of relations may
be closed. This process is precisely the Buchberger algorithm that resolves the
equality problem for commutative algebras.

The Gröbner-Shirshov system of relations is not uniquely defined by a given
set of defining relations. First, it depends essentially on the chosen order of words
� : Moreover, even if the order is fixed, there may exist various Gröbner-Shirshov
systems that define the same ideal of relations. The simplest example with x1 >
x2 > x3 is as follows:

khx1; x2; x3 j x1 D 0; x2 D 0i D khx1; x2; x3 j x2 D 0; x1 D �x2i:

Nevertheless, the set of the leading words of the Gröbner-Shirshov system is
uniquely defined by the ideal (or, equivalently, by the initial defining relations),
provided that � is a fixed Deg-Lex order.

Proposition 1.2 If S1 and S2 are different Gröbner-Shirshov systems of a given
ideal I with respect to the same Deg-Lex order, then the sets of the leading words
of relations from S1 and S2 are the same. In particular, the number of elements in a
Gröbner-Shirshov system is an invariant of the ideal.

Proof We note that due to the first property of the Definition 1.5, none of the leading
words may appear twice in the same Gröbner-Shirshov system. Denote by W.S/ the
set of all leading words of a Gröbner-Shirshov system S: We have to demonstrate
that W.S1/ D W.S2/: Let us chose the minimal word w in the set .W.S1/nW.S2//[
.W.S2/ n W.S1//: Let w 2 W.S1/ n W.S2/ and w D f is the relation from S1 with
the leading word w: Because w � f 2 I and S2 is a Gröbner-Shirshov system for I;
it follows that the word w contains some v 2 W.S2/ as a proper subword. In this
case, v does not belong to W.S1/ due to the first property given in Definition 1.5. So
v 2 W.S2/ nW.S1/ and v � w; which contradicts the choice of w: ut

The following proposition shows that to some extent the Gröbner-Shirshov
systems are indifferent to the non-leading terms of the relations.

Proposition 1.3 Let fwt D ft j t 2 Tg be a Gröbner-Shirshov system of an ideal I:
If f 0

t ; t 2 T are arbitrary polynomials such that wt � f 0
t 2 I and all monomials of f 0

t
are less than wt; then fwt D f 0

t j t 2 Tg is a Gröbner-Shirshov system for I:
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Proof By Lemma 1.12 it suffices to check that each composition can be reduced to
zero in free algebra by means of the one-sided diminishing substitutions wt  f 0

t :

Certainly, every composition belongs to I: By induction on the leading word, we
shall show that each polynomial F 2 I satisfies the required property. Because F
belongs to I; its leading word has one of the words wt; t 2 T as a subword. After
the substitution wt  f 0

t ; the obtained polynomial F1 still belongs to I because
wt � f 0

t 2 I: At the same time the leading word of F1 is less than that of F: The
induction applies. ut

Thus, the set of all leading words of a Gröbner-Shirshov system and the set ˙
related to it are the basic Gröbner-Shirshov invariants of an ideal I provided that a
Deg-Lex order � is fixed.

1.3.2 Noncommutative G-Polynomials

Let G be a group. We would like to discuss the construction of the algebra of
noncommutative G-polynomials GhXi; which admit coefficients from G and satisfy
certain commutation rules,

xig D 	i
ggxi; 	

i
g 2 k; g 2 G:

In the above context, we may introduce GhXi as an algebra defined by the generators
xi 2 X; g 2 G and the relations

xig D 	i
ggxi; gh D f ; g; h; f 2 G: (1.28)

The latter group of relations is precisely the table of multiplication of GI that is, for
each pair of elements g; h 2 G we have one relation gh D f where f is the product
of g and h in G:

On the set of all words in X [ G we consider the Hall order with respect to
an arbitrary ordering of the variables with the only restriction that g < x for all
g 2 G; x 2 X: In this case (1.28) are relations of the form (1.16) with the leading
words xig; gh: The set ˙ related to these words is the set of all words that contains
no one of xig; gh as sub-words; that is, ˙ consists of the words gu; where g 2
G; u 2 X�:

To be sure that these words are linearly independent in GhXi; we must check all
possible compositions for (1.28). There are only two types of compositions, which
correspond to the following pairs of relations: xig D 	i

ggxi; gh D f I and gh D f ;
hs D t; where s; t 2 G: We have

	i
ggxi � h � xi � f � 	i

g	
i
hghxi � 	i

f fxi � .	i
g	

i
h � 	i

f /fxi:

In the first step, we apply the diminishing substitutions xih  	i
hhxi and xif  

	i
f fxi; whereas in the second step, gh f : We see that this composition reduces to
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zero only if 	i
gh D 	i

g	
i
hI that is, the map 
i W g 7! 	i

g must be a character of the
group G: Otherwise, in GhXi; we have a relation fxi D 0; which implies xi D 0:

Similarly,

f � s � g � t � s1 � t1;

where we apply the diminishing substitutions fs  s1 and gt  t1 defined by
the relations fs D s1 and gt D t1: As the group G is associative, the equalities
s1 D fs D .gh/s D g.hs/ D gt D t1 are valid in the group G: Hence, s1 � t1 D 0 in
k hG [ Xi:

1.3.3 Skew Group Rings

One may generalize the above construction, assuming that the variables are not
free. In this way, a construction of a skew group ring appears. Let G be a group
acting on an algebra R by linear transformations g W a 7! ag; a; ag 2 R (not
necessarily faithfully). The skew group ring R � G is defined as a space of formal
sums

P
i giai; gi 2 G; ai 2 R; with a multiplication induced by commutation rules

ag D gag; g 2 G; a 2 R:

This multiplication is associative only if G acts by automorphisms, .ab/g D agbg:

g.ab/g D .ab/g D a.bg/ D a.gbg/ D .ag/bg D .gag/bg D g.agbg/:

Of course, it is more or less evident that monomials gai; where g 2 G and ai runs
through a basis fai j i 2 Ig of R; are linearly independent in R � G: Nevertheless, to
be certain, we may apply the Composition Lemma.

In this context, we may introduce the skew group ring R�G as an algebra defined
by the generators ai; i 2 I; g 2 G and the relations

aig D gag
i ; gh D f ; aias D

X

k2I

˛k
i;sak; g; h; f 2 G; i; s 2 I: (1.29)

Here, in the first group of relations, gag
i means a linear combination

P
s ˛

s
i gas;whereP

s ˛
s
i as is a decomposition of ag

i in the basis faigI the second group of relations
is the table of multiplication of GI and the third group of relations is the table of
multiplication of R with coefficients ˛k

i;s; called the structural constants, from the
ground field k.

On the set of all words in faig [ G we consider the Hall order with respect to an
arbitrary ordering of the variables such that g < ai; g 2 G; i 2 I: In this case (1.29)
are relations of the form (1.16) with the leading words aig; gh; aias: The set ˙
related to this system of relations consists of the words gai; where g 2 G; i 2 I:
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There are four types of compositions, and they correspond to the following values
of the word w 0

i vw 0
s D wi � w 0

s D w 0
i � ws appeared in (1.17):

aig � h D ai � gh; aias � g D ai � asg; gh � f D g � hf ; aias � at D ai � asat:

Consider the related compositions one by one. We have

gag
i � h � aif � gh.ag

i /
h � faf

i � f Œ.ag
i /

h � af
i � D 0:

In the first step we apply the diminishing substitutions ag
i h h.ag

i /
h and aif  faf

i ;

whereas in the second step gh  f : This composition reduces to zero because by
definition of the action, the element f D gh acts on R as a superposition of g and hI
that is, af

i equals .ag
i /

h as a linear combination of the ai’s.
Considering that G acts by homomorphisms, the equality ag

i ag
s D .aias/

g;

which is valid in R; implies that the expression ag
i ag

s by application of the table
of multiplication in the basis faig reduces to the linear combination .

P
k ˛

k
i;sak/

gI
that is, ag

i ag
s �

P
k ˛

k
i;sa

g
k : Hence, we have

X

k

˛k
i;sak � g � ai � gag

s �
X

k

˛k
i;sgag

k � gag
i ag

s � g
X

k

˛k
i;sa

g
k � g

X

k

˛k
i;sa

g
k D 0:

The third type of compositions is already considered in the above subsection. Let
us examine the fourth:

X

k

˛k
i;sak � at � ai �

X

k

˛k
s; tak �

X

k

˛k
i;s

X

r

˛r
k;tar �

X

k

˛k
s; t

X

r

˛r
i;kar:

The value in R of the latter linear combination equals aias �at�ai �asat D 0: Because
the ar’s are linearly independent in R; this combination remains zero provided that
the ar’s are considered to be the free variables.

1.3.4 Poincaré-Birkhoff-Witt Theorem

We conclude this section with an elegant proof of the Poincaré-Birkhoff-Witt
theorem due to L.A. Bokut’ based on the Composition Lemma. Recall that a Lie
algebra is a linear space L endowed with a bilinear operation Œ ; � W L˝2 ! L that
satisfies the antisymmetry and Jacoby identities:

Œu; u� D 0I ŒŒu; v�;w�C ŒŒv;w�; u�C ŒŒw; u�; v� D 0:
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If L is a Lie algebra and u; v 2 L; then 0 D ŒuCv; uCv� D Œu; u�C Œu; v�C Œv; u�C
Œv; v� D Œu; v�C Œv; u�: Therefore, the antisymmetry identity implies

Œu; v� D �Œv; u�:

A fundamental example of a Lie algebra appears from an associative algebra R
when in place of the bilinear operation, one considers the commutator Œu; v� D
uv�vu: This Lie algebra is denoted by R.�/: Every Lie algebra is isomorphic to a Lie
subalgebra of a Lie algebra R.�/ if, in place of R; we take the universal enveloping
algebra U.L/ of L: The algebra U.L/ has the following construction in terms of
generators and defining relations.

Let us fix a well-ordered basis B D fui j i 2 Ig of L: Consider this basis to be a
set of free variables and define an associative algebra U.L/ by the relations

uius D usui C Œui; us�; ui > us; (1.30)

where Œui; us� is a linear combination
P

t ˛
t
i;sut that equals Œui; us� in L:

Theorem 1.3 (Poincaré-Birkhoff-Witt) The set of all monomials

un1
1 un2

2 � � � unk
k ; u1 < u2 < : : : < uk; ui 2 B; 1 � i � k

form a basis of U.L/:

Proof On the set of all words in fuig; we consider the Hall order defined by the
fixed above ordering of fuig: In this case, (1.30) are relations of the form (1.16)
with the leading words uius; ui > us: The set ˙ related to (1.30) is precisely the
set of monomials mentioned in the theorem. Therefore, it remains to analyze the
compositions of (1.30). There exists only one type of compositions when in (1.17),
we have

w 0
i vw 0

s  uius � ut D ui � usut; ui > us > ut:

We have

.usui C Œui; us�/ut � ui.utus C Œus; ut�/

D usuiut � uiutus C Œui; us�ut � uiŒus; ut�

� us.utui C Œui; ut�/� .utui C Œui; ut�/us C Œui; us�ut � uiŒus; ut�

D usutui � utuius C usŒui; ut� � Œui; ut�us C Œui; us�ut � uiŒus; ut�

� .utus C Œus; ut�/ui � ut.usui C Œui; us�/C usŒui; ut�

� Œui; ut�us C Œui; us�ut � uiŒus; ut�

D Œus; ut�ui � utŒui; us�C usŒui; ut� � Œui; ut�us C Œui; us�ut � uiŒus; ut�: (1.31)
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Let Œus; ut� DPk ˛
k
s; tuk: In this case, Œus; ut�ui�uiŒus; ut� DPk ˛

k
s; t.ukui�uiuk/: If,

for a given k; we have uk > ui; then ukui � uiuk � Œuk; ui�; whereas if uk < ui; then
ukui � uiuk � �Œui; uk� D Œuk; ui� due to the antisymmetry identity of L: If uk D ui;

then it is still true that ukui � uiuk D 0 D Œuk; ui�: Therefore, in all cases, we have

Œus; ut�ui � uiŒus; ut� �
X

k

˛k
s; tŒuk; ui� D Œ

X

k

˛k
s; tuk; ui� D ŒŒus; ut�; ui�;

where the last two equalities are equalities of linear combinations of the ur’s in L:
In the perfect analogy, we obtain

�utŒui; us�C Œui; us�ut � ŒŒui; us�; ut�;

and

usŒui; ut� � Œui; ut�us � Œus; Œui; ut�� D �ŒŒui; ut�; us� D ŒŒut; ui�; us�:

Applying these equivalences to (1.31), we see that by the diminishing process the
composition reduces to a linear combination

ŒŒui; us�; ut�C ŒŒus; ut�; ui�C ŒŒut; ui�; us�:

This linear combination equals zero in L due to the Jacobi identity. Since the ui’s are
linearly independent in L; it follows that this combinations is still zero in the free
algebra khui j i 2 Ii: ut

1.4 Braid Monoid and Permutation Group

By definition the braid monoid Bn is generated by braids s1; s2; : : : ; sn subject to the
relations

skskC1sk D skC1skskC1; sisk D sksi; ji� kj > 1: (1.32)

As usual, we assume that Bn has the unit element 1 (the empty product of braids),
and B0 D f1g: Considering that the above defining relations are invariant with
respect to the substitutions si  sn�i; 1 � i � n; there exists an automorphism
{ W Bn ! Bn such that {.si/ D sn�i; 1 � i � n: Similarly, an involution � W Bn ! Bn

is well-defined on Bn which acts as follows

.si1si2 � � � sik�1sik /
� D sik sik�1 � � � si2si1 :
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Lemma 1.13 In the braid monoid, the following commutation rules hold

.skskC1 � � � st�1st/ � .srsr�1 � � � sm/ D .srC1sr � � � smC1/ � .skskC1 � � � st�1st/; (1.33)

provided that k � m � r < t; and

.stst�1 � � � skC1sk/ � .srsr�1 � � � sm/ D .sr�1sr�2 � � � sm�1/ � .stst�1 � � � skC1sk/ (1.34)

provided that k � m � 1 � r � t: In the latter formula, if r D m � 1; then we
postulate srsr�1 � � � sm D sr�1sr�2 � � � sm�1 D 1 as the empty products.

Proof If k � i < t; then si commutes with siC2; siC3; : : : ; st: Therefore we have

.skskC1 � � � st/ � si D skskC1 � � � si�1sisiC1si � siC2 � � � st

D skskC1 � � � si�1siC1sisiC1 � siC2 � � � st D siC1 � .skskC1 � � � st/

because siC1 commutes with si�1; si�2; : : : ; sk: Applying the resulting equality to
i D r; r � 1; : : : ; m; we obtain (1.33). The proof of (1.34) is quite similar. ut

Let Sn denote the permutation group of indices f1; 2; : : : ; ng: It is well-known
that Sn is generated by the elementary transpositions ti D .i; i C 1/; 1 � i < n: It
is easy to check that the elementary transpositions satisfy the braid relations (1.32)
with ti in place of si: Therefore, the map si 7! ti can be extended to a homomorphism
! W Bn ! Sn of monoids.

Theorem 1.4 The group Sn as a monoid is defined by the generators ti; 1 � i < n
and the relations

titiC1ti D tiC1titiC1; t2i D 1; titk D tkti; k ¤ i˙ 1: (1.35)

Proof Let QSn be the monoid defined by relations (1.35) with Qti in place of ti:
Because the elementary transpositions satisfy all relations (1.35), there is a natural
homomorphism Q! W Qti 7! ti: We shall demonstrate that Q! is an isomorphism.

For each permutation � 2 Sn; we fix an element �b 2 QSn as follows. If � 2 S0 D
f1g; then �b D 1: Assume that �b is already defined for � 2 Sn�1: If � 2 Sn n Sn�1;
then the permutation �t�.n/t�.n/C1 � � � tn�2tn�1 belongs to Sn�1; and we put

�b D .�t�.n/t�.n/C1 � � � tn�2tn�1/b Qtn�1Qtn�2 � � � Qt�.n/C1Qt�.n/: (1.36)

Using induction on n; it is easy to verify that Q!.�b/ D �; � 2 Sn:

Q!.�b/ D Q!Œ.�t�.n/ � � � tn�1/b�tn�1 � � � t�.n/ D �t�.n/ � � � tn�1 � tn�1 � � � t�.n/ D �:
(1.37)
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Let us demonstrate that each element Q� 2 QSn has a representation Q� D �b for
a suitable � 2 Sn: By definition, we have Qti D tb

i : In particular, Sb
n contains all

generators Qti; 1 � i < n: Hence, it suffices to prove that Sb
n is closed with respect to

the right multiplications by the Qti’s. By induction on n; we shall prove the following
identity

�b Qti D .�ti/
b: (1.38)

If n D 1; then we have 1 � Qt1 D tb
1; and Qt1 � Qt1 D 1 D .t21/b: If � 2 Sn n Sn�1; then the

induction supposition implies

.�t�.n/ � � � tn�1/b Qti D .�t�.n/ � � � tn�1ti/b; 1 � i < n � 1: (1.39)

Consider the following four cases.

1. �.n/ < i < n: In this case, .�ti/.n/ D �.n/:As both the ti’s and Qti’s satisfy braid
relations (1.32), the commutation rules from Lemma 1.13 are valid in QSn and in
Sn: In particular, (1.33) with t n�1; k �.n/; r i�1; m i�1 implies

ti � t�.n/ � � � tn�1 D t�.n/ � � � tn�1 � ti�1;

respectively, (1.34) with t n � 1; k �.n/; r i; m i yields

Qti�1 � Qtn�1 � � � Qt�.n/ D Qtn�1 � � � Qt�.n/ � Qti:

Considering these relations, we have

.�ti/
b D .�tit�.n/ � � � tn�1/b Qtn�1 � � � Qt�.n/ D .�t�.n/ � � � tn�1ti�1/b Qtn�1 � � � Qt�.n/

(1.39)D .�t�.n/ � � � tn�1/b Qti�1Qtn�1 � � � Qt�.n/ D .�t�.n/ � � � tn�1/b Qtn�1 � � � Qt�.n/Qti
D �b Qti:

2. i D �.n/: In this case .�ti/.n/ D �.n/C 1; and we have

.�ti/
b D .�tit�.n/C1 � � � tn�1/b Qtn�1 � � � Qt�.n/C1 � Qt�.n/ � Qt�.n/ D �b Qti:

3. i D �.n/� 1: In this case .�ti/.n/ D �.n/� 1; and tit�.n/�1 D 1; which implies

.�ti/
b D .�tit�.n/�1t�.n/ � � � tn�1/b Qtn�1 � � � Qt�.n/Qt�.n/�1 D �b Qti:

4. 1 � i < �.n/� 1: In this case, again, .�ti/.n/ D �.n/; and Qti commutes with all
Qtk; �.n/ � k < n; whereas ti commutes with all tk; �.n/ � k < n: Additionally,
the inequality i < �.n/ � 1 shows that (1.39) is valid. Using these arguments,
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we have

.�ti/
b D .�tit�.n/ � � � tn�1/b Qtn�1 � � � Qt�.n/ D .�t�.n/ � � � tn�1ti/b Qtn�1 � � � Qt�.n/
D .�t�.n/ � � � tn�1/b QtiQtn�1 � � � Qt�.n/ D .�t�.n/ � � � tn�1/b Qtn�1 � � � Qt�.n/Qti D �b Qti:

Finally, if Q!. Q�/ D Q!. Q�/; Q�; Q� 2 QSn; then Q� D �b; Q� D �b; for suitable
�;� 2 Sn: In view of (1.37), the equality Q!. Q�/ D Q!. Q�/ reduces to � D �:

Therefore we have Q� D �b D �b D Q�: Thus, Q! is an isomorphism.
ut

Definition 1.6 For two indices m; k; let ŒmI k� designates a monotonous cycle
starting with m up to k; for example Œ2I 4� D .2; 3; 4/; whereas Œ4I 2� D .4; 3; 2/:

For m < k we have decompositions in the symmetric group Sn:

ŒmI k� D tk�1tk�2 � � � tmC1tm; ŒkIm� D tmtmC1 � � � tk�2tk�1:

In Bn; we maintain similar notation: ŒkI k� D 1I

ŒmI k� D sk�1sk�2 � � � smC1sm; ŒkIm� D smsmC1 � � � sk�2sk�1; m < k: (1.40)

In these designations, the commutation rules from Lemma 1.13 after the substitution
t t � 1; r r � 1 take the following form:

ŒtI k� � ŒmI r� D ŒmC 1I rC 1� � ŒtI k�; k � m � r < t; (1.41)

ŒkI t� � ŒmI r� D Œm � 1I r � 1� � ŒkI t�; k � m � r � t: (1.42)

Lemma 1.14 Consider an arbitrary partition of the set f1; 2; : : : ; ng into two
subsets K D fk1 < k2 < : : : < krg and I D fi1 < i2 < : : : < in�rg: In the
braid monoid Bn the following relation holds

Œ1I k1�Œ2I k2� � � � Œr I kr� D ŒnI in�r�Œn � 1I in�r�1� � � � ŒrC 2I i2�ŒrC 1I i1�: (1.43)

Proof First, we note that this relation is valid if one of the sets is empty because in
this case, one side is the empty product, and the other side is a product of elements
ŒmIm� D 1:

We perform induction on n: Let Kr
n and I.n�r/

n denote the left- and right-hand sides
of (1.43), respectively. Assume, first, that n 2 K: In this case, we have kr D n; and
Kr

n D .K n fng/r�1
n�1Œr I n�; whereas I.n�r/

n takes the form

.sin�r sin�rC1 � � � sn�1/.sin�r�1sin�r�1C1 � � � sn�2/ � � � .si2si2C1 � � � srC1/.si1si1C1 � � � sr/:
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Using the relations sasb D sbsa; ja � bj > 1; we may move all underlined braids to
the right margin position, yielding I.n�r/

n D I.n�r/
n�1 Œr I n�: The induction supposition

states that .K n fng/r�1
n�1 D I.n�r/

n�1 ; and hence Kr
n D I.n�r/

n :

If n 2 I; then in�r D n; and ŒnI in�r� D 1: Hence, I.n�r/
n D .I n fng/.n�1�r/

n�1 ;

whereas Kr
n D Kr

n�1; and induction applies. ut

1.4.1 Co-sets and Shuffles

Given a group G and a subgroup H; the right co-sets of H in G are classes of the
equivalence relation � 	 � $ ���1 2 H; so that we obtain a partition of the group
G in the form

G D
[

�2A

H�

called the right co-set decomposition. The subset A of G containing a single element
from each right co-set is called a right transversal of H in G:

Let S.r/n be the subgroup of permutations leaving fixed all indices 1; 2; : : : ; r:
Of course, S.r/n is isomorphic to the symmetric group Sn�r: Consider a subgroup
H D Sr 
 S.r/n of Sn generated by Sr and S.r/n :

Definition 1.7 A permutation � 2 Sn is called an r-shuffle if

�.1/ < �.2/ < : : : < �.r/I �.rC 1/ < �.rC 2/ < : : : < �.n/: (1.44)

Below, Shr
n denotes the set of all r-shuffles.

Clearly, if r D n; then the set Shr
n contains only identical permutation. An r-shuffle

� is uniquely defined by the set

Y D f�.1/; �.2/; : : : ; �.r/g

because �.r C 1/ is the smallest number of the interval 1; 2; : : : ; n that does not
belong to YI �.rC 2/ is the next element with the same property, and so on. Thus,
the total number of r-shuffles equals nŠ=rŠ.n � r/Š; the number of all r-element
subsets of f1; 2; : : : ; ng:
Theorem 1.5 The set Shr

n of all r-shuffles is a right transversal of Sr 
 S.r/n in Sn:

Proof The index of the subgroup Sr
S.r/n in the group Sn equals the total number of
r-shuffles: jSnj=.jSrjjS.r/n j/ D nŠ=rŠ.n�r/Š: Therefore, it suffices to check that two r-
shuffles �; � are equivalent only if they are equal to each other. Let ���1 D h 2 H:
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Considering that h 2 Sr 
 S.r/n ; we have

f1; 2; : : : ; rg D fh.1/; h.2/; : : : ; h.r/g

and

frC 1; rC 2; : : : ; ng D fh.rC 1/; h.rC 2/; : : : ; h.n/g:

Due to � D h�; these equalities imply

f�.1/; �.2/; : : : ; �.r/g D f�.1/; �.2/; : : : ; �.r/g (1.45)

and

f�.rC 1/; �.rC 2/; : : : ; �.n/g D f�.rC 1/; �.rC 2/; : : : ; �.n/g: (1.46)

Because � and � are r-shuffles, in both sets of (1.45), the elements increase; hence,
�.1/ D �.1/; : : : ; �.r/ D �.r/: In the perfect analogy, the equality (1.46) implies
�.rC 1/ D �.rC 1/; : : : ; �.n/ D �.n/: ut
Lemma 1.15 The following recurrence relation is valid

Shr
n D Shr

n�1 [ ŒnI r� � Shr�1
n�1; 1 < r < n: (1.47)

Proof If � is an r-shuffle, then the inequalities (1.44) imply that either �.n/ D n
or �.r/ D n: In the former case, clearly � 2 Shr

n�1: Let �.r/ D n: Consider
the element � 0 D ŒrI n��: Obviously, � 0.n/ D n; whereas � 0.i/ D �.i/ when
1 � i < r; and � 0.i/ D �.i C 1/ when r � i < n: In particular, � 0 2 Sn�1 and
inequalities (1.44) with �  � 0; r  r � 1 remain valid; that is, � 0 2 Shr�1

n�1
and � D ŒnI r�� 0 2 ŒnI r�Shr�1

n�1: Thus, the left-hand side of (1.47) is a subset of the
right-hand side.

If r D n; then both sides contain only the identical permutation. If r ¤ n; then
the union of the right-hand side of (1.47) is disjunctive. Due to the Pascal equality,

nŠ

rŠ.n � r/Š
D .n � 1/Š
.r � 1/Š.n� r � 1/Š

�
1

r
C 1

n � r

�

D .n � 1/Š
rŠ.n � r � 1/Š C

.n � 1/Š
.r � 1/Š.n� r/Š

;

both sides have the same number of elements. ut
Lemma 1.16 Each r-shuffle � has a decomposition

� D Œ�.r/I r�Œ�.r � 1/I r � 1� � � � Œ�.2/I 2�Œ�.1/I 1�: (1.48)
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Conversely, if 1 � k1 < k2 < : : : < kr � n; then

� D ŒkrI r�Œkr�1I r � 1� � � � Œk2I 2�Œk1I 1�

is an r-shuffle and �.i/ D ki; 1 � i � r:

Proof To prove (1.48), one may use the recurrence relation (1.47) for obvious
induction on n because � 2 ŒnI r� � Shr�1

n�1 implies �.r/ D n:
Conversely, if we define �.i/ D ki; 1 � i � r; and �.r C 1/ is the smallest

number of the interval 1; 2; : : : ; n that does not belong to fk1; k2; : : : ; krgI �.rC2/ is
the next element with the same property, and so on, then clearly � 2 Shr

n: By (1.48),
we have � D �: ut
Corollary 1.2 The group Sn has the following right and left co-set decompositions:

Sn D
[

1�k1<k2<���<kr�n

Sr 
 S.r/n � ŒkrI r� � � � Œk2I 2�Œk1I 1�;

Sn D
[

1�k1<k2<���<kr�n

Œ1I k1�Œ2I k2� � � � ŒrI kr� � Sr 
 S.r/n :

Proof The former decomposition follows from Theorem 1.5 and Lemma 1.16. The
latter decomposition follows from the former decomposition by application the
involution � 7! ��1 because ŒiI ki�

�1 D ŒkiI i�; 1 � i � r: ut

1.5 Hopf Algebras

We are reminded that a tensor product of two linear spaces A and B over the ground
field k can be defined as a linear space with a basis of formal tensors ai˝ bs; where
ai and bs run through fixed bases of A and B; respectively. In this case, the symbol
˝ is extended to a bilinear map

˝ W A 
 B! A˝ B; a˝ b D
X

i;s

˛iˇs ai ˝ bs;

where a DPi ˛iai and b DPs ˇsbs are decompositions of the elements a; b in the
bases faig and fbsg; respectively.

We shall frequently use a functorial property of the tensor product: If ' W A! A 0
and  W B! B 0 are linear maps, then the map

' ˝  W A˝ B! A 0 ˝ B 0; .' ˝  /.a˝ b/ D '.a/˝  .b/
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is a well-defined linear map, in which case

ker.' ˝  / D A˝ ker C ker' ˝ B: (1.49)

This property implies the following statement: If

a1 ˝ b1 C a2 ˝ b2 C � � � C an ˝ bn D 0; at 2 A; bt 2 B; 1 � t � n;

and b1; b2; : : : ; bn are linearly independent, then at D 0; 1 � t � n: Symmetrically,
if a1; a2; : : : ; an are linearly independent, then bt D 0; 1 � t � n: Indeed, if
b1; b2; : : : ; bn are linearly independent in B; then there exists a linear map ' W B! k
such that '.b1/ D 1; '.b2/ D 0; '.b3/ D 0; : : : ; '.bn/ D 0:We have

0 D .id˝ '/.a1 ˝ b1 C a2 ˝ b2 C � � � C an ˝ bn/ D a1 ˝ 1;

and hence, a1 D 0 because A˝ k Š A: Similarly at D 0; t D 2; 3; : : : ; n:
By a Hopf algebra, we mean an associative algebra H over a ground field k

equipped with a homomorphism

 W H ! H ˝ H; (1.50)

called a coproduct, which is coassociative and has a counit (a homomorphism " W
H !k) and an antipode (an antihomomorphism � W H ! H). We use the Sweedler
notations for the coproduct,

.a/ D
X

.a/

a.1/ ˝ a.2/: (1.51)

In these notations, the coassociativity takes the form

.a/ D
X

.a/

.a.1//˝ a.2/ D
X

.a/

a.1/ ˝.a.2//; (1.52)

whereas the counit and the antipode by definition satisfy

X

.a/

".a.1//a.2/ DP.a/ a.1/".a.2// D aI (1.53)

X

.a/

�.a.1//a.2/ DP.a/ a.1/�.a.2// D ".a/ � 1: (1.54)

For example, each group algebra kŒG� becomes a Hopf algebra if we define

.g/ D g˝ g; ".g/ D 1; �.g/ D g�1; g 2 G:
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1.5.1 Group-Like and Primitive Elements

Definition 1.8 A nonzero element g of a Hopf algebra H is said to be a group-like
element if .g/ D g˝ g.

Proposition 1.4 The set G of all group-like elements is a group. Different group-
like elements are always linearly independent; that is, the group-like elements span
a Hopf subalgebra that is isomorphic to the group algebra kŒG�:

Proof If.g/ D g˝ g; then by definition of the counit, we have ".g/g D gI hence,
".g/ D 1: The definition of the antipode yields g�.g/ D �.g/g D ".g/ � 1 D 1I that
is, g is invertible. If h 2 G; then .gh/ D .g/.h/ D .g˝ g/.h˝ h/ D gh˝ gh;
hence gh 2 G: Finally, 1 ˝ 1 D .1/ D .gg�1/ D .g/.g�1/; and therefore
.g�1/ D g�1 ˝ g�1; which implies g�1 2 G:

Let g D ˛1g1C : : :C ˛ngn; where ˛i 2 k; g; gi 2 G and elements g1; : : : ; gn are
linearly independent. In this case, we have

g˝ g D .g/ D ˛1.g1/C : : :C ˛n.gn/ D ˛1g1 ˝ g1 C : : :C ˛ngn ˝ gn;

or

X

i;s

˛i˛sgi ˝ gs D
X

i

˛igi ˝ gi:

Because the elements gi ˝ gs; 1 � i; s � n are linearly independent in H ˝ H;
we have ˛i˛s D 0 at i ¤ s and ˛2i D ˛i: This statement is possible only if one of
the coefficients ˛i is equal to 1 and the others are zero. Thus, the initial dependence
assumes the form g D g; as required. ut
Definition 1.9 A nonzero element u of a Hopf algebra H is said to be a primitive
element if .u/ D u˝ 1C 1˝ u:

The universal enveloping algebra U.L/ of any Lie algebra L has a Hopf algebra
structure so that all elements from L are primitive. More precisely, according to the
Poincaré-Birkhoff-Witt theorem, the basis of U.L/ consists of the monomials

W D un1
1 un2

2 � � � unk
k ; (1.55)

where u1 < u2 < : : : < uk run through a fixed well-ordered basis of L: The
coproduct is defined as follows:

.un1
1 un2

2 � � � unk
k / D

X

riCsiDni; 1�i�k

�
n1

r1

��
n2

r2

�
� � �
�

nk

rk

�
ur1
1 ur2

2 � � � urk
k ˝ us1

1 us2
2 � � � usk

k ;
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whereas ".W/ D 0 for all non-empty basis monomials W; and ".;/ D 1; where as
usual, the empty monomial is the unit of U.L/: The antipode is given by

�.un1
1 un2

2 � � � unk
k / D .�1/n1Cn2C���Cnk unk

k � � � un2
2 un1

1 :

Of course, the coproduct and the counit, as homomorphisms, are uniquely defined
by.u/ D u˝1C1˝u; ".u/ D 0;whereas the antipode, as an antihomomorphism,
is uniquely defined by �.u/ D �u; u 2 L: In this particular case, the group G is
trivial, G D id:

If the characteristic of the ground field is p > 0; then the restricted universal
enveloping algebra Up.L/ of each restricted Lie algebra L has the structure of Hopf
algebra with the same ; "; � also. Recall that according to the restricted version
of the Poincaré-Birkhoff-Witt theorem the basis of Up.L/ consists of increasing
monomials (1.55) with the additional condition ni < p; 1 � i � k:

Consider an arbitrary Hopf algebra H: The set L of all primitive elements of H is
closed with respect to the Lie brackets Œa; b� D ab � ba:

.Œa; b�/ D .ab� ba/ D .a/.b/�.b/.a/
D .1˝ aC a˝ 1/.1˝ bC b˝ 1/� .1˝ bC b˝ 1/.1˝ aC a˝ 1/
D 1˝ abC b˝ aC a˝ bC ab˝ 1 � 1˝ baC a˝ b

C b˝ aC ba˝ 1
D .ab� ba/˝ 1C 1˝ .ab � ba/ D Œa; b�˝ 1C 1˝ Œa; b�:

In other words, L is a Lie algebra. If k is of characteristic p > 0; then L is closed
with respect to an additional unary operation a 7! ap:

.ap/ D .1˝ aC a˝ 1/p D
pX

kD0

�
p

k

�
a k ˝ ap�k D 1˝ ap C ap ˝ 1;

and L is a restricted Lie algebra with respect to the operations Œa; b�; ap:

Proposition 1.5 A subalgebra P generated by all primitive elements of a Hopf alge-
bra H is isomorphic to the universal enveloping algebra U.L/ if the characteristic of
k is zero; otherwise, it is isomorphic to the restricted universal enveloping algebra.

Proof If.u/ D u˝1C1˝u; then ".u/ �1C".1/ �u D u; which implies ".u/ D 0:
Similarly �.u/ � 1C �.1/ � u D ".u/; implies �.u/ D �u:

Let us fix a well-ordered basis fui j i 2 Ig of L: As observed above, Œui; us� 2 L
for all i; s 2 I: Therefore Œui; us� DPk2I ˛

i;s
k us; and the following relations hold:

uius D usui C
X

k2I

˛k
i;suk; ui > us:
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If char kD p > 0; then up
i 2 L and we have the additional relations

up
i D

X

s2I

˛s
i us; i 2 I:

These relations define a diminishing procedure with respect to the Hall order that
allows one to decompose each word in fui j i 2 Ig into a linear combination of
words with no uius; ui > us (and no up

i if char kD p > 0) as sub-words; see
Lemma 1.11. A word has no uius; ui > us as sub-words if and only if it has the
form (1.55). Additionally, it has no sub-words up

i if and only if in (1.55) we have
ni < p; 1 � i � k: Hence increasing monomials (1.55) (with ni < p if char
kD p > 0/ span P:

It remains to demonstrate that different increasing monomials (1.55) (with ni < p
if char kD p > 0/ are linearly independent. We perform induction on the length.
Assume that all increasing (restricted if p > 0) words of length < M are linearly
independent. Let W D P

i Wi; where the length of W equals M and Wi � W with
respect to the Hall ordering of words. Applying the coproduct to both sides of the
latter equality, we obtain

X

W 0ı W 00D W

W 0 ˝W 00 D
X

i

˛i

0

@
X

W 0

i ı W 00

i D Wi

W 0
i ˝W 00

i

1

A :

In this formula, ı is the commutative product of increasing monomials:

un1
1 un2

2 � � � unk
k ı um1

1 um2
2 � � � umk

k D un1Cm1
1 un2Cm2

2 � � � unkCmk
k :

Cancelling the sums
P

i ˛iWi ˝ 1CPi 1˝ ˛iWi from both sides, we obtain

X

W 0ı W 00D W; W 0 ;W 00¤;
W 0 ˝W 00 D

X

i

X

W 0

i ı W 00

i DWi; W 0

i ;W
00

i ¤;
˛i W 0

i ˝W 00
i :

According to the induction supposition, all different words W 0;W 00;W 0
i ;W

00
i are

linearly independent. Therefore, all tensors in the above equality must be cancelled.
Let W D un1

1
QW; where QW D un2

2 � � � unk
k ; u1 < u2 < : : : < uk: In the left-hand

side, the tensor un1�1
1
QW ˝ u1 is encountered exactly n1 times. In the right-hand side,

tensors of the type un1�1
1
QW ˝ us appear only under decomposition of the coproduct

of words usu
n1�1
1
QW; where us < u1: The requirement of cancelling all terms results

in

un1�1
1
QW ˝ .n1u1 �

X

s2S

˛sus/ D 0;
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which is impossible, as n1 is an invertible element of the ground field k, and the
elements u1; us; s 2 S are linearly independent in H: ut

The group G acts by conjugations on L:

.g�1ug/ D .g�1 ˝ g�1/.u˝ 1C 1˝ u/.g˝ g/ D g�1ug˝ 1C 1˝ g�1ug:

Hence g�1ug D P
i ˛iui; where as above fui j i 2 Ig is a fixed basis of L: These

relations determine the following commutation rules:

uig D
X

i

˛igui; g 2 G; i 2 I:

By Lemma 1.11, the products gW; where g 2 G and W is a (restricted) increasing
monomial, span the subalgebra generated by all primitive and group-like elements.
Moreover, arguments similar to the proof of the above Lemma demonstrate that
these products are linearly independent in H: In other words, the subalgebra
generated by primitive and group-like elements is isomorphic to a smash product
of Hopf algebras k ŒG�#U.L/ or, in the case of a finite characteristic, k ŒG�#Up.L/:
We are reminded that the well-known Kostant-Sweedler theorem states that each co-
commutative Hopf algebra over an algebraically closed field of zero characteristic
is generated by the primitive and group-like elements and is therefore precisely the
smash product k ŒG�#U.L/:

1.5.2 Character Hopf Algebras

Let H be an arbitrary Hopf algebra over a field k with comultiplication, counit ",
and antipode �: Denote by G the group of all group-like elements.

Definition 1.10 Given h; f 2 G; an element a 2 H is called .h; f /-primitive if

.a/ D a˝ hC f ˝ a: (1.56)

If h; f are not specified, the element a is called skew-primitive.

If g 2 G and a is skew-primitive , then both ga and ag are also skew-primitive:

.ga/ D .g/.a/ D ga˝ ghC gf ˝ ga:

An element a is called semi-invariant if ga and ag are proportional for all g 2 G.

Definition 1.11 A Hopf algebra H is referred to as a character Hopf algebra if the
group G of all group-like elements is commutative and H is generated over kŒG� by
skew primitive semi-invariants.
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Remark 1.6 Since the coproduct is a homomorphism of algebras, there exists a
clear procedure to find a coproduct of a word (product) of skew-primitive elements
w D a1a2 � � � an: This coproduct is a sum of 2n tensors wA ˝ w NA; where A runs
through all subsets of f1; 2; : : : ; ng; whereas wA is a word that appears from w upon
replacement of all ai; i 2 A with fi; respectively, and w NA appears from w upon
replacement of all ai; i … A with hi:

Given an Abelian group G; the character group OG is the set of all homomor-
phisms 
 W G ! k� from G to the multiplicative group k� of the ground field k
with the multiplication .
 � 
1/.g/ D 
.g/ � 
1.g/:
Lemma 1.17 Every character Hopf algebra is graded by the character group OG:

H D
M


2 OG
H
; H
 D fa 2 H j g�1ag D 
.g/a for all g 2 Gg:

Proof By definition, every semi-invariant a satisfies the commutation rules
ag D ˛a

gga, ˛a
g 2 k for all g 2 G: In this case, the map 
a W g 7! ˛a

g is a
character of the group G; whereas a 2 H
a

: Moreover, if u D a1a2 � � � an then
gu 2 H
; where 
 D 
a1
a2 � � � 
an ; g 2 G: Hence, the subspaces H
; 
 2 OG span
H:

It remains to verify that nonzero elements ui from different subspaces H
i

are linearly independent. Suppose instead that
Pn

iD1 ˛iui D 0: Conjugation by
any g 2 G yields

P
i 


i.g/˛iui D 0: By the Dedekind theorem on the linear
independence of characters, there exist g1; g2; : : : ; gn 2 G such that the determinant
of the n 
 n matrix jj
i.gs/jj; 1 � i; s � n is not zero. The system of equalitiesP

i ˛iui

i.gs/ D 0; 1 � s � n may be written in matrix form as follows:

.˛1u1; ˛2u2; : : : ; ˛nun/jj
i.gs/jj D 0;

which implies .˛1u1; ˛2u2; : : : ; ˛nun/ D 0; for jj
i.gs/jj is invertible. ut
Lemma 1.18 If.a/ D a˝hCf˝a; h; f 2 G; then ".a/ D 0; �.a/ D �f �1ah�1:

Proof By the definition of the counit, we have ".a/hC ".f /a D a; which implies
".a/ D 0: The antipode axiom yields �.a/h C �.f /a D ".a/ � 1 D 0: Therefore,
�.a/ D ��.f /ah�1 D �f �1ah�1: ut
Lemma 1.19 If a 2 kŒG� is skew-primitive, then a D ˛.h � f /; ˛ 2 k; h; f 2 G:

Proof Let a DPi ˛igi be an .h; f /-primitive element. By definition, we have

X

i

˛igi ˝ gi D
X

i

˛igi ˝ hC f ˝
X

i

˛igi: (1.57)
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Because different group-like elements are linearly independent, there exists a linear
map �i W kŒG� ! kŒG� such that �i.gs/ D ıi

sgs: Applying �i ˝ �i to both sides
of (1.57), we obtain ˛igi ˝ gi D ˛igi ˝ ıgi

h C ıgi
f ˝ ˛igi: This equality implies that

for each i either gi D h or gi D f I that is, a D ˛hC ˇf and

˛h˝ hC ˇf ˝ f D ˛h˝ hC ˇf ˝ hC ˛f ˝ hC ˇf ˝ f ;

which yields 0 D .˛ C ˇ/f ˝ hI that is, ˇ D �˛; and a D ˛.h � f /: ut
Below, Lh;f denotes the space of all .h; f /-primitive elements:

Lh;f D fa j.a/D a˝ hC f ˝ ag; h; f 2 G:

Note that the spaces Lh;f related to different pairs .h; f / are not independent. First,
Lh;f \ Lf ;h contains h � f :

.h � f / D .h � f /˝ hC f ˝ .h� f / D .h � f /˝ f C h˝ .h � f /:

More generally, if u1 D h � f1; u2 D f1 � f2; : : : ; un D fn�1 � f ; then

nX

iD1
ui D .h � f1/C .f1 � f2/C � � � C .fn�1 � f / D h � f :

The following lemma implies, in particular, that all linear dependences between
skew-primitive elements related to different pairs have the above form.

Lemma 1.20 Let ui; 1 � i � n be .hi; fi/-primitive elements of a Hopf algebra H;
and let .hi; fi/ ¤ .hs; fs/ for i ¤ s: If

P
i ui 2 k ŒG�; then ui D ˛i.hi� fi/; 1 � i � n;

where ˛i 2 k:

Proof Due to Lemma 1.19, it suffices to demonstrate that ui 2 k ŒG�; 1 � i � n:
Assume to the contrary that, say, u1 … k ŒG�: We have

u1 D �
nX

iD2
ui C

X

s

˛sgs; gs 2 G; ˛s 2 k:

We may suppose that the elements ui; 1 < i � n are linearly independent modulo
k ŒG�; because otherwise, the number n can be diminished. Applying the coproduct,
we obtain

nX

iD2
.� ui/˝ .hi � h1/C .fi � f1/˝ .� ui/C

X

s

˛sgs ˝ gs D 0: (1.58)

As ui; 1 < i � n are linearly independent modulo k ŒG�; there exists a linear map
� W H ! k such that �.u2/ D 1; �.k ŒG�/ D 0; �.ui/ D 0; 2 < i � n: Applying
id ˝ � to (1.58), we obtain f2 D f1: Similarly, the application of � ˝ id implies



1.5 Hopf Algebras 39

h2 D h1; which contradicts the condition that all pairs .hi; fi/; 1 � i � n are
different. ut

The evident equality gLh;f D Lgh;gf allows one to normalize the skew primitive
elements. Given g 2 G; we define Lg D fa 2 H j.a/ D a˝ 1C g˝ ag D L1;g:
This set forms a linear space, and we call its elements g-primitive, or normalized
skew-primitive if g is not specified. Linear spaces Lg are independent; that is, their
linear span Prin .H/ is a direct sum

Prin .H/
dfD
X

g2G

Lg D
M

g2G

Lg; Lg D fa 2 H j.a/ D a˝ 1C g˝ ag: (1.59)

Indeed, if
P

i ui D 0; ui 2 Lgi ; then by Lemma 1.20, we have gi D ˛i.1�gi/; which
implies

P
i ˛i � 1 �Pi ˛igi D 0; and ˛i D 0; 1 � i � n because distinct group-like

elements are linearly independent.
The space Prin .H/ is invariant under conjugations by the group-like elements:

Lg
h

dfD g�1Lhg D Lg�1hg; g; h 2 G:

In other words, Prin .H/ is an Yetter–Drinfeld module over the Hopf algebra kŒG�:

1.5.3 Free Character Hopf Algebra

Let Y D fyi j i 2 Ig be a set of free variables, and let G be an Abelian group.
We wish to consider Y as a set of free skew-primitive generators of a character Hopf
algebra. To this end, we must introduce the group-like elements hi; fi 2 G and define
a coproduct

.yi/ D yi ˝ hi C fi ˝ yi; .hi/ D hi ˝ hi; .fi/ D fi ˝ fi: (1.60)

According to the definition of a character Hopf algebra, the group G must act on the
space V spanned by the yi’s via diagonal transformations: g�1yig D 	i

gyi; 	
i
g 2 k

or, equivalently, we must postulate commutation rules

yig D 	i
ggyi; 	

i
g 2 k; i 2 I; g 2 G: (1.61)

These commutation rules define the algebra of noncommutative G-polynomials only
if the maps 
i W g 7! 	i

g are characters of the group G; see Sect. 1.3.2. We consider
the algebra of noncommutative G-polynomials GhYi with commutation rules (1.61)
as the free character Hopf algebra with counit ".yi/ D 0; ".g/ D 1; and antipode
S.yi/ D �f �1

i yih�1
i ; S.g/ D g�1; g 2 G; i 2 I:

Thus, to define the free character Hopf algebra, we must associate with each
variable yi a character 
i; and two group elements hi; fi: In this case, the character
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Hopf subalgebra of GhYi generated by Y is G0hYi; where G0 is a subgroup of G
generated by hi; fi; i 2 I:

The Hopf algebra G0hYi is defined by the parameters qik; q 0
ik; that appear in the

commutation rules for hi; fi:

yihk D qikhkyi; yifk D q 0
ikfkyi; i; k 2 I: (1.62)

Moreover, G0hYi as a Hopf algebra is completely defined by the parameters

pik D q�1
ik q 0

ik: (1.63)

Indeed, consider the set of normalized generators xi D h�1
i yi; i 2 I: We have

.xi/ D xi ˝ 1C gi ˝ xi; g�1
k xigk D pikxi; i; k 2 I; (1.64)

where gi D h�1
i fi: In this case, we have the equality of Hopf algebras

G0hYi D G0hXi; and GhYi D GhXi: (1.65)

1.5.4 Brackets

Let 
i W G ! k� be the character associated with the variable yi; i 2 I: For every
word w in Y [ G; let hw denote an element of G that appears from w by replacing
each yi with hi: Similarly, fw denotes a group-like element that appears from w by
replacing each yi with fi; whereas 
w denotes a character that appears from w by
replacing each g 2 G with 1 and yi with 
i: Because both the group G and the
group of characters OG are commutative, the values hw; fw; 
w are independent of
the order of variables yi; g in the word w: For this reason, we may extend 
w on the
set of all homogeneous elements w 2 GhYi in each yi; i 2 I: Similarly, hw; fw have
extensions on the set of all homogeneous polynomials w in each yi 2 Y and each
g 2 G:

In terms of the characters, the commutation rules take the following form:

wg D 
w.g/gw; (1.66)

where w is an arbitrary element that is homogeneous in each yi 2 Y:
Let u; v be homogeneous polynomials in each yi 2 Y and each g 2 G: We define

brackets by the following formula:

Œu; v� D 
v.hu/uv � 
u.fv/vu; Œu; v�� D 
u.h�1
v /uv � 
v.f �1

u /vu: (1.67)
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For example, Œyi; yk� D qkiyiyk � q 0
ikykyi; whereas Œxi; xk� D xixk � pikxkxi because

Œh�1
i yi; h

�1
k yk� D 
k.h�1

i hi/xixk � 
i.h�1
k fk/xkxi D xixk � pikxkxi:

Similarly, Œyi; yk�
� D q�1

ik yiyk � .q 0
ki/

�1ykyi; and Œxi; xk�
� D xixk � p�1

ki xkxi; for

Œh�1
i yi; h

�1
k yk�

� D 
i.hkh�1
k /xixk � 
k.hif

�1
i /xkxi D xixk � p�1

ki xkxi:

We did not define the brackets if u D yiCxi; because yiCh�1
i yi is not homogeneous

with respect to h�1
i 2 G unless hi D 1:

Lemma 1.21 For every homogeneous u; we have

hiŒu; xi� 	 Œu; yi�; hiŒxi; u� 	 Œyi; u�; i 2 I: (1.68)

Here a 	 b is the projective equality: a D ˛b; ˛ 2 k; ˛ ¤ 0:
Proof By the definition (1.67) and the commutation rules (1.62), we have

hiŒu; xi� D 
i.hu/hiuxi � 
u.h�1
i fi/hixiu D 
i.hu/hiuh�1

i yi � 
u.h�1
i fi/yiu

D 
i.hu/

u.hi/

�1uyi � 
u.hi/
�1
u.fi/yiu D 
u.hi/

�1Œu; yi�:

Similarly,

hiŒxi; u� D hixiu � 
i.fu/

u.hi/

�1uhixi 	 Œyi; u�:

ut

1.5.5 Defining Relations

If R1;R2; : : : ;Rm are elements from the free character Hopf algebra GhYi; then

Ghy1; y2; : : : ; yn jj R1;R2; : : : ;Rmi dfD GhYi=Id.R1;R2; : : : ;Rm/;

the G-algebra defined by generators y1; : : : ; yn and relations Ri D 0; 1 � i � m
retains the Hopf algebra structure only if the ideal J generated by the Ri’s is a Hopf
ideal.

Definition 1.12 A subspace J of a Hopf algebra (or more generally of a coalgebra)
H is said to be coideal if.J/ � J˝HCH˝ J and ".J/ D 0: It is antipode stable
if �.J/ � J: An ideal that is an antipode stable coideal is called a Hopf ideal.

Lemma 1.22 Each coideal J of k ŒG� is spanned by its skew-primitive elements.
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Proof Assume, to the contrary, that u D Pm
iD1 ˛igi 2 J and the element u is not a

linear combination of skew-primitive elements from J: Among all those elements,
we choose the one with the minimal m: If m D 1; then 0 D ".u/ D ˛1 and u D 0:

Suppose that m > 1:We have

g1 �
mX

iD2
ˇigi; .mod J/; gi 2 G; ˇi D �˛�1

1 ˛i; 2 � i � m:

The elements gi; 1 < i � m are linearly independent by modulo J because
otherwise, one can diminish the number m: Applying the coproduct, we obtain

g1 ˝ g1 �
mX

iD2
ˇigi ˝ gi .mod J ˝ k ŒG�C k ŒG�˝ J/: (1.69)

Because gi; 1 < i � m are linearly independent modulo J; there exists a linear map
� W k ŒG� ! k such that �.g2/ D 1; �.J/ D 0; �.gi/ D 0; 2 < i � m: Applying
id ˝ � to (1.69), we obtain g1�.g1/ � ˇ2g2 (mod J/; which implies

�.g1/ D ".g1�.g1// D ".ˇ2g2/ D ˇ2
because ".J/ D 0: Thus, g1 � g2 2 J: Now, the element u 0 D u � ˛1.g1 � g2/ 2 J
has a representation u 0 D .˛2 C ˛1/g2 CPm

iD3 ˛igi with m � 1 summands. Hence
u 0 is a linear combination of skew-primitive elements from J: In this case, so is
u D u 0 C ˛1.g1 � g2/: ut

At first glance, to introduce a character Hopf algebra defined by the relations
Ri D 0; 1 � i � m; it looks reasonable to consider the smallest Hopf ideal that
contains the Ri’s. However, the smallest Hopf ideal does not always exist because
the intersection of two Hopf ideals is not necessarily a Hopf ideal. For example, if
hi D fi D 1; i D 1; 2 then the intersection of two Hopf ideals Id.y1/\ Id.y2/ is not a
Hopf ideal. We shall discuss when an ideal generated by a given system of relations
is automatically a Hopf ideal.

Proposition 1.6 An ideal generated by an antipode stable coideal is a Hopf ideal.

Proof Let S be an antipode stable coideal. An arbitrary element T of the ideal J
generated by S is a sum T D P

i aisibi; ai; bi 2 H; si 2 S: We have �.T/ DP
i �.bi/�.si/�.ai/ 2 J as � is an antihomomorphism. Further,

.T/ D
X

i

.ai/.si/.bi/ 2 H.S˝ H C H ˝ S/H 2 J ˝ H C H ˝ J;

and ".T/ DPi ".ai/".si/".bi/ D 0: ut
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Proposition 1.7 Each ideal generated by skew-primitive elements is a Hopf ideal.

Proof If R1; R2; : : : ; Rm are skew-primitive, then by Lemma 1.18 the elements
fRih; f ; h 2 G; 1 � i � m span an antipode stable coideal, and Proposition 1.6
applies. ut

1.5.6 Combinatorial Rank

The majority of the known examples of character Hopf algebras are defined by
skew-primitive relations. Nevertheless, a Hopf ideal is not always generated by the
skew-primitive elements as ideal. The simplest example is given below.

Example 1.3 Consider the free character Hopf algebra in two variables defined by
parameters p11 D p22 D p21 D �1; p12 D 1 ¤ �1: Let I be an ideal of Ghx1; x2i
generated by x21; x22; x1x2x1x2 C x2x1x2x1: Then, I is a Hopf ideal, which is not
generated by its skew-primitive elements.

Nevertheless, the skew-primitive relations play a permanent role in the construc-
tion of character Hopf algebras due to the following important statement.

Theorem 1.6 Every nonzero Hopf ideal of a character Hopf algebra has a nonzero
skew-primitive element.

Recall that in Definition 1.3, we have defined a constitution (multidegree) of a
word u in X D fxi j i 2 Ig as a family of nonnegative integers fmi j i 2 Ig such that u
has mi occurrences of xi: We consider the set D of all families fmi j i 2 Ig where mi

are natural numbers or zero as a partially ordered additive monoid

fmi j i 2 Ig C fni j i 2 Ig D fmi C ni j i 2 Ig;
fmi j i 2 Ig � fni j i 2 Ig if and only if mi � ni; i 2 I;

whereas the constitution D.u/ is considered to be a degree of the word u:We extend
this degree on all G-monomials via D.gu/ D D.u/I that is, we set D.G/ D 0:

Clearly, the formula D.uv/ D D.u/ C D.v/ is valid for G-monomials u; v: The
coproduct of a monomial has a decomposition.u/ DP u.1/˝u.2/ where u.1/; u.2/
are monomials such that D.u/ D D.u.1//C D.u.2//:

Let H be an arbitrary character Hopf algebra generated over k ŒG� by skew-
primitive elements ai; i 2 I: There exists a Hopf algebra homomorphism

� W GhXi ! H; �.xi/ D ai; i 2 I; �.g/ D g; g 2 G: (1.70)

For each � 2 D; let H� denotes a space generated by the values in H of all
monomials that have D-degree less than or equal to �; and let H�

� denotes a
space generated by the values of all monomials that have D-degree less than �:
In particular, H0 D kŒG�; whereas H�

0 D 0:
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Definition 1.13 We say that a nonzero element S is D-minimal with respect to a
subset J � H if S 2 H� \ J and H�

� \ J D 0 for some positive � 2 D:

Because D as a partially ordered set satisfies the Ascending Chain Condition,
Theorem 1.6 follows from the more general statement below.

Lemma 1.23 Each D-minimal element in a nonzero coideal J of H is a linear
combination of skew-primitive elements from J.

Proof For all � > 0; we have k ŒG� \ J � H�
� \ J: Therefore, if k ŒG� \ J ¤ 0;

then all D-minimal elements of J belong to kŒG�; and we may apply Lemma 1.22 to
k ŒG� \ J: Thus, we may assume k ŒG� \ J D 0I that is, all group like elements are
linearly independent modulo J:

Let d be a D-minimal element in J: The element d has a decomposition

d D ˛wC
mX

iD1
˛iwi C b; (1.71)

where ˛i; ˛ ¤ 0; b 2 H�
� and w; wi are G-monomials of D-degree �: Among all of

the D-minimal elements in J let us choose one that does not have the representation
required in the theorem and has the decomposition (1.71) with the smallest m: Let
us show that in the decomposition (1.71) of this element all wi; 1 � i � m are
linearly independent modulo J ˚ H�

� ; provided that m > 0:

Indeed, the dependence

mX

iD1
ˇiwi D d1 C b1; ˇi ¤ 0; d1 2 J; b1 2 H�

�

implies

ˇ�1
1 d1 D w1 C

mX

iD2
ˇ�1
1 ˇiwi � ˇ�1

1 b1:

Therefore d1 has representation (1.71) with smaller mI that is, there exists the
representation for d1 required by the theorem. Moreover,

d � ˇ�1
1 ˛1d1 D ˛wC

mX

iD2
.˛i � ˇ�1

1 ˇi˛1/wi C b � ˇ�1
1 ˛1b1;

which diminishes m:
The coproduct of G-monomials has the form.w/ D w˝hCg˝wCˇ; .wi/ D

wi˝hiCgi˝wiCˇi;where ˇ; ˇi 2 H�
� ˝H�

� ; and g; h; gi; hi are group-like elements.
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Therefore, we may write

.d/� d˝ h � g˝ d �
mX

iD1
˛iwi ˝ .hi � h/C

mX

iD1
˛i.gi � g/˝ wi (1.72)

modulo H�
� ˝ H�

� : Because d belongs to J; this statement implies

mX

iD1
˛iwi˝ .hi� h/C

mX

iD1
˛i.gi� g/˝wi 2 H�

� ˝H�
� C J˝HCH˝ J: (1.73)

Consider the canonical linear projections ' W H ! H=.JCH�
� / and  W H ! H=J:

Applying the map ' ˝  to relation (1.73), we obtain

mX

iD1
˛i'.wi/˝  .hi � h/ D 0: (1.74)

Since '.wi/ are linearly independent in H=.J C H�
� / and  .hi � h/ are nonzero in

H=J; provided that hi ¤ h; we have that all coefficients ˛i with hi ¤ h are equal to
zero. Likewise applying the map  ˝ ' to (1.73), it follows that ˛i D 0; provided
that gi ¤ g: With the help of these equalities, the relation (1.72) implies

.d/� d˝ h � g˝ d 2 .H�
� ˝ H�

� /\ .J ˝ H C H ˝ J/ D 0;

for J \H�
� D 0: Thus d is skew-primitive, which contradicts the choice of d: ut

Remark 1.7 In Theorem 1.6, we do not suppose that H is D-homogeneous.

Although not every character Hopf algebra is defined by skew-primitive relations,
Theorem 1.6 provides a way to define any Hopf algebra H step-by step using skew-
primitive relations.

Denote by J the kernel of � W GhXi ! H. By Theorem 1.6 the Hopf ideal J has
nonzero skew primitive elements. Let J1 be an ideal generated by all skew primitive
elements of J: Clearly, J1 is a Hopf ideal. Now, consider the Hopf ideal J=J1 in
the quotient Hopf algebra GhXi=J1: Again, by Theorem 1.6, either J1 D J or J=J1
has nonzero skew primitive elements. Denote by J2=J1 an ideal generated by all
skew primitive elements of J=J1; and by J2; denote its pre-image with respect to the
natural homomorphism GhXi ! GhXi=J1: In continuation of this process, we will
find a strictly increasing, finite or infinite chain of Hopf ideals of GhXi

0 D J0  J1  J2  : : :  Js  : : : : (1.75)

In this chain, the ideal Js=Js�1 of GhXi=Js�1 is generated by skew-primitive
elements.
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Lemma 1.24

1[

sD1
Js D J:

Proof Given � D fni j i 2 Ig 2 D; define j� j D P
i2I ni; and set GhXis DP

j� j�s GhXi� : Because
S1

sD0.GhXis\ J/ D J; it suffices to demonstrate that for all
s we have

GhXis \ J � JsC1: (1.76)

We perform induction on s: If s D 0; then GhXis D k ŒG�: Lemma 1.22 applied to
the coideal J \ k ŒG� implies (1.76) with s D 0; for J1 contains all skew-primitive
elements from J \ k ŒG�:

Assume that (1.76) holds for a given s: Let H 0 D GhXi=JsC1: In H 0 consider the
coideal J 0 D J=JsC1: If j� j D sC 1; then .H 0/�� � GhXis=JsC1; which implies

.H 0/�� \ J 0 � .GhXis \ J/C JsC1=JsC1 D 0:

In other words, according to Definition 1.13, the space .H 0/� \ J 0 consists of D-
minimal elements with respect to J 0: With Lemma 1.23 applied to the Hopf algebra
H 0 and coideal J 0;we obtain that H 0

�\J 0 is contained in the space spanned by skew-
primitive elements of J 0: The skew-primitive elements of J 0 belong to JsC2=JsC1;
hence H 0

� \ J 0 � JsC2=JsC1: Considering that H 0
� D GhXi�=JsC1; we have GhXi� \

J � JsC2: Because � is an arbitrary element with j� j D sC 1; this statement yields
GhXisC1 \ J � JsC2: ut
Definition 1.14 The length �.H/ of chain (1.75) is called a combinatorial rank of
the character Hopf algebra H with respect to the generators ai; i 2 I:

Remark 1.8 The arguments of Lemma 1.23 remain valid even if the skew-primitive
generators are not semi-invariants. Hence, Theorem 1.6 is valid for (and Def-
inition 1.14 may be applied to) an arbitrary Hopf algebra generated by the
skew-primitive elements.

1.5.7 Noncommutative Differential Calculi

A differential calculus on an associative unitary algebra R is defined by a linear map
d from R into a .R;R/-bimodule M such that the Leibniz formula

d.uv/ D du � v C u � dv
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is valid. The map d is called a differential. If R has a distinguished (finite or infinite)
set of generators xi; i 2 I such that M is freely generated by the differentials
dxi; i 2 I as a right module then the calculus is called right coordinate, originally a
first order differential calculus with right partial derivatives, whereas the generators
may be considered coordinate “noncommutative functions”. In this case, we may
define on R the right partial derivatives @i W R! R; i 2 I according to the formula
du DPi dxi � @i.u/: The bimodule structure defines commutation rules

v � dxi D
X

s

dxs � A.v/si ; v 2 khXi; i 2 I: (1.77)

Applying this relation to the product of two elements, we have

X

t

dxtA.uv/
t
i D .uv/dxi D u

X

s

dxs � A.v/si D
X

s

X

t

dxtA.u/
t
sA.v/

s
i :

Thus, the linear maps At
i W R! R satisfy the following comultiplication formula

A.uv/ti D
X

s

A.u/ts A.v/si ; u; v 2 khXi; t; i 2 I: (1.78)

Since d.uv/ DPi dxi @i.uv/; it follows that the Leibniz formula yields

d.uv/ D
X

i

dxi @i.u/�vCu
X

k

dxk @k.v/ D
X

i

dxi @i.u/�vC
X

i

X

k

dxi A.u/ik @k.v/I

that is, the Leibniz formula reduces to the following relations for the partial
derivatives:

@i.uv/ D @i.u/v C
X

k

A.u/ik @k.v/; u; v 2 khXi; i 2 I: (1.79)

Conversely, if maps At
i that satisfy (1.78) are given, then commutation

rules (1.77) uniquely define the structure of a left module on the free right R-
module generated by symbols dxi; i 2 I; whereas maps @i W R ! R; i 2 I define a
right coordinate differential calculus provided that (1.79) holds.

The free algebra khXi considered as a subalgebra of the free character Hopf
algebra GhYi; has a right coordinate differential calculus related to the coproduct,
where, as above X; are the normalized skew-primitive generators xi D h�1

i yi; i 2 I:

Proposition 1.8 A right coordinate calculus set up by commutation rules (1.77)
with A.u/si D ıs

i 

u.gs/u is well-defined on khXi: The partial derivatives connect

this calculus with the coproduct on GhXi via

.u/ � u˝ 1C
X

i

gi@i.u/˝ xi .mod GhXi ˝�2/; (1.80)
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where � is an ideal of khXi generated by xi; i 2 I: The Leibniz formula for right
partial derivatives takes the form

@i.uv/ D @i.u/ � v C 
u.gi/u � @i.v/ with @i.xk/ D ık
i : (1.81)

Proof Because .xi/ D xi ˝ 1 C gi ˝ xi and  is a homomorphism of algebras,
we have .khXi/ � GhXi ˝ khXi: The space GhXi ˝ �2 is an ideal of the
algebra GhXi ˝ khXi; so that (1.80) is an equality in the related quotient algebra.
Equation (1.80) uniquely defines linear maps @i W k hXi ! k hXi: Let us verify that
these linear maps satisfy (1.81). We have, first, @i.xk/ D ık

i ; and then,

.uv/ D .u/.v/ � .u˝ 1C
X

i

gi@i.u/˝ xi/.v ˝ 1C
X

i

gi@i.v/˝ xi/

� uv ˝ 1C
X

i

ugi@i.v/˝ xi C
X

i

gi@i.u/v ˝ xi

D uv ˝ 1C
X

i

gi.

u.gi/u@i.v/C @i.u/v/˝ xi;

which demonstrates (1.81).
The maps At

i defined in the proposition satisfy (1.78):

A.uv/ti D ıi
t 


uv.gt/ D ıi
t 


u.gt/

v.gt/ D

X

s

ıs
t 


u.gt/ı
i
s 


v.gs/ D
X

s

A.u/tsA.v/
s
i :

The relations (1.79) for the commutation rules (1.77) with A.u/si D ıs
i 


u.gs/u take
the form (1.81). Hence, d.u/ DPi @i.u/dxi is a required differential calculus. ut

If the module of differentials M is freely generated by dxi; i 2 I as a left module,
then the calculus is called left coordinate. In this case, we may define on R left
partial derivatives @�

i W R! R; i 2 I according to the formula du DPi @
�
i .u/ � dxi:

The bimodule structure defines commutation rules

dxi � u D
X

s

B.u/si � dxs; u 2 khXi; i 2 I: (1.82)

Applying this relation to the product of two elements uv, we see that Bs
i satisfy the

same comultiplication formula

B.uv/si D
X

k

B.u/ki B.v/sk; u; v 2 khXi; i; s 2 I: (1.83)

The Leibniz formula reduces to relations for the left partial derivatives

@�
i .uv/ D

X

s

@�
s .u/B.v/is C u @�

i .v/; u; v 2 khXi; i 2 I: (1.84)
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Proposition 1.9 A left coordinate calculus d� set up by commutation rules (1.82)
with B.u/si D ıs

i 

s.gu/ u is well-defined on khXi: The left partial derivatives connect

the calculus d� with the coproduct on GhXi via

.u/ � gu ˝ uC
X

i

gug�1
i xi ˝ @�

i .u/ .mod G�2 ˝ khXi/; (1.85)

where u is a homogeneous polynomial in each xi; i 2 I; and as above � is the
ideal of khXi generated by xi; i 2 I: The Leibniz formula in terms of the left partial
derivatives takes the form

@�
i .uv/ D 
i.gv/@

�
i .u/ � v C u � @�

i .v/ with @�
i .xs/ D ıs

i : (1.86)

Proof The space G�2˝khXi is an ideal of the algebra GhXi˝khXi;whereas (1.85)
is an equality in the related quotient algebra. Equality (1.85) uniquely defines linear
maps @�

i W khXi ! khXi; i 2 I: These linear maps satisfy (1.86). Indeed, for
homogeneous polynomials u; v 2 khXi; we have

.uv/ D .u/.v/ � .gu ˝ uC
X

i

gug�1
i xi ˝ @�

i .u//


 .gv ˝ v C
X

i

gvg
�1
i xi ˝ @�

i .v//

� gugv ˝ uv C
X

i

gugvg
�1
i xi ˝ u@�

i .v/C
X

i

gug�1
i xi gv ˝ @�

i .u/v

D guv ˝ uv C
X

i

guvg
�1
i xi ˝ .
i.gv/@

�
i .u/ v C u @�

i .v//;

which demonstrates (1.86), as @�
i .xk/ D ık

i clearly holds.
The maps Bs

i defined in the proposition satisfy (1.83):

B.uv/si D ıs
i 


s.guv/ uv D
X

k

ık
i 


i.gu/u ı
s
k 


k.gv/v D
X

k

B.u/ki B.v/sk:

The relations (1.84) for the commutation rules (1.82) with B.u/si D ıs
i 


s.gu/ u take
the form (1.86). Hence, d�.u/ D P

i @
�
i .u/d

�xi is a required differential calculus.
ut

Remark 1.9 We must stress that, in general, d and d� are different differentials
defined on khXi: They may be identified only if pispsi D 1 for all i; s 2 I:

Let ' W R ! S be an epimorphism of algebras, and assume that R has a right
(left) coordinate calculus d with respect to generators xi; i 2 I: We would like
to understand when the homomorphism ' induces a right (left) coordinate calculus
with respect to the generators ai D '.xi/ 2 S; so that the homomorphism' becomes
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a homomorphism of differential algebras:

'.@i.u// D @i.'.u//: (1.87)

Definition 1.15 An ideal J of an algebra R with right (left) coordinate differential
calculus is said to be differential if @i.J/ � J; i 2 I:

Lemma 1.25 An epimorphism ' W R! S induces a right .left/ coordinate calculus
with respect to the generators ai D '.xi/ 2 S so that the homomorphism ' becomes
a homomorphism of differential algebras if and only if J D ker' is a differential
ideal.

Proof If we take u 2 ker'; then (1.87) implies @i.u/ 2 ker'; i 2 I:
Conversely, if J is a differential ideal, then the formula N@i.'.u// D '.@i.u//

correctly defines the linear maps N@i W S ! S because an equality '.u/ D '.v/

implies u� v 2 J and @i.u/� @i.v/ 2 @i.J/ � J; which yields '.@i.u// D '.@i.v//:

In particular, we have N@i.ak/ D '.@i.xk// D ık
i :

The Leibniz formula (1.79) implies @i.uxs/ D A.u/si ; and hence A.J/is � J:
For this reason, the formula NA.'.u//is D '.A.u/is/ correctly defines the linear maps
NAi

s W S! S:Both the comultiplication formula (1.78) and the Leibniz formula (1.79)
with @ N@; Ai

s  NAi
s remain valid, and they define the required differential calculus

on S:
Similarly, in the case of a left coordinate calculus, the Leibniz formula (1.84)

implies @�
i .xsu/ D B.u/si and B.J/si � J: Therefore, the formula NB.'.u//si D

'.B.u/si / correctly defines the linear maps NBs
i W S ! S: Both the comultiplication

formula (1.83) and the Leibniz formula (1.84) with @�  N@; Bs
i  NBs

i remain valid,
and they define the required differential calculus on S: ut

If H is an arbitrary character Hopf algebra generated by normalized skew-
primitive semi-invariants ai; i 2 I and group G; then there exists a Hopf algebra
homomorphism

� W GhXi ! H; �.xi/ D ai; �.g/ D g; i 2 I; g 2 G: (1.88)

Let A be a subalgebra of H generated by the elements ai; i 2 I.

Proposition 1.10 If ker � � G�2; then � induces a right coordinate calculus of
A with respect to the generators ai so that the restriction of � on k hXi becomes
a homomorphism of differential algebras. In particular, the partial derivatives
connect the induced calculus with the coproduct on H via

.u/ � u˝ 1C
X

i

gi @i.u/˝ ai .mod H ˝�2
a/; (1.89)

where�a D �.�/ is an ideal of A generated by ai; i 2 I: The Leibniz formula (1.81)
also remains valid for A:
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Proof By Lemma 1.25, it suffices to check that ker � \ khXi is a differential ideal.
If u 2 ker � \ khXi; then by (1.80) there exists W 2 GhXi ˝�2 such that

.u/ D u˝ 1C
X

i

gi @i.u/˝ xi CW 2 ker � ˝GhXi CGhXi ˝ ker �: (1.90)

Consider a projection � W GhXi ! GCG � X that acts identically on GCG � X and
�.G�2/ D 0: Applying id˝ � to (1.90), we obtain

u˝ 1C
X

i

gi @i.u/˝ xi 2 ker � ˝ .GCG � X/: (1.91)

Let �i be a linear map �i W G C G � X ! k such that �i.xk/ D ıs
k; k; s 2 I; and

�i.g/ D 0; g 2 G; �i.hxs/ D 0; h 2 G; h ¤ 1; s 2 I: Applying id˝ �i to (1.91),
we have gi@i.u/ 2 ker �; which implies @i.u/ 2 ker �: ut

Given h 2 G; consider a linear space GhXih spanned by all monomials gu; g 2 G
such that ggu D h; where gu is a group-like element that appears from the word u
under the substitutions xi  gi; i 2 I: In this way the free Hopf algebra GhXi
becomes a G-graded algebra:

GhXi D
M

h2G

GhXih: (1.92)

In particular, to define a linear map, it suffices to consider only homogeneous
elements with respect to the above grading.

Lemma 1.26 If ker � � G�; then H maintains the G-grading (1.92). Here G�
denotes the ideal of GhXi generated by xi; i 2 I:

Proof We must demonstrate that ker � is a homogeneous ideal with respect to (1.92).
Let U D Pm

kD1 ˛kfkuk 2 ker �; where hk D fkguk ; 1 � k � m are different group-
like elements, fk 2 G: We have,

.U/ 2 ker � ˝ GhXi C GhXi ˝ ker �: (1.93)

Consider a projection � W GhXi ! kŒG� that acts identically on G and �.G�/ D 0:
Applying �˝ id to (1.93), we obtain

mX

kD1
˛khk ˝ fkuk 2 kŒG�˝ ker � (1.94)

because for each G-monomial fu we have .fu/ 2 fgu ˝ fu C G� ˝ GhXi:
Considering that hk; 1 � k � m are linearly independent, there exist linear maps
�k W kŒG� ! k; such that �k.hs/ D ıs

k; 1 � k; s � m: The application of �i ˝ id
to (1.94) yields ˛ifiui 2 ker �; 1 � i � m; as required. ut



52 1 Elements of Noncommutative Algebra

Proposition 1.11 If ker � � G�2; then � induces a left coordinate calculus of
A with respect to the generators ai; so that the restriction of � on khXi becomes
a homomorphism of differential algebras. In particular, the partial derivatives
connect the induced calculus with the coproduct on H via

.u/ � gu ˝ uC
X

i

gug�1
i xi ˝ @�

i .u/ .mod G�2
a ˝ A/; (1.95)

and the Leibniz formula (1.86) remains valid for A; where u is a homogeneous
element with respect to grading (1.92).

Proof According to Lemma 1.25, we must verify that ker � \ khXi is a differential
ideal. If u 2 ker � \ khXi is a homogeneous element with respect to (1.92), then
by (1.85) there exists W 2 G�2 ˝ khXi such that

.u/ D gu˝uC
X

i

gug�1
i xi˝@�

i .u/CW 2 ker �˝GhXiCGhXi˝ker �: (1.96)

Applying id˝ � to (1.96), where � is defined in the proof of Proposition 1.10, we
obtain

gu ˝ uC
X

i

gug�1
i xi ˝ @�

i .u/ 2 .GC G � X/˝ ker �: (1.97)

Consider a linear map �i W GCG � X ! k; such that �i.gug�1
i xi/ D 1; and �i.G/ D

�i.hxs/ D 0 if h ¤ gug�1
i or s ¤ i:Applying �i˝ id to (1.97), we have @�

i .u/ 2 ker �:
ut

Definition 1.16 An element a 2 A is called a constant with respect to differential
calculus d W A! M if d.a/ D 0: Of course, if d is a right (left) coordinate calculus,
then this statement is equivalent to the equalities @i.u/ D 0; i 2 I (respectively
@�

i .u/ D 0; i 2 I/:

Lemma 1.27 If ker � � G�2; then each skew-primitive element u 2 �2
a is a

constant with respect to both calculi.

Proof It follows from (1.89) and (1.95). ut
The converse statement is not valid. Indeed, the Leibniz formula implies that the set
C.H/ of all constants with respect to the right coordinate calculus d is a subalgebra.
Similarly, the set of all constants C�.H/ with respect to d� is a subalgebra too.
However, sets of skew-primitive elements almost never form subalgebras.

Lemma 1.28 In any Hopf algebra, a product of two nonzero normalized skew
primitive elements u; v with gu ¤ gv is not skew-primitive.
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Proof Let.u/ D u˝ 1C gu˝ u; .v/ D v˝ 1C gv˝v If uv is skew-primitive,
then for suitable f ; h 2 G; we have

0 D .uv/�uv˝h� f ˝uv D uv˝.1�h/Cguv˝uCugv˝vC.gugv� f /˝uv:

If gugv ¤ f ; then the element uv is a linear combination of three skew-primitive
elements .1 � h/; u; v: As all of them are normalized, uv is also normalized; that is,
h D 1: In this case, uv D ˛uC ˇv and we have

.guv C ˛.gugv � f //˝ uC .ugv C ˇ.gugv � f //˝ v D 0:

By (1.59) the elements u; v are linearly independent. Hence guv C ˛.gugv � f / D 0;
ugv C ˇ.gugv � f / D 0. In particular ˛ ¤ 0; ˇ ¤ 0: However in this case (1.59)
implies that ˛uC ˇv is skew primitive only if gu D gv:

If gugv D f ; then u; v; 1�h must be linearly dependent, say, ˛uCˇvC�.1�h/
D 0. Decomposition (1.59) implies that this requirement can be satisfied only if
either ˛ D 0 or ˇ D 0: Let, for example, ˛ ¤ 0 and ˇ D 0: In this case we obtain

.uv � ˛�1�guv/˝ .1 � h/C ugv ˝ v D 0;

which is impossible due to decomposition (1.59). ut

1.6 Filtrations

Let R be a linear space. Consider a basis B of R: A subspace S � R is said to
be admissible with respect to B if S is spanned by a subset b.S/ of B: A sum of
admissible subspaces is admissible, b.

P
	 S	/ D [	b.S	/; and an intersection of

admissible subspaces is also admissible: b.\	S	/ D \	b.S	/:
Below, a linear space R is said to be filtered if there is established an increasing

chain of linear subspaces

f0g D R.�1/ � R.0/ � R.1/ � : : : � R.n/ � : : : ;

such that
S

i R.i/ D R: The filtration defines a degree function d W R ! N [ f�1g
by

d.x/ D minfi j x 2 R.i/g:

We may choose a basis BR of R so that all spaces R.n/ are admissible with respect to
BR: To this end, we choose a basis BR

.0/ of R.0/; then extend it to a basis BR
.1/ of R.1/

and so on.
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With every filtered space R; a graded space gr R is associated as follows:

gr R D
1M

iD0
gri R;

where gri R; i � 0 is the quotient space R.i/=R.i�1/: A linear map ' W R ! T of
filtered spaces is a homomorphism of filtered spaces or a filtered linear map if

'.R.i// � T.i/; i � 0: (1.98)

A homomorphism induces a linear map gr ' of associated graded spaces:

gr' W uC R.n�1/ 7! '.u/C T.n�1/; u 2 R.n/;

or, equivalently, in terms of operators acting on R.n/;

�ngr' D '�n; (1.99)

where �n is the natural linear map R.n/ ! R.n/=R.n�1/ D grn R; while the operators
act from the left to the right: u � '�n D �n.'.u//: In this way, the map gr' is
well-defined because u � v .mod R.n�1// implies

'.u/� '.v/ D '.u � v/ 2 '.R.n�1// � T.n�1/:

The following lemma shows that the operator gr is a functor from filtered spaces to
graded spaces.

Lemma 1.29 If R; T; S are filtered spaces and ' W R! T; � W T ! S are filtered
linear maps, then the superposition ' � � is a filtered map and gr .' � �/ D gr' � gr �:

Proof We have ' � �.R.n// D �.'.R.n/// � �.T.n// � S.n/: Using (1.99), we obtain

�n.gr' � gr �/ D '�ngr � D .'�/�n:

Therefore, gr .' � �/ D gr' � gr �: ut
We stress that functor gr is not exact. The simplest example is as follows. Let

R D k be a filtered space with the filtration R.0/ D 0; R.n/ D k; n � 1; while
T D k is a filtered space with the filtration T.n/ D k; n � 0: Then, the identical
map ' W R! T is a filtered map, and gr' D 0: Due to this example, the following
simple lemma is of interest.

Lemma 1.30 If ' W R! T is a filtered linear map such that '.R.n// D T.n/; n � 0;
then gr' is an epimorphism. If ' is an embedding and '.R.n// D T.n/\'.R/; n � 0;
then gr' is an embedding too.
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Proof If we have T.n/ D '.R.n//; then each element uCT.n�1/; u 2 T.n/ has at least
one preimage v C R.n�1/; where u D '.v/:

If ' is an embedding and u�R
n 2 ker gr'; then 0 D u�R

n gr' D '.u/�T
n ; and

hence '.u/ 2 ker�T
n \ '.R/ D '.R.n�1//: The fact that ' is an embedding implies

that u 2 R.n�1/ and u�R
n D 0: ut

If R;T are filtered spaces, then R˝T has an induced filtration, where by definition

.R˝ T/.n/ D
X

iCs D n

R.i/ ˝ T.s/; n � 0: (1.100)

Respectively, the degree function on R˝ T is defined by d.u˝ v/ D d.u/C d.v/:
Each subspace R.i/ ˝ T.s/; i; s � 0 is admissible with respect to the basis BR ˝ BT

of R˝ T because it is spanned by the tensors u˝ v; u 2 b.R.i//; v 2 b.T.s//:
Given n � 0; let �R

i ; 0 � i � n denote the natural maps �R
i W R.n/ ! R.n/=R.i�1/:

Of course, the quotient space R.n/=R.i�1/ contains gri R D R.i/=R.i�1/ as a subspace.
Let �R

i ˝ �T
s ; iC s D n be the linear map �R

i ˝ �T
s restricted on .R˝ T/.n/:

Lemma 1.31 The image of �R
i ˝ �T

s equals griR˝ grsT:

Proof If k > i and k C m D n; then m < sI therefore, we have �T
s .T.m// D 0: If

k < i; then �R
i .R.k// D 0; which implies

im .�R
i ˝�T

s / D .
X

kCm D n

R.k/˝T.m//� i˝� s D .R.i/˝T.s//.�
R
i ˝�T

s / D griR˝grsT:

as required. ut
Lemma 1.32 If R;T are filtered spaces, then gr.R ˝ T/ D grR ˝ grT with the
decomposition of homogeneous components,

grn.R˝ T/ D
M

iCs D n

griR˝ grsT;

via the identification

�R˝T
n D

M

iCs D n

�R
i ˝ �T

s : (1.101)

Proof By definition, the operator
L

iCs D n.�
R
i ˝ �T

s / acts on .R˝ T/.n/ as follows:

u˝ v 7!
M

iCs D n

.u�R
i ˝ v�T

s / 2
M

iCs D n

griR˝ grsR:
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In particular, the kernel of that operator equals the intersection of the kernels of all
�R

i ˝ �T
s ; iC s D n: The functorial property of the tensor product, (1.49), yields

ker.�R
i ˝�T

s / D ker.� i˝� s/\.R˝T/.n/ D .R.i�1/˝T.n/CR.n/˝T.s�1//\.R˝T/.n/ :

The latter intersection as an admissible subspace is spanned by the set

Bi;s
dfD
�
.BR
.i�1/ ˝ BT

.n// [ .BR
.n/ ˝ BT

.s�1//
�
\ .

[

kCm D n

BR
.k/ ˝ BT

.m//:

A tensor u ˝ v; with u 2 BR
.n/ v 2 BT

.n/ belongs to this set if and only if, first,
either d.u/ < i or d.v/ < s and, next, d.u/ C d.v/ � n: These conditions are met
if d.u/ C d.v/ < n: If both conditions are valid for all pairs .i; s/; iC s D n; then
taking i D d.u/; we have d.v/ < s D n� i D n� d.u/; which implies d.u/C d.v/ <
n: In other words, the intersection of all Bi;s; i C s D n equals .BR ˝ BT/.n�1/;

which implies that the kernel of the operator in the right-hand side of (1.101) (as an
admissible set) equals .R˝ T/.n�1/; the kernel of the left-hand side. Thus, we may
identify those operators. Finally,

grn.R˝ T/ D .R˝ T/.n/�
R˝T
n D .R˝ T/.n/

M

iCs D n

�R
i ˝ �T

s D
M

iCs D n

griR˝ grsT:

ut
Lemma 1.33 If ' W R ! R 0 and � W T ! T 0 are filtered linear maps, then so are
' ˝ � W R˝ T ! R 0 ˝ T 0; and gr .' ˝ �/ D gr' ˝ gr �:

Proof We have

.R˝ T/.n/.' ˝ �/ D
X

iCs D n

'.R.i//˝ �.T.s// �
X

iCs D n

R 0
.i/ ˝ �.T 0

.s/ D .R 0 ˝ T 0/.n/:

Using identification (1.101) we have

�R˝T
n .gr'˝gr �/ D

M

iCs D n

�R
i gr'˝�T

s gr � D
M

iCs D n

'�R 0

i ˝��T 0

s D .'˝�/�R 0˝T 0

n :

Hence, according to definition (1.99), we obtain gr .' ˝ �/ D gr' ˝ gr �: ut
One may introduce the concepts of filtered algebras, coalgebras, modules,

comodules, Hopf algebras and other objects defined on linear spaces by linear maps
(operations) and tensor products by requiring that the ground space and all maps
(operations) be filtered. In this case, for every such object R; the graded object
gr R is associated. If the axioms are given by certain operator relations, then the
Lemmas 1.29 and 1.33 proven above demonstrate that the operator relations remain
valid on gr R: In other words, the associated graded object retains the structure of
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R: Moreover, considering that homomorphisms are normally defined in terms of
equalities of operators, gr is a functor of related categories, but it is certainly not
exact in general. Let us consider somewhat more thoroughly algebras, coalgebras
and Hopf algebras.

Definition 1.17 An algebra R is said to be filtered if R is a filtered space and the
multiplication m W R˝ R! R and the unit map ˛ 7! ˛ � 1 are filtered linear maps;
that is, R.i/R.s/ � R.iCs/; i; s � 0 and 1 2 R.0/:

The operator form of the product gr m on gr R is

.�i ˝ �s/gr m D m�iCs; i; s � 0; (1.102)

where as above the operators act from the left to the right, .u˝v/m�iCs D �iCs.uv/:
The product can be written in the elementary form as follows:

.uCR.i�1//.vCR.s�1// D uvCR.iCs�1/; u 2 R.i/; v 2 R.s/ i; s � 0: (1.103)

To ascertain that gr R is associative, we must simply apply gr to the associativity of
m written in the operator form, .m ˝ id/m D .id ˝ m/m; and use Lemmas 1.29
and 1.33:

.gr m˝ id/gr m D gr ..m˝ id/m/ D gr ..id˝m/m/ D .id˝ gr m/gr m:

It is also easy to check the associativity using the elementary form (1.103).
Let R; T be filtered algebras. A linear map ' W R! T is called a homomorphism

of filtered algebras if it is a homomorphism of algebras and filtered spaces.

Lemma 1.34 If ' W R ! T is a homomorphism of filtered algebras, then the map
gr' W gr R! gr T is a homomorphism of associated graded algebras.

Proof It suffices to apply gr to the equality '.uv/ D '.u/'.v/ written in the
operator form, m' D .' ˝ '/m; and use Lemmas 1.29 and 1.33. ut
Example 1.4 Every algebra R with a fixed set of generations A D fai j i 2 Ig has a
natural filtration, called a filtration by formal degree. Let us assign certain natural
degrees to the generators, d.ai/ D di; i 2 I: As usual, the degree of a word in the
ai’s is the sum of the degrees of its letters. By definition, the space R.n/ is spanned
by values of all words of degree � n: In particular, R.0/ D k � 1 is spanned by the
value of the empty word. R is a filtered algebra with respect to this filtration.

Let khXi be a free associative algebra freely generated by a set X D fxi j i 2 Ig:
If f 2 khXi; then there is a decomposition f D fn C fn�1 C : : : C f1 C f0 of the
polynomial f into homogeneous components, where fi is the linear combination of
all monomials of degree i occurring in f : If fn ¤ 0; then by definition n is the formal

degree of f : The polynomial f
dfD fn is called a leading component of f :
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The quotient space khXi.n/=khXi.n�1/ is isomorphic to the space spanned by all
words of degree nI that is, we may consider fi 2 gri khXi: In this case, the map

f 7! fn ˚ fn�1 ˚ : : :˚ f1 ˚ f0

is an isomorphism between khXi and gr khXi that allows us to identify

gr khXi D khXi:

For the algebra R given in Example 1.4, a natural homomorphism ' W khXi ! R
defined by xi 7! ai is filtered because '.khXi.n// D R.n/: Moreover, Lemma 1.30
implies that gr' W khXi ! gr R is an epimorphism.

Proposition 1.12 The ideal ker.gr'/ is spanned by all leading components f when
f runs through the ideal ker':

Proof If f 2 ker'; then f D 0 in R: Hence fn D �fn�1 � : : : � f1 � f0 2 R.n�1/I
that is, f D fn 2 ker gr': Conversely, if f D fn C : : :C f1 C f0 2 ker.gr'/; then all
homogeneous components fi; 0 � i � n also belong to ker.gr'/: By definition, for
each fi; there exists gi 2 khXi.i�1/ such that fi D gi in R;which implies fi�gi 2 ker'
and fi D fi � gi: ut

Suppose that the algebra R is defined by relations Fi D 0; i 2 I: Then, the above
proposition states that all leading components Fi are relations of the associated
graded algebra. In other words, there exists a natural epimorphism

' W R dfD hX jj Fi D 0; i 2 Ii �! gr R: (1.104)

This epimorphism is not always an isomorphism. For example, consider an algebra
R with a generator x and two relations x2 D 1; x2 D x: Then, of course,
R Š k Š gr R; whereas R Š kŒ x j x2 D 0 � is a two-dimensional algebra. The
situation is changed if the set fFi D 0g is a Gröbner-Shirshov system of relations;
see Sect. 1.2.3.

Theorem 1.7 If � is a Deg-Lex ordering, and the set of relations fFi D 0; i 2 Ig is
closed with respect to the compositions, then (1.104) is an isomorphism.

Proof If F 2 ker.gr'/; then by Proposition 1.12, we have F D f ; f 2 ker': By the
definition of the Deg-Lex ordering, the leading word w of f has the maximal formal
degree. Therefore, w is one of the monomials of F: If ' is not an isomorphism, then
we may choose F … ker ' with the minimal possible w: By Theorem 1.2, the word
w contains one of the leading words wi of Fi D 0; i 2 I as a subword, w D uwiv:

In this case, f 0 D f � uFiv still belongs to ker'; and the leading word of f 0 is less
than w: Therefore, f 0

n 2 ker': We have f D f 0
n C u Fi v because wi is one of the

monomials of Fi; which implies F D f 2 ker' in view of the fact that Fi 2 ker':
ut
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If U is a subalgebra of khXi; then U has a filtration U.n/ D fu 2 U j d.u/ � ng
induced by formal degree. By Lemma 1.30 the associated graded algebra gr U is a
subalgebra of gr khXi D khXi:
Proposition 1.13 The algebra gr U is spanned by all leading components f when f
runs through the algebra U:

Proof If f 2 U.n/; then f C U.n�1/ is identified with f C khXi.n�1/; which, in turn,
was identified with f ; so that f 2 gr U:

Conversely, if f D fnC : : :C f1C f0 2 gr U; then each homogeneous component
fi; 0 � i � n belongs to gri U: By definition, for each fi; there exists gi 2 U
such that fi � gi modulo khXi.i�1/: In this case, the homogeneous element fi equals
fi C .gi � fi/ D gi: ut

Assume that on a filtered space R; a coalgebra structure is given with a coproduct
 and a counit ":

Definition 1.18 The coalgebra R is said to be filtered if W R˝R! R is a filtered
linear map; that is,

.R.n// �
X

sCi D n

R.i/ ˝ R.s/; n � 0; (1.105)

or, equivalently, the degree function satisfies d.x/ � d.x.1//C d.x.2//: Note that the
counit " W R! k is always a filtered map because k.0/ D k:

Lemma 1.35 If R is a filtered coalgebra, then the associated graded space gr R is
a coalgebra with the coproduct gr and the counit gr ":

Proof The coalgebra axioms may be written in the form of equalities of operators
defined on tensor products:

1. Coassociativity: � .˝ id/ D  � .id˝/I
2. Counit:  � ."˝ id/ D id D  � .id˝ "/:

Applying gr to those equalities and using Lemmas 1.29 and 1.33, we see that
gr and gr " also satisfy the axioms. ut

In the elementary form, the coproduct gr and counit gr " behave as follows:

gr W uC R.n�1/ 7!
M

iCs D n

.u.1/ C R.i�1//˝ .u.2/ C R.s�1//; u 2 R.n/; (1.106)

gr " W uC R.n�1/ 7!
�
".u/; if n D 0; u 2 R.0/I
0; if n > 0; u 2 R.n/:

(1.107)

Example 1.5 Every coalgebra C has a natural filtration, called a coradical filtration.
By definition, C.0/ is the coradical (a sum of all simple subcoalgebras of C), and C.n/
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is defined inductively as follows:

C.n/ D �1.C˝ C.n�1/ C C.0/ ˝ C/; n � 1:

The coalgebra C is a filtered coalgebra with respect to the coradical filtration. One
may find the basic properties of the coradical filtration in the books [1, 176, 220].

Let R; T be filtered coalgebras. A linear map ' W R ! T is called a
homomorphism of filtered coalgebras if it is a homomorphism of coalgebras and
filtered spaces.

Lemma 1.36 If ' W R! T is a homomorphism of filtered coalgebras, then the map
gr' W gr R! gr T is a coalgebra homomorphism.

Proof The definition of a coalgebra homomorphism in the operator form reads as
follows:  � .' ˝ '/ D ' �: It remains to apply Lemmas 1.29 and 1.33. ut
Definition 1.19 A Hopf algebra H is said to be filtered if on the space H; a filtration
is fixed so that the product m, the unit map ˛ ! ˛ � 1; the coproduct , and the
antipode � are filtered linear maps; that is,

1. R.i/R.s/ � R.iCs/; 1 2 R.0/; i; s � 0I
2. .R.n// �PsCi D n R.i/ ˝ R.s/; n � 0I
3. �.R.n// � R.n/; n � 0:

Theorem 1.8 If H is a filtered Hopf algebra, then the associated graded space gr H
is a Hopf algebra with the product gr m; the coproduct gr; the counit gr "; and the
antipode gr �:

Proof By the above two lemmas gr H is both an algebra and a coalgebra. The rest
of the Hopf algebra axioms may be written in the form of equalities of operators as
follows:

1. Antipode: � .� ˝ id/m D  � .id˝ �/m D " � 1I
2. The coproduct is a homomorphism: m D .˝/.id˝ � ˝ id/.m˝m/;

where � is the flip map, � W u˝v 7! v˝u: The flip map is filtered, and gr � D �:
Applying gr to those equalities and using Lemmas 1.29 and 1.33, we determine that
the associated graded maps satisfy these axioms too. ut

In the elementary form, the graded antipode has a very clear representation

gr � W uC R.n�1/ 7! �.u/C R.n�1/; u 2 R.n/: (1.108)

Let R; T be filtered Hopf algebras. A linear map ' W R ! T is called a
homomorphism of filtered Hopf algebras if it is a homomorphism of algebras,
coalgebras, and filtered spaces.

Lemma 1.37 If ' W R ! T is a homomorphism of filtered Hopf algebras, then
gr' W gr R! gr T is also a Hopf algebra homomorphism.
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Proof This statement follows from Lemmas 1.34 and 1.36. ut
Example 1.6 The free character Hopf algebra (as well as each of its homomorphic
images) has two natural filtrations, the coradical filtration and the filtration defined
by the formal degree, d.xi/ D 1; d.G/ D 0: In general, these two filtrations
are different. The zero components are the same, GhXi.0/ D kŒG�; but the first
component of the coradical filtration contains all skew-primitive elements that may
have a formal degree greater than 1. For example, if pispsi D 1; then xixs � pisxsxi

is such an element. Thus, at least two graded Hopf algebras may be associated with
each character Hopf algebra.

1.7 Certain Concepts of P.M. Cohn’s Theory

A filtered space R is said to be connected if R.0/ D k: Each subspace of R has the
induced connected filtration. For example, an algebra with a distinguished set of
generators is connected with respect to a filtration defined by the formal degree; see
Example 1.4.

Let R be a connected filtered algebra, and let d be the degree function d.u/ D
minfn j u 2 R.n/gI we shall say that the family faij1 � i � ng of elements of R is
right d-dependent if there exist elements bi 2 R; such that

d.
X

aibi/ < maxfd.ai/C d.bi/g;

or if some ai D 0: Otherwise, the family faig is right d-independent. An element a
of R is said to be right d-dependent on a family faig if a D 0 or if there exist bi 2 R
such that

d.a �
X

aibi/ < d.a/; and d.ai/C d.bi/ D d.a/ for all i:

In the contrary case, a is said to be right d-independent of faig:
Definition 1.20 A set X in R is called a weak algebra basis if all words in X
(including the empty one) span R; and no element of X is right d-dependent on
the rest.

Lemma 1.38 Every connected filtered algebra R has a weak algebra basis.

Proof For each n > 0 denote by R 0
.n/ the subspace of R.n/ spanned by the products

ab;where a; b 2 R.n�1/ and d.a/Cd.b/ � n:Now choose a minimal set Xn spanning
R.n/ (modR 0

.n// over k, that is a set of representatives for a basis of R.n/=R 0
.n/; and set

X D [Xn:
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To show that X is a weak algebra basis, suppose that an element x 2 X is right
d-dependent on other elements x1; : : : ; xm of X:

x �
X

xibi .mod R.n�1//; (1.109)

where n D d.x/: Any terms xibi with d.xi/ < n belong to R 0
n; so (1.109) implies that

x �
X

˛ixi .mod R 0
.n//;

where ˛i 2 k and d.xi/ D n whenever ˛i ¤ 0: However, this statement contradicts
the construction of XI thus, no element of X is right d-dependent on the rest. An
easy induction on the degree shows that the monomials in X span RImore precisely,
the monomials with a formal degree of, at most, n span R.n/: ut
Definition 1.21 The algebra R is said to satisfy the weak algorithm relative to d; if
in any right d-dependent family, say a1; : : : ; am; where

d.a1/ � : : : � d.am/;

some ai is right d-dependent on a1; : : : ; ai�1:

Theorem 1.9 Let R be a connected filtered algebra with the degree function d:
Then, R satisfies the weak algorithm relative to d if and only if R is the free
associative algebra on a set X such that the filtration is defined by the formal degree
induced from d W X ! NC:

Proof Let X D fxi j i 2 Ig be a weak algebra basis constructed in Lemma 1.38. By
induction on the length, we shall prove that all monomials in X are linearly inde-
pendent. The monomials of length zero certainly are. Assume that all monomials in
X of length < n are linearly independent as elements of R; and let

P
s ˛sws D 0;

where ws are monomials of length � n: By splitting off the left-hand factor from X
in each monomial ws; we can write ˛CPi2I xifi D 0; ˛ 2 k; fi 2 R;which implies

d.
X

i2I

xifi/ D d.�˛/ D 0 < maxfd.xi/C d.fi/g:

Therefore, X is a right d-dependent family. By the weak algorithm, either one of
the xi’s is d-dependent on the rest or each fi equals zero in R: The former option
contradicts the choice of X: Thus, each fi D 0 in R; and so ˛ D 0: By the induction
assumption, all fi are zero polynomials. Hence, the given relation f D 0 was trivial,
which completes the induction.

To demonstrate that d.f / D d 0.f /; where f DPs ˛sws is a linear combination of
monomials, we perform induction on the length of the monomials. It is clear that d
coincides with d 0 on R.0/ D k: Assume that d.f / D d 0.f / whenever all monomials
of f are of length < n: The formal degree d 0 with d 0.xi/ D d.xi/; i 2 I is defined
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by the equality

d 0.
X

i

xifi/ D maxfd.xi/C d 0.fi/g;

where fi are polynomials in X: If all monomials of f are of length � n; then
f DPi xifi where all monomials of fi are of length < n; which implies

d 0.f / D maxfd.xi/C d 0.wi/g D maxfd.xi/C d.wi/g:

At the same time, if d.f / < maxfd.xi/C d.wi/g; then the weak algorithm states that
one of the xs is d-dependent on the rest, which contradicts the choice of X: Hence
d.f / D maxfd.xi/C d.wi/g D d 0.f /:

We complete the proof by showing that the free algebra khXi filtered by the
formal degree d.xi/ D di > 0 satisfies the weak algorithm.

Let us fix a monomial x1 : : : xh of degree r; and define the transduction for this
monomial as the linear map b 7! b� of khXi into itself, which sends any monomial
of the form ax1 : : : xh to a and all other monomials to zero. Thus, b� is the “left
cofactor” of x1 : : : xh in the canonical expression for b: Clearly, for any b 2 khXi
we have d.b�/ � d.b/� r: Further, if a; b 2 khXi; then

.ab/� � ab� .mod khXi.d.a/�1//:

This statement is clear if b is a monomial term of degree at least rI in fact, we then
have equality. If b is a monomial term of degree less than r; the right-hand side is
zero, and the congruence holds. The general case follows by linearity.

Assume now that a1; : : : ; an is a d-dependent family:

d.
X

i

aibi/ < m D max
i
fd.ai/C d.bi/g:

Taking the ai’s as ordered so that d.a1/ � : : : � d.an/; we must show that some
ai is d-dependent on those that precede. By omitting terms if necessary, we may
assume that d.ai/C d.bi/ D m for all i and, hence, that d.b1/ � : : : � d.bn/:

Let x1 : : : xh be a product of maximal degree r D d.bn/ occurring in bn with a
nonzero coefficient ˛; and denote the transduction for x1 : : : xh by �: Consider nowP

aib�
i I the ith term differs from .aibi/

� by a term of degree less than d.ai/ � d.an/:

Hence the sum will differ by a term of degree less than d.an/ from .
P

aibi/
�; which

has degree� d.
P

i aibi/�r < m�r D d.an/: Therefore, d.
P

aib�
i / < d.an/;which

gives a relation of left d-dependence of an on ai; i < n; as b�
n D ˛ 2 k; ˛ ¤ 0: ut

Remark 1.10 One can easily define left d-dependent families and a left weak
algorithm. The above theorem implies that the concept of a weak algorithm for
connected filtered algebras is right-left symmetric because the free algebra R is
isomorphic to the opposite algebra R op D hR;�i with the product u � v D vu:
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We conclude this section by describing a condition for a subalgebra to inherit
the weak algorithm. If U is a subalgebra of a filtered algebra R; then U has an
induced filtration U.n/ D R.n/\U with the same degree function. By Lemma 1.30 the
associated graded algebra gr U is a subalgebra of gr R by means of the identification
uC U.n�1/ D uC R.n�1/; u 2 U.n/:

Definition 1.22 We call homogeneous elements u1; : : : ; un 2 gr U right linearly
independent over gr R if

P
uiri D 0 implies ri D 0 for arbitrary ri 2 gr R:

The subalgebra gr U is said to be right closed in gr R if for any homogeneous
u1; : : : ; un 2 gr U; which are right linearly independent over gr R; if

P
uiri 2 gr U;

then ri 2 gr U:
Similarly, u1; : : : ; un 2 gr U are left linearly independent over gr R if

P
riui D 0

implies ri D 0 for arbitrary ri 2 gr R: The subalgebra gr U is said to be left closed in
gr R if for any homogeneous u1; : : : ; un 2 gr U; which are left linearly independent
over gr R; if

P
riui 2 gr U; then ri 2 gr U:

In other words, gr U is left closed in gr R if gr U op is right closed in gr R op:

Proposition 1.14 Let R be a connected filtered algebra with the weak algorithm,
and let U be a subalgebra such that gr U with respect to the induced filtration is
right or left closed in gr R: In this case, U also has the weak algorithm.

Proof Assume that gr U is right closed in gr R; and A D fa1; : : : ; ang is a d-
dependent set of U: This set is also d-dependent in R:

d.
X

i

aibi/ < max
i
fd.ai/C d.bi/g; ai 2 U; bi 2 R:

We may suppose that all proper subsets of A are d-independent in R; as otherwise
one may diminish the number n in the above relation.

Taking the ai’s as ordered so that d.a1/ � : : : � d.an/; we claim that
a1; : : : ; an�1; where ai D ai C R.i/ 2 gr U are right linearly independent over gr R:
Indeed, if

P
i<n ai ri D 0; then fa1; : : : ; an�1g is a proper d-dependent in R subset

of A:
Since R has the weak algorithm, it follows that some ai is d-dependent on the

rest:

d.ai �
i�1X

kD1
akrk/ < d.ai/; d.ak/C d.rk/ D d.ai/:

In the homogeneous component grh R; h D d.ai/ this relation reduces toP
k<i ak rk D ai 2 gr U; which implies rk 2 gr U; 1 � k < i because

gr U is right closed in gr R: In terms of the algebra R; this statement reads as



1.8 Representation Theory and Crossed Products 65

follows: rk � uk 2 R.d.rk/�1/; uk 2 U: Finally, we have

d.ai �
i�1X

kD1
akuk/ D d.ai �

i�1X

kD1
akrk C

i�1X

kD1
ak.rk � uk// D d.ai �

i�1X

kD1
akrk/ < d.ai/I

that is, ai is d-dependent on a1; : : : ; ai�1 in U:
If gr U is left closed in gr R; then gr U op is right closed in gr R op; where

R op; U op are opposite algebra and subalgebra. By the above arguments, U op has
the weak algorithm. Since the concept of weak algorithm is left-right symmetric
(see Remark 1.10), it follows that U also has the weak algorithm. ut

1.8 Representation Theory and Crossed Products

The word “representation” in Representation Theory originally stands for a concrete
representation of an abstract algebra (abstract group) by matrices or, equivalently,
by linear transformations of a linear space V: Certainly, such a representation is
equivalent to a consideration of a right module over the given algebra (correspond-
ingly, over the group algebra of the given group). The representation theory of
the symmetric group (more generally, of all finite groups) starts with the highly
important classical theorem of Maschke.

Theorem 1.10 Let G be a finite group of order n and let k be a field of characteristic
0 or of characteristic p where p is not a divisor of n: Then, the group algebra kŒG�
is semisimple.

Proof See, for example, [57, Theorem 10.8], or [98, Theorem 1.4.1], or [200,
Theorem 1.5.3]. ut

Recall that by definition, a finite-dimensional algebra R is semisimple if each
right (left) module over R is a direct sum of simple submodules (a nonzero module
N is simple or irreducible if it has no proper submodules other than N and f0g). In
terms of representations, this case is equivalent to the condition that each invariant
subspace W � V; WR � W has an invariant complement V D W˚W 0; W 0R � W 0:
In terms of structural theory, this case is equivalent to the radical of R being zero;
that is, R has no nilpotent ideals: In D 0 H) I D 0:
Lemma 1.39 Let R be a finite-dimensional semisimple algebra, and let � ¤ 0 be
a right (left) ideal of R: Then, � D eR .respectively, � D Re/ for some idempotent
e D e2 in R:

Proof See [98, Theorem 1.4.2]. ut
Corollary 1.3 If � is a right (left) ideal of the group algebra kŒSn�; then rl.�/ D
� .respectively, lr.�/ D �/ provided that char k D 0: Here l.�/ D fx 2 R j x� D 0g
is the left annihilator, and r.�/ D fx 2 R j �x D 0g is the right annihilator.
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Proof By Maschke theorem kŒSn� is a semisimple algebra. Lemma 1.39 states that
� D eR; e2 D e: The equality xeR D 0 implies xe D 0 and hence x D x.1 � e/:
In other words l.�/ D R.1 � e/: Similarly, the right annihilator r.�/ of a left ideal
� D Re equals .1� e/R: Since 1� e is also idempotent, it follows that rl.eR/ D eR
and lr.Re/ D Re: ut
Interestingly, the above statement remains true even if the characteristic p is a divisor
of nŠ, see [57, Theorems 61.3, 62.1].

The fundamental theorem of Wedderburn connects abstract semisimple algebras
with matrix algebras.

Theorem 1.11 A finite-dimensional algebra is semisimple if and only if it is the
direct sum of simple algebras, whereas a finite-dimensional algebra is simple if and
only if it is isomorphic to the algebra of all n 
 n matrices over a division ring.

Proof See, [98, Theorem 1.4.4] and [98, Theorem 2.1.6]. ut
Corollary 1.4 Let M be the algebra of all n 
 n matrices over a field F: Then,
each right M-module is a direct sum of simple submodules, whereas all simple
submodules are isomorphic to the n-rows module over F:

Proof By Wedderburn’s theorem M is a simple algebra. Since each finite-
dimensional simple algebra is semisimple, it follows that each right M-module
is a direct sum of simple submodules.

If N is a simple right M-module, then the annihilator r.N/ D fx 2 M jNx D 0g is
a two-sided ideal of M: Therefore, r.N/ D 0: Let e11 D diag .1; 0; 0; : : : ; 0/ be the
matrix with only one nonzero entire. Of course, e11M is precisely the n-rows module
over F: We have Ne11 ¤ 0: Let us fix n 2 N such that ne11 ¤ 0: Then, ne11M is
a nonzero submodule of N; which implies ne11M D NI that is, each element x of
N has a representation x D ne11m; m 2 M: Now it is easy to check that the map
ne11m 7! e11m is the required isomorphism between N and e11M: ut

If, in the construction of the skew group ring given in Sect. 1.3.3, the algebra R
is a field, and G is a finite group of its automorphisms of order m; then R � G has
a special name: a trivial crossed product or a crossed product with trivial factor
set. The theory of crossed products is an important part of the theory of central
simple algebras and has many of applications in modern algebra, beginning with
the following beautiful result.

Theorem 1.12 The trivial crossed product R � G is isomorphic to the full algebra

of m 
m matrices over a Galois subfield RG dfD fa 2 R j ag D a for all g 2 Gg:
Proof See, [98, Lemma 4.4.2]. ut
In turn, the theory of central simple algebras starts with the following fundamental
statement.
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Theorem 1.13 Let M be an algebra and M1 be a finite-dimensional simple
subalgebra with center k � 1. Then, M D M1 ˝ Z1; where

Z1 D fm 2 M j am D ma for all a 2 M1g

is a centralizer of M1 in M:

Proof See, for example, [98, Theorem 4.4.2]. We are reminded that by definition,
the multiplication in the tensor product of algebras, M1 ˝ Z1; is given as follows:
.m˝ z/ � .m 0 ˝ z 0/ D .mm 0 ˝ zz 0/: ut

1.9 Chapter Notes

The second chapter of the book [142] by Klimyk and Schmüdgen contains all
basic formulas of what is commonly referred to as q-calculus, along with detailed
proofs. Among the considered topics are the following: q-numbers, q-factorials, q-
differentiation, basic hypergeometric functions, and q-orthogonal polynomials.

The associative standard words first appeared in an article published by Lyndon
[154] in 1954 during the investigation of the Burnside problem for groups, and then
in an article published by Shirshov [211] in 1958 while studying Lie algebras. The
famous theorem concerning standard words, Theorem 1.1, firstly appeared in an
explicit form in a paper by Schützenberger and Sherman [206, Lemma 2, p. 486],
though the authors credited this result to Shirshov [211]. In fact, the combina-
torics of words has arisen independently within several branches of mathematics,
including number theory, group theory and probability, and appears frequently in
problems related to theoretical computer science. The unified treatment of the area
was specified in Lothaire’s “Combinatorics on Words” [148] and again in two other
books: “Algebraic Combinatorics on Words” [149] and “Applied Combinatorics on
Words” [150].

What is now referred to as the Gröbner–Shirshov “bases” theory was articulated
independently by Shirshov [212] in 1962 for Lie algebras explicitly and for
associative algebras implicitly, by Hironaka [99] in 1964 for formal and convergent
infinite series algebras, and by Buchberger [43, 44] in 1965 for commutative
algebras. Buchberger named this theory in honor of his supervisor W. Gröbner.
The Gröbner theory introduced by Buchberger provides a solution to the reduction
problem for commutative algebras and is now included in the standard algebra
curriculum in many universities. Given the ubiquity of scientific problems modeled
by polynomial equations, this subject is of interest to not only mathematicians but
also an increasing number of scientists and engineers, see [218, 219].

In [30], Bergman generalized the Gröbner theory to associative algebras by
proving the Diamond Lemma. In [32], Bokut’ noted that the parallel theory
developed early for Lie algebras by Shirshov can be applied to associative algebras
as well, and thus, he adapted the proofs for undergraduate students in [33]. The key
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component of the theory is precisely the Composition Lemma given in Theorem 1.2.
We refer the reader to a survey by Bokut’ and Kolesnikov [36] and to a survey by
Bokut’ and Chen [35] for detailed information on the modern development of this
theory.

Notably, the Gröbner–Shirshov theory also applies to braid monoids. In the case
of monoids (groups), the Gröbner–Shirshov method and the method of rewriting
systems are equivalent. Both specify a method of constructing the normal form for
words of a monoid and are a powerful tool to solve many combinatorial problems,
see [34, 37, 38].

The symmetric group is undoubtedly the most important object of modern
mathematics. It arises not only in algebra and combinatorics but also in physics
[31], probability and statistics [61], topological graphs theory [227], the theory
of partially ordered sets [216] and many other branches of modern science. As
an introductory course, we recommend the book [200] written by Sagan for
graduate students. The monograph [45] by Cameron provides the general method
for investigating abstract groups represented by permutations, see also [57, 64, 228].

The concept of Hopf algebra appeared long before that of quantum groups in a
paper by Hopf [101] on algebraic topology. This concept was rediscovered in a pure
algebraic context by Kac [111]. Additionally to the basic early monographs [1, 220],
a modern treatment of the Hopf algebra theory is provided in the most recent book
by Radford “Hopf Algebras” [191] and in notes by Montgomery “Hopf Algebras
and Their Actions on Rings” [176]. The initial chapters of the books on quantum
group theory, Kassel, “Quantum Groups” [120], Joseph, “Quantum Groups and
Their Primitive Ideals” [107], and Klimik, Schmüdgen, “Quantum Groups and Their
Representations” [142], also contain the foundations of the Hopf algebra theory.
Books written for physicists, Shneider, Sternberg, “Quantum Groups” [213], and
Chaichian, Demichev, “Introduction to Quantum Groups” [46], provide a specific
perspective on the subject.

The notion of a combinatorial rank appeared in [127, 128]. In the context of
braided Hopf algebras it was investigated by Ardizzoni [7, 8]. In [62, 137, 138],
Alvarez, Díaz Sosa, and the author determine the combinatorial rank of the
Frobenius–Lusztig kernels of types An; Bn; and Dn to be blog2 nc C 1; blog2.n �
1/c C 2; and blog2.2n � 3/c C 1; respectively. There exists an infinitely generated
character Hopf algebra of an infinite combinatorial rank. Whether there exists a
finitely generated character Hopf algebra of infinite combinatorial rank remains
unknown.

Fox [79] applied a special type of noncommutative differential calculus to
various problems in topology and combinatorial group theory. The general notion
of noncommutative differential calculus appeared later in the famous paper by
Woronowicz [230]. The fourth part of the book by Klimyk and Schmüdgen [142]
focuses on this topic. Numerous studies have focused on noncommutative differ-
ential calculi. The notion of a coordinate calculus, inspired by Wess and Zumino
[226], was introduced by Borowiec, Oziewicz, and the author [39–41]. In [81, 82],
Frønsdal and Galindo considered coordinate calculi with diagonal commutation
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rules, whereas the author in [129] generalized their results to commutation rules
defined by Yang–Baxter operators.

Cohn theory [53] is one of the greatest algebra achievements of the twentieth
century. This theory was inspired by Maltcev’s (negative) solution of the Van der
Waerden problem of embedding of a ring with no zero divisors in a skew field [161],
followed by discovery of conditions when a monoid can be embedded into a group.
The necessary and sufficient conditions have been revealed to be so complicated
that they may not be able to be expressed as a finite number of elementary axioms
[162, 163]. In turn, P.M. Cohn has found necessary and sufficient conditions for
a ring to be embeddable in a skew field [52, 53]. His theory of matrix-inverting
homomorphisms and matrix ideals is devised as if created for the solution of the
problem concerning embedding of a bialgebra into a Hopf algebra.



Chapter 2
Poincaré-Birkhoff-Witt Basis

Abstract In this chapter, we demonstrate that every character Hopf algebra has a
PBW basis. A Hopf algebra H is referred to as a character Hopf algebra if the group
G of all group-like elements is commutative and H is generated over k ŒG� by skew-
primitive semi-invariants, whereas a well-ordered subset V � H is a set of PBW
generators of H if there exists a function h W V ! ZC [ f1g; called the height
function, such that the set of all products

gvn1
1 v

n2
2 � � � vnk

k ;

where g 2 G; v1 < v2 < : : : < vk 2 V; ni < h.vi/; 1 � i � k is a basis of H:

In this chapter, we demonstrate that every character Hopf algebra has a PBW basis.
According to Definition 1.11, a Hopf algebra H is referred to as a character Hopf
algebra if the group G of all group-like elements is commutative and H is generated
over k ŒG� by skew-primitive semi-invariants.

Definition 2.1 A well-ordered subset V of a character Hopf algebra H is considered
a set of PBW generators of H if there exists a function h W V ! ZC [ f1g; called
the height function, such that the set of all products

gvn1
1 v

n2
2 � � � vnk

k ; (2.1)

where g 2 G; v1 < v2 < : : : < vk 2 V; ni < h.vi/; 1 � i � k is a basis of H: The
value h.v/ is referred to as the height of v in V:

For example, the standard words, due to Theorem 1.1, form a set of PBW
generators with infinite heights of the free character Hopf algebra GhXi: This fact
provides an idea concerning how to find the PBW basis of an arbitrary character
Hopf algebra.

We establish a homomorphism GhXi ! H of the character Hopf algebras. The
values of elements (2.1) in H span all of H but may be linearly dependent. If the
value of a standard word v is a linear combination of the monomials (2.1) with
vi < v; then the values of elements (2.1), where vi ¤ v; continue to span H: Hence,
the set of all standard words may be reduced to the set of “hard” standard words,
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i.e., standard words v whose values in H are not linear combinations of (2.1) with
vi < v:

Then, one must demonstrate that the increasing products of “hard” standard
words are linearly independent in H: For this task, we must use the coproduct. If
U is such a linear combination, then we may (somehow) find its coproduct in the
free character Hopf algebra

.U/ D U ˝ 1C
X

U0
i ˝U00

i C g˝ U; g 2 G:

If U D 0 in H; then in H ˝ H we have the equality

X
U0

i ˝ U00
i D 0: (2.2)

This equality of tensors provides one equation corresponding to each basis element
of the space spanned by all U00

i : Because the U00
i ’s have degrees less than that of U,

we may theoretically decompose them in linear combinations of increasing products
of “hard” standard words that are already linearly independent in H (by induction).
This amount of information is sufficient for obtaining the required contradiction.

Because of technical reasons, it was impossible to realize these considera-
tions directly for “hard” standard words; Instead, developing the above logic for
nonassociative standard words seemed possible, interpreting the bracket as the
skew commutator of polynomials. Surprisingly, after this logic was developed,
demonstrating that the “hard” standard words are indeed the PBW generators
became straightforward.

The equality (2.2) is not equivalent to setting U to be zero but does indicate that U
is skew-primitive. In other words, while solving the above system of equations, we
will obtain information on the skew-primitive elements of character Hopf algebras.
This information is given in Theorem 2.3.

2.1 PBW Bases of the Free Character Hopf Algebra

Let GhYi D GhXi be the free character Hopf algebra, see Sect. 1.5.3. Recall that
xi; i 2 I are free variables with the coproduct given by

.xi/ D xi ˝ 1C gi ˝ xi; .gi/ D gi ˝ gi; (2.3)

whereas associated with each variable xi is a character 
i W G ! k� such that
g�1xig D 
i.g/gxi; for all g 2 G; see (1.66).

For every word u in X let gu denotes a group-like element that appears from u
by replacing each xi with gi: Similarly, 
u is a character that appears from u by
replacing each xi with 
i: Because both the group G and the group of characters are
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commutative, the values gu; 

u are defined on the set of all homogeneous elements

in each xi 2 X: For a pair u; v of homogeneous polynomials in X put

pu;v D 
u.gv/: (2.4)

Obviously, the following equalities hold:

puv;w D pu;wpv;w; pu;vw D pu;vpu;w: (2.5)

Sometimes it is more convenient to denote this bimultiplicative operator by p.u; v/.
Of course, the operator p.-; -/ is completely defined by the parameters pik D 
i.gk/:

In terms of this operator, the brackets (1.67) take the form

Œu; v� D uv � pu;vvu; Œu; v�� D uv � p�1
v;uvu: (2.6)

Lemma 2.1 The brackets Œ; � satisfy the following “Jacobi identity”W

ŒŒu; v�;w� D Œu; Œv;w��C p�1
w;vŒŒu;w�; v�C .pv;w � p�1

w;v/Œu;w� � v; (2.7)

where � stands for usual multiplication in the free algebra.

Proof We have

ŒŒu; v�;w� D Œuv � pu;vvu;w� D uvw� puv;wwuv � pu;vvuwC pu;vpvu;wwvu:

Under the substitution w$ v; this equality becomes

ŒŒu;w�; v� D uwv � puw;vvuw � pu;wwuv C pu;wpwu;vvwu:

Similarly,

Œu; Œv;w�� D Œu; vw � pv;wwv� D uvw � pu;wvvwu � pv;wuwv C pv;wpu;wvwvu;

and

Œu;w� � v D uwv � pu;wwuv:

It remains to compare the coefficients at all six permutations of uvw in (2.7).

uvw W 1 D 1I
wuv W �puv;w D �p�1

w;vpu;w C .pv;w � p�1
w;v/pu;wI

vuw W �pu;v D �p�1
w;vpuw;vI

wvu W pu;vpvu;w D pv;wpu;wvI
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uwv W 0 D p�1
w;v � pv;w C .pv;w � p�1

w;v/I
vwu W 0 D p�1

w;vpu;wpwu;v � pu;vw:

ut
Lemma 2.2 The following formulas link the brackets to multiplication:

Œu; v � w� D Œu; v� � wC pu;vv � Œu;w�; (2.8)

Œu � v;w� D pv;wŒu;w� � v C u � Œv;w�: (2.9)

Proof We have, Œu; v � w� D uvw � pu;vwvwu D uvw � pu;vvuw C pu;vvuw �
pu;vpu;wvwu D Œu; v� � wC pu;vv � Œu;w�: Similarly, Œu � v;w� D uvw � puv;wwuv D
uvw � pv;wuwv C pv;wuwv � puv;wwuv D u � Œv;w�C pv;wŒu;w� � v: ut
Definition 2.2 A super-letter is a polynomial that equals a standard nonassociative
word where the brackets Œ; � are defined in (2.6).

Every noncommutative polynomial f in X is a linear combination of different
words f D P

˛iui: Recall that a leading word of f is the maximal word ui that
occurs in this decomposition with nonzero coefficient.

Lemma 2.3 A leading word of a super-letter Œu� with respect to the lexicographical
order is the word u; and it occurs in the decomposition of Œu� with coefficient 1.

Proof We use induction on length. If Œu� D ŒŒv�Œw�� then the super-letter Œu� equals
Œv�Œw� � pu;wŒw�Œv�. By the inductive hypothesis, Œv� and Œw� are homogeneous
polynomials with the leading words v and w, respectively. The leading word with
respect to the lexicographical order of a product of two homogeneous polynomials
equals the product of leading words of the factors. Therefore, the leading word of
Œv�Œw� equals vw and has coefficient 1; the leading word of Œw�Œv� equals wv and is
less than vw because vw D u is a standard word. ut
The proven Lemma demonstrates that different standard words u and v define
distinct super-letters Œu� and Œv�: We define the order on the set of all super-letters
thus:

Œu� > Œv� ” u > v: (2.10)

Definition 2.3 A word in super-letters is called a super-word. A super-word is said
to be increasing if it has the form

W D Œu1�k1 Œu2�k2 � � � Œum�
km ; (2.11)
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where u1 < u2 < : : : < um. On the set of all super-words, we fix the lexicographic
order defined by the ordering of super-letters in (2.10).

Lemma 2.4 An increasing super-word W D Œw1�k1 Œw2�k2 � � � Œwm�
km is greater than

an increasing super-word V D Œv1�
m1 Œv2�

m2 � � � Œvk�
mk if and only if the word w D

wk1
1 wk2

2 � � �wkm
m is greater than the word v D v

m1
1 v

m2
2 � � �vmk

k . Moreover, the leading
word of the polynomial W; when decomposed into a linear combinations of words,
equals w and has coefficient 1.

Proof Let W > V . Then w1 � v1 in view of the ordering of super-letters. If w1 D v1,
we can remove one factor from the left of both V and W, and then proceed by
induction. Therefore, we will put w1 > v1: If w1 is not the beginning of v1, then the
inequality w1 > v1 can be multiplied from the right by suitable distinct elements,
which yields w > v; as required.

Let v1 D w1T; T D .wk1�1
1 wk2

2 � � �wks�1
s�1 /wl

s � v0
1, where 0 � l < ks. Here ws is

not a beginning of v0
1; whereas the term between the parentheses may be missing (in

this case s D 1, l > 0/:
If v0

1 is a nonempty word, then v0
1 < v1 < w1 � ws because v1 is standard.

The inequality v0
1 < ws implies av0

1b < awsc for all words a; b; c because ws is
not a beginning of v0

1: Taking a D .wk1
1 wk2

2 � � �wks�1
s�1 /wl

s and suitable b; c; we obtain
v < w:

Let v0
1 is the empty word. If l > 0, then the word v1 should be greater than its

end ws: Therefore, w1 > v1 > ws, which contradicts the fact that w1 � ws is valid
for all s � 1. If l D 0, then s > 1 because v1 begins with w1. It follows that v1 is
greater than its end ws�1, which is again a contradiction with w1 > v1 > ws�1.

The second part of the lemma follows from Lemma 2.3 and the fact that the
leading word of a product of homogeneous polynomials equals the product of
leading words of the factors. ut
Remark 2.1 We stress that the above lemma cannot be extended to all super-words,
for example if x1 > x2 > x3; then Œx1� � Œx3� > Œx1x2� and x1x3 < x1x2.

Lemma 2.5 Let u; u1 be standard words and u > u1: The polynomial ŒŒu�; Œu1�� is a
linear combination of super-words in the super-letters Œw� such that uu1 � w > u1;
in which case the constitution of the super-words equals the constitution of uu1.

Proof If the nonassociative word ŒŒu�Œu1�� is standard then it defines a super-letter
Œw� and uu1 D w > u1 by Lemma 1.4. In particular, the lemma is valid if u and u1
are letters. We can therefore proceed by induction on the length of uu1.

Suppose that the lemma is true if the length of uu1 is less than m. Choose a pair
u; u1 with a greatest word u; so that the polynomial ŒŒu�; Œu1�� does not enjoy the
required decomposition and the length of uu1 equals m. Then the nonassociative
word ŒŒu�Œu1�� is not standard. By Lemma 1.10, we have Œu� D ŒŒu3�Œu2�� with
u2 > u1.
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We fix the notation for super-letters Ui D Œui�, i D 1; 2; 3. By Jacobi
identity (2.1), we can write

ŒŒU3;U2�;U1� D ŒU3; ŒU2;U1��C p�1
u1;u2 ŒŒU3;U1�;U2�

C.pu2;u1 � p�1
u1;u2 /ŒU3;U1� � U2: (2.12)

We have u3 > u > u2 > u1. By the inductive hypothesis, ŒU3;U1� can be represented
as
P

i
˛i
Q
k
Œwik�, where u3 > u3u1 � wik > u1. Using Lemma 1.7, we obtain

u > uu1 > u3u1 � wikI that is, all super-letters Œwik� satisfy the requirements of
the present lemma. Furthermore, the word u cannot be the beginning of u2; and so
u > u2 implies uu1 > u2: Thus, the super-letter U2, too, satisfies the requirements.
Consequently, the second [in view of (2.6)] and third summands of (2.12) have the
required decomposition.

Using the inductive hypothesis, for the first summand we obtain

ŒU2;U1� D
X

i

ˇi

Y

k

Œvik�; (2.13)

where u2u1 � vik > u1. By Lemma 1.7, uu1 > u2u1 � vikI that is, the super-letters
Œvik� satisfy the conditions of the lemma. Rewrite the first summand using skew-
derivation formula (2.8), with the first factor replaced by (2.13). In this way, the first
summand turns into a linear combination of words in the super-letters Œvik� and skew
commutators ŒŒu3�; Œvik ��. Because u3 > u > u2 > vik and the length of vik does not
exceed that of u2u1; the inductive hypothesis applies to yield

ŒŒu3�; Œvik�� D
X

j

�j

Y

t

Œwjt�; (2.14)

where u3 > u3vik � wjt > vik. In this case u2u1 � vik implies

uu1 D u3u2u1 � u3vik � wjtI

in addition, wjt > vik > u1, i.e., the super-letters Œwjt� also satisfy the conditions.
ut

Lemma 2.6 Every nonincreasing super-word W is a linear combination of lesser
increasing super-words of the same constitution whose super-letters all lie .not
strictly/ between the greatest and the least super-letters of W:

Proof We proceed by induction on the length of the super-word. Assume that the
lemma is true for super-words of length � t, and let W D UU1 � � � Ut be a least
super-word of length tC 1 for which our lemma fails.

If the super-word U1 � � � Ut is not increasing, then by the inductive hypothesis it is
a linear combination of lesser increasing super-words Wi: In this case UWi < W; and
according to the choice of W; all super-words UWi have the required representation.
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Let

W D UUk1
1 � � �Ukt

t ; U1 < U2 < : : : < Ut: (2.15)

If U � U1; then W is increasing, and there is nothing to prove. Let U > U1. Then

W D ŒU;U1�U
k1�1
1 � � �Ukt

t C pu;u1U1UUk1�1
1 � � �Ukt

t : (2.16)

The second summand is less than W as a super-word, and so we can write it in the
required form. By Lemma 2.5, the factor ŒU;U1� in the first term can be represented
as
P

i
˛i
Q
s
Œwis�, where the super-letters Œwis� are less than U. Consequently, the

super-words
Q
s
Œwis�U

k1�1
1 � � �Ukt

t are less than WI that is, the first term has the

required representation too. ut
Theorem 2.1 The set of all super-words

Œu1�
n1 Œu2�

n2 � � � Œuk�
nk ; (2.17)

where u1 < u2 < : : : < uk are standard words, forms a basis of k hXi:
Proof Since by definition all words of length one are standard, the letters xi D Œxi�

are super-letters. Hence, by Lemma 2.6, every polynomial is a linear combination of
increasing super-words. It remains to prove that the set of all increasing super-words
is linearly independent. Let

X

i

˛iWi D 0 (2.18)

and assume that W D Œw1�k1 Œw2�k2 � � � Œwm�
km is a leading super-word in (2.18). By

Lemma 2.4, the leading word of W equals w D wk1
1 wk2

2 � � �wkm
m . This word occurs

exactly once in (2.18). Suppose, to the contrary, that W does also occur in the
decomposition of V D Œv1�

m1 Œv2�
m2 � � � Œvk�

mk : Then the word w is less than or equal
to the leading word v D vm1

1 v
m2
2 � � �vmk

k in the decomposition of V , which contradicts
the fact that W > V by Lemma 2.4. ut

2.2 Coproduct on Super-Letters

Theorem 2.1 demonstrates that the super-letters are PBW generators of infinite
height for the free character Hopf algebra GhXi: Our next goal is to describe
properties of the coproduct of these PBW generators.
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Lemma 2.7 The coproduct of a super-letter W D Œw� has a representation

.Œw�/ D Œw�˝ 1C gw ˝ Œw�C
X

i

˛ig.W
00
i /W

0
i ˝W 00

i ; (2.19)

where W 0
i are nonempty words in less super-letters than is Œw�: Moreover, the sum

of constitutions of W 0
i and W 00

i equals the constitution of V: Here g.u/ denotes the
group-like element gu:

Proof We use induction on the length of a word w. For letters, there is nothing to
prove. Let W D ŒU;V�, U D Œu�, and V D Œv�. Assume that the decompositions

.U/ D U ˝ 1C gu ˝ U C
X

i

˛ig.U
00
i /U

0
i ˝ U00

i ; (2.20)

and

.V/ D V ˝ 1C gv ˝ V C
X

j

ˇjg.V
00
j /V

0
j ˝ V 00

j (2.21)

satisfy the requirements of the lemma. Using (2.6) and properties of p, we can write

.W/ D .U/.V/� pu;v.V/.U/ D W ˝ 1C gw ˝W

C.1 � pu;vpv;u/guV ˝ U C
X

ˇjp.U;V
00
j /g.V

00
j /ŒU;V

0
j �˝ V 00

j

C
X

ˇjgug.V 00
j /V

0
j ˝ .UV 00

j � pu;vp.V
0
j ;U/V

00
j U/

C
X

˛ig.U
00
i /.U

0
i � V � pu;vp.V;U

00
i /V � U0

i/˝ U00
i

C
X

˛ip.U
0
i ;V/gvg.U

00
i /U

0
i ˝ ŒU00

i ;V�

C
X

˛iˇjg.U
00
i V 00

j /.p.U
0
i ;V

00
j /U

0
i V

0
j ˝ U00

i V 00
j

�pu;vp.V
0
j ;U

00
i /V

0
j U

0
i ˝ V 00

j U00
i /: (2.22)

Collecting similar terms in this formula was result in the canceling of terms of the
form gvU ˝ V only. We claim that all left parts of the remaining tensors in (2.22)
admit the required decomposition. First, in view of the inductive hypothesis, all
super-letters of all super-words V 0

j are less than V , which are in turn less than W
because v is the end of a standard word w. Moreover, by the inductive hypothesis
again, u cannot be the beginning of any word u0 such that the super-letter Œu0� would
occur in super-words U0

i . Therefore, u > u0 implies uv > u0 and W > Œu0�. Thus, all
but the first and fourth super-words on the left-hand sides of all tensors depend only
on super-letters which are less than W.
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We want to apply Lemma 2.5 to the fourth tensor. Let V 0
j D

Q
k

Vik,

where Vik D Œvik� are less than V . By Eq. (2.8), the polynomial ŒU;V 0
j � is a linear

combination of words in the super-letters Vik and skew commutators ŒU;Vik�. By
Lemma 2.5, each of these commutators is a linear combination of words in the
super-letters Œv0� such that v0 � uvik. In view of vik < v, we obtain v0 < uv D w.

The statement concerning the constitutions follows immediately from for-
mula (2.22) and the inductive hypothesis. ut
Lemma 2.8 The coproduct of a super-word W has a decomposition

.W/ D W ˝ 1C g.W/˝W C
X

i

˛ig.W
00
i /W

0
i ˝W 00

i ; (2.23)

where the sum of constitutions of W 0
i and W 00

i equals the constitution of W:

Proof It suffices to observe that  is an homomorphism of algebras. Here, we can
no longer assert that W 0

i < W. ut
Lemma 2.9 If Œw� is a super-letter, then

.Œw�m/ D
mX

jD0

hm

j

i

q
gm�j

w Œw�j ˝ Œw�m�j C
X

i

˛ig.Vi/Ui ˝ Vi; (2.24)

where
hm

j

i

q
are the Gauss polynomials considered in Sect. 1.1 with q D p.w;w/;

whereas the super-words Ui are less than Œw�m with respect to the lexicographical
ordering of words in super-letters.

Proof After developing of the product, the mth power of the right hand side of (2.19)
takes the form (2.24), where each of Ui is a product of m super-words some of
whom equal to Œw� (but not all of them!) and others equal to some of the W 0

i ’s. By
Lemma 2.7, all super-letters that occur in Wi are less than Œw�: Hence, the super-
word Ui is less than Œw�m with respect to the lexicographical ordering of words in
super-letters. ut

2.3 Hard Super-Letters

Consider a character Hopf algebra H: By definition H is generated over kŒG� by
skew-primitive semi-invariants bi; i 2 I:

.bi/ D bi ˝ hi C fi ˝ bi; hi; fi 2 G; big D 
bi .g/ � gbi; g 2 G; i 2 I: (2.25)

As the skew-primitive elements are closed with respect to the multiplication by
group-like elements, we may normalize the generators, ai D h�1

i bi; diminishing
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the number of group-like elements related to them:

.h�1
i bi/ D h�1

i u˝ 1C h�1
i fi ˝ h�1

i bi:

In what follows, we fix a set of normalized skew-primitive generators faig; so that

.ai/ D ai ˝ 1C gi ˝ ai; .gi/ D gi ˝ gi; aig D 
ai .g/ � gai; g 2 G; i 2 I:
(2.26)

Let GhXi; X D fxi j i 2 Ig be the free character Hopf algebra such that 
i D 
ai

and gi D gai , i 2 I: Then there exists a natural homomorphism of Hopf algebras

' W GhXi ! H; (2.27)

which maps xi to ai; i 2 I:

Definition 2.4 Let � be a well-ordered additive (commutative) monoid. With each
xi; i 2 I we associate a nonzero element di 2 �: The D-degree of a word, a
super-letter, a super-word, or more generally, a homogeneous polynomial f in X
of a constitution fmi j i 2 Ig is

D. f / D
X

i

midi D
X

i

di degi. f /: (2.28)

In what follows, we fix a well-ordered monoid � and elements di D D.xi/. For
example, � may be the monoid related to the constitution given in the construction
after Definition 1.3. For the first reading, one may suppose that � D ZC is the
monoid of nonnegative integer numbers, whereas di D 1:However, we should stress
that the resulting set of PBW generators and its properties essentially depend on the
chosen D-degree function.

Lemma 2.10 The set X�
m of all words of a fixed D-degree m is well-ordered with

respect to the lexicographical order.

Proof We note, first, that � has no negative elements: if a < 0; then there appears
an infinite descending chain 0 > a > 2a > 3a > : : : : Additionally, � has the
cancelation property, aC x D aC y implies x D y: if x > y; then aC x > aC y:

Let F be a subset of X�
m: As hX; <i is well-ordered, the set A of all first letters of

words from F has a least element, say, x1 2 X: If x1u; x1v 2 F; then D.x1/CD.u/ D
D.x1/C D.v/ D m: Hence, D.u/ D D.v/ < m because D.v/ � m and D.x1/ > 0

would imply D.x1/ C D.v/ > m: By these reasons, we may apply the induction
supposition to the set B D fu 2 X� j x1u 2 Fg: If u0 is a least element of B; then
x1u0 is a least element of F: ut
Definition 2.5 A G-super-word is a product of the form gW, where g 2 G and W
is a super-word. The degree, constitution, length, and other concepts which apply
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with G-super-words are defined by the super-word W. In other words, we assume
that the D-degree and the constitution of g 2 G are equal to zero. In view of (2.26),
every product of super-letters and group-like elements equals a linear combination
of G-super-words of the same constitution.

Definition 2.6 A super-letter Œu� is said to be hard if its value '.Œu�/ in H is not
a linear combination of values of words of the same D-degree in less super-letters
than is Œu� and of G-super-words of a lesser D-degree.

We are remanded that a primitive tth root of 1 is an element ˛ 2 k such that
˛t D 1 and ˛r ¤ 1 for all r; 1 � r < t: In particular, 1 is the 1st primitive root of 1:

Definition 2.7 We say that the height of a super-letter Œu� of D-degree d 2 � equals
h D h.Œu�/ if h is the smallest natural number such that:

(1) pu;u is a primitive tth root of 1 and either h D t or h D tlr; where l is the
characteristic of k.

(2) the value in H of Œu�h is a linear combination of values of super-words of D-
degree hd in less super-letters than is Œu� and of G-super-words of a lesser D-
degree.

If, for the super-letter Œu�, the number h with the above properties does not exist,
then we say that the height of Œu� is infinite.

Theorem 2.2 The set of values in H of all G-super-words W in the hard super-
letters Œui�;

W D gŒu1�
n1 Œu2�

n2 � � � Œuk�
nk ; (2.29)

where g 2 G; u1 < u2 < : : : < uk; ni < h.Œui�/; forms a basis of H:

The proof will proceed through a number of lemmas. For brevity, we call a G-
super-word (2.29) restricted if each of the numbers ni is less than the height of Œui�:

A super-word (a G-super-word) is said to be admissible if it is increasing restricted
and is a word in hard super-letters only.

First of all, we have to demonstrate that every element of H is a linear
combination of values of admissible G-super-words. Clearly, every element is a
linear combination of values of not necessarily admissible G-super-words because
each variable xi is a super-letter, xi D Œxi�: In fact, there exist a natural diminishing
procedure, based on Lemma 2.5 and on the definitions of hard super-letters and their
heights, that allows one to find the required linear combination.

Lemma 2.11 The value of each non-admissible super-word of D-degree d is a
linear combination of values of lesser admissible super-words of D-degree d and
of admissible G-super-words of a lesser D-degree. Also, all super-letters occurring
in the super-words of D-degree d of this linear combination are less than or equal
to a greatest super-letter of the super-word given.
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Proof Assume that the lemma is valid for super-words of D-degree < m. Let W
be a least super-word of D-degree m for which the required representation fails. By
Lemma 2.6, the super-word W is increasing. If it has a non-hard super-letter, by
definition, we can replace it with a linear combination of G-super-words of a lesser
D-degree and of words in less super-letters of the same D-degree. Developing the
product turns W into a linear combination of G-super-words of a lesser D-degree
and of lesser super-words of the same D-degree, a contradiction with the choice
of W: If W contains a subword Œu�k, where k equals the height of Œu�, then we can
replace it as is specified above, which gives us a contradiction again. Thus the W is
itself increasing restricted and is a word in hard super-letters only. ut

In order to prove Theorem 2.2, it remains to show that admissible G-super-words
are linearly independent. Consider an arbitrary linear combination T of admissible
G-super-words and let U D Vn1

1 Vn2
2 � � �Vnk

k be its leading (maximal) super-word of
D-degree m. Multiplying, if necessary, that combination by a group-like element,
we can assume that U occurs once without a group-like element:

T D U C
rX

jD1
˛jgjU C

X

i D.i1;i2;:::;is/
˛ i g i W i; W i D Vni1

i1 Vni2
i2 � � �Vnis

is : (2.30)

In the next three lemmas, we accept the following assumptions on m; U and r :

1. The admissible G-super-words of D-degree < m are linearly independent;
2. The admissible G-super-words of D-degree m which are less than U are linearly

independent modulo the space spanned by G-super-words mentioned in 1;
and, if r > 0; then

3. The super-words gj U; 1 � j � r are linearly independent modulo the space
spanned by G-super-words mentioned in 1 and 2.

In view of these assumptions and Lemma 2.11, every super-word of D-degree
m which is less than U, and every super-word of D-degree < m, can be uniquely
decomposed into a linear combination of admissible G-super-words. For brevity,
such will be referred to as a basis decomposition.

Lemma 2.12 Under the assumptions 1, 2, 3, if the value of T in H is a skew-
primitive element, then r D 0 and g i D 1 for all i such that D.W i/ D m:

Proof Rewrite the linear combination T as follows:

T D U C
X

i 2I

˛ ig iW i CW 0; (2.31)

where g iW i are distinct G-super-words of D-degree m in (2.30) (including ˛j gj U/
and W 0 is a linear combination of G-super-words of D-degree< m. In the expression

.T /� T ˝ ht � ft ˝ T; ht; ft 2 G (2.32)
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consider all tensors of the form gW ˝ : : : , where D.W/ D m: By Lemma 2.8, the
sum of all such tensors equals

X

i 2I

˛ ig i W i ˝ g i �
X

i 2I

˛ ig i W i ˝ 1 D
X

i 2I

˛ ig i W i ˝ .gi � 1/: (2.33)

By assumptions 1, 2, 3, the elements g i W i; i 2 I are linearly independent modulo
all left parts of tensors of D-degree < m in (2.32). Therefore, if (2.32) vanishes in
H; then either ˛ i D 0 or g i D 1 for every i 2 I, as required. ut
Lemma 2.13 Under the assumptions 1, 2, 3, if T is a skew-primitive element, then
U D Œu�h and all super-words of D-degree m except U are words in less super-letters
than Œu� is.

Proof By the preceding lemma, we can assume that

T D
X

i D.i1;i2;:::;is/
˛ i g i W i; W i D Vni1

i1 Vni2
i2 � � �Vnis

is ; (2.34)

where one of the W i ’s is U;whereas Vij D Œvij� are hard super-letters,˛ i are nonzero
coefficients, and g i D 1 if W i is of D-degree m. By Lemma 2.7, we have

.g i W i/ D .g i ˝ g i/

sY

jD1
.Vij ˝ 1C gij ˝ Vij C

X

�

gij �V 0
ij � ˝ V 00

ij � /
nij ; (2.35)

where V 0
ij � < Vij and deg V 0

ij � C deg V 00
ij � D deg Vij.

Let Œu� be the greatest super-letter occurring in super-words of D-degree m
in (2.34). Because all super-words of (2.34) are increasing, this super-letter stands
at the end of some super-words W i, i.e., Œu� D Vis. If one of these super-words
depends only on Œu�I that is, Wi D Œu�h, then W i is a leading super-word, W i D U as
required. Therefore, we assume that every super-word of D-degree m ending with
Œu� is a word in more than one different super-letters.

Let h D nis be the largest exponent of Œu� in (2.34). Consider all tensors of the
form gŒu�k ˝ : : : obtained in (2.35) by removing the parentheses and applying the
basis decomposition to all left parts of tensors in all terms except T ˝1 (all of these
terms are of D-degree< m).

All left parts of tensors which appear in (2.35) removing the parentheses arise
from the G-super-word giV

ni1
i1 Vni2

i2 � � �Vnis
is by replacing some of the super-letters Vij

either with group-like element gij or with G-super-word gij�V 0
ij� of a lesser D-degree

in less super-letters. The right parts are, respectively, products obtained by replacing
super-letters Vij with super-words V 00

ij� multiplied from the left by gi.
Let gR ˝ g0S be a resulting tensor under the replacements above and followed

then basis decomposition.
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If D.R/ < hD.u/; then its basis decomposition may give rise to terms of the
form gŒu�k ˝ : : : . In this case, however, D.S/ < .m � h/D.u/ because the sum of
D-degrees of both parts of the tensors either remains equal to m or decreases.

If D.R/ < hD.u/; or R is itself less than Œu�h as a super-word, then the basis
decomposition of R have no terms of the form gŒu�hI see Lemma 2.9.

If D.R/ D hD.u/; while D.W i/ < m; then R can be greater than or equal to Œu�h;
but in this case D.S/ < .m � h/D.u/ because D.R/CD.S/ � D.W i/ < m:

If D.R/ D hD.u/;while D.W i / does not end with Œu�hI that is, W i D W 0
iŒu�

r; 0 �
r < h and W 0

i ends with a lesser than Œu� supper-letter, then S is less than Œu�h because,
due to Lemma 2.7, its first super-letter is less than Œu� W if all super-letters of W 0

i are
replaced with group-like elements, then D.R/ � D.Œu�r/ < hD.u/:

Finally, if W i D W 0
iŒu�

h; then a super-word R of D-degree hD.u/, which is greater
than or equal to Œu�h, may appear only if all super-letters of the super-word W 0

i are
replaced with group-like elements, but Œu� is not. Here, the resulting tensor is of the
form g i g.W 0

i /Œu�
h ˝ g i W 0

i:

We fix an index i such that W i ends with Œu�h: Then the sum of all tensors of the
form g i g.W 0

i/Œu�
h ˝ : : : in .T/ � T˝ ht is equal to

gig.W
0
i /Œu�

h ˝ .
X

j

˛ j g j W 0
j C W00/; (2.36)

where W00 is a linear combination of basis elements of D-degree less than
.m � h/D.u/, and j runs through the set of all indices such that W j D W 0

j Œu�
h,

g j g.W 0
j / D g i g.W 0

i/, and D.W j/ D .m � h/D.Œu�/.
Because W 0

j are distinct nonempty basis super-words of D-degree .m � h/D.u/;
the value of tensor (2.36) in H is nonzero. A contradiction. ut
Lemma 2.14 Under the conditions of the above lemma, pu;u is a tth primitive root
of 1 with t � 1 and h D t; or the characteristic of k equals l > 0 and h D tlk:

Proof By Lemma 2.13, the linear combination T can be written in the form

T D Œu�h C
X

i D.i1;i2;:::;is/
˛ ig iW i; W i D Vni1

i1 Vni2
i2 � � �Vnis

is ; (2.37)

where Œu� is greater than all super-letters Vij for W i of D-degree m. First let � D
1C puu C p2uu C : : :C ph�1

uu ¤ 0 and assume h > 1.
In the basis decomposition of .T / � T ˝ 1, consider tensors of the form

Œu�h�1˝: : : . All super-letters Vij in super-words of D-degree m are less than or equal
to Œu�; therefore, tensors of this form may appear under the basis decomposition of a
tensor of .W i /�W i ˝ 1; Vi D Vni1

i1 Vni2
i2 � � �Vnis

is ; only if either the left part of that
tensor is of D-degree greater than .h � 1/D.u/ or Wi is of D-degree less than m. In
either case, the right part is of less D-degree than is Œu�. As above, if we remove the
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parentheses in

.Œu�h/ D .Œu�˝ 1C gu ˝ Œu�C
X

�

g�U
0
� ˝ U00

� /
h; (2.38)

we see that the left parts of the resulting tensors arise from the super-word Œu�h by
replacing some super-letters Œu� either with gu or with G-super-words g�U0

� of a
lesser D-degree in less super-letters than is Œu�. It follows that a super-word of D-
degree .h�1/D.u/which is greater than or equal to Œu�h�1 appears only if exactly one
super-letter is replaced with a group element. Using the commutation rule Œu�sgu D
ps

u;uguŒu�s, we see that the sum of all tensors of the form guŒu�k�1 ˝ : : : equals

guŒu�
k�1 ˝ .�Œu�C F C W /; (2.39)

where F is a linear combination of super-words in less than Œu� super-letters, and
W is a linear combination of basis G-super-words of D-degree less than D.u/.
Consequently, (2.32) is nonzero provided that � ¤ 0:

Now let � D 0. In this case ph
u;u D 1. Therefore, pu;u is a tth primitive root of 1;

and h D t � q or, if k has a characteristic l > 0; then h D tlr � q with q; t ¤ 0 .mod l/.
Our aim is to demonstrate that q D 1: Let h0 D h=q:

The commutation rule .Œu�˝ 1/ � .gu ˝ Œu�/ D pu;u.gu ˝ Œu�/ � .Œu�˝ 1/ implies

.Œu�˝ 1C gu ˝ Œu�/h0 D Œu�h0 ˝ 1C gh0

u ˝ Œu�h
0

: (2.40)

If we remove the parentheses in

.Œu�h
0

/ D ..Œu�˝ 1C gu ˝ Œu�/C
X

i

g.U00
i /U

0
i ˝ U00

i /
h0

; (2.41)

then Lemma 2.9 implies

.Œu�h
0

/ D Œu�h0 ˝ 1C gh0

u ˝ Œu�h
0 C

X

�

g.U00
� /U

0
� ˝ U00

� ; (2.42)

where all super-words U0
� are less than Œu�h

0

(in particular, U0
� ¤ Œu�d; d < h0) and

D.U0
� / < h0 � D.u/.

This allows us to treat Œu�h
0

in (2.37) as a single block, or as a new formal super-
letter fŒu�h0g such that fŒu�h0g < Œu�, and fŒu�h0g > Œvij� if uh0

> vij (the latter
inequality is equivalent to u > vij by Lemma 1.5):

T D fŒu�h0gq C
X

i

˛igiV
ni1
i1 Vni2

i2 � � �Vnis
is : (2.43)
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Considering that p.Œu�h
0

; Œu�h
0

/ D ph0�h0

u;u D 1, we have

�1 D 1C p.Œu�h
0

; Œu�h
0

/C : : :C p.Œu�h
0

; Œu�h
0

/q�1 D q ¤ 0 .mod l/:

As in the case above, assuming that fŒu�h0g is a single block, we can compute the
sum of all tensors of the form gh0

u fŒu�h0gq�1 ˝ : : : in the basis decomposition of
.T/� T˝ 1 (provided that q > 1/:

gh0

u fŒu�h
0gq�1 ˝ .q � fŒu�h0g C F CW/; (2.44)

where F is a linear combination of super-words in less than Œu�h
0

super-letters, and
W is a linear combination of basis G-super-words of less D-degree than is Œu�h

0

. By
the induction hypothesis, tensor (2.44) is nonzero in H ˝ H, and so is (2.32). ut

Now we are ready to complete the proof of Theorem 2.2 by induction on m; U;
and r: The least super-word of the minimal D-degree is a least variable xi with
minimal di: In (2.30), the minimal value of r is zero. For these values of the induction
parameters, we have TD xi: If xi D 0 in H then U D Œxi� is not a hard super-letter.

If under the induction assumptions 1, 2, 3, we have T D 0 in H; then value of T
is a skew-primitive element. By Lemmas 2.13, 2.14, the equality T D 0 takes the
form

Œu�h D �
X

i D.i1;i2;:::;is/
˛ i g i W i; W i D Vni1

i1 Vni2
i2 � � �Vnis

is ;

where Vij < Œv� if D.W i/ D D.Œu�h/; whereas for h there are just the following
options: h D 1I or pu;u is a primitive tth root of 1, and either h D t or, in case when
the characteristic l is positive, h D tlk

If h D 1; then Definition 2.6 implies that Œu� is not hard. In other cases,
Definition 2.7 implies that the height of Œu� is less than h: Theorem 2.2 is proved.

The skew-primitive elements in character Hopf algebras have a special form in
the basis decomposition related to hard super-letters. We are remanded that if a 2
kŒG� is a skew-primitive element, then a is proportional to h � f ; see Lemma 1.19.

Theorem 2.3 If a … k ŒG� is a skew-primitive element, then a D ˛g '.T /; where
0 ¤ ˛ 2 k; g 2 G; and T has the following expansion:

T D Œu�h C
X

˛iWi C
X

ˇj gj W 0
j : (2.45)

Here, Œu� is a hard super-letter, Wi are basis super-words in super-letters less than
Œu�; D.Wi/ D hD.Œu�/; and D.W 0

j / < hD.Œu�/: Moreover, if pu;u is not a root of 1;
then h D 1I if pu;u is a primitive tth root of 1; then h D 1; or h D t; or .in case of
characteristic l > 0/ h D tlk:
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Proof By Theorem 2.2, the element a is a linear combination of values of increasing
restricted G-super-words, a D '.T0/;

T0 D ˛gU C
kX

iD1
�igiWi CW 0; ˛ ¤ 0; (2.46)

where gU; giWi are admissible G-super-words of maximal degree, and either U >

Wi or U D Wi but gi ¤ g: Considering that, due to Theorem 2.2, assumptions 1, 2,
3 are universally true, we may apply Lemmas 2.12–2.14 to T D ˛�1g�1 T0: ut

2.4 Monomial PBW Basis

In this section, we prove that values of standard words corresponding to hard super-
letters form a set of PBW generators for H also. Additionally we find some criterion
for a super-letter Œu� to be hard in terms of the values of monomials. This criterion
allows one to forget about skew brackets while computing the hard super-letters.

We keep the notations of the above section. In particular, H is a Hopf algebra
generated by an Abelian group G of all group-like elements and by skew-primitive
semi-invariants a1; : : : ; an with which degrees d1; : : : ; dn are associated. We fix the
homomorphism of Hopf algebras ' W GhXi ! H; xi 7! ai; 1 � i � n:

Let w be an arbitrary word. By Theorem 1.1, there exists a unique decomposition
of the word w in the product: w D wn1

1 � wn2
2 � : : : � wnm

m ; where wi; 1 � i � m are
standard words such that w1 < w2 < : : : < wm: Let W D Œw1�n1 � Œw2�n2 � : : : � Œwm�

nm :

Lemma 2.15 If the super-word W is admissible, then the leading super-word of the
basis decomposition of '.w/ is precisely W and it occurs with the coefficient 1 only.
If W is not admissible, then each super-word of the basis decomposition of '.w/
either is less than W or is of a lesser D-degree.

Proof Lemma 2.4 implies that the leading word of the polynomial W is precisely
w: Hence, W � w is a linear combination of words that are less than w:

If W is admissible, then the decomposition w D W C .w � W/ allows one to
perform the evident induction.

If W is not admissible, then by Lemma 2.9, there is a decomposition '.W/ DP
j ˛j gj '.Wj /; where Wj are admissible super-words and for each j either Wj < W

or D.Wj / < D.w/: Let Wj D Œw1j�
n1 � Œw2j�

n2 � : : : � Œwmj�
nmj and wj D wn1

1j � : : : �wnmj

mj :

Lemma 2.4 implies that wj < w provided that D.wj / D D.w/: Thus, we have a
representation of '.w/ as a linear combination of lesser words of the same D-degree
and G-words of lesser D-degree:

'.w/ D '.w�W/C
X

j

˛j gj '.wj / �
X

j

˛j gj '.Wj � wj /: (2.47)

The induction applies. ut
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Theorem 2.4 The set of values in H of all G-words

gun1
1 � un2

2 � : : : � unk
k ; (2.48)

where g 2 G; u1 < u2 < : : : < uk are standard words such that Œui� are hard
super-letters, ni < h.Œui�/ forms a basis of H:

Proof Suppose that values of all words of degree < m belong to the space H0

spanned by (2.48). Among the words of D-degree m; let w be the minimal one with
respect to the lexicographic order, such that '.w/ … H0: If W is admissible, then w
itself has the form (2.48). If W is not admissible, than by induction (2.47) implies
that '.w/ 2 H0: Hence, H0 D H:

Let wj ; j 2 J be different words of the type (2.48); that is, wj D wn1
1j � : : : �

w
nmj

mj ; whereas Wj D Œw1j�
n1 � Œw2j�

n2 � : : : � Œwmj�
nmj are admissible super-words. By

Lemma 2.15, the super-word Wj is a leading super-word of the PBW decomposition
wj D Wj CPi ˛ijWij: Let Wk is the maximal super-word among the Wj’s of maximal
D-degree. Considering that different Wj; Wij; j 2 J are linearly independent in H;
we obtain that a linear dependence

X

j2J; t2T

˛jthjt'.wj / D 0; 0 ¤ ˛jt 2 k; hjt 2 G; (2.49)

would imply
P

t2T ˛ktgkt'.Wk/ D 0: This contradicts to Theorem 2.2. ut
Corollary 2.1 A super-letter Œu� is hard if and only if the value of u is not a linear
combination of values of lesser words of D-degree D.u/ and of G-words of a lesser
D-degree.

Proof Let '.u/ D P
i ˛i'.wi/ C u0, ˛i 2 k; where wi < u; D.wi/ D D.u/ and

D.u0/ < D.u/. By Lemma 2.15, we obtain u D Œu� CPj ˇj Uj where the super-
words Uj are less than Œu�:

Let wi D wn1
1i � wn2

2i � : : : � wnmi
mi ; where wki; 1 � k � mi are standard words such

that w1i < w2i < : : : < wmi; and let Wi D Œw1i�
n1 � Œw2i�

n2 � : : : � Œwmi�
nmi : Lemma 2.15

demonstrates that all super-words V of the basis decomposition of wi are less than
or equal to Wi unless D.V/ < D.wi/: Because u > wi, by Lemma 2.4, we have
Œu� > Wi; for all i:

Therefore Œu� is greater than all super-words of degree D.u/ in the basis decom-
position of

P
i ˛i'.wi/: Thus, Theorem 2.2 implies that '.u/ ¤Pi ˛i'.wi/C u0:

Conversely, if '.Œu�/ DP ˛i'.Wi/CU0, where Wi depends on super-letters less
than Œu� only, and D.U0/ < D.u/; then

'.u/ D '.Œu�/C '.u� Œu�/ D
X

˛i'.Wi/C U0 C '.u � Œu�/:

Due to Lemma 2.4, the latter polynomial has no one monomial whose D-degree
equals D.u/ and which is greater than or equal to u. ut
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2.5 Serre Skew-Primitive Polynomials

In this section, using Theorem 2.3, we shall describe all skew-primitive polynomials
in two variables linear in one of them. We keep notation of Sect. 1.5.3:

.yi/ D yi ˝ hi C fi ˝ yi; yig D 
i.g/gyi; hi; fi; g 2 G; i D 1; 2:

We know that Ghy1; y2i as a Hopf algebra with group G of group-like elements is
completely defined by the following four parameters

pik D q�1
ik q 0

ik D 
i.h�1
k fk/; 1 � i; k � 2 (2.50)

related to the normalized skew-primitive generators x1 D h�1
1 y1; x2 D h�1

2 y2
because Ghy1; y2i D Ghx1; x2i:
Theorem 2.5 There exists a nonzero linear in y1 skew-primitive element W of
degree n in y2 if and only if either

p12p21 D p1�n
22 (2.51)

or p22 is a primitive mth root of 1; mjn; and

pm
12p

m
21 D 1: (2.52)

If one .or both/ of these conditions is satisfied, then

W D ˛g Œ: : : ŒŒ y1; y2�; y2�; : : : ; y2�; ˛ 2 k; g 2 G; (2.53)

where the brackets are defined in (1.67).

Proof Let W be a skew-primitive element of constitution .1; n/: By Theorem 2.3
the element W has a representation (2.45) up to a factor ˛g: Considering that
the free character Hopf algebra is homogeneous in each variable, there are no
terms W 0

s in that representation. There exist only one standard word of constitution
.1; n/: this is x1xn

2: The standard alignment of brackets is precisely Œx1xn
2� D

ŒŒ: : : ŒŒx1x2�x2�; : : :�x2�:Hence, (2.45) reduces to W D ˛g Œx1xn
2�:Due to Lemma 1.21,

the G-super-word h1hn
2Œx1x

n
2� becomes Œy1yn

2� up to a scalar factor if we distribute the
group-like factors among the variables using the commutation rules (1.62):

h1h
n
2ŒŒ: : : ŒŒx1; x2�; x2�; : : :�; x2� 	 ŒŒ: : : ŒŒy1; y2�; y2�; : : :�; y2�: (2.54)

This proportion proves (2.53).
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It remains to analyze when Œx1xn
2� is skew-primitive. By induction on n we shall

prove the following explicit coproduct formula

.Œx1x
n
2�/ D Œx1xn

2�˝ 1C
nX

kD0
˛
.n/
k g1g

n�k
2 xk

2 ˝ Œx1xn�k
2 �; (2.55)

˛
.n/
k D

�
n

k

�

p22

�
n�1Y

sDn�k

.1 � p12p21p
s
22/: (2.56)

If n D 0; then the equality reduces to .x1/ D x1˝ 1C g1˝ x1; whereas ˛.0/0 D 1:
Moreover, it is clear that ˛.n/0 D 1 for all n:We have,

.Œx1x
n
2�/ � .x2 ˝ 1/ D Œx1x

n
2�x2 ˝ 1C

nX

kD0
˛
.n/
k g1g

n�k
2 xkC1

2 ˝ Œx1xn�k
2 �; (2.57)

.Œx1x
n
2�/ � .g2 ˝ x2/ D Œx1x

n
2� g2 ˝ x2 C

nX

kD0
˛
.n/
k g1g

n�k
2 xk

2 g2 ˝ Œx1xn�k
2 �x2;

(2.58)

.x2 ˝ 1/ �.Œx1xn
2�/ D x2Œx1x

n
2�˝ 1C

nX

kD0
˛
.n/
k x2 g1g

n�k
2 xk

2 ˝ Œx1xn�k
2 �; (2.59)

.g2 ˝ x2/ �.Œx1xn
2�/ D g2Œx1x

n
2�˝ x2 C

nX

kD0
˛
.n/
k g1g

n�kC1
2 xk

2 ˝ x2Œx1x
n�k
2 �:

(2.60)

In the second and third relations we may move the group-like factors to the left:

Œx1x
n
2�g2 D p12p

n
22 g2Œx1x

n
2�; xk

2 g2 D pk
22 g2 xk

2; x2 g1g
n�k
2 xk

2

D p21p
n�k
22 g1g

n�kC1
2 xkC1

2 :

Using all that relations, we develop the coproduct of

Œx1x
nC1
2 � D Œx1xn

2�x2 � p12p
n
22 x2Œx1x

n
2�

taking into account that .x2/ D x2 ˝ 1C g2 ˝ x2: The sums of (2.57) and (2.59)
provide the tensors

nX

kD0
˛
.n/
k .1 � p12p21p

2n�k
22 /g1g

n�k
2 xkC1

2 ˝ Œx1xn�k
2 �;
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whereas the sums of (2.57) and (2.59) produce the following ones:

nX

kD0
˛
.n/
k pk

22 g1g
n�kC1
2 xk

2 ˝ Œx1xn�kC1
2 �:

The first term of (2.58) cancels with the first term of (2.60). Finally, we arrive to a
formula (2.55) with n nC 1 and coefficients

˛
.nC1/
k D ˛.n/k�1 .1 � p12p21p

2n�kC1
22 /C ˛.n/k pk

22; k � 1; ˛.nC1/
0 D 1: (2.61)

To prove the coproduct formula (2.55), it remains to check that values (2.56) satisfy
the above recurrence relations. To this end, we shall check the equality of the
following two polynomials in commutative variables 	; q W
�

nC1

k

�

q

� .1� 	qn/ D
�

n

k�1

�

q

� .1� 	q2n�kC1/C
�

n

k

�

q

� .1 � 	qn�k/ � qk: (2.62)

If 	 D 0; then the equality reduces to the first q-Pascal identity (1.2). Let us compare
the coefficients at 	;

�
nC1

k

�

q

� qn D
�

n

k�1

�

q

� q2n�kC1 C
�

n

k

�

q

� qn�k � qk:

This equality differs from the second q-Pascal identity (1.3) just by a common factor
qn: Hence, the equality (2.62) is valid.

If we multiply both sides of (2.62) by
Qn�1

sDn�kC1.1 � 	qs/ and next replace the
variables q  p22; 	  p12p21; then we obtain precisely (2.61) for values (2.56).
The proof of (2.55) is complete.

Each ˛.n/k ; 1 � k � n defined by (2.56) has a factor 1� p12p21pn�1
22 : In particular,

if p12p21 D p1�n
22 ; then all of these coefficients are zero, whence Œx1xn

2� is a skew-
primitive polynomial.

If p22 is a primitive mth root of 1; mjn; and pm
12p

m
21 D 1; then p12p21 is a power

of p22I that is, p12p21ps
22 D 1 for some s; 0 � s < m: This implies that the productQn�1

sDn�k.1 � p12p21ps
22/ equals zero provided that k � m: If k < m; then Lemma 1.1

applies.
Conversely, suppose that all coefficients ˛.n/k ; 1 � k � n are zero. In particular,

˛
.n/
1 D .1 � p12p21pn�1

22 /p
Œn�
22 D 0: Therefore, if p12p21 ¤ p1�n

22 ; then pŒn�22 D 0: This
implies pn

22 D 1I that is, p22 is a primitive mth root of 1 and mjn: In this case, the

equality ˛.n/n D Qn�1
sD0.1 � p12p21ps

22/ D 0 implies that 1 � p12p21ps
22 D 0 for some

s; 0 � s < n: Hence, .p12p21/m D p�sm
22 D 1 which is required. ut
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Corollary 2.2 If one of the existence conditions of the above theorem holds then

Œ: : : ŒŒy1; y2�; y2�; : : : ; y2� 	 Œy2; Œy2; : : : ; Œy2; y1� : : :��: (2.63)

Proof By Lemma 1.21, we have

Œy2; Œy2; : : : ; Œy2; y1� : : :�� 	 h1h
n
2Œx2; Œx2; : : : ; Œx2; x1� : : :��: (2.64)

This lemma and (2.54) imply that it suffices to demonstrate (2.63) under the
substitution yi  xi:

Let us introduce the opposite order, x2 > x1: There exist only one standard word
of constitution .1; n/ with respect to this ordering of variables, xn

2x1; whereas the
standard alignment of brackets is Œx2Œx2 : : : Œx2; x1� : : :��: As Œ: : : ŒŒx1; x2�; x2� : : : ; x2�
is skew-primitive, it has a representation (2.45) where all summands have the same
constitution, .1; n/: By definition of the lexicographical order x2 > xn

2x1: Hence, x2
does not occur in (2.45) as a super-letter. Since every addend has degree 1 in x1; it
follows that (2.45) reduces to T D ˛Œxn

2x1�: ut

2.5.1 Examples

In this subsection, we consider in more detail the above-described binary skew-
primitive polynomials with n � 3 and study the Hopf algebras set up by those
polynomials (as defining relations).

We fix two normalized skew-primitive variables x1; x2 such that

.xi/ D xi ˝ 1C gi ˝ xi; i D 1; 2:

Respectively, we put pis D 
i.gs/; i; s D 1; 2 so that

x1g1 D p11g1x1; x1g2 D p12g2x1; x2g1 D p21g1x2; x2g2 D p22g2x2:

We always suppose that the variables are ordered so that x1 > x2:

Example 2.1 If n D 1; then the existence condition of Theorem 2.53 reduces to
p12p21 D 1: Under that condition the skew commutator Œx1; x2� D x1x2 � p12x2x1 is
a skew primitive element. We have Œx1; x2� D �p12Œx2; x1�; which is the particular
case of the general formula (2.63). The Hopf algebra H defined by the relation
Œx1; x2� D 0 is the skew group ring R �G; where G is the group generated by g1; g2
and R is the so-called algebra of quantum polynomials

R D f
X

m;n

˛m;nxm
2 xn

1 j x1x2 D p12x2x1g:
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Obviously, x1 and x2 are the PBW-generators of H: To see this formally, we may
apply Composition Lemma (Theorem 1.2). Indeed, Œx1; x2� D 0 is a Gröbner-
Shirshov system of relations because there are no compositions at all. Hence, by
Composition Lemma, the set ˙ of all words without subword x1x2 is a basis of R:
Of course,˙ D fxm

2 xn
1 jm; n � 0g:

Example 2.2 If n D 2; then the existence condition of Theorem 2.53 reduces to

.p12p21 D p�1
22 / _ .p12p21 D 1 & p22 D �1/: (2.65)

Under that condition, the polynomial

ŒŒx1; x2�; x2� D x1x
2
2 � p12.1C p22/x2x1x2 C p212p22x

2
2x1

is a skew primitive element. In this case, the general formula (2.63) takes the form
Œx2; Œx2; x1�� D p212p22ŒŒx1; x2�; x2�: Similarly, condition

.p12p21 D p�1
11 / _ .p12p21 D 1 & p11 D �1/ (2.66)

implies that

Œx1; Œx1; x2�� D x21x2 � p12.1C p11/x1x2x1 C p212p11x2x
2
1

is a skew-primitive element and Œx1; Œx1; x2�� D p212p11ŒŒx2; x1�; x1�:
If both polynomials are skew-primitive, then we may consider the Hopf algebra

H defined by relations ŒŒx1; x2�; x2� D 0 and Œx1; Œx1; x2�� D 0: Of course, H D R�G;
where R is the algebra defined by the same relations, and G; as above, is the group
generated by g1; g2:

If p11 D p22; then the algebra R is precisely the algebra AC
2 considered in

Example 1.1, where ˛ D �p12.1 C p22/; ˇ D p212p22: In Example 1.1, we have
seen that the system of relations

ŒŒx1; x2�; x2� D 0; Œx1; Œx1; x2�� D 0

is closed with respect to the compositions, and

˙ D fxm
2 .x1x2/

nxk
1 jm; n; k � 0g

is a basis of R: In other words, the elements x2; x1x2; x1 form a set of PBW
generators for H over G: Corollary 2.1 implies that all hard super-letters are
precisely x2; Œx1x2�; x1; and they form a set of PBW generators for H over G as
well.

We stress that the existence conditions (2.65), (2.66) imply p11 D p22 unless
p22 D p12p21 D 1; p11 D �1 or p22 D �1; p12p21 D p11 D 1:
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Example 2.3 Note that ŒŒŒx1; x2�; x2�; x2� is precisely the Lyndon–Shirshov standard
word Œx1x32� with the standard alignment of brackets. Due to Theorem 2.53 the
polynomial Œx1x32� is skew-primitive if either p12p21 D p�2

22 or p22 D � is a primitive
third root of 1 and p12p21 2 f1; �2g: Under that condition the polynomial

Œx1x
3
2� D x1x

3
2 � p.1C qC q2/x2x1x

2
2 C p2.qC q2 C q3/x22x1x2 � p3q3x32x1;

where p D p12; q D p22 is skew-primitive, and (2.63) takes the form

Œx1x
3
2� D �p3q3Œx2; Œx2; Œx2; x1���:

If p�1
11 D p12p21 D p�2

22 ; then both Œx1x32� and Œx21x2� are skew-primitive
polynomials. Consider the Hopf algebra H defined by two relations: Œx1x32� D 0;

and Œx21x2� D 0: These relations have the form (1.22) considered in Example 1.2
with

˛ D �p.1Cq2/; ˇ D p2q2; � D �p.1CqCq2/; ı D p2.qCq2Cq3/; " D �p3q3;

whereas before, we put for short p D p12; q D p22: If we define � D �pq; then
these parameters satisfy the following relations (1.23):

ˇ D �2; � D ˛ C �; ı D ��; " D �3:

In Example 1.2, we observed that the system of relations Œx1x32� D 0 and Œx21x2� D 0
becomes closed with respect to the compositions if we add one new relation, (1.27),
which is a consequence of the two initial ones. Hence the set

˙ D fxm
2 .x1x2x2/

n.x1x2/
kxs
1 jm; n; k; s � 0g

is a basis of R: In other words, the elements x2; x1x22; x1x2; x1 form a set of PBW-
genrators for H over G:Respectively, Corollary 2.1 implies that all hard super-letters
are precisely x2; Œx1x22�; Œx1x2�; x1; and they form a set of PBW-generators of H over
G also.

Interestingly, by Proposition 1.3 we may replace the very new relation with any
other relation with the same leading word. The leading word, x1x2x1x22; is standard,
and one may show (here we omit the detailed calculations) that Œx1x2x1x22� D 0

is a relation for R: Therefore the three relations Œx1x32� D 0, Œx21x2� D 0; and
Œx1x2x1x22� D 0 is a Gröbner–Shirshov system of defining relations for R: Here
Œx1x2x1x22� D ŒŒx1x2�ŒŒx1x2�x2�� has the standard alignment of brackets.

There exist five exceptional cases, when Œx1x32�; Œx
2
1x2� are still skew-primitive but

p11 ¤ p222: They are: p11 D p12p21 D 1; p22 D �I p11 D p22 D �; p12p21 D �2I and
p11 D �1; p12p21 D 1; p22 2 f1;�1; �gI here, � is the third primitive root of 1: The
analysis of each one of these cases is much easier than that of Example 1.2, and we
let the reader find the PBW-generators and Gröbner-Shirshov systems of relations
as an exercise.
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2.6 Chapter Notes

Examples 2.2 and 2.3 above are particular cases of quantizations of Lie algebras.
Gröbner-Shirshov systems of defining relations for quantizations of Lie algebras of
infinite series An; Bn; Cn; Dn were found by the author [128] using as a basic tool
the PBW theorem proved in this chapter. Interestingly, all relations in those systems
have the form Œu� D 0; where Œu� is a standard word with standard alignment of
brackets. Independently, Chen et al. [48] found the Gröbner-Shirshov systems for
quantizations Uq.sln/ of type An by means of the specific PBW basis constructed by
Rosso [195] and Yamane [234].

There are many publications on the construction of a PBW basis for Hopf
algebras. The first PBW-type theorem for Drinfeld-Jimbo quantizations (see the
next chapter) appeared in the pioneering paper by Jimbo [106], which discusses
Uq.sl2/ in detail. Rosso [195] and Yamane [234] independently constructed the
PBW basis for Drinfeld–Jimbo algebras Uq.sln/ of type An; n > 2: Thereafter,
G. Lusztig, in his fundamental works [151–153], determined the PBW bases for
arbitrary Drinfeld-Jimbo and Lusztig quantum enveloping algebras. These bases
and their modifications have been considered in a number of subsequent papers,
e.g., Kashiwara [119], Concini et al. [58], Berger [28], Towber [224], Bautista
[21], Gavarini [84], Chari and Xi [47], Reineke [192], Leclerc [146], Bai and Hu
[19]. An original approach based on the Ringel-Hall algebras was also advanced in
[59, 60, 194].

The general statement given in Theorem 2.2 can be attributed to the author
[124]. This PBW-type theorem was found to be essential in the construction of
the Weyl groupoid by Heckenberger [91] corresponding to a Nichols algebra (see
Sect. 6.7 below) of diagonal type. This groupoid was crucial in classifying such
Nichols algebras [90]. In turn, knowledge of these Nichols algebras is important to
perform the lifting method developed by N. Andruskiewitsch and H.-J. Schneider
for classifying pointed Hopf algebras [4] .

Theorem 2.2 was generalized in two different directions by Ufer [225], and
by Graña and Heckenberger [87] using similar methods. Instead of character
Hopf algebras, S. Ufer considered braided Hopf algebras (see Chap. 6 below)
with “triangular” braidings, whereas M. Graña and I. Heckenberger replaced the
skew-primitive generators with irreducible Yetter–Drinfeld modules and obtained a
factorization of the Hilbert series for a wide class of graded Hopf algebras, where
the factors are parametrized by Lyndon–Shirshov words in a manner similar to how
the PBW generators are parametrized in Theorem 2.2. In [97], I. Heckenberger and
H. Yamane modified Theorem 2.2 based on the work of G. Lusztig by using the
concept of the Weyl groupoid.

Returning to the main idea of the proof of Theorem 2.2, the right and left
sides of the tensors in (2.2) were used differently, although we required detailed
information (given in Lemma 2.9) about the left sides only. This information
provides a noteworthy idea for applying the method to subalgebras R of H such
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that .R/ � R ˝ H: A subspace that obeys the latter property is known as a right
coideal.The author developed this idea in [133] by proving the following statement:

Theorem 2.6 Every right coideal subalgebra of a character Hopf algebra H that
contains all group-like elements of H has a PBW basis that can be extended up to a
PBW basis of H:

One reason that one-sided coideal subalgebras are important is that Hopf algebras
do not have a sufficient number of Hopf subalgebras. The straightforward idea to
consider Hopf subalgebras as “quantum subgroups” appeared to be inappropri-
ate, whereas the one-sided coideal subalgebras are more precise. The one-sided
comodule subalgebras, not the Hopf subalgebras, are found to be the Galois objects
in the Galois theory for Hopf algebra actions (Milinski [173, 174], see also a
detailed survey by Yanai [235]). In particular, the Galois correspondence theorem
for the actions on free algebra establishes a one-to-one correspondence between
right coideal subalgebras and intermediate free subalgebras (see Ferreira et al.
[73]). In a detailed survey [147], G. Letzter provides a panorama of the use of
one-sided coideal subalgebras in constructing quantum symmetric pairs to form
Harish-Chandra modules and produce quantum symmetric spaces.

The importance of this concept led to a project to classify one-sided coideal
subalgebras of Drinfeld–Jimbo quantizations. In fact, the proof of Theorem 2.6
yields sufficient additional information to try to attempt this classification for the
subalgebras containing all group-like elements.

In a series of papers by Lara Sagahón, Garza Rivera and the author [134, 135,
139, 140], using the parallelization technique for supercomputers, this program
was developed for a multiparameter version of the Drinfeld–Jimbo and Lusztig
quantizations of types An and Bn: It was found in [135, 139] that in these cases
the number of right coideal subalgebras of the positive Borel part UC

q .g/ coincides
with the order of the Weyl group.

The latter statement was extended to arbitrary quantizations of finite type by
Heckenberger and Schneider [96]. The right coideal subalgebras in that case are
the well-known spaces UCŒw� defined by the elements w of the Weyl group,
which was used by Lusztig [153] to establish a PBW basis for UC

q .g/: This
establishment represents an outstanding achievement of a general theory developed
by N. Andruskiewitsch, I. Heckenberger, and H.-J. Schneider in a number of papers
[5, 92, 95, 96]. Generally, this theory is a categorical version of the fundamental
theory of Lusztig’s automorphisms. More precisely, instead of the skew-primitive
generators x1; : : : ; xn the authors consider irreducible finite-dimensional Yetter–
Drinfeld modules V1; : : : ;Vn over a Hopf algebra H with bijective antipode, and
in place of the Weyl group is the Weyl groupoid theorized by I. Heckenberger. The
theory includes a PBW theorem for the related Nichols algebras and their right
coideal subalgebras.

Using these results as a starting point, Heckenberger and Kolb [94] classified all
homogeneous right coideal subalgebras for a quantized enveloping algebra UC

q .g/
of a complex semisimple Lie algebra g with deformation parameter q not a root of
unity.
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Using the computer algebra program to compute the commutative and non-
commutative rings and modules FELIX [6, 72], they determined the number of
different right coideal subalgebras when the order jWj of the Weyl group was less
than one million, thus confirming results of [139] for the case An and reducing the
error in the explicit computer calculations for the case Bn presented in [140]. These
numbers jCoj are given in the tables below.

Type A2 A3 A4 A5 A6 A7 A8 E6 F4 G2

jWj 6 24 120 720 5040 40;320 362;880 51;840 1152 12

jCoj 26 252 3368 58;810 1;290;930 34;604;844 1;107;490;596 38;305;190 91;244 68

B2 B3 B4;C4 B5;C5 B6;C6 B7;C7 D4 D5 D6 D7

8 48 384 38;400 46;080 645;120 192 1920 23;040 322;560

38 664 17;848 672;004 33;369;560 2;094;849;020 6512 238;720 11;633;624 720;453;984

It is likely that the same numbers remain true for multiparameter and “small”
versions of the quantizations. Heckenberger and Kolb [93] recently extended their
work on classification problem by considering right coideal subalgebras that do not
contain all group-like elements.



Chapter 3
Quantizations of Kac-Moody Algebras

Abstract Numerous books and articles concerning quantizations of Kac-Moody
algebras have been published. However, almost all publications have their own
modifications in construction and different notations, so it is often unclear whether
the results of one work may be applied to the construction of another. Nevertheless
all of the constructions are character Hopf algebras. In view of the fact that the
number and degrees of relations in all of the constructions related to a given Kac-
Moody algebra g are identical, we introduce a class of character Hopf algebras
defined by the same number of defining relations of the same degrees as the Kac-
Moody algebra g is. This class contains all possible quantizations of g (including
multiparameter quantizations), and these Hopf algebras are considered as quantum
deformations of the universal enveloping algebra of g as well. The unification
in the above class provides the potential to understand the differences, if any,
between these constructions by comparing the basic invariants inside that class.
We demonstrate that if the generalized Cartan matrix A of g is connected then
the algebraic structure, up to a finite number of exceptional cases, is defined by
just one “continuous” parameter q related to a symmetrization of A; and one
“discrete” parameter m related to the modular symmetrizations of A: The Hopf
algebra structure is defined by n.n � 1/=2 additional “continuous” parameters.

In this chapter, we associate a class of character Hopf algebras A with a given
Kac-Moody algebra g: Algebras from A are defined by the same number of
defining relations and with the same degrees as g: The class A contains all known
quantizations of g (including multiparameter quantizations). The Hopf algebras
from A must be considered quantum deformations of the universal enveloping
algebra of g as well.

In Sect. 3.4, we demonstrate that all Hopf algebras from A have the so-called
triangular decomposition as coalgebras. In Sect. 3.5, we prove that if the generalized
Cartan matrix A of g is indecomposable, then the algebraic structure, up to a finite
number of exceptional cases, is defined by only one “continuous” parameter q
related to a symmetrization of A; and one “discrete” parameter m related to the
modular symmetrizations of A: In other words, the algebraic variety of parameters
that define the algebra structure of the quantizations related to a given g has the

© Springer International Publishing Switzerland 2015
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100 3 Quantizations of Kac-Moody Algebras

dimension � 1: The Hopf algebra structure is defined by n.n � 1/=2 additional
“continuous” parameters.

Throughout the chapter, Nk represents the algebraic closure of the ground field k.

3.1 Kac-Moody Algebras

Recall that due to the Gabber-Kac theorem [83], any Kac-Moody algebra g
associated with a symmetrizable generalized Cartan matrix A D jjaisjj; 1 � i; s � n
(an integral n
n matrix such that aii D 2; ais � 0 for i ¤ s; and ais D 0 implies that
asi D 0/ has the following representation by generators and relations. The generators
are 3n elements ei; fi;hi; 1 � i � n: The relations are divided into three groups:

Œhi;hs� D 0; Œhi; es� D aises; Œhi; fs� D �aisfsI (3.1)

Œei; fs� D 0 if i ¤ s; Œei; fi� D hiI (3.2)

.ad ei/
1�ais es D 0; .ad fi/

1�ais fs D 0 if i ¤ s; (3.3)

where by definition .ad a/mb D Œ: : : ŒŒb; a�; a�; : : : ; a�„ ƒ‚ …
m

:

A generalized Cartan matrix A D jjaisjj is said to be symmetrizable if there exist
natural numbers d1; d2; : : : ; dn such that diais D dsasi; 1 � i; s � n:

A generalized Cartan matrix A is said to be indecomposable if there is no partition
of the set f1; 2; : : : ; ng into two nonempty subsets such that ais D 0 whenever i
belongs to the first subset, and s belongs to the second. Evidently, every generalized
Cartan matrix is a diagonal sum of its indecomposable components, A D L

A	;
whereas the Kac-Moody algebra g defined by A is a direct sum of the Kac-Moody
algebras g	 defined by A	:

A generalized Cartan matrix A is called a Cartan matrix if all its indecomposable
components belongs to the following list of distinguished matrices:

An; Bn; Cn; Dn; E6; E7; E8; F4; G2: (3.4)

The indices coincide with dimensions of the related matrices. The non-diagonal
coefficients of the matrix An are defined as follows:

.An/ ais D
��1; if ji� sj D 1;
0; otherwise.

The matrices Bn; Cn; F4; G2 differ from the matrix An of the same dimension only
in one coefficient:

.Bn/ an�1 n D �2I .Cn/ an n�1 D �2I .F4/ a2 3 D �2I .G2/ a2 1 D �3:
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The matrix Dn differs from An in four coefficients:

.Dn/ an n�1 D an�1 n D 0; an�2 n D an n�2 D �1;

whereas En differs from An; n D 6; 7; 8 only in the following coefficients:

.En/ a1 2 D a2 1 D a2 3 D a3 2 D 0; a1 3 D a3 1 D a2 4 D a4 2 D �1:

The fundamental property of the Cartan matrices is that they define semisimple
finite dimensional Kac-Moody algebras provided that the ground field k has zero
characteristic. Moreover, in this case all semisimple finite dimensional Lie algebras
over Nk are precisely the Kac-Moody algebras defined by the Cartan matrices.
Respectively, the list (3.4) corresponds to the finite dimensional simple Lie algebras.

In the theory of Kac-Moody algebras, another 16 types of generalized Cartan
matrices, called affine Cartan matrices, are important. These matrices also differ
from An only in a small number of coefficients.

3.2 Quantum Deformations

The universal enveloping algebra U.g/ of a Kac-Moody algebra g is the associative
algebra defined by the same relations (3.1)–(3.3) when the brackets are replaced by
ordinary commutators, Œa; b� D ab� ba: Of course U.g/ has the structure of a Hopf
algebra where all generators are primitive, .v/ D v ˝ 1 C 1 ˝ v; v 2 g: We
wish to investigate all possible “deformations” H of U.g/ to Hopf algebras which
are defined by relations of the same degrees without fixing the coefficients.

We suppose that the Chevalley generators, ei; fi are transformed to skew-
primitive generators yi and y�

i ; 1 � i � n; respectively. Relations of the first group
demonstrate that the subalgebra generated by the hi’s (the Cartan subalgebra) is
commutative and acts on the Chevalley generators so that they are semi-invariants.
Moreover, the second and third relations demonstrate that characters defined by this
action on ei and fi with a fixed i are opposite to each other. For this reason, we
suppose that under a deformation the Cartan subalgebra is transformed to a group G
with the diagonal action on the skew-primitive generators,

g�1yig D 
i.g/yi; g�1y�
i gi D 
i�.g/y�

i ;

and related characters are opposite, 
i� D .
i/�1; 1 � i � n: We shall identify
the group G of group-like elements with diagonal transformations of the space V
spanned by yi; y�

i ; 1 � i � n:

G D fdiag .	1; 	2; : : : ; 	n; 	
�1
1 ; 	

�1
2 ; : : : ; 	

�1
n / j	i 2 k�g: (3.5)
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The second group of relations demonstrates that yi and y�
s ; i ¤ s must be

connected by a bilinear relation:

Ris
dfD ˛is yiy

�
s C ˇis y�

s yi D 0; (3.6)

whereas for i D s; some bilinear combination belongs to the coradical:

Rii.yi; y
�
i /

dfD ˛ii yiy
�
i C ˇii y�

i yi �
X

k

�ik gk D 0; gk 2 G: (3.7)

Finally, the third group of relations is transformed to relations of the type

Sit.yi; yt/
dfD
1�aitX

kD0
�itk yk

i yty
1�ait�k
i D 0; i ¤ tI (3.8)

S�
it .y

�
i ; y

�
t /

dfD
1�aitX

kD0
ıitk .y

�
i /

ky�
t .y

�
i /
1�ait�k D 0; i ¤ t: (3.9)

For arbitrary values of the parameters ˛it; ˇit; �ik; �itk; ıitk; and arbitrary
generalized Cartan matrix A (not necessary symmetrizable) the relations (3.6)–(3.9)
define an algebra H; however, this algebra does not always remain a Hopf algebra.
Then, our next goal is to understand when H does retain the Hopf algebra structure.
As an example we consider the Drinfeld–Jimbo quantizations.

Example 3.1 Assume that a generalized Cartan matrix A D jjaisjj is symmetrizable;
that is, there exist natural numbers d1; d2; : : : ; dn such that

diais D dsasi; 1 � i; s � n:

Traditionally the skew-primitive generators of the Drinfeld–Jimbo algebra Uq.g/
defined by the Kac-Moody algebra g and a parameter q 2 k have the designations
yi D Ei; y�

i D Fi; 1 � i � n: The related group-like elements are hi D K�1
i ; fi D

Ki both for Ei and Fi; so that

.Ei/ D Ei ˝ K�1
i C Ki ˝ EiI .Fi/ D Fi ˝ K�1

i C Ki ˝ Fi; 1 � i � n:

The characters 
Ei and 
Fi are defined by 
Ei.Ks/ D q�diais and 
Fi.Ks/ D q diais :

K�1
i EsKi D q�diais Es; K�1

i FsKi D q diais Fs;

in other words

Ki D diag.q�diai1 ; q�diai2 ; : : : ; q�diain ; q diai1 ; q diai2 ; : : : ; q diain/:
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Relations (3.6) and (3.7) have a symmetric form

EiFs � FsEi D ıs
i

�
K2

i � K�2
i

q 2di � q�2di

�
; (3.10)

whereas relations (3.7) are:

Œ: : : ŒŒEi;Es�;Es�; : : : ;Es„ ƒ‚ …
1�asi

� D 0; 1 � i ¤ s � nI

Œ: : : ŒŒFi;Fs�;Fs�; : : : ;Fs„ ƒ‚ …
1�asi

� D 0; 1 � i ¤ s � n; (3.11)

where (1.67) defines the brackets, Œu; v� D 
v.hu/uv � 
u.fv/vu; for example,

ŒEi;Es� D 
Es.K�1
i /EiEs � 
Ei.Ks/EsEi D q diais EiEs � q �diais EsEi;

and

ŒFi;Fs� D 
Fs.K�1
i /FiFs � 
Fi.Ks/FsFi D q�diais FiFs � q diais FsFi:

Let us demonstrate that Uq.g/ retain the Hopf algebra structure. By Proposi-
tion 1.7 it suffices to check that all defining relations are skew-primitive elements as
polynomials of the free character Hopf algebra. Each of the relations is a polynomial
in two variables. Therefore we may apply Theorem 2.5. We have

ŒEi;Fs� D 
Fs.K�1
i /EiFs � 
Ei.Ks/FsFi D q�dsasi EiFs � q�diais FsFi 	 FiFs � FsFi:

By Theorem 2.5 with n D 1; the polynomial ŒEi;Fs� is ..KiKs/
�1;KiKs/-primitive

because p12p21 D 1; where according to (2.50), we have

p12 D 
Ei.K2
s / D q�2diais ; p21 D 
Fs.K2

i / D q2dsasi :

Thus, the left-hand side of (3.10) is always skew-primitive. If i D s; then the right-
hand side is .K�2

i ;K2
i /-primitive too since it is proportional to a difference of two

group-like elements K�2
i � K2

i :

Similarly, by Theorem 2.5 with n D 1 � asi; the left-hand sides of (3.11) are
skew-primitive provided that p12p21 D pasi

22 : For the relations in the Ei’s we have,

p12 � p21 D 
Ei.K2
s / � 
Es.K2

i / D q�2diais q�2dsasi D .q�4ds/asi D .
Es.K2
s //

asi D pasi
22 ;

whereas relations in the Fi’s satisfy

p12 � p21 D 
Fi.K2
s / � 
Fs.K2

i / D q2diais q2dsasi D .q4ds/asi D .
Fs.K2
s //

asi D pasi
22 :
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3.3 Defining Relations of the Main Class

To make notations compatible with Sect. 1.5, let us identify yk; n < k � 2n with
y�

k�n; so that if k D n C s then yk D y�
s ; hk D h�

s ; fk D f �
s : We keep notation of

Sect. 1.5.3:

.yi/ D yi ˝ hi C fi ˝ yi; yig D 
i.g/gyi; hi; fi; g 2 G; 1 � i � 2n:

The parameters qik D 
i.hk/; q 0
ik D 
i.fk/; 1 � i � n completely define the free

character Hopf algebra GhYi over the diagonal group (3.5). Moreover, GhYi as a
Hopf algebra is completely defined by parameters

pik D q�1
ik q 0

ik; 1 � i; k � n

related to the normalized skew-primitive generators xi D h�1
i yi because GhYi D

GhXi:
We fix an algebra H defined by relations (3.6)–(3.9). The following three lemmas

demonstrate that if H keeps the structure of Hopf algebra, then values of the
parameters ˛is; ˇis; �ik; �isk; ıisk are completely defined by the basic parameters
qis; q 0

is; 1 � i; s � n: More precisely, we demonstrate that the only option
for keeping the coproduct is to replace the Lie operation in (3.2), (3.3) with the
brackets (1.67).

If fR1;R2; : : : ;Rmg is a set of elements from GhY [ Y�i; then the G-algebra

Ghy1; y2; : : : ; y2n jj R1;R2; : : : ;Rmi dfD GhYi=Id.R1;R2; : : : ;Rm/

defined by generators y1; y2; : : : ; y2n and relations R1 D 0; R2 D 0; : : : ; Rm D 0

retains the Hopf algebra structure only if the ideal J generated by R1;R2; : : : ;Rm is
a Hopf ideal: .J/ � J ˝GhY [ Y�i C GhY [ Y�i ˝ J; �.J/ � J; ".J/ D 0:

On the free character Hopf algebra GhY[Y�i we introduce the following degree
function D with integer (not necessary positive) values. We set

D.yi/ D 1; D.y�
i / D D.ynCi/ D �1; 1 � i � n; D.g/ D 0; g 2 G:

A degree of a word in Y [ Y� [ G equals the sum of all degrees of its letters,
whereas a degree of a linear combination of words equals the maximum degree of
the words. The coproduct formula (1.60) is homogeneous with respect to D: Thus,
the free character Hopf algebra is homogeneous with respect to D as well. In other
words, the free character Hopf algebra is graded by the group of integer numbers,

GhY [ Y�i D
1M

iD�1
�i; .�i/ �

M

sCkDi

�s ˝ �k;

where the ith component �i is spanned by all words of degree i:
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Below, the relation a 	 b means projective equality: a D ˛b; ˛ 2 k; ˛ ¤ 0:
Lemma 3.1 If the algebra H keeps the Hopf algebra structure then either yi D
y�

s D 0 in H or Ris 	 Œ yi; y�
s � and q 0

ikq 0
ki D qikqki; k D nC s:

Proof All of the above-defining relations for H are homogeneous with respect to D:
Thus, the Hopf algebra H is homogeneous as well; that is, H also has a grading by
the integer numbers:

H D
1M

iD�1
Hi; .Hi/ �

M

sCkDi

Hs ˝ Hk: (3.12)

According to (3.6) in H ˝ H; we have

0 D .Ris/ D Ris ˝ hihk C fi fk ˝ Ris C ˛is yifk ˝ hiyk C ˛is fiyk ˝ yihk

Cˇis ykfi ˝ hkyi C ˛is fkyi ˝ ykhi; (3.13)

where k D nC s:
Due to the commutation relations (1.62), this equality implies that

.˛isq
0
ik C ˇisqki/fkyi ˝ hiyk C .˛isqik C ˇisq

0
ki/fiyk ˝ hkyi D 0:

Note that the elements fkyi and fiyk are linearly independent in H or yi D yk D 0
in H: Indeed, because the algebra H is homogeneous with respect to D; a relation
˛fkyi C ˇfiyk D 0 implies that fkyi D 0; fiyk D 0I that is, yi D yk D 0:

As a consequence of the above note, the tensors fkyi ˝ hiyk and fiyk ˝ hkyi are
linearly independent in H ˝ H: Therefore,

˛isq
0
ik C ˇisqki D 0; ˛isqik C ˇisq

0
ki D 0: (3.14)

The above system of equations has a nonzero solution with respect to ˛is; ˇis if and
only if

det

ˇ̌
ˇ̌q

0
ik qki

qik q 0
ki

ˇ̌
ˇ̌ D q 0

ikq 0
ki � qikqki D 0: (3.15)

Under that condition, ˛is D qki; ˇis D �q 0
ik is the only solution up to a scalar factor.

Thus,

Ris 	 qki yiyk � q 0
ik ykyi D Œ yi; yk� D Œ yi; y

�
s �:

ut
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Lemma 3.2 If the algebra H keeps the Hopf algebra structure, then

Rii 	 Œ yi; y
�
i � � ˛i.hih

�
i � fi f �

i /; ˛i 2 k; (3.16)

and q 0
i nCiq

0
nCi i D qi nCiqnCi i:

Proof Let us denote for short s D nC i: Then, the relation (3.7) takes the form

R0ii
dfD ˛ii yiys C ˇii ysyi D

X

k

�ik gk:

Applying the coproduct to this relation, we obtain

R0ii ˝ hihs C fi fs ˝ R0ii C ˛ii fiys ˝ yihs C ˛ii yifs ˝ hiys

Cˇii fsyi ˝ yshi C ˇii ysfi ˝ hsyi D
X

k

�ik gk ˝ gk: (3.17)

Due to the commutation relations (1.62) and R0ii D
P

k �ik gk; this result implies that

.˛iiq
0
is C ˇiiqsi/fsyi ˝ hiys C .˛iiqis C ˇiiq

0
si/fiys ˝ hsyi

D �.
X

k

�ik gk/˝ hihs � fi fs ˝ .
X

k

�ik gk/C
X

k

�ik gk ˝ gk:

The homogeneous components with respect to (3.12) of this relation are valid too:

˛iiq
0
is C ˇiiqsi D 0; ˛iiqis C ˇiiq

0
si D 0; (3.18)

.
X

k

�ik gk/˝ hihs C fi fs ˝ .
X

k

�ik gk/ D
X

k

�ik gk ˝ gk: (3.19)

The system of equations (3.18) has a nonzero solution ˛ii; ˇii if and only if

det

ˇ̌
ˇ̌q

0
is qii

qis q 0
si

ˇ̌
ˇ̌ D q 0

isq
0
si � qisqsi D 0: (3.20)

Under that condition, ˛ii D qsi; ˇii D �q 0
is is the only solution up to a scalar factor.

Thus, R0ii 	 qsi yiys � q 0
is ysyi D Œ yi; ys� D Œ yi; y�

i �:

Different group-like elements in a Hopf algebra are always linearly independent.
If gk ¤ hihs; gk ¤ fi fs then the tensor gk ˝ gk appears only in the right-hand
side of (3.19). This fact implies that �ki D 0: Thus, the right-hand side of (3.16)
has two terms: g1 D hihs; g2 D fi fs; in which case, the relation (3.19) implies
that �2i D ��1i: Hence, the right-hand side of (3.16) equals ˛i.hihs � fi fs/ with
˛i D �1i: ut
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Lemma 3.3 If HC D Ghy1; y2; : : : ; yn jj Sit.yi; yt/; 1 � i ¤ t � ni maintains the
Hopf algebra structure, then Sit are skew-primitive polynomials. In particular, by
Theorem 2.5, we have Sit 	 Œ: : : ŒŒ yt; yi�; yi�; : : : ; yi� in GhYi:
Proof All defining relations (3.8) are homogeneous with respect to each variable
yi; 1 � i � n; as are the definition formulae (1.60) of the coproduct. Therefore, the
Hopf algebra HC is also homogeneous with respect to each variable yi; 1 � i � nI
that is, HC has a grading by .ZC/�n W

HC D
M

u2.ZC/�n

HC
u ; .HC

u / D
M

uDvCw

HC
v ˝HC

w ; (3.21)

where HC
u is spanned by the values of all words in Y [ G of constitution u:

We observe that the ideal of relations I is generated by elements whose
constitutions have precisely two nonzero components, one of which equals 1.
In particular, I has no nonzero elements of constitution with just one nonzero
component. Moreover, the ideal I has no nonzero elements with a constitution
u D .d1; d2; : : : ; dn/ such that dt D 1; di < 1 � ait; dk D 0; k ¤ i; t: Indeed,
only two generators, Sit and Sti; have constitutions with dk D 0; k ¤ i; t: Thus, the
ideal I would have a nonzero element with dt D 1; di < 1 � ait; dk D 0; k ¤ i; t
only if 1 � ati; the degree of Sti in yt; equals 1. In this case, ati D 0; and according
to the definition of the generalized Cartan matrix ait D 0: Thus, di < 1� ait implies
that di D 0:

The coproduct of the polynomial Sit 2 GhYi can be decomposed as follows:

.Sit/ D Sit ˝ hih
1�ait
t C fi f 1�ait

t ˝ Sit C
X

k

S.1/k ˝ S.2/k ; (3.22)

where the sum of the constitutions of S.1/k and S.2/k equals the constitution of Sit: In
algebra HC; we have Sit D 0I therefore,

0 D
X

k

S.1/k ˝ S.2/k in HC ˝HC: (3.23)

One of the polynomials S.1/k ; S.2/k has a constitution with only one nonzero
component, whereas another polynomial has a constitution with di D 1; dt <

1 � ait; dk D 0; k ¤ i; t: We have observed above that the ideal I has no
nonzero polynomials with such constitutions. Therefore, relation (3.23) is valid in
GhYi ˝ GhYi as well. Thus, (3.22) implies that Sit is a skew-primitive polynomial
of GhYi: ut
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In a perfect analogy, we have

Lemma 3.4 If H� D Ghy�
1 ; y

�
2 ; : : : ; y

�
n jj S�

it .y
�
i ; y

�
t / D 0; 1 � i ¤ t � ni

maintains the Hopf algebra structure, then S�
it 	 Œ: : : ŒŒ y�

t ; y
�
i �; y

�
i �; : : : ; y

�
i � and

Sit are skew-primitive polynomials in GhY�i:
Thus, if H;HC; and H� maintain the Hopf algebra structure then the defining

relations are simplified. Moreover, if the coefficient ˛i is nonzero in the relation Rii,
see (3.16), we may simplify that relation further by the substitution yi  ˛iyi; so we
may suppose ˛i D 1: We can now define the main class of Hopf algebras in which
we are interested.

Definition 3.1 A Hopf algebra H is a quantization of a Kac-Moody algebra g if it
is generated by skew-primitive semi-invariants yi; y�

i ; 1 � i � n with 
i� D .
i/�1
and is defined over the group G by the relations (3.6)–(3.9) that satisfy conclusions
of Lemmas 3.1–3.4:

Œ yi; y
�
t � D 0 if i ¤ t; Œ yi; y

�
i � D hih

�
i � fi f �

i I (3.24)

ŒŒ: : : ŒŒ yt; yi�; yi�; : : :�; yi�„ ƒ‚ …
1�ait

D 0; ŒŒ: : : ŒŒ y�
t ; y

�
i �; y

�
i �; : : :�; y

�
i �„ ƒ‚ …

1�ait

D 0 if i ¤ t: (3.25)

We stress that the conclusions of Lemmas 3.1–3.4 imply that these relations are
skew-primitive as elements of the free character Hopf algebra GhY;Y�i: Therefore,
the algebras H; HC; H� defined by the above relations maintain the Hopf algebra
structure.

In variables xi D h�1
i yi; 1 � i � 2n; the defining relations have the following

form in terms of the left adjoint action:

.ad xi/x
�
t D 0 if i ¤ t; .ad xi/x

�
i D 1 � gig

�
i I (3.26)

.ad xi/
1�ait xt D 0; .ad x�

i /
1�ait x�

t D 0 if i ¤ t: (3.27)

Indeed, by definition, the left adjoint action has the form (ad v/uD P
.v/ v

.1/u.�v.2//;

where in Sweedler notations .v/ D P
.v/ v

.1/ ˝ v.2/ and � is the antipode.
Considering that .xi/ D xi ˝ 1C gi ˝ xi; gi D h�1

i fi; 1 � i � 2n; we have

.ad xi/u D xi � u � 1 � gi � u � g�1
i xi D xiu � 
u.g�1

i /uxi 	 uxi � 
u.gi/xiu D Œu; xi�:

Theorem 3.1 The Hopf algebra H is completely defined by n2 parameters pis; 1 �
i; s � n; whereas the algebra structure of H is completely defined by n.n C 1/=2
parameters pii; 1 � i � n; pispsi; 1 � i < s � n; in which case the algebra
structures of HC and H� are completely defined by only n parameters pii; 1 � i �
n: The latter parameters are not independent yet:

. pais
ii � pii/. pasi

ss � pss/. pais
ii � pasi

ss / D 0; 1 � i; s � n: (3.28)
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Additionally, if pispsi ¤ pais
ii ; then

. pispsi/
1�ais D p1�ais

ii D 1: (3.29)

Proof We start with the following auxiliary statement.

Lemma 3.5 We have
i.g�
s / D 
i.gnCs/ D psi; 1 � i � n: In particular, the group-

like elements gi; g�
i D gnCi; 1 � i � n have the following representation (3.5):

gi D diag. p1i; p2i; : : : ; pni; p
�1
1i ; p

�1
2i ; : : : ; p

�1
ni /I (3.30)

g�
i D diag. pi1; pi2; : : : ; pin; p

�1
i1 ; p

�1
i2 ; : : : ; p

�1
in /: (3.31)

Proof In the proof of Lemma 3.1, we found the equality q 0
ikq 0

ki D qikqki; k D nC
s; i ¤ s � n; see (3.15). Because pik D q 0

ikq�1
ik by definition, pikpki D 1; or, in terms

of the characters, 
i.g�
s / �
s�.gi/ D 1; 1 � i ¤ s � n: Equation (3.20) demonstrates

that if i D s; the latter equality is valid as well. Considering that 
i� D .
i/�1; we
obtain 
i.g�

s / D 
s.gi/ D psi: To see representations (3.30) and (3.31), we recall
that by definition, if g D diag.	1; 	2; : : : ; 	2n/; then 
i.g/ D 	i; 1 � i � 2n: ut
Representations (3.30) and (3.31) demonstrate that gi; 1 � i � 2n are completely
defined by the parameters pis; 1 � i; s � n: Due to equalities 
i� D .
i/�1 and

i.g�

s / D psi; all of the commutation rules are:

xigs D pisgsxi; xig
�
s D psig

�
s xi; x�

i gs D p�1
is gsx

�
i ; x�

i g�
s D p�1

si g�
s x�

i : (3.32)

All coefficients of the relations (3.26) and (3.27) are polynomials in pis; p�1
is : Thus

the Hopf algebra structure of H is completely defined by values of the parameters
pis; 1 � i; s � n:

Let us check the algebra structure. To this end, we consider a new set of
generators Qyi D tixi; Qy �

i D t�1i x�
i ; where

ti D diag.�1i; �2i; : : : ; �ni; �
�1
1i ; �

�1
2i ; : : : ; �

�1
ni /;

while the �’s are defined as follows:

�is D
�
1 if n � i � t;

psi if i < s � n:

In other words, the ti’s are defined as group-like elements from G with 
i.ts/ D
�is; 1 � i; s � n: If i < s; we have

ŒQys; Qyi� D 
i.ts/Qys Qyi � 
s.tigi/Qyi Qys D �is Qys Qyi � �sipsiQyiQys 	 Qys Qyi � Qyi QysI

That is, the bracket ŒQys; Qyi� is proportional to the ordinary commutator which is
completely independent of the parameters.
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More generally, if u is a homogeneous polynomial in Qyi; Qys linear in Qys and of
degree k in Qyi; then Œu; Qyi� 	 uQyi � pk

iiQyiu: Indeed, hu D tstk
i and 
u D 
s.
i/k:

Additionally, by definition 
i.ts/ D �is D psi; 

s.ti/ D �si D 1: Therefore,

Œu; Qyi� D 
i.hu/uQyi � 
u.tifi/Qyiu D �is�
k
iiuQyi � � k

ii�si. pii/
kpsiQyiu 	 uQyi � pk

ii Qyiu:

Similarly, if u� is linear in Qy �
s and of degree k in Qy �

i ; then

ŒQyi; u� D 
u�.t�1i / Qy �
i u� � 
i�.t�k

i t�1s .g�
i /

kg�
s / u�Qy �

i

D �si�
k
ii Qy �

i u� � ��k
ii �isp

�k
ii p�1

si u� Qy �
i D Qy �

i u� � p�k
ii u� Qy �

i ;

where we have used � k
ii D 1; and 
i�.g�

s / D p�1
si :

By (2.63) in the free character Hopf algebra the following proportion holds

ŒŒ: : : ŒŒQys; Qyi�; Qyi�; : : :�; Qyi�„ ƒ‚ …
1�ais

	 ŒQyi; ŒQyi; : : : ; ŒQyi„ ƒ‚ …
1�ais

; Qys� : : :��: (3.33)

This implies that all coefficients of defining relations (3.25) with i < s are
polynomials in pii or p�1

ii :

In a perfect analogy, we demonstrate that if i > s then ŒQyi; u� 	 Qyiu � pk
ii uQyi

and Œu�; Qy �
i � 	 u� Qy �

i � pk�
ii Qy �

i u�: In this case, �si D pis; whereas �is D �ii D 1:

Therefore,

ŒQyi; u� D 
u.ti/ Qyiu � 
i.tk
i tsf

k
i fs/ uQyi

D �si�
k
ii Qyiu � � k

ii�is. pii/
kpis uQyi 	 Qyiu � pk

iiuQyi:

Similarly,

Œu�; Qy �
i � D 
i�.t�k

i t�1s / u�Qy �
i � 
u�.t�1i g�

i / Qy �
i u�

D � k
ii�is u�Qy �

i � � k
ii�si. pii/

�kp�1
is Qy �

i u� D u�Qy �
i � p�k

ii Qy �
i u�:

Again, due to proportion (3.33), we see that all coefficients of (3.25) with i > s
are polynomials in pii or p�1

ii (up to a common scalar factor). Thus, the algebraic
structures of HC and H� depend only on pii; 1 � i � n:

To check the algebraic structure of H; we must analyze relations (3.24), where

ŒQyi; Qy �
s � D 
s�.ti/ Qyi Qy �

s � 
i.t
�1
s g�

s / Qy �
s Qyi D ��1

si Qyi Qy �
s � ��1

is psiQy �
s Qyi:

If i < s then �is D psi; �si D 1: Thus, the relation takes the form

QyiQy �
s D Qy �

s Qyi: (3.34)
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If i > s then �is D 1; �si D pis; whereas the relation reduces to

Qyi Qy �
s D . pispsi/Qy �

s Qyi: (3.35)

Finally, if i D s then the relation transforms to

QyiQy �
i � piiQy �

i Qyi D 1 � gig
�
i ; (3.36)

whereas

gig
�
i D diag

	
p1ipi1; p2ipi2; : : : ; pnipin; . p1ipi1/

�1; . p2ipi2/
�1 : : : ; . pnipin/

�1
 :

Thus, the algebraic structure of H depends on additional n.n � 1/=2 parameters
pispsi; 1 � i < s � n:

Relations (3.28) and (3.29) follow from the existence conditions for skew-
primitive polynomials given in Theorem 2.5. If pais

ii ¤ pii then pii is not a primitive
mth root of 1 with mj.1 � ais/: Thus, pais

ii D pispsi: Similarly, if pasi
ss ¤ pss then pss

is not a primitive mth root of 1 with mj.1 � aii/; and pasi
ss D pispsi D pais

ii ; which
proves (3.28). If pispsi ¤ pais

ii ; then pii is a primitive mth root of 1 with mj.1 � ais/

and . pispsi/
m D 1: This result implies (3.29). ut

3.4 Triangular Decomposition

Relations (3.26) allows one to transform each word in X[X� to linear combination
of G-words where all “negative” variables precede to “positive” variables. In
particular, the linear map H�˝kŒG�HC ! H; w�˝u 7! w�u is an epimorphism. In
this section, we shall prove that this map is an isomorphism of coalgebras and kŒG�-
bimodules. We consider a more general setting when instead of relations (3.27)
appear arbitrary polynomial relations of upper degree grater than 1: Recall that by
definition the upper degree of a polynomial is the minimal length of its monomials.
The set of all polynomials in X D fxi j i 2 Ig of upper degree grater than 1 coincides
with the ideal �2 generated by the monomials xixs; i; s 2 I:

Let HC
1 be an algebra defined as a G-algebra by the generators x1; : : : ; xn and

polynomial relations 's D 0; 's 2 khXi; s 2 S;

HC
1 D Ghx1; : : : ; xn jj 's; s 2 Si: (3.37)

Respectively, H�
1 is an algebra defined as a G-algebra by the generators x�

1 ; : : : ; x
�
n

and polynomial relations  �
t D 0;  �

t 2 khX�i; t 2 T:

H�
1 D Ghx1; : : : ; xn jj �

t ; t 2 Ti: (3.38)
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Consider the algebra

H1 D Ghx1; : : : ; xn; x
�
1 ; : : : ; x

�
n jjF1;F2;F3i; (3.39)

where F1 D f's; s 2 Sg; F2 D f �
t ; t 2 Tg; and F3 are relations (3.26): Œxi; x�

s � D
ıs

i .1� gig�
i /: We still assume that 
i� D .
i/�1 and 
i.g�

s / D psi (see Lemma 3.5).
By evident induction on length of words, the latter equality is equivalent to 
u.gv/ D

v.g�

u /; where u; v are words in X and u� appears from u under replacements xi  
x�

i : Obviously, those two conditions are equivalent to commutation rules (3.32).

Lemma 3.6 If HC
1 and H�

1 maintain the Hopf algebra structure, then so does H1:

Proof By Theorem 2.5 with n  1; the polynomials Œxi; x�
s � are skew-primitive

because 
i.g�
s /


s�.gi/ D psip�1
si D 1: Consider the ideals of relations I1 Did.F1/

and I2 Did.F2/ of HC and H� respectively. In the present context, they are Hopf
ideals of GhXi and GhX�i; respectively. Hence, V D I1 C I2 C P

i;s k.Œxi; x�
s � �

ıs
i .1�gig�

i // is an antipode stable coideal of GhXi:Consequently the ideal generated
by V is a Hopf ideal, see Proposition 1.6. ut
Lemma 3.7 If HC

1 and H�
1 maintain the Hopf algebra structure, then every hard in

H1 super-letter belongs to either HC
1 or H�

1 ; and it is hard in the related algebra.

Proof If a standard word u in X [ X�contains at least one “positive” letter, then it
has to start with one of them. If u contains a “negative” letter, then it has a sub word
of the form xix�

s : The substitution xix�
s  psix�

s xi C ıs
i .1 � gig�

s / shows that value
of u in H is a linear combination of lesser words of the same degree and G-words of
lesser degrees. By Corollary 2.1, the super-letter Œu� is not hard. ut

The converse statement is much more complicated. We shall proceed with a
number of lemmas. Firstly we consider the case F1 D F2 D ;: Let

QH D Ghx1; : : : ; xn; x
�
1 ; : : : ; x

�
n jjF3i: (3.40)

Lemma 3.8 There is a natural isomorphism of linear spaces

QH Š khx�
1 ; : : : ; x

�
n i ˝ kŒG�˝ khx1; : : : ; xni:

Proof Since w�gu 	 gw�u for all v 2 .X/�; w� 2 .X�/�; and g 2 G; it follows
that we have to demonstrate that the set of elements gw�u; where g 2 G and
w�; u run through all words in X� and X respectively form a basis of QH: The
latter set is precisely the set of all words in G [ X [ X� that have no subwords
xi̇ g; xix�

s : By Theorem 1.2 (Composition Lemma), it suffices to check that the
table of multiplication of G; commutations rules xi̇ g D 
i

˙.g/gxi̇ ; and relations
F3 are closed with respect to the compositions provided that

x1 > : : : > xn > x�
1 > : : : > x�

n > g1 > g2 > : : : ; gi 2 G:



3.4 Triangular Decomposition 113

The leading words are: gh for the table of multiplication; xi̇ g; for the commutation
rules; and xix�

s ; 1 � i; s � n for F3: Compositions between the former two type of
relations were resolved in Sect. 1.3.2. There are no compositions between different
relations from F3: It remains only one type of the compositions when the word
w0

ivw0
s appeared in (1.17) equals xix�

s � g D xi � x�
s g:

f psix
�
s xi C ıs

i .1 � gig
�
i /g � g � xi � 
s�.g/gx�

s

D psix
�
s xigC ıs

i g.1� gig
�
i / � 
s�.g/xigx�

s

! psi

i.g/
s�.g/gx�

s xi C ıs
i g.1 � gig

�
i / � 
s�.g/
i.g/gxix

�
s

� psi

i.g/
s�.g/gx�

s xi C ıs
i g.1 � gig

�
i /

� 
s�.g/
i.g/gfpsix
�
s xi C ıs

i .1 � gig
�
i /g D 0

by virtue of the fact that ıs
i D 0 if i ¤ s; and 
i�.g/
i.g/ D 1: ut

Lemma 3.9 In the Hopf algebra QH; the following relations hold

Œu; x�
s � D @�

s .u/� gs@s.u/g
�
s ; u 2 khXi; 1 � s � nI (3.41)

Œxi; u
�� D @��i.u

�/p.xi; u
�/p�1

ii � gig
�
i @�i.u

�/; u� 2 khX�i; 1 � i � n:
(3.42)

Here @s; @
�
s are the partial derivatives on khXi; whereas @�i; @

��i are the partial
derivatives with respect to x�

i defined on khX�i; see Sect. 1.5.7.

Proof Consider the linear maps

Ds W u 7! @�
s .u/� gs@s.u/g

�
s ; u 2 khXi; 1 � i � s: (3.43)

Relations (1.81) and (1.86) imply

Ds.uv/ D @�
s .uv/ � gs@s.uv/g

�
s

D 
s.gv/@
�
s .u/v C u@�

s .v/ � gsf@s.u/v C 
u.gs/u@s.v/gg�
s :

Let us replace: first, 
s.gv/ D 
v.g�
s /I then, vg�

s D 
v.g�
s /g

�
s vI and next,

gs

u.gs/u D ugs: In this way we obtain the following “Leibniz rule” :

Ds.u � v/ D 
v.g�
s /Ds.u/ � v C u � Ds.v/:

Under substitution Ds  Œ - ; x�
s �; this rule coincides with (2.9) for w D x�

s W

Œu � v; x�
s � D p.v; x�

s /Œu; x
�
s � � v C u � Œv; x�

s �:

Since Ds.xi/ D ıs
i .1 � gig�

i / D Œxi; x�
s �; it follows that Ds.u/ D Œu; x�

s �:
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Similarly, consider the linear maps Ti W khX�i ! GhX�i; 1 � i � n;

Ti.u
�/ D @��i.u

�/p.xi; u
�/p�1

ii � gig
�
i @�i.u

�/: (3.44)

Using relations (1.81) and (1.86), we have

Ti.v
� � w�/ D p.xi; v

� � w�/p�1
ii f
i�.gw�/@��i.v

�/ � w� C v� � @��i.w
�/g

� gig
�
i f@�i.v

�/ � w� C 
v�

.g�
i /v

�@�i.w
�/g:

Let us replace: first, p.xi; v
� � w�/ D p.xi; v

�/p.xi;w�/I then, 
i�.gw�/ D
p.xi;w�/�1I then gig�

i 

v�

.g�
i /v

� D .
v�

.gi//
�1v�gig�

i I and next,

.
v
�

.gi//
�1 D 
v.gi/ D 
i.g�

v / D p.xi; v
�/:

In this way we obtain a “Leibniz rule” :

Ti.v
� � w�/ D Ti.v

�/ � w� C p.xi; v
�/v� � Ti.w

�/;

which coincides with (2.8) under substitution u xi W

Œxi; v
� � w�� D Œxi; v

�� � w� C p.xi; v
�/v� � Œxi;w

��: (3.45)

Since Ti.x�
s / D ıs

i .1 � gig�
i / D Œxi; x�

s �; it follows that Ti.u�/ D Œxi; u��: ut
Now we turn to the case F1 D ;; F2 ¤ ;: Consider the algebra

OH D Ghx1; : : : ; xn; x
�
1 ; : : : ; x

�
n jjF2;F3i: (3.46)

Lemma 3.10 If H�
1 maintains the Hopf algebra structure and the upper degrees of

 �
t are greater than one, then the ideal generated by F2 in the algebra QH equals

I2 QH D I2 ˝kŒG� GhXi; where I2 is the ideal generated by F2 in GhX�i:
Proof It suffices to demonstrate that I2 QH admits left multiplication by xi; 1 � i � n:
If v� is a word in X�; h� 2 F2; r 2 QH; then

xiv
�h�r D Œxi; v

�h��rC p.xi; v
�h�/v�h�xir: (3.47)

The second term belongs to I2 QH; whereas the first one can be rewritten by (2.8):

Œxi; v
�h��r D Œxi; v

��h�rC p.xi; v
�/v�Œxi; h

��r: (3.48)

The first term of the latter sum belongs to I2 QH because Œxi; v
�� 2 GhX�i due

to (3.42). If h� is a skew-primitive element of GhX�i.2/ (this is a case for
the quantizations of Kac-Moody algebras!), then we are done, as (3.42) implies
Œxi; h�� D 0 in view of the fact that by Lemma 1.27 all partial derivatives
@�i.h�/; @��i.h

�/ are zero.
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In general case, we may proceed by induction on the combinatorial rank of H�
1 :

Recall that by Theorem 1.6 each nonzero bi-ideal has a nonzero skew-primitive
element. Consider the ascending chain of ideals

f0g D I.0/2  I.1/2  I.2/2  : : :  I.m/2  : : : ;

where I.m/2 is generated by all elements u� 2 I2 such that u� C I.m�1/
2 are skew-

primitive in I.m/2 =I.m�1/
2 : Assume that the ideal of QH generated by I.m�1/

2 equals

I.m�1/
2

QH: Let h�CI.m�1/
2 be a skew-primitive element of I.m/2 =I.m�1/

2 :By Lemma 1.27

partial derivatives of h� are zero in I.m/2 =I.m�1/
2 : In other words, @��i.h

�/ and @�i.h�/
belong to I.m�1/

2 : Relation (3.42) implies that the second term of (3.48) belongs to

the ideal of QH generated by I.m�1/
2 ; whereas the latter ideal equals I.m�1/

2
QH � I.m/2

QH:
Therefore, (3.47) implies that the ideal of QH generated by I.m/2 equals I.m/2

QH: ut
The proven lemma implies a triangular decomposition of OH:

OH D GhX�i ˝kŒG� GhXi=I2 ˝kŒG� GhXi
Š .GhX�i=I2/˝kŒG� GhXi D H�

1 ˝kŒG� GhXi: (3.49)

Lemma 3.11 If HC
1 and H�

1 maintain the Hopf algebra structure and the upper
degrees of 's;  

�
t ; are greater than one, then an ideal generated by F1 in OH equals

I1 OH D H�
1 ˝kŒG� I1; where I1 is the ideal generated by F1 in GhXi:

Proof The proof almost literally coincides with the proof of the above lemma. It
suffices to check that I1 OH admits left multiplication by x�

s ; 1 � s � n: If v is a word
in X; h 2 F1; r 2 OH; then

x�
s vhr D �p.vh; x�

s /
�1Œvh; x�

s �rC p.vh; x�
s /

�1vhx�
s r: (3.50)

The latter term belongs to I1 OH; whereas the former one can be rewritten by (2.9):

Œvh; x�
s �r D p.h; x�

s /Œv; x
�
s �hC vŒh; x�

s �: (3.51)

The first term of the latter sum belongs to I1 OH because Œv; x�
s � 2 GhXi due to (3.41).

If h is skew-primitive, then (3.42) implies Œh; x�
s � D 0 in view of Lemma 1.27.

In general case, we may proceed by induction on the combinatorial rank of HC
1

in the perfect analogy with the proof of the above lemma. ut
Theorem 3.2 Let HC

1 ; H�
1 ; and H1 be defined by (3.37), (3.38), and (3.39)

respectively. If HC
1 and H�

1 maintain the Hopf algebra structure, and the upper
degrees of all polynomials  �

t and 's are greater than one, then we have an
isomorphism of coalgebras and kŒG�-bimodules

H1 Š H�
1 ˝kŒG� HC

1 (3.52)

provided that commutation rules (3.32) hold.
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Proof Using Lemmas 3.8, 3.10, 3.11, and decomposition (3.49), we have isomor-
phisms of kŒG�-bimodules

H1 Š OH=I1 OH Š H�
1 ˝kŒG�GhXi=H�

1 ˝kŒG� I1 Š H�
1 ˝kŒG� .GhXi=I1/ D H�

1 ˝kŒG�H
C
1 :

To check that the resulting isomorphism is a kŒG�-coalgebra map, we are reminded
that the coproduct on H�

1 ˝kŒG� HC
1 is defined as follows:

.a˝b/ D
X

.a/;.b/

.a.1/˝b.1//˝ .a.2/˝b.2//; (3.53)

where ˝ denotes the tensor product of kŒG�-bimodules, ag˝b D a˝gb; g 2
G; while ˝ is the ordinary tensor product of spaces. Clearly, this definition is
compatible with the kŒG�-bimodule structure, .ag˝b/ D .a˝gb/; g 2 G: The
converse to isomorphism (3.53) map � acts as follows �.a˝b/ D a �b; in which case

.a �b/ D .a/ �.b/ D .
X

.a/

a.1/˝a.2//.
X

.b/

b.1/˝b.2// D
X

.a/;.b/

a.1/b.1/˝a.2/b.2/:

Therefore, � is a coalgebra map. ut
Remark 3.1 Informally, the fact that (3.52) is a coalgebra isomorphism means that
the basis decomposition of the coproduct of a basis super-word does not use (3.26).

Proposition 3.1 Under the conditions of the above theorem, the space spanned by
the skew-primitive elements of H1 equals the sum of these spaces for H�

1 and HC
1 :

Proof Let � be an algebra homomorphism � W HC
1 ! kŒG� defined by �.g/ D

g; g 2 G; �.xi/ D 0; 1 � i � n: This homomorphism is well-defined as all 's have
upper degree grater than one. Moreover, � is a homomorphism of Hopf algebras.
Similarly we define a Hopf algebra homomorphism �� W H�

1 ! kŒG�: Consider the
map id˝� W H�

1 ˝kŒG� HC
1 ! H�

1 : This is a kŒG�-coalgebra map because so is �:
Similarly ��˝id is also a kŒG�-coalgebra map.

Inasmuch as the “negative” variables are less than the “positive” ones, the
increasing super-words for H1 have the form V� �W; where V�; W are increasing
super-words for H�

1 ; HC
1 respectively. The isomorphism � defined in (3.52) acts as

follows �.gV� �W/ D gV�˝W:
Let T D P

˛tgtV�
t � Wt; gt 2 G; ˛t ¤ 0 be the basis decomposition of a

skew-primitive element. Clearly, .id˝�/.�.T// is the sum of all terms ˛tgtV�
t �Wt

with empty Wt; whereas .��˝id/.�.T// is the sum of all the terms with empty V�
t :

Both of those elements are skew-primitive because all maps are homomorphisms of
coalgebras and kŒG�-bimodules. By the same reason, the element

T 0 D T � .id˝�/.�.T// � .��˝id/.�.T//
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is skew-primitive too. The basis decomposition of T 0 is precisely the sum of all
terms ˛tgtV�

t �Wt; where both V�
t and Wt are nonempty minus all the terms where

both V�
t and Wt are empty.

However, if T 0 … kŒG�; then by Theorem 2.3 the leading term of T 0 is a power
of a super-letter, while by Lemma 3.7 all super-letters of H1 belong to either HC or
H�: Hence T 0 2 kŒG�; and T is the sum of three skew-primitive elements: one of
them belongs to H�; another one belongs to HC; and the third one, T 0; belongs to
both algebras HC and H�: ut

3.5 Indecomposable Generalized Cartan Matrices

In this section, we return to the quantization H of a Kac-Moody algebra studied in
Sect. 3.3. We consider more thoroughly the case in which the generalized Cartan
matrix is indecomposable, i.e., there is no partition of the set f1; 2; : : : ; ng into
two nonempty subsets such that ais D 0 whenever i belongs to the first subset,
and s belongs to the second. Every generalized Cartan matrix is a diagonal sum of
its indecomposable components, A D L

A	: The Kac-Moody algebra g defined
by A is a direct sum of Kac-Moody algebras g	 defined by A	: Respectively, all
quantizations of g are smash-products of quantizations of g	: In this section we
always suppose that A D jjaisjj is an indecomposable generalized Cartan matrix.

We maintain the notations used in the above sections. Particularly, pis; 1 � i; s �
n are the parameters that define the quantization H according to Theorem 3.1.

3.5.1 Regular and Exceptional Quantizations

Definition 3.2 A quantization H is called regular if the relations

pispsi D pais
ii (3.54)

are valid for all pairs .i; s/; 1 � i ¤ s � n: Otherwise, H is called exceptional.

By Theorem 3.1 the algebraic structure of a regular quantization is completely
defined by n parameters pii; 1 � i � n:

Theorem 3.3 Only a finite number of algebraic structures exists for exceptional
quantizations of a given Kac-Moody algebra.

Proof By Theorem 3.1, we must demonstrate that there are only a finite number of
admissible values for each parameter pii; pispsi; 1 � i; s � n: Let .i; s/ be a pair such
that pispsi ¤ pais

ii : Then, (3.29) demonstrates that both pii and pispsi are .1 � ais/th
roots of 1. In particular, each parameter has no more than 1� ais admissible values.
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Let us consider an index i such that pii is an Nth root of 1 and then choose an
arbitrary k; 1 � k � n such that aik or, equivalently, aki is a nonzero integer number.
Consider the following four options:

1. paki
kk D pikpki D paik

ii : Because pii is a Nth root of 1; pikpki is as well, whereas
pkk is a akiNth root of 1: In particular, both pkk and pikpik have a finite number of
admissible values.

2. paki
kk ¤ pikpki D paik

ii : Due to (3.29), the fist inequality implies that both pkk and
pikpik are .1� aki/th roots of 1.

3. paki
kk D pikpki ¤ paik

ii : The second inequality and (3.29) imply that pikpki is a
.1 � aki/th root of 1: The first equality demonstrates that pkk is a aki.1 � aki/th
root of 1:

4. paki
kk ¤ pikpki ¤ paik

ii : In this case (3.29) implies that pkk and pikpki are .1 � aik/th
roots of 1.

Thus, in all cases pkk and pikpki are roots of 1. Because the Cartan matrix is
indecomposable, all pii; pispsi; 1 � i; s � n are roots of 1 of a bounded degree. ut

In the proof of the above theorem, we have observed that all parameters
that define the algebraic structure of an exceptional quantization are roots of 1.
Therefore, we have the following statement:

Corollary 3.1 If one of the parameters pispsi; 1 � i; s � n is not a root of 1 then
the quantization H is regular.

Theorem 3.1 and identities (3.54) demonstrate that the algebraic structure of a
regular quantization is defined by the parameters pii; 1 � i � n: These parameters
satisfy the equations

pais
ii D pasi

ss ; (3.55)

which define an algebraic variety P.A/ over the algebraic closure Nk of the field
k. This variety is an algebraic group because it is invariant with respect to the
term-by-term product. Thus, one may identify P.A/ with an algebraic group of
diagonal matrices. Let P0.A/ be the connected component of the unit. It is well-
known that P0.A/; as well as an arbitrary connected algebraic group of diagonal
matrices (torus), is rationally isomorphic to a direct product . Nk�/�m; where m is
dimension of the variety and P.A/ is generated as a group by P0.A/ and periodic
elements (see, for example, [110]). In other words, the algebraic structure of H is
defined by m “continuous” independent parameters, and one discrete parameter that
runs through the quotient group P.A/=P0.A/:

Let us denote by� .A/ a simply-laced version of the Coxeter (or Dynkin) diagram
of A; see [116, p. 51]. More precisely, � .A/ is a graph on n points with labels
1; 2; 3; : : : ; n; where two points i and s are connected by an edge if and only if
ais ¤ 0: It is clear that A is indecomposable if and only if � .A/ is a connected
graph.
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3.5.2 Non-symmetrizable Generalized Cartan Matrices

Recall that the matrix A is called symmetrizable if there exists a diagonal matrix
D D diag.d1; d2; : : : ; dn/ with natural d1; d2; : : : ; dn such that DA is a symmetric
matrix, diais D dsasi; 1 � i; s � n: If d1; d2; : : : ; dn have a natural common divisor
d then d1=d; d2=d; : : : ; dn=d also symmetrize A: Thus, there exists D with cosimple
entries. Furthermore, such D is unique. Indeed, if a value of di for a given i is fixed,
then ds D diais=asi is unique provided that the edge .i; s/ belongs to � .A/: Because
� .A/ is connected, the value of d1 uniquely defines values of all di; 1 � i � n:

Lemma 3.12 The matrix A is symmetrizable if and only if for every cycle of � D
� .A/; say, i1; i2; : : : ; ik; ikC1 D i1; we have a relation

ai1i2ai2i3 � � � aiki1 D ai2i1ai3i2 � � � ai1ik : (3.56)

In particular, if � has no cycles at all, the matrix A is symmetrizable.

Proof If A is symmetrizable, then

disC1
=dis D aisisC1

=aisC1is ; 1 � s � k:

The product of all left-hand sides equals 1. Hence, the product of all right-hand sides
is as well. This result implies (3.56).

Suppose that all (3.56) hold. Certainly, it is sufficient to find a matrix D with
positive rational di’s. We put d1 D 1: For each s; 1 < s � n; we fix a sequence of
edges of � that connects 1 and s; say 1 D i1; i2; : : : ; ik; s; and define

ds D ai1i2ai2i3 � � � aiks

ai2i1ai3i2 � � � asik

:

If t ¤ s; and 1 D im; im�1; : : : ; ikC3; ikC2 D t is the fixed sequence of edges that
connects 1 and t; then according to the above definition

dt D
aimim�1aim�1im�2 � � � aikC3t

aim�1imaim�2im�1 � � � atikC3

:

Now, (3.56) applied to a cycle 1 D i1; i2; : : : ; ikC1 D s; ikC2 D t; : : : ; im D 1 implies
that

dsast

dtats
D ai1i2ai2i3 � � � aiks � ast � atikC3

� � � aim�2im�1aim�1im

ai2i1ai3i2 � � � asik � ats � aikC3t � � � aim�1im�2aimim�1

D 1:

ut
Remark 3.2 Of course, if a cycle i1; i2; : : : ; ik; i1 has an edge that does not belong to
� , then both sides of (3.56) equal zero. In fact, when checking that A is symmetriz-
able, it is sufficient to analyze only the cycles that have no self intersections.
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The following statement demonstrates that if the matrix A is not symmetrizable,
then dimP.A/ D 0:
Proposition 3.2 If the matrix A is not symmetrizable, then there exists a natural
number N such that the parameters defining the algebraic structure of a regular
quantization have the form

pii D �mi ;

where � is a fixed primitive Nth root of 1 and .m1;m2; : : : ;mn/ is a modular
symmetrization:

miais � msasi.mod N/; 0 � mi; ms < N; 1 � i; s � n:

Proof By the above lemma, there exists a cycle i1; i2; : : : ; ik; ikC1 D i1 of� D � .A/
such that L ¤ R; where L and R are the left- and right-hand sides of (3.56),
respectively. Using the basic relations p

aisisC1

isis
D p

aisC1is

isC1isC1
; we obtain pL

i1i1
D

pR
kC1 kC1: Because pi1i1 D pkC1 kC1; the parameter pi1i1 is a jL � Rjth root of 1.

If pii is a Mth root of 1; and the edge .i; s/ belongs to �; then relation pasi
ss D pais

ii
demonstrates that pss is an asiMth root of 1. Because � is connected, all pii’s are
Nth roots of 1, where N D jL� RjQ.i;s/2� ais: In particular, if � is a fixed primitive
Nth root of 1, then pii D �mi for a suitable natural mi � N: The equality pais

ii D pasi
ss

reduces to �miais D �msasi : This equality is equivalent to miais � msasi.mod N/; 1 �
i; s � n because � is a primitive Nth root of 1: ut

3.5.3 Symmetrizable Generalized Cartan Matrices

Consider a symmetrizable generalized Cartan matrix A: Let d1; : : : ; dn be cosimple
natural numbers that symmetrize A: Let � 0 be a maximal subgraph of � D � .A/
that has no cycles. Because � is connected, the subgraph � 0 contains all vertices
1; 2; : : : ; n: The graph � 0 corresponds to a generalized Cartan matrix A 0 that results
from A if one replaces all ais; .i; s/ … � 0 with zero, � 0 D � .A 0/: Denote by
� 0

i ; 1 � i � n an oriented graph that appears from � 0 as follows:
Because the graph � 0 is connected and has no cycles, for every point s ¤ i; there

exists precisely one sequence

i D i1; i2; i3; : : : ; ik D s (3.57)

such that the edges Et; 1 � t < k connecting it with itC1 belong to � 0: We replace
each edge Et with an arrow it ! itC1:
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Let Ni.�
0/ be the product of all jasrj with r! s 2 � 0

i W

Ni.�
0/ D

Y

r!s2� 0

i

jasrj: (3.58)

If i and s are connected by an edge of � 0 then the products in (3.58) that define
Ni.�

0/ and Ns.�
0/ have the same factors with only one exception: the arrow i! s

provides a factor asi in Ni.�
0/; whereas the arrow s ! i provides a factor ais in

Ns.�
0/: This fact implies that Ni.�

0/=asi D Ns.�
0/=ais; or Ni.�

0/ais D Ns.�
0/asi:

Thus, Ni.�
0/; 1 � i � n symmetrize the matrix A 0: At the same time, the coprime

numbers di; 1 � i � n symmetrize A 0 as well. This implies that Ni.�
0/ D

diN.� 0/; 1 � i � n for a suitable natural N.� 0/: Of course, N.� 0/ is the maximal
common divisor of the numbers Ni.�

0/; 1 � i � n W

Ni.�
0/ D diN.�

0/; 1 � i � nI N.� 0/ D mcd fNi.�
0/ j 1 � i � ng: (3.59)

Denote the maximal common divisor of all N.� 0/ by N when � 0 runs through the
set of all maximal subgraphs without cycles:

N D mcd fN.� 0/ j � 0 has no cycles and connects all verticesg: (3.60)

Consider symmetrzations of A modulo N: The set of all modular symmetrizations
M 0 is an additive group with respect to a term-by-term summation. There is a
subgroup M0 of trivial modular symmetrizations that are induced by the non
modular symmetrization, mi � ldi.modN/; 0 � l < N: Denote a fixed transversal
of M0 in M 0 by M:

Theorem 3.4 If A is symmetrizable, then dimP.A/ D 1; whereas P.A/=P0.A/ is
isomorphic to M 0=M0: The algebraic structure of a regular quantization is defined
by two independent parameters q 2 Nk� and m 2M such that

pii D qdi�mi ; m D .m1;m2; : : : ;mn/;

where � is a fixed Nth primitive root of 1: The number jMj of values of the second
parameter is a divisor of N:

Proof Let P0 D fD.q/ dfD diag.qd1 ; qd2 ; : : : ; qdn/ j q 2 Nk�g; whereas

Pi.A/ D fa D diag.˛1; ˛2; : : : ; ˛n/ 2 P.A/ j ˛i D 1g: (3.61)

The sets Pi.A/; 0 � i � n are subgroups of P.A/: For each i; 1 � i � n; we have a
decomposition P.A/ D P0Pi.A/: Indeed, if B D diag.ˇ1; ˇ2; : : : ; ˇn/ 2 P.A/ then
we can find q 2 Nk such that qdi D ˇi: In this case, BD.q/�1 2 Pi.A/; which implies
that B 2 P0Pi.A/:
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All groups Pi.A/; 1 � i � n are finite because if ˛i D 1 and i is connected with
s by a path (3.57) with edges form �; then

˛r
s D ˛t

i D 1; where r D
kY

vD1
aivC1iv ; t D

kY

vD1
aiv ivC1

: (3.62)

This result implies that the quotient group

P.A/=P0 D P0Pi.A/=P0 Š Pi.A/=Pi.A/ \ P0 (3.63)

is also finite. Because P0 is a connected subgroup of P.A/; we have P0 D P0.A/:
Furthermore, by definition P0 is isomorphic to Nk� via diag.qd1 ; qd2 ; : : : ; qdn/ 7! q;
hence dimP.A/ D 1:

Let � 0 be an arbitrary maximal subgraph of � D � .A/ that has no cycles, and
let A 0 be the matrix that appears from A upon replacement of all ais; .i; s/ … � 0 with
zero. Because the di’s still centralize A 0; we have dimP.A 0/ D 1; P0.A 0/ D P0;
whereas Pi.A/ � Pi.A 0/:

The order of the group Pi.A 0/ equals Ni.�
0/ [see (3.58)]. Indeed, let a be defined

by (3.61) with A 0 in place of A: If a value of ˛k is fixed and k and s are connected
by an arrow of � 0

i then the equation ˛aks
k D xask has precisely ask solutions in Nk:

Because the value ˛i D 1 is fixed and there exists precisely one path (3.57) for
each s that connects i and s in � 0

i ; we see that the order of Pi.A 0/ is a product of
all jaivC1iv j that appears on the paths (3.57) for different final vertices s of � 0: By
definition this product equals Ni.�

0/ D N.� 0/di; see (3.59).
We have Pi.A/ � T� 0

i
Pi.A 0/: In particular, the order of Pi.A/ is a divisor of all

Ni.�
0/ D N.� 0/di when � 0 runs through all maximal subgraphs without cycles.

The left-hand side of (3.63) is independent of i; whereas the right-hand side is a
homomorphic image of Pi.A/: This property implies that the order of P.A/=P0.A/
is a divisor of all orders of Pi.A/; 1 � i � s: The maximal common divisor of
all N.� 0/di equals N defined in (3.60). Thus, the order of P.A/=P0.A/ is a divisor
of N:

In particular, pN 2 P0.A/ for each p 2 P.A/: In greater detail, for each p D
diag. p11; : : : ; pnn/ 2 P there exists q1 2 Nk such that pN D D.q1/:We stress that the
element q1 is uniquely defined by p because if D.q1/ D D.q 0

1/ then .q1=q 0
1/

di D 1

for the coprime numbers di; 1 � i � n; which implies that .q1=q 0
1/ D 1: Let us

choose q 2 Nk such that qN D q1: The element q is defined by p up to a factor which
is an Nth root of 1. Now, piiq�di ; 1 � i � n are Nth root s of 1. If � is any primitive
Nth root of 1 then there exist integer numbers mi; 0 � mi < N; 1 � i � n; uniquely
defined by � and q; such that piiq�di D �mi ; or equivalently,

pii D qdi�mi :

Because diag.�m1 ; : : : ; �mn/ 2 P; we have �miais D �msasi ; 1 � i; s � n: This implies
miais � msasi.mod N/I that is, m D diag.m1; : : : ;mn/ is a modular symmetrization
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of A; m 2 M 0: If instead of q we choose another element q 0 D q� l; 1 � l � N;
then related symmetrization will be changed via

diag.m 0
i / D diag.mi C ldi/ � diag.mi/ .mod M0/:

Thus, when p runs through P; the map ' W p 7! m; is a homomorphism from
P to M 0=M0: Moreover, the kernel of ' equals P0.A/: Indeed, if m 2 M0 then
mi D ldi; 1 � i � n: This result implies pii D qdi� ldi D .q� l/di ; and therefore p D
D.q� l/ 2 P0.A/: This proves the required isomorphism P.A/=P0.A/ ŠM 0=M0:

ut

3.5.4 Cartan Matrices of Finite Type

We may apply Theorem 3.4 to describe regular quantizations of Kac-Moody
algebras of finite type.

Lemma 3.13 If a symmetrizable generalized Cartan matrix A has not more than
one aik; i ¤ k different from �1 and 0; then jMj D 1; i. e., the discrete parameter
in Theorem 3.4 does not appear at all.

Proof If ais ¤ �1 then Ni.�
0/ D 1 because ais does not appear among the

factors asr with r ! s 2 � 0
i : Thus, in Theorem 3.4, we have N D 1; and

jMj D jP.A/=P0.A/j D 1I therefore, P.A/ D P0.A/: ut
Since all Cartan matrices of finite type satisfy the conditions of the lemma, it follows
that the discrete parameter in Theorem 3.4 for regular quantizations does not appear
at all. With regard to the values of the main parameter q; we stress that q D p11 2 k
for all Cartan matrices of finite type, except two cases: Bn and G2 when q D pnn but
still q 2 k:

Further we consider in more details exceptional quantizations for Cartan matrix
of type An; where as usual aii D 2; whereas ais D asi D �1 if s D iC 1; 1 � i < n
and ais D 0 otherwise.

Lemma 3.14 If the Dynkin diagram is simply-laced and connected then all param-
eters pii; pispsi; 1 � i < s � n defining an exceptional quantization according
to Theorem 3.1 have values ˙1: If ais D 0 then pispsi D 1: If ais D �1 then
for the triple . pii; pispsi; pss/ there are just the following options .˙1; 1;˙1/ or
.�1;�1;�1/: In other words, if pispsi D �1 then pii D pss D �1:
Proof The Dynkin diagram is simply-laced if and only if all non-diagonal ais’s
are �1 or 0: If ais D 0 then condition (2.51) as well as (2.52) imply that pispsi D 1:
If ais D �1 then either condition (2.51), pispsi D p�1

ii ; or condition (2.52),
pii D �1; pispsi D ˙1; holds. In the latter case, if pispsi D �1; then the first
condition still holds, and thus, the second option reduces to pii D �1; pispsi D 1:

If i is connected with s by an edge of � then ais D asi D �1: Therefore,
condition (2.52) or (2.51) under substitution i$ s holds as well: either pispsi D p�1

ss
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or pss D �1; pispsi D 1: Thus, we have either pii D pss D . pispsi/
�1 or

pispsi D 1; pii D ˙1; pss D ˙1:
This result implies that pii D ˙1 is valid for all i; 1 � i � n: Indeed, consider

the set B of all i with pii D ˙1: No single vertex s … B; pss ¤ ˙1; is connected
by an edge with any i 2 B because pss D pii otherwise. We obtain either B D ; or
B D f1; 2; : : : ; ng: In the former case conditions (2.51) are valid for all .i; s/I that is,
the quantization is regular. ut

If char k D 2; then the above lemma demonstrates that there are no exceptions
in the simply-laced cases. Therefore, we suppose that char k ¤ 2:

Let us label each vertex i of the graph � by pii and each edge .i; s/ 2 � by pispsi:

To find the total number of different parameters values that define the algebraic
structure for exceptional quantizations, we must find the number of all possible
options to put labels ˙1 on the graph � such that, if .i; s/ is labeled by �1 then i
and s are labeled by �1 as well.

Proposition 3.3 If A is a Cartan matrix of type An; then there exists '2n�2 options
for values of parameters that define the algebraic structure for exceptional quanti-
zations. Here 'i; 0 � i is the Fibonacci sequence 1; 1; 2; 3; 5; 8; 13; : : : ; 'nC1 D
'n C 'n�1:

Proof Denote by Mn the number of all options for labeling � of type An so that if
an edge is labeled by �1; then both its vertices are labeled by �1:

p11ı p12p21����� p22ı p23p32����� : : :
pn�1 n�1ı pn�1 npn n�1����� pnnı (3.64)

Let MC
n be the number of options among them with pnn D 1:

p11ı p12p21����� p22ı p23p32����� : : :
pn�1 n�1ı pn�1 npn n�1����� 1ı (3.65)

Let M�
n be the number of options with pnn D �1:

p11ı p12p21����� p22ı p23p32����� : : :
pn�1 n�1ı pn�1 npn n�1����� �1ı (3.66)

We have Mn D MC
n C M�

n : One can easily find the recurrence relations for Mṅ
because a subgraph of a correctly labeled graph is correctly labeled. There is only
one option for extending the graph (3.65) to the left by one edge and one vertex so
that the resulting graph has pnC1 nC1 D 1; and one option to extend the graph (3.66).
Hence, MC

nC1 D MC
n C M�

n : Similarly, there is only one option to extend the
graph (3.65) so that the resulting graph has pnC1 nC1 D �1; and two options to
extend the graph (3.66). Thus, M�

nC1 D MC
n C 2M�

n : In matrix form, these relations
reduce to

�
MC

nC1
M�

nC1

�
D
�
1 1

1 2

��
MC

n

M�
n

�
:
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Because MC
2 D 2 and M�

2 D 3; this recurrence relation implies that

�
MC

nC1
M�

nC1

�
D
�
1 1

1 2

�n�1 �
2

3

�
D
�
1 1

1 2

�n �
1

1

�
:

Now, an ordinary induction demonstrates that

�
1 1

1 2

�n

D
�
'2n�2 '2n�1
'2n�1 '2n

�
; n � 1;

which yields MC
n D '2n�2; M�

n D '2n�1; and Mn D '2n: Thus, there are '2n

options for labeling � by ˙1 according to Lemma 3.14, and two of the options
(pii D pispsi D pss D 1 all i ¤ s; and pii D pispsi D pss D �1 all i ¤ s) are
regular. ut

3.5.5 Isomorphism Problem

We did not discuss whether different admissible collections of the parameters define
abstractly different algebraic structures of quantizations. If a generalized Cartan
matrix has a symmetry, ais D a�.i/ �.s/; with respect to some permutation of vertices
�; and pii D ˛i; pispsi D ˇis D ˇsi is an admissible collection of parameters values,
then pii D ˛�.i/; pispsi D ˇ�.i/ �.s/ is also an admissible collection. In this manner,
the group of symmetries acts on the set of all admissible collections. In a regular
case, of course, d�.i/ D diI however, this may be m�.i/ ¤ mi.mod N/ for some
index i; so that qdi�mi ¤ qd�.i/�m�.i/ : In exceptional cases, it may be that ˛i ¤ ˛�.i/
or ˇis ¤ ˇ�.i/ �.s/ for some indices as well. Nevertheless, the k-algebra defined by
values pii D ˛i; pispsi D ˇis D ˇsi in variables xi; x�

i ; 1 � i � n is isomorphic
to the k-algebra defined by the values p 0

ii D ˛�.i/; p 0
isp

0
si D ˇ�.i/ �.s/ in variables

x 0
i ; .x

0
i /

�; 1 � i � n: The isomorphism acts on the group G via the permutation
��1 W

diag.	1; : : : ; 	n; 	
�1
1 ; : : : ; 	

�1
n /

'! diag.	��1.1/; : : : ; 	��1.n/; 	
�1
��1.1/

; : : : ; 	�1
��1.n//:

It similarly acts on the generators: xi
'! x 0

��1.i/
; x�

i

'! .x 0
��1.i/

/�: Importantly,
the definition of the ti’s in Theorem 3.1 is not invariant under the permutations
(it depends on the order of vertices), therefore '.Qyi/ ¤ Qy 0

��1.i/
in general. Hence,

different collections from the same orbit define the same abstract algebraic structure.
We formulate a precise problem: do collections from the different orbits define
non-isomorphic k-algebras? Although it is likely that the isomorphism problem
has an affirmative solution, the arguments should include an analysis of possible
non-homogeneous isomorphisms. However, the existence of the famous Lusztig’s
automorphisms demonstrates that such analysis may be difficult.
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Among 25 types of generalized Cartan matrices related to affine Lie algebras
of Kac classification, [116, pp. 53–55], the matrices of 10 types have nontrivial
symmetries, whereas matrices of the other 15 types do not. In line with the
isomorphism problem, it is interesting to find the number of orbits for the former
cases. For example, in case An there is just one nontrivial symmetry �.i/ D
n � i C 1; 1 � i � n: Therefore, each orbit has either one or two elements.
The number of one element orbits equals the number of symmetric admissible
(exceptional) collections. It is then easy to see that this number is 'nC1 � 2: Thus,
the total number of orbits is 1

2
.'2n C 'nC1/� 2:

3.6 Chapter Notes

The classification of finite-dimensional semisimple Lie algebras, being useful in
many areas of mathematics and physics, has an about 80-year history, starting with
a paper by Killing [141] and ending with Jean-Pierre Serre’s representation by
generators and relations [207]. The modern treatment of the theory is given in a
book by Humphreys [102]. The Kac-Moody algebras appeared in papers by Moody
[168] and Kac [112]. The book by Kac [116] is a canonical text for learning the
theory underlying Kac-Moody algebras.

A major event in developing the Hopf algebra theory was the discovery by
Drinfeld [65, 66] and Jimbo [106] of a class of Hopf algebras, now called Drinfeld–
Jimbo quantum groups, which can be considered as one-parameter deformations
of universal enveloping algebras of semisimple complex Lie algebra. Since then,
numerous books [46, 54, 71, 105, 107, 120, 142, 153, 160, 176, 213] and articles
have been published on the quantizations of Lie algebras.

The multiparameter quantizations appeared in different versions in papers by
Reshetikhin [193], Cotta-Ramusino and Rinaldi [56], and Constantini and Varag-
nolo [55]. In [194], Ringel developed an original approach based on deformations
of Hall algebras. Benkart and Witherspoon [22, 23] and then Bergeron et al. [29]
introduced a special two-parameter version from another perspective. Kang in
[118] and subsequently Benkart et al. in [24] considered quantum deformations of
generalized Kac-Moody algebras.

The analysis of quantizations of Kac-Moody algebras given in the book is based
on the author [136]. In the tableaux below, we provide the maximum possible
numbers, found in [136], of exceptional parameter values for Kac-Moody algebras
of finite or affine types in terms of the Kac classification, [116, pp. 53–55], where
'i; i � 0 is the Fibonacci sequence 1; 1; 2; 3; 5; 8; 13; 21; : : : :
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An '2n � 2 G2 12 E.1/7 632

Bn 2'2n � 2 A.1/1 6 E.1/8 4344

Cn 2'2n�2 C 4 A
.1/
l '2n C '2n�2 � 2 A

.2/
2 24

E6 240 C.1/
l 4'2n�4 C 28 A.2/2l 4'2n�2 C 16

E7 632 G.1/
2 38 D.2/

lC1 4'2n C 2

E8 1658 F.1/4 91 E.2/6 80

F4 40 E.1/6 635 D.3/
4 19

Dn '2n C '2n�7 � 2 D
.1/
l 15 '2n�6 C 11 '2n�8 � 2

A.2/2l�1 2'2n�2 C 2'2n�9 C 2 B.1/l '2nC1 C 5'2n�5 � 2



Chapter 4
Algebra of Skew-Primitive Elements

Abstract In this chapter we consider the skew-primitive polynomials of the free
character Hopf algebra to be quantum Lie operations. We discuss linearization and
specialization processes and criteria for a polynomial to be classified as a quantum
Lie operation. We also classify multilinear quantum Lie operations in two, three,
and four variables.

In this chapter we consider the skew-primitive polynomials of the free character
Hopf algebra to be quantum Lie operations. We discuss linearization and special-
ization processes and criteria for a polynomial to be classified as a quantum Lie
operation. We also classify multilinear quantum Lie operations in two, three, and
four variables.

4.1 Quantum Lie Operations

According to the Friedrichs criteria, Lie polynomials are characterized as primitive
elements of free associative algebra with primitive free generators:

.xi/ D xi ˝ 1C 1˝ xi:

Because every Lie polynomial may be considered as a multivariable operation
on Lie algebras, this fact yields an idea to define quantum Lie operations as
polynomials of free algebra that are skew-primitive for all “admissible” values of
variables. In line with this idea, a quantum analog of a Lie algebra is the subspace
of a Hopf algebra span by skew-primitive elements and equipped by quantum Lie
operations.

The definition of a skew-primitive element includes two group-like elements,

.u/ D u˝ hu C fu ˝ u; hu; fu 2 G:

© Springer International Publishing Switzerland 2015
V. Kharchenko, Quantum Lie Theory, Lecture Notes in Mathematics 2150,
DOI 10.1007/978-3-319-22704-7_4
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As the skew-primitive elements are closed with respect to the multiplication by
group-like elements, we may normalize one of these group-likes, say,

.h�1
u u/ D h�1

u u˝ 1C h�1
u fu ˝ h�1

u u:

This allows us to concentrate our attention mainly only on skew-primitive elements
when hu D 1: This diminishes twice the number of parameters. Of course, every
operation f .x1; x2; : : : ; xn/ on normalized skew-primitive elements has an extension
to arbitrary ones by means of the substitution xi  h�1

i yi and followed then
multiplication by group-likes hi: Let us proceed with the exact definitions.

4.1.1 Quantum Variables

We call a variable x as a quantum variable if an element gx of a fixed Abelian
group G and a character 
x 2 G� are associated with it. The parameters gx and

x associated with a quantum variable say that an element a in a Hopf algebra H
may be considered as a value of this quantum variable only if a is a skew-primitive
semi-invariant with the same parameters, that is

.a/ D a˝ 1C gx ˝ a; g�1ag D 
x.g/a; g 2 G; (4.1)

where we suppose that the elements of G have some fixed interpretation in H as
group-like elements.

A noncommutative polynomial in quantum variables is called a quantum Lie
operation if all of its values in all Hopf algebras are skew-primitive for all values of
the quantum variables. In particular, a homogeneous quantum Lie operation has the
form:

Œx1; : : : ; xn� D
X

�2Sn

˛�x�.1/ � � � x�.n/;

where x1; : : : ; xn are not necessarily distinct quantum variables. If those variables
are mutually distinct (but not necessarily with different 
; g), the operation is called
multilinear.

Let x1; : : : ; xn be a set of quantum variables. The skew group algebra GhXi
becomes a free character Hopf algebra if we define the coproduct

.xi/ D xi ˝ 1C gxi ˝ xi; 1 � i � 1; .g/ D g˝ g; g 2 G:

Hence the xi’s have skew-primitive values in GhXi: By this means the quantum Lie
operations can be identified with skew-primitive polynomials of the free character
Hopf algebra GhXi:
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Example 4.1 (Commutator) If G is a trivial group, then the usual commutator xy �
yx is a quantum Lie operation. If the ground field has a positive characteristic l > 0;
there exists a nonlinear quantum Lie operation xl: The Friedrichs criteria says that
all other operations (if, of course, G D id) are superpositions of these two.

Example 4.2 (Skew Commutator) Let x1 and x2 be quantum variables. If p12p21 D 1
then the skew commutator Œx1; x2� D x1x2 � p12x2x1 is a quantum Lie operation.

Example 4.3 (Unary Restriction Operation) Let x be a quantum variable such that
p11 D 
x.gx/ is a primitive tth root of 1: Then xt is a quantum Lie operation.

Indeed, we have .x˝1/.g˝x/ D p11.g˝x/.x˝1/: Lemma 1.2 implies.xt/ D
.x/t D xt ˝ 1 C gt

x ˝ xt: Hence xt is a quantum Lie operation. Similarly, if the
characteristic l of k is positive, then xtln ; n > 0 are quantum Lie operations as well.

Example 4.4 (Pareigis Quantum Operation) Let � be a primitive nth root of unity
and pijpji D �2. Then

Pn.x1; : : : ; xn/ D
X

�2Sn

.
Y

i<j&�.i/>�.j/

.��1
x�.j/ .gx�.i/// x�.1/ � � � x�.n/

is a quantum Lie operation (see [184, Theorem 3.1, p. 147 ], and [183, 185]).

Example 4.5 (Serre Quantum Operation) Let x1; x2 be quantum variables. Then
Theorem 2.5 demonstrates that

W D Œ: : : ŒŒx1; x2�; x2�; : : : ; x2„ ƒ‚ …
n

�

is a quantum Lie operation provided that either p12 p21 D p1�n
22 or p22 is a primitive

mth root of unity, mjn; and pm
12p

m
21 D 1:

4.1.2 Linearization and Specialization

The quantum Lie operations admit the well-known linearization process. Recall
that a multidegree D.u/ of a word u is a sequence of non-negative integers
.m1;m2; : : : ;mn/ such that u is of degree m1 in x1; deg1.u/ D m1I of degree m2 in
x2; deg2.u/ D m2I and so on. A linear combination of words

P
˛iui is homogeneous

if all words ui have the same multidegree. Of course, each polynomial is a sum of
its homogeneous components.

Lemma 4.1 All homogeneous components of a quantum Lie operation are again
quantum Lie operations.

Proof A coproduct of a word u D a1a2 � � � am; ai 2 X; 1 � i � m is a sum of 2m

tensors uA ˝ u NA; when A runs through all subsets of f1; 2; : : : ;mg; whereas uA is a
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word that appears from u upon replacement of each ai; i 2 A with gi; and u NA is a
word that appears from u by deleting of all ai; i … A; see Remark 1.6. In particular,
the sum of the multidegrees of uA and u NA equals the multidegree of u:

If now F DP ˛kuk is a skew-primitive polynomial, then all tensors in

X
˛k.uk/� F ˝ 1 � gf ˝ F (4.2)

under the above decomposition of.uk/must be canceled. However, if either left or
right components of a pair of tensors have different multidegrees, then the tensors
may not cancel each other. Therefore, for a given d D .d1; d2; : : : ; dn/; the sum
of all tensors A ˝ B of (4.2) with D.A/ C D.B/ D d is zero. But the latter sum is
precisely.Fd/�Fd˝1�gf˝Fd;where Fd DPD.uk/Dd ˛kuk is the d-homogeneous
component of F: This implies that homogeneous components Fd are skew-primitive.

ut
Due to the proven lemma, we may concentrate our attention mainly on the

homogeneous polynomials. Let f .x1; : : : ; xn/ be a homogeneous quantum Lie
operation of degree mi in xi; 1 � i � n: Instead of xi we may introduce mi new
quantum variables yij; 1 � j � mi that have the same parameters .
xi ; gxi/: In this
way any linear combination zi D P

k "kyik is a skew-primitive semi-invariant with
the parameters .
xi ; gxi/ in Ghyiji: In particular, by the definition of the quantum Lie
operation

f .y11 C y12 C � � � C y1m1 ; x2; : : : ; xn/

�
m1X

qD1
f .y11 C � � � C � � � C Oy1q C � � � y1m1 ; x2; : : : ; xn/

C
X

1�q1<q2�m1

f .y11 C � � � C � � � Oy1q1 C � � � C Oy1q2 C � � � C y1m1 ; x2; : : : ; xn/

�C � � � C .�1/m1�1
m1X

qD1
f .y1q; x2; : : : ; xn/

is a skew-primitive polynomial that defines a quantum Lie operation in y1j; 1 � j �
m1; x2; : : : ; xn: Here as usual the symbol O over the addend means that this addend
is omitted in the sum. The continuation of this process for x2; x3; : : : will lead to a
multilinear quantum operation in yij:We call the obtained operation L.f / as complete
linearization of the given one.

Conversely, if some of the variables xi have the same parameters, say, 
x1 D

x2 ; gx1 D gx2 ; then we may substitute x1 D x2 in the operation. We will obtain a
new operation that is called a specialization of the given one. In particular we may
substitute yij D xi to the complete linearization L.f /. In this way we get the initial
operation multiplied by a natural number.
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For instance, the complete linearization of the operation from Example 4.3 is

L.xr/ D
X

�2Sr

y�.1/y�.2/ : : : y�.r/; r D tln;

whereas its complete specialization equals rŠ xr: Of course, if the characteristic l is
positive, then the specialization is zero. So that, in the case of positive characteristic,
there exist operations that are not specializations of the multilinear ones.

However, over a field of zero characteristic, every constitution homogeneous
quantum Lie operation is a specialization of a multilinear one. By this reason the
investigation of the multilinear operations is of the primary importance.

4.2 Criteria for Quantum Lie Operations

Additionally to the Freiderichs criterion that characterizes the Lie polynomials as
primitive elements of the free associative algebra, there exist two more criteria
for the Lie polynomials: the Finkelstein and Specht–Wever criteria. We are going
to demonstrate that the Finkelstein criterion remains valid for the quantum Lie
operations, whereas the Specht–Wever condition is valid for the quantum Lie
operations, but this is not a criterion any more. Also we prove a new criterion
for quantum Lie operations linear at least in one variable, which reduces the
identification to the problem of linear dependence of some special polynomials.

4.2.1 Left and Right Primitive Polynomials

Definition 4.1 A polynomial W is called left primitive in x1 2 X if .W/�W ˝ 1
is a linear combination of tensors A˝B with deg1.A/ D 0I that is, all left-hand sides
of the tensors are independent of x1: Similarly, W is called right primitive in x1 if
.W/� gw ˝W is a linear combination of tensors A˝ B with deg1.B/ D 0:
Proposition 4.1 A linear in x1 polynomial F is left primitive in x1 if and only if it is
a linear combination of long skew commutators:

F D
X

iD.i1;i2;:::;ik/
˛iŒ: : : ŒŒx1; xi1 �; xi2 �; : : : ; xik �: (4.3)

Proof First we prove by induction on k that all summands on the right of (4.3) are
left primitive in x1. If k D 0; then.x1/� x1˝ 1 D g1˝ x1; whereas deg1.g1/ D 0:

Let ikC1 D j ¤ 1; and let .U/ D U˝ 1CP ui˝ di, where the G-words ui are
independent of x1. Then, if we take into account that Ugj D p.U; xj/gjU and neglect
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tensors whose left-hand sides are independent of x1; we obtain

.ŒU; xj�/ D .U/.xj/ � p.U; xj/.xj/.U/

D .U ˝ 1C
X

ui ˝ di/.xj ˝ 1C gj ˝ xj/

�p.U; xj/.xj ˝ 1C gj ˝ xj/.U ˝ 1C
X

ui ˝ di/

� Uxj ˝ 1CUgj ˝ xj � p.U; xj/.xjU ˝ 1C gjU ˝ xj/ � ŒU; xj�˝ 1:

To prove the converse statement, we return to Remark 1.6. The tensor wA ˝ w NA
is proportional to a tensor of the form gu˝ v; g 2 G; where both words u; v appear
from w by deleting of some letters. The word w may be reconstructed from the
words u; v by means of the so called shuffle construction: a word is a shuffle of u; v
if it appears from the word uv by means of the moving of some letters of v to the
left so that the order of letters from v is not changed. For example, the shuffles of
u D ab; v D xy are abxy; axby; axyb; xaby; xayb; xyab: We see that a tensor
gu˝ v appears in the decomposition of .w/ if and only if w is a shuffle of u; v:

Assume that W is left primitive in x1. Let w be the leading word of the decompo-
sition of W in a linear combination of words: W D ˛wCP˛iwi; wi < w; ˛ ¤ 0:

If w D x1xi1xi2 : : : xik begins with x1; then the leading word of

W 0 D W � ˛Œ: : : ŒŒx1; xi1 �; xi2 �; : : : ; xik �

is less than w because Œ: : : ŒŒx1; xi1 �; xi2 �; : : : ; xik � has only one word, w; that begins
with x1: As W 0 is still left primitive in x1; one may apply induction on the leading
word.

If w D ux1v and u is a nonempty word, then the decomposition of .w/ has a
tensor gx1v ˝ u with a nonzero coefficient because w D ux1v is a shuffle of x1v; u:
At the same time, other shuffles of x1v; u are greater than ux1v as x1 is grater than
each letter of u: In particular, no one of the words wi < w is a shuffle of x1v; u: This
implies that the tensor gx1v ˝ u remains uncanceled in .W/; so that W is not left
primitive in x1: ut

In a similar way, we may describe all right primitive in x1 polynomials. To this
end, we have to use the dual brackets (1.67):

Œu; v�� D uv � p�1
v;uvu D �p�1

v;uŒv; u�: (4.4)

Proposition 4.2 A linear in x1 polynomial F is right primitive in x1 if and only if it
is a linear combination of dual long skew commutators:

F D
X

iD.i1;i2;::: ;ik/
˛iŒ: : : ŒŒx1; xi1 �

�; xi2 �
�; : : : ; xik �

�

Proof The proof is quite similar to that of the above proposition. ut
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4.2.2 Polynomial Criterion

For each word u D xi1xi2 : : : xik in x2; x3; : : : ; xn consider the following polynomial

Du D Œ: : : ŒŒx1; xi1 �; xi2 �; : : : ; xik � � Œ: : : ŒŒx1; xi1 �
�; xi2 �

�; : : : ; xik �
�; (4.5)

where the dual brackets are defined in (4.4). The following theorem implies that
there exists a quantum Lie operation of multidegree .1;m2;m3; : : : ;mn/ if and only
if the polynomials Du are linearly dependent.

Theorem 4.1 Each linear dependence
P
ˇuDu D 0 where u runs through all

words in x2; : : : ; xn of multidegree .m2;m3; : : : ;mn/ defines a quantum Lie opera-
tion:

W D
X

u

ˇuŒ: : : ŒŒx1; xi1 �; xi2 �; : : : ; xik � D
X

u

ˇuŒ: : : ŒŒx1; xi1 �
�; xi2 �

�; : : : ; xik �
�:

(4.6)

Conversely, every quantum Lie operation W of multidegree .1;m2;m3; : : : ;mn/ has
a representation by (4.6).

Proof If
P

u ˇuDu D 0 then the second equality of (4.6) fulfills and it defines the
element W: By Proposition 4.1 the element W is left primitive in x1; whereas by
Proposition 4.2 it is right primitive in x1: Since deg1.W/ D 1; it follows that W is a
skew-primitive polynomial.

Conversely, if f is a skew-primitive polynomial of multidegree .1;m2; : : : ;mn/;

then it is left primitive in x1: By Proposition 4.1, we have

f D
X

u

ˇuŒ: : : ŒŒx1; xi1 �; xi2 �; : : : ; xik �: (4.7)

Applying Proposition 4.2, we obtain

f D
X

u

ˇ0
uŒ: : : ŒŒx1; xi1 �

�; xi2 �
�; : : : ; xik �

�: (4.8)

Thus, we have the equality

X

u

ˇuŒ: : : ŒŒx1; xi2 �; xi3 �; : : : ; xik � D
X

u

ˇ0
uŒ: : : ŒŒx1; xi2 �

�; xi3 �
�; : : : ; xik �

�: (4.9)

If we compare coefficients at x1xi1 � � � xim D x1u in both sides of this equality, we get
ˇu D ˇ0

u; and hence
P

u ˇuDu D 0: ut

Corollary 4.1 If there exists a multilinear quantum Lie operation, then

Y

1�i¤s�n

pis D 1: (4.10)
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Proof By definition a multilinear polynomial satisfies m2 D m3 D : : : D mn D 1:

In this case, u D x�.2/x�.3/ � � � x�.n/;where � is a permutation of symbols 2; 3; : : : ; n:
Let us compare coefficients at x�.n/ � � � x�.3/x�.2/x1 in both sides of (4.9). We arrive
at a system of .n � 1/Š equalities

ˇu.�1/n�1
nY

kD2
.

k�1Y

iD1
p�.i/�.k// D ˇu.�1/n�1

nY

kD2
.

k�1Y

iD1
p�1
�.k/�.i//:

Clearly, each of these equalities is equivalent to (4.10) if ˇu ¤ 0: ut
Using one additional variable, we may apply the criterion of Theorem 4.1 to

arbitrary quantum Lie operations.

Proposition 4.3 A homogeneous polynomial f in quantum variables x2; x3; : : : ; xn

defines a quantum Lie operation if and only if so does Œx1; f � D x1f � fx1; where x1
is a quantum variable with 
x1 D id; gx1 D id:

Proof The coproduct has a decomposition

. f / D 1˝ f C gf ˝ f C
X

u;v

˛u;vgvu˝ v; (4.11)

where u; v run though nonempty words in x2; x3; : : : ; xn: We have,

.Œx1; f �/ D 1˝Œx1; f �Cgf˝Œx1; f �C
X

u;v

˛u;vgv.Œx1; u�˝vCu˝Œx1; v�/: (4.12)

If f is skew-primitive, then ˛u;v D 0; and Œx1; f � is skew-primitive as well. If Œx1; f �
is skew-primitive, then

X

u;v

˛u;vgv.Œx1; u�˝ v C u˝ Œx1; v�/ D 0; (4.13)

which implies ˛u;v D 0: ut

4.2.3 Finkelstein Criterion and Specht–Wever Condition

Theorem 4.2 A homogeneous polynomial f D P
i ˛ixi1xi2 : : : xik in quantum

variables x2; x3; : : : ; xn is a quantum Lie operation if and only if

Œx1; f � D
X

iD.i1;i2;:::;ik/
˛ iŒ: : : ŒŒx1; xi1 �; xi2 � : : : ; xik �: (4.14)
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Proof If f is skew-primitive, then Proposition 4.1 under substitution x2  f implies
that Œx1; f � is left primitive in x1: The same proposition applied to khXi provides a
representation

Œx1; f � D
X

iD.i1;i2;:::;ik/
ˇ iŒ: : : ŒŒx1; xi1 �; xi2 � : : : ; xik �:

The polynomial Œ: : : ŒŒx1; xi1 �; xi2 � : : : ; xik � has only one word with the first letter x1:
Comparing the words starting with x1 in both sides of the latter equality, we obtain
ˇi D ˛i:

Conversely. If identity (4.14) is valid, then Œx1; f � is left primitive in x1: Let

.f / D f ˝ 1C gf ˝ f C
X

i

f .1/i ˝ f .2/i ; (4.15)

where f .2/i are linearly independent homogeneous polynomials and f .1/i … kŒG�: We
have,

.Œx1; f �/ � Œx1; f �˝ 1 D
X

i�1
.x1f

.1/
i � p.x1; gf /f

.1/
i x1/˝ f .2/i C � � � ; (4.16)

where by the dots we denote a sum of tensors whose left-hand side is independent of
x1: Since Œx1; f � is left primitive in x1; it follows that x1f

.1/
i D p.x1; gf /f

.1/
i x1; i � 1:

These equalities are possible in GhXi only if f .1/i 2 kŒG�: Hence, the sum in (4.15)
is empty. ut
In perfect analogy, we have a dual criterion.

Theorem 4.3 A homogeneous polynomial f D P
i ˛ ixi1xi2 : : : xik in quantum

variables x2; x3; : : : ; xn is a quantum Lie operation if and only if

Œx1; f �
� D

X

iD.i1;i2;:::;ik/
˛ iŒ: : : ŒŒx1; xi1 �

�; xi2 �
� : : : ; xik �

�: (4.17)

In the equalities (4.14), (4.17) the variables xi; 1 � i � n are algebraically
independent. Therefore this identity is valid for arbitrary, not necessarily skew-
primitive, values xi D ui provided that the skew commutators are defined by the
same coefficients. This proves the following statement.

Corollary 4.2 If f .xi/ DP
i ˛ ixi1xi2 : : : xik is a quantum Lie operation in quantum

variables x2; : : : ; xn then the following ad-identities hold

Œz; f .ui/� D
X

iD.i1;i2;:::;ik/
˛ iŒ: : : ŒŒz; ui1 �; ui2 � : : : uik �; (4.18)

Œz; f .ui/�
� D

X

iD.i1;i2;:::;ik/
˛ iŒ: : : ŒŒz; ui1 �

�; ui2 �
� : : : uik �

� (4.19)
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provided that z; ui; 1 < i � n are arbitrary homogeneous polynomials such that
p.ui; uj/ D pij; 1 < i; j � n:

In order to understand more closely the sense of the ad-identities, let us consider
a number of simple examples.

Example 4.6 If G D fidg; then the commutator Œx1; x2� D x1x2�x2x1 is a (quantum)
Lie operation. In this case the ad-identity (4.18) turns into the Jacobi identity in the
following form:

Œz; Œu1; u2�� D ŒŒz; u1�; u2� � ŒŒz; u2�; u1�: (4.20)

Example 4.7 More generally, if pijpji D 1 then the skew commutator Œx1; x2� D
x1x2 � p12x2x1 is a quantum Lie operation. The ad-identity takes up a conditional
identity

Œz; Œu; v�� D ŒŒz; u�; v� � pu;vŒŒz; v�; u�; (4.21)

under the condition pu;vpv;u D 1: This condition is universally true if the bicharacter
p is symmetric, pijpji D 1I in this case (4.21) is the Jacobi identity for color Lie
super-algebras.

Example 4.8 If 
x.gx/ D � is a tth primitive root of 1 and either n D t; or n D tlr

where l is the characteristic of the ground field, then xn is a quantum Lie operation.
Thus, we obtain the identities:

Œz; un� D Œ: : : ŒŒŒz; u�; u�; u�; : : : ; u„ ƒ‚ …
n

�; Œz; un�� D Œ: : : ŒŒŒz; u��; u��; u��; : : : ; u„ ƒ‚ …
n

��

(4.22)
provided that pu;u D �:

For a polynomial f .xi/ DP i ˛ixi1xi2 : : : xik ; we define the operator � by

�.f .xi// D
X

iD.i1;i2;:::;ik/
˛iŒ: : : Œxi1 ; xi2 � : : : ; xik �: (4.23)

Theorem 4.4 If f .xi/ is a quantum Lie operation, then �.f .xi// D kf .xi/:

Proof Without loss of generality we may suppose that f .xi/ is a polynomial in
x2; x3; : : : ; xn: Let us introduce a variable x1 with parameters 
1 D id; g1 D 1:

Consider a kŒG�-algebra H defined by relations x1xi � xix1 � xi D 0; 1 < i �
n: As left-hand sides of these relations are skew-primitive elements, algebra H
maintain the character Hopf algebra structure, and the natural homomorphism ' W
GhXi ! H is a homomorphism of character Hopf algebras. In algebra H; we have
Œx1; xi� D xi: By evident induction this implies Œx1; xi1xi2 : : : xik � D kxi1xi2 : : : xik :
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Therefore Œx1; f .xi/� D kf .xi/ in H: At the same time, the right-hand side of (4.14)
equals �.f .xi// in H: Applying ' to the identity (4.14), we obtain �.f .xi// D
kf .xi/ in H: It remains to note that the restriction of ' on Ghx2; x3; : : : ; xni is an
injection.

Indeed, there are no compositions between the defining relations, whereas the
compositions x1xi � g D x1 � xig between the defining relations and the commutation
rules xig D 
i.g/gxi are resolvable:

.xix1C xi/g� x1.

i.g/gxi/ D 
i.g/g.
1.g/xix1C xi/�
i.g/
1.g/g.xix1C xi/ D 0:

By Theorem 1.2 (Diamond Lemma), words that have no subwords x1xi are linearly
independent in H: In particular, so are all words in x2; x3; : : : ; xn: ut

The following example shows that the Specht-Wever condition is not a criterion
for the quantum Lie operations.

Example 4.9 The Specht-Wever condition for the polynomial xn is

Œ: : : ŒŒx; x�; x�; : : : ; x� D nxn:

If p D 
x.gx/; then the above equality reduces to the following one

.1 � p/.1� p2/ � � � .1 � pn�1/ D n: (4.24)

For p D 2; n D 3 the equality (4.24) is valid, whereas x3 is not a quantum operation
provided that a characteristic of the ground field is zero.

4.3 Bilinear and Trilinear Operations

Theorem 2.5 with n D 1 states that there exists only one bilinear operation Œx1; x2�
up to a scalar factor, in which case the existence condition is p12p21 D 1: This
allows us to define the principle bilinear operation on skew-primitive elements as
follows:

ŒŒa; b�� D
�
Œa; b�; if 
a.gb/


b.ga/ D 1I
undefined, otherwise.

(4.25)

We stress that this operation applies to arbitrary, not necessary normalized, skew-
primitive elements. Recall that if.a/ D a˝haCfa˝a and.b/ D b˝hbCfb˝b;
then the brackets are defined thus: Œa; b� D 
b.ha/ab � 
a.fb/ba; see (1.67).
In particular, Œa; b� D hahb


a.hb/

b.ha/Œh�1

a a; h�1
b b� is still skew-primitive. By

definition ga D h�1
a fa; gb D h�1

b fb: Hence, the existence condition remains
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a.gb/

b.ga/ D 1; or it may be written in more symmetric form 
a.fb/
b.fa/ D


a.hb/

b.ha/:

It is easy to see that the principle bilinear operation satisfies the identities

ŒŒa; b�� D �
a.gb/ŒŒb; a��; (4.26)


a.gc/ŒŒa; ŒŒb; c���� C 
c.gb/ŒŒc; ŒŒa; b���� C 
b.ga/ŒŒb; ŒŒc; a���� D 0; (4.27)

subject to the condition that all values ŒŒ �� involved are determined.

Theorem 4.5 For quantum variables x1, x2, and x3, a nonzero trilinear quantum
operation exists if and only if

p12p21p13p31p23p32 D 1: (4.28)

If one of the inequalities

p12p21 ¤ 1; p13p31 ¤ 1; p23p32 ¤ 1 (4.29)

holds, then there exists exactly one .up to multiplication by a scalar/ such operation.
If no one of them holds, then all trilinear operations are linearly expressed in terms
of ŒŒx1; ŒŒx2; x3���� and ŒŒx2; ŒŒx3; x1���� via (4.26) and (4.27).

Proof Corollary 4.1 implies that (4.28) is a necessary condition for existence of
trilinear operation. To prove that this condition is sufficient, we apply the polynomial
criterion given in Theorem 4.1.

For n D 3; m2 D 1; m3 D 1; there exists two polynomials Du corresponding to
u D x2x3 and u D x3x2; see (4.5). We note that Dx3x2 appears from Dx2x3 by appli-
cation of the permutation .23/ to all indices. Therefore, let Did and D.23/ denote the
polynomials Du related to u D x2x3 and u D x3x2 respectively. If (4.28) is valid, then

Did D .p�1
21 � p12/x2x1x3 C .p�1

31 p�1
32 � p13p23/x3x1x2;

D.23/ D .p�1
21 p�1

23 � p12p32/x2x1x3 C .p�1
31 � p13/x3x1x2:

If one of the inequalities (4.29) holds (let it be p13p31 ¤ 1 for definiteness), then

.p�1
21 � p12/.p

�1
31 � p13/ D .p�1

31 p�1
32 � p13p23/.p

�1
21 p�1

23 � p12p32/;

and hence

Did � p�1
31 p�1

32 � p13p23
p�1
31 � p13

D.23/ D 0:
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Here, D.23/ ¤ 0I that is, the space generated by Did and D.23/ is one-dimensional.
By Theorem 4.1, there exists the unique trilinear operation up to a scalar factor

ŒŒx1; x2�; x3� � p�1
31 p�1

32 � p13p23
p�1
31 � p13

ŒŒx1; x3�; x2�: (4.30)

If all products pijpji, i ¤ j are equal to 1; then Did D D.23/ D 0I that is, there exist
exactly two linear dependences between Did and D.23/: Hence, there are exactly two
linearly independent operations. In this case, on the other hand, all the three values,
ŒŒx1; x2��, ŒŒx1; x3��, and ŒŒx2; x3��, of the main bilinear operation are defined. Moreover,
since gŒŒxi;xj�� D gigj and 
ŒŒxi ;xj�� D 
i
j, we see that 
ŒŒxi ;xj��.gk/


k.gŒŒxi;xj��/ D 1 holds
for k ¤ i; jI that is, all possible superpositions, too, are defined. Among them, by the
above argument, only two may be linearly independent (for example, those specified
in the theorem), and the rest are expressed via them using (4.26) and (4.27). ut

Note that if exactly one of the inequalities (4.29) fails, say, p12p21 D 1, then
the superposition ŒŒx3; ŒŒx1; x2���� will be defined; hence, the unique (by Theorem 4.5)
quantum operation will equal that superposition. This circumstance allows us to
define the principle trilinear operation thus:

ŒŒa; b; c�� D
8
<

:
ŒŒa; b�; c� � p�1

31 p�1
32 �p13p23

p�1
31 �p13

ŒŒa; c�; b�; if
Q

1�i¤s�3
pis D 1; and pispsi ¤ 1I

undefined, otherwise,

where p12 D 
a.gb/; p13 D 
a.gc/; etc.
The principle trilinear operation applies to arbitrary, not necessary normalized,

skew-primitive elements as well. The existence conditions remain the same, or they
may be written in more symmetric form

Y

i¤s

qis D
Y

i¤s

q 0
is; and qisqsi ¤ q 0

isq
0
si for i ¤ s;

where, as usual, q12 D 
a.hb/; q 0
12 D 
a.fb/; q13 D 
a.hc/; q 0

13 D 
a.fc/; etc.
The operation being unique has an implication that if we rename the variables

xi ! x�.i/, then the value of the main operation on x�.1/, x�.2/, x�.3/ (of course, it is
defined on that sequence since (4.28) is invariant under such substitutions) should
be linearly expressed via its value on x1, x2, x3, that is,

ŒŒx�.1/; x�.2/; x�.3/�� D ˛� ŒŒx1; x2; x3��: (4.31)

If we compare the coefficients at x�.1/x�.2/x�.3/ on the right- and left-hand sides
of (4.31), we see that ˛� D ��

��1 D ��1
� where �� are precisely coefficients in the

expansion

ŒŒx1; x2; x3�� D
X

��x�.1/x�.2/x�.3/I
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or by routine computations,

˛id D 1; ˛.123/ D p31 � p�1
13

p12 � p�1
21

; ˛.132/ D p31 � p�1
13

p23 � p�1
32

; ˛.13/ D p21p32p31;

˛.12/ D p21p23p13
p31 � p�1

13

p23 � p�1
32

; ˛.23/ D p12p32p13
p31 � p�1

13

p12 � p�1
21

:

4.4 Quadrilinear Operations

We pass to the case n D 4. Denote by S4 the permutation group on the set f1; 2; 3; 4g,
and by S14 its subgroup consisting of all permutations leaving 1 fixed. For our goals,
both a functional and an exponential notation for the action of S4 on the index set
might seem convenient, while we assume that i.��/ D .i�/� D �.�.i//: Write � to
denote the permutation

� D
�
1 2 3 4

4 3 2 1

�
D .14/.23/: (4.32)

For brevity, we make the convention to write �.A/ or A� for the permutation � and
for an arbitrary expression A, meaning that �.A/ is obtained from A by applying �
to each index occurring in A at letters pij or at variables xi: In so doing, we do not
require that S4 acts on the ground field. For instance, it might be the case that, in k;
the equality p12 D p23 is satisfied but p.123/12 D p.123/23 is not, that is, this is merely a
notational convention, which is used only unless it leads to confusion. An arbitrary
quadrilinear polynomial, in accordance with the above conventions, can be written
in the form

W.x1; x2; x3; x4/ D
X

�2S4

˛��.x1x2x3x4/; ˛� 2 k: (4.33)

To that conventions we add the following:

fpijpkl : : : prsg dfD pijpkl � � � prs � p�1
ji p�1

lk : : : p�1
sr ; (4.34)

and for the word A depending on pij, denote by A a word obtained from A by

replacing all letters pij with pji; so that fAg D A � A
�1
: These are again merely

notational conventions: the equality p12p34 D p13p32 in k not necessarily implies
p�1
21 p�1

43 D p�1
31 p�1

23 in k:

Lemma 4.2 Let C, D, and E be some words in pij. Then

fCEgfDEg � fCgfDg D fCDEgfEg: (4.35)
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Proof Using (4.34), we rewrite the left- and right-hand sides of (4.35) in this way:

fCEgfDEg � fCgfDg D .CE � CE
�1
/.DE � .DE/�1 � .C � C

�1
/.D � D

�1
/

D CEDE � C
�1

E
�1

DE � CED
�1

E�1

C C
�1

E
�1

D
�1

E�1 � CDC C
�1

DC CD
�1 � C

�1
D

�1

D CEDEC CED
�1

E�1 � CD � CD
�1I

fCDEgfEg D .CDE � CD
�1

E�1/.E � E
�1
/

D CDEE � CD
�1 � CDC CDE

�1
E�1:

ut
Note that the existence condition for the trilinear operation (4.28) can be written

via braces thus: fp12p13p23g D 0; whereas the existence condition for the bilinear
operation takes the form fp12g D 0: It might be useful to point out the following
properties of the braces:

fCg D 0! fCDg D CfDg; (4.36)

fCg D 0 & fCDg D 0 ! fDg D 0: (4.37)

Theorem 4.6 For quantum variables x1; x2; x3; x4, a nonzero quadrilinear quantum
operation exists if and only if

p12p21p13p31p14p41p23p32p24p42p34p43 D 1: (4.38)

If this equality holds, and there is a pair of indices i; j such that

fpijg ¤ 0 & fpijpikpkjg ¤ 0 & fpijpispsjg ¤ 0; (4.39)

where i; j; k; s are distinct indices, then there exist exactly two linearly independent
quadrilinear operations. If condition (4.39) fails for all i ¤ j; then all quadrilinear
operations are expressed via bilinear and trilinear principle operations.

Proof Corollary 4.1 implies that (4.38) is a necessary condition for existence of
quadrilinear operations. We stress that (4.38) is equivalent to each one of the
following 24 equalities

fx12x13x14x23x24x34g� D 0; � 2 S4: (4.40)

To prove that this condition is sufficient, we apply the polynomial criterion given in
Theorem 4.1. For n D 4; m2 D 1; m3 D 1; m4 D 1; there exists six polynomials
Du corresponding to different permutations of the word x2x3x4; see (4.5). Let D�
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corresponds to the word u D x�.2/x�.3/x�.4/; where � 2 S14: Due to our conventions
in notations, we have D� D �.Did/: We seek an element Did in an explicit form.
Expanding the skew commutators in (4.5) yields

Did D �fp12gx2x1x3x4 � fp13p23gx3x1x2x4 � fp14p24p34gx4x1x2x3
Cfp12p13p23gx3x2x1x4 C fp12p14p24p34gx4x2x1x3
Cfp13p23p14p24p34gx4x3x1x2: (4.41)

Now assume that ˇ� are unknown parameters. Consider the linear combinationP
ˇ��.Did/ and the coefficients at its distinct words. Setting that combination equal

to zero, we obtain a homogeneous system of 12 equations (equal to the number of
distinct words not beginning with and not ending in x1) with six unknowns. We have
to demonstrate that, under conditions (4.38) and (4.39) for i D 1; j D 4; that system
has two linearly independent solutions.

Consider the coefficient at x2x1x3x4. If we apply � 2 S14 to (4.41), the element x1
will be left fixed; therefore, the word x2x1x3x4 arises in �.Did/ only from the first
three summands of (4.41). If it arises from the second, then �.3/ D 2, �.2/ D 3,
and �.4/ D 4I that is, � D .23/. If it arises from the third, then �.4/ D 2, �.2/ D 3,
and �.3/ D 4I that is, � D .234/. Therefore, the whole coefficient at x2x1x3x4 is
equal to

� fp12gˇid � fp12p32gˇ.23/ � fp12p32p42gˇ.234/: (4.42)

In a similar way, if we compute coefficients at other six words �.x2x1x3x4/, � 2 S14,
with x1 holding second place, we obtain the first group of six equations

Œ�fp12gˇid � fp12p32gˇ.23/ � fp12p32p42gˇ.234/�� D 0; � 2 S14: (4.43)

At this point we use the conventions made at the beginning of Sect. 4.4, assuming
in addition that permutations � act on the indices at ˇ by right multiplications:
Œ: : : ˇ� : : :�

� D : : : ˇ�� : : : :
In perfect analogy, we consider the coefficient at x4x3x1x2. This word arises in

�.Did/ from the last three summands of (4.41) only. If it arises from the last but
one summand, then �.4/ D 4, �.2/ D 3, and �.3/ D 2I that is, � D .23/. If it
arises from the fourth summand, then �.3/ D 4, �.2/ D 3, and �.4/ D 2, that is,
� D .234/. Therefore, the coefficient is equal to

fp13p23p14p24p34gˇid C fp13p14p34p24gˇ.23/ C fp13p14p34g; ˇ.234/; (4.44)

and we obtain yet other six equations

Œfp13p23p14p24p34gˇid C fp13p14p34p24gˇ.23/ C fp13p14p34gˇ.234/�� D 0: (4.45)
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Consider two Eqs. (4.42) and (4.44). Let us check that under condition (4.38), all
three minors of that system of two equations equal zero. First, using Lemma 4.2 with
C  p12I D  p13p14p34p24I and E  p32; we compute the minor corresponding
to the variables ˇid and ˇ.23/:

� fp12gfp13p14p34p24g C fp12p32gfp13p23p14p24p34g D fp12p13p14p34p24p23gfp32g:
(4.46)

The first factor of the latter product is zero due to (4.40) with � D id: Then, by
Lemma 4.2 with C  p12I D  p13p14p34I and E  p32p42; we compute the
minor corresponding to the variables ˇid and ˇ.234/:

� fp12gfp13p14p34g C fp12p32p42gfp13p23p14p24p34g
D fp12p13p14p34p23p24gfp32p42g D 0: (4.47)

Next, for the minor corresponding to the variables ˇ.23/ and ˇ.234/; we again apply
Lemma 4.2 with C p12p32I D p13p14p34I E p42:

� fp12p32gfp13p14p34g C fp12p32p42gfp13p14p34p24g D fp12p32p13p14p34p24gfp42g:
(4.48)

The first factor of the latter product is zero due to (4.40) with � D .23/:
Besides, if some coefficient in (4.42) equals zero, then by (4.37), the corre-

sponding coefficient in (4.44) equals zero and vise versa. Therefore, Eq. (4.42) is
equivalent to (4.44).

Applying � 2 S14 to all of the expressions (4.42), (4.44), and (4.46)–(4.48), we
obtain that the whole system of 12 equations is equivalent to the six in (4.43).

We order elements of the group S14 in this way: id, .23/, .234/, .34/, .24/, .243/.
The matrix of the system then has the form

0
BBBBBBBBBBBBBBBBBB@

fp12g fp12p32g fp12p32p42g 0 0 0

fp13p23g fp13g 0 fp13p23p43g 0 0

0 0 fp13g 0 fp13p43g fp13p43p23g

0 0 0 fp12g fp12p42p32g fp12p42g

0 fp14p34p24g fp14p34g 0 fp14g 0

fp14p24p34g 0 0 fp14p24g 0 fp14g

1
CCCCCCCCCCCCCCCCCCA

If, in this matrix, we delete the first two columns and the third and fourth rows, we
obtain a triangular submatrix with the diagonal fp12p32p42g, fp13p23p43g, fp14g. Let
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us check that under condition (4.39) for i D 1; j D 4; no one of those elements is
zero.

Condition (4.39) for i D 1; j D 4 includes fp14g ¤ 0: Remark (4.37) with C  
p12p32p42 and D p14p13p34 implies fp12p32p42g ¤ 0; for otherwise fp14p13p34g D
0: Similarly, (4.37) with C p13p23p43 and D p14p12p24 implies fp13p23p43g ¤
0; for otherwise fp14p12p24g D 0:

Thus, the corresponding minor is nonzero and the whole system has not more
than two linearly independent solutions. Put ˇid D 1 and ˇ.23/ D 0; and find one
solution for the system of the first two and last two equations:

ˇid D 1; ˇ.23/ D 0; ˇ.234/ D � fp12g
fp12p32p42g ; ˇ.34/ D �

fp13p23g
fp13p23p43g ;

ˇ.24/ D fp12gfp14p34g
fp14gfp12p32p42g ; ˇ.243/ D �

fp43gfp14p24p34p13p23g
fp14gfp13p23p43g : (4.49)

Using Lemma 4.2, we verify if these values are solutions for the third equation:

� fp13g fp12g
fp12p32p42g C fp13p43g

fp12gfp14p34g
fp14gfp12p32p42g � fp13p43p23g

fp43gfp14p24p34p13p23g
fp14gfp13p23p43g

D � fp12g
fp12p32p42gfp14g .fp13gfp14g � fp13p43gfp14p34g/�

fp43gfp14p24p34p13p23g
fp14g

D fp43g
fp12p32p42gfp14g .fp12gfp13p14p34g � fp12p32p42gfp14p24p34p13p23g/

D �fp43gfp12p13p14p34p23p24gfp32p42gfp12p32p42gfp14g D 0:

Likewise for the fourth equation (with the “�” sign):

fp12g fp13p23gfp13p23p43g � fp12p32p42g
fp12gfp14p34g
fp12p32p42gfp14g C fp12p42g

fp43gfp14p24p34p13p23g
fp14gfp13p23p43g

D fp12g
fp14gfp13p23p43g .fp13p23gfp14g � fp13p23p43gfp14p34g/C : : :

D �fp12gfp13p23p14p34gfp43gfp14gfp13p23p43g C fp12p42g fp43gfp14p24p34p13p23gfp14gfp13p23p43g

D fp43g
fp14gfp13p23p43g .�fp12gfp13p23p14p34g C fp12p42gfp14p24p34p13p23g/

D fp43gfp12p13p23p14p34p24gfp42gfp14gfp13p23p43g D 0:
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Thus, by Theorem 4.1, the computed values of ˇ� determine a quadrilinear
operation

ŒŒx1; x2; x3; x4�� D
X

�2S14

ˇ� ŒŒŒx1; x�.2/�; x�.3/�; x�.4/�: (4.50)

Since ˇid D 1, ˇ.23/ D 0, and the word �.x1x2x3x4/ in (4.50) occurs only in the
summand corresponding to the permutation� , we see that the coefficient at x1x2x3x4
in the expansion (4.33) of the polynomial ŒŒx1; x2; x3; x4�� equals 1, and the coefficient
at x1x3x2x4 is zero.

Consider a sequence of quantum variables y1 D x1, y2 D x3, y3 D x2, and y4 D
x4. This sequence satisfies both conditions (4.38) and (4.39) for i D 1; j D 4I hence,
by the above, there exists a quantum operation ŒŒy1; y2; y3; y4�� D ŒŒx1; x3; x2; x4�� such
that the coefficient at x1x3x2x4 equals 1 and the one at x1x2x3x4 equals 0. In this
way ŒŒx1; x3; x2; x4�� supplies the second solution for the system under consideration,
which proves the first part of the theorem.

Now assume that no one pair i ¤ j satisfies condition (4.39).
We call a pair xi; xj (respectively, a triple xi; xj; xk/ of variables conforming if

the existence condition for bilinear (trilinear) operation is satisfied: fpijg D 0

(respectively, fpijpikpjkg D 0). The failure of condition (4.39) for i; j will mean, then,
that the variables xi and xj enter some two- or three-element conforming subset.
If the pair xi; xj is itself conforming, then the value ŒŒxi; xj�� is defined, and the set
ŒŒxi; xj��, xk, xl too is conforming. Therefore, one of the superpositions ŒŒŒŒxi; xj��; xk; xl��

or ŒŒŒŒŒŒxi ; xj��; xk��; xl�� is determined. Similarly, if the triple xi; xk; xj is conforming, then
either ŒŒŒŒxi; xj; xk��; xl�� or ŒŒŒŒŒŒxi; xj��; xk��; xl�� is defined.

We turn on to consider the possible cases where the six conditions (4.39) fail.

1. All two-element subsets are conforming. The system (4.43) has only zero coeffi-
cients, and by Theorem 4.1, we then find six linearly independent operations:

�.ŒŒŒŒŒŒx1 ; x2��; x3��; x4��/; � 2 S14:

2. All four three-element subsets are conforming. In view of the above, we can
assume that one of the two-element subsets is not conforming. Suppose fp12g ¤
0. Then the system (4.43) splits into three pairs of equations: id, .23/; .243/,
.24/; .34/, .243/. Here, the first and third pairs have rank 1 and the second has
rank � 1. Thus, if at least one of the inequalities fp14g ¤ 0, fp13g ¤ 0, or
fp43g ¤ 0 holds, then the whole system has exactly three solutions, and these, in
accordance with Theorem 4.1, yield the following three operations:

ŒŒŒŒx1; x2; x3��
0; x4��I ŒŒŒŒx1; x3; x4��0; x2��I ŒŒŒŒx1; x2; x4��0; x3��:

Here, ŒŒ��0 denotes the ternary operation whose uniqueness is asserted by The-
orem 4.5, that is, it is either the principle operation or a superposition of the
form ŒŒŒŒ ��; ��. There then exists one more superposition ŒŒŒŒx2; x3; x4��; x1��, which
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should be linearly expressed in terms of the solutions that we have found.
Consequently, using the fact that the bilinear (4.26) and trilinear (4.31) operations
are symmetric, we arrive at an analog of the Jacobi identity

3X

kD0
�k�

k.ŒŒŒŒx1; x2; x3��; x4��/ D 0; (4.51)

where � D .1234/ is a cyclic permutation, the coefficients �k are uniquely
determined up to multiplication by a common scalar, and all values of the
principle operation are assumed determined.

If fp14g D fp13g D fp43g D 0, then the second pair of equations disappears,
and instead of ŒŒŒŒx1; x3; x4��0; x2��, there appear two operations: ŒŒŒŒŒŒx1 ; x3��x4; ��x2��
and ŒŒŒŒŒŒx1 ; x4��x3; ��x2��.

3. Three three-element subsets are conforming. Condition (4.38) then implies that
the fourth subset is also conforming.

4. Exactly two three-element subsets are conforming. To be specific, let

fp12p14p24g D fp13p14p34g D 0; fp12p23p13g ¤ 0; fp23p24p34g ¤ 0:

Because condition (4.39) for i D 2; j D 3 fails and the two triples involved
are not conforming, we have fp23g D 0. If we write (4.38) in the form
fp12p14p24p13p23p43g D 0, by formulas (4.36) and (4.37), we obtain 0 D
fp13p23p43g D p23fp13p43g, and similarly 0 D fp12p32p42g D p32fp12p42g. In
other words, fp13p43g D fp12p42g D fp23g D 0, and again condition (4.38)
yields fp14g D 0. In the matrix of (4.43), in particular, the last two columns
will disappear, whereas the minor corresponding to the first four columns and
last four rows equals �p214fp24p34g2fp13gfp12g: Here fp24p34g ¤ 0 due to
0 ¤ fp23p24p34g D p23fp24p34g:

Now if fp13gfp12g ¤ 0, then the whole system has rank 4 and its solutions
are determined by arbitrary values of ˇ.24/ and ˇ.243/, that is, we obtain two
operations:

ŒŒŒŒŒŒx1 ; x4��x3; ��x2��I ŒŒŒŒŒŒx1 ; x4��x2; ��x3��; (4.52)

in terms of which all other operations defined in the present case are expressible:

ŒŒŒŒx1; x2; x4��
0; x3��; ŒŒŒŒx1; x3; x4��0; x2��; ŒŒx1; ŒŒx2; x3��; x4��; ŒŒŒŒx1; x4��; x2; x3��0:

If fp13gfp12g D 0, in view of the initial conditions being symmetric under
the permutation 2 $ 3, it suffices to consider the case fp13g D 0. We have
fp12p24g D fp13g D fp14g D fp23g D fp34g D 0, fp12g ¤ 0, fp24g ¤ 0

(if not all pairs are conforming). And we face only one additional solution
ŒŒŒŒŒŒx1 ; x3��x4; ��x2�� because the minor corresponding to the first, fourth, and sixth
rows and to the first, second, and fourth columns is fp12gfp12p32gfp14p24p34g D
fp12g2fp24gp32p14p34 ¤ 0:
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5. Only one three-element subset is conforming. Let it be x2; x3; x4. Then the failure
of conditions (4.39) for i D 1; j D 2I for i D 1; j D 3I and for i D 1; j D 4

implies that fp12g D fp13g D fp14g D 0. In this case fp34g ¤ 0, otherwise
the triple x1; x3; x4 would be conforming. Similarly, fp24g ¤ 0 and fp23g ¤ 0.
These imply fp23p24g ¤ 0, fp23p34g ¤ 0, and fp24p34g ¤ 0: Indeed, for instance,
equality fp23p24g D 0, combined with fp1ig D 0, i D 2; 3; 4, and (4.38), yields
fp34g D 0.

Under these conditions, the system splits into three pairs of rank 1 equations:
.23/, .243/; id, .24/; .234/, .34/. The first pair agrees with the operation

ŒŒŒŒx1; x2��; x3; x4��;

and the two other operations result from it by permutations of indices (23) and
(24). All other superpositions defined in the present case are linearly expressed
via these three. Specifically, we have an identity of the form

ŒŒx1; ŒŒx2; x3; x4���� D �1ŒŒŒŒx1; x2��; x3; x4��C �2ŒŒx2; ŒŒx1; x3��; x4��C �3ŒŒx2; x3; ŒŒx1; x4����:

6. No one of the three-element subsets is conforming. Then two-element subsets
cannot all be conforming; therefore, one of the six conditions (4.39) is satisfied.

ut
Under conditions (4.38) and (4.39) for i D 1; j D 4; the principle quadrilinear

operation is defined by

ŒŒa1; a2; a3; a4�� D
X

�2S14

ˇ� ŒŒŒa1; a�.2/�; a�.3/�; a�.4/�; (4.53)

where ai are skew-primitive semi-invariants, pij D 
ai.gaj/, and the coefficients ˇ�
are given as in (4.49).

If no proper subset of the set x1; x2; x3; x4 is conforming, then six con-
ditions (4.39) are satisfied. Therefore, all possible 24 permutation variants
ŒŒx�.1/; x�.2/; x�.3/; x�.4/��, � 2 S4, are determined, and by Theorem 4.6, they all
are expressible via any pair of them. In order to find that representation, we write
the principle operation in the form

ŒŒx1; x2; x3; x4�� D
X

˛�x�.1/x�.2/x�.3/x�.4/; (4.54)

where ˛� are particular rational functions in pij, obtained by expanding the skew
commutators in definition (4.53). We have already mentioned that ˛id D 1 and
˛.23/ D 0. Given an arbitrary replacement xi  x�.i/, � 2 S4, we obtain

ŒŒx�.1/; x�.2/; x�.3/; x�.4/�� D
X

.˛�/
�x�.�.1//x�.�.2//x�.�.3//x�.�.4//:
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On the right-hand side of the latter equality, the coefficient at x1x2x3x4 equals ˛�
��1

and the one at x1x3x2x4 equals ˛�
.23/��1 . Therefore, we have a formula that replaces

the twisted symmetry in (4.31):

ŒŒx�.1/; x�.2/; x�.3/; x�.4/�� D ˛���1 ŒŒx1; x2; x3; x4��C ˛�.23/��1 ŒŒx1; x3; x2; x4��: (4.55)

4.5 Chapter Notes

Linearization is a process commonly used in modern algebra, see, for example,
[210], [236, I, § 5]. The Friedrichs criterion for Lie algebras was discovered in [80]
and then proven in three versions by Cohn [51], Lyndon [155], and Magnus [157]. D.
Finkelshtein published his criterion in [75]. The Specht–Wever condition, the form
with which we begin, appears in N. Jacobson’s book [104, Chap. V, Theorem 8].

A generalization of Lie algebras known as n-Lie algebras, with n-linear opera-
tions in place of the Lie brackets first appeared in a paper by Filippov [74], and
subsequently appeared under the name Nambu–Lie algebras in theoretical research
on generalizations of Nambu mechanics by Takhtadjian [223], Dito et al. [63].
Trilinear operation has been considered by Nambu [180], and in numerous papers
on generalization of quantum mechanics, see, for example, research on a trilinear
oscillator, or on a multilinear commutator by Yamaleev [231–233].

Another group of problems requiring the generalization of Lie algebras corre-
sponds to research on skew derivations of noncommutative algebras. A noncommu-
tative version of the fundamental Dedekind algebraic independence lemma states
that the algebraic structure of a Lie algebra and operators with “inner” action define
all algebraic dependencies in ordinary derivations (see [121, 122, Chap. 2]). This
result was extended to the field of skew derivations by Chuang [49]. His fundamental
theorem may be interpreted in the same manner, i.e., the algebraic structure and
operators with “inner” action define all algebraic dependences in skew derivations.
Hence, the following question arises: which algebraic structure corresponds to
the skew derivation operators? This question requires the consideration of n-ary
operations that do note reduce to bilinear operations.

According to the Friedrichs criterion, Lie polynomials are characterized as
primitive elements of free associative algebra. In these terms, the logical idea to
consider spaces spanned by skew-primitive (or primitive, in the case of braided cat-
egories) elements was discussed by Larson and Towber [145], and Majid [158, 160].
However, Pareigis in [183–185] first regarded specific skew-primitive polynomials
as operations, now known as Pareigis operations, similar to how we are regarding
them in this book. Nonetheless, one should remember that multivariable operations
are the subject of investigation in the theory of algebraic systems located at the
interface between algebra and mathematical logic, the theory of algorithms and
computer calculations. See the books by Maltcev [164, 165]. The results presented
in this chapter are based on [123, 127].



Chapter 5
Multilinear Operations

Abstract In this chapter, we consider multilinear quantum Lie operations involving
more than four variables. Our main goal is to find a necessary and sufficient
existence condition to determine the number of linearly independent operations that
may exist and to define the principle n-linear operation. Additionally, we discuss
symmetric operations, i.e., operations that do not change their values in the context
of permutations of variables (up to a scalar factor). We also demonstrate that there
are .n � 2/Š symmetric generic quantum Lie operations.

In this chapter, we consider multilinear quantum Lie operations involving more
than four variables. Our main goal is to find a necessary and sufficient existence
condition to determine the number of linearly independent operations that may exist
and to define the principle n-linear operation. Additionally, we discuss symmetric
operations, i.e., operations that do not change their values in the context of
permutations of variables (up to a scalar factor). We also demonstrate that there
are .n � 2/Š symmetric generic quantum Lie operations.

5.1 The Basic System of Equations

We are remanded main concepts and notations. A quantum variable is a variable x,
with which an element gx of a fixed Abelian group G and a character 
x W G !
k� are associated, where k is a ground field. A quantum operation in quantum
variables x1; : : : ; xn is a non-commutative polynomial in these variables that has
skew-primitive values in every Hopf algebra H, provided H contains the group G as
a subgroup of the set of all group-like elements and every variable xi has a skew-
primitive value ai 2 H such that

.ai/ D ai ˝ 1C gxi ˝ ai; g�1aig D 
xi.g/ai

for all g 2 G.
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152 5 Multilinear Operations

Definition 5.1 A set of quantum variables x1; x2; : : : ; xn is said to be conforming if

Y

1�i¤s�n


xi.gxs/ D 1: (5.1)

We are going to prove that there exists a nonzero multilinear quantum operation in
a set of quantum variables x1; : : : ; xn if and only if this set is conforming. Also we
will show that if the set x1; : : : ; xn has not many conforming subsets (the intersection
of all conforming subsets is nonempty) then the dimension of the space of all
multilinear operations equals .n � 2/Š.

Theorem 4.1 gives a way to construct all multilinear quantum operations by
means of an investigation of linear dependencies of the following polynomials

D�
dfD �.Œ: : : ŒŒx1; x2�; x3�; : : : ; xn�/ � �.Œ: : : ŒŒx1; x2��; x3�� : : : ; xn�

�/

in a free associative algebra. Recall that here � is a permutation of the indices,
�.1/ D 1; an application of � to an expression of the above formula means its
application to all indices of pis and xi. For every linear dependence

P
ˇ�D� D 0

there exists an operation

W.x1; : : : ; xn/ D
X

�2Sn; �.1/D1
ˇ�DC

� ; (5.2)

where

DC
� D Œ: : : ŒŒx1; x2�; x3�; : : : xn�

� :

Conversely, every multilinear quantum operation has a representation (5.2) where
the coefficients ˇ� define a linear dependence of D� .

We fix a set of different quantum variables x1; : : : ; xn and the following notations

pis D 
xi .gxs/I qk D
k�1Y

iD1
pik: (5.3)

Let Sn denotes the permutation group of the set f1; 2; : : : ; ng, whereas Sl;m;:::;r
n is a

subgroup f� 2 Sn j �.l/ D l; �.m/ D m; : : : ; �.r/ D rg. If m < n, then we identify
the group Sm with SmC1;mC2;:::;n

n . We use both exponential and functional notations
for the action of Sn on the set of indices. We consider exponential notation as the
basic one; that is, we assume i.��/ D .i�/� D �.�.i//. In this case, permutations
are multiplied from the left to the right. For two arbitrary indices m; k, the symbol
ŒmI k� denotes a monotonous cycle starting with m up to k

ŒmI k� dfD
�
.m;mC 1; : : : ; k/; if m � k
.m;m � 1; : : : ; k/; if m � k:
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Clearly ŒmI k��1 D ŒkIm� in these notations.
If A is an arbitrary expression and � is a permutation, then by �.A/ or A� , we

infer an expression which appears from A applying � to all indices of pis and xi.
For example, p�is D p�.i/�.s/ or q�k D

Qk�1
iD1 p�.i/�.k/, but not q�k D q�.k/. We do not

suppose that the group Sn acts on the ground field k. For instance, it is possible that
p12 D p23 while p.123/12 ¤ p.123/23 in the ground field k. According to this agreements
an arbitrary multilinear polynomial can be written in the following form:

W.x1; : : : ; xn/ D
X

�2Sn

˛��.x1 � � � xn/:

For a given word A D pitpkl � � � prs, we define

fAg D pitpkl � � � prs � p�1
ti p�1

lk � � � p�1
sr : (5.4)

If A;B are two words in pis, then we define a star product of braces

fAg ? fBg D fABg:

Let t��;s denotes an element of k defined by the following formula

t��;s D f�.q��1.2//�.q��1.3// � � ��.q��1.s//g�; �; � 2 Sn; 1 < s < n: (5.5)

In what follows, N1.s/ denotes the set of all inverse s-shuffles from S1n. According
to Definition 1.7, an element � belongs to N1.s/ if and only if

�.1/ D 1I ��1.2/ < ��1.3/ < : : : < ��1.s/I ��1.sC 1/ < : : : < ��1.n/;

(5.6)

whereas Lemma 1.16 implies that

N1.s/ D fŒ2I k2�Œ3I k3� � � � ŒsI ks� j 1 < k2 < k3 < : : : < ks � ng; (5.7)

in which case ki D ��1.i/, 2 � i � s.

Theorem 5.1 If
Q

i¤t pit D 1, then
P
ˇ�D� D 0 holds if and only if

X

�2N1.s/

ˇ��t��;s D 0 (5.8)

for all �; s; � 2 S1n, 1 < s < n, where t��;s are defined by (5.5).

Proof Let us consider a process of developing of brackets Œu; v� D uv� p.u; v/ � vu
from the left to right in DC

id D Œ: : : ŒŒx1; x2�; x3�; : : : ; xn�. We obtain that the element
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DC
id is a linear combination of the monomials Mk;m D xk1xk2 � � � xkt x1xm1xm2 � � � xmn�t ,

where

k1 > k2 > : : : > kt and m1 < m2 < : : : < mn�t: (5.9)

Respectively, DC
� D �.Did/ is a linear combination of the monomials

Mk;m;� D x�.k1/x�.k2/ � � � x�.kt/x1x�.m1/x�.m2/ � � � x�.mn�t/;

where the sequences k and m satisfy (5.9).
Consider a coefficient at Ms D xsxs�1 � � � x1xsC1xsC2 � � � xn in the sum

P
ˇ�D� .

The monomial Ms equals Mk;m;� only if t D s and k�1 D s, k�2 D s� 1, : : : ; k�s D 2,
m�
1 D s C 1, : : :, m�

n�s D n. Because the sequences k, m satisfy (5.9), we have
� 2 N1.s/, see (5.6). In this case Ms appears in the decomposition of the long skew
commutator DC

� in the only case when x2; x3; : : : ; xs are moving to the left with
respect to x1 and xsC1; xsC2; : : : ; xn are moving to the right with respect to x1. By
the formula Œu; xm� D uxm � p.u; xm/xmu we see that the coefficient at Ms equals

.��.q��1.2/// � .��.q��1.3/// � : : : � .��.q��1.s///: (5.10)

Here (5.10) equals the word in braces of t�;s up to the sign, see (5.5).
Analogously, consider M�;s D x�.s/x�.s�1/ � � � x1x�.sC1/x�.sC2/ � � � x�.n/, where

� 2 S1n. This monomial appears in DC
� only if t D s, and k�1 D s�, k�2 D .s � 1/�,

: : : ; k�s D 2�, m�
1 D .sC 1/�, : : :, m�

n�s D n�. We have that ���1 belongs N1.s/,
and the coefficient at M�;s equals the product in braces of t�

���1;s
within the factor

.�1/s�1.
Thus, in the decomposition of

P
ˇ�D� the coefficient at M�;s equals

.�1/s�1
X

���12N1.s/

ˇ� t�
���1;s

:

If we replace the notation ���1  � , we will obtain relations (5.8). ut
Consider (5.8) as a system of linear equations in ˇ� . To find a basis of the linear

space of multilinear operations, it suffices to find a fundamental system of solutions
for (5.8). As all the coefficients t��;s belong the ring ZŒ pij�, there exists a fundamental
system of solutions in the ring ZŒpij�. Thus we can confine ourself to an investigation
of solutions in the ring ZŒpij� or in the field F.pij/ if it is necessary to normalize one
of the coefficients of a quantum operation. Here F is the minimal subfield of k.

Definition 5.2 The system (5.8) is said to be the basic system. Its subsystem
corresponding to a fixed number s is called an s-component.
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5.2 Interpretation of Operations in a Crossed Product

Consider a multiplicative Abelian group Fn freely generated by the symbols Pit,
1 � i ¤ t � n. Let FŒFn� be a group algebra of this group over the minimal
subfield F of the ground field k. In other words, FŒFn� is an algebra of commutative
polynomials in variables Pit;P�1

it 1 � i ¤ t � n with coefficients from the minimal
field F. Clearly, FŒFn� has a field of fractions that is isomorphic to the field of
rational functions F.Pit/. The action of the symmetric group Sn is well-defined on
the ring FŒFn� and on the field F.Pit/ by P�it D P�.i/�.t/. Thus, we can define a skew
group ring F.Pit/ � Sn. By Theorem 1.12 this skew group ring is isomorphic to the
algebra of all nŠ
nŠmatrices over the Galois field F.Pit/

Sn , and it contains the skew
group ring FŒFn� � Sn. Recall that in a skew group ring, the permutations commute
with coefficients according to the formula A� D �A� , see Sect. 1.3.3.

If the parameters pit; 1 � i ¤ t � n are defined by the quantum variables
x1; : : : ; xn according to (5.3) then there exists a homomorphism

' W FŒFn�! k; '.Pit/ D pit; 1 � i ¤ t � n: (5.11)

If A 2 Fn, then A denotes a word appearing from A by replacing of all letters Pit

with Pti. We call the words A and A conjugated. We define

fAg D A � A
�1
:

This definition is compatible with (5.4) in the sense that '.fAg/ D f'.A/g if A is a
word of Fn. In the same way, the formula '.A�/ D .'.A//� is valid if we assume
that '.A/ appears from A by replacing Pit with pit.

If A; B are words of Fn (possibly empty) then we set

fAg ? fBg D fABg:

Note that f;g D 0 if as usual the empty word is identified with 1. At the same time
the element f;g ? fAg D fAg can be nonzero.

If C;D;E 2 Fn, then by Lemma 4.2 the following equality is valid

fCEgfDEg � fCgfDg D fCDEgfEg: (5.12)

Lemma 5.1 The relation (5.1) is equivalent to each one of the relations fWg D 0,
where W is an arbitrary word in pit; 1 � i ¤ t � n of length C2

n D n.n� 1/=2 that
has neither double nor conjugated letters.

Proof The equality fWg D 0 is equivalent to WW D 1. The word WW is of the
length n.n � 1/, and it has no double letters. Thus, it has all of the letters pit; 1 �
i ¤ t � n, whereas WW coincides with the left-hand side of (5.1) up to an order of
factors. ut
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We fix the following notations: Qk D Qk�1
iD1 Pik and

T�;s D f�.Q��1.2//�.Q��1.3// � � ��.Q��1.s//g; � 2 S1n; s > 1: (5.13)

In this case, we have q�k D '.Q�
k / and t��;s D '.T��;s/, � 2 Sn, see (5.3) and (5.5).

Lemma 5.2 Let � 2 N1.s/. If 2 � k � s, then

�.Q��1.k// D P1kP2k : : :Pk�1 k � PsC1 kPsC2 k : : :PsCl k; (5.14)

where l D ��1.k/ � k � 0. If l D 0, the second factor of (5.14) is absent.

Proof By the definition �.Q��1.k// is equal to a word

P1kP�.2/ k : : :P�.��1.k/�1/ k:

This word, as well as the right hand side of (5.14), is of a length ��1.k/ � 1. By
the first chain of inequalities (5.6), the inequality ��1.i/ � ��1.k/ � 1 is valid
for i < k. This means that the sequence �.2/; �.3/; : : : ; �.��1.k/ � 1/ contains
all of the indices 2; 3; : : : ; k � 1. Hence, �.Q��1.k// has the first factor of (5.14).
Because ��1.i/ > ��1.k/ � 1 for k � i � s, we see that among the indices
�.2/; �.3/; : : : ; �.��1.k/� 1/ there is no one of the numbers k; kC 1; : : : ; s. Fur-
thermore, if in the sequence 2; 3; : : : ; n we cross out ��1.2/; ��1.3/; : : : ; ��1.s/,
then the elements ��1.s C 1/; ��1.s C 2/; : : : ; ��1.n/ remain in the sequence.
By the second chain of (5.6), these elements are arranged in the sequence in
this very order. It follows that if in the sequence 2; 3; : : : ; ��1.k/ � 1 we cross
out ��1.2/; ��1.3/; : : : ; ��1.k � 1/, then the elements ��1.s C 1/; ��1.s C
2/; : : : ; ��1.sC l/ remain in the sequence. Therefore, �.Q��1.k// has the second
factor of (5.14) as well. ut

Let us fix the following notations for particular elements of FŒFn� � S1n:

Vs D
X

�2N1.s/

�T�;s ; (5.15)

where T�;s are defined by (5.13). By Lemma 5.2 and decomposition (5.7), we have

Vs D
X

1<k2<k3<:::<ks�n

Œ2I k2�Œ3I k3�Œ4I k4� � � � ŒsI ks�Tk2Wk3W:::Wks ;

where

T�;s D Tk2Wk3W:::Wks D f
sY

mD2
.P1 m � � �Pm�1 m � PsC1 m � � �Ps�mCkm m/g: (5.16)
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In particular, if s D 2; k2 D l, then

TŒ2Il�;2 D Tl D fP12 � P32 : : :Pl 2g; TŒ2I2�;2 D T2 D fP12g:

If a permutation � is written as a product of cycles (5.7), then the parameter s is
uniquely defined by both the number of factors and the beginning of the last cycle.
This fact allows us to use the notation T� instead of T�;s.

For an arbitrary sequence of elements ˇ� 2 FŒpit�, � 2 S1n, let B denotes an
element of FŒFn� � S1n defined by the formula

B D
X

�2S1n

B��
�1 2 FŒFn� � S1n;

where B� are some preimages of ˇ� in FŒFn� with respect to '.
In this way every quantum Lie operation

P
ˇ�DC

� , ˇ� 2 FŒpit� is related to an
element B of the skew group algebra.

Theorem 5.2 If
Q

i¤t pit D 1, then an element B 2 FŒFn� � S1n corresponds to a
multilinear quantum Lie operation if and only if

B � Vs 2 ker.'/S1n; 2 � s < n; (5.17)

where Vs are defined by (5.15).

Proof By Theorem 4.1, we have to prove that a sequence ˇ� 2 FŒpit�, � 2 S1n is
a solution of the basic system if and only if the element B satisfies (5.17). Let us
rewrite the left-hand sides of these relations.

B � Vs D
X

�2S1n

B��
�1 �

X

�2N1.s/

�T�;s D
X

�2S1n;�2N1.s/

B��
�1�T�;s

D
X

B�T�
�1�
�;s ��1� D

X

�2S1n

.
X

�2N1.s/

B��T��;s/�
�1:

The latter sum belongs to ker.'/S1n if and only if all of its coefficients belong to
ker.'/. Since '.T��;s/ D t��;s, it follows that (5.17) is equivalent to (5.8). ut

Let ˙ be an arbitrary multiplicative subset of FŒFn� that does not intersect
ker.'/. Consider a localization (a ring of quotients)˙�1FŒFn�. The homomorphism
' has a unique extension up to a homomorphism of ˙�1FŒFn� into the field F.pit/

via

'.��1B/ D '.�/�1'.B/; � 2 ˙; B 2 FŒFn�: (5.18)

This allows one to normalize elements corresponding to the quantum Lie operations.
For these reasons the following variant of the above theorem is useful.
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Theorem 5.3 If
Q

i¤t pit D 1, then an element B D P
�2S1n

B���1; B� 2
˙�1FŒFn� defines a quantum Lie operation

P
�2S1n

'.B�/DC
� if and only if

B � Vs 2 .˙�1 ker.'//S1n; 2 � s < n: (5.19)

Proof It suffices to multiply B by a common denominator � 2 ˙ of all coefficients
and to apply Theorem 5.2. ut

The set ker.'/S1n is a right ideal and a left FŒFn� submodule of FŒFn� � S1n.
Inclusions (5.17) signify that B � Vs equal zero in the quotient .FŒFn�;FŒFn� � S1n/-
bimodule FŒFn��S1n= ker.'/S1n. In what follows, the symbol� denotes the equality
in quotient .FŒFn�;FŒFn� � S1n/-bimodules. This equality is stable with respect to
the right multiplications by elements from FŒFn� � S1n and with respect to the left
multiplications by elements from FŒFn�. Of course, if ker.'/ is not invariant with
respect to the action of S1n, then � is not stable with respect to left multiplications
by S1n.

Similarly, (5.19) are equalities to zero in the .˙�1FŒFn�;FŒFn� � S1n/-bimodule

.˙�1FŒFn�/S
1
n=.˙

�1 ker.'//S1n:

This bimodule contains the former one because

.˙�1 ker.'//S1n \ FŒFn� � S1n D ker.'/S1n:

Hence, it is possible to use the same sign� in both cases.

Definition 5.3 A conforming ideal is an ideal I of the algebra FŒFn� generated by
all elements of the form fWg, where W is an arbitrary (semigroup) word in Pit; 1 �
i ¤ t � n of length C2

n D n.n� 1/=2 that has neither double nor conjugated letters.

By Lemma 5.1, the variables x1; : : : ; xn are conforming if and only if the ideal ker.'/
contains the conforming ideal. It is very important to note that the conforming ideal
I is invariant with respect to the action of the symmetric group Sn (unlike the ideal
ker.'/ itself). Therefore a two-sided ideal of FŒFn� � Sn generated by I coincides
the right ideal ISn.

5.3 Co-set Decomposition

The set of transpositions f.2; n/, .3; n/, : : : ; .n � 1; n/g is a right transversal of the
subgroup S1;nn D S1n�1 in S1n. Indeed, if � 2 S1n, then � � .�.n/; n/ 2 S1;nn , and
whence � 2 S1;nn .�.n/; n/. This implies that every element B 2 FŒFn� � S1n has a
decomposition

B D A2 � .2; n/CA3 � .3; n/C : : :CAn�1 � .n � 1; n/CAn � id; (5.20)
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where Ai 2P � S1;nn .
According to decomposition (5.7) a permutation � belongs to N1.2/ if and only

if � D Œ2I l�; 2 � l � n. Using commutation rule

.l;m; : : : ; r/� D �.l� ;m� ; : : : ; r�/; (5.21)

we obtain

B � V2 D
nX

iD2
Ai.i; n/ �

X

�2N1.2/

�T�

D
nX

iD2

n�1X

lD2
Ai.i; n/Œ2I l�TŒ2Il� C

nX

iD2
Ai.i; n/Œ2I n�TŒ2In�

D
nX

iD2

n�1X

lD2
AiŒ2I l�.iŒ2Il�; n/TŒ2Il� C

nX

iD2
Ai.i; n/Œ2I n�TŒ2In�:

Let �k; 2 � k � n be the permutation .kŒnI2�; n/Œ2I n�.k; n/; that is,

�k D
�
Œ2I k � 1�ŒkI n � 1�; if 2 < k < n;
Œ2I n � 1�; if k D n; 2:

(5.22)

In this case .kŒnI2�; n/Œ2I n� D �k.k; n/. Therefore

B � V2 D
nX

kD2
.

n�1X

lD2
AŒlI2�.k/Œ2I l�T.k;n/Œ2Il� CAŒnI2�.k/ �kT.k;n/Œ2In� /.k; n/: (5.23)

In particular, the inclusion (5.17) with s D 2 is equivalent to the following system
of n � 2 equalities in the quotient bimodule FŒFn� � S1;nn = ker.'/S1n:

n�1X

lD2
AŒlI2�.k/Œ2I l�T.k;n/Œ2Il� CAŒnI2�.k/�kT.k;n/Œ2In� � 0; 2 � k � n:

If 3 � k � n, then the above equality corresponding to k has the form

Ak

k�1X

lD2
Œ2I l�T.k;n/Œ2Il� CAk�1.�kT.k;n/Œ2In� C

n�1X

lDk

Œ2I l�T.k;n/Œ2Il� / � 0: (5.24)

For k D 2, we have the equality

D2
dfDAnŒ2I n � 1�T.2;n/Œ2In� C

n�1X

lD2
AlŒ2I l�T.2;n/Œ2Il� � 0: (5.25)
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Let us introduce the following notations:

V.k/ D
k�1X

lD2
Œ2I l�T.k;n/Œ2Il� D id fP12g C

k�1X

lD3
Œ2I l�fP12P32 : : :Pl 2g; 3 � k � n; (5.26)

D.k/ D �kT.k;n/Œ2In� C
n�1X

lDk

Œ2I l�T.k;n/Œ2Il� ; 3 � k � n: (5.27)

In this case, (5.23) take up the form

B � V2 D D2.2; n/C
nX

kD3
.AkV.k/ CAk�1D.k//.k; n/ (5.28)

whereas the relations (5.24) with 3 � k � n reduce to

AkV.k/ CAk�1D.k/ � 0; 3 � k � n: (5.29)

In particular, the following statement is proven.

Lemma 5.3 The element (5.20) corresponds to a solution of the second component
of the basic system if and only if the equalities (5.29) and (5.25) are valid.

Proposition 5.1 Let ˙ be a multiplicative S1;nn -invariant subset of FŒFn� that does
not intersect ker .'/. If V.3/; V.4/; : : :, V.n/ are invertible in ˙�1FŒFn� � S1;nn , then
the dimension of the space of multilinear operations is less than or equal to .n�2/Š.

Proof Let the element B D P
B���1 corresponds to a quantum Lie operation,

'.B�/ D ˇ� . Then B � V2 � 0. Consider the decomposition (5.20) of B.
Relation (5.29) imply

B � A2

nX

kD2
.�1/k.

kY

iD3
D.i/V

�1
.i/ /.k; n/:

Thus, the superposition

f 7! B 7! A2

'! F.pit/S
1;n
n

is a linear transformation with zero kernel of the space of multilinear quantum Lie
operations into the space of left linear combinations

P
�2S1;nn

˛�� over F.pit/. In

other words, the element B is uniquely defined by A2 2 S1;nn up to the relation �.
Therefore the dimension is less than or equal to the order of S1;nn . ut
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5.4 Subordinate Sequences

In this section we are going to prove a number of auxiliary results which allows one
to harmonize some special elements of the skew group algebra.

Consider a sequence of integer numbers L D .li; j u � i � v/, where u; v are
some integer numbers, u � v.

Definition 5.4 For arbitrary indices k; r; u � k; r � v, let �.k/k D lk, �.r/r D lr C 1.

Furthermore, define by induction �.j/k , j � k and �.j/r , j � k:

�
.j�1/
k D

(
�
.j/
k � 1; if �.j/k � lj�1;
�
.j/
k ; if �.j/k > lj�1I

(5.30)

�.jC1/r D
(
�
.j/
r C 1; if �.j/r � ljC1;
�
.j/
r ; if �.j/r > ljC1:

(5.31)

The sequence L0 D .l0j; u � 1 � j � v � 1/ defined by the following formula

l0j�1 D

8
<̂

:̂

lj�1 � 1; if �.j/v � lj�1; j > u;
lj�1; if �.j/v > lj�1; j > u;

�
.u/
v � 1; if j D u;

(5.32)

is called a subordinate sequence for L.
In the same way the sequence L� D .l�j ; uC 1 � j � v C 1/ is called inceptive

sequence for L if it is defined as follows:

l�jC1 D

8
<̂

:̂

ljC1 C 1; if �.j/u � ljC1; j < v;

ljC1; if �.j/u > ljC1; j < v;
�
.v/
u ; if j D v:

(5.33)

Definition 5.5 We say that at the point m, m > r, there is a jump during a motion of
lr to the right if �.m�1/

r � lm. Analogously we say that at the point m, m < k, there
is a jump during a motion of lk to the left if �.mC1/

k � lm.
The elements � and � with indices are called right and left heads respectively;

that is, the right head traverses from the right to the left (with lk) and the left one
traverses from the left to the right (with lr). In parentheses, if necessary, we write
the name of the initial sequence: �.j/k D �.j/k .L/, �

.j/
k D �.j/k .L/.

Lemma 5.4 For each sequence L, we have L0 � D L D L� 0. For all j; u � j � v,
the following heads relations are valid:

�.j/v .L/ D �.j�1/u�1 .L
0/; (5.34)

�
.jC1/
vC1 .L

�/ D �.j/u .L/: (5.35)
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Proof If j D u, then (5.34) has the form �
.u/
v .L/ D l0u�1C1. By the definition (5.32),

this equality is valid. We proceed by induction on j. Let (5.34) be valid for a given
j, u � j < v. Consider two cases.

If �.jC1/v .L/ > lj, then l0j D lj and �.j/v .L/ D �
.jC1/
v .L/. Hence, �.j�1/.u�1/.L0/ > l0j.

By (5.33) and (5.31) this implies .l0j/? D l0j D lj and �.j/u�1.L0/ D �
.j�1/
u�1 .L0/; that is,

(5.34) remains valid for jC 1.
If �.jC1/v .L/ � lj, then l0j D lj � 1 and �.j/v .L/ D �

.jC1/
v .L/ � 1. Using (5.34) for

the given j, we have �.j�1/.u�1/.L0/ D �
.jC1/
v .L/ � 1 � lj � 1 D l0j. Definitions (5.33)

and (5.31) again imply .l0j/� D l0j C 1 D lj and �.j/u�1.L0/ D �.j�1/u�1 .L0/C 1; that is, in
this case (5.34) remains valid for jC 1 as well. This completes the proof of (5.34).

To prove (5.35), we shall use the downward induction on j. If j D v, then (5.35)
is valid by the definitions. Let (5.35) be valid for a given j. Consider two cases.

If �.j�1/u .L/ > lj, then l�j D lj and �.j/u .L/ D �
.j�1/
u .L/. By (5.35) for the given

j, we have �.jC1/vC1 .L�/ > lj D l�j ; that is, by (5.32) we obtain .l�j /0 D lj, whereas

by (5.30) we have �.j/vC1.L�/ D �.jC1/vC1 .L�/. Thus (5.35) remains valid for j � 1.

If �.j�1/u .L/ � lj, then l�j D lj C 1 and �.j/u .L/ D �.j�1/u .L/C 1. By (5.35) for the

given j, we have �.jC1/vC1 .L�/ D �
.j/
u .L/ D �

.j�1/
u .L/ C 1 � lj C 1 D l�j . From here

by (5.32) we obtain .l�j /0 D l�j � 1 D lj, whereas by the definition (5.30) we have

�
.j/
vC1.L�/ D �.jC1/vC1 .L�/� 1; that is, the equality (5.35) remains valid for j� 1. ut

Lemma 5.5 At the point m there is a jump during a motion of lr to the right if and
only if at the point r there is no jump during a motion of lm to the left.

Proof Suppose that at the point m there is a jump during a motion of lr to the right;
that is, �.m�1/

r � lm or, equivalently, �.m�1/
r � �.m/m . Using the latter inequality as a

basis of induction on d, let us prove that

�.m�d/
r � �.m�dC1/

m ; where 1 � d � m � r: (5.36)

If �.m�d/
r < �

.m�dC1/
m , then �.m�d�1/

r � �.m�d/
r � �.m�dC1/

m � 1 � �.m�d/
m .

Therefore, suppose that �.m�d/
r D �.m�dC1/

m .
If �.m�dC1/

m > lm�d, then �.m�d/
m D �.m�dC1/

m D �.m�d/
r � �.m�d�1/

r .
If �.m�dC1/

m � lm�d, then �.m�d/
m D �

.m�dC1/
m � 1. In this case, the equality

�
.m�d/
r D �

.m�d�1/
r can not be valid, because this equality requires that �.m�d�1/

r >

lm�d, implying that �.m�d/
r > lm�d, which contradicts �.m�d/

r D �.m�dC1/
m .

Thus, �.m�d�1/
r D �.m�d/

r � 1, and the equality of the heads � and � is still valid.
This completes the proof of (5.36).

Now, if d D m� r, then (5.36) has the form �
.r/
r � �.rC1/

m ; that is, lrC1 � �.rC1/
m

or, equivalently, lr < �
.rC1/
m . The latter inequality means that at the point r there is

no jump during a motion of lm to the left.
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Conversely, let lr < �
.rC1/
m . Then �.r/r � �

.rC1/
m . We shall use this relation as a

beginning of the downward induction on d, to prove the following inequality

�.m�d/
r � �.m�dC1/

m ; m � r � d � 1: (5.37)

If �.m�d/
r < �

.m�dC1/
m , then �.m�dC1/

r � �.m�d/
r C 1 < �.m�dC1/

m C 1 � �.m�dC2/
m .

Therefore, it suffices to consider the case �.m�d/
r D �.m�dC1/

m .
If �.m�d/

r > lm�dC1, then �.m�dC1/
r D �.m�d/

r D �.m�dC1/
m � �.m�dC2/

m .
If �.m�d/

r � lm�dC1, then �.m�dC1/
r D �

.m�d/
r C 1. In this case, the equality

�
.m�dC1/
m D �

.m�dC2/
m is not valid, because it requires that �.m�dC2/

m > lm�dC1,
implying that �.m�dC1/

m > lm�dC1, which contradicts �.m�d/
r D �

.m�dC1/
m . Thus

�
.m�dC2/
m D �

.m�dC1/
m C 1, and the equality of heads is still valid. This completes

the proof of (5.37).
If d D 1, we have �.m�1/

r � �
.m/
m D lm; that is, at the point m there is a jump

during a motion of lr to the right. ut
Definition 5.6 Denote by U .s; t/ with t � s � 3 a set of all sequences of integer
numbers .l2; : : : ; ls; : : : ; lt/ that satisfy the following conditions:

n � 2 � l2 � : : : � ls � s � 2I n � 2 � lj � j � 2 for j > s: (5.38)

For t � s � 3, let W .s; t/ denotes a set of all sequences of integer numbers
.w1;w2; : : : ;wt/ that satisfy the following conditions

n � 3 � w1 � �1I n � 3 � w2 � : : : � ws � s � 2I n � 3 � wj � j � 2; j > s:

(5.39)

Lemma 5.6 If t > s, then the following equality is valid:

.U .s; t//0 D W .s; t � 1/:

Proof Let L D .l2; : : : ; lt/ 2 U .s; t/. Let us show that L0 2 W .s; t � 1/. Note that
for the head �t the following inequalities hold:

j � 2 � �.j/t .L/ � n � 2: (5.40)

Indeed, for j D t this arise from the definitions. When the parameter j come down,
by one step, the head �t can only come down, but also no more than by one step.
Therefore, (5.40) is saved.

In particular, (5.40) with j D 2 implies 0 � �.2/t � n � 2 and �1 � l01 � n � 3,

because l01 D �.2/t � 1.

If lj D n � 2, then lj � �.jC1/t ; hence l0j D n � 3. This means that in any case,
l0j � n � 3, because l0j � lj.
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Let j > s. If lj D j � 2, then by (5.40) we have �.jC1/t � j � 1 > lj; that is, by
definition (5.32) we obtain l0j D lj. If lj > j � 2, then l0j � lj � 1 � j � 2. Therefore,
the conditions (5.39) are valid, provided that wj D l0j and j > s.

If lk�1 > lk D lkC1 D : : : D ls D s � 2, then by inequality (5.40) we have
�
.sC1/
t � s � 1 > s� 2; hence l0k�1 � l0k D : : : D l0s D s � 2.

Furthermore, if 2 � j � s and the strict inequality lj > ljC1 is valid, then evidently
l0j � l0jC1, since any member of the subordinate sequence can only be less than the
corresponding member of the initial sequence but not by more than one. If lj D ljC1
and l0jC1 D ljC1, then �.jC1/t D �

.jC2/
t ; that is, l0j D lj D l0jC1. If lj D ljC1 and

l0jC1 D ljC1 � 1 then �.jC2/t � ljC1 and �.jC1/t D �
.jC2/
t � 1, from which �.jC1/t �

ljC1 � 1 D lj � 1, and, still, l0jC1 D l0j.
Thus the subordinate sequence satisfies all of the conditions (5.39). By

Lemma 5.4, different sequences have different subordinate ones. Therefore, it
suffices to show that the sets U .s; t/ and W .s; t � 1/ have the same number of
elements:

jU .s; t/j D Cs�1
n�1 �

tY

jDsC1
.n� jC 1/ D .n� 1/ � Cs�1

n�2 �
t�1Y

jDsC1
.n� j/ D jW .s; t � 1/j;

which can be easily verified by direct calculations. ut
Definition 5.7 Denote by L .i; t/ with 0 � t � i � n � 2 and 0 � t � i a set of all
sequences of integer numbers .l1; l2; : : : ; lt/, such that

1 � l1 � i; 2 � l2 � i; : : : ; t � lt � i: (5.41)

Note that the set L .i; 0/ contains only one sequence, the empty one. However,
L .i; 0/ is a nonempty set itself.

Let S .i; t/ denotes a set of all sequences of integer numbers .s0; s1; : : : ; st/,
which satisfy the following conditions

0 � s0 � i; 1 � s1 � i; : : : ; t � st � i: (5.42)

Lemma 5.7 For 1 � t � i � n � 2 the following equality holds:

.L .i; t//0 D S .i� 1; t � 1/:

Proof The sets L .i; t/ and S .i� 1; t� 1/ have the same number of elements N D
i.i � 1/ � � � .i � t C 1/. Therefore it suffices to prove that if L 2 L .i; t/ then L0 2
S .i� 1; t � 1/.

The following inequality is valid, provided that 1 � j � t:

j � �.j/t � i: (5.43)
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For j D t this inequality follows from the definition, �.t/t D lt. If the parameter j is
decremented by one, then the right head can only be diminished, but not by more
than one. Therefore, the inequality is saved.

Inequality (5.43) with j D 1 is 1 � �
.1/
t � i. Hence s0 D l00 D �

.1/
t � 1

satisfies (5.42) with i � 1 in place of i.
If j < lj < i, then the inequalities lj � 1 � l0j � lj imply that j � l0j � i � 1.

If lj D i, then �.jC1/t � i D lj; that is, l0j D lj � 1 D i � 1.

If lj D j, then by (5.43) we have �.jC1/t � jC 1 > j D lj and l0j D lj D j. ut
Lemma 5.8 Let L D .lj j u � j � v/ and S D .sj j u� 1 � j � v � 1/ D L0. For a
given k, u < k < v, at the point m, u � m < k, there is a jump during a motion of lk
to the left if and only if at this point there is a jump during a motion of sk to the left.

If sk D lk � 1, then for all j, u � j � k, the following inequality holds:

�.j/v .L/ � �.j/k .S/: (5.44)

Proof Consider two cases when sk D lk and when sk D lk � 1.

(A) sk D lk. In this case �.kC1/
v .L/ > lk, and we can write a chain �.k/k .L/ D

�
.k/
k .S/ < �

.kC1/
v .L/ D �

.k/
v .L/. We shall use this chain as a beginning of the

downward induction on j, 1 � j � k, to prove that

�
.j/
k .L/ D �.j/k .S/ < �

.j/
v .L/: (5.45)

Let us make the inductive step considering three possible cases.

1. �.j/k .L/ � lj�1. In this case sj�1 D lj�1 � 1, and �.j�1/v .L/ D �
.j/
v .L/ � 1.

Furthermore, (5.45) demonstrates that at the point j there is a jump during
a motion of lk to the left; that is, �.j�1/k .L/ D �

.j/
k .L/ � 1. For sk we have

�
.j/
k .S/ D �

.j/
k .L/ � lj�1 � 1 D sj. Therefore, a jump also exists and in

particular, �.j�1/k .S/ D �
.j/
k .S/ � 1. Thus, in the passage of j to j � 1, all

members of (5.45) decremented by one, whereas this very condition remain
saved.

2. �.j/k .S/ D �
.j/
k .L/ � lj�1 < �

.j/
v .L/. In this case sj�1 D lj�1, �.j�1/v .L/ D

�
.j/
v .L/, �

.j�1/
k .L/ D �

.j/
k .L/ � 1. For the sequence S we have, �.j/k .S/ �

Lj�1 D sj�1; that is, a jump also exists and �.j�1/k .S/ D �.j/k .S/� 1. Thus in
the passage of j to j � 1 the equal members of (5.45) were decremented by
one, whereas the biggest member remain unchanged; that is, (5.45) remain
saved.

3. lj�1 < �
.j/
k .S/ D �

.j/
k .L/ < �

.j/
v .L/. In this case there are no jumps and all

the parameters are saved.
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As in a motion to the left the heads are changing only at the points where
exist jumps, the equality of heads in (5.45) (and the certain induction also)
shows that in the case (A) the lemma is true.

(B) sk D lk�1. In this case �.kC1/
v .L/ � lk and �.k/v .L/ D �.kC1/

v .L/�1. Therefore
we can write the following chain:

�.k/v .L/ � �.k/k .S/ D �.k/k .L/ � 1:

Let us prove by a downward induction by j, 1 � j � k, that

�.j/v .L/ � �.j/k .S/ D �.j/k .L/ � 1: (5.46)

For j D k the latter chain is written above. Consider three cases.

1. �.j/k .L/ � lj�1. In this case �.j�1/k .L/ D �
.j/
k .L/ � 1. Using the inductive

supposition (5.46), one may write �.j/v .L/ < lj�1. Therefore sj�1 D lj�1 � 1,

and �.j�1/v .L/ D �.j/v .L/�1. In addition, �.j/k .S/ D �.j/k .L/�1 � lj�1�1 D
sj�1, and so �.j�1/k .S/ D �

.j/
k .S/ � 1. Thus in the passage of j to j � 1, all

three members of (5.46) decremented by one.
2. �.j/v .L/ � lj�1 � �

.j/
k .S/. In this case still, sj�1 D lj�1 � 1; �.j�1/v .L/ D

�
.j/
v .L/�1, and by inductive supposition, �.j/k .L/ > lj�1; that is, �.j�1/v .L/ D
�
.j/
v .L/. For the sequence S we have sj�1 D lj�1 � 1 < �

.j/
k .S/. Therefore

�
.j�1/
k .S/ D �

.j/
k .S/. Thus in the passage of j to j � 1 the left hand side

of (5.46) decremented, whereas the others remain unchanged; hence (5.46)
is saved.

3. lj�1 < �.j/v .L/. In this case in the passage of j to j � 1 all members of (5.46)
remain unchanged.

Thus by the proved relation (5.46) in the motion to the left the difference in heads
�k.L/ and �k.S/ is always equal to one. Again taking into account that the heads are
changing only at the points where exist jumps, we obtain that in case (B) the lemma
is also true. ut
Lemma 5.9 Let L D .lj j u � j � v/ and S D .sj j u � 1 � j � v � 1/ D L0. Let
u � m � v � 1. If sm D lm, then for every j, v > j � m,

�.j/m .L/ D �.j/m .S/: (5.47)

If sm D lm � 1 then for all j, v > j � m the following equality is valid:

�.j/m .L/ D �.j/m .S/C 1: (5.48)

In both cases,

�.v/m .L/ D �.v�1/
m .S/C 1: (5.49)
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Proof Let us use the induction on j. For j D m the both Eqs. (5.47) and (5.48) follow
from definition (5.31). By Lemma 5.5, at the point j there is a jump during a motion
of lm to the right if and only if at the point m there is no jump in a motion of lj to
the left. By Lemma 5.8, this condition is equivalent to one in which at the point m
there is no jump during a motion of sj to the left. Again by Lemma 5.5 applied to
the sequence S, we see that at the point j there is a jump during a motion of lm to the
right if and only if at this point there is a jump during a motion of sm to the right.

Because the heads change values only by one and only at the points where exist
jumps, the equalities (5.47) and (5.48) are proved.

For equality (5.49) we have

�.v/m .L/ D
(
�
.v�1/
m .L/C 1; if �.v�1/

m .L/ � lvI
�
.v�1/
m .L/; if �.v/m .L/ > lv:

By Lemma 5.5, the condition �.v�1/
m .L/ � lv , which means that at the point v there

is a jump during a motion of lm to the right, is equivalent to one in which at the point
m there is no jump during a motion of lv to the left; that is, lm D sm. Now it remains
to use the equalities (5.47) and (5.48) with j D v � 1. ut

5.4.1 Relations in the Symmetric Group

Let us turn to the symmetric group. For every index l; 0 � l � n � 2, we fix the
following notations

Œl� D
�
Œn � 1I n� l�; if 1 � l � n � 2;
id; if l D 0I

blc D ŒnI n � l�:

For 0 � i � n � 3 we also define

Œ2Im�i D
�
Œ2Im�; if 2 � m < n;
Œ2I n � i � 1�Œi��1; if m D n:

(5.50)

Clearly Œl� and Œ2Im�i belong to S1;nn , whereas blc belongs to S1n.
Direct calculations show that the following relations hold:

blcŒ2I n� �� D
�
Œ2I n � .� � 1/�bl� 1c; if 1 � � � lI
Œ2I n � ��blc; if l < � � n � 2: (5.51)
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If L D .lj j u � j � v/ is a sequence of integer numbers such that 1 � lj � n� 2
for all j, then (5.30) and (5.32) with (5.51) show that

blj�1cŒ2I n � �.j/v � D Œ2I n � �.j�1/v �bl0j�1c:

The multiple application of this relation yields the following formula:

blvcblvC1c � � � blu�1cŒ2I n � lv� D Œ2I n � �.u/v .L/�bl0vcbl0vC1c � � � bl0u�1c: (5.52)

By Lemma 5.4 this relation with L� in place of L takes up the form

Œ2I n � .lv C 1/�blvC1c � � � bluc D bl�vC1c � � � bl�u cŒ2I n � l�uC1�: (5.53)

Analogously, for 1 � l � n � 2 the following relations are valid:

Œl�Œ2I n � �� D
8
<

:

Œ2I n � .� � 1/�Œl � 1�; if 2 � � � lI
Œ2I n � ��Œl�; if l < � � n � 2I
Œ2I n � 0�l�1Œl � 1�; if � D 1:

(5.54)

Therefore if a sequence L belongs L .i; tC1/ with 2 � i � n�1 and 1 � tC1 � i,
then the following relation holds, provided j � 2:

Œlj�1�Œ2I n � �.j/tC1� D Œ2I n � �.j�1/tC1 �Œl
0
j�1�

(see inequalities (5.43)). The multiple application of this relation yields

Œ2I n � �.1/t .L/�Œs1� � � � Œst� D Œl1� � � � Œlt�Œ2I n � ltC1�;

where S D .sj j 0 � j � t/ D L0. If we multiply this equality by Œi� from the left,
then by the third line of (5.54) we can write

Œ2I n � s0�i�1Œi � 1�Œs1� � � � Œst� D Œi�Œl1� � � � Œlt�Œ2I n � ltC1�: (5.55)

5.5 Decreasing Modules

With the help of the definitions (5.22) and (5.50) one can note that Œ2I n�i D �n�i if
0 � i � n � 3. Therefore it is possible to rewrite the formula (5.27) with k D n � i
in the following way:

D.n�i/ D
iX

�D0
Œ2I n � ��iT.n�i;n/

Œ2In���: (5.56)
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Because for 2 � l < k the permutation .k; n/ does not change the element TŒ2Il� D
fP12P32 � � �Pl 2g, we can also rewrite (5.26):

V.k/ D
n�2X

�Dn�kC1
Œ2I n � ��TŒ2In���: (5.57)

Definition 5.8 A right module over FŒFn� � S1;nn is called a decreasing module if it
is generated by elements A2;A3; : : : ;An such that

AkV.k/ C Ak�1D.k/ D 0; 3 � k � n;

where V.k/ and D.k/ are defined by (5.57) and (5.56), respectively.

For example, if B satisfies (5.17) with s D 2, then A2; : : : ;An, defined by (5.20),
generate a decreasing submodule of FŒFn� � S1;nn = ker.'/S1;nn , see Sect. 5.3.

Theorem 5.4 Let n � 3 and

X D .
Y

n>i>j>1

Pij/.

n�1Y

iD1
Pin/.

n�1Y

jD2
P1j/: (5.58)

Every decreasing module satisfies the following relation:

D2

n�3Y

kD0
Œn � 1I 2�V.n�k/ D A2Œn � 1I 2�

n�3Y

kD0
Œ2I 2C k�V.1;n/Œ3I n�1�k

.n�k/ � fXgŒ2I n�1�.�1/n;

(5.59)

where D2 is defined by (5.25) by replacing A with A.

Let us define a sequence of elements

W0 D D2; WtC1 D WtŒn � 1I 2�V.n�t/; 0 � t � n � 3:

In this notations the left-hand side of (5.59) equals Wn�2.

Lemma 5.10 The element Wt has a representation

Wt D
X

t�i�n�2
An�iŒi�

X

L2L .i;t/

.

tY

kD1
Œlk�/Œ2I n � 1�R.i; l1; : : : ; lt/; (5.60)
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where L D .l1; : : : ; lt/. The following recurrence relations are valid:

R.i; l1; : : : ; lt/ D RŒn�1I2�Œ2In�lt �.i; l1; : : : ; lt�1/TŒ2In�lt �

� RŒn�1;2�.i � 1; s1; : : : ; st�1/T.n�iC1;n/Œi�1�Œs1 �Œs2����Œst�1�

Œ2In�s0�
: (5.61)

In these relations .s0; s1; : : : ; st�1/ is the subordinate sequence for L.
In addition, the elements RŒn�1I2�.i; l1; : : : ; lt/ are invariant with respect to the

action of all cycles ŒkI l� with 2 � k � l < n � i.

Proof If t D 0, then L .i; 0/ contains just the empty sequence. So the product
in (5.60) is empty, and (5.60) takes the form

W0 D
X

0�i�n�2
An�iŒi�Œ2I n � 1�R.i/:

The right-hand side of (5.25) is reduced to this form if we replace the index of
summation l with n� i and use the relation Œi�Œ2I n� 1� D Œ2I n� i� for i > 0. In this
case R.i/ D T.2;n/Œ2In�i�. Lemma 5.2 demonstrates that

T.2;n/Œn�1I2�
Œ2In�i� D fP1nP2n � � �Pn�i�1 ng:

In particular, this coefficient commutes with all permutations ŒkI l� if 2 � k � l <
n � i. We may proceed the induction on t.

Let the lemma be true for a given t � 0. By (5.57) we obtain

V.n�t/ D V.n�i/ C
iX

ltC1DtC1
Œ2I n � ltC1�TŒ2In�ltC1 � ; t � i � n � 2:

Therefore

WtC1 D
X

t�i�n�2
An�iŒi�

X

L2L .i;t/

.

tY

kD1
Œlk�/R

Œn�1I2�.i; l1; : : : ; lt/


.V.n�i/ C
iX

ltC1DtC1
Œ2I n � ltC1�TŒ2In�ltC1 �/: (5.62)

The elements TŒ2;l� D fP12P32 � � �Pl2g, l < n � i, are fixed with respect to the
action of all cycles Œi�, Œlj�, because n � lj � n � i > l. By the same reasoning
the cycles Œ2I l� commute with Œi�; Œlj�. Thus the element V.n�i/ commutes with
all of the permutations Œi�, Œlj�. By the inductive suppositions all the cycles Œk; l�,
2 � k � l < n � i, commute with RŒn�1I2�.i; l1; : : : ; lt/. Therefore V.n�i/ commutes
with this coefficient also. Hence we can continue (5.62) by taking into account that
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for i D t the last sum in (5.62) equals zero and V.2/ D 0:

D
X

t�i�n�3
An�iV.n�i/Œi�

X

L2L .i;t/

.

tY

kD1
Œlk�/R

Œn�1I2�.i; l1; : : : ; lt/

C
X

tC1�i�n�2
An�iŒi�

X

L2L .i;t/

.

tY

kD1
Œlk�/R

Œn�1I2�.i; l1; : : : ; lt/



iX

ltC1DtC1
Œ2I n � ltC1�TŒ2In�ltC1 �: (5.63)

As the factor An�iV.n�i/ is located in (5.63) at the left margin position, we
may replace it with �An�i�1D.n�i/ and use the relation (5.56). Every sequence
.�; l1; l2; : : : ; lt/ taking part in the obtained then expression belongs to S .i; t/,
because the index � in (5.56) is going from 0 to i. Therefore if in the first line
of (5.63) we replace the summation index i with i � 1, we obtain

WtC1 D �
X

S2S .i�1;t/
An�i

i�1X

s0D0
Œ2I n � s0�i�1T.n�iC1;n/

Œ2In�s0�


 Œi � 1�Œs1� � � � Œst�R
Œn�1I2�.i � 1; s1; : : : ; st/

C
X

tC1�i�n�2
An�iŒi�

X

L2L .i;tC1/
Œl1� � � � Œlt�Œ2I n � ltC1�


 RŒn�1I2�Œ2In�ltC1�.i; l1; : : : ; lt/TŒ2In�ltC1�: (5.64)

The formula T� D �T� allows us to shift all coefficients to the right margin
position. Lemma 5.7 and the relation (5.55) imply

WtC1 D
X

tC1�i�n�2
An�iŒi�

X

L2L .i;tC1/
Œl1� � � � Œlt�Œ2I n � ltC1�


 .RŒn�1I2�Œ2In�ltC1 �.i; l1; : : : ; lt/TŒ2In�ltC1�

� RŒn�1I2�.i� 1; st; : : : ; st/T
.n�iC1;n/Œi�1�Œs1 ����Œst �

Œ2In�s0�
/:

This proves both (5.60) and (5.61), because Œ2I n � ltC1� D ŒltC1�Œ2I n � 1�.
Let us check, finally, that the found value of RŒn�1I2�.i; l1; : : : ; ltC1/ is fixed with

respect to the actions of ŒkI l�, provided that 2 � k � l < n� i. By (5.21) the equality
Œn � 1I 2�ŒkI l� D ŒkC 1I lC 1�Œn � 1I 2� is valid. The cycle Œk C 1I lC 1� commutes
with Œi � 1�, Œs1�, : : :, Œst�, .n � i C 1; n/, for sj � i � 1 and n � sj � n � i C 1 >
l C 1. In the same way ŒkI l� commutes with ŒltC1�. By this notes and the relation
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Œ2I n � ltC1�Œn � 1I 2� D ŒltC1� we can write

RŒn�1I2�ŒkIl�.i; l1; : : : ; ltC1/ D RŒn�1I2�ŒkIl�ŒltC1 �.i; l1; : : : ; lt/T
ŒkC1IlC1�Œn�1I2�
Œ2In�ltC1�

� RŒn�1I2�ŒkC1IlC1�Œn�1I2�.i � 1; s1; : : : ; st/T
ŒkC1IlC1�.n�iC1;n/Œi�1�Œs1 ����Œst �Œn�1I2�
Œ2In�s0�

:

By the inductive suppositions in the first factors of the both summands, it is possible
to delete ŒkI l� and Œk C 1I l C 1�, respectively. In addition, the condition ltC1 � i
demonstrates that n � ltC1 � n � i � l C 1 � k C 1 � 3. In the same way,
n � s0 � n � .i � 1/ > l C 1 � k C 1 � 3. Therefore, the equalities TŒ2In�s� D
fP12P32P42 � � �Pn�s 2g with s D ltC1 and s D s0 show that in the second factors of
the both summands it is possible to delete ŒkC 1I lC 1�. ut
Definition 5.9 For a sequence L D .l1; : : : ; lt/, define

E.l1/ D fPn n�1gI
E.l1; l2; : : : ; lk/ D fPn n�1; : : : ;Pn�kCm�1 n�1; : : : g; 2 � k � t;

(5.65)

where m runs trough a set of all indices such that at the point m there is a jump
during a motion of lk to the left or, equivalently (see Lemma 5.5), at the point k
there is no jump during a motion of lm to the right.

By Lemma 5.8 we may claim that if S D L0, then for all k, 1 � k � t � 1,

E.s1; s2; : : : ; sk/ D E.l1; l2; : : : ; lk/: (5.66)

Furthermore, for 0 � t � i � n � 2, define

C.i; l1; : : : ; lt/ D fP1nP2n � � �Pn�i�1 n t Pn�t nPn�tC1 n � � �Pn�1 n

P1 n�1P2 n�1 � � �Pn��.t/t .L/ n�1 t ;
P1 n�2P2 n�2 � � �Pn��.t/t�1.L/ n�2 t Pn�1 n�2

:::
:::

P1 n�rP2 n�r � � �Pn��.t/t�rC1.L/ n�r
t Pn�rC1 n�r � � �Pn�1 n�r

:::
:::

P1 n�tP2 n�t � � �Pn��.t/1 .L/ n�t
t Pn�tC1 n�t � � �Pn�1 n�tg:

(5.67)

In another words, a letter Pxy takes part in C.i; l1; : : : ; lt/ if and only if

either y D n and .1 � x < n � i or n � t � x < n/;

or n � t � y � n � 1 and .1 � x � n � �.t/yCtC1�n.L/ or y < x < n/:
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In particular, for t D 0 this means

C.i/ D fP1nP2n � � �Pn�i�1 ng D T.2;n/Œn�1I2�
Œ2In�i� D RŒn�1I2�.i/: (5.68)

In the explicit form (5.67) of the element C.l1; : : : ; lt/ the top row is called the
zero row, the following row is called the first row and so on. In this way the rth row
corresponds to the value n � r of the second index.

Lemma 5.11 Let L 2 L .i; t/ and S D L0. If 1 � k � t � 1, then

EŒn�1 I 2�t�k�1Œlt �.l1; : : : ; lk/ D EŒn�1 I 2�t�k
.s1; : : : ; sk/:

Proof If a letter Pn�kCm�1 n�1 is involved in the writing (5.65) of the element

E.l1; : : : ; lk/, then PŒn�1 I 2�t�k�1

n�kCm�1 n�1 D Pn�tCm n�tCk. Therewith lt � t > t � m; and
so n � lt < n � t C m � n � t C k. Thus under an additional application of Œlt�,
as well as under an application of Œn � 1I 2�, all of the indices decremented by one.
Thus EŒn�1I2�t�k�1Œlt �.l1; : : : ; lk/ D EŒn�1I2�t�k

.l1; : : : lk/: By (5.66) we are done. ut
Lemma 5.12 The coefficients of (5.60) have the following decomposition:

RŒn�1 I 2�.i; l1; : : : ; lt/ D .�1/tC.i; l1; : : : ; lt/
tY

kD1
EŒn�1 I 2�t�k

.l1; : : : ; lk/: (5.69)

Proof For t D 0 formula (5.69) is valid by (5.68). Assume that (5.69) is valid for
t � 1, t � 1. Then by (5.61) and Œ2I n � lt�Œn � 1I 2� D Œlt� we obtain

RŒn�1I2�.i; l1; : : : ; lt/

D �.�1/tCŒlt �.i; l1; : : : ; lt�1/T Œn�1I2�
Œ2In�lt �

t�1Y

kD1
EŒn�1I2�t�k�1Œlt �.l1; : : : ; lk/

C .�1/tCŒn�1I2�.i� 1; s1; : : : ; st�1/T.n�iC1;n/Œi�1�Œs1 ����Œst�1�Œn�1I2�
Œ2In�s0�



t�1Y

kD1
EŒn�1I2�t�k

.s1; : : : ; sk/: (5.70)

Using Lemma 5.11 and equality (5.66), we may factor out the product
.�1/t Qt�1

kD1 EŒn�1I2�t�k
.l1; : : : lk/. Therefore it suffices to prove that

CŒn�1I2�.i � 1; s1; : : : ; st�1/T.n�iC1;n/Œi�1�Œs1 ����Œst�1�Œn�1I2�
Œ2In�s0�

D CŒlt �.i; l1; : : : ; lt�1/T Œn�1I2�
Œ2In�lt �

C C.i; l1; : : : ; lt/E.l1; : : : ; lt/:
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This follows from (5.12) with fCg  T Œn�1I2�
Œ2In�lt �

, fDg  CŒlt �.i; l1; : : : ; lt�1/, and
fEg  E.l1; : : : ; lt/, provided that the following three equalities are valid

CŒn�1I2�.i� 1; s1; : : : ; st�1/ D CŒlt �.i; l1; : : : ; lt�1/ ? E.l1; : : : ; lt/; (5.71)

T.n�iC1;n/Œi�1�Œs1 ����Œst�1�Œn�1I2�
Œ2In�s0�

D T Œn�1I2�
Œ2In�lt �

? E.l1; : : : ; lt/; (5.72)

C.i; l1; : : : ; lt/ D CŒn�1I2�.i � 1; s1; : : : ; st�1/ ? T Œn�1I2�
Œ2In�lt �

: (5.73)

Consider the first one. Because L satisfies (5.41), we have n � lt < n � t C 1.
Therefore Œlt� decreases by one all of he second indices of C.i; l1; : : : ; lt�1/, but n.
This means that in (5.67), with t � 1 in place of t, all the rows, but zero row, are
shifted down by one step, so that the first row becomes empty.

Every first index of a letter located after a gap t in (5.67) is greater then the
second index of this letter. Therefore Œlt� decreases these indices by one as well.
This means that all letters located in the rows after the gaps are shifted to the left by
one step.

Condition (5.41) implies n� i� 1 < n� lt. Therefore Œlt� does not shift a part of
the zero row located before the gap. In particular, the last position of the zero row
of CŒlt �.i; l1; : : : ; lt�1/ is vacant. For letters located in nonzero rows before the gap
consider the following two cases.

If st�rC1 D lt�rC1 � 1, then at the point t� rC 1 there is a jump during a motion
of lt to the left. By Lemma 5.5, at the point t there is no jump in a motion of lt�rC1
to the right. Definition 5.5 shows that n � �.t�1/t�rC1.L/ < n � lt. Therefore Œlt� does
not change the first indices of letters located in .r� 1/th row, r > 1, before the gap.
In this case the last position of the rth row of CŒlt �.l1; : : : ; lt�1/ is vacant, and the
length of the rth row located before the gap equals n� �.t�1/t�rC1.L/ D n� �.t/t�rC1.L/,
see (5.31).

If st�rC1 D lt�rC1, or, equivalently n � �.t�1/t�rC1.L/ � n � lt, then the letter
Pn�lt n�rC1 goes to Pn�1 n�r and occupies a position in the last column. The next
letter, Pn�ltC1 n�rC1, goes to Pn�lt n�r, and so on. Thus in this case the length of the
rth row located before the gap is set by the same formula n � �.t�1/t�rC1.L/ � 1 D
n � �.t/t�rC1.L/, see (5.31).

Furthermore, by the definition E.l1; : : : ; lt/ D fPn�1 n; : : : ;Pn�1 n�tCm�1; : : :g,
where at the point m there is a jump during a motion of lt to the left; that is, sm D
lm � 1. By replacing the index m with t � r C 1 in this definition, we get that the
letters of E.l1; : : : ; lt/ occupy exactly the positions in the last column that are vacant
in CŒlt �.l1; : : : ; lt�1/.

Thus the zero row of CŒlt �.l1; : : : ; lt�1/ ? E.l1; : : : ; lt/ has the form

P1nP2n � � �Pn�i�1 n t Pn�t n � � �Pn�1 nI (5.74)
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the first row is vacant, and the rth row, r > 1, has the form

P1 n�rP2 n�r � � �Pn��.t/t�rC1.L/ n�r
t Pn�rC1 n�r � � �Pn�1 n�r:

Consider the left-hand side of (5.71). The permutation Œn � 1I 2� shifts to the left
by one step all gaps of C.i� 1; s1; : : : ; st�1/. It also shifts down by one step all rows
(because n� .t� 1/ > 2). Therefore the zero row of CŒn�1I2�.i� 1; s1; : : : ; st�1/ has
the form (5.74), the first row is vacant, and the rth row, r > 1, equals

P1 n�rP2 n�r � � �Pn��.t�1/t�rC1
.S/�1 n�r

; t Pn�rC1 n�r � � �Pn�1 n�r: (5.75)

By (5.49) we have �.t�1/t�rC1.S/C 1 D �.t/t�rC1.L/. Thus (5.71) is proved.
As (5.75) coincides with the r-th row of (5.67), all rows of C.i; l1; : : : ; lt/, but the

first one coincide with the same rows of CŒn�1I2�.i� 1; s1; : : : ; st�1/. The first row of
C.i; l1; : : : ; lt/ equals T Œn�1I2�

Œ2In�lt �
D fP1 n�1P2 n�1 � � �Pn�lt�1 n�1g since �.t/t .L/ D ltC1.

Thus (5.73) is proved.
Consider (5.72). The right-hand side has only one row (the first one)

fP1 n�1P2 n�1 � � �Pn�lt�1 n�1 t : : :Pn�tCm�1 n�1 : : :Pn n�1g; (5.76)

where m runs through the set of all indices with sm D lm � 1.
By Lemma 5.7 we have s0 � i � 1; that is, 2 < n � iC 1 � n � s0. Therefore

T.n�iC1;n/
Œ2In�s0�

D fP12 t P32 � � �Pn�i 2 t Pn�iC2 2 � � �Pn�s0 2 t Pn2g:

From this we obtain

T.n�iC1/Œi�1�
Œ2In�s0�

D fP12 t P32 � � �Pn�s0�1 2 t Pn2g:

Because �.0/0 .S/ D s0 C 1, we may start an induction on k to prove that

T.n�iC1/Œi�1�Œs1 ����Œsk�

Œ2In�s0�
D fP12 t P32 � � �Pn��.k/0 .S/ 2

t � � �Pn�kCm�1 2 � � � t Pn2g;
(5.77)

where m runs trough the set of all indices less than k with lm D sm C 1.
If lkC1 D skC1, then by Lemma 5.4 and the definition (5.33) we have n��.k/0 .S/ <

n�skC1. Therefore ŒskC1� does not shift the letters located in (5.77) before the second
gap. By (5.42) we have skC1 > k and n � k C m � 1 > n � skC1 (as m � 1). This
implies that ŒskC1� shifts to the left by one step all letters (except Pn2) located after
the second gap. Since in this case �.kC1/

0 .S/ D �.k/0 .S/, we may replace k with kC 1
in (5.77).
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If lkC1 D skC1C 1, then n� �.k/0 .S/ � n� skC1. Therefore ŒskC1� shifts the letter
Pn�skC1 2 to the place n� 1 D n� .kC 1/� .kC 1/� 1, the next letter Pn�skC1C1 2
to the place n � skC1, and so on. In particular, the segment before the second gap is
ended by a letter with the first index n � �.k/0 .S/ � 1 D n � �.kC1/

0 .S/. As above
ŒskC1� shifts to the left by one step all letters (except Pn2) located after the second
gap. Thus in this case in the formula (5.77) we may replace k with k C 1 as well.
Hence (5.77) is proved.

If we apply Œn � 1I 2� to the relation (5.77) with k D t � 1 and note that the last
head �.t�1/0 .S/ equals lt (see (5.34)), then by (5.76) we obtain (5.72). ut
Lemma 5.13 If a sequence l1; : : : ; li satisfies (5.41) with t D i, that is, L 2 L .i; i/,
then �.i/j .L/ D iC 1 for all j, 1 � j � i.

Proof Let us use induction by i. If i D 1, then �.1/1 D l1 C 1 D 2, because 1 � l1 �
i D 1. Suppose that the lemma holds for all sequences of the length i � 1. If S D
L0, then by Lemma 5.7 we may apply the inductive supposition to the sequences
s1; s2; : : : ; si�1. So �.i�1/j .S/ D i for all j, 1 � j � i � 1. The relation (5.49) with

t D i shows �.i/j .L/ D �
.i�1/
j .S/ C 1 D i C 1, provided that j < i. If j D i, then

�
.i/
i .L/ D li C 1, herewith i � li � i. ut

Lemma 5.14 Let L D .l1; : : : ; lt/ 2 L .i; i/ .and, in particular, t D lt D i/. If
S D .s0; s1; : : : ; st�1/ D L0, then

Œs1� � � � Œst�1�EŒ2In�1�.l1; : : : ; lt/ D T.1;n/Œ3In�1�n�2�i

Œ2IiC2��.1/t .L/�
Œs1� � � � Œst�1�: (5.78)

Proof The representations of E.l1; : : : ; lt/ and TŒ2I��; � D iC 2� �.1/t .L/ by means
of braces have the same number of letters. Indeed, by (5.65) the former element
contains 1C " letters, where " is the total number of jumps in a motion of lt to the
left. As the heads are changing only at points where there is a jump and only by one
to the side of diminution, we may write " D lt��.1/t .L/ D i��.1/t .L/. The element
TŒ2;� � D fP12P32 � � �P� 2g has ��1 letters, and � �1 D iC2��.1/t .L/�1 D "C1.

Denote by � the permutation Œs1� � � � Œst�1�. Then we may write �A D A�
�1
� .

Because permutations do not change the number of letters of words, it suffices to
show that the permutation

� D Œ2I n � 1���1Œn � 1I 3�n�2�i.1; n/

shifts each letter of E.l1; : : : ; lt/ to a letter of TŒ2I��.
We have P�n n�1 D P12, as PŒ2In�1�

n n�1 D Pn 2 and Œsj�
�1; Œn � 1I 3� do not move n or

2 (clearly, n � sj � n � .i � 1/ � 3). Let us demonstrate that if sm D lm � 1, then

P�n�tCm�1 n�1 D P! 2, where ! D iC 2 � �.1/m .S/.



5.5 Decreasing Modules 177

Evidently, PŒ2In�1�
n�tCm�1 n�1 D Pn�tCm 2. Using this relation as a beginning of the

downward induction on j; t � j > m, let us show that

P
Œst�1�

�1���Œsj�
�1

n�tCm 2 D Pn�jCm 2; (5.79)

provided that for j D t the product is empty. Let j � 1 > m, and assume that (5.79)
holds for a given j. Then n� jCm < n� 1 and n� jCm � n� .j� 1/ � n� sj�1
because m � 1 and sj�1 � j� 1. This implies that Œsj�1��1 amplifies by one the first
index of the right-hand side of (5.79), and it does not change the second one. Thus
in (5.79) it is possible to replace j with j � 1.

Now by (5.79) with j D mC 1 we have

PŒst�1�
�1���Œsm�

�1

n�tCm 2 D PŒsm�
�1

n�1 2 D Pn�sm 2:

We may use this equality as the beginning of the downward induction by j to prove
the following general formula, provided that 1 � j � m:

P
Œst�1�

�1���Œsj�
�1

n�tCm 2 D P
n��.j/m .S/ 2

: (5.80)

Suppose that (5.80) holds for a given j. If n � sj�1 � n � �.j/m .S/, that is, �.j/m .S/ �
sj�1, then Œsj�1��1 amplifies by one the first index of the right-hand side of (5.80).

By (5.30) we have n � .�.j/m .S/ � 1/ D n � �.j�1/m .S/. Therefore, we may replace j
with j � 1 in (5.80).

If �.j/m .S/ > sj�1, then Œsj�1��1 does not change the first index, and again by (5.30)

this index equals n� �.j�1/m .S/. Therefore in this case it is possible to replace j with
j� 1 as well. Thus (5.80) is proved.

The heard �.1/m .S/ is equal to a difference of sm with the total number of jumps
during a motion of sm to the left; that is, it is not less than sm � .m � 1/ � 1 and
not grater than i� 1 D n� 3. Thus the transposition .1; n/ does not move the index
n � �.1/m .S/. If we apply .1; n/Œn � 1I 3�n�2�i D Œn � 1I 3�n�2�i.1; n/ to (5.80) with
j D 1, we obtain ! D i C 2 � �.1/m .S/. By (5.44) with j D 1, k D m we have
�
.1/
m .S/ � �.1/t .L/. Hence ! � � , and P�n�tCm�1 D P! 2 occurs in TŒ2I��. ut

In Lemmas 5.10–5.14, we accumulated necessary information to start the proof
of Theorem 5.4.

Proof Let L D L .n�2; n�2/. For every L 2 L define a chain of sequences L1 D
L; L2; : : : ; Ln�2 satisfying (5.41) with i D t D n � 2; n � 3; : : : ; 1, respectively.
Let Lk D .l.k/1 ; : : : ; l.k/n�k�1/ be defined, which satisfies (5.41) with i D t D n� k� 1.

If Sk D .s.k/0 ; s
.k/
1 : : : ; s.k/n�k�2/ is a subordinate sequence for Lk, then put LkC1 D

.s.k/1 ; : : : ; s
.k/
n�k�2/.
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Denote by Lı the following sequence

lı1 D n � �.1/n�2.L1/ � 1; lı2 D n� �.1/n�3.L2/ � 1; : : : ; lın�2 D n � �.1/1 .Ln�2/� 1:

This sequence belongs to L . Indeed, we have �.n�k�1/
n�k�1 .Lk/ D l.k/n�k�1 D n � k � 1.

Because at each step into the left a heard is decremented by not more than one, we
obtain

n � k � 1 � �.1/n�k�1.Lk/ � .n � k � 1/� .n � k � 2/ D 1:

Therefore k � n � �.1/n�k�1.Lk/� 1 � n � 2 and Lı 2 L .
The sequence L can be restored in a unique way from Lı by an inverse process.

Indeed, by (5.34) we know all the heads:

�
.0/
0 .Sk/ D �.1/n�k�1.Lk/ D n � lık � 1:

Thus we know all zero terms of the subordinate sequences s.k/0 D �
.0/
0 .Sk/ � 1.

Therefore, starting with the sequence Sn�3 D .s.n�3/
0 ; s.n�3/

1 /, where s.n�3/
1 D

l.n�2/
1 D 1, we may restore Ln�2; Ln�3; : : : ; L1 with the help of (5.33) in a unique

way, see Lemma 5.4.
Thus ı W L ! L is a one-to-one correspondence. In particular, in (5.60) we

may replace the summation index L 2 L with Lı 2 L , that is,

Wn�2 D A2Œn � 1I 2�
X

Lı2L
Œl1� � � � Œln�3�Œ2I n � ln�2�R.i; l1; : : : ; ln�2/: (5.81)

By Lemma 5.13 we have �.n�2/
j .L/ D n � 2 for all j, 1 � j � n � 2. Now (5.67)

demonstrates that C.n�2; l1; : : : ; ln�2/ D fXg does not depend on L 2 L , herewith
the word X is defined by (5.58). Thus, replacing R.: : :/ in (5.81) with the help
of (5.69), we may factor out fXgŒ2In�1�.�1/n to the right-hand side. The rest part
of the sum in (5.81) can be rewritten with the help of (5.52):

˙ D
X

Lı2L
Œ2I n � �.1/n�2.L1/�Œs1� � � � Œsn�3�EŒ2In�1�.l1; : : : ; ln�2/



n�3Y

kD1
EŒn�1I2�n�k�3

.l1; : : : ; lk/:

Using Lemma 5.14, then (5.66), and the definition of .l.2/1 ; : : : l
.2/
n�3/, we obtain

˙ D
X

Lı2L
Œ2I lı1 C 1�T.1;n/Œ2Ilı1C1�Œl

.2/
2 � � � � Œl.2/n�3�E.l

.2/
1 ; : : : ; l

.2/
n�3/



n�4Y

kD1
EŒn�1I2�n�k�3

.l.2/1 ; : : : ; l
.2/
k /:
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Let us replace Œl.2/n�3� with an equal permutation Œ2I n � l.2/n�3�Œn � 1I 2�. Then again
by (5.52), (5.66), and the definition of L3 we obtain

˙ D
X

Lı2L
Œ2I lı1 C 1�T.1;n/Œ2Ilı1C1�Œ2I lı2 C 1�Œl

.3/
1 � � � � Œl.3/n�4�E

Œ2In�1�.l.2/1 ; : : : ; l
.2/
n�3/Œn � 1I 2�



n�4Y

kD1
EŒn�1I2�n�k�3

.l.3/1 ; : : : ; l
.3/
k /:

By Lemma 5.14 we have

˙ D
X

Lı

2L

Œ2I lı1 C 1�T.1;n/Œ2Ilı1C1�
Œ2I lı2 C 1�T.1;n/Œ3In�1�

Œ2Ilı2 �
Œl.3/1 � � � � Œl.3/n�5�Œ2I n � l.3/n�4�Œn � 1I 2�2



n�4Y

kD1

EŒn�1I2�n�k�3

.l.3/1 ; : : : ; l
.3/
k /:

Let us explore this process further, so that we can see that every new left-hand factor
does not depend on the whole sequence Lı, but it depends up the only member of
Lı. Therefore we have

˙ D
n�2Y

jD1

.

n�2X

lıj Dj

Œ2I lıj C 1�T.1;n/Œ3In�1�j�1

Œ2Ilıj C2�j�
/ � Œn � 1I 2�n�2: (5.82)

Let us replace the summation index lıj with l D lıj C 2 � j in all of the sums. Then
for a given j, the sum of (5.82) take up the form

˙j D
n�jX

lD2

Œ2I lC j � 1�T.1;n/Œ3In�1�j�1

Œ2Il� :

As Œ2I lC j� 1� D Œ2I jC 1�Œ3I n � 1�1�jŒ2I l�Œ3I n � 1�j�1, we may write

˙j D Œ2I jC 1�.
n�jX

lD2

Œ2I l�TŒ2Il�/
.1;n/Œ3In�1�j�1 D Œ2I jC 1�V.1;n/Œ3In�1�j�1

.n�jC1/
:

Finally, it is sufficient to insert this value to (5.82) and replace the index j with
k D j� 1 in the product. ut
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5.6 Second Components

For a given subset Y � fx1; x2; : : : ; xng, let W.Y/ be the set of elements of the
form fWg, where W is a word in Pij, xi; xj 2 Y of the length jYj.jYj � 1/=2 that
does not contain neither double nor conjugated letters. The set Y is conforming
if and only if W.Y/ � ker.'/. Let ˙ be a multiplicative set generated by W.Y/,
where Y runs through subsets that do not contain xn. The set ˙ is invariant with
respect to the action of the subgroup S1;nn . Therefore, the group S1;nn acts on the
localization ˙�1FŒFn�, and we may define the skew group ring ˙�1FŒFn� � S1;nn
that are contained in the crossed product.

Lemma 5.15 The elements V.m/, 3 � m � n defined by (5.26) are invertible in
˙�1FŒFn� � S1;nn .

Proof Let us use induction on n. If n > 2, then the set ˙ contains fP12g. Therefore
V�1
.3/ D fP12g�1 � id 2 ˙�1FŒFn� � S1;nn .

Assume that V.k/, 3 � k � m < n are invertible in ˙�1FŒFn� � S1;nn . Consider
the set of quantum variables x1; : : : ; xm. The element V2 for this set coincides with
V.mC1/. To apply results of previous sections to x1; : : : ; xm, we replace notations
n  N and m  n. So that now V2 D Pn

lD2Œ2I l�TŒ2Il� , whereas V.3/; : : : ;V.n/
are invertible in ˙�1PN � S1;NN . By induction we define a sequence A2; : : : ;An 2
PN˙

�1 � S1;NN . Let

A2 D .�1/n
n�3Y

kD0
Œn � 1I 2�V.n�k/


 .Œn � 1I 2�
n�3Y

kD0
Œ2I 2C k�V.1;n/Œ3In�1�k

.n�k/ � fXgŒ2In�1�/�1; (5.83)

where X is given in (5.58). All of the factors in the parentheses are invertible in
˙�1FŒFn� � S1;nn : the V’s are by the inductive hypothesis, and fXg is because it
belongs to ˙ . Furthermore, let

Ak D �Ak�1D.k/V
�1
.k/ ; 3 � k � n;

where D.k/; 3 � k � n are defined in (5.27). Right multiplication of the above
equality by V.k/ demonstrates that A2; : : : ;An generate a right decreasing submodule
over FŒFn��S1;nn . By Theorem 5.4 we have relation (5.59). This relation with (5.83)
imply

D2

n�3Y

kD0
Œn � 1I 2�V.n�k/ D

n�3Y

kD0
Œn � 1I 2�V.n�k/:
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Since by inductive hypothesis all factors V.n�k/ are invertible, the element D2 defined
in (5.25) with A in place of A equals the identity permutation. Consider the element

B D A2.2; n/C A3.3; n/C : : :C An id:

Formula (5.28) and the definition of the Ak’s imply

B � V2 D D2.2; n/C
nX

kD3
.AkV.k/ C Ak�1D.k//.k; n/ D .2; n/:

Therefore V�1
2 D .2; n/B 2 ˙�1PN � S1;NN . ut

Corollary 5.1 If the intersection of all conforming subsets of x1; x2; : : : ; xn is not
empty, then there exists not more than .n � 2/Š linearly independent multilinear
quantum Lie operations.

Proof Without loss of generality we may assume that xn belongs to all conforming
subsets. If a subset Y does not contain xn, then this set is not conforming; that is,
'.fWg/ ¤ 0 for each word W in Pij; xi; xj 2 Y of the length jYj.jYj�1/=2 that does
not contain neither double nor conjugated letters. As ' is a homomorphism into a
field, the multiplicative set ˙ generated by all fWg’s has no intersection with ker '.
It remains to apply Proposition 5.1. ut

5.7 Components with s � 3

Theorem 5.5 If s � 3 then

Vs � ŒnI 2�s�1
n�1Y

tDs

.V.n�tC2/ŒnI 2�/ 2 V2 � FŒFn� � S1n C IS1n;

where I is the conforming ideal, see Definition 5.3.

Define a sequence Ht, s � t � n, as Hs D VsŒnI 2�s�1, HtC1 D HtV.n�tC2/ŒnI 2�.
We have to prove that Hn � 0 by modulo a right ideal V generated by V2 and I.

Lemma 5.16 The element Ht has the following representation by modulo V

Ht �
X

L2U .s;t/

bl2cbl3c � � � bltcR.L/: (5.84)

Therewith the coefficients R.L/ satisfy the following recurrence relations

R.l2; : : : ; ls/ D f
s�2Y

rD0
.P1 n�rP2 n�r � � �Pn�.ls�rC1/ n�r � Pn�sC2 n�r � � �Pn�r�1 n�r/g;
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where for r D s � 2 the second factor in the parentheses is absent;

R.l2; : : : ; lt/ D Rbltc.l2; : : : ; lt�1/T ŒnI2�
Œ2In�lt �

� RŒnI2�.w2; : : : ;wt�1/Tbw2c���bwt�1cŒnI2�
Œ2In�.w1C1/� ;

(5.85)

where .w1;w2; : : : ;wt�1/ is a subordinate sequence for .l2; : : : ; lt/.

Proof Consider the case t D s. By (5.15) we have Vs D P
�2N1.s/ �T�;s , and

by (5.7), � D Œ2I k2�Œ3I k3� � � � ŒsI ks� with 2 � k2 < k3 < : : : < ks � n. Evidently
this chain of inequalities is equivalent to the following:

2 � k2 � k3 � 1 � k4 � 2 � : : : � ks � sC 2 � n � sC 2:

If we define

li D n � ki C i� 2; 2 � i � s; (5.86)

then the above chain is equivalent to L D .l2; : : : ; ls/ 2 U .s; s/, see (5.38).
Note that �ŒnI 2�s�1 D bl2c � � � blsc because blic D Œ2I n � li�ŒnI 2� and

ŒnI 2�i�2Œ2I n � li� D ŒiI n � li C i� 2�ŒnI 2�i�2 D ŒiI ki�ŒnI 2�i�2;

see (5.21). Thus

VsŒnI 2�s�1 D
X

L2U .s;s/

bl2cbl3c � � � blscR.L/;

where R.L/ D T ŒnI2�s�1
�;s . Consider representation (5.16) of T� with m D s � r.

f
s�2Y

rD0
.P1 s�r � � �Ps�r�1 s�r � PsC1 s�r � � �PrCks�r s�r/gŒnI2�s�1

D f
s�2Y

rD0
.P1 n�rP2 n�r � � �PrCks�r�sC1 n�r � Pn�sC2 n�r � � �Pn�r�1 n�r/g:

By (5.86) we have r C ks�r � s C 1 D n � ls�r � 1 and the required recurrence
relations for the coefficients R.L/ are proved.

Suppose that (5.84) is valid for a given t. Let U .0/ be a subset of U .s; t/ of
all sequences .w2;w3; : : : ;wt/ satisfying (5.39) without the condition on w1. Then
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by (5.57) and V2 DPn�2
�D0Œ2I n � ��TŒ2In��� we may write

HtC1 �
X

L2U .s;t/

bl2c � � � bltcR.L/
n�2X

�Dt�1
Œ2I n � ��TŒ2In���ŒnI 2�

�
n�2X

�D0
Œ2I n � ��TŒ2In��� �

X

W2U .0/

bw2c � � � bwtcR.W/ŒnI 2�:

Note that the set of all sequences .L; �/ such that L, � occur in the former line
equals U .s; t C 1/. In the same way the set of all sequences .� � 1;W/ such that
�;W occur in the latter line equals W .s; t/. Let us move all of the coefficients to the
utterly right position and put � D ltC1; � D w1 C 1. Then (5.85) for t C 1 arises
from Lemma 5.6, equality (5.53), and Lemma 5.4. ut
Definition 5.10 For a sequence L D .l2; : : : ; lt/, define

F.l2; l3; : : : ; lk/ D f: : : ;Pn�kCm n; : : : g; s < k � t;

where m runs through the set of all indices such that at the point m there is a jump
during a motion of lk to the left (in particular, m � 2). By Lemma 5.8 we may
claim that if W D .w1; : : : ;wt�1/ is a subordinate sequence for L, then for all k,
s < k � t � 1, the following equalities hold:

F.w2;w3; : : : ;wk/ D F.l2; l3; : : : ; lk/: (5.87)

Furthermore, for s � t � i � n, define

D.l2; : : : ; lt/ D f
t�s�1Y

rD0
.P1 n�r � � �Pn��.t/t�r.L/ n�r

� Pn�rC1 n�r � � �Pn n�r/ (5.88)



t�2Y

rDt�s

.P1 n�r � � �Pn��.t/t�r.L/ n�r
� Pn�tC2 n�r � � �Pn�r�1 n�r


 tPsCn�tC1 n�r � � �Pn n�r/g:

In another words, Pxy, x ¤ y occurs in D.l2; : : : ; lt/ if and only if

either n � tC 2 � y � n � tC s and
.1 � x � n � �.t/yCt�n.L/ or n � tC 2 � x < y or n � tC s < x � n/;

or n � tC s < y � n and .1 � x � n � �.t/yCt�n.L/ or y < x � n/:

(5.89)
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A word corresponding to a value n � r of the second index in (5.88) is called r-th
row of the element D.l2 : : : ; lt/. Respectively, a word in all letters of (5.88) with the
second index equal to n is called the last column.

Because �.i/i D li C 1 > lj provided that i < j � s, we have �.s/i D li C 1 and

D.l2; : : : ls/ D R.l2; : : : ; ls/: (5.90)

Lemma 5.17 Let L D .l2; : : : ; lt/ 2 U .s; t/, t > s > 2, and W D L0. Then for
each k, s < k < t, the following equality holds

FŒnI2�t�k�1bltc.l2; : : : ; lk/ D FŒnI2�t�k
.w2; : : : ;wk/:

Proof Let Pn�kCm n occurs in F.l2; : : : ; lk/. Then PŒnI2�t�k�1

n�kCm n D Pn�tCmC1 n�tCkC1.
Wherewith lt � t � 2 > t �m � 1, and so n � lt < n � tC mC 1 � n � tC kC 1.
Thus with the additional application of bltc as well as the application of ŒnI 2�, all
the indices are decremented by one, that is,

FŒnI2�t�k�1bltc.l2; : : : ; lk/ D FŒnI2�t�k
.l2; : : : lk/;

and we may use (5.87). ut
Lemma 5.18 The coefficients of (5.84) have the following representation

R.l2; : : : ; lt/ D .�1/t�sD.l2; : : : ; lt/
tY

kDsC1
FŒnI2�t�k

.l2; : : : ; lk/:

Proof Let us use induction on t. If t D s, then the required equality turns into (5.90).
Assume that the required equality is valid for t � 1. Then by (5.85) we have

R.l2; : : : ; lt/ D .�1/t�1�sDbltc.l2; : : : ; lt�1/T ŒnI2�
Œ2In�lt �

t�1Y

kDsC1
FŒnI2�t�k�1bltc.l2; : : : ; lk/

� .�1/t�1�sDŒnI2�.w2; : : : ;wt�1/Tbw2c���bwt�1cŒnI2�
Œ2In�.w1C1/�



t�1Y

kDsC1
FŒnI2�t�k

.w2; : : : ;wk/:

Using Lemma 5.17 and (5.87), we may factor out

.�1/t�s
t�1Y

kDsC1
FŒnI2�t�k

.l2; : : : lk/:
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Therefore it suffices to prove that

DŒnI2�.w2; : : : ;wt�1/Tbw2c���bwt�1cŒnI2�
Œ2In�.w1C1/�

� Dbltc.l2; : : : ; lt�1/T ŒnI2�
Œ2In�lt �

D D.l2; : : : ; lt/F.l2; : : : ; lt/:

This equality will arise from (5.12) with

fCg D T ŒnI2�
Œ2In�lt �

; fDg D Dbltc.l2; : : : ; lt�1/; fEg D F.l2; : : : ; lt/

if we prove the following three equalities:

DŒnI2�.w2; : : : ;wt�1/ D Dbltc.l2; : : : ; lt�1/ ? F.l2; : : : ; lt/; (5.91)

Tbw2c���bwt�1cŒnI2�
Œ2In�.w1C1/� D T ŒnI2�

Œ2In�lt �
? F.l2; : : : ; lt/; (5.92)

D.l2; : : : ; lt/ D DŒnI2�.w2; : : : ;wt�1/ ? T ŒnI2�
Œ2In�lt �

: (5.93)

Let us start with the first one. As lt � t� 2, we have n� lt < n� tC 3. Therefore
bltc decreases by one all of the second indices of D.l2; : : : ; lt�1/. So bltc shifts down
by one step all of the rows in (5.88) with t � 1 in place of t.

Every first index of a letter located after a central point in the explicit form (5.88)
of D.l2; : : : ; lt�1/ is greater than or equal to n � .t � 1/C 2 D n � tC 3. Therefore
bltc also decreases these indices by one. Hence all letters located in the rows after �
are shifted to the left by one step.

Consider letters that are located in the rows of the explicit form before the central
points. If wt�r�1 D lt�r�1 � 1, then by Lemma 5.5 at the point t there is no jump
during a motion of lt�r�1 to the right, that is, n � �.t�1/t�1�r.L/ < n � lt. Thus with
application of bltc the first indices of rth row located before � remain unchanged.
In this case the last position of .r C 1/th row of Dbltc.l2; : : : ; lt�1/ became vacant,
whereas the length of a part located before � equals n� �.t�1/t�r�1.L/ D n� �.t/t�r�1.L/,
see (5.31).

If wt�r�1 D lt�r�1, then �.t�1/t�r�1.L/ � lt. Hence the letter Pn�lt n�r is shifted
by bltc to Pn n�r�1. It takes the last position of the .r C 1/th row. The next letter
Pn�ltC1 n�r is shifted to the position of previous one, and so on. Thus the length of
a part located before � is decremented by one, and it can be set by the same formula
n � �.t�1/t�r�1.L/ � 1 D n � �.t/t�r�1.L/, see (5.31).

Furthermore, by Definition 5.10, we have

F.l2; : : : ; lt/ D f: : : ;Pn n�tCm; : : :g;

where wm D lm � 1. Replacing the index m with t � r � 1 in this definition, we see
that the letters of F.l2; : : : ; lt/ occupy positions only in the last column and exactly
the positions which are vacant in Dbltc.l2; : : : ; lt�1/.
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Thus the zero row of Dbltc.l2; : : : ; lt�1/ ? F.l2; : : : ; lt/ is vacant, whereas the rth,
r > 0, one is equal to the rth row of (5.88).

Consider the left hand side of (5.91). The permutation ŒnI 2� shifts to the left by
one step all of the gaps with central points of D.w2; : : : ;wt�1/ and shifts down by
one step all of the rows (because n � ..t � 1/ � 2/ > 2). Therefore the zero row of
DŒnI2�.w2; : : : ;wt�1/ is vacant while the rth one, r > 0, equals

P1 n�rP2 n�r � � �Pn��.t�1/t�r .W/�1 n�r
�r;

where r denotes a part of the rth row of (5.88) located after the central point.
By (5.49) the equality (5.91) is proved.

By the above consideration all rows (but the zero one) of the explicit representa-
tion of D.l2; : : : ; lt/ coincide with the same rows of DŒnI2�.w2; : : : ;wt�1/, whereas
T ŒnI2�
Œ2In�lt �

D fP1 nP2 n � � �Pn�lt�1 ng coincides with the zero row of D.l2; : : : ; lt/,

because �.t/t .L/ D lt C 1. Therefore (5.93) is valid.
Consider (5.92). Its right-hand side has the only row (a zero one)

fP1 nP2 n � � �Pn�lt�1 n � : : : Pn�tCm n : : :g;

where m runs through all indices such that lm D wm C 1.
Let us prove the following formula

Tbw2c���bwkc
Œ2In�.w1C1/� D fP12P32 � � �Pn��.k/1 .W/ 2

� � � �Pn�kCm 2 � � � g; (5.94)

where m runs through all indices less than or equal to k, such that lm D wmC 1. For
k D 1 the formula reduces to

TŒ2In�.w1C1/� D fP12P32 � � �Pn��.1/1 .W/ 2
g;

which is valid by Definition 5.4. We may start induction on k.
If lkC1 D wkC1, then because of definition (5.33) and Lemma 5.4 we have n �

�
.k/
1 .W/ < n � wkC1. Therefore bwkC1c does not shift the letters of (5.94) located

before the central points. By (5.39) the inequality wkC1 > k�2 is valid (for k < s still
wkC1 � s�2 > k�2), so n�kCm > n�wkC1 (as m � 2). Hence bwkC1c shifts to the
left by one step all of the letters located after the central point. Therefore in (5.94),
it is possible to replace k with kC 1, because in this case �.kC1/

1 .W/ D �.k/1 .W/.

If lkC1 D wkC1 C 1, then by (5.33) we have n � �.k/1 .W/ � n � wkC1. Therefore
bwkC1c shifts the letter Pn�wkC1 2 to a place Pn 2 at the last column, whereas it shifts
the next letter Pn�wkC1C1 2 to Pn�wkC1 2 and so on. Thus the segment located before

the central point is decremented by one n � �.k/1 .W/ � 1 D n � �.kC1/
1 .W/. As

above, all letters located after the central point are shifted to the left by one step,
wherewith at the end of the row there arise the letter Pn 2, the first index of which



5.8 Existence Condition 187

equals n � .k C 1/C m with m D k C 1. Thus in (5.94), it is possible to replace k
with kC 1 in this case also.

If we apply ŒnI 2� to (5.94) with k D t � 1 and use the fact that the last head
�
.t�1/
1 .W/ equals lt, see (5.34), then we obtain (5.92). ut

Lemma 5.19 If a sequence L D .l2; : : : ; ln/ satisfies condition (5.38) with t D n,
then �.n/j .L/ D n � 1 for all j, 2 � j � n.

Proof Consider conditions (5.41) with nC 1 in place of n, and with i D n� 1. The
sequence � D .	1; : : : ; 	n�1/ with 	k D lkC1 C 1, 1 � k � n � 1 satisfies these
conditions: k D ..k C 1/ � 2/C 1 � lkC1 C 1 D 	k � n � 1 (for k C 1 � s still
lkC1 � s�2 � .kC1/�2). Evidently, if all members of a sequence increase by one,
then all heads will increase by one as well. After this, it remains to use Lemma 5.13.

ut
Now we accumulate sufficient information to prove Theorem 5.5.

Proof By Lemma 5.19 every word located at a row of (5.88) before the central point
has just one letter. The first product of (5.88) has

n�s�1X

rD0
.rC 1/ D .n � s/.n � sC 1/=2

letters, the second one has

.

n�2X

rDn�s

.n � r � 1//C .s � 1/.n � s/ D s.s � 1/=2C .s � 1/.n � s/I

that is, the total number of letters in D.l2; : : : ; ln/ equals n.n � 1/=2 D C2
n.

If a letter Pxy with x < y occurs in D.l2; : : : ; ln/, then by the definition (5.89)
either x D 1, or 2 � y � s and 2 � x < y, that is, the letter Pxy appears in (5.88)
before the gap t. Definition (5.88) shows that the second index never equals one.
This definition also shows that if the first index is greater than the second one, then
it is greater than s. Thus the letter Pyx with 2 � y � s and 2 � x < y does not occur
in (5.88). Hence D.l2; : : : ; ln/ has no conjugated letters. By Definition 5.3 we have
D.l2; : : : ; ln/ 2 I. By Lemmas 5.16 and 5.18 we are done. ut

5.8 Existence Condition

Theorem 5.6 There exists a nonzero multilinear quantum operation in a set of
quantum variables x1; : : : ; xn if and only if this set is conforming.

Proof Let us use induction on n. For n D 2; 3; 4 this statement follows from
Theorems 2.5, 4.5, and 4.6. The necessity that x1; : : : ; xn conform to have a nonzero
multilinear operation is proved in Corollary 4.1.
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Let x1; : : : ; xn be a conforming set of quantum variables. If this set have a proper
conforming subset, say, x1; : : : ; xm, 2 � m < n, then by inductive supposition there
exists a nonzero multilinear quantum operation W.x1; : : : ; xm/. The operation W as
an element of the free character Hopf algebra is a skew-primitive element with a
character 
 D 
x1
x2 � � �
xm and a group-like element g D gx1gx2 � � � gxm ; that is,

.W/ D W ˝ 1C g˝W; h�1Wh D 
.h/W; h 2 G:

Consider a new quantum variable z which is related to the character 
 and to the
group-like element g. For every nonzero multilinear quantum operation

W1.z; xmC1; xmC2 : : : ; xn/

we can define a superposition

W1.W.x1; : : : ; xm/; xmC1; : : : ; xn/

that does not equal to zero as a polynomial. By the inductive hypothesis the
operation W1 exists if the set z; xmC1; : : : ; xn is conforming; that is,

Y

i>m


z.gxi/ �
Y

i>m


xi.gz/ �
Y

m<i¤j�n


xi.gxj/ D 1:

The left-hand side of this formula differs from the left-hand side of (5.1) only by the
factor

Q
1�i¤j�m 


xi.gxj/. Thus if both sets x1; : : : ; xm and x1; : : : ; xn are conforming,
then z; xmC1; : : : ; xn does as well.

Therefore it suffices to prove the existence of an operation under additional
assumption that the given set of quantum variables has no proper conforming
subsets. In the next theorem we will prove a more general statement. ut
Theorem 5.7 If each conforming subset of a conforming set x1; : : : ; xn contains xn,
then the dimension of the space of all multilinear quantum Lie operations equals
.n � 2/Š, during which there exists an operation ŒŒx1; : : : ; xn�� such that a basis of
the space consists of operations ŒŒx1; x

�
2 ; : : : ; x

�
n�1; xn��, where � runs through the

symmetric group S1;nn .

Proof By Theorem 5.15 the elements V.k/, 3 � k � n, defined by (5.26) are
invertible in ˙�1FŒFn� � S1;nn . This allows us for each permutation � 2 S1;nn to
define an element BŒŒ��� 2 ˙�1FŒFn� � S1n by the following formula:

BŒŒ��� D A2.2; n/C A3.3; n/C � � � C Anid;

where Ai are defined by induction

A2 D �; Ak D �Ak�1D.k/V
�1
.k/ ; 3 � k � n;



5.8 Existence Condition 189

or in the explicit form

BŒŒ��� D �
 
.2; n/C

nX

kD3
.�1/k.

kY

iD3
D.i/V

.�1/
.i/ /.k; n/

!
D
X

�2S1n

B��
�1: (5.95)

Denote ˇ� D '.B�/, where ' is defined by (5.11) and (5.18). Let

ŒŒx1; x2; : : : ; xn���
dfD
X

�2S1n

ˇ�Œ: : : ŒŒx1; x2�; x3�; : : : xn�
� ;

Let us show that this is a quantum Lie operation.
By Theorem 5.3 we have to prove that BŒŒ��� � Vs � 0; 2 � s � n. The element

BŒŒ��� has the form (5.20) with Ai D Ai. Therefore formula (5.28) holds. According
to the definition of the elements Ak, this formula implies

BŒŒ��� � V2 D D2.2; n/;

where D2 is defined by (5.25) with A in place of A . The elements A2; : : : ;An

generate a right decreasing module over FŒFn� � S1;nn . Therefore we may apply
Theorem 5.4. Because fXg belongs to the conforming ideal, the product on the
right-hand side of (5.59) belongs to ker.'/S1n, see (5.58) and Definition 5.3. A right
multiplication of (5.59) by .

Qn�3
kD0Œn � 1I 2�V.n�k//

�1 shows that D2 � 0; that is,
relation (5.19) with s D 2 holds.

If s � 3, then by Theorem 5.5 there exists a representation

Vs � ŒnI 2�s�1
n�1Y

tDs

.V.n�tC2/ŒnI 2�/ D V2 � EC F; (5.96)

where E 2 FŒFn� � S1n and F 2 IS1n. Let us multiply (5.96) from the left by BŒŒ��� .
Using BŒŒ��� � V2 � 0 and BŒŒ��� � F 2 ˙�1IS1n � ˙�1 ker.'/S1n, we obtain

.BŒŒ���Vs/ � ŒnI 2�s�1
n�1Y

tDs

.V.n�tC2/ŒnI 2�/ � 0:

The second factor of the left-hand side of this equality is invertible. Thus BŒŒ��� �Vs �
0, and by Theorem 5.3 the polynomial ŒŒx1; x2; : : : ; xn��� is a quantum Lie operation.

Formula (5.95) demonstrates that for � 2 S1;nn .2; n/, only one of the B� ’s
does not equal zero, that is, B��1 D 1. As x1x�.2/ � � � x�.n/ is the only mono-
mial of Œ: : : ŒŒx1; x2�; x3� : : : ; xn�

� starting with x1, we obtain that just one mono-
mial of the type x1xn � � � of ŒŒx1; x2; : : : ; xn����1 has a nonzero coefficient, that is,
x1xnx�3 � � � x�n�1x

�
2 , and this coefficient equals one. In particular, the polynomials

ŒŒx1; : : : ; xn���, � 2 S1;nn are linearly independent.
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Corollary 5.1 states that the dimension of the space of multilinear operations is
less than or equal to .n�2/Š. We have found .n�2/Š linearly independent operations.
This implies that the operations ŒŒx1; x2; : : : ; xn���; � 2 S1;nn span the space.

Furthermore, for any permutation � 2 S1;nn , consider a new set of quantum
variables y1 D x1; y2 D x�2 , . . . , yn�1 D x�n�1; yn D xn. This set is conforming
because the left-hand side of (5.1) for the y’s differs from the left-hand side for the
x’s by the order of factors only. Thus the following operation is defined:

ŒŒy1; y2; : : : ; yn�1; yn��id
dfDŒŒx1; x�2 ; : : : ; x�n�1; xn��id:

As the coefficient at y1yny�.3/ � � � y�.n�1/y�.2/ D x1xnx��3 � � � x��n�1x
��
2 ; � 2 S1;nn does

not equal zero in the only case, � D id, we have

ŒŒx1; x
�
2 ; : : : ; x

�
n�1; xn��id D ŒŒx1; x2; : : : ; xn����1 :

Thus the operation ŒŒx1; x2; : : : ; xn��id satisfies all properties stated in the theorem.
ut

5.9 Interval of Dimensions

Recall that a conforming ideal is an ideal I of the algebra FŒFn� generated by all
elements of the form fWg, where W is an arbitrary semigroup word in Pij of length
n.n � 1/=2 that has neither double nor conjugated letters. The variables x1; : : : ; xn

are conforming if and only if the ideal ker.'/ contains I. The conforming ideal
is invariant with respect to the action of Sn. In particular, the two-sided ideal of
FŒFn� � Sn generated by I coincides with the right ideal ISn.

Consider a field of rational functions K over F in .n.n � 1/=2/� 1 variables tis,
1 � i ¤ s � n; .i; s/ ¤ .1; n/, and put

t1n D .
Y

.k;s/¤.1;n/
tks/

�1:

Then the kernel of the homomorphism � W Pij ! tij coincides with the conforming
ideal I, and � defines an embedding of FŒFn�=I in K.

Consider a new set of quantum variables X1; : : : ;Xn with which free generators
G1; : : : ;Gn of a free Abelian group are associated, whereas the characters over K
are defined by 
Xi.Gj/ D tij.

Definition 5.11 System (5.8) with tij in place of pij is said to be the generic system.
Its solutions define generic quantum operations in X1;X2; : : : ;Xn with coefficients
from K.
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The parameters tij of the generic system are connected by relations that include
all parameters tij. Therefore the set of generic variables X1; : : : ;Xn has no proper
conforming subsets. By Theorem 5.7 there exists precisely .n � 2/Š linearly
independent generic operations.

All coefficients of the generic system belong to a subalgebra FŒtij� over the
minimal subfield F generated by tij; 1 � i; j � n. Hence there exists a fundamental
system of solutions in the field K D F.tij/. Moreover, multiplying solutions by
suitable elements from FŒtij�, we can find a fundamental system of solutions that
belong to FŒtij�. If ��; � 2 S1n is a solution with �� 2 FŒtij�, then ˇ� D ' 0.��/ are
solutions of the basic system (5.8), where ' 0 D ' ı ��1 is a natural homomorphism
from FŒtij� to k. In this way, the generic operations define operations with arbitrary
values of pij. Nevertheless, the homomorphism ' 0 not necessary (almost never) has
an extension up to a homomorphism of K D F.tij/. By this reason, there may exist
operations that do not appear from the generic ones in the above manner.

Theorem 5.8 If x1; : : : ; xn is a conforming set of quantum variables, then the
dimension of the space of all multilinear quantum Lie operations in this set is greater
then or equal to .n � 2/Š and less than or equal to .n� 1/Š
Proof To prove the first part of the theorem, it suffices to demonstrate that the rank
of the basic system is less then or equal to

.n � 1/Š� .n � 2/Š D .n � 2/Š.n� 2/:

This is equivalent to the condition that all minors of the order greater then or equal
to .n � 2/Š.n � 2/ are zero. Since the minors are integer functions in the matrix
coefficients, it suffices to show that this condition is valid for the generic system.
By Theorem 5.7 the generic system has precisely .n � 2/Š solutions. Hence all the
minors are zero in FŒtij�. Applying the homomorphism ' 0 W tij 7! pij, we obtain that
the minors are zero in k as well.

The basic system has not more than .n � 1/Š linearly independent solutions
because it has only .n � 1/Š unknowns. ut

Of course, if the dimension is grater than .n � 2/Š, then there must be operations
that are not reduced to the generic ones. Nevertheless, it looks likely that if we
include superpositions of operations in lesser number of variables, than it would be
possible to construct all the operations from the generic ones. Moreover, the detail
analysis of the case n D 4 given in Theorem 4.6 provides a hypothesis that in this
case all the operations are linear combinations of superpositions.

Conjecture 5.1 If the dimension of the space of multilinear operations in conform-
ing set of quantum variables x1; : : : ; xn is not .n�2/Š, then all multilinear operations
are linear combinations of superpositions of operations with lesser n.
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5.10 Symmetric Operations

A quantum Lie operation ŒŒx1; : : : ; xn�� is called symmetric (or skew symmetric) if for
every permutation � 2 Sn the following equality is valid

ŒŒx�.1/; : : : ; x�.n/�� D ˛� ŒŒx1; : : : ; xn��; (5.97)

where ˛� 2 k. In the case of quantum operations, as well as in the case of arbitrary
partial operations, we have to explain what does it mean the left hand side of the
above equality. Strictly speaking, the left hand side is defined only if x�.i/ has the
same parameters 
; g as xi does. By definition only in this case the substitution
xi  x�.i/ is admissible. In other word, all parameters pit should be equal each
other. This is very rigid condition. It excludes both the color super-brackets and the
above defined generic operations.

However, we may suppose that ŒŒx1; : : : ; xn�� is a polynomial whose coefficients
depend on the quantization parameters, 
xi ; gxi ; that is, there are shown distin-
guished entries of pit in the coefficients. Then a substitution xi  y means not only
the substitution of the variable but also one of the parameters gi  gy; 


xi  
y.
In particular, the permutation of variables means the application of this permutation
to all indices: pit  p�.i/ �.t/.

This interpretation of symmetry is not contradictory only if the application of
the permutation is independent of the way how the coefficients of ŒŒx1; : : : ; xn��

are represented as rational functions in pit; p�1
it . The action of permutations is

independent of the above representation if (and only if) ker .'/ is invariant ideal
with respect to the action of Sn.

Definition 5.12 A collection of quantum variables x1; : : : ; xn is said to be symmet-
ric if ker .'/ is an invariant ideal with respect to Sn, or, equivalently, the action of Sn

on the algebra FŒpit� given by p�it D p�.i/�.t/ is well-defined.

The symmetry of a collection has nothing to do with the symmetry of the matrix
jjpitjj, while it means the symmetry of relations between the parameters pit.

Thus, to impart a sense to the term “symmetric operation”, we should, first,
suppose that the coefficients of the operation belong to the field F.pit/, which does
not affect the generality; and, then, we should consider only symmetric sets of
quantum variables. Yet, this is a bounding condition. Nevertheless, this condition
excludes no one of the above examples. Moreover, the existence of the symmetric
set Xi with generic parameters tij is a key argument of the proof of both the existence
theorem and its corollaries. Therefore, the symmetric collections of variables are of
a special interest.

Consider a symmetric polynomial over F.pit/:

f.x1; : : : ; xn/ D
X

��x�.1/ � � � x�.n/:
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Without loss of generality (if necessary by applying a permutation), we may assume
that the monomial x1x2 � � � xn has a coefficient 1. Let us compare coefficients at
x�.1/x�.2/ � � � x�.n/ in the both sides of (5.97). We have ˛� D ��

��1 . Afterwards the
equality (5.97) takes a form

��
��1

X

�2Sn

��x�.1/ � � � x�.n/ D .
X

�2Sn

��x�.1/ � � � x�.n//�

D
X

�2Sn

��� x�.�.1// � � � x�.�.n// D
X

�2Sn

��
���1x�.1/ � � � x�.n/:

This implies ��
���1 D ��

��1��. Let us replace � D ��1 and then apply � to both
sides of the latter equality. We see that the polynomial f is symmetric if and only if

��� D �����; with ˛� D ����1 D ��1
� : (5.98)

In other words, the set of normed symmetric polynomials can be identified with the
first cogomology group H1.Sn;F.pit/

�/ with values in the multiplicative group of
F.pit/.

Now a natural question arises: does there exist a basis of the space of multilinear
quantum Lie operations consisting of the symmetric operations, provided that the
variables form a symmetric set?

We start with some counterexamples. Firstly we consider the case when the
variables are absolutely symmetric; that is, pit D q, 1 � i ¤ t � n.

Lemma 5.20 If the set of variables is absolutely symmetric and n > 3, then the
basis consisting of symmetric operations does not exist. If n D 3, then the required
basis exists only if q ¤ ˙1. The bilinear operation is symmetric.

Proof If the set of variables is absolutely symmetric, then the group Sn acts identi-
cally on the field F.pit/. Therefore there exists only two symmetric polynomials up
to a scalar factor:

S.x1; : : : ; xn/ D
X

�2Sn

x�.1/ � � � x�.n/;

T.x1; : : : ; xn/ D
X

�2Sn

.�1/�x�.1/ � � � x�.n/:

On the other hand, if the existence condition, qn.n�1/ D 1, holds, then by
Theorem 5.8 the dimension of the space of multilinear operations can not be less
than .n� 2/Š.

Thus if n > 4, or if n D 4 and the characteristic of the ground field equals 2, then
wittingly the basis consisting of symmetric operations does not exist.

If n D 4, then we may use the analysis from the proof of Theorem 4.6: the
dimension is 2 only if q12 D 1; q6 ¤ 1; q4 ¤ 1, or, equivalently, q6 D �1;
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q2 ¤ �1. If under these conditions the polynomials S; T are quantum operations,
then they should be expressed trough the quadrilinear operation given in (4.50) with
ˇ� defined in (4.49). The coefficients of that expression are equal to the coefficients
at x1x2x3x4 and x1x3x2x4 of S and T respectively:

S D ŒŒx1; x2; x3; x4��C ŒŒx1; x3; x2; x4��;
T D ŒŒx1; x2; x3; x4�� � ŒŒx1; x3; x2; x4��:

This implies that 2ŒŒx1; x2; x3; x4�� D S C T. In particular all coefficients of
ŒŒx1; x2; x3; x4�� at monomials corresponding to odd permutations have to be zero.
The explicit formula (4.49) demonstrates that the coefficient at x1x2x4x3 equals

� fp13p23gfp13p23p43g D �
q2 � q�2

q3 � q�3 ¤ 0;

for q4 ¤ 1. Thus in this case the symmetric basis neither exists.
If n D 3, then the existence condition takes the form q6 D 1. If q ¤ ˙1,

then there exists only one trilinear operation up to a scalar multiplication, and this
operation is symmetric, see Theorem 4.5 and formula (4.31). More precisely, if
q3 D 1, then (4.30) equals S, whereas if q3 D �1, then it equals T.

If q D ˙1, then the space of operations is generated by two polynomials:
ŒŒx1; x2�; x3�, and ŒŒx1; x3�; x2�, while SC T is not a linear combination of them. ut
Lemma 5.21 Let the quantization matrix of a symmetric quadruple of quantum
variables has the form

jjpitjj D

0
BB@

� p q s
p � s q
q s � p
s q p �

1
CCA ;

where p; q; s are pairwise different and p2q2s2 D 1.

1. If the characteristic of the field k is not equal to 2, then there do not exist nonzero
quadrilinear symmetric quantum Lie operations at all.

2. If the characteristic is 2, then there exist not more then two linearly independent
quadrilinear symmetric operations.

3. In both cases the dimension of the whole space of quadrilinear quantum Lie
operations equals 3.

Proof If the parameter matrix has the form given in the lemma, then the action of
the group S4 on the field F.pit/ is not faithful. The kernel of this action includes the
following four elements

id; a D .12/.24/I b D .13/.24/I c D .14/.23/:
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These elements form a normal subgroup H C S4 isomorphic to Z2 
 Z2. Let

S D
X

�2S4

��x�.1/x�.2/x�.3/x�.4/

be some symmetric quantum operation, �id D 1. According to (5.98) with h D � D
� 2 H we have �2h D �h2 D �id D 1; that is, �h D ˙1 2 F. Moreover, all of the
elements �h; h ¤ id, h 2 H may not be equal to �1 because, again by (5.98), the
product of every two of them equals the third one. On the other hand, formula (5.98)
with h 2 H; g 2 S4 implies that �g

g�1�g D 1 and

�g�1hg D �hg
g�1�hg D �g

g�1�
g
h�g D �g

h D �h:

Therefore all of �h; h 2 H equal each other and equal to 1.
Furthermore, the polynomial S, as well as any other quantum Lie operation, has

a commutator representation:

S D
X

�2S14

ˇ�ŒŒŒx1; x�.2/�; x�.3/�; x�.4/�:

If we compare coefficients at monomials x1x2x3x4 and x4x3x2x1, we obtain 1 D
�id D ˇid and 1 D �.14/.23/ D ˇid.�p12/.�p13p23/.�p14p24p34/ D �p2q2s2 D �1:
This completes the first statement.

In both cases, the condition p2q2s2 D 1 implies that all three element subsets
of the given quadruple are conforming. If some pair of them does as well, say 1 D
p12p21 D p2, then by symmetry all others pairs are conforming too; that is, q2 D
s2 D 1. In this case p; q; s 2 F. Thus p D p.23/ D q D q.34/ D s. This contradicts
to conditions of the lemma. Therefore by Theorem 4.6, see the second case in the
proof of the second part, the operations space is generated by the following three
polynomials

ŒW; x4�I ŒW� ; x1�I ŒW�2 ; x2�;

where � D .1234/ is the cyclic permutation, whereas W is the main trilinear
operation in x1; x2; x3. By the definition of this operation, see (4.30), in the case
of the characteristic 2, we have

W D .x1x2x3 C x3x2x1/C pC p�1

qC q�1 .x2x3x1 C x1x3x2/

C sC s�1

qC q�1 .x3x1x2 C x2x1x3/:
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Let

S D �ŒW; x4�C �1ŒW� ; x1�C �2ŒW�2 ; x2�:

If we compare the coefficients at the monomials x1x2x3x4 and x2x1x4x3, then we
obtain � C �1 D �id D 1; �2 D �.12/.34/ D 1. Therefore

S D �.ŒW; x4�C ŒW� ; x1�/C .ŒW� ; x1�C ŒW�2 ; x2�/:

Thus the symmetric operations span not more then two-dimensional subspace. ut
Theorem 5.9 If x1; x2; : : : ; xn is a symmetric but not absolutely symmetric collec-
tion of quantum variables, then the space of multilinear quantum Lie operations is
spanned by symmetric operations with the only exception given in Lemma 5.21.

Proof Consider the skew group algebra M D F.pit/ � Sn. The permutation group
action defines a structure of right M-module on the set of multilinear polynomials:

X

�

��x�.1/ � � � x�.n/ �
X

�

ˇ�� D
X

�;�

ˇ��
�
�x�.�.1// � � � x�.�.n//:

A polynomial f is symmetric if and only if it generates a submodule of dimension
one over F.pit/. The space of quantum Lie operations is a right M-submodule,
provided that the collection of variables is symmetric.

Indeed, let the basic system, see (5.8), is fulfilled for the coefficients ˇ� of a
polynomial f represented by (5.2). The application of a permutation � 2 S1n to the
basic system demonstrates that the coefficients of the polynomial f� satisfy the same
system up to rename of the variables xi  x�.i/. Therefore f�; � 2 S1n are quantum
Lie operations. If we replace the roles of indices 1 with 2, then we obtain that f�; � 2
S2n are quantum Lie operations as well. As the subgroups S1n and S2n with n > 2

generate Sn, all multilinear quantum Lie operations form an M-submodule.
Assume that Sn acts faithfully on the field F.pit/. In this case, M is isomorphic

to the trivial crossed product of the field F.pit/ with the Galois group Sn. By
Theorem 1.12, the skew group algebra M is isomorphic to the algebra of nŠ by
nŠ matrices over the Galois subfield F1 D F.pit/

Sn . This implies that each right M-
module is a direct sum of simple submodules, whereas all simple submodules are
isomorphic to the nŠ-rows module over the Galois field F1, see Corollary 1.4. On the
other hand, the dimension of F.pit/ over F1 equals nŠ too. Because every right M-
module is a right space over F.pit/, all irreducible right M-modules are of dimension
one over F.pit/. This proves the theorem in the case of a faithful action.

If n > 4 or n D 3, while the action is not faithful, then all even permutations act
identically. This immediately implies that the collection of variables is absolutely
symmetric, pit D q.

Let n D 4. If the action is not faithful, then all even permutations, id; a D
.12/.24/I b D .13/.24/I c D .14/.23/, act identically. This implies that the
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parameter matrix has the required form. The existence condition for quantum Lie
operations is p4q4s4 D 1. If p2q2s2 D 1, then we obtain the example given in
Lemma 5.21. Therefore, assume that p2q2s2 D �1 ¤ 1.

If p; q; s are pairwise different, then S14 acts faithfully on F.p; q; s/. Therefore
M1 D F.p; q; s/ � S14 is the algebra of 6 by 6 matrices over the Galois field F1. This
is a central simple algebra. Thus, by Theorem 1.13 it splits in M as a tensor factor
M D M1˝Z1, where Z1 is a centralizer of M1 in M. Let us calculate this centralizer.

First of all, Z1 is contained in the centralizer of F.p; q; s/, that equals the group
algebra A D F.p; q; s/Œid; a; b; c�. This group algebra has a decomposition in a direct
sum of ideals

A D F.p; q; s/e1 ˚ F.p; q; s/e2 ˚ F.p; q; s/e3 ˚ F.p; q; s/e4;

where e1 D 1
4
.idC aC bC c/; e2 D 1

4
.idC a� bC c/; e3 D e.23/2 ; e4 D e.34/2 . The

stabilizer of e2 in S14 equals a two-element subgroup S1;34 . Let F2 D F.p; q; s/S
1;3
4 be

a Galois subfield of this subgroup. Then Z1 equals the centralizer of S14 in A. This
consists of the sums

˛e1 C ˇe2 C ˇ.23/e3 C ˇ.34/e4; ˛ 2 F1; ˇ 2 F2:

Thus, Z1 ' F1 ˚ F2. Consequently, M ' .F1/6�6 ˚ .F2/6�6.
This result means that up to isomorphism there exists just two irreducible right

modules over M. One of them equals the 6-rows space over F1, whereas another
one equals the 6-rows space over F2. The dimensions of these modules over F1
are equal to respectively 6 and 18. Therefore, the first module is of dimension one
over F.p; q; s/, whereas the second one is of dimension three. By Theorem 4.6 the
module of quantum Lie operations is of dimension two over F.p; q; s/. Of course,
its irreducible submodules may not be of dimension three. Thus all of them are of
dimension one. ut
Theorem 5.10 There exists a collection of .n � 2/Š generic symmetric multilinear
quantum Lie operations that span the space of generic multilinear quantum Lie
operations.

Proof The set of generic variables is symmetric because the only defining relation,Q
i¤j tij D 1, is invariant with respect to the action of the symmetric group Sn. Hence

the statement follows from the above theorem. In fact, Sn acts faithfully on the field
F.tij/. So we do not need the detail analysis of the exceptions: M is an algebra of
nŠ by nŠ matrices over the Galois field, and all irreducible right M-modules are of
dimension one over F.tij/. ut

A similar statement is valid for quantum variables considered by Paregis, see
Example 4.5. By definition the quantization parameters defined by the Pareigis
quantum variables are related by pitpti D �2; 1 � i ¤ j � n, where � is a
nth primitive root of 1. These relations are invariant with respect to the action
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of the symmetric group. Moreover, the Pareigis quantum Lie operation given in
Example 4.5 is symmetric.

Corollary 5.2 The total number of linearly independent symmetric multilinear
quantum Lie operations for symmetric, but not absolutely symmetric, Pareigis
quantum variables is greater than or equal to .n � 2/Š.

5.11 Chapter Notes

Pareigis quantum Lie operations appeared in [183–185]. The equality

Y

1�i¤s�n

pis D 1

as a necessary and sufficient condition for a set of quantum variables to possess a
nonzero multilinear quantum Lie operation was established in [125].

In [81, 82], Frønsdal and Galindo determined that the dimension of the space of
multilinear constants for differential calculus defined by the diagonal commutations
rules, dxi �xs D pisxs �dxi, also equals .n�2/Š, provided that the above equality holds
but that

Q
i¤s; i;s2J pis ¤ 1 for all proper subsets J of f1; 2; : : : ; ng containing more

than one element. Certainly, this fact implies that the operations and constants are
identical in this particular case.

The results concerning symmetric and generic operations are from [126, 130].



Chapter 6
Braided Hopf Algebras

Abstract The main goal of this chapter is a detailed construction of the free braided
Hopf algebra khVi and the shuffle braided Hopf algebra Sh� .V/ on the tensor space
of a given braided space V . Then we define a Nichols algebra B.V/ as a subalgebra
generated by V in Sh� .V/ and provide some characterizations of it. Finally we adopt
the Radford biproduct and the Majid bozonization to character Hopf algebras. All
calculations are done in the braid monoid (not in the braid group), therefore in the
constructions there is no need to assume that the braiding is invertible.

The main goal of this chapter is a detailed construction of free braided Hopf algebra
khVi and braided shuffle Hopf algebra Sh� .V/ on the tensor space of a given braided
space V . We then define a Nichols algebra B.V/ as a subalgebra generated by
V in Sh� .V/ and provide some characterizations of this algebra. Finally we adopt
the Radford biproduct decomposition and the Majid bozonization to the class of
character Hopf algebras. All calculations are performed in the braid monoid (not in
the braid group). Therefore, in the constructions, we are not required to assume that
braiding is invertible. In the final section, we discuss when a structure of a braided
Hopf algebra on a filtered space R induces that structure on the associated graded
space gr R.

6.1 Braided Objects

A linear space V is called a braided space if there is fixed a linear map � W V˝V !
V ˝ V (in general not necessary invertible) that satisfies the braid relation:

.� ˝ id/.id˝ �/.� ˝ id/ D .id˝ �/.� ˝ id/.id˝ �/: (6.1)

Example 6.1 If x1; x2; : : : ; xn is the basis of a linear space V; then for arbitrary
parameters qis 2 k; 1 � i; s � n; the map

� W xi ˝ xs 7! qis � xs ˝ xi

satisfies the braid relation. This is the so called diagonal braiding.

© Springer International Publishing Switzerland 2015
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Let V and V 0 be spaces with braidings � and � 0 respectively. A linear map ' W V !
V 0 is called a homomorphism of braided spaces (or it respects the braidings) if

�.' ˝ '/ D .' ˝ '/� 0:

Let .a˝ b/� D P
bi ˝ ai; and .a0 ˝ b0/� D P

b0
i ˝ a0

i. In this case the definition
of the homomorphism takes the form

X
'.bi/˝ '.ai/ D

X
'.b/i ˝ '.a/i;

or, informally, '.ai/ D '.a/i.
Proposition 6.1 If a linear map ' W V ! V 0 is a homomorphism of braided spaces,
then W D ker' satisfies

.V ˝W CW ˝ V/ � � V ˝W CW ˝ V: (6.2)

Conversely, if a subspace W satisfies (6.2), then the quotient space V=W has an
induced braiding such that the natural homomorphism ' W V ! V=W is a
homomorphism of braided spaces.

Proof To prove the statement, we need the following statement on kernels of tensor
products of maps.

Lemma 6.1 If ' W V ! V 0 is a linear map, then

ker.' ˝ '/ D V ˝ ker' C ker' ˝ V: (6.3)

Proof The required equality follows from (1.49) with  D '. ut
Let ' be a homomorphism of braided spaces. If w 2 W; v 2 V; then by definition

of the braided homomorphism we have

.v ˝ w/�.' ˝ '/ D .'.v/˝ '.w//� 0 D 0I

that is, .V ˝W/� � ker .' ˝ '/; and Lemma 6.1 applies. In a perfect analogy, we
have .W ˝ V/� � ker .' ˝ '/.

Conversely, assume that W satisfies (6.2). The quotient space V=W is isomorphic
to a complement T of W to V . Let us define � 0 on T via

� 0 D �.� ˝ �/;

where � is a linear projection � W V ! T.
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We have .� � id/� D 0; and therefore im.� � id/ � W. Due to (6.2), the latter
inclusion implies

.im.� � id/˝ V/�.� ˝ �/ D 0;

or in the operator form, ..� � id/˝ id/�.� ˝ �/ D 0; which is equivalent to

.� ˝ id/�.� ˝ �/ D �.� ˝ �/: (6.4)

In a perfect analogy, we have

.id˝ �/�.� ˝ �/ D �.� ˝ �/: (6.5)

These two equalities imply

.� ˝ �/� 0 D .� ˝ �/�.� ˝ �/ D �.� ˝ �/;

and for � 0
1 D � 0 ˝ id; � 0

2 D id˝ � 0; �1 D � ˝ id; �2 D id˝ �; we have

� 0
1�

0
2�

0
1 D �1�2�1.� ˝ � ˝ �/ D �2�1�2.� ˝ � ˝ �/ D � 0

2�
0
1�

0
2;

which is required. ut
An algebra R with a multiplication m W R˝ R! R is called a braided algebra if

it is a braided space and

.m˝ id/� D �2�1.id˝m/; .id˝m/� D �1�2.m˝ id/: (6.6)

In these formulas, as above, we use the so-called “exponential notation” for actions
of the operators; that is, the operators in a superposition act from the left to the right.
For example, .m˝ id/� acts on V ˝ V ˝ V via

.x˝ y˝ z/.m˝id/� D .xy˝ z/� D �.xy˝ z/;

whereas �2�1.id˝m/ acts on V ˝ V ˝ V as follows

.x˝y˝z/�2�1.id˝m/D .x˝.y˝z/� /�1.id˝m/ D .
X

i

.x˝zi/
�˝yi/

.id˝m/ D
X

i;j

zij˝xijyi;

where .y ˝ z/� D .y ˝ z/� D P
i zi ˝ yi and .x ˝ zi/

� D .x ˝ zi/� DP
j zij ˝ xij.
By definition, a homomorphism of braided algebras is a linear map that is both a

homomorphism of algebras and braided spaces.
A coalgebra .C; b; "/ is called braided if it is a braided space and

�."˝ id/ D .id˝ "/�; �.id˝ "/ D ."˝ id/� I (6.7)

�.id˝b/ D .b ˝ id/�2�1; �.b ˝ id/ D .id˝b/�1�2: (6.8)
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By definition, a homomorphism of braided coalgebras ' W V ! V 0 is a
homomorphism of coalgebras,

b.'.a// D
X

.a/

'.a.1//˝ '.a.2//; ".'.a// D ".a/; (6.9)

that respects the braidings.
A braided bialgebra is an associative braided algebra and a braided coalgebra H

(with the same braiding) where the coproduct is an algebra homomorphism

b W H ! H˝H: (6.10)

Here, H˝H is the ordinary tensor product of spaces with a new multiplication

.a˝b/.c˝d/ D
X

i

.aci˝bid/; where .b˝ c/� D
X

i

ci ˝ bi: (6.11)

A homomorphism of braided bi-algebras is a homomorphism of coalgebras and
braided algebras.

By definition, a braided Hopf algebra is a braided bialgebra H with a linear map
�b W H ! H called a braided antipode that satisfies the usual identity

b.a/.�b˝id/m D b.id˝�b/m D ".a/ � 1: (6.12)

A homomorphism of braided Hopf algebras is a homomorphism of braided bi-
algebras that satisfies

'.�b.a// D �b.'.a//: (6.13)

Definition 6.1 A subspace W � V of a braided Hopf algebra V is called a braided
Hopf ideal if the following conditions are met:

1. W is an ideal of the algebra V;
2. .V ˝W CW ˝ V/� � V ˝W CW ˝ VI
3. ".W/ D 0I
4. b.W/ � V ˝W CW ˝ VI
5. �b.W/ � W.

Lemma 6.2 If the map ' W V ! V 0 is a homomorphism of braided Hopf algebras,
then W D ker' is a braided Hopf ideal of V. Conversely, if W � V is a braided
Hopf ideal, then the quotient algebra V=W has induced braiding, coproduct, and
braided antipode such that the natural homomorphism ' W V ! V=W is a
homomorphism of braided Hopf algebras.
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Proof We have to check all five conditions of Definition 6.1. The first one is evident.
To prove the second one, we may apply Lemma 6.1:

.V ˝W CW ˝ V/�.' ˝ '/ D Œ'.V/˝ '.W/C '.W/˝ '.V/�� 0 D 0:

The third one follows from the second formula of (6.9), whereas the forth one
follows from the first formula of (6.9) and Lemma 6.1. Equality (6.13) implies the
fifth condition.

Conversely, let W satisfies all conditions of Definition 6.1. By Proposition 6.1 the
natural homomorphism of algebras ' W V ! V=W is a homomorphism of braided
spaces. Formulas (6.9) inspire the definition of a counit and a coproduct on V=W:

b.v CW/ D
X

.v/

.a.1/ CW/˝ .v.2/ CW/; ".v CW/ D ".v/:

In this way the counit and the coproduct are well-defined due to the third and fourth
properties. Because '.v/ D v CW; the map ' is a homomorphism of coalgebras.
Due to the fifth condition, the braided antipode is well-defined by the formula

�b.v CW/ D �b.v/CW:

Again, the equality '.v/ D v CW implies that ' satisfies (6.13). ut

6.2 Free Braided Hopf Algebra

Let V be a linear space with a braiding � W V ˝ V ! V ˝ V . We fix some basis
X D fxi; i 2 Ig of V . The free associative algebra khXi generated by xi; i 2 I is
isomorphic to the tensor algebra T.V/ D L1

iD0 V˝i of a linear space V with the
concatenation product .u˝v/m D u˝ v. By definition we set V˝0 D k � 1; where
1 is the empty word in X; so that 1˝ v D v˝ 1 D v. Consider the following linear
maps

�i D id˝.i�1/ ˝ � ˝ id˝.n�i�1/ W V˝n ! V˝n; 1 � i < n: (6.14)

Due to (6.1) the maps �i satisfy all defining relations of the braid monoid:

�i�iC1�i D �iC1�i�iC1; 1 � i < n � 1I �i�j D �j�i; ji� jj > 1: (6.15)

Therefore, u � si D u�i is a well-defined action on V˝n of the braid monoid Bn

generated by the braids si; 1 � i < n. This action is called a local action.

Theorem 6.1 The braiding � has a unique extension on khXi so that khXi is a
braided algebra. Normally this extension has the same notation � .
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Proof Let �r; 0 � r � n be the linear map V˝n ! V˝r˝V˝.n�r/ acting as follows

.z1z2 � � � zn/ �r D z1z2 � � � zr˝zrC1 � � � zn; zi 2 X:

Consider a map �k;n
r W V˝n ! V˝n; k � r < n defined as a superposition of the �i’s:

�k;n
r D .�r�r�1 � � � �k/.�rC1�r � � � �kC1/ � � � .�n�1�n�2 � � � �n�1�rCk/: (6.16)

The operator �k; n
r has an alternative representation:

�k; n
r D .�r�rC1 � � � �n�1/.�r�1�r � � � �n�2/ � � � .�k�kC1 � � � �n�1�rCk/: (6.17)

Indeed, in (6.16), the first term of each factor commutes with all terms except the
first one of the previous factor. Hence, we have

�k; n
r D .�r�rC1 � � � �n�1/ � .�r�1 � � � �k/.�r � � � �kC1/ � � � .�n�2 � � � �n�1�rCk/:

Continuation of this process yields (6.17). We extend the braiding on khXi via

.u˝v/� 0 D .u˝ v/�1;nr �n�r; u 2 V˝r; v 2 V˝.n�r/: (6.18)

If r D 0 or r D n; then this definition reads: .1˝v/� 0 D v˝1I .u˝1/� 0 D 1˝u.
Let us show that � 0 is a braiding of khXi. If u 2 V˝r; v 2 V˝m; w 2 V˝n�m�r;

then

Tuvw.�
0˝id/ D .u˝ v ˝ w/�1;rCm

r �m�mCr;

Tuvw.id˝� 0/ D .u˝ v ˝ w/�rC1;n
rCm �r�n�m;

where Tuvw D .u˝v˝w/. Similarly,

Tuvw.�
0˝id/.id˝� 0/ D .u˝ v ˝ w/�1; rCm

r �
mC1; n
rCm �m�n�r;

Tuvw.id˝� 0/.� 0˝id/ D .u˝ v ˝ w/�rC1; n
rCm �1; n�m

r �n�r�m�n�m;

and

Tuvw.�
0˝id/.id˝� 0/.� 0˝id/ D .u˝ v ˝ w/�1; rCm

r � �mC1; n
rCm � �1; n�r

m �n�r�m�n�r;

Tuvw.id˝� 0/.� 0˝id/.id˝� 0/ D .u˝ v ˝ w/�rC1; n
rCm � �1; n�m

r � �n�r�mC1; n
n�m �n�r�m�n�r:

Hence, the braid relation (6.1) for � 0 is equivalent to the operator equality

�1; rCm
r � �mC1; n

rCm � �1; n�r
m D �rC1; n

rCm � �1; n�m
r � �n�r�mC1; n

n�m :
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Taking into account definition (6.18), we obtain

�1; rCm
r � �mC1; n

rCm D �1; nr ; and �1; n�m
r � �n�r�mC1; n

n�m D �1; nr : (6.19)

Therefore the braid relation for � 0 reduces to

�1; nr � �1; n�r
m D �rC1; n

rCm � �1; nr : (6.20)

We shall prove this equality using commutation rule (1.33) of Lemma 1.13. By
(6.17), the operator �1; nr is the following superposition:

.�r�rC1 � � � �n�1/.�r�1�r � � � �n�2/ � � � .�1�2 � � � �n�r/:

At the same time by definition (6.16), we have

�1; n�r
m D .�m�m�1 � � � �1/.�mC1�m � � � �2/ � � � .�n�r�1�n�r�2 � � � �n�r�m/:

Applying Lemma 1.13 totally n � r � m times, we have

.�1�2 � � � �n�r/ � �1; n�r
m D �2; n�rC1

mC1
� .�1�2 � � � �n�r/:

Similarly,

.�2�3 � � � �n�rC1/ � �2; n�rC1
mC1

D �3; n�rC2
mC2

� .�2�3 � � � �n�rC1/:

Continuation of this process results in (6.20). Thus, the map � 0 is a braiding.
Let us check identities of braided algebra (6.6). The concatenation product m of

the free algebra satisfies .u˝v/m D u˝ v. Therefore,

Tuvw.m˝id/� 0 D ..u˝ v/˝w/� 0 D .u˝ v ˝ w/�1; nrCm � �n�r�m:

At the same time

Tuvw�
0

2�
0

1.id˝m/ D .u˝ v ˝ w/�rC1; n
rCm � �1; n�m

r � �n�r�m:

To prove the first identity of braided algebra (6.6), it remains to demonstrate the
following relation

�
rC1; n
rCm � �1; n�m

r D �1; nrCm: (6.21)

We have

�
rC1; n
rCm � �1; n�m

r D .�rCm�rCm�1 � � � �rC1/.�rCmC1�rCm � � � �rC2/ � � � .�n�1�n�2 � � � �n�m/


.�r�r�1 � � � �1/.�rC1�r � � � �2/ � � � .�n�m�1�n�m�2 � � � �n�r�m/:
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Using relations �i�j D �j�i; ji � jj > 1; we can move the first factor .�r�r�1 � � � �1/ of
�1; n�m

r to the left until the first factor of �rC1; n
rCm . Next, we move the second factor of

�1; n�m
r to the left until the second factor of �rC1; n

rCm ; and so on. In this way we obtain
the product

.�rCm�rCm�1 � � � �1/.�rCmC1�m � � � �2/ � � � .�n�1�n�2 � � � �n�r�m/ D �1; nrCm:

This completes the proof of (6.21).
In the perfect analogy, the second identity of braided algebra (6.6) reduces to the

equality �1; nr D �1; rCm
r � �mC1; n

rCm ; which was mentioned in (6.19).
Finally, the uniqueness of � 0 follows from each one of (6.6) considered as a

recurrence relation. ut
Theorem 6.2 The free braided algebra khXi has a natural structure of a braided
Hopf algebra where the free generators are primitive with respect to the braided
coproduct:

b.xi/ D xi˝ 1C 1˝ xi: (6.22)

Proof Because by definition a braided coproduct is a homomorphism of associative
algebras, equality (6.22) uniquely defines b. We have to verify that b is
coassociative, has a counit "; a braided antipode�b, and satisfies identities of braided
coalgebra (6.8). Our fundamental idea is to reformulate each of these axioms in
terms of the local action of the braid monoid Bn and then to make calculations in
the monoid algebra k ŒBn�. To this end, we need the braided coproduct in an explicit
form in terms of the local action. We fix the following notation

˚.t;n/
r D

X

t�k1<k2<:::<kr�tC1�n

ŒtI k1�Œt C 1I k2� � � � ŒrI kr�tC1�; (6.23)

where by definition

ŒkI k� D idI ŒmI k� D �k�1�k�2�k�3 � � � �mC1�m; m < k: (6.24)

Lemma 6.3 In terms of the local action, the braided coproduct has the form

b.u/ D
nX

rD0

�
u � ˚.1;n/

r

�
�r; u 2 V˝n: (6.25)

Proof Without loss of generality we may assume that u is a word, u D z1z2 � � � zn;

zi 2 V; or, equivalently, u D z1˝z2˝� � �˝zn 2 V˝n. Let A D fk1 < k2 < : : : < krg
be an r-element subset of indices. Denote by ".A; i/ its characteristic function:

".A; i/ D
� C if i 2 A;
� otherwise.
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Let us put .zi/
C D .zi˝1/ and .zi/

� D .1˝zi/. Then by definition

b.z1z2 � � � zn/ D
X

r

X

A

.z1/
".A;1/.z2/

".A;2/ � � � .zn/
".A;n/:

To prove (6.25), it suffices to check that

u � Œ1I k1�Œ2I k2� � � � ŒrI kr� �r D .z1/".A;1/.z2/".A;2/ � � � .zn/
".A;n/: (6.26)

We may do it by induction on the lexicographically ordered pairs .r; n/. If r D 0;

then A D ;I hence, ".A; i/ D �; whereas (6.26) reduces to

1˝u D z1 � � � zn �0 D .1˝z1/ � � � .1˝zn/ D 1˝u:

Suppose that (6.26) is valid for all pairs .r1; n1/ < .r; n/. If kr ¤ n; then ".A; n/ D
�; that is .zn/

".A;n/ D 1˝zn; and we may use the induction supposition:

u � Œ1I k1� � � � ŒrI kr� �r D z1 � � � zn�1 � Œ1I k1� � � � ŒrI kr� �r.1˝zn/

D .z1/
".A;1/ � � � .zn�1/".A; n�1/.1˝zn/;

which is required.
If kr D n; then .zn/

".A;n/ D zn˝1; and by means of (1.36) we have

u � Œ1I k1�Œ2I k2� � � � ŒrI kr� �r

D .z1 � � � zn�1 � Œ1I k1� � � � Œr � 1I kr�1� zn/ � �n�1�n�2 � � � �r �r: (6.27)

Formula (6.11) and the method for extension of the braiding (6.18), (6.16) imply

.w �r�1/.zn˝1/ D .wzn/�n�1�n�2 � � � �r �r; w 2 V˝.n�1/:

Hence we may continue (6.27) using the induction supposition

D .z1 � � � zn�1 � Œ1I k1� � � � Œr � 1I kr�1�/ �r�1.zn˝1/
D .z1/".A;1/ � � � .zn�1/".A; n�1/.zn˝1/;

which is required. ut
Coassociativity By the above lemma, we have

b.u/ D
X

.u/

u.1/˝u.2/ D
nX

rD0

�
u � ˚.1;n/

r

�
�r:
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Let us fix nonnegative numbers r;m; such that r C m � n. The sum of all terms of
b.u/ that belong to V˝.rCm/˝V˝.n�r�m/ takes the form u �˚.1;n/

rCm�rCm; whereas the
sum Rk;m of all terms of

P
.u/ 

b.u.1//˝u.2/ that belong to V˝r˝V˝m˝V˝n�r�m is

Rk;m D
h
u � ˚.1;n/

rCm � ˚.1;rCm/
r

i
�rCm�r:

Similarly, the sum of all terms ofb.u/ that belong to V˝r˝V˝.n�r/ takes the form

u � ˚.1;n/
r �r; and the sum R0

k;m of all terms of
P

.u/ u.1/˝b.u.2// that belong to
V˝r˝V˝m˝V˝n�r�m takes the form

R0
k;m D

h
u � ˚.1;n/

r � ˚.rC1;n/
rCm

i
�r�rCm:

It remains to check that Rk;m D R0
k;m.

Lemma 6.4 In kŒBn� the following equality is valid

˚
.1;n/
rCm � ˚.1;rCm/

r D ˚.1;n/
r � ˚.rC1;n/

rCm : (6.28)

Proof We have

˚
.1;n/
rCm � ˚.1;rCm/

r D
0

@
X

1�k1<k2<:::<krCm�n

rCmY

iD1
ŒiI ki�

1

A �
0

@
X

1�t1<t2<:::<tr�rCm

rY

iD1
ŒiI ti�

1

A :

Let us analyze an arbitrary term of the above product

Œ1I k1�Œ2I k2� � � � Œr CmI krCm� � Œ1I t1�Œ2I t2� � � � ŒrI tr�: (6.29)

The relations �i�j D �j�i; i > jC1 imply that ŒiI ki�Œ1I t1� D Œ1I t1�ŒiI ki� provided that
i > t1; whereas for i D t1; we have Œt1I kt1 �Œ1I t1� D Œ1I kt1 �. This allows us to remove
the factor Œ1I t1� from (6.29) replacing Œt1I kt1 � with Œ1I kt1 �. Further, the commutation
rule (1.34) under substitution t kt1 � 1; k 1; r ki; m iC 1 demonstrates
that

ŒiI ki�Œ1I kt1 � D Œ1I kt1 �ŒiC 1I ki C 1�; 1 � i < t1

because 1 � i � ki � kt1 � 1 holds (we stress that 1 � k1 < k2 < : : : < kt1
implies i � ki; and i < t1 implies ki < kt1). Hence, we may move the new factor
Œ1I kt1 � to the left margin position of (6.29) replacing each factor ŒiI ki�; 1 � i < t1
by ŒiC 1I ki C 1�.

If after that we do the same with the factor Œ2I t2�; then in the left margin position
of (6.29) appears to be Œ1I kt1 �Œ2I kt1 �; and each factor ŒiI ki�; 1 � i < t1 is replaced
with ŒiC2I kiC2�;whereas each factor ŒiI ki�; t1 < i < t2 is replaced with ŒiC1I kiC1�.
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Applying this procedure further to the factors Œ3I t3�; Œ4I t4�; : : : ; ŒrI tr�; we transform
(6.29) thus:

Œ1I kt1 �Œ2I kt2 � � � � ŒrI ktr � �
rY

sD0
.

tsC1�1Y

iDtsC1
ŒiC r � s; ki C r � s�/; (6.30)

where we postulate t0 D 0; trC1 D rCmC 1. Let us replace the summation index i
of the elementary product˘s in the parenthesis with j D iC r � s. We have

˘s
dfD

tsC1�1Y

iDtsC1
ŒiC r � s; ki C r � s� D

tsC1Cr�s�1Y

jDtsCr�sC1
Œ j; kj�rCs C r � s�:

The upper limit, j D tsC1 C r � s � 1; of ˘s and the lower limit, j D tsC1 C r �
.s C 1/ C 1; of ˘sC1 are consecutive integer numbers. The smallest value of j is
t0 C r � 0 C 1 D 1; whereas the biggest one is trC1 C r � .r C 1/ C 1 D r C m.
Therefore, if we set k0

j D kj�rCs C r � s; then

rY

sD0
.

tsC1�1Y

iDtsC1
ŒiC r � s; ki C r � s�/ D

rCmY

jDrC1
Œ jI k0

j�:

In which case, we have r < k0
1 < k0

2 < : : : < k0
m � n; so that the above term occurs

in

˚
.rC1;n/
rCm D

X

r<s1<s2<:::<sm�n

rCmY

iDrC1
ŒiI si�:

In formula (6.30), we have 1 � kt1 < kt2 < : : : < ktr � n. In particular, the product
Œ1I kt1 �Œ2I kt2 � � � � ŒrI ktr � occurs in

˚.1;n/
r D

X

1�s1<s2<:::sr�n

rY

iD1
ŒiI si�:

Thus, each transformed term of ˚.1;n/
rCm � ˚.1;rCm/

r occurs in ˚.1;n/
r � ˚.rC1;n/

rCm . Because
different terms are transformed to different ones (the above described transformation
is invertible) and both sums have the same number of elements,

�
n

rCm

��
rCm

r

�
D
�

n

r

��
n�r

m

�
;

we have ˚.1;n/
rCm � ˚.1;rCm/

r D ˚.1;n/
r � ˚.rC1;n/

rCm . ut
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Counit The counit is defined in a standard way as a homomorphism ".xi/ D 0;

".˛ � 1/ D ˛. The kernel of " is � D P1
iD1 V˝i

. Evidently � satisfies (6.2) so that
" is a homomorphism of braided algebras. Further,

˚.1;n/
r �r � ."˝id/ D ˚.1;n/

r �r � .id˝"/ D 0; 0 < r < n;

whereas ˚.1;n/
0 D ˚.1;n/

n D id. This implies the counit properties (1.53):

X

.u/

".u.1//u.2/ D
X

.u/

u.1/".u.2// D u:

Similarly, we have

�.1;n/r �n�r � ."˝id/ D �.1;n/n�r �r � .id˝"/ D 0; 0 � r < n;

and �.1;n/0 D �.1;n/n D id. This implies (6.7) connecting the braiding and counit:

� 0."˝id/ D .id˝"/� 0; � 0.id˝"/ D ."˝id/� 0:

Identities of Braided Coalgebra Let us check (6.8) by connecting the braiding and
coproduct:

� 0.b˝id/ D .id˝b/� 0
1�

0
2; � 0.id˝b/ D .b˝id/� 0

2�
0
1: (6.31)

If u 2 V˝r; v 2 V˝n�r; then by definition, we have

.u˝v/� 0.b˝id/ D .u˝ v/�1;nr �n�r.
b˝id/ D .u˝ v/�1;nr

n�rX

mD0
˚.1;n�r/

m �m�n�r;

whereas

.u˝v/.id˝b/� 0
1�

0
2 D .u˝ v/

n�rX

mD0
˚
.rC1;n/
rCm �rCm�r�

0
1�

0
2

D .u˝ v/
n�rX

mD0
˚
.rC1;n/
rCm �1;rCm

r �m�rCm�
0
2

D .u˝ v/
n�rX

mD0
˚
.rC1;n/
rCm �1;rCm

r �
mC1;n
mCr �m�n�r:
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Due to (6.19), we have �1;rCm
r �

mC1;n
mCr D �1;nr . Therefore, the result follows from the

next lemma.

Lemma 6.5 In kŒBn�; the following commutation rule holds

�1;nr ˚.1;n�r/
m D ˚.rC1;n/

rCm �1;nr : (6.32)

Proof By (6.17), we have

�1; nr D .�r�rC1 � � � �n�1/.�r�1�r � � � �n�2/ � � � .�1�2 � � � �n�r/; (6.33)

and definition (6.23) reads:

˚.1;n�r/
m D

X

1�k1<k2<:::<km�n�r

 
mY

iD1
ŒiI ki�

!
:

Conditions 1 � k1 < k2 < : : : < km imply i � ki. In particular, the chain of
inequalities 1 � i � ki � 1 < n � r holds unless ki D i. Because ŒiI i� D id; the
latter chain of inequalities allows us to apply commutation rule (1.33) under the
substitution k 1; t n � r; r ki � 1; m i W

.�1�2 � � � �n�r/ŒiI ki� D ŒiC 1I ki C 1�.�1�2 � � � �n�r/:

This implies

.�1�2 � � � �n�r/˚
.1;n�r/
m D ˚.2;n�rC1/

mC1 .�1�2 � � � �n�r/:

In the same way, we have

.�2�3 � � � �n�rC1/˚.2;n�rC1/
mC1 D ˚.3;n�rC2/

mC2 ˚
.2;n�rC1/
mC1 :

Continuation of this process ends with the required commutation formula (6.32).
ut

Similarly we shall check the second of identities (6.31). We have,

.u˝v/� 0.id˝b/ D .u˝ v/�1;nr �n�r.id˝b/

D .u˝ v/�1;nr

rX

mD0
˚
.n�rC1;n/
n�rCm �n�rCm�n�r;
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and

.u˝v/.b˝id/� 0
2�

0
1 D .u˝ v/

rX

mD0
˚.1;r/

m �m�r�
0
2�

0
1

D .u˝ v/
rX

mD0
˚.1;r/

m �mC1;n
r �n�rCm�m�

0
1

D .u˝ v/
rX

mD0
˚.1;r/

m �mC1;n
r �1;n�rCm

m �n�r�n�rCm:

Taking into account representation (6.17), we obtain �mC1;n
r �1;n�rCm

m D �1;nr . Hence,
it remains to apply the commutation rules of the next lemma.

Lemma 6.6 In kŒBn�; the following commutation rules hold

�1;nr ˚
.n�rC1;n/
n�rCm D ˚.1;r/

m �1;nr : (6.34)

Proof By definition (6.16), we have

�1;nr D .�r�r�1 � � � �1/.�rC1�r � � � �2/ � � � .�n�1�n�2 � � � �n�r/;

whereas the definition (6.23) states

˚
.n�rC1;n/
n�rCm D

X

n�rC1�k1<k2<:::<km�n

 
mY

iD1
Œn � rC iI ki�

!
:

Conditions n � rC 1 � k1 < k2 < : : : < km imply n � rC i � ki. In particular, the
following chain of inequalities holds: n� r � .n� rC i/� 1 � ki� 1 � n� 1. This
chain allows us to apply commutation rule (1.34) proven in Lemma 1.13 under the
substitution t n � 1; k n � r; r ki � 1; m n � rC i W

.�n�1�n�2 � � � �n�r/Œn � rC iI ki� D Œn � rC i � 1I ki � 1�.�n�1�n�2 � � � �n�r/:

This implies

.�n�1�n�2 � � � �n�r/˚
.n�rC1;n/
n�rCm D ˚.n�r;n�1/

n�rCm�1.�n�1�n�2 � � � �n�r/:

Similarly,

.�n�2�n�3 � � � �n�r�1/˚.n�r;n�1/
n�rCm�1 D ˚.n�r�1;n�2/

n�rCm�2 .�n�2�n�3 � � � �n�r�1/:

In this way, after n � r steps, we obtain the required commutation rule. ut
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Braided Antipode We define �b.u/ D .�1/nu � �1n; u 2 V˝n, where the mirror
operators �t

n; 1 � t < n are set up thus:

�t
n D .�t�tC1 : : : �n�1/.�t�tC1 : : : �n�2/ � � � .�t�tC1/�t: (6.35)

If u D ˛ �1 2 V0; then �b.u/ D uI that is, the restriction of �b on V˝ 0 is the identity.

Lemma 6.7 The mirror operator has another representation:

�t
n D .�n�1�n�2 � � � �tC1�t/.�n�1�n�2 � � � �tC2�tC1/ � � � .�n�1�n�2/ � �n�1 D .�1n�tC1/{ ;

where { W �i 7! �n�i is an automorphism of BnI see Sect. 1.4.

Proof The latter equality follows from definitions of the mirror operator and {. To
check the former, we use induction on n W

�t
n D .�t�tC1 : : : �n�1/�t

n�1 D .�t�tC1 : : : �n�1/
n�2Y

iDt

ŒiI n � 1�; (6.36)

where, as above, ŒiI k� D �k�1�k�2 � � � �i. By definition, �n�1ŒiI n�1� D ŒiI n�;whereas
the commutation rule (1.34) under the substitution t  n � 1; k  i; r  sC 1;
m sC 1 reads: �sŒiI n� D ŒiI n��sC1; provided that i � s � n � 2. These relations
allow us to continue (6.36):

D .�t�tC1 : : : �n�2/�n�1ŒtI n � 1�
n�2Y

iDtC1
ŒiI n � 1�

D .�t�tC1 : : : �n�3/ŒtI n��n�1Œt C 1I n� 1�
n�2Y

iDtC2
ŒiI n � 1�

D .�t�tC1 : : : �n�4/ŒtI n�Œt C 1I n��n�1Œt C 2I n� 1�
n�2Y

iDtC3
ŒiI n � 1� D : : : D

n�1Y

iDt

ŒiI n�:

ut
Let us check the properties of the antipode, (6.12). If u 2 V˝ 0; the properties are

clear. Because .u˝ v/m D u˝ v; the sum
P

.u/ �
b.u.1//u.2/ with u 2 V˝n; n > 0

takes the following form:

u �
nX

rD0
.�1/r˚.1;n/

r �r.�
b˝ id/m D u �

nX

rD0
.�1/r˚.1;n/

r �1r ;
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whereas
P

.u/ u.1/�b.u.2// reduces to

u �
nX

rD0
.�1/r˚.1;n/

r �r.id˝ �b/m D u �
nX

rD0
.�1/n�r˚.1;n/

r �rC1
n :

Hence, the required equalities follow from the lemma below. ut
Lemma 6.8 If n > 0; then

nX

rD0
.�1/r˚.1;r/

r �1r D 0 D
nX

rD0
.�1/n�r˚.1;r/

r �rC1
n :

Proof Let T0 D id; and for 1 � r � n define

Tr D ˚.1;n/
r �1r D

X

1�k1<k2<:::<kr�n

Œ1I k1�Œ2I k2� � � � ŒrI kr� �
r�1Y

iD1
.�1�2 : : : �r�i/:

The operator �j commutes with all operators ŒsI ks�; s > jC 1. Therefore

Œ2I k2� � � � ŒrI kr� �
r�1Y

iD1
.�1�2 : : : �r�i/ D Œ1I k2�Œ2I k3� � � � Œr � 1I kr� �

r�1Y

iD2
.�1�2 : : : �r�i/

D Œ1I k2�Œ1I k3� � � � Œr � 2I kr� �
r�1Y

iD3
.�1�2 : : : �r�i/ D : : : D Œ1I k2�Œ1I k3� � � � Œ1I kr�;

which implies

Tr D
X

1�k1<k2<:::<kr�n

Œ1I k1�Œ1I k2� � � � Œ1I kr�:

We shall prove by induction on s the following equality

sX

rD0
.�1/rTr D .�1/s

X

1<k1<k2<:::<ks�n

Œ1I k1�Œ1I k2� � � � Œ1I ks�: (6.37)

If s D 0; then Ts D T0 D id; whereas the set of sequences of length s D 0 contains
the only sequence—the empty one. At the same time, the empty product of operators
by definition is the identity operator. This explains (6.37) with s D 0.

If s � 1; we have the following partition:

f1 � k1 < k2 < : : : < ks � ng
D f1 D k1 < k2 < : : : < ks � ng [ f1 < k1 < k2 < : : : < ks � ng:
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Because Œ1I 1� D id; this implies

Ts D
X

1<k2<:::<ks�n

Œ1I k2� � � � Œ1I ks�C
X

1<k1<k2<:::<ks�n

Œ1I k1�Œ1I k2� � � � Œ1I ks�:

By the induction supposition the first sum equals .�1/s�1Ps�1
rD0.�1/rTr; whereas

.�1/s
X

1<k1<k2<:::<ks�n

Œ1I k1�Œ1I k2� � � � Œ1I ks�

D .�1/sTs � .�1/s.�1/s�1
s�1X

rD0
.�1/rTr D

sX

rD0
.�1/rTr;

which completes the proof of (6.37).
If n � 1; then the set f1 < k1 < k2 < : : : < kn � ng is empty; hence, (6.37)

implies

nX

rD0
.�1/r˚.1;r/

r �1r D
nX

rD0
.�1/rTr D 0: (6.38)

Further, by Lemma 6.7, we have �rC1
n D .�1n�r/

{ ; where by definition �{i D �n�i.
Lemma 1.14 claims that

Œ1I k1�Œ2I k2� � � � Œr I kr� D ŒnI in�r�Œn � 1I in�r�1� � � � Œr C 2I i2�Œr C 1I i1�;

where fi1 < i2 < : : : < in�rg is the complement of fk1 < k2 < : : : < krg to
the set f1; 2; : : : ; ng. Considering that ŒkIm�{ D Œn � k C 1I n � m C 1�; we have
˚
.1;r/
r D .˚.1; n�r/

n�r /{ . This implies

nX

rD0
.�1/n�r˚.1;r/

r �rC1
n D .

nX

rD0
.�1/n�r˚.1; n�r/

n�r �1n�r/
{ D 0

due to (6.38) with n n � r. Theorem 6.2 is completely proved. ut
Proposition 6.2 The braided antipode �b of the free braided Hopf algebra khXi is
a braided antihomomorphism:

m �b D �.�b˝�b/m: (6.39)

Proof Let u 2 V˝r; v 2 V˝.n�r/. Using (6.18) and the representation of Lemma 6.7,
we have

.u˝v/� .�b˝�b/m D .u˝ v/�1;nr .�1/n�r
n�r�1Y

iD1
ŒiI n � r� 
 .�1/r

n�1Y

iDn�rC1
ŒiI n�:
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By definition, Œn � rI n�ŒiI n � r� D ŒiI n�; 1 � i � n � r; whereas the commutation
rule (1.34) under the substitution t  n � 1; k  i; r  j C r; m  j C 1 takes
the form Œ jI r C j�ŒiI n� D ŒiI n�Œ j C 1I r C j C 1� provided that i � j � n � r � 1.
Applying these relations and definition (6.16) of �1;nr ; we obtain

�1;nr

n�r�1Y

iD1
ŒiI n � r� D

n�rY

jD1
Œ jI rC j� 


n�r�1Y

iD1
ŒiI n � r�

D
n�r�1Y

jD1
Œ jI rC j� 
 Œn � rI n�Œ1I n � r� 


n�r�1Y

iD2
ŒiI n � r�

D
n�r�2Y

jD1
Œ jI rC j� 
 Œ1I n�Œn � rI n�Œ2I n � r� 


n�r�1Y

iD3
ŒiI n � r�

D
n�r�3Y

jD1
Œ jI rC j� 
 Œ1I n�Œ2I n�Œn � rI n�Œ3I n � r�



n�r�1Y

iD4
ŒiI n � r� D : : : D

n�rY

iD1
ŒiI n�:

This implies

.u˝v/� .�b˝�b/m D .u˝ v/.�1/n
n�rY

iD1
ŒiI n� 


n�1Y

iDn�rC1
ŒiI n� D .u˝v/m �b;

which is required. ut

6.3 Differential Calculi and Constants

Consider the following commutation rules for differentials

xidxk D
X

s;t

˛st
ikdxsxt; where .xi ˝ xk/� D

X

s;t

˛st
ikxs ˝ xt; ˛

st
ik 2 k:

In other words, the operators As
k are defined on generators by

A.xi/
s
k D

X

t

˛st
ikxt;
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and they are extended on khXi by formula (1.78):

A.vw/ik D
X

s

A.v/isA.w/
s
k: (6.40)

Proposition 6.3 The above commutation rules define a right coordinate differential
calculus on khXi; which is connected with the coproduct of khXi as follows:

b.u/ � 1˝ uC
X

i

xi˝ @u

@xi
.mod�2˝khXi/; (6.41)

where as above� D ker " is the ideal generated by xi; i 2 I. The partial derivatives
are connected with the coproductb.u/ DP.u/ u.1/˝u.2/ as follows:

b

�
@u

@xi

�
D
X

.u/

@u.1/
@xi
˝ u.2/: (6.42)

Proof Let us demonstrate that the operators Ai
k are related to the braiding thus:

.u˝ xk/� D
X

i

xi˝A.u/ik: (6.43)

Because by definition Ai
k are linear maps, it suffices to prove this equality when u is

a word in the xi’s. We perform induction on the length of u. If u D xs; then

.xs˝ xk/� D
X

i;t

˛it
skxi˝ xt D

X

i

xi˝A.xs/
i
k:

Let u D vw; where v;w are nonempty subwords. Using the axioms of braided
algebra, the induction supposition, and (6.40), we have

.vw˝ xk/� D .v˝w˝ xk/.m˝ id/� D .v˝w˝ xk/�2�1.id˝m/

D .v˝
X

s

xs˝A.w/sk/�1.id˝m/ D .
X

s;i

xi˝A.v/is˝A.w/sk/.id˝m/

D
X

i

xi˝ .
X

s

A.v/isA.w/
s
k/ D

X

i

xi˝A.vw/ik:

This completes the proof of (6.43).
Because all monomials are linearly independent in khXi; for each u the elements

' i.u/ such thatb.u/ � 1˝ uCPi xi˝' i.u/ .mod�2˝khXi/ are uniquely defined.
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Of course ' i.xs/ D ıi
s. We have

1˝ uv C
X

i

xi˝' i.uv/ � b.uv/

� .1˝ uC
X

i

xi˝ ' i.u//.1˝ v C
X

k

xk˝'k.v//

� 1˝ uv C
X

i

xi˝' i.u/v C
X

k

�.u˝ xk/.1˝ 'k.v//

D 1˝ uv C
X

i

xi˝ .' i.u/v C
X

k

Ai
k.u/'

k.v//:

Hence ' i.uv/ D ' i.u/vCPk Ai
k.u/'

k.v/I that is, the Leibniz formula (1.79) holds
and ' i are precisely the partial derivatives. This completes the proof of (6.41).

Thus we have

b.u/ D 1˝ uC
X

i

xi˝ @u

@xi
C

X

u.1/2 �2

u.1/˝ u.2/:

This implies

.b.u//2.u/ D 1˝ 1˝ uC
X

i

xi˝ 1˝ @u

@xi
C
X

i

1˝ xi˝ @u

@xi

C
X

u.1/2 �2

b.u.1//˝ u.2/:

Since the coproduct is coassociative, it follows that

.b.u//2.u/ D 1˝ 1˝ uC
X

i

1˝ xi˝ @u

@xi
C 1˝

X

u.1/2 �2

u.1/˝ u.2/:

C
X

i

xi˝b

�
@u

@xi

�
C

X

u.1/2 �2

u.1/˝ u.2/˝ u.3/:

Considering that (6.41) is already proved, we have

b.u.1// � 1˝ u.1/ C
X

i

xi˝ @u.1/
@xi

.mod �2˝ khXi/:
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Therefore, the coassociativity implies

b

�
@u

@xi

�
D 1˝ @u

@xi
C

X

u.1/2 �2

@u.1/
@xi
˝ u.2/ D

X

.u/

@u.1/
@xi
˝ u.2/:

ut
In a perfect analogy, there exists a left coordinate differential calculi on khXi

defined by the commutation rules

d�xk � v D
X

s

B.v/sk � d�xs;

where B.xi/
s
k D

P
t ˛

ts
ki and B.uv/sk D

P
t B.u/tkB.v/st . This calculus is connected

with the coproduct similarly:

b.u/ � u˝ 1C
X

i

@�u

@xi
˝ xi .mod khXi˝�2/I (6.44)

b

�
@�u

@xi

�
D
X

.u/

u.1/˝ @
�u.2/
@xi

: (6.45)

Recall that a polynomial u 2 k hXi is a d-constant (d�-constant) if @u=@xi D 0;

i 2 I (respectively, @�u=@xi D 0; i 2 I/I see Definition 1.16 .

Corollary 6.1 All primitive elements from �2 are constants for both calculi.

Proof We have u˝ 1 C 1˝ u � 1˝ u (mod �2˝k hXi/I hence, (6.41) implies
@u=@xi D 0. Similarly, (6.44) implies @�u=@xi D 0. ut
Corollary 6.2 The algebra C of all d-constants is a right coideal; that is,b.C/ �
C˝k hXi. The algebra C� of all d�-constants is a left coideal: b.C�/ �
k hXi˝C�.

Proof If @u=@xi D 0; then by (6.42) we have
P

.u/.@u.1/=@xi/˝ u.2/ D 0. This
implies @u.1/=@xi D 0 because without loss of generality one may suppose that
the set fu.2/g is linearly independent. In a perfect analogy, @�u=@xi D 0 implies
@�u.2/=@xi D 0. ut

In view of the fact that the space of all constants is a subalgebra, the following
note demonstrates that the constants are far from always being primitive

Lemma 6.9 A product uv of two primitives is primitive only if .u˝ v/� D �u˝ v.

Proof b.uv/� uv˝ 1 � 1˝ uv D u˝ v C .u˝ v/� . ut
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6.4 Categorical Subspaces

The free braided Hopf algebra allows one to construct braided Hopf algebras as its
quotients. To this end, we have to find a way to construct braided Hopf ideals, see
Lemma 6.2.

Lemma 6.10 If a subspace W � k hXi satisfies conditions 2, 3, 4, and 5 of
Definition 6.1, then the ideal I.W/ generated by W is a braided Hopf ideal.

Proof We have to demonstrate that I.W/ satisfies conditions 2 � 5. For short, let S
denote the space k hXi. Using identities of braided algebra (6.6), we obtain

.S˝SW/� D .S˝S˝W/.id˝m/�

D .S˝S˝W/�1�2.m˝id/ � .S˝S˝W/�2.m˝id/

� .S˝S˝W C S˝W˝S/.m˝id/ � S˝W C SW˝S:

Applying the obtained inclusion, we have

.S˝SWS/� D .S˝SW˝S/.id˝m/� D .S˝SW˝S/�1�2.m˝id/

� .S˝W˝SC SW˝S˝S/�2.m˝id/ � .SW˝SC S˝W/C SWS˝S:

The resulting inclusion takes the form

.S˝I.W//� � I.W/˝SC S˝W: (6.46)

Similarly,

.SW˝S/� D .S˝W˝S/.m˝id/� D .S˝W˝S/�2�1.id˝m/

D .S˝.W˝S/�/�1.id˝m/

� .S˝S˝W C S˝W˝S/�1.id˝m/ � S˝SW C S˝WSCW˝S;

and

.SWS˝S/� D .SW˝S˝S/.m˝id/� D .SW˝S˝S/�2�1.id˝m/ � .SW˝S˝S/�1.id˝m/

� ..S˝SW C S˝WSCW˝S/˝S/.id˝m/ � S˝SWSC S˝WSCW˝S:

Therefore

.I.W/˝S/� � S˝I.W/CW˝S: (6.47)

This completes the proof of the second property.
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The third one is evident, for " is a homomorphism of algebras. To check the
fourth one, we remember that b is also a homomorphism of algebras:

b.SWS/ � .S˝S/.S˝W CW˝S/.S˝S/;

where the product on S˝S is defined via (6.11). Using (6.46) and (6.47), we obtain
the required inclusion,

b.I.W// � I.W/˝SC S˝I.W/: (6.48)

The fifth condition follows from the fact that �b is a braided anti-homomorphism;
see Proposition 6.2:

.SW CWS/�b D .S˝W CW˝S/m �b D .S˝W CW˝S/�.�b˝�b/m

� .S˝W CW˝S/.�b˝�b/m � .S˝W CW˝S/m � SW CWS;

and

.SWS/�b D .SW˝S/m�b D .SW˝S/�.�b˝�b/m

� .S˝SW C S˝WSCW˝S/.�b˝�b/m

� .S˝.SW CWS/C S˝.SW CWS/CW˝S/m � SWS:

ut
Definition 6.2 A subspace W of a braided space V is called right categorical if
.V ˝W/� � W ˝ V . It is left categorical if .W ˝ V/� � V ˝W. A left and right
categorical subspace is called categorical.

Every categorical subspace is a braided subspace, �.W ˝ W/ � W ˝ W; but
not vice versa: A sum of two (right) categorical subspaces is (right) categorical,
but a sum of two braided subspaces is not necessary braided. If W is a categorical
subspace, than it satisfies (6.2), and by Proposition 6.1, the quotient space V=W has
induced braiding.

The simplest examples of categorical subspaces in k hXi are V˝n. The local
action provides more examples.

Lemma 6.11 Let R be an arbitrary subset of the monoid algebra kŒBr� of the braid
monoid Br. If A � V˝r is a .right/ categorical subspace, then so is A � R.

Proof Because a sum of (right) categorical subspaces is (right) categorical, we may
suppose that R has just one element, � . Let v 2 V˝m; a 2 A. We have

.v˝a/� D
X

j

aj˝vj; aj 2 A:
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We identify the braid monoid Br with the submonoid of BrCm generated by the braids
s1; s2; : : : ; sr�1; whereas by B0

r we denote the submonoid generated by smC1; smC2;
: : : ; smCr�1. Certainly, the map � W si ! smCi defines an isomorphism between Br

and B0
r. We have

v˝.a ��/ D .v ˝ a/ � �.�/ �m; and .aj ��/˝vj D .aj ˝ vj/ �� �r:

Consider in BrCm the following element, cf. (6.16), (6.17):

�1;mCr
m D

rY

iD1
ŒiImC i� D

1Y

jDm

.sjsjC1 � � � sjCr�1/: (6.49)

Commutation rules (1.33) under the substitution

k j; t jC r � 1; r iC j� 1; m iC j � 1

hold provided that j � iC j � 1 � iC j � 1 < jC r � 1. The latter inequalities are
equivalent to 1 � i < r. Hence,

.sjsjC1 � � � sjCr�1/siCj�1 D siCj.sjsjC1 � � � sjCr�1/; 1 � i < r; 1 � j � m:

Therefore, decomposition (6.49) implies the commutation rule

�1;mCr
m si D smCi�

1;mCr
m D �.si/ �

1;mCr
m ; 1 � i < r:

In particular �.�/ �1;mCr
m D �1;mCr

m � . Thus we obtain

.v˝.a ��//� D .v ˝ a/ � �.�/�1;mCr
m �r

D .v ˝ a/ � �1;mCr
m � �r D

X

j

ajvj �� �r D
X

j

.aj ��/˝vj:

(6.50)

Hence, A �� is right categorical. In a perfect analogy, one may demonstrate that

..a ��/˝v/� D
X

k

vk˝.ak ��/; (6.51)

where .a˝v/� DPk vk˝ak. Thus, A �� is left categorical as soon as A is. ut
Lemma 6.12 The left annihilator in V˝n of any subset R � kŒBn� is categorical.

Proof This follows from equalities (6.50) and (6.51). ut
Corollary 6.3 The space C of all d-constants and the space C� of all d�-constants
are categorical.
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Proof Comparing the coproduct formula (6.25) and decomposition (6.41), we see
that u 2 V˝n is a constant for the right calculus if and only if u � ˚.1;n/

1 D 0. By
the above lemma, each homogeneous component Cn D C \ V˝n is categorical.
Hence, so is C. Similarly, u 2 V˝n is a constant for the left calculus if and only if
u � ˚.1;n/

n�1 D 0. ut

6.5 Combinatorial Rank

In this section, we adopt the concept of the combinatorial rank—see Sect. 1.5.6—to
braided Hopf algebras.

Theorem 6.3 Let H be a braided Hopf algebra generated by a braided subspace
V of primitive elements. Every nonzero coideal C of H contains a nonzero primitive
element.

Proof Let fai j i 2 Ig be a basis of V . Consider the free braided Hopf algebra khXi
introduced in Theorem 6.2, and let us fix a natural homomorphism

� W khXi ! H; �.xi/ D ai; i 2 I:

We are reminded that a constitution (multidegree) of a word u in X D fxi j i 2 Ig
is a family fmi j i 2 Ig such that u has mi occurrences of xi. A total degree of u isP

i mi. A total degree dt. f / of a polynomial f is the maximum of total degrees of its
monomials.

Let us choose a polynomial f 2 khXi of minimal total degree such that �. f / 2 C;
�. f / ¤ 0. We claim that �. f / is a primitive element.

The coproduct of a monomial has a decompositionb.u/ DP u.1/˝u.2/ where
u.1/; u.2/ are monomials such that dt.u/ D dt.u.1// C dt.u.2//. This implies that
b. f / � f ˝ 1 � 1˝ f has a decomposition

P
i f i
1 ˝ f i

2; where the total degree of
each f i

1; f i
2 is less than the total degree of f . Our aim is to show that

X

i

f i
1 ˝ f i

2 2 khXi˝ ker � C ker �˝khXi:

Therefore, we may assume that the f i
2’s are linearly independent modulo ker �. Let

QC D ��1.C/. As � is a homomorphism of coalgebras, QC is a coideal of khXi. Hence,

X

i

f i
1 ˝ f i

2 2 QC˝khXi C khXi˝ QC: (6.52)

Consider an arbitrary linear map � W khXi ! k such that �. QC/ D 0. Applying
�˝ id to (6.52), we obtain

P
i �. f i

1/f
i
2 2 QC. The total degree of the latter sum is

less than that of f . Hence
P

i �. f i
1/f

i
2 2 ker �; which implies �. f i

1/ D 0 for all i.
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Inasmuch as � is arbitrary, this implies fi 2 QC. Because the total degree of fi is less
than the total degree of f ; we have the required inclusion fi 2 ker �. ut

Denote by J the kernel of � W GhXi ! H. By Theorem 6.3, J contains nonzero
primitive elements. Let J1 be an ideal generated by all primitive elements of J.
Clearly J1 is a Hopf ideal. Consider the Hopf ideal J=J1 in the quotient Hopf algebra
khXi=J1. By Theorem 6.3, either J1 D J or J=J1 has nonzero primitive elements.
Let J2=J1 be an ideal generated by all primitive elements of J=J1; and J2 be its pre-
image with respect to the natural homomorphism khXi ! khXi=J1. In this way, we
find a strictly increasing chain of Hopf ideals

0 D J0  J1  J2  : : :  Js  : : : : (6.53)

In this chain, the ideal Js=Js�1 of khXi=Js�1 is generated by primitive elements.

Definition 6.3 The length �.H/ of chain (6.53) is called a combinatorial rank of
the braided Hopf algebra H with respect to the primitive generators ai; i 2 I.

Lemma 6.13 Let khXis be a subspace spanned by all polynomials of total degree
less than or equal to s. The following inclusion holds: khXis \ J � JsC1.

Proof We use induction on s. If s D 0; the required inclusion is evident.
Assume that khXis\J � JsC1 for a given s. Consider the natural homomorphism

� W khXi ! khXi=JsC1. For each polynomial f of total degree � s such that �. f / 2
J=JsC1 we have �. f / D 0. This means that all elements from khXisC1 \ J=JsC1 are
primitive. In particular, khXisC1 \ JsC1 � JsC2; which is required. ut
In view of the fact that J D S1

sD1.khXis\J/; the above lemma implies
S1

sD1 Js D J.

6.6 Braided Shuffle Hopf Algebra

In this section, as above V is a braided space with a basis X D fxi; i 2 Ig. The
tensor space T.V/ D P1

nD0 V˝n has another structure of braided Hopf algebra,
Sh� .V/; called a quantum shuffle algebra or a braided shuffle Hopf algebra. To
distinguish between elements of Sh� .V/ and khXi; a word u D xi1xi2 � � � xin
considered as an element of Sh� .V/ is designated by .u/ D .xi1xi2 � � � xin/. The
expression .xi1xi2 � � � xin/ is called a co-monomial. We extend the map u 7! .u/
to an isomorphism of linear spaces ./ W khXi ! Sh� .V/. The coproduct on the
co-monomials is the co-concatenation:

b..u// D
X

uDvw

.v/˝ .w/ D .
nX

sD0
u � �s/; (6.54)
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where, as above,

.xi1xi2 � � � xin � �s/ D .xi1xi2 � � � xis/˝ .xisC1
xisC2
� � � xin/:

We stress that both the co-concatenation coproduct and the concatenation product
are independent of the braiding.

The product of co-monomials is defined as the shuffle product:

.u/.v/ D 	u˝ v � .˚.1;n/
r /�



; u 2 V˝r; v 2 V˝.n�r/; (6.55)

where the operators ˚.t;n/
r ; 1 � t � r � n are defined in (6.23), and � W kŒBn� !

kŒBn� is the involution of the monoid algebra kŒBn� such that

.�i1�i2 � � � �is/
� D �is � � � �i2�i1 :

In particular, the operator .˚.1;n/
r /� takes the following explicit form

.˚.1;n/
r /� D

X

1�k1<k2<:::<kr�n

ŒkrI r�Œkr�1I r � 1� : : : Œk2I 2�Œk1I 1�;

where due to (6.24), we have

ŒkI k� D idI ŒkIm� D ŒmI k�� D �m�mC1 � � � �k�3�k�2�k�1; m < k: (6.56)

Due to equality (1.43) proven in Lemma 1.14, there is another representation

.˚.1;n/
r /� D

X

1�i1<i2<:::<in�r�n

Œi1I rC 1�Œi2I rC 2� � � � Œin�rI n�: (6.57)

The braiding is extended on co-monomials by the same formula (6.18):

.u/˝.v/ � � D .u˝ v � �1;nr � �n�r/; u 2 V˝r; v 2 V˝.n�r/; (6.58)

where due to (6.16), (6.17), we have

�1; nr D .�r�r�1 � � � �1/.�rC1�r � � � �2/ � � � .�n�1�n�2 � � � �n�r/

D .�r�rC1 � � � �n�1/.�r�1�r � � � �n�2/ � � � .�1�2 � � � �n�r/ D .�1; nn�r/
�: (6.59)

The counit and the braided antipode on co-monomials remain unchanged also:

"..u// D ".u/; �b..u// D .�b.u// D .u � �1n/; u 2 V˝n:

In view of (6.55), it looks much more natural to define the antipode by the equality
�b..u// D .u � .�1n/�/; u 2 V˝n. In fact, it leads to the same definition.
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Lemma 6.14 .�t
n/

� D �t
n; 1 � t � n.

Proof We shall perform induction on n. By definition we have

.�t
n/

� D �t.�tC1�t/.�tC2�tC1�t/ � � � .�n�2�n�3 � � � �tC1�t/.�n�1�n�2 � � � �tC1�t/:

Using relations �a�b D �b�a; ja � bj > 1; we may move all underlined operators to
the left margin position. This transformation and the induction supposition imply

.�t
n/

� D .�t�tC1 � � � �n�2�n�1/.�t
n�1/� D .�t�tC1 � � � �n�2�n�1/.�t

n�1/ D �t
n:

ut
Theorem 6.4 The tensor space T.V/ D Sh� .V/ with the braiding (6.58), the co-
concatenation coproduct (6.54), the shuffle product (6.55), the counit ", and the
braided antipode �b is a braided Hopf algebra.

Proof We are going to verify all axioms step by step.

1. The co-concatenation coproduct is coassociative. Evident.
2. The counit properties (1.53) are evident.
3. Identities of braided coalgebra (6.8). Let u 2 V˝r; v 2 V˝.n�r/. We have

.u/˝ .v/ ��.id˝b/ D .
nX

iDn�r

u˝v ��1;nr ��n�r �i/ D .
rX

iD0
u˝v ��1;nr ��n�r �n�rCi/;

and

.u/˝ .v/ � .b˝ id/�2�1 D
rX

iD0
.u � �i/˝ .v/ � �2�1

D .

rX

iD0
u˝ v � � iC1;n

r � �i�n�rCi/�1

D .

rX

iD0
u˝ v � � iC1; n

r �1; n�rCi
i � �n�r �n�rCi/:

The equality (6.21) proven in Theorem 6.1 reads: �rC1; n
rCm � �1; n�m

r D �1; nrCm. Under
the substitutions r  i; m  r � i; it reduces to �1;nr D � iC1; n

r �1; n�rCi
i . This

completes the proof of the first of braided coalgebra equalities (6.8).
Similarly,

.u/˝ .v/ � �.b˝ id/ D .
n�rX

mD0
u˝ v � �1;nr � �n�r �m/;
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and

.u/˝ .v/ � .id˝b/�1�2 D .u/˝
n�rX

mD0
.v � �m/�1�2

D .

n�rX

mD0
u˝ v � �1; rCm

r �m�rCm/�2

D .

n�rX

mD0
u˝ v � �1; rCm

r �
mC1; n
rCm � �m �n�r/

It remains to apply the already proven equality �1; nr D �1; rCm
r ��mC1; n

rCm ; see (6.19).
4. The shuffle product is associative. If u 2 V˝r; v 2 V˝m; w 2 V˝.n�r�m/; then

Œ.u/.v/�.w/ D 	u˝ v � .˚.1;rCm/
r /�



.w/ D

�
u˝ v ˝ w � .˚.1;rCm/

r /�.˚.1;n/
rCm /

�
�
;

whereas

.u/Œ.v/.w/� D .u/
�
v ˝ w � .˚.rC1;n/

rCm /�
�
D
�

u˝ v ˝ w � .˚.rC1;n/
rCm /�.˚.1;n/

r /�
�
:

The equality .˚.1;rCm/
r /�.˚.1;n/

rCm /
� D .˚

.rC1;n/
rCm /�.˚.1;n/

r /� follows from (6.28)
stated in Lemma 6.4 applying the involution �.

5. Identities of braided algebra (6.6). Let u 2 V˝r; v 2 V˝m; w 2 V˝.n�m�r/. We
have

.u/˝ .v/˝ .w/ � .m˝ id/� D Œ
	
u˝ v � .˚.1;rCm/

r /�

 ˝ .w/��

D
�

u˝ v ˝ w � .˚.1;rCm/
r /� �1; nrCm �n�m�r

�
;

whereas

.u/˝ .v/˝ .w/ � �2�1.id˝m/ D .u/˝ .v ˝ w � �1; n�r
m �n�m�r/ � �1.id˝m/

D
�

u˝ v ˝ w � �rC1; n
mCr �n�m

�
� �1.id˝m/

D
�

u˝ v ˝ w � �rC1; n
mCr �1; n�m

r �n�m�r�n�m

�
� .id˝m/

D
�

u˝ v ˝ w � �rC1; n
mCr �1; n�m

r .˚n�m�rC1; n
n�m /� �n�m�r

�
:

Equality (6.21) reads: �rC1; n
mCr �1; n�m

r D �1; nrCm. Therefore, it remains to check that

.˚.1;rCm/
r /� �1; nrCm D �1; nrCm .˚

n�m�rC1; n
n�m /�:
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The commutation rule �1;nr ˚
.1;n�r/
m D ˚.rC1;n/

rCm �1;nr proven in Lemma 6.5 reduces
to the required form after the replacements r n�r�m; m r and application
of the involution �; taking into account (6.59).

In a perfect analogy, we analyze the second equality of (6.6). We have

.u/˝ .v/˝ .w/ � .id˝m/� D .u/˝ .v ˝ w � .˚.1;n�r/
m /�/ � �

D .u˝ v ˝ w � .˚.rC1;n/
mCr /��r/ � �

D .u˝ v ˝ w � .˚.rC1;n/
mCr /� �1; nr �n�r/;

and

.u/˝ .v/˝ .w/ � �1�2.m˝ id/ D .u˝ v � �1; rCm
r �m/˝ .w/ � �2.m˝ id/

D
�

u˝ v ˝ w � �1; rCm
r �

mC1; n
rCm �m�n�r

�
� .m˝ id/

D
�

u˝ v ˝ w � �1; rCm
r �

mC1; n
rCm .˚1; n�r

m /� �n�r

�
:

Equality (6.19) states that �1; rCm
r �

mC1; n
rCm D �1; nr I hence, it suffices to check that

.˚
.rC1;n/
mCr /� �1; nr D �1; nr .˚1; n�r

m /�:

The commutation rule �1;nr ˚
.n�rC1;n/
n�rCm D ˚

.1;r/
m �

1;n
r proven in Lemma 6.6 reduces

to the required form after the replacement r  n � r and application of the
involution �; taking into account (6.59).

6. Antipode. If u 2 V˝n; n > 0; then Lemmas 6.14 and 6.8 imply

X

..u//

�b..u.1/// � .u.2// D
nX

rD0
u � �1r .˚.1;r/r /� D .u � .

nX

rD0
˚
.1;r/
r �1r /

�/ D 0:

Similarly,

X

..u//

.u.1// � �b..u.2/// D
nX

rD0
u � �rC1

n .˚
.1;r/
r /� D .u � .

nX

rD0
˚
.1;r/
r �rC1

n /�/ D 0:

ut
Remark 6.1 Let V be finite dimensional. On the dual space V� D Hom.V;k/; one
may define a braiding xi�˝xs� !

P
k;r ˛

k;r
i;s xk�˝xr� where xi˝xs !P

k;r ˛
k;r
i;s xk˝xr is

the initial braiding of V; and fxi� j i 2 Ig is the dual basis of V�; so that xi�.xs/ D ıi
s.

In this case, the map

�
k;s W V˝.kCm/ ! V˝k ˝ V˝s
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dual to the .k; s/-component of the coproduct of the free braided Hopf algebra
khV�i;

k;s W .V�/˝.kCs/! .V�/˝k ˝ .V�/˝s;

is precisely the .k; s/-component of the shuffle product of Sh� .V/. Similarly, the
map

m�
k;s W V˝k ˝ V˝s ! V˝.kCm/

dual to the .k; s/-component of the concatenation product,

mk;s W .V�/˝k ˝ .V�/˝s ! .V�/˝.kCs/;

is precisely the .k; s/-component of the co-concatenation coproduct of Sh� .V/.
This clearly explains why relations of kŒBn� that are responsible for khXi being a

braided Hopf algebra are responsible for Sh� being a braided Hopf algebra too.

6.7 Nichols Algebra

In this section, we consider a very important construction of the Nichols algebra
(or, equivalently, quantum symmetric algebra or braided symmetric algebra) B.V/
related to a braided space V with a basis fxi j i 2 Ig. This braided Hopf algebra
appeared independently in various articles with different definitions. In fact, each
rediscovering may be considered a demonstration of a new property of that object.
According to one of a myriad of characterizations, this is a subalgebra of the
quantum shuffle algebra.

Definition 6.4 A subalgebra B.V/ generated by V in Sh� .V/ is called a Nichols
algebra related to a braided space V .

The Nichols algebra is a braided Hopf subalgebra of Sh� .V/ and a homomorphic
image of the braided Hopf algebra khVi. The epimorphism

˝ W khVi ! B.V/

has a lot of nice characterizations. We consider just two of them. Additionally we
prove fundamental properties of the Hopf ideal ker˝ .

For each permutation � 2 Sn; we fix an element �b 2 Bn as follows. If � 2
S0 D f1g; then �b D 1. Assume that �b is already defined for all � 2 Sn�1. If
� 2 Sn nSn�1; then the permutation �t�.n/t�.n/C1 � � � tn�2tn�1 belongs to Sn�1; where
as usual ti is the elementary transposition i$ iC 1. We put

�b D .�t�.n/t�.n/C1 � � � tn�2tn�1/b �n�1�n�2 � � � ��.n/C1��.n/: (6.60)
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Proposition 6.4 If u 2 V˝n; then

˝.u/ D .
X

�2Sn

u � �b/: (6.61)

Proof We use induction on n. If n D 1; the equality takes a form˝.x/ D .x/; x 2 V .
Let u D v˝ x; v 2 V˝.n�1/; x 2 V . Using the induction supposition, representation
(6.57), and definition (6.60), we have

˝.u/ D ˝.v/˝.x/ D .
X

�2Sn�1

v � �b/.x/ D .
X

�2Sn�1

v � �b ˝ x �
X

1�i�n

ŒiI n�/

D
X

�2Sn�1

X

1�i�n

u � �b�n�1�n�2 � � � �i D
X

�2Sn�1

X

1�i�n

u � .�tn�1tn�2 � � � ti/b:

For a given i the set ˙i D Sn�1tn�1tn�2 � � � ti consists of all permutations � 2 Sn

such that �.n/ D i. Hence the union of ˙i; 1 � i � n equals Sn. ut
Lemma 6.15 The Hopf ideal ker˝ is equal to the sum of all coideals C such that
C � �2; where � D ker " is the ideal of khXi generated by xi; i 2 I. In particular,
ker˝ is the biggest Hopf ideal contained in �2.

Proof If f D ˛0 CP i ˛ixi C a; a 2 �2; then ˝. f / D ˛0 CP ˛i.xi/ C ˝.a/;
and ˝.a/ 2 .˝.�//2 � .�2/. By definition of Sh� ; the elements 1; .xi/; i 2 I are
linearly independent modulo the space .�2/ spanned by all .u/; where u is a word
of length greater than 1. Therefore if f 2 ker˝; then ˛0 D ˛i D 0; i 2 II that is,
ker˝ � �2.

If C � �2 is a coideal, then ˝.C/ is a coideal of Sh� .V/ such that ˝.C/ �
.�2/. If ˝.C/ ¤ 0; then by Theorem 6.3 there exists a nonzero primitive element
a 2 ˝.C/. However, the definition of the co-concatenation coproduct shows that no
one element from .�2/ is primitive. Hence ˝.C/ D 0; and C � ker˝ . ut

The next characterization of ˝ is related to the coordinate differential calculi.

Theorem 6.5 The Nichols algebra has a right differential calculus such that˝ is a
homomorphism of differential algebras. The partial derivatives with respect to .xi/;

i 2 I connect the calculus on B.V/ with the coproduct via

b..u// � 1˝ .u/C
X

i

.xi/˝ @.u/

@.xi/
.mod .�/2˝B.V//; .u/ 2 B.V/;

(6.62)
where, as usual,� D ker " is an ideal generated by xi; i 2 I.

Proof By Lemma 1.25 we have to show that the kernel J of˝ is a differential ideal.
Let u 2 J. Because J is a Hopf ideal, we have

b.u/ D 1˝ uC
X

i

xi˝ @u

@xi
C � � � 2 J˝khVi C khVi˝ J: (6.63)
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Let �s be a linear map �s W khVi ! k; such that�.1/ D 0; �s.xi/ D ıs
i ; �.�

2/ D 0.
Applying �s˝ id to both sides of (6.63), we obtain @u=@xs 2 J because due to
Lemma 6.15 the inclusion J � �2 holds. ut
Proposition 6.5 (M. Graña) The homomorphism ˝ W khVi ! B.V/; xi 7! .xi/

has the following representation in terms of the above defined differential calculus:

˝.u/ D
X

i1;i2;:::; in

@nu

@xi1@xi2 : : : @xin

.xi1xi2 : : : xin/; u 2 V˝n: (6.64)

Proof Let us define linear maps Di W khVi ! khVi; i 2 I such that Di.1/ D 0;

Di.xsu/ D ıi
su. The equality

u D
X

i1;i2;:::; in

u Di1Di2 � � �Din xi1xi2 � � � xin�1xin :

is evident if u is a monomial of length n > 0; and by linearity it is valid for arbitrary
u 2 V˝n; n > 0. Considering that u Di1Di2 � � �Din are scalars, we obtain

.u/ D
X

i1;i2;:::; in

u Di1Di2 � � �Din.xi1xi2 � � � xin�1xin/ (6.65)

Definition of the co-concatenation coproduct and decomposition (6.62) imply

@.w/

@.xi/
D .u Di/; .w/ 2 B.V/: (6.66)

Let ˝.v/ D .w/; w 2 khVi. By Theorem 6.5 the map ˝ is a homomorphism of
differential algebras. Therefore it commutes with partial derivatives. Using (6.65)
and (6.66), we have

˝.v/ D .w/ D
X

i1;i2;:::; in

w Di1Di2 � � �Din.xi1xi2 � � � xin�1xin/

D
X

i1;i2;:::; in

@n.w/

@.xi1 /@.xi2 / : : : @.xin/
.xi1xi2 : : : xin/

D
X

i1;i2;:::; in

@n˝.v/

@.xi1 /@.xi2 / : : : @.xin/
.xi1xi2 : : : xin/

D
X

i1;i2;:::; in

˝

�
@nu

@xi1@xi2 : : : @xin

�
.xi1xi2 : : : xin/;

which proves (6.64) because in the latter expression˝ acts on scalars. ut
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In a perfect analogy, there exists a left coordinate differential calculus on B.V/
defined by the commutation rules

d�xk � v D
X

s

B.v/sk � d�xs;

where B.xi/
s
k D

P
t ˛

ts
ki and B.uv/sk D

P
t B.u/tkB.v/st . This calculus is connected

with the coproduct in a similar way; see (6.44):

b..u// � .u/˝ 1C
X

i

@�.u/
@.xi/

˝ .xi/ .mod B.V/˝ .�/2/; (6.67)

where, as above,� D ker ". The same reasoning shows that the homomorphism˝

has a representation in terms of d� as well:

˝.u/ D
X

i1;i2;:::; in

.@�/nu

@�xi1@
�xi2 : : : @

�xin

.xin xin�1 : : : xi1 /; u 2 V˝n: (6.68)

The combinatorial rank of a Nichols algebra is an invariant related to the braiding
� . By Lemma 6.15 it has a maximal value among all Hopf homomorphic images of
khXiwhen the images of the generators xi; i 2 I are linearly independent modulo the
space spanned by values of words of length > 1. The following statements shows
that the combinatorial rank is finite if B.V/ has a finite dimension.

Proposition 6.6 (A. Ardizzoni) The combinatorial rank of a finite dimensional
Nichols algebra is finite.

Proof If dimension of B.V/ is finite, then, of course, so is the dimension of V .
Because B.V/ is a homogeneous subalgebra of Sh� ; the ideal � generated by V in
B.V/ is nilpotent; that is, V˝s � ker˝ for a suitable s > 0. Using Lemma 6.13,
we have V˝s � khXis \ J � JsC1; where J D ker˝ . Therefore khXi=JsC1 is a
finite dimensional algebra. This implies that the chain JsC1  JsC2  : : : is not
infinite. ut

6.8 Radford Biproduct

In this section, we focus on the relations between character Hopf algebras and
braided Hopf algebras. Consider first the free character Hopf algebra GhYi gen-
erated by skew-primitive variables yi; i 2 I:

.yi/ D yi ˝ hi C fi ˝ yi; yig D 
i.g/gyi; hi; fi; g 2 G; i 2 I; (6.69)
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see Sect. 1.5.3. Let xi D h�1
i yi; i 2 I be the normalized skew-primitive variables,

and let V be a linear space spanned by the xi’s equipped by a diagonal braiding

.xi ˝ xs/� D p�1
si .xs ˝ xi/:

Consider the free subalgebra khXi as the free braided Hopf algebra defined by the
braided space V in Sect. 6.2.

Lemma 6.16 If u; v are polynomials in X homogeneous in each xi; i 2 I; then

.u˝ v/� D 
v.gu/
�1.v ˝ u/;

where as usual gu D gr.u/ is a group-like element that appears from each monomial
of u under the substitutions xi  gi D h�1

i fi; i 2 I; and 
v is a character that
appears from each monomial of v under the substitutions xi  
i; i 2 I.

Proof It suffices to demonstrate the formula for monomials u; v. We perform
induction on the sum of lengths of u and v. If u; v are the generators, there is nothing
to prove. Applying the axioms of braided algebra (6.6), we have

.uxs ˝ xi/� D .u˝ xs ˝ xi/.m ˝ id/� D .u˝ xs ˝ xi/�2�1.id ˝ m/

D 
i.gs/
�1.u˝ xi ˝ xs/�1.id ˝ m/

D 
i.gs/
�1
i.gu/

�1.xi ˝ u˝ xs/.id ˝ m/

D 
i.guxs/
�1.xi ˝ uxs/:

Similarly

.u˝ vxi/� D .u˝ v ˝ xi/.id ˝ m/� D .u˝ v ˝ xi/�1�2.m ˝ id/

D 
v.gu/
�1.v ˝ u˝ xi/�2.m ˝ id/

D 
v.gu/
�1
i.gu/

�1.v ˝ xi ˝ u/.m ˝ id/

D 
vxi .gu/
�1.vxi ˝ u/:

ut
Theorem 6.6 If u is a polynomial in X homogeneous in each xi; i 2 I and .u/ DP

.u/ u.1/ ˝ u.2/ is the coproduct of u in GhXi with homogeneous u.1/; u.2/; then

b.u/ D
X

.u/

u.1/gr.u.2//�1˝ u.2/: (6.70)

In other words, u b
.1/ D u.1/gr.u.2//�1 and u b

.2/ D u.2/. The antipode � of H and the

braided antipode �b of khXi are related by �b.u/ D gu�.u/.



234 6 Braided Hopf Algebras

Proof It suffices to check the formulas for monomials. We use induction on the
length of u. If u D xi; the formulas are clear. We have

.uxi/ D .
X

.u/

u.1/˝u.2//.xi˝ 1Cgi˝ xi/ D
X

.u/

u.1/xi˝u.2/C
X

u.1/gi˝u.2/xi:

Using induction supposition, we obtain

b.uxi/ D .
X

.u/

u.1/gr.u.2//�1˝ u.2//.xi˝ 1C 1˝ xi/

D
X

.u/


i.gr.u.2///�1u.1/gr.u.2//�1xi˝ u.2/ C
X

.u/

u.1/gr.u.2//�1˝ u.2/xi

D
X

.u/

u.1/ xi gr.u.2//�1˝ u.2/ C
X

.u/

u.1/ gi gr.u.2/xi/
�1˝ u.2/xi;

which is required. Similarly, we have �.xi/ D �gixi; �
b.xi/ D �xi. By Proposi-

tion 6.2, the braided antipode �b is a braided anti-homomorphism. Therefore, using
induction supposition, we have

�b.uxi/ D .u˝ xi/m�b D .u˝ xi/�.�
b˝�b/m

D 
i.gu/
�1.xi ˝ u/.�b˝�b/m D 
i.gu/

�1.�xi/�
b.u/

D �
i.gu/
�1xigu�.u/:

Considering that the antipode � is an anti-homomorphism, we may develop

guxi�.uxi/ D �guxi�.u/ D �
i.gu/
�1xigu�.u/ D �b.uxi/:

ut
Proposition 6.7 The partial derivatives @i.u/ and @�

i .u/ defined in Proposition 1.8
and Proposition 1.9 are related to the partial derivatives defined on the free braided
Hopf algebra khXi as follows:

@i.u/ D p.u; xi/p
�1
ii

@�u

@xi
; @�

i .u/ D p.xi; u/p
�1
ii

@u

@xi
:

Proof Using relation (6.70) between coproduct  of GhXi and braided coproduct
b of khXi; we may compare decompositions (1.80) and (6.44). We obtain

@i.u/ D g�1
i

@�u

@xi
gi D p.u; xi/p

�1
ii

@�u

@xi
:
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In the same way, we may compare decompositions (1.85) and (6.41). This yields

gug�1
i xi gr.@�

i .u//
�1 ˝ @�

i .u/ D xi ˝ @�u

@xi
:

We have gr.@�
i .u// D gr.u/g�1

i provided that u depends on xi. Otherwise, both the
required relations reduce to 0 D 0. ut

Let H be an arbitrary character Hopf algebra generated by normalized skew-
primitive semi-invariants ai; i 2 I and group G. There exists a Hopf algebra
homomorphism

� W GhXi ! H; �.xi/ D ai; �.g/ D g; i 2 I; g 2 G: (6.71)

Let A be a subalgebra of H generated by the elements ai; i 2 I. Recall that H has a
grading by the character group OGI see Lemma 1.17. At the same time, the grading by
the group G defined on the free character Hopf algebra by (1.92) not always retains
on the Hopf algebra H. For example, the relations Œxi; x�

i � D 1 � gig�
i connecting

positive and negative components of a quantization are not homogeneous with
respect to the grading by G; so that the quantizations do have grading by OG but
do not have grading by G.

Lemma 6.17 If ker � � G�; then both H and A are bigraded algebras; that is,
the gradings by G and OG retain on H and A. Here, as above, � is the ideal of khXi
generated by xi; i 2 I.

Proof The gradings retain on H due to Lemmas 1.17 and 1.26. The subalgebra A
generated by ai; i 2 I is homogeneous because all generators are. ut

We stress that each word in the ai’s is homogeneous with respect to both
gradings. Consequently, all expressions homogeneous in each ai are homogeneous
with respect to both gradings but not vice versa in general.

Theorem 6.7 If ker � � G�; then subalgebra A generated by ai; i 2 I has a
structure of a braided Hopf algebra such that the restriction of � on khXi is a
homomorphism of braided Hopf algebras. In particular, the braided coproduct and
the braided antipode on A and the coproduct and the antipode on H are related by

b.a/ D
X

.a/

a.1/gr.a.2//�1˝ a.2/; �b.a/ D ga�.a/; (6.72)

where a 2 A is an arbitrary homogeneous element with respect to both gradings.

Proof By Lemma 6.2, it suffices to demonstrate that W D ker � \ khXi is a braided
Hopf ideal of khXi. Let us check all five conditions of Definition 6.1.

1. W is an ideal of the algebra khXi because ker � is an ideal of GhXi.
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2. .khXi˝W C W˝khXi/� � khXi˝W C W˝khXi as W is homogeneous
and due to Lemma 6.16, we have .khXi˝W/� � W˝khXi; .W˝khXi/� �
khXi˝W.

3. ".W/ D 0 is evident.
4. b.W/ � khXi˝W CW˝khXi. We have

b.W/ � ker �˝GhXi C GhXi˝ ker �

by virtue of the fact that ker � is a coideal of GhXi. If T is a complement of the
linear space W to ker �; then T \ khXi D 0. Let U be a complement of T ˚ khXi
to GhXi. Consider a linear map � W GhXi ! GhXi such that

�.U ˚ T/ D 0; �jkhXi D id:

We have �.GhXi/ � khXi; and �.ker �/ � W because GhXi D U ˚ T ˚ khXi;
and T ˚W D ker �. Considering that by definition b.W/ � khXi˝khXi; we
obtain the required inclusion:

b.W/ D b.W/.� ˝�/ � �.ker �/˝�.GhXi/C �.GhXi/˝�.ker �/

D khXi˝W CW˝khXi;

5. �b.W/ � W because �b.W/ � G ker � D ker �; and �b.khXi/ � khXi. ut
The proven theorem and Lemma 6.17 demonstrate that A is a bigraded braided

Hopf algebra in the sense of the definition below.

Definition 6.5 A braided Hopf algebra L is said to be a bigraded braided Hopf
algebra with respect to an Abelian group G if L is graded by G 
 OG;

L D
M

g2G; 
2 OG
L
g ; L
g L


0

h � L


0

gh ; b.L
g / �
M

fhDg; 
0
00D

L


0

f ˝L

00

h ;

and the braiding is defined by the grading as follows:

� W u˝ v 7! .
.g//�1 � .v ˝ u/; u 2 L
; v 2 Lg; g 2 G; 
 2 OG:

In the above theorem, one may reconstruct H from A as a Radford biproduct
H D kŒG� ? A. Let L be an arbitrary bigraded braided Hopf algebra generated by
homogeneous primitive elements ai; 

b.ai/ D ai˝ 1C 1˝ ai; i 2 I. As an algebra
the Radford biproduct H D kŒG� ? L is a skew group ring with commutation rules

ag D 
.g/ga; a 2 L
; g 2 G; (6.73)
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whereas the coproduct, the antipode, and the counit are defined by

.ga/ D
X

.a/

gab
.1/gr.ab

.2// ˝ gab
.2/; �.ga/ D g�1

u g�1�b.a/; ".ga/ D "b.a/;

(6.74)

where a is an arbitrary homogeneous element with respect to both gradings, a 2 L
h ;

andb.a/ DP.a/ ab
.1/˝ ab

.2/ with ab
.1/ 2 L


0

f , ab
.2/ 2 L


00

h ; h D gr.ab
.2//.

Theorem 6.7 in terms of the Radford biproduct states that H D kŒG�?A provided
that ker � � G�. The converse statement is also valid.

Proposition 6.8 If L is a bigraded braided Hopf algebra generated by homoge-
neous primitive elements ai; i 2 I; then H D kŒG� ? L is a character Hopf algebra
and ker � � G�; where � W GhXi ! H is a natural homomorphism �.xi/ D ai;

i 2 I.

Proof Consider a space spanned by xi; i 2 I as a braided space with a braiding

�.xi ˝ xs/ D .
s.gi//
�1.xs ˝ xi/; where ai 2 Lgi ; as 2 L


s
:

By Theorem 6.7, we have GhXi D kŒG� ? khXi. The map xi 7! ai defines an
isomorphism between V and a braided space spanned by the ai’s. Therefore, it has
an extension to a homomorphism of braided algebras ' W khXi ! L. Let � D id ? '
be a linear map such that �.gu/ D g'.u/; g 2 G; u 2 L. In this case, ker � D G ker'
is a Hopf ideal of GhXi because ker' is a braided Hopf ideal of khXi. Consequently,
there is a Hopf algebra structure on H D kŒG� ? L such that � is a homomorphism
of Hopf algebras. Comparing the braided Hopf algebra structure on khXi defined
in Theorem 6.6 with (6.72), we see that the induced coproduct, counit and antipode
coincide with that given in (6.74). This proves that kŒG� ? L is a character Hopf
algebra.

As ker' � ker "b D �; we have ker � D G ker' � G�; which is required. ut
Remark 6.2 In the general case, the decomposition of a Hopf algebra H in a
Radford biproduct H D F?A;where F is a Hopf subalgebra and A is a braided Hopf
algebra, exists if and only if there is a Hopf algebra homomorphism (projection)
� W H ! F; �jF D id. In our case F D kŒG�; and the map � W ai 7! 0; � W g 7! g
is a Hopf algebra projection if and only if ker � � G�. If G� does not contain ker �
but there exists a Hopf algebra projection � W H ! kŒG�; then we may replace the
generators ai by a0

i D ai � �.ai/. In this case ker � 0 � G�; where � 0.xi/ D a0
i.

Lemma 6.18 The space Prim .L/ of all primitive elements of a bigraded braided
Hopf algebra L and a space Prin .G ? L/ spanned by all normalized skew-primitive
elements (see (1.59)) of the character Hopf algebra G ? L are related as follows:

Prin .G ? L/ D Prim .L/˚
M

g2G

.1 � g/k:
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Proof The proof follows from the coproduct formula (6.72) and Lemma 1.19. ut
We conclude this section with a useful particular formula for products of

comonomials. Let, as above, GhXi be the free character Hopf algebra with com-
mutation rules ugv D 
u.gv/gvu; p.u; v/ D 
u.gv/. Then, we have a decomposition
in Radford biproduct GhXi D kŒG� ? khXi; where khXi is the free braided Hopf
algebra with the braiding defined on X via .xi˝ xs/� D p�1

si xs˝ xi. In this particular
case the product of comonomials in the shuffle algebra Sh.X/ takes the form

.w/.xi/ D
X

uvDw

p.xi; v/
�1.uxiv/; .xi/.w/ D

X

uvDw

p.u; xi/
�1.uxiv/: (6.75)

6.9 Filtrations and Subalgebras of the Free Braided Hopf
Algebra

We are reminded that a filtration on a linear space R is an increasing chain

f0g D R.�1/ � R.0/ � R.1/ � : : : � R.n/ � : : : ;

of linear subspaces such that
S

i R.i/ D R. The related degree function is defined by
d.x/ D minfi j x 2 R.i/g. A tensor product R˝ T of two filtered spaces is a filtered
space with a filtration .R˝ T/.n/ DPiCs D n R.i/ ˝ T.s/. A linear map ' W R! T is
filtered if '.R.n// � T.n/I see details in Sect. 1.6.

Definition 6.6 A braided Hopf algebra H is said to be filtered if on the space H
a filtration is fixed so that the braiding, the product, the unit map ˛ ! ˛ � 1; the
coproduct, and the braided antipode are filtered linear maps. We always consider
the ground field as a filtered space with k.n/ D k; n � 0. In particular, the counit
is automatically a filtered map, whereas the rest of the maps are filtered if and only
if:

1. .H.i/ ˝ H.s//� �PkCm D iCs H.k/ ˝ H.m/; i; s � 0I
2. H.i/H.s/ � H.iCs/; 1 2 H.0/; i; s � 0I
3. b.H.n// �PsCi D n H.i/ ˝ H.s/; n � 0I
4. �b.H.n// � H.n/; n � 0.

With each filtered space R a graded space gr R is associated as follows:

gr R D
1M

iD0
gri R;

where gri R; i � 0 is the quotient space R.i/=R.i�1/. A filtered linear map ' W R! T
induces a linear map gr ' of associated graded spaces:

gr' W uC R.n�1/ 7! '.u/C T.n�1/; u 2 R.n/:
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In particular, if .H; �;m; b; "; �b/ is a filtered braided Hopf algebra, then there are
defined linear maps gr �; gr m; grb; gr "; and gr �b related to the associated graded
space gr H.

Theorem 6.8 If H is a filtered braided Hopf algebra, then gr H with the braiding
gr �; the product gr m; the coproduct gr; the counit gr "; and the antipode gr � is
a braided Hopf algebra.

Proof Recall that the operator gr is a functor of tensor categories; that is, it
satisfies

1. gr .' � �/ D gr' � gr � (Lemma 1.29);
2. gr.R˝ T/ D gr R˝ gr T (Lemma 1.32);
3. gr .' ˝ �/ D gr' ˝ gr � (Lemma 1.33).

Therefore, to check that gr H satisfies the braided Hopf algebra axioms, it suffices
to write down those axioms as operator equalities and apply the functor gr. ut
Proposition 6.9 Let R; T be filtered braided Hopf algebras. If ' W R ! T is a
filtered homomorphism of braided Hopf algebras, then gr' W gr R ! gr T is a
homomorphism of braided Hopf algebras.

Proof The condition that ' is a homomorphism of braided Hopf algebras can be
written in the operator form as follows: � � .'˝'/ D .'˝'/ � � Im' D .'˝'/mI
b � .' ˝ '/ D ' �b. It remains to apply the functor gr. ut

We conclude this section by considering subalgebras of the free braided Hopf
algebra.

Theorem 6.9 If a subalgebra U of a free braided Hopf algebra khXi is a right
categorical right coideal, that is

b.U/ � U˝khXi; .khXi ˝ U/� � U ˝ khXi;

then U is a free subalgebra.

Proof Let Sh denote the tensor algebra T.V/ of the space spanned by X considered
as a coalgebra with co-concatenation coproduct

.xi1 ˝ � � � ˝ xin/ D
nX

kD0
xi1 ˝ � � � ˝ xik˝xikC1

˝ : : :˝ xin : (6.76)

We fix a natural non-degenerate paring h�;�i on khXi 
 Sh:

hxi1xi2 � � � xin ; xs1 ˝ xs2 ˝ � � � ˝ xsmi D ın
m � ıs1

i1
ı

s2
i2
� � � ısn

in
:
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In this case, the following relation is valid

huv; hi D
X

.h/

hu; h.1/ihv; h.2/i; u; v 2 khXi; h 2 Sh: (6.77)

Define a measure (action) of Sh on khXi as follows:

u ( h D
X

.u/

hu.1/b ; hiu.2/b ; u 2 khXi; h 2 Sh: (6.78)

Let U be a right categorical right coideal subalgebra of khXi. According to
Theorem 1.9, to demonstrate that U is a free subalgebra, it suffices to check that
U has the weak algorithm with respect to the formal degree d.xi/ D 1. Suppose first
that U is homogeneous, U D gr U.

Let us show that U is left closed in khXiI see Definition 1.22. Consider a left
linearly independent over khXi homogeneous elements u1; u2; : : : ; un 2 U. Suppose
that

nX

iD1
riui D u 2 U; ri 2 khXi: (6.79)

We have b.ui/ D P
u.1/i ˝u.2/i ; 

b.u/ D P
u.1/˝u.2/ with u.1/; u.1/i 2 U; and

b.ri/ DP r.1/i ˝r.2/i . Since U is right categorical, it follows that

.r.2/i ˝ u.1/i /� D
X

s

uis ˝ ris; uis 2 U: (6.80)

Without loss of generality, we may suppose that all elements uis; u
.1/
i ; u.1/ are

homogeneous. Obviously, this is a finite set; hence, the space

D D
X

uiskC
X

u.1/i kC
X

u.1/k

spanned by these elements has a finite dimension. Let T be a subalgebra generated
by D; whereas Tk; k � 0 are its homogeneous components.

Denote Jk D fh 2 V˝k j hTk; hi D 0g dfD T?
k . Because dim.Tk/ < 1; we may

write

J?
k

dfD fu 2 V˝kj hu; Jki D 0g D Tk:

By definition, T is a subalgebra. Therefore, its annihilator with respect to the pairing,P
i�0 Ji; is a coideal. Thus for every h 2 JkC1 we have the following inclusion:

b.h/� 1˝h � h˝1 2 .
kX

iD0
Ji/˝ShC Sh˝.

kX

iD0
Ji/: (6.81)
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Let us prove by induction on k; starting with k D 0; that ri ( Jk D 0; 1 � i � nI
that is (see (6.78)), if deg r.1/i D k; then r.1/i 2 J?

k D Tk. We shall show first that
under the induction supposition for k and smaller values the following equality is
valid

riui ( h D .ri ( h/ui; h 2 JkC1: (6.82)

Indeed, by means of (6.80) we have

riui ( h D
X
h.riui/

.1/; hi.riui/
.2/ D

X
hr.1/i uis; hirisu

.2/
i

D
X
hr.1/i ; h.1/ihuis; h

.2/irisu
.2/
i :

Formula (6.81) and the induction suppositions (with the definition of T/ demonstrate
that in the above sum, all summands are equal to zero with the exception of two
types, where h.1/ D 1; h.2/ D h; or h.1/ D h; h.2/ D 1. Moreover huis; hi D 0

because either uis 2 TkC1 or deg uis ¤ kC 1. Thus, we have got just the sum

X
hr.1/i ; hihuis; 1irisu

.2/
i :

Again huis; 1i is not zero only if deg uis D 0. By (6.80) this is equivalent to
deg u.1/1 D 0I hence, u.2/i D ui; ris D r.2/i ; which proves (6.82).

Let us apply( h to both sides of (6.79). We have u ( h D 0 because all u.1/ of
degree s by definition belong to Ts D J?

s . Therefore (6.82) implies

X

i

.ri ( h/ui D 0:

Because u1; u2; : : : ; un are left linearly independent over khXi; we get ri ( h D 0;

which completes the induction step.
In particular we have proved that ri ( Jm D 0 with m D deg ri. This implies

hri; Jmi D 0I that is ri 2 J?
m D Tm � U. Thus U is left closed in khXi.

If U is not necessarily homogeneous, we consider associated graded algebra gr U
with respect to the induced filtration. In this case, gr U is a homogeneous subalgebra
of gr khXi D khXi. Moreover, gr U is a right categorical right coideal:

b.gr U/ D gr .b.U// � gr .U˝khXi/ D gr U˝khXiI
.khXi ˝ gr U/gr � D gr Œ.khXi ˝ U/�� � gr .U ˝ khXi/ D gr U ˝ khXi:

By the above arguments, the space gr U as a homogeneous subalgebra is left closed
in khXi D gr khXi. It remains to apply Proposition 1.14. ut
Corollary 6.4 The subalgebra C of all constants for the right calculus d and the
subalgebra C� of all constants for the left calculus d� are free.
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Proof By Corollary 6.3, the spaces C and C� are categorical. By Corollary 6.2, the
spaces C and C� are left and right coideals, respectively. Hence the above theorem
applies. ut

In the proof of the above theorem, we see that an arbitrary weak basis of U is a set
of free generators. The construction of the weak algebra basis given in Lemma 1.38
has an important freedom in choosing a transversal. Sometimes it is possible to use
this freedom to make the generators primitive.

Definition 6.7 A subcoalgebra A of a coalgebra C with a distinguished element 1
is said to be conservative in C if for u 2 C the inclusion

o.u/
dfD b.u/� 1˝u � u˝1 2 A˝A (6.83)

implies that there exists a 2 A such that u�a is a primitive element; that is,o.u/ D
o.a/.

Lemma 6.19 Let A be a subcoalgebra of khXi. If gr A is conservative in gr khXi D
khXi; then A is conservative in khXi; and the element a 2 A from the above
definition can be chosen so that d.a/ � d.u/;where d is the formal degree d.xi/ D 1.

Proof Let o.u/ 2 A˝A. We shall use induction on d.u/. By definition of the
coproduct in the associated graded algebra we have

o.Nu/ 2 grA˝ grA;

where Nu D u C khXi.d.u/�1/ may be identified with the leading component of u.
Because grA is conservative, we may choose Na 2 grA such that Nu � Na is primitive.
Let a 2 A be such that Na is the leading component of a.

If d.u/ D d.a/; then d.u � Nu � aC Na/ < d.u/; and

o.u � a � NuC Na/ D o.u � a/ 2 A˝A:

By the induction supposition there exists a1 2 A such that v D u � a � NuC Na � a1
is primitive and d.a1/ < d.u/. Therefore u � a� a1 D v C .Nu� Na/ is primitive as a
sum of two primitives, and d.aC a1/ D d.u/.

If d.u/ ¤ d.a/; then Nu itself is primitive (because khXi is graded), hence, we may
repeat the above argument with a D 0. ut
Lemma 6.20 Let A be a braided subbialgebra of the free braided Hopf algebra
khXi equipped with filtration d.xi/ D 1. If for each primitively generated braided
subbialgebra A1 � A the subcoalgebra gr A1 is conservative in khXi; then A has a
weak algebra basis of primitive elements.

Proof Recall that the weak algebra basis may be constructed as follows. For each
n > 0 denote by R 0

.n/ the subspace of R.n/ spanned by the products ab; where a; b 2
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R.n�1/ and d.a/C d.b/ � n. Choose a minimal set Xn spanning R.n/ (modR 0
.n// over

k, and put X D [Xn.
Because 1 2 A; we may choose X1 � V . Suppose that each of Xk; k � m consists

of primitive elements. The subalgebra U generated by all Xk; k � m equals the
subalgebra generated by A.m/. Since the filtration is compatible with the braiding, it
follows that the subalgebra U is a braided subbialgebra, and thus gr U is conservative
in khXi. We replace XmC1 with a set X0

mC1 of the primitive elements in the following
way.

For each w 2 XmC1; we have o.w/ 2 A.m/˝A.m/ � U˝U. By Lemma 6.19
there exists u1 2 U.mC1/ such that u � u1 is primitive. In XmC1 we replace u with
u � u1. By induction on m; the lemma is proved. ut
Remark 6.3 We do not claim that the weak algebra basis is a braided subspace.

Definition 6.8 A coideal J of a coalgebra C with a distinguished element 1 is said
to be conservative in C if for each u 2 C the inclusion

o.u/ 2 J˝CC C˝J (6.84)

implies that there exists a 2 J; such that u � a is primitive.

Lemma 6.21 Let J be a coideal of khXi. If gr J is conservative in gr khXi D khXi;
then J is conservative in khXi.
Proof The proof will literally coincide with that of Lemma 6.19, if one replaces
A˝A by J˝ khXi CkhXi˝ J and gr A˝ gr A by (gr J/˝khXi CkhXi˝ .gr J/.

ut

6.10 Chapter Notes

The notion of a braided Hopf algebra is one of the basic features of braided monoidal
categories defined by Joyal and Street in [109], although braided Hopf algebras
appeared first, before their formalization within category theory, in the famous
paper by Milnor and Moore [175], as graded Hopf algebras. They appeared also
as universal enveloping algebras of color Lie algebras introduced by Scheunert
[203, 204]. A standard method of obtaining a braided monoidal category is to
consider all modules over a quasitriangular Hopf algebra or all comodules over
a coquasitriangular Hopf algebra: Lyubashenko [156], Drinfeld [66, 67], Larson
and Towber [145], Schauenberg [201]. In the book [142, Chap. 10], Klimik and
Schmüdgen expound this approach to the construction of braided Hopf algebras.

A slightly different but essentially equivalent approach is to consider categories
of Yetter–Drinfeld modules over Hopf algebras. This approach was proposed by
Andruskiewitsch and Graña [2] and Andruskiewitsch and Schneider [3]. It provides
an effective tool in the classification of pointed Hopf algebras using the lifting
method theorized by Andruskiewitsch and Schneider [3, 4] because the main
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invariant, the diagram of a pointed Hopf algebra, is a Hopf algebra in a Yetter–
Drinfeld category.

In [221], Takeuchi surveys the progress of braided Hopf algebra theory using
a noncategorical framework in which braided bialgebras are formulate as algebras
and coalgebras with a Yang–Baxter operator (alongside compatibility conditions).
This approach is actually more general and convenient than the others approaches,
which why we adopt it here.

In [8], Ardizzoni considered the combinatorial rank of graded braided bialgebras
by investigating conditions guaranteeing that the combinatorial rank is finite.
However the following question remains unresolved: is the combinatorial rank of
a finitely generated braided bialgebra is finite? Whether the combinatorial rank of
a Nichols algebra defined by a finite dimensional braided space is finite is also
unknown.

In constructing of the Nichols algebra, we mainly follow Rosso [196, 197]. Using
a similar construction, one of the braided bitensor algebra has been introduced
independently by Schauenberg [202] in terms of braided categories. Before this,
Nichols [181] used a similar construction applied to Hopf bimodules over a
bialgebra to provide examples of bialgebras of type one. S.L. Woronowicz used
(6.61) up to changing � by �� to define the external algebra [230, pp. 154–155],
whereas Schauenberg [201] proved (6.61) to demonstrate that the external algebra
is a braided bitensor algebra [201, Theorem 2.9]. Andruskiewitsch and Graña [2]
proposed another approach to constructing the Nichols algebra based on braided
pairings. The same object appeared as an optimal algebra for noncommutative
differential calculi conditioned by Yang–Baxter commutation rules [129]. Some
additional general properties of the Nichols algebras appear in [77, 78, 222]. Finite-
dimensional Nichols algebras have been widely studied over the past several years,
with approximately 100 preprints on the arXiv concerning this topic.

The decomposition of a Hopf algebra with a projection in the biproduct as a
purely mathematical statement was discovered by Radford [190]. Majid [159, 160]
subsequently advanced a physical interpretation of the inverse process as a bosoniza-
tion of fermions.

The filtrations undoubtedly provide a fundamental tool for all modern mathemat-
ics. In the area of Hopf algebras and quantum groups, N. Andruskiewitsch lifting
classification method includes the classification of associated graded braided Hopf
algebras as a first step. Recently, Ardizzoni and Menini [11] investigated the notion
of associated graded (co)algebra within the framework of abelian braided monoidal
categories.



Chapter 7
Binary Structures

Abstract In this chapter, we consider binary generalizations of Lie algebras
appeared in modern mathematics and mathematical physics. We consider recent
developments and remaining problems on the subject. The chapter discusses Lie
superalgebras, color Lie algebras, and Lie algebras in symmetric categories, free
Lie �-algebras.

In this chapter, we consider binary generalizations of Lie algebras appeared in
modern mathematics and mathematical physics. We consider recent developments
and remaining problems on the subject. The chapter discusses Lie superalgebras,
color Lie algebras, and Lie algebras in symmetric categories, free Lie �-algebras.

7.1 Lie Superalgebras

By definition, a Lie superalgebra is a graded linear space L D L0 ˚ L1 endowed
with a bilinear operation Œ ; � W L˝2 ! L that satisfies the following graded versions
of the antisymmetry and the Jacobi identity:

Œu; v� D �.�1/jujjvjŒv; u�; (7.1)

ŒŒu; v�;w�C .�1/juj.jvjCjwj/ŒŒv;w�; u�C .�1/.jujCjvj/jwjŒŒw; u�; v� D 0; (7.2)

where u; v;w are homogeneous elements u 2 Ljuj, v 2 Ljvj, w 2 Ljwj, while jujjvj
means the product of integer numbers juj and jvj.

A fundamental example of a Lie superalgebra appears from an associative
superalgebra (that is, graded associative algebra R D R0 ˚ R1) when in place of
the bilinear operation one considers the superbracket:

Œu; v� D u � v � .�1/jujjvjv � u; (7.3)

where, as above, u 2 Ljuj, v 2 Ljvj , juj; jvj 2 f0; 1g. In line with the Lie algebra
theory tradition, this Lie superalgebra is denoted by R.�/. The super version of the
Poincaré-Birkhoff-Witt Theorem holds: every Lie superalgebra L is a subalgebra of

© Springer International Publishing Switzerland 2015
V. Kharchenko, Quantum Lie Theory, Lecture Notes in Mathematics 2150,
DOI 10.1007/978-3-319-22704-7_7
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the universal enveloping associative superalgebra U.L/. Here, the algebra U.L/may
be defined in perfect analogy with the classical case

U.L/ D khLi=fu � v D Œu; v�C .�1/jujjvjv � ug; (7.4)

where u; v run through a fixed homogeneous basis of L, and Œu; v� is a linear
combination of that basis elements, whereas khLi is a free associative algebra
generated by that basis (in the invariant form, this is the tensor algebra of the linear
space L). The super structure on khLi, and hence on U.L/, is defined in a natural
way via

ju � v � : : : � wj D juj C jvj C � � � C jwj:

In particular, U.L/ is a quadratic algebra; that is, it is defined by relations of degree
two.

Recall that if L is an ordinary Lie algebra, then U.L/ has a structure of a Hopf
algebra with the coproduct.u/ D 1˝ uC u˝ 1, u 2 L. In general case, the same
formula defines a structure of Hopf superalgebra on U.L/. By definition a Hopf
superalgebra is the braided Hopf algebra related to the following diagonal braiding:

�.u˝ v/ D .�1/jujjvj.v ˝ u/;

see Example 6.1. More precisely, we may define a braided coproduct b as a
homomorphism of associative algebras

b W U.L/! U.L/˝U.L/

setting b.u/ D 1˝uC u˝1, u 2 L. Here U.L/˝U.L/ is the space U.L/ ˝ U.L/
with the product

.u˝v/ � .w˝t/ D .�1/jvjjwj.uw˝vt/:

In this case, the Radford bi-product construction G ? U.L/ is an ordinary Hopf
algebra, see Sect. 6.8. Here G is a two element group G D f1; g j g2 D 1g with the
action ug D .�1/juju, u 2 Ljuj. Respectively, in G?U.L/ the following commutation
rules holds: ug D .�1/jujgu, u 2 Ljuj, whereas the coproduct is defined via

.u/ D u˝ 1C gjuj ˝ u:

Of course, G ? U.L/ is a character Hopf algebra. Let x1; x2; : : : ; xk be a basis of L0
and let xkC1; xkC2; : : : ; xn be a basis of L1. Then the parameters pij related to this
character Hopf algebra are

pij D
� �1; if k < i; j � nI
1; otherwise.
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In particular, pijpji D 1, 1 � i; j � n. By this reason the principle bilinear
quantum Lie operation ŒŒ-; -�� introduced in (4.25) is almost well-defined on the set of
normalized skew-primitive elements Prin U.L/ of G?U.L/, see Sect. 4.3 for details.
More precisely, if characteristic of the ground field is zero, then the general formula
of Lemma 6.18 takes the form

Prin U.L/ D .1 � g/k˚ L;

and the operation Œ-; -� of Lie superalgebra given on L coincides with ŒŒ-; -��. We shall
prove this statement in a more general context of color Lie algebras. Now we only
stress that the whole of Prin U.L/ with the brackets ŒŒ-; -�� is not a Lie superalgebra.
Indeed, let x0 D 1 � g. Then x0g D gx0, so that p0n D 1 if n > k. The equalities
.x0/ D x0 ˝ 1 C g˝ x0 and xng D �gxn imply p0npn0 D �1 ¤ 1. In particular
ŒŒx0; xn�� is undefined provided that n > k.

7.2 Color Lie Algebras

Let G be an Abelian group and let ˛ W G 
 G! k� be its bicharacter:

˛. f � g; h/ D ˛. f ; h/˛.g; h/; ˛. f ; g � h/ D ˛. f ; g/˛. f ; h/;

where, as usual, k� denotes the multiplicative group of nonzero elements of the
ground field k. Suppose additionally that ˛ is multiplicatively antisymmetric:

˛.g; h/ D ˛.h; g/�1:

In this case, a linear space L D ˚g2GLg graded by G is said to be a color Lie algebra
if it is endowed with a bilinear operation Œ ; � W L˝2 ! L which satisfies the color
versions of the antisymmetry and Jacobi identities:

Œu; v� D �˛. f ; g/Œv; u�; (7.5)

ŒŒu; v�;w�C ˛. f ; gh/ŒŒv;w�; u�C ˛. fg; h/ŒŒw; u�; v� D 0; (7.6)

where u; v;w are homogeneous elements u 2 Lf , v 2 Lg, w 2 Lh, f ; g; h 2 G.
If G D f0; 1g is the two-element group, then there exists just one nontrivial

bicharacter: ˛.0; 0/ D ˛.0; 1/ D ˛.1; 0/ D 1, ˛.1; 1/ D �1I that is,

˛.juj; jvj/ D .�1/jujjvj:

Hence, the Lie superalgebras are precisely the color Lie algebras when the group G
(of colors) has just two elements.
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It is very important that any associative G-graded algebra

R D
M

g2G

Rg; Rg � Rh � Rgh;

defines a color Lie algebra when in place of the bilinear operation we consider the
following color bracket:

Œu; v� D u � v � ˛. f ; g/v � u; (7.7)

where, as usual, u 2 Lf , v 2 Lg, f ; g 2 G. This color Lie algebra is denoted by R.�/
as well.

The G-graded universal enveloping algebra U.L/ is defined quite similarly to the
“super” case

U.L/ D khLi=fu � v D Œu; v�C ˛. f ; g/v � ug; (7.8)

where again u 2 Lf and v 2 Lg run through a fixed homogeneous basis of L, and
Œu; v� D P

ˇiui is a linear combination of basis elements ui. The grading on the
tensor (free) algebra khLi, and on U.L/, is defined in a similar way

ju � v � : : : � wj D f � g � : : : � h:

In particular, U.L/ is still a quadratic algebra.
The “color” version of the Poincaré-Birkhoff-Witt Theorem was proven by

Scheunert in [202].

Theorem 7.1 (M. Scheunert) If xi 2 Lgi , i � 1 is a basis of a color Lie algebra
L D ˚g2GLg, then the following products form a basis of U.L/:

xn1
1 xn2

2 � � � xnm
m ;

where ni, 1 � i � m are nonnegative integer numbers with ni � 1 provided that
˛.gi; gi/ D �1 ¤ 1. In particular every color Lie algebra L is a subalgebra of the
color Lie algebra U.L/�.

This theorem may be easily proved using the Composition Lemma (Theorem 1.2).
The formula b.u/ D 1˝u C u˝1, u 2 L defines a structure of a color Hopf

algebra on U.L/. By definition a color Hopf algebra is the braided Hopf algebra
related to the following diagonal braiding

�.u˝ v/ D ˛. f ; g/v ˝ u; u 2 Lf ; v 2 Lg:

The braided coproductb is a homomorphism of associative algebras

b W U.L/! U.L/˝U.L/;
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where U.L/˝U.L/ is the space U.L/˝ U.L/ with the product

.u˝v/ � .w˝t/ D ˛.g; h/.uw˝vt/; v 2 Lg; w 2 Lh: (7.9)

Lemma 7.1 If the characteristic of the ground field is zero, then Prim .U.L// D L.

Proof By M. Scheunert theorem each element a 2 U.L/ has a unique representation

a D
MX

iD1
ˇix

ni
1

1 x
ni
2

2 � � � xni
m

m ; ˇi 2 k: (7.10)

Without loss of generality we may suppose that n11 > 0, ˇ1 ¤ 0. We have to show
that if a is primitive, then ni

j D 0 unless i D j D 1. By definition of the braided
coproduct we have

b.a/ D
MX

iD1
ˇi.x1˝1C1˝x1/

ni
1 .x2˝1C1˝x2/

ni
2 � � � .xm˝1C1˝xm/

ni
m : (7.11)

The latter formula and definition (7.9) imply that the braided coproduct of the

summand w D x
ni
1

1 x
ni
2

2 � � � xni
m

m is a linear combination of tensors wA˝w NA, where A

appears from w by deleting of some letters, while w NA appears from w by deleting of
all letters remaining in wA. According to M. Scheunert theorem all different words
that appear from summands of a given in (7.10) deleting some letters are linearly
independent in U.L/. In particular, the resulting coefficient of the linear combination

of all tensors of the form x1˝x
n11�1
1 x

ni
2

2 � � � xni
m

m that appear under developing the
product in (7.11) has to be zero. Applying (7.9), we see that this coefficient equals

1C ˛.g1; g1/C ˛.g1; g1/2 C � � � C ˛.g1; g1/n1�1 dfD ˛.g1; g1/Œn1�:

Because ˛ is multiplicatively skew symmetric, we have ˛.g1; g1/2 D 1I that is,
˛.g1; g1/ D ˙1. If ˛.g1; g1/ D 1, then ˛.g1; g1/Œn1� D n1 ¤ 0 in k. If ˛.g1; g1/ D
�1, then by M. Scheunert theorem n1 D 1, and ˛.g1; g1/Œn1� D 1 ¤ 0. ut

The Radford bi-product G ? U.L/ is an ordinary Hopf algebra, see Sect. 6.8. In
G ? U.L/ the following commutation rules hold:

ug D ˛. f ; g/gu; u 2 Lf ; g 2 G;

whereas the coproduct is defined via

.u/ D u˝ 1C g˝ u; u 2 Lg:
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In particular all elements of L are normalized skew-primitive in G ? U.L/, and G ?

U.L/ is a character Hopf algebra. Let fxi j 1 � i � ng be a homogeneous basis of L,
xi 2 Lgi , 1 � i � n. The parameters pij related to this basis are

pij D ˛.gi; gj/;

where xi 2 Lgi ; xj 2 Lgj . Since the form ˛ is multiplicatively skew symmetric, we
have pijpji D 1, 1 � i; j � n. Further, due to (6.18), we have

Prin .G ? U.L// D L˚
M

g2G

.1 � g/k; (7.12)

and the operation Œ-; -� of color Lie algebra given on L coincides with the principle
bilinear quantum Lie operation ŒŒ-; -��, see (4.25) of Sect. 4.3.

7.3 Lie Algebras in Symmetric Categories

A more general concept of a “Lie �-algebra” related to a symmetry � (a braiding
such that �2 D id/ was introduced by Gurevich [88].

We are reminded that a linear space V is a braided space if there is fixed a linear
map � W V ˝ V ! V ˝ V which satisfies a braid relation �1�2�1 D �2�1�2, where

�i D id˝.i�1/ ˝ � ˝ id˝.n�i�1/ W V˝n ! V˝n; 1 � i < n:

An algebra R (associative or non associative) with a multiplication m W R˝ R! R
is a braided algebra if it is a braided space and

.m˝ id/� D �2�1.id˝m/; .id˝m/� D �1�2.m˝ id/; (7.13)

where as above we use the exponential notation; that is, the operators act from the
left to the right: .u˝ v ˝ w/ � .m˝ id/� D .uv ˝ w/� D �.uv ˝ w/.

A braided algebra L is said to be a Lie �-algebra if the braiding is involutive
.�2 D id/ and if it is connected with the multiplication m W L˝ L! L thus:

mC �m D 0; antisymmetryI
.idC �1�2 C �2�1/.m˝ id/m D 0; Jacobi identity:

(7.14)

First of all, we note that this concept generalizes the above notion of the color
Lie algebra. Indeed, if L is a color Lie algebra with the multiplication m D Œ ; �, and
with the bicharacter ˛, then we define a symmetry � as follows:

.u˝ v/� D ˛. f ; g/v ˝ u; u 2 Lf ; v 2 Lg: (7.15)
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Since ˛ is multiplicatively skew symmetric, we have

.u˝ v/�2 D .˛. f ; g/v ˝ u/� D ˛. f ; g/˛.g; f /.u˝ v/ D u˝ vI

that is, � is involutive. To check (7.13), we have

.u˝ v ˝ w/.m˝ id/� D .Œu; v�˝ w/� D ˛. fg; h/w˝ Œu; v�:

At the same time,

.u˝ v ˝ w/�2�1.id˝m/ D ˛.g; h/.u˝ w˝ v/�1.id˝m/

D ˛.g; h/˛. f ; h/.w˝ u˝ v/.id˝m/

D ˛.gf ; h/w˝ Œu; v�;

which proves the first of (7.13). The second of (7.13) is quite similar. Hence hL; Œ ; �i
is a braided algebra.

The antisymmetry identity (7.14) applied to L coincides with the antisymmetry
identity (7.5). To check the Jacobi identity (7.14), we note that

.u˝ v ˝ w/.m˝ id/m D ŒŒu; v�;w�;
.u˝ v ˝ w/�1�2.m˝ id/m D ˛. f ; gh/ŒŒv;w�; u�;

.u˝ v ˝ w/�2�1.m˝ id/m D ˛.gf ; h/ŒŒw; u�; v�;

hence (7.14) follows from (7.6).

Lemma 7.2 If A is an associative braided algebra with a multiplication

m W u˝ v ! uv;

then the braided space A with a new multiplication, Œ-; -� D m � �m,

Œu; v� D uv �
X

i

viui; where .u˝ v/� D
X

i

vi ˝ ui; (7.16)

is a Lie �-algebra provided that �2 D id.

Proof We have to check the axioms of braided algebra (7.13) and the axioms of a
Lie �-algebra (7.14) with m � �m in place of m. Applying the first of the axioms
(7.13), we have

..m� �m/˝ id/� D .m˝ id/� � �1.m˝ id/� D �2�1.id˝m/� �1�2�1.id˝m/:

This implies the first of (7.13) with Œ-; -� in place of m because �1�2�1 D �2�1�2 and
�2.id˝m/ D id ˝ �m. The second of (7.13) with m Œ-; -� can be checked quite
similar.
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The antisymmetry identity takes the form

m � �mC �.m � �m/ D m � �2m D 0:

To check the Jacoby identity, we note that the associativity of the algebra A may
be written as an equality:

.id˝m/m D .m˝ id/m: (7.17)

The Jacobi identity with m Œ-; -� reads:

.idC �1�2 C �2�1/.Œ-; -�˝ id/Œ-; -� D 0:

We have

.Œ-; -�˝ id/Œ-; -� D ..m� �m/˝ id/.m � �m/ D .m˝ id � �1.m˝ id//.m � �m/

D .m˝ id/m � �1.m˝ id/m � .m˝ id/�mC �1.m˝ id/�m:

If we apply .m ˝ id/� D �2�1.id˝m/ and the associativity (7.17), then the latter
expression reduces to

.id � �1 � �2�1 C �1�2�1/.m˝ id/m:

It remains to note that the equalities �21 D �22 D id and �1�2�1 D �2�1�2 imply

idC �1�2 C �2�1 D .idC �1�2 C �2�1/�2�1 D .idC �1�2 C �2�1/�1�2;

and therefore .idC �1�2 C �2�1/.id � �1 � �2�1 C �1�2�1/ D 0. ut
The Lie �-algebra constructed in the above lemma has a standard notation: A.�/� .

7.3.1 Universal Enveloping Algebra

Definition 7.1 Given a Lie �-algebra L, one constructs the universal enveloping
algebra as follows: Let khLi DL1

nD0 L˝n be the free associative algebra. Let J �
khLi be the ideal generated by

fa˝ b � .a˝ b/� � Œa; b� j a; b 2 Lg; (7.18)

where Œa; b� is the product in L. Then U.L/ is the quotient algebra khLi=J.

Of course, this definition generalizes the same definition for color Lie algebras and
Lie superalgebras. We see that in general U.L/ is still a quadratic algebra.
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Theorem 7.2 The algebra U.L/ has a natural structure of a braided Hopf algebra.
In which case, the braiding of U.L/ is involutive, and

b.a/ D 1˝aC a˝1; a 2 L:

The map { W a 7! a C J, a 2 L is a homomorphism of Lie �-algebras, { W L !
U.L/.�/.

Proof Consider k hLi as the free braided Hopf algebra described in Theorems 6.1
and 6.2 with V  L. We note, first, that the extended on k hLi braiding is still
involutive. Indeed, if u 2 L˝r, v 2 L˝.n�r/, then according to definition (6.18), we
have

.u˝v/�2 D .u˝ v/�1;nr �n�r� D .u˝ v/�1;nr �1;nn�r�r D u˝v

because decompositions (6.16) and (6.17) with conditions �2i D id, 1 � i < n imply

�1;nr �1; nn�r D .�r�r�1 � � � �1/.�rC1�r � � � �2/ � � � .�n�1�n�2 � � � �n�r/


 .�n�r�n�rC1 � � � �n�1/.�n�r�1�n�r � � � �n�2/ � � � .�1�2 � � � �r/ D id:

Further, we shall prove that J is a braided Hopf ideal. Due to Lemma 6.10, it
suffices to verify that the generating space W D fa˝b�.a˝b/�� Œa; b� j a; b 2 Lg
satisfies conditions 2–5 of Definition 6.1.

Let m W L˝L! L be the �-Lie multiplication of L, and let m0 W L˝L ! L˝ L
be the concatenation product of k hLi restricted to L˝L. In this case, the space W
coincides with the image of the operator˝ D . id � �/m0 �m.

If u 2 L˝m, a; b 2 L and w D a˝ b � .a˝ b/� � Œa; b� D .a˝b/ �˝ , then

.u˝w/� D .u˝a˝b/ � Œ. id � �2/.id˝m0/� � . id˝m/��:

As both m and m0 are braided products, we have .id˝m/� D �1�2.m˝id/, and
.id˝m0/� D �1�2.m0˝id/. The braid relation implies . id��2/�1�2 D �1�2. id��1/.
Hence, we obtain

.u˝w/� D .u˝a˝b/ � �1�2Œ. id � �1/.m0˝id/ � .m˝ id/�

D .u˝a˝b/ � �1�2.˝˝ id/ 2 .L˝L˝L˝m/.˝˝ id/

D im˝˝L˝m D W˝L˝mI

that is, W is right categorical. In perfect analogy, we have

.w˝u/� D .a˝b˝u/ � �2�1Œ. id � �2/.id˝m0/� . id˝m/� 2 L˝m˝im˝:

Thus, W is a categorical space, and the second condition fulfills.
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Consider an element u D a˝b�.a˝b/� D .a˝b/. id��/. Lemma 6.3 implies
b.u/ DP2

rD0 u�˚.1;2/
r �r, where according to (6.23) we have˚.1;2/

0 D ˚.1;2/
2 D id,

and ˚.1;2/
1 D Œ1I 1�C Œ1I 2� D idC � . In particular . id� �/˚.1;2/

1 D 0, and therefore
u is primitive.

The element Œa; b� is primitive too, because it belongs to L. As the set Prim khLi
of all primitive elements is a linear space, we obtain W � Prim khLi. At the same
time, every primitive element w satisfies ".w/ D 0, �b.w/ D �w. Hence, W satisfies
third fourth and fifth conditions as well.

Finally, the product in U.L/.�/ of elements a; b equals a˝b� .a˝b/� . In k hLi,
the latter element equals Œa; b�modulo W. Hence a˝ b� .a˝ b/� D Œa; b� in U.L/,
and the map { is a homomorphism of �-Lie algebras. ut

7.3.2 Embedding into the Universal Enveloping Algebra

Our next goal is to understand when the map { is injective. Because the braiding � is
involutive, �2 D id, Theorem 1.4 implies that the local action of the braid monoid
Bn on L˝n is reduced to an action of the symmetric group Sn, so that u � si D u � ti,
where ti D .i; i C 1/ is the transposition of indices i$ iC 1. Given r, 1 � r � n,
we fix the notations

er D 1

rŠ

X

�2Sr

�; e.r/ D 1

.n � r/Š

X

�2S
.r/
n

�; (7.19)

where by definition S.r/n is a subgroup of all permutations that leave fixed each one
of the indices 1; 2; : : : ; r.

Lemma 7.3 The left annihilator of .1 � t1/e.1/ in kŒSn� equals

kŒSn�.1C t1/C kŒSn�.1C t1t2 C t2t1/C
n�1X

iD3
kŒSn�.1 � ti/: (7.20)

Proof We have, first,

n�1X

iD3
kŒSn�.1 � ti/.1 � t1/e

.1/ D
n�1X

iD3
kŒSn�.1 � t1/.1 � ti/e

.1/ D 0I

then,

.1C t1t2 C t2t1/.1� t1/e
.1/ D .1C t1t2 C t2t1/.1 � t1/

1

2
.1C t2/e

.1/ D 0
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because .1Ct1t2Ct2t1/.1�t1Ct2�t1t2/ D 0I and next, kŒSn�.1Ct1/.1�t1/e.1/ D 0,
for t21 D 1.

Conversely, denote by I the left ideal (7.20). In the left module kŒSn�=I we have
the following relations

xt1 � �x; xt1t2 � �x � xt2t1 � �xC xt2; xti � x; i > 2; (7.21)

where x 2 kŒSn�. Using these relations, let us demonstrate that each� 2 kŒSn� has a
representation

� �
n�1X

iD1
˛iŒ2I iC 1� (mod I/; ˛i 2 k; (7.22)

where Œ2I iC1� D .2; 3; : : : ; iC1/ is a cyclic permutation 2! 3! : : :! iC1!
2.

Relations (7.21) allow one to reduce the length of some words in ti, i � 1. Let w
be an irreducible by (7.21) word. If w is not empty then it ends by t2. The second
relation of (7.21) shows that before t2 may stand only t3 since otherwise this letter
commutes with t2 and the last relation of (7.21) reduces the length. Let k be the
maximal number such that w ends with tktk�1 � � � t3t2I that is, w D : : : tstktk�1 � � � t3t2,
k � 3, s ¤ k C 1. If s > k C 1, then ts commutes with all followed it
factors and the last of (7.21) applies. If s < k then we may move ts to the
right so that we get w D : : : tktk�1 � � � tstsC1tsts�1 � � � t3t2. The braid relation yields
w D : : : tktk�1 � � � tsC1tstsC1ts�1 � � � t3t2. Now we may move the underlined tsC1 to the
right and apply the last of (7.21). Thus all irreducible words are w D tktk�1 � � � t3t2 D
Œ2I kC 1�, 1 < k � n � 1, which proves (7.22).

Finally, if � .1 � t1/e.1/ D 0 with � given in (7.22), then

0 D
n�1X

iD1
˛iŒ2I iC 1�.1 � t1/e

.1/ D .
n�1X

iD1
˛i/�

n�1X

iD1
˛iŒ2I iC 1�t1e.1/:

All elements 1; Œ2I iC 1�t1 D Œ1I iC 1�, 1 � i < n belong to the different left co-sets
of the decomposition given in Corollary 1.2 with r D 1, whereas e.1/ 2 S.1/n . Hence
we obtain ˛i D 0, 1 � i < n, and � 2 I. ut
Theorem 7.3 If L is a Lie �-algebra over a field k of zero characteristic, then the
natural homomorphism { W L! U.L/.�/ is injective.

Proof Denote by mi, 1 � i < n the linear map

mi D id˝.i�1/ ˝m˝ id ˝.n�i�1/ W L˝n ! L˝.n�1/: (7.23)
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Then axioms (7.13) imply the following commutation rules:

.a/ mjti D timj; if j > iC 1I

.b/ miC1ti D titiC1miI

.c/ miti D tiC1timiC1I

.d/ mjti D tiC1mj; if j < i:

(7.24)

The Jacoby identity also provides some sort of commutation rules for mi’s:

.e/ mjmi D mimj�1; if j > iC 1I

. f / miC1mi D .1 � tiC1/mimiI

.g/ mimi D .1 � ti/miC1miI

.h/ mjmi D miC1mj; if j < i;

(7.25)

whereas the skew-symmetry yields

tjmj D �mj: (7.26)

If l 2 L and {.l/ D 0, then in k hLi we have a representation

l D
X

vi.ai � ai� � ai m/wi; ai 2 L˝2; vi 2 L˝ni ;wi 2 L˝ki : (7.27)

We have

vi.ai � ai� � ai m/wi D u � .1 � tniC1/ � u mniC1;

where u D vi ˝ ai ˝ wi 2 L˝.niCkiC2/. Because u � .1 � tniC1/ 2 L˝.niCkiC2/
and u mniC1 2 L˝.niCkiC1/, the equality (7.27) splits into the following system of
homogeneous equations.

n�1X

iD1
ui

n � .1� ti/ D 0I (7.28)

n�1X

iD1
ui

nmi C
n�2X

iD1
ui

n�1 � .1 � ti/ D 0I (7.29)

n�2X

iD1
ui

n�1mi C
n�3X

iD1
ui

n�2 � .1 � ti/ D 0I (7.30)

� � � � � � � � �
u13m1 C u23m2 C u12 � .1 � t1/ D 0I (7.31)

u12m1 D l; (7.32)
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where n D max.ni C ki C 2/; us
r 2 L˝r , 1 � r � n, 1 � s < r.

In order to show that l D 0, we are going to perform induction on n. If n D 2 we
have two equalities: u12.1�t1/ D 0, and l D u12m1. According to the skew-symmetry
axiom u12.1 � t1/m1 D 2u12m1, hence l D 0.

We make the inductive step by downward induction on k D minfi j ui
n ¤ 0g. If

k D n � 1 then Eqs. (7.28) and (7.29) take up the form

un�1
n � .1 � tn�1/ D 0I

un�1
n mn�1 C

n�2X

iD1
ui

n�1 � .1 � ti/ D 0: (7.33)

The skew-symmetry axiom yields 2un�1
n mn�1 D un�1

n � .1 � tn�1/mn�1 D 0. Thus,
we may apply the inductive supposition to Eqs. (7.30)–(7.33).

Let k D minfi j ui
n ¤ 0g < n � 1, n � 3. If a set of elements

fwi
s 2 L˝s j 1 < s � n; 1 � i < sg

satisfies the system of Eqs. (7.28)–(7.31) and w12m1 D 0, then the set

fui
s � wi

s j 1 < s � n; 1 � i < sg

still satisfies (7.28)–(7.32) because all operators are linear. Therefore, to complete
the inductive step of the downward induction, it remains to find a solution fwi

sg of
(7.28)–(7.31) with w12m1 D 0, such that wk

n D uk
n, wk�1

n D wk�2
n D : : : D 0.

Recall that we have fixed the notation

e.k/ D 1

.n � k/Š

X

�2S
.k/
n

�:

Since .1 � ti/e.k/ D 0; k < i < n, Eq. (7.28) implies uk
n � .1 � tk/e.k/ D 0. By

Lemma 7.3 applied to S.k�1/
n , the left annihilator I of .1 � tk/e.k/ in kŒS.k�1/

n � equals

kŒS.k�1/
n �.1C tk/CkŒS.k�1/

n �.1C tktkC1C tkC1tk/C
n�1X

iDkC2
kŒS.k�1/

n �.1� ti/: (7.34)

As a left ideal of a semisimple algebra, this annihilator has the form I D kŒS.k�1/
n � f ,

where f 2 I is an idempotent. In this case, .1 � tk/e.k/kŒS
.k�1/
n � D .1 � f /kŒS.k�1/

n �.
Therefore, uk

n � .1 � f /kŒS.k�1/
n � D 0I that is, uk

n D uk
n � f . Let

f D rk.1C tk/C rkC1.1C tktkC1 C tkC1tk/C
n�1X

iDkC2
ri.1 � ti/; r	 2 kŒS.k�1/

n �:
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We have received the following decomposition

uk
n D uk

n � rk.1C tk/C uk
n � rkC1.1C tktkC1C tkC1tk/C

n�1X

iDkC2
uk

n � ri.1� ti/: (7.35)

Let us put

wk
n D uk

n;

wkC1
n D �uk

n � rkC1.1C tktkC1 C tkC1tk/;

wi
n D �uk

n � ri.1 � tk/; kC 2 � i < n: (7.36)

Since 1 � tk commutes with all 1 � ti, kC 2 � i < n, and

.1C tktkC1 C tkC1tk/.1 � tk/ D .1C tktkC1 C tkC1tk/.1 � tkC1/;

Eq. (7.35) implies

n�1X

iDk

wi
n.1� ti/ D 0; (7.37)

and

n�1X

iDk

wi
nmi D uk

n � rkC1.1C tktkC1 C tkC1tk/mk C
n�1X

iDkC2
uk

n � ri.1 � ti/mk

� uk
n � rkC1.1C tktkC1 C tkC1tk/mkC1 �

n�1X

iDkC2
uk

n � ri.1 � tk/mi:

(7.38)

Let us define

wj
n�1 D 0; j < kI

wk
n�1 D uk

n � .
n�1X

iDkC2
rimi � rkC1.1C tktkC1 C tkC1tk/mk/I

wi�1
n�1 D �uk

n � rimk; kC 2 � i � n � 1: (7.39)

The defining relations in ti imply

.1C tktkC1 C tkC1tk/tkC1tk D .1C tktkC1 C tkC1tk/;
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while axiom (7.13) yields tkC1tkmkC1 D mktk: Hence, we have

.1C tktkC1 C tkC1tk/.mk �mkC1/ D .1C tktkC1 C tkC1tk/mk.1 � tk/:

By means of this formula and the commutation rules

.1 � ti/mk D mk.1 � ti�1/; .1 � tk/mi D mi.1 � tk/; kC 2 � i;

equality (7.38) implies

n�1X

iD1
wi

nmi C
n�2X

iD1
wi

n�1.1 � ti/ D 0: (7.40)

The Jacobi identity and mkmi�1 D mimk, kC 2 � i < n provide the equality

n�2X

iD1
wi

n�1mi D 0: (7.41)

Therefore, if we put wi
s D 0, 1 < s � n�2, 1 � i < s, then equalities (7.37), (7.40),

and (7.41) demonstrate that the set fwi
sg is a solution of (7.28)–(7.31) that satisfies

wk
n D uk

n; wk�1
n D wk�2

n D : : : D 0:

If n > 3 then w12m1 D 0 because w12 D 0. If n D 3 then (7.41) says w12m1 D 0. ut

7.3.3 PBW Isomorphism

In order to understand the relation between L and U.L/, it is important to consider
the simplest Lie �-algebra L0 defined on the same braided space L. This is the Lie
�-algebra with the zero multiplication: Œu; v�0 D 0. Certainly, the algebra U.L0/ is
uniquely defined by the symmetry � . For example, if � is the ordinary flip .u˝v/� D
v ˝ u, then U.L0/ is nothing more than the algebra of commutative polynomials in
a basis of L or, in invariant terms, this is the symmetric algebra of the space L. If L
is a color Lie algebra then U.L0/ is generated by variables xi; i 2 I which are related
to a homogeneous basis li 2 Lgi of L, and commute according to the rule

xixs D qisxsxi; qis D ˛.gi; gs/:

This is the so called algebra of quantum polynomials (of course, here qisqsi D 1).
By these reasons, in general, the algebra U.L0/ may be regarded as an algebra of
“commutative” polynomials in a given symmetric category.
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In the general case of Lie �-algebras, the Poincaré-Birkhoff-Witt Theorem in
its constructive form is not valid any more; that is, U.L/ not always has a basis
un1
1 un2

2 � � � unm
m defined by an ordered basis u1 < u2 < � � � < um < � � � of L.

Example 7.1 The simplest example is given by the Lie �-algebra with zero
multiplication and � D id˝ id. In this particular case, the ideal J generated by

fu˝ v � .u˝ v/� � Œu; v� j u; v 2 Lg

is zero. Hence, U.L/ is the free associative algebra khLiwhich certainly has no basis
of the form un1

1 un2
2 � � � unm

m , where fuig is an ordered basis of L.

Even if L is a color Lie algebra, the M. Scheunert theorem demonstrate that some
of the basis elements of L are of height 2 in U.L/, see Theorem 7.1.

Nevertheless, two invariant (independent of a fixed basis) forms of the Poincaré-
Birkhoff-Witt Theorem are known which may be generalized to the Lie �-algebras
over a field of characteristic zero. The PBW-theorem in one of these forms provides
an isomorphism of coalgebras U.L/ Š U.L0/ where, as above, L0 is the Lie �-
algebra with the zero multiplication defined on the same space L.

Theorem 7.4 If the characteristic of the ground field k is zero, then the linear map
� W U.L0/! U.L/ defined as

� W '0.u/ 7! '.u � en/; u 2 L˝n;

is an isomorphism of coalgebras. Here '0 W khLi ! U.L0/ and ' W khLi !
U.L/ are the natural homomorphisms appearing in the definition of the universal
enveloping algebra, and

en D 1

nŠ

X

�2Sn

� 2 kŒSn�:

Proof Let us demonstrate, first, that in k ŒSn� the following inclusion holds:

1 � en 2
n�1X

iD1
k ŒSn�.1 � ti/: (7.42)

For each � 2 Sn, we have �ti D ��.1 � ti/ C � � � .mod A/, where A is the
right hand side of (7.42). Every element of the symmetric group is a product of
transpositions ti, 1 � i < n. Hence � � 1 .mod A/, whereas

en D 1

n

X

�2Sn

� � n � 1
n

.mod A/:

This is equivalent to (7.42).
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Next, we have to demonstrate that � is a well-defined linear map. By definition,
ker.'0/ is generated by the space

W0 D fa˝ b � .a˝ b/� j a; b 2 Lg D L˝2. id � �/:

In particular, ker.'0/ (but not ker.'/) is a homogeneous ideal, whereas its nth
component takes the form

ker.'0/n D ker.'0/\ L˝n D
n�1X

iD1
L˝n. id � �i/:

At the same time, . id � �i/en D 0, 1 � i < n. Thus, '0.u/ D 0, u 2 L˝n implies
u � en D 0 and '.u � en/ D 0. Hence, � is a well-defined linear map.

Inclusion (7.42) implies that

L˝n.1 � en/ �
n�1X

iD1
L˝nk ŒSn�.1 � �i/ �

n�1X

iD1
L˝n.1 � �i/ D ker.'0/n:

Therefore, for each u 2 L˝n, we have

'0.u/ D '0.u � en C u � .1 � en// D '0.u � en/:

As both '0 and ' are coalgebra maps, � W '0.u � en/ 7! '.u � en/, u 2 L˝n is so too.
Let us check that � is an epimorphism. To this end, it suffices to show that

'.L˝n/ �
nX

iD1
'.L˝iei/:

If n D 1, then e1 D 1 and the inclusion is evident. In general case, for each u 2 L˝n

we have u � u�i � u � mi.mod J/; whereas u � mi 2 L˝.n�1/. Here as above mi D
idi�1 ˝ m˝ idn�i�1 and m is the �-Lie multiplication of L. Now, inclusion (7.42)
yields

u � u � en D u.1� en/ 2
n�1X

iD1
L˝n � k ŒSn�.1 � ti/ � L˝.n�1/ .mod J/:

Therefore '.u/� '.u � en/ 2 '.L˝.n�1//, and evident induction applies.
It remains to demonstrate that the kernel of � is zero. Because '0.u/ D 0, u 2 L˝i

implies u �ei D 0, it suffices to check that the intersection of ker.'/ with
P1

iD1 L˝iei
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is zero. By induction on n, we shall prove that

ker.'/ \
nX

iD1
L˝iei D 0:

When n D 1, this is precisely the statement of Theorem 7.3.
Let n > 1, and let w DPn

iD1 ui � ei, ui 2 L˝i, un � en ¤ 0. By Lemma 6.3, taking
into account equalities ei � � D ei with � 2 Si, and counting the number of terms of
the operator ˚.1;i/

r defined in (6.23), we have

b.ui � ei/ D
iX

rD0
u � ei � ˚.1;i/

r �r D
iX

rD0

�
i

r

�
u � ei �r; u 2 L˝i:

Clearly, the idempotents er; e.r/, 1 � r � i defined in (7.19) satisfy ei D eier D
eie.r/. Therefore if '.w/ D 0, then

0 D b.'.w//� 1˝'.w/� '.w/˝1

D
nX

iD1

i�1X

rD1

�
i

r

�
ui � ei �r.er˝e.r//.'˝'/: (7.43)

By the inductive supposition the restriction of '˝' on
Pn�1

rD1 L˝ier˝Pn�1
rD1 L˝ier is

injective. Hence

0 D
nX

iD1

i�1X

rD1

�
i

r

�
ui � ei �r.er˝e.r// D

nX

iD1

i�1X

rD1

�
i

r

�
ui � ei �r:

Applying the concatenation product, we obtain
Pn

iD1.2i�2/uiei D 0, which implies
.2n � 2/unen D 0. A contradiction. ut
Corollary 7.1 If the characteristic of the ground field is zero, then Prim .U.L// D
L.

Proof Let w D Pn
iD1 ui � ei, ui 2 L˝i. If '.w/ is a primitive element, then equality

(7.43) is valid, which implies
Pn

iD1.2i � 2/uiei D 0. Hence .2i � 2/uiei D 0,
1 < i � n, and w D w1 2 L. ut

The proven theorem does not provide a basis for U.L/ in an explicit form, but
it shows that in order to construct such a basis it is sufficient to find a basis of
the algebra U.L0/, the algebra of �-commutative polynomials. In particular, we see
that the basis of U.L/ is independent of the Lie operation on L and, instead, it is
completely defined by the symmetry � .
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Corollary 7.2 If the characteristic of the ground field is zero, then U.L0/ is
isomorphic to the Nichols algebra B.L/ as a braided Hopf algebra.

Proof The set of defining relations (7.18) for U.L0/ consists of homogeneous
quadratic polynomials uv �P viui, where .u˝ v/� DPi vi˝ ui. By Theorem 7.2
there exists a natural homomorphism of braided Hopf algebras ' W khLi ! U.L0/.
The kernel of ' is contained in the ideal �2, and whence, due to Lemma 6.15,
ker' � ker˝ . Therefore there exists a braided Hopf algebra homomorphism
� W U.L0/ ! B.L/. In this case ker � \ L D 0. By the above corollary, we have
Prim .U.L0// D L. In particular, ker � has no nonzero primitive elements. Thus,
Theorem 6.3 implies ker � D 0. ut

Another invariant form of the PBW theorem claims that the graded algebra
associated with U.L/ is isomorphic to the algebra of �-commutative polynomials.

Theorem 7.5 If the characteristic of the ground field is zero, then the graded
algebra associated with U.L/ filtered by

k � 1 � k � 1C L � .k � 1C L/2 � � � � � .k � 1C L/n � � � � � U.L/ (7.44)

is isomorphic to U.L0/ as a braided Hopf algebra.

Proof Let fai j i 2 Ig be a basis of L. Consider the natural homomorphism ' W
khXi ! U.L/, where X D fxi j i 2 Ig and xi 7! ai. Filtration (7.44) is precisely the
filtration defined by the formal degree d.xi/ D 1, see Sect. 1.6. Due to Definition 7.1
the kernel J of ' is generated by polynomials

xixs �
X

k;m

˛
k;m
i;s xkxm � Œxi; xs�;

where .xi˝xs/� DPk;m ˛
k;m
i;s xk˝xm. The leading components of these polynomials

are the defining relations of U.L0/. Hence epimorphism (1.104) takes the form

' W U.L0/ �! gr U.L/: (7.45)

If ker' ¤ 0, then by Theorem 6.3 it contains a nonzero primitive element.
Corollary 7.1 applied to L0 states that Prim U.L0/ D L. At the same time,
the embedding theorem (Theorem 7.3) implies that ker' \ L D 0, whereas
Proposition 1.12 shows that ker' \ L D ker' \ L D 0. A contradiction. ut

7.4 Free Lie �-Algebra

Along this section we shall assume that the characteristic of the ground filed k
is zero. We shall consider more thoroughly the free Lie �-algebra LhVi freely
generated by a braided space V with an involutive braiding. In particular, we prove
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that its universal enveloping algebra is the free braided Hopf algebra khVi and
LhVi as a subalgebra of khVi.�/ coincides with the space of all primitive elements,
LhVi D Prim khVi.�/. Recall that the Lie �-algebra khVi.�/ by definition is the
space khVi with multiplication Œu; v� D uv�P viui, where .u˝ v/� DPi vi˝ ui,
see Lemma 7.2. The following lemma demonstrates that the space Prim khVi is
closed with respect to the bracketing.

Lemma 7.4 If u; v are primitive polynomials, then Œu; v� is so as well.

Proof By definition of braided coproduct we have

b.uv/ D .u˝1C 1˝u/.v˝1C 1˝v/ D uv˝1C 1˝uv C u˝v C .u˝v/�:

This implies

b.Œu; v�/ D b.uv �
X

viui/

D Œu; v�˝1C 1˝Œu; v�C u˝v C .u˝v/� �
X

i

vi˝ui � .
X

i

vi˝ui/�

D Œu; v�˝1C 1˝Œu; v�

because .
P

i vi˝ui/� D .u˝v/�2 D u˝v. ut
We are reminded the definition of the free object.

Definition 7.2 A Lie �-algebra LhVi generated by a braided subspace V is said to
be free Lie �-algebra if every homomorphism of braided spaces ' W V ! L0 into a
Lie �-algebra L0 extends to a homomorphism of Lie �-algebras ' W LhVi ! L0.

The main idea of the proofs below is that the local action of the braid monoid on
the n-fold tensor product V˝n by Theorem 1.4 reduces to the action of the symmetric
group. This allows us to formulate the following general principle:

If a theorem is valid for ordinary Lie algebras and its statement may be
interpreted as a property of the group algebra kŒSn� under the local action, then
this theorem is valid for an arbitrary generalized Lie algebra.

Therefore once we have an interpretation, we need to check the validity of
a theorem only for multilinear (noncommutative) polynomials. Somehow this
provides the linearization process applied to an arbitrary involutive braiding.

Of course the above principle does not allow us to generalize all the theorems
since there exist some important properties of Lie algebras that are not valid
for generalized ones. For example, the PBW-theorem in constructive form, see
Example 7.1.



7.4 Free Lie � -Algebra 265

Theorem 7.6 (�-Friedrichs Criteria) The algebra Prim khVi.�/ is generated by V
as a generalized Lie algebra. More precisely, an element v 2 V˝n is primitive if and
only if it has a representation

v D
X

iD.i1;i2;:::;in/
˛i Œ: : : ŒŒxi1 ; xi2 �; xi3 �; : : : xin �; ˛i 2 k; (7.46)

where X D fxi j i 2 Ig is a fixed basis of V.

Proof By Lemma 6.3 the braided coproduct has the form

b.u/ D
nX

rD0

�
u � ˚.1;n/

r

�
�r; u 2 V˝n; (7.47)

where .u˝ v/�r D u˝v, u 2 V˝r and the operators ˚.1;n/
r are defined in (6.23):

˚.1;n/
r D

X

1�k1<k2<:::<kr�n

Œ1I k1�Œ2I k2� � � � ŒrI kr�;

with

ŒkI k� D idI ŒmI k� D �k�1�k�2�k�3 � � � �mC1�m; m < k:

Therefore an element v 2 V˝n is primitive if and only if u � ˚.1;n/
r D 0, 1 � r < n.

We claim that the left annihilator in kŒSn� of all ˚.1;n/
r , 1 � r < n equals the left

ideal generated by the following element:

�n D .id � Œ1I 2�/.id � Œ1I 3�/ � � � .id � Œ1I n�/: (7.48)

Indeed, let � � ˚.1;n/
r D 0, 1 � r < n. Consider a linear space Z of dimension n. In

the classical case, when � is the ordinary flip u˝v 7! v˝u, the local action of kŒSn�

is a faithful action on the subspace of all multilinear (noncommutative) polynomials
of Z˝n,

z1z2 : : : zn �˝ D
X

�2Sn

˛�z��1.1/z��1.2/ : : : z��1.n/; ˝ D
X

˛�� 2 kŒSn�: (7.49)

Now we have .z1z2 � � � zn � �/ � ˚.1;n/
r D 0, 1 � r < n. Hence z1z2 � � � zn � �

is a primitive multilinear polynomial of Z˝n. By the classical Friedrichs criteria
z1z2 � � � zn � � is a linear combination of the form (7.46) with ordinary commutator.
In terms of the local action this means

z1z2 � � � zn �� D
X

�2Sn

˛�.z1z2 � � � zn � �/�n:
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Thus � D .P�2Sn
˛��/ � �n, which proves the claim.

By Maschke theorem, kŒSn� is a semisimple algebra, whence by Lemma 1.39
there exists an idempotent e 2 kŒSn� �n such that kŒSn� �n D kŒSn�e, whereasP

r ˚
.1;n/
r kŒSn� D .1 � e/kŒSn�. In particular, if u 2 V˝n is a primitive element,

then u � ˚.1;n/
r D 0, 1 � r < n, and therefore u � .1 � e/ D 0I that is, ue D u. Hence

u 2 u � kŒSn� �n, which implies representation (7.46). ut
Theorem 7.7 The space of primitive elements Prim khVi with the brackets Œu; v� D
u˝ v � .u˝ v/� is the free Lie �-algebra freely generated by V.

Proof By Theorem 7.6 the Lie �-algebra Prim khVi.�/ is generated by V as a Lie �-
algebra. Let L be an arbitrary Lie �-algebra and ' W V ! L a linear map that respects
the braiding. The map ' has an extension up to a homomorphism of braided Hopf
algebras Q' W khVi ! U.L/. The restriction of Q' on Prim khVi.�/ is the required
homomorphism of Lie �-algebras ' W Prim khVi.�/ ! {.L/ because {.L/ Š L due
to Theorem 7.3. ut

Now we are going to prove a number of auxiliary statements in order to show
that every braided Hopf subalgebra of khVi is generated by primitive elements.

Recall that the free braided Hopf algebra khXi has a right and a left coordinate
differential calculi, see Sect. 6.3. Let as above C and C� denote the subalgebras of
constants for the right and left calculi, respectively.

Lemma 7.5 If �2 D id, then C D C�.

Proof Comparing coproduct formula (7.47) and decomposition (6.41), we see that
u 2 V˝n \ C if and only if u � ˚.1;n/

1 D 0, where

˚
.1;n/
1 D

nX

iD1
ŒiI n� D �n�1�n�2 � � � �2�1 C : : :C �2�1 C �1 C id: (7.50)

Similarly, (7.47) and decomposition (6.44) imply that u 2 V˝n \ C� if and only if
u � ˚.1;n/

n�1 , where by definition

˚
.1;n/
n�1 D

X

1�k1<k2<:::<kn�1�n

Œ1I k1�Œ2I k2� � � � Œn � 1I kn�1�:

Lemma 1.14 allows one to replace the area f1 � k1 < k2 < : : : < kn�1 � ng by its
complement f1 � i1 � ng, so that ˚.1;n/

n�1 D
Pn

iD1ŒnI i�: Since �2i D id, it follows that

ŒnI i�Œ1I n� D Œ1I i�, which implies ˚.1;n/
n�1 � Œ1I n� D ˚.1;n/

1 . In particular the kernels of

˚
.1;n/
n�1 and ˚.1;n/

1 coincide. ut
Lemma 7.6 The operator ˚1 D ˚.1;n/

1 satisfies an equation of the following form

˚1 D ˛2 ˚2
1 C ˛3 ˚3

1 C � � � C ˛m ˚
m
1 ; ˛i 2 k: (7.51)
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Proof We prove the statement in two steps.
Step 1. We show that ˚1 2 ˚2

1 kŒSn�. Suppose in contrary that ˚1 … ˚2
1 kŒSn�.

Then by Corollary 1.3 there exists � 2 kŒSn�, such that � ˚1 ¤ 0, � ˚2
1 D 0.

Consider a linear space Z of dimension n with ordinary flip u ˝ v 7! v ˝ u.
As we have mentioned before, the local action (7.49) of kŒSn� is a faithful action on
the subspace of all multilinear polynomials of Z˝n. We have z1z2 : : : zn �� ˚1 ¤ 0.
Hence u D z1z2 : : : zn �� is not a constant, see (7.50).

By (6.41) and (7.47) applied to khZi, we have .u � ˚1/�1 D P
i zi˝.@u=@zi/.

Therefore the element

c D
nX

iD1
zi
@u

@zi
(7.52)

satisfies c D u � ˚1, whereas c � ˚1 D u � � ˚2
1 D 0. Thus c is a constant.

Differentiating the equality (7.52) by zk, we obtain

0 D @u

@zk
C

nX

iD1
zi
@2u

@zi@zk
:

Starting with this equality we may prove by induction

@mu

@zk@zs � � � @zr
D � 1

m

nX

iD1
zi

@mC1u
@zi@zk@zs � � � @zr

: (7.53)

Indeed, in order to move from m to mC 1 it suffices to differentiate (7.53) by zt and
remember that in the classical case the partial derivations commute.

As u 2 Z˝n, all its partial derivatives of order nC 1 are zero. Hence recurrence
formula (7.53) by downward induction shows that all partial derivatives, including
the first ones, are zero; that is u is a constant. A contradiction.

Step 2. The element ˚1 as an element of a finite dimensional algebra is a root of
some polynomial

˛0 C ˛1 ˚1 C ˛2 ˚2
1 C ˛3 ˚3

1 C � � � C ˛m ˚
m
1 D 0:

If ˛0 ¤ 0, then we may multiply this equation by ˛�1
0 ˚1 in order to get (7.51). Let

k be the minimal number with ˛k ¤ 0. We have

.˛k C ˛kC1˚1 C � � � C ˛m˚
m�k
1 /˚ k

1 D 0:

In the first step we have seen that ˚1 D ˚2
1 � for a suitable � 2 kŒSn�. Hence the

multiplication by �k�1 from the right yields

.˛k C ˛kC1˚1 C � � � C ˛m˚
m�k
1 /˚1 D 0;

which required. ut
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Theorem 7.8 The set C of all constants of khXi is a free algebra freely generated
by a categorical subspace of homogeneous primitive elements of degree � 2. In
particular, C itself is a free braided Hopf algebra khYi.
Proof By Corollary 6.3 the space C and all of its homogeneous components
are categorical subspaces. Moreover C D C� is a right and left coideal due
to Corollary 6.2. Thus C is a homogeneous categorical Hopf subalgebra. By
Theorem 6.9 it satisfies the weak algorithm.

By Proposition 1.9, it remains to check that C has a categorical weak algebra
basis of primitive elements. In line with the construction of the weak algebra basis
(see Lemma 1.38), it suffices to find a decomposition

Cn D Yn ˚
n�1X

iD1
Cn�iCi; (7.54)

where Yn is a suitable categorical subspace of primitive elements.
First, we prove that C coincides with the subalgebra A generated by all primitive

elements of degree � 2. Every primitive element of degree � 2 is a constant due to
Corollary 6.1, whence A � C.

By Theorem 7.6 the algebra A is generated by all long skew commutators
Œ: : : Œxi1 ; xi2 �; : : : xik �, k � 2. A product of the long skew commutators,

Œ: : : Œxi1 ; xi2 �; : : : xik � � Œ: : : ŒxikC1
; xikC2

�; : : : xis � � � � Œ: : : ŒxitC1
; xitC2

�; : : : xin �;

may be written in terms of the local action as follows:

xi1xi2 � � � xin � �1;k�kC1;s � � � �tC1;n;

where

�a;b D .id � ŒaI aC 1�/.id � ŒaI aC 2�/ � � � .id � ŒaI b�/:

Thus in terms of the group algebra the required statement says that the left
annihilator of ˚1 in kŒSn� equals the left ideal of kŒSn� generated by all products
�1;k�kC1;s � � ��tC1;n. According to the principle, it suffices to check that C � A for
the particular case when V D Z has the trivial braiding u˝ v 7! v ˝ u.

In the classical case, khZi is the universal enveloping algebra of the Lie algebra
Prim khZi.�/. By the PBW-theorem every element has a unique representation

u D
X

iD.i1;i2;:::;im/
˛i zi1

1 zi2
2 � � � zim

m � ci;
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where ci are words in primitive elements of degree � 2I that is ci 2 A. In particular
ci are constants, hence we have

@u

@z1
D

X

iD.i1;i2;:::;im/
˛i i1z

i1�1
1 zi2

2 � � � zim
m ci ¤ 0;

provided that i1 ¤ 0. Thus if u is a constant, then i1 D i2 D : : : D im D 0, and
u 2 A, which proves that C D A.

Next, consider the left ideal E generated in kŒSn� by all proper products

�1;k�kC1;s � � ��tC1;n; 1 < k < : : : < t < n; k ¤ n;

and let E1 be the left ideal generated by�n given in (7.48). Since kŒSn� is semisimple,
it follows that E C E1 D E ˚ E2 with E2 � E1I that is, there exist orthogonal
idempotents e; f such that E D kŒSn�e, E1 C E D kŒSn�. f C e/, f 2 E1. Thus we
arrive to a decomposition

An D V˝n � .E1 C E/ D V˝n � f ˚ V˝n � e:

This provides the required decomposition (7.54) since C D A, and V˝n � f is a
categorical (Lemma 6.11) subspace of primitive elements (f 2 E1/. ut
Theorem 7.9 Every braided subbialgebra of khVi is generated by the primitive
elements, and it is a conservative coalgebra in khVi.
Proof By Lemmas 6.19 and 6.20 it suffices to check that each braided subbialgebra
A is conservative in khVi as a coalgebra; that is o.u/ 2 A˝A implies that there
exists a 2 A such that u � a is a primitive element.

We will prove this statement by induction on the formal degree dV.u/, with
dV.xi/ D 1. More precisely, the induction supposition is the following:
For every involutive braided space W, and for every braided subbialgebra A �
khWi, if o.u/ 2 A˝A and dW.u/ < n, then u � u 0 2 A for some primitive u 0 2
khWi.

By Lemma 6.19 we may suppose that both u and A are homogeneous, u 2 V˝n.
Formula (7.47) demonstrates that u � ˚1 2 A because u � ˚1 appears from Œu � ˚1��1
by replacing˝ with the multiplication in A. Lemma 7.6 implies

Œu � ˚1��1 D
"
Œu � .

mX

iD2
˛i˚

i�1
1 /�˚1

#
�1:

Therefore u�w is a constant, where w DPm
iD2 ˛iu �˚ i�1

1 2 A. By Theorem 7.8 the
element u � w belongs to C freely generated by a categorical subspace of primitive
elements of degree � 2. The formal degree of u � w with respect to free generators
of C is smaller than that with respect to xi. Although u � w may be inhomogeneous
in the new free generators, we may apply the induction supposition to u � w and
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subbialgebra C \ A � C. Thus there exists u1 2 C \ A such that u � w � u1 is
primitive. Since wC u1 2 A, the theorem is proved. ut
Theorem 7.10 Every biideal of khVi is conservative in khVi as a coideal.

Proof The proof is quite similar to that of Theorem 7.9. We start with the induction
supposition:
For every involutive braided space W, and for every biideal J � khWi, if o.u/ 2
J˝khWi CkhWi˝J and dW.u/ < n, then u� u 0 2 J for some primitive u 0 2 khWi.

By Lemma 6.21 we may suppose that both u and J are homogeneous, u 2 V˝n.
Then we shall note that formula (7.47) implies J � ˚1 � J, and next almost literally
follow the above proof of Theorem 7.9. ut

Now we are ready to describe subalgebras of free Lie �-algebras. Recall that
according to Theorem 7.7 every free Lie �-algebra has a form Prim khVi.�/.
Theorem 7.11 Every right categorical Lie �-subalgebra L of a free Lie �-algebra
Prim khVi.�/ has a subspace W � L such that L D Prim khWi.�/, where khWi
is a right categorical associative subalgebra freely generated by W in khVi. If the
subspace W may be chosen to be braided, then L itself is a free Lie �-algebra.

Proof Let U denotes an associative subalgebra generated by L in khVi. Since L is a
right categorical and braided subspace of primitive elements, it follows that U is a
right categorical subbialgebra of khVi. By Theorem 6.9, the algebra U satisfies the
weak algorithm, whereas by Theorem 7.9 and Lemma 6.20 it has a weak algebra
basis of primitive elements. Proposition 1.9 implies that U is freely generated by
a subspace W of primitive elements. It remains to show that L D Prim U. The
inclusion L � Prim U is evident.

Consider a free associative �-algebra khLi freely generated by the braided space
L. The identical map L ! L has an extension up to an epimorphism of associative
�-algebras ' W khLi ! U. Since elements from L are primitive both in khLi and in
U, it follows that ' is a homomorphism of braided bi-algebras. By Theorem 7.10,
the kernel of ' is a conservative coideal in khLi. Therefore every primitive element
u 2 U has a primitive pre-image w 2 Prim khLi, '.w/ D u. According to the
Theorem 7.6, the element w has a representation

w D
X

iD.i1;i2;:::;in/
Œ: : : Œgi1 ; gi2 �; : : : gin �; gj 2 L˝1 � khLi:

If we apply ' to both sides of this equality, then we obtain

u D '.w/ D
X

i

Œ: : : Œ'.gi1 /; '.gi2 /�; : : : '.gin/� 2 L;

whence Prim U � L.
If W appears to be braided, then by Theorem 7.7, L is a free Lie �-algebra. ut
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Corollary 7.3 (A.A. Mikhalev, A.S. Shtern) Every subalgebra of the free color
Lie superalgebra is free.

Proof We need to check that the space W in Theorem 7.11 is braided. Every
homogeneous subspace with respect to the grading defined by the coloring group
G is braided. Since every graded subspace has a graded complement in any graded
overspace, it follows that we may suppose that all Wn in the construction of the weak
algebra basis are G-homogeneous, hence W is braided. ut

7.5 Chapter Notes

The first generalization of Lie algebras appeared in a famous paper by Milnor and
Moore [175] who demonstrated that each connected graded Hopf algebra over a
field of characteristic zero is isomorphic with the universal enveloping algebra of a
graded Lie algebra. The Lie algebras graded by the additive two-element group G D
f1; 0g, 1 C 1 D 0 were later renamed “Lie superalgebras” due to the development
of “supermathematics” that arose from certain demands by quantum mechanics
and nuclear physics [25–27]. The monograph The Theory of Lie Superalgebras by
Scheunert [204] provides an algebraic introduction to the subject.

One of the most important achievements in this respect is the Kac classification
of simple finite-dimensional Lie superalgebras [113–115, 117]. More recent devel-
opments of infinite-dimensional Lie superalgebras can be found in the works by
Bahturin et al. [14, 16]. The most recent book Lie Superalgebras and Enveloping
Algebras by Ian M. Musson [179] was published in 2012.

Scheunert introduced color Lie algebras in [202]. Notably, each color Lie algebra
may be obtained from a superalgebra using a cocycle deformation of the bracket.
The process involves changing the bracket of a color Lie algebra by replacing
Œx; y� with Œx; y�� D �.g; h/Œx; y�, where � is a nonzero scalar that depends on the
degrees of x and y. If �.g; h/ is a 2-cocycle of the group G, then the new bracket
also satisfies the anticommutativity property and Jacobi identity, although with a
different commutation factor. By selecting a suitable � , one can always ensure that
the new bracket satisfies the identities of a Lie superalgebra. This process is known
as a “discoloration” technique as proposed by Scheunert.

The concept of a Lie �-algebra was introduced by Gurevich [88]. It later appeared
in a geometrical context in a paper by Manin [166]. Lie algebras in symmetric
monoidal categories are the Lie �-algebras as defined by D. Gurevich. A standard
method of obtaining a symmetric monoidal category is to consider all modules
over a triangular Hopf algebra or all comodules over a cotriangular Hopf algebra.
Hopf algebras and Lie algebras in distinct symmetric categories were studied in
[15, 17, 18, 50, 76, 131, 132, 144, 215]. In [143], Kochetov extended Scheunerts
“discoloration” technique to Lie algebras for the categories of (co)modules over
(co)triangular Hopf algebras. Certain works by Etingof and Gelaki [68–70, 85] are
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dedicated to the classification of finite dimensional triangular and cotriangular Hopf
algebras.

The category of Lie �-algebras over a field of characteristic zero is equivalent
to the category of the connected �-cocommutative braided Hopf algebras through
the enveloping construction [132]. This statement generalizes the classical Kostant-
Cartier-Milnor-Moore Theorem [220, Theorem 3.10]. In [167], Masuoka general-
ized two classical category equivalences: formal groups with finite-dimensional Lie
algebras, and unipotent algebraic affine groups with finite-dimensional nilpotent
Lie algebras. He proved that over a field of characteristic zero, the category of
Lie �-coalgebras is equivalent to the category of complete �-commutative Hopf
algebras and that the category of locally nilpotent Lie �-coalgebras is equivalent
to the category of connected �-commutative Hopf algebras. In [13], Ardizzoni et al.
considered braided bialgebras of Hecke type in a similar manner.

Ion investigated PBW isomorphisms for symmetrically braided Hopf algebras
(not necessarily �-commutative or �-cocommutative). He demonstrated that in
characteristic zero, for any connected symmetrically braided Hopf algebra, the
associated graded algebra with respect to the coradical filtration is �-commutative,
and therefore it is a Nichols algebra [103].

The proof of the embedding theorem in the book is credited to the author
[132]. The Gurevich theorem [89] states that U.L0/ is a Koszul algebra. Based on
this theorem, the embedding theorem may be derived from a PBW theorem for
quadratic algebras of the Koszul type [132]. This PBW-type theorem was obtained
by Braverman and Gaitsgory [42] using algebraic deformation theory. It also appears
in a new book by Polishchuk and Positselsky [189, Chap. 5], which focuses on the
finite-dimensional case.

Gomez and Majid [86] proposed axioms of a left quantum Lie algebra g with
binary brackets Œ; � and braiding � that appear logically within the context of
Woronowicz’s bicovariant differential calculi over a Hopf algebra [230]. The Jacobi
identity remains essentially unchanged:

.id˝m/m D .m˝ id/mC �1.id˝m/m:

The antisymmetry condition becomes a conditional identity (quasi-identity):

U� D U H) Um D 0; U 2 g˝2:

The second axiom of braided algebra (7.13) remains unchanged, whereas the first
axiom is transformed as follows:

.m˝ id/� � �2�1.id˝m/ D �2.m˝ id/� �1.id˝m/�:

If �2 D id, then these axioms are equivalent to the axioms of Lie �-algebra (7.13),
(7.14); however, in general, the braiding is not supposed to be involutive. In this
case, the embedding problem remains unsolved. See the detailed discussion in [131,
Sect. 5].
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Ardizzoni [7, 9, 10] proposed a further modification of axioms postulating
the embedding of g into U.g/. The latter axiom plays the role of an implicit
Jacobi identity. The general theory of algebraic systems states that the conditions
for the embedding have generally assumed the form of quasi-identities, i.e., the
implications of the form

f1 D 0&f2 D 0& : : :&fn D 0 H) g D 0

(as Gomez-Majid antisymmetry is), but not the form of identities. One should
remember that the quasi-varieties, the classes of algebras defined by quasi-identities,
are not closed with respect to the homomorphic images.

Ardizzoni and Stumbo [12] applied this approach to investigate the structure
of primitively generated connected braided bi-algebras whose braided vector space
of primitive elements defines a quadratic Nichols algebra, but � is not necessarily
involutive or of Hecke type.

The investigations of the subobjects of free objects were inspired by the
famous Nielsen-Schreier theorem [182, 205]: every subgroup of a free group
is free. Shirshov [209] and independently of him Witt [229] proved that every
subalgebra of a free Lie algebra is free. This result was later generalized to Lie
superalgebras by Shtern [214] and to color Lie algebras by Mikhalev [170, 171].
To some extent, Theorem 7.11 is a �-version of the Shirshov-Witt theorem. As
previously mentioned, Lie algebras in the braided category of left (co)modules over
a (co)triangular Hopf algebra are important examples of Lie �-algebras. Each Lie
subalgebra in a category is automatically categorical. Hence, Theorem 7.11 applies
to free Lie algebras in those braided categories.

The Shirshov-Witt Theorem, as well as its generalization to color Lie superal-
gebras, remains valid for the field k of positive characteristics. It is also valid in
the restricted version [172, 229]. Therefore, it would be insightful to understand
the extent to which Theorem 7.11 and other results (for example, the �-Friedrichs
criterion) remain valid for positive characteristics.

The free braided algebra with an involutive braiding has the structure of a
twisted algebra as introduced by Barratt [20], or the structure of a k˙�-algebra
[217]. The free algebra with the braided coproduct is not a k˙�-coalgebra. The
theory of twisted Lie algebras in the category of tensor species .k˙�-Lie algebras)
has been subject to a similar conceptual development. Barratt’s main theorem in
[20] is that a free Z˙�-Lie algebra (in this case, k D Z is the ring of integer
numbers) is embedded in its enveloping Z˙�-algebra. Joyal [108] established
the Poincaré-Birkhoff-Witt theorem for enveloping algebras. Stover proved that a
Kostant-Cartier-Milnor-Moore Theorem also holds [217]. The problem regarding
whether any k˙�-subalgebra of a free Lie k˙�-algebra is free has not been
considered yet.



Chapter 8
Algebra of Primitive Nonassociative Polynomials

Abstract In this chapter, we consider nonassociative primitive polynomials as
operations for nonassociative Lie theory in a similar manner as how we considered
the skew-primitive polynomials as operations for quantum Lie theory in Chaps. 4
and 5. Many of the well-known generalizations of Lie algebras involve only one
or two operations. For instance, Malcev algebras have one binary bracket; Lie
triple systems have one ternary bracket; Bol and Lie-Yamaguti algebras have one
binary bracket and one ternary bracket; and Akivis algebras have two operations,
an antisymmetric binary bracket and a ternary bracket (related to commutator and
associator), with only one identity that relates the two operations and generalizes
the Jacobi identity. The notion of Akivis algebra initially appears to be a proper
analog to Lie algebras for the theory of nonassociative products. However, the
question raised by K.H. Hofmann and K. Strambach of whether the commutator
and associator are the only primitive operations in a nonassociative bialgebra was
answered negatively. If true, it would have corroborated the fundamental role of
Akivis algebras for nonassociative Lie theory. In 2002, I.P. Shestakov and U.U.
Umirbaev discovered infinitely many independent operations, thus proving the theo-
rems considered in this chapter. These results demonstrate that Shestakov-Umirbaev
operations together with the commutator form a complete set of nonassociative Lie
operations, whereas Theorem 8.3 is a PBW basis theorem for the Lie theory of
nonassociative products.

In this chapter, we consider nonassociative primitive polynomials as operations for
nonassociative Lie theory in a similar manner as how we considered the skew-
primitive polynomials as operations for quantum Lie theory in Chaps. 4 and 5.
Many of the well-known generalizations of Lie algebras involve only one or
two operations. For instance, Malcev algebras have one binary bracket; Lie triple
systems have one ternary bracket; Bol and Lie-Yamaguti algebras have one binary
bracket and one ternary bracket; and Akivis algebras have two operations, an
antisymmetric binary bracket and a ternary bracket (related to commutator and
associator), with only one identity that relates the two operations and generalizes
the Jacobi identity. In 2002, I.P. Shestakov and U.U. Umirbaev discovered infinitely
many independent operations. Theorems considered in this chapter demonstrate that
Shestakov-Umirbaev operations together with the commutator form a complete set
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of nonassociative Lie operations, whereas Theorem 8.3 is a PBW basis theorem for
the Lie theory of nonassociative products.

8.1 Nonassociative Polynomials

Recall that a nonassociative word is a word where the parenthesis are arranged to
show how the multiplication applies. Sometimes it is more convenient to variate
a designation of the parenthesis, for example instead of .xy/z one may write
xy � z, whereas ..z.xy//t/v takes the form f.z � xy/tgv. Besides this, a right-normed
nonassociative word,

u D ..: : : ..x1x2/x3/ : : : /xn/;

has a simplified notation without parenthesis,

u D x1x2x3 : : : xn:

In the theory of nonassociative algebras, the commutator Œx; y�
dfD xy � yx and the

associator .x; y; z/
dfD xy � z� x � yz play distinguished role.

Lemma 8.1 In each .nonassociative/ algebra the following identities hold:

Œxy; z� � xŒ y; z� � Œx; z�y D.x; y; z/ � .x; z; y/C .z; x; y/; (8.1)

.x; y; zt/ D.x; yz; t/ � .xy; z; t/C x.y; z; t/C .x; y; z/t: (8.2)

Proof We have

Œxy; z� � xŒ y; z� � Œx; z�y Dxy � z� z � xy � x � yzC x � zy � xz � yC zx � y
D.xy � z� x � yz/ � .z � xy � zx � y/C .x � zy � xz � y/
D.x; y; z/� .x; z; y/C .z; x; y/;

and

.x; yz; t/ � .xy; z; t/C x.y; z; t/C .x; y; z/t
D .x � yz/t � x.yz � t/ � .xy � z/tC .xy/.zt/

C x.yz � t/ � x.y � zt/C .xy � z/t � .x � yz/t

D .xy/.zt/ � x.y � zt/ D .x; y; zt/:

ut
A free nonassociative algebra kfXg in variables X D fxi j i 2 Ig is the algebra

of nonassociative polynomials in X with the concatenation product. By definition
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each nonassociative polynomial is a linear combination of nonassociative words.
On kfXg we fix a coproduct W kfXg ! kfXg ˝ kfXg, which is a homomorphism
of algebras, such that the variables are primitive:

.xi/ D xi ˝ 1C 1˝ xi:

In this chapter, our aim is to understand the algebraic structure of the space A of all
primitive nonassociative polynomials,

A D f f 2 kfXg j. f / D f ˝ 1C 1˝ f g:

Lemma 8.2 The space A is closed with respect to commutators and associators.

Proof We have to check that commutator and associator of primitive elements are
primitive. Let u; v are primitive nonassociative polynomials. We have

.Œu; v�/ D.u/.v/ �.v/.u/
D.1˝ uC u˝ 1/.1˝ v C v ˝ 1/� .1˝ v C v ˝ 1/.1˝ uC u˝ 1/
D1˝ uv C v ˝ uC u˝ v C uv ˝ 1
� 1˝ vuC u˝ v C v ˝ uC vu˝ 1

D.uv � vu/˝ 1C 1˝ .uv � vu/ D Œu; v�˝ 1C 1˝ Œu; v�:

Similarly, if w is another primitive polynomial, then

.uv � w � u � vw/ D.u/.v/ �.w/�.u/ �.v/.w/
D.1˝ uv C v ˝ uC u˝ v C uv ˝ 1/.1˝ wC w˝ 1/
� .1˝ uC u˝ 1/.1˝ vwC w˝ v C v ˝ wC vw˝ 1/

D1˝ uv � wC uv � w˝ 1 � 1˝ u � vw � u � vw˝ 1
D1˝ .u; v;w/C .u; v;w/˝ 1:

ut
Definition 8.1 A vector space is called an Akivis algebra if it is endowed with an
anticommutative bilinear operation Œx; y� and a trilinear operation .x; y; z/ that satisfy
the following nonassociative Jacobi identity:

ŒŒx; y�; z�C ŒŒ y; z�; x�C ŒŒz; x�; y�
D .x; y; z/C .y; z; x/C .z; x; y/ � .y; x; z/� .x; z; y/ � .z; y; x/:

Lemma 8.3 The commutator and associator of an arbitrary nonassociative alge-
bra satisfy the nonassociative Jacobi identity.
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Proof We have ŒŒx; y�; z� D Œxy � yx; z� D xy � z � z � xy � yx � zC z � yx. Therefore

ŒŒx; y�; z�C ŒŒ y; z�; x�C ŒŒz; x�; y� D.xy � z � z � xy � yx � z„ƒ‚…Cz � yx/

C .‚…„ƒyz � x �x � yz � zy � xC x � zy/

C . zx � y � ‚…„ƒy � zx �xz � yC y � xz„ƒ‚…/:

Combining similarly marked terms, we obtain the required equality. ut
Lemma 8.2 demonstrates that A has the commutator as an anticommutative

bilinear operation and the associator as a trilinear operation. By Lemma 8.3 the
space of all primitive nonassociative polynomials is an Akivis algebra with respect
to associator and commutator. Nevertheless, these two operations do not exhaust the
algebraic structure of A. The following lemma provides a simplest example of an
unary operation that can not be expressed in terms of commutator and associator.

Lemma 8.4 The polynomial

f D x4 � x2 � x2 � 2x.x; x; x/; x 2 X

is primitive, but it does not belong to the Akivis subalgebra of A generated by X.

Proof Here, in line with our conventions, x4 stands for a right-normed nonassocia-
tive word ...xx/x/x/, whereas x2 � x2 D .xx/.xx/. It is easy to prove by induction on
length that a Newton formula for right-normed nonassociative words in one variable
holds,

.xn/ D
nX

kD0

�
n

k

�
xk ˝ xn�k:

In particular, we have

.x4/ D x4 ˝ 1C 4x3 ˝ xC 6x2 ˝ x2 C 4x˝ x3 C 1˝ x4:

The equality.x2/ D x2 ˝ 1C 2x˝ xC 1˝ x2 implies

.x2 � x2/ D.x2/2 D x2 � x2 ˝ 1C 6x2 ˝ x2 C 1˝ x2 � x2

C 2x˝ x3 C 2x˝ x � x2 C 2x3 ˝ xC x � x2 ˝ x:

Considering that .x; x; x/ is a primitive polynomial, we obtain

.x.x; x; x// D x.x; x; x/˝ 1C x˝ .x; x; x/C .x; x; x/˝ xC 1˝ x.x; x; x/:
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Taking into account the equality .x; x; x/ D x3 � x � x2, we see that almost all terms
in the decomposition of . f / cancel, so that . f / D f ˝ 1C 1˝ f .

There exists only one superposition of degree four, p.x/ D Œ.x; x; x/; x�, of the
Akivis operations in one variable. Certainly, f is not proportional to p. ut

8.2 Shestakov-Umirbaev Operations

The latter example is a particular case of Shestakov-Umirbaev operations that we
are going to define on the primitive nonassociative polynomials.

Given m; n � 1, let U D .u1; u2; : : : ; um/ and V D .v1; v2; : : : ; vn/ be sequences
of nonassociative polynomials, and let U D u1u2 � � � um, V D v1v2 � � � vn be
the corresponding right-normed products. The Shestakov-Umirbaev operations are
defined inductively as follows:

p.UIVIw/ D .U;V;w/�
X

U.1/V.1/ � p.U.2/IV.2/Iw/; (8.3)

where .U;V;w/ is the associator. Here Sweedler’s notation is extended so as to
mean that the sum is taken over all partitions of the sequences U and V into pairs of
subsequences, U D U.1/ [ U.2/ and V D V.1/ [ V.2/ such that jU.1/j C jV.1/j � 1,
U.2/ ¤ ;, V.2/ ¤ ; I the expressions U.1/ and V.1/ are the right-normed products of
the elements of U.1/ and V.1/ respectively.

For instance, the operation which corresponds to m D 2, n D 1 is the associator.
The operations corresponding to m D 2, n D 1 and m D 1, n D 2 are

p.u1; u2I vIw/ D .u1u2; v;w/ � u1.u2; v;w/ � u2.u1; v;w/

and, respectively,

p.uI v1; v2Iw/ D .u; v1v2;w/ � v1.u; v2;w/ � v2.u; v1;w/:

If we put by definition p.;IVIw/ D p.UI ;Iw/ D 0, then definition (8.3) reduces
to a decomposition of the associator:

.U;V;w/ D
X

U.1/V.1/ � p.U.2/IV.2/Iw/; (8.4)

where the sum is taken over all partitions of the sequences U and V into pairs of
subsequences (including empty ones), in which case as usual U.1/ D ;, V.1/ D ;
imply U.1/ D 1, V.1/ D 1 as products of empty sets of factors. This decomposition
is convenient due to the following statement, where f ı g stands for f ˝ gC g˝ f ,
so that a polynomial f is primitive if and only if . f / D 1 ı f .
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Lemma 8.5 If the polynomial w and all polynomials in the sequences U, V are
primitive, then the following equalities hold:

1/ .U/ DPU.1/ ˝ U.2/I

2/ .UV/ DPU.1/V.1/ ˝ U.2/V.2/I

3/ .UVw/ DPU.1/V.1/ ı .U.2/V.2/w/I

4/ .U � Vw/ DPU.1/V.1/ ı .U.2/ � V.2/w/I

5/ ..U;V;w// DPU.1/V.1/ ı .U.2/;V.2/;w/;

where the sums are taken over all partitions of U and V into pairs of subsequences.

Proof We demonstrate equality 1) by induction on the length of the sequence U.
If the sequence has just one element, u1, then there are two possible partitions:
U.1/ D .u1/, U.2/ D ; and U.1/ D ;, U.2/ D .u1/. Respectively equality 1) reduces
to a correct equality.u1/ D u1 ˝ 1C 1˝ u1.

Assume that equality 1) is valid for all sequences of length m. Consider an
arbitrary sequence W D .u1; u2; : : : ; um; umC1/ of length m C 1. Each partition U
D U.1/[U.2/ of the subsequence U D .u1; u2; : : : ; um/ defines two partitions of W W

W.1/ D U.1/ [ fumC1g; W.2/ D U.2/; and W.1/ D U.1/; W.2/ D U.2/ [ fumC1g:

For the former partition W.1/ D U.1/umC1, W.2/ D U.2/, whereas for the latter one
W.1/ D U.1/, W.2/ D U.2/umC1. Using induction supposition, we obtain the required
equality:

.UxmC1/ D.U/.umC1/ D .
X

.U/

U.1/ ˝U.2//.umC1 ˝ 1C 1˝ umC1/

D
X

.U/

U.1/umC1 ˝ U.2/ C
X

.U/

U.1/ ˝ U.2/umC1 D
X

.W/

W.1/ ˝W.2/:

The second statement of the lemma follows immediately from 1) because 
is a homomorphism of algebras. To check 3), we note that the coproduct in 2) is
cocommutative

.UV/ D
X

U.1/V.1/ ˝ U.2/V.2/ D
X

U.2/V.2/ ˝ U.1/V.1/
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because each partition U D A [ B defines a partition U D B [ A and vice versa.
Thus

.UVw/ D.UV/.w/ D .UV/.1˝ w/C.UV/.w˝ 1/
D
X

U.1/V.1/ ˝U.2/V.2/wC
X

U.2/V.2/w˝ U.1/V.1/

D
X

U.1/V.1/ ı U.2/V.2/w;

which gives 3). In perfect analogy, one gets 4). Equality 5) follows immediately
from 3) and 4) by linearity. ut
Theorem 8.1 If nonassociative polynomials

u1; u2; : : : ; um; v1; v2; : : : ; vn; w

are primitive then so is the polynomial

p.u1; u2; : : : ; umI v1; v2; : : : ; vnIw/:

Proof We perform induction on m C n. If either m or n is zero, then by definition
p.UIVIw/ D 0 and we have nothing to prove. Assume that for all sequences U0;V0
of lengths m 0, n 0, respectively, with m 0 C n 0 < m C n, the element p.U0IV0Iw/ is
primitive. By definition p.UIVIw/ D .U;V;w/� f , where

f D
X

U.1/V.1/ � p.U.2/IV.2/Iw/

and the sum is taken over all partitions of the sequences U and V into pairs of
subsequences such that jU.1/j C jV.1/j � 1. In the above formula the elements
p.U.2/IV.2/Iw/ are primitive by the induction assumption. Using equality 3) of
Lemma 8.5 with w p.U.2/IV.2/Iw/, we obtain

. f / D
X

U.1/.1/V.1/.1/ ı .U.1/.2/V.1/.2/p.U.2/IV.2/Iw//

D
X

U.1/V.1/ ı .U.2/V.2/p.U.3/IV.3/Iw//; (8.5)

where the latter sum is taken over all partitions of the sequences U and V into
triples of subsequences, U D U.1/ [ U.2/ [ U.3/, U D V.1/ [ V.2/ [ V.3/, such
that jU.1/j C jV.1/j C jU.2/j C jV.2/j � 1. Let us distinguish the partitions with
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U.1/ D V.1/ D ;. In this case sum (8.5) splits as follows:

D
X

jU.1/jCjV.1/j�1
1 ıU.1/V.1/p.U.2/IV.2/Iw//

C
X

jU.1/jCjV.1/j�1
U.1/V.1/ ı .

X

.U.2//; .V.2//

U.2/.1/V.2/.1/p.U.2/.2/IV.2/.2/Iw//:

Now the definition of f and representation of the associator (8.4) with U  U.2/,
V  V.2/ imply

. f / D 1 ı f C
X

jU.1/jCjV.1/j�1
U.1/V.1/ ı .U.2/V.2/;w/:

Applying equality 5) of Lemma 8.5, we obtain

..U;V;w// D
X

U.1/V.1/ ı .U.2/;V.2/;w/

D1 ı .U;V;w/C
X

jU.1/jCjV.1/j�1
U.1/V.1/ ı .U.2/V.2/;w/:

Consequently,

. p.U;V;w// D ..U;V;w// �. f / D 1 ı .U;V;w/ � 1 ı f D 1 ı p.U;V;w/I

that is, p.U;V;w/ is primitive. ut

8.3 Lie Algebra of Nonassociative Products

In this section we prove a fundamental result of Shestakov and Umirbaev that the
defined in the above section primitive operations together with the commutator form
a complete set of nonassociative Lie operations. The proof includes a some sort of
PBW basis construction for free nonassociative algebra over primitive polynomials
which is formulated in Theorem 8.3.

Theorem 8.2 If the characteristic of the ground field is zero, then the space A
of all primitive nonassociative polynomials is generated by X as an algebra with
operations pm;n, m; n � 1 and Œu; v�.

We shall derive this theorem from the following statement.

Proposition 8.1 Let P be the minimal subspace of kfXg that contains X and is
closed with respect to all operations pm;n, m; n � 1 and Œu; v�. Consider an arbitrary
completely ordered basis B D fe˛ j ˛ 2 Ag of P. If the characteristic of the ground
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field is zero, then the set of all right-normed words of the type

e1e2 � � � ei�1ei; e1 � e2 � � � � � ei�1 � ei; ek 2 B; 1 � k � i (8.6)

forms a basis of the algebra kfXg.
Proof Let Ci, i � 1 denotes the space spanned by all words (8.6) of length less than
or equal to i.

Lemma 8.6 The spaces Ci, 1 � i satisfy the following conditions:

.Ci;Cs;Ck/ �CiCsCk�2; (8.7)

ŒCi;Cs� �CiCs�1; (8.8)

Ci � Cs �CiCs: (8.9)

Proof We perform induction on n D i C s C k. If n D 3, then (8.7) follows from
the fact that each associator .ep; eq; er/ belongs to C1 D P. Inclusion ŒC1;C1� � C1
is evident due to the fact that P D C1 is closed with respect to the operation Œu; v�.
If e1 � e2 then by definition e1 � e2 2 C2, whereas e2 � e1 D e1 � e2 C Œe2; e1� 2
C2 C C1 � C2. Thus, we have the base of induction.

Assume that inclusions (8.7)–(8.9) fulfill for iC sC k < n. Let u; v;w be words
(8.6) of lengths i; s; k respectively and iC sC k D n.

If k D 1I that is, w D e˛ , than formula (8.4) and the induction assumption imply
that .u; v;w/ D .u; v; e˛/ 2 Cn�2.

If k > 1, then w D w1ek, where w1 is a word (8.6) of length k�1. By Lemma 8.1
identity (8.2) with x u, y v, z w1, t ek is valid:

.u; v;w/ D .u; vw1; ek/ � .uv;w1; ek/C u.v;w1; ek/C .u; v;w1/ek: (8.10)

By induction supposition (8.9), we have vw1 2 CsCk�1, uv 2 CiCs. These two
inclusions and already considered case k D 1 imply

.u; vw1; ek/ 2 Cn�2; .uv;w1; ek/ 2 Cn�2:

Induction supposition (8.7) yields .v;w1; ek/ 2 CsCk�2, and .u; v;w1/ 2 Cn�3.
Hence, again by induction supposition (8.9), we have

u.v;w1; ek/ 2 CiCsCk�2 � Cn�2; .u; v;w1/ek 2 Cn�3C1 � Cn�2:

Thus, all terms of (8.10) belong to Cn�2, which completes the proof of (8.7).
Consider inclusion (8.8). Because Œu; v� D �Œv; u�, without loss of generality we

may suppose that i > 1I that is, u D u1ei, u1 2 Ci�1. Identity (8.1) with x  u1,
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y ei, z v yields

Œu; v� D u1Œei; v�C Œu1; v�ei C .u1; ei; v/� .u1; v; ei/C .v; u1; ei/:

In this decomposition, all associators belong to CiCs�2 due to already proven
inclusion (8.7). Induction assumption (8.8) implies Œei; v� 2 Cs and Œu1; v� 2 CiCs�2,
whereas induction assumption (8.9) yields

u1Œei; v� 2 Ci�1Cs � CiCs�1 and Œu1; v�ei 2 CiCs�2C1 � CiCs�1:

This completes the proof of (8.8).
Let us turn to (8.9). Consider firstly the case s D 1. Let u D e1e2 : : : ei, v D eq.

If ei � eq then the word uv D ueq is a word of type (8.6), and by definition it
belongs to CiC1. If t is a minimal number such that eq < et, then by the same
reason e1e2 : : : et�1eqet : : : ei 2 CiC1. Hence, it suffices to demonstrate that for all
t, 1 � t � i the following relation is valid:

uv � e1e2 : : : et�1eqet : : : ei .mod Ci/: (8.11)

We perform downward induction on t. If t D i, then u D u1ei, u1 2 Ci�1 and

uv D u1ei � eq D u1 � eieq C .u1; ei; eq/:

The latter associator belongs to Ci�1 � Ci due to (8.7). Further,

u1 � eieq D u1.eqei C Œei; eq�/;

in which case u1Œei; eq� 2 Ci�1C1 � Ci due to induction assumption (8.9). Hence,
taking into account (8.7), we have

uv � u1 � eqei D u1eq � ei � .u1; eq; ei/ � u1eq � ei .mod Ci/;

which completes the proof of (8.11) with t D i. If t < i, then already proven (8.11)
with i t reads:

e1e2 : : : et�1eteq � e1e2 : : : et�1eqet .mod Ct/:

This implies

e1e2 : : : et�1eteqetC1 : : : ei � e1e2 : : : et�1eqetetC1 : : : ei .mod Ct C1C1 � � �C1„ ƒ‚ …
i�t

/:

Induction assumption on t yields

uv � e1e2 : : : et�1eteq : : : ei .mod Ci/:
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It remains to note that Ct C1C1 � � �C1„ ƒ‚ …
i�t

� Ci due to induction assumption (8.9).

Relation (8.11) and, hence, (8.9) with s D 1 are proven.
If s > 1, then v D v1es, v1 2 Cs�1, es 2 B. We have

uv D u � v1es D uv1 � es C .u; v1; es/:

The latter associator belongs to CiCs�2 � CiCs due to (8.7), whereas uv1 2 CiCs�1
by the induction assumption. Finally, uv1 � es 2 CiCs�1C1 � CiCs due to already
considered case “s D 1”. ut

Let us return to Proposition 8.1. Inclusion (8.9) demonstrate that
S

i�1 Ci is
closed with respect to the concatenation product. Because

S
i�1 Ci contains X, we

have
S

i�1 Ci D kfXgI that is, the words of type (8.6) span kfXg.
It remains to show that words of type (8.6) are linearly independent. We perform

induction on length. The words of length one are linearly independent by definition.
The word of length 0 (the empty product) equals 1. If

˛ � 1C
X

i

˛i ei D 0; ei 2 B; ˛; ˛i 2 k;

then ˛ � 1 is a primitive element. Hence

˛ � 1˝ 1 D .˛ � 1/ D 1˝ ˛ � 1C ˛ � 1˝ 1:
This implies ˛ D 0, and therefore ˛i D 0 for all i.

Assume that words of type (8.6) with length< n are linearly independent. In this
case the tensors u˝v 2 B˝B, where u; v are words of type (8.6) with length< n,
are linearly independent as well. Consider an arbitrary linear combination of words
with length � n:

f D ˛ � 1C
X

i

˛iei C
X

k1; k2; :::; ks

˛k1; k2; :::; ks ek1
1 ek2

2 � � � eks
s ; (8.12)

where the latter sum is taken over all sequences .k1; k2; : : : ; ks/ such that

1 < k1 C k2 C � � � C ks � n;

and fe1; e2; : : : ; e˛; : : :g D B is the basis of B D C1. In this case,

. f /� f ˝ 1 � 1˝ f D� ˛1˝ 1

C
sX

tD1
et ˝ .

X

k1; k2; :::; ks

˛k1; k2; :::; ks kt ek1
1 ek2

2 � � � ekt�1
t � � � eks

s /

C
X

ˇrvr ˝ wr D 0; (8.13)
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where wr are words of type (8.6) with length< n� 1, and vr are words of type (8.6)
with 1 < jvrj < n. Because by the induction supposition all tensors are linearly
independent, f D 0 implies

˛ D 0;
X

k1; k2; :::; ks

˛k1; k2; :::; ks kt ek1
1 ek2

2 � � � ekt�1
t � � � eks

s D 0: (8.14)

Again by the induction supposition, the latter equality yields ˛k1; k2; :::; ks kt D 0. As
char k D 0, we obtain ˛k1; k2; :::; ks D 0. Thus, the linear dependence reduces toP

i ˛iei D 0. A contradiction. ut
Now we are ready to demonstrate Theorem 8.2. We have to show that B D AI

that is, each primitive polynomial f 2 kfXg belongs to B D C1. By Proposition 8.1
the element f has a representation (8.12). As f is primitive, we have equality (8.13),
which implies (8.14). Consequently, all coefficients ˛k1; k2; :::; ks in (8.12) are zero,
and representation (8.12) reduces to f DPi ˛iei, which is required.

The proven equality B D A allows us to reformulate Proposition 8.1 thus:

Theorem 8.3 Each basis of the space A of all primitive nonassociative polynomials
forms a set of PBW generators for the free nonassociative algebra kfXg.

8.4 Chapter Notes

Lie theory for nonassociative products appeared as its own subject in the works of
Malcev, who constructed the tangent structures corresponding to Moufang loops.
For some time Akivis algebras were considered possible analog of Lie algebras for
nonassociative products. Although the definition of an Akivis algebra involves only
two operations and is quite elegant, the category of Akivis algebras is not equivalent
to that of formal loops. Hence, it is not suitable as a basis for nonassociative Lie
theory.

A motivation for the development of the machinery of nonassociative Hopf
algebras was the question of whether the commutator and associator are the only
primitive operations in a non-associative bialgebra. It appeared as a conjecture in the
paper by Hofmann and Strambach [100]; if true, it would imply an important role
for the Akivis algebras in nonassociative Lie theory. This conjecture was refuted by
Shestakov and Umirbaev in [208], where they demonstrated the theorems included
in this chapter.

An important advancement in the Lie theory of nonassociative products was the
introduction of a hiperalgebra by Mikheev and Sabinin, now called a Sabinin
algebra, which is the most general form of the tangent structure for loops, see
[169, 198, 199]. Lie, Maltcev, Bol, Lie-Yamaguti algebras, and Lie triple systems are
specific instances of Sabinin algebras. Sabinin algebras have an infinite set of inde-
pendent operations. There are three different natural constructions of operations in a
Sabinin algebra. Two of those constructions were devised by Sabinin and Mikheev.
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The third set of operations is the Shestakov-Umirbaev operations considered in
this chapter. However, the complete set of axioms for Sabinin algebras in terms
of Shestakov-Umirbaev operations remains unknown.

Malcev algebras have universal enveloping algebras that have highly similar
properties as typical cocommutative Hopf algebras [188]. Moreover, a similar
construction can be completed for Bol algebras [186] and, more generally, for all
Sabinin algebras [187]. The role of nonassociative Hopf algebras in the fundamental
questions of Lie theory, such as integration, was clarified in [177]. We refer the
reader to a recent survey of developments in the Lie theory for nonassociative
products [178] which describes the current understanding of the subject in relation
to recent works, many of which use nonassociative Hopf algebras as the main tool.

To our knowledge, the quantum aspects of the nonassociative Lie theory, such
as the structure of primitive nonassociative polynomials in symmetric categories or
the structure of skew-primitive polynomials in free nonassociative character Hopf
algebras, have not been elaborated.
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generic system of equations, 190, 192, 198
generic variables, 191, 197
Gröbner–Shirshov basis, 11
Gröbner-Shirshov system, 12, 20, 21, 58
group-like element, 33, 36, 38–40, 44, 51,

71, 78, 79, 82, 87, 89, 96, 97, 101,
102, 106, 109, 129, 130, 151, 188,
233

G-super-word, 81–86, 89

H
Hall ordering, 9, 21, 22, 24, 35
hard super-letter, 79–82, 83, 86, 88, 93, 94,

112
height, 71, 77, 82, 86
hiperalgebra, 286
homomorphism, 23, 60, 138, 155, 181, 190,

210, 223, 224, 231, 237, 255, 260
homomorphism of algebras, 32, 34, 37, 48, 49,

87, 157, 202, 203, 206, 221, 246,
248, 277, 280

homomorphism of braided algebras 201, 202,
210, 237

homomorphism of braided bi-algebras 202,
270, 277

homomorphism of braided coalgebras 202–203
homomorphism of braided Hopf algebras 202,

235, 263, 266
homomorphism of braided spaces 200, 200,

203, 264
homomorphism of coalgebras, 60, 60, 116,

202, 223
homomorphism of differential algebras, 50–52,

231
homomorphism of filtered coalgebras, 60, 116
homomorphism of filtered Hopf algebras, 60
homomorphism of filtered spaces (algebras),

54, 57–60
homomorphism of graded spaces (algebras),

54, 57
homomorphism of Hopf algebras, 43, 50, 60,

71, 80, 87, 138, 235, 237, 239
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homomorphism of Lie � -algebras 253, 254,
264, 266

homomorphism of monoids, 8, 26
Hopf algebra, 1, 32, 34–43, 46, 50, 52, 56,

60, 68, 80, 87, 89, 92, 94–108, 112,
114–116, 126, 129, 130, 151, 224,
235, 237, 243, 246, 249, 271, 286

Hopf ideal, 41, 43, 45, 104, 112, 224, 229, 230,
237

Hopf superalgebra, 246

I
inceptive sequence, 161
increasing super-word, 74, 76, 81, 83, 116
indecomposable matrix, 99, 100, 117–118
induced filtration, 64, 241
irreducible (simple) module, 65, 95, 96, 196,

197

J
jump during a motion, 161–167, 172, 174–177,

183, 185

L
leading component, 57, 59, 242, 263
leading word, 11–16, 20, 24, 58, 74, 75, 77, 87,

94
left quantum Lie algebra, 272
lexicographical order, 3, 10, 74, 79, 80, 92, 14,

207
Lie algebra, 23, 33, 34, 67, 67, 96, 101, 150
Lie � -algebra, 245, 250–253, 255, 259, 260,

264, 266, 270–273
linearization, 129, 131, 132, 150, 264
local action, 203, 206, 221, 254, 264, 265, 267,

268
Lyndon-Shirshov word, 1, 3, 4, 67, 94, 95

M
mirror operator, 213
modular symmetrization, 99, 120, 121, 123
multidegree, 9, 43, 131, 135, 223
multilinear operation, 129–133, 135, 150, 151,

153, 154, 157, 160, 181, 187–198

N
Nambu–Lie algebras, 150
Nichols algebra, 95, 199, 229, 230, 232, 244,

263, 272, 273

n-Lie algebras, 150
nonassociative free character Hopf algebra,

287
nonassociative Jacobi identity, 277, 275
nonassociative standard word, 7, 9, 72–75
nonassociative word, 7, 276–278
noncommutative G-polynomials, 21, 39
normalized skew-primitive element, 39, 47, 50,

80, 89, 92, 104, 130, 233, 235, 237,
247, 250

O
optimal algebra, 244

P
Pareigis quantum operation, 131, 150, 198
PBW generators, 71, 72, 77, 80 93, 95
primitive element, 33, 36, 101, 129, 133,

150, 206, 219, 223, 224, 230, 236,
237, 242, 243, 249, 254, 262–270,
275–279, 281, 282, 285, 286

principle bilinear operation, 139
principle quadrilinear operation, 149

Q
q-Pascal identity, 2, 91
quadratic algebra, 248, 272–252
quantization of a Kac-Moody algebra, 99, 108,

114, 117, 125, 126, 235
quantum (Lie) operation, 129–141, 143, 147,

152, 154,
157–160, 181, 189, 189, 192, 194–198, 247,

250
quantum shuffle algebra, 224, 229, 238
quantum symmetric algebra, 229
quantum variable, 130–132, 136–137, 140,

147, 151, 152, 155, 180, 187–191,
192, 196–198

R
Radford biproduct, 199, 236, 238
regular quantization, 117, 120, 121, 123
restricted G-super-word, 81, 87
restricted Lie algebra, 34, 34
right coideal, 96–97, 219, 239–242
right d-dependent set, 61–65
right d-independent element, 61
right (left) categorical subspace, 221, 223,

239–242, 253, 268–270, 273
right (left) closed subalgebra, 64, 65, 241
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right (left) coordinate differential calculus, 1,
46, 47, 50, 217, 266

right (left) head, 161, 162, 165–167, 176, 178,
187

right (left) linearly independent elements, 64,
64, 240, 241

right (left) partial derivatives, 46–52, 113, 114,
217, 218, 230, 231, 234, 267

right (left) primitive polynomial, 133, 135, 137

S
Sabinin algebra, 286
s-component of the basic system, 160, 180,

196
semi-invariant, 36, 46, 50, 79, 87, 101, 108,

130, 132, 149, 235
semisimple algebra, 65, 66, 257, 266, 269
semisimple Lie algebra, 96, 101, 126
Serre quantum operation, 89, 131,
Shestakov-Umirbaev operations, 275, 279, 287
shuffle, 29–30, 153
shuffle of words, 134, 134
shuffle product, 225–227
skew commutator, 72, 79, 131, 133, 134, 137,

144, 149, 154, 268
skew group ring, 22, 92, 155, 180, 236
skew-primitive element, 36–39, 41–47, 50, 53,

61, 71, 72, 79, 82, 86–96, 101–104,
107, 108, 111–116, 129–141, 149,
150, 151, 188, 232, 275, 287

smash product, 36
specialization, 129, 131 133
standard word, 4–9, 67, 94, 112
star product of braces, 153
stratification by constitution, 9
structural constants, 22
subordinate sequence, 161, 164, 170, 178,

182

superalgebra, 245–247, 252, 271, 271
superbracket, 245, 247
super-letter, 74–89, 92
super-word, 74–89
symmetric algebra, 259
symmetric operation, 151, 192–198
symmetric set of variables, 192–197
symmetrizable matrix, 100, 102, 119–123

T
tensor product, 31, 56, 56, 59, 116, 200, 238,

264
tensor species, 273
total degree, 223, 224
transduction, 63, 63
transversal, 29, 29, 121, 158, 242
trivial crossed product, 66, 196
trivial modular symmetrization, 121
twisted algebra, 273
twisted Lie algebra 273

U
universal enveloping algebra, 24, 33, 34, 99,

101, 243, 248, 252, 254, 260, 264,
268, 271, 287

upper degree, 111, 114, 115, 116

W
weak algebra basis, 61, 62, 242, 242, 243, 268,

270, 271
weak algorithm, 62–65, 240, 268, 270
Weyl groupoid, 95, 96

Y
Yetter–Drinfeld module, 39, 95, 96, 243
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