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Preface

About this Book

This book introduces copula-based statistical methods to analyze survival data
involving dependent censoring. This book explains why the problem of dependent
censoring arises in medical research, and illustrates how copula-based statistical
methods remedy the problem. This book introduces a variety of copula-based
methods to deal with dependent censoring, including the copula-graphic estimator,
parametric/semi-parametric maximum likelihood estimators, univariate selection
method, and prediction method. This book also introduces the basic theory of
copulas for modeling bivariate survival data.

There are many general books on survival analysis such as Kalbfleisch and
Prentice (2002), Lawless (2003), Klein and Moeschberger (2003), and Collett
(2003, 2015). These books focus on the standard statistical methods that have been
developed under the assumption of independent censoring. Nonetheless, all these
books mention the importance of scrutinizing the independent censoring assump-
tion when applying the standard methods to real data. Kalbfleisch and Prentice
(2002), Lawless (2003), and Klein and Moeschberger (2003) provide competing
risks approaches to deal with dependent censoring without using copulas. In his
latest edition of “Modelling Survival Data in Medical Research,” Collett (2015)
added a new chapter, “Dependent Censoring,” where some techniques of dealing
with dependent censoring are introduced. Our book introduces a variety of
copula-based statistical methods that are not discussed in the above-listed books.

Our emphasis is placed on survival data arising from medical studies. I hope that
this book appeals to those working as (bio) statisticians in medical and pharma-
ceutical institutes. Of course, statistical methods presented in this book can be
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applied to many fields, especially in engineering and econometrics where survival
analysis plays an important role.

Use as a Textbook

Readers (instructors) may begin with the basic survival analysis in Chap. 2 and then
proceed gradually to study advanced topics in Chaps. 3–5. This book may be used
as a textbook for classroom teaching aimed at graduate students or a short course
aimed at (bio) statisticians.

Alternatively, readers may study each chapter independently. Perhaps, students
majoring in science or rigorous statisticians may feel comfortable to read Chaps. 2
and 3 before Chaps. 4 and 5. On the other hand, biostatisticians who have learned to
use survival analysis may directly start from Chap. 5; they might be more interested
in how to implement the new methods with R and how to interpret the outputs.
Chapter 6 collects open problems for future research. This might help find research
topics for students and researchers.

Exercises are attached to Chaps. 2 and 3, though readers are certainly not nec-
essary to complete them. Nevertheless, ambitious readers or students seeking their
thesis topics are encouraged to work on them.

Taoyuan, Taiwan Takeshi Emura
Taipei, Taiwan Yi-Hau Chen
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Chapter 1
Setting the Scene

Abstract This first chapter presents the purpose of the book. We first illustrate the
issues of dependent censoring arising from medical research. We then explain
several benefits of investigating dependent censoring. We finally illustrate how
copula-based methods have been grown through the literature of survival analysis.

Keywords Censoring � Competing risk � Cox regression � Endpoint
Informative dropout � Multivariate survival analysis � Overall survival

1.1 Survival Analysis and Censoring

Survival analysis is a branch of statistics concerned with event times. In many
examples of survival analysis, event times may be time-to-death as the name sur-
vival suggests. Time-to-death for patients is termed overall survival (OS) which is
considered as the most objective measure of patient health in cancer research.

Analysis of survival data is complicated by censoring. If patient follow-up is
terminated before observing time-to-death, they are said to be censored. Censoring
is unavoidable in survival data; the study has a planned end of follow-up, or patients
may decide to withdraw from the study. Typically, medical researchers and
statisticians analyze survival data by assuming that censoring mechanisms are
unrelated to the event of interest. Indeed, standard tools in survival analysis, such as
the Kaplan–Meier estimator and Cox regression, deal with censoring under the
assumption that event time and censoring time are statistically independent.

If censoring mechanisms involve dropout or withdrawal due to a worsening of
the symptoms, censoring may introduce bias into the results of statistical analysis.
This type of dropout is often called informative dropout. Informative dropout is just
one of many contributing causes of censoring. More generally, if event time of
interest is censored by any mechanism related to the event, this phenomenon shall
be referred to dependent censoring. Most of the standard survival analysis methods
give unbiased results under the independent censoring assumption; that is, cen-
soring mechanisms are unrelated to the event of interest.

© The Author(s) 2018
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The book hopes to provide a systematic account of the issues of dependent
censoring and to give survival analysis methods that apply copulas to appropriately
deal with the issues.

1.2 Informative Dropout

In a medical follow-up study for cancer patients, survival time may be censored at
the time of dropout owing to tumor progression, toxicity of treatment, initiation of
second treatment, etc. Then, overall survival and dropout time may be positively
correlated because a patient may typically die soon after dropout. This leads to
informative dropout. Some discussions about the issues of informative dropout and
dependent censoring are found in Kalbfleish and Prentice (2002), Chen (2010),
Staplin (2012), Collett (2015), Staplin et al. (2015), Emura and Chen (2016), and
references therein.

Censoring due to informative dropout may have a deleterious effect on the
results of data analysis. Consider a case, where many terminally ill patients have
dropped out of a clinical trial to stay in the comfort of their own home. This means
that the data collected on the clinical trial miss many deaths that could be observed.
Consequently, the Kaplan–Meier survival curve that treats those patients as cen-
soring (i.e., being alive at their dropout) may exhibit upward bias. The Cox
regression analysis can adjust the bias if there are covariates that can predict the
occurrence of dropout and other causes of censoring.

Dependent censoring refers to the situation where the dependence between
censoring time and survival time is not explained by observable covariates. In other
words, dependent censoring is a consequence of residual dependence that is not
adjusted by covariates. In a sense, the concern for dependent censoring is reduced
by collecting as many covariates as possible. For instance, a late-stage cancer
patient may result in short survival and high chance to drop out due to tumor
progression, which gives the positive dependence between survival and dropout
times. Hence, the cancer stage can be included as one of covariates to achieve the
conditional independence between survival and dropout. Some diagnostic plots are
suggested to detect residual dependence (Chap. 14 of Collett (2015); Siannis et al.
2005; Chap. 5 of this book).

Residual dependence causes the partial likelihood estimator (Cox 1972) to be
biased. Suppose that one wishes to assess the effect of a covariate x1 on overall
survival through the Cox model hðtjx1Þ ¼ h0ðtÞ exp ðb1x1Þ, where b1 represents the
covariate effect and h0ðtÞ is the baseline hazard function. The partial likelihood
estimator gives a consistent estimate for b1 under the conditional independence
assumption between overall survival and censoring time given x1. Unfortunately, if
there exists another covariate x2 influencing both survival and dropout, the con-
ditional independence assumption would be violated as the variation of x2 induces
residual dependence (Fig. 1.1).
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Indeed, the so-called shared frailty models are derived as a consequence of
residual dependence due to unmeasured covariates (Oakes 1989). While the frailty
models are not the main focus of this book, they are helpful to introduce a
mechanism of residual dependence. In Chap. 3, we shall provide more systematic
discussions about residual dependence by relating the shared frailty models with the
copula models.

1.3 Benefits of Investigating Dependent Censoring

As mentioned earlier, a motivation to study dependent censoring emerges from
medical research. Researchers may demand a bivariate survival model to specify
the interrelationship between survival time and censoring time. This book intro-
duces copulas as the main tool for constructing such models. In the following, we
shall pick up specific advantages for adopting copula-based approaches to deal with
dependent censoring.

1.3.1 Examining the Influence of Dependent Censoring

If researchers perform the Cox regression analysis by incorrectly imposing the
independent censoring assumption, estimates of regression coefficients can be
biased. Emura and Chen (2016) applied copulas to examine the bias owing to
residual dependence. These analyses show that the bias is influenced by the rate of
censoring, the degree of dependence, and the type of copulas. This issue shall be
detailed in Chap. 3. Beside this method, copulas provide a variety of sensitivity
analyses. The copula-graphic estimator (Zheng and Klein 1995; Rivest and Wells
2001) can be used to examine how the survival curve is influenced by dependent
censoring. Likelihood-based sensitivity analyses are referred to Chen (2010) under
a semi-parametric model and Emura and Michimae (2017) under a parametric
model. Moradian et al. (2017) applied copulas to see the influence of dependence
on survival forests. Sugimoto et al. (2017) adopted copula models to examine the
influence of dependent censoring on the power and sample size of the log-rank test
in clinical trials with multiple endpoints.

Survival

Dropout 

x1: Covariate of interest

x2: Unmeasured covariate

Dependence 
induced by x2

Fig. 1.1 A mechanism of
yielding residual dependence
between survival and dropout
triggered by an unmeasured
covariate
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1.3.2 Improving Prediction by Using Dependent Censoring

The effect of dependent censoring can potentially be useful for improving the
performance of prediction. Intuitively, dependent censoring due to patient dropout
is related to patients’ health status and hence contains some predictive information
about OS. Siannis et al. (2005) proposed a graphical diagnostic method by plotting
a prognostic index against a censoring index (see also Chap. 14 of Collett 2015). If
the censoring index is positively correlated with the prognostic index, high risk of
death is predicted by high intensity of censoring.

The diagnostic procedure has a certain drawback that requires parametric models
to be fitted to both OS and censoring time. This strong assumption is under-
standable due to the identifiability problem of the competing risks relationship
between OS and censoring time. Indeed, developing prediction models is a chal-
lenging problem. Chapter 5 is devoted to the idea of Emura and Chen (2016) who
proposed an alternative diagnostic plot and a prediction method for OS by utilizing
the information of dependent censoring.

1.4 Copulas and Survival Analysis: A Brief History

Briefly speaking, a copula is a function to link two random variables by specifying
their dependence structure. A mathematician, Abe Sklar, first used the word copula
in his study of probabilistic metric space (Sklar 1959). In his paper, he gave a
mathematical definition of copulas and established the most fundamental theorem
about copulas, known as Sklar’s theorem. More about copulas can be found in the
book of Nelsen (2006).

Apparently, the applications of copulas in survival analysis became active after
David George Clayton introduced his bivariate survival model (Clayton 1978).
David Oakes soon realized the importance of Clayton’s model and reformulated
Clayton’s bivariate survival model into its current form (Oakes 1982). While nei-
ther Clayton nor Oakes mentioned about copulas, their work yielded one of the
most important copulas for bivariate survival analysis, later known as the Clayton
copula.

Clayton’s model is regarded as the gamma frailty model, a special case of shared
frailty models (Oakes 1989). On the other hand, Clayton’s model is a special case of
Archimedean copula models (Genest and MacKay 1986). Oakes (1989) touched
upon the paper of Genest and Mackay (1986) but did not mention about copulas.
Many important works on bivariate survival analysis were generated under
Clayton’s model without mentioning about Archimedean copulas. These include
the estimation procedure of Hsu and Prentice (1996) and the goodness-of-fit test of
Shih (1998).

One of the earliest papers that successfully and explicitly applied copulas to the
bivariate survival data seems to be Shih and Louis (1995) who proposed a
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two-stage estimation approach. They used copulas to develop a unified estimation
method applicable to many copulas, rather than the method specific to Clayton’s
model. See also Burzykowski et al. (2001, 2005) for studying the association
between survival endpoints based on copulas. Later on, the goodness-of-fit test of
Shih (1998) that was developed solely for Clayton’s model was generalized to a
unified test applicable to a broad class of bivariate survival models described by
Archimedean copulas (Emura et al. 2010).

While the method of Shih and Louis (1995) can handle bivariate event times, it
essentially requires the assumption of independent censorship. An inconvenience
occurs if one event time censors the other. For instance, death dependently censors
time-to-tumor progression. Hence, it is not a valid way to apply the two-stage esti-
mation by treating time-to-tumor progression and overall survival as bivariate event
times subject to independent censoring. This problem is known as competing risks or
dependent censoring. In general, estimation with competing risks data is substantially
more challenging than estimation with bivariate survival data due to the identifiability
issue (Tsiatis 1975); competing risks data do not allow one to observe two event
times simultaneously (one event censors the other), and hence, the data may not
identify the dependence structure between event times.

The paper by Zheng and Klein (1995) gave a partial solution to the identifiability
problem of dependent censoring by an assumed copula between two event times.
They generalized the Kaplan–Meier estimator under independent censoring to the
copula-graphic (CG) estimator under dependent censoring. For Archimedean
copula models, Rivest and Wells (2001) obtained the explicit expression of the CG
estimator, derived its asymptotic properties using a martingale theory, and formu-
lated a sensitivity analysis on the choice of the assumed copula. Nowadays, the CG
estimator is one of the most important tools for analyzing data with competing risks
or dependent censoring (Staplin 2012; de Uña-Álvarez and Veraverbeke 2013,
2017; Emura and Chen 2016; Emura and Michimae 2017; Moradian et al. 2017).
Note that the CG estimator is still of limited use for fitting real medical data since it
cannot handle covariates.

Braekers and Veraverbeke (2005) extended the CG estimator to deal with a
covariate. Unfortunately, this approach is too restrictive in medical applications
since it cannot handle more than one covariate. Indeed, all the CG-type estimators
are derived from moment-based equations, which may not be naturally extended to
handle covariates.

Likelihood-based approaches can naturally deal with covariates under an as-
sumed copula for dependent censoring. Likelihood-based regression analyses are
straightforward and workable under parametric models (Escarela and Carrière
2003), though the full parametric assumptions are too strong in many medical
applications. Alternatively, Chen (2010) adopted a semi-parametric likelihood
method to perform regression under bivariate competing risks models, where the
copula is assumed and the marginal distributions follow the transformation Cox
model. Chen’s method reduces to the partial likelihood method under the inde-
pendence copula and the identity transformation.

1.4 Copulas and Survival Analysis: A Brief History 5



The copula-based approaches are further extended to handle semi-competing
risks data. Fine et al. (2001) introduced the concept of semi-competing risks in
which a non-terminal event can be censored by a terminal event, but not vice versa.
This brings an alternative solution to the identifiability of a model of dependent
censoring by removing the competing risk for the terminal event time. Their sta-
tistical approach was developed under Clayton’s model, and it was later extended to
Archimedean copula models by Wang (2003). Chen (2012) further extended the
copula models to implement semi-parametric regression analysis on the transfor-
mation Cox model. Several recent works have applied copula-based methods for
clustered semi-competing risks data (Emura et al. 2017a, b; Peng et al. 2018).

Nowadays, copulas have been extensively applied for analysis of survival data
subject to dependent censoring or competing risks. For a methodological point of
view, copulas often offer a more transparent strategy for building a model of
dependent censoring and estimating parameters in the model. As an instance, one
may compare Clayton’s elegant but rather esoteric idea of the conditional likelihood
estimation (Clayton 1978) with the more transparent idea of the two-stage likeli-
hood estimation (Shih and Louis 1995). In addition, the likelihood method of Chen
(2012) would be more transparent than the moment-type estimating equations of
Fine et al. (2001) that were derived under Clayton’s model. Indeed, the likelihood
method of Chen (2012) is adaptive to more complex copula models, such as the
joint frailty-copula model (Emura et al. 2017a, b).

In summary, copulas have provided flexible bivariate survival models to perform
survival analysis under dependent censoring. Here, copulas stipulate the depen-
dence structure between event times, while they impose no restriction on the
marginal survival models. For these copula-based methods, one can choose any
copula that he/she likes, which provides considerable flexibility and adaptability to
different types of data. In addition, one can utilize mathematical and computational
tools of copulas that have been well-developed in the literature (e.g., Nelsen 2006;
Weiß 2011; Joe 2014; Schepsmeier and Stöber 2014; Durante and Sempi 2015).

Remark: There are many articles that we could not mention in this historical
review. Our review focuses on likelihood-based inference methods that are of the
major interest in this book.
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Chapter 2
Introduction to Survival Analysis

Abstract This chapter provides a concise introduction to survival analysis. We
review the essential tools in survival analysis, such as the survival function,
Kaplan–Meier estimator, hazard function, log-rank test, Cox regression, and
likelihood-based inference.

Keywords Censoring � Cox regression � Independent censoring
Kaplan–Meier estimator � Log-rank test � Overall survival
Time-to-tumor progression

2.1 Survival Time

In survival analysis, the term survival time refers to the time elapsed from an origin to
the occurrence of an event. In many medical studies, the origin is the time at study
entry which can be the start of a medical treatment, the initiation of a randomized
experiment, or the operation date of surgery. In epidemiological and demographic
studies, the origin is often the date of birth. The event may be the occurrence of death.

In medical research, the term overall survival refers to survival time measured
from entry until death of a patient. For instance, to measure the effect of
chemotherapy or radiotherapy in locally advanced head and neck cancer,
researchers may use overall survival as the primary endpoint (Michiels et al. 2009).
In this study, the origin is the start of randomization.

2.2 Kaplan–Meier Estimator and Survival Function

We shall introduce the random censorship model where we consider two random
variables

• T : survival time
• U: censoring time
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Due to censoring, either one of T or U is observed. One can observe T if death
comes faster than censoring (T �U). On the other hand, one cannot exactly observe
T if censoring comes faster than death (U\T). Even if the exact value of T is
unknown for the censored case, T is known to be greater than U. What we observe
are the first occurring time (minfT;Ug) and the censoring status (fT �Ug or
fU\Tg). The random censorship model typically assumes that T and U are
independent, namely PrðT 2 A;U 2 BÞ ¼ PrðT 2 AÞ PrðU 2 BÞ for sets A and B.

Survival data consist of ðti; diÞ, i ¼ 1; . . .; n, where

• ti: survival time or censoring time whichever comes first,
• di: censoring indicator (di ¼ 1 if ti is survival time, or di ¼ 0 if ti is censoring

time).

Under the random censorship model, one can write ti ¼ minfT ;Ug and
di ¼ IðT �UÞ, where Ið�Þ is the indicator function. We shall assume that all the
observed times to death are distinct (ti 6¼ tj whenever i 6¼ j and di ¼ dj ¼ 1), so that
there is no ties in the death times. With the survival data, one can estimate the
survival function SðtÞ � Prð T [ t Þ by the following estimator:

Definition 1 The Kaplan–Meier estimator (Kaplan and Meier 1958) is
defined as

ŜðtÞ ¼
Y

ti � t;di¼1

1� 1
ni

� �
; 0� t� max

i
ðtiÞ

where ni ¼
Pn

‘¼1 Ið t‘ � ti Þ is the number at-risk at time ti; Ŝð t Þ ¼ 1 if no
death occurs up to time t; Ŝð t Þ is undefined for t[ max

i
ðtiÞ.

The derivation of the Kaplan–Meier estimator: Consider a survival function
that is a decreasing step function with jumps only at points where a death occurs at
observed times of death. Then, one can write (Exercise 1 in Sect. 2.9) the survival
function in the form

Sð t Þ ¼ Prð T [ t Þ ¼
Y

ti � t; di¼1

1� PrðT ¼ tiÞ
PrðT � tiÞ

� �
:

Second, suppose that T and U are independent. Then, one can write

Sð t Þ ¼
Y

ti � t; di¼1

1� PrðT ¼ ti; U� tiÞ
PrðT � ti; U� tiÞ

� �

¼
Y

ti � t; di¼1

1� Prðminf T; U g ¼ ti; T �UÞ
Prðminf T ; U g� tiÞ

� �
:
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Finally, we replace the probability ratio of the last expression by its estimate to
obtain

Ŝð t Þ ¼
Y

ti � t; di¼1

1�
Pn

‘¼1 Iðt‘ ¼ ti; d‘ ¼ 1Þ=nPn
‘¼1 Iðt‘ � tiÞ=n

� �
¼

Y
ti � t; di¼1

1� 1
ni

� �
:

It is now clear that the Kaplan–Meier estimator relies on the independence
assumption between T and U. ■

The Kaplan–Meier survival curve is defined as the plot of Ŝð t Þ against t,
starting with t ¼ 0 and ending with tmax ¼ max

i
ðtiÞ. The curve is a step

function that jumps only at points where a death occurs. On the curve,
censoring times are often indicated as the mark“+”.

If tmax ¼ max
i
ðtiÞ corresponds to time-to-death of a patient, then Ŝð tmax Þ ¼ 0. If

tmax ¼ max
i
ðtiÞ corresponds to censoring time of a patient, then Ŝð tmax Þ[ 0. It is

misleading to plot Ŝð t Þ only up to the largest death time max
i; di¼1

ðtiÞ, especially when

many patients are alive beyond max
i; di¼1

ðtiÞ.
Survival data often include covariates, such as gender, tumor size, and cancer

stage. With covariates, survival data consist of ðti; di; xiÞ, i ¼ 1; . . .; n, where

• xi ¼ ðxi1; . . .; xipÞ0: p-dimensional covariates

In traditional survival analysis, the data is analyzed under the following
assumption:

Independent censoring assumption: Survival time and censoring time are
independent given covariates. That is, T and U are conditionally independent
given x.

For a patient i, one can define the survival function denoted as SðtjxiÞ �
Prð T [ t j xi Þ for t� 0. The survival function is the probability that the patient is
alive at time t. The survival function SðtjxiÞ is, in fact, the patient-level survival
function as it is conditionally on the patient characteristics xi. The survival function
at xi ¼ 0 is called the baseline survival function and denoted as S0ðtÞ ¼ Sðtjxi ¼ 0Þ.

A parametric model is given by a survival function that is specified by a finite
number of parameters. For instance, we consider an exponential survival function
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SðtjxiÞ ¼ expð �ktebxi Þ, t� 0, where k[ 0 and �1\b\1 are parameters. Let
xi denote the gender with xi ¼ 1 for male and xi ¼ 0 for female. One can show that

SðtjxiÞ ¼ S0ðtÞexpðbxiÞ for t� 0, where S0ðtÞ ¼ Sðtjxi ¼ 0Þ ¼ expð�ktÞ is the base-
line survival function. With this model, survival difference between male and
female is captured by b. The case b[ 0 corresponds to poor survival prognosis for
male relative to female; the case b\0 corresponds to good survival prognosis for
male relative to female. The case b ¼ 0 corresponds to equal survival prognosis
between male and female.

A semi-parametric model is given by a survival function that is partially
specified by a finite number of parameters. For instance, we consider a survival

function SðtjxiÞ ¼ S0ðtÞexpðbxiÞ, where the form of the baseline survival function
S0ðtÞ is unspecified. In terms of b, one can compare survival between males and
females without assuming a specific model on the baseline survival function.

2.3 Hazard Function

Hereafter, we suppose that SðtjxiÞ is a continuous survival function. The instanta-
neous death probability between t and tþ dt is Prð t� T\tþ dt j xi Þ ¼ Sð t j xi Þ
�Sð tþ dt j xi Þ, where dt is an infinitely small number. Since this probability is
equal to zero, one can consider the rate by dividing by dt such that

f ð tj xi Þ ¼ Sðt j xi Þ � Sðtþ dt j xi Þ
dt

¼ lim
Dt!0

Sðt j xi Þ � SðtþDt j xi Þ
Dt

¼ � dSðt j xi Þ
dt

:

This is the density function.
The hazard rate describes the instantaneous death rate between t and tþ dt given

that the patient is at-risk at t:

Definition 2 The hazard function (or hazard rate function) is defined as

hðtjxiÞ � Prð t� T\tþ dt jT � t; xi Þ
dt

¼
� d
dt Sð tj xi Þ
Sð tj xi Þ :

The hazard function at xi ¼ 0 is called the baseline hazard function and denoted
as h0ðtÞ ¼ hðtjxi ¼ 0Þ. The cumulative hazard function is defined as
HðtjxiÞ ¼

R t
0 hðujxiÞdu. The survival function is derived from the hazard function

through SðtjxiÞ ¼ expf �HðtjxiÞ g.
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The hazard rate is also known as the force of mortality in actuarial science and
demography. For example, let t ¼ “60 years old”, dt ¼ “1 year”, and xi ¼ 1 for
male or xi ¼ 0 for female. Then, the force of mortality hð60jxi ¼ 1Þ is equal to the
probability of death within the next one year for a 60-year-old man. The Japanese
life tables show hð60jxi ¼ 1Þ = 0.0064 (0.64%). The value of hðtjxi ¼ 1Þ mono-
tonically increases as t grows, which represents the effect of natural aging.
Eventually, it reaches hð100jxi ¼ 1Þ = 0.3995 (39.95%). This implies that 40% of
Japanese males who have just celebrated their 100th birthday will die before their
next birthday. Life tables for almost any country are available in the internet (e.g.,
Google “Taiwan life table”).

Unfortunately, the hazard function for cancer patients in medical studies rarely
shows any simple pattern (e.g., monotonically increasing or decreasing). In many
clinical trials, the time t is measured from the start of treatment, and hence, the ages
are regarded as covariates. In this case, the hazard of patients may be influenced by
the treatment effect, the follow-up processes, and cancer progression, so the effect
of natural aging may diminish. In epidemiological studies, focusing on age-specific
incidence of a particular disease, the time t is measured from birth as in the example
from Japanese life tables. However, the shape of the hazard function of disease
incidence may be difficult to specify.

This implies that many simple models, such as the exponential, Weibull, and
lognormal models, may not fit survival data from cancer patients. This is why
semi-parametric models are more useful and widely applied in medical research.
One may still accept the assumptions that the hazard function is continuous, does
not abruptly change over time, and smooth (continuously differentiable). Hazard
models with cubic splines (Chap. 4) meet these assumptions without restricting too
much the shape of the hazard function.

The semi-parametric model SðtjxiÞ ¼ S0ðtÞexpðbxiÞ can alternatively be specified
in terms of the hazard function

hðtjxiÞ ¼ h0ðtÞ expðbxiÞ ð2:1Þ

where the form of h0ðtÞ is unspecified. One can show h0ðtÞ ¼ �df log S0ðtÞ g=dt
and S0ðtÞ ¼ expf �H0ðtÞ g, where H0ðtÞ ¼

R t
0 h0ðuÞdu.

Let xi be a dichotomous covariate, such as gender with xi ¼ 1 for male and
xi ¼ 0 for female. Under the model (2.1), the relative risk (RR) is defined as

RR ¼ expðbÞ ¼ hðtjxi ¼ 1Þ
hðtjxi ¼ 0Þ :

For instance, the value RR ¼ 2 implies that death rate for xi ¼ 1 is twice the
death rate for xi ¼ 0.

Let xi be a continuous covariate, such as a gene expression. If the scale of xi is
standardized (to be mean = 0 and SD = 1), then RR ¼ expðbÞ is interpreted with
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respect to one SD increase. If one is interested in the effect of xi ¼ 2 relative to
xi ¼ �2, then RR ¼ expð4bÞ.

2.4 Log-Rank Test for Two-Sample Comparison

The log-rank test is a method to test the quality of the hazard rates between two
groups. Specifically, we consider the null hypothesis

H0 : hðtjxi ¼ 0Þ ¼ hðtjxi ¼ 1Þ; t� 0;

where xi ¼ 1 for male and xi ¼ 0 for female, for instance. This null hypothesis is
the same as the equality Sðtjxi ¼ 0Þ ¼ Sðtjxi ¼ 1Þ due to the relationship between
the hazard function and survival function. We wish to test H0 without making any
model assumption, but with the assumption that there are no ties in death times. The
treatment of ties shall be briefly discussed in Sect. 2.8.

Let ni1 ¼
Pn

‘¼1 If t‘ � ti; x‘ ¼ 1 g be the number of males and ni0 ¼Pn
‘¼1 If t‘ � ti; x‘ ¼ 0 g be the number of females at-risk at time ti. Hence,

ni0 þ ni1 is the total number at-risk at time ti. Each death at time ti corresponds to
either the death of male (xi ¼ 1) or the death of female (xi ¼ 0). If there is no effect
of gender on survival, male and female have the same death rate. Hence, the
conditional expectation of xi given ðdi ¼ 1; ni0; ni1Þ is

E½xijdi ¼ 1; ni0; ni1� ¼ Prðxi ¼ 1jdi ¼ 1; ni0; ni1Þ

¼ Prðxi ¼ 1; di ¼ 1j ni0; ni1Þ
Prðxi ¼ 1; di ¼ 1j ni0; ni1Þþ Prðxi ¼ 0; di ¼ 1j ni0; ni1Þ

¼ ni1hðtijxi ¼ 1Þ
ni1hðtijxi ¼ 1Þþ ni0hðtijxi ¼ 0Þ

¼ ni1
ni0 þ ni1

:

The last equation holds under the null hypothesis H0. The difference between xi
and its expectation leads to the log-rank statistic

S ¼
Xn
i¼1

di xi � ni1
ni0 þ ni1

� �
:

Hence, S[ 0 is associated with higher death rate in male than that in female.
Under H0, the mean of S is zero. If we assume that xi’s are independent,
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VarðSÞ ¼
Xn
i¼1

di
ni1ni0

ðni0 þ ni1Þ2
:

The log-rank test for no gender effect is based on the Z-statistic z ¼ S=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðSÞp

or the chi-square statistic z2. The P-value is computed as Prð jZj[ jzj Þ, where
Z�Nð0; 1Þ.
Example 1 Consider a sample of five females and five males (n ¼ 10) with
ti ¼(1650, 30, 720, 450, 510, 1110, 210, 1380, 1800, 540), di ¼(0, 1, 0, 1, 1, 0, 1,
1, 0, 1), and xi ¼(0, 0, 0, 0, 0, 1, 1, 1, 1, 1). To calculate the log-rank statistic, it is
convenient to summarize the data into Table 2.1.

The log-rank statistic has the “(observed)-(expected)” form, namely

S ¼
Xn
i¼1

dixi �
Xn
i¼1

di
ni1

ni0 þ ni1
¼ 3� 5

10
þ 5

9
þ 4

8
þ 4

7
þ 4

6
þ 2

3

� �
¼ 3� 3:46

¼ �0:46:

The negative value of S implies that the observed mortality of male is lower than
its expected value under H0. The variance is computed from Table 2.1 as

VarðSÞ ¼
Xn
i¼1

di
ni1ni0

ðni0 þ ni1Þ2
¼ 5	 5

102
þ 5	 4

92
þ 4	 4

82
þ 4	 3

72
þ 4	 2

62
þ 2	 1

32

¼ 1:436:

Hence, the test statistic is z ¼ S=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðSÞp ¼ �0:46=

ffiffiffiffiffiffiffiffiffiffiffi
1:436

p ¼ �0:384, and the
P-value is Prð jZj[ 0:384 Þ ¼ 0:70. We see no significant evidence for gender
effect on survival. ■

The log-rank test is a non-parametric test that does not employ any distributional
assumption. The log-rank test simply examines the excess mortality. Software
packages for survival analysis display both “observed” and “expected” numbers of
deaths in their outputs, in addition to the Z-value and P-value. The log-rank test can
also handle left-truncation (Klein and Moeschberger 2003). The log-rank test has

Table 2.1 Tabulation of the n ¼ 10 samples

Death times: ti with di ¼ 1 Observed: xi Expected: ni1=ðni0 þ ni1Þ
30 0 5/10

210 1 5/9

450 0 4/8

510 0 4/7

540 1 4/6

1380 1 2/3
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variants, such as multi-group tests, log-rank trend tests, and stratified log-rank tests
(Collett 2003; Klein and Moeschberger 2003).

2.5 Cox Regression

Since the hazard function is the basis of the risk comparison between two groups, it
is then natural to incorporate the effect of covariates into the hazard function.

Definition 3 The Cox proportional hazards model (Cox 1972) is defined as

hðtjxiÞ ¼ h0ðtÞ expðb0xiÞ;

where b ¼ ðb1; . . .; bpÞ0 are unknown coefficients and h0ð�Þ is an unknown
baseline hazard function.

The Cox model states that the hazard function hðtjxiÞ is proportional to h0ðtÞ
with the relative risk expðb0xiÞ. This implies that all patients share the same
time-trend function h0ðtÞ. The most striking feature of the Cox model is that the
form of h0ð�Þ is unspecified. Hence, the Cox model is a semi-parametric model,
offering greater flexibility over parametric models that specify the form of hðtjxiÞ.

One can estimate b without estimating h0ð�Þ. Based on data ðti; di; xiÞ,
i ¼ 1; . . .; n, let Ri ¼ f ‘ : t‘ � ti g be the risk set that contains patients at-risk at
time ti. The partial likelihood estimator b̂ ¼ ðb̂1; . . .; b̂pÞ0 is defined by maximizing
the partial likelihood function (Cox 1972)

LðbÞ ¼
Yn
i¼1

expðb0xiÞP
‘2Ri

expðb0x‘Þ

 !di

:

The log-partial likelihood is

‘ðbÞ ¼ log LðbÞ ¼
Xn
i¼1

di b0xi � log
X
‘2Ri

expðb0x‘Þ
( )" #

: ð2:2Þ

The derivatives of ‘ðbÞ give the score function,

SðbÞ ¼ @‘ðbÞ
@b

¼
Xn
i¼1

di xi �
P

‘2Ri
x‘ expðb0x‘ÞP

‘2Ri
expðb0x‘Þ

" #
:
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The second-order derivatives of ‘ðbÞ constitute the Hessian matrix,

HðbÞ ¼ @2‘ðbÞ
@b@b0

¼ �
Xn
i¼1

di

P
‘2Ri

x‘x0‘ expðb0x‘ÞP
‘2Ri

expðb0x‘Þ �
P

‘2Ri
x‘ expðb0x‘ÞP

‘2Ri
expðb0x‘Þ

P
‘2Ri

x‘ expðb0x‘ÞP
‘2Ri

expðb0x‘Þ

( )0" #
:

Since HðbÞ is a negative definite matrix (see Exercise 3 in Sect. 2.9), the
log-likelihood ‘ðbÞ is concave. This implies that ‘ðbÞ has a unique maxima b̂ that
solves SðbÞ ¼ 0.

Interval estimation for b is implemented by applying the asymptotic
theory (Fleming and Harrington 1991). The information matrix is defined as

iðb̂Þ ¼ �Hðb̂Þ: The standard error (SE) of b̂j is SEðb̂jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f i�1ðb̂Þ gjj

q
that uses

the j-th diagonal element of the inverse information matrix. The 95% confidence
interval (CI) is b̂j 
 1:96	 SEðb̂jÞ.

To gain more insight into Cox regression, we consider a simple case where xi
denote the gender defined as xi ¼ 1 for male and xi ¼ 0 for female. In this setting,
the Cox model is written as hðtjxiÞ ¼ h0ðtÞ expðbxiÞ, where the factor expðbÞ rep-
resents the RR of male relative to female.

We shall demonstrate how the factor expðbÞ is estimated by maximizing the
log-partial likelihood in Eq. (2.2). We solve the score equation SðbÞ ¼ 0 where

SðbÞ ¼
Xn
i¼1

di xi �
P

‘2Ri
x‘ expðbx‘ÞP

‘2Ri
expðbx‘Þ

" #
¼
Xn
i¼1

di
xini0 � ð1� xiÞni1 expðbÞ

ni0 þ ni1 expðbÞ :

Hence, the estimate of expðbÞ needs to satisfy the equation

expðbÞ ¼

P
i:xi¼1

di
ni0

ni0 þ ni1 expðbÞP
i:xi¼0

di
ni1

ni0 þ ni1 expðbÞ
: ð2:3Þ

This is the ratio of the expected number of deaths in male divided by the
expected number of deaths in female, which agrees with the interpretation of
expðbÞ.

Equation (2.3) can be solved by the fixed-point iteration algorithm. First,
applying the initial value expðbÞ ¼ 1 to the right-hand side of Eq. (2.3), we have

expðbÞ ¼

P
i:xi¼1

di
ni0

ni0 þ ni1P
i:xi¼0

di
ni1

ni0 þ ni1

:

We apply this value of expðbÞ to the right-hand side of Eq. (2.3) to give an
updated value of expðbÞ. This process is repeated until the updated value does not
change from the previous step. While the fixed-point iteration gives us an insight
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about how expðbÞ is estimated from data, it requires a large number of iterations
until convergence.

A computationally faster algorithm is the Newton–Raphson algorithm, which
utilizes the score function SðbÞ ¼ d‘ðbÞ=db and the Hessian HðbÞ ¼ d2‘ðbÞ=db2.
The algorithm starts with the initial value bð0Þ ¼ 0, and then follows the sequence

bðkþ 1Þ ¼ bðkÞ � H�1ðbðkÞÞSðbðkÞÞ; k ¼ 0; 1; . . .

The algorithm converges if jbðkþ 1Þ � bðkÞj � 0. Then, the estimate is b̂ ¼ bðkÞ

and its standard error is SEðb̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�H�1ðb̂Þ

q
. The score function is

SðbÞ ¼
Xn
i¼1

di xi �
P

‘2Ri
x‘ expðbx‘ÞP

‘2Ri
expðbx‘Þ

" #
¼
Xn
i¼1

di xi � ni1 expðbÞ
ni0 þ ni1 expðbÞ

� �
;

and the Hessian is

HðbÞ ¼ �
Xn
i¼1

di

P
‘2Ri

x2‘ expðbx‘ÞP
‘2Ri

expðbx‘Þ �
P

‘2Ri
x‘ expðbx‘ÞP

‘2Ri
expðbx‘Þ

( )2
2
4

3
5

¼ �
Xn
i¼1

di
ni0ni1 expðbÞ

f ni0 þ ni1 expðbÞ g2
:

We use Example 1 to compare the convergence between the fixed-point iteration
and Newton–Raphson algorithms. Table 2.2 shows that the Newton–Raphson
converges faster than the fixed-point iteration. The two algorithms reach the same
value b̂ ¼ �0:3156.

The Wald test for the null hypothesis H0 : b ¼ 0 is based on the Z-value
z ¼ b̂=SEðb̂Þ. The P-value is computed as Prð jZj[ jzj Þ, where Z�Nð0; 1Þ.

The score test for the null hypothesis H0 : b ¼ 0 uses the score statistic, and its
variance,

Sð0Þ ¼
Xn
i¼1

di xi � ni1
ni0 þ ni1

� �
; Varf Sð0Þ g ¼ �Hð0Þ ¼

Xn
i¼1

di
ni1ni0

ðni0 þ ni1Þ2
:

Table 2.2 Iteration algorithms to compute b̂ using the data of Example 1

Iteration number k Fixed-point iteration bðkÞ Newton–Raphson bðkÞ

0 0 0

1 –0.3093212 –0.3204982

2 –0.3154621 –0.3155884

3 –0.3155858 –

Note The convergence criterion is jbðkþ 1Þ � bðkÞj � 10�5
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The score test based on z ¼ Sð0Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varf Sð0Þ gp

is exactly the same as the
log-rank test. This coincidence does not imply that the log-rank test relies on the
Cox model assumption (Sect. 2.8).

The Newton–Raphson algorithm can also be applied to the multi-dimensional
case (p� 2) (see Sect. 2.7). The fixed-point iteration algorithm, however, may not
be easily applied to the multi-dimensional case (see Exercise 4 in Sect. 2.9).

2.6 R Survival Package

We shall briefly introduce the R package survival to analyze real data. After
installing the package, we enter survival time ti, censoring indicator di, and
covariate xi for n ¼ 10 patients. Then, we run the codes:

The outputs are shown below and Fig. 2.1.

Fig. 2.1 Kaplan–Meier survival curve and the 95% CI calculated from the data of Example 1
(n ¼ 10). Censoring times are indicated as the mark“+”
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The results on the log-rank test show S ¼ 3� 3:46 ¼ �0:46 with the chi-square
statistics z2 ¼ 0:148 and the P-value = 0.701 (see the row of “x = 1”). The results
on Cox regression show b̂ ¼ �0:316, RR ¼ expðb̂Þ ¼ 0:729, SEðb̂Þ ¼ 0:825, and
z ¼ b̂=SEðb̂Þ ¼ �0:38. The P-value of the Wald test is 0.702. Hence, the log-rank
test and the Wald test show similar results. In addition, the log-rank test and the
score test yield the identical result.

Since the difference between the two groups is not significant, we combine the
two groups and then draw the Kaplan–Meier survival curve. Figure 2.1 display the
Kaplan–Meier survival curve and the 95% CI.

2.7 Likelihood-Based Inference

This section considers likelihood-based methods for analyzing the data ð ti; di; xi Þ,
i ¼ 1; . . .; n. Recall that we defined survival time T and censoring time U such that:

• T ¼ ti and U[ ti if di ¼ 1,
• T [ ti and U ¼ ti if di ¼ 0.

Combining these two events, the likelihood for the i-th patient is expressed as

Li ¼ Prð T ¼ ti; U[ tijxi Þdi Prð T [ ti; U ¼ tijxi Þ1�di :
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Under the independent censoring assumption,

Li ¼ ½ Prð T ¼ tijxi Þ Prð U[ tijxi Þ �di ½ Prð T [ tijxi Þ Prð U ¼ tijxi Þ �1�di

¼ ½ fTðtijxiÞSUðtijxiÞ �di ½ STðtijxiÞfUðtijxiÞ �1�di

¼ ½ fTðtijxiÞdi STðtijxiÞ1�di �½ fUðtijxiÞ1�di SUðtijxiÞdi �

where STðtjxiÞ ¼ Prð T [ t j xi Þ, fTðtjxiÞ ¼ �dSTðtjxiÞ=dt, SUðtjxiÞ ¼ Pr
ð U[ t j xi Þ, and fUðtjxiÞ ¼ �dSUðtjxiÞ=dt. In addition to the independent cen-
soring assumption, we further impose the following assumption:

Non-informative censoring assumption: The censoring distribution does not
involve any parameters related to the distribution of the survival times. That
is, SUðtjxiÞ does not contain parameters related to STðtjxiÞ.

Under the non-informative censoring assumption, the term fUðtijxiÞ1�di SUðtijxiÞdi
is unrelated to the likelihood for the survival times and can simply be ignored.
Therefore, the likelihood function is re-defined as

L ¼
Yn
i¼1

fTðtijxiÞdi STðtijxiÞ1�di ¼
Yn
i¼1

hTðtijxiÞdi exp½ �HTðtijxiÞ �;

where hTðtjxiÞ ¼ fTðtjxiÞ=STðtjxiÞ and HTðtjxiÞ ¼
R t
0 hTðujxiÞdu. The log-likelihood

is

‘ ¼ log L ¼
Xn
i¼1

½ di log hTðtijxiÞ � HTðtijxiÞ �: ð2:4Þ

Usually, censoring is non-informative if it is independent. Only an artificial or
unusual example yields informative but independent censoring (p. 150 of Andersen
et al. 1993; p. 196 of Kalbfleisch and Prentice 2002). It is well-known that inde-
pendent censoring is more crucial assumption than non-informative censoring that
does not lead to bias in estimation. Throughout the book, we focus on dependent
censoring rather than informative censoring.

If censoring is dependent, the likelihood for the i-th patient is

Li ¼ Prð T ¼ ti; U[ tijxi Þdi Prð T [ ti; U ¼ tijxi Þ1�di

¼ � @

@x
Prð T [ x; U[ tijxi Þ

����
x¼ti

( )di

� @

@y
Prð T [ ti; U[ yjxi Þ

����
y¼ti

( )1�di

:
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Therefore, the log-likelihood is defined as

‘ ¼
Xn
i¼1

½di log h#T ðtijxiÞþ ð1� diÞ log h#U ðtijxiÞ � Uðti; tijxiÞ �;

where

h#T ðtijxiÞ ¼ � @

@x
log Prð T [ x; U[ tijxi Þ

����
x¼ti

;

h#U ðtijxiÞ ¼ � @

@y
log Prð T [ ti; U[ yjxi Þ

����
y¼ti

;

are the cause-specific hazard functions, and

Uðti; tijxiÞ ¼ � log Prð T [ ti; U[ tijxi Þ ¼ � log Prð minf T; U g[ tijxi Þ

is the cumulative hazard function for minf T ; U g.
Suppose that the log-likelihood is parameterized by u: Then, the maximum

likelihood estimator (MLE) is defined by maximizing the log-likelihood, û ¼
argmaxu ‘ð u Þ: To find the MLE numerically, one can use the score function
Sð u Þ ¼ @‘ð u Þ=@u and the Hessian matrix Hð u Þ ¼ @2‘ð u Þ=@u@u0: The MLE
û is obtained from the Newton–Raphson algorithm

uðkþ 1Þ ¼ uðkÞ � H�1ð uðkÞ ÞSð uðkÞ Þ; k ¼ 0; 1; . . .

Interval estimates for u follow from the asymptotic theory of MLEs. The in-
formation matrix is defined as ið û Þ ¼ �Hð û Þ: The SE for ûj (the j-th component

of ûÞ is SEð/̂jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f i�1ðûÞ gjj

q
that uses the j-th diagonal element of the inverse

information matrix. The 95% CI is ûj 
 1:96	 SEðûjÞ:
For instance, the Cox model takes the form u ¼ ðh; bÞ and

hðtjxiÞ ¼ h0ðt; hÞ expðb0xiÞ, where h ¼ ðh1; . . .; hmÞ is a vector of parameters
related to the baseline hazard function. We assume that the baseline cumulative
hazard function H0ðt; hÞ is an increasing step function with jumps dH0ðt; hÞ ¼ ehj at
t ¼ ti with di ¼ 1. Hence, the number of parameters in h is equal to the number of
deaths m ¼Pn

i¼1 di. The MLE û ¼ ðĥ; b̂Þ is obtained from the Newton–Raphson
algorithm. It has been shown that b̂ is equivalent to the partial likelihood estimator

and ĥ is the Breslow estimator h0ðtj; ĥÞ ¼ eĥj ¼ P
t‘ � tj e

b̂
0
x‘

� 	�1
(van der Vaart

1998; van Houwelingen and Putter 2011).
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2.8 Technical Notes

Readers can skip this section as it does not influence the understanding of the latter
chapters of the book.

The log-rank test possesses an easy-to-understand optimality criterion. The
log-rank test is asymptotically efficient (most powerful) to detect the constant hazard
ratio hðtjxi ¼ 1Þ=hðtjxi ¼ 0Þ ¼ w for some w 6¼ 1. Any reasonable test, such as the
t-test, has optimality criteria to detect some specific form. The details on the
asymptotic efficiency are referred to Andersen et al. (1993) and Fleming and
Harrington (1991).

If the form of hðtjxi ¼ 1Þ=hðtjxi ¼ 0Þ is non-constant, then the log-rank test may
be sub-optimal. For example, Gehan’s generalized Wilcoxon test statistic (Gehan
1965) defined as

S ¼
Xn
i¼1

diðni0 þ ni1Þ xi � ni1
ni0 þ ni1

� �

can be more powerful than the log-rank statistic if the ratio hðtjxi ¼ 1Þ=hðtjxi ¼ 0Þ
strongly deviates from 1 in the early stage of follow-up. The generalized Wilcoxon
test statistic is a special case of the weighted log-rank statistics (Fleming and
Harrington 1991; Klein and Moeschberger 2003). If there is a concern about the
non-constant hazard ratio, the weighted log-rank statistics may be employed.

A gross misunderstanding is that the log-rank test is a test tailored to detect the
effect in a proportional hazards assumption. As mentioned earlier, the log-rank
statistic is a non-parametric test to detect excess mortality without any model
assumption.

We have derived the Kaplan–Meier estimator and the log-rank test under the
assumption that all times to death are distinct (no ties). To handle ties, it is useful to
introduce counting process formulations (Andersen et al. 1993; Fleming and
Harrington 1991). For k ¼ 0; 1, let �YkðtÞ ¼

Pn
‘¼1 If t‘ � t; x‘ ¼ k g be the number

at-risk at time t, and let �NkðtÞ ¼
Pn

‘¼1 If t‘ � t; d‘ ¼ 1; x‘ ¼ k g be the number of
deaths up to time t. Then, at time t, the number of deaths in male is
d �N1ðtÞ ¼

Pn
‘¼1 If t‘ ¼ t; d‘ ¼ 1; x‘ ¼ 1 g, and the total number of deaths is

d �NðtÞ ¼Pn
‘¼1 If t‘ ¼ t; d‘ ¼ 1 g.

The Kaplan–Meier estimator for the group k is defined as

ŜkðtÞ ¼
Y
u� t

f 1� dĤkðuÞ g; k ¼ 0; 1;

where dĤkðtÞ ¼ d�NkðtÞ=�YkðtÞ is called the Nelson–Aalen estimator.
The conditional distribution of d�N1ðtÞ given ð d�NðtÞ; �Y0ðtÞ; �Y1ðtÞ Þ is a hyper-

geometric distribution with mean
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Ef d�N1ðtÞjd�NðtÞ; �Y0ðtÞ; �Y1ðtÞ g ¼ d�NðtÞ�Y1ðtÞ
�Y0ðtÞþ �Y1ðtÞ :

Consequently, the aggregated differences between the observed and expected
deaths is

S ¼
Z1
0

d�N1ðtÞ � d�NðtÞ�Y1ðtÞ
�Y0ðtÞþ �Y1ðtÞ

� �
¼
Z1
0

d�N1ðtÞ �
Z1
0

d�NðtÞ�Y1ðtÞ
�Y0ðtÞþ �Y1ðtÞ:

The univariate partial likelihood estimator as derived in Eq. (2.3) has a counting
process form

expðb̂Þ ¼
R1
0 Wðb̂; tÞdĤ1ðtÞR1
0 Wðb̂; tÞdĤ0ðtÞ

; Wðt;bÞ ¼
�Y0ðtÞ�Y1ðtÞ

�Y0ðtÞþ �Y1ðtÞ expðbÞ :

This means that the estimator is the ratio of the expected number of deaths in
male divided by the expected number of deaths in female. This way of interpreting
the univariate estimator is suggested in Emura and Chen (2016) to argue the
robustness of the estimator against the model misspecification. Under the inde-
pendent censoring assumption, b̂ is a consistent estimator for b� that is the solution
to

expðbÞ ¼
R1
0 wðb; tÞhðtjx ¼ 1ÞdtR1
0 wðb; tÞhðtjx ¼ 0Þdt ; Wðt; bÞ ¼ p0ðtÞp1ðtÞ

p0ðtÞþ p1ðtÞ expðbÞ ;

where pkðtÞ ¼ limn!1 �YkðtÞ=n and the integral is on the range of t with
p0ðtÞp1ðtÞ[ 0. If the proportional hazards model hðtjxi ¼ 1Þ ¼ expðb0Þhðtjxi ¼ 0Þ
holds for some b0, then b� ¼ b0. Even if the proportional hazards model does not
hold, b� is still meaningful since expðb�Þ is interpreted as the RR. However, the
interpretation of the partial likelihood estimator may not be robust against the
violation of the independent censoring assumption (Chap. 3).

2.9 Exercises

1. Deriving the Kaplan–Meier estimator: Consider a survival function Sð t Þ ¼
Prð T [ t Þ that is a decreasing step function with steps at observed times of
death. Assume that all the observed times to death are distinct (ti 6¼ tj whenever
i 6¼ j and di ¼ dj ¼ 1).

(1) Show Prð T [ ti Þ ¼ Prð T [ tijT [ ti�1 Þ PrðT [ ti�1 Þ if ti [ ti�1.
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(2) Show Prð T [ tj Þ ¼
Qj
i¼1

Prð T [ tijT [ ti�1 Þ if tj [ tj�1 [ � � � [ t1 [ t0 � 0

and Sð 0 Þ ¼ 1.
(3) Show Prð T [ tijT[ ti�1 Þ ¼ 1� Prð T ¼ tijT � ti Þ if there is no death in the

interval ðti�1; tiÞ.
(4) Show Sð tj Þ ¼

Qj
i¼1

1� PrðT¼tiÞ
PrðT � tiÞ

� 	
.

2. Weibull regression: Let logðTiÞ ¼ a0 þ a0xi þ rei, where Prðei [ xÞ ¼ expð�exÞ
for �1\x\1.

(1) Derive the survival function SðtjxiÞ and the hazard function hðtjxiÞ.
(2) Show that the model can be expressed as hðtjxiÞ ¼ h0ðtÞ expðb0xiÞ.
(3) Show PrðT [ tþwjT [ t; xiÞ\ PrðT [wjxiÞ for 0\r\1 and w[ 0. What

does this inequality imply?

3. Consider a discrete random vector Xi ¼ ðXi1; . . .;XipÞ whose distribution is
given by

PrðXi ¼ xkÞ ¼ expðb0xkÞP
‘2Ri

expðb0x‘Þ ; k 2 Ri ¼ f‘ : t‘ � ti g; i ¼ 1; . . .; n:

This represents the risk of the k-th patient relative to the total risk for those who
are at-risk of death at time ti. By assuming the independence of the sequence Xi,
i ¼ 1; . . .; n, one can obtain the partial likelihood function
LðbÞ ¼Qn

i¼1 PrðXi ¼ xiÞdi .
(1) Express the score function SðbÞ using EðXiÞ.
(2) Express the Hessian matrix HðbÞ using VarðXiÞ.
(3) Discuss the conditions to make HðbÞ negative definite.

4. Suppose that data ð ti; di; xi Þ, i ¼ 1; . . .; n, follow the model
SðtjxiÞ ¼ expð �ktebxi Þ, where k[ 0 and �1\b\1. Let m ¼Pn

i¼1 di be
the number of deaths.

(1) Write down the log-likelihood function ‘ðk; bÞ ¼ log Lðk; bÞ.
(2) Derive the score functions @‘ðk; bÞ=@k and @‘ðk; bÞ=@b.
(3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.
(4) Derive the Hessian matrix of ‘ðk; bÞ.
(5) Derive the Newton–Raphson algorithm and apply it to the data of Example 1.
(6) Derive the Newton–Raphson algorithm under the transformed parameter ~k ¼

logðkÞ and apply it to the data of Example 1.
(7) Compare the numbers of iterations in all the three algorithms.
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5. Use the lung cancer data available in the compound.Cox R package (Emura et al.
2018) to:

(1) Perform univariate Cox regression treating the ZNF264 gene or the NF1 gene
as a covariate. Are these genes univariately associated with survival?

(2) Perform multivariate Cox regression treating both the ZNF264 and NF1 genes
as covariates. Are these genes associated with survival?

(3) Discuss the influence of multicollinearity between ZNF264 and NF1.
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Chapter 3
Copula Models for Dependent
Censoring

Abstract This chapter provides mathematical infrastructures for copula models,
focusing on applications to survival analysis involving dependent censoring. After
reviewing the concept of copulas, we introduce measures of dependence, including
Kendall’s tau and the cross-ratio function. We also introduce the idea of residual
dependence that explains how dependence between event times arises and how it
can be modeled by copulas. Finally, we apply copulas for modeling the effect of
dependent censoring and analyze the bias of the Cox regression analysis owing to
dependent censoring.

Keywords Archimedean copula � Clayton’s copula � Cox regression
Cross-ratio function � Gumbel’s copula � Kendall’s tau � Residual dependence
Univariate Cox regression

3.1 Introduction

Roughly speaking, a copula is a function to link two random variables by speci-
fying their dependence structure. The word copula is a Latin word that means bond,
link, or tie (Nelsen 2006), where co means together. A mathematician, Abe Sklar,
first used the word copula in his study of probabilistic metric space (Sklar 1959). In
his paper, he gave a mathematical definition of copulas and established the most
fundamental theorem about copulas, known as Sklar’s theorem. The full history of
copulas can be found in the book of Nelsen (2006).

This chapter provides a mathematical background for bivariate copula models
that have been used in survival analysis. Let T be survival time, U be censoring
time, and x be a vector of covariates. Also, let STðtjxÞ ¼ PrðT [ tjxÞ and SUðujxÞ ¼
PrðU[ ujxÞ be the marginal survival functions given x. We consider a bivariate
survival function

PrðT [ t;U[ ujxÞ ¼ ChfSTðtjxÞ; SUðujxÞg; ð3:1Þ
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where a function Ch is called copula (Nelsen 2006) and a parameter h describes the
degree of dependence between T and U. With this model, the dependency between
T and U is described by Ch. As we shall detail in Sect. 3.2, the copula function Ch

must satisfy certain mathematical conditions such that Eq. (3.1) becomes a valid
survival function.

Kendall’s tau (s) is a well-known measure to assess the dependence between T
and U, which is defined by

s ¼ Prf ðT2 � T1ÞðU2 � U1Þ[ 0jx g � Prf ðT2 � T1ÞðU2 � U1Þ\0jxg;

where ðT1; U1Þ and ðT2;U2Þ are drawn from the model (3.1). Remarkably,
Kendall’s tau is solely expressed as a function of Ch through

sh ¼ 4
Z1

0

Z1

0

Chðu; vÞChðdu; dvÞ � 1:

This expression implies that Kendall’s tau does not depend on the marginal
survival functions. The copula model (3.1) has a number of other mathematical
properties that are useful for modeling dependent censoring.

This chapter is organized as follows. Sections 3.2 and 3.3 describe the definition
and fundamental properties of copulas. Section 3.4 explains the concept of residual
dependence. Section 3.5 applies copulas to analyze the bias of the Cox regression
analysis owing to dependent censoring.

3.2 Bivariate Copula

This section provides a concise introduction to copulas.
A bivariate copula is defined as a bivariate distribution function whose marginal

distributions are the uniform distribution on [0, 1]. Let Ch : ½0; 1�2 7! ½0; 1� be a
bivariate copula indexed by a parameter h. By the definition, any bivariate copula
satisfies the following conditions

(C1) Chðu; 0Þ ¼ Chð0; vÞ ¼ 0 , Chðu; 1Þ ¼ u, and Chð1; vÞ ¼ v for 0� u� 1
and 0� v� 1.

(C2) Chðu2; v2Þ � Chðu2; v1Þ � Chðu1; v2ÞþChðu1; v1Þ� 0 for 0� u1 � u2 � 1
and 0� v1 � v2 � 1.

Condition (C1) requires the uniformity of the two marginal distributions.
Condition (C2) requires that Ch produces a probability mass on the rectangular
region ½u1; u2� � ½v1; v2�.
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For a copula Ch, one can consider a pair of random variables ðV ;WÞ such that
PrðV � u;W � vÞ ¼ Chðu; vÞ. If one defines a pair of random variables ðT ;UÞ by
setting T ¼ S�1

T ðV jxÞ and U ¼ S�1
U ðW jxÞ, its bivariate survival function satisfies

Eq. (3.1).
Now suppose that Ch has the density function defined as

C½1;1�
h ðu; vÞ ¼ @2

@u@v
Chðu; vÞ for 0� u� 1 and 0� v� 1:

Then, Condition (C2) is equivalent to the condition of the nonnegative density:

(C2’) C½1;1�
h ðu; vÞ� 0 for 0� u� 1 and 0� v� 1.

Condition (C2) implies Condition (C2’) since

@2

@u@v
Chðu; vÞ ¼ lim

Du ! 0

Dv ! 0

ChðuþDu; vþDvÞ � ChðuþDu; vÞ � Chðu; vþDvÞþChðu; vÞ
DuDv

:

Condition (C2’) implies Condition (C2) since

Chðu; vÞ ¼
Zu

0

Zv

0

@2

@s@t
Chðs; tÞdsdt:

The following copulas meet Conditions (C1) and (C2):

The independence copula:

Cðu; vÞ ¼ uv;

The Clayton copula (Clayton 1978):

Chðu; vÞ ¼ ðu�h þ v�h � 1Þ�1=h; h[ 0;

The Gumbel copula (Gumbel 1960), also known as the Hougaard copula:

Chðu; vÞ ¼ exp �fð� log uÞhþ 1 þð� log vÞhþ 1g 1
hþ 1

h i
; h� 0;
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The Frank copula (Frank 1979):

Chðu; vÞ ¼ � 1
h
log 1þ ðe�hu � 1Þðe�hv � 1Þ

e�h � 1

� �
; h 6¼ 0:

The Joe copula (Joe 1993):

Chðu; vÞ ¼ 1� fð1� uÞh þð1� vÞh � ð1� uÞhð1� vÞhg1=h; h� 1;

The Farlie–Gumbel–Morgenstern (FGM) copula (Morgenstern 1956):

Cðu; vÞ ¼ uvf1þ hð1� uÞð1� vÞg; �1� h� 1:

Figure 3.1 gives the scatter plots for (Ti, Ui), i ¼ 1; . . .; 500, under the Clayton
copula model with the standard exponential distribution defined as

PrðTi [ t;Ui [ uÞ ¼ fðe�tÞ�h þðe�uÞ�h � 1g�1=h; for h ¼ 2 and h ¼ 8:

These data were generated by setting Ti ¼ � logVi and Ui ¼ � logWi, where
Vi;Wið Þ, i ¼ 1; . . .; 500, were generated from the Clayton copula. The plots exhibit
positive dependence between Ti and Ui, where the levels of dependence are dif-
ferent between h ¼ 2 and h ¼ 8.

An Archimedean copula is defined as

Chðu; vÞ ¼ /�1
h f/hðuÞþ/hðvÞg;

Fig. 3.1 Scatter plots of n ¼ 500 pairs generated from the standard exponential distribution under
the Clayton copula with h ¼ 2 sh ¼ 0:5ð Þ and h ¼ 8 ðsh ¼ 0:8Þ
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where the function /h : ½0; 1� 7! ½0;1� is called a generator of the copula, which is
continuous and strictly decreasing from /hð0Þ[ 0 to /hð1Þ ¼ 0. If
/hð0Þ � limt#0 /hðtÞ ¼ 1, the generator function /h is called a strict generator
and has the inverse function /�1

h : ½0;1� 7! ½0; 1� (p. 112 of Nelsen 2006). Under
these conditions, Ch satisfies Condition (C1). To meet Condition (C2), the generator
/h must be a convex function. Therefore, it suffices to assume d/hðtÞ=dt\0 and
d2/hðtÞ=dt2 [ 0 for any t 2 ð0; 1Þ, /hð1Þ ¼ 0, and /hð0Þ ¼ 1. The proof veri-
fying Conditions (C1) and (C2) under these assumptions is referred to
Theorem 4.1.4 of Nelsen (2006).

The Clayton copula has a strict generator /hðtÞ ¼ ðt�h � 1Þ=h for h[ 0. The
limit

lim
h!0

/hðtÞ ¼ lim
h!0

t�h � t�0

h
¼ d

dh
t�h

��
h¼0¼ � logðtÞ

is also a strict generator corresponding to the independence copula. Thus,
limh!0 Chðu; vÞ ¼ uv under the Clayton copula.

The Clayton copula can be extended to the range �1� h\0 with some modi-
fication. In this case, the generator is non-strict since /hð0Þ ¼ �1=h\1.
A mathematical inconvenience is that the domain of /�1

h is restricted to ½0;�1=h�.
This drawback is remedied by extending the domain by defining the pseudo-inverse

/�1
h ðtÞ ¼ fmaxð0; htþ 1Þg�1=h for t� 0 (Definition 4.1.1 of Nelsen 2006).

Consequently, the Clayton copula can be extended as

Chðu; vÞ ¼
ðu�h þ v�h � 1Þ�1=h if h[ 0;

uv if h ¼ 0;
fmaxðu�h þ v�h � 1; 0Þg�1=h if � 1\h\0:

8<
:

The negative-parameter Clayton copula is occasionally useful (e.g., Emura et al.
2011).

Table 3.1 summarizes the generator functions of the Clayton, Gumbel, Frank,
and Joe copulas. These four copulas have a strict generator function. The FGM
copula does not have a generator function as it is not an Archimedean copula.

3.3 Dependence Measures

Let ðV ;WÞ be a pair of random variables such that PrðV � u;W � vÞ ¼ Chðu; vÞ.
Kendall’s tau is a measure of dependence between V and W , defined as
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sh ¼ PrfðV2 � V1ÞðW2 �W1Þ[ 0g � PrðfV2 � V1ÞðW2 �W1Þ\0g;

where ðV1;W1Þ and ðV2;W2Þ have the same distribution as ðV ;WÞ. It can be shown
that

sh ¼ 4
Z1

0

Z1

0

Chðu; vÞChðdu; dvÞ � 1 ¼ 4
Z1

0

Z1

0

Chðu; vÞC½1;1�
h ðu; vÞdudv� 1:

For instance, under the FGM copula, one can calculate the above integral to
compute sh ¼ 2h=9 for �1� h� 1. This means that the range of sh under the FGM
copula is limited to the interval between �2=9 and 2=9.

An Archimedean copula has a simpler form

sh ¼ 1þ 4
Z1

0

/hðtÞ
/0
hðtÞ

dt ¼ 1� 4
Z1
0

s
d
ds

/�1
h ðsÞ

� �2

ds:

Table 3.1 summarizes sh for the Clayton, Gumbel, Frank, and Joe copulas. In
these copulas, sh increases with h and sh ! 1 as h ! 1.

It is convenient to define partial derivatives of a copula:

C½1;0�
h ðu; vÞ ¼ @

@u
Chðu; vÞ; C½0;1�

h ðu; vÞ ¼ @

@v
Chðu; vÞ;

C½1;1�
h ðu; vÞ ¼ @2

@u@v
Chðu; vÞ:

The cross-ratio function (Oakes 1989) is defined as

Rhðu; vÞ ¼ C½1;1�
h ðu; vÞChðu; vÞ

C½1;0�
h ðu; vÞC½0;1�

h ðu; vÞ
:

Table 3.1 Examples of copulas

Parameter Generator: /hðtÞ Kendall’s tau: sh rhðsÞ ¼ �s/00
hðsÞ=/0

hðsÞ
Clayton h[ 0 ðt�h � 1Þ=h h=ðhþ 2Þ 1þ h

Gumbel h� 0 f � logðtÞ ghþ 1 h=ð hþ 1 Þ 1� h= logðsÞ
Frank h 6¼ 0 � log

e�ht � 1
e�h � 1

� �
1� 4

h 1� 1
h

Rh
0

t
et�1 dt

� � sh
1� e�hs

Joe h� 1 � logf 1� ð1� tÞh g 1� 4
R1
0

tð 1�e�t Þ2=h�2e�2t

h2
dt s

1� s
h

1� ð 1� s Þh
� 1

" #

FGM �1� h� 1 None 2h=9 None
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Under the independence copula, Rhð u; v Þ ¼ 1 for 0� u� 1 and 0� v� 1.
Remarkably, the Clayton copula has the constant cross-ratio Rhð u; v Þ ¼ 1þ h.
The cross-ratio function describes the local dependence at a location ð u; v Þ:
• Rhð u; v Þ[ 1: positive local dependence,
• 0\Rhð u; v Þ\1: negative local dependence,
• Rhð u; v Þ ¼ 1: local independence.

A simplified formula of the cross-ratio function is available for an Archimedean
copula. Using basic derivative rules, it can be shown that

Rhðu; vÞ ¼ rhfChðu; vÞg;

where rhðsÞ ¼ �s/00
hðsÞ=/0

hðsÞ. Table 3.1 shows the formulas for rhð�Þ under
selected copulas. Hence, the cross-ratio function depends on ð u; v Þ only through a
one-dimensional quantity s ¼ Chð u; v Þ. Oakes (1989) obtained an inverse formula
to obtain /hð�Þ from rhð�Þ.

The cross-ratio function has a practical interpretation as the relative risk (RR).
Consider a medical follow-up in which the endpoint is time-to-death T . A patient
may drop out at time U due to reasons such as treatment toxicity and tumor
progression (informative dropout). We are interested in how the timing of dropout
influences the risk of death. For this purpose, we evaluate the influence of dropout
using the conditional hazard functions:

• hTðtjU ¼ u; xÞ ¼ Prðt� T\tþ dtjT � t;U ¼ u; xÞ=dt:
– the hazard function of death given that a patient has dropped out at time u

• hTðtjU[ u; xÞ ¼ Prðt� T\tþ dtjT � t;U[ u; xÞ=dt:
– the hazard function of death given that a patient has not yet dropped out at

time u

Under a model PrðT [ t;U[ ujxÞ ¼ ChfSTðtjxÞ; SUðujxÞg, the RR is expressed
as

hTðtjU ¼ u; xÞ
hTðtjU[ u; xÞ ¼ RhfSTðtjxÞ; SUðujxÞg:

If Rh [ 1, patients who have dropped out at time u possess higher risk of death
compared to those who have not yet dropped out at time u. The Clayton copula
yields the constant RR for any t and u and hence is regarded as a type of pro-
portional hazard models.

The usefulness of the cross-ratio function is not restricted to the case where U is
the time of dropout and T is time-to-death. One may define U as a predictive
biomarker for cancer recurrence and T as time-to-recurrence (Day et al. 1997).
Emura et al. (2017a, b) considered the case where U is time-to-tumor progression
and T is time-to-death under their joint frailty-copula model. If we define U as the
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delayed entry time (left-truncation time), the cross-ratio function is useful to assess
the degree of dependent truncation (Emura et al. 2011). The issues of dependent
truncation shall be shortly discussed in the final chapter of this book.

We have seen that the Clayton copula has nice properties for statistical mod-
eling: (1) a simple copula function, (2) simple expression of Kendall’s tau,
(3) constant cross-ratio function, and (4) interpretability of the parameter h as the
RR. These properties are extremely useful for modeling bivariate survival data and
interpreting the results of data analysis.

3.4 Residual Dependence

This section introduces the concept of residual dependence between survival time
and censoring time. Residual dependence arises when some important covariates
influencing both survival time and censoring time are ignored or omitted during the
analysis of data. This idea was considered by Clayton (1978) when he introduced
his bivariate survival model.

In the Cox model hðtjxÞ ¼ h0ðtÞ expðb0xÞ, the regression coefficients b are
estimated by the partial likelihood estimator. The consistency of the estimator
critically relies on the independent censoring assumption represented as

PrðT [ t;U[ ujxÞ ¼ STðtjxÞSUðujxÞ; ð3:2Þ

where STðtjxÞ ¼ PrðT[ tjxÞ and SUðujxÞ ¼ PrðU[ ujxÞ are the survival
functions.

Suppose that a two-dimensional vector of covariates x ¼ ðx1; x2Þ0 relates to both
T and U. Further suppose that a researcher is interested in the effect of x1 on
survival. If a researcher performs univariate Cox regression by treating x1 as a
single covariate while omitting x2, the required independent censoring assumption
is

PrðT [ t;U[ ujx1Þ ¼ STðtjx1ÞSUðujx1Þ;

where STðtjx1Þ ¼ PrðT [ tjx1Þ and SUðujx1Þ ¼ PrðU[ ujx1Þ are the marginal
survival functions given x1. However, one usually cannot verify the independent
censoring assumption given only x1 even if Eq. (3.2) holds for x ¼ ðx1; x2Þ0.

Figure 3.2 explains how the independent censoring assumption fails to hold by
omitting x2. Since x2 relates to both T and U, the variation in x2 induces random
effects, a popular idea to introduce dependence in bivariate survival models (Oakes
1989). For instance, if x2 is a gene expression predictive of tumor progression, a
higher (lower) value of x2 is linked to shorter (longer) values of T and U.
Consequently, T and U exhibit positive association.

The above discussions lead to a principle that the independent censoring
assumption is less likely to hold if many important covariates are omitted or ignored
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from the Cox model. This mechanism of yielding dependence is termed residual
dependence. In particular, the independent censoring assumption may not be ful-
filled for Cox regression with only one covariate (univariate Cox regression).
Residual dependence may arise in a meta-analysis where important covariates are
missing in some studies (Emura et al. 2017a, b).

The mechanism of yielding residual dependence in univariate Cox regression is
seen by using mathematical expressions as follows. Suppose that T and U are
conditionally independent given x, that is, Eq. (3.2) holds. Assume the Cox models
PrðT [ tjxÞ ¼ expf�eb

0xKTðtÞg and PrðU[ ujxÞ ¼ expf�ec
0xKUðuÞg, where

KTðtÞ and KUðuÞ are cumulative hazard functions. Let Xj ¼ eb
0
ð�jÞxð�jÞ and

Yj ¼ ec
0
ð�jÞxð�jÞ , where bð�jÞ is b excluding bj; similarly cð�jÞ and xð�jÞ are defined.

Thus, the bivariate survival function is assumed to be PrðT [ t;U[ ujxÞ ¼
expf�ebjxjKTðtÞXj � ecjxjKUðuÞYjg: It follows that, for a given xj (the jth compo-
nent of x),

PrðT [ t;U[ ujxjÞ ¼ ubð�jÞ;cð�jÞ½u�1
bð�jÞfPrðT [ t jxjÞg;u�1

cð�jÞfPrðU[ u jxjÞg�
ð3:3Þ

where ubð�jÞ;cð�jÞðu; vÞ ¼ Efexpð�uXj � vYjÞjxjg, ubð�jÞðuÞ ¼ ubð�jÞ;cð�jÞðu; 0Þ,
and ucð�jÞðvÞ ¼ ubð�jÞ;cð�jÞð0; vÞ are Laplace transforms. For a special case where
b ¼ c, we obtain an Archimedean copula model

PrðT[ t;U[ ujxjÞ ¼ ubð�jÞ½u�1
bð�jÞfPrðT [ tjxjÞgþu�1

bð�jÞfPrðU[ u jxjÞg�:
ð3:4Þ

The above analysis indicates that the model (3.2) yields dependency between T
and U given only xj. Hence,

PrðT [ t;U[ ujxjÞ ¼ PrðT [ tjxjÞ PrðU[ ujxjÞ; j ¼ 1; . . .; p ð3:5Þ

does not hold in general, which is a more stringent condition than Eq. (3.2).
In general, T and U may be dependent for any given xj with an unknown

dependence structure. Sklar’s theorem (Sklar 1959; Nelsen 2006) guarantees that
the bivariate survival function is written as

Survival time (T)

Censoring time (U)

x1: Covariate of interest

x2: Omitted covariate 

Dependence 
induced by x2

Fig. 3.2 Mechanism of
yielding residual dependence
between survival time and
censoring time by omitting a
covariate
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PrðT [ t;U[ ujxjÞ ¼ CjfPrðT [ tjxjÞ;PrðU[ ujxjÞg; j ¼ 1; . . .; p;

where Cj is a copula. Equation (3.5) corresponds to Cjð u; v Þ ¼ uv for j ¼ 1; . . .; p.
This is clearly a strong assumption in light of Eq. (3.3) or (3.4). Although the form
of Cj is difficult to specify, copulas can relax the stringent condition of Cjð u; v Þ ¼
uv for j ¼ 1; . . .; p. We shall further consider this copula-based method in Chap. 5.

3.5 Biased Estimation of Cox Regression Due
to Dependent Censoring

Following Emura and Chen (2016), we shall apply copulas to study biased esti-
mation of Cox regression when dependent censoring exists. Define notations

• T : survival time,
• U: censoring time,
• x: covariate taking 0 or 1.

The conditional independence between T and U given x is not assumed so that T
may be dependently censored by U. The hazard function for T is defined as

hðtjxÞ � Prðt� T\tþ dtjT � t; xÞ=dt:

Under the univariate Cox model hðtjxÞ ¼ h0ðtÞ expðbxÞ, one can show

b ¼ log
hðtjx ¼ 1Þ
hðtjx ¼ 0Þ :

The parameter b is interpreted as the log of hazard ratio comparing hðtjx ¼ 1Þ
and hðtjx ¼ 0Þ. Recall that the partial likelihood estimate of b is essentially equal to
the log of observed hazard ratio (Chap. 2). However, under dependent censoring,
the observed hazard rates do not correctly capture hðtjx ¼ 1Þ and hðtjx ¼ 0Þ, and
hence, the estimate of b may be biased.

To quantify the bias, we use the cause-specific hazard function

h#ðtj xÞ ¼ Prð t� T\tþ dt; T �UjT � t ; U� t; x Þ=dt

which describes the apparent hazard for death in the presence of dependent cen-
soring (p. 251, Kalbfleisch and Prentice 2002). With dependent censoring, observed
survival data give a biased estimate of hðtjxÞ while they give an asymptotically
unbiased estimate of h#ðtj xÞ (Fleming and Harrington 1991). The equality
h#ðtj xÞ ¼ hðtj xÞ holds under either one of the following two conditions.

36 3 Copula Models for Dependent Censoring



Condition (A): T and U are independent given x (independent censoring
assumption).
Condition (B): Survival time is not censored, that is, PrðU\T jxÞ ¼ 0.

Otherwise, h#ðtj xÞ and hðtj xÞ are usually different. The larger discrepancy
between h#ðtj xÞ and hðtj xÞ corresponds to the stronger effect of dependent cen-
soring on the bias.

Within the counting process theory, the equality h#ðtj xÞ ¼ hðtj xÞ itself is
adopted as the formal definition of independent censoring (Fleming and Harrington
1991), a slightly weaker assumption than Condition (A).

We shall examine the effect of dependent censoring under a copula model

PrðT [ t;U[ ujxÞ ¼ ChfSTðtjxÞ; SUðujxÞg;

where STðt jxÞ ¼ Prð T [ t jx Þ and SUðu jxÞ ¼ Prð U[ u jx Þ are the marginal
survival functions, and Ch is a copula with a parameter h. As indicated in Rivest and
Wells (2001), the cause-specific hazard function becomes h#h ðtj xÞ ¼ chðtj xÞhðtjxÞ,
where

chðtjxÞ ¼
C½1;0�
h fSTðtjxÞ; SUðtjxÞgSTðtjxÞ

ChfSTðtjxÞ; SUðtjxÞg :

This motivates us to define the apparent effect of the covariate x,

b#ðh; tÞ � log
h#h ðtjx ¼ 1Þ
h#h ðtjx ¼ 0Þ ¼ log

hðtjx ¼ 1Þ
hðtjx ¼ 0Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
True effect

þ log
chðtjx ¼ 1Þ
chðtjx ¼ 0Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Bias

:

The equation shows that the apparent effect can be partitioned into the true effect
and the bias. Note that the copula enters into the bias only.

Under the Cox model hðtjxÞ ¼ h0ðtÞ expðbxÞ, one can formulate the bias of
estimating b,

Biasðh; tÞ � b#ðh; tÞ � b ¼ log
chðtjx ¼ 1Þ
chðtjx ¼ 0Þ :

The bias vanishes if Chðu; vÞ ¼ uv. The bias is usually nonzero except for some
special copulas. To visualize the effect of the bias, we suggest fixing the value t at
the median survival STðtj0Þ ¼ 0:5 and plotting Biasðh; tÞ against h.

We conducted numerical analysis under the Clayton copula model
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Prð T [ t ; U[ ujx Þ ¼ f STðt jxÞ�h þ SUðu jxÞ�h � 1 g�1=h; h[ 0; ð3:6Þ

where STðtjxÞ ¼ STðtj0ÞexpðbxÞ, SUðujxÞ ¼ SUðuj0ÞexpðbxÞ, and SUðt j0Þ ¼
STðt j0ÞpC=ð1�pCÞ for 0\pC\1. Here, pC � 100 (%) is the censoring percentage
such that pC 	 PrðU\TjxÞ. Then, one can calculate Biasðh; tÞ by using

chðtjxÞ ¼
STðtjxÞ�h

STðtjxÞ�h þ SUðtjxÞ�h � 1
¼ fSTðtj0ÞexpðbxÞg�h

fSTðtj0ÞexpðbxÞg�h þfSUðtj0ÞexpðbxÞg�h � 1
:

Figure 3.3 displays Biasðh; tÞ under the Clayton copula model when t is fixed
such that STðt j0Þ ¼ 0:5. If the censoring percentage is high (70%), the bias differs
substantially from zero. Furthermore, the bias inflates as h deviates from zero. For
the censoring percentages 30 and 50%, the bias is modest. The bias vanishes if the
censoring percentage is zero; that is, Biasðh; tÞ ¼ 0 for any h[ 0.

It is interesting to point out that Biasðh; tÞ under the Gumbel copula behaves
very differently from that under the Clayton copula. Under the Gumbel copula,

chðtjxÞ ¼ f� log STðtjxÞgh½f� log STðtjxÞghþ 1 þf� log SUðtjxÞghþ 1�� h
hþ 1

¼ ehbxf� log STðtj0Þgh½eðhþ 1Þbxf� log STðtj0Þghþ 1 þ eðhþ 1Þbxf� log SUðtj0Þghþ 1�� h
hþ 1

¼ f� log STðtj0Þgh½f� log STðtj0Þghþ 1 þf� log SUðtj0Þghþ 1�� h
hþ 1:

Hence, chð tj1 Þ ¼ chð tj0 Þ. This implies that Biasðh; tÞ ¼ 0 for any h and t.
We wish to compare Biasðh; tÞ with the actual bias Eh½b̂� � b, where b̂ is the

partial likelihood estimator. To do so, we conducted Monte Carlo simulations. We

Fig. 3.3 Plot of Biasðh; tÞ � b#ðh; tÞ � b under the Clayton copula with parameter h
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generated data of n ¼ 500 under the Clayton copula model in Eq. (3.6). The
marginal survival function is STðtj0Þ ¼ expð�tÞ, and the covariate takes xi ¼ 0 or
xi ¼ 1 with probability 0.5. All parameter settings followed those for Fig. 3.3. We
computed b̂ using the data and then calculated Eh½b̂� � b based on 1000 repetitions.
Figure 3.4 shows that Eh½b̂� � b is very similar to Biasðh; tÞ. Our additional sim-
ulations under the Gumbel copula show that Eh½b̂� � b is very close to zero which
agrees with Biasðh; tÞ ¼ 0.

3.6 Exercises

1. Show that Condition (C2’) does not hold for Chðu; vÞ ¼ ðu�h þ v�h � 1Þ�1=h

with �1\h\0.
2. Verify Conditions (C1) and (C2’) for the Clayton, Gumbel, FGM, and Joe

copulas.
3. Define a pair of random variables ðT ;UÞ by setting T ¼ S�1

T ðV jxÞ and
U ¼ S�1

U ðW jxÞ, where a pair of random variables ðV ;WÞ satisfies PrðV � u;
W � vÞ ¼ Chðu; vÞ. Show PrðT[ t;U[ ujxÞ ¼ ChfSTðtjxÞ; SUðujxÞg.

4. Show that the copula density for an Archimedean copula is expressed as

C½1;1�
h ðu; vÞ ¼ �/00

hfChðu; vÞg/0
hðuÞ/0

hðvÞ=½/0
hfChðu; vÞg�3.

5. Calculate Kendall’s tau for the Clayton, Gumbel, FGM, and Joe copulas.
6. Calculate the cross-ratio function Rh under the Clayton, Gumbel, FGM, and Joe

copulas.

Fig. 3.4 Bias Eh½b̂� � b under the Clayton copula with parameter h
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7. Verify the equality h#ðtjxÞ ¼ hðtjxÞ under Condition (A) or (B).

8. Let STðtjxÞ ¼ STðtj0ÞexpðbxÞ, SUðujxÞ ¼ SUðuj0ÞexpðbxÞ, and SUðtj0Þ ¼
STðtj0ÞpC=ð1�pCÞ. Show pC ¼ PrðU\T jxÞ under Condition (A).

9. Express PrðU\T jxÞ under the Clayton copula model (3.6). Hint: expression
may be in an integral form on [0, 1] (Emura and Pan 2017).
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Chapter 4
Analysis of Survival Data Under
an Assumed Copula

Abstract This chapter introduces statistical methods for analyzing survival data
subject to dependent censoring. We review the copula-graphic estimator, parametric
likelihood methods, and semi-parametric likelihood methods developed under a
variety of copula models. All these approaches employ an assumed copula, a
copula function that is completely specified including its parameter value to avoid
the non-identifiability.

Keywords Burr distribution � Competing risk � Copula-graphic estimator
Maximum likelihood estimator � Spline � Weibull distribution

4.1 Introduction

The idea of an assumed copula was suggested by Zheng and Klein (1995) in their
analysis of survival data subject to dependent censoring. They considered a
bivariate distribution function of survival time and censoring time, where the form
of the copula function is completely specified, including its parameter value. This
strong assumption of the copula is imposed to make the model identifiable.
Assuming the independence copula is equivalent to the assumption of independent
censoring between survival time and censoring time.

Zheng and Klein (1995) view censoring as a competing risk of death and view
death as a competing risk of censoring. This is the setting of bivariate competing
risks where one can observe the first-occurring event time and the type of the
observed event (death or censoring whichever comes first). With this view, survival
data with dependent censoring are equivalent to bivariate competing risks data. In
the context of competing risks, the independence among event times is rarely
assumed since many medical and engineering applications yield event times that are
positively associated. Hence, statistical methods for analyzing bivariate competing
risks data can be applicable for analyzing survival data with dependent censoring.

Under an assumed copula, Zheng and Klein (1995) estimated the marginal
survival function by the copula-graphic (CG) estimator. The survival function
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estimated by the CG estimator is analogous to the one estimated by the Kaplan–
Meier estimator. The CG estimator reduces to the Kaplan–Meier estimator under
the independence copula. In real applications, the CG estimator is calculated by
assuming one of Archimedean copulas. Rivest and Wells (2001) obtained a simple
expression of the CG estimator when the assumed copula belongs to Archimedean
copulas. Nowadays, the CG estimator is an indispensable tool for analyzing sur-
vival data with dependent censoring (Braekers and Veraverbeke 2005; Staplin
2012; de Uña-Álvarez and Veraverbeke 2013; 2017; Emura and Chen 2016; Emura
and Michimae 2017; Moradian et al. 2017). Note, however, that the CG estimator
cannot handle covariates. Likelihood-based approaches can naturally deal with
covariates under an assumed copula.

Throughout this chapter, we review the copula-graphic estimator, parametric
likelihood methods, and semi-parametric likelihood methods developed under an
assumed copula.

4.2 The Copula-Graphic (CG) Estimator

Analysis of survival data often begins by drawing the Kaplan–Meier survival curve
which graphically summarizes survival experience of patients in the data. However,
under dependent censoring, the Kaplan–Meier estimator may give biased infor-
mation about survival. A survival curve calculated from the CG estimator provides
unbiased information about survival if the copula function between death time and
censoring time is correctly specified. Below, we shall introduce the CG estimator
under an Archimedean copula as derived in Rivest and Wells (2001).

Consider random variables, defined as

• T: survival time
• U: censoring time

Consider an Archimedean copula model

PrðT [ t;U[ uÞ ¼ /�1
h ½/hfSTðtÞgþ/hfSUðuÞg�; ð4:1Þ

where /h : ½0; 1� 7! ½0;1� is a generator function, which is continuous and strictly
decreasing from /hð0Þ ¼ 1 to /hð1Þ ¼ 0 (Chap. 3); STðtÞ ¼ PrðT [ tÞ and
SUðuÞ ¼ PrðU[ uÞ are the marginal survival functions.

Let ðti; diÞ, i ¼ 1; . . .; n, be survival data without covariates, where
ti ¼ minfTi;Uig, di ¼ IðTi �UiÞ, and Ið�Þ is the indicator function. Assume that all
the observed times are distinct (ti 6¼ tj whenever i 6¼ j). Based on the data, one can
estimate the survival function by the following estimator:
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The CG estimator is defined as

ŜTðtÞ ¼ /�1
h

X
ti � t;di¼1

/h
ni � 1
n

� �
� /h

ni
n

� �" #
; 0� t� max

i
ðtiÞ

where ni ¼
Pn

‘¼1 Iðt‘ � tiÞ is the number at risk at time ti; ŜTðtÞ ¼ 1 if no
death occurs up to time t; ŜTðtÞ is undefined for t[ max

i
ðtiÞ.

The derivation of the CG estimator: Assume that ST(t) is a decreasing step
function with jumps at death times. Thus, di = 1 implies ST(ti) 6¼ ST(ti − dt) and
SU(ti) = SU(ti − dt). Setting t = u = ti in Eq. (4.1), we have

/hfPrðT [ ti;U[ tiÞg ¼ /hfSTðtiÞgþ/hfSUðtiÞg:

In the left-side of the preceding equation, we estimate PrðT [ ti;U[ tiÞ by
(ni − 1)/n, where ni � 1 ¼ Pn

‘¼1 Iðt‘ [ tiÞ is the number of survivors at time ti.
Accordingly,

/h
ni � 1
n

� �
¼ /hfSTðtiÞgþ/hfSUðtiÞg: ð4:2Þ

Meanwhile, we set t = u = ti − dt in Eq. (4.1) and then estimate PrðT [ ti �
dt;U[ ti � dtÞ by ni/n. Then,

/h
ni
n

� �
¼ /hfSTðti � dtÞgþ/hfSUðtiÞg; di ¼ 1: ð4:3Þ

Equations (4.2) and (4.3) result in the system of difference equations

/h
ni � 1
n

� �
� /h

ni
n

� �
¼ /hfSTðtiÞg � /hfSTðti � dtÞg; di ¼ 1:

We impose the usual constraint that ST(ti − dt) = 1 when ti is the smallest death
time. Then, the solution to the different equations is

/hfSTðtÞg ¼
X

ti � t;di¼1

½/hfSTðtiÞg � /hfSTðti � dtÞg�

¼
X

ti � t;di¼1

/h
ni � 1
n

� �
� /h

ni
n

� �
;

which is equivalent to the CG estimator. ■
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Under the independence copula, given by /hðtÞ ¼ � logðtÞ, the CG estimator is
equivalent to the Kaplan–Meier estimator. Under the Clayton copula, given by
/hðtÞ ¼ ðt�h � 1Þ=h for h > 0, the CG estimator is written as

ŜTðtÞ ¼ 1þ
X

ti � t;di¼1

ni � 1
n

� ��h

� ni
n

� ��h
( )" #�1=h

:

This CG estimator can be computed by the compound. Cox R package (Emura
et al. 2018).

The CG estimator provides a graphical summary of survival experience for
patients in the same manner as the Kaplan–Meier estimator.

The survival curve is defined as the plot of ŜTðtÞ against t, starting with t = 0
and ending with tmax ¼ max

i
ðtiÞ. The curve is a step function that jumps only

at points where a death occurs. On the curve, censoring times are often
indicated as the mark “+”.

If tmax ¼ max
i
ðtiÞ corresponds to time-to-death of a patient, then

ŜTðtmaxÞ ¼ /�1
h ð1Þ ¼ 0. This is because /h

ni�1
n

� � ¼ /hð0Þ ¼ 1 for some i in the
definition of the CG estimator. If tmax ¼ max

i
ðtiÞ corresponds to censoring time of a

patient, then ŜðtmaxÞ[ 0.

Additional remarks: The CG estimator can be modified to accommodate a
variety of different censoring and truncation mechanisms. de Uña-Álvarez and
Veraverbeke (2013) derived the CG estimator when survival time is subject to both
dependent censoring and independent censoring. This estimator is convenient if the
data provide the causes of censors for all patients. For instance, censoring caused by
dropout may be dependent while censoring caused by the study termination is
independent (see Chap. 14 of Collett (2015)). de Uña-Álvarez and Veraverbeke
(2017) derived the CG estimator when survival time is subject to both dependent
censoring and independent truncation. Chaieb et al. (2006) and Emura and
Murotani (2015) derived the CG estimator when survival time is subject to inde-
pendent censoring and dependent truncation.
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4.3 Model and Likelihood

Throughout this chapter, we consider a bivariate survival function

PrðT [ t;U[ ujxÞ ¼ ChfSTðtjxÞ; SUðujxÞg;

where Ch is a copula (Nelsen 2006) with a parameter h; STðtjxÞ ¼ PrðT [ tjxÞ and
SUðujxÞ ¼ PrðU[ ujxÞ are the marginal survival functions. The covariates are
defined as x ¼ ðx1; x2Þ such that STðtjxÞ ¼ STðtjx1Þ and SUðujxÞ ¼ SUðtjx2Þ. For
instance, if x1 ¼ ðAge; genderÞ and x2 ¼ ðgenderÞ, the model does not consider the
effect of age on censoring time.

Survival data consist of ðti; di; xiÞ, i ¼ 1; . . .; n, where xi ¼ ðxi1; . . .; xipÞ0 is a
vector of covariates. The likelihood for the ith patient is expressed as

Li ¼ PrðT ¼ ti;U[ tijxiÞdi PrðT [ ti;U ¼ tijxiÞ1�di ¼ f#T ðtijxiÞdi f#U ðtijxiÞ1�di ;

where

f#T ðtijxiÞ ¼ � @

@x
PrðT [ x;U[ tijxiÞ

����
x¼ti

;

f#U ðtijxiÞ ¼ � @

@y
PrðT[ ti;U[ yjxiÞ

����
y¼ti

;

are called the sub-density functions. Therefore, the log-likelihood is defined as

‘ ¼
Xn
i¼1

½di log f#T ðtijxiÞþ ð1� diÞ log f#U ðtijxiÞ�: ð4:4Þ

An equivalent expression is

‘ ¼
Xn
i¼1

½di log h#T ðtijxiÞþ ð1� diÞ log h#U ðtijxiÞ � Uðti; tijxiÞ�; ð4:5Þ

where

h#T ðtijxiÞ ¼
f#T ðtijxiÞ

PrðT [ ti;U[ tijxiÞ ; h#U ðtijxiÞ ¼
f#U ðtijxiÞ

PrðT [ ti;U[ tijxiÞ ;

are the cause-specific hazard functions, and

Uðti; tijxiÞ ¼ � log PrðT [ ti;U[ tijxiÞ ¼ � log PrðminfT ;Ug[ tijxiÞ

is the cumulative hazard function for minf T ;U g.
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With appropriate models on Ch, STð�jxÞ and SUð�jxÞ, one can obtain the maxi-
mum likelihood estimator (MLE) with Eqs. (4.4) or (4.5).

4.4 Parametric Models

4.4.1 The Burr Model

Escarela and Carrière (2003) considered a copula model with the Burr distribution
defined as

STðtjx1iÞ ¼ f1þ c1ðk1itÞm1g�1=c1 ; t� 0;

SUð u jx2i Þ ¼ f 1þ c2ðk2iuÞm2 g�1=c2 ; u� 0;

where vj [ 0, cj > 0, and kji ¼ expðbj0 þ b0jxjiÞ for j ¼ 1 and 2. The Burr distribution
includes many distributions as special cases; vj ¼ 1 gives the Pareto distribution,
cj = 1 gives the log-logistic distribution, and cj ! 0 gives the Weibull distribution.
For the copula, Escarela and Carrière (2003) considered the Frank copula.

Chðu; vÞ ¼ � 1
h
log 1þ ðe�hu � 1Þðe�hv � 1Þ

e�h � 1

	 

; h 6¼ 0:

Their motivation to use the Frank model is that they wish to consider both positive
dependence ðh[ 0Þ and negative dependence ðh\0Þ between two variables.

4.4.2 The Weibull Model

Likelihood-based analyses of Escarela and Carrière (2003) focused on the Weibull
model

STðtjx1iÞ ¼ expf�ðk1itÞm1g; t� 0; SUðujx2iÞ ¼ expf�ðk2iuÞm2g; u� 0:

With the Frank copula model, they maximize the log-likelihood of Eq. (4.4) with
respect to ðb10; b1; m1; b20; b2; m2Þ given the value h. This leads to the profile
likelihood

‘�ðhÞ ¼ max
ðb10;b1;m1;b20;b2;m2Þ

‘ðb10; b1; m1; b20; b2; m2jhÞ:

The MLE of ðb10; b1; m1; b20; b2; m2Þ is obtained at a given value
ĥ ¼ argmaxh ‘�ðhÞ.
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The data analysis of Escarela and Carrière (2003) revealed that the estimator ĥ
had a wide confidence interval (CI) if no covariate enters the model. This phe-
nomenon is related to the non-identifiability of the model. The CI of ĥ was
shrunken if many covariates enter the model. Heckman and Honoré (1989) showed
that the non-identifiability is resolved by adding covariates into the marginal
models. Unfortunately, there are no papers that give the conditions (e.g., how many
covariates or how many samples) required to give reasonable precision of ĥ for
estimating the true value h.

In this context, we suggest regarding the approach of Escarela and Carrière (2003)
as a two-step fashion. The first stage selects (not estimates) h via the profile likelihood.
With the selected value ĥ, the second stage estimates the remaining parameters
ðb10; b1; m1; b20; b2; m2Þ by the MLE. The SEs of ðb10; b1; m1; b20; b2; m2Þ may not
account for the variation of ĥ following the approaches of an assumed copula.

4.4.3 The Pareto Model

In the absence of covariates, Shih et al. (2018) considered the Pareto marginal
models

STðtÞ ¼ ð1þ a1tÞ�c1 ; t� 0; SUðuÞ ¼ ð1þ a2uÞ�c2 ; u� 0;

where aj > 0 and cj > 0 are re-parameterized from the Burr models. The marginal
hazard functions are hTðtÞ ¼ a1c1=ð1þ a1tÞ and hUðuÞ ¼ a2c2=ð1þ a2uÞ and the
marginal density functions are fTðtÞ ¼ hTðtÞSTðtÞ and fUðuÞ ¼ hUðuÞSUðuÞ.
Applying the Frank copula to Eq. (4.4), the log-likelihood can be written as

‘ða1; a2; c1; c2jhÞ ¼
Xn
i¼1

diflog fTðtiÞ � hSTðtiÞþ logðe�hST ðtiÞ � 1Þ � logðe�h � 1Þþ hSðtiÞg

þ
Xn
i¼1

ð1� diÞflog fUðtiÞ � hSUðtiÞþ logðe�hSUðtiÞ � 1Þ � logðe�h � 1Þþ hSðtiÞg;

where SðtÞ ¼ ChfSTðtÞ; SUðtÞg. The MLE is obtained by maximizing the preceding
equation.

They developed a Newton–Raphson algorithm to obtain the MLE of
ða1; a2; c1; c2Þ given the value h. The Bivariate.Pareto R package (Shih and Lee
2018) can be used to compute the MLE and the SE for the parameters. Hence, this
model uses an assumed copula. Their Newton–Raphson algorithm employs a
randomization scheme to reduce the sensitivity of the convergence results against
the initial values, which is termed the randomized Newton–Raphson algorithm (Hu
and Emura 2015). When h is unknown, the profile likelihood estimate was sug-
gested, namely ĥ ¼ argmaxh ‘�ðhÞ, where ‘�ðhÞ ¼ max

ða1;a2;c1;c2Þ
‘ða1; a2; c1; c2jhÞ.
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However, they reported that the profile likelihood occasionally does not have a peak
and ĥ has a large sampling variation. These problems are related to the
non-identifiability of competing risks data (Tsiatis 1975).

Due to the difficulty of estimating h, Shih et al. (2018) considered a restricted
model STðtÞ ¼ SUðtÞ ¼ ð1þ atÞ�c. The model makes a strong assumption that the
two marginal distributions are the same. Under the Frank copula, they developed
the randomized Newton–Raphson algorithm to obtain the MLE of ða; c; hÞ. While
the peak of the likelihood always exists under this restricted model, the variation of
estimating h remains large. Including covariates into the marginal Pareto models
may improve the precision of ĥ. Alternatively, a sensitivity analysis may be con-
sidered under a few selected values of h.

4.4.4 The Burr III Model

In the absence of covariates, Shih and Emura (2018) considered the Burr III
marginal distributions

STðtÞ ¼ 1� ð1þ t�cÞ�a; t[ 0; SUðuÞ ¼ 1� ð1þ u�cÞ�b; u[ 0;

where ða; b; cÞ are positive parameters. They considered the generalized FGM
copula with a copula parameter h. In their model, the copula is imposed on a
bivariate distribution function rather than a bivariate survival function. More details
about this copula, such as the range of h and the expressions of Kendall’s tau, are
referred to Amini et al. (2011), Domma and Giordano (2013) and Shih and Emura
(2016, 2018).

Shih and Emura (2018) used the randomized Newton–Raphson algorithm to
obtain the MLE of ða; b; cÞ given the value of h. When the value of h is unknown,
they suggested making inference for ða; b; cÞ, followed by the profile likelihood
estimate ĥ ¼ argmaxh ‘�ðhÞ, where ‘�ðhÞ ¼ max

ða;b;cÞ
‘ða; b; cjhÞ. They also proposed a

goodness-of-fit method to test the validity of the generalized FGM copula and the
Burr III marginal models. The estimation and goodness-of-fit algorithms are
implemented in the GFGM.copula R package (Shih 2018). Their method is
developed for bivariate competing risks data, where dependent censoring is a
competing risk of death, and death is a competing risk of dependent censoring.

4.4.5 The Piecewise Exponential Model

The piecewise exponential model has been considered to fit survival data with
dependent censoring (Staplin et al. 2015; Emura and Michimae 2017). Let 0 ¼
a0\a1\ � � �\am be a knot sequence, where m is the number of knots. Assume
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that the hazard function for T in an interval ðaj�1; aj� is a constant ehj for
j ¼ 1; . . .;m, such that h ¼ ðh1; . . .; hmÞ are parameters without restriction to their
ranges. The survival function is

STðt; hÞ ¼ exp �ehjðt � aj�1Þ �
Xj�1

k¼1

ehkðak � ak�1Þ
( )

; t 2 ðaj�1; aj�;

where
P0

k¼1 ð�Þ � 0. In a similar fashion, define the survival function SUðu; cÞ for
the censoring time U, where c ¼ ðc1; . . .; cmÞ.

Emura and Michimae (2017) considered a copula model

PrðT [ t;U[ uÞ ¼ ChfSTðt; hÞ; SUðu; cÞg; h ¼ ðh1; . . .; hmÞ; c ¼ ðc1; . . .; cmÞ;

where STðt; hÞ and SUðu; cÞ follow the piecewise exponential models. The Clayton
copula and the Joe copula were chosen for their numerical studies. They developed
inference procedures based on the likelihood in Eq. (4.4) given the value h. Hence, they
applied an assumed copula. They did not use the profile likelihood for selecting h since
it may not work with many parameters in the marginal distributions. Alternatively, they
suggested a sensitivity analysis to examine the result under a few different values of h.

Staplin et al. (2015) originally proposed the piecewise exponential models for
dependent censoring, but did not use copulas. Consequently, the sub-density func-
tions in their likelihood function require some numerical integrations of the joint
density of T and U.

4.5 Semi-parametric Models

4.5.1 The Transformation Model

Chen (2010) considered a semi-parametric transformation model defined as

STðtjx1iÞ ¼ exp½�G1fK0ðtÞeb01x1ig�; SUðujx2iÞ ¼ exp½�G2fC0ðuÞeb02x2ig�;

where bj are regression coefficients, and Gjð�Þ is a known and nonnegative
increasing function such that Gjð0Þ ¼ 0, Gjð1Þ ¼ 1, and gjðtÞ � dGjðtÞ=dt[ 0
for j ¼ 1 and 2; K0 and C0 are unknown increasing functions. No distributional
assumptions are imposed on K0 and C0. The linear transformation GjðtÞ ¼ t cor-
responds to the Cox model.
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Under the semi-parametric transformation model, the cause-specific hazard
functions are

h#T ðtjxiÞ ¼ k0ðtÞeb01x1ig1iðt; b1; b2;K0;C0jhÞ; h#U ðtjxiÞ ¼ c0ðtÞeb
0
2x2ig2iðt; b1; b2;K0;C0jhÞ;

where k0ðtÞ ¼ dK0ðtÞ=dt, c0ðtÞ ¼ dC0ðtÞ=dt,

g1iðt; b1; b2;K0;C0jhÞ ¼ g1fK0ðtÞeb01x1igSTðtjx1iÞDh;1½STðtjx1iÞ; SUðtjx2iÞ�;
g2iðt; b1; b2;K0;C0jhÞ ¼ g2fC0ðtÞeb02x2igSUðtjx2iÞDh;2½STðtjx1iÞ; SUðtjx2iÞ�;

Dh;1ðu; vÞ ¼ @Chðu; vÞ=@u
Chðu; vÞ ; Dh;2ðu; vÞ ¼ @Chðu; vÞ=@v

Chðu; vÞ :

Under the independence copula Chðu; vÞ ¼ uv, the cause-specific hazard func-
tions are equal to the marginal hazards:

h#T ðtjxiÞ ¼ k0ðtÞeb01x1i g1fK0ðtÞeb01x1ig; h#U ðtjxiÞ ¼ c0ðtÞeb
0
2x2i g2fC0ðtÞeb02x2ig:

To obtain the MLE of ðb1; b2;K0;C0Þ, we treat K0 and C0 as increasing step
functions that have jumps sizes dK0ðtiÞ ¼ K0ðtiÞ � K0ðti�Þ for di = 1 and dC0ðtiÞ ¼
C0ðtiÞ � C0ðti�Þ for di = 0. Putting the cause-specific hazard functions into Eq. (4.5)
and replacing k0ðtiÞ by dK0ðtiÞ and c0ðtiÞ by dC0ðtiÞ, we obtain the log-likelihood

‘ðb1; b2;K0;C0jhÞ ¼
X
i

di½b01x1i þ log g1iðti; b1; b2;K0;C0jhÞþ log dK0ðtiÞ�

þ
X
i

ð1� diÞ½b02x2i þ log g2iðti; b1; b2;K0;C0jhÞþ log dC0ðtiÞ�

�
X
i

Uh½STðtijx1iÞ; SUðtijx2iÞ�;

where Uhðu; vÞ ¼ � logChðu; vÞ. Since the marginal distributions have a number of
parameters to be estimated, the profile likelihood may not properly identify a suitable
value of h. Chen (2010) suggested a sensitivity analysis to examine the result under a
few different values of h, possibly selected by prior knowledge and expert opinion.

The approach of Chen (2010) reduces to Cox’s partial likelihood approach (Cox
1972) under the independence copula and the linear transformation. Under these
assumptions, the MLE ðb̂1; b̂2; K̂0; Ĉ0Þ is obtained by maximizing two functions

‘1ðb1;K0Þ ¼
X
i

di½b01x1i þ log dK0ðtiÞ� þ
X
i

log STðtijx1iÞ;

‘2ðb2;C0Þ ¼
X
i

ð1� diÞ½b02x2i þ log dC0ðtiÞ� þ
X
i

log SUðtijx2iÞ;
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since ‘ðb1; b2;K0;C0Þ ¼ ‘1ðb1;K0Þþ ‘2ðb2;C0Þ. Then, the MLE ðb̂1; K̂0Þ for
ðb1;K0Þ is the partial likelihood estimator b̂1 and the Breslow estimator K̂0

(Chap. 2).

4.5.2 The Spline Model

Emura et al. (2017) considered a spline-based model defined as

STðtjx1iÞ ¼ expf�K0ðtÞeb01x1ig; SUðujx2iÞ ¼ expf�C0ðuÞeb02x2ig;

where bj are regression coefficients, and the baseline hazard functions are modeled
by

d
dt
K0ðtÞ ¼ k0ðtÞ ¼

X5

‘¼1
g‘M‘ðtÞ ¼ g0MðtÞ; d

dt
C0ðtÞ ¼ c0ðtÞ ¼

X5

‘¼1
h‘M‘ðtÞ ¼ h0MðtÞ;

where MðtÞ ¼ ðM1ðtÞ; . . .;M5ðtÞÞ0 are the cubic M-spline basis functions (Ramsay
1988). Here, g0 ¼ ðg1; . . .; g5Þ and h0 ¼ ðh1; . . .; h5Þ are unknown positive param-
eters. These five-parameter approximations give a good flexibility in estimation for
real applications (Ramsay 1988) and are one of reasonable choices (Commenges
and Jacqmin-Gadda 2015). Since the spline bases are easy to integrate, the baseline
cumulative hazard functions are computed as K0ðtÞ ¼

P5
‘¼1 g‘I‘ðtÞ and

C0ðtÞ ¼
P5

‘¼1 h‘I‘ðtÞ, where I‘ðtÞ is the integration of M‘ðtÞ, called the I-spline
basis (Ramsay 1988).

The joint.Cox package (Emura 2018) offers functions M.spline () for computing
M‘ðtÞ and I.spline () for I‘ðtÞ. To compute these spline bases, one needs to specify
the range of t. The package uses the range t 2 ½n1; n3� for the equally spaced knots
n1\n2\n3, where n2 ¼ ðn1 þ n3Þ=2. A possible choice is n1 ¼ miniðtiÞ and
n3 ¼ maxiðtiÞ. The expressions of M‘ðtÞ and I‘ðtÞ are given in Appendix A.
Figure 4.1 displays the M- and I-spline basis functions with the knots n1 ¼ 1,
n2 ¼ 2, and n3 ¼ 3.
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Fig. 4.1 M-spline basis functions (left-panel) and I-spline basis functions (right-panel) with knots
n1 ¼ 1, n2 ¼ 2, and n3 ¼ 3

Under the spline model, the cause-specific hazard functions are

h#T ðtjxiÞ ¼ k0ðtÞeb01x1ig1iðt; b1; b2;K0;C0jhÞ; h#U ðtjxiÞ ¼ c0ðtÞeb
0
2x2ig2iðt; b1; b2;K0;C0jhÞ;

where

g1iðt; b1; b2;K0;C0jhÞ ¼ STðtjx1iÞDh;1½STðtjx1iÞ; SUðtjx2iÞ�;
g2iðt; b1; b2;K0;C0jhÞ ¼ SUðtjx2iÞDh;2½STðtjx1iÞ; SUðtjx2iÞ�:

Putting these formulas into Eq. (4.5), we obtain the log-likelihood

‘ðb1; b2; g; hjhÞ ¼
X
i

di½b01x1i þ log g1iðti; b1; b2;K0;C0jhÞþ log k0ðtiÞ�

þ
X
i

ð1� diÞ½b02x2i þ log g2iðti; b1; b2;K0;C0jhÞþ log c0ðtiÞ�

�
X
i

Uh½STðtijx1iÞ; SUðtijx2iÞ�:

The estimator of ðb1; b2; g; hÞ is obtained by maximizing the penalized
log-likelihood

‘ðb1; b2; g; hjhÞ � j1

Z
€k0ðtÞ2dt � j2

Z
€c0ðtÞ2dt;

where €f ðtÞ ¼ d2f ðtÞ=dt2, and (j1, j2) are given nonnegative values. The parameters
(j1, j2) are called smoothing parameters, which control the degrees of penalties on
the roughness of the two baseline hazard functions. It is shown in Appendix A that
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Zn3
n1

€k0ðtÞ2dt ¼ g0Xg;
Zn3
n1

€c0ðtÞ2dt ¼ h0Xh;

X ¼ 1

D5

192 �132 24 12 0
�132 96 �24 �12 12
24 �24 24 �24 24
12 �12 �24 96 �132
0 12 24 �132 192

2
66664

3
77775;

where D ¼ n2 � n1 ¼ n3 � n2. A naïve approach is to set j1 ¼ j2 ¼ 0 as in Shih
and Emura (2018).

A more sophisticated approach is to choose (j1, j2) by optimizing a likelihood
cross-validation (LCV) criterion (O’ Sullivan 1988). Under the independence
copula, the penalized log-likelihood is written as the sum of two marginal penalized
log-likelihoods,

‘1ðb1;K0Þ � j1

Z
€k0ðtÞ2dt

� �
þ ‘2ðb2;C0Þ � j2

Z
€c0ðtÞ2dt

� �
;

where

‘1ðb1;K0Þ ¼
X
i

di½b01x1i þ log k0ðtiÞ� �
X
i

K0ðtiÞ expðb01x1iÞ;

‘2ðb2;C0Þ ¼
X
i

ð1� diÞ½b02x2i þ log c0ðtiÞ� �
X
i

C0ðtiÞ expðb02x2iÞ:

We suggest choosing j1 and j2 based on the two marginal LCVs defined as

LCV1 ¼ ‘̂1 � trfĤ�1
PL1Ĥ1g; LCV2 ¼ ‘̂2 � trfĤ�1

PL2Ĥ2g;

where ‘̂1 and ‘̂2 are the log-likelihood values evaluated at their marginal penalized
likelihood estimates, and ĤPL1 and ĤPL2 are the converged Hessian matrices for the
marginal penalized likelihood estimations, Ĥ1 and Ĥ2 are the converged Hessian
matrices for the marginal log-likelihoods such that

Ĥ1 ¼ ĤPL1 þ 2j1
Op1	p1 Op1	5

O5	p1 X

� �
; Ĥ2 ¼ ĤPL2 þ 2j2

Op2	p2 Op2	5

O5	p2 X

� �
;

where O is a zero matrix and pj is the dimension of bj for j ¼ 1 and 2. The values of
ðj1; j2Þ are obtained by maximizing LCV1 for j1 and LCV2 for j2, separately. One
may apply the R function splineCox.reg in the joint.Cox R package to find the
optimal value of j1 (or j2).
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Chapter 5
Gene Selection and Survival Prediction
Under Dependent Censoring

Abstract To select genes that are predictive of survival, univariate selection based
on the Cox model has been routinely employed in biomedical research. However,
this conventional approach relies on the independent censoring assumption, which
is often an unrealistic assumption in many biomedical applications. We introduce
an alternative approach to selecting genes by utilizing copulas to account for the
effect of dependent censoring. We also introduce a method to construct a predictor
based on the selected genes to predict patient survival. We use the non-small-cell
lung cancer data to demonstrate the copula-based procedure for selecting genes,
developing a predictor, and validating the predictor. We provide detailed instruc-
tions to implement the proposed statistical methods and to reproduce the real data
analyses through the compound.Cox R package.

Keywords Clayton’s copula � Competing risk � Compound covariate
Copula-graphic estimator � Cox regression � C-index � Gene expression
Overall survival � Univariate selection

5.1 Introduction

Recent years have witnessed a rapid increase in the use of genetic covariates to
build survival prediction models in biomedical research. Accurate prediction of
survival is often possible by incorporating genetic covariates into prediction
models, as reported in breast cancer (Jenssen et al. 2002; Sabatier et al. 2011; Zhao
et al. 2011), diffuse large-B-cell lymphoma (Lossos et al. 2004; Alizadeh et al.
2011), lung cancer (Beer et al. 2002; Chen et al. 2007; Shedden et al. 2008), ovarian
cancer (Popple et al. 2012; Yoshihara et al. 2010, 2012; Waldron et al. 2014), and
other cancers. Evaluating predictive accuracy of the survival prediction models has
been a challenging area of research due to the high-dimensionality of genes
(Michiels et al. 2005; Schumacher et al. 2007; Bøvelstad et al. 2007, 2009; Witten
and Tibshirani 2010; Zhao et al. 2014; Emura et al. 2017).
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To overcome the difficulty of handling the high-dimensional genetic covariates,
one often needs to obtain a small fraction of genes that are predictive of survival.
The traditional approach, called univariate selection, is a forward variable selection
method according to univariate association between each gene and survival, where
the association is measured through univariate Cox regression. A predictor con-
structed from the selected genes has been shown to be useful for survival prediction
(Beer et al. 2002; Wang et al. 2005; Matsui 2006; Chen et al. 2007; Matsui et al.
2012; Emura et al. 2017).

It is well known that Cox regression relies on the independent censoring assump-
tion. From our discussions in Chap. 3, this assumption seems unrealistic in univariate
Cox regression, where many covariates are omitted. If the independent censoring
assumption is violated, univariate Cox regression may not correctly capture the effect of
each gene and thus may fail to select useful genes. Accordingly, the resultant predictor
based on the selected genes may have a reduced ability to predict survival.

Emura and Chen (2016) introduced a copula-based method for performing gene
selection. With this method, dependence between survival and censoring times is
modeled via a copula, whereby relaxing the independent censoring assumption. In
the subsequent discussions, we revisit their method by providing more detailed
developments than the original paper. We have made the lung cancer data publicly
available in the compound.Cox R package (Emura et al. 2018) to enhance
reproducibility.

The chapter is organized as follows. Section 5.2 reviews the conventional uni-
variate selection. Sections 5.3–5.5 introduce the copula-based method of Emura
and Chen (2016). Section 5.6 includes the analysis of the non-small-cell lung
cancer data for illustration. Section 5.7 provides discussions.

5.2 Univariate Selection

Univariate selection is the traditional method for selecting a subset of genes that is
predictive of survival. As the initial step, one fits the univariate Cox model for each
gene, one-by-one. Then, one selects a subset of genes that are univariately asso-
ciated with survival. Finally, one builds a multi-gene predictor using the subset of
genes for purpose of survival prediction. The predictor is usually a weighted sum of
gene expressions whose weights reflect the degree of association.

Let x ¼ ð x1; . . .; xp Þ0 be a p-dimensional vector of gene expressions, where the
dimension p can be large. Let T be survival time having the hazard function
hðtjxÞ ¼ Prð t� T\tþ dt jT � t; x Þ=dt. It is well known that the multivariate Cox
model hðtjxÞ ¼ h0ðtÞ expðb0xÞ does not yield proper estimates of b when p is very
large (Witten and Tibshirani 2010).

In biomedical research, the univariate Cox regression analysis is the traditional
strategy to deal with the large number of covariates (e.g., Beer et al. 2002; Chen et al.
2007). Let hðtjxjÞ ¼ Prð t� T\tþ dt jT � t; xj Þ=dt be the hazard function given
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the jth gene. The univariate Cox model is specified as hjðtjxjÞ ¼ h0jðtÞ expðbjxjÞ for
each gene j ¼ 1; . . .; p. The primary objective of using the univariate Cox model is
to perform univariate selection as follows: For each j ¼ 1; . . .; p, the null
hypothesis H0 : bj ¼ 0 is examined by the Wald test (or score test) under the
univariate Cox model. Then one picks out a subset of genes that have low P-values
from the tests. The genes with low P-values are then selected for further analysis.

After genes are selected, they are used to build a prediction scheme for survival. In
medical studies, it is a common practice to re-fit a multivariate Cox regression model
based on the selected genes (e.g., Lossos et al. 2004). However, we have reservations
about this commonly used strategy due to the poor predictive performance observed in
many papers (e.g., Bøvelstad et al. 2007; van Wieringen et al. 2009). Alternatively, we
suggest using Tukey’s compound covariate predictor (Tukey 1993) that combines the
results of univariate analyses without going through a multivariate analysis. The
compound covariate has been successfully employed in many medical studies (e.g.,
Beer et al. 2002; Wang et al. 2005; Chen et al. 2007) and biostatistical studies (Matsui
2006; Matsui et al. 2012; Emura et al. 2012, 2017).

The two major assumptions of univariate selection are the correctness of the uni-
variate Cox model and the independent censoring assumption. The violation of these
assumptions yields bias in estimating the true effect of genes. Emura and Chen (2016)
argued that the independence of censoring is a more crucial assumption than the
correctness of the univariate Cox model. The bias due to dependent censoring gets
large if either the degree of dependence or the percentage of censoring increases (see
Sect. 3.5). In the following sections, we shall introduce a copula-based univariate
selection method that copes with the problem of dependent censoring.

5.3 Copula-Based Univariate Cox Regression

Let T be survival time, U be censoring time, and x ¼ ð x1; . . .; xp Þ0 be gene
expressions. The joint distribution of T and U can have an arbitrary dependence
pattern for any given xj. Sklar’s theorem (Sklar 1959; Nelsen 2006) guarantees that
the joint survival function is expressed as

Prð T [ t ; U[ ujxj Þ ¼ Cjf Prð T [ t jxj Þ ; Prð U[ u jxj Þ g; j ¼ 1; . . .; p;

where Cj is a copula. The independent censoring assumption corresponds to Cj(u, v) = uv
for j ¼ 1; . . .; p, namely,

Prð T [ t ; U[ ujxj Þ ¼ Prð T [ t jxj Þ � Prð U[ u jxj Þ; j ¼ 1; . . .; p: ð5:1Þ

This is clearly a strong assumption (Chap. 3).
To relax the independent censoring assumption, Emura and Chen (2016) sug-

gested a one-parameter copula model
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Prð T [ t ; U[ ujxj Þ ¼ Caf Prð T [ t jxj Þ; Prð U[ ujxj Þ g; j ¼ 1; . . .; p: ð5:2Þ

Since the same copula C is assumed for every j, this assumption may still be
strong. Nevertheless, the copula relaxes the independent censoring assumption (5.1)
by allowing a dependence parameter a to be flexibly chosen by users. One example
is the Clayton copula

Cað u; v Þ ¼ ð u�a þ v�a � 1 Þ�1=a; a[ 0;

where the parameter a is related to Kendall’s tau through s ¼ a=ðaþ 2Þ. The copula
model (5.2) reduces to the independent censoring model (5.1) by letting a ! 0.

For marginal distributions, Emura and Chen (2016) assumed the Cox models

Prð T [ t jxj Þ ¼ expf �K0jðtÞebjxj g; Prð U[ u jxj Þ ¼ expf �C0jðuÞecjxj g;
ð5:3Þ

where bj and cj are regression coefficients and K0j and C0j are baseline cumulative
hazard functions.

For purpose of gene selection, the target parameter is bj that is the univariate effect
of the jth gene on survival. Other parameters ð cj; K0j; C0j Þ are nuisance. Under the
independent censoring model (5.1), one can use the partial likelihood to estimate for
bj while ignoring the nuisance parameters. However, under the copula model (5.2),
the partial likelihood estimator gives an inconsistent estimate of bj (Chap. 3).

The full likelihood is necessary to consistently estimate ð bj; cj; K0j; C0j Þ
under the copula model (5.2) and the Cox models (5.3). Define notations

Da;1ðu; vÞ ¼ @Caðu; vÞ=@u
Caðu; vÞ ¼ � @Uaðu; vÞ

@u
;

Da;2ðu; vÞ ¼ @Caðu; vÞ=@v
Caðu; vÞ ¼ � @Uaðu; vÞ

@v
;

where Uaðu; vÞ ¼ � logCaðu; vÞ. Observed data are denoted as {(ti, di, xij), i = 1,…,
n},where ti = min(Ti,Ui) and di = I(Ti � Ui), where I(∙) is the indicator function. As
in Chen (2010), we treatK0j andC0j as increasing step functions that have jumps sizes
dK0jðtiÞ ¼ K0jðtiÞ � K0jðti � dtÞ for di = 1 and dC0jðtiÞ ¼ C0jðtiÞ � C0jðti � dtÞ
for di = 0. For any given a, the log-likelihood is defined as

‘ðbj; cj; K0j; C0jjaÞ ¼
X
i

di½ bjxij þ log g1ijðti; bj; cj;K0j; C0jjaÞþ log dK0jðtiÞ �

þ
X
i

ð1� diÞ½ cjxij þ log g2ijðti; bj; cj;K0j; C0jjaÞþ log dC0jðtiÞ �

�
X
i

Ua½ expf �K0jðtiÞebjxij g; expf �C0jðtiÞecjxij g� ;

ð5:4Þ
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where,

g1ijð t; bj; cj; K0j; C0jja Þ ¼ expf �K0jðtÞebjxij gDa;1½ expf �K0jðtÞebjxij g; expf �C0jðtÞecjxij g�;
g2ijð t; bj; cj; K0j; C0jja Þ ¼ expf �C0jðtÞecjxij gDa;2½ expf �K0jðtÞebjxij g; expf �C0jðtÞecjxij g�:

The maximizer of Eq. (5.4) given a is denoted as
ð b̂jðaÞ; ĉjðaÞ; K̂0jðaÞ; Ĉ0jðaÞ Þ: The standard error SEf b̂jðaÞ g is computed from
the information matrix (Chen 2010).

The log-likelihood in Eq. (5.4) can be easily computed under the Clayton
copula. It can be shown that Uaðu; vÞ ¼ a�1 logðu�a þ v�a � 1Þ,
Da,1(u, v) = u−a−1(u−a + v−a − 1)−1, and Da,2(u, v) = u−a−1(u−a + v−a − 1)−1.
Hence,

g1ijð t; bj; cj; K0j; C0jja Þ ¼ ½expf �K0jðtÞebjxij g��a

½expf �K0jðtÞebjxij g��a þ ½expf �C0jðtÞecjxij g��a � 1
;

g2ijð t; bj; cj; K0j; C0jja Þ ¼ ½expf �C0jðtÞecjxij g��a

½expf �K0jðtÞebjxij g��a þ ½expf �C0jðtÞecjxij g��a � 1
:

One can apply these formulas to Eq. (5.4) to calculate the log-likelihood func-
tion and maximize it by optimization algorithms.

We implemented the computation of b̂jðaÞ and SEfb̂jðaÞg in the compound.Cox R
package (Emura et al. 2018). In the package, the maximization of Eq. (5.4) is per-
formed by the nlm function after the log-transformations log dK0jðtiÞ and log dC0j(ti).
The package uses the initial values bj = cj = 0 and dK0jðtiÞ ¼ dC0jðtiÞ ¼ 1=n.

Technical remarks: Theoretically, if a # 0, b̂jðaÞ approaches to the partial
likelihood estimate of bj. Numerically, however, the value a too close to zero makes
the likelihood optimization unstable. Hence, we set b̂jðaÞ ¼ b̂jð0:01Þ
for 0 � a < 0.01 in the package. The value of b̂jðaÞ ¼ b̂jð0:01Þ is almost the same
as the partial likelihood estimate.

5.4 Copula-Based Univariate Selection

One can use the copula-based method in Sect. 5.3 to perform univariate selection
adjusted for the effect of dependent censoring. The P-value for testing the null
hypothesis H0 : bj ¼ 0 is computed by the Wald test based on a Z-statistic

b̂jðaÞ=SEfb̂jðaÞg. One can select a subset of genes according to the P-values. With
a � 0 in the Clayton copula, one has C(u, v) � uv. Hence, the resultant test is
approximately equal to the Wald test under univariate Cox regression. In this sense,
the copula-based test is a generalization of the conventional univariate selection.
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For a future subject with a covariate vector x = (x1, …, xp)′, survival prediction
can be made by the prognostic index (PI) defined as b̂ðaÞ0x; where b̂ðaÞ0 ¼
ð b̂1ðaÞ; � � � ; b̂pðaÞ Þ: The PI is a weighted sum of genes whose weights reflect the

degree of univariate association. If a ¼ 0; one obtains PI = b̂ð0Þ0x which is equal to
the compound covariate based on univariate Cox regression under the independent
censoring assumption (Matsui 2006; Emura et al. 2012).

5.5 Choosing the Copula Parameter by the C-Index

Estimation of the copula parameter a is inherently difficult due to the
non-identifiability of competing risks data (Tsiatis 1975). An estimator maximizing
the profile log-likelihood for a based on Eq. (5.4) typically shows very large
sampling variation (Chen 2010). In our experience, the profile likelihood often has a
peak at extreme values; for instance, either a � 0 or a � 1 under the Clayton
copula. These undesirable properties make the likelihood-based strategy less useful.

Following Emura and Chen (2016), we introduce a prediction-based strategy for
choosing a. A widely used predictive measure is a cross-validated partial likelihood
(Verveij and van Houwelingen 1993). Unfortunately, the partial likelihood is not a
valid likelihood under dependent censoring.

A more plausible predictive measure under dependent censoring is Harrell’s c-
index (Harrell et al. 1982). The interpretation of the c-index does not depend on a
specific model. We adopt a cross-validated version of the c-index defined as
follows.

We calculate the c-index based on a K-fold cross-validation. We first divide
n patients into K groups of approximately equal sample sizes. This process can be
specified by a function j : 1; . . .; nf g 7! 1; . . .Kf g indicating the group to which
each patient is allocated (Hastie et al. 2009). For each patient i, define the PI:

PIiðaÞ ¼ b̂
0
�jðiÞðaÞxi ¼ b̂1;�jðiÞðaÞxi1 þ � � � þ b̂p;�jðiÞðaÞxip;

where b̂j;�jðiÞðaÞ is obtained based on Eq. (5.4) with the j(i)th group of patients
removed. In this way, PIi(a) is a predictor of the survival outcome (ti, dj) for the
patient i. We define the cross-validated c-index:

CVðaÞ ¼

P
i\j

f Ið ti\tj ÞIð PIiðaÞ[ PIjðaÞ Þdi þ Ið tj\ti ÞIð PIjðaÞ[ PIiðaÞ Þdj gP
i\j

f Ið ti\tj Þdi þ Ið tj\ti Þdj g :

Finally, we define â that maximizes CV(a). We recommend K = 5 that is often
used when n or p is large.
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It is computationally demanding to obtain a high-dimensional vector b̂�jðiÞðaÞ
for every group j(i). To release the computational cost, we suggest reducing the
number p by using the initial univariate selection under a = 0, e.g., based on
P-value <0.2. The technique shall be applied to the subsequent data analysis.

A graphical diagnostic plot for CVðaÞ is informative to see how the proposed
method of choosing â works. We suggest using a grid search to find the approxi-
mate value of â and plot the values of CV(a) against the grids. Figure 5.1 shows the
plots of CV(a) with simulated data under our previously considered setting (Case 2
of Table 2 in Emura and Chen 2016). The figure shows that CVðâÞ is noticeably
larger than CVð0Þ. This suggest that PIiðâÞ has better ability to predict survival than
PIið0Þ does.

5.6 Lung Cancer Data Analysis

We analyze the survival data on the non-small-cell lung cancer patients of Chen
et al. (2007). The data analysis was performed previously by Emura and Chen
(2016) using the copula-based methods. Here, we update the analysis based on the
data available in the compound.Cox R package, providing more detailed explana-
tions than the previous one. In addition, this demonstration allows researchers to
reproduce all the results easily through R.

Fig. 5.1 Six replications of the cross-validated c-index CVðaÞ. The maximum of CV(a) is
signified as a triangle (in red color)
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In the lung cancer data, the primary endpoint is overall survival, i.e.,
time-to-death. During the follow-up, 38 patients died and the remaining 87 patients
were censored. The 125 patients were split into either a training set (63 patients) or
a testing set (62 patients) in the same manner as Chen et al. (2007).

The Lung object in the compound.Cox R package contains censored survival
times t, censoring indicators di, training/testing indicators, and gene expressions
xi ¼ ðxi1; . . .; xipÞ0 for the 125 patients. Available are p = 97 gene expressions that
satisfy P-value <0.20 under the usual univariate selection performed on the training
set. All the gene expressions were coded as 1, 2, 3, or 4 according to Chen et al.
(2007). In the original analysis of Chen et al. (2007), univariate selection yielded 16
genes with P-value <0.05. In our analysis, we shall apply the copula-based uni-
variate selection to select 16 genes.

5.6.1 Gene Selection and Prediction

We applied the copula-based univariate Cox regression to the 63 patients (training
set) by using the R codes available in Appendix B. Here, we used K = 5
cross-validation for examining the diagnostic plot of CV(a). The outputs are shown
below:
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Here, $beta ¼ b̂jðâÞ, $SE ¼ SEf b̂jðâÞ g, $Z ¼ b̂jðâÞ=SEf b̂jðâÞ g, and $P is the
P-value for each j ¼ 1; . . .; 97. Also, $alpha ¼ â and $c index ¼ CVðâÞ.

Figure 5.2 displays the diagnostic plot of the cross-validated c-index CV(a)
calculated on the 63 patients (training set). The c-index is maximized at the copula
parameter â ¼ 18 (Kendall’s tau = 0.90). This implies a possible gain in prediction
accuracy by using the Clayton copula for dependent censoring.

We selected the 16 genes among the 97 genes according to the P-values. The
outputs are shown below:

Coef P.value
MMP16   0.51 0.0003
ZNF264  0.51  0.0004
HGF       0.50 0.0010
HCK        -0.49  0.0012
NF1      0.47  0.0016
ERBB3     0.46  0.0016
NR2F6     0.57  0.0030
AXL              0.77 0.0034
CDC23     0.51  0.0051
DLG2      0.92  0.0054
IGF2       -0.34 0.0081
RBBP6      0.54  0.0082
COX11     0.51 0.0116
DUSP6    0.40  0.0122
ENG      -0.37  0.0140
IHPK1         -0.41 0.0155

Fig. 5.2 Plot of CV(a) (the cross-validated c-index) based on the lung cancer data. The value of
CV(a) is maximized at a = 18 (Kendall’s tau = 0.90)
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The resultant PI is defined as PI ¼ b̂jðâÞx1 þ � � � þ b̂16ðâÞx16, where (x1,…, x16)
are gene expressions of the 16 genes. Accordingly,

PI ¼ ð0:51�MMP16Þþ ð0:51� ZNF264Þþ ð0:50� HGFÞþ ð�0:49� HCKÞþ ð0:47� NF1Þ
þ ð0:46� ERBB3) + (0:57� NR2F6) + (0:77� AXLÞþ ð0:51� CDC23)þ ð0:92� DLG2)

þ ð�0:34� IGF2Þþ ð0:54� RBBP6Þþ ð0:51� COX11Þþ ð0:40� DUSP6Þþ ð�0:37� ENGÞ
þ ð�0:41� IHPK1Þ:

5.6.2 Assessing Prediction Performance

To validate the ability of the PI for predicting overall survival, we separate the 62
testing patients into two groups of equal sizes: 31 good prognosis patients with low
PIs and 31 poor prognosis patients with high PIs. We then calculate the two
survival curves for each group (Fig. 5.3).

The prediction performance of the PI can be measured by the difference between the
two survival curves in Fig. 5.3. The two survival curves were calculated by the copula-
graphic estimator (Rivest and Wells 2001) that adjusts for the effect of dependent
censoring with the Clayton copula at â ¼ 18 (Kendall’s tau = 0.90). This approach
may be better than the conventional log-rank test to measure the difference between
two Kaplan–Meier estimators that are biased under dependent censoring.

Under the Clayton copula model, the copula-graphic (CG) estimator (Chap. 4) is
defined as

Fig. 5.3 Survival curves for the good and poor prognosis groups. The good (or poor) group is
determined by the low (or high) values of the PI. Censored patients are indicated as the mark “+”
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ŜCGð t Þ ¼ 1þ
X

ti � t; di¼1

ni � 1
n

� ��â

� ni
n

� ��â
( )" #�1=â

;

where ni ¼
Pn

j¼1 Iðtj � tiÞ is the number at-risk at time ti. We computed the CG
estimator by using the compound.Cox R package (Emura et al. 2018).

The separation of the two curves in Fig. 5.3 is measured by the average vertical
difference between the survival curves over the study period. This statistic is
considered as a scaled version of the area between the two survival curves. It is also
equivalent to a special case of the weighted Kaplan–Meier statistics (Pepe and
Fleming 1989). When using this statistic, the choice of the study period strongly
influences the test results. The common choice is the period where at least one
survivor exists in both groups (Chap. 2; Klein and Moeschberger 2003). The study
period is depicted in Fig. 5.3.

The P-value for testing the difference between the two groups is obtained using
the permutation test (Frankel et al. 2007). In each permutation, good prognosis
group (n = 31) and poor prognosis group (n = 31) are randomly allocated from the
62 testing samples, and then, the CG estimator is computed for each group. For
each permutation, the study period is determined and the average vertical difference
between the two CG estimators is calculated. The P-value is computed as the
proportion of 10,000 permuted test statistics exceeding the original test statistic.

The two curves are significantly separated between the good and poor prognoses
(Average difference = 0.224; P-value = 0.021). This result justifies the predictive
ability of the PI derived by using the copula-based approach.

5.7 Discussions

We have introduced copula-based approaches for selecting genes and making
survival prediction in the presence of dependent censoring. The method can be
flexibly applied to accommodate different copulas, such as the Clayton, Gumbel,
and FGM copulas. Due to its mathematical simplicity, we prefer the Clayton copula
to other copulas in modeling dependence structure between survival time and
censoring time. However, the effect of dependent censoring on estimates can be
remarkably different between different copulas (Chap. 3). Rivest and Wells (2001)
theoretically explored the sensitivity of using different copulas on estimating a
marginal survival function.

Due to the inherent problem of the non-identifiability of competing risks data
(Tsiatis 1975), it is not easy to identify the degree of dependence (i.e., the true
copula parameter) between survival and censoring times. The problem is due to the
fact that the likelihood function contains little information to identify the true
copula parameter. Alternatively, we choose the copula parameter by using a
cross-validated c-index, a predictive measure free from the likelihood criterion. This
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method exhibited sound numerical performances in our numerical analyses.
Unfortunately, we do not have a theoretical justification of the method, such as
consistency. Recently, Emura and Michimae (2017) proposed a goodness-of-fit
procedure to test the assumption of the correct copula under competing risks.
According to their simulation results, their approaches have certain ability to
identify the correct copula under a large number of samples. However, their
approaches have not been extended to include covariates.

After relevant genes are selected, researchers often use them to stratify patients
between good and poor prognosis groups in validation samples. This is a common
strategy to assess prediction performance of the selected genes. Researchers typi-
cally use the log-rank test to see how well the Kaplan–Meier survival curves are
separated between the good and poor groups. Note that these commonly used
validation strategies may give biased results if dependent censoring exists in vali-
dation samples. Copulas are used to adjust for this bias by replacing the Kaplan–
Meier estimator by the copula-graphic estimator. Since the log-rank test is no longer
valid in the presence of dependent censoring, we apply the permutation test based
on the average vertical difference between the copula-graphic estimators. For
purpose of constructing survival forests, Moradian et al. (2017) also suggested the
copula-graphic estimator to measure the difference between two groups under
dependent censoring.

One potential drawback of the proposed gene selection method is that it needs to
impose a proportional hazards model for the censoring distribution in Eq. (5.3). On
the other hand, the traditional univariate Cox regression does not require any model
assumption on the censoring distribution. This elimination of the model assumption
is the consequence of the independent censoring assumption. Once the independent
censoring assumption is relaxed, certain model specifications for the censoring
distribution appear to be mandatory (e.g., Siannis et al. 2005; Chen 2010). If the
research interest lies in the effect of genes on both survival time and censoring time,
the proportional hazards model for the censoring distribution may provide useful
information. For instance, researchers may be interested in selecting genes asso-
ciated with both disease-specific survival and time-to-death due to other causes as
in the competing risks setting (Escarela and Carrière 2003).
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Chapter 6
Future Developments

Abstract This final chapter introduces two open problems for future research. This
might help find research topics for students and researchers.

Keywords Copula-graphic estimator � Dependent truncation � Left-truncation
Log-rank test

6.1 Log-Rank Test Under Dependent Censoring

The three most important statistical methods in survival analysis would be the
Kaplan–Meier estimator, the log-rank test, and Cox regression. These three meth-
ods adopt simple ways to deal with censoring. However, these methods critically
rely on the validity of the independent censoring assumption (Chap. 2).

The copula-graphic estimator (Zheng and Klein 1995; Rivest and Wells 2001) is
a natural generalization of the Kaplan–Meier estimator in the presence of dependent
censoring. Also, the semi-parametric maximum likelihood estimator of Chen (2010)
is a natural generalization of Cox regression (Chap. 4). These methods for
dependent censoring utilize copulas to adjust for the effect of dependent censoring,
and they reduce to the original methods under the independence copula. However,
the copula-based generalization of the log-rank test under dependent censoring has
not been considered in the literature.

Researchers often wish to separate patients between good and poor prognosis
groups and then use the log-rank test to see how well the Kaplan–Meier survival
curves are separated between the good and poor groups. This strategy may give
biased results if dependent censoring exists in the samples (Emura and Chen 2016;
Moradian et al. 2017). In Chap. 5, we apply a permutation test based on the
difference between the two survival curves calculated by the copula-graphic esti-
mator. While this approach can account for the effect of dependent censoring, it is
not regarded as the log-rank test. The log-rank test should compare the hazard rates
between two groups rather than the survival curves.
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Hence, it is interesting to develop an alternative two-sample test, similar to the
log-rank test, under dependent censoring. In general, two copulas are necessary for
two groups (e.g., good and poor prognosis groups). A starting point may be the
assumption that the copula is the same in the two groups, as we have assumed in
Chap. 5. While deriving a generalized log-rank test under an assumed copula, it is
relevant to study the robustness or sensitivity of the test against copula misspeci-
fication as in Rivest and Wells (2001). Based on the sensitivity analysis of Chap. 3,
we conjecture that the log-rank test is robust against the effect of dependent cen-
soring modeled via the Gumbel copula.

6.2 Dependent Left-Truncation

Left-truncation often occurs if survival time is measured from birth. In this case,
survival analysis may be based on the age-specific hazard function and
left-truncation time corresponds to entry age (should not be treated as covariates).
This book does not discuss the problem of left-truncation since the theme is focused
on censoring. Meanwhile, it is of great interest to design aging research under
left-truncation (e.g., Rodríguez-Girondo et al. 2016), where the issue of dependent
left-truncation may arise in addition to the issue of dependent censoring.

Traditional analyses for left-truncated survival data rely on the independent
truncation assumption (p.126 of Klein and Moeschberger 2003). For instance, in
survival analysis of elderly residents, the age at entry to a retirement center is
assumed to be independent of age at death (Hyde 1980). Several different tests for
checking the assumption of independent truncation were developed (Emura and
Wang 2010). The effect of dependent truncation in competing risks analysis was
studied by Bakoyannis and Touloumi (2017). To fit survival data with dependent
left-truncation, a copula model between event time and left-truncation time has
been considered (Chaieb et al. 2006; Emura and Wang 2012; Emura and Murotani
2015; Emura and Pan 2017). However, these methods cannot be directly applied to
the case where event time is subject to both dependent censoring and dependent
truncation. In this case, one may consider two copulas, one for dependent truncation
and the other for dependent censoring. One may also consider a copula for
dependence between truncation time and censoring time.
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Appendix A
Spline Basis Functions

This appendix defines the spline basis functions used in k0ðtÞ ¼
P5

‘¼1 g‘M‘ðtÞ ¼
g0MðtÞ. We then explain how M‘ðtÞ’s are derived. We also calculate the roughnessR
€k0ðtÞ2dt.
For a knot sequence n1\n2\n3 with an equally spaced mesh D ¼ n2 � n1 ¼

n3 � n2, let ziðtÞ ¼ ðt � niÞ=D for i ¼ 1; 2, and 3. Define M-spline basis functions

M1ðtÞ ¼ � 4Iðn1 � t\n2Þ
D

z2ðtÞ3; M5ðtÞ ¼ 4Iðn2 � t\n3Þ
D

z2ðtÞ3;

M2ðtÞ ¼ Iðn1 � t\n2Þ
2D

f7z1ðtÞ3 � 18z1ðtÞ2 þ 12z1ðtÞg � Iðn2 � t\n3Þ
2D

z3ðtÞ3;

M3ðtÞ ¼ Iðn1 � t\n2Þ
D

f�2z1ðtÞ3 þ 3z1ðtÞ2gþ Iðn2 � t\n3Þ
D

f2z2ðtÞ3 � 3z2ðtÞ2 þ 1g;

M4ðtÞ ¼ Iðn1 � t\n2Þ
2D

z1ðtÞ3 þ Iðn2 � t\n3Þ
2D

f�7z2ðtÞ3 þ 3z2ðtÞ2 þ 3z2ðtÞþ 1g:

Define the I-spline basis function, I‘ðtÞ ¼
R t
n1
M‘ðuÞdu, which can be written as

I1ðtÞ ¼ 1� z2ðtÞ4Iðn1 � t\n2Þ; I5ðtÞ ¼ z2ðtÞ4Iðn2 � t\n3Þ;

I2ðtÞ ¼ 7
8
z1ðtÞ4 � 3z1ðtÞ3 þ 3z1ðtÞ2

� �
Iðn1 � t\n2Þþ 1� 1

8
z3ðtÞ4

� �
Iðn2 � t\n3Þ;

I3ðtÞ ¼ � 1
2
z1ðtÞ4 þ z1ðtÞ3

� �
Iðn1 � t\n2Þþ

1
2
þ 1

2
z2ðtÞ4 � z2ðtÞ3 þ z2ðtÞ

� �
Iðn2 � t\n3Þ;

I4ðtÞ ¼ 1
8
z1ðtÞ4Iðn1 � t\n2Þþ

1
8
� 7
8
z2ðtÞ4 þ 1

2
z2ðtÞ3 þ 3

4
z2ðtÞ2 þ 1

2
z2ðtÞ

� �
Iðn2 � t\n3Þ:
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The second derivatives of the M-spline basis functions are

€M1ðtÞ ¼ � 24

D3 z2ðtÞIðn1 � t\n2Þ; €M5ðtÞ ¼ 24

D3 z2ðtÞIðn2 � t\n3Þ;

€M2ðtÞ ¼ 21

D3 z1ðtÞ �
18

D3

� �
Iðn1 � t\n2Þ �

3

D3 z3ðtÞIðn2 � t\n3Þ;

€M3ðtÞ ¼ � 12

D3 z1ðtÞþ
6

D3

� �
Iðn1 � t\n2Þþ

12

D3 z2ðtÞ �
6

D3

� �
Iðn2 � t\n3Þ;

€M4ðtÞ ¼ 3

D3 z1ðtÞIðn1 � t\n2Þþ � 21

D3 z2ðtÞþ
3

D3

� �
Iðn2 � t\n3Þ:

It follows that

Z
€M1ðtÞ2dt ¼ 192

D5 ;

Z
€M2ðtÞ2dt ¼ 96

D5 ;

Z
€M3ðtÞ2dt ¼ 24

D5 ;

Z
€M4ðtÞ2dt ¼ 96

D5 ;

Z
€M5ðtÞ2dt ¼ 192

D5 ;Z
€M1ðtÞ €M2ðtÞdt ¼ � 132

D5 ;

Z
€M1ðtÞ €M3ðtÞdt ¼ 24

D5 ;

Z
€M1ðtÞ €M4ðtÞdt ¼ 12

D5 ;

Z
€M1ðtÞ €M5ðtÞdt ¼ 0;Z

€M2ðtÞ €M3ðtÞdt ¼ � 24

D5 ;

Z
€M2ðtÞ €M4ðtÞdt ¼ � 12

D5 ;

Z
€M2ðtÞ €M5ðtÞdt ¼ 12

D5 ;Z
€M3ðtÞ €M4ðtÞdt ¼ � 24

D5 ;

Z
€M3ðtÞ €M5ðtÞdt ¼ 24

D5 ;

Z
€M4ðtÞ €M5ðtÞdt ¼ � 132

D5 ;

where the range of integral is ðn1; n3�. Then, the penalization term is explicitly
computed as

Z
€k0ðtÞ2dt ¼

X5
k¼1

X5
‘¼1

gkg‘

Z
€MkðtÞ €M‘ðtÞdt

¼ 1

D5 g
0

192 �132 24 12 0
�132 96 �24 �12 12
24 �24 24 �24 24
12 �12 �24 96 �132
0 12 24 �132 192

2
66664

3
77775g ¼ g0Xg:

All the expressions mentioned above were derived in the supplementary material
of Emura et al. (2017). The computational programs of the M- and I-spline basis
functions are available in the joint.Cox R package (Emura 2018). These basis
functions were derived from the general definition of M-spline basis functions
given by Ramsay (1988). Below, we shall explain the details about the derivations.

The M-spline basis functions are defined on an interval [L, U] which is subdi-
vided by a knot sequence L ¼ n1\ � � �\nq ¼ U. We set another knot sequence
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t1 � t2 � � � � tnþ k such that t1 ¼ � � � ¼ tk ¼ L and tnþ 1 ¼ � � � ¼ tnþ k ¼ U. Then,
the M-spline bases of degree k � 1 are recursively defined as:

For k ¼ 1

Mi tjk ¼ 1ð Þ ¼ 1
tiþ 1 � ti

if ti � t\tiþ 1;

Mi tjk ¼ 1ð Þ ¼ 0 otherwise:

For k[ 1,

Mi tjkð Þ ¼ k t � tið ÞMi tjk � 1ð Þþ tiþ k � tð ÞMiþ 1 tjk � 1ð Þf g
k � 1ð Þ tiþ k � tið Þ :

The cubic spline bases correspond to k ¼ 4, giving cubic polynomials in t. Our
derivations are based on t1 ¼ � � � ¼ t4 ¼ n1, t5 ¼ n2, and t6 ¼ � � � ¼ t9 ¼ n3 with
the equally spaced mesh D ¼ n2 � n1 ¼ n3 � n2. In the following, we provide the
detailed derivations of some functions.

• Derivation of M1ðtÞ ¼ � 4Iðn1 � t\n2Þ
D z2ðtÞ3.

We derive M1 tjk ¼ 4ð Þ in knot intervals of ½t4 � t\t5�. Then, the M-spline basis
functions are recursively computed as

M4 tjk ¼ 1ð Þ ¼ 1
D
;

M3 tjk ¼ 1ð Þ ¼ 0;

M3 tjk ¼ 2ð Þ ¼ 2f t � t3ð ÞM3 tjk ¼ 1ð Þþ t5 � tð ÞM4ðtjk ¼ 1Þg
2� 1ð ÞD ¼ 2 t5 � tð Þ

D2 ;

M2 tjk ¼ 2ð Þ ¼ 0;

M2 tjk ¼ 3ð Þ ¼ 3f t � t2ð ÞM2 tjk ¼ 2ð Þþ t5 � tð ÞM3ðtjk ¼ 2Þ
3� 1ð ÞD ¼ 3 t5 � tð Þ

2D
� 2 t5 � tð Þ

D2 ¼ 3 t5 � tð Þ2
D3 ;

M1 tjk ¼ 3ð Þ ¼ 0;

M1 tjk ¼ 4ð Þ ¼ 4 t � t1ð ÞM1 tjk ¼ 3ð Þþ t5 � tð ÞM2 tjk ¼ 3ð Þf g
4� 1ð ÞD ¼ 4 t5 � tð Þ

3D
� 3 t5 � tð Þ2

D3 ¼ � 4
D
z2ðtÞ3;

So one can obtain

M1 tjk ¼ 4ð Þ ¼ � 4z2ðtÞ3
D

I n1 � t\n2ð Þ:
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• Derivation of M2ðtÞ ¼ Iðn1 � t\n2Þ
2D

f 7z1ðtÞ3 � 18z1ðtÞ2þ 12z1ðtÞ g � Iðn2 � t\n3Þ
2D

z3ðtÞ3

We shall derive M2 tjk ¼ 4ð Þ in the interval ½t4 � t\t5� and interval ½t5 � t\t6�,
separately. First, we derive M2 tjk ¼ 4ð Þ in ½t4 � t\t5�. By the definition,

M5 tjk ¼ 1ð Þ ¼ 0

M4 tjk ¼ 2ð Þ ¼ 2 t � t4ð ÞM4 tjk ¼ 1ð Þþ t6 � tð ÞM5 tjk ¼ 1ð Þf g
2� 1ð Þ t6 � t4ð Þ ¼ t � t4ð Þ

D2

M3 tjk ¼ 3ð Þ ¼ 3 t � t3ð ÞM3 tjk ¼ 2ð Þþ t6 � tð ÞM4 tjk ¼ 2ð Þf g
3� 1ð Þ t6 � t3ð Þ

¼ 3
2 2Dð Þ

2 t � t3ð Þ t5 � tð Þ
D2 þ t6 � tð Þ t � t4ð Þ

D2

� �

¼ 3 2ðt � n1Þðn2 � tÞþ ðn3 � tÞðt � n1Þf g
4D3

¼ � 3
4D

2z1ðtÞz2ðtÞþ z1ðtÞz3ðtÞf g;

M2 tjk ¼ 4ð Þ ¼ 4 t � t2ð ÞM2 tjk ¼ 3ð Þþ t6 � tð ÞM3 tjk ¼ 3ð Þf g
4� 1ð Þ t6 � t2ð Þ

¼ 4
3 2Dð Þ

3 t � t2ð Þ t5 � tð Þ2
D3 þ �3 t6 � tð Þ 2z1ðtÞz2ðtÞþ z1ðtÞz3ðtÞf g

4D

" #

¼ 1
2D

4 t � n1ð Þ n2 � tð Þ2
D3 þ � n3 � tð Þ 2z1ðtÞz2ðtÞþ z1ðtÞz3ðtÞf g

D

" #

¼ 1
2D

4z1ðtÞz2ðtÞ2 þ z3 2z1ðtÞz2ðtÞþ z1ðtÞz3ðtÞf g
h i

:

Note that n2 ¼ Dþ n1 and n3 ¼ 2Dþ n1. So z2ðtÞ and z3ðtÞ are derived as
z2ðtÞ ¼ z1ðtÞ � 1 and z3ðtÞ ¼ z1ðtÞ � 2, respectively. Then, one can obtain
M2 tjk ¼ 4ð Þ in ½t4 � t\t5� as follows.

M2 tjk ¼ 4ð Þ ¼ 1
2D

7z1ðtÞ3 � 18z1ðtÞ2 þ 12z1ðtÞ
n o

I n1 � t\n2ð Þ:

Next, we derive M2 tjk ¼ 4ð Þ in ½t5 � t\t6�. It follows that
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M5 tjk ¼ 1ð Þ ¼ 1
D
;

M4 tjk ¼ 1ð Þ ¼ 0;

M4 tjk ¼ 2ð Þ ¼ 2 t � t4ð ÞM4 tjk ¼ 1ð Þþ t6 � tð ÞM5 tjk ¼ 1ð Þf g
2� 1ð Þ t6 � t4ð Þ ¼ t6 � tð Þ

D2 ;

M3 tjk ¼ 2ð Þ ¼ 0;

M3 tjk ¼ 3ð Þ ¼ 3 t � t3ð ÞM3 tjk ¼ 2ð Þþ t6 � tð ÞM4 tjk ¼ 2ð Þf g
3� 1ð Þ t6 � t3ð Þ ¼ 3 t6 � tð Þ2

4D3 ;

M2 tjk ¼ 3ð Þ ¼ 0;

M2 tjk ¼ 4ð Þ ¼ 4 t � t2ð ÞM2 tjk ¼ 3ð Þþ t6 � tð ÞM3 tjk ¼ 3ð Þf g
4� 1ð Þ t6 � t2ð Þ

¼ t6 � tð Þ3
2D4 ¼ � z3ðtÞ3

2D
:

So one can obtain M2 tjk ¼ 4ð Þ in ½t5 � t\t6� as

M2 tjk ¼ 4ð Þ ¼ � z3ðtÞ3
2D

I n2 � t\n3ð Þ:

Combining the two cases for M2 tjk ¼ 4ð Þ, one can obtain the desired result as

M2 tjk ¼ 4ð Þ ¼ 1
2D

7z1ðtÞ3 � 18z1ðtÞ2 þ 12z1ðtÞ
n o

I n1 � t\n2ð Þ

� z3ðtÞ3
2D

I n2 � t\n3ð Þ:

• Derivation of
R
€M1ðtÞ2dt ¼ 192

D5 and
R
€M1ðtÞ €M2ðtÞdt ¼ � 132

D5

The derivatives of the M-spline basis functions are

_M1 tjk ¼ 4ð Þ ¼ � 12Iðn1 � t\n2Þ
D2 z2ðtÞ2;

€M1 tjk ¼ 4ð Þ ¼ � 24I n1 � t\n2ð Þ
D3 z2ðtÞ;

_M2 tjk ¼ 4ð Þ ¼ 1

2D2 21z1ðtÞ2 � 36z1ðtÞþ 12
n o

I n1 � t\n2ð Þ � 3z3ðtÞ2
2D2 I n2 � t\n3ð Þ;

€M2 tjk ¼ 4ð Þ ¼ 21z1ðtÞ
D3 � 18

D3

� �
I n1 � t\n2ð Þ � 3z3ðtÞ

D3 I n2 � t\n3ð Þ:
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By integrating €M1 tjk ¼ 4ð Þ2 on the interval ðn1; n3�,
Z

€M1ðtÞ2dt ¼
Z ð�24Þ2

D6 � t � n2ð Þ2
D2 I n1 � t\n2ð Þdt ¼ 576

D8

Z
t � n2ð Þ2I n1 � t\n2ð Þdt

¼ 576

D8

t � n2ð Þ3
3

I n1 � t\n2ð Þ
" #n2

t�n1

¼ 576

D8 0� �Dð Þ3
3

( )
¼ 192

D5 :

By integrating €M1ðtÞ €M2ðtÞ on the interval ðn1; n3�,
Z

€M1ðtÞ €M2ðtÞdt ¼
Z

� 24z2ðtÞI n1 � t\n2ð Þ
D3

21

D3 z1ðtÞ �
18

D3

� �
I n1� t\n2ð Þ � 3

D3 z3ðtÞI n2 � t\n3ð Þ
� �

dt

The product of I n1 � t\n2ð Þ and I n2 � t\n3ð Þ is equal to 0. Hence,

Z
€M1ðtÞ €M2ðtÞdt ¼

Z
� 24z2ðtÞI n1 � t\n2ð Þ

D3 � 21

D3 z1ðtÞ �
18

D3

� �
I n1 � t\n2ð Þdt

¼
Z

� 504

D8 Dþ t � n2ð Þ t � n2ð ÞI n1 � t\n2ð Þþ 432

D7 Dþ t � n2ð ÞI n1 � t\n2ð Þdt

¼ � 504

D8

1
3

t � n2ð Þ3 þ 1
2
D t � n2ð Þ2

� �n2
t�n1

I n1� t\n2ð Þþ 432

D7

1
2
D t � e2ð Þ2

� �n2
t�n1

I n1 � t\n2ð Þ

¼ � 504

D8

�1
3

�Dð Þ3� 1
2
D3

� �
þ 432

D7 � 1
2
D2

� �
¼ 84

D5 �
216

D5 ¼ � 132

D5 :
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Appendix B
R Codes for the Lung Cancer Data
Analysis
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The codes need 30 minutes to an hour to finish the computation.
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Index

A
Abe Sklar, 4, 27
Archimedean copula, 30, 32, 33, 35, 39, 42
Assumed copula, 5, 41, 47, 49, 72

B
Bivariate copula, 27, 28
Bivariate survival function, 27, 35, 45
Breslow estimator, 22, 51
Burr distribution, 46

C
Cause-specific hazard function, 22, 36, 37, 45,

50, 52
C-index, 62, 65, 67
Clayton copula, 4, 29–31, 33, 34, 37, 60, 65,

66
Competing risks, 4, 5, 41, 62, 67, 68, 72
Compound covariate, 59, 62
Compound.Cox, 26, 44, 58, 61, 63, 64
Conditional hazard function, 33
Copula-graphic estimator, 5, 43, 66, 68, 71
Counting process, 23, 24, 37
Cox model, 16, 35, 37, 58–60
Cross-ratio function, 32, 33
Cross-validation, 62, 64

D
David George Clayton, 4
David Oakes, 4
Dependent censoring, 1, 5, 28, 34, 36, 59, 61,

66, 68, 72

Dependent truncation, 34, 72
Dropout, 1, 2, 33

F
FGM copula, 30, 31, 48
Fixed-point iteration, 17, 25
Frailty, 3, 4
Frank copula, 30, 31, 46

G
Gene expression, 58, 59, 64, 66
Generator function, 31
Gumbel copula, 29, 31, 38

H
Hazard function, 12
Head and neck cancer, 9
Hessian matrix, 17, 25

I
Identifiability, 4, 5, 47, 48, 62, 67
Independence copula, 29, 31, 33, 71
Independent censoring assumption, 11, 34, 35,

37
Information matrix, 17, 22, 61
Informative dropout, 1, 2, 33

J
Joe copula, 30, 31, 49
Joint.Cox, 51
Joint frailty-copula model, 6, 33
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K
Kaplan-Meier estimator, 10, 68, 71
Kendall’s tau, 28, 31, 32, 65, 66

L
Laplace transform, 35
Left-truncation, 34, 72
Life table, 13
Likelihood Cross-Validation (LCV), 53
Log-rank test, 14, 15, 19, 23, 66–68, 71
Lung cancer, 26, 57, 58, 63, 65, 81

M
Maximum likelihood estimator, 22, 46–48, 51
Multicollinearity, 26

N
Newton–Raphson algorithm, 18, 22, 25, 48
Non-informative censoring, 21

O
Ovarian cancer, 57
Overall survival, 1–3, 64, 66

P
Pareto distribution, 46, 47
Partial likelihood, 16, 24, 36, 38, 61, 62
Patient-level survival function, 11
Penalized likelihood, 52, 53

Piecewise exponential, 48
Profile likelihood, 46, 48
Prognostic index, 62, 66

R
Random effects, 34
Relative risk, 13, 16, 33
Residual dependence, 2, 28, 34, 35
Risk set, 16

S
Score function, 16, 18, 25
Semi-competing risks, 6
Sklar’s theorem, 4, 27, 35, 59
Spline, 13, 51, 52, 75, 76
Sub-density function, 45
Survival function, 10, 11, 27, 28, 42

T
Transformation model, 49, 50
Tukey, 59
Tumour progression, 2, 33

U
Univariate selection, 58, 59, 61, 63

W
Weibull distribution, 25, 46
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