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Preface

This book is based on lectures given by the author at the University of Strasbourg.
Functional analysis is presented first, in a nontraditional way: we try to general-

ize some elementary theorems of plane geometry to spaces of arbitrary dimension.
This approach leads us to the basic notions and theorems in a natural way. The
results are illustrated in the small `p spaces.

The Lebesgue integral is treated next by following F. Riesz. Starting with two
innocent-looking lemmas on step functions, the whole theory is developed in a
surprisingly short and clear manner. His constructive definition of measurable
functions quickly leads to optimal versions of the classical theorems of Fubini–
Tonelli and Radon–Nikodým.

These two parts are essentially independent of each other, and only basic
topological results are used. In the last part, they are combined to study various
function spaces of continuous and integrable functions.

We indicate the original sources of most notions and results. Some other novelties
are mentioned on page 375. The material marked by the symbol � may be skipped
during the first reading.

Each chapter ends with a list of exercises. However, the most important exercises
are incorporated in the text as examples and remarks, and the reader is expected to
fill in the missing details.

We list on p. xi some interesting papers of the general mathematical culture.
We have put a great deal of effort into selecting the material, formulating

aesthetic and general statements, seeking short and elegant proofs, and illustrating
the results with simple but pertinent examples. Our work was strongly influenced by
the beautiful lectures of Á. Császár and L. Czách at the Eötvös Loránd University,
Budapest, in the 1970s, and more generally by the Hungarian mathematical tradition
created by Leopold Fejér, Frédéric Riesz, Paul Turán, Paul Erdős, and others.
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vi Preface

We also thank C. Baud, B. Beeton, Á. Besenyei, T. Delzant, C. Disdier,
O. Gebuhrer, V. Kharlamov, P. Loreti, C.-M. Marle, P. Martinez, P.P. Pálfy, P.
Pilibossian, J. Saint Jean Paulin, Z. Sebestyén, A. Simonovits, Mrs B. Szénássy,
J. Vancostenoble, and the editors of Springer for their precious help.

This book is dedicated to the memory of my father.
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Topological Prerequisites

We briefly recall some basic notions and results that we will use in this book. The
proofs may be found in most textbooks on topology, e.g., in Kelley 1965.

Topological Spaces

By a topological space we mean a nonempty set X endowed with a topology on
X, i.e., a family T of subsets of X that contains ¿ and X and is stable under finite
intersections and arbitrary unions. For example, the discrete topology contains all
subsets of X, while the anti-discrete topology contains only ¿ and X.

The elements of the topology are called the open sets and their complements the
closed sets of the topological space.

Given a set A in a topological space X, there exists a largest open set contained in
A and a largest open set contained in X n A. They are called the interior and exterior
of A and denoted by int A and ext A. The remaining set X n .int A [ ext A/ is called
the boundary of A and denoted by @A. The three sets int A, ext A, and @A form a
partition of X: they are pairwise disjoint, and their union is equal to X.

If a 2 int A, then we also say that A is a neighborhood of a.
The sets @A and A WD int A [ @A D X n ext A are closed; the latter is the smallest

closed set containing A and is called the closure of A. A set D � A is said to be dense
in A if A � D. A topological space X is called separable if it contains a countable
dense set.

A set K in a topological space X is called compact if every open cover of A has a
finite subcover. For example, the finite subsets are compact.

Theorem 1 (Cantor’s Intersection Theorem) If .Kn/ is a decreasing sequence of
nonempty compact sets, then \Kn is nonempty.

Let X and Y be two topological spaces. We say that a function f W X ! Y
is continuous at a 2 X if for every neighborhood V of f .a/ in Y there exists a

xiii
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neighborhood U of a in X such that f .U/ � V . Furthermore, we say that f is
continuous if it is continuous at each point a 2 X.

Theorem 2 (Hausdorff) Let X and Y be two topological spaces and f W X ! Y.

(a) f is continuous ” the preimage f �1.V/ of every open set V � Y is open in X,
or equivalently, if the preimage f �1.F/ of every closed set F � Y is closed in X.

(b) If K � X is compact and f is continuous, then f .K/ � Y is compact, i.e., the
continuous image of a compact set is compact.

The last result implies another important theorem:

Theorem 3 (Weierstrass) Let X be a compact topological space and f W X ! R

a continuous function. Then f is bounded; moreover, it has maximal and minimal
values.

If Z is a nonempty subset of a topological space X, then there exists a smallest
topology on Z such that the embedding1 of Z into X is continuous. This is called the
subspace topology of Z. A nonempty set in a topological space X is compact ”
the corresponding subspace topology is compact. A closed subspace of a compact
space is also compact.

A topological space X is called separated or a Hausdorff space if any two distinct
points of X belong to two disjoint open sets. Hausdorff spaces have many open and
closed sets; in particular, the compact sets of Hausdorff spaces are always closed.

A topological space X is called connected if ¿ and X are the only sets that are
simultaneously open and closed. A nonempty subset of a topological space X is
called connected if it is connected as a subspace. The empty set is also considered
to be connected.

Theorem 4

(a) The closure of a connected set is also connected.
(b) If a family of connected sets Ci has a nonempty intersection, then [Ci is also

connected.
(c) (Bolzano) The continuous image of a connected set is connected.

If X is the direct product of an arbitrary nonempty family of topological spaces
Xi, then there exists a smallest topology on X such that all projections X ! Xi are
continuous. This is called the (Tychonoff ) product of the spaces Xi.

Theorem 5

(a) (Tychonoff) The product of compact spaces is compact.
(b) The product of connected spaces is connected.
(c) The product of separated spaces is separated.

1The embedding of Z into X is the function Z 3 z 7! z 2 X.
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Many topological properties may be conveniently characterized by a generaliza-
tion of convergent sequences. By a net in a set X we mean a function x W I ! X
where I is endowed with a partial ordering �, i.e., a reflexive and transitive binary
relation having the following extra property: for any i; j 2 I there exists a k 2 I
satisfying k � i and k � j. We often write xi instead of x.i/ and .xi/ instead of x.

We say that a net .xi/ converges to a point a in a topological space X if for each
open set U � X containing a, the net .xi/ eventually belongs to U, i.e., there exists
a j 2 I such that xi 2 U for all i � j. Then we write xi ! a or lim xi D a, and a is
called a limit of .xi/.

Proposition 6 Let X and Y be topological spaces and a 2 A � X.

(a) a 2 A ” there exists a net in A converging to a.
(b) A is closed ” no net in A converges to any point of X n A.
(c) A function f W X ! Y is continuous at a ” lim f .xi/ D f .a/ in Y for every

converging net lim xi D a in X.
(d) X is a Hausdorff space ” no net has more than one limit.

In order to characterize compactness, we introduce accumulation points and
subnets. By a subnet of a net x W I ! X, we mean a net x ı f W J ! X where
f W J ! I is a function having the following property: for every i 2 I there exists a
j 2 J such that k � j H) f .k/ � i.

We say that a is an accumulation point of a net .xi/ in a topological space X if
for each open set U � X containing a, the net .xi/ often belongs to U, i.e., for every
i 2 I there exists a j � i such that xj 2 U.

Proposition 7 Let X be a topological space and let a 2 A � X.

(a) a is an accumulation point of a net .xi/ ” there exists a subnet converging to
x.

(b) A is compact ” each net in A has at least one accumulation point in A.
(c) Equivalently, A is compact ” each net in A has a subnet converging to some

point of A.

Metric Spaces

By a metric on a nonempty set X, we mean a nonnegative and symmetric function
d W X � X ! R satisfying the relation d.x; y/ D 0 ” x D y, and the triangle
inequality

d.x; y/ � d.x; z/C d.z; y/

for all x; y; z 2 X.
By a metric space we mean a nonempty set X endowed with a metric.
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For example, the usual distance d.x; y/ WD jx � yj between real numbers is a
metric on R, and the Euclidean distance between the points of Rn is a metric on R

n.
The discrete metric on an arbitrary nonempty set X is defined by d.x; x/ D 0 for all
x 2 X, and d.x; y/ D 1 whenever x ¤ y.

Every metric space has a natural topology as follows. By a ball of radius r > 0

centered at a 2 X, we mean the set Br.a/ WD fx 2 X W d.x; a/ < rg. A set U � X is
called open if for each a 2 U there exists an r > 0 such that Br.a/ � U. Then the
balls are open. In this way every metric space is a Hausdorff space.

We define the diameter of a set A in a metric space by the formula diam A WD
sup fd.x; y/ W x; y 2 Ag. A set A is called bounded if diam A < 1.

If K is a nonempty set and X is a metric space, then the bounded functions f W
K ! X form a metric space B.K;X/ with respect to the metric

d1.f ; g/ WD sup
t2K

d.f .t/; g.t//:

The boundedness of f means that its range (or image) is a bounded set in X.
In metric spaces the convergence xi ! a is equivalent to d.xi; a/ ! 0. The

nets and subnets may be replaced by sequences (nets defined on I D N) and
subsequences (subnets x ı f with an increasing function f W N ! N):

Proposition 8 Let X and Y be metric spaces and a 2 A � X.

(a) a 2 A ” there exists a sequence in A converging to a.
(b) A is closed ” no sequence in A converges to any point of X n A.
(c) A function f W X ! Y is continuous at a ” lim f .xi/ D f .a/ in Y for every

converging sequence lim xi D a in X.
(d) a is an accumulation point of a sequence ” there exists a subsequence

converging to x.
(e) A is compact ” each sequence in A has at least one accumulation point in A.
(f) Equivalently, A is compact ” each sequence in A has a subsequence

converging to some point of A.

We will often use the following properties of compact sets:

Proposition 9 Consider two nonempty compact sets K;L in a metric space.

(a) The diameter of K is attained: there exist a; b 2 K such that diam K D d.a; b/.
(b) The distance between K and L is attained: there exist a 2 K and b 2 L such

that d.a; b/ � d.x; y/ for all x 2 K and y 2 L.

An important property of compact metric spaces is the following:

Theorem 10 (Heine) Let .X; d/; .X0; d0/ be two metric spaces and f W X ! X0 a
continuous function. If X is compact, then f is uniformly continuous, i.e., for each
" > 0 there exists a ı > 0 such that

x; y 2 X and d.x; y/ < ı H) d0. f .x/; f .y// < ":



Topological Prerequisites xvii

Next we study the metric spaces for which the Cauchy criterion may be
generalized. A sequence in a metric space is called a Cauchy sequence if
diam fxk W k � ng ! 0 as n ! 1. Every convergent sequence is a Cauchy
sequence. A metric space is called complete if, conversely, every Cauchy sequence
is convergent.

For example, the discrete metric spaces are complete, and the spaces R
n are

complete with respect to the Euclidean metrics. If X is a complete metric space,
then the metric spaces B.K;X/ are complete.

Cantor’s intersection theorem has a useful variant:

Theorem 11 (Cantor’s Intersection Theorem) Let .Fn/ be a decreasing sequence
of nonempty closed sets in a complete metric space. If diam Fn ! 0, then \Fn is
nonempty.

Next we consider a strengthening of uniform continuity. Let .X; d/ and .X0; d0/
be two metric spaces. A function f W X ! X0 is Lipschitz continuous if there exists
a constant L such that d0.f .x/; f .y// � Ld.x; y/ for all x; y 2 X. If, moreover, L < 1,
then f is called a contraction.

Theorem 12 (Banach–Cacciopoli) In a complete metric space X, every contraction
f W X ! X has a unique fixed point, i.e., a point a 2 X satisfying f .a/ D a.

The following extension theorem is often applied in classical analysis, for
example, to define integrals of continuous functions.

Theorem 13 Let X;X0 be two metric spaces, A � X and f W A ! X0 a uniformly
continuous function. If X0 is complete, then f may be extended in a unique way to a
uniformly continuous function F W A ! X0.

If, moreover, f is Lipschitz continuous, then F is Lipschitz continuous with the
same constant L.

Every metric space may be completed. More precisely:

Theorem 14 For every metric space X, there exists a complete metric space X0 and
an isometry f W X ! X0 such that f .X/ is dense in X0.

The isometry means that f preserves the distances. This completion is essentially
unique.

A nonempty subset of a metric space may be considered as a metric subspace
with respect to the restriction of the metric to this set. A set in a metric space is
called complete if it is empty or if the corresponding metric subspace is complete.
A complete set is always closed, and a closed subspace of a complete metric space
is also complete.

For example, if K is a topological space and X is a metric space, then the
continuous functions in B.K;X/ form a closed subspace Cb.K;X/. If X is complete,
then Cb.K;X/ is also complete.

We end this section with another characterization of compactness.
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A set A in a metric space is called totally (or completely) bounded if for each
fixed " > 0 it has a finite cover by sets of diameter < " or, equivalently, if for each
fixed r > 0 it has a finite cover by balls of radius r.

Theorem 15

(a) A set A in a metric space is compact ” it is complete and totally bounded.
(b) A set A in a complete metric space is compact ” it is closed and totally

bounded.

Normed Spaces

By a seminorm on a vector space X, we mean a nonnegative, positively homogeneous
function p W X ! R satisfying p.0/ D 0 and the triangle inequality p.x C y/ �
p.x/C p.y/ for all x; y 2 X. If we have also p.x/ > 0 for all x ¤ 0, then p is called
a norm, and we often write kxk instead of p.x/. A normed space is a vector space X
endowed with a norm.

Every normed space is also a metric (and hence a topological) space with respect
to the metric d.x; y/ WD kx � yk.

For example, Rn is a normed space with respect to each of the norms

kxkp WD .jx1jp C � � � C jxnjp/1=p
.1 � p < 1/

and

kxk1 WD max fjx1j ; : : : ; jxnjg :

If I is a non-degenerate compact interval in R, then the vector space C.I;R/ of
continuous functions f W I ! R is a normed space with respect to each of the norms

kf kp WD
�Z

I
jf jp

�1=p

.1 � p < 1/ and kf k1 WD sup jf j :

If X is a normed space, then B.K;X/ is a normed space for every nonempty set
K, and Cb.K;X/ is a normed space for every topological space X.

If X;Y are normed spaces, then the continuous linear maps A W X ! Y form a
normed space L.X;Y/ with respect to the norm

kLk WD sup fkAxkY W x 2 X; kxkX � 1g :

More generally, for each positive integer k the continuous k-linear maps A W Xk ! Y
form a normed space Lk.Xk;Y/ with respect to the norm
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kLk WD sup fkA.x1; : : : ; xk/kY W xi 2 X and kxikX � 1; i D 1; : : : ; kg :

Let X;Y be normed spaces, U � X a nonempty open set, and k a positive integer,
and consider the set Ck

b.U;Y/ of Ck functions f W U ! Y for which f and its
derivatives f .j/ W U ! Lj.Xj;Y/ are bounded for j D 1; : : : ; k. Then Ck

b.U;Y/ is a
normed space with respect to the norm

kf k WD kf k1 C �
�f 0��1 C � � � C �

�f .k/
�
�1 :

By a scalar product on a vector space X, we mean a nonnegative, symmetric
bilinear functional .�; �/ W X � X ! R satisfying .x; x/ > 0 whenever x ¤ 0. By a
Euclidean space, we mean a vector space endowed with a scalar product.

Every Euclidean space is also a normed space with respect to the norm kxk WDp
.x; x/. Moreover, this norm satisfies the parallelogram identity

kx C yk2 C kx � yk2 D 2 kxk2 C 2 kyk2

and the Cauchy–Schwarz inequality

j.x; y/j � kxk � kyk

for all x; y 2 X.
The balls of normed spaces are convex, i.e., if x; y 2 Br.a/, then the whole

segment Œx; y� WD ftx C .1 � t/y W 0 � t � 1g lies in Br.a/.
The connected open sets have a simple geometric characterization in normed

spaces. By a broken line in a vector space, we mean a finite union of segments
L WD [k

iD1Œxi�1; xi�. We say that it connects x0 and xk, and we say that it lies in a set
U if L � U.

Proposition 16 An open set U in a normed space X is connected ” any two
points a; b 2 U may be connected by a broken line lying in U.

The theory of finite-dimensional normed spaces is considerably simplified by the
following results:

Theorem 17 (Tychonoff)

(a) On a finite-dimensional vector space X, all norms are equivalent, i.e., for any
two norms k�k and k�k0 there exist two positive constants c1; c2 such that

c1 kxk � kxk0 � c2 kxk

for all x 2 X.
(b) Consequently, if X is a finite-dimensional normed space, then

• X is complete.
• Every bounded set in X is totally bounded.
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• A set in X is compact ” it is bounded and closed.
• X is separable.
• Every bounded sequence in X has a convergent subsequence.

(c) Every linear map A W X ! Y, where X;Y are normed spaces and X is finite-
dimensional, is continuous.

We emphasize that the Bolzano–Weierstrass theorem remains valid in every finite
dimensional normed space.



Part I
Functional Analysis

Geometrical and physical problems led to the birth of functional analysis at the
end of the nineteenth century. Following the works of Dini, Ascoli, Peano, Arzelà,
Volterra, Hadamard and then the spectacular discoveries of Fredholm, Hilbert,
Riesz, Fréchet and Helly, Banach laid the foundations of this new theory. It was
later enriched by Hahn, von Neumann and many others. In addition to its inner
beauty, it proved to be very useful in, among other areas, the calculus of variations,
the theory of partial differential equations and in quantum mechanics.

Instead of following the historical development,1 we will try to extend some well-
known results of Euclidean geometry to infinite-dimensional spaces:

• if K is a non-empty convex, closed set in R
N , then K has a closest point to each

x 2 R
N ;

• for every proper subspace2 M of RN there exists a point x such that dist.x;M/ D
jxj D 1;

• two non-empty disjoint convex sets of RN may always be separated by an affine
hyperplane;

• every bounded convex polytope is the convex hull of its vertices;
• every bounded sequence in R

N has a convergent subsequence.

This road will lead in a natural way to many deep theorems but also to surprising
counterexamples.

The more general the space, the more counter-intuitive the phenomena that
appear. We start our investigations with Hilbert spaces, the closest to R

N . We
follow with the wider class of Banach spaces. Then we shortly investigate the
still more general locally convex spaces: they play an important role in the theory
of distributions, the basic framework for the study of linear partial differential

1The last two chapters of this book are devoted mostly to the Lebesgue integral and its applications.
2In this book by a subspace without adjective we always mean a linear subspace. In case of metric
or topological subspaces we will always write metric subspace or topological subspace.
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equations. We end our tour by exhibiting some strange properties of general
topological vector spaces.

From the immense literature we mention for further studies the classical mono-
graphs of Banach [24] and Riesz–Sz.-Nagy [394]: after many decades, they still
keep their freshness and elegance. Many additional theoretical results can be found
in [2, 32, 35, 40, 97, 117, 119, 254, 266, 285, 309, 321, 349, 367, 397, 403, 406, 411,
488], exciting historical aspects are given in [45, 106, 117, 144, 203, 316, 327, 367,
394, 431, 490], and many exercises are contained in [15, 117, 187, 249, 349, 367,
403, 406, 458].



Chapter 1
Hilbert Spaces

The infinite! No other question has ever moved so profoundly the spirit of man.
–D. Hilbert

Stimulated by Fredholm’s discovery of an unexpectedly simple and general
theory of integral equations in 1900, Hilbert developed a general theory of infinite-
dimensional inner product spaces between 1904 and 1906. This allowed him to solve
several important problems of mathematical physics. His student Schmidt replaced
his algebraic formulation by a more intuitive geometric language, making the theory
accessible to a wider public.

We may define the notion of orthogonality, and many results of plane geometry,
such as Pythagoras’ theorem, remain valid. Hilbert spaces appear today in almost
all branches of mathematics and theoretical physics: since the fundamental works
of von Neumann,1 they have formed the mathematical framework of quantum
mechanics.

We give here an introduction to this theory.

1.1 Definitions and Examples

Let X be a real vector space. We recall some basic definitions and properties. By a
norm2 in X we mean a function k�k W X ! R satisfying for all x; y; z 2 X and � 2 R

the following properties:

	 kxk � 0;

	 kxk D 0 ” x D 0;

1von Neumann [334, 337].
2Riesz [383]. Notation of Schmidt [416].

© Springer-Verlag London 2016
V. Komornik, Lectures on Functional Analysis and the Lebesgue Integral,
Universitext, DOI 10.1007/978-1-4471-6811-9_1
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Fig. 1.1 Triangle inequality

x + y

x

y

	 k�xk D j�j � kxk ;
	 kx C yk � kxk C kyk :

The last property is called the triangle inequality; see Fig. 1.1.
By a normed space we mean a vector space endowed with a norm. The norm is

continuous with respect to the corresponding topology.
By a scalar product in X we mean a function .�; �/ W X � X ! R satisfying for all

x; y; z 2 X and ˛; ˇ 2 R the following properties:

	 .˛x C ˇy; z/ D ˛.x; z/C ˇ.y; z/;

	 .x; y/ D .y; x/;

	 .x; x/ � 0;

	 .x; x/ D 0 ” x D 0:

By a Euclidean or prehilbert space we mean a vector space endowed with a scalar
product.

Every Euclidean space has a natural norm: kxk WD .x; x/1=2. This norm satisfies
the Cauchy–Schwarz inequality:

j.x; y/j � kxk � kyk

and the parallelogram identity:

kx C yk2 C kx � yk2 D 2 kxk2 C 2 kyk2 :

Finally, the scalar product is continuous with respect to the corresponding topology:

if xn ! x and yn ! y, then .xn; yn/ ! .x; y/.
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Definition By a Hilbert space3 we mean a complete Euclidean space.

Examples

• We recall from topology that RN is a Euclidean space with respect to the natural
scalar product

.x; y/ WD x1y1 C x2y2 C � � � C xNyN :

Since every finite-dimensional normed space is complete, RN is a Hilbert space.
• The set `2 of sequences x D .xn/ of real numbers satisfying the conditionP jxnj2 < 1 is a Hilbert space with respect to the scalar product

.x; y/ WD
1X

nD1
xnyn:

First of all, the inequalities

1X

nD1
jxnynj � 1

2

1X

nD1
jxnj2 C 1

2

1X

nD1
jynj2 < 1;

and

1X

nD1
j˛xn C ˇynj2 � 2j˛j2

1X

nD1
jxnj2 C 2jˇj2

1X

nD1
jynj2 < 1

(for arbitrary ˛; ˇ 2 R) imply that `2 is a vector space, and that .x; y/ is a
correctly defined scalar product.

Now let .x1n/, .x
2
n/, . . . be a Cauchy sequence in `2. For every fixed " > 0 there

exists a k0 such that

1X

nD1
jxk

n � x`nj2 < " (1.1)

for all k; ` � k0. In particular, .x`n/ is a Cauchy sequence for every fixed n, and
therefore converges to some real number xn.

Letting ` ! 1 we deduce from (1.1) the inequality

NX

nD1
jxk

n � xnj2 � "

3Hilbert [208], von Neumann [334], Löwig [312], and Rellich [368].
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for every k � k0 and N � 1. Letting N ! 1 this yields .xn/ 2 `2 and .xk
n/ !

.xn/ in `2.

Many metric and topological properties of finite-dimensional normed spaces
remain valid in all Hilbert spaces. But we have to be careful: there are important
exceptions. Before giving some examples, we recall some compactness results in
finite-dimensional spaces.

We recall from topology that a subset K of a normed (or metric) space is compact
if every sequence .xk/ � K has a subsequence, converging to some element of K.
For example, every finite set is compact.

Theorem 1.1

(a) (Kürschák)4 Every sequence of real numbers has a monotone subsequence.
(b) (Bolzano–Weierstrass)5 Every bounded sequence of real numbers has a conver-

gent subsequence.

Proof

(a) An element of the sequence .xk/ is called a peak if it is larger than all later
elements: xk > xm for all m > k.

If there are infinitely many peaks, then they form a decreasing subsequence.
Otherwise, there exists an index N such that no element xk with k � N is a peak.
This allows us to define by induction a non-decreasing subsequence.

(b) There exists a bounded and monotone subsequence by (a). Its convergence
follows from the axioms of real numbers. ut

Corollary 1.2 Let X be a finite-dimensional normed space.

(a) Every bounded sequence .xk/ � X has a convergent subsequence.
(b) A subset of X is compact ” it is bounded and closed.
(c) The distance between two non-empty bounded and closed sets of X is always

attained.
(d) The diameter of a non-empty bounded and closed set of X is always attained.
(e) Every (linear) subspace of X is closed.6

(f) X is complete.

Sketch of Proof

(a) For X D R
N endowed with the usual Euclidean norm the results easily

follows from the one-dimensional case by observing that convergence in
norm is equivalent to component-wise convergence.

4Kürschák [275]. This elegant result and its combinatorial proof seems to be little known.
5Bolzano [54] and Weierstrass [482].
6We recall that, in this book, by a subspace without adjective we always mean a linear subspace.
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The general case hence follows by a theorem of Tychonoff7: on a finite-
dimensional vector space all norms are equivalent.

(b)–(f) easily follow from (a). ut
All these properties may fail in infinite dimensions:

*Examples We show that properties (a)–(e) fail in H WD `2.

(a) The vectors

ek D .

k�1
‚ …„ ƒ
0; : : : ; 0; 1; 0; : : :/; k D 1; 2; : : :

form a bounded sequence in `2 because kekk D 1 for all k.
But this sequence has no convergent subsequence. Indeed, we have

kek � emk D p
2 whenever k ¤ m, so that no subsequence satisfies the

Cauchy convergence criterion.
(b) The previous example also shows that the closed unit ball of `2, although

bounded and closed, is not compact.
(c) The subset

F WD
8
<

:

0

@

k�1
‚ …„ ƒ
0; : : : ; 0;

k C 1

k
; 0; : : :

1

A W k D 1; 2; : : :

9
=

;

of `2 is non-empty, bounded and closed, but it has no element of minimal norm,
i.e., its distance from 0 is not attained: we have dist.0;F/ D 1, but kyk > 1 for
every y 2 F.

(d) The subset

K WD
n
x 2 `2 W

1X

nD1

�
1C 1

n

�2 jxnj2 � 1
o

of `2 is non-empty, convex, bounded and closed,8 but it has no element of
maximal norm. Moreover, the diameter of K is not attained: we have diam K D
2, but kx � yk < 2 for all x; y 2 K.

(e) The proper subspace

M WD
n
x 2 `2 W

1X

nD1
xn D 0

o

of `2 is dense.

7Tychonoff [454].
8Observe that K is the inverse image of the closed unit ball by a continuous linear map.
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For the proof we fix an arbitrary ball Br.x/. We choose first a large positive
integer m such that

k.0; : : : ; xmC1; xmC2; : : :/k < r=2;

and then a large positive integer k such that jx1 C � � � C xmj < p
kr=2. Then the

vector

y WD
�

x1; : : : ; xm;

k
‚ …„ ƒ
c; : : : ; c; 0; 0; : : :

�
; c D �x1 C � � � C xm

k

belongs to M, and

kx � yk � k.0; : : : ; xmC1; xmC2; : : :/k

C
�
�
�
�

m
‚ …„ ƒ
0; : : : ; 0;

k
‚ …„ ƒ
c; : : : ; c; 0; 0; : : :

��
�
� < r:

Corollary 1.2 (f) may also fail in infinite dimensions:

Examples

(a) Consider the subspace X spanned by the vectors ek of the first example above:
the elements .xn/ of X have at most a finite number of non-zero components.
The formula uk WD Pk

nD1 n�1en defines a Cauchy sequence .uk/ in X because

kuk � umk2 D
kX

nDmC1

1

n2
�

1X

nDmC1

1

n2
! 0

as k > m ! 1.
But .uk/ does not converge to any point x 2 X. Indeed, each x D .xn/ 2 X

has a zero element xn D 0. Therefore

kuk � xk2 � 1

n2

for all k � n, so that kuk � xk 6! 0.
(b) A more natural example is given if we take a non-degenerate compact interval

I, and we endow the vector space C.I/ of continuous functions x W I ! R with
the scalar product .x; y/ WD R

I xy dt.
To prove that this space is not complete, we assume for simplicity that I D

Œ0; 2�, and we consider the functions

xn.t/ WD med f0; n.t � 1/; 1g ; 0 � t � 2; n D 1; 2; : : : ;
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Fig. 1.2 Graph of xn

0 1 2

1

1 + 1

(see Fig. 1.2), where med fx; y; zg denotes the middle number among x, y and z.
For x � z we have

med fx; y; zg D max fx;min fy; zgg :

If m > n ! 1, then

kxm � xnk2 D
Z .nC1/=n

1

jxm.t/ � xn.t/j2 dt � 1

n
! 0;

so that .xn/ is a Cauchy sequence.
Assume on the contrary that it converges to some x 2 C.I/. Since x is

continuous, then we deduce from the estimate

Z 1

0

jx.t/j2 dt D
Z 1

0

jx.t/ � xn.t/j2 dt � kx � xnk2 ! 0

that x 
 0 in Œ0; 1�; in particular, x.1/ D 0.
On the other hand, for arbitrary integers n � N � 1 we have

Z 2

.NC1/=N
jx.t/ � 1j2 dt D

Z 2

.NC1/=N
jx.t/ � xn.t/j2 dt � kx � xnk2 :

Letting n ! 1 and then N ! 1, we get

Z 2

.NC1/=N
jx.t/ � 1j2 dt D 0; and then

Z 2

1

jx.t/ � 1j2 dt D 0:
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Hence x 
 1 in Œ1; 2�, contradicting the previous equality x.1/ D 0.

Our last examples show the importance of the following result:

Proposition 1.3 Every Euclidean space E may be completed. More precisely, there
exists a Hilbert space H and an isometry f W E ! H such that f .E/ is dense in H.

First we recall for convenience the corresponding result for metric spaces:

Proposition 1.4 (Hausdorff)9 For any given metric space .X; d/ there exists a
complete metric space .X0; d0/ and an isometry h W X ! X0.

Remark The isometry h enables us to identify .X; d/ with the metric subspace h.X/
of .X0; d0/.

Proof Consider the complete metric space .X0; d0/ WD B.X/ of bounded functions
f W X ! R with respect to the uniform distance

d1. f ; g/ WD sup
x2X

j f .x/ � g.x/j :

Fix an arbitrary point a 2 X. For each x 2 X the formula

hx.y/ WD d.x; y/� d.a; y/; y 2 X

defines a function hx 2 B.X/, because

jhx.y/j � d.x; a/

for all y 2 X by the triangle inequality.
Since

jhx.z/ � hy.z/j D jd.x; z/ � d.y; z/j � d.x; y/

for all z 2 X, we have

d0.hx; hy/ � d.x; y/

for all x; y 2 X. In fact, this is an equality, because for z D y we have

jhx.y/� hy.y/j D d.x; y/:

ut

9Hausdorff [195]. The short proof given here, based on an idea of Fréchet [157, p. 161], is due to
Kuratowski [273]. If the metric d is bounded, then the proof may be further shortened by simply
taking hx.y/ WD d.x; y/.
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Proof of Proposition 1.3 Every Euclidean space E is a metric space with respect to
the distance

d.x; y/ WD kx � ykE D .x � y; x � y/1=2;

and thus it can be considered as a dense metric subspace of a suitable complete
metric space .H; d/.

For any fixed x; y 2 H and c 2 R we choose two sequences .xn/ and .yn/ in E
such that d.x; xn/ ! 0 and d.y; yn/ ! 0, and then we set

x C y WD lim.xn C yn/;

cx WD lim cxn;

.x; y/ WD lim.xn; yn/:

One may readily check that

• the limits exist;
• they do not depend on the particular choice of .xn/ and .yn/;
• H is a Euclidean and thus a Hilbert space with respect to this scalar product;
• d.x; y/ D .x � y; x � y/1=2 for all x; y 2 H. ut
Definition We denote by L2.I/ the Hilbert space obtained by the completion of
C.I/.10

*Remark The Lebesgue integral will provide a more concrete interpretation of
L2.I/.11

Henceforth, until the end of this chapter the letter H always denotes a Hilbert
space.

1.2 Orthogonality

Definition Let x; y 2 H and A;B � H. We say that

• x and y are orthogonal if .x; y/ D 0;
• x and A are orthogonal if .x; y/ D 0 for all y 2 A;
• A and B are orthogonal if .x; y/ D 0 for all x 2 A and y 2 B.

We express these relations by the symbols x ? y, x ? A and A ? B.

Now we solve the first problem of the introduction.

10As in the case of metric spaces, the proof shows that the completion is essentially (up to
isomorphism) unique.
11See Proposition 9.5 (b), p. 312.
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Theorem 1.5 (Orthogonal Projection)12 Let K � H be a non-empty convex,
closed set, and x 2 H.

(a) There exists in K a unique closest point y to x. It is characterized by the
following properties:

y 2 K; and .x � y; v � y/ � 0 for every v 2 K: (1.2)

(b) The formula PKx WD y defines a Lipschitz continuous function PK W H ! K
with some Lipschitz constant L � 1.

(c) If K is a subspace, then (1.2) is equivalent to the orthogonality property

x � y ? K; (1.3)

and PK is a bounded linear map of norm � 1.

Definition The point y D PK.x/ is called the orthogonal projection of x onto K (see
Fig. 1.3).

Proof

Existence. Set d D dist.x;K/, and consider a minimizing sequence .yn/ �
K satisfying kx � ynk ! d. This is a Cauchy sequence. Indeed, by the

Fig. 1.3 Orthogonal
projection

y x

12Levi [300], Schmidt [416], Nikodým [343] (statement), [344] (proof), and Riesz [389].



1.2 Orthogonality 13

parallelogram identity we have

k.x � yn/� .x � ym/k2 C k.x � yn/C .x � ym/k2

D 2 kx � ynk2 C 2 kx � ymk2 :

Using the definition of d this implies

kym � ynk2 D 2 kx � ynk2 C 2 kx � ymk2 � 4 ��x � 2�1.ym C yn/
�
�2

� 2 kx � ynk2 C 2 kx � ymk2 � 4d2;

because 2�1.ym C yn/ belongs to the convex set K. It remains to observe that the
right-hand side tends to zero as m; n ! 1.
The limit y of the sequence belongs to K because K is closed, and we have
kx � yk D d by the continuity of the norm.
Characterization and uniqueness. Let y 2 K be at a minimal distance d from x.
For any fixed v 2 K the vectors .1� t/y C tv D y C t.v� y/ belong to the convex
set K for all 0 < t < 1, so that

0 � t�1.kx � yk2 � kx � y � t.v � y/k2/ D 2.x � y; v � y/� t kv � yk2 :

Letting t ! 0 this yields (1.2).
Conversely, if (1.2) holds and v 2 K is different from y, then

kx � vk2 D kx � yk2 C ky � vk2 � 2.x � y; v � y/

� kx � yk2 C ky � vk2

> kx � yk2 :

Lipschitz property. If x; x0 2 H, then writing y D PK.x/ and y0 D PK.x0/ we have

.x � y; y0 � y/ � 0 and .x0 � y0; y � y0/ � 0:

Summing them we get

.x � x0 C y0 � y; y0 � y/ � 0I

hence

�
�y0 � y

�
�2 � .x0 � x; y0 � y/ � �

�x0 � x
�
� � ��y0 � y

�
�
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and therefore

�
�y0 � y

�
� � �

�x0 � x
�
� :

The case when K is a subspace. Let w 2 K. Applying (1.2) with v D y ˙ w we
obtain

.x � y;˙w/ � 0;

and hence .x � y;w/ D 0.
Conversely, (1.3) implies .x � y; v � y/ D 0 because v � y 2 K.
The linearity of PK follows from its uniqueness. Indeed, if y D PK.x/, y0 D
PK.x0/ and � 2 R, then the relations x � y ? K and x0 � y0 ? K imply

.x C x0/� .y C y0/ ? K and �x � �y ? K:

ut
*Example The example of the set F in the preceding section shows that the convex-
ity assumption is necessary also for the existence of the orthogonal projection.

In order to state some corollaries we introduce two new notions:

Definitions

• The orthogonal complement of a set D � H is defined by the formula13

D? WD fx 2 H W x ? Dg :

• The closed subspace spanned by a set D � H is by definition the intersection of
all closed subspaces containing D.14

Observe that D? is a closed subspace of H, and that

A � B H) B? � A?; .A [ B/? D A? \ B?:

Notice also that the closed subspace spanned by D is the closure of the set of all
finite linear combinations formed by the points of D.

13For instance, the orthogonal complement of a k-dimensional subspace in R
n is an .n � k/-

dimensional subspace.
14This is clearly the smallest closed subspace containing D.
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Part (b) of the following result solves the second problem of the introduction:

Corollary 1.6

(a) (Riesz)15 Let M � H be a non-empty closed subspace. Every x 2 H has a unique
decomposition x D y C z with y 2 M and z 2 M?. Consequently, M D M??.

(b) Let M � H be a non-empty proper closed subspace. There exists an x 2 H such
that

dist.x;M/ D kxk D 1:

(c) The closed subspace spanned by D � H is equal to D??. Consequently,

• if D? D f0g, then D spans H;
• if M? D f0g for some subspace M � H, then M is dense in H.

See Figs. 1.4 and 1.5.

Proof

(a) Existence. We have y WD PMx 2 M by definition, and z WD x � y 2 M? by (1.3).
Uniqueness. If x D y C z and x D y0 C z0 are two decompositions with

y; y0 2 M and z; z0 ? M, then

w WD y � y0 D z0 � z 2 M \ M?:

Hence .w;w/ D 0, thus w D 0, and therefore x D x0 and y D y0.

Fig. 1.4 Orthogonal
decomposition

0

y

zx

M⊥

M

15Riesz [389].
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Fig. 1.5 dist.x;M/ D kxk
x

0
M

If x 2 M, then x is orthogonal to every z 2 M?, i.e., x 2 M??. Conversely,
if x 2 M?? and x D y C z is its decomposition with y 2 M and z 2 M?,
then x � y D z belongs to M? but also to M?? because M � M??. Hence
x � y D z D 0, and therefore x D y 2 M.

(b) Choosing y 2 H n M arbitrarily, x WD .y � PMy/= ky � PMyk has the required
property.

(c) The closed subspace M spanned by D satisfies D? D M? and thus D?? D
M??. Using (a) we conclude that D?? D M. ut

1.3 Separation of Convex Sets: Theorems of Riesz–Fréchet
and Kuhn–Tucker

In a finite-dimensional vector space X two disjoint non-empty convex sets may
always be separated by an affine hyperplane, i.e., by a set of the form

fx 2 X W '.x/ D cg ;

where ' W X ! R is a non-zero linear functional, and c 2 R. More precisely, the
following result holds:

*Proposition 1.7 (Minkowski)16 Let A and B be two disjoint non-empty convex sets
in a finite-dimensional vector space X. There exist a non-zero linear functional '
on X and a real number c such that

'.a/ � c � '.b/ for every a 2 A and b 2 B: (1.4)

16Minkowski [324, 325].
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First we establish a weaker property that holds in all Hilbert spaces. We recall that
we denote by X0 the dual space of a normed space X, i.e., the space of continuous
linear functionals on X.17

Theorem 1.8 (Tukey)18 Let A and B be two disjoint non-empty convex, closed
sets in H. If at least one of them is compact, then there exist ' 2 H0 and c1; c2 2 R

such that

'.a/ � c1 < c2 � '.b/ for all a 2 A and b 2 B: (1.5)

(See Fig. 1.6.) In particular, for two distinct points a; b 2 H there exists a ' 2 H0
such that '.a/ ¤ '.b/.

Proof The set

C WD B � A D fb � a W a 2 A; b 2 Bg

is non-empty convex, closed, and 0 … C. The only nontrivial property is its
closedness: we have to show that if a sequence of the form .bn � an/ converges

Fig. 1.6 Separation of
convex sets

A

B

17The terminology of bounded linear maps and bounded linear functionals is frequently used
instead of continuous linear maps and continuous linear functionals.
18Tukey [460].
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to some point x in H, then x 2 C. Assuming for example that A is compact, there
exists a convergent subsequence ank ! a 2 A. Then we have

bnk D .bnk � ank/C ank ! x C a:

Since B is closed, x C a 2 B, and therefore x D .x C a/� a 2 B � A D C.
Let us denote by y the orthogonal projection of 0 to C; then y ¤ 0 (because

0 … C), and

.0 � y; b � a � y/ � 0 for all a 2 A and b 2 B;

i.e.,

kyk2 C .a; y/ � .b; y/ for all a 2 A and b 2 B:

The formula '.x/ WD .x; y/ defines a bounded linear functional ' 2 H0 by the
Cauchy–Schwarz inequality. Since A and B are non-empty, we infer from the just
obtained inequality that

c1 WD sup
a2A

.a; y/; and c2 WD inf
b2B

.b; y/

are finite numbers, and that (1.5) is satisfied.
The last property corresponds to the special case A WD fag and B WD fbg. ut

*Example The compactness assumption cannot be omitted.19 To see this we
consider in H WD `2 the non-empty convex, closed sets

A WD ˚
.xn/ 2 `2 W njx�2=3

n j � x1 for every n � 2
�

and

B WD ˚
.xn/ 2 `2 W xn D 0 for every n � 2

�
:

They are disjoint because a sequence .xn/ 2 A \ B should satisfy the inequality
x1 � n1=3 for every n � 2, while xn ! 0 and n1=3 ! 1.

If A and B could be separated by a closed affine hyperplane, then A � B would
belong to a closed halfspace. This is, however, impossible, because A � B is dense
in `2. This can be seen by using the relation

A � B D ˚
.xn/ 2 `2 W x�2=3

n D O.1=n/
�
:

19Tukey [460].
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For any fixed .zn/ 2 `2 and " > 0 choose a large m such that

X

n>m

jznj2 < "2=4 and
X

n>m

n�4=3 < "2=4:

Then the formula

xn WD
(

zn if n � m,

n�2=3 if n > m

defines a sequence .xn/ 2 A � B for which

� 1X

nD1
jxn � znj2

�1=2 �
�X

n>m

n�4=3�1=2 C
�X

n>m

jznj2
�1=2

< ":

The bounded linear functional ' obtained in the proof of Theorem 1.8 is
represented by a vector y 2 H. Next we establish the very important fact that every
bounded linear functional on H has this form.

If y 2 H, then the formula

'y.x/ WD .x; y/

defines a bounded linear functional 'y 2 H0 for which
�
�'y

�
� � kyk, because

j'y.x/j � kyk � kxk

for every x 2 H by the Cauchy–Schwarz inequality. Setting j.y/ WD 'y we obtain
therefore a map j of H into H0. This map is linear by the bilinearity of the scalar
product.

Theorem 1.9 (Riesz–Fréchet)20 The map j is an isometric isomorphism of H
onto H0.

It follows from the theorem that H0 is also a Hilbert space; using the theorem, H0
is often identified with H.

Proof We already know that
�
�'y

�
� � kyk for every y. The equality j'y.y/j D kyk2

implies the converse inequality
�
�'y

�
� � kyk. Hence j is an isometry; it remains to

prove the surjectivity.

20Riesz [373], Fréchet [155, 156] for L2, Riesz [389] for the general case.
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The kernel

M D N.'/ WD fx 2 H W '.x/ D 0g

of any ' 2 H0 is a closed subspace. If M D H, then ' D 'y with y D 0.
If M ¤ H, then applying Corollary 1.6 (p. 15) we may fix a unit vector e,

orthogonal to M. We have '.e/x � '.x/e 2 M for every x 2 H because

' .'.e/x � '.x/e/ D '.e/'.x/ � '.x/'.e/ D 0:

By the choice of e this implies

0 D .'.e/x � '.x/e; e/ D '.e/.x; e/� '.x/.e; e/ D .x; '.e/e/� '.x/;

i.e., ' D 'y with y D '.e/e. ut
Let us return to Minkowski’s theorem.

Proof of Proposition 1.7 Let us endow X with a Euclidean norm. As a finite-
dimensional space, X is separable, hence the metric subspaces A and B are separable,
too. We may therefore fix a dense sequence .an/ in A and a dense sequence .bn/ in
B. Let us denote by An and Bn the convex hulls of a1; : : : ; an and b1; : : : ; bn, for
n D 1; 2; : : : :

The sets An, Bn are compact because they are the images of the compact21 simplex

f.t1; : : : ; tn/ 2 R
n W t1 � 0; : : : ; tn � 0; t1 C � � � C tn D 1g

by the continuous (linear) maps f ; g W Rn ! X, defined by

f .t1; : : : ; tn/ WD t1a1 C � � � C tnan and g.t1; : : : ; tn/ WD t1b1 C � � � C tnbn:

Since An � A and Bn � B are disjoint, by Theorem 1.8 there exists a non-zero
functional 'n 2 X0 such that

'n.a/ � 'n.b/ for all a 2 An and b 2 Bn: (1.6)

Multiplying by a suitable constant we may assume that k'nk D 1.

21We recall that the finite-dimensional bounded closed sets are compact.
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Since X0 is finite-dimensional, there exists a convergent subsequence 'nk ! '.
Then we have k'k D 1, so that ' is a non-zero functional. We claim that

'.a/ � '.b/ for all a 2 A and b 2 BI

this will yield the proposition with

c WD inf f'.b/ W b 2 Bg :

Thanks to the density of the sequences .an/, .bn/ it is sufficient to show that

'.ak/ � '.bm/

for all k;m D 1; 2; : : : : For any fixed k;m, we have

'n.ak/ � 'n.bm/

for all n � max fk;mg by (1.6). We conclude by letting n ! 1. ut
*Example Proposition 1.7 does not hold in infinite dimensions.22 To show this we
consider the vector space X of the polynomials and we denote by A the set of
polynomials having a (strictly) positive leading coefficient. Then A and B WD f0g
are disjoint non-empty convex sets in X. We claim that if (1.4) is satisfied for some
linear functional ', then ' 
 0.

Indeed, for any fixed polynomial x choose a positive integer k > deg x, and
consider the polynomial ek.t/ WD tk. Then �x C ek 2 A, and thus �'.x/C '.ek/ � c
for all � 2 R. Hence '.x/ D 0.

As an application of Minkowski’s theorem we consider a finite number of convex
functions f0; : : : ; fn W K ! R defined on a convex subset of a vector space X, and
we investigate the minima of the restriction of f0 to the convex subset

� WD fx 2 K W fi.x/ � 0; i D 1; : : : ; ng :

We are going to prove the following version of the Lagrange multiplier theorem23:

22Dieudonné [105].
23See the books on differential calculus.
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*Theorem 1.10 (Kuhn–Tucker)24

(a) If f0j� has a minimum in a,25 then there exist �0; : : : ; �n 2 R, not all zero,
such that

the function �0f0 C � � � C �nfn W K ! R has a minimum in aI (1.7)

�0; : : : ; �n � 0I (1.8)

�ifi.a/ D 0 for all i ¤ 0: (1.9)

(b) Conversely, let a 2 � and �0; : : : ; �n satisfy (1.8)–(1.7). If �0 ¤ 0, then f0j�
has a minimum in a.

(c) If there exist a, b 2 K such that

fi.b/ < 0 for all i ¤ 0; (1.10)

then (1.7)–(1.9) imply that either �0 > 0 or �0 D � � � D �n D 0.

Since a differentiable convex function has a minimum in a ” its derivative
vanishes in a, hence we deduce the following

*Corollary 1.11 Let K be a convex open subset of a normed space, and let
f0; : : : ; fn W K ! R be convex, differentiable functions. Assume that there exist
a, b 2 K satisfying (1.10).

Then f0j� has a minimum at some point a ” there exist real numbers
�1; : : : ; �n � 0 satisfying

f 0
0.a/C �1f

0
1.a/C � � � C �nf 0

n.a/ D 0

and

�ifi.a/ D 0 for all i:

Proof of the Theorem We denote by x � y the usual scalar product of RnC1 and we
introduce the canonical unit vectors

e0 D .1; 0; : : : ; 0/; e1 D .0; 1; 0; : : : ; 0/; : : : ; en D .0; : : : ; 0; 1/:

24Karush 1939, Kuhn–Tucker 1951.
25We recall from differential calculus that every local minimum of a convex function is also a
global minimum.
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(a) The formula

C WD ˚
c 2 R

nC1 W 9x 2 K W f0.x/ < f0.a/C c0

and fi.x/ � ci; i D 1; : : : ; n
�

defines a non-empty convex set in R
nC1 with 0 … C. Applying Proposition 1.7

with A D f0g and B D C, there exists a non-zero vector � D .�0; : : : ; �n/ 2
R

nC1 such that � � x � 0 for all x 2 C. By the continuity of the scalar product
this yields

� � c � 0 for all c 2 C: (1.11)

Observe that

˚
c 2 R

nC1 W 9x 2 K W f0.x/ � f0.a/C c0

and fi.x/ � ci; 8i � 1
� � C: (1.12)

Indeed, if c belongs to the first set, then .c0Cı; c1; : : : ; cn/ 2 C for every ı > 0,
and we conclude by letting ı ! 0.

For each fixed i, choosing x D a in (1.12) we get ei 2 C, whence �i � 0

by (1.11).
For i � 1 this choice also shows that ei 2 C, whence �ifi.a/ � 0 by (1.11).

Since �i � 0 and fi.a/ � 0 (because a 2 �), we conclude that in fact
�ifi.a/ D 0.

Finally we observe that

c WD .f0.x/ � f0.a/; f1.x/; : : : ; fn.x// 2 C

for every x 2 K by (1.12). Applying (1.11) again, we get

� � f .x/� �0f0.a/ D � � c � 0:

Since we already know that � � f .a/ D �0f0.a/, we conclude that

� � f .x/ � �0f0.a/ D � � f .a/

for all x 2 K.
(b) For any fixed x 2 � , applying consecutively (1.8)–(1.7) and the property fi.x/ �

0 (i � 1), we obtain that

�0f0.a/ D � � f .a/ � � � f .x/ � �0f0.x/:

Since �0 > 0, this implies f0.a/ � f0.x/.
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(c) If �0 D 0, then (1.9) and (1.7) imply

nX

iD1
�i fi.b/ D � � f .b/ � � � f .a/ D �0f0.a/ D 0:

Since �i � 0 and fi.b/ < 0 for all i � 1 by (1.8) and (1.10), hence we conclude
that �1 D � � � D �n D 0. ut

1.4 Orthonormal Bases

Hilbert spaces provide an ideal framework for the study of Fourier series.

Definition By an orthonormal sequence we mean a sequence of pairwise orthogo-
nal unit vectors.26

Examples

• The vectors

ek D .

k�1
‚ …„ ƒ
0; : : : ; 0; 1; 0; : : :/; k D 1; 2; : : :

form an orthonormal sequence in `2.
• (Trigonometric system) For any interval I of length 2� the functions

e0 D 1p
2�
; and e2k�1 D sin ktp

�
; e2k D cos ktp

�
; k D 1; 2; : : :

form an orthonormal sequence in L2.I/.
• The functions

p
2=� sin kt (k D 1; 2; : : :) form an orthonormal sequence in

L2.0; �/.27

• The functions 1=
p
� and

p
2=� cos kt (k D 1; 2; : : :) form an orthonormal

sequence in L2.0; �/.

Lemma 1.12 If the vectors x1; : : : ; xn are pairwise orthogonal, then

kx1 C � � � C xnk2 D kx1k2 C � � � C kxnk2 :

26Gram [173] and Schmidt [416].
27We write L2.0; �/ instead of L2.Œ0; ��/ for brevity.
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Proof Since .xj; xk/ D 0 if j ¤ k, we have

kx1 C � � � C xnk2 D
nX

jD1

nX

kD1
.xj; xk/ D

nX

jD1
.xj; xj/ D kx1k2 C � � � C kxnk2 :

ut
Proposition 1.13 Let .ej/ be an orthonormal sequence in H.

(a) The orthogonal projection PMn onto Mn WD Vect fe1; : : : ; eng28 is given by the
explicit formula

PMn x D
nX

jD1
.x; ej/ej; x 2 H:

Consequently,29

dist.x;Mn/ D
�
�
�x �

nX

jD1
.x; ej/ej

�
�
�: (1.13)

(b) (Bessel’s equality)30 The equality

�
�
�x �

mX

jD1
.x; ej/ej

�
�
�
2 D kxk2 �

mX

jD1
j.x; ej/j2 (1.14)

holds for all x 2 H and m D 1; 2; : : : : (See Fig. 1.7.)
(c) (Bessel’s inequality)31 We have

1X

jD1
j.x; ej/j2 � kxk2 (1.15)

for all x 2 H. In particular, the series on the left-hand side is convergent.
(d) If .cj/ is a sequence of real numbers, then

1X

jD1
cjej is convergent in H ”

1X

jD1
jcjj2 < 1:

28The linear hull Mn is finite-dimensional, hence closed.
29Toepler [455].
30Bessel [41, 42]. Figure 1.7 shows that this is a generalization of Pythagoras’ theorem.
31Bessel [41, 42].
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Fig. 1.7 Bessel’s equality for
m D 1

x

x − (x, e1)e1

Remarks

• The case m D 1 of Bessel’s inequality follows from the Cauchy–Schwarz
inequality.

• The quantities .x; ej/ are called the Fourier coefficients of x.32

Proof

(a) It suffices to observe that the vector on the right-hand side belongs to Mn, and
that the differences of the two sides is orthogonal to Mn, because it is orthogonal
to each of the vectors e1; : : : ; en that span Mn:

�
x �

nX

jD1
.x; ej/ej; ek

�
D .x; ek/�

nX

jD1
.x; ej/.ej; ek/

D .x; ek/� .x; ek/ D 0; k D 1; : : : ; n:

32Clairaut [88, pp. 546–547], Euler [131], and Fourier [148].
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(b) Since

x � PMn x D x �
nX

jD1
.x; ej/ej

is orthogonal to Mn by the properties of the orthogonal projection, the n C 1

vectors on the right-hand side of the equality

x D
�

x �
nX

jD1
.x; ej/ej

�
C

nX

jD1
.x; ej/ej

are pairwise orthogonal. Applying the lemma, (1.14) follows.
(c) By Bessel’s equality kxk2 is an upper bound of all partial sums of this series of

nonnegative terms.
(d) Since

�
�
�

nX

jDmC1
cjej

�
�
�
2 D

nX

jDmC1
jcjj2

for all n > m, the Cauchy criteria are the same for the two series. ut
Let us investigate the case of equality in Bessel’s inequality:

Proposition 1.14 Let .ej/ be an orthonormal sequence in H. The following four
properties are equivalent:

(a) (Fourier series)33 we have
P1

jD1.x; ej/ej D x for all x 2 H;
(b) the subspace34 M WD Vect fe1; e2; : : :g is dense in H;
(c) (Parseval’s equality)35 we have

P1
jD1 j.x; ej/j2 D kxk2 for all x 2 H;

(d) if y 2 H and .y; ej/ D 0 for all j, then y D 0.

Proof (a) ” (b). Setting Mm WD Vect fe1; : : : ; emg, (a) and (b) are equivalent to
the conditions

�
�
�x �

mX

jD1
.x; ej/ej

�
�
� ! 0 and dist.x;Mm/ ! 0

for all x 2 H. We conclude by applying the equality (1.13).

33Fourier [148].
34The linear hull M is by definition the set of all finite linear combinations of the vectors ej.
35Parseval [352].
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(a) ” (c) follows from the Bessel equality because the two sides of (1.14) tend
to zero at the same time.

(a) H) (d). We have y D P1
jD1.y; ej/ej D P1

jD1 0 D 0.
(d) H) (a). Set y WD x � P1

kD1.x; ek/ek 2 H: the series converges by parts (c)
and (d) of the proposition. Since

.y; ej/ D .x; ej/ �
1X

kD1
.x; ek/.ek; ej/ D .x; ej/� .x; ej/ D 0

for all j, using (d) we conclude that y D 0.36 ut
Definition An orthonormal sequence .ej/ is complete if the equivalent conditions
(a)–(d) are satisfied. In this case we also say that .ej/ is an orthonormal basis.

Examples

• The orthonormal sequence e1; e2; : : : of `2, given above, is complete because
.x; ej/ D xj for all j for every x D .xj/ 2 `2, so that Parseval’s equality follows
from the definition of the norm.

• The three other orthonormal sequences given above are complete as well.37

Applying Parseval’s equality for the trigonometric system on the interval I D
Œ��; �� and for the function x.t/ 
 t we obtain by an easy computation a famous
result of Euler38:

1X

kD1

1

k2
D �2

6
:

If .ej/ is an orthonormal basis in H, then the finite linear combinations of the
vectors ej with rational coefficients form a countable, dense set in H, so that H is
separable. Conversely, we have the following

Proposition 1.15 Every separable Hilbert space has an orthonormal basis.

Proof Let .yn/ be a dense sequence in a Hilbert space H. Let nk be the first index for
which y1; : : : ; ynk span a k-dimensional subspace. Then the sequence yn1 , yn2 ,. . . is
linearly independent; furthermore,

y1; : : : ; ynk and yn1 ; : : : ; ynk

span the same subspace Mk for each k.

36The completeness of H was used only in this step, so that (a), (b) and (c) are equivalent in non-
complete Euclidean spaces as well. See Exercise 1.12.
37See Corollary 9.6, p. 314.
38Euler [128] (heuristic proof), [129] (§ 167).
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Writing xk WD ynk for brevity, the formulas39

e1 D x1
kx1k and ek WD xk � PMk�1xk

kxk � PMk�1xkk ; k D 2; 3; : : :

define a sequence of unit vectors satisfying e1; : : : ; ek�1 2 Mk�1, ek ? Mk�1 and

Vect fe1; : : : ; ek�1g D Vect fx1; : : : ; xk�1g

for all k � 2. Hence .ek/ is an orthonormal sequence, and

Vect fe1; e2; : : :g D Vect fx1; x2; : : :g D Vect fy1; y2; : : :g D H:

ut
*Remark The convergence and the sum of an orthogonal series do not depend on
the order of its terms. Therefore the results of this section may be extended to
arbitrary non-separable Hilbert spaces, by considering orthonormal families instead
of orthonormal sequences.40

1.5 Weak Convergence: Theorem of Choice

The examples at the end of Sect. 1.1 show that the Bolzano–Weierstrass theorem
fails in infinite-dimensional Hilbert spaces: bounded, closed sets are not always
compact. A simple counterexample is provided by the closed balls of infinite-
dimensional Hilbert spaces41:

Example Every orthonormal sequence .en/ is bounded, but it does not have any
convergent subsequence because ken � emk > 1 for all n ¤ m.

However, Hilbert succeeded in generalizing the Bolzano–Weierstrass theorem
for all Hilbert spaces by a suitable weakening of the notion of convergence. The
idea comes from the following elementary observation:

Proposition 1.16 Let e1; : : : ; ek be an orthonormal basis in a finite-dimensional
Hilbert space H. Then the following properties are equivalent:

(a) xn ! x;
(b) .xn; y/ ! .x; y/ for each fixed y 2 H;
(c) .xn; ej/ ! .x; ej/ for j D 1; : : : ; k.

39Gram–Schmidt orthogonalization [173], [415].
40See, e.g., Halmos [185].
41It suffices to consider unit balls by a similarity argument.
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Proof The equivalence (a) ” (c) follows from the identity

kxn � xk2 D
�
�
�
�
�
�

kX

jD1
.xn � x; ej/ej

�
�
�
�
�
�

2

D
kX

jD1

ˇ
ˇ.xn � x; ej/

ˇ
ˇ2 :

Property (c) implies the formally stronger property (b) because we have y DPk
jD1 cjej with suitable coefficients cj, and then

.xn; y/� .x; y/ D
kX

jD1
cj
�
.xn; ej/ � .x; ej/

	 ! 0:

ut
Remark For the usual orthonormal basis of H D R

k the equivalence (a) ” (c)
means that the convergence of a vector sequence is equivalent to its coordinate-wise
or component-wise convergence.

Definition The sequence .xn/ converges weakly42 to x in H if .xn; y/ ! .x; y/ for
each fixed y 2 H.43 We express this by writing xn * x.

Example In infinite dimensions every orthonormal sequence .en/ converges weakly
to zero. Indeed, the numerical series

P j.y; en/j2 converges for each y 2 H by
Bessel’s inequality (Proposition 1.13, p. 25), and therefore its general term tends
to zero: .y; en/ ! 0 D .y; 0/.

We recall that .en/ is not norm-convergent.

Let us establish the basic properties of weak convergence:

Proposition 1.17

(a) A sequence has at most one weak limit.
(b) If xn * x, then xnk * x for every .xnk/ subsequence, too.
(c) If xn * x and yn * y, then xn C yn * x C y.
(d) If xn * x in H and �n ! � in R, then �nxn * �x in H.
(e) Let K � H be a convex closed set and .xn/ � K. If xn * x, then x 2 K.
(f) If kxnk � L for all n and xn * x, then kxk � L.44

(g) The following equivalence holds:

xn ! x ” xn * x and kxnk ! kxk :

42Hilbert [209].
43We often write the last relation in the equivalent form .xn � x; y/ ! 0.
44Equivalently kxk � lim inf kxnk.
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Proof

(a) If xn * x and xn * y, then .xn; x � y/ ! .x; x � y/ and .xn; x � y/ ! .y; x � y/.
By the uniqueness of the limit of numerical sequences we conclude .x; x � y/ D
.y; x � y/, i.e., .x � y; x � y/ D 0, and thus x � y D 0.

(b), (c), (d) follow by definition from the corresponding properties of
numerical sequences. For example, (d) may be shown in the following way:
we have

.�nxn; y/ D �n.xn; y/ ! �.x; y/ D .�x; y/

for each y 2 H, i.e., �nxn * �x.
(e) Denoting by y the orthogonal projection of x onto K, we have

.xn � y; x � y/ � 0

for all n by Theorem 1.5 (p. 12). Since xn * x, taking the limit we find .x �
y; x � y/ � 0. Hence kx � yk2 � 0 and therefore x D y 2 K.

(f) We apply (e) with K WD fz 2 H W kzk � Lg.
(g) If xn ! x, i.e., if kxn � xk ! 0, then

j.xn; y/� .x; y/j � kxn � xk � kyk ! 0

for each y 2 H by the Cauchy–Schwarz inequality, and

jkxnk � kxkj � kxn � xk ! 0

by the triangle inequality.
Conversely, if xn * x and kxnk ! kxk, then the right-hand side of the

identity

kxn � xk2 D kxnk2 C kxk2 � 2.xn; x/

tends to zero, so that xn ! x. ut
Remarks

• The convexity condition cannot be omitted in (e): every orthonormal sequence
belongs to the closed unit sphere, but its weak limit, the null vector, does not.

• Norm convergence is also called strong convergence because it implies weak
convergence by (g).
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Every weakly convergent sequence is bounded. For the proof of this deeper
property we recall Baire’s lemma from topology45:

Proposition 1.18 If a complete metric space is covered by countably many closed
sets, then at least one of them has a non-empty interior.

Proposition 1.19

(a) Every weakly convergent sequence is bounded.
(b) If xn ! x and yn * y, then .xn; yn/ ! .x; y/.

Example Part (b) expresses a strengthened continuity property of the scalar product.
If .en/ is an orthonormal sequence, then the example xn D yn WD en shows that it
cannot be strengthened further: the relations xn * x and yn * y do not imply
.xn; yn/ ! .x; y/ in general.

Proof

(a) If xn * x in H, then the numerical sequence n 7! .xn; y/ is convergent for each
y 2 H, and hence it is bounded. Consequently, the closed sets

Fk WD fy 2 H W j.xn; y/j � k for all ng ; k D 1; 2; : : :

cover H. By Baire’s lemma, one of them, say Fk, contains a ball B2r.y/.
If xn ¤ 0, then

y C r kxnk�1 xn 2 B2r.y/ � Fk;

and hence

j.xn; y C r kxnk�1 xn/j � k:

Since y 2 Fk, this yields

r kxnk D j.xn; r kxnk�1 xn/j � k C j.xn; y/j � 2k;

i.e., the boundedness of .xn/.

45Osgood [350], Baire [17], Kuratowski [272], Banach [23]. The usefulness of Baire’s lemma in
functional analysis was recognized by Saks: see Banach and Steinhaus [28]. See also the self-
contained proofs of the more general Theorem 2.23 and Proposition 2.24 below (pp. 81–82),
without using Baire’s lemma.
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(b) Since .yn/ is bounded, we have

j.xn; yn/� .x; y/j � j.xn � x; yn/j C j.x; yn � y/j
� kxn � xk � kynk C j.x; yn/� .x; y/j
! 0

as n ! 1. ut
The following lemma simplifies the verification of weak convergence:

Lemma 1.20 Let .xn/ be a bounded sequence in H and x 2 H. The set

Y WD fy 2 H W .xn; y/ ! .x; y/g

is a closed subspace of H.

Proof Y is a subspace by the linearity of the scalar product. For the closedness we
show that if .yk/ � Y and yk ! y 2 H, then y 2 Y. Fixing " > 0 arbitrarily, we have
to find an integer N such that j.xn � x; y/j < " for all n � N.

Choose a large number L such that kxk < L, and kxnk < L for all n, and then
choose a large index k satisfying kyk � yk < "=3L. Since yk 2 Y, there exists an N
such that j.xn � x; yk/j < "=3 for all n � N.

Then the required inequality holds for all n � N because

j.xn � x; y/j � j.xn � x; y � yk/j C j.xn � x; yk/j
< kxn � xk � ky � ykk C "

3

� 2L
"

3L
C "

3
D ":

ut
Example The sequence x1 D .x1k/; x2 D .x2k/; : : : converges weakly to x D .xk/ in
`2 ” it is bounded, and xn

k ! xk for each k (component-wise convergence).
Indeed, writing xn

k ! xk in the equivalent form .xn; ek/ ! .x; ek/, the
necessity of this condition follows from the proposition. The sufficiency follows
from Lemma 1.20 because .ek/ spans `2.

Now we are ready to generalize the Bolzano–Weierstrass theorem:

Theorem 1.21 (Theorem of Choice)46 In a Hilbert space every bounded
sequence has a weakly convergent subsequence.

46Hilbert [209], Schmidt [416], and von Neumann [336].
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Proof Let .xn/ be a bounded sequence in H, and fix a constant L such that kxnk <
L for all n. Let us denote by M the closed linear hull of .xn/. Observe that M is
separable.

If M is finite-dimensional, then .xn/ has even a strongly convergent subsequence
by the classical Bolzano–Weierstrass theorem. Henceforth assume that M is infinite-
dimensional, and fix an orthonormal basis .ek/ of M by Proposition 1.15 (p. 28).

The numerical sequence n 7! .xn; e1/ is bounded. By the Bolzano–Weierstrass
theorem there exist a subsequence .x1n/ � .xn/ and c1 2 R such that .x1n; e1/ ! c1.

Next, since the numerical sequence n 7! .x1n; e2/ is also bounded, there exist a
subsequence .x2n/ � .x1n/ and c2 2 R such that .x2n; e2/ ! c2.

Continuing by recursion we construct an infinite sequence of subsequences

.xn/ � .x1n/ � .x2n/ � � � �

and real numbers ck such that

.xk
n; ek/ ! ck

for each fixed k D 1; 2; : : : : Applying Cantor’s diagonal method,47 the formula
zn WD xn

n defines a subsequence .zn/ � .xn/ converging weakly to
P1

kD1 ckek.
For the proof first we notice that for each fixed k, the truncated subsequence

zk; zkC1; : : : of .zn/ is also a subsequence of .xk
n/

1
nD1, and hence .zn; ek/ ! ck.

Next we claim that the orthogonal series
P1

kD1 ckek converges strongly to
some point z 2 M of norm � L. For the convergence it suffices to check by
Proposition 1.13 that

Pm
kD1 jckj2 � L2 for each fixed m. We have

mX

kD1
j.zn; ek/j2 � kznk2 < L2

for all n by Bessel’s inequality, and the required assertion follows by letting n ! 1.
Finally, the inequality kzk � L follows from the continuity of the norm.

We already know that .zn; ek/ ! ck D .z; ek/ for all k. Applying Lemma 1.20 we
conclude that .zn; y/ ! .z; y/ for all y 2 M, too.

We prove finally that .zn; y/ ! .z; y/ for all y 2 H. Denoting by u the orthogonal
projection of y onto M, we already know that .zn; u/ ! .z; u/. Furthermore, we have
y � u ? M, so that .zn � z; y � u/ D 0 for all n. We conclude that

.zn; y/� .z; y/ D .zn � z; u/C .zn � z; y � u/ D .zn � z; u/ ! 0:

ut

47Cantor [75].
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1.6 Continuous and Compact Operators

For brevity a linear map A W H ! H is also called an operator. Its continuity may
also be characterized by weak convergence:

Proposition 1.22 For an operator A W H ! H the following properties are
equivalent:

(a) there exists a constant M such that kAxk � M kxk for all x 2 H;
(b) A sends bounded sets into bounded sets;
(c) A sends totally bounded sets into totally bounded sets;
(d) xn ! x H) Axn ! Ax;
(e) xn * x H) Axn * Ax;
(f) xn ! x H) Axn * Ax.

Remark It suffices to check (d), (e) and (f) for x D 0 by linearity. The same remark
applies to Proposition 1.24 below.

For the proof we introduce adjoint operators:

Proposition 1.23 For each operator A 2 L.H;H/ there exists a unique operator
A� 2 L.H;H/ such that

.Ax; y/ D .x;A�y/ for all x; y 2 H: (1.16)

Definition A� is called the adjoint of A.48

Remark It follows from the proposition that A�� D A for every A.

Proof For any fixed y 2 H the formula  y.x/ WD .Ax; y/ defines a bounded linear
functional  y 2 H0. Applying the Riesz–Fréchet theorem there exists a unique
vector y� 2 H satisfying

.Ax; y/ D .x; y�/ for all x; y 2 H:

Hence y� is the unique possible candidate for A�y. On the other hand, defining
A�y WD y� the condition (1.16) is satisfied indeed.

For any y1; y2 2 H and � 2 R it follows from the definitions of y�
1 , y�

2 and from
the bilinearity of the scalar product that

.Ax; y1 C y2/ D .x;A�y1 C A�y2/ and .Ax; �y/ D .x; �A�y/

for all x; y 2 H. In view of the uniqueness of the vectors A�.y1C y2/ and A�.�y/ the
linearity of A� follows.

48Lagrange [279, p. 471] and Riesz [379, 382] (in L2 and `2).
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Applying (1.16) with x D A�y we get for every y 2 H the estimate

kA�yk2 D .AA�y; y/ � kAA�yk � kyk � kAk � kA�yk � kyk I

this shows that A� continuous, and kA�k � kAk. ut
Proof of Proposition 1.22 The implications (a) ” (b), (a) ” (c), (a) H) (d)
and (e) H) (f) follows from the definitions.

(d) H) (e). We have

.Axn � Ax; y/ D .xn � x;A�y/ ! 0

for any fixed y 2 H because xn * x.
(f) H) (a). If (a) is not satisfied, then there exists a sequence .xn/ such that

kxnk D 1=n and kAxnk > n for every n. Then xn ! 0, while .Axn/ is unbounded
and hence does not converge weakly. ut

Let us strengthen the continuity:

Proposition 1.24 For an operator A W H ! H the following properties are
equivalent:

(a) .xn/ is bounded H) .Axn/ has a (strongly) convergent subsequence;
(b) A sends bounded sets into totally bounded sets;
(c) xn * x H) Axn ! Ax.

For the proof we need the following result of Cantor:

Lemma 1.25 (Cantor)49 In a topological space a sequence xn converges to
x ” every subsequence .x0

n/ of .xn/ has a subsequence .x00
n / converging to x.

Proof If xn ! x, then x0
n ! x, so that we can choose x00

n WD x0
n. On the other hand, if

xn 6! x, then there exist a neighborhood V of x and a subsequence .x0
n/ of .xn/ such

that x0
n … V for all n. Then .x0

n/ has no subsequence converging to x. ut
Proof of Proposition 1.24 (a) H) (b) If (b) does not hold, then there exists a
bounded set B such that A.B/ is not totally bounded. It means that there exists
an r > 0 such that A.B/ cannot be covered by finitely many balls of radius r.
Using this property we may recursively construct a sequence .xn/ � B such that
kAxn � Axkk � r for all n ¤ k. Then .xn/ is a bounded sequence, but .Axn/ has
no convergent subsequence because the Cauchy criterion is not satisfied. Hence (a)
does not hold either.

(b) H) (c) In view of the lemma it is sufficient to show that every subsequence
.Ax0

n/ of .Axn/ has a subsequence .Ax00
n / converging to Ax.

49Cantor [69, p. 89]
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Since the sequence .x0
n/ is weakly convergent and hence bounded, by property

(b) the image sequence .Ax0
n/ belongs to a totally bounded set. Since the closure of

a totally bounded set is compact,50 there exists a suitable subsequence Ax00
n ! y. It

remains to show that y D Ax.
Since xn * x implies x00

n * x, and since A is continuous by (b) and by
Proposition 1.22, we have Ax00

n * Ax. On the other hand, Ax00
n ! y implies Ax00

n * y,
so that y D Ax by the uniqueness of the weak limit.

(c) H) (a) Every bounded sequence .xn/ has a weakly convergent subsequence
x0

n * x by Theorem 1.21. Then we have Ax0
n ! Ax by (c). ut

Definition An operator A W H ! H is compact or completely continuous,51 if it
satisfies one of the equivalent properties of Proposition 1.24.

Examples

• If H is finite-dimensional, then every operator A W H ! H is continuous, and
hence compact.

• The identity map I W H ! H is not compact if H is infinite-dimensional. Indeed,
we have en * 0 for every orthonormal sequence, but Ien D en 6! 0 in H.

We establish some basic properties of compact operators:

Proposition 1.26

(a) Every compact operator is continuous.
(b) Every continuous operator of finite rank52 is compact.
(c) If A;B 2 L.H;H/ and A is compact, then AB and BA are compact.
(d) The compact operators form a closed subspace in L.H;H/.

Proof (a), (b) and (c) follow from Propositions 1.22 and 1.24 and from the
equivalence of weak and strong convergence in finite-dimensional spaces.

(d) Only the closedness is not obvious. Let A1, A2, . . . be compact operators
satisfying An ! A in L.H;H/. We have to show that A is compact. If .xk/

is a bounded sequence in H, then repeating the proof of Theorem 1.21 we
may construct a subsequence .zk/ such that the image sequences .Anzk/ are
convergent for each fixed n. It is sufficient to show that .Azk/ is a Cauchy
sequence.

Fix a constant L such that kxnk < L for all n. For each fixed " > 0 choose n such
that

kA � Ank < "

3L
;

50We recall that we are working in a Hilbert space, which is complete by definition.
51Hilbert [209] and Riesz [383].
52An operator has finite rank if its range R.A/ is finite-dimensional.
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and then choose N such that

kAnzk � Anz`k < "

3
for all k; ` � N:

Then

kAzk � Az`k � k.A � An/zkk C kAnzk � Anz`k C k.An � A/z`k < "

for all k; ` � N. ut
An important example of a compact operator is the following:

Proposition 1.27 (Hilbert–Schmidt Operators)53 Let .en/ be an orthonormal
basis in H. If .amn/ � R satisfies

1X

m;nD1
jamnj2 < 1;

then the formula

A
� 1X

nD1
xnen

�
WD

1X

mD1

� 1X

nD1
amnxn

�
em

defines a compact operator on H.

Example Intuitively, we may view .amn/ as an infinite square matrix. For example,
the diagonal matrix

0

B
@

�1 0 : : :

0 �2 : : :
:::
:::
: : :

1

C
A

represents a Hilbert–Schmidt operator if
P j�nj2 < 1.

In fact, the weaker condition �n ! 0 is already sufficient, although we do not
have a Hilbert–Schmidt operator in that case.

Proof If

x D
1X

nD1
xnen 2 H;

53Hilbert [209] and Schmidt [415].
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then

kAxk2 D
1X

mD1

ˇ
ˇ
ˇ

1X

nD1
amnxn

ˇ
ˇ
ˇ
2 �

� 1X

m;nD1
jamnj2

�� 1X

nD1
jxnj2

�

by the Cauchy–Schwarz inequality. Hence A is a bounded operator, and

kAk �
� 1X

m;nD1
jamnj2

�1=2
:

Similarly, the formula

AN

� 1X

nD1
xnen

�
WD

NX

mD1

� 1X

nD1
amnxn

�
em

defines a bounded operator of finite rank (� N), hence AN is a compact operator in
H. Since for N ! 1 we have

kA � ANk �
�X

m>N

jamnj2
�1=2 ! 0

by an analogous computation, applying the proposition we conclude that A is
compact. ut

1.7 Hilbert’s Spectral Theorem

We know from linear algebra that every symmetric matrix is diagonalizable. We
extend this to infinite-dimensional Hilbert spaces.

Definition An operator A 2 L.H;H/ is symmetric54 or self-adjoint if A� D A, i.e.,
if

.Ax; y/ D .x;Ay/ for all x; y 2 H:

Example A Hilbert–Schmidt operator is self-adjoint if amn D anm for all m; n.

54Hilbert [208] and Schmidt [415].
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The main result of this section is the following:

Theorem 1.28 (Hilbert)55 Let A be a compact, self-adjoint operator in a
separable Hilbert space H ¤ f0g. There exist an orthonormal basis .ek/ in H
and a sequence .�k/ � R such that

Aek D �kek for all k:

Furthermore, in the infinite-dimensional case we also have

�k ! 0:

Remarks

• It follows from the property �k ! 0 that the non-zero eigenvalues of A have a
finite multiplicity, i.e., the corresponding eigensubspaces are finite-dimensional.

• Using orthonormal families instead of orthonormal sequences the theorem may
be extended to the non-separable case as well.56

The following proof is due to F. Riesz.57 For each real � we denote by N.A ��I/
the kernel of A � �I, i.e., the eigensubspace of A associated with the eigenvalue �:

N.A � �I/ WD fx 2 H W .A � �I/x D 0g D fx 2 H W Ax D �xg :

If A is continuous, then its eigensubspaces are closed. The non-zero elements of
the eigensubspaces are called eigenvectors.

Lemma 1.29 Let A 2 L.H;H/ be a self-adjoint operator.

(a) The eigensubspaces of A are pairwise orthogonal.
(b) If e1; e2; : : : ; ek are eigenvectors of A, then

Hk WD fx 2 H W x ? e1; : : : ; x ? ekg

is a closed invariant subspace of A, i.e.,

x 2 Hk H) Ax 2 Hk:

Consequently, the restriction of A to Hk is a self-adjoint operator in L.Hk;Hk/.

55Hilbert [208, 209], Schmidt [415], and Rellich [368].
56See, e.g., Halmos [185].
57Riesz [379].
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(c) The norm of A may be determined from the associated quadratic form:

kAk D sup fj.Ax; x/j W kxk � 1g : (1.17)

Proof

(a) If Ae D �e, Af D �f and � ¤ �, then

�.e; f / D .Ae; f / D .e;Af / D .e; �f / D �.e; f /;

whence .e; f / D 0, i.e., e ? f .
(b) If Aej D �jej for j D 1; : : : ; k and x 2 Hk, then

.Ax; ej/ D .x;Aej/ D .x; �jej/ D �j.x; ej/ D 0; j D 1; : : : ; k;

so that Ax 2 Hk.
(c) Let us denote temporarily by NA the right-hand side of (1.17), then

j.Ax; x/j � NA kxk2 for all x 2 H

by homogeneity arguments.
The obvious estimate

kxk � 1 H) j.Ax; x/j � kAxk � kxk � kAk � kxk2 � kAk

shows that NA � kAk. For the converse inequality first we observe that, thanks
to the identity

.A2x; x/ D .Ax;Ax/;

the following estimate holds for all � > 0:

4 kAxk2 D .A.�x C ��1Ax/; �x C ��1Ax/

� .A.�x � ��1Ax/; �x � ��1Ax/

� NA

�
��x C ��1Ax

�
�2 C NA

�
��x � ��1Ax

�
�2

D 2NA
�
�2 kxk2 C ��2 kAxk2	:

If Ax ¤ 0, then x ¤ 0, and choosing �2 D kAxk
kxk we get

4 kAxk2 � 4NA kAxk � kxk I
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hence

kAxk � NA kxk :

The last inequality also holds if Ax D 0, so that kAk � NA. ut
Lemma 1.30 If A 2 L.H;H/ is a compact, self-adjoint operator and H ¤ f0g, then
A has an eigenvalue � satisfying j�j D kAk.

Proof If A D 0, then � D 0 is an eigenvalue of A. Assume henceforth that
A ¤ 0. By the lemma there exists a sequence .xn/ � H satisfying kxnk � 1 and
j.Axn; xn/j ! kAk. Taking a subsequence and multiplying A by a suitable constant
if necessary, we may also assume that .Axn; xn/ ! kAk D 1, and that (here we use
the compactness of A) Axn ! x for some x 2 H. Then we have

0 � kAxn � xnk2 D kAxnk2 � 2.Axn; xn/C kxnk2 � 2 � 2.Axn; xn/ ! 0;

whence lim xn D lim Axn D x, and thus Ax D lim Axn D x. We complete the proof
by observing that

kxk2 D .x; x/ D .lim Axn; lim xn/ D lim.Axn; xn/ D 1;

i.e., kxk D 1. ut
Proof of Theorem 1.28 First we assume that A is also one-to-one. We define
recursively an orthonormal sequence e1; e2; : : : and .�k/ � R satisfying Aek D �kek

for all k, and the inequalities j�1j � j�2j � � � � :
By the above lemmas there exist a unit vector e1 and �1 2 R with

Ae1 D �1e1 and j�1j D kAk > 0:

If e1; : : : ; ek and �1; : : : ; �k are already defined for some k � 1, then we consider
the restriction of A to Hk. If Hk ¤ f0g, then applying the lemmas again, there exist
a unit vector ekC1 2 Hk and �kC1 2 R such that

AekC1 D �kC1ekC1 and j�kC1j D kAjHk k > 0:

We have j�kj � j�kC1j because Hk � Hk�1 (H0 WD H).
If dim H D n < 1, then we get an orthonormal basis of H after n steps, and it

satisfies the requirements of the theorem.
In case dim H D 1 it remains to prove that �k ! 0, and that the orthonormal

sequence .ek/ is complete.
Assume on the contrary that �k 6! 0. Then inf j�kj > 0, and therefore .xk/ WD

.��1
k ek/ is a bounded sequence. This contradicts the compactness of A because the

image sequence .Axk/ D .ek/ is orthonormal, and hence it cannot have a (strongly)
convergent subsequence. This proves the relation �k ! 0.
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For the completeness of .ek/ we show that if x 2 H is orthogonal to every ek,
then x D 0. For this we observe that x 2 Hk for all k, i.e.,

kAxk D kAjHk xk � j�kC1j � kxk

for all k. Since �k ! 0, this yields Ax D 0, and hence x D 0 because A is one-to-
one.

If A is not one-to-one, then we may apply the above proof to the restriction
of A to N.A/?.58 Since N.A/ is a closed subspace of H by the continuity of A,
and therefore H is the direct sum of the orthogonal closed subspaces N.A/ and
N.A/?, we complete the proof by completing the orthonormal basis .ek/ of N.A/?
by an arbitrarily chosen orthonormal basis .fm/ of the kernel N.A/; each fm is an
eigenvector associated with the eigenvalue 0.59 ut
*Remark Using the spectral theorem we may define continuous functions of
compact, self-adjoint operators as follows. We define the spectrum60 of A by the
formula

�.A/ WD f�kg [ f0g I

observe that it is compact. If f 2 C.�.A//, then the formula

f .A/
�X

xkek

�
WD
X

f .�k/xkek

defines a bounded operator f .A/ 2 L.H;H/.
One can show that the map f W C.�.A// ! L.H;H/ is a linear isometry, and that

.fg/.A/ D f .A/g.A/ for all f ; g 2 C.�.A//. In particular, the definition reduces to
the usual one for polynomials p.z/ D anzn C � � � C a1z C a0 with real coefficients:

p.A/ WD anAn C � � � C a1A C a0I:

This remark shows the intimate relationship between the spectral theorem and
the theory of Banach algebras that we cannot investigate here.61

Let us consider the linear non-homogeneous equation

x � Ax D y (1.18)

58This is also an A-invariant subspace by Lemma 1.29 (b).
59We obtain an orthonormal basis of H satisfying the conditions of the theorem by taking
f1; : : : ; fm; e1; e2; : : : if dim N.A/ D m < 1 and e1; f1; e2; f2; : : : if dim N.A/ D 1.
60Hilbert [209].
61See, e.g., Berberian [34], Dunford–Schwartz [117], Halmos [185], Neumark [341], Rudin [406],
and Sz.-Nagy [447].
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and the associated linear homogeneous equation

z � Az D 0; (1.19)

with a given operator A in H. The following result is of great importance in the
theory of partial differential equations62:

Proposition 1.31 (Fredholm Alternative)63 Let A be a compact, self-adjoint
operator on a Hilbert space H.

(a) The solutions of (1.19) form a finite-dimensional subspace M.
(b) The Eq. (1.18) is solvable ” y ? M.
(c) If y ? M, then the solutions of (1.18) form a translate My of M.

Remark There are thus two mutually exclusive possibilities: either (1.19) has a
nontrivial solution, or (1.18) has a unique solution for every y 2 H.

Proof Assume for simplicity that H is infinite-dimensional and separable.64

(a) Since �n ! 0 by Theorem 1.28, the eigensubspaces of A are finite-dimensional
for every non-zero �. In particular, N.A � I/ is finite-dimensional.

(b) Using the sequences .en/ and .�n/ of Theorem 1.28 and using the Fourier series

x D
1X

nD1
xnen and y D

1X

nD1
ynen;

(1.18) takes the following form:

.1 � �n/xn D yn; n D 1; 2; : : : : (1.20)

If it has a solution, then yn D 0 for all n with �n D 1. In other words, we have
y ? M because M is the subspace spanned by fen W �n D 1g.

Conversely, if y ? M the formula

xn WD
(
.1 � �n/

�1yn if �n ¤ 1,

arbitrary if �n D 1

gives a solution of (1.20). Since .yn/ 2 `2, and since the numerical sequence
.1 � �n/

�1 is bounded (because converges to 1), the relation .xn/ 2 `2 holds,
too. Consequently, x WD P

xnen is a solution of (1.18).
(c) We have My D x C M for any fixed solution x of (1.18). ut

62See, e.g., Riesz and Sz.-Nagy [394], §81.
63Fredholm [150, 151].
64The proof may be easily adapted to the general case. The finite-dimensional case is well known
from linear algebra.
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1.8 * The Complex Case

Most results of this chapter may be easily adapted to the complex case. Let us briefly
indicate the necessary modifications. We recall that every complex vector space may
also be considered as a real vector space, by allowing only multiplication by real
numbers. For example, CN is isomorphic to R

2N as a real vector space.
Let X and Y be complex vector spaces. We say that the map A W X ! Y is linear

if

A.x C y/ D A.x/C A.y/ and A.�x/ D �A.x/

for all x; y 2 X and � 2 C, and antilinear if

A.x C y/ D A.x/C A.y/ and A.�x/ D �A.x/

for all x; y 2 X and � 2 C.
Section 1.1. By a norm defined on a complex vector space X we mean a real-

valued function k�k satisfying for all x; y; z 2 X and � 2 C the same properties and
in the real case65:

	 kxk � 0;

	 kxk D 0 ” x D 0;

	 k�xk D j�j � kxk ;
	 kx C yk � kxk C kyk :

The last property is still called the triangle inequality. A normed space is a vector
space endowed with a norm. A norm induces a metric in the usual way, and the
norm function is continuous with respect to the corresponding topology.

A complex-valued function .�; �/ W X � X ! C defined on a complex vector
space X is called a scalar product if it satisfies for all x; y; z 2 X and ˛; ˇ 2 C the
following properties:

	 .˛x C ˇy; z/ D ˛.x; z/C ˇ.y; z/;

	 .x; y/ D .y; x/;

	 .x; x/ � 0;

	 .x; x/ D 0 ” x D 0:

65Wiener [487].
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A Euclidean space is a vector space endowed with a scalar product. A scalar product
induces a norm in the usual way, which satisfies the Cauchy–Schwarz inequality and
the parallelogram identity. The scalar product is continuous with respect to the norm
topology.

A complete Euclidean space is called a Hilbert space.66 For example, CN is a
Hilbert space with respect to the scalar product

.x; y/ WD x1y1 C x2y2 C � � � C xNyN ;

and the complex numerical sequences x D .xn/ satisfying the condition
P jxnj2 <

1 form a Hilbert space with respect to the scalar product

.x; y/ WD
X

xnyn:

On the other hand, the continuous, complex-valued functions defined on a non-
degenerate compact interval form a non-complete Euclidean space with respect to
the scalar product

.f ; g/ WD
Z

I
f g dx:

Section 1.2. Condition (1.2) of Theorem 1.5 (p. 12) has to be changed to

y 2 K; and <.x � y; v � y/ � 0 for all v 2 K

(the letter < stands for the real part), and we have to write <.�; �/ instead of .�; �/
everywhere in the proof.

Section 1.3. We have to write <'.a/ and <'.b/ instead of '.a/ and '.b/ in
formulas (1.4) and (1.5) of Proposition 1.7 and Theorem 1.8.

In the Riesz–Fréchet theorem (p. 19) the map j is antilinear in the complex case.
Section 1.4. Everything remains valid with one modification: we have to change

.x; ek/ to .x; ek/ in the proof of Bessel’s equality.
The trigonometric system takes a more elegant form: the exponential functions

.2�/�1=2eikt, where k runs over all integers, form an orthonormal basis in L2.I/ for
every interval I of length 2� .

Section 1.5. Everything remains valid with one modification: in the proof of
Proposition 1.17 (e) (p. 31) we have to write <.xn � y; x � y/ � 0 instead of
.xn � y; x � y/ � 0.

Section 1.6. No modification is needed; Proposition 1.27 of Hilbert–Schmidt
(p. 38) remains valid for complex numbers amn, too.

66Hilbert [208], von Neumann [334], Löwig [312], and Rellich [368].
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Section 1.7. Everything remains valid with one remark: if we also consider
complex numbers amn, then the self-adjointness of the Hilbert–Schmidt operator
is ensured by the condition amn D anm instead of amn D anm.

In the complex case the spectral theorem may be generalized beyond self-adjoint
operators. Let us state the results:67

Definition An operator A 2 L.H;H/ is normal68 if AA� D A�A.

Examples

• Every self-adjoint operator is normal.
• Every unitary operator is normal. (An operator A 2 L.H;H/ is unitary if it is

invertible and A�1 D A�, i.e., if AA� D A�A D I.)

• The operator in C
2 given by the matrix

�
0 1

0 0

�

is not normal.

Theorem 1.32 (Spectral Theorem of Normal Operators)69 Let A be a compact,
normal operator in a separable, complex Hilbert space H. There exist an
orthonormal basis .ek/ in H and a sequence .�k/ � C such that

Aek D �kek for all k:

Furthermore, if H is infinite-dimensional, then

�k ! 0:

1.9 Exercises

Exercise 1.1 Prove that the sequences x D .xn/ � R satisfying
P jxnj < 1 form

a normed space with respect to the norm kxk WD P jxnj < 1, and that this norm is
not Euclidean.

Exercise 1.2 Let .xn/ and .yn/ be two sequences in the closed unit ball of a
Euclidean space. Prove that if .xn; yn/ ! 1, then kyn � xnk ! 0.

67A proof similar to that of Sect. 1.7 is given in Bernau and Smithies [36]. Another proof is given
in Halmos [185].
68Frobenius [162, p. 391] in finite dimensions, Toeplitz [456].
69Frobenius [162, p. 391] in finite dimensions, Toeplitz [456] in the general case. Von Neumann
[336] generalized the theorem for unbounded normal operators.
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Exercise 1.3 Is `2 a Hilbert space with respect to the new scalar product

.x; y/ D
1X

kD1

xkyk

k2
‹

Exercise 1.4 Let .xj/, .yj/ be two biorthogonal sequences in a Euclidean space E,
satisfying .xi; yj/ D ıij.70 Prove that both sequences are linearly independent.

Exercise 1.5 Consider the subspace E WD Vect fe1; e2; : : :g of `2 with the induced
scalar product and norm. Prove that the formula

M WD
n
x D .xn/ 2 E W

X xn

n
D 0

o

defines a proper closed subspace of E satisfying M? D f0g. Does this contradict
Corollary 1.6 (a)?

Exercise 1.6 Consider the Euclidean space E of continuous functions f W Œ�1; 1� !
R with the scalar product .f ; g/ WD R 1

�1 fg dt. Let M denote the subspace of functions
f 2 E vanishing in Œ0; 1�.

(i) Prove that M is a closed subspace of E.
(ii) Determine the closed subspace M?.

(iii) Do we have E D M ˚ M?? Why?

Exercise 1.7 Consider the Euclidean space of continuous functions f W Œ�1; 1� !
R with the scalar product .f ; g/ WD R 1

�1 fg dt. Determine the first three functions
obtained by the Gram–Schmidt orthogonalization of the sequence of polynomials
fn.t/ D tn, n D 0; 1; 2; : : : :71

Henceforth the letter H denotes a Hilbert space.

Exercise 1.8 Let M;N 2 H and assume that every x 2 H has a unique
decomposition x D u C v with u 2 M and v 2 N. Are M and N linear subspaces of
H?

Exercise 1.9 (Lax–Milgram Lemma) Let a.�; �/ be a continuous bilinear form on
H, satisfying for some positive constant ˛ the inequality

ja.x; x/j � ˛ kxk2

70We use the Kronecker symbol: ıij D 1 and i D j, and ıij D 0 otherwise.
71Legendre polynomials.
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for all x 2 H. Prove that the variational equality

a.x; y/ D '.y/ for all y 2 H

has a unique solution x 2 H for each ' 2 H0.72

Exercise 1.10 Assume that H is separable and let M be a dense subspace of H.
Prove that H has an orthonormal basis formed by vectors belonging to M.

Exercise 1.11 Consider in `2 the set

M D
(

x D .xk/ 2 `2 W
1X

kD1
xk D 0

)

:

(i) Show that M is a dense subspace of `2.
(ii) Find a linearly independent sequence in M whose orthogonalization leads to an

orthonormal basis of `2.

Exercise 1.12 Let e1; e2; : : : be an orthonormal sequence in H and consider the
(linear) subspace E spanned by

f1 WD
1X

nD1

en

n
and e2; e3; : : : :

Show that the truncated orthonormal sequence e2; e3; : : : satisfies property (d) of
Proposition 1.14 (p. 27) in the subspace E instead of H, but not the other three.
Explain.

Exercise 1.13 We recall that every Euclidean norm satisfies the parallelogram
identity. The purpose of this exercise is to prove the converse.73 We consider a norm
in a vector space X satisfying the parallelogram identity, and we set

.x; y/ D 4�1 �kx C yk2 � kx � yk2
�

for all x; y 2 X. Prove the following assertions for all x; y; z 2 X:

(i) .x; z/C .y; z/ D 2
�

xCy
2
; z
�

;

(ii) .x; z/ D 2
�

x
2
; z
	
;

(iii) .x; z/C .y; z/ D .x C y; z/;
(iv) .˛x; y/ D ˛.x; y/ for all ˛ 2 Q;
(v) the maps ˛ 7! k˛x ˙ yk are continuous;

72If a.�; �/ is symmetric, then this follows from the Riesz–Fréchet theorem.
73Jordan and von Neumann [233]. We follow Yosida [488, p. 39].
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(vi) .˛x; y/ D ˛.x; y/ for all ˛ 2 R;
(vii) .x; y/ is a scalar product associated with our norm.

Exercise 1.14 Prove the following propositions:

(i) Every decreasing sequence of non-empty bounded closed convex sets in a
Hilbert space has a non-empty intersection.

(ii) The hypothesis “bounded” cannot be omitted.
(iii) The hypothesis “convex” may be omitted in finite dimensions, but not in

general.

Exercise 1.15 Let P 2 L.H;H/ be a projection, i.e., satisfying the equality P2 D P.
Show that the following conditions are equivalent:

(i) P is an orthogonal projector;
(ii) P is self-adjoint: P� D P;

(iii) P is normal: PP� D P�P;
(iv) .Px; x/ D kPxk2 for all x 2 H.

Exercise 1.16 Prove that the Hilbert cube

˚
x D .xn/ 2 `2 W jxnj � 1=n for all n

�

is compact.

Exercise 1.17 Let P be the orthogonal projection of a Hilbert space onto a closed
subspace M. Show that

P is compact ” dim M < 1:

Exercise 1.18 Consider in the Hilbert space `2 the following operators, where we
use the notation x D .x1; x2; : : :/ 2 `2:

Ax D .0; x1; x2; : : :/I
Bx D

�
x1;

x2
2
;

x3
3
; : : :

�
I

Cx D
�
0; x1;

x2
2
;

x3
3
; : : :

�
:

Are they compact?
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Exercise 1.19 Let .en/ be an orthonormal basis in H, and .�n/ a sequence of real
numbers, converging to 0. Prove that the formula

Ax D
1X

nD1
�n.x; en/en

defines a compact operator A in H.

Exercise 1.20 Let .en/ be an orthonormal basis in H and A 2 L.H;H/. Assume
that

1X

nD1
kAenk2 < 1:

Show that A is compact.

Exercise 1.21 Let T 2 L.H;H/.

(i) Prove that TT� and T�T are self-adjoint.
(ii) Prove the following equalities:

kTT�k D kT�Tk D kTk2 D kT�k2 :

(iii) Let A 2 L.H;H/ be a self-adjoint operator. Does there exist a T 2 L.H;H/
such that A D T�T?

Exercise 1.22 We define the spectral radius of an operator A 2 L.H;H/ by the
formula

�.A/ WD inf
nD1;2;::: kAnk1=n :

Prove the following:

(i) j�j � �.A/ for all eigenvalues of A;
(ii) if dim H < 1 and A� D A, then there exists an eigenvalue satisfying j�j D

�.A/;
(iii) the following equalities hold74:

kAk D
p
�.A�A/ D

p
�.AA�/:

Exercise 1.23 Let A 2 L.H;H/. Prove that H is the orthogonal direct sum of R.A/
and N.A�/.

74Glazman and Ljubic [170, p. 199].
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Exercise 1.24 Let T 2 L.H;H/ satisfy kTk � 1. Prove that

N.I � T/ D N.I � T�/:

Exercise 1.25 (Mean Ergodic Theorem)75 Let T 2 L.H;H/ satisfy kTk � 1.
Prove the relation

Sn.x/ WD 1

n
.x C Tx C � � � C Tn�1x/ ! Px; n ! 1

for all x 2 H, where P denotes the orthogonal projector onto the invariant subspace
N.I � T/ of T, by establishing the following facts:

(i) N.I � T/ is a closed subspace of H;
(ii) N.I � T/ D R.I � T/?;

(iii) Sn.x/ ! x for all x 2 N.I � T/;
(iv) Sn.x/ ! 0 for all x 2 R.I � T/;
(v) Sn.x/ ! 0 for all x 2 R.I � T/;

(vi) conclude.

Exercise 1.26

(i) Let un * 0 in H. Construct a subsequence .unk/ satisfying

ˇ
ˇ.unk ; unj/

ˇ
ˇ <

1

k
for all k > j:

(ii) Show that

�
�
�
�
�
�

1

p

pX

jD1
unj

�
�
�
�
�
�

! 0

as p ! 1.
(iii) Prove that every bounded sequence .vn/ � H has a subsequence .vnk/ for

which

0

@1

p

pX

jD1
vnj

1

A

1

pD1

is strongly convergent.

75Riesz 1938. Use the preceding two exercises.
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Exercise 1.27 Let .en/ be an orthonormal sequence in a Hilbert space and .cn/ a
bounded sequence of real numbers. Set

un WD 1

n

nX

iD1
ciei; n D 1; 2; : : : :

(i) Show that un ! 0.
(ii) Show that

p
nun * 0.

(iii) Give an example such that
p

nun 6! 0.

Exercise 1.28 Let xn * x in H.

(i) Show that n�1.x1 C � � � C xn/ * x.
(ii) Show that if .xn/ belongs to a compact subset of H, then xn ! x.

Exercise 1.29 Fix a bounded sequence ˛1; ˛2; : : : of real numbers, and set

Tx WD .˛1x2; ˛2x3; : : :/; x D .x1; x2; : : :/ 2 H WD `2:

(i) Show that T 2 L.H;H/ and compute kTk.
(ii) Show that T is compact ” ˛n ! 0.

Henceforth assume that ˛n D 1 if n is odd, and ˛n D 2 if n is even.

(iii) Show that each � 2 .�p
2;

p
2/ is an eigenvalue of T, and determine the

associated eigensubspaces.
(iv) Compute kTnk for n D 1; 2; : : : ; and determine lim kTnk1=n.
(v) Determine the adjoint operator T�.

Exercise 1.30 Let A 2 L.H;H/ be an isometric, non-surjective operator.

(i) Prove that there exists a unit vector e0, orthogonal to R.A/.
(ii) Show that the formula en WD Aen�1, n D 1; 2; : : : defines an orthonormal

sequence in H.
(iii) Show that A�e0 D 0 and A�e1 D e0.
(iv) Compute A�en for all n > 1.
(v) Show that each � 2 .�1; 1/ is an eigenvalue of A�.

Exercise 1.31 Consider the left and right shifts in `2 defined by

L.x1; x2; : : :/ WD .x2; x3; : : :/ and R.x1; x2; : : :/ WD .0; x1; x2; : : :/:
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Prove the following:

(i) kLk D kRk D 1;
(ii) L� D R;

(iii) the eigenvalues of L form the open interval (�1; 1);
(iv) R has no eigenvalues;
(v) The spectrum of both L and R is the closed interval [�1; 1].76

76See the definition of the spectrum on p. 108 below.



Chapter 2
Banach Spaces

A mathematician, like a painter or a poet, is a maker of patterns. If his patterns are more
permanent than theirs, it is because they are made with ideas.
–G. Hardy

Hilbert spaces are not suitable for many important situations. For example, the
uniform convergence of continuous functions is not associated with any scalar
product. For this and many other situations infinite-dimensional normed spaces
provide an appropriate framework.

Unlike the finite-dimensional case, infinite-dimensional normed spaces are
not always complete, and non-complete normed spaces have many pathological
properties. On the other hand, Banach and his colleagues discovered in the 1920s
that by adding the completeness, many general deep results hold, despite the great
variety of these spaces. In particular, although we cannot define orthogonality any
more, many results of the preceding chapter remain valid.

In this chapter we give an introduction to this fascinating theory.
In the first four sections, mainly devoted to convexity, arbitrary normed spaces

are considered. In the remaining sections the completeness of the spaces plays an
essential role.

For the first reading, we advise the reader to skip the results concerning the
somewhat particular spaces `1, `1, c0, and to concentrate on the spaces `p with
1 < p < 1.

We have to be careful: unlike the finite-dimensional case, the closed balls
of infinite-dimensional normed spaces, although bounded and closed, are never
compact. Some first basic results are the following:

Proposition 2.1 (Riesz)1 Let X be an infinite-dimensional normed space.

1Riesz [383].

© Springer-Verlag London 2016
V. Komornik, Lectures on Functional Analysis and the Lebesgue Integral,
Universitext, DOI 10.1007/978-1-4471-6811-9_2
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(a) If M � X is a proper closed subspace, then there exists a sequence .xn/ � X
satisfying

kxnk D 1 for all n; and dist.xn;M/ ! 1: (2.1)

(b) If M � X is a finite-dimensional subspace, then there exists an x 2 X satisfying

kxk D 1 and dist.x;M/ D 1:

(c) There exists a sequence .xn/ of unit vectors satisfying kxm � xnk � 1 for all
m ¤ n.

(d) The closed balls and the spheres of X are not compact.2

Proof

(a) Choose an arbitrary point z 2 X n M, and then a minimizing sequence .yn/ � M
satisfying

kz � ynk ! dist.z;M/:

Since yn 2 M and the subspace property of M imply that

dist.z;M/ D dist.z � yn;M/ D kz � ynk dist

�
z � yn

kz � ynk ;M
�

;

the unit vectors xn WD .z � yn/= kz � ynk satisfy the relation dist.xn;M/ ! 1.
(b) Since M is finite-dimensional, the above sequence .yn/ has a convergent

subsequence ynk ! y. Then x WD .z � y/= kz � yk has the required properties.
(c) By a repeated application of property (b) we may construct a sequence of unit

vectors xn such that dist.xn;Vect fx1; : : : ; xn�1g/ D 1 for all n � 2. This implies
kxn � xmk � 1 for all n > m.

(d) By similarity it suffices to consider the closed unit ball B and the unit sphere S �
B. The sequence constructed in (c) belongs to them but none of its subsequences
has the Cauchy property.

ut
*Remarks

• The finite-dimensional assumption cannot be omitted in (b): see the counterex-
ample following Proposition 2.31, p. 95.

2By spheres we mean the boundaries of the balls.
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• Kottman3 proved that we may even require the strict inequalities kxm � xnk > 1

in (c). We recall that if .xn/ is an orthonormal sequence in a Euclidean space,
then kxm � xnk D p

2 for all m ¤ n.

2.1 Separation of Convex Sets

Theorem 1.8 (p. 17) on the separation of convex sets remains valid in all normed
spaces, and this has many important applications. However, a different proof is
needed: even the existence of non-zero continuous linear functionals is a nontrivial
result.

First we investigate the hyperplanes of vector spaces.

Definitions Let X be a vector space.

• By a linear functional on X we mean a linear map ' W X ! R. They form a set
X� having a natural vector space structure.4

• By a hyperplane of X we mean a maximal proper subspace. In other words, a
proper subspace H of X is a hyperplane if Vect fH; ag D X for every a 2 X n H,
where Vect fH; ag denotes the subspace generated by H and a, i.e., the smallest
subspace containing H and a.5

• By an affine hyperplane of X we mean a translate of a hyperplane.

Lemma 2.2 The hyperplanes of X are the kernels of the non-zero linear functionals
of X.

Proof If ' 2 X� and ' ¤ 0, then H WD '�1.0/ is a proper subspace of X.
Furthermore, if a 2 X n H, then Vect fH; ag D X, because6

'

�

x � '.x/

'.a/
a

�

D '.x/ � '.x/

'.a/
'.a/ D 0;

and hence

x � '.x/

'.a/
a 2 H

for every x 2 X.

3Kottman [265]. See Diestel [104, p. 7].
4It is a (linear) subspace of the vector space of all functions f W X ! R.
5We will weaken this definition in the remark following the next lemma.
6Note that '.a/ ¤ 0, because a … H.
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Conversely, if H is a hyperplane of X and a 2 X n H, then every x 2 X has
a unique decomposition x D ta C h with t 2 R and h 2 H.7 Then the formula
'.x/ WD t defines a non-zero linear functional X whose kernel is H.8 ut
Remark Let H be a proper subspace. If there exists a vector a 2 X such that
Vect fH; ag D X, then H is the kernel of a non-zero linear functional by the second
part of the above proof, and hence H is a hyperplane by the first part of the proof.

The following notion is useful in the study of linear functionals.

Definition A subset U of a vector space X is balanced if

x 2 U; � 2 R and j�j � 1 H) �x 2 U:

Examples

• Every subspace is balanced.
• The intersection of a family of balanced sets is balanced.
• The image of a balanced set by a linear map is balanced.
• The balanced sets of R are the intervals that are symmetric to 0.
• The open and closed balls centered at 0 of normed spaces are balanced.

Lemma 2.3 Let U be a balanced set in a vector space X, and ' 2 X� a linear
functional satisfying '.a/ D 1. Then

.a C U/\ '�1.0/ D ¿ ” j'j < 1 in U:

Proof First we observe the following equivalences:

.a C U/\ '�1.0/ D ¿ ” 0 … '.a C U/ ” �'.a/ … '.U/:

Since '.U/ � R is an interval symmetric to 0 and not containing �'.a/ D �1, we
conclude that '.U/ � .�1; 1/. ut

Next we study the hyperplanes of normed spaces.

Lemma 2.4

(a) A hyperplane in a normed space is either closed or dense.
(b) A hyperplane of the form H D '�1.0/, ' 2 X�, is closed ” ' is continuous.

Proof

(a) If H is closed, then H D H ¤ X, so that H is not dense.
If H is not closed, then H is a subspace of X satisfying H � H and H ¤ H.

By the maximality of H we conclude that H D X, i.e., H is dense.

7The uniqueness follows from the condition a … H.
8The linearity follows from the uniqueness of the decomposition.
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(b) If ' is continuous, then '�1.0/ is closed. Conversely, if '�1.0/ is closed, then
we choose a point a with '.a/ D 1, and then a small number r > 0 such that
' ¤ 0 in the ball U WD Br.a/. Applying the lemma we conclude that j'j < 1 in
U, and hence k'k � 1=r.

ut
Remarks

• The following proof9 of part (b) does not use Lemma 2.3. We show that if H D
'�1.0/ is closed, then ' is continuous. The case ' D 0 is obvious. If ' ¤ 0, then
there exists a point e 2 X such that '.e/ D 1, and then d WD dist.e;H/ > 0. If
x 2 X n H, then e � x

'.x/ 2 H, and therefore

d �
�
�
�e �

�
e � x

'.x/

��
�
� D kxk

j'.x/j ;

whence j'.x/j � d�1 kxk. This inequality holds of course for x 2 H as well.
• If X is finite-dimensional, then X� D X0 because every linear functional on X is

continuous. On the other hand, if X is infinite-dimensional, then X0 is a proper
subspace of X�.10

We are ready to generalize Theorem 1.8 (p. 17); see Figs. 2.1, 2.2 and 2.3.

Fig. 2.1 Theorem of Mazur

H

A

0

9Private communication of Z. Sebestyén.
10We can define non-continuous linear functionals by using a Hamel basis of X.
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Fig. 2.2 Eidelheit’s theorem

B

A

Fig. 2.3 Tukey’s theorem

A

B
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Theorem 2.5 Let A and B be two disjoint non-empty convex sets in a normed
space X.

(a) (Mazur)11 If A is open and B is a subspace, then there exists a closed
hyperplane H such that

B � H and A \ H D ¿:

(b) (Eidelheit)12 If A is open, then there exist ' 2 X0 and c 2 R such that

'.a/ < c � '.b/ for all a 2 A and b 2 B:

(c) (Tukey)13 If A is closed and B is compact, then there exist ' 2 X0 and c1; c2 2
R such that

'.a/ � c1 < c2 � '.b/ for all a 2 A and b 2 B: (2.2)

Remark Applying (a) with 0 2 @A and B D f0g, by translation we obtain that
a convex open set has a supporting affine hyperplane at each boundary point; see
Fig. 2.1.

The following lemma is the core of the proof:

Lemma 2.6 Let X be a normed space, H a subspace of X, and A a non-empty
convex open set in X, disjoint from H. If H is not a hyperplane, then there exists an
x 2 X n H such that Vect fH; xg D X is still disjoint from A.

Proof If Vect fH; xg meets A, then a D h C sx with suitable vectors a 2 A, h 2 H
and a real number s. Since A \ H D ¿ implies s ¤ 0, this yields

x D �s�1h C s�1a 2 H C
[

t2R
tA:

Therefore it is sufficient to show that H CS
t2R tA ¤ X.

Assume on the contrary that

H [ HC [ H� D X; (2.3)

11Brunn [66] and Minkowski [324, §16, pp. 33–35] in finite dimensions, Ascoli [13, pp. 53–56 and
205] in separable spaces, Mazur [317].
12Eidelheit [122].
13Tukey [460].
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where we use the notations

HC WD H C
[

t>0

tA and H� WD �HC D H C
[

t<0

tA:

Observe that HC, H� are (non-empty) open sets, and that H, HC, H� are pairwise
disjoint. Indeed, if there were for example a point x 2 HC \ H�, then we would
have

x D h C ta D h0 � t0a0

with suitable vectors h; h0 2 H, a; a0 2 A and real numbers t; t0 > 0. This would
imply the equality

a00 WD ta C t0a0

t C t0
D h0 � h

t C t0
2 H:

Since a00 2 A by the convexity of A, this contradicts the relation A \ H D ¿.
The proof of the relations HC \ H D ¿ and H \ H� D ¿ is similar: we may

repeat the above proof with t0 D 0 and t D 0, respectively.
Now choose a point a 2 HC. Since H ¤ X and H is not a hyperplane, we have

Vect fH; ag ¤ X. Let b 2 X n Vect fH; ag, then b 2 HC [ H� by (2.3). Changing b
to �b if needed, we may assume that b 2 H�.

Observe that b … Vect fH; ag implies Œa; b� \ H D ¿, and hence Œa; b� is the
union of the disjoint sets Œa; b�\ HC and Œa; b�\ H�. The latter sets are open in the
subspace topology of Œa; b�. Since a 2 HC and b 2 H�, they are non-empty, and this
contradicts the connectedness of the interval Œa; b�. ut

We also need the following equivalent form of the axiom of choice in set theory14:

Lemma 2.7 (Zorn)15 Let A be a non-empty family of sets satisfying the following
condition: every monotone subfamily B has a majorant in A.

In other words, if for any two sets B1;B2 2 B we have either B1 � B2 or B2 � B1,
then there exists a set A 2 A containing all B 2 B.

Then the family A has a maximal element, i.e., there exists an A 2 A that is not
contained in any other set of A.16

We will also use the following simple result:

Lemma 2.8 Every non-zero linear functional ' on a normed space X is an open
mapping.

14See, e.g., Kelley [247].
15Zorn [492].
16There may be several maximal elements in general.
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Proof Let x be an arbitrary point of an open set A, and consider the ball Br.x/ � A.
Fix a point e 2 X such that kek D 1 and '.e/ > 0. If �r < t < r, then xCte 2 Br.x/,
and hence '.x C te/ 2 '.Br.x// � '.A/, i.e.,

.'.x/� r'.e/; '.x/C r'.e// � '.A/:

This shows that '.x/ is an inner point of '.A/. ut
Proof of Theorem 2.5

(a) We consider the family of subspaces H of X satisfying B � H and A \ H D ¿.
The assumptions of Zorn’s lemma are satisfied, hence it has a maximal element
H. By Lemma 2.6 H is a hyperplane. Since H does not meet the non-empty
open set A, H is not dense, but then it is closed by Lemma 2.4 (p. 58).

(b) Applying (a) with B WD f0g and with A � B instead of A, we obtain ' 2 X0
such that '.A/ and '.B/ are disjoint, non-empty convex sets in R, i.e., disjoint,
non-empty intervals; in particular ' is a non-zero functional. Changing ' to �'
if needed, we may assume that

sup
A
' � inf

B
':

Since A and B are non-empty sets, c WD infB ' is a (finite) real number, and

'.a/ � c � '.b/ for all a 2 A and b 2 B:

Finally, by Lemma 2.8 the openness of A implies that '.A/ is an open interval,
and hence ' < c in A.

(c) We claim that dist.A;B/ > 0. For otherwise there exist two sequences .an/ � A
and .bn/ � B satisfying kan � bnk ! 0. Since B is compact, there is a
convergent subsequence bnk ! b 2 B. Then we also have ank ! b by the
relation kan � bnk ! 0, and then b 2 A by the closedness of A. However, this
contradicts the disjointness of A and B.

Fix a real number 0 < r < 2�1 dist.A;B/ and introduce the following open
neighborhoods of A and B:

A0 WD A C Br.0/; B0 WD B C Br.0/:

Applying (b) to the sets A0, B0, there exist ' 2 X0 and a real number c such that

'.a0/ < c � '.b0/ for all a0 2 A0 and b0 2 B0:
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This yields

'.a/C r k'k � c � '.b/� r k'k for all a 2 A and b 2 B:

The theorem follows with c1 WD c � r k'k and c2 WD c C r k'k. ut
Using the above theorem we may generalize Corollary 1.6 (p. 15). Given D � X

and	 � X0 we define the orthogonal complements

D? WD ˚
' 2 X0 W '.x/ D 0 for all x 2 D

�

and

	? WD fx 2 X W '.x/ D 0 for all x 2 	g :

They are closed subspaces. If X is a Hilbert space and we identify X with its dual
X0, then both definitions reduce to the former one (p. 14).

Corollary 2.9 (Banach)17 Let X be a normed space and D � X.

(a) We have Vect.D/ D .D?/?.
(b) If D? D f0g, then Vect.D/ D X.
(c) If N? D f0g for some subspace N � X, then N is dense in X.

Proof (a) Set M WD Vect.D/ for brevity. By definition D � .D?/? and .D?/? is
a closed subspace, so that M � .D?/?. It remains to prove that if x … M, then
x … .D?/?.

If x … M, then we apply part (c) of the theorem with A D M and B D fxg: there
exists a ' 2 X0 satisfying

sup
M
' < '.x/:

As a linear image of a subspace, '.M/ is a subspace of R: either '.M/ D R or
'.M/ D f0g. Therefore the previous relation implies ' D 0 on M, and then '.x/ >
0. Consequently, ' 2 D? and x … .D?/?.

(b) and (c) readily follow from (a). ut
Remark We will show by some examples at the end of Sect. 2.3 (p. 76) that the role
of X and X0 cannot be exchanged in the above corollary.18

The following result shows that there are many continuous linear functionals on
a normed space.

17Banach [22].
18We will give the topological description of .	?/? in Proposition 3.17, p. 137.
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Corollary 2.10 Let X be a normed space.

(a) For any two distinct points a; b 2 X there exists a ' 2 X0 such that '.a/ ¤ '.b/.
(b) If x1; : : : ; xn 2 X are linearly independent vectors, then there exist linear

functionals '1; : : : ; 'n 2 X0 such that

'i.xj/ D ıij for all i; j D 1; : : : ; n:

Consequently, dim X0 � dim X.

Proof

(a) Apply Theorem 2.5 (c) with A D fag and B D fbg.
(b) The subspace A WD Vect fx1; : : : ; xn�1g is finite-dimensional, hence closed.

Applying Theorem 2.5 (c) with A and B D fxng, there exist ' 2 X0 and real
numbers c1 < c2 such that ' � c1 on A, and '.xn/ � c2.

Since '.A/ is a linear subspace of R, hence ' D 0 on A and then '.xn/ >

0. Therefore 'n WD '='.xn/ has the required property. The construction of
'1; : : : ; 'n�1 is analogous. ut

2.2 Theorems of Helly–Hahn–Banach and Taylor–Foguel

The following theorem if one of the most important results of Functional Analysis.

Theorem 2.11 (Helly–Hahn–Banach)19 If ' W M ! R is a continuous linear
functional on a subspace M � X, then ' may be extended, by preserving its norm,
to a continuous linear functionalˆ W X ! R.

Because of its fundamental importance, we give two different proofs here. The
first is the original one, essentially due to Helly.

The second one deduces the result from Mazur’s theorem.20

First Proof For ' D 0 we may takeˆ WD 0. Otherwise, multiplying ' by a suitable
constant we may assume that k'k D 1.

19Helly [204] investigated the case X D C.Œ0; 1�/, but his proof remains valid in all separable
normed spaces; in fact, his work paved the way to the introduction of normed spaces some years
later. Based on Helly’s crucial finite-dimensional construction, Hahn [182] and Banach [22] treated
the non-separable case as well, by changing complete induction to transfinite induction. See also
Hochstadt [215] on the life of Helly.
20Historically it was the converse: Mazur deduced his result from the extension theorem. See, e.g.,
Brezis [65] or Rudin [406].
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First Step. First we show that for any fixed a 2 XnM, ' may be extended to a
continuous linear functional  W Vect fM; ag ! R, with preservation of the norm.

For any fixed real number c, the formula

 .x C ta/ WD '.x/C tc; x 2 M; t 2 R

defines a linear extension  W Vect fM; ag ! R of '. Being an extension of ', we
have obviously k k � 1. We have to show that the inverse inequality k k � 1 also
holds for a suitable choice of c.

Since  .�y/ D � .y/, it suffices to find c satisfying

 .x ˙ ta/ � kx ˙ tak

for all x 2 M and t � 0. This is obvious for t D 0 because we have an extension.
Otherwise, dividing by t > 0 we obtain the equivalent condition

 .x0 ˙ a/ � �
�x0 ˙ a

�
� for all x0 2 MI

this may be rewritten in the form

'.x0/ � �
�x0 � a

�
� � c � �

�x0 C a
�
�� '.x0/ for all x0 2 M:

In order to ensure the existence of c, it is therefore sufficient to establish the
inequalities

'.x0/� �
�x0 � a

�
� � �

�x00 C a
�
� � '.x00/

for all x0; x00 2 M. This follows by a direct computation:

'.x0/C '.x00/ D '.x0 C x00/

� �
�x0 C x00��

D �
�.x0 � a/C .x00 C a/

�
�

� �
�x0 � a

�
�C �

�x00 C a
�
� :

Second Step. If X is finite-dimensional or, more generally, if M has finite co-
dimension in X, then the theorem follows by applying the first step a finite number
of times.

In the general case we consider the family of all norm-preserving linear
extensions  of ' to subspaces of X. If we identify the linear functionals with their
graphs, then we get a family of sets satisfying the assumptions of Zorn’s lemma (p.
62). There exists therefore a maximal norm-preserving linear extension ˆ of '. By
the first step of the proof it is defined on the whole space X. ut
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Second Proof of Theorem 2.11 In case ' 
 0 we take simply ˆ 
 0. In the
remaining cases we may assume, multiplying ' by a suitable positive number, that
k'k D 1. Denoting by U the open unit ball of X, centered at 0, then we have j'j � 1

on U. Lemma 2.8 implies that in fact j'j < 1 on U.
Fix a 2 M with '.a/ D 1. Since j'j < 1 on U, a C U does not meet '�1.0/ by

Lemma 2.3 (p. 58). Applying Theorem 2.5 (a) (p. 61) there exists a hyperplane H
such that '�1.0/ � H and H does not meet aCU. By Lemma 2.2 (p. 57) there exists
a (unique) linear functionalˆ 2 X� satisfyingˆ�1.0/ D H and ˆ.a/ D 1. Another
application of Lemma 2.3 shows that jˆj < 1 on U. Hence ˆ is continuous, and
kˆk � 1 D k'k.

It remains to prove that ˆ is an extension of '; this will also imply the reverse
inequality kˆk � k'k. If x 2 M, then

' .x � '.x/a/ D '.x/� '.x/'.a/ D '.x/� '.x/ D 0;

so that x � '.x/a 2 '�1.0/ � H D ˆ�1.0/. Hence ˆ.x � '.x/a/ D 0, i.e., ˆ.x/ D
'.x/ˆ.a/ D '.x/. ut
*Remark There are many generalizations of the theorem for vector valued linear
maps.21

In general the extensionˆ is not unique, except the trivial case where M is dense.
The extension is also unique if X is a Hilbert space. In order to formulate a more
precise result we need the following notion:

*Definition A normed space X is strictly convex if for any two distinct points
x1; x2 2 X with kx1k D kx2k D 1 we have k.x1 C x2/=2k < 1.

*Remarks

• If X is strictly convex and x1; x2 2 X are two distinct points with kx1k D kx2k D
c, then k.x1 C x2/=2k < c by homogeneity.

• We recall the elementary fact that if f W R ! R is a convex function and f .0/ D
f .1/ D 1, then f .t/ � 1 for all 0 < t < 1 and f .t/ � 1 otherwise. Moreover,
either f 
 1 or f < 1 everywhere in .0; 1/.

Applying this with f .t/ WD ktx1 C .1 � t/x2k we obtain that a normed space X
is strictly convex ” its unit sphere does not contain any line segment.

We obtain also that if for any two distinct points with kx1k D kx2k D 1 there
exists t 2 R such that ktx1 C .1 � t/x2k < 1, then X is strictly convex.

21See, e.g., Banach–Mazur [27], Fichtenholz–Kantorovich [145], Murray [328], Goodner [172],
Nachbin [330], Kelley [246], and a general review in Narici–Beckenstein [331].
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*Proposition 2.12 (Taylor–Foguel)22 All continuous linear functionals defined on
subspaces of a normed space X have a unique norm-preserving extension to X ”
the dual space X0 of X is strictly convex.

Proof Assume that X0 is strictly convex, and let '1; '2 2 X0 be two distinct
extensions of a linear functional ' W Y ! R such that k'1k D k'2k D c. Then
.'1 C '2/=2 is also a linear extension of ', and therefore

k'kY0

� k.'1 C '2/=2kX0

< c

by the strict convexity of X0, so that the extensions '1; '2 are not norm-preserving.
Conversely, assume that all norm-preserving extensions are unique and consider

two distinct elements '1; '2 of X0 with k'1k D k'2k D 1. In view of the above
remark it is sufficient to find a real number t satisfying kt'1 C .1 � t/'2k.

The common restriction of '1 and '2 to the hyperplane Y WD fx 2 X W '1.x/ D
'2.x/g has a unique norm-preserving extension ' 2 X0. Since the distinct extensions
'1; '2 cannot both be norm-preserving, we have necessarily k'k < 1. It remains to
show that ' D t'1 C .1 � t/'2 for some t 2 R.

Fix an arbitrary point x0 2 X n Y. Since '1.x0/ ¤ '2.x0/, there exists a t 2 R

such that

'.x0/ D '2.x0/C t .'1.x0/ � '2.x0// D t'1.x0/C .1� t/'2.x0/:

Then ' and t'1C.1� t/'2 coincide on Vect fY; x0g D X, so that ' D t'1C.1� t/'2
as required. ut
Corollary 2.13 (Banach)23 Let M be a closed subspace of a normed space X.

(a) For every x 2 X n M there exists a ' 2 X0 such that

k'k D 1; ' D 0 on M; and '.x/ D dist.x;M/:

(b) For every x 2 X there exists a ' 2 X0 such that

k'k � 1 and '.x/ D kxk :

(c) We have

kxk D max
k'k�1

j'.x/j

for every x 2 X.

22Taylor [450] and Foguel [147]. See also Phelps [355], Holmes [216, p. 175], Beesack, Hughes
and Ortel [33] and Ciarlet [87, p. 265].
23Banach [22]. In part (b) we also have k'k D 1, except in the degenerate case X D f0g.
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Proof

(a) The formula

 .tx � y/ WD t dist.x;M/; t 2 R; y 2 M

defines a linear functional on the subspace Vect fM; xg. (The linearity follows
from the uniqueness of the decomposition tx � y.) We have obviously  .x/ D
dist.x;M/, and  D 0 on M. Furthermore, k k � 1, because for t ¤ 0 and
y 2 M we have

j .tx � y/j D jt dist.x;M/j � jtj �
�
�
�x � y

t

�
�
� D ktx � yk :

(This is also true for t D 0 because then the left-hand side is zero.)
For the proof of the converse inequality we choose a sequence .yn/ � M

satisfying kx � ynk ! dist.x;M/. Then  .x � yn/ D dist.x;M/ for every n, and
therefore

k k � lim
 .x � yn/

kx � ynk D 1:

We conclude by extending  to X by applying the theorem.
(b) If x D 0, then take ' D 0. If x ¤ 0, then apply (a) with M D f0g.
(c) Since ' 2 X0 and k'k � 1 imply j'.x/j � kxk by the definition of the norm,

the result follows from (b).

ut
Remark We may compare the formula in (c) with the definition

k'k D sup
kxk�1

j'.x/j ; ' 2 X0:

In the latter we cannot write max in general. We will return to this question later.24

2.3 The `p Spaces and Their Duals

By Lemmas 2.2 and 2.4 (p. 58) knowledge of the closed hyperplanes is equivalent
to knowledge of the dual space. The case of Hilbert spaces is easy because X0 may
be identified with X by the Riesz–Fréchet theorem (p. 19). In this section we show
by some examples that X and X0 may have different structures for general normed
spaces.

24See Proposition 2.31, p. 91.
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Definitions

• The bounded real sequences x D .xn/ form a normed space `1 with respect to
the norm

kxk1 WD sup jxnj ;

because `1 D B.K/ with K WD f1; 2; : : :g.
• The real null sequences form a subspace c0 of `1, and hence a normed space.
• Given a real number 1 � p < 1, let us denote by `p the set of real sequences

x D .xn/ satisfying
P jxnjp < 1, and set

kxkp WD
�X

jxnjp
�1=p

:

The following result shows that all `p spaces are normed spaces.

Proposition 2.14 Let p; q 2 Œ1;1� be conjugate exponents, i.e., satisfying p�1 C
q�1 D 1.

(a) (Young’s inequality)25 If p and q are finite, then

xy � xp

p
C yq

q

for all nonnegative numbers x and y.
(b) (Hölder’s inequality)26 If x 2 `p and y 2 `q, then xy 2 `1 and

kxyk1 � kxkp � kykq :

(c) (Minkowski’s inequality)27 If x; y 2 `p, then x C y 2 `p and

kx C ykp � kxkp C kykp :

(d) `p is a normed space.

25Young [489].
26Rogers [399], Hölder [217], and Riesz [382].
27Minkowski [323, pp. 115–117] and Riesz [382].
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Fig. 2.4 Young’s inequality

x = yq− 1

y

y

= xp− 1

Proof

(a) We may assume by symmetry that p � 2. Consider the graph of the function
y D xp�1 or equivalently x D yq�1 (see Fig. 2.4). The union of the two shaded
regions contains the rectangle of sides x and y. Hence their areas satisfy the
inequality

xy �
Z x

0

sp�1 ds C
Z y

0

tq�1 dt D xp

p
C yq

q
:

(b) For p D 1 and q D 1 the result follows from the straightforward estimate

kxyk1 D
1X

nD1
jxnynj �

 1X

nD1
jxnj

!

sup jynj D kxk1 kyk1 :

The case of p D 1 and q D 1 is similar.
Assume henceforth that 1 < p < 1, then 1 < q < 1. We may assume by

homogeneity that kxkp D kykq D 1, and we have to prove that kxyk1 � 1. This
follows by applying Young’s inequality:

ˇ
ˇ
ˇ

1X

nD1
xnyn

ˇ
ˇ
ˇ �

1X

nD1
jxnj � jynj �

1X

nD1

xp
n

p
C yq

n

q
D 1

p
C 1

q
D 1:

(c) The cases p D 1 and p D 1 follow at once from the estimates

1X

nD1
jxn C ynj �

1X

nD1
.jxnj C jynj/ D kxk1 C kyk1
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and

sup jxn C ynj � sup.jxnj C jynj/ � sup jxnj C sup jynj D kxk1 C kyk1 :

Assume henceforth that 1 < p < 1, then 1 < q < 1. For each fixed
m D 1; 2; : : : we apply Hölder’s inequality and the relation . p � 1/q D p to get

mX

nD1
jxi C yijp �

mX

nD1
jxij � jxi C yijp�1 C

mX

nD1
jyij � jxi C yijp�1

�
� mX

nD1
jxijp

�1=p� mX

nD1
jxi C yij. p�1/q�1=q

C
� mX

nD1
jyijp

�1=p� mX

nD1
jxi C yij. p�1/q

�1=q

� �kxkp C kykp

	 � mX

nD1
jxi C yij. p�1/q

�1=q

D �kxkp C kykp

	 � mX

nD1
jxi C yijp

�1=q
:

Since 1=q D 1 � 1=p, hence

� mX

nD1
jxi C yijp

�1=p � kxkp C kykp :

Letting m ! 1 we conclude that the left-hand sum converges, and kx C ykp �
kxkp C kykp.

(d) We already know that `1 is a normed space; henceforth we assume that 1 �
p < 1. Using (c) we see that `p is a vector space28 and k�kp is a norm.

ut
Consider X D `p for some p. If y D .yn/ 2 `q, where q is the conjugate exponent

of p, then the formula

'y.x/ WD
1X

nD1
xnyn; x D .xn/ 2 `p (2.4)

28More precisely, a subspace of the vector space of all real sequences.
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defines a continuous linear functional. Indeed, applying Hölder’s inequality we see
that the definition is correct, and

ˇ
ˇ'y.x/

ˇ
ˇ � kykq � kxkp

for every x. Consequently,

'y 2 .`p/0; and
�
�'y

�
� � kykq for every y 2 `q:

Hence the formula j.y/ WD 'y defines a continuous linear map j W `q ! .`p/0 (of
norm � 1).

Since c0 is a subspace of `1 the same formula also defines a continuous linear
mapj W `1 ! .c0/0 (of norm � 1).

A special case of a theorem of F. Riesz29 shows that much more is true:

Proposition 2.15

(a) If 1 � p < 1, then j W `q ! .`p/0 is an isometric isomorphism.
(b) j W `1 ! .c0/0 is an isometric isomorphism.

*Remarks

• According to the proposition we often identify .c0/0 with `1, and .`p/0 with `q for
1 � p < 1.

• We show at the end of this section that .`1/0 is not isomorphic to `1.

We need a lemma:

Lemma 2.16 If X D `p, 1 � p < 1, or if X D c0, then the vectors

ek D .

k�1
‚ …„ ƒ
0; : : : ; 0; 1; 0; : : :/; k D 1; 2; : : :

generate X. Hence these spaces are separable.

Proof For any given x D .xn/ 2 `p, 1 � p < 1, the relation

�
�
�x �

kX

nD1
xnen

�
�
�

p

p
D

1X

nDkC1
jxnjp ! 0 .k ! 1/

shows that the vectors ek generate `p.

29Riesz [382]: see Theorem 9.14, p. 332.
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If x D .xn/ 2 c0, then

�
�
�x �

kX

nD1
xnen

�
�
�1 D max fjxnj W n > kg ! 0;

because xn ! 0 by the definition of c0.
It follows that the finite linear combinations of the vectors ek with rational

coefficients form a countable, dense set in X. ut
*Remarks

• The lemma does not hold in `1 because c0 is a proper closed subspace of `1 so
that the vectors ek cannot generate `1.

• The space `1 is not even separable. For the proof we consider the uncountable
set of (open) unit balls, centered at the points x D .xn/ such that xn D ˙1 for
every n. Since they are pairwise disjoint, no countable set D may meet all of
them, and therefore D cannot be dense.

Proof of Proposition 2.15

(a) For any fixed ' 2 .`p/0 we have to find a unique sequence y 2 `q satisfying
'y D ' and kykq � k'k. (The converse inequality

�
�'y

�
� � kykq is already

known.)

If there exists a y 2 `q such that 'y D ', then we have necessarily

'.en/ D 'y.en/ D yn

for every n, whence

yn D '.en/; n D 1; 2; : : : :

Hence there exists at most one such y.
It remains to show that the above formula indeed defines a suitable sequence. If

p D 1, then

jynj D j'.en/j � k'k

for every n, so that y 2 `1 and kyk1 � k'k.
If p > 1 and thus q < 1, then we consider for each fixed k D 1; 2; : : : the

sequence x D .xn/ defined by the formula

xn WD
(

jynjq�1 sign yn if n � k,

0 if n > k.
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Then x 2 `p (because the sequence has only finitely many terms), and

'.x/ D
kX

nD1
jynjq D kxkp

p

by a simple computation. Using these equalities we deduce from the estimate

j'.x/j � k'k � kxkp

that

kX

nD1
jynjq � k'k �

� kX

nD1
jynjq

�1=p
;

and therefore

kX

nD1
jynjq � k'kq :

Letting k ! 1 we conclude that y 2 `q and kykq � k'k.
It remains to prove the equality ' D 'y. Since the continuous linear functionals

' and 'y coincide at the points en by definition, they also coincide on the closed
subspace generated by these points, i.e., on the whole space `p by the lemma.30

(b) For any given ' 2 .c0/0 we may repeat the proof of (a) with p D 1 and q D 1.

ut
Let us mention the following result:

*Proposition 2.17 If X0 is separable for some normed space X, then X is also
separable.

Proof We fix a dense sequence .'n/ in X0, and then we choose for each n a vector
xn 2 X satisfying

kxnk � 1 and j'n.xn/j � 2�1 k'nk :

It suffices to prove that .xn/ generates X because then their finite linear combinations
with rational coefficients form a countable, dense set in X.

In view of Corollary 2.9 (p. 64) it is sufficient to show that if some functional
' 2 X0 satisfies '.xn/ D 0 for every n, then ' D 0. For this we choose a suitable

30The assumption p ¤ 1 is used only at this last step.



76 2 Banach Spaces

subsequence 'nk ! '. Then we have

k'nk k � 2 j'nk .xnk/j D 2 j.'nk � '/.xnk/j � 2 k'nk � 'k :

Letting k ! 1 we conclude that k'k � 0, i.e., ' D 0. ut
*Remark Since `1 is not separable, .`1/0 is not separable either by the preceding
proposition. Since `1 is separable, it is not isomorphic to .`1/0.

Now we can give some counterexamples promised on p. 64.

*Examples The following examples show that the role of X and X0 cannot be
exchanged in Corollary 2.9, p. 64.

• Let X D c0 and X0 D `1. Then

	 WD
n
.yn/ 2 X0 W

X
yn D 0

o

is a proper closed subspace of X0, while .	?/? D X0 because	? D f0g. For the
proof of the latter we observe that if x D .xn/ 2 	?, then x ? e1 � en for every
n, so that x1 D x2 D � � � : But x 2 c0 implies that xn ! 0, so that x D 0.

• Let X D `1 and X0 D `1. Then	 WD c0 is a proper closed subspace of X0, while
.	?/? D X0 because 	? D f0g. Indeed, if x D .xn/ 2 	?, then x ? en for
every n. In other words, xn D 0 for every n, i.e., x D 0.

2.4 Banach Spaces

All finite-dimensional normed spaces are complete. On the other hand, we have
already encountered non-complete normed spaces (even Euclidean spaces) in the
preceding chapter. The rest of this chapter is devoted to complete normed spaces.

Definition A Banach space is a complete normed space.31

Examples

• Every finite-dimensional normed space is a Banach space.
• Every Hilbert space is a Banach space.
• If K is a non-empty set and X a Banach space, then the vector space B.K;X/ of

bounded functions f W K ! X is complete with respect to the norm

k f k1 WD sup
t2K

k f .t/kX ;

and hence it is a Banach space. If X D R, then we write B.K/ for brevity.

31Riesz [383], Banach [19], Hahn [181], and Wiener [487]. Terminology of Fréchet [161].
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• If K is a topological space and X a Banach space, then the bounded continuous
functions f W K ! X form a closed subspace Cb.K;X/ of B.K;X/, and hence a
Banach space. If K is compact, then we write simply C.K;X/. If X D R, then we
write Cb.K/ or C.K/ instead of Cb.K;X/ or C.K;X/.

• If I is a non-empty open interval, Y a Banach space and k a natural number, then
the Ck functions f W I ! Y for which f ; f 0; : : : ; f .k/ are all bounded form a Banach
space Ck

b.I;Y/ with respect to the norm

k f k1 C �
� f 0��1 C � � � C �

�f .k/
�
�1:

• The bounded real sequences x D .xn/ form a Banach space `1 with respect to
the norm

kxk1 WD sup jxnj ;

because `1 D B.K/ with K WD f1; 2; : : :g.
• The real null sequences form a closed subspace c0 of `1, and hence a Banach

space.

We give another important example. We recall that if X and Y are normed spaces,
then the continuous linear maps A W X ! Y form a normed space L.X;Y/ with
respect to the norm

kAk WD sup fkAxk W kxk � 1g :

Proposition 2.18 If X is a normed space and Y a Banach space, then L.X;Y/ is a
Banach space. In particular, the dual of any normed space is a Banach space.

Proof If .An/ is a Cauchy sequence in L.X;Y/, then .Anx/ is a Cauchy sequence in
Y for each fixed x 2 X, because

kAnx � Amxk � kAn � Amk � kxk ! 0

as m; n ! 1. Since Y is complete, .Anx/ converges to some point Ax 2 Y.
Since the maps An are linear, A is also linear. Since the Cauchy sequence .An/ is

necessarily bounded, there exists a constant M such that

kAnxk � M kxk

for all n and x. Letting n ! 1 we conclude that kAk � M, i.e., A 2 L.X;Y/.
Finally, for any fixed " > 0 choose N such that

kAn � Amk � "
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for all m; n � N. Then

kAnx � Amxk � " kxk

for all m; n � N and x 2 X. Letting m ! 1 we obtain

kAnx � Axk � " kxk

for all n � N and x 2 X, i.e., An ! A in L.X;Y/. ut
Corollary 2.19 All `p spaces are Banach spaces.

Proof We have seen in the preceding section that all `p spaces are dual spaces, and
hence complete by the preceding proposition.

Alternatively, the completeness of `p for 1 � p < 1 may be proved by a simple
adaptation of the proof given for `2 in Sect. 1.1, by changing the exponents 2 to p
everywhere. ut
*Examples

• If U is a non-empty open set in a normed space, Y a Banach space, and k a natural
number, then the Ck functions f W U ! Y for which f , f 0, . . . , f .k/ are all bounded
form a Banach space Ck

b.U;Y/ with respect to the norm

k f k1 C �
� f 0��1 C � � � C �

�f .k/
�
�1;

because the derivative functions map into Banach spaces of the form L.X;Z/ by
the proposition.32

• Let I D Œa; b� be a non-degenerate compact interval and 1 � p < 1. We know
that C.I/ is a normed space with respect to the norm

kxkp WD
�Z

I
jx.t/jp dt

�1=p
:

This norm is not complete. For p D 2 we have already proved this on page 10;
the general case follows by changing every exponent 2 to p in that proof.

An easy adaptation of the proof of Proposition 1.3 (p. 10) leads to the following
result:

Proposition 2.20 Every normed space may be completed, i.e., may be considered
as a dense subspace of a Banach space.

Definition We denote by Lp.I/, for 1 � p < 1, the Banach space obtained by
completion of C.I/ with respect to the norm k�kp.

32See any book on differential calculus.
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Remark Later we will give a concrete interpretation of these spaces.33

We end this section by giving another proof of the last proposition.

Definition By the bidual of a normed space X we mean the Banach space X00 WD
.X0/0.34

Example If x 2 X, then the formula

ˆx.'/ WD '.x/; ' 2 X0

defines a continuous linear functionalˆx 2 X00, and kˆxk � kxk because jˆx.'/j D
j'.x/j � j'j � kxk for every ' 2 X0.

Let us look more closely at the correspondence x 7! ˆx:

Corollary 2.21 (Hahn)35 Let X be a normed space.

(a) The formula J.x/ WD ˆx defines a linear isometry J W X ! X00.
(b) X may be completed: there exist a Banach space Y and a linear isometry J W

X ! Y such that J.X/ is dense in Y.

Proof

(a) The linearity of J is straightforward. The isometry follows from Corollary 2.13
(c):

kJxk D sup
k'k�1

j.Jx/.'/j D sup
k'k�1

j'.x/j D kxk :

(b) In view of (a) we may choose for Y the closure in X00 of the range J.X/ of J: as
a closed subspace of the Banach space X00, it is also a Banach space.

ut

2.5 Weak Convergence: Helly–Banach–Steinhaus Theorem

Weak convergence proved to be a useful tool in the study of Hilbert spaces. We
generalize this notion to normed spaces.

Definition A sequence .xn/ in a normed space X converges weakly36 to x 2 X if

'.xn/ ! '.x/

33See Proposition 9.5 (b), p. 312.
34Hahn [182]. We will investigate these spaces in Sect. 2.6, p. 87.
35Hahn [182].
36Riesz [380], Banach [24].
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for every ' 2 X0. We express this by writing xn * x.

Remarks

• For Hilbert spaces this reduces to the former notion by the Riesz–Fréchet
theorem.

• Norm convergence implies weak convergence by the continuity of the functionals
of X0. Therefore norm convergence is also called strong convergence.

• In finite-dimensional normed spaces the strong and weak convergences coincide.

Let us collect the elementary properties of weak convergence:

Proposition 2.22

(a) A sequence has at most one weak limit.
(b) If xn * x, then xnk * x for every subsequence .xnk/.
(c) If xn * x and yn * y, then xn C yn * x C y.
(d) If xn * x in X and �n ! � in R, then �nxn * �x in X.
(e) Let K � X be a convex closed set. If xn * x, and xn 2 K for every n, then

x 2 K.
( f) If xn * x, and kxnk � L for every n, then kxk � L.37

(g) If xn ! x, then xn * x and kxnk ! kxk.

*Remark In contrast to Hilbert spaces the relations xn * x and kxnk ! kxk do not
imply xn ! x in general.38 If this holds, then X is said to have the Radon–Riesz
property.

Proof We may repeat the corresponding proofs given for Hilbert spaces (p. 30),
except for (a) and (e); for the proof of (g) we now apply the continuity of ' 2 X0
instead of the Cauchy–Schwarz inequality.

(a) If xn * x and xn * y, then by Corollary 2.13 there exists a ' 2 X0 satisfying
'.x � y/ D kx � yk. Since '.xn/ ! '.x/ and '.xn/ ! '.y/ imply '.x/ D '.y/,
hence

kx � yk D '.x � y/ D '.x/� '.y/ D 0;

and therefore x D y.
(e) Instead of the orthogonal projection we use Tukey’s theorem (p. 61). Assume

on the contrary that x … K; then there exist ' 2 X0 and c1; c2 2 R such that

'.x/ � c1 < c2 � '.y/ for every y 2 K:

Then '.xn/ � c2 for every n, so that '.xn/ 6! '.x/, i.e., xn 6* x. ut

37Equivalently, kxk � lim inf kxnk.
38We give soon an example. See also Proposition 9.11, p. 328.
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Every weakly convergent sequence is bounded. Before proving this deeper
result, we establish another essential result of Functional Analysis: the uniform
boundedness theorem:

Theorem 2.23 (Helly–Banach–Steinhaus)39 Consider a family A � L.X;Y/ of
continuous linear maps where X is a Banach-space, and Y a normed space. If the
sets

A.x/ WD fAx 2 Y W A 2 Ag ; x 2 X

are all bounded in Y, then A is bounded in L.X;Y/:

sup fkAk W A 2 Ag < 1:

*Remark The idea of this theorem had already appeared in Riemann’s work.40

*Example The theorem fails in non-complete spaces X. Consider for example the
subspace X of `2 formed by the sequences having at most finitely many non-zero
elements. The formula

'n.x/ WD nxn

defines a pointwise bounded but uniformly unbounded sequence of functionals in
L.X;R/.

Proof It suffices to prove41 that A is uniformly bounded in some ball, say

kAxk � C for every A 2 A and x 2 B2r.x
0/:

This will imply for all A 2 A and x 2 X, kxk � 1, the relations x0; x0 C rx 2 B2r.x0/,
and therefore the inequalities

kAxk D 1

r

�
�A.x0 C rx/ � Ax0�� � kA.x0 C x/k C kAx0k

r
� 2C

r
;

whence kAk � 2C=r for every A 2 A.

39Helly [204], and Banach–Steinhaus [28]. See Hochstadt [215] on Helly’s contribution. See also
Banach [19], Hahn [181], and Hildebrandt [211].
40Condensation of singularities, Riemann [371], and Hankel [190]. See also Gal [166].
41Following a suggestion of Saks, Banach and Steinhaus proved their theorem with the help of
Baire’s lemma (p. 32). We prefer to adapt, following Riesz–Sz. Nagy [394], an argument of Osgood
[350, pp. 163–164], that can also be used to prove Baire’s lemma.
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Assume on the contrary that A is not uniformly bounded on any open ball, and
fix an arbitrary ball B0.42

By our assumption there exist A1 2 A and x1 2 B0 such that kA1x1k > 1. By
the continuity of A1 the inequality remains valid in a small ball B1 centered at x1.
By choosing its radius sufficiently small, we may also assume that diam B1 < 1 and
B1 � B0.

Repeating these arguments, there exist A2 2 A and a ball B2 such that diam B2 <
1=2, B2 � B1, and kA2xk > 2 for every x 2 B2.

Continuing by induction we obtain a sequence .Ak/ � A of maps and a sequence
.Bk/ of balls such that diam Bk < 1=k, Bk � Bk�1, and kAkxk > k for every x 2 Bk,
k D 1; 2; : : : : Applying Cantor’s intersection theorem we conclude that \kBk ¤ ¿.
If x is a common point of the balls Bk, then kAkxk � k for every k, contradicting the
boundedness of A.x/. ut
Proposition 2.24 Let .xn/ be a sequence in a normed space X.

(a) If xn * x, then the sequence .xn/ is bounded.
(b) If xn * x in X and 'n ! ' in X0, then 'n.xn/ ! '.x/.
(c) If xn ! x in X and 'n * ' in X0, then 'n.xn/ ! '.x/.

Proof

(a) We apply Theorem 2.23 for the family .ˆn/ � X00 of the functionals

ˆn' WD '.xn/; ' 2 X0; n D 1; 2; : : : ;

and we use the equalities kˆnk D kxnk from Corollary 2.21 (a) (p. 79).
(b) The right-hand side of the identity

'n.xn/ � '.x/ D .'n � '/.xn/C '.xn � x/

tends to zero because xn * x implies '.xn � x/ ! 0, and because .xn/ is
bounded by (a), so that

j.'n � '/.xn/j � k'n � 'k sup kxnk ! 0:

(c) Writing ˆ. / WD  .x/ we haveˆ 2 X00, and the right-hand side of the identity

'n.xn/� '.x/ D 'n.xn � x/C .'n � '/x D 'n.xn � x/Cˆ.'n � '/

42As usual, all balls are considered to be open.
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tends to zero because 'n * ' implies ˆ.'n � '/ ! 0, and because .'n/ is
bounded by (a), so that

j'n.xn � x/j � kxn � xk sup k'nk ! 0:

ut
A simple adaptation of the proof of Lemma 1.20 (p. 33) yields the following

results:

Lemma 2.25 Let .xk/ be a bounded sequence in a normed space X.

(a) For each x 2 X the set

˚
' 2 X0 W '.xk/ ! '.x/

�

is a closed linear subspace of X0.
(b) The set

˚
' 2 X0 W .'.xk// converges in R

�

is a closed linear subspace of X0.

*Examples

• Let X D c0 or X D `p for some 1 < p < 1. Let k 7! .xk
n/ be a bounded sequence

in X, and let .xn/ 2 X. Lemmas 2.16 and 2.25 (pp. 73 and 83) yield the following
characterizations of weak convergence (component-wise convergence):

.xk
n/ * .xn/ ” xk

n ! xn for each n:

• In particular, the sequence of the vectors

ek D .

k�1
‚ …„ ƒ
0; : : : ; 0; 1; 0; : : :/; k D 1; 2; : : :

converges weakly to zero in the above spaces.
• But this sequence does not converge weakly in `1. Indeed, the formula

'.x/ WD
1X

nD1
.�1/nxn; x D .xn/ 2 `1

defines a functional ' 2 .`1/0 for which the numerical sequence of numbers
'.en/ D .�1/n is divergent.
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• Let xn D e1Cen, then xn * e1 in c0 by the first example. Observe that kxnk1 !
ke1k1, but kxn � e1k1 6! 0. Hence c0 does not have the Radon–Riesz property.

• Since c0 is a subspace of `1, the relation xn * e1 also holds in `1. Hence `1
does not have the Radon–Riesz property either.

• On the other hand, it will follow from a later result43 that `p has the Radon–Riesz
property for all 1 < p < 1.

• Our next proposition will imply that `1 also has the Radon–Riesz property.

The fact that component-wise convergence does not imply weak convergence in
`1 also follows from the next surprising result:

*Proposition 2.26 (Schur)44 In `1 the strong and weak convergences coincide.

Proof It suffices to prove that if xk * x in `1, then
�
�xk � x

�
�
1

! 0. Changing xk to
xk � x we may assume that x D 0.

Assume on the contrary that xk * 0 in `1, but
�
�xk
�
�
1

6! 0. Denoting the elements
of xk by xk

n, we have xk
n ! 0 for each fixed n by the definition of weak convergence.

Set45

" WD lim sup
�
�xk
�
�
1
> 0 and k0 D n0 WD 0:

Proceeding recursively, if km�1 and nm�1 have already been defined for some m,
then choose a large index k D km > km�1 such that

�
�xkm

�
�
1
>
"

2
and

nm�1X

nD1

ˇ
ˇxkm

n

ˇ
ˇ <

"

10
;

and then a large integer nm > nm�1 such that

X

n>nm

ˇ
ˇxkm

n

ˇ
ˇ <

"

10
:

The formula

yn WD sign xkm
n if nm�1 < n � nm

43Proposition 9.11, p. 328.
44Schur [418].
45We apply the gliding hump method of Lebesgue [291].
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defines a sequence .yn/ 2 `1 of norm � 1, satisfying the following inequalities for
each m D 1; 2; : : : W

1X

nD1
xkm

n yn �
X

nm�1<n�nm

ˇ
ˇxkm

n

ˇ
ˇ �

X

n�nm�1

ˇ
ˇxkm

n

ˇ
ˇ�

X

n>nm

ˇ
ˇxkm

n

ˇ
ˇ

D �
�xkm

�
�
1

� 2
X

n�nm�1

ˇ
ˇxkm

n

ˇ
ˇ � 2

X

n>nm

ˇ
ˇxkm

n

ˇ
ˇ

>
"

2
� 4"

10

D "

10
:

Hence xkm 6* 0, and thus xk 6* 0, contradicting our hypothesis. ut
Finally we prove an interesting converse of Hölder’s inequality:

*Proposition 2.27 (Hellinger–Toeplitz)46 Let .yn/ be a real sequence and p; q 2
Œ1;1� two conjugate exponents. If the series

P
xnyn converges for every .xn/ 2 `p,

then y 2 `q.

Proof 47 The formula

'k.x/ WD
kX

nD1
xnyn; x 2 `p; k D 1; 2; : : :

defines a sequence .'k/ in .`p/0.48 By assumption the sequence .'k.x// is conver-
gent, and hence bounded, for every x 2 `p. Applying the Banach–Steinhaus theorem
there exists therefore a constant C such that

ˇ
ˇ
ˇ

kX

nD1
xnyn

ˇ
ˇ
ˇ � C kxkp for every x 2 `p; k D 1; 2; : : : :

If q D 1 and thus p D 1, then choosing x D ek we deduce that jykj � C for all
k, and hence y 2 `1.

If 1 � q < 1, then introducing for each k the sequence

xn WD
(

jynjq�1 sign xn if n � k,

0 if n > k,

46Hellinger–Toeplitz [201] and Landau [282].
47See also a short elementary proof of Riesz [382, pp. 47–48] by the gliding hump method.
48The continuity of the functionals is evident because we have only finite sums here.



86 2 Banach Spaces

similarly to the proof of Proposition 2.15 we obtain that

kX

nD1
jynjq � Cp:

Letting k ! 1 we conclude that y 2 `q and kykq � C. ut
Our next objective is to generalize the Bolzano–Weierstrass theorem to Banach

spaces. Unfortunately, there are counterexamples even for the weak convergence:

Examples

• In `1 the bounded sequence .en/ has no weakly convergent subsequence. Indeed,
such a subsequence would also converge strongly by Schur’s theorem (p. 84). But
this is impossible because no subsequence has the Cauchy property: kem � enk D
2 for all m ¤ n.

We can avoid the use of Schur’s theorem as follows. If .enk/ is an arbitrary
subsequence of .en/, then the formula

'.x/ WD
1X

kD1
.�1/kxnk ; x D .xn/ 2 `1

defines a functional ' 2 .`1/0. Since '.enk / D .�1/k does not converge as k !
1, the subsequence .enk/ does not converge weakly.

• In c0 the bounded sequence .e1C� � �Cen/ has no weakly convergent subsequence.
Indeed, if we had e1 C � � � C enk * a for some subsequence, then we would
also have '.e1 C � � � C enk/ ! '.a/ for every ' 2 c0

0. Applying this for each
fixed m D 1; 2; : : : to the functional '.y/ WD ym, we would get the equality
a D .1; 1; : : :/. But this is impossible because the last sequence does not belong
to c0.

• The bounded sequence .e1 C � � � C en/ has no weakly convergent subsequence
in `1 either. Indeed, the previous reasoning shows again that the only possible
weak limit is a D .1; 1; : : :/. But this is impossible because a does not belong to
c0, which is the closed subspace generated by the sequence .e1 C � � � C en/: see
Proposition 2.22 (e), p. 80.

Nevertheless, we will see later49 that the above sequences converge in a natural,
even weaker sense.

In spite of these counterexamples, we prove in the next section that the weak
convergence version of the Bolzano–Weierstrass theorem remains valid in a large
class of Banach spaces.

49See the examples on p. 136.
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2.6 Reflexive Spaces: Theorem of Choice

Let X be a normed space. We recall from Corollary 2.21 (p. 79) that the formula

ˆx.'/ WD '.x/; ' 2 X0

defines a functionalˆx 2 X00 for each x 2 X, where X00 denotes the bidual of X.
In certain spaces every element of X00 has this form:

Definition A normed space X is reflexive50 if for each ˆ 2 X00 there exists an x 2 X
such that

ˆ.'/ D '.x/ for all ' 2 X0:

Before giving many examples, we discuss some consequences of the definition.
We recall from Corollary 2.21 that the formula

.Jx/.'/ WD '.x/; x 2 X; ' 2 X0

defines a linear isometry J W X ! X00.

Proposition 2.28 (Hahn)51 Let X be a normed space.

(a) X is reflexive ” J is an isometric isomorphism between X and X00.
(b) If X is reflexive, then it is complete, i.e., a Banach space.

Proof

(a) We already know that J is a linear isometry. By definition, J is surjective ”
X is reflexive.

(b) X is isomorphic to X00 D .X0/0, and every dual space is complete.

ut
Remark Reflexive Banach spaces are often identified with their bidual by the map J.

Now we turn to the examples.

Proposition 2.29

(a) Every finite-dimensional normed space is reflexive.
(b) Every Hilbert space is reflexive.
(c) The spaces `p spaces are reflexive for all 1 < p < 1.

50Hahn [182].
51Hahn [182].
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Proof

(a) We recall from linear algebra that dim X D dim X� for every finite-dimensional
vector space X. Hence we have dim X � dim X00 for every finite-dimensional
normed space X.52 Therefore the linear isometry J W X ! X00 must be onto (and
dim X D dim X00).

(b) Let H be a Hilbert space and consider the Riesz–Fréchet isomorphism (Theo-
rem 1.9, p. 19) j W H ! H0 defined by the formula

. jy/.x/ D .x; y/; x; y 2 H: (2.5)

For each ˆ 2 H00, ˆ ı j is a continuous linear functional on H. Applying the
Riesz–Fréchet theorem again, there exists an x 2 H such that

ˆ. jy/ D .y; x/ for all y 2 H:

Using (2.5) this implies

ˆ. jy/ D . jy/.x/ for all y 2 H:

Since j W H ! H0 is onto, we conclude that

ˆ.'/ D '.x/ for all ' 2 H0:

(c) Consider the Riesz isomorphism j W `q ! .`p/0 (Proposition 2.15, p. 73) defined
by the formula

. jy/.x/ D
X

ynxn; x 2 `p; y 2 `q: (2.6)

For each ˆ 2 .`p/00, ˆ ı j is a continuous linear functional on `q. Applying
Proposition 2.15 again, there exists an x 2 `p such that

ˆ. jy/ D
X

xnyn for all y 2 `q:

Using (2.6) this implies

ˆ. jy/ D . jy/.x/ for all y 2 `q:

52In fact we have equality because every linear functional is continuous on finite-dimensional
normed spaces.
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Since j W `q ! .`p/0 is onto, we conclude that

ˆ.'/ D '.x/ for all ' 2 .`p/0:

ut
Now we give some examples of non-reflexive Banach spaces.

*Examples

• c0 is not reflexive: the formula

ˆ.'/ WD
1X

nD1
'n; ' D .'n/ 2 `1

defines a functionalˆ 2 c00
0 D .`1/0 which is not represented by any .xn/ 2 c0.

Indeed, if such a sequence .xn/ existed, then choosing ' WD ek in the
corresponding equality

1X

nD1
'n D

1X

nD1
xn'n

we would get xk D 1 for every k. But the constant sequence .1; 1; : : :/ does not
belong to c0.

Let us give another proof. Since c0
0 is isomorphic to `1, and .`1/0 is isomorphic

to `1, c00
0 is isomorphic to `1. Consequently, c00

0 is not separable. Since c0 is
separable, it cannot be isomorphic to c00

0 .
• `1 is not reflexive. For the proof we consider the subspace c of `1 formed by the

convergent sequences.
Applying Theorem 2.11 theorem we extend the continuous linear functional

.yn/ 7! lim yn, given on c, to a functional ˆ 2 .`1/0 D .`1/00. We claim that ˆ
is not represented by any sequence .xn/ 2 `1.

Indeed, if such a sequence .xn/ existed, then choosing y WD ek in the
corresponding equality

ˆ.y/ D
1X

nD1
xnyn

we would get xk D 0 for every k, i.e., ˆ D 0. But this is impossible because for
x D .1; 1; : : :/ we haveˆ.x/ D lim 1 D 1.

• We will give further proofs for the non-reflexivity of c0, `1 and `1 at the end of
this section and in Sect. 3.6 (p. 144).
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One of the most important properties of reflexive spaces is the following:

Theorem 2.30 (Theorem of Choice)53 In a reflexive Banach space every bounded
sequence has a weakly convergent subsequence.

Remark The converse of this theorem also holds: see Theorem 3.21, p. 140.

Proof Let .xk/ be a bounded sequence in a reflexive Banach space X. We identify X
with its bidual X00, so that for every set 	 � X0 we have

	? W D ˚
ˆ 2 X00 W ˆ.'/ D 0 for all ' 2 	�

D fx 2 X W '.x/ D 0 for all ' 2 	g :

Let us arrange the finite linear combinations of the vectors xk with rational
coefficients into a sequence .yn/. Applying Corollary 2.13 (b) (p. 68) we fix for
each n a functional 'n 2 X0 satisfying

k'nk � 1 and j'n.yn/j D kynk :

Applying Cantor’s diagonal method similarly to the proof of Theorem 1.21 (p.
33), we obtain a subsequence .zk/ of .xk/ such that the numerical sequence

k 7! 'n.zk/

converges for each fixed n. Since for ' ? fzkg the numerical sequence .'.zk//

vanishes identically, .'.zk// converges for every

' 2 	 WD f'ng [ fzkg? :

Assume temporarily that 	 generates X0. Then .'.zk// converges for every ' 2
X0 by Lemma 2.25 (p. 83), so that the formula

ˆ.'/ WD lim'.zk/

defines a map ˆ W X0 ! R. This map is clearly linear. Letting k ! 1 in the
inequalities

j'.zk/j � kzkk � k'k � sup
k

kzkk � k'k

53Riesz [379, 380] and Pettis [357].
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we obtain

jˆ.'/j � sup
k

kxkk � k'k

for every ' 2 X0. Since .xk/ is bounded, we conclude that ˆ is continuous and
kˆk � supk kxkk. Since X is reflexive, ˆ 2 X00 may be represented by a vector
x 2 X:

ˆ.'/ D '.x/

for all ' 2 X0. In view of the definition ofˆ this yields '.zk/ ! '.x/ for all ' 2 X0,
i.e., zk * x.

It remains to show that	 generates X0. By Corollary 2.9 (p. 64) it is sufficient to
show that 	? D f0g.

For any given y 2 	? we have 'n.y/ D 0 for all n by the definition of 	, and y
belongs to the closed subspace fzkg?? generated by fzkg. (We apply Corollary 2.9
again.) Choose a subsequence ynk ! y, then

kynk k D j'nk.ynk /j D j'nk.ynk � y/j � kynk � yk :

Letting k ! 1 we conclude that kyk � 0, i.e., y D 0. ut
Examples We have seen in the previous section that `1, `1 and c0 have bounded
sequences without convergent subsequences. Applying the theorem we conclude
again that these spaces are not reflexive.

2.7 Reflexive Spaces: Geometrical Applications

Using Theorem 2.30 (p. 90) we may generalize several results of plane geometry,
mentioned in the introduction, to arbitrary reflexive Banach spaces.

Proposition 2.31 If X is a normed space, then the properties below satisfy the
following implications:

.a/ H) .b/ H) .c/ H) .d/ H) .e/:

(a) X is reflexive.
(b) (Tukey)54 Let A and B be disjoint non-empty convex, closed sets in X. If at least

one of them is bounded, then there exist a functional ' 2 X0 and real numbers

54Tukey [460].
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c1, c2 such that

'.a/ � c1 < c2 � '.b/ for all a 2 A and b 2 B: (2.7)

(c) If K � X is a non-empty convex, closed set and x 2 X, then there exists a point
y 2 K at a minimal distance from x:

kx � yk � kx � zk for all z 2 K:

(d) If M � X is a proper non-empty closed subspace, then there exists an x 2 X
satisfying

kxk D 1 and dist.x;M/ D 1:

(e) If ' 2 X0 is a non-zero functional, then there exists an x 2 X satisfying

kxk D 1 and j'.x/j D k'k :

*Remarks

• Let us compare property (b) with Theorem 2.5 (c) (p. 61): We recall55 that every
infinite-dimensional normed space contains bounded and closed, but noncompact
sets.

• Klee56 proved the converse implication (b) H) (a): he constructed in every non-
reflexive normed space two disjoint non-empty convex, bounded and closed sets,
that cannot be separated in the sense of (2.7).

• Property (c) is the generalization of the orthogonal projection Theorem 1.5 (p.
12). In strictly convex spaces57 the point y is unique. Indeed, if y1; y2 are two
distinct points in K with c WD kx � y1k D kx � y2k, then c > 0 (for otherwise
y1 D x D y2), and .y1 C y2/=2 2 K is closer to x:

�
�
�
�x � y1 C y2

2

�
�
�
� D

�
�
�
�
.x � y1/C .x � y2/

2

�
�
�
� < c:

See also Proposition 9.10, p. 326.
• It is interesting to compare (d) with Proposition 2.1 (b), p. 55.
• In Hilbert spaces property (d) is equivalent to the existence of a unit vector,

orthogonal to M.

55See Proposition 2.1, p. 55.
56Klee [250].
57See p. 67.



2.7 Reflexive Spaces: Geometrical Applications 93

• Property (e) shows that in a reflexive space X we have

k'k D max
kxk�1

j'.x/j

for every functional ' 2 X0, i.e., we may write max instead of sup.
• James58 also established the implication (e) H) (a) so that the above five

properties are in fact equivalent.

Proof

(a) H) (b). We may repeat the proof of Theorem 2.5 (c) (p. 61), except the proof
of the inequality dist.A;B/ > 0. Now we can proceed as follows:

If dist.A;B/ D 0, then there exist two sequences .an/ � A and .bn/ �
B satisfying kan � bnk ! 0. If for example A is bounded (the other case is
analogous), then there exists a weakly convergent subsequence ank * a. Since
an � bn * 0, this implies that bnk * a. Since A and B are convex, closed sets,
a 2 A and a 2 B, contradicting the disjointness of A and B.

(b) H) (c). We may assume by translation that x D 0. It is sufficient to show
that every non-empty convex, closed set K has an element of minimal norm.
The case 0 2 K is obvious. Henceforth we assume that 0 … K; then r WD
dist.0;K/ > 0 by the closedness of K.

Assume on the contrary that K has no element of minimal norm. Then we
may apply property (b) to the sets

A WD fx 2 X W kxk � rg

and B WD K to get ' 2 X0 and c1; c2 2 R satisfying (2.7).
Let .yn/ be a sequence in K satisfying kynk ! r. Then

c2 � '.yn/ D kynk
r
'
� ryn

kynk
�

� kynk
r

c1 ! c1;

contradicting the inequality c1 < c2.
(c) H) (d). For any fixed z 2 X n M there exists by (c) a closest point y 2 M to z:

kz � yk � kz � uk for all u 2 M:

Since z � y ¤ 0 (because z … M and y 2 M), this may be rewritten as

1 �
�
�
�
�

z � y

kz � yk � u � y

kz � yk
�
�
�
� for all u 2 M;

58James [226]. See, e.g., Diestel [103] or Holmes [216].
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or, using the unit vector x WD .z � y/= kz � yk, as

1 �
�
�
�
�x � u � y

kz � yk
�
�
�
� for all u 2 M:

If u runs over the subspace M, then u�y
kz�yk also runs over M, so that dist.x;M/ �

1. Since 0 2 M, the converse inequality is obvious.
(d) H) (e). Applying (d) to the kernel M WD '�1.0/ of ', there exists an x 2 X

satisfying

kxk D 1 D dist.x;M/:

It suffices to show that

j'.z/j � j'.x/j � kzk

for all z 2 X, because this will imply k'k � j'.x/j; since kxk D 1, the converse
inequality is obvious.

The required inequality is obvious if '.z/ D 0. If '.z/ ¤ 0, then the equality

'

�

x � '.x/

'.z/
z

�

D '.x/� '.x/

'.z/
'.z/ D 0

implies x � '.x/
'.z/ z 2 M, and hence

1 �
�
�
�
�x �

�

x � '.x/

'.z/
z

��
�
�
� D j'.x/j

j'.z/j kzk ;

i.e., j'.z/j � j'.x/j � kzk. ut
*Examples We show that properties (b)–(e) may fail in non-reflexive spaces. Let
X D `1, and fix a positive, strictly increasing sequence .˛n/ converging to one, for
example ˛n WD n=.n C 1/.

• The formula '.x/ WD P
˛nxn defines a functional of norm 1. Indeed, on the one

hand we have

j'.x/j �
X

jxnj D kxk1

for all x 2 `1, whence k'k � 1.
On the other hand, we have

k'k � j'.en/j D j˛nj

for all n, and j˛nj ! 1.
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But the norm k'k D 1 is not attained because

j'.x/j < kxk1 for all x ¤ 0:

Indeed, there is at least one non-zero component xk of x, and then

j'.x/j � j˛kj � jxkj C
X

n¤k

j˛nj � jxnj

� j˛kj � jxkj C
X

n¤k

jxnj

<
X

jxnj D kxk1 :

Hence property (e) is not satisfied.
• The kernel M WD '�1.0/ of the above functional is a closed hyperplane. We show

that dist.x;M/ < kxk for all x ¤ 0, so that property (d) is not satisfied.
We already know that j'.x/j < kxk1 if x ¤ 0, and hence j'.x/j < ˛k kxk1 for

all sufficiently large k. Then

z WD x � '.x/

˛k
ek 2 M

because

'.z/ D '.x/� '.x/

˛k
'.ek/ D 0;

and hence

dist.x;M/ � kx � zk1 D
ˇ
ˇ
ˇ
ˇ
'.x/

˛k

ˇ
ˇ
ˇ
ˇ < kxk1 :

• Consider the above hyperplane M. If x 2 X n M, then the distance dist.x;M/ is
not attained, so that property (c) is not satisfied for K D M.

Indeed, if we had dist.x;M/ D kx � zk1 for some z 2 M, then we would also
have dist.x � z;M/ D kx � zk1 because dist.x � z;M/ D dist.x;M/. But this
would contradict our previous result because x … M and therefore x � z ¤ 0.

• We have just seen that the distance r WD dist.x;M/ is not attained for any x 2
X n M. Therefore the above proof of the implication (b) H) (c) shows that
A WD Br.x/ and B WD M cannot be separated in the sense of (2.7).

*Remark Similar examples may be given in X D c0 by using the linear functional
'.x/ WD P

2�nxn.
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2.8 * Open Mappings and Closed Graphs

The results of this section play an important role in the theory of partial differential
equations.59

Theorem 2.32 Let X and Y be two Banach spaces.

(a) (Open mapping theorem)60 If A 2 L.X;Y/ is onto, then A maps every open
set of X onto an open set of Y.

(b) (Inverse mapping theorem)61 If A 2 L.X;Y/ is bijective, then its inverse A�1
is continuous.

(c) (Equivalent norms)62 Let k�k1 and k�k2 be two complete norms on a vector
space Z. If there exists a constant c1 such that kzk2 � c1 kzk1 for all z 2 Z,
then there also exists a constant c2 such that kzk1 � c2 kzk2 for all z 2 Z.

(d) (Closed graph theorem)63 If the linear map A W X ! Y has a closed graph

f.x;Ax/ W x 2 Xg

in X � Y, then A is continuous.

Remark The converse of the last property always holds: if X, Y are topological
spaces and f W X ! Y is continuous function, then its graph f.x; f .x// W x 2 Xg is
closed in X � Y.

All these theorems are based on the following key lemma. For simplicity we
denote by Br the unit ball of radius r, centered at 0 in both spaces X and Y.

Lemma 2.33 Let A 2 L.X;Y/, where X and Y are Banach spaces. If A is onto, then
there exists an r > 0 such that Br � A.B1/.

Proof First we prove that there exists an r > 0 such that

B2r � A.B1/: (2.8)

Since A is onto,

Y D
1[

kD1
A.Bk/ D

1[

kD1
A.Bk/:

59See, e.g., Hörmander [218, 219].
60Schauder [413].
61Banach [22].
62Banach [22].
63Banach [24].
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By Baire’s lemma (p. 32) at least one of the sets A.Bk/ contains a ball, say Bs.y/ �
A.Bk/.64 Then we have

Bs.�y/ � �A.Bk/ D A.Bk/:

If x 2 Bs, then x ˙ y 2 Bs.˙y/ � A.Bk/; using the convexity of A.Bk/, this yields

x D .x C y/C .x � y/

2
2 A.Bk/:

We thus have Bs � A.Bk/, and (2.8) follows by homogeneity with r WD s=2k.
Now we fix an arbitrary point y 2 Br. We seek x 2 B1 satisfying Ax D y. For this

we observe that (2.8) implies by similarity the more general relations

B21�nr � A.B2�n/; n D 1; 2; : : : :

Using them we may construct recursively a sequence x1; x2; : : : in X such that

kxnk < 1

2n
and ky � A.x1 C � � � C xn/k < r

2n

for all n. Then the series
P

xn converges to some point x 2 B1. Using the continuity
of A we conclude that Ax D P

Axn D y. ut
Proof of Theorem 2.32

(a) Given an open set U in X and a point x 2 U, we have to find s > 0 such that
Bs.Ax/ � A.U/. Fix " > 0 satisfying B".x/ � U; then the choice s WD r" is
suitable. Indeed, applying the lemma we have

Bs.Ax/ D Ax C Bs D Ax C "Br � Ax C "A.B1/ D A.B".x// � A.U/:

(b) follows from (a) by using the characterization of continuity by open sets.
(c) The identity map is continuous from .Z; k�k1/ to .Z; k�k2/ by assumption.

Applying (b) we conclude that it is an isomorphism.
(d) The formula

kxk1 WD kxk C kAxk

defines a complete norm on X by our assumption. Since we have obviously
k�k � k�k1, by (c) there exists a constant c2 such that k�k1 � c2 k�k. Hence A is
continuous (and kAk � c2 � 1).

ut

64Of course, then all the others also contain some balls by homogeneity, but we do not need this
here.
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The above proofs may be simplified for reflexive spaces.65 We show this for the
inverse mapping theorem:

Proof of the Inverse Mapping Theorem if X is Reflexive Since A is onto, the sets

Fk WD fAx W kxk � kg D A.Bk/; k D 1; 2; : : :

cover Y. Assume for a moment that these sets are closed. Then at least one of them
contains a ball by Baire’s theorem, say Br.y/ � Fk. Hence

�
�A�1x

�
� � k for all x 2 Br.y/;

and therefore

�
�A�1x

�
� � k C �

�A�1y
�
� for all x 2 Br.0/:

Consequently,
�
�A�1�� � r�1.k C �

�A�1y
�
�/.

It remains to prove the closedness of the sets Fk. If kxnk � k and Axn ! y 2 Y,
then there exists a weakly convergent subsequence xnk * x by the reflexivity of X,
and kxk � k by a basic property of the weak convergence. Then66 Axn * Ax by the
continuity of A, and therefore y D Ax 2 Fk by the uniqueness of the weak limit.

ut
We give only one application here:

Proposition 2.34 (Hellinger–Toeplitz)67 Let A;B W H ! H be two linear maps on
a Hilbert space H. If

.Ax; y/ D .x;By/

for all x; y 2 H, then A and B are continuous.

Proof For the continuity of A (the case of B is analogous) it suffices to show that
xn ! x and Axn ! z imply z D Ax. Indeed, then we may conclude by applying the
closed graph theorem.

Letting n ! 1 in the equality .Axn; y/ D .xn;By/ we get

.z; y/ D .x;By/; i.e., .Ax � z; y/ D 0

for all y 2 H. Choosing y WD Ax � z this yields the required equality Ax D z. ut

65Private communication of O. Gebuhrer.
66See Proposition 2.36 below
67Hellinger–Toeplitz [202, pp. 321–327] and Stone [439].
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Remarks

• Instead of the closed graph theorem we may also apply the Banach–Steinhaus
theorem here. Indeed, denote by F the closed unit ball of H and introduce for
each y 2 F the linear functional 'y by the formula

'y.x/ WD .x;By/I

we clearly have
�
�'y

�
� D kByk.

The family
˚
'y
�

is pointwise bounded because for each fixed x 2 H we have

ˇ
ˇ'y.x/

ˇ
ˇ D j.Ax; y/j � kAxk � kyk � kAxk

for all y 2 F. Then the family is uniformly bounded by the Banach–Steinhaus
theorem, and thus

kBk D sup
y2F

kByk D sup
y2F

�
�'y

�
� < 1:

2.9 * Continuous and Compact Operators

As in the case of Hilbert spaces, the introduction of the adjoint operator helps to
clarify the relationship between continuity and weak convergence.

Definition Let X and Y be normed spaces and A 2 L.X;Y/. By the adjoint68 of A
we mean the linear map A� W Y 0 ! X0 defined by the formula

A�' WD 'A; ' 2 Y 0:

Remarks

• If X D Y is a Hilbert space, then this definition reduces to that of the preceding
chapter if we identify X0 with X by the Riesz–Fréchet theorem.

• In order to emphasize the analogy with the scalar product we often write h'; xi
instead of '.x/; then the definition of the adjoint takes the following form:

hA�'; xi D h';Axi for all x 2 X:

Proposition 2.35 Let X, Y and Z be normed spaces.

(a) If A 2 L.X;Y/, then A� 2 L.Y 0;X0/ and kA�k D kAk.
(b) The map A 7! A� is a linear isometry.

68Riesz [379, 380], Banach [22], and Schauder [414].
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(c) If B 2 L.X;Y/ and A 2 L.Y;Z/, then .AB/� D B�A�.
(d) If A 2 L.X;Y/ is bijective, then A� 2 L.Y 0;X0/ is also bijective, and

.A�/�1 D .A�1/�:

Proof Only the equality kA�k D kAk requires a proof.69 The inequality kA�k �
kAk follows from obvious estimate

kA�'k D k'Ak � k'k � kAk ;

valid for all ' 2 X0.
For the proof of the converse inequality we choose for each x 2 X a functional

' 2 X0 satisfying k'k � 1 and '.Ax/ D kAxk.70 Then we have

kAxk D '.Ax/ D .A�'/x � kA�k � k'k � kxk � kA�k � kxk ;

and hence kAk � kA�k. ut
Now we generalize the characterization of continuous and completely continuous

operators.

Proposition 2.36 Let X, Y be normed spaces and A W X ! Y a linear map. The
following properties are equivalent:

(a) there exists a constant M such that kAxk � M kxk for all x 2 X;
(b) A sends bounded sets into bounded sets;
(c) A sends totally bounded sets into totally bounded sets;
(d) if xn ! x, then Axn ! Ax;
(e) if xn * x, then Axn * Ax;
(f) if xn ! x, then Axn * Ax.

Proof Using Propositions 2.24 (a) (p. 82) and 2.35 we may repeat word for word
the proof of Proposition 1.22 (p. 35). ut
*Example The embeddings i W `p ! `q are continuous for all 1 � p � q � 1. For
this we show that kxkp � 1 implies kxkq � 1.

If kxkp � 1, then jxnj � 1 for all n; the case q D 1 hence already follows. If
q < 1, then the inequalities jxnj � 1 imply that

kxkq
q D

1X

nD1
jxnjq �

1X

nD1
jxnjp D kxkp

p � 1:

69Property (d) follows from (c) applied with B D A�1.
70We apply Corollary 2.13, p. 68.
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We have also shown here that kik � 1. Since kxkp D kxkq > 0 for every vector
having exactly one non-zero component, we have in fact kik D 1.

Definition Let X and Y be Banach spaces. A linear map A W X ! Y is
called completely continuous or compact71 if one of the following two equivalent
conditions hold:

(a) for every bounded sequence .xn/ in X, .Axn/ has a convergent subsequence in Y;
(b) A sends bounded sets into totally bounded sets.

Remark The equivalence of the conditions follows from the completeness of Y: see
the proof of Proposition 1.24, p. 36.

Let us list some basic properties:

Proposition 2.37 Let X, Y, Z be Banach spaces.

(a) Every completely continuous linear map is continuous.
(b) If dim Y < 1, then every A 2 L.X;Y/ map is completely continuous.
(c) Let B 2 L.X;Y/ and A 2 L.Y;Z/. If A or B is completely continuous, then AB

is completely continuous.
(d) The completely continuous linear maps A W X ! Y form a closed subspace of

L.X;Y/.

Proof (a) We use the fact that every totally bounded set is bounded.
(b) We observe that the bounded and totally bounded sets are the same in Y.
(c) and (d) The corresponding proofs of Proposition 1.26 (p. 37) remain valid.

ut
Examples

• If X is infinite-dimensional, then the identity map I W X ! X is not completely
continuous by Proposition 2.1.

• The embeddings i W `p ! `q are not completely continuous for any 1 � p � q �
1: the sequence .en/ is bounded in `p, but it has no convergent subsequence in
`q, because ken � emkq � 1 for all n ¤ m.

*Remarks

• If A is completely continuous, then repeating the proof given in Proposition 1.24
we obtain that

xn * x H) Axn ! Ax: (2.9)

71Hilbert [209] and Riesz [383].
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• Conversely, property (2.9) implies the complete continuity if X is reflexive: we
may repeat the proof given in 1.24. The reflexivity condition cannot be omitted:
for example, the identity map of X D `1 is not completely continuous (see
Proposition 2.1 (d), p. 55), although (2.9) is satisfied (because the strong and
weak convergences coincide here by Proposition 2.26, p. 84).

Now we prove a deeper result:

*Proposition 2.38 (Schauder)72 If X, Y are Banach spaces and A 2 L.X;Y/ is
completely continuous, then A� 2 L.Y 0;X0/ is completely continuous.

Proof Let 	 be a bounded set in Y 0: k'k � L for all ' 2 	. We have to show that

fA�' W ' 2 	g D f' ı A W ' 2 	g

is totally bounded in X0. Introducing the closed unit ball F of X, by the definition of
the norm of X0 this is equivalent to the complete boundedness of

f' ı AjF W ' 2 	g

in Cb.F/, or to the complete boundedness of

˚
'jA.F/ W ' 2 	�

in Cb.A.F//. Setting finally K WD A.F/, the last property is equivalent to the
complete boundedness of

f'jK W ' 2 	g (2.10)

in Cb.K/.
Since Y is complete and A is completely continuous, K is compact in Y.

Furthermore, the system (2.10) is uniformly bounded and equicontinuous because

j'.x/j � L kAk and j'.x/ � '.y/j � L kx � yk

for all ' 2 	 and x; y 2 K. Applying the classical Arzelà–Ascoli theorem,73 we
conclude that the system (2.10) is totally bounded. ut

72Schauder [414].
73See Proposition 8.7, p. 268. For its proof we will use only basic notions of topology.
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2.10 * Fredholm–Riesz Theory

The fact that we restrict ourselves to continuous functions in this work, is inessential.
F. Riesz [383]

In the applications we often encounter operators of the form I � K where K is
completely continuous.74 The purpose of this section is to clarify their structure.

Definition The vector space X is the direct sum of the subspaces N and R if

X D N C R and N \ R D f0g :

We express this by the notation X D N ˚ R.

Remark If X D N ˚ R, then dim N D dim X=R, where X=R denotes the quotient
space formed by the equivalence classes y C R, y 2 N. Indeed, one may easily
check that the linear map y 7! y C R is a bijection between N and X=R.

In this section we denote by N.A/ and R.A/ the null set (or kernel) and range of
a linear map A. By an automorphism of a normed space X we mean an isomorphism
of X onto itself.

Theorem 2.39 (Riesz)75 Let X be a Banach space, K 2 L .X;X/ a completely
continuous operator and T D I � K. There exists a decomposition X D N ˚ R
such that

• N and R are T-invariant;
• N is finite-dimensional;
• R is closed, and the restriction TjR is an automorphism of R;
• there exists a constant C such that

kyk C kzk � C ky C zk

for all y 2 N and z 2 R.

Furthermore, there exists an integer n � 0 such that N D N.Tn/, R D R.Tn/, and

f0g D N.T0/ ¤ � � � ¤ N.Tn/ D N.TnC1/ D � � � ;
X D R.T0/ ¥ � � � ¥ R.Tn/ D R.TnC1/ D � � � :

We proceed in several steps.

74For example in electrostatics: see Riesz and Sz.-Nagy [394], §81.
75Riesz [383].
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Lemma 2.40 For any fixed integer n � 0

(a) N.Tn/ is a finite-dimensional subspace;
(b) R.Tn/ is a closed subspace.

Proof The case n D 0 is obvious: since T0 D I, N.I/ D f0g and R.I/ D X. The
case n � 2 may be reduced to the case n D 1, because Tn D I � Kn where

Kn D I � .I � K/n

D nK �
 

n

2

!

K2 C
 

n

3

!

K3 � � � � C .�1/n�1Kn

is a completely continuous operator. Assume Henceforth That n D 1.

(a) We have I D K on N.T/, i.e., the identity map of N.T/ is completely
continuous. By a lemma of Riesz (p. 55) we conclude that N.T/ is finite-
dimensional.

(b) We have to show that if

Txn ! y in X; (2.11)

then y 2 R.T/. We may assume that y ¤ 0, and that Txn ¤ 0 for all n. Since
dist.xn;N.T// > 0 for each n, there exists a zn 2 N.T/ such that

kxn � znk � 2 dist.xn;N.T//:

Changing xn to xn � zn we have

kxnk � 2 dist.xn;N.T//; (2.12)

and (2.11) remains valid.

Assume for the moment that the sequence .xn/ is bounded. Then there exists a
subsequence .xnk/ for which .Kxnk / is convergent, say Kxnk ! z. It follows that

xnk D Txnk C Kxnk ! y C z;

and hence Txnk ! T.y C z/. Using (2.11) we conclude that y D T.y C z/ 2 R.T/.
Assume on the contrary that .xn/ is not bounded, and choose a subsequence

satisfying kxnk k ! 1. Changing .xn/ to .xnk= kxnk k/ the properties (2.11), (2.12)
remain valid with y D 0, and we also have

kxnk D 1 for all n: (2.13)

Repeating the previous reasoning we may get a convergent subsequence xnk !
z. Since Txn ! 0, hence Tz D 0, i.e., z 2 N.T/. On the other hand, we infer
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from (2.13) that kzk D 1. Applying the estimate (2.12) for n D nk, letting k ! 1
we arrive at the impossible inequality 1 � 0. ut
Lemma 2.41

(a) There exists an integer n � 0 such that

f0g D N.T0/ ¤ � � � ¤ N.Tn/ D N.TnC1/ D � � � :

(b) The subspace N.Tn/ is T-invariant.

Proof

(a) If N.Tk/ D N.TkC1/ for some k, then N.TkC1/ D N.TkC2/, because

x 2 N.TkC2/ ” Tx 2 N.TkC1/ D N.Tk/ ” x 2 N.TkC1/:

It remains to prove the existence of such a k.
Assuming the contrary, using Proposition 2.1 (p. 55) we could construct a

sequence .xn/ satisfying

xn 2 N.Tn/ and kxnk D dist.xn;N.T
n�1// D 1

for all n D 1; 2; : : : : Then .xn/ would be bounded, but .Kxn/ would not have
any convergent subsequence because

kKxn � Kxmk � 1 for all n > m:

Indeed,

Kxn � Kxm D xn � y;

where

y D xm � Txm C Txn 2 N.Tn�1/;

and hence

kKxn � Kxmk � dist.xn;N.T
n�1// D 1:

This contradicts the compactness of K.
(b) If x 2 N.Tn/, then Tx 2 N.TnC1/ D N.Tn/.

ut
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Lemma 2.42

(a) There exists an integer r � 0 such that

X D R.T0/ ¥ � � � ¥ R.Tr/ D R.TrC1/ D � � � :

(b) The subspace R.Tr/ is T-invariant.
(c) TjR.Tr/ is an automorphism of the subspace R.Tr/.

Proof

(a) If R.Tk/ D R.TkC1/ for some k, then R.TkC1/ D R.TkC2/ because

R.TkC2/ D TR.TkC1/ D TR.Tk/ D R.TkC1/:

It remains to prove the existence of such a k.
Assuming the contrary, using Proposition 2.1 again we could construct a

sequence .xn/ satisfying

xn 2 R.Tn/; kxnk D 2 and dist.xn;R.T
nC1// > 1

for all n D 0; 1; : : : : Then .xn/ would be bounded, but .Kxn/ would not have
any convergent subsequence because

kKxn � Kxmk > 1 for all n < m:

Indeed,

Kxn � Kxm D xn � y;

where

y D xm � Txm C Txn 2 R.TnC1/;

and hence

kKxn � Kxmk � dist.xn;R.T
nC1// > 1:

This contradicts the compactness of K again.
(b) Observe that TR.Tr/ D R.TrC1/ D R.Tr/.
(c) The restriction of T to R.Tr/ is onto because

TR.Tr/ D R.TrC1/ D R.Tr/:

It follows that TkjR.Tr/ is onto for every k � 0.
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The restriction of T to R.Tr/ is also injective. Indeed, let x 2 R.Tr/ satisfy Tx D
0, and consider the integer n of the preceding lemma. By the surjectivity there exists
a y 2 R.Tr/ such that x D Tny. Then 0 D Tx D TnC1y, i.e., y 2 N.TnC1/ D N.Tn/.
Consequently, x D Tny D 0.

The inverse of TjR.Tr/ is continuous. For the proof we assume on the contrary
that there exists a sequence .xn/ in R.Tr/, satisfying Txn ! 0, and kxnk D 1 for
all n. Since K is compact, there exists a convergent subsequence Kxnk ! z. Then
xnk D Txnk C Kxnk ! z. Here we have z 2 R.Tr/ because R.Tr/ is closed,

kzk D lim kxnk k D 1 and Tz D lim Txnk D 0:

This contradicts the injectivity of TjR.Tr/. ut
The following lemma completes the proof of Theorem 2.39.

Lemma 2.43

(a) The integers n and r of Lemmas 2.41 and 2.42 are equal.
(b) We have X D R.Tn/˚ N.Tn/.
(c) There exists a constant C such that

kyk C kzk � C ky C zk

for all y 2 N.Tn/ and z 2 R.Tn/.

Proof

(a) If TrC1x D 0, then Trx 2 R.Tr/ and T.Trx/ D 0, so that Trx D 0 by the
injectivity of TjR.Tr/. Hence N.TrC1/ � N.Tr/, whence in fact N.TrC1/ D
N.Tr/. This proves that r � n.

If Tnx 2 R.Tn/, then TnCrx 2 R.TnCr/ D R.TnCrC1/ by the preceding
lemma, so that there exists y 2 X satisfying TnCrC1y D TnCrx. Then

x � Ty 2 N.TnCr/ D N.Tn/;

whence Tnx D TnC1y 2 R.TnC1/. This implies R.Tn/ � R.TnC1/, whence in
fact R.Tn/ D R.TnC1/. This proves that n � r.

(b) Since Tr is injective on R.Tr/, R.Tr/\ N.Tr/ D f0g. On the other hand, for any
given x 2 X we have Trx 2 R.Tr/. Applying the lemma, there exists a unique
u 2 R.Tr/ satisfying T2ru D Trx. Then y WD Tru 2 R.Tr/ and z WD x � Tru 2
N.Tr/.

(c) Using the notations of (b) the linear map Trx 7! u is continuous by part (c)
of the preceding lemma. By the continuity of Tr we infer that the formula
Px WD y defines a continuous projection P W X ! R.Tr/.76 Then the projection

76A linear map P W X ! X is called a projection if P2 D P.
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Q W X ! N.Tr/ defined by Qx WD z is also continuous because Q D I � P. This
yields the required estimate with C WD kPk C kQk.

ut
As a first application of the theorem we study the spectrum of a completely

continuous operator.

Definition The resolvent set �.A/ of an operator A 2 L.X;X/ is the set of real
numbers � for which A � �I is invertible, i.e., there exists an operator B 2 L.X;X/
satisfying

.A � �I/B D B.A � �I/ D I:

The complement �.A/ WD R n �.A/ is called the spectrum of A.77

Examples

• The spectrum contains the eigenvalues.
• If X is finite-dimensional, then the spectrum of A is exactly the set of eigenvalues.
• Using the openness78 of the set of invertible operators in L.X;X/, one can show

that �.A/ is closed and �.A/ � Œ� kAk ; kAk�.
• Consider the right shift of X D `2 defined by the formula

Sr.x1; x2; : : :/ WD .x2; x3; : : :/:

It can be shown that the set of its eigenvalues is .�1; 1/. Since kSrk D 1, we
conclude by using the previous remark that �.Sr/ D Œ�1; 1�.79

• Consider the left shift of X D `2 defined by the formula

Sl.x1; x2; : : :/ WD .0; x1; x2; : : :/

We have kSlk D 1 and �.Sl/ D Œ�1; 1�. But Sl has no eigenvalues.80

Proposition 2.44 (Riesz)81 Let K be a completely continuous operator on the
Banach space X.

(a) If � 2 �.K/ and � ¤ 0, then � is an eigenvalue of K.
(b) The eigensubspaces of K are linearly independent.
(c) The spectrum of K is countable.
(d) If K has infinitely many eigenvalues, then their sequence tends to zero.

77Hilbert [209].
78This is proved in most books on differential calculus as a preliminary step for the inverse function
theorem.
79One can check that .n�1/ … R.Sr � I/ and ..�1/nn�1/ … R.Sr C I/.
80Sl � �I is not onto for any � 2 Œ�1; 1� because e1 … R.Sl � �I/.
81Riesz [383].
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Proof (a) We apply Theorem 2.39 for T WD I � ��1K instead of I � K. Since T is
not an isomorphism on X, R.Tn/ ¤ X, i.e., n � 1. But then N.T/ ¤ f0g, so that � is
an eigenvalue of K.

(b) Assume on the contrary that there exist linearly dependent eigenvectors
x1; : : : ; xm, belonging to pairwise different eigenvalues. Choose such a system with
a minimal m, and consider a nontrivial linear combination

x WD c1x1 C � � � C cmxm D 0:

Then we have .A � �mI/x D 0, i.e.,

c1.�1 � �m/x1 C � � � C cm�1.�m�1 � �m/xm�1 D 0:

This contradicts the minimality of m.
(c) and (d) It suffices to show that for any fixed " > 0 there are at most finitely

many eigenvalues satisfying j�j > ". Assume on the contrary that there exists an
infinite sequence .�n/ of such eigenvalues. Let M0 WD f0g, and denote by Mn the
vector sum of the eigensubspaces corresponding to �1; : : : ; �n, for n D 1; 2; : : : :

Then Mn�1 is a proper subspace of Mn by property (b), and we have clearly

.�nI � K/Mn � Mn�1:

Applying Proposition 2.1 (p. 55) we may fix for each n � 1 a point xn 2 Mn

satisfying

kxnk D dist.xn;Mn�1/ D 1:

Since the sequence .��1
n xn/ is bounded, .K.��1

n xn// has a convergent subsequence.
But this is impossible because

�
�K.��1

n xn/� K.��1
m xm/

�
� � 1

for all n > m. This follows from the choice of xn because

K.��1
n xn/� K.��1

m xm/ D xn � y

where

y D ��1
n .�nI � K/xn C ��1

m Kxm 2 Mn�1:

ut
Now we investigate the equations

x � Kx D y and ' � K�' D  
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where K is a compact operator. The following theorem is a far-reaching generaliza-
tion of Proposition 1.31 (p. 44):

Theorem 2.45 (Fredholm Alternative)82 If K is a compact operator in a Banach
space X, then

(a) R.I � K/ D N.I � K�/?;
(b) R.I � K�/ D N.I � K/?;
(c) dim N.I � K�/ D dim N.I � K/;
(d) N.I � K/ D f0g ” R.I � K/ D X.

Proof Let T D I � K, then T� D I � K�.

(a) We have the following equivalences for every ' 2 X0:

' 2 R.T/? ” h';Txi D 0 for all x 2 X

” hT�'; xi D 0 for all x 2 X

” ' 2 N.T�/:

Since R.T/ is closed, applying Corollary 2.9 (p. 64) we obtain the required
equality:

R.T/ D R.T/ D R.T/?? D N.T�/?:

(b) If ' D T� 2 R.T�/ and x 2 N.T/, then

h'; xi D hT� ; xi D h ;Txi D h ; 0i D 0:

Hence R.T�/ � N.T/?.
For the proof of the converse relation we fix a subspace Z of N.Tn/ such

that N.Tn/ D N.T/ ˚ Z, and we set Y WD Z C R.Tn/. Then the restriction
TjY W Y ! R.T/ is an isomorphism by Theorem 2.39 (p. 103).

If ' 2 N.T/?, then ' ı .TjY/
�1 is a continuous linear functional on R.T/.

Applying the Helly–Hahn–Banach theorem (p. 65) it can be extended to a
functional  2 X0. Then we have T� D ' because

hT� ; xi D h ;Txi D '.TjY/
�1Tx D '.x/

for all x 2 X. This proves the relation N.T/? � R.T�/.

82Fredholm [150, 151], Riesz [383], Hildebrandt [212], and Schauder [413].
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(c) Let T 0 D TjN.Tn/, and fix a subspace M of N.Tn/ satisfying

N.Tn/ D R.T 0/˚ M:

Then X D R.T/ ˚ M because X D N.Tn/ ˚ R.Tn/ and R.Tn/ � R.T/.
Consequently, dim M D dim X=R.T/.

Let us observe that dim N.T 0/ D dim M because N.Tn/ is finite-dimensional, and
that N.T 0/ D N.T/ because N.T/ � N.Tn/. It follows that

dim N.T/ D dim M D dim X=R.T/: (2.14)

Notice that N.T�/ is finite-dimensional because T� D I � K� and K� is
completely continuous by Schauder’s theorem (p. 102). Choose a basis '1; : : : ; 'm in
N.T�/, then choose x1; : : : ; xm 2 X satisfying 'i.xj/ D ıij. Let us admit temporarily
that X D R.T/˚ M0 with M0 D Vect fx1; : : : ; xmg. Then

dim N.T�/ D m D dim M0 D dim X=R.T/; (2.15)

and the equality dim N.T/ D dim N.T�/ follows from (2.14) and (2.15).
It remains to prove the relations

X D R.T/C M0 and R.T/ \ M0 D f0g :

For any given x 2 X we consider the vector

y WD '1.x/x1 C � � � C 'm.x/xm 2 M0:

We have for each i D 1; : : : ;m the equality

'i.x � y/ D 'i.x/ �
mX

jD1
'j.x/'i.xj/ D 'i.x/�

mX

jD1
'j.x/ıij D 0;

so that x � y 2 N.T�/? D R.T/. Hence X D R.T/C M0.
On the other hand, if x 2 R.T/ \ M0, then

x D c1x1 C � � � C cmxm



112 2 Banach Spaces

with suitable coefficients ci, and 'i.x/ D 0 for all i D 1; : : : ;m. Hence

0 D 'i.x/ D
mX

jD1
cj'i.xj/ D

mX

jD1
cjıij D ci

for all i, i.e., x D 0.

(d) follows from (a) and (c).

ut

2.11 * The Complex Case

We list the modifications for complex normed spaces.
Section 2.1. In the definition of hyperplanes and in Lemmas 2.2 and 2.4 X is still

considered to be a real vector or normed space. Lemma 2.3 remains valid in the
complex case: in the last line of the proof we obtain that '.U/ is inside the unit disk
of the complex plane.

In the statement of Theorem 2.5 we change '.a/ and '.b/ to their real parts
<'.a/ and <'.b/. The result follows from the real case because the correspondence
 WD <' is a bijection between complex and real linear functionals: its inverse is
given by the formula83

'.x/ WD  .x/ � i .ix/: (2.16)

Corollaries 2.9 and 2.10 remain valid.
Section 2.2. Theorem 2.11 and Corollary 2.13 remain valid by changing R to C

in their statement. In the proof first we extend the real part of ' by using the real
case theorem, and then we complexify the extended functional with the help of the
above formula. This leads to a suitable extension because the complexification does
not alter the norm. Indeed, it follows at once from the formula that k k � k'k. On
the other hand, for each x 2 X there exists a complex number � such that j�j D 1

and �'.x/ D j'.x/j. Then

j'.x/j D '.�x/ D  .�x/ � k k � j�xj D k k � jxj ;

i.e., k'k � k k.
Section 2.3. All results and proofs remain valid if we define the sign of a complex

number by the formulas sign 0 WD 0, and sign y WD jyj =y for y ¤ 0. The map
j W `q ! .`p/0 is still linear. If we wish to get back the Riesz–Fréchet theorem for

83This complexification method was discovered by Murray [328], Bohnenblust–Sobczyk [48], and
Soukhomlinov [430].
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p D 2, then it is better to define j by the formula

. jy/.x/ D 'y.x/ WD
1X

nD1
xnynI

then j W `q ! .`p/0 is antilinear.
Section 2.4. The definition of `p, c0, C.I;C/ and Lp.I/ is analogous, by using

complex valued sequences and functions instead of real values.
Section 2.5. Only one change is needed: we write <' instead of ' in the proof of

Proposition 2.22.
Section 2.6. No change is needed.
Section 2.7. We have to write <' instead of ' in the statement of Proposition 2.31

and in the proof of the implication (b) H) (c).
Sections 2.8–2.10. All results and proofs remain valid. The resolvent set �.A/ is

now defined as the set of complex numbers � for which A � �I is invertible, and the
spectrum �.A/ is its complement in C.

2.12 Exercises

Exercise 2.1 Prove that c0 is a closed subspace of `1.

Exercise 2.2 We have seen that if 1 � p < q � 1, then `p � `q, and the identity
map i W `p ! `q is continuous.

(i) Investigate the validity of the following equalities:

\

q>p

`q D `p and
[

p<q

`p D `q:

(ii) What happens if we change `1 to c0 in the above questions?

In the following exercises we denote by Xp the vector space X of continuous
functions f W Œ0; 1� ! R, endowed with the norm k�kp, 1 � p � 1.

Exercise 2.3 Indicate the convex sets in X among the following:

(i) the polynomials of degree k;
(ii) the polynomials of degree � k;

(iii) the continuous functions x satisfying

Z 1

0

jx.t/j dt � 1I
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(iv) the continuous functions x satisfying

Z 1

0

jx.t/j2 dt � 1:

Exercise 2.4 Do the sequences .xn/; .yn/ defined by

xn.t/ D tn � tnC1 and yn.t/ D tn � t2n

converge in Xp, p 2 Œ1;1�?

Exercise 2.5 Is the linear functional f .x/ WD x.1/ continuous

(i) on X1;
(ii) on X2?

Exercise 2.6 Is the nonlinear map f .x/ WD x2 continuous

(i) from X1 into X1;
(ii) from X2 into X2;

(iii) from X1 into X2?

Exercise 2.7 Prove that the linear operators

Ax.t/ WD x.t/C x.1 � t/

2
and Bx.t/ WD x.t/ � x.1 � t/

2

are continuous projectors in Xp for all p, and compute their norms.

Exercise 2.8 Consider the linear functional

'.x/ WD
Z 1

0

�

t � 1

2

�3
x.t/ dt

on Xp, 1 � p � 1.

(i) For which p is ' continuous?
(ii) Compute k'k when ' is continuous.

(iii) Is the norm k'k attained?

Exercise 2.9 Consider the set

M WD
(

x 2 X W
Z 1=2

0

x.t/ dt �
Z 1

1=2

x.t/ dt D 1

)

:

(i) Show that M is a non-empty convex set.
(ii) Show that M is closed in X1.

(iii) Show that M has no element of minimal norm in X1.
(iv) Reconsider the questions (ii), (iii) in X1.
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(v) Reconsider the questions (ii), (iii) in Xp for 1 < p < 1.
(vi) How are these results related to the theorems of this chapter?

Exercise 2.10 (Quotient Norm) Let L be a closed subspace of a normed space X.
Consider the equivalence relation x � y ” x � y 2 L in X and let X=L be the
quotient vector space. Show that

(i) the formula k
kX=L D infx2
 kxk defines a norm in X=L;
(ii) if X a Banach space, then X=L is also a Banach space.

Exercise 2.11

(i) Prove that in a Banach space every decreasing sequence of closed balls has a
non-empty interior.

(ii) Does it remain true in normed spaces as well?

Exercise 2.12

(i) Prove that in a reflexive space every decreasing sequence of non-empty bounded
closed convex sets has a non-empty interior.

(ii) Does it remain true in non-reflexive spaces?

Exercise 2.13

(i) Prove that in finite-dimensional normed spaces every decreasing sequence of
non-empty bounded closed sets has a non-empty interior.

(ii) Does it remain true in all normed spaces?

Exercise 2.14 Let X;Y be two normed spaces and A 2 L.X;Y/.

(i) Prove that84

N.A�/ D R.A/? and N.A/ D R.A�/?:

(ii) Prove that85 if there exists an ˛ > 0 satisfying kAxk � ˛ kxk for all x 2 X, then
R.A/ D Y.

Exercise 2.15 (Banach Limit)86 Set e WD .1; 1; 1; : : :/ and

M WD f.x1; x2 � x1; x3 � x2; : : :/ W x D .x1; x2; : : :/ 2 `1g :

Prove the following properties:

(i) M is a subspace `1;
(ii) dist.e;M/ D kek D 1;

84Compare with Exercise 1.23.
85Banach [24] proved much more in his closed range theorem, see also Yosida [488].
86Banach [24, p. 34]. See Mazur [318] for other interesting properties.
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(iii) there exists an L 2 .`1/0 satisfying kLk D Le D 1, and L D 0 on M;
(iv) Lx does not change if we remove the first element of x;
(v) lim inf xn � Lx � lim sup xn for all x D .x1; x2; : : :/ 2 `1;

(vi) Lx D lim xn for all convergent sequences x D .x1; x2; : : :/.

Exercise 2.16 Let f W R ! R be a continuous function satisfying for some numbers
p; q > 1 the condition

j f .t/j � jtjp=q for all t 2 R:

Set F.x/ D . f .x1/; f .x2/; : : :/ for every x D .x1; x2; : : :/ 2 `p. Show the following
results:

(i) F.x/ 2 `q, and the map F W `p ! `q is continuous;
(ii) if xk * x in `p, then A.xk/ * A.x/ in `q.

Exercise 2.17 A sequence .xn/ in a normed space X is called a weak Cauchy
sequence if

'.x1/; '.x2/; '.x3/; : : :

is a Cauchy sequence in R for each ' 2 X0.

(i) Show that in finite-dimensional normed spaces every weak Cauchy sequence
is convergent.

(ii) Show that in Hilbert spaces every weak Cauchy sequence is weakly conver-
gent.87

(iii) Does the conclusion of (ii) remain valid in reflexive spaces?
(iv) Does the conclusion of (ii) remain valid in X D `1?
(v) Does the conclusion of (ii) remain valid in X D c0?

(vi) Does the conclusion of (ii) remain valid in X D `1?

Exercise 2.18 Let X be an infinite-dimensional normed space. Prove that there exist
non-continuous linear functionals on X.88

Exercise 2.19 The Hamel dimension of a Banach space cannot be countably
infinite.

87We say that Hilbert spaces are weakly sequentially complete. On the other hand, the duals of
infinite-dimensional normed spaces are never weakly complete: they contain weak Cauchy nets
having no weak limits. See Grothendieck [174] and Schaefer [411].
88We may use a Hamel basis, i.e., a maximal linearly independent set.
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Exercise 2.20

(i) Construct a family fNtg0<t<1 of sets of positive integers such that N1 \ Nt0 is
finite for t ¤ t0, and each Nt is infinite.

(ii) The Hamel dimension of an infinite-dimensional Banach space is at least 2@0 .89

Exercise 2.21 We prove again that the Hamel dimension of an infinite-dimensional
Banach space is at least 2@0 .90

(i) The Hamel dimension of `1 is 2@0 .
(ii) For each infinite-dimensional Banach space X there exists a one-to-one linear

map of `1 into X.

Exercise 2.22 An infinite matrix A WD .ank/
1
n;kD0 of real numbers is called

convergence-preserving if for each convergent real sequence xk ! ` the formula

yn WD
1X

kD0
ankxk; n D 0; 1; : : :

defines a sequence satisfying yn ! `.
Prove that A is convergence-preserving ” the following three conditions are

satisfied91:

(i) supn

P1
kD0 jankj < 1;

(ii)
P1

kD0 ank ! 1 as n ! 1;
(iii) for each fixed k D 0; 1; : : : ; ank ! 0 as n ! 1.

Express conditions (ii) and (iii) in terms of the matrix .ank/.

89Lacey [276].
90See also Bauer and Brenner [31] and Tsing [459].
91Steinhaus–Toeplitz theorem.



Chapter 3
Locally Convex Spaces

There was far more imagination in the head of Archimedes than
in that of Homer.

Voltaire

We have seen in the preceding chapters the usefulness of weak convergence. From a
theoretical point of view, it would be more satisfying to find a norm associated with
weak convergence. In finite dimensions every norm is suitable because the weak
and strong convergences are the same. In infinite dimensions the situation is quite
different. For example, we have the following

*Proposition 3.1 In infinite-dimensional Hilbert spaces weak convergence is never
metrizable.1

Proof Fix an orthonormal sequence e1; e2; : : : ; and consider the set

A WD fem C men W n > m � 1g :

Let us determine the set QA of limits of weakly convergent sequences in A. If a
sequence .xk/ D .emk C mkenk/ � A converges weakly to some x 2 H, then it
is bounded, and hence the sequence .mk/ of integers is bounded. We may take a
subsequence, still converging weakly to x, for which the .mk/ sequence is constant:
mk D m every k. If some element em C men appears infinitely many times in .xk/,
then x D em C men 2 A. Otherwise we have nk ! 1 and x D lim em C menk D em.
Hence

QA � A [ fem W m D 1; 2; : : :g :

Since .em C mek/ converges weakly to em for each fixed m, we have equality here.
If weak convergence were metrizable, then QA would be the closure of A and hence

closed. However, .em/
1
mD1 � QA and em * 0 … QA. ut

1von Neumann [336].

© Springer-Verlag London 2016
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Similar non-metrizable convergence notions are often encountered in analysis.
We may try at least to topologize them.2 This attempt leads in the present case to
an important generalization of normed spaces, called locally convex spaces. Since
these spaces are often non-metrizable, in this section we sometimes use nets instead
of sequences.

3.1 Families of Seminorms

We generalize the normed spaces.

Definition A seminorm on a vector space X is a function p W X ! R satisfying for
all x; y 2 X and � 2 R the following conditions:

	 p.x/ � 0;

	 p.�x/ D j�j p.x/;

	 p.x C y/ � p.x/C p.y/:

Examples

• Every norm is a seminorm.
• If ' is a linear functional on X, then j'j is a seminorm.
• More generally, if A W X ! Y is a linear map and q is a seminorm in Y, then q ı A

is a seminorm in X.
• If p is a seminorm and � � 0, then �p is a seminorm.
• If p1; : : : ; pn are seminorms, then p1 C � � � C pn is a seminorm.

Definition By a ball of center a in a vector space X we mean a set of the form

Bp;r.a/ D Bp.aI r/ WD fx 2 X W p.x � a/ < rg

where p is a seminorm in X and r > 0.

Remark It is clear that every ball is convex.

Consider a non-empty family P of seminorms in a vector space X. Let us denote
by P the set of seminorms q in X for which there exist finitely many seminorms
p1; : : : ; pn 2 P and a positive number N satisfying

q � N. p1 C � � � pn/:

2Even this may fail: see the last result of this book: Corollary 10.12, p. 362.
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Furthermore, we denote by TP the family of sets U � X having the following
property: for every a 2 U there exist q 2 P and r > 0 such that

Bq;r.a/ � U:

The following proposition is straightforward:

Proposition 3.2

(a) TP is a topology on X.
Henceforth we consider this topology.

(b) The topology TP is Hausdorff (or separated) ” for each non-zero point
x 2 X there exists a p 2 P such that p.x/ ¤ 0.

(c) For any sequence or net, xn ! x ” p.xn � x/ ! 0 for all p 2 P .
(d) Addition and multiplication by scalars, i.e, the operations

X � X 3 .x; y/ 7! x C y 2 X and R� 3 .�; x/ 7! �x 2 X

are continuous.
(e) P contains precisely the continuous seminorms.
(f) A linear functional ' on X is continuous ” j'j 2 P .
(g) A ball Bq;r.a/ is open ” q 2 P .

Definition By a locally convex space we mean a vector space X equipped with a
topology TP associated with a family P of seminorms.3

Examples

• If P has a single element, and this is a norm, then our definition reduces to that
of normed spaces.

• Given a non-empty set K we denote by F.K/ the vector space of the functions
f W K ! R. Considering the family of seminorms

pt. f / WD j f .t/j; f 2 F.K/

where t runs over the elements of K, F.K/ becomes a separated locally convex
space, and the corresponding convergence is pointwise convergence:

fn ! f in F.K/ ” fn.t/ ! f .t/ for every t 2 K:

We will soon show that F.K/ is not always normable.

3von Neumann [233]. The terminology will be explained by Proposition 3.25, p. 145.
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Let us generalize the bounded sets of normed spaces:

Definition In a locally convex space X associated with a family P of seminorms a
set A is bounded if every seminorm p 2 P is bounded on A.

Remarks

• If A is bounded, then every continuous seminorm p 2 P is bounded on A.
• Since a continuous seminorm is bounded on every compact set, compact sets of

locally convex spaces are bounded. It follows that in a separated locally convex
space every compact set is bounded and closed. We recall4 that the converse is
false in every infinite-dimensional normed space.

Our last remark stresses the interest of the following result:

*Proposition 3.3 Consider the spaces F.K/.

(a) For the sets in F.K/ we have compact ” bounded and closed.
(b) If K is infinite, then F.K/ is not normable.
(c) If K is uncountable, then F.K/ is not even metrizable.

Proof

(a) Since F.K/ is a separated locally convex space, it remains to show that if C is
bounded and closed in F.K/, then it is compact.

Since C is bounded in F.K/, the sets C.t/ WD f f .t/ W f 2 Cg � R are
bounded for all t 2 K. Choose a compact interval Ft � C.t/ for each t.
The product space F WD Q

t2K Ft is compact by Tychonoff’s theorem. Let us
observe that topologically F.K/ is the product space

Q
t2K Xt where Xt D R for

every t 2 K. Hence F is a compact subset of F.K/. We complete the proof by
observing that C is a closed subset of F, and hence compact.

(b) In view of (a) it suffices to recall that the closed balls are bounded and closed,
but not compact in infinite-dimensional normed spaces.5

Let us also give a direct proof: we show that F.K/ has no continuous norms.
Indeed, if q is a continuous seminorm on F.K/, then there exist t1; : : : ; tn 2 K
and a number N > 0 such that

q. f / � N.jf .t1/j C � � � C jf .tn/j/

for all f 2 F.K/. Since K is infinite, there exists a non-zero function f 2 F.K/
for which f .t1/ D � � � D f .tn/ D 0. Then q. f / D 0, i.e., q is not a norm.

(c) If the topology of F.K/ is metrizable by some metric d, then for each n D
1; 2; : : : there exist points tn;1; : : : ; tn;kn 2 K and a number Nn > 0 such that

Nn.jf .tn;1/j C � � � C jf .tn;kn/j/ < 1 H) d. f ; 0/ <
1

n
; n D 1; 2; : : :

4Proposition 2.1, p. 55.
5Proposition 2.1, p. 55.
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for all f 2 F.K/. If K were uncountable, then there would exist a point t0 2 K
differing from all points tn;kn , and then the non-zero function

f .t/ WD
(
1 if t D t0;
0 if t ¤ t0

would satisfy d. f ; 0/ D 0, contradicting the metric property of d.

ut
Remark If the seminorm family is countable: P D f p1; p2; : : :g, and the corre-
sponding topology is separated, then it is also metrizable by the metric

d.x; y/ WD
X

p2P

1

2n
� pn.x � y/

1C pn.x � y/
:

We end this section with a characterization of normable locally convex spaces:

*Proposition 3.4 (Kolmogorov)6 For a separated locally convex space X the
following properties are equivalent:

(a) X is normable;
(b) there exists a bounded neighborhood of 0;
(c) there exists a non-empty bounded open set.

Proof The implications (a) H) (b) H) (c) are obvious.
(c) H) (b). If V is a non-empty bounded open set and a 2 V , then V � a is a

bounded neighborhood of 0.
(b) H) (a). Let U be a bounded neighborhood of 0. Fix an open ball Bp;r.0/ � U.

If q is a continuous seminorm, then, since U is bounded, there exists a sufficiently
large number R such that U � Bq;R.0/. Hence Bp;r.0/ � Bq;R.0/ and therefore
q � Cp with C WD R=r. This shows that p alone defines the topology of X. Since X
is separated, p is a norm. ut

3.2 Separation and Extension Theorems

One of the main reasons for the usefulness of locally convex spaces is that the Helly–
Hahn–Banach type theorems remain valid. We start with the geometrical results. If
X is a locally convex space, then we denote by X0 the vector space7 of continuous
linear functionals X ! R.

6Kolmogorov [253].
7We will define later (in Sect. 3.5, p. 135) a locally convex topology on X0.
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Theorem 3.5 Let A and B be two disjoint non-empty convex sets in a locally
convex space X.

(a) If A is open, and B is a subspace, then there exists a closed hyperplane H such
that

B � H and A \ H D ¿:

(b) If A is open, then there exist ' 2 X0 and c 2 R such that

'.a/ < c � '.b/ for all a 2 A and b 2 B:

(c) (Tukey–Klee)8 If A is closed and B is compact, then there exist ' 2 X0 and
c1; c2 2 R such that

'.a/ � c1 < c2 � '.b/ for all a 2 A and b 2 B:

See Figs. 2.1, 2.2, and 2.3 again, pp. 59–60.

Proof

(a) We may repeat the proof of Theorem 2.5 (a) (p. 61) with one small modification:
in the proof of Lemma 2.4 (b) (p. 58) we take an open ball Bp;r.a/ instead of
Br.a/. Then we get j'j < 1 on Bp;r.0/, whence j'j � r�1p. This implies the
continuity of '.

(b) The proof of Theorem 2.5 (b) remains valid.
(c) We modify the proof of Theorem 2.5 (c) as follows. Since A is closed, for each

b 2 B we can find an open ball Bb WD Bpb;rb.b/ of center b, disjoint from A. A
finite number of them covers the compact set B, say

B �
n[

jD1
Bbj :

Introduce the open ball U WD Bp;r.0/ with

p WD pb1 C � � � C pbn ; and r WD 2�1 min fr1; : : : ; rng :

Then A C U and B C U are disjoint non-empty convex open sets satisfying
A � A C U and B � B C U.

8Tukey [460], Klee [250].
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Applying (b) there exist ' 2 X0 and c 2 R such that

'.a0/ < c � '.b0/ for all a0 2 A C U and b0 2 B C U:

Hence

'.a/C sup
U

j'j � c � '.b/� sup
U

j'j for all a 2 A and b 2 B:

Since ' is non-zero, s WD supU j'j > 0, and the required inequalities follow with
c1 D c � s, c2 D c C s. ut

The extension theorem 2.11 (p. 65) takes the following form:

Theorem 3.6 Let X be a locally convex space. If ' W M ! R is a continuous
linear functional on a subspace M � X, then ' may be extended to a continuous
linear functionalˆ W X ! R.

Proof We may assume that ' 6
 0. Fix a 2 M with '.a/ D 1, and then a continuous
seminorm p with j'j < 1 on M \ Bp;1.0/. Repeating the proof of Theorem 2.11
we obtain a linear extension ˆ of ' to X, satisfying ˆ�1.0/ \ Bp;1.a/ D ¿. We
conclude that ˆ is continuous. ut

Let X be a locally convex space. Similarly to the case of normed spaces, we
define the orthogonal complements of D � X and	 � X0 by the formulas

D? D ˚
' 2 X0 W '.x/ D 0 for all x 2 D

�

and

	? D fx 2 X W '.x/ D 0 for all x 2 	g :

Using the preceding theorem we may repeat the proof of Corollary 2.9 (p. 64); we
get the following

Corollary 3.7 Let X be a locally convex space, D � X, and M � X a subspace.

(a) We have Vect.D/ D .D?/?.
(b) If D? D f0g, then D generates X.
(c) If M? D f0g, then M is dense in X.

In separated locally convex spaces Corollary 2.10 (p. 65) and its proof remain
valid:

Corollary 3.8 Let X be a separated locally convex space.

(a) For any two distinct points a; b 2 X there exists a ' 2 X0 such that '.a/ ¤ '.b/.
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(b) If x1; : : : ; xn 2 X are linearly independent vectors, then there exist linear
functionals '1; : : : ; 'n 2 X0 such that

'i.xj/ D ıij for all i; j D 1; : : : ; n:

Consequently, dim X0 � dim X.

Remark Every finite-dimensional separated locally convex space is normable.
Indeed, choose a basis '1; : : : ; 'm in X0. Then the formula

kxk WD j'1.x/j C � � � C j'm.x/j

defines a continuous norm by the above corollary, and every continuous seminorm
p satisfies the inequality p � c k�k with c WD max f p.x/ W kxk D 1g.9 Hence this
norm induces the topology of X.

3.3 Krein–Milman Theorem

Every bounded convex polygon is the convex hull of its vertices; see Fig. 3.1. This
was generalized by Minkowski for every non-empty bounded closed convex set in
R

N by a suitable modification of the notion of vertex. His result was further extended
by Krein and Milman for every separated locally convex space. This section is
devoted to this result.

Definition A point x of a convex set C in a vector space is called extremal if C n fxg
is convex.

It is clear that in locally convex spaces the extremal point of a convex set must
lie on its boundary. For example, on Fig. 3.2 all boundary points are extremal, while
on Figs. 3.3 and 3.4 only the vertices are extremal.

Examples Let us denote by E D EX the set of extremal points of the closed unit ball
B D BX of a normed space X. We recall that E � S where S D SX denotes the unit
sphere, i.e., the boundary of B.

• If X is a Euclidean space, then E D S.
• If X D `p .1 < p < 1/, then we still have E D S.
• More generally, E D S ” X is strictly convex.
• If X D `1, then E D f�ek W j�j D 1; k D 1; 2; : : :g :
• If X D `1, then E D fx D .xn/ W jxnj D 1 for all ng.
• If X D c0, then E D ¿:

9As the maximum of a continuous function on a compact set, c is finite.
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Fig. 3.1 Vertices of a convex
polygon

Fig. 3.2 Extremal points of a
disk
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Fig. 3.3 “Unit ball” of
(R2,k�k1)

Fig. 3.4 “Unit ball” of
(R2,k�k

1

)

Definition Let E be a set in a locally convex space. By its convex closed hull we
mean the intersection of all convex closed sets containing E.

One can readily verify that the convex closed hull of E is the smallest convex
closed set containing E, and that it is the closure of its convex hull, i.e., of the set of
all convex linear combinations of the elements of E.
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Theorem 3.9 (Krein–Milman)10 Let C be a non-empty convex compact set in a
separated locally convex space X. Then C is the convex closed hull of its extremal
points.

For the proof we generalize the extremal points. We consider segments of the
form

Œa; b� WD fta C .1 � t/b W 0 � t � 1g with a ¤ b:

Definition Let C be a non-empty set in a vector space. A subset E � C is called a
side of C if for every segment Œa; b� � C, Œa; b�\ E is one of the following four sets:
¿, fag, fbg and Œa; b�.

Remark One can check the following properties:

(a) C is a side of itself;
(b) the intersection of any family of sides is a side;
(c) if E is a side of C and F is a side of E, then F is a side of C;
(d) if a linear functional ' has a maximum on C, then

E WD



z 2 C W '.z/ D max
C
'

�

is a side of C;
(e) the one-point sides fxg of a convex set correspond exactly to its extremal points

x.

Proof of Theorem 3.9 We proceed in two steps.

First step. We show that C has at least one extremal point. By the above properties
(a) and (b) the family of compact sides of C satisfies the conditions of Zorn’s
lemma, and hence C has at least one minimal compact side E. In view of property
(e) it remains to show that E cannot contain more than one point.
Assume that E contains two distinct points x ¤ y. Applying Corollary 3.8 we fix
' 2 X0 satisfying '.x/ < '.y/. Since ' is continuous,

F WD



z 2 E W '.z/ D max
E
'

�

is a well defined compact set, and it is a side of C by (d) and (c). Since x … F, F
is a proper side of E, contradicting the minimality of E.

10Minkowski [325] (p. 160), Krein–Milman [269]. See Phelps [359] for further improvements and
generalizations.
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Second step. We already know that the convex closed hull K of the extremal
points of C is a non-empty convex compact subset of C. Assume on the contrary
that there exists a point x 2 C n K, and applying Theorem 3.5 (c) choose ' 2 X0
satisfying

max
K

' < '.x/:

Then the convex compact set

E WD



z 2 C W '.z/ D max
C

'

�

is a side of C, disjoint from K. Applying the first step, E has an extremal point
y. Then y is also an extremal point of C by properties (c) and (e). But this is
impossible because the extremal points of C belong to the set K which is disjoint
from E.

ut

3.4 * Weak Topology. Farkas–Minkowski Lemma

Given a locally convex space X, we denote by �.X;X0/ the locally convex topology
defined by the seminorms j'j where ' runs over X0. By Proposition 3.2 (p. 121) we
have

xn ! x in �.X;X0/ ” '.xn/ ! '.x/ for all ' 2 X0 (3.1)

for every sequence or net in X. This motivates the following terminology:

Definition �.X;X0/ is called the weak topology of X.11 The corresponding space
.X; �.X;X0// is also denoted briefly by X� .

Proposition 3.10 Let X be a locally convex space.

(a) The weak topology of X is coarser than its original topology.
(b) The same linear functionals are continuous for both topologies.
(c) The closed convex sets are the same for both topologies.
(d) The two topologies are separated at the same time.

Proof (a) follows from (3.1), (b) follows from (a) and (3.1), (c) follows from
Theorem 3.5 (c) similarly to the proof of Proposition 2.22 (e), and (d) follows from
Corollary 3.8 (a). ut

11von Neumann [336].
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In general the weak topology is not normable, and not even metrizable:

*Proposition 3.11

(a) The weak topology of infinite-dimensional locally convex spaces is not
normable.

(b) The weak topology of infinite-dimensional normed spaces is not metrizable.12

Remarks

• The theorem of choice (p. 90) is not completely satisfactory in non-metrizable
cases because the convergent sequences do not characterize the topology. We
return to this question later.13

• The basic properties of the weak convergence (Propositions 1.17 and 2.22, pp. 30
and 80) and the characterizations of continuous linear maps (Propositions 1.22
and 2.24, pp. 35 and 82) and their proofs remain valid for nets instead of
sequences.

Proof

(a) We show that there is no continuous norm on X. Indeed, if q is a continuous
seminorm on X, then there exist functionals '1; : : : ; 'n 2 X0 and a positive
number N such that

q.x/ � N
nX

iD1
j'i.x/j for all x 2 X:

Since X is infinite-dimensional, there exists a point x ¤ 0 such that '1.x/ D
� � � D 'n.x/ D 0. Then q.x/ D 0, so that q is not a norm.

(b) Assume that the weak topology of a normed space X may be defined by a metric
d; then X� is separated. For each n D 1; 2; : : : we fix finitely many functionals
'n1; : : : ; 'nkn 2 X0 such that

kn\

jD1

˚
x 2 X W ˇˇ'nj.x/

ˇ
ˇ < 1

� �
n
x 2 X W d.x; 0/ <

1

n

o
:

For each ' 2 X0 there exists an n such that

d.x; 0/ <
1

n
H) j'.x/j < 1:

Consequently

'n1.x/ D � � � D 'nkn.x/ D 0 H) j'.x/j < 1;

12Wehausen [479].
13See Theorem 3.21, p. 140.
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and hence, changing x to tx and letting t ! 1,

'n1.x/ D � � � D 'nkn.x/ D 0 H) '.x/ D 0:

Applying a well-known lemma from linear algebra14 this implies that ' is a
linear combination of 'n1; : : : ; 'nkn .

The finite-dimensional (and thus closed) subspaces

Fn WD Vect f'n1; : : : ; 'nkng

cover X0. By Baire’s lemma (p. 32) at least one of them, say Fn, has interior points.
Then we have Fn D X0 and hence dim X0 < 1. Applying Corollary 2.10 (p. 65) we
conclude that dim X < 1. ut

Let us recall a proof of the lemma:

Lemma 3.12 Let '1, . . . , 'n and ' be linear functionals on a vector space X.
Assume that

x 2 X and '1.x/ D � � � D 'n.x/ D 0 H) '.x/ D 0:

Then ' is a linear combination of '1; : : : ; 'n.

Proof Consider the subspace

M WD f.'1.x/; : : : ; 'n.x// 2 R
n W x 2 Xg

of Rn. By our assumption the formula

.'1.x/; : : : ; 'n.x// 7! '.x/

defines a linear functional  W M ! R. Introducing the usual scalar product of Rn

and considering the orthogonal projection P onto M,  ı P is a continuous linear
functional on R

n, and hence it can be represented by some vector .c1; : : : ; cn/ 2 R
n:

 .Py/ D c1y1 C � � � C cnyn

for all y D .y1; : : : ; yn/ 2 R
n. In particular, we have

'.x/ D c1'1.x/C � � � C cn'n.x/

for all x 2 X. ut

14See Lemma 3.12 below.
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We recall from Proposition 2.24 (p. 82) that in a normed space every weakly
convergent sequence is bounded. This also follows from our next result15:

Proposition 3.13 If is a X normed space, then X and X� have the same bounded
sets.

Proof If A is bounded in X, then '.A/ is bounded for every ' 2 X0 by the
characterization of continuity (p. 100), so that A is bounded for X� by definition.

For the proof of the converse we consider the linear isometry J W X ! X00 of
Corollary 2.21 (p. 79). If A is bounded for X� , then J.A/ is pointwise bounded
because

f.Jx/.'/ W x 2 Ag D f'.x/ W x 2 Ag � R

is bounded for all ' 2 X0. Applying the Banach–Steinhaus theorem (p. 81) we
obtain that J.A/ is bounded in X00. Since J is an isometry, this is equivalent to the
boundedness of A in X. ut

We end this section by proving a famous variant of Lemma 3.12, of fundamental
importance in convex analysis and linear programming.16 We denote the usual scalar
product of Rn by .x; y/.

Proposition 3.14 (Farkas–Minkowski)17 Given a; a1; : : : ; ak 2 R
n, the inequality

.a; x/ � 0 is a logical consequence of the system of inequalities .a1; x/ �
0; : : : ; .ak; x/ � 0 ” a is a nonnegative linear combination of a1; : : : ; ak.

In the following elementary proof we avoid the use of topology. For this we give
an algebraic proof of the following lemma where we denote by K the convex cone
generated by a1; : : : ; ak, i.e., the set of linear combinations of these vectors with
nonnegative coefficients.

Lemma 3.15 The distance d.a;K/ is attained by some point b 2 K for each fixed
a 2 R

n.

Remarks

• The point b is clearly unique but we will not need this here.
• The lemma implies that K is closed but we will not need this explicitly either.

Using the lemma we can quickly prove the nontrivial part of the proposition: if
.a; x/ � 0 is a logical consequence of the system

.a1; x/ � 0; : : : ; .ak; x/ � 0;

then a 2 K.

15The proposition holds in all locally convex spaces: see, e.g., Reed–Simon [367], Theorem V. 23.
16See, e.g., Dantzig [94], Rockafellar [398], Vajda [462].
17Minkowski [323] (pp. 39–45), Farkas [135]. We follow Komornik [258].
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First we observe that

.aj; a � b/ � 0; j D 1; : : : ; k (3.2)

and

.�b; a � b/ � 0: (3.3)

For otherwise we would have for every sufficiently small t 2 .0; 1/ the following
relations:

ja � .b C taj/j2 D j.a � b/� tajj2

D ja � bj2 � t
�
2.aj; a � b/� tjajj2

	

< ja � bj2;

and

ja � .b � tb/j2 D j.a � b/C tbj2

D ja � bj2 � t
�
2.�b; a � b/� tjbj2	

< ja � bj2:

This would contradict the choice of b because

b C taj 2 K and b � tb D .1 � t/b 2 K:

By our assumption (3.2) implies .a; a � b/ � 0. Combining this with (3.3) we
obtain .a � b; a � b/ � 0. Hence a D b, and therefore a 2 K.

Proof of the lemma The case k D 1 is obvious. Let k � 2, and assume by induction
that for each j D 1; : : : ; k, the convex cone Kj generated by the vectors

a1; : : : ; aj�1; ajC1; : : : ; ak

has a closest point bj from a. Now we distinguish three cases.

(a) If a 2 K, then we may choose b WD a.
(b) If a 2 Vect fa1; : : : ; akg n K, then let b be at a minimal distance from a among

b1. . . , bk. We show that ja � bj � ja � cj for all c 2 K.
The segment Œa; c� meets one of the sides Ki of the cone K. More precisely,

let

a D ˛1a1 C � � � C ˛kak and c D �1a1 C � � � C �kak
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with �1; : : : ; �k � 0, and set

t WD min
˚
�j=.�j � ˛j/ W ˛j < 0

�
:

(There is at least one such j, because a … K.) Then 0 � t < 1, and the minimum
is attained for some i. Consequently,

t˛j C .1 � t/�j � 0 for every j;

and

t˛i C .1 � t/�i D 0:

Now ta C .1 � t/c 2 Ki, so that

ja � bj � ja � bij � ja � .ta C .1 � t/c/j D .1 � t/ja � cj � ja � cj:

(c) If a … L WD Vect fa1; : : : ; akg, then we apply the above results to the orthogonal
projection a0 of a onto L: there exists a b at a minimal distance from a0 in K.
Since

ja � bj2 D ja � a0j2 C ja0 � bj2 � ja � a0j2 C ja0 � cj2 D ja � cj2

for all c 2 K, b is also at a minimal distance from a in K.

ut

3.5 * Weak Star Topology: Theorems of Banach–Alaoglu
and Goldstein

Until now the dual X0 of a locally convex space X was not endowed with any
topology. Now we introduce in X0 the locally convex topology �.X0;X/ defined
by the seminorms

' 7! j'.x/j

where x runs over X.
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Definition The topology �.X0;X/ is called the weak star topology of X0.18 The
space .X0; �.X0;X// is also denoted briefly by X0

��. The corresponding weak star

convergence is denoted by 'n
�
* '.

It follows from the definitions that

'n
�
* ' ” 'n.x/ ! '.x/ for all x 2 X

for both sequences and nets.
Before giving some examples, we formulate the dual of Lemma 2.25 (p. 83); its

proof is a simple adaptation of the proof of Lemma 1.20 (p. 33).

Lemma 3.16 Let .'k/ be a bounded sequence or net in the dual X0 of some normed
space X.

(a) For any given ' 2 X0 the set

fx 2 X W 'k.x/ ! '.x/g

is a closed subspace of X.
(b) The set

fx 2 X W .'k.x// converges in Rg

is a closed subspace of X.

Examples (Compare with the examples on pages 83 and 86)

• Let .'n/ 2 `1, and let k 7! .'k
n/ be a bounded sequence or net in `1. Lemmas 2.16

(p. 73) and 3.16 yield the following characterization of weak star convergence in
.c0/0 D `1:

.'k
n/

�
* .'n/ ” 'k

n ! 'n for each n:

For example, en
�
* 0 in .c0/0 D `1.

• We obtain the same characterization for the weak star convergence of bounded
sequences or nets in .`1/0 D `1. For example,

e1 C � � � C en
�
* a D .1; 1; : : :/:

Using the weak star topology we may also complete Corollaries 1.6 and 2.9
(pp. 15 and 64) on the characterization of generated closed subspaces. Similarly to
the preceding chapter we define the orthogonal complements of D � X and	 � X0

18Banach [22].
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by the formulas

D? WD ˚
' 2 X0 W '.x/ D 0 for all x 2 D

�

and

	? WD fx 2 X W '.x/ D 0 for all ' 2 	g :

Let us establish the basic properties of the weak star topology. For simplicity we
consider only separated spaces.

Proposition 3.17 Let X be a separated locally convex space.

(a) The weak star topology of X0 is separated.
(b) The formula .Jx/.'/ WD '.x/ defines a linear bijection between X and .X0

��/0.
(c) If 	 � X0, then .	?/? is the weak star closed subspace generated by 	.

Proof

(a) This follows from the definition.
(b) The continuity of the linear functionals Jx W X0

�� ! R follows from the
definition of the weak star topology. The linearity of J is obvious, its injectivity
follows from Corollary 3.8 (p. 125). For the proof of the surjectivity fix an
arbitrary functional ˆ 2 .X0

��/0. By the definition of its continuity there exist
x1; : : : ; xn 2 X and a number " > 0 satisfying

' 2 X0 and j'.x1/j < "; : : : ; j'.xn/j < " H) jˆ.'/j < 1:

We may thus apply Lemma 3.12 (p. 132) to Jx1; : : : ; Jxn; ˆ 2 X0: we get

ˆ D c1Jx1 C � � � C cnJxn D J.c1x1 C � � � C cnxn/

with suitable numbers c1; : : : ; cn.
(c) Let us denote temporarily by M the weak star closure of Vect.	/. The inclusion

M � .	?/? is obtained easily, as in Corollary 1.6 (p. 15). For the converse we
fix ' 2 X0 n M arbitrarily. We have to show that ' … .	?/?.

Applying Theorem 3.5 (c) (p. 124) and using property (b) above, there exist
x 2 X and numbers c1 < c2 such that  .x/ � c1 for all  2 M, and '.x/ � c2.
Since f .x/ W  2 Mg is a subspace of R, hence  .x/ D 0 for all  2 M, and
therefore '.x/ > 0. Hence x 2 	? and ' … .	?/?.

ut
In the rest of this section we consider only normed spaces.

Remark For a normed space X we may define three natural topologies on X0:
the usual norm topology, which we will denote here by ˇ.X0;X/, the weak star
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topology �.X0;X/ and the weak topology �.X0;X00/. Since X may be identified with
a subspace of X00 via the map J W X ! X00 of Corollary 2.21 (p. 79), the weak star
topology is coarser than the weak topology. We thus have the inclusions

�.X0;X/ � �.X0;X00/ � ˇ.X0;X/:

They all coincide in finite dimensions, but they usually differ in infinite dimen-
sions.19

Proposition 3.18 If X is a Banach space, then the same sets are bounded in the
three topologies.

Proof In a coarser locally convex topology we have fewer (or the same) continuous
seminorms, and hence the same (or more) sets are bounded.

It remains to show that a weak star bounded set 	 � X0 is also norm
bounded. This follows by applying the Banach–Steinhaus theorem because the X0

��-
boundedness of 	 is equivalent by definition to its pointwise boundedness on X. ut
Example It follows from the proposition that in the dual X0 of a Banach space every
weak star convergent sequence is bounded.

This may fail for non-complete normed spaces X. Consider for example the
subspace X of `2 formed by the sequences having at most finitely many non-zero
elements. The formula

'n.x/ WD nxn

defines a sequence .'n/ � X0 for which 'n
�
* 0 and k'nk ! 1.

Next we establish a new variant of Theorems 1.21 and 2.30 (pp. 33 and 90):

Proposition 3.19 (Theorem of choice)20 If X is a separable normed space, then
every bounded sequence .'k/ � X0 has a weak star convergent subsequence.

Proof Fix a dense sequence .xn/ in X. Applying Cantor’s diagonal method, similarly
to the proofs of Theorems 1.21 and 2.30 we obtain a subsequence . k/ of .'k/ such
that the numerical sequences k 7!  k.xn/ converge for each fixed n.

Since .'k/ is bounded and .xn/ is dense in X, by Lemma 3.16 the numerical
sequence k 7!  k.x/ converges for each x 2 X, and21 the formula

'.x/ WD lim k.x/

19More precisely, �.X0;X00/ is strictly coarser than ˇ.X0;X/, and one can show that �.X0;X/ D
�.X0;X00/ ” X is reflexive.
20Banach [22].
21Similarly to the proof of Theorem 2.30.
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defines a continuous linear functional ' 2 X0. Then  k
�
* ' by the definition of

weak star convergence. ut
Example The separability condition cannot be omitted. For example, the sequence
of functionals defined by the formula

'k.x/ WD xk; x D .xn/ 2 `1; k D 1; 2; : : :

belongs to the closed unit sphere of .`1/0, and it has no weak star convergent
subsequence.

Indeed, for any given subsequence .'km/ we may consider a vector x D .xn/ 2
`1 satisfying xkm D .�1/m for all m. Then the numbers 'km.x/ D .�1/m form a
divergent sequence, so that .'km.x// is not weak star convergent.

However, we may remove the separability assumption by considering nets
instead of sequences: part (b) of the following theorem implies that every bounded
net has a weak star convergent subnet in X0. This compactness property is perhaps
the most important and useful feature of the weak star topology, because it can be
used to obtain existence theorems.22

Theorem 3.20 Let X be a normed space, and denote by B, B0, B00 the closed unit
balls of X, X0, X00.

(a) (Banach–Alaoglu)23 B0 is compact in X0 with respect to the weak star topology
�.X0;X/.

(b) (Goldstine)24 J.B/ is dense in B00, and J.X/ is dense in X00 with respect to the
weak star topology �.X00;X0/.

Proof

(a) As a topological space, X0
�� is a subspace of F.X/. In view of Proposition 3.3

(p. 122) it is sufficient to show that B0 is bounded and closed in F.X/.
Since j'.x/j � kxk for all ' 2 B0, B0 is pointwise bounded on X, and hence

bounded in F.X/.
Now consider a net .'n/ in B0, converging to some ' in F.X/.25 We have to

show that ' 2 B0.

22See, e.g., Lions [304] for many applications.
23Banach [24], Alaoglu [3].
24Goldstine [171].
25We could avoid the use of nets, but the proof becomes less transparent: see, e.g., Rudin [406] or
Brezis [65].
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For any given x; y 2 X and � 2 R, letting n ! 1 in the relations

'n.x C y/ D 'n.x/C 'n.y/; 'n.�x/ D �'n.x/ and j'n.x/j � kxk
we obtain that ' is linear, and that j'.x/j � kxk for all x. In other words, ' 2 B0.

(b) For the first result we show that if ˆ 2 X00 does not belong to the �.X00;X0/-
closure K of J.B/ � X00, then kˆk > 1. Since K is a non-empty closed convex
set for this topology, by Theorem 3.5 (p. 124) there exist ' 2 X0 and c1; c2 2 R

satisfying

'.x/ � c1 < c2 � ˆ.'/

for all x 2 B. Hence k'k < ˆ.'/, and therefore kˆk > 1.

The second result follows from the first one by homogeneity. ut
Example Combining the Banach–Alaoglu and Krein–Milman theorems (p. 129) we
obtain that the closed unit ball of every dual space has an extremal point. Since this
property is not true for c0 (see pp. 126), c0 is not isomorphic to X0 for any normed
space X.

Remark We mention the following equivalences26:

• X is separable ” the restriction of �.X0;X/ to B0 is metrizable;
• X0 is separable ” the restriction of �.X;X0/ to B is metrizable.

Using the first direct implication we may also deduce Proposition 3.19 from the
Banach–Alaoglu theorem.

3.6 * Reflexive Spaces: Theorems of Kakutani
and Eberlein–Šmulian

Using the weak topology instead of weak convergence, we may complete the results
of Sects. 2.6–2.7 by giving new characterizations of reflexivity:

Theorem 3.21 For a normed space X the following properties are equivalent:

(a) X is reflexive;
(b) every bounded sequence has a weakly convergent subsequence;
(c) the closed unit ball of X is weakly compact.27

26See, e.g., Dunford–Schwartz [117]. The direct implications H) are due to Banach [24].
27Banach [24], Bourbaki [64], Kakutani [239], Šmulian [424, 425], Eberlein [118]. See also
Dunford–Schwartz [117], Whitley [486], Rolewicz [400].
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For the proof of the implication (b) H) (c) we will use the following simple
lemma:

Lemma 3.22 For any given finite-dimensional subspace F � X00 there exist vectors
'1; : : : ; 'n 2 X0 of norm one such that

max
1�m�n

jˆ.'m/j � 1

2
kˆk for all ˆ 2 F:

Proof Since the unit sphere S of F is compact, there exist ˆ1; : : : ; ˆn 2 S such that

min
1�m�n

kˆ�ˆmk � 1

4

for all ˆ 2 S. Fix 'm 2 X0 of norm one with jˆm.'m/j � 3
4

for each m. Then for
each ˆ 2 S, choosing m such that kˆ�ˆmk � 1

4
, we have the estimate

jˆ.'m/j � jˆm.'m/j � j.ˆ �ˆm/.'m/j � 3

4
� 1

4
D 1

2
:

The lemma hence follows by homogeneity. ut
Proof of the theorem (a) H) (b) This is Theorem 2.30, p. 90.

(b) H) (c)28 We use the notations of Theorem 3.20. The weak compactness of
B is equivalent by definition to the weak star compactness of J.B/. Since J.B/ � B00
and B00 is weak star compact by Theorem 3.20 (b), it is sufficient to show that J.B/
is weak star closed.

Since J W X ! X00 is a linear isometry, the weak closedness of B implies that the
weak star closure J.B/ of J.B/ satisfies

J.B/\ J.X/ D J.B/:

The weak star closedness of J.B/ will thus follow if we prove that J.B/ � J.X/.
Fix ˆ0 2 J.B/ arbitrarily. We are going to construct a sequence .nk/ of positive

integers, a sequence .'n/ � X0 of norm one functionals, and a sequence of points
.xk/ � B satisfying the following two conditions for k D 1; 2; : : : W

max
1�n�nk

jˆ.'n/j � 1

2
kˆk for all ˆ 2 Vect fˆ0; Jx1; : : : ; Jxk�1g I (3.4)

max
1�n�nk

j.ˆ0 � Jxk/.'n/j < 1

k
: (3.5)

28We follow Whitley [486].
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For k D 1, (3.4) is satisfied with n1 D 1 if we choose a functional '1 2 X0 of
norm one, satisfying jˆ.'1/j � 1

2
kˆk. Then we may choose x1 2 B satisfying (3.5)

by applying the definition of ˆ0 2 J.B/.
If the sequences are defined until some nk�1, 'nk�1 and ak�1, then applying

Lemma 3.22 we may choose nk > nk�1 and functionals 'n 2 X0 of norm one for
nk�1 < n � nk so as to satisfy (3.4), and then we may choose xk 2 B satisfying (3.5)
by applying the definition of ˆ0 2 J.B/.

There exists a weakly convergent subsequence xk` * x 2 B by our assumption.
Then we deduce from (3.4) by continuity that

max
1�n<1 j.ˆ0 � Jx/.'n/j � 1

2
kˆ0 � Jxk :

It remains to prove that .ˆ0 � Jx/.'n/ D 0 for all n. Indeed, then we will deduce
from the last inequality that kˆ0 � Jxk D 0, i.e., ˆ0 D Jx 2 J.X/.

For any fixed index n we deduce from (3.5) that

j.ˆ0 � Jx/.'n/j D j.ˆ0 � Jxk` /.'n/C 'n.xk` � x/j < 1

k`
C j'n.xk` � x/j

for all ` D 1; 2; : : : : Letting ` ! 1 we conclude .ˆ0 � Jx/.'n/ D 0 as required.
(c) H) (a) If J.B/ is weak star compact, then it is also closed in B00 for this

topology. Since J.B/ is also dense in B00 with respect to this topology by Goldstein’s
theorem, we must have J.B/ D B00. Hence J.X/ D X00, i.e., X is reflexive.

ut
*Remarks Let X be a reflexive space.

• According to property (c) the theorem of choice 2.30 (p. 90) holds for nets as
well.

• In the weak topology of X we have the equivalence29

compact ” bounded and closed.

Indeed, the implication H) holds in every separated locally convex space. For
the converse let A be a weakly bounded and weakly closed set in X. Then A is
also norm bounded (Proposition 3.13, p. 133), and therefore a subset of some
closed ball K. Since B is weakly compact, the same holds for K by homogeneity,
and then for its weakly closed subset A as well.

• Using the previous remark and applying the Tukey–Klee theorem (p. 124) for X�
we obtain a new proof of Proposition 2.31 (p. 91) on the separation of disjoint,
non-empty, convex, bounded and closed sets in reflexive spaces.

29We recall once again that this is false in every infinite-dimensional norm topology.
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• Using the same remark and applying the Krein–Milman theorem (p. 129) for X�
we obtain that in a reflexive space every non-empty, convex, bounded and closed
set is the convex hull of its extremal points.

We end this section by establishing two further properties of reflexive spaces:

Proposition 3.23 (Pettis)30 Let X be a Banach space.

(a) If X is reflexive, then its closed subspaces are also reflexive.
(b) X is reflexive ” X0 is reflexive.

Proof Let Y be a closed subspace of X and denote the closed unit balls of X, Y, X0
by BX , BY , BX0 .

(a) Let Y be a closed subspace of X. In view of the preceding theorem, it is sufficient
to prove that every bounded sequence .yn/ � Y has a weakly convergent
subsequence in Y.

Since X is reflexive, .yn/ has a weakly convergent subsequence .ynk/ in X,
i.e, there exists an a 2 X such that '.ynk/ ! '.a/ for all ' 2 X0.

Since the closed subspace Y is also weakly closed in X, we have a 2 Y.
Furthermore, since each  2 Y 0 may be extended to a functional ' 2 X0 by the
Helly–Hahn–Banach theorem, it follows that  .ynk / !  .a/ for all  2 Y 0. In
other words, ynk * a in Y.

(b) The closed unit ball B0 of X0 is �.X0;X/-compact by the Banach–Alaoglu
theorem. If X is reflexive, then the topologies �.X0;X/ and �.X0;X00/ coincide,
so that B0 is also �.X0;X00/-compact. Applying the preceding theorem we
conclude that X0 is reflexive.

If X0 is reflexive, then X00 is reflexive by the just proved result. Using the
linear isometry J W X ! X00 of Proposition 2.28 (p. 87), J.X/ is reflexive, as a
complete and therefore closed subspace of X00. Since X and J.X/ are isomorphic,
we conclude that X is reflexive.

ut
Examples

• We have proved in Sect. 2.6 (p. 87) separately that none of c0, `1 and `1 is
reflexive. Since31 .c0/0 D `1 and .`1/0 D `1, these results follow from one
another by property (b) above.

• Since c0 is a closed subspace of `1 the non-reflexivity of c0 directly implies the
non-reflexivity of `1.

30Pettis [357]. See Dunford and Schwartz [117] for more direct proofs.
31See Proposition 2.15, p. 73.
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3.7 * Topological Vector Spaces

At first sight the following notion is more natural than that of locally convex spaces:

Definition By a topological vector space we mean a vector space endowed with a
topology T for which the operations

X � X 3 .x; y/ 7! x C y 2 X and R� 3 .�; x/ 7! �x 2 X

are continuous.

Remark It follows from the definition that the topology T is invariant for transla-
tions and multiplications by scalars: if A is an open, closed or compact set, then
A C x and �A are also open, closed or compact for all x 2 X and � 2 R.

Every locally convex space is a topological vector space by Proposition 3.2 (d)
(p. 121).

The following elementary inequality will allow us to give interesting examples
of non-locally convex topological vector spaces.

Lemma 3.24 If x, y are nonnegative real numbers and 0 < p � 1, then

.x C y/p � xp C yp:

Proof Consider in R
2 the norm k�k1=p and apply the triangle inequality for the

vectors a WD .xp; 0/ and b WD .0; yp/:

.x C y/p D ka C bk1=p � kak1=p C kbk1=p D xp C yp:

ut
Example Given 0 < p � 1 we denote by `p the set of real sequences x D .xn/

satisfying
P jxnjp < 1. By the preceding lemma this is a vector space, and the

formula

dp.x; y/ WD
1X

nD1
jxn � ynjp

defines a metric on `p. For the corresponding topology `p is a topological vector
space.32 For p D 1 we obtain the already known Banach space `1.

32We will prove a more general theorem later in Proposition 10.5, p. 348.
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Now we may explain the terminology locally convex:

Proposition 3.25 (Kolmogorov)33 A topological vector space is locally convex
” every 0-neighborhood contains a convex 0-neighborhood.

Proof Every locally convex space has this property because the balls Bp;r.0/ are
convex. Conversely, assume that a topological vector space X has this property, and
consider an arbitrary 0-neighborhood V . It suffices to find a continuous seminorm p
satisfying Bp;1.0/ � V .

Let U � V be a convex 0-neighborhood, then �U and thus W WD �U \U is also
a convex 0-neighborhood. One can readily verify that the formula34

p.x/ WD inf ft > 0 W x 2 tWg
defines a seminorm on X, satisfying

Bp;1.0/ � W � Bp;1.0/:

In particular, Bp;1.0/ � V .
We show that p is continuous. For any given a 2 X and r > 0, a C rW is a

neighborhood of a. If b 2 a C rW, then r�1.b � a/ 2 Bp;1.0/. Consequently,

jp.b/� p.a/j � p.b � a/ � r:

ut
Example If 0 < p < 1, then `p is not locally convex because the unit ball

B1.0/ WD ˚
x 2 `p W dp.0; x/ < 1

�

contains no convex 0-neighborhood. Indeed, if K is a convex 0-neighborhood, then
there exists a sufficiently small r > 0 such that B2r.0/ � K. Then the relations

r1=pen 2 Br.0/ � B2r.0/ � K

hold for all n D 1; 2; : : : ; and hence

zn WD r1=p e1 C � � � C en

n
2 K

by the convexity of K. Since

dp.0; zn/ D rn1�p ! 1;

K cannot belong to B1.0/.

33Kolmogorov [253].
34Minkowski [325], pp. 131–132.
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Remarks The non-locally convex topological vector spaces may have surprising
pathological properties:

• There exist infinite-dimensional separated topological vector spaces X, in which
¿ and X are the only convex open sets.35 In these spaces there are no closed
hyperplanes because X0 D f0g.

• Some separated topological vector spaces contain non-empty convex compact
sets having no extremal points.36

3.8 Exercises

Exercise 3.1 Let B be a set in a normed space X. Prove that the following conditions
are equivalent:

(i) B is bounded;
(ii) for every neighborhood V of 0 there exists an r > 0 such that r0B � V for all

r0 2 .0; r/;
(iii) for every sequence .xn/ � B and for every real sequence rn ! 0 we have

rnxn ! 0 in X.

Exercise 3.2 Prove that the conditions (i) and (ii) of the preceding exercise are
equivalent in every topological vector space.

Exercise 3.3 We recall that the formula

'y.x/ WD
1X

nD1
xnyn

defines a functional 'y 2 c0
0 for each y D .yn/ 2 `1, and that the linear map y 7! 'y

is a bijection between `1 and c0
0.

(i) Prove that this result remains valid if we change c0
0 to c0, where c is the subspace

of `1 formed by the convergent sequences.
(ii) In view of (i) we may define two weak star topologies on `1. Are they the same?

Exercise 3.4 Prove the equivalences mentioned in the last remark of Sect. 3.5,
p. 140.

Exercise 3.5 We recall that the formula

'y.x/ WD
1X

nD1
xnyn

35We will encounter some examples at the end of Sects. 10.2 and 10.3, pp. 350 and 355.
36Roberts [395, 396]. See also the footnote on p. 349.
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defines a functional 'y 2 .`1/0 for each y D .yn/ 2 `1, and that the linear map
y 7! 'y is a bijection between `1 and .`1/0.

(i) Prove that this result remains valid if we change .`1/0 to .`p/0 with 0 < p < 1.
(ii) In view of (a) we may define a weak star topology on `1 for each 0 < p � 1.

Do they coincide?

Exercise 3.6 Does the Krein–Milman theorem remain valid in `p for 0 < p < 1?

Exercise 3.7 Let us denote by `0 the vector space of the sequences x D .xn/ � R

having at most finitely many non-zero elements. For x; y 2 `0 we denote by d0.x; y/
the number of indices n such that xn ¤ yn.

(i) Show that d0 is a metric on `0.
(ii) Show that d0.x; y/ D limp!0 dp.x; y/ for all x; y 2 `0.

(iii) Identify the topology associated with the metric d0.x; y/.
(iv) Prove that every linear functional is continuous on `0.
(v) Is `0 a topological vector space?

Exercise 3.8 Given 1 � p < 1, we recall from Exercise 2.2 (p. 113) that

`p
w WD \q>p`

q

is strictly bigger than `p.
The family of norms k�kq (p < q � 1) defines a locally convex topology on `p

w.
Is it normable?

Exercise 3.9 Generalize Exercise 2.2 for 0 � p < q � 1.

Exercise 3.10 Let 0 � p < 1.

(i) Prove that

`p
w WD \q>p`

q

is a topological vector space for the family of metrics dq, q 2 . p; 1�.
(ii) Is it locally convex?



Part II
The Lebesgue Integral

Integration (in geometrical form) goes back to Archimedes [6], but he had practi-
cally no followers for almost two millennia. The Newton–Leibniz formula revolu-
tionized the discipline in the seventeenth century, and led to the solution of a great
number of geometrical and mechanical problems. A solid theoretical foundation
became indispensable, especially after the publication of Fourier’s work on heat
propagation in [148].

Riemann [371] extended Cauchy’s integral [80] to a class of not necessarily con-
tinuous functions. Subsequently much research was devoted to the construction of
more general integrals and to the simplification of their manipulation. Following the
works of Harnack [192, 194], Hankel [190], du Bois-Reymond [52], Jordan [230],
Stolz [437] and Cantor [74], Peano [353] introduced the finitely additive measures,
based on finite covers by intervals or rectangles.

Borel [59] discovered that countable covers lead to better, �-additive measures.
Baire [16, 17] enlarged the class of continuous functions by the repeated operation of
pointwise limits of function sequences. Motivated by the works of Borel and Baire,
Lebesgue [287, 288] defined a very general integral. He obtained a much wider class
of integrable functions, and at the same time simpler limit theorems than before. He
also greatly extended the validity of the Newton–Leibniz formula.

The extraordinary strength of the Lebesgue integral was demonstrated by
subsequent important discoveries of Vitali, Beppo Levi, Fatou, Riesz, Fischer,
Fréchet, Fubini (1905–1910) and others. These works also led to the development
of Functional Analysis. The Lebesgue integral later allowed Kolmogorov to give a
solid foundation of probability theory [252] and Sobolev to introduce new function
spaces for the successful investigation of partial differential equations [426, 427].

F. Riesz gave nice historical accounts in two papers [390, 391]; for more complete
surveys we refer to [61, 115, 198, 360–362].

More than a half-century after its publication, the monograph of Riesz and Sz.-
Nagy [394] contains still perhaps the most elegant presentation of this theory. We
follow this approach, with some minor subsequent improvements. Further results
and exercises may be found in the following works: [68, 92, 188, 270, 351, 403,
406, 409, 451].



Chapter 4
* Monotone Functions

I see it, but I don’t believe it!
Letter of G. Cantor to Dedekind

No one shall expel us from the Paradise that Cantor has created
for us.

D. Hilbert

In this chapter the letter I denotes a non-degenerate interval (having more than one
point).

4.1 Continuity: Countable Sets

A monotone function f W I ! R has one-sided limits in each interior point a, and f
is continuous at a ” they are equal. (See Fig. 4.1.)

What can we say about the set of points of continuity? In order to answer this
question we recall the following notion:

Definition A set A is countable1 if there exists a sequence .an/ containing each
element of A (at least once).2

Remarks

• The finite sets are countable.3

• If A is an infinite countable set, then there exists a sequence .an/ � A containing
each element of A exactly once.4

• The image of a countable set is also countable. More precisely, if g W A ! B is a
surjective function and A is countable, then B is also countable.

• If g W A ! B is an injective function and B is countable, then A is also countable.

1Cantor [71].
2Vilenkin’s books [467, 468] give a very pleasant introduction to infinite sets.
3The sequence .an/ may contain points outside A.
4We may take a suitable subsequence of the sequence in the definition.

© Springer-Verlag London 2016
V. Komornik, Lectures on Functional Analysis and the Lebesgue Integral,
Universitext, DOI 10.1007/978-1-4471-6811-9_4
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Fig. 4.1 Graph of a
monotone function

Examples

• The number sets N, Z and Q are countable.
• A set P of pairwise disjoint non-degenerate intervals is always countable. Indeed,

selecting a rational number in each interval we get an injective map g W P ! Q.

The last example motivates the following terminology:

Definition A set system or set sequence is disjoint if its elements are pairwise
disjoint.

Let us state the basic properties of countable sets. The last result contains a
famous theorem of Cantor5: the set R of real numbers is uncountable.

Proposition 4.1

(a) A subset of a countable set is also countable.
(b) The union of countably many countable sets is also countable.
(c) The non-degenerate intervals are uncountable.

Proof

(a) If B � A, then the formula f .x/ WD x defines an injective function f W B ! A.
Since A is countable, B is countable, too.

(b) Let .An/ be a countable set sequence. Fix for each n a sequence an1; an2; : : :

containing the elements of An. If p1; p2; : : : is the sequence of prime numbers,
then the following formula defines a sequence .an/ containing the elements of

5Cantor [70], pp. 117–118.
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[An:

am WD
(

ank if m D . pn/
k for some n and k,

0 otherwise.

(c) We show that no sequence .an/ contains all points of a non-degenerate interval
I. First we choose a non-degenerate compact subinterval I1 � I such that a1 …
I1. Then we choose a non-degenerate compact subinterval I1 � I such that
a2 … I2. Continuing by induction we obtain a non-increasing sequence of non-
degenerate compact intervals

I � I1 � I2 � � � �

such that an … In for every n. By Cantor’s intersection theorem these intervals
have a common point x. Then x 2 I and x does not belong to the sequence .an/.

ut
Now we return to the study of monotone functions.

Proposition 4.2

(a) The set of discontinuity of a monotone function is countable.
(b) Every countable set of real numbers is the set of discontinuity of a suitable

monotone function.

Proof

(a) Multiplying our monotone function f W I ! R by �1 if necessary, we may
assume that it is non-decreasing. Let A denote the set of interior points a of I
where f is not continuous. Since f is non-decreasing, the non-degenerate open
intervals

. f .a � 0/; f .a C 0//; a 2 A

are pairwise disjoint. By a preceding remark this implies that A is countable.
The set of discontinuity of f has at most two more points (the endpoints of I),
hence it is also countable.

(b) For the empty set we may choose any constant function. Otherwise, denoting
by .an/ the (finite or infinite) sequence of the points of the given countable set,
the sum of the uniformly convergent series

f .x/ WD
X

fn W an<xg
2�n

is a suitable function f W R ! R.

ut
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4.2 Differentiability: Null Sets

In this section we investigate the differentiability of monotone functions. The
following notion will be very useful:

Definition A set A of real numbers is a null set6 if for each fixed " > 0 it may be
covered by a set of intervals of total length � ":

A �
[

Ik and
X

jIkj � ":

Here and in the sequel we denote by jIj the length of an interval I.

Remarks

• A set of intervals of finite total length L is necessarily countable. Indeed, it
contains less then nL intervals of length � 1=n for each n D 1; 2; : : : ; and the
union of countably many finite sets is countable.

• If A is a null set, then there exists an interval sequence .Jm/ of finite total length
such that each point of A is covered infinitely many times. Indeed, we may cover
A for each n D 1; 2; : : : by an interval set .Ink/ of total length < 2�n".7 We
conclude by arranging all the intervals Ink into a sequence .Jm/.

Conversely, the existence of such a sequence .Jm/ implies that A is a null set.
Indeed, for any fixed " > 0 there exists a large integer N such that

X

m>N

jJmj < ";

and the intervals JmC1; JmC2; : : : still cover A.

Examples

• (Harnack)8 Every countable set fang of real numbers is a null set: for each " > 0:
it is covered by the intervals

.an � "3�n; an C "3�n/

of total length ".
• (Cantor’s ternary set)9 There exist uncountable null sets. Let us remove from

the unit segment Œ0; 1� its middle third, i.e., the open interval .1=3; 2=3/. There

6Hankel [190] (p. 86), Ascoli [11], Smith [423] (p. 150), du Bois-Reymond [52], Harnack [194].
7By slightly enlarging them we may assume that all the intervals are open.
8Harnack [194].
9Smith [423], Cantor [72] (p. 207). Many analogous sets appear “naturally” in combinatorial
number theory, see, e.g., Erdős–Joó–Komornik [127], Komornik–Loreti [260], de Vries–Komornik
[101], Komornik–Kong–Li [259], de Vries–Komornik–Loreti [102].
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Fig. 4.2 The sets Cn

10

C0

C1

C2

1

remain two disjoint segments Œ0; 1=3� and Œ2=3; 1� of total length 2=3. Next
remove from each of them their middle thirds: there remain four disjoint
segments of total length .2=3/2; see Fig. 4.2. Continuing by induction, after n
steps we obtain a set Cn, which is the union of 2n disjoint compact segments of
length 3�n each. The intersection C of this decreasing set sequence is a compact
set, called Cantor’s ternary set.

It is a null set. Indeed, for each " > 0 there is a large integer n such that
.2=3/n < "; then the 2n disjoint segments of Cn form a finite cover of C with
total length D .2=3/n < ".

By construction C is formed by the real numbers x that may be written in base
3 in the form

x D
1X

iD1

ci

3i

with .ci/ � f0; 2g, i.e., without using the digit ci D 1. Since all sequences .ci/ �
f0; 2g occur here, the formula

1X

iD1

ci

3i
7!

1X

iD1

ci

2iC1

defines a map of C onto Œ0; 1�. The latter set is uncountable, hence C is also
uncountable.

• It follows from our next proposition that R is not a null set.

Let us resume the basic properties of null sets.

Proposition 4.3

(a) The empty set is a null set.
(b) The subsets of a null set are null sets.
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(c) The union of countably many null sets is a null set.
(d) (Borel)10 If an interval sequence .Ik/ covers an interval I then jIj � P jIkj.

Consequently, non-degenerate intervals are not null sets.

Proof (a) and (b) are obvious.

(c) Given " > 0 arbitrarily, we cover the null set An by an interval set .Ink/ of total
length � "2�n, n D 1; 2; : : : : Then the union of all these intervals form a cover
of [An of total length � ".

(d) We may assume that I is non-degenerate. First we consider the case where
I D Œa; b� is compact and the intervals Ik are open. Let .a1; b1/ be the first
interval in .Ik/ that contains the point a. Continuing by induction, if bn � b for
some n � 1, then let .anC1; bnC1/ be the first interval in .Ik/ that contains the
point bn.

The construction stops after a finite number of steps because bN > b for some
N. For otherwise the bounded sequence .bn/ would converge to some x � b, and
we would have x 2 I` for some `. Since I` is open, there would exist an index m
such that bn 2 I` for all n � m. By construction this would mean that the intervals
.an; bn/ would precede I` in the sequence .Ik/ for all n > m. But this is absurd
because b1 < b2 < � � � by construction, so that the intervals .an; bn/ are pairwise
distinct.

It follows that

jIj D b � a < bN � a1 D
NX

iD2
.bi � bi�1/C b1 � a1 �

NX

iD1
.bi � ai/ �

X
jIkj:

In the general case we fix a number ˛ > 1, a compact subinterval J � I of length
jIj=˛, and for each n an open interval Jn � In of length ˛jInj. The sequence .Jn/

covers J, so that
P jJnj � jJj by the first part of the proof. In other words we have

˛
P jInj � jIj=˛, and we conclude by letting ˛ ! 1. ut
Let us introduce a convenient terminology:

Definition A property holds almost everywhere11 (shortly a.e.) if it holds outside
a null set.

10Borel [59]. His proof was based on a construction of Heine [200] (p. 188).
11Lebesgue [293] (p. 7).
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We may now state a deep theorem:

Theorem 4.4

(a) (Lebesgue)12 Every monotone function f W I ! R is a.e. differentiable.
(b) For each null set A there exists a non-decreasing, continuous function f W

R ! R that is non-differentiable at the points of A.

Part (a) of this theorem will be proved in the next two sections.

*Proof of part (b) Choose a sequence .Jm/ of open intervals, of finite total length,
and covering each point of A infinitely many times. Denoting the length of the
interval Jm \ .�1; x/ by fm.x/, the formula f WD P

fm defines a non-decreasing
function f W R ! R.

Since the series is uniformly convergent and each fm is continuous, f is also
continuous.

We complete the proof by establishing the relation

lim
h&a

f .a C h/� f .a/

h
D 1

for each a 2 A.
Fix an arbitrarily large number N, and then choose a sufficiently small number

ı > 0 such that at least N intervals Jm contain Œa; a C ı�, say Jm1 ; : : : ; JmN . Then

f .a C h/� f .a/ �
NX

kD1
fmk .a C h/� fmk.a/ D Nh

for all 0 < h < ı. ut

4.3 Jump Functions

Since every interval is the union of countably many compact intervals, it is sufficient
to prove Lebesgue’s theorem for compact intervals I D Œa; b�.

In this section we follow an approach of Lipiński and Rubel13 to prove some
special cases of the theorem.

12Lebesgue [290], pp. 128–129. He considered only the case of continuous functions. Before him
Weierstrass conjectured the existence of continuous and monotone, but nowhere differentiable
functions; see Hawkins [198], p. 47.
13Lipiński [307], Rubel [401].
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Fig. 4.3 Meaning of EC
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We start with a lemma:

Lemma 4.5 Let f W Œa; b� ! R be a non-decreasing function. For each C > 0 we
denote by EC the set of points a < x < b for which there exist numbers s D sx and
t D tx satisfying s < x < t and

f .t/ � f .s/ > C.t � s/: (4.1)

Then EC is the union of countably many intervals .an; bn/ of total length �
4C�1. f .b/� f .a//.

Remark The set EC contains all points at which f has a derivative > C, but it may
contain other points as well. For example, consider the function f .x/ WD p

x in the
interval Œ0; 4�. For C D 1=

p
2 we have

˚
f 0 > C

� D .0; 1=2/ and EC D .0; 2/:

(See Fig. 4.3: for 0 < x < 2 we may choose sx D 0 and tx D .x C 2/=2.)

Proof The set EC is open by definition, hence it is the union of disjoint open
intervals .an; bn/. We also observe that if x 2 .an; bn/, then .sx; tx/ � .an; bn/ by
definition.

Fix for each n a compact subinterval Œa0
n; b

0
n� � .an; bn/ of length

b0
n � a0

n D .bn � an/=2: (4.2)

It is covered by the intervals

.sx; tx/; x 2 Œa0
n; b

0
n�:
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Since Œa0
n; b

0
n� is compact, there exists a finite subcover .s1; t1/; : : : ; .sN ; tN/. Choose

a finite subcover with N as small as possible. Then no point of [.sk; tk/ is covered
more than twice, because if three intervals have a common point, then one of them
belongs to the union of the other two. Consequently, using (4.1) and the relations
.sk; tk/ � .an; bn/, we have

b0
n � a0

n �
NX

kD1
.tk � sk/ � C�1

NX

kD1
. f .tk/ � f .sk// � 2C�1. f .bn/ � f .an//:

Using (4.2) this yields the required inequality:

X
.bn � an/ � 4C�1X. f .bn/ � f .an// � 4C�1. f .b/� f .a//:

ut
As a first application of this lemma, we prove that a non-decreasing function

cannot have an infinite derivative at many points. More precisely, we have the

Lemma 4.6 If f W Œa; b� ! R is a non-decreasing function, then

Df .x/ WD lim sup
y!x

f .y/� f .x/

y � x
< 1 a.e. in Œa; b�:

Proof If Df .x/ D 1, then x 2 EC for every C > 0, so that the set of these points
may be covered by a set of intervals of total length � 4. f .b/�f .a//=C. We conclude
by letting C ! 1. ut

As a second application we prove Lebesgue’s theorem in a special case.

Definition By a jump function we mean a function f W I ! R of the form f D P
fk

where .ak/ � I is a given sequence of points,
P

Sk is a nonnegative convergent
numerical sequence, and

fk.x/ D 0 if x < ak;

fk.x/ D Sk if x > ak;

0 � fk.ak/ � Sk:

Every jump function is non-decreasing.

Proposition 4.7 If f W I ! R is a jump function , then f 0 D 0 a.e.

Proof We may assume that I D Œa; b� is compact. It suffices to show that Df � C
a.e. for every fixed C > 0.
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Fix an arbitrary " > 0,14 then choose a large N such that

1X

kDNC1
Sk < ":

Then the function

h WD
1X

kDNC1
fk

is non-decreasing, and h.b/� h.a/ < ". By Lemma 4.5 we have Dh � C outside a
set of intervals of total length < 4"=C.

Observe that the function

f � h D
NX

kD1
fk

has zero derivative everywhere, except a1; : : : ; aN . Hence Df � C outside a set of
intervals of total length < 4"=C. We conclude by letting " ! 0. ut

Using jump functions we may isolate the discontinuous part of non-decreasing
functions:

Proposition 4.8 Every bounded non-decreasing function f W I ! R is the sum of a
continuous non-decreasing function and a jump function.

Proof Since f is bounded, extending f by constants we may assume that I D R.
Let .ak/ be the (finite or infinite) sequence of discontinuities of f , and set Sk D
f .ak C0/� f .ak �0/. The series

P
Sk is convergent because f is bounded. Introduce

the functions fk as in the definition of the jump functions, and set fk.ak/ WD f .ak/ �
f .ak � 0/. Then h WD P

fk is a jump function by definition, while g WD f � h is
non-decreasing and continuous.15 ut

14The following proof is due to Á. Császár; see Sz.-Nagy [448].
15See Exercise 4.3 at the end of this chapter, p. 165.
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Fig. 4.4 Dini derivatives
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4.4 Proof of Lebesgue’s Theorem

In view of Propositions 4.7 and 4.8 it is sufficient to consider a non-decreasing and
continuous function f W Œa; b� ! R, defined on a compact interval. In this section
we present an elementary proof due to F. Riesz.16

We introduce the Dini derivatives17:

D�f .x/ WD lim sup
y<x
y!x

f .y/� f .x/

y � x
; DCf .x/ WD lim sup

y>x
y!x

f .y/� f .x/

y � x
;

d�f .x/ WD lim inf
y<x
y!x

f .y/� f .x/

y � x
; dCf .x/ WD lim inf

y>x
y!x

f .y/� f .x/

y � x
:

Since f is non-decreasing, they are all nonnegative.

Example For f .x/ WD x C x sin.1=x/ we have

D�f .0/ D DCf .0/ D 1 and d�f .0/ D dCf .0/ D 0I

see Fig. 4.4.

16Riesz [386, 387]. The proof may be adapted to the discontinuous case: see Riesz and Sz.-Nagy
[394], Sz.-Nagy [448]. See also other elementary proofs of Austin [14] and Botsko [63].
17Dini [109] (Sect. 145).
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Fig. 4.5 Invisible points
from the right

b2a2b1a1

Assume for a moment the following lemma:

Lemma 4.9 The inequality DCf � d�f holds almost everywhere.

Then applying this lemma to the function �f .�x/ we have also D�f .x/ � dCf .x/
a.e., and hence

0 � DCf .x/ � d�f .x/ � D�f .x/ � dCf .x/ � DCf .x/

a.e. Since DCf .x/ < 1 a.e. by Lemma 4.6, we conclude that the four Dini
derivatives are finite and equal a.e., proving Lebesgue’s theorem.

The main tool for the proof of Lemma 4.9 is the “Rising sun lemma” of Riesz.
We introduce the following notion:

Definition Let g W Œa; b� ! R be a continuous function on a compact interval.
The point a < x < b is invisible (from the right) if there exists a y > x such that
g.y/ > g.x/. (See Fig. 4.5.)

Lemma 4.10 (“Rising sun lemma”)18 The invisible points (from the right) form a
union of disjoint open intervals .ak; bk/, and g.ak/ � g.bk/ for every k.19

Proof The set of invisible points is open by the continuity of g, hence a union of
disjoint open intervals .ak; bk/.

Assume on the contrary that g.ak/ > g.bk/ for some k. Fix a number g.ak/ >

c > g.bk/ and set

x WD sup fak � t � bk W g.t/ � cg :

By the continuity of g we have g.x/ D c and thus ak < x < bk. Since x is invisible,
there exists a y > x such that g.y/ > g.x/ D c. Since g < c on .x; bk� by the choice of
x, we have y > bk. But this contradicts the visibility of bk because g.y/ > c > g.bk/.
ut
Proof of Lemma 4.9 It suffices to show that for any fixed rational numbers c1 < c2,

E WD fx 2 .a; b/ W d�f .x/ < c1 < c2 < DCf .x/g

18Riesz [386, 387]. See the correspondence of Riesz in [443, 444] for the history of this result.
19It is easy to see that we even have g.ak/ D g.bk/ if ak ¤ a.
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is a null set. Indeed, then their (countable) union is also a null set, and d�f .x/ �
DCf .x/ outside them.

We are going to show that for any fixed open subinterval .a0; b0/ of .a; b/, we may
cover E\.a0; b0/ by a (countable) set of open intervals of total length< .c1=c2/.b0�
a0/. Iterating this procedure we will get that E D E \ .a; b/may be covered for each
n D 1; 2; : : : by a set of open intervals of total length < .c1=c2/n.b � a/. Since
c1=c2 < 1, letting n ! 1 we will conclude that E is a null set.

If x 2 E \ .a0; b0/, then

f .y/� f .x/

y � x
< c1

for some a0 < y < x, i.e.,

f .y/� c1y > f .x/� c1x:

In other words, x is invisible from the left20 for the function

g.t/ WD f .t/ � c1t; t 2 Œa0; b0�:

Applying Lemma 4.10 for the function t 7! g.�t/, E \ .a0; b0/ may be covered by a
countable set of disjoint open intervals .ak; bk/ such that g.ak/ � g.bk/, i.e.,

f .bk/� f .ak/ � c1.bk � ak/

for every k.
Now consider one of these intervals .ak; bk/. If x 2 E \ .ak; bk/, then

f .y/� f .x/

y � x
> c2

for some x < y < bk, i.e.,

f .y/� c2y > f .x/� c2x:

In other words, x is invisible from the right for the function

g.t/ WD f .t/ � c2t; t 2 Œak; bk�:

20We say that x is invisible from the left for a function g if �x is invisible from the right for the
function t 7! g.�t/.
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Applying Lemma 4.10, E \ .ak; bk/ may be covered by a countable set of disjoint
open intervals .akm; bkm/ such that g.akm/ � g.bkm/, i.e.,

f .bkm/� f .akm/ � c2.bkm � akm/

for every m.
Consequently, the intervals .akm; bkm/ cover E \ .a0; b0/, and

X

k;m

.bkm � akm/ � 1

c2

X

k;m

f .bkm/� f .akm/

� 1

c2

X

k

�
f .bk/ � f .ak/

	

� c1
c2

X

k

.bk � ak/

� c1
c2
.b0 � a0/:

ut

4.5 Functions of Bounded Variation

The difference of two monotone functions is not necessarily monotone. However, it
follows from Proposition 4.2 and Theorem 4.4 (pp. 153 and 157) that these functions
still also have at most countably many discontinuities, and they are differentiable a.e.
In this section we briefly discuss these functions.

Definition A function f W I ! R is of bounded variation21 if there exists a number
A such that

nX

iD1
j f .xi/ � f .xi�1/j � A

for every finite set of points x0 < � � � < xn in I. The smallest such number A is called
the total variation of f .

Remarks

• Every function of bounded variation is bounded.

21Jordan [229]. He introduced this notion in order to give an elegant formulation of Dirichlet’s
theorem on the convergence of Fourier series.
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• In the case of a bounded interval I, f has a bounded variation ” it is rectifiable,
i.e, if its graph has a finite arc length.

• Every monotone and bounded function has a bounded variation.
• The functions of bounded variation form a vector space.

Our last remarks imply that the difference of two monotone and bounded functions
has a bounded variation. The converse also holds:

Proposition 4.11 (Jordan)22 Every function of bounded variation is the difference
of two non-decreasing and bounded functions.

Proof If f W I ! R has bounded variation, then its restriction to any subinterval also
has bounded variation. Let us denote by g.x/ the total variation of f on I \ .�1; x/
for each x 2 I. Then 0 � g � T, where T denotes the total variation of f , so that g
is a bounded function.

If y 2 I and x < y, then g.x/ C jf .y/ � f .x/j � g.y/ by the definition of the
total variation. It follows that g is non-decreasing, and then that g � f is also non-
decreasing because

.g � f /.y/ � .g � f /.x/ D �
g.y/� g.x/

	 � �
f .y/� f .x/

	

� �
g.y/� g.x/

	� jf .y/ � f .x/j
� 0:

Since f and g are bounded, h WD g � f is bounded, too. Therefore the decomposition
f D g � h has the required properties. ut
Remark It follows from the theorems of Jordan and Lebesgue that if f W I ! R has
bounded variation and I D Œa; b�, then f has a finite left limit at every a < x � b,
a finite right limit at every a � x < b, and (applying Lebesgue’s theorem) that f is
a.e. differentiable.

4.6 Exercises

Exercise 4.1 Given an arbitrary null set D, does there exist a monotone function
f W R ! R that is non-differentiable exactly at the points of D?

Exercise 4.2 If C denotes Cantor’s ternary set, then C � C D Œ0; 1�.

Exercise 4.3 Prove that the function g in the proof of Proposition 4.8 (p. 160) is
non-decreasing and continuous.

22Jordan [229].
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In the remaining exercises we consider bounded closed intervals.

Exercise 4.4 (Lebesgue’s criterium)23 Let f W Œa; b� ! R, then

f is Riemann integrable ” f is bounded, and continuous a.e.

Exercise 4.5 Let f ; g W Œa; b� ! R have bounded variations.

(i) fg, max ff ; gg and min ff ; gg also have bounded variations.
(ii) jf j has bounded variation.

(iii) If moreover, inf jgj > 0, then f=g also has bounded variation.

Exercise 4.6 If f W Œa; b� ! R is continuous, then f and jf j have bounded variations
at the same time. Is the continuity assumption necessary?

Exercise 4.7 For which values of ˛; ˇ does f .x/ WD x˛ sin
1

xˇ
have bounded

variation on Œ0; 1�?

Exercise 4.8 If f W Œa; b� ! R has bounded variation, then f has finite left and right
limits everywhere, and f has at most countably many discontinuities.

Exercise 4.9

(i) If f W Œa; b� ! R is Lipschitz continuous, then it has bounded variation.
(ii) Construct a Hölder continuous function f W Œa; b� ! R which is not of bounded

variation.

Exercise 4.10 Write the following functions as the difference of two non-
decreasing functions:

(i) f .x/ D sign x in Œ�1; 1�;
(ii) f .x/ D sin x in Œ0; 2��.

Exercise 4.11 (Helly’s selection theorem)24 Let fn W Œa; b� ! R, n D 1; 2; : : : be a
uniformly bounded sequence of functions of bounded variation. Assume that their
total variations are bounded by some constant. Prove the existence of an everywhere
convergent subsequence by proving the statements below.

(i) We may assume that all functions fn are non-decreasing. Henceforth we
consider this special case.

(ii) There exists a subsequence . f 1n / � . fn/ converging in a; b and in all rational
points of .a; b/. Write

 .x/ WD lim f 1n .x/; x 2 E WD fa; bg [ ..a; b/\ Q/ :

23Lebesgue [288], p. 29.
24Helly [204]. This is a weak compactness theorem in the space of functions of bounded variation.
We follow Natanson [332].



4.6 Exercises 167

(iii)  extends to a non-decreasing function  W Œa; b� ! R.
(iv) f 1n .x/ !  .x/ at all points x 2 .a; b/ where  is continuous.
(v) There exists a second subsequence . f 2n / � . f 1n / which also converges at the

points of discontinuity of  .



Chapter 5
The Lebesgue Integral in R

I turn with terror and horror from this lamentable scourge of continuous functions with no
derivatives!—Letter of Hermite to Stieltjes, 1893

In former times when one invented a new function it was for a practical purpose; today
one invents them purposely to show up defects in the reasoning of our fathers and one will
deduce from them only that.—H. Poincaré

The Riemann integral has the drawback that many important functions are not
integrable and the limiting processes are complicated:

Examples

• (Dirichlet function)1 The function

f .x/ WD
(
1 if x is rational;

0 if x is irrational

is not Riemann integrable. However, since f D 0 a.e., it is tempting to defineR
f dx WD 0.

• Let us enumerate the rational numbers into a sequence .rn/. Then the functions

fn.x/ WD
(
1 if x D r1; : : : ; rn;

0 otherwise

are Riemann integrable,
R

fn dx D 0 for all n, and fn ! f a.e. We would like to
conclude that

R
fn dx ! R

f dx, but the last integral is not defined.

1Dirichlet [112, pp. 131–132].

© Springer-Verlag London 2016
V. Komornik, Lectures on Functional Analysis and the Lebesgue Integral,
Universitext, DOI 10.1007/978-1-4471-6811-9_5
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• The formula kgk WD R jgj dx defines a natural norm in the vector space of
Riemann integrable functions. For this norm the above sequence . fn/ satisfies
the Cauchy criterion, but it is not convergent.

The Lebesgue integral eliminates these difficulties: much more functions are
integrable and they are easier to manipulate. One key of this theory is that we do not
distinguish between two functions if they are equal outside some null set:

Definition The functions f1 W D1 ! R and f2 W D2 ! R are equal almost
everywhere (a.e.) if

D1 n D2; D2 n D1 and fx 2 D1 \ D2 W f1.x/ ¤ f2.x/g

are null sets.

This is an equivalence relation that is compatible with the usual algebraic
operations: if f1 D g1 and f2 D g2 a.e., then

j f1j D jg1j a.e.;

f1 ˙ f2 D g1 ˙ g2 a.e.;

f1 f2 D g1g2 a.e.;

min f f1; f2g D min fg1; g2g a.e.;

max f f1; f2g D max fg1; g2g a.e.

If, moreover, f2 ¤ 0 a.e., then f1=f2 D g1=g2 a.e.
Finally, if fn ! f a.e., and fn D gn a.e. for every n, then gn ! f a.e.2

In view of these properties we often identify two functions if they are equal
almost everywhere.3 Hence we often write f D g, f � g, f > g instead of f D
g a.e, f � g a.e., f > g a.e., and a sequence . fn/ is called simply nonnegative,
non-decreasing or non-increasing if it is nonnegative a.e., non-decreasing a.e. or
non-increasing a.e.

5.1 Step Functions

Definition ' W R ! R is a step function if there exist finitely many points

�1 < x0 < � � � < xn < 1

2It is essential here that we use countable covers in the definition of null sets.
3To be precise, we should use equivalence classes of functions but we follow the traditional, looser
terminology.
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Fig. 5.1 Step function

x3x2x1x0
c3

c1

c2

and real numbers c1; : : : ; cn such that a.e.,

'.x/ D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

0 if x < x0,

c1 if x0 < x < x1,

: : :

cn if xn�1 < x < xn,

0 if xn < x.

See Fig. 5.1. The class of step functions is denoted by C0.

Remarks

• We may always add to the definition a finite number of arbitrary points xi.
Consequently, for finitely many given step functions we may always assume that
they are defined by the same points xi.

• Once the points xi are given, the corresponding numbers ci are uniquely
determined because the non-degenerate intervals in the definition of '.x/ are not
null sets.

Definition By the integral of a step function we mean the number

Z

' dx WD
nX

iD1
ck.xk � xk�1/:

In order to show the correctness of this definition we introduce two useful
notions:



172 5 The Lebesgue Integral in R

Definitions A vector space C of real functions is a vector lattice if

'; 2 C H) max f'; g ; min f'; g 2 C:

A linear functional L W C ! R defined on a vector lattice C is positive if

' � 0 H) L' � 0:

Remarks

• Using the relations j'j D max f';�'g and

max f'; g D ' C  C j' �  j
2

; min f'; g D ' C  � j' �  j
2

we see that a vector space C is a vector lattice ”

' 2 C H) j'j 2 C:

• Every positive linear functional is monotone, i.e.,

' �  H) L' � L :

Using the remark following the definition of step functions the next result can be
shown easily:

Proposition 5.1

(a) C0 is a vector lattice.
(b) The integral of a step function does not depend on the particular choice of the

points xi.
(c) The integral of step functions is a positive linear functional on C0.

The following two “innocent-looking” lemmas are due to Riesz. Almost the
whole theory of Lebesgue integral will follow from them.

The first one is a simple variant of a classical theorem of Dini4:

Lemma 5.2 If a sequence .'n/ of step functions satisfies5 'n.x/ & 0 a.e., thenR
'n dx ! 0.

Proof Fix a compact interval Œa; b� and a number M > 0 such that '1 D 0 outside
Œa; b�, and '1 < M on Œa; b�. Changing the functions 'n on some null set if necessary,
we may assume that they all vanish outside Œa; b�.

4See Proposition 8.24 below, p. 292.
5The notation means that the sequence is non-increasing and converges to zero for almost every x.
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Fix an arbitrarily small number " > 0. Outside a suitable null set E all functions
'n are continuous, and the sequence tends to zero. Let us cover E by a countable
open interval system fIg of total length < "=.2M/.

If x0 … E, then 'n.x0/ ! 0, so that

'n0 .x0/ <
"

2.b � a/

for a suitable index n0. Since 'n0 continuous at x0, we have

'n0 .x/ <
"

2.b � a/

at each point x of an open interval J D J.x0/ containing x0. Finally, by the non-
increasingness of .'n/ we have

'n.x/ <
"

2.b � a/

for all x 2 J and n � n0.
The compact interval Œa; b� may be covered by finitely many of the intervals I

and J. Let us denote by N the largest index n0 among the chosen intervals J, and by
A the union of these intervals J. Then

'n.x/ <
"

2.b � a/

for all x 2 A and n � N. Consequently, the integral of the step function 'n�A, where
�A denotes the characteristic function6 of the set A, is at most "=2.

The remainder of Œa; b� is a union of closed intervals, covered by the chosen
intervals I. Since the total length of the latter is less than "=.2M/, the integral of
'n.1 � �A/ is at most "=2.

Adding the two equalities we obtain that

0 �
Z

'n dx � "

for all n � N. ut
Our next result will be greatly extended later.7

Lemma 5.3 Let .'n/ be an a.e. non-decreasing sequence of step functions. If the
sequence of their integrals is bounded from above, then .'n/ has a finite limit a.e.

6de la Vallée Poussin [465, p. 440]: �A WD 1 on A, and �A WD 0 outside A.
7See the Beppo Levi theorem, p. 178.
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Remark In view of Proposition 5.1 the sequence of integrals
R
'n dx is non-

decreasing, and hence convergent.

Proof Changing 'n to 'n �'1 if necessary we may assume that the functions 'n are
nonnegative. We have to show that the points x satisfying 'n.x/ ! 1 form a null
set E0.

Let
R

fn dx � A for all n. For any fixed " > 0 let us denote by E";n the set of
points x satisfying 'n.x/ > A=", for n D 1; 2; : : : : Since E" WD [E";n contains E0, it
is sufficient to cover E" with a countable interval system of total length � ".

The set sequence .E";n/ is non-decreasing by the analogous property of .'n/.
Consequently, E";1 and each difference set E";n n E";n�1 is the union of finitely many
disjoint intervals, say

E";1 D
K1[

kD1
I1k

and

E";n n E";n�1 D
Kn[

kD1
Ink; n D 2; 3; : : : :

The set of all these intervals covers E". Furthermore, their total length is at most ",
because

mX

nD1

KnX

kD1

A

"
jInkj �

Z

E";1

'1 dx C
mX

nD2

Z

E";nnE";n�1

'n dx �
Z

'm dx � A

for each m. ut

5.2 Integrable Functions

We enlarge the class of integrable functions in two steps. The first one is based on
Lemmas 5.2 and 5.3:

Definition We denote by C1 the set of limit functions f of sequences .'n/ satisfying
the assumptions of Lemma 5.3, and we define the integral of these functions by the
formula

Z

f dx WD lim
Z

'n dx:
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The following lemma will imply the correctness of this definition8:

Lemma 5.4 If two sequences of step functions .'n/, . n/ satisfy the relations 'n %
f ,  n % g and f � g a.e., then

lim
Z

'n dx � lim
Z

 n dx:

Proof It suffices to prove for any fixed m the inequality

Z

'm dx � lim
n!1

Z

 n dx;

or the equivalent inequality

lim
n!1

Z

'm �  n dx � 0:

Hence the lemma will follow by letting m ! 1.
We prove the stronger relation

lim
n!1

Z

.'m �  n/
C dx � 0;

where

.'m �  n/
C WD max f'm �  n; 0g

denotes the positive part of the function 'm � n. For this it suffices to observe that
the sequence n 7! .'m �  n/

C satisfies the conditions of Lemma 5.2. ut
Now we collect the properties of the integral on C1:

Proposition 5.5

(a) The integral does not depend on the particular choice of the sequence .'n/.
(b) If f 2 C0, then the two definitions of the integral give the same value.
(c) If f 2 C1 and f D g a.e., then g 2 C1 and

R
f dx D R

g dx.
(d) If f ; g 2 C1 and f � g a.e., then

Z

f dx �
Z

g dx:

(e) If f ; g 2 C1, then max f f ; gg 2 C1 and min f f ; gg 2 C1.

8For clarity, in this section we do not omit the notation a.e. for the equalities and inequalities.
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(f) If f ; g 2 C1, then f C g 2 C1, and

Z

. f C g/ dx D
Z

f dx C
Z

g dx:

(g) If f 2 C1 and c is a nonnegative real number, then cf 2 C1 and

Z

cf dx D c
Z

f dx:

Proof

(a) We apply the preceding lemma with f D g.
(b) Let 'n D f for every n.
(c) If

R
f dx is defined by the sequence .'n/, then we also have 'n ! g a.e.

(d) This is a reformulation of the preceding lemma.
(e), (f) and (g) If

R
f dx and

R
g dx are defined by the sequences .'n/ and

. n/, then the sequences given by the formulas

max f'n;  ng ; min f'n;  ng ; 'n C  n; c'n

satisfy the conditions of Lemma 5.3, and they converge a.e. to max f f ; gg,
min f f ; gg, f C g and cf , respectively. The equalities in (f) and (g) follow from
the similar equalities for step functions.

ut
Next we extend the integral from C1 to the vector space spanned by C1:

Definition A function f is integrable if f D f1 � f2 a.e. with suitable functions
f1; f2 2 C1. Its integral is defined by the formula

Z

f dx WD
Z

f1 dx �
Z

f2 dx:

We often write
R

f .x/ dx instead of
R

f dx.
The set of integrable functions is denoted by C2.

Proposition 5.6

(a) C2 is a vector lattice.
(b) The integral of a function f 2 C2 does not depend on the particular choice of

the decomposition f D f1 � f2.
(c) If f 2 C2 and f D g a.e., then g 2 C2, and

R
f dx D R

g dx.
(d) The integral is a positive linear functional on C2.
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Proof

(a) Let f D f1 � f2 and g D g1 � g2 a.e., where f1; f2; g1; g2 2 C1, and let c be
a nonnegative number. Applying the preceding proposition, it follows from the
a.e. equalities

f C g D . f1 C g1/ � . f2 C g2/;

cf D cf1 � cf2;

� cf D cf2 � cf1;

j f j D max f f1; f2g � min f f1; f2g

that f C g, cf , �cf and j f j are integrable.
(b) If f D f1 � f2 D g1 � g2 a.e. with f1; f2; g1; g2 2 C1, then f1 C g2 D f2 C g1 a.e.,

and hence
Z

f1 dx C
Z

g2 dx D
Z

f1 C g2 dx D
Z

f2 C g1 dx D
Z

f2 dx C
Z

g1 dx

by Proposition 5.5. Consequently,

Z

f1 dx �
Z

f2 dx D
Z

g1 dx �
Z

g2 dx:

(c) If f D f1 � f2 a.e., where f1; f2 2 C1, then we also have g D f1 � f2 a.e.
(d) This follows from Proposition 5.5 (d), (f), (g) and from the definition of the

integral.

ut

5.3 The Beppo Levi Theorem

In the preceding section we started with a positive linear functional defined on a
vector lattice, and we extended it to a positive linear functional defined on a larger
vector lattice. It is tempting to reiterate this process in order to obtain new integrable
functions. It is surprising and remarkable that this step is useless:
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Theorem 5.7 (Beppo Levi)9 Let . fn/ be a non-decreasing sequence of integrable
functions. If their integrals are bounded from above, then . fn/ converges a.e. to an
integrable function f , and

Z

fn dx !
Z

f dx: (5.1)

Remark The use of a.e. convergence is essential here. Using everywhere convergent
sequences the process could be iterated indefinitely by a celebrated theorem of
Baire.10

We prove the theorem in two steps.

Proof in case . fn/ � C1 Let

Z

fn dx � A

for all n. Fix for each n a non-decreasing sequence .'nk/ of step functions,
converging a.e. to fn. Then the formula

'n WD sup
i;k�n

'ik

defines a non-decreasing sequence of step functions, satisfying

Z

'n dx � A

for all n, because 'ik � fi � fn for all i; k � n, and therefore 'n � fn. By Lemma 5.3
we have 'n ! f a.e. for some function f 2 C1, and

Z

'n dx !
Z

f dx: (5.2)

Since 'nk � 'k whenever k � n, letting k ! 1 we obtain fn � f for each n.
Integrating the inequalities 'n � fn � f and applying (5.2) we obtain (5.1). ut
Remark We emphasize that in the above special case the limit function is not only
integrable, but even belongs to C1. This will be used in the proof of the general case
below.

9Levi [301].
10Baire [16, 17].
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To proceed we need the following lemma:

Lemma 5.8 Given a nonnegative function f 2 C2 and a positive number " > 0,
there exist nonnegative functions f1; f2 2 C1 such that f D f1 � f2 and

R
f2 dx < ".

Remark We cannot take f2 D 0 if f is unbounded from below.

Proof Let f D g1 � g2 with g1; g2 2 C1. Choose a sequence .'n/ of step functions
such that 'n % g2 a.e. Then

Z

'n dx !
Z

g2 dx;

and hence
Z

g2 � 'n dx < "

if n is sufficiently large. Since �'n 2 C0 � C1, the functions f1 WD g1 � 'n and
f2 WD g2 � 'n belong to C1. Furthermore, f D f1 � f2 and

R
f2 dx < ". Finally,

f2 D g2 �'n � 0, because the sequence .'n/ is non-decreasing, and f1 D f C f2 � 0

as the sum of two nonnegative functions. ut
Proof of Theorem 5.7 in the General Case Applying the preceding lemma to the
differences fnC1 � fn we obtain nonnegative functions gn; hn 2 C1 satisfying the
conditions

fnC1 � fn D gn � hn and
Z

hn dx < 2�n; n D 1; 2; : : : :

Hence
Z

h1 C � � � C hn dx < 1

for all n. Applying the already proven part of the theorem, the series
P

hi converges
a.e. to some function h 2 C1, and

1X

nD1

Z

hn dx D
Z

h dx:

Consequently, assuming again that

Z

fn dx � A
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for all n, the following inequalities also hold:

Z

g1 C � � � C gn�1 dx D
Z

fn � f1 C h1 C � � � C hn�1 dx < A C 1 �
Z

f1 dx:

Applying once again the already proven part of the theorem, the series
P

gi

converges a.e. to some function g 2 C1, and

1X

nD1

Z

gn dx D
Z

g dx:

Taking the difference of the two series we conclude that

.g1 C � � � C gn�1/� .h1 C � � � C hn�1/ D fn � f1

converges a.e. to g � h 2 C2, and

Z

fn � f1 dx !
Z

g � h dx:

Consequently, fn converges a.e. to f WD f1 C g � h 2 C2, and (5.1) holds. ut
Let us mention some important corollaries of the theorem:

Corollary 5.9

(a) If a non-decreasing sequence . fn/ of integrable functions converges a.e. to some
integrable function f , then

Z

fn dx !
Z

f dx:

(b) If . fn/ is a sequence of integrable functions, and the numerical series

1X

nD1

Z

j fnj dx

is convergent, then the function series
P

fn converges a.e. to some integrable
function f , and we may integrate this series termwise:

Z

f dx D
1X

nD1

Z

fn dx:

(c) If f is integrable and
R j f j dx D 0, then f D 0 a.e.
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Proof

(a) The number A WD R
f dx is a uniform upper bound of the integrals

R
fn dx.

(b) If the functions fn are nonnegative, then the partial sums of
P

fn satisfy the
conditions of the Beppo Levi theorem.

In the general case we consider instead the series
P

f C
n and

P
f �
n , where

f C
n WD max f fn; 0g and f �

n WD max f�fn; 0g

denote the positive and negative parts of the functions fn: then f C
n ; f

�
n � 0 and

fn D f C
n � f �

n .
(c) Apply (b) with fn WD f for all n.

ut

5.4 Theorems of Lebesgue, Fatou and Riesz–Fischer

If fn ! f a.e., then the Beppo Levi theorem gives a sufficient condition for the
relation

Z

fn dx !
Z

f dx:

Another important sufficient condition is the following11:

Theorem 5.10 (Lebesgue)12 Let . fn/ be a sequence of integrable functions with
fn ! f a.e. If there exists an integrable function g such that j fnj � g a.e. for every
n, then f is integrable, and

Z

fn dx !
Z

f dx: (5.3)

The function g is called an integrable majorant of the sequence . fn/.

11This theorem greatly extended and at the same time simplified earlier results of Arzelà [7], [10,
pp. 723–724] and Osgood [350, pp. 183–189] on the Riemann integral. An elementary proof of the
latter was given by Lewin [302].
12Lebesgue [288] (for uniformly bounded sequences), [294] (general case, pp. 9–10). It is also
called dominated convergence theorem.
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Fig. 5.2 Non-dominated
sequence

1

n + 1n

Fig. 5.3 Non-dominated
sequence

n

1/n0 1

Examples The relation fn ! f a.e. alone does not imply the convergence of the
integrals:

• If fn is the characteristic function of the interval Œn; n C 1�, then fn ! 0

everywhere, but
R

fn dx D 1 for all n, and hence it does not converge toR
0 dx D 0. See Fig. 5.2.

• Let fn.x/ D n, if 0 < x < n�1, and fn.x/ D 0 otherwise. Then fn ! 0 everywhere,
but

R
fn dx D 1 for all n, and hence it does not converge to

R
0 dx D 0. See

Fig. 5.3.

Proof Let us introduce for each n D 1; 2; : : : the functions

gn WD sup f fn; fnC1; : : :g

and

gnm WD sup f fn; fnC1; : : : ; fmg ; m D n; n C 1; : : : :
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Since jgnmj � g a.e. for all m, the functions gnm are integrable, and their integrals
are bounded from above by

R
g dx. Since gnm % gn a.e., the Beppo Levi theorem

implies that gn is integrable.
Observe that gn & f a.e., and that � R g dx is a lower bound of the integrals of

the functions gn, because jgnj � g a.e. for all m. Applying the Beppo Levi theorem
to the sequence .�gn/ we conclude that f is integrable, and

Z

gn dx !
Z

f dx:

Similarly, the functions

hn WD inf f fn; fnC1; : : :g

satisfy hn % f a.e., and

Z

hn dx !
Z

f dx:

Since hn � fn � gn a.e., and therefore

Z

hn dx �
Z

fn dx �
Z

gn dx;

(5.3) follows from the above two convergence relations. ut
We may also combine the assumptions of Beppo Levi and Lebesgue:

Theorem 5.11 (Fatou Lemma)13 Let . fn/ be a sequence of nonnegative,
integrable functions with fn ! f a.e. If the integrals

R
fn dx are bounded from

above, then f is integrable, and

Z

f dx � lim inf
Z

fn dx:

Remark The preceding examples show that we do not have equality in general. We
will return to this question later.14

Proof Let us introduce again the functions

hn WD inf f fn; fnC1; : : :g ; n D 1; 2; : : : :

13Fatou [136, p. 375].
14See Propositions 10.1 (c) and 10.6 (c), pp. 341 and 349.
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Since the functions fn are nonnegative, we may apply the Beppo Levi theorem to
conclude that the functions hn are integrable.

Since 0 � hn � fn a.e., we have

0 �
Z

hn dx �
Z

fn dx

for all n. Therefore we deduce from the assumptions of the theorem that the
sequence of the integrals

R
hn dx is bounded. Furthermore, since hn % f a.e.,

another application of the Beppo Levi theorem shows that f is integrable, andR
hn dx ! R

f dx. ut
The integrable functions form a natural normed space15:

Definition Identifying two integrable functions if they are equal a.e., we obtain a
vector space L1 on which the formula

k f k1 WD
Z

j f j dx

defines a norm.16

A fundamental result is that the Cauchy convergence criterion holds in this space:

Theorem 5.12 (Riesz–Fischer)17 L1 is a Banach space.

The proof is based on the following lemma, important in itself:

Lemma 5.13 (Riesz)18 Given a Cauchy sequence . fn/ in L1, there exists a subse-
quence . fnk/ and two integrable functions f , g such that j fnk j � g for all k, and
fnk ! f a.e.

Proof Choose a subsequence . fnk/ satisfying

Z

j fn � fnk j dx � 2�k for all n � nk; k D 1; 2; : : : :

15The validity of the norm axioms is straightforward.
16More precisely, the elements of L1 are equivalence classes of functions. As a vector space, L1 D
C2. We write L1 to emphasize that we have a normed space.
17Riesz [373, 374, 376] and Fischer [146] for the closely related L2 spaces, Riesz [377, 379–381]
for the more general Lp spaces. See also Chap. 9, p. 305.
18Riesz [378].
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Since

1X

kD1

Z

j fnkC1
� fnk j dx �

1X

kD1
2�k < 1;

the function series

j fn1 j C
1X

kD1

ˇ
ˇ fnkC1

� fnk

ˇ
ˇ and fn1 C

1X

kD1

�
fnkC1

� fnk

	

converge a.e. by Corollary 5.9 (p. 180) to two integrable functions g, f .
Applying the triangle inequality to the partial sums we obtain that j fnk j � g for

all k, and fnk ! f a.e. ut
Proof of Theorem 5.12 By the preceding lemma there exist a subsequence . fnk/ and
an integrable function f such that fnk ! f a.e.

For any given " > 0 choose a sufficiently large N such that

Z

j fm � fnj dx < "

for all m; n � N. Taking n D nk and letting k ! 1, by applying the Fatou lemma
we obtain that

Z

j fm � f j dx � "

for all m � N. ut
We end this section with two further applications of Lebesgue’s theorem. The

first one states the density of step functions in L1:

Proposition 5.14 For each f 2 L1 there exists a sequence .'n/ of step functions
such that

R j f � 'nj dx ! 0.

Remark Applying the preceding lemma and taking a subsequence we may also
assume that 'n ! f a.e., and that there exists an integrable function k such that
j'nj � k for all n.

However, the proof below leads directly to such a sequence.

Proof Let f D g � h with g; h 2 C1, and choose two sequences . n/, .%n/ of step
functions such that  n % g and %n % h a.e. Furthermore, set

k WD max fg � %1; h �  1g and 'n WD  n � %n; n D 1; 2; : : : :

Then k is integrable. Furthermore,

'n ! g � h D f a.e., and j'nj � k for all n;
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because n�%n � g�%1 and %n� n � h� 1. We conclude by applying Lebesgue’s
convergence theorem. ut

Finally we study integrals depending on a parameter:

Proposition 5.15 Consider a function f W R � I ! R where I is an open interval.
Assume that the functions x 7! f .x; t/ are integrable, and set

F.t/ WD
Z

f .x; t/ dx; t 2 I:

Let t0 2 I.

(a) Assume that

• the functions t 7! f .x; t/ are continuous at t0 for a.e. x;
• the functions x 7! f .x; t/ have a uniform integrable majorant g:

j f .x; t/j � g.x/ for each t 2 I:

Then F is continuous at t0.
(b) Assume that

• the functions t 7! f .x; t/ are differentiable at t0 for a.e. x;
• the functions x 7! D2 f .x; t/ have a uniform integrable majorant g:

jD2 f .x; t/j � g.x/ for each t 2 II

Then F is differentiable at t0, and

F0.t0/ D
Z

D2 f .x; t0/ dx:

Proof

(a) It suffices to show that F.tn/ ! F.t0/ for every sequence tn ! t0 in I. Setting
hn.x/ WD f .x; tn/ and h.x/ WD f .x; t0/, this is equivalent to the relation

R
hn dx !R

h dx. It follows from our assumptions that the functions hn are integrable,
hn ! h a.e., and that jhnj � g a.e. for every n. We may therefore conclude by
applying Lebesgue’s theorem.

(b) Fix again a sequence tn ! t0 in I. Setting

hn.x/ WD f .x; tn/� f .x; t0/

tn � t0
and h.x/ WD D2 f .x; t0/;

it follows from our assumptions that hn ! h a.e., and jhnj � g a.e. for every
n. (We apply the Lagrange mean value theorem.) Applying Lebesgue’s theorem
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we get
R

hn dx ! R
h dx, i.e.,

F.tn/� F.t0/

tn � t0
!
Z

D2 f .x; t0/ dx:

ut
Remarks

• Part (a) may be generalized for a metric space I in place of intervals.
• Part (b) may be generalized for higher-order derivatives (by induction) and to

open subsets I of normed spaces in place of intervals.

5.5 * Measurable Functions and Sets

It is sometimes convenient to deal with infinite integrals. For this we introduce the
following notion:

Definition A function f W R ! R is measurable if there exists a sequence .'n/ of
step functions such that 'n ! f a.e.

We emphasize that f may take infinite values.

Example Every continuous function f W R ! R is measurable because the formula

'n.x/ WD
(

f
�

k
n

	
if k

n � x < kC1
n , k D �n2; : : : ; 0; : : : ; n2,

0 otherwise

defines a sequence of step functions converging to f everywhere.

The following proposition clarifies the relationship between measurable and
integrable functions, and it shows that all functions f W R ! R usually encountered
in analysis are measurable.19

Proposition 5.16

(a) If f is measurable and f D g a.e., then g is measurable.
(b) If F W R

N ! R is continuous, F.0/ D 0, and f1; : : : ; fN are finite-valued
measurable functions, then the composite function h WD F. f1; : : : ; fN/ is
measurable. In particular, if f and g are finite-valued measurable functions,

19Even more is true: it is impossible to prove the existence of non-measurable functions without
using the axiom of choice: see the remark on p. 192 below.
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then

j f j; f C g; f � g; fg; max f f ; gg and min f f ; gg

are measurable.
(c) If f is measurable and f ¤ 0 a.e., then 1=f is measurable.
(d) Every integrable function f is measurable.
(e) If f is measurable, g is integrable, and j f j � g a.e., then f is integrable.
(f) If . fn/ is a sequence of measurable functions and fn ! f a.e., then f is

measurable.

Remarks

• Since the constant functions are continuous and hence measurable, the assump-
tion F.0/ D 0 in (b) could be omitted. We made this assumption in order to keep
the proposition valid in the much more general framework of Chap. 7 below.

• Property (b) may be generalized to the case where f1; : : : ; fN also take infinite

values, and F W RN ! R is continuous on the range of the vector-valued function
. f1; : : : ; fN/.

Proof

(a) This follows from the definition.
(b) Fix for each fk a sequence .'kn/ of step functions converging to fk a.e. Then the

step functions

'n.x/ WD F.'1n.x/; : : : ; 'Nn.x//

converge to h a.e.
(c) Let .'n/ be a sequence of step functions, converging to f a.e. Then the step

functions

 n.x/ WD
(
0 if 'n.x/ D 0,

1='n.x/ otherwise

converge to 1=f a.e.
(d) If f is integrable, then by Proposition 5.14 there exists a sequence .'n/ of step

functions satisfying
R j f � 'nj dx ! 0. By Lemma 5.13 we may also assume

(by taking a subsequence) that 'n ! f a.e.
(e) If .'n/ is a sequence of step functions converging to f a.e., then the functions20

fn WD med f�g; 'n; gg

20See the definition of med fx; y; zg on p. 9.
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are integrable, and fn ! f a.e. Furthermore, j fnj � g for all n. We conclude by
applying Lebesgue’s theorem.

(f) Fix a strictly positive, integrable function21 h W R ! R, and set

gn WD hfn
h C j fnj and g WD hf

h C j f j :

Then gn is measurable and jgnj < h, so that gn is integrable. Since gn ! g a.e.,
by Lebesgue’s theorem g is integrable, and then also measurable. Since jgj � h,
sign f D sign g and hence j f jg D f jgj, then

f D hg

h � jgj
is also measurable.

ut
Now we are ready to generalize the integral. We recall that the positive and

negative parts of a function f are defined by the formulas

fC WD max f f ; 0g ; f� WD max f�f ; 0g D � min f f ; 0g ;

and that

fC; f� � 0; f D fC � f�; j f j D fC C f� and fCf� D 0:

If f is measurable, then fC and f� are also measurable.

Definition Let f be a measurable function.

• If f � 0 a.e. and non-integrable, then set
R

f dx D 1.
• If at least one of fC and f� is integrable, then set

Z

f dx D
Z

fC dx �
Z

f� dx:

Remarks

• If neither fC nor f� is integrable, then the right hand sum is undefined.
• If f is integrable, then fC and f� are also integrable, and the above definition leads

to the original integral of f by the linearity of the integral.
• We keep the adjective integrable for the case where the integral is finite.

21We emphasize that h has finite values a.e. We may take, for example, h.x/ D 1=.1C x2/.
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The usual integration rules remain valid:

Proposition 5.17

(a) If
R

f dx exists and f D g a.e., then
R

g dx also exists, and
R

f dx D R
g dx.

(b) If
R

f dx exists and c 2 R, then
R

cf dx also exists, and22

Z

cf dx D c
Z

f dx:

(c) If the integrals
R

f dx,
R

g dx exist and f � g a.e., then

Z

f dx �
Z

g dx:

(d) If
R

f dx,
R

g dx exist and the sum
R

f dx C R
g dx is defined, then

R
f C g dx

exists, and

Z

f C g dx D
Z

f dx C
Z

g dx:

(e) (Generalized Beppo Levi theorem) If the functions fn are measurable, nonnega-
tive, and fn % f a.e., then

Z

fn dx !
Z

f dx:

(f) If the functions gn are measurable and nonnegative, then

Z X
gn dx D

XZ

gn dx:

Proof

(a) and (b) are obvious.

(c) It is sufficient to consider the case where
R

g dx < 1 and
R

f dx > �1,
i.e., where gC and f� are integrable. Then fC and g� are integrable by
Proposition 5.16 (e) because

0 � fC � gC and 0 � g� � f�

a.e. Hence f and g are integrable, and the required inequality follows from
Proposition 5.6 (d) (p. 176).

22We adopt for c D 0 the convention 0 � .˙1/ D .˙1/ � 0 WD 0, useful in integral theory.
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(d) If f and g are nonnegative a.e., then the equality follows from the definition of
the generalized integral. In the general case we notice that the function

h WD fC C gC � . f C g/C D f� C g� � . f C g/�

is measurable and nonnegative a.e.; consequently,

Z

. f C g/C dx C
Z

h dx D
Z

fC dx C
Z

gC dx

and
Z

. f C g/� dx C
Z

h dx D
Z

f� dx C
Z

g� dx

by our previous remark. If we show that in at least one of these rows all four
integrals are finite, then we may conclude by taking the difference of the two
rows.

If, for example,
R

f dx C R
g dx < 1 (the case > �1 is analogous), then

fC and gC are integrable. Since

0 � h � fC C gC and 0 � . f C g/C � fC C gC

a.e., it follows that h and . f C g/C are also integrable.
(e) The sequence of the integrals

R
fn dx is non-decreasing by (c). If it is also

bounded, then we may apply the Beppo Levi theorem. Otherwise we have
fn � f a.e. (for every n) and

R
fn dx ! 1; hence

R
f dx D 1, and thereforeR

fn dx ! 1 D R
f dx.

(f) We apply (e) with fn WD g1 C � � � C gn.

ut
Next we generalize the length of intervals:

Definition A set A is measurable if its characteristic function is measurable; by its
Lebesgue measure we mean the number �.A/ WD R

�A dx 2 Œ0;1�.

We introduce the following notion:

Definition A set system M is a �-ring23 if satisfies the following three condi-
tions:

• ¿ 2 M;
• if A;B 2 M, then A n B 2 M;
• if .An/ is a disjoint sequence in M, then [An 2 M.

23Fréchet [158].
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Remarks

• Here and in the sequel the letter � refers to countable unions. If we use only finite
unions in the definition, then we arrive at the notion of rings, to be considered
later (p. 214).

• If M is a �-ring, then A WD [An 2 M and \An 2 M for every finite or infinite
sequence .An/ � M. Indeed, in the infinite case the formulas

B1 WD A1; B2 WD A2 n A1; B3 WD A3 n .A2 [ A1/; : : :

define a disjoint set sequence .Bn/ � M with A D [Bn, so that

[An D [Bn 2 M:

The finite case may be reduced to the previous one by completing the sequence
with empty sets. Finally, the formula

\An D A n [.A n An/

then shows that \An 2 M.

Let us list the basic properties of the Lebesgue measure:

Proposition 5.18

(a) The measurable sets form a �-ring, henceforth denoted by M.
(b) The Lebesgue measure � W M ! R is nonnegative, and

�.[An/ D
X

�.An/

for every finite or countable sequence .An/ of pairwise disjoint measurable sets.
(c) The null sets coincide with the measurable sets of zero Lebesgue measure.
(d) The Lebesgue measure is complete in the following sense: if A � B and B is a

set of zero Lebesgue measure, then A is also measurable (and has zero Lebesgue
measure).

Remark Using the axiom of choice, Vitali24 proved that there exist non-measurable
sets. Solovay25 proved that the use of the axiom of choice cannot be avoided here.
The application of the axiom of choice led to numerous paradoxical results.26

24Vitali [466]. See Exercise 5.5 below.
25Solovay [429].
26See Banach [21], Banach–Tarski [29], Hausdorff [195], von Neumann [335], Laczkovich [277,
278], Wagon [478].
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Proof

(a) The zero function is integrable, so that ¿ 2 M. If A;B 2 M, then �AnB D
�A � �A�B is measurable by Proposition 5.16 (b), so that A n B 2 M.

If .An/ � M is an infinite disjoint sequence and A D [An, then the finite
sums fn WD �A1 C� � �C�An are measurable by Proposition 5.16 (b), and fn ! �A

everywhere. Applying Proposition 5.16 (f) we conclude that �A is measurable.
Hence A 2 M.

(b) The properties �.A/ � 0 and �.¿/ D 0 are obvious. If .An/ � M is an
infinite disjoint sequence and A D [An, then applying Proposition 5.16 (f) to
the equality

X
�An D �A

we obtain
Z

�A dx D
XZ

�An dx;

i.e.,

�.A/ D
XZ

�.An/:

(c) If A is a null set, then �A D 0 a.e., and then
R
�A dx D 0 by Proposition 5.6 (c)

(p. 176). In other words, �.A/ D 0.
Conversely, if �.A/ D 0, then

R
�A dx D 0 by definition. Applying

Corollary 5.9 (c) (p. 180) this implies �A D 0 a.e., i.e. A is a null set.
(d) This follows from (c) because the subsets of a null set are also null sets (p. 155).

ut
We end this chapter with a new characterization of measurable functions. Let us

introduce for all c 2 R the level sets of a function f :

f f > cg WD fx 2 R W f .x/ > cg ;
f f � cg WD fx 2 R W f .x/ � cg ;
f f < cg WD fx 2 R W f .x/ < cg ;
f f � cg WD fx 2 R W f .x/ � cg :
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Proposition 5.19 A function f is measurable ” its level sets

f f > cg ; f f < �cg ; f f � cg ; f f � �cg

are measurable for all 0 < c < 1.

Remark The measurability of R implies the measurability of all levels sets of all
measurable functions f W R ! R. By considering only 0 < c < 1 the proposition
will remain valid in the more general framework of Chap. 7 below.

Proof If f is measurable and c > 0, then the functions

min
˚
f ; c C n�1�� min f f ; cg

n�1 and
max

˚
f ;�c C n�1� � max f f ;�cg

n�1

are measurable for all n D 1; 2; : : : by Proposition 5.16 (b). Since these functions
converge a.e. to the characteristic functions of f f > cg and f f � �cg, the latter sets
are measurable. Since the function �f is also measurable, the sets

f f < �cg D f�f > cg and f f � cg D f�f � �cg

are also measurable.
Conversely, if the above sets are measurable, then the formula

fn.x/ WD med




�n;
Œnf .x/�

n
; n

�

; x 2 R; n D 1; 2; : : : ;

where Œz� denotes the integer part of z, defines a sequence of measurable functions
because each fn is a finite linear combination of level sets of the given form. Since
fn ! f a.e., the measurability of f follows. ut

5.6 Exercises

Exercise 5.1 The functions in C1 are bounded from below by definition. Con-
versely, is it true that if f 2 C2 is bounded from below, then f 2 C1?

Exercise 5.2 What is the Lebesgue measure of the set of real numbers x 2 Œ0; 1�

whose decimal expansion does not contain the digit 7?

Exercise 5.3 Let A be a set of finite measure �.A/ D ˛ > 0 in R. Prove the
following:

(i) The function x 7! �.A \ .�1; x// is continuous on R.
(ii) For each 0 < ˇ < ˛ there exists a subset B � A of measure ˇ.
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Exercise 5.4 A set of real numbers is a Borel set if it can be obtained from the open
sets by taking countable unions, countable intersections and complements at most
countably many times. Prove that they form the smallest �-ring containing the open
sets, the smallest �-ring containing the closed sets, and that they have the power of
continuum.

Exercise 5.5 (Vitali)27 Consider in R the equivalence relation x � y ” x � y is
rational.

Prove that if a set contains exactly one point of each equivalence class, then it is
not measurable.

Exercise 5.6

(i) Every set of positive measure has the power of the continuum.
(ii) The set of measurable sets has the same power as the set of all subsets of R.

(iii) Every set A � Œ0; 1� of positive measure contains two points whose distance is
irrational.

(iv) Every set A � Œ0; 1� of positive measure contains two points whose distance is
rational.

Exercise 5.7 There exists a measurable set A � Œ0; 1� such that

0 < �.A \ V/ < �.V/

for every non-empty open set of V � Œ0; 1�, where � denotes the usual Lebesgue
measure.

Exercise 5.8 Deduce Lebesgue’s dominated convergence Theorem 5.10 from the
Fatou lemma 5.11.

27Vitali [466].



Chapter 6
* Generalized Newton–Leibniz Formula

If Newton and Leibniz had thought that continuous functions need not have derivatives, and
this is the general case, the differential calculus would not have been born.—É. Picard

One of the (if not the) most important theorems of classical analysis is the
Newton–Leibniz formula:

Z b

a
f dx D F.b/� F.a/;

allowing us to compute many integrals. The purpose of this chapter is to extend its
validity to Lebesgue integrable functions.1

We consider in this chapter monotone functions defined on a closed interval
of the extended real line R, where the latter is endowed with its usual compact
topology. We thus allow the cases a D �1 and/or b D 1 as well. We notice that
all monotone functions F W Œa; b� ! R are bounded.

In the preceding chapter we considered only integrals on the whole real line. Now
we introduce the integrals on arbitrary intervals as follows:

Definition A function f W D ! R (D � R) is integrable on an interval I if it is
defined at a.e. point of I (i.e., I n D is a null set), and the function

g.x/ WD
(

f .x/ if x 2 I \ D,

0 if x 2 R n .I \ D/

1More complete results were obtained by Denjoy [99, 100] and Perron [356] by further generalizing
the Lebesgue integral. Henstock [205, 206] and Kurzweil [274] showed later that these results may
also be obtained by a suitable modification of the Riemann integral. See also Bartle [30].

© Springer-Verlag London 2016
V. Komornik, Lectures on Functional Analysis and the Lebesgue Integral,
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is integrable. In this case the integral of f on I is defined by the formula

Z

I
f dx WD

Z

g dx:

Remarks

• An integrable function is integrable on every interval by Proposition 5.16 (b) and
(e) (p. 187).

• Since the finite sets are null sets, for any function f and numbers and a � b the
integrals

Z

.a;b/
f dx;

Z

.a;b�
f dx;

Z

Œa;b/
f dx;

Z

Œa;b�
f dx

exist or do not exist at the same time, and if they exist, they are equal. Hence we
denote their common value simply by

R b
a f dx.

6.1 Absolute Continuity

If f is integrable on Œa; b�, then it is also integrable on every subinterval of Œa; b�; we
may therefore introduce its indefinite integral by the formula

F.y/ WD
Z y

a
f dx; a � y � b:

Let us investigate its properties.

Definition A function F W I ! R, defined on an interval I, is absolutely continuous2

if for every " > 0 there exists a ı > 0 such that

X
jF.bk/� F.ak/j < "

for every finite disjoint interval system f.ak; bk/g of total length < ı.

Remarks

• Every Lipschitz continuous function is absolutely continuous. On the other hand,
the function F.x/ WD p

x is absolutely continuous on Œ0; 1�, but not Lipschitz
continuous.

2Dini [110, p. 24], Harnack [193, p. 220], Lebesgue [290, pp. 128–129], Vitali [470]. We obtain
an equivalent definition by using arbitrary intervals instead of open intervals.
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Fig. 6.1 The Cantor function

0

1

1

• (Cantor function)3 Every absolutely continuous function is uniformly continu-
ous. On the other hand, consider Cantor’s ternary set C (p. 155), and define a
function F W C ! Œ0; 1� by the formula

1X

iD1

"i

3i
7!

1X

iD1

"i

2iC1 :

Then F is surjective, non-decreasing and continuous. (See Fig. 6.1.) By construc-
tion the set Œ0; 1�nC is a countable union of disjoint open intervals. If .a; b/ is one
of these intervals, then F.a/ D F.b/ by the surjectivity of F. Set F.x/ WD F.a/
for a < x < b, then the extended function F W Œ0; 1� ! Œ0; 1� is continuous on a
compact set, hence uniformly continuous.

But F is not absolutely continuous. To see this we consider the sets Cn

introduced during the construction of C. For each n, Cn is the union of 2n

disjoint intervals Œai; bi� of length 3�n each, hence of total length .2=3/n. We
have

P
.F.bi/� F.ai// D 1 for every n by the definition of F, although the total

length .2=3/n tends to zero as n ! 1.
• If I is bounded, then every absolutely continuous function f W I ! R has bounded

variation.4 Applying Jordan’s Proposition 4.11 and Lebesgue’s Theorem 4.4
(pp. 157 and 165) it follows that every absolutely continuous function is a.e.
differentiable.

3Cantor [73], Lebesgue [290], Vitali [470].
4The identity map of R shows that this is not necessarily true for unbounded intervals.
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Proposition 6.1 An absolutely continuous function F W I ! R sends every null set
of I into a null set.

Proof Since F is uniformly continuous, it can be extended by continuity to I, and
the extended function is still absolutely continuous. We may therefore assume that I
is a closed interval. Fix a null set E � I and a number " > 0 arbitrarily, and choose
ı > 0 according to the definition of absolute continuity. We have to find an interval
system of total length � ", covering F.E/.

Let us cover E with a sequence of half-open intervals Ik D Œak; bk/ � I, k D
1; 2; : : :, of total length < ı.5 Replacing each Ik with the connected components of

Ik n .I1 [ � � � [ Ik�1/

we may also assume that the intervals Ik are pairwise disjoint. Moreover, uniting the
intervals having a common endpoint we may even assume that the closed intervals
Ik are pairwise disjoint.

Applying Weierstrass’s theorem we may choose in each interval Œak; bk� two
points a0

k; b
0
k such that

F.a0
k/ � F.x/ � F.b0

k/ for all x 2 Œak; bk�:

Then the intervals ŒF.a0
k/;F.b

0
k/� cover F.E/, and their total length is at most ",

because for each positive integer n we have

nX

kD1

ˇ
ˇb0

k � a0
k

ˇ
ˇ �

nX

kD1
jbk � akj < ı;

whence

nX

kD1

ˇ
ˇF.b0

k/� F.a0
k/
ˇ
ˇ < "

by the choice of ı. ut
Proposition 6.2 If F is the indefinite integral of an integrable function f W Œa; b� !
R, then6

(a) F is absolutely continuous;
(b) F has bounded variation;
(c) F0 D f a.e.

For the proof of (c) we temporarily admit the following

5We may assume that E does not contain the right endpoint of I.
6Lebesgue [290], Vitali [470].
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Proposition 6.3 (Fubini)7 If a series
P

Gn of nonnegative, non-decreasing func-
tions converges a.e. on some interval I, then

�X
Gn

�0 D
X

G0
n a.e. on I: (6.1)

Proof of Proposition 6.2 (a) Given any " > 0, by Proposition 5.14 (p. 185) we may
choose a step function ' satisfying

Z b

a
j f � 'j dx < "=2:

Fix a number A such that j'j < A.
Consider a finite number of pairwise disjoint intervals .ak; bk/ � Œa; b�, of

total length < ı WD "=2A. Then

X
jF.bk/ � F.ak/j D

Xˇ
ˇ
ˇ

Z bk

ak

f dx
ˇ
ˇ
ˇ

�
XZ bk

ak

jf � 'j dx C
XZ bk

ak

j'j dx

�
Z b

a
jf � 'j dx C A

X
.bk � ak/

<
"

2
C Aı

D ":

This proves the absolute continuity of F.
(b) The nonnegative functions

fC WD max f f ; 0g and f� WD max f�f ; 0g

are integrable, and f D fC � f�. Their indefinite integrals are bounded, non-
decreasing functions, hence their difference F has a bounded variation.

(c) The proposition is obvious for step functions. If f 2 C1, then choose a non-
decreasing sequence . fn/ of step functions, converging a.e. to f . Their indefinite
integrals Fn satisfy F0

n D fn a.e. by our previous remark, and Fn ! F by the
definition of the integral.

Applying Proposition 6.3 with Gn WD FnC1 � Fn we obtain that F0
n � F0

1 !
F0 � F0

1 a.e., i.e., fn ! F0 a.e. On the other hand, we have fn ! f a.e., so that
F0 D f a.e.

7Fubini [165].
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The general case follows because every integrable function is the difference
of two functions of C1.

ut
Proof of Proposition 6.3 Since every interval is a countable union of compact
intervals, we may assume that I D Œa; b� is compact.

(a) We prove that the series
P

G0
n converges a.e. Let Sn D G1 C � � � C Gn and

S D P
Gn, then

Sn ! S on Œa; b� everywhere. (6.2)

Since the functions Sn and S are non-decreasing, apart from a null set they are
differentiable in Œa; b�. The series

P
G0

n.x/, i.e., the sequence .S0
n.x// converges

at each differentiability point x. Indeed, by the non-decreasingness of Gn we
have

Sn.x C h/� Sn.x/

h
� SnC1.x C h/� SnC1.x/

h
� S.x C h/� S.x/

h

for all h satisfying x C h 2 Œa; b�, and hence

S0
n.x/ � S0

nC1.x/ � S0.x/ < 1

for every n.
(b) For the proof of (6.1) it suffices to find a sequence n1 < n2 < � � � of indices

such that

S0 � S0
nk

! 0 a.e. (6.3)

By (6.2) we may choose n1 < n2 < � � � satisfying S.b/�Snk.b/ < 2
�k for every

k. Then the series

X�
S.b/� Snk.b/

	

converges. Since

0 � S.x/� Snk.x/ � S.b/� Snk.b/

for all a � x � b, it follows that the series
P
.S � Snk/ converges on the whole

interval Œa; b�.
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The last series is of the same type as
P

Gn. Applying the already proved
property (a), we conclude that the series

P
.S0 � S0

nk
/ converges a.e. But then its

general term tends to zero a.e., i.e., (6.3) holds.
ut

Using Proposition 6.2 we may investigate the density of sets:

Definition A measurable set A set has density d at a point x 2 R if

�.A \ In/

jInj ! d (6.4)

for every sequence .In/ of non-degenerate intervals, containing x and satisfying
jInj ! 0.

We always have 0 � d � 1; for example a set has density one at each point of its
interior. Much more is true:

Proposition 6.4 (Lebesgue)8 Every measurable set A set has density one at a.e.
point of A.

Proof Since density is a local property, we may assume that A is bounded. Then
�A integrable, and its indefinite integral F satisfies F0 D �A a.e. by Proposition 6.2
(p. 200).

The equality F0.x/ D �A.x/ means that (6.4) holds with d D �A.x/ if x is an
endpoint of each interval In. The general case follows from the identity

F.x C t/ � F.x � s/

t C s
D t

t C s

F.x C t/ � F.x/

t
C s

t C s

F.x/� F.x � s/

s
;

valid for all t; s > 0, and from the equality

t

t C s
C s

t C s
D 1:

ut

6.2 Primitive Function

Proposition 6.2 motivates the following

Definition F W Œa; b� ! R is a primitive function of f W Œa; b� ! R if F is absolutely
continuous, has bounded variation, and F0 D f a.e.

8Lebesgue [290, pp. 123–124]. See also Zajícek [491] for a direct proof using measure theory, and
Riesz–Sz.-Nagy [394] for an extension to non-measurable sets A.
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We have the following important generalization of the Newton–Leibniz formula:

Theorem 6.5 (Lebesgue–Vitali)9 Let f W Œa; b� ! R.

(a) f has a primitive function ” f is integrable.
(b) If F is a primitive function of f , then

Z b

a
f dx D F.b/� F.a/:

First we complement Lebesgue’s differentiability theorem (p. 157):

Proposition 6.6

(a) If F W Œa; b� ! R has bounded variation, then F0 is integrable.
(b) If F W Œa; b� ! R is non-decreasing, then10

Z b

a
F0 dx � F.b/� F.a/:

Examples In the absence of absolute continuity the last inequality may be strict.

• The simplest example is the discontinuous sign function:

Z 1

�1
sign0 dx D 0 < 2 D sign.1/� sign.�1/:

• The Cantor function F W Œ0; 1� ! Œ0; 1� of the preceding section provides a
more surprising example. We recall that F is continuous, non-decreasing and
surjective. We also have F0.x/ D 0 a.e. because F is constant on each interval of
the complement of C by construction. Hence11

Z 1

0

F0 dx D 0 < 1 D F.1/� F.0/:

• There exist even continuous and strictly increasing functions F with F0 D 0 a.e.12

9Lebesgue [290], Vitali [466]. The theorem greatly extended former results of Darboux [95,
pp. 111–112] and Dini [109, Sect. 197]. Denjoy [98–100] obtained even more complete results;
see, e.g., Natanson [332], Bartle [30].
10Lebesgue [290].
11Lebesgue [290], Vitali [466]. The graph of F is often called the “Devil’s staircase”; see Fig. 6.1,
p. 199. See a related, “natural” example in Komornik–Kong–Li [259].
12See, e.g., an example of F. Riesz in Sz.-Nagy [448].
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Proof We may assume by Jordan’s theorem (p. 165) that F is non-decreasing.
Extending F as a constant to the left and to the right of its domain, we may also
assume that Œa; b� D R. Finally, by Propositions 4.7 and 4.8 we may assume that F
is continuous.

The formula

Dn.x/ WD n.F.x C n�1/ � F.x//; n D 1; 2; : : :

defines a sequence of nonnegative, continuous functions on R. Their integrals form
a bounded sequence on each compact interval Œ�N;N� because by the continuity of
F we have

Z N

�N
Dn dx D n

Z NCn�1

N
F dx �

Z �NCn�1

�N
F dx ! F.N/ � F.�N/

as n ! 1. Since Dn ! F0 a.e. on Œ�N;N� by Lebesgue’s theorem (p. 157), F0 is
integrable on Œ�N;N� by the Fatou lemma (p. 183), and

Z N

�N
F0 dx � F.N/� F.�N/:

Since F is non-decreasing,

Z

F0�Œ�N;N� dx � F.1/� F.�1/; N D 1; 2; : : : :

Finally, F0�Œ�N;N� % F0 a.e., so that F0 is integrable and

Z 1

�1
F0 dx � F.1/� F.�1/

by the Beppo Levi theorem. ut
Proof of Theorem 6.5 (a) If f is integrable, then its indefinite integral is a primitive
function of f by Proposition 6.2. Conversely, if F is a primitive function of f , then
f D F0 a.e., and f integrable by the preceding proposition. ut

For the proof of part (b) we need a lemma:

Lemma 6.7 If H W I ! R is non-decreasing, absolutely continuous and H0 D 0

a.e., then H is constant.

Proof It is sufficient to consider the case where I D Œa; b� is compact. Let us denote
by E the null set of the points x 2 Œa; b� where the property H0.x/ D 0 fails. By
Proposition 6.1 its image H.E/ is also a null set.

We are going to show that the image of the complementary set F WD Œa; b� n E is
a null set, too. Fix " > 0 arbitrarily. Since H0 D 0 on F, for each x 2 F there exists
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x < y < b such that

H.y/� H.x/

y � x
< ":

This means that x is invisible from the right with respect to the function g.t/ WD
"t � H.t/. Applying the “Rising Sun” lemma (p. 162), F has a countable cover by
pairwise disjoint open intervals .ak; bk/ satisfying g.ak/ � g.bk/, i.e.,

H.bk/� H.ak/ � ".bk � ak/:

Hence H.F/may be covered by the system of intervals ŒH.ak/;H.bk/� of total length
� ".b � a/. Since " can be chosen arbitrarily small, this proves that H.F/ is a null
set.

We conclude from the preceding that the interval H.I/ D H.E/[ H.F/ is a null
set, so that it is a one-point set. In other words, H is constant. ut
Proof of Theorem 6.5 (b) We have to show that if F W Œa; b� ! R is absolutely
continuous and has bounded variation, then

Z b

a
F0 dx D F.b/� F.a/:

Observing that in the Jordan decomposition F D g � h of F (Proposition 4.11)
the functions g; h are also absolutely continuous, we may assume that F is non-
decreasing. By Proposition 6.6 f WD F0 is integrable, and by Proposition 6.2 the
indefinite integral G of f is absolutely continuous, and

Z b

a
F0 dx D G.b/� G.a/:

It suffices to show that H WD F�G is constant. This readily follows from Lemma 6.7
because H is absolutely continuous, and H0 D F0 � G0 D 0 a.e. ut
Remark (Lebesgue Decomposition)13 Let F W Œa; b� ! R be a function of bounded
variation, and denote by G the indefinite integral of F0. Then H WD F � G has
bounded variation, and H0 D 0 a.e. Functions having this property are called
singular. Thus every function F W Œa; b� ! R of bounded variation is the difference
of an absolutely continuous and a singular function.

13Lebesgue [295, pp. 232–249].
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6.3 Integration by Parts and Change of Variable

Proposition 6.8 If f ; g are integrable on Œa; b� and F;G are their primitive func-
tions, then fG and Fg are also integrable on Œa; b�, and

Z b

a
fG dx C

Z b

a
Fg dx D F.b/G.b/� F.a/G.a/ DW ŒFG�ba:

Proof F and G are continuous functions on a compact interval, hence they are
bounded by some constant M. It follows by applying Proposition 5.16 (b) and (e)
(p. 187) that fG and Fg are integrable.

Furthermore, using for the subintervals Œ˛; ˇ� of Œa; b� the estimates

jF.ˇ/G.ˇ/� F.˛/G.˛/j D j.F.ˇ/� F.˛//G.ˇ/ � F.˛/.G.ˇ/ � G.˛//j
� MjF.ˇ/ � F.˛/j C MjG.ˇ/ � G.˛/j;

we conclude that FG is absolutely continuous and has bounded variation. Since

.FG/0 D F0G C FG0 D fG C Fg a.e.,

applying Theorem 6.5 (p. 204) we conclude that

Z b

a
fG dx C

Z b

a
Fg dx D

Z b

a
fG C Fg dx D ŒFG�ba:

ut
Proposition 6.9 (de la Vallée-Poussin)14 Let x W Œ˛; ˇ� ! R be an absolutely
continuous, non-decreasing function. If f is integrable in Œx.˛/; x.ˇ/�, then . f ı x/x0
is integrable in Œ˛; ˇ�, and

Z x.ˇ/

x.˛/
f .x/ dx D

Z ˇ

˛

f .x.t//x0.t/ dt: (6.5)

Proof The statement is obvious if f is a step function. Since the general case may
be reduced to the case of C1 functions by using the decomposition f D g � h with
g; h 2 C1, it suffices to prove the proposition when f 2 C1.

Let f 2 C1, and choose a non-decreasing sequence .'n/ of step functions,
converging a.e. to f . Set

E WD fx 2 Œx.˛/; x.ˇ/� W 'n.x/ 6! f .x/g (6.6)

14de la Vallée-Poussin [465, p. 467].
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and

D WD ˚
t 2 Œ˛; ˇ� W x.t/ 2 E and x0.t/ > 0

�
:

By assumption E is a null set. Assume temporarily that D is also a null set.
Since x0 � 0, the sequence of measurable functions

t 7! 'n.x.t//x
0.t/; n D 1; 2; : : :

is non-decreasing. Furthermore, we have

'n.x.t//x
0.t/ ! f .x.t//x0.t/

a.e. in Œ˛; ˇ� because the exceptional points belong either to D or to the non-
differentiability set of x, both null sets. Finally, the corresponding integrals are
uniformly bounded because using (6.5) for step functions we have

Z ˇ

˛

'n.x.t//x
0.t/ dt D

Z x.ˇ/

x.˛/
'n.x/ dx !

Z x.ˇ/

x.˛/
f .x/ dx:

Applying the Beppo Levi theorem we conclude that . f ı x/x0 is integrable, and f
satisfies (6.5).

It remains to prove that D is a null set in Œ˛; ˇ�. For this we consider a system
fIkg of open intervals, of finite total length, covering each point of E infinitely many
times. Then

nX

kD1
�Ik .x.t//x

0.t/; n D 1; 2; : : :

is a non-decreasing sequence of functions whose integrals are uniformly bounded
because using (6.5) for step functions we have

0 �
Z ˇ

˛

nX

kD1
�Ik .x.t//x

0.t/ dt D
nX

kD1

Z x.ˇ/

x.˛/
�Ik .x/ dx �

1X

kD1
jIkj < 1:

The series converges a.e. by the Beppo Levi theorem. Since it tends to infinity for
each t 2 D, D is a null set. ut
Remark The formula (6.5) remains valid if f has an infinite integral. Considering
the positive and negative parts of f , it suffices to study the case of nonnegative,
measurable functions f . Choose a non-decreasing sequence .'n/ of integrable
functions, converging a.e. to f . Then we may repeat part (c) of the preceding proof
by applying now the generalized Beppo Levi theorem, i.e., Proposition 5.17 (e)
(p. 190).
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6.4 Exercises

Exercise 6.1 Consider the Cantor function F W Œ0; 1� ! Œ0; 1�, and set f .x/ WD
x C F.x/, x 2 Œ0; 1�. Prove the following15:

(i) f is a homeomorphism between the intervals Œ0; 1� and Œ0; 2�;
(ii) f sends the null set C into a set of measure one;

(iii) there exists a subset of C whose image by f is non-measurable.

Exercise 6.2

(i) For each ˛ 2 Œ0; 1/ there exists a perfect nowhere dense set C˛ � Œ0; 1� of
measure ˛.16

(ii) Construct a set A � Œ0; 1� of measure one and of the first category.17

(iii) Construct a null set B � Œ0; 1� of the second category.18

Exercise 6.3 If f W Œa; b� ! R is continuous, then f and jf j are absolutely
continuous at the same time. Is the continuity assumption necessary?

Exercise 6.4 Given an integrable function f W Œa; b� ! R, x 2 .a; b/ is a Lebesgue
point if

lim
h!0

1

2h

Z xCh

x�h
f .t/ dt D f .x/:

(i) If f is continuous at x, then x is a Lebesgue point.
(ii) If f has different finite left and right limits at x, then x is not a Lebesgue point.

(iii) Almost every x is a Lebesgue point.

15See Gelbaum–Olmsted [167, 168] for other interesting properties.
16A perfect set is a closed set with no isolated points. A set is nowhere dense if its closure has no
interior points.
17A set A is of the first category (Baire [17]) if it is the countable union of nowhere dense sets.
18A set A is of the second category (Baire [17]) if it is not of the first category. Baire’s theorem
(see p. 32) states that every complete metric space and every compact Hausdorff space is of the
second category.



Chapter 7
Integrals on Measure Spaces

In my opinion, a mathematician, in so far as he is a mathematician, need not preoccupy
himself with philosophy – an opinion, moreover, which has been expressed by many
philosophers.
–H. Lebesgue

In Chap. 5 we defined the Lebesgue integral of functions defined on R. In this
chapter we show that the theory remains valid in a much more general framework;1

moreover, almost all proofs can be repeated word for word. The results of this
chapter include integrals of several variables and integrals on probability spaces.2

7.1 Measures

In this section we generalize the notions of length, area and volume. We recall that
by a disjoint set sequence we mean a sequence .An/ of pairwise disjoint sets. To
emphasize the disjointness we sometimes write [�An instead of [An.

We denote by 2X the set of all subsets of a set X. The notation is motivated by the
fact that if X has n elements, then 2X has 2n elements.

1Radon [366], Fréchet [158], Daniell [93]. In this book we consider only real-valued functions,
although Bochner [46] extended the theory to Banach space-valued functions, and this has
important applications among others in the theory of partial differential equations. See, e.g.,
Dunford–Schwartz [117], Edwards [119], Yosida [488], and Lions–Magenes [305].
2Kolmogorov [252].

© Springer-Verlag London 2016
V. Komornik, Lectures on Functional Analysis and the Lebesgue Integral,
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212 7 Integrals on Measure Spaces

Definition By a semiring3 in a set X we mean a set system P � 2X satisfying the
following conditions:

• ¿ 2 P ;
• if A;B 2 P , then A \ B 2 P ;
• if A;B 2 P , then there exists a finite disjoint sequence C1; : : : ;Cn in P such that

A n B D C1 [� � � � [� Cn:

Remark It follows by induction on k that A1\� � �\Ak 2 P for every finite sequence
A1; : : : ;Ak in P .

Examples

• Every �-ring is a semiring.
• The intervals of R form a semiring. The bounded intervals also form a semiring.
• For any given set X and nonnegative integer k, the subsets of at most k elements

of X form a semiring.
• (Restriction) If P is a semiring in X, and Y � X, then

PY WD fP 2 P W P � Yg

is a semiring in Y.
• (Direct product) If P is a semiring in X and Q is a semiring in Y, then

P � Q WD fP � Q W P 2 P ; Q 2 Qg

is a semiring in X � Y.

Definitions By a measure4 on X we mean a nonnegative set function � W P ! R,
defined on a semiring P in X, satisfying �.¿/ D 0, which is �-additive in the
following sense: if .An/ � P is a disjoint set sequence and A WD [�An 2 P , then5

�.A/ D
X

�.An/: (7.1)

In this case the triplet .X;P ; �/ is called a measure space.

3Halmos [184] introduced a slightly more restricted notion, but the present definition has become
standard by now.
4Borel [59].
5Since �.¿/ D 0, the equality (7.1) holds for finite disjoint sequences as well. Finitely additive
set functions were studied before Borel by Harnack [192], Cantor [74, pp. 229–236], Stolz [437],
Peano [353, pp. 154–158] and Jordan [231, pp. 76–79].
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Examples

• The length of bounded intervals is a measure on R: if a bounded interval I is
the union of a disjoint interval sequence .Ik/, then jIj D P jIkj.6 Indeed, an
elementary argument shows that jI1jC � � �C jInj � jIj for every n; letting n ! 1
this yields the inequality

P jIkj � jIj. The reverse inequality has been proved
earlier in Proposition 4.3 (p. 155).

• (Counting measure) Denoting by �.A/ the number of elements of a set A � X
we get a measure on P WD 2X.7

• (Dirac measure) For any fixed point x 2 X the formula

ıx.A/ WD
(
1 if x 2 A,

0 if x … A

defines a measure on P WD 2X.
• (Zero measure) The formula �.A/ WD 0 defines a measure on P WD 2X .
• (Largest measure) The formula

�.A/ WD
(
0 if A D ¿,

1 otherwise

defines a measure on P WD 2X.
• (Zero-one measure) Given an uncountable set X, the formula

�.A/ WD
(
0 if A is countable,

1 if X n A is countable,

defines a measure on the �-ring formed by the countable subsets of X and their
complements.

• (Restriction) If � is a measure on a semiring P and Y 2 P , then the restriction
of � to PY is a measure.

• (Direct product) If � W P ! R and  W Q ! R are two measures, then the
formula

.� � /.P � Q/ WD �.P/.Q/

defines a measure on P � Q.

6The statement and its proof remain valid for unbounded intervals, too.
7In this book we do not distinguish between different infinite cardinalities, except in an example
on p. 243 and in some exercises.
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• (Finite part of a measure) For any given measure % W R ! R,

P WD fA 2 R W %.A/ < 1g

is a semiring, and the restriction of % to P is a measure.

Now we prove that every measure may be extended uniquely to a measure defined
on a set system which is easier to manipulate. This will enable us to establish various
important features of the measures.

Definition By a ring in a set X we mean a set system R � 2X satisfying the
following conditions:

• ¿ 2 R;
• if A;B 2 R, then A n B 2 R;
• if A;B 2 R are disjoint sets, then A [� B 2 R.

Remark If R is a ring, then the identity A [ B D .A n B/ [� B shows that the
disjointness is not necessary in the last condition: if A;B 2 R, then A [ B 2 R. It
follows by induction that A WD A1[� � �[An 2 R for every finite sequence A1; : : : ;Ak

in R.
Using the identity \An D A n [.A n An/ it follows that A1 \ � � � \ Ak 2 R for

every finite sequence A1; : : : ;Ak in R. In particular, every ring is also a semiring.

Examples

• Every �-ring is also a ring. In particular, 2X is a ring in X.
• The finite subsets of a set X form a ring in X.
• The finite subsets of a set X and their complements8 form a ring in X.

Given any set system A � 2X , the intersection of all rings R satisfying A �
R � 2X is a ring in X. It is called the ring generated by A.

There is a simple construction of the rings generated by semirings:

Lemma 7.1 The ring generated by a semiring P is formed by all finite disjoint
unions of the form

R D P1 [� � � � [� Pn; P1; : : : ;Pn 2 P n D 1; 2; : : : : (7.2)

Proof Since every ring containing P contains the sets (7.2), it is sufficient to show
that the system R of these sets is already a ring. We proceed in several steps.

(a) We have ¿ 2 R because ¿ 2 P .
(b) If R1; : : : ;Rm 2 R are pairwise disjoint sets for some positive integer m, then

R WD R1 [� � � � [� Rm 2 R. Indeed, if we decompose each Ri similarly to (7.2),
then we obtain a decomposition of the same form of R.

8The so-called co-finite sets.
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(c) If P0;P 2 P , then P0 n P 2 R by the definition of the semiring and of R.
(d) If R 2 R and P 2 P , then R n P 2 R. Indeed, considering a decomposition of

the form (7.2) of R and using (b) and (c) we obtain that

R n P D .P1 n P/ [� � � � [� .Pn n P/ 2 R:

(e) If R0;R 2 R, then R0 n R 2 R. Indeed, considering a decomposition of the
form (7.2) of R and applying (d) n times we obtain that

R0 n R D .: : : .R0 n P1/ n P2/ : : : / n Pn 2 R: ut

Proposition 7.2 Every measure � W P ! R may be extended to a unique measure
defined on the ring R generated by the semiring P .

Proof If there exists such an extension, then, still denoting it by �, we must have

�.R/ D �.P1/C � � � C �.Pn/

for every decomposition of the form (7.2). Since P1; : : : ;Pn 2 P , this proves the
uniqueness.

For the existence first we show that the above equality does indeed define an
extension, i.e., if

R D P0
1 [� � � � [� P0

m

is another such decomposition of R, then

�.P1/C � � � C �.Pn/ D �.P0
1/C � � � C �.P0

k/:

This readily follows from the additivity of � W P ! R because both sums are
equal to

nX

jD1

kX

iD1
�.Pj \ P0

i/:

The extended set function is clearly nonnegative, it remains to prove its �-
additivity. Let R D [1

kD1Rk be a disjoint union with R;Rk 2 R; we have to show
that �.R/ D P

�.Rk/.
Replacing each Rk with a decomposition of the form (7.2) and using the definition

of �.Rk/ we may assume that Rk 2 P for every k. Now consider a decomposition
of the form (7.2) of R; then we have

Pj D
1[�

kD1
.Pj \ Rk/
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for each j. Since Pj;Pj \ Rk 2 P , and since � is �-additive on P , this implies

�.Pj/ D
1X

kD1
�.Pj \ Rk/:

Summing these equalities we obtain the required relation:

�.R/ D
nX

jD1
�.Pj/ D

nX

jD1

1X

kD1
�.Pj \ Rk/

D
1X

kD1

� nX

jD1
�.Pj \ Rk/

�

D
1X

kD1
�.Rk/: ut

Now we are ready to establish some basic properties of measures:

Proposition 7.3 Every measure � W P ! R (defined on a semiring) satisfies the
following conditions:

(a) (monotonicity) if A;B 2 P and A � B, then �.A/ � �.B/;
(b) (�-subadditivity) if .An/ � P is a countable cover of A 2 P , then �.A/ �P

�.An/;
(c) (continuity) if .An/ � P is a non-decreasing set sequence and A WD [An 2 P ,

then �.An/ ! �.A/;
(d) (continuity) if .An/ � P is a non-increasing set sequence with �.A1/ < 1 and

A WD \An 2 P , then �.An/ ! �.A/.

Example The intervals An WD Œn;1/ � R show that the condition �.A1/ < 1 in
(d) cannot be omitted.

Proof By the preceding proposition we may assume that P is a ring.

(a) Using the nonnegativity and the additivity of the measures we have

�.B/ D �.A/C �.B n A/ � �.A/:

(b) Setting B1 WD A \ A1 and

BnC1 WD .A \ AnC1/ n .A1 [ � � � [ An/; n D 1; 2; : : :
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we have A D [�Bn. Furthermore, Bn � An and Bn 2 P for all n (because P is
a ring). We conclude by using (a):

�.A/ D
X

�.Bn/ �
X

�.An/:

(c) Let A0 D ¿, then the sets Ak n Ak�1 belong to the ring P . Since

A D
1[�

kD1
.Ak n Ak�1/ and An D

n[�

kD1
.Ak n Ak�1/

for all n, we have

�.An/ D
nX

kD1
�.Ak n Ak�1/ !

1X

kD1
�.Ak n Ak�1/ D �.A/:

(d) Since �.An/ is finite for all n, changing An to An nA we may assume that A D ¿.
The sets Ak n AkC1 belong to the ring P . Since

A1 D
1[�

kD1
.Ak n AkC1/;

by the �-additivity we have

1X

kD1
�.Ak n AkC1/ D �.A1/:

Since �.A1/ < 1 by assumption, the series is convergent, and hence

1X

kDn

�.Ak n AkC1/ ! 0

as n ! 1. We conclude by noticing that the last sum is equal to �.An/ because

1[�

kDn

.Ak n AkC1/ D An: ut

7.2 Integrals Associated with a Finite Measure

Definition A measure is finite if it takes only finite values.
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Examples

• The finite part of a measure is a finite measure.
• Every bounded measure is finite. The length of bounded intervals shows that the

converse is not always true.

For the rest of this section we fix a semiring P in a set X and a finite measure
� W P ! R.

Definition By a step function we mean a linear combination

' D
nX

kD1
ck�Pk

of characteristic functions of sets in P .
The integral of a step function is defined by the formula

Z

' d� WD
nX

kD1
ck�.Pk/:

Proposition 5.1 (p. 172) remains valid: by the additivity of the measure the
integral does not depend on the particular representation of the step function.

Definition A set A is a null set if for each " > 0 there exists a sequence .Pk/ � P
satisfying A � [Pk and

P
�.Pk/ � ".

Equivalently, A is a null set if there exists a sequence .Pk/ � P satisfyingP
�.Pk/ < 1, and covering each point x 2 A infinitely many times.

Proposition 4.3 (p. 155) takes the following form:

Proposition 7.4

(a) The empty set is a null set.
(b) The subsets of a null set are null sets.
(c) The union of countably many null sets is a null set.
(d) P 2 P is a null set ” �.P/ D 0.

Proof (a), (b) and (c) We may repeat the proof of Proposition 4.3.
(d) If �.P/ D 0, then P is null set: we may choose Pk D P for all k in the

definition. Conversely, if P 2 P is a null set, then for each " > 0 there exists a
sequence .Pk/ � P satisfying A � [Pk and

P
�.Pk/ � ". Using the subadditivity

of the measure this implies �.P/ � " for every " > 0, and hence �.P/ D 0. ut
Chapter 5 was written in such a way that all theorems, propositions, corollaries

and lemmas remain valid without any change. Moreover, the proofs also remain
valid with three exceptions:

• In the proof of Lemma 5.2 (p. 172) we have used the topological properties of
intervals.
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• In the proof of Proposition 5.16 (f) (p. 187) we have used the existence of an
integrable, everywhere positive function. An example following Lemma 7.5 will
show that such functions do not exist for all measures.

• In the proof of Proposition 5.19 (p. 194) we have implicitly used that the constant
functions are measurable.9 The just mentioned example will show that this is not
always true either.10

The following alternative proofs are always valid:

Proof of Lemma 5.2 We extend � to the generated ring R by Proposition 7.2.
Fix a null set Y � X such that 'n.x/ ! 0 for every x 2 X n Y, and fix " > 0

arbitrarily. Choose a set sequence .Hi/ � P satisfying

Y � [Hi and
X

�.Hi/ < ":

Then the sets Sn WD H1 [ � � � [ Hn belong to R,

S1 � S2 � � � � ;

and �.Sn/ < " for every n.
Set

K0 WD fx 2 X W '1.x/ > 0g

and

Kn WD fx 2 X W 'n.x/ > "g ; n D 1; 2; : : : I

they belong to R, and

K0 � K1 � K2 � � � � :

Setting M WD max'1 we have

'n � M on Kn;

'n � " on K0 n Kn;

'n D 0 on X n K0:

9The measurability of the constant functions is equivalent to the measurability of X.
10In this book, following F. Riesz, we adopt a more restrictive measurability notion than usual. See
Sect. 7.7 on the advantages of this choice.
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Consequently,

0 �
Z

'n d� � "�.K0 n Kn/C M�.Kn/

D "�.K0 n Kn/C M�.Kn \ Sn/C M�.Kn n Sn/

� "�.K0/C M"C M�.Kn n Sn/:

The set sequence .Kn n Sn/ is non-increasing and

�.K1 n S1/ � �.K0/ < 1:

Furthermore, its intersection is empty. Indeed, if x 2 \Kn, then 'n.x/ 6! 0, so that
x 2 Y; but then x 2 Sn for a sufficiently large n and therefore x 2 Sn and x … Kn n Sn.

Applying Proposition 7.3 (d) we conclude that �.Kn n Sn/ ! 0. Consequently,
we infer from the previous estimate that

0 �
Z

'n d� <
�
�.K0/C M C 1

	
"

if n is sufficiently large. ut
Proof of Proposition 5.16 (f) If there exists a set sequence .Pk/ � P such that each
fn vanishes outside [Pk then we may repeat the proof of Chap. 5 by using the
function

h WD
X

k

�Pk

k2.1C �.Pk//
;

and defining the functions gn and g by zero outside [Pk.
The existence of such a sequence .Pk/ follows from the next lemma.11 ut

Lemma 7.5 To each measurable function f there exists a disjoint set sequence
.Pk/ � P such that f D 0 outside [�Pk.12

Proof Choose a sequence .'n/ of step functions converging to f a.e. By definition
there exists a set sequence .A0j/ � P such that 'n ! f outside [A0j.

Furthermore, by the definition of step functions there exists for each n a finite set
sequence .Anj/ � P such that 'n D 0 outside [Anj.

We may arrange all these sets A0j and Anj into a set sequence .Pk/. Furthermore,
using the definition of a semiring we may replace each difference P2 n P1, .P3 n

11We apply the lemma for each fn, and we take the union of the corresponding set sequences.
12We sometimes express this property by saying that f has a � -finite support. Using this
terminology X is measurable ” X is � -finite.
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P2/ n P1, . . . by a finite disjoint union of sets in P . Then the sequence .Pk/ becomes
disjoint, and f D 0 outside [�Pk. ut
*Examples

• Let � be a finite measure on the ring of finite subsets of an uncountable set X. By
Lemma 7.5 there is no measurable, strictly positive function for this measure. In
particular, the non-zero constant functions are non-measurable.

• Fix a non-empty set X and consider the measure �.¿/ WD 0 on the ring P WD
f¿g. Then only the zero function is measurable, and ¿ is the only measurable
set.

Proof of Proposition 5.19 Most of the former proof remains valid. The only prop-
erty to check is that if f is a measurable function and c a positive constant, then the
functions min f f ; cg and max f f ;�cg are measurable.

For the proof we consider the sets Pk of the preceding lemma. Then A WD [Pk is
measurable, hence the functions c�A and then the functions

min f f ; cg D min f f ; c�Ag and max f f ;�cg D max f f ;�c�Ag

are also measurable. ut
Starting from an arbitrary finite measure defined on a semiring P , the theory

of Chap. 5 leads to a measure � defined on the system M of all measurable sets.
Our next result states that this is the only possible extension of the original measure
to M.

*Proposition 7.6 Let  W N ! R be another measure, defined on a semiring
satisfying P � N � M. If � D  on P , then � D  on N , too.

Proof

(i) Every �-null set is also a -null set. For, if a set may be covered by a set
sequence .Pn/ � P of total �-measure < ", then we have

X
.Pn/ D

X
�.Pn/ < ":

(ii) Now consider the two integrals associated with the measures � and jP .
We show that every �-integrable function f is also -integrable, and the two
integrals are equal:

Z

f d� D
Z

f d: (7.3)

Since
Z

�P d� D �.P/ D .P/ D
Z

�P d
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for every P 2 P by assumption, taking their linear combinations we obtain
that (7.3) holds for all step functions.

The equality holds for all functions f 2 C1.�/ as well.13 Indeed, consider a
non-decreasing sequence .'n/ of �-step functions, converging �-a.e. to f , and
satisfying

sup
n

Z

'n d� < 1:

Then we have
R
'n d� ! R

f d� by definition.
Furthermore, .'n/ converges to f also -a.e. by (i), and

sup
n

Z

'n d D sup
n

Z

'n d� < 1

because (7.3) has already been proved for step functions. Applying the Beppo
Levi theorem we conclude that f is -integrable and

R
'n d ! R

f d;
hence (7.3) holds for f .

Finally, if f is an arbitrary �-integrable function, then we have f D g � h
with suitable functions g; h 2 C1.�/. We already know that (7.3) holds for g
and h; taking the difference of these equalities we see that f satisfies (7.3) as
well.

(iii) It follows from (ii) that if A 2 N and �.A/ < 1, then

�.A/ D
Z

�A d� D
Z

�A d D .A/:

Consider finally an arbitrary set A 2 N . Then A 2 M, hence it is �-
measurable, so that it may be covered by a disjoint sequence .Pn/ � P . Since
P � N , we have

A \ Pn 2 N � M and �.A \ Pn/ < 1

for all n. Applying the preceding equality for A \ Pn instead of A we conclude
that

�.A/ D
X

�.A \ Pn/ D
X

.A \ Pn/ D .A/: ut

We end this section by characterizing the measures constructed via integrals.

Definition A measure �, defined on a semiring Q, is �-finite if each set in Q has a
countable cover by sets of finite measure.

13The function class C1 was defined on p. 174.
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Remark By the definition of a semiring in the �-finite case each set in Q also has a
countable disjoint partition by sets of finite measure.

Examples

• The usual Lebesgue measure in R is �-finite.
• Every finite measure is �-finite.
• Given a measure % on some semiringR, let us denote by Q the sets A 2 R having

a countable cover by sets P 2 R of finite measure. Then Q is also a semiring.
The restriction of % to Q is called the �-finite part of %.

• The counting measure on an uncountable set X is not �-finite. Its �-finite part is
defined on the countable subsets of X.

Consider again a finite measure defined on a semiring P , and let � be its
extension14 to the set system M of measurable sets.

*Proposition 7.7

(a) M is a �-ring. The extended measure � W M ! R is �-finite and complete.
(b) Conversely, every �-finite, complete measure, defined on a �-ring may be

obtained in this way.
(c) More generally, every �-finite measure, defined on a semiring, is a restriction

of the measure � W M ! R obtained by the extension of its finite part.

Proof

(a) This follows from Proposition 5.18 (p. 192) and Lemma 7.5.
(c) Let N be a semiring and  W N ! R a �-finite measure. Consider the finite

part of , i.e., the restriction of  to the semiring

P WD fA 2 N W .P/ < 1g ;

and let � W M ! R be the extension of jP to the �-ring of jP-measurable
sets. We have to show that N � M and  D �jN .

Fix an arbitrary set A 2 N . Since  is �-finite, there exists a disjoint set
sequence .Pn/ � P satisfying A D [�Pn. Since P � M and M is a �-ring,
A 2 M. Furthermore, since �.Pn/ D .Pn/ for every n by the definition of �,
we conclude that

.A/ D
X

.Pn/ D
X

�.Pn/ D �.A/:

(b) Let N be a �-ring and  W N ! R a �-finite, complete measure. By (c) we
already know that N � M and  D �jN . It remains to prove that M � N .

Fix an arbitrary A 2 M. Then �A is a measurable function, so that there
exists a sequence .'n/ of P-step functions, converging to �A �-a.e. In other

14We already know that this extension is unique.
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words, there exists a �-null set P0 such that 'n ! �A outside it. Observe that
P0 is also a -null set.15

Then

An WD



x 2 X W 'n.x/ >
1

2

�

2 N

for each n D 1; 2; : : : ; because An is a union of finitely many elements of P ,
P � N , and N is a ring.

Since N is also a �-ring, the set

N WD lim sup An WD \1
kD1 [1

nDk Ak

also belongs to N .
Now observe for each x 2 X n P0 the equivalences

x 2 A ” x 2 An for infinitely many n ” x 2 lim sup An:

It follows that

.A n N/ [ .N n A/ � P0;

i.e., A differs from N 2 N on a -null set. Since  is complete, we conclude
that A 2 N . ut

7.3 Product Spaces: Theorems of Fubini and Tonelli

In classical analysis the computation of double integrals may be reduced to that of
simple integrals by using the formula16

Z

X�Y
f .x; y/ dx dy D

Z

X

�Z

Y
f .x; y/ dy

�
dx (7.4)

D
Z

Y

�Z

X
f .x; y/ dx

�
dy:

In this section we prove that this formula remains valid for Lebesgue integrals as
well.

Consider two finite measures � W P ! R and  W Q ! R, where P is a semiring
in X and Q is a semiring in Y. Then � �  W P � Q ! R is a finite measure on the

15See the beginning of the proof of Proposition 7.6: we already know that P � N � M.
16Euler [130], Dirichlet [113], and Stolz [438, pp. 93–94].



7.3 Product Spaces: Theorems of Fubini and Tonelli 225

semiring P � Q in X � Y. In what follows we write

Z

X�Y
f .x; y/ dx dy;

Z

X
g.x/ dx and

Z

Y
h.y/ dy

instead of
Z

f d.� � /;
Z

g d� and
Z

h d:

The expressions null set and a.e. will refer to � in X, to  in Y, and to �� in X �Y.
The following theorem is a far-reaching generalization of the classical results:

Theorem 7.8 (Fubini)17 If f is integrable in X � Y, then the successive integrals
in (7.4) exist, and the three expressions are equal.

Remarks

• By induction the theorem may be extended to arbitrary finite direct products of
(finite) measures.

• The existence of the successive integrals does not imply their equality. Moreover,
their existence and equality does not imply the integrability of f . See the
examples at the end of this section.

We prepare the proof by clarifying the relationship among the null sets of the
three spaces:

Lemma 7.9 If E is a null set in X � Y, then the “vertical sections”

fy 2 Y W .x; y/ 2 Eg

of E are null sets in Y for almost every x 2 X.

17Lebesgue [288] (for bounded functions), Fubini [164]. Fubini’s proof was incorrect; the first
correct proofs were given by Hobson [214] and de la Vallée-Poussin [464]. See Hawkins [198].
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Proof Fix a sequence of “rectangles” Rn D Pn � Qn in P � Q, covering each point
of E infinitely many times, and satisfying

1X

nD1
.� � /.Rn/ < 1:

By the definition of the integral of step functions we have

.� � /.Rn/ D
Z

X�Y
�Rn.x; y/ dx dy D

Z

X

�Z

Y
�Rn.x; y/ dy

�
dx

(their common value is �.Pn/.Qn/), so that the series

1X

nD1

Z

X

�Z

Y
�Rn.x; y/ dy

�
dx

is convergent. Applying the Beppo Levi theorem we obtain that the series

1X

nD1

Z

Y
�Rn.x; y/ dy

is convergent for a.e. x 2 X. If x0 is such a point, then another application of the
Beppo Levi theorem implies that the series

1X

nD1
�Rn.x0; y/

is convergent for a.e. y 2 Y. If y0 is such a point, then .x0; y0/ … E, because at the
points of E we have

P
�Rn D 1. ut

Proof of Theorem 7.8 By symmetry we prove only the equality

Z

X�Y
f .x; y/ dx dy D

Z

X

�Z

Y
f .x; y/ dy

�
dx: (7.5)

We have to show that

• the integral
R

Y f .x; y/ dy is well defined for a.e. x 2 X;
• the function x 7! R

Y f .x; y/ dy is integrable in X;
• the two sides of (7.5) are equal.

We have seen during the proof of the preceding lemma that these properties hold
true if f is the characteristic function of a “rectangle”. Taking linear combinations
we see that they hold for step functions as well. Since every integrable function is
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the difference of two step functions, it remains only to establish the three properties
for functions belonging to the class C1.

Fix f 2 C1 arbitrarily. Choose a non-decreasing sequence .'n/ of step functions
and a null set E � X � Y such that

'n.x; y/ % f .x; y/ for each .x; y/ 2 .X � Y/ n E; (7.6)

and therefore
Z

X�Y
'n.x; y/ dx dy !

Z

X�Y
f .x; y/ dx dy

by the definition of the integral. Since (7.5) is already known for step functions, the
last relation may be rewritten in the form

Z

X

�Z

Y
'n.x; y/ dy

�
dx !

Z

X�Y
f .x; y/ dx dy: (7.7)

Applying the Beppo Levi theorem18 we obtain that the non-decreasing sequence of
the functions

x 7!
Z

Y
'n.x; y/ dy (7.8)

converges, and hence is bounded, for a.e. x 2 X.
Fix a point x 2 X where the convergence holds, and for which the section

fy 2 Y W .x; y/ 2 Eg

is a null set. (By the preceding lemma a.e. x 2 X has this property.) Then

'n.x; y/ % f .x; y/ for a.e. y 2 Y

by (7.6), so that, in view of the boundedness of the functions (7.8) we may apply
the Beppo Levi theorem again: the function

y 7! f .x; y/

is integrable, and

Z

Y
'n.x; y/ dy %

Z

Y
f .x; y/ dy:

18In the proof of this theorem the application of Lemma 5.3 (p. 173) is sufficient because we
consider only sequences of step functions.
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We recall that this convergence holds for a.e. x 2 X. Since the sequence of
integrals

Z

X

�Z

Y
'n.x; y/ dy

�
dx

is bounded by (7.7) and the integrability of f , a third application of the Beppo Levi
theorem shows that the function

x 7!
Z

Y
f .x; y/ dy

is integrable, and

Z

X

�Z

Y
'n.x; y/ dy

�
dx !

Z

X

�Z

Y
f dy

�
dx: (7.9)

The equality (7.5) follows from (7.7) and (7.9). ut
Fubini’s theorem remains valid for generalized (infinite-valued) integrals:

Theorem 7.10 (Tonelli)19 If the integral of a function f exists in X � Y, then the
successive integrals in (7.4) also exist, and the three quantities are equal.

Remarks

• Like that of Fubini, Tonelli’s theorem holds for arbitrary finite direct products of
measures as well.

• We recall that every nonnegative, measurable function has an integral.

Proof Considering the positive and negative parts of f , at least one of them is
integrable, hence satisfies the assumptions of Fubini’s theorem. Therefore it is
sufficient to investigate the case of a nonnegative, measurable function f .

Applying Lemma 7.5 we fix a non-decreasing sequence .An/ of sets of finite
measure such that f D 0 outside [An. Then the functions

'n WD �An min f f ; ng

are integrable in X � Y by Proposition 5.16 (e) (p. 187), and 'n % f a.e. by
construction. We may therefore choose a null set E in X � Y such that

'n.x; y/ % f .x; y/ for each .x; y/ 2 .X � Y/ n E:

19Tonelli [457].
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Let us observe that formally this relation is identical with (7.6). We may therefore
repeat the preceding proof with two small changes:

• instead of the Beppo Levi theorem (or Lemma 5.3) we apply the generalized
Beppo Levi theorem, i.e., Proposition 5.17 (e) (p. 190);

• the validity of the equality for 'n (instead of f ) now follows from Fubini’s
theorem. ut

Examples The following examples show the optimality of the assumptions of
Theorems 7.8 and 7.10.20

• The formula

f .x; y/ WD

8
ˆ̂
<

ˆ̂
:

1 if x < y < x C 1,

�1 if x � 1 < y < x,

0 otherwise

defines a measurable function f W R2 ! R whose integral is not defined, although
the successive integrals in (7.4) exist, and are equal (to zero).21

• Let� be the counting measure on the finite subsets of R. Furthermore, let .A/ D
0 and .R n A/ D 1 for every finite subset of R. For the characteristic function f
of the set

D WD f.x; x/ W x 2 Rg

the two successive integrals in (7.4) exist, and they are equal to 0 and 1,
respectively.

Observe that f is non-measurable by Lemma 7.5, hence its integral is
undefined.

7.4 Signed Measures: Hahn and Jordan Decompositions

Consider the integral associated with a finite measure defined on a semiring. Let us
denote by M the �-ring of measurable sets, and by � W M ! R the corresponding
extended measure.

Equivalently, in view of Proposition 7.7 (p. 223), let � W M ! R be a �-finite,
complete measure on a �-ring M.

20The former counterexamples of Cauchy [81, p. 394], Thomae [452] and du Bois-Reymond [53]
were based on the smallness of the class of Riemann integrable functions.
21Further counterexamples are given in Exercise 7.8 below, p. 253.



230 7 Integrals on Measure Spaces

It is natural to define the integrals on a set A 2 M by the formula

Z

A
f d� WD

Z

f�A d�

when the right-hand side integral is defined.
Let us generalize the indefinite integrals:

Proposition 7.11 If a measurable function f has an integral, then the formula

.A/ WD
Z

A
f d�

defines a �-additive set function  W M ! R with .¿/ D 0.

Proof Taking the positive and negative parts of f we may assume that f is
nonnegative. Then the result follows from Proposition 5.17 (f) (p. 190). ut

The proposition motivates the following definitions:

Definitions

• By a signed measure we mean a �-additive set function , satisfying .¿/ D 0.
• The signed measure in the above proposition is called the indefinite integral of f

with respect to �.

Examples

• Every measure is a signed measure.
• The difference of two measures, at least one of which is finite, is a signed

measure.
• (Smolyanov)22 Consider the following ring on an infinite set X:

R WD fA � X W A or X n A is finiteg :

The formulas

�.A/ WD jAj ; �.X n A/ WD � jAj ;

where jAj denotes the number of elements of a finite set A, define a signed
measure on R.

If a signed measure  is defined by an indefinite integral as in Proposition 7.11,
then the indefinite integrals C; � associated with fC; f� are measures, and  D
C � �. Furthermore, C and � are concentrated on the disjoint sets f f > 0g and
f f < 0g, and at least one of the two measures is bounded.

22See Gurevich–Silov [175, p. 180].
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Fig. 7.1 Hahn
decomposition

P
N

These properties remain valid for all signed measures, defined on �-rings.
Thanks to the following theorem many questions about signed measures may be
reduced to the study of measures.

Theorem 7.12 Let � be a signed measure on a �-ring M.

(a) (Hahn decomposition)23 There exists a decomposition X D P [� N such that
A \ P;A \ N 2 M,

�.A \ P/ � 0 and �.A \ N/ � 0

for every A 2 M. (See Fig. 7.1.)
(b) (Jordan decomposition)24 There exist two measures �C; �� on M, satisfying

the equality� D �C���, concentrated on disjoint sets, and such that at least
one of them is bounded.

Remarks

• If � D �C ��� is a Jordan decomposition, then at least one of the measures�C
and �� is bounded. For otherwise there would exist two disjoint sets A;B with
�C.A/ D ��.B/ D 1 and ��.A/ D �C.B/ D 0, and then �C.A[B/���.A[
B/ would not be defined.

23Hahn [180, p. 404].
24Jordan [229]. The decomposition is clearly unique.
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• The assumption that M is a �-ring is important: for example, the signed measure
of Smolyanov has no Hahn decomposition. Indeed, for such a decomposition we
should have N D ¿,25 and then � could not take negative values.

• Smolyanov’s signed measure does not have a Jordan decomposition either.
Indeed, if there were two measures �C; �� such that � D �C � ��, then we
would have

�C.X/ � �C.A/ � �.A/ D jAj

and

��.X/ � ��.X n A/ � ��.X n A/ D jAj

for each finite set A. This would imply �C.X/ D ��.X/ D 1 and then �C.X/�
��.X/ would not be defined.

• The preceding remarks imply that Smolyanov’s finite signed measure cannot be
extended to a signed measure defined on a �-ring.26 This contrasts with the case
of finite measures.

The following lemma prepares the proof of the theorem.

Definition Let � be a signed measure on M. A set A 2 M is called negative if
�.B/ � 0 for every subset of A, belonging to M.

Lemma 7.13 Let � W M ! R be a signed measure on a �-ring M.

(a) If A;B � M and B � A, then

�.A/ < 1 H) �.B/ < 1 and �.A/ > �1 H) �.B/ > �1:

(b) If � is finite, then it is bounded.
(c) � is bounded from below or from above.
(d) If A 2 M and �.A/ < 0, then there exists a negative subset A0 of A such that

�.A0/ � �.A/.

We will often use property (b) in the sequel.

Proof

(a) This follows from the equality �.A/ D �.B/ C �.A n B/ because the sum is
defined by definition.

25For otherwise we would have for every one-point set A � N the impossible inequalities 1 D
�.A/ D �.A \ N/ � 0.
26This also follows from Lemma 7.13 (c) below.



7.4 Signed Measures: Hahn and Jordan Decompositions 233

(b) If, for example, sup� D 1, then we may define recursively a set sequence .An/

satisfying

�.An/ > 1C
X

k<n

�.Ak/; n D 1; 2; : : : :

Then the sets Bn WD An n [k<nAk are disjoint and �.Bn/ > 1 for every n, so that
�.[Bn/ D 1. Hence � is not finite.

(c) For otherwise, by the proof of (b) there would be two sets satisfying �.B/ D
1 and �.C/ D �1. Then �.B [ C/ would not be defined: we cannot have
�.B [ C/ < 1 because �.B/ D 1, and we cannot have �.B [ C/ > �1
either because �.C/ D �1.

(d) If A is a negative set, then we may take A0 WD A. Otherwise let k1 be the smallest
positive integer for which A has a subset A1 satisfying �.A1/ � 1=k1. We have

�.A/ D �.A1/C �.A n A1/;

whence �.A n A1/ � �.A/.27

If A n A1 is a negative set, then we may take A0 WD A n A1. Otherwise let
k2 be the smallest positive integer for which A n A1 has a subset A2 satisfying
�.A2/ � 1=k2.

Continuing we obtain either a suitable negative set of the form

A0 WD A n .A1 [ � � � [ An/

after a finite number of steps, or an infinite disjoint sequence .An/ � M,
satisfying �.An/ � 1=kn for all n with suitable positive integers kn.

In the latter case we have

X 1

kn
�
X

�.An/ D �.[�An/ < 1I

the last inequality follows by applying (a) with B WD [�An � A. It follows that
kn ! 1.

Set A0 WD A n [�An, then A0 2 M and

�.A/ D �.A0/C �.[�An/:

Consequently, �.A0/ � �.A/.
It remains to show that B 2 M and B � A0 imply �.B/ � 0. Since kn ! 1,

we have kn � 2 and (by construction) �.B/ < 1=.kn � 1/ for all sufficiently
large n. Letting n ! 1 we conclude that �.B/ � 0. ut

27We may have equality if �.A/ D �1.
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Proof of Theorem 7.12

(a) By Lemma 7.13 (c) we may assume for example that � does not take the value
�1. Set

a D inf�.A/;

where A runs over the negative sets in M; since ¿ is a negative set, a � 0.
Let .An/ be a sequence of negative sets satisfying �.An/ ! a. Then N WD

[An 2 M is also a negative set, and �.N/ D a. Since � does not take the value
�1, this implies that a > �1, i.e., a is finite.

Let P D X n N, then X D P [� N. Let A 2 M. Since N 2 M, we have

A \ N 2 M and A \ P D A n .A \ N/ 2 M;

and �.A\N/ � 0 because N is negative. It remains to prove that �.A\P/ � 0.
Assume on the contrary that �.A \ P/ < 0. Applying the preceding lemma,

A \ P has a negative subset A0 satisfying �.A0/ � �.A \ P/. But then N [� A0
is also negative, and the inequality

�.N [� A0/ D �.N/C �.A0/ D a C �.A0/ < a

contradicts the definition of a.
(b) Assume again that � does not take the value �1, and consider the Hahn

decomposition X D P [� N with N 2 M, obtained in (a).
The formulas

�C.A/ WD �.A \ P/ and ��.A/ WD ��.A \ N/ (7.10)

define two measures satisfying � D �C ���, and concentrated on the disjoint
sets P and N.

The measure �� is bounded because

��.A/ D ��.A \ N/ � ��.N/ D �a < 1

for all A 2 M. ut
Remarks

• We stress that at least one of the two sets of the Hahn decomposition X D P[� N
belongs to M.

• It follows from the formulas (7.10) that

�C.A/ WD max f�.B/ W B 2 M;B � Ag
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and

��.A/ WD � min f�.B/ W B 2 M;B � Ag :

This alternative definition of the Jordan decomposition does not use the Hahn
decomposition.

Definition The measures �C; �� are called the positive and negative parts of �.
The measure j�j WD �C C �� is called the total variation measure of �.

7.5 Lebesgue Decomposition

We have seen at the end of Sect. 6.2 that every function of bounded variation is the
sum of an absolutely continuous and a singular function. We generalize this result
for measures.

Similarly to the Hahn and Jordan decompositions, in this section we consider
only measures defined on �-rings. Hence the finite and bounded measures are the
same.

Definitions Let �,  and � be three measures on a �-ring N in X.

• We say that  is absolutely continuous with respect to �, and we write   �, if

�.A/ D 0 H) .A/ D 0:

• We say that � and � are singular, and we write � ? �, if there is a partition
X D M [� S of X such that

A 2 N and A � S H) �.A/ D 0;

A 2 N and A � M H) �.A/ D 0:

Thus � and � are concentrated on the disjoint sets M and S.

In some cases an equivalent "–ı definition holds:

*Lemma 7.14 Let  be absolutely continuous with respect to �.28 If  is finite, then
for every " > 0 there exists a ı > 0, that

�.A/ < ı H) .A/ < ":

28We recall that they are defined on a � -ring.



236 7 Integrals on Measure Spaces

Example The indefinite integral29  of the function x 7! 1=x with respect to the
usual Lebesgue measure � in .0; 1/ shows that the boundedness assumption cannot
be omitted in the lemma.

Proof Assume on the contrary that there exist " > 0 and a sequence .An/ satisfying
�.An/ < 2

�n and .An/ � " for every n. Then

A WD lim sup An WD \1
mD1 [1

nDm An

satisfies �.A/ D 0 and .A/ � ", contradicting the relation   �.
Indeed, the sets Bm WD Am [ AmC1 [ : : : form a non-increasing sequence such

that

�.Bm/ <

1X

nDm

2�n D 21�m and .Bm/ � .Am/ � "

for all m. Since .B1/ < 1, letting m ! 1 we get30

�.\Bm/ D 0 and .\Bm/ � ": ut

In order to state the main result of this section, we strengthen the �-finiteness
property:

Definition A measure ' W N ! R is strongly �-finite if there exists a countable set
sequence .Pn/ � N such that '.Pn/ is finite for all n, and '.A/ D 0 for all A 2 N ,
disjoint from [Pn.

If this is the case, we may assume that the sequence .Pn/ is disjoint.

Examples

• Every finite measure ' is strongly �-finite. Indeed, it suffices to choose a
sequence .Pn/ � N satisfying '.Pn/ ! sup '. If A 2 N is disjoint from [Pn,
then

'.Pn/C '.A/ D '.Pn [� A/ � sup'

and hence '.A/ � sup'�'.Pn/ for all n. Since sup' < 1 (because every finite
measure on a �-ring is bounded), letting n ! 1 we conclude that '.A/ D 0.

• If X is '-measurable, then ' is strongly �-finite by Lemma 7.5 (p. 220).
• The counting measure (p. 213) on the �-ring of the countable subsets of an

uncountable set X is �-finite, but not strongly �-finite.

29See Proposition 7.11, p. 230.
30See Proposition 7.3, p. 216.
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Theorem 7.15 (Lebesgue Decomposition)31 Let � and ' be two measures on a
�-ring N . If ' is strongly �-finite, then it has a unique decomposition ' D  C �

with two measures  and � satisfying

  � and � ? �:

Proof Proof of existence for bounded measures '. Set

˛ WD sup f'.S/ W S 2 N and �.S/ D 0g < 1:

The upper bound is attained. Indeed, consider a maximizing sequence .Sn/:�.Sn/ D
0 for all n, and '.Sn/ ! ˛. Then S WD [Sn belongs to N , �.S/ D 0 and '.S/ D ˛.

The formulas

�.A/ WD '.A \ S/ and .A/ WD '.A n S/

define two measures � and  on N such that ' D  C � . Furthermore, if A 2 N ,
then

�.A n S/ D '..A n S/\ S/ D '.¿/ D 0;

so that � ? � with M WD X n S.
If �.A/ D 0, then �.A [ S/ D 0, and hence '.A [ S/ � ˛ D '.S/ by the

definition of S. Consequently,

0 � .A/ D '.A n S/ D '.A [ S/� '.S/ � 0;

whence .A/ D 0. This proves the relation   �.
Proof of Existence in the General Case. Fix a disjoint sequence .Pn/ � N such

that '.Pn/ < 1 for all n, and ' D 0 outside P WD [�Pn. Applying the preceding
step for each Pn, we obtain a sequence of sets Sn � Pn satisfying �.Sn/ D 0 and the
implications

A � Pn and �.A/ D 0 H) '.A n Sn/ D 0:

Set S D [�Sn, and define

�.A/ WD '.A \ S/; .A/ WD '.A n S/

31Lebesgue [295, pp. 232–249].
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for all A 2 N . We have ' D  C � . Furthermore, we have � ? � because

�.S/ D
X

�.Sn/ D 0; and �.A n S/ D '.¿/ D 0

for all A 2 N .
Finally, we have   � because if A 2 N and �.A/ D 0, then

.A/ D '.A n S/

D
X

'..A \ Pn/ n S/

D
X

'..A \ Pn/ n Sn/

D 0:

In the last step we have '..A \ Pn/ n Sn/ D 0 by the choice of Sn.
Uniqueness. We may assume by decomposition that ' is bounded. We have to

show that if two measures 0 and � 0 on N satisfy

0  �; � 0 ? � and ' D 0 C � 0;

then the signed measure % WD 0 �  D � � � 0 vanishes identically.
Consider the corresponding partitions X D M [� S D M0 [� S0. For each A 2 N

we have

�.A \ .S [ S0// � �.S/C �.S0/ D 0I

by the absolute continuity of 0 and  this yields %.A \ .S [ S0// D 0.
On the other hand, the inclusion A n .S [ S0/ � M \ M0 implies that

�.A n .S [ S0// D � 0.A n .S [ S0// D 0;

and therefore %.A n .S [ S0// D 0. Consequently,

%.A/ D %.A n .S [ S0//C %.A \ .S [ S0// D 0: ut

Remark The proof shows that S 2 N .

*Example The strong �-finiteness condition cannot be omitted: for example, the
counting measure ' has no Lebesgue decomposition with respect to the zero-one
measure �.32

Indeed, assume on the contrary that there is such a decomposition ' D  C � ,
where� and � are concentrated on the disjoint sets M; S � X. If A is a countable set,

32See p. 213.



7.6 The Radon–Nikodým Theorem 239

then the relation   � implies that .A/ D 0, and therefore �.A/ D '.A/ D jAj.
Hence S D X, and thus �.X/ D 0 by the definition of singularity, contradicting the
definition of �.

Remark The above definitions of absolute continuity, singularity and strong �-
finiteness remain meaningful for signed measures.33 Theorem 7.15 may be gen-
eralized to the case where � is still a measure but ' is a strongly �-finite signed
measure: there exists a unique decomposition ' D  C � with signed measures 
and � satisfying   � and � ? �.

Indeed, applying the theorem to the positive and negative parts of ' we obtain
four measures ˙, �˙ satisfying the relations

'C D C C �C; '� D � C ��;

C  �; �  �;

and two partitions X D MC [ �SC D M� [ �S� with S˙ 2 N such that �C, ��
and � are concentrated on SC, S� and M WD MC \ M�, respectively.

It follows that

•  WD C � �  �;
• � and � WD �C � �� are concentrated on M and S WD SC [ S� D X n M,

respectively;
• ' D  C � .

The proof of the uniqueness of the decomposition, given above, remains valid for
signed measures.

7.6 The Radon–Nikodým Theorem

As usual, we consider the integral associated with a finite measure defined on a
semiring in X. We denote by M the �-ring of measurable sets, and by � W M ! R

the extended measure.
Equivalently, in view of Proposition 7.7 (p. 223), let � W M ! R be a �-finite,

complete measure on a �-ring M.
In this section the expressions “integrable”, “absolutely continuous”, “a.e.” will

be meant with respect to �.
If f is a nonnegative, integrable function, then its indefinite integral

.A/ WD
Z

A
f d�; A 2 M (7.11)

33However, the present definition of absolute continuity is interesting only if � is a measure.
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is a bounded measure by Proposition 7.11 (p. 230). Moreover,  is absolutely
continuous because

�.A/ D 0 H) f�A D 0 a.e. H) .A/ D
Z

f�A d� D 0:

The converse often holds true:

Theorem 7.16 (Radon–Nikodým)34 If � is strongly �-finite, then the for-
mula (7.11) establishes a one-to-one correspondence between

• nonnegative, integrable functions

and

• absolutely continuous, bounded measures.

Definition The function f of the theorem is called the Radon–Nikodým derivative
of  with respect to �, and it is denoted by d=d�.

*Example Let us explain the terminology. If F W Œa; b� ! R is an absolutely
continuous function on a compact interval Œa; b� as discussed in Chap. 6, then the
formula

.I/ WD F.d/� F.c/; I D Œc; d/

defines a signed measure on the semiring of half-open intervals Œa; b/, and

.I/ D
Z

I
F0 dx

for all these intervals by Theorem 6.5 (p. 204). Hence Theorem 7.16 is a far-
reaching generalization of the Lebesgue–Vitali theorem, itself a generalization of
the Newton–Leibniz formula.

Proof of Theorem 7.16 35

It remains to show that every absolutely continuous, bounded measure  is the
indefinite integral of a unique nonnegative, integrable function f .

It is sufficient to consider the case where �.X/ < 1. Indeed, in the general
case there exists a disjoint set sequence .Xn/ � M such that �.Xn/ < 1 for all n,

34Radon [366, pp. 1342–1351] and Nikodým [342, pp. 167–179]. We recall from the preceding
section that the strong � -finiteness condition is satisfied if � is a finite measure or if X is
measurable.
35See also an alternative proof of von Neumann [339, pp. 124–130], based on the orthogonal
projection in Hilbert spaces.
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and � D 0 outside [�Xn. Applying the result for each Xn, we obtain nonnegative,
integrable functions fn on Xn, satisfying

.A/ WD
Z

A
fn d� (7.12)

for all measurable sets A � Xn. Defining f WD fn on Xn for all n, and f WD 0 outside
[�Xn, we obtain a nonnegative, measurable function satisfying (7.11). Moreover, f
is integrable because

Z

j f j d� D
X

n

Z

Xn

fn d� D
X

n

.Xn/ D .X/ < 1:

The uniqueness of f follows from the uniqueness of each fn because (7.11)
implies the relations (7.12) with fn D f jXn , and from the fact that every measurable
set outside [�Xn is a null set.

In view of this remark we assume henceforth that �.X/ < 1.
Proof of the Uniqueness. Two different integrable functions f and g have different

indefinite integrals. Indeed, at least one of the sets A WD f f > gg and B WD f f < gg
has a positive measure. If for example �.A/ > 0, then

Z

A
f d��

Z

A
g d� D

Z

A
. f � g/ d� > 0

and therefore
Z

A
f d� ¤

Z

A
g d�:

We prove a technical lemma: If  ¤ 0, then there exist A 2 M and " > 0 such
that �.A/ > 0, and

"�.B/ � .B/ for all measurable subsets B � A:

For the proof we consider for each n D 1; 2; : : : the Hahn decomposition of the
signed measure  � n�1�, and we set

P D [Pn; N D \Nn:

Since  � n�1� is bounded from above, we have Pn 2 M for every n.36 It remains
to find some n with �.Pn/ > 0 because then we may choose A WD Pn and " WD 1=n.

We have .B/ D 0 for every measurable set B � N because �.B/ < 1, and

0 � .B/ � 1

n
�.B/

36See the remark on p. 238
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for all n because N � Nn. Since  ¤ 0, .P/ > 0, and then �.P/ > 0 by the
absolute continuity of .

Finally, since

0 < �.P/ �
X

�.Pn/

by �-subadditivity, we have �.Pn/ > 0 for at least one n.
Proof of the Existence. Let us denote by F the family of nonnegative, integrable

functions f satisfying

Z

A
f d� � .A/

for all A 2 M. Since  is bounded and 0 2 F , the formula

˛ WD sup
f 2F

Z

f d�

defines a finite, nonnegative number.
The upper bound is attained. For the proof we choose a maximizing sequence

. fn/ 2 F satisfying

Z

fn d� ! ˛:

Then gn WD max f f1; : : : ; fng 2 F for each n. Indeed, every set A 2 M has a
partition A1 [� � � � [� An such that gn D fj on each Aj, and then

Z

A
gn d� D

nX

jD1

Z

Aj

fj d� �
nX

jD1
.Aj/ D .A/:

Applying the Beppo Levi theorem, the functions gn converge a.e. to a nonnegative,
integrable function f . Applying the Fatou lemma (or again the Beppo Levi theorem)
for the sequences .�Agn/, we infer from the inequalities

R
A gn d� � .A/ that f 2 F .

Finally, the relations fn � gn � f and
R

fn d� ! ˛ imply the equality
R

f d� D ˛.
To end the proof we show that the measure

0.A/ WD .A/�
Z

A
f d�; A 2 M

vanishes identically. Assume on the contrary that 0 ¤ 0. Then by the above lemma
there exist A 2 M and " > 0 satisfying �.A/ > 0, and

"�.A \ B/ � .A \ B/�
Z

A\B
f d�
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for all B 2 M. Since f 2 F implies

0 � .B n A/�
Z

BnA
f d�;

adding the two equalities we get

"�.A \ B/ � .B/�
Z

B
f d�;

i.e.,

Z

B
f C "�A d� � .B/

for all B 2 M. Hence f C "�A 2 F . This, however, is impossible because

Z

f C "�A d� D
Z

f d�C "�.A/ D ˛ C "�.A/ > ˛: ut

*Example We show37 that the strong �-finiteness assumption cannot be omitted in
Theorem 7.16 (p. 240).

Let Z D X � Y with two uncountable sets X, Y satisfying card X > card Y. A set
L � Z is called a vertical line if there exists an x 2 X such that both sets Ln.fxg � Y/
and .fxg � Y/ n L are countable.

Similarly, a set L � Z is called a horizontal line if there exists a y 2 Y such that
both sets L n .X � fyg/ and .X � fyg/ n L are countable.

The countable unions of vertical lines, horizontal lines and points form a �-ring
M. Denoting by �.A/ the number of lines contained in A, we obtain a complete,
�-finite38 (but not strongly �-finite) measure � W M ! R, for which the null sets
are the countable sets.

Denoting by .A/ the number of vertical lines contained in A, we obtain another
measure  W M ! R, satisfying  � � and hence   �. We claim that the
Radon–Nikodým derivative @=@� does not exist.

Assume on the contrary that there exists a measurable function f W Z ! R

satisfying

.L/ D
Z

L
f d� for every line L: (7.13)

37See Halmos [184, pp. 131–132]. In this example we use the notion of cardinality of infinite sets,
but we need only the simplest results: see, e.g., Halmos [186] or Vilenkin [467, 468].
38Because every measurable set is covered by countably many lines.
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By the measurability condition f is constant a.e. on each line L, and
R

L f d� is equal
to this constant. Therefore we infer from (7.13) that f D 1 a.e. on every vertical line,
and f D 0 a.e. on every horizontal line. This implies the inequalities

card X � card fx 2 Z W f .x/ D 1g � card Y;

contradicting the choice of X and Y.

We may further generalize the preceding theorem for unbounded and even signed
measures :

*Theorem 7.17 If � is strongly �-finite, then the formula (7.11) establishes a
one-to-one correspondence between

• the functions f having an integral

and

• the absolutely continuous signed measures .

Remark It is easy to see that

 is a measure ” f is nonnegative.

Indeed, if f � 0, then  is a measure because f�A � 0 for every A 2 M, and
therefore .A/ D R

f�A d� � 0. Conversely, if f < 0 on some set A of positive
measure, then .A/ D R

f�A d� < 0, and therefore  is not a measure.

Proof of Theorem 7.17 It follows again from Proposition 7.11 that if f has an
integral, then the indefinite integral is an absolutely continuous signed measure.

It remains to prove that each absolutely continuous signed measure  is the
indefinite integral of a unique measurable function f . Similarly to the preceding
proof we may assume that �.X/ < 1.

Proof of the Uniqueness of f . Let f and g be two different functions whose
integrals are defined. We have to find a set A such that �.A/ > 0, and either f > g
on A or f < g on A.

Assume by symmetry that B WD f f > gg is not a null set. Since f > �1 and
g < 1 on B, setting

Ak WD fx 2 B W f .x/ > �k and g.x/ < kg

we have

[kAk D B:
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Since 0 < �.B/ � �.X/ < 1, there exists a k such that 0 < �.Ak/ < 1. Then

Z

Ak

f d� � �k�.Ak/ > �1 and
Z

Ak

g d� � k�.Ak/ < 1:

Consequently, the integral
R

Ak
.f � g/ d� exists,39 and hence

Z

Ak

f d��
Z

Ak

g d� D
Z

Ak

.f � g/ d� > 0:

A technical lemma:40 if  is an absolutely continuous measure, then there exists
a disjoint sequence .Fn/ of sets of finite -measure such that for each measurable
set A, disjoint from F WD [Fn, we have either �.A/ D 0 or .A/ D 1 (or both).

For the proof we denote by A the �-ring of measurable sets having a countable
cover by sets of finite -measure. The upper bound

˛ WD sup f�.B/ W B 2 Ag � �.X/ < 1

is attained on some set F 2 A because if .Bn/ � A and �.Bn/ ! ˛, then F WD
[Bn 2 A and �.Bn/ � �.F/ for all n, i.e., �.F/ D ˛.

Consider a measurable set A, disjoint from F and satisfying .A/ < 1. Since
F [� A 2 A, we have

˛ � �.F [� A/ D �.F/C �.A/ D ˛ C �.A/I

since ˛ is finite, we conclude that �.A/ D 0.
Proof of the Existence When  is a Measure. Consider the disjoint set sequence

.Fn/ of the previous step, and set E WD X n [Fn. Apply the already proved result for
each Fn, and denote by fn the corresponding Radon–Nikodým derivatives.

Setting f WD fn on each Fn and f WD 1 on E we get a nonnegative, measurable
function. Each A 2 M is the disjoint union of the sets A \ Fn and A \ E, and

.A \ Fn/ D
Z

A\Fn

fn d�

for every n by the choice of fn. It remains to show that

.A \ E/ D
Z

A\E
1 d�:

Indeed, then adding all these equalities we obtain (7.11).

39See Proposition 5.17 (d), p. 190.
40See Hewitt–Stromberg [207, p. 317].
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If .A \ E/ D 1, then �.A \ E/ > 0 by the absolute continuity of , and henceR
A\E 1 d� D 1. Otherwise we have �.A \ E/ D 0 by the definition of E; hence

clearly
R

A\E 1 d� D 0, while .A \ E/ D 0 by the absolute continuity.
Proof of Existence when  is a Signed Measure. Applying the preceding result

to the measures C, � of the Jordan decomposition  D C � �, we obtain two
nonnegative, measurable functions fC; f� satisfying (7.11) with f˙ and ˙ instead
of f and . Since at least one of the measures C and � is bounded,41 at least
one of the functions fC; f� is integrable, so that the function f WD fC � f� and the
integral

R
f d� are defined. Taking the difference of the equalities for C and � we

obtain (7.11) for f and . ut
Using the Radon–Nikodým theorem we may greatly generalize the change of

variable formula of integration42:

Proposition 7.18 Assume that � is strongly �-finite, and let   � be an
absolutely continuous measure. Then

Z

g
d

d�
d� D

Z

g d (7.14)

whenever the right-hand integral exists.

Proof We may assume as usual that �.X/ < 1.
We write f WD d=d� for brevity.

(i) The set X0 WD fx 2 X W f .x/ D 0g satisfies the equality

.X0/ D
Z

X0

f d� D
Z

X0

0 d� D 0

and hence
Z

X0

gf d� D
Z

X0

0 d� D 0 D
Z

X0

g d

for all -measurable functions g.43 Therefore, changing X to X n X0 we may
assume that f > 0. Then the �-null sets and -null sets are the same by (7.11),
so that we may use the expression a.e. without mentioning the corresponding
measure � or .

(ii) Since � is bounded, every -step function is also a �-step function, and hence
every -measurable function is also �-measurable.

41See Lemma 7.13 (b), p. 232.
42The proposition extends classical results of Euler [130, p. 303], Lagrange [280, p. 624] and
Jacobi [224, p. 436].
43They are also -measurable because �.X/ < 1.
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If g is the characteristic function of a set A 2 M, then (7.14) reduces to the
equality (7.11). Taking linear combinations it follows that (7.14) holds for all
-step functions.

If .gn/ is a sequence of -step functions satisfying gn % g a.e., then .gn f / is
a sequence of �-measurable functions satisfying gn f % g f a.e. Applying the
generalized Beppo Levi theorem44 to the sequences .gn � g1/ and .gn f � g1 f /
we get the equality (7.14).

In the general case the equality (7.14) holds for gC and g� instead of g.
Taking the difference of these equalities we get (7.14) for g. ut

7.7 * Local Measurability

As usual, we consider an integral associated with a finite measure defined on a
semiring P . We denote by M the �-ring of measurable sets and by � W M ! R the
extended measure.

In the terminology of this chapter the constant functions are not necessarily
measurable. In such cases the non-zero constant functions have no integral, and
the measure of X is not defined either. We are going to extend the notions of the
integral and the measure so as to deal with these cases in particular.

Definition A function f is locally measurable if f�P is measurable for every P 2 P .

Remarks

• Measurability implies local measurability.
• The constant functions are locally measurable. If they are also measurable, then

the notions of measurability and local measurability coincide. This is the case for
X D R, studied in Chap. 5, more generally for X D R

N , and for the probability
measures.

• If f is locally measurable, then the product fg is measurable for every measurable
function g. For step functions g this follows at once from the definition. In the
general case we choose a sequence .'n/ of step functions converging to g a.e.
Then the functions f'n are measurable, and they converge to fg a.e., so that fg is
measurable as well.

An easy adaptation of the proof of Proposition 5.16 (p. 187) leads to the following

Proposition 7.19

(a) The constant functions are locally measurable.
(b) If f is locally measurable, and f D g a.e., then g is locally measurable.

44Proposition 5.17 (e), p. 190.
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(c) If F W R
N ! R is continuous, and f1; : : : ; fN are finite-valued, locally

measurable functions, then the composite function h WD F. f1; : : : ; fN/ is locally
measurable.

In particular, if f , g are finite-valued, locally measurable functions, then j f j,
f C g, f � g, fg, max f f ; gg and min f f ; gg are locally measurable as well.

(d) If f is locally measurable and f ¤ 0 a.e., then 1=f is locally measurable.
(e) If f is locally measurable, g is integrable, and j f j � g a.e., then f is integrable.
(f) If a sequence of locally measurable functions converges to f a.e., then f is also

locally measurable.

Next we generalize the integral:

Definition Let f be a locally measurable function.

• If f is nonnegative and non-integrable, then we define
R

f dx WD 1.
• If at least one of fC and f� is integrable, then we define

Z

f dx WD
Z

fC dx �
Z

f� dx:

Remarks

• If f is measurable, then the new definition reduces to the earlier one.
• If neither fC nor f� is integrable, then the right-hand sum is undefined.
• We still keep the adjective “integrable” for the case where the integral is finite.

Proposition 5.17 (p. 190) on the integration rules remains valid; we only have to
use the local measurability of h in the proof of (d) instead of its measurability.

After the integral we generalize the measure:

Definition A set A is locally measurable if its characteristic function is locally
measurable, i.e., if A \ P 2 M for every P 2 P .

Remark The fundamental set X is always locally measurable.45

The following notion will be useful in the sequel:

Definition A �-algebra in X is a �-ring containing X. Explicitly, a set system M
in X is a �-algebra if the following conditions are satisfied:

• ¿ 2 M;
• if A 2 M, then X n A 2 M;
• if .An/ is a disjoint sequence in M, then [�An 2 M.

Examples

• f¿;Xg and 2X are �-algebras in X.

45We recall from Lemma 7.5 (p. 220) that X is measurable ” it has a countable cover by sets of
P (and hence of finite measure).
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• The usual Lebesgue measurable sets of R form a �-algebra.
• The countable subsets of an uncountable set X form a �-ring, but not a �-algebra.

An easy adaptation of the proof of Proposition 5.19 (p. 194) leads to

Proposition 7.20

(a) The locally measurable sets form a �-algebra.
(b) f is locally measurable ” the sets

f f > cg ; f f < cg ; f f � cg ; f f � cg

are locally measurable for all c 2 R.

Remark The local measurability of f f > cg for all c 2 R already implies the local
measurability of f . This follows from the relations

f f > �1g D [1
nD1ff > �ng;

f f > 1g D ¿ 2 M;

f f � cg D \1
nD1 f f > c � 1=ng ;

f f < cg D X n f f � cg ;
f f � cg D X n f f > cg :

Three similar statements are obtained by changing f f > cg to f f < cg, f f � cg or
f f � cg.

We extend the measure � to the �-algebra M of locally measurable sets by
setting

�.A/ WD
Z

�A d�:

Observe that �.A/ D 1 for every A 2 M n M.
Now we clarify the relationship between integrals and arbitrary measures. The

following result complements Proposition 7.7 (p. 223):

*Proposition 7.21

(a) M is a �-algebra, and � W M ! R is complete.
(b) Every measure, defined on a semiring, is the restriction of the measure � W

M ! R associated with its finite part.

Proof

(a) We already know that M is a �-algebra. The completeness of � W M ! R

follows from that of � W M ! R because �.A/ D 1 and thus �.A/ ¤ 0 for
all A 2 M n M.
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(b) Let  W N ! R be a measure on a semiring,

P WD fA 2 N W .P/ < 1g ;

and � W M ! R the measure obtained by the usual extension of � WD jP . We
have to show that N � M and .A/ D �.A/ for every A 2 N .

First we observe the implication

A 2 N and P 2 P H) A \ P 2 P : (7.15)

Indeed, since P � N and N is a semiring, we have A \ P 2 N . Furthermore,
.A \ P/ � .P/ < 1 and therefore A \ P 2 P .

Since P � M, (7.15) implies that every A 2 N is locally measurable, i.e.,
N � M.

It remains to show that .A/ D �.A/ for every A 2 N . We distinguish the
cases A 2 M and A 2 M n M.

If A 2 N \M, then A has a disjoint cover by sets Pn 2 P . Changing each Pn

to A \ Pn by (7.15), we may also assume that A D [�Pn. Since �.Pn/ D .Pn/

for every n by the definition of �, it follows that

�.A/ D
X

�.Pn/ D
X

.Pn/ D .A/:

If A 2 N and A 2 M n M, then �.A/ D 1 by the definition of �.
Furthermore, A … P because P � M, and therefore .A/ D 1 by the
definition of P . Hence �.A/ D .A/ again. ut

Remark In view of part (b) of the proposition we may speak about the integral
associated with an arbitrary measure, meaning the integral associated with its finite
part.

By the results of this section it is tempting to use local measurability and the
measure � W M ! R instead of measurability and the measure � W M ! R.46

The following observations, however, convinced the author to return to the original
definitions of Fréchet and Riesz47:

• Tonelli’s theorem on successive integration (p. 228) does not hold for locally
measurable functions having an integral: the function f in the last example of
Sect. 7.4 is locally measurable.

46Indeed, this choice is taken by most contemporary textbooks by defining measurability using
inverse images. While Hausdorff’s elegant characterization of continuous functions by inverse
images of open or closed sets is extremely useful in topology, the analogous definition of
measurability leads to several annoying counterexamples.
47Fréchet [158] and Riesz–Sz.-Nagy [394].
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• Proposition 7.6 (p. 221) on the unique extension of measures does not remain
valid for the �-algebra M. To see this we consider the zero measure � on the
semiring P of finite subsets of an uncountable set X. Then M D 2X , and

�.A/ D
(
0 if A is countable,

1 if A is uncountable.

But the zero measure on 2X is also an extension of �!
Moreover, the two measures already differ on the smallest �-algebra N

containing M, i.e., on the family of countable subsets and their complements.
In fact,48 there are infinitely many other extensions of � to N : the formula

�˛.A/ D
(
0 if A is countable,

˛ if X n A is countable

defines an extension of � for each 0 � ˛ � 1.
• The first part of the Radon–Nikodým theorem remains valid for locally measur-

able functions: if a locally measurable function has an integral, then the formula

.A/ WD
Z

A
f d�

defines an absolutely continuous signed measure  W M ! R, and even  W
M ! R.

However, in the counterexample on p. 243 the Radon–Nikodým derivative
f D d=d� does not exist, even if we allow f to be only locally measurable.

7.8 Exercises

Exercise 7.1 For each measure � introduced in the examples on p. 213, determine
its finite part, the �-ring M of measurable sets, and the �-algebra M of locally
measurable sets.

Exercise 7.2 Construct a nonnegative and additive, but not �-additive function on
the �-algebra of all subsets of a countably infinite set X.

Exercise 7.3 Construct a measurable set in R
2 whose projections onto the coordi-

nate axes are non-measurable.

48L. Czách, private communication, 2005.
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Exercise 7.4 (Outer Measure)49 Given a finite measure � on a semiring P in X,
we set

��.A/ WD inf
1X

kD1
�.Pk/

for each A � X where the infimum is taken over all sequences .Pk/ � P such that
A � [kPk.

(i) Show that �� is an outer measure: a nonnegative, �-subadditive function on
2X , i.e,

��.A/ �
1X

nD1
��.An/ whenever A �

1[

nD1
An:

(ii) Prove that

��.A [ B/C ��.A \ B/ � ��.A/C ��.B/

for all A;B � X.
(iii) Prove that A � X is measurable ”

��.B/ D ��.B \ A/C ��.B n A/

for all B � X.

Exercise 7.5 (Riemann–Stieltjes Integral)50 Let us be given two functions
f ; g W Œa; b� ! R on a compact interval. For each finite subdivision I D
fx0; 
1; x1; : : : ; xn�1; 
n; xng of the segment Œa; b�, where

a D x0 < 
1 < x1 < � � � < xn�1 < 
n < xn D b;

we set

ı.I/ WD min
k
.xk � xk�1/;

and we define the corresponding Riemann–Stieltjes sum by the formula

S.I/ WD
nX

kD1
f .
k/ .g.xk/� g.xk�1// :

49Carathéodory [77]. See also Burkill [68], Halmos [184], and Natanson [332].
50Stieltjes [435].
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If S.I/ converges to a finite limit L as ı.I/ ! 0, then we say that f is integrable with
respect to g, and we write

f 2 R.g/;
Z

f dg D L:

Prove the following properties:

(i) If f is continuous and g has bounded variation, then f 2 R.g/.
(ii) If f 2 R.g/, then g 2 R. f /, and

Z

f dg C
Z

g df D Œ fg�ba:

Exercise 7.6 For which values of ˛ does the limit

lim
h&0

Z 1

h
x˛ d sin

1

x

exist?

Exercise 7.7 Give an example of a strongly �-finite measure that is not finite, and
for which X is not measurable.

Exercise 7.8 Construct measurable functions fi W R
2 ! R with the following

properties:

(i) The successive integrals of f1 in (7.4) exist, and are equal to zero.
(ii) The successive integrals of f2 are equal to 0 and 1, respectively.

(iii) The successive integrals of f3 are equal to 0 and 1, respectively.
(iv) One of the successive integrals of f4 is equal to 0, and the other is undefined.

Taking linear combinations of the functions fi.x; y/ and fi.y; x/ show that no
conclusion can be made of the successive integrals if f W R2 ! R is a measurable
function whose integral is not defined.

Exercise 7.9 (Hausdorff Dimension)51 Given a set A � R and positive real
numbers s; ı, let

Hs
ı.A/ WD inf

n 1X

iD1
jIijs

o
;

51Hausdorff [196]. See, e.g., Falconer [134]. Some number-theoretical applications are given in de
Vries–Komornik [101] and Komornik–Kong–Li [259].
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where the infimum is taken over the countable covers of A by intervals of length
jIij � ı, and let

Hs.A/ WD sup
ı>0

Hs
ı.A/:

52

Prove the following results:

(i) Hs
ı.A/ % Hs.A/ as ı & 0.

(ii) Hs is an outer measure on R.53

(iii) There exists d 2 Œ0;1� such that Hs.A/ D 1 if s < d, and Hs.A/ D 0 if
s > d. It is called the Hausdorff dimension of A.

(iv) Let Si W R ! R be a similarity with a scaling constant ci 2 .0; 1/,
for i D 1; : : : ;m: If a non-empty compact set K is the disjoint union of
S1.K/; : : : ; Sm.K/, then the Hausdorff dimension d of K is the solution of the
equation cd

1 C � � � C cd
m D 1.

(v) The Hausdorff dimension of Cantor’s ternary set is equal to ln 2= ln 3 � 0:63.

52More generally, we may consider countable covers by sets of diameter diam Ii � ı in a metric
space.
53Carathéodory’s construction (Exercise 7.4) yields the s-dimensional Hausdorff measure.



Part III
Function Spaces

We may resist everything, except temptation.
–O. Wilde

Functional analysis started by studying (in today’s terminology) the space C.I/
of continuous functions defined on a compact interval. The idea of function spaces
had already appeared in the doctoral dissertation of Riemann [370]. Dini [109]
proved that for monotone sequences of continuous functions pointwise convergence
is necessarily uniform. Ascoli [12] gave a sufficient condition for the compactness
of a set in C.I/. This forms the basis for Peano’s theorem (1886) on the solvability
of differential equations of the form x0 D f .t; x/ where f is merely continuous.
(The Lipschitz condition serves only for the uniqueness of the solution.) Arzelà [8]
proved that Ascoli’s condition is also necessary.

Weierstrass [483] proved the density of polynomials in C.I/. Le Roux [299] and
Volterra [472–475] obtained theorems of existence and uniqueness for a wide class
of integral equations. Fredholm [150] discovered that the general theory of integral
equations is much simpler than previously believed. Riesz [379] gave an elegant
description of the dual space of C.I/ by using Stieltjes integrals.

Cantor influenced Borel [58], Baire [17] and Lebesgue [287, 288] to widen the
classes of sets and functions to be investigated. In his Ph.D. under the supervision
of Hadamard, Fréchet [154] introduced the metric spaces and the notions of
compactness, completeness and separability. Riesz [373, 374, 376] and Fischer
[146] proved the completeness of the spaces of Lebesgue integrable functions,
Riesz [375, 379] and Fréchet [155] characterized the duals of these spaces, and
the discipline started to grow exponentially.

The following works contain more complete studies of the historical develop-
ment: [37, 45, 61, 106, 117, 203, 327, 365, 394, 421].

This last part of our book also serves as a synthesis: while Parts I and II are
largely independent, here we build upon both.
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We did not resist the temptation to give multiple proofs of some theorems:
either we could not choose among them or because they enlighten the problem
from different angles, and thus contribute to the deeper understanding of the
interconnections between different branches of analysis.



Chapter 8
Spaces of Continuous Functions

From the point of view of Mathematics the XIXth century could be called the century of
the Theory of functions. . . . (V. Volterra, 1900)

In this chapter the letter K always denotes a compact Hausdorff space. We recall
from topology that the continuous functions f W K ! R form a Banach space C.K/
with respect to the norm

k f k1 WD max
t2K

j f .t/j;

and that norm convergence is uniform convergence on K. We will only present some
basic results.1

Except for some uninteresting degenerate cases, the spaces C.K/ are not
reflexive:

Examples

• Set I WD Œ0; 1�, and consider in X WD C.I/ the closed affine subspace

M WD
n

f 2 C.I/ W f .0/ D 0 and
Z 1

0

f .t/ dt D 1
o
:

We claim that M has no element of minimal norm, so that the distance dist.0;M/
is not attained.

1Gillman–Jerison [169] and Semadeni [421] treat many further topics.

© Springer-Verlag London 2016
V. Komornik, Lectures on Functional Analysis and the Lebesgue Integral,
Universitext, DOI 10.1007/978-1-4471-6811-9_8

257



258 8 Spaces of Continuous Functions

Fig. 8.1 Graph of fn
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To prove this, first we observe that dist.0;M/ � 1 because

1 D
Z 1

0

f .t/ dt �
Z 1

0

k f k1 dt D k f k1 (8.1)

for all f 2 M. Furthermore, the formula (see Fig. 8.1)

fn.t/ WD n C 1

n
min



.n C 1/t

2
; 1

�

; n D 1; 2; : : :

defines a sequence . fn/ � M satisfying k fnk1 D .n C 1/=n ! 1, so that in fact
dist.0;M/ D 1.

But this distance is not attained because the inequality in (8.1) is strict for
every f 2 M because of the continuity of f and the condition f .0/ D 0. Applying
Proposition 2.1 (p. 55) we conclude that C.I/ is not reflexive.

• Set I D Œ�1; 1�, and consider on X WD C.I/ the linear functional

'. f / WD
Z 1

�1
.sign t/f .t/ dt:

The obvious estimate

j'. f /j �
Z 1

�1
j f .t/j dt � 2 k f k1 (8.2)

shows that ' is continuous, and k'k � 2.
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Fig. 8.2 Graph of gn
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Furthermore, the formula2 (see Fig. 8.2)

gn.t/ WD med f�1; nt; 1g

defines a sequence .gn/ � X satisfying kgnk1 D 1 for all n, and '.gn/ ! 2; this
implies that in fact k'k D 2.

But the norm k'k is not attained, because j'. f /j < 2 k f k1 for all non-zero
functions f 2 X. Indeed, we could have equality in (8.2) only if .sign t/f .t/ were
constant in Œ�1; 1�, but this condition excludes all non-zero continuous functions.

Applying Proposition 2.1 again, we conclude that C.I/ is not reflexive.
• The spaces C.I/ are not only non-reflexive: they are not even dual spaces.3

Indeed, it follows from the Banach–Alaoglu and Krein–Milman theorems that
the closed unit ball C of every dual Banach space is spanned by its extremal
points.

This is not satisfied for the closed unit ball C of C.I/: its only extremal points
are the constant functions 1 and �1, and their closed convex hull contains only
constant functions, while C contains non-constant functions as well.

Later (on p. 298) we will also give a direct proof of the non-reflexivity.
Despite their non-reflexivity, these spaces occur in many applications. This

justifies their study in this chapter.

2We recall that med fx; y; zg denotes the middle number among x, y and z.
3See Gelbaum–Olmsted [168]. The situation is similar to that of c0; see p. 140.
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8.1 Weierstrass Approximation Theorems

The following theorem has countless applications:

Theorem 8.1 (Weierstrass)4 Let Œa; b� be a bounded, closed interval, and f W
Œa; b� ! R a continuous function. There exists a sequence . pn/ of algebraic
polynomials, converging uniformly to f on Œa; b�.

The theorem implies at once that C.Œa; b�/ is separable: the polynomials with
rational coefficients form a countable, dense set.

The following proof is due to Landau.5

Fix a positive number R and define q W R ! R by the formula (see Fig. 8.3)

q.t/ WD
(

R2 � t2 if jtj � R,

0 if jtj � R.

Lemma 8.2 For each fixed ı > 0 we have

R
jtj>ı q.t/n dt
R1

�1 q.t/n dt
! 0 as n ! 1:

Proof The case ı � R is obvious. Assuming henceforth that ı < R, we observe
that q is a continuous even function, positive and decreasing in .0;R/, and vanishing

Fig. 8.3 Graph of q for
R D 1
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4Weierstrass [483], p. 5.
5Landau [283]. See Proposition 8.16 and Exercise 8.3 below (pp. 282,300) for other proofs.
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outside .�R;R/. Therefore

Z

jtj>ı
q.t/n dt < .2R � 2ı/q.ı/n < 2Rq.ı/n

and
Z 1

�1
q.t/n dt >

Z

jtj�ı=2
q.t/n dt > ıq.ı=2/n;

so that

0 �
R

jtj>ı q.t/n dt
R1

�1 q.t/n dt
� 2R

ı

� q.ı/

q.ı=2/

�n
:

Since 0 < q.ı/ < q.ı=2/, the last expression tends to zero as n ! 1. ut
Proof of Theorem 8.1 By adding an affine polynomial if necessary, we may assume
that f .a/ D f .b/ D 0. Then we may extend f by zero to a continuous function
defined on R. The extended function is uniformly continuous, so that

!. f ; ı/ WD sup fj f .x/� f .t/j W jx � tj � ıg ! 0

as ı & 0.6

Let us consider the function q of the preceding lemma with R to be chosen later,
and set

cn D
Z 1

�1
q.t/n dt and Qn.t/ D c�1

n q.t/n

for all n D 1; 2; : : : and t 2 R. Then we have

Qn � 0 in R; (8.3)

Qn.t/ D 0 if jtj � R; (8.4)
Z 1

�1
Qn.t/ dt D 1; (8.5)

Z

jtj>ı
Qn.t/ dt ! 0 as n ! 1; for each ı > 0I (8.6)

see Fig. 8.4.

6!. f ; ı/ is called the uniform continuity modulus of f .
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Fig. 8.4 Graphs of Q1, Q2

and Q3 for R D 1
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We claim that the functions

pn.x/ WD
Z 1

�1
f .t/Qn.x � t/ dt

converge to f uniformly in R.
Indeed, applying (8.3) and (8.5) we have

j f .x/� pn.x/j D
ˇ
ˇ
ˇ

Z 1

�1
. f .x/ � f .t//Qn.x � t/ dt

ˇ
ˇ
ˇ (8.7)

�
Z

jx�tj�ı
j f .x/� f .t/jQn.x � t/ dt

C
Z

jx�tj>ı
j f .x/ � f .t/jQn.x � t/ dt

� !. f ; ı/C 2 k f k1
Z

jsj>ı
Qn.s/ ds

for each x.
For any fixed " > 0 choose ı > 0 such that !. f ; ı/ < "=2, and then using (8.6)

choose N such that

2 k f k1
Z

jsj>ı
Qn.s/ ds < "=2 for all n � N:

Then we conclude from (8.7) that j f .x/ � pn.x/j < " for all x 2 R and n � N.
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We complete the proof by showing that the restriction of pn to Œa; b� is a
polynomial if we choose R � b � a at the beginning of the proof. Applying (8.4),
using the fact that f vanishes outside Œa; b�, and taking into account that Œa; b� �
Œx � R; x C R� for every a � x � b, we obtain the following equality for each
a � x � b:

pn.x/ D
Z 1

�1
f .t/Qn.x � t/ dt

D
Z xCR

x�R
f .t/c�1

n .R2 � .x � t/2/n dt

D
Z b

a
f .t/c�1

n .R2 � .x � t/2/n dt:

Since

c�1
n .R2 � .x � t/2/n D

2nX

jD0
aj.t/x

j

with suitable polynomials aj.t/, it follows that

pn.x/ D
2nX

jD0
bjx

j with bj D
Z b

a
f .t/aj.t/ dt: ut

Remark The above proof was perhaps the first example of regularization by
convolution, a technique widely used today to establish density theorems in various
functions spaces.7

Weierstrass also proved a similar result for periodic functions. The 2�-periodic
continuous functions form a closed subspace C2� in the Banach space B.R/, hence
C2� is also a Banach space with respect to the norm k�k1.8

Definition A trigonometric polynomial is a finite linear combination of the func-
tions

1; cos t; sin t; cos 2t; sin 2t; cos 3t; sin 3t; : : : :

7See the references in the footnote of Sect. 9.3 below, p. 320.
8We recall that in this book by a subspace without adjective we always mean a linear subspace.
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Fig. 8.5 Graph of q for
R D 1
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Remark Using the three identities9

2 cos kt cos mt D cos.k � m/t C cos.k C m/t;

2 sin kt sin mt D cos.k � m/t � cos.k C m/t;

2 sin kt cos mt D sin.k � m/t C sin.k C m/t

it is easy to show that the trigonometric polynomials form not only a vector
space, but also an algebra: the product of two trigonometric polynomials is again
a trigonometric polynomial.

Theorem 8.3 (Weierstrass)10 For each f 2 C2� there exists a sequence .pn/ of
trigonometric polynomials converging uniformly to f on R.

The following proof is due to de la Vallée-Poussin.11

Proof Introducing the function

q.t/ WD
(
1C cos t if jtj � � ,

0 if jtj � �

(see Fig. 8.5), and repeating the preceding proof with R D � we obtain that pn ! f
uniformly in R.

9Several proofs of this chapter could be simplified by adopting the complex framework, and using
Euler’s formula eix D cos x C i sin x. For example, the trigonometric polynomials would be simply
the algebraic polynomials of eit, and the single identity euCv D euev would suffice instead of these
three real identities.
10Weierstrass [483]. See Theorem 8.11 and a remark following Proposition 8.21 below (pp. 276,
288) for other proofs.
11de la Vallée-Poussin [463]. His work was motivated by that of Landau.
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It remains to show that pn is a trigonometric polynomial. This follows from the
following computation:

pn.x/ D
Z 1

�1
f .t/Qn.x � t/ dt

D c�1
n

Z xC�

x��
f .t/.1C cos.x � t//n dt

D c�1
n

Z �

��
f .t/.1C cos.x � t//n dt

D c�1
n

Z �

��
f .t/.1C cos x cos t C sin x sin t/n dt

D a0 C
nX

kD1
ak cos kx C bk sin kx;

where ak and bk are suitable real numbers. The third equality follows from the
2�-periodicity of the function under the integral sign, while the last one from the
repeated application of the three trigonometric identities of the preceding remark.

ut
Remark Jackson [221], [222] investigated the error of the approximation as a
function of the regularity of the approximated function. Müntz [329], Szász [445],
Clarkson and Erdős [90] proved important generalizations of Theorem 8.1. See also
Achieser [1], Cheney [85], Jackson [223], Natanson [333], Rudin [405].

8.2 * The Stone–Weierstrass Theorem

Stone proved a far-reaching generalization of the Weierstrass approximation theo-
rems.

Definition A subspace M of C.K/ is a subalgebra if f ; g 2 M imply fg 2 M.

Theorem 8.4 (Stone–Weierstrass)12 Let K be a compact topological space and
M a subalgebra of C.K/. Assume that M contains the constant functions, and
separates the points of K: for any two distinct points x; y 2 K there exists an
h 2 M such that h.x/ ¤ h.y/. Then M is dense C.K/.

12Stone [440], [441].
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Examples

• Let K be a compact interval in R. The restrictions of the algebraic polynomials
to K form a subalgebra M satisfying the conditions of Theorem 8.4. Hence
Theorem 8.1 is a special case of Theorem 8.4.

• More generally, if K is a compact set in R
N , then the algebraic polynomials of N

variables form a subalgebra M satisfying the conditions of Theorem 8.4.
• Let K be the unit circle in R

2. Setting T.s/ WD .cos s; sin s/, the function f 7!
f ı T establishes an isometric isomorphism between the Banach spaces C.K/ and
C2� . Furthermore, the algebraic polynomials of two variables correspond to the
trigonometric polynomials. Thus Theorem 8.3 also follows from Theorem 8.4.

In the proof we use the notion of vector lattices (see p. 172).

Proof of Theorem 8.4 First step. If fn ! f and gn ! g C.K/, then fngn ! fg
because

k fg � fngnk1 � k f � fnk1 kgk1 C k fnk1 kg � gnk1 ! 0:

Hence the closure M of the subalgebra M is still a subalgebra of C.K/.
Second step. We show that the closed subalgebra M is a vector lattice. Fix h 2 M

arbitrarily and fix a number T > khk1. By Theorem 8.1 there exist polynomials
pn satisfying pn.x/ ! jxj uniformly in Œ�T;T�. Then pn ıh 2 M, and pn ıh ! jhj
uniformly in K, so that jhj 2 M.
The following proposition completes the proof of the theorem. ut

Proposition 8.5 (Kakutani–Krein)13 Let K be a compact topological space and
M � C.K/ a vector lattice. Assume that 1 2 M, and that M separates the points of
K. Then M is dense in C.K/.

Proof Fixing f 2 C.K/ and " > 0 arbitrarily, we have to find g 2 M satisfying
k f � gk1 < ".

First step. For each fixed x 2 K there exists a function fx 2 M satisfying

fx > f � " on K; and fx.x/ D f .x/:

Indeed, by our assumption for each y 2 K there exists a function fxy 2 M equal
to f at x and y. Then the open sets

Uy WD ˚
z 2 K W fxy.z/ > f .z/ � "

�
; y 2 K

13Kakutani [240, pp. 1004–1005], Krein–Krein [268].
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cover the compact set K, because y 2 Uy for every y. If

K D Uy1 [ � � � [ Uyn

is a finite subcover, then the function

fx WD max
˚
fxy1 ; : : : ; fxyn

�

has the required properties.
Second step. There exists a function g 2 M satisfying

f � " < g < f C " on K;

and hence the inequality k f � gk1 < ".
For the proof we consider the functions fx 2 M obtained in the first step. The
open sets

Vx WD fz 2 K W fx.z/ < f .z/C "g ; x 2 K

cover the compact set K, because x 2 Vx for every x. If

K D Vx1 [ � � � [ Vxm

is a finite subcover, then the function

g WD min f fx1 ; : : : ; fxmg

has the required properties. ut
The following interesting application will be useful later14:

Proposition 8.6 (Stone)15 Let K be a compact set in a topological space X, and
assume that the points of K may be separated by the continuous functions h W X !
R. Then every continuous function f W K ! R may be extended to a continuous
function F W X ! R.

Proof The restrictions of the continuous functions F W X ! R to K form a vector
lattice M in C.K/, containing the constant functions. By our assumption M satisfies
the conditions of the Kakutani–Krein theorem, and hence it is dense in C.K/. It
remains to prove that M is closed.

Let . fn/ � M converge uniformly on K to some function f . We have to find a
continuous function F W X ! R such that F D f on K.

14See the proof of Lemma 8.27, p. 297.
15Stone [441]. This is a version of similar theorems of Urysohn [461] and Tietze [453].
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Taking a subsequence if necessary, we may assume that

j fnC1 � fnj � 2�n on K

for every n.16

By the definition of M the functions f1 and fnC1 � fn have continuous extensions
F1 and Gn to X. Furthermore, we may assume that

jGnj � 2�n on K

for every n: change Gn to

med f�2�n;Gn; 2
�ng

if necessary. Then the function series

F1 C
1X

nD1
Gn

converges uniformly to some function F W X ! R. We conclude that F is
continuous, and F D f on K. ut

8.3 Compact Sets. The Arzelà–Ascoli Theorem

In this section we characterize the compact sets of C.K/. Since in complete metric
spaces the compact sets coincide with the totally bounded17 closed sets, it is
sufficient to characterize the totally bounded sets.

Definitions Consider a family of functions F � C.K/.

• F is pointwise bounded if ff .t/ W f 2 Fg is bounded in R for each t 2 K.
• F is equicontinuous if for each " > 0 and t 2 K there is a neighborhood V of t

such that j f .s/� f .t/j < " for all s 2 V and f 2 F .

Proposition 8.7 (Arzelà–Ascoli)18 A family of functions F � C.K/ is totally
bounded ” it is pointwise bounded and equicontinuous.

16We have already used this technique when proving the Riesz Lemma 5.13, p. 184.
17We recall that a set A is totally bounded or precompact if for each r > 0 it has a finite cover by
balls of radius r.
18Ascoli [12] (pp. 545–549, sufficiency for K D Œ0; 1�), Arzelà [8] (necessity), [9] (simplified
treatment), [10], Fréchet [154] (general case).
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Proof First let F be totally bounded. Then it is also bounded in norm, i.e., uniformly
bounded on K, and hence pointwise bounded as well.

To show the equicontinuity, it suffices to find for any fixed t 2 K and r > 0 a
neighborhood V of t such that

j f .t/ � f .s/j < 3r for all f 2 F and s 2 V: (8.8)

Let us cover F with finitely many balls of radius r:

F � Br. f1/[ � � � [ Br. fm/

with f1; : : : ; fm 2 F .
Since each fi is continuous at t, we may choose a neighborhood Vi of t such that

j fi.t/ � fi.s/j < r for all s 2 Vi:

Then (8.8) is satisfied with V WD V1 \ � � � \ Vm.
Indeed, for any given f 2 F and s 2 V , choosing i such that k f � fik < r, we

have

j f .t/ � f .s/j � j f .t/ � fi.t/j C j fi.t/ � fi.s/j C j fi.s/ � f .s/j < r C r C r:

Conversely, if F is equicontinuous, then by the compactness of K we may find
for each fixed r > 0 finitely many points t1; : : : ; tm 2 K and their neighborhoods
V1; : : : ;Vm such that K D V1 [ � � � [ Vm, and

j f .t/ � f .ti/j < r whenever f 2 F and t 2 Vi:

If, moreover, F is pointwise bounded, then the set

f. f .t1/; : : : ; f .tm// W f 2 Fg

is bounded R
m, and also totally bounded there.19 There exist therefore finitely many

functions f1; : : : ; fn 2 F such that20

f. f .t1/; : : : ; f .tm// W f 2 Fg �
n[

jD1
Br. fj.t1/; : : : ; fj.tm//:

19We recall that the bounded and totally bounded sets are the same in all finite-dimensional normed
spaces.
20In this formula the balls are taken in R

m.
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We complete the proof by showing that21

F � B3r. f1/[ � � � [ B3r. fn/:

For any given f 2 F first we choose fj satisfying

. f .t1/; : : : ; f .tm// 2 Br. fj.t1/; : : : ; fj.tm//:

Next, for any given t 2 K we choose i such that t 2 Vi. Then we have

ˇ
ˇ f .t/ � fj.t/

ˇ
ˇ � j f .t/ � f .ti/j C ˇ

ˇ f .ti/� fj.ti/
ˇ
ˇC ˇ

ˇ fj.ti/ � fj.t/
ˇ
ˇ < r C r C r;

whence f 2 B3r. fj/. ut

8.4 Divergence of Fourier Series

By the Fourier series of a function f 2 C2� we mean the function series22

a0
2

C
1X

kD1
ak cos kx C bk sin kx;

with the Fourier coefficients ak; bk defined by the formulas

ak WD 1

�

Z �

��
f .t/ cos kt dt and bk WD 1

�

Z �

��
f .t/ sin kt dt:

Remark C2� is a Euclidean space with respect to the scalar product . f ; g/ WDR �
�� fg dt. A simple computation shows that the mth partial sum of the Fourier

series is the orthogonal projection of f onto the subspace Tm of the trigonometric
polynomials of order � m, spanned by the functions

1; cos t; sin t; cos 2t; sin 2t; cos 3t; sin 3t; : : : ; cos mt; sin mt:

See Sect. 1.4, p. 24.

21We recall that r > 0 was chosen arbitrarily at the beginning.
22Daniel Bernoulli [38], Fourier [148]. Using complex numbers the Fourier series would take the
simpler form

P
1

kD�1

ckeikx.
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Following Fourier’s revolutionary treatise, many works were devoted to the
convergence of Fourier series23:

• Dirichlet and Jordan24 proved (among others) that if f 2 C2� has bounded
variation, then its Fourier series converges to f uniformly.

• Lipschitz and Dini25 proved (among others) that if f 2 C2� , then its Fourier series
converges to f .a/ at each point a where f is differentiable.

It remained an open question for fifty years whether mere continuity already
ensures the convergence of the Fourier series. Finally, a counterexample was found:

Proposition 8.8 (du Bois-Reymond)26 There exists an f 2 C2� whose Fourier
series does not converge pointwise to f .

Remarks

• However, Carleson proved that the Fourier series of each f 2 C2� converges to f
a.e. everywhere.27

• On the other hand, Kahane and Katznelson28 proved that for each null set E there
exists a function f 2 C2� that diverges at the points of E.

First we establish two lemmas.

Lemma 8.9 (Dirichlet)29 The partial sums

.Sm f /.x/ WD a0
2

C
mX

kD1
ak cos kx C bk sin kx

of the Fourier series of a function f 2 C2� may be written in the closed form

.Sm f /.x/ D 1

2�

Z �

��
Dm.x � t/f .t/ dt;

with the Dirichlet kernel Dm 2 C2� defined by the formula30

Dm.2s/ WD sin.2m C 1/s

sin s
:

23A fascinating historical account is given by Kahane [237].
24Dirichlet [112], Jordan [229].
25Lipschitz [308] and Dini [107], [110]. See a short proof in Exercise 8.5, p. 301.
26du Bois-Reymond [49], [51]. A simpler explicit counterexample was given later by Fejér [139],
[140]. We prove here the mere existence of such functions.
27Carleson [78]. This was a long-standing open problem of Lusin [313]. See also the remark
following Corollary 9.6 below (p. 314) concerning Lp convergence.
28Kahane and Katznelson [238]. See also Edwards [120], Katznelson [245] and Zygmund [493]
for many further results.
29Dirichlet [112].
30For sin s D 0 we replace the right-hand side by its limit .2m C 1/.
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Fig. 8.6 Graph of D0
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See Figs. 8.6, 8.7, 8.8, and 8.9.

Proof Since

.Smf /.x/ D a0
2

C
mX

kD1
ak cos kx C bk sin kx

D 1

2�

Z �

��

�
1C 2

mX

kD1
cos kx cos kt C sin kx sin kt

�
f .t/ dt

D 1

2�

Z �

��

�
1C 2

mX

kD1
cos k.x � t/

�
f .t/ dt;
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Fig. 8.8 Graph of D2

it is sufficient to prove the identity

1C 2

mX

kD1
cos 2ks D sin.2m C 1/s

sin s
:

The case m D 0 is obvious. The general case follows by induction, using the
trigonometric identities

2 sin s cos 2.m C 1/s D sin.2m C 3/s � sin.2m C 1/s; m D 0; 1; : : : : ut

Now we introduce the linear functionals

'm. f / WD .Smf /.0/

on the Banach space C2� .
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Fig. 8.9 Graph of D3

Lemma 8.10 The linear functionals 'm are continuous, and k'mk ! 1 as m !
1.

Proof Since

jakj ; jbkj � 2 k f k1 ;

we deduce from the definition of Sm that

kSmf k1 �
�
2m C 1

2

�
� 2 k f k1 D .4m C 1/ k f k1 I

hence k'mk � 4m C 1 < 1.
On the other hand, the formula

f .2s/ WD .sign sin s/ sin.2m C 1/s
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defines a function f 2 C2� satisfying k f k1 D 1 and

'm. f / D 1

2�

Z �

��
Dm.�t/f .t/ dt D 1

�

Z �=2

��=2
Dm.�2s/f .2s/ ds

D 1

�

Z �=2

��=2
sin2.2m C 1/s

jsin sj ds D 2

�

Z �=2

0

sin2.2m C 1/s

sin s
ds

>
2

�

Z �=2

0

sin2.2m C 1/s

s
ds D 2

�

Z .2mC1/�=2

0

sin2 s

s
ds

>
2

�

mX

jD1

Z j�

.j�1/�
sin2 s

s
ds >

2

�

Z �

0

mX

jD1

sin2 s

j�
ds

D 1

�

mX

jD1

1

j
:

Hence,

k'mk � 'm. f / >
1

�

mX

jD1

1

j
! 1: ut

Remarks

• We note for later reference that the test functions used in the proof are even.
• Fejér31 has established the more precise asymptotic formulas

k'mk D 4

�2
log m C O.1/; m ! 1:

Proof of Proposition 8.8 Assume on the contrary that 'm. f / ! f .0/ for each f 2
C2� . Then applying the Banach–Steinhaus theorem (p. 81) with X D C2� and Y D
R we obtain sup k'mk < 1, contradicting the preceding lemma. ut

8.5 Summability of Fourier Series. Fejér’s Theorem

Thought is only a flash in the middle of a long night, but this flash is everything.
(H. Poincaré)

31Fejér [141]. See also Edwards [120] or Zygmund [493].
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The counterexample of du Bois-Reymond made obvious the difficulties of
representing continuous functions by Fourier series. Minkowski even asked whether
the Fourier series of a continuous function may converge pointwise to another
function.32 The long period of stagnation ended when Fejér discovered the following
remarkable

Theorem 8.11 (Fejér)33 Given any f 2 C2� , the mean values

�n f WD 1

n C 1

nX

mD0
Sm f ; n D 0; 1; : : :

converge to f uniformly on R.

Remarks The theorem has important consequences:

• It provides a new proof of the second approximation theorem of Weierstrass.
• It implies that the Fourier series of f 2 C2� cannot converge at any point x

to a value different from f .x/.34 Indeed, this follows from a classical result of
Cauchy35: if an ! a for a numerical sequence, then we also have .a1 C � � � C
an/=n ! a.

First we prove a lemma:

Lemma 8.12 We have

.�n f /.x/ D 1

2�

Z �

��
Fn.x � t/f .t/ dt

with the Fejér kernel Fn 2 C2� defined by the formula36

Fn.2s/ WD 1

n C 1

sin2.n C 1/s

sin2 s
:

Let us compare Figs. 8.10, 8.11, 8.12, and 8.13 and Figs. 8.6, 8.7, 8.8, and 8.9 on
p. 274: the positivity of the Fejér kernel has a great importance.

32See Hawkins [198]. An analogous phenomenon for Taylor series has been known since Cauchy
[80, p. 230].
33Fejér [137, 138]. He also investigated pointwise convergence for discontinuous functions f .
Lebesgue [292] extended his results to Lebesgue integrable functions.
34Thereby he has answered Minkowski’s question. Banach [20] has shown that Minkowski’s
phenomenon occurs for a slight modification of the trigonometric system.
35Cauchy [79].
36For sin s D 0 the right-hand side is replaced by its limit .n C 1/.
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Fig. 8.12 Graph of F2
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Proof By the definition of the operators �n it suffices to prove the equalities

Fn D D0 C � � � C Dn

n C 1
;

or equivalently that

sin2.n C 1/s

sin2 s
D

nX

mD0

sin.2m C 1/s

sin s
:

They follow by a direct computation:

nX

mD0
.sin s/ sin.2m C 1/s D 1

2

nX

mD0

�
cos 2ms � cos.2m C 2/s

	

D 1 � cos.2n C 2/s

2

D sin2.n C 1/s: ut

Proof of Theorem 8.11 We obtain the relations

�n1 D 1; �n cos D n

n C 1
cos and �n sin D n

n C 1
sin

directly from the definitions. Hence k f � �n f k1 ! 0 for the three functions f D 1,
cos and sin.

If f � 0, then �n f � 0 by the positivity of the Fejér kernels. Therefore we may
conclude by applying Proposition 8.13 below. ut
Definition A linear map L W C2� ! C2� is positive if f � 0 H) Lf � 0.

Proposition 8.13 (Korovkin)37 Consider a sequence of positive linear maps Ln W
C2� ! C2� . If k f � Ln f k1 ! 0 for the three functions f D 1; cos; sin, then the
relation k f � Ln f k1 ! 0 holds in fact for all f 2 C2� .

We prove a more general theorem in the next section.

8.6 * Korovkin’s Theorems. Bernstein Polynomials

Let us investigate the positive linear maps L W C.K/ ! C.K/ for an arbitrary
compact topological space.

37Korovkin [263]. Many applications are given in Korovkin [264].
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Definition L is positive if f � 0 H) Lf � 0.

Remarks If L is a positive linear map, then

• L is monotone: Lf � Lg whenever f � g: this follows at once from the linearity
of L;

• L is continuous with kLk D kL1k1. Indeed, using the monotonicity we infer
from the inequalities � k f k1 � f � k f k1 that

� k f k1 .L1/ � Lf � k f k1 .L1/;

and hence kLf k1 � kL1k1 k f k1 for all f . Since equality holds for f D 1, we
conclude that kLk D kL1k1.

Let K be a compact topological space and h1; : : : ; hm 2 C.K/. Assume that the
functions hj separate the points of K: for any two distinct points x; y 2 K there exists
a j such that hj.x/ ¤ hj.y/.

Consider a sequence of positive linear maps Ln W C.K/ ! C.K/.

Proposition 8.14 (Freud)38

If k f � Ln f k1 ! 0 for the functions

f D 1; h1; : : : ; hm and f D h21 C � � � C h2m; (8.9)

then k f � Ln f k1 ! 0 for all f 2 C.K/.

Example If K is a compact set in R
m, then we may apply the proposition to the

projections hj.x/ WD xj, j D 1; : : : ;m.

Proof Fix f 2 C.K/ and " > 0 arbitrarily.

First step. For each N D 1; 2; : : : ; let us denote by UN the set of pairs .x; y/ 2
K � K satisfying the inequality

j f .x/� f .y/j < "C N
mX

jD1

ˇ
ˇhj.x/� hj.y/

ˇ
ˇ2 : (8.10)

These sets are open by the continuity of the functions f and hj, and they form an
increasing set sequence. Furthermore, since

mX

jD1

ˇ
ˇhj.x/ � hj.y/

ˇ
ˇ2 > 0

38Freud [153]. See Altomare and Campiti [5] for a very complete review of the subject.
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whenever x ¤ y (by the separation condition), they cover K � K. The latter space
being compact, there exists a positive integer N such that (8.10) is satisfied for
all x; y 2 K.

Second step. For any fixed x 2 K, (8.10) implies the inequality

j f .x/.Ln1/.y/� .Lnf /.y/j � ".Ln1/.y/

C N
mX

jD1
h2j .x/.Ln1/.y/� 2N

mX

jD1
hj.x/.Lnhj/.y/

C NLn

� mX

jD1
h2j
�
.y/

for all y 2 K.
Choosing y D x and applying the triangle inequality this yields the following
estimate:

j f � Ln f j � j f j � j1 � Ln1j C ".Ln1/

C N
mX

jD1
h2j .Ln1/� 2N

mX

jD1
hj.Lnhj/C NLn

� mX

jD1
h2j

�
:

Letting n ! 1, the right-hand side tends to " uniformly by our assumption, and
hence

k f � Ln f k1 < 2"

for all sufficiently large n. ut
Corollary 8.15 (Bohman–Korovkin)39 Let I be a compact interval, and consider
a sequence of positive linear maps Ln W C.I/ ! C.I/.

If the relation k f � Ln f k1 ! 0 holds for the three functions f .x/ D 1; x; x2,
then it holds in fact for all f 2 C.I/.

Proof We apply the preceding example with K D I and m D 1. ut
Now we return to the last statement of the preceding section.

39Bohman [47], Korovkin [263].
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Fig. 8.14 x21 C x22 D 1
x2

x1

Proof of Proposition 8.13 We apply the preceding example to the unit circle K of
R
2. (See Fig. 8.14.) Since x21 C x22 D 1 on K, we have only three test functions

instead of four. Hence, if a sequence of positive linear maps Ln W C.K/ ! C.K/
satisfies k f � Ln f k1 ! 0 for the three functions f .x/ WD 1; x1; x2, then the relation
k f � Ln f k1 ! 0 holds in fact for all f 2 C.I/.

Now we recall (p. 266) that the map f 7! f ı T, where T.s/ WD .cos s; sin s/, is
an isometric isomorphism between the Banach spaces C.K/ and C2� . Furthermore,
f � 0 ” f ı T � 0, and the map transforms the functions f .x/ D 1; x1; x2
into f .T.s// D 1; cos s; sin s. Hence the result obtained for K is equivalent to
Proposition 8.13. ut

As another application of Korovkin’s theorems, we give a new proof of the first
approximation theorem of Weierstrass.40 Let I D Œ0; 1� for simplicity, and introduce
for each f 2 C.I/ the Bernstein polynomials41

.Bnf /.x/ WD
nX

kD0

 
n

k

!

f
� k

n

�
xk.1 � x/n�k; x 2 I; n D 1; 2; : : : :

Proposition 8.16 (Bernstein)42 The Bernstein polynomials Bnf converge uniformly
to f on I for each f 2 C.I/.

40Theorem 8.1, p. 260.
41Bernstein’s proof is probabilistic, based on the law of large numbers.
42Bernstein [39]. His result answered a question of Borel [60, pp. 79–82].
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Proof The operators Bn are clearly positive linear on C.I/. Let us also observe that43

Bn1 D 1 and Bn id D id for every n via the binomial theorem:

.Bn1/.x/ D
nX

kD0

 
n

k

!

xk.1 � x/n�k

D .x C 1 � x/n

D 1

and

.Bn id/.x/ D
nX

kD0

 
n

k

!
k

n
xk.1 � x/n�k

D
nX

kD1

 
n � 1
k � 1

!

xk.1 � x/n�k

D x.x C 1 � x/n�1

D x:

In view of the Bohman–Korovkin theorem (p. 281) it suffices to show that Bn.id2/
converges uniformly to id2 on Œ0; 1�. For this we first note that

Bn

�
id2 � id

n

�
.x/ D

nX

kD0

 
n

k

!
k.k � 1/

n2
xk.1 � x/n�k

D n � 1

n

nX

kD2

 
n � 2
k � 2

!

xk.1� x/n�k

D n � 1

n
x2:

Hence

Bn.id2/ D n � 1
n

id2 C1

n
id

and therefore

�
�id2 �Bn.id2/

�
�1 D 1

n

�
�id2 � id

�
�1 ! 0: ut

43We denote by id the identity map of I.
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8.7 * Theorems of Haršiladze–Lozinski, Nikolaev and Faber

The main theorem of this section reveals a deep common reason for many diver-
gence theorems. As in Sect. 8.4, we denote by Tm the vector space of trigonometric
polynomials of order � m, and we denote by Smf the mth partial sum of the Fourier
series of f .

Theorem 8.17 (Haršiladze–Lozinski)44 Consider a sequence of continuous
linear maps Lm W C2� ! C2� . If Lm is a projection onto Tm for each m, then
there exists a function f 2 C2� such that k f � Lm f k1 6! 0.

The main ingredient of the proof is an optimality property of Fourier series:

Proposition 8.18 (Lozinski)45 If a continuous linear map Lm W C2� ! C2� is a
projection onto Tm, then kLmk � kSmk.

Indeed, in view of the Banach–Steinhaus theorem (p. 81), Theorem 8.17 follows
from this proposition and from the fact that kSmk ! 1, proved in Lemma 8.10
(p. 273).

Proof of Proposition 8.18 For each real number s the formula

.Ts f /.x/ WD f .x C s/

defines in C2� a continuous linear operator of norm one. It suffices to establish the
following identity46:

.Sm f /.x/ D 1

2�

Z �

��
.T�sLmTs f /.x/ ds; x 2 R; f 2 C2� : (8.11)

Indeed, since

j.T�sLmTs f /.x/j � kT�sLmTs f k1
� kT�sk � kLmk � kT�sk � k f k1
D kLmk � k f k1

for all f , s and x, (8.11) implies kSmf k1 � kLmk � k f k1 for all f , and hence kSmk �
kLmk.

44Lozinski [311].
45Lozinski [311].
46Marcinkiewicz [314], Lozinski [310].
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It is sufficient to prove (8.11) for the functions47

fk.x/ D cos kx .k D 0; 1; : : :/ and gk.x/ D sin kx .k D 1; 2; : : :/:

Indeed, then the identity will hold for all trigonometric polynomials by linearity, and
then for all f 2 C2� by the Weierstrass approximation theorem because all operators
occurring in (8.11) are continuous.

If f 2 Tm, then Ts f 2 Tm. Hence LmTs f D Ts f and therefore

1

2�

Z �

��
.T�sLmTs f /.x/ ds D 1

2�

Z �

��
f .x/ ds D f .x/ D .Sm f /.x/:

It remains to prove that
Z �

��
.T�sLmTs fk/.x/ ds D

Z �

��
.T�sLmTsgk/.x/ ds D 0

for all k > m and x 2 R. We deduce from the identities

cos k.x C s/ D cos ks cos kx � sin ks sin kx

and

sin k.x C s/ D sin ks cos kx C cos ks sin kx

that

Ts fk D .cos ks/fk � .sin ks/gk and Tsgk D .sin ks/fk C .cos ks/gk:

Consequently,

Z �

��
.T�sLmTs fk/.x/ ds

D
Z �

��
.cos ks/.Lm fk/.x � s/ � .sin ks/.Lmgk/.x � s/ ds

and

Z �

��
.T�sLmTsgk/.x/ ds

D
Z �

��
.sin ks/.Lm fk/.x � s/C .cos ks/.Lmgk/.x � s/ ds:

47The proof may be simplified by using complex numbers. See Exercise 8.10, p. 303.
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For any fixed x, .Lm fk/.x � s/ and .Lmgk/.x � s/ are trigonometric polynomials
of order � m in s. Since k > m, they are therefore orthogonal to the functions cos ks
and sin ks, so that the right-hand side of both identities vanishes. ut

Next we establish an algebraic variant of Theorem 8.17. For this we need a
variant of Proposition 8.18, where we replace C2� and Tm by the subspaces QC2�
and QTm formed by the even functions. Let us denote the restriction of Sm to QC2� by
QSm, and observe that QSm W QC2� ! QC2� .

Proposition 8.19 If a continuous linear map Lm W QC2� ! QC2� is a projection onto
QTm, then kLmk � �

�QSm

�
� =2.

Proof Using the notations of the preceding proof it suffices to prove the following
identity:

.QSm f /.x/ D 1

2�

Z �

��
.T�sLm.T�s C Ts/f /.x/ ds

for all f 2 QC2� and x 2 R. Indeed, this will imply

�
�QSm f

�
� � 2 kLmk � k f k

for all f 2 QC2� .
Since the functions fk span QC2� , it suffices to prove the identity for these

functions. We infer from the trigonometric identity

cos k.x � s/C cos k.x C s/ D 2 cos ks cos kx

that

.T�s C Ts/fk D .2 cos ks/fk;

and hence

QRmf .x/ WD 1

2�

Z �

��
.T�sLm.T�s C Ts/f /.x/ ds D 1

2�

Z �

��
.2 cos ks/.Lm fk/.x � s/ ds:

If k > m, then for each fixed x, .Lm fk/.x � s/ is a trigonometric polynomial of
order < k in s, and thus orthogonal to cos ks. Therefore QRm fk D 0 D QSm fk.

If k � m, then Lm fk D fk, so that

. QRm fk/.x/ D 1

2�

Z �

��
2 cos ks cos k.x � s/ ds

D 1

2�

Z �

��
cos kx C cos k.x � 2s/ ds
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D cos kx

D fk.x/

D QSm fk.x/

again. ut
Let us denote by Pm the vector space of algebraic polynomials of degree � m.

Theorem 8.20 (Haršiladze–Lozinski)48 Consider a sequence of continuous
linear maps Lm W CI ! CI, where I is a compact interval. If Lm is a projection
onto Pm for each m, then there exists an f 2 CI such that k f � Lm f k1 6! 0.

Proof Let I D Œ�1; 1� for simplicity of notation, and consider the isometric
isomorphism T W f 7! f ı cos between the Banach spaces C.I/ and QC2� . Since

f 2 Pm ” Tf 2 QTm;

we deduce from the preceding proposition that

kLmk D �
�TLmT�1�� � �

�QSm

�
� =2:

Let us observe that
�
�QSm

�
� ! 1 by the proof of Lemma 8.10 (p. 273), because

in the proof only even test functions were used. Therefore we may conclude by
applying the Banach–Steinhaus theorem (p. 81). ut

We end this section with two further famous results. Given a compact interval
I D Œa; b�, we may ask the following natural questions:

• Does there exist a weight function49 on some compact interval J � I such
that, considering the corresponding orthonormal sequence of polynomials pn, the
Fourier series

P
. f ; pn/pn converges uniformly to f on I for every f 2 C.J/?

• Given a system of points xm;0 < � � � < xm;m in I for m D 0; 1; : : : ; we may define
for each f 2 C.I/ a sequence of Lagrange interpolation polynomials Lm f such
that Lm D f in the points xm;0; : : : ; xm;m. Is there a choice of points xm;k such that
Lm f converges uniformly to f for every f 2 C.I/?

48Lozinski [311].
49By a weight function we mean a positive, integrable function. If w is a weight function
on a compact interval J, then we may define a scalar product on the vector space P of
algebraic polynomials by the formula .p; q/ WD R

I pqw dt, and we may apply the Gram–Schmidt
orthogonalization (Proposition 1.15, p. 28) for the sequence of functions 1, id, id2, . . . to obtain a
sequence of orthogonal polynomials satisfying deg pk D k for every k D 0; 1; : : : :
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In case of a positive answer we would obtain a natural proof of the Weierstrass
approximation theorem. But the answer is negative:

Proposition 8.21

(a) (Nikolaev)50 For any given weight function there exists an f 2 C.J/ such thatP
. f ; pn/pn does not converge uniformly to f on I.

(b) (Faber)51 For any given point system .xm;k/ there exists an f 2 C.I/ such that
Lmf does not converge uniformly to f on I.

Proof (a) The continuous linear projections

Lmf WD
mX

nD0
. f ;Pn/Pn

satisfy the conditions of Theorem 8.20.
(b) These operators Lm also satisfy the conditions of Theorem 8.20. ut
Remarks Historically, the theorems of du Bois Reymond and Faber paved the way
to the discovery of the Banach–Steinhaus theorem. Let us mention three further
results related to Faber’s theorem.

• (Fejér)52 Let us choose for xm;0; : : : ; xm;m 2 Œ�1; 1� DW I the zeros of the
corresponding Chebyshev polynomial, and for f 2 C.I/ let Hm f denote the
Hermite interpolation polynomial of degree � 2m C 1, satisfying the equalities
.Hm f /.xm;k/ D f .xm;k/ and .Hm f /0.xm;k/ D 0. Then Hm f converges uniformly
to f .

• (Erdős–Turán)53 If w is a weight function on I and xm;0; : : : ; xm;m are the zeros
of the corresponding mth orthogonal polynomial, then Lm f converges to f in the
weaker norm associated with the scalar product .p; q/ WD R

I pqw dt.
• (Erdős–Vértesi)54 For any given system of points xm;k there exists a function f 2

C.I/ such that lim sup jLn f .x/j D 1 for almost every x 2 I. Not only do we not
have uniform convergence, but we even have divergence almost everywhere!

50Nikolaev [346]. However, we will see later (Corollary 9.6, p. 314) that the answer is affirmative
for the weaker norm associated with the scalar product.
51Faber [133].
52Fejér [142]; see also Cheney [85]. In this way, Hermite interpolation can be used to prove the
Weierstrass approximation theorem.
53Erdős–Turán [124].
54Erdős–Vértesi [125].
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8.8 * Dual Space. Riesz Representation Theorem

Let K be a compact Hausdorff space. Using measure theory we may characterize
the dual of C.K/.

Definition Let us denote by B the smallest �-ring containing all sets of the form
ff D 0g, where f runs over C.K/. The elements of B are called Baire sets.55

Remarks

• B is even a �-algebra. Moreover, if g 2 C.K/ and c 2 R, then the level sets

fg D cg ; fg � cg ; fg � cg

and their complements

fg ¤ cg ; fg > cg ; fg < cg

are also Baire sets, because

fg D cg D fg � c D 0g ;
fg � cg D ˚

.g � c/C D 0
�

and

fg � cg D f.g � c/� D 0g :

• In fact, B contains all open, closed or compact sets of K. This follows from the
Tietze–Urysohn theorem of topology because every compact Hausdorff space is
normal. See, e.g., Kelley [247].

Definition By a (signed) Baire measure we mean a finite (signed) measure defined
on B.

Examples For any fixed a 2 K the Dirac measure at a is a Baire measure.

The Baire measures have an important regularity property: they may be well
approximated by both open and closed sets:

Proposition 8.22 Let � be a Baire measure, A 2 B and " > 0. There exist a closed
set F and an open set G in B such that

F � A � G and �.G n F/ < ": (8.12)

55Baire [17].
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Proof Let us denote temporarily by QB the family of Baire sets having the prop-
erty (8.12). We have to show that QB is a �-algebra containing all sets f f D 0g with
f 2 C.K/.

If A D f f D 0g for some f 2 C.K/, then the formulas

F WD A; Gn WD fj f j < 1=ng ; n D 1; 2; : : :

define a closed set F 2 B and open sets Gn 2 B satisfying F � A � Gn for all n.
Since the set sequence .Gn/ is non-increasing and

1\

nD1
.Gn n F/ D

1\

nD1
f0 < j f j < 1=ng D ¿;

Proposition 7.3 (p. 216) implies that �.Gn n F/ < " if n is sufficiently large.
It remains to prove the �-algebra property. Choosing the constant functions f D 0

and f D 1 we see that K and ¿ belong to B. Moreover, since they are both open and
closed, they belong to QB as well: we may choose F D G D ¿ and F D G D K.

If A 2 QB, then K n A 2 QB. Indeed, if F and G satisfy (8.12), then K n G is closed,
K n F is open, both belong to B,

K n G � K n A � K n F and �
�
.K n F/ n .K n G/

	 D �.G n F/ < ":

Finally, if .An/ is a disjoint sequence in QB, then A WD [�An 2 QB. For the proof,
for any fixed " > 0 we choose closed sets Fn 2 B and open sets Gn 2 B such that

Fn � An � Gn and �.Gn n Fn/ < 2
�n�1"

for all n. Then G WD [1
nD1Gn is open, the sets FN WD [N

nD1Fn are closed for all
N D 1; 2; : : : ; all belong to B, FN � A � G, and

�.G n FN/ �
� NX

nD1
�.Gn n Fn/

�
C
X

n>N

�.Gn/ <
"

2
C
X

n>N

�.Gn/:

Since

1X

nD1
�.Gn/ <

1X

nD1

�
�.An/C 2�n"

	 D �.A/C " < 1;

it follows that �.G n FN/ < " if N is sufficiently large. ut
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Setting k�k WD j�j .K/ the signed Baire measures form a normed space M.K/,56

and the formula

. j�/. f / WD
Z

f d�

defines a continuous linear map j W M.K/ ! C.K/0 of norm � 1.
The only non-trivial property is the triangle inequality. For the proof we consider

two measures �;�0 and the corresponding Hahn decompositions K D P [� N and
K D P0 [� N0. Setting

A WD .P \ P0/[� .N \ N0/ and B WD .P \ N0/[� .N \ P0/

we have the following relations:

�
��C �0�� D ˇ

ˇ�C �0ˇˇ .K/

D ˇ
ˇ�C �0ˇˇ .A/C ˇ

ˇ�C �0ˇˇ .B/

D �j�j C ˇ
ˇ�0ˇˇ	 .A/C ˇ

ˇ�C �0ˇˇ .B/

� �j�j C ˇ
ˇ�0ˇˇ	 .A/C �j�j C ˇ

ˇ�0ˇˇ	 .B/

D �j�j C ˇ
ˇ�0ˇˇ	 .K/

D k�k C �
��0�� :

The main result of this section states that every linear functional on C.K/may be
obtained in this way, and that M.K/ is complete.

Theorem 8.23 (Riesz)57 If K is a compact topological space, then j is an
isometric isomorphism between M.K/ and C.K/0.

Remark It is not necessary to assume the Hausdorff property of K: identifying two
points x; y if h.x/ D h.y/ for every h 2 C.K/, we may reduce the theorem to
the case where any two distinct points may be separated by a continuous function.
Henceforth we assume this property.58

We proceed in several steps.

56Here j�j denotes the total variation of �; see p. 231.
57Riesz [377] (K D Œ0; 1�), Radon [366] (K � R

N , p. 1333), Banach [25] and Saks [410] (compact
metric spaces), Markov [315] (Cb.K/ certain non-compact spaces), Kakutani [240] (compact
topological spaces). See also the beautiful simple proof of Riesz for K D Œ0; 1�: Riesz and Sz.-
Nagy [394, Sect. 50].
58We will need it only during the proof of Lemma 8.27 below, in order to apply Proposition 8.6.
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Fig. 8.15 Theorem of Dini

Proposition 8.24 (Dini)59 If a non-increasing sequence . fn/ � C.K/ tends to zero
pointwise, then the convergence is uniform.

Proof For any fixed " > 0 we have to find a positive integer N such that k fnk1 < "

for all n � N.
For each t 2 K there exists an index nt such that fnt .t/ < "; by continuity the

inequality fnt < " remains valid in some open neighborhood Vt of t. Since K is
compact, a finite number of such neighborhoods, say Vt1 ; : : : ;Vtm , already cover K.

Choose N WD max fnt1 ; : : : ; ntmg, let n � N, and consider a point s 2 K. Then s
belongs to some neighborhood Vti , and therefore

0 � fn.s/ � fnti
.s/ < "

by the non-increasingness of the sequence . fn/. ut

59Dini [109, Sect. 99]. See the graphs of the functions fn.t/ WD tn for n D 1; 2; 3 in Fig. 8.15, and
let K D Œ0; a�, 0 < a < 1.
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Fig. 8.16 An “interval”
Œ f ; g/

f

g

Lemma 8.25 For each positive linear functional ' W C.K/ ! R there exists a
Baire measure � 2 M.K/ such that ' D j�.

Proof Following Kindler60 we introduce the “intervals”

Œ f ; g/ WD f.x; t/ 2 K � R W f .x/ � t < g.x/g

for all functions f ; g 2 C.K/ satisfying f � g.61 They form a semiring P in K �R,62

and the formula

.Œ f ; g// WD '.g � f /

defines a finite, additive set function on P , satisfying .¿/ D 0.
This set function is also �-additive, and hence a measure. For the proof we

consider an arbitrary countable decomposition Œ f ; g/ D [�Œ fn; gn/. We have

Œ f .x/; g.x// D [�Œ fn.x/; gn.x//

for each x 2 K, and therefore

g.x/� f .x/ D
1X

nD1
gn.x/ � fn.x/;

because the length of ordinary intervals is a measure.

60Kindler [248].
61See Fig. 8.16.
62The proof is similar to that of ordinary intervals.
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Setting

hm WD g � f �
mX

nD1
.gn � fn/; m D 1; 2; : : :

we have hm & 0. By Dini’s theorem the convergence is uniform, and then '.hm/ !
0 by the continuity of '. This is equivalent to the �-additivity relation

.Œ f ; g// D
1X

nD1
.Œ fn; gn//:

Applying Proposition 5.18 (p. 192) we extend  to a measure defined on the
�-ring M of measurable sets, still denoted by .63

If f 2 C.K/ and c is a positive real number, then the set

f f D 0g � Œ0; c/ D
1\

nD1
Œmin fn j f j ; cg ; c/

belongs to M. Since B is the smallest �-algebra containing the sets f f D 0g, this
implies that

A 2 B H) A � Œ0; 1/ 2 M:

Consequently, the formula

�.A/ WD .A � Œ0; 1//

defines a Baire measure � 2 M.K/.64 It remains to prove that '. f / D R
f d� for all

f 2 C.K/.
Given f 2 C.K/, the continuous functions

fn.x/ WD med f0; n. f .x/� 1/; 1g ; x 2 K; n D 1; 2; : : :

form a non-decreasing sequence converging to the characteristic function �f f>1g.
Hence

f f > 1g � Œ0; c/ D
1[

nD1
Œ0; cfn/

63M is even a � -algebra.
64The finiteness follows from the relation �.K/ D '.1/ < 1.
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for each positive number c, and therefore

.f f > 1g � Œ0; c// D lim
n!1 .Œ0; cfn// D lim

n!1'.cfn/

D c lim
n!1'. fn/ D c lim

n!1 .Œ0; fn//

D c.f f > 1g � Œ0; 1// D c�.f f > 1g/:

By the additivity of the measures  and � this implies the more general relations

.fa < f � bg � Œ0; c// D c�.fa < f � bg/ (8.13)

for all numbers 0 < a < b.65

Now we use (8.13) to prove the equalities '. f / D R
f d�. Separating the positive

and negative parts of f we may assume that f � 0. Then the “interval” Œ0; f / is the
union of the non-decreasing sequence of sets

Bn WD
n2n
X

iD1



i

2n
< f � i C 1

2n

�

�
h
0;

i

2n

�
;

and therefore

'. f / D .Œ0; f // D lim
n!1 .Bn/

D lim
n!1

i

2n

n2n
X

iD1
�

�

i

2n
< f � i C 1

2n

��

D
Z

f d�: ut

Lemma 8.26 Every continuous linear functional ' 2 C.K/0 is the difference of two
positive linear functionals.

Proof We denote by CC.K/ the set of nonnegative functions in C.K/, and for f 2
CC.K/ we define

 . f / WD sup
˚
'. f 0/ W f 0 2 CC.K/ and f 0 � f on K

�
:

Then all f ; g 2 CC.K/ and c � 0 satisfy the following conditions:

'. f / �  . f /I
0 �  . f / � k'k � k f k < 1I

65We apply the preceding identity to f=a and f=b, and we take the differences of the resulting
equalities.
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 .cf / D c . f / for all c � 0I
 . f C g/ D  . f /C  .g/:

Only the last relation is not obvious: for the proof it suffices to establish for each
fixed " > 0 the inequalities

 . f C g/ �  . f /C  .g/ � 2" and  . f C g/ �  . f /C  .g/C ":

To prove the first one we choose two functions 0 � f 0 � f and 0 � g0 � g
satisfying

'. f 0/ >  . f / � " and '.g0/ >  .g/ � ":

Then we have

 . f C g/ � '. f 0 C g0/ D '. f 0/C '.g0/ >  . f /C  .g/ � 2":

To prove the second one we choose a function 0 � h0 � f C g satisfying

'.h0/ >  . f C g/� ":

Setting

f 0 WD min
˚

f ; h0� and g0 WD h0 � f 0

we have66

0 � f 0 � f and 0 � g0 � g;

and therefore

 . f C g/ < '.h0/C " D '. f 0/C '.g0/C " �  . f /C  .g/C ":

Now we extend  to a positive linear map on C.K/ by setting67

‰. f / WD  . f C/ �  . f �/:

Only the additivity is not obvious. This follows from the additivity of  , by using
the nonnegative function

h WD f C C gC � . f C g/C D f � C g� � . f C g/�

66We have g0.x/ D 0 if f .x/ 	 h0.x/, and 0 � g0.x/ D h0.x/� f .x/ � g.x/ otherwise.
67As usual, f C and f � denote the positive and negative parts of f .
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as follows:

‰. f C g/ D  .. f C g/C/�  .. f C g/�/

D  .. f C g/C/C  .h/ �  .. f C g/�/�  .h/

D  . f C C gC/�  . f � C g�/

D  . f C/C  .gC/�  . f �/ �  .g�/

D ‰. f /C‰.g/:

We complete the proof of the lemma by observing that, as a result of the
inequality ' �  , ‰ � ' is also a positive linear functional on C.K/. ut

It follows from the preceding two lemmas that the linear map j W M.K/ ! C.K/0
is surjective. The next lemma completes the proof of Theorem 8.23:

Lemma 8.27 The linear map j W M.K/ ! C.K/0 is an isometry.

Proof We already know that j is continuous, and kjk � 1. It remains to prove the
inequality kj�k � k�k for each �.

Fix � 2 M.K/ and " > 0 arbitrarily, and consider the Hahn decomposition
K D P [� N of �. By Proposition 8.22 (p. 289) there exist two disjoint closed sets
P0 � P and N0 � N satisfying

ˇ
ˇ�.P n P0/

ˇ
ˇ < " and

ˇ
ˇ�.N n N0/

ˇ
ˇ < ":

The function

g.t/ WD
(
1 if t 2 P0,
�1 if t 2 N0

is clearly continuous on P0 [� N0. Applying Proposition 8.6 (p. 267), g may be
extended to a function f 2 C.K/. Changing f to med f�1; f ; 1g if necessary, we may
also assume that j f j � 1 on K.68 Then k f k � 1, and

kj�k � . j�/. f /

D
Z

P0

f d�C
Z

N0

f d�C
Z

PnP0

f d�C
Z

NnN0

f d�

68If K is metrizable, then we may define f explicitly by the formula

f .t/ WD dist.t;N0/� dist.t;P0/

dist.t;N0/C dist.t;P0/
:
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� �.P0/� �.N0/ � 2"
� �.P/ � �.N/ � 4"
D k�k � 4":

Letting " ! 0 we conclude that kj�k � k�k. ut
Example Using Theorem 8.23 we may prove directly the non-reflexivity of
C.Œ0; 1�/.69 Given any � 2 M.K/ with K WD Œ0; 1�, the formulas

m.t/ WD �.Œ0; t�/; t 2 Œ0; 1�

and

ˆ.�/ WD
X

0<t<1

m.tC/ � m.t�/

define a continuous linear functionalˆ on M.K/.70

We claim that ˆ is not represented by any function f 2 C.K/. Assume on the
contrary that there exists an f 2 C.K/ satisfying

ˆ.�/ D
Z 1

0

f d�

for all� 2 M.K/. Applying this to the Dirac measures� WD ıt, we obtain m D �Œt;1�,

and hence f .t/ D 1 for each 0 < t < 1. But then
R 1
0

f d� D 1 for the usual Lebesgue
measure, while ˆ.�/ D 0 because now m.t/ 
 t is continuous.

Remark Using the Dirac measures we may also show that the dual of C.Œ0; 1�/
is non-separable. For the proof first we observe that if 0 � a < b � 1, then
kıa � ıbk D 2. Indeed, we have

j.ıa � ıb/. f /j D j f .a/� f .b/j � 2 k f k1

for all f 2 C.Œ0; 1�/, so that kıa � ıbk � 2. On the other hand, choosing

f .t/ WD med




�1; 2t � a � b

b � a
; 1

�

69We follow Riesz–Sz.-Nagy [394].
70The second formula is meaningful because m has bounded variation and hence at most countably
many discontinuities.
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(make a figure) we have k f k1 D 1, so that71

kıa � ıbk � j.ıa � ıb/. f /j D j f .a/� f .b/j D 2:

It follows that C.Œ0; 1�/0 contains uncountably many pairwise disjoint open balls:

B1.ıa/; a 2 Œ0; 1�;

and no countable set may meet each of them.72

8.9 Weak Convergence

We recall that the strong convergence in C.K/ is uniform convergence on K. Now
we characterize the weak convergence73:

Proposition 8.28 If fn; f 2 C.K/, then the following conditions are equivalent:

(a) fn * f ;
(b) the sequence . fn/ is uniformly bounded, and converges pointwise to f .

Proof If fn converges weakly to f in C.K/, then . fn/ is bounded in norm by
Proposition 2.24 (p. 82), i.e., it is uniformly bounded. Furthermore, using the Dirac
measures ıt 2 C.K/0 we see that ıt. fn/ ! ıt. f /, i.e., fn.t/ ! f .t/ for each t 2 K.

Conversely, if . fn/ is uniformly bounded, and converges pointwise to f , then

Z

fn d� !
Z

f d�

for every � 2 M.K/ by Lebesgue’s dominated convergence theorem (p. 181). In
view of Theorem 8.23 (p. 291) this means that fn converges weakly to f .

Example Using the proposition we may give yet another proof of the non-reflexivity
of C.Œ0; 1�/. The formula fn.t/ WD tn defines a uniformly bounded sequence . fn/ in
C.Œ0; 1�/, converging pointwise to the non-continuous function

f .t/ WD
(
0 if 0 � t < 1,

1 if t D 1.

(See Fig. 8.15, p. 292.)

71Komornik–Yamamoto [261, 262] apply such estimates to inverse problems.
72Compare this with the proof of the non-separability of `1, p. 74.
73For the characterization of the weakly compact sets of C.K/ see, e.g., Dunford–Schwartz [117].
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Hence no subsequence of . fn/ can converge pointwise to any continuous
function, i.e, . fn/ has no weakly convergent subsequence. In view of Theorem 2.30
(p. 90) this implies that C.Œ0; 1�/ is not reflexive.

8.10 Exercises

Exercise 8.1 Consider74 the polynomials q0.x/ D 1 and

qn.x/ WD 1

2

�
qn�1.x/2 C 1 � x2

	
; n D 1; 2; : : : :

(i) Prove by induction that

qn � 0 and qn � qnC1 in Œ�1; 1� for all n:

(ii) Prove that qn.x/ ! 1 � jxj uniformly in Œ�1; 1�.
(iii) Deduce from the preceding result that jxj is the uniform limit of a suitable

sequence of polynomials in each compact interval Œa; b�.

Exercise 8.2 Prove that for any given finite subdivision a D x1 < � � � < xn D b of
I WD Œa; b�, the functions x 7! jx � xij, i D 1; : : : ; n, form a basis of the vector space
L of continuous functions f W I ! R which are linear in each subinterval .xi; xiC1/.

Exercise 8.3 Prove the Weierstrass approximation theorem in the following
way75:

(i) Each f 2 C.I/ may be approximated uniformly by continuous and piecewise
linear functions.

(ii) Prove the theorem for piecewise linear functions by applying the preceding two
exercises.

Exercise 8.4 Let I WD Œa; b� be a compact interval, f 2 C.I/, and denote by Pn the
subspace of C.I/ formed by the polynomials of degree � n, n D 0; 1; : : : : Prove the
following76:

(i) Pn has a closest element p to f . Set d WD k f � pk1.
(ii) There exist at least n C 2 consecutive values where f .x/ � p.x/ D ˙d, with

alternating signs.
(iii) The closest polynomial p is unique.

74Visser [469], see Sz.-Nagy [448, p. 77.].
75Lebesgue [286, 296].
76Chebyshev [83], Borel [60].
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Exercise 8.5 (Convergence of Fourier Series) Given f 2 C2� , set77

Of .n/ D 1

2�

Z �

��
f .x/e�inx dx

and

Sm;n.x/ D
nX

kD�m

Of .k/eikx:

We are going to show that if f 2 C2� is differentiable at x0, then Sm;n.x0/ ! f .x0/
as m; n ! 1.78 Prove the following:

(i) If g 2 C2� , then Og.n/ ! 0 as n ! ˙1.
(ii) If x0 D 0, f .0/ D 0 and f 0.0/ exists, then

f .x/ D .eix � 1/g.x/

with some g 2 C2� .
(iii) Deduce from the last equality that

Sm;n.0/ D
nX

kD�m

Of .k/ D Og.�m � 1/� Og.n/ ! 0

as m; n ! 1.
(iv) Prove the general case by a translation argument.

Exercise 8.6 Prove Ascoli’s theorem (p. 268) for compact metric spaces K as
follows. Let . fn/ � C.K/ be a pointwise bounded and equicontinuous sequence
of functions.

(i) Choose a countable dense set
˚
xj
� � K and prove the existence of a

subsequence . fnk / � . fn/ converging at each xj.
(ii) Prove that . fnk / converges at each point of K.

(iii) Prove that the convergence is uniform, and hence the limit function is
continuous.

77For brevity we use the complex notation.
78Chernoff [86]. The method is quite general and leads to an improvement of the classical theorems
of Lipschitz and Dini. It was motivated by an earlier simple proof of the Fourier inversion theorem
by Richards [369].
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Exercise 8.7 (A Nowhere Differentiable Continuous Function)79 Set80

a0.x/ WD dist.x;Z/; ak.x/ WD 2�ka0
�
2kx
	

and f .x/ WD
1X

kD0
ak.x/

for x 2 R. Prove the following:

(i) f W R ! R is a continuous, one-periodic function.
(ii) For any fixed x 2 R choose a sequence .mn/ of integers such that

yn WD mn2
�n�1 � x � .mn C 1/2�n�1 DW zn; n D 1; 2; : : : :

Show that if f is differentiable in x, then

lim
n!1

f .zn/� f .yn/

zn � yn
D f 0.x/:

(iii) Show that

ak.zn/� ak.yn/

zn � yn
D ˙1 if k � n; and D 0 otherwise.

(iv) Conclude that the fractions f .zn/�f .yn/

zn�yn
are alternatively odd and even integers,

and hence their sequence is divergent.

Exercise 8.8 (Peano Curve)81 We prove that there exists a continuous map of the
unit interval Œ0; 1� onto the unit square Œ0; 1� � Œ0; 1�.

We recall that Cantor’s ternary set C consists of those points t 2 Œ0; 1� which can
be written in the form

t D 2
� t1
3

C t2
32

C � � � C tn
3n

C � � �
�

with suitable integers tn 2 f0; 1g. Set

f1.t/ WD t1
2

C t3
22

C � � � C t2n�1
2n

C � � �

79The first examples were due to Bolzano [55] around 1832 (published only in 1930) and
Weierstrass [480, 481]. See also Bolzano [57], Russ [407], Jarník [227, p. 37], du Bois-Reymond
[50], Dini [108], Hawkins [198].
80Takagi [449]. His example was rediscovered by van der Waerden [477]. See also Billingsley [44],
Shidfar–Sabetfakhiri [422], McCarthy [319].
81Peano [354]. The following proof is due to Lebesgue [297, pp. 44–45]. An interesting variant of
this proof is due to Schoenberg [417]. See also Aleksandrov [4].
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and

f2.t/ WD t2
2

C t4
22

C � � � C t2n

2n
C � � � :

Prove the following:

(i) f WD . f1; f2/ maps C onto Œ0; 1� � Œ0; 1�.
(ii) f is uniformly continuous.

(iii) f1; f2 may be extended to continuous functions of Œ0; 1� into Œ0; 1�.
(iv) f is Hölder continuous (this last step is not necessary for the proof of the

theorem).

Exercise 8.9 Prove Lemmas 8.9 and 8.12 (pp. 271, 276) on the Dirichlet and Fejér
kernels by using complex exponentials.

Exercise 8.10 Simplify the proof of Lozinski’s Proposition 8.18 (p. 284) by using
complex exponentials.

Exercise 8.11 (Schauder Basis)82 A Schauder basis of a normed space X is a
sequence . fn/ � X such that each f 2 X has a unique representation of the form
f D P

cn fn with suitable coefficients cn.
Let x0; x1; : : : be a dense sequence of distinct elements in a compact interval

I D Œa; b� such that x0 D a and x1 D b. Set f0.x/ D 1 and f1.x/ D .x � a/=.b � a/.
Furthermore, for n � 2 set

an WD max
˚
xj W j < n and xj < xn

�
;

bn WD min
˚
xj W j < n and xj > xn

�
;

fn.x/ WD med f.x � an/=.xn � an/; .bn � x/=.bn � xn/; 0g :

Draw a figure.
Finally, for f 2 C.I/ and n � 1 we denote by Ln f 2 C.I/ the polygonal

approximation of f consisting of n linear segments and coinciding with f in
x0; x1; : : : ; xn. Set also L0f WD f .a/.

Prove the following statements:

(i) k f � Ln f k1 ! 0.
(ii) We have

Ln f D Ln�1f C . f � Ln�1f /.xn/fn; n D 1; 2; : : : :

82Schauder [412].
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(iii) We have

Ln f D
nX

jD0
cj fj

with

c0 D f .x0/ and cj D . f � Lj�1f /.xj/ for j D 1; : : : ; n:

(iv) If
P

cn fn 
 0, then all coefficients cn vanish.



Chapter 9
Spaces of Integrable Functions

Beauty is the first test: there is no permanent place in the world for ugly mathematics.—
G. Hardy

The function spaces introduced in this chapter play an important role in many
branches of mathematics, including the theory of probability and partial differential
equations. They are based on the Lebesgue integral.

We consider an arbitrary measure space .X;M; �/, i.e., � is a �-finite, complete
measure on a �-ring M in X.

If X D I is an interval of R, then we usually consider the ordinary Lebesgue
measure on I.1

As usual, we identify two functions if they are equal almost everywhere.

9.1 Lp Spaces, 1 � p � 1

Definitions Given a measurable function f on X, we set2

k f kp WD
�Z

X
j f jp d�

�1=p
; 1 � p < 1

1We consider only real-valued functions. See, e.g., Dunford–Schwartz [117], Edwards [119] or
Yosida [488] for the study of spaces of Banach space-valued Bochner-integrable functions.
2Riesz [377]. More general spaces were introduced by Orlicz [347, 348]; see Krasnoselskii–
Rutickii [267].

© Springer-Verlag London 2016
V. Komornik, Lectures on Functional Analysis and the Lebesgue Integral,
Universitext, DOI 10.1007/978-1-4471-6811-9_9
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and3

k f k1 WD inf fM � 0 W j f j � M p.p.g :

Furthermore, we denote by Lp.X;M; �/ or shortly by Lp the set of measurable
functions satisfying k f kp < 1.

We will soon justify the notation by showing that k�kp is a norm on Lp for each p.

Remarks • The norm k f k2 is associated with the scalar product

. f ; g/ WD
Z

X
fg d�:

• The notation k f k1 is motivated by the relation

k f k1 D lim
p!1 k f kp ;

valid for all f 2 L1 if �.X/ < 1.4

• If we consider the counting measure on the set X of natural numbers, then the
spaces Lp reduce to the spaces `p investigated in Part I of this book.

First we generalize Proposition 2.14 and Theorem 5.12 (pp. 70 and 184).

Proposition 9.1 Let p; q 2 Œ1;1� be conjugate exponents.

(a) (Hölder’s inequality)5 If f 2 Lp and g 2 Lq, then fg 2 L1 and

k fgk1 � k f kp � k gkq :

(b) (Minkowski’s inequality)6 If f ; g 2 Lp, then f C g 2 Lp and

k f C gkp � k f kp C kgkp :

(c) (Riesz–Fischer)7 Lp is a Banach space. L2 is a Hilbert space.

3This is in fact a minimum by an elementary argument.
4Private communication of E. Fischer to F. Riesz, see [379, 380].
5Riesz [379, 384].
6Riesz [379, 384].
7See Footnote 17 on p. 184.
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For the proof we first generalize Lemma 5.13:

Lemma 9.2 (Riesz)8 Let .fn/ be a Cauchy sequence in Lp, 1 � p � 1. There exists
a subsequence . fnk/ and two functions f ; g 2 Lp such that j fnk j � g for all k, and
fnk ! f a.e.

Remark For p D 1 we do not need subsequences, and the following property
holds: fn converges uniformly to some f 2 L1 outside a null set.

Indeed, if .fn/ is a Cauchy sequence in L1, then there exist a null set A � X and
a sequence .hn/ of bounded functions on K WD X n A such that fn 
 hn on K for
each n, and .hn/ is a Cauchy sequence in B.K/.

Since B.K/ is complete, .hn/ converges uniformly to some h 2 B.K/. Setting
f WD h on K and f WD 0 on A, we obtain a bounded, measurable function f , satisfying
fn ! f in L1.

Example (Fréchet)9 The sequence of functions

f2kCi.t/ WD
(
1 if i

2k � t � iC1
2k ,

0 otherwise;
k D 0; 1; : : : ; i D 0; 1; : : : ; 2k � 1

converges to zero in Lp.0; 1/ for each 1 � p < 1, but the numerical sequence
.fn.t// is divergent for each fixed t 2 Œ0; 1�.

The use of subsequences is therefore necessary in the lemma.

Proof The case p D 1 has already been proved in Lemma 5.13 (p. 184). Let 1 <
p < 1, and choose a subsequence .fnk / satisfying

k fn � fnk kp � 2�k for all n � nk; k D 1; 2; : : : :

Next, using Lemma 7.5 (p. 220) choose a sequence .Am/ of sets of finite measure
such that each fnk vanishes outside A WD [Am.

Applying the Hölder inequality we obtain for each m the inequalities

1X

kD1

Z

Am

jfnkC1
� fnk j d� �

1X

kD1
�.Am/

1=q � �� fnkC1
� fnk

�
�

p

� �.Am/
1=q < 1;

where q stands for the conjugate exponent of p.

8Riesz [377].
9Fréchet [160].
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Applying Corollary 5.9 (p. 180), it follows that the series

j fn1 j C
1X

kD1

ˇ
ˇ fnkC1

� fnk

ˇ
ˇ and fn1 C

1X

kD1
. fnkC1

� fnk/

converge a.e. on A D [Am to some limit functions g and f .
Comparing their partial sums gk and fnk we have fnk ! f a.e., and j fnk j � gk � g

for all k by the triangle inequality. Hence j f j � g.
Extending f and g by zero outside A, these relations hold on the whole X. Since

kgkkp � k fn1kp C 1 by the choice of the subsequence . fnk/, we have g 2 Lp by the
Fatou lemma (p. 183), and then f 2 Lp, because j f j � g. ut
Proof of Proposition 9.1

(a) If f 2 Lp and g 2 Lq, then f ; g are measurable and hence fg is also measurable.
If p D 1, then q D 1, and the inequality follows by a straightforward
computation:

k fgk1 D
Z

j fgj dt �
Z

j f j � kgk1 dt D k f k1 kgk1 :

The case p D 1 is analogous.
If 1 < p < 1 and 1 < q < 1, then we may assume by homogeneity that

k f kp D kgkq D 1. Using Young’s inequality (p. 70) we obtain that

k fgk1 D
Z

I
j f j � jgj dt �

Z

I

j f jp

p
C jgjq

q
dt D 1

p
C 1

q
D 1 D k f kp � kgkq :

(b) If f ; g 2 Lp, then f ; g are measurable and hence f C g is also measurable. The
case p D 1 is easy:

k f C gk1 D
Z

j f C gj dt �
Z

j f j C jgj dt D k f k1 C kgk1 :

The case p D 1 is also simple: we have

j f C gj � j f j C jgj � k f k1 C kgk1 ;

and hence

k f C gk1 � k f k1 C kgk1

by definition.
Now let 1 < p < 1 and 1 < q < 1. Since j f C gj � j f j C jgj, we may

assume that both f and g are nonnegative.
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Since f ; g are measurable, there exists a non-decreasing sequence A1 � A2 �
� � � of sets of finite measure such that f D g D 0 a.e. outside [An. Let us
introduce the nonnegative functions

fn WD �An min f f ; ng and gn WD �An min fg; ng ;

then

fn % f and gn % g a.e.,

and
Z

.fn C gn/
p dt � .2n/p�.An/ < 1 for each n:

Applying (a) we have for each n the following estimate:

kfn C gnkp
p D

Z

I
.fn C gn/

p dt

�
Z

I
fn.fn C gn/

p�1 dt C
Z

I
gn.fn C gn/

p�1 dt

� kfnkp � ��.fn C gn/
p�1��

q
C kgnkp � ��.fn C gn/

p�1��
q

D �kfnkp C kgnkp

	 kfn C gnkp�1
q.p�1/

D �kfnkp C kgnkp

	 kfn C gnkp�1
p ;

whence10

kfn C gnkp � kfnkp C kgnkp :

Applying the generalized Beppo Levi theorem we have

Z

I
f p
n dt !

Z

I
f p dt;

i.e., kfnkp ! kf kp. We have similarly kgnkp ! kgkp and kfn C gnkp !
kf C gkp. Therefore, letting n ! 1 in the preceding inequality we conclude
that kf C gkp � kf kp C kgkp. Finally, since the right-hand side of the last
inequality if finite by our assumption f ; g 2 Lp, the left-hand side is also finite,
so that f C g 2 Lp.

10Here we use the finiteness of kfn C gnkp.
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(c) The case p D 1 has already been proved in Theorem 5.12 (p. 184). For 1 < p <
1 we adapt that proof as follows.

Let .fn/ be a Cauchy sequence in Lp. By Lemma 9.2 there exist f 2 Lp and a
subsequence .fnk/ such that fnk ! f a.e.

For any given " > 0 there exists an N such that

Z

jfm � fnjp d� < "

for all m; n � N. Choosing n D nk and letting k ! 1, an application of the
Fatou lemma yields the inequalities

Z

jfm � f jp d� � "

for all m � N. ut
Next we study the density of step functions in Lp spaces.

Proposition 9.3 (a) Let f 2 Lp, 1 � p � 1. There exist step functions 'n and
h 2 Lp such that

j'nj � h for all n; and 'n ! f a.e. (9.1)

(b) If 1 � p < 1, then the step functions are dense in Lp.
(c) The characteristic functions of measurable sets generate L1.

*Remark The step functions are not dense L1 in general, but they are dense in the
weaker locally convex topology �.L1;L1/, defined by the family of seminorms11

pg.f / WD
ˇ
ˇ
ˇ

Z

fg d�
ˇ
ˇ
ˇ; g 2 L1:

Indeed, for any given f ; g 2 L1 we have k.'n � f /gk1 ! 0 by Lebesgue’s dominated
convergence theorem (p. 181), with the sequence .'n/ defined in (a).

Proof (a) If f 2 L1, then f is measurable by definition, and hence there exists a
sequence of step functions satisfying  n ! f a.e. Furthermore, all functions n

and f vanish outside some measurable set A. Then the functions

h WD kf k1 �A and 'n WD med f� kf k1 ;  n; kf k1g

have the required properties.

11See Sect. 9.7 (p. 336) for the study of this topology.
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If f 2 Lp for some 1 � p < 1, then separating the positive and negative
parts of f we may assume that f � 0.

Since f p 2 L1 by Proposition 5.14 (p. 185), there exists a sequence . n/ of
step functions satisfying kf p �  nk1 ! 0.

Applying Lemma 5.13 (or the preceding lemma), by taking a subsequence
we may also assume that there exist two functions Qh; Qf 2 L1 satisfying  n ! Qf
a.e., and j nj � Qh for all n. Then we have

�
�Qf �  n

�
�
1

! 0 by the dominated
convergence theorem, and hence necessarily Qf D f p a.e. We conclude that (9.1)
is satisfied with h WD Qh1=p 2 Lp and 'n WD j nj1=p.

(b) Given any f 2 Lp, the step functions of (a) satisfy
R j'n � f jp dx ! 0 by the

dominated convergence theorem.
(c) Given any g 2 L1 and " > 0,

h.t/ WD
�

g.t/

"



"

is a finite linear combination of characteristic functions of measurable sets,
satisfying the inequality kg � hk1 � ". ut

Now we prove the L2 version of the Hilbert–Schmidt theorem (p. 38). Similarly
to Sect. 7.3 (p. 224) we consider a product measure � � � on X � X.

Proposition 9.4 (Hilbert–Schmidt)12 If a 2 L2.X � X/, then the formula

.Af /.t/ WD
Z

X
a.t; s/f .s/ ds; t 2 X

defines a completely continuous operator in L2.X/.

Proof Using the Cauchy–Schwarz inequality and applying Tonelli’s theorem
(p. 228), the following estimate holds for all f 2 L2.X/:

Z

X

ˇ
ˇ
ˇ

Z

X
a.t; s/f .s/ ds

ˇ
ˇ
ˇ
2

dt �
Z

X

�Z

X
ja.t; s/j2 ds

�
�
�Z

X
jf .s/j2 ds

�
dt

D kak22 � kf k22 :

Hence A is a continuous operator on L2.X/, and kAk � kak2.13

To prove the compactness, in view of Proposition 2.37 (p. 101), it is sufficient
construct a sequence .An/ of continuous operators of finite rank on L2.X/, satisfying
kA � Ank ! 0.

12Hilbert [209], Schmidt [415].
13We even have equality here.
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Applying Proposition 9.3 we choose a sequence .an/ of step functions satisfying
an ! a in L2.X � X/, and we define

.Anf /.t/ WD
Z

X
an.t; s/f .s/ ds; f 2 L2.X/; t 2 X:

Repeating the above estimates with an and a � an instead of a, we obtain that the
operators An are continuous in L2.X/, and that

kA � Ank � ka � ank2 ! 0:

It remains to show that each An has a finite rank. For this we observe that, by the
definition of the product measure, each step function an on X � X is of the form

an.t; s/ D
NX

iD1
�Ji.t/ � �Ki .s/

with some sets Ji;Ki 2 M of finite measure, and hence the range of An is generated
by the N functions �K1 ; : : : ; �KN . ut

The rest of this section is devoted to the study of some important special cases.
Let I be an open interval and w W I ! R a nonnegative measurable function
with respect to the usual Lebesgue measure. Assume that w is integrable on every
compact subinterval of I,14 and denote by P the semiring of bounded intervals
whose closures are in I. Then the formula �.J/ WD R

J w dt defines a finite measure
on P . Consider the corresponding integral, and denote by Lp

w the corresponding Lp

spaces.
For w D 1 this reduces to the usual Lp.I/ spaces.
We denote by Cc.I/ the vector space of continuous functions g W I ! R that

vanish outside some compact subinterval of I, i.e., vanish in some neighborhood of
the endpoints of I.15

Proposition 9.5 Let 1 � p < 1.

(a) Lp
w is separable.

(b) Cc.I/ is dense in Lp
w.16

(c) If I is bounded and w is integrable on I, then the algebraic polynomials are
dense in Lp

w.
(d) If jIj � 2� and w is integrable in I, then the trigonometric polynomials are

dense in Lp
w.

14We say in such cases that w is locally integrable.
15The compact subinterval may depend on g.
16Moreover, the proof will show that for each f 2 Lp

w there exists a function h 2 Lp
w and a sequence

.'n/ � Cc.I/ satisfying the relations (9.1) of Proposition 9.3.
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Fig. 9.1 Graph of gn

1

a ba + 1
n b −− 1

n−

Proof We denote by k�kp the norm of Lp
w.

(a) By Proposition 9.3 the characteristic functions of the intervals in P generate
Lp

w. If we consider only the intervals with rational endpoints, then we obtain
countably many functions that still generates Lp

w.
(b) By Proposition 9.3 it is sufficient to find for each fixed compact interval J D

Œa; b� � I a sequence of functions .gn/ � Cc.I/ converging to �J in Lp
w. The

formulas

gn.t/ WD

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

0 if t � a,

n.t � a/ if a � t � a C n�1,
1 if a C n�1 � t � b � n�1,
n.b � t/ if b � n�1 � t � b,

0 if t � b

for n > 2=.b � a/ yield such a sequence (see Fig. 9.1). Indeed,

k�J � gnkp
p D

Z b

a
j1 � gn.t/jp w.t/ dt ! 0

by the dominated convergence theorem, because gn ! 1 a.e. in Œa; b�,

0 � j1 � gnjp w � w

for all n, and w is integrable.



314 9 Spaces of Integrable Functions

(c) Given any f 2 Lp
w and " > 0, using (b) we choose g 2 Cc.I/ such that

kf � gkp < "=2. Then applying the first approximation theorem of Weierstrass
(p. 260) we choose a sequence .pn/ of polynomials satisfying kg � pnk1 ! 0.
Since

kf � pnkp � kf � gkp C kg � pnkp <
"

2
C kg � pnk1 � k1kp ;

we have kf � pnkp < " if n is large enough.
(d) Given any f 2 Lp

w and " > 0, using (b) we choose g 2 Cc.I/ again such
that kf � gkp < "=2. Since jIj � 2� , g may be extended to a 2�-periodic,
continuous function on R. Now applying the second approximation theorem of
Weierstrass (p. 264) we choose a sequence .hn/ of trigonometric polynomials
satisfying kg � hnk1 ! 0. Repeating the reasoning in (c) we obtain that
kf � hnkp < " if n is large enough. ut

*Remarks Let us consider the special case w D 1.

• By property (b) Lp.I/ may be considered as a completion of Cc.I/ with respect
to the norm k�kp.

• None of the four properties holds for L1.I/ in general. Indeed, each of (b), (c),
(d) would imply (a), i.e., the separability of L1.I/.

But L1.I/ is not separable, because it contains uncountably many pairwise
disjoint non-empty open sets. Indeed, the 2@0 open balls B1=2.�J/, where J runs
over the compact subintervals of I, are pairwise disjoint.17

• On the other hand, the four properties remain valid if we consider in L1.I/ the
weak star topology �.L1;L1/.18

Now we prove the completeness of several classical orthonormal sequences intro-
duced in Chap. 1. We recall the importance of this property for the corresponding
Fourier series.19

Consider the Hilbert space L2w with the scalar product .f ; g/ WD R
fgw dt. If

the functions t 7! tkw.t/ are integrable for all k D 0; 1; : : : ; then all algebraic
polynomials belong to L2w.20 Applying the Gram–Schmidt method (Proposition 1.15,
p. 28) to the sequence 1, id, id2, . . . we obtain an orthonormal sequence .Pk/ of
polynomials in L2w such that deg pk D k for every k.

Corollary 9.6

(a) If I is bounded and w is integrable on I, then .Pk/ is an orthonormal basis of
L2w.

17Compare this proof with that of the non-separability of `1, p. 74.
18Use the remark following the statement of Proposition 9.3.
19See Proposition 1.13, p. 25.
20This happens, for example, if I is bounded and w is integrable on I.



9.1 Lp Spaces, 1 � p � 1 315

(b) If I is an interval of length 2� , then the trigonometric system:

e0 D 1p
2�

and e2k�1 D sin ktp
�
; e2k D cos ktp

�
; k D 1; 2; : : :

is an orthonormal basis of L2.I/.
(c) The functions

r
2

�
sin kx; k D 1; 2; : : :

form an orthonormal basis of L2.0; �/.
(d) The functions

r
1

�
and

r
2

�
cos kx; k D 1; 2; : : :

form an orthonormal basis of L2.0; �/.

Proof The orthonormality of the functions in (b), (c), (d) may be verified by a
straightforward computation.21

(a) and (b) follow from parts (c), (d) of the preceding proposition and from
Proposition 1.14 (p. 27).

(c) It suffices to show that if h 2 L2.0; �/ is orthogonal to the functions sin kt for
all k D 1; 2; : : : ; then h D 0. Extending h to an odd function on .��; �/, we obtain
a function H 2 L2.��; �/ that is orthogonal to the whole trigonometric system.
Using (b) we conclude that H D 0 on .��; �/, and hence h D 0 on .0; �/.

(d) It suffices to show that if h 2 L2.0; �/ is orthogonal to the functions cos kt for
all k D 0; 1; : : : ; then h D 0. Extending h to an even function on .��; �/, we obtain
a function H 2 L2.��; �/ that is orthogonal to the whole trigonometric system.
Using (b) we conclude that H D 0 on .��; �/, and hence h D 0 on .0; �/. ut
*Remarks

• Without the additional hypotheses in (a) the orthonormal sequence .Pk/ may be
incomplete.22

However, the Laguerre and Hermite polynomials, that occur in many applica-
tions, are complete, although they are defined on the unbounded intervals .0;1/

and R.23

21This has already been noted on p. 24.
22A counterexample was given by Stieltjes [435].
23Steklov [434]. See Kolmogorov–Fomin 1981. See also a proof of von Neumann in: Courant–
Hilbert [91] or Szegő [446].
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• Since convergence in L2 spaces does not imply a.e. convergence in general,
Proposition 1.14 (p. 27) does not imply the a.e. convergence of Fourier series.

Nevertheless, Carleson proved that the trigonometric Fourier series of every
function f 2 L2.I/ converges to f a.e.24

• Applying an equiconvergence theorem of Haar,25 the a.e. convergence also holds
for the Fourier series associated with the Legendre polynomials.26

9.2 * Compact Sets

In this section we characterize the compact sets in Lp for the usual Lebesgue measure
inR. As in Proposition 8.7 (p. 268), it is sufficient to characterize the totally bounded
sets.

Proposition 9.7 (Kolmogorov–Riesz)27 Let 1 � p < 1. A bounded set F � Lp.R/

is totally bounded ” the following two conditions are satisfied:

sup
f 2F

Z

jtj>R
jf .t/jp dt ! 0 as R ! 1;

and

sup
f 2F

Z 1

�1
jf .t/ � f .t C h/jp dt ! 0 as h ! 0:

We introduce for commodity the translated functions fh.t/ WD f .t C h/, and we
rewrite the conditions in the equivalent forms

sup
f 2F

kf kLp.RnŒ�R;R�/ ! 0 as R ! 1 (9.2)

and

sup
f 2F

kf � fhkp ! 0 as h ! 0: (9.3)

24Carleson [78]. His theorem was generalized to f 2 Lp.I/ with p > 1 by Hunt [220].
25Haar [177]. The result remains valid for all classical orthogonal polynomials: see Joó–Komornik
[228], Komornik [255–257]. Other equiconvergence theorems have already been obtained by
Liouville in [306].
26The Legendre polynomials are the orthogonal polynomials associated with the constant weight
function w D 1.
27Kolmogorov [251], Riesz [388]. See also Hanche-Olsen and Holden [189] for a survey and
historical comments.
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Proof of the Necessity

First step. If f 2 Lp and 1 � p < 1, then

kf kLp.RnŒ�R;R�/ ! 0 as R ! 1;

and

kf � fhkp ! 0 as h ! 0:

For the proof we set

gn.t/ WD
(

jf .t/jp if jtj > n,

0 if jtj � n.

These functions are integrable, jgnj � jf jp, and gn ! 0 a.e. Applying the
dominated convergence theorem it follows that

0 �
Z

jtj>R
jf .t/jp dt �

Z 1

�1
gŒR�.t/ dt ! 0

as R ! 1. (Here ŒR� stands for the integer part of R.) This proves the first
relation.
The second relation is obvious if f is the characteristic function of some bounded
interval. By the triangle inequality the relation holds for all step functions as well.
Finally, given any f 2 Lp and " > 0, we choose a step function ' satisfying
kf � 'kp < ". Then we also have kfh � 'hkp < " for all h. If h is sufficiently
close to zero, then k' � 'hkp < ", and therefore

kf � fhkp � kf � 'kp C k' � 'hkp C k'h � fhkp < 3":

Second step. If F is totally bounded, then for each fixed " > 0 it can be covered
by finitely many balls of radius ". Let us denote by f1; : : : ; fm the centers of these
balls.
By the first step there exists R > 0 and ı > 0 such that

kfikLp.RnŒ�R;R�/ < "

and

kfi � fi;hkp < " if jhj < ı

for i D 1; : : : ;m.
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Each f 2 F belongs to one of the balls B".fi/, so that

kf kLp.RnŒ�R;R�/ � kf � fikLp.RnŒ�R;R�/ C kfikLp.RnŒ�R;R�/ < 2"

and

kf � fhkp � kf � fikp C kfi � fi;hkp C kfi;h � fhkp < 3"

if jhj < ı. ut
Proof of the Sufficiency

First step. Applying Steklov’s regularization method28 we reduce the problem to
the case of continuous functions. Setting

.Srf /.t/ WD 1

r

Z r

0

f .t C s/ ds; f 2 Lp; r > 0;

first we establish the following estimates:

kSrf k1 � r�1=p kf kp I (9.4)

j.Srf /.t/ � .Srf /.t C h/j � r�1=p kf � fhkp (9.5)

for all t 2 R;

kf � Srf kp � sup
0<h�r

kf � fhkp : (9.6)

The first estimate is obtained by applying Hölder’s inequality:

j.Srf /.t/j � r�1
Z r

0

jf .t C s/j ds � r�1=p kf kLp.t;tCr/ � r�1=p kf kp

for all t 2 R.
Applying (9.4) to f � fh instead of f we get (9.5).
Finally, we have

j.f � Srf /.t/j D
ˇ
ˇ
ˇr�1

Z r

0

f .t/ � f .t C s/ ds
ˇ
ˇ
ˇ

� r�1=p
�Z r

0

jf .t/ � f .t C s/jp ds
�1=p

28Steklov [433].
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for each t, and hence (9.6) follows:

Z 1

�1
j.f � Srf /.t/jp dt � r�1

Z 1

�1

Z r

0

jf .t/ � f .t C s/jp ds dt

D r�1
Z r

0

Z 1

�1
jf .t/ � f .t C s/jp dt ds

� sup
0<h�r

kf � fhkp
p :

Second step. For any fixed " > 0, we will cover F with finitely many balls of
radius � 3".
Applying (9.2) we choose R > 0 such that

kf kLp.RnŒ�R;R�/ < " for all f 2 F :

Furthermore, using (9.3) and (9.6) we choose r > 0 such that

kf � Srf kp < " for all f 2 F :

Since F is bounded, by (9.4) and (9.5) the function system fSrf W f 2 Fg is
uniformly bounded and equicontinuous. Applying the Arzelà–Ascoli theorem
(p. 268) on the interval Œ�R;R�, we obtain a finite number of continuous functions
g1; : : : ; gm such that each f 2 F satisfies for some index i the inequalities

jSrf � gij � .2R/�1=p" in Œ�R;R�: (9.7)

Extending the functions gi by zero to R, we obtain f1; : : : ; fm 2 Lp. To conclude
we show that kf � fikp < 3" for every f 2 F , where the index i is the same as
in (9.7).
For the proof we use the triangle inequality, the definition of R and r, and finally
the choice of i:

kf � fikp D kf kLp.RnŒ�R;R�/ C kf � gikLp.�R;R/

< "C kf � Srf kLp.�R;R/ C kSrf � gikLp.�R;R/

< 2"C .2R/1=p kSrf � gikL1.�R;R/

� 3": ut
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9.3 * Convolution

We have encountered integrals of the form

Z

f .s/g.t � s/ ds

many times: in the methods of Landau and de la Vallée-Poussin, in the closed
forms of the Dirichlet and Fejér kernels in the preceding chapter, and in the Steklov
functions in the preceding section.

Such integrals often occur in the theory of partial differential equations and in
harmonic analysis to prove density theorems.29

In this section we give only one basic result.30

Proposition 9.8 Let 1 � p; q; r � 1 satisfy the equality

1

p
C 1

q
D 1

r
C 1;

and let f 2 Lp.RN/, g 2 Lq.RN/.
The formula

.f � g/.x/ WD
Z

f .x � y/g.y/ dy

defines a function f � g 2 Lr.RN/, and

kf � gkr � kf kp � kgkq :

If f vanishes outside A and g vanishes outside B, then f � g vanishes outside

A C B WD ˚
a C b 2 R

N W a 2 A and b 2 B
�
:

Definition The function f � g is called the convolution of f and g.31

Remarks

• The definition shows that the convolution is commutative: f � g D g � f .

29The latter applications are based on the celebrated Haar measure (Haar [178]), a natural
generalization of the usual Lebesgue measure to topological groups.
30There are many more results and applications in Brezis [65], Hörmander [218, 219], Katznelson
[245], Pontryagin [364], Rudin [402, 405, 406], Schwartz [420], Weil [485].
31Fourier [148].



9.3 * Convolution 321

• It follows by induction on k that if

f1 2 Lp1 .RN/; : : : ; fk 2 Lpk .RN/

for some k � 2, where 1 � p1; : : : ; pk; r � 1 satisfy the equality

1

p1
C � � � C 1

pk
D 1

r
C k � 1;

then

g WD f1 � .� � � � fk/ � � � / 2 Lr.RN/

and

kgkr � kf1kp1 � � � kfkkpk
:

Moreover, the associativity relation .f � g/ � h D f � .g � h/ holds, so that we
may remove the parentheses in the definition of g.

The condition on the exponents is equivalent to the simpler relation

1

p0
1

C � � � C 1

p0
k

D 1

r0

where we use the conjugate exponents.

Proof We proceed in several steps.

(i) If the step functions 'n;  n converge a.e. to f and g, respectively in R, then the
step functions 'n.x�y/ n.y/ converge a.e. to f .x�y/g.y/ in R

2; the verification
is left to the reader. Hence the function .x; y/ 7! f .x � y/g.y/ is measurable.

(ii) The case r D 1 of the theorem readily follows from Hölder’s inequality.
Henceforth we assume that r < 1. Since p � r and q � r, then p and q are
also finite.

(iii) If f and g are nonnegative and integrable, then applying Tonelli’s theorem we
obtain that

Z

.f � g/.x/ dx D
Z �Z

f .x � y/g.y/ dy
�

dx

D
Z �Z

f .x � y/g.y/ dx
�

dy

D
Z �Z

f .x � y/ dx
�

g.y/ dy

D kf k1 � kgk1 < 1:
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Hence f � g 2 L1.RN/, and

kf � gk1 D kf k1 � kgk1 : (9.8)

(iv) Turning to the general case (f 2 Lp, g 2 Lq, r < 1), first we prove the
following inequality:

.jf j � jgj/r � kf kr�p
p � kgkr�q

q � �jf jp � jgjq	 a.e. (9.9)

Introducing the conjugates p0 and q0 of p and q, we have

1

p0 C 1

q0 C 1

r
D 1:

Since

1 � p

r
D p

�1

p
� 1

r

�
D p

�
1 � 1

q

�
D p

q0

and

1 � q

r
D q

�1

q
� 1

r

�
D q

�
1 � 1

p

�
D q

p0 ;

the following equality holds a.e.:

jf .x � y/g.y/j D �jf .x � y/jp	1=q0�jg.y/jq	1=p0�jf .x � y/jp jg.y/jq	1=r
:

Integrating with respect to y, applying Hölder’s inequality and using (iii) we
obtain

�jf j � jgj	.x/ � kf kp=q0

p � kgkq=p0

q � ˇˇ�jf jp � jgjq	.x/ˇˇ1=r
;

or equivalently

ˇ
ˇ
�jf j � jgj	.x/ˇˇr � kf krp=q0

p � kgkrq=p0

q � �jf jp � jgjq	.x/:

We conclude by observing that rp=q0 D r � p and rq=p0 D r � q.
(v) The right-hand side of (9.9) is integrable by (iii). Hence jf j� jgj 2 Lr.RN/, i.e.,

Z �Z

jf .x � y/g.y/j dy
�r

dx < 1:
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Applying this to the positive and negative parts of f and g we conclude that the
four functions

y 7! f˙.x � y/g˙.y/

are integrable for a.e. x. Hence their linear combination

y 7! f .x � y/g.y/

is also (measurable and) integrable for a.e. x. Therefore f � g is well defined
a.e.

Next, applying (9.8) and (9.9) we obtain the following estimate:

Z

j.f � g/.x/jr dx D
Z ˇ
ˇ
ˇ

Z

f .x � y/g.y/ dy
ˇ
ˇ
ˇ
r

dx

�
Z �Z

jf .x � y/g.y/j dy
�r

dx

D kjf j � jgjkr
r

� kf kr�p
p � kgkr�q

q � kjf jp � jgjqk1
D kf kr

p � kgkr
q :

Hence f � g 2 Lr.RN/ and kf � gkr � kf kp � kgkq.
(vi) If .f � g/.x/ is defined for some x … A C B, then x � y … A for all y 2 B.

Consequently, f .x � y/g.y/ D 0 for a.e. y 2 R
N , whence .f � g/.x/ D 0. ut

9.4 Uniformly Convex Spaces

The parallelogram identity is an important property of Euclidean spaces. For 1 <
p < 1 the Lp spaces have a weaker, but still useful property:

Definition A normed space X is uniformly convex32 if for each " > 0 there exists a
ı > 0 such that if two vectors x; y 2 X satisfy the inequalities

kxk � 1; kyk � 1 and kx C yk > 2 � ı;

32Clarkson [89].
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Fig. 9.2 Uniform convexity

x

y

x + y

then

kx � yk < ":

(See Fig. 9.2.)

It follows from the definition that every uniformly convex space is strictly convex
(see p. 67).

Examples • Every Euclidean space is uniformly convex. Indeed, since

kx � yk2 D 2 kxk2 C 2 kyk2 � kx C yk2 < 4� .2 � ı/2 < 4ı;

we may choose ı WD "2=4 for each ".
• The space `1 is not uniformly convex, because

ke1k D ke2k D 1 and ke1 C e2k D ke1 � e2k D 2;

so that for " < 2 there is no suitable ı > 0.
• The space `1 is not uniformly convex either, because the vectors x WD e1 C e2

and y WD e1 � e2 satisfy

kxk D kyk D 1 and kx C yk D kx � yk D 2;

so that for " < 2 there is no suitable ı > 0.
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On the other hand, `p is uniformly convex if 1 < p < 1. More generally:

Proposition 9.9 Let .X;M; �/ be an arbitrary measure space and 1 < p < 1.
Then Lp.X;M; �/ is uniformly convex.33

Proof

First step. If x and y are distinct real numbers, then

ˇ
ˇ
ˇ
x C y

2

ˇ
ˇ
ˇ
p
<

jxjp C jyjp

2

by the strict convexity of the function t 7! jtjp.
Second step. For each " 2 .0; 21�p� we denote by % D %."/ the minimum of the
function

jxjp C jyjp

2
�
ˇ
ˇ
ˇ
x C y

2

ˇ
ˇ
ˇ
p

on the non-empty34 compact set

n
.x; y/ 2 R

2 W jxjp C jyjp D 2 and
ˇ
ˇ
ˇ
x � y

2

ˇ
ˇ
ˇ
p � "

o
:

By the preceding step we have % > 0. By homogeneity it follows that if x; y 2 R

satisfy the inequality

ˇ
ˇ
ˇ
x � y

2

ˇ
ˇ
ˇ
p � "

jxjp C jyjp

2
;

then

%
jxjp C jyjp

2
� jxjp C jyjp

2
�
ˇ
ˇ
ˇ
x C y

2

ˇ
ˇ
ˇ
p
:

Third step. For any given " > 0 we have to find ı > 0 such that if two functions
f ; g 2 Lp satisfy the inequalities

Z

jf jp dx � 1;

Z

jgjp dx � 1 and
Z ˇ
ˇ
ˇ
f C g

2

ˇ
ˇ
ˇ
p

dx > 1 � ı;

33Clarkson [89]. The proof given here is due to McShane [320].
34.21=p; 0/ belongs to the set.
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then
Z ˇ
ˇ
ˇ
f � g

2

ˇ
ˇ
ˇ
p

dx < 2":

We may assume that " 2 .0; 21�p�. Setting

M WD
nˇ
ˇ
ˇ
f � g

2

ˇ
ˇ
ˇ
p � "

jf jp C jgjp

2

o
;

applying the convexity of the function t 7! jtjp, and using the preceding step we
obtain the following estimate:

Z

X

ˇ
ˇ
ˇ
f � g

2

ˇ
ˇ
ˇ
p

dx

D
Z

XnM

ˇ
ˇ
ˇ
f � g

2

ˇ
ˇ
ˇ
p

dx C
Z

M

ˇ
ˇ
ˇ
f � g

2

ˇ
ˇ
ˇ
p

dx

� "

Z

XnM

jf jp C jgjp

2
dx C

Z

M

jf jp C jgjp

2
dx

� "

Z

XnM

jf jp C jgjp

2
dx C 1

%

Z

M

� jf jp C jgjp

2
�
ˇ
ˇ
ˇ
f C g

2

ˇ
ˇ
ˇ
p�

dx

� "

Z

X

jf jp C jgjp

2
dx C 1

%

Z

X

� jf jp C jgjp

2
�
ˇ
ˇ
ˇ
f C g

2

ˇ
ˇ
ˇ
p�

dx

� "C 1

%
� 1 � ı

%

D "C ı

%
:

We conclude by choosing ı < "%. ut
The following variant of the orthogonal projection (p. 12) is valid in all uniformly

convex Banach spaces:

Proposition 9.10 (Sz.-Nagy)35 Let K be a non-empty convex closed set in a
uniformly convex Banach space X. For each x 2 X there exists in K a unique closest
point y to x.

35Sz.-Nagy [447].
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Proof

Existence. The result is obvious if x 2 K. Henceforth we assume that x … K, and
we choose a minimizing sequence: .yn/ � K, and

kx � ynk ! d WD dist.x;K/:

Setting

tn WD 1= kx � ynk and zn WD tn.x � yn/;

we have kznk D 1 for every n. Furthermore, applying the convexity of K and the
definition of d we obtain the following relation:

kzn C zmk D ktn.x � yn/C tm.x � ym/k

D .tn C tm/
�
�
�x �

� tn
tn C tm

yn C tm
tn C tm

ym

��
�
�

� .tn C tm/d

! 2:

By the uniform convexity this implies that .zn/ is a Cauchy sequence; since,
moreover, X is complete, it converges to some point z 2 X. Consequently,

yn D x � zn

tn
! x � dz DW y:

Hence y 2 K because K is closed, and kx � yk D lim kx � ynk D d.
Uniqueness. If y; y0 2 K and kx � yk D kx � y0k D d, then the formulas y2n�1 WD
y and y2n WD y0, n D 1; 2; : : : define a minimizing sequence. This sequence is
convergent by the preceding step, but this is possible only if y D y0. ut

*Examples The spaces L1 and L1 do not always have the property of the last
proposition, so they are not uniformly convex.

• Consider in X D L1.�1; 1/ the closed subspace M formed by the functions
having integral zero, and the constant function g D 1. If f 2 M, then

kg � f k1 D
Z 1

�1
j1 � f .t/j dt �

Z 1

�1
1 � f .t/ dt D 2;

with equality for all f 2 M satisfying f � 1. Therefore the distance dist.g;M/ D
2 is attained at infinitely many points.
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• Consider in X D L1.�1; 1/ the closed subspace M formed by the functions
vanishing a.e. on Œ�1; 0�, and the constant function g D 1. We have

kg � f k1 � kg � f kL1.�1;0/ D 1

for all f 2 M, with equality whenever 0 � f � 2. Therefore the distance
dist.g;M/ D 2 is attained at infinitely many points.

In uniformly convex spaces we may complete Proposition 2.22 (p. 80) on the
relation between strong and weak convergence:

*Proposition 9.11 (Radon–Riesz)36 In uniformly convex spaces we have

xn ! x ” xn * x and kxnk ! kxk :

Proof The implication H) holds in all normed spaces by Proposition 2.22 (p. 80).
The converse implication is obvious if x D 0. Assume henceforth that kxk > 0,

then kxnk > 0 for all sufficiently large n. The assumptions xn * x and kxnk ! kxk
imply that

xn

kxnk C x

kxk * 2
x

kxk :

Since the norm of the limit is equal to 2,

lim inf
�
�
�

xn

kxnk C x

kxk
�
�
� � 2

by Proposition 2.22 (f).37

By the definition of uniform convexity this implies that

�
�
�

xn

kxnk � x

kxk
�
�
� ! 0:

Consequently,

xn D kxnk � xn

kxnk ! kxk � x

kxk D x: ut

36Hildebrandt [210] (`p), Radon [366] (p. 1358: Lp), Riesz [382] (pp. 58–59: `p), Riesz [385]
(simple proof for Lp).
37In fact, the left-hand norm converges to 2.
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*Remarks

• We recall (p. 83) that the equivalence fails, for example, in c0 and `1.
• We also recall that `1, although not uniformly convex, has the Radon–Riesz

property: see Proposition 2.26, p. 84.
• The preceding example is an exception: we will soon show (p. 338) that

L1.��; �/ does not have the Radon–Riesz property.
• By a theorem of Kadec38 every separable Banach space has an equivalent norm

having the Radon–Riesz property.

9.5 Reflexivity

Unlike the spaces C.K/, most Lp spaces are reflexive:

Proposition 9.12 (Clarkson)39 For any given measure space .X;M; �/,
Lp.X;M; �/ is reflexive for all 1 < p < 1.

In view of Proposition 9.9 it suffices to establish the following result:

Proposition 9.13 (Milman–Pettis)40 Every uniformly convex Banach space is
reflexive.

*Remark This result clarifies the relationship between Proposition 2.31 (c) and
Proposition 9.10 (pp. 91 and 326) on the distance from closed convex sets.

Proof 41 Consider the canonical isometry J W X ! X00 of Proposition 2.28 (p. 87).
Since J is homogeneous, it is sufficient to show that if ˆ 2 X00 and kˆk D 1, then
there exists an x 2 X satisfying Jx D ˆ.

Denote the closed unit balls of X and X00 by B and B00. By Goldstein’s theorem
(p. 139) there exists a net .xn/ in B such that J.xn/ ! ˆ in the topology �.X00;X0/.
It follows that the “doubled” net converges to 2ˆ:

J.xm C xn/ D J.xm/C J.xn/ ! 2ˆ:

Consequently,

kxm C xnk ! k2ˆk D 2:

38Kadec [234–236]. See also Bessaga–Pelczýnski [40].
39Clarkson [89].
40Milman [322], Pettis [358].
41We follow Lindenstrauss–Tzafriri [303, p. 61]. See, e.g., Brezis [65] for a proof without using
nets.
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Indeed, in the contrary case there would exist a subnet belonging to the ball ˛B00
for some 0 < ˛ < 2. This ball would be compact by the Banach–Alaoglu theorem
(p. 139), and hence closed in the Hausdorff topology �.X00;X0/. This would imply
k2ˆk � ˛ < 2, contradicting the choice of ˆ.

Since X is uniformly convex, the relation kxm C xnk ! 2 implies that .xn/ is
a Cauchy net in X. Since X is complete, it converges to some point x 2 X. Then
J.xn/ ! J.x/ in �.X00;X0/ by the definition of this topology. But we also have
J.xn/ ! ˆ, so that ˆ D J.x/ by the uniqueness of the limit. ut

The spaces L1 and L1 are not reflexive in general:

*Examples • We have seen several proofs of the non-reflexivity of C.Œ0; 1�/ in the
preceding chapter. Since it is a closed subspace of L1.0; 1/, by Proposition 3.23
(p. 143) L1.0; 1/ cannot be reflexive either.

• The space L1.0; 1/ is not reflexive, because there exist linear functionals ' 2
.L1.0; 1//0 whose norms are not attained.42 For example, let

'.f / WD
Z 1

0

tf .t/ dt; f 2 L1.0; 1/:

The inequalities

j'.f /j �
Z 1

0

t jf .t/j dt �
Z 1

0

jf .t/j dt D kf k1 (9.10)

imply that k'k � 1. Furthermore, the functions (see Fig. 9.3)

fn WD n�Œ1�n�1;1�

have unit norm in L1.0; 1/, and j'.fn/j ! 1, so that k'k D 1.
But this norm is not attained, because the second inequality in (9.10) is strict

for every non-zero function.
• The non-reflexivity of L1.X;M; �/ for most measure spaces also follows from

the existence of bounded sequences with no weakly converging subsequences.
(See Theorem 2.30, p. 90.)

More precisely, if there exists a disjoint set sequence .An/ such that 0 <

�.An/ < 1 for all n, then the functions fn WD �.An/
�1�An form a bounded

sequence having no weakly converging subsequences.

42See Proposition 2.1, p. 55.
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Fig. 9.3 Graph of n�Œ1�n�1;1�

1n−1
n

n

Indeed, for any given subsequence .fnk/ consider the linear functional defined
by the formula

'.f / WD
1X

kD1
.�1/k

Z

Ank

f d�:

Then the numerical sequence .'.fnk// D ..�1/k/ is divergent.
We return to the question of reflexivity at the end of the next section.

9.6 Duals of Lp Spaces

In this section we generalize the relations .`p/0 D `q of Proposition 2.15, p. 73). If
p; q 2 Œ1;1� are conjugate exponents, then the formula

.jg/.f / WD
Z

X
fg d�

defines a continuous linear functional on Lp for each g 2 Lq.
Indeed, the integrals are well defined by Hölder’s inequality, and

j.jg/.f /j � kgkq � kf kp :

Since jg is clearly linear, hence

jg 2 .Lp/0 and kjgk � kgkq :
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This computation also shows that j W Lq ! .Lp/0 is a continuous linear map of norm
� 1.

Theorem 9.14 Let .X;M; �/ be an arbitrary measure space, and p; q 2 Œ1;1�

two conjugate exponents.

(a) The linear map j W Lq ! .Lp/0 is an isometry.43

(b) (Riesz)44 If 1 < p < 1, then j W Lq ! .Lp/0 is an isometric isomorphism.
(c) (Steinhaus)45 If � is strongly �-finite, then j W L1 ! .L1/0 is an isometric

isomorphism.

Proof

(a) It remains only to prove the inequality kjgk � kgkq.46 We may therefore
assume that kgkq > 0.

If 1 < p < 1, then the function

f WD jgjq�1 sign g

satisfies the equalities

kf kp
p D

Z

jf jp d� D
Z

jgjp.q�1/ d� D
Z

jgjq d� D kgkq
q D kgkp.q�1/

q :

Hence

f 2 Lp; kf kp D kgkq�1
q > 0;

and

.jg/.f / D
Z

jgjq d� D kgkq
q D kgkq � kf kp :

Since kf kp > 0, we conclude that kjgk � kgkq.
If p D 1, then setting f WD sign g 2 L1 we have

kgk1 D
Z

jgj d� D .jg/.f / � kjgk � kf k1 D kjgk :

43In the case p D 1 it is essential for the existence of B that the functions in L1 are measurable by
our definition, and not only locally measurable. It is instructive to consider on an uncountable set
X the measure � that is equal to zero on countable sets, and equal to 1 otherwise. This is another
reason in favour of the constructive measurability definition adopted in this book.
44Riesz [380] for X D Œ0; 1�, Nikodým [343], McShane [320].
45Steinhaus [432] for X D Œ0; 1�, Dunford [116].
46See also a direct proof for X D R in Riesz and Sz.-Nagy [394].
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Finally, if p D 1, then for any fixed number 0 < c < kgk1 the set

A WD fx 2 X W jg.x/j � cg

has a positive measure. Applying Lemma 7.5 (p. 220) there exists a B � A
satisfying 0 < �.B/ < 1. Then f WD �B sign g 2 L1, and

c�.B/ �
Z

fg d� D .jg/.f / � kjgk � kf k1 D kjgk � �.B/:

Hence c � kjgk for all c < kgk1, so that kgk1 � kjgk.
(b) We have to prove that j is onto. Since j is an isometry and Lq is complete, the

range R.j/ of j is a closed subspace of .Lp/0. It remains to show that it is dense
in .Lp/0.

By Corollary 2.9 (p. 64) it suffices to show that if ˆ 2 .Lp/00 is orthogonal
to R.j/ � .Lp/0, then ˆ D 0. Since Lp is reflexive, identifying .Lp/00 with Lp

this is equivalent to the following property: if f 2 Lp and
R

fg d� D 0 every
g 2 Lq, then f D 0.

Setting

g WD jf jp�1 sign f

and repeating the computation of (a), reversing the role of p and q, we obtain
that

g 2 Lq and 0 D
Z

fg d� D
Z

jf jp d�:

Hence f D 0 a.e.
* (c) Given ' 2 .L1/0 we have to find g 2 L1 satisfying

'.f / D
Z

X
fg d� (9.11)

for all f 2 L1.47

First we assume that �.X/ < 1. Then the formula

.A/ WD '.�A/

defines a set function on M. It is finitely additive by the linearity of '.
Moreover, it is �-additive. Indeed, if A D [�An with A;An 2 M, thenP
�An D �A in L1 by Corollary 5.9 (p. 180). Using the continuity of ' 2 .L1/0

47The following reasoning may be adapted for 1 < p < 1 as well: see Dunford–Schwartz [117].
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we conclude that

.A/ D '.�A/ D
X

'.�An/ D
X

.An/:

Observe that   �. Indeed, if �.A/ D 0, then �A D 0 a.e., and hence

.A/ D '.�A/ D 0:

Applying the Radon–Nikodým theorem (p. 240) there exists a measurable
function g such that

.A/ D
Z

A
g d� (9.12)

for every set A of finite measure.
We show that g 2 L1. Given any number 0 < c < kgk1, at least one of

the two sets

fx 2 X W g.x/ � cg and fx 2 X W �g.x/ � cg

has a positive measure, and then (as in the proof of (a)) it contains a set
B of finite positive measure. If for example g � c on B (the other case is
analogous), then

c�.B/ �
Z

B
g d� D .B/ D '.�B/ � k'k � k�Bk1 D k'k � �.B/:

Hence c � k'k for all c < kgk1, so that kgk1 � k'k .< 1/.
We deduce from (9.12) by linearity that (9.11) is satisfied for all step

functions f . Since they are dense in L1 by Proposition 5.14 (p. 185), by
continuity (9.11) holds for all f 2 L1, too.

In the general case there exists a finite or countable disjoint sequence .Pn/

such that 0 < �.Pn/ < 1 for all n, and �.A/ D 0 for all A 2 M satisfying
A � X n [�Pn.48

Applying the preceding result for each Pn we obtain a function g 2 L1
vanishing outside [�Pn and satisfying (9.11) for the functions f D h�Pn ,
h 2 L1, n D 1; 2; : : : :

Using the dominated convergence theorem, the linearity and the continuity
of ', (9.11) follows again:

'.h/ D
X

'.h�Pn/ D
XZ

X
h�Png d� D

Z

X
hg d�: ut

48We use the strong � -additivity assumption.
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*Remarks

• Hildebrandt and Fichtenholz–Kantorovich characterized .L1/0.49

• The map j W L1 ! .L1/0 is onto only in degenerate cases, for example when �
is the counting measure on a finite set.

We have already seen (p. 79) that j W `1 ! .`1/0 is not onto.
The map j W L1.R/ ! L1.R/0 is not onto either because L1.R/ is not even

a dual space.50 This follows (similarly to the analogous result on c0 on p. 140)
from the theorems of Banach–Alaoglu and Krein–Milman, because the closed
unit ball of L1.R/ has no extremal points.

For the last property we show that if
R jf j dx D 1, then there exists a non-zero

function g 2 L1.R/ satisfying
R jf C tgj dx D 1 for all t 2 Œ�1; 1�.

For this we first choose a set A of finite positive measure and a number " > 0
such that f > " or f < �" on A. Then we choose any non-zero function g such
that

R
g dx D 0, g D 0 outside A, and jgj < " on A.

• Let us also give a direct proof of the non-surjectivity of the map j W L1.R/ !
L1.R/0. The Dirac functional, defined by the formula

ı.g/ WD g.0/; g 2 Cb.R/

is a continuous linear functional of norm one on Cb.R/. Applying the Helly–
Hahn–Banach theorem (p. 65) it can be extended to a continuous linear functional
on L1.R/. We claim that no function f 2 L1.R/ satisfies the equality

Z

fg dt D g.0/ (9.13)

for all g 2 Cb.R/.51

Assume on the contrary that there exists such a function f . The formula
gn.x/ WD min fn jxj ; 1g defines a sequence of functions in Cb.R/ satisfying
gn.0/ D 0, fgn ! f a.e., and jfgnj � jf j for all n. Applying the dominated
convergence theorem it follows that

Z

f dt D lim
Z

fgn dt D lim gn.0/ D 0:

But this is impossible because choosing g D 1 in (9.13) we get
R

f dt D 1.

49Hildebrandt [213, p. 875], Fichtenholz–Kantorovich [145, p. 76]. See also Dunford–Schwartz
[117], Kantorovich–Akilov [243].
50This property and the following proof remain valid for all measure spaces where each set A of
positive measure has a subset B satisfying 0 < �.B/ < �.A/.
51This is an important theorem in the theory of distributions, asserting that the Dirac functional is
not a regular distribution. See Schwartz [420].
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• In the preceding remark we have found a linear functional in L1.R/0 not
represented by any f 2 L1.R/. Since L1.R/0 D L1.R/00, this proves directly
the non-reflexivity of L1.R/.

• Since L1.R/0 D L1.R/, by Proposition 3.23 (p. 143) L1.R/ is not reflexive
either.

*Example We show that the strong �-finiteness assumption cannot be omitted in
Part (c).52

Consider the measure space .X;M; �/ and the measure  of the counterexample
on page 243.

Since  � �, we have

Z

jf j d �
Z

jf j d� D kf k1

for all f 2 L1, so that the formula

'.f / WD
Z

f d

defines an element ' of .L1/0.
We claim that ' is not represented by any (measurable or locally measurable)

function g 2 L1. Indeed, if we had

Z

f d D
Z

gf d�

for all f 2 L1, then (taking f D �A for A 2 M) g would be a (measurable or locally
measurable) Radon–Nikodým derivative of  with respect to �, contradicting our
results on pp. 243 and 251.

9.7 Weak and Weak Star Convergence

The purpose of this section is to characterize the weak and weak star convergence
of Lp spaces. Since all weakly convergent and weak star convergent sequences are
bounded by Propositions 2.24 and 3.18 (pp. 82 and 138), it is sufficient to consider
bounded sequences.

52See Schwartz [419] and Ellis–Snow [123] for the characterization of .L1/0 in the general case.
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Let p; q 2 Œ1;1� be conjugate exponents, and let us denote by �.Lp;Lq/ the
locally convex topology on Lp, defined by the family of seminorms

pg.f / WD
ˇ
ˇ
ˇ

Z

fg d�
ˇ
ˇ
ˇ; g 2 Lq:

If 1 < p < 1, then this is the weak topology of Lp. If our measure space is
strongly �-finite, then �.L1;L1/ is the weak topology of L1, and �.L1;L1/ is the
weak star topology of L1.

Proposition 9.15 Let .fn/ be a bounded sequence in Lp, and f 2 Lp.

(a) (Riesz)53 If 1 < p � 1, then fn ! f in �.Lp;Lq/ ”
Z

A
fn d� !

Z

A
f d� (9.14)

for each set A of finite measure.
(b) If p D 1, then fn ! f in �.L1;L1/ ” (9.14) holds for all measurable sets A.

*Remarks

• If 1 < p � 1, then using Proposition 9.3 (p. 310) the proof below shows that
it suffices to consider in (9.14) the sets A of the semiring at the origin of the
definition of the integral.

Consequently, for the usual Lebesgue measure on an interval I � R the
condition (9.14) is equivalent to the pointwise convergence Fn ! F, where Fn

and F are some primitives of fn and f that coincide at some fixed point of I.
• Let .In/ be a sequence of disjoint subintervals of an interval I D Œa; b� such that

jInj > 0 and In � .a; a C 2�n/ for every n. The formula

fn WD jI2n�1j�1 �I2n�1 � jI2nj�1 �I2n

defines a bounded sequence in L1.I/ satisfying the relation Fn ! F of the
preceding remark with F D f D 0.

But fn does not converge to f in �.L1;L1/ because (9.14) fails for A WD [I2n.
• The functions fn WD �Œn;nC1� in R show that it is not sufficient to consider sets of

finite measure in (9.14) when p D 1.

Proof of Proposition 9.15 Let us rewrite (9.14) in the form

Z

�Afn d� !
Z

�Af d�: (9.15)

53Riesz [380] (for finite p).
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If fn ! f in �.Lp;Lq/, then (9.15) is satisfied for all sets A with the indicated
properties because �A 2 Lq.

The converse implications hold because the characteristic functions �A of the
indicated sets A generate Lq in all cases by Proposition 9.3 (b), (c) (p. 310), and
because the functions g 2 Lq satisfying

R
gfn d� ! R

gf d� form a closed subspace
of Lq by the boundedness of the sequence .fn/ (see Lemma 2.25, p. 83). ut

We end this section by presenting a basic example of weak convergence. Given
a sequence .�n/ of real numbers, tending to infinity, we consider the functions

fn.t/ WD sin�nt and gn.t/ WD cos�nt:

*Proposition 9.16 (Riemann–Lebesgue)54 Given any conjugate exponents p; q 2
Œ1;1�, we have fn ! 0 and gn ! 0 in �.Lp;Lq/ on each bounded interval I.

Proof The sequences .fn/; .gn/ are bounded in L1 and hence in all spaces Lp.I/.
Since Lq � L1, it is sufficient to prove the convergences in the topology �.L1;L1/.

For any fixed point a 2 I, the primitives of the functions fn; gn vanishing at a
converge pointwise to zero, because

ˇ
ˇ
ˇ

Z x

a
sin�nt dt

ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
cos�na � cos�nx

�n

ˇ
ˇ
ˇ � 2

j�nj ! 0;

and a similar estimate holds for cos�nt as well. We conclude by applying the first
remark on the preceding page. ut
*Remark In the special case where jIj D 2� , p D 2 and �n D n, the proposition
follows from the Bessel inequality for the trigonometric system55: the Fourier
coefficients of each f 2 L2.I/ converge to zero.

*Example We recall56 that `1 has the Radon–Riesz property.
On the other hand, L1.��; �/ does not have this property. Indeed, the functions

hn.t/ WD 1 C sin nt converge weakly to h.t/ WD 1 in L1.��; �/ by the Riemann–
Lebesgue lemma. Furthermore,

khnk1 D
Z �

��
1C sin nt dt D 2� D khk1

54Riemann [371], Lebesgue [289, p. 473] and [293, p. 61]. See an interesting application of
Poincaré [363] to the distribution of small planets.
55Halphén [188].
56See the example preceding Proposition 2.26, p. 84.
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for every n. Nevertheless, hn does not converge strongly to h because

khn � hk1 D
Z �

��
jsin ntj dt D 4

for all n.

9.8 Exercises

In the first seven exercises we consider the Hilbert space H D L2.0; 1/ with the
scalar product .f ; g/ WD R 1

0 fg dt.

Exercise 9.1

(i) Show that every uniformly convergent sequence .xn/ � H also converges in H.
(ii) Set xn.t/ WD n2te�nt. Show that .xn/ converges pointwise to 0 but it does not

converge in H.
(iii) Construct a sequence of continuous functions converging in H but diverging at

each point.

Exercise 9.2 Consider the following sets in H:

(i) The set of functions x 2 H vanishing a.e. on some neighborhood of t D 1=2.57

(ii) The set of functions x 2 H with values in Œ�1; 1�.
Are they convex? Are they closed?

Exercise 9.3

(i) For each � 2 R we denote by M� the set of all continuous functions x 2 H
satisfying x.0/ D �. Show that the sets are convex, dense and disjoint.

(ii) Show that the set of polynomials P vanishing at 1 is convex and dense in H.

Exercise 9.4 Show that

M WD
n
f 2 L2.0; 1/ W

Z 1

0

f .t/ dt D 0
o

is a closed subspace of L2.0; 1/. Determine M?.

Exercise 9.5 The formula .Af /.t/ WD tf .t/ defines a continuous self-adjoint
operator on the Hilbert space H D L2.0; 1/ which has no eigenvalues.

Exercise 9.6 There is no translation invariant measure in L2.0; 1/ such that 0 <
�.A/ < 1 for all open balls.

57The neighborhood may depend on x.
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Exercise 9.7 There exists a continuous, injective function f W Œ0; 1� ! L2.0; 1/
such that the vectors f .b/ � f .a/ and f .d/� f .c/ are orthogonal whenever 0 � a <
b < c < d � 1. What is the geometric meaning of this property of the “curve” f ?

Exercise 9.8 (Haar System)58 Set

 .x/ WD

8
ˆ̂
<

ˆ̂
:

1 if 0 � x < 1=2,

�1 if 1=2 � x < 1,

0 otherwise,

and introduce the functions

 n;k.x/ WD 2n=2 .2nx � k/ ; x 2 R; n; k 2 Z:

Prove the following:

(i) The functions  n;k form an orthonormal basis in L2.R/.
(ii) The functions 1 and  n;k for n � 0 and 0 � k < 2n form an orthonormal basis

in L2.0; 1/.
(iii) Consider the orthonormal basis of (ii) by starting with 1 and then ordered

according to the lexicographic ordering of the pairs .n; k/. If f 2 C.Œ0; 1�/,
then its Fourier series converges uniformly to f .

Exercise 9.9 Consider the spaces Lp corresponding to a probability measure.

(i) Show that if 1 � p < q � 1, then Lq � Lp.
(ii) Show that if 1 � p < q � 1 and xk ! x in Lq, then xk ! x in Lp.

(iii) Investigate the validity of the equalities

[

q>p

Lq D Lp and
\

p<q

Lp D Lq:

Exercise 9.10 Consider the Lp spaces on a measure space.

(i) If there are no sets of arbitrarily small positive measure, then p < q H) Lp �
Lq.

(ii) If there are no sets of arbitrarily large measure, then p < q H) Lp � Lq.
(iii) Are the above conditions also necessary?

58Haar [176]. This is the first wavelet, in modern terminology; see, e.g., Strichartz [442].



Chapter 10
Almost Everywhere Convergence

A youth who had begun to read geometry with Euclid, when he had learnt the first
proposition, inquired, “What do I get by learning these things?” So Euclid called a slave and
said “Give him threepence, since he must make a gain out of what he learns”.—Stobaeus

There is no royal road to geometry.—Menaechmus to Alexander the Great1

We have seen in Part II the importance of a.e. convergence in integration theory.
The purpose of this last chapter of our book is to clarify its relationship to other
convergence notions.

As usual, we consider a measure space .X;M; �/, and we identify two functions
if they are equal a.e.

10.1 Lp Spaces, 1 � p � 1

First we compare the strong and a.e. convergences. We may generalize the theorems
of Lebesgue and Fatou (pp. 181 and 183):

Proposition 10.1 Let . fn/ be a bounded sequence in Lp, p 2 Œ1;1/, and assume
that fn ! f a.e.

(a) f 2 Lp, and k f kp � lim inf k fnkp :

(b) If there exists a g 2 Lp such that j fnj � g for all n, then k fn � f kp ! 0.
(c) If k fnkp ! k f kp, then k fn � f kp ! 0.2

Proof (a) We apply the Fatou lemma to the sequence of functions j fnjp.

1By other sources, Euclid to King Ptolemy.
2Radon [366, p. 1358], Riesz [385].
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(b) We apply Lebesgue’s convergence theorem to the sequence of functions
j fn � f jp. This is justified because

j fn � f jp � .j fnj C j f j/p � 2pgp;

and the function 2pgp is integrable by our assumption.
(c) Following Novinger3 we apply the Fatou lemma to the sequence of functions

j fnjp C j f jp

2
�
ˇ
ˇ
ˇ
fn � f

2

ˇ
ˇ
ˇ
p
;

converging a.e. to j f jp. (They are nonnegative by the convexity of the function
t 7! jtjp.) We obtain that

Z

j f jp d� � lim inf
Z j fnjp C j f jp

2
�
ˇ
ˇ
ˇ
fn � f

2

ˇ
ˇ
ˇ
p

d�

D
Z

j f jp d�� lim sup
Z ˇ
ˇ
ˇ
fn � f

2

ˇ
ˇ
ˇ
p

d�:

Hence lim sup k fn � f kp
p � 0, and therefore k fn � f kp ! 0.

ut
*Remarks

• Part (a) remains valid for p D 1 with a simple proof.
• The characteristic functions of the intervals Œn�1; 1� show that (b) and (c) fail in

L1.0; 1/.

Next we investigate the relations between the weak and a.e. convergences. As
usual we denote by q the conjugate exponent of p.

Proposition 10.2 Let . fn/ be a bounded sequence in Lp, p 2 .1;1�. If fn ! f a.e.,
then fn ! f in �.Lp;Lq/ as well.

Proof Since f 2 Lp by Proposition 10.1 (a), changing . fn/ to . fn�f /we may assume
that f D 0.

Let us introduce4 for N D 1; 2; : : : the sets

EN WD fx 2 X W j fn.x/j � 1 for all n � Ng

and

GN WD fg 2 Lq W g D 0 a.e. outside ENg :

3Novinger [345].
4See Lions [304].
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Since fn ! 0 a.e., almost every x 2 X belongs to [EN . Since, moreover, the set
sequence .EN/ is non-decreasing, [GN is dense Lq. Indeed, each g 2 Lq is the limit
in Lq of the sequence of functions �EN g 2 GN by Proposition 10.1 (b).

Now assume first that �.X/ < 1. Since . fn/ is bounded in Lp, and Lq � .Lp/0,
by Lemma 2.25 (p. 83) it is sufficient to show that

Z

fng d� ! 0 for each g 2 [GN :

The last relation follows by applying the dominated convergence theorem. Indeed,
if g 2 GN , then fng ! 0 a.e., j fngj � jgj for all n � N, and g 2 Lq � L1, because
�.X/ < 1.

In the general case we change GN to GN \ L1 in the above proof. We have to
show that GN \ L1 is dense in GN with respect to the topology of Lq. For this we
approximate each g 2 GN by a suitable sequence .'n/ of step functions (this is
possible by Proposition 9.3 (a), p. 310), and then we change 'n to 'n�EN . ut
*Remark The case p D 1 is different: if fn ! f a.e., then the weak and strong
convergences are the same: see Theorem 10.10 of Vitali–Hahn–Saks below, p. 357.

*Examples Consider the usual Lebesgue measure on X D Œ0; 1�.

• The nonnegative functions

fn.t/ WD ne�nt

converge a.e. to zero, and

0 �
Z

fn.t/ dt ! 1 ¤ 0 D
Z

0 dt:

Hence . fn/ is bounded in L1, but does not converge weakly to zero in L1. (See
Fig. 10.1.) Hence the proposition fails for p D 1.

• For any fixed p 2 .1;1/ the functions

fn.t/ WD n1=pe�nt

converge to f WD 0 a.e. Furthermore,

k fnkp
p D 1 � e�np

p
! 1

p
;

so that . fn/ is bounded in Lp, but does not converge strongly to f in Lp.
The same conclusion holds in L1 for the limit functions fn.t/ WD e�nt: fn ! 0

a.e., and k fnk1 D 1 for all n.
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Fig. 10.1 Graph of ne�nt for n D 1; 2; 3

Thus we cannot replace weak convergence by strong convergence in the
proposition.

10.2 Lp Spaces, 0 < p � 1

The definition of the sets Lp remains meaningful for all 0 < p < 1: a measurable
function f belongs to Lp if

Z

j f jp d� < 1:
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But (except for some degenerate cases) the usual formula

k f kp WD
�Z

j f jp d�
�1=p

does not define a norm if 0 < p < 1: the inequality sign in the triangle inequality
and in the other usual inequalities is reversed5:

Proposition 10.3 Let 0 < p < 1 and q D p=.p � 1/ < 0 be two conjugate
exponents.6

(a) (Reverse Young inequality) If x, y are nonnegative numbers, then7

xy � xp

p
C yq

q
:

(b) (Reverse Hölder inequality) If f and g are measurable functions, then

k fgk1 � k f kp � kgkq :

(c) (Reverse Minkowski inequality) If f and g are nonnegative, measurable func-
tions, then

k f C gkp � k f kp C kgkp :

Proof

(a) We may assume that x; y > 0. Consider the graph of the convex function given
by the equivalent equations y D xp�1 and x D yq�1. The shaded region in
Fig. 10.2 belongs to the rectangle of sides x and y, hence its area is at most
xy. Furthermore, it is the difference of two unbounded regions, limited by
the coordinate axes, the sides of the rectangle and the graph of our function.
Consequently,

xy �
Z x

0

sp�1 ds �
Z 1

y
tq�1 dt D xp

p
C yq

q
:

5Compare with Proposition 9.1, p. 306.
6The usual relation p�1 C q�1 D 1 still holds. See Hardy–Littlewood–Pólya [191] or Sobolev
[428].
7If y D 0, then the last fraction is replaced by its limit: �1.
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Fig. 10.2 Reverse Young
inequality

y

x

y = xp−1

x = yq−1

(b) The cases k f kp D 0 and kgkq D 0 being obvious, we may assume by
homogeneity that k f kp D kgkq D 1. Applying the reverse Young inequality
we obtain that

k fgk1 D
Z

j f j � jgj d� �
Z j f jp

p
C jgjq

q
d� D 1

p
C 1

q
D 1 D k f kp � kgkq :

(c) We may assume by homogeneity that k f C gkp D 1. Applying the reverse
Hölder inequality we obtain that

k f C gkp D k f C gkp
p

D
Z

. f C g/p d�

D
Z

f . f C g/p�1 C g. f C g/p�1 d�

� k f kp � ��. f C g/p�1��
q

C kgkp � ��. f C g/p�1��
q

D k f kp � k f C gkp�1
q.p�1/ C kgkp � k f C gkp�1

q.p�1/
D k f kp C kgkp :

In the last step we have used the relation .p � 1/q D p.

ut
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Despite the last proposition we may introduce a natural metric on Lp for 0 < p < 1.
For this we first generalize the notion of the norm:

Definition Let X be a vector space. A function N W X ! R is a pseudonorm if the
following conditions are satisfied for all x; y 2 X:

	 N.x/ � 0I
	 N.x/ D 0 ” x D 0I
	 N.x C y/ � N.x/C N.y/I
	 N.cx/ � N.x/ for all � 1 � c � 1I
	 N.n�1x/ ! 0 as n ! 1:

Note that every norm is also a pseudonorm.

Proposition 10.4 If N is a pseudonorm on X, then the formula

d.x; y/ WD N.x � y/

defines a metric on X, and X is a separated topological vector space with respect to
the corresponding topology.

Proof The only non-trivial property is the continuity of the multiplication. For any
given x0 2 X, �0 2 R and " > 0 we choose a large integer satisfying n � 1 C j�0j
and N.n�1x0/ < ". If

j� � �0j < 1=n and N.x � x0/ < "=n;

then j�j < j�0j C 1=n � n, and therefore

N.�x � �0x0/ � N.�.x � x0//C N..� � �0/x0/

� N.n.x � x0//C N.n�1x0/

< nN.x � x0/C " < 2":

ut
Remark If N does not satisfy the last condition of the definition of the pseudonorm,
then we still get a metric space, but not a topological vector space.
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Now we endow the spaces Lp with a natural pseudonorm:

Proposition 10.5 Let 0 < p � 1.

(a) Lp is a vector space.
(b) The formula

Np. f / WD k f kp
p D

Z

X
j f jp d�

defines a pseudonorm on Lp.
Henceforth we consider this metric in Lp.

(c) For each Cauchy sequence . fn/ in Lp there exist two functions f ; g 2 Lp and a
subsequence . fnk/ such that j fnk j � g for all k, and fnk ! f a.e.

(d) Lp is a complete metric space.

Remark For p D 1 the pseudonorm N1 is equal to the norm k�k1.
Proof

(a) If f 2 Lp and c 2 R, then Np.cf / D jcjp Np. f / < 1, and hence cf 2 Lp. It
remains to show that if f ; g 2 Lp, then f C g 2 Lp. This follows by applying the
elementary inequality of Lemma 3.24 (p. 144):

Np. f C g/ D
Z

j f C gjp d� �
Z

j f jp C jgjp d� D Np. f /C Np.g/ < 1:

(b) The first two properties of the pseudonorms are obvious, while the last two
follow from the equality Np.cf / D jcjp Np. f /. Finally, the triangle inequality
has been proved in (a).

(c) Following the proofs of Lemmas 5.13 and 9.2 (pp. 184 and 307) we may choose
a subsequence . fnk/ satisfying

1X

kD1

Z
ˇ
ˇ fnkC1

� fnk

ˇ
ˇp d� � 1:

Hence

1X

kD1

ˇ
ˇ fnkC1

� fnk

ˇ
ˇp < 1

a.e. by Corollary 5.9 (p. 180) of the Beppo Levi theorem. This implies the
inequality

1X

kD1

ˇ
ˇ fnkC1

� fnk

ˇ
ˇ < 1
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a.e., because in almost every fixed t 2 X we have
ˇ
ˇ fnkC1

� fnk

ˇ
ˇp � 1 if k is

sufficiently large, and this implies
ˇ
ˇ fnkC1

� fnk

ˇ
ˇ � ˇ

ˇ fnkC1
� fnk

ˇ
ˇp

because 0 < p � 1.
It follows that the series

j fn1 j C
1X

kD1

ˇ
ˇ fnkC1

� fnk

ˇ
ˇ and fn1 C

1X

kD1
. fnkC1

� fnk /

converge a.e. to some functions g; f . The partial sums gk and fnk satisfy the
inequality j fnk j � gk; letting k ! 1 this yields j f j � g.

It remains to show that g 2 Lp. Thanks to the choice of . fnk/ we have

Z

jgkjp d� D Np.gk/ � Np. fn1 /C
1X

kD1
Np. fnkC1

� fnk/ � Np. fn1 /C 1

for all k. Since jgkjp ! jgjp a.e., jgjp is integrable by the Fatou lemma (p. 183),
i.e., g 2 Lp.

(d) We may repeat the proof of Proposition 9.1 (p. 307), by using property (c) above
instead of Lemma 9.2 (p. 307).

ut
Proposition 10.1 (p. 341) remains valid for all 0 < p � 1:

Proposition 10.6 Let . fn/ be a bounded sequence in Lp for some p 2 .0; 1�,
converging a.e. to some function f .

(a) f 2 Lp and Np. f / � lim inf Np. fn/.
(b) If there exists a g 2 Lp such that j fnj � g for all n, then Np. fn � f / ! 0.
(c) If Np. fn/ ! Np. f /, then Np. fn � f / ! 0.

Proof

(a) We apply the Fatou lemma to the functions j fnjp.
(b) Since

j fn � f jp � j fnjp C j f jp � 2gp

a.e., we may again apply the dominated convergence theorem.
(c) The functions

j fnjp C j f jp � j fn � f jp
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are nonnegative by Lemma 3.24 (p. 144), and converge to 2 j f jp a.e. Applying
the Fatou lemma we obtain that

Z

2 j f jp d� � lim inf
Z

j fnjp C j f jp � j fn � f jp d�

D
Z

2 j f jp d� � lim sup
Z

j fn � f jp d�:

Hence lim sup Np. fn � f / � 0, i.e., Np. fn � f / ! 0.

ut
Example The spaces Lp.Œ0; 1�/ are not locally convex for 0 < p < 1, because their
only convex open subsets are ¿ and Lp.8

By translation invariance it suffices to show that if K is a convex open set
containing 0, then K D Lp.

Fix r > 0 such that Br.0/ � K, and fix x 2 Lp arbitrarily. For each natural
number n there exists a finite subdivision 0 D t0 < � � � < tn D 1 such that

Z ti

ti�1

jx.t/jp dt D n�1
Z 1

0

jx.t/jp dt; i D 1; : : : ; n:

Setting

xi WD n�Œti�1;ti�x; i D 1; : : : ; n

we have

Np.xi/ D np�1
Z 1

0

jx.t/jp dt; i D 1; : : : ; n:

Consequently, choosing a sufficiently large n we have x1; : : : ; xn 2 Br.0/. Since
Br.0/ � K and K is convex, we conclude that

x D .x1 C � � � C xn/=n 2 K:

It follows from this result that .Lp/0 D f0g, so that no two points of Lp.Œ0; 1�/

may be separated by a closed affine hyperplane.9

8This property and the following proof remains valid in much more general measure spaces.
9Day [96].
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As the preceding example indicates, for 0 < p < 1 the spaces Lp are not
normable, and not even locally convex in general. Therefore they are much less
useful than the spaces for p � 1.10

10.3 L0 Spaces

The spaces to be studied in this section provide a better understanding of a.e.
convergence.

We denote by L0 the set of measurable, a.e. finite-valued functions satisfying

N0. f / WD
Z j f j
1C j f j d� < 1:

Proposition 10.7

(a) L0 is a vector space.
(b) N0 is a pseudonorm on L0.

Henceforth we endow L0 with the corresponding metric.
(c) (Riesz)11 For every Cauchy sequence . fn/ of L0 there exist two functions f ; g 2

L0 and a subsequence . fnk/ such that j fnk j � g for all k, and fnk ! f a.e.
(d) L0 is a complete metric space.

Proof (a) If f 2 L0 and c 2 R, then cf 2 L0. This follows from the estimate

N0.cf / D
Z jcf j
1C jcf j d� �

Z jcf j
jcj C jcf j d� D N0. f / < 1

if jcj � 1, and from

N0.cf / D
Z jcf j
1C jcf j d� �

Z jcf j
1C j f j d� D jcj N0. f / < 1

if jcj � 1.

10Except for the construction of counterexamples. For example, Roberts [395, 396] constructed
non-empty, compact, convex sets in Lp.Œ0; 1�/ with 0 < p < 1 that have no extremal points. Hence
the Krein–Milman theorem (p. 129) does not hold in these spaces. See also Kalton [241], Kalton
and Peck [242], Narici–Beckenstein [331].
11Riesz [377].
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If f ; g 2 L0, then f C g 2 L0. Indeed, using the monotonicity of the function
t 7! t=.1C t/ in Œ0;1/, we have

N0. f C g/ D
Z j f C gj
1C j f C gj d�

�
Z j f j C jgj
1C j f j C jgj d�

�
Z j f j
1C j f j d�C

Z jgj
1C jgj d�

D N0. f /C N0.g/

< 1:

(b) It follows from the definition that N0.0/ D 0, and N0. f / > 0 if f ¤ 0. The
properties

N0. f C g/ � N0. f /C N0.g/

and

N0.cf / � N0. f / if � 1 � c � 1

have been shown in (a). Finally,12 for f 2 L0 and n ! 1 we have

Z ˇ
ˇn�1f

ˇ
ˇ

1C jn�1f j d� ! 0

by the dominated convergence theorem (p. 181), i.e., N0.n�1f / ! 0.
(c) Adapting the proof of Proposition 10.5 there exists a subsequence . fnk /

satisfying

1X

kD1

Z ˇ
ˇ fnk � fnkC1

ˇ
ˇ

1C ˇ
ˇ fnk � fnkC1

ˇ
ˇ

d� � 1I

hence

1X

kD1

ˇ
ˇ fnk � fnkC1

ˇ
ˇ

1C ˇ
ˇ fnk � fnkC1

ˇ
ˇ
< 1

12It is important here that f is finite-valued a.e. by assumption.
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a.e. by the Beppo Levi theorem (p. 178). Since

jxj
1C jxj � 1

2
H) jxj � 1 H) jxj � 2

jxj
1C jxj ;

this implies that

1X

kD1

ˇ
ˇ fnk � fnkC1

ˇ
ˇ < 1

a.e. Consequently, the partial sums gk; fnk of the series

j fn1 j C
1X

kD1

ˇ
ˇ fnkC1

� fnk

ˇ
ˇ and fn1 C

1X

kD1
. fnkC1

� fnk /

converge a.e. to some finite-valued functions g; f , satisfying j f j � g.
It remains to show that g 2 L0. By the choice of . fnk/ we have

Z jgkj
1C jgkj d� D N0.gk/ � N0. fn1 /C

1X

kD1
N0. fnkC1

� fnk / � N0. fn1 /C 1

for all k. Since

jgkj
1C jgkj ! jgj

1C jgj

a.e., the limit function is integrable by the Fatou lemma, i.e., g 2 L0.
(d) Using (c) we fix a subsequence . fnk/ converging a.e. to some f 2 L0. Next for

any given " > 0 we choose an integer M such that

Z j fm � fnj
1C j fm � fnj d� D N0. fm � fn/ < "

for all m; n � M. Taking n D nk and letting k ! 1, an application of the Fatou
lemma yields

N0. fm � f / D
Z j fm � f j
1C j fm � f j d� � "

for all m � M.
ut

Now we extend Propositions 10.1 and 10.6 (pp. 341 and 349) to L0:
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Proposition 10.8 Let . fn/ be a bounded sequence in L0, converging a.e. to some
finite-valued function f .

(a) f 2 L0 and N0. f / � lim inf N0. fn/;
(b) If there exists a g 2 L0 such that j fnj � g for all n, then N0. fn � f / ! 0;
(c) If N0. fn/ ! N0. f /, then N0. fn � f / ! 0.

Remark If �.X/ < 1, then N0. f / � �.X/ for all f 2 L0, so that every sequence
. fn/ is bounded in L0.

Proof of Proposition 10.8

(a) We apply the Fatou lemma to the functions
j fnj

1C j fnj .

(b) Since

j fn � f j
1C j fn � f j � j fnj

1C j fnj C j f j
1C j f j � 2

jgj
1C jgj ;

we may apply the dominated convergence theorem.

(c) The functions

j fnj
1C j fnj C j f j

1C j f j � j fn � f j
1C j fn � f j

are nonnegative13 and converge a.e. to 2 j f j =.1 C j f j/. Applying the Fatou
lemma we get

2

Z j f j
1C j f j d� � lim inf

Z j fnj
1C j fnj C j f j

1C j f j � j fn � f j
1C j fn � f j d�

D 2

Z j f j
1C j f j d� � lim sup

j fn � f j
1C j fn � f j d�

D 2

Z j f j
1C j f j d� � lim sup N0. fn � f /:

Hence lim sup N0. fn � f / � 0, i.e., N0. fn � f / ! 0.

ut
Remark The theorems of Lebesgue and Fatou (pp. 181, 183) and Proposi-
tions 10.1, 10.2, 10.6 and 10.8 (pp. 341, 342, 349) remain valid if we assume
the convergence in L0 instead of a.e. convergence.

For example, if . fn/ is bounded in Lp for some 1 < p � 1 and fn ! f in L0,
then fn ! f in �.Lp;Lq/, where q denotes the conjugate exponent.

13See the proof of Proposition 10.7 (a).
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Indeed, by Cantor’s lemma (p. 36) it is sufficient to show that every subsequence
. fnk/ of . fn/ has a subsequence . fnk` / converging to f in the topology �.Lp;Lq/.
Since fnk ! f in L0, by the Riesz lemma [Proposition 10.9 (c)] there exists a
subsequence . fnk`

/ converging to f a.e. We conclude by applying Proposition 10.2.
The other proofs are analogous.

Like Lp for 0 < p < 1, the L0 spaces are not locally convex in general:

Example The only convex open sets in L0.Œ0; 1�/ are ¿ and L0. Hence .L0/0 D f0g,
and no two points of L0.Œ0; 1�/ may be separated by a closed affine hyperplane.14

As before, it is sufficient to show that if a convex open set K contains the point
0, then K D L0. Fix r > 0 such that Br.0/ � K and a positive integer n > 1=r.

For any given x 2 L0 we consider the functions

xi.t/ WD
(

nx.t/ if .i � 1/=n � t � i=n,

0 otherwise,
i D 1; : : : ; n:

We have

N0.xi/ D
Z i=n

.i�1/=n

jnx.t/j
1C jnx.t/j dt � 1

n
< r;

so that x1; : : : ; xn belong to the ball Br.0/. Since Br.0/ � K and K is convex, we
conclude that

x D .x1 C � � � C xn/=n 2 K:

10.4 Convergence in Measure

In view of the usefulness of a.e. convergence we might try to associate it with some
norm, metric or topology.

As in the preceding section, we consider only measurable, a.e. finite-valued func-
tions. In finite measure spaces we have a simple characterization of the convergence
in L0. The following notion is frequently used in the theory of probability:

Definition A sequence of functions . fn/ converges in measure15 or stochastically
to f if for each fixed " > 0 we have

�.ft 2 X W j fn.t/ � f .t/j � "g/ ! 0

as n ! 1.

14Nikodým [343].
15Lebesgue [293].
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Proposition 10.9 Assume that �.X/ < 1.

(a) If 0 � p � q � 1, then Lq � Lp, and the embedding i W Lq ! Lp is continuous.
(b) L0 is the set of all measurable and a.e. finite-valued functions.
(c) (Fréchet)16 The convergence of L0 is convergence in measure.
(d) (Riesz)17 If fn ! f in measure, then there exists a subsequence . fnk/ converging

to f a.e.

Proof

(a) The case p D q is obvious. If 0 < p < q < 1, then applying the Hölder
inequality to the product 1 � j f jp we obtain the estimate

Z

j f jp d� � k1kq=.q�p/ � kj f jpkq=p D �.X/1�
p
q � k f kp

q ;

whence

k f kp � �.X/
1
p � 1

q � k f kq :

The last inequality holds for q D 1 as well, by a direct computation. This
proves the continuity of the embedding i W Lq ! Lp for all 0 < p < q � 1.

It remains to show that the embedding i W Lq ! L0 is continuous for all
0 < q < 1. There exists a constant cq > 0 such that

j f j
1C j f j � cq j f jq

for all f 2 Lq, because the function t 7! jtj1�q =.1 C jtj/ is continuous and
bounded on R. This implies the inequality N0. f / � cqNq. f / and thus the
required continuity.

(b) This follows from the definition of L0 because j f j =.1C j f j/ is bounded.
(c) We may assume that f D 0. If N0. fn/ ! 0 and " > 0, then using the non-

decreasingness of the function t 7! t=.1C t/ on Œ0;1/ we obtain that

0 � �.fj fnj � "g/ D
Z

fj fnj	"g
1 d�

� 1C "

"

Z

fj fnj	"g
j fnj

1C j fnj d� � 1C "

"
N0. fn/ ! 0:

16Fréchet [159, 160]. He used an equivalent metric.
17Riesz [377].
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Conversely, if fn ! 0 in measure, then

N0. fn/ D
Z

fj fnj<"g
j fnj

1C j fnj d�C
Z

fj fnj	"g
j fnj

1C j fnj d�

� "

1C "
�.X/C �.fj fnj � "g/

for each " > 0. Hence N0. fn/ < "�.X/ if n is large enough.
(d) We combine (c) with Proposition 10.7 (c) (p. 351).

ut
Remark If �.X/ < 1, then the theorems of Lebesgue and Fatou (pp. 181, 183) and
Propositions 10.1, 10.2, 10.6 and 10.8 (pp. 341, 342, 349) remain valid if we assume
convergence in measure instead of a.e. convergence.

This follows from the last remark of the preceding section by applying Proposi-
tion 10.9 (d) instead of Proposition 10.9 (c).

The assumption �.X/ < 1 may be omitted if we assume convergence in
measure on every set of finite measure.

Using convergence in measure we may characterize strong convergence in Lp,
and we may clarify the relationship between weak and strong convergence:

Proposition 10.10 Assume that �.X/ < 1.

(a) (Vitali)18 Let 0 < p < 1. We have k fn � f kp ! 0 ” fn ! f in measure, and

sup
n

Z

A
j fnjp d� ! 0 as �.A/ ! 0:

(b) Let 0 < r < p � 1. If . fn/ is bounded in Lp and fn ! f in measure, then
k fn � f kr ! 0.

(c) (Vitali–Hahn–Saks)19 The following equivalence holds in L1:

k fn � f k1 ! 0 ” fn * f ; and fn ! f in measure.

Example The functions fn.t/ WD n1=pe�nt defined on Œ0; 1� have the following
properties20:

• they are bounded in Lp for all p 2 .0;1�;
• they converge to zero in measure;

18Vitali [471, p. 147]. This strengthens the dominated convergence theorem.
19Vitali [471, p. 147]; Hahn [181]; Saks [408]. This contains Schur’s theorem (p. 84) as a special
case.
20We have already studied them in Sect. 10.1.
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• they do not converge strongly in Lp.

This shows the optimality of (b) in the proposition.

Remark Convergence in measure is not necessary for weak convergence.21 For
example, the functions sin nt do not converge to zero in measure on any bounded
interval I, but sin nt ! 0 in �.Lp;Lq/ for all p 2 Œ1;1� by the Riemann–Lebesgue
lemma (p. 338).

Proof

(a) First we assume that k fn � f kp ! 0. Then fn ! f in measure by parts (a) and
(c) of the preceding proposition. Furthermore, for any fixed " > 0 we may fix
an integer N such that k fn � f kp < " for all n � N. By Lemma 7.14 (p. 235)
there exists a ı > 0 such that

Z

A
j f jp d� < "p; and

Z

A
j fnjp d� < "p; n D 1; : : : ;N � 1;

whenever �.A/ < ı. Then the following conditions are satisfied for all n � N:

Z

A
j fnjp d� �

Z

A
j f jp d�C

Z

A
j fn � f jp d� < 2"p

if 0 < p � 1, and

�Z

A
j fnjp d�

�1=p�
�Z

A
j f jp d�

�1=pC
�Z

A
j fn � f jp d�

�1=p
< 2"

if 1 � p < 1.
For the converse direction it suffices to show that . fn/ is a Cauchy sequence

in Lp. Indeed, then fn converges to some g 2 Lp by the completeness of Lp, and
then also in measure by parts (a) and (c) of the preceding Proposition. Since
fn ! f in measure by assumption, we conclude that f D g a.e. by the uniqueness
of the limit.

For the proof of the Cauchy property we fix " > 0 arbitrarily, and we choose
ı > 0 such that

�.A/ < ı H)
Z

A
j fnjp d� < "p for all n:

Since fn ! f in measure, we may choose a large N such that

�
�n

j fn � f j � "

2

o�
<
ı

2
for all n � N:

21Except some special spaces like `1 by Schur’s theorem.
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Applying the triangle inequality this yields

�
�fj fm � fnj � "g	 < ı for all m; n � N:

Consequently, using the elementary inequality22

jx � yjp � max
˚
1; 2p�1� �jxjp C jyjp	

for x; y 2 R, we obtain following estimate for all m; n � N:

Z

X
j fm � fnjp d�

D
Z

fj fm�fnj	"g
j fm � fnjp d�C

Z

fj fm�fnj<"g
j fm � fnjp d�

� max
˚
1; 2p�1�

Z

fj fm�fnj	"g
j fmjp C j fnjp d�C �.X/"p

� �
max f2; 2pg C �.X/

	
"p:

We conclude by observing that the right-hand side tends to zero as " ! 0.
(b) Applying Hölder’s inequality we have the following estimate for each measur-

able set A:

Z

A
j fnjr d� D

Z

X
�A j fnjr d� � k�Akp=.p�r/ � kj fnjrkp=r

D �.A/.p�r/=p � k fnkr
p :

Since . fn/ is bounded in Lp, the right-hand side tends to zero uniformly in n as
�.A/ ! 0. We conclude by applying (a).

(c) If k fn � f k1 ! 0, then fn * f by a general property of weak convergence, and
fn ! f in measure by part (a) above.

For the converse direction, by (a) it suffices to show that

sup
n

Z

A
j fnj d� ! 0 as �.A/ ! 0:

Using the decomposition

Z

A
j fnj d� D

Z

A\ffn>0g
fn d� �

Z

A\ffn<0g
fn d�

22The inequality was proved in Lemma 3.24 (p. 144) for 0 < p � 1. For p 	 1 it follows from the
convexity of the function t 7! jtjp.
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it suffices to show that
Z

A
fn d� ! 0 as �.A/ ! 0; (10.1)

uniformly in n.
(10.1) holds for each n by Lemma 7.14 (p. 235). In order to prove the

uniformity in n we denote by QL1 the set of characteristic functions of measurable
sets.

QL1 is closed in L1, and hence a complete metric space. Indeed, if �Am ! g L1,
then by the Riesz lemma (p. 184) there exists an a.e. convergent subsequence
�Amk

! g. Then g.t/ 2 f0; 1g for a.e. t, i.e., g is the characteristic function of
some measurable set.

Fix " > 0 arbitrarily. Since . fn/ is weakly convergent, the sets

FN WD
n
�A 2 QL1 W

ˇ
ˇ
ˇ

Z

A
. fm � fn/ d�

ˇ
ˇ
ˇ � " for all m; n � N

o

(N D 1; 2; : : :) cover QL1. These sets are closed. Indeed, if �Ak ! �A in L1, then

�.A n Ak/C �.Ak n A/ D k�Ak � �Ak1 ! 0:

Applying (10.1) for any fixed m; n this yields the estimate

ˇ
ˇ
ˇ

Z

A
. fm � fn/ d�

ˇ
ˇ
ˇ D lim

k!1

ˇ
ˇ
ˇ

Z

Ak

. fm � fn/ d�
ˇ
ˇ
ˇ � ":

Applying Baire’s lemma (p. 32) at least one of these sets contains a ball, say
Br.�A/ � FN . This implies the implication

�.B/ < r H)
ˇ
ˇ
ˇ

Z

B
. fm � fn/ d�

ˇ
ˇ
ˇ � 2" for all m; n � N: (10.2)

Indeed, using the relations

�B D �A[B � �AnB and �A[B; �AnB 2 Br.�A/

we obtain the inequalities

ˇ
ˇ
ˇ

Z

B
fm � fn d�

ˇ
ˇ
ˇ �

ˇ
ˇ
ˇ

Z

A[B
fm � fn d�

ˇ
ˇ
ˇC

ˇ
ˇ
ˇ

Z

AnB
fm � fn d�

ˇ
ˇ
ˇ � 2":

Applying (10.1) for n D 1; : : :N, there exist r1; : : : rN > 0 such that

�.B/ < ri H)
ˇ
ˇ
ˇ

Z

B
fi d�

ˇ
ˇ
ˇ � "; i D 1; : : :N: (10.3)
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Setting ı WD min fr; r1 : : : ; rNg we deduce from (10.2) and (10.3) that

�.B/ < ı H)
ˇ
ˇ
ˇ

Z

B
fn d�

ˇ
ˇ
ˇ � 3" for all n:

ut
We have seen in classical analysis the difference between pointwise and uniform

convergence. This difference is smaller than expected from the point of view of
measure theory. As a byproduct we find a close connection between pointwise
convergence and convergence in measure.

Definition The sequence . fn/ converges quasi-uniformly to f if for each ı > 0 there
exists a set B of measure < ı such that fn converges uniformly to f on X n B.

Quasi-uniform convergence implies a.e. convergence. Indeed, if fn ! f quasi-
uniformly, then for each k D 1; 2; : : : there exists a set Bk of measure < 1=k such
that fn ! f uniformly in X n Bk. Then B WD \Bk is a null set, and fn ! f in X n B.

By a surprising discovery of Egorov the quasi-uniform and a.e. convergences are
in fact equivalent:

Proposition 10.11 Assume that �.X/ < 1, and let fn, f be measurable, a.e. finite-
valued functions.

(a) (Egorov)23 If fn ! f a.e., then fn ! f quasi-uniformly.
(b) (Lebesgue)24 If fn ! f a.e., then fn ! f in measure.

Remark The functions fn D �Œn;nC1� on X D R show the necessity of the assumption
�.X/ < 1.

Proof

(a) Fix ı > 0 arbitrarily. Since fn ! f a.e., for each fixed positive integer k, a.e.
x 2 X belongs to the union of the sets

Bk;m WD fx 2 X W j fn � f j � 1=k for all n � mg ; m D 1; 2; : : : :

Using the assumption �.X/ < 1, and applying Proposition 7.3 (c) (p. 216) to
the non-decreasing set sequence .Bk;m/, there exists a sufficiently large index mk

such that �.X n Bk;mk/ < 2�kı. Then fn ! f uniformly in B WD \1
kD1Bk;mk , and

�.X n B/ < ı.
(b) Given ı > 0 and " > 0 arbitrarily, we seek N such that

�.fj fn � f j > ıg/ < " for all n � N:

23Egorov [121].
24Lebesgue [293].
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By Egorov’s theorem there exists a set of measure < " such that fn ! f
uniformly in X n A. It remains to choose a sufficiently large N such that
j fn � f j < ı in X n A for all n � N.

ut
We end this section (and the book) by proving that a.e. convergence is not a

topological convergence in general. This explains some of the difficulties when
dealing with this notion.

Corollary 10.12 (Fréchet)25 In L0.Œ0; 1�/ a.e. convergence is not topologizable.

Proof Consider the sequence of functions . fn/ introduced on p. 307. Since it
converges to zero in measure, by the Riesz lemma (p. 354) every subsequence of
. fn/ has a subsequence converging a.e. to zero.

If a.e. convergence were topologizable, then by Cantor’s lemma (p. 36) we could
conclude that . fn/ itself converges a.e. to zero. But this is false: the numerical
sequence . fn.t// is divergent for every t 2 Œ0; 1�. ut
Remark Combining Propositions 10.9 (c), (d) and 10.11 (b) we conclude that
among the topological convergences, convergence in measure is the closest to a.e.
convergence.

25Fréchet [160].



Hints and Solutions to Some Exercises

Exercise 1.3. The vectors e1 C � � � C en form a divergent Cauchy sequence.
Exercise 1.4. Consider the identities

.c1x1 C � � � C ckxk; c1y1 C � � � C ckyk/ D jc1j2 C � � � C jckj2 ; k D 1; 2; : : : :

If c1x1 C � � � C ckxk D 0 or c1y1 C � � � C ckyk D 0, then we conclude that jc1j2 C
� � � C jckj2 D 0 and hence c1 D � � � D ck D 0.
Exercise 1.6. If . fn/ � M and fn ! f , then f 2 M. Indeed, we deduce from the
relations

Z 1

0

f 2 dt D
Z 1

0

j f � fnj2 dt �
Z 1

�1
j f � fnj2 dt ! 0

and the continuity of f that f D 0 in Œ0; 1�.
If g 2 M?, then g D 0 on Œ�1; 0�. Indeed, the formula

f .t/ WD
(

t2g.t/ if t � 0;

0 if t � 0

defines a function f 2 M, so that

0 D
Z 1

�1
fg dt D

Z 0

�1
t2 jg.t/j2 dt:

Since g is continuous, we conclude that g D 0 in Œ�1; 0�.
Hence

M ˚ M? � f f 2 X W f .0/ D 0g :
The converse inclusion is obvious.

© Springer-Verlag London 2016
V. Komornik, Lectures on Functional Analysis and the Lebesgue Integral,
Universitext, DOI 10.1007/978-1-4471-6811-9
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Notice that X is not complete.
Exercise 1.8. Consider the sets H D R, M D Z and N D Œ0; 1/.
Exercise 1.10. It suffices to choose an orthonormal basis in G: the proof of its
existence, given in the text, does not use completeness.
Exercise 1.11. The density has already been proved on pp. 7–8.

Second solution. The vectors e1�e2; e1�e3; : : : belong to M, and they generate `2.
Indeed, if x 2 `2 is orthogonal to them, then .x; en/ D .x; e1/ for all n. SinceP
.x; en/

2 < 1, .x; en/ D 0 for all n, and therefore x D 0.
The sequence .e1 � en/ is linearly independent; by orthogonalization we obtain

an orthonormal basis of `2.
Exercise 1.12. The orthonormal sequence e2; e3; : : : does not satisfy (a) because f1
is not the sum of its Fourier series:

1X

nD2
. f1; en/en D

1X

nD2

en

n
D f1 � e1:

Nevertheless, it satisfies (d). Indeed, let x D c1f1 C c2e2 C � � � C cmem be a finite
linear combination satisfying .x; en/ D 0 for all n � 2. Writing them explicitly we
have the equations

c1
n

C cn D 0; n D 2; : : : ;m

and

c1
n

D 0; n D m C 1;m C 2; : : : :

Hence we first deduce that c1 D 0, and then that cn D 0 for n D 2; : : : ;m. Thus
x D 0.
Exercise 1.14.

(ii) Let Fn D Œn;1/ � R, n D 1; 2; : : : :

(iii) Let .en/ be an orthonormal sequence, and

Fn WD fek W k > ng ; n D 1; 2; : : :

or

Fn D fx 2 H W kxk D 1 and x ? e1; : : : ; x ? eng ; n D 1; 2; : : : :

Exercise 1.24.1 If Tx D x, then using kT�k D kTk � 1 we get

kxk2 D .Tx; x/ D .x;T�x/ � kxk � kT�xk � kxk2 I

1We follow Riesz and Sz. Nagy [393].
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hence .x;T�x/ D kxk � kT�xk and kT�xk D kxk. Using these equalities we obtain
that

kx � T�xk2 D kxk2 � .x;T�x/� .T�x; x/C kT�xk2 D 0;

i.e., T�x D x. Exchanging the role of T and T� we conclude that N.I � T/ D
N.I � T�/.
Exercise 2.2.

(i) Consider the sequences xn WD n�1=p and yn WD n�1=q.ln n/�2=q.
(ii) The sequence

xk D .1�1=p; 2�1=p; : : : ; k�1=p; 0; 0; : : :/; k D 1; 2; : : :

converges in `q ” q > p.

Exercise 2.4. Both sequences converge pointwise to zero. Since

sup xn D xn

�
n

n C 1

�

D
�

1 � 1

n C 1

�n

�
�

1 � 1

n C 1

�nC1
! 0;

the first sequence is uniformly convergent.
Since

sup yn D yn.2
�1=n/ D 1

4
6! 0;

the second convergence is not uniform.
Exercise 2.5.

(i) Since jx.1/j � kxk1 for all x 2 A, the linear functional is continuous, of norm
� 1.

(ii) First solution. For xn.t/ D tn we have xn.1/ D 1 and kxnk22 D 1=.2n C 1/,
n D 1; 2; : : : : Since

sup
x2A;x¤0

jx.1/j
kxk2

� sup
n

jxn.1/j
kxnk2

D 1;

the linear functional is not continuous.

Second solution. Define yn 2 A by yn D 0 in Œ0; 1 � 1=n� and yn.1 � t/ D nt in
Œ1 � 1=n; 1�. Then yn.1/ D 1 and kxnk22 D 1=.3n/.
Exercise 2.6.

(i) The bilinear map g.x; y/ WD xy is continuous from A1 � A1 into A1 because

kxyk1 � kxk1 � kyk1
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for all x; y 2 A.
The linear map h.x/ WD .x; x/ of A1 into A1 �A1 is obviously continuous,

hence f D g ı h is continuous, too.
(ii) The functions

zn.t/ WD min
˚
n; x�1=4� ; n D 1; 2; : : :

satisfy

kznk22 �
Z 1

0

x�1=2 dx D Œ2
p

x�10 D 2

for all n, and

�
�z2n
�
�2
2

!
Z 1

0

x�1 dx D 1:

Hence our map is not continuous.
(iii) The continuity of f follows from (i) because we have weakened the topology

of the space of arrival.

Exercise 2.10. Write Œ f � WD f C L for brevity. If .Œ fn�/ is a Cauchy sequence in X=L,
then there exists a subsequence satisfying

�
�Œ fnkC1

� � Œ fnk �
�
� < 2�k; k D 1; 2; : : : :

Choose hk 2 Œ fnkC1
� � Œ fnk � such that khkk < 2�k, then h WD P

hk is a well-defined
element of X. Since

Œ fnk � � Œ fn1 � D
k�1X

iD1
Œ fniC1

� fni � D
k�1X

iD1
Œhi�;

we have Œ fnk � � Œ fn1 � ! Œh� and therefore Œ fnk � ! Œh C fn1 � in X=L.
Exercise 2.11.

(i) First solution. If Br1 .x1/ � Br2 .x2/ � � � � , then the sequence .rk/ is non-
increasing, hence converges to some r � 0. Then we have Br1�r.x1/ �
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Br2�r.x2/ � � � � because

Br1 .x1/ � Br2.x2/ ” r1 � r2 C kx1 � x2k ” Br1�r.x1/ � Br2�r.x2/:

We conclude by applying Cantor’s theorem.
Second solution.2 If n > m, then kxn � xmk � rm�rn. Since .rn/ is a bounded

and non-increasing sequence, it is a Cauchy sequence. Its limit belongs to each
closed ball.

(ii) First solution.3 We consider the linear subspace X WD Vect fe1; e2; : : :g of `1

with the restriction of the norm. Choose a sequence y D .yn/ 2 `1 with yn > 0

for all n, and consider the closed balls Brn.xn/ with

xn D .y1; : : : ; yn; 0; 0; : : :/ and rn D ynC1 C ynC2 C � � � ; n D 1; 2; : : : :

Second solution.4 Let Y be the completion of a non-complete normed space X,
and y 2 Y n X. Starting with an arbitrary point x1 2 X, we construct a sequence
.xn/ � X satisfying ky � xnC1k < ky � xnk =3, and we consider in Y the closed
balls Fn D Brn.xn/ of radius rn WD 2 ky � xnk.

If x 2 FnC1 for some n � 1, then

kx � xnk � kx � xnC1k C kxnC1 � yk C ky � xnk
� 2 ky � xnC1k C kxnC1 � yk C ky � xnk
< 2 ky � xnk ;

and hence x 2 Fn.
Finally, since y 2 Fn for all n and diam Fn ! 0, \Fn does not meet X.

Exercise 2.12.

(ii) Let K1 � K2 � � � � be a decreasing sequence of non-empty bounded closed
convex sets in a reflexive space. Choosing a point xn 2 Kn for each n we obtain
a bounded sequence. There exists a weakly convergent subsequence xnk * x.
Each Km contains all but finitely many elements of .xnk/, so that x 2 Km.

(ii) First solution. Consider in X D c0 the sets

Kn WD fx D .xi/ 2 c0 W x1 D � � � D xn D kxk D 1g ; n D 1; 2; : : : :

Second solution. If X is not reflexive, then there exists a non-empty closed convex
set K � X and a point x 2 X such that the distance d WD dist.x;K/ is not attained.
Set Kn WD K \ BdCn�1 .x/, 1; 2; : : : :

2F. Alabau-Boussouira, private communication.
3M. Ounaies, private communication.
4With Á. Besenyei.
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Exercise 2.13.

(i) In finite dimensions the bounded closed sets are compact, and we may apply
Cantor’s intersection theorem.

(ii) In infinite dimensions there exists a sequence .xn/ of unit vectors satisfying
kxn � xkk � 1 for all n ¤ k.5 Set Fn WD fxn; xnC1; : : :g, n D 1; 2; : : : :

Exercise 2.17.

(iii) If X is reflexive, then there is a weakly convergent subsequence xnk * x of
.xn/. Therefore '.xnk / ! '.x/ for each ' 2 X0. Since a (numerical) Cauchy
sequence converges to its accumulation points, '.xn/ ! '.x/ for each ' 2 X0,
i.e., xn * x.

(ii) follows from (iii) because the Hilbert spaces are reflexive.
(i) follows from (iii) because the finite-dimensional normed spaces are reflexive,

and the weak and strong convergences are the same.
(iv) See Dunford and Schwartz [117].
(v) Setting xn WD e1 C � � � C en we get a weak Cauchy sequence because each

' 2 c0
0 is represented by some .yk/ 2 `1, and hence

'.xn/ � '.xm/ D ymC1 C � � � C yn ! 0

as n > m ! 1. Considering the linear functionals ' 2 c0
0 associated with the

sequences ej we obtain that the only possible weak limit of .xn/ is the constant
sequence .1; 1; : : :/. Since it does not belong to c0, .xn/ does not converge
weakly.

(vi) Argue as in the last example of Sect. 2.5, p. 79.

Exercise 2.18. The linearly independent subsets of X satisfy the assumptions of
Zorn’s lemma, hence there exists a maximal linearly independent subset B. This is
necessarily a basis of the vector space X. Choose an infinite sequence . fn/ � B,
define '. fn/ WD n j fnk for n D 1; 2; : : : ; and define '.x/ arbitrarily for x 2 B n
f f1; f2; : : :g. Then ' extends to a unique linear functional  W X ! R, and  is not
continuous.
Exercise 2.19. If a normed space X has a countably infinite Hamel basis f1; f2; : : : ;
then X is the union of the (finite-dimensional and hence) closed subspaces
Vect f f1; : : : ; fng, n D 1; 2; : : : : Since none of them has interior points, by Baire’s
theorem X cannot be complete.
Exercise 2.20.6

(i) For each � 2 Œ0; �/ let S� be the intersection of Z2 with an infinite strip of
inclination � and width greater than one. Each S� is infinite, but the intersection
of two such sets belongs to a bounded parallelogram and hence is finite. Since

5This was an application of the Helly–Hahn–Banach theorem in the course.
6We present the proofs of Buddenhagen [67] and Lacey [276], respectively.
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.0; 1/ � Œ0; �/ and since there is a bijection between N and Z
2, the desired

result follows.
(ii) By the Helly–Hahn–Banach theorem there exist two sequences .xn/ � X and

.'n/ � X0 satisfying 'n.xk/ ¤ 0 ” n D k. Then .xn/ is linearly independent;
moreover, no xn belongs to the closed linear span of the remaining vectors xm.
We may assume by normalization that the sequence .xn/ is bounded. Then the
vectors

X

n2Nt

xn

2n
; t 2 .0; 1/

form a linearly independent set of vectors, having 2@0 elements.

Exercise 2.21.

(i) Consider the sets Nt of the preceding exercise. Setting

xt
n D

(
1 if n 2 Nt,

0 otherwise

we obtain 2@0 linearly independent functions xt 2 `1.
Since `1 itself has 2@0 elements, its Hamel dimension is 2@0 .

(ii) Fix a sequence of vectors x1; x2; : : : satisfying

kxnk D dist .xn;Vect fx1; : : : ; xn�1g/ D 3�n; n D 1; 2; : : : ;

and define

Ac WD
1X

nD1
cnxn 2 X

for all c 2 `1.

These vectors are well defined because X is complete and

1X

nD1
kcnxnk � kck1

1X

nD1
kxnk < 1:

It remains to show that Ac D 0 implies c D 0.
We have for each positive integer N the following estimate:

kAck �
�
�
�
�
�

NX

nD1
cnxn

�
�
�
�
�

�
�
�
�
�
�

1X

nDNC1
cnxn

�
�
�
�
�
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� jcN j 3�N �
1X

nDNC1
jcnj 3�n

� jcN j 3�N � kck1
1X

nDNC1
3�n:

If Ac D 0, then

jcN j � kck1
1X

nD1
3�n D 1

2
kck1

for all N; therefore kck1 � 1

2
kck1 and thus c D 0.

Exercise 4.1. The set of continuous functions f W R ! R has the power 2@0
of R because it is determined by its values at rational points. The set of jump
functions also has the power 2@0 . Consequently, the set of monotone functions has
the power 2@0 .

On the other hand, the set of null sets has the power of 22
@0
> 2@0 .

Exercise 4.2. It suffices to prove that the line y D x C ˛ meets C � C for each
˛ 2 Œ�1; 1�. We recall that C D \Cn where each Cn is the disjoint union of 2n

intervals of length 3�n. Hence each Cn � Cn is the disjoint union of 4n squares of
side 3�n.

Prove that the line y D x C˛ meets at least one of the squares in C1 � C1, say S1.
Next prove that y D x C ˛ meets at least one of the squares in C1 � C1, lying in

S1, say S2.
Construct recursively a decreasing sequence of squares S1; S2; : : : ; each meeting

the line y D x C ˛.
Exercise 4.7. ˛ > ˇ or ˛ D ˇ � 0.
Exercise 4.11. Apply Jordan’s theorem in (i), Cantor’s diagonal method in (ii) and
(v), and use Proposition 4.2 (a), p. 153.
Exercise 5.6. (i) There is a compact subset of positive measure. Apply the Cantor–
Bendixson theorem. (ii) All subsets of Cantor’s ternary set are measurable. (iii) For
otherwise A is countable. (iv) Apply Vitali’s method modulo 1.
Exercise 5.7. See Rudin [404].
Exercise 6.1. (i) f is continuous and strictly monotone. (ii) The image of its
complement is a union of intervals of total length one. (iii) Consider the inverse
image of a non-measurable subset of f .C/.
Exercise 6.2. (i) For ˛ D 0 we can take Cantor’s ternary set. For ˛ 2 .0; 1/ modify
the construction by changing the length of the removed open intervals. (ii) Take
A D [C˛n with a sequence ˛n ! 1. (iii) Take the complement of A.
Exercise 7.2. Let �.A/ D 0 if A is finite, and �.A/ D 1 otherwise.
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Exercise 7.3. If A � R is a non-measurable set, then

˚
.x; x/ 2 R

2 W x 2 A
�

(10.1)

is a two-dimensional null set.
Exercise 7.5. See, e.g., Riesz and Sz.-Nagy [394] and Sz.-Nagy [448] for detailed
proofs and applications to Fourier series and to the Riesz representation theo-
rem 8.23 (p. 291).
Exercise 7.6. ˛ > 0.
Exercise 7.7. Consider in R the measure generated by the length of bounded
subintervals of Œ0;1/.
Exercise 7.8. For example, let

f1.x; y/ WD

8
ˆ̂
<

ˆ̂
:

1 if x < y < x C 1,

�1 if x � 1 < y < x,

0 otherwise,

f2.x; y/ WD

8
ˆ̂
<

ˆ̂
:

1 if 0 < x < y < 2x,

�1 if 0 < 2x < y < 3x,

0 otherwise,

f3.x; y/ WD

8
ˆ̂
<

ˆ̂
:

1 � 2�n�1 if x; y 2 .n; n C 1/,

2�n�1 � 1 if x; y � 1 2 .n; n C 1/,

0 otherwise

for n D 0; 1; 2; : : : ;

f4.x; y/ D �f4.�x; y/ WD

8
ˆ̂
<

ˆ̂
:

1 if 0 < y < x,

�1 if x < y < 2x,

0 otherwise.

Exercise 7.9.

(iii) If .Ii/ is a ı-cover with 0 < ı < 1 and t > s, then

1X

iD1
jIijt � ıt�s

1X

iD1
jIijs :
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Hence

Ht
ı.A/ � ıt�sHs

ı.A/:

If Hs.A/ < 1, then

ıt�sHs
ı.A/ � ıt�sHs.A/ ! 0

as ı ! 0, and therefore Ht.A/ D 0.

Exercise 8.1. Use Dini’s theorem.
Exercise 8.2. If c1 jx � x1j C � � � C cn jx � xnj 
 0 in I, then each term on the

left-hand side is differentiable everywhere.
Exercise 8.4. (We follow Natanson [333].)

(ii) The case d D 0 is trivial. In the case d > 0 prove the following assertions:

• There exists a subdivision a D x0 < � � � < xn D b such that the oscillation
of f � p is less than d on each subinterval.

• Let us denote, numbering from left to right, by I1; : : : ; Im those closed
subintervals where max j f � pj D d. Choose a point xk between Ik and IkC1
whenever the sign of f � p is different on Ik and IkC1. If property (ii) fails,
then the product ! of the corresponding factors x � xk belongs to Pn.

• Changing ! to �! if necessary, ! and f � p have the same signs on each
subinterval I1; : : : ; Im.

• If c > 0 is sufficiently small, then j f � p � c!j < d on Œa; b�.

(iii) Assume that both p; q 2 Pn are closest polynomials to f . Prove the following
assertions:

• r WD .p C q/=2 also satisfies j f � rj � d on Œa; b�.
• There exist n C 2 consecutive values a � x1 < � � � < xnC2 � b at which

f .xi/� r.xi/ D ˙d, with alternating signs.
• . f � p/.xi/ D . f � q/.xi/ D . f � r/.xi/ for each i.
• p � q vanishes at more than n C 1 points, and hence p D q.

Exercise 8.5.

(i) follows from Bessel’s inequality (Proposition 1.16, p. 29).

Exercise 8.8.

(ii) If

t D 2
� t1
3

C t2
32

C � � � C tn
3n

C � � �
�
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and

t0 D 2
� t01
3

C t02
32

C � � � C t0n
3n

C � � �
�

are two points of C such that tn ¤ t0n, then jt � t0j � 1=3n. Therefore, if
jt � t0j < 1=32n, then tk D t0k for k D 1; 2; : : : ; 2n and therefore

ˇ
ˇ fi.t/ � fi.t

0/
ˇ
ˇ � 1=2n; i D 1; 2:

(iii) Since Œ0; 1�nC is a union of pairwise disjoint open intervals, and since fi is
defined at the endpoints of these intervals, we may extend fi linearly to each
open interval.

(iv) Define ˛ 2 .0; 1/ by 9˛ D 2. If

1

9nC1 � ˇ
ˇt � t0

ˇ
ˇ <

1

9n

for some integer n, then the above computation shows that

ˇ
ˇ fi.t/ � fi.t

0/
ˇ
ˇ � 1

2n
D 1

9n˛
� 9˛

ˇ
ˇt � t0

ˇ
ˇ˛ :

Hence f is Hölder continuous with the exponent ˛.

Exercise 8.10. Using the complexification method (2.16) of Murray (p. 112) we may
assume that Lm is complex linear.

If k > m and hk.x/ WD eikx, then .Tshk/.x/ D eikshk.x/, and therefore

Z �

��
.T�sLmTshk/.x/ ds D

Z �

��
eiks.Lmhk/.x � s/ ds D 0

because Lmhk has order < k and thus is orthogonal to hk.
Exercise 8.11.

(iv) If cm is the first non-zero coefficient in
P

cnfn, then fn.xm/ D 0 for all n > m,
and hence

P
cnfn.xm/ D cmfm.xm/ D cm ¤ 0.

Exercise 9.1.

(iii) Modify Fréchet’s example (p. 307) by making the functions continuous.

Exercise 9.3.

(i) For each n D 1; 2; : : : we define fn 2 M� such that fn D f in Œ1=n; 1�, and fn is
affine in Œ0; 1=n� with fn.0/ D �. Then

k f � fnk2 � j�j C k f k1p
n

:
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(ii) First solution. Given f 2 H and " > 0 arbitrarily, first we choose g 2 H
satisfying k f � gk < " and vanishing in a neighborhood of 1, and then we
choose a polynomial p such that kg � pk1 < ". Then jp.1/j < ", and hence the
polynomial P WD p � p.1/ satisfies P.1/ D 0 and

k f � Pk � k f � gkCkg � pkCkp � Pk � k f � gkCkg � pk1Cjp.1/j <3":

Second solution. The linear functional '.P/ WD P.1/, defined on the linear
subspace P of the polynomials is not continuous, because idn ! 0 for the norm
of X, but '.idn/ D 1 does not converge to '.0/ D 0. Therefore its kernel N.'/ is
dense in P . Since P is dense in X by the Weierstrass approximation theorem, N.'/
is dense in X.
Exercise 9.4. We have M D 1? and hence M? D 1?? D Vect f1g is the linear
subspace of constant functions.
Exercise 9.6. If .ek/ is an orthonormal sequence and 0 < r � p

2=2, then the
pairwise disjoint balls Br.ek/ belong to the ball B1Cr.0/.
Exercise 9.7. Set f .t/ D �.0;t/.
Exercise 9.9.

(iii) Consider the functions

x.t/ WD t�1=p and x.t/ WD t�1=q jln tj�2=q :



Teaching Remarks

Functional Analysis

• Most results of functional analysis and their optimality may be and are illustrated
by the small `p spaces.

• Although we assume that the reader is familiar with the basic notions of topology,
we could not resist presenting a little-known beautiful short proof of the classical
Bolzano–Weierstrass theorem, based on an elementary lemma of a combinatorial
nature, perhaps due to Kürschák (p. 6).

• We have included in the English edition a transparent elementary proof of the
Farkas–Minkowski lemma, of fundamental importance in linear programming
(p. 133), the Taylor–Foguel theorem on the uniqueness of Hahn–Banach exten-
sions, and the Eberlein–Šmulian characterization of reflexive spaces.

• The simple proof of Lemma 3.24 (p. 144) may be new.
• Chapter 1 and the first seven sections of Chap. 2 may be covered in a one-

semester course if we omit the material marked by �. Chapter 3 may be treated
later, in a course devoted to the theory of distributions.

• It seems to be a good idea to treat the `p spaces only for 1 < p < 1 in the
lectures, and to consider `1, `1, c0 later as exercises.

The Lebesgue Integral

• For didactic reasons Chap. 5 is devoted to the case of functions f W R ! R.
However, it is shown subsequently in Chap. 7 that all results and almost all proofs
remain valid word for word in arbitrary measure spaces. This approach may lead
to a better understanding of the theory without loss of time.

© Springer-Verlag London 2016
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• Applying Riesz’s constructive definition of measurable functions we quickly
arrive at essentially the most general forms of the Fubini–Tonelli and Radon–
Nikodým theorems. For strongly �-finite measures this is equivalent to the
familiar inverse image definition. Otherwise the latter definition is weaker (in
this book it is called local measurability), and, as we explain at the end of
Sect. 7.7, the usual unpleasant counterexamples to some important theorems
appear because of this weaker measurability notion.

• A one-semester course could start with the definition of null sets and with
Proposition 4.3 (p. 155), followed by Chaps. 5 and 7, except Sect. 7.7. We
suggest, however, to state without proof two further classical theorems of
Lebesgue on the differentiability of monotone functions and on the generalized
Newton–Leibniz formula (pp. 157, 204), and to treat briefly the Lp spaces by
following Sect. 9.1 (p. 305) in Function spaces.

Function Spaces

• In order to make our exposition of functional analysis more accessible, we have
avoided the spaces of continuous and Lebesgue integrable functions. This was
anachronistic, because it was precisely the investigation of these spaces that led
to the first great discoveries of functional analysis. Since they continue to play an
important role in mathematics and its applications, we devote the last part of the
book to these spaces.

• Contrary to the preceding parts, we give several different proofs of various
important theorems, in order to stress the multiple interconnections among
different branches of analysis.

• We present a large number of important examples that are not easy to localize in
the literature.



Bibliography

1. N.I. Achieser, Theory of Approximation (Dover, New York, 1992)
2. N.I. Akhieser, I.M. Glazman, Theory of Linear Operators in Hilbert Space I-II (Dover,

New York, 1993)
3. L. Alaoglu, Weak topologies of normed linear spaces, Ann. Math. (2) 41, 252–267 (1940)
4. P.S. Alexandroff, Einführung in die Mengenlehre und in die allgemeine Topologie (German)

[Introduction to Set Theory and to General Topology]. Translated from the Russian by
Manfred Peschel, Wolfgang Richter and Horst Antelmann. Hochschulbücher für Mathematik.
University Books for Mathematics, vol. 85 (VEB Deutscher Verlag der Wissenschaften,
Berlin, 1984), 336 pp

5. F. Altomare, M. Campiti, Korovkin-Type Approximation Theory and its Applications
(De Gruyter, Berlin, 1994)

6. Archimedes, Quadrature of the parabola; [199], 235–252
7. C. Arzelà, Sulla integrazione per serie. Rend. Accad. Lincei Roma 1, 532–537, 566–569

(1885)
8. C. Arzelà, Funzioni di linee. Atti Accad. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (4) 5I, 342–348

(1889)
9. C. Arzelà, Sulle funzioni di linee. Mem. Accad. Sci. Ist. Bologna Cl. Sci. Fis. Mat. (5) 5,

55–74 (1895)
10. C. Arzelà, Sulle serie di funzioni. Memorie Accad. Sci. Bologna 8, 131–186 (1900), 701–744
11. G. Ascoli, Sul concetto di integrale definite. Atti Acc. Lincei (2) 2, 862–872 (1875)
12. G. Ascoli, Le curve limiti di una varietà data di curve. Mem. Accad. dei Lincei (3) 18, 521–

586 (1883)
13. G. Ascoli, Sugli spazi lineari metrici e le loro varietà lineari. Ann. Mat. Pura Appl. (4) 10,

33–81, 203–232 (1932)
14. D. Austin, A geometric proof of the Lebesgue differentiation theorem. Proc. Am. Math. Soc.

16, 220–221 (1965)
15. V. Avanissian, Initiation à l’analyse fonctionnelle (Presses Universitaires de France, Paris,

1996)
16. R. Baire, Sur les fonctions discontinues qui se rattachent aux fonctions continues. C. R. Acad.

Sci. Paris 126, 1621–1623 (1898). See in [18]
17. R. Baire, Sur les fonctions à variables réelles. Ann. di Mat. (3) 3, 1–123 (1899). See in [18]
18. R. Baire, Oeuvres Scientifiques, (Gauthier-Villars, Paris, 1990)
19. S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations

intégrales. Fund. Math. 3, 133–181 (1922); [26] II, 305–348

© Springer-Verlag London 2016
V. Komornik, Lectures on Functional Analysis and the Lebesgue Integral,
Universitext, DOI 10.1007/978-1-4471-6811-9

377



378 Bibliography

20. S. Banach, An example of an orthogonal development whose sum is everywhere different
from the developed function. Proc. Lond. Math. Soc. (2) 21, 95–97 (1923)

21. S. Banach, Sur le problème de la mesure. Fund. Math. 4, 7–33 (1923)
22. S. Banach, Sur les fonctionnelles linéaires I-II. Stud. Math. 1, 211–216, 223–239 (1929); [26]

II, 375–395
23. S. Banach, Théorèmes sur les ensembles de première catégorie. Fund. Math. 16, 395–398

(1930); [26] I, 204–206
24. S. Banach, Théorie des opérations linéaires (Monografje Matematyczne, Warszawa, 1932);

[26] II, 13–219
25. S. Banach, The Lebesgue Integral in Abstract Spaces; Jegyzet a [409] könyvben (1937)
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